
Process Learning for Autonomous Process Anomaly Correction
Nolle, Timo

(2020)

DOI (TUprints): https://doi.org/10.25534/tuprints-00014257

License:

CC-BY-NC-ND 4.0 International - Creative Commons, Attribution Non-commerical,
No-derivatives

Publication type: Ph.D. Thesis

Division: 20 Department of Computer Science

Original source: https://tuprints.ulb.tu-darmstadt.de/14257

https://doi.org/10.25534/tuprints-00014257
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://tuprints.ulb.tu-darmstadt.de/14257

P R O C E S S L E A R N I N G F O R AU T O N O M O U S
P R O C E S S A N O M A LY C O R R E C T I O N

timo nolle

Kumulative Dissertation
zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

Dissertationsschrift in englischer Sprache von
Timo Nolle, M.Sc.

aus Bensheim, Deutschland
geb. am 17.03.1990 in Ratingen

Erstreferent: Prof. Dr. Max Mühlhäuser
Korreferent: Prof. Dr. Ingo Weber

Tag der Einreichung: 15.09.2020

Tag der Prüfung: 29.10.2020

Telecooperation Lab
Fachbereich Informatik

Technische Universität Darmstadt

December 1, 2020 – Version 1.2

Timo Nolle: Process Learning for Autonomous Process Anomaly Cor-
rection

Darmstadt, Technische Universität Darmstadt
Jahr der Veröffentlichung auf TUPrints: 2020

URN: urn:nbn:de:tuda-tuprints-142579

URI: https://tuprints.ulb.tu-darmstadt.de/id/eprint/14257

Tag der Einreichung: 15.09.2020

Tag der Prüfung: 29.10.2020

Published under CC BY-NC-ND 4.0 International.
https://creativecommons.org/licenses/by-nc-nd/4.0/

© 2020

https://creativecommons.org/licenses/by-nc-nd/4.0/

A B S T R A C T

The automatic detection of divergences from a desired process behav-
ior is a common research topic in the business process management
community. An established technique to analyze processes is called
conformance checking. Given a definition of a process in form of a process
model, conformance checking can be used to test whether the execu-
tions of a process contained in a so-called event log data structure are
conforming with the process as it was defined. The result is a com-
parison of the execution traces and their respective correct execution,
according to the process model. This technique provides insights into
where the divergence has occurred and how the execution must be
altered to conform to the process model. However, a problem is that it
requires a process model to be available. Process models in the correct
format are not always available.

Contrary to conformance checking, process anomaly detection aims to
find anomalous executions without relying on a predefined process
model. A process anomaly detection algorithm derives the process
logic from the event log itself and exploits the patterns found within
the event log to distinguish normal from anomalous process execu-
tions. Though process anomaly detection provides the benefit of not
relying on a process model, it typically does not provide the level of
detail that conformance checking does. A process execution can either
be normal or it can be anomalous.

This dissertation proposes process anomaly correction, a novel ap-
proach that combines the benefits of conformance checking and pro-
cess anomaly detection. Given only an event log, process anomaly
correction detects anomalous executions, clearly indicates where the
anomaly has occurred during the execution and suggests possible
corrective measures. The solution presented in this work is based
on a new concept to the field of process anomaly detection: Process
learning. In process learning, the task of understanding the process
based on the example data is transformed into a learning problem in
which a neural network is trained to predict the very next activity in
a running process execution. The resulting machine learning model
thus represents an approximation of the real process that created the
data.

This cumulative dissertation consists of five contributions to the
field of business process management that demonstrate how, starting
from a process anomaly detection, process anomaly correction is achieved
in a series of four steps. (1) Process learning is employed to gener-
ate an approximated model of the process logic. (2) The limitation
of only distinguishing between normal and anomalous process execu-

iii

tions is overcome by employing the process learning model which
processes the process executions on a finer level of detail than existing
approaches. (3) The necessity of providing manual threshold settings,
as it is typical for process anomaly detection algorithms, is replaced by
an automatic parameterization utilizing the process learning model. (4)
The predictive capabilities of the process learning model are exploited
to generate possible corrections of detected anomalies.

The resulting process anomaly correction approach can be employed
in scenarios where classic conformance checking would be infeasible,
due to the restriction of relying on a process model. Furthermore,
it can be employed alongside classical conformance checking, for
it incorporates more information coming from the event log than
classical conformance checking (such as employees executing a process
step, in which country the process is executed, etc.), and thus provides
a new perspective for the process analyst.

Z U S A M M E N FA S S U N G

Die automatische Erkennung von Abweichungen von einem gewünsch-
ten Prozessverhalten ist ein häufiges Forschungsthema auf dem Gebiet
des Geschäftsprozessmanagements. Eine gängige Technik zur Ana-
lyse von Prozessen wird als Conformance Checking bezeichnet. Ausge-
hend von der Definition eines Prozesses in Form eines Prozessmodells
kann mit Hilfe von Conformance Checking überprüft werden, ob
die Ausführungen eines Prozesses, die in einem so genannten Event
Log enthalten sind, mit dem definierten Prozess konform sind. Das
Ergebnis ist ein Vergleich der tatsächlichen Ausführungen und ihrer
jeweils korrekten Ausführung gemäß dem Prozessmodell. Diese Tech-
nik gibt Aufschluss darüber, wo die Divergenz aufgetreten ist und
wie die Ausführung geändert werden muss, um dem Prozessmodell
zu entsprechen. Ein Problem besteht jedoch darin, dass dazu ein Pro-
zessmodell verfügbar sein muss. Prozessmodelle im korrekten Format
sind nicht immer verfügbar.

Im Gegensatz zur Konformitätsprüfung zielt Process Anomaly Detec-
tion darauf ab, anomale Ausführungen zu finden, ohne sich auf ein
vordefiniertes Prozessmodell zu stützen. Ein Algorithmus zur Erken-
nung von Prozessanomalien leitet die Prozesslogik aus dem Event Log
selbst ab und nutzt die im Ereignisprotokoll gefundenen Muster aus,
um normale von anomalen Prozessausführungen zu unterscheiden.
Obwohl die Erkennung von Prozessanomalien den Vorteil bietet, dass
sie sich nicht auf ein Prozessmodell stützt, bietet sie in der Regel
nicht den Detaillierungsgrad, den Conformance Checking bietet. Eine
Prozessausführung kann entweder normal oder anomal sein.

In dieser Dissertation wird Process Anomaly Correction vorgeschlagen,
ein neuartiger Ansatz, der die Vorteile von Conformance Checking

iv

und Process Anomaly Detection kombiniert. Nur unter Verwendung
des Event Logs, erkennt die Process Anomaly Correction anomale
Ausführungen, zeigt deutlich, wo die Anomalie während der Ausfüh-
rung aufgetreten ist, und schlägt mögliche Korrekturmaßnahmen vor.
Die in dieser Arbeit vorgestellte Lösung basiert auf einem neuen Kon-
zept für den Bereich der Erkennung von Prozessanomalien: Process
Learning. Beim Process Learning wird die Aufgabe, den Prozess auf
der Grundlage der Beispieldaten zu verstehen, in ein Lernproblem
umgewandelt, bei dem ein neuronales Netz darauf trainiert wird, die
nächste Aktivität in einer laufenden Prozessausführung vorherzusa-
gen. Das resultierende Modell des maschinellen Lernens stellt somit
eine Annäherung an den realen Prozess dar, der die Daten erzeugt
hat.

Diese kumulative Dissertation besteht aus fünf Beiträgen aus dem
Gebiet des Geschäftsprozessmanagements, die zeigen, wie, ausgehend
von Process Anomaly Detection, Process Anomaly Correction in einer
Reihe von vier Schritten erreicht wird. (1) Process Learning wird einge-
setzt, um ein approximiertes Modell der Prozesslogik zu erzeugen. (2)
Die Beschränkung, nur zwischen normalen und anomalen Prozessaus-
führungen zu unterscheiden, wird durch die Anwendung des Process
Learning Modells überwunden, welches die Prozessausführungen auf
einer feineren Detailebene verarbeitet als bestehende Ansätze. (3) Die
Notwendigkeit der Bereitstellung manueller Schwellenwerteinstellun-
gen, wie sie für Algorithmen zur Erkennung von Prozessanomalien
typisch sind, wird durch eine automatische Parametrisierung unter
Verwendung des Process Learning Modells ersetzt. (4) Die prädiktiven
Fähigkeiten des Process Learning Modells werden ausgenutzt, um
mögliche Korrekturen der erkannten Anomalien zu generieren.

Der sich daraus ergebende Ansatz zur Korrektur von Prozessan-
omalien kann in Szenarien eingesetzt werden, in denen klassisches
Conformance Checking aufgrund der Einschränkung, von einem Pro-
zessmodell abhängig zu sein, nicht durchführbar wäre. Darüber hinaus
kann dieser Ansatz zusätzlich zu klassischem Conformance Checking
eingesetzt werden, da er mehr Informationen aus dem Event Log
einbezieht als klassisches Conformance Checking (z. B. Mitarbeiter,
die einen Prozessschritt ausführen, in welchem Land der Prozess
ausgeführt wird usw.) und somit eine neue Perspektive für den Pro-
zessanalysten bietet.

v

A C K N O W L E D G M E N T S

Without the wonderful support of my amazing advisors, colleagues,
friends, and my loving family, this dissertation would not have been
possible. Many thanks to each and every one of you, for making this
time of my life as amazing as it was.

First and foremost there is Max, my doctoral advisor, mentor, and
friend. It was an honor for me to work so closely with you over the
last five of years. You always supported me in my work and gave me
the freedom and the space I needed to be creative. Without exception,
you amazed me with your direct and profound feedback on my ideas.
Thank you for everything you have done.

I would also like to thank Ingo Weber for serving as the co-referee
for my dissertation. Your detailed feedback and constructive criticism
helped me in the final phase of writing and in the preparation for the
disputation. I am grateful for the support you have given me.

The kindness with which the Telecooperation group has welcomed
me is second to none. It has been a pleasure to work with all of you.
A special thanks goes to my colleagues of the ISY group, Alex, Chris,
and Sebastian. Without the countless hours we spent on presentations,
paper ideas, and general discussions, I would not be who I am today.

During the five years, I had the pleasure of working at an incredible
startup from Darmstadt, PAF. I am very grateful for Tobias allowing
me to follow my academic ambitions while simultaneously working
for his company. Without your support, I would never have succeeded.
I also want to thank Stefan for his willingness to listen to me and to
serve as a motivator. Lastly, I want to thank Susanne, who, in countless
evening sessions, listened to my research ideas and guided me through
the last years of my dissertation.

I want to thank my family, Gaby, Thomas, and Lars, for their contin-
uous support not only throughout this dissertation but throughout my
Bachelor’s and Master’s degrees as well. You never stopped believing
in me and this is what motivated me every day to keep going.

Finally, my deepest gratitude goes to my girlfriend, Ricarda. Thank
you for five years of unequivocal support and infinite patience. You
helped me become the best version of myself. I am looking forward to
a wonderful future together with you and the two cutest little dogs in
the world. You are the best!

vii

C O N T E N T S

I synopsis

1 introduction 3

2 state-of-the-art 9

2.1 Preliminaries . 9

2.2 Process Anomaly Detection 11

2.3 Conformance Checking 15

2.4 Towards Process Learning 17

2.5 Shortcomings of Process Anomaly Detection 18

3 contributions 21

3.1 RQ1: Providing Multi-perspective Detection 22

3.1.1 Unsupervised Anomaly Detection in Noisy Busi-
ness Process Event Logs Using Denoising Au-
toencoders . 23

3.1.2 Analyzing Business Process Anomalies Using
Autoencoders . 23

3.1.3 Discussion . 24

3.2 RQ2: Providing Automatic Parameterization 24

3.2.1 BINet: Multivariate Business Process Anomaly
Detection Using Deep Learning 25

3.2.2 BINet: Multi-perspective Business Process Anomaly
Classification . 26

3.2.3 Discussion . 27

3.3 RQ3: Bringing Alignments to Process Anomaly Detection 27

3.3.1 DeepAlign: Alignment-based Process Anomaly
Correction Using Recurrent Neural Networks . 28

3.3.2 Discussion . 30

3.4 Summary . 30

4 conclusion and outlook 33

4.1 Summary of Achievements 33

4.2 Future Work . 34

bibliography 37

II publications

p1 unsupervised anomaly detection in noisy busi-
ness process event logs using denoising autoen-
coders 45

p2 analyzing business process anomalies using au-
toencoders 63

p3 binet : multivariate business process anomaly de-
tection using deep learning 89

ix

x contents

p4 binet : multi-perspective business process anomaly

classification 107

p5 deepalign : alignment-based process anomaly cor-
rection using recurrent neural networks 137

L I S T O F F I G U R E S

Figure 1.1 A paper writing and reviewing process in form
of a process model 4

Figure 1.2 Comparison of process anomaly detection, con-
formance checking, and the proposed solution,
process anomaly correction 6

Figure 3.1 Current state-of-the-art and how the three re-
search questions relate to it 22

Figure 3.2 Process anomaly detection architecture 25

Figure 3.3 Process anomaly classification architecture after
the addition of BINet 28

Figure 3.4 Process anomaly correction architecture after
the addition of DeepAlign 30

Figure P1.1 t-SNE visualization of the randomly generated
datasets . 50

Figure P1.2 BPMN model of a simplified purchase to pay
process . 51

Figure P1.3 Autoencoder is trained to replicate the traces in
the event log after the addition of gaussian noise 53

Figure P1.4 Threshold classifier based on the mean squared
error between the input vector and the output
of the autoencoder 54

Figure P1.5 The autoencoder succeeds in perfectly splitting
the dataset into normal and anomalous traces
solely based on the reproduction error 56

Figure P1.6 Conformance check on a sample of the P2P
dataset . 58

Figure P2.1 BPMN model of a simplified purchase to pay
process; the italic names represent the users
allowed to execute that activity 70

Figure P2.2 Autoencoder is trained to replicate the traces in
the event log after the addition of Gaussian noise 73

Figure P2.3 F1 score by process model and method 76

Figure P2.4 F1 score by percentage of anomalous traces in
the training set 77

Figure P2.5 DAE error heatmap, trained on a P2P event log
with 10% anomalous traces 79

Figure P3.1 BINet architecture for a log with two event at-
tributes, supervisor and user 96

Figure P3.2 Effect of confidence normalization on BINet
anomaly scores (high scores indicate anoma-
lies); anomalies are marked with X 97

xi

xii list of figures

Figure P3.3 F1 score, anomaly ratio r, and second order
derivative r ′′ (scaled for clarity) by α for BINet
on a dataset with 5 attributes using τa as the
baseline threshold 100

Figure P3.4 F1 score by strategy and heuristic for BINet on
the P2P dataset 101

Figure P3.5 F1 score by method and detection level using
helbow where applicable 102

Figure P3.6 Anomaly score heatmap for BINet trained on
P2P with 2 attributes (supervisor and user);
anomalies are marked by X 103

Figure P4.1 A simple paper submission process which is
used as an example throughout the paper . . . 114

Figure P4.2 A likelihood graph with user attribute; 1.0 prob-
abilities omitted for simplicity 115

Figure P4.3 Anomalies applied to cases of the paper sub-
mission process 116

Figure P4.4 BINet architectures for a log with two event
attributes, User and Day; the three versions of
BINet differ only in the inputs they receive . . 119

Figure P4.5 Output of the activity softmax layer after read-
ing activity Research Related Work and user Main
Author . 121

Figure P4.6 Example of how an anomaly detection visu-
alization changes with different threshold set-
tings; the rightmost setting corresponds to how
a user would likely set the slider manually . . 122

Figure P4.7 Thresholds as defined by the heuristics in re-
lation to the anomaly ratio r and its plateaus
(blue intervals) 123

Figure P4.8 Average F1 score by method and strategy over
all synthetic datasets, using best as the heuristic 125

Figure P4.9 Average F1 score by method and heuristic over
all synthetic datasets, using h(a) as the strategy 126

Figure P4.10 Average Precision, Recall, and F1 by dataset
type over all datasets; error bars indicate vari-
ance over datasets with different numbers of
attributes and multiple runs 126

Figure P4.11 Critical difference diagram for all methods on
all synthetic datasets 128

Figure P4.12 Classification of anomalies on the Paper dataset
based on anomaly scores from BINetv1 using
h = lp

(a)
→ ; colors indicate the prediction of the

classifier (see legend) and actual classes are
shown as text within the cells 129

list of figures xiii

Figure P4.13 Confusion matrix for all runs of BINetv1 on
synthetic datasets with h = lp

(a)
→ ; color indi-

cates distribution of actual class 130

Figure P5.1 The DeepAlign algorithm makes use of two
next event prediction RNNs and an extended
bidirectional beam search (green) to produce
alignments . 142

Figure P5.2 RNN architecture for an event log with two case
attributes (Topic and Decision) and two event
attributes (User and Day) 142

Figure P5.3 The probability of a case c = 〈a,b, c,d, e〉 is
computed by the average probability of the case
under both the forward and the backward RNN 143

Figure P5.4 The probability of a case c = 〈a,b,d, e〉 after
the insertion of an event c after b is computed
by the joint probability 〈a,b〉 under the forward
RNN, 〈d, e〉 under the backward RNN, and the
probabilities of continuing the case with c un-
der both RNNs 144

Figure P5.5 The probability of a case c = 〈a,b, c, x,y,d, e〉
after the deletion of x and y is computed by the
joint probability of 〈a,b, c〉 under the forward
RNN, 〈d, e〉 under the backward RNN, and the
probabilities of continuing the case with d and
c under the forward and backward RNN, re-
spectively . 144

Figure P5.6 A simple paper submission process which is
used as an example in the evaluation 146

Figure P5.7 A likelihood graph with user attribute; 1.0 prob-
abilities omitted for simplicity 146

Figure P5.8 F1 score for each algorithm per noise ratio (left)
and per dataset (right); error bars indicate vari-
ance across all runs 149

L I S T O F TA B L E S

Table 1.1 An example alignment of a case from an event
log and the closest path through the process
model . 4

Table 2.1 Example event log of the paper writing and
reviewing process 10

Table 2.2 Summary of the state-of-the-art with respect to
desirable features 19

Table 3.1 Comparison of the solutions presented in this
thesis and the state-of-the-art; novelties to the
field are highlighted in red 32

Table P1.1 Example event log of a procurement process . 48

Table P1.2 Overview over the four different randomly gen-
erated process models and the corresponding
event logs . 49

Table P1.3 Overview of the hidden layer sizes 54

Table P1.4 Classification report for the anomalous traces
detector . 57

Table P1.5 Classification report for the anomalous activity
detector . 57

Table P2.1 Example event log of a procurement process . 68

Table P2.2 Overview over the 5 different randomly gener-
ated process models and the P2P process . . . 69

Table P2.3 Results of the experiments for all evaluated
methods for each process model; best results
are shown in bold typeface 76

Table P2.4 Results on the BPIC event logs; best results are
shown in bold typeface 77

Table P2.5 Results of the experiments for the anomalous
event classifier per label and process model;
best results are shown in bold typeface 81

Table P3.1 Overview showing dataset information 94

Table P3.2 Results showing F1 score over all datasets by
detection level and method; best results are
shown in bold typeface 102

Table P4.1 Overview showing dataset information 117

Table P4.2 F1 score over all datasets by detection level
and method; best results (before rounding) are
shown in bold typeface 127

Table P5.1 Correction accuracy, average error for incor-
rect alignments, and alignment optimality for
correct alignments 148

xiv

Part I

S Y N O P S I S

1
I N T R O D U C T I O N

When striving for a career in academia, it is quite unavoidable to
learn the process of writing a scientific paper. Picking up such a new
skill can be very challenging. Where do we start? What general plan
should we follow? How do we know what is right and what is wrong?
Who to ask? Fortunately, some of us have had the privilege of having
a mentor, guiding us through the initial hardship, pointing us in
the right direction, and explaining to us what we were doing wrong
and—more importantly—how to do it right.

Let us consider the following example: We are writing our first
scientific publication and we plan to work in the following order:
Identify Problem, Develop Method, Experiment, Conduct Study, Research
Related Work, Conclude, Submit. How do we know we are on the right
track? At this point, we would probably ask our mentors for advice,
and they would point out the mistakes we made: "You should research
the related work earlier!". But how are they doing it?

They will base their assessment of our plan on their theoretical
knowledge and their practical experience, having mentored many stu-
dents over the years in the same process. In their mind, they built
an abstract model of how the process of scientific writing works (for
them), learning from the different scenarios they have experienced
throughout the years. Such a process model [15] could look as de-
picted in Figure 1.1. Whenever a student approaches them with a new
question, they can utilize this model to check the plan of the student
for its conformance with their mind’s model of the process.

conformance checking with alignments A more general
statement of the problem above is: Given a process model and an event
log, provide an alignment between the cases of the event log and the
process model. To understand this statement, we have to define the
emphasized terms. In the business process management (BPM) re-
search community, process data is typically stored in a special data
structure called event log [1, 2]. An event log consists of cases, which in
turn are sequences of events (an event in its simplest form: an activity
a happened in case c at time t) that happened during the execution of
a process. A process model is an abstract concept that holds information
about the process logic, for example, in which order the events have
to occur to be compliant with the process. An alignment is a projection
of a single case onto the process model, which highlights where they
overlap and also where they diverge. The technique of checking if the

3

4 introduction

Au
th
or

R
ev
ie
w
er

Identify
Problem

Research
Related Work

Develop
Hypothesis

Develop
Method

Experiment

Conduct
Study

Evaluate

Conclude Submit

Review Minor
Revision

Revise Submit

Final
Decision

Figure 1.1: A paper writing and reviewing process in form of a process model

Table 1.1: An example alignment of a case from an event log (top row) and
the closest path through the process model from Figure 1.1 (bottom
row);� indicates that a necessary event has been skipped (when
appearing in the top row) or that an event is not allowed by the
process (when appearing in the bottom row)

Identify
Problem

� Develop
Method

Experiment
Conduct

Study

Research
Related
Work

Conclude Submit

Identify
Problem

Research
Related
Work

Develop
Method

Experiment
Conduct

Study
� Conclude Submit

cases of an event log are conforming with the logic as defined in the
process model is thus called conformance checking [43].

In the context of the mentor example from earlier, the hint to "[...]
research the related work earlier!" from the mentor can be visualized
as an alignment as shown in Table 1.1.

While conformance checking can provide alignments which offer
a detailed explanation of what is right and what is wrong in a case,
it does have a downside: It relies on the existence of a predefined
process model. In the mentor example introduced above, this process
model is created over time and shaped by the experience of the mentor.
In real-life scenarios, however, the process logic has to be manually
transferred to a digital process model so it can be used for conformance
checking. Such a digital process model cannot be assumed to always
be available, and if it is, it might be outdated or even wrong.

process anomaly detection Process anomaly detection [3] is
a technique that can be used—without a process model—to automati-
cally identify anomalous cases in an event log. Instead of relying on a
process model as input, process anomaly detection infers the process
logic directly from an event log. With increasing digitization, process
data is much more readily available. It is generated as a side-effect
of businesses running their processes guided by process-aware infor-
mation systems. Thus, process anomaly detection can be a feasible
alternative to conformance checking if no process model is available.

However, most process anomaly detection algorithms focus on the
identification of anomalous cases, and therefore provide a binary clas-

introduction 5

sification as output. A case is either anomalous or it is normal. All
we know is if an execution is deemed to be right or wrong. Where an
anomalous execution has diverged and how the mistake can be cor-
rected remains to be investigated. In the context of the aforementioned
mentor example, imagine our mentor simply proclaiming “Right!”
or “Wrong!” whenever we asked them for guidance in a particularly
tricky situation. This advice would not have been very helpful to us.

While process anomaly detection provides the benefit of not relying
on a predefined process model, it is lacking in the quality of its output
compared to conformance checking. To provide a solution that is
as easy to use as it is to ask your mentor for advice, the benefits
of process anomaly detection and conformance checking have to be
combined. Since process anomaly detection is applied without being
manually engineered to model the process logic, it has to provide
explanations to the analyst so its detection can be interpreted by
someone unfamiliar with the process. The concept of alignments
provides these explanations, but it is tightly coupled to the idea of a
process model serving as the definition of the normative behavior.

Inferring the normative behavior from the event log is beneficial for
several reasons: The issue of a process model possibly being outdated
is addressed by continuously updating the learned process logic based
on the incoming event data. Furthermore, the a priori knowledge
necessary to analyze a process is being reduced because the only input
to the algorithm is the event log. However, basing the analysis solely
on the event log also has a downside: Since no process model can
be utilized to explain detected anomalies, the algorithm now has to
provide both the anomaly detection and an explanation as to why this
anomaly has been detected.

Though alignments can be used to provide the explanations, they
were not compatible with process anomaly detection algorithms.
Hence, a new approach was necessary.

process anomaly correction In this thesis, a new approach is
proposed that combines the benefits of process anomaly detection and
conformance checking. It uses as input only the event log itself but
produces an output akin to alignments in conformance checking. The
technique is called process anomaly correction. Note that we use the term
correction in the sense of corrective suggestions and not in the sense
of triggering corrective actions since the process anomaly correction
approach generally works independent from the system running the
process. It is based on the application of a machine learning technique
that exploits the event log data structure to learn the underlying
business process, which in this thesis will be referred to as process
learning. Similar to how process mining can be seen as process-aware
data mining, process learning is process-aware machine learning. Process
learning operates on event logs and can exploit the assumption that

6 introduction

Process
Anomaly
Correction

Conformance
Checking

Process
Anomaly
Detection

Event
Log

Event
Log

Model

Anomaly
scores

Right/Wrong

Event
Log

Process
Model

Alignments

Threshold

Event
Log

Event
Log

Alignments

Process
Learning

State-of-the-art Contributions of this thesis

P1 / P2

P3 / P4

P5

Figure 1.2: Comparison of process anomaly detection, conformance checking, and
the proposed solution, process anomaly correction

the data found in the event log models an underlying process. Just
as the mentors who developed their mastery of the scientific paper
writing process by experiencing various scenarios, process learning can
be used to infer the process logic from an event log.

Figure 1.2 compares the two state-of-the-art approaches, process
anomaly detection and conformance checking on the left, with the pro-
posed approach process anomaly correction on the right. Conformance
checking, on the one hand, is based on an alignment function, α, that
compares an event log and a process model and produces the de-
sired alignments. Process anomaly detection, on the other hand, first
infers an internal model from the event log and then uses a scoring
function, σ, to assign an anomaly score to every case in the event
log based on its internal model. Secondly, the anomaly scores that
result from the scoring function have to be passed through a threshold
function, τ, that maps the anomaly scores to either 0 or 1. Note that
τ usually requires an input parameter setting the threshold value to
operate. This is another downside of most process anomaly detection
algorithms since the users need to provide the threshold themselves.
Setting the threshold to an appropriate value is challenging, especially
for someone not familiar with the process. Hence, a manual setting of
the threshold is best avoided.

Process anomaly correction is achieved in four steps. (1) The modeling
phase of the process anomaly detection algorithm is replaced by a
tailored process learning neural network architecture that is trained
on the event log to derive the process logic. The resulting process
learning model is subsequently used to parameterize the three functions
σ ′, τ ′, and α ′, which removes the necessity of human intervention.
(2) The scoring function σ is replaced by σ ′ to not only allow the
detection of anomalous cases (right vs. wrong), but also the detection
of anomalous events and the detection of anomalous event attributes
(e.g., the resource executing an event). (3) The threshold function
τ is replaced by τ ′, a novel heuristic that is parameterized by the

introduction 7

process learning model. (4) The alignment algorithm α is replaced by
a specialized function, α ′, that utilizes the process learning model to
analyze the event log and produce an alignment as the output.

results This cumulative dissertation contains five contributions to
the field of BPM that were published in conference proceedings and
scientific journals between 2016 and 2020. The publications build upon
each other and, as a collection, serve as evidence that process learning
is not only a viable base for state-of-the-art process anomaly detection
but further that fully autonomous process anomaly correction is possible.
Each individual publication addressed specific shortcomings of the
state-of-the-art at the time. The proposed solutions were evaluated
on both synthetic and real-world event logs. The results of these
evaluations demonstrated that process learning based solutions were
able to outperform the respective state-of-the-art approaches known
at the time. The individual contributions are positioned in Figure 1.2
(P1 to P5 in the red boxes) according to their scientific focus.

structure of this document This dissertation is structured
into two parts: Part I, the synopsis; and Part II, the cumulative part of
this thesis. Part I first introduces necessary concepts and terminology
and gives an overview of the development of the state-of-the-art (ex-
cluding the contributions presented in Part II) in Chapter 2. Chapter 3

elaborates on the five individual contributions of this thesis and how
they relate to each other. Part I closes with an overall conclusion as well
as an outlook on future work in Chapter 4. Part II is the cumulative
part of this thesis and contains the five publications in chronological
order and in their original published form (Chapters P1–P5).

2
S TAT E - O F - T H E - A RT

The concepts of process anomaly detection, conformance checking, and
process learning have already been introduced in the preceding chapter.
This chapter gives a summary of the essential contributions to the
fields of process anomaly detection and conformance checking. Further-
more, it outlines contributions to the field of BPM that base their
solutions on the concept of process learning and its related areas.

Note that this overview of the state-of-the-art omits the contributions
of this dissertation. The contributions of this thesis and how they
chronologically fit into the state-of-the-art will be presented in detail
in Chapter 3 and the individual publication chapters in Part II.

2.1 preliminaries

As already discussed in the introduction, the predominant data struc-
ture in process mining is the event log. It is also the basis for process
anomaly detection algorithms. An event log is a set of ordered se-
quences of events, called cases. The events in a case are ordered by a
timestamp that indicates when an event has been executed. What has
happened is described by the activity name of an event. In real-life
examples, event logs typically hold more auxiliary information about
the process, the cases, and the events. An example event log following
the paper writing and reviewing process from Figure 1.1 is shown in
Table 2.1.

In the process mining literature [2], the concept of different process
perspectives has been introduced. In [2], the authors distinguish be-
tween four different process perspectives: Control-flow perspective,
organizational perspective, time perspective, and data perspective.

The control-flow perspective is utilized to analyze the order in which
activities are executed. An incorrect order of activities is thus some-
thing that a process anomaly detection algorithm should detect. The
initial example of executing the activity Research Related Work too late
is an example of a control-flow anomaly.

The organizational perspective focuses on the structure of an orga-
nization running the process. Typically, this perspective is used to
analyze how different resources are utilized during the execution of
a process. The term resource can refer to employees of a company,
automated agents, or other intelligent systems. As a concrete example
in the scientific writing process from earlier, only a reviewer resource
is allowed to review a paper. If the author of a paper were to accept
his or her own paper, this would constitute an organizational anomaly.

9

10 state-of-the-art

Table 2.1: Example event log of the paper writing and reviewing process

Case Identifier Timestamp Activity Resource Conference

P3 2018-01-10 17:03 Identify Problem Author BPM’18

P3 2018-01-15 14:04 Research Related Work Author BPM’18

P3 2018-02-15 08:05 Develop Method Author BPM’18

P3 2018-03-01 02:09 Experiment Author BPM’18

P3 2018-03-15 18:08 Evaluate Author BPM’18

P3 2018-03-17 13:37 Conclude Author BPM’18

P3 2018-03-18 18:49 Submit Author BPM’18

P3 2018-05-01 10:00 Review Reviewer BPM’18

P3 2018-05-14 21:44 Final Decision Reviewer BPM’18

P4 2018-11-19 17:03 Identify Problem Author ISJ’19

P4 2018-11-24 14:04 Research Related Work Author ISJ’19

P4 2018-12-21 08:05 Develop Method Author ISJ’19

P4 2019-01-14 02:09 Experiment Author ISJ’19

P4 2019-01-25 18:08 Evaluate Author ISJ’19

P4 2019-02-01 13:37 Conclude Author ISJ’19

P4 2019-02-03 23:53 Submit Author ISJ’19

P4 2019-04-08 14:48 Review Reviewer ISJ’19

P4 2019-05-01 10:18 Minor Revision Reviewer ISJ’19

P4 2019-06-20 14:00 Revise Author ISJ’19

P4 2019-06-27 21:27 Submit Author ISJ’19

P4 2019-10-21 11:00 Final Decision Reviewer ISJ’19

The time perspective is adopted for analysis related to the time dimen-
sion of a process, such as lead times between two specific activities,
execution durations of single activities, or deadlines that must not be
exceeded. For example, any paper that is submitted after the deadline
should be rejected immediately.

Lastly, the data perspective is used to inspect miscellaneous event and
case attributes that do not fit the other perspectives. For example, a
paper can be published at a certain conference. This information can
be included in the event log as a case attribute since its value will
not change for the different events within this case. Conversely, the
type of study that has been conducted can be included as an event
attribute, since it only relates to the Conduct Study activity. An anomaly
connected to the data perspective is, for instance, if a study paper is
accepted at a conference that only accepts proof papers.

As we have seen, anomalies can occur in all of these perspectives,
and hence it is important for a process anomaly detection algorithm
to support the different perspectives. A process anomaly detection
algorithm that can detect anomalies across multiple perspectives is
thus referred to be a multi-perspective algorithm.

In process anomaly detection research, the organizational and the time
perspective are often regarded to be part of the data perspective since
they indeed are just event attributes, albeit special ones. Most process
anomaly detection approaches are not opinionated with respect to the

2.2 process anomaly detection 11

event attributes, and thus no special meaning is connected to these
attributes. Instead, this meaning is inferred from the patterns in the
data. Hence, we typically include these attributes as part of the data
perspective, without specifically referring to the organizational or the
time perspective.

An important aspect of dealing with real-life event logs is that they
cannot be expected to be free of anomalies. After all, the anomalies
we are trying to detect occur during the real execution of the process,
and therefore will be contained in the logs. An event log containing
anomalies is typically called a noisy event log.

2.2 process anomaly detection

Process anomaly detection was introduced by van der Aalst et al. in
2005 [3]. Interestingly, the authors also proposed the idea of confor-
mance checking in their paper from 2005 [3]. Back then, the two ap-
proaches were not clearly distinguishable yet. Though both approaches
have their roots in the same place, they developed in different direc-
tions over time. Let us first take a look at the original publication that
started both disciplines.

workflow nets The concept of detecting anomalous process
executions was first coined by van der Aalst and Medeiros in 2005 [3].
In their paper, they propose the concept of modeling the logic of a
process using workflow nets, a special version of Petri nets. A workflow
net is a directed graph, consisting of transitions and places (both are
nodes in the graph), in which a transition can only be connected to
places, and a place can only be connected to transitions. Transitions can
only be fired if all incoming places are active, indicated by at least one
token occupying the place. Given an initial marking (mapping of tokens
to places in the workflow net), a correct sequence of transitions will
result in a final marking where only a defined set of places contains
tokens. Any incorrect sequence will lead to a deadlock in the workflow
net, that is, no transition can fire but the final marking has not been
reached.

To detect an anomaly in a sequence of events, the sequence is
transformed into a sequence of transitions in the workflow net, and
the transitions are successively fired. If the workflow net does not
reach the final marking, the sequence is regarded as anomalous. They
refer to this process as “playing the token-game”. Van der Aalst and
Medeiros base their solution on the existence of such a workflow net.
If no workflow net is available, they suggest using process discovery
algorithms which, given an event log, can produce a process model
in the form of a workflow net. However, the discovery algorithm they
suggested in their paper (at the time) required a noise-free event log

12 state-of-the-art

to generate an appropriate process model, which cannot be assumed
to be available.

handling noisy event logs Three years later, in 2008, pro-
cess anomaly detection was picked up again by Bezerra and Wainer.
They had identified the issue of relying on a noise-free event log and
proposed three different solutions throughout 2008 and 2009 [6–9]
that did not rely on a noise-free event log. The three methods are
based on a discovery algorithm that can handle noisy event logs and
a metric to quantify how different an anomalous execution is from the
behavior in the discovered process model (conformance score). The
three approaches differ in the way the event log is used in the process
discovery algorithm.

In their Threshold algorithm, the authors iterate over all cases in the
log and if a case has a frequency of less than 2 percent in the log, they
remove the case from the log. After each removal of an infrequent case,
they apply the discovery algorithm on all remaining cases to generate
a process model. If the conformance score between the filtered log
and the resulting process model is below a conformance threshold,
the case is regarded to be anomalous. The iteration over all cases is
then continued until all cases have been processed. In their Iterative
algorithm, instead of removing all infrequent cases in one iteration,
they opt to only remove the case with the lowest conformance score
in each iteration. They still only consider cases that have a frequency
of less than 2 percent as potential anomalies. Lastly, in their Sampling
algorithm, for each case that is below the 2 percent threshold, they
sample a fixed percentage of cases from the whole log and discover
a process model based on the sample. If the case in question is not
an instance of the resulting process model, the case is regarded to
be anomalous. The rationale behind the sampling approach is that if
the case under inspection is normal, it should also be included in a
representative sample of the entire log since anomalies are assumed
to be rare.

All three approaches have in common that they rely on the definition
of a threshold to indicate when a conformance score is low enough to
indicate an anomaly. This threshold depends on the event log itself and
must be fine-tuned to ensure proper operation. In their papers, they
have set this threshold to a fixed value across all their experiments.
Additionally, only the control-flow perspective is being addressed by
Bezerra and Wainer. All three approaches will detect anomalies on the
case level. The whole case is classified as either normal or anomalous.
Localization of the event where the case diverged is thus not possible.
Nevertheless, process anomaly detection had now, for the first time,
been able to deal with noisy event logs.

2.2 process anomaly detection 13

likelihood graphs In 2016, Böhmer and Rinderle-Ma proposed
the first solution incorporating multiple perspectives (control-flow,
and data perspective) [10]. The key idea behind their algorithm is a
probabilistic model which they refer to as a likelihood graph. A likeli-
hood graph is computed by calculating pairwise probabilities between
all possible combinations of activities based on their frequency in the
event log. Afterwards, the likelihood graph is extended by calculating
the probabilities of event attribute values co-occurring with a specific
activity and annotating the activities with the respective probabili-
ties. The extended likelihood is then used to identify anomalies by
computing the probability of a new case under the likelihood graph.
Any case that has a lower probability than any of the cases in the
original log, is regarded as anomalous. A novel aspect of Böhmer’s
and Rinderle-Ma’s work is how they deal with unseen data (event se-
quences that were not part of the original dataset used to calculate the
likelihood graph). Instead of regarding the appearance of a new event
sequence as anomalous, they estimate its probability by mapping it to
the closest known sequence through the process, which reduces the
number of false-positive alarms in the later detection phase.

Every case in the original log is considered to be normal by defi-
nition, and hence this approach is not applicable to noisy event logs.
Again, like the approaches of Bezerra and Waidner, the approach of
Böhmer and Rinderle-Ma detects anomalies based on the case level,
which does not allow for localizing the point of divergence. This was
the first publication on multi-perspective process anomaly detection.

association rules Böhmer and Rinderle-Ma have proposed a
different approach in 2018 [11, 13] that allows to analyze the detected
anomalies further. Instead of relying on a likelihood graph, they opt
for use of association rule mining to model the process behavior. As-
sociation rule mining is used to identify interesting relations between
different events and their attributes. In a first step, a set of associa-
tion rules is generated from the event log such that each case in the
log is supported by these rules. To identify anomalies, new cases are
compared to all cases in the original log and the most similar case
with respect to the control-flow is returned. The rules associated with
the most similar case are applied to the case under inspection and if
the support for the case under inspection (i.e., the number of rules
supporting the case) is lower than the support for the most similar
case, it is regarded as anomalous.

This approach has the benefit of providing explanations of why a
certain case is anomalous since the rules that are not supported by the
case provide an indication. However, the rules still have to be analyzed
by someone familiar with the process to find the point of divergence.
The detection itself only indicates whether a case is anomalous or

14 state-of-the-art

not. Similar to their approach from 2016 [10], this method relies on a
noise-free event log to generate the association rules.

dynamic bayesian networks In 2019, Pauwels and Calders
proposed their solution based on extended dynamic Bayesian net-
works [40, 41]. Bayesian networks provide the benefit of modeling the
probability of unseen data through Bayesian logic while providing
the benefit of being applicable to noisy event logs. Though dynamic
Bayesian networks existed before, they were not applicable to sequen-
tial data. Pauwels and Calders addressed this problem by introducing
the concept of a k-contextlog. A k-contextlog is similar to an event
log, but each event holds information (context) about the k events
that preceded it. By incorporating the context, Pauwels and Calders
were able to extend the dynamic Bayesian network to model the time
dimension.

Böhmer’s and Rinderle-Ma’s approach also deals with unseen values
but it relies on a noise-free dataset to achieve it. Pauwels’ and Calders’
approach removes this restriction and is applicable to noisy event logs,
while still providing the benefit of handling unseen values in the event
log. However, though their solution relies on the setting of a threshold,
they provide no solution to this problem.

shortcomings All aforementioned methods have in common that
they rely on the definition of a threshold to distinguish anomalous
from normal behavior. This means that the user has to define the
anomaly, which requires knowledge about the process in the first
place. Automatically defining the threshold based on the data itself,
removing the need for manual intervention, would thus reduce the
amount of a priori knowledge necessary to use the algorithm.

Although some of the approaches utilize multiple perspectives to
model the process behavior, they do not incorporate them in the pre-
sentation of the results. Yet, information about where the divergence
occurred, whether it is connected to the control-flow or the data per-
spective, as well as, what was the expected behavior, is important to
identify the source of the anomalies, to isolate them, and to initiate
timely countermeasures.

If someone was confronted with the picture of a case and a label
deeming it to be incorrect, a natural question that arises is “Where
exactly is the problem?”. Even if they were provided with a clear
indication of where the anomaly occurred, someone unfamiliar with
the process will likely ask “Ok, but why is it anomalous?” or “What
should have been done instead?”. Answering these questions with
current process anomaly detection algorithms is still challenging.

2.3 conformance checking 15

2.3 conformance checking

The term conformance checking was used multiple times already. This
section shall give a brief introduction to the core concepts and how
they relate to process anomaly detection.

Conformance checking can be utilized to relate the behavior found
inside an event log to the behavior as defined by a predefined process
model [43]. Single cases of an event log can be checked for their
conformance with the process model. Similarly, the conformance of a
process model with an entire event log can be calculated. While the
initial focus of conformance checking had been to calculate the overall
conformance between event logs and process models, the focus has
later shifted towards a more detailed analysis of single cases.

alignments After van der Aalst and Medeiros had pioneered the
concepts of process anomaly detection and conformance checking in
2005 [3], conformance checking has seen a series of improvements.
Especially, the concept of alignments has stood the test of time. In
2010, Bose and van der Aalst proposed the use of sequence alignment
algorithms to relate the behavior of a single case to the behavior
of an entire event log. The idea of alignments was borrowed from
the field of bioinformatics where different DNA sequences are being
compared following the same principle. An alignment is a mapping of
one sequence onto another, indicating which parts of the first sequence
have to be altered to align it with the second one. Alignments have the
benefit that they provide the necessary context to understand where a
sequence is diverging, why it is diverging, and how a corresponding
correct sequence ought to look.

Later, in 2013, Adriansyah, van Dongen, and van der Aalst expanded
this idea to relate single cases to process models [4]. Now, this concept
could be applied to visualize exactly which parts of a case were in
alignment with the process and which parts were not. Furthermore,
the resulting alignment relates the case to the most similar conforming
path through the process model, thereby correcting it. However, this
approach considers only the control-flow perspective when calculating
the most similar path through the process.

multi-perspective conformance checking De Leoni and
van der Aalst addressed this caveat later that year [28, 29], demon-
strating that a data-aware conformance checking algorithm based on
multi-perspective alignments is possible, albeit under the assumption
that the cardinality of the event attributes is very low. Mannhardt et al.
have rectified this shortcoming in 2015 [31], demonstrating that the
requirement of low cardinality event attributes can be eliminated and,
indeed, large-scale multi-perspective conformance checking is feasible.

16 state-of-the-art

To achieve multi-perspective conformance checking, the user is
required to manually encode the process logic regarding the other
perspectives (control-flow is already included in the process model)
in forms of a ruleset, so that the conformance checking algorithm
can check the event logs for conformance with the respective rules.
To create this ruleset, a deep understanding of the process logic is
required. Not every user of such algorithms can be expected to be an
expert in the process they analyze.

Another approach to multi-perspective conformance checking is to
encode the information of the data perspective in the names of the
events, e.g., by clustering them. In 2014, Weber et al. proposed Process
Oriented Dependability (POD) Discovery [49], a process discovery
technique that incorporates information from the data perspective
through a clustering algorithm. It was specifically targeted at discover-
ing process models from low-level system log files coming from cloud
applications.

Since the resulting process model holds the information about the
data perspective in the event names, classical conformance checking
can be used to identify errors in the system logs, as shown by Xu et al.
in 2015 [47, 50, 51]. The result of classical conformance checking only
provides information about the control-flow, so the authors investigate
the root causes of a detected error by assertion evaluation of prede-
fined rules. Xu et al. later, in 2016, showed that similar techniques
can be utilized to trigger corrective actions to counteract detected
errors [22]. In the same context of system error diagnosis, Farshchi
et al. used statistical regression analysis on these process models to
detect correlations between different activities, and hence provide root
cause analysis for system errors [20, 21]. However, this technique only
considers pairwise correlations between activities and not the full
context of a sequence of events.

online conformance checking In 2015, Weber et al. intro-
duced the concept of online conformance checking to the BPM com-
munity [48]. As opposed to classical conformance checking which
is typically an a posteriori analysis, errors in sporadic operations on
cloud applications have to be detected timely to counteract downtimes
of critical services. Instead of analyzing event logs, they propose the
use of event streams. Another contribution of this work is the intro-
duction of automated post-processing steps after the conformance
checking to detect numerical invariants (based on a predefined spec-
ification) and time anomalies (inferring anomaly intervals directly
from the event stream). Though time anomaly intervals are derived
automatically, numerical invariants still have to be specified manually.

shortcomings Conformance checking, as proposed in the works
discussed, has two downsides. It relies on the existence of a predefined

2.4 towards process learning 17

process model that captures the control-flow perspective of the process,
and it relies on the manual definition of a ruleset (e.g., reviewer
must take final decision) to account for the data perspective. Both the
process model and the ruleset require diligent maintenance throughout
the lifetime of a process, which often is too expensive to uphold.
Nevertheless, conformance checking provides the benefit of generating
explanations for divergences. The level of detail with which cases can
be aligned to a process model, as well as the possibility of correcting
the case, seem to be characteristics that process anomaly detection
could benefit from.

2.4 towards process learning

The goal of the proposed process anomaly correction approach is to
provide insights to divergences from the process without the need
to manually define the process logic in the form of process model or
similar structures. In essence, the machine needs to learn the concept
behind the process itself by exploiting patterns in the data. Machine
learning, and especially deep learning [27], has become an integral
part of many areas where similar problems were faced, such as natural
language processing. It has been shown that deep learning could
consistently reach state-of-the-art performance in language tasks, at
times even surpassing it, without being specifically programmed [5,
16, 42, 46].

The structure of natural language holds some similarities to the
structure of event logs. Just as natural language consists of sentences
and words, following a certain grammar to make sense, an event log
consists of cases and events, following the process logic to make sense.
Naturally, deep neural networks should be an excellent choice to learn
the underlying business process from the examples in an event log.

In 2018, Klinkmüller, van Beest, and Weber showed that predictive
process monitoring algorithms that disregard the sequentiality of pro-
cess data, which they call local algorithms, tend to make unjustified
predictions [26]. Instead, global algorithms should be applied that
consider the event sequences as a whole. The deep neural networks
employed in natural language processing consider the sentences as
sequences of words, and do not operate on individual words in isola-
tion. Hence, they can be seen as global algorithms (according to the
definition from [26]).

The first publication applying deep learning techniques to event
logs is from 2016 [18]. Evermann, Rehse, and Fettke demonstrate that
long short-term memory networks [24], a special kind of recurrent
neural networks, can be utilized to predict the final state of a running
business process, its remaining time to completion, as well as the most
likely next event. The same authors corroborated the applicability
of their approach presented in [18] with an elaborate evaluation in

18 state-of-the-art

2017 [19]. Tax et al. followed their example, also in 2017 [45], providing
an elaborate evaluation of deep neural networks on the task of next
event prediction. Di Francescomarino et al., later in 2017, expanded
this idea by incorporating domain knowledge to enhance the quality
of the predictions [17]. The task of next event prediction has since
been researched rather frequently [14, 30, 32, 33, 39].

As we have seen, important work has been published on the task of
next event prediction. Yet, to the best of our knowledge, none of the
concepts has been applied to process anomaly detection, despite the
tasks being connected. To be able to accurately predict the next event,
the neural network requires a deep understanding of the underlying
process. If the actual next event in a case does not match the predictions
of a next event prediction model, it can be regarded as anomalous. This
concept serves as the basis for the work on BINet in Publications P3

and P4.

2.5 shortcomings of process anomaly detection

Process anomaly detection, unlike conformance checking, is lacking
the ability to provide explanations for identified anomalies. Namely
the detection resolution of a process anomaly detection algorithm
should cover not only the case dimension but also the event and at-
tribute dimensions of an event log. Lower-level detection is an essential
aspect of being able to suggest a possible correction of an anomalous
case.

A key requirement for process anomaly detection is that no a priori
knowledge about the process is necessary for it to operate. The un-
derstanding of the process behavior must be inferred from an event
log. Furthermore, the event log cannot be assumed to only contain
normal process behavior. Anomalies are naturally contained in it. An
event log holds data about the control-flow perspective of a process,
as well as, information about the data perspective. Attributes from
the data perspective are usually either categorical or numerical in na-
ture. To properly model the underlying process, an anomaly detection
algorithm should cover these perspectives.

The requirement of not relying on a priori knowledge about the
process can be extended to include the user of the algorithm itself.
No assumption should be made about the expertise of the user with
regard to the process. Hence, auto-parameterization is essential. Pro-
cess anomaly detection lends itself to autonomous operation, but this
requires an automatic parameterization of the thresholds that the
algorithms rely on.

Table 2.2 summarizes the state-of-the-art related to process anomaly
detection as described before and highlights the novelties of the indi-
vidual contributions. Note that the last five columns of Table 2.2 do not
contain any check marks and indicate five areas for improvement. We

2.5 shortcomings of process anomaly detection 19

Table 2.2: Summary of the state-of-the-art with respect to desirable features;
novelties to the state-of-the-art (omitting the contributions of this
work) are highlighted in red

Aalst Bezerra Böhmer Böhmer Pauwels
2005 2009 2016 2018 2019

[3] [6–9] [10] [11, 13] [40, 41]

Method
Process

Discovery
Process

Discovery
Probabilistic

Model
Association

Rules

Dynamic
Bayesian
Networks

No a priori knowledge 3 3 3 3

Noisy event logs 3 3

Control-flow perspective 3 3 3 3 3

Data perspective (cat.) 3 3 3

Data perspective (num.) 3 3

Case-level detection 3 3 3 3 3

Event-level detection
Attribute-level detection

Auto-parameterization
Classification

Correction

can see that none of these algorithms supports multiple perspectives
in the detection result. Furthermore, none of the approaches provides
an auto-parameterization solution. In every method, parameters have
to be defined and fine-tuned to ensure good results. These are sig-
nificant shortcomings of process anomaly detection that, so far, have
not been sufficiently addressed. Lastly, the concept of alignments and
corrective functionality has not yet been incorporated into process
anomaly detection, as it has been done for conformance checking.

Conformance checking has addressed these issues by incorporating
a predefined process model. To provide the same functionality without
relying on such a predefined process model, these five issues needed to
be addressed. The contributions of this dissertation demonstrate how
process anomaly detection can gradually be transformed into process
anomaly correction, by iteratively addressing the five aforementioned
issues.

These five open issues are connected to the four steps from the
introduction section (see Figure 1.2) in the following way: (1) Process
anomaly correction employs the concept of process learning to learn the
business process from the event log. (2) This model is the basis to
provide event and case level detection capabilities, for process learning
does not regard a case of an event log as a single unit, but rather as a
sequence of events and their corresponding attributes . (3) The first step
is also essential to automatically parameterize the necessary threshold
function because the process learning model, being a probabilistic
model, encapsulates information about the distribution of normal
and anomalous cases in the event log. (4) Lastly, classification and
correction can be realized by exploiting the predictive capabilities of
the process learning model.

3
C O N T R I B U T I O N S

In Chapter 2 we saw that to combine the benefits of conformance
checking and process anomaly detection, a new method was necessary.
We identified five areas of improvement in state-of-the-art process
anomaly detection. To improve upon these areas, this thesis addresses
three research questions (RQ1–RQ3). Figure 3.1 shows the current state-
of-the-art, as outlined in the introduction, and positions the respective
research questions. The three research questions are formulated as
follows:

RQ1 How can process anomaly detection provide more detailed results that
allow pinpointing anomalies according to the different process perspec-
tives?

To combine the benefits of conformance checking and process
anomaly detection, it is necessary that the anomalies can be
detected on a more granular level. If the detection is based on
entire cases of an event log, the detected anomaly cannot be
corrected on a lower level. Hence, event-level and attribute-level
detection is necessary.

Publication P1 (conference paper) and P2 (extended journal
article) address RQ1.

RQ2 How can process anomaly detection be automatically parameterized,
without relying on external input?

Most conformance checking approaches do not rely on external
input to operate. To provide the same experience with a pro-
cess anomaly detection algorithm, automatic parameterization
is necessary.

Publication P3 (conference paper) and P4 (extended journal
article) address RQ2.

RQ3 How can the concept of alignments from conformance checking be
transferred to process anomaly detection in order to provide process
anomaly correction?

To transfer the concept of alignments from conformance check-
ing, where cases of an event log are aligned with a process model,
a new method is necessary that aligns cases of event logs with a
process learning model.

Publication P5 (conference paper) addresses RQ3.

The following sections are dedicated to the three research questions
and how the five individual publications relate to them. In Section 3.1,

21

22 contributions

Conformance
Checking

Process
Anomaly
Detection

Event
Log

Event
Log

Model

Anomaly
scores

Right/Wrong

Event
Log

Process
Model

Alignments

Threshold

RQ1

RQ2

RQ3

Figure 3.1: Current state-of-the-art (left part of Figure 1.2 from the introduc-
tion) and how the three research questions relate to it

two publications on the application of denoising autoencoders are
presented. It is demonstrated how they can be employed to first
learn processes from event logs, and secondly how multi-perspective
detection can be realized. Section 3.2 summarizes our two publications
on recurrent neural networks and how their predictive capabilities
can be utilized for automatic parameterization, as well as anomaly
classification. Section 3.3 is dedicated to alignments and how they can
be obtained from the recurrent neural networks. This chapter closes
with a short summary in Section 3.4.

3.1 rq1 : providing multi-perspective detection

With the first two publications, P1 and P2, we focused on RQ1. To work
towards RQ1, the way in which process anomaly detection algorithms
had been modeling the process based on the event log had to be
improved. Denoising autoencoders (DAE) are commonly utilized for
classic anomaly detection tasks (see [23, 25]).

An autoencoder is a neural network that is trained to predict its
own input. Since the input and the expected output of the autoencoder
are the same, an autoencoder could simply learn the identity function
and thus would not learn anything reasonable. Two techniques are
commonly employed to guarantee that the autoencoder does not learn
the identity function. The first one is to limit the number of available
neurons within a central layer of the neural network. This limitation
of capacity creates a bottleneck that forces the autoencoder to encode
(as in lossy compression) the input so that the original sequence can
still be reproduced (decoded) from it.

The second technique to suppress the learning of the identity func-
tion is to not give the autoencoder access to the original input but,
instead, to an altered version of it. A typical alteration is the addition
of Gaussian noise to the input. Since the input now differs from the

3.1 rq1 : providing multi-perspective detection 23

expected output, the autoencoder cannot learn the identity function.
The addition of noise to the input of an autoencoder transforms the
task into a denoising task, and hence these autoencoders were given the
name denoising autoencoders.

Based on the assumption that anomalous cases in the event log are
outnumbered by normal cases, the hypothesis is that the autoencoder
will learn to correctly reproduce the normal cases while ignoring the
anomalous ones. Any case where the mean absolute error between
the original input of the autoencoder (without noise) and its output
exceeds a threshold is regarded to be anomalous.

However, autoencoders were not directly applicable to sequential
process data. Moreover, as most anomaly detection methods did,
they treated the task as a binary classification problem (normal vs.
anomalous). To address RQ1, we had to extend the idea of denoising
autoencoders to fit the sequential nature of process data.

3.1.1 Unsupervised Anomaly Detection in Noisy Business Process Event
Logs Using Denoising Autoencoders

In this work, we demonstrated that denoising autoencoders can be
extended to learn sequences of events coming from a noisy event log
by transforming the event log into a 2-dimensional tensor. Even if not
all cases have the same length, they can be fit into a 2-dimensional
tensor by padding shorter sequences with zeros.

We also showed that both the input and the output of the autoen-
coder can be split up along the time dimension of the original se-
quence, and hence the error can be computed for individual events of
a case, rather than the whole case at once. This novelty to autoencoders
addressed RQ1 regarding the control-flow perspective.

Publication: This section summarized our work on denoising
autoencoders from 2016 [36]. The complete publication can be
found in Part II as Publication P1.

Contribution statement: I led the idea generation, implemented
the prototype, performed the data evaluation, and formulated
the manuscript. Alexander Seeliger and Max Mühlhäuser con-
tributed to the conceptual design and the writing process.

3.1.2 Analyzing Business Process Anomalies Using Autoencoders

The previous work on denoising autoencoders had demonstrated that
event level process anomaly detection was possible. In this paper, we
extend this idea to provide detection on event attribute level, incorpo-
rating the data perspective. Instead of splitting the inputs and outputs
of the autoencoder only along the time dimension, additional dimen-
sions can be added to facilitate the inclusion of the event attributes.

24 contributions

This novel way of detecting the anomalies allowed for faster insights
on which attribute might be driving the anomaly. Altogether, we
provided attribute-level process anomaly detection, answering RQ1.

To demonstrate the significance in detection quality, we conducted
a comprehensive evaluation of state-of-the-art anomaly detection tech-
niques for discrete sequences, including all process anomaly detection
algorithms known to us at the time. By evaluating the performance of
all approaches on an elaborate data corpus of 600 synthetic and 100

real-life event logs, we corroborated our preliminary results from 2016.
The denoising autoencoder approach outperformed all other methods.

As a contribution to the community, we published the source code
of all algorithms, the generation algorithm, as well as all datasets used
in the evaluation to serve as a process anomaly detection benchmark
to future research.

Publication: This section summarized our extension to the pre-
vious publication in 2018 [34]. The complete publication can be
found in Part II as Publication P2.

Contribution statement: I led the idea generation, implemented
the prototype, performed the data evaluation, and formulated
the manuscript. Stefan Luettgen, Alexander Seeliger, and Max
Mühlhäuser contributed to the conceptual design and the writ-
ing process.

3.1.3 Discussion

Our work on denoising autoencoders for process anomaly detection
addressed RQ1. To provide event and attribute-level detection, our
solution relies on a new thresholding function that allows to set
thresholds for events and attributes separately. This new thresholding
function provides the base to work towards RQ2 because it can be
automatically parameterized by the process learning model, as we
will see in the next section. Figure 3.2 shows the process anomaly
detection architecture after the two contributions, P1 and P2. The
underlying process is approximated through process learning. The
resulting process learning model is used by the scoring function σ ′

to analyze event logs on the event and attribute levels. Thus, RQ1 is
answered.

3.2 rq2 : providing automatic parameterization

The following two publications, P3 and P4, focused on RQ2, and partly
on RQ3. Our research on denoising autoencoders had shown that a
global threshold is not sufficient to accurately detect anomalies on
event and attribute level. To automatically parameterize the threshold
function and address RQ2, the predictive capabilities of the process

3.2 rq2 : providing automatic parameterization 25

Event/Attribute-level
Anomaly scores

Event/Attribute-level
Right/Wrong

Threshold

Process
Anomaly
Detection

Event
Log

Event
Log

DAE P1 / P2

Figure 3.2: Process anomaly detection architecture including the contribu-
tions of P1 and P2

learning model can be utilized. Therefore, no global threshold is used
but instead, a dynamic threshold is derived for each case in the event
log based on the predictions (and their corresponding probabilities)
of the process learning model. To provide the necessary predictive
capabilities, the denoising autoencoder approach was improved by
introducing a recurrent neural network architecture.

We had already hinted at the possibility of basing process anomaly
detection on a recurrent neural network in the discussion of our
paper from 2016. The reasoning behind this idea is that a recurrent
neural network is better suited to process sequential data since it
is equipped with an internal memory that allows it to remember
important events while ignoring others. Coincidentally, the work on
next event prediction [18, 19, 45], as outlined in Chapter 2, had already
demonstrated the benefits of utilizing recurrent neural networks in
the context of BPM.

The problem of next event prediction can be restated to fit our
definition of a process anomaly detection algorithm since divergence
from the predicted next event can be seen as a strong indicator for
an anomaly. Not only do recurrent neural networks aid the auto-
parameterization of the threshold, but they also bring us one step
closer to answering RQ3 because they provide the necessary predictive
capabilities to correct a detected anomaly.

3.2.1 BINet: Multivariate Business Process Anomaly Detection Using Deep
Learning

In this paper, we proposed a novel neural network architecture that
was tailored towards the structure of event logs. The neural network
architecture was named BINet (business intelligence network). As

26 contributions

indicated before, it was based on a long short-term memory [24]
network and was trained on the task of next event prediction. In
comparison to existing next event prediction solutions, BINet featured
a specialized structure to incorporate the data perspective in the
learning process. To the best of our knowledge, BINet was the first
contribution to utilize recurrent neural networks for the purposes of
process anomaly detection.

To detect anomalies, BINet assigns anomaly scores to every attribute
in every event, based on the probability of the respective attribute
occurring in the next event in the case. Anomaly scores are normal
practice when it comes to anomaly detection algorithms. However, one
must still define a threshold to define whether an anomaly score is
high enough to indicate an anomaly. Within this paper, we proposed
the use of the elbow heuristic to mimic the human intuition when as-
signing a threshold manually (e.g., by moving slider in a graphical
user interface). We demonstrated that this heuristic outperforms exist-
ing state-of-the-art approaches. Furthermore, we demonstrated that
the same heuristic can be applied to other process anomaly detection
algorithms, namely Bezerra’s and Böhmer’s approaches. Replacing the
existing threshold heuristics in these two methods resulted in much
better performance of the algorithms compared to their non-optimized
versions.

Finally, we evaluated BINet against state-of-the-art approaches, in-
cluding the optimized versions of Böhmer and Bezerra, and our own
denoising autoencoder approach. The results showed that BINet out-
performed all other approaches. Especially compared to our denoising
autoencoder solution, BINet reached significantly better results by
exploiting the time dependencies in the data.

Publication: This section summarized our work on the applica-
tion of recurrent neural networks for process anomaly detection,
called BINet, from 2018 [37]. The complete publication can be
found in Part II as Publication P3.

Contribution statement: I led the idea generation, implemented
the prototype, performed the data evaluation, and formulated
the manuscript. Alexander Seeliger and Max Mühlhäuser con-
tributed to the conceptual design and the writing process.

3.2.2 BINet: Multi-perspective Business Process Anomaly Classification

In this paper, we extended our work on BINet from 2018. We demon-
strated that utilizing the predictive capabilities of BINet, a simple
rule-based classifier can be constructed to identify different types of
anomalies, such as rework, late execution, or early execution. Moreover,
we optimized the BINet neural architecture with respect to compu-
tational efficiency and proposed three different versions of it. These

3.3 rq3 : bringing alignments to process anomaly detection 27

versions differ in the data dependencies they can model, namely: no
dependencies (only the control-flow is used), dependencies between
the event activity and event attributes (e.g., a review must be done
by a reviewer), dependencies between event attributes (e.g., reviewer
1 always works Sundays). Further, we refined the threshold heuris-
tics from the previous publication, and introduced the lowest-plateau
heuristic to more closely mimic human intuition.

This publication addresses a part of RQ3 since it provides anomaly
classifications. To our knowledge, no other process anomaly detection
algorithm had incorporated anomaly classification.

Publication: This section summarized our extension on the
work on BINet from 2019 [35]. The complete publication can be
found in Part II as Publication P4.

Contribution statement: I led the idea generation, implemented
the prototype, performed the data evaluation, and formulated
the manuscript. Stefan Luettgen, Alexander Seeliger, and Max
Mühlhäuser contributed to the conceptual design and the writ-
ing process.

3.2.3 Discussion

The BINet architecture had significantly improved the quality of the
results compared to other process anomaly detection algorithms. Addi-
tionally, the predictive capabilities of the approach proved to be a solid
foundation for an anomaly classifier. The introduction of the elbow
heuristic and its extension, the lowest plateau heuristic, allowed for
anomaly score based anomaly detection algorithms to be transformed
into auto-parameterized algorithms. With our work on BINet, we an-
swered RQ2 and made significant progress towards RQ3. Figure 3.3
shows how P3 and P4 contributed to the process anomaly detection
architecture, now providing process anomaly classification.

3.3 rq3 : bringing alignments to process anomaly detec-
tion

To be able to correct detected anomalies and thus answer RQ3, the
learned process model, as approximated by BINet as explained above,
had to be made accessible. Similar to how alignments in conformance
checking indicate skipped and incorrect events, BINet had to be uti-
lized to alter sequences of events by removing unnecessary events and
adding skipped events.

In natural language processing, recurrent neural networks are often
utilized to generate parts of or even full sentences. Given the begin-
ning of a sentence, a language model, approximated by a recurrent
neural network, can generate, word for word, a meaningful contin-

28 contributions

Process
Anomaly
Classification

Event
Log

Event
Log

Anomaly Type
Classification

BINet

P3 / P4

Figure 3.3: Process anomaly classification architecture after the addition of
BINet from P3 and P4

uation of the sentence. Furthermore, a special case of this problem
had been addressed by Sun et al. in 2017 [44]. Instead of generating
the continuation until the end of a sentence, they proposed a problem
in which a gap in an existing sentence had to be filled with a mean-
ingful continuation, satisfying both the beginning and the end of the
sentence. They based their solution on two separate neural networks,
one reading sentences from the left, and another reading sentences
from the right. A bidirectional beam search can then be employed to
generate sentences that fit the gaps from both sides.

To correct an anomalous case in which certain events are missing,
this method seemed promising. However, we had to generalize the
problem from one single gap to an arbitrary number of gaps in the
sequence. Moreover, we also needed to be able to remove incorrect
events when encountering them, which was not part of the original
solution in [44].

To answer the final research question RQ3, we had to develop a new
method, following the example of Sun et al. [44], that supports the
BINet recurrent architecture, incorporates the data perspective which
does not exist in natural language, and alters the algorithm to allow
for arbitrary numbers of gaps, as well as the removal of incorrect
events from the sequence.

3.3.1 DeepAlign: Alignment-based Process Anomaly Correction Using
Recurrent Neural Networks

In this paper, we introduced the concept of aligning a case with a
process model, approximated by two separate BINet models, one
reading cases left-to-right, and one reading right-to-left, to the field
of process anomaly detection. Although bidirectional beam search

3.3 rq3 : bringing alignments to process anomaly detection 29

was an existing technique, the application to generate alignments in
process anomaly detection was novel to the field.

DeepAlign, as we named it, is based on two identical but separate
BINet models. One is processing the cases from the left (forward),
while the other is processing them from the right (backward). Both of
them are trained on the task of next event prediction. BINet can be
utilized to calculate the probability of an event given a sequence of
preceding events. By iteratively calculating probabilities, the individ-
ual probability for each event in a sequence can be computed. These
probabilities are computed both for the forward BINet and the back-
ward BINet and are subsequently combined into a joint probability
for each event in the case.

To find the best alterations to a sequence, all possible single op-
eration alterations are calculated, namely deletion, insertion (of any
activity at any position), or leaving the sequence as is. The altered
sequences are ranked by their respective probability according to both
BINet models. Only the top-k sequences are selected and used for
the next iteration. This procedure is repeated until convergence, that
is, when no alteration to the top-k resulting sequences would yield
a higher probability. We demonstrated that the resulting sequence
of alterations to the original case can be transformed into a valid
alignment as defined in [12].

Comparing the performance of the DeepAlign algorithm to state-of-
the-art conformance checking methods based on alignments showed
that DeepAlign is able to outperform existing approaches both in the
control-flow perspective as well as in the data perspective.

Lastly, we showed that the DeepAlign algorithm can be utilized to
generate cases according to the rules of the process from scratch by
starting from an empty sequence. Depending on the case attribute val-
ues, different sequences resulted from the algorithm. In the context of
the scientific paper writing and reviewing process from the introduc-
tion, setting a case attribute publication type to conference would result
in a different sequence than setting it to journal because the review
process for a journal submission is different from the review process
for a conference submission. This fact suggests that BINet had success-
fully learned the impact of the case attributes on the corresponding
control-flow sequences.

Publication: This section summarized our work on the appli-
cation of bidirectional beam search to produce alignments for
process anomaly correction from 2020 [38]. The complete publi-
cation can be found in Part II as Publication P5.

Contribution statement: I led the idea generation, implemented
the prototype, performed the data evaluation, and formulated
the manuscript. Alexander Seeliger, Nils Thoma, and Max Mühl-

30 contributions

Process
Anomaly
Correction

Event
Log

Event
Log

Alignments

BINetBINet

P5

Figure 3.4: Process anomaly correction architecture after the addition of
DeepAlign from P5; this architecture corresponds to the right side
of Figure 1.2 from the introduction

häuser contributed to the conceptual design and the writing
process.

3.3.2 Discussion

The addition of the DeepAlign algorithm to the architecture achieved
process anomaly correction. Figure 3.4 shows the final process anomaly
correction architecture. In Figure P5.1, α ′ corresponds to the Deep-
Align algorithm. Process anomaly correction now combines the benefits
of process anomaly detection (not relying on a process model) and
conformance checking (alignments), while providing additional ben-
efits, such as noisy event log handling, auto-parameterization, and
memory efficiency. Detected anomalies could be corrected on the fly
and incorrect cases could be aligned with the process as modeled
by the two BINets. With the publication on DeepAlign, P5, we have
provided an answer to RQ3.

3.4 summary

Table 3.1 shows the complete history of the state-of-the-art, including
the contributions of this work. These five publications included in this
thesis, in their entirety, respond to the three research questions set
forth in the beginning, coined as RQ1–RQ3. Two particularly notable
characteristics of the contributions reported here are these: On the one
hand, they successively answered the research questions RQ1–RQ3

which had been identified as major deficiencies in the state-of-the-art.
On the other hand, they drew level or even outperformed existing
approaches with respect to detection performance.

3.4 summary 31

The resulting process anomaly correction approach does not rely on
a predefined process model but provides the benefit of alignments
known from conformance checking. As such, it can be used as a
replacement for classic conformance checking in cases where no pre-
defined process model is available. Furthermore, it can be a viable
option even in cases where a predefined process model is available
since it provides support for multiple perspectives. Compared to
classic conformance checking, it incorporates the data perspective
without requiring a manual definition of the rules connected to this
perspective. The implications of process anomaly correction as a new
approach and process learning as a general concept as well as their
general applicability will be discussed in the following chapter.

3
2

c
o

n
t

r
i
b

u
t

i
o

n
s

Table 3.1: Comparison of the solutions presented in this thesis and the state-of-the-art; novelties to the field are highlighted in red

Aalst Bezerra Böhmer Nolle Nolle Böhmer Nolle Nolle Pauwels Nolle
2005 2009 2016 2016 2018 2018 2018 2019 2019 2020

[3] [6–9] [10] P1 P2 [11, 13] P3 P4 [40, 41] P5

Method
Process

Discovery
Process

Discovery
Probabilistic

Model
Process

Learning
Process

Learning
Association

Rules
Process

Learning
Process

Learning

Dynamic
Bayesian
Networks

Process
Learning

No a priori knowledge 3 3 3 3 3 3 3 3 3

Noisy event logs 3 3 3 3 3 3 3

Control-flow perspective 3 3 3 3 3 3 3 3 3 3

Data perspective (cat.) 3 3 3 3 3 3 3

Data perspective (num.) 3 3

Case-level detection 3 3 3 3 3 3 3 3 3 3

Event-level detection 3 3 3 3 3

Attribute-level detection 3 3 3 3

Auto-parameterization 3 3 3

Classification 3 3

Correction 3

4
C O N C L U S I O N A N D O U T L O O K

This dissertation opened with the example of a mentor teaching us the
process of writing a scientific paper, by pointing out our mistakes, but
also by suggesting possible corrections. The example served as a re-
minder that advanced process analytics methodology, such as process
anomaly detection and conformance checking, could be improved by
adopting this principle. Without the expectation of a priori knowledge,
these methods should provide easily interpretable, and actionable
results.

While conformance checking provides error detection as well as
correction, it requires a predefined process model, which in most
circumstances can only be provided by an expert in the process itself.
So, we would first have to teach the mentors in order to get answers
from them. Process anomaly detection, on the other hand, does not
require a priori knowledge, but provides results in the form of case is
normal or case is anomalous. A mentor that only ever answers questions
with "Right!" or "Wrong!" is not a good mentor. After all, the students
want to know why something is right or wrong.

4.1 summary of achievements

The contribution of this dissertation is the combination of the benefits
from both conformance checking and process anomaly detection to
create a new method, process anomaly correction. Without relying on
a priori knowledge about the process, process anomaly correction can
provide comparable, if not better, results than classical conformance
checking. By lifting the restriction of conformance checking relying on
predefined process models, process anomaly correction can provide the
same quality of analysis across a variety of different scenarios, which
until now, required a process model to be created.

This dissertation further serves as an example that process learning
as a general concept can be utilized to infer complex process logic
from event logs, without being specifically programmed. The use case
of process anomaly correction has shown that process learning is able
to model dependencies between the different process perspectives.
Process learning significantly reduces the effort of adding new concepts
to a process model. As long as the event log contains a sufficient
amount of examples of the concept, process learning can pick up on the
emerging patterns. Process learning is mature enough to be applied in
various other scenarios apart from process anomaly correction. It offers a
solid foundation for promising future research in the field of BPM.

33

34 conclusion and outlook

4.2 future work

This section shall give an overview of possible continuations of this
work regarding process anomaly correction as well as novel applications
for process learning.

generative capabilities Process learning is a promising con-
cept and its application areas are manifold. For instance, it is conceiv-
able to create a process discovery algorithm by exploiting the gener-
ative capabilities of deep neural networks. They are also commonly
used to translate sentences from one language to another. Similar ideas
could be applied to, perhaps, translate one process into another, as in
migrating a process from one system to another.

explainable machine learning While deep learning tech-
niques can produce remarkable results, the research community around
them still struggles to understand how they accomplish these feats. It
is important to not blindly trust such a system. No guarantees can be
made (yet) that their understanding of the data is what it is intended
to be. While the presented process anomaly correction technique proved
to be successful in the tasks it was evaluated on, the success relies on
the assumption that the process to be learned is adequately resembled
by the event log.

Various research exists around the idea of making deep neural
networks explainable. For instance, by adding a special attention layer
that forces a network during the training to select only the strongest
bits of information from its input, thereby creating the notion of focus.
The attention of the network can then be visualized to demonstrate
how the network likely perceives an input. Possibly, insights about
how a neural network models the underlying process could be derived.

numerical attributes This work focused on categorical at-
tributes since most attributes coming from the control-flow (Research
Related Work vs. Conclude) and the organizational perspective (reviewer
vs. student) are categorical. However, numerical attributes (cost, du-
ration, etc.) are important to fully support the data perspective. The
challenge of learning relations between numerical and categorical
attributes simultaneously, which requires a synchronization of two
separate loss functions, is an interesting opportunity for future re-
search.

deep learning limitations The proposed solution is based
on process learning and hence requires a lengthy training period
prior to the actual detection of anomalies. Time spent waiting for
the training procedure to finish might be gained in the analysis of
the results. However, it remains an open question. Moreover, deep

4.2 future work 35

learning approaches require the use of hardware accelerators like
graphics processing units (GPUs) or special tensor processing units
(TPUs) to train faster. Memory on GPUs and TPUs is still limited and
thus training on big event logs is still challenging.

dealing with concept drift The assumption that the process
is static does not always hold. Event logs are ever-changing since they
hold information about running, real-life processes. To offer robust
performance, concept drift needs to be accounted for. A possible
approach is to assign unseen values to an other group and to treat them
all the same. Another solution is to run the training continuously so
that new concepts in the process are learned while they are appearing.

B I B L I O G R A P H Y

[1] Wil M. P. van der Aalst. Process Mining: Discovery, Conformance
and Enhancement of Business Processes. Vol. 2. Springer, 2011 (cit.
on p. 3).

[2] Wil M. P. van der Aalst. Process Mining: Data Science in Action.
Springer, 2016 (cit. on pp. 3, 9).

[3] Wil M. P. van der Aalst and Ana Karla A de Medeiros. “Process
Mining and Security: Detecting Anomalous Process Executions
and Checking Process Conformance.” In: Electronic Notes in
Theoretical Computer Science 121 (2005), pp. 3–21 (cit. on pp. 4, 11,
15, 19, 32).

[4] Arya Adriansyah, Boudewijn F van Dongen, and Wil M. P.
van der Aalst. “Memory-efficient alignment of observed and
modeled behavior.” In: BPM Center Report 3 (2013) (cit. on p. 15).

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neu-
ral machine translation by jointly learning to align and trans-
late.” In: arXiv preprint arXiv:1409.0473 (2014) (cit. on p. 17).

[6] Fábio Bezerra and Jacques Wainer. “Anomaly Detection Algo-
rithms in Logs of Process Aware Systems.” In: Proceedings of the
23rd Annual ACM Symposium on Applied Computing – SAC’08.
2008, pp. 951–952 (cit. on pp. 12, 19, 32).

[7] Fábio Bezerra and Jacques Wainer. “Anomaly detection algo-
rithms in business process logs.” In: Proceedings of the 10th Inter-
national Conference on Enterprise Information Systems – ICEIS’08.
2008, pp. 11–18 (cit. on pp. 12, 19, 32).

[8] Fábio Bezerra and Jacques Wainer. “Algorithms for Anomaly
Detection of Traces in Logs of Process Aware Information Sys-
tems.” In: Information Systems 38.1 (2013), pp. 33–44 (cit. on
pp. 12, 19, 32).

[9] Fábio Bezerra, Jacques Wainer, and Wil M. P. van der Aalst.
“Anomaly Detection Using Process Mining.” In: Proceedings of the
10th International Workshop on Enterprise, Business-Process and In-
formation Systems Modeling – BPMDS’09. Springer, 2009, pp. 149–
161 (cit. on pp. 12, 19, 32).

[10] Kristof Böhmer and Stefanie Rinderle-Ma. “Multi-perspective
Anomaly Detection in Business Process Execution Events.” In:
Proceedings of On the Move to Meaningful Internet Systems – OTM’16.
Springer. 2016, pp. 80–98 (cit. on pp. 13, 14, 19, 32).

37

38 bibliography

[11] Kristof Böhmer and Stefanie Rinderle-Ma. “Association rules
for anomaly detection and root cause analysis in process ex-
ecutions.” In: Proceedings of the 30th International Conference on
Advanced Information Systems Engineering – CAiSE’18. Springer.
2018, pp. 3–18 (cit. on pp. 13, 19, 32).

[12] RP Jagadeesh Chandra Bose and Wil M. P. van der Aalst. “Trace
alignment in process mining: opportunities for process diagnos-
tics.” In: Proceedings of the 8th International Conference on Business
Process Management – BPM’10. Springer, 2010, pp. 227–242 (cit.
on p. 29).

[13] Kristof Böhmer and Stefanie Rinderle-Ma. “Mining association
rules for anomaly detection in dynamic process runtime be-
havior and explaining the root cause to users.” In: Information
Systems 90 (2020), p. 101438. issn: 0306-4379 (cit. on pp. 13, 19,
32).

[14] Manuel Camargo, Marlon Dumas, and Oscar González-Rojas.
“Learning accurate LSTM models of business processes.” In:
Proceedings of the 17th International Conference on Business Process
Management – BPM’19. 2019, pp. 286–302 (cit. on p. 18).

[15] Bill Curtis, Marc I. Kellner, and Jim Over. “Process modeling.”
In: Communications of the ACM 35.9 (1992), pp. 75–90 (cit. on
p. 3).

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Tou-
tanova. “Bert: Pre-training of deep bidirectional transformers
for language understanding.” In: arXiv preprint arXiv:1810.04805
(2018) (cit. on p. 17).

[17] Chiara Di Francescomarino, Chiara Ghidini, Fabrizio Maria
Maggi, Giulio Petrucci, and Anton Yeshchenko. “An eye into
the future: leveraging a-priori knowledge in predictive business
process monitoring.” In: Proceedings of the 15th International Con-
ference on Business Process Management – BPM’17. 2017, pp. 252–
268 (cit. on p. 18).

[18] Joerg Evermann, Jana-Rebecca Rehse, and Peter Fettke. “A Deep
Learning Approach for Predicting Process Behaviour at Run-
time.” In: Proceedings of the 14th International Conference on Busi-
ness Process Management – BPM’16. Springer. 2016, pp. 327–338

(cit. on pp. 17, 25).

[19] Joerg Evermann, Jana-Rebecca Rehse, and Peter Fettke. “Pre-
dicting Process Behaviour Using Deep Learning.” In: Decision
Support Systems 100 (2017), pp. 129–140 (cit. on pp. 18, 25).

[20] Mostafa Farshchi, Jean-Guy Schneider, Ingo Weber, and John
Grundy. “Metric selection and anomaly detection for cloud
operations using log and metric correlation analysis.” In: Journal
of Systems and Software 137 (2018), pp. 531–549 (cit. on p. 16).

bibliography 39

[21] Mostafa Farshchi et al. “Contextual Anomaly Detection for a
Critical Industrial System Based on Logs and Metrics.” In: Pro-
ceedings of the 14th European Dependable Computing Conference –
EDCC’18. 2018, pp. 140–143 (cit. on p. 16).

[22] Min Fu et al. “Process-Oriented Non-intrusive Recovery for
Sporadic Operations on Cloud.” In: Proceedings of the 46th Inter-
national Conference on Dependable Systems and Networks – DSN’16.
2016, pp. 85–96 (cit. on p. 16).

[23] Simon Hawkins, Hongxing He, Graham Williams, and Rohan
Baxter. “Outlier detection using replicator neural networks.” In:
Data warehousing and knowledge discovery. Springer, 2002, pp. 170–
180 (cit. on p. 22).

[24] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term
memory.” In: Neural computation 9.8 (1997), pp. 1735–1780 (cit.
on pp. 17, 26).

[25] Nathalie Japkowicz. “Supervised Versus Unsupervised Binary-
Learning by Feedforward Neural Networks.” In: Machine Learn-
ing 42.1 (2001), pp. 97–122 (cit. on p. 22).

[26] Christopher Klinkmüller, Nick R. T. P. van Beest, and Ingo Weber.
“Towards reliable predictive process monitoring.” In: Proceedings
of the 30th International Conference on Advanced Information Systems
Engineering – CAiSE’18. Springer. 2018, pp. 163–181 (cit. on p. 17).

[27] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learn-
ing.” In: Nature 521.7553 (2015), pp. 436–444 (cit. on p. 17).

[28] Massimiliano de Leoni and Wil M. P. van der Aalst. “Aligning
Event Logs and Process Models for Multi-perspective Confor-
mance Checking: An Approach Based on Integer Linear Pro-
gramming.” In: Proceedings of the 11th International Conference on
Business Process Management – BPM’13. 2013, pp. 113–129 (cit. on
p. 15).

[29] Massimiliano de Leoni and Wil M. P. van der Aalst. “Data-
Aware Process Mining: Discovering Decisions in Processes Using
Alignments.” In: Proceedings of the 28th Annual ACM Symposium
on Applied Computing – SAC’13. 2013, pp. 1454–1461 (cit. on
p. 15).

[30] Li Lin, Lijie Wen, and Jianmin Wang. “MM-Pred: a deep predic-
tive model for multi-attribute event sequence.” In: Proceedings of
the 19th International Conference on Data Mining – SIAM’19. 2019,
pp. 118–126 (cit. on p. 18).

[31] Felix Mannhardt, Massimiliano De Leoni, Hajo A Reijers, and
Wil M. P. van der Aalst. “Balanced multi-perspective checking
of process conformance.” In: Computing 98.4 (2016), pp. 407–437

(cit. on p. 15).

40 bibliography

[32] Nijat Mehdiyev, Joerg Evermann, and Peter Fettke. “A novel
business process prediction model using a deep learning method.”
In: Business & Information Systems Engineering 62 (2020), pp. 143–
757 (cit. on p. 18).

[33] Andreas Metzger, Johannes Franke, and Thomas Jansen. “Data-
driven Deep Learning for Proactive Terminal Process Manage-
ment.” In: (2019), pp. 196–211 (cit. on p. 18).

[34] Timo Nolle, Stefan Luettgen, Alexander Seeliger, and Max Mühl-
häuser. “Analyzing Business Process Anomalies Using Autoen-
coders.” In: Machine Learning 107.11 (2018), pp. 1875–1893 (cit. on
p. 24).

[35] Timo Nolle, Stefan Luettgen, Alexander Seeliger, and Max Mühl-
häuser. “BINet: Multi-perspective Business Process Anomaly
Classification.” In: Information Systems (2019), p. 101458. issn:
0306-4379 (cit. on p. 27).

[36] Timo Nolle, Alexander Seeliger, and Max Mühlhäuser. “Unsu-
pervised Anomaly Detection in Noisy Business Process Event
Logs Using Denoising Autoencoders.” In: Proceedings of the 19th
International Conference on Discovery Science – DS’16. Springer.
2016, pp. 442–456 (cit. on p. 23).

[37] Timo Nolle, Alexander Seeliger, and Max Mühlhäuser. “BINet:
Multivariate Business Process Anomaly Detection Using Deep
Learning.” In: Proceedings of the 16th International Conference on
Business Process Management – BPM’18. 2018, pp. 271–287 (cit. on
p. 26).

[38] Timo Nolle, Nils Thoma, Alexander Seeliger, and Max Mühlhäu-
ser. “DeepAlign: Alignment-based Process Anomaly Correction
using Recurrent Neural Networks.” In: Proceedings of the 32nd In-
ternational Conference on Advanced Information Systems Engineering
– CAiSE’20. 2020, pp. 319–333 (cit. on p. 29).

[39] Vincenzo Pasquadibisceglie, Annalisa Appice, Giovanna Castel-
lano, and Donato Malerba. “Using Convolutional Neural Net-
works for Predictive Process Analytics.” In: Proceedings of the
1st International Conference on Process Mining – ICPM’19. 2019,
pp. 129–136 (cit. on p. 18).

[40] Stephen Pauwels and Toon Calders. “An anomaly detection
technique for business processes based on extended dynamic
bayesian networks.” In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing. ACM. 2019, pp. 494–501 (cit.
on pp. 14, 19, 32).

[41] Stephen Pauwels and Toon Calders. “Detecting anomalies in hy-
brid business process logs.” In: ACM SIGAPP Applied Computing
Review 19.2 (2019), pp. 18–30 (cit. on pp. 14, 19, 32).

bibliography 41

[42] Alec Radford et al. “Language models are unsupervised multi-
task learners.” In: OpenAI Blog 1.8 (2019), p. 9 (cit. on p. 17).

[43] Anne Rozinat and Wil MP van der Aalst. “Conformance check-
ing of processes based on monitoring real behavior.” In: Informa-
tion Systems 33.1 (2008), pp. 64–95 (cit. on pp. 4, 15).

[44] Qing Sun, Stefan Lee, and Dhruv Batra. “Bidirectional beam
search: Forward-backward inference in neural sequence models
for fill-in-the-blank image captioning.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition – CVPR’17.
2017, pp. 6961–6969 (cit. on p. 28).

[45] Niek Tax, Ilya Verenich, Marcello La Rosa, and Marlon Dumas.
“Predictive Business Process Monitoring with LSTM Neural
Networks.” In: Proceedings of the 29th International Conference on
Advanced Information Systems Engineering – CAiSE’17. Springer.
2017, pp. 477–492 (cit. on pp. 18, 25).

[46] Ashish Vaswani et al. “Attention is all you need.” In: Pro-
ceedings of Advances in neural information processing systems 30 –
NeurIPS’17. 2017, pp. 5998–6008 (cit. on p. 17).

[47] Ingo Weber, Chao Li, Len Bass, Xiwei Xu, and Liming Zhu.
“Discovering and Visualizing Operations Processes with POD-
Discovery and POD-Viz.” In: Proceedings of the 45th International
Conference on Dependable Systems and Networks – DSN’15. 2015,
pp. 537–544 (cit. on p. 16).

[48] Ingo Weber, Andreas Rogge-Solti, Chao Li, and Jan Mendling.
“CCaaS: Online Conformance Checking as a Service.” In: Pro-
ceedings of the BPM Demo Session 2015. Co-located with the 13th
International Conference on Business Process Management – BPM’15
1418 (2015), pp. 45–49 (cit. on p. 16).

[49] Xiwei Xu, Liming Zhu, Ingo Weber, Len Bass, and Daniel Sun.
“POD-Diagnosis: Error Diagnosis of Sporadic Operations on
Cloud Applications.” In: Proceedings of the 44th International
Conference on Dependable Systems and Networks – DSN’14. 2014,
pp. 252–263 (cit. on p. 16).

[50] Xiwei Xu et al. “Crying wolf and meaning it: Reducing false
alarms in monitoring of sporadic operations through POD-
Monitor.” In: Proceedings of the 1st International Workshop on
Complex Faults and Failures in Large Software Systems – COUF-
LESS’15. 2015, pp. 69–75 (cit. on p. 16).

[51] Xiwei Xu et al. “Error diagnosis of cloud application opera-
tion using bayesian networks and online optimisation.” In: Pro-
ceedings of the 11th European Dependable Computing Conference –
EDCC’15. IEEE. 2015, pp. 37–48 (cit. on p. 16).

Part II

P U B L I C AT I O N S

P1
U N S U P E RV I S E D A N O M A LY D E T E C T I O N I N N O I S Y
B U S I N E S S P R O C E S S E V E N T L O G S U S I N G
D E N O I S I N G AU T O E N C O D E R S

Timo Nolle, Alexander Seeliger, and Max Mühlhäuser
In: Proceedings of the 19th International Conference on Discovery Science –
DS’16. 2016, pp. 442–456.

abstract : Business processes are prone to subtle changes over
time, as unwanted behavior manifests in the execution over
time. This problem is related to anomaly detection, as these
subtle changes start of as anomalies at first, and thus it is im-
portant to detect them early. However, the necessary process
documentation is often outdated, and thus not usable. Moreover,
the only way of analyzing a process in execution is the use of
event logs coming from process-aware information systems, but
these event logs already contain anomalous behavior and other
sorts of noise. Classic process anomaly detection algorithms
require a dataset that is free of anomalies; thus, they are unable
to process the noisy event logs. Within this paper we propose
a system, relying on neural network technology, that is able to
deal with the noise in the event log and learn a representation
of the underlying model, and thus detect anomalous behavior
based on this representation. We evaluate our approach on five
different event logs, coming from process models with different
complexities, and demonstrate that our approach yields remark-
able results of 97.2 percent F1-score in detecting anomalous
traces in the event log, and 95.6 percent accuracy in detecting
the respective anomalous activities within the traces.

1 introduction

Anomaly detection, or outlier detection, is an important topic for
todays businesses. Companies all over the world are interested in
anomalous executions within their process, as these can be indicators
for fraud, or inefficiencies in their process.

More and more companies rely on process-aware information sys-
tems (PAISs) [7] to assist their employees in the execution. The increas-
ing numbers of PAISs has generated a lot of interest in the data these
systems are storing about the execution of a process. PAISs provide
data analysts with a huge amount of information in form of log files.
These log files can be used to extract the events that happened during

45

46 unsupervised anomaly detection in noisy business process

the execution of the process, and hence create so called event log files.
Event logs are comprised of activities that have occurred during the
execution of a process. These event logs enable a process analyst to
explore the process by which this event log has been generated. In
other words, the event log is the leftover evidence of the process that
produced it. Consequently, it is possible to recreate the process model
by evaluating its event log. This is known as process model discovery
and is one of the main ideas in the domain of process mining [22].

Often, process models have been designed by experts some time
in the past, but over the years the process has slowly mutated. These
mutations can be caused by new employees, working slightly different
than their predecessors, or the use of new technology, or simply
changes in the business plan. Process changes usually happen in a
very subtle way. In a procurement process, for example, an employee
stops requesting the required approval of their advisor, as this speeds
up the process. At first this will happen rarely, but over time it will
start to overwhelm the designated behavior. In other words, these
subtle changes start off as anomalies in the process, and therefore it
is important to detect them early and take actions, before they can
manifest.

Process mining provides methodologies to detect these changes,
e.g., by discovering the as-is process model from the event log [1];
that is, generating a valid process model that is capable of producing
the same event log. After the discovery of the as-is model, it can be
compared to a reference model in order to detect the changes. This is
known as conformance checking [18]. However, this approach requires
the existence of such a reference model of some form (e.g., BMPN
model, petri-net, rule set). Unfortunately, these reference models are
often not well maintained by the company, or even non-existent.

The absence of a reference model is a big problem for conformance
checking, and especially in the field of anomaly detection, as there is
no model that defines what a normal execution of the process ought
to look like. Thus, we can not define what an anomalous execution is
either. Many of the current anomaly detection algorithms work by first
learning what a normal example is, by training on a training set that
solely consists of normal examples, and then using this knowledge to
detect the anomalies, as they are much different from what they have
learned about normal examples during training. However, this is not
a valid assumption we can make when considering process event logs
from PAISs, as they usually already contain anomalous behavior and
other sorts of noise. What is a valid assumption, on the other hand, is
that the anomalous executions are highly outnumbered by the normal
ones, which we will take advantage of.

In this paper we propose a method to automatically split a noisy
event log into normal and anomalous traces. The main contribution
of this approach is that it does not require the existence of a refer-

2 related work 47

ence model, nor prior knowledge about the underlying process. We
train our system on the raw input from the event log, including the
anomalous traces, and without the use of labels indicating which
cases are, in fact, anomalous. The system has to deduce the difference
between normal and anomalous traces purely based on the patterns
in the raw data. Our approach is based on a special type of neural
network, called an autoencoder, that is trained in an unsupervised
fashion. We will demonstrate that our system is able to understand
the underlying processes of five different event logs. Consequently, it
can automatically analyze a given event log and filter out anomalous
traces, based on the implicitly inferred model. Not only can we filter
out anomalous traces, but we can also infer which specific activity in
a trace is the cause for the anomaly.

2 related work

In the field of business processes, and especially process mining [22],
anomaly detection is not very frequently researched. The most recent
publication [4] describes an approach where a reference model is build
through the use of discovery algorithms. Then, this reference model
can be used to automatically detect anomalous traces. However, this
approach relies on a clean dataset, that is, no anomalous traces must
be present in the data set during the discovery. As we have described
earlier, this is usually not the case, as the event logs from PAISs most
likely already do contain these anomalies.

The approach within this paper is highly influenced by the works
in [9, 12], where they propose the use of replicator neural networks
[10], i.e., networks that reproduce their input, which are based on the
idea of autoencoders from [11]. The approaches from [9, 12], however,
do not work well with variable length input.

A review of novelty detection (i.e., anomaly detection) methodol-
ogy can be found in [17], where they describe and compare many
methods that have been proposed over the last decades. The authors
differentiate between five different basic methods for novelty detection:
probabilistic, distance-based, reconstruction-based, domain-based, and
information-theoretic novelty detection.

Probabilistic approaches try to estimate the probability distribution
of the normal class, and thus are able to detect anomalies as they were
sampled from a different distribution. However, this approach also
requires a clean dataset. Distance-based novelty detection (e.g., nearest
neighbor, clustering) does not require a cleaned dataset, yet it is only
partly applicable for process traces, as anomalous traces are usually
very similar to normal ones.

Reconstruction-based novelty detection (e.g., neural networks) is
similar to the aforementioned approaches in [9, 12]. However, training
a neural network usually also requires a cleaned dataset. Nevertheless,

48 unsupervised anomaly detection in noisy business process

Table P1.1: Example event log of a procurement process

Trace ID Timestamp Activity

1 2015-03-21 12:38:39 PR Created
1 2015-03-28 07:09:26 PR Released
1 2015-04-07 22:36:15 PO Created
1 2015-04-08 22:12:08 PO Released
1 2015-04-21 16:59:49 Goods Receipt

2 2015-05-14 11:31:53 SC Created
2 2015-05-21 09:21:26 SC Purchased
2 2015-05-28 18:48:27 SC Approved
2 2015-06-01 04:43:08 PO Created

we will show that our approach works on the noisy dataset, by taking
advantage of the skewed distribution of normal data and anomalies,
as demonstrated in [8].

Domain-based novelty detection requires domain knowledge, which
violates our assumption, that we do not require any prior knowledge,
only the data. Information-theoretic novelty detection defines anoma-
lies as the examples that most influence an information measure (e.g.,
entropy) on the whole dataset. Iteratively removing the data with the
highest impact will yield a cleaned dataset, and thus a set of anomalies.
With the exception of reconstruction-based approaches, this is the only
approach that can, to a certain degree, handle noisy datasets.

Within this paper, we opted to use a neural network based ap-
proach, as the recent achievements in machine translation and natural
language processing indicate that neural networks are an excellent
choice when modeling sequential data. At last, we want to point out
that one-class support vector machines (SVMs) [6] are usually very
sensitive to outliers in the data [2], which is why we did not apply
classic one-class SVMs in this setting.

3 dataset

PAISs keep a record of almost everything that has happened during
the execution of a business process. This information can be extracted
in form of an event log. An event log consists of traces, each consisting
of the activities that have been executed. Table P1.1 shows an excerpt of
such an event log, in this case it has been generated by a procurement
process model. Notice that an event log must consist of at least three
columns: trace id, to uniquely assign an executed activity to a trace; a
timestamp, to order the activities within a trace; and an activity label,
to distinguish the different activities.

3 dataset 49

Table P1.2: Overview over the four different randomly generated process
models and the corresponding event logs

Model Activities Gateways Traces Unique Anomalous

Small 12 2 10 000 240 978

Medium 32 12 398 973

Large 42 14 621 985

Huge 51 22 50 000 1 044 4 778

P2P 12 8 10 000 232 968

In order to create a test setting for our approach we randomly
generated process models and then sampled event logs from those
models. These event logs have been generated by PLG2 [5], a process
simulation and randomization tool. PLG2 allows the user to randomly
generate a process model and then simulate it to generate genuine
event logs. It also comes with a feature to perturb the generated event
log by, for example, skipping events, doubling events, or changing
the sequence in which events have occurred. PLG2 was specifically
designed for process mining researchers’ needs, as the amount of
publicly available datasets of reasonable sizes is minuscule.

We have used the PLG2 tool to generate random process models
of different complexities. Table P1.2 shows the complexity of these
models in terms of the number of distinct activities and the number
of gateways in the model. The resulting models were then used to
generate noisy event logs, i.e., event logs including anomalous traces.
Each trace in the event log has the chance of being affected by any of
the following mutations: skipping an event; swapping two activities,
or duplicating an activity so that it appears twice in a row.

The probability that a mutation occurs has been set to 3.3 percent for
all the three mentioned mutations. Thus, the resulting event log will
contain roughly ten percent anomalous traces, as shown in Table P1.2.
When considering a real-life business process, ten percent anomalous
traces in the event log is quite high, and thus we have chosen to set
this as our upper bound. Notice that our approach ought to yield
better results with less anomalous traces in the log, as it becomes
easier to generalize to the normal traces. This is why we use a highly
noisy event log as compared to real life event logs, where the number
of anomalies is usually much smaller. Notice that we used a fixed size
of 10 000 traces for the small, medium, and large dataset, and a bigger
size of 50 000 traces for the huge dataset. The huge dataset required a
bigger sample due to its higher complexity. The increasing complexity
with every dataset is also illustrated by the number of unique traces
in each log, as shown in Table P1.2.

50 unsupervised anomaly detection in noisy business process

Figure P1.1: t-SNE visualization of the randomly generated datasets from
Table P1.2

Figure P1.1 shows a t-SNE [15] visualization of the four randomly
generated datasets, depicting anomalous traces in red and normal
ones in green. We can clearly recognize the clusters that are being
formed by the normal traces. However, within these clusters there also
lie anomalous traces, which is exactly what we want, as anomalies
in real life are typically very similar to normal traces in terms of the
sequence of activities.

In addition to the four randomly generated models, we also used
a simplified version of a purchase to pay (P2P) process model as is
depicted by the BPMN model shown in Fig. P1.2. This model was
mainly created for the evaluation part within this paper, as it features
interpretable activity names, unlike the randomly generated ones. The
resulting event log for the P2P model was generated in the same
fashion as those of the randomly generated models, using the same
parameters as mentioned above. A trace in our P2P model can either
start with the manual creation of a purchase request (PR) or the
creation of a shopping cart (SC). In both cases, after the necessary
approval of the SC and the release of the PR, a purchase order (PO)
is created. This PO can be altered by increasing or decreasing the
order quantity. After the PO has been released the orderer receives the
goods, and usually in quick succession also the corresponding invoice.
The orderer ought to settle the invoice if and only if they have already
received the goods.

Ultimately, our datasets consist of 10 000 traces (50 000 for the huge
dataset), each consisting of a variable number of activities. Notice that
we also assume that the event log only contains complete traces, that
is, every trace starts and ends with valid activities according to the

4 method 51

PR Created

SC Created

SC Purchased

SC Approved PR Released

PO Created

PO Released

PO Amount
Increased

PO Amount
Decreased

Goods Receipt

Invoice
Receipt

Payment

Figure P1.2: BPMN model of a simplified purchase to pay process

process model. The only exception to this is if either the start activity
or the end activity, or both, are affected by one of the aforementioned
mutations.

4 method

Before we introduce our method, first we want to give a short overview
over deep learning. Deep learning is a branch of machine learning
that has been inspired by the human brain [14]. That is, deep learning
methods try to replicate the way the human brain learns new concepts
by connecting neurons with axons in the brain. So called artificial
neural networks connect simple processing units with weighted con-
nections to imitate the behavior of the brain. Recently, artificial neural
networks have gotten a lot of attention by outclassing the state-of-the-
art methods in many domains such as object recognition in images
[13], or machine translation [3].

A neural network consists of multiple layers, each containing many
neurons. Every neuron in one layer is connected to all neurons in the
preceding and succeeding layers (if present). These connections have
weights attached to them, which can be used to control the impact a
neuron in one layer has on the activation of a neuron in the next layer.
To calculate the output of a neuron we apply a non-linear activation
function (a popular choice is the rectifier function f(x) = max(0, x) [16])
to the sum over all outputs of the neurons in the previous layer times

52 unsupervised anomaly detection in noisy business process

their respective connection weights. When training a neural network
all the weights are set in a random fashion. Then the backpropagation
algorithm [19] can be used to iteratively tune the weights, so that
the neural network produces the desired output, or a close enough
approximation of it. This is done by measuring how far the output of
the neural network differs from the desired output, for example by
calculating the mean squared error, and then back-propagating the
error to the weights, so that the error gets minimized.

In classic classification tasks the desired output of the neural net-
work will be a class label. However, one can also train a neural network
without the use of class labels. This is especially helpful when no la-
bels exist. One type of neural network that does not rely on labels
is called an autoencoder, which is what we deployed in our method.
Whereas a classic neural network is trained in a supervised fashion,
an autoencoder is trained in an unsupervised fashion, as it is trained
to reproduce its own input. Obviously, a neural network, if given
enough capacity and time, can simply learn the identity function of
all examples in the training set. To overcome this issue, some kind
of corruption is added to the autoencoder, for example, by forcing
one of the hidden layers to be very small, therefore not allowing the
autoencoder to simply learn the identity. Another very common way
of adding corruption is to distribute additive gaussian noise over the
input vector of the autoencoder. Thus, the autoencoder, even if repeat-
edly trained on the same trace, will always receive a different input.
These types of autoencoders are known as denoising autoencoders, as
they are basically producing a noise free version of their input. Our
method is based on exactly this kind of autoencoder.

4.1 Setup

An autoencoder has a fixed size input; hence, we have to transform
the variable sized traces from the event log. First, we force all traces to
have the same length by repeatedly adding a special padding activity
to the end until all traces have the same length (this can be set by
hand or set to the maximum trace length encountered in the event log).
Thereafter, we encoded the activity names using a one-hot encoding.
Every activity is encoded by an n-dimensional vector, where n is the
number of different activities in the event log, so that every activity is
connected to exactly one dimension in the one-hot vector. To encode
one activity we simply set the corresponding dimension of the one-hot
vector to a fixed value of one, whilst setting all the other dimensions
to zero. Notice that, instead of using zero, we opted to use −1 as this
results in better distribution of the additive gaussian noise. Because
we are using rectified linear units (i.e., units using the aforementioned
rectifier function as their activation function), using −1 instead of 0

4 method 53

Noise

Event log
Replicated
event log

Autoencoder

Figure P1.3: Autoencoder is trained to replicate the traces in the event log
after the addition of gaussian noise

does not have a huge impact. This is done for every activity in every
trace, including the special padding activity.

Consider the following example: let us assume an event log consists
of 10 different activities and the maximum length of all traces in the
event log is also 10. After the padding, every trace will have a fixed
size of 10; and every activity is encoded by a 10-dimensional one-hot
vector. Consequently, the resulting one-hot vector for every trace will
have a size of 100.

Using the one-hot encoded event log we can train the autoencoder
with stochastic gradient descent and backpropagation, using the event
log both as the input, and the label. Figure P1.3 shows a simplified
version of the architecture. Notice that Fig P1.3 shows the event log
with variable size traces for reasons of simplicity. In reality the event
log is transformed before being fed into the autoencoder and then
decoded afterwards. The special noise layer adds gaussian noise before
feeding the input into the autoencoder, this layer is only active during
training. Now the autoencoder is trained to reproduce its input, that is,
to minimize the mean squared error between the input and its output.

We trained the autoencoder for a fixed number of 500 epochs using
a mini batch size of 32. As the optimizer we used stochastic gradient
descent with a learning rate of 0.01, a learning rate decay of 10−5, and
nesterov momentum [21] with a momentum factor of 0.9. Additionally,
we used a maxnorm weight constraint of 0.5, as well as a dropout
of 0.5, as suggested in [20]; the additive gaussian noise was sampled
from a zero centric gaussian distribution with a standard deviation
of 0.1. Each autoencoder consisted of an input and an output layer
with linear units, and exactly one hidden layer with rectified linear
units. These training parameters were used for each of the different
event logs, but the size of the hidden layer was adapted depending
on the event log. The number of neurons in the hidden layer was set
to the size of the input plus one neuron for each possible activity in
the event log. This was an arbitrary choice for the hidden layer size,
but we found that it worked sufficiently good. However, choosing a
hidden layer size smaller than the input layer size did not yield good
results. The actual hidden layer sizes can be found in Table P1.3.

54 unsupervised anomaly detection in noisy business process

Table P1.3: Overview of the hidden layer sizes

Model Input/Output size Hidden size

Small 264 286

Medium 340 374

Large 616 660

Huge 728 784

P2P 154 168

A
B
C
D
F
G

MSE
Threshold

N

A

Figure P1.4: Threshold classifier based on the mean squared error between
the input vector and the output of the autoencoder

4.2 Anomalous Trace Classifier

After training the autoencoder, it can be used to reproduce the traces
in the same event log it was trained on, but without applying the
noise. Now, we can measure the mean squared error between the
input vector and the output vector to detect anomalies in the event
log. Because the distribution of normal traces and anomalous traces
in the event log is one sided we can assume that the autoencoder will
reproduce the normal traces with less reproduction error than the
anomalies. Therefore we can define a threshold t, where if a traces
reproduction error succeeds this threshold t we consider it as an
anomaly. Figure P1.4 shows how to transform the trained autoencoder
into an anomaly classifier by adding a threshold classifier. We found
that using the average reproduction error on the event log is a good
general choice for the threshold (cf. Fig. P1.5 in Sec. 5).

4.3 Anomalous Activity Classifier

We have described how to detect anomalous traces in the event log,
now we want to refine this method. Not only can we detect that
a trace is anomalous, but also what activity in the trace influences
the reproduction error the most. Therefore, we have to change our
calculation of the reproduction error from trace based to activity
based. Up until now, we calculated the reproduction error as the mean
squared error between the entire one-hot encoded input and output

5 evaluation 55

sequence of the autoencoder. However, we can also consider the mean
squared error for every activity in the sequence separately. After a
trace has been reproduced by the autoencoder we split the input and
the output vectors into subparts, so that every subpart contains the
one-hot encoding for one single activity. Now we can compute the
mean squared error for each activity separately and then apply the
same threshold classifier method as before, only this time the classifier
detect anomalous activities as apposed to anomalous traces.

5 evaluation

We evaluated our approach on four different event logs coming from
process models with different complexities, ranging from low to high
complexity. In addition to those four event logs we also used an
interpretable version with low complexity for demonstrative purposes.

After training one autoencoder for each event log, we evaluated the
autoencoders on the same dataset, but without adding gaussian noise,
as in the training phase. Therefore, we calculated the mean squared
error for every trace in the training set and analyzed the resulting
distribution. Figure P1.5 shows the distribution of the reproduction
error for each dataset split into anomalous and normal traces. To
indicate the variance of the distribution we used so called box-and-
whisker plots. Figure P1.5 indicates that all five autoencoders are
able to perfectly split the normal traces from the anomalous one
solely based on the reproduction error. It also shows that the average
reproduction error is a good threshold value for the anomaly classifier,
albeit one would prefer a more pessimistically set value for real life
scenarios, so that the anomaly class precision and the normal class
recall are maximized. However, as we do not have the benefit of being
provided labels in real life, we stick with the simple solution here. We
plan on investigating more sophisticated methods of automatically
setting the threshold.

Table P1.4 shows the respective precision, recall, and F1-score for
the 5 different autoencoders in their classification report. Notice that
using the average reproduction error as the threshold leads to the low
anomaly precision class and normal class recall scores in the medium
and huge event log. Even though the overall result is still remarkable,
we still have room to improve the automatic adjusting of the threshold,
as one can clearly see that setting the threshold optimally is indeed
possible.

Next, we want to evaluate the activity based anomaly detection
described earlier, but first we want to consider a few examples of
classified traces from the P2P dataset autoencoder. Figure P1.6 shows
a sample of 30 traces of the P2P event log, where every activity has
been color coded according to the autoencoders reproduction error.
The color coding simply linearly distributes 6 color patches across

56 unsupervised anomaly detection in noisy business process

p2p small medium large huge

anomaly normal anomaly normal anomaly normal anomaly normal anomaly normal

0.0005

0.001

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

m
se

Average
Average

Average
Average

Average

Figure P1.5: The autoencoder succeeds in perfectly splitting the dataset into
normal and anomalous traces solely based on the reproduction
error

the range from zero to the maximum reproduction error in the event
log. When comparing the traces to the reference procurement model
from Fig. P1.2, we find that the autoencoder detects the anomalous
activity in the traces remarkably well. However, we can also see that
it has problems when certain activities are left out and the rest of
the trace consequently gets shifted by one activity. Trace number 30

demonstrates this phenomenon. We can see that the necessary activity
‘PR Released’ has been skipped, but the system indicates that all
activities after this point are anomalous, albeit the rest of the sequence
being valid. The system has problems to handle shifted subsequences.
Nevertheless, the autoencoder successfully detects the first activity that
does not conform with the underlying model, that is the reproduction
error of that activity is significantly high.

We have evaluated two versions of the anomalous activity classifier.
The first produces only one position in the sequence by returning
the index with the highest reproduction error. The second approach,
similar to the anomalous trace classifier before, returns all indices
where the reproduction error exceeds the average reproduction error
on the whole event log. We shall call the former the argmax approach
and the latter the threshold approach. Table P1.5 shows the classifica-
tion reports for those two approaches. Notice that we only evaluated
them on the anomalous traces and that we do not give the precision
and F1-score for the threshold approach. The threshold approach will
always yield a precision of one, hence we concentrate on the recall
score, which is equivalent with the accuracy here. In case of the thresh-
old approach, its prediction has been count as correct if the actual
index of the first anomalous activity, according to the reference model,
produced an above average reproduction error.

Table P1.5 shows that the argmax approach does not perform well.
This is due to the fact that in most cases the reproduction error of the
first anomalous activity in the trace is indeed significantly high, yet

5 evaluation 57

Table P1.4: Classification report for the anomalous traces detector

Dataset Class Precision Recall F1-Score Support

P2P normal 1.00 1.00 1.00 9 032

anomaly 1.00 1.00 1.00 968

average 1.00 1.00 1.00 10 000

Small normal 1.00 1.00 1.00 9 022

anomaly 1.00 1.00 1.00 978

average 1.00 1.00 1.00 10 000

Medium normal 1.00 0.95 0.98 9 027

anomaly 0.70 1.00 0.83 973

average 0.97 0.96 0.96 10 000

Large normal 1.00 1.00 1.00 9 015

anomaly 1.00 1.00 1.00 985

average 1.00 1.00 1.00 10 000

Huge normal 1.00 0.87 0.93 45 222

anomaly 0.46 1.00 0.63 4 778

average 0.95 0.89 0.90 50 000

Table P1.5: Classification report for the anomalous activity detector

Dataset Type Precision Recall F1-Score Support

P2P argmax 0.55 0.47 0.50 968

threshold 0.85

Small argmax 0.76 0.66 0.68 978

threshold 0.98

Medium argmax 0.68 0.54 0.56 973

threshold 0.99

Large argmax 0.67 0.59 0.61 985

threshold 1.00

Huge argmax 0.70 0.63 0.64 4 778

threshold 0.96

58 unsupervised anomaly detection in noisy business process

id

act_pos

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

SC Purchased

SC Purchased

SC Purchased

SC Purchased

SC Purchased

SC Purchased

SC Purchased

SC Purchased

SC Purchased

SC Purchased

SC Purchased

SC Created

SC Created

SC Created

SC Created

SC Created

SC Created

SC Created

SC Created

SC Created

SC Created

SC Created

SC Approved

SC Approved

SC Approved

SC Approved

SC Approved

SC Approved

SC Approved

SC Approved

SC Approved

SC Approved

SC Approved

PR Released

PR Released

PR Released

PR Released

PR Released

PR Released

PR Released

PR Released

PR Released

PR Released

PR Released

PR Released

PR Released

PR Released

PR Released

PR Released

PR Released

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PR Created

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Released

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Created

PO Amount Incre

PO Amount Incre

PO Amount Incre

PO Amount Incre

PO Amount Incre

PO Amount Incre

PO Amount Incre

PO Amount Incre

PO Amount Incre

PO Amount Decr

PO Amount Decr

PO Amount Decr

PO Amount Decr

PO Amount Decr

PO Amount Decr

PO Amount Decr

PO Amount Decr

PO Amount Decr

PO Amount Decr

PO Amount Decr

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Payment

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Invoice Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

Goods Receipt

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

EOS

0.0022 0.4954

mse

Figure P1.6: Conformance check on a sample of the P2P dataset

the overall highest reproduction error is found at a different index.
Notice that this is also an effect of the reproduction error being car-
ried through, as mentioned before. However, the threshold approach
clearly shows that the anomalous activity almost always produces an
above average reproduction error; hence, the autoencoder is capable
of detecting them.

6 conclusion and future work

Real-life event logs often contain anomalous traces. We have presented
an approach that is capable of automatically filtering out anomalous
traces in a noisy event log without any prior knowledge being fed into
the system. The system learns to discriminate between normal and
anomalous traces only from the present pattern in the data. We have
evaluated the system on five different noisy event logs from randomly
generated process models (one model was produced manually). Our
evaluation has shown that our threshold based anomalous activity
classifier is indeed capable of automatically detecting the anomalous
activity in a trace with an accuracy of at least 85.0 percent and 95.6 on
average over all training sets. Especially for the more complex process
models this is a remarkable result.

We want to point out that our approach is susceptible to anoma-
lous behavior in the event log that is very frequent, that is the same
anomalous trace is found multiple times. This is something we want
to investigate in the future. However, as changes in a business pro-
cess usually happen subtly, anomalous traces with the same sequence
should be infrequent at first; thus, our approach will be able to detect

references 59

them early, so that they do not have time to settle in. We also want
to test our approach on a range of different noise levels in the event
log (i.e., more anomalous traces), as well as include incomplete traces
in the event log. As event logs consist of sequences of activities, it
is also sensible to apply recurrent neural networks to the problem.
Using recurrent networks could overcome the issue that our system
is susceptible to skipped activities, which results in a shifted event
sequence that is otherwise valid. Recurrent networks can learn these
pattern regardless of where they exactly occur in the sequence, which
is something the autoencoder in our approach is unable to do.

Our approach proves that neural networks are applicable within
the domain of business processes. Moreover, we have shown that
denoising autoencoders are capable of dealing with event logs that do
already contain the anomalous traces, as opposed to training them on
event logs that only contain normal traces. This approach is especially
interesting, as it shows that an autoencoder can capture the underlying
process of an event log, without being provided extra knowledge.

acknowledgments

This project (HA project no. 479/15-21) is funded in the framework
of Hessen ModellProjekte, financed with funds of LOEWE – Landes-
Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz,
Förderlinie 3: KMU-Verbund-vorhaben (State Offensive for the Devel-
opment of Scientific and Economic Excellence) and by the LOEWE ini-
tiative (Hessen, Germany) within the NICER project [III L 5-518/81.004].

references

[1] Wil Van der Aalst, Ton Weijters, and Laura Maruster. “Work-
flow mining: Discovering process models from event logs.” In:
Knowledge and Data Engineering, IEEE Transactions on 16.9 (2004),
pp. 1128–1142 (cit. on p. 46).

[2] Mennatallah Amer, Markus Goldstein, and Slim Abdennadher.
“Enhancing one-class support vector machines for unsupervised
anomaly detection.” In: Proceedings of the ACM SIGKDD Work-
shop on Outlier Detection and Description. ACM. 2013, pp. 8–15

(cit. on p. 48).

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neu-
ral machine translation by jointly learning to align and trans-
late.” In: arXiv preprint arXiv:1409.0473 (2014) (cit. on p. 51).

[4] Fábio Bezerra, Jacques Wainer, and Wil MP van der Aalst.
“Anomaly detection using process mining.” In: Enterprise, Business-
Process and Information Systems Modeling. Springer, 2009, pp. 149–
161 (cit. on p. 47).

60 unsupervised anomaly detection in noisy business process

[5] Andrea Burattin. “PLG2: Multiperspective Processes Randomiza-
tion and Simulation for Online and Offline Settings.” In: CoRR
abs/1506.0 (2015) (cit. on p. 49).

[6] Corinna Cortes and Vladimir Vapnik. “Support-vector networks.”
In: Machine learning 20.3 (1995), pp. 273–297 (cit. on p. 48).

[7] Marlon Dumas, Wil M Van der Aalst, and Arthur H Ter Hofst-
ede. Process-aware information systems: bridging people and software
through process technology. John Wiley & Sons, 2005 (cit. on p. 45).

[8] Eleazar Eskin. “Anomaly detection over noisy data using learned
probability distributions.” In: In Proceedings of the International
Conference on Machine Learning. Citeseer. 2000 (cit. on p. 48).

[9] Simon Hawkins, Hongxing He, Graham Williams, and Rohan
Baxter. “Outlier detection using replicator neural networks.” In:
Data warehousing and knowledge discovery. Springer, 2002, pp. 170–
180 (cit. on p. 47).

[10] Robert Hecht-Nielsen. “Replicator neural networks for universal
optimal source coding.” In: Science 269.5232 (1995), p. 1861 (cit.
on p. 47).

[11] Geoffrey E Hinton. “Connectionist learning procedures.” In:
Artificial intelligence 40.1 (1989), pp. 185–234 (cit. on p. 47).

[12] Nathalie Japkowicz. “Supervised Versus Unsupervised Binary-
Learning by Feedforward Neural Networks.” In: Machine Learn-
ing 42.1 (2001), pp. 97–122 (cit. on p. 47).

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
genet classification with deep convolutional neural networks.”
In: Advances in neural information processing systems. 2012, pp. 1097–
1105 (cit. on p. 51).

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learn-
ing.” In: Nature 521.7553 (2015), pp. 436–444 (cit. on p. 51).

[15] Laurens Van Der Maaten and Geoffrey E. Hinton. “Visualizing
Data using t-SNE.” In: Journal of Machine Learning Research 9

(2008), pp. 2579–2605 (cit. on p. 50).

[16] Vinod Nair and Geoffrey E Hinton. “Rectified linear units im-
prove restricted boltzmann machines.” In: Proceedings of the 27th
International Conference on Machine Learning (ICML-10). 2010,
pp. 807–814 (cit. on p. 51).

[17] Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel
Tarassenko. “A review of novelty detection.” In: Signal Processing
99 (2014), pp. 215–249 (cit. on p. 47).

[18] Anne Rozinat and Wil MP van der Aalst. “Conformance check-
ing of processes based on monitoring real behavior.” In: Informa-
tion Systems 33.1 (2008), pp. 64–95 (cit. on p. 46).

references 61

[19] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
“Learning representations by back-propagating errors.” In: Cog-
nitive modeling 5.3 (1988), p. 1 (cit. on p. 52).

[20] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. “Dropout: A simple way to prevent
neural networks from overfitting.” In: The Journal of Machine
Learning Research 15.1 (2014), pp. 1929–1958 (cit. on p. 53).

[21] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hin-
ton. “On the importance of initialization and momentum in
deep learning.” In: Proceedings of the 30th international conference
on machine learning (ICML-13). 2013, pp. 1139–1147 (cit. on p. 53).

[22] Wil Van Der Aalst et al. “Process mining manifesto.” In: Business
process management workshops. Springer. 2011, pp. 169–194 (cit. on
pp. 46, 47).

P2
A N A LY Z I N G B U S I N E S S P R O C E S S A N O M A L I E S
U S I N G AU T O E N C O D E R S

Timo Nolle, Stefan Luettgen, Alexander Seeliger, and Max Mühlhäuser
In: Machine Learning 107.11 (Nov. 2018), pp. 1875–1893.

abstract : Businesses are naturally interested in detecting
anomalies in their internal processes, because these can be
indicators for fraud and inefficiencies. Within the domain of
business intelligence, classic anomaly detection is not very fre-
quently researched. In this paper, we propose a method, using
autoencoders, for detecting and analyzing anomalies occurring
in the execution of a business process. Our method does not
rely on any prior knowledge about the process and can be
trained on a noisy dataset already containing the anomalies. We
demonstrate its effectiveness by evaluating it on 700 different
datasets and testing its performance against three state-of-the-
art anomaly detection methods. This paper is an extension of
our previous work from 2016 [30]. Compared to the original
publication we have further refined the approach in terms of
performance and conducted an elaborate evaluation on more
sophisticated datasets including real-life event logs from the
Business Process Intelligence Challenges of 2012 and 2017. In
our experiments our approach reached an F1 score of 0.87,
whereas the best unaltered state-of-the-art approach reached
an F1 score of 0.72. Furthermore, our approach can be used to
analyze the detected anomalies in terms of which event within
one execution of the process causes the anomaly.

keywords : Deep Learning, Autoencoder, Anomaly Detection,
Process Mining, Business Intelligence

1 introduction

Anomaly detection is becoming an integral part of business intelli-
gence. Businesses are naturally interested in detecting anomalies in
their processes, because these can be indicators for inefficiencies in
their process, badly trained employees, or even fraudulent behavior.
Consequently, being able to detect such anomalies is of great value,
for they can have enormous impact on the economic well-being of the
businesses.

63

64 analyzing business process anomalies using autoencoders

More and more companies rely on process-aware information sys-
tems (PAISs) [13] to improve their processes. This increasing number
of PAISs has generated a lot of interest in the data these systems are
gathering. The log files these systems are storing can be used to extract
the events executed in the process, and thereby create so called event
log files. Event logs are comprised of activities (and other miscella-
neous information) that occurred during the execution of the process.
These event logs enable process analysts to explore the underlying
process. In other words, the event log consists of footprints of the
process. Consequently, it is possible to recreate the process model by
evaluating its event log. This is known as process model discovery and is
one of the main ideas in the domain of process mining [42].

Process mining provides methodologies to detect anomalies in the
execution of a process; e.g., by discovering the as-is process model from
the event log [1] using discovery algorithms and then comparing the
discovered model to a reference model. This is known as conformance
checking [35]. Another way of detecting anomalies is to compare the
event log to the reference model. However, this approach requires the
existence of such a reference model.

If no reference model is available, process mining relies on discover-
ing a reference model from the event log itself [3, 4]. These methods
make use of a threshold to deal with infrequent behavior in the log,
so that the discovered model is a good representation of the normal
behavior of the process. Hence, this model can be used as a reference
model for the conformance check.

A key assumption in anomaly detection is that the anomalous ex-
ecutions occur less frequent than normal executions. This skewed
distribution can be taken advantage of when applying anomaly detec-
tion techniques.

In this paper, we propose a method for detecting anomalies in
business process data. Our method works under the following as-
sumptions.

• No prior knowledge about the process

• Training data already contains anomalies

• No reference model needed

• No labels needed (i.e., no knowledge about anomalies)

• The algorithm must detect the exact activity at which the anomaly
occurred

The system must deduce the difference between normal and anoma-
lous executions purely based on the patterns in the raw data. Our
approach is based on a special type of neural network, called an
autoencoder, that is trained in an unsupervised fashion.

2 related work 65

The main contribution of this work is the application of an autoen-
coder to analyze the detected anomalies in terms of which event within
a sequence is anomalous as opposed to the whole sequence at once.
This can be refined further by analyzing which characteristic of the
event (e.g., the executing user) is anomalous, not just the event itself.
We demonstrate that, using this approach, we can accurately identify
activities that have been executed in the wrong order, skipped, or un-
necessarily reworked. Furthermore, we can detect when unauthorized
users have illegally executed an activity.

To demonstrate the feasibility of our approach we compare its
performance to seven state-of-the-art methods for anomaly detection.
In addition to these six methods, we also present an adaptation of one
of the methods. All methods were applied to a comprehensive set of
600 different artificial event logs featuring authentic business process
anomalies as well as 100 real-life event logs coming from the Business
Process Intelligence Challenge (BPIC).

In summary, the contributions of this paper are as follows.

1. Novel application of autoencoders to automatically analyze
anomalies in the domain of business process intelligence.

2. Adaptation of the t-STIDE anomaly detection method from [43]
to work with event attributes.

3. Comprehensive evaluation of state-of-the-art anomaly detection
methods in the domain of business process intelligence.

4. Provision of a representative, labelled, set of artificial process
event logs containing authentic anomalies.

2 related work

In the field of process mining [42] anomaly detection is not very fre-
quently researched. Most proposed methods work by using discovery
algorithms to mine a reference model from the event log [4] and then
using it for conformance checking to detect anomalous behavior. The
bigger part of these methods relies on a clean dataset to work correctly.
Unfortunately, this violates our assumptions, as the data coming from
the PAISs will naturally contain anomalies.

Recently there has been some research on approaches that can deal
with noisy event logs. Through the use of special discovery algorithms,
that can deal with noise and infrequent behavior in the process, the
approach from [4] can be refined to work with noisy logs [3]. The
authors in [3] give three different algorithms in their paper. Within
this work we will compare our approach to two of the proposed
approaches.

A more recent publication proposes the use of likelihood graphs
to analyze business process behavior [5]. Specifically, the authors

66 analyzing business process anomalies using autoencoders

describe a method to extend the likelihood graph to include event
attributes. This method works both on noisy event logs and includes
important characteristics of the process itself by including the event
attributes. We will also compare our method to the method from [5]
in the evaluation section.

A review of classic anomaly detection methodology can be found
in [32]. Here, the authors describe and compare many methods that
have been proposed over the last decades. Another elaborate summary
on anomaly detection in discrete sequences is given by Chandola in
[7]. The authors differentiate between five different basic methods for
novelty detection: probabilistic, distance-based, reconstruction-based,
domain-based, and information-theoretic novelty detection.

Probabilistic approaches try to estimate the probability distribution
of the normal class, and thus can detect anomalies as they were sam-
pled from a different distribution. In speech recognition [23], hidden
Markov models (HMMs) [33, 34] are a popular choice for modeling
sequential data. HMMs can also be used for anomaly detection as
shown in [43] and [21], where they are used successfully for system
intrusion detection. However, as Chandola pointed out in [8], the
performance of such HMMs strongly depends on the fact that the raw
data can be sufficiently modeled by a Markov process.

Another important probabilistic technique is the sliding window
approach as proposed in [15], where it is used for intrusion detection.
In window based anomaly detection, every window of a sequence is
assigned an anomaly score. Then the anomaly score of the sequence
can be inferred by aggregating the window anomaly scores. Recently,
Wressnegger et al. used this approach for intrusion detection and give
an elaborate evaluation in [45]. While being inexpensive and easy to
implement, sliding window approaches show a robust performance in
finding anomalies in sequential data, especially within short regions
of the data [7].

Distance-based novelty detection does not require a cleaned dataset,
yet it is only partly applicable for process traces, as anomalous traces
are usually very similar to normal ones. A popular distance-based ap-
proach is the one-class support vector machine (OC-SVM). Schölkopf
et al. [37] first used support vector machines [9] for anomaly detection.
Tax, in his PhD thesis [40], gives a sophisticated overview over one-
class classification methods, also mentioning the OC-SVM. OC-SVMs
have shown to be successful in the field of intrusion detection as
demonstrated by [19].

Reconstruction-based novelty detection (e.g., neural networks) is
similar to the aforementioned approaches in [17, 22]. However, training
a neural network usually also requires a cleaned dataset. Nevertheless,
we will show that our approach works on the noisy dataset by taking
advantage of the skewed distribution of normal data and anomalies,
as demonstrated in [14].

3 dataset 67

Domain-based novelty detection requires domain knowledge, which
violates our assumption of no prior knowledge about the process.
Information-theoretic novelty detection defines anomalies as the exam-
ples that most influence an information measure (e.g., entropy) on the
whole dataset. Iteratively removing the data with the highest impact
will yield a cleaned dataset, and thus a set of anomalies.

The approach within this paper is highly influenced by the works in
[12, 17, 22], in which they propose the use of replicator neural networks
[18] for anomaly detection, i.e., networks that reproduce their input,
which are based on the idea of autoencoders from [20]. Autoassociative
neural network encoders use a similar concept and have been used
to model the nominal behavior of complex systems [41]. They have
also been used for residual generation in [11], demonstrating that
these models can also model behavior not directly observed in the
training data, which increases generalization. A comprehensive study
of replicator neural networks for outlier detection can be found in [44].
The approaches from [11, 12, 17, 22, 41], however, do not work well
with variable length input. In our approach, we address this problem
by using a padding technique. We opted to use a neural network based
approach, for recent achievements in machine translation and natural
language processing indicate that neural networks are an excellent
choice when modeling sequential data [10, 26].

The main distinction between all other methods and the proposed
approach is that it can be used to identify which exact event and
furthermore which attribute characteristic is the cause of the anomaly.
The only other approach that can deal with event attributes is the
method from [5]. However, it can not deal with long-term dependen-
cies, because it works on a general likelihood graph, which disregards
the past events when calculating the probability of an event occurring
at a specific point in the process. Our approach can deal both with the
attributes and with non-local dependencies in the logs.

3 dataset

PAISs keep a record of almost everything that happened during the
execution of a business process. This information can be extracted
from the systems in form of an event log. Event logs are the most
common data structure when working with process data from PAISs,
especially in the field of process mining.

3.1 Event logs

An event log consists of traces, each consisting of the activities that
have been executed. Table P2.1 shows an excerpt of such an event
log. In this case, it is representative for the execution of a procure-
ment process. Notice that an event log must consist of at least three

68 analyzing business process anomalies using autoencoders

Table P2.1: Example event log of a procurement process

Trace ID Timestamp Activity User

1 2015-03-21 12:38:39 PR Created Roy
1 2015-03-28 07:09:26 PR Released Earl
1 2015-04-07 22:36:15 PO Created James
1 2015-04-08 22:12:08 PO Released Roy
1 2015-04-21 16:59:49 Goods Receipt Ryan

2 2015-05-14 11:31:53 SC Created Marilyn
2 2015-05-21 09:21:26 SC Purchased Emily
2 2015-05-28 18:48:27 SC Approved Roy
2 2015-06-01 04:43:08 PO Created Johnny

columns: a trace ID, to uniquely assign an executed activity to a trace;
a timestamp, to order the activities within a trace; and an activity
label, to distinguish the different activities. Optionally, the event log
can contain so called event attributes. In the example event log from
Tab. P2.1, the user column is such an event attribute, indicating which
user has executed the respective activity.

3.2 Process model generation

To create a test setting for our approach we randomly generated
process models and then sampled event logs from them. The process
models were generated using PLG2 [6], a process simulation and
randomization tool. Each process model has a different complexity,
with regard to the number of possible activities and the branching
factors (i.e., out-degrees). The complexity of a process model can also
be measured by the number of possible variants. A variant is a valid
path through the complete process model from a valid start activity
to a valid end activity. Table P2.2 shows the process models with
their corresponding complexities. Note that the Wide process model
was specifically generated to evaluate the approach on a dataset that
has low complexity in terms of the number of variants, but a high
branching factor.

Now, we generated authentic event logs from these process models
by randomly sampling variants of the process with replacement. In real
process models these variants are not equally distributed. Therefore,
we randomly generated a distribution for the variants each time we
were sampling an event log. These probabilities were sampled from a
normal distribution with µ = 1 and σ = 0.2, and then normalized so
they sum up to 1. Furthermore, we randomly generated a set of users
in the process (between 10 and 30 different users per process). Then

3 dataset 69

Table P2.2: Overview over the 5 different randomly generated process models
and the P2P process

Model #Nodes #Edges #Variants Max length Out-degree

P2P 14 16 6 9 1.14

Small 22 26 6 10 1.18

Medium 34 48 25 8 1.41

Large 44 56 28 12 1.27

Huge 56 75 39 11 1.34

Wide 36 53 19 7 1.47

we sampled subsets of the user set for each activity, denoting which
users are permitted to execute the activity. The number of possible
users per activity lies between 1 and 5. After computing all variants,
we also introduced a long-term dependency for the user variable in
each variant at random. Therefore, we randomly chose two activities
in each variant that must be executed by the same user.

3.3 Example process

In addition to the five randomly generated models, we also used a
simplified version of a purchase to pay (P2P) process model as is
depicted by the BPMN model in Fig. P2.1. This model was mainly
created for purposes of evaluation, as it features interpretable activity
names unlike the randomly generated models. The resulting event log
for the P2P model was generated in the same fashion as those of the
randomly generated models using the same parameters as mentioned
above. Notice the possible users for each activity as indicated by the
italic names in Fig. P2.1.

3.4 Anomalies

To introduce noise into the event logs we randomly applied mutations
to a fixed percentage of the traces in the event log. These mutations
represent the anomalies in the data. Each trace can be affected by one
of the following five anomalies (we will use their respective names
from now on):

1. Skipping: A necessary activity has not been executed,

2. Switching: Two consecutive events have been executed in the
wrong order,

3. Reworking: An activity has been executed twice in a row,

70 analyzing business process anomalies using autoencoders

PR Created
James, Johnny

SC Created
Emily

SC Purchased
Roy, James

SC Approved
Earl, Emily

PR Released
Ryan, Johnny

PO Created
Earl

PO Released
Johnny

PO Dec.
James, Amanda

PO Inc.
Ryan, Craig

Goods Receipt
Craig

Invoice
Howard, Brian

Payment
Craig

Figure P2.1: BPMN model of a simplified purchase to pay process; the italic
names represent the users allowed to execute that activity

4. Incorrect user: A user has executed an activity to which he was
not permitted,

5. Incorrect LTD: The wrong user has executed the long-term de-
pendent activity.

Compared to our work in [30], we have added two more anomalies
that we found occur very frequently in real-life scenarios. A classic
problem in real-life business processes is the segregation of duty. For
example, a user that approves a purchase order must not be the same
user that has initially created it. Many anomalies in real-life processes
are related to the users executing the events, which is why we included
this event attribute here.

Our way of generating the artificial event logs is very similar to
the methods of Bezerra [3] and Böhmer [5]. One difference is, that
we also introduce anomalies affecting event attributes. We will make
these datasets, the generation algorithm, and our implementation of
the algorithm publicly available. For more information on this, please
consider contacting the corresponding author.

For each process model, we randomly generated a set of permitted
users for each activity. We did this ten times, resulting in 60 different

4 method 71

process models. For each of these 60 process models, we then gener-
ated 10 event logs, each featuring a different percentage of anomalies
and a random variant distribution. The percentage of anomalous traces
in the training log ranged from 10%, 20%, up to 100%. That is, we gen-
erated training logs containing 10% anomalies and 90% normal traces,
as well as logs with 80% anomalies and 20% normal traces, and so on
up to a log which entirely consists of anomalies, i.e., 100%. In total, we
generated 600 different artificial event logs. Each event log consisted
of 12 500 traces. For each event log we created a separate test event
log containing 2 500 traces featuring the same variant distribution and
users.

3.5 Real-life event logs

In addition to the artificial event logs we also generated training
and test event logs from the public datasets of the Business Process
Intelligence Challenge 2012

1 and 2017
2, which we will refer to as

BPIC12 and BPIC17 respectively. BPIC17 is an updated version of
BPIC12, representing the same loan application process. However,
BPIC17 contains data from the last 5 years, after the company has
introduced a new workflow system.

Similarly to the artificial logs, we used the event logs as a basis and
randomly applied anomalies to a fixed percentage of traces in the logs.
As these logs did not feature a user attribute we did not include the
Incorrect user and Incorrect LTD anomalies. For BPIC12 and BPIC17 we
generated training sets featuring between 10% and 100% anomalies, as
was done for the artificial logs. We also generated separate test sets for
both logs, resulting in 100 real-life training event logs with artificial
anomalies.

4 method

Recently, artificial neural networks have gotten a lot of attention by
outclassing the state-of-the-art methods in many domains such as
object recognition in images [25] or machine translation [2]. Before we
introduce our method, we first want to give a brief overview over the
neural network architecture we employed.

A feed-forward neural network consists of multiple layers, each
containing many neurons. Every neuron in one layer is connected to
all neurons in the preceding and succeeding layers. These connections
have weights attached to them, which can be used to control the
impact a neuron in one layer has on the activation of a neuron in
the next layer. To calculate the output of a neuron we apply a non-
linear activation function (a popular choice is the rectifier function

1 http://www.win.tue.nl/bpi/doku.php?id=2012:challenge
2 http://www.win.tue.nl/bpi/doku.php?id=2017:challenge

72 analyzing business process anomalies using autoencoders

f(x) = max(0, x) [29]) to the sum over all outputs of the neurons
in the previous layer times their respective connection weights. The
initialization of these weights is important, as pointed out in [16], for
no two weights within one layer must be initialized to the same value.
Then, the back-propagation algorithm [36] is used to iteratively tune
the weights, so that the neural network produces the desired output,
or a close enough approximation of it.

In a classification setting, the desired output of the neural network is
the class label. However, a neural network can also be trained without
the use of class labels. One such type of neural network is called an
autoencoder. Instead of using class labels, we are using the original
input as the target output when training the autoencoder. Obviously,
a neural network, if given enough capacity and time, can simply learn
the identity function of all examples in the training set. To overcome
this issue, some kind of capacity limitation is needed. This can be
done by forcing one of the autoencoder’s hidden layers to be narrow
(i.e., narrower than the input dimension), thereby not allowing the
autoencoder to learn the identity function. Another common way
of limiting the capacity is to distribute additive Gaussian noise over
the input vector of the autoencoder. Thus, the autoencoder—even if
repeatedly trained on the same trace—will always receive a different
input. We use a combination of both these strategies for our method.

4.1 Setup

To train an autoencoder on the generated event logs, we first must
transform them. The first step is to encode each activity and user using
a one-hot encoding. Each activity is encoded by an n-dimensional
vector, where n is the number of different activities encountered in
the event log. To encode one activity, we simply set the corresponding
dimension of the one-hot vector to a fixed value of one, while setting all
the other dimensions to zero. We use the same method to encode the
user event attribute. This results in a one-hot vector for the activity and
another for the user for each event in a trace. Now we combine these
vectors by concatenating them into one vector. If the activity vectors
are a1,a2, ...,an and the respective user vectors are u1,u2, ...,un, the
resulting vector will be a1‖u1‖a2‖u2‖...‖an‖un, where ‖ denotes
concatenation.

Note that another option of dealing with variable size traces is
dividing the traces into subsequences of equal size (n-grams). However,
using n-grams of events loses the connection between distant events,
if the n-gram size is too narrow. Consequently, the system is unable
accurately model long-term dependencies between events. Therefore,
we chose to use the one-hot encoding method.

Because feed-forward neural networks have a fixed size input, we
must apply one more step of pre-processing. To force all encoded trace

4 method 73

Noise

Event log ReplicationAutoencoder

Figure P2.2: Autoencoder is trained to replicate the traces in the event log
after the addition of Gaussian noise

vectors to have the same size we pad all vectors with zeros, so each
vector has the same size as the longest vector (i.e., the longest trace) in
the event log.

Suppose an event log consists of 10 different activities, 20 different
users, and the maximum length of all traces in the event log is 12. The
longest trace within the event log will have a size of (10+20) ·12 = 360.
Therefore, we must pad all shorter vectors with zeros so they reach
size 360.

Using the one-hot encoded event log we can train the autoencoder
with the back-propagation algorithm [36], using the event log both
as the input and the label. Figure P2.2 shows a simplified version of
the architecture. The special noise layer adds Gaussian noise before
feeding the input into the autoencoder. This layer is only active during
training. Now the autoencoder is trained to reproduce its input, that is,
to minimize the mean squared error between the input and its output.

We trained on mini batches of size 50 for 200 epochs, allowing early
stopping when the loss on the validation set did not decrease within
the last 10 epochs. We used the Adam optimizer [24], which utilizes
the momentum technique [39]. We set the optimizer parameters to
β1 = 0.9, β2 = 0.99 and ε = 10−8. The learning rate was set to 0.001
initially, and was scaled by a factor of 0.1 when the validation loss
did not improve within the last 5 epochs. Additionally, we used a
dropout of 0.5 between all layers, as suggested in [38]; the additive
noise applied to the input was sampled from a Gaussian distribution
with µ = 0 and σ = 0.1. Each autoencoder consists of an input and an
output layer with linear units, and 2 hidden layers with rectified linear
units. These training parameters were used for each of the different
event logs, but the size of the hidden layer was adapted depending on
the event log, i.e., the number of neurons in the hidden layer was set
to be half the size of the input layer. For the real-life BPIC event logs
we only used 1 hidden layer.

74 analyzing business process anomalies using autoencoders

4.2 Classifying traces

After training the autoencoder, it can be used to reproduce the traces
in the test event logs, but without applying the noise. Now, we can
measure the mean squared error between the input vector and the
output vector to detect anomalies in the event log. Because the distri-
bution of normal traces and anomalous traces in the event log is one
sided, we can assume that the autoencoder will reproduce the normal
traces with less reproduction error than the anomalies. Therefore, we
can define a threshold τ, where if the reproduction error of a trace
succeeds this threshold τ, we consider it an anomaly. To set the thresh-
old we use the mean reproduction error over the training dataset and
apply a scaling factor α. We define the threshold as in Equation P2.1,
where ei is the reproduction error for trace i, and n the number of
traces in the dataset.

τ =
α

n

n∑
i=1

ei (P2.1)

4.3 Classifying events and attributes

We have described how to detect anomalous traces in the event log;
now we want to refine this method. Not only can we detect that a
trace is anomalous, but also which event in the trace influences the
reproduction error the most. Hence, we must change our calculation
of the reproduction error from trace based to event based. Up until
now, we calculated the reproduction error as the mean squared error
between the entire one-hot encoded input and output sequence of the
autoencoder. However, we can also consider the mean squared error
for every event in the sequence separately. Furthermore, we can also
compute the error for each activity and user separately.

Let us consider the example input vector i from Equation P2.2. We
can divide the vector into the corresponding subvectors, as indicated
by the curly braces. This gives us a1,u1,a2,u2, ...,an,un. Now we can
split the reproduced version of i (i.e., the output vector) identically,
obtaining â1, û1, â2, û2, ..., â3, û3.

i = [00001︸ ︷︷ ︸
a1

0100︸︷︷︸
u1

10000︸ ︷︷ ︸
a2

0010︸︷︷︸
u2

... 01000︸ ︷︷ ︸
an

0100︸︷︷︸
un

] (P2.2)

The error E for an activity vector ai is then given by the mean squared
error between ai and âi. For a user vector ui the method works
analogously. Thus, we can compute the error for all activity vectors
and all user vectors over the whole dataset. Notice that this works for
any number of event attributes.

The benefit is that we can distinguish between activity related
anomalies and user related anomalies. We will elaborate on this in the
evaluation section below.

5 evaluation 75

5 evaluation

We evaluated the autoencoder approach (DAE) on all 700 event logs
and compared it to state-of-the-art anomaly detection methods men-
tioned [7]. Namely: a sliding window approach named t-STIDE [43];
the one-class SVM approach (OC-SVM); and the Markovian approach
using a hidden Markov model (HMM) [43]. In addition to that, we
also compared our approach to two approaches proposed in [3], the
Naive algorithm and the Sampling algorithm. Lastly, we compared
our approach to the most recent approach proposed in [5], using an
extended likelihood graph (Likelihood). As a baseline we provide the
results of a random classifier.

For the OC-SVM we relied on the implementation of the scikit-learn
package for Python [31] using an RBF kernel of degree 3 and a ν = 0.6.
The HMM approach was implemented using the hmmlearn package
for Python. We implemented the t-STIDE algorithm ourselves using a
window size k = 4. The hyperparameters for both approaches were
optimized using grid search. The Naive, Sampling, and Likelihood
methods were implemented as described in the original papers.

At last, we used our own implementation of the t-STIDE method
which we will refer to as t-STIDE+. The classic t-STIDE approach only
takes into account the activities of an event log, but not the attributes.
To make use of the attributes we must adapt the original method.

A window of size k is a tuple of k events, where each event consists
of a tuple of the activity name a and the corresponding user u. Let us
consider an example window size of three. A window w is defined as
w = {(a1,u1), (a2,u2), (a3,u3)}. The approach works by employing
a frequency analysis over all windows of size k in the training set,
and then comparing the relative frequencies of all windows in the
test set to the corresponding ones from the training set. Whenever a
window’s relative frequency is significantly lower than its frequency
in the training set, the trace containing this window is considered
an anomaly. We evaluated the t-STIDE and the t-STIDE+ approach
on all datasets and for all feasible choices of k, i.e., k was chosen
to lie between 2 and the maximum trace length in the dataset. The
evaluation showed that k = 4 performed the best for both approaches.

We used the threshold technique from Equation P2.1 for all ap-
proaches except the OC-SVM, for the scikit-learn implementation
automatically optimizes the threshold. For the other approaches, we
optimized the scaling factor α by an exhaustive grid search. One re-
quirement when setting α was that α must be the same for all event
logs, i.e., we strive for a general setting of α.

We also considered isolation forests [27, 28] for our experiments;
however, this approach relies on setting a contamination parameter
indicating the noise level of the data, rendering the approach unusable
as we assume no prior knowledge about the noise level.

76 analyzing business process anomalies using autoencoders

P2P Small Medium Large Huge Wide BPIC12 BPIC17
Dataset

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F 1

Baseline
DAE
t-STIDE+
t-STIDE
OC-SVM
HMM
Likelihood
Sampling
Naive

Figure P2.3: F1 score by process model and method

Table P2.3: Results of the experiments for all evaluated methods for each
process model; best results are shown in bold typeface

P2P Small Medium Large Huge Wide

Baseline 0.44 ± 0.01 0.44 ± 0.01 0.44 ± 0.01 0.44 ± 0.01 0.44 ± 0.01 0.44 ± 0.01

HMM [43] 0.47 ± 0.02 0.46 ± 0.01 0.46 ± 0.01 0.45 ± 0.02 0.47 ± 0.01 0.45 ± 0.02

OC-SVM [37] 0.72 ± 0.06 0.72 ± 0.05 0.70 ± 0.05 0.65 ± 0.04 0.68 ± 0.05 0.72 ± 0.05

Naive [3] 0.61 ± 0.01 0.62 ± 0.01 0.61 ± 0.03 0.62 ± 0.01 0.62 ± 0.02 0.62 ± 0.02

Sampling [3] 0.47 ± 0.03 0.48 ± 0.05 0.48 ± 0.06 0.50 ± 0.06 0.50 ± 0.06 0.48 ± 0.05

t-STIDE [43] 0.61 ± 0.01 0.61 ± 0.03 0.62 ± 0.02 0.62 ± 0.01 0.63 ± 0.01 0.62 ± 0.02

Likelihood [5] 0.77 ± 0.17 0.75 ± 0.14 0.73 ± 0.15 0.62 ± 0.10 0.68 ± 0.11 0.75 ± 0.17

t-STIDE+ 0.85 ± 0.09 0.85 ± 0.08 0.82 ± 0.09 0.82 ± 0.07 0.81 ± 0.05 0.83 ± 0.11

DAE 0.87 ± 0.09 0.90 ± 0.07 0.85 ± 0.08 0.88 ± 0.07 0.84 ± 0.08 0.86 ± 0.08

We evaluated the 9 methods on all 600 artificial, as well as the 100

real-life event logs. In total, we evaluated 6 300 models.

5.1 Experiment results

Figure P2.3 shows the F1 score of all methods for each process model.
The F1 score per model was calculated using the macro average for
each model. Then all F1 scores were averaged over all models for the
corresponding process model. A more detailed evaluation is given
in Tab. P2.3 and Table P2.4, which show the F1 scores and their
standard deviation for each process model, best results being shown
in bold typeset. Notice that the DAE approach performs best in all
settings, closely followed by t-STIDE+, whereas the other approaches
perform significantly worse. Another interesting point is that the
HMM approach performs no better than the random baseline, which
supports Chandola’s claim that HMMs are not a good method for
anomaly detection in sequential data [8]. Also the Sampling approach
performs only slightly better than chance. However, this is due to the
fact that we average all results over all training sets including training
event logs with higher share of anomalies. In Fig. P2.4 we can see that
the Sampling method works only for low noise levels.

5 evaluation 77

Table P2.4: Results on the BPIC event logs; best results are shown in bold
typeface

BPIC12 BPIC17

Baseline 0.46 ± 0.01 0.47 ± 0.01

HMM [43] 0.46 ± 0.00 0.51 ± 0.00

OC-SVM [37] 0.58 ± 0.07 0.71 ± 0.04

Naive [3] 0.61 ± 0.12 0.75 ± 0.12

Sampling [3] 0.41 ± 0.00 0.42 ± 0.00

t-STIDE [43] 0.68 ± 0.14 0.81 ± 0.02

Likelihood [5] 0.61 ± 0.12 0.75 ± 0.12

t-STIDE+ 0.68 ± 0.14 0.81 ± 0.02

DAE 0.72 ± 0.08 0.82 ± 0.05

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% anomalous traces in training set

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F 1

Baseline
DAE
t-STIDE+
t-STIDE
OC-SVM
HMM
Likelihood
Sampling
Naive

Figure P2.4: F1 score by percentage of anomalous traces in the training set

Overall, we can conclude that the DAE performs better than the
state-of-the-art methods in all of our test settings.

5.2 The impact of the noise level

As described before, we used different noise levels when generating
the datasets, by generating training sets which included between 10%
and 100% anomalous traces. We use the word noise to refer to the
share of traces in the training set which are anomalous. Notice that an
anomalous trace still contains normal subsequences of events. Only a
small part of the trace is affected by the anomaly in our test settings.
Hence, there is still normal behavior present in parts of each trace,
even when each trace has been affected by an anomaly, as in the
100% case. We specifically included these harsh noise levels to test the
different approaches on their ability to generalize. We want to point
out, however, that noise levels greater than 50% are extremely unlikely
in real-world settings.

78 analyzing business process anomalies using autoencoders

One can also argue that a noise level greater than 50% is illogical,
because the classification task just gets inverted; hence, the anomaly
class becomes the normal class. This is not true for the same reason
as before. As we are dealing with sequential data and many different
events in sequence (i.e., a trace) are assigned one label, there are
still events that carry information about the normal behavior of the
process. And in most cases the normal events in an anomalous trace,
still overpower the anomalous ones. Hence, a noise level of 60% is not
the same as a noise level of 40% with classes inverted.

Figure P2.4 shows the F1 score for all methods for the different noise
levels. Again, we find that the DAE outperforms the other approach
at all noise levels, again closely followed by t-STIDE+.

Notice that the DAE still performs remarkably well, even when
trained on the 100% training set. This is due to its ability to generalize
over multiple traces. The t-STIDE approaches can also generalize over
multiple traces, because they classify based on windows; and the
windows itself can contain a completely valid sequence of events.
These approaches can learn what a normal trace ought to look like,
by combining the knowledge they gathered of normal subsequences
over multiple traces. For the t-STIDE approaches this is obvious, as
the window size is usually smaller than the trace is long; hence, it is
only trained on subsequences in the first place. The DAE, on the other
hand, is trained on the whole trace at once, which makes this level
of generalization much more remarkable and unique among all the
approaches.

5.3 Interpreting the anomalies

An interesting feature of the DAE approach is that it can be used to
detect not only anomalous traces, but also which event or which event
attribute has influenced the reproduction error the most. This can be
done by computing the reproduction error for each event attribute
separately, as described earlier. Figure P2.5 shows 12 example traces
of the P2P test dataset for a DAE trained on a training set with
10% anomalous traces. For clarity, we only show the first 6 events
omitting the remaining events. The cells are colored according to the
reproduction error; the higher the error the darker the color.

As we can clearly see, it is never the whole trace that leads to a high
reproduction error. The DAE succeeds to reproduce the normal parts
of the traces quite well, whereas it fails to reproduce the anomalous
parts. For example, the first two Normal traces are reproduced with
almost no error at all, which is exactly what we expected. Let us now
look at the four examples at the bottom (Incorrect user and Incorrect
LTD). The DAE is remarkably good at detecting incorrect users. Nei-
ther Craig, nor Earl, are permitted to execute the activity PR Created
(cf. Fig. P2.1). Detecting Incorrect LTD works just as fine.

5 evaluation 79

Act. 0 User 0 Act. 1 User 1 Act. 2 User 2 Act. 3 User 3 Act. 4 User 4 Act. 5 User 5 Act. 6 User 6

Incorrect LTD
at 2

Incorrect LTD
at 6

Incorrect user
at 0

Incorrect user
at 0

Reworking
at 2

Reworking
at 0

Switching
2 and 3

Switching
1 and 2

Skipping
at 3

Skipping
at 2

Normal

Normal

PR
Created
0.0000

James
0.0001

PR
Released

0.0000
Ryan

0.0002
PO

Created
0.0000

Amanda
0.1404

PO
Released

0.0000
Johnny
0.0000

Goods
Receipt
0.0000

Craig
0.0000

Invoice
0.0000

Brian
0.0003

Payment
0.0000

Craig
0.0000

PR
Created
0.0000

James
0.0001

PR
Released

0.0000
Johnny
0.0001

PO
Created
0.0000

Earl
0.0000

PO Dec.
0.0001

Amanda
0.0005

PO
Released

0.0000
Johnny
0.0000

Goods
Receipt
0.0000

Craig
0.0000

Invoice
0.0000

Ryan
0.1394

PR
Created
0.0012

Earl
0.0963

PR
Released

0.0010
Ryan

0.0005
PO

Created
0.0006

Earl
0.0003

PO Inc.
0.0002

Craig
0.0003

PO
Released

0.0002
Johnny
0.0002

Goods
Receipt
0.0003

Craig
0.0003

Invoice
0.0002

Craig
0.0004

PR
Created
0.0013

Craig
0.0969

PR
Released

0.0010
Ryan

0.0005
PO

Created
0.0007

Earl
0.0003

PO Dec.
0.0003

Amanda
0.0003

PO
Released

0.0002
Johnny
0.0002

Goods
Receipt
0.0002

Craig
0.0003

Invoice
0.0001

Amanda
0.0005

PR
Created
0.0030

James
0.0047

PR
Released

0.0025
Ryan

0.0244
PO

Created
0.0051

Earl
0.0042

PO
Created
0.0377

Earl
0.0245

PO Dec.
0.0046

James
0.0074

PO
Released

0.0004
Johnny
0.0002

Goods
Receipt
0.0004

Craig
0.0020

PR
Created
0.0005

Johnny
0.0012

PR
Created
0.0174

Johnny
0.0223

PR
Released

0.0033
Ryan

0.0301
PO

Created
0.0018

Earl
0.0004

PO Inc.
0.0005

Ryan
0.0008

PO
Released

0.0004
Johnny
0.0002

Goods
Receipt
0.0002

Craig
0.0028

SC
Created
0.0004

Emily
0.0005

SC Purch
ased

0.0018
James
0.0009

PO
Created
0.0612

Emily
0.0006

SC
Approved

0.0807
Earl

0.0628
PO

Released
0.0020

Johnny
0.0017

Goods
Receipt
0.0001

Craig
0.0000

Invoice
0.0000

Howard
0.0006

SC
Created
0.0178

Emily
0.0211

SC
Approved

0.0554
Earl

0.0611
SC Purch

ased
0.0578

James
0.0696

PO
Created
0.0071

Emily
0.0045

PO
Released

0.0006
Johnny
0.0004

Goods
Receipt
0.0003

Craig
0.0003

Invoice
0.0003

Howard
0.0010

PR
Created
0.0001

Johnny
0.0000

PR
Released

0.0001
Johnny
0.0001

PO
Created
0.0001

Earl
0.0762

PO
Released

0.0056
Johnny
0.0058

Goods
Receipt
0.0009

Craig
0.0007

Invoice
0.0007

Amanda
0.1010

Payment
0.0003

Craig
0.0005

PR
Created
0.0007

James
0.0001

PR
Released

0.0021
Johnny
0.0018

PO Dec.
0.1233

Amanda
0.1253

PO
Released

0.0004
Johnny
0.0002

Goods
Receipt
0.0000

Craig
0.0002

Invoice
0.0001

Amanda
0.1074

Payment
0.0001

Craig
0.0000

SC
Created
0.0000

Emily
0.0001

SC Purch
ased

0.0000
Roy

0.0001
SC

Approved
0.0000

Earl
0.0002

PO
Created
0.0000

Earl
0.0000

PO Inc.
0.0001

Craig
0.0003

PO
Released

0.0000
Johnny
0.0000

Goods
Receipt
0.0000

Craig
0.0000

PR
Created
0.0000

James
0.0001

PR
Released

0.0000
Ryan

0.0001
PO

Created
0.0000

Earl
0.0000

PO Inc.
0.0000

Craig
0.0002

PO
Released

0.0000
Johnny
0.0000

Goods
Receipt
0.0000

Craig
0.0000

Invoice
0.0000

Craig
0.0001

Figure P2.5: DAE error heatmap, trained on a P2P event log with 10% anoma-
lous traces

Moving to the three anomalies from the original paper, we want
to recall one problem that we have observed during the evaluation
in [30]. Whenever an activity is skipped or reworked, the remaining
subsequence is shifted by one to the left, or the right respectively. In
[30] this led to the effect that all activities after the initial skipped (or
reworked) activity had high reproduction error. This phenomenon
does not occur as severely in the extended approach, but it is still no-
ticeable. We assume that the additional hidden layers provide enough
abstraction so the DAE can adapt to this problem.

Overall, we can see that the approach is very precise in narrowing
down the exact cause of the anomaly. In fact, this approach can be
used to perform an automatic root cause analysis on the detected
anomalies, without the need of an extra processing step. Most other
anomaly detection algorithms can only be used to divide the normal
examples from the anomalies, but then an additional algorithm has
to be used to, for instance, cluster the anomalies. Another important
point about this is that it allows to follow what the DAE has learned
as well as to interpret it. Usually, not being interpretable is a notorious
problem for neural network based approaches. Not in this case.

80 analyzing business process anomalies using autoencoders

5.4 Discussion

At last we want to point out some interesting observations. You might
notice that in the two Skipping examples the user at index 5, Amanda,
produces a high reproduction error. This is due to the fact that this
event has a long-term dependency to an earlier event. In the first case
the event is connected to the PO Decreased event, in the second one
the connected event is the event that has been skipped. Now that the
trace has, in part, been shifted due to the skipping, the original event
from index 6 is now at index 5. Essentially, we have detected a fluke
anomaly, that was not supposed to be there, yet the DAE approach
has found it, demonstrating the feasibility of the approach.

This indicates, as already mentioned in [30], that the DAE is sensitive
towards the actual position of an event within a trace, which also
becomes apparent in the second Skipping example. The event PO
Created is wrong, yet the DAE reproduces it correctly. This is due to
the fact the PO Created can be correct here when the trace starts with
the SC Created event.

Furthermore, we still observe some cross-talk between adjacent
events. If we inspect the first Switching example, we notice that SC
Approved and SC Purchased have been switched, as correctly identified
by the DAE. However, the first event also produces a high reproduction
error, albeit being correct at that location. This error, compared to the
error at indices 2 and 3, is significantly lower.

Table P2.5 provides the average F1 score of the approaches when
classifying traces, events, and attributes respectively. When classifying
attributes we classify the activity and the user separately, whereas
when classifying events we do not separate the attributes. Therefore,
we also produced labels indicating anomalous and normal event
attributes, when generating the datasets. Any event attribute that had
not been affected by any of the anomalies, has been labeled normal,
whereas all other attributes have been labeled as anomalous. An
event is an anomalous when any of its attributes is anomalous and
similarly a trace is anomalous when any of its events is anomalous.
Consequently, we can now calculate the performance of the DAE
based on single events.

Sampling, t-STIDE, and t-STIDE+ can all also naturally be used to
classify events. Apart from DAE, only t-STIDE+, due to our adaption
of the algorithm, can also be used to classify single attributes. This
can be done, for instance, by assigning the specific window anomaly
scores to the respective last event or attribute in the window. Sampling
relies on a conformance check, which per definition gives a per event
resolution. Table P2.5 shows that the DAE outperforms the other
approaches in all three categories.

We can conclude that this approach can discover the special char-
acteristics of anomalies in an otherwise unknown process, while still

6 conclusion 81

Table P2.5: Results of the experiments for the anomalous event classifier per
label and process model; best results are shown in bold typeface

Resolution Method Average Normal Anomaly

Traces Baseline 0.44 ± 0.01 0.25 ± 0.01 0.62 ± 0.01

HMM [43] 0.46 ± 0.02 0.17 ± 0.06 0.75 ± 0.05

OC-SVM [37] 0.70 ± 0.06 0.51 ± 0.09 0.89 ± 0.05

Naive [3] 0.62 ± 0.02 0.49 ± 0.02 0.74 ± 0.02

Sampling [3] 0.48 ± 0.05 0.11 ± 0.18 0.86 ± 0.09

t-STIDE [43] 0.62 ± 0.02 0.49 ± 0.02 0.74 ± 0.02

Likelihood [5] 0.72 ± 0.15 0.52 ± 0.26 0.91 ± 0.07

t-STIDE+ 0.83 ± 0.08 0.73 ± 0.12 0.93 ± 0.05

DAE 0.87 ± 0.08 0.78 ± 0.13 0.95 ± 0.03

Events Sampling [3] 0.44 ± 0.17 0.64 ± 0.20 0.25 ± 0.14

t-STIDE [43] 0.66 ± 0.03 0.90 ± 0.02 0.42 ± 0.04

t-STIDE+ 0.61 ± 0.03 0.86 ± 0.03 0.36 ± 0.05

DAE 0.72 ± 0.02 0.92 ± 0.02 0.53 ± 0.04

Attributes t-STIDE+ 0.59 ± 0.03 0.87 ± 0.03 0.31 ± 0.06

DAE 0.70 ± 0.03 0.94 ± 0.01 0.47 ± 0.05

being able to correctly identify normal behavior. All together, we
can say that the DAE approach is the most versatile out of all the
approaches, as it works well in all of our test settings.

6 conclusion

We have presented a novel application of denoising autoencoders to
detect anomalies in business process data. Our approach does not
rely on any prior knowledge about the process itself. Also, we do not
rely on a clean dataset for the training; our approach is trained on
a noisy dataset already containing the anomalies. Furthermore, we
have demonstrated that the autoencoder can also be used to easily
identify the anomalous event(s) or event attribute(s), making results
interpretable with regards to why an anomaly has been classified as
such. Even though we showed that this approach works for business
process data, it can be applied just as easily to other domains with
discrete sequential data.

We conducted a comprehensive evaluation using representative
artificial and real-life event logs. These event logs featured a range
of different anomalies, different complexities in terms of the process
model, variable variant probabilities, random user sets for each activity,
and different shares of anomalous traces, ranging from 10% to 100%.
We compared the autoencoder approach to 7 other state-of-the-art

82 analyzing business process anomalies using autoencoders

anomaly detection methods, as described in [3, 5, 7, 43], showing
that our approach outperforms all other methods in all of the test
settings, reaching an F1 score of 0.87 on average, whereas the second-
best approach, our own adaption of the t-STIDE algorithm reached
0.83. The next best unaltered anomaly detection algorithm, using
an extended likelihood graph, reached an F1 score of 0.72. To our
knowledge, this is the most sophisticated evaluation and comparison
of anomaly detection methodology within the domain of process
intelligence to date.

The biggest advantage of the autoencoder approach over the other
methods is that it allows to analyze the detected anomalies even fur-
ther. Computing the anomaly score for each event attribute individu-
ally, the approach indicates the anomalous attribute very convincingly.
To our knowledge, this method of analyzing the anomalies is novel
to the field of discovery science, as well as business intelligence and
process mining.

The presented approach is an extended version of the approach
from [30]. In the original paper, we postulated that the approach
is susceptible to anomalous behavior in the event log that is very
frequent. However, by showing that the approach works well for all
noise levels, especially the higher noise levels where the exact same
anomaly can occur many times, we have shown this not to be the
case. We also showed, by using skewed variant distributions, that
the autoencoder is robust towards process models with unequally
distributed variants, that is, some variants (i.e., one valid path through
the process model) are more likely than others. By including the user
as an event attribute, we demonstrated that more dimensions can be
added easily to the approach, without a significant loss of accuracy.

As an inspiration for future work on the matter we want to give a
few remarks. Note that for the DAE approach to work in a real-time
setting the trace length of all future traces must be conform with
the input size of the neural network. If traces surpass the input size,
they cannot be fed into the autoencoder. There are some strategies
to compensate for this problem. For example, the autoencoder can
be set up with spare padding input units. Instead of padding all
traces to match the maximum length encountered in the training set,
we pad all traces to an arbitrary length greater than the maximum
length. If we do want to reuse the already trained autoencoder, we
can use another strategy. Every trace that is too long to feed into the
autoencoder is divided into subsequences of exactly the size of the
input. For example, if an autoencoder has input size 10 and a trace
has size 12, we would first feed the sequence starting from the first
event until the tenth event, then the sequence from the second until
the eleventh, and so on. Then we can average the anomaly scores
over all subsequences. Another solution to the problem is the use of

references 83

recurrent neural networks, which can be used to consume sequences
of arbitrary length.

Another problem arises if one of the attributes is set to a value not
encountered during training. Consequently, there will be no dimension
allocated in the one-hot encoding for it. A simple solution to this
problem is to add one extra dimension to the encoding vector which
is used to encode all unknown attribute characteristics. Nevertheless,
the autoencoder should be retrained regularly to counteract concept
drift.

With t-STIDE+ and DAE we have presented two approaches to
detect anomalies in business process data. It is quite costly to train
a neural network on big datasets, because the dataset needs to be
iterated many times. The t-STIDE+ approach has the advantage that it
can be trained with just one iteration.

However, due to the nature of the algorithm, it has some draw-
backs; it cannot capture long-term dependencies if the window size is
too small and if the windows size is too big the accuracy decreases.
Furthermore, it is not trivial to assign an anomaly score to a single
attribute of an event, because anomaly scores are based on windows.
Lastly, it cannot deal with numerical event attributes (e.g., prices),
without resorting to binning or grouping, which is not obvious.

The DAE approach does not have these drawbacks. Numerical data
can easily be modelled by using a single linear input and output neu-
ron for real-valued numbers. Certainly, it does require more training
time, but with the introduction of evermore powerful GPUs and lately
TPUs the trade-off between accuracy and efficiency is not as severe.

Overall, the results presented in this paper suggest that a denoising
autoencoder is a reliable and versatile method for detecting—and
interpreting—anomalies in unknown business processes.

acknowledgements

This project (HA project no. 522/17-04) is funded in the framework
of Hessen ModellProjekte, financed with funds of LOEWE – Landes-
Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz,
Förderlinie 3: KMU-Verbund-vorhaben (State Offensive for the Devel-
opment of Scientific and Economic Excellence).

references

[1] Wil Van der Aalst, Ton Weijters, and Laura Maruster. “Work-
flow mining: Discovering process models from event logs.” In:
Knowledge and Data Engineering, IEEE Transactions on 16.9 (2004),
pp. 1128–1142 (cit. on p. 64).

84 analyzing business process anomalies using autoencoders

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neu-
ral machine translation by jointly learning to align and trans-
late.” In: arXiv preprint arXiv:1409.0473 (2014) (cit. on p. 71).

[3] Fábio Bezerra and Jacques Wainer. “Algorithms for anomaly de-
tection of traces in logs of process aware information systems.”
In: Information Systems 38.1 (2013), pp. 33–44 (cit. on pp. 64, 65,
70, 75–77, 81, 82).

[4] Fábio Bezerra, Jacques Wainer, and Wil MP van der Aalst.
“Anomaly detection using process mining.” In: Enterprise, Business-
Process and Information Systems Modeling. Springer, 2009, pp. 149–
161 (cit. on pp. 64, 65).

[5] Kristof Böhmer and Stefanie Rinderle-Ma. “Multi-perspective
Anomaly Detection in Business Process Execution Events.” In:
OTM Confederated International Conferences" On the Move to Mean-
ingful Internet Systems". Springer. 2016, pp. 80–98 (cit. on pp. 65–
67, 70, 75–77, 81, 82).

[6] Andrea Burattin. “PLG2: Multiperspective Processes Randomiza-
tion and Simulation for Online and Offline Settings.” In: CoRR
abs/1506.0 (2015) (cit. on p. 68).

[7] V. Chandola, A. Banerjee, and V. Kumar. “Anomaly Detection for
Discrete Sequences: A Survey.” In: IEEE Transactions on Knowl-
edge and Data Engineering 24.5 (2012), pp. 823–839 (cit. on pp. 66,
75, 82).

[8] V. Chandola, V. Mithal, and V. Kumar. “Comparative Evaluation
of Anomaly Detection Techniques for Sequence Data.” In: 2008
Eighth IEEE International Conference on Data Mining. 2008, pp. 743–
748 (cit. on pp. 66, 76).

[9] Corinna Cortes and Vladimir Vapnik. “Support-vector networks.”
In: Machine learning 20.3 (1995), pp. 273–297 (cit. on p. 66).

[10] Andrew M Dai and Quoc V Le. “Semi-supervised sequence
learning.” In: Advances in Neural Information Processing Systems.
2015, pp. 3079–3087 (cit. on p. 67).

[11] Ignacio Diaz and Jaakko Hollmén. “Residual generation and
visualization for understanding novel process conditions.” In:
Neural Networks, 2002. IJCNN’02. Proceedings of the 2002 Interna-
tional Joint Conference on. Vol. 3. IEEE. 2002, pp. 2070–2075 (cit. on
p. 67).

[12] Yue Dong and Nathalie Japkowicz. “Threaded ensembles of
supervised and unsupervised neural networks for stream learn-
ing.” In: Canadian Conference on Artificial Intelligence. Springer.
2016, pp. 304–315 (cit. on p. 67).

[13] Marlon Dumas, Wil M Van der Aalst, and Arthur H Ter Hofst-
ede. Process-aware information systems: bridging people and software
through process technology. John Wiley & Sons, 2005 (cit. on p. 64).

references 85

[14] Eleazar Eskin. “Anomaly detection over noisy data using learned
probability distributions.” In: In Proceedings of the International
Conference on Machine Learning. Citeseer. 2000 (cit. on p. 66).

[15] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas
A Longstaff. “A sense of self for unix processes.” In: Security and
Privacy, 1996. Proceedings., 1996 IEEE Symposium on. IEEE. 1996,
pp. 120–128 (cit. on p. 66).

[16] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty
of training deep feedforward neural networks.” In: Aistats. Vol. 9.
2010, pp. 249–256 (cit. on p. 72).

[17] Simon Hawkins, Hongxing He, Graham Williams, and Rohan
Baxter. “Outlier detection using replicator neural networks.” In:
Data warehousing and knowledge discovery. Springer, 2002, pp. 170–
180 (cit. on pp. 66, 67).

[18] Robert Hecht-Nielsen. “Replicator neural networks for universal
optimal source coding.” In: Science 269.5232 (1995), p. 1861 (cit.
on p. 67).

[19] Katherine A. Heller, Krysta M. Svore, Angelos D. Keromytis,
and Salvatore J. Stolfo. “One Class Support Vector Machines for
Detecting Anomalous Windows Registry Accesses.” In: In Proc.
of the workshop on Data Mining for Computer Security. 2003 (cit. on
p. 66).

[20] Geoffrey E Hinton. “Connectionist learning procedures.” In:
Artificial intelligence 40.1 (1989), pp. 185–234 (cit. on p. 67).

[21] R. Jain and N. S. Abouzakhar. “Hidden Markov Model based
anomaly intrusion detection.” In: 2012 International Conference
for Internet Technology and Secured Transactions. 2012, pp. 528–533

(cit. on p. 66).

[22] Nathalie Japkowicz. “Supervised Versus Unsupervised Binary-
Learning by Feedforward Neural Networks.” In: Machine Learn-
ing 42.1 (2001), pp. 97–122 (cit. on pp. 66, 67).

[23] Biing Hwang Juang and Laurence R Rabiner. “Hidden Markov
models for speech recognition.” In: Technometrics 33.3 (1991),
pp. 251–272 (cit. on p. 66).

[24] Diederik Kingma and Jimmy Ba. “Adam: A method for stochas-
tic optimization.” In: arXiv preprint arXiv:1412.6980 (2014) (cit. on
p. 73).

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
genet classification with deep convolutional neural networks.”
In: Advances in neural information processing systems. 2012, pp. 1097–
1105 (cit. on p. 71).

[26] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learn-
ing.” In: Nature 521.7553 (2015), pp. 436–444 (cit. on p. 67).

86 analyzing business process anomalies using autoencoders

[27] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation
forest.” In: Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on. IEEE. 2008, pp. 413–422 (cit. on p. 75).

[28] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation-
based anomaly detection.” In: ACM Transactions on Knowledge
Discovery from Data (TKDD) 6.1 (2012), p. 3 (cit. on p. 75).

[29] Vinod Nair and Geoffrey E Hinton. “Rectified linear units im-
prove restricted boltzmann machines.” In: Proceedings of the 27th
International Conference on Machine Learning (ICML-10). 2010,
pp. 807–814 (cit. on p. 72).

[30] Timo Nolle, Alexander Seeliger, and Max Mühlhäuser. “Unsu-
pervised Anomaly Detection in Noisy Business Process Event
Logs Using Denoising Autoencoders.” In: International Confer-
ence on Discovery Science. Springer. 2016, pp. 442–456 (cit. on
pp. 63, 70, 79, 80, 82).

[31] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python.”
In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830

(cit. on p. 75).

[32] Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel
Tarassenko. “A review of novelty detection.” In: Signal Processing
99 (2014), pp. 215–249 (cit. on p. 66).

[33] Lawrence R Rabiner. “A tutorial on hidden Markov models and
selected applications in speech recognition.” In: Proceedings of
the IEEE 77.2 (1989), pp. 257–286 (cit. on p. 66).

[34] Lawrence Rabiner and B Juang. “An introduction to hidden
Markov models.” In: IEEE ASSP magazine 3.1 (1986), pp. 4–16

(cit. on p. 66).

[35] Anne Rozinat and Wil MP van der Aalst. “Conformance check-
ing of processes based on monitoring real behavior.” In: Informa-
tion Systems 33.1 (2008), pp. 64–95 (cit. on p. 64).

[36] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
“Learning representations by back-propagating errors.” In: Cog-
nitive modeling 5.3 (1988), p. 1 (cit. on pp. 72, 73).

[37] Bernhard Schölkopf, Robert C Williamson, Alexander J Smola,
John Shawe-Taylor, John C Platt, et al. “Support vector method
for novelty detection.” In: NIPS. Vol. 12. 1999, pp. 582–588 (cit.
on pp. 66, 76, 77, 81).

[38] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. “Dropout: A simple way to prevent
neural networks from overfitting.” In: The Journal of Machine
Learning Research 15.1 (2014), pp. 1929–1958 (cit. on p. 73).

references 87

[39] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hin-
ton. “On the importance of initialization and momentum in
deep learning.” In: Proceedings of the 30th international conference
on machine learning (ICML-13). 2013, pp. 1139–1147 (cit. on p. 73).

[40] David Martinus Johannes Tax. “One-class classification: Con-
cept learning in the absence of counter-examples.” PhD thesis.
Technische Universiteit Delft, 2001 (cit. on p. 66).

[41] Benjamin Berry Thompson et al. “Implicit learning in autoen-
coder novelty assessment.” In: Neural Networks, 2002. IJCNN’02.
Proceedings of the 2002 International Joint Conference on. Vol. 3.
IEEE. 2002, pp. 2878–2883 (cit. on p. 67).

[42] Wil Van Der Aalst et al. “Process mining manifesto.” In: Business
process management workshops. Springer. 2011, pp. 169–194 (cit. on
pp. 64, 65).

[43] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter.
“Detecting intrusions using system calls: Alternative data mod-
els.” In: Security and Privacy, 1999. Proceedings of the 1999 IEEE
Symposium on. IEEE. 1999, pp. 133–145 (cit. on pp. 65, 66, 75–77,
81, 82).

[44] Graham Williams, Rohan Baxter, Hongxing He, Simon Hawkins,
and Lifang Gu. “A comparative study of RNN for outlier detec-
tion in data mining.” In: Data Mining, 2002. ICDM 2003. Proceed-
ings. 2002 IEEE International Conference on. IEEE. 2002, pp. 709–
712 (cit. on p. 67).

[45] Christian Wressnegger, Guido Schwenk, Daniel Arp, and Kon-
rad Rieck. “A Close Look on N-grams in Intrusion Detection:
Anomaly Detection vs. Classification.” In: Proceedings of the 2013
ACM Workshop on Artificial Intelligence and Security. AISec ’13.
ACM, 2013, pp. 67–76 (cit. on p. 66).

P3
B I N E T: M U LT I VA R I AT E B U S I N E S S P R O C E S S
A N O M A LY D E T E C T I O N U S I N G D E E P L E A R N I N G

Timo Nolle, Alexander Seeliger, and Max Mühlhäuser
In: Proceedings of the 16th International Conference on Business Process
Management – BPM’18. 2018, pp. 271–287.

abstract : In this paper, we propose BINet, a neural network
architecture for real-time multivariate anomaly detection in
business process event logs. BINet has been designed to handle
both the control flow and the data perspective of a business
process. Additionally, we propose a heuristic for setting the
threshold of an anomaly detection algorithm automatically. We
demonstrate that BINet can be used to detect anomalies in event
logs not only on a case level, but also on event attribute level.
We compare BINet to 6 other state-of-the-art anomaly detection
algorithms and evaluate their performance on an elaborate data
corpus of 60 synthetic and 21 real life event logs using artificial
anomalies. BINet reached an average F1 score over all detection
levels of 0.83, whereas the next best approach, a denoising
autoencoder, reached only 0.74. This F1 score is calculated over
two different levels of detection, namely case and attribute level.
BINet reached 0.84 on case and 0.82 on attribute level, whereas
the next best approach reached 0.78 and 0.71 respectively.

keywords : Business Process Management, Anomaly Detection,
Artificial Process Intelligence, Deep Learning, Recurrent Neural
Networks

1 introduction

Anomaly detection is an important topic for today’s businesses be-
cause its application areas are so manifold. Fraud detection, intrusion
detection, and outlier detection are only a few examples. However,
anomaly detection can also be applied to business process executions,
for example to clean up datasets for more robust predictive analytics
and robotic process automation (RPA). Especially in RPA, anomaly
detection is an integral part because the robotic agents must recognize
tasks they are unable to execute to not halt the process. Naturally,
businesses are interested in anomalies within their processes, as these
can be indicators for inefficiencies, insufficiently trained employees,
or even fraudulent activities. Consequently, being able to detect such

89

90 binet : multivariate business process anomaly detection

anomalies is of great value, for they can have an enormous impact on
the economic well-being of the business.

In today’s digital world, companies rely more and more on process-
aware information systems (PAISs) to accelerate their processes. A
byproduct of such PAISs is an enormous data base that often remains
unused. The log files these systems are storing can be used to extract
valuable information about a process. One key data structure is an
event log, which contains information about what activities have been
executed in a process, who executed it, at which time, etc. These event
logs are a great source of information and are frequently used for
different data mining techniques, such as process mining.

In this paper, we propose BINet (Business Intelligence Network), a
novel neural network architecture that allows to detect anomalies on
attribute level. Often, the actual cause of an anomaly is only captured
by the value of a single attribute. For example, a user has executed an
activity without permission. This anomaly is only represented by the
user attribute of exactly this event. Anomaly detection algorithms must
work on the lowest (attribute) level, to provide the greatest benefit.
BINet has been designed to process both the control flow (sequence of
activities) and the data flow (see [1]).

Due to the nature of the architecture of BINet it can be used for ex-
post analysis, but can also be deployed in a real-time setting to detect
anomalies at runtime. Being able to detect anomalies at runtime is
important because otherwise no counter measures can be undertaken
in time. BINet can be trained during the execution of the process and
therefore can adapt to concept drift. If unseen attribute values occur
during the training, the network can be altered and retrained on the
historic data to include the new attribute value in the future. Dealing
with concept drift is also important as most business processes are
flexible systems. BINet is a recurrent neural network architecture and
therefore can detect point anomalies as well as contextual anomalies
(see [12]). BINet works under the following assumptions.

• No domain knowledge about the process

• No clean dataset (i.e., dataset contains anomalous examples)

• No reference model

• No labels (i.e., no knowledge about anomalies)

In the context of business processes an anomaly is defined as a devi-
ation from a defined behavior, i.e., the business process. An anomaly
is an event that does not typically occur as a consequence of preceding
events, specifically their order and combination of attributes. Anoma-
lies that are attributed to the order of activities (e.g., two activities
are executed in the wrong order) are called control flow anomalies.
Anomalies that are attributed to the attributes (e.g., a user that is

2 related work 91

not part of a certain security group has illicitly executed an event) of
events are called data flow anomalies.

Many anomaly detection algorithms rely on the manual setting of a
threshold value to determine anomalies. We propose an unsupervised
method for automatically setting the threshold using a heuristic.

We compare BINet to 6 state-of-the art anomaly detection methods
and evaluate on a comprehensive dataset of 60 synthetic logs and 20

real-life logs, using artificial anomalies. This work contains four main
contributions.

1. BINet neural network architecture1

2. Automatic threshold heuristic

3. Comprehensive evaluation of state-of-the-art methods

2 related work

In the field of process mining [1], it is popular to use discovery al-
gorithms to mine a process model from an event log and then use
conformance checking to detect anomalous behavior [2, 4, 27]. How-
ever, the proposed methods do not utilize the event attributes, and
therefore cannot be used to detect anomalies on attribute level.

A more recent publication proposes the use of likelihood graphs to
analyze business process behavior [5]. Specifically, the authors describe
a method to extend the likelihood graph to include event attributes.
This method works on noisy event logs and includes important char-
acteristics of the process itself by including the event attributes. A
drawback of this method is that the attributes are checked in a specific
order, thereby introducing a bias towards certain attributes.

A review of classic anomaly detection methodology can be found
in [22]. Here, the authors describe and compare many methods that
have been proposed over the last decades. Another elaborate summary
on anomaly detection in discrete sequences is given by Chandola
in [7]. The authors differentiate between five different basic methods
for novelty detection: probabilistic, distance-based, reconstruction-
based, domain-based, and information-theoretic novelty detection.

Probabilistic approaches estimate the probability distribution of
the normal class, and thus can detect anomalies as they come from
a different distribution. An important probabilistic technique is the
sliding window approach [26]. In window-based anomaly detection,
an anomaly score is assigned to each window in a sequence. Then the
anomaly score of the sequence can be inferred by aggregating the win-
dow anomaly scores. Recently, Wressnegger et al. used this approach
for intrusion detection and gave an elaborate evaluation in [28]. While
being inexpensive and easy to implement, sliding window approaches

1 https://github.com/tnolle/binet

92 binet : multivariate business process anomaly detection

show a robust performance in finding anomalies in sequential data,
especially within short regions [7].

Distance-based novelty detection does not require a clean dataset,
yet it is only partly applicable for process cases, as anomalous cases
are usually very similar to normal ones. A popular distance-based ap-
proach is the one-class support vector machine (OC-SVM). Schölkopf
et al. [23] first used support vector machines [9] for anomaly detection.

Reconstruction-based novelty detection (e.g., neural networks) is
based on the idea to train a model that can reconstruct normal be-
havior but will fail to do so with anomalous behavior. Therefore, the
reconstruction error can be used to detect anomalies [15]. This ap-
proach has successfully been used for the detection of control flow
anomalies [21] as well as data flow anomalies [20] in event logs of
PAISs.

Domain-based novelty detection requires domain knowledge, which
violates our assumption of no domain knowledge about the process.
Information-theoretic novelty detection defines anomalies as the ex-
amples that influence an information measure (e.g., entropy) on the
whole dataset the most. Iteratively removing the data with the highest
impact will yield a cleaned dataset, and thus a set of anomalies.

The core of BINet is a recurrent neural network, trained to predict
the next event and its attributes. The architecture is influenced by the
works of Evermann [10, 11] and Tax [24], who utilized long short-term
memory [13] (LSTM) networks for next event prediction, demonstrat-
ing their utility. LSTMs have been used for anomaly detection in
different contexts like acoustic novelty detection [18] and predictive
maintenance [17]. These applications mainly focus on the detection of
anomalies in time series and not, like BINet, on multivariate anomaly
detection in discrete sequences of events.

The novelty of BINet lies in the tailored architecture for business
processes, including the control and data flow, the scoring system to
assign anomaly scores, and the automatic threshold heuristic.

3 datasets

As a basis for the understanding of the following sections, we first
need to define the terms case, event, log, and attribute. A log consists
of cases, each of which consists of events executed within a process.
Each event is defined by an activity name and its attributes, e.g., a user
who executed the event. We use a nomenclature adapted from [1].

Definition P3.1. Case, Event, Log, Attribute. Let C be the set of all cases
and E be the set of all events. The event sequence of a case c ∈ C, denoted
by ĉ, is defined as ĉ ∈ E∗, where E∗ is the set of all sequences over E. An
event log is a set of cases L ⊆ C. Let A be a set of attributes and V be a set
of attribute values, where Va is the set of possible values for the attribute

3 datasets 93

a ∈ A. Note that |ĉ| is the number of events in case c, |L| is the number of
cases in L, and |A| is the number of event attributes.

To evaluate our method, we generated synthetic event logs from
random process models of different complexities. We used PLG2 [6] to
generate five process models: Small, Medium, Large, Huge, and Wide.
The complexity of the models varies in number of activities, breadth,
and width; for Small to Huge, activities, breadth, and width increase
uniformly, whereas Wide features a much larger breadth than width.
Wide was designed as a challenge because it features a high branching
factor, thereby making it hard to predict the next activity or attribute.
We also use a handmade procurement process model called P2P for
demonstrative purposes because it features human readable activity
names.

Now, we randomly generate logs from these process models, fol-
lowing the control flow and generating attributes for each event. Each
possible sequence of activities was assigned a random probability
sampled from a normal distribution with µ = 1 and σ = 0.2, so that
not all sequences appear equally likely.

To generate the attributes, we first create a set of possible values
Va for each attribute a, with set sizes ranging from 20 to 100. Then
we assign random subsets of Va to each activity, ranging from 5 to
40 in size. When generating a sequence from the process model, we
also sample one possible value for each attribute in each event. While
sampling we enforce long term dependencies between attributes. For
example, 2 of the 10 attribute values of one activity always occur when
1 of the attribute values for a different event occurred earlier in the
sequence; hence, we model causal relationships between attributes
within sequences.

In addition to the synthetic logs we also use the event logs from
the Business Process Intelligence Challenge (BPIC): BPIC12

2, BPIC13
3,

BPIC15
4 and BPIC17

5. Furthermore, we evaluate our method on 10

real-life event logs of procurement processes, made available to us by
a consulting company. Refer to Tab. P3.1 for information about the
datasets.

Like Bezerra [3] and Böhmer [5], we apply artificial anomalies to
the event logs, altering 30 percent of all cases. In addition to the
three anomaly types used in [3, 5], we introduced a new, attribute-
based anomaly. The anomalies are defined as follows: Skip, a necessary
activity has not been executed; Switch, two events have been executed
in the wrong order; Rework, an activity has been executed too many
times; Attribute, an incorrect attribute value is set (e.g., a user does not
have the necessary security level).

2 http://www.win.tue.nl/bpi/doku.php?id=2012:challenge
3 http://www.win.tue.nl/bpi/doku.php?id=2013:challenge
4 http://www.win.tue.nl/bpi/doku.php?id=2015:challenge
5 http://www.win.tue.nl/bpi/doku.php?id=2017:challenge

94 binet : multivariate business process anomaly detection

Table P3.1: Overview showing dataset information

Name. #Logs #Activities #Cases #Events #Attributes

P2P 10 12 12.5K 102K 0–5

Small 10 20 12.5K 111K 0–5

Medium 10 32 12.5K 73K 0–5

Large 10 42 12.5K 138K 0–5

Huge 10 54 12.5K 100K 0–5

Wide 10 34 12.5K 75K 0–5

BPIC12 1 36 13K 262K 0

BPIC13 3 5–13 0.8K–7.5K 2.4K–66K 2–4

BPIC15 5 355–410 0.8K–1.4K 44K–60K 2–3

BPIC17 2 8–26 31K–43K 194K–1.2M 1

Comp 10 7–18 0.9K–56K 4K–180K 1

Notice that we do apply the artificial anomalies to the real-life event
logs as well, which very likely already contain natural anomalies.
Thereby, we can measure the performance of the algorithms on the
real-life logs to demonstrate feasibility while using the synthetic logs
to evaluate accuracy.

When applying the artificial anomalies, we also gather a ground
truth dataset. Whenever the anomaly is of type Skip, Rework, or Switch,
it is a control flow anomaly, and hence the activity name attribute is
marked as anomalous for affected events. If the anomaly is of type
Attribute, the affected attribute is marked as anomalous. Hence, we
obtain ground truth data on attribute level. The ground truth data
can easily be adapted to case level by the following rule: A case is
anomalous if any of the attributes in its events are anomalous.

We generated 10 flavors of each synthetic process model with differ-
ent numbers of attributes (0, 1, 2, 3, and 5) and different sizes for Va,
resulting in 60 synthetic logs. Together with BPIC12 (1 log), BPIC13 (3
logs), BPIC15 (5 logs), and BPIC17 (2 logs), and the 10 procurement
event logs (Comp), the corpus consists of 81 event logs.

4 method

In this section we will describe the BINet architecture and all necessary
steps for the implementation.

4.1 Preprocessing

Due to the mathematical nature of neural networks, we must transform
the logs into a numerical representation. To accomplish this, we encode
all string attribute values. Multiple options are available, such as

4 method 95

integer encoding or one-hot encoding. We chose to use an integer
encoding, which is a mapping Ia : Va → N, mapping all possible
attribute values for an attribute a to a unique positive integer. The
integer encoding is applied to all attributes of the log, including the
activity name.

We will represent the event logs as third-order tensors. Each event
e is a first-order tensor e ∈ RA, with A = |A|, the first attribute
always being the activity name, representing the control flow. Hence,
an event is defined by its activity name and the event attributes. Each
case is then represented as a second-order tensor C ∈ RE×A, with
E = maxc∈L |ĉ|, being the maximum case length of all cases in the log
L. To force all cases to have the same size, we pad all shorter cases with
event tensors only containing zeros, which we call padding events
(these will be ignored by the neural network). The log L can now be
represented as a third-order tensor L ∈ RC×E×A, with C = |L|, the
number of cases in log L. Using matrix index notation, we can now
obtain the second attribute of the third event in the ninth case with
L9,3,2. Now we can define a preprocessor as follows:

Definition P3.2. Preprocessor. Let C, E, and A be defined as above, then a
preprocessor is a mapping P : L→ RC×E×A.

The BINet preprocessor P will encode all attribute values and then
transform the log L into its tensor representation. In the following, we
will refer to the preprocessed log L by F (features), with F = P(L).

4.2 BINet Architecture

BINet is based on a neural network architecture that is trained to
predict the next event, including all its attributes. To model the sequen-
tial nature of event log data, the core of BINet is a recurrent neural
network, using a Gated Recurrent Unit (GRU) [8], an alternative for
the popular long short-term memory (LSTM) [13].

We must distinguish between the control flow and the data flow
aspect of event log data. Therefore, BINet is composed of two parts:
CFNet (control flow) and DataNet (data flow). CFNet is responsible
for predicting the next activity name of the next event, while DataNet
is responsible for predicting all attributes of the next event.

Figure P3.1 shows the internal architecture of BINet. CFNet retrieves
as input all attributes of an event e(t−1) and is trained to predict the
activity name of event e(t), where t is the discrete time step. In the
figure we use fact for the activity name feature and fsupervisor and
fuser as examples for attribute features. Note that the architecture will
grow automatically if more event attributes are present. The output
layer of CFNet is one single softmax layer that outputs a probability
distribution p(t)act over all possible activity names.

96 binet : multivariate business process anomaly detection

𝑓"#$
($&') 𝑓)*+,-./)0-

($&')

GRU GRU

EmbeddingEmbedding

𝑓"#$
($)

Concatenate

BatchNorm

𝒑"#$
($)

Softmax

Embedding

Concatenate

BatchNorm

Softmax

𝒑)*+,-./)0-
($)

BatchNorm BatchNorm

Scoring Scoring

𝑠"#$
($) 𝑠)*+,-./)0-

($)

𝑓"#$
($) 𝑓)*+,-./)0-

($)

CFNet DataNet

𝑓*),-($&')

Embedding

Softmax

𝒑*),-
($)

BatchNorm

Scoring

𝑠*),-
($)

𝑓*),-($)

Figure P3.1: BINet architecture for a log with two event attributes, supervisor
and user

DataNet retrieves as input the activity name of e(t) and the internal
state of the CFNet GRU and is trained to predict all attributes. DataNet
will have a separate softmax layer for each event attribute. Note that
DataNet is being fed the activity name at time t, which is the same
time it is predicting the attributes for. This is crucial because the
attributes of an event strongly depend on the activity. Without this
information, DataNet will predict the attributes for the most likely
next activity (based on the internal state of the CFNet GRU), which
can be different from the actual next activity. Because DataNet is only
predicting the attributes of an event and not its activity, using f(t)act is
legitimate.

BINet is trained on the event log to predict the next event and all its
attributes. After the initial training phase, BINet can now be used for
anomaly detection. This is based on the assumption that an anomalous
attribute will be assigned a lower probability by BINet than a normal
attribute.

The last step of the anomaly detection process is the scoring of the
events. Therefore, we use a scoring function in the last layer of the
architecture. This scoring function receives as input the probability
distribution p(t)a for an attribute a and the actual value of the attribute
f
(t)
a .

A softmax layer outputs a probability distribution over all possible
values. When an event log features 5 different activity names, p(t)act
will be a first-order tensor of size 5. Each of the dimensions of p(t)act

4 method 97

1
act

1
supervisor

1
user

2
act

2
supervisor

2
user

3
act

3
supervisor

3
user

4
act

4
supervisor

4
user

Normal

normalized

Switch
2 and 3

normalized

Wrong
user
at 1

normalized

Create SC
0.54

Amanda
0.88

Iluminada
0.94

Purchase SC
0.03

Roy
0.84

Velda
0.65

Approve SC
0.05

Roy
0.39

Marilyn
0.94

Create PO
0.06

Alyce
0.87

Amanda
0.82

Create SC
0.05

Amanda
0.04

Iluminada
0.02

Purchase SC
0.00

Roy
0.01

Velda
0.00

Approve SC
0.00

Roy
0.00

Marilyn
0.01

Create PO
0.00

Alyce
0.06

Amanda
0.06

Create SC
0.54

Amanda
0.88

Hannah
0.94

Approve SC
0.97

X
Melany

0.91
Amanda

0.95
Purchase SC

0.92
X

Tiffiny
0.78

Velda
0.88

Create PO
0.10

Melany
0.86

Lucy
0.94

Create SC
0.05

Amanda
0.04

Hannah
0.02

Approve SC
0.94

X
Melany

0.55
Amanda

0.09
Purchase SC

0.72
X

Tiffiny
0.00

Velda
0.08

Create PO
0.00

Melany
0.05

Lucy
0.27

Create PR
0.49

Clayton
0.94

Alyce
1.00

X
Release PR

0.05
Melany

0.93
Rossie
0.64

Create PO
0.02

Lucy
0.88

Alyce
0.84

Decrease PO
0.70

Hannah
0.89

Roy
0.91

Create PR
0.00

Clayton
0.02

Alyce
0.52

X
Release PR

0.00
Melany

0.01
Rossie
0.00

Create PO
0.00

Lucy
0.07

Alyce
0.11

Decrease PO
0.05

Hannah
0.03

Roy
0.04

Figure P3.2: Effect of confidence normalization on BINet anomaly scores
(high scores indicate anomalies); anomalies are marked with X

holds the probability that the softmax layer assigns to one of the 5

possible activity values.
We can now define the scoring function σ as the difference between

the probability of the most likely attribute (according to BINet) and
the probability of the attribute value encountered f(t)a , where pa is
the probability tensor for attribute a and an event e, and i is the
corresponding index of f(t)a in pa.

σ(pa, i) = max
p∈pa

p− pai

The effect of normalization is demonstrated by Fig. P3.2, which
shows three example cases of a P2P dataset with 2 attributes with and
without normalization. Without normalization, the scoring function
is defined as σ(pa, i) = 1− pai , i.e., the inverse probability. We can
observe that BINet is able to accurately predict the activities after
the first activity, however, the anomaly scores for the user attribute
are close to 1 because multiple users are permitted to execute an
activity. We can counteract this effect by applying the normalization
by confidence as demonstrated in Fig. P3.2.

The complete BINet architecture is then comprised of CFNet, DataNet
and the scoring function σ applied to each softmax layer. We can ob-
tain the anomaly scores tensor S by applying BINet to the feature
tensor F

S =
(
sijk

)
∈ RC×E×A = BINet(F),

mapping an anomaly score to each attribute in each event in each
trace. The anomaly score for attributes of padding events will always
be 0.

4.3 Training

BINet is trained without the scoring function. The GRU units are
trained in sequence to sequence fashion. With each event that is fed
in, the network is trained to predict the attributes of the next event.

98 binet : multivariate business process anomaly detection

We train BINet with a GRU size of 2E (two times the maximum case
length), on mini batches of size 100 for 50 epochs using the Adam [16]
optimizer using the parameters stated in the original paper. We use
batch normalization [14] between all layers to counteract overfitting.
Every feature is passed through a separate embedding layer (see [19])
to reduce the input dimension.

4.4 Detection

An anomaly detector only outputs anomaly scores. We need to define
a function that maps anomaly scores to a label l ∈ {0, 1}, 0 indicating
normal and 1 indicating anomalous, by applying a threshold t. When-
ever an anomaly score for an attribute is greater than t, this attribute is
flagged as anomalous. To obtain a separate threshold for each anomaly
score in S, we define a threshold tensor T = α · τ , where τ ∈ RC×E×A

is a baseline threshold tensor and α ∈ R is a scaling factor. Now we
can define the function θ, with inputs S, α, and τ = (τijk), as

θ(S,α, τ) = (pijk) =

1 if (sijk) > α · (τijk)

0 otherwise
.

To obtain a baseline threshold τ ∈ RC×E×A, we propose four
different strategies τ0, τe, τa, and τea. In the following we will use
N =

∑
c∈L |ĉ| to denote the number of non-padding events. The first

baseline threshold function, τ0, is defined by the average anomaly
score over all cases, events, and attributes.

τ0(S) = (τijk) =
1

NA

C∑
a

E∑
b

A∑
c

(sabc)

It is sensible to use a separate threshold for each event position in
a case because the branching factor can vary for different points in
a process model. Therefore, we define the second baseline threshold
function, τe, based on the position of an event e in a case c.

τe(S) = (τijk) =
1

CA

C∑
a

A∑
c

(
sajc

)
It is also sensible to use a separate threshold for each attribute

because Va has a different size for each event e and attribute a. Thus,
we define the third baseline threshold function, τa, to output a separate
threshold for each event attribute.

τa(S) = (τijk) =
1

N

C∑
a

E∑
b

(sabk)

4 method 99

The fourth baseline threshold function, τea is a combination of τe
and τa, and outputs a threshold for each event position and attribute
separately.

τea(S) = (τijk) =
1

C

C∑
a

(
sajk

)
Note that we use matrix index notation to broadcast τ to the right

dimensionality to conform with the definition of θ from before. Uti-
lizing the automatic broadcasting functionality in modern numerical
computing libraries, such as TensorFlow6 or NumPy7, this can be im-
plemented very efficiently. Remember that anomaly scores for padding
events are set to 0, and hence they do not influence the sums. By nor-
malizing with N we calculate the average based only on non-padding
events.

4.5 Threshold Heuristic

Most anomaly detection algorithms rely on a manual setting for the
threshold. We have proposed four different methods of obtaining a
baseline threshold tensor τ from the anomaly scores tensor S. We still
need to set the scaling factor α manually. To overcome this, we need
to introduce a heuristic to set α automatically.

Because anomaly detection is an unsupervised task and no labels are
available at runtime, we cannot optimize α based on the detection F1
score. However, using the F1 score function we can define the heuristic
hbest that computes the best possible α for a given anomaly score
tensor S, a baseline threshold τ , and the ground truth label tensor L
as

hbest(L,S, τ) = arg max
α

F1(L, θ(S,α, τ)).

As we do not have access to L at runtime, we cannot use hbest. We
propose a new heuristic that works like the elbow method, commonly
used to find an optimal number of clusters for clustering algorithms
(see [25]). As we cannot rely on the F1 score as our metric, we
propose the use the anomaly ratio r, which can be defined as, with
θ(S,α, τ) = (pijk).

r(S,α, τ) =
1

CEA

C∑
i

E∑
j

A∑
k

(pijk)

The optimal αmust lie between αlow and αhigh, where r(S,αlow, τ) =
1 and r(S,αhigh, τ) = 0. We can reduce our search space to this in-

6 https://tensorflow.org
7 http://numpy.org

100 binet : multivariate business process anomaly detection

10 20 30 40

0.0

0.5

1.0

f(
)

f
F1
r
r′′

Figure P3.3: F1 score, anomaly ratio r, and second order derivative r ′′ (scaled
for clarity) by α for BINet on a dataset with 5 attributes using
τa as the baseline threshold

terval. Now we span a grid G of size s between αlow and αhigh to
define our candidates for α.

G =

{
αlow +

1

s
(αhigh −αlow), . . . ,αlow +

s

s
(αhigh −αlow)

}
In our experiments we found that s = 20 is a good choice for s,
however, any reasonable choice of s ∈ {5, . . . , 100} generally works.

Because r is a discrete function, we use the central difference ap-
proximation to obtain the second order derivative r ′′ of r.

r ′′(S,α, τ) ≈ r(S,α− s, τ) − 2r(S,α, τ) + r(S,α+ s, τ)
s2

Now we can define the elbow heuristic

helbow(S, τ) = arg max
α∈G

r ′′(S,α, τ).

helbow mimics the way a human would set αmanually. When given
a user interface with a heatmap visualization (like in Fig. P3.2) for
θ(S,α, τ) and control over the value of α, a human would start with
a value of α where all attributes are marked as anomalous (i.e., the
heatmap shows only blue and no white), and then gradually decrease
α until the point where the heatmap switches from mostly showing
blue to mostly showing white.

Figure P3.3 shows the F1 score and the corresponding anomaly ratio
r for a model of BINet, trained on a P2P dataset and using τa as
the baseline threshold. We can see that the highest possible F1 score
correlates with the maximum of r ′′, and hence with the “elbow” of
r. Interestingly, we found that helbow works just as well for other
anomaly detection algorithms, such as t-STIDE [26], Naive [3], and
DAE [21].

Evaluating helbow for BINet over all synthetic datasets and all base-
line threshold strategies, we can see in Fig. P3.4 that the best baseline
threshold is τa. We also find, that the helbow works remarkably well
over all strategies, for the performance of helbow is very close to hbest.

5 evaluation 101

0 e a ea

0.0

0.2

0.4

0.6

0.8

1.0

F 1 hbest

helbow

Figure P3.4: F1 score by strategy and heuristic for BINet on the P2P dataset

5 evaluation

We evaluated BINet on all 81 event logs and compared it to two
methods from [7]: a sliding window approach (t-STIDE+) [26]; and the
one-class SVM (OC-SVM). Additionally, we compared BINet to two
approaches from [3]: the Naive algorithm and the Sampling algorithm.
Furthermore, we provide the results of the denoising autoencoder
(DAE) approach from [20]. Lastly, we compared BINet to the approach
from [5], which utilizes an extended likelihood graph (Likelihood). As
a baseline, we provide the results of a random classifier.

For the OC-SVM, we relied on the implementation of scikit-learn8

using an RBF kernel of degree 3 and ν = 0.5. The Naive, Sampling,
Likelihood, and DAE methods were implemented as described in the
original papers. t-STIDE+ is an implementation of the t-STIDE method
from [26], which we adapted to work with event attributes (see [20]).

Sampling, Likelihood, Baseline, and the OC-SVM do not rely on a
manual setting of the threshold and were unaltered. For the remaining
algorithms we used helbow and chose the following baseline threshold
strategies following a grid search: τ0 for Naive, τea for t-STIDE+, τa
for DAE, and τa for BINet.

Figure P3.5 shows the F1 score distribution for all methods over
all datasets and for the two detection levels. F1 score is calculated as
the macro average F1 score over the normal and the anomalous class.
BINet outperforms all other methods on both detection levels. The
more important detection level is the attribute level, as this measure
demonstrates how accurately an anomaly detection algorithm can
detect the actual attribute that caused an anomaly.

Expectedly, methods without attribute resolution, like Naive and
OC-SVM, perform poorly on attribute level. t-STIDE+, Likelihood, and
DAE support detection on attribute level, but show a significantly
lower performance than BINet. DAE and BINet are both neural net-
work based. The main advantage of BINet over DAE is that BINet
makes use of the time dimension in the sequential data, whereas DAE
does not.

8 http://scikit-learn.org

102 binet : multivariate business process anomaly detection

Baseline OC-SVM Naive Sampling t-STIDE+ Likelihood DAE BINet

0.0

0.2

0.4

0.6

0.8

1.0

F 1 Level
Case
Attribute

Figure P3.5: F1 score by method and detection level using helbow where
applicable

Table P3.2: Results showing F1 score over all datasets by detection level and
method; best results are shown in bold typeface

Level Method P2P Small Medium Large Huge Wide BPIC12 BPIC13 BPIC15 BPIC17 Comp

Case Baseline 0.47 0.50 0.47 0.48 0.48 0.50 0.55 0.50 0.49 0.47 0.45

OC-SVM [23] 0.49 0.50 0.51 0.53 0.52 0.52 0.42 0.52 0.47 0.60 0.51

Naive [3] 0.91 0.80 0.71 0.71 0.76 0.72 0.58 0.47 0.24 0.53 0.63

Sampling [3] 0.23 0.23 0.44 0.34 0.23 0.23 0.45 0.26 0.22 0.22 0.57

t-STIDE+ [26] 0.72 0.71 0.73 0.68 0.69 0.67 0.81 0.57 0.51 0.68 0.68

Likelihood [5] 0.64 0.65 0.62 0.61 0.65 0.60 0.65 0.29 0.30 0.53 0.73
DAE [20] 0.86 0.81 0.78 0.89 0.80 0.75 0.76 0.52 0.45 0.75 0.68

BINet 0.91 0.92 0.92 0.92 0.92 0.92 0.58 0.58 0.49 0.58 0.66

Attribute Baseline 0.34 0.36 0.35 0.35 0.35 0.36 0.35 0.35 0.34 0.35 0.36

OC-SVM [23] 0.33 0.34 0.32 0.35 0.34 0.32 0.11 0.36 0.32 0.37 0.26

Naive [3] 0.50 0.41 0.35 0.35 0.39 0.37 0.09 0.14 0.00 0.24 0.36

Sampling [3] 0.28 0.32 0.40 0.46 0.40 0.36 0.37 0.30 0.29 0.32 0.48

t-STIDE+ [26] 0.66 0.66 0.68 0.64 0.64 0.65 0.67 0.56 0.51 0.62 0.49

Likelihood [5] 0.50 0.50 0.51 0.48 0.50 0.50 0.47 0.40 0.36 0.47 0.52

DAE [20] 0.77 0.72 0.72 0.75 0.75 0.71 0.72 0.52 0.51 0.73 0.61

BINet 0.85 0.89 0.87 0.89 0.88 0.88 0.59 0.57 0.54 0.64 0.68

Table P3.2 contains the detailed results for each method by dataset
and detection level. BINet performs best across levels on the synthetic
logs. On the real event logs, BINet performs best on attribute level,
whereas on case level, the field is mixed. An accurate prediction on
attribute level is to be favored over an accurate prediction on case level
because only the attribute level allows to identify the exact cause of
an anomaly.

Fig. P3.6 shows a heatmap of BINet anomaly scores for a P2P
dataset with 2 attributes. Two example cases are chosen for each type
of anomaly and the normal class to demonstrate how BINet detects
anomalies based on attribute level. No threshold has been applied to
the anomaly scores. This way, the severity of an anomaly can be illus-
trated by the colors in the heatmap. Overall, we find that BINet detects
control flow anomalies very effectively. For example, a shopping cart
(SC) cannot be approved before it has been purchased (first Switch).
Similarly, a purchase requisition (PR) cannot be released before it has
been created (second Skip). Rework and Attribute anomalies are also
detected accurately. In the case of Attribute, only the incorrect attribute
is assigned a significantly high anomaly score. In the two examples,

6 conclusion 103

1
act

1
supervisor

1
user

2
act

2
supervisor

2
user

3
act

3
supervisor

3
user

4
act

4
supervisor

4
user

Normal

Normal

Switch
2 and 3

Switch
1 and 2

Skip
at 3

Skip
at 1

Rework
at 3

Rework
at 2

Wrong
user
at 2

Wrong
user
at 1

Create SC
0.05

Amanda
0.04

Iluminada
0.02

Purchase SC
0.00

Roy
0.01

Velda
0.00

Approve SC
0.00

Roy
0.00

Marilyn
0.01

Create PO
0.00

Alyce
0.06

Amanda
0.06

Create PR
0.00

Roy
0.02

Marilyn
0.06

Release PR
0.00

Rossana
0.03

Rossie
0.00

Create PO
0.00

Rossie
0.00

Lucy
0.07

Increase PO
0.00

Hannah
0.04

Iluminada
0.00

Create SC
0.05

Amanda
0.04

Hannah
0.02

Approve SC
0.94

X
Melany

0.55
Amanda

0.09
Purchase SC

0.72
X

Tiffiny
0.00

Velda
0.08

Create PO
0.00

Melany
0.05

Lucy
0.27

Release PR
0.50

X
Clayton

0.09
Rossie
0.17

Create PR
0.21

X
Rossie
0.43

Steve
0.31

Create PO
0.00

Rossana
0.12

Brant
0.00

Release PO
0.24

Alyce
0.00

Roy
0.07

Create SC
0.05

Lourdes
0.04

Amanda
0.02

Purchase SC
0.00

Steve
0.01

Jack
0.06

Create PO
0.92

X
Rossie
0.19

Brant
0.08

Release PO
0.00

Alyce
0.43

Roy
0.20

Release PR
0.50

X
Jack
0.16

Brant
0.29

Create PO
0.08

Melany
0.10

Rossie
0.04

Decrease PO
0.18

Jack
0.36

Tiffiny
0.20

Release PO
0.00

Alyce
0.36

Velda
0.00

Create SC
0.05

Alyce
0.04

Marilyn
0.03

Purchase SC
0.00

Steve
0.00

Jack
0.07

Approve SC
0.00

Roy
0.01

Hannah
0.02

Approve SC
0.93

X
Roy
0.32

Hannah
0.45

Create PR
0.00

Sharee
0.01

Steve
0.00

Release PR
0.00

Clayton
0.04

Brant
0.07

Release PR
0.93

X
Clayton

0.25
Brant
0.17

Create PO
0.00

Melany
0.15

Amanda
0.08

Create SC
0.05

Iluminada
0.03

Marilyn
0.03

Purchase SC
0.00

Ryan
0.05

Ryan
0.37

X
Approve SC

0.00
Melany

0.11
Velda
0.02

Create PO
0.00

Amanda
0.05

Alyce
0.08

Create PR
0.00

Clayton
0.02

Alyce
0.52

X
Release PR

0.00
Melany

0.01
Rossie
0.00

Create PO
0.00

Lucy
0.07

Alyce
0.11

Decrease PO
0.05

Hannah
0.03

Roy
0.04

Figure P3.6: Anomaly score heatmap for BINet trained on P2P with 2 at-
tributes (supervisor and user); anomalies are marked by X

Ryan cannot be his own supervisor and Alyce is not permitted to
create a PR.

6 conclusion

In this paper we presented BINet, a neural network architecture for
multivariate anomaly detection in business process event logs. Ad-
ditionally, we proposed a heuristic for setting the threshold of an
anomaly detection algorithm automatically, based on the anomaly
ratio function.

BINet is a recurrent neural network, and can therefore be used for
real-time anomaly detection, since it does not require a completed
case for detection. BINet does not rely on any information about the
process modeled by an event log, nor does it depend on a clean dataset.
Utilizing the elbow heuristic, BINet’s internal threshold can be set
automatically, reducing manual workload. It can be used to find point
anomalies as well as contextual anomalies because it models the time
dimension in event sequences and utilizes both the control flow and
the data flow information. Furthermore, BINet can cope with concept
drift, as it can be setup to continuously train on new cases in real-time.

Based on the empirical evidence obtained in the evaluation, BINet
is a promising method for anomaly detection, especially in business
process event logs. BINet outperformed the opposition on all detection
levels (case, event, and attribute level). Specifically, on the synthetic
datasets BINet’s performance surpasses those of other methods by an
order of magnitude.

For an accurate detection of an anomaly it is essential that an
anomaly detection algorithm processes event logs on attribute level;
otherwise, a control flow anomaly cannot be distinguished from a

104 binet : multivariate business process anomaly detection

data flow anomaly. To allow easy analysis of an event log, the attribute
level is the most important detection level. On attribute level, BINet
performs significantly better than the other methods.

Overall, the results presented in this paper suggest that BINet is
a reliable and versatile method for detecting attribute anomalies in
business process logs.

acknowledgments

This project [522/17-04] is funded in the framework of Hessen Mod-
ellProjekte, financed with funds of LOEWE, Förderlinie 3: KMU-
Verbundvorhaben (State Offensive for the Development of Scientific
and Economic Excellence), and by the German Federal Ministry of
Education and Research (BMBF) Software Campus project "AI-PM"
[01IS17050].

references

[1] Wil M. P. van der Aalst. Process Mining: Data Science in Action.
Springer, 2016 (cit. on pp. 90–92).

[2] Fábio Bezerra and Jacques Wainer. “Anomaly detection algo-
rithms in logs of process aware systems.” In: Proceedings of the
2008 ACM symposium on Applied computing. ACM. 2008, pp. 951–
952 (cit. on p. 91).

[3] Fábio Bezerra and Jacques Wainer. “Algorithms for anomaly de-
tection of traces in logs of process aware information systems.”
In: Information Systems 38.1 (2013), pp. 33–44 (cit. on pp. 93, 100–
102).

[4] Fábio Bezerra, Jacques Wainer, and Wil M. P. van der Aalst.
“Anomaly detection using process mining.” In: Enterprise, Business-
Process and Information Systems Modeling. Springer, 2009, pp. 149–
161 (cit. on p. 91).

[5] Kristof Böhmer and Stefanie Rinderle-Ma. “Multi-perspective
Anomaly Detection in Business Process Execution Events.” In:
OTM Confederated International Conferences" On the Move to Mean-
ingful Internet Systems". Springer. 2016, pp. 80–98 (cit. on pp. 91,
93, 101, 102).

[6] Andrea Burattin. “PLG2: Multiperspective Processes Random-
ization and Simulation for Online and Offline Settings.” In: arXiv
preprint arXiv:1506.08415 (2015) (cit. on p. 93).

[7] V. Chandola, A. Banerjee, and V. Kumar. “Anomaly Detection for
Discrete Sequences: A Survey.” In: IEEE Transactions on Knowl-
edge and Data Engineering 24.5 (2012), pp. 823–839 (cit. on pp. 91,
92, 101).

references 105

[8] Kyunghyun Cho et al. “Learning phrase representations using
RNN encoder-decoder for statistical machine translation.” In:
arXiv preprint arXiv:1406.1078 (2014) (cit. on p. 95).

[9] Corinna Cortes and Vladimir Vapnik. “Support-vector networks.”
In: Machine learning 20.3 (1995), pp. 273–297 (cit. on p. 92).

[10] Joerg Evermann, Jana-Rebecca Rehse, and Peter Fettke. “A deep
learning approach for predicting process behaviour at run-
time.” In: International Conference on Business Process Management.
Springer. 2016, pp. 327–338 (cit. on p. 92).

[11] Joerg Evermann, Jana-Rebecca Rehse, and Peter Fettke. “Predict-
ing process behaviour using deep learning.” In: Decision Support
Systems 100 (2017), pp. 129–140 (cit. on p. 92).

[12] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: con-
cepts and techniques. Elsevier, 2011 (cit. on p. 90).

[13] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term
memory.” In: Neural computation 9.8 (1997), pp. 1735–1780 (cit.
on pp. 92, 95).

[14] Sergey Ioffe and Christian Szegedy. “Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift.” In: International conference on machine learning. 2015,
pp. 448–456 (cit. on p. 98).

[15] Nathalie Japkowicz. “Supervised Versus Unsupervised Binary-
Learning by Feedforward Neural Networks.” In: Machine Learn-
ing 42.1 (2001), pp. 97–122 (cit. on p. 92).

[16] Diederik Kingma and Jimmy Ba. “Adam: A method for stochas-
tic optimization.” In: arXiv preprint arXiv:1412.6980 (2014) (cit. on
p. 98).

[17] Pankaj Malhotra et al. “LSTM-based encoder-decoder for multi-
sensor anomaly detection.” In: arXiv preprint arXiv:1607.00148
(2016) (cit. on p. 92).

[18] Erik Marchi, Fabio Vesperini, Florian Eyben, Stefano Squartini,
and Björn Schuller. “A Novel Approach for Automatic Acoustic
Novelty Detection Using a Denoising Autoencoder with Bidirec-
tional LSTM Neural Networks.” In: (Apr. 2015) (cit. on p. 92).

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
“Efficient estimation of word representations in vector space.”
In: arXiv preprint arXiv:1301.3781 (2013) (cit. on p. 98).

[20] Timo Nolle, Stefan Luettgen, Alexander Seeliger, and Max Mühl-
häuser. “Analyzing Business Process Anomalies Using Autoen-
coders.” In: arXiv preprint arXiv:1803.01092 (2018) (cit. on pp. 92,
101, 102).

106 binet : multivariate business process anomaly detection

[21] Timo Nolle, Alexander Seeliger, and Max Mühlhäuser. “Unsu-
pervised Anomaly Detection in Noisy Business Process Event
Logs Using Denoising Autoencoders.” In: International Confer-
ence on Discovery Science. Springer. 2016, pp. 442–456 (cit. on
pp. 92, 100).

[22] Marco A. F. Pimentel, David A. Clifton, Lei Clifton, and Lionel
Tarassenko. “A review of novelty detection.” In: Signal Processing
99 (2014), pp. 215–249 (cit. on p. 91).

[23] Bernhard Schölkopf, Robert C. Williamson, Alexander J. Smola,
John Shawe-Taylor, John C. Platt, et al. “Support vector method
for novelty detection.” In: NIPS. Vol. 12. 1999, pp. 582–588 (cit.
on pp. 92, 102).

[24] Niek Tax, Ilya Verenich, Marcello La Rosa, and Marlon Du-
mas. “Predictive business process monitoring with LSTM neural
networks.” In: International Conference on Advanced Information
Systems Engineering. Springer. 2017, pp. 477–492 (cit. on p. 92).

[25] Robert Tibshirani, Guenther Walther, and Trevor Hastie. “Esti-
mating the number of clusters in a data set via the gap statis-
tic.” In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 63.2 (2001), pp. 411–423 (cit. on p. 99).

[26] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter.
“Detecting intrusions using system calls: Alternative data mod-
els.” In: Proceedings of the 1999 IEEE Symposium on Security and
Privacy. IEEE. 1999, pp. 133–145 (cit. on pp. 91, 100–102).

[27] Lijie Wen, Wil M. P. van der Aalst, Jianmin Wang, and Jiaguang
Sun. “Mining process models with non-free-choice constructs.”
In: Data Mining and Knowledge Discovery 15.2 (2007), pp. 145–180

(cit. on p. 91).

[28] Christian Wressnegger, Guido Schwenk, Daniel Arp, and Kon-
rad Rieck. “A Close Look on N-grams in Intrusion Detection:
Anomaly Detection vs. Classification.” In: Proceedings of the 2013
ACM Workshop on Artificial Intelligence and Security. AISec ’13.
ACM, 2013, pp. 67–76 (cit. on p. 91).

P4
B I N E T: M U LT I - P E R S P E C T I V E B U S I N E S S P R O C E S S
A N O M A LY C L A S S I F I C AT I O N

Timo Nolle, Stefan Luettgen, Alexander Seeliger, and Max Mühlhäuser
In: Information Systems (2019), p. 101458

abstract : In this paper, we introduce BINet, a neural network
architecture for real-time multi-perspective anomaly detection
in business process event logs. BINet is designed to handle
both the control flow and the data perspective of a business
process. Additionally, we propose a set of heuristics for setting
the threshold of an anomaly detection algorithm automatically.
We demonstrate that BINet can be used to detect anomalies in
event logs not only at a case level but also at event attribute level.
Finally, we demonstrate that a simple set of rules can be used
to utilize the output of BINet for anomaly classification. We
compare BINet to eight other state-of-the-art anomaly detection
algorithms and evaluate their performance on an elaborate
data corpus of 29 synthetic and 15 real-life event logs. BINet
outperforms all other methods both on the synthetic as well as
on the real-life datasets.

keywords : Business Process Management, Anomaly Detection,
Artificial Process Intelligence, Deep Learning, Recurrent Neural
Networks

1 introduction

Corporations are relying on business processes to ensure a smooth
operation of their business. Deviations from these processes can have a
significant impact on the economic well-being of a company. Naturally,
businesses are interested in finding and, subsequently, reducing these
deviations. Analyzing the business processes and their performance
has traditionally been a human task, and therefore a manual effort.
However, in the digital age, every business process leaves a digital
footprint, allowing for a completely data-driven analysis of business
processes.

Anomaly detection is a popular technique to automatically find
these deviations based on the data the businesses are generating. An
anomaly, in this context, is a deviation from the behavior defined by
the business process. This can be related to the order of activities (con-
trol flow perspective), e.g., two activities are executed in the wrong

107

108 binet : multi-perspective business process anomaly classific .

order. Furthermore, it can be related to certain data attributes (data
perspective), e.g., an employee has executed an activity without per-
mission or violations against segregation of duty regulations. These
two perspectives are inherent to how business process data is saved
(see [1]) and must be accounted for by a business process anomaly
detection algorithm.

The basis for an accurate anomaly detection is an accurate model of
the normal behavior, i.e., the normal business process. Any behavior
not captured by this model can be regarded as anomalous. Some meth-
ods rely on a human-defined process model as the basis for normal
behavior, called a reference model. However, such a reference model
is not always available and it might not be economically justifiable to
create such a reference model. In those cases, a method that does not
require such a reference model is desired.

Autonomous anomaly detection algorithms have to infer this model
directly from the patterns in the data and without any domain knowl-
edge about the underlying process. This can be challenging because
the data naturally contains anomalous behavior which the algorithm
has to ignore. Some algorithms depend on a clean dataset, that is, a
dataset that only consists of normal behavior. However, this requires
a dedicated preprocessing step based on domain knowledge. Very
few business process anomaly detection algorithms exist that infer
the normal model from an uncleaned dataset. In Sec. 3 we give an
elaborate summary of existing approaches.

There are further desired properties for a business process anomaly
detection algorithm. It is important that an algorithm can be used
during the execution of the business process because otherwise no
countermeasures can be initiated in time. Furthermore, business pro-
cesses are dynamic systems, adapting to seasonal effects, market
changes, or other external factors. An autonomous anomaly detection
algorithm should deal with this dynamic behavior.

Against this background, we propose BINet (Business Intelligence
Network), a neural network architecture for real-time multi-perspective
business process anomaly detection. BINet has been specifically de-
signed to model both the control flow and the data perspective of
business process execution data. Thus, it can capture a variety of
different causal dependencies, allowing to detect anomalies related to
control flow and data perspective (cf. point and contextual anomalies
in [15]). It does not rely on domain knowledge about the business
process or a reference model and it does not require prior knowledge
about the anomalies such as anomaly labels. BINet can be run continu-
ously during the execution of a business process, adapting to concept
drift and enabling early detection at runtime. The only input to the
BINet algorithm is the business process data, including anomalous be-
havior. BINet distinguishes between normal and anomalous behavior
by automatically defining a threshold solely based on the input data.

2 background 109

This paper is an extension of our previous work on BINet from
2018 [26]. Compared to the original publication, we have simplified the
architecture of BINet and present three versions of BINet with different
dependency modeling capabilities. Additionally, we elaborate on the
threshold heuristics proposed in [26] and introduce an improved set
of heuristics mimicking human intuition. We improved the dataset
generation algorithm, which now uses an extended likelihood graph to
generate causally dependent activities and event attributes. Finally, we
propose a simple rule-based classifier to distinguish different anomaly
classes, solely based on the outputs of BINet.

This work contains five main contributions.

• BINet neural network architecture

• Automatic threshold heuristics

• Generation algorithm for synthetic event logs

• Comprehensive evaluation of state-of-the-art methods

• Rule-based anomaly classifier

This paper is structured as follows. We start with background infor-
mation on process mining and neural networks in Sec. 2, followed by
a comprehensive summary of related works and how they relate to
BINet in Sec. 3. Then, we elaborate on the generation algorithm for
realistic datasets in Sec. 4. In Sec. 5, we describe BINet’s preprocess-
ing, neural architecture, detection algorithm, and automatic threshold
heuristic. We compare BINet to 8 state-of-the-art anomaly detection
methods and evaluate them on a comprehensive dataset of 29 synthetic
logs and 15 real-life logs, using artificial anomalies in Sec. 6. Lastly, we
demonstrate that BINet can be used to distinguish anomalies in Sec. 7.
After a short discussion in Sec. 8, we conclude this paper in Sec. 9.

2 background

In this section, we give an introduction to the main concepts behind
business process anomaly detection.

2.1 Process Mining

For business process data, the most popular techniques originate from
the field of process mining. Process mining is centered around the
idea of human-readable representations of business processes called
process models. Process models are widely used in business process
management as a tool for defining, documenting, and controlling
business processes inside companies.

During the execution of a digital business process, each process step
is stored in a database. This includes information on when the process

110 binet : multi-perspective business process anomaly classific .

step was executed (timestamp), what process step was executed (ac-
tivity), and to which business case it belongs (case identifier). These
three fundamental bits of event information are the basis for every
process mining algorithm and are usually combined into a single data
structure called event log.

A log consists of cases, each of which consists of events executed
within a process. Each event is defined by an activity name and its
attributes (e.g., a user who executed the event). We use a nomenclature
adapted from [1].

Definition P4.1. Case, Event, Log, and Attribute. Let C be the set of all
cases, and E be the set of all events. The event sequence of a case c ∈ C,
denoted by ĉ, is defined as ĉ ∈ E∗, where E∗ is the set of all sequences over E.
An event log is a set of cases L ⊆ C. Let A be a set of attributes and V be a
set of attribute values, where Va is the set of possible values for the attribute
a ∈ A. |ĉ| is the number of events in case c, |L| is the number of cases in L,
and |A| is the number of event attributes.

Based on these event logs, process mining is used to discover the
underlying business process and produce a human-readable process
model visualization. These algorithms are known as discovery al-
gorithms. An optimal process model should be simple (simplicity),
general (generality), precise (precision), and model all behavior found
in the event log (fitness). However, these goals are conflicting because,
for instance, a process model cannot be both simple and precise, and
thus discovery algorithms often emphasize two of the four goals.
Simplicity can be emphasized, for example, by ignoring infrequent
patterns, since they are unlikely to be part of the real business process.

Some companies document their processes and save them as digital
process models. These process models can be used to check whether
or not the process is being executed according to it. This is called
conformance checking. The result is an annotated event log in which
events are marked as conform or non-conform. Non-conform can
either indicate that the activity is found in the event log, but is not
part of the process, or the activity is found in the model, but not in
the event log.

Conformance checking can be used for anomaly detection if a refer-
ence model is available. Otherwise, a discovery algorithm can be used
to infer such a reference model from the event log. Simplicity and
generality are usually preferred over precision and fitness in this set-
ting. However, most discovery and conformance checking algorithms
mainly focus on the control flow perspective, and hence they can only
partially be applied to the data perspective.z

2.2 Artificial Neural Networks

In fields like computer vision, natural language processing, and speech
recognition, artificial neural networks (NNs) have become the state-

2 background 111

of-the-art, outperforming other machine learning algorithms by great
margins. Key to this success is a concept called representation learning.
Aforementioned fields are especially challenging because they require
sophisticated feature engineering, namely transforming the raw data
into meaningful features to be used as input for the machine learning
algorithm. NNs are capable of discovering the necessary representa-
tions as part of their training algorithm, reducing, or even removing
entirely, the need for feature engineering. This has opened up many
areas for the application of machine learning algorithms that were
originally considered impractical.

One of these areas is natural language processing, which can be
considered particularly relevant to our case since business process
executions hold some similarities to natural language, such as the
sequential nature. Activities can be considered as words, cases as
sentences, and the order of events as well as the event attributes as the
grammar of the language. Furthermore, if the same activity is executed
by different users, the two are considered distinct. Similarly, if the
same activity is preceded by different events, they are also considered
distinct.

An NN is a non-linear composite function with multiple degrees
of freedom, called weights. These weights can be altered to control
the output of the NN, minimizing the error with respect to some
desired output. This optimization procedure is referred to as training.
During training, the weights are iteratively updated by continuously
considering examples of inputs (e.g., a sequence of events) and desired
outputs (e.g., the most probable next activity), and changing the
weights according to their influence on the output. The goal of the
training is to find a set of weights that approximates, as closely as
possible, a mapping function from inputs to the respective desired
outputs.

Recurrent neural networks (RNNs) have been designed specifically
to handle sequential data such as sentences. Instead of processing an
event sequence all-at-once, an RNN processes each event individually,
recurrently using the same set of weights. To retain information about
past events, an RNN uses an internal state (memory), that is updated
for each event. This internal state resembles a representation of the
event sequence up until that point. The update of the internal state is
again controlled by a separate set of weights which are also optimized
as part of the training procedure.

A drawback of the design of a classic RNN is that it is forced to
update its internal state with each new event, thereby potentially
overriding previous information. As a consequence, older events are
not as strongly remembered as very recent ones. The RNN quickly
forgets about the distant past. Hochreiter and Schmidhuber have ad-
dressed this problem with their design of the long short-term memory
(LSTM) [16].

112 binet : multi-perspective business process anomaly classific .

Instead of forcing the network to always update its internal state,
an LSTM features specific sets of weights that control if the internal
state is updated. Thus, through the training procedure, an LSTM can
learn when to remember important information, when to retrieve it,
and when to forget it. Because an LSTM is not forced to remember
everything, it can retain information about past events for arbitrary
long sequences, and without loss of memory. Contrary to RNNs,
where the internal state at any time is a representation of all events up
until that point, the internal state of an LSTM is a representation of
important events (i.e., events worth remembering) up until that point.

In the field of natural language processing, LSTMs are used to pre-
dict the most probable word to continue an unfinished sentence. This
concept can be utilized for anomaly detection in business processes.
For an unfinished business case, an LSTM predicts the most probable
next event, and if the prediction does not match the actual next event,
it can be considered to be anomalous.

3 related work

In the field of process mining [1], it is popular to use discovery al-
gorithms to mine a process model from an event log and then use
conformance checking to detect anomalous behavior [2, 4, 31]. How-
ever, the proposed methods do not utilize the event attributes, and
therefore cannot be used to detect anomalies at attribute level.

A more recent publication proposes the use of likelihood graphs to
analyze business process behavior [5]. This method includes important
characteristics of the process itself by including the event attributes as
part of an extended likelihood graph. However, this method relies on a
discrete order in which the attributes are connected to the graph, which
may introduce a bias towards certain attributes. Furthermore, the same
activities are mapped to the same node in the likelihood graph, thereby
assigning a single probability distribution to each activity. In other
words, control flow dependencies cannot be modeled by the likelihood
graph, because the probability distribution of attributes following an
activity does not depend on the history of events.

The main drawback of this method is that it uses the initial log to
build the likelihood graph, and therefore no case of the original log is
classified as anomalous. This is related to the strategy to determine
a threshold for the anomaly detection task. We address this caveat
in Sec. 6. However, the notion of the likelihood graph inspired the
generation method for synthetic event logs in Sec. 4.

A review of traditional anomaly detection methodology can be
found in [27]. The authors describe and compare many methods that
have been proposed over the last decades. Another elaborate summary
of anomaly detection in discrete sequences is given by Chandola et al.
in [7]. The authors differentiate between five different basic methods

3 related work 113

for novelty detection: probabilistic, distance-based, reconstruction-
based, domain-based, and information-theoretic novelty detection.

Probabilistic approaches estimate the probability distribution of
the normal class and thus can detect anomalies as they come from
a different distribution. An important probabilistic technique is the
sliding window approach [30]. In window-based anomaly detection,
an anomaly score is assigned to each window in a sequence. Then the
anomaly score of the sequence can be inferred by aggregating the win-
dow anomaly scores. Recently, Wressnegger et al. used this approach
for intrusion detection and gave an elaborate evaluation in [32]. While
being inexpensive and easy to implement, sliding window approaches
show a robust performance in finding anomalies in sequential data,
especially within short regions [7].

Distance-based novelty detection does not require a clean dataset,
yet it is only partly applicable to process cases, as anomalous cases
are usually very similar to normal ones. A popular distance-based ap-
proach is the one-class support vector machine (OC-SVM). Schölkopf
et al. [28] first used support vector machines [9] for anomaly detection.

Reconstruction-based novelty detection (e.g., neural networks) is
based on the idea to train a model that can reconstruct normal be-
havior but fails to do so with anomalous behavior. Therefore, the
reconstruction error can be used to detect anomalies [18]. This ap-
proach has successfully been used for the detection of control flow
anomalies [25] as well as data flow anomalies [24] in event logs of
PAISs.

Domain-based novelty detection requires domain knowledge, which
is something we want to avoid. Information-theoretic novelty detection
defines anomalies as the examples that influence an information mea-
sure (e.g., entropy) on the whole dataset the most. Iteratively removing
the data with the highest impact yields a cleaned dataset and thus a
set of anomalies.

The core of BINet is a recurrent neural network, trained to predict
the next event and its attributes. The architecture is influenced by the
works of Evermann [12, 13] and Tax [29], who utilized long short-term
memory (LSTM) [16] networks for next event prediction, demonstrat-
ing their utility. LSTMs have been used for anomaly detection in
different contexts like acoustic novelty detection [21] and predictive
maintenance [20]. These applications mainly focus on the detection
of anomalies in time series and not, like BINet, on multi-perspective
anomaly detection in discrete sequences of events.

The novelty of BINet lies in the tailored architecture for business
processes, including the control flow and data perspective, the scoring
function to assign anomaly scores, and the automatic threshold heuris-
tic. It is a universally applicable method for anomaly detection both
in the control flow and the data perspective of business process event
logs. Lastly, BINet can handle multiple event attributes and model

114 binet : multi-perspective business process anomaly classific .

A
ut
ho

r
R
ev
ie
w
er

Identify
Problem

Research
Related
Work

Develop
Hypothesis

Develop
Method

Experiment

Conduct
Study

Evaluate

Conclude Submit

Review Minor
Revision

Revise Submit

Final
Decision

Figure P4.1: A simple paper submission process which is used as an example
throughout the paper

causal dependencies between control flow and data perspective, as
well dependencies between event attributes. This combination is, to
the best of our knowledge, novel to the field.

4 generating realistic event logs

To calculate the performance of a business process anomaly detection
algorithm, a labeled dataset is necessary. In this section, we will de-
scribe a generation algorithm that can be used to generate realistic
event logs from random process models of different complexities. Ad-
ditionally, we will describe how realistic artificial anomalies can be
added to these event logs, resulting in a labeled dataset.

We use a simple paper submission process as the running example
to illustrate concepts, methods, and results throughout this paper.
The process model in Fig. P4.1 describes the creation of a scientific
paper. Note that the process includes the peer review process, which
is executed by a reviewer, whereas the paper is conceptualized and
compiled by an author.

4.1 Synthetic Event Log Generation

We used PLG2 [6] to generate six random process models. The models
vary in complexity with respect to the number of activities, breadth,
and width. Additionally, we use a handmade procurement process
model called P2P as in [26], and the paper process shown in Fig. P4.1.

To generate causally dependent event attributes, we adopt the notion
of the extended likelihood graph from [5]. A likelihood graph is a
directed graph where each node represents a possible activity and the
connection between nodes represents the probability of one activity
following another. For example, activity B has a 60 percent chance
of following A. This idea can be extended to include multiple event
attributes. For instance, B has a 35 percent chance of following A if it
is Monday or B has a 15 percent chance of following A if it is Monday
and user 1 executed the activity. This pattern can be continued to
include an arbitrary numbers of event attributes.

4 generating realistic event logs 115

Identify Problem
Main Author0.9
Supervisor0.1

Research Related Work

Main Author0.9

Supervisor0.1

0.6
0.4
1.0

Develop Hypothesis
0.8 Main Author

Author0.2

Develop Method

0.35 Main Author
Author0.20

Student0.45

Experiment
0.75 Main Author

Author0.25

Experiment

0.65 Main Author
Author0.1

Student0.25

Conduct Study
0.2 Main Author

Author0.8

Evaluate

0.8 Main Author
Author0.2

Submit

Main Author

Conclude

Main Author

Review

Reviewer 0.75
0.25

Final Decision
MetareviewerMinor Revision

Metareviewer
Revise

Main Author
Submit

Main Author

Figure P4.2: A likelihood graph with user attribute; 1.0 probabilities omitted
for simplicity

We applied this technique to the process shown in Fig. P4.1. For each
activity, we create a group of possible users allowed to execute the
activity and assign probabilities to each user. Figure P4.2 demonstrates
the final result.

The Experiment activity appears twice in this likelihood graph to
introduce a long-term control flow dependency. That is, Conduct Study
always eventually follows Develop Hypothesis, and never eventually
follows Develop Method. Additionally, the user group, as well as the
corresponding probabilities, are different.

We can also model causal dependencies between event attributes by
including more event attributes as explained before. For example, we
could add a weekday attribute to model that Main Author only works
Mondays and Tuesdays. This is realized by setting the probabilities
for the other weekdays to zero.

We have described long-term control flow dependencies as well as
data dependencies. By combining the two ideas, data to control flow
dependencies are also possible, as Research Related Work demonstrates.
Develop Method always directly follows Research Related Work if Student
is the user.

We can generate event logs by using a random-walk through the
likelihood graph, complying with the transition probabilities, and
generating activities and attributes along the way. We implemented the
generation algorithm so that all these dependencies can be controlled
by parameters and the event attributes are automatically generated.
Please refer to the code repository1, and specifically the notebooks
section, for a detailed description of the algorithm as well as examples.

In addition to the synthetic logs, we also use the real-life event
logs from the Business Process Intelligence Challenge (BPIC): BPIC12

2,
BPIC13

3, BPIC15
4, and BPIC17

5. Furthermore, we use a set of 4 event
logs (referred to by Anonymous) from real-life procurement processes
provided by a consulting company.

1 https://github.com/tnolle/binet
2 http://www.win.tue.nl/bpi/doku.php?id=2012:challenge
3 http://www.win.tue.nl/bpi/doku.php?id=2013:challenge
4 http://www.win.tue.nl/bpi/doku.php?id=2015:challenge
5 http://www.win.tue.nl/bpi/doku.php?id=2017:challenge

116 binet : multi-perspective business process anomaly classific .

Normal

EvaluateIdentify Problem Research Related Work Develop Method Experiment ...

EvaluateIdentify Problem Research Related Work Develop Method Experiment
Supervisor Main Author Reviewer Author Author

...

EvaluateDevelop Method Experiment ...

Identify Problem Research Related Work Develop Method Experiment ...

EvaluateIdentify Problem Research Related Work Develop Method Experiment ...

EvaluateIdentify ProblemResearch Related Work Develop Method Experiment ...

EvaluateIdentify Problem Research Related Work Develop Method Experiment
Supervisor Main Author Reviewer Author Author

...Random Activity
Random User

Develop Method Experiment

...

...

Submit

Skip Insert Rework Early Late Shift Attribute

Normal

Skip

Insert

Rework

Early

Late

Attribute

Figure P4.3: Anomalies applied to cases of the paper submission process

4.2 Artificial Anomalies

Like Bezerra [3] and Böhmer [5], we apply artificial anomalies to the
event logs, altering 30 percent of all cases with exactly one anomaly
type. Inspired by the anomaly types (Skip, Insert, and Switch) used
in [3, 5], we identified additional, more elaborate anomalies that fre-
quently occur in real business processes. These anomalies are defined
as follows.

• Skip: A sequence of up to 3 necessary events has been skipped

• Insert: Up to 3 random activities have been inserted

• Rework: A sequence of up to 3 events has been executed a second
time

• Early: A sequence of up to 2 events has been executed too early,
and hence is skipped later in the case

• Late: A sequence of up to 2 events has been executed too late,
and hence is skipped earlier in the case

• Attribute: An incorrect attribute value has been set in up to 3

events

We apply the artificial anomalies to the real-life event logs as well,
knowing that they likely already contain natural anomalies which
are not labeled. However, we can measure the performance of the
algorithms on the real-life logs to demonstrate feasibility while using
the synthetic logs to evaluate accuracy.

As indicated in Fig. P4.3 we can gather a ground truth dataset by
marking the attributes with their respective anomaly types. Note that
we introduce a Shift anomaly type, which is used to indicate the place
where an Early or Late event used to be. This is equivalent to a Skip.
However, we want to differentiate these two cases.

We insert a random event in case of Insert, i.e., the activity name
does not come from the original process. This is to prevent a random
insert from resembling Rework, which is possible when randomly

5 method 117

Table P4.1: Overview showing dataset information

Name. #Logs #Activities #Cases #Events #Attr. #Attr. Values

Paper 1 27 5K 66K 1 13

P2P 4 27 5K 48K–53K 1–4 13–386

Small 4 41 5K 53K–57K 1–4 13–360

Medium 4 65 5K 39K–42K 1–4 13–398

Large 4 85 5K 61K–68K 1–4 13–398

Huge 4 109 5K 47K–53K 1–4 13–420

Gigantic 4 154–157 5K 38K–42K 1–4 13–409

Wide 4 68–69 5K 39K–42K 1–4 13–382

BPIC12 1 73 13K 290K 0 0

BPIC13 3 11–27 0.8K–7.5K 4K–81K 2–4 23–1.8K
BPIC15 5 422–486 0.8K–1.4K 46K–62K 2–3 23–481

BPIC17 2 17–53 31K–43K 284K–1.2M 1 289–299

Anonymous 4 19–37 968–17K 6.9K–82K 1 160–362

choosing an activity from the original process. Attribute values of
inserted events are set in the same fashion. When applying an Attribute
anomaly, we randomly select an attribute value from the likelihood
graph that is not a direct successor of the last node.

We created datasets with ground truth data on attribute level. For
the anomaly detection task, these labels are mapped to either Normal
or Anomaly, thus creating a binary classification problem. The ground
truth data can easily be adapted to case level by the following rule: A
case is anomalous if any of the attributes in its events are anomalous.

We generated 4 likelihood graphs for each synthetic process model
with different numbers of attributes, different transition probabili-
ties, and dependencies. Then, we sampled logs from these likelihood
graphs, resulting in 28 synthetic logs; 29, including the Paper dataset.
Together with BPIC12, BPIC13, BPIC15, BPIC17, and Anonymous, the
corpus consists of 44 event logs. We refer to the datasets by their
names as defined in Table P4.1, which gives a detailed overview of the
corpus.

5 method

In this section, we describe the BINet architecture and how it is utilized
for anomaly detection.

5.1 Preprocessing

Due to the mathematical nature of neural networks, we must transform
the logs into a numerical representation. To accomplish this, we use
integer encoding over all nominal attributes. An integer encoding is a
mapping Ia : Va →N of all possible attribute values for an attribute

118 binet : multi-perspective business process anomaly classific .

a to a unique positive integer. The integer encoding is applied to all
attributes of the log, including the activity name.

Event logs can be represented as third-order tensors. Each event e
is a first-order tensor e ∈ RA, with A = |A|, the first attribute always
being the activity name, representing the control flow perspective.
Hence, an event is defined by its activity name and the event attributes.
Each case is then represented as a second-order tensor C ∈ RE×A,
with E = maxc∈L |ĉ| being the maximum case length of all cases in the
log L. For mathematical simplicity and to represent an event log as
a tensor, we assume all cases to have the same length. Therefore, we
pad all shorter cases with event tensors only containing zeros, which
we call padding events. The padding events are ignored by the neural
network during training and inference.

The log L can now be represented as a third-order tensor L ∈
RC×E×A, where C = |L| is the number of cases in log L. Using matrix
index notation, we can now obtain the second attribute of the third
event in the ninth case with L9,3,2. We can also obtain all the second
attributes of the third event using L:,3,2, using “:” to denote the cross-
section of tensor L along the case axis. Likewise, we can obtain all
the second attributes of case nine with L9,:,2. Thus, we can define a
preprocessor as follows.

Definition P4.2. Preprocessor. Let C, E, and A be defined as above, then a
preprocessor is a mapping P : L→ RC×E×A.

The preprocessor P encodes all attribute values and then transforms
the log L into its tensor representation. In the following, we refer to
the preprocessed log L as F (features), where F = P(L).

5.2 BINet Neural Architecture

To model the sequential nature of event log data, the core of BINet is a
recurrent neural network, based on Gated Recurrent Units (GRUs) [8],
an alternative to the popular LSTM. BINet processes the distinct
sequence of events for each case. For each event, BINet has to predict
the next event based on the history of events in the case.

Figure P4.4 shows the architecture of BINet. We propose three
versions of BINet (BINetv1, BINetv2, and BINetv3). These versions
differ in their capability of modeling causal dependencies based on
the inputs they receive. BINet consists of dedicated encoder GRUs
(light green) for each input attribute (light blue) of the last event.
These GRUs are responsible for creating a latent representation of the
complete history of a single attribute. Each attribute is fed through an
embedding layer to reduce the input dimensionality (see [10, 22]).

The counterpart to the encoder GRUs are the decoder GRUs (dark
green) which receive as input a concatenation of attribute represen-
tations. These GRUs are responsible for combining the control flow

5 method 119

Activity User Day

Embedding
GRU

Embedding Embedding
GRU

Last Event

Concat

BINetv1

BINetv2

BINetv3

Next Event

GRU

Activity User Day

Embedding Embedding Embedding
GRU

Softmax

Activity

Selective Concat
GRU

Softmax
GRU

Softmax

User Day

Figure P4.4: BINet architectures for a log with two event attributes, User and
Day; the three versions of BINet differ only in the inputs they
receive

and the data perspective, and hence to create a latent representation
of the complete history of events that is meaningful to the respec-
tive next attribute prediction in the next layer. For prediction, BINet
uses a softmax output layer (pink) for each next attribute. A softmax
layer outputs a probability distribution over all possible values of the
respective attribute, that is, all outputs will sum to one.

In its simplest form, BINet predicts the next activity and all next at-
tributes solely based on past events. This architecture is called BINetv1

(black). However, there likely exist causal dependencies between the
activity and the corresponding attribute values for that activity. To
model this type of dependency, we propose a second architecture,
BINetv2 (red), which in addition to the input of BINetv1, gets access
to the activity of the next event. This conditions the attribute decoders
onto the actual next activity, as opposed to inferring the next activity
from the states of the encoders. Using the BINetv2 architecture, we
can model control flow to data dependencies.

There also likely exist dependencies between attributes (i.e., certain
users only work certain days of the week). With BINetv1 or BINetv2,
these dependencies are not modeled because the attributes are treated
as though they were independent. To address this, we propose BINetv3

(orange) which gets access to the complete next event. Hence, BINetv3

can model data to data dependencies.
The selective concatenation layer (dark grey) does not allow infor-

mation to flow from one of the next event inputs to the respective next
attribute decoder GRU. Otherwise, a decoder GRU would gain direct
access to the information they are trained to predict, resulting in no
learning at all because the decoder can simply copy the input.

To elaborate on the differences in the BINet versions we refer back to
the paper submission process from Fig. P4.2. Suppose the last activity

120 binet : multi-perspective business process anomaly classific .

input to BINet is Research Related Work and the user was Main Author.
The activity output should now give a probability of approximately
60 percent to Develop Hypothesis. In case of BINetv1, however, the user
output does not match the 80 percent for Main Author and the 20

percent for Author, because the respective decoders also have to take
into account the other 40 percent of not going to Develop Hypothesis,
and hence output a higher probability for Student. BINetv2 does not
suffer from this problem, because it is certain that Develop Hypothesis
is the next activity (because of the next activity input), and thus can
learn the probabilities appropriately.

To demonstrate the advantage of BINetv3, we have to imagine a
third weekday attribute as part of the extended likelihood graph.
Suppose for a given activity Main Author works only on Fridays, and
Author works from Monday until Thursday. BINetv3 can correctly
predict that if the weekday is Friday, the user must be Main Author,
whereas BINetv2 can not. Likewise, BINetv3 can infer that if the user
is Main Author, the day must be Friday.

For BINetv1, activity, user, and day are entirely independent, for
BINetv2, user and day are dependent on the activity, and for BINetv3,
user is dependent on activity and day, whereas day is dependent on
activity and user. Our implementation of BINet theoretically allows
for any number of events and attributes.

BINetv2 is equivalent to the original BINet architecture from [26].

5.3 Calculating Anomaly Scores

After the initial training phase, BINet can be used for anomaly detec-
tion. This is based on the idea that BINet assigns a lower probability
to an anomalous attribute than a normal attribute.

The last step of the anomaly detection process is the scoring of the
events. Therefor, we use a scoring function in the last layer of the
architecture. This scoring function for an attribute a receives as input
the output of the softmax layer for a, that is, a probability distribution
pa, and the actual value of the attribute, v.

Using the example above (the last activity being Research Related
Work and the user being Main Author), the output of the activity
softmax layer might look as depicted in Fig. P4.5. The probability p
for Develop Hypothesis is 0.55, and the probability for Develop Method is
0.30. Note that BINet gives a high probability for the two correct next
activities with respect to the paper process.

We can now define the anomaly score for a possible attribute value
v as the sum of all probabilities p of the probability distribution tensor
p greater than the probability assigned to v, pv. The scoring function
σ is therefore defined as follows, with pi being i-th probability.

σ(p,pv) =
∑

pi>pv

pi

5 method 121

D
ev

el
op

 H
yp

ot
he

si
s

D
ev

el
op

 M
et

ho
d

0.55

0.30

0.07
0.03 0.02 0.004

0.00 0.55 0.85 0.92 0.95 0.97

τ = 0.8p =

s =
0.003 0.0030.01 0.01

0.97 0.99 0.994 0.994

Figure P4.5: Output of the activity softmax layer after reading activity Re-
search Related Work and user Main Author

Figure P4.5 also shows the resulting anomaly scores, s, for each possi-
ble activity. Intuitively, an anomaly score of 0.55 indicates that there is
a 55 percent chance that the attribute value is anomalous. Thus, we
can set a threshold as indicated in Fig. P4.5 (τ = 0.8), to flag all values
as normal where the anomaly score is less than 0.8.

The scoring function σ is applied to each softmax output of BINet,
transforming the probability distribution tensor into a scalar anomaly
score. We can now obtain the anomaly scores tensor S by applying
BINet to the feature tensor F ,

S =
(
sijk

)
∈ RC×E×A = BINet(F),

mapping an anomaly score to each attribute in each event in each case.
The anomaly score for attributes of padding events is always 0.

5.4 Training

BINet is trained without the scoring function. The GRU units are
trained in sequence to sequence fashion. With each event that is fed
in, the network is trained to predict the attributes of the next event.
We train BINet with a GRU size of 2E (two times the maximum
case length), on mini batches of size 500 for 20 epochs using the
Adam optimizer with parameters as stated in the original paper [19].
Additionally, we use batch normalization [17] after each GRU to
counteract overfitting.

5.5 Detection

An anomaly detector only outputs anomaly scores. We need to define
a function that maps anomaly scores to a label l ∈ {0, 1}, 0 indicating
normal and 1 indicating anomalous, by applying a threshold τ. When-
ever an anomaly score for an attribute is greater than τ, this attribute

122 binet : multi-perspective business process anomaly classific .

τ τ τ

Figure P4.6: Example of how an anomaly detection visualization changes
with different threshold settings; the rightmost setting corre-
sponds to how a user would likely set the slider manually

is flagged as anomalous. Therefore, we define a threshold function θ,
with inputs S and τ ∈ R.

θ(S, τ) = Yijk =

1 if Sijk > τ

0 otherwise

In the example from Fig. P4.5, setting τ = 0.8 results in Develop
Hypothesis and Develop Method being flagged as normal, whereas all
other activities are flagged as anomalous.

5.6 Threshold Heuristic

Most anomaly detection algorithms rely on the user manually setting
a threshold or define the threshold as a constant. To determine a
threshold automatically, we propose a new heuristic that mimics how
a human would set a threshold manually.

Let us consider the following example. A user is presented with a
visualization of an anomaly detection result, for instance, a simple
case overview showing all events and their attributes as depicted
in Fig. P4.6. Anomalous attributes are shown in red and normal at-
tributes are shown in green. The user is asked to set the threshold
manually using a slider. Most people start with the slider either set
to the maximum (all attributes are normal, all green) or the mini-
mum (all attributes are anomalous, all red) and then move the slider
while observing the change of colors in the visualization. Intuitively,
most users fix the slider within a region where the number of shown
anomalies is stable, that is, even when moving the slider to the left
and right, the visualization stays the same. Furthermore, users likely
prefer a threshold setting that shows significantly less anomalous than
normal attributes, which corresponds to a slider setting closer to the
maximum (the right side). In other words, a setting that produces less
false positives.

This behavior of a human setting the threshold can be modeled
based on the anomaly ratio r, which can be defined as follows, with
N =

∑
c∈L |ĉ| denoting the number of non-padding events and Y =

θ(S, τ).

r(θ,S, τ) =
1

NA

C∑
i

E∑
j

A∑
k

Yijk

5 method 123

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

f(
)

r
Precision
Recall
elbow
elbow
lp
lp
lp

Figure P4.7: Thresholds as defined by the heuristics in relation to the anomaly
ratio r and its plateaus (blue intervals)

By dividing by N we calculate the average based only on non-padding
events.

Figure P4.7 shows r for a run of BINetv1 on the Paper dataset. In
addition to r, the figure shows the values for Precision and Recall
for the anomaly class. Note that r is a discrete function that we sample
for each reasonable threshold. Reasonable candidate thresholds are
the distinct anomaly scores encountered in S; other values can be
disregarded. The candidate thresholds T are indicated by the minor
ticks in Fig. P4.7.

To define the heuristics in the following, we first have to define the
first and second order derivatives of the discrete function r. They can
be retrieved using the central difference approximation. Let τi ∈ T,
then the derivatives are approximated by

r ′(θ,S, τi) ≈
r(θ,S, τi+1) − r(θ,S, τi)

τi+1 − τi
,

r ′′(θ,S, τi) ≈
r(θ,S, τi−1) − 2 r(θ,S, τi) + r(θ,S, τi−1)

(τi−1 − τi)(τi − τi+1)
.

To mimic the human intuition, we have to consider regions of r
where the slope is close to zero. These are regions where |r ′(θ,S, τ)| <
ε (we chose ε to be two times the average slope of r), which we refer
to as plateaus (blue regions in Fig. P4.7). Based on these plateaus
we can now define the lowest plateau heuristic lp as follows. Let
LP = 〈τ0, τ1, . . . , τn〉 be the sequence of candidate thresholds that lie
within the lowest plateau, then

lp← = τ0, lp↔ =
1

n

n∑
i=0

τi, lp→ = τn,

corresponding to the left-most (lp←), the right-most (lp→), and the
mean-centered (lp↔) threshold inside the lowest plateau.

In [26], we proposed the elbow heuristic to mimic the same behavior.
The definition of the elbow heuristics are given by

elbow↓ = arg max
τ∈T

r ′′(θ,S, τ), elbow↑ = arg min
τ∈T

r ′′(θ,S, τ).

124 binet : multi-perspective business process anomaly classific .

So, elbow↓ is the threshold where the rate of change of r is maximized,
whereas elbow↑ is where it is minimized. With respect to r these
thresholds are the points where either a steep drop ends in a plateau
(elbow↓) or a plateau ends in a steep drop (elbow↑). Although elbow↓
and elbow↑ can indicate the beginning and the end of a plateau, these
are not necessarily the thresholds a human would naturally pick.

To compare our results to the best possible threshold, we define
the best heuristic by use of the F1 score metric. The best heuristic is
defined as follows, where L is the set of ground truth labels.

best = arg max
τ∈T

F1(L, θ(S, τ)).

It is important to understand that best can only be used if the labels
are available at runtime. However, in most cases, anomaly detection is
an unsupervised problem, and hence no labels are available.

It might be beneficial to apply different thresholds to different
dimensions of S. For example, it might be sensible to set a different
threshold for the user attribute than the activity because the inherent
probability distribution can be different. This is possible by using “:”
to apply heuristics on cross-sections of S by using index notation.
Let h ∈ {lp←, lp↔, lp→, elbow↓, elbow↑,best} then we can define the
following threshold strategies

h = h(S),

h(a) = (τi) = h(S:,:,i),

h(e) = (τi) = h(S:,i,:),

h(ea) = (τij) = h(S:,i,j).

We only explicitly show the parameter S for clarity, other parameters
are set according to the definition of the chosen heuristic.

Thus, h(a) ∈ RA returns a tensor that holds one threshold for each
attribute in an event, whereas h(e) ∈ RE holds a threshold for each
event position in a case. Lastly, h(ea) ∈ RE×A combines the two ideas
and gives a threshold for each combination of event position and
attribute. In other words, instead of applying the threshold heuristic h
once for all dimensions of S, we apply it multiple times for different
cross-sections of S, obtaining multiple different thresholds.

6 evaluation

We evaluated BINet on all 44 event logs and compared it to eight
state-of-the-art methods. Two methods from [7]: a sliding window
approach (t-STIDE+) [30]; and the one-class SVM (OC-SVM). Two
methods from [3]: the Naive algorithm and the Sampling algorithm.
Furthermore, we provide the results of the denoising autoencoder

6 evaluation 125

DAE BINetv1 BINetv2 BINetv3 Likelihood+ t-STIDE+ Naive+
0.0

0.2

0.4

0.6

F 1

best
best(a)

best(e)

best(ea)

Figure P4.8: Average F1 score by method and strategy over all synthetic
datasets, using best as the heuristic

(DAE) approach from [24]. Lastly, we compared BINet to the approach
from [5] (Likelihood). Naive and Likelihood set the threshold statically,
so we extended the approaches to support the use of our external
threshold heuristics. These extensions are referred to by Naive+ and
Likelihood+. For all non-deterministic methods (i.e., DAE, BINet,
and Sampling), we executed five independent runs to account for
randomness.

For the OC-SVM, we relied on the implementation of scikit-learn6

using an RBF kernel of degree 3 and ν = 0.5. The Naive, Sampling,
Likelihood, and DAE methods were implemented as described in the
original papers. Sampling, Likelihood, Baseline, and the OC-SVM do
not rely on a manual setting of the threshold and were unaltered. t-
STIDE+ is an implementation of the t-STIDE method from [30], which
we adapted to support the data perspective (see [24]). Naive+ is an
implementation of Naive that removes the fixed threshold of 0.02 and
sets the threshold according to the heuristic. Likelihood+ implements
the first part of Likelihood (the generation of the extended likelihood
graph from the log) and replaces the threshold algorithm with the
aforementioned heuristics.

In the last section, we described the intuition of setting separate
thresholds using different strategies (e.g., one threshold per attribute).
To decide on the best strategy, we evaluate the four strategies (h,
h(e), h(a), and h(ea)) for all synthetic datasets and all methods that
support the heuristics, with h = best. The results of the experiments in
Fig. P4.8 indicate that, indeed, it is sensible to set separate thresholds
for individual attributes. Interestingly, we also find that setting a single
threshold yields similar results. Setting a threshold per event or per
event and attribute does perform significantly worse.

Next, we repeated the same experiment for all of the aforementioned
heuristics and using h(a) as the strategy. The results can be seen in
Fig. P4.9. Intriguingly, the lowest plateau heuristics perform best for
all methods except the DAE. Furthermore, it seems to work best to
choose the mean-centered threshold within the lowest plateau (lp↔).

Based on the results of the preliminary experiments, we set h =

lp
(a)
↔ as the heuristic for the following experiments for all methods

apart from the DAE, for which we set h = elbow
(a)
↑ . For Likelihood,

6 http://scikit-learn.org

126 binet : multi-perspective business process anomaly classific .

DAE BINetv1 BINetv2 BINetv3 Likelihood+ t-STIDE+ Naive+
0.0

0.2

0.4

0.6

F 1

best(a)

elbow(a)

elbow(a)

lp(a)

lp(a)

lp(a)

Figure P4.9: Average F1 score by method and heuristic over all synthetic
datasets, using h(a) as the strategy

Precision Recall F1
0.00

0.25

0.50

0.75

Synthetic

Precision Recall F1
0.00

0.25

0.50

0.75

Real-life

DAE
BINetv1
BINetv2
BINetv3
Likelihood+
t-STIDE+
Naive+
Naive
Sampling
Likelihood
OC-SVM

Figure P4.10: Average Precision, Recall, and F1 by dataset type over all
datasets; error bars indicate variance over datasets with differ-
ent numbers of attributes and multiple runs

Sampling, Naive, and OC-SVM we use the internal threshold heuris-
tics.

The overall results are shown in Fig. P4.10. For the real-life datasets,
we do not have complete information, and hence the F1 score is
not a good representation of the quality of the detection algorithms.
However, because we compare all methods on the same basis, the
results are still meaningful. Furthermore, we only know about the
artificial anomalies inside the real-life datasets, and therefore we expect
a high recall of the artificial anomalies, whereas we expect a low
precision because the dataset likely contains natural anomalies which
are not labeled.

This theory is confirmed by the results in Fig. P4.10. Note also
that the recall scores for both the synthetic and the real-life datasets
are very similar, indicating comparable performance (for artificial
anomalies) on both dataset types.

Finally, we find that BINetv1 works best for the synthetic datasets,
whereas the field is mixed for the real-life datasets. However, all three
BINet versions perform better than the other methods. DAE performs
significantly worse on real-life data because it ran out of memory
on some of the bigger datasets. Therefore, DAE has been penalized
defining precision and recall to be zero for these runs.

7 classifying anomalies 127

Table P4.2: F1 score over all datasets by detection level and method; best
results (before rounding) are shown in bold typeface

Level Method Paper P2P Small Medium Large Huge Gigantic Wide BPIC12 BPIC13 BPIC15 BPIC17 Anonymous

Case OC-SVM [30] 0.49 0.27 0.25 0.29 0.24 0.23 0.29 0.31 0.55 0.24 0.26 0.35 0.10

Naive [4] 0.50 0.48 0.49 0.39 0.41 0.40 0.34 0.44 0.55 0.21 0.17 0.31 0.16

Sampling [4] 0.50 0.49 0.49 0.47 0.49 0.49 0.45 0.49 0.55 0.21 0.17 0.32 0.23

Likelihood [5]. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Naive+ 0.50 0.48 0.49 0.44 0.49 0.45 0.38 0.47 0.55 0.21 0.17 0.28 0.15

t-STIDE+ [25] 0.40 0.51 0.53 0.43 0.45 0.45 0.41 0.47 0.68 0.32 0.29 0.32 0.22

Likelihood+ 0.85 0.74 0.76 0.72 0.73 0.73 0.73 0.73 0.62 0.44 0.33 0.45 0.51

DAE [25] 0.46 0.71 0.72 0.71 0.71 0.70 0.63 0.70 0.60 0.21 0.00 0.30 0.35

BINetv1 0.74 0.77 0.78 0.75 0.75 0.75 0.74 0.76 0.62 0.41 0.37 0.51 0.51
BINetv2 [26] 0.76 0.77 0.77 0.72 0.71 0.70 0.68 0.73 0.61 0.40 0.38 0.43 0.45

BINetv3 0.79 0.77 0.76 0.71 0.69 0.69 0.66 0.74 0.66 0.45 0.36 0.49 0.50

Attribute OC-SVM [30] 0.09 0.06 0.05 0.08 0.04 0.05 0.07 0.09 0.05 0.06 0.01 0.09 0.30

Naive [4] 0.13 0.15 0.14 0.12 0.09 0.11 0.09 0.16 0.05 0.05 0.01 0.10 0.39

Sampling [4] 0.33 0.33 0.34 0.32 0.34 0.34 0.31 0.32 0.08 0.07 0.01 0.14 0.39

Likelihood [5] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Naive+ 0.13 0.16 0.15 0.16 0.13 0.13 0.13 0.18 0.05 0.05 0.01 0.09 0.33

t-STIDE+ [25] 0.28 0.33 0.32 0.25 0.25 0.26 0.19 0.28 0.40 0.12 0.05 0.17 0.39

Likelihood+ 0.74 0.61 0.63 0.58 0.57 0.58 0.55 0.57 0.35 0.29 0.07 0.28 0.63

DAE [25] 0.25 0.61 0.61 0.56 0.56 0.55 0.46 0.56 0.06 0.09 0.00 0.24 0.52

BINetv1 0.64 0.68 0.69 0.65 0.65 0.65 0.64 0.65 0.42 0.28 0.21 0.38 0.60

BINetv2 [26] 0.67 0.65 0.67 0.60 0.59 0.60 0.56 0.60 0.34 0.25 0.19 0.29 0.55

BINetv3 0.67 0.65 0.66 0.59 0.57 0.59 0.54 0.61 0.48 0.29 0.19 0.35 0.63

Detailed results can be found in Tab. P4.2, which also gives results
for case level (i.e., only anomalous cases have to be detected, not the
attributes). An interesting observation is that t-STIDE+ performs best
on BPIC12 when evaluating on case level. This might be attributed to
BPIC12 being a dataset without event attributes (the only one in the
corpus). On attribute level, Likelihood+ is marginally better than BINet
on BPIC13. For all other datasets, BINet shows the best performance.

All results are given using the heuristics described above. Labels
were not used in the process. Additional material (e.g., evaluation per
perspective, per dataset, runtime) can be found in the code repository.

To validate the significance of the results, we apply the non-parametric
Friedman test [14] on average ranks of all methods based on F1
score for all synthetic datasets. Then, we apply the Nemenyi post-hoc
test [23], as demonstrated in [11], to calculate pairwise significance.

Figure P4.11 shows a critical difference diagram, as proposed in [11],
to visualize the results with a confidence interval of 95 percent. Based
on the critical difference, we recognize that BINetv1 performs signif-
icantly better than all other methods, except BINetv2 and BINetv3.
That is, all three BINet versions lie in the same significance group
with respect to the critical difference. DAE lies in the same group
as BINetv2 and BINetv3, and Likelihood+ in the same as DAE and
BINetv3. All other methods lie more than the critical difference away
from the three BINets.

7 classifying anomalies

Until now, we have not utilized the predictive capabilities of BINet.
Using the probability distribution output of the softmax layers in
conjunction with the binarized anomaly scores, we can define simple
rules to infer the type of anomaly.

128 binet : multi-perspective business process anomaly classific .

12345678910

OC-SVM
Naive

Naive+
t-STIDE+
Sampling Likelihood+

DAE
BINetv3
BINetv2
BINetv1

CD

Figure P4.11: Critical difference diagram for all methods on all synthetic
datasets; groups of methods that are not significantly different
(at p = 0.05) are connected (cf. [11])

We use the term predictions to denote all possible attribute values
with an anomaly score above the threshold. Here, the Shift class be-
comes relevant because it indicates the place where an early or late
execution would belong. For each anomalous attribute (according to
BINet), we apply the following rules in order.

1. Skip: If all predictions do not appear in the case

2. Insert: If one of the predictions appears in the case and that
occurrence has not been flagged as anomalous

3. Rework: If the same activity appears earlier in the case and is not
flagged as anomalous

4. Shift: If one of the predictions appears earlier or later in the case
and is flagged as anomalous

5. Late: If the activity appears earlier in the predictions and is
flagged as anomalous

6. Early: If the activity appears later in the predictions and is
flagged as anomalous

7. Attribute: Trivially, all anomalous attributes in the data perspec-
tive are of type Attribute

The result of the classification is visualized in Fig. P4.12. Interest-
ingly, this set of simple rules performs remarkably well. Anomaly
classes inferred by the rules are indicated by the color of the cells,
whereas ground truth labels are shown as text in the cells (we omit
Normal for clarity). Incidentally, this visualization also depicts the bina-
rized anomaly scores according to the threshold since each classified
attribute is also an anomalous attribute.

We also included some examples where the classification is incor-
rect. An interesting case is the second Skip example because Evalu-
ate has also been marked as anomalous ¬. As we have defined in
Fig. P4.2, Evaluate is an activity that always eventually follows Develop
Method. However, Develop Method was skipped. Therefore, BINet is

7 classifying anomalies 129

1-name 1-user 2-name 2-user 3-name 3-user 4-name 4-user 5-name 5-user 6-name 6-user 7-name 7-user

Normal

Skip

Skip

Insert

Rework

Rework

Early

Early

Late

Attribute

Id. Problem Supervisor Res. RW Student Dev. Met. Main Auth. Experiment Student Evaluate Main Auth. Conclude Main Auth. Submit Main Auth.

Dev. Met.
Skip Main Auth. Experiment Student Evaluate Main Auth. Conclude Main Auth. Submit Main Auth. Review Reviewer Min. Rev. Metarev.

Id. Problem Main Auth. Experiment
Skip Main Auth. Evaluate Main Auth. Conclude Main Auth. Submit Main Auth. Review Reviewer Min. Rev. Metarev.

Id. Problem Main Auth. Res. RW Student Rnd. 10
Insert

Rnd. 2
Attribute Dev. Met. Author Experiment Student Evaluate Main Auth. Conclude Main Auth.

Id. Problem Main Auth. Res. RW Student Dev. Met. Main Auth. Experiment Author Evaluate Main Auth. Experiment
Rework Author Evaluate

Rework Main Auth.

Id. Problem Main Auth. Res. RW Student Dev. Met. Author Experiment Main Auth. Res. RW
Rework Student Dev. Met.

Rework Author Experiment
Rework Main Auth.

Id. Problem Supervisor Experiment
Early Author Res. RW Main Auth. Dev. Met. Student Evaluate

Shift Main Auth. Conclude Main Auth. Submit Main Auth.

Id. Problem Supervisor Res. RW Student Conclude
Early Main Auth. Dev. Met. Student Experiment Student Evaluate Main Auth. Submit

Shift Main Auth.

Id. Problem Main Auth. Dev. Met.
Shift Main Auth. Experiment Student Res. RW

Late Student Evaluate Author Conclude Main Auth. Submit Main Auth.

Id. Problem Main Auth. Res. RW Supervisor
Attribute Dev. Met. Metarev.

Attribute Experiment Student Evaluate Main Auth. Conclude Main Auth. Submit Main Auth.

Normal Insert Skip Rework Early Late Shift Attribute

1

2

3 4

Figure P4.12: Classification of anomalies on the Paper dataset based on
anomaly scores from BINetv1 using h = lp

(a)
→ ; colors indi-

cate the prediction of the classifier (see legend) and actual
classes are shown as text within the cells

never presented with the causing activity, and hence regards Evaluate
as anomalous.

A different example is that BINet misses the third Rework activity in
the second example ­. We observed many of these errors, and they are
related to the fact that BINet is conditioned on the last input activity
and forgets the history of the case (forgetting problem). Under these
conditions, Develop Method indeed directly follows Research Related
Work, and hence BINet misses it. This forgetting problem is something
we want to address in the future.

The most interesting case is the second Early example ®. Here,
BINet misclassifies the Early activity as Shift. Upon closer inspection,
we realize that this is indeed a way of explaining the anomaly, albeit
not the one the labels indicate. With respect to Develop Method, Conclude
indeed occurs too early in the case. Nevertheless, BINet fails to detect
the actual Shift point ¯, and thus the rules do not match the pattern
correctly.

Using this simple set of rules, we ran the classifier on all synthetic
datasets, using BINetv1 as the anomaly detection method and h =

lp
(a)
→ (the best heuristic for BINetv1). Figure P4.13 shows the results in

a confusion matrix. Note that the classifier uses as input the anomaly
detection result of BINet, and hence can never distinguish normal
from anomalous examples. Thus, the errors for the normal class are
based on the errors BINet commits in the anomaly detection task.
Disregarding these errors, this results in a macro average F1 score of
0.83 over all datasets for the classification task. Since BINetv1 reaches
an average F1 score of 0.64 on the detection task, this result is truly
impressive, considering the simplicity of the rules. For the joint task
(detection and classification), BINetv1 reaches an average F1 score of
0.70.

In Fig. P4.13, we notice that BINet errs especially often for Rework,
Early, Late, and Shift. This is connected to the forgetting problem
mentioned earlier. Remember that Rework, Early, and Late anomalies

130 binet : multi-perspective business process anomaly classific .

No
rm

al

In
se

rt

Sk
ip

Re
wo

rk

Ea
rly

La
te

Sh
ift

No
rm

al
At

tri
bu

te

At
tri

bu
te

Prediction

Normal

Insert

Skip

Rework

Early

Late

Shift
Normal

Attribute
Attribute

Ac
tu

al

6.8M 2.9K 3.0K 122 152 16.4K 1.0K 0 0

922 50.9K 6 4 309 28 434 0 0

3.5K 1.6K 31.6K 89 45 0 7 0 0

49.0K 25 0 40.1K 0 1 8 0 0

18.5K 19.4K 5 18 9.0K 1 5.9K 0 0

31.3K 2.3K 12 11 18 18.7K 179 0 0

30.8K 13.5K 4 138 2.1K 1.6K 24.2K 0 0

0 0 0 0 0 0 0 15.8M 1.4M

0 0 0 0 0 0 0 36.8K 187.8K

Figure P4.13: Confusion matrix for all runs of BINetv1 on synthetic datasets
with h = lp

(a)
→ ; color indicates distribution of actual class

are affecting sequences of events, that is, up to 3 events can be part of a
rework anomaly, and up to 2 events can be executed early or late. In the
case of Rework, we have already seen an example in Fig. P4.12, where
BINet misclassifies because of forgetting. Figure P4.13 confirms that
this error occurs quite often since more than 50 percent of all Rework
anomalies are misclassified as Normal. All of these misclassifications
happen in cases where a sequence of more than one event has been
executed again.

Not every repetition of an event is classified as a Rework, only the
events identified to be anomalous are. Hence, a repeated event (a
loop in the process) is classified as Normal, if BINet has learned that
it can occur multiple times in a case. In the Paper process, this is
demonstrated by the second Submit event, which can naturally occur
multiple times in a case. In Fig. P4.13 we can see that BINet very rarely
classifies a Normal activity as Rework (never in the Paper datasets);
thus, we can conclude that BINet has learned to model the loop in the
Paper process correctly.

As with Rework, we can explain the errors for Early and Late by the
same argument. However, these two classes are also often misclassified
as Insert or Shift. The latter goes back to the second Early example
of Fig. P4.12 and the ambiguity of labels. The Insert errors are of
a different kind. They occur because the rule set is not taking into
account that multiple events can be executed early or late. We expect to
find an early execution somewhere later in the case as the prediction;
however, this can only be true for the first event of an early sequence.
The same argument can be made for late executions.

The Shift errors are related to the fact that the random process
models often allow skipping of events. When a Shift anomaly is applied
to an optional event, BINet, or any other method, has no means of

8 discussion 131

finding the anomaly. This could be accounted for by altering the
generation algorithm.

Nevertheless, the results indicate that a simple set of rules can be
used to classify the anomalies types we have introduced before. Note
that this is a white-box approach and a human user can easily interpret
the resulting classification. Even though the different classes are only
a subset of all anomaly types, they do cover many of the anomalies
encountered in real-life business processes. Importantly, it is quite
easy to define new rules for new types of anomalies based on the
predictive capabilities of BINet.

8 discussion

As part of the discussion, we would like to address three matters:
The performance on the real-life datasets, the differences between the
BINet versions, and the difference in datasets compared to the original
publication [26].

Firstly, the difference in performance when comparing synthetic
and real-life datasets seems substantial. Yet, the real-life datasets
contain natural anomalies that are not labeled and therefore incorrectly
represent normal behavior. If BINet correctly detects these anomalies,
this is considered to be wrong because the labels indicate otherwise.
The results indicate that BINet detects most of the artificial anomalies,
which leads to high recall scores. These recall scores are similar to
the recall scores reached on the synthetic sets, suggesting that BINet
performs equally good on both the synthetic and the real-life datasets.
Conversely, we can observe low precision scores on the real-life data.
BINet detects natural anomalies that are labeled as normal, thereby
affecting the precision. Based on our domain knowledge about the
BPIC datasets, we believe most of these misclassified anomalies to
be actual anomalies that BINet correctly found, but the lack of labels
compromises the precision score.

Secondly, it appears that BINetv1 outperforms BINetv2 and BINetv3.
We would have expected a different outcome because BINetv2 and
BINetv3 can model causal dependencies. BINetv1 performs particu-
larly well on the synthetic data. We suspect that this is attributed to
the generation algorithm and the number of event attributes in the
datasets. The design of BINetv2 and BINetv3 is targeted at improving
the predictions of event attributes. This design can only be utilized if
more than one event attribute exists. In some datasets, this was not the
case. However, for the real-life datasets, where more event attributes
are available, BINetv3 performs best. Additionally, it appears that for
the synthetic datasets the historical information of past events is suffi-
cient to accurately predict the next event. This is not the case for the
real-life datasets. In the future, we intend to address this by altering
the generation algorithm to generate stronger causal dependencies.

132 binet : multi-perspective business process anomaly classific .

Thirdly, the total number of datasets used in this work is differ-
ent from the number used in [26]. In [26] we generated multiple
redundant logs from the same randomly generated process model.
However, we found that a higher number of datasets did not affect
the overall evaluation results. Instead, we decided to include more
sophisticated anomalies, resulting in a more challenging, diverse, and
realistic corpus, albeit a smaller one.

9 conclusion

In this paper, we presented three versions of BINet, a neural network
architecture for multi-perspective anomaly classification in business
process event logs. Additionally, we proposed a set of heuristics for
setting the threshold of an anomaly detection algorithm automatically,
based on the anomaly ratio function. Finally, we demonstrated that a
simple set of rules could be used for classification of anomaly types,
solely based on the output of BINet.

BINet is a recurrent neural network, and can, therefore, be used for
real-time anomaly detection, since it does not require a completed
case for detection. BINet does not rely on any information about the
process, nor does it depend on a clean dataset. Utilizing the lowest
plateau heuristic, BINet’s internal threshold can be set automatically,
reducing manual workload and allowing fully autonomous operation.
It utilizes both the control flow and the data perspective. Furthermore,
BINet can cope with concept drift, for it can be set up to train on new
cases in real-time continuously.

Based on the empirical evidence obtained in the evaluation, BINet
is a promising method for anomaly detection, especially in business
process event logs. BINet outperformed the opposition on all detection
levels. Specifically, on the synthetic datasets, BINet’s performance
surpasses those of other methods by an order of magnitude. We
demonstrated that BINet also performs well on the real-life datasets
because BINet shows high recall of the artificial anomalies introduced
to the original real-life logs.

Although the results look very promising, there is still room for
improvement. For example, BINet suffers from forgetting when se-
quences of events are repeated in a case. This issue can be addressed
in future work, for example, by using a special attention layer. An
interesting option is the use of a bidirectional encoder-decoder struc-
ture to read in cases both from left to right and from right to left.
Hereby, sequences of repeated events can be identified from two sides,
as opposed to just one.

Overall, the results presented in this paper suggest that BINet is a re-
liable and versatile method for detecting—and classifying—anomalies
in business process event logs.

references 133

acknowledgments

This project [522/17-04] is funded in the framework of Hessen Mod-
ellProjekte, financed with funds of LOEWE, Förderlinie 3: KMU-
Verbundvorhaben (State Offensive for the Development of Scientific
and Economic Excellence), and by the German Federal Ministry of
Education and Research (BMBF) Software Campus project “R2PA”
[01IS17050].

references

[1] Wil M. P. van der Aalst. Process Mining: Data Science in Action.
Springer, 2016 (cit. on pp. 108, 110, 112).

[2] Fábio Bezerra and Jacques Wainer. “Anomaly Detection Algo-
rithms in Logs of Process Aware Systems.” In: Proceedings of the
23rd Annual ACM Symposium on Applied Computing – SAC ’08.
2008, pp. 951–952 (cit. on p. 112).

[3] Fábio Bezerra and Jacques Wainer. “Algorithms for Anomaly
Detection of Traces in Logs of Process Aware Information Sys-
tems.” In: Information Systems 38.1 (2013), pp. 33–44 (cit. on
pp. 116, 124).

[4] Fábio Bezerra, Jacques Wainer, and Wil M. P. van der Aalst.
“Anomaly Detection Using Process Mining.” In: Proceedings of the
10th International Workshop on Enterprise, Business-Process and In-
formation Systems Modeling – BPMDS’09. Springer, 2009, pp. 149–
161 (cit. on pp. 112, 127).

[5] Kristof Böhmer and Stefanie Rinderle-Ma. “Multi-perspective
Anomaly Detection in Business Process Execution Events.” In:
Proceedings of On the Move to Meaningful Internet Systems, OTM’16.
Springer. 2016, pp. 80–98 (cit. on pp. 112, 114, 116, 125, 127).

[6] Andrea Burattin. “PLG2: Multiperspective Processes Random-
ization and Simulation for Online and Offline Settings.” In: arXiv
preprint arXiv:1506.08415 (2015) (cit. on p. 114).

[7] V. Chandola, A. Banerjee, and V. Kumar. “Anomaly Detection for
Discrete Sequences: A Survey.” In: IEEE Transactions on Knowl-
edge and Data Engineering 24.5 (2012), pp. 823–839 (cit. on pp. 112,
113, 124).

[8] Kyunghyun Cho et al. “Learning Phrase Representations Using
RNN Encoder-decoder for Statistical Machine Translation.” In:
arXiv preprint arXiv:1406.1078 (2014) (cit. on p. 118).

[9] Corinna Cortes and Vladimir Vapnik. “Support-vector Net-
works.” In: Machine learning 20.3 (1995), pp. 273–297 (cit. on
p. 113).

134 binet : multi-perspective business process anomaly classific .

[10] Pieter De Koninck, Seppe vanden Broucke, and Jochen De
Weerdt. “act2vec, trace2vec, log2vec, and model2vec: Repre-
sentation Learning for Business Processes.” In: Proceedings of
the 16th International Conference on Business Process Management
– BPM’18. Springer, 2018, pp. 305–321. isbn: 978-3-319-98648-7
(cit. on p. 118).

[11] Janez Demšar. “Statistical Comparisons of Classifiers Over Mul-
tiple Data Sets.” In: Journal of Machine Learning Research 7.Jan
(2006), pp. 1–30 (cit. on pp. 127, 128).

[12] Joerg Evermann, Jana-Rebecca Rehse, and Peter Fettke. “A Deep
Learning Approach for Predicting Process Behaviour at Run-
time.” In: Proceedings of the 14th International Conference on Busi-
ness Process Management – BPM’16. Springer. 2016, pp. 327–338

(cit. on p. 113).

[13] Joerg Evermann, Jana-Rebecca Rehse, and Peter Fettke. “Pre-
dicting Process Behaviour Using Deep Learning.” In: Decision
Support Systems 100 (2017), pp. 129–140 (cit. on p. 113).

[14] Milton Friedman. “The Use of Ranks to Avoid the Assumption
of Normality Implicit in the Analysis of Variance.” In: Journal
of the American Statistical Association 32.200 (1937), pp. 675–701

(cit. on p. 127).

[15] Jiawei Han, Jian Pei, and Micheline Kamber. Data Mining: Con-
cepts and Techniques. Elsevier, 2011 (cit. on p. 108).

[16] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term
Memory.” In: Neural Computation 9.8 (1997), pp. 1735–1780 (cit.
on pp. 111, 113).

[17] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Covari-
ate Shift.” In: Proceedings of the 32nd International Conference on
Machine Learning – ICML’15. 2015, pp. 448–456 (cit. on p. 121).

[18] Nathalie Japkowicz. “Supervised Versus Unsupervised Binary-
Learning by Feedforward Neural Networks.” In: Machine Learn-
ing 42.1 (2001), pp. 97–122 (cit. on p. 113).

[19] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochas-
tic Optimization.” In: arXiv preprint arXiv:1412.6980 (2014) (cit.
on p. 121).

[20] Pankaj Malhotra et al. “LSTM-based encoder-decoder for multi-
sensor anomaly detection.” In: arXiv preprint arXiv:1607.00148
(2016) (cit. on p. 113).

[21] Erik Marchi, Fabio Vesperini, Florian Eyben, Stefano Squartini,
and Björn Schuller. “A Novel Approach for Automatic Acoustic
Novelty Detection Using a Denoising Autoencoder with Bidirec-
tional LSTM Neural Networks.” In: (Apr. 2015) (cit. on p. 113).

references 135

[22] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
“Efficient Estimation of Word Representations in Vector Space.”
In: arXiv preprint arXiv:1301.3781 (2013) (cit. on p. 118).

[23] Peter Nemenyi. “Distribution-Free Multiple Comparisons.” PhD
thesis. Princeton University, 1963 (cit. on p. 127).

[24] Timo Nolle, Stefan Luettgen, Alexander Seeliger, and Max Mühl-
häuser. “Analyzing Business Process Anomalies Using Autoen-
coders.” In: Machine Learning 107.11 (Nov. 2018), pp. 1875–1893

(cit. on pp. 113, 125).

[25] Timo Nolle, Alexander Seeliger, and Max Mühlhäuser. “Unsu-
pervised Anomaly Detection in Noisy Business Process Event
Logs Using Denoising Autoencoders.” In: Proceedings of the 19th
International Conference on Discovery Science – DS’16. Springer.
2016, pp. 442–456 (cit. on pp. 113, 127).

[26] Timo Nolle, Alexander Seeliger, and Max Mühlhäuser. “BINet:
Multivariate Business Process Anomaly Detection Using Deep
Learning.” In: Proceedings of the 16th International Conference on
Business Process Management – BPM’18. 2018, pp. 271–287 (cit. on
pp. 109, 114, 120, 123, 127, 131, 132).

[27] Marco A. F. Pimentel, David A. Clifton, Lei Clifton, and Li-
onel Tarassenko. “A Review of Novelty Detection.” In: Signal
Processing 99 (2014), pp. 215–249 (cit. on p. 112).

[28] Bernhard Schölkopf, Robert C. Williamson, Alexander J. Smola,
John Shawe-Taylor, John C. Platt, et al. “Support Vector Method
for Novelty Detection.” In: Proceedings of the 12th International
Conference on Neural Information Processing Systems – NIPS’99.
Vol. 12. 1999, pp. 582–588 (cit. on p. 113).

[29] Niek Tax, Ilya Verenich, Marcello La Rosa, and Marlon Dumas.
“Predictive Business Process Monitoring with LSTM Neural
Networks.” In: Proceedings of the 29th International Conference on
Advanced Information Systems Engineering – CAiSE’17. Springer.
2017, pp. 477–492 (cit. on p. 113).

[30] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter.
“Detecting Intrusions Using System Calls: Alternative Data Mod-
els.” In: Proceedings of the 1999 IEEE Symposium on Security and
Privacy – SP’99. 1999, pp. 133–145 (cit. on pp. 113, 124, 125, 127).

[31] Lijie Wen, Wil M. P. van der Aalst, Jianmin Wang, and Jiaguang
Sun. “Mining Process Models with Non-free-choice Constructs.”
In: Data Mining and Knowledge Discovery 15.2 (2007), pp. 145–180

(cit. on p. 112).

136 binet : multi-perspective business process anomaly classific .

[32] Christian Wressnegger, Guido Schwenk, Daniel Arp, and Kon-
rad Rieck. “A Close Look on N-grams in Intrusion Detection:
Anomaly Detection vs. Classification.” In: Proceedings of the 2013
ACM Workshop on Artificial Intelligence and Security – AISec’13.
2013, pp. 67–76 (cit. on p. 113).

P5
D E E PA L I G N : A L I G N M E N T- B A S E D P R O C E S S
A N O M A LY C O R R E C T I O N U S I N G R E C U R R E N T
N E U R A L N E T W O R K S

Timo Nolle, Alexander Seeliger, Nils Thoma, and Max Mühlhäuser
In: Proceedings of the 32nd International Conference on Advanced Informa-
tion Systems Engineering – CAiSE’20. 2020, pp. 319–333.

abstract : In this paper, we propose DeepAlign, a novel ap-
proach to multi-perspective process anomaly correction, based
on recurrent neural networks and bidirectional beam search. At
the core of the DeepAlign algorithm are two recurrent neural
networks trained to predict the next event. One is reading se-
quences of process executions from left to right, while the other
is reading the sequences from right to left. By combining the
predictive capabilities of both neural networks, we show that it
is possible to calculate sequence alignments, which are used to
detect and correct anomalies. DeepAlign utilizes the case-level
and event-level attributes to closely model the decisions within
a process. We evaluate the performance of our approach on
an elaborate data corpus of 252 realistic synthetic event logs
and compare it to three state-of-the-art conformance checking
methods. DeepAlign produces better corrections than the rest
of the field reaching an overall F1 score of 0.9572 across all
datasets, whereas the best comparable state-of-the-art method
reaches 0.6411.

keywords : Business Process Management, Anomaly Detection,
Deep Learning, Sequence Alignments

1 introduction

Process anomaly detection can be used to automatically detect de-
viations in process execution data. This technique infers the process
solely based on distributions of the execution data, without relying
on an abstract definition of the process itself. While these approaches
can accurately pinpoint an anomaly in a process, they do not provide
information about what should have been done instead. Although,
the knowledge about the occurrence of an anomaly is valuable, much
more value lies in the knowledge of what was supposed to happen
and how to avoid this behavior in the future.

137

138 deepalign : alignment-based process anomaly correction

Process mining techniques are centered around the notion of a
process model that describes the correct behavior of a process. Confor-
mance checking techniques can be utilized to analyze process execu-
tions for their conformance with a process model. This method has
the benefit of not only detecting deviations from the defined process
but also of providing the closest conforming path through the process,
thereby correcting it.

The correctness of the conformance checking result depends on
the quality of the process model. Furthermore, a correct execution
of a process is not necessarily defined by a correct order of process
steps but can depend on a variety of other parameters. For example, it
might not be allowed that the same person executes two consecutive
process steps or a process might differ depending on the country it
is being executed in. All these possibilities have to be accounted for
both in the process model and the conformance checking algorithm to
ensure a correct result. If no process model is available, conformance
checking cannot be used and the creation of a good reference model
is a time-consuming task.

An automatic process anomaly correction is therefore desirable,
combining the autonomy of an anomaly detection algorithm with
the descriptive results from conformance checking. Against this back-
ground, we propose the DeepAlign1 algorithm, which combines these
two benefits. It borrows from the field of anomaly detection and em-
ploys two recurrent neural networks (RNN), trained on the task of
next event prediction, as an approximate process model [18]. Inspired
by the alignment concept from conformance checking, we show that a
bidirectional beam search [17] can be used to align a process execution
with the process model as approximated by the two RNNs.

DeepAlign can not only detect that process steps have been skipped,
but it can also predict which process steps should have been executed
instead. Furthermore, it does not rely on a reference model of the pro-
cess, nor any prior knowledge about it. It can be used to automatically
detect anomalies and to automatically correct them.

2 background

Before we describe the DeepAlign algorithm, we must first introduce
some concepts from the field of process mining and deep learning.

2.1 Process Mining

Process mining is centered around the idea of human-readable rep-
resentations of processes called process models. Process models are
widely used in business process management as a tool for defining,
documenting, and controlling business processes inside companies.

1 Available on GitHub https://github.com/tnolle/deepalign

2 background 139

During the execution of a digital business process, each process step
is stored in a database. This includes information on when the process
step was executed (timestamp), what process step was executed (ac-
tivity), and to which business case it belongs (case identifier). These
three fundamental bits of event information are the basis for every
process mining algorithm and are usually combined into a single data
structure called event log.

A log consists of cases, each of which consists of events executed
within a process, and some attributes connected to the case (case
attributes). Each event is defined by an activity name and its attributes
(e.g., a user who executed the event).

Definition P5.1. Case, Event, and Log. Let E be the set of all events. A case
is a sequence of events c ∈ E∗, where E∗ is the set of all sequences over E Let
C be the set of all cases. An event log is a set of cases L ⊆ C.

Event logs can be used to automatically discover a process model.
Discovery algorithms analyze the event logs for process patterns
and aim to produce a human-readable process model that likely
produced the event log. Multiple discovery algorithms exist, such
as the Heuristics Miner [20] and the Inductive Visual Miner [9].

2.2 Alignments

In process analytics, it is desirable to relate the behavior observed in an
event log to the behavior defined in a process model. This discipline is
called conformance checking. The goal of conformance checking is to
find an alignment between an event log and a reference process model.
The reference model can be manually designed or be discovered by a
process discovery algorithm.

Definition P5.2. Alignment. An alignment [5] is a bidirectional mapping
of an event sequence σl from the event log to a possible execution sequence
σm of the process model. It is represented by a sequence of tuples (sl, sm) ∈
(E� × E�) \ {(�,�)}, where � is an empty move and E� = E ∪ {�}.
We say that a tuple represents a synchronous move if sl ∈ E and sm ∈ E, a
model move if sl =� and sm ∈ E, and a log move if sl ∈ E and sm =�.
An alignment is optimal if the number of empty moves is minimal.

For σl = 〈a,b, c, x, e〉 and σm = 〈a,b, c,d, e〉, the two optimal align-
ments are

a b c x � e

a b c � d e
and

a b c � x e

a b c d � e

where the top row corresponds to σl and the bottom row corresponds
to σm, mapping moves in the log to moves in the model and vice
versa.

140 deepalign : alignment-based process anomaly correction

2.3 Recurrent Neural Network (RNN)

Recurrent neural networks (RNN) have been designed to handle se-
quential data such as sentences. An RNN is a special kind of neural
network that makes use of an internal state (memory) to retain in-
formation about already seen words in a sentence. It is processing
a sentence word for word, and with each new word, it will approxi-
mate the probability distribution over all possible next words. Neural
networks can be efficiently trained using a gradient descent learning
procedure, minimizing the error in the prediction by tuning its internal
parameters (weights). The error can be computed as the difference
between the output of the neural network and the desired output.

After the training procedure, the neural network can approximate
the probability distribution over all possible next words, given an
arbitrary length input sequence. With slight alterations, RNNs can be
applied to event logs, which we will explain further in Sec. 3.

2.4 Beam Search

In natural language processing, it is common to search for the best
continuation of a sentence under a given RNN model. To find the
most probable continuation, every possible combination of words has
to be considered which, for a length of L and a vocabulary size of V ,
amounts to VL possible combinations. Due to the exponential growth
of the search space, this problem is NP-hard.

Instead, a greedy approach can be taken, producing always the most
likely next word given a start of a sentence, based on probability under
the RNN. However, this approach does not yield good results because
it approximates the total probability of the sentence continuation
based only on the probability of the next word. A more probable
sentence might be found when expanding the search to the second
most probable next word, or the third, and so on.

Beam search (BS) is a greedy algorithm that finds a trade-off between
traversing all possible combinations and only the most probable next
word. For every prediction, the BS algorithm expands only the K most
probable sentence continuations (beams). In the next step, the best K
probable continuations over all K beams from the previous step are
chosen, and so on. For K = 1, BS is equivalent to the greedy 1-best
approach explained above. BS has the advantage of pruning the search
space to feasible sizes, while still traversing a sufficient part of the
search space to produce a good approximation of the most likely
sentence continuation.

The BS algorithm is iteratively applied, inserting new words with
each step, until convergence, i.e., the end of a sentence is reached,
indicated by the end of sentence symbol.

3 deepalign 141

2.5 Bidirectional Beam Search

The BS algorithm continues a sentence until a special end of sentence
symbol is predicted. However, if the sentence has a defined begin-
ning and end, this approach cannot be used because a unidirectional
RNN only knows about the beginning of the sentence and not the
end. This has been demonstrated and been addressed in [17] with a
novel bidirectional beam search (BiBS) approach. Instead of using a
single unidirectional RNN, the authors propose to use two separate
unidirectional RNNs, one reading the input sentences forwards, and
one reading them backwards.

The problem that arises with a gap in the middle of a sentence
is that the probability of the resulting sentence, after the insertion
of a new word, cannot be computed by a single RNN without re-
computation of the remainder of the sentence. In BiBS, this probability
is approximated by the product of the probability of the beginning of
the sentence (by the forward RNN), the end of the sentence (by the
backward RNN), and the joint probability of inserting the new word
(according to both RNNs). The original BS algorithm is extended to
expand the search space based on this joint probability, ensuring a
proper fit both for the beginning and the end of the sentence.

The BiBS algorithm is iteratively applied to the original sentence,
updating it with each step, until convergence, i.e., no insertions would
yield a higher probability in any of the K beams.

3 deepalign

In this section we describe the DeepAlign algorithm and all its com-
ponents. An overview of the algorithm is shown in Fig. P5.1. Two
neural networks are trained to predict the next event, one reading
cases from left to right (forwards), the other reading them from right
to left (backwards). An extended BiBS is then used to transform the
input case to the most probable case under the two RNN models.
Lastly, an alignment is calculated based on the search history of the
algorithm.

3.1 Next Event Prediction

Next event prediction aims to accurately model the decisions being
made in a process. These decisions are based on multiple parameters,
such as the history of a case, the attributes connected to past events,
and the case level attributes. To succeed, a machine learning model
must take into account all of these parameters.

In this paper, we propose a new neural architecture for next event
prediction. It has been designed to model the sequence of activi-
ties (control-flow), the attributes connected to these activities (event

142 deepalign : alignment-based process anomaly correction

Event
Log

DeepAlign

RNN
− →−−

RNN
← −−−

c
a
a

f

≫ b
≫ c d

d
e
e

Figure P5.1: The DeepAlign algorithm makes use of two next event predic-
tion RNNs and an extended bidirectional beam search (green)
to produce alignments

GRU

concat

Activity User DayTopic Decision

concat

Softmax Softmax Softmax

Activity User Day

Embedding Embedding Embedding Embedding Embedding

Case Attributes Event AttributesControl-flow

FC-relu
Initial hidden state

FC FC FC FC

Figure P5.2: RNN architecture for an event log with two case attributes (Topic
and Decision) and two event attributes (User and Day)

attributes), and the global attributes connected to the case (case at-
tributes). Figure P5.2 shows the architecture in detail.

At the heart of the network is a Gated Recurrent Unit (GRU) [7], a
type of RNN. This GRU is iteratively fed an event, consisting of its
activity and its event attributes, and must predict the corresponding
next event. Each categorical attribute is fed through an embedding
layer to map the values into a lower-dimensional embedding space.
To include the case attributes, we make use of the internal state of
the GRU. Instead of initializing the state with zeros (the default), we
initialize it based on a representation of the case attributes. All case
attributes are transformed by a case attribute network, consisting of
two fully-connected layers (FC), to produce a real-valued representa-
tion of the case attributes. In other words, we initialize the next event
prediction with a representation of the case attributes, thereby condi-
tioning it to predict events according to these case attributes. Finally,
the GRU output is fed into separate FC layers with Softmax activations
to produce a probability distribution over all possible attributes of the
next event (i.e., the prediction of the next event).

3 deepalign 143

b c d ea

RNN
− →−−

RNN
− →−−

RNN
− →−−

RNN
− →−−

RNN
− →−−

b c d ea

RNN
← −−−

RNN
← −−−

RNN
← −−−

RNN
← −−−

RNN
← −−−

0.9 0.72 0.56 0.38 0.27 0.35 0.5 0.69 0.850.25

ℎ0
ℎ00.26

mean

Figure P5.3: The probability of a case c = 〈a,b, c,d, e〉 is computed by the
average probability of the case under both the forward and the
backward RNN

We train the networks with a GRU size equal to two times the
maximum case length on mini-batches of size 100 for 50 epochs using
the Adam optimizer with standard parameters [8]. The first layer of
the case attribute network has an output size of the GRU size divided
by 8 and the second layer output is equal to the hidden state size
of the GRU. These parameters were chosen following an exhaustive
grid search, however, we found that any reasonable setting generally
worked.

3.2 The DeepAlign Algorithm

In the context of processes, the sentences of words from above will
become the cases of events from the event log. By replacing the next
word prediction RNNs with next event prediction RNNs in the BiBS
algorithm we can apply it to event logs. Instead of only predicting the
next word, the RNNs will predict the next event, including the most
likely event attributes.

Our goal is to utilize the two RNNs as the reference model for
conformance checking and produce an alignment between log and
the RNNs. Alignments can be interpreted as a sequence of skip (syn-
chronous move), insertion (model move), or deletion (log move) op-
erations. The BiBS algorithm already covers the first two operations,
but not the last. To allow for deletions, we have to extend the BiBS
algorithm.

Let
−−−→
RNN be the forward event prediction RNN and

←−−−
RNN be the

backward RNN. Let further RNN(h, c) be the probability of case c
under RNN, initialized with the hidden state h.

The probability of a case c under the two RNNs can be computed
by

P(c) =
1

2

(−−−→
RNN (h0, c) +

←−−−
RNN (h0, c)

)
,

where h0 is the output of the case attribute network. If no case at-
tributes are available, the initial state is set to zeros. An example is
shown in Fig. P5.3.

144 deepalign : alignment-based process anomaly correction

0.02

0.78

0.03
ba

RNN
− →−−

RNN
− →−−

0.9 0.72

ℎ0

b

c

a
d e

RNN
← −−−

RNN
← −−−

0.69 0.85

ℎ0

0.07d

0.1e

0.15

0.73

0.1

b

c

a

0.01 d

0.01 e

0.28

×

Figure P5.4: The probability of a case c = 〈a,b,d, e〉 after the insertion of
an event c after b is computed by the joint probability 〈a,b〉
under the forward RNN, 〈d, e〉 under the backward RNN, and
the probabilities of continuing the case with c under both RNNs

x yba

RNN
− →−−

RNN
− →−−

0.9 0.72

ℎ0

d e

RNN
← −−−

RNN
← −−−

0.69 0.85

ℎ0

c

RNN
− →−−

0.56

0.19

× 0.73 c0.67d

Figure P5.5: The probability of a case c = 〈a,b, c, x,y,d, e〉 after the deletion
of x and y is computed by the joint probability of 〈a,b, c〉 under
the forward RNN, 〈d, e〉 under the backward RNN, and the
probabilities of continuing the case with d and c under the
forward and backward RNN, respectively

For an insertion of an event e at time t in a case c, the probability
under the two RNNs can be approximated by

Pins(c, e, t) =
−−−→
RNN

(
h0, c[1:t]

)
·
−−−→
RNN

(−→
h t, e

)
·
←−−−
RNN

(←−
h t+1, e

)
·
←−−−
RNN

(
h0, c[t+1:T]

)
,

where T is the total case length, c[1:t] is the index notation to retrieve

all events from c until time t, and
−→
h t is the hidden state of

−−−→
RNN

after reading c[1:t]. Similarly,
←−
h t+1 is the hidden state of

←−−−
RNN after

reading c[t+1:T]. An example is shown in Fig. P5.4.
The probability of deleting n events at time t in a case c can be

approximated by

Pdel(c,n, t) =
−−−→
RNN

(
h0, c[1:t]

)
·
−−−→
RNN

(−→
h t, c[t+n]

)
·
←−−−
RNN

(←−
h t+n, c[t]

)
·
←−−−
RNN

(
h0, c[t+n:T]

)
.

An example is shown in Fig. P5.5.
Algorithm P5.1 shows the full DeepAlign process of aligning a case

c with the two RNNs. The algorithm is initialized with an initial set of
beams B = {c}, i.e., the original case. For each possible operation, the
probabilities are computed using the aforementioned equations, and
the top-K beams are returned. For simplicity, we assume that top-K
always returns the updated cases according to the operations with the
highest probability. The number of events that can be deleted in one
step can be controlled with the parameter N. This is necessary because

4 experiments 145

successively deleting single events does not necessarily generate higher
probabilities than removing multiple events at once.

Algorithm P5.1: DeepAlign algorithm
Data: Given a set of beams B, maximum number of beams K,

and a maximum deletion size N
while not converged do

B ′ = ∅;
for b ∈ B do

B ′ = B ′ ∪ P(b);
for t = 1, ..., T do

B ′ =

B ′ ∪ {Pdel(b,n, t) | n ∈ 1, ...,N}∪ {Pins(b, e, t) | e ∈ E}

end
end
B = top-K (B ′)

end
Result: B, the top-K beams after convergence

Algorithm P5.1 does not yet return alignments, but the top-K up-
dated cases. By keeping a history of the top-K operations (skip, deletion,
and insertion) in every iteration, we can obtain the alignment directly
from the history of operations. A deletion corresponds to an empty
move on the model, whereas an insertion corresponds to an empty
move in the log.

The top-K selection in Alg. P5.1 will select the top K beams based
on the probability under the RNN models. In case of ties, we break
the tie by choosing the beam with fewer empty moves (insertions and
deletions).

4 experiments

We evaluate the DeepAlign algorithm for the task of anomaly correc-
tion. Given an event log consisting of normal and anomalous cases,
an anomaly correction algorithm is expected to align each case in the
event log with a correct activity sequence according to the process
(without anomalies) that produced the event log.

We use a simple paper submission process as a running example
throughout the remainder of this paper. The process model in Fig. P5.6
describes the creation of a scientific paper. It includes the peer review
process, which is executed by a reviewer, whereas the paper is written
by an author.

To evaluate the accuracy of the corrections, we generated six random
process models using PLG2 [6]. The models vary in complexity with
respect to the number of activities, breadth, and width. Additionally,
we use a handmade procurement process model called P2P as in [15].

146 deepalign : alignment-based process anomaly correction

Au
th
or

R
ev
ie
w
er

Identify
Problem

Research
Related Work

Develop
Hypothesis

Develop
Method

Experiment

Conduct
Study

Evaluate

Conclude Submit

Review Minor
Revision

Revise Submit

Final
Decision

Figure P5.6: A simple paper submission process which is used as an example
in the evaluation

Identify Problem Research Related Work Develop Hypothesis Experiment Conduct Study

Main Author
Supervisor

0.7

0.3

Main Author

Student

0.3

0.7

0.6

0.4

1.0 Develop Method Experiment Evaluate

0.8 Main Author

0.2 Author

0.35 Main Author

0.2 Author

0.45 Student

0.75 Main Author

0.25 Author

0.65 Main Author

0.1 Author

0.25 Student

0.8 Main Author

0.2 Author

0.2 Main Author

0.8 Author

Conclude

Main Author

Submit

Main Author

Review

Reviewer
0.25

0.75

Metareviewer

Minor Revision

Main Author

Revise

Main Author

Submit Metareviewer

Final Decision

Figure P5.7: A likelihood graph with user attribute; 1.0 probabilities omitted
for simplicity

To generate event attributes, we create a likelihood graph [4] from
the process models which includes probabilities for event attributes
connected to each step in the process. This method has been proposed
in [14]. A likelihood graph for the paper process from Fig. P5.6 is
shown in Fig. P5.7.

For each process step, the probability of the resource executing it is
shown in yellow. Depending on the resource, the probabilities of the
next process steps are shown in blue. Note that there is a long-term
dependency between the steps Develop Hypothesis and Conduct Study,
and, similarly, between Develop Method and Evaluate. That is, Conduct
Study never eventually follows Develop Method, and, likewise, Evaluate
never eventually follows Develop Hypothesis.

We can generate event logs by using a random-walk through the
likelihood graph, complying with the transition probabilities, and
generating activities and attributes along the way. In addition to the
event attributes, we also generate case attributes, as well as, depen-
dencies between the case attributes and the output probabilities in
the likelihood graph. For the paper process, we generate two case
attributes, Decision and Topic.

If the topic is Theory, this implies that Develop Hypothesis will occur
in a case, whereas if the topic is Engineering, it implies Develop Method
will occur. The decision can be Accept, Weak Accept, Borderline, Weak
Reject, or Reject. For simplicity, we define that there will only be a Minor
Revision if the Decision is either Accept or Weak Accept. There will be no
Minor Revision otherwise. We have generated an event log that follows

4 experiments 147

these rules that we use as an example throughout the remainder of
the paper. The paper process was not used in the evaluation because
of its simplicity.

For each of the 7 other process models, we generate 4 random event
logs with varying numbers of event and case attributes. Additionally,
we introduce noise to the event logs by randomly applying one of
7 anomalies to a fixed percentage of the cases in the event log. We
generate datasets for noise levels between 10% and 90% with a step
size of 10% (9 in total). We gather a ground truth dataset for the
anomaly correction problem by retaining the original cases before
alteration. The 7 anomalies are defined as follows.

• Skip: A sequence of up to 2 necessary events has been skipped

• Insert: Up to 2 random activities have been inserted

• Rework: A sequence of up to 3 events has been executed a second
time

• Early: A sequence of up to 2 events has been executed too early,
and hence is skipped later in the case

• Late: A sequence of up to 2 events has been executed too late,
and hence is skipped earlier in the case

• Attribute: An incorrect attribute value has been set in up to 3

events

To analyze the impact of the case and event attributes, we evalu-
ate four different implementations of DeepAlign: one that does not
use any attributes (DeepAlign∅), one that only uses case attributes
(DeepAlign∅), one that only uses event attributes (DeepAlignE), and
one that uses both (DeepAlignCE).

Additionally, we evaluate baseline approaches that first discover
a process model using a discovery algorithm and then calculate the
alignments [1]. We chose the Heuristics Miner [20] and the Inductive
Miner [9] using the implementations of the PM4Py library [2]. For
completeness, we also evaluate the conformance checking algorithm
using a perfect Reference Model, i.e., the one used to generate the
event logs.

We run the DeepAlign algorithm for a maximum number of 10

iterations with a beam size of K = 5 and a maximum deletion size of
N = 3, and consider the top-1 beam for the evaluation. The Inductive
Miner and the Heuristics Miner are used as implemented in PM4Py.
For the Heuristics Miner, we use a dependency threshold of 0.99, and
for the Inductive Miner, we use a noise threshold of 0.2.

148 deepalign : alignment-based process anomaly correction

Table P5.1: Correction accuracy, average error for incorrect alignments (based
on the Levenshtein distance), and alignment optimality for correct
alignments; best results are shown in bold typeface

CF CA EA FN1 FA1 F1 Error Optimal

Reference Model 3 - - 0.9011 0.9331 0.9171 1.46 -

Heuristics Miner 3 - - 0.6678 0.6144 0.6411 3.33 -
Inductive Miner 3 - - 0.6007 0.2438 0.4222 2.18 -

DeepAlign∅ 3 - - 0.7950 0.8111 0.8030 2.52 99.8%
DeepAlignC 3 3 - 0.8918 0.9290 0.9104 2.41 99.9%
DeepAlignE 3 - 3 0.9261 0.9582 0.9421 1.65 86.9%
DeepAlignCE 3 3 3 0.9442 0.9702 0.9572 1.84 86.6%

5 evaluation

The overall results are shown in Tab. P5.1. For each dataset we run the
algorithms and evaluate the correction accuracy, that is, an alignment
is regarded as correct if the model sequence is exactly equal to the
ground truth sequence. For correct alignments, we calculate the opti-
mality of the alignment (i.e., if the number of empty moves is minimal).
For incorrect alignments, we calculate the distance from the ground
truth sequence with Levenshtein’s algorithm. Accuracy is measured as
the macro average F1 score of normal (FN1) and anomalous (FA1) cases
across all datasets and noise levels.

Interestingly, DeepAlignE, and DeepAlignCE both outperform the
perfect Reference Model approach. This is because the Reference
Model does not contain any information about the case and event
attributes. The Heuristics Miner yields much better results in the
anomaly correction task than the Inductive Miner, however, DeepAlign∅
outperforms both, without relying on case or event attributes.

Reference Model, Heuristics Miner, and Inductive Miner all produce
optimal alignments because the alignment algorithm guarantees it. The
DeepAlign algorithm shows a significant drop in alignment optimality
when including the event attributes. The drop in optimality can be
attributed to the fact that we always predict the top-1 attribute value
for inserted events in the DeepAlign algorithm. Furthermore, it might
be connected to the attribute level anomalies that we introduced as
part of the generation. The best results are achieved when including
both the case and the event attributes. Figure P5.8 shows the F1 score
for each algorithm per noise level and per dataset. DeepAlignCE
always performs better than the Reference Model, and significantly
better than the two mining approaches.

5 evaluation 149

10% 20% 30% 40% 50% 60% 70% 80% 90%
Anomalous cases

0.2

0.4

0.6

0.8

1.0

F 1

P2P Small Medium Large Huge Gigantic Wide
Dataset

DeepAlignCE
Heuristics Miner
Inductive Miner
Reference Model

Figure P5.8: F1 score for each algorithm per noise ratio (left) and per dataset
(right); error bars indicate variance across all runs

We want to finish the evaluation with examples from the paper
dataset to illustrate the results of the DeepAlign algorithm. This is the
resulting alignment for a case with a Skip anomaly,

Identify
Problem

� � Experiment Evaluate Conclude Submit Review ...

Identify
Problem

Research
Related
Work

Develop
Method

Experiment Evaluate Conclude Submit Review ...

this is the result for a case with a Late anomaly,

Identify
Problem

� � Experiment
Research
Related
Work

Develop
Method

Evaluate Conclude Submit ...

Identify
Problem

Research
Related
Work

Develop
Method

Experiment � � Evaluate Conclude Submit ...

and this is the result for a case with an Insert anomaly.

Identify
Problem

Research
Related
Work

Random
activity

10

Develop
Method

Experiment Evaluate Conclude
Random
activity

12

Submit ...

Identify
Problem

Research
Related
Work

� Develop
Method

Experiment Evaluate Conclude � Submit ...

The DeepAlign method can also be utilized to generate sequences
from nothing, that is, to align the empty case with the most likely
case according to the model. Depending on the case attributes that are
used to initialize the RNNs, the results will be different.

For Decision = Reject and Topic = Engineering the resulting se-
quence is 〈 Identify Problem, Research Related Work, Develop Method,
Experiment, Evaluate, Conclude, Submit, Review, Final Decision 〉,
whereas if we set Topic = Theory the resulting sequence is 〈 Identify
Problem, Research Related Work, Develop Hypothesis, Experiment,
Conduct Study, Conclude, Submit, Review, Final Decision 〉. The Deep-
Align algorithm correctly generates a sequence including the Develop
Method and Develop Hypothesis activities according to the setting of the
Topic case attribute. It also does not generate the Minor Revision activity
because the Decision is Reject. When setting Decision = Accept, Deep-
Align will generate the sequence including the Minor Revision branch.
A similar effect can be observed when altering the event attributes.

150 deepalign : alignment-based process anomaly correction

This demonstrates that the RNNs are indeed capable of learning the
rules behind the decisions in the paper process (cf. [18]). Although the
paper dataset contains unambiguous dependencies between the case
attributes and the resulting correct sequences, the overall results on the
randomly generated datasets indicate that case and event attributes
ought not to be neglected.

6 related work

Anomaly detection in business processes is frequently researched.
Many approaches exist that aim to detect anomalies in a noisy event
log (i.e., an event log that contains anomalous cases).

Bezerra et al. have proposed multiple approaches utilizing discov-
ery algorithms to mine a process model and then use conformance
checking to infer the anomalies [3]. Böhmer et al. proposed a technique
based on an extended likelihood graph that is utilizing event-level
attributes to further enhance the detection [4]. The approach from [4]
requires a clean event log (i.e., no anomalies in the log), but it has
been shown that the same technique can be applied to noisy logs
as well [14]. Recently, Pauwels et al. presented an approach based
on Bayesian Networks [16]. Deep learning based approaches are pre-
sented in [13] and [14]. However, none of these approaches can be
utilized to correct an anomalous case or to produce an alignment.

Since Bezerra et al. presented their approach based on discovery
algorithms in 2013, Mannhardt et al. have proposed both a data-aware
discovery algorithm [11] and a data-aware conformance checking
algorithm [12]. The conformance checking algorithm relies on a config-
urable cost function for alignments that must be manually defined to
include the case and event attributes. Our approach does not rely on
a manual definition of the cost function, it traverses the search space
based on learned probabilities instead.

Although alignments represent the current state-of-the-art in con-
formance checking [1], they often pose a significant challenge because
they are computationally expensive. Van Dongen et al. address this
issue in [19], compromising between computational complexity and
quality of the alignments. Very recently, Leemans et al. have presented
a stochastic approach to conformance checking [10], which can speed
up the computation.

All of these approaches either rely on a non-data-aware discovery
technique, require a manual effort to create a proper cost function,
or they cannot generate alignments. To the best of our knowledge,
DeepAlign is the first fully autonomous anomaly correction method.

7 conclusion 151

7 conclusion

We have demonstrated a novel approach to calculate alignments based
on the DeepAlign algorithm. When no reference model is available,
two recurrent neural networks can be used to approximate the un-
derlying process based on execution data, including case and event
attributes. The empirical results obtained in the experiments indicate
that RNNs are indeed capable of modeling the behavior of a process
solely based on an event log event if it contains anomalous behavior.

To the best of our knowledge, this is the first time that deep learning
has been employed to calculate alignments in the field of process
mining. Although we evaluate DeepAlign in the context of anomaly
correction, many other applications are conceivable. For example,
instead of training on a log that contains anomalies, a clean log could
be used. Furthermore, a clean log can be obtained from an existing
reference model, and DeepAlign could be used to find alignments.
In other words, it might be possible to convert a manually created
process model into a DeepAlign model. A discovery algorithm based
on DeepAlign is also imaginable since DeepAlign can also be utilized
to generate sequences from scratch. Depending on the case attributes
the resulting predicted sequences will be different. We think that this
idea lends itself to further research.

We further believe that the DeepAlign algorithm could be employed
to reduce the memory consumption of an alignment algorithm since
the search space is efficiently pruned during the bidirectional beam
search. However, on the downside, DeepAlign does not guarantee
optimal alignments. This weakness can be addressed by employing
an optimal alignment algorithm between the input sequence and the
corrected sequence, albeit at the expense of efficiency.

In summary, DeepAlign is a novel and flexible approach with great
application potential in many research areas within the field of process
mining.

acknowledgments

This work is funded by the German Federal Ministry of Education and
Research (BMBF) Software Campus project “R2PA” [01IS17050], Soft-
ware Campus project “KADet” [01IS17050], and the research project
“KI.RPA” [01IS18022D].

references

[1] Arya Adriansyah, Boudewijn F van Dongen, and Wil MP van der
Aalst. “Memory-efficient alignment of observed and modeled
behavior.” In: BPM Center Report 3 (2013) (cit. on pp. 147, 150).

152 deepalign : alignment-based process anomaly correction

[2] Alessandro Berti, Sebastiaan J van Zelst, and Wil van der Aalst.
“Process Mining for Python (PM4Py): Bridging the Gap Between
Process-and Data Science.” In: ICPM’19 (Demos). 2019, pp. 13–16

(cit. on p. 147).

[3] Fábio Bezerra and Jacques Wainer. “Algorithms for Anomaly
Detection of Traces in Logs of Process Aware Information Sys-
tems.” In: Information Systems 38.1 (2013), pp. 33–44 (cit. on
p. 150).

[4] Kristof Böhmer and Stefanie Rinderle-Ma. “Multi-perspective
Anomaly Detection in Business Process Execution Events.” In:
Proceedings of On the Move to Meaningful Internet Systems, OTM’16.
Springer. 2016, pp. 80–98 (cit. on pp. 146, 150).

[5] RP Jagadeesh Chandra Bose and Wil van der Aalst. “Trace align-
ment in process mining: opportunities for process diagnostics.”
In: Proceedings of the 8th International Conference on Business Pro-
cess Management – BPIC’10. Springer. 2010, pp. 227–242 (cit. on
p. 139).

[6] Andrea Burattin. “PLG2: Multiperspective Process Randomiza-
tion with Online and Offline Simulations.” In: BPM’16 (Demos).
2016, pp. 1–6 (cit. on p. 145).

[7] Kyunghyun Cho et al. “Learning Phrase Representations Using
RNN Encoder-decoder for Statistical Machine Translation.” In:
arXiv preprint arXiv:1406.1078 (2014) (cit. on p. 142).

[8] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochas-
tic Optimization.” In: arXiv preprint arXiv:1412.6980 (2014) (cit.
on p. 143).

[9] Sander JJ Leemans, Dirk Fahland, and Wil MP Van Der Aalst.
“Process and Deviation Exploration with Inductive Visual Miner.”
In: BPM’14 (Demos) 1295.46 (2014), p. 8 (cit. on pp. 139, 147).

[10] Sander JJ Leemans, Anja F Syring, and Wil MP van der Aalst.
“Earth Movers’ Stochastic Conformance Checking.” In: Proceed-
ings of the Business Process Management Forum 2019 – BPM’19.
Springer. 2019, pp. 127–143 (cit. on p. 150).

[11] Felix Mannhardt, Massimiliano De Leoni, and Hajo A Reijers.
“The Multi-perspective Process Explorer.” In: BPM’15 (Demos)
1418 (2015), pp. 130–134 (cit. on p. 150).

[12] Felix Mannhardt, Massimiliano De Leoni, Hajo A Reijers, and
Wil MP Van Der Aalst. “Balanced multi-perspective checking
of process conformance.” In: Computing 98.4 (2016), pp. 407–437

(cit. on p. 150).

[13] Timo Nolle, Stefan Luettgen, Alexander Seeliger, and Max Mühl-
häuser. “Analyzing Business Process Anomalies Using Autoen-
coders.” In: Machine Learning 107.11 (Nov. 2018), pp. 1875–1893

(cit. on p. 150).

references 153

[14] Timo Nolle, Stefan Luettgen, Alexander Seeliger, and Max Mühl-
häuser. “BINet: Multi-perspective Business Process Anomaly
Classification.” In: Information Systems (2019), p. 101458. issn:
0306-4379 (cit. on pp. 146, 150).

[15] Timo Nolle, Alexander Seeliger, and Max Mühlhäuser. “BINet:
Multivariate Business Process Anomaly Detection Using Deep
Learning.” In: Proceedings of the 16th International Conference on
Business Process Management – BPM’18. 2018, pp. 271–287 (cit. on
p. 145).

[16] Stephen Pauwels and Toon Calders. “An anomaly detection
technique for business processes based on extended dynamic
bayesian networks.” In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing. ACM. 2019, pp. 494–501 (cit.
on p. 150).

[17] Qing Sun, Stefan Lee, and Dhruv Batra. “Bidirectional beam
search: Forward-backward inference in neural sequence models
for fill-in-the-blank image captioning.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition – CVPR’17.
2017, pp. 6961–6969 (cit. on pp. 138, 141).

[18] Niek Tax, Sebastiaan J van Zelst, and Irene Teinemaa. “An ex-
perimental evaluation of the generalizing capabilities of process
discovery techniques and black-box sequence models.” In: Pro-
ceedings of the 19th International Conference on Enterprise, Business-
Process and Information Systems Modeling – BPMDS’18. Springer,
2018, pp. 165–180 (cit. on pp. 138, 150).

[19] Boudewijn Van Dongen, Josep Carmona, Thomas Chatain, and
Farbod Taymouri. “Aligning modeled and observed behavior: a
compromise between computation complexity and quality.” In:
Proceedings of the 29th International Conference on Advanced Infor-
mation Systems Engineering – CAiSE’17. Springer. 2017, pp. 94–
109 (cit. on p. 150).

[20] AJMM Weijters and JTS Ribeiro. “Flexible heuristics miner
(FHM).” In: Proceedings of the 2011 IEEE Symposium on Com-
putational Intelligence and Data Mining – CIDM’11. IEEE. 2011,
pp. 310–317 (cit. on pp. 139, 147).

E R K L Ä R U N G

Hiermit erkläre ich, die vorgelegte Arbeit mit dem Titel

Process Learning for Autonomous Process Anomaly Correction

selbstständig und ausschließlich unter der Verwendung der angegebe-
nen Hilfsmittel erstellt zu haben.

Hiermit erkläre ich weiterhin, dass von mir bisher kein Promotionsver-
such unternommen wurde.

Bensheim, den 15.09.2020

Timo Nolle

