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t. In many appli
ations, modelling te
hniques are ne
essarywhi
h take into a

ount the inherent variability of given data. In thispaper, we present an approa
h to model 
lass spe
i�
 pattern variationbased on tangent distan
e within a statisti
al framework for 
lassi�
a-tion. The model is an e�e
tive means to expli
itly in
orporate invarian
ewith respe
t to transformations that do not 
hange 
lass-membership likee.g. small aÆne transformations in the 
ase of image obje
ts. If no priorknowledge about the type of variability is available, it is desirable to learnthe model parameters from the data. The probabilisti
 interpretationpresented here allows us to view learning of the variational derivatives interms of a maximum likelihood estimation problem. We present exper-imental results from two di�erent real-world pattern re
ognition tasks,namely image obje
t re
ognition and automati
 spee
h re
ognition. Onthe US Postal Servi
e handwritten digit re
ognition task, learning of vari-ability a
hieves results well 
omparable to those obtained using spe
i�
domain knowledge. On the SieTill 
orpus for 
ontinuously spoken tele-phone line re
orded German digit strings the method shows a signi�
antimprovement in 
omparison with a 
ommon mixture density approa
husing a 
omparable amount of parameters. The probabilisti
 model iswell-suited to be used in the �eld of statisti
al pattern re
ognition and
an be extended to other domains like 
luster analysis.1 Introdu
tionIn many appli
ations, it is important to 
arefully 
onsider the inherent variabilityof data. In the �eld of pattern re
ognition it is desired to 
onstru
t 
lassi�
ationalgorithms whi
h tolerate variation of the input patterns that leaves the 
lass-membership un
hanged. For example, image obje
ts are usually subje
t to aÆnetransformations of the image grid like rotation, s
aling and translation. Conven-tional distan
e measures like the Eu
lidean distan
e or the Mahalanobis distan
e[3℄ do not take into a

ount su
h transformations or do so only if the trainingdata 
ontains a large number of transformed patterns, respe
tively. One methodto in
orporate invarian
e whith respe
t to su
h transformations into a 
lassi�eris to use invariant distan
e measures like the tangent distan
e, whi
h has beensu

essfully applied in image obje
t re
ognition during the last years [9, 14, 15℄.
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Tangent distan
e (TD) is usually applied by expli
itly modelling the derivativeof transformations whi
h are known a priori. This is espe
ially e�e
tive in 
aseswhere the training set is small. But not in all domains su
h spe
i�
 knowledgeis available. For example, the transformation e�e
ts on the feature ve
tors of aspee
h signal that are used in automati
 spee
h re
ognition are generally diÆ
ultto obtain or unknown.In this paper we present a method to automati
ally learn the derivative of thevariability present in the data within a statisti
al framework, thus leading to anin
reased robustness of the 
lassi�er. To show the pra
ti
al value of the approa
hwe present results from experiments in two real-world appli
ation areas, namelyopti
al 
hara
ter re
ognition (OCR) and automati
 spee
h re
ognition (ASR).To 
lassify an observation x 2 IRD , we use the Bayesian de
ision rulex 7�! r(x) = argmaxk fp(k) � p(xjk)g : (1)Here, p(k) is the a priori probability of 
lass k, p(xjk) is the 
lass 
onditionalprobability for the observation x given 
lass k and r(x) is the de
ision of the
lassi�er. This de
ision rule is known to be optimal with respe
t to the expe
tednumber of 
lassi�
ation errors if the required distributions are known [3℄. How-ever, as neither p(k) nor p(xjk) are known in pra
ti
al situations, it is ne
essaryto 
hoose models for the respe
tive distributions and estimate their parame-ters using the training data. The 
lass 
onditional probabilities are modelledusing Gaussian mixture densities (GMD) or kernel densities (KD) in the exper-iments. The latter 
an be regarded as an extreme 
ase of the mixture densitymodel, where ea
h training sample is interpreted as the 
enter of a Gaussiandistribution. A Gaussian mixture is de�ned as a linear 
ombination of Gaussian
omponent densities, whi
h 
an approximate any density fun
tion with arbitrarypre
ision, even if only 
omponent densities with diagonal 
ovarian
e matri
es areused. This restri
tion is often imposed in order to redu
e the number of para-meters that must be estimated. The ne
essary parameters for the GMD 
an beestimated using the Expe
tation-Maximization (EM) algorithm [3℄.2 Invarian
e and Tangent Distan
eThere exists a variety of ways to a
hieve invarian
e or transformation toleran
eof a 
lassi�er, in
luding normalization, extra
tion of invariant features and in-variant distan
e measures [19℄. Distan
e measures are used for 
lassi�
ation asdissimilarity measures, i.e. the distan
es should ideally be small for members ofthe same 
lass and large for members of di�erent 
lasses. An invariant distan
emeasure ideally takes into a

ount transformations of the patterns, yielding smallvalues for patterns whi
h mostly di�er by a transformation that does not 
hange
lass-membership. In the following, we will give a brief overview of one invariantdistan
e measure 
alled tangent distan
e, whi
h was introdu
ed in [15, 16℄.Let x 2 IRD be a pattern and t(x; �) denote a transformation of x thatdepends on a parameter L-tuple � 2 IRL, where we assume that t does not



x

µ

x

µ

µFig. 1. Illustration of the Eu
lidean distan
e between an observation x and a refer-en
e � (dashed line) in 
omparison to the distan
e between the 
orresponding manifolds(dotted line). The tangent approximation of the manifold of the referen
e and the 
or-responding (one-sided) tangent distan
e is depi
ted by the light gray lines.a�e
t 
lass membership (for small �). The set of all transformed patterns now
omprises a manifold Mx = �t(x; �) : � 2 IRL	 � IRD in pattern spa
e. Thedistan
e between two patterns 
an then be de�ned as the minimum distan
ebetween the manifold Mx of the pattern x and the manifold M� of a 
lassspe
i�
 prototype pattern �, whi
h is truly invariant with respe
t to the regardedtransformations (
f. Fig. 1):d(x; �) = min�;�2IRL�jjt(x; �) � t(�; �)jj2	 (2)However, the resulting distan
e 
al
ulation between manifolds is a hard non-linear optimization problem in general. Moreover, the manifolds usually 
annotbe handled analyti
ally. To over
ome these problems, the manifolds 
an be ap-proximated by a tangent subspa
e 
M. The tangent ve
tors xl that span thesubspa
e are the partial derivatives of the transformation t with respe
t to theparameters �l (l = 1; : : : ; L), i.e. xl = �t(x; �)=��l. Thus, the transformationt(x; �) 
an be approximated using a Taylor expansion around � = 0:t(x; �) = x+ LPl=1�lxl + LPl=1O(�2l ) (3)The set of points 
onsisting of all linear 
ombinations of the pattern x withthe tangent ve
tors xl forms the tangent subspa
e 
Mx, whi
h is a �rst-orderapproximation of Mx:
Mx = �x+ LPl=1�lxl : � 2 IRL	 � IRD (4)Using the linear approximation 
Mx has the advantage that distan
e 
al
ulationsare equivalent to the solution of linear least square problems or equivalentlyFig. 2. Example of �rst-order approximation of aÆne transformations and line thi
k-ness. (Left to right: original image, diagonal deformation, s
ale, line thi
kness in
rease,shift left, axis deformation, line thi
kness de
rease)



proje
tions into subspa
es, whi
h are 
omputationally inexpensive operations.The approximation is valid for small values of �, whi
h nevertheless is suÆ
ientin many appli
ations, as Fig. 2 shows for examples of OCR data. These examplesillustrate the advantage of TD over other distan
e measures, as the depi
tedpatterns all lie in the same subspa
e. The TD between the original image andany of the transformations is therefore zero, while the Eu
lidean distan
e issigni�
antly greater than zero. Using the squared Eu
lidean norm, the TD isde�ned as: d2S(x; �) = min�;�2IRL�jj(x+ LPl=1�lxl)� (�+ LPl=1�l�l)jj2	 (5)Eq. (5) is also known as two-sided tangent distan
e (2S) [3℄. In order to redu
e thee�ort for determining d2S(x; �) it may be 
onvenient to restri
t the 
al
ulation ofthe tangent subspa
es to the prototype (or the referen
e) ve
tors. The resultingdistan
e measure is 
alled one-sided tangent distan
e (1S):d1S(x; �) = min�2IRL�jjx� (�+ LPl=1�l�l)jj2	 (6)The presented 
onsiderations are based on the Eu
lidean distan
e, but equallyapply when using the Mahalanobis distan
e [3℄ in a statisti
al framework. Theyshow that a suitable �rst-order model of variability is a subspa
e model basedon the derivatives of transformations that respe
t 
lass-membership, where thevariation is modelled by the tangent ve
tors or subspa
e 
omponents, respe
-tively. In the following we will 
on
entrate on properties of the model and theestimation of subspa
e 
omponents if the transformations are not known.3 Learning of VariabilityWe �rst dis
uss a probabilisti
 framework for TD and then show, how learningof the tangent ve
tors 
an be 
onsidered as the solution of a maximum likelihoodestimation problem. This estimation is espe
ially useful for 
ases where no priorknowledge about the transformations present in the data is available.3.1 Tangent Distan
e in a Probabilisti
 FrameworkTo embed the TD into a statisti
al framework we will fo
us on the one-sidedTD, assuming that the referen
es are subje
t to variations. A more detailedpresentation in
luding the remaining 
ases of variation of the observations andthe two-sided TD 
an be found in [8℄.We restri
t our 
onsiderations here to the 
ase where the observations x arenormally distributed with expe
tation � and 
ovarian
e matrix �. The extensionto Gaussian mixtures or kernel densities is straightforward using maximum ap-proximation or the EM algorithm. In order to simplify the notation, 
lass indi
esare omitted. Using the �rst-order approximation of the manifoldM� for a meanve
tor �, we obtain the probability density fun
tion (pdf) for the observations:p(x j�; �;�) = N (x j�+ LPl=1�l�l; �) (7)



The integral of the joint distribution p(x; � j�;�) over the unknown transfor-mation parameters � then leads to the following distribution:p(x j�;�) = Z p(x; � j�;�) d�= Z p(� j�;�) � p(x j�; �;�) d�= Z p(�) � p(x j�; �;�) d� (8)Without loss of generality, the tangent ve
tors of the pdf in Eq. (7) 
an be as-sumed orthonormal with respe
t to �, as only the spanned subspa
e determinesthe modelled variation. Hen
e, it is always possible to a
hieve the 
ondition�Tl ��1�m = Æl;m (9)using e.g. a singular value de
omposition, where Æl;m denotes the Krone
kerdelta. Note that we assume that � is independent of � and �, i.e. p(� j�;�) �p(�). Furthermore, � 2 IRL is assumed to be normally distributed with mean0 and a 
ovarian
e matrix 
2I , i.e. p(�) = N (� j 0; 
2I), where I denotes theidentity matrix and 
 is a hyperparameter des
ribing the standard deviation ofthe transformation parameters. These assumptions redu
e the 
omplexity of the
al
ulations but do not a�e
t the general result. The evaluation of the integralin Eq. (8) leads to the following expression:p(xj�;�) = N (xj�;�0) = det(2��0)� 12 exp�� 12h(x � �)T�0�1(x� �)i� (10)�0 = � + 
2 LXl=1 �l�Tl ; �0�1 = ��1 � 11 + 1
2 ��1 LXl=1 �l�Tl ��1 (11)Note that the exponent in Eq. (10) leads to the 
onventional Mahalanobis dis-tan
e for 
 ! 0 and to TD for 
 ! 1. Thus, the in
orporation of tangentve
tors adds a 
orre
tive term to the Mahalanobis distan
e that only a�e
ts the
ovarian
e matrix whi
h 
an be interpreted as stru
turing � [8℄. For the limiting
ase � = I , a similar result was derived in [6℄. The probabilisti
 interpretationof TD 
an also be used for a more reliable estimation of the parameters of thedistribution [2, 8℄. Note furthermore that det(�0) = (1+
2)Ldet(�) [5, pp. 38�.℄whi
h is independent of the tangent ve
tors and 
an therefore be negle
ted inthe following maximum likelihood estimation.3.2 Estimation of Subspa
e ComponentsIn order to 
ir
umvent the restri
tion that the appli
able transformations mustbe known a priori, the tangent ve
tors 
an be learned from the training data.This estimation 
an be formulated within a maximum likelihood approa
h.Let the training data be given by xn;k; n = 1; : : : ; Nk training patterns ofk = 1; : : : ;K 
lasses. Assuming that the number L of tangent ve
tors is known



(note that L 
an be determined automati
ally [1℄) we 
onsider the log-likelihoodas a fun
tion of the unknown tangent ve
tors f�klg (for ea
h 
lass k):F (f�klg) := KXk=1 NkXn=1 logN (xn;kj�k; �0k)= 11 + 1
2 KXk=1 NkXn=1 LXl=1((xn;k � �k)T��1�kl)2 + 
onst= 11 + 1
2 KXk=1 LXl=1 �Tkl��1Sk��1�kl + 
onst (12)with Sk =PNkn=1(xn;k � �k)(xn;k � �k)T as the 
lass spe
i�
 s
atter matrix. �and Sk 
an be regarded as 
ovarian
e matri
es of two 
ompeting models. Takingthe 
onstraints of orthonormality of the tangent ve
tors with respe
t to ��1into a

ount, we obtain the following result [5, pp. 400�.℄: The 
lass spe
i�
tangent ve
tors �kl maximizing Eq. (12) have to be 
hosen su
h that the ve
tors��1=2�kl are those eigenve
tors of the matrix ��1=2Sk(��1=2)T with the largest
orresponding eigenvalues.As the above 
onsiderations show, two di�erent models have to be deter-mined for the 
ovarian
e matri
es � and Sk. While Sk is de�ned as a 
lassspe
i�
 s
atter matrix, a globally pooled 
ovarian
e matrix is a suitable 
hoi
efor � in many 
ases. Using these models, the e�e
t of in
orporating the tan-gent distan
e into the Mahalanobis distan
e is equivalent to performing a globalwhitening transformation of the feature spa
e and then using the L 
lass spe
i�
eigenve
tors with the largest eigenvalues as tangent ve
tors for ea
h 
lass. Thisredu
es the e�e
t of those dire
tions of 
lass spe
i�
 variability that 
ontributethe most varian
e to �. While the maximum likelihood estimate leads to resultssimilar to 
onventional prin
ipal 
omponent analysis (PCA), the estimated 
om-ponents are used in a 
ompletely di�erent manner here. In 
onventional PCA,the prin
ipal 
omponents are 
hosen to minimize the re
onstru
tion error. In
ontrast to that, these 
omponents span the subspa
e with minor importan
e inthe distan
e 
al
ulation in the approa
h presented here. This 
an be interpretedas redu
ing the e�e
t of spe
i�
 variability, motivated by the fa
t that it does not
hange 
lass membership of the patterns. The tangent distan
e has the propertythat it also works very well in 
ombination with global feature transformationsas for instan
e a linear dis
riminant analysis (LDA), sin
e � 
an be assumed asa global 
ovarian
e matrix of an LDA-transformed feature spa
e.4 Experimental ResultsTo show the appli
ability of the proposed learning approa
h, we present resultsobtained on two real-world 
lassi�
ation tasks. The performan
e of a 
lassi�eris measured by the obtained error rate (ER), i.e. the ratio of mis
lassi�
ationsto the total number of 
lassi�
ations. For spee
h re
ognition a suitable measure



is the word error rate (WER), whi
h is de�ned as the ratio of the number ofin
orre
tly re
ognized words to the total number of words to be re
ognized.The di�eren
e to the 
orre
t senten
e is measured using the Levenshtein oredit distan
e, de�ned as the minimal number of insertions (ins), deletions (del)or repla
ements of words ne
essary to transform the 
orre
t senten
e to there
ognized senten
e. The senten
e error rate (SER) is de�ned as the fra
tion ofin
orre
tly re
ognized senten
es.4.1 Image Obje
t Re
ognitionResults for the domain of image obje
t re
ognition were obtained on the wellknown US Postal Servi
e handwritten digit re
ognition task (USPS). It 
ontainsnormalized greys
ale images of size 16�16 pixels, divided into a training set of7,291 images and a test set of 2,007 images. Reported re
ognition error ratesfor this database are summarized in Table 1. In our preliminary experiments,we used kernel densities to model the distributions in Bayes' de
ision rule andwe applied appearan
e based 
lassi�
ation, i.e. no feature extra
tion was applied.The use of tangent distan
e based on derivatives (6 aÆne derivatives plus linethi
kness) and virtual training and testing data (by shifting the images 1 pixelinto 8 dire
tions, keeping training and test set separated) improved the errorrate to 2.4%. This shows the e�e
tivity of the tangent distan
e approa
h in
ombination with prior knowledge. Finally, using 
lassi�er 
ombination, wheredi�erent test results were 
ombined using the sum rule, we obtained an errorrate of 2.2% [9℄.For our experiments on learning of variability, we used two di�erent settings.First, we used a single Gaussian density, i.e. one referen
e per 
lass, and variedthe number of estimated tangents. As shown in Table 2, the error rate 
anTable 1. Summary of results for the USPS 
orpus (error rates, [%℄).�: training set extended with 2,400 ma
hine-printed digitsmethod ER[%℄human performan
e [Simard et al. 1993℄ [15℄ 2.5relevan
e ve
tor ma
hine [Tipping et al. 2000℄ [17℄ 5.1neural net (LeNet1) [LeCun et al. 1990℄ [14℄ 4.2invariant support ve
tors [S
h�olkopf et al. 1998℄ [13℄ 3.0neural net + boosting [Dru
ker et al. 1993℄ [14℄ �2.6tangent distan
e [Simard et al. 1993℄ [15℄ �2.5nearest neighbor 
lassi�er [9℄ 5.6mixture densities [2℄ baseline 7.2+ LDA + virtual data 3.4kernel densities [9℄ tangent distan
e, derivative, one-sided (�) 3.7one-sided (x) 3.3two-sided 3.0+ virtual data 2.4+ 
lassi�er 
ombination 2.2kernel densities tangent distan
e, learned, one-sided (�), L = 12 3.7



Table 2. Results for learning of tangent ve
tors (ER [%℄, USPS, KD)#referen
es/
lass L = 0 L = 7 L = 12 L = 20 derivative tangent ve
tors (L = 7)1 18.6 6.4 5.5 5.5 11.8�700 5.5 3.8 3.9 3.7 3.7be redu
ed from 18.6% to 5.5% with the estimation of tangent ve
tors from
lass spe
i�
 
ovarian
e matri
es as proposed above. Using only L = 7 tangentve
tors, the result of 6.4% 
ompares favorably to the use of the derivative, herewith 11.8% error rate. This is probably due to the fa
t that the means of thesingle densities are the average of a large number of images and therefore veryblurred, whi
h is a disadvantage for the derivative tangent ve
tors. Here, theestimated tangent ve
tors outperform those based on the derivative.Interestingly, when using all 7,291 training patterns in a kernel density based
lassi�er, the result obtained without tangent model is the same as for a singledensity model with 12 estimated tangents. In this 
ase, the single densities withestimated tangent subspa
e obtain the same result using about 50 times fewerparameters. In the se
ond setting with about 700 referen
es per 
lass (KD), theerror rate 
an be redu
ed to 3.7% for 20 estimated tangents. Fig. 3(a) showsthe evolution of the error rate for di�erent number of tangent ve
tors. Here,the tangent ve
tors were estimated using a lo
al, 
lass spe
i�
 
ovarian
e ma-trix obtained from the set of lo
al nearest neighbors for ea
h training pattern.Therefore, the method is only applied to the one-sided tangent distan
e withtangents on the side of the referen
e. The obtained error rate is the same as forthe derivative tangents, although somewhat higher for the same number of tan-gents. This shows that the presented method 
an be e�e
tively used to learn the
lass spe
i�
 variability on this dataset. Note that using the tangents on the sideof the observations resp. on both sides, the obtained error rate is signi�
antlylower (
f. Table 1).Fig. 3(b) shows the error rate with respe
t to the subspa
e standard deviation
 for derivative tangents and estimated tangents using L = 7 ea
h. It 
an be seenthat, on this data, no signi�
ant improvement 
an be obtained by restri
ting thevalue of 
, while there may be improvements for other pattern re
ognition tasks.So far we have not dis
ussed the 
omputational 
omplexity of the tangentmethod. Due to the stru
ture of the resulting model, the 
omputational 
ost ofthe distan
e 
al
ulation is in
reased approximately by a fa
tor of (L + 1), in
omparison with the baseline model that 
orresponds to the Eu
lidean distan
e.4.2 Automati
 Spee
h Re
ognitionExperiments for the domain of spee
h re
ognition were performed on the SieTill
orpus [4℄ for telephone line re
orded German 
ontinuous digit strings. The 
or-pus 
onsists of approximately 43k spoken digits in 13k senten
es for both trainingand test set. In Table 3 some information on 
orpus statisti
s is summarized.The re
ognition system is based on whole-word Hidden Markov Models(HMMs) using 
ontinuous emission densities. The baseline system is 
hara
-terized as follows:
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Fig. 3. (a) ER w.r.t. number of estimated tangents (USPS, KD). (b) ER w.r.t. subspa
estandard deviation 
 for L = 7 derivative and estimated tangent ve
tors (USPS, KD).{ vo
abulary of 11 German digits in
luding the pronun
iation variant `zwo',{ gender-dependent whole-word HMMs, with every two subsequent states be-ing identi
al,{ for ea
h gender 214 distin
t states plus one for silen
e,{ Gaussian mixture emission distributions,{ one globally pooled diagonal 
ovarian
e matrix �,{ 12 
epstral features plus �rst derivatives and the se
ond derivative of the�rst feature 
omponent.The baseline re
ognizer applies maximum likelihood training using the Viterbiapproximation in 
ombination with an optional LDA. A detailed des
ription ofthe baseline system 
an be found in [18℄. The word error rates obtained with thebaseline system for the 
ombined re
ognition of both genders are summarizedin Table 4 (in the lines with 0 tangent ve
tors (tv) per mixture (mix)). In thisdomain, all densities of the mixtures for the states of the HMMs are regarded asseparate 
lasses for the appli
ation of learning of variability. The Sk were trainedas state spe
i�
 full 
ovarian
e matri
es. Note that the Sk are only ne
essary inthe training phase.For single densities, the in
orporation of TD improved the word error rateby 18:1% relative for one tangent ve
tor and 21:6% relative using four tangentve
tors per state. In 
ombination with LDA transformed features the relativeimprovement was 13:8% for the in
orporation of one tangent ve
tor and in
reasedto 28:6% for �ve tangent ve
tors per state. Fig. 4(a) depi
ts the evolution of theword error rates on the SieTill test 
orpus for di�erent numbers of tangentve
tors using single densities that were trained on LDA transformed features.Table 3. Corpus statisti
s for the SieTill 
orpus.
orpus female malesent. digits sent. digitstest 6176 20205 6938 22881train 6113 20115 6835 22463



For this setting the optimal 
hoi
e for gender dependent trained referen
es was�ve tangent ve
tors per state.Using mixture densities, the performan
e gain in word error rate de
reasedbut was still signi�
ant. Thus the relative improvement between the baselineresult and tangent distan
e was 6:7% (16 densities plus one tangent ve
tor permixture) for untransformed features and 13:6% for LDA transformed features(16 dns/mix, 1 tv/mix). The same applies for the optimal number of tangentve
tors whi
h was found at one tangent ve
tor per mixture. Consequently, alarger number of densities is able to partially 
ompensate for the error that ismade in the 
ase that the 
ovarian
e matrix is estimated using the 
onventionalmethod. The best result was obtained using 128 densities per mixture in 
om-bination with LDA transformed features and the in
orporation of one tangentve
tor per state. Using this setting, the word error rate de
reased from 1:85%to 1:67% whi
h is a relative improvement of 5%. Fig. 4(b) depi
ts the evolutionof word error rates for 
onventional training in 
omparison with TD using equalnumbers of parameters. Even though the in
orporation of tangent ve
tors intothe Mahalanobis distan
e in
reases the number of parameters, the overall gainin performan
e justi�es the higher expense.5 Dis
ussion and Con
lusionIn this paper we presented an approa
h for modelling and learning variability forstatisti
al pattern re
ognition, embedding tangent distan
e into a probabilisti
framework. In 
ontrast to prin
ipal 
omponent analysis based methods like [12℄the model disregards the spe
i�
 variability of the patterns when determiningthe distan
e or the log-likelihood, respe
tively, whi
h leads to an in
orporation oftransformation toleran
e and therefore improves the 
lassi�
ation performan
e.This is due to the basi
 di�eren
e between the distan
e in feature spa
e and theTable 4. Word error rates (WER) and senten
e error rates (SER) on the SieTill 
orpusobtained with the tangent distan
e. In 
olumn 'tv/mix' the number of used tangentve
tors per mixture is given. A value of 0 means that the 
onventional Mahalanobisdistan
e is used. 'dns/mix' gives the average number of densities per mixture.without LDAdns/mix tv/mix error rates [%℄del - ins WER SER1 0 1.17-0.83 4.59 11.341 1.17-0.52 3.76 9.224 0.69-1.07 3.60 9.1016 0 0.59-0.83 2.67 6.921 0.54-0.58 2.49 6.564 0.46-0.80 2.60 6.76128 0 0.52-0.54 2.24 5.871 0.50-0.48 2.12 5.754 0.55-0.49 2.13 5.71
with LDAdns/mix tv/mix error rates [%℄del - ins WER SER1 0 0.71 -0.63 3.78 9.741 0.97 -0.49 3.26 8.465 0.48-0.88 2.70 7.1816 0 0.44 -0.68 2.28 5.921 0.58 -0.40 1.97 5.064 0.38 -0.55 1.97 5.35128 0 0.45 -0.39 1.85 4.941 0.42-0.34 1.67 4.504 0.39 -0.41 1.76 4.81
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male (LDA+TD)Fig. 4. (a) Word error rates as a fun
tion of the number of tangent ve
tors on theSieTill test 
orpus for single densities using ML training on LDA transformed features.(b) Comparison of WER for mixture densities on the SieTill test 
orpus using equaloverall model parameter numbers.distan
e from feature spa
e, whi
h seems to be more appropriate for 
lassi�
a-tion [11℄. The presented model in its lo
al version is adaptive to spe
i�
 lo
alvariability and therefore similar to [7℄. Note that the presented model assigns tothe subspa
e 
omponents a weight 
 that was found to be usually larger than the
orresponding eigenvalue, whi
h is a main di�eren
e to subspa
e approximationsto the full 
ovarian
e matrix based on eigenvalue de
omposition like e.g. [10℄.The overrepresentation of estimated variational subspa
e 
omponents may leadto an in
reased transformation toleran
e. The new model proved to be very e�e
-tive for pattern re
ognition, in
luding the 
ombination with globally operatingfeature transformations as the linear dis
riminant analysis. Thus, theoreti
al�ndings are supported by the experimental results. Comparative experimentswere performed on the USPS 
orpus for image obje
t re
ognition and on theSieTill 
orpus for 
ontinuous German digit strings for automati
 spee
h re
og-nition. On the USPS 
orpus, single density and kernel density error rates 
ouldbe signi�
antly improved, and the obtained results were well 
omparable to theuse of tangents based on prior knowledge. Using the one-sided TD, a relativeimprovement in word error rate of approximately 20% was a
hieved for singledensities on the SieTill 
orpus. For mixture densities we 
ould gain a relative im-provement of up to 13:6% in word error rate. In
orporating the TD we were ableto redu
e the word error rate of our best re
ognition result based on maximumlikelihood trained referen
es from 1:85% to 1:67%. Note that the probabilisti
modelling te
hnique may also be used for other tasks like 
lustering, where �rstresults show that the formed 
lusters respe
t the transformations.Referen
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