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Sensor Network Support for Real-time Indoor
Localization of Four-rotor Flying Robots

Juergen Eckert, Falko Dressler and Reinhard German
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Abstract—We present a sensor network based indoor localiza-
tion system that uses ultrasonic distance measurements for real-
time localization of flying four-rotor robots. Such quadrocopters
are on-board sensor controlled systems. They are very sensitive to
lateral drifts, which cannot be compensated by mounted sensors.
In our work, we provide a framework for time-of-flight based
localization systems relying on ultrasonic sensors. It is optimized
for use in sensor nodes with low computational power and limited
memory. Nevertheless, it offers scalability and high accuracy even
with erroneous measurements. We implemented the system in our
lab using ultrasound sensor that are light enough to be carried
around by the flying object. Using this real-time localization
system, a position controller can be implemented to maintain
a given position or course.

I. INTRODUCTION

Flying four-rotor robots are similar to helicopters. In con-
trast to mono-rotor systems, these so-called quadrocopters
usually provide more sensors and more robust controllers. A
combination of gyrometers and acceleration sensors is used
to determine its current state. Based on these measurements,
a digital controller continuously adjusts the orientation of
the platform. In such a way devices can easily be piloted
by other digital systems such as a sensor network. By only
controlling the pitch and the roll angles, the current position
cannot be obtained. The quadrocopter always hovers on top
of an air cushion. Thus, any minimal measurement error or
any airflow may cause a drift to a random direction. The
system remains highly in-stable w.r.t. position maintenance.
Angle corrections must be permanently applied in addition to
the board instruments to keep the flying robot in position.

Figure 1 shows the scenario. A quadrocopter is relying
on an external positioning system to continuously update its
system parameters. In general, there are many cases in which
applications benefit from getting more accurate positioning
information. A discussion of preferences for systems using
active or passive mobile devices can be found in [1]. If privacy
is an issue, passive localization systems should be preferred.
For example, the infrastructure of the Cricket system [2] has
no knowledge about the current position of any mobile device.
However, this system architecture also has several disadvan-
tages. The accuracy suffers if the mobile device moves during
a series of (at least three) measurements. In some cases, e.g.
using ultrasound, this is a strong limitation because a set of
measurements can take up to several hundred milliseconds.

Therefore, we investigated appropriate real-time localization

Fig. 1. Four-rotor flying robot hovers over reference points

techniques and came up with a new solution that perfectly
meets the needs in this application domain. We implemented
a system based on ultrasonic distance measurements that
is lightweight and can be carried by our quardrocopter. In
summary, we not only provide a framework for our chosen
scenario but also for other cases of real-time indoor localiza-
tion. More detailed information can be found in [3].

II. MATHEMATICAL PROCEDURE

This section covers the procedure of computing position
information out of gathered distance measurements. We rely
on ultrasonic distance estimation for time-of-flight (TOF)
based lateration.

A. Preliminarities

We assume to start with a set of n tuples Ti, each consisting
of a distance di to a reference point with a known position
and the coordinates of this point −→xi :

Ti = (di,
−→xi) : −→xi = (xi, yi, zi)T , i ∈ [1, n] (1)

The trilateration problem can be solved for the unknown
position −→x = (x, y, z)T in different ways. Theoretically, the
problem can be solved by a closed mathematical expression
as shown in Equation 2. However, in practice, it is impos-
sible to solve those n equations at once due to error-prone
measurements.

(xi − x)2 + (yi − y)2 + (zi − z)2 = d2
i ; i ∈ [1, n] (2)

Several iterative optimization algorithms exist for the prob-
lem. For example, Foy [4] uses a Taylor-series estimation.
At least for 2-dimensional problems, the method converges
to a good solution within a few iterations. Another common
approach is the use of an extended Kalman filter [5]. Abroy
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and co-workers [6] present such a non-iterative solution,
however, with tremendous restrictions in terms of scalabil-
ity and variability. Exactly three reference points, precisely
oriented to each other are required: the coordinates have to
be −→x1 = (0, 0, 0)T , −→x2 = (x2, 0, 0)T , and −→x3 = (x3, y3, 0)T .
In order to apply this system to a general case, a coordinate
transformation (offset and rotation) would be needed. Because
this requires non-negligible computational effort, this method
cannot be applied in many scenarios.

B. Position calculation

One common feature of all indoor location systems attracted
our attention. Given that all reference points are mounted to
the ceiling, the wall, or the floor, they all have one coordinate
in common. Let us denote this as the z coordinate. We exploit
this information for a closed position calculation.

First, a distribution of all tuples Ti into m subsets Sj to
pairs of three different points must be done. The precise subset
generation method will be explained later in Section II-C. For
the moment, we assume we have m subsets that fulfill the
condition that all z coordinates within a subset Sj are equal.
Furthermore, it must be defined a priori whether the object to
be localized is above the selected cj , i.e. z ≥ cj , or below,
i.e. z ≤ cj . Then, we can compute m possible coordinates
for the unknown object out of the m subsets. Using a set of
three single equations from (2) and taking the characteristics
of each subset Sj into account, we can form a linear equation
system:

A−→x =
−→
b : A ∈ R2×2,−→x ∈ R2,

−→
b ∈ R2 (3)

This 2-dimensional problem can be solved easily be ap-
plying Gaussian elimination. For the computation of the x
and y coordinates, only simple arithmetic operations are
needed such as addition, subtraction, and multiplication. Those
are very basic (and fast) operations, available on low cost
micro-controllers. The z coordinate can be generated in two
ways. The easiest way is simply to measure it, which is
straightforward using an ultrasound system. Alternatively, the
already computed values can be inserted in Equation 2, which,
however, requires a square root function for the used micro-
controller.

C. Subset generation

In theory, one subset Sj , which contains three tuples Ti,
would be sufficient for position estimation. However, taking
measurement errors into account, more subsets are required.

Casas and co-workers [7] investigated all kinds of ultrasonic
measurement errors. They came up with an average rate of
measurement failure of Pmf = 30 %. A position estimation
can only be successful if at least one correct subset Sj is
used for evaluation, where a correct subset corresponds to
one that contains only accurate measurements. Pm denotes
the probability that none of the chosen subsets is correct. The
required number of subsets can be calculated as follows [7]:

m =
log(Pm)

log(1− (1− Pmf )3)
(4)

Thus, for example, 11 subsets are required if we accept a
failure probability of Pm = 1 %. Furthermore, the authors
suggest that Monte Carlo techniques should be applied to
randomly pick m subsets. However, more information about
the subsets could help to improve the selection. In general,
subsets with geometric shapes that minimize the error rate
of the position calculation should be preferred (e.g., regular
or well-formed triangles). Thus, the basic idea is to generate
and, subsequently, to qualify a subset. Afterwards, it can be
placed in a sorted list. Finally, the first m elements in this list
are then used for the position calculations.

We decided to use a weighted combination of the average
measured distances and the covered ground of the three points
would be suitable. Both values are important for a well-formed
but (mostly) non-regular tetrahedron (3 reference points plus
the unknown point). The base area of the figure is a triangle.
Usually, this can not be computed very fast because square
root or trigonometric functions would be needed. Therefore,
we used the cross product −̂→n = −→a ×−→b (with −→a = −→x2 −−→x1

and
−→
b = −→x3 − −→x1). Its length directly corresponds to the

covered area. The base area is parallel to the x–y plane, so
the cross product only contains a z component. This length
can therefore be computed very fast.

D. Position estimation

Finally, the m possible positions (stored in X(k+ 1) : X ∈
R3×m) have to be merged to one position −→x (k+1). The trivial
approach would be the calculation the mean of all positions.
However, outliers would significantly influence the result.
Casas et al. [7] used an approach where a squared residual
vector between all measured and all theoretical distances for
each subset is computed. By taking the minimum median of
the individual elements the influence of the outliers vanishes.
Unfortunately, the computational effort for this method in-
creases with the number of reference points and, therefore,
is not very scalable.

We incorporated prior knowledge into the position estimator.
Casas method [7] provides localization without any state
information. However, already collected information could be
exploited to gain better localization results. Thus, we split the
estimation process into two steps in a similar way like an
extended Kalman filter. In the first step, we predict the current
position −→xp(k + 1) using a state vector:

−→xp(k + 1) = −→x (k) + ∆−→x (k, k − 1) · r · κ(r) (5)

r =
∆t(k + 1, k)
∆t(k, k − 1)

(6)

For this vector, in each step we store the position and the
localization time. The second step is slightly different from
the original design of the filter. We generate the new position−→x (k + 1) by selecting the nearest computed position to the
predicted position out of the set X(k + 1).

The more time has elapsed since the last computation in
relation to the last interval, the less reliable the prediction gets.
The correction function κ() in Equation 5 has been designed
for compensating this effect. By using the ratio between the
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Fig. 2. Position prediction

localization attempts, this mechanism can be automated. Fur-
thermore the absolute computation frequency is not relevant.
κ() is a function of r (Equation 6), which denotes the ratio of
two time intervals. κ() is a simple function that returns 1 for
values between 0 and 1. For greater values, the output slowly
decreases 0. Figure 2 illustrates the prediction vector and the
growing space of the position acceptance. As shown on the
left side, the prediction vector grows uninfluenced over time
if the ratio r is smaller than 1 and, therefore, κ() is 1. Thus,
κ() does not influence the prediction. The right side shows the
situation if the ratio r increases beyond 1. This means that the
last localization interval (i.e., the time between two accepted
positions) was shorter than the elapsed time since the last
position was accepted. Now, κ() is being decreased because
at this time a proper prediction based on the movement during
the last interval can not be guaranteed.

III. LOCALIZATION PERFORMANCE

Scalability is one of the biggest issues in the context of
sensor networks. In order to proof our localization algorithm
works even on resource constricted embedded systems, we
implemented the system and evaluated it in a lab scenario.
In particular, we used the SunSpot sensor node platform [8]
running JavaME as the host operating system. One of the key
issues is the creation of the subsets. For reasons explained
in Section II-C, we limited the number of subsets to 11.
Independent of the number of reference points, an upper
boundary for the classification can be given. The limitation of
subsets implicitly restricts the position vector calculation time
to an upper boundary, too. Thus, not every possible position
needs to be calculated: Only positions from subsets that meet
a certain threshold in the qualification are being considered.

Figure 3 shows the total computation time. The worst case
scenario (blue) is a combination of the techniques that are not
bounded in computational time. All subsets are computed and
the residual based position estimation [7] was applied to the
best 11 subsets. In the best case scenario (red), only techniques
with a bounded computational time are used. So an upper
boundary for the localization algorithm can be given indepen-
dent of the number of used reference points. This is important
to fulfill the real-time specification. The best case decentral
scenario (green) describes the absolute minimal computational
time consumption for the initiator of the localization, if subset
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Fig. 3. Total localization time

grouping and position vector calculations are distributed on
the entire sensor network. Unfortunately, the overhead of the
communication latency is far too big to benefit from it, at least
using our available hardware.

IV. TEST SYSTEM

Figure 1 shows the latest version of our ultrasonic measure-
ment system including the sensor nodes. Despite the classical
master-slave topology, we decided for a hybrid measurement
architecture. Whether a device is master (transmitter) or slave
(receiver) is completely hardware independent and can be
controlled on application level. The detection field of the
system is designed to be a hemisphere. Thus, the reference
points on the floor can not only detect the flying object but also
each other (this architecture is depicted in Figure 1). This way,
it is possible to span up the grid automatically by attaching the
reference points on top of mobile robots. Another advantage of
a flying active beacon, as mentioned before, is that by sensing
the TOF of its own active chirp the altitude of the object can be
computed without the help of the localization infrastructure.

For the measurements shown in Figure 4, we placed the
four-rotor robot at an arbitrary but fixed position over the
detection field (four reference points arranged in a square of
2 m of edge length). It can be seen that there are four centers of
gravity. Each subspace is the region for the computed position
of one of the four possible subsets. Within this space, the
maximum variance is about ±2 cm. The estimated position
is normally confined to one of those regions. But as soon
as the used subset is missing, the estimated point jumps to
another subspace. The temporary vanishing of a subset can
have two main reasons. First, one of the measurements was
wrong and, therefore, the position was too far away. Secondly,
the wireless communication may be disrupted. The generation
of the regions is based on systematic errors of the reference
points’ positions. In our tests, we ensured an accuracy of about
±3 cm. With increasing deployment accuracy of the reference
points, the resulting regions merge into a single one.

V. COMMUNICATION

For communication we used the on-board radio capabilities
of the SunSpot. It contains an IEEE 802.15.4 compatible phys-
ical interface (Chipcon CC2420) for wireless communication.
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Fig. 4. Localization accuracy: the quadrocopter is fixed in a position, the
measured x, y, z coordinates are plotted

Due to its low power specifications the emitted signal is not
very strong and therefore the range is limited as well.

After performing a measurement, the measured values are
distributed on the sensor network. These data have to be
transmitted back to the active beacon for location computation.
Our first attempt was to dispatch a request and to have all
sensor nodes with relevant data reply to this using the Aloha
technique [9] (using broadcast). But in our environment shown
above the probability of getting three or more measurements
responses were under 65 %. Relying on unicast packets is not
feasible, because if a packet can not be delivered, the whole
transmission unit can be blocked for more than 10 s. The
impact on the flying object of course would be dramatic. The
system would not be real-time capable any more. Therefore
we developed a custom agent user-level protocol based on
broadcasts. The initial frame is broadcasted by the active
beacon without any payload. One field of the frame must
contain an identifier. That allows the agent to de- and emerge
while hopping over the nodes and collecting the data. Three
things can happen, if a node receives an agent frame. If the
agent frame is already known, it is simply dropped. If it is new
to the system, a departure time is generated depending on its
options. Additionally, relevant measurements are added before
the departure. If an agent arrives with the same identifier as one
in the departure queue (duplicate agent), new information from
the more recent frame is copied to the one in the queue. Then,
the agent frame is dropped. The data collection is not only
possible on the initiator side but also on the rest of the system,
if desired. All measured information can be made accessible
on every sensor node in range without extra radio load.

For the latest agent protocol the sum of probabilities for
three and four reference points per cycle is more than 95 %
(compared to 67 % for the simple broadcast case). Further-
more, the probability for four reference points has significantly

increased from 30 % for the broadcast case to about 82 %. This
allows for a much more precise position estimation.

VI. CONCLUSION

We investigated the problem of continuous indoor local-
ization for flying autonomous robots. In contrast to ground-
based robots, any waiting until position measurements have
been completed or taking advantage of additional support
systems such as odometry are not possible in this case. Thus,
a real-time localization is needed that must also take weight
constraints into account.

Considering these requirements, we developed an algorith-
mic procedure that advances the state of the art in indoor
localization by being able to perform real-time localization
based on possibly error-prone distance measurements. The
basic assumption is that one coordinate of the reference points
needs to be equal. Without loss of generality, we set the z coor-
dinates to a constant value. This allows a closed mathematical
calculation that is even possible to be performed by low
resource sensor nodes. If, however, a coordinate transformation
needs to be executed, the localization algorithm suffers from
the computational complexity of this transformation. We im-
plemented and evaluated the algorithm in our lab. The results
demonstrate the feasibility of the solution. We consider our
ultrasound lateration technique a necessary step for completely
autonomous operation of flying robots in indoor environments.
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Abstract—Localization in wireless sensor networks has been a
big challenge for researchers in the past years. Besides physical
problems like estimating the distance between two nodes, appli-
cable algorithms are still on the list of open research issues. While
single-hop localization with direct connection to fixed anchors is
well researched, the localization with fixed anchors over a multi-
hop route is still at its beginning. Especially the combination of
multi-hop networks and mobile nodes needs further research.
In this paper, we present and discuss a refined algorithm and
a simulation-based approach regarding the mentioned scenario.
Using a five phase structure that pursues a greedy approach, in-
cluding a refining anchor selection, we investigate and discuss the
precision of localization in a mobile environment. To approximate
the distance between node and anchor over a multi-hop route,
we make use of the mentioned greedy algorithm which fits best
for processing multiple distance measurements between nodes.
Furthermore, we evaluate different simulation-based experiments
with mobile nodes and multi-hop routes.

Index Terms—wireless sensor networks, lateration, mobile
localization, radio runtime measuremnt, indoor localization

I. INTRODUCTION

Nowadays, wireless sensor networks (WSNs) are used for
different scenarios. They are installed in smart homes for
metering and monitoring of enviromental parameters, they are
used for ecological enviroment monitoring and they are used
for vital parameter monitoring for rescue forces or military
purposes. For some of theses scenarios, not only the collected
sensor data itself is of interest but also the exact global or
relative position where the data has been collected.

Gathering this position has been in research focus for
years and different approaches exist. While the localization
under open air conditions can be done quite simple with
mounting Global Positioning System (GPS) receivers onto the
nodes, indoor localization is a much more challenging topic.
Especially for nodes attached to humans who can freely move
inside unknown buildings several problems have to be solved.
We need nodes in the network which already know their
position and we need a technique to approximate the distance
between nodes in order to estimate the position of a sensor
node. Immobile nodes with a priori knowledge concerning
their postion, are called anchors in this paper. All none anchor
nodes are simply called nodes in this paper; they have to
calculate their positions using the sensor network localization
algorithm distributively.

The major problem of localization in mobile multi-hop
networks is the volatile position of nodes while they are in the
process of localization, especially when attached to humans or
vehicles. This leads to the threefold challenge of our scenario.
First, using mobile nodes implies the problem that not all
nodes are in range with an anchor during the whole operation.
Second, we are not able to calculate a precise position while
the node is moving, because the node may continue movement
between the needed distance measurements which are called
rangings in this paper. The third problem results from problem
one and two: To do a localization without having a direct
connection to the anchors, the node has to use its neighbors
which already could have changed their positions after their
last localization.

In this paper, we purpose an algorithm based on a new
five phase structure that is applicable for a range-based local-
ization approach in mobile WSNs. The algorithm is usable
for multi-hop, infrastructureless WSN deployments and for
varying node to node ranging approaches. We introduce a
simulation environment which allows the evaluation of current
ranging technologies concerning their operational capability
and the mentioned problems of mobility and latency during
localization. The simulator allows to view the whole network
in realtime with a graphical 3D interface.

The main contribution from this paper is twofold:
• We present a distributed multi stage algorithm for indoor

localization of mobile sensor nodes and discuss its per-
formance in different scenarios.

• We present a simulation environment to simulate dis-
tributed mobile WSN localization algorithms with dif-
ferent parameters and different scenarios in realtime.

Our designated goal is to implement our simulated and
evaluated architecture in a real world scenario that inherits
the mentioned restrictions. In our current work, we plan
to make use of the MSB-A2 sensor node [1] with a 32-
bit ARM7TDMI-S based microcontroller in conjunction with
chirp technology based NanoLOC modules [2], which use
distance calculation via radio signal runtime measurements for
the process of ranging.

In Section II we introduce related work, Section III intro-
duces lateration, Section IV presents our localization algorithm
and Section V gives an evaluation of our simulated results. We
present a conclusion and discuss future work in Section VI.
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II. RELATED WORK

Localization of nodes in WSNs can be split up into two
parts: First, the process of distance estimation or measurement
and second, the localization algorithm. There are different
approaches for estimating the distance between a node and
its neighbors or fixed anchors. Some techniques rely on the
calculation of these distances with physical measurements like
radio signal runtime, ultrasonic based-measurements or re-
ceived signal strength indication (RSSI) measurements. Others
try to approximate the distance with a hop-count indicator. For
mobile WSNs only processes come into consideration which
are applicable with a minimum of infrastructure. We focus on
methods which can deliver a node to node distance without
any infrastructure besides the nodes themselves. [3]

If the distances between nodes are known, there are several
aproaches to calculate the position of a node. If the network
is only single-hop and the nodes have a direct connection
to anchors which know their position (e.g. from GPS), the
approach is simply to do a lateration if enough anchors are in
range. In multi-hop networks the position can be calculated
centrally or distributively [3]. Our approach is to use a
distributed approach, because it needs less infrastructure and
less network traffic. Nodes knowing their position are able
to use this information for additional possibilities like geo-
routing.

Comparing to the current state of the art, our approach takes
advantage of network dynamics and chaotic node distribution.
Moreover, we desire a solution that handles the lateration
problem while contact to anchors is not available. The nodes
to be localized are allowed to move at different speeds and
may change their orientation whenever they want.

Because of the open and previously mentioned problems,
typical evaluations in localization scenarios do not focus on
the node mobility. The exemplary paper of Langendoen [4] is
comparing three localization systems in static WSN scenarios.
Their comparison includes a lateration algorithm and con-
cludes that all algorithm do share a common structure while
none performs best.

In contrast to single-hop environments, a multi-hop environ-
ment has to minimize the error accumulation that may appear
in the network as suggested by Savvides in [5]. They optimized
the localization by preventing the error accumulation with the
usage [3] of a recursive position refinement, in which they did
not take node mobility into consideration, as we are going to.

DV-Distance [6] uses rangings to determine the distance
to a neighbor and uses lateration over the anchors just as
we do. Based on their DV-Hop-Algorithm, they use the first
route established to an anchor through the WSN, to establish
accumulated distances. This route represents a suboptimal
distance between unknown node and anchor. In contrast to
this, our approach is to find a shorter route, using the greedy
algorithm. Moreover, we evaluate our system with different
anchor selection algorithms.

By using the taxonomy of [7], our approach falls into the
category of communication based localization and tracking. In

order to track or localize a person while moving, this person
needs to wear a sensor node with an unique identifier. The
environment itself communicates with the nodes by additional
anchors with a priori knowledge of their positition as sug-
gested in [4]. The position of a node has to be investigated by
rangings between the nodes, possibly worn by humans, and
anchors, in order to provide the basis for a lateration-based
localization algorithm.

III. QUAD LATERATION

Our scenario deals with nodes moving around freely, in
other words the localization has to cover all three dimensions.
In order to calculate a position of a node in a room, we use the
principle of lateration which is a well-established technique to
approximate the position out of rangings as introduced in [8].
Each ranging describes with its distance the estimated radius
to the position of the unallocated node. If we draw a circle
around the appropriate measuring node, by using the ranging
as the radius, multiple rangings will intersect themselves and
define an area where to expect the unlocated node. If 2D-
lateration obtains less than three rangings or 3D-lateration less
than four rangings, uniquely defined results are impossible due
to the problem of flip ambiguity as defined in [9]. To guarantee
uniquely defined results due to the 3D lateration algorithm, we
specify that exact four rangings are necessary. It is possible to
laterate with more than the specified number of rangings by
using an overdetermined system of linear equations, with the
goal of optimizing the localization. As our mobile scenario has
to deal with the problem of undersupplyed number of rangings
we abandon to use this approach. Moreover, the approach
decreases the speed of the algorithm. Beside this, it is not given
that more rangings will result in a better approximation in
reality. A more efficient strategy is to find the best rangings out
of a given set. Adapted from [8], we define our lateration by
the following equations: Where (xk, yk), k ∈ [1, ..4] represent
positions of anchors, (xu, yu) define unknown positions of the
node while the rangings are defined by ru, u ∈ [1, ..4] :

(xk − xu)2 + (yk − yu)2 + (zk − zu)2 = r2
k, k = 1..4 (1)

To solve the system of equations, we transposed in into a
general matrix form:

x = A−1 ∗ b (2)

Where

A = 2




x1 − x4 · · · z1 − z4

...
. . .

...
x1 − x2 · · · z1 − z2


 (3)

and

b =




(r2
4 − r2

1)− (x2
4 − x2

1)− (y2
4 − y2

1)− (z2
4 − z2

1)
...

(r2
2 − r2

1)− (x2
2 − x2

1)− (y2
4 − y2

1)− (z2
2 − z2

1)


 (4)

In order to come closer to a real world environment, the
simulation inserts randomly calculated ranging errors within a
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Fig. 1. Choosing the shortest path as anchor distance

fixed range as we desribe in Section V. As described in [3], it
is important to interpret effects rising by noisy rangings, hence
we need to understand the error propagation characteristics
occurring by error-prone range measurements.

IV. LOCALIZATION ALGORITHM

Our algorithm reuses the well established three phase ar-
chitecture as introduced in [4] and extends it to a five phase
structure. The five phases are described as follows:
• Phase 1 aquire neighbor distances - In this phase a

node estimates the distances to all its neighbors with a
distance measurement technique. Also, a node has to get
the distances from its neighbors to the anchor nodes in
this phase. In case of radio runtime measurement this
could be done with one radio transmission.

• Phase 2 calculate anchor distances - With the aquired
data, the node calculates the total distances to all anchors.
Probably there will be more than one path to a single
anchor which is refined in the next phase.

• Phase 3 greedy phase - The node iterates over all
distances for each anchor and choses the shortest one
and stores it. In all radio runtime based measuremnt
systems the calculated distance will be too long and not
too short because of reflections and multipath effects. So
this simple greedy algorithm chooses the best possible
path to the anchor as shown in Figure 1.

• Phase 4 anchor selection - The anchor selection phase
allows us to choose between different sets of anchor
quadruplets; hence the anchor selection is only accessible
if more than four different anchors are reachable. These
algorithms are exchangeable and we evaluate three anchor
selection algorithms afterwards.

• Phase 5 lateration - The last phase quad laterates the
position of the initiating node with help of the shortest
range path to four suitable anchors.

A. Algorithm description - Volume

By using four anchor positions in the R3, they describe a
tetrahedron. Likewise GPS needs to select appropriate satel-
lites, in order be able to locate the unknown position of a
node as precise as possible. One simple approach is to use

the satellites forming the tetrahedron with the the biggest
volume [10]. Inspired by GPS, we adapt their approach and
make use of non-collinear anchors forming a tetrahedron with
the maximum volume.

B. Algorithm description - nearest Neighbor

Another quite simple approach is to use the four nearest but
non-collinear anchors as a lateration basement. This approach
is often used in lateration environments and performs well
in [4] and [11], moreover, it reduces the possibility to have
an obstacle between node and anchor [12].

C. Algorithm description - brute force selection

Our last algorithm is a brute force algorithm which is
only deployable in simulators. This algorithm shows us the
theoretically possible precision that could be reached by a
lateration based system with an optimized anchor selection.
This algorithm simply tries all possible anchor permutations
and calculates the relative lateration error and then choses the
best permutation.

V. EVALUATION

A. Simulation Environment

Due to the lack of well introduced localization simulators
for mobile nodes in ad hoc networks, we developed a simula-
tion framework for this purpose. To gain a better understanding
of the complex scenarios, we designed a real-time graphical
simulation enviroment with a 3D visualization component. The
simulator can simulate up to 1000 nodes on a regular PC in
realtime and an unlimited number of fixed anchors in a 3D
area. The nodes have different movement vectors which can
be configured or generated randomly. Each node can have
a different radio range and is able to request the distances
to his neighbors within radio range. The estimated distances
can be inaccurate by a certain percentage. The enviroment
has an API for applying different localization algorithms for
each node. The environment simulates a volatile, manlike
node movement and erroneous radio ranges, whereby the
communication between nodes is simplified. Especially the
media access and radio characteristics like reflection and
absorbtion are not simulated.

B. Experimental Setup

For all simulations we used a 100m ∗ 100m playfield with
a height of 15m to simulate a large building. All nodes move
with randomly changing directions and movement speeds
which are limited to 2m/s to simulate humans with normal
walking speed. All nodes start moving on the same spot on the
border of the playfield at the same time. In every simulation
there are four fixed anchors placed outside the playfield but
reachable from every node at the beginning of the simulation.
The ranging error is set to 3.33%, while the radio range is set
to 30m. These values where choosen because they fit for the
real hardware we are going to use in the second stage of our
project.
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C. Results

First, we wanted to analyze if the localization interval has
an influence to the average position error which is likely due to
the movement speed. But the experiment showed that for the
relatively low movement speed of human beings the interval
has no big impact which is shown in Figure 2. Only for
intervals larger than one second the error begins to increase
noticeably. From this observation we conclude that to achieve
smaller localization intervals e.g. to save energy, the interval
should be compressed so that all localization is done in a one
second sub interval of the overall localization interval.

The second experiment analyzed the impact of the network
density. As shown in Figure 3, the node count has a much
bigger influence than the localization interval on the average
position error. A node count below 50 leads to too many nodes
having no connection to a sufficent number of neighbors to
perform the lateration.

Finally, we wanted to know the effect of the algorithm
to choose the anchors. So we placed another four anchors
around the area and ran different algorithms to choose the
best four of them. Figure 4 shows that our nearest neighbour
algorithm is very close to the optimal algorithm in its effect
to the average position error. In the diagramm it looks like
that it is sometimes even better than the brute force algorithm
which can be traced back to the fact, that there are some
calculations in the simulator which are affected by randomness
e.g. distance error. The volume algorithm performed as good
as the nearest neighbor algorithm but because of its more
complex implementation we propose the nearest neighbor
algorithm as the best algorithm. The increase of the anchors
resulted in a noticeable decrease of the average error which
should be observed in future work. It is not clear if the
decrease is a result of the better position of the chosen anchors
or simply an effect of the obeservation that the average hop
count from a node to a anchor was also decreased by placing
more anchors.

VI. CONCLUSION & FUTURE WORK

We propose our five stage localization algorithm as a
next step to achieve precise indoor localization for multi-
hop mobile networks. The algorithm performs good in dense
networks with an acceptable refresh rate. In future work, we
will concentrate on implementig the algorithm on real sensor
nodes and evaluating localization precision with a real radio
layer. Further, we will research on adding an applicable QoS
component that enables a local estimation for the position
error.
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Abstract—Wireless Sensor Networks (WSNs) are deployed
for long periods of time, during which a need often arises to
dynamically reprogram or retask them. An array of solutions has
been proposed to this effect, ranging from full image replacement
to virtual machines. However, the capabilities of TinyOS –
the current state of the art in sensor node operating systems
– are still limited to full image replacement. TinyOS based
applications have a modular architecture but during compilation
this modularity is lost resulting in a statically linked system
image.

In this work we extend TinyOS to allow dynamic exchange of
components in WSN applications by conserving their modularity
during the compilation process. This generates the possibility of
incremental adaptation of sensor nodes’ behavior through partial
code replacement. The designed system does not require any
alterations in the existing user interfaces, remaining transparent
to the user. The evaluation shows that our approach imposes
almost no performance overhead for loaded application while
keeping a smaller memory footprint than other comparable
solutions.

I. INTRODUCTION

Sensor nodes could be located far from the networked
infrastructure and easy human access [1], [2], [3]. Based
on the evolving analysis or the environment the software
application of the sensor network often requires adaptation
through introduction of new code. Manually collecting all the
nodes to apply a software update is dangerous in some of the
situations [2], [3] and tedious in others [1], [4]. Therefore,
remote software reconfiguration – even if a rare activity as
compared to the application operations – becomes a highly
desirable feature.

Remote retasking of sensor nodes is mainly challenged by
three constraints; limited energy, limited processing power
and limited available onboard memory. kilobytes. Moreover,
the major hurdle in the way of mainstream adoption of
WSNs remains the steepness of the associated learning curve.
Considering these constraints, an ideal solution to dynamically
update a nodes functionality would be the one that optimizes
the energy usage, has a reduced memory footprint, and does
not require any alteration in the existing user interfaces.

Our contribution in this work is design and implementation
of a solution for efficient dynamic adaptation of TinyOS
based applications running on sensor nodes. The proposed
system works in two phases; firstly, the existing components
of an application are solitarily compiled into ELF objects.
Solitary generation of the software components ensures that

the component structure of the TinyOS application is preserved
during the compilation process. In the second step, these
components are transferred to the sensor node and integrated
into the running application. To allow this, a thin node runtime
is designed that includes a runtime linker and enables dynamic
exchange of components. Runtime dynamic linking allows
the reduction of energy-toll incurred in communication by
limiting the size of required communique to that of an updated
component only. The presented system is tightly coupled with
TinyOS, reusing its components and interfaces hence easing
the adoption process. Moreover, the designed system does
not necessitate any change in the existing code repository of
TinyOS hence, remaining transparent to the user of the system.

II. RELATED WORK

The existing approaches to tackle the issue of retasking a
sensor network can be classified into three main areas;

Full image replacement e.g. Xnp [5], Deluge [6] and dif-
ferential updates [7], offer very fine grained control on the
possible reconfigurations but are quite wasteful in terms of
energy-cost of communication.

Virtual machine e.g. Maté [8], perform inversely; they opti-
mize the energy-cost of communicating the new functionality
but the control offered on the possible reconfigurations is very
coarse grained, moreover the trade-offs between interpreting
code and executing native binaries suggest the use of the latter
for long-running systems.

Dynamic operating systems e.g. Contiki [9], SOS [10] and
FiGaRo [11], provide benefits of both of the former categories
however, in most cases these solutions have followed a clean
slate approach which has hindered the wide scale adoption.
Two notable exceptions are FlexCup [12] and TOSthreads [13]
that are built on top of seasoned TinyOS repository. FlexCup
offers dynamic adaptation for TinyOS based applications but
lacks the support for new extensions to nesC and employs
nonstandard tools. TOSthreads library and its associated linker
follow a polling based approach for kernel to application
calls instead of nesC’s more suited, event based approach and
introduces a new interface for users, rendering it difficult to
adopt.

III. DESIGN

TinyOS based applications consist of large number of wired
nesC components which communicate with each other via
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interfaces. This component based structure results in a very
modular architecture of TinyOS applications. However, once
compiled, this modularity is lost. The NCC compiler when
transforming nesC to C mashes up the component structure
of the input to make the output conform to the semantics
of C. The output is a single monolithic C source file to be
compiled by the respective toolchain. We alter this process
of compilation by isolating subsets of an application’s con-
stituent nesC components and compiling them into ELF files.
The resulting files collectively enclose all of the constituent
components of the application. These files are transferred to
the sensor node which links them together and loads them
in the program memory to form the executable binary image
again.

The solution we present consists of two main components;
Isolater to isolate a single or an integrated group of nesC
components and compile them into an ELF object. Second,
TinyMan, a runtime ELF linker executing at sensor node
and responsible for integrating the ELF objects to form the
executable binary image to be loaded in program memory.
The working of both of these are detailed as follows.

A. Isolater

The Isolater functions by compiling parts of a single
TinyOS based application separately into ELF files. It executes
on PC (host) and utilizes the binary component generation
feature of the NCC compiler. This feature was introduced
primarily to provide better commercialization support as bi-
nary components can be used and distributed without their
corresponding source code. We utilize this feature to isolate
and compile a single or a set of interconnected nesC com-
ponents belonging to a TinyOS application. Compiling parts
of an application solitarily causes loss of code optimization
possibilities as well as introduction of ambiguities which either
lead to an incorrect decision by the compiler or result in a
compile time error.

The main issues faced during isolation of nesC compo-
nent are compile-time operators, default events and generic
components and interfaces. All of these are caused due to
the non-availability of information hidden in those parts of
the application that are not being compiled at the moment.
Isolater provides this missing information using the additional
input in the form of a nesC configuration. This additional
input consists of two main parts for each component to be
isolated; a component-wrapper and an application side place
holder. The component wrapper ensures that the component
being isolated is provided the required knowledge of the rest
of the application for the correct compilation. Likewise, the
application side place-holder ensures that the application gets
the required knowledge about the component which will be
linked in at runtime. During this process, the actual source
code of both the application and its component is not changed.
This allows complete ’recycling’ of existing TinyOS based
applications and seamless integration of the system into the ex-
isting TinyOS skeleton, thereby remaining totally transparent
to the application developer. In the next section we discuss the
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Fig. 1. Architectural elements of TinyMan. Only runtime components are
active during the normal execution of a loaded application. Linker and File
System APIs are provided by the kernel to support the application to kernel
calls.

issues related to dissemination and integration of the generated
components.

B. TinyMan

After the compilation of components, the next step consists
of their dissemination and integration in the sensor applica-
tion executing on the sensor node. The dissemination in the
network takes place through the use of the Deluge data dissem-
ination protocol. Other existing protocols can be employed as
well and these, since treated as part of loaded application, can
also be replaced remotely on runtime. This design approach
makes data dissemination a concurrent process along with the
normal execution of loaded application resulting in reduced
downtime due to an update in progress.

After the required modules and an update command have
been received the data dissemination protocol invokes the
linker to integrate the received modules and place the new
binary image in program memory of the sensor node. To
accomplish this, the node runtime consists of the following
main components:

• File System: provides the storage capability for large data
elements such as received ELF modules.

• Linker: responsible for linking the the new ELF modules
and placing them in code memory.

• Global Symbol Table: As the linking is done among
dependant ELF modules, this component holds the sym-
bols offered by one module that are needed by some other
ELF module.

• Interrupt Router: Unlike the compile-time linker, the
implemented runtime linker does not have the flexibility
in placement of code segments. Therefore an interrupt
router is implemented to route the interrupts to the
inappropriately placed interrupt service routines.

These components in relation to a loaded application are
shown in Figure 1. Apart from the interrupt router, all of the
other components are inactive during the normal execution of
application. This helps in minimizing the runtime performance
impact due to TinyMan. The linker and the file system’s APIs
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Fig. 2. Results of optimizations shown as proportionate change in sizes of
different segments of the resulting ELF file.

are available to the loaded application through the global
symbol table, which can be used for storing new or updated
ELF modules and then integrating them into the existing
application.

C. Optimizations

The ELF format, though a widely used standard, is not
optimized for the low power processors. In the ELF libraries,
compiled from the NCC compiler’s generated code, the bulk
of the contribution in size comes from the string table which
holds the names of all the symbols in the ELF file. These
names often tend to be quite long – about 80 characters each.
We decrease the size of the symbol names down to 3 characters
by replacing each symbol name with a unique string based
on an alphanumeric counter. The mapping of the replaced
names is stored in a database which can be used later when
recompiling parts of the application. This procedure results in:
(1) significant reduction in the size of ELF file, (2) reduction in
the size of symbol table and (3) reduction in number of string
comparison operations. The average proportionate reduction in
the size of string tables for ELF files of the Blink application
is shown in Figure 2.

The second set of optimizations that result in significant
resource savings is applied to the symbol table which is used
during the process of linking. We split the symbol table into
two sub-tables; one containing static core symbols and the
other filled dynamically from the symbols included within the
ELF files being loaded. The static part is created at compile
time and placed in ROM in a sorted order allowing binary
search among the symbols. This results in a quicker hence
more energy efficient linking process.

These two sets of optimizations together cause a major
improvement in processing speed, resulting in energy savings
of up to 66% when compared to the original ELF.

IV. EVALUATION

We evaluate the proposed system along the lines of major
constraints faced in WSNs i.e. energy consumption, process-
ing requirements and memory utilization.

A. Energy

To evaluate the per-node energy consumption caused due
to a network wide reconfiguration we devise a simple energy
model and calibrate it using the readings taken empirically.

0 10 20 30 40 50
0

2

4

6

8

10

Time (s)

I in
 (

m
A

)

 

 

0 10 20 30 40 50
0

200

400

E
 (

m
J)

Energy

Current

C

D

A

B

Fig. 3. Current draw and energy utilization during processing and loading
of Blink application at telos platform. The peaks are generated by turning
the onboard LEDs on simultaneously. A to B: saving the modules in external
flash, B to C: linking the modules, C to D loading the modules in program
memory, from D onwards: executing the application.

The final results are compared against Deluge [6] – the widely
used in-field code replacement tool and protocol.

We model the energy cost of reconfiguration as;

E = ETx + ERx + EP

Where,
ETx is the energy consumed in transmitting an update
ERx is the energy cost of reception, and
EP is the energy consumed during related processing.

We assume that each node receives the update, propagates
it and then processes it to reconfigure itself. This might not
be accurate for bordering nodes and those nodes which do
not need to propagate further because of their close vicinity
to the other nodes in the network, in which case we get
an upper bound on the consumption of energy. However,
the assumption adapts to reality more closely in a bigger
network with a lower node density. In such networks, the
transmitters are tuned to transmit at maximum output power
due to larger inter node distance. Under this condition, in telos,
the current consumption during transmission and reception is
almost the same hence, so is the energy consumption. The
transmission and reception costs also depend upon the size
of the component (SC) being communicated and the protocol
used for communicating it. The overhead introduced by the
protocol can be measured as a constant multiplicative factor
(KF ) to the size of original data to be communicated. These
factors multiplied by the transfer cost of a single bit (KBT )
complete the expression for transfer cost of a component.
Since EP involves processing on a single node only, it can be
measured empirically as shown in Figure 3. For the Deluge
protocol the KF is 3.35 [6] and a telos node configured with
TinyOS consumes 0.0105 mJ per byte for transmission.

So,

E = ETx + ERx + EP
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Component Size (B) Transfer Energy (mJ) Savings Factor
BlinkC 836 58.77 46.6

BlinkAppC 7156 506.92 5.4
LedsC 1600 113.34 24.2

Msp430TimerC 4644 328.97 8.33
Blink w. Deluge 39024 2743.38 –

TABLE I
SAVINGS IN TRANSFER ENERGY DUE TO INCREMENTAL UPDATES

System ROM (B) RAM (B)
SOS Core 20464 1163

TinyOS w. Deluge 21132 597
Bombilla VM 39746 3196

TinyMan 15826 792

TABLE II
MEMORY USAGE COMPARISON FOR TinyMan

⇒ 2ETx + EP

⇒ 2(KF KBT SC) + EP

⇒ 0.0703SC(mJ) + EP

We use this model along with the Blink application from
the TinyOS repository to estimate the transfer costs of dif-
ferent constituent components of the application. The Blink
application is broken down into four components; LedsC,
Msp430TimerC, BlinkC and BlinkAppC. In the presented
system, any of these components can be individually and
remotely modified whereas in Deluge the whole application
needs to be replaced. The resultant reduction in energy costs
is presented in Table I.

B. Memory Usage

The memory footprint of the presented system is quite
moderate in comparison with the popular existing solutions as
shown in Table II. On telos rev. B it consumes only 7.7% of
RAM and 32% of program memory with rest of the resources
available for the loaded application. The external flash mem-
ory is completely available for the file system and ’Golden
Images’. The optimized memory footprint results from the
design approach of keeping the runtime support layer as thin
as possible. This optimizes the usage of hardware resources
available on the platform, hence leaving more memory space
for the loaded application.

C. Performance Overhead

Keeping the runtime support layer thinner has a positive
effect on the runtime computational requirements as well. Dur-
ing normal application execution – the most frequent activity
for a sensor node – only the interrupt routing component
of TinyMan is active, and introduces a short delay in the
processing of interrupts. On telos platform the worst case
delay is that of 23 instruction cycles – equivalent to processing
required for copying eight bytes in memory. No performance
depreciation is caused by other components and the code
execution remains native.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a fine grained code update
mechanism for sensor networks that offers the functionality
and performance required for remote adaptation of sensor
applications. The presented system is tightly and transparently
integrated with TinyOS, resulting in ease of adoption and full
utilization of the seasoned TinyOS code repository.

The preliminary evaluation, as presented earlier, provided
a proof of concept. In the future we plan a more thorough
evaluation with real life applications. Also, some of the steps
during compilation need to be automated. Finally we would
like to optimize the ELF format further and evaluate the system
using other common hardware platforms as well.
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Zusammenfassung—Intensive Forschung und Entwicklung im
Bereich von Sensornetzen haben Technologien für Hard- und
Software ein inzwischen gebrauchstaugliches Niveau erreichen
lassen. Trotzdem finden sich Sensornetze heutzutage selten im
industriellen sowie privaten Einsatz wieder. Einer der Gründe
hierfür sind die technischen Barrieren mit denen sich Nutzer von
Sensordaten auseinandersetzen müssen. In dieser Arbeit wird da-
her eine Middleware-Infrastruktur vorgestellt, die Anbieter und
Nutzer von Sensordaten zusammenbringen und eine transparente
Abfrage von Sensordaten ermöglichen soll. Durch die Möglichkeit
beider Seiten die Verarbeitung von Sensordaten innerhalb der
Middleware durch Angabe eines Verarbeitungs-Workflows zu
beeinflussen, können einerseits maßgeschneiderte Zugriffe auf
Sensordaten gewährt werden. Andererseits trägt dieser Ansatz
auch der Endgeräteheterogenität auf beiden Seiten Rechnung,
da die Verarbeitungslast in die Middleware verschoben und
Ressourcen der (mobilen) Endgeräte geschont werden können.

I. EINFÜHRUNG

In den vergangenen Jahren führte die stetige Weiterentwick-
lung von Soft- und Hardware für Sensornetzwerke zu einem
Entwicklungsstand, der nicht mehr nur vermehrt universitäre,
sondern vor allem auch von der Industrie angetriebene Projekte
entstehen ließ. Längst werden Sensoren zur Überwachung von
Straßen, Ski- und Erdbebengebieten, intelligenten Häusern,
Transportwegen etc. eingesetzt. Doch während sich Forschung
und Entwicklung meist auf die intrinsischen Charakteristiken
von Sensornetzwerken konzentrierten, bleibt häufig die Fra-
ge, was mit den Sensordaten nach ihrer Erhebung passiert,
unbeantwortet. Einerseits fehlen geeignete Geschäftsmodelle
und andererseits passende Softwareinfrastrukturen, die eine
schnelle Umsetzung der Modelle erlauben.

In dieser Arbeit soll daher eine verteilte Middleware-
Infrastruktur vorgestellt werden, welche Anbieter (z.B. un-
abhängige Sensornetzbetreiber) und Nutzer (z.B. Geschäfts-
anwendungen) von Sensordaten zusammenbringen soll. An-
bieter stellen erhobene Sensordaten in nahezu Echtzeit dem
System zur Verfügung und Nachfrager können ihr Interesse
an bestimmten Daten im System hinterlegen und werden bei
Eintreten korrespondierender Ereignisse entsprechend infor-
miert. Das System selbst übernimmt hierbei die Aufgabe
zwischen Anbietern und Nachfragenden sowie den von diesen
verwendeten Technologien zu vermitteln. Auf diese Weise soll
die herrschende Heterogenität verborgen und die vorgestellte
Middleware auch für andere Kontextdaten (z.B. RFID, Nut-
zerkontext etc.) verwendet werden können.

Im folgenden Abschnitt II werden Anwendungsszenarien
vorgestellt, anhand derer in Abschnitt III die Architektur und

Funktionsweise der Middleware-Infrastruktur präsentiert wird.
Abschnitt IV widmet sich dem aktuellen Stand der Implemen-
tierung bevor im letzten Abschnitt V eine Zusammenfassung
gegeben wird.

II. ANWENDUNGSSZENARIO

Ein Handelsunternehmen hat eine Palette mit TV-Geräten
gekauft und deren Verschiffung in einem intelligenten Con-
tainer veranlasst. Dieser Container ist mit einer Reihe von
Sensoren ausgestattet, welche in regelmäßigen Abständen
Temperatur-, Feuchtigkeits- und Beschleunigungswerte proto-
kollieren. Sobald der Container an seinem Bestimmungsort
ankommt, sollen die Sensor-Logbücher des Containers am
Eingang des Lagerhauses ausgelesen werden. Weisen die
Sensormessungen daraufhin, dass die Fracht z.B. durch zu
hohe Temperaturen oder Beschleunigungen beschädigt sein
könnte, soll ein Mechaniker die TV-Geräte noch im Lagerhaus
begutachten, bevor sie für die weitere Reise auf einen LKW
verladen werden.

In diesem Szenario sind drei verschiedene Akteure beteiligt:
1) das Handelsunternehmen, 2) das Transportunternehmen und
3) das Lagerhaus. Das Handelsunternehmen hat die TV-Geräte
eingekauft, Transport und Abwicklung in Auftrag gegeben
und ist verantwortlich dafür, dass der letztendliche Käufer die
Ware ordnungsgemäß zugestellt bekommt. Hierfür wurde ein
Transportunternehmen beauftragt, welches den intelligenten
Container stellt und für den sicheren Transport der Ware
ins Lagerhaus verantwortlich ist. Das Lagerhaus letztlich soll
die TV-Geräte vom Schiff auf einen LKW verladen und das
Handelsunternehmen über aktuelle Vorkommnisse informie-
ren. Zu diesem Zweck teilt das Handelsunternehmen dem
Lagerhaus mit, dass es informiert werden möchte, sobald a) die
Ware eintrifft und Sensorwerte keine Beschädigung vermuten
lassen, b) die Ware eintrifft, aber möglicherweise beschädigt
ist oder c) die Ware bis zu einem bestimmten Zeitpunkt nicht
eingetroffen ist.

Bevor dieses Anwendungsbeispiel in Abschnitt III-A zur
Erläuterung der präsentierten Middleware-Architektur wieder
aufgegriffen wird, sollen im Folgenden kurz zwei weitere
Anwendungsmöglichkeiten skizziert werden.

A. Weitere Anwendungsszenarien

Auf der Intensivstation eines Krankenhauses wird der Ge-
sundheitszustand von Patienten durch eine Reihe von Senso-
ren überwacht. Um das Pflegepersonal zu entlasten, sollen
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die Visiten-Intervalle vergrößert werden. Damit jedoch auch
zwischenzeitlich schnell auf Änderungen eines Gesundheits-
zustands reagiert werden kann, werden individuell für jeden
Patienten komplexe Ereignismuster für dessen Sensordaten
definiert, die eine Verschlechterung des Krankheitsbildes an-
deuten. Wird ein solches Ereignismuster in den Sensorwerten
erkannt, soll über verschiedene Kommunikationswege sofort
ein Krankenpfleger benachrichtigt werden.

Ein weiteres Anwendungsszenario findet sich in der Haus-
automation. Intelligente Häuser besitzen eine Vielzahl von
Sensoren und Aktuatoren zur Wahrnehmung und Reaktion
auf Vorkommnisse im Haus. Ein Server innerhalb des Hauses
verarbeitet die Sensordaten und verfügt bereits ’ab Werk’
über einige Standard-Reaktionsschemata. Der Besitzer eines
intelligenten Hauses möchte die Funktionen dieses Hauses
jedoch gerne weitergehend an sein Verhalten individuell anpas-
sen. Hierfür soll jedes Familienmitglied eigene Ereignismuster
und die zu erfolgende Reaktion des Hauses angeben können,
allerdings sollen nicht alle Mitglieder der Familie die gleichen
Rechte und Möglichkeiten bekommen.

Im nächsten Abschnitt III wird nun eine Architektur vorge-
stellt, welche die Realisierung der genannten Anwendungssze-
narien ermöglichen soll. Abschnitt III-A erläutert nachfolgend
die Funktionen in Bezug auf die Szenarien beispielhaft.

III. MIDDLEWARE-ARCHITEKTUR

Der Ansatz beruht auf einer ereignisgesteuerten Architektur,
deren logische Ebenen für die speziellen Anforderungen von
Sensornetzen durch zwei weitere Ebenen ergänzt wurden: eine
Ebene zur Vorverarbeitung der Daten und eine weitere zur
nutzerspezifischen Nachbearbeitung (siehe Abbildung 1). Alle
Ebenen der Architektur werden durch Softwareagenten reali-
siert, welche kooperativ an der Verarbeitung von Ereignissen
und Nutzeranfragen beteiligt sind (weitere Details in [1]).
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Abbildung 1. Middleware-Architektur

Die unterste Ebene stellen die Ereignis-Produzenten, also
die Sensornetze, dar. Die in dieser Ebene erzeugten Ereignisse
(primitive oder aggregierte Sensorwerte) werden vom Anbieter
der Sensordaten an die Middleware übergeben. Diese Ebene
ist nicht Teil der vorgestellten Architektur und es werden keine
Annahmen oder Anforderungen an Entitäten dieser Ebene
gestellt, sodass prinzipiell beliebige Ereignisquellen, neben
Sensornetzen z.B. auch RFID-Leser, Mobiltelefone, Software-
Sensoren etc., unterstützt werden.

In der zweiten Ebene bedienen spezifische Kommuni-
kationsadapter (in der Abb. nicht dargestellt) unterschied-
liche Ereignisquellen und bilden die Schnittstelle zu den

durch Softwareagenten realisierten Middleware-Funktionen.
Eine wesentliche Funktion bildet die Zugriffsverwaltung (Re-
gistration Manager), bei der sich ein Sensornetz initial re-
gistrieren muss. Bei der Registrierung werden eine Reihe
von Meta-Daten über die Ereignisquelle sowie ein (optio-
naler) Verarbeitungs-Workflow verlangt. Ein Austausch von
Schlüsseln und Zugriffs-Token dient der späteren gegenseiten
Authentifizierung, Autorisierung und Abrechnung.

Als Teil der Meta-Daten kann eine Ereignisquelle ihre funk-
tionalen Fähigkeiten angeben. Funktionale Fähigkeiten sind
z.B. eine Anfragebearbeitung innerhalb des Sensornetzwerkes
(falls Sensorknoten Messungen speichern und Nutzeranfragen
selbst beantworten können) oder die Fähigkeit Instruktionen
von der Middleware entgegenzunehmen (bspw. zur Adaption
der Sampling-Rate, falls sich momentan kein Nutzer für die
Daten des Sensornetzes registriert hat). Auf Basis der funk-
tionalen Daten werden dedizierte Softwareagenten, welche für
die Kommunikation mit dem Sensornetz zur Realisierung der
Funktionen verantwortlich sind, erzeugt und in einem Service
Repository angemeldet. Die weiteren Meta-Daten werden in
einem Quellenverzeichnis (Source Repository), z.B. für die
Abfrage durch Nutzer, hinterlegt.

Durch den erwähnten Verarbeitungs-Workflow hat eine
Ereignisquelle die Möglichkeit, die von ihr bereitgestellten
Sensordaten durch die Middleware in mehreren Schritten vor-
verarbeiten zu lassen. So können z.B. Filter-, Aggregations-,
Gruppierungs- oder Übersetzungsfunktionen angegeben oder
die Speicherung der Sensordaten in einer Datenbank (Ob-
servation Repository) veranlasst werden. Derartige Angaben
erfolgen in Form eines BPEL-Prozesses, welcher durch die
Middleware in eine Orchestrierung von Agenten übersetzt
wird. Als Endpunkte für die Aktivitäten des Workflows können
einerseits Standard-Endpunkte der Middleware, aber auch
individuelle Endpunkte in Form einer beliebigen Agenten-
ID angegeben werden. Somit ist es möglich die Funktio-
nen der Middleware durch eigene, proprietäre Funktionen
zu erweitern. Die Ausführung des BPEL-Workflows über-
nimmt der Observation Manager, welcher die Sensordaten an
entsprechende Dienstagenten zur Ausführung der jeweiligen
Prozessaktivität übergibt. Das Ergebnis der Vorverarbeitung
dient als Eingabe für die nächste Ebene.

In dieser nächsten Ebene werden die vom Anbieter produ-
zierten und von der Middleware vorverarbeiteten Ereignisse
mit den Anfragen von Nutzern abgestimmt. In Abhängigkeit
von den funktionalen Eigenschaften und des Verarbeitungs-
Workflows der Ereignisquelle sowie den Anforderungen der
Anfrage gibt es für die Abstimmung mehrere Möglichkeiten:

• Eine Laufzeitumgebung zur Verarbeitung komplexer Er-
eignisse (Complex Event Processing Runtime) kann aus
einem Strom primitiver Ereignisse von den Ereignisquel-
len nutzerdefinierte komplexe Ereignisse, z.B. anhand
von kausalen oder temporalen Beziehungen beliebiger
Ereignisse, erzeugen (Event Pattern Matching).

• Das Observation Repository, eine Datenbank zur Spei-
cherung von Sensordaten, kann abgefragt werden.

• Falls es die Ereignisquelle erlaubt, können spezielle
Dienstagenten des Service Repositories Instruktionen an
das Sensornetz schicken um eine Nutzeranfrage direkt
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von der Ereignisquelle bearbeiten zu lassen.

Das Ergebnis dieser Abstimmung von Sensordaten und
Nutzeranfragen kann - gleich welche Abstimmungsmethode
in Abhängigkeit oben erwähnter Präferenzen gewählt wurde
- auf Wunsch des Nutzers in einer letzten Ebene nachbe-
arbeitet werden. Ziel dieser Nachbearbeitung ist die Erzeu-
gung eines Anwendungsereignisses (Application Level Event),
welches die für eine Anwendung relevanten Daten in einem
entsprechenden Format enthält. Genau wie der Anbieter von
Sensordaten einen Verarbeitungs-Workflow angeben kann, hat
auch der Nutzer die Möglichkeit einen Teil der Nachbear-
beitung von relevanten Ereignissen zu beeinflussen indem
er z.B. weitere Filter-, Gruppierungs-, Aggregations- oder
Translationsfunktionen angibt. Außerdem kann er, sobald er
seine Anfrage zusammen mit dem Verarbeitungs-Workflow bei
der Middleware registriert, angeben, zu welchem Endpunkt
das Anwendungsereignis später gesendet werden soll. So
ist es bspw. möglich das Anwendungsereignis entsprechend
formatiert als SMS an ein Mobiltelefon verschicken zu lassen,
obwohl die Registrierung über einen PC erfolgte.

Alle Verarbeitungsschritte, die Anbieter oder Nutzer in
ihren jeweiligen Verarbeitungs-Workflows angeben, werden
durch einen Accounting Manager protokolliert. So können
Dienstleistungen der Middleware, aber auch die Bereitstellung
von Sensordaten durch den Anbieter abgerechnet werden. Auf
diese Weise ist es möglich nahezu beliebige Geschäftsmodelle
zu realisieren, da durch die Middleware erbrachte Dienste
bei Anbieter und Nutzer sowie durch den Anbieter produ-
zierte Daten über den Nutzer abgerechnet werden können.
Authentifizierungs- und Autorisierungsmaßnahmen bieten die
Grundlage für entsprechende Abrechnungsmodelle.

A. Beispiel

Angenommen das Lagerhaus aus dem Anwendungsbeispiel
in Abschnitt II betreibt eine solche Software-Infrastruktur und
bietet seinen Klienten entsprechende Dienste an. Das Han-
delsunternehmen möchte, wie beschrieben, informiert werden,
sobald eines von drei Ereignissen im Lagerhaus eingetreten ist,
also sobald der Container eintrifft oder sich verspätet und falls
Sensorwerte des intelligenten Containers eine Beschädigung
der TV-Geräte vermuten lassen. Hierfür muss das Handelsun-
ternehmen ein Ereignismuster definieren, welches vereinfacht
folgendermaßen aussieht:

SELECT * FROM SmartContainerEvent
WHERE id BETWEEN x AND y AND

((overallacc > 5 OR humidity > 80 OR
temperature > 50) OR
[weitere Bedingungen])

Ein solches Muster, dargestellt in der SQL-ähnlichen Esper
Event Pattern Language [2], wird in diesem Beispiel von
der Complex Event Processing-Laufzeitumgebung verarbeitet,
indem diese aus dem Strom primitiver Ereignisse korrespon-
dierende komplexe Ereignisse zu identifizieren versucht. Die
Variablen x und y stehen bspw. für RFIDs und identifizieren
die TV-Geräte oder den Container, overallacc, humidity

und temperature referenzieren Messungen der Container-
Sensoren. Sobald das Muster in Übereinstimmung mit Ereig-
nissen gebracht wurde, wird ein komplexes Ereignis erzeugt.
Dieses Ereignis kann entweder direkt an das Handelunter-
nehmen übermittelt werden, wobei dieses anschließend für
die weitere Verarbeitung verantwortlich ist, oder noch in der
Middleware weitergehend bearbeitet werden, um ein maßge-
schneidertes Anwendungsereignis zu erzeugen.

Ein solches Anwendungsereignis beinhaltet nur die für eine
Anwendung relevanten Daten in einem entsprechenden Daten-
format. Eine Anwendung muss entsprechend nicht mehr etwai-
ge Transformations-, Filterungs-, Aggregationsfunktionen etc.
ausführen, sondern kann das Ereignis direkt weiterverarbeiten.
Entsprechende Standardfunktionen müssen somit nicht von
jeder Anwendung neu implementiert werden und entlasten die
Verarbeitungsressourcen des Anbieters. Dies ist insbesondere
für ressourcenarme, mobile Geräte von entscheidender Bedeu-
tung. Der Inhaber des Handelsunternehmen könnte so zum
Beispiel bei Eintreten eines entsprechenden Ereignisses direkt
über sein Mobiltelefon informiert werden, dass die TV-Geräte
während des Transports zu stark erschüttert wurden, und sofort
einen Mechaniker rufen, der die Geräte noch im Lagerhaus
begutachtet. Notwendige Vorraussetzung hierfür sind jedoch
weitere Verarbeitungsschritte, die ein komplexes Ereignis in
ein entsprechendes Anwendungsereignis überführen. Neben
einem komplexen Ereignismuster kann das Handelsunterneh-
men also noch zusätzlich einen Verarbeitungs-Workflow vor-
geben, der diese Überführung vollzieht. Ein einfaches Beispiel
eines solchen Workflows ist in Abbildung 2 dargestellt.

+

aggregate
max(temperature)

getInfo
from(warehouseIS,   

  field:containerLog,

  of:RFID)

getInfo
from(EPCIS@xyz,   

  field:owner,of:RFID)

store
into(damageDB)

transform
to(myProprietaryFormat)

use(myAgent@tradingcorp.com)

+

group
win:time(5s)

by(id)

Abbildung 2. BPMN-Diagramm eines Verarbeitungs-Workflows

Dieser Beispiel-Workflow, welchen das Handelunternehmen
zusammen mit obigem Ereignismuster bei der Middleware
registrieren würde, beschreibt, wie die Middleware eine ent-
sprechende komplexe Ereignisinstanz verarbeiten soll. Im ge-
gebenen Beispiel sollen alle erzeugten komplexen Ereignisse
zunächst in einem Zeitfenster von fünf Sekunden gruppiert
und anschließend bzgl. der maximalen Temperatur aggregiert
werden. Bevor im übernächsten Schritt das Resultat in einer
Datenbank für Archivierungszwecke gespeichert werden soll,
verlangt das Handelsunternehmen noch die Transformation
des komplexen Ereignisses in ein proprietäres Format. Da das
Lagerhaus einen entsprechenden Dienst nicht bietet, wird das
Ereignis von der Middleware an einen externen Agenten des
Handelsunternehmens geschickt. Erst nach dessen Transfor-
mation und Rückantwort wird das Ergebnis in der Daten-
bank gespeichert. Alle bisherigen Schritte mussten sequentiell
ausgeführt werden, die nachfolgenden Schritte jedoch sind
unabhängig und können parallel ausgeführt werden. In die-
sen Schritten werden zusätzliche Informationen über die mit
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RFID-Chips versehenen TV-Geräte von einem externen EPC
Information Service abgerufen und gleichzeitig das Sensor-
Logbuch des intelligenten Containers an das komplexe Ereig-
nis angehängt.

Ist der Verarbeitungs-Workflow erfolgreich abgearbeitet
worden, werden die Resultate vom Query Manager als An-
wendungsereignis zurück an das Handelsunternehmen oder
einen anderen gewünschten Endpunkt gesendet.

IV. IMPLEMENTIERUNG

Die Implementierung basiert auf der Jadex Event Stream
Processing Architecture [1] (JESPA), einer von uns ent-
wickelten Architektur zur verteilten Verarbeitung von Ereig-
nisströmen. Diese Architektur zeichnet sich u.a. durch ihre
Flexibilität und Erweiterbarkeit aus, weshalb sie in großen
Teilen den Kern der hier vorgestellten Middleware darstellt.

Wesentliche Teile des beschriebenen Konzeptes sind be-
reits umgesetzt. Auf unterster Ebene wurden bspw. Adap-
ter zur Kommunikation mit Ereignisquellen implementiert.
Ein Adapter für das Nokia 6131 NFC-Telefon [3] erlaubt
die Verarbeitung von RFID-Daten, SunSPOT-Sensoren [4]
liefern Helligkeits-, Feuchtigkeits- und Beschleunigungswer-
te, ein Android-Adapter [5] stellt aktuelle Aktivitäten eines
Nutzers zur Verfügung und ein erster Prototyp-Adapter für
die MagicMap-Software [6] erlaubt die Verarbeitung von
Positionsschätzungen realer Objekte, welche MagicMap aus
Signalstärkemessung diverser Funktechnologien errechnet.

Für die Dienstorchestrierung zur Vor- und Nachverarbeitung
von Ereignissen in der Middleware sorgen spezielle Diens-
tagenten, welche mittels des Jadex v2-Agentensystems [7]
implementiert wurden. Jadex unterstützt in der v2-Version
nicht nur das Programmieren von ’intelligenten’ BDI-Agenten
(BDI=Belief, Desire, Intention) für komplexe Aufgaben, son-
dern auch das Erzeugen leichtgewichtiger Agenten, die einfa-
che Dienstaufgaben übernehmen und für die dedizierte Verar-
beitung einzelner Ereignisinstanzen verantwortlich sind.

Die Esper-Laufzeitumgebung [2] schließlich sorgt für die
Identifizierung und Erzeugung komplexer Ereignisse basierend
auf Strömen primitiver Ereignisse von Sensornetzen und liefert
mit seiner Event Pattern Language die Basis zur Spezifikation
von Ereignismustern für Nutzer von Sensordaten.

Die Implementierung konnte jedoch bisher nicht ausrei-
chend evaluiert werden, da zur Umsetzung komplexer Sze-

narien noch wesentliche Bausteine der Architektur realisiert
werden müssen.

V. FAZIT

In dieser Arbeit wurde eine Middleware zur verteilten Ab-
fragebearbeitung von Sensordaten vorgestellt. Ziel der Midd-
leware ist es, Nutzer einen transparenten Zugriff auf relevante
Sensordaten zu erlauben, indem die Heterogenität der Hard-
und Software durch die Middleware verborgen wird. Der Zu-
griff auf Sensordaten kann über verschiedene Wege, entweder
durch Identifikation komplexer Ereignismuster in Ereignis-
strömen, der Abfrage von Sensor-Historien aus Datenbanken
oder der durch die Middleware vermittelten Kommunikation
mit dem Sensornetzwerk selbst, erfolgen. Anbieter und Nutzer
von Sensordaten haben die Möglichkeit durch Angabe von
BPEL-basierten Verarbeitungs-Workflows die Vor- und Nach-
bearbeitung von Ereignissen durch die Middleware zu veran-
lassen, um so z.B. Ressourcen der Endgeräte (z.B. Sensoren,
Mobiltelefone etc.) auf beiden Seiten der Verarbeitungskette
zu entlasten.

In weiteren Schritten sollen bereits existierende Standards,
z.B. SensorML [8] zur Beschreibung von Sensoren und deren
Messungen, in das System integriert werden. Weiterhin sollen
Gemeinsamkeit mit anderen Projekten, z.B. dem COUGAR
Sensor Database Project [9] etc. und Möglichkeiten der Inte-
roperabilität - sofern möglich - untersucht werden.
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Abstract—Increasing complexity of today’s WSAN applications
can rapidly result in reduced real-time capabilities of the under-
lying sensor nodes. Using preemptive operating systems is one
way to retain acceptable reactivity within highly dynamic en-
vironments but commonly leads to severe resource management
problems. We outline our dynamic hinting approach for maintain-
ing high system reactivity by efficient combination of preemptive
task scheduling and cooperative resource allocation. With respect
to task priorities, our technique significantly improves classical
methods for handling priority inversions under both short- and
long-term resource allocations. Furthermore, we facilitate com-
positional software design by providing independently developed
tasks with runtime information for yet collaborative resource
sharing. In some cases this even allows to improve blocking delays
as otherwise imposed by bounded priority inversion.

I. INTRODUCTION

The ever increasing size, pervasiveness and demands on

today’s wireless sensor/actor networks (WSAN) significantly

boosts the complexity of the underlying nodes. Thus, modular

hardware and software concepts (e.g. service oriented pro-

gramming abstractions) are more and more used to manage

design and operation of these embedded systems. Then, ade-

quate interaction between the various modules is essential to

avoid typical compositional problems. Beside task scheduling,

directly related issues comprise resource sharing or even real-

time operation. Concerning this mixture, we find that current

WSN research is still too restricted to static design concepts.

As already stated in [1], next generation embedded systems

will be more and more used as reactive real-time platforms

in highly dynamic environments, where the true system load

varies and can not be predicted a priori. In fact, we also expect

a clear focus shift from pure sensing in classic WSNs towards

additional pro-activity in WSAN applications (e.g. integrated

control systems, precise on demand measurements, etc.). Then,

preemptive and prioritized tasks are required for reliable and

fast response on various events.

We present the dynamic hinting approach for cooperative

resource sharing and real-time operation within preemptive

operating systems. As often suggested [2], we take advantage

of the resource manager’s enormous runtime knowledge about

the system’s current resource requirements. This information

is carefully selected and forwarded to those tasks, which

currently block more relevant tasks by a resource allocation.

In turn, these so called hints allow blocking (and even dead-

locked) tasks to adapt to current resource demands and finally

to contribute to the system’s overall reactivity and stability.

II. MOTIVATION AND REQUIREMENTS

Resource assignment in complex, modular systems with

concurrently running tasks is hard to manage during develop-

ment and runtime. This is particularly true, if tasks are allowed

to allocate virtually any resource mix in any order or if long-

term allocations collide with sporadic and time critical on de-

mand allocations. During our research we found that reactivity

and pro-activity in modern WSAN applications requires quite

sophisticated real-time and smart adaptive resource concepts.

We’ll just give a short example from a real-world application:

A radio protocol task commonly requires long-term alloca-

tion of the used transceiver in combination with relatively short

but sporadic access to the interconnection bus. Obviously,

both resources need specific configuration and thus are non-

preemptive. Using the bus becomes time critical when radio

transmission slots must be obeyed or when a receive buffer

must be read and cleared quickly to allow the reception of

further radio packets. Concurrent to this communication task,

sensor tasks often use exactly the same bus for continuous

data streaming. Again both resources are non-preemptive but

this time, the bus is also locked in a long-term allocation.

The resulting compositional problem is already hard to solve.

Even if task priorities can be selected carefully to indicate

the desired relevance of each task, their compliance can not

be guaranteed. Instead, knowledge about the overall system

load (including further tasks) must be incorporated manually

into the code. The regular release of a long-term resource

could be one solution. However, this strategy might impose

considerable overhead when deallocation and re-allocation

are expensive in time and energy. Where data streams often

require explicit termination (trailers) and initiation (headers),

resources might require a time-consuming (de)initialization

procedure upon each (de)allocation. Using server tasks or

stateful libraries for managed operation of such resources is

also no universal solution since this would just relocate the

problem and cause additional overhead.

III. RELATED WORK IN WSN/WSAN SYSTEMS

Non-preemptive systems with run-to-completion tasks are

very common in the WSN domain and prevent some resource

conflicts implicitly since task executions can’t be interleaved.

Yet, this often causes bad reactivity to sporadic events. There-

fore, e.g. TinyOS [3] and Contiki [4] support preemptive

extensions but then lack priorities and resource management

entirely. Preemptive systems potentially provide much better
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reactivity since a task can be preempted for a more important

action implemented in another task. Yet, preemption yields no

instant advantage if the action requires a shared resource which

is exclusively held by a less important task. Resulting prob-

lems like bounded or unbounded priority inversion [5] might

lead to thwarting of high priority tasks and even deadlocks may

occur. In any case, the task priorities defined by the developer

are not obeyed as desired. To cope with some of these issues,

well studied protocols like priority ceiling, highest locker or

priority inheritance [6] are found in some embedded operating

systems. We selected the priority inheritance protocol (PIP)

as basic technique for our approach. Again, preemptive WSN

operating systems like MANTIS [7] or RETOS [8] do not

consider real-time or resource related problems at all.

IV. RESOURCE MANAGEMENT AND DYNAMIC HINTING

The central objective of our approach is to allow tasks

t ∈ T the collaborative sharing of exclusive resources. At

the same time, it supports them to closely comply with their

intended base priorities Pt. The basic idea behind dynamic

hinting might be applied as integral concept for many real-

time operating systems if these support three central features:

1) truly preemptive and prioritized tasks,

2) non-preemptive (i.e. exclusive) resources,

3) temporally limited resource requests (e.g. via deadline).

While the first two features can be found quite often, the last

requires a special timing concept. Then however, tasks can

request resources which are still held by other tasks. In this

case, a requester is suspended until the resource is released

(and handed over) or until the timeout occurs (and the request

is denied). Though this allows to cope with allocation failures,

it can also induce long resource request chains (Fig. 1, 2a).

In case of infinite timeouts, even deadlocks may occur (Fig.

2b). These are already critical if two tasks mutually request a

resource which is held by the other one, respectively.

Thus, many conservative resource management systems try

to avoid deadlocks by simply refusing a resource request im-

mediately if it would cause an allocation cycle. Others accept

at least resource chains and simply suspend each requester

task until it can be served. In our opinion, both methods

are not satisfying since exactly the just rejected or suspended

task h alone has to cope with the situation. This is especially

annoying if h is truly more important than at least one other

task l in the just averted cycle or extended chain. It also

results in a violation of base priorities (Pl < Ph). Furthermore,

resources are usually indispensable when requested and thus,

tasks tend to retry infinitely until the allocation succeeds. The

resulting (active) loops or long timeouts might not only block

other tasks but even worse, they simply shift the problem back

from system level to task level.

Indeed, task-resource-dependencies are highly dynamic and

depend on the system wide allocation order during runtime.

Hence, another task might react much better than h if it knew

about the situation. Unfortunately, tasks are commonly not

aware about their spurious influence and so the allocation

Figure 1. Example for Priority Inheritance and Dynamic Hinting

chains are commonly reduced successively, beginning at their

very end. This is exactly where dynamic hinting applies.

Our approach provides runtime information for each task

about which resource it should release to improve the overall

system reactivity and liveliness. Considering these so called

hints is always optional for each task. But if followed, it

definitely reduces direct, chained or deadlock blocking of at

least one higher priority task (→Fig. 1, 2).

Therefore, two preconditions must be fulfilled:

1) An ongoing resource allocation must never prevent any

task from requesting any resource. Otherwise, our ap-

proach lacks knowledge about the system requirements.

2) A spurious task must receive the time and opportunity to

react on a hint.

In our case, PIP provides the necessary possibility and

priority (1) and the limited waiting of other tasks provides

the time (2). PIP adjusts task priorities dynamically at runtime

and according to the current resource assignment situation. It

selects each task’s l current priority p(l) ≥ Pl to be at least

as high as the current priority p(h) of the highest prioritized
task h it currently blocks by virtue of a resource allocation.

Then, the first step for determining hints is to identify the

critical resources for each task l. These currently define p(l) 

Pl and thus, they directly or indirectly cause the blocking of

more important tasks with base priority truly above Pl:

crit(t) := {r ∈ R|r defines p(t) by PIP} (1)

In turn, t can reduce the blocking of at least one task by

releasing any r ∈ crit(t). Yet, our approach always selects the
hint as follows (→Fig. 1, 2):

hint(t) := r ∈ crit(t), r was requested last. (2)

Then, if l releases its hinted resource r, it is directly passed
to its first requester, w.l.o.g h. Next, p(l) is updated by PIP

and h is scheduled promptly. This is true since then h holds

the highest priority of all tasks in ready state and l did let h
pass by. As soon as l is scheduled again, it can immediately

re-request r to continue its operation quickly. In any case, the

untimely release of a hint resolved a priority inversion and

accounted for the intended task base priorities.

The example in Figure 1 shows crit(t5) = {r2} since

p(t5) > Pt5 was defined by t4’s request for r2. Releasing

r2 would instantly relax p(t5) := Pt5 . Then t4 is served and

scheduled since it is indeed the task with highest priority but

currently blocked by t5. The allocation timeout t4 specified for
r2 grants t5 the time to cooperate as described. If t5 follows

its hint r2 prior to its regular release, it indeed improves the

bounded priority inversion toward t4. Furthermore, t5 also

improves the reactivity of t2 and t3 since these tasks are also
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Figure 2. Dynamic Hinting Examples: a) Chain, b) Deadlock

more relevant (Pt2 > Pt3 > Pt5 ) and will receive r2 right

after t4.
Next, we’ll describe two exemplary ways in which a task

may receive and handle its hints: First, an explicit query can

be done at distinct points in time or at code positions where

its handling would be possible at all. Then however, a task

can never react as long as it is in waiting state. Yet, this is

exactly the case upon deadlocks and during many long-term

allocations, where tasks e.g. wait for some events/interrupts

while holding a resource. Beside this severe weakness, the

manual effort and code pollution would be immense.

Thus, we recommend a much better strategy called early

wakeup. When enabled, all functions by which a task suspends

itself may return early upon a new or changed hint. Then, a

dedicated return value will indicate this special situation. This

way, coping with hints can be done instantly and it is entirely

limited to the cases when they really occur. The use of early

wakeup can be selected and tuned individually by each task

t and for each self-suspension. Therefore, we extended the

involved functions by an additional threshold parameter ϕ:

result_t sleep(deadline | timeout, ϕ)
result_t waitEvent(event, deadline | timeout, ϕ)
result_t getResource(resource, deadline | timeout, ϕ)

Then, a self-suspending function will only return early if

(ϕ 6= 0 ∧ p(t) > Pt ∧ p(t) ≥ ϕ), (3)

i.e. if priority inheritance raised the caller’s priority p(t) to at
least the specified threshold ϕ. In particular, these functions

will also return right after calling if a hint is already available.

E.g. both new requests in Fig. 2a,b will immediately resume

t2 if it has early wakeup enabled. Then, its request for r2 is

withdrawn. Otherwise, or if t2 refuses to release its hint r1 and

simply requests r2 again, t3 may wake up early. Obviously, a

single cooperative task in a chain or cycle is already sufficient

to improve or recover from this situation.

Of course, priority thresholds are not the only useful metric

for a task to decide between cooperative or egoistic behavior.

Thus, beside the hinted resource r, we grant each task t access
to some further information: Its current (raised) priority p(t),
a flag indicating that a deadlock situation might persist if the

hint is not followed, and the absolute time at which the hint

r expires due to the latest request timeout:

Resource* getHint(Priority_t* p, boolean* DL, Time_t* TO);

The latter is of special interest for applying time-utility-

functions [9]. These allow to relate the remaining allocation

time to the still remaining timeout. Another option is to

introduce a real-time priority threshold by initially defining

ϕ equal for all tasks. This inherently limits the potential co-

operativeness to situations where tasks (directly or indirectly)

block any real-time task tR with PtR
≥ ϕ.

V. REAL-WORLD APPLICATIONS AND TEST BED

For analyzing our approach of combining temporally lim-

ited resource requests, the priority inheritance protocol and

dynamic hinting, we extended the SmartOS [10] kernel as de-

scribed since it is available for several sensor nodes, provides

appropriate task, timing and resource basics, and thus allowed

an easy integration. The implementation was done for Texas

Instrument’s MSP430 family of microprocessors, since these

are found on a large variety of sensor nodes. Requiring 4 kB
of ROM and 150 B of RAM for the whole kernel, the typically

low computational performance and small memory of sensor

nodes was considered carefully to leave sufficient room for

the actual application.

Our test bed considers a quite frequent problem we also

had in one of our real WSAN control applications: A task S
continuously transfers some data over a shared bus b to an

external device. The stream is rather long (or even infinite)

but can be suspended and resumed at any time for more

important communication over the same bus. Therefore, it

always needs some bus setup plus a complex header/trailer

for proper initiation/termination. During the transfer, S needs

exclusive access to b. A common solution is to split the

stream payload into atomic packets. Then, S would terminate

the stream and release the bus temporarily after each packet.

This way other tasks may receive the bus regularly. However,

since S does not really know if it currently blocks a more

relevant task, the temporary interruption might be completely

unnecessary. Furthermore, the selected packet length defines

the duration of potentially resulting priority inversions. By

using short (long) packets, the overhead increases (decreases)

while improving (degrading) the reactivity of higher prioritized

tasks when these request b. Commonly, a fixed length is

selected during development with regard to the individual

application requirements. These must be known exactly, then.

Using a server task for coordinating the bus access might

even result in slightly worse performance due to client-server

communication overhead. The mentioned problems remain the

same but are concentrated at the server which also commonly

creates atomic packets or grants exclusive bus reservations.

Dynamic hinting provides two options for improvements.

Since our approach knows about pending bus requests, S
could query its current blocking state periodically and react

only if necessary. Though the query interval must still be

selected carefully, the overhead for useless stream interruption

is already avoided! The additional use of early wakeup finally

improves the reactivity as it hints S instantly and only if it

blocks a task with truly higher base priority.

For the concrete application we had to stream 8 bit ADC

data sampled at 10 kHz over an SPI bus. The overhead for each
header and trailer was 1 byte. Beside, a radio transceiver R
and a motor controller M shared the same SPI bus (at different

settings) for short communication. Yet, both associated tasks

had to process sporadic events (av. inter-arrival time: ≈5 ms)
and were much more time and safety critical since especially

failures in the motor control were disastrous. So, we defined
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Figure 3. Streamtest: Packet Oriented vs. Dynamic Hinting

PS < ϕ = 100 < PR < PM . To reduce CPU load we used a

DMA channel between ADC and the bus controller. Thus, S
simply had to allocate and configure the bus resource for a new

stream. After starting the DMA transfer, S did sleep until an

event signaled to finalize the stream or a hint occurred. The

following example code shows the relevant implementation

details for S when using early wakeup:

1 void streamData() {
int stop = 0;

3 /* start stream */

getResource(&SPI, INFINITE, 0);
5 cfgBus(); header(); startDMA();

while (stop != 1) { // 1 indicates stop event

7 /* Wait infinitely for the stopStream event.

Enable early wakeup if raised >= ϕ = 100. */

9 stop = waitEvent(&stopStream, INFINITE, ϕ);
if (stop == -1) { // hint received!

11 Resource_t *hint = getHint(NULL, NULL, NULL);
if (hint == &SPI) { // conditional hint handling

13 /* stop stream and release resource quickly */

stopDMA(); trailer(); releaseResource(hint);
15 /* --- THE TASK WILL BE SUSPENDED HERE SINCE AT ---

--- LEAST ONE OTHER TASK WAITS FOR THE HINT ---- */

17 /* continue stream as soon as possible */

getResource(hint, INFINITE, 0);
19 cfgBus(); header(); startDMA(); } } }

/* stop stream */

21 stopDMA(); trailer(); releaseResource(&SPI); }

Streaming data simultaneously to sporadic but highly reac-

tive tasks might already cause extreme system load for low

performance embedded systems like sensor nodes. Yet, the

testbed results show, that our approach can still gain good

reactivity and high throughput without manual task tuning.

First, we implemented the application with atomic fixed-length

packets (AP), then we used dynamic hinting with explicit

querying (EQ) and finally we activated early wakeup (EW).

Fig. 3 shows the results in terms of the average blocking delay

τ of the real-time tasks and the achieved payload data rate ρ of
the streaming task. Due to the fixed trailer length and sampling

rate, the best case values are τbc=100 ns and ρbc=10 kB/s.
As expected for the packet oriented design, its throughput

ρAP improves while the blocking delay τAP degrades rapidly

with increasing packet length. When using dynamic hinting

with periodic explicit querying, ρEQ remains nearly constant

and close to the achievable maximum. However, the blocking

delay τEQ almost matches τAP and is also not satisfying for

long periods (for short ones, the task causes higher CPU load).

When using early wakeup, the data rate is still held high while

the blocking delay is kept extremely low. Indeed, ρEW ≈
ρbc and τEW ≈ τbc. For better comparability, ρEW and τEW

are visible as horizontal lines in Fig. 3. Yet, early wakeup is

independent from any packet length or query period.

VI. CONCLUSION AND OUTLOOK

In this paper, we outlined the dynamic hinting approach for

cooperative resource sharing among preemptive tasks in reac-

tive systems. In particular, the individual task base priorities

are considered carefully to keep each task’s performance close

to its intended relevance. Therefore we analyze emerging task-

resource dependencies at runtime and provide spurious tasks

with information about how they could increase the reactivity

of more relevant tasks or to recover from deadlocks. Thereby,

tasks can collaborate even without explicit knowledge of each

other. Nevertheless, each one can decide dynamically between

cooperative or egoistic behavior with respect to its current

conditions and other tasks’ requirements.

While our approach is not necessarily limited to the WSAN

domain, our implementation and test bed showed, that using

compositional software design and prioritized tasks allows to

create quite reactive systems even on small embedded devices.

At present we research more sophisticated concepts for

adjusting the acceptance of hints to the task and system

situation. In particular, we want to improve the hint selection

and the application of TUFs. Also, we plan to evaluate the

use of dynamic hinting for remote resource management in

distributed systems. Concerning real-world applications, we

just integrated our approach into a WSAN based indoor

localization and car control system, where we achieved a

considerably higher localization frequency and path precision.
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Abstract—In wireless sensor networks, nodes are often fitted
with low-power components to allow for a long node lifetime
when operated on batteries. However, these available resources
can be insufficient to perform sophisticated data processing on a
local scale, necessitating the transmission of all sensor readings
to an external sink. These transmissions are expensive both in
terms of delay and energy, and thus undesirable. To alleviate the
situation, we propose the use of a heterogeneous sensor network
with higher-capacity processing nodes that allow to perform more
complex data processing operations within the sensor network.
Estimates of the energy consumptions confirm that employing a
heterogeneous sensor network can preserve energy and thus lead
to an extended lifetime of the network.

I. INTRODUCTION

Nodes in wireless sensor networks (WSNs) are generally
designed with energy considerations in mind to allow for long
lifetimes when operated on batteries [1]. These energy savings
however often come at the cost of low-power microcontroller
units (MCUs) with reduced computational capabilities and low
clock frequencies. With only a few kilobytes of RAM and
program Flash storage, the possible complexity of applica-
tions is additionally limited. These tight resource limits of
sensor node platforms (motes) disallow some operations to be
performed within the sensor network, and commonly require
the transmission of data to external nodes which perform the
resource-intensive processing tasks. Commonly, the situation
is resolved by transmitting all collected data (often only
slightly processed, if at all) to an external sink node which
performs the processing tasks.

This data forwarding process is however expensive in terms
of energy, as especially in the case of multi-hop transmissions
in large networks, delay and energy demand increase linearly
with the number of hops. A common way to alleviate the
number of transmissions in the multi-hop case is data ag-
gregation ([2], [3]), where packets that share the same route
are merged on their way to the destination. Aggregation can
thus lead to an overall reduction of the number of packets
sent, although further data-specific processing is generally not
performed.

As a high volume of traffic might still be present in the
network, we propose to move the data processing into the
network by deploying dedicated processing nodes. These pro-
cessor nodes provide greater MCU power (and ideally, larger
memory sizes) than the deployed nodes to allow for tasks with

greater complexity to be performed within the network. By
forming a sensor network, which is heterogeneous in terms of
computational power, demanding processing operations can be
performed within the network, and thus the amount and size
of packet transmissions to a base station significantly reduced.

To show the feasibility of this approach, we exemplarily dis-
cuss three application scenarios that would significantly benefit
from processing the data inside the network. Concisely, we
evaluate the demands of data compression, cryptography, and
high data-rate sample processing. To provide computational
resources for in-network processing, we exemplarily assume
TelosB [4] and SunSPOT [5] devices, as they are present in
our TWINS.KOM testbed [6]. However, other combinations
of motes are possible as well.

After presenting the related work in Sec. II, we present our
vision of collaborative data processing in Sec. III, and show a
theoretical energy analysis in Sec. IV. We conclude this paper
in Sec. V, where we summarize our results and present the
next steps.

II. RELATED WORK

Existing hybrid sensor network architectures target to re-
duce the number of hops a packet requires to reach its des-
tination by supplementing a WSN by additional connections
over a secondary, often wired, medium.

Sharma and Mazumdar have investigated the use of limited
infrastructure, i.e. networks with a number of wired connec-
tions between sensor nodes, in [7]. Their approach establishes
a small-world graph utilizing wired links between a subset
of nodes to reduce the overall energy demand as well as the
different energy consumption rates of participating nodes. The
additional efforts required for the wiring however make it
suited for long-term deployments of sensor networks only.

Hu et al. have built a hybrid network from Mica2 motes
and Stargate devies for detecting cane toads in northern
Australia [8]. Similar to our proposed system, a two-tiered
sensor network structure with low-power motes and higher-
power processing nodes is given. However, the Stargate’s
comparably high energy consumption of 4 watts leads to a
quick depletion of its battery and thus renders the solution
unsuited for long-term autonomous operation.

Wagenknecht et al. also propose to deploy nodes with higher
computational capabilities within a WSN to act as cluster-
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heads for sensor subnetworks, i.e. partitions of the sensor
network [9]. They use embedded systems with a 233 MHz
clock frequency and 128 megabytes of RAM as the backbone
to interconnect the sensor subnetworks through a wireless
mesh network. Although deploying additional gateways allows
for shorter multi-hop routes, the energy savings are possibly
counterbalanced by the greater energy requirements of the
gateways, which are not analyzed in detail in the paper.

A different approach to shift computational tasks into the
network is the use of mobile agents. In such networks, data is
not forwarded to an external sink, but instead, the processing
application (the mobile agent), including its state variables,
are sent to the node and executed locally [10]. As all process
context data are contained within the agent, it can be supplied
with input data at one node, while the processing can be
performed at a different, more powerful, system. We thus
consider it a well-suited supplement to migrate tasks between
nodes.

Further dimensions of heterogeneity have been analyzed,
such as heterogeneous link qualities ([11], [12]), or energy
level heterogeneity [11]. The authors however focus on means
to alleviate heterogeneity rather than exploit it.

III. COLLABORATIVE DATA PROCESSING

Often, motes are too weak to perform computationally
intensive tasks locally, or do at least not provide sufficient
energy budgets to perform the demanding operations numerous
times during their battery lifetime. Especially in the presence
of low-power 8-bit microcontroller units (MCUs), operations
to process 32-bit data require many more instructions than
when executed on a native 32-bit platform.

To overcome this limitation of many existing sensor net-
works, we propose deploying a heterogeneous set of nodes
with two distinct levels of computational capability. Like other
WSNs, low-power sensor nodes perform sensing and basic
processing tasks, and an external sink node acts as data col-
lector. However, additional dedicated nodes are present within
the network to perform data processing operations, thereby
alleviating the energy-consuming multi-hop data transport to
the sink, while overcoming resource limits of low-power
platforms. We indicate a sample network topology with nine
low-power sensor nodes, two processor nodes, and a single
external sink in Fig. 1.

Sensor node

Processor node

External sink

Fig. 1. Exemplary heterogeneous sensor network topology

It is essential to distinguish our system from related work
where nodes with secondary network interfaces, peripheral
ports, and power consumptions of several watts are used.
Instead, we propose the use of low-power embedded systems
with support for duty-cycled operation, such as SunSPOTs or
Intel’s Imote2 nodes. Both resemble native 32-bit architectures
with greater computational capabilities, but also greater power
consumptions than the low-power motes. We briefly compare
both platforms to two common mote platforms in Table I.

TABLE I
COMPARISON OF MOTE PLATFORMS

Mica2[13] TelosB[4] SunSPOT[5] Imote2[14]
RAM size 4 kB 10 kB 512 kB 32 MB

System clock 7.37 MHz 8 MHz 180 MHz 104 MHz*
Sleep current 15 µA 1 µA 31 µA 820 µA
Active current 8 mA 1.8 mA 80 mA 66 mA

Word size 8 bits 16 bits 32 bits 32 bits
* The Imote2 can dynamically adjust its clock frequency between 4 and 416 MHz

In the following, we present how three common applica-
tion scenarios for WSNs can be supported by our proposed
heterogeneous WSN architecture.

A. Data Compression
As both route length and packet size of multi-hop radio

transmissions in WSNs have a dependency on the overall
energy consumption of the transfer, data compression (also
referred to as source coding) is a viable approach to compact
data (e.g. [15]) prior to sending it. However, the limited
amount of memory present on motes is often insufficient
to store complex models or code tables, and thus leads to
degraded compression gains.

As we have determined in [16], compressing data on a
per-packet basis often leads to no improvements over the
uncompressed data size at all, while knowledge about the tem-
poral history of data can achieve significant size reductions.
Supplementing the source coding by means of in-network
processing, such as data aggregation (cf. [2]), can even lead
to further savings, but also has higher computational demands
on nodes that perform the processing operation. This makes
the presented data compression scenario well suited for the
proposed heterogeneous networks.

Applied to the scenario depicted in Fig. 1, the processing
nodes should integrate within the tree rooted at the external
sink node. When configured to aggregate packets on their way
to the sink, and compress the results, their presence can lead
to energy savings resulting from an overall smaller number of
transmissions.

B. Cryptography
High computational demand is also present in area of

cryptography, where many algorithms rely on heavy use of
the modulo operation. Especially, when the used key length
exceeds a platform’s native word size, additional operations
to emulate the corresponding operations are required, which
come at a significantly increased time and thus energy con-
sumption. Emulating these instructions is however often nec-
essary to ensure sufficiently large key lengths.
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Measurements on real hardware, performed by Gura et
al. in [17], have shown that both ECC and RSA-1024 require
more than 4.5 seconds to execute on an 8-bit microcontroller
clocked at 14.7 MHz. When more powerful processing nodes
are integrated with the sensor network, their greater computa-
tional capabilities allow them to perform strong cryptography
within reasonable time limits.

Especially, the 32-bit word size and the significantly in-
creased RAM size of the processor nodes reduce the need
for instruction emulations and expensive data buffering on
external memory, and can thus reduce the required execution
time. When the processor nodes act as in-network terminals
to provide secured links to the sink node, low-power sensor
nodes can employ the AES-128 support of their CC2420
radio transceiver [18] to establish encrypted connections to
the processor nodes with a low hop count.

C. High Data-Rate Sample Processing
When sensors that generate high-volume data (such as

image or audio sensors) are present within the network, their
samples cannot be processed by the sensor node at all times,
but are instead forwarded to the sink for further processing.
The lack of hardware multipliers in many embedded systems
also limits the use of algorithms with many multiplication and
addition operations, such as the Fast Fourier Transform (FFT).
Transferring all data to the sink however leads to a significant
volume of traffic in the network.

If instead, a heterogeneous set of nodes is present in the
network, resource-demanding tasks can be performed in less
time when configuring the processor nodes to specialize on
these tasks and request the sensor nodes to transmit their data
there. Due to their higher clock frequency and the larger RAM
size, the processor platforms inherently consume more energy
in all operation modes. However, their reduced processing time
improves both transmission delays and power demand, and
thus counterbalances the higher energy consumption.

IV. THEORETICAL ENERGY ANALYSIS

When considering the current consumption values quoted in
Table I, it is obvious that both platforms suited as processors
(SunSPOT and Imote2) have a significantly greater energy
demand in both active and deep sleep modes than the two
sensor node platforms (Mica2 and TelosB). However, the clock
frequencies differ by one order of magnitude, hence many
more operations can be performed on a processor node within
the same amount of time. For the sake of simplicity, we assume
an identical number of instructions required to perform the
same task on all platforms, although sophisticated features
and special extensions to the instruction set present in the
processing nodes may lead to deviations.

TABLE II
EXECUTION TIME AND POWER CONSUMPTION OF THE DEMO METHOD

Mica2 TelosB SunSPOT Imote2
Execution time 13.6 ms 12.5 ms 0.55 ms 0.96 ms
Energy per call 327 µJ 67.6 µJ 82.7 µJ 98.4 µJ
Average power 3.3 mW 0.68 mW 0.85 mW 1.37 mW

A. Execution Duration
To visualize the impact of the clock speed, we have assumed

a demo method of 100,000 instructions and evaluated the time
and energy required to execute it. The corresponding results
for a single call are shown in Table II. Additionally, the table
contains the results from our analysis of the overall power
consumption when calling the method 10 times per second
and immediately putting the MCU into sleep mode when the
method has finished.

Although both processor node platforms require between
22 and 45 percent more energy to perform the operation, their
benefit of a 32-bit architecture and the corresponding reduced
emulation demand for complex algorithms is expected to coun-
terbalance the additional energy requirements. Additionally,
the average power consumption of the SunSPOT is only 25%
higher than the TelosB’s when duty-cycling the node, and put
into perspective when considering the achievable savings in
terms of the overall network traffic.

B. Node Lifetimes
Having determined a comparable energy demand to perform

the same algorithms on the more powerful processing plat-
forms, it has become clear that a WSN can benefit from the use
of heterogeneous nodes. However, to ensure a long network
lifetime, processors should not deplete their batteries faster
than the remaining nodes in the network. When continuously
operating SunSPOT nodes with a battery capacity of 750 mAh,
their lifetime is limited to around nine hours. In contrast,
when assuming a duty cycle of only 10% (i.e. spending 90%
of the time in sleep mode), lifetime increases to 93 hours,
and when activity phases are limited to 2%, the overall node
lifetime extends to 16.5 days. It is thus mandatory to find
algorithms which achieve a tradeoff between energy and delay
constraints, considering the costs of local computation, in-
network processing, or the transfer to the external sink in their
decision process.

V. CONCLUSION AND OUTLOOK

In this paper, we have presented the benefits of hetero-
geneous sensor networks, comprising nodes with different
computational capabilities. By adding nodes with higher com-
putational performance to a WSN, complex tasks can be per-
formed within the network instead of transferring all data to an
external sink node. Although the faster processor nodes exhibit
an increased energy consumption, we have theoretically shown
that energy savings can be achieved by deploying processor
nodes, as their greater energy consumption is counterbalanced
by reduced execution times and less traffic in the network.

A. Future Work
In successive work, we target to investigate deployment

strategies for the processor nodes and conduct practical ex-
periments with heterogeneous sensor networks, based on our
TWiNS.KOM testbed, which integrates TelosB and SunSPOT
devices [6]. We also intend to evaluate the applicability of the
developed algorithms on networks that are heterogeneous in
terms of energy.
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TAbstractT—PSSS (Parallel Sequence Spread Spectrum) [1] 
technology is the basis for the PHY of the new IEEE802.15.4-
2006 standard with the enhancement for the data rate from 20 
kbps to 250 kbps for the European area. Even robustness against 
multipath fading is enhanced and makes the sub 1 GHz PHY 
high attractive, even due to less inference probability, compared 
to 2.4GHz solutions and lower attenuation in the transmission 
path. 

I. INTRODUCTION  
The sub 1 GHz PHY’s of IEEE 802.15.4-2003 standard 

offer only 20 kbps for Europe/ETSI (European 
Telecommunications Standards Institute) and 40 kbps for the 
FCC region. Compared to the 250 kbps the data rate was 
unattractive, especially for  WSN (Wireless Sensor Networks) 
with many subscribers. For the ETSI region has t be taken into 
account, that there is a duty cycle limitation of 1%. That causes 
average data rate of not more then 200 bps for the IEEE 
802.15.4-2003 PHY. The peak data rate for the sub 1 GHz 
IEEE820.15.4-2006 PHYs (ETIS/FCC) is 250 kbps common to 
the 2.4 GHz PHY.  

The coverage is for sub 1GHz bands less then for the 2.4 
GHz band.  Simulations with a ray tracing tool underline that 
fact. In figure 1 is shown the received power for a 2.4 GHz 
transmission for a LOS (Line of Sight) and a NLOS (No Line 
of Sight) area.  
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Figure 1.  Coverage 2.4 GHz in LOS and NLOS area. Received power: blue -
93,5 dBm, red -30 dBm 
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Figure 2.  Figure 1.  Coverage 868 MHz in LOS and NLOS area. Received 
power: blue -93,5 dBm, red -30 dBm 

The 868 MHz example in figure 2 shows that the received 
power is significant higher. Even the expected interference is in 
the sub 1 GHz better then in the 2.4 GHz band. WLAN and 
Bluetooth are occupying the 2.4 GHz band. 

The motivation for enhancing the data rate for the sub 1 
GHz PHY in the IEEE 802.15.4-2006 standard was to combine 
the attractive coverage of the sub 1 GHz band and the low 
interference with the high data rate of the 2.4 GHz PHY. 
Especially for the ETSI area with the 1 % duty cycle limitation 
the increased data rate was necessary.  

II. PSSS TECHNOLOGY 

A. Basic 
PSSS uses for the encoding m-sequences in parallel. 

Equitation (1) describes the base m-sequence msB1B. 

 
  (1) 

 

The coding table is given by EN and contains cyclic shifted 
m-sequences of msB1B. 
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For the encoding the data D (3) is multiplied with EN (2).  

( )1 2, , ...,T

ND d d d=     (3) 

S EN D= i      (4) 

 

Each data bit of D is spread with a cyclic shifted m-
sequence. The spreaded bit are the added column wise. The 
decoding can be reached by cyclic cross correlating the PSSS-
Symbol S with the base m-sequence msB1B. This operation is 
similar to using a matrix DE for decoding. 

TDE EN=      (5) 

CCF S DE= i      (6) 

 

CCF presents the cyclic cross correlation between the PSSS 
symbol S and the decoder matrix DE. The reconstruction is 
done by threshold decision as described in (7). 
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d’BnB(ccfBnB) is the reconstructed data word. Depending on 
implementation targets of PSSS different threshold algorithms 
are available.  

For reducing the PAPR (Peak Average Power Ratio) and 
the DC component of the PSSS symbol S precoding could be 
used. The precoding of one symbol is executed independent of 
the precoding of any other symbol with the two steps described 
mathematically as follows: 

( )
'( ) ( )

2

Max Min
S m S m

+
= +  

 where S(m) is the current PSSS symbol and S’(m) is the 
aligned symmetric to zero PSSS symbol and Max and Min are 
the maximum and minimum chip amplitudes within the symbol 
respectively and 

'( )
''( )

p m
p m

A
=   

where A = ( Max’ – Min’) and Max’ and Min’ are the 
maximum and minimum chip amplitudes within the aligned 
symmetric to zero PSSS symbol p’(m) respectively. 

Precoding reduces the PAPR and therefore the demanded 
linearity of the power amplifier. 

B. PSSS for the IEEE 802.15.4-2006 sub 1 GHz PHYs 
Target for the new standard was [2] to reach 250 kbps even 

for the  sub 1 GHz PHY.  For the PHYs as base m-sequence 
was selected a 31 chip log sequence. From the resulting 
encoding matrix only a subset has been selected. Available are 
31 cyclic shifted sequences. For FCC only five and for ETSI 
twenty sequences have been selected. That causes that for the 
given chip rate a data rate of 250 kbps is realized, both FCC 
and ETSI version of the PHY. 

Selecting a subset of EN causes even that the distance 
between the correlation peaks of CCF (6) increases, which 
could be used for enhanced multipath fading robustness. The 
delayed multipath fading parts of the received signal are 
between the correlation peaks and don’t cause ISI (Inter 
Symbol Interference), if the delay spread is shorter the distance 
between the CCF peaks.  

For avoiding hurting the cyclic correlation for the decoder 
due to multipath fading the PSSS symbol S is cyclic extended 
similar to the cyclic extension of OFDM symbols. The extend 
PSSS symbol contains 32 chips. 

 

III. PERFORMANCE OF  PHY IMPLEMENTATIONS AND 
AVAILABLE PLATFORM 

For the ESTI an FCC PHYs of IEEE802.15.4-2006 are 
discrete FPGA based implementations available that have a 
sensitivity of less then -100dBm for 1% PER. The available 
link budget is about 120 dB or even more. Even in [3] a 
implementation as single chip is described. 

IV. FUTURE STEPS 
PSSS as technology is usable for WSN due to low power 

consumption and low cost implementations combine with 
unique data rate of 250 kbps for the ETSI region of the IEEE 
802.15.4-2006 standard. The low complexity of PSSS 
implementations is opening the path to high data rate solutions, 
where OFDM implementations are limited in the reachable 
data rate. PSSS can be combined with well know technologies 
like deconvolution and MIMO for enhancing the multipath 
fading robustness. Even combination of PSSS and OFDM 
seam to be promising [4]. 
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Abstract—The exploratory focus of the SomSed research field
is the interdisciplinary research on self organizing mobile sensor
and data networks. Since the founding of SomSed in 2007,
great progress in scientific research has been achieved and much
practical knowledge has been gathered using a prototype network
permanently installed. This prototype network, from hereon
referred to as CampusNet, is the basis for further investigations
and offers the possibility to perform long term measurements in
a large scale and real environment. The scope of this paper is
to outline the current status of the SomSed research field and to
briefly discuss future developments.

I. INTRODUCTION

Self organizing mobile Sensor and data networks (SomSed)
is a research field at the Hamburg University of Technology.
While the cooperation among the professors of the institutes
is common, doing research in cooperation between under-
graduates and Ph.D. students of different institutes is rare.
As announced in a previous paper [1] the institutes work
together in a matrix like organization structure on topics
concerning wireless sensor networks. In doing so, the institutes
can concentrate on their core competences concerning this
research field. The unique collaboration of several institutes
forms a broad basis for research.

The Ph.D. students branch of SomSed focuses on their
own special research topics and implemented a wireless sen-
sor network on the campus of the Hamburg University of
Technology. The cooperation on undergraduate and Ph.D.
student level also profits from this approach and leads to
additional synergy effects and knowledge transfer between the
collaborating institutes.

The institutes themselves use the knowledge gained in
SomSed. For example, experiences gained in SomSed are used
to build up sensor networks for cruise and container vessels,
and doing feasibility studies of using 2.4GHz applications in
these environments [2]. Another approach is to investigate
multi-coverage based broadcasting in order to increase relia-
bility in a wireless sensor network, as presented in [3]. In this
approach an Integer Linear Program (ILP) has been applied
to multimedia data transmission inside an aircraft passenger

cabin. The solution provides compact routing and scheduling
of the relaying nodes.

II. CAMPUSNET

During the last year SomSed-Active developed and de-
ployed an experimental wireless sensor network on the campus
referred to as CampusNet. The CampusNet consists of 26 fixed
nodes of type IRIS from the company Crossbow Technology
[4]. The nodes are based on an ATmega1281 microprocessor
with an integrated 2.4 GHz IEEE 802.15.4 radio transceiver.
The nodes run the open source operating system TinyOS
version 2.x.

Before the construction of the CampusNet started a series
of open field measurements of connectivity and signal strength
of the IRIS nodes have been carried out. The results of
these measurements were used to find an adequate placement
in terms of connectivity for the participating nodes. The
placement of the nodes is shown in Fig. 3 using small circles.

The software for the CampusNet can be divided into three
parts: The sensor node firmware, which is responsible for
routing, tree construction, sensing, power management and
data buffering, and the frontend and backend software. The
backend software just persists incoming data from the sensor
network into a database and is the initiator of regularly
occurring tree constructions. The frontend software is used
for analysis and visualization of the stored information. The
routing mechanism and the frontend software are described in
more detail in the following sections.

A. Routing

The purpose of this network was at first to collect data
about signal strengths and link quality for validation of a
wireless sensor network of this dimension. Since this stage
only measurements are to be obtained, a tree routing structure
was implemented (see Fig. 3). Therefore there is only one sink
in the network that writes all received packets into a database.

In order to fulfill the need of a long living or real time
network, the CampusNet supports two operation modes: one
active and one passive mode. In active mode measured data
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Fig. 1. Nodes participating in the tree over time.

will be forwarded on continuously in real time. This results
in high energy consumption, because the transceivers of the
nodes will be permanently switched on. In passive mode
the participating nodes perform wake-sleep intervals of 15
minutes. After waking up, they send their own data and
forward the packets received from other nodes to nodes closer
to the sink. Then they go back to sleep mode in order to
preserve battery power to extend their lifetime.

In either mode, a routing tree is generated every hour to
determine the best route to the sink in terms of signal strength
and link quality. This is necessary, because environmental
conditions may change rapidly. For example, around lunch
times the canteen is densely populated and many people are
using wireless LAN. This can cause a reduction of the link
quality between nodes nearby and has to be compensated by
the routing algorithm. The generation of a new routing tree
is initiated by a tree construction packet sent by the sink.
This packet contains the type of the actual mode, a timestamp
during which the new tree is valid and the local time of the data
sink. The nodes receiving this packet use it to adjust their clock
and to determine their parent node. If a node receives several
tree construction packets sent by different nodes, the node with
the highest received signal strength indicator (RSSI) is chosen
as parent. By receiving several tree construction packets the
nodes are capable of repairing a tree if one connection fails. If
this is the case, an alternative parent is chosen. The connection
parameters like link quality and signal strength and the clock
synchronization offset of each node are recorded into the
database. The collected data is currently being analyzed.

B. Frontend

In order to have a useful visualization and to store data
measured by the CampusNet a web-based frontend was devel-
oped. This web-based frontend of the CampusNet is accessible
via http://www.sva.tu-harburg.de/˜somsed/website/. The
Google-maps-API is used to show the positions of the nodes
and the actual routing tree. A screenshot of the map showing
the CampusNet is shown in Fig. 3. When a specific element
is selected, an information frame shows all measured data of
that selected element. For example, selecting a node displays
several graphs showing its measured data, while selecting

Fig. 2. Solar power module for an iris node with emergency battery, solar
panel, electronics with node adapter and rechargeable lead batteries.

a tree branch displays its link quality indicator (LQI) and
received signal strength indicator and packet success rate
(PSR). Using a time shift function different points in the
lifetime of the CampusNet can be visited and the different
created trees can be seen in time lapse. If mobile nodes are
participating in the network, their motion paths are also shown
on the map.

The basis of the frontend is a database where all the
measured data and statistics are stored.

III. HARDWARE DEVELOPMENTS

In the last year several hardware developments have been
made by SomSed-Active that added functionality to the Cam-
pusNet.

A. Solar Node

The solar node developed was subject of a diploma thesis
[5]. The goal was the design of a cost effective and robust
solar module, which is able to power the whole sensor node
even under unfavorable weather conditions.

Therefore, a solar module with high efficiency and power
rating had to be found. In order to bridge the gap of the solar
power supply during nights and bad weather conditions, an
additional battery charging system has been developed, too.
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As a result of [5], a prototype of the solar node has been
built and was successfully integrated into the CampusNet. The
concept demonstrated its robustness over the past eight months
until today, in spite of seasonal low solar radiation during the
winter months. The developed module for the node is shown
in Fig. 2.

Because of the success of the solar modules and the
advantages of an independent power supply, ten more solar
nodes are currently being built. Their deployment will result
in a small energy autonomous sensor network, which will be
subject of further investigations.

B. Over the Air Programming

Sensor nodes are usually programmed using an interface
device which is connected to a computer. Once the sensor
nodes are programmed and deployed at their locations, it is
often difficult to install new software. Sensor nodes may be
deployed in high altitudes, hazardous areas, or out of reach
for other reasons. In these cases, programming sensor nodes
becomes a significant challenge. Over the Air Programming
(OTAP) is a technique which aims at eliminating this problem.
It reduces the effort of maintaining a wireless sensor network,
because the nodes do not have to be physically accessible for
programming or maintenance.

An own OTAP module was developed for the CampusNet,
as described in [6]. It provides an intuitive user interface and
offers a set of important features:

• Several images on a node: Every sensor node is able to
carry different program images from which one can be
chosen for execution.

• ID of image name and version: IDs allow to identify and
distinguish program images.

• Check OTAP compatibility: Safeguards have been im-
plemented in order to prevent non-OTAP images to be
written to a node.

• Golden image: In case of error, a fall-back image will
be selected for execution, providing basic maintenance
capabilities.

• Easy setup of nodes for OTAP: Once a node has been
prepared with the initial image no further wired commu-
nication is necessary.

• Support for heterogeneous networks: The OTAP capabil-
ities can simply be integrated in different programs.

The capability to store more than one image on a node
provides the opportunity to easily switch between different
software functionality. The configuration of the whole network
can be changed with a minimum of effort. In case of an erro-
neous image, the golden image will be automatically selected
as the working image to reestablish OTAP-functionality for
reprogramming.

C. 4-Sensor-Board

The 4-Sensor-Board is an extension to the IRIS node. It
measures temperature, ambient light intensity, relative humid-
ity, and air pressure. An integrated solar power generation
module keeps the on board rechargeable batteries charged. The
task was to perform continuous measurements of the described
parameters in the CampusNet. The board was designed to meet
these measurement requirements, while also operating with
very low power consumption. As an example: while sampling
the environment once every ten seconds and transmitting the
data every 40 seconds the average power consumption is
174µW, which corresponds to a battery life of more than four
years.

IV. EXPERIENCE GAINED WITH THE CAMPUSNET

Since the deployment of the CampusNet among others,
almost 360.000 database entries containing measured sensor
data have been stored. More than 820.000 entries containing
neighborhood information have been recorded, each consisting
of link quality indicator, received signal strength indicator,
packet success rate, the number of duplicate packets, the
amount of missed packets and the number of received packets.
The data traffic at the sink was also documented. Given the
recorded information, it is possible for any time in the past to
reconstruct the trees that were created, their link properties and
the sensor data. As already mentioned, this data is currently
being analyzed with focus on the clockdrift-temperature and
link quality-environment dependencies.

During the last months several lessons have been learned:
The tree routing structure caused congestion of data packets
near the sink. The reason is the increased channel utilization

Fig. 3. Routing tree on the CampusNet on Nov. 1st 2008 0:00 am.
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while data packets are traveling from a leaf node through the
tree.

Another aspect is the asymmetry of links between nodes.
More precisely, the tree is constructed taking the highest
quality links downwards from the sink to the leaves. But the
link quality upwards the same connection is not necessarily of
the same quality. This may result in packet loss.

There were also problems with the casing of the nodes.
These had the protection category of IP55. As it turned out,
the bushings were not sealed against water intrusion. To add
additionally waterproofing to the case, silicone was used as
gasket. But acetic acid was exhaling from the silicone causing
corrosion of some of the electronics. Moreover the temperature
and humidity variation in combination with direct sunlight on
the case and nightly temperature drops caused condensation
that dripped onto the nodes electronics. Over the last months,
the water in the cases only caused some node losses. After
drying, these nodes were still fully functional.

For the next long-term deployment these problems have
been solved.

Fig. 1 shows the nodes and node losses over time and
also the stability of the trees. For example from February
27th on, the number of nodes in the tree varied from 14 to
7. This is a result of the elongated region that is covered
by the CampusNet. If regions are connected through few
bottleneck nodes, the tree is very sensitive to their failure. In
the CampusNet, this bottleneck caused the cutoff of the lower
campus (in Fig. 3 right part of the network).

V. WORK IN PROGRESS

Currently the CampusNet is deployed and collecting data.
The results of the evaluation of the collected data will be used
to set up the next generation of the CampusNet.

The long term goal for the next generation wireless sensor
network is to develop a platform for scientific research for
students and staff of the university. Consequently, a modular
design is currently being developed, which allows fast realiza-
tion of research projects.

This design consists of the following modules:
• Extended OTAP-Module
• MAC-Layers
• Network-Layers
• TinySec-Security-Module
• Sensor-Interface-Module
The different modules form building blocks which are used

to combine them into a node firmware which provides the
infrastructure for individual research projects.

In general, it is desirable to not congest the network tree
with additional data during experiment runs. On the other
hand, it is often necessary to collect logging and performance
data for later evaluation.

To meet these requirements, OTAP is enhanced with data
persistence functionality. The new functionality enables a node
to collect logging data for debugging. Aside from logging, the
module can be used for structured data persistence of other
data as well. Relatively large amounts of data can be stored
on the node for later processing.

OTAP will use the large memory space which is also used to
store program images to store its data. This allows for flexible
assignment of nodes, depending on whether data collection
assignments are expected.

The collected data will be transferred wirelessly like pro-
gram images once experiment runs have finished. It is also
planned to provide the developer with tools that help trans-
lating logging data, stored in compact form on the node, to
human readable text.

A nodes firmware can be built to choose out of a set of
MAC- and Network-Layer modules.

Additionally, a security layer can be included to enable
secure communication.

Finally, a generalized sensor module interface provides
uniform access to sensors attached to the nodes.

Since the network configuration can be switched fast from
one application to another, easy sharing of the resource Cam-
pusNet among the participating institutes is possible.
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Abstract—Wireless sensor networks (WSNs) are increasingly
gaining impact in our day to day lives. They are finding a wide
range of applications in various domains, including health-care,
assisted and enhanced-living scenarios, industrial and production
monitoring, control networks, and many other fields. In future,
WSNs are expected to be integrated into the “Internet of Things”,
where sensor nodes join the Internet dynamically, and use it to
collaborate and accomplish their tasks. However, when WSNs
become a part of the Internet, we must carefully investigate and
analyze the issues involved with this integration. In this paper, we
evaluate different approaches to integrate WSNs into the Internet
and outline a set of challenges, which we target to address in the
near future.

I. INTRODUCTION

The future Internet, designed as an “Internet of Things”
is foreseen to be “a world-wide network of interconnected
objects uniquely addressable, based on standard communica-
tion protocols” [1]. Identified by a unique address, any object
including computers, sensors, RFID tags or mobile phones
will be able to dynamically join the network, collaborate
and cooperate efficiently to achieve different tasks. Including
WSNs in such a scenario will open new perspectives. Covering
a wide application field, WSNs can play an important role by
collecting surrounding context and environment information.
However, deploying WSNs configured to access the Internet
raises novel challenges, which need to be tackled before taking
advantage of the many benefits of such integration.

The main contributions of this paper can be summarized
as follows: We look at WSNs and the Internet holistically, in
line with the vision where WSNs will be a part of an Internet
of Things. Thereby, we identify representative application
scenarios for WSNs (see Section II) from the multidimensional
WSN design space [2], in order to obtain insights into issues
involved with the integration. These representative application
scenarios open up different schemes for integrating the WSNs
into the Internet, which we present and compare in Section III.
A closer investigation of the integration possibilies then helps
us identify critical challenges (see Section IV), which need to
be addressed if the full potential of the integration of WSNs
and the Internet has to be realized. Finally, in Section V
we summarize our discussion, giving pointers for possible
solutions to address the identified challenges while regarding
the resource limitations present in common WSN nodes.

II. SELECTED WSN APPLICATIONS

The wide wireless sensor network application field can be
divided into three main categories according to [3]: Monitoring
space, monitoring objects and monitoring interactions between
objects and space. The proposed classification can be extended
by an additional category monitoring human beings.

One example of the first category is environmental monitor-
ing. WSNs are deployed in particular environments including
glaciers [4], forests [3], and mountains [5] in order to gather
environmental parameters during long periods. Temperature,
moisture or light sensor readings allow analyzing environmen-
tal phenomena, such as the influence of climate change on rock
fall in permafrost areas [5].

The second category centers on observing particular objects.
Structural monitoring is one of the possible illustrations of this
category. By sensing modes of vibration, acoustic emissions
and responses to stimuli, mechanical modifications of bridges
[6] or buildings [7] indicating potential breakages of the
structure may be detected.

Monitoring interaction between objects and space is the
combination of both previous categories and includes monitor-
ing environmental threats like floods [8] and volcanic activities
[9].

Presenting an extension to the presented classification, the
last category focuses on monitoring human beings. Worn
close to the body, the deployed sensors can gather accel-
eration information and physiological parameters like heart
beat rate. Especially in applications in the medical area, such
deployments may help diagnosing bipolar patients [10] and
monitoring elderly people in a home care scenario [11].

The proposed classification, and particularly the selected
deployments, illustrate the high diversity of WSN applications
in term of monitored subjects and environments. Beneficial
for the Internet of Things, this important scenario diversity
must however be taken into account by considering suitable
approaches for the WSN integration into the Internet.

III. INTEGRATION APPROACHES

Connecting WSNs to the Internet is possible in the three
main approaches mentioned by [12], differing from the
WSN integration degree into the Internet structure. Currently
adopted by most of the WSNs accessing the Internet, and
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presenting the highest abstraction between networks, the first
proposed approach (Fig. 1) consists of connecting both inde-
pendent WSN and the Internet through a single gateway.
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However, the first approach presents a single point of failure 
due to the gateway uniqueness. Gateway dysfunction would 
break down the connection between both WSN and the 
Internet networks. With several gateways and access points, 
the second and third scenarios do not present such weakness. 

Ensuring network robustness, they would consequently be 
preferred.  
The choice between both remaining integration approaches is 
influenced by the WSN application scenario. Allowing 
covering important distances, the second approach can be 
envisaged for WSNs organized in mesh topology. 
Accordingly, this approach would be particularly adapted to 
deployments belonging to the first “monitoring space” and the 
second “monitoring interactions between objects and space” 
categories previously introduced in the proposed application 
classification. By offering Internet access in one-hop, the third 
and last approach can be adopted by WSN applications 
requiring low latency and therefore direct connections. 
Presenting mainly star topology, the concerned WSNs can 
conserve such organization by having a central gateway 
instead of a common base station without Internet access. By 
considering the previous WSN application classification, this 
third approach can be suitable for objects and human beings 
monitoring and may be employed in the [6-7] and [10-11] 
deployments for example.  
Nevertheless, both second and third integration approaches 
support only static network configuration. Indeed, each new 
device wanting to join the Internet requires time-consuming 
gateway reprogramming. Therefore, the flexibility wanted by 
the future Internet of the Tings cannot be achieved by both 
approaches in their current form.  
To fulfill the flexibility expectation, adopting the “IP to the 
Field” paradigm [13] may be appropriate. In the considered 
paradigm, sensor nodes are expected to be intelligent network 
components, which will no more be limited to sensing tasks. 
By transferring the intelligence to the sensor nodes, the 
gateways functionalities would be restricted to repetition and 
protocol translation. Consequently, gateway reprogramming 
operations would no more be required and dynamic network 
configuration could be attained. Additionally, this intelligence 
transfer will open new perspectives including geographic-
based addressing for example.  

IV. INTELLIGENT SENSOR CHALLENGES 
The formerly introduced “IP to the Field” paradigm involves 
assigning additional responsibilities to sensor nodes in 
addition to their usual sensing functionality. To highlight and 
discuss the challenges emerging from such novel 
responsibility assignment, we selected three potential tasks 
that the sensor nodes would have to accomplish: security and 
quality of service management, and network configuration.    

A. Security 
In common WSNs without Internet access, the sensor nodes 
may already play an important role to ensure data 
confidentiality, integrity, availability and authentication 
depending on the application sensitivity. However, the current 
identified attack scenarios require a physical presence near the 
targeted WSN in order to jam, capture or introduce malicious 
nodes for example. By opening WSNs to Internet, such 
location proximity will no more be required and attackers 
would be able to threaten WSNs from everywhere.   
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Showing an increasing integration degree, the second ap-
proach (Fig. 2) forms a hybrid network, still composed of
independent networks, where few dual sensor nodes can access
the Internet.

 
Figure 1: Independent network 

 
Showing an increasing integration degree, the second 
approach (Fig.2) forms a hybrid network composed of both 
considered network structure remaining independent, but few 
dual sensor nodes can access the Internet.    
 

 
 

Figure 2: Hybrid network 
 
Illustrated by Fig.3, the last approach is inspired from current 
WLAN structure and forms a dense 802.15.4 access point 
network, where multiple sensor nodes can join the Internet in 
one hop.  
 

 
 

Figure 3: Access point network 
 
However, the first approach presents a single point of failure 
due to the gateway uniqueness. Gateway dysfunction would 
break down the connection between both WSN and the 
Internet networks. With several gateways and access points, 
the second and third scenarios do not present such weakness. 

Ensuring network robustness, they would consequently be 
preferred.  
The choice between both remaining integration approaches is 
influenced by the WSN application scenario. Allowing 
covering important distances, the second approach can be 
envisaged for WSNs organized in mesh topology. 
Accordingly, this approach would be particularly adapted to 
deployments belonging to the first “monitoring space” and the 
second “monitoring interactions between objects and space” 
categories previously introduced in the proposed application 
classification. By offering Internet access in one-hop, the third 
and last approach can be adopted by WSN applications 
requiring low latency and therefore direct connections. 
Presenting mainly star topology, the concerned WSNs can 
conserve such organization by having a central gateway 
instead of a common base station without Internet access. By 
considering the previous WSN application classification, this 
third approach can be suitable for objects and human beings 
monitoring and may be employed in the [6-7] and [10-11] 
deployments for example.  
Nevertheless, both second and third integration approaches 
support only static network configuration. Indeed, each new 
device wanting to join the Internet requires time-consuming 
gateway reprogramming. Therefore, the flexibility wanted by 
the future Internet of the Tings cannot be achieved by both 
approaches in their current form.  
To fulfill the flexibility expectation, adopting the “IP to the 
Field” paradigm [13] may be appropriate. In the considered 
paradigm, sensor nodes are expected to be intelligent network 
components, which will no more be limited to sensing tasks. 
By transferring the intelligence to the sensor nodes, the 
gateways functionalities would be restricted to repetition and 
protocol translation. Consequently, gateway reprogramming 
operations would no more be required and dynamic network 
configuration could be attained. Additionally, this intelligence 
transfer will open new perspectives including geographic-
based addressing for example.  

IV. INTELLIGENT SENSOR CHALLENGES 
The formerly introduced “IP to the Field” paradigm involves 
assigning additional responsibilities to sensor nodes in 
addition to their usual sensing functionality. To highlight and 
discuss the challenges emerging from such novel 
responsibility assignment, we selected three potential tasks 
that the sensor nodes would have to accomplish: security and 
quality of service management, and network configuration.    

A. Security 
In common WSNs without Internet access, the sensor nodes 
may already play an important role to ensure data 
confidentiality, integrity, availability and authentication 
depending on the application sensitivity. However, the current 
identified attack scenarios require a physical presence near the 
targeted WSN in order to jam, capture or introduce malicious 
nodes for example. By opening WSNs to Internet, such 
location proximity will no more be required and attackers 
would be able to threaten WSNs from everywhere.   

Gateway 

Sensor node 

 

 
WSN 

Internet 

G 

G 

G 

G 

 

Gateway 

Sensor node 

G 

Gateway 

G 

G 

WSN 

 
Internet 

 

Gateway 

 
WSN 

Internet 

G 

G 

Fig. 2. Hybrid network

Illustrated by Fig. 3, the last approach is inspired from
current WLAN structure and forms a dense 802.15.4 access
point network, where multiple sensor nodes can join the
Internet in one hop.
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nodes for example. By opening WSNs to Internet, such 
location proximity will no more be required and attackers 
would be able to threaten WSNs from everywhere.   
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It is obvious that the first approach presents a single point
of failure due to the gateway uniqueness. Gateway dysfunction

would break down the connection between both WSN and the
Internet. With several gateways and access points, the second
and third scenarios do not present such weakness. To ensure
network robustness, they would consequently be preferred, if
the application supports this type of network structure.

The choice between both remaining integration approaches
is influenced by the WSN application scenario. Allowing
to cover important distances, the second approach can be
envisaged for WSNs organized in mesh topology. Accord-
ingly, this approach would be particularly adapted to de-
ployments belonging to the first “Monitoring space” and the
second “Monitoring interactions between objects and space”
categories previously introduced in the proposed application
classification. By offering Internet access in one-hop, the third
and last approach can be adopted by WSN applications requir-
ing low latency and therefore direct connections. Presenting
mainly star topologies, WSNs can maintain such organization
by having a central gateway instead of a common base station
without Internet access. By considering the previous WSN
application classification, this third approach can be suitable
for monitoring of object and human beings, and may be
employed in the [6], [7], [10], [11] deployments for example.

It is important to remark that both second and third in-
tegration approaches only support static network configura-
tions. Indeed, each new device wanting to join the Internet
requires time-consuming gateway reprogramming. Therefore,
the flexibility wanted by the future Internet of Things cannot
be achieved by both approaches in their current form.

To fulfill the flexibility expectation, adopting the “IP to the
Field” paradigm [13] may be appropriate. In the considered
paradigm, sensor nodes are expected to be intelligent network
components, which will no more be limited to sensing tasks.
By transferring the intelligence to the sensor nodes, the gate-
way’s functionalities would be restricted to forwarding and
protocol translation. Consequently, gateway reprogramming
operations would no more be required and dynamic network
configuration could be attained. Additionally, this shift of
intelligence will open new perspectives including geographic-
based addressing for example.

IV. CHALLENGES FOR WSNS IN AN INTERNET OF THINGS

The formerly introduced “IP to the Field” paradigm involves
assigning additional responsibilities to sensor nodes in addition
to their usual sensing functionality. To highlight and discuss
the challenges emerging from such novel responsibility assign-
ment, we selected three potential tasks that the sensor nodes
would have to accomplish: Security and quality of service
(QoS) management, and network configuration.

A. Security

In common WSNs without Internet access, the sensor nodes
may already play an important role to ensure data confidential-
ity, integrity, availability and authentication depending on the
application sensitivity. However, the current identified attack
scenarios require a physical presence near the targeted WSN
in order to jam, capture or introduce malicious nodes for
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example. By opening WSNs to Internet, such location prox-
imity will no more be required and attackers would be able
to threaten WSNs from everywhere. In addition to this novel
location diversity, WSNs may have to address new threats like
malware introduced by the Internet connection and evolving
with the attacker creativity. Most current WSNs connected to
the Internet are protected by a central and unique powerful
gateway ensuring efficient protection. However, a direct reuse
of such existing security mechanisms is made impossible by
the scarce energy, memory, and computational resources of the
sensor nodes. In fact, common Mica2 motes offer 7.3 MHz
8-bit microcontrollers with 128 Kbytes of reprogrammable
flash memory, 4 Kbytes of RAM and 4 Kbytes of EEPROM
[14]. At last, many services on the Internet make use of
cryptography with large key lengths such as RSA-1024, which
are not currently supported by sensor nodes. Consequently,
innovative security mechanisms must be developed according
to the resource constraints to protect WSNs from novel attacks
originating from the Internet.

B. Quality of Service

With gateways acting only as repeater and protocol trans-
lators, sensor nodes are also expected to contribute to quality
of service management by optimizing the resource utilization
of all heterogeneous devices that are part of the future In-
ternet of Things. Not considered as a weakness, the device
heterogeneity opens new perspectives in terms of workload
distribution. In fact, resource differences may be exploited to
share the current workload between nodes offering available
resources. Improving the QoS, such collaborative work is con-
sequently promising for mechanisms requiring high amount of
resources like security mechanisms. Nevertheless, the existing
approaches ensuring QoS in the Internet are not applicable
in WSNs, as sudden changes in the link characteristics can
lead to significant reconfiguration of the WSN topology. It is
therefore mandatory to find novel approaches towards ensuring
delay and loss guarantees.

C. Configuration

In addition to security and QoS management, sensor nodes
can also be required to control the WSN configuration, which
includes covering different tasks, such as address administra-
tion to ensure scalable network constructions and ensuring
self-healing capabilities by detecting and eliminating faulty
nodes or managing their own configuration. However, self-
configuration of participating nodes is not a common feature in
the Internet. Instead, the user is expected to install applications
and recover the system from crashes. In contrast, the unat-
tended operation of autonomous sensor nodes requires novel
means of network configuration and management.

V. CONCLUSION

In this first analysis step to integrate WSNs into the Internet
of Things, we have considered selected application scenarios

presenting a high diversity in terms of monitored subjects
and environments. By taking into account their main char-
acteristics, we have analyzed three integration approaches and
demonstrated that they were inappropriate in their current state
to allow sensor nodes joining dynamically the Internet of
Things.

We consider applying the IP to the Field paradigm, which
implies assigning additional responsibilities to the sensor
nodes as an adequate solution to integrate WSNs with the
Internet. We have selected three important task assignments in
order to highlight the challenges emerging from the paradigm
adoption: Security, QoS, and configuration management. Their
analysis revealed that the solutions currently deployed in the
Internet are not suitable for the limited sensor node resources
and consequently, novel mechanisms have to be developed to
adapt to the capabilities and constraints of WSNs. We plan
to investigate existing approaches and find suitable modifica-
tions for resource-constrained sensor platforms to tackle these
challenges.
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Abstract—Mobility is a core feature of future networks, e.g.,
wireless sensor, wireless mesh, and mobile ad-hoc networks.
Thus the ability to generate accurate traces of mobile nodes
is an important aspect for wireless network research. Many
publications regarding wireless networks rely on simulations.
The applied mobility models are often highly abstract and
emulate human behavior poorly. Graph-based approaches try
to restrict the area of movement to street-like structures yet
they do not model real environments. MoNoTrac is a work-in-
progress framework to create mobility traces based on real maps
provided by OpenStreetMaps. Its plug-in architecture allows the
usage of custom mobility models and provides simplified access
for research in the domain of mobile networks.

Index Terms—Mobile Ad-Hoc Network (MANET), Mobility
Model, Trace, Generator

I. MOTIVATION

Wireless networks are in an emerging state since the last
decade. Wireless mesh networks (WMN) and wireless sensor
networks (WSN) are two of the most prominent examples.
Although often only considered as static networks, mobile
nodes can be part of these network architectures. In WMNs the
clients are usually mobile and roam from one mesh router to
another. Depending on the definition, the wireless mesh routers
can also show at least some limited mobility. High mobility
is introduced when clients extend the network by offering a
routing service. WSNs used for animal tracking [1], [2], to
monitor elderly [3], or for localization tasks [4] are only some
of the many example applications that also possess this property.
The disctinction into disjunct groups of WMNs, WSNs, and
mobile ad-hoc networks (MANETs) is becoming blurred as
novel applications are evolving traditional network architectures.
The future Internet and the often named “Internet of Things”
will likely possess mobile components. Thus the simulation
of mobile networks is still an aspect of current and future
scientific and industrial research. Many publications are based
on simulations [5]. However, simulations make assumptions
and have limitations that often result in conclusions that cannot
be transfered to real networks as they abstract from the reality
in many aspects [6]. Besides the used radio propagation model,
mobility models play a significant role in experiments and
their scientific soundness. To evaluate real world applications
the simulated nodes have to move as close as possible like
their real counterparts [7]. Yet many of the commonly used
mobility models emulate human or vehicular behavior poorly.
Additionally, often times an empty and rectangular movement
area is considered or a simple grid-like graph. Although

more sophisticated models for urban and suburban mobile
networks exist, these approaches have limitations. In this
paper we introduce the Mobile Node Tracer (MoNoTrac), a
work-in-progress tool to generate mobility traces based on
geographical data provided by the OpenStreetMap project. A
plug-in interface allows the customization and adaptation to
the requirements for specific experiments.

The remainder of the paper is organized as follows. In
Section II the related work is discussed. Subsequently in
Section III, MoNoTrac is introduced and its features elaborated.
Section IV lists some features for future versions of MoNoTrac
that are up for discussion. The paper closes with a conclusion
in Section V.

II. RELATED WORK

Several mobility models have been defined to generate traces
as input to other applications or alternatively to directly control
mobile nodes in a simulation environment. The most simple
mobility model random walk resembles a Brownian motion but
no human behaviour. This applies also to the random waypoint
mobility [8] and random direction models that show sharp
angles in the paths of the nodes. The Gauss-Markov model
considers recent moves of a node for the next waypoint and
generates a smoother human-like path. Animal movement can
be modeled by the Levy Walk model although it also represents
some human walk patterns [9].

None of these models often used in simulations restricts
the area of movement to real world like structures. With the
Manhattan grid model [10] the area of movement is limited to
a grid-like graph resembling some central city areas. Freeway
models try to simulate traffic flows on roads, whereas city
area models combine densely populated city centers with
suburban and rural areas. One tool making use of these
models is the Communication Scenario and Mobility Scenario
Generator (CosMos) [11] which allows to create zones where
different mobility models are applied to mobile nodes. The
nodes can move from one zone to another which is modeled
as a Markov-Chain.

Besides the artificial generation of mobile node traces,
real data is often preferred. Yet these data sets are hard
to get and require large expenses to distribute, maintain,
and operate tracking devices and the required infrastructure.
Privacy concerns aside, GSM and UMTS data is glady used
if available [12]. Only the date and time of a communication
and cell location information are available but no detailed
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Figure 1: System model of MoNoTrac.

information about the traveled path. The mobility data is only
coarse grained (macroscopic level of mobility). Simulations of
mobile networks require more detailed position information.
Further on, for the simulation of WSNs, WMNs, and MANETs
a different user behaviour and mobility can be assumed than
the one in cellular systems.

The CCC Sputnik project [13] published several traces
gathered by RFIDs from conferences, e.g, the Chaos Com-
munication Camp in 2007. The project wants to demonstrate
the problems, threats, and benefits that have to be considered
by tracking and data mining. Their movement data is limited
to conference buildings.

One of the major problems with real traces is that they cover
a limited time span that cannot be extended at will. For the
sound simulation of mobile networks multiple traces of mobile
nodes in the same environment are required.

Several applications try to provide the user with more
realistic traces based on real maps. Street maps in the MapInfo
MIF/MID-format are used by the random waypoint city
model [14] to simulate vehicular movement. Saha and Johnson
[15] used maps from the Topologically Integrated GEographic
Encoding and References (TIGER) database provided by the US
Census Bureau for their mobility model of vehicular traffic. The
Mobility model generator for VEhicular networks (MOVE) [16]
is a tool that uses user or randomly generated maps as well as
maps from the TIGER database. It is built on top of SUMO a
micro-traffic simulator [17]. Generated traces can be imported
by ns-2 or Qualnet. The TIGER database seems to be a popular
source of maps but it only comprises US street maps and
provides limited information, e.g., no speed limits or no one-
way roads.

III. MONOTRAC

MoNoTrac is a work-in-progress framework to generate
mobility traces based on mobility models and real map data.
Scenario descriptions, which consist of a movement area,
mobile nodes, mobility models, and a simulation time are
used as input for MoNoTrac to generate mobility traces. The
application is based on Java 6 and published under the GPL.

Users create a scenario by selecting a region with streets,
roads, and public transportation stations from a repository of
geographic data that serves as movement area of mobile nodes.
In a next step, the number and type of mobile nodes are added
to the scenario description. A mobility model is applied to

each participating node. The implemented mobility models are
available as plug-ins. This software architecture allows the user
to extend MoNoTrac with custom mobility models. Finally a
runtime is specified for the scenario.

Based on the scenario description, MoNoTrac generates
mobility traces in a meta format based on XML. This format
is designed in a way, that a translation script can automatically
convert the generated mobility traces to input formats of popular
simulation environments such as ns-2 and OMNeT++. Thus,
mobility traces based on real map data can be easily integrated
into custom wireless network simulation scenarios. The system
model and workflow of MoNoTrac is shown in Figure 1. With
the focus on the usability and simplicity to define scenarios and
generate mobility traces, a rapid trace generation is achieved,
which we missed in other tools.

The maps of the OpenStreetMap project are used for the real
world map data sets. The vector format based OpenStreetMap
data are parsed and transformed to a graph representation and
stored in a relational database1. The main window of MoNoTrac
is shown in Figure 2. On top of the rendered OpenStreetMap
map data the extracted graph is drawn. The user can draw any
polygon to specify the movement area of the mobile nodes.
The movement area can be bounded or boundless. Thus nodes
can leave, enter, and reenter the simulation area if required.

The number, type, and distribution of mobile nodes can be
specified. Currently, the types pedestrian and car are supported.
These types of nodes are limited in their movement to the
appropriate edges of the graph based on the values provided
by the OpenStreetMap data. The nodes move according to the
specified mobility model. At the time being, the random walk,
random waypoint, and a variant of the manhattan grid model
are implemented as plug-ins for MoNoTrac.

IV. OUTLOOK AND TOPICS OF DISCUSSION

A first release candidate of MoNoTrac will be soon avail-
able at http://des-testbed.net. The application is under heavy
development. Currently the map of the Berlin area has been
preprocessed and stored in a database.

In the next step an online processing is required to make all
areas available for MoNoTrac. Also the possibility to visualize
the generated mobility traces will be implemented. Several
extensions are envisioned. First of all, different models shall
be usable for particular zones with inter-zone mobility similar
to CosMos. Temporal mobility characteristics, e.g., rush hours
are considered. While they can be part of a loaded mobility
model, the framework should provide support to dynamically
modify the configuration. We also like to incorporate the public
transportation system to provide further “roads” for pedestrians.
While extracting the public transportation lines from the maps is
feasible, there is no general and easy way to provide schedules
for the public transportation vehicles. MOVE supports bus
timetables but they have to be specified by the user which is a
labour-intensive task. To increase the accuracy of simulations
based on the generated traces additional information could be

1The graph presentation is kindly provided by the Databases and Information
Systems research group at Freie Universität Berlin. Thanks to Joos-Hendrik
Böse and Jürgen Bross.
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Figure 2: Mainwindow of MoNoTrac. Currently a trace is generated.

provided based on the OpenStreetMap data, such as the road
type and according speed limits. To adapt the radio propagation
to the environment several environmental parameters could be
extracted, e.g., where living, industrial, and office areas are.

V. CONCLUSION

Simulation environments are one of the most important
tools of scientific research of mobile networks. For life-like
simulation of real world applications the most often used
simple mobility models do not generate data resembling human
movement patterns. As real traces of mobile nodes are of
limited availability, their generation based on map data has been
of interest in the last years. In this publication we introduced
MoNoTrac a framework to create traces of mobile nodes. Data
from the OpenStreetMaps project is used together with user
supplied mobility models via a plugin infrastructure to create
input for various simulation environments.
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Abstract—This report presents a hardware driver for the Ram-
tron Ferroelectric RAM (FRAM, FeRAM) chips for use in Ti-
nyOS according to TinyOS' Hardware Abstraction Architecture. 
FRAM is a replacement for flash memory, suitable for usage in 
Wireless Sensor Networks (WSNs) for its properties. The proper-
ties of FRAM and flash are shortly depicted and compared. The 
design of the driver implementation is described, including a chip 
clustering method to circumvent the capacity limitation. The 
driver offers the DirectStorage interface and the BlockStorage 
interface for usage by applications. Comments on the suitability 
of the provided interfaces, intended for flash memory originally, 
for FRAM are given.  

Index Terms—TinyOS, FRAM, driver, hardware abstraction 
architecture 

I. INTRODUCTION 
In this report, TinyOS, TinyOS drivers and FRAM are in-

troduced shortly. Then, the architecture of the driver imple-
mentation is shown, the clustering of several chips is described 
and finally the suitability of existing TinyOS flash storage 
abstractions is assessed. 

A. TinyOS and its Driver Model 
TinyOS is an operating system and library of code compo-

nents for sensor networks. The further development is done by 
working groups and by user contributions. Working groups can 
issue TinyOS Extension Proposals (TEPs), specifying best 
practices for new code contributions. 

TEP2 [1] is one of the central TEPs for TinyOS 2.0. It de-
scribes a hardware abstraction architecture (HAA). The HAA 
specifies a three-layered architecture for driver implementa-
tions. The three layers comprise the hardware presentation 
layer (HPL), which exposes the hardware's capabilities direct-
ly, the hardware adaptation layer (HAL) which abstracts the 
hardware and allows to maintain states in software, and the 
hardware interface layer (HIL) which offers a standardized 
platform-independent interface for applications, irrespective of 
the underlying hardware components. Drivers reside in a chip 
directory by convention, with some additional code in a plat-
form directory where code is placed which states the platform 
specifics, like specific hardware pins. 

B. Ferroelectric RAM (FRAM) 
FRAM is a relatively new memory technology which com-

bines the best from static RAM memory (fast, energy efficient) 

and flash memory (non-volatile). It is based on a ferroelectric 
material which retains its state even when currentless. FRAM 
is a suitable replacement for flash. 

TABLE I. shows a simplified comparison between flash 
and FRAM memory properties. Please note that the values for 
a specific application have to be taken from the actual data-
sheet of the actually used chip. Values may vary greatly, espe-
cially for the energy consumption per stored bit as this depends 
not only on the used chip, but also on the calculation model, 
e.g. the assumptions made with respect to read-write cycle 
times and the assumed bus speed. Hence, the data is only given 
to stress some main differences. These are: (1) the durability in 
terms of write cycles. This is irrelevant for many applications 
however. (2) The capacity which is in favor of flash memory 
since being in a later stadium of the development cycle and the 
smaller manufacturing processes. (3) The energy effort to store 
a bit. This is an important quantity in WSNs for the power 
limitations imposed to the system owing to the desired auto-
nomous operation over long time periods. 

TABLE I.  SIMPLIFIED FLASH–FRAM COMPARISON 

Comparison with 
respect to … 

Type of Non-Volatile Memory 
flash FRAM 

Available Interfaces SPI/I2C/Parallel SPI/I2C/Parallel 

Sleep Mode Current 1 µA 1 µA 

Data Retention > 10 a > 10 a 

Write Cycles ~ 105 ~ 1010 

Capacitya ≤ 32 Gibit (parallel) 
≤ 128 Mibit (SPI) 

≤ 4 Mibit (parallel) 
≤ 2 Mibit (SPI) 
≤ 1 Mibit (I2C) 

Energy 
Consumptionb 90 nJ/bit 1.1 nJ/bit 

Write Speed/bytec ~ 10 µs ~ 400 ns 

a. Development is making rapid progress. This is a snapshot view only. Capacity varies 
with physical chip/die size. 

b. These values differ greatly with the usage model used for calculation and the actual chip. 

c. Depending on bus speed, data unit size and others. 

 

Ramtron, Colorado Springs, CO offers FRAM chips with 
SPI bus which are meant to replace serial flash memory. The 
SPI protocol used is similar to the one of flash chips. Pin com-
patibility is also given. It is therefore easy to replace flash by 
FRAM. The realization here is for the FM25H20 type. 

This work was funded by the 7th Framework Programme of the European 
Commission. 
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II. IMPLEMENTATION 
The implementation follows that of the STM25P flash chip 

by Hui [2]. The components should reside in tinyos-
2.x/tos/chips/fm25h and platform/<platform-
name>/chips/fm25h. However, the contribution resides at ti-
nyos-2.x-contrib/ustutt where it can be retrieved from.  

A. Hardware Presentation Layer (HPL) 
The HPL offers no erase and pageProgram commands, but 

offers a write command instead. In FRAM writes are possible 
without prior erase. The write command operates on data units 
of down to single bytes. Flush is not implemented since data is 
always written through. Sleep mode support is available.  

B. Hardware Adaptation Layer (HAL) 
Two HAL implementa-

tions are offered: one simp-
ler HAL for single chip 
mode and a ClusterHAL 
component for clustered 
operation of several chips 
under a flat, continuous 
address space. Standard 
wiring uses the single chip 
HAL. The single chip HAL 
is similar to the STM25P 
implementation. 

C. ClusterHAL 
While the FRAM offers 

some advantages over flash 
memory it still offers less 
capacity. This is due to the 
smaller packing density, 
which is caused by the larger 
manufacturing process sizes 
and the ferroelectric material 
properties. 

We therefore had to bun-
dle several chips to get a 
memory size comparable to 
the 1 MiB of the TelosB 
which were used as reference. The resulting cluster was desired 
to act like one big memory under a unified address space. This 
means a dispatcher has to handle accesses to the unified ad-
dress space and direct them to the corresponding chip. The 
dispatcher is provided on the HAL layer. This has the advan-
tage of having the HPL unchanged for cluster or single chip 
operation. Furthermore, HPL can be stateless and "present" just 
the operations the FRAM offers. However, the layering in this 
approach is not strictly adhered to as for clustered operation the 
IO pins are handled by the HAL, transparently to the HPL (see 
Figure 1). The HPL just accesses the chip select (CS) to acti-
vate the large virtual chip (of which the HPL is ignorant of) 
and the HAL activates the appropriate physical chip deter-
mined by the memory address that is accessed. Memory ac-
cesses across chips are split into several separate operations. 
Other approaches are conceivable and can be implemented 
later. E.g., a strictly layered architecture would access several 
individual HPLs, but code is replicated then. 

D. Hardware Interface Layer (HIL) 
For a description of two prototype implementations of HIL 

refer to chapter III. The implementation here follows the 
STM25P implementation. 

III. SUITABILTY ASSESMENT OF FLASH ABSTRACTIONS 

A. BlockStorage Interface (TEP103) 
TEP103 [3] standardizes three fundamental storage abstrac-

tions found in typical sensor network applications: BlockSto-
rage for program memory, ConfigStorage for little chunks of 
configuration data and LogStorage for data logging application. 
TEP103 aims solely at flash memory and incorporates special-
ties of flash memory. However, the flash functionality is a 
subset of FRAM functionality, i.e. FRAM has fewer restric-
tions to consider. It should therefore be possible to realize these 
storage abstractions for FRAM. For workload restriction, of the 
three storage abstraction of TEP103, only the BlockStorage 
was implemented exemplarily. 

B. DirectStorage Interface (TEP128) 
TEP 128 ([4], draft version) describes an interface for direct 

access to non-volatile storage. It offers read, write, erase, flush 
and crc commands. It differs primarily in two points from the 
abstractions of TEP103: (1) the interface is an application in-
different general purpose interface, and (2) the implementation 
(in conjunction with the VolumeSettings interface) is platform 
independent. TEP 129 describes a new set of BlockStorage, 
ConfigStorage and LogStorage which resides above the plat-
form-independent intermediate DirectStorage interface. 

There are some comments to the DirectStorage interface 
which occurred during implementation of the interface. Due to 
the missing sector size of FRAM, the sector size can artificially 
be set to either an arbitrary size (for easier programming a 
fraction of a power of two) or it can be set to 1 which is the 
natural sector size of FRAM. This leads to two consequences: 
(1) the volume information structure fm25h_volume_info_t 
which is set in the tool tos-storage-fm25h should define both 
base and size as uint32_t instead of unit8_t to accommodate the 
larger size numbers (this is internal to the chip specific tool 
chain and has no consequences to the interfaces), and (2) the 
erase command's parameter eraseUnitIndex (and the corres-
ponding eraseDone event's) should likewise be uint32_t, in-
stead of uint16_t. This results from the erase unit size which is 
of size 1 as well. However, here the advantage of an artificially 
introduced larger erase unit size becomes obvious. For erasing 
larger memory regions less function calls were necessary then.  

A last comment is given on the DirectModify interface sig-
nature. It is perhaps preferable to name all completion events in 
the same manner and so rename the completion event of modi-
fy(…) to modifyDone(…). 

IV. CONCLUSION 
FRAM can replace flash memory when low-power opera-

tion in combination with short write access times is of impor-
tance. Drawback is the smaller maximum capacity per chip. If 
the capacity is a limiting factor, several chips can be clustered 
as proposed. Several HIL interfaces originally intended for 
flash memory were successfully implemented. Recommenda-

Figure 1. HAA of the clustered opera-
tion: the HPL is ignorant of the actual-
ly used chip as this is dispatched by 
the HAL (GeneralIO interface) 
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tions were made to the DirectStorage and DirectModify inter-
faces, both being still in draft status and open for changes. 
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Abstract—In many application scenarios of wireless sensor
networks parts or the whole network consist of mobile sen-
sor nodes. Currently, no common platform is available. This
paper describes a project that has developed a mobile sensor
node, based on standard components: a Crossbow IRIS mote
and LEGO MINDSTORMS NXT components, i.e., motors and
sensors.

I. INTRODUCTION

Wireless sensor networks consisting of mobile nodes are
currently a growing research area [1], [2], [3]. In these
scenarios often only few nodes of the network are mobile.
Therefore, it is important that the mobile nodes are able to
communicate with static nodes. Since a general mobile sensor
network platform is not available, often self-developed mobile
sensor nodes are used [4]. A standard sensor node is attached
via an adapter hardware to an existing robot platform. In
most cases the robot platform or the adapter hardware has an
additional micro processor, which increases the complexity of
software development. In this paper the mobile sensor network
platform tinyMoBot is presented. A circuit board without a
micro controller is used as an adapter. Enabling a Crossbow
IRIS mote to directly operate with LEGO MINDSTORMS
NXT motors and sensors. This decreases the complexity of the
resulting mobile platform since software needs to be developed
for one target platform only. Other benefits of this solution are
the low hardware complexity and the relatively low cost of the
adapter. The rich arsenal of available LEGO components make
this an attractive platform.

II. THE TINYMOBOT ADAPTER

Figure 1 provides an overview of the main components
of the tinyMoBot adapter and how they are connected. The
ATMega1281 on the IRIS mote is connected via the 51-
pin socket with the adapter. Since the adapter is mounted
on a robot, removing the IRIS mote for reprogramming or
debugging is not feasible. Therefore, the adapter provides
appropriate interfaces so that there is no need to disconnect the
IRIS mote. An ISP header is available for programming the
IRIS mote while it is connected. The adapter also provides an
USB connector to enable serial communication with the IRIS
mote, which is convenient for debugging purposes.

To be flexible in its use, the adapter provides almost the
same connectivity capabilities as the LEGO MINDSTORMS
NXT brick. The adapter consists of six sockets for connecting
up to three motors and three sensors. It also supports every

Fig. 1. Components of the tinyMoBot Adapter

type of LEGO sensors available. Currently, there are three
types of sensors: active sensors, passive sensors, and digital
sensors. Active and passive sensors are sensors that provide
an analog voltage, representing their measurements. Digital
sensors a controlled via the I2C protocol. Additional circuit
is needed in order to support the different sensor types. As
seen in Fig. 1 the different components of the robot and the
IRIS mote require different supply voltages. Since it is not
feasible to carry multiple sets of batteries, voltage regulators
are used to create the different voltages from the standard
LEGO voltage of 9 V.

III. REALIZATION OF THE ADAPTER

In this section the realization of the tinyMoBot adapter is
briefly described. The board was developed during a project
work at Hamburg University of Technology [4]. EAGLE from
Cadsoft was used for developing the circuit diagram. TinyOS
components are available to handle the different hardware
components. Figure 2 shows the layout of the finished adapter.

Because of limitations of the ATMega1281 and to simplify
the design of the adapter its supports only digital sensors on the
first sensor socket. Active and passive sensors are supported
on all three ports. Analog sensors provide an analog output
voltage between 0 V and 5 V. By using a voltage divider this
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Fig. 2. Final Layout of the Adapter

Fig. 3. Schematic of a Motor Port

output voltage is limited to a maximum of 3.3 V, in order to
use the sensors directly with the ADC of the IRIS mote.

LEGO MINDSTORMS NXT motors are DC motors and
the speed is controlled utilizing PWM. The adapter consists
of motor driver ICs to enable the ATMega1281 to control the
motors directly. The LEGO MINDSTORMS NXT motors also
provide a tacho signal that delivers an accurate measurement
of the current speed. These signals are connected to interrupt
lines of the ATMega1281.

Figure 3 shows the schematic of the first motor port, which
is same for all three ports. DRIVER1 is the motor driver
IC used to drive the motors. The driver IC also limits the
maximum current of the motors for preventing damages. The
IC does this by temporarily switching off the current. The
length of this period is determined by the time constant of
the RC circuit consisting of C4 and R2. The IC measures
the actual current, by using the voltage drop over R5. The
lines MOTOR1 BRAKE, MOTOR1 PWM, etc. are directly
connected to the ATMega1281 and are used to control the
motor. As the tacho signals of the motor use 5 V, they
cannot directly be connected to the ATMega1281, which uses
3.3 V. Inverting Schmitt triggers IC1A and IC1B are utilized
therefore.

A switching voltage regulator is used to provide 5 V from
the supply voltage of 9 V, then a linear LDO voltage regulator
is used to provide 3.3 V. The 4.3 V are created by using the
5 V and the voltage drop of a diode. The adapter works in a

TABLE I
ENERGY CONSUMPTION WITH A SUPPLY VOLTAGE OF 7.5 V

Action Measurement
no movement, sleep mode (calculated) 25 mA
no movement, radio enabled 30 mA
straight driving 270 mA
turn driving 300 mA
maximum speed 0.28 m

s

voltage range between 6 V and 9 V. As the motors are driven
directly by the supply voltage, the speed of the motors will be
slowed down when the voltage drops.

IV. EVALUATION

Table I shows the energy consumption of the completely
assembled robot. Under the assumption of batteries with
2000 mAh the robot should be able to drive for about 6.6 h.
During that time the robot would travel a distance of 6.72 km.

The adapter draws a relatively high current of 25 mA even
in sleep mode. This relative high consumption is due to the
following effects. A fixed consumption of 7 mA for each motor
(in this case 14 mA) that is plugged must be assessed. The
reason for this may be some internal details of the LEGO
motors. The motor driver ICs are another source for this high
consumption. Each of the ICs have a leakage current of 1 mA.
Unfortunately, the voltage regulator that provides the 5 V has a
very low efficiency at low current output, so that is takes a few
mA even if no current is needed at the output. Additionally, the
voltage dividers used on the board have a current consumption
of around 1 mA. In a next version of the board these leakages
must be considered in more detail.

The adapter board was successfully used in a student
project to develop a remote control for the tinyMoBot. The
software of the remote control is executed on a separate IRIS
mote equipped with an acceleration sensor. Based on gesture
recognition the remote control creates movement commands.
These are transmitted wirelessly to the tinyMoBot.

V. CONCLUSION

The tinyMoBot is currently used in programming courses
at Hamburg University of Technology. In the near future a
new hardware revision should resolve the existing problems,
especially the high current consumption in sleep mode.
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Abstract—The paper presents an approach of applying DCF77 

time radio signals to provide a clock with global time in sensor 

networks based on TinyOS. Some nodes containing DCF77 re-

ceiver hardware reliably decode time signals even if these are 

distorted to some extent. The clock with global time is provided 

by compensating clock drift. Time is distributed in the network 

with a protocol generating timestamps on the MAC layer. 

I. INTRODUCTION 

Sensor network nodes contain their own local clocks. Fre-
quently these are synchronized in the network or between 
neighboring nodes as required for several algorithms (internal 
synchronization). In most cases synchronization is not per-
formed to global time because this would require a suitable 
time source. On the other hand, global time is required if data 
is measured on several nodes, aggregated, and should be inter-
preted outside the network.  

This paper thus analyses how clocks in sensor networks can 
be synchronized to global time (external synchronization). It 
assumes the use of radio time signals as time source, which are 
transmitted in several countries. It discusses how these signals 
can be evaluated reliably in hardware and software, how local 
clocks can be synchronized to it, and how time can be distrib-
uted in the network. TinyOS and IRIS nodes are assumed as 
platform for a demonstrator. 

II. CLOCK SYNCHRONIZATION IN SENSOR NETWORKS 

Two important protocols for time synchronization in sensor 
networks are the Flooding Time-Synchronization Protocol 
(FTSP) [1] and the TimeSync Protocol for Sensor Networks 
(TPSN) [2]. Both select a leader node whose local clock acts as 
time source. Its time is periodically broadcasted in packets also 
containing identification information. Other nodes receive and 
store it in conjunction with their local reception time and esti-
mate the global time. With FTPS each node immediately re-
transmits the packets. In contrast, with TPSN the local estima-
tion of global time is sent to other nodes in a tree structure. 

TinyOS implements its local clock in software increment-
ing an integer from system start with 1kHz, 32kHz, or 1MHz. 
It implements clock synchronization in module TimeSyncC [3] 
as a combination of TPSN and FTSP. A tree of nodes is estab-
lished using the node with lowest ID as root. Timestamps are 
generated at MAC layer when packets are sent or received [4]. 

This makes transmission time for timestamps small and deter-
ministic, resulting in a higher accuracy clock synchronization, 
since the delay for waiting for a free channel is not included. 

III. DCF77 RECEIVER HARDWARE 

To implement a clock with global time, a sensor network 
needs a source of the global time to be distributed in the net-
work. Candidates are satellite systems (e.g. GPS) as well as 
terrestrial radio transmitters available in several countries. The 
latter requires receiver hardware with less complexity and 
lower energy consumption and is more suitable for sensor net-
works. The paper thus assumes the use of Germany’s terrestrial 
long wave time transmitter DCF77. Its utilization requires re-
ceiver hardware contained in one, some, or all sensor network 
nodes.  

The DCF77 time signals are transmitted on 77.5 kHz by the 
Physikalisch Technische Bundesanstalt close to Frankfurt. Its 
transmission range of 2000 km spans most of central Europe. 
Date and time are transmitted in packets with 1 bit/s. Bits and 
packets are exactly aligned to seconds and minutes of global 
time respectively. It is modulated with amplitude (AM) and 
phase modulation (PM). The latter permits decoding with 
higher accuracy and reliability. On the other hand, decoding 
AM allows much simpler hardware and three orders of magni-
tude less energy. It is thus more suitable for sensor networks 
[5].  

The DCF77 receiver hardware module for IRIS nodes 
shown in Fig. 1 has been developed using AM demodulation 
[5]. It is based on the receiver module EM6 DCF with a ferrite 

Figure 1.  DCF77 receiver hardware developed for IRIS nodes 
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antenna of HKW-Elektronik requiring 250 µA in a voltage 
range between 1.1 V and 3.6 V. The module is directly con-
nected to the IRIS node’s 51-pin expansion connector without 
voltage regulator. An IO pin is used as power supply allowing 
power-down to save energy. An interrupt line reads the de-
modulated, digital DCF77 signal. Two more switches con-
nected to IO pins are used to enable test software for debugging 
and adjusting antenna. The antenna has to be mounted at least 
1cm from the IRIS node to not obstruct reception.  

IV. DECODING DISTORTED SIGNALS WITH HIGH ACCURACY 

The receiver’s digital signals have to be decoded by the 
sensor node’s controller in software. Signals can be distorted, if 
radio reception is poor, e.g. due to unfavorable orientation of 
the antenna. The decoder needs to gracefully handle distortion 
and still regenerate time with high accuracy.  

A combination of interrupt driven edge detection and peri-
odic sampling should be applied to detect the edges of the re-
ceiver’s distorted, digital signals with high accuracy and low 
processing time. Distortion results in quick erroneous changes 
between high and low as shown in Fig. 2 depicting two bits. 
Detecting all edges with interrupts would lead to a high inter-
rupt rate requiring a lot of processing time. On the other hand, 
sampling with a reasonable rate reduces accuracy of edge de-
tection and thus clock accuracy. The combination applies inter-
rupts to detect falling edges marking the exact start of a second 
of global time. Afterwards a low sampling rate is used to de-
termine the intended rising edge distinguishing 1 and 0 bits.  

Distortion and processing in the receiver can shift the fal-
ling edge’s position reducing clock accuracy. The latter is a 
property of the receiver, leading to a delay of up to 3 ms for 
module EM6 DCF in case of good signal quality. Distortion 
leads to varying delays. Measurements have shown that it can 
be reduced to 1 ms using Exponentially Weighted Moving Av-
erage (EWMA). 

V. A GLOBAL TIME CLOCK FOR TINYOS 

Node time synchronization is performed using timestamps 
received every minute and the falling edges of the DCF77 sig-
nal marking every second. Local node time depends on the 
internal or external oscillator of the microprocessor, so that 
clock drift is inferred. The latter has been observed to be as 
large as multiple seconds per day on the IRIS platform. Fur-
thermore, clock drift is not a constant scaling factor, but varies 
among nodes and depends on the temperature. 

As a result, we estimate the clock drift by comparing the 
local and global times elapsed since the last synchronization, 
i.e., timestamp generation via the DCF77 module. Smoothing 
of the estimation is performed using EWMA. An update-
parameter α=0.8 has been empirically determined and used in  

 measureold ccc ⋅−+⋅= )1( αα  (1) 

Besides updating the clock drift compensation factor c, the 
synchronization module stores the local time tsync and the global 
time Tsync of the current synchronization process and discards 

earlier values. Global time Tt can thus be estimated at any (lo-
cal) time t ≥ tsync via 

 )( syncsynct ttcTT −⋅+=  (2) 

VI. DISTRIBUTING TIME IN THE SENSOR NETWORK 

The global time must be distributed in the sensor network 
by radio if some nodes do not have a DCF77 receiver or cannot 
receive the time signal, e.g. due to bad reception conditions. In 
TinyOS this can be implemented based on the available mod-
ule TimeSyncC (see section II). The module must be adapted 
to forward received packets as described for FTSP. In case of 
several nodes having access to external global time, the node 
with the best signal quality should be selected as leader.  

Energy restrictions make leader selection an awkward is-
sue. Nodes should remain in sleep mode and with radio re-
ceiver switched off as much as possible to save energy. Thus 
the reception of packets cannot be guaranteed. Dynamic 
changes in the network topology, such as the announcement of 
a new leader, are therefore hard to treat. An algorithm can deal 
with the issue in two ways. It can ignore energy issues leaving 
the radio transceiver in operation all times. Alternatively it can 
allow power save operation assuming a fixed leader sending 
timesync packets in fixed time intervals among which receiv-
ing nodes can sleep. 

VII. CONCLUSION 

DCF77 and similar radio time signals are an advisable 
global time source for sensor networks. Some nodes containing 
low power receivers listen to the omnipresent signals free of 
charge and distribute time to other nodes by radio. Good accu-
racy and low processing time are feasible even if signals are 
distorted to some extent. Simple arithmetic models allow syn-
chronizing local clocks by adjusting clock drift. 
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Figure 2.  Digital signal with two distorted bits: 0 (left) and 1 (right) 
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Abstract—Long living and unattended deployments of wireless
sensor networks requires fault-tolerant solutions. Self-stabilizing
algorithms are providing these properties in an elegant and
verifiable way. Recently, a lot of research has been performed to
determine appropriate means to apply these promising technique
to wireless sensor networks. In this paper the current state of
the art in this field is given. Additionally, three major challenges
are presented for achieving self-stabilizing sensor networks.

I. INTRODUCTION

Wireless sensor networks (WSNs) are operating under inher-
ently instable conditions. The notoriously unreliable wireless
communication facilities and environmental influences lead
to highly dynamic conditions that in turn lead to frequent
communication topology changes and other disturbances. The
fact that WSNs usually are intended to run unattended for
several months or years necessitates facilities that handle
these dynamics in a self-acting manner. The concept of self-
stabilization, introduced by Dijkstra in 1974 [1], comprises
many properties that are helpful in this context. In fact a
self-stabilizing system has embedded mechanisms to react
to disturbances and faults in a self-controlled way. These
mechanisms provide for the ability of the system to move
from any faulty state to a safe one in bounded time. This
property is called convergence and is augmented by closure,
which additionally guarantees, that no move made by a self-
stabilizing algorithm may lead to a faulty state. For an existing
algorithm it can be shown formally, that it possesses both
properties and thus is self-stabilizing. Self-stabilization can be
regarded as a completely novel approach to fault-tolerance.
Instead of specifying faults that may occur and creating al-
gorithms that are robust against these particular faults, simply
the set of desired system states is specified and algorithms are
formulated such that these states are eventually reached after
a fault occurred. This kind of fault-tolerance is also called
non-masking fault tolerance, because faults are not (and need
not be) detected as such and thus no measures to mask their
effects can be taken.

In the following section we will introduce the concept
of self-stabilizing algorithms and their application in WSNs.
After that we will present three major challenges still to be
met for applying self-stabilizing algorithms to WSNs. Finally,
we will conclude by giving an outlook of work to be done.

II. SELF-STABILIZATION IN WSNS

Figure 1 shows a simple example for a self-stabilizing
algorithm: it constructs a maximal independent set (MIS) as
described in [2], which can be used as a basis for clustering.
The membership of a node in the independent set is indicated
by setting the variable in to true. Such an algorithm typically
consists of a set of rules, which in turn consist of a guard (left
of→) and a statement (right of →) that shall be executed when
the guard evaluates to true.
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v.in = false ∧ ∀ w ∈ N(v) : (w.in = false)

→ v.in := true

v.in = true ∧ ∃ w ∈ N(v) : (w.in = true)

→ v.in := false

Fig. 1. Maximal Independent Set [2]

Obviously it is necessary to define the exact semantics of
these rules. There are two main questions that come to mind
when looking at the algorithm in Fig. 1. The first thing to
notice is, that the rules access variables of neighboring nodes.
For the formal model often a special shared memory model
is used. First of all the variables can be divided in public and
private ones. Private variables can solely be accessed by the
corresponding node. It is assumed, that each node can read
the public variables of its direct neighbors but only the owner
of a public variable can write it. To achieve this in WSNs,
it is mandatory to provide the nodes with a reasonably stable
view of their neighborhood. Therefore, this view has to hide
the continuous fluctuations of the wireless link’s quality from
the algorithm. Mahalle [3] is a neighborhood protocol that
achieves this and was developed especially for self-stabilizing
algorithms. When this view is established, nodes can exchange
the contents of their public variables on a regular basis with
their neighbors and maintain a cache for each neighbor. The
guards are then evaluated based on the cached values. This
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communication model was introduced by Ted Herman [4] who
called it cached sensornet transformation.

The second question is: when are the guards evaluated and
the statements executed? First of all execution is assumed to
take place in rounds, which seems to imply a synchronous
system (which was indeed assumed at first) but the concept
of rounds can also be extended to asynchronous systems,
when the algorithm does not depend on knowledge about
these rounds. Many approaches of self-stabilizing algorithms
require, that no two neighboring nodes can execute a statement
concurrently. That greatly simplifies the algorithm analysis and
the proofs of the self-stabilizing property. The requirements are
embodied by an abstract entity called daemon. The so called
central daemon selects exactly one node per round and thus
trivially achieves mutual exclusive execution of neighbors.
This execution model is of course too restrictive to be applied
in a realistic environment. Therefore, a more flexible model,
the distributed daemon is introduced. Here in each round a
subset of size N is selected to make a step concurrently.
This model covers the central daemon (for N = 1) as well
as the synchronous model where all nodes execute in each
round (when N is set to the total number of nodes in the
network). A node is called enabled, if one of its guards
resolves to true. When an enabled node is selected, it executes
the corresponding statement.

Algorithms developed for a central daemon often do not
stabilize under a distributed or synchronous daemon due the
concurrent execution within the neighborhood. The MIS algo-
rithm depicted in Fig. 1 is an example of such an algorithm. To
solve this so called transformations have been proposed [4]–
[7]. They convert algorithms designed for such abstract models
into semantically equivalent algorithms that stabilize under
weaker assumptions.

III. MAJOR CHALLENGES

Applying self-stabilizing algorithms in the field of WSNs
to increase the fault-tolerance is currently an active research
area [4], [7]–[11]. In this section we will present the most es-
sential challenges for utilizing the benefits of self-stabilization
for WSNs.

A. Appropriate Programming Abstractions

One major concern is an appropriate programming abstrac-
tion that preserves the simplicity of the algorithms as well as
the self-stabilizing properties. It is thereby very desirable to
keep the algorithm description language independent of WSN
specific details like the model transformation applied or the
neighborhood protocol used. One major step in this direction
is SelfWISE a programming abstraction designed for applying
self-stabilizing algorithm in WSNs. It consists of the SelfWISE
framework that is the runtime environment for executing self-
stabilizing algorithm and a language to express those algo-
rithms. Figure 2 depicts the MIS algorithm presented above
in the SelfWISE language. For a more complete description
of the SelfWISE framework and language see [10].

SelfWISE allows the application of self-stabilizing algo-
rithms to WSNs by generating appropriate C/C++ code that
can be run in a framework. Additionally, transformations
that allow to conserve the self-stabilizing properties when
communication takes place in a wireless ad-hoc network can
be integrated. To fully guarantee preservation of the self-
stabilizing properties it will be also necessary to investigate
the influence of the compiler and the operating system. Here
the development of techniques that preserve self-stabilization
is mandatory for accomplishing the goal of completely fault-
tolerant WSNs.

Self-stabilizing algorithms use some notion of neighbor-
hood, which is not always merely the 1-hop communica-
tion neighborhood but may also span 2-hop communication
distance or be defined by other means than communication
neighborhood. A programming language for self-stabilizing
algorithms must provide appropriate abstractions for such
neighborhood notions. These abstraction must be designed
such that they allow for efficient implementations with a low
memory footprint. One could imagine communication models
that provide access to the state of nodes in such alternative
neighborhoods. The transformation that implements such an
abstraction has to make a trade off between flexibility and
energy consumption. To give developers control over this
crucial performance aspects the programming abstraction must
provide means to specify the desired trade off.

B. Efficient and Scalable Model Transformations

When concerning the communication model, the aforemen-
tioned cached sensornet transformation from Herman is widely
regarded as appropriate for WSNs. For the execution model
several proposals exist for transforming algorithms written for
the central daemon such that they can be run in WSNs while
self-stabilization is preserved. Transformations of the execu-
tion model ensure the exclusive execution within each neigh-
borhood under the distributed or synchronous daemon. The
idea behind these transformations is to break the symmetry by
using unique identifiers or randomization. A strict transforma-
tion converts the algorithms in such a way that the execution
of the resulting algorithms is equivalent to an execution under
the central daemon. An algorithm A is transformed into A′

such that only one node in each neighborhood performs a
move of A concurrently. Examples for strict transformations
are the deterministic conflict manager (CMD) [5] that uses
unique node identifiers and BitToss [6]. The latter elects a
neighbor by a Bernoulli trial until solely a single node is
enabled. The main drawback of these strict transformations is
the limited concurrent activity, exactly one node within each

algorithm MaximalIndependentSet;
public bool in;

rule R1:
in = false and forall(Neighbors v : v.in = false) −> in := true;

rule R2:
in = true and exists(Neighbors v : v.in = true) −> in := false;

Fig. 2. Maximal Independent Set [2]
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neighborhood executes its statement. Often this limitation is
too restrictive and a higher degree of concurrency is needed.
Algorithms converted by a weak transformation produce an
execution that may not be possible under a central daemon.
The reason for this is the fact that nodes may perform a
move within a neighborhood concurrently. The idea is that
potential deceptive statement executions are resolved after
some time, but with the advantage of a faster convergence.
Examples for weak transformations are the randomized con-
flict manager (CMR) [5] and the randomized transformation
introduced by Turau and Weyer [7], which both lead to a
probabilistic convergence. The latter reference also proposed
a transformation that is even self-stabilizing in the case of
occasional message losses.

A good metric for the quality of transformations is the
average convergence time they yield for different algorithms. It
could be shown that the transformation from [7] performs best
with respect to average convergence time [12]. Nevertheless,
all transformations regarded in [12] rather impose an abstract
model on top of a WSN instead of integrating the algorithm
more tightly. A rewarding goal would be a lightweight trans-
formation which utilizes the characteristics of the wireless
channel to increase efficiency.

C. Application Field of Self-Stabilization in WSNs

Another major concern is to find fields of application
in WSNs where the benefits of self-stabilization show to
advantage best. The fault tolerance added by self-stabilizing
algorithms is the very first property that comes to mind.
This alone is not necessarily a sufficient argument for their
use, because the gain in fault tolerance must be carefully
compared with other approaches to decide if self-stabilization
is the method of choice. Methods for assessing the fault
tolerance measure of self-stabilization are currently studied
and developed (e. g., see [13]).

But there is more to self-stabilization than fault tolerance.
The inherent flexibility of self-stabilizing algorithms seems
to be especially well suited to deal with the dynamics of the
wireless medium. Due to this the network topology is bound to
the changes over time. The knowledge of the network topology
is often needed to achieve efficient message transport. The
efficiency suffers greatly from topology changes, since with
each change the topology must be built newly. Here self-
stabilizing algorithms could help to maintain the topology
information even in the presence of changes. It is the inherent
locality of these algorithms (only operating on their own and
their neighbor’s states) that promises fast adaptation.

Another interesting aspect is the convergence property of
self-stabilizing algorithms. It is shared by other lightweight
approaches that aim for achieving scalability. For instance the
concept of eventual consistency is a lightweight consistency
model first introduced for distributed databases. It does not
give guarantees about consistency of copies at every time
instance but merely assures that all copies will eventually be
consistent, when the time between updates is long enough

again. As Gustavsson and Andler point out [14] this approach
has several similarities to self-stabilization.

IV. CONCLUSION

Application scenarios for wireless sensor networks require
long living and unattended deployments. These characteristics
necessitate fault-tolerant solutions. Self-stabilizing algorithms
are an elegant way to develop such applications. We presented
the major challenges for the near future, that need to be tackled
rendering their utilization in real sensor networks useful. A
suitable programming abstraction is vital for allowing a wide
range of developers to create self-stabilizing applications.
More efficient and lightweight transformations are needed for
integrating those algorithms seamlessly into WSNs. Exploiting
self-stabilizing properties in other fields than fault tolerance,
for achieving a benefit from this elegant paradigm, is another
important issue. The greatest challenge will be the integration
of self-stabilization into real applications. Therefore, new ideas
and experiences with self-stabilizing algorithms in WSNs are
tremendously important.
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Abstract—As battery capacities are a key limiting factor of
wireless sensor networks, harvesting energy from the environ-
ment is very attractive. For outdoor applications, solar power
seems to be the best suited energy source. However, the amount of
energy delivered from the sun changes significantly over the year,
which makes the dimensioning of the panel difficult. In this paper
we discuss the most important impact factors and introduce a
model that predicts the harvested solar power and the battery
charge over the year. In addition, we present experimental results
of the first six month of our long term experiments for validating
our model.

I. INTRODUCTION

Traditionally wireless sensor networks are powered by pri-
mary batteries, which limits their lifetime or leads to high
maintenance costs induced by exchanging drained batteries. In
addition, the limited power source urges extremely low duty
cycles, which introduces additional difficulties into the design
protocols and applications.

Hence, different power supplies have been discussed - in
particular systems that continuously harvest energy from the
environment. An overview of potential power sources for
wireless sensor networks such as air flow, pressure variation,
vibrations, human power and solar energy is given in [1].

We explored solar-powered sensor nodes in the context of
the FleGSens project [2], where a prototypic sensor network
consisting of 200 iSense sensor nodes [3] for the surveil-
lance of critical areas and properties is designed and set up.
The FleGSens project concentrates on ensuring integrity and
authenticity of generated alarms caused by trespassers, on
robustness against attackers who may compromise a limited
number of sensor nodes as well as on assuring availability over
a reasonable period of time independent of season or weather.
In order to achieve the intended network-lifetime, each node
is equipped with a solar cell and a rechargeable battery.

However, solar cells provide energy dependent on their size,
orientation to the sun and temperature of the solar module,
their output varies heavily over the year. In this paper we
present the design considerations we made during our work
and summarize our observations to a practical design guide
for solar powered systems.

We also present first experimental results to verify our pre-
diction model and show how much energy different panel types
yielded and to what extend their output power is influenced
by the seasons.

The remainder of this paper is organized as follows. The
next section presents related work. In Section III we discuss
different impact factors influencing the efficiency and derive
a model for predicting the monthly harvested solar energy.
Section IV shows our experimental results and discusses their
similarity to the model predictions. Finally, we conclude the
paper with a summary and directions for future work.

II. RELATED WORK

Much research has yet been done in order to develop energy
efficient protocols for sensor networks, but most publications
do not consider harvesting technologies. Now that more and
more harvesting systems exist researchers increasingly take
into account the provided energy when designing protocols.
The authors of [4] present a routing protocol for harvesting
systems, while [5] describes a statistic-based approach to
schedule tasks onto hardware and software. In [6] a real-time
scheduling method is discussed that jointly handles constraints
from both energy and time domain.

Based on heuristic techniques Kansal et.al. show in [7] and
[8] how nodes can learn about their energy environment and
use this information for task sharing among nodes. They use
an exponentially weighted moving-average (EWMA) as an
energy prediction model and adopt they duty cycle in case
of over- or underestimation.

In contrast, the authors of [9] investigate in which way the
duty cycle should be adapted when the harvested energy is not
predictable.

Apart from the aforementioned publications, other authors
focus on how energy harvesting systems should be designed.
As mentioned above, [1] gives an overview over potential
power sources, but discusses each source only briefly without
considering different sizes or orientation of solar panels. Fur-
thermore, it shows the differences between secondary battery
chemistries like Lithium, NiMHd and NiCd. The authors of
[10] discuss advantages and disadvantages of energy storage
technologies, too.

Technical issues are also considered in [11] and [12]. The
first introduces a power transferring circuit for optimally
conveying solar energy into rechargeable batteries. The latter
presents a multi-stage energy transfer system using two buffers
for energy storage.

III. EXPECTED POWER ESTIMATION

The difficulty in deciding which kind of solar panel to
choose for powering a sensor node is that the panel manu-
facturers only provide information on how much energy the
panel can deliver under defined laboratory light conditions.
These so called standard test conditions (STC) especially
include a lighting energy of 100mW/cm2. However, usually
no indication is given how much solar radiation arrives at the
panel over the year.

A. Impact Factors
The main corner stone when modeling the solar power that

can be harvested over the year is data regarding the average
monthly solar radiation R arriving at the surface.

Figure 1 shows the according data for Hamburg, Germany,
stated in mWh/cm2 per month. It was measured on a surface
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Month Daily solar radiation Days in Monthly solar radiation
[mWh/cm2]  month [mWh/cm2]

Jan 85 31 2635
Feb 155 28 4340
Mar 255 31 7905
Apr 360 30 10800
May 440 31 13640
Jun 490 30 14700
Jul 440 31 13640
Aug 430 31 13330
Sep 330 30 9900
Oct 205 31 6355
Nov 105 30 3150
Dec 50 31 1550
∑ 365 101945

Fig. 1. Average monthly solar radiation for Hamburg (R(M)).

tilted by 45◦ towards south, yielding a yearly cumulative
radiation of 1.020kWh/m2 [13]. The monthly radiation must
then be multiplied with the solar panel size A to get the
monthly received radiation.

However, only a fraction of the solar radiation can be
converted into electrical power. This is due to a number of
impact factors that reduce the harvested energy.

First of all, each solar panel features a specific efficiency,
i.e. a reduction factor epanel that accounts for the fact that the
panel converts only a fraction of the received solar energy into
electric power must be introduced.

Second, the radiation angle reduces the harvested energy.
While the standard test conditions assumes that the solar
radiation hits the panel orthogonally, this is unrealistic for real
deployments as the sun moves over the day as well as over the
year. Hence, the factor a = cos(α) must be included, where
α is the angular deviation from orthogonal radiation.

Third, if the harvested electric power is passed through a
voltage regulator or used for charging a battery, losses will
occur here as well, yielding a reduction factor eel accounting
for the efficiency of the electronics.

For most WSN applications, the sensor nodes operate in
alternating phases of activity and low power sleep modes.
During the sleep phases, the nodes dissipate hardly any power,
the harvested energy cannot directly be consumed but must
be stored. A common way is to use a rechargeable battery,
as it can accommodate large amounts of energy. However,
an additional difficulty arises when considering charging:
common battery technologies exhibit temperature limits to the
charge process. For example, lithium-ion batteries can neither
be charged below 0◦C nor above 45◦C.

As a result, there will be times during winter when solar
power is available but cannot be stored in the battery because it
is too cold. The same holds for the summer, when temperatures
in the enclosure can exceed the temperature limits especially
at noon. Both effects result in a typical monthly temperature
corridor exceedance loss L. However, it must be admitted that
the influence of the factor is not well-explored yet, the values
we assumed for our model are listed in Figure 2.

Finally, the battery capacity deserves some attention. As-
suming that the sensor node dissipates more energy than
the solar panel can deliver during winter (especially during
December, January and February), this deficit can be compen-
sated by energy stored in the battery before (at times when the
panel supplied more energy than spent by the node). The larger
the battery capacity C, the longer periods of insufficient solar
power can be sustained, and the more power can be dissipated
during these periods.

B. Model
Considering the impact factors (c.f. Figures 1 to 3) discussed

above, we designed a model for predicting the energy that can
be harvested with a solar panel as well as for estimating the

Month Temperature corridor
exceedance loss

Jan 25%
Feb 10%
Mar 0%
Apr 0%
May 10%
Jun 25%
Jul 25%
Aug 10%
Sep 0%
Oct 0%
Nov 0%
Dec 10%

Fig. 2. Assumed energy loss due to temperature exceedance (L(M)).

battery charge development over the year under the condition
of a given power dissipation of the sensor node.

Description Symbol Value Unit
Battery capacity C 21120 mWh
Panel size A 170 cm2

Panel Efficiency epanel 0.07
Electrical loss eel 0.7
Angular loss a 0.7
Duty cycle d 0.179
Sleeping node power dissipation Psleep 0.165 mW
Maximum node power dissipation Prunning 148.5 mW
Average node power dissipation Pnode 26.72 mW
Starting month tstart 6

Fig. 3. Constant parameters with example values.

The harvested solar energy Esolar(M) in a certain month
M ∈ {1, ..., 12} can be predicted as

Esolar(M) = (1− L(M)) eel epanel A a R(M)

by considering the temperature exceedance loss of the particu-
lar month M , the electrical efficiency, the panel efficiency, the
panel size, the loss due to the radiation angle and the amount
of solar radiation during M .

Let’s assume that the sensor node exhibits a power dissipa-
tion of Prunning at full operation and of Psleep when sleeping.
Then, if the node is running at a duty cycle of d ∈ [0.0; 1.0],
i.e. if the node is awake 100 d per cent of the time and sleeps
during the rest, the average power dissipation Pnode is

Pnode = d Prunning + (1− d) Psleep

The energy dissipated by the node in a certain month M
can then be approximated by

Edissipate(M) = Pnode 24DiM(M)

where DiM yields the number of days in month M .
Now that that all input values are defined, the energy stored

in the battery over the course of time can be calculated.
Given that E(0) is the initial battery charge, the energy E(t)

at the end of a month can then be estimated by

E(t) = min{C,E(t− 1) + Esolar(M(t))− Edissipate(M(t))}
M(t) = ((t− 2 + tstart) mod 12) + 1

where t ∈ N indicates the months since which the system
is running and tstart ∈ {1, ..., 12} is the starting month of the
estimation. The helper function M : N ⇒ {1, ...12} converts
the monotonously growing t into the proper month index
according to the starting month tstart.

The below Figure shows an example run of the battery
energy model. It uses the values given in Figures 1 to 3. High-
lighted cells in Figure 4(a) indicate that the node dissipated
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more energy than the solar cell harvested, i.e. that it drained
the battery. Note that the duty cycle was set to 25% (c.f. Figure
3), which is the maximum that can be sustained over the winter
months. Further increasing it would lead to negative values in
column three of Figure 4(a), indicating that the sensor node
ran out of battery in the according month.

The table data is additionally visualized in Figure 4(b). It
becomes obvious that the monthly power dissipation stays
more or less constant (and varies only slightly due to the
different number of days per month), while the harvested
power heavily varies over the year. During times when less
power is harvested than dissipated, the battery is drained. Its
charge goes down to about 2000mWh in January because of
the low harvesting power during winter. As the battery capacity
is 21120mWh, the charge graph never exceeds this threshold.

t ((t -2+tstart) mod 12)+1 E(t) [mWh] Esolar [mWh] Edissipate [mWh]
0 21120
1 6 21120 104958 24683
2 7 21120 97390 25506
3 8 21120 114211 25506
4 9 21120 94248 24683
5 10 21120 60500 25506
6 11 21120 29988 24683
7 12 8895 13280 25506
8 1 2203 18814 25506
9 2 16350 37185 23038

10 3 21120 75256 25506
11 4 21120 102816 24683
12 5 21120 116868 25506
13 6 21120 104958 24683
14 7 21120 97390 25506
15 8 21120 114211 25506
16 9 21120 94248 24683
17 10 21120 60500 25506
18 11 21120 29988 24683
19 12 8895 13280 25506
20 1 2203 18814 25506
21 2 16350 37185 23038
22 3 21120 75256 25506
23 4 21120 102816 24683
24 5 21120 116868 25506

(a) Table representation

0

20000

40000

60000

80000

100000

120000

140000

J J A S O N D J F M A M J J A S O N D J F M A M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [Month]

En
er

gy
 [m

W
h]

Solar
Battery
Dissipated

(b) Graph representation

Fig. 4. Battery energy prediction over a 24 month period.

IV. EXPERIMENTAL RESULTS

To validate the model, we started an experimental evaluation
in December 2008. We used iSense sensor nodes [3] that were
connected to three different types of solar cells (Figure 5).

As shown in Figure 5(c), the nodes were equipped with a
special power management module, a lithium ion rechargeable
battery and a solar panel. The power management module
distributes the power provided by the solar panel in an
intelligent way. If the panel can deliver more power than the
sensor node requires, it charges the lithium ion battery (c.f.
Figure 6(a)). Otherwise, it reduces the battery drainage by
supplying the node with the solar power (c.f. Figure 6(b)) as
much as possible and drawing the rest from the battery.

(a) Large. (b) Medium, Small. (c) Inside view.

Fig. 5. Panel types and node setup
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Fig. 6. Energy Flows.
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Figure 7 shows a conceptual view of the solar power
management module. The Solar power is fed into the power
management component through a linear regulator. For charg-
ing the battery, a charge controller in integrated as well. The
battery current flows into and out of the battery are monitored
and logged, the battery monitor also accumulates the currents
during charging and discharging cycles, and hence provides
precise information about the energy currently stored within
the battery.

Large Panel Medium Panel Small Panel
Panel efficiency 0.09 0.12 0.11
Panel size 170 81.25 37.05
Open circuit voltage at MPP 6 9 5
Short circuit current at MPP 250 109 81
Electrical efficiency 0.8 0.4 0.63
Radiation angle efficiency 0.8 0.7 0.7

Fig. 8. Technical cell data and model settings.

The table in Figure 8 summarizes some technical data of
the solar panels used as well as the model settings used below.

Figure 9 shows both predicted and measured harvested
energy for the three panel types. The values predicted by the
model are always indicated by white bars, while the dark bars
indicate the energy harvested in reality. Note that so far, real-
world data is available for a small number of months only.

The different dark bars in Figure 9(a) need some further
explanation. The black bars indicate the harvested energy by
our first test node equipped with a large solar panel. It can

53



0

20000

40000

60000

80000

100000

120000

140000

160000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

S
ol

ar
 E

ne
rg

y 
[m

W
h]

Model Prediction

Harvested max. (interpol.)

Harvested max.
Harvested min.

(a) Large Panel

0

20000

40000

60000

80000

100000

120000

140000

160000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

S
ol

ar
 E

ne
rg

y 
[m

W
h]

Model Prediction
Harvested

(b) Medium Panel

0

20000

40000

60000

80000

100000

120000

140000

160000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

S
ol

ar
 E

ne
rg

y 
[m

W
h]

Model Prediction
Harvested

(c) Small Panel

Fig. 9. Experimental Results.

be seen that prediction and measured values highly resemble
during the first two months of our experiment - December and
January. After that - from February to May - the according
harvesting results are pretty disappointing. In April we found
the reason for this: Because the battery was fully charged most
of the time, only a fraction of the available solar energy could
be harvested.

In order to find out how much energy could really be
harvested, we employed additional sensor nodes in May and
ensured that at least one of them at a time harvested the full
solar energy into an empty battery. The according amount
of energy harvested in May is indicated as the dark gray
Harvested max bar. We then interpolated the energy that could
have been harvested from February to April and indicated it
with the light gray Harvested max (interpolated) bars.

The harvested energy of the smaller solar panels is shown
in Figure 9(b) and 9(c). Prediction model and measured values
highly match even though both devices harvested a bit more
than expected in May.

V. CONCLUSION

Supplying a sensor network with solar energy promises
nearly perpetual operation, but several impact factors signif-
icantly influence the amount of potentially harvested energy
and must be taken into account when design decisions are

made. We presented a model that allows to predict both the
harvested energy as well as the corresponding battery charge.
We verified our model by long term experiments with different
solar panels whose results are also shown. Even though the
energy harvested in reality basically follows the predictions of
the model, further work is needed.

The first results presented here for example hint that the val-
ues assumed for the temperature exceedance loss are not very
realistic. However, the experiments will provide additional data
that will help to improve the model.

In addition, we are planning to implement a duty cycle
control system that is based upon the models presented here.
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Abstract—Energy-aware task scheduling is a novel research
direction for wireless sensor networks. It depends on accurate
models for lifetime prediction. In other terms, nodes must
be aware of present and future energy resources. This paper
addresses the first step towards reaching this goal: It explores
discharging-characteristics of supercapacitors, discusses analyti-
cal discharging-models for lifetime prediction, and evaluates these
models by comparing them with real discharging curves.

I. MOTIVATION

In the recent past, energy-efficiency has become a major
research topic in the field of wireless sensor networks. Though
it can prolong a sensor node’s lifetime, energy depletion will
eventually emerge long before the desired date. Since battery
capacities are not expected to rise in orders of magnitude
within the near future, provided that larger-sized batteries are
not an option, and since replacement of batteries is usually
infeasible, a different card must be drawn.

Within the last couple of years, the potential of harvesting
energy from the environment has become more and more
attractive. Various harvesting solutions are possible, among
the sources being light, radio frequency, wind, vibration, or
temperature difference. Here, sunlight is highly promising,
since it produces a sufficient amount of energy to supply
wireless sensor nodes, which draw currents between several
µA in the sleep state and some mA in full-operation mode.

Yet, sunlight—but also other sources—have the drawback of
not harvesting energy continuously. Furthermore, the amount
of energy produced may vary significantly depending on
the environmental conditions. This leads to the necessity to
buffer energy, so that nodes do neither suffer from temporal
energy depletion nor is their operation restricted to periods of
incoming energy.

Despite the rich bouquet of energy buffers available, most
of them reveal a considerable shortcoming: the amount of
energy stored cannot be estimated easily. However, this ability
is advantageous or even mandatory, as it allows for adaptive
duty-cycling or may shrink the chance of accidental energy
depletion caused by running a highly energy-consuming task
during periods of low energy reserves. Energy-awareness may
also allow for performing these tasks during periods of energy
excess. Thus, energy-aware task scheduling becomes possible.

In the recent years electric double-layer capacitors with high
capacities have become available. They fill the gap between

capacitors and rechargeable batteries and can store enough
energy to keep up-to-date sensor nodes alive for a couple
of days. Their main advantage over rechargeable batteries is
the high number of possible charge-discharge cycles. While a
lifetime of 2-3 years can be expected for lithium-ion polymers,
supercapacitors can last for 10 years or even more. Superca-
pacitors do not need a complex charging circuit and render
easy estimation of their energy reserves possible.

Examples of supercapacitors are Panasonic GoldCaps [1]
and SAMWHA GreenCaps [2], which we have used in a solar
energy-harvesting power-supply. In this paper, we will present
our first experiences on this matter. We will develop and
assess models for energy estimation, enabling node lifetime
prediction. These models build up the cornerstone of a more
complex system that will be developed in future research. This
system is compassed to enrich our model with a prediction of
future incoming energy, e.g., obtained from a solar cell.

II. RELATED WORK

Several approaches for self-sustaining power supplies for
wireless sensor nodes exist. The Enviromote [3] is using a
solar cell as power source and NiMH batteries for energy
storage. Among the design goals are easy circuit design and
cheap energy storage devices. The authors present charging
and discharging characteristics of their power supply.

A solar harvesting supply with lead acid batteries for the
IRIS [4] platform is developed in [5]. It targets at large
capacity energy storage and keeps the solar cell at a static
maximum power point.

Prometheus [6], also employing a solar cell, is based on a
two-stage energy storage system. A supercapacitor serves as
the primary energy source, which supplies the sensor node
and limits access to the secondary source, a rechargeable Li+

battery, to prolong the lifetime of the latter. Charging and
discharging behavior of the circuit and supercapacitors are
examined. A striking observation is that—for the presented
power supply—a 22 F supercapacitor outperforms its 10 F and
50 F counterparts. The authors also take a first step into the
direction of energy-aware scheduling by adapting the duty
cycle to the current supercapacitor voltage. Prometheus has
been successfully deployed in the Trio testbed [7].

Another approach is found in [8]. The Everlast platform
stores energy obtained from a solar cell in a supercapacitor
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solely. In order to increase the efficiency of the solar cell,
i.e., to maximize the amount of energy available, maximum
power point tracking (MPPT) is performed. The authors claim
that their platform can operate for as long as 20 years while
preserving high data rates.

III. ENERGY HARVESTING PLATFORM

As a first step on our road to energy-aware task scheduling
on wireless sensor nodes, we have developed a prototype of
a solar energy-harvesting platform as depicted in Fig. 1. It
supplies an IRIS sensor node from Crossbow Technology. This
prototype uses a solar cell as its energy source. The solar
cell is currently feeding a supercapacitor via a simple circuit
consisting of a Schottky-Diode to avoid discharge during
cloudy periods or at night and a Zener-Diode to prevent over-
charging of the supercapacitor. Here, the charging maximum is
limited to approximately 2.3 V, which is the specific maximum
voltage allowed for GoldCaps.

Fig. 1. Energy Harvesting Platform for the IRIS node

The discharging circuit consists of the DC-DC buck-boost
converter TPS61221 from Texas Instruments [9], which en-
sures a stable and constant supply voltage of 3.3 V. The
converter starts converting at an input voltage of 0.7 V and has
an efficiency of up to 95%. This converter has been selected
because of its low quiescent current of 5.5µA and its high
efficiency even at low currents. Figure 2 depicts the efficiency
for different output currents and input voltages. The input
voltage is equal to the supercapacitor voltage, which will range
from 0.7 V to 2.3 V. For node-operation in normal mode with
a current of a few mA the efficiency of the converter will be
higher than 80%. Even in sleep mode with a current of a few
µA, the efficiency will remain well above 60%. Most other
DC-DC-converters, built for high efficiency at larger currents,
can achieve an efficiency of 10% for low currents only.

IV. LIFETIME PREDICTION

In this section, models for predicting supercapacitor volt-
age VC and thus estimating node lifetime will be derived.

A. Simple Model

As a first step we analyze the temporal behavior of the
supercapacitor voltage VC in a simple model, i.e., we neglect
self-discharge. Figure 3 illustrates the simplified circuit, which
only consists of the supercapacitor with capacitance C, the
DC-DC-converter, and the sensor node.

Fig. 2. Efficiency of the Texas Instruments DC-DC-converter TPS61221 [9]

Fig. 3. Simplified Discharge Circuit

Due to conversion losses and the current IL consumed by
the DC-DC-converter, the input power PC is larger than the
output power PN:

PN = PC − PL = η · PC = η · VC · IC, (1)

where η is the efficiency of the converter. Note that we
assume a constant power state of the node, i.e., the current IN
consumed by the node is constant. In addition, the voltage VN
provided by the DC-DC-converter is stable and constant, so
that PN = VN · IN = const.

Supercapacitors behave like normal capacitors with

IC = −C · V̇C, (2)

so that we can combine (1) and (2) to

PN = −η · VC · C · V̇C. (3)

For simplicity, we assume η to be constant, so that the
differential equation (3) can be solved as follows

∫ t0+Tlife

t0

dt = −ηC
PN

∫ Vmin

VC,0

VCdVC (4)

Here, the current time is denoted t0, and VC,0 is the voltage
of the supercapacitor at this time. The minimum voltage Vmin
is required by the DC-DC-converter for proper and reliable
function. The elapsed time until VC has dropped to Vmin is
Tlife; the latter will be referred as the expected lifetime at
time t0. Finally, solving (4) yields

Tlife =
ηC

2PN

(
V 2

C,0 − V 2
min

)
. (5)

B. Leakage Current

The previously developed model must be extended, if the
current IC drawn from the supercapacitor drops to a value
close to the leakage current Ileak of the supercapacitor. We
expect that this will be the case for low duty cycles of the
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Fig. 4. Supercapacitor self-discharge behavior of GoldCaps and GreenCaps

attached sensor node—e.g., the IRIS platform draws a current
IN ≈ 20µA in the sleeping-mode [5].

We have recorded self-discharge time-voltage curves of
different supercapacitors. Figure 4a shows the supercapacitor
voltage of GreenCaps with capacities between 25 and 200 F.
All capacitors have been charged close to the maximum
allowed voltage of 2.65 V. It is remarkable that self-discharge
is highly correlated with the voltage. This behavior matches
the one for a different model shown in [1] and our additional
recordings for GoldCaps (that are left out for brevity).

From these recordings, the leakage power of the superca-
pacitors can be approximated numerically from

E(VC) =
CV 2

C

2
⇒ Pleak(VC) ≈ ∆E(VC)

∆t
=
C∆V 2

C

2∆t
, (6)

where ∆V 2
C is the difference of V 2

C at time t and V 2
C at time

t+ ∆t. The corresponding results are shown in Fig. 4b. The
noise in the lower voltage regions is due to the noisy mea-
surement of the slowly decreasing voltage. Note that power
is shown in logarithmic scale, giving rise to an exponential
behavior of leakage power:

Pleak ≈ P0 · exp (αVC) . (7)

We have determined estimations according to (7) for all of
the tested supercapacitors using least squares. The results are
displayed in Fig. 4c. The estimations follow the numerical
approximation of Pleak closely.

C. Refined Model
Taking leakage power into consideration, (1) becomes

PC − Pleak = PN + PL, (8)

and therefore (3) has to be rewritten using (7) as

PN = −η · VC · C · V̇C − P0 · exp (αVC) . (9)

The solution to this equation can be found using mathemat-
ical software, such as Maple:

Tlife = − ηC

2PN

[
V 2

C −
2VC

α
ln
(

1 +
P0 exp (αVC)

PN

)

− 2
α2

∞∑

n=1

(
−P0 exp (αVC)

PN

)n 1
n2

]Vmin

VC,0

(10)

Unfortunately, this equation is highly complex due to the
ln, exp, and the dilog (the infinite sum). It is thus not suitable
to be evaluated on sensor nodes. However, it is a good first
step in order to gain insight into realistic discharging behavior
of nodes running on supercapacitors. Simplification of the
equation will be future work.

V. MODEL EVALUATION

In this section the models developed in Sect. IV are checked
against discharging curves recorded for duty cycles ϑ of 1,
10, and 100% on the IRIS platform. Figures 5a to 5c show
the remaining supercapacitor lifetime, i.e., the time elapsed
until VC falls below Vmin = 0.9 V. Smaller values of Vmin, as
proposed in Sect. III, lead to a too low output voltage VN.

The results show that—as expected in Sect. IV-B—self-
discharge has an impact on remaining lifetime for low duty
cycles, while it can be neglected for high ones. This is
indicated by the dip for large values of VC in case of ϑ = 1%
in Fig. 5c as opposed to the behavior for ϑ = 100% in Fig. 5a.
As a result, lifetime would be dramatically overestimated for
low duty cycles, if the simplified model were used.

Knowing about the real discharging behavior, we have
computed lifetime predictions using (5) and (10). Having
a constant node supply voltage of VN = 3.3 V, we used
IN,act = 20 mA for the active and IN,sleep = 20µA for the
sleeping mode and averaged PN according to the duty cycle ϑ :

PN = VN (ϑ · IN,act + (1− ϑ) · IN,sleep)

Based on Fig. 2 we assume an efficiency ηact = 85% for the
active and ηsleep = 75% for the sleeping mode and averaged η
as we did with PN.

The prediction results are displayed in Fig. 5d through 5f.
The curves with the open markers have been computed using
the simplified model, whereas their filled counterparts come
from the refined one. The results reveal that the models give
accurate predictions for a large duty cycle and for low values
of VC in case of a low duty cycle. For ϑ = 1% the two
models show significant differences for a large VC. During
evaluation, we experienced that the dilog term in the refined
model has only a marginal influence on prediction accuracy
and can thus be omitted. The combined ln-exp term, however,
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Fig. 5. Measured vs. predicted node lifetime for GreenCaps for duty cycles ϑ = 1%, 10%, 100%

should not be dropped, as it gives better prediction of Tlife if
the supercapacitors are almost fully charged.

Although we have solely calculated averages for PN and
η and taken rough estimates for the values in the two node
states (sleeping and active), the curves follow the realistic ones
considerably well and are thus promising. Yet, fine-tuning of
the parameters may be required, as soon as the models are
simplified, as this step already introduces prediction errors.
In contrast, it appears that a more detailed modeling of the
power-states and the DC-DC efficiency may not be required.

VI. CONCLUSION AND NEXT STEPS

In this paper, we have presented models for predicting the
lifetime of wireless sensor nodes using a supercapacitor-based
power supply. These models have been evaluated using real
discharging behavior of this power supply and found to match
the real discharging behavior closely.

The estimation and prediction models derived in this pa-
per serve as a first groundwork. However, the influence of
temperature or supercapacitor age has not been taken into
consideration thus far. Hence, our models must be refined.
In contrast to this, the parts of the models involving difficult
to evaluate mathematical expressions—for low-power, low-
resource hardware—must be simplified, while preserving as
much preciseness as possible. This will be a major part of
future work.

In addition, we will focus on self-configuration, i.e., nodes
should become capable to determine and update the model
parameters on their own. We will also equip our hardware with
an effective charging circuit and derive models for estimating

incoming power. Finally, these models will be combined with
the discharging ones, thus yielding a sophisticated base for
energy-aware task scheduling.
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his support in recording supercapacitor discharging curves.

REFERENCES

[1] Panasonic, Gold Capacitors Technical Guide. [Online]. Avail-
able: http://www.panasonic.com/industrial/components/pdf/goldcap tech-
guide 052505.pdf

[2] SAMWHA, Gold Capacitors Technical Guide. [Online]. Available:
http://www.samwha.com/electric/templatedirs/guest/list pdf1/DP.pdf

[3] V. Kyriatzis, N. S. Samaras, P. Stavroulakis, H. Takruri-Rizk, and
S. Tzortzios, “Enviromote: A New Solar-Harvesting Platform Prototype
for Wireless Sensor Networks / Work-in-Progress Report,” in Proc. of the
Annual IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC ’07), Athens, Greece, 2007.

[4] Crossbow, IRIS Wireless Measurement System - Datasheet. [Online].
Available: http://www.xbow.com/Products/Product pdf files/Wireless
pdf/IRIS Datasheet.pdf

[5] C. Lange, “Energiegewinnung für drahtlose Sensorknoten (Diploma The-
sis),” Master’s thesis, Hamburg University of Technology, Oct. 2008.

[6] X. Jiang, J. Polastre, and D. Culler, “Perpetual Environmentally Powered
Sensor Networks,” in Proc. of the Intl. Symposium on Information
Processing in Sensor Networks (IPSN ’05), Los Angeles, CA, USA, 2005.

[7] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle,
K. Whitehouse, and D. Culler, “Trio: Enabling Sustainable and Scalable
Outdoor Wireless Sensor Network Deployments,” in Proc. of the Intl.
Conference on Information Processing in Sensor Networks (IPSN ’06),
New York, NY, USA, 2006.

[8] F. Simjee and P. H. Chou, “Everlast: Long-Life, Supercapacitor-Operated
Wireless Sensor Node,” in Proc. of the Intl. Symposium on Low Power
Electronics and Design (ISLPED ’06), Tegernsee, Germany, 2006.

[9] T. Instruments, Datasheet TPS 61221, Jan. 2009. [Online]. Available:
http://focus.ti.com/lit/ds/symlink/tps61221.pdf

58



Energetic and Temporal Analysis of a
Desynchronized TDMA Protocol for WSNs

Clemens M̈uhlberger
Chair of Computer Science V

University of Würzburg
Am Hubland, 97074 Ẅurzburg

Email: muehlberger@informatik.uni-wuerzburg.de

Abstract—These days, wireless radio communication of sensor
nodes is still very power consuming. Thus lots of MAC protocols
yet exist to manage the collision free access to the common
transmission medium with respect to energy consumption. In this
paper, we focus on the biologically inspired and self-organized
TDMA protocol DESYNC. We analyze its potential for energy-
saving, and network latency respectively. We could identify some
parameters, which may help network designers to adjust the
DESYNC protocol according to their preferences, i.e. to save
more energy or to get a lower latency.

I. M OTIVATION

One characteristic feature of Wireless Sensor Networks
(WSNs) is the shared transmission medium of interacting sen-
sor nodes. Concurrent assignment of common radio channels
might cause loss of data due to packet collisions which require
retransmission and consume additional energy. That’s why the
access of each node to the medium has to be coordinated
carefully. Several Medium Access Control (MAC) protocols
for WSNs already exist, amongst others a couple of Time
Division Multiple Access (TDMA) protocols. They divide the
radio channel intotime slotsoffering collision free medium
access for a specific node, like Z-MAC [1], TRAMA [2]
or HashSlot [3]. Here we analyze the decentralized but self-
organized DESYNC protocol [4], [5] with respect to energy
savings and network latency.

In the next section we briefly introduce the decentralized
TDMA protocol DESYNC and its underlying paradigm of
desynchronization. In Section III we identify the potential for
energy-savings, whereas Section IV discusses the emanating
changes in network latency. Section V closes this paper with
a short conclusion and an outlook to further research.

II. I NTRODUCTION TO THEDESYNC PROTOCOL

The biologically inspired paradigm of desynchronization [6]
denotes the equidistant distribution in time ofoscillators, for
example periodically transmitting sensor nodes. Based upon
this, Degesys et al. [4] developed the DESYNC protocol,
a self-organized TDMA protocol for single-hop topologies.
Because real-world deployments usually contain multi-hop
topologies, an extended version of the DESYNC protocol is
subject to current research (cf. [5]).

First of all, each element of the setN of nodes has a
unique identifieri and oscillates at an identical frequencyω
within the common periodT = 1

ω . The periodT must be

long enough to provide at least one time slot for each of then
participating nodes, e.g. for single-hop topologiesn = |N |, for
multi-hop topologiesn equals the cardinality of the maximum
clique of two-hop neighbors. Next, the communication links
are symmetrical and each node uses Carrier Sense (CS) just
before transmission to avoid collisions in the first place.

To fulfill the paradigm of desynchronization, i.e. to spread
out the time slots of all participating nodes equidistantly, each
node i of the WSN tries to maximize the time lag relative
to its neighbors. Therefore, the phaseφi ∈ [0.0, 1.0] of a
node i denotes the elapsed time since its last transmission
normalized toT , e.g.φ3 = 0.7 means, that node3 has already
finished70 % of its current period. When nodei finishes its
period, i.e.φi = 1.0, it broadcasts a so calledfiring packetand
immediately resets its phase toφi = 0.0. The column vector−→
φ =

[
φ1 · · · φi · · · φ|N |

]T
describes the global system state,

i.e. the phases of all nodes.
Two nodes are of special interest for nodei: the previous

phase neighborp(i) broadcasts its firing packet just before,
whereas thesuccessive phase neighbors(i) broadcasts its
firing packet just after nodei. Hence, nodei can calculate
the midpoint of its phase neighbors as

mid(φs(i), φp(i)) =
φp(i) + φs(i)

2

and finally estimate its new phaseφ′
i unassisted by itself as

φ′
i = (1− α) ·φi + α · mid(φs(i), φp(i)).

The jump size parameterα ∈ (0.0, 1.0)1 regulates how fast
a node moves towards the assumed midpoint of its phase
neighbors.

The stable state, when each node has the same temporal
distance to its phase neighbors and thus the times of firing
do not change anymore (unless the system changes), is called
desynchrony. The convergence to desynchrony for single-hop
topologies was proved in [4]. Figure 1 exemplifies the progress
of desynchronization for a single-hop topology consistingof
five sensor nodes.

1If α = 0.0, there’s no movement at all, and, according to [7],α = 1.0
forces straight movement onto the midpoint under unstable emergence of new
configurations. Thus, a reliable value would beα ≈ 0.9.
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Fig. 1. Snapshots of the desynchronization progress

For a successful operation in real-world deployments, the
DESYNC protocol requires an extension for multi-hop topolo-
gies as well as further improvements, e.g. back-off algorithms
for concurrent start-ups of nearby nodes, or unreliable links.
But space does not permit a discussion of that here, that’s why
we just analyze potential energy savings and network latency
within this paper.

III. E NERGY

Still, the energy consumption of radio transceivers used at
sensor nodes is much higher than that of current microcon-
trollers. Thus, to save much energy – especially at periodically
transmitting sensor nodes – the radio controller has to be
switched off as often and as long as possible. Since the com-
prehensive and constant periodT depends on the maximum
number n of supported nodes, we divideT into n frames
F (i) of equal sizef , i.e. f = |F (i)| for any i ∈ {1, . . . , n}.
Similar to other protocols like LMAC [8] or Crankshaft [9],
each frameF (i) again is subdivided intok slotsF (i, j), where
i ∈ {1, . . . , n} and j ∈ {1, . . . , k}. The first slot F (i, 1)
is reserved for the firing packet of nodei (cf. Section II),
whereas the remaining slots fork ≥ 2 can be used for further
data transmissions, if desired. Please note, fork = 1 the
length of a frame equals the length of its single firing slot,
i.e. f = |F (i, 1)|.

To avoid collisions when nodes (re)join the network dy-
namically, and to compensate potential but individual clock
drifts or other hardware or software delays, a safety gap
σ = ε · |F (i, 1)| is prefixed to each firing slotF (i, 1) (cf.
Fig. 2). The factorε should be selected carefully, because it
shall cover possible drifts but not delay the firings of the nodes
unnecessarily. Since there need not be any data slot, we made
σ to be a function of the length of a firing slot. Finally, the
periodT has to hold

T = n · (σ + f)

= n ·
(
σ + |F (i, 1)|+

k∑

j=2

|F (i, j)|
)

= n ·
(
(1 + ε) · |F (i, 1)|︸ ︷︷ ︸

firing slot

+
k∑

j=2

|F (i, j)|
︸ ︷︷ ︸

data slot(s)

)
(1)

Because parametern is specified by the network and the
length of a firing packet dominates the safety gapσ but can

sF(i,2) F(i,k)F(i-1,k) ...

time

safety
gap

firing
slot

frame F(i) frame F(i+1)frame F(i-1)

data
slot

F(i,1) F(i+1,1)s

Fig. 2. Arrangement of frames, slots and safety gaps

only be influenced marginally as well, the only way to save
energy is determined by the sum of the lengths of the data
slots. Of course, the periodT can be padded out to prolong
the sleep periods of a radio transceiver, but for our further
examinations we just consider the minimum value for period
T specified by equation 1.

To stay desynchronized, a nodei ∈ N must be just
interested in the firing packets of itsn − 1 neighbors, thus
it has to turn on its radio transceiver for at least

∆ti,RF = ∆ti,RX + ∆ti,TX ,

where∆ti,TX = σ+|F (i, 1)| denotes the duration2 for broad-
casting a firing packet, and∆ti,RX = (n−1) · (1+ε) · |F (i, 1)|
terms the elapsed time for reception of the firing packets of
all its neighbors. With it, the uptime of the radio unit of node
i is

∆ti,RF = n · (1 + ε) · |F (i, 1)| ≤ T. (2)

Assuming all data slots have the same lengthfk, i.e. for
all i ∈ {1, . . . , n} andm ∈ {2, . . . , k} holdsfk = |F (i,m)|,
the gain of energyγi compared to an always activated radio
controller of a nodei in percent per periodT is

γi =
T −∆ti,RF

T

= 1− n · (1 + ε) · |F (i, 1)|
n ·

(
(1 + ε) · |F (i, 1)|+ (k − 1) · fk

)

=
(k − 1) · fk

(1 + ε) · |F (i, 1)|+ (k − 1) · fk

(3)

If we additionally suppose that firing slots and data slots are
of the same length, i.e. for alli ∈ {1, . . . , n} holds|F (i, 1)| =
fk, equation 1 reduces to

T = n · (k + ε) · fk,

and furthermore equation 3 simplifies to

γi =
k − 1
k + ε

That means, if there are only firing slots but not a single
data slot (i.e.k = 1), and if the relevant number of neighbors
is at maximum support for periodT , it is not possible to save
energy by reducing the uptime of the radio unit.

2Before transmission, each node has to use CS to detect joiningnodes or
drifting neighbors. Here we expect the same safety gapσ as length for the
CS phase.
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However, further savings could be achieved if nodei only
needs to receive someη ∈ {0, . . . , n − 1} of firings of its
neighbors per periodT . This way, equation 3 adjusts to

γη
i =

T −∆tηi,RF

T

= 1− (η + 1) · (1 + ε) · |F (i, 1)|
n ·

(
(1 + ε) · |F (i, 1)|+ (k − 1) · fk

)

=

(
n−η−1

n

)
· (1 + ε) · |F (i, 1)|+ (k − 1) · fk

(1 + ε) · |F (i, 1)|+ (k − 1) · fk
.

(4)

With equal length for firing slots and data slots, equation 4
again reduces to

γη
i =

k − 1 + (1 + ε) · n−η−1
n

k + ε
.

If the radio transceiver is powered down for several periods,
even more energy could be saved. But such a long down time
implicates additional problems which can destabilize collision
free communication and require extra administrative coststo
keep track of the down times of nearby nodes. Hence, we
won’t go into detail here, but discuss in the next section the
effect on network latency using some results from this section
about energy-savings.

IV. L ATENCY

So far, the periodT mainly depends onn, the maximum
number of supported nodes, and the slot lengths. But when
examining the network latency, further parameters are of
interest, like data rate or minimum packet length. Thus, if
the firing packet contains additional information about the
neighbors of the transmitting node, for instance to prevent
the hidden node problem, the length of a firing slot|F (i, 1)|
indeed depends onn. Introducing an adequate factorβ with
subject to network specific variables and leavingn fixed, the
length of a firing slot can be specified as

|F (i, 1)| = β ·n.

With it and according to equation 1, the minimal periodT to
support just firing packets (i.e.k = 1) plus safety gap forn
nodes is

T = (1 + ε) ·β ·n2,

which is quite similar to equation 2.
Assuming that the lengthδ of the data section within a

frameF (i) is independent ofn, the periodT must hold

T =
(
(1 + ε) ·β ·n + δ

)
·n

= (1 + ε) ·β ·n2 + δ ·n.

But if the length of a firing slot is the disposing base unit
as mentioned in Section III, where all slots have the same
lengthfk = |F (i, 1)|, the lengthδ of the data section can be
rephrased as a function of the numbern of supported nodes

δ = δ0 ·β ·n

by using another factorδ0. Thus, the minimal periodT now
modifies to

T =
(
(1 + ε) ·β ·n + δ0 ·β ·n

)
·n

= (1 + ε + δ0) ·β ·n2.

Overall, the numbern of supported nodes has a much
stronger influence on the length of periodT , if n affects the
length of all slots. That means, if the maximum numbern of
supported nodes increases, the periodT grows with the square
of n, the same is true for the network latency. Thus, a node
has to wait in order ofn2 until its next firing, and so will a
joining node, especially if they reside within an area of low
density. For this reason, it seems not clever to make the slot
lengths dependent on the numbern.

That’s why the trade-off between energy savings and net-
work latency is quite complex – especially in networks of non-
uniformly distributed nodes, containing areas of high density,
causing a great value ofn and – as a result – a great period
T , and areas of low density, containing lots of unused slots.

V. CONCLUSION AND OUTLOOK

After a short motivation, we first introduced the biologically
inspired and self-organized TDMA protocol DESYNC for
Wireless Sensor Networks in Section II. Next, we analyzed
its energetic characteristics in Section III, where we identified
some adjustable parameters to save energy. In Section IV, we
examined the latency performance of the DESYNC protocol
with subject to the numbern of supported nodes within a
period. As a remarkable result, the length of the period is in
order of square ofn, if the slot lengths also depend on it.

For further research, we want to build a real-world testbed
to specify some of our factors, likeσ andδ. We also want to
analyze the impact of an additional energy-harvesting unitat
sensor nodes, which may influence the duty-cycle of the radio
unit, too. As well, we try to promote a more universal version
of the DESYNC protocol for multi-hop topologies using extra
but locally available information. This additional information
within a firing packet may be sufficient to support further add-
ons, like time synchronization or routing.
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Abstract—Accurate estimation of link quality is the key to
enable efficient routing in wireless sensor networks. Current link
estimators focus mainly on identifying long-term stable links for
routing, leaving out a potentially large set of intermediate links
offering significant routing progress. Fine-grained analysis of link
qualities reveals that such intermediate links are bursty, i.e., stable
in the short term.

In this paper, we use short-term estimation of wireless links to
accurately identify short-term stable periods of transmission on
bursty links. Our approach allows a routing protocol to forward
packets over bursty links if they offer better routing progress
than long-term stable links. We integrate a Short Term Link
Estimator and its associated routing strategy with a standard
routing protocol for sensor networks. Our evaluation reveals
an average of 22% reduction in the overall transmissions when
routing over long-range bursty links. Our approach is not tied
to any special routing protocol and integrates seamlessly with
existing routing protocols and link estimators.

I. INTRODUCTION

Since the emergence of WSNs, research has mainly focused
on link estimation and routing techniques [4], [5], [7] which
identify and utilize consistently high quality links for packet
forwarding. Links of intermediate quality, i.e. links with a PRR
between 10% and 90%, are ignored to ensure routing stability
and to attain high end-to-end reliability. Protocol studies [2],
[8] have shown that these intermediate quality links are bursty,
i.e., they frequently switch between stable and unstable periods
of transmission for a limited number of consecutive packets.
In this paper, we argue that: (1) Bursty links can be used for
packet forwarding during their stable periods without affecting
the reliability and stability of existing routing protocols; (2)
These links often achieve significantly better routing progress
and routing throughput than the long-term links chosen by
existing routing protocols.

Today’s link estimators [4], [5] measure the quality of a link
in the ETX metric: the number of (re)transmissions required
for a successful transmission. To achieve better connectivity
and reliable packet communication, today’s link estimators
restrict communication to neighbors with constantly high-
quality links. These high-quality links are identified based
on the long-term success rate of a link collected over a time
frame in the order of minutes. Widespread routing protocols
in WSNs, such as BVR [5] and CTP [7], select links as
suggested by their link estimator. In doing so, they limit
packet forwarding only to long-term reliable links. They leave
out a large class of potentially valuable communication links
of intermediate quality that offer significant routing progress.

Their use might therefore reduce the number of transmissions,
lower energy usage in the network, and increase throughput.

Overall, this paper has three key contributions. First, it
shows how short-term link estimation can be used for fine-
grained estimation of bursty links to identify stable transmis-
sion periods. Thereby it enables routing protocols to forward
packets over long-range bursty links and minimize the num-
ber of transmissions in the network. Second, we present an
adaptive routing strategy which uses the STLE for packet
forwarding over bursty links. Third, we present a Bursty
Routing Protocol (BRP) - an integration of the STLE and
the adaptive routing strategy with a standard routing protocol
for sensor networks. As a result, we show how our approach
can be integrated with existing routing protocols and link
estimators. Our evaluation measures that routing with the
STLE provides a reduction in transmission costs, i.e., number
of transmissions, of 22% on average and 40% in the best case.

II. SYSTEM OVERVIEW

Typically, routing protocols in WSNs aim to establish a
routing tree: Some number of nodes in the network would
advertise themselves as base stations, i.e., as tree roots. All
other nodes join the tree with ETX as the routing metric.
Figure 1 shows an example of such a routing tree rooted at
the base station D. A path from source S to the destination
D consists of a sub-sequence of immediate parents of each
node, for example S → 1 → 2 → 3 → D. If we consider
all links in this path to be 100% reliable, the minimum
number of transmissions required by a packet to travel from
the source to the destination is four. Now consider a situation
in which an intermediate link S → 2 or 1 → D has become
temporarily reliable. Routing over these links could result in a
path sequence S → 2 → 3 → D or S → 1 → D, respectively.
Hence, using these links for routing could reduce the total
number of transmissions to three in the former and two in the
later case. However, a traditional routing protocol cannot make
use of such an opportunity because it uses a long-term link
estimate. Hence, this design is intentionally unable to realize
short-term changes in the link quality. Similarly, even if these
short-term changes are captured, traditional routing schemes
adapt slowly to ensure routing stability.

In contrast, our proposed technique takes advantage of
the availability of intermediate links. It estimates links on
a short-term basis by overhearing packets. In this particular
case for example, node-2 overhears the packets addressed to
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Fig. 1. Bursty links offer routing shortcuts that can reduce the number of
overall transmissions in the network

node-1 by source S. After node-2 successfully overheard a
certain number of consecutive packets from S, it informs S
about the short-term availability of this link. Thereafter, S
starts forwarding its packets to node-2 to reduce the number
of overall transmissions for a packet to reach its ultimate
destination. Our evaluation results in Section IV show that
this technique significantly reduces the number of overall
transmissions in the network. Thus, it allows to reduce energy
consumption and increase network life time.

III. SYSTEM DESIGN

In this section we discuss the design of BRP, which consists
of two basic components: (1) the STLE, which identifies
periods of good transmissions in long-range bursty links by
overhearing communication channels, (2) an adaptive routing
strategy, which makes use of bursty links identified by STLE
for forwarding packets, and its integration in existing routing
protocols.

A. Short Term Link Estimation

The main task of STLE is to identify reliable periods of
transmissions in intermediate links that offer better routing
progress than long-term stable links. For this purpose, STLE
overhears data packets send by neighboring nodes and records
the recent history of success or failure over a link for the last
h packets. Based on this recent transmission history, STLE
decides whether a link is currently reliable or unreliable for
transmission and informs the routing protocol accordingly. The
prototype implementation of BRP consists of the STLE and
the adaptive routing strategy with CTP, a standard collection
routing protocol for sensor networks shipped with TinyOS.
However, the STLE and its routing strategy are not bound to
any specific routing protocol. It can easily be integrated with
BVR and other routing strategies that support higher data rates
for bandwidth limited systems.

1) Algorithm: Before elaborating the algorithmic details of
STLE, we define three roles for any node in the network:
a) source-node: the node which is actively sending or for-
warding packets b) parent: the parent of any source-node in
traditional routing and c) overhearing-node: node(s) which can
overhear the communication between the source-node and its
parent. A node in the network can assume any or all of these
three roles at a time. The STLE algorithm works as follows:

Link Reliability: When overhearing a packet from a source-
node, the overhearing-node infers the success rate - derived
from the packet sequence number - of the link with that source-
node. If the loss equals zero, i.e. if the overhearing-node was
able to overhear a sufficient number of consecutive packets
sent by the source-node to its parent, the overhearing-node
declares the bursty link between itself and the source-node
as active and triggers the next phase of the algorithm. If the
overhearing-node was unable to overhear a sufficient number
of consecutive packets (see Section III-A2) sent by the source-
node to its parent - the overhearing-node drops the oldest
packet sequence number for that source-node from its history
and waits for the next packet.

Link Feasibility: In this phase, the overhearing-node
queries the routing protocol for the path-ETX of the packet’s
destination, i.e., the parent of the source-node. If the path-ETX
of the parent-node is greater than that of the overhearing-node,
the overhearing-node declares the bursty link between itself
and the source-node active. Consequently, the active bursty
link can offer a better routing progress than the traditional
path used by the source-node. However, if the path-ETX of
the parent-node is not known or less than the path-ETX of
overhearing-node, the overhearing-node temporarily ignores
the source-node.

Link Announcement: If the path-ETX of the parent-node
is greater than that of the overhearing-node, the overhearing-
node informs the source-node about the active bursty link. It
volunteers itself to become the temporary parent of the source-
node as long as this bursty links remains active.

The path-ETX information used by the STLE at the
overhearing-node can easily be obtained by using the neigh-
borhood information maintained by any traditional routing
protocol. We assume that there is a high probability that the
original parent of the source-node is also a neighbor of the
overhearing-node. This is because the overhearing-node can
listen to the ongoing communication between the source-node
and its parent. Additionally, the link announcement message,
sent by the overhearing-node to the source-node, establishes a
simple check to test for link-asymmetry.

Link Unavailability: At the source-node, the STLE de-
clares a link unavailable for transmission after it fails to receive
a number of acknowledgments (see Section III-A2) for the data
packets sent over the bursty link.

2) History Size Thresholds: The STLE requires two thresh-
olds for its operation: (1) a threshold to determine after how
many successful transmissions, i.e. packets overheard, we
define a link temporary available and (2) after selecting it for
routing, threshold to define how many transmission failures
we allow before considering a link temporary unavailable.
Experiments by Becher et. al. [2] suggest a value of three,
i.e. a history of size of three, for the first threshold and one for
the second. However, these numbers were derived for a single
testbed. As part of our evaluation, we repeat their experiments
for widespread testbeds such as MoteLab [1] and TWIST [6]
to calibrate STLE. Overall, our experimental results suggest
the same thresholds as Becher et. al. Hence, we believe that
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Fig. 2. Transmission cost reduction and reliability comparison of BRP and CTP. The graph above shows average number of transmissions per packet using
BRP and traditional CTP for our experiments on MoteLab. The graph below shows end-to-end packet loss for the same experiments. The bar represents a node
pair’s average of five experiments. The inter-packet interval is 250 ms. The error bars represent the highest and the lowest average of the five experiments.
The MoteLab topology and node addresses can be seen at www.motelab.eecs.harvard.edu.

these thresholds are valid in general and not only for a single
deployment.

B. An Adaptive Routing Strategy

After discussing the operation of the STLE, we now detail
a greedy and adaptive routing strategy based on it. Whenever
the STLE at the source-node informs the routing strategy
about an active bursty link, the routing strategy makes the
overhearing-node its temporary parent and starts forwarding
packets to it. However, this information is not propagated by
the routing protocol to its descendant nodes, because these
short term changes would trigger further parent changes down
the tree. Eventually, it might destabilize the routing protocol
and result in loops. This is one of the primary reasons why
stability prevails over adaptability in today’s routing protocols
and link estimators. Hence, our routing strategy supplements
their design considerations. When the STLE declares a bursty
link inactive, the adaptive routing strategy proceeds as follows:

• It queries the STLE for another active bursty link. If such
a link is available, the routing strategy starts forwarding
packets over it.

• If there is no active bursty link, the adaptive routing
strategy will regress to traditional routing until the STLE
again finds an active bursty link.

Our goal is to enhance routing performance without affect-
ing the stability and reliability of traditional routing protocols.
Therefore, we neither replace the existing link estimators nor
alter the stable routing topology maintained by traditional rout-
ing protocols. Rather, our approach is an additional component
that assists routing protocols and link estimators in identifying
the previously ignored class of bursty links which can enhance
routing performance.

Test-bed Transmission Reduction % Throughput
One Simultaneous Increase %

Sender Senders
MoteLab 18.98 21.72 5.65
TWIST 16 19.33 10.43

TABLE I
SUMMARY OF THE PERFORMANCE RESULTS FOR MOTELAB AND TWIST

IV. EVALUATION

We perform our experiments on MoteLab and TWIST. Our
major performance measure is a reduction in the number of
transmissions in the network by enhancing routing progress.
We compare the transmission cost of BRP with the original
CTP. Figure 2 shows our results for 16 different node-pairs
as senders and collection roots. We repeated our experiments
for BRP and CTP five times for each of the 16 node-pairs
to intensively validate our results. In most of the cases BRP
performs better than CTP, averaging to approximately 22%
overall reduction in the transmission costs i.e. the total number
of transmissions from source to destination for single node-
pairs.

Figure 2 also presents the end-to-end packet loss for our
experiments. In most of the cases, the packet loss is negligible.
From these results, it is fair to conclude that BRP does not
affect the reliability of the underlying routing protocol and
at the same time reduces the number of transmissions in the
network. The only measurable end-to-end packet loss observed
in our experiments is for the node-pair 87 → 129 and 87 →
67. However, Figure 2 shows that BRP performs better than
CTP even in such lossy scenarios. Table I summarizes our
evaluation results for MoteLab and TWIST.

Another property of bursty links that we investigate is
timeliness: how often do they occur and for how long are
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they active. Figure 3 presents empirical traces from our per-
formance evaluation experiments. It clearly shows that bursty
links are regularly available over time and are reliable for
variable durations. Some of these links are active for only
a few milliseconds (e.g 153 → 183), while others for seconds
and even minutes (e.g 140 → 37). However, due to the slow
adaptivity of traditional routing, i.e. CTP, even these relatively
long-term reliable links with higher routing progress would not
be utilized.

V. RELATED WORK

The majority of existing link estimation techniques assume
that individual packet loss events on a link are statistically
independent of each other and that they follow a Bernoulli
distribution. However, studies such as [2], [8] mark this
assumption as inappropriate when wireless links are estimated
over shorter time scales. For example, Becher et. al. [2]
analyze the impact of recent transmission success and failure
rate on the future quality of a link at fine-grain time scales.
The conclusion of their study is that any link, no matter of
what quality, becomes temporarily reliable after h consecutive
packets are received over that link. Srinivasan et. al. [8] define
a factor β, which measures the burstiness of a wireless link.
β is calculated by using conditional probability distribution
functions (CDFs), which determine the probability that the
next packet will be received after n consecutive successes or
failures. β is used to identify bursty links with long bursts of
successes or failures and statistically independent links, with
ideal bursty (β = 1) and independent (β = 0) links marking
the two ends of spectrum.

Opportunistic Routing [3] in 802.11 based wireless net-
works reports a throughput increase of 35% by utilizing long
range wireless links. However, it has a relatively high overhead
with regard to computational cost, storage, and communication
which we deem not feasible in resource constrained sensor
networks. Overall, our short-term link estimator and its inte-
gration with routing protocols is designed according to lessons
learned from afformentioned experimental studies on bursty
wireless links. However, our work does not aim at modeling
and developing the analytical or experimental understanding
of wireless links. Instead, we take a step further and use these
experimental models for packet forwarding over bursty links,
and hence, enabling better utilization of wireless links.

VI. DISCUSSION

In this paper, we presented a simple greedy approach to
utilize bursty links of intermediate quality for packet forward-
ing. Our evaluation results show that, by transmitting over long
range intermediate links, the number of transmissions in the
network can be reduced. We believe that the improvement of
22% over traditional routing by transmitting over links with
high loss rates is a credible and a realistic result.

In our prototype implementation, the development of a
simple and a light-weight algorithm that illustrates the true
effect of bursty links has been one of the primary objectives.
After evaluating the effectiveness of transmissions over such
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Fig. 3. Timeliness of bursty links for 50 second empirical traces for
selected node-pairs: The graph shows the variability in the duration for which
intermediate links are reliable. Most of the successful packets took one or
more bursty links on the path from source to destination. Only the white
segments in the graph represent complete packet transmissions on traditional
path.

links, we identify the following aspects as future work: 1)
Employing a more perceptive approach for calibrating STLE
in different network environments to successfully predict the
short-term reliability of a link, 2) Classifying overhearing
nodes based on their success history to avoid repeated selection
of a node that did not offer significant improvement over the
traditional path, 3) Limiting link selection to the ones that offer
at least one hop reduction to avoid even the rare occurrence
of bad results, 4) Integrating BRP with low-power listening
techniques, 5) Extending this work towards 802.11 networks to
show that our approach has a broader relevance in the wireless
domain.
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Abstract—Support for developing energy-efficient applications
for wireless sensor networks is still scarce. In this paper a
roadmap of a combined hardware and software approach is
presented. The main idea is to collect state information and trace
energy consumption of an application running in a testbed of real
sensor nodes.

I. INTRODUCTION

Wireless sensor networks consist of small, micro con-
troller driven nodes with additional sensing capabilities. Once
deployed in a certain environment the network must run
unattended for a long period of time. In such scenarios
energy consumption is the most important system parameter,
even if energy harvesting is possible. A lot of research has
been conducted in this context. However, the behavior of a
new protocol is often evaluated by using simulations only.
Producing an executable for real sensor networks still requires
a lot of additional effort. Therefore, development support for
energy-efficient sensor networks is necessary.

Especially for energy-constraint scenarios it is very impor-
tant to develop and evaluate the application as soon as possible
on real hardware with the additional sensor technology. Run-
ning such tests on real hardware with dozens of nodes is not
feasible without any additional support. The following tasks
must be automated: programming of nodes, monitoring the
behavior of the network during the test run, and collecting
debugging information. The runtime behavior of a node is
described by the energy it consumes and the program parts
that are executed over time. This information is important for
debugging and evaluation purposes.

In this paper a roadmap of our combined hardware and
software approach is presented. The software part will be
used for an automated instrumentation of existing applications,
such that it provides logging information about the runtime
behavior. The hardware part is supposed to measure rate and
cumulative current consumption of code execution per node
and provides connectivity to manage the node directly from a
central management station. We will outline first design deci-
sions on both the hardware and software part in the following
sections. After that we will report the first experiences, which
we gained from preliminary prototypes.

II. SOFTWARE SUPPORT

In order to get meaningful information about the state of the
running application, additional logging data must be provided.
In [1] we proposed TinyAID, an automated instrumentation
tool that supports two kinds of automated code instrumenta-
tion: call-chain logging and message logging. Figure 1 depicts
the tool chain of automated code instrumentation. Given any
nesC source code, the TinyOS tool chain first creates a single,
plain C file by combining this code with the TinyOS com-
ponents used. The automated code instrumentation intercepts
the TinyOS tool chain after this point, adding an additional
preprocessing step. Given a certain configuration file the
instrumenter inserts additional instrumentation code, provided
by a code template, into the plain C file. This step results
in an instrumented C file that will then be handed back to
the remaining TinyOS tool chain. Depending on the target
platform, an instrumented program image or a TOSSIM library
is created.

nesC file

plain
C file

config.cfg

nescc

instrument.
C file

instrumenter

TOSSIM
library

remaining
tool chain

main.ihex
code

template +

TinyOS

Fig. 1. Automated instrumentation by intercepting the TinyOS tool chain.

A. Call-Chain Logging

Call-chain logging is used for logging the enter and exit
times of certain event handlers and functions. This is achieved
via additional code that is added to these handlers and func-
tions during the instrumentation pass. For every handler and
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function, logging code is added immediately after the function
entry point, at the end of the function, and immediately before
each return. Since call-chain logging may result in very large
data sets due to the names of event handlers and functions,
the logged data only consists of unique integers. During the
instrumentation pass, a separate file is created, which maps
the names of event handlers and functions to a unique integer
value.

The event or function to be logged is defined by the
configuration file used during compile time. Every line in
this file starts with either ’+’ or ’-’ to include or respectively
exclude event handlers or functions that match the following
expression. The inclusion or exclusion symbol is followed by
d, f, or h to decide whether the following regular expression
is applied on directory names, file names, or handler and
function names. The instrumenter steps through the plain
C file and checks for every encountered function or event
handler entry point, if they match any of the expressions of the
configuration file. For this, the list of expressions is scanned
from top to bottom, until the first match is found. Depending
on the inclusion and exclusion flag, this line decides, if code
instrumentation is applied or not. If no entry is found, code
instrumentation is not applied.

B. Message Logging

TinyAID also supports logging messages that have been
created, sent, or received by the node. This is achieved
by the automatic instrumentation of the appropriate TinyOS
functions. Basically, additional logging code is added imme-
diately after the entry points of the functions AMSend.send,
Receive.receive, and Packet.clear. In order to fol-
low the flow of a message in the network, the message header
is extended by an unique message identifier. It consists of the
address of the node having created the message (the message’s
origin) and a sequence number. Each message is tagged with
this information at creation time. Here we utilize the TinyOS
coding convention that for any newly created message the
Packet.clear function has to be called.

Since message tagging is completely transparent to the
application developer, any application can be monitored with
this mechanism. On the event of receiving or sending a packet
logging information about the current packet can be provided
by the node. The level of detail of the logged data can be
easily configured by applying different code templates to the
instrumenter.

C. Manual Instrumentation

There are two main situations, in which manual code instru-
mentation may become unavoidable. These include identifying
the visited states of certain state machine implementations,
and secondly identifying the end points of communication
protocols.

For the first aspect, a function state(name) is intro-
duced. It can be added manually at any code line. The
instrumenter will create a mapping from state names to auto-
matically generated state identifiers. Again, as with call-chain

logging, the additional mapping is used to keep the logged data
compact. Code execution passing such function will produce
additional logging data. For identifying correct delivery of
messages the function consume(msg) is introduced, which
has to be added at those code places where the message
successfully reaches its semantically correct destination.

III. HARDWARE SUPPORT

The hardware adapter is supposed to host a single sensor
node and to connect it to an Ethernet network. As sketched in
Fig. 2, the adapter is built around a small micro controller with
additional peripheral building blocks for adjusting available
current, measuring actual and cumulative energy consumption,
retrieving state information of current code execution on the
sensor node, and communicating logging information towards
and control information from a server controlling the exper-
iment. The Atmel NGW100 is used for fast prototyping of
the needed hardware components. The final version will be a
self-developed, printed circuit board containing all necessary
components. The hardware adapter and the actual sensor node
are powered via power over Ethernet (PoE).

e.g., IRIS, MICAz, ...

Control
Packets

Logging
Packets

Wireless Sensor Node

Flashing &
Control

Call Chain &
Message Logs

Atmel NGW100

Power Control

Power Log

Ethernet

Measurement
Power

Supply

Ethernet

Power

Power over

Fig. 2. An overview of the hardware adapter’s building blocks.

A. Measuring and Controlling Current

The hardware adapter should enable fine-grained periodic
sampling of the current drawn by a given sensor node running
a certain application. The measurement should be precise
enough to make energy consumption observable on the level of
packet reception or function calls. An additional requirement
is that our hardware adapter should be able to measure current
consumption over several orders of magnitude. More precisely,
a sensor node has a current consumption of a few µA, when
the sensor node is running in a deep power saving mode,
while the node will consume up to about 100 mA, when it
is under high load with some additional active sensors. This
poses the challenge that the hardware adapter should be able to
measure current drawn from 10−6 to 10−1 A, i.e., five orders
of magnitude.
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In order to support the development of energy-aware pro-
tocols that react on available energy per node, the hardware
platform should also be able to control the voltage available
at the sensor node. Again, we assume 100 mA as an upper
bound of current consumption.

B. Retrieving Log Data

For getting logging information out of a node without
affecting its functional behavior in the network, it is important
to log as less as necessary while using a most unobtrusive
way to communicate such data to the outside world. We
consider the usage of several I/O pins as one possibility for
this communication between the sensor node and the hardware
adapter.

Call-chain logging is performed by sending a single Byte
via the I/O pins. Bit 8 encodes if the function is entered
or left, while the remaining bits encode the function ID out
of at most 127 possible ones, zero means that no data is
available. Message logging requires additional information to
be transmitted via the I/O pins. This includes one Byte each
for the message ID, the receiver node, the message originator,
and the sequence number.

For both call-chain and message logging, any additional
information is determined on the hardware adapter. This
includes the sensor node ID, the current time, the amount of
energy consumed since the last call-chain event, and the rate
of current energy consumption.

Determining the actual time requires additional effort, since
we want to relate energy measurements and events on different
nodes in our evaluations. We consider three possible solutions.
First, the obvious way is the application of a time synchroniza-
tion protocol (e.g., NTP) over the Ethernet connection. Second,
depending on the deployment, all hardware adapters may be
synchronized with a global clock signal over a shared control
line. Third, no synchronization may be used at all. In this case,
ordering of events on different nodes can be based on the fact
that a receive event always happens after its corresponding
send event. In other words, the latter technique may be useful
if considering causal ordering of events is sufficient for the
empirical study.

C. Communicating Data

Ethernet is used in order to exchange data between the
hardware adapters and a central management station control-
ling the sensor network experiment. Information from the
server to the hardware adapters includes new images to be
flashed and configuration data for controlling the experiments.
One example is configuration data for controlling the energy
available to the sensor node. On the reverse way any generated
logging information and energy consumption measurements
are immediately packed into an Ethernet frame and transmitted
to the management station. At this computer the information
is collected and further processed.

For communicating data from the sensor node to the
hardware adapter general I/O pins are utilized as described.
Moreover, a single I/O pin is used for communicating between

the hardware adapter and the sensor node. This flag can be
used for conditionally generated log information, i.e., only
if set to true, information will be logged at the sensor node
and transmitted to the hardware adapter. In a future version
additional ports are available at the hardware adapter for
simulating sensor hardware. This is necessary when evaluating
the behavior of an application that depends on specific sensor
readings or events. Otherwise an automated test is not possible.

IV. EXPERIENCE REPORT

A. Software Support

The concept of the automated instrumentation is evaluated
in detail in [1]. In all cases TOSSIM is used for simulating
the instrumented code. Thereby, the process of logging data
is simplified by the fact that the information can be logged
directly into files. The configuration of the instrumenter for
TOSSIM is as follows. We have provided the modules re-
sponsible for creating, sending, and receiving packets with
code templates producing trace information. An example code
snippet for tracing packet reception is shown in Listing 1.

tossim_header_t * header = getHeader(msg);
dbg_clear("TINYAID_PACKET_TRACING",
"%d %lld R %d %d %d %d %d\n",
sim_node(), (sim_time_t)(sim_time() * 1e-7 + 0.5),
header->type, header->src, header->dest,
header->origin, header->seqno);

Listing 1. Code template for packet reception

In order to demonstrate the useability of the automated
instrumentation, the packet tracing is demonstrated by compar-
ing three different routing protocols. The first one is TYMO,
an implementation of the well-known DYMO protocol, which
is included in the TinyOS 2.x code base. TYMO uses internal
message types for route requests and route replies. These are
sent in order to query and establish a new route, if a forwarding
node does not know where to send a given message. The sec-
ond routing protocol is Dynamic Source Routing (DSR), which
follows a similar concept. The third protocol considered is
Greedy Routing. Messages are forwarded using the geographic
positions of forwarding nodes and the destination. The greedy
aspect is realized by considering only neighbor nodes closer
to the destination and sending the message to the neighbor
closest to the destination. The output of the automated packet
tracing is shown in Fig. 3.

B. Hardware Adapter

We have been experimenting with different hardware ap-
proaches for adjusting the sensor nodes available power supply
and for measuring a sensor node’s current consumption [2].
After evaluating all considered approaches it turned out that
they are not feasible for the objectives, which we are aiming
on with our planned hardware adapter. For both parts, in the
following we briefly sketch the different approaches and our
observations with that solution.

69



(a) TYMO Flow (b) DSR Flow (c) Greedy Flow

8 9

(d) TYMO Packet Types

9 10 12

(e) DSR Packet Types

13 14 15

(f) Greedy Packet Types

Fig. 3. Visualization of packet flows and packet type distribution

For adjusting output voltage levels an LM317 voltage reg-
ulator from National Semiconductor, which supports up to
1.5 A output current, is utilized. The voltage regulator can be
adjusted by an analogous input appropriately. A digital ad-
justable voltage regulator is constructed by a resistor network,
which is then controlled by the output lines of a binary register.
As an alternative solution a DAC8831 digital analog converter
from Texas Instruments is evaluated, which produces an analog
voltage level according to a serial digital input. Both circuits
are tested on how good they reproduce a sinus and a square
wave with sampling rates between 50 Hz to 20 kHz. The results
show that only the DAC8831 reproduce an acceptable shape.
Unfortunately, the DAC8831 does not allow drawing enough
current to support attached sensor nodes running under full
load.

For measuring the current draw of the sensor node we
considered different instrumentation amplifiers coupled with
a shunt resistor, which is then used as an input into the
logarithmic amplifier LOG104. The instrumentation amplifiers
under consideration included the INA138 and the INA333. The
first one was tested alone and in conjunction with an additional
INA138 and a REF200 for amplifying the signal. The latter
was as well tested alone and in conjunction with a cascaded
amplifier INA138. In all investigated settings we were not able

to measure current consumption precisely with 1 kHz over 5
orders of magnitude.

V. CONCLUSION

The development of energy-efficient applications requires
supporting tools, especially when dealing with real hardware.
We proposed a hardware and software based solution that
will help during the development and first test deployments.
The advantages of an automated instrumentation support over
manual instrumentation are presented by a simple but effective
example of message tracing. The results of a first prototype of
the proposed hardware adapter have shown that it is difficult to
measure the current consumption over 5 orders of magnitude
at a frequency of 1 kHz. The next steps will be to solve this
open issue in order to gain first experiences by using TinyAID
in combination with such a hardware adapter.
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Abstract—In this paper we present our work-in-progress
testbed SANDbed for wireless sensor actuator networks. In
contrast to many existing testbed approaches for WSANs we
concentrate our research on highly quantized and resolutive
distributed energy monitoring in WSANs as well as on flexible
management protocols for this kind of testbeds. Therefore the
management software is being designed to support any sensor
node platform and also any testbed topology.

I. INTRODUCTION

The research cooperation ZeuS [1] is a project investigating
the basic principles of reliable communication in wireless
sensor actuator networks (WSAN). We believe that it is
impossible to provide full reliability (in terms of authenticity,
robustness, latency, etc.). Instead, a trade-off must be made,
which balances energy consumption against different reliabil-
ity measurements. If only little energy is available, reliability
should be degraded in favour of network lifetime, which leads
to the concept of probabilistic reliability. As an example, a
query-result being authentic with 70% probability may me
better than no authenticity at all [2].

In the ZeuS context, the Institute of Telematics is currently
developing a testbed to evaluate energy-aware protocols in
ways as yet impossible with existing solutions. Our testbed,
called SANDbed (Sensor Actuator Network Development
testbed), is not only an appliance, but an integral part of the
project. It allows us to evaluate protocols and schemes on
real hardware, getting real energy measurements to confirm
the often untrustworthy simulative evaluations. Nevertheless,
the conceptual design allows the testbed to be of use in many
other WSAN scenarios beyond ZeuS.

Therefore, the contribution of this paper is twofold. First, we
would like to present SANDbed to the community, to establish
relations to research beyond the ZeuS cooperation. Second, we
would like to point out the challenges implicated by the various
requirements we impose. This is of use for other projects that
may need evaluation in a WSAN testbed, too.

In the following Sections, we sketch SANDbed, its main
features, challenges and current status. For this, we first outline
the primary design goals, introducing core features. Then,
we draw the architecture of the testbed itself, but also of
software components used for management and monitoring.
We conclude by specifying the project’s current status and
future work.

II. GOALS

We identified three major goals for SANDbed development.
The Testbed should provide side effect free monitoring of
motes without any effects caused by the testbed environment
itself. This is to obtain results as precise as possible from
the examined sensor network. The second goal for SANDbed
is to support multiple experimenters with deployment and
management of their experiments and results. For experiment
evaluation, we want to be able to get significant and detailed
information about the used amount of energy on individual
motes measured at distributed locations. In the following we
describe each goal and resulting design decisions in more
detail.

A. Side effect free monitoring

Monitoring of operating wireless sensor networks can be
done on the sensor nodes or by dedicated additional hardware.
The first approach is quite easy to realize on a single mote
by adding software monitoring modules to the application
to be analyzed. Especially in complex field research en-
vironments, additional hardware cannot be attached due to
inaccessible motes, expenditures or integration problems like
wiring dedicated monitoring hardware in the field. However
a software approach also suffers from side effects with the
running application on the monitored mote. Many sensor
network specific operating systems’ inability to run multiple
threads simultaneously leads to imprecise monitoring results
and additional energy consumption for monitoring overhead.

To avoid these drawbacks, our approach uses dedicated
monitoring boards for energy measurement attached to each
sensor mote in SANDbed.

B. Deployment and experiment management

As a useful tool for analysis and evaluation of WSAN
protocols and algorithms a vital requirement for a testbed
is the management of user-defined experiment sets. Each
experiment set contains binary image files for sensor motes,
configurations for scheduled measurements, mote locations of
individual applications and tasks. Additionally, an experiment
set can contain mote input for experiment runtime. Using
experiment sets allows to repeat an experiment easily with
slightly modified initial values and random seeds as well as
multiuser support by the testbed. We use a database to store
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experiment sets and results like application data, distributed
energy measurement values and serial mote output for debug-
ging purposes.

SANDbed allows to manage all motes by a web-based
graphical user interface which provides functionality, e.g.
running experiment applications and monitoring the status
of individual motes. The intended purpose of the GUI is
twofold. On one hand it provides a network management
interface for the testbed and the embedded sensor network.
Network management becomes necessary especially because
we want to support and maintain heterogeneous mote types in
a single sensor network and extensions to our management and
monitoring hardware. Using a common network management
protocol in SANDbed even enables us to integrate SANDbed
in an Internet environment. On the other hand the GUI can also
be used to setup, deploy and evaluate new protocols and ap-
plications. Mote programming can be done via interface from
everywhere without physical access to the motes hardware
making SANDbed a worthwhile tool for fast development and
deployment of new ideas and sensor network prototypes.

C. Distributed energy measurement

The third goal for SANDbed development is to optimize en-
ergy efficiency of resource constrained wireless sensor actuator
networks in order to increase network lifetime. In particular,
the distributed nature of wireless sensor networks leads to
difficulties in determining the impact of network-wide effects
of communication algorithms and architectures. Motes can
suffer increased energy demands even if they are not directly
involved in a communication process between two nodes.
MAC-layer characteristics like observing radio channels for
incoming messages or free time slots to send own messages to
active nodes are examples of such energy demanding behavior.
To pinpoint those effects, we have to measure the used energy
not just as sum over the complete run of an experiment, but
in very short time intervals of milli- and microseconds.

We are planning to expand SANDbed with the capability of
measuring energy consumption on mobile motes for advanced
applications like event tracking. Protocol behavior may even
depend on different kinds of energy supply or take remaining
energy into account. SANDbed is therefore able to simulate
various battery models and energy supplies specified by ex-
perimenters.

III. ARCHITECTURE

A. Hardware architecture

The hardware architecture of SANDbed is organized in a
tree-like structure shown in Figure 1, enabling high scalability
of the testbed.

The root level of the tree comprises the user interface and
the database. The database is used for storing all information
of SANDbed that requires persistence. SANDbed stores its
configuration, user data, experiment configuration and results
in this database, where the data is provided to the user
interface or the testbed itself. The second tree level is formed
by the management nodes connected to the Internet. Each

Fig. 1. SANDbed architecture

management node is responsible for monitoring a couple of
motes connected over the USB interface. The leaves of the tree
are the testbed nodes, consisting of a mote (e.g., MicaZ [3])
and the Sensor Node Management Device (SNMD). Figure 2
shows a possible configuration of a testbed node.

This architecture allows side effect free monitoring in
a controlled testbed environment resulting in more precise
measurements of energy usage without impact on mote hard-
ware resources. Therefore we designed two orthogonal, non-
interfering communication infrastructures in SANDbed. The
horizontal wireless in-sensornetwork communication is con-
trolled by the researched application while we vertically use
a TCP/IP and wired USB infrastructure for management and
monitoring communication in SANDbed.

Fig. 2. (a) Sensor Node Management Device (SNMD) with (b) adapted
MicaZ and Sensorboard forming one possible configuration for a testbed node

Sensor Node Management Device: SNMD is developed
with the intention to analyze the energy consumption behavior
of the motes. We achieve this by completely controlling
and monitoring the energy supply of the managed sensor
nodes. SNMD is able to provide power supply to the motes
from an attached battery or by simulating a battery. The
battery simulation is done by using USB as power source and
controlling the voltage supplied to the sensor notes. SNMD
is capable of high resolutive measuring of the voltage and
current consumed by the nodes. The measurement results can
be provided live (each sample individually) or buffered and
sent in chunks over USB.

Furthermore, SNMD provides a comprehensive extension
interface which can be used for attaching add-ons like displays,
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SD-cards, etc. Storing the logs and measurement results on
SD-cards enables long term buffered measurements and stand-
alone operation. In addition, the extension interface can be
used to simulate different environmental conditions for the
attached mote. This can be achieved by connecting the SNMD
output ports to the input of the mote, thus directly feeding it
with simulated sensing data.

Due to the power supply being the only really required
interface between SNMD and the mote, every sensor node
platform with compatible electrical characteristics can be
adopted for operation within SANDbed. Primary benefit of
this fact is again side free monitoring, because there is no need
of adapting existing WSAN-applications. In fact, the mote has
no knowledge of being monitored in a testbed at all.

Table I summarizes the most characteristic technical specifi-
cations of the SNMD. Currently the SNMD is in preproduction
state being tested as prototype.

TABLE I
TECHNICAL SPECIFICATIONS OF SNMD

Measurement sampling rate:
unbuffered max 20kHz

buffered max 400kHz

Sampling resolution 16 bit

Measurement accuracy < 2%

Sample buffer 896kB =̂ 448.000 samples

Current measurement range 1). 0− 100mA

2). 0− 200mA

3). 0− 500mA

Voltage measurement range 0− 10V

Charging Capabilities: 1). NiMH - maxI = 200mA

2). Li-Ion - maxI = 200mA

Node power supply type 1). Real battery
2). Simulated battery using USB-Power

Power output:
maxUout 4, 2V

maxIout 1A

Programmer capabilities Any Atmel AVR Chip

PC-Connection Over USB-Hub

User interface Serial-USB command line

Extension Interface I2C

SPI
16 bit I/O Subsystem
SD-Card

B. Software architecture

For managing and monitoring objectives we favor standards
over proprietary solutions. Therefore the management software
of SANDbed is designed as a client-server architecture based
on the Web-Based Enterprise Management (WBEM) [4].
WBEM is a set of open standards defined by Distributed Man-
agement Task Force (DMTF). One of these is the Common
Information Model (CIM) [5] which we use for designing the
SANDbed information model. The management information
is exchanged between clients and servers over the CIM-XML

protocol [6] that uses XML over HTTP to exchange CIM
information.

The management nodes implement the server side of
WBEM. Therefore every client with WBEM abilities is able
to manage our testbed. We prefer WBEM over other network
management protocols like SNMP [7], because of its object
orientation. This empowers us to easily implement device
hierarchies and remote method invocations. The latter are
indispensable for controlling the experiment runs and mote
behavior.

IV. FUTURE WORK

SANDbed is still in development state. While the hardware
is almost in production state, the management software is
our next stage of development. The preliminary examina-
tions of the SNMD are very impressive, so we are going
to start deployment of SANDbed in the near future. The
first SANDbed deployment site will be at the Universität
Karlsruhe (TH). There, we will gain experience in managing
and monitoring sensor networks and especially distributed
energy measurement. In future we will extend SANDbed by
further sites, so that more interested scientists will be able
to participate in enhancement of SANDbed and performing
experiments in wireless sensor actuator networks.

V. CONCLUSION

In this paper, we presented our WSAN testbed SANDbed.
We pointed out the major goals, namely side effect free
monitoring, easy deployment and management of WSAN
experiments, and last but not least distributed energy mea-
surement. We sketched the testbed architecture and showed
its current status. Several issues, we identified, have not yet
really been addressed to in other WSAN research. However,
for a satisfying development and realistic evaluation of WSAN
protocols, these issues must be solved. Here, the SANDbed
will be a step into the right direction.
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Summary—Wireless Sensor Networks (WSNs) consist of a
large amount sensor notes (spots). We address the problem of
how theses spots can be controlled, so that they collaborate to
fulfill a common task. UML2 Activity Diagrams (UADs) enable
the user to model workflows, describing activities, in a graphical,
structured and hierarchical manner. The novelty of our work
is that we program WSNs using UADs. Our approach not
only covers workflow description, but also action allocation. We
develop a framework to design activities describing the behavior
of WSNs and to execute those diagrams by spots, after an
automated transformation of the model file. As a result of our
first experiments, testing this framework using 12 spots, we can
say that UADs can be used to program in a platform-centric as
well as in an application-centric way. Additionally, we are able
to adapt the behavior of a spot during runtime by reloading
activities. Further research is necessary to see the full spectrum
of drawbacks and benefits of our attempt.

I. INTRODUCTION

WSNs [2] have become an important branch of research.
Teething problems like routing, clustering and energy aware-
ness in WSNs have been widely discussed and there is a
trend towards discussing how to use this new technology for
real applications. For us the research challange in the field of
WSNs lies in the huge amount of spots (hundreds, thousands,
...), which must be coordinated. Many spots should interact
and fulfill a common task. How can a programming model
cope with these distributed operations?

In this extended abstract we introduce our framework that
allows to program a WSN using a subset of UADs. We
describe related work, basics of UADs, and our preliminary
work in section II. We present important aspects of our
framework in section III, section IV describes an example
experiment using it. Finally section V concludes this exteded
abstract, gives an brief outlook to further work, and puts some
open questions.

II. RELATED WORK, BASICS AND PREVIOUS WORK

A. Programming WSNs

Sugihara and Gupta have written a detailed survey about
programming models for WSNs [3]. They have introduced a
taxonomy, distinguishing between an application-centric view
and a platform-centric view that a programming model can

1 implemented the fundament of our framework for his Master’s Theses [1]
2 corresponding author

take. Similar to us, they see collaboration as one important
requirement for WSN applications and so for a programming
model. Guerrero et al. have written a position paper [4],
discussing some theoretical aspects in the field of workflow
support for WSNs. To our knowledge a concrete implemen-
tation is not available. Unlike to our proposal they describe
the workflows using state charts, similar to us they see the
possibility to bring the programming closer to domain experts.

B. UML2 Activity Diagrams
The following subsection is based on Oestereichs book [5]

that summarizes the official specification of UML2 [6], [7].
UADs describe a workflow. An activity (diagram) is defined
by different kinds of nodes (action nodes, object nodes and
control nodes) that are connected by object flows and control
flows, symbolized by arrows. A control flow transports so
called tokens, a object flow objects.

C. eXMIcutionUnit-Plugin for ROBRAIN
We gained our first experiences to programm systems using

UADs during the Masters Thesis of Ipek [8]. He realized a
prototype for Linux with C++ as a plugin (eXMIcutionUnit)
of a multi robot programming framework called ROBRAIN
[9]. As there are much more resource constraints for spots
compared to the robots, there clearly was the need to create
a similar (in the sense of describing workflows with UADs),
but more featured and specialized framework for spots.

III. OUR FRAMEWORK

A. Avtivity-Centric View on WSNs
We aim our framework at programmers that want to code

with the following view on WSNs: A spot can execute
activities. If it executes an activity, it has the control about
it. Its scope is limited to the workflow that is described by
this activity. An action, which is included in an activity, can
be allocated to a spot. The spot, executing the activity, has the
control over this allocation process.

B. Components
Our framework consists of a tool for programming the

UADs (IDE), an execution environment for UADs that runs
on the spots (CORE), a transformation rule (RULE), and an
access software to the WSN for the user (ACCESS). We use
Papyrus UML 1.11.0 [10] as IDE, the rest is realized by us.
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Programming an UML Activity

Design and save

activity with IDE

XMI2-file

[IDE output]

Transform and

optimize

RULE

[XSLT-File]

.activity-file

[CORE-compliant]

Fig. 1. Programming an UML Activity. RULE is offered by our framework.

C. Used Tools, Libraries and Technologies

CORE is realized for Sun SPOTs [11], which are pro-
grammed using Java ME [12]. We use kXml2.2.2 [13] as XML
(Extensible Markup Language [14]) parser. For RULE we use
XSLT (Extensible Stylesheet Language Transformation [15]).
xsltproc [16] is used to convert the Papyrus UML output,
which is XMI2.1 (XML Metadata Interchange [17]), to a
RDF (Resource Description Framework [18]) compliant file.
ACCESS is written in Java for a PC with a connected base
station.

D. Features of the Current Implementation

• A programmer programs UADs by using IDE. The output
of IDE is converted into a CORE-compatible syntax,
using RULE.

• CORE can be pre-configured with activities, which will
be loaded and parsed when CORE is started. At runtime
additional activities can be added via ACCESS.

• The execution of an activity can be started by the user
via ACCESS, or by the CORE of another spot.

• Status information of a spot (currently its supported
activities and the battery load status) can be retrieved
from CORE via ACCESS.

• CORE may execute several activities or file parsing
operations simultaneously.

• A basic scope of UAD elements is supported: start nodes,
final nodes, fork nodes, synchronisation nodes, decision
nodes, merge nodes, guards, control flow and object
flows. Furthermore implicit forks and synchronisation as
well as a hierarchical structuring of activities is pos-
sible. The UADs were expanded with two stereotypes:
� allocated � (to mark and describe the allocation
of actions) and � root � (to mark the call of Root
Activities).

• Programmers may program new RootActivities against
our JAVA interface and integrate it into CORE.

• Programmers may program new AllocationProcesses
against our JAVA interface and integrate it into CORE.

E. Programming UML Activities

The goal of the programming process is to gain a CORE-
compliant .activity - file that can be interpreted by CORE
(Fig. 1). First of all the programmer has to design and save

Initial

Node

Flow 

Final Node

Activity 

Final Node

[x>0]

[x<=0]

Decision

Node

Merge

Node

Decision &

Merge Node

[x>0]

[x<=0]

Fork Join

...

Fork & Join

...

...

2) Cotrol Nodes

3) Object Nodes

actionA actionB

output pin input pin

1) Action Nodes

actionB
<<root>>

actionC
<<allocated>>

actionA

4) Hierarchy

name1

name2

name2

call

activity name activityaction

activity

actionB
<<root>>

actionC
<<root>>

actionD
<<root>>

key1 key2

Fig. 2. Important aspects of UML2 Activity Diagrams.

the activity with IDE in an XMI2-file. The IDE output is
transformed and optimized using RULE.

F. Supported UAD elements

A programmer, who works with our framework, can cur-
rently use the elements shown in Fig. 2 to program an activity.
The choosen syntax, semantik and description of the UAD
elements is based on [5]–[7].

1) Action Nodes: An action symbolizes one step in an
activity. In UML a stereotype can be used to add further
information to an element. In our framework an action with
� root � - stereotype symbolizes that the corresponding
activity is realized in Java and not programmed using UAD.
The � allocated � - stereotype shows, that the action is
delegated to a spot. Our framework allows the combination of
these two stereotypes.

2) Control Nodes: An initial node is at the start of
the workflow of an activity. More than one initial nodes are
possible in an activity. CORE looks for all initial notes and
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starts for each one a thread for the execution. A flow final
node is at the end of a single flow. CORE stops the execution
of it, the other flows are not stopped. An activity final
node indicates the end of an activity. CORE stops all flows
in the activity.

A fork node allows parallelism in activities. One in-
coming flow is immediately split in several outgoing. CORE
starts for each flow a thread for the execution. A join node
reduces parallelism and allows synchronization in activities.
CORE waits for all incoming flows before the outgoing is
started. Is is a conjunction with and-semantic. A fork &
join node is a combination of a fork and a join node.
CORE waits for all incoming flows before it starts all outgoing
flows.

A decision node must have a single flow entering it,
and one or more flows leaving it. At the outgoing flows con-
ditions are annotated that specify which flow must be chosen.
They are called guards and must allow a unique decision.
CORE has an GuardProcessor that parses the annotations
and allow to compare Strings, Integers and Doubles using the
operators =, ! =, <, >, <= and >=. The parameter x must
be set by an action of the activity. A merge node has one
ore more incoming flows. CORE waits for one incoming flow,
before the outgoing is started. This is a conjunction with or-
semantic. A decision & merge node is a combination
of a decision and a merge node. CORE waits for one incoming
flow, before it uses the GuardProcessor to take the decision.

3) Object Nodes: An object node indicates that an
object or a set of objects exist. CORE uses them as an
incoming or outgoing parameter. IDE allows to symbolized the
object node as a pin (with a square at the border of an action
node). CORE uses HashTables for the mapping between keys
and values. Per convention in our framework, the names of
the input and output pins (here key1 and key2) must fit to the
keys in the Hashtable.

4) Hierarchy: An activity consists of single actions. If
CORE detects an action it calls the activity that has the
same name (here name2). If an action is tagged with the
� root � - stereotype, CORE knows, that it must call
the corresponding Java-Class (here actionA, actionB, actionC.
As we want to concentrate on the programming using UAD,
we differ from the official specification, which says that a
CallBehaviourAction indicates the call of an activity.

G. Action Allocation

We have chosen the following syntax for an instruction that
can be added with the � allocated� - stereotype:

instruction := (method : parameter : set)→ set

method specifies an AllocationProcess (entry in a list).
param allows the modeler to specify parameters which
are necessary for the allocation process. set is a comma-
separated list of spots, from which the allocation which the
allocation process must select the target set of spots. It is
possible to substitute set with an additional instruction, so
more complex allocations can be processed recursively.

IV. EXAMPLE EXPERIMENT

A. Experimental Setup

For this experiment we have build an example WSN, which
consists of 12 spots. We have programmed a NetTemp and a
SpotTemp activity (Fig. 3) and initially deployed SpotTemp to
all spots. Afterwards we switched on the power, reset the spots,
and waited about one minute1. We transferred NetTemp to spot
a11 over the air, using the base station, started the execution
and have observed the behaviour and the final state of the
spots. We have made three experiments (series 1), waited about
half an hour, and made additional two experiments (series 2).

B. SpotTemp and NetTemp

NetTemp and SpotTemp describe the following behaviour:
The sensor network has to determine a mean value of a
temperature, decide whether the result is grater or lower than
30◦C, and to indicate it. SpotTemp is executed on a spot.
GetTemp detects the current temperature using the sensor of
the spot. The result is passed to an output-pin and if it is
grater than 30◦C all LEDs of the spot become red, otherwise
green. NetTemp runs on spot a11 and allocates the execution
of SpotTemp to four spots (� allocated � - stereotype).
The results are asynchronously passed to MeanValue, that is
allocated to spot a09. Spot a09 start the execution not till then
it has all 4 results (implicit join). If the result, calculated by
MeanValue, is grater than 30◦C all LEDs of spot a10 become
blue, otherwise those of spot a11.

C. Observed Behavior

We have repeated the experiment 5 times. After different
combinations of four spots, executing SpotTemp, turned on
their (red/green) LEDs, spot a10 or a11 turned on its blue
LEDs. Four times all four spots turned on their red LEDs,
one time all four spots turned on their green LEDs. The green
LEDs turned on at the first run of series2.

D. Interpretation and Results

As we haven’t done an exact and independent measurement
of the temperature, a quantitative conclusion is not possible.
Qualitatively we can say, that our spots have behaved as
expected. We have seen two different behaviors of the network.
Both the network and the spots have made a decision and
indicated it. We are able to program our WSN in a platform-
centric and an application-centric way.

V. CONCLUSION AND FURTHER WORK

The huge amount of spots that must be handled in large
scale WSNs is a fascinating challenge. Spots should collabo-
rate to fulfill a common task. Based on our experiences in the
field of multi robot programming, we are currently investigat-
ing how UADs can be used for programming WSNs. UADs
can be used to describe workflows in a graphical, structured
and hierarchical manner. Actions nodes, control notes, object

1For our experiment we used the standard communication protocol stack
of the spots. This means, that we had to wait, until the spots had initialized
the network.
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SpotTemp

[ else ][ temp>=30.0 ]

(spot::Spot::SpotTemp)

temp

de.fau.i7.spot.ras.edemo.GreenLED

«root»

de.fau.i7.spot.ras.edemo.RedLED

«root»

«root»

de.fau.i7.spot.ras.edemo.GetTemp

temp

NetTemp

«allocated»

SpotTemp

«allocated, root»

de.fau.i7.spot.ras.util.MeanValue

val1 val2

val3 val4

temp

temp

temp

temp
«root»

de.fau.i7.spot.ras.edemo.BlueLED

«allocated, root»

de.fau.i7.spot.ras.edemo.BlueLED

[ else ]

[ result>=30.0 ]

«allocated»

SpotTemp

«allocated»

SpotTemp

«allocated»

SpotTemp

1

2

3

5

4

6

Information added to the action
(left click on it) using the 
<<allocated>> - sterotype:

instr = static::a096

5 instr = static::a10

4 instr = random:uniform:a07,a08

3 instr = random:uniform:a05,a06

2 instr = random:uniform:a03,a04

1 instr = random:uniform:a01,a02

Legend:

Fig. 3. Example for the programming of WSNs using UADs. NetTemp and SpotTemp are two different UADs, programmed with Papyrus UML. The
images of them are the svg-export of Papyrus UML (with some typographical modifications). The diagrams are composed of the elements offered by Papyrus
UML. With the exception of the boxes (1-6) the content of the diagrams correspond to the Papyrus UML view. NetTemp calls SpotTemp. NetTemp is an
application-centric activity, SpotTemp a platform-centric activity.

nodes, hierarchy, parameters and stereotypes are a subset of
important aspects of UADs. We use the expressiveness of them
for our framework that give the user an activity centric point
of view on a WSN.

Our framework uses Papyrus UML as an IDE for the design
of activities, describing the behaviour of WSNs. We offer
RULE for the transformation of these activities in a RDF-
compliant file that can be executed by our CORE, running
on the spot. Additionally we provide ACCESS to supervise,
control and reprogram the spots.

First experiments, using 12 spots, show us, that our attempt
can be used to program in a platform-centric as well as in an
application-centric way. Additionally to workflow description,
our framework currently supports static and random action
allocation, and the extension of the repository of a spot during
runtime, for network reprogramming.

We are currently investigating more sophisticated action
allocation mechanisms and are about to increase the number of
spots of our WSN. Additionally we are building robots that are
controlled by the spots to gain a robot sensor network. To see
all consequences of this work we have to ask amongst others:
What features should / can be integrated in this framework?
What is a good method and scenario for the evaluation of our
framework?
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Abstract—The capabilities of wireless sensor networks are
promising a great future for them. Nevertheless it’s necessary to
have methods to verify their correct operation before deployment,
for widening their range of application and enable their usage
in e.g. safety critical environments. One method to examineif
systems behave as desired is temporal logic model checking [1],
which is a formal verification technique. When verifying wireless
sensor networks, some special aspects like the correct modeling
of the wireless communication and possibly other components
of the sensor nodes are essential. In this paper we report about
the verification of a traffic light synchronization protocol at 4-
way intersections, where the traffic lights communicate wireless.
We present some needful abstraction techniques and discuss
particularities in the verification of wireless sensor networks.

I. I NTRODUCTION

In this paper we report about the verification of a traffic
light synchronization protocol at 4-way intersections andthe
verification of wireless sensor networks (WSNs) in general.
WSNs can consist of a large number of sensor nodes. Be-
cause verification of distributed systems is hard, and even a
single sensor node and its software could be very complex,
verification of sensor networks is a highly non-trivial task.
But if they should become deployable in e.g. safety critical
environments or areas where they can’t be reprogrammed,
it’s unavoidable to verify that they fulfill their requirements.
Otherwise implementation failures can be very costly and
cause accidents, which in the worst case could lead to the death
of humans. Common approaches to verify the functionality
of WSNs are e.g. the use of simulators like TOSSIM [2]
or live testing by using testbeds. As a drawback of these
methods, they don’t verify the desired properties for all
possible computations of the sensor network. It is known that
especially hard bugs in distributed systems often appear only
in a few corner cases. Therefore such complex bugs cannot
be detected reliably by these methods. An approach for early
stage sensor network verification is the use of model checking.
Because model checking isn’t easy to apply correctly without
some verification experience, it currently isn’t widely used in
the area of WSNs. Hence we outline in our paper guidelines
and abstractions for improving the verifiability of WSNs. This
should help to achieve fast and correct verification and make
formal verification amenable for the WSN domain.

The paper is organized as follows. In Section II we discuss
related work on the field of verification. Section III gives
a short introduction in model checking and the symbolic
model checker NuSMV [3], which we used for our verification

experiments. The verified traffic light synchronization protocol
is described in Section IV and Section V shows pitfalls when
modeling wireless communication. In Section VI we present
useful techniques to model the protocol in the input language
of NuSMV. The paper closes with concluding remarks and an
outlook to further investigations.

II. RELATED WORK

WSNs often contain stochastic elements (e.g. backoff proce-
dures of communication protocols or elements of the environ-
ment). To allow reliable verification of them, these have to be
modeled as accurate as possible. PRISM [4] is a probabilistic
model checker for analyzing quantitative properties of systems
which exhibit stochastic behavior. But though the possibility
to model probabilistic elements accurately, its input language
is very restricted and probabilistic models are typically more
complex, which decreases the limit what can be analyzed.
Therefore we have chosen for our work the symbolic model
checker NuSMV, which doesn’t directly support the specifica-
tion of probabilistic elements.

In [5] the authors verified the IEEE 802.3 Ethernet
CSMA/CD protocol using the symbolic model checker SMV
[6]. This protocol is a wired protocol, so they hadn’t to deal
with the special characteristics of wireless communication.
Fehnker et. al [7] verified the LMAC protocol, a medium
access control protocol for WSNs using Uppaal [8], a model
checker for timed automata. Their property of main interest
was detecting and resolving collisions, which they verified
for different topologies. They showed that the truth of prop-
erties may depend on the network topology. The focus of
both papers mentioned above was to verify a communication
protocol, whereas our work aims towards verifying networks
of sensor nodes considering not only communication, but also
implemented functionality. We show that it’s often necessary
to model communication or possibly other important system
components to verify functionality.

III. M ODEL CHECKING AND NUSMV

Model checking is an automatic formal verification tech-
nique for verifying properties of finite state systems. A model
checker is a tool which, given as input a model of a system
and a property of interest formulated in a temporal logic,
automatically decides whether the property is valid for all
possible computations of the model. To decide if a property
is valid, the model checker has to explore all possible system
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Fig. 1. 4-way road intersection with traffic lights

states exhaustively. As a consequence, the main problem of
model checking is the state explosion problem. This problem
especially appears in the verification of distributed systems,
where the number of possible system states grows exponen-
tially in the number of components. One method to reduce the
state explosion problem is to use symbolic model checking
[9], which uses BDDs for representing sets of states and the
transition relation symbolically, instead of representing them
explicitly.

Because symbolic model checking allows the handling of
systems with very large state spaces, we used the symbolic
model checker NuSMV [3] for our work. NuSMV is a reim-
plementation and extension of the symbolic model checker
SMV. NuSMV permits the description of synchronous and
asynchronous systems and has its own input language. For
property formulation, NuSMV supports the temporal logics
LTL and CTL [1], which extend propositional logic with
temporal operators.

IV. T HE TRAFFIC L IGHT SYNCHRONIZATION PROTOCOL

To show particularities of WSN verification and the useful-
ness of our abstractions, we developed a simple traffic light
synchronization protocol for 4-way intersections. Figure1
shows a 4-way road intersection with one traffic light for each
incoming road. The purpose of the protocol is to synchronize
traffic lights which communicate wireless. Thereby one of the
main targets is to ensure that only diagonally arranged traffic
lights are allowed to show green at the same time, to prevent
accidents. A simplified state diagram of the control flow of
the protocol for a single traffic light can be seen in Figure
2. The conditions for the feasibility of transitions and also
transitions without state changes have been omitted for clarity.
These conditions consist of combinations of values of local
state variables and types of incoming messages from other
traffic lights.

In the control statesred (initial state), yellow and green,
the protocol triggers its lights to get the corresponding color.
If a traffic light is in the statered or green and gets a
message to change its light color (e.g. from a traffic mea-
surement sensor at the road), the protocol sends a command
to transmit a light change request to the underlying MAC
protocol. When the MAC protocol confirms the sending of the
message, the transmitting traffic light changes its controlstate
to an acknowledgement receiving state. If no communication
errors occured, the diagonally arranged traffic light at the

Fig. 2. Control flow state diagram of the traffic light synchronization protocol
for a single traffic light

Fig. 3. Control staterecAck1with transitions

intersection subsequently changes its control state also to an
acknowledgement receive state. There are four such states in
the protocol, but for clarity they are summarized in Figure 2
into one state. The other two traffic lights change their state to
prepareAck, if their lights are red at the moment. When their
lights show green, they first change their light color to red and
then go to this state. In the stateprepareAckthey prepare and
send an acknowledgement transmit request to the MAC layer.
They leave this state, when they get the confirmation that the
request has been sent.

Figure 3 shows exemplary transitions and next states of
the receiving staterecAck1. A traffic light changes to this
control state from the statesred and green, when it receives
the confirmation that a light change request has been sent
from the MAC layer. The Figure is drawn with identifiers for
the traffic lights at the incoming roads from north and south,
whose behavior is symmetric in this state. If the traffic light
receives an acknowledgement from the traffic light at east or
west and there hadn’t been a communication error, it changes
its state torecAckEast, and recAckWestrespectively. Because
it could be possible, that two light change requests from traffic
lights collide, or a traffic light hasn’t received a send request
from another traffic light, this had to be considered in the
protocol. Therefore the protocol uses a timeout counter, which
is incremented every step when the traffic light is in state
recAck1until the timeout limit is reached. Also the protocol
uses a variablechange, which has the valuepartner, when
the traffic light received a change request from the diagonally
arranged traffic light at the intersection.

By executing the transition with the variablestimeout-
Counter and changein Figure 3, a command to transmit a
traffic light change request is send to the MAC layer. The state
changes fromrecAck1 to yellow or prepareAckare needed,
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Fig. 4. Receiving of acknowledgements inrecAck1without collisions

because a traffic light could be in the staterecAck1 while
a change request from another traffic light could have been
sent. This behavior could appear because of collisions or
transmission errors, when sending a light change request.
If the traffic light shows green, it first changes its state
to yellow and thenred, before going to stateprepareAck.
Otherwise it changes its state toprepareAckto initiate the
transmission of an acknowledgement. Two different types of
acknowledgements can be sent by a traffic light. One type
to acknowledge a request of the diagonally arranged traffic
light and another type to acknowledge traffic light change
requests from the other two traffic lights. After reception of
all necessary acknowledgements without timeout, the initiating
traffic light sends a sendComplete message to inform the other
traffic lights about successful light change and changes itslight
color accordingly.

V. COMMUNICATION MODELING PITFALLS

In this section we show how neglecting wireless communi-
cation characteristics can circumvent the detection of design
errors through model checking.

A. Nonobservance of collisions and impossibility to listen
during sending

Here we show how disregarding collisions together with
nonobservance of impossibility to listen during sending can
prohibit the detection of design errors. Figure 4 shows an
example model of the outgoing transitions of staterecAck1
where acknowledgements are received for the traffic light at
north, without considering collisions. In a real world deploy-
ment acknowledgements from the traffic lights at east and
west cannot arrive at the same time, because there would
be a collision in wireless communication. When verifying the
property that no deadlock exists for this model of the protocol,
it could be verified by the model checker as correct even
without using a timeout and request resend mechanism in the
acknowledgement receiving states. If the acknowledgements
from the traffic lights at east and west collide, without a
timeout and request resend mechanism all traffic lights are
stuck in their states. When ignoring that listening in wireless
communication usually isn’t possible during sending, the other
parts of the protocol could be implemented for the model
checker in a way, that these deadlock doesn’t appear on any
computation path of the model. As a consequence the model
checker can’t find the deadlock.

B. Nonobservance of variations in radio wave propagation

Variations in radio wave propagation, e.g. through changing
environmental conditions or obstacles, can cause situations

where a message sent by a traffic light could be received only
by a subset of the desired receivers. In an early version of the
protocol we used only one type of acknowledgements. During
verification runs considering collisions but without variations
of radio wave propagation, we couldn’t find a counterexample
for the property that only diagonally arranged traffic lights
are allowed to be green at the same time. When we inserted
variations of radio wave propagation in our verification model,
we could find computation paths where three traffic lights
could show green at the same time.

This behavior could appear, if all traffic lights showed
red and the south traffic light changed its control state from
recAck1to prepareAck, because of a light change request from
the west traffic light. The light at north didn’t receive this
request. Subsequently the light at north did send a light change
request and the south traffic light approved this by sending
an acknowledgement, whereas its state change toprepareAck
has been caused by a change request from the west traffic
light. As a consequence the south traffic light switched to
control state red and the north traffic light to state green. After
that the north traffic light changed its state tored and then
to prepareAck, because the traffic light at east transmitted a
light change request to green. Then the traffic light at south,
which didn’t receive this request, transmitted a light change
request which was received by north. In the old protocol the
traffic light from north was able to change its variablechange
(see Section IV and Figure 3) to the valuepartner in state
prepareAck. Therewith it could execute the transition from
stateprepareAckto stateyellow. Subsequently the west traffic
light send a request to change its lights color to green and
the north traffic light acknowledged this and also changed its
color to green.

VI. M ODELING SUGGESTIONS FOR RELIABLE

VERIFICATION

In this section we describe suggestions to model the char-
acteristics of wireless communication for the model checker
NuSMV. We present suitable abstractions for modeling varia-
tions in the radio range, transmission errors, the possibility of
packet collisions and the circumstance that collisions normally
cannot be detected by the sending nodes. Their use allows the
reliable verification of WSNs.

Verification models for NuSMV consist of several pro-
cesses, which can be executed completely synchronous or
completely asynchronous. For our verification runs we chose
synchronous execution, because of the lower complexity of
the verification model and the lower verification effort for
the model checker. To model the wireless communication
channel, we used DEFINE statements from the input language
of NuSMV. These work like macros. We therewith specified
for each traffic light defines for channel free, collision and
one for each message of any other traffic light. The value
of these defines is determined by the current control states
of the traffic lights and the values of input variables. For
this purpose we inserted the control statessendReq, sendAck,
sendAckPartnerand sendCompletein our verification model.
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Fig. 5. Example DEFINE commands for channel modeling

Fig. 6. Control staterecAck1with transitions and abstractions

A traffic light in our model transmits, if its control state
currently equals one of these new states. Figure 5 shows
examples of DEFINE commands for channel free, collision
occured and some incoming messages for the traffic light
from north. A big advantage of this modeling, beneath its
correctness and easy implementation is, that no new state
variables are needed for it, because defines work like macros.
In contrast the channel model of [7] introduces new state
variables, which in large networks can affect the verifiability.
The domain of the defines we formulated is Boolean. For
free, the define holds the logical value true if no other traffic
light at the intersection currently sends a message which
north receives, otherwise false. To detect collisions, thedefine
collision takes the value true if two or three other traffic lights
send simultaneously messages which north receives. The last
two defines in Figure 5 indicate if the traffic light for the
incoming road from east sends a sendRequest or sendComplete
message, which north receives correctly. Their logical value
depends on the current control state of the traffic light at
east and the value of the Boolean input variableinputEast.
Input variables in NuSMV get their value from the verification
environment through the model checker, which assigns all
possible values to them in every state. They are used in
the definessendReqEastandsendCompleteEastfor modeling
variations in radio range and transmission errors.
Figure 6 shows the outgoing transitions and successor states
of state recAck1, as in Figure 3, with our modelings and
abstractions for wireless communication. To include collisions
in our model, we added the condition!collision to transitions
where messages have to be received for their feasibility. With
our experiments we intended to verify the protocol for wireless
communication and a MAC protocol with carrier sense and a
randomized backoff procedure. Thus, for reliable verification
we needed a suitable model for it, which preserves all possible
computations and keeps the state space small. We developed
an abstraction using Boolean input variables. Through adding
conditions about a certain value of an input variable, we
restricted the feasibility of transitions which lead to a state
which models the sending of a message. In the transition from
staterecAck1to sendReqin Figure 6 this is the input variable

backoff. Additionally we added the condition that the define
free of the communication channel model also has to be true
for feasibility of the transition. In the transitionfree is used to
model the carrier sense mechanism and the input variable is
responsible for modeling all possible behaviors of the backoff
procedure.

VII. C ONCLUSION AND OUTLOOK

In this paper we reported about verification of WSNs.
We developed a traffic light synchronization protocol for 4-
way intersections and showed some particularities in verifying
WSNs. One conclusion is, that often system components, like
e.g. synchronization protocols, cannot be verified isolated in
WSNs. Frequently, a model of the communication protocol
and models of other sensor node components, like e.g. timers
or even parts of operating systems, are also necessary. A big
challenge is to find suitable models which don’t affect the
verifiability (by leading to the state explosion problem) but
describe the intended behavior correctly. Therefore especially
for non-verification experts, suitable and faultless abstraction
techniques should be available. In this paper we presented
a way to model a communication channel with collisions,
transmission errors and variations of radio wave propagation
for the model checker NuSMV. Additionally we presented a
model of a backoff procedure.

For future work we want to develop abstractions for several
other sensor network components. Additionally we will exam-
ine the impact of different and dynamic topologies together
with varying radio ranges on verification results.
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Abstract—We verify the correctness of a protocol for secure
data aggregation using formal methods. For this purpose, a
scenario is modeled and analyzed in which malicious nodes are
randomly placed by an adversary among protocol compliant de-
vices. We specify properties using linear temporal logic (LTL) and
in combination with an implemented design, an exhaustive state
space analysis is conducted using model checking techniques.
We conclude this work with statements and assertions about the
correctness of the investigated protocol and determine uncritical
cases under which nodes forge packets but remain undetected.

I. INTRODUCTION

The design of secure and safety critical protocols is even
in the miniaturized world of embedded devices that run with
less than 512kB of memory a challenge to engineers. It is
complicated not only due to the complexity of the underlying
algorithms but mainly because of the concurrent nature of
such a distributed system. Simultaneous access to a common
resource (like the communication medium) or the concurrent
execution of tasks hamper not only implementation and design,
but also the proof for correctness.

Formal methods have evolved over time to strong algorithms
that can handle the complexity of those systems, and in
contrary to testing and simulation, design flaws are found if
they exist by an exhaustive state space analysis. One prominent
tool that fulfills this claim is Spin, a model checker, that
offers mechanisms for non-determinism and concurrent system
modeling. The tool has demonstrated its suitability in various
industrial case studies (e.g., [1], [10]) to be powerful enough
in providing a sound basis for formal verification approach.

In this work we verify a protocol for authentic data ag-
gregation by means of the Spin model checker [8] which
has proven to be efficient enough to handle model instances
with more than a million states and transitions. The formal
modeling approach aims to complement the arguments found
in the work of [5], provide new insights and possibly find
potential yet undiscovered design issues in the protocol.

This paper is structured as follows. In Section II we briefly
sketch the ESAWN [4] protocol with its main aspects and
functionality. Section III describes the general assumptions
like the adversary model. The Promela model including the
modeling modalities and the properties of interest are defined
and discussed in Section IV. There after in Section V the
results are shown and finally Section VI wraps up this work
and provides an outlook about future work.

leaf n1 n2 n3 root
A

A

A

aggn1

aggn1

aggn1

aggn2

aggn2

aggn3

Fig. 1. ESAWN scenario of an aggregation sequence with 2 witnessing
nodes (W = 2) i.e., that each aggregated is forwarded not only to the direct
neighbor, but also to additionally two nodes which attest the correctness of
the computed aggregates. For example node n1 sends aggn1 to node n2, and
in addition to n3 and root as witnesses.

II. THE ESAWN PROTOCOL

The investigated ESAWN protocol [4] (Extended secure
aggregation for Wireless sensor Networks) handles the trans-
port and aggregation of messages with guaranteed end-to-end
authenticity in the presence of multiple compromised nodes.

This is mainly achieved by the use of witnesses like shown
in the example of Figure 1: node leaf sends value A to
node n1. Since node n1 could be compromised witnessing
nodes are involved which also receive the value A. In the
above mentioned figure, two witnesses (W = 2) are used
which attest the proper behavior of node n1, namely node n2

and n3. Each witness compares the received aggregates with
previously received aggregates, and in case that they equal,
no faked aggregate was sent in between. On the other hand
if the aggregates differ, there is at least one compromised
node cheating which is made public by broadcasting an alarm
message to all nodes. In the next step, a new aggregate is com-
puted consisting of the node’s own aggregate and the received
ones. In the example of node n2 the aggregation function
fn2(aggn1 , A) computes the new aggregate aggn2 which then
encrypted and sent to parent nodes on the aggregation tree. By
using a symmetric encryption (e.g., SKEY [2]) the authenticity
of messages between nodes is achieved, since the protocol
requires the authenticity of aggregates to be verifiable all the
way down to the sink.

Each single data aggregate is sent and received multiple
times (exactly W +1). Therefore it is obvious, that the protocol
is causing a communication overhead and is very expensive
in terms of energy. Due to this reason, the user has means to
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relax the authenticity of the data that arrives at the root (base
station), thus saving energy, but weakening the authenticity
of the data. This is done using parameter p which gives the
probability that a node verifies the correctness of an aggregate.
In consequence with probability 1−p the packets’ authenticity
is not checked. The resulting trade-off behind ESAWN [4] is,
the more authentic the user wants data to be sent over the
network links, the more energy is needed to accomplish this.

III. NETWORK AND INTRUDER ASSUMPTIONS

For the design of the ESAWN Model the following aspects
are taken into account. We are interested in the security of the
protocol and do not consider a relaxation of the authenticity.
For this reason we set probability p = 1 meaning that all
aggregates are checked. Note that in particular when setting
p < 1 a fake aggregate will stay undetected with probability
1− p and authenticity can no longer be guaranteed.

In addition, the scenario is chosen where nodes are lined up
(see Fig. 1). In this case the ESAWN Protocol is not working
most efficiently due to the missing aggregation of packets
which result in fewer transmissions. On the other side the same
properties hold here as in a tree-like scenario. Hence a tree-
like spanning topology is not required to proof the protocol’s
correctness.

The use of aggregation is an essential part in ESAWN
but does not need explicit modeling. Especially since we
refrain from sending real measured data values it is sufficient
to abstract from a concrete value by a data packet with
what-so-ever content which dramatically reduces the model’s
complexity.

A. Adversary Model

The attacker can compromise some nodes (up to k) in
the network by reading the nodes’ memory, obtaining their
secret keys, reprogramming and placing them undetected back
to the network. It can randomly select the nodes although
the highest potential security threat is in the case where
compromised nodes are located closely together. Hereby they
build a region of compromised nodes, cooperate among each
other and amplify their impact on other legitimate nodes.

The root node is assumed to be out of the adversary’s reach,
operating honestly for the following reasons. If the sink would
act malicious, there would be no meaningful verification of the
authenticity possible since the user could not trust the base
station. In addition if the attacker would have control over the
root node, it has all means to take over control of the whole
network sending its own requests which will not be denoted
by the user.

The same holds for the leaf nodes. Here it can never be
checked whether the extrinsically measured data is correct. As
such, an adversary may forge a sensor’s temperature sensor by
simply using a lighter at the hardware, and the base station
would not notice this counterfeit values.

IV. PROMELA MODEL

Promela (Process Meta-Language) [8] is the process de-
scription language for Spin with special emphasis on modeling
process, synchronization and coordination. We model the real
world ESAWN Protocol and define a variable number of N
nodes to be present in our scenario. Out of this, there are up
to k malicious nodes that forge packets from time to time but
mostly operate normal and inconspicuous. We define variable
W as the number of witnesses present, i.e., a node has to
sent each packet to at least W witnesses which verify the
correctness of its aggregates.

Four types of nodes form a network scenario namely the
leaf in charge of initially sending the collected sensor data
to the network which will always behave protocol conform.
Among the inner nodes we distinct between InnerNotCorrupt
nodes behaving honest and non-compromised, and InnerCor-
rupt nodes, trying to fake aggregates from time to time. The
root node eventually received the aggregates and cannot be
compromised by the adversary. The detailed behavior of the
Spin process for the different type of nodes is depicted in
Figure 2.

A. Modeling Channels

Before the actual Promela model of the ESAWN protocol
is run, each node initializes the required message channels
on the aggregation path. This means that each node obtains
input channels from children nodes and is allocated outgoing
channels to its succeeding parent nodes. The use of a separate
channel for each node is legitimate and can be motivated by
the fact that in the ESAWN protocol implementation nodes
share pairwise symmetric keys (SKEY - Secure KEYing [11],
[3]). In the Promela model we check these requirements by
the use of channel assertions xs and xr on which nodes or
processes – in terms of the Spin model – have exclusive access.
The globally defined channels of type chans, defined as an
1-byte variable that can contain one data packet at a time.

B. State Variables

The global variables represent the overall state of the
model and specify the LTL proof obligations. CheatDetect
represents a detected faked aggregate. Note that only
InnerNotCorrupt and root nodes detect a fake message
since the intruder has no incentive to expose himself. This is
modeling is compliant to the protocol which specifies an alarm
message sent to all known surrounding nodes in case a fake
aggregate is discovered.

The root process announces a received aggregate
(AnnounceRcv). It then checks whether the received ag-
gregate is correct in which case RcvDataCorrect is set.
The variable FakeNodes is incremented whenever a com-
promised node turns active and each time a forget aggregate
is sent counter FakePacketsSnd is incremented.

C. Process Models

Initially all four node types (Leaf, InnerCorrupt,
InnerNotCorrupt, Root) initialize their channels. In
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Fig. 2. Action diagram for the ESAWN protocol that is run in each Spin
process independently.

more detail they set up channels with their designated pre-
decessor and successor nodes.

1) Leaf Process: As in the scenario in Figure 1 the leaf
generates a sample and initiates a protocol run by sending
this sample its parent node and witnesses. The data packet is
represented by value "0", representing the original value sent
by the leaf node. After a successful sent the leaf process stops.

2) InnerNotCorrupt Node: A protocol compliant node
waits until W children sent their packets and then compares
the received data for equality. In case cheating is detected
(aggStore[i]!= aggStore[i − 1]) for one aggregate,
variable CheatDetect is set to true and the node pro-
cessing stops. In case that all aggregates equal, they are sent
to all W parent nodes for witnessing.

3) InnerCorrupt Node: A malicious node behaves different
from loyal ones. After the channel is initialized, they wait until
all aggregates from child nodes are received. Where a non-
malicious node verifies the aggregates, a corrupt node won’t
do so in order not to reveal an attack started by other corrupt
nodes. In addition, a compromised node can suddenly turn

active and send a forged aggregate to only a parent node, or
at most W nodes.

4) Root Process: The root node waits for data to arrive.
If aggregates arrive they are pairwise checked for equality
and in case that this check fails, this is reported by setting
variable CheatDetect. In case the results are all vali-
dated and all packets are checked for correctness, variable
RcvDataCorrect is set to true. In addition variable
AnnounceRcv is set and the process terminates.

D. Properties of Interest

In this section the model from above is feed into the model
checker Spin. In the tool setting we set memory use for
building the state space to 512MB. As parameters an estimated
state space size of 500 · 103 and a maximum search depth of
10 000 steps is used. The LTL properties are defined as:

P1: ♦(AnnounceRcv ∨ CheatDetect)
It is eventually the case that either the root announces
received data (AnnounceRcv) or one or more nodes
are cheating which is detected by at least one honest
node (cheating detected CheatDetect). The use of
"one node" is sufficient since it will trigger the alarm.

P2: �AnnounceRcv → (RcvDataCorrect ∨
CheatDetect)
Whenever the root node receives a data packet
(AnnounceRcv), it is either identical with the one
sent by the leaf node and no faked aggregates are
sent (received data correct RcvDataCorrect) or at
least one node detected a corruption (CheatDetect)

P3: �(FakePacketsSnd > 0→ ♦CheatDetect)
Whenever there is a forged packet send
(FakePacketsSnd > 0) this will eventually
be detected and reported (CheatDetect)

P4: �(RcvDataCorrect→!(FakeNodes > 0))
Whenever the data received by the root node is
correct (RcvDataCorrect), there has been no faked
message although forging nodes (FakeNodes > 0)
might be present

V. RESULTS

The results are displayed for parameters k = 2, N =
5, W = 3 in the message sequence charts in Figure 3,
which reflect only one possible trace of execution. The MSCs
represent the behavior of the processes over time until termi-
nation. All global happenings like corrupted node detected or
betrayed packet are displayed by dashed horizontal lines.

In the MSC of Figure 3(a) two compromised nodes (n2, n3)
are present as denoted by the "*". The verification results
are shown in Table I. Properties 1 and 2 are valid which
state that no packets are lost. Consequentially, either cheating
is detected, or a sound aggregate arrives at the root node.
In contrary, properties 3 and 4 do not hold, proving that
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(a) Correct run where cheating is detected

Leaf Node1 Node2* Node3* Root
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stopped
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BetrayedPackets 1

data

stopped

data

stopped

ReceivedDataCorrect 1

AnnoucedReceived 1

stopped

(b) Run where property 3 and 4 fail

Fig. 3. Message Sequence Charts (MSC) for two scenarios, where compro-
mised nodes are indicated by the small asterisk.

property result
♦(AnnounceRcv ∨ CheatDetect) valid
�AnnounceRcv → (RcvDataCorrect ∨ CheatDetect) valid
�(FakePacketsSnd > 0 → ♦CheatDetect) not valid
�(RcvDataCorrect →!(FakeNodes > 0)) not valid

TABLE I
RESULTS WITH PARAMETERS n = 5, k = 2, w = 3

compromised nodes cooperate. In the MSC each of the com-
promised nodes is sending a faked packet to its direct child
node as in Figure 3(b). Since we assume that the adversary
wants to remain undetected, n3 will not trigger an alarm since
corrupt nodes cooperate. And thus the root receives two valid
aggregates although a forged aggregate was sent. This does
not necessary mean, that we discovered a flaw in the ESAWN
protocol but rather that a scenario is possible where the data
was received correctly, in the presence of a forged aggregate.

VI. CONCLUSION

The here presented analysis using the Spin tool verifies
the authenticity and safety of the ESAWN protocol. In turn
the failed property doesn’t open space for intrusion attacks,
since the adversary gained nothing in this case. Since we
have not looked into the source code, we cannot guarantee the
protocol’s correctness after deploying it to a real world sensor
network. Hence some uncertainties about the reliability of the
hardware, the operation system of the sensor node, or the com-
piler still remain. Hence, using a more realistic model without
the chosen level of abstraction and human interference would
be desirable to have that could be extracted from the source
code by tools like SLEDE [7] or Modex/Feaver[9]. SLEDE
translates TinyOS protocols into Promela code automatically.
Unfortunately only an old format of the TinyOS framework is
supported by SLEDE up today.

Another way to continue this work is the generation of
a behavior model using the TinyOS build-in NULL platform
and afterwards use software verification tools like CBMC [6].
Although this approach would be restricted to sequential prop-
erties that describe the behavior of a single node, algorithmic
aspects and errors introduced during the generation could be
discovered before deployment.
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Abstract— TinyOS' software architecture is based on the concept 

of components. These components are visualized graphically in 

many papers and documentation manuals. However, software 

architects and authors use their own graphical representation, 

usually. This makes it hard to understand new software quickly. 

The Unified Modeling Language (UML) also knows the concept 

of components. Although usually used in an object-oriented con-

text, the notion is more general and UML can be used for the 

design of software architectures that do not base on the object-

orientation paradigm. UML is nowadays known to most software 

engineers. The use of component diagrams as specified in UML 

2.0 is therefore proposed for modeling TinyOS components, to 

facilitate the exchange of TinyOS software designs. 

Index Terms—UML 2.0, component diagram, TinyOS best 

practice, modeling, software architecture 

 

I. INTRODUCTION 

The Unified Modeling Language (UML, [1]) is a standar-
dized notation for modeling software architectures, usually 
used in the object oriented domain. UML includes therefore all 
graphical elements to model object oriented software. Howev-
er, as UML is not a software development process but a nota-
tion only, it can be used in non-object oriented software devel-
opment and in general in other engineering disciplines as well. 
UML consists of graphical notation elements and of diagram 
types that can be constructed from the notation elements. The 
graphical elements carry semantics in themselves but further 
meaning can be added by special notation elements, like stereo-
types. UML comprises many traditional diagram types like 
state machines, timing diagrams and sequence diagrams, that 
have been in use in engineering sciences long before. However, 
with UML the notation is now standardized and therefore more 
accessible for someone who worked with UML before. 

II. TINYOS AND NESC COMPONENTS 

TinyOS programs (applications in TinyOS nomenclature) 
are written in a C programming language dialect called NesC 
[2]. While programming languages that are usually used for 
embedded system programming allow dynamic allocation of 
memory and dynamic binding of functions, NesC does not [3]. 
E.g., dynamic call resolution is too complex for general use in 
very constrained embedded systems. Therefore, NesC supports 
static binding only, however with a component model to allow 
for quick exchange of different implementations for certain 
functionality. The TinyOS component model is based on inter-
faces, which express the intersection of functions between 
components. A component can either offer or use an interface. 

By repeated application of this mechanism, hierarchal struc-
tures are obtained. The modules implementing or using an 
interface are wired by a special component, the configuration, 
which selects which user is connected to which provider. 

III. COMPONENT DIAGRAMS FOR TINYOS 

A. Overview of currently used representations 

Publications describing TinyOS designs usually refer to the 
component architecture of NesC. For better comprehensibility, 
the designs given are mostly backed by graphically representa-
tions. Examples are shown in Figure 1 to Figure 3. 

In each of these figures, it can be seen, that the hierarchical 
provider and user structure is shown, as well as the interface 
between user and provider. However, the graphical representa-
tion is different for each figure.  

 

 
Figure 1. Component diagram as used by Culler [4] 

 

 

 
Figure 2. Component diagram as used by [5] 

This work was funded by the 7th Framework Programme of the European 

Commission. 
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Figure 3. Component diagram as generated by the Eclipse plugins YETI [6] 

(and similarly YETI 2 [7]) 

 

B. Use of UML 2 

The structure of a system, i.e. of an application, can be de-
scribed by components, which represent reusable software 
units. According to [8], components enclose – among others – 
the following properties: 

 a component comprises the specification of all realized 
and required interfaces 

 a component can be exchanged by another which imple-
ments the same specification 

 internals of a component are hidden, i.e. functionality of 
components is to be accessed via the offered interfaces on-
ly. 

These three main properties are fulfilled for TinyOS com-
ponents. 

Components can have black-box representations, i.e. their 
internal implementation is not of interest, or white-box repre-
sentations, where the realization is given, e.g. by means of 
nested components or class diagrams [9].  For the proposed 
TinyOS modeling, the less abstract white-box notation is pro-
posed. The components offer interfaces and ports. Components 
can be exchanged by other similar components, resulting in a 
functionally equivalent application. 

Component diagrams had been part of UML since the 1.0 
version. The graphical representation changed slightly with 
UML 2.0 with regard to the component block layout (now a 
simple rectangle with a small rectangle with two bars as stereo-
type icon in the upper right corner) and the port element. Basic 
building blocks of a component diagram are the rectangle, 
representing a component (cf. Figure 4 a), the complete circle 
(ball or lollipop, naming from [10]) for a provided interface 
(cf. Figure 4 b) and the half-circle (socket) for a required 
("used" in NesC-nomenclature) interface (cf. Figure 4 c). 

Note that not all interfaces a component provides have to be 
used; however, for all required interfaces a provider is neces-
sary. 

Figure 4. Building blocks of a component diagram: 

a) component with name "Name"  b) provided interface with interface name 

"IFname" c) required interface with interface name "IFname" 

 

As an example, the Service Instance design pattern from [4] 
is given in Figure 5 in UML representation. For comparison, 
see original representation in Figure 1. 

Figure 5: Service Instance pattern [4] in UML notation 

 

The stereotypes "specification" and "realization" can be 
used to represent TinyOS configuration components and mod-
ule components respectively. In Figure 6 these stereotypes are 
used to model the BlinkC component, as given in proprietary 
notation in Figure 2. 

Figure 6. Component diagram in UML notation, showing use of "specifica-

tion" and "realization" stereotypes 

 

In Figure 7 the component of Figure 3 is depicted in the 
proposed notation, likewise giving an example of the UML 
port element. Ports assort interfaces that offer functionality 
together. In the suggested notation, ports offer public interfac-
es, which can be used by other components. Therefore, ports – 
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together with the delegate stereotype – lead interfaces through 
from the realizing component to the specifying component. 

Figure 7. Component diagram in UML notation, depicting use of ports 

 

C. Applicability in larger systems 

Specifications of larger systems by use of this UML nota-
tion are possible, though they can become unclear if the dia-
grams are monolithic. One remedy is to model only one speci-
fication component with its realizing components in one dia-
gram, as done in Figure 5 – 7. Between the single component 
view and the monolithic system view, any intermediate stage of 
diagram depth can be chosen, as appropriate to show the essen-
tials of the system. Additionally, the "subsystem" stereotype 
can be used to model only specific parts of the whole system 
[11]. Using these techniques, the author was successful in spe-
cifying and documenting larger TinyOS applications. 

In an automatic graphical tool, like in the YETI/YETI 2 
tools, each specification component could be expanded and 
collapsed, thus revealing relevant and disclosing irrelevant 
parts of the diagram. 

IV. CONCLUSION 

The popularity of UML in computer science makes it the 
standard notation for documenting software architectures. The 

use of component diagrams is feasible and advisable to provide 
for a comprehensive insight to software designs, enabling effi-
cient communication among developers and management. 

The TinyOS community is invited to apply more UML and 
in general more design principles of the traditional PC-
computer science to embedded systems. Standardization will 
simplify the software development for TinyOS, making design 
ideas more evident and finally resulting in a more economic 
and reusable software. 
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Zusammenfassung—Bisher werden die mehrzelligen
Traktions- und Automobilbatterien nur als Gesamtsystem
überwacht. Es wird ein Lösungsansatz vorgestellt, bei dem jede
Zelle dieser Batterien mit drahtlosen Sensoren ausgestattet wird.
Das erlaubt den robusten und vor allem kostengünstigen Zugang
zu den Zellen. Die Sensoren messen die Zellenspannungen und die
Temperaturen. Mit dieser Vielzahl an zusätzlichen Messstellen
kann die Batterieüberwachung, die Zustandsprognose und der
wirtschaftliche Batteriebetrieb erheblich verbessert werden.
An der HAW Hamburg wurden verschiedende Varianten
von drahtlosen Sensoren aufgebaut. Auf einer Gabelstapler-
Traktionsbatterie wurde eine Batterieüberwachung erprobt. Die
Anwendung für Automobilbatterien soll als Hauptziel folgen.

I. EINFÜHRUNG

Große mehrzellige Akkumulatorbatterien finden sich in
vielen Bereichen unserer technischen und industriellen Um-
gebung wieder. Von ihnen wird hohe Zuverlässigkeit und
Wirtschaftlichkeit verlangt.

Traktionsbatterien liefern die Energie für einen großen Teil
der Gabelstapler, für Förderwagen in automatisierten Fabriken
und die umweltfreundlichen Hybridautos der Zukunft.

Weltweit starten viele hundert Millionen Akkumulatoren die
Verbrennungsmotoren unserer Automobile1. Darüber hinaus
puffern sie das Automobil-Bordnetz mit immer mehr elektri-
schen Verbrauchern. In dieser Rolle kommt der altbekannten
Autobatterie in bereits wenigen Jahren eine lebenswichtige
Funktion zu, wenn mit elektrischer Energie gelenkt und ge-
bremst werden wird.

Problem: Unterschiedliche Zellenzustände

Die Alterung der Batterie führt im Laufe der Betriebsdauer
dazu, dass der Zustand der in Reihe geschalteten Zellen sehr
unterschiedlich wird. Bisher ist eine zuverlässige Beurtei-
lung der verbleibenden Batteriekapazität nur mit erheblicher
Unsicherheit möglich, da keine Messwerte von allen Zellen
verfügbar sind, sondern die Gesamtbatterie nur als ’Blackbox’
betrachtet wird.

Lösungsansatz: Einzel-Zellen-Überwachung

Im verfolgten neuartigen Lösungsansatz werden Messwerte
von jeder einzelnen Batteriezelle aufgenommen und drahtlos
übertragen. Sehr kompakte Sensor-Mikrocontroller-Systeme
sollen dazu direkt in jeder Zelle montiert werden. Diese

1Produziert werden 300-350 Mio Starterbatterien für über 8 Mrd. $ p.a., in
Deutschland über 15 Mio. Stück im Wert von ca. 300 Mio Euro, davon ein
Drittel für Neufahrzeuge

Sensoren sind so robust auszulegen, dass sie in den Innenraum
der Batteriezelle eingebaut werden können. Dort werden sie an
beiden Elektrodenplatten angeschlossen, andere Leitungsver-
bindungen sind nicht notwendig. Die ermittelten und vorver-
arbeiteten Sensordaten der Zellen werden von einer zentralen
Einheit gesammelt und ausgewertet. Gemeinsam bilden sie ein
Netz, bei dem Kommunikation und Messaufgabe aufeinander
sehr eng abgestimmt sind.

Die Überwachung erfolgt also in einem Zusammenwirken
aus verteilter Datenerfassung und Vorverarbeitung, einer auf
sehr verschiedenartige Betriebsfälle angepassten Netzwerk-
kommunikation und einem ’Entscheider’ auf der Basis eines
zu entwicklenden, verteilten Batteriemodells.

Wireless
Cell Sensor

neg.
Grid

pos.
Grid

-+

Battery U
(incl. Current Sensor)

EC

Wireless Cell
Sensors

+ ECU-AntennaAutomotive
Supply Net

Cell
Monitored
Battery

Automotive
Energy Control Net
(CAN/LIN)

Wireless
Communication
Network
into the
Battery CellsPole

Contact

Abbildung 1. Konzept für die Überwachung der Automobilbatterie

II. ANWENDUNGEN

Industrielle Anwendung: Gabelstapler-Traktionsbatterien

Elektrische Flurförderzeuge - insbesondere Gabelstapler -
werden von Bleibatterien versorgt, die bis zu 40 Zellen um-
fassen. Sie wiegen teilweise über 1.5 Tonnen und kosten einige
tausend Euro. Abschätzungen ergeben, dass durch besseres
Batteriemanagement eine bis zu 30 % höhere Wirtschaftlich-
keit und Verfügbarkeit der Batterie erreicht werden könnte.
Dies entspricht einem Anwendernutzen von vielen hundert
Euro je Traktionsbatterie.
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Fernziel: Automobilbatterie

Die Abbildung 1 zeigt ein Grobkonzept der Verwendung im
Automobil, das mit Industriepartnern diskutiert wurde.
Der Ausgangspunkt für die Einführung in das Automobil ist
die Einbeziehung der Gesamtstrommessung, weil das bereits
bei ersten Fahrzeugen in Serie erfolgt. Dort führt man die
Plusleitung der Batterie über einen Shunt durch das Bat-
teriesteuergerät, das wird als ”intelligente Batterieklemme“
beworben [4] [9]. Die Anbindung an andere Steuergeräte er-
folgt über einen CAN-Bus oder wahrscheinlicher über einen
LIN-Bus. Angebunden wird sicherlich das Bordnetzsteuergerät
bzw. der Feldregler des Generators, der zukünftig ebenfalls
einen Buszugang erhalten wird. Das Batteriesteuergerät mit
der drahtlosen Sensorik wird als Erweiterung der ”intelligenten
Batterieklemme“ gesehen.

Für die Antenne des Steuergerätes soll eine Konstruktion ge-
funden werden, die kompakt und mit verschiedenen Batterie-
größen und Einbausituationen in den Fahrzeugen kompatibel
ist. Die Sensoren selbstsind hingegen konstruktiv vorteilhaft,
weil sie ohne Anschlüsse in der Batterie ”verschwinden“.

Wirtschaftliche Rahmenbedingungen

Die Traktionsbatterie lässt Lösungen in naher Zukunft tech-
nisch machbar erscheinen. Der geschätzte Kostenrahmen von
ca. hundert Euro pro System ist mit konventionellen Bauele-
menten, also für die Stückzahlen bei Gabelstaplern passend,
erreichbar. Der Nutzen muss noch durch Feldversuche quan-
tifiziert werden. Für Erprobungen und Experimente bildet die
Traktionsbatterie eine gute Plattform.

Für die Automobile der Zukunft muss die Zuverlässigkeit
der Versorgung mit elektrischer Energie zwingend verbes-
sert werden. Daher kann ein Kostenbeitrag von den kosten-
sparenden elektrischen Systemen in der Fahrfunktion, dazu
gehören die elektrischen Lenkhilfen und die elektromecha-
nischen Bremse (EMB), kommen. Die Automobilbatterie ist
dennoch preissensitiv. Nach diskutierten Schätzungen sind
Herstellkosten von weniger als 20 Euro für das Gesamtsystem
der Batterieüberwachung bzw. von weniger als einem Euro
pro Sensor erforderlich. Das wird nur durch vollständig inte-
grierte, maßgeschneiderte Lösungen in Massenproduktion zu
erreichen sein. Viele Fragen dazu sind offen, zumindest der
Marktumfang spricht nicht dagegen.

III. ZIELE UND LÖSUNGEN

Zuverlässigkeit durch bessere Prognose

Durch die Alterung können die Zellen im Lebensdauer-
zustand, dem State of Health (SOH), sehr unterschiedlich
werden. Einem Batterie-Zustandsschätzer im Fahrzeug oder im
Ladesystems steht bisher nur die Gesamtspannung und ggf.
der Gesamtstrom zur Verfügung. Dadurch wird es zu einer
zunehmenden Fehlbeurteilung des Ladezustandes, des State of
Charge (SOC), kommen. Noch entscheidender ist für die elek-
trische Bremse die Prognose der sog. Hochstromverfügbarkeit,
des State of Function (SOF). Nur mit Hilfe der zellenweisen
Überwachung kann ein Batteriemodell einzelne Zellen als

geschädigt, d.h. nicht mehr hochstromfähig, identifizieren.
Damit wird dieser bisher unerkannte, aber kritische Zustand
rechtzeitig bemerkt.

Überwachung gegen Schädigungen erhöht Lebensdauer

Für Batteriezellen sind bekanntermaßen drei Zustände
schädlich. Das sind der Betrieb bei Übertemperatur, die
Überladung und die Tiefentladung.

Durch das Nichterkennen der Tiefentladung wird jedoch die
vorgeschädigte Zelle nochmals besonders geschädigt. Dieser
Effekt verstärkt sich fortlaufend und führt letztlich zum uner-
warteten, scheinbar plötzlichen Ausfall.

Eine Zellenüberwachung anstelle der Gesamtbatte-
rieüberwachung löst das Problem, bisher unerkannte
Tiefentladungen können nun rechtzeitig bemerkt und
Überladungen verhindert werden.
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Abbildung 2. Prinzipdarstellung der Ladungsbalancierung: Als Beispiel
werden Parallelstrompfade für die Zelle 1,3 und 4 geschaltet, um den
Ladezustand (SOC) an die Zellen 2,5,6 anzugleichen

Besonderheit: Ladungsbalancierung durch Effektor im Sensor-
knoten

Sind ohnehin Sensorknoten in jede Zelle montiert, dann
kann dort auch ein einfacher Effektor realisiert werden.

Dieser Effektor ist ein jeweils einschaltbarer Parallel-
strompfad zu den Zellenpolen von mittlerer Belastbarkeit und
mit Strombegrenzung2 . Wird dieser Pfad bei einer weniger
gealterten Zelle während der Ladung eingeschaltet, dann wird
dort mit etwas weniger Strom geladen, die anderen Zelle
werden umso stärker geladen. Wird dieser Parallelpfad in der
Ruhephase bei Zellen mit hoher Zellenspannung zeitweise
eingeschaltet, verlieren sie langsam einen Teil der zuviel
gespeicherten Ladung.

2Nur bis zu einem Strom von 200mA bis 500mA erscheint ein elektroni-
scher Schalter für den Parallelpfad integrierbar zu sein, es geht also um eine
Langzeit-Beeinflussung.
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Abbildung 3. Versuchsmuster für Zellensensoren

oben: Version UHF/LF
Sensorknoten mit UHF-Uplink und mit LF-Downlink, noch nicht verwendet
darunter: Version UHF/–
Sensorknoten mit UHF-Uplink und ohne LF-Downlink
Muster wurden eingesetzt für Vorversuch Traktionsbatterie [13]
darunter/unten: Version LF/LF
Sensorknoten mit LF-Downlink und LF-Uplink (Vorder-/Rückseite)
Muster erprobt in Laborversuchen [7][1]

Der Vorteil eines solchen Ausgleiches liegt darin, dass der
nächste Lade-/Entlade-Zyklus auf gleichem oder zumindestens
besser angeglichenem Ladungsniveau beginnt. Batteriefach-
leute nennen das Verfahren Symmetrierung oder Chargeba-
lancing. Bei stationären Industriebatterien wird das Balancie-
ren durch das Wartungspersonal vorgenommen. Bisher war
das Verfahren für eine Automobilbatterie kaum denkbar. Der
drahtlose Zugang zur Zelle könnte das nun ermöglichen.

Die Einbringung eines Effektors ist noch vertieft zu untersu-
chen und zu bewerten. Dazu muss für die Sensorcontroller ein
dezentrales, ein kooperatives oder ein zentrales Entscheidungs-
modell erarbeitet werden.

IV. PRAKTISCHE VORARBEITEN

Die Vorarbeiten führten bisher zu drei Varianten:

Version UHF/LF: Der Sensor-Controller MSP430F1232
mit 10-bit-ADC und integriertem Temperatursensor kommu-
niziert mit einem UHF-Uplink3 durch einen mit OOK gesteu-
erten PLL-Schaltkreis (433MHz ISM) und einer angepassten
Schleifenantenne auf der Trägerplatine. Der LF-Downlink mit

3Uplink bedeutet hier von den Sensoren zum Steuergerät, Downlink vom
Steuergerät zu den Sensoren.

125 KHz Träger benutzt eine Spulen-Antenne mit Ferritkern,
die auch für RF-ID-Transponder (Wegfahrsperre) genutzt wird.
Dieser Down-Link ist primär für eine einfache Wake-up-
Funktion und Synchronisierung konzipiert.

Durch einen Step-Up-Converter ist der Abfall der versor-
genden Zellenspannung sogar bis unter 0.5 Volt erlaubt.

Version UHF/–: Es wurde auf den Downlink ver-
zichtet, um den Aufwand für eine erste Versuchsserie zu
reduzieren[13]. Die Übertragung hat sich als sehr robust
erwiesen, sowohl unter ungünstigsten Ausbreitungsbedingun-
gen (Batteriedeckel und Trog aus Metall), als auch in der
Störsicherheit (Antriebsmotoren, Ladegerät).

Version LF/LF: Dieser Sensor nutzt Kommunikations-
Lösungen, die in der RF-ID-Technologie verbreitet sind. Es
wird ein gemeinsamer Antennenschwingkreis für beide Rich-
tungen benutzt. Für den Downlink und Uplink wird ein 125
kHz Träger amplitudenmoduliert. Der Uplink benutzt die
Modulation durch Belastung des Antennenkreises (2-ASK).
Als Besonderheit ist zu nennen, dass keine Betriebsspannung
aus der Zelle entnommen werden muss, diese wird durch
Gleichrichtung des Downlink-Signals gewonnen. Auch diese
Lösung liefert über einige Dezimeter Reichweite verlässliche
Messwerte. Die Datenübertragung ist im Down- und Uplink
bis zu 5 kBit/s brutto möglich [7]. Die Energiebilanz des
Controllers und der Kommunikation ist den Versionen zuvor
überlegen. Von Vorteil ist sicher die niedrige Trägerfrequenz,
welche im metallischen Umfeld weniger Abschattung und
Nullstellen hat.

Entscheidung für proprietäre Lösungen

Für die Übertragung wurde in den genannten Versionen kein
standardisiertes Verfahren oder kommerzielles Modul benutzt,
sondern eine Eigenimplementation. Der verwendete Controller
kann die Mess- und Übertragungsaufgaben auch noch bei
energiesparenden 80 kHz Takt durchführen.

Alle Varianten benutzen im Basisband den ungenauen und
temperaturdriftenden integrierten RC-Oszillator [7], ein Quarz
sollte hier bewusst eingespart werden. Die eigene Lösung lässt
ein Einmessen des Empfängers auf die Zeitfehler des Senders
zu (sog. Run-In-Verfahren).

Die Versionen mit UHF-Uplink benötigen jedoch zwingend
einen Quarz-Oszillator für die Sende-PLL, um den ISM-
Regularien zu genügen. Für automotive Anwendungen qua-
lifiziert, ist ein solcher Quarz teurer als das Die eines kleinen
Controllers (s. auch [14]). Die Kosten würden sich mit der
Zellenanzahl multiplizieren, also sich mindestens sechsfach
auswirken. Die LF/LF-Version benötigt keinen Quarz im Sen-
sor, jedoch eine vergleichsweise aufwändige Antennenspule.
Optimierte Step-Up-Converterspulen der ersten beiden Ver-
sionen besitzen ebenfalls nennenswerte Kosten. Für die An-
wendung auf Traktionsbatterien sind diese Bauelementekosten
noch erträglich, jedoch wird für die Automobilbatterie eines
günstigeres technisches Konzept gefordert.

Bei den Antennenkosten hat die UHF-Übertragung klare
Vorteile. Für die LF-Varianten muss eine größere Spulenan-
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Abbildung 4. Drahtlos kommunizierende Zellensensoren auf der Batterie des
Gabelstaplers der HAW Hamburg [13]

tenne oder Ferritantenne am Steuergerät genutzt werden, die
ähnlich der eines RF-ID-Readers aufgebaut ist.

Erste Ergebnisse

Durch die Versuche an der Traktionsbatterie wurden erste
Erfahrungen gewonnen, siehe Abbildung 4. So zeigte sich
ein starker Unterschied im Lebensdauerzustand (SOH) durch
Alterung der Zellen. Für eine Zelle wird die aktuelle Kapa-
zität (SOC) bis zur Tiefentladung ausgeschöpft, während die
anderen Zellen noch über nutzbare Kapazität verfügen, siehe
Abbildung 5.

Die Temperaturwerte der Zellen sind von erheblichem Wert
für die Batteriemodelle. Die Temperaturmessung der Control-
ler über integrierte Dioden besitzt große Streuungen im An-
fangswert und im Temperaturkoeffizienten. Daher wurde eine
einfache Kalibrierung für den Sensor entwickelt. Prinzipiell
sind die Sensoren, die auf der Zelle montiert werden, denen
in der Zelle bezüglich der Temperaturbestimmung unterlegen.

Abbildung 5. Zellenspannungen während 75 Minuten Entladung mit Vollast
des Stapler-Antriebsmotors[13]. Der einbrechende Spannungsverlauf an einen
Sensor zeigt eine Zelle mit schädigender Tiefentladung, dieses Problem war
bisher an der Spannung der Gesamtbatterie nicht erkennbar.

V. ZUSAMMENFASSUNG UND BEWERTUNG

Bisher wurde für die Anwendung gezeigt:
• die Zellensensoren liefern wertvolle Informationen und

sind gut in bestehende Batteriesysteme integrierbar
• die drahtlose Arbeitsweise ist stabil und für die rauhe

Umgebung vorteilhaft
• Standardübertragungsverfahren oder Funkmodule, die

einen Quarz im Sensor erfordern, waren nicht notwendig
• auch handelsübliche Controller sind geeignet, um wie

RF-ID-Transponder ohne Energiequelle zu arbeiten
• dort können Systemtakte unter 100 kHz ausreichen, wenn

auf Softwareoverhead verzichtet wird
• eine niedrige Betriebsfrequenz kann Vorteile haben, z.B.

für Wakeup-Funktionen oder die Synchronisierung
Viele Aspekte sind noch offen, unter anderem:

• die Erfassung von schnellen Laständerungen, zunächst
hat die Werterfassung statistischen Charakter

• die Nutzung des Sensor-Controllers, um autark Bewer-
tungen und Entscheidungen zu treffen (z.B. Messregime
bei schnellen Ereignissen ändern)

• Konstruktive Fragen (z.B. Umspritzung), Feldversuche
Der Ansatz, dass Sensornetze für große Batterien gerade

durch die drahtlose Auslegung Vorteile bieten, ist durch die
Arbeiten bestärkt worden. Favorisiert werden von den Autoren
Lösungen, die sich am RF-ID-Bereich orientieren.
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Abstract— This paper describes the ongoing development of an 
Energy Meter (EM) with an interface to a wireless sensor 
network based on IEEE 802.15.4 technology. 

I. INTRODUCTION 
In the age of ecological awareness, and the conclusion that 

energy should not be wasted, it is necessary to investigate the 
places where electrical energy is consumed. The effective 
energy usage of a device can often be determined by 
monitoring the according electrical devices over a long space 
of time. The measuring can easily be done by simple Energy 
Meters from the local do-it-yourself store. But sometimes the 
limited functionality of these meters also limits their area of 
application. If, for example, a refrigerator shall be measured, 
the power cord may not be easily accessible. And most of the 
“standard” Wireless Energy Meters show their calculations on 
a small display directly on the meter. A solution is a Wireless 
Energy Meter which is able to transmit its measured data 
wirelessly to a computer. There the data can be interpreted and 
maybe even compared to data from other wirelessly connected 
devices. 

II. RELATED WORK 
In [1] an AC Meter (ACME) development for IP based 

Wireless AC Energy Monitors is presented. The developed 
platform consists of four main sections: power supply, signal 
filtering, Wireless Energy Metering and microcontroller. All 
embedded Software developments are done with TinyOS. In 
[2] an electronic system is described to measure the active, 
apparent and reactive energies delivered to a load of an AC 
voltage line. The proposed system is directly connected to a PC 
running visualization software of the power consumption. In 
[3] a case study of an inexpensive student designed power 
monitoring instrument for campus submetering is described. 
This system is build up with an Energy Metering IC connected 
to a PIC controller. Over a serial interface measured values can 
be accessed. 

III. HARDWARE OVERVIEW 
The Wireless Energy Meter (see also Figure 1) consists of 

two major elements to measure the different kinds of the power 
consumption. These two elements are the IEEE 802.15.4 [4] 
ICradio Module 2.4G [5] and the Energy Measurement IC 
ADE7753 [6] which will be introduced below.  

A. IEEE 802.15.4 - ICradio Module 2.4G 
The ICradio Module 2.4G is a compact, flexible deployable 

radio module, which is required for operation in wireless 
sensor networks (WSN) like in IEEE802.15.4. The 2.4G 
module consists of an ATMega1281 AVR microcontroller and 
the AT86RF230 2.4GHz radio chip from Atmel. It is 
completely compatible with Atmel's free IEEE802.15.4 MAC 
software. 

 
Figure 1.  Wireless Energy Meter (EM) 

B. ADE7753 
The ADE7753 allows the control and the read out of 

several energy registers over a serial interface which is 
compatible to SPI. Through this registers it is possible to read 
out the accumulated values of active and apparent energy, the 
rms values of current and voltage and for example get 
information about the line period. In addition, it is possible to 
write to the ADE7753 registers to configure for example gains 
or compensate offsets among all the operations.  

C. Wireless Energy Meter Hardware Design 
The needed voltages for the two main hardware 

components, the ADE7753 and the ICradio Module 2.4G, are 
provided by a power supply which uses direct rectification. For 
the current sensing a shunt resistor is used, over which a 
comparatively low voltage drops when a current flows. The 
voltage sensing is done by a simple voltage divider, which 
scales the line voltage from 230Vrms to about ±0.5V. Two 
low-pass-filters at the analog inputs of the ADE7753 prevent 
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the measured signals from containing aliasing effects which 
could produce error components during the calculations. The 
analog-to-digital conversion of the voltage and current 
metering and afterwards all signal processing for the energy 
accumulation is done by the ADE7753. This IC is therefore 
controlled by the microcontroller which also is responsible for 
controlling the transceiver and keeping contact to the 
IEEE802.15.4 network. To make the node’s hardware scalable, 
the ICradio Module 2.4G is connected to the invented circuit 
board via contact plugs. So a firmware update or the 
connection of additional hardware components can easily be 
done (see also Fig. 1). 
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Figure 2.  FOKUS Wireless Energy Meter hardware design 

D. SPI Communication 
The entire communication process to the ADE7753 takes 

exactly 225us (see also Figure 3). During this time frame the 
transceiver has no SPI connection to the microcontroller 
because only one device at time can transfer data to the 
microcontroller via SPI. Thus, the EM node is temporary not 
part of the wireless network. In multi-hop networks the routing 
protocol has to take this into account. In this current setup the 
communication is done by a pull mechanism of the node itself 
to a sink node in a peer-to-peer star network. 

 Read operation t=0,0s t=33,6us t=86,7us t=138,5us t=190,4us

MOSI 3F 00 02 00 00 00 17 00 00 00 16 00 00 00 27 00 00

MISO 00 02 00 0B 07 5F  00 20 53 46 00 1C 4D 9E 00 22 10

Adress 0x3F 0x02 0x17 0x16 0x27

Name of register DIEREV AENERGY VRMS IRMS PERIOD

Size 8 Bit 24 Bit 24 Bit 24 Bit 16 Bit

Content (Hex.) 0x02 0x0B075F 0x205346 0x1C4D9E 0x2210

Content (Dez.) 2 722783 2118470 2118470 8720  
Figure 3.  Results of the SPI communication analysis 

IV. VISUALIZATION 
The visualization of the measured consumed power of all 

devices in a home for example allows a real time feedback to 
the residents of a home. 
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Figure 4.  Typical daily power consumption 

V. MEASUREMENT 
For evaluation purposes some measurements with the 

hardware design were done to prove the system concept. Two 
of these measurements are described in the following to 
sections. 

a) Energy 
Analyses of the accuracy of the Wireless Energy Meter 

have shown that the system produces a failure rate of less than 
0.1% (see also Figure 5). Several measurements with known 
parameters of the load have approved the accuracy. 

Measurement expected determined difference failure

A [Wh] [Wh] [Wh] (%)

A1 6,27898 6,32245 0,04348 0,00273
A2 6,36768 6,41180 0,04412 0,00281
A3 6,34710 6,39281 0,04571 0,00290
A4 6,34710 6,39646 0,04936 0,00313
A5 6,34710 6,37913 0,03202 0,00203

Measurement expected determined difference failure

B [Wh] [Wh] [Wh] (%)

B1 0,62465 0,62046 0,00419 0,00003
B2 0,62465 0,61807 0,00659 0,00004
B3 0,62465 0,61846 0,00619 0,00004
B4 0,62465 0,62183 0,00282 0,00002
B5 0,62458 0,63625 0,01167 0,00007  
Figure 5.  Measurements about the accuracy of the Energ Meter 

VI. CONCLUSION AND FUTURE WORIK 
In this paper a wireless energy metering device is described 

which allows the visualization of power consumption of 
electrical devices like a TV or washing machine in real time. 
The current system enables residents to have an immediate 
overview about the actual and short term history power 
consumption. Future work will include developments towards 
automatic and remote control of devices. A further approach 
could be that once a day accumulated data is sent from the 
household to the energy provider. This gives the energy 
provider the opportunity to better calculate the needed 
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capacities of their power plants. For the customer this offers the 
possibility to directly get information about better pay scales or 
to let the provider dynamically change the pay scale.  
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Abstract— Dieser Bericht behandelt den Einsatz eines drahtlosen 
Sensornetzwerkes (WSN) im  Schiffsmaschinenraum. Im 
Maschinenraum müssen eine Vielzahl von physikalischen 
Größen überwacht werden. Die dafür benötigten Sensoren 
übertragen ihre Messwerte bislang kabelgebunden. Um eine 
Installation von Sensoren an schwer zugänglichen Stellen zu 
ermöglichen, Installationskosten zu senken oder das Nachrüsten 
von Sensoren zu vereinfachen, sind drahtlose Sensornetzwerke 
interessant. 
Im folgendem wird die verwendete Hard- und Software 
vorgestellt. Es folgt eine kurze Beschreibung grundlegender 
Multihop Routing Protokolle. Weiter werden die benötigten 
Eigenschaften eines Routing Protokolls für den 
Schiffsmaschinenraum erläutert. Das hieraus entwickelte 
Routing Protokoll wird präsentiert und erste Ergebnisse der 
Erprobung an Board eines modernen Kreuzfahrtschiffes 
vorgestellt. 

 
Keywords: WSN, Routing, TinyOS, nesC, MCFA, DD 
 

I. EINLEITUNG 

Auf modernen Schiffen befinden sich bis zu 15000 
Sensoren, die einen fehlerfreien Betrieb der Maschinen 
gewährleisten. Die Verkabelung dieser Sensoren ist ein 
wichtiger Kostenfaktor. Um die Kosten für die Verkabelung 
zu reduzieren ist der Einsatz eines drahtlosen 
Sensornetzwerkes denkbar. Weitere Einsatzgebiete ist die 
Nachrüstung von Systemen oder das Positionieren von 
Sensoren an nur schwer zugänglichen Orten, wie z.B. dem 
Pod-Antrieb, der sich mehrfach um 360° drehen kann. 

Um physikalische Messgrößen zu erfassen und drahtlos zu 
übertragen, wird ein Funkknoten benötigt, der mindestens mit 
einem Sensor und einem Kommunikationsmodul ausgestattet 
ist. Zur Vergrößerung des abzudeckenden Bereiches werden 
Multihop Verbindungen  (Verbindung über Zwischen- 
Funkknoten) verwendet. Um Datenpaket koordiniert durch 
das WSN zur Senke zu führen, sind die Paketpfade mittels 
eines Routing-Algorithmus zu definieren.  

 
Abbildung 1: Maschinenraum eines Kreuzfahrschiffes 

II. FUNKKNOTEN UND BETRIEBSSYSTEM 

In dieser Arbeit wurde der Funkknoten  „IRIS 2.4-
GHz“ der Firma Crossbow Technology verwendet [1]. Dieser 
ist mit der Plattform XM2110CA, bestehend aus einem 
Mikrocontroller, Transceiver (IEEE 802.15.4) und 
Flashspeicher, ausgestattet.  

Zur direkten drahtlosen Kommunikation wird das 
Übertragungsprotokoll IEEE 802.15.4 [2] für LR-WPAN 
(Low data Rate- Wireless Personal Area Network) verwendet, 
um eine spätere Interoperabilität zu gewahrleisten. Es wurden 
dazu nur die physikalische Schicht und die MAC Schicht 
verwendet.  Die physikalische Schicht des Protokolls stellt 16 
Kanäle im 2.4-GHz-ISM-Band bereit. Die Datenrate ist 250 
kBit/s. Als IEEE 802.15.4-2003 kompatiblen Transceiver wird 
der  AT86RF230 von Atmel verwendet [3].  

Bei der Messdatenerfassung sind Sensoren für Temperatur, 
Luftdruck und Feuchtigkeit über ein 51-polige Stecker mit 
dem Mikrocontroller verbunden. (Abbildung 2) 

Zur Programmierung des Funkknoten wurde das 
komponentenbasierte und ereignisgesteuerte Open-Source-
Betriebssystem TinyOS 2.x (TOS) verwendet. Dessen 
Vorteile liegen bei der Portierbarkeit auf unterschiedlichen 
Hardwareplattformen und der Bibliothek an vorhandenen 
Basisfunktionen. Weitere Anwendung findet es im 
Forschungsschwerpunkt SomSed der TUHH [4].  
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Ein TinyOS-Programm ist als ein Konstrukt von über 
Schnittstellen verbundenen Komponenten zu verstehen. Dabei 
wird die eigentliche Anwendung und TinyOS zu einem 
Programm, welches den Funkknoten betreibt. 

Programmiert wird im eigens für TinyOS entwickelten C-
Dialekt nesC. Das komponentenbasierte nesC definiert durch 
die Auflösung des Programmes in einzelne elementare 
asynchrone und synchrone Abläufe ein Verarbeitungsmodell 
[5]. 

 

 
Abbildung 2:  Iris Funkknoten mit 

Sensorboard 

III. SZENARIO - INTERFERENZEN IM 

SCHIFFSMASCHINENRAUM 

Es wurden Messungen des elektromagnetischen Spektrums 
des ISM-Bands mittels eines Spektrumanalysators 
frequenzauflösend im „Max-Hold“-Modus an mehreren 
Punkten des Maschinenraums auf dem Kreuzfahrtschiffes 
„Celebrity Solstice“  durchgeführt  (Abbildung 3). 
Für die hier beschriebene Anwendung ist das 2,4-GHz-ISM-
Band von besonderer Bedeutung, da dort die Funkknoten 
innerhalb eines Kanals ihre Daten übertragen. 
Es bestand die Aufgabe, ein WSN basierend auf IEEE 
802.15.4 im Schiffsmaschinenraum einzurichten. Dieses setzt 
hinsichtlich der Veränderung der Topologie keine hohen 
Ansprüche. Jedoch ist zu erwarten, dass infolge der 
Frequenzselektivität nicht alle Kanäle die gleiche Qualität 
besitzen. 
 

 
Abbildung 3: Elektromagnetisches Spektrum des ISM-

Bandes im Maschinenraum 

IV. MULTI-HOP ROUTING PROTOKOLL 

Bei der Auswahl der notwendigen Eigenschaften eines 
WSN im Schiffsmaschinenraum sind mehrere bereits 
existierende Routing-Prokolle anhand ihrer Eigenschaften 
analysiert worden. Dabei haben sich vier Eigenschaften als 
wichtig herauskristallisiert.  

a.) Die Anforderungen an eine effiziente Nutzung der 
Speicherressourcen, wobei die Anwendung, das 
Protokoll und die Treiber der Sensorik sich den 
Speicher teilen müssen. 

b.) Eine energieeffiziente Programmierung, um eine 
lange Lebensdauer der Funkknoten zu gewährleisten. 
Dazu gehört neben der Hardwareausstattung und der 
Sensorik auch das Routing-Protokoll, welches das 
energieintensive Empfangen und Senden reduziert. 

c.) Nach der Initialisierung sollte das WSN in der Lage 
sein mittels Selbstkonfiguration die Pakete über 
Hops zur Senke zu übermitteln. 

d.) Das Protokoll muss robust gegenüber 
Veränderungen des Funkkanals sein und 
Übertragungsstörungen kompensieren können. 

A. Prinzipien der Routing-Protokolle 

Im Folgenden werden kurz die entschiedenen 
Eigenschaften der ausgewählten Multihop Routing Protokoll 
kurz beschrieben. Es wurden mehr Routing-Protokolle 
untersucht, jedoch werden hier nur die wichtigsten kurz 
beschrieben. 

A.A.1 Flooding 

Flooding beschreibt eine sehr einfache Methode Pakete 
ohne Routingtabelle, bidirektional mittels Multi Hopping zu 
übertragen. Das Paket wird vom Funkknoten an alle Nachbarn 
gesendet; als Broadcast bezeichnet. Die aktiven Funkknoten 
leiten dieses ebenfalls per Broadcast an deren Nachbarn weiter. 
Somit breitet sich das Packet wie eine Flut im gesamten Netz 
aus und erreicht die Senke. 

A.A.2 Tabellenbasiertes Routing 

Jeder Funkknoten im Netz besitzt entsprechend dem 
eigentlichen Protokoll eine oder mehrere Tabellen mit 
Informationen für das Routing (z.B. ID der Nachbarn, 
Verbindungsqualität, etc), welche nach der entsprechenden 
Routing-Metrik geordnet sind. Diese Tabellen beschreiben zur 
Übertragung den Pfad eines Paketes zur Senke. 

A.A.2.1 Minimum Cost Forwarding Algorithmus 

Ein einfacher unidirektionaler Routing-Algorithmus zur 
Minimierung des Energieverbrauches bei der Übertragung von 
Paketen ist der Minimum Cost Forwarding Algorithm [6] 
(MCFA). Dieses proaktive Verfahren leitet die Pakete entlang 
des, bei Initialisierung gefunden, kürzesten Pfades von Quelle 
zur Senke. Jeder Funkknoten speichert dazu Routing-
Informationen, z.B. Adresse des nächsten Funkknotens auf 
dem Pfad zur Senke. 
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A.A.2.2 Directed Diffusion 

Der reaktive Routing-Algorithmus Directed Diffusion (DD) 
Routing [7] beschreibt ein Verfahren zur datenzentrischen 
Übertragung. Das bedeutet, dass kein einzelner Funkknoten, 
sondern eine Gruppe von Funkknoten angesprochen wird. Es 
entsteht somit eine 1 zu N Beziehung zwischen einer Senke 
und N Funkknoten. In den Routing-Tabellen der Funkknoten 
sind passend zum Datentyp die Adresse des nächsten 
Funkknotens zur Senke eingetragen. Ein beliebiger 
Funkknoten kann mittels Interessenbekundung als Senke für 
einen Datentypen, während des Betriebes fungieren. Falls ein 
Eintrag zu einem Zielknoten in der Routingtabelle nicht 
existiert, z.B wegen abgelaufener Gültigkeitsdauer oder 
keinen empfangenen Interessen-Paket, leitet der Funkknoten 
das entsprechende Paket an alle Nachbarn weiter. 

V. GEGENÜBERSTELLUNG DER ROUTING-PROTOKOLLE 

 Das Flooding ist hinsichtlich des überproportional hohen 
Datenaufkommens zur Übertragung eines Pakets für größere 
WSN nicht geeignet. Der aufgebaute Baum des MCFA von 
Routing-Pfaden ist eine sehr gut geeignet zur 
Paketübertragung, auch in unzugänglichen Bereichen des 
Schiffes. Die Idee einer Gruppenbeziehung des Directed 
Diffusion Protokolls bei der unidirektionalen Kommunikation 
zwischen Funkknoten und Senke ist geeignet, um die 
Kommunikation mittels Differenzierung von Messdaten im 
Schiffsmaschinenraum effizienter zu gestalten. 

 In der Zielanwendung ist davon auszugehen, dass es eine 
fest installierte Senke gibt, welche für die Daten verarbeitende 
Einheit als Gateway fungiert. 

VI. ENTWICKELTES  ROUTING-PROTOKOLL 

Das im Rahmen dieser Arbeit entwickelte Routing-
Protokoll ist somit eine Kombination aus den Eigenschaften 
der Routing-Protokolle MCFA  und Directed Diffusion.  

Die Pakete werden entlang eines bei der Initialisierung 
berechneten Baumes übermittelt, dessen Pfade die kürzesten 
Wege mit der besten Verbindungsqualität zur Senke 
beschreiben. Wie bereits in Kapitel III. erwähnt, werden keine 
sehr großen Veränderungen in der Topologie des WSN 
erwartet. Um trotzdem auf Veränderungen im Funkkanal 
reagieren zu können, kann der Baum von der  Senke, während 
des Betriebes reinitialisiert werden.  Jeder Baum, siehe 
Abbildung 2, steht für einen Datentyp.  

 

 
Abbildung 4:  Routing-Pfade verschiedener Datentypen 

VII. TESTUMGEBUNG 

Der Schiffsmaschinenraum befindet sich in den unteren 
Decks eines Schiffes. Abbildung 1 zeigt den Maschinenraum 
mit zwei der vier Hauptmaschinen eines Kreuzfahrtschiffes. 

Um den Ablauf zu kontrollieren, wird eine Vielzahl von 
Sensoren eingesetzt, die Temperaturen, Drücke, Durchflüsse 
oder Schalterstellungen überwachen. 

Diese Sensoren wurden für die Erprobung mit einer 
Sensorplatine nachgebildet, welche zusammen mit dem IRIS 
Funkknoten in Abbildung 2 gezeigt ist. Die Sensorplatine 
verfügt über einen Feuchtigkeits-, Temperatur- und 
Luftdrucksensor. 

Es wurde zur Überprüfung der Funktion des entwickelten 
Routing Protokolls und der Funkknoten in der Umgebung des 
Schiffsmaschinenraums installiert. Die Verbindungsstruktur 
des Netzwerkes ist in Abbildung 5 gezeigt. Die Pfeile zeigen 
den vom System gewählten Baumaufbau. Es ist zu erkennen, 
dass zwei Funkknoten mittels eines Zwischenknoten 
Verbindung zur Senke haben. Die Verbindungsstruktur ist 
natürlich auch von der Verbindungsqualität zwischen den 
Funkknoten abhängig, wie bereits in VI. erwähnt. Es wurde 
beobachtet, dass sich die Verbindungsstruktur über die Zeit 
leicht verändert. Es bestand beispielsweise nicht in jedem 
Baum eine Verbindung zwischen Funkknoten 42 und 40. 
Somit diesem Fall wurden Paket von Funkknoten 42 
automatisch über die Funkknoten 29 und 40 zur Senke geleitet.  

 

 
Jeder Funkknoten misst physikalische Daten, wie zum 

Beispiel die Temperatur und übermittelt diese Daten durch 
den Baum zu Senke. Das gezeigte Netzwerk arbeitete 
während einer mehrtägigen Probefahrt. Ein PC speicherte alle 
Sensordaten die er von der Senke erhielt zusammen mit einem 
Zeitstempel und Informationen über den Topologieaufbau. 
Ein beispielhafter Verlauf der Umgebungstemperatur über die 
Zeit gemessen ist in Abbildung 5 gezeigt. Eine detailliertere 
Beschreibung der Messergebnisse ist in [8] zu finden.   

 
Abbildung 5:  Verbindungsstruktur des Sensornetzwerkes im 

Schiffsmaschinenraum (dunkel: Senke, hell: Funkknoten) 

Datentyp x 
 
Datentyp y 
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VIII.  ZUSAMMENFASSUNG 

In diesem Bericht wurden verschiedene Routing Verfahren 
und ein speziell für die Anwendung im Maschinenraum 
entwickeltes Baum-Routing Protokoll vorgestellt. Das 
entwickelte System wurde im Schiffsmaschinenraum 
erfolgreich getestet. 
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Abbildung 5:  Temperaturverlauf 
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I. M OTIVATION

Interoperability is the ability of two or more heterogeneous
systems to exchange information and use this data in a
reasonable way. For oceanographic data acquisition several
approaches exist, how interoperability between differentsensor
systems can be achieved. A promising interoperability protocol
for sensor networks is IEEE 1451.0. Up to now no practical
experience exists in using the protocol in the field.

To truly evaluate the use of an interoperability standard it
is necessary to really implement it in a demonstration with
numerous involved parties and different software implementa-
tions of the specification. Only then it is possible to find hidden
ambiguities and obstacles that hinder the data exchange in a
given specialist area.

An interoperability experiment together with MARUM
Bremen, Universitat Politècnica de Cataluny, Monterey Bay
Aquarium Research Institute (MBARI) and National Institute
of Standards and Technology (NIST) should clarify to what
degree IEEE 1451.0 is applicable for oceanographic observa-
tions. At the end of the experiment a live demonstration of
the system was presented at the Ocean Innovations Workshop
in Saint Johns in October 2008. The parties involved in the
experiment are shown in figure 1.

OI Workshop
Saint Johns

Barcelona

Bremen

Kiel

Monterey
Bay

Washington

Gulf of
Maine

Fig. 1. Parties involved in the interoperability experiment

II. IEEE 1451 PROTOCOL FAMILY

IEEE 1451 is a family of interface standards. It is developed
with the aim to access transducer (sensor/actor) data through
common open and network-independent communication inter-
faces. For the user it should not be noticeable whether the
transducers are connected directly to a system or accessed
via networks – wired or wireless. A key component is the so
calledTransducer Electronic Data Sheet (TEDS) that contains
meta data about the transducer including device identification,

manufacturer information, calibration curves, measurement
ranges etc.

IEEE 1451.0[1] defines common operations for transducers
and also protocols how to access transducer data via network
using the HTTP. IEEE 1451.0 uses a client/server model. A
Network Capable Application Processor (NCAP) with one
or more Transducer Interface Modules (TIM) – these are
sensors or actors – attached takes the role of the server. Clients
can send requests to the NCAP to retrieve measured values.
The server answers with XML documents (figure 2). As an
alternative a simpler ASCII format for responses is specified
in IEEE 1451.0.

<?xml version="1.0" encoding="utf−8" ?>
<TransducerDiscoveryHTTPResponse>
   <errorCode>
      0
   </errorCode>
   <ncapId>
      1
   </ncapId>
   <timId>
      3
   </timId>
   <numberOfChannels>
      3
   </numberOfChannels>
   <channelIds>
      1,2,3
   </channelIds>
   <transducerNames>
      pressure,
      temperature,
      conductivity
   </transducerNames>
</TransducerDiscoveryHTTPResponse>            

Fig. 2. XML document containing the response of a TransducerDiscovery
query

In addition to the IEEE 1451.0 standard the IEEE 1451
family also contains other specifications that describe thecom-
munication of transducers connected directly to the NCAP:

• IEEE 1451.2 – point-to-point connections including
RS232, I2C and USB

• IEEE 1451.3 – multi-point connections
• IEEE 1451.5 – wireless communication including

IEEE 802.11 (WiFi), IEEE 802.15.1 (Bluetooth) and
IEEE 802.15.4 (ZigBee)

• IEEE 1451.6 – CANopen network interface
• IEEE 1451.7 – Radio Frequency Identification (RFID)

systems
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Some of these specifications are still under development or
revision. Therefore they were not part of the interoperabil-
ity experiment in which we only tested the communication
between IEEE 1451.0 capable nodes. In the context of this
experiment five operations have been evaluated (figure 3).

Operation ParametersModule

TimDiscovery reportTims

reportChannels

TransducerAccess readData

TedsManager readTeds
(GEO TEDS)

readTeds
(Meta−Id TEDS)

NCAP id
TIM id

NCAP id
TIM id
Number of channels
Channel id
Channel name

NCAP id
TIM id
Channel id
Transducer data

NCAP id
TIM id
TEDS type (=14)
TEDS data

NCAP id
TIM id
TEDS type (=2)
TEDS data

Task

list of sensors attached to the
NCAP

list of channels of one sensor

read the current measurement 
value of  a channel

read the geographic position 
(latitude, longitude, height) of
the sensor system

read vendor, model, version,
serial number, description of the
sensor system

Fig. 3. The five operations from IEEE 1451.0 used in the experiment

III. IEEE 1451.0 SERVER

For the experiment a Java implementation of an
IEEE 1451.0 server has been developed in Kiel. It receives
IEEE 1451.0 requests via HTTP from clients. If necessary it
triggers attached sensors to perform measurements and read
the results. Other kinds of sensors constantly report values to
the NCAP – in that case it is only necessary to select the
latest values. The measured values are prepared and returned
to the client in IEEE 1451.0 format. An overview of the system
in Kiel is shown in figure 4. Attached to the central NCAP
are three TIMs having severalchannels each. The weather
station at IfM-Geomar, the weather station at Kiel lighthouse
and measured values from a CTD1 were used as data sources.

Linux computer

1451.0
HTTP
Server

NCAP 1

RS232
link

CTD
ME− Bore Hole
Probe BHP08

TIM 1

CH 1
Pressure

CH2
Temperature

CH3
Conductivity

URL: www.comsys.informatik.uni−kiel.de
IP: 134.245.250.6
Port: 1451

Weather
station at

IFM−Geomar

TIM 2

Weather
station at

Kiel lighthouse

TIM 3

CH 9

CH 1

CH 1

CH 6

Fig. 4. Overview of the IEEE 1451.0 system in Kiel

1a oceanographic instrument measuring conductivity, temperature and
depth/pressure

The Java source code for the server developed in Kiel was
also used by the partners in Bremen and Barcelona as basis
for their software development. They wrote their own code
for the communication between NCAP and instruments and
the conversion of measured values into IEEE 1451.0 format.
MBARI on the other hand used a completely own imple-
mentation including the IEEE 1451.0 command interpreter.
These parallel developments made it possible to compare
different servers and to find and fix software bugs but also
helped finding ambiguous text passages in the IEEE 1451.0
specification.

Several IEEE 1451.0 clients written by the participants of
the experiment were used to query the various IEEE 1451.0
servers. A simple but quite useful client with a graphical user
interface (fig. 5) has been developed in Kiel. It was used
frequently during the experiment to check the responses from
the servers.

Fig. 5. GUI of the IEEE 1451.0 client

IV. RESULTS OF THEEXPERIMENT

During the experiment, several flaws of IEEE 1451.0 be-
came visible. It appeared that further studies are necessary,
for example on how to deal with low bandwidth links and
links with discontinued operation – both limitations of satel-
lite links, which are often used in the communication with
oceanographic instruments. Other problematic points are the
treatment of units of measurement and timestamps for mea-
surements.

This shows how important interoperability experiments are:
They help to assess the usability of specifications for the in-
the-field use in a given specialist area.
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