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ABSTRACT

In this paper we investigate Linear Discriminant Analysis
(LDA) for the TI connected digit recognition task (TI
task) and the Wall Street Journal large vocabulary
recognition task (WSJ task). In addition to previous
variants of LDA implementations, we avoided the explicit
incorporation of derivatives in the acoustic vector.
Instead a sliding window without derivatives was used.
This large-sized vector was then taken to extract the
features by an LDA transformation. Tests for this
feature generation were performed both for Laplacian
and Gaussian densities.

1. INTRODUCTION

It is a well known fact that the performance of a
pattern recognition system depends heavily on the type
of observations that are used in the system. Several
methods are employed in practice which often consist
of two stages: First the acoustic signal is transformed
from time domain into frequency domain using a
Fourier transformation or the like. Second the spectral
components of the resulting acoustic vector are then
transformed by a linear mapping.

In our baseline TI and WSJ systems, we use an
augmented vector (spectral (WSJ system) or cepstral
(TI system) components plus first-order and second-
order derivatives) which is then transformed by Linear
Discriminant Analysis (LDA). Because of this ad-hoc
method which is used to add contextual information
to the feature vector, one can argue that the LDA
transformation, which is an optimal method for the
derivation of features (corresponding to the separation
criterion), should be able to supply more relevant
information from the acoustic context to the feature
vector. In this work we try to avoid the use of explicit
derivatives in the feature vector. Instead we use a
big ’spliced’ vector which covers the adjacent vectors
from which the derivatives were calculated, and an LDA
transformation to automatically extract the additional
information due to the derivatives.

To model the emission probabilities of the hidden
Markov models (HMMs) of the recognizer, our baseline
WSJ system has so far used Laplacian densities. The
reason is that during the development of the WSJ
system Laplacian and Gaussian densities were tested
and Laplacian densities were found to perform better,
given the boundary conditions of the system. In this

paper, we made several tests to investigate the effect of
combining Gaussian and Laplacian densities with LDA
and derivatives for the TI task and the WSJ task. We
found that, in combination with derivatives and LDA,
Gaussian densities are superior to Laplacian densities.

Moreover we investigated two problems due to the LDA,
the definiton of the LDA classes and the use of the silence
observations to calculate the LDA matrix. We found that
it is sufficient for good performance to take the states of
the HMMs as classes for the LDA. The use of the silence
observations for the calculation of the LDA matrix does
not affect the recognition results.

This paper is organized in the following way. Section 2
describes the two speech recognition systems which were
used in this work. Section 3 gives a brief introduction
to the methods investigated, namely the explicit
incorporation of derivatives and linear discriminant
analysis. Section 4 describes the experimental results of
the methods.

2. SYSTEM DESCRIPTION

Two speech recognition systems were used. The first
system was developed for the TT task. In this system, the
signal analysis is done the following way. The sampled
speech signal is preemphasized. @ Then a Hamming
window of 15 ms is applied to the signal every 10 ms.
The short term spectrum is computed by a 8192-point
fast Fourier transform. From this frequency range, the
range of 0 to 5 kHz is used for further processing:

e A filter bank in which each filter has a triangle
bandpass frequency response with bandwidth and
spacing determined by a constant mel frequency
interval is applied to the mel spectrum.

e For each filter the output is calculated as the
logarithm of the sum of the weighted spectral
magnitudes.

e The filter bank outputs are decorrelated by
a discrete cosine transform [1]. 16 cepstrum
coefficients c¢,, are computed from 20 filter bank
outputs.

e For every utterance, a cepstral mean normalisation
is carried out. Moreover the zeroth coefficient is
shifted so that the maximum value within every
utterance is zero (energy normalisation).

The acoustic modelling is based on the following
properties:



e The word models are HMMs with continuous
observation densities.

e The emission probabilities are modelled by Lapla-
cian or Gaussian single densities with one variance
vector per state.

e The transition probabilities are modeled as time
distortion penalties for the skip and the loop
transition. Their values are determined beforehand.

The second system is described in [6] and is applied
to the WSJ large vocabulary recognition task. In the
acoustic analysis the following steps are performed. First
a Hamming window is applied every 10 ms to a 25-ms
segment. Then a 512-point FFT is performed on the 25-
ms segment. 30 mel-frequency spectral intensities were
computed and normalized with respect to their mean
value. The resulting 30 intensities together with their
energy form the acoustic vector. This vector is then
normalized according to the long term spectrum of the
sentence to counteract the influence of different recording
conditions. The resulting 31-dimensional vector is then
augmented by first-order and second-order derivatives
and then (optionally) transformed by a LDA matrix
resulting in a 35 component vector.

The acoustic modelling is almost the same as in the TI
system, the only differences are the following:

e Instead of single densities, mixture densities are
used to model the emission probabilities.

e The variance vector is pooled over all densities of all
states.

e To capture the acoustic context dependencies of the
phonemes, a set of 780 context dependent phoneme
models is used.

Both systems estimate the parameters of the acoustic
models using the maximum likelihood -criterion and
Viterbi training [5].

3. LINEAR TRANSFORMATION
FOR FEATURE EXTRACTION

3.1. Derivatives

Adding derivatives is a simple but efficient method for
incorporating contextual information into the feature
vector. In both systems, first-order and second-order
time derivatives are used to form a new acoustic vector
of higher dimension. For a window size of 2At + 1, the
differences between the components of the feature vectors
z(t), z(t — At) and z(t + At) are computed to form the
new vector Y (¢):

z(t) z(t)
Y(it)y=| Az@) | = z(t) — xz(t — At)
Az (t) z(t + At) — 2z(t) + z(t — At)

This vector is then transformed by a method such as LDA
or is directly used for training and recognition.

For the TI system, the augmented acoustic vector
consists of the 16-dimensional original vector plus a

16-dimensional first-order derivatives vector and a 16-
dimensional second-order derivatives vector. For the
WSJ system, pairs of adjacent spectral energies are
averaged and then used to calculate the time derivatives.
Thus the augmented acoustic vector contains 15 first-
order and 15 second-order derivatives and the first-order
and the second-order derivative of the energy component
in addition to the original 31 vector components. Both
systems use a value of At = 3 frames for the calculation
of the derivatives.

3.2. LDA

The LDA is a method introduced by Fisher [2] to
reduce the number of dimensions for a given feature
vector while keeping the classes as separate as possible.
The basic idea of the LDA is to find a set of linear
transformation functions for the initial feature vector and
a ranking which indicates the separation capability of
these functions. Then the m best functions are used to
transform the initial feature vector yielding m features
for classification. To estimate the class separability,
the within-class scatter matrix W and the total scatter
matrix T of the training set is computed and then used
to calculate the criterion .J:

J = det(W™'T)

This criterion is then maximized using techniques of
linear algebra. For the above criterion the solution is to
calculate the eigenvectors and eigenvalues for the matrix
product W' T and then take the m eigenvectors with the
largest eigenvalues to form the transformation matrix [4].

This transformation can be interpreted as a simultaneous
diagonalization of the within-class scatter matrix and the
total scatter matrix. First the within class scatter matrix
is whitened which results in an approximative whitening
transformation for each class. Then the total scatter
matrix is diagonalized which means a proper rotation of
the feature space.

The calculation of the within class scatter matrix involves
the problem how to define these classes.  Several
possibilities are phonemes, states or densities [4]. For the
TT system, the states of the word models were used as
classes. For the WSJ system, we tested two definitions:

e FEach context dependent phoneme state is a separate
class; as a result there were 2338 classes for the LDA.

e The states of a set of 4644 triphones are tied
together using a bottom-up clustering algorithm [3]
to obtain a set of generalized triphones. Along with
the 130 classes defined by the monophone states
plus one silence state, we thus obtain 252 and 4494
classes for the LDA. The second definition takes
the fact into account that during the recognition
we only want to decide which phoneme has been
uttered rather than the exact triphone.

The calculation of the LDA matrix is done for both
systems in a similar way:

e The feature vectors of the training data are time
aligned with the states of the HMMs.



e The state labels are used to determine the classes of
the feature vectors.

e Then a big 'spliced’ vector

M ox(t— At) ]

z(t — 1)
X(t) = z(t)
z(t+1)

L a:(t—l.-At) ]

is formed from 2At¢ + 1 adjacent vectors. The class
of the spliced vector is determined by the class of
the central vector.

e In a first pass the mean vectors for the classes and
the total mean vector are calculated.

e In a second pass the within-class scatter matrix W
and the total scatter matrix 7" are calculated.

e Finally, the LDA matrix is calculated as the
eigenvectors of W~'T.

During training and recognition, this LDA matrix is used
to calculate the final feature vector. For both the TI
task and the WSJ task, a window size of 2At + 1 =
11 frames was used when derivatives were not explicitly
incorporated. Otherwise only 3 adjacent vectors were
used (only for the WSJ system). The final feature vector
contains 48 components for the TI system, 35 for the
WSJ system.

4. EXPERIMENTAL RESULTS

All tests described in this section were performed on the
TI connected digit recognition test set (28583 spoken
words) for the TT system and on the WSJ November 92
development test set (6779 spoken words) for the WSJ
system.

The TI system consists of 11 word models. Per gender we
have 357 states plus one for silence. Each state consists of
one mixture with a single Gaussian or Laplacian density.
The WSJ system is based on an inventory of 780 context
dependent models plus one model for silence. Each
phoneme model is divided into 3 segments with 2 states
per segment and one mixture per segment. The silence
model consists of only one state with one mixture. The
number of densities per mixture is approximately 50 so
that the whole acoustic models contain about 110,000
Gaussian or Laplacian densities.

4.1. Derivatives and LDA

Our first test addresses the question how accurate the
contextual information is captured by derivatives or
LDA. For both systems the following parameters were
chosen:

e a time delay At of 3 frames for the derivatives,

e a window size of 11 frames for the LDA with no
derivatives,

Table 1: Word error rates [%] on WSJ0, Nov.’92 (Dev-
5k) and on TI digits for derivatives and LDA (Laplacian
densities).

Features TI WSJ
Deriv. | LDA |DEL-INS | WER | DEL-INS | WER
Yes No 49-22 0.63 — 12.4
No Yes 67-54 0.82 115-81 11.2
Yes | Yes 72-37 0.72 | 114-83 | 10.3

e a time delay At of 3 frames and three adjacent
acoustic vectors for combined derivatives and LDA.

Table 1 shows the word error rate (WER) for 3
different combinations of derivatives and LDA (Laplacian
densities). For the WSJ system, the LDA gave an
improvement of about 10% over the vector incorporating
the derivatives. For the TI system, the vector
incorporating the derivatives reduced the error rate by
1/4 compared to the LDA. The best results (for Laplacian
densities) are achieved by a combination of LDA and
derivatives.

4.2. Effect of Density Models

In a second test, two different density models were
tested for derivatives and LDA. Laplacian and Gaussian
densities were compared with each other, the results are
shown in Table 2. It is obvious that for LDA-transformed
features the Gaussian densities perform slightly better
than the Laplacian densities. For pure derivatives, the
Laplacian densities gave slightly better results than the
Gaussian densities for the TT task.

4.3. LDA Class Definition

A third experiment was carried out to find out a suitable
definition for the LDA classes as discussed in Section 3.2.
We calculated three different LDA matrices, one for the
set of 2338 phoneme states (triphones and monophones)
which were also used for training and recognition, and
two LDA matrices for a set of 382 and 4624 phoneme
states (generalized triphones and monophones) which
were derived from a set of 4644 triphones using a

Table 2: Word error rates [%] on WSJ0, Nov.’92 (Dev-
5k) and on the TI task for different density models and
derivatives and LDA.

Features | Model TI WSJ
DEL-INS‘WER DEL-INS | WER

Deriv., Lapl. | 132-70 0.80 - 12.4
No LDA | Gauss| 156-93 | 1.01 - -

No Deriv., | Lapl. 67-54 0.82 | 115-81 |11.2
LDA Gauss | 70-38 0.71 | 124-68 |10.0

Deriv., | Lapl. | 72-37 | 0.72 | 114-83 [10.3
LDA | Gauss - — | 123-60 | 9.9




Table 3: Word error rates [%] on WSJO0, Nov.’92 (Dev-5k)
for different sets of phoneme models.

Model Set Nr. of LDA Classes | DEL-INS | WER
Triphones 2338 114-83 | 10.3
Gen. Triphones 382 117-87 | 10.9
Gen. Triphones 4624 101-77 | 10.3

bottom-up clustering algorithm [3]. The LDA matrix
was calculated with these two different class definitions
and then training and recognition was performed using
the conventional set of 780 context dependent models
(Table 3). The results indicate that a LDA matrix
which is consistent with the models used in the recognizer
performs best.

Finally we tested the influence of the silence observations
on the LDA matrix. Because silence covers about 20%
of the training material of WSJO0, it is not clear whether
including the silence observations in the calculation of the
LDA matrix affects the discrimination of the non-silence
classes (Table 4). We found that excluding the silence
observations has no effect on the word error rate (Table
4).

5. CONCLUSIONS

We investigated two linear transformation methods,
namely derivatives and LDA, on the TT task and the WSJ
task. Each of them was able to improve the performance
of the recognizer. The best results were achieved by
a combination of the methods. The experimental tests
indicated the following results:

e For Gaussian densities, we are able to get the same
results with LDA as with the combination of LDA
and derivatives.

e For Laplacian densities, the combination of LDA
and derivatives performs slightly better than LDA
without derivatives.

e For LDA, Gaussian mixture densities gave slightly
better results than Laplacian mixture densities.

e The best class definition for LDA seems to be the
states of the recognizer.

e The application of the silence observations for
calculating the LDA matrix does not affect the
recognition performance.

The unsatisfactory result is that the LDA is not able
to produce more efficient features from the context than
the features which are supplied by the augmented vector.

Table 4: Word error rates [%] on WSJO0, Nov.’92 (Dev-5k)
for LDA with and without a silence class.

LDA training |DEL-INS|WER
With silence 114-83 10.3
Without Silence| 112-78 10.3

There are some other questions about LDA which were
not addressed in this paper such as the optimal number of
components for the transformed vector, suitable criteria
of class separability and a combination of several LDA
matrices with various class definitions.
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