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Abstract

The storage and transmission of images is the basis of digital electronic communication.

In order to communicate a maximum amount of information in a given period of time, one

needs to look for e�cient ways to represent the information communicated. Designing

optimal representations is the subject of data compression.

In this work, the compression methods consist of two steps in general, which are encoding

and decoding. During encoding, one expresses the image by less data than the original

and stores the data information; during decoding, one decodes the compressed data to

show the decompressed image.

In Chapter 1, we review some basic compression methods which are important in

understanding the concepts of encoding and information theory as tools to build

compression models and measure their e�ciency. Further on, we focus on transform

methods for compression, particularly we discuss in details Discrete Cosine Transform

(DCT) and Discrete Wavelet Transform (DWT). We also analyse the hybrid method

which combines DCT and DWT together to compress image data. For the sake of

comparison, we discuss another total di�erent method which is fractal image compression

that compresses image data by taking advantage of self-similarity of images. We propose

the hybrid method of fractal image compression and DCT based on their characteristic.

Several experimental results are provided to show the outcome of the comparison between
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the discussed methods. This allows us to conclude that the hybrid method performs more

e�ciently and o�ers a relatively good quality of compressed image than some particular

methods, but also there is some improvement can be made in the future.
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SOMMAIRE

Le stockage et la transmission d'images sont à la base de la communication électronique

numérique. A�n de communiquer un maximum d'informations dans un laps de

temps donné, il faut rechercher des moyens e�caces de représenter les informations

communiquées. L'objectif de base de la compression de données est la conception

d'algorithmes qui permettent des représentations optimales des données.

Dans ce travail, les méthodes de compression consistent en deux étapes en général, qui

sont l'encodage et le décodage. Lors du codage, on exprime l'image par moins de données

que l'image originale et stocke les informations obtenues; lors du décodage, on décode les

données compressées pour montrer l'image décompressée.

Dans le chapitre 1, nous passons en revue quelques méthodes de compression de base qui

sont importantes pour comprendre les concepts d'encodage et de théorie de l'information

en tant qu'outils pour construire des modèles de compression et mesurer leur e�cacité.

Plus loin, nous nous concentrons sur les méthodes de transformation pour la compression,

en particulier nous discutons en détail des méthodes de transformée en cosinus discrète

(DCT) et Transformée en ondelettes discrète (DWT). Nous analysons également la

méthode hybride qui combine DCT et DWT pour compresser les données d'image. À

des �ns de comparaison, nous discutons d'une autre méthode totalement di�érente qui

est la compression d'image fractale qui comprime les données d'image en tirant partie de
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l'autosimilarité des images. Nous proposons la méthode hybride de compression d'image

fractale et DCT en fonction de leurs caractéristiques. Plusieurs résultats expérimentaux

sont fournis pour montrer le résultat de la comparaison entre les méthodes discutées. Cela

nous permet de conclure que la méthode hybride fonctionne plus e�cacement et o�re une

qualité d'image compressée relativement meilleure que certaines méthodes, mais il y a

aussi des améliorations qui peuvent être apportées à l'avenir.
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INTRODUCTION

Nowadays, the Internet and mobile communication lead to a huge demand for storing,

transmitting, and receiving data. Data compression is the most e�ective way to save on

storage space and network bandwidth. The compression removes duplicates of data

sets and then decodes back to the original data set as needed by applying various

algorithms. Therefore, it can help us to reduce the need for new hardware, improve

database performance, speed up backups, and provide more secure storage. As images

are constructed of pixels, which means images are constructed by a bunch of data, we

will talk about image compression in this thesis.

The main purpose of image compression is to reduce the redundancy and irrelevancy

present in the image so that it can be stored and transferred more e�ciently. As we

know, an image is composed of pixels and if the image is grey level, then it can be

completely represented by encoding the intensity and position of each pixel. How to

reduce the storage space of the image?

Here is an example of a naive approach (this approach can't solve the problem of image

compression in general). First, we can represent the intensity of each pixel in the previous

order in the coordinate plane; secondly, �t these points with Fourier series [1, page 203]

to interpolate their values; �nally, these points can be represented approximately by a

function consisting of sine and cosine components.
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Figure 1: Points �tted by Fourier Series

Here is an example shown in Fig1. Suppose that we have the intensity of 12 pixels, then

we represent them in the coordinate plane, to simplify the representation we can apply

Fourier Series with the general function

f(x) = a0 + a1 cos(xω) + b1 sin(xω).

As a result, we can get a0 = 76.67, a1 = −0.3744, b1 = −11.36, ω = 0.3739. Originally, we

need to use 12 numbers for storage, but now we only need four numbers. In this thesis,

we will introduce the transform method to do the compression. Generally, transform

means to map the original image in space domain to the expected domain such as

frequency domain and wavelet domain by a speci�c kernel. This process can be seen as

decorrelation. Therefore, the purpose of reducing data can be achieved partly. We can

store or transmit the compressed data. When reopening the image from the compressed

data, we need to decode by the inverse process.

This thesis is divided as follows: Chapter 1 introduces the fundamentals of image

compression including the concept of information theory, some basic compression

methods and some standards for measuring the e�ectiveness of the compression. Chapter

2 explains Discrete Cosine Transform (DCT) algorithm and Discrete Wavelet Transform

2



(DWT) algorithm. The hybrid method of DCT and DWT algorithm and the hybrid

method of fractal image compression and DCT explained in Chapter 3. We compare the

e�ciency of several image compression methods in Chapter 4. At the end, we give the

conclusion.
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CHAPTER 1

Fundamentals of Image Compression

Data compression may be viewed as a branch of information theory in which the primary

objective is to minimize the amount of data to be represented [3]. Information theory

is the mathematical treatment of the concepts, parameters and rules governing the

transmission of messages through communication systems. It is devoted to discover

mathematical laws that govern the behavior of data as it is transferred, stored, or

retrieved. [4]

More speci�cally, a characterization of data compression is that it involves transforming a

string of characters in some representation (such as ASCII) into a new string (of bits, for

example) which contains the same information but whose length is as small as possible.

Thus, a certain amount of information can be represented by di�erent amounts of bits.
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1.1 Basic Notions

1.1.1 What is encoding

The way we achieve compression is through computer encoding, so we start from

explaining what is encoding. Encoding is the process of converting data from one form

to another. There are several types of encoding, including image encoding, audio and

video encoding, and character encoding.

In this thesis we are concerned about image encoding, which is an encoder that writes

image data to a stream. Encoders can compress, encrypt, and alter the image pixels in a

number of ways prior to writing them to the stream. For example, a BMP format image

that is converted to a JPEG format image maybe 1/16 the size of the original BMP

image [2].

A code is a mapping of source messages into codewords. The source messages are the

basic units into which the string to be represented is partitioned. [3, page 4] For example,

we can suppose the source message is "a", and its corresponding codeword is "000".

1.1.2 Image Compression Models

Figure 1.1: Image compression system in general

Now we will explain more concretely the process of image compression which is a branch

of data compression. As Fig.1.1 shows, an image compression system is composed of two

5



distinct functional components: an encoder and a decoder. Note that when we re�ect

on a stuck of data to decipher its core meaning, we are decoding; when we determine its

appropriate code and label it, we are encoding [5]. The encoder performs compression,

and the decoder performs the complementary operation of decompression. We use codec

which is a device or program to process the encoding and decoding. Here is the process

of how the system works.

1. Input image f(x, y) is fed into the encoder, which creates a compressed

representation of the input. This representation will be stored for later use.

2. When the compressed representation is presented to its complementary decoder, a

reconstructed output image f̂(x, y) is generated.

The function f̂(x, y) may or may not be an exact replica of f(x, y). If it is, the

compression system is called error free, lossless, or information preserving. If not, the

reconstructed output image is distorted and the compression system is referred to as

lossy. From Fig.1.2, we can see encoding and decoding process in details.

Original

image Symbol

coder

Encoder

Mapper Quantizer

Symbol

decoder

Reconstructed

image

Encoder

Inverse

mapper

Inverse

quantizer

Decoder

Compressed

date for

storage and

transmission

Figure 1.2: Image compression system in detail

For encoding, a mapper transforms f(x, y) into a format which is designed to reduce

spatial and temporal redundancy. Then the quantizer processes the transformed data,

to keep irrelevant information out of the compressed representation by dividing a

6



quantization table. The quantization step is lossy and irreversible. The �nal step is

symbol coding which assigns a sequence of bits called a codeword, to each level produced

by the quantizer. After encoding, we get a bitstream consisting of the compressed data.

The bitstream can be used for storage and transmission of image data, but it is not

usually used to visualize the data. The decoding process allows to process the bitstream

in order to recover the original information. It is the inverse of encoding.

1.1.3 Redundant data

To represent the information with less amount of data, we need to �gure out which

kind of data can be reduced in the representation, which is called redundant data.

Representations that contain irrelevant or repeated information are said to contain

redundant data which is what we don't want to represent. There are three principal

types of data redundancies which can be identi�ed and exploited that two-dimensional

intensity arrays su�er from:

1. Coding redundancy

Each piece of information or event is assigned a code word. The number of symbols

in each code word is its length. If the gray levels of an image are coded in a way

that uses more code symbols than absolutely necessary to represent each gray level,

then the resulting image is said to contain coding redundancy.

Typically, we use 8-bits codes to represent pixel intensities which often require less

than 8-bits to be represented.

2. Spatial redundancy

In most situations, the pixels in 2-D intensity arrays are correlated spatially, which

means each pixel is similar to or dependent on neighboring pixels, that leads to

unnecessary replication.

7



3. Irrelevant information

Most 2-D intensity arrays contain information which is ignored by the human visual

system or which is not correlated to the usage.

The important question now is to determine if we can represent image data with smaller

amount of data without losing relevant information. Information theory provides the

mathematical framework to answer this question.

1.1.4 Self-Information

In information theory, self-information of a random variable or signal is the amount of

information gained when it is received. Given a random event E, we can say that the

amount of self-information it contains is:

I(E) = log
1

P (E)
= − logP (E).

For example, if P (E) = 1, then I(E) = 0, which means the event E doesn't have any

uncertainty, so when it happens, 0 bit of information have been received.

The unit of self-information is depended on the logarithmic base. If the base 2 is selected,

the unit of information is bit which we will stick with.

A zero-memory information source S is a source that emits source symbols from an

alphabet {s1,2 , . . . , sk} with probabilities {p1, p2, . . . , pk} respectively, where the symbols

emitted are statistically independent [6].

For the zero-memory information source S, what is the average amount of information

in observing the output of it? We can de�ne the entropy of the source based on self-

information, which represents the average information per symbol of a discrete set of

events [6]:
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H(S) =
n∑︂
j=1

p(sj) · I(sj) = −
n∑︂
j=1

p(sj) lg p(sj)

where lg denotes the base 2 logarithm, sj in this equation is called source symbol, it's

like the event E.

In conclusion, self-information denotes the uncertainty of an event, while entropy denotes

the average self-information of a set of events. We can use "entropy" to measure the least

amount of data that we need use to store an image.

1.2 Classi�cation of Methods

Image compression techniques fall into two categories: lossless or lossy image

compression. Choosing which of these two categories depends on the application and

on the compression degree required.

1.2.1 Lossless compression

Lossless compression is a class of data compression algorithms that allows the original

data to be perfectly reconstructed from the compressed data. It is used where it

is important that the original and the decompressed data to be identical, or where

deviations from the original data would be unfavorable. Typical examples are executable

programs, text documents, and source code. Some image �le formats, like PNG and

BMP, use only lossless compression, while others like JPEG and GIF formats are lossy.

Lossless compression techniques [7]

Most lossless compression programs do two things in sequence:
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1. generate a statistical model for the input data;

2. use this model to map input data into bit sequences in such a way that the frequently

encountered data will produce shorter output than infrequently encountered data.

The primary encoding algorithms used to produce bit sequences are Hu�man coding

and arithmetic coding. Arithmetic coding achieves compression rates close to the best

possible for a particular statistical model, which is given by the information entropy.

Whereas Hu�man coding is simpler and faster but produces poor results for models that

deal with symbol probabilities close to 1.

Run length coding (RLC)

Using this encoding method, we can replace consecutive characters that appear repeatedly

in a character string with two bytes, where the �rst byte represents the number of

repetitions and the second byte represents the repeated character string. For example,

(3, 7) represents the string "777"

Hu�man coding

Hu�man coding is an algorithm developed by David A. Hu�man [8]. In computer science

and information theory, a Hu�man code is a particular type of optimal pre�x code that

is commonly used for lossless data compression.

By de�nition, a pre�x code is a uniquely decodable code with the pre�x property, which

requires that no code word is a proper pre�x of any other code words. For example, a

code with code words {2, 11} has the pre�x property; a code consisting of {2, 11, 21} does

not, because "2" is a pre�x of "21".

Here is the process of Hu�man coding:
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1. Build a priority queue including all unique characters organized by weight

(frequency).

2. Remove two nodes with the smallest weight in the queue, wi and wj (usually we

put the one with smaller weight on the left), merge them into an internal node

whose weight is wi + wj.

3. Insert the internal node with weight wi + wj into the queue.

4. Repeat steps 2-3 until the queue contains one node which is the root node.

5. Encoding.

(a) Give all left links 0 and right links 1 in the Hu�man tree.

(b) Record the codes of all letters in order from the root to the leaves

Example

There is a stream of data including 100 symbols, and the probability of each symbol is

shown in Tab.1.1.

Symbol f e c d b a
Frequency 0.04 0.06 0.1 0.1 0.3 0.4

Table 1.1: The initial priority queue

Symbol a b c d e f
Code 1 01 0000 0001 0011 0010

Table 1.2: Original source and codes after Hu�man Coding

1. Direct coding: if we use ASCII codes, each symbol will be represented by 8 bits (for

example, "a" will be represented as "01100001"), the result will be 100×8 = 800bits
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Figure 1.3: The process of Hu�man coding

2. Hu�man coding: after the process of Hu�man coding shown in Fig.1.3, we can get

the code for each symbol shown in Tab.1.1. The result will be 40 × 1 + 30 × 2 +

10× 4 + 10× 4 + 6× 4 + 4× 4 = 220bits

In conclusion, Hu�man coding allocates shorter codes to the symbols with higher

probabilities and longer codes to the symbols with lower probabilities to reduce the

length of total codes.

Arithmetic coding

The method of arithmetic coding was suggested by Elias, and presented by Abramson

on Information Theory and coding [9].

In arithmetic coding, a source ensemble is represented by an interval between 0 and 1 on

the real number line. Each symbol of the ensemble narrows this interval depending on

their frequencies. As the interval becomes smaller, the number of bits needed to specify

it grows.

Here is an example that illustrates the idea of arithmetic coding.
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Figure 1.4: The process of Arithmetic coding

Given source messages {A,B,C,D,E} with probabilities {0.2, 0.4, 0.1, 0.2, 0.1}. In the

interval [0, 1), A corresponds to [0, 0.2), B corresponds to [0.2, 0.6), C corresponds to

[0.6, 0.7), D corresponds to [0.7, 0.9) and E corresponds to [0.9, 1.0).

To represent the ensemble BABE, B narrows the interval from [0, 1) to [0.2, 0.6). A

narrows the interval from [0.2, 0.6) to [0.2, 0.28). The second B narrows the interval from

[0.2, 0.28) to [0.216, 0.248). E yields a �nal interval of [0.2448, 0.248). The �nal interval

or any number within the interval may be used to represent the ensemble.

Lempel-Ziv-Welch

Lempel-Ziv-Welch (LZW) [10] is a universal lossless data compression algorithm created

by Abraham Lempel, Jacob Ziv, and Terry Welch. It was published by Welch in 1984 as

an improved implementation of the LZW algorithm published by Lempel and Ziv in 1978.

The algorithm is simple to implement and has the potential for very high throughput in

hardware implementations. It is the algorithm that is widely used in Unix �le compression
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utility and is also used in the GIF image format. It is also used in the dictionary coder

which is operated by searching for matches between the text to be compressed and a set

of strings contained in a data structure maintained by the encoder.

� Encoding

Step 1 Initialize the dictionary to contain all strings of length one.

Step 2 The string encoding table (dictionary) will gradually expand as the strings are

inputted.

Here is an example. The plain text to be encoded is ababccab#.

b

a

#

Symbol

c

2

1

0

Decimal

3

Step 1 Step 2

ab

b

a

Current

Sequence

c

ab

c

#

4

2

1

Output

Code

3

4

3

0

6: abc

5: ba

4: ab

Extended

Dictionary

7: cc

9: ab#

8: ca

c

a

b

Next

Char

c

#

a

Figure 1.5: The process of LZW encoding

As Fig.1.5 shows, bu�er input characters in a sequence ω until ω+next character

is not in the dictionary. Emit the code for ω, and add ω+next character to the

dictionary. Start bu�ering again with the next character. Thus, the encoded data

is 1, 2, 4, 3, 3, 4, 0.

� Decoding

For decoding, we just look up the dictionary to �nd out the corresponding characters

for the encoded data. The �rst code is 1, so we look it up in the dictionary which
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is the table in Fig.1.5, and output a. The second code is 2 which corresponds to b

in the dictionary. 4 corresponds to ab in the extended dictionary. Then read the

next code, �nd the responding sequence in the dictionary. We can get the original

plain text by repeating the steps above.

1.2.2 Lossy methods

By contrast, lossy compression permits reconstruction only of an approximation of the

original data, though usually with greatly improved compression ratios and therefore

reduced images sizes. Thus, repeatedly compressing and decompressing an image results

in a poor quality of the image. An advantage of this technique is that it allows for a

higher compression ratio than the lossless.

A commonly used method of lossy compression for digital images is JPEG [11] based

on Discrete cosine transform. The degree of compression can be adjusted, allowing a

selectable tradeo� between storage size and image quality. JPEG typically achieves 10:1

compression ratios with little perceptible loss in image quality. Another lossy compression

method is JPEG 2000 (JP2) [12] which is based on Wavelet compression, and it was

developed from 1997 to 2000 by a Joint Photographic Experts Group committee. The

third lossy compression method we will introduce is Fractal compression [13] based on

fractals is best suited for textures and natural images, relying on the fact of similarities

among di�erent parts in an image. We will talk about these methods more in detail later.

Lossy compression techniques

There are two basic types of lossy compression methods.

1. Transform coding method
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In lossy transform codecs, samples of picture or sound are taken, chopped into

small segments, transformed into a new basis space, and quantized. The resulting

quantized values are then entropy coded.

2. Predictive coding method

In lossy predictive codecs, previous and/or subsequent decoded data is used to

predict the current sound sample or image frame. The error between the predicted

data and the real data, together with any extra information needed to reproduce

the prediction, is then quantized and coded.

In some systems, the two techniques are combined, with transform codecs being used to

compress the error signals generated by the predictive stage.

1.3 Performance Measures

There are some standards to measure the e�ectiveness of the compression of the image.

1.3.1 Compression Ratio

Data compression ratio, also known as compression power, is a measurement of the

relative reduction in the size of data representation produced by a data compression

algorithm. It is typically expressed as the following formula

Compression Ratio =
Uncompressed Data Bits

Compressed Data Bits
.

Here the size of uncompressed data and compressed data both refer to the storage size.
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For example, a representation that compresses a �le's storage size from 10 bits of data to

2 bits has a compression ratio of 10/2 = 5, often notated as an explicit ratio, 5:1 (read

"�ve" to "one"), or as an implicit ratio, 5/1.

1.3.2 Fidelity and Quality

We notice that lossy image compression will lead to di�erent qualities of images, so a

means of measuring the loss is needed. There are two standards for measuring: subjective

�delity criteria and objective �delity criteria.

Subjective Fidelity Criteria

When information loss can be expressed as a mathematical function of the input and

output of a compression process, it is said to be based on an objective �delity criterion.

Here are several symbols that can measure the objective �delity criterion.

� Mean squared error (MSE)

We can use the mean squared error (MSE) to measure the di�erence between the

original image and the reconstructed image

MSE =

[︄
1

MN

M−1∑︂
x=0

N−1∑︂
y=0

[f̂(x, y)− f(x, y)]2

]︄
.

Above, f(x, y) is an input image and f̂(x, y) is the compressed image, the error

e(x, y) between f(x, y) and f̂(x, y) is e(x, y) = f̂(x, y)− f(x, y).

� Peak signal-to-noise ratio (PSNR)

Peak signal-to-noise ratio, often abbreviated PSNR, is an engineering term for the

ratio between the maximum possible power of a signal and the power of corrupting

noise that a�ects the �delity of its representation. Because many signals have a
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very wide dynamic range, PSNR is usually expressed in terms of the logarithmic

decibel scale

PSNR = 10 · log10
(︃

L2

MSE

)︃
.

Here, L is the maximum possible pixel value of the image which is 255 that we

consider in this paper. When the value of PSNR is higher than 30dB, it will be

di�cult to �nd the di�erence by human subjective feeling. The typical peak signal-

to-noise ratio in image compression is between 30 and 40dB, the higher the more

approximate to the original picture.

Objective Fidelity Criteria

Objective �delity criteria is executed by showing the decompressed image to the observers

and then averaging their evaluation. The observers can give the evaluation from a level

list such as much worse, worse, slightly worse, the same, slightly better, better, much

better; or by comparing di�erent degrees of decompressed images with the input one.

1.3.3 Time complexity

As we wish to transmit the images with relatively high e�ciency, the time complexity

is also a factor that we need to measure during image compression. In computer

science, the time complexity is the computational cost that describes the amount of

computations (number of executed steps) required to run an algorithm as a function

of the size of the input. It is commonly expressed using big O notation, typically

O(n), O(n log n), O(nα), O(2n), etc., where n is the input size in units of bits needed

to represent the input. We recall that a computational cost f(n) is in O(g(n)) if f(n)

cannot grow faster than g(n) when n is large. Using the big O notation, we can measure

the time complexity of the algorithms that described in section 1.2.1.
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The time complexity of Hu�man algorithm is O(k log k) where k is the size of the unique

characters. Since all the nodes are stored in a priority queue, then extracting node with

minimum frequencies has a computational cost of O(log k), and it happens 2 × (k − 1)

times [14].

The time complexity of Arithmetic algorithm is O(n) where n is the size of input data.

Since for each input character, we implement the algorithm one time to achieve a result of

a more precise value based on the frequency of the characters. Arithmetic code achieves

optimal compression rate [18]. Experimental results showed that the compression ratio of

the arithmetic coding for text �les is better than Hu�man coding, while the performance

of the Hu�man coding is better than Arithmetic coding [15], as we can analyse that

with the information of frequency, the representation of each symbol is �xed using

Hu�man coding, at the same time, we need to continuously process the presentation

using Arithmetic coding. However, the shortage of both these two methods is that they

can only compress data statically which means that they require information about the

input stream of data prior to the compression process.

The time complexity of LZW algorithm is O(n) which is linearly dependent on the input

message size [17]. Because we process the same implementation: check if the string exists

in the dictionary, output the corresponding code of the string, and put the combination

of the string with next character into the dictionary table. LZW algorithms can provide

faster execution than Hu�man algorithm. Moreover, LZW algorithm doesn't require

prior information about the input stream. We need to notice that for the usage of this

algorithm, the e�ciency of it increases as the number of long, repetitive words in the

input data increases because it is a dictionary method [16].
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CHAPTER 2

Compression Using Transforms

In Chapter 1 Section 1.2.2, we mentioned the lossy compression techniques, one of which

is transform coding method. In this chapter, we will introduce some of the transform

coding methods more speci�cally.

In image processing, an image transform means to convert the image from one to another,

for example, we can transform an image from spatial domain representation to frequency

domain representation or vice versa. There are two objectives of the transformation

process:

1. to decorrelate the pixels of the image, which then lead to higher e�ciency than the

coding of the original image;

2. to pack as much information as possible into the smallest amount of transform

coe�cients, and for the other coe�cients, we can do rough quanti�cation or make

them be 0, provided that the image is not distorted.

Transforms often applied are Discrete Fourier Transform (DFT), Karhunen-Loeve

Transform (KLT), Walsh-Hadamard Transform (WHT), Discrete Cosine Transform

20



(DCT), Discrete Wavelet Transform (DWT) and so on. Their common point is to use

the transformation kernel to do the transform and the inverse transform kernel to do the

inverse transform.

For image f(x, y) of size N ×N , the discrete transform T (u, v) can be presented as

T (u, v) =
N−1∑︂
x=0

N−1∑︂
y=0

f(x, y)r(x, y, u, v), u, v = 0, 1, 2, . . . , N − 1.

Reciprocally, given T (u, v), f(x, y) can be obtained by the inverse transform

f(x, y) =
N−1∑︂
u=0

N−1∑︂
v=0

T (u, v)s(x, y, u, v), x, y = 0, 1, 2, . . . , N − 1.

r(x, y, u, v) and s(x, y, u, v) are called forward and inverse transform kernel functions

respectively, and the essence of di�erent transformation methods is that the

transformation kernels are di�erent.

Thus, the main idea of the transforms is to express the signals on di�erent bases or

kernels to simplify the data. We will analyze in detail about the di�erent bases used in

di�erent transforms.

The transform methods we mainly discuss in this thesis are discrete cosine transform and

discrete wavelet transform. After the execution of discrete cosine transform, the energy

of the image will concentrate to the upper left corner shown in Fig.2.1, then we set a

threshold and set the values less than the threshold to be zero, so that now the matrix

can be recorded with fewer code words than before. When reading the compressed data,

we need to decode the recorded matrix. We can compare the original image and the

processed image in Fig.2.2.

Having some knowledge of transform, we can get to know about the coding process based

on transform. Here are the general steps:
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Figure 2.1: The transformed image using a logarithmic scale

Figure 2.2: Original Image (Left) and Processed Image (Right)

1. The original image undergoes a certain transformation to obtain the transformation

coe�cients.

The transformation is always lossless to the image information which means it

allows the original data to be perfectly reconstructed from the transformed data.

2. Quantize the transform coe�cients, and output the index symbol stream of the

quantization interval.

Quantization, in general, is the process of constraining an input from a continuous

or otherwise large set of values (such as the real numbers) to a discrete set (such as
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the integers). The quantization operation is irreversible, so it will cause information

loss. If the in�uence of noise is not considered, all the information loss occurs in

the quantizer.

3. Entropy encodes the quantized symbol stream to obtain a more compact bitstream.

Entropy coding, such as Hu�man coding, LZW coding, and Arithmetic coding, is

a lossless compression method based on information theory.

After encoding, the space occupied by the original image will be signi�cantly reduced,

then we need to decode to read the compressed data.

2.1 Discrete Cosine Transform (DCT)

Discrete cosine transform is used in a block transform coding system for compression

(in block transform coding, a reversible, linear transform is used to map each block or

subimage into a set of transform coe�cients, which are then quantized and coded) [1, page

566], and we can also choose other transform methods in this system, such as the Walsh-

Hadamard transform (WHT) and the discrete Fourier transform (DFT). The reason why

we choose to discuss the DCT is that it has a stronger ability to carry information than

WHT and DFT, and is easier to execute than KLT.

2.1.1 Fourier Series

The DCT comes from the concepts of Fourier Transform and Fourier Series developed by

French mathematician and physicist Jean Baptiste Joseph Fourier. Fourier introduced

the series for the purpose of solving the heat equation in a metal plate. Through Fourier's
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research, the fact was established that an arbitrary continuous periodic function can be

represented by a trigonometric series.

A function f(t) of a continuous variable t that is periodic with period, T , can be expressed

as the sum of sines and cosines multiplied by appropriate coe�cients. This sum, known

as a Fourier series [1, page 203], has the form

f(t) =
∞∑︂

n=−∞

cne
i 2πn

T
t

where the expansion coe�cient cn can be calculated as

cn =
1

T

∫︂ T/2

−T/2
f(t)e−i

2πn
T
tdt, n = 0,±1,±2, . . .

Now we discuss the basis of Fourier series [20]. The complex exponentials in Fourier

series form a basis for L2([0, T ]) and they are orthonormal.

Suppose bn(t) = ei
2πn
T
t, then the inner product of bn(t) and bm(t) should be

⟨bn, bm⟩ =
∫︂ T

0

ei
2πn
T
tei

2πm
T

tdt

=

∫︂ T

0

ei
2πn
T
te−i

2πm
T

tdt

=

∫︂ T

0

ei
2π(n−m)

T
tdt

if m = n,

=

∫︂ T

0

1dt

= T,
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if m ̸= n,

⟨bn, bm⟩ =
T

i2π(n−m)
ei

2π(n−m)
T

t

⃓⃓⃓⃓T
0

=
T

i2π(n−m)
(ei2π(n−m) − e0)

=
T

i2π(n−m)
(1− 1)

= 0.

Therefore, the complex exponentials with period T are orthogonal. The orthogonality

allows faster implementations, as there is less redundancy in computation. Furthermore,

to get them orthonormal, we can scale them by the coe�cient 1√
T
, then the new basis is

bn(t) =
1√
T
ei

2πn
T
t.

Any periodic function f can be expressed as the sum of the new complex exponentials

with corresponding expansion coe�cients, and we can get the expansion coe�cients as

the inner or scalar product of f and each basic function bn,

⟨f, bn⟩ =
1√
T

∫︂ T

0

f(t)ei
2πn
T
tdt.

Now f can be expressed as

f(t) =
∞∑︂

n=−∞

⟨f, bn⟩ bn

=
∞∑︂

n=−∞

(︃
1√
T

∫︂ T

0

f(s)ei
2πn
T
sds

)︃
1√
T
ei

2πn
T
t

=
∞∑︂

n=−∞

cne
i 2πn

T
t,

where

cn =
1

T

∫︂ T

0

f(t)ei
2πn
T
tdt.
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Since the result is the same as the Fourier series formulas, it follows that the basis bn is

orthonormal in the space L2([0, T ]).

That means, any periodic function f(t) can be decomposed into a linear combination of

mutually orthogonal elements bn(t). We can regard the basis of L2(2π) consists of the

function b1(t) = ei
2π
T
t which expands or shrinks by the integer n: bn(t) = b1(nt) [21].

2.1.2 Fourier Transform

What happens if the function is not periodic? Is it possible to decompose it in a similar

way as a periodic function? In this case, we can consider f as periodic with in�nite

period, i.e. T → ∞, and ω = 2π
T
, therefore, we can have ω → 0. Thus, Fourier transform

can be derived from Fourier series. Here is the derivation process [22].

cn =
1

T

∫︂ T/2

−T/2
f(t)e−i

2πn
T
tdt,

T cn =

∫︂ T/2

−T/2
f(t)e−inω0tdt.

As T → ∞, we can replace the discrete quantity Tcn by a continuous quantity F (ω),
therefore,

F (ω) =

∫︂
R
f(t)e−iωtdt. (2.1)

Likewise, with the Fourier Series, f(t) can be expressed as

f(t) =
+∞∑︂

n=−∞

cne
inω0t

=
+∞∑︂

n=−∞

Tcne
inω0

1

T

=
+∞∑︂

n=−∞

Tcne
inω0

ω0

2π
.
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Here, we can replace Tcn by F (ω) in Eq. (2.1)

f(t) =
1

2π

+∞∑︂
n=−∞

F (ω)einω0ω0.

As T → ∞, and ω0 → 0, also we can regard the last ω0 = ∆ω therefore

f(t) =
1

2π

∫︂
R
F (ω)eiωtdω. (2.2)

Eq. (2.1) and Eq. (2.2) are Fourier transform and inverse Fourier transform respectively.

Together, they make up the Fourier transform pair:

F (ω) =

∫︂ +∞

−∞
f(t)e−iωtdt,

f(t) =
1

2π

∫︂ +∞

−∞
F (ω)eiωtdω.

By performing the transform, it changes the variable from t to ω which denotes frequencies

of the signal, therefore, the function f(t) is transformed from the time domain to the

frequency domain.

The comparison between the inverse Fourier transform and the Fourier series formulas

suggest that ei
2πn
T
t is the analogous discrete version of the basic function eiωt. But unlike

{bn(t) = ei
2πn
T
t;n ∈ Z} which is the orthonormal basis of the space L2(0, 2π), eiωt can't

generate the orthonormal basis of L2(R), as all the signals in L2(R) should have �nite

energy while the energy of eiωt is in�nite. Therefore, we can infer that Fourier transform

can't express the signals in L2(R) concisely enough, and we will discuss this in more

details in the section of wavelet transform.
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2.1.3 Discrete Fourier Transform

When we use computer to implement the algorithm, we need to discretize the time and

frequency domains where discretization means sampling. We can get Discrete Fourier

transform (DFT) by performing Fourier Transform on the sampled function [23].

Suppose f(t) is a continuous signal, and there are M sampled points on f(t), which

are denoted as f [0] , f [1] , f [2] , . . . , f [k] , . . . , f [M − 1] (it happens if the data of the

sampled points), the time gap between each sampled points is T . The Fourier Transform

of f(t) is

F (ω) =

∫︂
R
f(t)e−iωtdt.

As we only consider the sampled points,

F (ω) =

∫︂ (M−1)T

0

f(t)e−iωtdt.

We could regard each sample f [k] as an impulse

= f [0] e−i0 + f [1] e−iωT + · · ·+ f [k] e−iωkT + · · ·+ f [M − 1] e−iω(M−1)T

=
M−1∑︂
k=0

f [k] e−iωkT .

Since there are only a �nite number of input signal points, we regard them as periodic in

the DFT. For example, f(0) to f(M − 1) is the same as f(M) to f(2M − 1). As Fig. 2.3

shows, (a) is one period of the periodic sequence in (b). As we treat the sampled points

on f(t) as a sequence and periodic, we can consider the sequence by one period and we

can evaluate the DFT value of each points by setting

ω = 0,
2π

MT
,
2π

MT
× 2, . . . ,

2π

MT
× k, . . . ,

2π

MT
× (M − 1).
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Figure 2.3: (a)Sequence of M = 10. (b)Implicit periodicity in DFT.

Thus we can have the DFT equation in general

F (µ) =
M−1∑︂
k=0

f(k)e−i
2π
M
µk, µ = 0, 1, 2, ...,M − 1.

The inverse DFT is

f(k) =
1

M

M−1∑︂
µ=0

F (µ)e−i
2π
M
µk, k = 0, 1, 2, ...,M − 1.

Speci�cally, when µ = 0, we have

F (0) =
M−1∑︂
k=0

f(k)

=M
1

M

M−1∑︂
k=0

f(k)

=Mf(k).

|F (0)| =M |f(k)|. (2.3)

From Eq.(2.3), it is very obvious that |F (0)| is the largest component of the spectrum.

As we can see in the equations, DFT transforms a complex signal into its complex

spectrum. However, if the signal is real as in most of the applications, half of the data is

redundant.

29



To simplify the operation process and also to have a more e�ective result, we use the

Discrete cosine transform (DCT).

2.1.4 Discrete Cosine Transform

DCT is a real-valued transform that transforms a sequence of real data points into its

real spectrum and therefore avoids the problem of redundancy.

Also, as DCT is derived from DFT, all the desirable properties of DFT (such as the fast

algorithm) are preserved. From Fourier Transform to DCT, some mathematical theory

is needed. The theory states that a continuous real symmetric function that satis�es

Dirichlet's condition in a given interval can be expanded into a Fourier series containing

only the cosine terms.

We discuss now the derivation process from DFT to DCT [24].

To derive the DCT of an M-point real signal sequence {x[0], · · · , x[M − 1]}, we �rst

construct a new sequence of 2M points:

x′[m]
△
=

{︃
x[m] (0 ≤ m ≤M − 1)
x[−m− 1] (−M ≤ m ≤ −1).

Figure 2.4: The sequence of 2M points

As Fig.2.4 shows, this 2M-point sequence x′[m] is assumed to repeat itself outside the

range −M ≤ m ≤ M − 1, i.e., it is periodic with period 2M , and it is even symmetric
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with respect to the point at m = −1/2:

x′[m] = x′[−m− 1] = x′[2M −m− 1].

If we shift the points x′[m] to the right by 1/2 by de�ning another index m′ = m+ 1/2,

then x′[m′] = x′[m + 1/2] is symmetric with respect to the origin at m′ = 0 as Fig.2.5

shows.

Figure 2.5: The shifted sequence

Perform DFT to this 2M-point symmetric sequence (for convenience, we denote x′[m] as

x[m]):

X[µ] =
1√
2M

M−1/2∑︂
m′=−M+1/2

x

[︃
m′ − 1

2

]︃
e−j2πm

′µ/2M

=
1√
2M

M−1/2∑︂
m′=−M+1/2

x

[︃
m′ − 1

2

]︃
cos

(︃
2πm′µ

2M

)︃
− j√

2M

M−1/2∑︂
m′=−M+1/2

x

[︃
m′ − 1

2

]︃
sin

(︃
2πm′µ

2M

)︃
(2.4)

=
1√
2M

M−1/2∑︂
m′=−M+1/2

x

[︃
m′ − 1

2

]︃
cos

(︃
2πm′µ

2M

)︃
(2.5)

=

√︃
2

M

M−1/2∑︂
m′=1/2

x

[︃
m′ − 1

2

]︃
cos

(︃
2πm′µ

2M

)︃
(µ = 0, · · · , 2M − 1). (2.6)

Here we have used the fact that x[m′−1/2] is even, cos(2πm′µ/2M) and sin(2πm′µ/2M)

are respectively even and odd, all with respect to m′ = 0 or m = −1/2. Therefore, we

can simplify the equation from Eq. (2.4) and Eq. (2.5).
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Substituting m′ = m+1/2 into Eq. (2.6), we get the Discrete Cosine Transform (DCT):

X[µ] =

√︃
2

M

M−1∑︂
m=0

x [m] cos

(︃
(2m+ 1)µπ

2M

)︃
(µ = 0, · · · ,M − 1). (2.7)

We can de�ne the coe�cient c[µ,m] as

c[µ,m]
△
=

√︃
2

M
cos

(︃
(2m+ 1)µπ

2M

)︃
, (m,µ = 0, 1, · · · ,M − 1).

which can be considered as the component on the µth row and mth column of anM×M

matrix C, called the DCT matrix.

We can show that all row vectors of C are orthogonal and normalized, except the �rst

one (µ = 0):⌜⃓⃓⎷M−1∑︂
m=0

c2[µ,m] =

⌜⃓⃓⎷ 2

M

M−1∑︂
m=0

cos2
(︃
(2m+ 1)µπ

2M

)︃
=

{︃ √
2 µ = 0

1 µ = 1, 2, · · · ,M − 1.

To make DCT a orthonormal transform, we de�ne a coe�cient

a[µ] =

{︃ √︁
1/M µ = 0√︁
2/M µ = 1, 2, · · · ,M − 1,

so that the DCT now becomes

X[µ] = a[µ]
M−1∑︂
m=0

x[m] cos

(︃
(2m+ 1)nπ

2M

)︃
=

M−1∑︂
m=0

x[m]c[µ,m] (µ = 0, · · · ,M − 1),

where c[µ,m] is modi�ed with a[µ], which is also the component in the µth row and mth

column of the M by M cosine transform matrix:

⎡⎢⎣· · · · · · · · ·
... c[µ,m]

...
· · · · · · · · ·

⎤⎥⎦ =

⎡⎢⎣ cT0
...

cTM−1

⎤⎥⎦ = CT .
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Here cTi = [c[i, 0], · · · , c[i,M − 1]] is the ith row of the DCT transform matrix C. As

these row vectors are orthogonal:

ci · cj = cTi cj = δij =

{︃
1 i = j
0 i ̸= j.

The DCT matrix C is orthogonal:

C−1 = CT , i.e. CTC = I,

and it is real C = C∗. Now the DCT can be expressed in matrix form as:

X = CTx.

Left multiplying both sides by C we get

CX = CCTx = CC−1x = x.

This is the inverse DCT:

x = CX

or in component form:

x[m] =
M−1∑︂
µ=0

a[µ]X[µ] cos

(︃
(2m+ 1)µπ

2M

)︃

=
M−1∑︂
µ=0

X[µ]c[µ,m] (m = 0, · · · ,M − 1).

Here is an example where DCT and FFT(fast Fourier transform is an algorithm that

computes DFT) are performed on the same signal. Comparing the results in Fig.2.6, it

can be observed that DCT transform has only real part, and after DFT transform, there

is imaginary part. In this example, DCT uses only 3 points in the frequency domain to

represent the signal, and after the DFT transform, 5 points are required in the frequency

domain to represent the signal. Thus, DCT is more e�cient than DFT.
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Figure 2.6: A signal transformed by DCT and FFT respectively

2.1.5 Application of DCT

DCT is applied in the JPEG image compression algorithm [1, page 566-584]. Among all

image coding standards, the JPEG format (short for Joint Photographic Experts Group)

is the most suitable for both color and binary still images of di�erent types and di�erent

resolutions. JPEG image compression algorithm is a widely used still image compression

standard, and is a lossy compression algorithm based on DCT.

Figure 2.7 is the graphic description of a block transform coding system which contains

encoder and decoder.

Figure 2.7: A block transform coding system
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We suppose that the original image consists of 256 or 28 possible intensities. The block

transform coding involves several steps:

1. Decompose the input image into data blocks of 8× 8;

2. Do forward DCT to each block, and transform each of them into 64 DCT

coe�cients among which one coe�cient with zero frequency in both dimensions

is DC coe�cient and the other 63 with non-zero frequencies are AC coe�cients;

3. Quantize the DCT coe�cients;

4. Encode the result of quantization and then transmit the compressed image data.

We will explain these steps in details.

Step 1

Construct n × n subimages, each subimages with the size 8 × 8. Then shift the pixels

of the original subimage by −27 or −128 intensity levels to get a new array, because the

range of numbers accepted by the DCT formula is between -128 and 127.

Step 2

Let g(x, y) denote the subimage with the size 8× 8. The discrete transform of g(x, y) is

denoted as T (u, v), and the relation between them is

T (u, v) =
n−1∑︂
x=0

n−1∑︂
y=0

g(x, y)r(x, y, u, v), (2.8)

where u, v = 0, 1, 2, ..., n − 1. Similarly, with T (u, v), we can get g(x, y) by the inverse

discrete transform:

g(x, y) =
n−1∑︂
u=0

n−1∑︂
v=0

T (u, v)s(x, y, u, v). (2.9)
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In these equations, r(x, y, u, v) and s(x, y, u, v) are called the forward and inverse

transformation kernels, respectively. Furthermore, they are also referred to as basic

functions or basis images. At the same time, T (u, v) for u, v = 0, 1, 2, ..., n − 1 in Eq.

(2.8) are called transform coe�cients; they can be viewed as the expansion coe�cients

of a series expansion of g(x, y) with respect to the basic function s(x, y, u, v).

The idea is that we multiply the original subimage with the basic function pixel by pixel

to obtain the transformed coe�cients which will work for compression. The kernels are

the cores for the transform process. They determine the type of transformation and the

complexity of the overall calculation. The best-known pair of transform kernels is

r(x, y, u, v) = e−j2π(ux+vy)/n

and

s(x, y, u, v) =
1

n2
ej2π(ux+vy)/n,

as we referred before, this is the basic function of DFT pair in 2-D. When implementing

JPEG algorithm, we focus on the explanation of DCT.

In the last section, we have already analyzed 1-D DCT, the kernels are C and CT.

2-D DCT transformation whose kernel is shown in Fig.2.8 is to perform another DCT

transformation based on 1-D DCT. Here is the formula:

F (u, v) = α(u)α(v)
n−1∑︂
x=0

n−1∑︂
y=0

f(x, y) cos

[︃
(2x+ 1)uπ

2n

]︃
cos

[︃
(2y + 1)vπ

2n

]︃
,

where

α(u) =

{︃ √︁
1/n u = 0√︁
2/n u = 1, 2, ..., n− 1

and similarly for α(v).
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Figure 2.8: DCT basic function

As we implement the algorithm with Matlab, and the computation in Matlab is in matrix

form, we show DCT formulas in matrix form:

F = AfAT ,

A(i, j) = α(i) cos

[︃
(2i+ 1)jπ

2n

]︃
,

where i stands for u, v and j stands for x, y. Then the inverse DCT can be derived from

the following process:

A−1 = AT,

f = A−1F(AT)−1 = ATFA.

So we can de�ne IDCT as:

f(x, y) =
1

n
F (0, 0) +

√
2

n

n−1∑︂
v=0

F (0, v) cos
(2y + 1)vπ

2n
+

√
2

n

n−1∑︂
u=0

F (u, 0) cos
(2x+ 1)uπ

2n
+

2

n

N−1∑︂
u=1

n−1∑︂
v=1

F (u, v) cos
(2x+ 1)uπ

2n
cos

(2y + 1)vπ

2n
.

(2.10)
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Above, f(x, y) is the intensity of the pixel in row x and column y, x, y = 0, 1, 2, ..., N −

1; F (u, v) is the DCT coe�cient, u, v are the generalized frequency variables, u, v =

0, 1, 2, ..., N − 1.

As shown in Fig.2.2, for most images, after DCT is performed, most of the signal energy

lies at low frequencies that appear in the upper left corner and the lower right coe�cients

represent higher frequencies are often small enough to be neglected with little visible

distortion.

Step 3

In this step, we will implement quantization, the object of which is to decrease the

magnitudes of non-zero coe�cients and to increase the number of zero coe�cients so that

we can present the image with fewer data. Coe�cient quantization is a very important

process, although it is the reason for the loss of information during encoding and decoding.

The quantization process can be shown by the equation below:

Q(u, v) = round

[︃
F (u, v)

S(u, v)

]︃
,

where Q(u, v) means quantized coe�cient magnitude, F (u, v) represents the DCT

coe�cient, and S(u, v) is an element of the quantization table. The size of the

quantization table is the same as that of the subimage, it is corresponding to the DCT

coe�cients.

Since the human eye is more sensitive to low-frequencies (upper left corner) than high-

frequencies (low right corner), the quantization steps in the upper left corner of the

table are smaller than the quantization steps in the lower right corner. In addition, the

quantization table shown in Tab.2.1 is the default luminance quantization table, custom

quantization tables can also be set.

There are two points to note about the quantization step:
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16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table 2.1: Quantization table

1. The luminance quantization table can be multiplied by a scaling factor to control

the compression rate. The larger the coe�cient is, the higher the compression ratio

is, and the worse the quality of the resulting image is.

2. After quantization, the coe�cients can be masked, the more AC coe�cients the

mask matrix retains, the higher the quality the resulting image is.

Step 4

Execute the zigzag ordering pattern shown in Fig.2.9 on the coe�cients after the

transformation and normalization,and get the resulting 1-D coe�cient sequence.

Step 5

Code the 1-D coe�cient sequence that we get from step 4 and save. Here are the coding

methods applied.

1. Di�erence Pulse Code Modulation(DPCM)

The DC coe�cient of the 8 × 8 image blocks after DCT transformation has two

characteristics:

(a) The coe�cient value is relatively large;
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Figure 2.9: Zigzag ordering pattern

(b) The DC coe�cients of adjacent 8× 8 image blocks do not change much.

According to these two characteristics, DC coe�cients are generally processed with

DPCM, that is: take the di�erence between each DC value and the previous DC

value in the image component to encode. For example, assuming that the DC

coe�cient of an 8×8 image block is 17, and the DC coe�cient of the previous 8×8

image block is 15, the di�erence between the two is 2.

2. Run Length Coding (RLC)

The characteristic of the AC coe�cient after quantization is that there are many

coe�cients with the value 0 among all 63 coe�cients. Therefore, RLC which is

mentioned in the section1.2.1 can be used to further reduce the amount of data

transmission.

However, in JPEG encoding, the meaning of RLC is slightly di�erent from its

original meaning. In JPEG encoding, it is assumed that after RLC encoding, a

(M,N) data pair is obtained, where M is the number of consecutive 0s between

two non-zero AC coe�cients (that is, run length), and N is the value of the next
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non-zero AC coe�cient.

3. Entropy coding

After obtaining the intermediate format of DC coe�cients and the intermediate

format of AC coe�cients, it is necessary to encode both of them to further compress

the image data with the entropy encoder which is a general lossless data compression

method that encodes symbols by using an amount of bits inversely proportional to

the probability of the symbols.

The JPEG standard relies on two entropy encoding methods: Hu�man encoding

and arithmetic encoding. The JPEG basic system uses the use of Hu�man encoding

which we introduce in the section1.2.1 in Chapter 1. Thus, by processing Hu�man

coding, binary codes with a shorter character length are assigned to characters with

a high probability of occurrence, and binary codes with a longer character length

are assigned to characters with a low probability of occurrence so that the average

code length of a character is the shortest.

2.2 Wavelet Transform (WT)

2.2.1 The shortages of Fourier Transform

As there are some shortcomings of Fourier Transform, they lead to the foundation of

wavelet transform. First, we will discuss the shortages of Fourier transform. As what we

can see in the Fourier transform equation, F (ω) presents the amount of energy that the

signal f(t) has in total at a speci�ed frequency ω. However, with Fourier transform, we

are unable to know the instantaneous frequency of f(t) at a certain moment. Here is an

example [25]
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There is a signal consisting of two sinusoids of 5 and 10 Hertz and it is corrupted by

random noise. As Fig. 2.10 shows, in time domain, it's di�cult to detect when the
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Figure 2.10: A signal in time domain and in frequency domain

signi�cant oscillations happen as we don't know the speci�c frequency for a certain

moment; likewise, while in frequency domain, the dominant oscillations at 5 Hz and

10 Hz are easy to detect, it's hard to isolate the frequencies in time, as each frequency

exists across all the time. Fourier transform acts as a summary of the signal's frequency

over that time period [26], but can't provide details for any speci�c time points.

Unlike the basic function composed of sin and cos which lasts forever and is in�nite in

Fourier Transform , wavelets are limited in time and frequency. There are some examples

of di�erent wavelets shown in Fig.2.11.

In practice, most signals processed are considered �nite and the �nite property of wavelet

provides us a more accurate and �exible representation of the signals. Next, we will get

to know more about wavelet [1, page 477-510].
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Figure 2.11: Di�erent types of wavelets

2.2.2 Multi-resolution Expansions

Series Expansions

In functional analysis, a function f(x) is often expressed as a �nite or in�nite sum of

given functions

f(x) =
∑︂
k

αkϕk(x), (2.11)

where k is an integer index, the αk are real-valued expansion coe�cients, and the ϕk(x)

are real-valued expansion functions.

If there is a unique set of αk for any given f(x), the ϕk(x) are called basic functions,

and the expansion set, {ϕk(x)}, is called a basis for the class of functions that can be so

expressed.
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We can construct a function space V with the basic functions

V = Span
k

{ϕk(x)}, (2.12)

where Span
k

{ϕk(x)} is the set of all �nite linear combination of {ϕk(x)}, and A means the

closure of a set A. The set V is referred as the closed span of the expansion set {ϕk(x)}.

Now, any function f(x) ∈ V can be expanded in the form of Eq.(2.11).

Scaling Functions

Given a real, square-integrable function ϕ(x), we can compose a set {ϕj,k(x)} of expansion

functions, where

ϕj,k(x) = 2j/2ϕ(2jx− k), ∀j, k ∈ Z, ϕ(x) ∈ L2(R). (2.13)

Here, k determines the position of ϕj,k(x) along the x-axis, j determines the width of

ϕj,k(x), and the term 2j/2 controls the amplitude of the function. Because the shape of

ϕj,k(x) is determined by j, ϕ(x) is called a scaling function.

Based on Eq.(2.12), we can de�ne the subspace Vj spanned over k for any �xed j as

Vj = Span
k

{ϕj,k(x)}.

Speci�cally, when j = j0,

Vj0 = Span
k

{ϕj0,k(x)}.

If f(x) ∈ Vj0 , then it can be expressed as

f(x) =
∑︂
k

αkϕj0,k(x), (2.14)

as j increases, the width of ϕj,k(x) becomes narrower and the subspace becomes

bigger. For more properties of scaling function, we can check out the four fundamental

requirements of multi-resolution analysis:
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Figure 2.12: The nested function spaces spanned by a scaling function.

1. The scaling function is orthogonal to its integer translates.

This means that

⟨ϕj,k, ϕj,l⟩ = δ(k − l).

2. The subspaces spanned by the scaling function at low scales are nested within those

spanned at higher scales:

V−∞ ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V∞.

It is easy to �nd it out by observing the scaling function that if f(x) ∈ Vj, then

f(2x) ∈ Vj+1.

3. The only function that is common to all Vj is f(x) = 0.

This means that

V−∞ = {0},

or ⋂︂
j∈Z

Vj = {0}.

4. Any function can be represented with arbitrary precision.

This is because all measurable, square-integrable functions can be represented by

the scaling functions in the limit as j → ∞. That is,

V∞ = L2(R),
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or ⋃︂
j∈Z

Vj = L2(R).

With these requirements, we can know that Vj ⊂ Vj+1, therefore, the expansion functions

of subspace Vj can be expressed as a weighted sum of the expansion functions of subspace

Vj+1:

ϕj,k(x) =
∑︂
n

αnϕj+1,n(x), (2.15)

then we substitute the scaling function as Eq.(2.13) shows into ϕj+1,n(x) and replace αn

with hϕ(n). Thus, Eq. (2.15) becomes

ϕj,k(x) =
∑︂
n

hϕ(n)2
(j+1)/2ϕ(2j+1x− n).

Furthermore, because ϕ(x) = ϕ0,0(x), we can let j = 0, k = 0 to obtain the simpler

non-subscript expression

ϕ(x) =
∑︂
n

hϕ(n)
√
2ϕ(2x− n), (2.16)

where the hϕ(n) coe�cients are called scaling function coe�cients and hϕ is referred to

as a scaling vector. Eq. (2.16) is fundamental to multi-resolution analysis (MRA) and is

called the re�nement equation, the MRA equation or the dilation equation. It means that

the expansion function of any subspace can be constructed by the expansion functions

of the next higher resolution space.

Wavelet Functions

Given a scaling function that meets the MRA requirements, we can see from Fig.2.12 that

there is always a gap between any two adjacent scaling subspaces Vj and Vj+1. Likewise,
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we can de�ne a wavelet function ψ(x) that, together with its integer translates and binary

scaling, spans the gap

ψj,k(x) = 2j/2ψ(2jx− k), ∀j, k ∈ Z, ψ(x) ∈ L2(R). (2.17)

We denote the gap as the subspace Wj and it is spanned over k for any �xed j as

Wj = Span
k

{ψj,k(x)},

which means that for any function f(x) ∈ Wj, it can be expressed as

f(x) =
∑︂
k

αkψj,k(x). (2.18)

The relation between the scaling and wavelet function subspaces, as Fig.2.13 shows, can

be denoted as

Vj+1 = Vj ⊕Wj,

where ⊕ denotes the union of spaces. The orthogonal complement of Vj in Vj+1 is Wj

and all members of Vj are orthogonal to the members of Wj, so we can have the equation

⟨ϕj,k(x), ψj,l(x)⟩ = 0, j, k, l ∈ Z.

�

Figure 2.13: The relationship between scaling and wavelet function spaces.
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After de�ning the wavelet function sub-space Wj and knowing the relation between the

subspaces, we can now express the space of all measurable square-integrable functions as

L2(R) = V0 ⊕W0 ⊕W1 ⊕ . . . , (2.19)

or

L2(R) = V1 ⊕W1 ⊕W2 ⊕ . . . ,

or even

L2(R) = . . .⊕W−2 ⊕W−1 ⊕W0 ⊕W1 ⊕W2 ⊕ . . . .

As Vj+1 = Vj ⊕Wj, the expansion functions of sub-space Wj can also be represented by

a weighted sum of the expansion functions of sub-space Vj+1

ψ(x) =
∑︂
n

hψ(n)
√
2ϕ(2x− n), (2.20)

where the hψ(n) are called the wavelet function coe�cients and hψ is the wavelet vector.

Observing Eq.2.20 and Eq.2.16, they are expressed by the same basic functions but with

di�erent expansion coe�cients. The relation between the coe�cients hψ(n) and hϕ(n) is

hψ(n) = (−1)nhϕ(1− n).

2.2.3 Wavelet Transform in One Dimension

The Wavelet Series Expansions

From Eq.(2.19), any function f(x) in the space L2(R) can be represented by a scaling

function expansion of subspace Vj0 and some number of wavelet function expansions of

48



subspaces Wj0 ,Wj0+1, . . .

f(x) =
∑︂
k

cj0(k)ϕj0,k(x) +
∞∑︂
j=j0

∑︂
k

dj(k)ψj,k(x), (2.21)

where j0 is an arbitrary starting scale and the cj0(k) and dj(k) are relabeled αk from Eqs.

(2.14) and (2.18) respectively. The cj0(k) are normally called approximation and/or

scaling coe�cients. The dj(k) are referred to as detail and/or wavelet coe�cients, and

we can calculate them by the formulas

cj0(k) = ⟨f(x), ϕj0,k(x)⟩ =
∫︂
f(x)ϕj0,k(x)dx, (2.22)

dj(k) = ⟨f(x), ψj,k(x)⟩ =
∫︂
f(x)ψj,k(x)dx. (2.23)

The Discrete Wavelet Transform

Like the Fourier series expansion, the wavelet series expansion in Eq.(2.21) maps a

function of a continuous variable into a sequence of coe�cients. When the decomposed

function is discrete which means it is sampled, the resulting coe�cients are called discrete

wavelet transform (DWT). Here is the detail.

We sample M elements from the continuous signal f(x)

f(n) = f(x0 + n∆x), n = 0, 1, . . . ,M − 1,

where x0 is the initial time and ∆x is the sampling period.

The ϕj,k(n) and ψj,k(n) are also sampled from the basic functions ϕj,k(x) and ψj,k(x) and

both contain M elements.

Therefore, the wavelet series expansion coe�cients for f(x) become the forward DWT
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coe�cients for sequence f(n):

Wϕ(j0, k) =
1√
M

∑︂
n

f(n)ϕj0,k(n),

Wψ(j, k) =
1√
M

∑︂
n

f(n)ψj,k(n), j ≥ j0,

where Wϕ(j0, k) and Wψ(j, k) correspond to the cj0(k) and dj(k) of the wavelet series

expansion in Eq. (2.22) and Eq. (2.23) respectively. The complementary inverse DWT

which corresponds to the wavelet series expansion in Eq. (2.21) is

f(n) =
1√
M

∑︂
k

Wϕ(j0, k)ϕj0,k(n) +
1√
M

∞∑︂
j=j0

∑︂
k

Wψ(j, k)ψj,k(n).

Normally, we let j0 = 0 and select M to be a power of 2 (i.e., M = 2J ) so

that the summations in equations of DWT and inverse DWT are performed over

n = 0, 1, 2, . . . ,M − 1, j = 0, 1, 2, . . . , J − 1, and k = 0, 1, 2, . . . , 2j − 1.

Here is an example of application of DWT [27].

Given a sampled signal f = [f [0] , · · · , f [3]]T = [0, 3, 1,−1]T , thus, M = 4. The scaling

and wavelet functions we use are discrete Haar scaling and wavelet functions

⎡⎢⎢⎣
ϕ0,0 [n]
ψ0,0 [n]
ψ1,0 [n]
ψ1,1 [n]

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√
2 −

√
2

⎤⎥⎥⎦
.
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Then we can start calculating the scaling coe�cients and the wavelet coe�cients

Wϕ(0, 0) =
1

2

3∑︂
n=0

f [n]ϕ0,0 [n] =
1

2
[1 · 0 + 1 · 3 + 1 · 1 + 1 · (−1)] = 1.5,

Wψ(0, 0) =
1

2

3∑︂
n=0

f [n]ψ0,0 [n] =
1

2
[1 · 0 + 1 · 3 + (−1) · 1 + (−1) · (−1)] = 1.5,

Wψ(1, 0) =
1

2

3∑︂
n=0

f [n]ψ1,0 [n] =
1

2

[︂√
2 · 0 + (−

√
2) · 3 + 0 · 1 + 0 · (−1)

]︂
= −1.5

√
2,

Wψ(1, 1) =
1

2

3∑︂
n=0

f [n]ψ1,1 [n] =
1

2

[︂
0 · 0 + 0 · 3 +

√
2 · 1 + (−

√
2) · (−1)

]︂
=

√
2.

With the resulting coe�cients, we can get back the original sampled signal by applying

the inverse DWT

f [n] =
1

2

[︂
Wϕ(0, 0)ϕ0,0 [n] +Wψ(0, 0)ψ0,0 [n] +Wψ(1, 0)ψ1,0 [n] +Wψ(1, 1)ψ1,1 [n]

]︂
.

The Continuous Wavelet Transforms

For the continuous wavelet transform, we just need to change Fourier basis to wavelet

basis in the transform equation:

∀f(t) ∈ L2(R),

Wψ(a, b) =

∫︂ +∞

−∞
f(x)ψa,b(t)dx =

1√︁
|a|

∫︂ +∞

−∞
f(x)ψ

(︃
x− b

a

)︃
dx. (2.24)

It is called the continuous wavelet transform of f(x), where f(x) is the real signal, ψ is

an arbitrary wavelet, a is the scale parameter and b is the translation parameter and W

is the processed signal. The inverse wavelet transform:

f(x) =
1

Cψ

∫︂ ∫︂
R×R∗

Wψ(a, b)ψ(a,b)(x)
dadb

a2
,

where Cψ =
∫︁
R∗

|Ψ(ω)|2
|ω| dω.

There are some points that should be noted:
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1. The continuous translation parameter b takes the place of the integer translation

parameter k.

2. The continuous scale parameter a is inversely related to the binary scale parameter

2j.

2.2.4 The Fast Wavelet Transform

The fast wavelet transform (FWT), also called Mallat's herringbone algorithm [29], is

a computationally e�cient implementation of the discrete wavelet transform (DWT). It

simpli�es the computation by exploiting the relationship between the coe�cients of the

DWT at adjacent scales. Here is the derivation process of FWT.

Based on MRA equation (Eq.(2.16)), replace x by 2jx − k, and let m = 2k + n i.e.

n = m− 2k, then we can have

ϕ(2jx− k) =
∑︂
n

hϕ(n)
√
2ϕ
(︁
2(2jx− k)− n

)︁
=
∑︂
m

hϕ(m− 2k)
√
2ϕ(2j+1x−m).

Similarly, we can obtain the following equation based on the wavelet function (Eq.(2.20))

ψ(2jx− k) =
∑︂
m

hψ(m− 2k)
√
2ϕ(2j+1x−m). (2.25)
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For the coe�cient Wψ(j, k) of DWT,

Wψ(j, k) =
1√
M

M−1∑︂
n=0

f(x)ψj,k(x) (2.26)

=
1√
M

M−1∑︂
n=0

f(x)2j/2ψ(2jx− k) (2.27)

=
1√
M

M−1∑︂
n=0

f(x)2j/2
[︂∑︂

m

hψ(m− 2k)
√
2ϕ(2j+1x−m)

]︂
(2.28)

=
∑︂
m

hψ(m− 2k)
[︂ 1√

M

M−1∑︂
n=0

f(x)2(j+1)/2ϕ(2j+1x−m)
]︂

(2.29)

=
∑︂
m

hψ(m− 2k)Wψ(j + 1, k). (2.30)

(2.31)

Substitue wavelet function into Eq.(2.26) to get Eq.(2.27), and substitute Eq.(2.25) into

Eq.(2.27) to get Eq.(2.28). Change order of Eq.2.28 to get Eq.2.29. In Eq.(2.30), the

part in the square brackets equals toWψ(j+1, k), so we �nally get Eq.(2.30) representing

the coe�cient Wψ(j, k) of DWT.

Similarly, for the coe�cient Wϕ(j, k) of DWT, we can have

Wϕ(j, k) =
∑︂
m

hϕ(m− 2k)Wψ(j + 1, k). (2.32)

We compare Eq.(2.30) and Eq.(2.32) with the discrete convolution formula,

y(n) =
+∞∑︂
i=−∞

h(n− i)x(i) = h(n) ∗ x(n),

therefore,

Wψ(j, k) = hψ(−n) ∗Wϕ(j + 1, n)

⃓⃓⃓⃓
n=2k,k≥0

,

Wϕ(j, k) = hϕ(−n) ∗Wϕ(j + 1, n)

⃓⃓⃓⃓
n=2k,k≥0

.
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(a)

+

(b)

Figure 2.14: (a)The FWT analysis bank, (b)The FWT−1 synthesis �lter bank.

An FWT analysis bank can be generated after performing downsampling by 2, so that

the size of Wψ(j, n) and Wϕ(j, n) is half of Wϕ(j + 1, n), shown in Fig.2.14a. Then we

can infer the FWT−1 �lter bank shown in Fig.2.14b to reconstruct Wϕ(j+1, k) from the

results of the forward transform.

In the two-band subband coding and decoding system as Fig. 2.15 shows, perfect

reconstruction [28] requires gi(n) = hi(−n) for i = {0, 1}. In the FWT analysis

�lter, h0(n) = hϕ(−n) and h1(n) = hψ(−n), the required FWT−1 synthesis �lters are

g0(n) = h0(−n) = hϕ(n) and g1(n) = h1(n) = hψ(n) [1, page 499]. The computation of

+Analysis filter bank Synthesis filter bank

Figure 2.15: A two-band subband coding and decoding system.

the FWT−1 �lter bank

Wϕ(j + 1, k) = hϕ(k) ∗W 2↑
ϕ (j, k) + hψ(k) ∗W 2↑

ψ (j, k)

⃓⃓⃓⃓
k ≥ 0,

where 2 ↑ means upsampling by 2, this is inserting zeros in W so that it is twice its

original length.
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2.2.5 Wavelet Transforms in Two Dimensions

In this section, we extend the one-dimensional transforms to two-dimensional ones. There

is one scaling function ϕ(x, y) and three two-dimensional wavelets ψH(x, y), ψV (x, y) and

ψD(x, y):

ϕ(x, y) = ϕ(x)ϕ(y),

ψH(x, y) = ψ(x)ϕ(y),

ψV (x, y) = ϕ(x)ψ(y),

ψD(x, y) = ψ(x)ψ(y).

Then we can de�ne the scaled and translated basic functions:

ϕj,m,n(x, y) = 2j/2ϕ(2jx−m, 2jy − n), (2.33)

ψij,m,n(x, y) = 2j/2ψ(2jx−m, 2jy − n), i = {H,V,D}. (2.34)

where index i identi�es the directional wavelets as a superscript.

The discrete wavelet transform of an image f(x, y) of size M ×N is

Wϕ(j0,m, n) =
1√
MN

M−1∑︂
x=0

N−1∑︂
y=0

f(x, y)ϕj0,m,n(x, y), (2.35)

W i
ψ(j0,m, n) =

1√
MN

M−1∑︂
x=0

N−1∑︂
y=0

f(x, y)ψij0,m,n(x, y), i = {H,V,D}, (2.36)

where j0 is an arbitrary starting scale and the Wϕ(j0,m, n) coe�cients are an

approximation of f(x, y) at scale j0; the W i
ψ(j0,m, n) coe�cients add details for scales

j ≥ j0 in directions determined by index i.

The inverse discrete wavelet transform is given by

f(x, y) =
1√
MN

∑︂
m

∑︂
n

Wϕ(j0,m, n)ϕj0,m,n(x, y)

+
1√
MN

∑︂
i=H,V,D

∞∑︂
j=j0

∑︂
m

∑︂
n

W i
ψ(j,m, n)ψ

i
j,m,n(x, y)

(2.37)
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Similarly, we can expand FWT to 2-D shown in Fig.2.16. After applying 2-D wavelet

Columns

Columns

Rows

Rows

Rows

Rows

Figure 2.16: The analysis �lter bank of the 2-D fast wavelet transform.

transform, the image is decomposed into 4 frequency bands: horizontal (HL), vertical

(LH), diagonal (HH), and low frequency (LL) which can be further decomposed into 4

frequency bands. Now, the image energy is mainly concentrated in the low frequency

part, while the energy of the horizontal, vertical and diagonal part is relatively small and

has obvious directivity. As Fig.2.17 shows, we can process 2-D FWT to the approximation

part (the low frequency part, which include most information of the image) of the

resulting decomposition again and again.

In Fig.2.18a, we decompose the image "Lena" three times using Daubechies 4

Figure 2.17: The resulting decomposition of 2-D fast wavelet transform.

wavelet function, and then reconstruct it using the multi-layer subimage obtained using

decomposition shown in 2.18b.
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(a) (b)

Figure 2.18: (a)Image after wavelet decomposition for 3 times, (b)Reconstructed image.

2.2.6 Implementation of image compression using wavelet

transform

As DCT is one of the methods used in a block transform coding system, image needs to

be divided into subimages. While wavelet transform is used in a wavelet coding system

[33] [34], which doesn't require constructing subimages. Because wavelet transforms

use wavelets basic functions which are limited in duration and decayable, subdivision

of the original image is unnecessary, and the removal of the subdivision step eliminates

the blocking artifact that characterizes DCT-based approximations at high compression

ratios [30].

DWT is applied in the JPEG 2000 (JP2) image compression algorithm which is an image

compression standard and coding system, and was designed to supersede the DCT with

wavelet-based method. The standardized �lename extension normally is .jp2.

There are some improvements over the JPEG standard:
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� The pyramid representation [1, page 462-466] can o�er multiple resolutions.

� By choosing the type of wavelet transform, we can choose lossless or lossy

compression.

� JPEG 2000 provides e�cient code-stream organizations which are progressive by

pixel accuracy and by image resolution (or by image size). This way, once a smaller

part of the whole �le has been received, the viewer can see a lower quality version

of the �nal picture. The quality then improves progressively through downloading

more data bits from the source.

The graphic description of a wavelet coding system which contains encoder and decoder

is shown in Fig.2.19.

Original

image Symbol

coder

Encoder

Forward

Wavelet

Transform

Quantizer

Symbol

decoder

Reconstructed

image

Encoder

Inverse

Wavelet

Transform

Inverse

quantizer

Decoder

Compressed

date for

storage and

transmission

Figure 2.19: A wavelet coding system.

Step 1 Image Tiling

The term tiling refers to the partition of the original image into same sized rectangular

non-overlapping tiles except the boundary blocks, and these tiles are compressed

independently. After tiling, all the other steps are processed on each tile independently.

Arbitrary tile sizes are allowed, up to and including the whole image.
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Here is the reason why we process the tiling step on the original image �rstly instead of

processing directly on the whole image directly (i.e., we can also regard the whole image

as one tile).

� Tiling reduces the memory requirement and computation complexity.

� Tiling allows random access of di�erent parts of an image, so that we can decode

speci�c parts of the image.

� We can control the coding e�ciency and complexity by changing the tile size.

Step 2 DC Level Shifting

Shift all data of the tiles by subtracting the same quantity 2P−1, where P is the

component's precision. Thus, the range of pixel value changes from [0, 255] to [−128, 127],

and the values become 0 centered.

At the decoder side, inverse DC level shifting is performed on reconstructed data by

adding 2P−1 back.

Step 3 The forward 2D-DWT

Perform the forward 2D-DWT on each tiles as discussed in the previous section,

by �ltering the original tiles with scaling function coe�cients and wavelet function

coe�cients and down sampling to get the four resulting quarter-size decomposition

outputs (i.e., the approximation and horizontal, vertical, and diagonal details).

There are two �lters that can be chosen:

� Daubechies 9-tap/7-tap �lter is for lossy compression;

� Le Gall 5tap/3-tap �lter is for lossless compression.
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Step 4 Quantization

We recall that quantization is the process by which the coe�cients are reduced in

precision. A quantizer can be described as a function Q that maps each element in

a subset of the real line to a particular value. Here is the formula to calculate the

quantization result.

qb(u, v) = sign(ab(u, v))

[︃
|ab(u, v)|

∆b

]︃
, (2.38)

where ab(u, v) denotes the coe�cients of the subband b, ∆b is the step-size relative to

the dynamic range of subband b. The dynamic range is determined by the number of

bits used to represent the original image tile component and by the choice of the wavelet

transform, and qb(u, v) denotes the corresponding result. As Fig. 2.20 shows, the wavelet

coe�cients inside the interval (−∆,∆) are quantized to zero, thus, the interval (−∆,∆)

is called the "deadzone". The JPEG 2000 standard supports separate quantization step-

Figure 2.20: Dead-zone uniform scalar quantizer.

sizes for each subband and one quantization step-size is allowed per subband. Speci�cally,

for lossless compression, ∆b = 1.

An example of dead-zone uniform scalar quantization is shown in Fig.2.21. ∆b = 10,

given a wavelet coe�cient a = 25.35, then the quantization result is q10 = 2.
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Figure 2.21: Dead-zone uniform scalar quantization example.

Step 5 Embedded Block Coding with Optimal Truncation(EBCOT)

The quantized sub-bands are split into precincts which are rectangular regions in the

wavelet domain. Then precincts are split into code blocks which are in a single sub-band

and have equal sized which is typically 64× 64 and no less than 32× 32. Each bit plane

Figure 2.22: Partition of a tile component into code blocks and precincts.

of the code block will be encoded in three coding passes:

1. Signi�cance Propagation Pass. Encoding bits of insigni�cant coe�cients with

signi�cant neighbors.

2. Magnitude Re�nement Pass. Encoding bits of signi�cant coe�cients.

3. Cleanup Pass. Encoding coe�cients without signi�cant neighbors.

The bits selected by these coding passes then get encoded by the binary MQ-coder which

is a context-driven binary arithmetic coder. The result is a bit-stream that is split into
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Coded Code Block
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Packet

Layer

H Code Stream

Note: H Stands for Header

Figure 2.23: The bit stream representation.

packets where a packet groups selected passes of all code blocks from a precinct into one

indivisible unit. Packets from all sub-bands are then collected in layers. This process

is shown in Fig.2.23. For each code block, a separate bit stream is generated. The bit

stream has the property that it can be truncated to a variety of discrete lengths which

lead to a distortion, when reconstructing from each of these truncated subsets, and the

distortion is estimated and denoted by the mean squared error.

Thus, we need to �nd the optimal packet length for all code blocks which minimizes the

overall distortion in a way that the generated target bit rate equals the demanded bit rate.

Rate distortion optimization is used to allocate truncation points to each code block. By

applying the rate distortion optimization, a better compression can be achieved.

2.3 Summary

In this chapter, we have introduced the transforms which can provide data compression.

What they have in common is that they all use the transform kernel to perform the

transform and the inverse transform. We distinguish di�erent types of transform by
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di�erent kernels.

In practice, computer only processes �nite data which motivates the use of discrete

transforms. In this thesis we introduced DCT and DWT. DCT is with the Fourier

kernel and DWT is with the wavelet kernel. From mathematics, we know that the most

simpli�ed way to express a signal in a special space is by the orthogonal basis. The DCT

basis is �xed and it is the orthonormal basis of the space L2(2π), while wavelet basis

are multiple as there are multiple type of wavelets and we introduced how to construct

wavelet function which is the orthonormal basis of the space L2(R).

As the wavelet basis is energy-limited in the time domain and so do the signals in reality,

hence DWT is a better option than DCT for expressing signals.
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CHAPTER 3

Hybrid Methods for Image

Compression

As we discussed in Chapter 2, DCT has the capability of information compacting and

is easy to implement, however, at the same time DCT always leads to blocking artifact

at relatively high compression ratio which is one of the most annoying problems. For

example, in Fig.3.1, compressed by JPEG, the decompressed image has obvious blocking

artifacts. The blocking artifact occurs due to the loss of high frequency components

that are eliminated during quantization. Thus, we consider the combination of DCT and

other compression methods in order to provide e�ciency as well as reduce the blocking

artifact.

In this chapter, we present two hybrid methods for image compression: the hybrid image

compression method based on DCT and DWT and the hybrid method based on fractal

image compression and DCT.
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(a) (b)

Figure 3.1: Implementing JPEG on the original image, (a) Original image,
(b)Compressed image, PSNR = 25.25dB,CR = 7.00

3.1 Hybrid image compression method based on DCT

and DWT

From Chapter 2, we know that using particular basis to represent an image can help

to reduce the quantity of data required for the representation. We mainly introduced

two transform methods for image compression: DCT and DWT. Both of these two

transforms are widely applied in the domain of image compression. The DCT algorithm

can concentrate most of the energy on a smaller quantity of the coe�cients and o�er

simpler computation than other compression methods: DFT, DST, WHT and DWT [36],

but it causes the block e�ect at higher compression ratio. The DWT algorithm can

provide multi-resolution compression by discarding the detail coe�cients and processing

the approximate coe�cients continuously, but the energy compact characteristic of DWT

is lower comparing to DCT [36] and the computation process is more complicated.

Therefore, hybrid methods are proposed to take advantage of both of DCT and DWT. In
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this work, we want to use a hybrid method which is the combination of DCT and DWT

for image compression.

Here is the main motivation for the DWT-DCT hybrid method. DWT can perform

multi-resolution decomposition to divide the image into hierarchical sub-band structures

with di�erent spaces and frequencies. The energy of the image is mainly concentrated in

the low-frequency part which lies on the upper left corner, while the energy of the high-

frequency parts is much smaller. Therefore, we can perform DCT on the low-frequency

part. Now we will explain this method in details [37].

3.1.1 The process of image compression

Step 1 Perform three level DWT to image.

By this step, the image is decomposed into 10 sub-bands which are LL3, LH3,

HL3, HH3, HL2, LH2, HH2, HL1, LH1, HH1. Among them, only LL3 is the

low-frequency sub-band, the others are high-frequency sub-bands in horizontal

direction, vertical direction or diagonal direction. We discard the coe�cients of

HL1,LH1 and HH1 by setting them zeros.

Step 2 Process the rest high-frequency sub-bands

For the rest high-frequency bands LH3, HL3, HH3, HL2, LH2, HH2, quantize and

eliminate zeros from each sub-band, and then compress them by Arithmetic Coding.

Step 3 Process the low-frequency sub-band LL3

Compress LL3 by DCT, then quantize and convert the coe�cient matrix to an

array and use Arithmetic Coding to compress it.

Step 4 Store all data in a �le
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Figure 3.2: Step 1: Perform three level DWT to image.
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Figure 3.3: Step 2: Process the rest high-frequency sub-bands.
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Figure 3.4: Step 3: Process the low-frequency sub-band LL3.

In this step, we save the bit stream that we get as header information and

compressed data in a �le.
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3.1.2 The process of reconstruction

After the process of image compression, we can get the compressed data as a bit stream

in a �le. The �le is used to store and transmit and we need to process the reconstruction

to get the reconstructed image. Here is the process.

� Load the compressed data from the corresponding �le.

� Read and decompress the header information with arithmetic decoding, inverse

quantize the sub-bands.

� Process the inverse transformation to the coe�cients respectively to get the

decompressed image.
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Figure 3.5: The process of reconstruction

3.2 Hybrid image compression method based on

fractal image compression and DCT

In this chapter, another hybrid method which is based on fractal image compression

and DCT is also proposed. Why do we combine Fractal image compression and DCT?

Fractal image compression encoding can provide relatively high compression ratios, which

is very attractive, however, the quality of images is sometimes very poor and it requires

a long compression time. As DCT has the capability of information compacting, it is
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widely used in the �eld of image compression. By combining DCT and Fractal image

compression encoder, we sacri�ce a small loss in compression ratios to gain better quality.

Before explaining the algorithm of this hybrid method, we describe the fractal image

compression.

3.2.1 Fractal image compression

Fractal image compression is a relatively new technique of lossy image compression which

uses Iterated Function System (IFS) to extract the self-similarity in an image to achieve

the purpose of compression coding [43]. Its mathematical foundation is fractal geometry.

Fractal image compression has achieved rapid development because of its high

compression ratio potential, while it also has fatal weaknesses. Although the decoding

process is very fast, the encoding process is very time-consuming, which causes great

restrictions on its application. Moreover, images do not necessarily have a strict fractal

structure and cannot achieve the expected high compression ratio.

Fundamental of fractal image compression

The fractal image compression algorithm achieves the purpose of compression by

removing the redundant part of the image according to the local self-similarity of the

image itself at di�erent scales and spaces.

Particularly, here we concentrate on IFS fractal image compression which is to use

iteration to get an approximation of the original image. The algorithm is based on

some notations which will be represented below.

The �rst notation is a�ne transformation through which we can skew, stretch, rotate,
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scale or translate an input image. It can be denoted as[︃
x′

y′

]︃
=

[︃
a b
c d

]︃ [︃
x
y

]︃
+

[︃
e
f

]︃
(3.1)

where a, b, c, d, e and f are constants that determine the exact nature of the a�ne

transformation. a, b, c and d control rotation, scaling and skew, and e, f control the

translation. x, y denote the pixels of the input image and x′, y′ denote the pixels of the

output image.

One special type of a�ne transformation is contraction transformation or contraction

mapping.

De�nition 3.1. [39] Let (X, d) be a complete metric space [40]. Then a map T : X → X

is called a contraction mapping on X if there exists s ∈ [0, 1) such that

d(T (x), T (y)) ≤ sd(x, y)

for all x, y in X.

In this de�nition, T denotes a contraction mapping with contractivity factor s which is

a constant and shows how contractive the transformation is. The e�ect of contraction

mapping shows in Fig.3.6, which is that the mapped points are getting closer to each

other. What if we iterate a contractive mapping at any point? It converges to a �xed

Figure 3.6: Contraction mapping

point, and this is what Banach Fixed Point Theorem states.
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Banach Fixed Point Theorem. [39] Let (X, d) be a non-empty complete metric space

with a contraction mapping T : X → X. Then T admits a unique �xed-point x∗ in X

(i.e. T (x∗) = x∗). Furthermore, x∗ can be found as follows: start with an arbitrary

element x0 in X and de�ne a sequence {xn} by xn = T (xn−1) for n ≥ 1. Then xn → x∗.

This theorem means that there is always a unique �xed point x∗ of a contraction mapping

T , so that after any point in the space undergoes the iteration of this contraction mapping

T , the formed point sequence converges to x∗.

If a set of contraction mappings work together, they form an iterated function system.

De�nition 3.2. [41, p.82] Formally, an iterated function system(IFS) is a �nite set

of contraction mappings on a complete metric space. Symbolically,

{fi : X → X|i = 1, 2, . . . , N}, N ∈ N

is an iterated function system if each fi is a contraction on the complete metric space X.

From this de�nition, we can know that a �nite collection of contraction mappings form

an IFS. The contraction factor of an IFS is the largest of all the individual contraction

factors.

Collage Theorem. [41] Let X be a complete metric space. Suppose L is a non-empty,

compact subset of X and let ϵ > 0 be given. Choose an iterated function system (IFS)

{X;w1, w2, . . . , wN} with contraction factor 0 ≤ s < 1. Suppose

h

(︄
L,

N⋃︂
n=1

wn(L)

)︄
≤ ε

where h(·, ·) is the Hausdor� metric between sets. Then

h(L,A) ≤ ε

1− s
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where A is the attractor of the IFS. Equivalently,

h(L,A) ≤ (1− s)−1h
(︁
L,∪Nn=1wn(L)

)︁
for all non-empty, compact subsets L of X.

Informally, if L is close to being stabilized by the IFS, then L is also close to being the

attractor of the IFS.

Implementation of fractal image compression

We follow [42] to implement fractal image compression, we take a digital binary image

A = [0, 1]2
N×2N as an example.

Step 1 Image partition

Divide the image A into non-overlapping range blocks {Ri, i = 1, 2, . . . , n} of size

2R×2R, let A =
⋃︁N
i=1Ri, and Ri

⋂︁
Rj = ∅, i ̸= j. Then divide A into larger domain

blocks which are not necessarily disjoint, denoted byD, with size 2D×2D (D > R).

Step 2 Search for the best match

For any range block Ri, seek a domain block Dj, so that Dj approximates Ri

through some a�ne transformation ωi, that is Ri ≈ ωi(Dj). The sizes of Dj and

Ri are much smaller than the entire image, therefore, as long as the sub-blocks are

su�ciently small, local self-similarity always exists.

Step 3 Compression

We generate all possible a�ne transformations of domain blocks. Then we try

all the generated domain blocks, optimize their contrast and the brightness to

�nd a best match for each range block.Record the parameters that determine the

transformation ω.
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Step 4 Decompression

The decoding process start from a completely random image to which we apply

the contraction several times. After a limited number of iterations, the image will

stabilize, it will approach the attractor of the IFS, the attractor is edited as the

decoded image of the original image.

3.2.2 The algorithm of the hybrid method

The fractal image compression method can o�er a very nice compression ratio while it

will consume a relatively longer time to encode. One of the main purposes of this hybrid

method [43] is to reduce the encoding time.

First, we discuss why we choose fractal image compression to combine with DCT instead

of other transform methods. As we know, the common point of DCT and fractal image

compression is that they both implement within blocks. What's more, DCT has a very

good capacity of compacting the sub-image, and it can concentrate the energy of the

sub-image into the left corner. These features of DCT o�er good condition for fractal

image compression to implement based on it. Next, we develop the algorithm of the

combination of DCT and fractal image compression.

Step 1 Partition the image

Partition the image into range blocks of size X×X, then the corresponding domain

blocks are of size 2X × 2X. The position of corresponding domain block is �xed

that it expands to 2X × 2X with its range block as the center, as shown in Fig.3.7.

Get mean of the domain blocks by 4 neighbor pixels, then the processed domain

blocks have the same size as the range blocks.

Step 2 Perform DCT on each block
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Figure 3.7: Position of range block and corresponding domain block

By doing this step, we transform the sub-images from space domain to frequency

domain, and we get FR(u, v) and FD(u, v). Then save the DC coe�cient of each

range block which can be denoted as FR(1, 1).

Step 3 Search the best value for scaling parameter

Before searching, each range block corresponds to its own domain block and we

suppose that FR(1, 1) = FD(1, 1) = 0. While searching, we should save the scaling

parameter only if the error between the range block and the mapped domain block

is less than a prede�ned threshold. Consider Ei, i = 1, 2, 3 as the error threshold

for each level, and in this step we compare the error with the error threshold for

level one E1.

Here is the formulas for calculating the error:

E(R,D) =
n∑︂
i=1

(sdi + o− ri)
2

o = R− sD

s is the scaling parameter; R and D are mean of the range block and mean of

the domain block; ri and di are the pixel value of the range block and that of the

domain block respectively.

Step 4 Perform quad-tree algorithm on the remaining range blocks

For the remaining range blocks, partition them for the second time, then they have
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the size of X
2
× X

2
, and their corresponding domain blocks which share the same

centers with the range blocks are of size X ×X. Save FR(1, 1), search like in Step

3, and save the scaling parameter s if the error is less than E2. For the remaining

range blocks, repeat the steps. If this error is smaller than corresponding prede�ned

value Ei or the algorithm is in level 4 of quad-tree scheme, we store the contrast

scaling, s and brightness, else split the range block into four equal size blocks and

continue search process for them.

During the encoding process, changing the prede�ned thresholds Ei of each level leads to

di�erent PSNR and compression ratio. Here the range block of succeeding step have size

of 16× 16 , 8× 8 , 4× 4 and 2× 2 respectively. The obvious advantage of this method

compared with fractal image compression is that, for any range block, the domain block

is �xed and they share the same center, so that it can reduce the encoding time e�ciently

without processing the real searching.
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CHAPTER 4

Experimental Results and Analysis

In this chapter, we conduct several experiments to evaluate the performance of the hybrid

algorithms proposed in chapter 3. The proposed algorithms are applied on several images

and the obtained results are compared to results of some well known algorithms on the

same sequence of images.

The experiments are performed on a CPU @ 1.10GHz×2 with an Intel(R) Celeron(R)

processor. All the algorithms discussed here are implemented in Matlab which has several

toolkit (e.g. "dct2", "dwt2", "jp2") dedicated to image compression. For comparison, we

will use the same gray-scale image "Lena" with size 512× 512× 8− bit. The experiment

consists of implementing the comparison methods (e.g. DCT, DWT, the technique JPEG

based on DCT transform, the technique JPEG 2000 based on DWT and also the hybrid

method), and use the comparison standards proposed in the �rst chapter (e.g. peak-

signal-to-noise ratio (PSNR) and compression ratio (CR)) to measure the reconstructed

images by di�erent methods. Finally, we analyse the results of the experiments and draw

the necessary conclusions.
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4.1 Implementation of the compression methods

4.1.1 Implementation of the DCT

Explanation of the algorithm of DCT

First, we split the original image into small blocks of size 8×8. Then we implement DCT

on each block. Here we take the small block in the upper right corner of the image as an

example. As we can see from Tab.4.2, the low frequency coe�cients are concentrated

48 48 53 49 53 57 51 53
47 47 55 53 50 55 52 51
48 48 57 52 54 54 50 57
54 54 48 47 53 53 50 55
46 46 50 50 52 49 50 51
43 43 50 47 54 47 50 49
44 44 55 51 54 47 50 51
44 44 55 66 54 47 50 51

Table 4.1: Original block

405 -10.8267 -11.3968 -7.0106 2.75 -0.13334 5.8031 4.9489
6.5547 -0.58421 7.1679 6.3594 -6.1965 -4.2586 5.4765 -2.8904
2.6528 -0.84955 -8.5962 -4.9226 0.20776 5.8556 1.3964 -1.7081
-8.7151 -2.5673 1.118 4.3468 -3.0874 -1.8359 -0.50688 4.2166
2.75 1.9393 1.64 2.3399 2.5 -0.28145 -2.5735 -4.4226
1.8866 0.58672 5.4275 3.0961 -0.40922 -5.6574 1.0281 2.2967
0.52478 -1.7393 -2.1036 -1.1607 1.8081 -0.83721 0.59619 0.71926
0.63035 -1.4584 -2.3707 -3.6053 0.16937 0.5561 2.3427 1.3949

Table 4.2: Block after implementing DCT

in the upper left corner and most high frequency coe�cients are very close to zero so

that they have the potential of requiring fewer bits to code as we will implement the

quantization with Tab.2.1 in Chapter 2. Here we can multiply the quantization table
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with a certain scaling factor (SF) to control quality of the image

Q(u, v) = round

[︃
F (u, v)

SF × S(u, v)

]︃
, (4.1)

where Q(u, v) means quantized coe�cient magnitude, F (u, v) means the DCT coe�cient,

S(u, v) is an element of the quantization table, and SF is the scaling factor. From the

25 -1 -1 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 -1 0 0 0 0 0
-1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 4.3: Block after quantization
when SF = 1

13 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 4.4: Block after quantization
when SF = 2

blocks after quantization, the representation of the coe�cients should require fewer bits

to code than the original ones. As the value of SF becomes greater, the proportion of 0

becomes bigger.

For decoding, we need to process the inverse quantization and then the inverse DCT on

the coe�cients to get the reconstructed blocks.

From the reconstructed blocks and their corresponding images with scaled colors in

Fig.4.1, we can see that the change of the coe�cients is more gentle, and the larger

the SF is, the smoother the change is, which also means that the quality of the image is

lower.

Experiment using DCT on the image

To be more clear, we process the experiment with images in Fig. 4.2. It is very obvious

by human perception that the reconstructed image becomes blurrier. This also can be
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46 48 50 52 52 52 51 50
50 50 51 52 53 53 54 54
53 53 52 52 52 54 56 57
52 51 50 49 50 52 54 56
47 47 47 47 47 49 50 51
42 44 46 48 49 48 47 46
40 44 49 53 54 51 47 44
40 45 52 58 59 54 48 44

Table 4.5: Reconstructed block after
inverse quantization and IDCT when
SF = 1

49 51 53 55 55 53 51 49
49 51 53 55 55 53 51 49
49 51 53 55 55 53 51 49
49 51 53 55 55 53 51 49
49 51 53 55 55 53 51 49
49 51 53 55 55 53 51 49
49 51 53 55 55 53 51 49
49 51 53 55 55 53 51 49

Table 4.6: Reconstructed block after
inverse quantization and IDCT when
SF = 2

1 2 3 4 5 6 7 8
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(c)

Figure 4.1: Images with scaled colors corresponding to the related blocks, (a) Original
block, (b) Reconstructed block when SF = 1, (c) Reconstructed block when SF = 2
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shown by the measurement parameter PSNR becoming smaller when SF value becomes

greater. When SF reaches 10, the block e�ect of DCT algorithm is shown very obviously.

4.1.2 Implementation of the DWT

Explanation of the algorithm of DWT

First, we use the function 'wavedec2' to decompose the image into high frequency parts

and low frequency part. In order to highlight the result, we use the block of size 16× 16

pixels in the upper right corner of the original image instead of the original image itself.

Then, we perform a level 1 wavelet decomposition of the block using the Haar wavelet.

To show the decomposition parts of the block, we extract the level 1 approximation and

50 50 58 56 54 47 65 67 78 85 87 88 83 100 117 121
58 58 59 56 59 58 61 63 73 78 82 81 82 87 110 117
50 50 67 58 63 63 64 61 69 77 77 81 76 91 110 118
53 53 58 58 68 65 59 60 66 62 69 73 74 84 103 116
52 52 56 59 58 58 52 61 66 60 61 71 68 72 102 117
50 50 52 56 54 53 50 55 69 63 66 67 64 72 96 121
48 48 56 63 61 51 50 55 60 63 62 62 74 74 104 123
49 49 54 55 56 49 48 52 55 60 59 62 61 72 105 124
48 48 53 49 53 57 51 53 60 67 57 59 58 74 104 130
47 47 55 53 50 55 52 51 57 61 56 55 60 71 106 128
48 48 57 52 54 54 50 57 63 51 55 58 64 70 104 129
54 54 48 47 53 53 50 55 57 61 51 55 56 64 96 120
46 46 50 50 52 49 50 51 59 55 58 54 55 68 87 119
43 43 50 47 54 47 50 49 60 53 45 55 56 64 82 112
44 44 55 51 54 47 50 51 59 51 47 51 53 53 79 109
44 44 55 66 54 47 50 51 59 51 47 51 53 53 79 109

Table 4.7: Original block of size 16× 16 pixels

detail coe�cients, then rescale the coe�cients based on their absolute values. Fig.4.4

shows very clearly that the respective characters of approximation coe�cients and detail
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(a) Original image

(b) SF = 1, PSNR = 35.78dB (c) SF = 2, PSNR = 33.68dB

(d) SF = 5, PSNR = 30.39dB (e) SF = 10, PSNR = 27.33dB

Figure 4.2: Implementing DCT on the original image with di�erent SF value
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35 47 37 70 121 142 154 253
27 57 73 60 86 109 131 237
25 42 42 37 72 78 88 228
16 46 36 26 55 61 92 245
13 30 35 28 61 45 76 255
25 25 34 32 49 38 69 239
2 19 23 21 45 32 59 196
1 45 23 23 39 18 32 175

Table 4.8: Approximation Coef. of
Level 1

227 15 227 114 171 171 199 156
86 128 100 86 255 227 128 128
57 100 128 114 86 15 57 29
29 142 100 71 114 43 213 29
29 85 71 15 128 71 15 1
171 199 29 29 57 100 199 241
86 43 1 29 15 171 43 171
1 213 1 1 1 1 1 1

Table 4.9: Horizontal Detail Coef. of
Level 1

1 21 33 17 50 1 91 46
1 38 13 9 17 33 103 87
1 29 5 58 50 46 50 165
1 33 70 38 33 13 46 157
1 25 38 5 46 5 112 198
1 25 1 50 33 29 58 202
1 13 42 1 46 25 87 255
1 29 58 9 66 33 1 247

Table 4.10: Vertical Detail Coef. of
Level 1

1 16 96 1 32 32 192 48
1 144 48 64 192 1 80 80
1 16 16 64 1 144 64 160
1 96 48 16 32 48 176 1
1 32 16 48 48 48 80 64
1 64 1 32 255 16 32 16
1 48 64 32 48 224 80 32
1 240 1 1 1 1 1 1

Table 4.11: Diagonal Detail Coef. of
Level 1

coe�cients, and the size of the original block is two times of each of the decomposition

part of level 1. Moreover, the image of the approximation coe�cients is smoother as it

contains less detail coe�cients comparing to the image with scaled colors of the original

block in Tab.4.3.

If we want to get the decomposition coe�cients of level 2, we need to perform wavelet

decomposition on the approximation coe�cients of level 1, but we do not perform that

here.

Now we reconstruct the image based on the decomposition coe�cients. The reconstructed

image is exactly the same as the original one as we don't perform the quantization step,

so there is no information lost.
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Figure 4.3: Corresponding image with scaled colors of the original block

Experiment using DWT on the image

In this experiment, we perform a level 2 wavelet decomposition of the image using the

Haar wavelet. We use 'wcodemat' (a toolkit of Matlab) to rescale the coe�cients based

on their absolute values to make the images more visible. As we can see from Fig.4.5, the

approximation coe�cients become fewer and fewer as the decomposition level becomes

greater and greater, so that DWT can o�er multi-resolution images.

4.1.3 Implementation of the JPEG

Explanation of the algorithm of JPEG

As we discussed in Chapter 2, JPEG is a lossy image compression method based on DCT.

After DCT, it performs quantization, and entropy coding which is Hu�man Coding to

get the compressed data. In the decompression step, we just decode the compressed data

to get the reconstructed image. To measure the e�ect of JPEG, we use the parameters

PSNR and CR.

As before, to be more speci�c, we use the upper right corner block of size 8 × 8 in the
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Figure 4.4: Corresponding images with scaled colors of level 1 decomposition coe�cients

original image "Lena" to explain the algorithm step by step. As the block is represented

in Tab.4.1, we do not represent it here.

First, we substract 128 from every pixel value in the block, the result is shown in Tab.4.12.

Then, we apply DCT to the current block (Tab.4.13) and perform quantization by

dividing the current block by the quantization table shown as Tab.2.1 element by elment

(we can also divide by SF times the quantization table as Eq.(4.1) shows). It's this

quantization step that makes JPEG a lossy compression method.

With the matrix in Tab.4.14, we can denote it by the Zigzag order we mentioned in

Chapter 2 Tab.2.1. After the Zigzag step, the coe�cients are denoted in one row, then we
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(a) (b) (c)

Figure 4.5: DWT decomposition using Haar wavelet on image "Lena", (a) Original image,
(b) Level 1 DWT decomposition, (c) Level 2 DWT decomposition

-80 -80 -75 -79 -75 -71 -77 -75
-81 -81 -73 -75 -78 -73 -76 -77
-80 -80 -71 -76 -74 -74 -78 -71
-74 -74 -80 -81 -75 -75 -78 -73
-82 -82 -78 -78 -76 -79 -78 -77
-85 -85 -78 -81 -74 -81 -78 -79
-84 -84 -73 -77 -74 -81 -78 -77
-84 -84 -73 -62 -74 -81 -78 -77

Table 4.12: After every pixel subtracting 128

can perform Hu�man coding, a lossless compression method, to compress the coe�cients.

The last step of encoding is to save the result of Hu�man coding as a �le which is the

compression data.

The process of decoding just performs the encoding process in reverse order which

is Hu�man decoding, inverse Zigzag, inverse quantization (Tab.4.15), inverse DCT

(Tab.4.16) and adding back 128 for each pixel, thus we can �nally get the reconstructed

block (Tab.4.17). As the quantization process which makes JPEG a lossy compression

method, the PSNR is 37.52 dB.
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-619 -10.8267 -11.3968 -7.0106 2.75 -0.1333 5.8031 4.9489
6.5547 -0.5842 7.1679 6.3594 -6.1965 -4.2586 5.4765 -2.8904
2.6528 -0.8496 -8.5962 -4.9226 0.2078 5.8556 1.3964 -1.7081
-8.7151 -2.5673 1.118 4.3468 -3.0874 -1.8359 -0.5069 4.2166
2.75 1.9393 1.64 2.3399 2.5 -0.2814 -2.5735 -4.4226
1.8866 0.5867 5.4275 3.0961 -0.4092 -5.6574 1.0281 2.2967
0.5248 -1.7393 -2.1036 -1.1607 1.8081 -0.8372 0.5962 0.7193
0.6303 -1.4584 -2.3707 -3.6053 0.1694 0.5561 2.3427 1.3949

Table 4.13: After applying DCT on the shifted block

-39 -1 -1 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 -1 0 0 0 0 0
-1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 4.14: After quantization (SF = 1)

Experiment using JPEG on the image

After performing the JPEG code on the image in Matlab, the following results are explicit

in Tab.4.17. By switching the value of SF, we can get images with di�erent CR and

PSNR. The result of the decompressed images are exactly the same with the ones in

Fig.4.2. But with DCT, we didn't perform the entropy coding on the processed data, so

there is no compression. For JPEG, we perform Hu�man coding to compress the data

and we get an array which is the compressed data, so there is parameter CR to measure

the degree of compression, and it's shown in Tab.4.18. To be more speci�c, we use the

bytes of the original image dividing by the bytes of the compressed data obtaining in

the encoding process to get CR. From Tab.4.18, we see that when SF increases, CR

increases and PSNR decreases, that means we lose the image quality when we want to
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-624 -11 -10 0 0 0 0 0
12 0 14 0 0 0 0 0
0 0 -16 0 0 0 0 0
-14 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 4.15: After inverse quantization

-82 -80 -78 -76 -76 -76 -77 -78
-78 -78 -77 -76 -75 -75 -74 -74
-75 -75 -76 -76 -76 -74 -72 -71
-76 -77 -78 -79 -78 -76 -74 -72
-81 -81 -81 -81 -81 -79 -78 -77
-86 -84 -82 -80 -79 -80 -81 -82
-88 -84 -79 -75 -74 -77 -81 -84
-88 -83 -76 -70 -69 -74 -80 -84

Table 4.16: After inverse DCT

46 48 50 52 52 52 51 50
50 50 51 52 53 53 54 54
53 53 52 52 52 54 56 57
52 51 50 49 50 52 54 56
47 47 47 47 47 49 50 51
42 44 46 48 49 48 47 46
40 44 49 53 54 51 47 44
40 45 52 58 59 54 48 44

Table 4.17: Reconstructed block

store or transmit the image with less compressed data. From the result, we see that JPEG

SF PSNR CR
1 35.78 5.61
2 33.68 6.13
5 30.39 6.64
10 27.33 6.89

Table 4.18: The PSNR and CR results of JPEG when switching the value of SF

provides good image compression quality when the compression ratio is high. However,

when the compression ratio is very close to 7, the compressed image shows an obvious

block e�ect, which is mainly caused by the block DCT.
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4.1.4 Implementation of the JPEG 2000

Explanation of the algorithm of JPEG 2000

Experiment using JPEG 2000 on the image

Unlike JPEG, JPEG 2000 use multi-analysis coding method based on wavelet transform

instead of blocking coding method based on DCT.

To perform the compression with JPEG 2000, we just use the function given directly

by Matlab toolbox "j2k". By setting di�erent compression ratio, we get images with

widely di�erent quality. CR is calculated by the size in bytes of the original image

divided by that of the j2k �le. The results are shown in Fig.4.6. By the plots, we

can see that for the condition of low and medium quality, JPEG 2000 can provide an

extremely high compression ratio with relatively good quality of image; for the high

quality, JPEG has a little bit higher compression ratio, while JPEG 2000 shows a higher

PSNR initially. Through the trend of the curves, we can deserve that JPEG 2000 provides

a �ner distinction for low and medium quality. Generally, it is not di�cult to see that

JPEG 2000 is more advanced than JPEG for image compression in spite of its more

complicated process.

4.1.5 Implementation of the the hybrid method

Explanation of the algorithm of the hybrid method

To show the process of performing the hybrid method, we use the block of size 16 × 16

pixels located in the upper right corner of the original image in Tab.4.3.

First, perform DWT with Haar wavelet on the original block, we can get four

decomposition sub-bands of level 1 which are LL, HL, LH and HH. L stands for low

88



(a) Original image

(b) PSNR = 39.16dB (c) PSNR = 31.82dB

(d) PSNR = 29.12dB (e) PSNR = 26.46dB

Figure 4.6: Implementing JPEG 2000 on the original image with di�erent CR, (b) CR =
10, (c) CR = 50, (d) CR = 100, (e) CR = 200
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frequency, H stands for high frequency, and LL means approximation coe�cients, HL

means horizontal detail coe�cients, LH means vertical detail coe�cients and HH means

diagonal detail coe�cients, each of them are of size 8×8 pixels. Divide all the coe�cients

in LL by 2 shown in Tab.4.19, and regard all detail coe�cients as zero. Perform DWT

54 57 55 64 79 85 88 116
52 60 65 61 69 75 81 112
51 56 56 55 65 66 69 109
49 57 54 51 60 61 70 114
48 53 54 52 61 57 66 117
51 51 54 53 58 55 64 112
45 49 51 50 57 53 61 100
44 57 51 51 55 49 53 94

Table 4.19: Divide all the coe�cients in LL by 2

again on the new sub-band LL to get the decomposition sub-bands of level 2, LL2,

HL2, LH2 and HH2, each of them are of size 4 × 4. Then divide all the coe�cients in

LL2 by 2, and perform quantization on the detail coe�cients by dividing the product

of the maximum coe�cient in LH2 and SF (we set SF = 0.01), the results are shown

in Tab.4.21. Again, perform DWT on the new sub-band LL2 to get the decomposition

sub-bands of level 3, LL3, HL3, LH3 and HH3, each of them are of size 8×8. Then divide

all the coe�cients in LL3 by 2, and perform quantization on the detail coe�cients by

dividing the product of the maximum coe�cient in LH3 and SF . For the new sub-band

LL3, perform one dimensional DCT, then quantization and �nally Arithmetic Coding on

it. The next step is to compress each detail sub-band of level 2 and level 3 by converting

them to arrays.

The �nal step of encoding process is to code all the information and store all the data in

a �le. Let the bytes of the original block divide by the bytes of this �le, we can get CR.

For decoding, we �rst read the stored �le and then perform the inverse steps in encoding.
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56 61 77 99
53 54 63 91
51 53 58 90
49 51 54 77

(a)

-10 -70 200 110
10 60 100 -60
-10 -10 50 70
-70 -10 60 140

(b)

-110 -50 -120 -590
-130 40 -20 -840
-50 30 70 -990
-170 10 100 -800

(c)

50 -130 0 30
30 -20 0 40
-50 10 10 -30
90 10 -20 20

(d)

Table 4.20: Process of decomposition level 2 (a) Divide all coe�cients in LL2 by 2, (b)
HL2 after quantization, (c) LH2 after quantization, (d) HH2 after quantization

56 83
51 70

(a)

-250 -550
-100 -425

(b)

150 1250
100 1375

(c)

100 -150
0 225

(d)

Table 4.21: Process of decomposition level 3 (a) Divide all coe�cients in LL3 by 2, (b)
HL3 after quantization, (c) LH3 after quantization, (d) HH3 after quantization

What is needed to remark here is that during the quantization process, we can still switch

SF to control PSNR and CR of the image.

Experiment using the hybrid method on the image

During the experiment, we can change the value of SF and the type of wavelets to get

di�erent results. In the �nal process of encoding, we store the processed data; and load

the data in the beginning of decoding. The results are shown in Fig.4.8. From the results,

we can see that when SF reaches 0.2, there are block artifacts due to the implementation

of DCT in the reconstructed image; and when SF reaches 0.5, the block artifacts become

very obvious.
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Figure 4.7: Implementing the hybrid method on the original block, (a) Original block,
(b) Reconstructed block

4.1.6 Implementation of the Fractal image compression

As we discussed in Chapter 3, Fractal compression is a lossy image compression method

based on fractals. By changing the size of range blocks or the space between domain

blocks and bits for quantizing brightness, we can get multi-resolution images, shown in

Fig.4.9.

Variable parameters Results
Size of Range
Blocks

Space between
Domain Blocks

Bits for
quantizing
brightness

PSNR CR Encoding
time

b 4 2 8 30.46 14.21 3.59
c 4 2 4 25.83 16.69 4.31
d 8 2 8 25.53 56.71 3.81
e 8 2 4 23.41 66.53 2.30

Table 4.22: Related data for Fig.4.9

From Tab.4.22, we can see that when the other parameters are �xed, PSNR decreases as
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the bits for quantizing brightness decreases, or as the size of range blocks increase. We

can achieve a relatively high CR with fractal compression method. If we change the size

of range blocks to 16, we can achieve a very high CR, but we lose the clarity of the image.

In general, for fractal compression, we can only choose from the size of range blocks 4 or

8 to get a quali�ed image. Moreover, we will need a extremely long encoding time when

process tons of images.

4.1.7 Implementation of the the hybrid method of fractal and

DCT

As we discussed in Chapter 3, the hybrid method of fractal and DCT doesn't require

to search for the responsive range blocks of the transformed domain blocks, so that the

encoding time is reduced. For fractal compression, we change the variable parameters

to get multi-resolution images; for this hybrid method, we can change the error of range

block and transformed domain block to access di�erent quality of fractal coded image.

First, we de�ne the size of range block 16 and domain block 32. Then average 4 neighbour

pixels of domain blocks so that domain blocks have the same size with the range blocks.

We perform DCT and quantization to all blocks respectively. We �nd best match in

terms of contrast, if the distance between range and domain block is more than error,

then divide the range block again, all block (with size of 2×2) in stage 4 should be coded

regardless distance between range and domain block.

We can see from Fig.4.10 and the related Tab.4.23 that the encoding time of the hybrid

method decreases a lot and CR increases with the similar PSNR comparing to fractal

compression. Now we know that the hybrid method of fractal and DCT can achieve a

better result than fractal compression for the image Lena. How about other images? We

will do the perform evaluation of all methods mentioned with multiple kinds of images
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Error PSNR CR Encoding time
b 7 31.23 22.96 0.0419
c 10 30.42 25.06 0.031
d 15 28.78 31.32 0.03
e 20 26.91 45.70 0.02

Table 4.23: Related data for Fig.4.10

to get a result more reliable.

4.2 Performance evaluation

In this section, di�erent methods of image compression will be evaluated and compared

using certain parameters. Fifteen di�erent gray level images of size 512×512 are picked

up from [38] to be compressed and then reconstructed using JPEG, JPEG 2000, fractal

image compression, the hybrid method of DCT and DWT, and the hybrid method of

fractal and DCT.

To get a more reliable result, we choose the �fteen gray level images of di�erent types

which are shown in Tab.4.24, and these images used for experiments are shown in

Appendix.

Image type
Type 1 Faces
Type 2 Nature and architectures
Type 3 Objects

Table 4.24: Types of images used for experiments

To compare the performance, the values of PSNR are observed at a constant CR. Fig.4.11

shows the PSNR values for the original tested images at a constant CR around 6 by
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performing JPEG, JPEG 2000, the hybrid method of DCT and DWT, fractal image

compression, and the hybrid method of fractal and DCT.

During the experiment, we notice that CR of the hybrid method of fractal and DCT

is mostly more than 6, so we can't compare it with the other method with the same

CR. While we still want to compare the hybrid method of fractal and DCT with other

methods, we show the related data in Fig.4.11 when error is �xed to 7 and the related

CR is shown in Fig.4.12. We can see that for the hybrid method of fractal and DCT,

even the error is �xed, the CR is various for di�erent images, furthermore, the quality of

decompressed image will not change signi�cantly even we assign a lower value of error.

Also, we notice that Fractal image compression can't reach the CR of value 6 for most

tested images, and it has a big limitation when come across relatively low CR or relatively

high PSNR, so we can't plot that out in this case. Generally, by observing Fig.4.11, PSNR

changes in the similar trend for any tested image applying all the methods, while JPEG

2000 can achieve the highest PSNR and the other three methods reach approximative

PSNR.

Another case is that we can �x the PSNR and observe the value of CR. Here we �x the

value of PSNR to be around 25dB and the result is shown in Fig.4.13. From the plot,

we can see that JPEG 2000 can achieve the best CR generally except for the image 9,

JPEG has the lowest and stable CR around 6 to 7, Fractal image compression has the

stable CR around 22 to 23, and the two hybrid methods have approximate trend. During

this experiment, we notice that for some images with lots of details, applying the hybrid

method of fractal and DCT can't achieve a high PSNR even if we change the error to

be very small; at the same time, for some images without lots of details (for example,

the faces images), applying the hybrid method of fractal and DCT can always achieve a

PSNR more than 25dB even we change the error to be very big. Moreover, during the

experiment, we can �nd that by applying the hybrid method of fractal and DCT, the
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PSNR can't really represent the quality of some images (for example, the decompressed

image zelda, even the PSNR is 27dB, the quality of the image is very low).

At the same time, we �nd out that for the hybrid method of DWT and DCT, there is a

limitation for PSNR: as for the images with lots of details, the highest PSNR is limited

to 23dB; for the images without lots of details, the lowest PSNR is limited to 26dB or

28dB for instance.
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(a) Original image

(b) PSNR = 31.39dB (c) PSNR = 30.14dB

(d) PSNR = 28.67dB (e) PSNR = 25.61dB

Figure 4.8: Implementing the hybrid method of DWT and DCT on the original image
with di�erent SF value, (a) Original image, (b) SF = 0.01, CR = 6.82, (c) SF =
0.1, CR = 18.88, (d) SF = 0.2, CR = 27.26, (e) SF = 0.5, CR = 42.84
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(a) Original image

(b) PSNR = 30.46dB (c) PSNR = 25.83dB

(d) PSNR = 25.53dB (e) PSNR = 23.41dB

Figure 4.9: Implementing fractal compression on the original image with di�erent values
of parameters, (a) Original image, (b) CR = 14.21, (c) CR = 16.69, (d) CR = 56.71, (e)
CR = 66.53
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(a) Original image

(b) PSNR = 31.23dB (c) PSNR = 30.42dB

(d) PSNR = 28.78dB (e) PSNR = 26.91dB

Figure 4.10: Implementing the hybrid method of fractal and DCT on the original image
with di�erent values of error, (a) Original image, (b) CR = 22.96, (c) CR = 25.06, (d)
CR = 31.32, (e) CR = 45.70
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Figure 4.11: PSNR of the test images when CR is around 6, except the hybrid method
of fractal and DCT
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Figure 4.12: CR of the images using the hybrid method fractal and DCT in Fig.4.11
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Figure 4.13: CR of the images with PSNR �xed to 25dB
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CONCLUSION

In Chapter 4, we carried out experiments of image compression using several methods,

which are JPEG, JPEG 2000, the hybrid of DCT and DWT, fractal image compression

and the hybrid of fractal and DCT. Fractal image compression can provide a good

compression ratio, while it requires to spend much more time and has some limitation

at a relatively high PSNR. The hybrid method of fractal and DCT reduces the encoding

time successfully and provides good compression ratio and PSNR. The hybrid method of

DCT and DWT has similar PSNR to JPEG when CR is �xed and provides higher CR

when PSNR is �xed than JPEG, while the expense of time is also acceptable. Moreover,

both hybrid methods can provide better CR at the �xed PSNR 25dB than JPEG or

fractal image compression in general.

Also, we can see the big potential of the basic transforms like DCT, DWT and fractal

image compression, as they can combine with other compression methods and are easy to

implement. In addition, we should also consider using proper coding methods depending

on the characteristics of di�erent transforms. The software we use and how we code

in details also in�uence the result. Taking advantage of a better algorithm or making

improvements in coding can surely provide more advanced techniques in the domain of

image compression.

At last, the results presented in this thesis can provide a direction for the development
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of image compression. Some future work can be considered:

1. The hybrid algorithms can be further improved to reduce the encoding and decoding

time.

2. The two hybrid methods have the limitation of CR and PSNR for particular images.

The future work can try to break the limitation.

3. Figure out how to widely use hybrid methods and JPEG2000 in practice.
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