
Gesture Recognition Using Motion Estimation
on Mobile Phones

Sven Kratz
Media Computing Group

RWTH Aachen
skratz@post.rwth-aachen.de

Rafael Ballagas
Media Computing Group

RWTH Aachen
ballagas@cs.rwth-aachen.de

ABSTRACT
We present the mobile pervasive game REXplorer as the
context of the development of a unique spell-casting user in-
terface for mobile phones. A detailed description of the in-
terface’s algorithms, especially gesture recognition, is given.
We go on to discuss alternative approaches and also focus
on possible user feedback modes. Finally, we describe ex-
perimental methods which we intend to use for further im-
provement of our interface.

1. INTRODUCTION
REXplorer [2] is a mobile pervasive game due to be launched
in Regensburg, Germany in summer 2007. Custom-built
game devices, consisting of a Nokia N70 mobile phone and a
Bluetooth GPS receiver housed in a wand-shaped metal cas-
ing, will be available for rent by tourists. As seen in Figure
1, spell-casting is REXplorer’s main interaction paradigm.
In order to support this mode of interaction, a gesture recog-
nition system for camera-based motion has been designed.
Camera-based motion data is problematic to use for gesture
recognition due to the low quality of the data, caused by a
low sample rate combined with high noise.

We have designed a gesture recognition algorithm that tries
to solve this problem by using state machines, modeled from
a gesture rule set, that parse the motion data and interpret
the gesture the user has performed.

We will show that our algorithm adapts well to REXplorer’s
requirements and also discuss the two possible user experi-
ences the algorithm can provide: either running the recog-
nition while the user is performing the gesture, or after the
user has explicitly terminated the gesture. Finally, we will
describe how we intend to further improve our gesture recog-
nition engine.

2. RELATED WORK
Recent research has shown how modern mobile phones sup-
port motion detection using their on-board camera.

Camera-based motion estimation was first proposed as po-
sitioning input for mobile phones by Rohs [8]. The “Sweep”
Technique [1] extends this concept by using motion estima-
tion on mobile phones as an input method for large public
displays.

TinyMotion [10] offers a standard camera-based motion es-
timation library for Linux-based mobile phones. A set of

Figure 1: A REXplorer user performing a gesture

example applications for it’s target device, a Motorola V710
Mobile Phone were developed and user-tested by the au-
thors. The example applications explore numerous uses for
camera-based motion estimation, for example for text entry
or gaming. What is especially relevant is that a commer-
cial handwriting recognition system was used successfully
for text input using TinyMotion’s motion estimation. How-
ever, Wang et al. [9] state that gestural interfaces may be
problematic due to the low image frame rate. REXplorer,
however is the first application to use motion estimation
technology to enable spell-casting input on mobile phones.

A lot of work has been done in the field of handwriting recog-
nition systems that could be adapted to our needs. However,
most of these algorithms are very complex, employing neu-
ral network classifiers [6] or using stochastical methods such
as Hidden Markov Models [4] for classification. These tra-
ditional gesture recognition engines typically use a library
of predefined gesture traces, which are often entered by the
user in a learning phase. As the typical REXplorer user will
only use the device once, a learning phase for the gesture
classifier is undesirable. While these algorithms feature a
very good recognition rate operating on large and complex

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36477971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


gesture vocabularies, we feel that they are too complex and
resource-intensive for our target platform and application
area.

3. IMPLEMENTATION
Our gesture recognition engine can be divided into three
components. Movement data is obtained via motion esti-
mation. While the gesture is being performed by the user, a
“live” graphical trace motion data is provided. This aids the
user in performing the intended gesture correctly. In a final
step, the accumulated motion information is evaluated by
the gesture recognition algorithm to determine which ges-
ture has been performed.

Motion Estimation
The motion data for our gesture recognizer is obtained using
camera motion estimation. We employ a block-matching
algorithm similar to the ones described in [8, 10]. The last
two frames of video input are compared. Both frames are
subsampled to roughly 1

8
th of their former size. We test the

MSE (Mean Square Error) between the old and a shifted
version of the new frame, with a shift range of 3× 3 pixels.
The candidate with the lowest MSE then delivers the motion
vector.

User Feedback
Feedback is provided to the users by rendering a trace of
the current gesture’s progress to the device’s screen. Pre-
liminary user testing has suggested that users have difficulty
coping with large amounts of noise in the gesture visualiza-
tion. Several users aborted gestures prematurely because of
noise in the feedback, even though the gesture recognition
system would likely correctly identify a completed gesture.
This suggests that we need to find ways to reduce noise in
the user feedback.

Gesture Recognition
For REXplorer, we decided to implement a gesture recog-
nition algorithm that incrementally matches the input to a
gesture by verifying the entered motion data reaches certain
predefined distance offsets.

Let M = m1, . . . , mn be a sequence of motion tuples with
mi ∈ N2, obtained by user input. When adding up the
motion tuples we obtain a “gesture trace” T = t1, . . . , tn

with

tj =

jX
i=0

mi mi ∈ M

As shown in Figure 4, a gesture trace can be plotted in 2D
space to obtain a graphical representation of the gesture.

Due to the fact that users perform gestures that cover a
varying area of pixels and that we only specify fixed offsets
in our gesture configuration files, the input gesture trace is
normalized to make its points lie within an area of 100×100
pixels before gesture recognition.

Our algorithm determines which predefined rule set is matched
best by the entered motion data. A rule set defines a se-
quence of distance offsets that must be fulfilled by the trace
of the entered motion data.

Figure 2: Recognizing the gesture using offsets

We model each gesture as the acceptance state of a state
machine G. Upon initialization, a gesture configuration file
with the sequence of predefined offset rules is loaded. Each
state qi of a state machine Gn represents an offset rule. An
offset specifies the (Manhattan-)distance (x, y) in pixels be-
tween the states qi and qi−1, in other words the first occur-
rence of the value δ = tj − ti with j > i and ti, tj being
two points in the gesture trace. A gesture is accepted if Gn

reaches it’s acceptance state qaccept.

For instance, if, as in Figure 2, q2 is defined as being (−2, 0)
pixels away from q1, which was matched at the coordinates
ti = (2, 6), then the automaton will change it’s state to
q2 when incoming motion data can be traced to a location
tj = (2− k, n), where k > 3 and j > i.

The gesture recognizer A is thus modeled as the following
union automaton:

A = G1 ∪G2 ∪ . . . ∪Gk

So it is evident that

F = {q(1)
accept, . . . , q

(k)
accept}

is the acceptance set of A.

Because it is theoretically possible that multiple gestures
can be recognized from a single user input. We pragmati-
cally modify the union criterion so that the first automaton
that accepts, be it Gn, will yield the recognition of gesture
n, while the results of the remaining automata that have
accepted will be discarded. This modification is justified
because we use a carefully chosen gesture vocabulary (see
Figure 3) composed of a few very distinct gestures that not
only lowers the user’s learning curve but also eliminates al-
most all falsely recognized gestures.

Our algorithm has proven itself to robustly handle the medi-
ocre motion data. This is because, conceptually, our system
is very forgiving and usually leads to a correctly recognized
gesture, even if the graphical representation of the gesture
trace might not be similar at all to the predefined shapes. An
explanation for this is that we are, abstractly seen, testing if



Figure 3: The gesture vocabulary is inspired by a
medieval tombstone in Regensburg, inscribed with
a mysterious secret language. Players are told that
these shapes represent spells that awaken spirits
trapped inside of historical buildings.

our internal cursor has entered the infinite plain1 specified
by the next automaton state’s offset vector. This cancels out
noise from inadequate motion data quite effectively as it is
possible to move away from or orthogonally from the spec-
ified direction before moving correctly and finally reaching
the next state.

Due to our algorithm’s coarse matching criteria, it does not
perform well with large and complex gesture vocabularies.
Here a finer analysis of the data is required. For instance,
angle sums, point distances or mean absolute distances can
be used for more detailed classification. But taking all into
account, our algorithm’s low complexity but relatively high
recognition rate allows for an efficient implementation that
performs well with a simple gesture set on our target plat-
form.

4. ALTERNATIVE IMPLEMENTATIONS
As mentioned earlier, a wide variety of gesture recognition
algorithms exist. This assertion also applies to motion es-
timation algorithms. Furthermore, our gesture recognition
algorithm supports a “live” operation mode that can lead
to new feedback options. We are currently evaluating the
following alternative solutions to the challenges posed by
REXplorer.

Motion Estimation
We have seen so far that a gesture recognition algorithm that
uses motion data from camera-based motion estimation is
required to be tolerant of a low sampling rate and of a high
noise ratio.

A way to globally improve gesture recognition from camera-
based motion estimation is to augment the quality of the mo-

1These plains are represented by the colored areas
in Figure 2

tion estimation data itself by using more complex (but not
less efficient) motion estimation algorithms from the field of
video compression, such as Three-Step-Search [7].

However, an evaluation of these algorithms must be under-
taken to see how they adapt to our application domain. For
instance, a comparison of the complexity and mean square
error (MSE) rates of fast block-matching motion estimation
algorithms (BMA) used in video compression can be found
in [5]. These algorithms feature a low computational com-
plexity and show a low MSE when detecting motion in the
individual blocks that a video image is composed of. We,
in contrast, have not divided our source image into multiple
blocks, but instead analyze only one block due to the high
complexity of our BMA. Because we assume that the pre-
sented block-matching algorithms are better suited to esti-
mate local movement in the individual blocks (from which a
frame is composed), but less suited to estimate global move-
ment of an entire frame sub sampled as a single block, it
appears necessary for us to change and re-evaluate our sub-
sampling strategy if we are to use the presented results to
chose our BMA.

[3] presents a comparison of different block sub-sampling
strategies, but still assumes that the image is completely
divided into blocks before the BMA is applied. We intend
to evaluate which (block) sub sampling strategy best fits our
needs (i.e. if we need to divide the whole image into blocks
or if it is sufficient to analyze blocks from select regions of
the image) and if using a fast BMA with multiple blocks
from the image will yield higher-precision (global) motion
data, as opposed to our current single-block approach.

User Feedback
Our state-machine based algorithm can be employed in two
ways, providing two different user experiences. It can either
run “live”, processing motion data while the gesture is be-
ing performed by the user, or as is presently the case, the
motion data can be saved for gesture recognition after the
user terminates the gesture.

Running the gesture recognizer in the “live” mode allows
for incremental feedback. This Gesture-Subtarget visual-
izer mode works together with our state-machine-based al-
gorithm and displays a red circle at each coordinate in the
gesture trace where an automaton has matched a target rule.
This implementation allows us to give multimodal feedback
(haptic, visual, or audio) to the users after each target rule
has been met. For example, an idea for audio feedback is to
play sounds with a gradually rising tension at each matching
point to indicate how close the gesture is to completion. See
Figure 4 for a depiction of some of the proposed visualization
modes.

We would like to see which of the algorithm’s operational
modes is more acceptable to our target users. For exam-
ple, does “live” gesture recognition confuse the user when
motion estimation is stopped as soon as a gesture is recog-
nized? Maybe the proposed incremental feedback might lift
this confusion. On the other hand, the higher processing
time reserved for “offline” gesture recognition might permit
some more detailed processing of the motion data as the
CPU-intensive motion estimation is not performed simulta-



Figure 4: Thick, Thin and Gesture-Subtarget Visu-
alizer modes, generated from actual user input

neously. Also, live gesture recognition prevents normaliza-
tion of motion data, which may decrease gesture recognition
performance.

Gesture Recognition
Improved gesture recognition algorithms need to be explored
in terms of correct gesture recognition rate and performance
costs. We would like to evaluate a more classical approach
using an algorithm that matches the difference between the
trace obtained by user input and that of a set of predefined
traces. This approach could be implemented as follows:

1. Normalize the trace of the motion data

2. Normalize the number of points in the trace. This
means reducing the number of points in the gesture
trace to n equidistant coordinates.

3. Calculate the (average) difference between the normal-
ized trace’s points and the set of predefined traces

4. The predefined trace with the lowest (average) differ-
ence is the recognized gesture

The advantage of this method is that while it is more CPU
intensive than our current algorithm, it might improve recog-
nition of more complex gestures, and reduce the number of
falsely recognized gestures. However, it remains to be seen
how such an algorithm performs in terms of the low-quality
motion data as previously discussed and in terms of the
computational resources of our target device.

5. FUTURE WORK
We intend to optimize our motion estimation algorithm while
evaluating different user feedback mechanisms and gesture
recognition algorithms. Our goal is to achieve a high gesture
recognition rate while retaining a high user acceptance rate.

We are specifically interested in how the quality of the mo-
tion data, visual and/or aural feedback and the “online” and
“offline” versions of our gesture recognition algorithm inter-
act. To this aim, we will use a high-end webcam mounted
on the REXplorer device and optical tracking of the user’s
movements to generate baseline motion data. The webcam’s
higher frame rate and resolution compared with the cameras
present on most available mobile phones today allows us
to experiment with a wider numerical range of parameters.

Thus, this will also enable us to predict how future camera-
based motion estimation applications might perform.

We would ultimately like to find out what are the minimum
requirements for a usable gestural interface based on cam-
era motion estimation and how they can be met on a given
platform.

6. CONCLUSION
Spell-casting is a novel way to use mobile phones to in-
teract with our environment. In order to successfully im-
plement spell-casting with a mobile phone, one must care-
fully engineer the motion estimation, gesture recognition,
and user feedback mechanism. We have presented our cur-
rent prototype implementation of gesture recognition using
mobile phones in REXplorer, as well as proposed potential
improvements based on preliminary user testing. By empir-
ically testing these improvements in future work, we hope
to inform future camera-based gesture input using mobile
phones.

7. REFERENCES
[1] Rafael Ballagas, Michael Rohs, Jennifer G. Sheridan,

and Jan Borchers. Sweep and Point & Shoot:
Phonecam-based interactions for large public displays.
In CHI ’05: Extended abstracts of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 1200–1203, New York, NY, USA, 2005. ACM
Press.

[2] Rafael Ballagas, Steffen P. Walz, Sven Kratz, Claudia
Fuhr, Eugen Yu, Martin Tann, Jan Borchers, and
Ludger Hovestadt. Rexplorer: A mobile, pervasive
spell-casting game for tourists. In To appear in CHI
’07 extended abstracts on Human factors in computing
systems, San Jose, CA, USA, 2007. ACM Press.

[3] Eric Debes Fulvio Moschetti. A fast block matching
for simd processors using subsampling. In ISCAS 2000
- IEEE International Symposium on Circuits and
Systems, May 28-31, 2000, Geneva, Switzerland.

[4] Brown M. Hu, J. and W. Turin. Hmm based online
handwriting recognition. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol.
PAMI-18, pp. 1039-1045, 1996.

[5] Yilong Liu and Soontorn Oriantara. Complexity
comparison of fast block-matching motion estimation
algorithms. In IEEE Int. Conf. Acoust., Speech, Signal
Processing 2004.

[6] Dzulkifli Mohamad Muhammad Faisal Zafar and
Razib M. Othman. On-line handwritten character
recognition: An implementation of counterpropagation
neural net. In Transactions on Engineering,
Computing and Technology ISSN 1305-5313,
December 2005.

[7] B. Zeng R. Li and M. L. Liou. A new three-step
search algorithm for block motion estimation. In IEEE
Trans. Circuits Syst. Video Technol., vol. 4, no: 4, pp.
438-442, Aug. 1994.

[8] Michael Rohs. Real-world interaction with camera
phones. In International Symposium on Ubiquitous
Computing Systems (UCS 2004), Tokyo, Japan,
http://www.vs.inf.ethz.ch/publ/papers/rohs2004-
visualcodes.pdf Also published under Revised Selected



Papers, pp. 74-89, LNCS 3598, Springer, July 2005.

[9] Jingtao Wang and John Canny. End-user place
annotation on mobile devices : A comparative study.
In Work-in-Progress of ACM CHI 2006, Montreal,
Canada, April 24-27, 2006.

[10] Jingtao Wang, Shumin Zhai, and John Canny. Camera
phone based motion sensing: Interaction techniques,
applications and performance study. In UIST ’06:
Proceedings of the 19th annual ACM Symposium on
User Interface Software and Technology. ACM, 2006.


