Explainability and Knowledge Representation in
Robotics: The Green Button Challenge

Freek Stulp [0000—0001—9555—9517] Adrlan S. Bauer* [0000—0002—1171— 4709]
Samuel Bustamante* [0000—0002—7923— 8307] Florian S. Lay [0000—0002—5706— 3278]
eter Schmaus reen Button Teams*, an
Peter Sch +[0000—0002—6639— 0967]7 DLR RMC G Butt T , d
Daniel Leidner*[0000—0001—5091—7122]

*German Aerospace Center (DLR), Robotics and Mechatronics Center (RMC),
Miinchner Str. 20, 82234 Weflling, Germany
{freek.stulp, firstname.lastname}@dlr.de
http://www.dlr.de/rmc

1 Introduction

Deep learning has been one of the driving factors behind the current interest in
explainability. This is because the knowledge encoded in a trained deep network
is, due to its distributed nature, only available implicitly. Several methods ex-
ist for the post-hoc interpretation of such networks in terms of explicit rules or
examples [11]. These rules can then be interpreted and understood by humans.
Such approaches may be considered Freudian, as implicit (subconcious) knowl-
edge in the model (the patient) is not accessible to the model itself, and must
therefore be elucidated post-hoc by an outside observer (the psychoanalist, e.g.
Freud).

Whereas many low-level controllers and almost all low-level perception mod-
ules in robotics rely on data-driven methods, many higher-level modules such
as semantic scene understanding, task planning, and human-robot interaction
require explicit representations of knowledge. How to recognize a spoon may be
done most effectively implemented with deep learning. But we believe knowing
what a spoon is, and especially what its purpose is, should be represented ex-
plicitly, i.e. symbolically. In this case, explainabilty corresponds to the mapping
of these internal but explicit symbols to a language that humans can interpret
and understand [3]. This task, which one could denote Wittgensteinian Ezplain-
ability is, in principle, easier than post-hoc explanations of implicit knowledge,
as language itself consists of symbols’.

We believe the importance of this form of explainability has been underes-
timated, and is of particular importance to robotics. This holds especially for
robots that act in human-made environments, where most objects are made with
a specific purpose in mind which the robot must know about.

The main aim of this paper is not to present state-of-the-art in automated
reasoning or description logics. Rather this papers presents a proof-of-concept for
explainability in robotics, based on translating internal symbolic representations
of plans and actions to natural language. The experiences gathered in achieving

! Proposition 3.343 of Wittgenstein’s Tractatus Logico-Philosophicus (1921): “Defi-
nitions are rules for the translation of one language into another. Every correct
symbolism must be translatable into every other according to such rules.”

http://www.dlr.de/rmc

2 F. Stulp et al.

. unlock_panel(Panel1,
- E— o

rotate_cw(Panell, lock(Panelt,
Teft_arm)

‘aligned_for_cleaning(Panel1) *
draw(wiper, ~ clean(wiper,
I

left_arm) " _/——» Panel1, left_arm)

CloansciPana)

. goalstate

store(wiper,
left_holster, left ‘arm)
o

- =
et - -

Fig. 1. Left: Justin aligning the solar panel prior to cleaning, during teleoperation
from the International Space Station (ISS). Right: Example of an explanatory graph,
enabling Justin to explain what it is doing and why.

this during our “Green Button Challenge” (to be explained in the next section)
lead us to pose the following theses as a basis of discussion for XLoKR20:

e In robotics, post-hoc Freudian Explainability may be necessary to make
implicit knowledge in learned (deep) models explicit. But Wittgensteinian Ex-
plainability should always be preferred, as the internal explicit representation
corresponds more closely to the structure used for explanation (natural lan-
guage). ¢ We argue that robots thus require explicit (symbolic) knowledge rep-
resentations, and stronger ties between the Knowledge Representation (KR) and
Robotics communities should be formed. We hope that explainability in robotics
can serve as a broad source of inspiration for the KR community. ¢ What is
known (by humans), should not be learned (by robots). Rather, methods must
be developed which enable humans to transfer their knowledge to robots. e
Robots should always be able to explain what they are doing and why, in natu-
ral language.

Next, we describe the Green Button Challenge followed by one concrete im-
plementation of explainability on the robot Rollin’ Justin.

2 The Green Button Challenge

To avoid robots from inflicting unintentional harm, they are equipped with an
emergency stop button. This is a red button that, when pushed, stops the robot.
The Green Button Challenge is, in a nutshell: “Provide your robot with a green
button. When pressed, the robot explains, in spoken natural language, what it
is doing. When pressed again, the robot also explains why.” [14].

While the physical green button itself and speaking robots are not essential
from a scientific point of view, they symbolize something important. And it is
that robotic behavior should be explainable to humans at all times (i.e. at the
press of a button), and that not only robotics experts should be able to under-
stand these explanations (i.e. natural language, not Planning Domain Definition
Language (PDDL) or first-order logic). We believe that this is a key element in
human-robot interaction. For instance, it has been shown that Wittgensteinian-
like Explainability fosters human trust in robots, more than other explainability
modalities [4]. Moreover, the button enables explanations in real time, which is

Explainability in Robotics: The Green Button Challenge 3

also a factor in human trust [4]. Needless to say, system trust is a cornerstone
of device acceptance.

There are many domains where the robotics community could benefit from
well-grounded explainable systems, some of which we explored in the Green
Button Challenge:

e Space assistance: as astronauts are exposed to dangerous environments
where precision is a must [10], they will want to control what the robot is doing
and what it will do next. ¢ Future manufacturing: autonomous industrial
robots are becoming more flexible (see [12]). This creates new scenarios of hu-
man collaboration in manufacturing. Like with a human colleague, communica-
tion and trust should be built to ensure assertive collaboration. ¢ Household
and care robotics: large parts of the general public remain skeptical towards
robots. In elderly care facilities, there has been reported a need for “meaningful
communication abilities as well as cues that enhance the predictability of [the
robot’s] behavior” [6].

We are currently initiating actions to make the Green Button Challenge a
global public outreach initiative. But in this paper, the challenge refers to an
internal competition at our institute, with the intention of determining how
amenable different robot programming approaches are for explainability. In the
next section we describe the approach of the humanoid space assistant Rollin’
Justin, winner of the competition held in January 2020.

3 PDDL-Explainability on the Robot Rollin’ Justin

The implementation of a green button on Rollin’ Justin [2] is strongly tied to
the planning system in use on Justin. Thus, we first provide some insights into
how action plans are generated on the robot before we present how we enable
the robot to use its knowledge about actions to generate explanations of their
role in action plans.

Task and Motion Planning on Rollin’ Justin. Rollin’ Justin employs an
integrated task and motion planning approach that is presented in detail in [9].
Core to all planning is the description of actions in form of Action Templates
(ATs). Their role is to store and provide information about actions both on a
symbolic and a geometric level. In an object-centric manner, they are attached
to objects or object types and are inherited by deriving objects.

Parameters, preconditions, and effects of an action are stored in the symbolic
header of ATs. We employ PDDL [5] for describing effects and preconditions
and use the fast downward planner [7] for planning in action space. As we con-
sider a deterministic environment, both preconditions and effects are lists of
conjuncted, potentially negated, atoms. Goals are defined in the same way, e.g.
activated SPU1 for Smart Payload Unit 1 (SPU1) being activated.

The geometric body of AT's translates the abstract description from the header
to robot movements. It is, thus, not relevant for PDDL-explainability.

Chaining Action Sequences Through Atoms. For the following consider
that the robot created a plan P = (a1, ... a,) to achieve a given set of goal atoms
G. All actions a; are fully specified, i.e. their parameters are resolved. While the

4 F. Stulp et al.

robot executes action a; € P, the user presses the green button and the robot
has to explain what it is doing and why.

The answer to the what question is straightforward as the robot knows the
action name of a; and reports it together with its parameters. Reporting why
this action is part of the plan is more advanced, and our implementation builds
on previous work on causal link explanations [8,15,13,1]. As mentioned above,
the preconditions pre,, and effects eff,, of action a; consist each of a set of
atoms py. Intuitively action a; is part of P because either a) one of its effects is
a precondition of a later action:

Jp. €effy, | pe €pre,,j <l<n (1)
or b) one of its effects is part of the goal state G:
dp. ceffy; [P €G (2)

Using this observation, we create an ordered graph for every plan. The nodes
in this graph are formed by actions of the plan, links are formed by atoms that
fulfill eq. (1) or eq. (2), and the order is determined by the order of actions in the
plan. However one would be ill-advised to simply create a link from an action
to all later actions that share an atom in this way. An atom can potentially
be consumed and then re-created by another action in between. Instead, we
designed our algorithm to proceed its way backwards through the plan. This is,
we start at the goal state and create a link for each atom to the latest action that
produces this atom. Next, we proceed with the preconditions of the last action
an and work our way back to a; as displayed in algorithm 1. The advantage
of advancing backwards is that every precondition of an action is linked to the
latest previous action that created it. Thus, the effect of an action can be linked
to a precondition of one or more other actions, but each precondition links to at
most one effect. If a precondition or goal atom does not link to an action effect,
it was already fulfilled initially.

The robot answers why questions based on this graph. On the next button
press, after having answered what for a;, the robot selects a link from the outgo-
ing links of a; via atom p to action aj and replies that it executes a; in order to
achieve atom p. Next, it reports that it aims to achieve p to be able to execute
ak. From there on the procedure repeats. This procedure is guaranteed to reach
the goal state because a) it approaches the goal state with every step due to the
order of the graph and b) there are no dead ends since an action would not be
part of the plan if it did not contribute to it in any way.

But which outgoing link to select? We decided to select the link connected
to the first effect because we typically consider this to be the desired main effect
of the action. The following effects are seen as side-effects. Other choices are to
also select the nearest or furthest reaching link, thus going through the plan in
many small or fewer big steps.

Exemplary Results in the SOLEX environment. We demonstrate the
result of our implementation on the SOLEX proving ground [10], an environment
created for evaluating shared control concepts together with astronauts on board
the International Space Station. The environment resembles a solar farm on Mars
and contains, among other items, three Smart Payload Units (SPUs) that are

Explainability in Robotics: The Green Button Challenge 5

equipped with solar panels or an antenna. In our example Justin has to clean a
solar panel. To do so, it must unlock the panel, rotate it (see fig. 1, left), lock it
again, grasp the wiper, and clean the SPU.

The output created can be explained based on the graph on the right in fig. 1.
Assume the robot is executing action rotate_cw Panell right_arm and the
button is pressed. The robot answers that it executes rotate_cw Panell right
arm (what). On the next button press, the users wants to know why Justin is exe-
cuting this action, and Justin answers that it tries to achieve atom aligned _for_
cleaning Panell, then execute action clean wiper Panell left_arm, and fi-
nally achieve the atom cleaned Panell. If now the user clicks again, Justin’s
reasoning reached its end and it bluntly admits that with the words: “I don’t
know. Nobody told me”.

References

1. Bercher, P., Biundo, S., Geier, T., Hoernle, T., Nothdurft, F., Richter, F., , Schat-
tenberg., B.: Plan, repair, execute, explain — how planning helps to assemble your
home theater. In: ICAPS (2014)

2. Borst, C. et al.: Rollin’ Justin - Mobile platform with variable base. In: ICRA Proc.
IEEE Int. Conf. Robotics and Automation (ICRA). (2009).

3. Chakraborti, T., Sreedharan, S., Kambhampati, S.: The emerging landscape of
explainable AI planning and decision making. In: IJCAI (2020)

4. Edmonds, M., Gao, F., Liu, H., Xie, X., Qi, S., Rothrock, B., Zhu, Y., Wu, Y.N.,
Lu, H., Zhu, S.C.: A tale of two explanations: Enhancing human trust by explaining
robot behavior. Science Robotics 4(37) (2019).

5. Ghallab, M., Howe, A., Christianson, D., McDermott, D., Ram, A., Veloso, M.,
Weld, D., Wilkins, D.: PDDL - The Planning Domain Definition Language. AIPS98
Plan. Comm. 78(4), 1-27 (Aug 1998)

6. Hebesberger, D., Koertner, T., Gisinger, C., Pripfl, J.: A Long-Term Autonomous
Robot at a Care Hospital: A Mixed Methods Study on Social Acceptance and
Experiences of Staff and Older Adults. IJSR 9(3), (2017).

7. Helmert, M.: The Fast Downward Planning System. JAIR 26, 191-246 (Jul 2006).

8. Kambhampati, S.: Mapping and retrieval during plan reuse: A validation structure
based approach. In: AAAT (1990)

9. Leidner, D.: Cognitive reasoning for compliant robot manipulation. Springer (2019)

10. Lii, N.Y. et al: Simulating an Extraterrestrial Environment for Robotic Space
Exploration: The METERON SUPVIS-JUSTIN Telerobotic Experiment and the
SOLEX Proving Ground. In: (ASTRA). (2015)

11. Lipton, Z.C.: The mythos of model interpretability. CoRR abs/1606.03490
(2016), http://arxiv.org/abs/1606.03490

12. Rodriguez, 1. et al.: Iteratively Refined Feasibility Checks in Robotic Assembly
Sequence Planning. IEEE Robotics and Automation Letters 4(2), (2019).

13. Seegebarth, B., Muller, F.; Schattenberg, B., Biundo, S.: Making hybrid plans more
clear to human users — a formal approach for generating sound explanations. In:
ICAPS (2012)

14. Stulp, F.: What? How? Why? Explainable artificial intelligence in robotics (Feb
2020), https://www.dIr.de/rm/en/desktopdefault.aspx/tabid-3755/17612_read-63005/

15. Veloso, M.M.: Learning by Analogical Reasoning in General Problem Solving.
Ph.D. thesis, Carnegie Mellon University (1992)

http://arxiv.org/abs/1606.03490
https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-3755/17612_read-63005/

6 F. Stulp et al.

Appendix

DLR-RMC Green Button Teams

We acknowledge all contributors to the Green Button Challenge, namely Mathilde
Connan, Maximilian Denninger, Thomas Eiband, Giuseppe Gillini, Katharina
Hagmann, Maged Iskandar, Sebastian Jung, Ulrike Leipscher, Korbinian Notten-
steiner, Gabriel Quere, Antonin Raffin, Hanna Riesch, Ismael Rodriguez Brena,
Frederick Sauer, Stefan Schneyer, Franz Steinmetz, Martin Sundermayer, and
Jorn Vogel.

Algorithm for creating links from plan

Algorithm 1 Creating Links from Plan

1: procedure CREATELINKS(P, G)

2: n < length (P) — 1

3: steps < [G, Py ... Po)

4: while length(steps) > 0 do

5: step < steps.pop()

6: if step == G then

7: atoms =G

8: else

9: atoms = step.precondition
10: end if
11: for p € atoms do
12: a; + GetLinkedAction (steps, p)
13: if a; # None then > see line 25
14: ai.links.append ((p, step)) > append link to list of links
15: end if
16: end for

17: end while
18: end procedure
19: procedure GETLINKEDACTION(steps, p)

20: for step € steps do > states are already in reverse order, see line 3
21: if p € step.ef fects then

22: return step

23: end if

24: end for

25: return None > no action produced p = it was already present initially

26: end procedure

	Explainability and Knowledge Representation in Robotics: The Green Button Challenge

