
Learning of Variability forInvariant Statistial Pattern ReognitionDaniel Keysers, Wolfgang Maherey, J�org Dahmen, and Hermann NeyLehrstuhl f�ur Informatik VI, Computer Siene DepartmentRWTH Aahen - University of Tehnology, D-52056 Aahen, Germanyfkeysers, w.maherey, dahmen, neyg�informatik.rwth-aahen.deWWW home page: http://www-i6.informatik.rwth-aahen.deAbstrat. In many appliations, modelling tehniques are neessarywhih take into aount the inherent variability of given data. In thispaper, we present an approah to model lass spei� pattern variationbased on tangent distane within a statistial framework for lassi�a-tion. The model is an e�etive means to expliitly inorporate invarianewith respet to transformations that do not hange lass-membership likee.g. small aÆne transformations in the ase of image objets. If no priorknowledge about the type of variability is available, it is desirable to learnthe model parameters from the data. The probabilisti interpretationpresented here allows us to view learning of the variational derivatives interms of a maximum likelihood estimation problem. We present exper-imental results from two di�erent real-world pattern reognition tasks,namely image objet reognition and automati speeh reognition. Onthe US Postal Servie handwritten digit reognition task, learning of vari-ability ahieves results well omparable to those obtained using spei�domain knowledge. On the SieTill orpus for ontinuously spoken tele-phone line reorded German digit strings the method shows a signi�antimprovement in omparison with a ommon mixture density approahusing a omparable amount of parameters. The probabilisti model iswell-suited to be used in the �eld of statistial pattern reognition andan be extended to other domains like luster analysis.1 IntrodutionIn many appliations, it is important to arefully onsider the inherent variabilityof data. In the �eld of pattern reognition it is desired to onstrut lassi�ationalgorithms whih tolerate variation of the input patterns that leaves the lass-membership unhanged. For example, image objets are usually subjet to aÆnetransformations of the image grid like rotation, saling and translation. Conven-tional distane measures like the Eulidean distane or the Mahalanobis distane[3℄ do not take into aount suh transformations or do so only if the trainingdata ontains a large number of transformed patterns, respetively. One methodto inorporate invariane whith respet to suh transformations into a lassi�eris to use invariant distane measures like the tangent distane, whih has beensuessfully applied in image objet reognition during the last years [9, 14, 15℄.
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Tangent distane (TD) is usually applied by expliitly modelling the derivativeof transformations whih are known a priori. This is espeially e�etive in aseswhere the training set is small. But not in all domains suh spei� knowledgeis available. For example, the transformation e�ets on the feature vetors of aspeeh signal that are used in automati speeh reognition are generally diÆultto obtain or unknown.In this paper we present a method to automatially learn the derivative of thevariability present in the data within a statistial framework, thus leading to aninreased robustness of the lassi�er. To show the pratial value of the approahwe present results from experiments in two real-world appliation areas, namelyoptial harater reognition (OCR) and automati speeh reognition (ASR).To lassify an observation x 2 IRD , we use the Bayesian deision rulex 7�! r(x) = argmaxk fp(k) � p(xjk)g : (1)Here, p(k) is the a priori probability of lass k, p(xjk) is the lass onditionalprobability for the observation x given lass k and r(x) is the deision of thelassi�er. This deision rule is known to be optimal with respet to the expetednumber of lassi�ation errors if the required distributions are known [3℄. How-ever, as neither p(k) nor p(xjk) are known in pratial situations, it is neessaryto hoose models for the respetive distributions and estimate their parame-ters using the training data. The lass onditional probabilities are modelledusing Gaussian mixture densities (GMD) or kernel densities (KD) in the exper-iments. The latter an be regarded as an extreme ase of the mixture densitymodel, where eah training sample is interpreted as the enter of a Gaussiandistribution. A Gaussian mixture is de�ned as a linear ombination of Gaussianomponent densities, whih an approximate any density funtion with arbitrarypreision, even if only omponent densities with diagonal ovariane matries areused. This restrition is often imposed in order to redue the number of para-meters that must be estimated. The neessary parameters for the GMD an beestimated using the Expetation-Maximization (EM) algorithm [3℄.2 Invariane and Tangent DistaneThere exists a variety of ways to ahieve invariane or transformation toleraneof a lassi�er, inluding normalization, extration of invariant features and in-variant distane measures [19℄. Distane measures are used for lassi�ation asdissimilarity measures, i.e. the distanes should ideally be small for members ofthe same lass and large for members of di�erent lasses. An invariant distanemeasure ideally takes into aount transformations of the patterns, yielding smallvalues for patterns whih mostly di�er by a transformation that does not hangelass-membership. In the following, we will give a brief overview of one invariantdistane measure alled tangent distane, whih was introdued in [15, 16℄.Let x 2 IRD be a pattern and t(x; �) denote a transformation of x thatdepends on a parameter L-tuple � 2 IRL, where we assume that t does not
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µFig. 1. Illustration of the Eulidean distane between an observation x and a refer-ene � (dashed line) in omparison to the distane between the orresponding manifolds(dotted line). The tangent approximation of the manifold of the referene and the or-responding (one-sided) tangent distane is depited by the light gray lines.a�et lass membership (for small �). The set of all transformed patterns nowomprises a manifold Mx = �t(x; �) : � 2 IRL	 � IRD in pattern spae. Thedistane between two patterns an then be de�ned as the minimum distanebetween the manifold Mx of the pattern x and the manifold M� of a lassspei� prototype pattern �, whih is truly invariant with respet to the regardedtransformations (f. Fig. 1):d(x; �) = min�;�2IRL�jjt(x; �) � t(�; �)jj2	 (2)However, the resulting distane alulation between manifolds is a hard non-linear optimization problem in general. Moreover, the manifolds usually annotbe handled analytially. To overome these problems, the manifolds an be ap-proximated by a tangent subspae M. The tangent vetors xl that span thesubspae are the partial derivatives of the transformation t with respet to theparameters �l (l = 1; : : : ; L), i.e. xl = �t(x; �)=��l. Thus, the transformationt(x; �) an be approximated using a Taylor expansion around � = 0:t(x; �) = x+ LPl=1�lxl + LPl=1O(�2l ) (3)The set of points onsisting of all linear ombinations of the pattern x withthe tangent vetors xl forms the tangent subspae Mx, whih is a �rst-orderapproximation of Mx:Mx = �x+ LPl=1�lxl : � 2 IRL	 � IRD (4)Using the linear approximation Mx has the advantage that distane alulationsare equivalent to the solution of linear least square problems or equivalentlyFig. 2. Example of �rst-order approximation of aÆne transformations and line thik-ness. (Left to right: original image, diagonal deformation, sale, line thikness inrease,shift left, axis deformation, line thikness derease)



projetions into subspaes, whih are omputationally inexpensive operations.The approximation is valid for small values of �, whih nevertheless is suÆientin many appliations, as Fig. 2 shows for examples of OCR data. These examplesillustrate the advantage of TD over other distane measures, as the depitedpatterns all lie in the same subspae. The TD between the original image andany of the transformations is therefore zero, while the Eulidean distane issigni�antly greater than zero. Using the squared Eulidean norm, the TD isde�ned as: d2S(x; �) = min�;�2IRL�jj(x+ LPl=1�lxl)� (�+ LPl=1�l�l)jj2	 (5)Eq. (5) is also known as two-sided tangent distane (2S) [3℄. In order to redue thee�ort for determining d2S(x; �) it may be onvenient to restrit the alulation ofthe tangent subspaes to the prototype (or the referene) vetors. The resultingdistane measure is alled one-sided tangent distane (1S):d1S(x; �) = min�2IRL�jjx� (�+ LPl=1�l�l)jj2	 (6)The presented onsiderations are based on the Eulidean distane, but equallyapply when using the Mahalanobis distane [3℄ in a statistial framework. Theyshow that a suitable �rst-order model of variability is a subspae model basedon the derivatives of transformations that respet lass-membership, where thevariation is modelled by the tangent vetors or subspae omponents, respe-tively. In the following we will onentrate on properties of the model and theestimation of subspae omponents if the transformations are not known.3 Learning of VariabilityWe �rst disuss a probabilisti framework for TD and then show, how learningof the tangent vetors an be onsidered as the solution of a maximum likelihoodestimation problem. This estimation is espeially useful for ases where no priorknowledge about the transformations present in the data is available.3.1 Tangent Distane in a Probabilisti FrameworkTo embed the TD into a statistial framework we will fous on the one-sidedTD, assuming that the referenes are subjet to variations. A more detailedpresentation inluding the remaining ases of variation of the observations andthe two-sided TD an be found in [8℄.We restrit our onsiderations here to the ase where the observations x arenormally distributed with expetation � and ovariane matrix �. The extensionto Gaussian mixtures or kernel densities is straightforward using maximum ap-proximation or the EM algorithm. In order to simplify the notation, lass indiesare omitted. Using the �rst-order approximation of the manifoldM� for a meanvetor �, we obtain the probability density funtion (pdf) for the observations:p(x j�; �;�) = N (x j�+ LPl=1�l�l; �) (7)



The integral of the joint distribution p(x; � j�;�) over the unknown transfor-mation parameters � then leads to the following distribution:p(x j�;�) = Z p(x; � j�;�) d�= Z p(� j�;�) � p(x j�; �;�) d�= Z p(�) � p(x j�; �;�) d� (8)Without loss of generality, the tangent vetors of the pdf in Eq. (7) an be as-sumed orthonormal with respet to �, as only the spanned subspae determinesthe modelled variation. Hene, it is always possible to ahieve the ondition�Tl ��1�m = Æl;m (9)using e.g. a singular value deomposition, where Æl;m denotes the Kronekerdelta. Note that we assume that � is independent of � and �, i.e. p(� j�;�) �p(�). Furthermore, � 2 IRL is assumed to be normally distributed with mean0 and a ovariane matrix 2I , i.e. p(�) = N (� j 0; 2I), where I denotes theidentity matrix and  is a hyperparameter desribing the standard deviation ofthe transformation parameters. These assumptions redue the omplexity of thealulations but do not a�et the general result. The evaluation of the integralin Eq. (8) leads to the following expression:p(xj�;�) = N (xj�;�0) = det(2��0)� 12 exp�� 12h(x � �)T�0�1(x� �)i� (10)�0 = � + 2 LXl=1 �l�Tl ; �0�1 = ��1 � 11 + 12 ��1 LXl=1 �l�Tl ��1 (11)Note that the exponent in Eq. (10) leads to the onventional Mahalanobis dis-tane for  ! 0 and to TD for  ! 1. Thus, the inorporation of tangentvetors adds a orretive term to the Mahalanobis distane that only a�ets theovariane matrix whih an be interpreted as struturing � [8℄. For the limitingase � = I , a similar result was derived in [6℄. The probabilisti interpretationof TD an also be used for a more reliable estimation of the parameters of thedistribution [2, 8℄. Note furthermore that det(�0) = (1+2)Ldet(�) [5, pp. 38�.℄whih is independent of the tangent vetors and an therefore be negleted inthe following maximum likelihood estimation.3.2 Estimation of Subspae ComponentsIn order to irumvent the restrition that the appliable transformations mustbe known a priori, the tangent vetors an be learned from the training data.This estimation an be formulated within a maximum likelihood approah.Let the training data be given by xn;k; n = 1; : : : ; Nk training patterns ofk = 1; : : : ;K lasses. Assuming that the number L of tangent vetors is known



(note that L an be determined automatially [1℄) we onsider the log-likelihoodas a funtion of the unknown tangent vetors f�klg (for eah lass k):F (f�klg) := KXk=1 NkXn=1 logN (xn;kj�k; �0k)= 11 + 12 KXk=1 NkXn=1 LXl=1((xn;k � �k)T��1�kl)2 + onst= 11 + 12 KXk=1 LXl=1 �Tkl��1Sk��1�kl + onst (12)with Sk =PNkn=1(xn;k � �k)(xn;k � �k)T as the lass spei� satter matrix. �and Sk an be regarded as ovariane matries of two ompeting models. Takingthe onstraints of orthonormality of the tangent vetors with respet to ��1into aount, we obtain the following result [5, pp. 400�.℄: The lass spei�tangent vetors �kl maximizing Eq. (12) have to be hosen suh that the vetors��1=2�kl are those eigenvetors of the matrix ��1=2Sk(��1=2)T with the largestorresponding eigenvalues.As the above onsiderations show, two di�erent models have to be deter-mined for the ovariane matries � and Sk. While Sk is de�ned as a lassspei� satter matrix, a globally pooled ovariane matrix is a suitable hoiefor � in many ases. Using these models, the e�et of inorporating the tan-gent distane into the Mahalanobis distane is equivalent to performing a globalwhitening transformation of the feature spae and then using the L lass spei�eigenvetors with the largest eigenvalues as tangent vetors for eah lass. Thisredues the e�et of those diretions of lass spei� variability that ontributethe most variane to �. While the maximum likelihood estimate leads to resultssimilar to onventional prinipal omponent analysis (PCA), the estimated om-ponents are used in a ompletely di�erent manner here. In onventional PCA,the prinipal omponents are hosen to minimize the reonstrution error. Inontrast to that, these omponents span the subspae with minor importane inthe distane alulation in the approah presented here. This an be interpretedas reduing the e�et of spei� variability, motivated by the fat that it does nothange lass membership of the patterns. The tangent distane has the propertythat it also works very well in ombination with global feature transformationsas for instane a linear disriminant analysis (LDA), sine � an be assumed asa global ovariane matrix of an LDA-transformed feature spae.4 Experimental ResultsTo show the appliability of the proposed learning approah, we present resultsobtained on two real-world lassi�ation tasks. The performane of a lassi�eris measured by the obtained error rate (ER), i.e. the ratio of mislassi�ationsto the total number of lassi�ations. For speeh reognition a suitable measure



is the word error rate (WER), whih is de�ned as the ratio of the number ofinorretly reognized words to the total number of words to be reognized.The di�erene to the orret sentene is measured using the Levenshtein oredit distane, de�ned as the minimal number of insertions (ins), deletions (del)or replaements of words neessary to transform the orret sentene to thereognized sentene. The sentene error rate (SER) is de�ned as the fration ofinorretly reognized sentenes.4.1 Image Objet ReognitionResults for the domain of image objet reognition were obtained on the wellknown US Postal Servie handwritten digit reognition task (USPS). It ontainsnormalized greysale images of size 16�16 pixels, divided into a training set of7,291 images and a test set of 2,007 images. Reported reognition error ratesfor this database are summarized in Table 1. In our preliminary experiments,we used kernel densities to model the distributions in Bayes' deision rule andwe applied appearane based lassi�ation, i.e. no feature extration was applied.The use of tangent distane based on derivatives (6 aÆne derivatives plus linethikness) and virtual training and testing data (by shifting the images 1 pixelinto 8 diretions, keeping training and test set separated) improved the errorrate to 2.4%. This shows the e�etivity of the tangent distane approah inombination with prior knowledge. Finally, using lassi�er ombination, wheredi�erent test results were ombined using the sum rule, we obtained an errorrate of 2.2% [9℄.For our experiments on learning of variability, we used two di�erent settings.First, we used a single Gaussian density, i.e. one referene per lass, and variedthe number of estimated tangents. As shown in Table 2, the error rate anTable 1. Summary of results for the USPS orpus (error rates, [%℄).�: training set extended with 2,400 mahine-printed digitsmethod ER[%℄human performane [Simard et al. 1993℄ [15℄ 2.5relevane vetor mahine [Tipping et al. 2000℄ [17℄ 5.1neural net (LeNet1) [LeCun et al. 1990℄ [14℄ 4.2invariant support vetors [Sh�olkopf et al. 1998℄ [13℄ 3.0neural net + boosting [Druker et al. 1993℄ [14℄ �2.6tangent distane [Simard et al. 1993℄ [15℄ �2.5nearest neighbor lassi�er [9℄ 5.6mixture densities [2℄ baseline 7.2+ LDA + virtual data 3.4kernel densities [9℄ tangent distane, derivative, one-sided (�) 3.7one-sided (x) 3.3two-sided 3.0+ virtual data 2.4+ lassi�er ombination 2.2kernel densities tangent distane, learned, one-sided (�), L = 12 3.7



Table 2. Results for learning of tangent vetors (ER [%℄, USPS, KD)#referenes/lass L = 0 L = 7 L = 12 L = 20 derivative tangent vetors (L = 7)1 18.6 6.4 5.5 5.5 11.8�700 5.5 3.8 3.9 3.7 3.7be redued from 18.6% to 5.5% with the estimation of tangent vetors fromlass spei� ovariane matries as proposed above. Using only L = 7 tangentvetors, the result of 6.4% ompares favorably to the use of the derivative, herewith 11.8% error rate. This is probably due to the fat that the means of thesingle densities are the average of a large number of images and therefore veryblurred, whih is a disadvantage for the derivative tangent vetors. Here, theestimated tangent vetors outperform those based on the derivative.Interestingly, when using all 7,291 training patterns in a kernel density basedlassi�er, the result obtained without tangent model is the same as for a singledensity model with 12 estimated tangents. In this ase, the single densities withestimated tangent subspae obtain the same result using about 50 times fewerparameters. In the seond setting with about 700 referenes per lass (KD), theerror rate an be redued to 3.7% for 20 estimated tangents. Fig. 3(a) showsthe evolution of the error rate for di�erent number of tangent vetors. Here,the tangent vetors were estimated using a loal, lass spei� ovariane ma-trix obtained from the set of loal nearest neighbors for eah training pattern.Therefore, the method is only applied to the one-sided tangent distane withtangents on the side of the referene. The obtained error rate is the same as forthe derivative tangents, although somewhat higher for the same number of tan-gents. This shows that the presented method an be e�etively used to learn thelass spei� variability on this dataset. Note that using the tangents on the sideof the observations resp. on both sides, the obtained error rate is signi�antlylower (f. Table 1).Fig. 3(b) shows the error rate with respet to the subspae standard deviation for derivative tangents and estimated tangents using L = 7 eah. It an be seenthat, on this data, no signi�ant improvement an be obtained by restriting thevalue of , while there may be improvements for other pattern reognition tasks.So far we have not disussed the omputational omplexity of the tangentmethod. Due to the struture of the resulting model, the omputational ost ofthe distane alulation is inreased approximately by a fator of (L + 1), inomparison with the baseline model that orresponds to the Eulidean distane.4.2 Automati Speeh ReognitionExperiments for the domain of speeh reognition were performed on the SieTillorpus [4℄ for telephone line reorded German ontinuous digit strings. The or-pus onsists of approximately 43k spoken digits in 13k sentenes for both trainingand test set. In Table 3 some information on orpus statistis is summarized.The reognition system is based on whole-word Hidden Markov Models(HMMs) using ontinuous emission densities. The baseline system is hara-terized as follows:
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For this setting the optimal hoie for gender dependent trained referenes was�ve tangent vetors per state.Using mixture densities, the performane gain in word error rate dereasedbut was still signi�ant. Thus the relative improvement between the baselineresult and tangent distane was 6:7% (16 densities plus one tangent vetor permixture) for untransformed features and 13:6% for LDA transformed features(16 dns/mix, 1 tv/mix). The same applies for the optimal number of tangentvetors whih was found at one tangent vetor per mixture. Consequently, alarger number of densities is able to partially ompensate for the error that ismade in the ase that the ovariane matrix is estimated using the onventionalmethod. The best result was obtained using 128 densities per mixture in om-bination with LDA transformed features and the inorporation of one tangentvetor per state. Using this setting, the word error rate dereased from 1:85%to 1:67% whih is a relative improvement of 5%. Fig. 4(b) depits the evolutionof word error rates for onventional training in omparison with TD using equalnumbers of parameters. Even though the inorporation of tangent vetors intothe Mahalanobis distane inreases the number of parameters, the overall gainin performane justi�es the higher expense.5 Disussion and ConlusionIn this paper we presented an approah for modelling and learning variability forstatistial pattern reognition, embedding tangent distane into a probabilistiframework. In ontrast to prinipal omponent analysis based methods like [12℄the model disregards the spei� variability of the patterns when determiningthe distane or the log-likelihood, respetively, whih leads to an inorporation oftransformation tolerane and therefore improves the lassi�ation performane.This is due to the basi di�erene between the distane in feature spae and theTable 4. Word error rates (WER) and sentene error rates (SER) on the SieTill orpusobtained with the tangent distane. In olumn 'tv/mix' the number of used tangentvetors per mixture is given. A value of 0 means that the onventional Mahalanobisdistane is used. 'dns/mix' gives the average number of densities per mixture.without LDAdns/mix tv/mix error rates [%℄del - ins WER SER1 0 1.17-0.83 4.59 11.341 1.17-0.52 3.76 9.224 0.69-1.07 3.60 9.1016 0 0.59-0.83 2.67 6.921 0.54-0.58 2.49 6.564 0.46-0.80 2.60 6.76128 0 0.52-0.54 2.24 5.871 0.50-0.48 2.12 5.754 0.55-0.49 2.13 5.71
with LDAdns/mix tv/mix error rates [%℄del - ins WER SER1 0 0.71 -0.63 3.78 9.741 0.97 -0.49 3.26 8.465 0.48-0.88 2.70 7.1816 0 0.44 -0.68 2.28 5.921 0.58 -0.40 1.97 5.064 0.38 -0.55 1.97 5.35128 0 0.45 -0.39 1.85 4.941 0.42-0.34 1.67 4.504 0.39 -0.41 1.76 4.81
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