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ABSTRACT 
 Bacterial chondronecrosis with osteomyelitis is the most important cause of lameness in 

broilers. This is important to poultry production, as it poses animal welfare issues, and causes a 

significant loss in revenue. The remediation of this disease requires the study of its etiology with 

fitting models and evaluating preventatives. The research reported herein covers genomic 

virulence analysis of BCO isolates, mainly Staphylococcus aureus, and Escherichia coli 

retrieved from lame birds. We found that S. aureus isolates were closest to chicken strains in 

Europe but may have been in the Arkansas area for a decade. Phylogenomics suggest our S. 

aureus is restricted to poultry, while the E. coli spans various hosts. This dissertation includes the 

analyses of mainly BCO isolates to determine virulence using the embryo lethality assay. Human 

S. aureus was the most lethal to layer and broiler embryos. Staphylococcus agnetis 908 that may 

induce lameness to >50% did not show virulence. This inconsistency among others compelled us 

to offer that embryo lethality assay may not be an effective tool for estimating the pathogenicity 

of BCO isolates.  Furthermore, research reported herein covers the investigation of the feed 

additive Availa-ZMC for lameness reduction potential in broilers using litter and wire-flooring 

models for inducing lameness. Availa-ZMC (a mixture of organic trace minerals) resulted in a 

reduction of lameness by 20% in the wire-flooring model, and 25% in the challenge on litter 

flooring model. Finally, this dissertation reports on a Typhoid-Mary experiment in broilers raised 

on the wire flooring to determine whether broilers challenged with S. agnetis can transmit the 

bacterium to birds in the same pen thereby spreading BCO and lameness. The Typhoid Mary 

experiment shows that young broilers exposed to S. agnetis at an early age harbor the bacterium 

and if mixed with unexposed birds 10 days later can transmit the bacterium to their pen mates.  
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Introduction/ Literature Review 

Chicken Domestication 

Domestic Chicken—Gallus gallus domesticus, is the most widely distributed poultry species 

(Miao., et al, 2013; Zhang., et al, 2017). Chickens have been important to human societies for 

thousands of years. They are food; the meat and eggs serve as a reliable source of protein. 

Chicken also served anthropomorphic purposes in entertainment (cockfights), religious practices, 

and ornamentation. Domestic chickens make good biological and medical models. From an 

archaeological perspective, domestic chickens are closely associated with humans; they have 

been dispersed primarily by human activity. This makes chickens an important biological marker 

of agricultural, cultural contacts, and trade between societies and civilizations (Mwacharo., 

2013A & B; Peters., 2016). There is evidence that multiple domestications of Red Jungle Fowl, 

the primary parents of the most recent domestic chickens, began between the ending of the 

Pleistocene and the beginning of the Holocene era in southern China, South Asia, and Southeast 

Asia (Tixier-Boichard., et al, 2011; Miao., et al, 2013; Peters., et al, 2016; and Bosse, 2019).   

Journals and archaeological evidence suggest that chickens got to Europe via southern (through 

Greece and Persia) and northern (through china and Russia) trading routes (Crawford., 1990; and 

Tixier-Boichard., 2011). Archaeozoological evidence suggests that domestic chickens were 

raised in Africa, particularly ancient Egypt around 1307–1196 BC (Houlihan., 1986; Mwacharo., 

2013). Chickens showed up in Sudan 1650 BC, and Kenya around 800AD (Houlihan., 1986; 

Marshall., 2000; Mwacharo., 2013). The sequence of events concerning the spread of chickens 

across the rest of Africa is not fully understood (Blenck., 2000; Tixier-Boichard., 2011; and 

Mwacharo., 2013). Mitochondrial DNA from 3000-year old chickens at the Teouma site 

(Vanuatu) reveals that chicken spread from southeast Asia to Oceania between 1400–900 BC 
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(Storey., 2010; Miao., 2013). In the Americas, lineage and propagation of chickens are debatable 

(Maio., 2013). Some studies reported that DNA and carbon dating evidence suggest that 

Polynesian chickens were introduced in the Americas (Chile) in the pre-Columbian AD 1304–

1424 (Storey., 2007; Maio., 2013). Storey, et al. (2007) suggested, based on dating and DNA 

evidence, that chickens were introduced to the Americas before the arrival of the Spanish or 

Portuguese, but they were of Polynesian origin.  Gongora et al. (2008) also countered the 

Polynesian-Chilean American contact view citing that pre-Columbian chickens sequences lie 

among European/Indian subcontinental/Chinese haplotype rather than Polynesia. 

Broiler Production in the USA 

Growth of the broiler Industry  

Broilers and layers are the two parts of commercial chicken production. Broilers yield 

meat and layers produce eggs. My dissertation focuses on broiler chickens. Our team worked to 

better understand the mechanisms of pathogenesis behind the incidence of lameness in the 

production of rapidly growing birds. We induced the disease using models. We tested 

formulations postulated to reduce bacterial chondronecrosis with osteomyelitis (BCO) leading to 

lameness in commercial broiler production farms. We also surveyed multiple commercial farms 

and sampled lame broilers. Our goal was to improve models for studying BCO, enhance animal 

health and welfare, improve meat quality, incorporate sustainable practices, and improve 

productivity.   

The poultry industry in the United States of America is one of the most successful sectors 

in US agricultural production. Around the early 1900s, poultry production in the USA, like in 

most parts of the world, was mainly practiced in small non-specialized units using diverse breeds 

of chickens that already existed on the continent (Sainsbury, 2000; Muir & Aggrey, 2003). By 
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the late 1930s to mid-1940s, there was an explosion in poultry production in the US and across 

Europe (Sansbury, 2000). Various genetic improvement programs were introduced. Poultry 

breeders utilized line- and cross-breeding techniques adapted from plant breeders (Sansbury., 

2000). After successful crossbreeds were introduced, the numbers of poultry breeding programs 

dwindled. The poultry breeders became streamlined and specialized to service large-scale poultry 

production (Sainsbury, 2000).  

Over 50 years after poultry intensification, poultry production in the US and around the 

world shifted from a small scale non-specialized side activity to a global-scale specialized and 

integrated industry. This level of global integration drives international trade by ensuring 

standardization of poultry practices and products, particularly through shared policies and 

transfer of technologies (Sainsbury, 2000; Bessei, 2018). Integrated production generally 

involves contracting production to local farmers. In 2000, 57 million tons of chicken meat was 

produced around the world (Executive guide to world poultry trends, 2000). In 2019, world 

poultry meat production output was 128 million tons (Food and Agricultural Organization; 

Executive guide to world poultry trends., 2020). The US poultry industry produced about 9 

billion pounds (4.5 million tons) of broiler meat in 1968, and about 56 billion pounds (28 million 

tons) in 2018—a 600% growth in productivity (Figure 1: USDA., 2019). In terms of monetary 

value, US poultry production was priced at 32 billion dollars and it is still growing (Figure 2). 
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Figure 1. USDA Report: Broilers produced by the pound in the USA since 1968 (Image 

reproduced from USDA., 2019). 

 

  

 

Figure 2. US broiler production in pounds with the estimated monetary value from 2008 to 2018 

(Image reproduced from USDA., 2019). 
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Modern Broilers Selection and Breeding Techniques 

Until the early 1900s, the only way to select and breed chickens was to identify the best breeder 

for the phenotype of interest and mate them for the next generation (Muir & Aggrey, 2003). 

However, technologies applied in poultry breeding have since advanced. The technologies were 

geared for (i) management of poultry reproduction, (ii) tracking of pedigrees, (iii) mating, and 

(iv) accurate utilization of true breeding values of potential candidates (Muir & Aggrey, 2003). 

Before the 1940s, breeding technologies were strictly aimed at producing purebred stock from 

pure-breeding lines. But shortly after breeding programmes were implemented, broiler producers 

began merging specialized lines and crossing them to make commercial production animals with 

distinct breeding goals (Sainsbury, 2000; Muir & Aggrey, 2003). Today, broiler products are 

usually three-way or four-way crosses between pure breeding lines over four generations (Muir 

& Aggrey, 2003; Paxton, 2010 Pollock, 1999; Sainsbury, 2000). A common generation and 

multiplication from pure breeding line to broiler products are described below: 

(i)Pure-breeding line: Chickens are owned by primary breeder companies and kept on biosecure 

farms for selection programmes. Breeding companies maintain up to ten pure-breeding lines for 

their numerous broiler lines (Figure 3; Muir & Aggrey, 2003; Pollock., 1999). 

(ii) Great-grandparent stock: These come from pure-breeding lines; they are used primarily to 

multiply the line and produce tens of thousands which are needed for generating the grandparent 

lines. They are subject to mass selection for selected traits. They are heavily controlled by the 

primary breeding companies. In figure 3, they have designated flocks A males and females, B 

males and females, C males and females, and D males and females (Muir & Aggrey, 2003; 

Pollock., 1999).  
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 (iii) Grandparent stock: are the first-generation in the four-way ABCD cross. They are A males 

x B females and C males x D females from Great-grandparent stocks that are used to produce 

hybrid AB or CD hybrids parents. Hundreds of thousands of Grandparent stocks are distributed 

to the local distributor of parent stocks or integrated production companies (Muir & Aggrey, 

2003; Pollock., 1999). 

(iv) Parent Stock: are AB-hybrid males and CD-hybrid females. They are mainly owned and 

maintained by broiler production companies (Muir & Aggrey, 2003; Pollock., 1999). 

 (v) Broilers: are the commercial products of crossing parent stocks. They are meat-type chickens 

that are raised, slaughtered, processed for large scale meat consumption (Muir & Aggrey, 2003; 

Pollock., 1999).  

Expectations for future meat demands often drive poultry breeding goals. Hence the 

intensification of artificial selection fuelling modern broiler production (Muir & Aggrey, 2003, 

Paxton, 2010; Pollock.,1999). In the 20th century, Poultry breeders kept the pace of production 

by adapting numerous vital selections and breeding technological innovations (Table 1, Muir & 

Aggrey, 2003). 
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Figure 3: Example of generation and multiplication scheme in modern broiler production from 

elite/ pedigree to commercial broilers products. (Reproduced from Paxton., et al, 2010). 

 

Table 1. Timeline for critical technologies employed for poultry breeding in the 20th century 

(Reproduced from Muir & Aggrey, 2003). 
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Impact of Genetic Selection in Broiler Production: Pros and Cons  

The poultry industry has seen great successes largely due to its ability to economically produce 

acceptable products (Anthony, 1998; Muir & Aggrey, 2003; Paxton., 2010; Tallentire, 2018). 

This success is the cumulative effect of selection intensities, shorter generation times, and 

lessened environmental impacts, among many other benefits (Anthony, 1998; Muir & Aggrey, 

2003; Tallentire., 2018). It is important to explore the advantages and disadvantages that have 

surfaced from intensive selective broiler breeding.   

Compared to the early 20th century, the modern market-weight broiler’s time of production has 

substantially dropped. In the 1920s, it took an average of 112 days to raise 2.5 lb live-weight 

birds. In 2019, 6 lb live-weight birds can be raised in 47 days (Muir, 2013; NCC, 2020). The 

“Feed to Meat Gain” or the pound-amount of feed used to produce a one-pound live-weight 

broiler in 2019 was about 4.7 lb feed per 1 lb broiler (NCC, 2020). In 2019, the feed to meat gain 

was 1.80 lb per 1 lb of broiler produce with acceptable meat yield (Anthony, 1998; Muir, 2013; 

NCC, 2020). Modern broilers have been heavily selected for growth rate since the 1950s. By 

2015, the growth rate has increased by 400% (Figure 4; Muir & Aggrey, 2003; Renema, 2007; 

NCC, 2020). In addition to meat quality and quantity, the monetary value and exports of broilers 

have been considerable (Anthony, 1998; Muir & Aggrey, 2003; USDA, 2019). The mortality 

rate of chickens has dropped from 18% to 5% since 1925 (Muir & Aggrey, 2003; NCC, 2020). 

Interestingly, broiler meat production has had a relatively lower impact on the environment 

compared to beef and pork production (Anthony, 1998; Tallentire., 2018). This is associated with 

a drop in the fossil fuel emission of greenhouse gases during feed production, combined with the 

reduced nutrient loss from poultry manure. These benefits increase even more in feed-efficient 

birds (Muir & Aggrey, 2003; Tallentire, 2016; 2018).     
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Although the poultry industry has recorded immense feats particularly as it concerns the artificial 

selection of desirable broiler traits. There are growing concerns over the negative effects of 

genetic selection in broiler production (Anthony, 1998; Hock., 2014; Muir & Aggrey, 2003). 

Hock (2014) counted 23 classes of organ system metabolic disorders important to broiler 

chickens and turkeys (Table 2; Hock, 2014).  Some reports suggest that in rapidly growing birds, 

one of the main issues observed is increased carcass fat deposition (Anthony, 1998; Tumová., 

2010). Then there are issues of broiler liveability, immune function, and reproductive 

complications at the breeder level (Anthony, 1998; Hock, 2014). 

 

Figure 4: Age-related changes in the size of the University of Alberta Meat Control strains 

unselected since 1957 and 1978, compared to the Ross 308 broilers (2005) for Day 0, 28, and 56. 

(Image reproduced from Zuidhof., 2014). 
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Table 2. The number of idiopathic disorders of broiler chickens and turkeys reported in the 

literature (Reproduced from Hock, 2014) 

Organ system Number 

Skeletal disorders 11 

Muscle disorders 4 

Integument 3 

Cardiovascular disease 2 

Reproduction 3 

 

Around the globe, some broilers develop ascites, a condition caused by increased pulmonary 

pressure and resultant hypoxia that culminates in the accumulation of fluids in the peritoneal 

cavity resulting in abdominal swelling (Al-Zahrani, et al., 2019; Anthony, 1998; Parveen, et al.,  

2019; Wideman, 2000). More issues emanating and associated with the rapid growth rate of 

broilers include muscle abnormalities resulting from the production of high-yield birds heavy 

with meat that surpasses several metabolic and/or anatomical limits (Anthony, 1998). 

Concerning animal behavior, Bokkers et al. (2003) write that no difference was found in resting 

demeanor between fast- and slow-growing broilers raised to 13 weeks, as the birds seemed 

motivated to perform all kinds of behavior in a feasible environment. They noted, however, that 

for fast- and slow-growing broilers the ability to carry out certain behaviors became tasked with 

age, probably due to their weight (Bokkers., 2003). In the past 30 years, there has been an 

increased incidence of breast meat abnormalities like wooden-breast (WB), white-striping, and 

spaghetti-meat (SM) (SM) in broilers (Abash et al., 2016; Petracci et al., 2015; 2019; Sihvo et 

al., 2014; 2017). White stripes are recognizable by the accumulation of lipids and proliferation of 

connective tissue line up in the same direction as the striations of the muscles (Figure 5B-D; 

Petracci, et al., 2015; 2019). WB was first described in 2014 by Silvo, et al (Sihvo, et al., 2014). 
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WB mainly affects the pectoralis major and sometimes pectoralis minor. It presents a confined 

lesion at 2 weeks of age that develops as a fibrotic injury with a hardened and pale appearance in 

the pectoral muscles (Figure 5E-H; Abasht, et al., 2016; Petracci, et al., 2015; 2019; Sihvo, et 

al., 2014; 2017). SM affects broiler chicken pectoralis major muscles impairing its integrity. It is 

characterized by a soft consistency in the ventro-cranial segment due to poor adhesion of 

Musculo-fibers (Figure 5I; Petracci et al., 2015; 2019; Tasoniero, et al., 2020). 

Selection for rapid growth is also associated with numerous skeletal defects that clinically are 

important to various degrees of locomotion. The group of locomotion difficulties resulting from 

skeletal diseases is called Lameness. Skeletal defects include tibial dyschondroplasia, epiphyseal 

ischaemic necrosis, epiphyseal separation, skeletal fracture, valgus-varsus deformity, angular 

bone deformity, twisted leg, spondylolisthesis (kinky-back), gastrocnemius tendon rupture, 

among others (Havenstein et al., 1994; 2003; Julian, 1998; Muir & Aggrey, 2003). 

 

Figure 5: Classification of Broiler chicken Breast meat myopathies. (a) Normal breast (b) 

Moderate White Striping breast (c) Severe White Striping breast (d) Represents moderate White 

Striping thigh (e) Woody-breast (WB) with focal, hardened, and pale areas, without hemorrhages 

(f) Extremely severe WB case (g) Is the same case as figure f with hemorrhages (h) White 
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Striping plus WB (i) Extremely severe spaghetti meat breast (Image reproduced from Petracci., 

2019). 

Lameness in Broiler Chickens 

The Issue  

The poultry industry has been very successful in producing marketable products with reasonable 

turn-over times with less impact on the environment compared to other meat production systems. 

Unfortunately, these undertakings seem to be accompanied by several broiler health issues one of 

which is lameness. Lameness in birds is characterized by bone structure deformations or rigidity 

that culminates in partial or complete immobility of the birds. Lameness can be quantified using 

the gait scale (GS) scores of 0 for normal to 5 for complete immobility of the birds (Gocsik et 

al., 2017; Kestin et al., 1992). Some researchers, citing high GS and unusual nociceptor 

threshold, argue that lameness and its underlying pathologies are associated with pain (Caplen et 

al., 2014; Danbury et al., 2000; Hothersall et al., 2016; McGeown et al., 1999; Nääs et al., 2009; 

Gocsik et al., 2017). Some others counter the claims that there is a link between lameness and 

pain (McNamee et al., 1998; Sandilands et al., 2011 Siegel et al., 2011; Skinner-Noble et al., 

2009).  While the science of lameness and pain is inconclusive, all poultry researchers seem to 

agree that lameness in broiler chickens poses serious animal health and welfare issues in the 

USA and across the world (Bassler et al., 2013; Gocsik et al., 2017; Granquist et al., 2019; 

Knowles et al., 2008; Moura et al., 2006). Figure 6 depicts the different factors associated with 

the incidence of lameness. Factors that contribute to lameness include, but are not limited to 

genetics, weight, growth rate, exercise, husbandry practices, nutrition, long-day lighting pattern 

(1-hour darkness; 23-hour light), sex, age, and infectious agents (Brickett., 2007; Classen., 1989; 

Gocsik., 2017; Kestin., 1999; 2001; Moller., 1999; Muir & Aggrey, 2003; Reiter., 2001; 2006; 

Su., 1999). However, BCO is the leading cause of lameness in broiler chickens (Al-Rubaye et 
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al., 2015; 2017; Bradshaw et al., 2002; Dinev., 2009; Jiang et al., 2015; Thorp et al., 1993; 1994; 

1997; Wideman., 2016; Wideman et al., 2012; 2013; 2015; Wideman and Prisby 2013). 

 

 

Figure 6: Factors that contribute to the incidence of lameness in broilers (Image reproduced from 

Kierończyk et al., 2017).  

 

Prevalence of Bacterial Chondronecrosis with Osteomyelitis Lameness 

BCO-lameness is important to the poultry industry for economic and animal welfare reasons. 

Over 1.5 % meat-type chickens raised to processing weights at 5-8 weeks within the past 20 

years in the USA may be affected with spontaneous BCO and lameness (Dinev, 2009; Stalker et 
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al., 2010; Wideman, 2016; Wideman et al., 2012; Wideman and Prisby, 2013). This number may 

be even higher. According to Zinpro, a spontaneous outbreak of lameness can affect over 15% of 

commercial broiler flocks (Rebello., 2019). A cross-sectional study of broiler flocks across 

Britain, France, Italy, and the Netherlands indicated that there was a 16% prevalence of 

lameness, with GS of at least 3 or more (Bassler et al., 2013; Gocsik et al., 2017). A similar 

study in Sweden suggested a 14-26% prevalence with GS≥3 (Sanotra et al., 2003). A 

longitudinal survey of 20 broiler flocks in Victoria, Australia revealed that BCO occurs 

throughout the lifespan of broiler at a very high rate, with different lesions diagnosed in about 

28% of the birds (Wijesurendra et al., 2017).  

Economics of BCO Lameness 

Over the past 70 years, the market of broiler production has seen a dramatic change from 

smallholder chicken farms to a more intensive and integrated multibillion-dollar set-up operated 

by a few corporations (Lowder et al., 2009). Lameness causes financial loss in poultry revenue. 

This is due to increased mortality, culling of lame birds at different stages of production, and 

condemning birds during processing. According to the Farm Model, the economic impact of 

lameness is a function of the frequency of the incidence of lameness in birds with GS≥3 and its 

impact on poultry productivity. Poultry production is expressed in terms of production costs, 

gross margin (revenues - variable costs), and the net profit per kilogram of delivered broiler 

(Gocsik et al; 2017). The Farm model considers increased mortality, higher feed conversion, 

increased condemnation rate at slaughter, and lower weight gain in estimating the economic 

burden of lameness (Gocsik et al; 2017). The damages due to the mortality of lame birds can be 

estimated with Equation 1. And the damages incurred from condemning lame market-age birds 

at processing are estimated with Equation 1 and Equation 2 (Gocsik et al., 2017; Nääs et al., 
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2009). Considering a lot of factors, the poultry industry in the USA loses over $100 million per 

year which amounts to $.016 per broiler (Al-Rubaye et al., 2015; Aydin, 2018; Cook, 2000; 

Weaver, 1998). This affects production costs and thus the shelf-price of poultry products (Cook., 

2000; Weaver., 1998). 

 

(Equation 1 is reproduced from Gocsik et al.,2017). 

 

(Equation 2 is reproduced from Gocsik et al., 2017). 

Pathogenesis BCO-Lameness 

BCO was formerly referred to as femoral head necrosis (FHN), proximal femoral degeneration, 

or bacterial chondronecrosis but the name was changed as researchers learned that proximal 

tibiotarsus and the fourth thoracic (T4) vertebra (with spondylitis) are also affected (Jiang et al., 

2015; McNamee & Smyth., 2000). Broilers can grow to about 8 Lbs in 8 weeks (Wideman., 

2016). This weight gain cannot be sustained without an equivalent increase in the size and 

strength of the skeletal frame of the bird. The mechanism of rapid bone growth is important to 

BCO and lameness. Growth of long bones in young broilers involves elongation of growth plates 

at both ends of the bone shaft/diaphysis, as well as an increase in the diameter as a result of the 

dynamic remodelling of the cortical bone (Wideman., 2016; Wideman & Prisby., 2013). 

Growing broiler birds see about four-times growth in length of femur and tibia, with a mid-shaft 

diameter increase that is three to five times the original width within the same time frame 

(Applegate & Lilburn., 2002; Bond et al., 1991; Wideman, 2016; Yair et al., 2012). Wideman 

(2016), notes that broilers are more susceptible to lameness than layers as the former has a 
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disproportionate weight gain ratio to skeletal structure maturation than it does cranial-caudal 

redistribution of muscles mass (Wideman, 2016). Rapidly growing birds had a higher incidence 

of lameness and efforts that reduce early growth lessens the disease in broilers (Wideman., 

2016).  Dr. Wideman developed a wire-model flooring for inducing lameness in growing birds 

(Wideman et al., 2012). This model creates shear stress in rapidly growing young birds, inducing 

lameness with or without bacteria administration in water (Al-Rubaye et al., 2015; 2017; 

Wideman et al., 2012, 2013, 2014; Wideman and Prisby, 2013; Wideman, 2016). Trials on the 

wire-flooring system utilizing different broiler product lines revealed that they were all 

susceptible to the incidence of BCO-lameness with some lines showing sire-effects (Al-Rubaye 

et al., 2017; Wideman et al., 2013, 2014). The incidence of BCO lameness appears to begin with 

mechanical micro-fracturing of poorly mineralized columns of cartilage cells (chondrocytes) in 

the proximal growth plates of the femora and tibiae of early rapid-growing young broilers (Petry 

et al., 2018; Wideman., 2016; Wideman & Prisby., 2013). The micro-fractures generate 

osteochondrotic crypts that get colonized by hematogenously distributed opportunistic bacteria 

(Al-Rubaye et al., 2015; Jiang et al., 2015; Mandal et al., 2016; Petry et al., 2018; Wideman., 

2016; Wideman & Prisby, 2013; Weimer et al., 2020). These bacteria come vertically from 

broiler parent breeders to their chicks, or horizontally from a contaminated hatchery, and 

eggshells (Stalker et al., 2010; Wideman., 2016). Bacteria may get translocated into the chick’s 

blood supply through the respiratory system, gastrointestinal tract, or integumentary system 

(Figure 7; Al-Rubaye et al., 2015; 2017; Wideman et al., 2012, 2013, 2014; Wideman and 

Prisby, 2013; Wideman, 2016). Translocated bacteria get hematogenously distributed to both 

ends of the growth plate by the numerous terminal epiphyseal and physeal vascular plexuses 



 

18 

(Figure 8; Wideman, 2016; Wideman & Prisby, 2013). Since the blood supply of broilers is 

important to the incidence of lameness, it is crucial to study its anatomical composition. 

 

Figure 7. Routes of bacterial infections in rapidly growing birds. Bacteria transmitted to chicks 

from parent breeders, contaminated hatchery sources, eggshells, or bacteria that is translocated 

into bird’s circulatory system via the integument, respiratory system or gastrointestinal tract gets 

distributed hematogenously and colonize the osteochondrotic crypts from microfractures 

resulting from mechanical stress (Image reproduced from Wideman, 2016; Wideman & Prisby, 

2013).  

Blood supply to proximal heads of rapidly growing broiler important to lameness.   

There are three main structures in the blood supply of broiler long bones. These include (1) 

cartilaginous epiphysis (e), (2) the physis (p) also known as the growth plate (GP), and (3) the 

metaphysis (m). Cartilaginous epiphysis (e) is composed of articular cartilage (a) and hyaline 

cartilage (hy). The physis (p) or the growth plate (GP) comprises a cartilaginous matrix and long 

maturation columns of chondrocytes in consecutive layers with unique characteristics. The 

physis/gp spans the germinal chondrocytes (stem cells) of the resting zone (rz), to the highly 

mitotic proliferating zone (pz), the prehypertrophic zone (phz), and then the hypertrophic zone 

(hz). The metaphysis (m) is composed of the degenerative calcifying chondrocytes as well as the 

newly formed osteoid in the calcifying zone (cz). In the metaphysis, the spicules of trabecular 
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bone support the growth plate’s scaffolding and the resorption zone (rez) wherein the trabecular 

bone thins out to form the medullary cavity (mc) of the diaphysis (d) (Figure 8 through  

9; Wideman & Prisby, 2013; Wideman, 2012). In Figures 8 through 10, blood flows from the 

epiphyseal vascular supply (ev), travels either through epiphyseal vascular canals (ec) within the 

hy of the e or through the junctional canals (jc) moving down the growth plate. Branches of the 

ev can also terminate as epiphyseal vascular capillary complexes (evc) within the hz or they can 

become penetrating epiphyseal vessels (pev) that terminate as a penetrating vascular capillary 

plexus (pvp) and supplies blood to the rz, pz, and phz collectively called the maturing zone of the 

growth plate. The proximally traveling nutrient artery (ana) coming from mc divides severally 

inside the diaphysis (d) to form metaphyseal vessels (mv) within the m. The mv terminates as 

metaphyseal vascular capillary plexuses (mvp) and supplies the czi. The pvp or mvp does not 

usually cross the hz like the transphyseal vessels (tp) does. The pvp and mvp loop back around to 

form fenestrated capillaries that return as venules coursing through the same canal (Figures 8 – 

10; Wideman., 2016; Wideman & Prisby., 2013). 
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Figure 8. The diagram on the left pane and photograph on the right panel shows the blood supply 

and the anatomical structures of the long bone in growing broilers (Reproduced from Wideman 

& Prisby., 2013; Wideman., 2016).  

 

Figure 9. Diagram of the femoral proximal head illustrating the formation of osteochondrotic 

clefts/crypts at the boundary between the growth plate and the epiphysis (Wideman &Prisby., 

2013). 
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Figure 10. Arterial blood supply to the leg bone of a growing bird (Reproduced from Wideman, 

2016). 

 

Vertebral anatomy and blood supply in broilers important to BCO lameness 

Of the five thoracic vertebrae in broilers, the fourth thoracic vertebra (T4) moves freely and 

separates the notarium and synsacrum (Figure 11; Baumel et al., 1993; Wideman, 2016). 

Wideman (2016), describes T4 be fused to the caudal surface of notarium and the cranial surface 

of synsacrum (Wideman, 2016). He mentioned that the fusion of these bones is only partial until 

the birds reach sexual maturity, perhaps to allow room for the continuing longitudinal growth of 

the vertebral body in young birds (Wideman, 2016; Wideman and Prisby, 2013). The structure 

and position than T4 with respect to the more rigid/inflexible cranial T3 and caudal T5 
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encourages the erosion of epiphysis and physis of T4 which is important to the incidence of 

vertebral BCO (Wideman., 2016).  

 

 

Figure 11. The skeleton of a bird. The image highlights the exposure of the very flexible thoracic 

vertebrae 4 or T4 (Image reproduced from Wideman, 2016; Wideman and Prisby, 2013). 

 

The T4 vertebral body in rapidly growing broiler chickens is prone to various deformities and 

non-inflammatory mechanical collapse. They are also susceptible to downward rotation 
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(subluxation), and scoliosis/lateral displacement (Figure 12; Wideman, 2016; Wideman and 

Prisby, 2013). The clinical presentation of T4 subluxation is called spondylolisthesis or spine 

slippage or “kinky back,” a condition in which spinal cord compression leads to paraplegia, a 

hock- or rumps sitting position, and permanent immobility (Figure 12; Wideman, 2016; 

Wideman and Prisby, 2013). 

 

Figure 12. Broiler bone histopathology image for formalin-fixed 5 μM sections from 5-week 

stained with hematoxylin and eosin. (A) Normal T4 (B) The boundary between the epiphysis (e) 

and physis (p) normally should be seamless. (C) In broilers that appear to be clinically healthy 

narrow osteochondrotic clefts or voids (arrows) containing cellular debris can be detected at the 

boundary between the epiphysis (e) and the physis (p). Osteochondrotic clefts may interrupt the 

local vasculature, cause distortions in the epiphyseal-physeal cartilage (*) and constitute wound 

sites that are favourably colonized by opportunistic bacteria (modified from Figure 6 in 

McCaskey et al., 1982). 

 

In Figure 12 A-C, T4 from apparently healthy broiler birds present uninfected minor 

microfractures, osteochondrotic clefts, and subclinical deformations in their epiphyseal and 

growth plate layers. At the time when these findings were reported, only a few healthy birds 

were diagnosed as clinical spondylolisthesis or kinky back (McCaskey et al., 1982; Wideman., 

2016; Wideman & Prisby, 2013; Wise., 1970). Kinky back (KB) may have genetic backgrounds 

as studies conducted on broiler lines deliberately selected for KB showed the incidence of 

spondylolisthesis. In another study where birds with KB were nursed back to health and bred for 
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two generations, the offspring presented with KB (Khan., 1977; Wideman., 2016; Wideman & 

Prisby., 2013). In summary, the thoracic vertebra of rapidly growing meat-type chicken 

undergoes wear and tear that results in skewed vertebral bodies. This condition combines with 

numerous microfractures in the epiphysis and the physis of the vertebra and may stay non-

clinical or may even progress to the non-infectious and heritable spondylolisthesis (Wideman., 

2016; Wideman & Prisby., 2013). Non-infectious non-inflammatory osteochondrotic lesions are 

by themselves not considered the main initiator of lameness in broilers. The collection of crypts 

or clefts resulting from microfractures, packed with exposed collagen structures and fed by good 

vascularities, maybe good infection sites for opportunistic bacteria microbes that play a role in 

the onset of vertebral BCO (McNamee et al., 1998; Wideman, 2016; Wideman and Prisby, 

2013).  

Bacteria and Lameness 

The etiology of BCO lameness is not fully understood, but bacteria are highly involved in the 

incidence of the disease. As aforementioned, the unsupported mass of rapidly growing birds 

causes microfractures and hence osteochondritic crevices. The crevices contain exposed collagen 

matrices that may favor inhabitation and colonization by hematogenously distributed 

opportunistic bacteria from various sources (Wideman & Prisby, 2013; Wideman, 2012; 2015; 

2016). As discussed above, the vessels for blood supply to tibia, femur, and vertebra, narrows 

into capillaries. These capillaries are networks of fenestrated endothelium large enough to allow 

the translocation of some blood components, including bacteria, into the cartilaginous matrices 

(Wideman & Prisby, 2013, Wideman et al., 2012; 2013; 2015; 2016). Translocated bacteria 

adhere to exposed collagen complexes obstruct the epiphyseal and metaphyseal blood vessels 

(Wideman, 2016; Wideman & Prisby, 2013). Such obstruction permits bacterial foci formation 
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and occludes pathogens from the broiler’s responses or antibiotics (Wideman, 2016; Wideman & 

Prisby, 2013). Multiple opportunistic microbes, including Staphylococcus spp., Escherichia coli, 

Enterococcus cecorum, Salmonella spp., have been isolated from BCO lesions (Al-Rubaye et al., 

2012; 2015; 2017; Dinev, 2009; Jiang et al., 2015; Joiner et al., 2005; Mandal et al., 2016; 

Martin et al., 2011; Stalker et al., 2010; Thorp et al., 1993; Wideman., 2016, Wideman and 

Pevzner, 2012, Wideman and Prisby., 2013; Wideman et al., 2012; 2013; 2015; Wijesurendra et 

al; 2017). While we need to characterize BCO isolates to specify their role(s) in the incidence of 

lameness, we also must ascertain where they are coming from and how they are getting into the 

blood. In Figure 7, we proposed that bacteria important to be BCO may be translocated from the 

respiratory tract, the integument, or the gut microbiome (Wideman, 2016). It is therefore 

incumbent to analyze the microbial populations of the broiler chicken and their significance to 

the infection process of BCO. 

Microbiota and Lameness 

Chicken’s natural microflora is associated with enrichment of intestinal villus and crypt 

morphology (Jiang et al., 2016; Mandal, et al., 2016; Yeoman, et al., 2012). Analysis of villus 

length and macroscopic pathology in lameness revealed that villus length improved with 

probiotic treatments than the control group (Al-Rubaye, et al., 2020). The gut microbiome 

promotes broiler growth by boosting energy-filled short-chain fatty acids. It is also involved in 

nutrient absorption, detoxification, polysaccharides metabolism, immune system regulation, and 

the general well-being of birds (Clavijo et al., 2018; Yeoman, et al., 2012). Microbiomes in 

organs other than gut are also important to animal health. Studies of organ microflora dysbiosis 

in humans, for example, are implicated in the pathogenesis of a host of diseases including 

colorectal cancers, inflammatory bowel diseases, and so on (Mandel et al., 2016). Microbial 
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communities of the gut or other tissues important to lameness and other disorders are not fully 

characterized or understood (Jiang et al., 2015; Yeoman, et al., 2012). However, most chicken 

microbiome analysis seems to lean towards the gut compared to the blood, trachea, or feces, and 

least of them the bones (Jiang et al., 2015; Lim et al., 2015; Mandal et al., 2016; Sohail et al., 

2015). Jiang et al. (2015) suspect that multiple bacterial species shuttle mainly from the gut 

communities into the bloodstream forming niches across tissues. They emphasized the 

importance of the gut microbes despite awareness about microbial communities present in yolk 

remnants, and respiratory tracts in apparently healthy birds (Jiang et al., 2015). There are still 

important questions to be answered: 1) Are all translocated bacteria commensals in BCO? 2) 

How do commensals with benefits become pathogenic? 3) Do some of these microbes come in 

as commensals evade immune effectors and then develop virulence? 4) Is translocation an 

acquired virulence factor? 5) Is translocation a synergistic property that drives further 

translocation? and 6) How and where can the immune system be boosted to better handle these 

invasions? In attempts to characterize tissue (including gut) microbiomes, Mandal et al. (2016) 

sampled the blood performing deep sequencing and analysing bacterial 16S rRNA sequences for 

bacterial communities in 240 healthy birds and 12 lame birds. They discovered that 97% of the 

phyla level communities in chicken blood was Proteobacteria (60%), Bacteroidetes (14%), 

Firmicutes (11%), Actinobacteria (10%), and Cyanobacteria (2%) (Mandal et al., 2016). These 

characterizations were determined from about 40 operational taxonomic units (OTUs) regardless 

of age, host physiology, or environmental conditions. Linear discriminant analysis effect size 

(LEfSe) showed significant population of Staphylococcus, Microbacterium, and Granulicatella 

in lame vs healthy bird’s blood (Mandal et al., 2016). Wei et al. (2013) analyzed the intestinal 

microbiome of broilers using all available published and unpublished data. They identified 915 
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OTUs equivalent to species that delineated with a 3% phylogenetic distance. The species were 

grouped into 13 phyla comprising 70% Firmicutes, 12% are Bacteroidetes, and 9% 

proteobacteria. These data made up 90% of all phyla. They identified 117 genera, a majority of 

which include Clostridium, Ruminococcus, Lactobacillus, and Bacteroides. The main 

representative at the genus level for Firmicutes was the ethanol metabolizing Ethanoligenes 

bacteria. While Desulfohalobium was the most represented Proteobacteria. Actinobacteria (with 

1% of sequences revealing Bifidobacterium) was represented in minute quantities. Other phyla 

with small representations include Cyanobacteria, Spirochaetes, Synergisteles, Fusobacteria, 

Tenericutes, and Verrucomicrobia (Wei et al., 2013; Clavijo et al., 2018). Understanding the 

distribution of microbes may explain the routes and conditions necessary for bacterial 

colonization important to BCO and other dysbiosis associated diseases. Clavijo et al. (2018) 

analyzed the redistribution of microbial communities across the tissues of the gastrointestinal 

tract (GIT) and found that the taxonomic profiles described for different parts of this system 

vary. Factors include but are not confined to diet, sex, genetics, use of antimicrobials, and 

sampling techniques. The chicken crop and gizzard are mainly populated by the genus 

Lactobacillus and Clostridiaceae family. The crop environment promotes bacteria metabolization 

of starch and fermentation of lactate. In the gizzard, gastric juices, pepsin, and hydrochloric acid 

acidify this environment lowering the fermentation and general bacterial activity. The small 

intestine contains the highest bacterial cell count of mainly Lactobacillus (70%), Enterococcus, 

and Clostridiaceae (Clavijo et al., 2018). They also noted that the ceca are considered the richest 

in species diversity to some extent for its capacity to hold food for 12 to 20 hours as well as for 

its major water reabsorption role, the concentration of urea, and fermentation of undigested 

carbohydrates from the intestines. The ceca are rich in the phyla Firmicutes, Bacteroides, and 
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Proteobacteria, and Clostridiaceae. Further, the abundant microorganisms of unknown 

phylotypes belong to Firmicutes making this phylum to be of special interest. The gut 

microbiome of chickens contains taxa with Campylobacter jejuni, Campylobacter coli, 

Salmonella enterica, Escherichia coli, and Clostridium perfringens that may be harmful to birds 

and human (Clavijo et al., 2018; Oakley et al., 2014). Campylobacter spp is considered harmful 

to humans but not birds. Salmonella enterica may be deadly to birds and humans depending on 

the age of the bird, the serotype of the Salmonella spp, and the health condition of the bird. 

Salmonella spp is of lower prevalence. Escherichia coli, in chicken intestines, also has a low 

abundance thorough out the lifespan of apparently healthy birds. Avian pathogenic Escherichia 

coli (APEC) has virulence factors important to various diseases in birds (Clavijo et al., 2018; 

Oakley et al., 2014). Jiang et al. (2015) surveyed the microbial communities of 97 femoral or 

tibial heads from normal and lame broilers representing various ages, lines, lesion types, floor 

types, to understand the long bone’s microbial importance to BCO. This study revealed a 91% 

prevalence of Proteobacteria, 6% Firmicutes, and ~2% Actinobacteria phyla. Several other phyla 

represented at lesser amounts, include Tenericutes, Bacteroidetes, Acidobacteria, 

Verrucomicrobia, Nitrospirae, and Cyanobacteria that accounted for less than 0.4% of the total 

phyla count. The overrepresented species were of Staphylococcus spp (Jiang et al., 2015). Table 

3 accounts for differences between treatments recorded from these analyses (Jiang et al., 2015). 

We have isolated multiple Staph species from birds that develop BCO on our facilities as well as 

sick broilers from commercial farms (Al-Rubaye et al., 2012; 2015; 2017; Ekesi, 2020; Shwani 

et al., 2020). Jiang et al. concluded that diminished species diversity is associated with a higher 

degree of BCO lesions and lameness (Jiang et al., 2015). Further analysis of the BCO microbial 

communities is needed for understanding the etiology of lameness and potential remediation.  
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Table 3: Comparison of microbial communities in different groups (Table reproduced from Jiang 

et al., 2015) 

 

 

Stress, Immune responses, and BCO 

In lameness literature, the role of stress and immune responses revolves around microbial 

proliferation important to the incidence of BCO that causes lameness in affected birds. The 

incidence levels of lameness, the weight-induced microfractures, and subsequent bacterial 

infection of physis and epiphysis of birds may initiate BCO (McNamee & Smyth, 2000; 

Wideman & Prisby, 2012; Wideman et al., 2012; Wijesurendra et al., 2017). Environmental 

stressors and septicemic pathogens, such as chicken anaemia virus (CAV) or infectious bursal 

disease virus (IBDV) can cause immunosuppression that furthers the proliferation of microbes 

that leads to the formation of BCO lameness (Wideman, 2016; Wideman & Prisby, 2013). The 

wire-flooring model for inducing lameness in broilers causes chronic stress that results in 

immunosuppression of broilers as shown by their elevated blood corticosterone levels (Wideman 

& Prisby, 2012; Wideman et al., 2012). Injection of glucocorticoids, specifically dexamethasone, 

resulted in femoral head necrosis (FHN) lesions, and the intravenous administration of 

prednisolone also causes epiphyseolysis; separation of the epiphysis from the physis. (Cui et al., 
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1997; Durairaj et al., 2012; Wideman and Prisby., 2013). In many of the dexamethasone 

lameness trials, the responses were not typical of those recorded in spontaneous BCO cases. 

Particularly, the administration of dexamethasone shrunk growth rates in broiler birds even at the 

lowest dose that induced lameness in the birds (Wideman and Pevzner., 2012, Wideman and 

Prisby., 2013). In turkey osteomyelitis complex (TOC), environmental stressors were associated 

with the eruption of opportunistic pathogens harbored sub-clinically in the proximal tibia of 

turkeys (Huff et al., 1998-2000; 2006; Wideman and Pevzner., 2012, Wideman and Prisby, 

2013). Rodgers JD et al. (2006) developed an ELISA with nuclease protein as an antigen to 

capture S. aureus-specific antibodies produced in response to bacteria administered to 500 

broiler birds by aerosol.  Bacteria were administered on Day 1 post-hatch with or without co-

infectors to induce BCO lameness. Co-infectors were CAV and IBDV. They found 71% of 

serum samples from aerosolized S. aureus-treated birds had antibodies for nuclease protein. Only 

35% of serum samples had antibodies for nuclease when there was no co-infection (Rodgers et 

al., 2006).  The co-infection was reported to have resulted in profound effects until day 42 

(Rodgers et al., 2006). These findings are important as they highlight adaptive immune/ humoral 

responses are activated in the birds infected by S. aureus, and co-infection with CAV and IBDV 

drives the development of nuclease-specific antibodies for up to 42 days in broilers. Further, 

because in our Staphylococcus BCO lameness model, we see an increasing amount of lameness 

around this period, this needs to be examined further. We are working on characterizing the 

pattern of innate immunity important to be BCO and lameness in our lab using phagocytosis 

assays for BCO bacteria and chicken macrophage in directed genome evolution trials (Zaki, 2020 

Dissertation). Lowder et al. (2009) wrote that S. aureus isolates gained mobile genetic elements 

coincident with the jump from humans to birds to adapt to the avian ecosystem.  Consequently, 
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they showed resistance to heterophil phagocytic killing in in vitro assays. A better understanding 

of this mechanism is important, as it may help explain how BCO isolates bypass the immune 

factors in the disease process of birds that get infected.  

Microbiology of Common Pathogenic BCO isolates 

Even though some of the findings described herein are not particular to chickens, the 

mechanisms of pathogenesis of each microbe described may be important in the incident of BCO 

and lameness. 

Staphylococcus spp. 

About 60 Staphylococcus species have been identified (Szafraniec et al., 2020). All 

Staphylococcus spp can cause diseases (Crossley et al., 2009). The staph genome is dynamic; 

the assortment of virulence factors varies by species and strains. 

Staphylococcus agnetis 

S. agnetis is a common cause of BCO lameness (Al-Rubaye et al., 2015; 2017). The species was 

named after Europe’s first female veterinary surgeon, Agnes Sjöberg (1888–1964), who 

struggled her way into the profession despite resistance from her male colleagues. S. agnetis is a 

Gram-positive-staining, and a coagulase-variable bacterium (Adkins et al., 2017; Szafraniec et 

al., 2020; Taponen et al., 2012). It is generally coagulase-negative after 4 hours, but over 25 % 

of the isolates show coagulase-positivity after 24 hours. S. agnetis cells are facultatively 

anaerobic, non-spore-forming, non-motile cocci which grow either singly, or in pairs or small 

clusters. The bacteria colonies may grow to 3mm after 24 hours of incubation at 37 °C. The 

bacterium is catalase-positive and oxidase-negative. It is round, opaque, smooth, non-hemolytic, 

and light grey on bovine blood agar. S. agnetis is resistant to polymyxins, deferoxamine, and 

lysozyme. But it is susceptible to lysostaphin and novobiocin. This bacterium is negative for 
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clumping factors and hydrolyses DNA at 37 °C giving off a degradation halo hue. S. agnetis 

metabolizes and produces acids aerobically with D-glucose, D-fructose, D-mannose, lactose, 

sucrose, and D-ribose. Phylogenies based on 16S rRNA sequence analysis, two housekeeping 

genes (rpoB and tuf), or DNA fingerprinting with amplified fragment length polymorphism, 

show S. agnetis forms a separate branch within the Staphylococcus genus (Al-Rubaye et al., 

2015; Adkins et al., 2017; Taponen et al., 2012). The closest species that have also been 

recovered in BCO lameness include S. hyicus and S. chromogenes. S. agnetis are commonly 

isolated in milk samples in the incidence of bovine intramammary infections that results in 

subclinical or mild clinical mastitis in dairy cattle, and more recently BCO lameness lesions 

(Adkins et al., 2017; Al-Rubaye et al., 2015; 2017; Taponen et al., 2012). S. agnetis is the main 

BCO isolate on our farm and is induces lameness to statistically significant degrees using wire or 

litter- flooring. The role of S. agnetis in BCO and lameness in infected birds will be discussed 

further below.   

Staphylococcus aureus 

S. aureus is a coagulase-positive, Gram-positive bacterium. Although the production of 

coagulase differentiates S. aureus from other Staphylococcal species, the coagulase gene (coa) is 

not associated with virulence (Crossley et al., 2009). S. aureus is non-motile, non-spore-forming, 

catalase-positive, and oxidase-negative. S. aureus is a facultatively anaerobic bacterium.  The 

bacterium has cell-bound clumping factors. It is slightly tolerant of sodium chloride. It ferments 

mannitol and produces hyaluronidase. The physical appearance may differ by media. The reason 

S. aureus causes more incidence of BCO and lameness in birds that develop the disease is not 

known than any know BCO isolate. This implies, however, that S. aureus does have an inherent 

capability to cause damage (McNamee et al., 2000).  S. aureus infects several various hosts. Like 
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S. agnetis, S. aureus is also implicated in cattle mastitis. S. aureus also causes childhood 

osteomyelitis, and hospital or community-acquired infections (Adkins et al., 2017; Al-Rubaye et 

al., 2015; McNamee et al., 2000). Almost all recovered S. aureus recovered from sick animals or 

humans have virulence capsules that inhibit them from being phagocytized (McNamee et al., 

2000). It has been suggested that these capsules facilitate adherence to chicken cartilage, but the 

actual role in bone and joint infection is not understood (McNamee et al., 2000). S. aureus is the 

most predominant of all the disease-causing Staphylococci (Crossley et al. 2009). Compared to 

S. epidermidis (another common BCO isolate), S. aureus contains 18 distinct genomic islands 

that house virulence genes that disrupt host defenses (Foster, 2005; Gill et al., 2005). According 

to Crossley et al. (2009), much of the work done to characterize S. aureus has been on a limited 

number of strains derived from a primary strain NCTC 8325. This isolate was retrieved 

originally in 1960 from a sepsis patient in the UK and is the reference genome for NCBI.  There 

are 11,870 S. aureus genome assembly entries (Crossley et al., 2009). Different strains of S. 

aureus have been derived from NCTC 8325 for various purposes, where the derivative strains 

still preserve the ancestral lineage (Crossley et al., 2009). Comparing derived isolates with 

clinical S. aureus, Φ13 is integrated into the att site on hlb gene that normally expresses β-toxin 

interrupts its function (Crossley et al., 2009). This may be observed in strain NCTC 8325-4 

where the temperate Φ13 is excised, hlb gene production of β-toxin is restored. This is important 

not only because of the β-toxin negative effect of Φ13 integration but also because phage that 

utilizes the att hlb site alters functions for a combination of genes (sea, sak, scn, chp) with 

virulence factors for disruption host immune functions (Crossley et al., 2009). More 

discrepancies and connotations exist between derived and clinical S. aureus strains, but these 

notions are not without controversy. Studies suggest that mutations exist in at least tcaR and 
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rsbU genes that regulate the expression of specific virulence factors in all NCTC 8325 

derivatives making them references and models for studying the regulation of pathogenicity 

(Crossley et al., 2009;  Sassi et al., 2014). Crossley et al. (2009) utilized genome-level 

transcriptional profile analysis of NCTC 8325-4 strain with clinical isolate UAMS-1 and argues 

that there are no such mutations in either tcaR or rsbU. This study revealed that over 300 genes 

were expressed in a strain-dependent manner comparing NCTC 8325-4 and UAMS-1 strain 

(without tcaR or rsbU) (Crossley et al., 2009). About half of these genes are under SigB regulon 

control (Cassat et al., 2005; Crossley et al., 2009). A correlation study was performed in over 

400 S. aureus isolated from different infections and geolocations for variable genes and virulence 

with pulse-field gel electrophoresis (Booth et al., 2001; Crossley et al., 2009). Five of the 90 

identified lineages were important to 65% of infections (Booth, et al., 2001; Crossley et al., 

2009). Collagen-binding adhesin (cna) gene was in three of the five lineages. Booth et al. (2009) 

indicated, however, that no cna-containing lineages encoded the fibronectin-binding protein gene 

fnbB. Lack of fnbB does not eliminate the relevance of S. aureus fibronectin binding capability 

as they still possess a highly conserved fnbA. This does not make fnbB irrelevant either, as this 

gene is positioned in a location termed region of difference (RD5). A region that houses the 

surface-associated protein SasG and the regulatory elements sarT and sarU (Crossley et al., 

2009). In a similar study of 334 S. aureus strains, 33 genes were determined important for 

virulence; cna was one of seven genes prevalent in invasive species (Crossley et al., 2009). 

Otsuka, et al. studied15 clonal clinical community-acquired methicillin-resistant S. aureus (CA-

MRSA) particularly to osteomyelitis, and necrotizing pneumonia. They found cna in nine of 

them (Otsuka et al., 2006). The 15 CA-MRSA strains were either categorized as pandemic 

(Sequence type ST30) or continent-specific (ST1, ST8, OR ST80). Five of the cna-specific 
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strains were classified as pandemic CA-MRSA strains; they encoded gene bbp for adhesin that 

binds sialoprotein in bones and lacked fnbB. This absence, Otsuka et al. (2006) noted, implies 

the lack of RD5-linked genes (sasG and sarT) in the pandemic strain. The combination of bbp 

and cna has been considered for the potential to galvanize pathogenicity to the point of 

pandemicity (Crossley et al., 2009). Genome-level analysis suggests that certain S. aureus strains 

may exhibit higher virulence and that predominantly clonal populations possess the ability to 

cause disease. However, this is not always the case. Feil et al. (2003) performed a genome-scale 

microarray study that analysed core variable (CV) genes scattered throughout the chromosome 

and identified10 dominant lineages of S. aureus that lacked genes for diseases and were not 

linked to infectious processes. Crossley et al. (2009) added that multilocus sequence typing 

(MLST) failed to separate commensal versus invasive S. aureus based on clonal lineages. Feng 

et al. (2008) did a comparative genomic analysis of S. aureus pathogenic and non-pathogenic 

strains as well and argued that since no genotypic difference was recorded between the two 

groups, that observed differences between pathogenic and non-pathogenic S. aureus are a 

function of its state. One explanation for the divergent findings is that S. aureus is an 

opportunist; isolates recovered from a sick host may say more about the state of the host than it 

does the strain isolated. Conversely, S. aureus strains retrieved from healthy hosts may be 

important to invasive diseases (Crossley et al., 2009). Study and analysis of clinical isolates and 

NCTC 8325 derived strains in many in vivo and in vitro models show many structures, their 

interaction, and disease processes of S. aureus. The main classes of virulence factors in S. aureus 

are described below. 

1) Surface Virulence Factors: In S. aureus, cell surface-linked pathogenicity involves 

exposed cell wall structures like teichoic acid (WTA), lipoteichoic acid (LTA), lipoprotein, and 
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peptidoglycan (PG). The host immune systems may recognize such structures and express 

cytokines and chemokines in response. These structures collectively play important roles in 

helping S. aureus evade host defenses, and enhance colonization (Crossley et al., 2009). Studies 

suggest that WTA is important to nasal colonization, as this precedes many S. aureus infections 

(Baur et al., 2004; Crossley et al., 2009; Weidenmaier et al., 2004; van Dalen et al., 2020; 

Winstel et al., 2015). S. aureus strains without these structural factors had poor adherence to 

endothelial frame and were not virulent in rabbit endocarditis models (Weidenmaier, et al., 2004; 

2005; Wertheim, et al., 2005). LTA and PG produce inflammatory responses that recruits 

neutrophils that trigger the onset of septic shock (Crossley et al., 2009; Fournier& Philpott., 

2005; Ginsburg, 2002; Kengatharan et al., 1998). The involvement of TLR 2 in the host response 

to LTA and PG are inconclusive (Crossley et al., 2009). In S. aureus LTA (ltaS gene) controls 

autolysin activity, surface hydrophobicity, and therefore biofilm formation in a strain-dependent 

manner (Crossley et al., 2009; Fedtke et al., 2007).  

2) Surface Adhesins: S. aureus cell surface adhesins include a variety of proteins. Bone 

sialoprotein-binding protein (bbp) that binds sialoproteins in bones and may result in 

Staphylococcus-related osteomyelitis and arthritis (Campoccia et al., 2009; Crossley et al., 2009; 

Persson et al., 2009; Tung et al., 2000). S. aureus expresses serine–aspartate repeat proteins 

sdrC, sdrD, sdrE that contiguous and have adhesive properties (Crossley et al., 2009). SdrC 

facilitates interactions with NRXN1 in the host extracellular matrix to promote bacterial 

adhesion and consequently pathogenesis (Crossley et al., 2009; Askarian et al., 2016; 2017). 

sdrD promotes the adhesion to host DSG1 decreasing bacterial clearance by posing resistance 

against neutrophil killing in the blood (Crossley et al., 2009; Askarian et al., 2016; 2017). SdrE 

interacts with host complement factor H/CFAH and improves the resistance to bacterial killing 
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by innate immune components in blood and therefore decreasing bacterial clearance (Crossley et 

al., 2009; Sharp et al., 2012). SdrE protein interacts with host complement regulator C4BPA 

inhibiting bacterial opsonization and killing by interrupting the activation of the host classical 

pathway (Crossley et al., 2009; Hair, et al., 2013). Protein A (spa) plays a role in the inhibition 

of the host innate and adaptive immune defenses, as they bind and capture the Fab and Fc arms 

of immunoglobulins (Ig) with their five Ig-binding domains. As a result, S. aureus is therefore 

protected from opsonophagocytosis (phagocyte killing of bacteria). Down the line, host B-cell 

response is averted as there is a decrease of Ig-secreting cell proliferation in the bone marrow 

and a decreased long-term antibody production (Crossley et al., 2009; Forsgren & Sjöquist., 

1966; Graille et al., 2000; Moks et al., 1986). Protein A hinders osteogenesis by (i) preventing 

osteoblast proliferation, (ii) expression of alkaline phosphatase, (iii) expression of type I 

collagen, as well as (iv) expression of osteopontin and osteocalcin. Protein A is a pro-

inflammatory factor in the lung. It binds and activates tumor necrosis factor-alpha receptor 

1TNFRSF1A (Crossley et al., 2009; Forsgren & Sjöquist., 1966; Graille et al., 2000; Moks et al., 

1986; Widaa et al., 2012). S. aureus produces surface-associated molecules and secreted proteins 

that bind fibronectin (Crossley et al., 2009). The two main classes of these proteins are 

fibronectin-binding proteins A (fnbA) and B (fnbB). In the chromosome of S. aureus, the genes 

for fnbA and fnbB are contiguous and either of them are is sufficient for proper binding of 

fibronectin; however, the only fnbA can mediate platelet clumping (Crossley et al., 2009; 

Heilmann, et al 2004; Peacook et al., 2000). The fnbA binds fibrinogen and elastin while fnbB 

binds elastin but they both are associated with invasive diseases (Peacook, et al., 2000). Collagen 

adhesin (cna) introduced earlier facilitates S. aureus adhesion to collagenous tissues such as 

cartilages that may be important to bone disorders (Crossley et al., 2009). The cna protein is an 
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important virulence agent in many different animal models of Staphylococcal infections 

including arthritis, endocarditis, and keratitis. It stops the activation of the classical complement 

pathway by interacting and interfering with host C1q by forming a link between C1r with C1q 

(Kang et al., 2013; Patti et al., 1993; 2002; Rhem et al., 2000; Xu et al., 2004). Fibrinogen 

binding factors or clumping factors A (clfA) and B (clfB) are expressed on the cell surface of S. 

aureus and are important to infections. Clumping factors A (clfA) enables the specific bacterial 

binding to the gamma-chain of human fibrinogen. This stimulates aggregation of bacteria which 

inhibits phospholipase A2 from bacterial phospholipid hydrolysis and hence inhibited the killing 

and clearance of bacteria (Crossley et al., 2009). ClfA plays a role in the pathogenesis of sepsis 

and septic arthritis (Crossley et al., 2009; Dominiecki & Weiss, 1999; O'Brien et al., 2002; 

Palmqvist et al., 2004; Siboo et al., 2001). Fibrinogen-binding protein B clfB facilitates bacterial 

attachment to the alpha- and beta-chains of human fibrinogen, thereby causing aggregation of 

bacterial in clumps. It interacts with cytokeratin k10 and is partly implicated in the binding of 

highly keratinized squamous epithelial cells from the nasal cavity. clfB binds the mice model 

cytokeratin. And it causes platelet aggregation in humans (Crossley et al., 2009; Dominiecki & 

Weiss, 1999; O'Brien, et al., 2002; Palmqvist, et al., 2004; Siboo, et al., 2001). S. aureus also 

expresses sas genes; sasA is involved in platelet binding, and SasG is important for biofilm 

formation (Crossley et al., 2009). 

3) Secreted Adhesins: S. aureus possesses a group of secretable adhesive proteins 

collectively termed SERAM (secretable expanded repertoire adhesive molecules). Extracellular 

fibrinogen-binding protein (Efb) is a SERAM that is important to virulence (Crossley et al., 

2009; Posner et al., 2016; Pickering et al., 2019). Efb protein interacts with the alpha chain of 

fibrinogen and fibrin product promoting interrupting normal platelets-fibrinogen functions that 
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result in the inhibition of platelet aggregation (Crossley et al., 2009; Posner et al., 2016). Efb also 

forms a fibrinogen protective shield around the bacteria and inhibits phagocytic clearance by the 

host. It does this by binding the C3b complement placed on its surface for opsonization with the 

C-terminal end and then attaches to fibrinogen via its N-terminal (Bodén & Flock,1994; Crossley 

et al., 2009). S. aureus also secretes Atl and Aaa proteins. Atl protein is the major autolysin of S. 

aureus, which has been implicated in cell separation of newly divided S. aureus (Crossley et al., 

2009; Singh, 2014; Sugai, et al., 1995). Even though Atl participates in cell wall turnover, this 

does not contribute to virulence (Takahashi et al., 2002). Aaa (Alias Sle1), binds host proteins 

like fibrinogen, fibronectin, and vitronectin resulting in pathogenicity in mouse models 

(Kajimura, et al., 2005; Crossley et al., 2009).  

4) Surface Polysaccharides: S. aureus expresses capsular polysaccharides (cap genes), and 

polysaccharide intercellular adhesin (icaADBC) (Crossley et al., 2009; Visansirikul et al., 2020). 

Polysaccharides capsules coat C3b decreasing opsonization and phagocytosis of S. aureus by 

phagocytic cells (Crossley et al., 2009; Visansirikul et al., 2020). Polysaccharide intercellular 

adhesin is important to S. aureus biofilm formation in vitro (Crossley et al., 2009).  

5) Extracellular Virulence Factors/ Exotoxins: S. aureus makes several extracellular 

toxins important for diseases. These toxins are group as exfoliative toxins, enterotoxins, and 

TSST-1 (Bukowski et al., 2010; Crossley et al., 2009). S. aureus encodes toxins in a strain-

dependent manner. A number of the predominant S. aureus diseases produce specific toxins. 

Exfoliative toxins are common to Staphylococcal scalded skin syndrome (SSSS), bullous 

impetigo is due to enterotoxins in staph food poisoning, and TSST-1 is associated with toxic 

shock syndrome (Bukowski et al.,2010; Crossley et al., 2009). Many exotoxins cause 

superantigenicity (a strong activation of the immune system) that causes disease (Thomas, et al; 
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2007). All S. aureus isolates encode α- and β-toxin (hla and hlb respectively) which are linked to 

increased virulence in animal models of Staphylococcal diseases (Crossley et al., 2009; Walker, 

et al., 1992; Wilke, et al., 2010). Alpha-toxin (hla) in staph binds the membrane of various 

eukaryotic cells (particularly erythrocytes) drilling pores in them that results in ion imbalance 

and consequently lysis (Crossley et al., 2009; Walker, et al., 1992; Wilke, et al., 2010). α-Toxin 

is dermonecrotic and neurotoxic. Animal studies reveal that β-Toxin (Beta-hemolysins) encoded 

on hlb causes cell lysis. These exotoxins also interact with blood cell membranes and cause them 

to lyse (Crossley et al., 2009). While it is suggested that α-toxin is a factor in biofilm formation, 

strains UAMS-1 and Sanger-252 that have a missense mutation in hla, and insertion of lysogenic 

prophage in hlb do not produce alpha and beta-toxins (Crossley et al., 2009). The implication of 

this is that α- and β-toxin are not necessary for virulence, but when made they cause infections. 

The δ-toxin (a small, helical, amphipathic peptide) lysis mammalian cells, especially RBCs. γ-

Toxin and PVL (lukS-PV, lukF-PV) are bicomponent toxins made by interaction with hlgA and 

hlgC (Crossley et al., 2009). A signature of several S. aureus diseases, including toxic shock 

syndrome, is secretions of exfoliative toxins. Staph diseases with exfoliative toxins are 

associated with strains that produce one of etA, etB, etC, and etD genes. Exfoliative toxin A 

possesses serine protease-like properties; it binds profilaggrin on the skin and cleaves substrates 

after acidic residues (Bailey, et al., 1990; Crossley et al., 2009; Dancer, et al., 1990). 

Staphylococcus aureus produces many enterotoxins and exotoxins one of which is TSST-1 that 

has superantigenic properties and has heat-stability crucial to food poisoning (Hamad, et al., 

1997; Shupp et al., 2002). TSST-1 can cross epithelial surfaces. This is an ability lacking in most 

enterotoxins. Enterotoxins can penetrate the intestinal lining and initiate a local immune response 

that includes activation of mast cells to produce histamine with frequent triggers of 
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vomiting/emesis (Hamad, et al., 1997; Shupp, et al., 2002). Toxic shock syndrome toxin-

1(TSST-1) is associated with toxic shock syndrome disease presented by high fever, rash, 

hypotension, peeling of the skin, and multi-organ failure that often results in death (Crossley et 

al., 2009). Though TSST-1 is mostly linked with toxic shock syndrome, enterotoxins like SEA, 

SEB, and SEC, have superantigenicity and cause the disease if they get introduced via other 

means than food (Crossley et al., 2009). TSST-1 is unique in its ability to cross the vaginal 

mucosa though, hence the link with menstruation-associated toxic shock syndrome (Crossley et 

al., 2009).   

6) Enzymes: S. aureus produces and employs exoenzymes for metabolism and tissue 

invasion important in pathogenesis. Enzyme classes include proteases, lipases, hyaluronidases, 

and nucleases (Crossley et al., 2009; Drapeau et al., 1972; Prokesová, et al., 1992). Enzyme sspA 

breaks the carboxyl-terminal of aspartate and glutamate of the peptide bond and along with 

extracellular proteases triggers pathogenesis in human tissues. SspA engages in proteolytic 

maturation of thiol protease sspB and inactivation of SspC (an inhibitor of SspB). SspA is 

important to the degradation of the fibronectin-binding protein (FnBP) and surface protein A 

crucial for the adherence to host cells. It also shields bacteria against host defenses by cleaving 

IgG, IgA, and IgM (Crossley et al., 2009; Drapeau, et al., 1972; Prokesová, et al., 1992). 

Cysteine protease SspB is involved in the inhibition of host innate mechanisms. It breaks down 

host elastin, fibrinogen, fibronectin, and kininogen (Massimi, et al., 2001; Rice et al., 1992; 

Shaw et al., 2004; 2005). SspB stops the phagocytosis of opsonized S. aureus and decreases the 

surface expression of CD31 on neutrophils (Massimi, et al., 2001; Rice, et al., 1992; Shaw, et 

al., 2004; 2005). It degrades host galectin-3/LGALS3, thereby preventing the neutrophil 

activation by lectin (Massimi, et al., 2001; Rice, et al., 1992; Shaw, et al., 2004; 2005). Some 
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protease enzymes in S. aureus play regulatory roles in virulence (Crossley et al., 2009). The Clp 

proteolytic complexes (clpX and clpP) are ATP-dependent and they direct protease to specific 

substrates. A mutation in clpX reduced S. aureus biofilm formation, while a mutation in ClpP 

increased biofilm formation. In the absence of clpP, clpX can serve as chaperone (Crossley et al., 

2009; Frees et al., 2004; Gersch et al., 2015). 

7) Iron acquisition: S. aureus requires iron, which is limited in the host, for its infection 

process (Crossley et al., 2009). S. aureus meets its iron needs through (1) siderophore which 

consists of heme and high-affinity chelators, and (2) direct reuptake with surface proteins. Four 

well-studied siderophores include staphyloferrin A, staphyloferrin B, aureochelin, and 

staphylobactin. Stapyloferin A and B are encoded respectively on SfaA and SfaB genes. The 

enzymes required for making staphylobactin are encoded on a nine-gene sbnABCDEFGHI 

operon (Conroy et al., 2019; Crossley et al., 2009). Mutation of sbnE resulted in stunted growth 

in iron-restricted media and lowered pathogenicity in the murine kidney model (Crossley et al., 

2009). Siderophores attach to host iron and passage them into the bacterial cell via iron-regulated 

ABC transporter, such as the ferric hydroxamate uptake Fhu system. Fhu system has an iron-

binding lipoprotein ligand, integral membrane proteins, and ATPase (Crossley et al., 2009; 

Hannauer et al., 2015).  S. aureus has two other systems for the extraction of iron from Heme. 

The first system designated isd includes five transcriptional units isdA, isdB, isdCDEFsrtBisdG, 

isdH, and isdI (Crossley et al., 2009). The second is designated HtsABC for the heme transport 

system, so named as they were identified from the search for proteins like ABC transporters 

(Crossley et al., 2009). These systems are important to S. aureus pathogenesis, as 95% of the 

iron in the human host is bound to heme proteins (Crossley et al., 2009). IsdB protein pulls heme 

from oxidized methemoglobin (metHb) and transports it to IsdA or IsdC proteins, and on to 
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membrane transporter/IsdEF for internalization. The isdB protein induces resistance to hydrogen 

peroxide and neutrophils killing (Bowden et al., 2014; 2018; Crossley et al., 2009; Gaudin et al., 

2011).  

8) Regulation of S. aureus virulence: like every other process involved in bacterial 

physiological processes, S. aureus produces virulence molecules in a regulated manner to boost 

pathogenicity.  It produces the accessory gene regulator, agr that is involved in the regulation of 

several virulence S. aureus important to disease processes (Bibalan et al., 2014; Crossley et al., 

2009). The agr system is a two-part system composed of RNAII and RNAIII transcriptional units 

which are respectively controlled by P2 and P3 promoters (Bibalan et al., 2014; Crossley et al., 

2009; Novick et al., 1995). The RNAII transcript traverses operon agrACDB that houses agrA 

(regulator) and agrC (membrane sensor). AgrD encodes the extracellular-bound autoinducing 

peptide (AIP) that is important to quorum sensing and is processed by agrB molecule (Abdelnour 

et al., 1993; Booth et al., 1995; Cheung et al., 1994). AgrA plays a role in post-exponential phase 

expression of a string of secreted proteins. (Bibalan et al., 2014; Crossley et al., 2009) 

(Abdelnour et al., 1993; Booth et al., 1995; Cheung et al., 1994). Sar genes in S. aureus 

regulates Agr gene functions (Crossley et al., 2009). SarA controls the production of virulence 

factors and drives the biofilm formation process in a cell density-dependent manner 

(Balamurugan et al., 2017; Bibalan et al., 2014; Crossley et al., 2009). SarA is also important to 

multi-drug resistance mechanisms (Valle, et al., 2003). SarA is on a locus with three overlapping 

transcripts sarA, sarC, and sarB with a similar terminus and promoters P1, P2, and P3 (Crossley 

et al., 2009). SarA is regulates RNAII and RNAIII transcripts on agr locus and serves as a 

transcriptional activator for fnbA, fnbB, hemolysins (hla, hld, hlgB, and hlgC), serine proteases 

(splA, splB, splD and splF), bap that are strain-dependently important to biofilm formation in 
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diseases (Crossley et al., 2009; Valle et al., 2003). SarA down-regulates protein A (spa), lipase 

(lip), thermonuclease (nuc), immunodominant staphylococcal antigen B (isaB), staphylococcal 

serine and cysteine proteases (sspA and sspB), staphostatin B (sspC), metalloprotease aureolysin 

(aur) and collagen adhesin (cna) (Crossley et al., 2009). Homologs of SarA include SarR, SarV, 

SarX, SarZ, Rot, and MgrA whose interactions are not fully understood, but sarA and SarR 

regulates agr RNAII expression. SarA activates and SarR represses the P2 in transcription 

(Crossley et al., 2009; Reyes et al., 2011). In one study, sarV (rat) and mgrA(norR) are looped in 

a feedback mechanism; mutation of mgrA results in increased autolysis (Crossley et al., 2009; 

Ingavale et al., 2003). MgrA is responds to reactive oxidative changes that result in resistance to 

certain antibiotics (Williams et al., 2006; 2015). There are more factors of regulation employed 

in S. aureus virulence. The S. aureus exoprotein expression gene (saeRS) regulates exotoxins 

(Crossley et al., 2009; Feng et al., 2008). Staphylococcal respiratory response gene (srrAB) 

responds to changes in oxygen levels (Crossley et al., 2009; Ulrich et al., 2007). The two-

component response regulator gene (vraSR) that regulates agr and responds to cell wall-directed 

antibiotics and increases resistance to β-lactams and vancomycin (Crossley et al., 2009; 

Taglialegna et al., 2019). The two-component response regulator gene (graRS) that promotes 

resistance to vancomycin and antimicrobial peptides (Crossley et al., 2009; Meehl et al., 2007; 

Hu et al., 2016). The two-component response regulator gene (apsRS) that promotes resistance to 

antimicrobial peptides (Crossley et al., 2009). The two-component response regulator gene 

(alsSD) for Cell wall integrity and biofilm formation (Crossley et al., 2009). The metabolic 

pathway regulation gene (Spx) for Stress response, as well as biofilm formation (Crossley et al., 

2009). The modulator of the sarA gene (Msa) which increases the expression of sarA, and the 

virulence factors under its control (Crossley et al., 2009). The peptidoglycan synthesis gene 
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(murF) which is involved in the expression of cell-associated or extracellular virulence factors 

(Crossley et al., 2009; Sobral et al., 2006).The concepts discussed in this unit encapsulates broad 

association of structures, , patterns, , and regulatory mechanisms important to  the pathogenesis 

of S. aureus in many different diseases in different organisms. We find that S. aureus disease 

mechanism per disease and organism seem to be resultant of the combination of factors utilized. 

In chapter two we will discuss further how some of these processes may be involved in the 

pathogenesis of a clonal population of S. aureus isolated from BCO lame birds.  

Escherichia coli 

E. coli is a rod-shaped, Gram-negative, facultatively anaerobic bacterium that possesses both 

respiratory and fermentative metabolism (coliform). It is a member of the Enterobacteriaceae 

family of the phylum γ-Proteobacteria. E. coli occurs in straight rod stacks which are 1.0–1.5-μm 

wide, and about 2–6-μm-long. It does not produce oxidase. E. coli can be motile (with lateral 

flagella) or non-motile (with polar flagella).  E. coli is methyl red-positive, citrate-negative, and 

Voges–Proskauer-negative. This bacterium is phylogenetically closest to Shigella spp 

(Desmarchelier & Fegan., 2016; Percival et al., 2014). E. coli is a physiologically and 

metabolically versatile organism classified as pathogenic or non-pathogenic. The non-pathogenic 

or commensal strains are part of the normal gut microflora of endotherms (Mellata, 2013; Kaper 

2005; Köhler& Dobrindt., 2011). Pathogenic strains have also been identified and associated 

with various types of intestinal (IPEC- intestinal pathogenic E. coli) and extraintestinal (ExPEC) 

ailments. IPEC are obligate pathogens and ExPEC are facultative. IPEC is phylogenetically and 

epidemiological distant from ExPEC and commensal E. coli. This is because ExPECs and non-

pathogenic E. coli share large genomic segments (Köhler & Dobrindt., 2011). Commensal E. coli 

strains are not prevalent in disease cases expect in immunocompromised hosts, or in situations 
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where the gut integrity is compromised (Kaper, 2005; Kaper et al., 2004). The natural niche in 

humans is the mucosal layer of the colon, where E. coli is an effective competitor. Sweeney et al. 

(1996) reported that gntP (mapped immediately downstream of the fim gene cluster) encodes a 

high-affinity gluconate permease observed with the abundance of gluconate in the mice model 

large intestine. The hypothesis is that the metabolism of gluconate may be the reason why 

commensal E. coli are more successful than other resident species (Sweeney et al., 1996). Some 

E. coli have acquired virulence capabilities for colonizing and adapting to niches and unleashing 

a variety of diseases. These virulence factors are often on genetic elements passaged from one 

strain to another resulting in a combination of new sets of pathogenic material in many cases. So 

that a once mobile element can become immobile in its new genomic environment. (Kaper et al., 

2004). Pathogenically successful combinations of virulent materials have resulted in the 

formation of E. coli pathotypes that can cause diseases in an organism or a range of hosts (Kaper, 

2005; Kaper et al., 2004; Palaniappan, et al., 2006).  Infection with E. coli pathotypes generally 

results in (1) diarrhoeal or gut (enteric) disease, (2) sepsis and meningitis, or urinary tract 

infections (UTIs). There are six characterized gut E. coli pathotypes: (I) enteropathogenic E. coli 

(EPEC), (II) enterohaemorrhagic E. coli (EHEC), (III) enterotoxigenic E. coli (ETEC), (IV) 

enteroaggregative E. coli (EAEC), (V) enteroinvasive E. coli (EIEC), and (VI) diffuse adherent 

E. coli DAEC (Kaper et al., 2004; Mansan-Almeida, et al., 2013). Infection of the urinary tracts 

are caused by the pathotype uropathogenic E. coli (UPEC) and are the most common 

extraintestinal E. coli infections. Meningitis and sepsis causing pathotype is meningitis-

associated E. coli (MNEC) and are becoming increasingly prevalent in non-gut infections. Two 

of the newest E. coli pathotypes include the endometrial pathogenic E. coli (EnPEC) and the 

mammary pathogenic E. coli MPEC (Johnson & Russo, 2002; Russo & Johnson, 2000). EPEC, 
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ETEC, and EHEC have been observed in animals to employ similar pathogenesis molecules and 

patterns seen in human diseases (Kaper et al., 2004). About BCO lameness, ExPEC also causes 

significant economic losses in animal production, especially the poultry industry. Avian 

pathogenic E. coli (APEC) behave like human pathogenic ExPEC strains. A recent examination 

of virulence genes in human and avian ExPEC suggest that poultry products are important to 

ExPEC that causes sepsis infection in human. A conclusion was drawn since poultry 

contaminated with higher levels of E. coli has more multidrug resistance (MDR) compared to 

other meat sources (Manges et al., 2007). Such finding implies that increased consumption of 

poultry worldwide could be a contributing factor to antibiotic resistance in human ExPEC, and 

hence the emergence of ExPEC diseases in humans (Pitout et al., 2012). A globalized market 

coupled with ease of travel plays a role in the spread of the infection as well (van der Bij & 

Pitout, 2012). Preventing and eradicating E. coli diseases in both humans and animals requires 

full classification of virulence factors per pathotype and understanding their individual and 

combined characteristics. There are four main phylogenetic groups of Escherichia coli A, B1, 

B2, and D, of which B2 is the most abundant and pathogenic strains in ExPEC infections (Table 

4; Mellata, 2013). E. coli is classified into 150 to 200 serotypes or serogroups based on somatic 

(O), capsular (K), fimbrial (F) and flagellar (H) antigens. At least 53 H antigens, 188 O 

liposaccharides antigens, and numerous different capsular K polysaccharide antigens. 
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Table 4. Virulence Traits in Pathotypes of Extraintestinal Pathogenic E. coli determined to be 

associated with pathogenicity (Reproduced from Köhler & Dobrindt, 2011). 

 

 

Although many ExPEC and their roles in the disease mechanism have been mostly characterized, 

there are many unique factors between pathogenic and non-pathogenic E. coli (Kaper et al., 

2004; Köhler& Dobrindt., 2011). With ExPEC, a model has been postulated for the site of 

isolation combined with two detected associated virulence factors per pathotype and is described 

(Köhler& Dobrindt., 2011). ExPEC is diverse with only a few shared pathogenic factors, but 

there is still no methodology to clearly define commensals apart from ExPECs. The classical 

serotyping method is useful for IPEC classification because a good number of virulent strains in 

this category are established well within the O: H serotypes (Köhler& Dobrindt., 2011). To some 

degree, highly pathogenic ExPEC strains seem to be confined within a few O serogroups and 

pathogenic factor combinations (See Table 5; Köhler& Dobrindt., 2011).  
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Table 5. Virulence factors in ExPEC (Reproduced from Köhler & Dobrindt, 2011) 

 

Multilocus enzyme electrophoresis MLEE analysis reported that only a few E. coli genotypes 

exist despite its diversity and forms the A-E phylogroups (Köhler& Dobrindt., 2011; Mellata, 

2013). This was valuable as it helped distinguish many ExPEC from IPEC or non-pathogenic. 

Many ExPECs belonged to B2 and to some degree D phylogroups. IPEC or non-pathogenic 

strains are mainly A1 and B1 isolates. Multilocus VNTR analysis (MLVA) a relatively fast DNA 

Sequence typing technique has been applied in the characterization of IPEC particularly EHEC 
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and is used for epidemiological inspection (Köhler& Dobrindt., 2011). Multilocus sequence 

typing (MLST) employed for its worldwide comparability and usability, reveal E. coli strains to 

be of comparable delineation (Köhler& Dobrindt., 2011; Martin, et al., 1998). Because 

sequencing and analysis of various chromosomal regions do not characterize the phylogenetic 

composition of E. coli strains, MLST is useful still for phylotype determination (Köhler& 

Dobrindt., 2011). MLST-based molecular epidemiology reveals that phylogroup B2 (already 

described to contain most ExPEC) is the evolutionarily oldest strains within the group (Köhler& 

Dobrindt., 2011; Tenaillon, et al., 2010). Next-generation and large-scale sequencing give a 

better in-depth phylogenomic analysis, as well as strain classification (Köhler& Dobrindt., 

2011). ExPECs and APECs were initially treated separately as initial studies did not connect 

both to human and animal diseases in terms of virulence and hosts (Mellata, 2013). The 

importance of APEC pathogenicity was initially minimized, as they were designated 

opportunistic pathogens effectively reliant on external stress conditions (Mellata, 2013). This 

notion has since been reversed, by studies that reveal significant variances in the distribution of 

virulence elements in E. coli retrieved from chickens with colibacillosis and feces of healthy 

ones (Johnson, et al., 2012; Mellata, 2013; Schouler, et al., 2012). Comparison of human 

pathogenic E. coli, strains from chicken colibacillosis, with strains isolated from feces identified 

virulence factors that may categorize APECs. Examination of these factors has shown them 

important to APEC infection processes (Mellata, 2013). Also, APEC that was once thought of as 

a distinct population, is now divided into several subtypes due to pathogenicity factors that are 

important to diverse chicken diseases. Although the genetic traits that define APECs are not fully 

categorized, the subsets do contain a combination of unique virulence stet of genes. These factors 

include (I) iss, tsh, iucC, cvi, iutA, hylA, iss, iroN, and ompT genes carried on colicin V plasmids, 
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(II) toxin genes (astA, vat), (III) iron acquisition system genes (irp2 and iucD), (IV) adhesin 

genes (papC and tsh), and (IV) the ColV genes cva-cvi (Mellata, 2013). Schouler et al. suggested 

that the following four pathogenic factors can be used for strain determination as they can detect 

over 70% APECs: (I) iutA and sitA for iron acquisition, (II) fimbriae P (F11), (III) frzorf4 for 

sugar breakdown, and (IV) O-antigen O78, and T6SS aec26, aec4 (Schouler, et al., 2012). APEC 

poultry diseases are generally regarded as colibacillosis. The presentation of colibacillosis 

depends on the strain involved, the route of entry, and external factors. Like many microbes, 

APEC harnesses host weaknesses to advance its pathogenesis. APEC causes local infections 

such as cellulitis, salpingitis, synovitis, and omphalitis. They also cause septicemia, fibrinous 

lesions of internal organs, and death of infected birds (Mellata, 2013). APEC is said to pose a 

zoonotic risk as they share pathogenic factors and phylogenic features with human ExPEC. 

Various epidemiological studies suggest poultry as a conduit for Human ExPEC, as avian 

ExPEC (that was comparable genetically) has been isolated from the gut of healthy birds and 

poultry meat (Manges & Johnson, 2012). Experimental evidence suggests that human ExPECs 

can cause disease in chickens models, and Avian ExPECs alike to human animal-models 

(Mellata, 2013). Other reports suggest that some ExPECs from ST95 and ST23 clonal groups 

may be endemic to a range of hosts with the capability to cause many infections (Mellata, 2013). 

This was a major concern because poultry colibacillosis was initially treated with antibiotics that 

were important for AMR resistance in human ExPECs. Many countries have curbed the use of 

antibiotics for livestock rearing, perhaps it might help mitigate the acquisition of antimicrobial 

resistance in human and poultry pathogens. How do we now control colibacillosis outbreaks in 

poultry?  Not Long Ago, after a 3-year consecutive microbiologically sampling of 650,000 

chickens from 38 broiler flocks in two large farms, Dinev reported the isolation of E. coli in over 
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90% of FHN associated with osteomyelitis. Urging that E. coli had a primary role in the etiology 

of BCO in commercial birds particularly FHN (Dinev, 2009; Wijesurendra et al., 2017) Dinev, 

noted that in contrast to E. coli,  S. aureus seemed endemic to the parent stock lines (Dinev., 

2009). Wijesurendra et al. also examined chickens from 20 broiler farms in Australia and 

reported that E. coli plays a crucial role in the bacteremia and hematological spread crucial to 

BCO formation (Wijesurendra et al., 2017). Based on the amount of APEC isolated, 

Wijesurendra et al. proposed that a remedy for BCO should be targeted at the species 

(Wijesurendra et al., 2017). In Chapter 2, we report on E. coli isolated from BCO birds in three 

different farms in the Arkansas area. 

Enterococcus cecorum 

Enterococcus cecorum, in the past 15 years, has become an important emerging pathogen to the 

incidence of BCO lameness, even though it was initially considered a commensal in the 

mammalian gut microflora when it was first described in 1983 (Dolka et al., 2017; Jung et al., 

2018; Kierończyk et al., 2017). E. cecorum is Gram-positive cocci, that often occur in pairs 

(diplococci) or short chains. E. cecorum is a non-spore-forming, facultatively anaerobic bacteria 

of the phylum Firmicutes. They are tolerant of diverse environments; they thrive in under 

varying oxygen contents, temperature conditions, high sodium chloride, and pH. There was an 

initial outbreak of E. cecorum in 2001 in Scotland, and multiple outbreaks have since followed 

across Europe, United States, Iran, and Southern Africa (Jung et al., 2018). Pathogenic E. 

cecorum has a signature inflammatory mass that occurs in the spinal cavities of the flexible 

thoracic vertebrae. The infections of pathogenic E. cecorum goes by Vertebral BCO, vertebral 

osteomyelitis, vertebral enterococcal osteomyelitis and arthritis, enterococcal spondylitis, and 

‘kinky-back.’ E. cecorum has also been isolated from tibial and femoral head lesions (Jung et al., 
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2018; Personal observation). Kinky back (KB) incidentally is the also colloquial name for the 

developmental spinal anomaly, spondylolisthesis (Jung et al., 2018; Muir & Aggrey, 2003). 

Broilers with KB experience higher morbidity and mortality as a result of a combination of 

sepsis at the early growing days, starvation, and dehydration due to paralysis of infected birds in 

the late growth stage (Jung et al., 2018). Embryo lethality assay has been used to determine the 

pathogenicity and lethal dosage of pathogenic E. cecorum (Borst et al., 2015; Jung et al., 2018). 

Some E. cecorum are inherently resistant to β-lactam-based antibiotics (like carbapenems, 

cephalosporins, and penicillin), various aminoglycosides, and more recently vancomycin (Fisher 

&Philips., 2009; Ryan & Ray., 2004). In chapter 3, we discuss our attempt to characterize the 

pathogenicity of E. cecorum recovered from a commercial farm. 

 

Clinical Diagnosis of Terminal BCO 

Significant progress has been made in the study of BCO lameness since the first report of the 

condition. Bacterial chondronecrosis with osteomyelitis, formerly known as femoral head 

necrosis, is a complex disease with etiology that is not fully characterized. There is some 

consistency, however, in the manifestation of terminal BCO in spontaneous cases or 

Staphylococcal-induced models. Terminal BCO presents varying necrotic degradation and 

bacterial infection of (1) the proximal ends and growth plate of long bones (tibiae and femora), 

and (2) the flexible thoracic vertebrae T4 (Figures 13-15; Applegate et al., 2002; 2017; Al-

Rubaye et al., 2012; 2015; 2017; Dinev, 2009; Jiang et al., 2015; Joiner et al., 2005; Mandal et 

al., 2016; Martin et al., 2011; McNamee & Smyth., 2000; Stalker et al., 2010; Thorp et al., 1993; 

Wideman., 2016, Wideman and Pevzner., 2012, Wideman and Prisby., 2013; Wideman et al., 

2012; 2013; 2015; Wijesurendra et al; 2017). Common clinical presentations of BCO on long 
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bones include (I) femoral head transition, FHT (Figure 13B), (II) femoral head necrosis, FHN 

(Figures 13 C-D, and 14-3), (IV) tibial head necrosis with caseous, THNC (Figures 13-F-H; 14-

6), (V) femoral head separation, FHS (Figure 14-2), (VI) tibial head necrosis, THN (Figure 14-

5), (VII) tibial head necrosis severe, THNS (Figure 14-6), (VIII) Tibial Dyschondroplasia, TD 

(Figure 15), (IX) twisted leg, and (X) BCO diagnosis of unknown origins. The distal portions of 

the long bones are less affected that the proximal heads. The presentations can be one-sided, 

contralateral, or bilateral (Applegate et al., 2002; 2017; Al-Rubaye et al., 2012; 2015; 2017; Al-

Rubaye, personal observation; Dinev, 2009; Ekesi, personal observation, Jiang et al., 2015; 

Joiner et al., 2005; Mandal et al., 2016; Martin et al., 2011; McNamee & Smyth., 2000; Rhoads, 

personal observation; Stalker et al., 2010; Thorp et al., 1993; Wideman., 2016, Wideman and 

Pevzner., 2012, Wideman and Prisby., 2013; Wideman et al., 2012; 2013; 2015; Wideman, 

personal observation, Wijesurendra et al; 2017). Lameness associated with the T4 thoracic 

vertebrae is generally termed spondylopathy or “Kinky back” for non-bacterial deformities, and 

vertebral or enterococcal spondylitis if an infection is involved (Figure 16; Dinev et al., 2012). 

The levels of inflammation in the flexible vertebra vary between cases (Dinev et al., 2012).  

 

 

 



 

55 

 

Figure 13. BCO progression on femoral (A-D) and tibial (E-H) proximal heads that result in 

lameness in broiler chickens. (A) Normal femoral head with a white cap of epiphyseal cartilage 

(e). (B) Epiphyseolysis or femoral head separation (FHS) epiphysis. Early necrosis (n) has begun 

on the exposed underlying surface of the growth plate or physis (p). (C) Fractured growth plate 

revealing necrotic void (nv) within the metaphysis (m). (D) The necrosis weakened diaphysis is 

fractured during the disarticulation of the femoral head from acetabulum. The femoral epiphysis, 

physis, and a great part of the metaphysis remain in the acetabulum. Abundant fibrinonecrotic 

exudate (fe) oozes out in the terminal or most severe femoral head necrosis (FHN). (E) Normal 

tibia comprising e, p, m with a center of ossification (designated *); the growth plate of the 

healthy tibia is structurally in place with struts of trabecular bone in the metaphysis. (F-H) Levels 

of bacterial permeation and sequestrate(s), arrows pointing to microfractures, along with necrotic 

voids (nv) below the physis (Image Reproduced from Applegate et al., 2017). 



 

56 

 

Figure 14. Common clinical presentations of proximal femoral and tibial BCO lesions. (1) 

Normal proximal femoral head; (2) FHS: epiphyseolysis; (3) FHN; (4)Normal proximal tibial 

head with struts of trabecular bone in the metaphyseal zone fully supporting the growth plate; (5) 

Tibial head necrosis (THN); (6) THNs with caseous (Reproduced from Mandal et al., 2016).  

 

 

Figure 15. Tibial dyschondroplasia is characterized by abnormal masses of proliferated, 

avascular, prehypertrophic cartilage in the proximal metaphyseal region of the proximal 

tibiotarsus. This is attributable to the formation and retention of a large cartilage mass filling in 

the entire metaphysis (Image reproduced from Dinev et al., 2012). 
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Figure 16.  Vertebral BCO in broiler that exhibited paraplegic hock-resting posture, and spinal 

compression due to build-up of abscess in vertebral bodies (follow white arrows). (A) Externally 

visible nodal swelling of the flexible thoracic vertebral body with yellow discoloration of the 

translucent remnants of the vertebral body. (B) The caudal portion of the vertebral body filled 

with caseous abscess. (C) The epiphysis and growth plate have been replaced with necrotic 

abscess. Osteochondrosis (follow black arrows) in the cranial articular cartilage (Image 

reproduced from Applegate et al., 2017). 

 

The S. agnetis induced BCO Lameness model 

Our S. agnetis models for studying BCO lameness use different flooring systems: litter, wire, or 

a combination of both. Ever since Dr. Wideman invented the elevated wire-flooring structure for 

inducing lameness in broilers, we have induced lameness at high incidence (Al-Rubaye., 2015; 

2017; Wideman et al, 2012, 2013, 2014; Wideman and Prisby, 2013; Wideman, 2016). This 

model is primarily directed towards tibial and femoral BCO and has proven effective (Al-

Rubaye., 2015; 2017; Wideman et al., 2012, 2013, 2014; Wideman and Prisby, 2013; Wideman, 

2016). Utilizing wire-floor, we found that S. agnetis is the prevalent isolate on our research farm 

recovered from BCO lesions irrespective of site sampled or lesion type (Tables 4-5; Al-Rubaye., 

2015; 2017). In this model, we found administering S. agnetis in drinking water increases the 

incidence of BCO lameness (Al-Rubaye et al., 2015; 2017). The finished genome sequence for a 



 

58 

S. agnetis BCO isolate has been published (Al-Rubaye et al., 2015). Our team also reported that 

BCO is sometimes connected with significant bacteraemia (Al-Rubaye et al., 2015; 2017). The 

broiler lines tested for susceptibility to lameness showed that all lines are predisposed, but line 

differences and sire-effects may exist between birds (Wideman et al., 2013; 2014). In either the 

wire or litter floor model, rapidly growing broilers that seem healthy (or have normal gait) can 

over 24 hours, exhibit early symptoms of lameness. Depending on the project goals, we 

generally place 60-day-old broilers per pen and then cull on day 15 to 50 of the clinically 

healthiest birds (Al-Rubaye et al., 2015; 2017; Wideman et al., 2012, 2014). Pen configuration, 

bird densities, food, and water (ad libitum), and environmental conditions (as light, and 

temperature) are as described (Al-Rubaye et al., 2015; 2017; Wideman et al., 2012, 2013, 2014). 

The bacterial administration in the broiler’s drinking water supply is also described (Al-Rubaye 

et al., 2015; 2017; 2020 A & B). From a series of experiments, the minimum effective dose of S. 

agnetis isolate 908 in drinking water starting on day 20 for two days is 105 CFU/mL on wire-

flooring (Figure 17).  
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Figure 17. The minimum effective dosage of S. agnetis in drinking water for the induction of 

lameness. The cumulative percentage lameness is plotted for broilers reared on wire flooring and 

administered the indicated concentrations of S. agnetis in the drinking water. The birds were 

provided with tap water throughout (0 CFU/mL) or with S. agnetis in the drinking water on days 

5 and 6 and again on days 15 and 16. Each treatment was for one pen of 50 birds. Values are 

calculated as the percentage of the total number of birds in the treatment group. Final lameness 

counts for challenges ≥105 CFU/mL were significantly different (P ≤ 10−7) from the challenges 

with ≤104 CFU/mL (Image reproduced from Al-Rubaye et al., 2017). 

 

 

Figure 18: Most effective days for the administration of S. agnetis in drinking water for induction 

of lameness for broilers reared on wire flooring. Cumulative percent lameness (y-axis) is plotted 

for broilers reared on wire flooring with tap water throughout (No Staph; 1 pen; 50 birds), or 

administered S. agnetis at 105 CFU/mL (per treatment 2 pens, 50 birds/pen) for 2 days beginning 

at 10, 20, or 30 days of age. Values are calculated as the cumulative lameness percentage for 

days 40 through 56 based on the number of birds in the treatment group (Image reproduced from 

Al-Rubaye et al., 2017).  
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Early symptoms of lameness will include, a poor gait (Score of 3), hesitancy to stand, eagerness 

to sit, and slight wing-tip dipping (Al-Rubaye et al., 2015). The birds are encouraged to walk by 

gentle prodding or herding with a common kitchen broom from Day 15 through Day 56. This is 

done to minimize birds’ distress and diagnose the ailment in a timely fashion (Al-Rubaye et al., 

2015; Wideman, 2016; Wideman et al., 2012; Wideman and Prisby, 2013). Once birds present 

the earliest sign of lameness, they are humanely euthanized and necropsied to grade or score 

BCO, if any, on the femora, tibiae, and sometimes the vertebrae. In this model, we only 

categorize birds presenting with specific lesions as lame. The percent (%) cumulative lameness 

per pen/treatment is calculated with the formulas below: 

% 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑚𝑒𝑛𝑒𝑠𝑠 𝑝𝑒𝑟 𝑝𝑒𝑛 =
# 𝑜𝑓 𝑙𝑎𝑚𝑒 𝑖𝑛 𝑝𝑒𝑛

# 𝑜𝑓 𝑏𝑖𝑟𝑑𝑠 𝑖𝑛 𝑝𝑒𝑛 𝑜𝑛 𝐷𝑎𝑦 15
     𝑋    100 

  

% 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑙𝑎𝑚𝑒𝑛𝑒𝑠𝑠 𝑝𝑒𝑟 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =
# 𝑜𝑓 𝑙𝑎𝑚𝑒 𝑓𝑜𝑟 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

# 𝑜𝑓 𝑏𝑖𝑟𝑑𝑠 𝑖𝑛 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑜𝑛 𝐷𝑎𝑦 15
     𝑋    100 

In this model, treatment effects are evaluated for significant differences (P < 0.05) mainly by 

logistic regression (binomial distribution) using the GLM procedure implemented in the R 

Foundation for Statistical Computing. Blood and BCO lesions are usually assessed for 

bacteremia and bacterial species utilizing protocols described (Al-Rubaye et al., 2015; 2017). 

We find that for broilers raised on (a) litter, (b) litter for 35 days and then transferred to wire, or 

(c) wire, the incidence of lameness was highest in birds raised on the wire-floor with the 

administration of S. agnetis in water for two days on Day 20 (Figure 19).  The incidence of 

lameness on the wire using the S. agnetis model is ≥71%. Birds initially raised on litter and 

transferred to wire have a lameness incidence of ~52%, compared to the birds raised on only 
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litter floor with ~3%. The more recent incidences of lameness on the wire-floor are higher, over 

80%, and those of broilers raised on wood shaving litter floor has risen to 50% (Unpublished). 

We believe that the repeated experiments in the same building on our research facility may have 

facilitated the increase in amount, as well as, mutation of S. agnetis and made it hypervirulent 

(Alrubaye et al., 2020a, 2020b; Shwani et al., 2020).  

 

Figure 19. Cumulative percent lameness for birds raised on litter for 56 days (L56; 4 pens; 200 

birds), litter for 35 days then transferred to wire till 56 (L35W; 6 pens; 300 birds), or wire for 56 

days (W56; 4 pens; 200 birds). Lameness % (y-axis) was calculated based on the number of 

birds in the treatment group. The figure includes an average % lameness and ±S.D. The % 

Lameness per pen was 2.5 ± 2.5 for L56, 52.5 ± 15.1 for L35W, and 71 ±10.4 for W56. The P-

values for L56 v L35W, L56 v W56, and L35W v W56 are all significant (P<0.05) Image 

reproduced from Al-Rubaye et al., 2017. 
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Table 6: BCO isolates from lame birds based on-site sampled (Reproduced from Al-Rubaye et 

al., 2015).

 

 

Table 7: BCO isolates from lame birds based on the bone lesion (Reproduced from Al-Rubaye et 

al., 2015).

 

 

The S. agnetis model has been used to study bacterial translocation into the blood, and 

colonization of the growth plates of the proximal femora and tibiae in rapidly growing birds. 

This was done by tracing and quantifying administered S. agnetis in the blood at different times 

for birds raised for 56 days on litter, wire, or initially of litter and then moved to the wire. Table 

6 shows that only a few bacteria were picked up from the blood of apparently healthy birds 

through Day 41 in birds raised on litter and wire (Al-Rubaye et al., 2017). The colony count in 

broiler blood increased by Day 49. The colony count in blood of birds raised on the wire-floor, 

and those initially raised on litter and transferred to wire had approximately 10 times more than 

those in the blood of those raised on litter. Of the bacteria recovered on Day 49 from healthy 

birds raised on litter, 70% were not S. agnetis. Approximately 50% of apparently healthy birds 
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raised on wire-floor, or initially on litter and transferred to wire-floor after 35 days were S. 

agnetis. Birds raised on wire-floor that were positive for S. agnetis had a higher colony count 

(Unpublished). Some of the sampled lame birds raised on litter that were positive for S. agnetis 

had about 120 CFUs/mL. Lame birds raised on wire had a higher average colony count per mL 

of blood. In trials including other BCO isolates, S. agnetis induced the highest amount of 

lameness (Figure 20). Because non-agnetis isolates (S. saprophyticus and S. epidermidis) had a 

lower incidence of lameness in birds that developed lameness, we studied them to see if they can 

confer probiotic protection against BCO lameness. The one-dose treatment of non-agnetis 

isolates in the drinking water of broilers was not sufficient to protect lame growing birds from 

BCO lameness. We did not follow up on the continual dosage experiment, but studies like these 

are promising for BCO remedies. 
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Table 8. BCO Microbiological sampling from the blood of healthy or lame birds raised on litter 

(L56), litter for 35 days then transferred to wire (L35W), or wire (W56) at various times. For 

lame vs healthy birds tested, the table includes average colony count per 0.1 mL of blood plated 

on CHROMagar Orientation, the percentage of birds positive for S. agnetis or non-agnetis 

samples Diagnoses as S. agnetis or non-S. agnetis was based on colony color on CHROMagar 

Orientation and qPCR-HRM of 16S V2 region (Reproduced from Al-Rubaye et al., 2017). 
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Figure 20. Incidence of lameness with S. agnetis, S. saprophyticus, and S. epidermidis. S. agnetis 

in drinking water. Cumulative percent lameness (y-axis) is plotted for broilers reared on wire-

flooring with three different Staphylococcus spp administered at 105 CFU/mL in drinking water 

on days 20 and 21 (3 pens per treatment; 60 birds/pen). Values are calculated as the cumulative 

lameness percentage for days 35 through 56 based on the number of birds in that treatment 

group. Only the S. agnetis treatment was statistically different from None (P = 0.021). Average 

(±S.D.) % Lameness per pen was None 71.7 (±10); S. agnetis 80.5 (±1.8); S. saprophyticus 57.4 

(±5.2); S. epidermidis 52.3 (±3.5). (Reproduced from Al-Rubaye et al., 2017). 

 

 An important question in the incidence of lameness whether in the lab or on a commercial farm 

for birds that develop the illness is the mode of transfer of transmission if it is contagious. We 

observed that some pens in our BCO trials showed lameness faster than others, so we performed 

a typhoid Mary experiment to study the potential intra-pen transmission of BCO. This work is 

discussed further in chapter five. Also, owing to a publication that S. agnetis has been identified 

in the guts of sheep scab mites (Hogg et al., 1999), we requested an entomologist look for mites 

on our poultry research facility. They did not find any (unpublished). In a recent project, we had 

an infestation of domestic flies (Musca domestica) in our facility, we retrieved some flies and 

preserved in the -80C freezer. In the future, we will be evaluating their microbiota to determine if 

houseflies are potential propagators of S. agnetis or other non-agnetis BCO agents that are 
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important to the incidence of BCO lameness. We also used the S. agnetis induced lameness 

model to evaluate the effectiveness of various probiotics and prebiotics for the ability to reduce 

lameness results are published (Alrubaye et al., 2020). In some of the trials to evaluate probiotic 

effects on the incidence of BCO, we utilized transepithelial electrical resistance (TEER) and 

Local Short Circuit (LSC) to evaluate the integrity of fresh gut (illeal) samples using the Ussing 

chamber. The results are published (Alrubaye et al., 2020). We evaluated the adherent illeal 

microbiome for control treatment vs two probiotic treatment groups with or with S. agnetis at 

Day14 or 59. We found that the age of birds was important for shaping the gut bacterial 

population associated with ileal mucosa of broiler chickens. Significant differences were 

observed in the abundance of phyla and genera taxonomic groups. Alpha diversity and beta 

diversity between the two different age groups were significant. Some commercial products may 

confer protections against BCO. This is important because our model is effective for evaluating 

the formulations proposed for remediation of BCO lameness (Unpublished). Using the S. agnetis 

model, we performed bone histopathology analysis that has been published, and some of which 

will be discussed in chapter four (Alrubaye et al., 2020a; 2020b). We graded the villi integrity 

and measured the length of villi per treatment of CHR Hansen probiotics. We found that illeal 

villus lengths correlated with reduced lameness for probiotic treatment (Al-Rubaye et al., 2020a, 

2020b). Zinpro OTM micronutrients given to birds in feed at different levels significantly 

reduced the incidence of lameness (Alrubaye et al., 2020a).  The evaluation of Zinpro 

micronutrients as a potential treatment of the BCO lameness manuscript is published and is 

discussed herein in chapter four. Paired ileal and jejunal samples from broilers utilized for TEER 

and LSC were stored in RNA later and used for expression analysis for multiple gut genes. We 

investigated the expression levels of three chicken mucin genes, Muc4, Muc13, and Muc16, 
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predicted to contain transmembrane domains (Lang et al., 2006; Forder et al., 2012). Our 

expression analyses of lung tissues as a control revealed that Muc4 is not significantly expressed, 

but Muc13 and Muc16 appear to be expressed in the lung. Using the Reverse Transcriptase 

quantitative PCR (RT-qPCR), we found that only Muc13 (not Muc4 or Muc16) is expressed at 

detectable levels in either small intestinal tissue with respect to the TATA Binding Protein (TBP) 

as a reference (Livak et al., 2001; Radonic et al., 2004). The differential expression for Occludin 

1 (OCLN1), a gap junction protein alpha 1 (GJA1), Claudin 1 (CLDN1), and Catenin beta 1 

(CTNNB1) with administrations of different levels of Zinpro micronutrients is described further 

in Chapter four (Alrubaye et al., 2020 A). Recently, we utilized the S. agnetis lameness model to 

perform whole-genome resequencing to identify genetic determinants of resistance to BCO that 

cause lameness. We looked for SNP regions that distinguish birds that develop BCO lameness 

early in the infection cycle versus those that survive to the end of the trial (56 days). Even though 

this work is on-going, we believe this technique is sufficiently cost-effective for locating genetic 

markers for many different quantitative traits in the incidence of lameness in broiler flocks. The 

S. agnetis model for inducing BCO that causes lameness has been utilized to quantify the effects 

of dietary mycotoxins in the incidence of BCO lameness. Dietary mycotoxins have been linked 

to the onset of tibial dyschondroplasia (Wijesurendra et al., 2017). Mycotoxins can exacerbate 

the incidence of lameness by contributing to the compromise of gut integrity and increased 

translocation of pathogens into the bloodstream (BCO Lameness, 2019; Wijesurendra et al., 

2017). Even though S. agnetis was not administered in water in our recent trial, we induced 

lameness by exposing birds to mycotoxins in feed and raising them on wire flooring. We found 

that mycotoxins in broiler feed (simulating “spoiled” feed) did not significantly increase the 

incidence of BCO lameness in broilers raised on litter- or wire-flooring systems (Unpublished). 
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S. agnetis BCO lameness model is efficient in testing various factors important to the disease.  In 

other aspects of studying BCO lameness, colleagues of mine have been working to perfect 

techniques for typing Staphylococcus species important to the disorder (Zaki, Unpublished 

Dissertation). This technique is important because it is less culture-dependent as it involves 

targeting and amplifying conserved sequence regions of the bacterial 16S rRNA gene using 

specific primer pairs for at least 5 of the 9 hypervariable regions (V1-V9) region (Chakravorty et 

al., 2007). This technique includes the high-resolution melting curve (HRM) in the real-time 

PCR amplification of different hypervariable regions. This technique has the potential to be cost-

effective as a primer-based fluorescent-marked DNA fragment analsysis for reliable species 

typing.  This would be crucial to BCO lameness and other microbial infections (Steer et al., 

2009; Tong et al., 2012). In addition to perfecting the PCR-HRM species determination 

techniques, my colleague is working on chicken macrophage functions in the clearance of BCO 

bacteria during the infection process in vitro (Zaki, Unpublished Dissertation). The team has 

been uncovering the ability of pathogenic S. agnetis (isolated from chicken and/or cattle milk) to 

evade the killing mechanism performed by macrophages (Zaki, Unpublished Dissertation). Since 

Lowder et al. (2009) found that S. aureus has virulence properties that ensure reduced 

phagocytic killing of the bacteria, we performed heterophil/neutrophil assay in-vitro with S. 

agnetis and other BCO isolates using isolated WBC from leghorns and Arkansas random-bred 

(ARB) chicken blood. Even though our results were inconclusive, we believe the protocol could 

be perfected, and it has the potential to reveal the innate chicken immune responses to BCO 

species that will be important for solving lameness. Overall, the multiple methodologies relevant 

in the S. agnetis model for inducing BCO lameness are very efficient and cost-effective for 
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studying the mechanisms of pathogenesis of the disease and may be applied to other infectious 

disorders. 

Human Osteomyelitis  

One in 10, 000 children (more in boys than girls) are prone to acute osteomyelitis in western 

countries, and even higher in other countries (Heikki & Pääkkönen, 2014). Adults can also 

develop osteomyelitis, especially smokers, or people suffering from kidney disease, and diabetes. 

Bacteria may travel from injuries, spread from neighboring tissues with septic arthritis or 

cellulitis or hematogenous seeding during bacteremia. Most cases of childhood osteomyelitis are 

from seeding through the blood supply. And like many diseases, if osteomyelitis is not caught 

early and treated it can be devastating and have a long-term effect especially in children with 

lower access to resources. S. aureus, among other bacteria, is the leading of childhood 

osteomyelitis (Heikki & Pääkkönen, 2014; Maleb et al., 2017). Clinical symptoms in childhood 

osteomyelitis include limping, limited mobility, pain, fatigue, fever, focal tenderness, visible 

redness, and swelling around long bones more in the leg than the arm (Heikki & Pääkkönen, 

2014; Bhowmik et al., 2018). In the pathogenesis of osteomyelitis when the bone is infected 

WBCs enter the area. As WBCs attempt to phagocytize bacteria, chemicals are secreted that 

degrade bone structures (Bhowmik et al., 2018). Vaso-occlusion occurs as pus clogs blood 

vessels in bones impairing blood flow and creating a bacterial foci. The pathogenicity of human 

osteomyelitis rivals that of BCO in broilers, there have not been any chicken models utilized to 

study human osteomyelitis. Rabbit, rat, Ovine/sheep, canine, goat, porcine, guinea pig, and 

hamster models have been utilized to study human cases (Reizner et al., 2014). Rabbit models 

involved either drilling holes or directly injecting various concentrations of S. aureus inoculum 

into the site of implantation, as most of these studies are of orthopaedic background. This action 
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resulted in a range of effects from chronic staphylococcal osteomyelitis in 88 % rabbits that got 2 

x 108 CFUs after tibial fracture & rod insertion to no significant difference in infection rate 

between treatment and control groups (Reizner et al., 2014). Injection of S. aureus into femoral 

arteries of New Zealand white rabbits at 108 CFUs resulted in septic shock and death with 72 

hours (Poultsides et al., 2008; Reizner et al., 2014). The same experiment with 108 CFUs 

resulted in 80% osteomyelitis. Although there are successes recorded with some models more 

than others, Reizner, et al. writes that there is a need for some new clinically relevant models to 

reference prosthetic joint infection and hence the staphylococcal osteomyelitis (Reizner et al., 

2014). Judging from similarities in pathogenesis between human and chicken osteomyelitis, we 

propose that broiler chickens might be suitable model to study staphylococcal osteomyelitis.  
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Analysis of Genomes of Bacterial Isolates from Lameness Outbreaks in Broilers 

Abstract: 

We investigated lameness outbreaks at commercial broiler farms in Arkansas. From Bacterial 

Chondronecrosis with Osteomyelitis (BCO) lesions, we isolated distinct bacterial species. 

Genomes assembled from Escherichia coli isolates were quite different between farms, and more 

similar to genomes from very different geographical locations. Genomes for Staphylococcus 

aureus were highly related to chicken isolates from Europe, but present in the Arkansas area for 

at least a decade. Phylogenomics suggest that this S. aureus is restricted to poultry, while the E. 

coli phylogenomics suggests broader host transfers. The results show that BCO-lameness 

pathogens on particular farms can differ significantly.  Isolate-specific genome characterizations 

will help further our understanding of the disease mechanisms of BCO-lameness, a significant 

animal welfare issue. 

Keywords: E. coli; S. aureus; lameness; broiler; genome 

Running Title: Broiler Lameness Bacterial Genomes 
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Introduction 

Lameness poses animal health welfare issues which results in significant losses in poultry 

production. Modern broilers selectively bred for rapid growth are particularly prone to leg 

problems (1). Bacterial chondronecrosis with osteomyelitis (BCO) is the leading cause of lameness 

in broiler and broiler breeder flocks (1-3). In birds that develop lameness, bacteria translocate into 

the bloodstream via the integument, respiratory system or gastrointestinal tract (1, 4, 5). Bacteria 

may have come from the immediate environment, or vertical transfer though the egg (6). Bacteria 

that survive in the blood may colonize the proximal growth plate of the rapidly growing leg bones 

inducing BCO (1, 5, 7).  Stressors, or other factors contributing to immunosuppression, can 

facilitate bacterial colonization and BCO spread in commercial poultry flocks (1, 8-13). In our 

research facility, Staphylococcus agnetis is the primary bacterial isolate from lame broilers induced 

by growth on raised-wire-flooring (2, 5). Multiple bacterial isolates have been identified from 

surveys in various BCO studies (1, 2, 11, 14-21). Recent surveys of 20 broiler flock farms in 

Australia suggested that avian pathogenic E. coli was the main BCO isolate (22). Genetic analysis 

by multilocus sequence type, pulsed field gel electrophoresis and PCR phylogenetic grouping, of 

15 E. coli isolates from 8 flocks in Brazil indicated significant diversity for vertebral osteomyelitis 

and arthritis isolates, even in the same flock (23). The aim of this study was to characterize the 

genomes of BCO isolates from three different commercial broiler farms in Arkansas. 

Methods 

Microbiological Sampling and Bacterial Species Identification 

Diagnosis of and sampling of BCO lesions and blood have been described (1, 2, 7, 24). Air 

sampling was by waving open CHROMagar Orientation (CO; DRG International, Springfield, NJ) 

plates within the building. CO and CHROMagar Staphylococcus (CS; DRG International) plates, 
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were used for chromogenic identification of species diversity. Bacterial species identification by 

16S rDNA has been described (2, 5). 

Genomic DNA Isolation and Sequencing 

Cultures were preserved in 40% glycerol at -80°C. Working stocks were maintained on tryptic soy 

agar slants at 4°C. For DNA extraction, staphylococci were grown in tryptic soy broth to log phase 

and DNA was isolated using as described (25). DNA isolation from E. coli used lysozyme 

treatment, followed by organic extractions (26). DNA was quantified using a GloMax® Multi Jr 

Detection System (Promega Biosystems Sunnyvale Inc., CA, USA) and purity evaluated with a 

Nanovue spectrophotometer (Healthcare Biosciences AB Uppsala, Sweden). DNA size was 

verified by agarose gel (1.5%) electrophoresis.  

Library construction and Illumina MiSeq 2 x 250 sequencing were at the Michigan State 

University Genomics Core Facility. Libraries for Illumina HiSeqX 2 x 125 sequencing were 

prepared using a RipTide kit (iGenomX, Carlsbad, CA) and sequenced by Admera Health (South 

Plainfield, NJ). Long reads were generated using Oxford Nanopore-MinION bar-code kit, as 

described (25).  

Genome Assembly and Analysis 

Hybrid and de novo genome assemblies were generated as described (25). Unicycler hybrid 

assembly graphs were further analyzed for contiguity in Bandage 0.8.1 (27) to discern replicons. 

The PATRIC (Pathosystems Resource Integration Center) webserver (28) was used to identify the 

most similar genomes. Average Nucleotide Identity (ANI) values were determined using pyANI 

0.2.9 (29). ANI values were subtracted from 1 to generate distance matrices which were submitted 

to FastME 2.0 (30) to generate Newick trees. Archaeoptryx 0.9928 beta (31) was used to transform 
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Newick trees into graphic representations. Assemblies were annotated and compared using the 

Rapid Annotation using Subsystem Technologies (RAST) and SEED viewer (32, 33). Serotype 

prediction was using the ECTyper module at GalaxyTrakr.org. 

Results and Discussion 

Diagnosis and Microbiological Sampling 

In June of 2016, we surveyed two commercial broiler houses on separate farms experiencing 

outbreaks of BCO-lameness. Both houses had experienced a loss of cooling a week earlier, causing 

heat stress for several hours. The farms were in rural, western Yell County (Arkansas) separated 

by 6.3 km, operated by the same integrator, and stocked from the same hatchery. The company 

veterinarian reported that samples from lame birds had been routinely submitted to a poultry health 

diagnostics laboratory and were primarily diagnosed as E. coli. Lame birds were randomly 

collected for necropsy for BCO lesions. Blood and BCO lesions were collected from these birds, 

and house air was sampled, for bacterial species surveys.  

In Farm 1 the birds were 31 days old. We diagnosed and necropsied six lame birds (Table 1). KB1 

and KB2 were symptomatic of spondylolisthesis/kinky-back (KB). KB1 had BCO lesions in T4, 

left tibia, and both femora. We obtained thousands (TNTC; too numerous to count) of small green 

colonies from the T4 sample that were determined to be Enterococcus cecorum. KB2 had BCO of 

only the left tibia, but no colonies were recovered from sampling from this site. We did recover 

approximately 50 green colonies from what appeared to be a normal T4 that was E. cecorum. 

Lame3 and Lame4 both had bilateral BCO of the femora and tibiae. Lame3 had TNTC white 

colonies from the microbiological sampling of T4 that were S. agnetis. Lame5 had bilateral FHN, 

bilateral tibial dyschondroplasia (TD), and pericarditis. We recovered green colonies (20 from left 
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and TNTC from right) from the TD lesions that were E. cecorum. Due to limited supplies, there 

was no microbiological sampling for Lame4 and Lame6.  
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Table 9. Microbiological sampling of bone and blood samples from two commercial broiler 

farms experiencing BCO outbreaks. BCO diagnoses are listed along with necropsy comments; 

RF- right femur, LF- left femur, RT-right tibia, LT- the left tibia, T4- vertebral joint, N- normal, 

THN- tibial head necrosis, THNS- THN severe, FHN- femoral head necrosis, KB- kinky back, 

TD- tibial dyschondroplasia, FHS- femoral head separation. 

  BCO Diagnoses High Colony Counts 

Bird Farm LT RT LF RF T4 Species Site 

KB1  1 THN N FHN FHN KB  E. cecorum T4 

KB2  1 THN N N N N E. cecorum T4 

Lame3  1 THN THN FHN FHN KB E. coli RT 

S. agnetis T4 

Lame4  1 THN THN FHN FHN KB - - 

Lame5  1 TD TD FHN FHN  E. cecorum LT RT 

         

Lame6   1 THN THN FHN FHN KB - - 

Lame7  2 N THN FHN N N E. coli blood 

Lame8  2 THN THN FHS FHN N -  

Lame9  2 THN THN FHN N KB E. coli blood LT LF 

Lame10 2 THN THN N FHN KB S. enterica LT RF 

Lame11 2 THNS THNC FHS FHN N E. coli blood LT LF 

Lame12 2 THN THN FHT FHT N E. coli blood LT LF 

Lame13 2 - - FHN FHN - - - 

Lame14 3 THNS THNS FHN N - S. aureus LT LF RT 

Lame15 3 THN THNS FHN FHN - S. aureus LT LF RT RF 

Lame16 3 THNS THNS FHS FHN - S. aureus LT 

Lame17 3 THNS THNS N FHN - S. aureus LT RT RF 

Lame18 3 THNS THNS FHN FHN - E. coli RF LF 

Lame19 3 THNS THNS FHN FHS - S. epidermidis LT RF 

Lame20 3 THNS THNS N N - S. cohnii LT RT 

Lame21 3 THNS THNS FHN FHN - S. aureus LT LF RT RF 

Lame22 3 THNS THNS FHN FHS - S. simulans RF 

Lame23 3 THNS THN FHN FHN - S. aureus LT LF RT RF 

Lame24 3 THNS THN FHT FHT - S. aureus LT LF RT RF 
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For Farm 2 the birds were 41 days of age. We diagnosed and necropsied seven lame birds (Table 

7). Lame7 was diagnosed with BCO lesions of the left femur, and right tibia. We obtained 30 

purple colonies that were E. coli from the blood sample. We diagnosed Lame8 with bilateral BCO 

of tibia and femur. No colonies were obtained from sampling this bird. Lame9 was diagnosed with 

BCO of bilateral tibia, and the left femur, with evident pericarditis. Approximately 100 purple 

colonies were produced from sampling of the left femur that were determined to be E. coli. Lame10 

was diagnosed with BCO of both tibia and right femur. Lame10 also had pericarditis. We got 40 

white colonies from the left tibia, and 70 white colonies from the right femur that were Salmonella 

enterica. Lame11 had BCO lesions on both tibiae and femora. We got TNTC purple colonies from 

the left tibia, and 15 from blood that were determined to be E. coli. Lame12 was diagnosed with 

bilateral BCO of tibia and femur. We recovered approximately 500 purple colonies from blood 

and TNTC purple colonies from the left femur that were E. coli. Due to limited supplies there was 

no microbiological sampling for Lame13.   

Average plate counts for air sampling were 80 and 125 for Farm 1 and Farm 2, respectively. The 

predominant species was Staphylococcus cohnii (~95%) with 3-4% Staphylococcus lentus and 1-

2% E. coli. 

In July 2019, we sampled a third commercial broiler farm (Farm 3) near Lincoln, Arkansas, more 

than 88 km from Farms 1 & 2 and operated by a different integrator supplied from a different 

hatchery. We sampled 11 lame birds at 35 days of age (Table 7). Lame14, was diagnosed with 

BCO of bilateral tibiae and right femur. We recovered numerous white colonies from the left 

femur, right tibia, and left tibia that were determined to be Staphylococcus aureus. Lame15 had 

BCO of all femorae and tibiae. Culture plates had numerous white colonies from all four sampled 

sites that were S. aureus. Lame16 had BCO of all tibiae and femorae. We recovered 10 green 
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colonies from the right femur that were not analyzed, and 10 white colonies from the left tibia that 

were determined to be S. aureus. We diagnosed Lame17 with BCO of the right femur and both 

tibiae. We recovered numerous white colonies from all three sites that were S. aureus. Lame18 

was diagnosed with bilateral BCO of the femorae and the tibiae. We got TNTC purple colonies 

from both femorae, and a few purple colonies from both tibiae, that were E. coli. Lame19 had BCO 

of all femorae and tibiae. Swabs gave only a few colonies of S. epidermidis that we assumed were 

contaminants during sampling. Lame20 had bilateral BCO of the tibiae. We recovered a few green 

colonies of Staphylococcus cohnii which were presumed contaminants during sampling. Lame21 

had BCO of all femorae and tibiae. We isolated TNTC white colonies from all four sites that were 

S. aureus. Lame22 was diagnosed with bilateral BCO of femorae and tibiae. Microbial sampling 

only yielded only 10 green colonies from the right femur that were determined to be 

Staphylococcus simulans. Lame23 was diagnosed with bilateral BCO of femorae and tibiae. 

Culture plates had only white colonies, TNTC from both femora and tibiae, that were S. aureus. 

Lame24 had BCO of all femorae and tibiae. We recovered more than 100 white colonies from all 

four BCO lesions that were S. aureus. 

BCO Genome Assemblies 

We chose to characterize genomes for representative E. coli isolates: 1409 for Farm 1, 1413 from 

Farm 2, with 1512 and 1527 from one bird on Farm 3 (Table 8). A hybrid assembly for 1409 

produced 5.05 Mbp in 23 contigs that organized into 4 DNA assembly graphs. We resolved the 

replicons using the long reads for contiguity analysis of the assembly graphs using the Bandage 

software. The resolved genome appears to contain a 4.15 Mbp chromosome, with episomes of 

643.5, 113.6, 108.7, 41.6, 2.3. There was also a 181 bp circle predicted based on the contiguity 

analyses. The predicted serotype is O16. The hybrid assembly for 1413 produced 5.37 Mbp in 58 
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contigs and 3 DNA assembly graphs. Unfortunately, the Nanopore reads were not of sufficient 

quality or length to complete a contiguity analysis of the entire genome, but does identify at least 

two episomes of 98.8 kbp and 2257 bp. The predicted serotype is O78. Draft assemblies were 

generated for E. coli 1512 and 1527. The assembly of 1512 contained 4.96 Mbp in 152 contigs 

with a N50 of 150 kbp. The assembly of 1527 was 4.90 Mbp in 179 contigs. The N50 was 97 Kbp 

with the largest contig of 258 Kbp. Both 1512 and 1527 are predicted to be serotype O78, like 

1413. We generated draft assemblies for 14 S. aureus isolates from Farm 3 to examine genome 

diversity within a farm and within individual birds (Table 8). Two separate colonies from lame 

bird were used for draft genome assembly (1510 & 1511, 1513 & 1514, 1515 & 1516, 1517 & 

1518, 1519 & 1520, 1521 & 1522, 1523 & 1524). The assemblies ranged from 2.79 to 2.82 Mbp 

in 60 to 96 contigs (excluding contigs < 300 bp). The largest contigs were between 279 and 284 

Kbp. N50 values ranged from 58 to 113 kbp. The L50 values ranged from 7 to 14 contigs. Each of 

the S. aureus assemblies had at least 3 circular contigs (episomes). Table 3 summarizes all BCO 

isolate assemblies analyzed. 
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Table 10. Bacterial genome assemblies used or produced in these analyses are listed by species, 

Isolate designation, host source, assembly Genome Status, NCBI Accession number, and 

citation. Abbreviations are as in Table 1. 

Isolate Source Genome 

Status 

Biosample/Accession 

ID 

Citation 

E. coli 

1409 RT Lame3 Finished SAMN12285857 This work 

1413 Blood Lame12 Finished SAMN12285859 This work 

1512 LF Lame18 Draft SAMN13245724 This work 

1527 RF Lame18 Draft SAMN13245725 This work 

S. aureus 

1510 LT Lame14 Draft SAMN13245722 This work 

1511 RT Lame14 Draft SAMN15589960 This work 

1513 LF Lame15 Draft SAMN15589961 This work 

1514 RF Lame15 Draft SAMN15589962 This work 

1515 RF Lame16 Draft SAMN15589963 This work 

1516 LT Lame16 Draft SAMN13245723 This work 

1517 LT Lame17 Draft SAMN15589964 This work 

1518 RF Lame17 Draft SAMN15589965 This work 

1519 LT Lame21 Draft SAMN15589966 This work 

1520 RF Lame21 Draft SAMN15589967 This work 

1521 RF Lame23 Draft SAMN15589968 This work 

1522 RT Lame23 Draft SAMN15589969 This work 

1523 RF Lame24 Draft SAMN15589970 This work 

1524 LT Lame24 Draft SAMN15589971 This work 

 

Phylogenetic Comparison 

To examine the phylogenetic relationships between E. coli isolates from the three farms, we 

identified the most closely related genomes according to PATRIC for 1409 (Farm 1), 1413 (Farm 

2), 1512, and 1527 (Farm 3). We then identified the clades to which the closest related genomes 

are assigned in the NCBI dendrogram for all E. coli genomes (Figure 21). The E. coli from each 
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farm clearly map to very different clades. We downloaded 57 genomes representing the most 

closely related genomes identified by PATRIC for our four new E. coli genomes. We generated a 

phylogenetic tree for all 61 genomes using Average Nucleotide Identity (ANI), with isolates 

identified by region and host/source (Figure 22). Isolate 1409 grouped with one chicken isolate 

from Pakistan and 4 isolates from chickens in China. The other closely related isolates in that same 

branch were from cows, pigs, dogs, and humans from either the USA, China, France, or Mexico. 

Isolate 1413 clustered with one E. coli isolate from layer peritonitis in the United States, four 

Denmark chickens, and one US ground turkey meat. Other closely related isolates in the same 

branch came from US chicken breast, Bolivia human feces, UK chicken feces, US chicken thigh, 

US chicken brain, Latvia human clinical sample, US chicken pericardium, and two US chicken 

feces. Isolate 1512 and 1527 are virtually identical, with an ANI of 0.99995, which is not surprising 

since they were isolated from the same bird. Isolates 1512 and 1527 grouped with a pig isolate 

from China, a human isolate from France, and one chicken isolate from the UK, with ANI of 

0.9996. The other closely related isolates came from human in Japan, sick domestic chickens in 

Poland, pigs from South Dakota, a FDA water contamination project in Arizona, US chicken eggs, 

human clinical samples, a coliseptic turkey in Israel, US citizens afflicted with haemolytic uraemic 

syndrome during a 2011 outbreak in Germany, Switzerland chicken meat, and US deer feces. The 

ANI for 1512/5127 relative to 1409 and 1413, is 0.98, while the ANI between 1409 and 1413 is 

0.97, so the three genomes are equally distant from each other. 

We generated another phylogenetic tree for our 14 S. aureus genomes and the 35 closest known 

genomes in PATRIC (Figure 23). Our 14 BCO S. aureus genomes grouped together with an 

average ANI of 0.999914, indicating a clonally-derived population. The 14 BCO S. aureus 

clustered with genomes for four isolates from retail chicken meat from Tulsa, Oklahoma, in 2010 
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(ANI=0.9998). The other closely related chicken isolates in this clade came from Poland in 2008, 

a US chicken hock in 1999, an infected chicken in Ireland in 1986-1987, and Belgium in 1976 

(Table 9). The closest human isolates are from US sputum samples in 2012 (ANI=0.9994). The 

isolate designated UK_GgBroiler was the type strain (ED98) for a United Kingdom 1980s 

outbreak in chicken of S. aureus (34) which was attributed to a recent jump from humans to 

chickens (35).  However, the phylogenomics indicate that this clade of S. aureus was infecting 

chickens in Belgium as early as 1976 (Figure 23: BE_GgBroiler and BE_GgBroiler1). We used 

the RAST SEED Viewer proteome comparison tool to analyze the evolution of this S. aureus 

chicken clade since 1987 in the UK (Table S2). We selected our assembly for 1519 as it was the 

largest assembly with the fewest contigs to represent the 2019 isolates from Farm 3. ED98 

represents a 1986-1987 isolate, Ch21 (PO_GgBroiler1) is from Poland in 2008, and B4-59C is 

from 2010 in Tulsa poultry meat. We used the SEED Viewer compare function at rast.nmpdr.org 

with ED98 as the reference relative to the other proteomes to identify predicted proteins lacking 

(<50% identity) in one or more of the other three proteomes (Table 10). The analysis suggests that 

32 proteins (31 phage and hypothetical proteins, and an efflux pump for Tetracycline resistance) 

were lost between 1996 and 2008.  Eight phage and hypothetical proteins in ED98 and Ch21, were 

lost by 2010 in Tulsa, and only 4 hypothetical proteins in ED98, Ch21 and B4-59C, and 2019 in 

Lincoln Arkansas. We then reversed the analysis with 1519 as the reference to identify new 

proteins that appeared in the lineage to 1519 from ED98, through Ch21 and then B4-59C. The 

analysis identified 35 proteins present in 1519 for which the other 3 genomes lack a protein with 

50% or greater identity. Twenty-eight are phage, hypothetical or plasmid-maintenance related. The 

remaining seven include a partial coding sequence for phosphoglycerate kinase, an 

aminoglycoside N6’-acetyltransferase, a DUF1541 domain-containing protein, and a 
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lead/cadmium/zinc/mercury/copper transporting ATPase. Two open reading frames (genes 1916 

and 1917) are also novel to the 1519 genome that have overlapping open reading frames (ORFs) 

and may represent a frame shifted LPXTG cell wall anchor protein with a SdrC adhesin of 

unknown specificity. The adjacent gene (1915) is for a SdrD adhesin of unknown specificity. We 

reexamined this particular 4512 bp contig for assembly errors and could not find any based on 

templated alignments of the Illumina reads. BLASTn searches at NCBI found identical regions in 

a few other S. aureus genomes from human isolates. Therefore, the assembly appears correct, but 

that does not preclude ribosomal frame-shifting. The Unicycler assembly predicted this contig to 

be circular, so this may be a plasmid encoding adhesin functions. DUF1541 proteins of similar 

size are found in a wide range of different bacterial species. The divalent cation transporter is 

found in many different Staphylococcus species. The aminoglycoside-N6’-acetyltransferase (gene 

1919) has no significant BLASTp homologs in any S. aureus genome in NCBI, and the best 

homologs are 70% identical in isolates of Staphylococcus sciuri, Staphylococcus lentus, and 

Staphylococcus fleurettii. This gene is present in a 4357 bp contig that Unicycler could not 

circularize. However, the contig termini each contain portions of a plasmid recombination MobE 

mobilization protein that likely could be fused into one ORF with long reads. The other genes in 

this contig are two hypothetical proteins, a tetracycline resistance predicted region, and an ArsR-

family transcriptional regulator. However, this contig appears to possibly contain a mobile element 

affecting antibiotic resistance with the aminoglycoside transferase and the tetracycline resistance 

marker. 

Further evolution of this genome is evidenced by proteins highly conserved (>80%) in 1519 and 

B4-59C, but not (<50%) in ED98 and Ch21. The Tulsa 2010 and Arkansas 2019 isolate genomes 

contain 16 proteins not found in ED98 and Ch21; including a toxic shock syndrome toxin 1 (gene 
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327), a phage associated exotoxin superantigen (gene 329) and a cluster (genes 2179, 2180, and 

2181) of homologs to hypothetical proteins in superantigen-encoding pathogenicity islands. Genes 

327 and 329 are in a 97,219 bp contig predicted as circular with a number of genes for exotoxins 

and pathogenicity islands. The contig only contains two phage predicted proteins, so it may be a 

large plasmid containing many virulence determinants. 

There were only 3 proteins identified in 1519, B4-59C and Ch21, but not in ED98; two are 

hypothetical and the other a secretory antigen SsaA-like protein. This secretory antigen has been 

associated with transposons and also annotates as a CHAP domain protein, or putative cell wall 

lysis protein. 

Our conclusions on the evolution of this clade of S. aureus that infects chickens is that the genome 

continues to evolve as it adapts from 1986 to 2020, with the acquisition of additional adhesins and 

virulence determinants. As such, this clade seems to be restricted, or specialized, for infecting 

chickens. The clade appears to have been in the Oklahoma, Arkansas region for more than a 

decade, but how it is transmitted to different farms or flocks is not clear. It could be vertically 

transmitted from hen to chicks. Alternatively, chicks could be exposed at the hatchery, or workers 

could spread the bacterium to farms through breakdowns in biosecurity. 

In contrast the four E. coli genomes we characterized from three different farms show a very 

different pattern. Isolates 1512 and 1527 are highly related as they came from different BCO 

lesions in the same lame bird. For most lame birds we have reported that there is a predominant 

species that can be isolated from different BCO lesions, and often from the blood (2, 5). Our 

surveys of the three farms also demonstrate that there may be a predominant BCO pathogen within 

each farm, while in some broiler houses multiple species can be causing BCO lameness. E. coli 

1409, 1413, and 1512/1527 genomes are very distinct and come from very different clades, which 
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is very different from the patterns for S. aureus, or as we have reported for S. agnetis infecting 

chickens (25). Reports from Brazil using virulence genes or MLST reported distinct E. coli 

genotypes within a flock (23).  However, their data could not place the E. coli relative to those 

from non-chicken sources.  The pattern we report from E. coli phylogenomics is most consistent 

with a generalist pathogen that easily jumps from host to host. Remarkably, two neighboring farms 

(Farm1 and Farm2) supplied by the same hatchery and operated by the same integrator, had very 

different E. coli (1409 and 1413) involved in BCO lameness outbreaks. This is more consistent 

with the E. coli on each farm originating from other hosts (zoonoses) or each farm could have 

“evolved” its own E. coli BCO pathogen over many flocks and years. 

Conclusions 

Overall, the E. coli isolates from BCO lesions in Arkansas appear to be highly diverse, as they 

derive from different clades that contain E. coli from non-chicken hosts. Conversely, the S. aureus 

isolates appear to come from a clade of chicken-specific isolates that date back five decades.  Thus, 

the phylogenomics suggest that E. coli appears to be a generalist and can switch hosts much more 

easily than can S. aureus, which appears to be more of a specialist. This distinction may likely 

derive from a difference in genome size as the E. coli genomes are roughly twice the size of the S. 

aureus genomes. 
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Appendix 

 

Figure 21.  Dendrogram based on genomic BLAST for 17,824 E. coli genomes from NCBI 

(https://www.ncbi.nlm.nih.gov/genome/167). The locations of the nearest genomes for the E. coli 

isolates presented in this work are indicated on the dendrogram. 
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Figure 22. Phylogenetic tree for 61 E. coli genomes based on Average Nucleotide Identity. Key 

for isolate genomes is in Table S1. In brief, first two characters indicate location, first two 

characters after the underline indicate host, and remaining characters indicate source or isolate. 

Isolates in red are from poultry or poultry products. 
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Figure 23. Phylogenetic tree for49 S. aureus genomes based on Average Nucleotide Identity. See 

legend to Figure 1 and Table 9 for isolate designations
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Table 11. Genomes used for phylogenomic analyses. Designation is the coding used in the trees, Assembly is the NCBI accession, 

Country is the source of the isolate (if known), State is indicated for some USA isolates, Host is genus species from which the 

bacterium was isolated. 

Designation Assembly Country State Host Source Strain BioProject 

S. aureus 
       

OK_GgMeat GCA_007726565.1 USA OK Gallus gallus Meat B3-17D PRJNA555718 

OK_GgMeat1 GCA_007726495.1 USA OK G. gallus Meat B2-15A PRJNA555718 

PO_GgBroiler GCA_003336545.1 Poland 
 

G. gallus Broiler ch23 PRJNA344860 

OK_GgMeat3 GCA_007726545.1 USA OK G. gallus Meat B8-13D PRJNA555718 

PO_GgBroiler1 GCA_003343155.1 
  

G. gallus Broiler ch21 PRJNA344860 

PO_GgBroiler2 GCA_003350605.1 
  

G. gallus Broiler ch22 PRJNA344860 

OK_GgMeat4 GCA_007726525.1 USA OK G. gallus Meat B4-59C PRJNA555718 

UK_GgBroiler GCA_000024585.1 United Kingdom 
 

G. gallus Broiler ED98 PRJNA39547 

US_GgBroiler GCA_003336495.1 USA 
 

G. gallus Broiler ch9 PRJNA344860 

BE_GgBroiler GCA_003336635.1 Belgium 
 

G. gallus Broiler ch5 PRJNA344860 

BE_GgBroiler1 GCA_003336625.1 
  

G. gallus Broiler ch3 PRJNA344860 

JA_HsSkin GCA_003421965.1 Japan 
 

Homo sapiens Skin M6K089 PRJDB5246 

US_HsSputum GCA_003720355.1 USA 
 

H. sapiens Sputum CFBR-122 PRJNA480016 

US_HsNares GCA_000562505.1 USA 
 

H. sapiens Nares W76127 PRJNA224506 

US_Hs GCA_900081525.1 USA 
 

H. sapiens 
 

MRSA PRJEB1915 

TH_Hs1 GCA_900126025.1 Thailand 
 

H. sapiens 
 

3688STDY612490

6 PRJEB9575 

US_HsThroat GCA_003720885.1 USA 
 

H. sapiens Throat BCH-SA-12 PRJNA480016 

US_HsNares1 GCA_000559345.1 USA 
 

H. sapiens Nares F41882 PRJNA224323 

US_HsNares2 GCA_000571715.1 USA 
 

H. sapiens Nares F29982 PRJNA225050 

US_HsFluid GCA_000609945.1 USA 
 

H. sapiens Fluid DAR1890 PRJNA228339 

US_HsNares3 GCA_000561365.1 USA 
 

H. sapiens Nares H27777 PRJNA224442 
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Table  11 (Cont’d)  

Designation Assembly Country State Host Source Strain BioProject 

Argentina_HsBone GCA_000610685.1 Argentina  H. sapiens Bone DAR3178 PRJNA228381 

Lebanon_HsThroat GCA_003038745.1 Lebanon 
 

H. sapiens Throat SAM-7 PRJNA437720 

US_HsSputum1 GCA_003719905.1 USA 
 

H. sapiens Sputum CFBR-171 PRJNA480016 

US_HsSputum2 GCA_003720135.1 USA 
 

H. sapiens Sputum CFBR-149 PRJNA480016 

Italy_BtMilk GCA_006511605.1 Italy 
 

Bos taurus Milk Lodi13K PRJNA531079 

Brazil_BtMilk GCA_001676955.1 Brazil 
 

B. taurus Milk A53 PRJNA315778 

TH_Hs2 GCA_900127725.1 Thailand 
 

H. sapiens 
 

3688STDY612500

2 PRJEB9575 

TH_Hs3 GCA_900124915.1 Thailand 
 

H. sapiens 
 

3688STDY612500

0 PRJEB9575 

US_HsICU GCA_000361205.1 USA 
 

H. sapiens ICU M0455 PRJNA173479 

US_HsBlood GCA_000609765.1 USA 
 

H. sapiens Blood DAR1813 PRJNA228330 

US_HsVagina GCA_001019375.1 USA 
 

H. sapiens Vagina NRS156 PRJNA231221 

US_HsSputum3 GCA_002123885.1 USA 
 

H. sapiens Sputum CFSA134 PRJNA380429 

JA_HsSkin1 GCA_003422345.1 Japan 
 

H. sapiens Skin M6K136 PRJDB5246 

US_HsSputum4 GCA_003720115.1 USA 
 

H. sapiens Sputum CFBR-102 PRJNA480016 

Ghana_HsHospital GCA_008630855.1 Ghana 
 

H. sapiens Hospital GHA2 PRJNA564764 

AR_Gg1510 JACEHY000000000 USA AR G. gallus Bone 1510 PRJNA554887 

AR_Gg1511 JACEHW000000000 USA AR G. gallus Bone 1511 PRJNA554887 

AR_Gg1513 JACEHV000000000 USA AR G. gallus Bone 1513 PRJNA554887 

AR_Gg1514 JACEHU000000000 USA AR G. gallus Bone 1514 PRJNA554887 

AR_Gg1515 JACEHT000000000 USA AR G. gallus Bone 1515 PRJNA554887 

AR_Gg1516 JACEHX000000000 USA AR G. gallus Bone 1516 PRJNA554887 

AR_Gg1517 JACEHS000000000 USA AR G. gallus Bone 1517 PRJNA554887 

AR_Gg1518 JACEHR000000000 USA AR G. gallus Bone 1518 PRJNA554887 
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Table 11 (Cont’d)  

Designation Assembly Country State Host Source Strain BioProject 

AR_Gg1519 JACEHQ000000000 USA AR G. gallus Bone 1519 PRJNA554887 

AR_Gg1520 JACEHP000000000 USA AR G. gallus Bone 1520 PRJNA554887 

AR_Gg1521 JACEHO000000000 USA AR G. gallus Bone 1521 PRJNA554887 

AR_Gg1522 JACEHN000000000 USA AR G. gallus Bone 1522 PRJNA554887 

AR_Gg1523 JACEHM000000000 USA AR G. gallus Bone 1523 PRJNA554887 

AR_Gg1524 JACEHL000000000 USA AR G. gallus Bone 1524 PRJNA554887 

E. coli   
      

Africa_Bt GCA_001419785.1 Tanzania 
 

B. taurus 
 

33 PRJNA293513 

AR_Gg1409 JACGTG000000000 USA AR G. gallus Bone 1409 PRJNA554886  

AR_Gg1413 JACGTF000000000 USA AR G. gallus Bone 1413 PRJNA554886  

AR_Gg1512 JACGTE000000000 USA AR G. gallus Bone 1512 PRJNA554886  

AR_Gg1527 JACGTD000000000 USA AR G. gallus Bone 1527 PRJNA554886  

Bolivia_HsFecal GCA_003850735.1 Bolivia 
 

H. sapiens feces 286A PRJNA427943 

Broad_Hs GCA_002244745.1 USA WA H. sapiens Urine 136-1758 PRJNA269984 

CH_Gg GCA_003009015.1 China 
 

G. gallus 
 

12c7 PRJNA417344 

CH_Gg1 GCA_002959165.1 China 
 

G. gallus 
 

YH17134 PRJNA434044 

CH_Gg2 GCA_003008775.1 China 
 

G. gallus 
 

12c8 PRJNA417344 

CH_Gg3 GCA_003009715.1 China 
 

G. gallus 
 

12c5 PRJNA417344 

CH_Hs6 GCA_003302635.1 China 
 

H. sapiens feces A61 PRJNA400107 

CH_Ss GCA_003328175.1 China 
 

Sus scrofa 
 

E565 PRJNA450836 

CH_Ss2 GCA_000987875.1 China 
 

S. scrofa Feces SEC470 PRJNA244370 

ClFeces GCA_003043915.1 
  

Canis lupus Feces RM14723 PRJNA341281 

DE_GgLiver GCA_001652345.1 Denmark 
 

G. gallus liver E44 PRJNA321591 

DE_GgSkin GCA_003015065.1 Denmark 
 

G. gallus skin L7S7 PRJNA438734 
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Table 11 (Cont’d) 

Designation Assembly Country State Host Source Strain BioProject 

DE_GgSkin2 GCA_003013555.1 Denmark  G. gallus skin L3S3 PRJNA438662 

DE_GgSkin3 GCA_003015075.1 Denmark  G. gallus skin L5S5 PRJNA438735 

Estonia_Hs GCA_006238365.1 Estonia  H. sapiens clinical sample EEIVKB55 PRJNA528606 

FR_HsFeces GCA_900536595.1 France  H. sapiens feces CEREMI_E32 PRJEB28341 

FR_HsFeces1 GCA_900499885.1 France  H. sapiens feces 884A PRJEB28020 

FR_HsIAI39 GCA_000026345.1 France  H. sapiens  IAI39 PRJNA33411 

Germany_HsColon GCA_000183345.1 Germany  H. sapiens Ileum NRC857c PRJNA41221  

HsFeces GCA_003018255.1 
  

H. sapiens Feces 2012C-4502 PRJNA218110 

HsFeces2 GCA_003018095.1 
  

H. sapiens 
 

2014C-3338 PRJNA218110 

Israel_Mg GCA_000819645.1 Israel 
 

Meleagris 

gallopavo Blood 789 PRJNA262513 

JA_Hs GCA_006535915.1 Japan 
 

H. sapiens 
 

SMEc189 PRJDB8148 

JA_HsColitis GCA_000008875.1 Japan 
 

H. sapiens 

Hemorrhagic 

colitis SAKAI (EHEC) PRJNA226 

K12MG1655 GCA_000005845.2 
    

MG1655 PRJNA603343 

Latvia_HsClinical GCA_006236595.1 Latvia 
 

H. sapiens 

Clinical 

sample LVSTRB103 PRJNA528606 

MX_Bat GCA_002456375.1 Mexico 
 

Tadarida 

brasiliensis Feces MOD1-EC908 PRJNA230969 

MX_Hs GCA_002485345.1 Mexico 
 

H. sapiens Feces MOD1-EC6621 PRJNA230969 

Netherlands_Hs GCA_002888415.1 Netherlands 
 

H. sapiens Meninges SP-16 PRJNA429029 

PA_DeerFeces GCA_002215155.1 USA PA 

Odocoileus 

virginianus Feces PSUO103 PRJNA314794 

PA_GgPSU02 GCA_002215095.1 USA PA G. gallus Peritoneum PSUO2 PRJNA287563 

PA_GgPSUO2 GCA_002215095.1 USA PA G. gallus Peritoneum PSUO2 PRJNA287563 

PA_GgPSUO78 GCA_002215115.1 USA  G. gallus Peritoneum PSUO78 PRJNA287566 
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Table 11 (Cont’d) 

Designation Assembly Country State Host Source Strain BioProject 

        

Pakistan_GgEC13 GCA_004284075.1 Pakistan  G. gallus infection EC_13 PRJNA522294 

PO_Gg GCA_001709145.1 Poland 
 

G. gallus 
 

019PP2015 PRJNA319144 

PO_GgSick GCA_001696335.1 Poland 
 

G. gallus 

sick domestic 

birds 012PP2015 PRJNA319144 

PolandGg2 GCA_001758245.1 Poland 
 

G. gallus 
 

022PP2016 PRJNA319144 

Spain_HsBlood GCA_000500875.1 Spain 
 

H. sapiens Blood GSK2024 PRJNA221787 

Swiss_GgMeat GCA_001660565.1 Switzerland 
 

G. gallus Meat S51 PRJNA323827 

UK_GgFeces1 GCA_900490165.1 United Kingdom 
 

G. gallus feces VREC0540 PRJEB8774 

UK_GgFeces2 GCA_900482085.1 United Kingdom 
 

G. gallus feces VREC0637 PRJEB8774 

US_Bt8 GCA_004792865.1 USA 
 

B. taurus feces KCJK8229 PRJNA420036 

Germany_BtMastiti

s GCA_000829985.1 Germany 
 

B. taurus Mastitis 1303 PRJNA46529 

US_ClIntestine GCA_002232435.1 USA NY C. lupus Intestine MOD1-EC5097 PRJNA230969 

US_Gg GCA_002512585.1 USA AL G. gallus Egg MOD1-EC6339 PRJNA230969 

US_GgBrain GCA_002537555.1 USA 
 

G. gallus brain MOD1-EC6094 PRJNA230969 

US_GgBreast GCA_003793955.1 USA 
 

G. gallus 

Chicken 

Breasts CVM N17EC0744 PRJNA292663 

US_GgPericardium GCA_002231405.1 USA PA G. gallus Pericardial Sac MOD1-EC5115 PRJNA230969 

US_GgThigh GCA_003794735.1 USA 
 

G. gallus 

Chicken 

Thighs CVM N17EC0412 PRJNA292663 

US_HsMGH188 GCA_002152225.1 USA MA H. sapiens 
 

MGH188 PRJNA271899 

US_HsO104_H4 GCA_000299455.1 USA  H. sapiens Feces 2011C-3493 PRJNA81095 

US_HsUMN026 GCA_000026325.2 USA  H. sapiens  UMN026 PRJNA33415 

US_HsUrine GCA_002245075.1 USA WA H. sapiens Urine 225-2935 PRJNA269984 
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Table 11 (Cont’d)       

Designation Assembly Country State Host Source Strain BioProject 

US_MgAPEC01 GCA_000014845.1 USA IA M. gallopavo Lung APEC 01 PRJNA16718 

US_MgGround GCA_003774815.1 USA  M. gallopavo ground meat CVM N17EC1100 PRJNA292663 

US_Ss GCA_002474525.1 USA SD S. scrofa Ileum MOD1-EC5757 PRJNA230969 

US_SsIntestine GCA_002464015.1 USA  S. scrofa Jejunum MOD1-EC6458 PRJNA230969 

US_Ss GCA_002474525.1 USA SD S. scrofa Ileum MOD1-EC5757 PRJNA230969 

US_SsIntestine GCA_002464015.1 USA 
 

S. scrofa Jejunum MOD1-EC6458 PRJNA230969 

USA_AZH2O GCA_002534895.1 USA AZ 
 

water MOD1-EC5915 PRJNA230969  

WA_HsUTI GCA_000778565.1 USA WA H. sapiens Urine UPEC-208 PRJNA248737 

 

Table 12. Proteome differences in four genomes of S. aureus infecting chickens. The SEED viewer was used to identify genes present 

in 1519 where the predicted polypeptide had a % identity less than 50% in one or more of the genomes for the indicated isolates. Gene 

is the RAST 1519 annotation gene number, Length is for the 1519 polypeptide, and function is the annotation from RAST.  

 
1519 

B4-

59C Ch21 

ED9

8 Gene 

Lengt

h function 

0 100 100 6 148 hypothetical protein 

0 100 100 7 83 hypothetical protein 

0 100 100 16 112 hypothetical protein 

0 0 0 32 182 DUF1541 domain-containing protein 

36.39 35.91 36.39 33 688 

Lead, cadmium, zinc and mercury transporting ATPase (EC 3.6.3.3) (EC 3.6.3.5); Copper-

translocating P-type ATPase (EC 3.6.3.4) 

0 0 0 117 43 hypothetical protein 

0 0 0 153 38 FIG01108408: hypothetical protein 

100 0 0 296 97 hypothetical protein 

100 34.45 0 327 235 Toxic shock syndrome toxin 1 (TSST-1) 

100 0 0 328 55 hypothetical protein 
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   1519   

B4-

59C Ch21 

ED9

8 Gene 

Lengt

h function 

100 0 0 331 140 Phage protein 

100 0 0 332 390 Phage protein 

0 0 0 421 40 Phosphoglycerate kinase (EC 2.7.2.3) 

100 45.9 45.9 500 48 hypothetical protein 

100 100 0 562 49 Secretory antigen SsaA-like protein transposon-related 

0 0 0 595 44 hypothetical protein 

100 36.02 36.02 729 222 hypothetical protein 

100 26.09 26.09 732 242 hypothetical protein 

100 0 0 733 71 Phage protein 

0 100 100 1021 128 hypothetical protein 

100 100 0 1197 45 hypothetical protein 

0 100 100 1210 39 hypothetical protein 

0 0 0 1289 64 hypothetical protein 

100 100 0 1421 44 hypothetical protein 

0 98.63 100 1553 74 Hypothetical protein, phi-ETA orf24 homolog [SA bacteriophages 11, Mu50B] 

0 0 0 1554 72 Phage protein 

37.38 36.1 37.38 1555 414 Phage DNA helicase 

0 0 0 1556 119 Phage protein 

0 0 0 1557 255 Phage replication initiation protein 

0 99.53 100 1560 213 Phage-associated recombinase 

0 100 100 1561 160 ORF027 

39.53 97.67 98.84 1563 87 Hypothetical protein, PVL orf39 homolog [SA bacteriophages 11, Mu50B] 

0 98.63 97.26 1565 74 Hypothetical protein, PV83 orf12 homolog [SA bacteriophages 11, Mu50B] 

0 98.21 98.21 1566 57 Uncharacterized protein pCM2_0059 

0 100 100 1567 97 phage protein 

0 81.35 100 1568 251 Phage antirepressor protein 

0 100 100 1569 62 hypothetical protein 
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   1519   

B4-

59C Ch21 

ED9

8 Gene 

Lengt

h function 

0 100 100 1570 201 Phage protein 

0 0 0 1572 65 Phage protein 

0 0 0 1573 257 Phage antirepressor protein 

0 0 0 1574 79 hypothetical protein 

0 93.44 100 1576 110 Phage protein 

0 100 99.69 1577 553 DNA adenine methylase (EC 2.1.1.72) 

25.71 100 100 1578 350 Phage integrase 

0 0 0 1719 41 hypothetical protein 

100 0 0 1760 52 hypothetical protein transposon-related 

0 0 0 1862 158 hypothetical protein 

0 0 0 1863 76 hypothetical protein 

0 0 0 1864 47 hypothetical protein 

0 0 0 1865 65 hypothetical protein 

0 0 0 1866 56 hypothetical protein 

0 0 0 1867 88 hypothetical protein 

0 0 0 1868 77 hypothetical protein 

0 0 0 1869 157 hypothetical protein 

0 0 0 1870 99 hypothetical protein 

0 0 0 1871 186 hypothetical protein 

0 0 0 1872 54 hypothetical protein 

0 0 0 1916 52 Adhesin of unknown specificity SdrC 

0 0 0 1917 205 

Type I restriction-modification system, DNA-methyltransferase subunit M (EC 2.1.1.72) / Type 

I restriction-modification system, specificity subunit S 

24.35 24.35 24.35 1919 178 Aminoglycoside N6'-acetyltransferase (EC 2.3.1.82) 

0 0 0 1921 144 hypothetical protein 

31.82 31.82 31.82 1922 110 Transcriptional regulator, ArsR family 

0 0 45 1923 173 Plasmid recombination, MobE mobilization protein 



 

 

1
2
6
 

Table 12 (Cont’d) 

   1519   

B4-

59C Ch21 

ED9

8 Gene 

Lengt

h function 

100 0 0 2179 95 Hypothetical SAV0793 homolog in superantigen-encoding pathogenicity islands SaPI 

100 30.08 30.08 2180 121 Hypothetical SAV0792 homolog in superantigen-encoding pathogenicity islands SaPI 

100 0 0 2181 486 Hypothetical SAV0791 homolog in superantigen-encoding pathogenicity islands SaPI 

100 0 0 2189 45 hypothetical protein 

100 29.38 29.38 2191 193 hypothetical protein 

100 0 0 2192 59 hypothetical protein 

0 0 0 2358 280 hypothetical protein 

0 0 0 2369 205 hypothetical protein 

0 0 0 2384 146 Phage holin 

0 100 100 2688 39 hypothetical protein 
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CHAPTER 3 

Investigation of Embryo Lethality Assay for Assessing Virulence of Isolates from Bacterial 

Chondronecrosis with Osteomyelitis in Lame Broilers. 

  



 

128 

 

Investigation of Embryo Lethality Assay for Assessing Virulence of Isolates from Bacterial 

Chondronecrosis with Osteomyelitis in Lame Broilers. 

Abstract 

We used an embryo lethality assay (ELA) to assess virulence for different isolates from cases of 

bacterial chondronecrosis with osteomyelitis (BCO) in broilers. ELA has been previously used to 

measure virulence and lethal dosage of Enterococcus faecalis and Enterococcus cecorum. We 

hypothesized that ELA could substitute for more laborious and costly assessments of BCO 

isolate pathogenicity using live birds. We evaluated two different levels of bacteria injected into 

eggs from layer and commercial broiler embryos. Significant findings include a) Escherichia coli 

from neighboring farms operated by the same integrator had very different embryo lethality, b) 

isolate Staphylococcus agnetis 908 had low virulence in ELA, even though this isolate can 

induce more than 50% BCO lameness, c) Enterococcus cecorum 1415 also had low 

pathogenicity; even though it was recovered from severe bilateral tibial dyschondroplasia, and d) 

human and chicken isolates of S. aureus had significant pathogenicity. Therefore, ELA may not 

be an effective measure for assessing virulence with respect to BCO. 

Keywords: Embryo lethality; Lameness; Virulence; Bacterial chondronecrosis with osteomyelitis 
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Introduction 

Bacterial chondronecrosis with osteomyelitis (BCO) is the leading cause of lameness in rapidly 

growing broilers (1-4). Lameness in broilers is significant as an animal welfare issue, and as a 

financial cost, in the poultry industry (2). Our research group isolated and characterized an 

isolate of S. agnetis, designated 908, from lame broilers on our research farm (1). S. agnetis 908 

can induce greater than 50% BCO lameness by 56 days of age when administered in a single 

dose in drinking water at 104 to 105 CFU/mL on day 20 (1, 3, 5, 6). Our current model for 

lameness etiology is that stress can lead to increased leakage (translocation) of bacteria across 

the gut and pulmonary epithelia into the blood system (1-3, 7-9). Particular species are then able 

to colonize the growth plate, a vulnerable niche in the blood system of the rapidly growing leg 

bones of fast-growing broilers (2, 3, 10). Therefore, significant lameness can be induced by 

specific bacterial pathogens. Distinct bacterial species have been isolated from lame birds 

including Staphylococcus aureus, Enterococcus cecorum, and Escherichia coli (11-31). 

However, there are few comparisons of different BCO-associated species, or isolates, for 

pathogenicity (17, 32).  In this study, we investigated the pathogenicity of S. agnetis, 

Staphylococcus chromogens, E. coli, E. cecorum, and S. aureus isolates using an embryo 

lethality assay (ELA). The isolates were obtained from BCO lesions on our research farm or 

commercial broiler farms in Arkansas. ELA has been used to correlate the expression frequency 

of nine virulence-associated E. coli genes with embryo mortality (33). Borst et al. (32) used this 

technique to compare the virulence of E. cecorum isolated from broiler spinal lesions (kinky 

back) to non-pathogenic E. cecorum strains isolated from ceca of unaffected birds. Blanco et al. 

(34) used ELA to determine the virulence and the lethal dose of Enterococcus faecalis. 
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Methods 

Microbiology 

Isolation and handling of the isolates has been described (1, 35). Media included: CHROMagar 

Orientation (CO; DRG International, Springfield Township, NJ), tryptic soy broth (Difco brand, 

Becton, Dickinson and Company, Franklin Lakes, NJ); and Luria broth (LB; per liter 10 g 

tryptone, 5 g yeast extract, 5 g NaCl).  

ELA 

Fertilized eggs were obtained from leghorns (LCL) and cobb700 commercial broilers (BCL) on 

the University of Arkansas research farm. The eggs were washed with warm soapy water 

containing a small amount of household bleach. Eggs were incubated (NatureForm™ Hatchery 

Systems, Jacksonville, FL, USA) at 37.5oC, relative humidity of 56%, on autorotate. On day 12, 

stationary-phase bacterial cultures were washed with 1xphosphate buffer saline (1xPBS; 150mM 

NaCl, 10 mM KHPO4 pH 7.2), CFU concentration estimated by spectrophotometry (A650) 

using pre-calibrated standard curves for each isolate, and then diluted in 1xPBS to the required 

concentration. eggs were candled, and fertile eggs were injected using a tuberculin syringe and 

20G needle (Becton, Dickinson, and Company) with 100µL of the appropriate bacterial 

suspension, or vehicle control, into the allantois cavity. The opening was sealed with transparent 

cello tape. Inoculated embryos were scored for mortality every day for 4 days after bacteria 

administration (32, 34). 

Electro-transformation 

Overnight cultures of E. coli in LB were diluted 20-fold with warm LB and incubated for 4 hours 

at 37 °C with good aeration. The cells were pelleted (5000 x g; 5 min; 4°C) then resuspended in 

an equal volume of ice-cold sterile deionized H2O, then pelleted. The pellet was again 
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resuspended in 0.5 volumes of ice-cold sterile deionized H2O, then pelleted. The pellet was 

resuspended in 0.01 volumes of ice-cold sterile 10% glycerol. Then 100 ul of cells were mixed 

with DNA and transferred to a 1 mm gap electroporation cuvette. The cuvette was precooled on 

ice, then electroporated in a BIO-RAD Gene Pulser™ set to 200 Ohms, 25 μFD, and 1.75 kvolts. 

The cells were diluted into 1 ml pre-warmed LB and incubated for 45 minutes with shaking at 37 

oC. Then 106 CFUs were injected into the allantois cavity of a 12-day old fertilized LCL embryo, 

as described above. After 5 days, a live embryo was sampled after surface sterilization to collect 

100 µl of yolk with a tuberculin syringe through the same opening as for injection.  The sample 

was added to X ml of LB and grown overnight with shaking at 37 oC. An aliquot was spread on 

CHROMagar Orientation for chromogenic verification as pure E. coli. The injection and 

recovery were sequentially repeated for a total of three times. 

Statistical Analysis 

The results of the ELA were analyzed with either Pearson’s Chi-squared (χ2) or Fisher’s Exact 

(FE) analysis using SAS and R software (SAS Institute. 2011; RStudio Team. 2016). Significant 

differences between Phosphate saline vehicle and treatments were accepted at P < 0.05.  

Results 

Embryo Lethality Assay with BCO isolates 

To establish a suitable assay for comparing different isolates, we first injected E. coli 1413 at a 

range of amounts (103 – 108 CFUs) in sterile 1xPBS to estimate the lethal dosage for Leghorn 

Chicken Line (LCL) embryos (Figure 24). For doses above 105 CFUs of 1413 had significant 

embryo lethality with doses 105, 107-8 CFUs compared with 1XPBS control. We, therefore, 

assessed different BCO isolates at 105 and 106 CFUs (Table 11). We included S. agnetis 908 

recovered from a femoral BCO lesion on our research facility as this isolate can induce lameness 
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≥50% by day 56 when administered in drinking water for two days to 20-day old broilers (1, 3, 

5, 6). Surprisingly, 908 injections of even 106 CFUs resulted in only 14% embryo lethality, a 

level not statistically different from phosphate saline control treatment (Figure 25A). For the 

methicillin-sensitive human S. aureus isolate 1302, originally retrieved from a wound (Table 1), 

injections of 105 or 106 CFUs resulted in 80% embryo lethality (Figure 25B).  Staphylococcus 

chromogens 1401 was recovered from an infected T4 vertebra of a chicken with “Kinky back” 

(Table 11). Injections of 106 CFUs resulted in only 7% embryo death, less than the 1xPBS 

control for that experiment (Figure 25C). E. coli 1409 was recovered from a tibial head necrosis 

lesion (Table 11). Injection of 105 to 106 CFUs resulted in no lethality through day 4 (Figure 

25D). E. coli 1413 was isolated from the blood of a lame bird with bilateral BCO of the tibiae 

and femorae, where E. coli was also recovered from multiple lesions (Table 11). As before, 

injections of 105 or 106 CFUs into LCL resulted approximately 80% embryo lethality (Figure 

25E). E. cecorum 1415 was isolated from a tibial head abscess in a case of bilateral tibial 

dyschondroplasia (Table 11). ELA results for 105 CFU actually showed more lethality than 106 

CFUs but neither was statistically different from the PBS control (Figure 25F). We used two 

isolates (1510 & 1514) of S. aureus obtained from BCO lesions from two different birds in a 

commercial broiler house lameness outbreak where draft genome assemblies were highly related 

(Table 11; Ekesi 2020).  The isolates showed different ELA results with 1510 lethality of 60% 

for 106 CFU, while 1514 produced 47% but only the 1510 results were statistically significant 

(Figure 25G & 25I). E. coli 1512 and 1527 were recovered from the left and right femoral 

lesions of the same bird (Table 11; Ekesi, 2020). Draft genome assemblies for both 1512 and 

1527 were determined to be virtually identical. ELA results for 1512 yielded 87% lethality for 

106 CFUs and 52% lethality for 105, but only the 106 results were statistically different from the 
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PBS control (Figure 25H). Therefore, only the human isolate S. aureus 1302, and chicken 

isolates E. coli 1413, and S. aureus 1510 and E. coli 1512, were found to cause significant 

lethality using LCL embryos. 

We then chose to extend the analyses by comparing the results for ELA with layer embryos to 

ELA using Broiler Chicken Line (BCL) embryos.  As shown in Figure 26, significant embryo 

lethality was obtained with S. aureus isolates1302 and 1514, plus E. coli 1413 and 1512.  S. 

agnetis 908, S. chromogenes 1401, E. coli 1409, and E. cecorum 1415, showed no virulence for 

either CFU quantity. We did note that for all four isolates that showed lethality for BCL, both the 

105 and 106 CFU injections showed significant embryo mortality (Figure 26 panels B, E, G and 

H).  For LCL the 105 injections were only different from the controls for S. aureus isolate 1302 

and E. coli 1413. However, for the other two isolates we might reach significance for the 105 

CFU injections with more embryos.  We also note that lethality was more rapid in the BCL than 

with LCL embryos (Figure 25 and 26). 

Is ELA Virulence Readily Transferable by Electroporation? 

To study the potential mechanism(s) of bacterial virulence acquisition, we used electroporation 

to transfer DNA from E. coli 1413 into E. coli 1409 to produce 1540T.  We then passaged these 

cells through three rounds of selection by ELA in LCL embryos. After each round bacteria were 

recovered from one of the living embryos and verified on chromogenic media as E. coli. The 

rescued bacteria from each round were designated 1541P, 1544P, and 1547P (Table 11). We then 

repeated the ELA assay to compare the lethality of the transformant and recovered populations to 

1409.  Isolate 1409 inoculated into 106 CFUs 1409 into LCL embryos produced higher embryo 

lethality that previously for LCL embryos and was statistically different from 1xPBS control (P 

= 0.002). Injection of 106 CFU of 1540T resulted in a 27% lethality of LCL that was not different 
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from the negative control (Figure 27A). The bacterial culture recovered from live embryos was 

designated E. coli 1541P and confirmed as E. coli on chromogenic CO plates (Table 11). 

Injection of 106 CFU of 1541P into LCL embryos resulted in 20% lethality which was not 

different from the PBS control (Figure 27B). The culture recovered from live embryos was 

designated 1544P and confirmed as E. coli as before. When we injected 1544P injected into LCL 

at 106 CFU there was 40% embryo lethality which was statistically different from the PBS 

control (Figure 27C). The recovery from live embryos was repeated and designated E. coli 

1547P. Injection of 106 CFUs of 1547P into LCL embryos resulted in 73% lethality (Figure 

27D). 

Discussion 

We performed ELA with different bacterial isolates isolated from lame broilers to estimate 

relative pathogenicity. We observed that S. agnetis 908 is not pathogenic in the ELA even 

though we have shown that this isolate readily infects young broilers when administered at 10 to 

105 CFU/ml in drinking water at 20 and 21 days of age (1, 3, 5, 6).  Those broilers then begin to 

develop lameness by 41 days of age and by 56 days of age 50% of the birds will be clinically 

lame with BCO lesions in proximal femoral and tibial heads.  Many of the birds develop 

bacteremia with hundreds to thousands of CFU/ml.  Additionally, the infected birds spread the 

infection to birds within the same room and 30-40% of those birds will be lame by 56 days of 

age. ELA has been used to compare virulence of E. cecorum from BCO birds (primarily kinky 

back) and E. cecorum from feces (32).  We used an E. cecorum we collected from an infected 

vertebrae in a kinky back bird (35) but it showed no significant virulence in the ELA.  We 

compared three E. coli isolates from BCO lame birds (35) and found they had very different 

apparent ELA virulence.  Even though these three isolates were from three different commercial 
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broiler farms in Arkansas that were experiencing BCO outbreaks, we have shown that all 3 are 

very different based on whole genome comparisons (35).  This is surprising given that 1409 and 

1413 were isolated on the same day from two different farms within 5 km of each other that were 

operated by the same integrator and supplied from the same hatchery.  S. aureus isolates showed 

virulence in the ELA, including an isolate from a human infection, and isolates from a BCO 

outbreak on a different farm operated by a different integrator.  We sampled 11 lame birds from 

that farm and determined that 7 of the birds were infected with S. aureus.  Genome analysis 

showed that the S. aureus isolates were highly related and very closely related to numerous S. 

aureus isolates obtained from diseased birds or broiler meat dating back to the 1970s in Europe 

(35, 36).  The clade has been isolated multiple times in Arkansas and Oklahoma for at least a 

decade.  The clade appears to be exclusively associated with poultry so virulence in the ELA is 

not surprising.  The genomic comparisons led us to propose that E. coli association with BCO is 

not exclusively poultry specific and that this species appears to be more of a generalist, whereas 

S. aureus and S. agnetis appear to be specialists and do not readily jump back and forth infecting 

different host species.  
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Appendix 

 

Table 13. Sources (strain designation for species, and host) of bacterial isolates utilized for ELA. 

In Isolate Source Lame indicates a bird number from BCO sampling. Abbreviations include LT: 

Left Tibia, RT: Right tibia, LF: Left femur, and RF: Right femur. 

Species Designation Host Isolate Source Citation 

S. agnetis 908 Broiler Femoral BCO; UA Research Farm Al-Rubaye, et al., 

2015 

S. chromogens 1401 Broiler Thoracic Vertebrae; Lame3 Ekesi, 2020 

E. cecorum 1415 Broiler LT/RT; Lame5 Ekesi, 2020 

E. coli 1409 Broiler RT; Lame3 Ekesi, 2020 

1413 Broiler Blood; Lame12 Ekesi, 2020 

1512 Broiler LF; Lame18 Ekesi, 2020 

1527 Broiler RF; Lame18 Ekesi, 2020 

1540T  1409 transformed with 1413 

Plasmids 

This work 

1541P  Recovered from live embryo 

injected with 1540T 

This work 

1544P  Recovered from live embryo 

injected with 1541P 

This work 

1547P  Recovered from live embryo 

injected with 1544P 

This work 

S. aureus 1510 Broiler LT Lame14 Ekesi, 2020 

1514 Broiler RF Lame15 Ekesi, 2020 

1302 Human Wound ATCC-29213 
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Figure 24. Embryo lethality assay in layer chicken line embryos to estimate the lethal dosage of 

bacterial isolates. The number of live embryos (Y-axis) for different quantities of E. coli 1413 is 

plotted over four days post-injection (X-axis). Isolate abbreviations and their sources are 

described in Table 11. For each treatment n = 5. Asterisks (*) indicates that particular treatment 

was significantly different from 1xPBS (P <0.05).   
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Figure 25. Layer chicken line embryo lethality for injection of 105 or 106 CFU of bacterial 
isolates vs. phosphate saline vehicle. Isolates were: A. 908; n=14, B. 1302; n=15, C. 1401; 
n=14, D. 1409; n=15, E. 1413; n=15, F. 1415; n=9, G. 1510; n =15, H.1512; n=15, and I. 
1514, n=15. Details are as in Figure 24. Asterisks (*) indicates that particular treatment 
was significantly different from 1xPBS (P <0.05).   
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Figure 26. Broiler chicken line embryo lethality for injections of 105 or 106 CFU of bacterial 

isolates vs. phosphate saline vehicle. Isolates were: A. 908, B. 1302, C. 1401, D. 1409, E. 1413, 

F. 1415, G. 1514, and H.1527. Details are as in Figures 24 and 25. For all trials n=15 per 

treatment. 

 

Figure 27. Embryo lethality is transferable from E. coli 1413 to 1409.  Embryo lethality assays 

for 15 embryos per treatment for the transformant 1540T (Panel A), and recovered E. coli 

cultures after 1 passage, 1541P (Panel B), 2 passages, 1544P (Panel C), and 3 passages, 1547P 

(Panel D).  All four panels compare to the 1xPBS control and 1409. Additional details are as in 

Figures 24 and 25. 
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CHAPTER 4 

Chondronecrosis with Osteomyelitis in Broilers: Further Defining Lameness-Inducing 

Models with Wire or Litter Flooring, to Evaluate Protection with Organic Trace Minerals 
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Disclaimer 

In this trial, I was part of the animal trial at the farm where we administered Availa-ZMC the 

commercial product in broiler feed. I was part of the histopathological evaluation of the intestinal 

villi. I was part of the sample collection team for the assay of intestinal gene expression. In the 

phagocytosis assay, I collected the blood and helped purify the PBMCs. 
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Chondronecrosis with Osteomyelitis in Broilers: Further Defining Lameness-Inducing 

Models with Wire or Litter Flooring, to Evaluate Protection with Organic Trace Minerals 

Abstract 

The feed additive Availa-ZMC was investigated for the ability to reduce lameness in 

broilers using two alternative models for inducing lameness.  The mixture of organic trace 

minerals was effective in reducing lameness by 20% in the wire-flooring model and 25% in the 

bacterial challenge on litter flooring model. Lameness in both models is overwhelmingly 

attributable to bacterial chondronecrosis with osteomyelitis.  The reduction in lameness was 

associated, at least in part, with enhanced intestinal barrier integrity mediated by elevated 

expression of tight junction proteins and stimulation of bactericidal killing of adherent peripheral 

blood monocytes obtained from the birds on Availa-ZMC. Lameness is a major animal welfare 

concern in broiler production.  The wire-flooring and bacterial challenge on litter-flooring 

models are effective models for evaluation of management strategies for mitigating infectious 

causes of lameness. 

Keywords: Broiler; Lameness; Chondronecrosis; Staphylococcus; Organic trace mineral 
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Introduction 

Lameness is one of the most significant animal welfare issues in the broiler industry, resulting in 

annual losses of millions of dollars (Siegel, et al., 2019; Wideman, 2016). A wire-flooring model 

has been shown to induce a high incidence of lameness in broilers (Wideman, 2016; Wideman, 

et al., 2013; Wideman, et al., 2014; Wideman, et al., 2012; Wideman and Prisby, 2013).  

Lameness induced in this system is overwhelmingly bacterial chondronecrosis with osteomyelitis 

(BCO) of the proximal tibiae and femora (Wideman, 2016; Wideman, et al., 2013; Wideman, et 

al., 2012; Wideman and Prisby, 2013).  The predominant isolates from BCO lesions using the 

wire floor model on our research farm are Staphylococcus agnetis and the BCO lameness is 

sometimes associated with a significant bacteremia (Al-Rubaye, et al., 2015).  The type strain, S. 

agnetis 908, when administered in drinking water can induce high levels of lameness for birds 

grown on wire or on litter (Al-Rubaye, et al., 2015; Alrubaye, et al., 2020).  The BCO lameness 

model has demonstrated: i) translocation of bacteria into the blood for birds on litter, with higher 

translocation in birds on wire flooring (Al-Rubaye, et al., 2017); ii) transmission of BCO-

inducing pathogens within a flock (Al-Rubaye, et al., 2017) or within a facility (Alrubaye, et al., 

2020); and iii) protection against BCO inducing pathogens by probiotics and prebiotics 

(Alrubaye, et al., 2020; Wideman, 2016; Wideman, et al., 2015; Wideman, et al., 2012). We now 

extend these investigations to the investigation of the commercial, complex organic trace 

mineral, Availa-ZMC.  Organic zinc is reported to enhance epithelial integrity, gut health, and 

immune function (Hudson, et al., 2004; Star, et al., 2012; Zakaria, et al., 2017).  The data 

reported herein demonstrate that this product can reduce lameness in both the wire-flooring 

model, and the bacterial challenge on litter-flooring model. Additionally, we observed that 

Availa-ZMC shows a dose-dependent enhancement of bacterial killing activity by adherent 
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peripheral blood monocytes cultured from treated birds.  These data extend the range of products 

that can be used to reduce BCO lameness, highlight the importance of organic trace minerals in 

improving animal well-being, and provide further validation of the two models we have 

developed to investigate treatments and management strategies for reducing BCO lameness in 

broiler operations. 

Materials and Methods 

Lameness Trials 

All animal experiments were approved by the University of Arkansas Institutional Animal Care 

and Use Committee under protocols 18010, and 18075. One day (d) old chicks representing 

surplus males from a female broiler-breeder product were kindly provided by Cobb-Vantress 

(Siloam Springs, AR).  Chicks were placed in 5 x 10 ft. pens on either suspended wire flooring 

(Wideman, 2016; Wideman, et al., 2012) or on standard wood-shaving litter at 60 per pen. 

Nipple water lines were supplied with city tap water on one side of the pen and two feeders were 

placed on the opposite side. Feed was standard starter through d35 and finisher through d56.  

Computer controllers regulated the temperature, photoperiod and ventilation. Tunnel ventilation 

and evaporative cooling pads were automatically activated when needed. The photoperiod was 

set for 23 h light:1 h dark for the duration of the experiment. Thermoneutral temperature targets 

were as follows: 90 °F for d1 to d3, 88 °F for d4 to d6, 85 °F for d7 to d10, 80 °F for d11 to d14, 

and 75 °F thereafter.  On d19 all pens were culled to 50 birds.  For pens challenged with S. 

agnetis in the drinking water the tap water supplying the nipple waterer was replaced with a 

gravity flow from an elevated 20L carboy of tap water.  The bacteria (stationary overnight 

culture) were mixed into tap water in the carboy to 104 CFU/ml (colony forming units per ml). 

After d21 the nipple supply was returned to the tap water. All water lines were flushed with 
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dilute bleach and fresh tap water prior to each experiment. Beginning on d20 all birds were 

encouraged twice per d to move using standard kitchen brooms.  Any bird that was reticent to 

move was marked with spray paint.  Birds that continued to be unwilling or unable to walk were 

diagnosed as “clinically lame” and euthanized. All birds that died or were diagnosed as clinical 

lame were recorded by date, and pen number. Necropsy for BCO lameness was as described 

(Wideman, 2016) to categorize as either: N = Normal proximal femur head or proximal tibia 

head; KB = Kinky Back (Spondylolisthesis); FHS = Proximal Femoral Head Separation 

(epiphyseolysis); FHT = Proximal Femoral Head Transitional degeneration; FHN = Proximal 

Femoral Head Necrosis; THN = Proximal Tibial Head Necrosis; Other = symptoms other than 

BCO, and Total Lame included all birds with any FHS, FHT, FHN, THN, or KB lesions.   

For administration of Availa-ZMC the commercial product was added to the feed (Table 12) 

prior to pelleting.  Samples of the pelleted feed were shipped to the supplier for verification of 

proper mixing prior to any experiment.  Details on the feed formulations and treatment groups 

are described in Table 12. 

Histological Evaluation of Intestinal Villi 

Intestinal samples (3 cm section) for histopathology were the distal jejunum (1 cm proximal to 

Meckel’s diverticulum) and proximal ileum (1 cm distal to Meckel’s diverticulum).  Samples 

from freshly euthanized birds were flushed with 1 x PBS and fixed in phosphate buffered 

formalin.  The fixed samples were processed through the histology laboratory in the Department 

of Poultry Science at the University of Arkansas.  Hematoxylin-Eosin stained sections were 

imaged on an Olympus inverted scope at 400x using a CCD camper to display on an LCD 

monitor.  Villus length was measured on a 21-inch diagonal LCD monitor with a flexible ruler.  

Calibration was based on a stage micrometer.  For villus length and pathology, at least 4 sections 
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were examined for each tissue for each bird (8 to 10 birds per treatment).  For each section, villus 

length was measured and gross pathology (villus tip integrity) was scored, on four sides (top, 

left, right and bottom). For some sections, villus length and tip integrity could not be measured 

on all four sides owing to tissue damage in sectioning.  

Assay of Intestinal Gene Expression 

One μg of total RNA was extracted from tissue samples by homogenization using Trizol Reagent 

(ThermoFisher Scientific, Rockford, IL) in accordance with the manufacturer’s recommendations. 

RNA concentration, quality, and integrity were assessed by the ratio of absorbance (260/280), and 

electrophoresis in 1% agarose gels using a Take 3 micro volume plate and the Synergy HT multi-

mode microplate reader (BioTek, Winooski, VT). RNAs were treated with DNAseI, and reverse 

transcribed via qScript cDNA SuperMix (Quanta Biosciences, Gaithersburg, MD). The cDNA was 

then amplified by real-time quantitative PCR (Applied Biosystems 7500 Real-Time PCR system) 

with Power SYBR green Master Mix (ThermoFisher Scientific, Rockford, IL) in triplicate 20 µL 

per reactions. Oligonucleotide primers specific for chicken occludin (OCLN): forward 5’- 

CGCAGATGTCCAGCGGTTA-3’ and reverse 5’- GTAGGCCTGGCTGCACATG;  claudin 1 

(CLDN1); forward 5’- CCCACGTTTTCCCCTGAAA-3’ and reverse 5’- 

GCCAGCCTCACCAGTGTTG-3’ ; gap junction protein alpha 1 (GJA1): forward 5’- 

TGGCAGCACCATCTCCAA -3’ and reverse 5’- GGTGCTCATCGGCGAAGT-3’; and catenin 

beta 1 (CTNNB1): forward 5’- TGCCCCACTGCGTGAAC-3’ and reverse 5’- 

TGCTCTAACCAGCAGCTGAACT-3’.  Primers for the reference, housekeeping gene r18S have 

been published previously (Dhamad, et al., 2019; Greene, et al., 2019; Lassiter, et al., 2015; 

Piekarski-Welsher, et al., 2018). The cycling conditions were 50°C for 2 min, 95°C for 10 min 

followed by 40 cycles of 95°C for 15 s and 58°C for 1 min with plate read. Post PCR, melting 
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curve analysis was applied using the dissociation protocol from the Sequence Detection system to 

exclude samples with non-specific products. PCR products were also confirmed for one specific 

size band by agarose gel electrophoresis. Negative controls lacked cDNA input as template for the 

PCR and were verified for absence of gel bands. Relative expression of target genes were 

determined by the 2-ΔΔCt method using r18S as the reference and the control group as the calibrator 

(Livak and Schmittgen, 2001; Schmittgen and Livak, 2008).  

Phagocytosis Assay 

Blood (1 ml) was collected from a wing vein using a Vacutainer containing EDTA (Becton, 

Dickinson and Company, Franklin Lakes, NJ). Monocytes were enriched and cultured using 

published protocols (Dawes, et al., 2014; Drechsler, et al., 2013).  Medium was RPMI (VWR) 

with 1x GlutaMax (Life Technologies) and 10% low endotoxin Fetal Bovine Serum.  After 5 d in 

culture (37 oC; 5% CO2) we challenged the adherent cells in triplicate with an approximate 

multiplicity of infection (MOI) of 1:1 with S. agnetis 908 for 2 d following published methods 

(Campbell, et al., 1994; Drevets, et al., 2015). Specifically, the bacteria were added to the 

medium for 2 h, then the medium was replaced with media supplemented with gentamycin (50 

µg/ml) for 6 h to kill non-internalized bacteria.  The medium was replaced with antibiotic-free 

medium.  After 2 d in culture the adherent cells are lysed by addition of pure water and a dilution 

series of the lysate was plated on Luria Broth agar plates for viable bacterial cell counts.  

Statistical Analyses 

Data were compared using either the T-test function in Microsoft Excel or a Generalized Linear 

Model (GLM) module in R.3.4.2 to produce P-values between treatments, as indicated.  Gene 

expression data were analyzed by One-way ANOVA. If ANOVA revealed significant effects, the 

means were compared by Tukey’s multiple range test using the Graph Pad Prism version 6.00 for 
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Windows (Graph Pad Software, La Jolla California, USA). Significant difference was accepted 

at P ≤ 0.05. Data are expressed as the mean ± SEM. 

Results 

Experiment 1 evaluated whether Availa-ZMC could reduce lameness for birds raised on wire-

flooring to induce lameness.  Chicks (1d old) were raised to d56 on wire-flooring with no direct 

administration of a bacterial challenge.  There were four pens in each treatment group, the 

Control treatment received standard feed formulations (Table 12), whereas the Availa-ZMC 

normal treatment received the product at 1000 mg/Kg of feed, and the Availa-ZMC high 

treatment group received the product at 1500 mg/Kg of feed. Feed formulations were continuous 

through d56, the end of the experiment. Lameness began to appear in all three treatments on d37, 

but the trajectory of lameness accumulation was higher for the birds on standard feed (Figure 

28).  The final cumulative lameness for the Control was 66%, but the Availa-ZMC normal 

treatment had 47% lameness, and Availa-ZMC high had 57% lameness.  Comparison of the 

lameness data by Generalized Linear Model (GLM) with the individual bird as the experimental 

unit showed that the Availa-ZMC normal treatment was statistically different from Control (P = 

0.0003) and Availa-ZMC high (P = 0.03).  Control and Availa-ZMC high were not statistically 

different (P = 0.15).  Pen-to-pen variability for the three treatments in experiment 1 reveals a 

degree of variability in the total lame per pen within a treatment (Table 13).  Loss of birds to 

mortalities unrelated to lameness, and final body weights were not different between treatments. 

Supplementation of feed with Availa-ZMC at either level had no discernable effect on the 

severity of BCO lesions for proximal tibiae and femorae from birds diagnosed as lame through 

the course of the experiment (Figure 29).  
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Experiment 2 evaluated whether Availa-ZMC could reduce lameness for birds raised on litter-

flooring when a bacterial challenge is imposed.  The feed supplementation was the same, but 

lameness was induced by the transmission of the hypervirulent strain S. agnetis 908 from birds 

challenged with the bacterium in drinking water for d20 and d21.  There were 3 pens of birds on 

litter-flooring on standard feed that were the Source population.  These three pens were 

“upwind,” relative to the exhaust fans, of the treatment pens (Table 12).  There were four pens 

for each of the three treatments: Control, Availa-ZMC normal, and Availa-ZMC high, arrayed in 

a randomized block design and separated by at least 3 meters from the Source pens.  Lameness 

began to appear on Day-36 but lameness accumulation was accentuated in the Source (Figure 

30).  Accumulation of lameness in the three treatment groups lagged behind that for the Source 

population by about 3 to 4 d through d48 where the Control cumulative lameness continued to 

parallel that for the Source but the lameness accumulation is reduced for both Availa-ZMC 

treatments.  Final percent lameness was Source 83%, Control 65%, Availa-ZMC normal 49%, 

and Availa-ZMC high 52%. GLM based comparisons of the lameness data with the individual 

bird as the experimental unit showed that the percent lameness was statistically higher in the 

Control treatment than in the Availa-ZMC normal (P = 0.002) and Availa-ZMC high (P = 

0.006), treatments.  Pen-to-pen total lame was more uniform in this experiment compared to 

experiment 1, and losses due to mortalities unrelated to lameness were lower (Table 13).  Final 

body weights were comparable between experiments 1 and 2, but the body weights for Availa-

ZMC normal were lower (T-test, P = 0.02) compared to the other two treatments in experiment 

2.  There was no clear difference in the distribution of BCO lesions between any of the four 

treatment groups in experiment 2 (Figure 31), however we have no explanation for the rather 

high percentage of Normal left femoral head diagnoses in the Source population. 
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Sections of distal jejunum and proximal ileum were collected from five apparently healthy birds 

on d57 from the Control and Availa-ZMC treatments.  Villus length was assessed for multiple 

sections from each bird and the average villus lengths were computed (Figure 32).  Student T-

test of the villus length data indicate that villus length in the ileum was reduced in the Availa-

ZMC treatments (P < 0.001) but villus length in the jejunum increased (P < 0.001). There was no 

difference in villus length between the two different levels of Availa-ZMC. In terms of important 

determinants of villus integrity, we examined expression of critical tight junction genes using 

reverse transcription quantitative polymerase chain reaction (RT-qPCR).  Ileum and jejunum 

from the Availa-ZMC high samples showed significantly upregulated expression for CLDN1, 

OCLN, GJA-1, and CTNB1, compared to the Control (Figure 33). Complimentary data for 

histology and expression from experiment 1 is not provided as the stress imposed by the wire-

flooring appears to significantly impact intestinal development and villus formation (A. Hasan, 

unpublished).  

Wing vein blood was collected from the same birds examined for intestinal histopathology.  

Monocytes were enriched and adherent cells cultured for 5 d. The cells were then used in 

phagocytosis assays against S. agnetis 908 at an approximate MOI of 1:1. Bacterial survival was 

assessed after 2 d (Table 14).  The bactericidal activity was variable between birds within each 

treatment.  The most variation was in the Availa-ZMC normal birds where the adherent cells for 

bird 3 were highly active in killing S. agnetis 908. For the lowest dilution plated, 10-2, there were 

only 5 colonies from one of the three triplicate wells.  Therefore, verifying that bacteria were 

added but the bacterial survival was very low within the monocytes from this broiler. The high 

variability for the five birds from Availa-ZMC normal meant that this treatment group was not 

statistically different from either the Control or Availa-ZMC high cells.  Bactericidal activity of 
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cells from the Availa-ZMC high birds was higher than the activity of cells from the Control 

treatment (T-test, P = 0.00085). 

Discussion 

In our previous research publications we had reported that S. agnetis 908 can induce lameness at 

80-90% when administered to birds raised on wire flooring (Al-Rubaye, et al., 2015; Al-Rubaye, 

et al., 2017).  We also demonstrated that S. agnetis 908 can induce lameness of 50 to 80% when 

administered in drinking water to birds raised on litter flooring (Alrubaye, et al., 2020).  Further, 

the lameness can be transmitted from the birds challenged with bacteria to unchallenged birds 

within the same broiler house.  We also demonstrated that specific probiotics in the feed can 

protect broilers when raised on wire-flooring (Al-Rubaye, et al., 2017; Wideman, et al., 2012), 

but different probiotics in the feed can protect the unchallenged birds in the litter-flooring with 

bacterial challenge model (Alrubaye, et al., 2020).  The combination of organic zinc, manganese, 

and copper has been reported to improve poultry health, reduce bacterial pathogen colonization, 

and reduce femoral head necrosis (McKnight, et al., 2020; Sirri, et al., 2016). We therefore 

hypothesized that supplementation with Availa-ZMC complexed trace minerals could be 

efficacious in reducing BCO lameness in our two models for inducing BCO lameness. The 

results from experiments 1 and 2 confirm that Availa-ZMC is effective in reducing lameness in 

both models for inducing lameness.  When birds were raised on wire-flooring with no direct 

bacterial challenge, the mineral supplement reduced lameness by 14 to 29% (Figure 25) and 

appears to have reduced mortality due to causes not attributable to lameness (Table 13).  In the 

litter-flooring with bacterial challenge model the Availa-ZMC similarly reduced lameness by 20 

to 25% relative to the Control treatment (Figure 27).  Most importantly, this latter model 

employs the contagious spread of the infection observed in some broiler operations. Although 
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our model uses a hypervirulent bacterial strain, the reduction could be greater against less 

virulent species/strains.  Substituting complexed organic trace minerals for inorganic minerals 

appears to have reduced villus length in the ileum and increased villus length in the jejunum 

(Table 13). Further investigations are warranted to determine whether these changes arising from 

the difference in source of trace minerals alters any aspect of assimilation or feed conversion 

rates in infectious models.  In these studies, the final body weights did not seem to have been 

impacted (Table 13). It is important to consider the influence of different stocking density 

induced by different mortality rates.  Interestingly, the organic trace mineral upregulated the 

expression of the genes for tight junction (CLDN1, OCLN), gap junction (GJA-1), and 

desmosome (CTNB1), consistent with improved gut barrier integrity. Although the exact 

functions of the individual tight junction proteins remain elusive, in avian species, occludin has 

been reported to be an integral component in tight junction barrier function (Balda, et al., 2000). 

Studies conducted in occludin-deficient mice showed gut inflammation and defective epithelial 

barrier function (Schulzke, et al., 2005).  Similarly, it has been reported that down regulation of 

CLDN1 can drastically reduce barrier integrity (Zeissig, et al., 2007). Upregulation of these 

genes is consistent with Availa-ZMC enhancing barrier functions and reducing translocation of 

bacteria into the blood, a critical first step in the progression of BCO lameness (Al-Rubaye, et 

al., 2017; Wideman, 2016; Wideman and Prisby, 2013). Further, the organic trace minerals 

appear to enhance the bacterial killing activity of adherent peripheral blood monocytes (Table 

14).  Availa-ZMC has been reported to improve intestinal health, epithelial integrity, and 

immune function (Hudson, et al., 2004; Star, et al., 2012; Zakaria, et al., 2017).  The reduction in 

bacterial lameness in both models could result from either, or both, of enhanced barrier function 

and enhanced bactericidal activity of phagocytes. Growth on wire-flooring increases 
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translocation of bacteria into the blood relative to growth on litter-flooring (Al-Rubaye, et al., 

2017). The bacterial challenge on litter-flooring model involves non-contact spread of the 

infection from the Source population and we have speculated on whether the infection is through 

the pulmonary or gastro-intestinal path (Alrubaye, et al., 2020).  The adherent peripheral blood 

monocyte phagocytosis results suggest that the Availa-ZMC reduces lameness in part by 

enhanced killing of bacteria that translocate into the blood on either type of flooring (Al-Rubaye, 

et al., 2017).  The enhanced gene expression data for gut integrity markers argues that both 

immunity and barrier functions have been enhanced for the Availa-ZMC treated birds on litter-

flooring.  Most intriguing is the high bactericidal activity of the monocytes from bird 3 from the 

Availa-ZMC normal treatment.  Only one of 15 birds displayed such superior activity.  However, 

we cannot discern whether the activity for cells from this bird were inherent to that bird or 

resulted from stimulation by the Availa-ZMC supplementation.  There could be a small 

percentage of birds with superior innate immunity, or a small percentage of birds with immune 

systems that are highly activated by organic trace minerals.  Regardless, identification of these 

birds would provide a major new tool for improving animal welfare.   

The work presented here and our recent work demonstrating that certain probiotics can also 

reduce BCO lameness (Alrubaye et al., 2020) strongly support investigations pairing probiotics 

with Availa-ZMC to determine whether the protective effects are overlapping, additive or 

synergistic.  The bacterial challenge on litter flooring model provides an excellent system for 

evaluation of these interactions.  Development of effective management strategies that can be 

employed in the broiler industry will improve productivity and reduce animal welfare concerns. 
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Appendix 

 

Table 14. Feed supplementation for the three treatments  

Treatment 

Inorganic Sources, 

SO4
a 

Availa-ZMCab 

Zn Mn Cu mg/Kg of 

feed 

Zn Mn Cu 

Control 100 100 20.5 0 0 0 0 

Availa-ZMC 

normal 

40 40 10 1000 40 40 7 

Availa-ZMC 

high 

40 40 10 1500 60 60 10.5 

a-Values are in parts per million, with the same levels in starter and finisher feeds. 
b-Availa-ZMC: Zn, Mn and Cu amino acid complex; Zinpro Corporation, 10400 Viking Drive, 

Eden Prairie, MN 55344 

 

Table 15. Lame, and Mortality by pen, and ending BW for three treatments in  

Experiment 1 and 2   

Experiment 
 

Count Lame Count 

Mortalitya 

BW (kg)c 

Pen 1 2 3 4 Avgc 1 2 3 4 N Avgc 

1 Control 36 24 27 40 31.8 ± 3.2 2 2 4 0 10 4.27 ± 0.17 

1 Availa-ZMC 

normal 

28 25 23 16 23.0 ± 2.2 0 1 0 2 12 4.27 ± 0.07 

1 Availa-ZMC 

high 

26 25 43 19 28.3 ± 4.5 0 0 0 0 10 4.23 ± 0.09 

2 Control 32 35 32 30 32.3 ± 0.9 0 1 0 0 5 4.37 ± 0.05 

2 Availa-ZMC 

normal 

22 23 31 26 25.5 ± 1.8 0 0 0 0 5 4.18 ± 0.05 

2 Availa-ZMC 

high 

26 26 21 28 25.3 ± 1.3 0 0 0 0 5 4.40 ± 0.07 

a-Mortality from issues other than lameness  

b-BW for apparently healthy birds (N) at the end of the experiment (d56) 
c-Average (Avg) ± SEM 
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Table 16. Bacterial survival in adherent peripheral blood monocytes from five birds from the three 
treatments in experiment 2 

 
Treatment 

Bird Controla 

Availa-ZMC  

normala 

Availa-ZMC 

 higha 

1 1.3 x 107 1.6 x 107 5.8 x 106 

2 1.7 x 107 1.2 x 107 1.1 x 107 

3 1.7 x 107 1.7 x 102 9.9 x 106 

4 1.6 x 107 1.1 x 107 7.6 x 106 

5 1.2 x 107 2.0 x 107 8.6 x 106 

Average 1.5 x 107 1.2 x 107 8.6 x 106 

SEM 9.2 x 105 3.0 x 106 8.2 x 105 

a-CFU average from triplicate wells, details on the assay in Materials and Methods 

 

 

Figure 28. Cumulative lameness for broilers raised on wire-flooring on control feed or feed 

supplemented with Zinpro Availa-ZMC.  Cumulative percent lameness (vertical axis) is plotted 

from d35 to d56 (horizontal axis). Details of the three treatments are in Table 9. 
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Figure 29. Tibial (upper) and femoral (lower) lesion diagnoses for all lame birds raised on wire-

flooring in experiment 1. Proximal heads were diagnosed at necropsy for R- right; L- left leg 

bones, for each of the three treatments.  
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Figure 30. Cumulative lameness for broilers with a bacterial challenged, raised on litter-flooring, 

on control feed or feed supplemented with Zinpro Availa-ZMC in experiment 2.  Cumulative 

percent lameness (vertical axis) is plotted from d35 to d56 (horizontal axis). Source was the same 

as Control but was challenged with S. agnetis 908 at 104 CFU/ml in drinking water for d20 and 

d21. 

 

Figure 31. Tibial (upper panel) and femoral (lower panel) lesion diagnoses for all lame birds 

raised on litter-flooring in experiment 2. Proximal heads were diagnosed at necropsy for R- right; 

L- left leg bones, for each of the four treatments.  
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Figure 32. Villus length at d57 for apparently healthy birds from three treatment groups in 

experiment 2.  Average villus length (µm; vertical axis) for distal jejunum and proximal ileum 

for five birds from each treatment. Error bars indicate SEM. 

 

Figure 33: Expression of intestinal barrier integrity-related genes from three treatment groups in 

experiment 2.  The relative expression of ileal and jejunal OCLN, CLDN1, GJA-1, and CTNB1 

was determined by qPCR and analyzed by 2–ΔΔCt method using control group as the calibrator. 

Data are presented as mean ± SEM (n = 6/group). Different letters indicate significant difference 

at P < 0.05. 
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CHAPTER 5 

Typhoid Mary Experiment: BCO incidence variation due to bird-to-bird intra-pen 

transmission when administering Staphylococcus agnetis in the water 
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Disclaimer 

In this trial, I was part of a team that performed the animal trials in this project. 
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Typhoid Mary Experiment: BCO incidence variation due to bird-to-bird intra-pen 

transmission when administering Staphylococcus agnetis in the water 

Summary 

In our series of BCO trials, we have observed that some pens seem to show lameness earlier than 

others. We contended that this is because of one of two alternatives: i) a variable incidence of 

some additional infectious agent (virus, bacteria, coccidian), or ii) a carrier infecting other pen-

mates. Since we have determined that S. agnetis is a causative agent of BCO and lameness, we 

tested whether this pathogen can be easily transmitted in a floor pen environment. S. agnetis 

administered in drinking water at Day 20 to birds reared on wire flooring results in a 40-80% 

incidence of lameness. Without bacterial administration we see 30-50% lameness depending on 

the experiment, and the major (78%) bacterial species recovered from BCO lesions on our farm 

is S. agnetis. In this experiment we wanted to determine if broilers challenged with S. agnetis can 

transmit the bacterium to birds in the same pen, thereby spreading BCO and lameness. We 

discovered that young broilers exposed to S. agnetis at an early age of Day-20 may harbor the 

bacterium and if mixed with unexposed birds 10 days later can transmit the bacterium to their 

pen mates via unknown mechanism(s).  

Materials and methods  

Animal Housing, Care, and Treatment 

Animal procedures were approved by the University of Arkansas Institutional Animal Care and 

Use Committee (Protocol #11002). The experiments were conducted using pens in A365W at the 

University of Arkansas Poultry Research Farm. Carboys and nipple waterers were flushed with 

dilute bleach (5%) followed by a tap water flush to remove bacterial biofilms at least two days 

before the chicks were placed.  All birds were on 23 hours of light per day, 
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Thermoneutral/Optimal brooding and growing temperatures throughout (32.2 oC for d1 to d3, 

31.1 oC for d4 to d6, 29.4 oC for d7 to d10, 26.7 oC for d11 to d14, and 23.9 oC), and Optimal 

ventilation throughout.  The starter diet was a commercial corn and soybean meal-based chick 

starter (crumbles), and on d35 (10/14/2014) all birds were switched to a pelleted commercial 

corn and soybean meal-based finisher diet. Feed was formulated without meat or animal 

byproducts to meet or exceed minimum National Research Council (1994) standards for all 

ingredients. Starter and finisher feeds were provided ad libitum. Body weights were not recorded 

during the experiments, to avoid imposing additional stress on birds that already were under 

significant stress due to the wire flooring (Wideman & Pevzner., 2012; Wideman & Prisby., 

2012).  

Cobb500 surplus fast feathering breeder male chicks from the Fayetteville Hatchery were placed 

at 70 chicks per pen on suspended wire flooring as described (Wideman et al., 2012). Bird 

densities initially were approximately 1.65 ft2/chick in all pens. A365W is equipped with 

computer controllers to regulate the temperature, photoperiod, and ventilation. On day 14 all 

pens were culled to 60 birds per pen.  Beginning on day 15 all birds were “walked” daily by 

being prompted with a broom.  For days 20 and 21 the birds in pens 11, 12, 16-21, 23, and 24 

were treated with S. agnetis isolate 908 at 105 CFU/ml in their drinking water from 20 L carboys 

then the lines were flushed well with tap water and returned to city tap water.  On day 30, we 

reciprocally exchanged half of the birds between pens 4&16, 5&17, 6&18, 7&19, 8&20, and 

9&21.  Beginning on day 22 we began recording lameness per pen and the actual birds 

diagnosed as lame. All broilers that died or that developed clinical lameness were recorded by 

date, gender, and tag number, and then necropsied to assess BCO lesion distributions.  
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Clinical Diagnosis of Lameness 

The birds were “walked” and observed for lameness every two days beginning on Day 15. 

Affected broilers had difficulty standing, exhibited an obvious limping gait while dipping one or 

both wingtips and, if not removed, became completely immobilized within 48h. Birds were 

humanely euthanized as soon as the onset of lameness was noticed, and were necropsied within 

20 min post-mortem. Lame birds were humanely euthanized with CO2 gas or by cervical 

dislocation. Birds succumbing to BCO can die quickly because they have difficulty accessing 

food and water, and they can be trampled by their flock mates. Therefore, birds found dead also 

were necropsied to ascertain the cause of death and assess leg lesions.  All broilers that died or 

that developed clinical lameness were recorded by date, gender, and wing band, and they were 

necropsied to assess BCO lesion distributions.  

Birds that were unable to walk were diagnosed as “clinically lame” and humanely euthanized. 

All birds that died or developed clinical lameness were recorded by date, tag number, and pen 

number. They were necropsied and assigned to one of the following categories: 

Normal = Femur head and proximal tibia appear entirely normal 

Cull = Runts and individuals that failed to thrive or appeared to be clinically ill 

U = Unknown cause of death 

NE = Necrotic Enteritis 

SDS = Sudden Death Syndrome (Flip over, Heart Attacks) 

PHS = Pulmonary Hypertension Syndrome, Ascites 

KB = Kinky Back (Spondylolisthesis)  

TW = Twisted Leg or Slipped Tendon (perosis) 

TD = Tibial Dyschondroplasia 

Lame-UNK = Lameness for undetermined reasons 

FHS = Proximal Femoral Head Separation (epiphyseolysis) 

FHT = Proximal Femoral Head Transitional degeneration 

FHN = Proximal Femoral Head Necrosis (bacterial chondronecrosis with osteomyelitis, 

BCO) 

THN = Mild Proximal Tibial Head Necrosis, a sub-category of BCO in the tibiotarsus 

THNS = Proximal Tibial Head Necrosis Severe, THN in which the growth plate was 

imminently threatened or damaged 
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THNC = Proximal Tibial Head Necrosis Caseous, THN in which caseous exudates or 

bacterial sequestrate were macroscopically evident 

Total Lame = FHS + FHT + FHN + THN + THNS + THN 

Percent Lame = Total Lame/ (Total Birds - [sick or dead from other reasons])  

Previously published photographs illustrate typical BCO lesions of the proximal femora and 

tibiae (Wideman & Prisby., 2012; Wideman et al., 2012). Proximal femoral head lesions (FHS, 

FHT, FHN) and tibial head lesions (THN, THNs, THNc) were categorized separately to 

emphasize the progressive development of BCO (Wideman etal.,2012).On day 56 representative 

surviving birds were euthanized and necropsied to assess sub-clinical lesion incidences: Normal 

proximal femoral head; Femoral Head Separation; Femoral Head Transitional degeneration; 

Femoral Head Necrosis; Tibial Head Necrosis, and Tibial Dyschondroplasia. 

Results 

The layout of the pens for the experiment is presented in Figure 34 and the protocol followed is 

in Table 15.  There were four treatment groups assigned for this experiment that was classified as 

Y: Challenged with S. agnetis; mixed with no challenge; N: No challenge; mixed with S. agnetis 

challenged; C+: S. agnetis challenged and not mixed; and C-: No challenge and not mixed.  

Death due to causes other than BCO lameness was minimal for all four treatments (Y: 3; N: 2; 

C+: 1; N: 3).  The cumulative percentage of lameness per treatment throughout the experiment is 

presented in Figure 35. The % lameness for treatments Y, N, and C+ diverges from the 

unchallenged unmixed control (C-) after Day 42, and then continue to near 70% with C- 

finishing at 50%.  The Y and C+ S. agnetis challenged groups had nearly identical total % 

lameness of 73.4 and 75.5% lameness, respectively.  Unchallenged and mixed treatment (N) 

were slightly less at 69%, but N was closed to Y+ and C+ challenged groups. As the 

accumulation of lameness in the unchallenged N treatment group appears to follow a similar 

accumulation to the Y and C+ treatment groups which were challenged with S. agnetis, this 
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strongly suggests that the Y treatment birds transmitted the bacterium to their N treatment 

unchallenged pen-mates.  Table 16 presents the average lameness per pen for the treatment 

groups.  In Table 16, we pooled each of the Y and N birds for the pens that were mixed to 

maintain approximately 60 birds per pen (we summed the lame birds in the Y treatment for pens 

4 and 16, and we summed the lame birds in the N treatment for pens 4 and 16).  The Student T-

tests on the lameness counts for treatment groups by pen showed no significant difference 

between treatments Y, N, and C+ (P≥0.187).  The three treatments were all significantly different 

from C- (P<0.013). Therefore, this experiment demonstrates that if we expose broiler chicks to a 

two-day inoculation with S. agnetis at day 20, and 10 days later mix those exposed birds with 

unexposed birds then the incidence of lameness in the mixed birds is equivalent throughout the 

pen.  Thus, the exposed birds transmit the bacterium to their unexposed pen-mates.  The 

mechanism of transmittal could be direct physical contact, contamination of the waterers from 

exposed birds, or vectored transmittal.  The exposure should not be from residual S. agnetis on 

the nipple waterers because those were flushed after the challenge administration and we did not 

see any difference in lameness incidence between pens 4-9 and 14-21 (pens 14-21 were the pens 

with S. agnetis administration).   

Assessment of all types of femoral and tibial lesions diagnosed for each treatment group showed 

little or no difference in the range of lesions or particular proximal leg bone head afflicted 

(Figure 35) except for perhaps a lower incidence of tibial lesions in the C- group.   

Discussion 

The Typhoid Mary experiment shows that young broilers exposed to S. agnetis at an early age 

(20 days) harbor the bacterium and if mixed with unexposed birds 10 days later can transmit the 

bacterium to their pen mates via some mechanism, most likely direct physical transfer, 
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contaminating the waterers, or other vectors. The transfer must be rapid because as the incidence 

of BCO lameness begins to accumulate around 40-42 days that is only 10-12 days after the 

mixing of the two treatment groups.  We have long suspected the Typhoid Mary aspect of BCO 

lameness because in the absence of our bacterial challenge we often experienced a few pens 

where BCO lameness appeared early and reached much higher levels than other wire flooring 

pens.  We suspected there might be one or more pre-disposing subclinical infectious agents 

(mycoplasma, virus, etc.) but this experiment suggests it is more likely a carrier of the eliciting 

bacterial species, in this case, S. agnetis.  One caveat is that we did not do microbial surveys of 

the BCO lesions in this experiment.  Therefore, we cannot explicitly state that the lesions in the 

N treatment birds contained predominantly S. agnetis. However, the data are most consistent 

with the Y treatment birds transmitting the S. agnetis to the N group of birds.  In prior 

experiments, we have shown that S. agnetis is the predominant species isolated from BCO 

lesions on our research farm in multiple facilities, and that if a non-BCO pathogen is 

administered (human S. aureus) we still recover S. agnetis from the BCO lesions (Al-Rubaye et 

al., 2015). One major suspect for horizontal transmission is mites.  Chickens are known to have 

several different types of endemic mites.  Metagenomics has detected the presence of S. agnetis 

DNA in the guts of sheep scab mites (Hogg & Lehane., 1999). That does not mean there are 

viable organisms, but the presence of the DNA suggests at least a transient presence.  Intense 

poultry production systems have been known to harbor more than 30 mite genera (Horn et al., 

2015) and molecular surveys of poultry red mites have detected multiple chicken viruses and 

mycoplasma (Huong et al., 2014). Therefore, chicken mites should be suspect for vectoring the 

bacterium.  As the C- treatment was in the same room but separated by an unused pen the vector 

does not appear to transmit readily over 8-10 feet which argues against vectoring by flies or 
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gnats.  Although the C- pens which were closest to the challenged pens did have a slightly higher 

percentage of lameness.  Our experimental data is consistent with the spread of BCO lameness 

within a broiler house or within a region of a broiler house that conforms with anecdotal 

narratives from growers.  Future experiments should be designed to examine whether birds in 

neighboring pens can transmit BCO lameness when direct physical contact is reduced and there 

are no shared nipple waterers.  There should also be concern about vertical transmission of 

agents of lameness through eggs or egg facilities. In conclusion, the bacterial species we have 

identified as intimately involved in BCO lameness in young broilers is communicable between 

broilers raised in a shared pen. And further work on the mechanism of horizontal transmission of 

the bacterium is warranted. 
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Figure 34. Pen Setup in A364 for the Typhoid Mary experiment. 
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Figure 35. Cumulative % lameness per treatment from day 34 through day 56.  
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Figure 36.  Tibial and Femoral BCO lesion diagnoses for the four treatment groups.  Percent 

incidence in lame birds is presented for RF right femur, LF- left femur, RT- right tibia; and LT- 

left tibia.  Lesion type are as in Materials and Methods 

 

Table 17. Protocol for Typhoid Mary Experiment 

Day of Age Comments 

1 Place chicks on wire flooring.  Cobb starter.  All chicks tagged 

and recorded 

14  cull to 60 birds per pen 

20 Administer S. agnetis at 105 cfu/ml in drinking water for 2 days to 

pens 11,12,16-21,23,24 

22  Begin recording all deaths, lame and infirmed 

30 Swap birds 50:50 between pens 

4&16,5&17,6&18,7&19,8&20,9&21 

35  Switch to Cobb finisher 

56 Complete experiment.  Weigh all remaining birds and necropsy 5 

apparently healthy birds from each pen 
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Table 18. Total and percent lameness for the four treatment groups along with average lame 

birds per pen.  Note that for the Y and N treatment groups the per pen averages were for the two 

pens that were mixed so that all averages are for the same number of treated birds. Treatments 

that are different (P < 0.05) have Average ± std with superscript letters that are different. 

Treatment Group Y N C+ C- 

Final Count 357 358 239 237 

% Lame 73.4% 69.0% 75.7% 51.5% 

Average lame ± std per pen 43.7±6.8a 41.2±7.8a 45.3±5.9a 30.5±4.8b 
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Conclusions 

The poultry industry has seen significant intensification since the 1940s. This has led to shift in 

poultry production from a small scale “Backyard” farming to a more intensified and integrated 

production structure. Poultry industry has been successful due to its ability to produce 

marketable products. Post 1940s the introduced poultry breeding programmes employed 

numerous technologies to select important production traits.  Today, broilers grow faster, have 

improved meat quality, have reduced feed conversion ratio, reduced mortality, and their 

production is more eco-friendly compared to production of pork or beef. These gains seem to 

come at a price, as the poultry industry is faced with the issue of lameness. Numerous factors 

combine to cause the incidence of lameness in broilers. However, Bacterial chondronecrosis with 

osteomyelitis is the leading cause of the disease. The full etiology of the ailment is not 

understood, but we have hypothesized that bacteria from vertical and horizontal transfers 

translocate through compromised gut, integuments and respiratory pathways into birds that 

develop lameness. These bacteria survive and colonize the long bones and T4 vertebrae causes 

various forms of necrosis that have been described. We studied lameness the Wideman’s wire-, 

litter-flooring, or a combination of both. We have isolated S. agnetis as a major BCO agent in 

lame birds on our research facility, that can cause 50% incidence of lameness. Other BCO 

species like E. coli and S. aureus are frequent causative agents in other farms.  

In this dissertation, we covered the analysis of genomes of E. coli and S. aureus that were 

isolated from three farms in Arkansas area. We found that the E. coli were more generalist in 

their pattern of infections regardless of geolocation. S. aureus seemed were closely related to 

isolates from Europe and were more specialized to infect chickens. Further analysis of their 
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genomes indicates the S. aureus we isolated have only been in the area for a few decades and 

may have acquired virulence factors important for its adaptation and disease mechanism. 

 We used embryo lethality assay to access the pathogenicity of BCO isolates and for the different 

reasons highlight in chapter 3, we do not trust that ELA is an efficient mechanism for 

determining pathogenicity of BCO isolates. And although this work is on-going, we find that a 

non-pathogenic E. coli electroporated with plasmids from a more pathogenic strain and passaged 

over a few generations, acquired embryo lethality properties.  

We used the Staphylococcus-Lameness model to test the efficacy of Zimpro Micronutrients for 

reducing lameness in broilers and found that at certain levels these products can significantly 

reduce the incidence of BCO lameness. We also analysed the levels of expression of mucin and 

gut integral proteins. While there are certain gut integral proteins expressed in a differentially 

important manner to the incidence of BCO, we cannot say the same of Mucin genes as our 

analysis was inconclusive. The gut length and integrity for birds that received treatments of 

Zinpro Avalia micronutrients were also significantly improved. We therefore recommend Zinpro 

Avalia for it beneficial effects in commercial broiler productions.  

Finally, we used the wire-flooring model to determine whether BCO can be transmittable 

between birds of the same pen. We transferred birds exposed to S. agnetis in drinking water for 

two days on Days 20, after found that birds were capable of transferring bacteria to their pen-

mates. The mechanism of this transfer is still not known. Research is on-going in many aspects 

of BCO to better characterize the etiology of this disease, as therein lies the remedial.  
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