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In the process of minimizing the energy consumption of a 3-RRR planar parallel manipulator (3-RRR PPM) and even general
parallel kinematic manipulators, obtaining optimal results usually depends on particular functional relation between the in-
stantaneous position of the moving platform and the kinetic time, which is called a displacement model (DM). Nevertheless, it is
likely that although themovement time and path of a moving platform are the same, different amounts of energy are consumed for
different DMs of the moving platform. To address this, a method of using long short-term memory neural network (LSTM-NN)
instead of a complex theoretical model to predict the energy consumption of a 3-RRR PPM was presented. Subsequently, inverse
dynamic equations of 3-RRR PPM were established based on the Newton–Euler method and solved using QR decomposition.
Meanwhile, energy consumption between any two points in workspace of the 3-RRR PPMwas programmed to provide the LSTM-
NN with abundant precise training data. In view of time-varying characteristics of energy consumption prediction, the network
architecture was developed based on the principle of LSTM-NN, and root-mean-square error (RMSE) was taken as the loss
function. After acquiring training data, the RMSE of the LSTM-NN reached 0.00041 using whale optimization algorithm (WOA)
with no need for the gradient of the loss function, so the lack of solving precision in training LSTM-NN was effectively improved.
Finally, two different DMs of a moving platform with the same path and movement time were chosen to compare the total energy
consumption of the 3-RRR PPM from the simulations, predictions, and experiments. *e results showed that the relative error
between predicted and experimental data was less than 2.50%.*erefore, the energy consumption prediction based on the LSTM-
NN will be useful for achieving the intelligent application of 3-RRR PPMs.

1. Introduction

*e use of 3-RRR planar parallel manipulators (PPMs) has
grown recently. For example, when micron or even nano-
scale accuracy is required, micromotion platforms using 3-
RRR PPMs are widely employed as microforce sensors for
the positioning of samples in a scanning electron micro-
scope. Moreover, PPMs can be applied as parallel robots to
conduct operations such as pick-and-place operations and
precision machining [1, 2].

Research on 3-RRR PPMs has mainly focused on the
kinematics and working modes [2], performance analysis

and optimization [3, 4], collision-free workspace determi-
nation [5], workspace analysis [6–11], singularity analysis
and avoidance [2, 3, 12–15], and dynamics and experimental
verification [16–19]. In recent years, many scholars have
focused on energy consumption and optimization in the
robotics industry, including the field of unmanned aerial
vehicles (UAVs) [20–25], due to increasing concerns about
the energy crisis.

In one report [20], electromechanical models were de-
rived for serial or parallel pick-and-place manipulators, and
the energy-optimal trajectories were reasonably calculated.
In another study [21], the optimization problem of the
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consumed energy for a 3-RRR PPM was examined, and the
link and platform masses were treated as variables. *e
actuator power consumption was used as the objective
function to examine the effects of kinematic, geometric, and
dynamic constraints. *e particle swarm optimization
(PSO) method was proposed to minimize the energy con-
sumption efficiently. In fact, for any parallel kinematic
manipulator (PKM), to accomplish the assigned task and
minimize the consumed time and expended energy simul-
taneously, trajectory planning is a very complex problem
involving functional optimization. In one study [22], the
objective function and constraint conditions of this opti-
mization problem were modeled based on the dynamics of a
general motor-driven PKM, and a novel constrained mul-
tiobjective genetic algorithm (MOGA) was presented to
solve the multiobjective optimization problem.

However, when the optimization problem was solved by
the PSOmethod, spiral-shapedCartesian trajectories were used
for the positional motion of the moving platform [21]. Al-
though the optimal results minimized the expended energy, the
instantaneous position of the moving platform was restricted
by the curvilinear equation. *us, the instantaneous velocities
and accelerations of the moving platform and the optimal
energy consumption of a 3-RRR PPM were under the re-
strictions of these curvilinear equations. Similarly, a B-spline
function was applied to generate the path function between the
defined points [22]. Although the optimal results minimized
the expended energy at μ� 0, the instantaneous position of the
moving platform was under the restrictions of the B-spline
function, and the instantaneous velocities and accelerations of
the moving platform and optimal energy consumption of the
PKM were restricted. For example, when two walkers travel
along the same path, even if the total time they take is equal, the
energy consumption is different because of their different
instantaneous velocities.

In this paper, the relationship between the instantaneous
position of a moving platform and the kinetic time was
defined as a displacement model (DM), and the relationship
between the instantaneous velocity of the moving platform
and kinetic time was defined as a velocity model (VM). *e
optimal energy consumption under a particular DM and
VMwas then cleverly derived [21, 22]. However, it could not
be guaranteed that smaller energy consumption could be
obtained for the samemotion time and path when the DMor
VM of the moving platform was changed.

*erefore, it is necessary to predict the energy consumed
when the 3-RRR PPM passes through a given path (or
planned path) with different DMs or VMs for the same travel
time. Recently, with the development of artificial intelli-
gence, supervised learning methods, such as back propa-
gation neural network (BPNN), recurrent neural networks
(RNN), and LSTM-NN, have been widely used for the
energy consumption prediction of mobile robots or un-
manned aerial vehicles (UAVs) [23–25], gait generation
[26], cycle time forecasting of wafer lots during the wafer
manufacturing [27], welding process prediction [28, 29], in
the medical field [30–33], human activity detection from
untrimmed videos [34], advertising viewability prediction
[35], and prediction of sea surface temperature (SST) [36].

To address the scarcity of empirical data and relying on
kinematics models, a dynamic power model to evaluate the
power consumption of skid-steer mobile robots (SSMRs)
was demonstrated based on the slip parameters of the solved
differential equations [23]. For UAV surveillance systems,
on the one hand, the energy consumption was efficiently
predicted via an elastic net regression using Sklearn [24]. On
the other hand, an adaptive neural network (ANN) con-
troller was developed using a K-agglomerative clustering
method with adaptive weights and varied learning rates to
tackle the optimal path planning and disturbance rejection
control [25]. *e architecture of a fully connected recurrent
neural network (FCRNN) was used to address the gait
generation problem of a three-dimensional biped robot, and
a novel weight optimization approach called the advanced
multiobjective continuous ant colony optimization (AMO-
CACO) was presented [26]. To forecast the short-term cycle
time of wafer lots during wafer manufacturing, a bilateral
LSTM-NN was proposed [27]. A Gaussian process regres-
sion (GPR) method was proposed to predict the real-time
welding process [28], and to apply experiences and skills of
human welders to intelligent control and to better maintain
desired precision and consistency, an intelligent controller
using the neurofuzzy model was designed in automated gas
tungsten arc welding process [29]. Because an LSTM-NN is
capable of learning long-term dependencies [30], for the past
few years, LSTM-NN applied in the medical domain have
achieved fairly good results. For example, a semantic-con-
taining double-level embedded Bi-LSTM model (SCDE-Bi-
LSTM) was presented for the semantic matching of ques-
tions and answers in the Chinese medical field [31]. In one
study [32], the problem of clinical relation extraction was
examined. First, the features in the sentence sequence were
captured through a bidirectional LSTM network. Second,
the syntactic context for the target entities was captured
through a convolutional neural network and Bi-LSTM
network. Finally, the relationships between target entities
were classified through a fully connected layer. A bidirec-
tional LSTM network-based method was proposed to extract
drug-drug interactions from a large amount of valuable
biomedical literature [33]. Two different convolutional
neural networks were combined with a BLSTM, and a bi-
directional recurrent neural network model was used to
efficiently solve the problems of human activity detection
from untrimmed videos [34]. Bidirectional LSTM networks,
an encoder-decoder structure, and residual connections
were combined to tackle the prediction problem of adver-
tising viewability [35].

However, in the process of training supervised networks
such as BPNN and RNN, the gradient disappearance or
gradient explosion probably occurs due to calculation of the
loss function’s gradient. Further, LSTM-NN is propitious to
modeling long-term dependencies, in which there is over-
fitting, while strong prediction capability and low likelihood
of overfitting are characteristic of Adaptive Boosting
(AdaBoost).*erefore, a method to combine LSTM-NN and
AdaBoost was presented to predict the short and midterm
daily SST [36]. Actually, the overfitting in LSTM-NN is the
problem, which makes it difficult to satisfy the required
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solving precision in essence. In optimizing LSTM-NN’s loss
function through conventional gradient descent method, the
lack of solving precision is also the bottleneck problem of
LSTM-NN prediction. Although the lack of precision had
varying degrees of improvement by the some improved
gradient methods such as Adagrad, AdaDelta, Adam, and
RMSProp, the gradient of loss function was still calculated in
these methods [37]. In other words, to calculate the gradient
of loss function, the partial derivatives of loss function to
each independent variable (i.e., the weights of LSTM-NN)
are needed, so the calculation is extremely complicated due
to the numerous weights, and the running efficiency and
solving precision of the corresponding solving program still
need to be further improved. On the contrary, WOA as a
metaheuristic optimization algorithm does not involve in
calculating the gradient of loss function in optimizing
LSTM-NN’s loss function and has been proven to be an
effective method with wonderful convergence for solving
optimization problems [38–40]. For this purpose, WOA was
proposed to train LSTM-NN.

In summary, during optimization of the energy con-
sumption of 3-RRR PPMs, to prevent the omission of
smaller energy consumption by depending on a particular
DM of a moving platform as described above, it is necessary
to use trained supervised learning networks instead of
complex theoretical models to predict the energy con-
sumption of 3-RRR PPMs. In view of the time-varying
characteristics of the energy consumption prediction and to
avoid the inherent weaknesses of lack of solving precision in
training LSTM-NN, a method for the energy consumption
prediction of 3-RRR PPMs through combining principle of
LSTM-NN with WOA is proposed in this paper.

In the following, the inverse dynamics of the 3-RRR PPM
are modeled by Newton–Euler method and solved using QR
decomposition; additionally, the energy consumption be-
tween any two points in workspace of the 3-RRR PPM is
programmed in Section 2. *en, in Section 3, the archi-
tecture of LSTM-NN is designed and the RMSE is taken as
the loss function; after that, the LSTM-NN is trained by the
WOA. In Section 4, after the equipment of energy con-
sumption experiment for the 3-RRR PPM is introduced, two
different DMs of a moving platform under the same path
and movement time are chosen to compare total energy
consumption of the 3-RRR PPM under circumstance of
simulation, prediction, and experiment, respectively. Finally,
the conclusion is provided in Section 5.

2. Dynamics and Energy Consumption of 3-
RRR PPM

2.1. Inverse KinematicModeling. A 3-RRR PPM, as depicted
in Figure 1, is composed of a base, active bars, passive bars,
and a moving platform. *e base and the moving platform
are two triangles with the verticesAi andCi, respectively, and
the active bars AiBi are linked to the base at point Ai through
hinges. Furthermore, one end of each passive bar BiCi is
linked to the active bar at point Bi through hinges, and the
other end is linked to the moving platform at point Ci
through hinges. In this paper, i� 1, 2, and 3.

Taking the intersection point o of the three medians of
the triangle A1A2A3 as the origin of the coordinates, a global
coordinate system oxy is established such that the x-axis is
parallel toA2A3. Taking the intersection pointG7 of the three
medians of the triangle C1C2C3 as the origin, the local co-
ordinate system G7x′y′, which is fixed to the moving plat-
form C1C2C3, is established such that the x′-axis is parallel to
C2C3. θ denotes the rotation angle of the x-axis relative to the
x′-axis (anticlockwise is defined as the positive direction). a,
b, and c denote the lengths of the three sides A1A2, A2A3, and
A3A1 of triangle A1A2A3. Likewise, the lengths of the three
sides C1C2, C2C3, and C3C1 of triangle C1C2C3 were denoted
as d, e, and f, respectively.

In Figure 2, the mass distribution of each bar is assumed
to be homogenous, and the centers of mass are Gi and Gi+3.
*emoving platform’s center of mass is G7.G7 (x, y) denotes
the coordinates of point G7 in the global coordinate system.
It is supposed that the moving platform’s position point G7
moves with time t ∈ [t0, tn] in workspace of the 3-RRR PPM,
expressed as follows:

x � f1(t),

y � f2(t),
􏼨

t ∈ t0, tn􏼂 􏼃.

(1)

*e acceleration of the centroid point of the moving
platform is then expressed as follows:

aG7 �
aG7x

aG7y

⎡⎣ ⎤⎦ �
€x

€y
􏼢 􏼣, (2)

and the moving platform’s angular acceleration is as follows:

αG7 � €θ. (3)

In the global coordinate system oxy, the coordinates of
points Ai and Ci are (xAi, yAi) and (xCi, yCi), respectively. *e
local coordinates of points CαG7 � €θi in the local coordinate
systemG7x′y′ are (xCi′, yCi′).*e transformation formulas of
the moving and static coordinates of the spatial mechanism
for the points Ci in the global coordinate system are as
follows:

oCi �
xCi

yCi

􏼢 􏼣 �
x

y
􏼢 􏼣 +

cos θ −sin θ

sin θ cos θ
􏼢 􏼣 xCi

′ yCi
′􏼂 􏼃. (4)

*e lengths of barsAiBi are li, and the lengths of bars BiCi
are l4, l5, and l6. Furthermore, the rotation angles of the
active bars AiBi relative to the positive x-axis are θi.
*erefore, point Bi’s coordinates (xBi, yBi) in the global
coordinate system can be calculated as follows:

oBi �
xBi

yBi

􏼢 􏼣 �
xAi + li cos θi

yAi + li sin θi

􏼢 􏼣, (5)

*e coordinates of the centroid point Gi are

oGi �

xGix

xGiy

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

1
2

xAi + xBi

yAi + yBi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (6)

*e centroid point Gi’s acceleration is
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aGi �
aGix

aGiy

⎡⎣ ⎤⎦ �
€xGi

€yGi

􏼢 􏼣. (7)

*e coordinates of centroid point Gi+3 are

oGi+3 �

xG(i+3)x

xG(i+3)y

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

1
2

xCi + xBi

yCi + yBi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (8)

*e centroid point Gi+3’s acceleration is
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Figure 1: Details of kinematic parameters for 3-RRR PPM.
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Figure 2: Schematic representation of dynamic modeling of 3-RRR PPM.
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aG(i+3) �
aG(i+3)x

aG(i+3)y

⎡⎣ ⎤⎦ �
€xG(i+3)

€yG(i+3)

⎡⎣ ⎤⎦. (9)

Based on vector algebra, the following equation can be
obtained by the connection relation of the 3-RRR PPM’s
bars:

BiCi � oG7 + G7Ci − oAi + AiBi( 􏼁 � oCi − oBi. (10)

Likewise,

BiCi · (1, 0) � li+3 cos θi+3. (11)

*e angular velocities of the passive bars BiCi are

θi+3 � arccos
BiCi · (1, 0)

li+3
. (12)

*e angular accelerations of the passive bars BiCi are

αG(i+3) � €θi+3. (13)

Likewise,

BiCi · BiCi � l
2
i+3. (14)

*e kinematic equation of the 3-RRR PPM can be
achieved based on (14):

θi � 2 arctan
Ni ±

������������
N2

i + M2
i − K2

i

􏽱

Mi + Ki

, (15)

where

Mi � x + xci
′ cos θ − yci

′ sin θ − xAi,

Ni � y + xci
′ sin θ + yci

′ cos θ − yAi,

Ki �
M2

i + N2
i + l2i − l2i+3
2li

.

(16)

Meanwhile, the condition that (15) has real solutions is
as follows:

N
2
i + M

2
i ≥K

2
i , (17)

*erefore, the angular velocities of the active bars AiBi
are

ωi � _θi, (18)

and the angular acceleration of the active bars AiBi is

αi � €θi. (19)

2.2. Condition of Singularity Avoidance. *e following
equation can be obtained by differentiating both ends of (14)
[2]:

Φy

x
•·

y
•

θ
•

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� Φz

θ1
•·

θ2
•·

θ3
•·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where the diagonal matrix Φz is as follows:

Φz �

l1 M1 sin θ1 − N1 cos θ1( 􏼁 0 0

0 l2 M2 sin θ2 − N2 cos θ2( 􏼁 0

0 0 l3 M3 sin θ3 − N3 cos θ3( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (21)

*e coefficient matrix Φy, which is also called a dis-
criminant matrix of the singularity, is defined as follows:

Φy �

l1 cos θ1 − M1 l1sinθ1 − N1 l1sinθ1 − N1( 􏼁 M1 + xA1 − x( 􏼁 − l1cosθ1 − M1( 􏼁 N1 + yA1 − y( 􏼁

l2 cos θ2 − M2 l2sinθ2 − N2 l2sinθ2 − N2( 􏼁 M2 + xA2 − x( 􏼁 − l2cosθ2 − M2( 􏼁 N2 + yA2 − y( 􏼁

l3 cos θ3 − M3 l3sinθ3 − N3 l3sinθ3 − N3( 􏼁 M3 + xA3 − x( 􏼁 − l3cosθ3 − M3( 􏼁 N3 + yA3 − y( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (22)
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If the determinant det (Φy) of matrixΦy is 0, it is called a
II-type singularity [2]. *is paper is only concerned with II-
type singularities, and the conditions for which a singularity
will not occur are defined as follows:

det Φy􏼐 􏼑≠ 0. (23)

2.3. Dynamics Modeling and Energy Consumption

2.3.1. Inverse Dynamics Modeling of 3-RRR PPM. *e
combined external force acting on the moving platform can
be always expressed as the principal vector through the
center of mass and the main torque, denoted as Fe and Me,
respectively. τi denotes the driving moment on the active bar
AiBi. *e inverse dynamics problem can be described as
follows. When the dimensional parameters of the 3-RRR

PPM, the movement rule of the position and orientation of
the moving platform with time, the principal vector Fe, and
the main torque Me are known, the change of the driving
torque τi with time can be derived.

Based on the Newton–Euler method, the inverse dy-
namics modeling process of the 3-RRR PPM is described as
follows.*e internal forces acting on the points Ci and Bi are
decomposed into Fcix, Fciy, FBix, and FBiy along the x- and y-
axes of the global coordinate system.

As shown in Figure 2, taking the moving platform
C1C2C3, the passive bars BiCi, and the active bars AiBi as the
research objects, the dynamics of the 3-RRR PPM based on
the Newton–Euler method are modeled as follows.

Equation (24) can be deduced for the moving platform
C1C2C3:

􏽘

3

i�1
FCix + Fex � FG7x,

􏽘

3

i�1
FCiy + Fey � FG7y,

−FC1x y − yC1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + FC2x y − yC2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + FC3x y − yC3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + FC1y x − xC1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − FC2y x − xC2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + FC3y x − xC3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � MG7 − Me.

(24)

FG7 is the inertial force of the moving platform, defined
as follows:

FG7 �
FG7x

FG7y

⎡⎣ ⎤⎦ � −mG7

aG7x

aG7y

⎡⎣ ⎤⎦, (25)

where [aG7x, aG7y]T is given by (2) and mG7 andMG7 are the
mass and moment of inertia of the moving platform.MG7 is
defined as follows:

MG7 � −JG7αG7, (26)

where αG7 is given by (3) and JG7 is the rotational inertia of
the moving platform relative to the center of mass:

JG7 �
mG7

2
d3 + e3 + f3 + 3def

d + e + f
. (27)

In a similar way, (28) can be deduced for the passive bars
BiCi:

FBix − FCix � FG(i+3)x,

FBiy − FCiy � FG(i+3)y,

−FBix yG(i+3) − yBi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − FCix yG(i+3) − yCi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − FBiy xG(i+3) − xBi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − FCiy xG(i+3) − xCi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � MG(i+3).

(28)

FG(i+3) represents the inertial forces of the passive bars
BiCi:

FG(i+3) � −mG(i+3)

aG(i+3)x

aG(i+3)y

⎡⎣ ⎤⎦, (29)

where [aG(i+3)x, aG(i+3)y]T is given by (9) and mG(i+3) and
MG(i+3) are the masses and moments of inertia of the passive
bars BiCi. MG(i+3) are defined as follows:

MG(i+3) � −JG(i+3)αG(i+3), (30)

where αG(i+3) is given by (13) and JG(i+3) denotes the rota-
tional inertia of the passive bars BiCi relative to their own
centers of mass:

JG(i+3) �
mG(i+3)l

2
i+3

12
. (31)

Finally, the following equation can be deduced for the
active bars AiBi:

FBix + FGix � 0,

−FBiy + FGiy � 0,

FBixlisinθi − FBiylicosθi − 2τi � −2MGi.

(32)

FGi represents the inertial forces of the active bars AiBi:

FGi � −mGi

aGix

aGiy

⎡⎣ ⎤⎦, (33)
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where [aGix, aGiy]T is given by (7) and mGi and MGi are the
masses and the moments of inertia of the active bars AiBi.
MGi is defined as follows:

MGi � −JGiαi, (34)

where αi is given by (19) and JGidenotes the rotational inertia
of the active bars AiBi relative to their own centers of mass:

JGi �
mGil

2
i

12
. (35)

*ere are 15 unknown variables: Fcix, Fciy, FBix, FBiy, and
τi and 21 equations including (24), (28), and (32). *ese are
represented as follows:

x �

x1

x2

...

x15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� FC1x FC2x FC3x FC1y FC2y FC3y FB1x FB2x FB3x FB1y FB2y FB3y τ1 τ2 τ3􏽨 􏽩
T
. (36)

Finally, the 21 equations mentioned above can be
transformed into a matrix equation:

Ax � B, (37)

where the matrices A and B are presented in Appendix. QR
decomposition [41], which was performed in MATLAB
using the function “mldivide” (matrix left division), can be
used to solve for x ∈R15×1 in (37).

2.3.2. Energy Consumption between Any Two Points in
Workspace of 3-RRR PPM. *ere are infinite trajectory
curves that correspond to (1) between any two points in the
workspace of the 3-RRR PPM. *e energy consumption in
the time interval [t0, tn] from t0 to tn is calculated as follows:

E(t) � 􏽚
t

t0

􏽘

3

i�1
τiωi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dt, t ∈ t0, tn􏼂 􏼃, (38)

in which ωi can be obtained by the inverse kinematic
equation (see (15)) of the 3-RRR PPM and is given in detail
in (18). Furthermore, τi can be obtained by solving (37).

*erefore, the energy consumption for the 3-RRR PPM
can be calculated by a numerical method. Different singu-
larity-free paths, which satisfy (17) and (23), are selected in
the workspace of 3-RRR PPM, assuming that each path
corresponded to a running time t ∈ [t0, tn] of the moving
platform and

tn − t0 � T. (39)

*e interval [t0, tn] is divided into n equal parts, with
each time interval Δt�T/n. Different values of the n+ 1
groups can be obtained from the solution of (37), and the
program flowchart to calculate the energy consumption of
the 3-RRR PPM is shown in Figure 3.

3. LSTM-NN Applied to Energy Consumption
Prediction of 3-RRR PPM

3.1. Architecture of LSTM-NN and Acquisition of Training
Data. For a running time t ∈ [t0, tn] of the moving platform,
n+ 1 time steps (j−1) Δt (j� 1, 2, . . ., n+ 1) are marked as
t(j−1). *e input vector xtk of the LSTM-NN includes nine

components, that is, the position (x, y) corresponding to (1),
the orientation angle θ of the moving platform, the external
forces (Fex, Fey), and the torqueMe corresponding to (24) on
the moving platform.

*e dimensionality of the input data of the network was
6. *e corresponding input components were also divided
into n+ 1 groups of data, expressed by a right superscript (k),
that is, input vector xtk ∈R6, at time step tk (k� 1, 2, . . .,
n−1):

xtk � x
(k)

, y
(k)

, θ(k)
, FG7x

(k)
, FG7y

(k)
, Me

(k)
􏽨 􏽩

T
. (40)

*e output vector htk of the LSTM-NN included six
components, that is, the angular velocity ωi (i� 1, 2, 3) and
the driving torque τi (i� 1, 2, 3) of the three active bars. *e
corresponding output components are also divided into
n+ 1 groups of data, expressed by a right superscript (k), that
is, output vector htk ∈R6, at time step tk (k� 1, 2, . . ., n−1):

htk � ω(k)
1 ,ω(k)

2 ,ω(k)
3 , τ(k)

1 , τ(k)
2 , τ(k)

3􏽨 􏽩
T
. (41)

*e corresponding input and output are recorded as
xt(j−1) ∈R6 and ht(j−1) ∈R6 (j� 1, 2, . . ., n+ 1), respectively.
By combining the characteristics of the 3-RRR PPM energy
consumption prediction problem and the basic principle of
the LSTM-NN [27, 30–36], the network architecture cor-
responding to xt(k−1), xtk, xt(k+1) and ht(k−1), htk, ht(k+1) (k� 1,
2, . . ., n −1) is shown in Figure 4.

ht(k−1), htk, and ht(k+1) correspond to the output of the
hidden layer at time steps t(k−1), tk, and t(k+1) (k� 1, 2, . . .,
n−1), respectively. Furthermore, Ct(k−1), Ctk, and Ct(k+1)
correspond to the cell state at time steps t(k−1), tk, and t(k+1)
(k� 1, 2, . . ., n−1), respectively, and htk and Ctk are defined as
follows [27, 30, 36]:

ftk � σ Wf · ht(k−1), xtk􏽨 􏽩 + bf􏼐 􏼑, (42)

itk � σ Wi · ht(k−1), xtk􏽨 􏽩 + bi􏼐 􏼑, (43)

􏽥Ctk � tanh WC · ht(k−1), xtk􏽨 􏽩 + bC􏼐 􏼑, (44)

Ctk � ftk ∗Ct(k−1) + itk ∗ 􏽥Ctk, (45)
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ftk
itk

xtk

ht(k–1)

otk
tanh

tanh

+

htk

htkCtkCt(k–1)

ft(k–1)

it(k–1)

xt(k–1)

ht(k–2)

ot(k–1)

tanh

tanh

+

ht(k–1)

ht(k–1)Ct(k–1)Ct(k–2)

ft(k+1)
it(k+1)

xt(k+1)

htk

ot(k+1)

tanh

tanh

+

ht(k+1)

ht(k+1)Ct(k+1)Ctk

----Input layer

Output layer------

Ct(k–1) Ct(k–1)Ctk

σ σ σ σ σ σ σ σ σ

∗∗

∗ ∗

∗∗

∗

∗ ∗

Figure 4: Architecture of the LSTM-NN.

End

Calculate matrices A and B and solve (37)
Calculate energy consumptions E(t) with t ∈ [t0, tn] and plot them

Calculate total energy consumption by numerical integration

No

(aG7x, aG7y), (aGix, aGiy), (aG(i+3)x, aG(i+3)y), αG7, αGi, αG(i+3), ωi, and αi are
calculated by numerical differential based on (2), (3), (7), (9), 

(13), (18), and (19)
Calculate (FG7x, FG7y), (FG(i+3)x, FG(i+3)y), (FGix, FGiy), MG7, MG(i+3), and MGi

based on (25), (29), (33), (26), (30), and (34)

j = j + 1

Start

Generate the path based on equation
(1): x(j – 1) = f1(tj–1); y(j – 1) = f2(tj–1)

Based on (15) and (16),
calculate Mi, Ni, Ki and θi(j–1)

Calculate JGi, JG(i+3), JG7, j = 1

Input li, li+3, a, b, c, d, e, f; θ; t0, tn
mGi, mG(i+3), mG7; Fe, Me

j ≤ n + 1
Yes

Based on (4), (5), (6), (8), and 
(12), calculate (xCi, yCi), (xBi, yBi);

(xGi, yGi), (xG(i+3), yG(i+3)), and θi+3(j–1)

Figure 3: Program flowchart to calculate the energy consumption of 3-RRR PPM.
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otk � σ Wo · ht(k−1), xtk􏽨 􏽩 + bo􏼐 􏼑, (46)

htk � otk ∗ tanh Ctk( 􏼁, (47)

where ∗ is the elementwise multiplication between two
vectors and [ht(k−1), xtk] ∈R6+6 is the concatenation of
vectors ht(k−1) and xtk:

ht(k−1), xtk􏽨 􏽩 �
ht(k−1)

xtk

􏼢 􏼣. (48)

ftk, itk, and otk are the outputs of the forget gate, input gate,
and output gate at timestep tk (k� 1, 2, . . ., n−1);
Wf ∈R6 × (6+6), Wi ∈R6 × (6+6), WC ∈R6 × (6+6), and
WO ∈R6 × (6+6) are the corresponding weight matrices; and
bf ∈R6, bi ∈R6, bC ∈R6, and bO ∈R6 are the corresponding
bias weights.

σ (·) and tanh (·) are the elementwise sigmoid and tanh
functions, respectively, defined as follows:

σ(z) �
1

1 + e− z
, (49)

tanh(z) �
ez − e− z

ez + e−z
. (50)

3.2. Loss Function and Training of LSTM-NN Based onWOA.
*e root-mean-square error between the predicted and
target values is expressed by the loss function eloss(w

→
),

whose arguments are Wf ∈R6 ×(6+6), Wi ∈R6 × (6+6),
WC ∈R6 × (6+6),WO ∈R6 × (6+6), bf ∈R6, bi ∈R6, bC ∈R6, and
bO ∈R6. *ese arguments are expressed as a vector w

→ with
312 elements:

w
→

� w1 w2 . . . w312􏼂 􏼃, (51)

eloss(w
→

) �

�������������������

􏽐
n+1
j�1 ht(j− 1) − 􏽥ht(j− 1)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

n + 1

􏽶
􏽴

,
(52)

in which 􏽥ht(j−1) is the prediction vector calculated through
the input value xt(j−1) (j� 1, 2, . . ., n+ 1) based on (42)–(47),
and ht(j−1) is the target vector.

In 2016, the WOA was proposed [38], and it has since
been widely used [39, 40]. *e WOA was used to optimize
(52), which is also called the fitness function. *e WOA is a
mathematical model of the whale hunting process based on
three different strategies: encircling the prey, the bubble-net
attacking method, and searching for prey, and the iterative
algorithm can be classified into three strategies depending
on the conditions [38–40].

*e first strategy is called encircling prey when
p< 0.5 and |A

→
|< 1, in which p ∈ [0, 1] is a random

number, and the corresponding iterative equations are
as follows [38, 39]:

D
→

� | C
→

· w∗��→
(t) − w

→
(t)|,

w
→

(t + 1) � w∗��→
(t) − A

→
· D
→

,

A
→

� 2 a
→

· r
→

− a,
→

C
→

� 2 · r.
→

(53)

Here, t is the current iteration, A
→

and C
→

are coefficient
vectors, w

→ is the position vector in (52), w∗��→ is the best
position vector detected so far, | | is the absolute value, is the
elementwise multiplication, a

→ is linearly decreased from 2
to 0 throughout the iterative process, and r

→ is a vector
whose values are randomly generated in [0, 1].

*e second strategy is called the bubble-net attacking
method when p> 0.5, and the corresponding iterative
equations are as follows [38, 40]:

w
→

(t + 1) � |w∗��→
(t) − w

→
(t)| · e

bl
· cos(2πl) + w∗��→

(t),

(54)

in which b is a constant that defines a logarithmic spiral
shape, and l ∈ [−1, 1] is a random number.

*e third strategy is called searching for prey when
p< 0.5 and |A

→
|≥ 1, and the corresponding iterative equa-

tions are as follows [38]:

D
→

� C
→

· wrand
����→

− w
→

(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

w
→

(t + 1) � wrand
����→

− A
→

· D
→

,

(55)

in which wrand
����→ is a random position vector chosen from the

current population.
*e iterative termination condition is as follows due to

the nonnegative loss function of (52):

t≥ Imax or eloss(w
→

)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 5e − 4 , (56)

in which Imax is the maximum number of iterations.
Letting Imax � 150, b� 1, a program based on the flow-

chart in Figure 5 was run, and the minimum of the loss
function eloss(w

→
) was 0.00041 when the number of iterations

was 97.

4. Simulation, Prediction, and
Experimental Verification

4.1. Experimental System to Test the Energy Consumption of 3-
RRR PPM. As depicted in Figure 6, the testing system based
on the field bus technology mainly included a 3-RRR PPM, a
servo control system, and a signal detection system. In the
Windows operating system, the linkage of the three servo
motors was achieved using Visual C++. *e servo control
system was mainly composed of a computer, central control
unit (i.e., center control board–PCI bus, I/O board–local I/O
board, and servo control board), three servo motor drivers,
an encoder, and three servo motors. *e RS-485 serial bus
standard was adopted.
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*e servo motors and matched drivers were a
TSC06401C2NL/TSTA20C type. Furthermore, the center
control board and torque/speed sensor were PPCI-L112
and JN338-2VE types, respectively. To add an external
force to the moving platform, the point G8 with coordi-
nates (q1, q2) was taken on the base, a spring with elastic

coefficient K and free length l0 was connected between
point G8 on the base and point G7 on the moving platform,
and the main torque Me was equal to zero. According to
Hooke’s law, the principal vector Fe through the center of
mass of the moving platform can be expressed as follows
(G7G8 > l0):

End

Is (56) true ?

Yes

No

Update w (t)
through w (t + 1)

based on
(53)

Start

Input training data xtj and xtj (j = 1, 2, …, n + 1)
based on (40) and (41)

p ≥ 0.5

Update w (t)
through w (t + 1)

based on
(54)

Update w (t)
through w (t + 1)

based on
(55)

Yes
No

Update w∗ (t)

Output optimal value of loss function

Yes

No

WOA

Calculate the loss function of (52) based on
(42)–(47); initialize w (t)

|A| ≥ 1

Figure 5: Program flowchart to train the LSTM-NN for the energy consumption prediction of a 3-RRR PPM.

Computer

Servo motor driver

Torque/speed
sensor

Servo motor

3-RRR PPM

Point G8Point G7

(a) (b)

Figure 6: Testing system of energy consumption for the 3-RRR PPM. (a) Equipment of energy consumption experiment. (b) Partial
enlarged detail of the 3-RRR PPM.

10 Mathematical Problems in Engineering



ω 1
/ra

d·
s–1

ω 2
/ra

d·
s–1

ω 3
/ra

d·
s–1

×10–4

×10–4

×10–4

Predicted data
Experimental data
Simulated data

0
2
4

1 2 3 4 5 6 7 8 9 100

–5
0
5

1 2 3 4 5 6 7 8 9 100

0
2
4

1 2 3 4 5 6 7 8 9 100
t (s)

t (s)

t (s)

Figure 7: Comparison of the simulated, experimental, and predicted data for the three active bars’ angular velocities ωi.
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Figure 9: Comparison of the simulated, experimental, and predicted data for the 3-RRR PPM’s energy consumption (E) (t) with t ∈ [0, 10].
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Fe �

Fex

Fey

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ �

K

���������������������

q1 − x( 􏼁
2

+ q2 − y( 􏼁
2

− l0

􏽱

􏼒 􏼓
������������������

q1 − x( 􏼁
2

+ q2 − y( 􏼁
2

􏽱
q1 − x

q2 − y

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦.

(57)

4.2. Examples and Discussion

4.2.1. Example 1. *e dimensional parameters of the 3-RRR
PPM were assigned the following values: a� 0.0531m,
b� 0.0919m, c� 0.1083m, d� 0.0439m, e� 0.0481m,
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Figure 10: Comparison of different DMs under the same path and movement time. (a) DM of the moving platform corresponding to (58).
(b) DM of the moving platform corresponding to Example 2.
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Figure 11: Comparison of simulated, experimental, and predicted data for three active bars’ angular velocities ωi for the DM shown in
Figure 10(b).
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f� 0.0289m, l1 � 0.0190m, l2 � 0.0140m, l3 � 0.0160m,
l4 � 0.0350m, l5 � 0.0340m, and l6 � 0.0540m. *e cross-
sectional size of each bar was 0.015× 0.005m2, and the bar’s
material was an aluminum alloy with a density of
2.7×103 kg/m3. *e mass of each bar is as follows:
mG1 � 0.00385 kg, mG2 � 0.00284 kg, mG3 � 0.00324 kg,
mG4 � 0.00709 kg, mG5 � 0.00689 kg, mG6 � 0.01094 kg, and
mG7 � 0.02454 kg. Furthermore, l0 � 0.015m, K� 5,
q1 � 0.070m, and q2 � 0.070m.

*e orientation angle θ of themoving platformwas equal
to −0.1047 rad, and the trajectory of the moving platform’s
center was a semiellipse:

x � 0.01 cos(ωt),

y � 0.025 + 0.008 sin(ωt),
􏼨 ω � π/T, t ∈ [0, T]. (58)

Letting T �10 s, based on the relationship between the
moving platform displacement and time t expressed in
(58), the angular velocities and torques of the active bars
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Figure 12: Comparison of the simulated, experimental, and predicted data for three active bars’ driving torques τi for the DM shown in
Figure 10(b).
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Figure 13: Comparison of the simulated, experimental, and predicted data for 3-RRR PPM’s energy consumption (E) t with (t) ∈ [0, 10] for
the DM shown in Figure 10(b).
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and the energy consumption of the 3-RRR PPM were
compared between the simulation, prediction, and
experiment.

*e simulation curves, which are colored blue, were
obtained using the program flowchart to calculate the energy
consumption of the 3-RRR PPM described in Section 2.3.2.
*e prediction curves, which are colored green, were ob-
tained from the training and forecasting based on the LSTM-
NN described in Section 3. Finally, the experimental data,
which are colored red, were obtained as described in Section
4.1. At the beginning of the experiment, the initial angular
displacements of the three active bars were 0.4896, 0.2212,
and 0.4081 rad.

*e three active bars’ angular velocities ωi and driving
torques τi and the 3-RRR PPM’s energy consumption E(t)
for t ∈ [0, 10] from the simulation, experiments, and pre-
dictions are shown in Figures 7, 8, and 9, respectively.

4.2.2. Example 2. According to the definition of the dis-
placement model (DM) for the moving platform of the 3-
RRR PPM in Section 1, the DM of the moving platform
corresponding to (58) is shown in Figure 10(a). For the same
movement time and path, another DM of the moving
platform is shown in Figure 10(b).

Letting T �10 s, the semielliptical path of the moving
platform’s center and the other conditions, such as the
dimensional parameters of 3-RRR PPM, the cross-sec-
tional size of each bar, the bar material, and the orien-
tation angle of the moving platform, were the same as
those in Example 1. Only x(t) and y(t) of the moving
platform’s center changed with time t ∈ [0, T], as depicted
in Figure 10(b).

Similarly, in the beginning of the experiment, the initial
angular displacements of three active bars were still 0.4896,
0.2212, and 0.4081 rad. *e three active bars’ angular ve-
locities ωi and driving torques τi and the 3-RRR PPM’s
energy consumption E(t) with t ∈ [0, 10] were considered
under the moving platform’s DM, as depicted in
Figure 10(b). *e simulation, experiment, and prediction
results were compared, and the corresponding graphs are
shown in Figures 11, 12, and 13.

4.2.3. Discussion. By integrating the data shown in Figure 9,
the total energy consumption of the 3-RRR PPM from the
simulation, experiment, and prediction was determined to
be 7.6652×10−4, 8.1086×10−4, and 7.9228×10−4 J, respec-
tively. *e relative error between the predicted and simu-
lated data was 3.36%, and that between the predicted and
experimental data was 2.29%.

Likewise, by integrating the data in Figure 13 and using
the moving platform’s DM depicted in Figure 10(b), for the

same movement time and path, the total energy con-
sumption for the simulation, experiment, and prediction of
the 3-RRR PPM was determined to be 7.4845×10−4,
8.0186×10−4, and 7.8695×10−4 J, respectively. *e relative
error between the predicted and simulated data was 5.14%,
and that between the predicted and experimental data was
1.86%.

By comparing the DM of (58) with the DM of
Figure 10(b), the total energy consumption of the latter was
slightly lower. *erefore, when the motion time and path
were the same, different DMs of the moving platform
resulted in different energy consumption.

5. Conclusions

In the research and development of a new type of robot, a
prototype is developed until the industrial application of the
new type robot is fully realized. *e data derived using the
theoretical modeling combined with numerical solutions of
the theoretical model can also train a supervised learning
network, because field data sources are scarce. *e trained
neural network can be applied to the online intelligent
control of a new type of robot.

Combining an LSTM-NN with the WOA can help to
avoid the inherent weaknesses of gradient disappearance
or gradient explosion in other supervised networks, such
as BPNN and RNN, when solving time-varying prediction
problems. In addition, this approach can also replace
theoretical complex dynamics models. In this paper, the
RMSE of the trained LSTM-NN was 0.00041, and the
relative error between predicted and experimental data
was less than 2.50%. *e results showed that the energy
consumption prediction based on the LSTM-NN can meet
the requirements of engineering applications. For the
same movement time and path, different DMs of the
moving platform resulted in different VMs and energy
consumption.

Appendix

Equations (24), (28), and (32) were used, and a simultaneous
system of equations with a total of 21 equations was deduced,
that is, (37).

A ∈R21× 15 is a sparse matrix:

A �

a11 a12 . . . a1,15

a21 a22 . . . a2,15

. . . . . . . . . . . .

a21,1 a21,2 . . . a21,15

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.1)

in which the elements that are not equal to zero are enu-
merated as follows:
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a11 � a12 � a13 � 1;

a24 � a25 � a26 � 1;

a31 � − y − yC1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a32 � y − yC2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a33 � y − yC3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a34 � x − xC1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a35 � −x − xC2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a36 � x − xC3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌;

a41 � −1, a47 � 1;

a52 � −1, a58 � 1;

a63 � −1, a69 � 1;

a74 � −1, a7,10 � 1;

a85 � −1, a8,11 � 1;

a96 � −1, a9,12 � 1;

a10,1 � − yG4 − yC1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a10,4 � −xG4 − xC1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a10,7 � −yG4 − yB1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a10,10 � −xG4 − xB1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌;

a11,2 � − yG5 − yC2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a11,5 � −xG5 − xC2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a11,8 � −yG5 − yB2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a11,11 � −xG5 − xB2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌;

a12,3 � − yG6 − yC3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a12,6 � −xG6 − xC3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a12,9 � −yG6 − yB3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, a12,12 � −xG6 − xB3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌;

a13,7 � 1;

a14,8 � 1;

a15,9 � 1;

a16,10 � 1;

a17,11 � 1;

a18,12 � 1;

a19,7 � l1 sin θ1/2, a19,10 � − l1 cos θ1/2, a19,13 � −1;

a20,8 � l2 sin θ2/2, a20,11 � −l2 cos θ2/2, a20,14 � −1;

a21,9 � l3 sin θ3/2, a21,12 � −l3 cos θ3/2, a20,15 � −1.

(A.2)

*e remaining elements are equal to zero.
B ∈R21 × 1 is a column vector:

B �

B1

B2

...

B21

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.3)

in which all elements are enumerated as follows:

B1 � FG7x − Fex; B2 � FG7y − Fey; B3 � MG7 − Me; B4 � FG4x; B5 � FG5x; B6 � FG6x; B7 � FG4y;

B8 � FG5y; B9 � FG6y; B10 � MG4; B11 � MG5; B12 � MG6; B13 � −FG1x; B14 � −FG2x;

B15 � −FG3x; B16 � FG1y; B17 � FG2y; B18 � FG3y; B19 � −MG1; B20 � −MG2; B21 � −MG3.

(A.4)
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