
EXPERIMENTS WITH LINEAR FEATURE EXTRACTION INSPEECH RECOGNITIONK. Beulen, L. Welling, H. NeyLehrstuhl f�ur Informatik VI, RWTH Aachen { University of Technology,D-52056 Aachen, GermanyABSTRACTIn this paper we investigate Linear Discriminant Analysis(LDA) for the TI connected digit recognition task (TItask) and the Wall Street Journal large vocabularyrecognition task (WSJ task). In addition to previousvariants of LDA implementations, we avoided the explicitincorporation of derivatives in the acoustic vector.Instead a sliding window without derivatives was used.This large-sized vector was then taken to extract thefeatures by an LDA transformation. Tests for thisfeature generation were performed both for Laplacianand Gaussian densities.1. INTRODUCTIONIt is a well known fact that the performance of apattern recognition system depends heavily on the typeof observations that are used in the system. Severalmethods are employed in practice which often consistof two stages: First the acoustic signal is transformedfrom time domain into frequency domain using aFourier transformation or the like. Second the spectralcomponents of the resulting acoustic vector are thentransformed by a linear mapping.In our baseline TI and WSJ systems, we use anaugmented vector (spectral (WSJ system) or cepstral(TI system) components plus �rst-order and second-order derivatives) which is then transformed by LinearDiscriminant Analysis (LDA). Because of this ad-hocmethod which is used to add contextual informationto the feature vector, one can argue that the LDAtransformation, which is an optimal method for thederivation of features (corresponding to the separationcriterion), should be able to supply more relevantinformation from the acoustic context to the featurevector. In this work we try to avoid the use of explicitderivatives in the feature vector. Instead we use abig 'spliced' vector which covers the adjacent vectorsfrom which the derivatives were calculated, and an LDAtransformation to automatically extract the additionalinformation due to the derivatives.To model the emission probabilities of the hiddenMarkov models (HMMs) of the recognizer, our baselineWSJ system has so far used Laplacian densities. Thereason is that during the development of the WSJsystem Laplacian and Gaussian densities were testedand Laplacian densities were found to perform better,given the boundary conditions of the system. In this

paper, we made several tests to investigate the e�ect ofcombining Gaussian and Laplacian densities with LDAand derivatives for the TI task and the WSJ task. Wefound that, in combination with derivatives and LDA,Gaussian densities are superior to Laplacian densities.Moreover we investigated two problems due to the LDA,the de�niton of the LDA classes and the use of the silenceobservations to calculate the LDA matrix. We found thatit is su�cient for good performance to take the states ofthe HMMs as classes for the LDA. The use of the silenceobservations for the calculation of the LDA matrix doesnot a�ect the recognition results.This paper is organized in the following way. Section 2describes the two speech recognition systems which wereused in this work. Section 3 gives a brief introductionto the methods investigated, namely the explicitincorporation of derivatives and linear discriminantanalysis. Section 4 describes the experimental results ofthe methods.2. SYSTEM DESCRIPTIONTwo speech recognition systems were used. The �rstsystem was developed for the TI task. In this system, thesignal analysis is done the following way. The sampledspeech signal is preemphasized. Then a Hammingwindow of 15 ms is applied to the signal every 10 ms.The short term spectrum is computed by a 8192-pointfast Fourier transform. From this frequency range, therange of 0 to 5 kHz is used for further processing:� A �lter bank in which each �lter has a trianglebandpass frequency response with bandwidth andspacing determined by a constant mel frequencyinterval is applied to the mel spectrum.� For each �lter the output is calculated as thelogarithm of the sum of the weighted spectralmagnitudes.� The �lter bank outputs are decorrelated bya discrete cosine transform [1]. 16 cepstrumcoe�cients cm are computed from 20 �lter bankoutputs.� For every utterance, a cepstral mean normalisationis carried out. Moreover the zeroth coe�cient isshifted so that the maximum value within everyutterance is zero (energy normalisation).The acoustic modelling is based on the followingproperties:



� The word models are HMMs with continuousobservation densities.� The emission probabilities are modelled by Lapla-cian or Gaussian single densities with one variancevector per state.� The transition probabilities are modeled as timedistortion penalties for the skip and the looptransition. Their values are determined beforehand.The second system is described in [6] and is appliedto the WSJ large vocabulary recognition task. In theacoustic analysis the following steps are performed. Firsta Hamming window is applied every 10 ms to a 25-mssegment. Then a 512-point FFT is performed on the 25-ms segment. 30 mel-frequency spectral intensities werecomputed and normalized with respect to their meanvalue. The resulting 30 intensities together with theirenergy form the acoustic vector. This vector is thennormalized according to the long term spectrum of thesentence to counteract the in
uence of di�erent recordingconditions. The resulting 31-dimensional vector is thenaugmented by �rst-order and second-order derivativesand then (optionally) transformed by a LDA matrixresulting in a 35 component vector.The acoustic modelling is almost the same as in the TIsystem, the only di�erences are the following:� Instead of single densities, mixture densities areused to model the emission probabilities.� The variance vector is pooled over all densities of allstates.� To capture the acoustic context dependencies of thephonemes, a set of 780 context dependent phonememodels is used.Both systems estimate the parameters of the acousticmodels using the maximum likelihood criterion andViterbi training [5].3. LINEAR TRANSFORMATIONFOR FEATURE EXTRACTION3.1. DerivativesAdding derivatives is a simple but e�cient method forincorporating contextual information into the featurevector. In both systems, �rst-order and second-ordertime derivatives are used to form a new acoustic vectorof higher dimension. For a window size of 2�t + 1, thedi�erences between the components of the feature vectorsx(t), x(t��t) and x(t+�t) are computed to form thenew vector Y (t):Y (t) = 24 x(t)�x(t)�2x(t) 35 = 24 x(t)x(t)� x(t��t)x(t+�t)� 2x(t) + x(t��t) 35This vector is then transformed by a method such as LDAor is directly used for training and recognition.For the TI system, the augmented acoustic vectorconsists of the 16-dimensional original vector plus a

16-dimensional �rst-order derivatives vector and a 16-dimensional second-order derivatives vector. For theWSJ system, pairs of adjacent spectral energies areaveraged and then used to calculate the time derivatives.Thus the augmented acoustic vector contains 15 �rst-order and 15 second-order derivatives and the �rst-orderand the second-order derivative of the energy componentin addition to the original 31 vector components. Bothsystems use a value of �t = 3 frames for the calculationof the derivatives.3.2. LDAThe LDA is a method introduced by Fisher [2] toreduce the number of dimensions for a given featurevector while keeping the classes as separate as possible.The basic idea of the LDA is to �nd a set of lineartransformation functions for the initial feature vector anda ranking which indicates the separation capability ofthese functions. Then the m best functions are used totransform the initial feature vector yielding m featuresfor classi�cation. To estimate the class separability,the within-class scatter matrix W and the total scattermatrix T of the training set is computed and then usedto calculate the criterion J :J = det(W�1T )This criterion is then maximized using techniques oflinear algebra. For the above criterion the solution is tocalculate the eigenvectors and eigenvalues for the matrixproductW�1T and then take them eigenvectors with thelargest eigenvalues to form the transformation matrix [4].This transformation can be interpreted as a simultaneousdiagonalization of the within-class scatter matrix and thetotal scatter matrix. First the within class scatter matrixis whitened which results in an approximative whiteningtransformation for each class. Then the total scattermatrix is diagonalized which means a proper rotation ofthe feature space.The calculation of the within class scatter matrix involvesthe problem how to de�ne these classes. Severalpossibilities are phonemes, states or densities [4]. For theTI system, the states of the word models were used asclasses. For the WSJ system, we tested two de�nitions:� Each context dependent phoneme state is a separateclass; as a result there were 2338 classes for the LDA.� The states of a set of 4644 triphones are tiedtogether using a bottom-up clustering algorithm [3]to obtain a set of generalized triphones. Along withthe 130 classes de�ned by the monophone statesplus one silence state, we thus obtain 252 and 4494classes for the LDA. The second de�nition takesthe fact into account that during the recognitionwe only want to decide which phoneme has beenuttered rather than the exact triphone.The calculation of the LDA matrix is done for bothsystems in a similar way:� The feature vectors of the training data are timealigned with the states of the HMMs.



� The state labels are used to determine the classes ofthe feature vectors.� Then a big 'spliced' vector
X(t) = 266666666664

x(t��t)...x(t� 1)x(t)x(t+ 1)...x(t+�t)
377777777775is formed from 2�t+ 1 adjacent vectors. The classof the spliced vector is determined by the class ofthe central vector.� In a �rst pass the mean vectors for the classes andthe total mean vector are calculated.� In a second pass the within-class scatter matrix Wand the total scatter matrix T are calculated.� Finally, the LDA matrix is calculated as theeigenvectors of W�1T .During training and recognition, this LDA matrix is usedto calculate the �nal feature vector. For both the TItask and the WSJ task, a window size of 2�t + 1 =11 frames was used when derivatives were not explicitlyincorporated. Otherwise only 3 adjacent vectors wereused (only for the WSJ system). The �nal feature vectorcontains 48 components for the TI system, 35 for theWSJ system.4. EXPERIMENTAL RESULTSAll tests described in this section were performed on theTI connected digit recognition test set (28583 spokenwords) for the TI system and on the WSJ November 92development test set (6779 spoken words) for the WSJsystem.The TI system consists of 11 word models. Per gender wehave 357 states plus one for silence. Each state consists ofone mixture with a single Gaussian or Laplacian density.The WSJ system is based on an inventory of 780 contextdependent models plus one model for silence. Eachphoneme model is divided into 3 segments with 2 statesper segment and one mixture per segment. The silencemodel consists of only one state with one mixture. Thenumber of densities per mixture is approximately 50 sothat the whole acoustic models contain about 110,000Gaussian or Laplacian densities.4.1. Derivatives and LDAOur �rst test addresses the question how accurate thecontextual information is captured by derivatives orLDA. For both systems the following parameters werechosen:� a time delay �t of 3 frames for the derivatives,� a window size of 11 frames for the LDA with noderivatives,

Table 1: Word error rates [%] on WSJ0, Nov.'92 (Dev-5k) and on TI digits for derivatives and LDA (Laplaciandensities).Features TI WSJDeriv. LDA DEL-INS WER DEL-INS WERYes No 49-22 0.63 { 12.4No Yes 67-54 0.82 115-81 11.2Yes Yes 72-37 0.72 114-83 10.3� a time delay �t of 3 frames and three adjacentacoustic vectors for combined derivatives and LDA.Table 1 shows the word error rate (WER) for 3di�erent combinations of derivatives and LDA (Laplaciandensities). For the WSJ system, the LDA gave animprovement of about 10% over the vector incorporatingthe derivatives. For the TI system, the vectorincorporating the derivatives reduced the error rate by1/4 compared to the LDA. The best results (for Laplaciandensities) are achieved by a combination of LDA andderivatives.4.2. E�ect of Density ModelsIn a second test, two di�erent density models weretested for derivatives and LDA. Laplacian and Gaussiandensities were compared with each other, the results areshown in Table 2. It is obvious that for LDA-transformedfeatures the Gaussian densities perform slightly betterthan the Laplacian densities. For pure derivatives, theLaplacian densities gave slightly better results than theGaussian densities for the TI task.4.3. LDA Class De�nitionA third experiment was carried out to �nd out a suitablede�nition for the LDA classes as discussed in Section 3.2.We calculated three di�erent LDA matrices, one for theset of 2338 phoneme states (triphones and monophones)which were also used for training and recognition, andtwo LDA matrices for a set of 382 and 4624 phonemestates (generalized triphones and monophones) whichwere derived from a set of 4644 triphones using aTable 2: Word error rates [%] on WSJ0, Nov.'92 (Dev-5k) and on the TI task for di�erent density models andderivatives and LDA.Features Model TI WSJDEL-INS WER DEL-INS WERDeriv., Lapl. 132-70 0.80 { 12.4No LDA Gauss 156-93 1.01 { {No Deriv., Lapl. 67-54 0.82 115-81 11.2LDA Gauss 70-38 0.71 124-68 10.0Deriv., Lapl. 72-37 0.72 114-83 10.3LDA Gauss { { 123-60 9.9



Table 3: Word error rates [%] on WSJ0, Nov.'92 (Dev-5k)for di�erent sets of phoneme models.Model Set Nr. of LDA Classes DEL-INS WERTriphones 2338 114-83 10.3Gen. Triphones 382 117-87 10.9Gen. Triphones 4624 101-77 10.3bottom-up clustering algorithm [3]. The LDA matrixwas calculated with these two di�erent class de�nitionsand then training and recognition was performed usingthe conventional set of 780 context dependent models(Table 3). The results indicate that a LDA matrixwhich is consistent with the models used in the recognizerperforms best.Finally we tested the in
uence of the silence observationson the LDA matrix. Because silence covers about 20%of the training material of WSJ0, it is not clear whetherincluding the silence observations in the calculation of theLDA matrix a�ects the discrimination of the non-silenceclasses (Table 4). We found that excluding the silenceobservations has no e�ect on the word error rate (Table4). 5. CONCLUSIONSWe investigated two linear transformation methods,namely derivatives and LDA, on the TI task and the WSJtask. Each of them was able to improve the performanceof the recognizer. The best results were achieved bya combination of the methods. The experimental testsindicated the following results:� For Gaussian densities, we are able to get the sameresults with LDA as with the combination of LDAand derivatives.� For Laplacian densities, the combination of LDAand derivatives performs slightly better than LDAwithout derivatives.� For LDA, Gaussian mixture densities gave slightlybetter results than Laplacian mixture densities.� The best class de�nition for LDA seems to be thestates of the recognizer.� The application of the silence observations forcalculating the LDA matrix does not a�ect therecognition performance.The unsatisfactory result is that the LDA is not ableto produce more e�cient features from the context thanthe features which are supplied by the augmented vector.Table 4: Word error rates [%] on WSJ0, Nov.'92 (Dev-5k)for LDA with and without a silence class.LDA training DEL-INS WERWith silence 114-83 10.3Without Silence 112-78 10.3
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