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Abstract

This thesis will consider the following assumptions which are based on a few
insights about the arctic climate ([169], [69])

1. the arctic climate can be characterised by a growing season called summer
and a dormant season called winter.

2. in the summer season growing conditions are reasonably favourable and
species are more likely to compete for plentiful resources.

3. in the winter season there would be no further growth and the plant popu-
lations would instead be subjected to fierce weather events such as storms
which is more likely to lead to the destruction of some or all of the biomass.

Under these assumptions, is it possible to find those changes in the envi-
ronment that might cause mutualism (see section 1.9.2) from competition (see
section 1.9.1) to change?

The primary aim of this thesis is to provide a prototype simulation of growth
of two plant species in the arctic that:

1. takes account of different models for summer and winter seasons.

2. permits the effects of changing climate to be seen on each type of plant
species interaction.



Introduction

0.1 Aim

The aim of this thesis is to demonstrate that we can use a mathematical ap-
proach to identify qualitative types of plant species interactions in a harsh cli-
mate. This methodology is cost effective and efficient can be obtained with
a fairly less computational cost than was thought with the traditional plant
ecological experiments in a harsh climate.

0.2 Lotka-Volterra Systems: A brief history

From the literatures, the classical theory of ecological competition between two
species which is usually modelled by a system of nonlinear ordinary differen-
tial equations of first order which is associated with Volterra ([193]) and Lotka
([128]). Their work is an extension of the logistic model of single species dy-
namics originally due to Verhulst ([190]). Verhulst logistic model does primarily
two things:

1. It introduces nonlinearity into the model of self or intraspecific interaction
coefficient.

2. It models the growth of a single species when self or intraspecific interac-
tion coefficient is introduced into the dynamics.

Lotka-Volterra systems of equations are usually described by a set of deter-
ministic equations involving a small number of variables which are characteris-
tics of complex systems in physics, chemistry, and biology.

0.3 Numerical simulation of changes in qualita-

tive interactions of plant species

Ecology is a complex scientific field ([143], [134]). An ecological simulation
is a detailed specific model that requires much to enable its application. An
example of this type of numerical simulation concerns the numerical simulation
of changes in qualitative interactions of plant species ([71]).

It is this type of numerical simulation over a 10 year period and a 20 year
period of one trajectory that this thesis is seeking to use to study the changes in
the qualitative interactions of plant species in both harsh and relatively benign
environments.
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0.4 The dilemma of unused relevant ecological
data in an interdisciplinary research

The notion of unused relevant information in research and development is not
new ([201]). For example, the analysis of determinate growth of some agricul-
tural crops ([203]) is partly based on the data provided by ([118]).

The time series plant growth data provided by Blackman ([35]) which our
analysis in this thesis uses were published in 1919. However, some other re-
searchers have cited the notion of the assumption behind the experimental anal-
ysis of Blackman without a further analysis ([197]). Other similar experimental
works have been cited by ([191]) and ([175]).

However, as far as we know, these useful biological experimental results are
yet to be further analysed mathematically. These data sources represent a do-
main of unused data in research and development ([201]). We would fairly say
that the reasons for unused relevant ecological data in an interdisciplinary re-
search are still subjective depending on the objectives of the researcher’s agenda
and key objectives. Therefore, an application of unused ecological data in an
interdisciplinary research would face a dilemma. We propose to manage this
dilemma satisfactorily.

Although, we have used old plant growth data ([35]), their use provide good
ecological insights which we have not seen elsewhere. We would simply mention
that for many years, other researchers were aware of Blackman’s data but never
knew a satisfactory method of analysing these important data mathematically.
Hence, we intend to propose a novel approach of analysing and making sense
from these time series plant growth data.

0.5 Content

In this work we are concerned with the computational and mathematical mod-
elling of plant species interactions in a harsh climate. It is organised into the
following seven chapters:

Chapter 1

In chapter 1, we shall first review a few ecological notions, ecological hypothe-
ses, mathematical questions, and types of plant species interactions which are
relevant to the study of computational and mathematical modelling of plant
species interactions in a harsh climate

Chapter 2

In chapter 2, we shall introduce the mathematical analyses of the types of species
interactions which we have identified in chapter one by using some standard
mathematical methods.

Chapter 3

In chapter 3, we shall construct a deterministic summer model by using a non-
linear optimization method. Our approach is to choose an error or penalty
function that measures the agreement between the data and the model. The

2



parameters are then adjusted within a 0.1 percent relative tolerance error to
achieve a minimum in the penalty function that yield the best-fit parameters.
These model equations of summer competition between two plant species were
analysed using the standard mathematical methods which we have identified in
chapter 3.

Chapter 4

In chapter 4, we shall carry out a systematical sensitivity analysis of the model
parameters of the model equations of the summer competition model which we
have constructed in chapter 3 with a view to selecting the important parameters,
that is, parameters which on their variation would produce the biggest effects
on the solutions.

Chapter 5

In chapter 5, we shall focus on the simulation of our summer-winter model
of plant species interactions in order to decide on a method for calculating the
minimum biomass for each plant species over a ten year period of one trajectory
and also decide on how we should allow our program to reflect shortened winter
and lengthening summer for calculating the minimum biomass for each plant
species over a ten year period of one trajectory. We use an example to illustrate
the possibility of obtaining mutualism from our summer competition model as
a result of a variation of the length of summer.

Chapter 6

In chapter 6, we shall focus on a systematic investigation on how we can obtain
cases of mutualism and facilitation from a combination of our summer com-
petition model and our stochastic winter model which are consistent with the
mainstream ecological perspective due to a variation of our summer and winter
model parameters.

Chapter 7

In chapter 7, we shall concentrate on the key achievements of this thesis and
indicate some ideas for further research.

Chapter 8

A few relevant graphs are presented in this chapter for the purpose of under-
standing the ideas which they represent.
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Chapter 1

Ecological and
Mathematical Ideas

1.1 Introduction

The topic of this thesis will tackle a challenging interdisciplinary problem by us-
ing the tool of mathematical modelling and numerical simulation of plant species
interactions in a harsh climate. As a matter of fact, according to the declarations
of the 1992 Earth Summit, interdisciplinarity was cited repeatedly as one of the
means for increasing our understanding of and developing solutions to pressing
environmental issues such as sustainable resource development, climate change,
ecosystem rehabitation to mention a few ([188]). Interesting enough, interdis-
ciplinary approaches have moved on to consider issues other than broad global
issues. In this context, interdisciplinarity has facilitated research on subjects
which are more narrow in scope. For example, mutualism has been suggested as
an important factor of community stability in general ([89], [136], [161], [136],
[34], [182]). On the other hand, we know from these authors that population
dynamics of mutualistic interactions are rarely described except in the case of
positive-density.

In this thesis, we shall attempt to adapt numerical methods to solving this
novel ecological problem with the expectation of providing further insights and
contributing new knowledge. Driving this motivation is our recognition of the
complexity of inhospitable arctic environments and the complex links between
ecological and dynamical systems.

One of the well known ecological interpretations of understanding the in-
teraction between plant species is through the process of competition. But in
a harsh climate where it takes a longer time to understand if the process of
competition is taking place which is very rare, we choose to assume a summer
growing season where competition takes place along with a winter season where
occasional frequency of storms may affect the biomass.

This chapter will attempt to tackle the following issues that relate to this
thesis.

First, we would consider issues relating to global warming, lengthening sum-
mer and shortening winter. This would be followed with a brief introduction
to the concepts of mathematical modelling and numerical simulation. Then, we
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would consider the central purpose of this thesis, a few observations of ecolo-
gists that directly relate to our investigation. This will be followed with a list
of objectives that this thesis expects to achieve.

Second, we shall consider the main methodology which we have used in the
analysis of our summer-winter model.

Third, we shall define and discuss the key ecological hypotheses and other
research questions on which this thesis is designed. It is very important to define
and discuss in detail other important factors and issues that affect the growth
of plant and plant species interactions. For example, we need to understand
the concept of the kinetics of plant growth, competitive exclusion and species
coexistence among other related ecological concepts that would provide insights
to understanding the process of plant growth and the dynamics of plant species
interactions.

In this chapter, we would also consider five types of plant species interactions
on which our subsequent mathematical analysis and simulations would be based.
This introductory chapter ends with a conclusion that points out what we would
expect the next chapters to achieve.

1.1.1 Global Warming

One of the effects of a climate change will take the form of a significant global
warming. This change is expected to be most pronounced at polar latitudes
([19]). As a result of this, plant species are predicted to change in response
to changing climates ([19], [74], [133], [171], [68], [51], [176], [183], [170], [166],
[109], [101]). In particular, [176] have shown that a warmer climate could lead
to new competitive relationships between plant species that will consequently
diminish the reproductive capacity of plant species.

1.1.2 Lengthening summer and shortening winter

Plants require specific growing season lengths to complete their life cycles. These
requirements are said to vary significantly with different species ([95]). For
example, red raspberries which are produced in Scotland requires a short, cool
growing season while in the tropical and subtropical regions, sugarcane requires
long, hot, humid growing seasons. On the other hand, other plant species can
grow and perform better over a wide range of temperatures and length of season.

The quantification of lengthening a summer season and shortening a win-
ter season has been reported in the literature ([107]). According to these
researchers, the summer season is said to be lengthened significantly by 11
days whereas the winter season is said to be contracted or shortened by 30
days. These climate changes could alter the complex interactions between plant
species.

According to a global warming resource ([81]), it was reported that summer
days without snow cover have increased from fewer than 80 in the 1950′s to
more than 100 in the 1990′s. In the same context, a group of other researchers
have reviewed the evidence that global warming has affected the growth period
of plants and also reported that the lengthening of the growing season can
contribute to the global carbon fixation ([162]). Hence, the lengthening of a
summer growing season is more likely to enhance the process of competition
than facilitation.
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1.1.3 Other factors of a benign environment

The initial biomass is an important benign factor that can play a key role in the
shift between positive and negative interactions along environmental gradients
([77], [84], [113], [39]). Another important factor of a benign environment is the
intensity of species interactions ([41], [39]).

1.1.4 Regional variation of frequency of storms in the arc-
tic

Just as chronic wind is an important ecological parameter, so is the impact
of fierce storms on the biomass ([67]). According to the arctic data source, it
was reported that the frequency of storms was greatest during the months of
June, July, and August with an average of two or three per month ([12]). This
occurence of storms enables us to choose an annual average of storms to be
between 6 and 9.

In this thesis, we propose to use the Poisson distribution to approximate
the mean number of storms over a period of 10 years whereas we propose to
use the Gamma distribution to approximate the intensity of storms. These
distributions are the two most popular models of studying the occurrence of
events in an interval and the increasing intensity of storms in particular.

1.1.5 Impact of temperature and other stresses on the
growth of plant species

The growth of plant species can be affected by a range of abiotic stresses such
the temperature stress, soil stress, and pH stress to mention a few ([163]). In this
thesis, we can investigate the impact of temperature stress on the type of plant
species interactions indirectly by changing either the daily intrinsic growth rate
or the intra-specific coefficient of an appropriate competition model in a benign
climate. This would indirectly provide some important ecological qualitative
insights from our expected numerical simulation in this thesis.

1.2 Review of relevant literatures

The idea behind a literature review stems from the concept of research. In
this context, research is a diligent investigation to validate and refine existing
knowledge and generate new knowledge.

What is a literature review? There is no single definition that fits this con-
cept universally. We would think that a literature review is an important part
of developing a research and it involves an analysis and synthesis of research
sources to generate a picture of what is known about a particular research prob-
lem or a particular field of study. It can also be used to identify the knowledge
gaps that exist in a research topic. In a literature review, the researcher who
is investigating a scientific problem wants to find out the methods that other
researchers have used to tackle his or her proposed problem especially if the
problem being investigated is a new research topic in order to avoid duplication
of research outputs. Hence, these few reasons reinforce the fact that a literature
review is an important part of a research process and development (see, section
3.17 of this thesis).
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1.3 Mathematical Modelling

Mathematical modelling is an integral part of attempting to understand the
dynamics of a given scientific problem which is familiar in the mathematical
literatures (([145], [75], [20], [21], [24], [87]). In general, a mathematical de-
scription of a system serves to put our knowledge of that system into a rigorous
quantitative form that is subject to rigorous testing. In this sense, we would
mention that a mathematical model serves as an embodiment of a hypothesis
about how a system is constructed or how it functions. We also think that the
model forces one to focus thinking and make inexact ideas more precise.

In the context of this thesis, we intend to use only a system of first order
coupled differential equations to study the interaction dynamics between two
competiting plant species. Other appropriate models involving partial differen-
tial equations, difference equations, delay equations, and other types of func-
tional differential equations can be extended by another researcher to model the
interaction dynamics between two competiting plant species.

1.4 Numerical simulation

A numerical simulation is a satisfactory method of tackling a mathematical
model which has complex characteristics and does not have a closed-form so-
lution ( [20], [21], [24]). It is an important component of developing a mathe-
matical model. This viewpoint is consistent with the general consensus that as
fields of science develop, dissemination of knowledge seems to evolve in theory
from analytic to numerical solutions ([73]).

We learn from this author that, as soon as a theoretical formulation is well
defined and validated for simple test equations, the next stage of analysis would
involve the application of the theory to understanding more complex systems.
When the system to be solved becomes very complex, that is, when the model
equations that describe the phenomena being considered consist of many many
parameters, familiar analytic mathematical techniques will in most scenaria fail
to provide precise solutions. It is at this point that numerical simulation or
computational science becomes an important mathematical technique.

For example, to study the mathematical modelling of plant species inter-
actions in a harsh climate which is motivated by a system of complex model
equations, the application of a numerical simulation is inevitable in order to
draw useful ecological insights ([69]).

1.5 Purpose of this Thesis

Our primary goal in this thesis is to use the tool of numerical simulation to inves-
tigate the effect of climate change on the extent of obtaining cases of mutualism
and facilitation from a combination of our summer competition model and our
stochastic winter model which are consistent with widely accepted ecological
theories. Our other secondary goals are to

• find out how sensitive the environment is to particular model parameters
that can be affected by climate change.
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• find those model parameters,which when varied, have the biggest effect
on the approximate solution of a system of nonlinear deterministic model
equations of competition interaction.

• find those winter and summer parameters which when varied will lead to
changes in the interaction behaviour.

1.6 Observations of Ecologists

The idea that interactions between plant species are affected by some environ-
mental conditions such as changes in weather conditions in which the species
grow is well established( [186],[48], [65], [38]) and several other references which
are cited by these authors. According to these authors, the prediction of ways
that changes in the environment will affect biodiversity is of particular concern.

Nevertheless, these authors have reported that, in delicate ecosystems, the
presence of research scientists may pose a major influence on the environment
and on the expected scientific results that would be obtained.

1.7 Objectives of Research

The key objectives of this study are to

• develop a model that will accept as input data details of the environmental
factors and the distribution of different plant species.

• develop a model that will provide predictions of future distributions of
the interacting plants over time, taking account of various hypotheses
regarding climate variations.

• find which model parameters when varied have the biggest effect on the
solutions.

• decide on a method of calculating the effect of summer and winter param-
eters on the biomass.

• investigate the possibility of using an ecological simulation to obtain mutu-
alism and facilitation from a combination of a summer competition model
and a stochastic winter model due to a variation of winter model param-
eters.

• find out the critical environmental factors that can cause mutualism and
facilitation to change to other patterns of plant species interactions.

1.8 Research Methodology

A research methodology is an important part of developing a mathematical
model ([70], [20], [21]). Our research methodology consists of three main phases
namely the modelling phase, the simulation phase, and the review/revisit phase.
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1.8.1 Modelling phase

The modelling phase of our research methodology considers three main issues
namely

1. Issues about species interactions.

2. Issues about data availability.

3. Issues about parameter estimation problem

Issues about species interactions

In terms of species interactions, we would only consider the competition (−,−)
interaction between two competing plant species for resources in combination
with a stochastic winter model. Our competition model is characterised by a
set of defining parameters such as the intrinsic growth rates for the two plant
species, the self or intraspecific interaction coefficients for the two plant species,
the interspecific interaction coefficients for the two plant species and the starting
biomasses over a long time interval.

Issues about data availability

In terms of data availability, we have only analysed the given plant growth data
provided by ([35]) because the results which we obtain by analysing these data
provide useful ecological insights which are consistent with the key objective of
this thesis.

Moreover, we could not find a set of plant growth data because of the con-
straint of the inhospitability of the arctic climate and lack of funding. In the
literature, we are yet to see any other analysis of these data using our method
of analysis. Despite the problem of data paucity which is characteristic of most
interdisciplinary studies, our analysis of these available data forms a background
for other further analyses.

Issues about Parameter Estimation Problem

The problem of parameter estimation to be considered in this thesis is described
by a system of m nonlinear ordinary differential equations of first order

dx

dt
= f(t, x, p) (1.1)

that depend on a set of parameters pεℜp where xεℜm and tε[0, T ].
The initial values x0 = x(0) are usually treated as additional unknown pa-

rameters and these are included in the parameter set p ([24]). We consider the
observed quantity yi as a function of the system state x which are sampled at
discrete times ti such that

yi = g(x(ti, p)) (1.2)

for i = 1, 2, ....., N .
If x̂(t, p) is the approximate solution of the above equation for a given set

of parameters p. The objective function Φ(p̂) is defined as the sum of squared
residues between the data and the model such that
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Φ(p̂) = ΣN
i=1 | yi − g(x̂(ti, p)) |2 (1.3)

In this thesis, our approach is to choose an error function which is also
called the penalty function that measures the agreement between the data
and the model. The parameters are then slightly varied to achieve a mini-
mum in the 2-norm penalty function which will yield the ”best-fit” parameters.
With nonlinear dependencies, however, the minimization must proceed incre-
mentally/iteratively, that is, given trial values for the parameters, we develop a
procedure that improves the trial solution. Our procedure is then repeated until
Φ(p̂) stops decreasing and starts increasing again, hence indicating the property
of a monotone sequence.

When the measurement points are good, our scheme correctly identifies the
minimum point and hence the best fit parameters are chosen subject to a relative
error tolerance of 0.1 percent.

We know that the construction of a mathematical model is not a simple task
for several reasons. According to [115], it is impossibe to identify a single model
structure for a natural system since such a system is never closed and more
than one model would appropriately provide reliable realistic result. In some
circumstances, the modeller is compelled to use one single reliable model which
best describes the phenomenon under investigation as long as the construction
of this single model can be justified with an appropriate numerical scheme.

Next, models are built under uncertainties in the values of the defining pa-
rameters, in the parameterization of the system and in the choice of equations
that describe dynamics ([153], [45]).

Lastly, uncertainty can also be related to an inherent stochasticity of the
model where the dynamics includes a random term. Issues of parsimony in
model identification are discussed in great depth by ([204], [20]).

In an interaction between two dis-similar plant species, a parameter which
is numerically characterised as less important could become an important pa-
rameter when an interaction between two similar plant species is considered. To
avoid this type of contradiction and inconsistency in the interpretation of our
analysis, it would be a good idea to simply differentiate those parameters which
have the biggest effect on the solutions as important parameters and those which
have the smallest effect as less important parameters.

1.8.2 Simulation Phase

Our simulation phase is characterised by two distinct components comprising of
the numerical simulation of our summer competition model using fourth order
Runge-Kutta methods and the assumptions leading to the stochastic winter
model.

Numerical simulation of summer competition model

For our summer season prototype model, we consider

dN1

dt
= f(a, b, c,N1, N2, N1(0), N2(0)) (1.4)

dN2

dt
= g(d, e, f,N1, N2, N1(0), N2(0)) (1.5)
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where

1. a denotes the intrinsic growth rate for the first species N1 in the absence
of interaction with N2.

2. b denotes the self or intraspecific interaction coefficient for the first species
N1.

3. c denotes the interspecific interaction coefficient of the second species with
the first species inhibiting the growth of the first species.

4. d denotes the intrinsic growth rate for the second species N2 in the absence
of interaction with N1.

5. e denotes the interspecific interaction coefficient of the first species with
the second species inhibiting the growth of the second species.

6. f denotes the self or intraspecific interaction coefficient for the second
species N2.

7. N1 and N2 are the given biomasses for the first and second plant species.

8. N1(0) and N2(0) are the given starting biomasses for the first and second
plant species.

Our summer competition model is characterised by two continuous and dif-
ferentiable interaction functions in terms of the defining model parameters which
we have talked about in the early section of our research methodology. These
two interaction functions are solved numerically by the following explicit fourth
order Runge-Kutta method ([106], [120]). This numerical method which is well
established for solving an initial value problem and also for solving a system
of equations is a procedure that produces approximate solutions at particular
points.

For a standard system of two equations, we consider

dx

dt
= f(x, y) (1.6)

dy

dt
= g(x, y) (1.7)

with initial conditions

x(0) = x0 (1.8)

y(0) = y0 (1.9)

We know that to achieve a higher order of accuracy when applying the
Taylor series, one is expected to find various higher order derivatives. This
approach involves tedious algebraic manipulations. However, if the derivatives
are replaced by evaluating f(x, y) and g(x, y) at intermediate points, it becomes
possible to achieve the same desired accuracy. The methods that are derived in
this way are called Runge-Kutta methods but there are numerous variations of
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these method. The version which we have used in this study is the one proposed
by ([120]).

Our system of model competition equations are analysed using a fourth order
Runge-Kutta scheme with which the starting biomasses before the start of our
winter season can be calculated under our assumption that in the summer season
the growing conditions are reasonably favourable and species will compete for
resources.

Numerical simulation of stochastic winter model

The arctic climate is also characterised by a dormant season called winter. We
assume that in the winter season there will be no further growth and the plant
populations will instead be subjected to various weather events such as storms
which lead to destruction of some or all of the biomass. The simplifying as-
sumptions that lead us to set up our winter model will be considered in detail
in chapter five of this thesis. Some ecological questions such as how do we ap-
proximate the number and intensity of storms can be answered by simulating
the Poisson probability distribition and the gamma distribution in order to ob-
tain estimates for the number and intensity of storms. Detailed definition and
analysis can be found in chapter five of this thesis.

1.8.3 Review and revisit phase of our summer-winter model

In this section of our research methodology, we used our summer simulation
program to obtain solution trajectories over a longer time interval for other
variations of the length of summer growing season. This confirms that our
program is working correctly.

Summer season prototype model

For our summer season prototype model, we use our Matlab coded Runge-Kutta
program to calculate maximum biomass for each plant species. These maximum
biomasses for the first and second species form the values at the start of winter
dormant season. Then, we would stop our simulation of this summer growing
season.

Illustrating our Winter Dormant Season

For our winter season, we follow the following steps in our research methodology

1. Use gamma distribution to model storm intensity.

2. Calculate the proportion of the biomass that remains after storm 1, af-
ter storm 2, after storm 3, etc as generated by the Poisson probability
distribution for the first year winter 1 for the first and second species.

3. At the end of the first year winter 1, use the biomass that remains for
each species to form the starting biomass at the start of the second year
summer season and winter season.

4. Continue the process for the second year winter 2 for the first and second
species.
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5. At the end of the second year winter 2, use the biomass that remains for
each species to form the starting biomass at the start of the third year
summer season and winter season.

6. The above steps are repeated for winter 3, then summer 4, winter 4, etc
for 10 summer growing seasons and 10 dormant winter seasons.

In this thesis, we have used a Matlab program to simulate our summer-winter
model.

1.8.4 Application of our research methodology

We have successfully updated our summer-winter program and decided on a
method

1. For calculating the minimum biomass for each plant species over a 10 year
period of one example trajectory instead of exact solutions.

2. To simulate 1000 ten year periods with the same starting values with which
we can calculate our experimental probability of extinction of each plant
species.

3. To allow our program to reflect shortened winter and lengtheining summer
based on ecological literature idea.

4. To obtain cases of mutualism, commensalism, parasitism, competition,
and facilitation if possible from a combination of our summer model and
stochastic winter model which are consistent with dominant/mainstream
ecological theory.

Our next task is to discuss a few types of species interactions which would
form the background to this study.

1.9 Types of Plant Species Interactions

From our discussions so far, we know that when two species in an ecosystem have
some common activities or requirements, they may interact to some degree. The
principal types of species interactions are interspecific competition, mutualism,
commensalism, parasitism and predation. Predation is one of these interactions
which we have not discussed in this section because parasitism can easily switch
to predation.

Three of these interactions namely parasitism, mutualism, and commensal-
ism are symbiotic relationships in which two or more species interacting together
benefit from the relationship. In mutualism and commensalism neither species
is harmed by the interaction.

In this section, we will define and discuss the four main types of plant species
interactions on which this study will be based with a view to illustrating these
interactions with a few examples.
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1.9.1 Competition

One of the ways in which plants interact and compete for limited resources in
the environment is through the process of competition.

The most accepted scientific opinion is to view competition as a process of
concurrent use of a limited resource. The concept of competition between plant
species could be further broken into interspecific competition and intraspecific
competition ( [30]). Interspecific competition occurs when individuals of two
separate species share a limiting resource (water, light, soil nutrients and grow-
ing space) in the same ecological niche whereas intraspecific competition may
occur when individuals of two same species share a limiting resource in the same
ecological niche. Both types of competition may limit population size but when
interspecific competition does affect population size, it could lead to the local
extinction of one or more competing species ([31]).

Consider two plant species growing in a desert where the major limiting
resource is water. The species whose root growth enables them to acquire much
water would have an advantage whereas the species that cannot obtain as much
water may find it difficult to persist with limited growth during drought or face
the ecological risk of extinction.

Ecologists usually measure competition by using the concept of neighouring
plant density as a factor that affect the growth of plants ([143]). Other things
being equal, ecologists are interested to know if the presence of other plants from
the same species does affect the growth of individual plants in a predictable pat-
tern. Another question of interest to ecologist is about interspecific competition.
Other things being equal, does the presence of other plants from other species
affect the growth of individual plants differently than the presence of plants
from the same species? Does this difference occur in a predictable pattern?

According to ([134]) and several other ecologists, there is a general unani-
mous concensus that the concept of competition between two interacting species
has been widely studied more than any other type of species interactions.

1.9.2 Mutualism

Mutualism (+,+) is a type of symbiotic interaction in which both species ben-
efit by sharing a common limited resource and contribute to the growth of
individual species positively. For example, mycorrhizae are mutualistic inter-
actions between fungi and the roots of almost all plants ([31],[29],[30]). The
fungus is said to absorb phosphorus and other essential minerals from the soil
and provides them to the plant. In return, the plant provides the fungus with
carbohydrates produced by photosynthesis.

According to these authors, this example may be true in nutrient-poor soils,
however, when the plant has enough minerals that it does not require the benefit
from the fungus, this benefit could become a drain on the plant’s resources,
thereby the mutualistic interaction could be turned into a parasitic interaction
in this context.

According to ([143]), facultative mutualism occurs when either species can
grow in the absence of the other, although neither species alone can attain
population densities as great as when both species occur together. In obligate
mutualism, neither species can grow in the complete absence of the other, how-
ever, growth at very low densities is sometimes guaranteed given the required
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lower population threshold and availability of limited resources.
Mutualism or symbiosis is considered as one of the major categories of eco-

logical interaction of populations or species. It has also been suggested as an
important factor of community stability in general ([89], [136], [161], [34], [136]).
According to ([134]), the population dynamics of mutualism relations are less
studied when compared with the dynamics of competition. This viewpoint has
changed as the notion of mutualism which has a positive-density dependence
([136], [34], [182]) is contributing better insights for scientits. However, ([136])
and ([185]) have argued that positive density-dependence could be problematic
since a strong mutualism may lead to the infinite population growth or popula-
tion explosion.

1.9.3 Commensalism

In a commensalistic (+/0) interaction, species one (called the commensal) ben-
efits while species two (called the host) is not affected. Epiphytes are smaller
plants that grow on other plants ([30], [31]). One classic example of commen-
salism is the interaction between a rain-forest tree and its epiphytes.

1.9.4 Facilitation

Facilitative (mutually positive) interaction between two plant species is an im-
portant type of species interaction ([48], [127]). As a matter of fact, theoretical
models predict that facilitation generally increases in importance with increas-
ing abiotic stress([127]).

Facilitation which is called the credit column of the ecological ledger has not
been frequently studied despite its importance in the plant community ([42]).
Despite this setback, more recent research indicates that the impact of facilita-
tion is an important community-level process ([42]).

The importance of integrating facilitation into dominant/mainstream ecolog-
ical theory as well as the importance of facilitation and environmental gradients
has been proposed ([39], [42]).

A few findings that directly relate to this study on modelling plant species
interactions in a harsh climate are that

1. Both positive and negative effects occur simultaneously along enviornmen-
tal gradients, affect different variables, and change with time and location
([157]).

2. The net balance between the facilitative and competitive effects represents
the magnitude and sign (either positive or negative) of the interaction
([49],[102]).

3. It has been reported from an experimental study that the harsher the
ecological conditions, the stronger the facilitative effect of the nurse plants
([157]).

4. Several factors can affect or shift the balance between competition and
facilitation, including physiological and developmental traits ([14]).

5. Abiotic conditions seem to be the overriding factor increasing the impor-
tance of positive effects in harsher environments ([40], [48]).
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6. The net negative competitive effects are more important under relatively
benign environmental conditions, whereas positive facilitative effects are
more important under harsher conditions ([111]).

1.9.5 Parasitism

Parasitism is another (+,−) symbiotic relationship in which one member, called
the parasite, benefits and the other, called the host, is adversely affected ([30]).

In this symbiotic interaction, the parasite obtains nourishment from its host,
and inspite of the fact that a parasite may weaken its host, it rarely kills it ([30]).
Thus, whilst the parasite benefits from the parasite-host interaction, the host
plant may suffer a decrease in fitness through either a decrease in survival,
reproduction and /or growth.

It is worth mentioning that many parasites do not cause disease, but some
do. When a parasite causes disease and sometimes the death of a host, it is
called a pathogen. The mistletoe is one of the best examples of parasitic seed
plants ([31],[30]). From an evolutionary perspective, mistletoe is a successful
example because as a parasite, it keeps its leaves in winter and so is highly
visible in bare trees. Hence, it has become a cultural symbol during Christmas.

1.10 Ecological Hypotheses

In this section, we would define and discuss the following hypotheses which
relate directly with the primary aim of this thesis.

1.10.1 Competition Theory

The common ecological paradigm which explains the process of plant species
interactions is based on the idea of competition for limited resources ([186]).
A few of the existing mathematical models that have been used to explain the
plant interactions observed in experiments can be found in the works of ([75],
[76], [158]).

1.10.2 Positive Interaction Theory

From studies which were conducted in harsh climates ([48], [65], [64]), it has
been observed that there can be positive interactions between plant species.
According to these authors, these positive interactions are not explained by pre-
vious competition theory and there is an increasing body of evidence obtained
by community manipulation that supports the idea that one finds examples of
commensalism and mutualism within these ecosystems along declining produc-
tivity gradients. For example, temperature changes may lead to other secondary
changes, such as, increase in rainfall levels, or the availability of nutrients to
plants may change.

Hence, these changes to environmental factors may mean that two plant
species may at some point cease to interact positively and begin to compete. In
this thesis, we are going to provide a mathematical model that will enable us
to predict when this bifurcation in the interacting behaviour will occur.

In another scenario, competition can become greatest in the most stressful
and disturbed zone ([72]).
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1.10.3 Stress Gradient Hypothesis

From the ecological literatures, the relationship between the harshness of en-
vironmental stress and the relative importance of facilitation and competition
can be conceptually formalised as a stess gradient hypothesis. It predicts that
the net negative competitive effects are more important under relatively benign
environmental conditions while positive facilitative effects are more important
under harsher conditions ([32], [49], [38]). In this thesis, we would interpret the
term stress to mean any benign environmental factor which its manipulation
would produce some negative effects on the two interacting plant species such
as the length of growing season, the daily intrinsic growth rate, the intra-specific
coefficient and the initial biomass. Other benign environmental factors can be
high temperature, warmer summers, osmotic pressure, and nutrient level ([32],
[176]).

1.11 Other Research Questions

The hypotheses being considered above have both ecological and mathemati-
cal components. Hence, we will need to rely on some reliable mathematical
techniques to answer the related ecological questions.

1.11.1 Ecological Questions

In this study, we shall attempt to focus on a few important ecological questions.
These questions are not exhaustive. As far as we know, these are the ones that
relate to our present analysis.

1. Ecologists know how to measure plant interactions experimentally ([13])
but they want to know how to measure some performance variables usually
biomass between individual plants interacting together and in isolation by
a simulation technique in the absence of actual experimentation.

2. Ecologists want to find out the effect of varying the length of summer
growing season and its senstivity on the probability of extinction of plant
species over a longer time interval.

3. In the winter season characterised by occasional fierce storms, ecologists
will like to know if shortening the length of winter leads to some degree
of extinction of plant species over a longer time interval.

4. Ecologists also want to know if global warming could trigger either the
persistence or extinction of two interacting plant species.

5. Ecologists want to know if they can use an alternative mathematical
method different from their classical experimental approach to determine
mutualism from competition from a combination of a summer competition
model and a stochastic winter model.

1.11.2 Mathematical Questions

In this thesis, we would specify the main questions that mathematicians are
interested to tackle:
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• How do we set up the summer and winter models?

• How do we approximate the number of storms that occur in the winter
season?

• For each storm, how do we approximate the intensity of storm in the
winter season?

• How do we approximate the quantity of biomass that remains at the end
of each storm?

• To find out how to select model parameters of summer model only.

1.12 Other Important Concepts

Our concern in this section is to define and discuss other important concepts rel-
evant to the understanding of competition interaction and the growth of plants.

1.12.1 Kinetics of Plant Growth

It is known that when a plant emerges from its seed, it grows slowly to begin
with and then accelerates its growth until it reaches the flowering stage, when
the growth slows down again to a limiting value ([191]). The ”S” or sigmoid
shape of the curve is typical of the growth of the plant as a whole as well as of
the growth of living organisms in general. According to ([191]), the three stages
which characterise the so-called grand period of growth are:

• An early period of slow growth.

• A central period of rapid growth.

• A final period of slow growth.

1.12.2 Fundamental Niche

According to ([179]), a fundamental niche is defined as a full potential range
of physical, chemical, and biological factors that a species could use if there
were no competition from other species. When competition emerges, we would
expect this fundamental niche to change in response to the factor of competition
between plant species. In particular, the fundamental niches for similar and dis-
similar interacting plant species differ.

1.12.3 Competitive Exclusion Principle

Experimental scientists have shown that no two species can occupy exactly the
same fundamental niche indefinitely in a habitat where there is not enough
of a particular resource to meet the needs of both species. This is called the
competitive exclusion principle. This principle can be justified mathematically
([145]). When this principle can be justified both in experimental analysis and
analytical analysis, one of the species will persist at its carrying capacity while
the other species will go extinct over time. This is one of the reasons why
the competitive exclusion principle is an important ecological concept. Another
reason why this principle is important is that it provides a baseline for studying
competition ([30]).
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1.12.4 Species Coexistence

Coexistence takes place when two or more plant species live together in a stable
environment. In any competition interaction between two species, either one
eliminates the other (competitive exclusion), or they both coexist. In essence,
competitive exclusion and coexistence are merely opposite sides of the same
coin, or at least alternative states derived from the same model of competition
([179]).

1.12.5 A Neighbourhood Modelling of Plant-Plant Inter-
actions

It is worth to mention at this stage that plant-plant interactions are characteris-
tically local in nature ([58]). What this concept means is that, individual plants
do not experience global population density per se, however, they can only in-
teract over constrained distances within their neighbourhood ([58], [143]). A
detailed discrete model formulation of this problem has been defined and dis-
cussed (see, [143], [155], [156]).

1.13 Conclusion

In this chapter, we have identified four main types of plant species interactions
namely competition, mutualism, commensalism and parasitism. In a competi-
tion (−/−) interaction, direct or indirect inhibition of each species is affected
by the other. In commensalism (+/0), the commensal benefits from the host
without harming it whereas in mutualism (+/+), interaction is favourable to
both species and obligatory. In a parasitic (+/−) interaction, one of the species
benefits and the other does not. Facilitation is simply a mutually positive in-
teraction which is slightly different from mutualism in the sense that the fast
growing plant species with greater access to nutrients is more likely to provide
a nursing support to a slow growing plant species.

In this chapter, we have established our research methodology, key ecological
hypotheses, and other mathematical questions that underpin this thesis.

Having identified these types of plant species interactions, the question of
describing and analysing the dynamics of the processes of competition, mutu-
alism, commensalism and parasitism between plant species borders on the use
of mathematical modelling. Our next chapter will discuss the mathematical
techniques with which these problems can be tackled.

Without a detailed discussion of what comes next in the sequel, it would be
a good idea to mention briefly about the contents of the next five chapters.

In chapter two, we shall be concerned with a detailed mathematical analysis
of the model equations of plant species interactions identified in chapter one.
This would involve the use of typical mathematical techniques such as steady
state and stability.

In chapter three, we intend to tackle the problem of constructing our model
equations of interspecific competition (−,−) interaction first by estimating the
intrinsic growth rate for a single growing plant and optimizing a set of nonlinear
logistic model equations with the aim of obtaining the model parameters that
minimize the 1-norm.
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In chapter four, we shall consider the application of sensitivity analysis and
selection of model parameters from our experiments. Subsequent analysis will
require the results of this chapter. This chapter is all about the methodology
of finding out which model parameters when varied will have the biggest effect
on the solution. It is these parameters which we would regard as important
parameters and the parameters which would have the smallest effect on the
solutions will be categorized as less important.

In chapter five, we shall focus on the numerical simulation of our summer-
winter model of plant species interactions with the hope of providing some in-
sights about some important research questions in this interdisciplinary subject
of mathematical ecology or mathematical modelling in ecology.

In chapter six, we shall focus on another important aspect of numerical
simulation with the the expectation of obtaining mutualism from a combination
of our summer competition model and our stochastic winter model under some
realistic assumptions and variation of summer and winter model parameters.
We would expect to provide some further extentions of this work.
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Chapter 2

Mathematical Analysis of
Species Interactions

2.1 Motivation

We have introduced four types of species interactions in chapter one. In this
chapter, we shall focus on providing a detailed definition and analysis of model
competition equations which can also be adapted to other types of species in-
teractions which we have identified in chapter one.

2.2 Introduction

This chapter is organized into five important sections. In section one, we shall
consider the idea and the implication of studying the population dynamics of
species interactions. This idea will be illustrated with a few examples.

Section two tackles the problem of setting up the model equations of interspe-
cific interaction between two plant species from the typical model of exponential
growth. The setting up of other model equations of mutualism, commensalism
and parasitism are similarly defined and discussed.

Section three tackles the core problem of using typical mathematical meth-
ods of steady states and stability to analyse the four types of species interactions
with a view to providing insight into qualitative behaviour of steady state so-
lutions over time. This analysis would be of importance to ecologists who are
often interested in possible uniform states where two species coexist. In par-
ticular, one is interested with using typical mathematical techniques to analyse
general model equations of competition (−/−), mutualism (+/+), commensal-
ism (+/0) and parasitism (+/−) between plant species. Although our analyses
bear the general procedure of conducting these analyses, we have considered
detailed analyses and their ecological implications in this chapter.

In section four, we have attempted to construct three criteria for the coexis-
tence of two plant species competing for a limited resource in the environment
assuming that the defining model parameters of model equations of competi-
tion do not depend on a variation of time. Similar criteria for the survival and
extinction of two competing plant species are derived mathematically which is
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followed up with other mathematical analyses. Finally, a few of what we have
achieved in this chapter is briefly summarised in section five.

2.3 Population dynamics of species interactions

In this section, we shall consider the classical n-species Lotka-Volterra model.
This model defines the time-evolution of a system of n species in which each
is characterised by the number Ni of individuals belonging to the i-th species
([145], [134]).

First we introduce a single species model which describes that the rate of
growth of the i-th species is proportional to Ni.

On the other hand , such a rate of growth can be decreased by competition
among individuals of the same species and is proportional to N2

i , and also by
competition among individuals of different species, which is proportional to
NiNj .

Central to our understanding of the Lotka-Volterra model is the population
law of mass action. It states that the rate of change of one population due to
interaction with another population is proportional to the product of the two
populations ([36]).

The general form of Lotka-Voterra model can then be written as follows

Ni = Ni(t) (2.1)

dNi

dt
= Ni(ai −

n
∑

j=1

bijNj) (2.2)

where i = 1, 2, ....., n and the terms ai and bij are assumed to be positive con-
stants.

To be specific,

• ai stands for the intrinsic growth rate which defines the difference between
the birth rate and death rate of species.

• bij stands for the competition coefficient with respect to the interaction
between the i-th and the j-th species.

In the absence of both intraspecific and interspecific interactions between
species,

dN

dt
= aN (2.3)

subject to N(0) = α > 0.
The dynamics for this one species population in the absence of interspecific

interaction can be described by a first order initial value problem

dN

dt
= N(a− bN) (2.4)

subject to N(0) = α > 0.
Similarly, the dynamics for a two species population in the presence of in-

traspecific and interspecific interactions can be described by a system of two
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first order nonlinear ordinary differential equations ([167]), otherwise called the
Lotka-Volterra system

dN1

dt
= N1(a− bN1 − cN2) (2.5)

dN2

dt
= N2(d− eN1 − fN2) (2.6)

subject to N1(0) = α > 0 and N2(0) = β > 0.
Hence, the exponential growth model and the logistic model are special cases

of the Lotka-Voterra model.
A further detailed analysis of this model can be found in the works of ([134],

[167], [117]).
Therefore, our discussion up to this point has the following common points:

1. The state variable N which is indexed by N = (N1, N2) represents the set
of the number of individuals belonging to each species.

2. Normalise each Ni with respect to

N0 =

n
∑

i=1

Ni(0)) (2.7)

represents the total number of individual species when the intial time t =
0.

3. The set P is defined by the set P = (a, d, b, f, c, e,N1(0), N2(0)).

4. The mathematical model is a continuous dynamic model which is described
by a system of nonlinear ordinary differential equations of first order. Its
matrix form can be written as

dN

dt
= f(N ;P ) (2.8)

where
f = (fi) (2.9)

where i = 1, 2.

fi = Niai −Ni(
∑

bijNj) (2.10)

In this case, the linear and nonlinear parts are characterised by

Li =
dNi

dt
− aiNi (2.11)

and

Hi = Ni(
n
∑

j=1

bijNj) (2.12)
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1. If one or more model parameters in set P are random variables, then
we would expect the system to be stochastic. If all the parameters are
deterministic, then the model is deterministic.

2. If
dNi

dt
= 0 (2.13)

when i=1,2,...,n, then the model is in a stable state and the number of steady
state solutions can be found from a nonlinear algebraic system of the form

f(N ;P ) = 0. (2.14)

In this thesis, we shall only focus on nonlinear deterministic competition
model equations.

Next, consider an ecosystem which consists of two interacting plant species
N = (N1, N2). In general, the presence of a second species has either a positive
or negative effect on the first one and vice versa:

• If the species enhance the growth of each other, then this (+,+) interaction
is called mutualism or symbiosis which we have defined in chapter one.

• If the species negatively affect each other, then they are said to be in a
(−,−) interaction called competition for the same limited resource which
we have defined in chapter one.

• If one of the species called parasite benefits and the other, called the host,
is adversely affected, then this (+,−) interaction is called parasitism which
we have also defined in chapter one.

• If one of the species benefits and the other remains unharm, then com-
mensalism is the outcome of this (+, 0) interaction which we have also
defined in chapter one.

We shall consider a detailed mathematical analyses of these types of inter-
action later on in this chapter.

In summary, the theory of nonlinear ordinary differential equations of first
order is a powerful mathematical approach for describing the interactions be-
tween two competing species ([134], [88],[97], [189]).

In this chapter, we shall focus on defining, analysing, and discussing a few
relevant coupled nonlinear first order ordinary differential equations of (−,−)
species interactions of the form

dN1

dt
= F (a, b, c,N1, N2) (2.15)

dN2

dt
= G(d, e, f,N1, N2) (2.16)

where a,b,c,d,e,f are positive constants whilst N1(0) = N10 > 0 and N2(0) =
N20 > 0 are called the initial conditions or starting values when time t = 0. N1

and N2 represent the population biomass of species one and species two.
In particular,
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1. The model parameter a represents the intrinsic growth rate of species 1 in
the absence of interaction.

2. The model parameter b represents the intraspecific interaction coefficient
of species 1 with species 1.

3. The model parameter c represents the interspecific interaction of species
2 with species 1.

4. The model parameter d represents the intrinsic growth rate of species 2
in the absence of interaction.

5. The model parameter e represents the interspecific interaction of species
1 with species 2.

6. The model parameter f represents the intraspecific interaction coefficient
of species 2 with species 2.

We shall assume that the two plant species in question are interacting for a
limited resource within the environment.

Most model equations of plant species interactions do not have any closed-
form solutions. Hence, we shall seek to find the steady state solutions which exist
for all time ([189]), study their stability properties and numerical simulations
of these model equations. The corresponding ecological implications of our
mathematical analysis will be discussed.

Under some simplifying assumptions, general model equations of plant species
interactions shall be formulated and analysed. It is expected that the analysis
of our model equations would provide a basis for improved understanding of
these complex plant species interactions.

The parameters that define our model equations are not known precisely, in
the sequel we are proposing to find those parameters which, when varied, have
the biggest effect on the solutions.

Therefore, in this chapter, we shall analyse the model equations of plant
species interactions which are similar to Lotka-Volterra models.

2.4 Model assumptions

In order to analyse the model equations of competition interaction between two
plant species, we shall consider the following assumptions:

1. There are plentiful resources and a mild climate that promote continuous
growth of two plant species.

2. Consider the population of plant or grass speciesN1 andN2 living together
and competing with each other for the same limiting resource.

3. Each population is inhibited not only by members of its own species but
also by those of the other population.

4. Linear growth rates and the intraspecific or self competition parameters
are the logistic parameters for species N1 and N2 if they were growing in
isolation of other plant species .
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5. The environmental parameters involved with the model formulation are
all constants irrespective to time and environmental fluctuations.

6. That the environmental parameters involved with the model formulation
are all positive constants without time delays.

7. The dynamics of a system of competition equations or any other type of
interaction are independent of diffusion terms.

In order to set up appropriate model equations of interaction, we would
require the application of these assumptions.

2.5 Setting up Model Equations of Interactions

In this section, we shall focus on defining and discussing the formulation of
the growth of one plant species, then introduce the formulation of interaction of
species 1 with itself which we would extend into interspecific interaction between
species 2 and species 1.

2.5.1 Exponential growth model

From chapter one, the exponential growth model for one species in the absence
of competition is

dN1

dt
= aN1 (2.17)

subject to N1(0) = α > 0.
The closed-form solution of this simple standard first order differntial equa-

tion is

N1(t) = αeat (2.18)

This equation implies an exponential growth of population which is also
called the law of Malthus ([190]). We can say that this equation is the simplest
differential equation and also one of the most important. What does it mean?
Here N1 = N1(t) is an unknown real-valued function of a real variable t. The
function dN1

dt
is its derivative. What else does this equation tell us? This

equation tells us that for every value of t, the equality (2.18) is true where
the parameter a is a constant, that is if a is positive, zero, and negative.

How are the solutions of this equation obtained? The solutions are obtained
by separating the variables technique and integrating both sides of this equation.
Hence, if K is any arbitrary constant, the function f(t) = Keat will obey the
first order ordinary differential equation

f́(t) = aKeat = af(t). (2.19)

It would be misleading to think that there are other solutions. To prove that
there are no other solutions, we shall consider u(t) to be any solution. We want
to compute the derivative of u(t)e−at. By the product rule differentiation, we
know that
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d

dt
(u(t)e−at) =

du

dt
e−at + u(t)(−ae−at) (2.20)

By simplifying this equation further, we would obtain

d

dt
(u(t)e−at) = au(t)e−at − au(t)e−at = 0. (2.21)

By integrating the above equation with respect to t, we know that u(t)e−at

is a constant K, so that u(t) = Keat. This proves our assertion.
For a second plant species, we would expect its growth in the absence of

intraspecific and interspecific interactions to take the form of

dN2

dt
= dN2 (2.22)

subject to N2(0) = β > 0 whose general solution is similarly

N2(t) = βedt (2.23)

Summarising our discussion so far, the dynamics of unrealistic unlimited
growth of two plant species are

dN1

dt
= aN1 (2.24)

dN2

dt
= dN2 (2.25)

with initial conditions or starting plant biomasses N1(0) = α > 0 and
N2(0) = β > 0.

Next, we would like to modify the exponential growth assumption in order
to model the fact that plant species populations cannot grow unboundedly.

2.5.2 Intra-specific model of a single species

To modify the exponential growth model, we simply add a term that will reduce
dN
dt

as the population increases.
The term −bN2

1 would be included to represent a self limiting growth of a
single first species. Hence, the initial value problem or equation that governs
the growth of a single species is

dN1

dt
= aN1 − bN2

1 (2.26)

with initial condition N1(0) = α > 0.
We can rewrite the above logistic equation as

dN1

dt
= N1(a− bN1) (2.27)

where the value of the carrying capacity K1 is a
b
.

The growth of another speces is modelled by the corresponding logistic equa-
tion

dN2

dt
= N2(d− fN2) (2.28)
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with initial condition N2(0) = β > 0 where the value of the carrying capacity
K2 is d

f
.

In summary, in the absence of interspecific interaction, the growth of two
plant species or grass species can be modelled by

dN1

dt
= N1(a− bN1) (2.29)

dN2

dt
= N2(d− fN2) (2.30)

where the initial conditions or starting biomasses are N1(0) = α > 0 and
N2(0) = β > 0 and the carrying capacities of the species are K1 = a

b
and

K2 = d
f
.

In summary, it was Verhulst ([190]) who proposed a theory which is contrary
to the the view of Malthus and repoorted that the growth in a population was not
unbounded as modelled by Malthus. He provided a mechanism which accounted
for the retardation of population growth. The equation which he constructed is

dN(t)

dt
= aN(t)[1− N(t)

K
] (2.31)

which limits the growth of the population to the level K which is called the
carrying capacity.

The above equation can be solved analytically to obtain

N(t) =
KN(0)

(N(0) + [K −N(0)]exp(−at))
(2.32)

We note that for any initial data N(0), N(t) = K is the analytic solution as
t → ∞.

If we assume that a saturated growth will take place at some point during
the period of growth, then the initial data can be used to determine the largest
population K that would be supported by the environment and the rate of
growth of the population.

Other ecologists ([29], [30]) have utilised these ideas to formulate the dynam-
ics of intraspecific interaction between plants of the same species. Our analysis
in chapter three will build on this idea.

Our next task is to define and discuss the effect of adding interspecific in-
teraction terms.

2.5.3 Inter-specific model of competition

The effect of (−/−) competition between plant species N1 and N2 modelled
by the addition of the term −cN1N2 represents the reduction due to the eco-
logical competition interaction between these two plant species. Therefore, the
appropriate model equation is

dN1

dt
= aN1 − bN2

1 − cN1N2 (2.33)

We note that the term −cN1N2 is an empirical correction that is similar to
the law of mass action (which states that the rate of change of a population
over time is proportional to the product of the two interacting populations)
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The effect of (−/−) competition between plant species N2 and N1 can also
be modelled by the addition of the term −eN1N2. Therefore, another similar
model equation is

dN2

dt
= dN2 − eN1N2 − fN2

2 (2.34)

Therefore, the dynamics of two competing plant species can be modelled
by the following coupled Lotka-Volterra logistic nonlinear ordinary differential
equations of first order ([117], [145])

dN1

dt
= N1(a− bN1 − cN2) (2.35)

dN2

dt
= N2(d− eN1 − fN2) (2.36)

with initial conditions N1(0) = α > 0 and N2(0) = β > 0.
We shall adapt other model equations from this standard Lotka-Volterra

model. These models equations can also be found in works of ([88], [97]).

2.5.4 Inter-specific model of mutualism

When two plant species are involved in a (+/+ interaction, their dynamics can
be described by

dN1

dt
= N1(a− bN1 + cN2) (2.37)

dN2

dt
= N2(d+ eN1 − fN2) (2.38)

with initial conditions N1(0) = α > 0 and N2(0) = β > 0.

2.5.5 Inter-specific model of commensalism

In a commensalistic (+/0) interaction between two plant species, their dynamics
can be described by

dN1

dt
= N1(a− bN1 + cN2) (2.39)

dN2

dt
= N2(d− fN2) (2.40)

with initial conditions N1(0) = α > 0 and N2(0) = β > 0.

2.5.6 Inter-specific model of parasitism

In the case of a parasitic (+/−) interaction between two plant species, the
dynamics that describe this type of symbiotic interaction are

dN1

dt
= N1(a− bN1 + cN2) (2.41)
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dN2

dt
= N2(d− eN1 − fN2) (2.42)

with initial conditions N1(0) = α > 0 and N2(0) = β > 0.
From chapter one, each type of plant species interaction which we have

formulated in this section makes sense because we can find their examples in
ecology.

Next, we shall attempt to tackle the mathematical analysis of each type of
species interaction starting with the (−/−) competition interaction.

2.6 Different Types of Mathematical Techniques

In this section, we shall consider the mathematical analysis of the general model
equations which we have formulated in the last section. This analysis is impor-
tant as it would provide key qualitative behaviour of solutions.

2.6.1 Mathematical techniques

In this study, our main mathematical techniques will include steady state solu-
tions and the characterizations of the stability properties of the types of species
interactions being considered in this study. A detailed definition and mathe-
matical analysis of the concepts of steady state and its stability can be found
in the works of ([80], [145], [135], [150], [93], [87]).

2.6.2 Background to understanding steady state

When does a system of equations reach a state of equilibrium or steady state?
A system is said to reach a state of equilibrium or steady state when it shows
no further tendency to change its properties with time.

Stability theory is a fundamental topic in mathematics. There are several
concepts of stability such as asymptotic stability, absolute stability, Lyapunov
stability, and stability of periodic solutions. These stability concepts have ex-
tensive literatures. Readers who are interested in a detailed and comprehensive
mathematical treatment of stability theory are referred to references ([93], [80],
[87], [150]) and several other references which are also cited by these authors.

We know that many systems in ecological theory ([143], [145], [134], [167],
[64], [147]) can be described in the form

ẋ = F (x, t). (2.43)

Here the function F (.) is a function of only x and t. If F (x, t) does not
explicitly depend on t, then the system is called autonomous, otherwise is is
nonautonomous.

In a state space ℜn, there is a special set that corresponds to equation (2.43)
with a given function F (x, t). If we start at any point xe in this special set such
that for all t that belongs to the interval [t0,∞)

F (xe, t) = 0. (2.44)

Such a point, xe, is called an equilibrium point or a steady state solution.
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Next, we shall introduce the methodology of linearization around a steady
state.

2.6.3 Linearization in the neighbourhood of a steady state

A standard method of defining the concept of linearization in the neighbourhood
of a steady state can be seen in the work of ([80]). Linearization around a steady
state is an important analytical method for checking if the steady state is either
stable or unstable. This method can be described as follows:

1. We assume that our interaction functions F (N1, N2) and G(N1, N2) are
continuous and differentiable at each steady state.

2. Determine the four partial derivatives of F and G with respect to N1 and
N2.

3. Evaluate these partial derivatives at each steady state and set up a 2 by
2 Jacobian matrix consisting of only four elements.

4. If the determinant of the Jacobian matrix at a steady state is strictly
positive, then the steady state will be stable. If the determinant of the
Jacobian matrix is strictly negative, then the steady state will be unstable.
If the determinant of the Jacobian matrix is zero, then the steady state is
neither stable nor unstable, hence it is said to be sitting on the cusp.

5. If the eigenvalues which are determined from the Jacobian matrix are two
negative real numbers, then the corresponding steady state is said to be
stable indicating that the two solutions will decay over time.

6. If the eigenvalues are two positive real numbers, then the corresponding
steady state is said to be unstable indicating that the two solutions will
grow unboundedly over time.

7. If the eigenvalues are two real numbers of opposite signs, then the cor-
responding steady state is said to be unstable as the positive eigenvalue
contributes more to the growing behaviour of solutions over time than the
negative eigenvalue.

It is possible to discuss and analyse a more general case of the linearization
in the neighbourhood of a given solution ([150]) but we cannot embark on this
level of analysis in this chapter.

2.6.4 Problem: does the perturbation from the steady
state grow or decay?

The stability and instability of a steady state can also be studied by the method
of a small perturbation from the steady state apart from the method of lineariza-
tion just discussed in the last section.

The defined model equations of competition as formulated by equation 1 and
equation 2 can be rewritten in the following two-dimensional systems

dN1

dt
= F (N1, N2) (2.45)
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dN2

dt
= G(N1, N2) (2.46)

Suppose that (N1s, N2s) is a steady state, that is, F (N1s, N2s) = 0 and
G(N1s, N2s) = 0. We consider a small perturbation from the steady state, that
is,

N1 = N1s + u (2.47)

N2 = N2s + v (2.48)

where u << 1 and v << 1.
What are we looking for? We want to find whether the perturbation grows

or decays. The starting point to achieving this at all is to derive the differential
equations for u and v. We would conduct this analysis as follows. Since N1s

and N2s are positive constants independent of the time variable, it follows from
elementary calculus that

du

dt
=

dN1

dt
(2.49)

dv

dt
=

dN2

dt
(2.50)

By using our earlier definitions, we would obtain

du

dt
= F (N1, N2) (2.51)

du

dt
= F (N1s + u,N2s + v) (2.52)

By using the Taylor series expansion on the right hand side of this equation,
we obtain

du

dt
= F (N1s, N2s)+

∂F

∂N1
(N1s, N2s)u+

∂F

∂N2
(N1s, N2s)v+O(u2, v2, uv) (2.53)

Since F (N1s, N2s) = 0, it follows that

du

dt
=

∂F

∂N1
(N1s, N2s)u+

∂F

∂N2
(N1s, N2s)v +O(u2, v2, uv) (2.54)

By a similar line of analysis, we can also obtain

dv

dt
=

∂G

∂N1
(N1s, N2s)u+

∂G

∂N2
(N1s, N2s)v +O(u2, v2, uv) (2.55)

We learn that the higher order terms will be extremely small because u and
v are assumed to be small. In summary, knowing whether the perturbation is
growing or decaying can be studied by using these equations

du

dt
=

∂F

∂N1
(N1s, N2s)u+

∂F

∂N2
(N1s, N2s)v. (2.56)

dv

dt
=

∂G

∂N1
(N1s, N2s)u+

∂G

∂N2
(N1s, N2s)v. (2.57)
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2.7 Model equations of competition interaction

In this section, we are interested to tackle the analysis of a two species compe-
tition (−,−) interaction.

The dynamics of a two species competition model has been described by a
system of coupled nonlinear ordinary differential equations of first order where
the intrinsic growth rates (a, d) are assumed to be positive and the interspe-
cific/intraspecific interaction coefficients are assumed to be positive subject to
the initial conditions

N1(t0) = N10. (2.58)

N2(t0) = N20. (2.59)

The biomasses of plant species are reprsented by N1 and N2.
In this section, we are interested to determine the steady states or equilibria

of this model and investigate their stability or instability. We shall show under
the assumption of this model that this system of equations has a unique positive
equilibrium which is locally asymptotically stabe. Our first task is to calculate
the steady states or equilibria.

2.7.1 Characterization of steady states of competition

The ecologist is interested in possible uniform states where the two-species co-
exist ([143], [58], [179]).

The qualitative behaviour of a dynamic system may depend on its steady
state behaviour. The calculation of the values of the state variables at which
the dynamic system reaches a steady state is of particular importance in our
mathematical analysis and ecological simulation.

In this section, we shall study the characterization of the steady states and
their ecological implications.

According to ([80], [145], [135], [150]) and several other mathematical liter-
atures which we can not cite at this stage, that at a steady state

dN1

dt
= 0. (2.60)

and

dN2

dt
= 0. (2.61)

If the bracket of the right hand side of equation (2.35) is not equal to zero,
then

N1 = 0. (2.62)

If the bracket of the right hand side of equation (2.36) is not equal to zero,
then

N2 = 0. (2.63)

Hence, the point (0, 0) is a steady state solution. At this steady state, species
1 and species 2 will be extinct.
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If N1 = 0 is substituted into the second equation and N2 is substituted into
the first equation, we shall obtain

d− fN2 = 0. (2.64)

a− bN1 = 0. (2.65)

From these two equations, we know that

N2 =
d

f
. (2.66)

N1 =
a

b
. (2.67)

Hence, the points (0, d
f
) and (a

b
, 0) are steady state solutions. At the steady

state (0, d
f
) , only N2 species will survive at its carrying capacity while the N1

species will be extinct whereas at the steady state (a
b
, 0), it is only the N1 species

that will survive at its carrying capacity while the N2 species will be extinct.
Next, we shall assume that N1 6= 0 and N2 6= 0 such that

bN1 + cN2 = a. (2.68)

eN1 + fN2 = d. (2.69)

From equation (2.68),
bN1 = a− cN2. (2.70)

By multiplying equation (2.69) by b and substituting into equation (2.68),
we would obtain

e(a− cN2) + bfN2 = bd. (2.71)

By solving this equation, we would obtain

N2 =
bd− ae

bf − ce
. (2.72)

provided bd > ae and bf > ce
Next by substituting for the value of N2 and multiplying out the bracket,

we shall obtain

bN1 =
abf − ace− dbc+ ace

bf − ce
. (2.73)

If we simplify this equation further, we shall obtain

N1 =
af − dc

bf − ce
. (2.74)

provided af > dc and bf > ce.
Let N1s = N1 and N2s = N2. Then (N1s, N2s) is a positive steady state. At

this steady state, both species will coexist and it is particularly interesting to
ecologists.
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In summary, we have similarly derived the steady state solutions as other re-
searchers like ([134]) and several others have done: For example, apart from the
trivial solution (0, 0), the Lotka-Volterra competition model studied by ([134])
presents steady states in two fashions: as coexistence, where both N1s and N2s

are positive internal solutions or as exclusion, where only one species survives
at its carrying capacity and the other species will go extinct.

In the next section, we are interested to find out how the stability properties
of these steady states are characterised.

2.7.2 Characterization of stability properties of competi-
tion

In the section, we shall characterize the stability properties of competition by
using equations (2.35) and (2.36).

In this section, our objective is to investigate the characterization of the sta-
bility properties of the steady states which we have determined in the previous
section.

Consider the linearization of these interaction functions by assuming that
these functions of N1 and N2 are continuous and differentiable ([43])

F (N1, N2) = aN1 − bN2
1 − cN1N2. (2.75)

G(N1, N2) = dN2 − eN1N2 − fN2
2 . (2.76)

We shall differentiate these functions partially with respect to N1 and N2 to
obtain

J11 =
∂F

∂N1
= a− 2bN1 − cN2. (2.77)

J12 =
∂F

∂N2
= −cN1. (2.78)

J21 =
∂G

∂N1
= −eN2. (2.79)

J22 =
∂G

∂N2
= d− eN1 − 2fN2. (2.80)

Next, by following [80], we shall evaluate these functions at each steady state
starting with the zero steady state (0, 0).

At the steady state (0, 0), the above partial derivatives are evaluated and we
found that

J11 = a. (2.81)

J12 = 0. (2.82)

J21 = 0. (2.83)
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J22 = d. (2.84)

The Jacobian matrix is defined by

J =

(

a 0
0 d

)

(2.85)

In this scenario, the eigenvalues are

λ1 = a. (2.86)

λ2 = d. (2.87)

Hence, the steady state (0, 0) is unstable because the two eigenvalues have
positive signs. These positive eigenvalues contribute to the unbounded growth
of solutions over time.

Next, we shall characterize the stability property of the steady state solution
(0, d

f
). Similarly, we shall evaluate the above functions to obtain

J11 = a− cd

f
= a(1− cd

af
). (2.88)

J12 = 0. (2.89)

J21 = −ed

f
. (2.90)

J22 = d− 2df

f
= −d. (2.91)

Let ∆ = 1− cd
af

.
The Jacobian matrix J is defined by

J =

(

a∆ 0
−de

f
−d

)

(2.92)

In this scenario, the corresponding eigenvalues are

λ1 = a∆. (2.93)

λ2 = −d. (2.94)

provided all the parameters are positive and ∆ > 0. Hence, the steady state
(0, d

f
) is unstable because the eigenvalues have opposite signs, one negative and

the other positive provided c
f
< a

d
.

The positive eigenvalue contributes to the unbounded growth of solution
whereas the negative eigenvalue contributes to the decaying behaviour of solu-
tion over time.

Next, we shall characterize the property of the steady state (a
b
, 0). In the

same manner, we shall evaluate the linearized functions about this steady state
to obtain

J11 = a− 2ab

b
= −a. (2.95)
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J12 = −ac

b
. (2.96)

J21 = 0. (2.97)

J22 = d(1− ae

bd
). (2.98)

Let ∆ = 1− ae
bd
.

The Jacobian matrix is defined by

J =

(

−a ac
b

0 d∆

)

(2.99)

In this scenario, the corresponding eigenvalues are

λ1 = −a. (2.100)

λ2 = d∆. (2.101)

If all parameters defined by these eigenvalues are positive and ∆ > 0, then
the steady state solution is unstable because the eigenvalues have opposite signs
provided e

b
< d

a
.

Next, we shall evaluate the linearized functions at the positive steady state
and investigate its stability. In this case,

J11 = a− 2bN1s − cN2s = a− 2b(
af − cd

bf − ce
)− c(

bd− ae

bf − ce
). (2.102)

On multiplying out the brackets and simplifying, we shall obtain

J11 =
abf − ace− 2abf + 2bcd− bcd+ ace

bf − ce
. (2.103)

By a further simplification, we would obtain

J11 =
bcd− abf

bf − ce
. (2.104)

Let ∆ = bf − ce and α = bcd− abf .
Next, we shall evaluate another function to obtain

J12 = −cN1s = −c(
af − cd

bf − ce
). (2.105)

By multiplying out the bracket, we shall obtain

J12 =
c2d− acf

bf − ce
. (2.106)

Let β = c2d− acf . Similarly, at the positive steady state solution, we shall
evaluate the function to obtain
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J21 =
ae2 − bde

bf − ce
. (2.107)

Let δ = ae2 − bde.
Next, at the positive steady state solution, we shall evaluate another lin-

earized function to obtain

J22 = d− e(
af − cd

bf − ce
)− 2f(

bd− ae

bf − ce
). (2.108)

By multiplying out the brackets and simplifying, we shall obatin

J22 =
aef − dbf

bf − ce
. (2.109)

Let γ = aef − bdf .
On substituting for these notations in the appropriate equations, we shall

obtain the matrix

J − λI =

(

v1 v2
v3 v4

)

(2.110)

where

v1 =
α−∆λ

∆
(2.111)

v2 =
β

∆
(2.112)

v3 =
δ

∆
(2.113)

v4 =
γ −∆λ

∆
(2.114)

By applying the characteristic equation det(J −λI) = 0, we shall obtain the
folllowing quadratic equation

∆2λ2 −∆(α+ γ)λ+ (αγ − δβ) = 0. (2.115)

On using the quadratic formula to solve this equation, we shall obtain two
eigenvalues

λ1,2 =
1

2∆
[(α+ γ)±√

((α+ γ)2 − 4(αγ − δβ))]. (2.116)

If (α + γ) < 0 and
√
((α + γ)2 − 4(αγ − δβ)) < (α + γ) < 0, and provided

∆ > 0, then we shall obtain two eigenvalues with negative signs. Hence, the
positive steady state (N1s, N2s) is stable provided

(α+ γ)2 > 4(αγ − δβ). (2.117)

These two negative eigenvalues contribute to the decaying behaviour of so-
lutions over time. Hence, the positive steady state is stable. At this coexistence
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steady state, neither species will go extinct. This conclusion has important
ecological insights.

Therefore for the competition model equations, we would have four steady
states out of which only three steady states are unstable. It is only the positive
steady state that is stable under the constraints being specified.

If the model parameters of model equations of competition are slightly
changed, we would likely observe a different qualitative behaviour of steady
state solutions. We have done this level of analysis with a view to providing
good insights on the criteria at which the two species can coexist and become
stable. However, its detailed content would not be presented because it does
not relate with the focus of this section.

In our next level of analysis, we are interested to use an alternative analyt-
ical method to check for the stability and instability properties of these model
equations of competition.

2.7.3 Another characterization of stability properties of
competition: the method of a small perturbation
from the steady state

In this section, we shall use the method of a small perturbation from the steady
state which we have defined early in this chapter to investigate the stability and
instability of each steady state as a sort of a reality check to see whether we
would obtain the same conclusions about the qualitative behaviour of steady
state solutions as those obtained by using the linerization about each steady
state.

We consider the following interaction functions

F (N1, N2) = aN1 − bN2
1 − cN1N2 (2.118)

G(N1, N2) = dN2 − eN1N2 − fN2
2 (2.119)

First, does a small perturbation from the trivial steady state grows or decays?
For the purpose of clarity, we can see that at the trivial steady state,

F (0, 0) = 0 and G(0, 0) = 0. By partial differentiation with respect to N1,
we know that

∂F

∂N1
= a− 2bN1 − cN2 (2.120)

where ∂F
∂N1

(N1s, N2s) =
∂F
∂N1

(0, 0) = a
By partial differentiation with respect to N2, we obtain

∂F

∂N2
= −cN1 (2.121)

where ∂F
∂N2

(0, 0) = 0
Similarly, we obtain

∂G

∂N1
= −eN2 (2.122)

where ∂G
∂N1

(0, 0) = 0
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and

∂G

∂N2
= d− eN1 − 2fN2 (2.123)

where ∂G
∂N2

(0, 0) = d
Hence, the qualitative behaviour of a small perturbation from the trivial

steady state over time is described by du
dt

= au and dv
dt

= dv.
In a general case, for a competition system of equations, since a and d

are positive constants, it follows that the perturbations from the trivial steady
state will grow. In this case, both N1 and N2 will move away from the steady
state. Therefore, the trivial steady state is unstable which is consistent with
the qualitative behaviour of solutions over time when we used the method of
linearization.

For other steady state solutions, we would simply summarise our findings as

1. The qualitative behaviour of a small perturbation from the steady state
(0, d

f
) over time is described by du

dt
= (a − cd

f
)u and dv

dt
= −d( eu

f
+ v)

indicating that u will grow over time provided a > cd
f

and v will decay
provided eu

f
+ v > 0. In this case, N1 will move away from the steady

state whereasN2 will move towards the steady state. Therefore, the steady
state (0, d

f
) is unstable. This conclusion is consistent with the qualitative

behaviour of solutions over time when we used the method of linearization.

2. The qualitative behaviour of a small perturbation from the steady state
(a
b
, 0) over time is described by du

dt
= −a(u + c

b
v) and dv

dt
= (d − ae

b
)v

indicating that u will decay over time provided (u + c
b
v) > 0 and v will

grow over time provided d > ae
b
. In this case, N1 will move towards the

steady state whereas N2 will move away from the steady state. Therefore,
the steady state solution (a

b
, 0) is unstable. This conclusion is consistent

with the qualitative behaviour of solutions over time when we used the
method of linearization.

3. The qualitative behaviour of a small perturbation from a positive steady
state (af−cd

bf−ce
, bd−ae
bf−ce

) over time is described by

du

dt
= −α1(bu+ cv) (2.124)

dv

dt
= −α2(eu+ fv) (2.125)

where α1 = af−cd
bf−ce

and α2 = bd−ae
bf−ce

provided

1. bf > ce

2. af > cd.

3. bd > ae

40



These information indicate that both u and v will decay over time provided
the above inequalities are true. Similarly, both N1 and N2 will move toward
the steady state. Therefore, the positive steady state (α1, α2) is stable. Our
conclusion is consistent with the qualitative behaviour of solutions over time
when we used the method of linearization.

Due to the constraint of the length of this thesis, we cannot apply this
method to checking for the stability and instability of other types of species
interactions such as mutualism, commensalism, and parasitism.

2.7.4 Uniqueness of steady state solutions of model equa-
tions of competition

Is the steady state solution (N1s, N2s) unique? For the model equations of
competition, we would obtain

bN1 + cN2 = a (2.126)

eN1 + fN2 = d (2.127)

or we can recast the above equations in matrix form

AX = H (2.128)

where the coefficient matrix is defined by

A =

(

b c
e f

)

(2.129)

where the determinant of matrix A denoted by detA is bf − ce. and the
matrix of the right hand side of the simultaneous system is defined by

H =

(

a
d

)

(2.130)

By the principle of the Cramer’s rule, we know that

A1 =

(

a c
d f

)

(2.131)

where the determinant of matrix A1 is af − cd.
By using a similar approach, we would obtain

A2 =

(

b a
e d

)

(2.132)

where the determinant of matrix A2 is bd− ae.
Hence, the unique solution of this system of two equations is (N1s, N2s)

where

N1s =
detA1

detA
=

af − cd

bf − ce
. (2.133)

and
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N2s =
detA2

detA
=

bd− ae

bf − ce
. (2.134)

provided

1. bf > ce.

2. af > cd.

3. bd > ae.

In summary, through this procedure, we have shown that the steady state
solution to the system of model equations of competition is unique. This unique
solution can not be generalised to other model equations of species interactions.
For other types of species interactions, we can similarly show that their steady
state solutions are unique.

2.8 Model equations of mutualism

In this section, we shall be studying the dynamics of a mutualistic interaction
(+,+) model. By modifying model equations of competition to include a (+,+)
interaction, we shall obtain the following model equations of mutualism:

dN1

dt
= N1(a− bN1 + cN2). (2.135)

dN2

dt
= N2(d+ eN1 − fN2). (2.136)

where the model parameters are all positive and their meanings are as defined
in the previous section subject to the same initial conditions N1(0) = N10 > 0
and N2(0) = N20 > 0.

We are interested to characterize the steady state solutions and stability or
instability properties of these model equations of mutualism.

In our next analysis, we shall focus on charactirizing the steady states and
stability properties of model equations of mutualism as we did for model equa-
tions of competition.

2.8.1 Characterization of steady states of mutualism

By using the standard method of calculating the steady states, we found

1. The trivial steady state solution is (0, 0).

2. Another steady state solution is (0, d
f
).

3. Another steady state solution is (a
b
, 0).
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2.8.2 Uniqueness of steady state solutions of model equa-
tions of mutualism

If N1 6= 0 and N2 6= 0 are assumed, then we shall obtain two linear simultaneous
equations in two unknowns N1 and N2

bN1 − cN2 = a. (2.137)

−eN1 + fN2 = d. (2.138)

By using the Cramer’s rule, we can solve these equations to obtain

N1 =
af + cd

bf − ce
. (2.139)

and

N2 =
bd+ ae

bf − ce
. (2.140)

provided

1. bf > ce.

2. af + cd > 0.

3. bd+ ae > 0.

This positive steady state solution is unique and can not be generalised to
other model equations of species interactions.

Let N1 = N1s and N2 = N2s. Hence, (N1s, N2s) is a positive steady state
where both species populations coexist.

This unique positive steady state can only be positive provided bf > ce,
af + cd > 0 and bd+ ae > 0. Since, all the constants are positive, it is unlikely
to have a negative steady state as discussed by [134].

Our next task is to investigate the characterization of the stability or in-
stability property of the positive steady state solution only. We shall simply
summarise our calculations for the stability or instability properties of the other
three steady state solutions.

2.8.3 Characterization of stability of mutualism

Let the positive steady state be (N1s, N2s)
Consider the following differentiable and continuous functions

F (N1, N2) = aN1 − bN2
1 + cN1N2. (2.141)

G(N1, N2) = dN2 + eN1N2 − fN2
2 . (2.142)

By differentiating these functions partially, we would obtain

J11 =
∂F

∂N1
= a− 2bN1 + cN2. (2.143)

43



J12 =
∂F

∂N2
= cN1. (2.144)

J21 =
∂G

∂N1
= eN2. (2.145)

J22 =
∂G

∂N2
= d+ eN1 − 2fN2. (2.146)

Next, we shall evaluate these linearized equations at the positive steady state
solution.

At the point (N1s, N2s), we shall obtain

J11 = a− 2b(
af + cd

bf − ce
) + c(

bd+ ae

bf − ce
). (2.147)

On multiplying out these two brackets and simplifying, we would obtain

J11 = −(
abf + bcd

bf − ce
). (2.148)

Let
∆ = bf − ce. (2.149)

α = abf + bcd. (2.150)

J12 = cN1 =
acf + dc2

bf − ce
. (2.151)

Let
β = acf + c2d. (2.152)

J21 = eN2 =
bde+ ae2

bf − ce
. (2.153)

Let
δ = bde+ ae2. (2.154)

J22 = d+ e(
af + cd

bf − ce
)− 2f(

bd+ ae

bf − ce
). (2.155)

Let
γ = bdf + aef. (2.156)

By using these notations, we shall construct the following matrix

J − λI =

(

v5 v6
v7 v8

)

(2.157)

where

v5 = −(
α+∆λ

∆
) (2.158)
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v6 =
β

∆
(2.159)

v7 =
δ

∆
(2.160)

v8 = −(
γ +∆λ

∆
) (2.161)

By using the characteristic equation det(J − λI) = 0, we would obtain the
quadratic equation

∆2λ2 +∆(α+ γ)λ+ (αγ − δβ) = 0. (2.162)

By solving the quadratic equation, we would obtain the two eigenvalues

λ1,2 =
1

2∆
[±√

((α+ γ)2 − 4(αγ − δβ))− (α+ γ)] < 0. (2.163)

provided √
((α+ γ)2 − 4(αγ − δβ)) < (α+ γ). (2.164)

Hence, the positive steady state (N1s, N2s) is stable because the two eigenval-
ues have negative signs. These eigenvalues contribute to the decaying behaviour
of solutions over time.

In summary, our calculations for the instability of the steady states are as
follows:

1. For the trivial steady state solution (0, 0), the two eigenvalues are λ1 = a
and λ2 = d. Hence, the trivial steady state solution is unstable because
the eigenvalues are both positive.

2. For the steady state solution (a
b
, 0), the two eigenvalues are λ1 = −a and

λ2 = d + ae
b
. Hence, this steady state solution is unstable because the

eigenvalues are of opposite signs.

3. For the steady state solution (0, d
f
), the two eigenvalues are λ1 = (a+ cd

f
)

and λ2 = −d. Hence, this steady state solution is unstable because the
eigenvalues are of opposite signs.

According to [134] and [145], there are certain forms of model equations
of mutualism that have problematic features in the sense of its steady state
having negative values. These model equations shall be defined, analysed, and
discussed in our next section.

2.9 Orgy of mutual benefaction

In this section, we would like to define and explain the notion of an ”orgy of
mutual benefaction” as discussed by [134] and [145].

Up till now, we have only seen cases of positive steady states. But in a
special type of (+,+) interaction between two species, one can observe a case
of negative steady states. These typical model equations are
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dN1

dt
= aN1 + cN1N2 (2.165)

dN2

dt
= dN2 + eN1N2 (2.166)

with N1(0) = N10 > 0 and N2(0) = N20 > 0
We can see that the point (0, 0) is a steady state solution. If N1 6= 0 and

N2 6= 0, N2s = −a
c
and N1s = −d

e
. [134] has described this behaviour as

”an orgy of mutual benefaction”. According to this author, realistic models of
mutualism must at least show a mutual benefit to both species or as many as
are involved, and have positive steady state or limit cycle type oscillation.

For these typical model equations of mutual benefaction,

F (N1, N2) = aN1 + cN1N2 (2.167)

G(N1, N2) = dN2 + eN1N2 (2.168)

We shall similarly construct the partial derivatives of these functions with
respect to N1 and N2 and evaluate each function at these two steady states. By
doing this, we shall obtain

J11 = a+ cN2 (2.169)

J12 = cN1 (2.170)

J21 = eN2 (2.171)

J22 = d+ eN1 (2.172)

At the trivial steady state, J11 = a, J12 = 0, J21 = 0, J22 = d. Hence,
the two eigenvalues will definitely have two positive signs. In this scenario,
the trivial steady state will be unstable contributing to unbounded growth of
solutions over time.

To avoid the possibility of not obtaining a negative steady state, [134] has
suggested a set of two model equations that describe the dynamics of two mu-
tualistically interacting species. This new set of model equations of mutualism
has also been presented in the work of Murray (2002). As far as one knows, this
is an open problem. This problematic feature shall be tackled next.

2.9.1 Another model of mutualism

Consider the following nonlinear ordinary differential equation model between
two species with populations N1 and N2 ([145])

dN1

dt
= r1N1[1−

N1

K1 + b12N2
]. (2.173)

dN2

dt
= r2N2[1−

N2

K2 + b21N1
]. (2.174)
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If the terms b12N2 and b21N1 are equated to zero, the two species populations
will obey the well known logistic equation. In this context, the rate of change of
each species population will be saturated by the carrying capacities of K1 and
K2. The corresponding model is

dN1

dt
= r1N1[1−

N1

k1
]. (2.175)

dN2

dt
= r2N2[1−

N2

k2
]. (2.176)

If these equations are modified, so as to include the effect of increasing the
carrying capacity for each species by the presence of the other species, then we
can obtain the present model (Murray, 2002) that we want to study if

k1 = K1 + b12N2. (2.177)

k2 = K2 + b21N1. (2.178)

2.9.2 Characterization of steady states

In this section, we shall be concerned with determining the steady states of the
the model formulated in the previous section. By equating the rate of change
for each population to zero, we can determine four steady states or equilibria.
The first of these is the trivial zero equilibria. If r1N1 and r2N2 are not equal
to zero, then the following equations are valid

N1 − b12N2 = K1. (2.179)

−b21N1 +N2 = K2. (2.180)

The matrix of the coefficients of the unknowns N1 and N2 is defined by

A =

(

1 −b12
−b21 1

)

(2.181)

Since detA 6= 0, several non-trivial solutions exist depending on the value of
the parameters. On using either the Cramer’s rule method or any other method,
the positive steady state solution is (N1s, N2s) where

N1s =
K1 + b12K2

1− b12b21
. (2.182)

and

N2s =
K2 + b21K1

1− b12b21
. (2.183)

provided

1. K1 + b12K2 > 0.

2. K2 + b21K1 > 0.

3. 1 > b12b21.
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By using a similar method of calculating the border steady state, the next
steady state solution is (N1s, N2s) where

N1s = 0. (2.184)

N2s =
K2 + b21K1

1− b12b21
. (2.185)

provided

1. K2 + b21K1 > 0.

2. 1 > b12b21.

Similarly, another border steady state solution is (N1s, N2s) where

N1s =
K1 + b12K2

1− b12b21
. (2.186)

N2s = 0. (2.187)

provided

1. K1 + b12K2 > 0.

2. 1 > b12b21.

2.9.3 Characterization of stability

We shall linearise the above interaction functions and evaluate the partial deriva-
tives at the positive steady state only. In this regard, we shall consider

F (N1, N2) = (r1N1)(
K1 + b12N2 −N1

K1 + b12N2
) (2.188)

G(N1, N2) = (r2N2)(
K2 + b21N1 −N2

K2 + b21N1
) (2.189)

To find the partial derivatives of these functions with respect to N1 and N2,
we shall apply the product rule differentiation. To enable this partial differen-
tiation, consider

u = r1N1. (2.190)

v = (
K1 + b12N2 −N1

K1 + b12N2
). (2.191)

w = r2N2. (2.192)

h = (
K2 + b21N1 −N2

K2 + b21N1
). (2.193)

Hence,
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F (N1, N2) = uv. (2.194)

G(N1, N2) = wh. (2.195)

By partial differentiating these interaction functions with respect to N1 and
N2, we shall obtain

J11 =
∂F

∂N1
=

r1K1 + r1b12N2 − 2r1N1

K1 + b12N2
(2.196)

J12 =
∂F

∂N2
=

b12r1N
2
1

(K1 + b12N2)2
(2.197)

J21 =
∂G

∂N1
=

r2b21N
2
2

(K2 + b21N1)2
(2.198)

J22 =
∂G

∂N2
=

r2K2 + r2b21N1 − 2r2N2

K2 + b21N1
(2.199)

Next, we evaluate these partial derivatives to obtain

J11 = −r1 (2.200)

J12 = b12r1 (2.201)

J21 = r2b21 (2.202)

J22 = −r2 (2.203)

Hence, the Jacobian matrix is defined by

J =

(

−r1 b12r1
r2b21 −r2

)

(2.204)

We know that another method of checking whether the steady state is stable
or unstable or neither stable nor unstable is to calculate the determinant of the
Jacobian matrix ([92]). By applying this method, we will obtain

det(J) = r1r2(1− b12b21) (2.205)

Hence, we shall differentiate three criteria for the stability or instability of
a given steady state solution namely

1. If det(J) > 0 at a given steady state solution, then this steady state
solution is said to be stable provided r1r2 > 0 and 1 > b12b21.

2. If det(J) = 0 provided b12b21 = 1, then this steady state solution is said
to be sitting on the ’cusp’, that is, it is neither stable nor unstable.

3. If det(J) < 0 at a given steady state solution, then this steady state
solution is said to be unstable provided r1r2 > 0 and 1 < b12b21.
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Next, we will investigate the criteria for the stability of the positive steady
state. Consider the matrix (J − λI) from which the characteristic quadratic
equation (J − λI = 0) is

λ2 + (r1 + r2)λ+ r1r2(1− b12b21) = 0. (2.206)

The two roots of this quadratic equation are

λ1,2 =
−(r1 + r2)±

√
[(r1 + r2)

2 − 4r1r2(1− b12b21)]

2
(2.207)

Let D = [(r1+ r2)
2− 4r1r2(1− b12b21)]. By simplifying this formula, we can

rewrite it as D = r21 + r22 + 2r1r2(2b12b21 − 1). We observe that the value of D
will have a positive sign provided r1 > 0, r2 > 0, 2b12b21 > 1.

Hence

λ1,2 =
−(r1 + r2)±

√
D

2
(2.208)

For the purpose of our next discussion about the stability of the positive
steady state, we will split these eigenvalue roots into two namely

λ1 =
−(r1 + r2 +

√
D)

2
(2.209)

λ2 =

√
(D − (r1 + r2))

2
(2.210)

• Claim 1: If (r1 + r2 +
√
D) > 0, then λ1 < 0 provided r1 > 0, r2 > 0,

2b12b21 > 1.

• Claim 2: If
√
D > (r1 + r2), then λ2 > 0 provided r1 > 0, r2 > 0,

2b12b21 > 1.

• Claim 3: If
√
D < (r1 + r2), then λ2 < 0 provided r1 > 0, r2 > 0,

2b12b21 > 1.

• Claim 4: If
√
D = (r1 + r2), then λ1 < 0 and λ2 = 0 provided r1 > 0,

r2 > 0, b12b21 > 1.

On the basis of claim 1 and claim 2, our positive steady will be unstable (or
saddle) because the eigenvalues will have opposite signs whereas on the basis of
claim 1 and claim 3, our positive steady state will be stable, otherwise called a
stable node or sink. We also observe that our positive steady state is neither
stable nor unstable, that is, it is sitting on the cusp on the basis of claim 4.

In summary, we know that the trivial steady state is a saddle point (unstable)
because the two eigenvalues have positive signs while the two steady states
(0,K2) and (K1, 0) are unstable saddle points because the two eigenvalues have
opposite signs. We did not present this analysis in this section because we have
done similar analyses in this chapter. The only useful conclusion of our analysis
in this section is to report that our positive steady state is stable provided the
criteria of claim 1 and claim 3 are satisfied.

So far, we have analysed model equations of competition and mutualism. We
have similarly defined and analysed the notion of the model of mutual benefac-
tion. Next, we shall tackle the analysis of the model equations of commensalism.
This is (+, 0) interaction.
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2.10 Another model of commensalism

Our task in this section is to analyse the model equations of commensalism
(+, 0) interaction between two plant species. The coupled ordinary differential
equations that describe this process take the following form

dN1

dt
= N1(a− bN1 + cN2) (2.211)

dN2

dt
= N2(d− fN2) (2.212)

with N1(0) = N10 > 0 and N2(0) = N20 > 0 where the model parameters
are positive.

2.10.1 Steady state solutions of commensalism

Following our previous mathematical technique, we found

1. The trivial steady state solution is (0, 0).

2. Another steady state solution is (a
b
, 0).

3. The positive steady state solution is ( cd+af
bf

, d
f
).

Since we have shown in the cases of competition and mutualism how to
investigate the stability properties of the steady state solutions, we shall simply
summarise our calculations for the case of commensalism in this section.

2.10.2 Uniqueness of steady state solutions of model equa-
tions of commensalism

In this section, our task is to study the uniqueness of the steady state solutions
of model equations of commensalism. For N1 6= 0 and For N2 6= 0, we obtain

bN1 − cN2 = a (2.213)

fN2 = d (2.214)

From these two simple linear equations, the two solutions are solved to obtain

N2 =
d

f
> 0 (2.215)

N1 =
cd+ af

bf
> 0 (2.216)

Therefore, under these simplifying assumptions, we would say that the steady
state solution (N1, N2) of the model equations of commensalism is unique and
it can not be generalised to other model equations of species interactions.
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2.10.3 Stability properties of commensalism

In this section, we shall present our calculations as follows

1. For the trivial steady state solution (0, 0), the two eigenvalues are λ1 = a
and λ2 = d. Hence, the trivial steady state solution is unstable because
the eigenvalues are both positive.

2. For the steady state solution (a
b
, 0), the two eigenvalues are λ1 = −a

and λ2 = d. Hence, this steady state solution is unstable because the
eigenvalues are of opposite signs.

3. For the steady state solution ( cd+af
bf

, d
f
), the two eigenvalues are λ1 =

−(a+ cd
f
) and λ2 = −d. Hence, this steady state solution is stable because

the eigenvalues are both negative.

Up to this stage of our analysis, we have studied the mathematical analyses
of model equations of competition, mutualism, and commensalism. The pending
model equations of parasitism (which is a (+,−) interaction) shall be analysed
next.

2.11 Another model of parasitism

Our task in this section is to analyse the model equations of parasitism (+,−)
interaction between two plant species. The coupled ordinary differential equa-
tions that describe this (+,−) interaction are

dN1

dt
= N1[a− bN1 + cN2] (2.217)

dN2

dt
= N2[d− eN1 − fN2] (2.218)

with N1(0) = N10 > 0 and N2(0) = N20 > 0 where the model parameters
are positive constants.

2.11.1 Steady state solutions of parasitism

In this section, we found these steady state solutions

1. The trivial steady state solution is (0, 0).

2. Another steady state solution is (0, d
f
).

3. Another steady state solution is (a
b
, 0).

4. The positive steady state solution is af+cd
bf+ce

, bd−ae
bf+ce

). This positive steady
state will have positive values only provided af + cd > 0, bf + ce > 0,
bd > ae.
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2.11.2 Uniqueness of steady state solutions of model equa-
tions of parasitism

In this section, our task is to study the uniqueness of the steady state solutions
of model equations of parasitism. For N1 6= 0 and For N2 6= 0, we obtain the
following linear simultaneous equations in two unknowns N1 and N2

bN1 − cN2 = a (2.219)

eN1 + fN2 = d (2.220)

From the theory of elementary algebra, we know that

J =

(

b −c
e f

)

(2.221)

H =

(

a
d

)

(2.222)

A1 =

(

a −c
d f

)

(2.223)

A2 =

(

b a
e d

)

(2.224)

Hence, detJ = bf + ce, detA1 = af + cd, detA2 = bd − ae. By using the
Cramer’s rule, we shall obtain

N1 =
af + cd

bf + ce
> 0 (2.225)

N2 =
bd− ae

bf + ce
> 0 (2.226)

provided

1. af + cd > 0

2. bf + ce > 0

3. bd > ae

Therefore, under these simplifying assumptions, we would say that the steady
state solution (N1, N2) of the model equations of parasitism is unique and it can
not be generalised to other model equations of species interactions.

2.11.3 Stability properties of parasitism

In this section, we shall similarly summarise our calculations as follows

1. For the trivial steady state solution (0, 0), the two eigenvalues are λ1 = a
and λ2 = d. Hence, the trivial steady state solution for the model equa-
tions of parasitism is unstable because the eigenvalues are both positive.
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2. For the steady state solution (0, d
f
), the two eigenvalues are λ1 = a + cd

f

and λ2 = −d. Hence, this steady state solution is unstable because the
eigenvalues are of opposite signs.

3. For the steady state solution (a
b
, 0), the two eigenvalues are λ1 = −a and

λ2 = d − ae
b
. Hence, this steady state solution is unstable because the

eigenvalues are of opposite signs provided d > ae
b
.

4. For the steady state solution (a
b
, 0), if the two eigenvalues are λ1 = −a

and λ2 = d − ae
b

provided d < ae
b
, then this steady state solution will be

stable. If d > ae
b
, then this steady state solution will become unstable.

However, we shall investigate the stability of the positive steady state solu-
tion.

In this section, we shall linearise the following two continuous and differen-
tiable functions of N1 and N2

F (N1, N2) = aN1 − bN2
1 + cN1N2 (2.227)

G(N1, N2) = dN2 − eN1N2 − fN2
2 (2.228)

Following the same standard mathematical technique, we would obtain

J11 = a− 2bN1 + cN2 (2.229)

J12 = cN1 (2.230)

J21 = −eN2 (2.231)

J22 = d− eN1 − 2fN2 (2.232)

By evaluating the linearised functions at the positive steady state (af+cd
bf+ce

, bd−ae
bf+ce

),
we would obtain

J11 = −(
abf + bcd

bf + ce
) (2.233)

J12 =
c2d+ acf

bf + ce
(2.234)

J21 =
ae2 − bde

bf + ce
(2.235)

J22 = −aef − bdf

bf + ce
(2.236)

Next, we would use the following expressions to simplify our analysis:

∆ = bf + ce (2.237)

α = abf + bcd (2.238)

54



β = acf + c2d (2.239)

γ = ae2 − bde (2.240)

r = aef − bdf (2.241)

Hence, the stability of the positive steady state is governed by the eigenvalues
of the Jacobian matrix

J =

(

a11 a12
a21 a22

)

(2.242)

where

a11 = −(
α

∆
) (2.243)

a12 =
β

∆
(2.244)

a21 =
γ

∆
(2.245)

a22 =
r

∆
(2.246)

By forming the characteristic equation and finding the eigenvalues, we would
obtain

λ1,2 =
1

2∆
[s±√

D] (2.247)

where s = r − α and D =
√
(s2 + 4(rα+ βγ)).

Claim 1: If λ1 < 0.
In this case, (s+D) < 0 provided D < −s, r > α.
Claim 2: If λ2 < 0.
In this case, (s−D) < 0 provided s < D, r < α.
Under the assumptions of these claims, we can state that the positive steady

state of the model equations of parasitism is stable because the two eigenvalues
will have negative signs that contribute to the decaying behaviour of solutions
over time.

In summary, the procedure for determining the stability of the steady state
(N1s, N2s) is as follows:

1. Compute all partial derivatives of the right-hand side of the original system
of model equations, and construct the Jacobian matrix.

2. Evaluate the Jacobian matrix at a given steady state solution (N1s, N2s).

3. Calculate the eigenvalues for a given steady state solution.

4. Hence, conclude the stability or instability of the model equations of in-
teraction based on the real parts of the eigenvalues.
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The steady state solutions can be classified further by the eigenvalues of the
Jacobian at the steady state (N1s, N2s) in the following way:

• λiǫℜ, λ1,2 < 0 =⇒ (N1s, N2s) is a stable node (or sink).

• λiǫℜ, λ1,2 > 0 =⇒ (N1s, N2s) is an unstable node (or source).

• λiǫℜ, λ1 < 0 < λ2 =⇒ (N1s, N2s) is a saddle point (unstable).

• λi = α± iβ, α < 0 =⇒ (N1s, N2s) is a stable spiral ( or stable focus).

• λi = α± iβ, α > 0 =⇒ (N1s, N2s) is an unstable spiral (or unstable focus).

• λi = α± iβ, α = 0 =⇒ (N1s, N2s) is a centre ( or neutrally stable).

For the four model equations which we have analysed in this chapter, the
stability and instability properties do not show qualitative behaviour for stable
focus, unstable focus, and neutral stability.

In summary, we have observed two outcomes of a species interaction: coexis-
tence or competitive exclusion. It would be a good idea to derive general criteria
for the existence of coexistence, survival, and extinction. Our next analysis shall
tackle this.

2.12 Criteria for Coexistence, Survival and Ex-
tinction

So far, we have only established the conditions for the coexistence of two in-
teracting plant species. In this section, we shall define and derive some criteria
for the existence of coexistence, survival, and extinction for model equations of
competition, mutualism, commensalism, and parasitism.

2.12.1 Competition Interaction

We think that not all competing species can coexist. How then do we set up the
criteria for the coexistence of two competing species when model parameters
are independent of time? In this section, we shall use the following alternative
formulation of competition equations which takes the following form:

dN1

dt
= aN1(

K1 −N1 − α12N2

K1
) (2.248)

where K1 = a
b
and α12 = c

b
.

dN2

dt
= dN2(

K2 −N2 − α21N1

K2
) (2.249)

where K2 = d
f
and α21 = e

f
.

When we analysed the competition model, we mentioned that a positive
steady state will be guaranteed provided the following inequalities hold:

af > cd (2.250)
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bd > ae (2.251)

bf > ce (2.252)

If we divide the first inequality by b, we would obtain

a

b
> (

c

b
)(
d

f
) (2.253)

which implies that K1 > α12K2. This means that the ratio of the carrying
capacity of the first plant species to the carrying capacity of the second plant
species will be greater than a positive constant α12.

Next, if we divide the second inequality by f , we would obtain

d

f
> (

e

f
)(
a

b
) (2.254)

which implies that K2 > α21K1. This means that the ratio of the carrying
capacity of the second plant species to the carrying capacity of the first plant
species will be greater than a positive constant α21.

Finally, bf > ce implies that

b

c
>

e

f
(2.255)

Therefore, we would obtain

b

c
> α21 (2.256)

Since the inverse of b
c
is 1

c

b

, it follows that

1

α12
> α21 (2.257)

Therefore, we would obtain the inequality

1 > α12α21 (2.258)

In summary, the three inequalities that will guarantee the coexistence of two
interacting species when the model parameters are independent of time are

1. K1 > α12K2

2. K2 > α21K1

3. 1 > α12α21

where K1 > 0,K2 > 0, α12 > 0, α21 > 0.
If these inequalities are satisfied, it means that the two competing species

will coexist and neither of them will go extinct. If one of them violates say the
second inequality, the second species will be extinct whereas the first species will
survive or persist. If two of the species do not satisfy the above inequalities, the
two species will be extinct under our present assumption.
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It is worth mentioning at this stage of our analysis that the coexistence
criteria which we have derived above are consistent with the viewpoint of other
ecological experiments ([30]).

The advantage of these criteria is that it helps us to avoid the lengthy calcu-
lations as suggested by ([199]). What this means is that for any two competing
plant species during a summer season, we can use these criteria to find out if
these two species will coexist, survive or go extinct.

These inequality criteria may change for other types of interactions such
as mutualism, parasitism, and commensalism. However, the conditions for the
coexistence of two similar plant species and two dis-similar plant species which
we did not derive at this stage have been provided by other ecologists ([30]).
We shall define and explain these ideas next.

2.12.2 Coexistence Criteria for Two Similar Species

From our experimental analysis, the more similar two species are ecologically,
the more similar their carrying capacities must be for the two species to coexist.
If these similar species use the same resources, their carrying capacities are
expected to satisfy the inequality 0.95 < K1

K2

< 1
0.95 where the positive constants

K1 and K2 are the carrying capacities for species 1 and species 2. By this
criterion, it was reported that two similar plant species would require a small
range for their coexistence.

2.12.3 Coexistence Criteria for Two Dis-Similar Species

In the same manner, the more dis-similar two species are ecologically, the more
dis-similar their carrying capacities must be for the two species to coexist. If the
species are very dis-similar ecologically in resource use, their carrying capacities
are expected to satisfy the inequality 0.05 < K1

K2

< 1
0.05 .

Similarly, the positive constants K1 and K2 stand for the carrying capacities
for species 1 and species 2. In this case, it was reported that two dis-similar
plant species require a large range for their coexistence.

We would verify these coexistence criteria for two similar and two very dis-
similar plant species in chapter three of this thesis after we have derived a typical
prototype model equations of competition.

In this chapter, we have only focused on constructing the co-existence, sur-
vival and extinction criteria for the competition interaction. Similar criteria for
other types of species interactions can be attempted which we did not embark
on in this chapter.

2.13 Conclusion

In this chapter, we have used some typical mathematical techniques of steady
state, stability and instability to analyse model equations of competition, mu-
tualism, commensalism and parasitism between plant species. The expected
ecological implications of our analyses were also discussed quantitatively.

We observe that it is only the positive steady state that is stable irrespective
of the type of species interaction. Since the effect of the environment may
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have some effect on these complex types of interactions, sometimes these stable
steady states may switch to being unstable in the real ecological situation.

We have defined and discussed in detail the problematic features that have
prompted the occurrence of the notion of ”orgy of mutual benefaction”. This
phenomenon presents a strange mathematical formulation of (+,+) interaction
that would create negative steady state solutions. Alternative models of mu-
tualism which do not have these problematic features have been defined and
discussed in this chapter.

We have also defined and discussed the inequalities that provide conditions
for the survival, extinction, and coexistence of two competing plant species for
a limited resource in an environment.

The standard methods of analysing a two dimensional system of competition
will be useful in chapter three to study the qualitative behaviour of our prototype
model equations of competition.
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Chapter 3

Estimation of the
Parameters for Model
Equations of Interspecific
Competition

3.1 Motivation

Central in the development of a system of nonlinear first order ordinary differen-
tial equations that describe the interaction between two competing plant species
are the concepts of the intrinsic growth rates, intraspecific interaction coeffi-
cients, interspecific interaction coefficients, and their starting plant biomasses.

Moreover, the growth of a plant species varies due to the uncertainty of the
environment and other factors. In this chapter, we propose to use the combi-
nation of a nonlinear optimization and penalty function methods to estimate
the model parameters of interspecific competition between two dis-similar plant
species for a limited resource in an enviroment under some simplifying assump-
tions.

In the parametric modelling of data, we are often faced with a task to con-
dense or summarise data points by fitting them to a model which has adjustable
parameters. In some cases, the modelling could be a curve-fit of functions such
as polynomials in which case the fit would determine the coefficients. In other
cases, the model parameters would come from some underlying theory that the
data are supposed to satisfy. An example is the plant growth data ([35]) un-
der the assumption that the growth of a plant species over a time interval is
exponential.

In other situations, one encounters a few data points which are to be ex-
tended into a continuous function but with some underlying idea of what that
function would look like. This is similar to a curve-fitting idea except that the
fit in this situation is more likely to be biased.

The approach which we shall adopt in this chapter is to choose an error or
penalty function that measures the agreement between the data and the model.
It is the concept of the metric-induced 2-norm over a solution vector space that
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we will apply in this chapter. The parameters are then adjusted to achieve a
minimum in the penalty function which yields the best fit parameters.

We must also bear in mind that data are not exact, they are subject to
measurement uncertainties and therefore may not perfectly fit the model even
when the model is correct. In this situation, [20] have suggested a number of
approaches with which to characterize the confidence in the best-fit parameter
estimates particularly with respect to a given family of models (each one with a
best-fit set of parameters). We did not follow this line of analysis in this thesis
because we are not dealing with a family of models.

The trade-off between goodness of fit and complexity is the key idea of the
principle of Occam’s razor (William of Occam, 1290-1349) otherwise called the
principle of parsimony ([148]). This principle states that entities should not be
multiplied beyond neccessity ([148]). It is simply a criterion which can be used
to decide among scientific theories or explanations. As far as the basic idea of
this concept is concerned, selection methods can implement this principle in one
way or another without necessarily plunging into the philosophy of this law.

3.2 Introduction

We intend to focus on the construction and mathematical analysis of model
equations of competition for a few reasons. First, other types of interactions
such as mutualism, commensalism, and parasitism may be adapted from the
competition system. Second, we need only to consider a competition model for
the primary aim of this thesis as mentioned in chapter one, that is, to develop
a continuous dynamic model in combination with a stochastic winter model in
order to find out if we can obtain a few cases of mutualism. Third, as mentioned
in chapter one, the mathematical modelling of plant species interactions usually
relies on competition models ([134]).

So far we have talked about the general formulation of model equations of
competition interaction in chapters one and two. It would be important to
switch from the classical approach which we now know to look at the methodol-
ogy of constructing our own model equations of competition (−,−) interaction
between two species. As far as we know, this stage of our analysis is very impor-
tant in the context of our present novel investigation based on some simplifying
assumptions as mentioned in chapter two.

For the case of time series plant growth data, it has been shown that during
the initial phase, the growth of seedlings follows an exponential law fairly closely
and is given by the equation

W = W0e
rt (3.1)

where

1. W denotes the weight of plant after time t in days.

2. W0 denotes the initial weight of plant.

3. r denotes the intrinsic rate of growth.

4. e denotes the exponential coefficient 2.7182 . . ..
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If we take the logarithm to base e of the above equation, we shall obtain

loge(
W (t)

W (0)
) = rt (3.2)

where t = t2− t1. The intrinsic growth rate r can be estimated by using this
formula.

If we assume that the initial weight of plant doubles in two weeks’ time, we
can use the above formula to estimate the intrinsic growth rate of plant for a
given growing period. This fourth night growth assumption can be made clearer
in this manner. If the starting biomass is 0.0454 grams per area of grass cover
for the first week and the starting value of the second week biomass is 0.064, the
daily intrinsic growth rate in this example would be 0.049. With this example,
it explains that the starting biomass would double in a fourth night only.

Apart from the data provided by [35], some other related data are those of
[191] ( and also that by Linehan which was cited by [191]) and [2]. These sources
of data similarly assumed that the growth of plant species over time follows an
exponential law.

For us to extend the idea of Blackman and apply it to develop a continuous
competition model between two plant species, we will start our discussion in
this chapter by estimating the intrinsic growth rate based on week 1.

In our next section, we defined and discussed how we set up the logistic
model equations and how we can obtain our 10 logistic data points from the
standard Blackman’s time series data of five successive weeks biomass growth
data.

Next, how do we make sense of these huge logistic data for a set of vary-
ing steady state and constant intrinsic growth over a given growth period. We
think that the appropriate way of choosing the best model parameters that
optimise the logistic data is by calculating the 2-norm penalty function and jus-
tifying that this non-negative number satisfies the characteristic of a monotone
sequence. With a further finer grid around the minimum penalty function, we
can realistically select the model parameters that provide a best fit between
our simulated logistic data and Blackman’s data. Under some simplifying as-
sumptions between the intraspecific interaction coefficient and the interspecific
interaction coefficient as suggested by [134], we were able to set the dynamics
of model equations of competition between two similar plant species and that
between two dis-similar interacting plant species.

A further mathematical analysis of these model equations is tackled and our
results are quantitatively discussed in subsequent sections of this chapter by
using the earlier ideas introduced in chapter one and chapter two. We would
end this core chapter of this thesis with a clear conclusion pointing to what we
hope to achieve in chapter four.

First, our numerical method being used in this chapter stems from the idea
behind the concept of least squares approximation. For this reason, we would
briefly define and discuss the application of this concept.

3.3 Least squares appoximation problems

Central to our chosen methodology of nonlinear optimization of logistic model
parameters is the concept of least squares approximation. There are other im-
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portant applications in the field of acoustics ([116], [112], [125], [8]). Some other
practical scientific problems where least squares approximations have been suc-
cessfully applied are in the selected aspects of applied engineering sciences and
mathematical physics ([17], [121], [18]).

We would briefly use a few examples to define and discuss the central idea
behind the concept of the least squares approximation.

3.3.1 Example

This example is taken from the field of mathematical physics. Let S(x) be the
axial strain distribution in a uniform rod that lies along the x-axis from x = 0
to x = ℓ ([144], [124]). The strain energy (se) in the rod is proportional to the

integral
∫ ℓ

0
| S(x) |2 dx. That is,

se = K

∫ ℓ

0

| S(x) |2 dx (3.3)

whereK is a positive constant of proportionality. We know that the closeness
of an approximation q(x) to S(x) can be known according to the strain energy
of the difference of the two strain distributions. That is,

V = K

∫ ℓ

0

| S(x)− q(x) |2 dx (3.4)

This formula is called a least squares criterion. The least squares criterion
can be approximated by using any of the three popular norms such as the 1-
norm, 2-norm, and ∞-norm.

Other examples where the principle of least squares approximation is being
applied are in the electrical theory ([56]), in the analysis and processing of signals
([131]) and in immunology ([20]).

3.4 Estimation of the intrinsic growth rate of

plant species populations

In this section, we shall focus on the estimation of the intrinsic growth rate of
plant species populations. Then, we would use the value of the intrinsic growth
rate and the steady state solution under some simplifying assumption to derive
a nonlinear model for two interacting plant species.

Before we consider doing these, we would illustrate the idea behind the
calculation of intrinsic growth rates with a few examples.

We shall also assume that, the period of growth will also affect the intrinsic
growth rate per day of the plant species. Given the information on the yearly
intrinsic growth rates of particular plant species, how do we estimate the intrin-
sic growth rate per day. By assuming that the plant species could double its
weight in a temperate (summer, spring, auturm) climate over a fourth night,
how do we estimate its intrinsic growth rate? This idea could also be considered
for other types of climates.
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3.5 Estimation of the intrinsic growth rate per
day

In this section, we shall estimate the intrinsic growth rate using a few exmaples.

3.5.1 Example 1

Suppose the plant doubles its initial biomass, then loge2 = 0.69315 . . .. There-
fore, for a short growing season of 10 days, the plant species would produce new
biomass assumming there is available resources for growth at the estimated rate
of 0.0693 (0.69315 divided by 10), that is, 6.93 percent per day. If the period of
growth is 5 days, the estimated intrinsic growth rate would be 0.13863, that is,
13.8 percent per day. If the period of growth is 14 days,the estimated intrinsic
growth rate is 0.0495 which is 4.95 percent per day.

If the period of growth is 30 days, the estimated intrinsic growth rate is
0.023105, which is equivalent to 2.3 percent per day. If the period of growth
is 70 days, the estimated intrinsic growth rate is 0.0099, which is equivalent to
0.99 percent per day. If the period of growth is 90 days, the estimated intrinsic
growth rate is 0.0077, which is equivalent to 0.77 percent per day.

Hence, if the plant doubles its weight in terms of the period of growth, the
estimated rate of growth will fall as the period of growth increases.

3.5.2 Example 2

Suppose a plant species increases its biomass by 2.5 per cent. In this example,
loge1.025 = 0.0247 . . ..

Therefore, for a short growing season of 10 days, our estimated intrinsic
growth rate per day is 0.00247 which is equivalent to 0.247 percent per day. If
the period of growth were 5 days, the estimated intrinsic growth rate per day is
0.00494 which is equivalent to 0.494 percent per day. Similarly, if the period of
growth is 14 days, the estimated intrinsic growth rate per day is 0.00176 which
is equivalent to 0.176 percent per day.

If the period of growth is 30 days, the estimated intrinsic growth rate is
0.00082 which is equivalent to 0.082 percent per day.

Table 3.1 summarizes the estimated intrinsic growth rate of a single plant
species when the periods of growth are 5 days, 10 days, and 14 days. Our
rationale is based on the fact that the growth of the plant species depends on
the varying patterns of the period of growth.

We can observe that as the percentage plant biomass increases, the estimated
intrinsic growth rate r will increase irrespective of the length of the period of
growth. The intrinsic growth rate after a period of 5 days is approximately 2
times bigger than the intrinsic growth rate after a period of 10 days when the
percentage change in biomass is 3. Similarly, the intrinsic growth rate after a
period of 5 days is approximately 2.8 times bigger than the intrinsic growth rate
after a period of 14 days when the percentage change in biomass is 3.

The notation pcb stands for the percentage change in biomass.
If the biomass is being varied in the same pattern, how would the intrinsic

growth rate after a period of 5 days when the percentage change in biomass is 3
compared with the intrinsic growth rates when the periods of plant growths are
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Increase in biomass Growth Rate
pcb 5 days 10 days 14 days

1.025 0.00494 0.00247 0.00176
1.05 0.00976 0.00488 0.003486
1.1 0.01906 0.00953 0.0068
1.2 0.03664 0.01823 0.013
1.5 0.081 0.0405 0.02896
2 0.138 0.0693 0.0495
3 0.219 0.109 0.0785

Table 3.1: Estimated intrinsic growth rate per day for a growing period of 5
days, 10 days, and 14 days

30 days, 90 days, 180 days, and 365 days?. We summarise these calculations in
Table 3.2.

Increase in biomass Growth Rate
pcb 30 days 90days 180days 365 days

1.025 0.00082 0.00027 0.000137 0.000068
1.05 0.00163 0.00054 0.00027 0.013
1.1 0.0032 0.00106 0.00053 0.00026
1.2 0.00608 0.002026 0.001013 0.00049
1.5 0.0135 0.0045 0.00225 0.0011
2 0.023 0.0077 0.00385 0.0019
3 0.037 0.012 0.006 0.003

Table 3.2: Estimated intrinsic growth rate per day for a growing period of 30
days, 90 days, 180 days, and 365 days

In the above calculations of intrinsic growth rate, we observe that the in-
trinsic growth rate after a period of 5 days is approximately 6 times bigger than
the intrinsic growth rate after a period of 30 days when the percentage change
in biomass is 3 whereas the intrinsic growth rate after a period of 5 days is
approximately 18 times bigger than the intrinsic growth rate after a period of
90 days when the percentage change in biomass is 3.

Similarly, the intrinsic growth rate after a period of 5 days is approximately
36 times bigger than the intrinsic growth rate after a period of 180 days when
the percentage change in biomass is 3 whereas the intrinsic growth rate after a
period of 5 days is approximately 73 times bigger than the intrinsic growth rate
after a period of 365 days when the percentage change in biomass is 3.

For the growing periods of 42 days, 150 days, and 191 days, the intrinsic
growth rates are similarly calculated. These results are presented in Table 3.3.

In summary, the intrinsic growth rate of a single plant species decreases as
the period of growth varies from 5 days to 365 days.

Next, we want to find out how the percentage intrinsic growth rate of a
single plant species per day would change when the period of growth is varied.
These results are presented in Table 3.4 and Table 3.5.
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Increase in biomass Growth Rate
pcb 42 days 150 days 191 days

1.025 0.00059 0.000165 0.00013
1.05 0.00116 0.000325 0.000255
1.1 0.00227 0.000635 0.000499
1.2 0.0043 0.0012 0.00095
1.5 0.00965 0.0027 0.002
2 0.0165 0.0046 0.0036
3 0.026 0.0073 0.00575

Table 3.3: Estimated intrinsic growth rate per day for a growing period of 42
days, 150 days, and 191 days

Increase in biomass Growth Rate
pcb 5 days 10 days 14 days

1.025 0.494 0.247 0.176
1.05 0.976 0.488 0.3486
1.1 1.9 0.953 0.68
1.2 3.66 1.82 1.3
1.5 8.1 4.06 2.89
2 13.8 6.93 4.95
3 21.9 10.9 7.85

Table 3.4: Estimated daily percentage intrinsic growth rate for a growing period
of 5 days, 10 days, and 14 days

In summary, the percentage intrinsic growth rate of a single plant species de-
creases from a big figure of 21.9 percent when the percentage change in biomass
is 3 for a growth period of 5 days to a small figure of 0.3 percent when the
percentage change in biomass is 3 for a growth period of 365 days.

3.5.3 The estimation of the intrinsic growth rate per 1

4
day

If the biomass is increased by a certain percent in 5 days, 10 days, and 14
days,and a 1

4 day step length is applied, the intrinsic growth rate can be esti-
mated. We shall use a few examples to illustrate this idea.

For example, assume that the biomass is doubled. Consider a 10 percent
increase in biomass in 14 days. Therefore, if 1

4 day is taken as step length, this
would be equal to 56 times 1

4 days. In this scenario,

e56r = 2 (3.5)

By solving this equation for r, we shall obtain the intrinsic growth rate per
quarter of a day as

r =
loge2

56
= 0.0124 (3.6)

This value of intrinsic growth rate could possibly mimic the temperate (summer,
auturm, spring) Bristish growing season. On the other hand if the weight of
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Increase in biomass Growth Rate
pcb 30 days 90 days 180 days 365 days

1.025 0.082 0.027 0.0137 0.0068
1.05 0.00163 0.00054 0.00027 0.013
1.1 0.32 0.106 0.053 0.026
1.2 0.608 0.2026 0.1013 0.049
1.5 1.35 0.45 0.225 0.11
2 2.3 0.77 0.385 0.19
3 3.7 1.2 0.6 0.3

Table 3.5: Estimated daily percentage intrinsic growth rate for a growing period
of 30 days, 90 days, 180 days, and 365 days

the plant species is 1.1, under this fourth night scenario and a quarter day step
length assumption,

r =
loge1.1

56
= 0.0017 (3.7)

Using the above technique, it is possible to estimate the intrinsic growth rate
given the length of growing season and the increase in biomass. The results of
our calculations are presented in Table 3.6.

Percentage change in weight Estimated 100r per 1
4 day

pcw 5 days 10days 14days

1.025 0.1235 0.062 0.044
1.05 0.244 0.122 0.087
1.1 0.4765 0.2382 0.170
1.2 0.9116 0.45558 0.325
1.5 2.027 1.0136 0.720
2 3.465 1.73 1.24
3 5.493 2.746 1.96

Table 3.6: The Estimation of the percentage intrinsic growth rate per 1
4 day

Hence, when the weight of plant species increases, the corresponding esti-
mated intrinsic growth rate r per quater of a day will increase irrespective of
the length of the growing season.

3.6 The estimation of daily intrinsic growth rate
from a yearly growth rate

Given the yearly intrinsic growth rate for each pair of three species of prairie
grasses ([2]), how do we estimate the intrinsic growth rate per day. This problem
shall be tackled by using plant growth equation where (1 + r)t represents the
yearly intrinsic growth rate and r represents the intinsic growth rate per day for
individual plant species and t represents time in days.

For example, if the yearly intrinsic growth rate is α, then
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(1 + r)t = α (3.8)

By solving for the value of r, we would have

r = (α)
1

t − 1 (3.9)

where α is the yearly intrinsic growth rate and t is equivalent to 365 days.
For example, if the yearly intrinsic growth rate is 1.5 ([2]), then the estimated

intrinsic growth rate using the above formula is r = (1.5)
1

365 − 1. By hand

calculation, the value of (1.5)
1

365 is 1.0011. Therefore, the estimated intrinsic
growth rate per day is 0.0011 (that is, 1.0011 minus 1).

Alternatively, we can simply use the same formula which we have used in
the previous sections of this chapter by assuming an exponential growth model.
For example, if the biomass changes by 2.7, then in a year, the intrinsic growth
rate per day for a growing period of 365 days is simply

r =
loge2.7

365
= 0.0027 (3.10)

Hence, the estimated intrinsic growth rate per quarter of a day and the
estimated intrinsic growth rate in percentage are 0.000275 and 0.11 respectivily.
For other yearly intrinsic growth rates, the estimated intrinsic growth rates per
day and other related calculations are displayed in Table 3.7.

Yearly rate Estimated intrinsic growth rate
r r per day r(percent) r per 0.25 day

1.2 0.0005 0.05 0.000125
1.5 0.0011 0.11 0.000275
1.8 0.0016 0.16 0.0004
2.1 0.002 0.2 0.0005
2.4 0.0024 0.24 0.0006
2.7 0.0027 0.27 0.00068

Table 3.7: The estimation of the daily intrinsic growth rate from a yearly growth
rate

In summary, as the yearly intrinsic growth rate changes, the corresponding
intinsic growth rate per day also changes.

In this experimental mathematical analysis, we have provided a few examples
with which to illustrate how the intrinsic plant growth rate can be estimated
under some realistic simplifying assumptions. The results of our analysis are
discussed quantitatively.

Subsequent analysis and application of intrinsic plant growth rate will be
based on our calculations in this section.

3.7 Data fitting techniques

We consider the basic logistic model for the case when r is a scalar parameter.
Then we can select r by minimizing the distance

68



d(u, v) =|| u− v || (3.11)

between the information u on the behaviour of the system and the prediction
v = v(r) of the model which depends on the choice of r. In this scenario, the
search of the minimum is in one variable only.

In our numerical method, a penalty function measuring the distance between
the model approximate solution and our observations is minimized.

3.7.1 Formulation of a penalty function

Our penalty function is defined only in terms of three common norms namely
1-norm, 2-norm and ∞-norm. The formulation of a 1-norm penalty function is
defined as follows. We minimize the penalty function

J = Σr−1
t=0 | Nt − St | (3.12)

This positive number is subject to the dynamics of the logistic model where
the distance between time series data, that is, the plant biomass Nt ([35]) and
our simulated data St which we obtain from the logistic model is measured using
the 1-norm. The 2-norm and ∞-norm can be defined in a similar manner.

The 1-norm is simply the sum of differences at specified points whereas the
2-norm is the root mean square of the sum of differences at specified points.
The infinity norm is the maximum difference at any time. We remark that our
simulated data follow an exponential growth pattern.

At the model parameters where the penalty function is minimized, we take
a finer grid around the dominant logistic model parameter that provides a local
minimum to find a set of best fit model parameters where the penalty function
is further minimized.

In fitting two similar data sets, there is usually an error assigned for overfit-
ting or underfitting. This error is measured by using the concept of a penalty
function. In the above equation, Nt and St are called solution trajectories of
the provided data and our simulated data which we assume have exponential
growth characteristic.

3.8 Construction of Model Equations of Com-

petition Interaction

The core part of this chapter concerns how to construct model equations that
describe the interaction between two very similar interacting plant species and
also that between two dis-similar interacting plant species.

Our primary task in this chapter is to construct a possible set of model
equations that describe the dynamics of two interacting plant species by using
the experimental data which are provided by ([35]).

From these model equations, we would use an appropriate penalty function
to select our candidate model equation which is expected to correspond to the
model parameters of the defining logistic model equation in which its parameters
provide a best fit for the data being used.
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3.8.1 The estimation of week 1 intrinsic growth rate and
daily growth rate

According to ([35]), the average weight in grams of a number of plants were
0.0454, 0.147, 0.508, 1.653, 5.868, 17.33, 30.35, 46.2, 66.1, 88.9. The limiting
value for this important sequence of time series plant growth data is 88.9. We
do not know the value of the steady state. In this chapter, we would choose an
appropriate steady state interval and consider varying the values of the steady
state upon which we would develop a set of candidate model equations.

If the second weight is divided by the first weight and so on, we would obtain
a sequence of nine biomass data 3.24, 3.46, 3.25, 3.55, 2.95, 1.75, 1.52, 1.43, 1.35,

Hence, the intrinsic growth rate based on week 1 is loge(
0.147
0.0454 ) or 1.176

approximately. Based on week 1 growth rate, our daily intrinsic growth is
0.168.

For example, if the steady state g is 100 grams perm2 and the week 1 intrinsic
growth rate gh is 1.176, then the intraspecific interaction or self- interaction
coefficient h is 1.176 divided by 100. In this example, the value of h is 0.01176.
Other values of h can be obtained using the same technique for varying values
of the steady state g.

3.8.2 Formulation of another logistic model

Consider the case of one species N1 growing in isolation of another species, that
is, N2 = 0. The logistic equation describing this phenomenon would have a
form which can be written as

dN1(t)

dt
= hN1(t)(g −N1(t)) (3.13)

where N1(0) = N10 > 0.
In this situation, the positive steady state is given by g if N1 6= 0 and

the intrinsic growth rate is given by gh. We know that there are other ways
of formulating this where the constants h and g would mean slightly different
things ([123]). But this is the easiest way to think about it for now.

Therefore, all our models with the same limiting state will have the same
value for g. The different values of h will determine how quickly the steady state
is reached. The bigger the value of h, the faster the steady state is attained.

Consider the case of species N2 when N1 = 0. The corresponding logistic
equation has the form that we can write as

dN2

dt
= sN2(t)(ℓ−N2(t)) (3.14)

where N2(0) = N20 > 0.
In this case, the positive steady state is given by ℓ if N2 6= 0 and the intrinsic

growth rate is given by sℓ. Hence, all our models with the same limiting state
will have the same value for ℓ. The different values of s will determine how
quickly the steady state is reached. The bigger the value of s, the faster the
steady state is attained.

In summary, the two logistic intraspecific or self-interaction model equations
are
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dN1

dt
= hN1(t)(g −N1(t)) (3.15)

dN2

dt
= sN2(t)(ℓ−N2(t)) (3.16)

where where N1(0) = N10 > 0 and N2(0) = N20 > 0.
The development of our model competition equations which we will derive

later on in this chapter will use the forms of these logistic equations.

3.9 How do we obtain the 10 logistic data points?

First, we use the time scale of T = 0 : 1 : 70 to simulate the 10 week summer
competition model.

Since, we are interested in the week 1, week 2, week 3, week 4, week 5,
week 6, week 7, week 8, week 9 and week 10 data points, we define a subset of
the weekly data points on the approximate competition solution of the 10 week
model equation.

That is, if Y is the approximate solution of the competition model, our
weekly biomass data points are Y (1), Y (8), Y (15), Y (22), Y (29), Y (36), Y (43),
Y (50), Y (57) and Y (64) because week 1 starts on day 1, week 2 starts on day
8, week 3 starts on day 15 and ends with week 10 which starts on day 64. We
end on week 10 because the data of [35] are based on the growth period of 10
weeks.

The calculation of 1-norm which is the sum of the difference at specified
points and the application of the penalty function will be based on the 10 week
logistic simulated data and the actual 10 biomass data points provided by ([35]).

We will use the 2-norm in our analysis, hence it is appropriate at this stage
to define its corresponding penalty function.

3.10 The calculation of our error function using

2-norm penalty function

In terms of 2-norm, our penalty function is defined as

P = min(

10
∑

t=1

[| Nt − St |]2)
1

2 (3.17)

where St are the 10 data points which we obtain from the logistic model
when the time scale is T = 0 : 1 : 70 and week 1 starts on day 1, week 2 starts
on day 8, week 3 starts on day 15, and so on. The values of Nt are the 10 week
time series biomass data points provided by [35].

3.11 Monotone sequence

Central to the concept of penalty function as used in this chapter is the property
of a monotone sequence. A sequence an such that an+1 ≥ an for all n ≥ 1 is
called an increasing monotone whereas the sequence such that an+1 ≤ an for
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all n ≥ 1 is called a decreasing monotone. These definitions are familiar ones
which can be found in several real analysis and calculus literatures.

3.12 The calculation of the intra-specific inter-
action coefficient h

In this section, we shall calculate the intraspecific or self-interaction coefficent
h. The first column of the table below is calculated for varying values of the
steady state g and the intrinsic growth rate gh for species 1.

We will only consider the corresponding calculation of the 2-norm penalty
function in this chapter because the model parameters that minimize the 2-norm
penalty function and the ∞-norm penalty function are within the same range
whereas the model parameters that minimize the 1-norm penalty function are
outside this range. We have used a starting value of 0.0454. Our calculations
are presented in Table 3.8.

Example Number The calculation of h for a chosen steady state
n h g gh n h g gh

1 0.0021132 79.5 0.168 8 0.002024 83 0.168
2 0.0021 80 0.168 9 0.002012 83.5 0.168
3 0.002087 80.5 0.168 10 0.002 84 0.168
4 0.00207 81 0.168 11 0.001988 84.5 0.168
5 0.00206 81.5 0.168 12 0.0019765 85 0.168
6 0.002049 82 0.168 13 0.001965 85.5 0.168
7 0.002036 82.5 0.168 14 0.001953 86 0.168

Table 3.8: The calculation of the intra-specific coefficient for a chosen steady
state and a fixed growth rate

3.13 Comparison of Data Fitting Logistic Model
Parameters and the General Methodology

of Selecting our Best Fit Parameters

In order to embark on this task, the starting point is to specify the following
calculated parameters which are common in these calculations such as

• Parameter 1 is the weekly intrinsic growth rate of 1.176.

• Parameter 2 is the daily intrinsic growth rate of 0.168.

• Parameter 3 is the starting value for the first species which is 0.0454 grams
per area of grass cover.

• Parameter 4 is the length of the growing season of 70 days.

The following notations are used in our simulations
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• ss stands for our chosen steady state in grams per area of grass cover.

• b stands for our calculated intra-specific coefficient.

• pf stands for our calculated positive 2-norm penalty function which mea-
sures the size of the error between the measured data and our simulated
data.

For the purpose of clearity in our analysis, we choose to divide our entire
parameter space for our simulated data into sub-parameter space.

The scenario 1 parameters which we used for our simulated data 1 and our
simulated data 2 are the following

• For our simulated data 1, we used ss = 79.5, b = 0.0021132, pf = 15.754.

• For our simulated data 2, we used ss = 80, b = 0.0021, pf = 15.606.

These parameters concern only the measured data ([35]). All other parame-
ters relate to our simulated data which we have obtained. Our calculations and
search for our best-fit model parameters are presented in the following tables
and discussed.

Data Comparison of data
number measured data simulated data 1 simulated data 2

1 0.0454 0.0454 0.0454
2 0.147 0.1468 0.1468
3 0.508 0.4735 0.4735
4 1.653 1.5132 1.5133
5 5.868 4.6999 4.7017
6 17.33 13.4417 13.4559
7 30.35 31.5843 31.6627
8 46.2 54.1531 54.3844
9 66.1 69.5139 69.8969
10 88.9 76.4399 76.8986

Table 3.9: The comparison between the measured data and our simulated data
for scenario 1
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What do we learn from these numbers? We learn that the measured data
and our simulated data behave alike: we observe that a slight increase in the
value of the chosen steady state and a slight decrease in the value of the intra-
specific coefficient would produce a smaller penalty function and also produce
an increase in the limiting biomass. Next, we shall consider other simulated
data for a varying set of parameters.

Our fundamental task in this section is to search for the best fit parameters,
that is, which model parameters would provide a small error between the mea-
sured data and our simulated data. We would expect that this small error will
correspond to the local minimum in a sequence of penalty function data which
will satisfy the property of a monotone sequence.

The scenario 2 parameters which we used for our simulated data 3 and our
simulated data 4 are the following

• For our simulated data 3, we used ss = 80.5, b = 0.002087, pf = 15.48.

• For our simulated data 4, we used ss = 81, b = 0.00207, pf = 15.36.

Data Comparison of data
number measured data simulated data 3 simulated data 4

1 0.0454 0.0454 0.0454
2 0.147 0.1468 0.1468
3 0.508 0.4735 0.4736
4 1.653 1.5135 1.5137
5 5.868 4.7034 4.7056
6 17.33 13.4698 13.4881
7 30.35 31.7404 31.8426
8 46.2 54.6141 54.9175
9 66.1 70.2783 70.7835
10 88.9 77.3561 77.9629

Table 3.10: The comparison between the measured data and our simulated data
for scenario 2
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The scenario 3 parameters which we used for our simulated data 5 and our
simulated data 6 are the following

• For our simulated data 5, we used ss = 81.5, b = 0.00206, pf = 15.30.

• For our simulated data 6, we used ss = 82, b = 0.002049, pf = 15.25.

Data Comparison of data
number measured data simulated data 5 simulated data 6

1 0.0454 0.0454 0.0454
2 0.147 0.1468 0.1468
3 0.508 0.4736 0.4736
4 1.653 1.5139 1.5140
5 5.868 4.7069 4.7083
6 17.33 13.4989 13.5108
7 30.35 31.9029 31.9694
8 46.2 55.0974 55.2967
9 66.1 71.0797 71.4008
10 88.9 78.3262 78.7445

Table 3.11: The comparison between the measured data and our simulated data
for scenario 3
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Similarly, the scenario 4 parameters which we used for our simulated data 7
and our simulated data 8 are the following

• For our simulated data 7, we used ss = 82.5, b = 0.00203636, pf = 15.2144.

• For our simulated data 8, we used ss = 83, b = 0.002024, pf = 15.22.

Data Comparison of data
number measured data simulated data 7 simulated data 8

1 0.0454 0.0454 0.0454
2 0.147 0.1468 0.1468
3 0.508 0.4736 0.4736
4 1.653 1.5142 1.5143
5 5.868 4.7100 4.7116
6 17.33 13.5245 13.5379
7 30.35 32.0462 32.1217
8 46.2 55.5274 55.755
9 66.1 71.799 72.177
10 88.9 79.2419 79.7024

Table 3.12: The comparison between the measured data and our simulated data
for scenario 4
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Similarly, the scenario 5 parameters which we used for our simulated data 9
and our simulated data 10 are the following

• For our simulated data 9, we used ss = 83.5, b = 0.002012, pf = 15.26.

• For our simulated data 10, we used ss = 84, b = 0.002, pf = 15.31.

Data Comparison of data
number measured data simulated data 9 simulated data 10

1 0.0454 0.0454 0.0454
2 0.147 0.1468 0.1468
3 0.508 0.4736 0.4736
4 1.653 1.5145 1.5147
5 5.868 4.7131 4.7147
6 17.33 13.5509 13.564
7 30.35 32.1954 32.2694
8 46.2 55.9778 56.2023
9 66.1 72.5479 72.9227
10 88.9 80.154 80.6099

Table 3.13: The comparison between the measured data and our simulated data
for scenario 5
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The scenario 6 parameters which we used for our simulated data 11 and our
simulated data 12 are the following

• For our simulated data 11, we used ss = 84.5, b = 0.001988, pf = 15.40.

• For our simulated data 12, we used ss = 85, b = 0.0019765, pf = 15.51.

Data Comparison of data
number measured data simulated data 11 simulated data 12

1 0.0454 0.0454 0.0454
2 0.147 0.1468 0.1468
3 0.508 0.4737 0.4737
4 1.653 1.5148 1.515
5 5.868 4.7163 4.7178
6 17.33 13.5771 13.5897
7 30.35 32.3437 32.4153
8 46.2 56.4286 56.6472
9 66.1 73.3015 73.6683
10 88.9 81.0705 81.5163

Table 3.14: The comparison between the measured data and our simulated data
for scenario 6
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Similarly, the scenario 7 parameters which we used for our simulated data
13 and our simulated data 14 are the following

• For our simulated data 13, we used ss = 85.5, b = 0.001965, pf = 15.64.

• For our simulated data 14, we used ss = 86, b = 0.001953, pf = 15.81.

Data Comparison of data
number measured data simulated data 13 simulated data 14

1 0.0454 0.0454 0.0454
2 0.147 0.1468 0.1468
3 0.508 0.4737 0.4737
4 1.653 1.5151 1.5153
5 5.868 4.7193 4.7209
6 17.33 13.6023 13.6154
7 30.35 32.4872 32.5625
8 46.2 56.8676 57.0993
9 66.1 74.0394 74.4314
10 88.9 81.9674 82.4439

Table 3.15: The comparison between the measured data and our simulated data
for scenario 7
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Similarly, the scenario 8 parameters which we used for our simulated data
15 and our simulated data 16 are the following

• For our simulated data 15, we used ss = 86.5, b = 0.0019422, pf = 16.

• For our simulated data 16, we used ss = 87, b = 0.00193, pf = 16.256.

Data Comparison of data
number measured data simulated data 15 simulated data 16

1 0.0454 0.0454 0.0454
2 0.147 0.1468 0.1468
3 0.508 0.4737 0.4737
4 1.653 1.5154 1.5156
5 5.868 4.7223 4.7239
6 17.33 13.6273 13.6407
7 30.35 32.6315 32.7095
8 46.2 57.3099 57.5497
9 66.1 74.8073 75.2249
10 88.9 82.8568 83.2712

Table 3.16: The comparison between the measured data and our simulated data
for scenario 8
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Similarly, the scenario 9 parameters which we used for our simulated data
17 and our simulated data 18 are the following

• For our simulated data 17, we used ss = 87.5, b = 0.00192, pf = 16.456.

• For our simulated data 18, we used ss = 88, b = 0.0019, pf = 16.9.

Data Comparison of data
number measured data simulated data 17 simulated data 18

1 0.0454 0.0454 0.0454
2 0.147 0.1468 0.1468
3 0.508 0.4737 0.4738
4 1.653 1.5157 1.516
5 5.868 4.7252 4.7278
6 17.33 13.6518 13.6739
7 30.35 32.7732 32.9013
8 46.2 57.7473 58.1467
9 66.1 75.562 76.245
10 88.9 83.6831 84.5206

Table 3.17: The comparison between the measured data and our simulated data
for scenario 9
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Similarly, the scenario 10 parameters which we used for our simulated data
19 and our simulated data 20 are the following

• For our simulated data 19, we used ss = 88.5, b = 0.0018983, pf = 16.954.

• For our simulated data 20, we used ss = 88.9, b = 0.0018897, pf = 17.175.

Data Comparison of data
number measured data simulated data 19 simulated data 20

1 0.0454 0.0454 0.0454
2 0.147 0.1468 0.1469
3 0.508 0.4738 0.4738
4 1.653 1.516 1.5161
5 5.868 4.7281 4.7292
6 17.33 13.6758 13.6853
7 30.35 32.9122 32.9676
8 46.2 58.1809 58.3545
9 66.1 76.3036 76.6016
10 88.9 84.5926 84.9587

Table 3.18: The comparison between the measured data and our simulated data
for scenario 10
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3.14 Justification

From this detailed analysis, we know that the minimum 2-norm penalty function
is 15.2144 which correspond to the following data fitting parameters:

• Weekly intrinsic growth rate is 1.176.

• Daily intrinsic growth rate is 0.168.

• Chosen steady state is 82.5 grams per area of grass cover.

• Calculated intra-specific coefficient is 0.00203636.

• Starting value for the first plant species is 0.0454 grams per area of grass
cover.

By a further griding around the best fit steady state 82.5, the local minimum
is 15.2137 of which the following best fit model parameters are selected

• Weekly intrinsic growth rate is 1.176.

• Daily intrinsic growth rate is 0.168.

• Chosen steady state is 82.6 grams per area of grass cover.

• Calculated intra-specific coefficient is 0.0020339.

• Starting value for the first plant species is 0.0454 grams per area of grass
cover.

These results will be clearly presented and discussed in the next section of
this chapter. For a compact presentation of our results, we shall adopt the
following pattern in our next section.

3.15 Best fit logistic model parameters

In this section, we shall find those logistic model parameters that minimize the 2-
norm. Our calculations are presented below. What do we want to find out? We
are interested to find a list of best fit model parameters of our logistic model
that minimise the agreement between the provided model and our simulated
model. Our calculations are presented in Table 3.19.

For the purpose of illustration, the graphical representations of a few of
these data points have been presented (see the appendix, Figure 8.1, Figure 8.2,
Figure 8.3).

What do we want to find out from this table? We are interested in find-
ing a triple of our logistic parameters which will minimise our 2-norm penalty
function. In our analysis, we have found this minimum 2-norm penalty function
from a list of 14 different simulations.

The property of the penalty function is satisfied because for h = 0.00203636,
g = 82.5, gh = 0.168, the value of the 2-norm is 15.2144 ( the minimum of the
2-norm) in the sequence of 2-norm values. The sequence of 2-norm values is a
monotone sequence. In other words, we have found the smallest error between
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Parameter Calculation of our 2-norm Pf

n h g gh 2− norm

1 0.0021132 79.5 0.168 15.754
2 0.0021 80 0.168 15.606
3 0.002087 80.5 0.168 15.48
4 0.00207 81 0.168 15.35
5 0.00206 81.5 0.168 15.30
6 0.002049 82 0.168 15.25
7 0.00203636 82.5 0.168 15.2144
8 0.002024 83 0.168 15.22
9 0.002012 83.5 0.168 15.26
10 0.002 84 0.168 15.31
11 0.001988 84.5 0.168 15.40
12 0.0019765 85 0.168 15.50
13 0.001965 85.5 0.168 15.64
14 0.001953 86 0.168 15.81

Table 3.19: The calculation of our 2-norm penalty function from the measured
data and our simulated data

the measured data and our 14 simulated data using the starting biomass of
0.0454 grams per area of grass cover

We would think that there can be a possibility of finding a further smaller
2-norm penalty function. To takcle this problem, we would take a further grid
around g = 82.5. In this scenario, we will present our calculations in Table 3.20.

Since, we are gridding around the steady state 82.5, it would be rare to find
our new minimum 2-norm penalty function further away from the value of 82.5.

On the basis of our penalty function calculations, the parameters of the
logistic model that would provide a best fit for the weekly average plant growth
data will have the precise values of h = 0.0020339, g = 82.6 grams and gh =
0.168 approximately.

Hence, the intraspecific interaction coefficient is 0.0020339. Assuming that
the interspecific interaction coefficient, that is, the negative effect of species N2

on the growth of species N1 may not be too big compared to the intraspecific
coefficient ([134]), the interspecific competition coefficient may be (0.0020339-α,
0.0020339 + α ) where α is a small positive number.

We choose to use the 2-norm in our present analysis because it provides a
relatively smaller minimum penalty function of 15.2137.

On the basis of our analysis in this chapter, our constructed model equations
of competition between two interacting dis-similar plant species is

dN1(t)

dt
= N1(t)(0.168− 0.0020339N1(t)− 0.0005N2(t)) (3.18)

dN2(t)

dt
= N2(t)(0.002− 0.00002N1(t)− 0.000015N2(t)) (3.19)

with initial conditions N1(0) = 0.04 grammes per area and N2(0) = 0.045
grammes per area.
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Parameter 2-norm Pf

n h g gh 2-norm

1 0.0020463 82.1 0.168 15.2386
2 0.0020438 82.2 0.168 15.2289
3 0.0020413 82.3 0.168 15.2212
4 0.0020388 82.4 0.168 15.2163
5 0.00203636 82.5 0.168 15.2144
6 0.0020339 82.6 0.168 15.2137
7 0.002031439 82.7 0.168 15.2141
8 0.0020289 82.8 0.168 15.2156
9 0.0020265 82.9 0.168 15.218
10 0.002024 83 0.168 15.22
11 0.00202166 83.1 0.168 15.226
12 0.0020192 83.2 0.168 15.2319
13 0.0020168 83.3 0.168 15.2385
14 0.00201439 83.4 0.168 15.2463
15 0.0020302 83.5 0.168 15.2147

Table 3.20: The calculation of our 2-norm penalty function by gridding around
a chosen steady state of 82.5

The value of the intrinsic growth rate for the second species is chosen on
the assumption that d ≤ 0.168. This assumption is based on the idea that the
second plant species is a slow growing type.

After a careful thinking and a sensible common sense algebraic manipulation,
we arrive at the following conclusion which is just one case out of other choices
for the value of the interspecific interaction coefficient.

If (a, b) is an open interval on the real line, we propose to choose our inter-
specific coefficient so that this value would be bigger than a and smaller than
b where a = 0.0020339 − α and b = 0.0020339 + α and α is a small positive
number.

For one to choose an appropriate value for the interspecific coefficient for the
first plant species, we would expect this number to lie between its lower limit
and upper limit which we do not know exactly. If the value we want to choose
is β ≤ 1 such that

0.0020339− α = β (3.20)

0.0020339 + α = β (3.21)

From these two equations, the two values of α are 0.0020339 − β and β −
0.0020339. If α = 0.0018, then a = 0.0002339 and b = 0.0038339.

In this first case, our expected value for β could be found in the open interval
(0.000234, 0.003834).

If, α = 0.01, then a = −0.0079661 and b = 0.0120339. In this second case,
our expected value for β could be found in the open interval (−0.00796, 0.012034).

If, α = 0.001, then a = 0.0010339 and b = 0.0030339. In this third case, our
expected value for β could be found in the open interval (0.001034, 0.003034).
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If, α = 0.0002, then a = 0.0018339 and b = 0.0022339. In this fourth case,
our expected value for β could be found in the open interval (0.001834, 0.002234).

In summary, our choice for the value of interspecific interaction coefficient
which will lie in any of these open intervals is subjective. As we can see, α =
0.0018 > 0.0015, α = 0.01 > 0.0015, α = 0.001 < 0.0015, and α = 0.0002 <
0.0015.

One out of our several choices for our interspecific interaction coefficient is
0.0005 which holds for the first two cases only.

In this example, we would expect the small positive number α to be strictly
greater than 0.0015339. If the value of interspecific coefficient is 0.0014, in this
case, we would expect the small positive number α to be strictly greater than
0.0006339.

Whatever is the choice of the interspecific coefficient, it must be smaller than
the value of the intraspecific interaction coefficient in our example. We have
estimated our intraspecific coefficient but being able to estimate the interspecific
coefficient is a matter of choice as long as this choice is appropriate.

By using a similar assumption, the dynamics of competition interaction be-
tween two similar plant species are governed by the following systems of initial
value nonlinear ordinary differential equations of first order

dN1(t)

dt
= N1(t)(0.168− 0.0020339N1(t)− 0.0018N2(t)) (3.22)

dN2(t)

dt
= N2(t)(0.166− 0.0015N1(t)− 0.002N2(t)) (3.23)

where N1(0) = 0.04 grams per m2 and N2(0) = 0.045 grams per m2.

dN1(t)

dt
= N1(t)(0.168− 0.0020339N1(t)− 0.002N2(t)) (3.24)

dN2(t)

dt
= N2(t)(0.167− 0.00195N1(t)− 0.002N2(t)) (3.25)

where N1(0) = 0.04 grams per m2 and N2(0) = 0.045 grams per m2.

dN1(t)

dt
= N1(t)(0.168− 0.0020339N1(t)− 0.0020339N2(t)) (3.26)

dN2(t)

dt
= N2(t)(0.166− 0.0015N1(t)− 0.0015N2(t)) (3.27)

where N1(0) = 0.04 grams per m2 and N2(0) = 0.045 grams per m2.
Other types of model equations of mutualism, parasitism, and commen-

salism can be adapted from our model equations of competition between two
interacting plant species.

We remark that for other chosen starting values, there could be a change in
the value of the minimum 2-norm penalty function.

86



3.16 Competition between two dis-similar plant
species: rationale

In this section, we shall consider the above equations of competition between two
dis-similar plant species where the first plant species is growing fastly assumming
that the second plant species is growing slowly ([53], [54]). According to this
author, the ecological advantage of a high relative growth rate or intrinsic growth
rate is that: fast growth enhances the rapid occupation for space, which is
beneficial in terms of competition for limiting resources.

The concern for the possible survival value of slow growth has been explained
by ([54], [160]): that slow-growing plant species make modest demands and are
less likely to exhaust the available nutrients.

In unpredictable but productive environments, where ”catastrophes” like
occasional occurrence of fierce storm, or other forms of disturbance occur, fast-
growing short-lived species are common whereas in more predictable environ-
mens with a low incidence of disturbance, longer-lived slow-growing species pre-
dominate ([137], [165]).

For this system of model equations between two dis-similar plant species, we
shall assume that the two plant species will survive over time. The first plant
species is growing fastly whereas the second plant species is growing slowly.

This knowledge on how to set up our model equations of interaction between
a fast growing plant species and a slow growing plant species is gained from the
above mentioned ecological idea.

We would remark that there are interesting mathematical analyses which we
can embark on but these analyses would take us outside the core topic of this
chapter.

We would briefly summarise the mathematical techniques as defined and
discussed in chapter 2 to list the features of stability, survival and extinction
inequalities later on in this chapter.

3.16.1 Steady state solutions and stability/instability prop-
erties of competition

For our model equations of competition, we evaluated our linearised interaction
functions which are continuous as well as differentiable and found that using our
analytical method of determiniming these steady states (as defined in chapter
two of this thesis)

1. The trivial steady state (0, 0) is unstable because λ1 = 0.168 and λ2 =
0.002.

2. The steady state (0, 133) is unstable because λ1 = −0.002 and λ2 = 0.1.

3. The steady state (82.6, 0) is unstable because λ1 = −0.168 and λ2 =
0.0003

4. The coexistence steady state (74, 34.5) is stable because λ1 = −0.15 and
λ2 = −0.0003

We remark that the stability properties of our steady state solutions can
also be studied using the method of perturbation which we mentioned in our
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last chapter. Unfortunately, we may not repeat the application of this method
at this point since the method of linearisation about each steady state and its
sign analysis is also satisfactory.

3.16.2 Coexistence, survival and extinction criteria of com-
petition

The analysis of this chapter would not be complete without knowing if the two
competing species for a limited resource within the same environment will coex-
ist, survive or go extinct under the assumptions of formulating model equations
of competition as said in chapter two.

We have derived the coexistence, survival and extinction criteria in chapter
two. We will simply use these criteria to check our few model equations of
competition.

3.16.3 Example

We would like to mention that each system of coupled ordinary differential
equations of first order is recast in the form as indicated in chapter two. We may
not repeat this process in this section. We shall simply check if the inequalities
are met.

Consider the following model parameters: a = 0.168, b = 0.0020339, c =
0.0005, d = 0.002, e = 0.00002, f = 0.000015. Since K1 = a

b
, α12 = c

b
,K2 =

d
f
, α21 = e

f
, it follows that K1 = 82.6, α12 = 0.246,K2 = 133, α21 = 1.33. By

using these formulae, we will obtain K1

K2

= 0.62 and K2

K1

= 1.61.
In summary,

α12 = 0.246 < 0.62 =
K1

K2
(3.28)

α21 = 1.33 < 1.61 =
K2

K1
(3.29)

Therefore, the two plant species will survive or persist at their carrying
capacities.

3.16.4 Coexistence criteria for two similar plant species

By following our idea which we defined and discussed in chapter two of this
thesis that the the more similar two species are ecologically, their carrying ca-
pacities must be for the two species to coexist. In this scenario, the carrying
capacities for the first and second species for our two similar species competition
are 82.6g/m2 and 83g/m2.

Therefore, K1

K2

= 0.995 is bigger than 0.95 and smaller than 1.05. Hence,
our two similar competing species will coexist under the ecological criterion as
defined in chapter two. So our two similar plant species would require a small
range of (82.6, 83) for their coexistence.
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3.16.5 Coexistence criteria for two dis-similar plant species

In the same manner, the more dis-similar two species are ecologically, the more
dis-similar their carrying capacities must be for the two species to coexist.
Hence, the carrying capacities for the first and second species for our two dis-
similar species competition are 82.6g/m2 and 133g/m2.

Therefore, K1

K2

= 0.62 is bigger than 0.05 and smaller than 20. Hence, our
two dis-similar competing species will coexist under the ecological criterion as
defined in chapter two. In this situation, our two dis-similar plant species would
require a large range of (82.6, 133) for their coexistence.

3.17 Other Interaction Models: Literature Re-
view

On a first thought, this section seems to define and discuss a topic which is
different from the focus of this chapter. It is linked to this chapter because it
will consider what other researchers have achieved in terms of developing some
more complex model equations of competition and mutualism.

This is an important section of this chapter for several reasons. First, as far
as we know, science is a coherent body of knowledge which consists of research
findings, tested theories, scientific principles, and the laws for a chosen discipline.
Second, a review of relevant literature is an analysis and synthesis of the sources
of research in order to generate a picture of what is known about a particular
field of study (which in our case is computation and mathematical modelling of
plant species interactions in a harsh climate) and utilise these information to
identify possible knowledge gaps that exist in a particular field of study. Third,
because of the disciplinarity feature of this thesis, it is very important to review
other relevant literatures in ecological modelling in order to find out if other
researchers have previously conducted a similar research.

It is against this motivation that we would consider other types of model
equations that have been previously developed, discussed, and analysed.

The following mutualism model was formulated by [83]:

dN1

dt
= N1(0.5− 2N1 +N2 + 0.5N3). (3.30)

dN2

dt
= N2(−3 + 5N1 − 4N2 + 2N3). (3.31)

dN3

dt
= N3(4 +N1 + 2N2 − 7N3). (3.32)

where Ni(0) = Ci > 0 for i = 1, 2, 3.
The next set of two species models of mutualism were formulated by [1]:

dN1

dt
=

r1N1(K1 −N1 + α12)

K1 + α12N2
. (3.33)

dN2

dt
=

r2N2(K2 −N2 + α21)

K2 + α21N1
. (3.34)
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dN1

dt
= r1(1.0 + α12

N2

K1
)
(K1 −N1)

K1
. (3.35)

dN2

dt
= r2(1.0 + α21

N1

K2
)
(K2 −N2)

K2
. (3.36)

where Ni(0) = Ci > 0 for i = 1, 2. All other model parameters are assumed
to be positive constants.

The following model describes a special type of mutualistic interaction called
obligate mutualism ([143]).

dN1

dt
= r1N1[1−

N1

K1(1− exp−(aN2+C1)
K1

]. (3.37)

dN2

dt
= r2N2[1−

N2

K2(1− exp−(aN1+C2)
K2

]. (3.38)

where where Ni(0) = Ci > 0 for i = 1, 2. All other model parameters are
assumed to be positive constants.

The following four models describe the dynamics of obligate and facultative
mutualisms ([98]):

dN1

dt
= r1N1[1−

N1

K1
+ (

b1N2 − c1N
2
2

1 + d1N2
2

)
N2

K1
]. (3.39)

dN2

dt
= r2N2[1−

N2

K2
+ (

b2N1 − c2N
2
1

1 + d2N2
1

)
N1

K2
]. (3.40)

dN1

dt
= r1N1[1−

N1

K1
+ (

b1N2 − c1N
2
2

1 + d1N2
2

)
N2

K1
]. (3.41)

dN2

dt
= r2N2[1−

N2

K2
− (

g2N1

1 + h2N1
)
N1

K2
]. (3.42)

dN1

dt
= r1N1[−1 + (

b1N2 − c1N
2
2

1 + d1N2
2

)N2]. (3.43)

dN2

dt
= r2N2[1−

N2

K2
+ (

b2N1 − c2N
2
1

1 + d2N2
1

)
N1

K2
]. (3.44)

dN1

dt
= r1N1[−1 + (

b1N2 − c1N
2
2

1 + d1N2
2

)N2]. (3.45)

dN2

dt
= r2N2[1−

N2

K2
− (

g2N1

1 + h2N1
)
N1

K2
] (3.46)

where Ni(0) = Ci > 0 for i = 1, 2. All other model parameters are assumed
to be positive constants.

In the absence of interspecific interactions, [97] considered the dyanmics
of two species with respective densities N1(t) and N2(t). They described the
interaction between these two species with an uncoupled system of logistic delay
differential equations
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N1(t)

dt
= N1(t)[r1 − a11N1(t− τ)]. (3.47)

N2(t)

dt
= N2(t)[r2 − a22N2(t− τ)]. (3.48)

for r1 > 0, r2 > 0, a11 > 0, a22 > 0.
It was further assumed that if these two species are permitted to cohabit a

common habitat, then each species enhances the average growth rate of the other
species such that the interactive dynamics are now governed by the following
coupled autonomous delay differential equations

N1(t)

dt
= N1(t)[r1 − a11N1(t− τ) + a12N2(t− τ)]. (3.49)

N2(t)

dt
= N2(t)[r2 + a21N1(t− τ)− a22N2(t− τ)]. (3.50)

with a12 > 0, a21 > 0. They assumed that this delay system of equations
admits initial conditions of the form

N1(s) = φ(s). (3.51)

N2(s) = ϕ(s). (3.52)

for sε[−τ, 0], φ, ϕεC([−τ, 0],ℜ+), φ(0) > 0, ϕ(0) > 0.
We have simulated these equations and found that qualitatively, we have

two patterns of solutions for the coupled and uncoupled models: one oscillatory
behaviour of solutions and the other behaves in the form of a cycle.

The stability analysis and boundedness conditions of the solutions to this
delay system has been analysed ([97]). Their analysis shows how delay affects
the dynamics of a mutualistic system.

The following model describes a nonlinear competition interaction between
three species ([135]):

dN1

dt
= N1(1−N1 − α1N2 − β1N3). (3.53)

dN2

dt
= N2(1− β2N1 −N2 − α2N3). (3.54)

dN3

dt
= N3(1− α3N1 − β3N2 −N3). (3.55)

These model equations were studied for the cases when αi = α and βi = β
for i = 1, 2, 3, 0 ≤ α ≤ 1 ≤ β and 2 ≤ α + β. They showed numerically that
the symmetric system exhibits a general class of solutions with non-periodic
oscillations of bounded amplitude but ever-increasing cycle time. Their model
has only two parameters, α and β. This model demonstrates a complex phe-
nomenon that does not occur in 2-dimensional Lotka-Volterra models. These
authors have conducted a detailed analysis with which they determined the
equilibria of this model and investigated the stability and qualitative behaviour
of their model.
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The existence of positive periodic solutions for a class of nonautonomous
competitive periodic Kolmogorov systems which generalise the above May-Leonard
model has been proved ([26]).

A further extension of the May-Leonard model that incorporates a diffusion
rate has been considered by [172]. The dynamics of this new model is described
by a system of partial differential equations

∂N1

∂t
= µ∆N1 +N1(1−N1 − αN2 − βN3). (3.56)

∂N2

∂t
= µ∆N2 +N2(1− βN1 −N2 − αN3). (3.57)

∂N3

∂t
= µ∆N3 +N3(1− αN1 − βN2 −N3). (3.58)

in Ωx(0,∞) and N1 = N2 = N3 = 0 on ∂Ω × (0,∞) where the diffusion
rate µ and the competition coefficients α and β are positive constants and
0 ≤ α ≤ 1 ≤ β.

A detailed mathematical analysis to investigate the global stability of this
partial differential model has been discussed.

This model can be extended to investigate the idea behind the stabilization
of the unstable steady state by using a powerful numerical technique of con-
structing a controller which would stabilise an unstable steady state solution
([23]).

The following resource based model has been formulated and analysed ([88]):

dN1(t)

dt
= N1(t)[b1 − a11N1(t)− a12N2(t)− a13N3(t)]. (3.59)

dN2(t)

dt
= N2(t)[b2N1(t)− a22N2(t)− a23N3(t)]. (3.60)

dN3(t)

dt
= N3(t)[b3N1(t)− a32N2(t)− a33N3(t)]. (3.61)

where all the model parameters and initial data are positive constants. A
detailed determination of the steady states of this model and a asymptoptic
behaviour of solutions for N1(0) > 0, N2(0) > 0 and N3(0) > 0 have been
investigated and discussed.

AnN -dimensional system of autonomous ordinary differential equations that
describe the dynamics of interacting species which is slightly more general than
the classical Lotka-Volterra system has been considered and stronger persistence
for two coexisting species have been analysed in great detail and sophistication
([3]). These equations take the following form

úk(t) = uk(t)[ak(t)−
N
∑

k=1

bkℓuℓ(t)] (3.62)

where k = 1, 2, ....., N under some simplifying assumptions that bkℓ ≥ 0
and bkk ≥ 0 for 1 ≤ k, ℓ ≤ N . Other related models have been developed to
analyse the average growth and extinction in a Lotka-Volterra system as well
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as conditions for a necessary and sufficient average growth in a Lotka-Volterra
system ([5], [4]).

The next model concerns a stochastic analysis of a symmetric model with a
simplified initial condition ([132]). The dynamics of this symmetric model for a
facultative mutualism is governed by a system of coupled ordinary differential
equations with multiplicative noise

dx1 = x1(t)[(b1 − a11x1(t) + a12x2(t))dt+ (ǫ11x1(t) + ǫ12x2(t))dw(t)] (3.63)

dx2 = x2(t)[b2 − a22x2(t) + a21x1(t) + (ǫ21x1(t) + ǫ22x2(t))dw(t)] (3.64)

By using Ito calculus and a range of other simplifying stochastic definitions,
these authors found that the solutions of this symmetric model with additive
noise will not not explode in a finite time with probability 1 provided the noise
intensities ǫ11, ǫ22 > 0 and ǫ12, ǫ21 ≥ 0 for arbitrary constants bi and aij . With-
out including noise terms, it was found that the solution will explode in a finite
time. One sees here an advantage of using a stochastic differential system to
model population dynamics of facultative mutualism.

In the modelling of response of arctic plants, an example of a phenomeno-
logical model is the logistic curve of whole-plant growth ([55]) of the form

dW

dt
= rW (Wmax −W ) (3.65)

for W (0) = W0 where W is the dry weight or biomass, r is the intinsic
growth rate, and Wmax is the maximum biomass attainable.

By finding the complementary solution of the homogeneous part and the
particular integral, the general solution is

W (t) = W0e
rt

Wmax (3.66)

where W0 is the initial condition, W is the dry weight or biomass, r is
the intrinsic growth rate, t is the time variable, and Wmax is the maximum
attainable biomass.

In summary, we have identified other complex Lotka-Volterra models that
other mathematicians have used to analyse and discuss types of species interac-
tions with the exception of models of commensalism and parasitism or predation.
Next we would briefly review these models.

A Lotka-Volterra model of competition between a commensal pair of species
and a mutualistic pair has been considered where the species are said to be
isolated but compete for resources ([178]). A detailed analysis of the effects of
the benefits of mutualism over commensalism was also studied.

The works of Cushing on several aspects of mathematical ecology have con-
tributed to our knowledge in this growing discipline. A few of his mathematical
models concern some discrete competition models and the competitive exclusion
principle, time delays in single species growth models, the oscillatory nature of
general predator-prey models with delays, periodic Lotka-Volterra competition
systems, and some examples of Lotka-Volterra systems which are driven by time
sharing of ecological niches ([59], [108], [60], [61], [62], [63]).
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A complex stochastic model that describes the dynamics of two competing
species in an ecosystem has been analysed by using a Monte Carlo simulation
technique ([46]). As one would expect, some key characteristics of the stochastic
system were found to be different from its determinsistic system without a
stochastic variation. What this means is that the deterministic characteristics
without a stochastic variation are special cases of the characteristics of the
stochastic system.

A general description and a detailed mathematical analysis of the dynamics
of two interacting populations for prey-predator interactions, for two competing
species, and for symbiotic interactions have been done ([6]).

The global behaviour of solutions of classical Lotka-Volterra systems and
other highly nonlinear systems that model n interacting mutualistically inter-
acting species has been determined by using other powerful mathematical tools
([180]).

We know that one of the most interesting questions to ask about a dynamic
system is: what is the long-term behaviour of its trajectories?. This question
has been analysed from a pure functional analysis approach by considering a
C1 system of differential equations in ℜn for either a competitive system or a
mutualistic system ([99]). This problem was also extended to study the limiting
behavour of solutions of systems which are either mutualistic or competitive
([100]).

Other simple dynamic model equations that describe plant competition when
light is the limiting factor have been formulated ([147]). According to this
author, when factors other than light are limiting growth, the representation
of competition in crop simulation models is complex. In this paper, it was
argued that simple dynamic models should be developed for complex processes
such as the process-based simulation models which are detailed specific models
that require a lot of information about crop simulation models and the set of
equations that describe the distribution of assimilates over plant organs.

Our overall summary in this literature review section is this: we have at-
tempted to construct a prototype model equations of competition which is based
on choosing an error or penalty function that measures the agreement between
the available data and our simulated model. The parameters were adjusted to
achieve a minimum in the penalty function which yields the best fit parameters.
We have adopted this numerical approach with a view to contributing to the
flow of knowledge in this interdisciplinary thesis and providing insights which
we have not seen elsewhere.

3.18 Conclusion and Further Remarks

In this chapter, we have carried out a detailed literature review which can
be considered as an important aspect in the development of constructing a
prototype competition model.

The main contribution of this chapter is to propose a nonlinear optimization
numerical method for calculating the size of the error between the measured
data and our simulated data over a time interval. Our proposed method is
based on minimising a 2-norm penalty function with which the best fit model
parameters were selected in a time interval. The minimum penalty function
which we have obtained in this chapter is local and only unique to our data and
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should be generalised.
It might be asked why we did not consider using one half of a day and one

quarter of a day growth rates in constructing our model equations of compe-
tition. Our experimental numerical analysis shows that our calculated error
function or 2-norm penalty function between the measured data and our simu-
lated data is so big than expected when these growth rates were applied. This
characteristic makes these growth rates as poor fits. This is our reason for
choosing to use the daily intrinsic growth rate because it provides a far smaller
2-norm penalty function between the measured data and our simulated data
over a 10- week period.

Although our model equations take similar mathematical structure of the
well known classical Lotka-Volterra model, as far as one knows, these model
equations of competition have not been developed and discussed elsewhere. We
hope to use these equations to find out if we can obtain a few cases of mutualism
from a combination of a summer competition model and a stochastic winter
model which we shall define and discuss in our chapters 5 and 6 of this thesis
with a view to comparing our results with experimental ecolgical studies which
we have cited in chapter one.

We reiterate that in chapter one of this thesis, we have defined and dis-
cussed a few important components of the ecological and mathematical ideas
that are relevant to our mathematical modelling and computational analyis of
plant species interactions in a harsh climate. This is followed by a detailed
definition, mathematical analysis, and discussions of four main types of plant
species interactions, that is, the (−,−), (+,+), (+, 0), (+,−) interactions and
their ecological implications. In this chapter, we switch to using the available
10-week plant growth data to develop a prototype model which describes the
competition interaction under some simplifying assumptions. Other types of
species interaction models can be derived from our competition model. This is
how the first three chapters of this thesis are connected.

In this chapter, we have estimated the intrinsic growth rate for a plant
species population. We have illustrated how to calculate the intrinsic growth
rate under some simplifying assumptions.

The method of choosing the best fit logistic model parameters that minimise
the 2-norm has been described and applied in detail. The assumptions that
finally lead to our model equations of competition between two dis-similar plant
species for a limited resource within the environment have been applied at the
appropriate stage of our analysis. We also observed that we can obtain a smaller
minimum value of a 2-norm if we consider a growing period of 5 weeks. We did
not present our calculations in this chapter because our calculations provide
similar qualitative behaviour with a longer growing season of 10 weeks.

Hence, we have constructed the model equations that describe the interspe-
cific interaction between two very similar plant species and that between two
dis-similar plant species. These model equations are important to our subse-
quent analysis in this thesis. This is an important result which one has achieved
in this chapter.

Despite what this chapter has achieved by deriving the values of the model
parameters such as the intraspecific coefficient and the intrinsic growth rate for
the first species, we know that not all the parameters are equally important.
How do we know which of the model parameters when varied will have the
biggest effect on the solutions? Hence, in chapter four, we would be concerned
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with the problem of sensitivity analysis and selection of our model parameters.
Moreover, the trajectories are sensitive to a variation of competition pa-

rameters and so it is important to conduct a systematic sensitivity analysis to
find out which competition model parameters on a variation have the biggest
effect on the solutions. This level of analysis is crucial to our later numerical
simulation of plant species interactions in a harsh climate.
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Chapter 4

Sensitivity Analysis and
Selection of Parameters
from Our Experiments

4.1 Motivation

The application of the principle of sensitivity analysis is important in our study
because it would be used to find those model parameters whose variation will
have a biggest effect on the solution of the model equations. For ecological
problems for which data are scarce, sensitivity analysis can indicate which pa-
rameters need to be estimated most accurately and which need only be given
as rough estimates. Hence, sensitivity analysis can guide effort in parameter
estimation.

Our model equations are constructed based on some important parameters
namely the intrinsic growth rates, the intraspecific and interspecific interaction
coefficients and the initial conditions. It is important to investigate the sensitiv-
ity of the behaviour of a model to variations in the values of these parameters
because the parameter values can never be known with absolute precision.

We know that norms serve the same purpose on vector spaces that absolute
value does on the real line. The concept of a norm on a vector space and that
of absolute value on a real line furnish a measure of distance.

What are we looking for? We want to find those model parameters, which
when varied, have the biggest effect on the solution. Our present analysis is
based on a model which we have constructed in chapter three of this thesis.

4.2 Introduction

In the first two chapters of this thesis, we have defined and discussed the eco-
logical and mathematical questions that are relevant in this study. In chapter
three, we have constructed deterministic only model equations of competition
(−,−) interaction between two competing plant species for a limited resource
within the same environment. The first species is assumed to be growing faster
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whereas the second species is growing slowly. Our assumption is based on an
ecological insight as mentioned in chapter three.

We know that our model equations of competition are based on seven defin-
ing parameters namely: the intrinsic growth rate a for the first species, the
intraspecific interaction coefficient b for the first species, the interspecific inter-
action coefficient c for the first species, the intrinsic growth rate d for the second
species, the intraspecific interaction coefficient e for the second species, the inter-
specific interaction coefficient f for the second species, and the starting values
(N1(0), N2(0)). We know from our own experimental analysis that it would
be misleading to judge the sensitivity of the model parameters of competition
equations without conducting a detailed methodology of achieving this.

What then is sensitivity? It is simply the generic term for the changes in the
output of an initial value problem due to changes in the data. How does this
numerical method work? The numerical method of sensitivity or the principle
of parsimony (or the Ockham’s Raizer) works in the following pattern:

1. Write down some complicated interaction model.

2. Fix the values of each possible model parameter.

3. Take one parameter at a time, vary it and see how much this variation
changes the solution.

4. If the variation of one parameter changes the solution a lot, then this
parameter would be called a more sensitive parameter.

5. On the other hand, if the variation of another parameter produces a small
change in the solution, then this parameter would be called a less sensitive
parameter.

We do not necessarily have to remove the less important parameters accord-
ing to the hypothesis of the principle of parsimony. The notion of sensitivity
analysis is a widely applied numerical method often being used in the study of
biological, immunological and applied science problems ([16], [154], [94], [122],
[10], [114], [20], [177], [25], [7], [130], [50], [202]).

We remark that most of these applied sensitivity analyses are considered at
a particular time when a solution is reasonably constant whereas our method as
proposed in this chapter will consider data ponits over a period of time where
we only consider approximate solution.

Sensitivity analysis is a standard method for studying mathematical models
especially if a further numerical simulation is required to analyse a particular
research problem. It aims to find the dependency between model predictions
and the particular set of parameter values being used ( [104]). This knowledge
is useful in process control models to find the optimum set of conditions for
running a process ([104], [37]).

In the models of biological systems, a knowledge of a sensitvity analysis can
assist the modeller to decide whether the parameter estimates are sufficiently
accurate for the model to give reliable results ([105]). Otherwise, a further work
can be suggested in order to obtain improved estimation of those parameters
which would give rise to the greatest uncertainty in model predictions.

As far as we know, a sensitivity analysis is a general procedure which en-
tails changing parameter values and observing the corresponding changes in the
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model predictions. It seems easy to describe this procedure, but conducting a
detailed sensitivity analysis in any specific case is a dauting task. Problems may
include

1. How much to vary each parameter by.

2. What combinations of parameter values are acceptable.

3. What values of the explanatory variables to use.

4. Which model parameters when varied will have the biggest or smallest
effect on the solutions

5. How to interprete the results.

The application of a sensitvity analysis is an important component of this
study. This powerful numerical technique will be applied to the competition in-
teraction model between two very dis-similar plant species which was formulated
and discussed in the chapter three.

The organization of this chapter is a follows. In section 1, we briefly introduce
the idea behind the concept of sensitivity analysis. In section 2, our motivation
for using our methodology would be discussed. In section 3, we would discuss
the application of sensitvity analysis to a few examples of model equations of two
interacting dis-similar plant species. In section 4, we would apply an alternative
numerical method of selecting the model parameters that have the biggest effect
on the solutions. In section 5, we would briefly discuss a few results which we
have achieved in this chapter.

4.3 Model Equations of Competition: Dis-Similar

Case

Consider another slowly growing second species represented by N2. In this
section, we shall discuss the sensitivity analysis of a system of competition
model equations which we derived in chapter three. These equations describe
the dynamics of two dis-similar interacting plant species. The equations are

dN1(t)

dt
= N1(t)(0.168− 0.0020339N1(t)− 0.0005N2(t)) (4.1)

dN2(t)

dt
= N2(t)(0.002− 0.00002N1(t)− 0.000015N2(t)) (4.2)

with N1(0) = 0.04 grams per square metres and N2(0) = 0.045 grams per
square metres.

Our aim is to use these model equations to find which of the parameters when
varied will have the biggest cumulative effect on the N1 and N2 approximate
solutions.

We shall tackle this problem numerically and discuss our results quantita-
tively with a view of providing further insights into the central objective of this
chapter in the overall context of this study.

The starting point to achieving our goal is to embark on the calculation of
percentage variation in solution compared with the original percentage variation
in parameters. Our next task is to define, apply this stage of analyis and discuss
our results quantitatively.
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4.3.1 Calculation of Percentage Variation in Solution Com-
pared with the Original Percentage Variation in Pa-
rameters

In these calculations, we shall use a growing season which has a length of 60
days. Consider two approximate solutions N1 and N2. Consider two other
approximate solutions N1m and N2m due to a variation of model parameters
of the model equations of competition. In this section, we shall be concerned
with the calculation of the norm of difference between two solutions. That is,
we will calculate the 1-norm of (N1−N1m), the 2-norm of (N1−N1m), and the
∞-norm of (N1 −N1m). We also calculate 1-norm of (N2 −N2m), the 2-norm
of (N2 −N2m), and the ∞-norm of (N2 −N2m).

Example

The sizes of the N1 and N2 solution trajectories as well as the sizes of the differ-
ence of the solutions are measured using three popular norms. Our calculations
are:

1. For N1 solution, its 1-norm, 2-norm, and ∞-norm are 12453, 809.3879,
and 76.1093.

2. For N2 solution, its 1-norm, 2-norm, and ∞-norm are 28.602, 1.1672, and
0.0495.

3. For F1 solution, its 1-norm, 2-norm, and ∞-norm are 8730.1, 501.0639,
and 37.3859.

4. For F2 solution, its 1-norm, 2-norm, and ∞-norm are 0.1268, 0.0085, and
0.00084918.

If a = 0.2016, we want to calculate the cumulative effect of this variation of
parameter a on the solutions. For this example, our 1-norm percentage effect of
this variation on the N1 solution is 70.1044 which we obtain by dividing 8730.1
by 12453 while our 2-norm and ∞-norm percentage effects on the N1 solution
are 61.9065 and 49.1213 which we obtain by dividing 501.0639 by 809.3879 and
also by dividing 37.3859 by 76.1093.

Similarly, the effects of varying our parameter a on the N2 solution are:

1. Our 1-norm percentage effect of varying parameter a by 1.2 percent on
the N2 is 0.4433.

2. Our 2-norm percentage effect of varying parameter a by 1.2 percent on
the N2 is 0.7282.

3. Our ∞-norm percentage effect of varying parameter a by 1.2 percent on
the N2 is 1.7155.

From these figures, we can see that the magnitude of these effects on the N1

solution is going in a different direction from the magnitude of these effects on
the N2 solution. For the purpose of a clear uniform interpretation, we would
prefer to calculate the cumulative effect of any parameter variation on the N1

and N2 solutions.
In this example, our cumulative effects on the solutions are:
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1. Our 1-norm cumulative percentage effect if a = 0.2016 is 70.5.

2. Our 2-norm cumulative percentage effect if a = 0.2016 is 61.9.

3. Our ∞-norm cumulative percentage effect if a = 0.2016 is 50.8.

We remark that this method has been used to calculate our cumulative
percentage effects due to a variation of other model parameters. We would
present these calculations next and discuss their interpretations.

Which parameters have the biggest effect on the solutions?

In this section, we are interested to find the model parameters of two dis-similar
competing plant species which when varied will have the biggest cumulative
effect or biggest percentage change on the N1 and N2 solutions.

Without a detailed explanation on how to calculate the biggest cumulative
effect, we shall present our results that relate directly to the question we want
to tackle. These results are presented in the next section.

Main Results: 20 percent variation of model parameters

In this section, we want to find the biggest cumulative effect of 20 percent
variation of model parameters on the solutions. Our results are presented in
Table 4.1.

Norm of Solutions 20 Percent Variation of Model Parameters
Norm a b c d e f sv1 sv2

1-norm 70.5 11.15 0.0094 1.23 0.09 0.00042853 6.7 20
2-norm 61.9 13.09 0.0087 1.43 0.166 0.00050077 5.8 20
∞-norm 50.8 15.89 0.0073 2.43 0.5 0.00085677 5.1 20

Table 4.1: Sensitivity analysis of a 20 percent variation of model parameters

where sv1 represents when only N1(0) = 0.04g/m2 is changing and sv2
represents when only N2(0) = 0.045g/m2 is changing.

Therefore, when we vary the model parameters by 20 percent, the biggest
cumulative effect on the solutions are observed for intrinsic growth rate a for
speciesN1, the starting value whenN1(0) = 0.04g/m2 is unchanged andN2(0) =
0.054g/m2, and the intraspecific or self interaction coefficient b irrespective of
the norm being used to calculate the changes in the solutions.

Main Results: 10 percent variation of model parameters

Next, we consider the biggest cumulative effect of a 10 percent variation on the
solutions. Our results are presented in Table 4.2.

Therefore, in this scenario, a 10 percent variation in model parameters will
produce the biggest cumulative effect in the parameters a, b, and the start-
ing values irrespective of the norm being used to calculate the changes in the
solutions.
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Norm of Solutions 10 Percent Variation of Model Parameters
Norm a b c d e f sv1 sv2

1-norm 34.44 6.12 0.0047 0.61 0.045 0.000214 3.5 10
2-norm 30.88 7.24 0.0043 0.71 0.083 0.00025 3.04 10
∞-norm 25.76 8.85 0.0036 1.21 0.25 0.000428 2.67 10

Table 4.2: Sensitivity analysis of a 10 percent variation of model parameters

Main Results: 5 percent variation of model parameters

Next, we would find the biggest cumulative effect of a 5 percent variation of
parameters on the solutions. These results are briefly summarised in Table 4.3
below:

Norm of Solutions 5 percent variation of model parameters
Norm a b c d e f sv1 sv2

1-norm 16.93 3.07 0.0024 0.3 0.044 0.00012 1.79 5
2-norm 15.36 3.64 0.0022 0.35 0.075 0.00015 1.56 5
∞-norm 12.9 4.46 0.0018 0.6 0.2 0.00025 1.37 5

Table 4.3: Sensitivity analysis of a 5 percent variation of model parameters

Therefore, in this scenario, our important model parameters are a, b, sv2.

Main Results: 2.5 percent variation of model parameters

In this section, we are interested to calculate the cumulative effect of varying
the model parameters by 2.5 percent and study its impact on the solutions. Our
results are briefly summarised and presented in Table 4.4.

Norm of Solutions 2.5 percent variation of model parameters
Norm a b c d e f sv1 sv2

1-norm 8.39 1.56 0.0012 0.15 0.01 0.0000535 0.909 2.5
2-norm 7.66 1.85 0.0011 0.17 0.02 0.0000625 0.79 2.5
∞-norm 6.45 2.274 0.00091 0.3 0.06 0.000107 0.70 2.5

Table 4.4: Sensitivity analysis of a 2.5 percent variation of model parameters

In this scenario, our important model parameters are a, b, and sv2.

Main Results: 1.25 percent variation of model parameters

Finally, we would investigate the cumulative effect of varying the model param-
eters by 1.25 percent on the solutions. Our results are briefly summarised and
presented in Table 4.5.

In this scenario, our important parameters are a, b, and sv2.
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Norm of Solutions 1.25 percent variation of model parameters
Norm a b c d e f sv1 sv2

1-norm 4.2 0.788 0.0006 0.07 0.010 0.00003 0.45 1.25
2-norm 3.84 0.935 0.0005 0.08 0.020 0.00003 0.4 1.25
∞-norm 3.22 1.15 0.00045 0.15 0.050 0.00006 0.35 1.25

Table 4.5: Sensitivity analysis of a 1.25 percent variation of model parameters

Main Results: 0.5 percent variation of model parameters

In this section, we are interested to investigate the cumulative effect of varying
the model parameters by 0.5 percent on the solutions. Our results are briefly
summarised and presented in Table 4.6.

Norm of Solutions 0.5 percent variation of model parameters
Norm a b c d e f sv1 sv2

1-norm 94.96 51.3 0.0235 2.99 0.23 0.001 24.5 50
2-norm 94.72 64.2 0.0217 3.47 0.42 0.0013 21.8 50
∞-norm 95.3 86.1 0.0182 5.82 1.25 0.002 19.2 50

Table 4.6: Sensitivity analysis of a 0.5 percent variation of model parameters

What do we learn? It is interesting to observe that if we vary parameter a by
0.5 percent, we shall obtain about 95 percent cumulative effect on the solutions.
In this situation, if we vary each parameter by this much, we shall obtain a
biggest effect on the solutions due to a variation of parameters a, b, and the
starting values.

Main Results: 0.25 percent variation of model parameters

In this section, we are interested to investigate the cumulative effect of varying
the model parameters by 0.25 percent on the solutions. Our results are briefly
summarised and presented in Table 4.7.

Norm of Solutions 0.25 percent variation of model parameters
Norm a b c d e f sv1 sv2

1-norm 99.6 114.87 0.0353 4.44 0.23 0.001 46.6 75
2-norm 99.4 151.7 0.0325 5.15 0.42 0.0013 42.5 75
∞-norm 101.85 224.6 0.0273 8.6 1.25 0.002 37.35 75

Table 4.7: Sensitivity analysis of a 0.25 percent variation of model parameters

What do we learn? We learn that the less we vary parameters a, b, and
the starting values, the bigger the cumulative effects on the solutions. In this
case, our important model parameters are the intra-specific coefficient, the daily
intrinsic growth rate for the first species and the starting values or biomasses.
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Main Results: 0.125 percent variation of model parameters

In this section, we are interested to investigate the cumulative effect of varying
the model parameters by 0.125 percent on the solutions. Our results are briefly
summarised and presented in Table 4.8.

Norm of Solutions 0.125 percent variation of model parameters
Norm a b c d e f sv1 sv2

1-norm 100.07 182.78 0.0412 5.15 0.23 0.001 65.05 87.5
2-norm 99.78 254.2 0.0379 5.97 0.42 0.0013 60.7 87.5
∞-norm 102.32 415.5 0.0319 9.97 1.25 0.002 53.48 87.5

Table 4.8: Sensitivity analysis of a 0.125 percent variation of model parameters

What do we learn? We learn that the less we vary parameters a, b, and
the starting values, the bigger the cumulative effects on the solutions. In
this scenario, our important model parameters are the intra-specific coefficient,
the daily intrinsic growth rate for the first species and the starting values or
biomasses.

4.4 Summary of our Sensitivity Analysis and Se-
lection of Parameters for a Dis-Similar Com-

petition Model

In summary, if we vary model parameters a, b, and the starting values a little,
it produces biggest effect on the solutions. This is why we think that we have
got the application of this powerful numerical method right in the case of two
interacting dis-similar plant species. Therefore, these three important model
parameters which we have used this numerical method to select are the daily
intrinsic growth rate for the first plant species, the intra-specific coefficient for
the first plant species, and the starting values for both the first and second plant
species.

It would be a good idea to justify our conclusion for the case of the senstivity
analysis of varying model parameter a only for the purpose of clarity. Hence,
we would present the following calculations which we have not seen elsewhere
with a view to providing more insight about the application of our method of
the norm of difference of two solutions over a long time interval.

Our results are presented in Table 4.9, Table 4.10, Table 4.11, and Table
4.12.

4.4.1 Sensitivity analysis for parameter a interval [0.015, 0.053]

In this section, we shall present our calculations for the sensitvity analysis of
varying parameter a for the interval [0.015, 0.053].
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Parameter value Calculation of sensitivity using 2-norm
Parameter number value of parameter a 2-norm sensitvity

1 0.015 99.84
2 0.017 99.83
3 0.019 99.80
4 0.021 99.78
5 0.023 99.76
6 0.025 99.74
7 0.027 99.71
8 0.029 99.68
9 0.031 99.64
10 0.033 99.61
11 0.035 99.56
12 0.037 99.52
13 0.039 99.46
14 0.041 99.41
15 0.043 99.34
16 0.045 99.27
17 0.047 99.20
18 0.049 99.11
19 0.051 99
20 0.053 98.90

Table 4.9: A detailed sensitivity analysis of varying parameter a on the solutions
over a time interval for our chosen parameter interval
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4.4.2 Sensitivity analysis for parameter a interval [0.055, 0.093]

In this section, we shall present our calculations for the sensitvity analysis of
varying parameter a for the interval [0.055, 0.093].

Parameter value Calculation of sensitivity using 2-norm
Parameter number value of parameter a 2-norm sensitvity

21 0.055 98.78
22 0.057 98.65
23 0.059 98.50
24 0.061 98.35
25 0.063 98.17
26 0.065 97.97
27 0.067 97.76
28 0.069 97.52
29 0.071 97.25
30 0.073 96.96
31 0.075 96.63
32 0.077 96.27
33 0.079 95.88
34 0.081 95.45
35 0.083 94.97
36 0.085 94.45
37 0.087 93.88
38 0.089 93.25
39 0.091 92.56
40 0.093 91.80

Table 4.10: A detailed sensitivity analysis of varying parameter a on the solu-
tions over a time interval for our chosen parameter interval
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4.4.3 Sensitivity analysis for parameter a interval [0.095, 0.133]

In this section, we shall present our calculations for the sensitvity analysis of
varying parameter a for the interval [0.095, 0.133].

Parameter value Calculation of sensitivity using 2-norm
Parameter number value of parameter a 2-norm sensitvity

41 0.095 90.99
42 0.097 96.105
43 0.099 89.14
44 0.101 88.09
45 0.103 86.95
46 0.105 85.72
47 0.107 84.40
48 0.109 82.98
49 0.111 81.47
50 0.113 79.84
51 0.115 78.12
52 0.117 76.27
53 0.119 74.30
54 0.121 72.27
55 0.123 70.10
56 0.125 67.80
57 0.127 65.40
58 0.129 62.98
59 0.131 60.40
60 0.133 57.70

Table 4.11: A detailed sensitivity analysis of varying parameter a on the solu-
tions over a time interval for our chosen parameter interval
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4.4.4 Sensitivity analysis for parameter a interval [0.135, 0.181]

In this section, we shall present our calculations for the sensitvity analysis of
varying parameter a for the interval [0.135, 0.181].

Parameter value Calculation of sensitivity using 2-norm
Parameter number value of parameter a 2-norm sensitvity

61 0.135 54.94
62 0.137 52.07
63 0.139 49.13
64 0.141 46.10
65 0.143 43
66 0.145 39.83
67 0.147 36.60
68 0.149 33.30
69 0.151 29.96
70 0.153 26.57
71 0.155 23.14
72 0.157 19.66
73 0.159 16.15
74 0.161 12.60
75 0.163 9.04
76 0.165 5.44
77 0.167 1.82
78 0.169 1.826
79 0.171 5.45
80 0.173 9.13
81 0.175 12.82
82 0.177 16.46
83 0.179 20.14
84 0.181 23.84

Table 4.12: A detailed sensitivity analysis of varying parameter a on the solu-
tions over a time interval for our chosen parameter interval
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We can clearly observe that when we change parameter a by 8.9 percent (or
when a = 0.015), we would get a change which is approximately equal to 100
percent in our N1 and N2 approximate solutions by using our 2-norm penalty
function. In contrast, when we change parameter a by 107 percent (or when
a = 0.181), we would get a change which is approximately equal to 24 percent in
our N1 and N2 approximate solutions by the same method and starting values.

The key information we are getting from our sensitvity analysis for this
example is that if we vary parameter a a little, the cumulative effect on the
solutions would vary a lot. This is why we can conclude that parameter a is
more sensitive and hence can be selected as an important model parameter.

We are aware that there is alternative numerical method for selecting model
parameters. This method concerns the percentage change on the solutions using
the changes in their steady states when each model parameter is varied.

We did not present our calculations on the application of this method because
it gives similar conclusion as we have observed when we used the method of the
norm of the difference of two solutions.

4.5 Model Equations of Competition: Similar

Case

Based on some simplifying assumptions as mentioned in chapter three of this
thesis, we present a possible model equations of competition between two similar
interacting plant species:

dN1(t)

dt
= N1(t)(0.168− 0.0020339N1(t)− 0.0018N2(t)) (4.3)

dN2(t)

dt
= N2(t)(0.166− 0.0015N1(t)− 0.002N2(t)) (4.4)

with N1(0) = 0.04 grams per area of grass cover and N2(0) = 0.045 grams per
area of grass cover.

In this section, we are interested to use the same method of the norm of the
difference of two solutions to calculate the cumulative effects on the solutions
due to a variation of parameters. We shall present our calculations by using the
following examples.

4.5.1 Example 1: 0.125 percent variation of model param-
eters for a similar competition model

In this section, we are interested to investigate the cumulative effect of varying
the model parameters by 0.125 percent on the solutions of a similar competition
model. Our results are briefly summarised and presented in Table 4.13.

4.5.2 Example 2: 0.25 percent variation of model parame-
ters for a similar competition model

In this section, we are interested to investigate the cumulative effect of varying
the model parameters by 0.25 percent on the solutions of a similar competition
model. Our following results are summarised and presented in Table 4.14.
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Norm of Solutions 0.125 percent variation of model parameters
Norm a b c d e f sv1 sv2

1-norm 139 150.9 65.4 158.4 48 181 109.7 129.3
2-norm 110 186.9 66.7 123.5 45.8 222 85.9 99.5
∞-norm 157 424.3 117.2 197.6 81.3 490 114.5 154.6

Table 4.13: Sensitivity analysis of a 0.125 percent variation of model parameters

Norm of Solutions 0.25 percent variation of model parameters
Norm a b c d e f sv1 sv2

1-norm 138.5 105.4 55.9 157.7 41.3 124 84.7 104.5
2-norm 110.25 123 57.2 123 39.5 142.7 65.8 79.8
∞-norm 156.9 263.9 102 197 71 304.4 83.3 122

Table 4.14: Sensitivity analysis of a 0.25 percent variation of model parameters

4.5.3 Example 3: 0.5 percent variation of model parame-
ters for a similar competition model

In this section, we are interested to investigate the cumulative effect of varying
the model parameters by 0.5 percent on the solutions of a similar competition
model. Our following results are summarised and presented in Table 4.15.

Norm of Solutions 0.5 percent variation of model parameters
Norm a b c d e f sv1 sv2

1-norm 134.2 52.3 36.9 152.3 27.7 61.2 44.9 65.4
2-norm 107.5 56.9 37.9 119.5 26.6 64.6 35 49.7
∞-norm 154 113.6 69.2 192.7 49.2 133.2 40.2 75.9

Table 4.15: Sensitivity analysis of a 0.5 percent variation of model parameters

4.5.4 Example 4: 1.0125 percent variation of model param-
eters for a similar competition model

In this section, we are interested to investigate the cumulative effect of varying
the model parameters by 1.0125 percent on the solutions of a similar competition
model. Our following results are summarised as presented in Table 4.16.

4.5.5 Example 5: 1.025 percent variation of model param-
eters for a similar competition model

In this section, we are interested to investigate the cumulative effect of varying
the model parameters by 1.025 percent on the solutions of a similar competition
model. Our results summarised as presented in Table 4.17.
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Norm of Solutions 1.0125 percent variation of model parameters
Norm a b c d e f sv1 sv2

1-norm 8.7 0.88 0.88 8.9 0.69 1.02 12 9.9
2-norm 7 0.89 0.9 6.9 0.65 0.99 11.2 9.88
∞-norm 9.6 1.64 1.7 10.12 1.3 1.98 21.8 19.76

Table 4.16: Sensitivity analysis of a 1.0125 percent variation of model parame-
ters

Norm of Solutions 1.025 percent variation of model parameters
Norm a b c d e f sv1 sv2

1-norm 17.7 1.75 1.75 18.4 1.38 2.03 13 9.9
2-norm 14.2 1.76 1.8 13.98 1.33 1.98 11.8 9.23
∞-norm 19.4 3.25 3.4 20.2 2.58 3.9 22.8 18.76

Table 4.17: Sensitivity analysis of a 1.025 percent variation of model parameters

4.5.6 Example 6: 1.05 percent variation of model parame-
ters for a similar competition model

In this section, we are interested to investigate the cumulative effect of varying
the model parameters by 1.05 percent on the solutions of a similar competition
model. Our results are summarised as presented in Table 4.18.

Norm of Solutions 1.05 percent variation of model parameters
Norm a b c d e f sv1 sv2

1-norm 36.4 3.44 3.5 36.9 2.75 4 15.4 7.64
2-norm 29.14 3.47 3.6 28.3 2.66 3.89 13.1 8.01
∞-norm 39.2 6.36 6.8 40.2 5.17 7.67 24.8 16.8

Table 4.18: Sensitivity analysis of a 1.05 percent variation of model parameters

4.5.7 Example 7: 1.1 percent variation of model parame-
ters for a similar competition model

In this section, we are interested to investigate the cumulative effect of varying
the model parameters by 1.1 percent on the solutions of a similar competition
model. Our results are presented in Table 4.19.

4.5.8 Summary of Results for the Similar Competition
Model

In these seven examples of varying model parameters over a time interval, we can
observe that the important parameters are the parameters which when varied
a little produce biggest percentage cumulative effects on the solutions. The
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Norm of Solutions 1.1 percent variation of model parameters
Norm a b c d e f sv1 sv2

1-norm 76.3 6.68 6.95 75.9 5.49 7.76 19.7 6.4
2-norm 60.6 6.7 7.11 57.6 5.3 7.5 15.8 6.1
∞-norm 79.2 12.24 13.5 78.3 10.36 14.8 28.6 13

Table 4.19: Sensitivity analysis of a 1.1 percent variation of model parameters

intrinsic growth rates, the intra-specific coefficients, and the starting values can
be categorised as important parameters in this context.

A few solution trajectories on which our novel method of the norm of the
difference of two solutions are based are graphically presented in the appendix
(Figure 8.4, Figure 8.5).

In the scenaria when the parameters are varied a bit more, these produce
smallest percentage cumulative effects on the solutions and hence categorised
as less important parameters.

4.6 Conclusion and Further Remarks

By a numerical simulation, we have used the technique of sensitivity analysis
to select a few important model parameters for the competition between two
interacting plant species.

These parameters are the intrinsic growth rate a for the first species N1, the
intraspecific interaction coefficient b for the first species and the initial starting
population sizes for our dis-similar competition model.

This is an important result which one has achieved in this chapter. Although
the concept of sensitivity analysis is familiar, our method of selecting these
sensitive parameters is a novel numerical approach.

Another interesting insight from our method is the fact that the sensitive
parameters indirectly relate to the impact of temperature change on the growth
of plant species. For example, plant ecologists have reported that temperature
change does affect the growth of plant species. This impact can be reflected
in our summer model only by changing the intrinsic growth rate for the first
species and also by changing the intra-specific coefficient for the first species (or
the carrying capacity of the first plant species).

For our dis-similar model, we observe that our important parameters relate
more to the fast growing plant species because the second plant species reflects
the characteristics of a slowly growing plant. We observe that a variation of the
model parameters of a slowly growing plant may not produce any significant
effect on the solutions.

The selection of these important model parameters is linked to the last two
chapters of this thesis. In attempting to find the probability of extinction of
each plant species, we would need to know whether it is more sensitive to a
variation of the more sensitive model parameters which we have selected in this
chapter. Instead of calculating the minimum biomass after each storm for all
the parameters of our summer competition model, we would focus on computing
the minimum biomass for only the important model parameters.
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Similarly, we would also require the sensitive model parameters of our benign
summer competition model which we derived in the previous chapter in order
to find out the type of plant species interactions that we can obtain from a
combination of our summer model and stochastic winter model qualitatively.
This will be the subject of our next chapter.
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Chapter 5

Simulation of Our
Summer-Winter Model of
Plant Species Interactions

5.1 Motivation

We know that most nonlinear systems of ordinary differential equations of first
order which we cannot find a closed-form solution for can be analysed by coding
these functions in a Matlab computer programming language.

Why do we choose to apply a simulation approach in this chapter? According
to ([9]) and ([52]), experiments and analytical theory have been the two principal
branches in the development of science. According to these authors, it is now
generally accepted that computational science has become the third branch of
the scientific endeavour of which simulation is an integral component.

Other important applications of modelling and simulation are in the study
of cardiovascular and respiratory systems ([27]) and in immunology ([21]). The
dynamics that explain vulnerability in human heart failure has been successfully
defined, analysed, and discussed using a powerful technique of computational
modelling and statistical analysis ([149]). A current successful application of
a simulation of stochastic differential equations that describe a complex bio-
physical problem has been reported ([96]). There are several other applications
of simulation approach which have been successfully conducted for biomedical
problems as cited by these authors. Other applications of simulation technique
in diverse industrial problems have been reported ([151]).

The computer approach to the study of complex competition interaction
between two plant species is called ecological simulation. This means that the
ordinary differential equations representing the dynamic characteristics between
two competing plant species for a limited resource can be analysed simultane-
ously to produce time dependent approximate solutions which resemble the
qualitative behaviour of the real system.

In effect, ecological simulation offers the following several advantages:

1. The qualitative behaviour of a competition interaction between two plant
species for various summer-winter model parameters with the same start-
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ing values can be obtained once a carefully written Matlab program has
been constructed. The model parameters are usually changed merely by
modifying and evaluating the two nonlinear interaction functions.

2. The prediction of the ways in which changes in the environment (for ex-
ample, as a result of climate change) influence biodiversity is of particular
concern. This initiative is the focus of several important research studies
as cited in chapter 1 of this thesis. Nevertheless, one major difficulty in
research in this field is that, in delicate ecosystems, the presence of re-
search scientists may itself be a major influence on the environment and
indeed on the results obtained. It would therefore be attractive to develop
a mathematical model that would simulate the interactions and thereby
reduce the need for actual experimentation.

3. An ecological simulation can be operated as a component in an actual
ecological harsh environment. This has a cost effective advantage because
the environmental impact of large numbers of scientists visiting the arc-
tic to collect specimens can be significant as cited in chapter 1 of this
thesis. One observed reason for variation in inter-specific interactions is
the disturbance of the environment. Hence, in this situation, there can
be significant environmental and cost advantages of a computational and
mathematical modelling approach.

4. An ecological simulation can be time-scaled so that the response from the
simulation is very fast compared with the response of the actual system
which is being simulated. In this way, many example trajectories instead
of exact solutions can be obtained in a short time.

5. The use of repetitive operation on the computer is advantageous in study-
ing the effect of varying model parameters on the qualitative behaviour of
solutions over time.

5.2 Introduction

In this chapter, we shall consider the numerical solution of summer compe-
tition model equations. The following nonlinear coupled ordinary differential
equations of first order have been derived in chapter 3 of this thesis.

dN1

dt
= N1(0.168− 0.0020339N1 − 0.0005N2) (5.1)

dN2

dt
= N2(0.002− 0.00002N1 − 0.000015N2) (5.2)

where
N1(0) = 0.04 > 0 (5.3)

N2(0) = 0.045 > 0 (5.4)

Similarly, the unit of starting biomasses would be in grams per area of grass
cover.

These model equations describe the interaction between two dis-similar com-
peting plant species for single limited resources such as nutrients, light, water,
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space and so on. The first species N1 is a fast growing plant compared to a
slowly growing species N2. We have assumed in this study a temperate type of
weather conditions.

The above model equations describe the growth of two plant species over
time. In the absence of interspecific competition coefficients, the two plant
species will take the form of Malthusian exponential growth. In the presence
of interspecific interaction coefficients, the plant species will grow instead of
decaying or oscillating.

We have also done the basic simulation analysis to confirm that the two
plant species grow better when interacting in isolation of each other than when
interacting together. This result shows the evidence of competition factor taking
place between these plant species. Our conclusion which will be defined and
discussed in detail in chapter six is consistent with ecological insight ([13]).

According to these authors, when these two plant species grow in isolation,
they usually have relative greater access to the same limited resources because
they are not in competition. But when they are in competition for the same
limited resources in the ecosystem, each plant species tends to outgrow the
other.

In our case, the two dis-similar plant species have two different interspecific
competition coefficients because the two plant species compete for the same
limited resources. In this case, plant species N1 will have bigger advantage over
plant species N2 in their struggle for limited resource within the ecosystem.

Assuming two plants grow in a garden and resources are plentiful, if the
summer growing season is lengthened, the first start of a severe winter storm
will have a more severe effect on taller plants than on shorter plants.

In this chapter, we are interested to simulate our summer competition model
and winter model of plant species interactions.

5.3 Aims of this Chapter

In this chapter, we will use our numerical simulation Matlab program to analyse
and answer the following questions

1. How do we approximate the number of storms?

2. For each storm, how do we approximate the intensity of the storm?

3. For each storm, how do we approximate how much biomass remains at
the end of the storm?

4. Decide on a method for calculating the minimum biomass for each plant
species over the 10 year period of one trajectory.

5. Write a program to simulate 1000 ten year periods with the starting values
and calculate experimental probabilities of extinction of each species.

6. How do we upgrade our program to reflect the concepts of shortened winter
and lengthening summer and use these to calculate experimental proba-
bilities of extinction of each species?

7. Can we use our summer-winter model to produce a situation in which
mutualism can be observed based on a summer competition model with
winter storms?
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5.4 Summer Model

In this chapter, we shall merge the usual seasons of spring, autumn, and summer
into one growing season called the summer model. In order to analyse this model
subsequently, we shall make the following realistic assumptions:

1. In a summer season which is characterised by a mild climate, we assume
a continuous growth of two plant species.

2. We assume the possibility of two plant speciesN1 andN2 that live together
and compete with each other for the same limited resource.

3. We assume that each population of plant species is inhibited not only by
members of its own species but also by those of the other population.

4. We assume linear growth rates and intra-specfic parameters are the logistic
parameters for species N1 and N2 if they were living alone.

5. Our deterministic summer model rests on the assumption that the envi-
ronmental parameters involved with our model system are all constants
irrespective to time and environmental fluctuations.

5.5 Stochastic Winter Model

The winter season is characterised by an occasional frequency of storms which
does not promote the growth of plant species. According to the analysis of
arctic climatology, the number of storms varies within the arctic region ([12]).
The occurrence of 2 or 3 storms every three months presupposes that we would
expect to have an annual mean number of storms to be between 6 storms and 9
storms. Since the enviornment is so uncertain, we might consider figures below
this range in our further analysis.

5.5.1 Poisson Distribution

We are motivated to use the Poisson distribution because it is an important dis-
crete distribution frequently used in engineering to evaluate the risk of damage.

By assuming that all possible number of storms in the winter model occur
only one at a time, that all such events occur independently, and that the prob-
ability of a storm occuring is constant per unit time, we can describe our winter
model as a Poisson process, where the mean number of storms is distributed
exponentially ([141], [142]).

Hence, a discrete Poisson probability density function (pdf) is defined by

f(x) = e−λλ
x

x!
(5.5)

for x = 0, 1, 2, . . . where E(x) = λ, V ar(x) = λ.

5.5.2 Gamma Distribution

Another concern is that of measuring the intensity of each storm on the biomass
at the start of a winter season. In this chapter, we propose to use the gamma
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distribution to determine the intensity of storm under some chosen shape and
scale parameters ( [141], [142]). The gamma distribution is an extension of
the exponential distribution which is characterised by a scale parameter which
describes the spread of the exponential distribution.

Hence, a gamma distribution is a two-parameter family of continuous prob-
ability distributions characterized by a scale parameter and a shape parameter.

There are several applications of gamma distribution in several books of
mathematical statistics.

The probability density function of a gamma distribution is defined by

f(x) =











λ
(r−1)! (λx)

r−1e−λx x > 0

0 elsewhere

(5.6)

According to [152], the structure of a plant is characterised by its shape and
size. We know that two plant species can take several shapes such as spherical,
square, rectangular, triangular and so on. For example, if the shape of a plant
is spherical, it has a base and the effect of any external force on the plant can
be studied as the impact of this force is distributed in terms of its shape and
base or scale.

The gamma distribution model is defined in terms of several values of the
shape and scale parameters. But the shape and scale parameters that could
fairly model the physical structure of a plant species do not have precise values.
Since the geometries of plant species differ ([152]), we have followed the idea in
our paper to choose the values of r = 5 and λ = 1 ([69]).

Why do we propose to use a probability distribution? Having mentioned
in chapter 1 of this thesis that actual experimentation in a harsh climate is
more costly, the simple relations between the mean number of storms and its
frequency of occurrence may not be realised. In this situation, we would think
that the best description we can provide to model the occurrence of occasional
storms in a harsh climate is in terms of a probability distribution.

5.6 Buckling

Buckling of a column occurs when the Euler critical load is exceeded ([187],
[198]). The Euler load is defined by the formula

PE =
π2EI

L2
. (5.7)

where PE is the Euler buckling load, E is the Young’s modulus for the
material, I is the least second moment of area of cross section, L is the length
of the strut between the pinned ends.

The Young’s modulus is a measure of the amount of stress that a plant
species can take before buckling. We assume that one end of a plant species
structure is fixed in the direction of wind and the above ground section is free.
Let the length of plant stem above soil surface be L units and effective length
be 2L units.
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According to ([152]), the Euler buckling load for the plant stem for the case
L = 2L in a wind direction can be similarly defined by

PE =
π2EI

4L2
. (5.8)

A detailed mathematical analysis and proof of Euler Bukling formula can be
found in the works of ([187], [198]).

Other researchers have examined the mechanical effect of wind on the growth
of plants ([22], [11]). We are interested to tackle the effect of storm on the
ecology of plant species in a severe arctic region where growth of plants is not
a common process.

Next, we will explain how the Euler buckling load will be used with wind
speed in the model to determine how much biomass is destroyed in a storm.

Assume that the force at the base of a plant of heightH caused by wind speed
V is proportional to V 2H3, that is, F = cV 2H3. Any force acting on a material
can be described as producing a stress. The unit for stress is the pascal (Pa),
which is the force per unit area. For the above ground plant species, assume
that PE = F . Then

π2EI

4L2
= cV 2H3 (5.9)

From this equation, we can simply solve for c to obtain

c =
π2EplantstemI

4V 2H3L2
(5.10)

In the theory of elasticity ([187]), the Young’s modulus is defined mathe-
matically as the slope of the stress-strain relationship

E =
σ

ǫ
(5.11)

where the symbol σ represents the stress in the material while the symbol ǫ
represents the strain in the material.

The amount of stress E that a plant species can take before buckling can
be determined by dividing the stress exacted on the plant by any change in the
dimension of the plant component ([205], [152]).

For example, if the force exerted on the biomass due to increasing storm
intensity is 2 Newtons in a patch of plant species of a 10m by 10m dimension,
then the stress σ = 2

100N/m2 which is 0.02N/m2. We know that the strain is a
dimensionless quantity.

Since the value of the strain does not have a precise value in the work of
Zebrowski (1991), let us consider a situation when the strain ǫ = 0.0474.

Consider when the length of the plant species before winter storm is ℓ1 = 2m.
What do we want to find? We want to define and discuss how to calculate the
amount of stress that a plant species can take before buckling.

The effect of storm on the length of the stem is modelled by ℓ1−ℓ2
ℓ1

. Since,
the strain is modelled by dividing the change in the length of the stem by the
original length before the winter storms, in this case

ℓ1 − ℓ2
ℓ1

= 0.0474. (5.12)
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From this equation, we know that

ℓ1 − ℓ2 = 0.0948. (5.13)

By substituting for the value of ℓ1, ℓ2 = 2− 0.0948 = 1.9052. Therefore, the
amount of stress E that a plant species can take before buckling

E =
0.02

0.0474
= 0.4219N/m2. (5.14)

What are we trying to find out? We want to find if a variation of the Young’s
modulus for the grass species would have any impact on our later calculation of
the minimum biomass after each storm and its implication for approximating
the experimental probability of extinction of each plant species.

Similarly, since the height of a plant is approximated by H = B
1

3 , H2 = B
2

3

and H3 = B. Assume that L = H, then L2 = H2 and 4L2 = 4B
2

3 . By
substituting for these expressions in the above formula, we would obtain

c =
π2EI

4V 2B
5

3

(5.15)

For a given calculated wind speed and a calculated value for biomass, we
can use the above formula to measure the effect of fierce storm on the biomass
or the effect of storm intensity on the biomass.

In summary, since the Young’s modulus is defined in terms of the stress
and strain, strain is dimensionless (extension of material divided by the original
length of material) and stress is defined as load per unit area, we would expect
the sectional area to vary from one grass species to another. Therefore the stress
is more likely to vary and so one can expect the Young modulus E to vary also.

5.7 Analysis of Stochastic Winter Model

In this section, our task is to attempt to analyse a few important questions
about the stochastic winter model.

5.7.1 Assumptions leading to stochastic winter model

From the literature, taller plant species are generally subjected to greater me-
chanical stress because wind speed is said to increase with height above the
ground surface ([140]). Hence, the relationship between wind speed or velocity
V and height of plant’s biomass H can be defined by

V = βH2 (5.16)

where β is a positive constant.
In order to construct a meaningful winter model, we shall assume that

1. Force at base of plant of height H caused by wind of velocity is proportional
to (V 2H3).

2. The impact of this force on the old biomass (or biomass at the start of
winter) causes some parts of the old biomass to be destroyed.
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3. In the winter season there will be no further growth and the plant pop-
ulations will instead be subjected to various weather events (storms etc.)
which lead to destruction of some or all of the biomass ([69]).

5.7.2 Old Biomass and New Biomass

The relationship between new biomass and old biomass is defined by New
biomass = (1-Proportion destroyed)times Old biomass where the proportion
of plant species destroyed is directly proportional to the force at base of plant
of height H, that is, the proportion destroyed, denoted by Pd, is

Pd = cV 2H3 (5.17)

where c is a positive constant that depends on a range of wind speeds, range
of plant heights, strength of stem, buckling effect, etc in such a way that the
quantity Pd < 1 with H3 = B where B represents the quantity of biomass.

If the value of force at base of plant per unit area is 1 Pascal and a positive
constant ǫ is assumed to control the error of computing the values of c, by using

F = cV 2H3 (5.18)

we shall obtain

c1 =
1

V 2H3
1 + ǫ

(5.19)

for species 1 and

c2 =
1

V 2H3
2 + ǫ

(5.20)

for species 2
Here the parameter V measures the effect of fierce storm on the biomass,

c1 measures the individual intensity of storm on species 1, c2 measures the
individual intensity of storm on species 2, H3

1 measures the maximum biomass
at the start of winter for plant species 1 and H3

2 measures the maximum biomass
at the start of winter for plant species 2. The two values of c are only calculated
once.

We have used a numerical method of fourth order Runge-Kutta to simulate
the summer only model from which the maximum biomass at the start of winter
can be calculated.

Under the winter model, we are interested to tackle three important ques-
tions:

1. How do we approximate the number of storms?

2. For each storm, how do we approximate the intensity of the storm?

3. For each storm, how do we approximate how much ”grass” species remains
at the end of the storm?
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5.7.3 How do we approximate the number of storms?

Ecologists are interested about how to determine the number of storms experi-
mentally. But mathematicians approximate the number of storms.

Having mentioned that the mean number of storms can be determined using
the Poisson distribution, we shall focus on illustrating this idea with a simple
example.

For a 10 year ecological simulation, each simulation run will produce a sample
of 10 data points representing a random list of mean number of storms in the
arctic.

For example, a possible Matlab random sample if mean number of storms
is 2 is 4, 2, 3, 3, 2, 2, 2, 0, 3, 2. What these data mean is that in year 1, we would
expect to have 4 storms, followed by 2 storms in year 2, then 3 storms in year 3
and so on. Then we will have no storm in year 8 and 2 storms in year 10. The
number of storms varies for a 10 year simulation.

5.7.4 For each storm, how do we approximate the inten-
sity of the storm?

We have used the gamma distribution to simulate the intensity of 1000 storms
on the biomass during a ten year simulation period of one trajectory.

Given that the other parameters are positive constants with varying storm
intensity on the biomass and the size of the biomass before the start of winter,
the storm intensity in our analyis can be determined by using the formula

c =
π2EplantstemI

4V 2B
5

3 + ǫ
(5.21)

where the parameter V measures the wind speed, B measures the biomass,
and ǫ is a small positive constant that takes account of the error in the calcula-
tion. By substituting for parameters Eplantstem and I as 0.4219 Pa and 1.2586,
we would obtain

c1 =
1.311253146

V 2B
5

3 + ǫ
(5.22)

c2 =
1.311253146

V 2B
5

3 + ǫ
(5.23)

The square of the storm speed constitutes a huge set of data in 1000 storm
simulations. We have used a Matlab function to order the data generated by
this simulation in terms of their fierceness. The topmost value in this sequence
of the square of the wind speed for 1000 storms represents how fierce the storm
would be on the biomass at the start of winter during a period of ten years. The
next values in the list after the worst effect of storm represent the individual
intensity of each storm on each plant species.
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5.7.5 How do we approximate how much plant species re-
mains at the end of each storm?

Both analytically and computationally, we used the following formula to ap-
proximate how much plant species remains at the end of each storm:

NB = (1− Pd)OB (5.24)

where NB, Pd and OB represent new biomass, proportion of old biomass that
is destroyed and old biomass. In a combined summer-winter model, the detail
of our numerical approach is briefly defined:

1. Use the most popular version of fourth order Runge-Kutter method to
simulate the summer only model with the chosen starting values

2. Next, from this simulation, we calculated the maximum biomass for each
species at start of winter

For the start of first year winter, our summer model is simulated only once
with which the maximum biomass for each species before the impact of storm
is calculated.

At the end of first year winter season, the biomass that remains becomes
the starting values to run the summer model for the second year from which we
calculated the maximum biomass for each plant species at start of winter for
the second year. This procedure is repeated for the ten year period.

5.7.6 Example: Determining how much biomass is de-
stroyed in a storm by an analytical method

Under a different starting value of our summer competition model, the species
biomass before the start of winter are 79.7979 grams and 0.0541 grams for
species N1 and N2. We choose the force at base of height of biomass to be 1
pascal whereas V = 227.5616 metres per second is the worst storm effect in a
1000 simulations. We used the Poisson distribution to determine the number of
storms for a period of 10 years which gave us a random sample of 4 storms in the
first year, 1 storm in the second year, no storms in the third and fourth years,
2 storms in the fifth year, 3 storms in the sixth year, 3 storms in the seventh
year, 2 storms in the eight year, 2 storms in the nineth year, and 2 storms in the
tenth year. We used the gamma distribution to simulate 1000 storms subject
to scale and shape parameters and observed a sample of a fierce storm having a
speed of 227.5616m/s, followed by the next levels of the velocity of storm with
196.0322m/s, 162.9354m/s, 156.715m/s, and 151.2619m/s.

To calculate the effect of storm on species 1 for the first year, the value of
c1 can be calculated using the formula

c1 =
1

(227.5616)(79.7979) + 0.2)
(5.25)

When this formula is simplified, c1 = 0.00005506869385 < 1 which measures
the effect of storm intensity on species 1. The old biomass OB for species 1 is
79.7979 grammes. After storm 1, the proportion of species 1 destroyed Pd can
be calculated using the formula
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Pd = 196.0322c1OB (5.26)

Hence, Pd = 0.861437259 < 1.
The new biomass NB after storm 1 can be calculated from the formula

NB = OB(1− Pd) (5.27)

By substituting for the old biomass OB and the proportion destroyed Pd,
the calculated new biomass NB is 11.057 grams. After the end of the first
storm, the old biomass for the start of storm 2 is 11.057 grams. Similarly, after
storm 2,

Pd = 162.9354c1(11.057) (5.28)

Hence, Pd = 0.099210476 < 1. Our new biomass NB is

NB = OB(1− Pd) (5.29)

where OB = 11.057 grams. In this case, the new biomass NB is 9.96 grams.
After storm 2, the old biomass is now 9.96 grams for the start of storm 3.

Next, after storm 3,

Pd = 156.715c1OB (5.30)

where OB = 9.96 grams and Pd = 0.085955699 < 1. Our new biomass NB
is equal to 9.96(1 − Pd) which is approximately 9.10388 grams. At the end of
storm 3, the old biomass before the start of storm 4 is 9.10388 grams.

Our Poisson random sample of the number of storms when the mean number
of storms per year is 2 specifies that the number of storms for the first year is
4. That means, we would stop our first year calculation after storm 4. In this
scenario,

Pd = 151.2619c1OB (5.31)

where OB = 9.10388 grams and Pd = 0.075833456 < 1. Our calculated new
biomass NB is 8.4135 approximately. Hence, at the end of storm 4, the old
biomass before the start of the second year winter season is 8.4135 grams.

This example illustrates how we have calculated the minimum biomass at
the end of storm 4 in the first year for the first species which has a starting
biomass of 79.7979 grams per m2 before the start of first year winter.

When the starting values are N1(0) = 0.04g/m2 and N2(0) = 0.045g/m2,
our calculated biomasses without winter storms are N1 = 83.1887g/m2 and
N2 = 0.0533g/m2 when the two plant species are interacting together whereas
our calculated biomasses without winter storms are N1i = 83.2013g/m2 and
N2 = 0.0787g/m2 when the two plant species are interacting separately.

By using the Poisson distribution to obtain a sequence of storms for a pe-
riod of 10 years when the annual number of storms is 6, we would obtain
(4, 10, 9, 9, 4, 4, 7, 5, 7, 9). That is, we would expect to have 4 storms in the
first year and 9 storms in the tenth year. We also use the gamma distribution
to measure the extent of the fierceness of winter storm for a simulation of 1000
storms.
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The first five cases of storm intensity are (179.6793, 174.8924, 167.9871, 153.7375, 141.5542).
The next five cases of storm intensity are (135.5836, 129.0163, 126.8739, 124.3238, 123.7429).

In this example, we would simply present our final calculations for the min-
imum biomass for the first year winter season in Table 5.1.

plant species Analytical Calculation
type start of winter after st1 after st2 after st3 after st4

N1 83.1887 2.21734 2.162085 2.11400585 2.071684
N2 0.0533 0.00248 0.002374352 0.002285 0.002209

Table 5.1: Calculations of the minimum biomass for the first year winter season

where st(i) denotes storm i. For the second year winter, the starting biomasses
will be 2.0717g/m2 for the first plant species and 0.002209g/m2 for the second
plant species.

To avoid lengthy algebraic calculations which may incur approximation er-
rors, we propose to simulate our summer-winter model in order to calculate the
minimum biomass after each storm. In our numerical simulation, we propose to
use a fourth order Runge-Kutta numerical method to simulate our combination
of a summer model and a winter model in only one Matlab program and hence
calculate the minimum biomass.

5.8 Main Results

We shall only consider the simulation application of our summer-winter model
in this section. It is worth mentioning that no closed-form solutions of nonlinear
model equations of competition interaction between two dis-similar plant species
have been found. The behaviour of solutions over a ten year period is better
understood only in terms of example trajectories instead of exact solutions.

5.8.1 Calculation of the minimum biomass: variation of
the mean number of storms

In this section, we are interested to calculate the minimum biomass after the
effect of storm on each plant species. To achieve this, it is important to first de-
rive the nonlinear interaction equations on which this present analysis is based.
We have done this prior to this chapter.

The mean number of storms is deduced from arctic data. Hence, it is imper-
ative to investigate the effect of varying winter parameters on the calculation
of minimum biomass and experimental probability of extinction of each plant
species.

In this section, we shall present our results on a method of calculating the
minimum biomass for each plant species over the 10 year period of one trajectory.

We present these results which we have not seen elsewhere with the hope of
providing further insight into this complex ecological simulation of two compet-
ing dis-similar plant species model in a harsh climate.

We present our simulation result when the mean number of storms is 6. We
shall start this investigation with a five year simulation and use the figures we
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would obtain to calculate the minimum biomass for each plant species over the
5 year period of one trajectory.

Our model parameters which are estimated (in chapter three) using the 2-
norm are a = 0.168, b = 0.0020339, c = 0.0005, d = 0.002, e = 0.00002, and
f = 0.000015 with starting values of N1(0) = 0.04 grams/m2 and N1(0) = 0.045
grams/m2.

What do we want to find out? We want to work out the minimum biomass
over the 5 year period of one trajectory and with the same starting values
calculate our experimental probability of extinction of each species.

Our estimated value of the Young’s modulus E for plant stem is 0.4219
N/m2, the second moment of area is 1.2586m4, and the value of π2 is 9.87755102.
By using these figures, the estimated intensity of storm on the biomass can be
calculated by using the formula

c =
1.311253146

V 2B
5

3 + ǫ
(5.32)

where V specifies the magnitude of the storm intensity determined by the
gamma distribution and B specifies the biomass in grams/m2 before the start
of each storm.

We have used this formula, the fourth order Runge-Kutta scheme, the Pois-
son discrete distribution to develop a Matlab program for a fixed mean number
of storms to determine the minimum biomass over a 5 year period of one tra-
jectory.

Before the start of winter, the biomasses for the two plant species are N1 =
82.5878, N2 = 0.0535, N1i = 82.5999, and N2i = 0.0787 grams per area of
grass cover when the initial conditions are N1 = 0.04 grams/m2 and N2 =
0.045 grams/m2. These numbers show that the plant species tend to grow
effectively separately than together which indicates competition between the
two interacting plant species.

In Table 5.2, the following notations are used:

1. mbN1 represents the minimum biomass that remains after each storm for
plant species N1.

2. PdN1
represents the proportion of species N1 that is destroyed by storm

in percentage.

3. HN1 represents the height that is related to the minimum biomass N1

that remains after storm.

4. mbN2 represents the minimum biomass that remains after each storm for
plant species N2.

5. PdN2
represents the proportion of species N2 that is destroyed by storm

in percentage.

6. HN2 represents the height that is related to the minimum biomass N2

that remains after storm.

It is worth mentioning how we have calculated these variables. The min-
imum biomasses are calculated by using our Matlab program which we have
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written. The proportion of plant species that is destroyed can simply be calcu-
lated analytically or by hand.

The height being referred to above is not the height of the biomass. It is
a constant that is related to the biomass by the formula H = (B)

1

3 which can
also be calculated by hand.

Before the start of winter season,the value of H1 is the cube root of the
biomass of plant species N1 = 82.5878 grams/m2 which is 4.355. whereas
the value of H2 is the cube root of the biomass of plant species N2 = 0.0535
grams/m2 which is 0.3768. We obtain the biomasses by simulating these two
dis-similar interaction functions

f(N1, N2) = 0.168N1 − 0.0020339N1N1 − 0.0005N1N2 (5.33)

g(N1, N2) = 0.002N2 − 0.000015N2N2 − 0.00002N1N2 (5.34)

with starting population sizes of N1(0) = 0.04 grams/m2 and N1(0) = 0.045
grams/m2.

To calculate our experimental probability of extinction for each plant species
over a period of one trajectory, we simply count the number of cases of this sim-
ulation that hit extinction and divide this number by the number of simulation
runs.

5.8.2 Example 1

In this section, we are interested to calculate the minimum biomass when the
mean number of storms is 6 over a 5 year period of one trajectory. Our calcu-
lations are presented in Table 5.2.

Simulation Run Calculation of the minimum biomass
n mbN1 PdN1

HN1 mbN2 PdN2
HN2

1 0.04 99.95 0.342 0.007565 85.8 0.196
2 0.04 99.95 0.342 0.00496 90.7 0.171
3 0.04 99.95 0.342 0.004587 91.4 0.166
4 0.04 99.95 0.342 0.006118 88.5 0.183
5 0.04 99.95 0.342 0.010159 80.9 0.217

Table 5.2: Calculation of the minimum biomass if the number of storms is 6

What do we learn from these numbers in Table 5.2? We observe that our
experimental probability of extinction for plant species N1 is 1 because the
number of cases of the minimum biomass that hit extinction is 5 if we consider
a 5 year period of one trajectory. In contrast, our experimental probability of
extinction for plant species N2 is 0 because the number of cases of the minimum
biomass that hit extinction is 0 for the same 5 year period of one trajectory.

5.8.3 Example 2

In this example, we would like to calculate the minimum biomass of each plant
species if the mean number of storms is 8 over a 5 year period of one trajectory?
Our calculations are presented in Table 5.3
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Simulation Run Calculation of the minimum biomass
n mbN1 PdN1

HN1 mbN2 PdN2
HN2

1 0.04 99.95 0.342 0.0063 88.2 0.18
2 0.04 99.95 0.342 0.0069 87.1 0.19
3 0.04 99.95 0.342 0.0072 86.5 0.193
4 0.04 99.95 0.342 0.0075 85.9 0.195
5 0.04 99.95 0.342 0.008 85 0.2

Table 5.3: Calculation of the minimum biomass if the number of storms is 8

In this scenario, the minimum biomass for species N1 all hit extinction, that
is, our experimental probability of extinction for species N1 is 1. For species
N2, our experimental probability of extinction is 0.

5.8.4 Summary of results

We have similarly calculated the minimum biomass of each plant species for
other variations of the mean number of storms over a period of 5 years and 10
years of one trajectory.

Our experimental probabilities of extinction of each species are presented in
Table 5.4.

Example Summary
n ns ys psp1 psp2

1 6 5 1 0
2 8 5 1 0
3 10 5 1 0
4 6 10 1 0
5 8 10 1 0
6 10 10 1 0.1
7 15 10 1 0.5

Table 5.4: Calculation of the minimum biomass for other variations of the num-
ber of storms

where

1. ns represents the mean number of storms.

2. ys represents the year of simulation of one trajectory.

3. psp1 represents the experimental probability of extinction of species N1.

4. psp2 represents the experimental probability of extinction of species N2.

We learn from Table 5.4 that a variation of the mean number of storms does
not change the experimental probability of extinction of species N1 as its value
is 1 irrespective of the period of one trajectory. However, our experimental
probability of extinction of species N2 when the mean number of storms is 10
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is 0.1. That is, we would expect to have 1 case out of 10 cases to hit extinction.
In contrast, our experimental probability of extinction of species N2 when the
mean number of storms is 15 is 0.5. This calculation implies that 5 cases out of
10 cases to hit extinction.

In summary, we observe by our present calculations that species N1 will
not survive for the chosen year of simulation irrespective of a variation of the
number of storms. We observe that species N2 will survive for the chosen year
of simulation irrespective of a variation of the number of storms.

5.8.5 Experimental probability of extinction fora = 0.2016

In chapter three of this thesis, we have selected three important model param-
eters of which one of these is our intrinsic growth rate parameter a.

How sensitive would the value of the experimental probability be if any of
these important parameters is slightly changed when the annual mean number
of storms is 10.

What do we want to find out? We want to find out how sensitive is the
experimental probability of extinction when a = 0.2016 if the annual mean
number of storms is 10 over a 10 year period of one trajectory. We would do this
for 10 different cases to find out systematically the extent of the experimental
probability of extinction of each plant species.

From our experimental analysis, we also know that the experimental prob-
ability of extinction of species N1 is 1 if a = 0.2016. For this reason, we would
focus to tackle the problem in this section only for the second species.

For this level of analysis, we recalculated the biomasses before the start of
the winter season if a = 0.2016. If a = 0.2016, the new biomasses before the
start of the winter season are N1max = 99.1079 grams/m2 and N2max = 0.0488
grams/m2. The values of the other model parameters remain the same. Our
calculations are presented in Table 5.5.

Data Points Different sample numbers for each year
n(different years) mbN2 PdN2

HN2 n mbN2 PdN2
HN2

1 0.002372 95.13 0.1334 6 0.002174 95.5 0.1295
2 0.002365 95.15 0.1332 7 0.002358 95.16 0.1331
3 0.001856 96.2 0.1229 8 0.002459 94.96 0.135
4 0.001894 96 0.1237 9 0.002298 95.3 0.132
5 0.00295 93.9 0.1434 10 0.00246 94.96 0.135

Table 5.5: Calculation of our experimental probability of extinction if the num-
ber of storms is 10

In order to provide a clearer interpretation of these numbers, we shall assume
that a 95 percent of species N2 is destroyed. In this scenario, we use the formula
that defines the new biomass in terms of old biomass and the proportion of the
old biomass that is destroyed by storm. By our assumption, the new biomass
will be

NB = (1− 0.95)0.0488 (5.35)
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Hence, our new biomass under this scenario is 0.00244 grams per area of
grass. Therefore, if NB ≤ 0.00244 then extinction of the second plant species
will occur. Whereas if the value of our new biomass is bigger than 0.00244, then
our second plant species will survive.

Hence, if a = 0.2016, our calculated experimental probability of extinction
of the second species is 0.7 for a 10 year period of one trajectory.

In comparison, if a = 0.168, our calculated experimental probability of ex-
tinction of the second species is 0.1 for a 10 year period of one trajectory. On
the basis of these numbers, we observe that our experimental probability of ex-
tinction is more sensitive when the annual mean number of storms is 10 over
a 10 year period of one trajectory if a = 0.2016. This conclusion could be by
chance.

Hence we propose a systematic method of tackling this problem for ten
different cases. Since our experimental probability of extinction of the first
species is 1 irrespective of the number of simulation runs, we shall only focus on
studying the sensitivity behaviour of the experimental probability of extinction
of the second species for a 10 year period of one trajectory if a = 0.2016 for a
few repeated simulations.

We would simply present a brief overview which summarises our observations
for the second species in Table 5.6 and Table 5.7 by using a similar calculation
method as we have done in the previous sections.

The notation mb1N2 stands for the minimum biomass of our second plant
species over a 10 year period of one trajectory in simulation 1 whereas the
notation mb2N2 stands for the minimum biomass of our second plant species
over a 10 year period of one trajectory in simulation 2.

Data Points Different sample numbers for each year
n(different years) mb1N2 mb2N2 mb3N2 mb4N2 mb5N2

1 0.002372 0.00281 0.001971 0.003239 0.003112
2 0.002365 0.002548 0.002855 0.004284 0.003444
3 0.001856 0.002305 0.002561 0.003718 0.002684
4 0.001894 0.002688 0.002643 0.003496 0.003703
5 0.00295 0.002409 0.002565 0.003471 0.00336
6 0.002174 0.002782 0.002779 0.00357 0.002915
7 0.002358 0.00281 0.002747 0.002741 0.003071
8 0.002459 0.00289 0.002795 0.002849 0.003688
9 0.002298 0.002504 0.002989 0.00328 0.00278
10 0.00246 0.0027 0.002448 0.003055 0.002585

Table 5.6: Another calculation of our experimental probability of extinction if
the number of storms is 10

By using our 95 percent assumption that our second plant species is de-
stroyed, our calculated probabilities of extinction for the first five columns over
a 10 year period of our second plant species are ( 7

10 ,
2
10 ,

1
10 ,

0
10 ,

0
10 ).

In a similar manner, our calculated probabilities of extinction for the next
five columns over a 10 year period of our second plant species are ( 3

10 ,
5
10 ,

8
10 ,

7
10 ,

2
10 ).

Hence, out of 100 data points, only 35 data points will hit extinction for
our second plant species. Therefore, in this scenario, our experimental proba-
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Data Points Different sample numbers for each year
n(different years) mb6N2 mb7N2 mb8N2 mb9N2 mb10N2

1 0.002721 0.002756 0.00212 0.002137 0.002539
2 0.002771 0.002539 0.002386 0.002387 0.002525
3 0.002408 0.002341 0.00286 0.001739 0.002344
4 0.002775 0.002745 0.002163 0.001833 0.002471
5 0.00242 0.002305 0.00218 0.002659 0.002567
6 0.002822 0.002158 0.00222 0.003001 0.002468
7 0.00261 0.002824 0.003531 0.002 0.002395
8 0.003012 0.002596 0.002362 0.001124 0.00293
9 0.002269 0.002317 0.002307 0.002107 0.002644
10 0.002689 0.002289 0.00241 0.002463 0.002558

Table 5.7: A similar calculation of our experimental probability of extinction if
the number of storms is 10

bility of extinction for our second plant species is 0.35 whereas our experimental
probability of extinction for our first plant species is 1.

In summary, we learn from this scenario that our second plant species has a
good chance of surviving (with a probability of survival which is calculated as
0.65) than our first plant species which its probability of survival is zero.

Let us consider another scenario if a = 0.2016 in a 20 year period of one
trajectory when the annual mean number of storms is 10. We have also calcu-
lated that our experimental probability of extinction of the first species will be
1 irrespective of the period of simulation. That is, about 99.96 percent of the
first species will be destroyed after each storm. This result is consistent with
our previous results.

Next, we shall discuss the situation when a = 0.2016 in a 20 year period of
one trajectory when the annual mean number of storms is 10.

Due to lack of space and the fact that a further set of different sample num-
bers is not likely to change our expected pattern in the sensitivity of our exper-
imental probability of extinction for the second plant species, we would simply
present our results for only twenty different samples of numbers as displayed in
Table 5.8.

In this scenario, our calculated experimental probability of extinction for our
second plant species is 7

20 over 20 repeated simulations.
In summary, if a = 0.2016 in a 20 year period of one trajectory when the

annual mean number of storms is 10, we learn from these numbers in Table 5.8
that our experimental probability of extinction for the second species is simply
0.35. That is, 7 cases out of 20 cases hit extinction.

But in another 20 year period of one trajectory for a = 0.2016 when the
number of storms is 20, we found that our experimental probability of extinction
for the second species is 1. Our corresponding calculations are presented in Table
5.9. The second set of our 10 simulated minimum biomass for the second species
are displayed under the third column.

In this scenario, we observe that 20 cases out of 20 cases of remaining biomass
hit extinction for our second plant species.

In summary, our experimental probability of extinction of species N2 varies
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Data Points Different sample numbers
n(different years) mb1N2 Pd(N2) mb1N2 Pd(N2)

1 0.002353 95.17 0.002718 94.4
2 0.00261 94.64 0.00268 94.5
3 0.002291 95.3 0.002752 94.3
4 0.002667 94.52 0.002619 94.6
5 0.0022 95.48 0.002432 95
6 0.002693 94.47 0.002764 94.3
7 0.002318 95.24 0.003096 93.64
8 0.002526 94.8 0.002778 94.29
9 0.002677 94.5 0.002701 94.45
10 0.002402 95.07 0.002385 95.1

Table 5.8: Another calculation of our experimental probability of extinction if
the number of storms is 10

Data Points Different sample numbers
n(different years) mb1N2 Pd(N2) mb1N2 Pd(N2)

1 0.001792 96.3 0.002034 95.8
2 0.001988 95.9 0.002138 95.6
3 0.002302 95.27 0.001897 96.1
4 0.002403 95.1 0.002045 95.8
5 0.002249 95.4 0.002039 95.81
6 0.002029 95.83 0.001896 96.1
7 0.002108 95.67 0.00224 95.4
8 0.001878 96.14 0.002376 95.12
9 0.001829 96.24 0.002141 95.6
10 0.00221 95.46 0.002144 95.59

Table 5.9: Another calculation of our experimental probability of extinction if
the number of storms is 20

when the number of storms varies for the case a = 0.2016. We observe that in-
creasing the number of storms would increase the chance of complete extinction
for both plant species.

But we are yet to calculate our experimental probability of extinction for
the plant species growing separately. This calculation would be necessary in
order to deduce if we can obtain mutualism from a combination of our summer
competition model and our stochastic winter storms.

5.8.6 Example 3

So far, we have considered only the repeated simulated trajectories when the two
dis-similar plant species are interacting together. Next, we would like to consider
also when the two species are growing in isolation or separately. For a complete
understanding of this problem, we have applied the same technique to calculate
the minimum biomass of each plant species (the detailed calculations are not
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presented in this chapter) and hence calculated our experimental probabilities
of extinction of plant species.

We shall present our final calculations in Table 5.10 which would be discussed
qualitatively.

Parameter Value Extinction Probabilities
a ns ys pN1 pN1i pN2 pN2i

a=0.084 8 5 1 1 0 0
a=0.084 10 5 1 1 0 0
a=0.084 10 10 1 1 0 0
a=0.084 15 10 1 1 0.6 0.8
a=0.084 20 10 1 1 1 1
a=0.0924 20 10 1 1 1 0.9
a=0.0924 20 10 1 1 0.8 0.9
a=0.1008 20 10 1 1 0 1
a=0.1008 20 10 1 1 0.4 0
a=0.1008 20 10 1 1 0.5 0

Table 5.10: A different calculation of our experimental probability of extinction

In summary, for these changes in our parameter a, we observe that our exper-
imental probabilities of extinction of species N1 and N1i are each 1 irrespective
of the number of storms and the number of our repeated simulations.

Under these scenaria, we would expect our experimental probability of ex-
tinction and survival for our second plant species to vary.

But over 20 repeated simulations with different starting biomasses, we are
interested to find out if the behaviour of our experimental probability of ex-
tinction under a different set of starting values would either change or stay the
same as we observed above.

5.8.7 Example 4

One of the ways to tackle the problem observed in the last section is to consider a
different set of starting values. In this scenario, we shall consider N1(0) = 12.48
grams/m2, N2(0) = 24 grams/m2 and a = 0.2016. The starting values before
the start of a winter season for a period of 70 days are

1. N1 = 93.4572 grams/m2.

2. N1i = 99.1199 grams/m2.

3. N2 = 24.3357 grams/m2.

4. N2i = 37.0044 grams/m2.

Another important observation is that the plant species tend to grow effec-
tively separately than together which indicates competition.

To illustrate the effect of using these new starting values if the mean number
of storms is 20, we have used our summer-winter model to calculate the min-
imum biomasses of each plant species over a 10 year period of one trajectory.
Over another 20 repeated simulations, we present our calculations in Table 5.11.
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For example, when our experimental probability of extinction for any of the
species is 0, it means that particular species will survive for that simulation.
When our experimental probability of extinction for any of the species is 1,
it means that species has reached a zero biomass for that simulation. If our
simulation produces 2 cases out of 10 cases for a a particualr species, then its
experimental probabiity of extinction is 0.2 compared with its probability of
survival which in this case is 0.8.

Simulation Runs experimental probability of extinction
n(different years) N1 N1i N2 N2i n N1 N1i N2 N2i

1 0.1 0.2 0.2 0.4 11 0 1 0 1
2 0.2 0.3 0.3 0.4 12 0 1 0 1
3 0.1 0.2 0 1 13 0.2 1 0.3 0.3
4 0.1 0.1 1 1 14 0.1 1 1 0.8
5 0 0 0 1 15 0 1 0.3 0.4
6 0 0.5 0 1 16 1 1 0 0.1
7 0 0.1 0 1 17 1 1 0 0
8 0.2 0 0.1 1 18 1 1 0 0
9 0.1 0 0 1 19 1 1 0.5 0.8
10 0 0 0 1 20 0 1 0 0

Table 5.11: A different calculation of our experimental probability of extinction
for a different set of starting values

What can we learn from these numbers? In order to provide a clear interpre-
tation of these numbers, we would break down these information into categories
such as

1. complete survival of the plant species where the value of our probability
of species survival is 1, that is, 10 cases out of 10 cases will survive in a
10 year period of one trajectory.

2. higher probability of survival where the value of our probability of species
survival is between 0.7 and 0.9, that is, 7 or 9 cases out of 10 cases will
survive in a 10 year period of one trajectory.

3. moderate probability of survival where the value of our probability of
species survival is 0.6, that is, 6 cases out of 10 cases will survive in a 10
year period of one trajectory.

4. even probability of survival where the value of our probability of species
survival is 0.5, that is, 5 cases out of 10 cases will survive in a 10 year
period of one trajectory.

5. lower or weak probability of survival where the value of our probability of
species survival is less than 0.5.

6. complete extinction of the plant species where the value of our probability
of species survival is 0, that is, minimum biomass reach zero biomass.
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In summary, we have used our summer-winter prototype model to obtain
the following results which we can now report with the expectation of providing
a further insight into our complex ecological problem.

Over 20 repeated simulation runs, species N1 would have 8 runs of complete
survival out of 20 runs, 8 runs of higher probability of survival out of 20 runs,
and reached a zero biomass on 4 runs out of 20 runs.

Over 20 such runs, species N1i would have 4 runs of complete survival out
of 20 runs, 5 runs of higher probability of survival out of 20 runs, 1 run of even
chance of species survival out of 20 runs, and reached a zero biomass on 10 runs
out of 20 runs.

Over 20 such runs, species N2 would have 12 runs of complete survival out
of 20 runs, 5 runs of higher probability of survival out of 20 runs, 1 run of even
chance of species survival out of 20 runs, and reached a zero biomass on 2 runs
out of 20 runs.

Over 20 such runs, species N2i would have 3 runs of complete survival out
of 20 runs, 2 runs of higher probability of survival out of 20 runs, 3 runs of
moderate chance of species survival out of 20 runs, 2 runs of lower or weak
chance of species survival and reached a zero biomass on 10 runs out of 20 runs.

Therefore, we observe from our numerical simulation analysis that the two
plant species grow more effectively together than separately. In this scenario,
our summer-winter model has produced a situation in which mutualism can be
observed from a combination of our summer competition model and our stochas-
tic winter model. This result is consistent with the stress gradient hypothesis
as defined and discussed in chapter 1 of this thesis.

This is one of the important results of this chapter which is also consistent
with the dominant ecological viewpoint which we have defined and discussed in
chapter one of this thesis.

5.9 Effect of varying the length of our summer
growing season

Having examined the effects of changing one of our important parameters on
the calculation of the minimum biomass and its implication for estimating our
experimental probability of extinction of each species, we would progress to find
out the effects of varying the length of summer on the minimum biomass and its
implication for the experimental probability of extinction of each plant species.

In this scenario, we shall considerN1(0) = 4 grams/m2, N2(0) = 10 grams/m2

and a = 0.168. The starting values before the start of a winter season for a pe-
riod of 10 days are

1. N1 = 77.8478 grams/m2.

2. N1i = 80.6783 grams/m2.

3. N2 = 10.3973 grams/m2.

4. N2i = 10.7651 grams/m2.

Under these new starting values, we shall consider when the mean number
of storms is 20. Another important observation is that the plant species grow
effectively separately than together which indicates competition.
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Over 20 repeated simulations, the calculations of our experimental probabil-
ity of extinction of each plant species are presented in Table 5.12.

Simulation Runs experimental probability of extinction
n(different years) N1 N1i N2 N2i n N1 N1i N2 N2i

1 1 1 1 1 11 1 1 1 0
2 1 1 1 0.1 12 1 1 1 0
3 1 1 1 0 13 1 1 1 0.8
4 1 1 0.9 0 14 1 1 1 0
5 1 1 0.8 0.1 15 1 1 0.6 0
6 1 1 0.9 0.1 16 1 1 0 0.1
7 1 1 0.9 0 17 1 1 1 0
8 0.9 0.3 1 0.7 18 1 1 1 0.1
9 1 1 1 0.9 19 1 1 0.9 0
10 1 1 0.7 0.2 20 1 1 0.8 0.8

Table 5.12: A different calculation of our experimental probability of extinction
for a different set of starting values when the number of storms is 20

In this scenario, we observe that in 20 different repeated simulations, in 20
cases out of 20 cases, species N1 will go extinct whereas for species N1i, in 19
cases out of 20 cases, it will go extinct and will survive in 1 case out of 20 cases
where its experimental probability of survival is 0.7.

However, over similar repeated simulations, we observe that species N2i has
a better chance of surviving than species N2.

Next, we shall consider N1(0) = 4 grams/m2 and N2(0) = 10 grams/m2.
We shall assume that the mean number of storms is 20. The starting values
before the start of a winter season for a period of 100 days are

1. N1 = 80.0188 grams/m2.

2. N1i = 82.5999 grams/m2.

3. N2 = 11.3315 grams/m2.

4. N2i = 20.3725 grams/m2.

An important observation is that the plant species tend to grow effectively
separately than together which indicates competition.

Our calculations of the experimental probability of extinction of each plant
species are presented in Table 5.13.
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Simulation Runs experimental probability of extinction
n(different years) N1 N1i N2 N2i n N1 N1i N2 N2i

1 1 1 1 0.2 11 1 1 1 0
2 1 1 1 0.1 12 1 1 1 0
3 1 1 1 0 13 1 1 1 0.8
4 1 1 0.9 0 14 1 1 1 0
5 1 1 0.8 0.1 15 1 1 0.6 0
6 1 1 0.9 0.1 16 1 1 0 0.1
7 1 1 0.9 0 17 1 1 1 0
8 0.9 0.3 1 0.7 18 1 1 1 0.1
9 1 1 1 0.9 19 1 1 0.9 0
10 1 1 1 0.2 20 1 1 0.8 0.8

Table 5.13: A different calculation of our experimental probability of extinction
for a different set of starting biomasses
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In this scenario, we observe that both species N1 and N1i have a greater risk
of suffering from the ecological risk of extinction. Similarly, species N2i has a
better chance of surviving than species N2.

By our present analysis, increasing the length of summer season indicates
that the second plant species grow effectively separately than together under
these starting conditions. We would expect this pattern to change if we consider
a small interval for the number of storms. We propose to investigate this problem
further in chapter six in order to find out the extent of obtaining other types of
species interactions due to a variation of the length of summer season.

5.10 Conclusion and Further Remarks

In this chapter, we have achieved the following

• We have used a Poisson distribution to approximate the number of storms.

• We have used the gamma distribution to approximate the intensity of the
storm.

• For each storm, we have approximated both analytically and numerically
how much biomass remains at the end of the storm.

• We have constructed a sound methodology with which to calculate the
minimum biomass for each plant species over a 10 year period of one
trajectory and illustrated this idea with a few examples.

• Under appropriate variation of summer and winter parameters, we have
calculated experimental probabilities of extinction of each plant species
and used these figures to study the senstivity of our calculated experi-
mental probabilities of extinction.

• By using the same summer-winter model and modifying our starting biomasses,
we can now draw the conclusion from our numerical experiments that the
species grow more effectively together than separately.

• Therefore, our summer-winter model has produced a situation in which
mutualism can be observed from a combination of our summer model and
stochastic winter model.

• Similarly, by a variation of the length of our summer growing season,
our model can predict mutualism qualitatively from a combination of our
summer model and our stochastic winter model (see section 5.8). Those
results are consistent with the dominant ecological viewpoint which we
have defined and discussed in chapter one of this thesis.

In chapters two and three, we have studied the dynamics of two competing
plant species under some simplifying assumptions and analysed the correspond-
ing model equations mathematically. In chapter four, we have developed a
numerical methodology for finding the sensitivity of each model parameter over
a time interval and on the basis of this approach selected the model parameters
that have the biggest effect on the solutions of our determinsitic competition
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model equations. It is interesting to see the link between this chapter and the
first four chapters of this thesis.

In chapter six, we would further investigate the extent of obtaining mutual-
ism for more variations of summer and winter model parameters from a combi-
nation of our summer competition model and our stochastic winter model.
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Chapter 6

Numerical Simulation of
Changes in Qualitative
Interactions of Plant
Species

6.1 Motivation

The classical experimental approach is to determine competition and mutu-
alistic interactions between two plant species. The primary motivation of this
important chapter is to find out if we can obtain a mutualistic interaction from a
combination of our summer competition model and our stochastic winter model
due to a variation of some summer and winter parameters which is consistent
with the early ecological viewpoint which we cited in chapter one of this thesis.

Our test model equations are based on the interaction between two dis-
similar competing plant species which we derived in chapter three of this thesis.
But the question of obtaining mutualism from a combination of our summer
competition model and our stochastic winter model on a single simulation run
would not be satisfactorily answered because the observation from only one
ecological simulation may have emerged by chance.

In order to provide a clearer explanation about the extent of obtaining mutu-
alism from a combination of our summer competition model and our stochastic
winter model due to a variation of summer-winter model parameters, we would
like to carry out a systematic ecological simulation of our summer-winter model
over a ten year period of one trajectory in which we can observe the pattern of
plant species interaction over ten repeated simulations.

6.2 Introduction

In this chapter, we would like to investigate the qualitative behaviour of obtain-
ing mutualism from a combination of our deterministic summer competition
model and our stochastic winter model. In chapter one, we have already cited
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the relevant ecological references on positive interactions in a harsh climate and
negative interaction in a benign climate.

In this chapter, we consider the following nonlinear coupled model of ordi-
nary differential equations of first order which we have constructed in chapter
three by using our 2-norm penalty function fitting method. This system of
model equations of competition is

dN1(t)

dt
= N1(t)(0.168− 0.0020339N1(t)− 0.0005N2(t)) (6.1)

dN2(t)

dt
= N2(t)(0.002− 0.00002N1(t)− 0.000015N2(t)) (6.2)

with N1(0) = 0.04g/m2 and N2(0) = 0.045g/m2.
We do not intend to analyse these model equations in this chapter because

we have done that in chapter three of this thesis.

6.3 What is the main aim of this chapter?

Our main objective in this important chapter is to attempt to investigate the
possibility and extent of obtaining mutualism and facilitation qualitatively from
a combination of our summer model and our stochastic winter model which is
consistent with the dominant/mainstream ecological viewpoint.

6.4 How does the mid-year value of each plant
species behave in the presence or absence of

the other?

For two interacting dis-similar plant species for limited resources, first we shall
attempt to look for cases where the limiting values are higher in the absence
of another species than in the presence of another species due to a variation
of the number of storms, storm intensity and the length of summer growing
season. This idea if achieved would be an indication of obtaining competition
qualitatively from our numerical simulation.

Next, we shall similarly attempt to look for cases where the limiting values
are higher in the presence of another species than in the absence of another
species due to a variation of the number of storms, storm intensity and the
length of summer growing season. This idea if achieved would be an indication
of obtaining mutualism qualitatively from our numerical simulation.

6.4.1 The limit of the sequence of mid-year values

In a sequence of mid-year plant growth data over ten years, it is the limit of
the sequence of mid-year values of plant growth at the tenth year which deter-
mines the type of plant species interaction observed over a period of ten years
when compared between plant species interacting together and plant species
growing in isolation. What ecologists do experimentally is to grow two plant
species. They come back every mid-year of a growing season to measure the
new biomasses of the two plant species. In this situation, all the nine mid-year
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values do not tell us which type of interaction has emerged over the period
of ten years. It is the tenth limiting mid-year values over 10 years that tell
us which type of species interaction has emerged. This is the well established
classic experimental method.

In this chapter, we shall use a numerical simulation to find out if we can
obtain mutualism from a combination of a summer competition model and a
stochastic winter model.

6.4.2 A simple method of interpretation: how do we go
about it?

For each simulation and each year, the outcome of our numerical simulation
experiment consists of four limiting numbers namely the mid-year values when
species 1 and 2 are interacting together along with their corresponding mid-
year values when the species are interacting in isolation. If we think in this
way, we would obtain a set of four limiting mid-year values such as S =
(N1, N1i, N2, N2i). We would expect to have four types of species interactions
which are:

1. If S = (N1i > N1, N2i > N2), we will have a (−,−) interaction whether a
winter parameter or a summer parameter is considered.

2. If S = (N1 > N1i, N2 > N2i), we will have a (+,+) interaction whether a
winter parameter or a summer parameter is considered.

3. If S = (N1 > N1i, N2 = N2i), we will have a (+, 0) interaction whether a
winter parameter or a summer parameter is considered.

4. If S = (N1 > N1i, N2i > N2), we will have a (+,−) interaction whether a
winter parameter or a summer parameter is considered.

In this chapter, the unit of our biomass is in grams per metre squared.
We would use this method to make sense of our time series data points. We

would think that this simple method would provide better insight into how we
can obtain patterns of species interactions from the outcome of our numerical
simulation indexed by time.

6.5 Important ecological insights from our nu-

merical simulations

In this section, we shall present some important results that this thesis has
achieved. We have not seen these results elsewhere. By using our mathematical
model and a sound numerical simulation, it is possible for the first time to obtain
mutualism from an ecological competition between two interacting dis-similar
plant species from a combination of our summer model and a stochastic winter
model in a harsh climate.

Our results are consistent with the dominant/mainstream perspective in the
ecological literature. It is our expectation that these results would provide an
insight about this complex ecological problem.

In this chapter, we would consider a few examples with which to illustrate
their ecological implications.
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6.5.1 Illustrating how to obtain mutualism from competi-
tion due to a variation of winter storms

In this section, we would discuss what would happen if the number of storms is
6. Can we tell which outcome of our numerical simulation would be competi-
tion, mutualism, commensalism or parasitism? We do not know the outcome in
advance, otherwise there would be no need of this detailed systematic investiga-
tion using this method and data to establish facts and reeach new conclusions
that are more consistent with experimental finding.

In this case, all the model parameters as well as the storm intensity and
the length of summer growing season are not changing. We consider a summer
growing season of 70 days.

6.5.2 Example: Can we obtain mutualism from competi-
tion when there is no storms?

First, we shall consider the case when there is no storm, that is, the summer
growing season only. What would happen in this instance? Our two species
growth data are presented in Table 6.1. Our analysis is based on the assumption
that the two plant species grow better in isolation than when growing together
([13]).

Example mid-year growth data
n (year) N1 N1i N2 N2i Type of Interaction

1 11.3588 11.3669 0.0481 0.0482 (-,-)
2 83.1844 83.1968 0.0503 0.0554 (-,-)
3 83.1886 83.2013 0.0514 0.0637 (-,-)
4 83.1883 83.2013 0.0527 0.0731 (-,-)
5 83.1879 83.2013 0.0539 0.0840 (-,-)
6 83.1876 83.2013 0.0552 0.0966 (-,-)
7 83.1873 83.2013 0.0565 0.1110 (-,-)
8 83.1870 83.2013 0.0578 0.1275 (-,-)
9 83.1866 83.2013 0.0592 0.1465 (-,-)
10 83.1863 83.2013 0.0606 0.1683 (-,-)

Table 6.1: Obtaining competition only in the absence of winter storms

What do we learn from Table 6.1? The first line of this table shows the
mid-year growth data for two interacting plant species for the first year. As we
can see, the plants grow better in isolation of the other than when interacting
together. This means that the factor of competition is acting to reduce the
growth of plants when interacting together. Our conclusion is consistent for the
entire ten year growth data when there is no winter storms in the environment.

By our calculations which we cannot present in this chapter because they
predict competition only, we remark that we have observed the occurrence of
competition interaction when there is no winter storms for other variations of
summer and winter parameters.

Our result is consistent with the plant competiton theory which we have
defined and discussed in chapter one of this thesis. Our result is also consistent
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with one of the dominant/mainstream plant ecological perspective ([13]).
Next, this pattern of competition interaction is more likely to change due to

increasing number of storms.

6.6 Key Achievements of this Research

In this section, we would present our novel key achievements which we have not
seen elsewhere with a view to contributing further insights on the possibility
and extent of obtaining mutualism from a combination of our summer model
and our stochastic model which are consistent with the dominant/mainstream
ecological perspective.

6.6.1 Variation of the Number of Storms

First, what is the more likely impact of increasing the number of storms in a
harsh climate on mutualism?

1. By simulating our summer-winter model when the number of storms is 6,
our model predicts one case of mutualism, one case of commensalism, one
case of parasitism, and seven cases of competition qualitatively over a ten
year period of one trajectory.

2. By simulating our summer-winter model when the number of storms is
6.25, our model predicts two cases of mutualism, one case of commensal-
ism, one case of parasitism, and six cases of competition qualitatively over
a ten year period of one trajectory.

3. By simulating our summer-winter model when the number of storms is 6.5,
our model model predicts three cases of mutualism, one case of commen-
salism, one case of parasitism, and five cases of competition qualitatively
over a ten year period of one trajectory.

4. By simulating our summer-winter model when the number of storms is
6.75, our model predicts four cases of mutualism, one case of commen-
salism, one case of parasitism, and four cases of competition qualitatively
over a ten year period of one trajectory.

5. When the number of storms is 7, our summer-winter model predicts five
cases of mutualism, one case of commensalism, one case of parasitism,
and three cases of competition qualitatively over a ten year period of one
trajectory.

6. When the number of storms is 7.25, our summer-winter model predicts
six cases of mutualism, one case of commensalism, one case of parasitism,
and two cases of competition qualitatively over a ten year period of one
trajectory.

7. When the number of stor is 7.50, our summer-winter model predicts seven
cases of mutualism, one case of commensalism, one case of parasitism,
and one case of competition qualitatively over a ten year period of one
trajectory.
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In summary, increasing the number of storms in a harsh climate is more likely
to increase the incidence of mutualism and decrease the incidence of competition
(see the graphs in the appendix).

This result suggests that the plant species interaction of mutualism could be
more important than competition. Hence, by using our numerical simulation, we
can obtain instances of mutualism from a combination of our summer model and
our stochastic winter model which are consistent with the dominant/mainstream
ecological perspective.

6.6.2 Variation of storm intensity

From our chapter five of this thesis, we know that c1 and c2 correspond to
the constants which determine the damage produced by a storm based on the
gamma distribution. If storms become more intense, this phenomenon can be
modelled by increasing c1 and c2 slightly.

The cases of mutualism which we have obtained from a combination of our
summer model and our stochastic model due to a variation of storm intensity
have been presented in the appendix of this thesis.

In summary, increasing the number of storm intensity in a harsh climate is
more likely to increase the incidence of mutualism and decrease the incidence
of competition making the process of mutualism to be more important than
competition over a 10 year period of one trajectory.

6.6.3 Variation of the Young’s Modulus

From our chapter five of this thesis, we know that Young’s modulus corresponds
to the constants which determine the damage of plant species due to a variation
of the strength of the plant species before buckling. The concept of buckling
can be modelled by increasing Young’s modulus slightly.

The cases of mutualism which we have obtained from a combination of our
summer model and our stochastic model due to a variation of Young’s modulus
have been presented in the appendix of this thesis.

We remark that a variation in the number of the Young’s modulus in a harsh
climate is more likely to increase the incidence of mutualism and decrease the
incidence of competition over a ten year period of one trajectory.

In summary, a variation of our winter model parameter is more likely to
predict more cases of mutualism qualitatively from a combination of our sum-
mer model and our stochastic winter model than any other type of plant species
interactions in a harsh climate. According to plant ecologists as we have men-
tioned in chapter one of this thesis, the impact of abiotic stress leads more to
mutualism and facilitation. We would expect this pattern to change due to
changes in the environment.

From both the dominant/mainstream ecological perspective and our math-
ematical modelling/numerical simulation, mutualism and facilitation are more
likely to favour biodiversity while competition is more associated with decreas-
ing the size of biomass which may enhance the loss of biodiversity. Hence, the
process of competition could be regarded as a mechanism responsible for the
loss of biodiversity.

At the present analysis, our results indicate a good link between ecologi-
cal theory, mathematical modelling, and our qualitative numerical simulation
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predictions.

6.6.4 Variation of the length of summer growing season

We know that a variation of the length of summer season is characterised by a
more likely chance of obtaining competition than mutualism. To understand the
impact of the length of summer, we would both lengthen and shorten the length
of summer and investigate the extent of obtaining mutualism from a combination
of our summer model and our winter model. We have obtained another result
which is consistent with the dominant/mainstream ecological perspective which
is presented in the appendix of this thesis.

By using our numerical simulation, we have found that an increase in the
length of summer growing season increases the incidence of competition and
decreases the incidence of mutualism. This result is consistent with facts about
the arctic climate: in the summer season growing conditions are reasonably
favourable and species will compete for resources ([169], [69]). This makes the
process of ecological competition to be more important than mutualism in this
scenario.

6.6.5 Variation of important model parameters

In our sensitivity analysis chapter, we have used our novel numerical method to
select four important parameters which are the intrinsic growth rate of species
N1, the intra-specific interaction coefficient of species N1, and the starting
biomasses for the two interacting plant species.

By using our numerical simulation, we have found that a variation of each
of these important model parameters leads to an increase in the volume of
competition and a decrease in the volume of mutualism making competition to
be an important process than mutualism. These results are presented in the
appendix of this thesis.

6.6.6 Conclusion of Chapter Six

In chapter six of this thesis, we have achieved the following results which we
have obtained from the combination of our summer competition model and our
stochastic winter model over a 10 year period of one trajectory:

1. We have obtained only the evidence of competition in the absence of winter
storms irrespective of a variation of our summer competition model and
stochastic winter model parameters.

2. If the number of storms is varied, our model predicts that the volume of
mutualism is more likely to rise while the volume of competition is more
likely to fall.

3. If the number of storm intensity is slightly increased, our model predicts
that the volume of mutualism is more likely to rise while the volume of
competition is more likely to fall.

4. If the number of the Young’s modulus (or the amount of stress that a plant
species can take before buckling) is varied, our model predicts that the
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volume of mutualism is more likely to rise while the volume of competition
is more likely to fall.

5. If the number of the length of our summer growing season is varied, our
model predicts that the volume of mutualism is more likely to fall while
the volume of competition is more likely to rise.

6. If the number of our daily intrinsic growth rate of the first plant species
species is slightly varied, our model predicts that the volume of mutualism
is more likely to fall while the volume of competition is more likely to rise.

7. If the number of our intra-specific or self interaction coefficient and our
inter-specific coefficient of the first plant species are slightly varied, our
model predicts that the volume of mutualism is more likely to fall while
the volume of competition is more likely to rise.

8. Similarly, if the number of our starting values for the two plant species are
slightly varied, our model predicts that the volume of mutualism is more
likely to fall while the volume of competition is more likely to rise.

We have conducted similar analyses to obtain instances of facilitation over a
10 year period and 20 year period of one trajectory. Our results are graphically
summarised in the appendix of this thesis. All these results are consistent with
the dominant/mainstream ecological perspective.

In summary, we would think that the patterns of plant species interactions
which our model has predicted in this thesis are likely to change due to a chang-
ing environment and global warming.

We would think that our analysis in this thesis has opened up an aspect
of research which is not considered in this thesis. For example, we know that
when plant species grow and compete for limited resources, they tend to spread
out. But the construction and simulation of these complex models with spatial
dimension would require a well over five years of dedicated research in order to
fully tackle this problem satisfactorily.

We also know that as global temperatures rise, the positive interactions
which we have observed in this thesis would at some point cease and begin to
compete in which case the loss of facilitation can lead to the loss of biodiversity.
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Chapter 7

Conclusions and Ideas for
Further Research

Concluding Remarks: Key Achievements

In this dissertation, we conducted some numerical simulations on plant species
interactions in a harsh climate over a 10 year and a 20 year periods of one
trajectory. For the first time, these specific contributions are the following:

1. A variation in the number of the winter storms, the storm intensity, and
the Young’s modulus in a harsh climate due to global warming predicts
mutualism qualitatively from a combination of our summer model and our
stochastic winter model. By manipulating the length of our summer grow-
ing season and the number of our daily intrinsic growth rate (reflecting
the impact of temperature change on the growth of the biomass) for the
first plant species in a benign climate, both mutualism and facilitation are
more likely to change to competition.

2. A variation in the number of the winter storms, the storm intensity, and
the Young’s modulus in a harsh climate due to global warming predicts
mutualism qualitatively from a combination of our summer model and
our stochastic winter model. By manipulating the number of our intra-
specific coefficient for the first plant species, our starting biomasses, and
our inter-specific coefficient for the first plant species in a benign climate,
both mutualism and facilitation are more likely to change to competition.

3. Another numerical experimental simulation is a variation in the number
of winter storms only in a harsh climate due to global warming which
predicts mutualism and facilitation qualitatively from a combination of
our summer model and our stochastic winter model. By maniputating
the length of our summer growing season only in a benign climate, both
mutualism and facilitation are more likely to change to competition over
a 20 year period of one trajectory.

4. In some scenaria, a variation in the number of the winter storms only in
a harsh climate over a 10 year period of one trajectory predicts instances
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of competition and parasitism qualitatively from a combination of our
summer model and our stochastic winter model. By manipulating the
length of our summer growing season only in a benign climate, competition
is more likely to be preserved while parasitism is more likely to change to
competition.

These results have been graphically summarised in Figure 8.6, Figure 8.7,
Figure 8.8, Figure 8.9, Figure 8.10, and so forth (see the appendix ).

These results from our numerical simulation are consistent with the dom-
inant/mainstream plant ecological viewpoints which suggest that the loss of
mutualism and facilitation can have an impact on the biodiversity.

Mathematical modelling of plant species in the arctic presents major at-
tractions: conventional research based on substantial data collection is very
expensive and arctic climates are inhospitable. Further, as we have remarked
in chapter one of this study, changes happen slowly under arctic conditions and
therefore it is not possible to collect large amounts of data.

In addition, the environmental impact of large numbers of scientists visiting
the arctic to collect specimens can be significant: one observed reason for vari-
ation in inter-specific interactions is the disturbance of the environment. Thus
in this situation, there can be significant environmental and cost advantages of
mathematical modelling.

We hope that these novel contributions would provide some useful insights
pending some policies of handling ecological problems.

It is our expectation that a combination of our experimental numerical sim-
ulation results and the dominant/mainstream ecological viewpoints would con-
tribute to the progress of knowledge in this area of interdisciplinary research.

Limitations of this Thesis

In this thesis, one has worked with a single source of data which is sufficient to
achieve the primary objective of this thesis. The use of a single source of data
in another intra-disciplinary study has been conducted. A numerical simulation
of plant species interactions in a harsh climate is no exception. An example of
developing an ordinary differential equation growth model to tackle the problem
of determinate plant growth ([203]) in which estimated parameter values for
total biomass of a maize plant were provided by ([118]) is an example in this
context. In the study conducted and reported by ([203]), a new methodoogy
was applied to an old data (see, [118]). Hence, we have proposed and applied
a new theory and a novel numerical methodology to analyse old data in this
thesis.

Uptil now, other researchers have not provided a method of analysing our
provided data. So the application of our novel method of analysing these data
has produced a satisfactory research outcome.

What this thesis has achieved is that it has produced important useful eco-
logical insights which we have not seen elsewhere with the expectation of con-
tributing to the progress of knowledge in this complex interdisciplinary study.
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Other related data

One could extend our similar approach to analyse other data which are related
to our present analysis such as

1. Current yearly growth rates of plant species ([2]) from which daily intrinsic
growth rate can be determined.

2. If each data point of the data provided by ([35]) is driven by a noise
intensity, we can obtain huge data sets.

Due to paucity of data, we conducted similar analyses using data provided
by Voisin([191]). These data were also cited by ([175]) in pages 17 and 18. The
work of Linehan ([126]) on which a similar analysis was conducted was also cited
by ([191]) and ([175]).

Another similar data are due to Alder ([2]). We found a similar variation in
patterns of obtaining mutualism from a combination of our summer competition
model and our stochastic model indicating some results which are consistent
with the dominant/mainstream plant ecological perspective.

Suggestions for further research

We suggest possible directions of investigation for other scholars who might be
interested

1. The models which we have developed in this study will, if successful, be
an attractive basis for further work with data gathered from a less delicate
ecosystem (the Dee estuary) that nevertheless displays the same types of
plant interaction that are of major interest in (for example) the arctic.
This would take a longer period of dedicated research.

2. We propose to extend our numerical simulation approach to analysing
other related data which assumed exponential, expolinear, and other forms
of growth functions under some simplifying assumptions.

3. We propose to use the stochastic numerical bifurcation method to study
and discuss the various implications of some parts of the analyses which
are reported in this thesis. This would take a longer period of dedicated
research.

4. We propose to investigate the numerical simulation of our summer logistic
model when spatial variations in the population are taken into account on
the understanding that plant species tend to grow and spread.
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Chapter 8

Appendix

8.1 Fitting Biomass Data with Logistic Model
Parameters
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Figure 1: Fitting a logistic model to biomass time series data
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Figure 2: Fitting a logistic model to biomass time series data
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Figure 8.1: Data used when steady states are 81.5 grams (left plot) and 82
grams (right plot)
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Figure 3: Fitting a logistic model to biomass time series data
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Figure 4: Fitting a logistic model to biomass time series data
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Figure 8.2: Data used when steady states are 82.5 grams (left plot) and 83
grams (right plot)
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8.2 Sequence of Our 2-Norm Penalty Function
for a given Steady State
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Figure 8.3: Minimum 2-norm penalty function
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8.3 Solution Trajectories of Original Solution and
Modified Solution: Examples
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Figure 8.4: Solution of competition model over 70 days for a = 0.1701 (left plot)
and for a = 0.1722 (right plot)

154



0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Days

B
io

m
as

s

Comparing original solution trajectory with modified solution trajectory

 

 

N
1
 solution trajectory

N
1m

 solution trajectory

N
2
 solution trajectory

N
2m

 solution trajectory

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Days

B
io

m
as

s

Comparing original solution trajectory with modified solution trajectory

 

 

N
1
 solution trajectory

N
1m

 solution trajectory

N
2
 solution trajectory

N
2m

 solution trajectory

Figure 8.5: Solution of competition model over 70 days for a = 0.1764 (left plot)
and for a = 0.1848 (right plot)
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8.4 Qualitative prediction of mutualism from a
variation of winter storms and changes in

the positive interaction behaviour: ecologi-
cal insights

Figure 8.6: Variation of the number of winter storms: mutualism from a com-
bination of our summer model and stochastic winter model in a harsh climate
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Figure 8.7: Variation of the length of our summer growing season: dominant
competition interaction from a combination of our summer model and stochastic
winter model in a benign climate
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Figure 8.8: Variation of the number of our daily intrinsic growth rate for
species 1 or changes in our carrying capacity for species 1 reflecting temper-
ature changes: dominant competition interaction from a combination of our
summer model and stochastic winter model in a benign climate
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Figure 8.9: Variation of the number of our first starting value: dominant com-
petition interaction from a combination of our summer model and stochastic
winter model in a benign climate
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Figure 8.10: Variation of the number of our second starting value: dominant
competition interaction from a combination of our summer model and stochastic
winter model in a benign climate
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Figure 8.11: Variation of the number of our intra-specific coefficient or carrying
capacity 1 reflecting the impact of temperature changes: dominant competition
interaction from a combination of our summer model and stochastic winter
model in a benign climate
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Figure 8.12: Variation of the number of our inter-specific coefficient for species
1 reflecting the inhibiting effect of warmer summers: dominant competition
interaction from a combination of our summer model and stochastic winter
model in a benign climate
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8.5 Qualitative prediction of mutualism from a
variation of storm intensity

Figure 8.13: Variation of the number of our storm intensity: mutualism from
a combination of our summer model and stochastic winter model in a harsh
climate
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The changes in our summer model which can contribute to the changes
in this positive interaction behaviour when our storm intensity is varied are
graphically summarised above in Figure 8.7, Figure 8.8, Figure 8.9, Figure 8.10,
Figure 8.11, and Figure 8.12.

8.6 Qualitative prediction of mutualism from a

variation of our Young’s modulus

Figure 8.14: Variation of the number of our Young’s modulus: mutualism from
a combination of our summer model and stochastic winter model in a harsh
climate
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Similarly, the changes in our summer model which can contribute to the
changes in this positive interaction behaviour when our Young’s modulus is
varied are graphically summarised above in Figure 8.7, Figure 8.8, Figure 8.9,
Figure 8.10, Figure 8.11, and Figure 8.12.

8.7 Qualitative prediction of facilitation from a

variation of our winter storms: ecological
insight 1

Figure 8.15: Variation of the number of our winter storms: facilitation from
a combination of our summer model and stochastic winter model in a harsh
climate extracted from Figure 8.6
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8.8 Qualitative prediction of facilitation from a
variation of our storm intensity: ecological

insight 2

Figure 8.16: Variation of the number of our storm intensity: facilitation from
a combination of our summer model and stochastic winter model in a harsh
climate extracted from Figure 8.13
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8.9 Qualitative prediction of a dominant com-
petition interaction from a variation of our

growing season: ecological insight 3

Figure 8.17: Variation of the length of our growing season: dominant competi-
tion interaction from a combination of our summer model and stochastic winter
model in a benign climate extracted from Figure 8.7

167



8.10 Qualitative prediction of a dominant com-
petition from a variation of our winter storms:

ecological insight 4

Figure 8.18: Variation of our winter storms: dominant competition interaction
from a combination of our summer model and stochastic winter model in a harsh
climate
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8.11 Qualitative prediction of a dominant para-
sitism from a vatiation of our winter storms:

ecological insight 5

Figure 8.19: Variation of our winter storms: dominant parasitism from a com-
bination of our summer model and stochastic winter model in a harsh climate
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Our numerical simulation suggests that the changes in the parasitic inter-
action behaviour can occur if the length of our growing season is varied as
displayed above.

8.12 Qualitative prediction of a dominant facil-
itation from a variation of winter storms

over a 20 year period of one trajectory: eco-
logical insight 6

Figure 8.20: Variation of winter storms: dominant facilitation from a combina-
tion of our summer model and stochastic winter model in a harsh climate over
a 20 year period of one trajectory
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8.13 Qualitative prediction of a dominant com-
petition interaction from a variation of the

summer season over a 20 year period of one
trajectory: ecological insight 7

Figure 8.21: Variation of our length of summer growing season: dominant com-
petition interaction from a combination of our summer model and stochastic
winter model in a benign climate over a 20 year period of one trajectory
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Source: http://www.climatehotmap.org/references.html [sub-title: Arctic
and Antarctic warming-69 Barrow, Alaska] Quote: Summer days without snow
have increased from fewer than 80 in the 1950′s to more than 100 in the 1990′s.

8.14 Qualitative prediction of a dominant com-
petition interaction from a variation of our

first starting value over a 20 year period of
one trajectory: ecological insight 8

Figure 8.22: Variation of our first starting value: dominant competition inter-
action from a combination of our summer model and stochastic winter model
in a benign climate over a 20 year period of one trajectory
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8.15 Qualitative prediction of a dominant com-
petition interaction from a variation of our

first starting value over a 20 year period of
one trajectory: another ecological insight

9

Figure 8.23: Variation of our first starting value: dominant competition inter-
action from a combination of our summer model and stochastic winter model
in a benign climate over a 20 year period of one trajectory

173



8.16 Qualitative prediction of a dominant com-
petition interaction from a variation of our

second starting value over a 20 year period
of one trajectory: ecological insight 10

Figure 8.24: Variation of our second starting value: dominant competition in-
teraction from a combination of our summer model and stochastic winter model
in a benign climate over a 20 year period of one trajectory
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8.17 Qualitative prediction of a dominant com-
petition interaction from a variation of our

second starting value over a 20 year pe-
riod of one trajectory: another ecological

insight 11

Figure 8.25: Variation of our second starting value: dominant competition in-
teraction from a combination of our summer model and stochastic winter model
in a benign climate over a 20 year period of one trajectory
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8.18 Qualitative prediction of a dominant com-
petition interaction from a variation of our

daily intrinsic growth rate over a 20 year
period of one trajectory: another ecologi-

cal insight 12

Figure 8.26: Variation of our daily intrinsic growth rate for our first plant
species: dominant competition interaction from a combination of our summer
model and stochastic winter model in a benign climate over a 20 year period of
one trajectory
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8.19 Qualitative prediction of a dominant com-
petition interaction from a variation of our

daily intrinsic growth rate over a 20 year
period of one trajectory: another ecologi-

cal insight 13 extracted from Figure 8.26

Figure 8.27: Variation of our daily intrinsic growth rate for our first plant
species: dominant competition interaction from a combination of our summer
model and stochastic winter model in a benign climate over a 20 year period of
one trajectory
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8.20 Calculation of Our Penalty Functions: Why
we did not Use 1-Norm and Infinity Norm

to Select Our Best Fit Parameters

1. The letterM stand for the measured data.

2. The letter Si stand for our simulated data ranging from i = 1 to i = 20.

3. The letter Vi stand for the difference between the measured data and our
simulated data.

p-Norm calculation of penalty functions
Type V1 V2 V3 V4 V5

1-norm 30.3 30.5 30.7 31 31.2
2-norm 15.75 15.6 15.48 15.36 15.3

∞− norm 12.46 12 11.5 10.94 10.57

Table 8.1: Calculation of our penalty functions

p-Norm calculation of penalty functions
Type V6 V7 V8 V9 V10

1-norm 31.33 31.52 31.72 31.92 32.13
2-norm 15.25 15.2144 15.22 15.26 15.31

∞− norm 10.15 9.66 9.55 9.78 10

Table 8.2: Calculation of our penalty functions

p-Norm calculation of penalty functions
Type V11 V12 V13 V14 V15

1-norm 32.33 32.53 32.73 32.93 33.16
2-norm 15.4 15.51 15.64 15.81 16

∞− norm 10.23 10.45 10.66 10.9 11.1

Table 8.3: Calculation of our penalty functions

8.20.1 Remark

We did not use our 1-norm penalty function to select our best fit parameters
because our calculated sequence of errors between the measured data and our
simulated data do satisfy a monotonic property but the local minimum of 1-
norm penalty function is 30.3.

Although, our infinity-norm between the measured data and our simulated
data do satisfy a monotonic property using our infinity norm, our local minimum
of infinity-norm penalty function is 9.55. A further gridding provides a best fit
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p-Norm calculation of penalty functions
Type V16 V17 V18 V19 V20

1-norm 33.47 33.64 33.99 34.02 34.17
2-norm 16.25 16.45 16.9 16.95 17.17

∞− norm 11.35 11.55 11.95 11.98 12.15

Table 8.4: Calculation of our penalty functions

intra-specific coefficient of 0.0020302. Using either the 2-norm penalty function
best fit model parameters or the infinity-norm penalty function best fit model
parameters would provide similar patterns of ecological conclusions.

8.20.2 Plant Growth Data

These 10 plant growth data points are the average dry weights or biomass in
grams of an annual plant provided by Blackman ([35]). These data are displayed
below.

1. The average biomass for the beginning of the first week which starts on
day 1 is 0.0454 grams.

2. The average biomass for the beginning of the second week which starts on
day 8 is 0.147 grams.

3. The average biomass for the beginning of the third week which starts on
day 15 is 0.508 grams.

4. The average biomass for the beginning of the fourth week which starts on
day 22 is 1.653 grams.

5. The average biomass for the beginning of the fifth week which starts on
day 29 is 5.868 grams.

6. The average biomass for the beginning of the sixth week which starts on
day 36 is 17.33 grams.

7. The average biomass for the beginning of the seventh week which starts
on day 43 is 30.35 grams.

8. The average biomass for the beginning of the eighth week which starts on
day 50 is 46.2 grams.

9. The average biomass for the beginning of the nineth week which starts on
day 57 is 66.1 grams.

10. The average biomass for the beginning of the tenth week which starts on
day 64 is 88.9 grams.
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