

This work has been submitted to ChesterRep – the University of Chester’s
online research repository

http://chesterrep.openrepository.com

Author(s): Alan John Landy

Title: Fractional differential equations and numerical methods

Date: June 2009

Originally published as: University of Chester MSc dissertation

Example citation: Landy, A. J. (2009). Fractional differential equations and numerical
methods. (Unpublished master’s thesis). University of Chester, United Kingdom.

Version of item: Submitted version

Available at: http://hdl.handle.net/10034/93746

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ChesterRep

https://core.ac.uk/display/364606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fractional Differential Equations
and Numerical Methods

A J Landy

June 22, 2009

Dissertation submitted to the University of Chester for the degree of Master of Sciences
(Mathematics) in part fulfilment of award.

Four Module Dissertation.

Abstract

The increasing use of Fractional Calculus demands more accurate and efficient methods
for the numerical solution of fractional differential equations. We introduce the concepts
of Fractional Calculus and give the definitions of fractional integrals and derivatives in the
Riemann-Liouville and Caputo forms. We explore three existing Numerical Methods of
solution of Fractional Differential Equations.

1. Diethelm’s Backward Difference Form (BDF) method.

2. Lubich’s Convolution Quadrature method.

3. Luchko and Diethelm’s Operational Calculus (using the Mittag-Leffler function)
method.

We present useful recursive expressions we developed to compute the Taylor Series coeffi-
cients in the Operational Calculus method. These expressions are used in the calculation
of the convolution and starting weights.
We compare their accuracy and performance of the numerical methods, and conclude that
the more complex methods produce the more accurate results.

Contents

Acknowledgments vi

1 Introduction and Preamble 1

1 Fractional Calculus - a quick summary . 2

2 Growth of interest in Fractional Calculus 3

3 Organization of this document . 4

2 History and Development 5

1 Origin and History . 5

2 Development . 8

3 Notation . 16

3 Tools and Methods 17

1 Tools . 17

1.1 Beta Function . 17

1.2 Mittag-Leffler Function . 18

1.3 Laplace Transform . 18

1.4 Fourier Transform . 20

1.5 Green’s Function . 21

2 Non-Numerical Methods of Solution . 21

i

CONTENTS CONTENTS

2.1 Laplace Transform method . 21

3 Numerical Methods . 22

3.1 Diethelm’s backward difference method 22

3.2 Lubich’s convolution quadrature method 27

3.3 Luchko and Diethelm’s operational calculus method 38

4 Equation and Solution 43

1 Equation example . 43

1.1 Solution with Diethelm’s BDF method 44

1.2 Solution with Lubich’s convolution quadrature method 45

1.3 Solution with Luchko and Diethelm’s operational calculus method . 47

5 Results and Analysis 52

1 Diethelms BDF method - Results for equation 4.2 52

2 Lubich’s CQ method - Results for equation 4.3 54

3 Luchko and Diethelm’s OC method - Results for equation 4.4 56

6 Summary and Conclusion 58

1 Summary . 58

2 Conclusion . 59

Appendices 61

A Totals of published papers 1975 - 2006 . 62

B Diethelms BDF method - results for equation 4.2 63

C Lubich’s CQ method - results for equation 4.3 64

D Lubich’s CQ method - times for equation 4.3 65

E Diethelms BDF method - Scilab program 66

F Lubich’s CQ method - Scilab program . 70

ii

CONTENTS CONTENTS

G Lubich’s CQ method - Scilab program . 78

H Luchko/Diethelm’s OC method - Scilab program 86

Bibliography 95

iii

List of Figures

1.1 Annual Totals . 3

1.2 Running Annual Totals . 4

5.1 Diethelm’s BDF method - results for x=1 53

5.2 Diethelm’s BDF method - execution times for x=1 53

5.3 Lubich’s convolution quadrature method - results for x=1 55

5.4 Lubich’s Convolution quadrature method - execution times for x=1 55

iv

List of Tables

5.1 Luchko and Diethelm’s OC method - BDF2 - errors for x=1 56

5.2 Luchko and Diethelm’s OC method - BDF3 - errors for x=1 57

v

Acknowledgments

Firstly I would like to thank the University of Chester for enabling me to study mathe-

matics again, many years after I graduated in 1968.

I would also like to thank the lecturers of the taught modules of this degree for their skill,

diligence and patience in the face of my demonstrable ignorance.

Turning to this dissertation, my thanks go to Professor Kai Diethelm of the Technical

University of Braunschweig, who kindly supplied a copy of one of his papers, and offered

suggestions on other sources of information related to fractional calculus.

In the same manner, I extend my thanks to Professor Rudolf Gorenflo, who passed on my

request for one of his joint papers with Dr. Yuri Luchko onto Dr. Luchko.

My thanks go to Dr. Yuri Luchko, who in addition to sending me his joint paper with

Professor Gorenflo, also kindly sent me some additional papers that he thought would be

useful to me.

Finally I would like to thank Professor Neville Ford of the University of Chester for his

continual help and support during the writing of this dissertation; his encouraging com-

ments revitalised me during the days when I wondered whether this dissertation would

ever be finished.

vi

Chapter 1

Introduction and Preamble

Aim

Fractional Calculus is the evaluation of derivatives and integrals, where the order of the

derivative is not an integer. Consequently we must find methods of solving differential

and integral equations where the terms are non-integer derivatives or integrals or both.

Nowadays fractional calculus includes irrational and complex orders, whereas originally

fractional calculus considered only orders in the real line. We shall concentrate in this

dissertation on fractional differential equations where the order is a rational number.

In this dissertation we shall :-

- Review some of the existing methods of solving fractional differential equations,

- Develop equations of existing numerical methods for their solution,

- Find solutions to the equations of these numerical methods using the SciLab package,

- Compare the efficiency and accuracy of these numerical methods,

- Analyse and comment on our results.

1

Chapter 1

1 Fractional Calculus - a quick summary

R. Gorenflo and F. Mainardi ([15], page 1) describe Fractional Calculus as

... the field of mathematical analysis which deals with the investigation and

applications of integrals and derivatives of arbitrary order.

Gorenflo and Mainardi ([15], page 2) regard Fractional Calculus as both an old yet a novel

topic.

Old because the existence of non-integer orders was recognised at the onset of calculus,

and novel due to the increasing interest in the topic over the last 30 years.

Serious interest in fractional calculus took place in the 19th century. The basic princi-

ples were established, and by the early years of the new century interest had become so

widespread that it could no longer be considered merely an interesting paradox.

During the 20th century more research and investigation took place until by the 1960s

mathematicians (and others) started looking towards fractional calculus as a means of

solving practical problems.

In June 1974 the first conference on Fractional Calculus was organized by B. Ross and

held at the University of New Haven.

With the arrival of significant computing power in the 1980s, much of the work involved

in the solution of fractional calculus equations could be delegated to these machines. More

people turned to fractional calculus seeking solutions to their practical problems which up

to then had been either intractable or impossible.

Fractional Calculus is still considered a minority topic despite its increasing use and its

application in fields other than mathematics.

A search of the Amazon.com website in September 2007 identified only 27 books which

contained the words “Fractional Calculus” in their titles.

2

Chapter 1

2 Growth of interest in Fractional Calculus

The following bar chart shows the yearly total of papers published in journals or presented

at conferences between 1975 and 2006. It is not a comprehensive survey of all papers,

more a “snapshot” obtained on 3rd August 2007. The source of the data is Web of Knowl-

edge [17], and the papers were found by doing a search for the words “fractional” and

“calculus”. No checks have been made for duplication of any items. The papers identified

were found in all disciplines; engineering, finance, physics, biology and others as well as

mathematics.

0

20

40

60

80

19
75

19
80

19
85

19
90

19
95

20
00

20
05

Year

A
n
n
u
al

P
ap

er
s

Figure 1.1: Annual Totals

As the annual totals are small in the years 1975 to 1990, the following bar chart shows

the running total of papers from 1975. This gives a clearer indication of the growth of the

study of fractional calculus.

The data for the bar charts are in Appendix A.

3

Chapter 1

0

100

200

300

400

500

600

700

19
75

19
80

19
85

19
90

19
95

20
00

20
05

Year

T
ot

al
P
ap

er
s

Figure 1.2: Running Annual Totals

In fact the number of published papers is greater than I have identified. J. Choi [3] in

1997 referred to Miller & Ross [30] who stated in 1993 that about 400 papers had been

published since 1975.

In comparison, my running total for 1993 is 79 papers.

3 Organization of this document

In Chapter 2 we describe the history and development of Fractional Calculus, and we spec-

ify the notation used in this document.

Chapter 3 reviews the tools and methods involved in solving fractional differential equa-

tions.

Chapter 4 looks at how we implement our solutions for a fractional differential equation

using the existing numerical methods.

Chapter 5 brings together the results, and includes an analysis of them.

In Chapter 6 we summarise the dissertation, comment on the results, and give our conclu-

sions.

4

Chapter 2

History and Development

Aim

We discuss the history of Fractional Calculus and briefly explore its development. We look

at the initial definitions of fractional calculus operators, and how they evolve into more

useful statements.

1 Origin and History

After G.W. Leibniz created the notation dny/dxn, the French mathematician G.F.A. de

l’Hôpital enquired “what would be the result if n = 1/2?”. Leibniz replied that it was

a paradox that one day would lead to useful consequences [21]. Thus B. Ross [32] in his

article in Mathematics Magazine describes the origin of fractional calculus. The history of

fractional calculus we give here is based mainly on his article.

In the 18th century L. Euler (1730) realised that his Gamma function has a role in

the evaluation of the derivative of the power function for non-integer order (Gorenflo &

Mainardi [15]).

According to Gorenflo & Mainardi [15], from the 19th century to the middle of the 20th

century mathematicians from P.S. Laplace to W. Feller made important contributions.

From now on the term ‘fractional’ (a misnomer) will be used to indicate an arbitrary

order when used with calculus, derivatives and integrals.

Laplace in 1812 defined a fractional derivative in terms of an integral.

S.F. Lacroix [19] defined the first expression of a fractional derivative in 1819. For

y = xm, with m a positive integer, he expressed its nth derivative in terms of the Legendre

5

Chapter 2

symbol for Euler’s Gamma function. Hence we have

dny

dxn
=

m!

(m − n)!
xm−n =

Γ(m + 1)

Γ(m − n + 1)
xm−n.

He then set m=1 and n=1/2 thus giving the derivative of order 1/2 of the function x:

d1/2y

dx1/2
=

Γ(2)

Γ(3/2)
x1/2.

By expanding Γ(2) and Γ(3/2), the equation is then solely in terms of Γ(1/2). Using

Euler’s reflection theorem Γ(x)Γ(1 − x) = π/ sin(x) where x < 1, and setting x = 1/2

determines Γ(1/2) and thus we have Lacroix’s result:

d1/2y

dx1/2
=

2√
π

√
x.

J.B.J. Fourier (1822) also commented on derivatives of arbitrary order. But none of

these mathematicians gave any application of fractional calculus. It was not until N.H.

Abel (1823) [1] considered the tautochrone problem that there was the first practical use

of fractional calculus. The tautochrone problem is to determine the shape of a frictionless

wire in a vertical plane such that the time for a bead to slide to the lowest point of

the wire is independent of the start point. Abel deduced a fractional integral equation

for the tautochrone problem. He converted it to a fractional differential equation, then

manipulated it so that the fractional differential operator was on a constant. By using the

known result of the fractional derivative of a constant with Lacroix’s method he found the

curve of the tautochrone.

Abel’s solution stimulated Joseph Liouville to embark on the first major study of Frac-

tional Calculus. He presented several papers from 1832 onwards ([23] is the first), and

gave a definition of a fractional derivative based on an infinite series. A disadvantage of

this is that the order of the fractional derivative can only have values for which the series

converges. Eventually Liouville came up with another definition by considering a definite

integral related to Euler’s gamma integral.

∫ ∞

0

ua−1e−xudu =
1

xa

∫ ∞

0

ta−1e−tdt =
Γ(a)

xa

Taking the first and last expressions Liouville formed the equation

6

Chapter 2

x−a =
1

Γ(a)

∫ ∞

0

ua−1e−tdt.

Liouville now took the νth derivative of both sides of this equation, assumed that

dν(eax)/dxν=aνeax ,where ν is a real number greater than zero, and derived his second

definition:

dν

dxν
x−a =

(−1)νΓ(a + ν)

Γ(a)
x−(a+ν).

In another of his papers Liouville attempted to solve an arbitrary order differential

equation. This came by analogy with the solution of an ordinary differential equation

dny/dxn = 0, namely y = a0 + a1x + a2x
2 + · · · + an−1x

n−1. Liouville then argued that

the arbitrary order equation dνy/dxν = 0 should have a corresponding series solution.

Liouville ignored the trivial case x = 0 which gives a constant as the solution. By analogy

the fractional order derivative should be zero. This led to a contradiction. Later W. Center

(1850) demonstrated, using the Lacroix method, the remarkable fact that the fractional

derivative of a constant is not zero.

The situation was not resolved until the end of the 19th century when mathematicians

were able to agree on a robust definition of a fractional derivative as part of the general

theory of fractional operators.

A reconciliation of Lacroix’s classic-oriented approach with Liouville’s methods took

place with these new definitions.

In 1847 G.F.B. Riemann as a student formed a different theory of fractional operators.

He developed an expression for a fractional integral by a Taylor series generalization, but

did not release it. Nevertheless it was published in 1876 after his death. The theory is

described by Davis in [5].

Due to the efforts of these early mathematicians, the mathematicians of the late 19th

and 20th centuries were able to develop constructive definitions of both the fractional

derivative and the fractional integral, and to find methods for the solution of various types

of equations.

It is to these developments that we now turn our attention.

7

Chapter 2

2 Development

Before we can continue with the development of approaches for the fractional derivative,

we must consider the various definitions of the fractional integral that were established in

the latter half of the 19th century.

Riemann & Liouville continuous perspective

An approach, based on A.L. Cauchy’s formula for a repeated integral, is stated by

Gorenflo & Mainardi([15], page 4) and Podlubny([31], Sections 2.1 & 2.3.1).

For a sufficiently well behaved function φ(x) where x is a real number in the closed

interval [a, b], (−∞ ≤ a < b ≤ +∞) , the n-fold integral is:

Jn
a+φ(x) :=

x
∫

a

xn−1
∫

a

. . .

x1
∫

a

φ(x0)dx0 . . . dxn−1, where n is a positive integer.

Following the argument of Podlubny, we can then express the repeated integral as:

Jn
a+φ(x) =

1

(n − 1)!

x
∫

a

(x − ξ)n−1φ(ξ)dξ, where x > a.

The n-fold integral can be extended to positive real values. Noting that (n−1)! = Γ(n)

and replacing the positive integer n with the positive real number α, where α is arbitrary,

then we have the definition of the fractional integral of order α:

Jα
a+φ(x) :=

1

Γ(α)

x
∫

a

(x − ξ)α−1φ(ξ)dξ, where x > a.

A corresponding form of the fractional integral is:

Jα
b−φ(x) :=

1

Γ(α)

b
∫

x

(ξ − x)α−1φ(ξ)dξ, where x < b.

Gorenflo & Mainardi ([15], page 4) refer to these fractional integrals Jα
a+ and Jα

b− as

progressive and regressive respectively. Other writers call them left-side and right-side

integrals.

8

Chapter 2

The integral deduced by Riemann was over the set of non-negative real numbers, that is

a = 0 and b = ∞. That determined by Liouville comprised the entire set of real numbers,

a = −∞ and b = ∞.

Due to the independent formulation of the fractional integral by these two mathe-

maticians, the general term for the above definitions is the Riemann-Liouville fractional

integral.

At this point we must not forget that it was Abel in 1823 who formed the first fractional

integral equation, and who undoubtedly has some claim on nomenclature. Accordingly the

first of these, with a = 0 and b = ∞, is sometimes known as the Abel-Riemann fractional

integral. Over the years other combinations of values assigned to a and b have led to a

number of double-barrelled descriptions.

Thus we can now define the Riemann-Liouville fractional integral.

Definition: The Riemann-Liouville fractional integral of order α is denoted by the expres-

sion:

Jα
a φ(x) :=

1

Γ(α)

x
∫

a

(ξ − x)α−1φ(ξ)dξ

where x and a are real numbers; x > a; and α is a positive real number.

In his article, Ross [32] calls the limits of integration a and x the terminals of integration.

Podlubny [31] also uses this expression in his book.

The pioneers of fractional calculus were looking for a general theory of fractional oper-

ators. They were unable to do so because they were unable to determine the operations

of fractional calculus in the complex region. H. Laurent (1884) eventually came to their

rescue when his work in the complex plane revealed a valid solution [20].

H.T. Davis [5], in his massive opus on linear operators, invented the notation aD
−α
x f(x)

to denote the integration of arbitrary order α of the function f(x); also aD
α
xf(x) to denote

the differentiation of arbitrary order α. This notation is only used in the requirements

stated below. We will address the issues of notation at the end of this chapter, as there

appears to be no standard usage of symbols representing integration and differentiation.

In his article in Mathematics Magazine, Ross [32] stated the requirements that the early

mathematicians were looking for.

1. If f(x) is an analytic function, the fractional derivative aD
α
xf(x) must be an analytic

function both of the variable x and of the order α.

9

Chapter 2

2. The operation aD
α
xf(x) must produce the same result as ordinary differentiation

when α is a positive integer (aD
n
xf(x) = f (n)(x) for n ≥ 0) and the same result

as ordinary n-fold integration when α is a negative integer. Moreover, aD
−n
x f(x)

must vanish together with all its n − 1 derivatives at x = a, the lower terminal of

integration.

3. The fractionals must be linear.

4. The operation of order 0 must leave the function unchanged: aD
0
xf = f .

5. The law of exponents must hold for for integration of arbitrary order: aD
−α
x (aD

−β
x f) =

aD
−α−β
x f

In 1884 H. Laurent [20] created a definition of the fractional integral in his paper. He

advanced the themes of what is now considered the foundation of fractional calculus. The

proof is long and will not be given here, but we state a summary of it. Taking Cauchy’s

integral formula in the complex plane for analytic functions, he generalized it to work for

arbitrary values. Generalizing the Cauchy formula produces a branch point instead of a

pole. By using a point on the real axis, and a branch cut along the real axis, Laurent

was able to create a loop (Laurent’s loop) which formed a contour. He was then able to

integrate around the contour by using the upper and lower edges of the branch cut with a

circle around the designated point. The Cauchy integral was then expressed as the sum of

3 integrals, which he manipulated to produce a single integral. Letting the radius of the

circle tend to zero, the branch cut is formed, and the Laurent integral is produced. The

Laurent integral, identical to the Riemann-Liouville definition given above, using Davis’s

notation is:

aD
−α
x f(x) =

1

Γ(α)

∫ x

a

(x − τ)α−1f(τ)dτ , where α > 0

It might be thought to obtain the fractional derivative by replacing α with −α, but

this leads to a divergent integral. In addition, Gorenflo & Mainardi([15], page 20) argue

that the derivative and integral operators are not inverse, even for integer orders. The way

to obtain a definition of the fractional derivative aD
α
xf(x) is to integrate enough times so

that the integrable function is m-times differentiable, where m − 1 < α ≤ m.

The Riemann-Liouville fractional derivative of order α is defined as the left inverse (but

10

Chapter 2

not the right inverse) of the Riemann-Liouville fractional integral.

DαJα = I where I is the identity operator and α > 0

If we consider just the integral and differential operators then DmJm = I, where m is

a positive integer and m − 1 < α ≤ m then

DmJm = Dm(Jm−αJα) = (DmJm−α)Jα.

So by comparison with the fractional derivative definition:

Dα := DmJm−α

Definition: The Riemann-Liouville fractional derivative of order α is denoted by the ex-

pression:

aD
α
xf(x) :=























1

Γ(m − α)

dm

dxm

x
∫

a

(x − τ)m−α−1f(τ) dτ where m − 1 < α < m

dm

dxm f(x) where α = m

where x and a are real numbers; x > a; α is a positive real number and m is a positive

integer.

The Riemann-Liouville approach described refers to the behaviour of continuous func-

tions.

The next part examines the fractional derivative from a discrete aspect.

Grünwald and Letnikov discrete perspective

A.K. Grünwald (1867) [16] and A.V. Letnikov (1868) [22] independently used a method of

backward differences to develop a discrete view of the fractional derivative.

Definition: The Grünwald-Letnikov fractional derivative of order α is :

Dα
+f(x) = lim

h→0

∆α
hf(x)

hα
= lim

h→0

1

hα

n
∑

k=0

(−1)k Γ(n + 1)

Γ(k + 1)Γ(n − k + 1)
f(x − kh), a < x < b,

11

Chapter 2

where ∆α
hf(x) is the backward difference operator.

We recall from L. Debnath’s paper ([6], page 3438) the definition of the nth order

derivative

Dnf(x) = lim
h→0

1

hn
∆n

hf(x)

where the backward difference operator ∆n
hf(x) is defined as

∆n
hf(x) :=

n
∑

k=0

(−1)k

(

n

k

)

f(x − kh).

To see where this definition came from, consider the backward finite difference formed

by the step length h > 0. Using T h = f(x− h) as the translation by a step, the backward

finite difference of order n is defined as

∆n
hf(x) := (T 0 − T h)nf(x).

Expanding (T 0 − T h)n and substituting for T h then

∆n
hf(x) :=

n
∑

k=0

(−1)k

(

n

k

)

f(x − kh).

Now the binomial term with n and k can be expressed as

(

n

k

)

=
n!

k!(n − k)!
=

Γ(n + 1)

Γ(k + 1)Γ(n − k + 1)

∆n
hf(x) :=

n
∑

k=0

(−1)k Γ(n + 1)

Γ(k + 1)Γ(n − k + 1)
f(x − kh)

Debnath replaced n by α to generalize the expression and then the Grünwald-Letnikov

fractional derivative is

Dα
+f(x) = lim

h→0

1

hα

[(x−a)/h]
∑

k=0

(−1)k Γ(α + 1)

Γ(k + 1)Γ(α − k + 1)
f(x − kh)

within the limits a < x < b, and where [(x − a)/h] is the integer part.

Podlubny([31], page 52 et seq.) has taken this definition and by extended mathematics

shown that (not using his style)

12

Chapter 2

Dα
+f(x) =

m−1
∑

k=0

f (k)(a) (t − a)−α+k

Γ(k − α + 1)
+

1

Γ(m − α)

x
∫

a

(t−τ)m−1−αf (m)(τ)dτ

for m − 1 < α < m.

Podlubny([31], Sections 2.2.1 & 2.2.2) has also shown that the Grünwald and Letnikov

viewpoint can be used to derive the definition of the fractional integral. In fact he unifies

both the derivative and the integral representation in a single expression.

Now Podlubny([31], Section 2.3) has given a connection between the Riemann-Liouville

fractional derivative and the Grünwald-Letnikov fractional derivative under certain condi-

tions.

Taking the case for m− 1 < α < m for the Riemann-Liouville derivative from equation

(2.79) of Podlubny’s book (again not using his style)

aD
α
xf(x) :=

1

Γ(m − α)

dm

dxm

x
∫

a

(x − τ)m−α−1f(τ) dτ

Note: Equation (2.79) in his book, and the first line of the equation at the bottom of

the page, have the same printing error. The factor 1/Γ(−p + m + 1) is missing before the

differential operator for both equations.

Performing an integration by parts m times, and applying the derivative operator

aD
α
xf(x) =

m−1
∑

0

f (k)(a)(x − a)−α+k

Γ(−α + k + 1)
+

1

Γ(m − α)

x
∫

a

(x − τ)m−1−αf (m)(τ)dτ (2.1)

The right-hand side of this equation is the Grünwald-Letnikov fractional derivative

definition.

What are the conditions that these two definitions are equivalent?

1. The functions f(x) exist and are continuous in [a, x].

2. The functions f(x) are m-times continuously differentiable in [a, x].

3. The m derivatives of f(x) exist and are continuous in [a, x].

13

Chapter 2

This equivalence means that we can treat a discrete problem for fractional derivatives

as a continuous problem, and solve it using the definition of the Riemann-Liouville frac-

tional derivative.

Practical applications of fractional calculus can use this equivalence, for example, to mon-

itor and model physical processes. It is usual to sample a physical parameter in industrial

or scientific processes by taking a reading at a fixed sample rate. These readings are usu-

ally read by a computer, or more correctly by the computer obtaining the reading from

a dedicated electronic interface which maintains the current value of the parameter. As

the parameter value is read at a fixed rate this is discrete sampling (for example once a

second). By the reasoning above this discrete sampling method can be represented by a

continuous one, which is easier to evaluate, under the assumptions detailed above. Using

this method the parameter value can be monitored and appropriate actions taken provid-

ing the parameter is sampled at a sufficiently fast rate. If the process is being modelled

then the values of the physical parameters can be used to determine the behaviour of the

process and choices made to determine the future behaviour of the physical process.

Physical processes can only be monitored if their start conditions or initial values are

known. These can be either deduced from the model, or from the first readings taken by

the computer, or empirically from some known behaviour of the parameter. Fractional

differential equations based on the Riemann-Liouville derivative suffer from a weakness in

terms of initial values. To solve an initial value problem for Riemann-Liouville fractional

differential equation we must know the initial value of each separate fractional derivative.

Caputo derived another form of the fractional derivative to represent the continuous

viewpoint of Riemann-Liouville. In this form he showed that it is possible to represent the

initial value problem in terms of integer order derivatives for the initial values.

Gorenflo and Mainardi [14] define the Caputo fractional derivative Dα
∗ f(x) :=

Jm−αDmf(x) for m − 1 < α ≤ m. Writing this out fully, we can define the Caputo

fractional derivative of order α.

Definition: The Caputo fractional derivative of order α is :

14

Chapter 2

Dα
∗ f(x) :=























1

Γ(m − α)

x
∫

0

(x − τ)m−α−1f (m)(τ) dτ where m − 1 < α < m

dm

dxm f(x) where α = m.

Luchko & Gorenflo have shown a relationship between the Caputo derivative and the

Riemann-Liouville derivative.

Now it can be seen that the above definition (for m−1 < α ≤ m) is also in the equation

(2.1) for Reimann-Liouville derivative, as the second term.

Thus we can now state:

aD
α
xf(x) = Dα

∗ f(x) +
m−1
∑

0

f (k)(a)(x − a)−α+k

Γ(−α + k + 1)
.

As we have already stated that the Riemann-Liouville and Grünwald-Letnikov defini-

tions are equivalent (under certain conditions), we can now state

Dα
+f(x) = aD

α
xf(x) = Dα

∗ f(x) +
m−1
∑

0

f (k)(a)(x − a)−α+k

Γ(−α + k + 1)
.

If we now choose the initial condition f(a) is a constant, then the terms containing

f (m)(a) disappear and all three definitions are the same.

Thus we can solve an initial value problem practically using the Caputo form of the

derivative, express it under certain conditions with Riemann-Liouville form, and finally

use the Grünwald-Letnikov form to find solutions where there is no exact solution.

To solve fractional differential equations various tools and methods are used, and it is

to these we now give our attention in the next chapter.

Before turning to these, we need to agree on the notation to be used throughout the

rest of this document.

15

Chapter 2

3 Notation

As we have seen in this chapter, and from reading other papers and books, there is no

common agreement on the symbology used in fractional calculus. Some authors use sub-

scripts and superscripts, both before and after an operator symbol to give a unique means

of identification, which can lead to unwieldy symbol structures. We give in the table below

the symbols and their definitions that we will us from now on, irrespective of any use we

have made up to this point. Some of these are taken from Diethelm’s ‘book’ [9, Appendix

A]. We intend to follow Gorenflo and Mainardi’s practice [14, p. 232] of not using the D−α

symbol to indicate fractional integration.

∆α
h The backward difference operator

Dn nth order derivative; n ∈ N

Dα
a∗ Caputo fractional differential operator; Order α ∈ R+; Lower limit of a

Dα
a+ Grünwald-Letnikov fractional differential operator; Order α ∈ R+; Lower limit of a

Dα
a Riemann-Liouville fractional differential operator; Order α ∈ R+; Lower limit of a

Jα
a Riemann-Liouville fractional integral operator; Order α ∈ R+\N; Lower limit of a

16

Chapter 3

Tools and Methods

Aim

The tools and methods used to solve fractional differential equations are examined.

1 Tools

We have already seen how the Gamma function is used in the definition of fractional

integrals and derivatives. In this section we will see how other functions are used.

1.1 Beta Function

The Beta Function, derived from the Beta integral with the upper limit set as 1, is defined

by the expression:

B(p, q) =

∫ 1

0

up−1(1 − u)q−1du.

By the convolution property of the Laplace Transform we can show that:

B(p, q) =
Γ(p)Γ(q)

Γ(p + q)
.

The function is obviously symmetric in p and q.

This expression is often more convenient in use than the combination of Gamma functions.

In addition the Beta function is used to determine fractional integrals without having to

directly evaluate the integral.

17

Chapter 3

Consider the expression below as a convolution integral

G(x) =

∫ x

0

up(x − u)q du.

By taking the Laplace transform and using the convolution property, and then taking the

inverse Laplace transform we obtain

G(x) =
Γ(p + 1)Γ(q + 1)

Γ(p + q + 2)
xp+q+1.

1.2 Mittag-Leffler Function

The Mittag-Leffler function is a generalization of the exponential function ez. It takes 2

forms; a one parameter form defined by

Eα(z) =
∞
∑

k=0

zk

Γ(αk + 1)

and a two parameter form defined by

Eα,β(z) =
∞
∑

k=0

zk

Γ(αk + β)
.

We know that ez is important in the solution of integer order differential equations.

By extension the Mittag-Leffler function takes a similar role in fractional calculus. In

particular the second form is very useful in fractional calculus in the various transform

methods and also in numerical methods. The derivative of the Mittag-Leffler function has

been computed by Gorenflo, Loutchko and Luchko [33]. In addition Diethelm and Ford [11]

state the jth derivative of the Mittag-Leffler function as

E
(j)
α,β(z) =

∞
∑

k=0

(k + j)!zk

k!Γ(αk + αj + β)
.

1.3 Laplace Transform

The Laplace transform of a function f(t), (t > 0), is defined as

L{f(t)} = F (s) =

∫ ∞

0

e−stf(t)dt

18

Chapter 3

where s can be either real or complex.

In this document we shall only consider real values of s.

The Laplace transform of f(t) exists if the integral converges for some value of s.

Correspondingly f(t) is called the inverse Laplace transform of F (s) which we denote as

f(t) = L−1 {F (s)} .

We can recognise the convolution property of the Laplace transform as

f(t) ∗ g(t) =

∫ t

0

f(u)g(t − u)du = L−1 {F (s)G(s)} = L−1 {F (s)}L−1 {G(s)}

where L−1 {F (s)} = f(t) and L−1 {G(s)} = g(t). Consequently we can also write

L{f(t) ∗ g(t)} = F (s)G(s).

Regarding the nth order derivative of a function f(t), where n is an integer, there is the

well known expression

L
{

f (n)(t)
}

= snF (s) −
n−1
∑

k=0

sn−k−1f (k)(0) = snF (s) −
n−1
∑

k=0

skf (n−k−1)(0).

All of these definitions and properties are useful in the evaluation of our fractional integrals.

Podlubny has shown [31, Section 2.8.2] that the Laplace transform of the Riemann-

Liouville derivative is

L{Dα
0 f(x)} = sαF (s) −

n−1
∑

k=0

sk
[

Dα−k−1
0 f(x)

]

t=0
.

Additionally, he has also shown that the Laplace transform of the Grünwald-Letnikov

derivative is

L
{

Dα
0+f(x)

}

= sαF (s).

Also that the Laplace transform of the Caputo derivative is

L{Dα
0∗f(x)} = sαF (s) −

n−1
∑

k=0

sα−k−1f (k)(0).

19

Chapter 3

1.4 Fourier Transform

The Fourier transform of a function f(t) is defined by

F {f(t)} = Fe(w) =

∫ ∞

−∞

e−iwtf(t)dt,

where f(t) is a continuous function integrable in the range (∞,−∞).

We also have the inverse Fourier transform defined by

F−1 {Fe(w)} = f(t) =
1

2π

∫ ∞

−∞

eiwtFe(w)dw.

In a similar manner to the Laplace transform we can specify the convolution property

of two functions f(t) and g(t) as

f(t) ∗ g(t) =

∫ ∞

−∞

f(t − u)g(t)du.

Taking the Fourier transform of the above yields

F {f(t) ∗ g(t)} = F {f(t)}F {g(t)} .

Podlubny [31, p. 110] states a useful property of the Fourier transform of the derivatives

f (n)(t). If the derivatives f(t), f (1)(t), . . . , f (n−1)(t) vanish as t → ±∞, then the Fourier

transform of the nth derivative of f(t) is

F
{

f (n)(t)
}

= (−iω)n Fe(ω),

where Fe(w) is the Fourier transform of f(t).

The Fourier transform of the Riemann-Liouville integal with a lower terminal of −∞
is given by Podlubny [31, p. 111] as

F
{

Jα
−∞f(x)

}

= (−iω)−αFe(w)

where Fe(w) is the Fourier transform of f(x).

As f (m)(x) vanish as x → −∞ then this expression also gives the Fourier transform of

the Grünwald-Letnikov integral.

20

Chapter 3

For the Fourier transform of the Caputo fractional derivative with a lower terminal of

−∞, Podlubny [31, p. 111] gives it as

F
{

Dα
−∞∗f(x)

}

= (−iω)αFe(w)

where Fe(w) is the Fourier transform of f(x).

As f (m)(x) vanish as x → −∞ then this expression also gives the Fourier transform of

the Riemann-Liouville and Grünwald-Letnikov derivatives.

1.5 Green’s Function

Green’s function has many uses in the solution of integer order differential equations and

integral equations. In particular it is used in the solution of initial value or boundary

condition problems.

2 Non-Numerical Methods of Solution

2.1 Laplace Transform method

Podlubny [31, Chapter 4] introduces the Laplace transform method in his book. Using

the expressions from Section 1.3 of this chapter for the Riemann-Liouville derivative it is

possible to solve fractional differential equations with constant coefficients.

Examples from Podlubny’s book [31, p.138-140] of ordinary linear fractional differential

equations which can be solved using the Laplace transform method are given below.

1. An example with a Riemann-Liouville derivative and an initial value.

D
1
2
0 f(t) + af(t) = 0, t > 0

[

D−
1
2f(t)

]

t=0

= C

After applying the Laplace transform, gathering terms, and using the inverse Laplace

transform we have the exact solution

f(t) = Ct−
1
2E1

2
,
1
2
(−a

√
t).

21

Chapter 3

2. This non-homogeneous example contains two Riemann-Liouville derivatives.

DQ−1
0 f(t) + Dq−1

0 f(t) = h(t) where0 < q < Q < 1.

By the Laplace transform method the solution is

f(t) = CG(t) +

t
∫

0

G(t − τ)h(τ)dτ ,

where C =
[

DQ−1
0 f(t) + Dq−1

0 f(t)
]

t=0
and G(t) = tQ−1EQ−q(−tQ−q).

3. A non-homogeneous example with non-zero initial values.

Dα
0 f(t) − λf(t) = h(t)

where
[

Dα−k
0 f(t)

]

t=0
= bk, (k = 1, 2, . . . , n), and n − 1 < α < n.

Using the Laplace transform method we have the solution

f(t) =
n
∑

k=1

bkt
α−kEα,α−k+1(λtα) +

t
∫

0

(t − τ)α−1Eα,α(λ(t − τ)α)h(t)dτ .

3 Numerical Methods

3.1 Diethelm’s backward difference method

Weilbeer [34, Lemma 5.1.5, p. 115] in his thesis of 2005 states an approximation for the

Caputo derivative.

Dα
0∗y(x) ≈ x−α

Γ(−α)
Qj[g]

where g(u) = y(x−xu)−Tm−1[y; 0](x−xu) and Tm−1[y; 0](x−xu) is the Taylor polynomial

((m − 1) < α ≤ m).

This whole procedure was previously described in Diethelm’s ‘book’ [9, p. 101] in 2003,

and for this reason the overall method employed is called the Diethelm fractional backward

difference method.

Diethelm develops his method by means of dividing the interval of integration using a mesh,

and for each subinterval defined by the mesh, constructs a polynomial of degree d. In this

22

Chapter 3

document we will only consider the value d = 1, that is a piecewise linear polynomial. The

Caputo derivative is defined by Diethelm [9, p. 38] as

Dα
a∗y(x) = Dα

a [y(x) − Γm−1 [y; a] (x)] .

where

Γm−1 [y; a] (t) =
m−1
∑

k=0

y(k) (a)

k!
(t − a)k

and (m − 1) is the degree of the Taylor polynomial, such that (m − 1) < α ≤ m.

Using two lemmas of Diethelm [9, Lemmas 7.1 and 7.2,p. 95] we have

Dα
a∗y (x) =

1

Γ (−α)

∫ x

a

(x − t)−α−1 (y (t) − Γm−1 [y; a] (t)) dt.

We can now assume the lower limit a = 0 without loss of generality. Making the transfor-

mation t = x − xu we then have

Dα
0∗f(x) =

x−α

Γ(−α)

∫ 1

0

u−α−1g(u)du

where g(u) = f(x − xu) − Γm−1[f ; a](x − xu).

We have now reduced our interval of integration to [0,1] and can construct a simpler mesh

on this interval. Taking the function g(u) we can approximate it by a function ĝ(u) and

a dth degree polynomial on the mesh subinterval by defining nodal points within each

subinterval of the form xν−1 + µ(xν − xν−1)/d, where µ = 0, 1, ..., d. For the case d = 0

we only have the node xν−1. The case d = 1 gives 2 nodal points which form a double

trapezium inside the subinterval, and is a piecewise linear interpolation.

The required approximation is thus

Qj[g] :=

∫ 1

0

u−α−1ĝ(u)du

The evaluation of each Qj[g] is required to arrive at our complete approximation within

the range [0, 1].

We will only consider the piecewise linear approximation, that is d = 1, for the remaining

chapters of the dissertation.

As we have d = 1 then there are only 2 nodes for each subinterval and we must compute

Qj[g] using this condition. It can be seen that the function u−α−1 acts as a weight on the

23

Chapter 3

function ĝ(u). For the 2 node case there are 2 weights, each attached to the node either

side of the centre point of the subinterval. The lower node for the kth subinterval can be

represented by (k − 1)/j, the centre point by k/j, and the upper node by (k + 1)/j where

k = 0, 1, ..., j. The subintervals can be considered independent for the evaluation of the

weights, so the weights of other subintervals do not affect the calculation of the weights of

the desired subinterval.

Thus the approximation can be represented by a quadrature formula of a product

trapezoidal form

Qj[g] =

j
∑

k=0

ωkjg(k/j)

The weights are determined by evaluating the above integral for with ĝ(u) replaced by

a function that fairly represents the weight distribution within the subinterval. A fair

representation would be to attach a coefficient of 1 at the centre point of the subinterval,

and 0 at each end of the subinterval.

To that end, we consider the function φkj(x) defined as

φkj(x) =



















jx − (k − 1) for x ∈ [(k − 1)/j, k/j]

k + 1 − jx for x ∈ [k/j, (k + 1)/j]

0 elsewhere

.

This function gives a fair representation as the centre point k/j has a value of 1, and the

nodal end points have values of zero.

We need to consider the 4 cases:-

1. The 1st subinterval, when there is no lower node.

2. The general case of the kth subinterval.

3. The last subinterval, when there is no upper node.

4. The case when there is only 1 subinterval, that is k = j = 1.

Substituting the values of φkj into the integral in place of ĝ(u), and evaluating the integrals

is a fairly tedious exercise, with the following result.

24

Chapter 3

The weights are calculated for a piecewise linear interpolation (d=1) by

α(α − 1)j−αωkj =































−1 for k = 0

α for k = j = 1

2k1−α − (k − 1)1−α − (k + 1)1−α for 1 ≤ k ≤ j − 1

(α − 1)k−α − (k − 1)1−α + k1−α for k = j and j ≥ 2.

(3.1)

We can now calculate the weights for each subinterval using the above expressions, de-

termine the value of Qj[g], and thus determine the approximated value of the Caputo

derivative.

The above formula is also used by Diethelm [8, Lemma 2.1, p. 3] for the Riemann-Liouville

derivative.

Now we are able to consider the fractional differential equation

Dα
0∗y(x) = f(x, y(x)). (3.2)

Firstly our range of values of α is restricted. Diethelm [9, p. 98] states that α is restrained

by the inequality α < m ≤ (d + 1). As we have d = 1, and excluding α = 2 and α = 1,

then we are forced to have 0 < α ≤ 2.

According to Diethelm [9, p. 103,(7.4b)] the initial conditions are

{

y(0) = y0 if 0 < α < 1,

y(0) = y0 y′(0) = y′
0 if 1 < α < 2

Now we substitute the expression

Dα
0∗y(x) = Dα

0 y(x) − Dα
0 Γm−1 [y; 0]

in the equation and obtain

Dα
0 [y(x)] − Dα

0 [Γm−1 [y; a]] = f(x, y(x)).

The fractional derivative of a Taylor polynomial has already been derived by Diethelm [9, p.

31]. We can now impose our interval method described above on the equation as N intervals

of a range [0, T] so that each interval has a width h = T/N . Each interval is nominated by

tj := jh where j = 0, 1, ..., N . Setting x = tj and using Diethelms expressions for Dα
0 [y(x)]

25

Chapter 3

and Dα
0 Γm−1 [y; 0] we have

f(tj, y(tj) = Dα
0∗y(tj) = Dα

0 y(tj) − Dα
0 Γm−1 [y; 0] (tj)

=
t−α
j

Γ(−α)

∫ 1

0

u−α−1y(tj − tju) du − Dα
0 Γm−1 [y; 0] (tj)

=
t−α
j

Γ(−α)

∫ 1

0

u−α−1y(tj − tju) du −
y0t

−α
j

Γ(1 − α)
−

y′
0t

1−α
j

Γ(2 − α)

taking account of 0 < α < m ≤ 2 and the initial conditions.

Setting y′
0 := 0 allows us to treat both cases of α < 1 and α < 2. Now we replace the

integral with the quadrature expression Qj, and introduce the quadrature error Rj. So

with the notation gj(u) := y(tj − tju) and u = k/j we have

t−α
j

Γ(−α)

(

j
∑

k=0

αkjgj (k/j) + Rj [gj]

)

−
y0t

−α
j

Γ(1 − α)
−

y′
0t

1−α
j

Γ(2 − α)
= f(tjy(tj)).

There are items in this equation which have unknown values. Firstly gj(k/j) is unknown

except for the case j = k. Additionally the quadrature error Rj is unknown. The value of

y(tj) is unknown, so the right hand side of the equation cannot be evaluated. Following the

practice of Diethelm, we ignore the quadrature error. Since y(tj) is unknown, we assume

that at least we have approximate values yν for y(tν) where ν = 0, 1, ..., j − 1. Only y(tj)

now remains unknown, and since we have used yν as a replacement for gj(k/j), the equation

then depends on previously determined approximate values, and so yields an approximate

solution, which we will designate yj. Rewriting the equation in terms of the approximate

values yields

t−α
j

Γ(−α)

j
∑

k=0

αkjyj−k −
y0t

−α
j

Γ(1 − α)
−

y′
0t

1−α
j

Γ(2 − α)
= f(tj, yj)

Now we have a backward difference relationship for yj if f(tj, yj) is a sensible function.

From the initial conditions y1 can be calculated; indeed if y′
0 = 0 we can use the formula

for 1 < α < 2 and 0 < α < 1. Having determined y1 and knowing y0 we can successively

find y2, y3, ..., yN .

For the purposes of evaluation it is useful to substitute tj = jh and to rewrite the equation

as
j
∑

k=0

βkjyj−k = j−α(1 − α)y0 + hj1−αy′
0 + hαΓ(2 − α)f(tj, yj)

26

Chapter 3

where

βkj = −α(1 − α)j−ααkj

is seen to be the expression on the left hand side in (3.1).

If we now take f(x, y) as a simple form

f(x, y) = −λy + q(x)

with λ > 0 and q(x) a continuous function then we can evaluate the approximations of

y(x) directly. Making the appropriate substitutions for x and f(x, y) then we have

j
∑

k=0

βkjyj−k = j−α(1 − α)y0 + hj1−αy′
0 + hαΓ(2 − α)q(tj) − hαΓ(2 − α)λyj.

Collecting the terms for yj together and equating to the remaining terms then

(hαΓ(2 − α)λ + β0j) yj = j−α(1 − α)y0 + hj1−αy′
0 + hαΓ(2 − α)q(tj) −

j
∑

k=1

βkjyj−k (3.3)

The factor applying to yj is positive as β0j is non-zero from (3.1) for k = 0, together with

λ > 0 and Γ(2 − α) > 0. Hence our equation has a unique solution yj.

3.2 Lubich’s convolution quadrature method

Before embarking on this method, we need to return to examining the numerical solution

of ordinary differential equations, that is to say equations whose order is non-fractional.

If for the equation

Dny(x) = f(x, y(x)), (3.4)

where n ∈ N, we have the initial conditions Dky(0) = bk (k = 0, ..., n − 1), with bk as a

constant, then we have an inital value problem.

By repeated integration of (3.4), using the initial conditions and the Cauchy formula for a

repeated integral, we can express the solution of (3.4) as the solution y(x) of the integral

equation

y(x) =
n−1
∑

k=0

xk

k!
Dky(0) +

1

(n − 1)!

∫ x

0

(x − t)n−1f(t, y(t))dt.

27

Chapter 3

We are now interested in seeking a numerical solution to the differential equation with the

stated initial conditions. Practically we look to find a solution in an interval [0, X] where

X > 0 is a fixed value. The solution is not obtained for every value x in the interval,

instead we specify a set of x, namely xm where m = 0, ..., N . The set forms a series of

nodes on the interval [0, X], and we assume that the nodes are spaced evenly with a stepsize

h = X/N , with x0 = 0 and xN = X. For each node with value xm we aspire to find an

approximated value of y, which will denote as ym, so that ym is an approximation of y(xm).

By the same analogy we specify f(xm, ym) as fm. Thus we have replaced our continuous

representation of the solution to the differential equation with a discretized numerical form.

These discretized methods have the general title of linear multistep methods.

For a first order differential equation, i.e. n = 1 in (3.4), we can generally define a

linear multistep method of s steps as

s
∑

k=0

αkym−k = h
s
∑

k=0

βkfm−k. (3.5)

where αk, βk are real constants for k = 0, ..., s, and there exist characteristic polynomials

ρ and σ such that

ρ(τ) =
s
∑

k=0

αkτ
s−k. (3.6)

and

σ(τ) =
s
∑

k=0

βkτ
s−k. (3.7)

The characteristic polynomials determine the nature of the linear multistep method, and

so any linear multistep method is referred to as of type (ρ, σ) of s steps.

We can determine a particular ym by extracting the term for k = 0 and dividing throughout

by α0.

ym =
1

α0

[

−
s
∑

k=1

αkym−k + h

s
∑

k=0

βkfm−k

]

We will now look at a linear multistep method known as the Adams-Bashforth method.

Consider a first order differential equation of the form Dy(x) = f(x, y(x)) which has

the solution

y(x) =

∫ x

0

f(t, y(t))dt.

28

Chapter 3

We can discretize this for values of y(x) and obtain these values for y

ym = ym−1 +

∫ tm

tm−1

f(x, y)dt.

The integral involving f(x, y) is now approximated as

∫ tm

tm−1

f(x, y)dt ≈
∫ tm

tm−1

P (t)dt.

where P (t) is an approximating polynomial that uses an interpolating polynomial of the

Lagrange form. Using the Lagrange form of an interpolating polynomial we can define

P (t) =
s
∑

j=0

fm−j
(−1)j

j!(s − j)!

s
∏

i=0
i6=j

t − tm−i

tm+1−i − tm−i

.

Now tm+1−i − tm−i equals our stepsize h so we can write the integral as

∫ tm

tm−1

P (t)dt =

∫ tm

tm−1

s
∑

j=0

fm−j
(−1)j

hs−1j!(s − j)!

s
∏

i=0
i6=j

(t − tm−i)dt.

The summation factor is independent of t, so the integral operator can be put inside the

expression. The product term can be changed to a simpler form by making the substitution

t = tm−1 + uh, which changes the limits of integration to 0 and 1 respectively.

∫ tm

tm−1

P (t)dt = h
s
∑

j=0

fm−j
(−1)j

j!(s − j)!

∫ 1

0

s
∏

i=0
i6=j

(u + i)du.

Substituting this expression for the integral of P (t) in the above equation we have our

expression for the approximated value of y

ym = ym−1 + h
s
∑

j=0

fm−j
(−1)j

j!(s − j)!

∫ 1

0

s
∏

i=0
i6=j

(u + i)du.

29

Chapter 3

We can now write our formula for approximated values as

ym = ym−1 + h
s
∑

j=0

βjfm−j

where βj =
(−1)j

j!(s − j)!

∫ 1

0

s
∏

i=0
i6=j

(u + i)du.

By comparison with the general expression of the linear multistep method we can see that

we have α0 = 1 and α1 = −1 together with the expression for βj. We observe that αk = 0

for k ≥ 2. The corresponding characteristic polynomials are thus

ρ(τ) = τ s − τ s−1 and σ(τ) =
s
∑

k=0

βkτ
k.

Generally for the linear multistep method we can now see that we need to set αk arbitrarily

according to the scheme we wish to use, and then determine the values βk for the particular

method adopted. We can then deduce the characteristic polynomials ρ and σ.

Another type of linear multistep method is the backward difference form (BDF). In-

stead of integrating an approximating polynomial as with f(x, y) as above, we consider an

approximating polynomial P (x) to give an approximated value for y and differentiate it to

equal f(xm, ym). Taking a first order differential equation of the form Dy(x) = f(x, y(x)),

we approximate its solution y(x) such that P (xm−i) ≈ y(xm−i) for i = 0, ..., s.

For a 1-step BDF method (BDF1) we have an approximating polynomial P (x) so that

(writing ym = y(xm)),

y(x) ≈ P (x) = ym + (x − xm)
ym − ym−1

xm − xm−1

.

Differentiating then

Dy(x) = f(x, y) ≈ P
′

(x) =
ym − ym−1

xm − xm−1

.

We then approximate P
′

(x) to f(x, y) at x = xm by setting P
′

(xm) = f(xm, ym). Taking

xm − xm−1 as the stepsize h then we can write

f(xm, ym) =
ym − ym−1

h

30

Chapter 3

which on rearranging is

ym = ym−1 + hf(xm, ym).

Comparing this with equation (3.5) we can see that it matches for the BDF1 method

(s = 1) if we set α0 = 1, α1 = −1, β0 = 1 and β1 to zero.

For BDF1 the characteristic polynomials are then ρ(τ) = τ − 1 and σ(τ) = τ .

We recognise the above expression for ym as the usual backward Euler form.

Now, following the argument of Dattani [4], we are able to generalise the BDF method

for s steps by considering the backward difference operator

∇ym = ym − ym−1.

This is the first backward difference so we should more properly write

∇1ym = ym − ym−1.

We can also state ∇0ym = ym and then ∇1ym = ∇0ym −∇0ym−1.

The second backward difference is defined as ∇2ym = ∇1ym−∇1ym−1, and we can then

define the general backward difference operator as

∇iym = ∇i−1ym −∇i−1ym−1.

Now we can build a s-step BDF with the following statement of the approximating

polynomial:

y(x) ≈ P (x) = ym +
1

h
(x − xm)∇ym +

1

2h2
(x − xm)(x − xm−1)∇2ym + · · ·

· · · + 1

s!hs
(x − xm) . . . (x − xm−s+1)∇sym.

Differentiating the above representation, setting x = xm, and observing that P
′

(xm) =

f(xm, ym) then
s
∑

i=1

1

i
∇iym = hf(xm, ym). (3.8)

Looking back at the general expression for a linear multistep method (3.5) the expression

we have obtained is found directly if βk = 1 for k = 0 and βk = 0 for k ≥ 1. The values

for αk can be found by applying the difference operator and summing the terms.

31

Chapter 3

As we have already seen, the solution y(x) of the differential equation (3.4) is seen to

be the solution of an integral equation. We consider a first order differential equation

Dy(x) = f(x, y(x)) (3.9)

that has the solution

y(x) =

∫ x

0

f(t, y(t))dt. (3.10)

Lubich [24, Lemma 2.1] states that the application of a convolution quadrature with a

linear multistep method for the differential equation results in the expression

ym = h

m
∑

j=0

wm−jf(xm, y(xm)) + h

s
∑

j=0

wm,jf(xm, y(xm))

with a positive stepsize h, where wm−j are the convolution weights and wm,j are the starting

weights. The starting weights originate from correction terms added to the approximated

integral because of the behaviour of the function near zero. This leads us to the following

expression which approximates the convolution integral of the differential equation as

hJ f(x, y(x) = h

m
∑

j=0

wm−jf(xm, y(xm)) + h

s
∑

j=0

wm,jf(xm, y(xm))

where hJ is the discretization of the integral with positive stepsize h.

Lubich [24, Lemma 2.1] states the convolution weights wm−j are given by the coefficients

of the generating function

w(τ) =
σ(1/τ)

ρ(1/τ)

where σ and ρ are the characteristic polynomials of the linear multistep method.

For example, the generating function for the BDF1 method outlined above is

w(τ) =
σ (1/τ)

ρ (1/τ)
=

1/τ

(1/τ) − 1
=

1

1 − τ
= (1 − τ)−1.

As a more complicated example let us consider BDF2 where we then have s = 2. Forming

the backward differences using (3.8) and collecting terms gives

3

2
ym − 2ym−1 +

1

2
ym−2 = hf(xm, ym).

32

Chapter 3

The characteristic polynomials are, from expressions (3.6) and (3.7),

ρ(τ) =
3

2
τ 2 − 2τ +

1

2
and σ(τ) = τ 2.

The generating function for BDF2 is then

w(τ) =
σ (1/τ)

ρ (1/τ)
=

1/τ 2

3
2

(

1
τ

)2 − 2
(

1
τ

)

+ 1
2

=
1

3
2
− 2τ + 1

2
τ 2

=

(

3

2
− 2τ +

1

2
τ 2

)−1

.

Thus the generating function is solely a function of the inverse of the characteristic poly-

nomial ρ(τ) expression. By examination of the expansion of each ∇ term in in Dattani’s

expression (3.8), we can see that the coefficients of the BDF formula (3.8) are formed by

the series

δ(τ) =
s
∑

k=1

1

k
(1 − τ)k.

The general expression for the generating function for the BDF s-step method as applied

to the differential equation (3.9) is then

w(τ) =
1

s
∑

k=1

1
k
(1 − τ)k

=

(

s
∑

k=1

1

k
(1 − τ)k

)−1

.

In a later paper on convolution quadrature [27], Lubich considered the approximation of

the convolution integral
∫ x

0

f(t)g(x − t) dt where x ≥ 0

by a discrete convolution representation

∑

0≤jh≤x

Wj(h)g(x − jh).

where h is the positive stepsize and Wj(h) are the convolution quadrature weights. He

then stated that the convolution weights Wj(h) are the coefficients of the the power series

F (δ(τ)/h) =
∞
∑

j=0

Wj(h)τ j

where F is the Laplace transform of the function f and δ(τ) is the generating function

33

Chapter 3

derived from the characteristic polynomials ρ and σ.

If we now apply this convolution quadrature to the BDF linear multistep method for the

differential equation (3.9) which has the solution (3.10) we can see that from the convolution

integral representation f(t) ≡ 1 and g(t) ≡ f(t, y(t)). To find the convolution quadrature

weights, take the Laplace transform F of f , and then we have

∞
∑

j=0

Wj(h)τ j = F (δ(τ)/h) =
1

δ(τ)/h
= h δ(τ)−1 asL (1) = 1/s.

If we now let wj be the coefficients of δ(τ)−1 then Wj(h) = hwj.

This convolution quadrature of the differential equation for the mth interval of the BDF

linear multistep method then leads, as we have seen above from Lubich [24, Lemma 2.1],

to the approximated solution

ym = h
m
∑

j=0

wm−jf(xm, y(xm)) + h
s
∑

j=0

wm,jf(xm, y(xm))

where the convolution weights wm−j are the coefficients of δ(τ)−1 and wm,j are the starting

weights.

Lubich then adapted these classical linear multistep methods with his convolution quadra-

ture method for the numerical approximation of fractional integrals. Lubich evolved his

discretized operational calculus as a discretized fractional calculus in his eponymous pa-

per [26]. Weilbeer has shown [34, Theorem 4.2.3] that the fractional differential equation

of the Caputo type can be replaced by an Abel-Volterra equation

y(x) = Γn−1[y; 0](x) +
1

Γ(α)

∫ x

0

(x − t)α−1f(t, y(t)) dt.

Diethelm [9, p. 38] defines the Caputo derivative as

Dα
a∗y(x) = Dα

a [y(x) − Γm−1 [y; a] (x)]

where

Γm−1 [y; a] (t) =
m−1
∑

k=0

y(k) (a)

k!
(t − a)k

and (m − 1) is the degree of the Taylor polynomial, such that (m − 1) < α ≤ m.

We now follow the ideas of Lubich [25] [26], as stated by Weilbeer [34] and Diethelm, Ford,

34

Chapter 3

Ford and Weilbeer [18] to approximate a fractional convolution integral by a fractional

convolution quadrature. Lubich [26] defines an approximation to the integral equation

y(x) = Jα
a [f(x, y(x))] =

1

Γ(α)

∫ x

0

(x − t)α−1f(t, y(t)) dt,

which is equivalent to the fractional differential equation Dαy(x) = f(x, y(x)), as

Jα
a [f(xm, y(xm))] = hα

m
∑

j=0

wm−jf(xm, y(xm)) + hα

s
∑

j=0

wm,jf(xm, y(xm)).

In this equation wm−j are the convolution weights, and wm,j are the starting weights.

We can see the origin of this expression by considering the integral above as a convolution

integral and then applying the convolution quadrature method of Lubich.

Apply the Riemann-Liouville integral operator with the lower terminal a = 0 to the Caputo

derivative definition above, we have

Jα
0 (Dα

∗0y(x)) = Jα
0 (Dα

0 y(x)) − Jα
0 (Dα

0 Tm−1[y; 0](x))

Now Jα
0 Dα

0 = I and Dα
∗0y(x) = f(x, y(x)) so

Jα
0 (f(x, y(x))) = y(x) − Tm−1[y; 0](x).

Using Lubich’s approximation of the convolution integral Jα
0 [f(xm, y(xm))], setting ym =

y(xm) as the approximated y value for x = xm, and collecting terms the approximated

solution to the fractional differential equation is

ym = hα

m
∑

j=0

wm−jf(xm, ym) + hα

s
∑

j=0

wm,jf(xm, ym) + Tm−1[y; 0](xm).

We now need to find the convolution and starting weights.

Taking F as the Laplace transform of (x − t)α−1/Γ(α) we have

F

(

(x − t)α−1

Γ(α)

)

=
1

sα
.

35

Chapter 3

By Lubich’s method we then have

F (δ(τ)/h) =
1

(δ(τ)/h)α
= hαδ(τ)−α.

Thus extending our reasoning as applied to the first order differential equation we can

define the convolution weights for the fractional order differential equation as

wα(τ) = δ(τ)−α =

(

p
∑

k=1

1

k
(1 − τ)k

)−α

where δ(τ) is the generating function of the characteristic polynomials ρ and σ.

Applying the same principles of automatic differentiation to f(x) = [g(x)]−α, as Weilbeer

[34, Theorem 5.3.1] and Diethelm, Ford, Ford and Weilbeer [18] applied to f(x) = [g(x)]α,

the following formula for the convolution weights is obtained.

wm =
1

mu0

m−1
∑

j=0

[−α(m − j) − j]wjum−j

un are the coefficients of the generating function found from the characteristic polynomials

ρ and σ for the classical linear multistep method.

The convolution weight for the mth node is thus found in terms of the convolution weights

of the previous (m − 1) nodes. Ultimately we need to determine the value w0. We do this

by setting τ = 0 in the expression for wα(τ), and taking the resulting value as w0.

The starting weights are found by solving the linear system of equations

s
∑

j=0

wm,jj
γ =

Γ(1 + γ)

Γ(1 + γ + α)
mγ+α −

m
∑

j=1

wm−jj
γ

where γ ∈ A and A = {k + lα} with k, j ∈ N and s = CardA− 1. For each node within

the interval a set of (s + 1) starting weights must be calculated.

Weilbeer [34, Theorem 5.1.9] derived this equation from the expression of Lubich [26, 4.2].

The formula above for the approximated solution of the differential equation is perfectly

adequate for the evaluation of ym. Unfortunately there is a penalty in terms of computation

because the function f(xm, ym) is calculated for all the previous nodes of the interval

in order to compute the current nodal value ym. This penalty will be reflected in the

computing time of the program for the numerical solution.

36

Chapter 3

We checked the validity of the computation formula above by a Scilab program in Appendix

F, however we have not included the results for the execution times for the range of interval

sizes.

The actual solution values computed will of course be the same as the computation formula

adopted below.

We can avoid the computation of f(xm, ym) for each ym by considering a better formula

developed as follows.

Restating Diethelms’s definition of the Caputo differential operator with the lower terminal

a = 0 we have

Dα
0∗y(x) = Dα

0 [y(x) − Γm−1 [y; 0] (x)]

and by rearranging the terms then

Dα
0 [y(x)] = Dα

0∗y(x) + Dα
0 Γm−1 [y; 0] (x)

so that

Dα
0 [y(x)] = f(x, y(x)) + Dα

0 Γm−1 [y; 0] (x).

The Riemann-Liouville differential operator is defined as Dα = DmJm−α (in terms of

operators only). Now Dα = DmJm−α = DmJmJ−α = J−α as DmJm = I. Hence we now

have

J−α [y(x)] = f(x, y(x)) + Dα
0 Γm−1 [y; 0] (x)

where α > 0. We can approximate J−α [y(x)] by using Lubich’s fractional quadrature

formula with −α replacing +α.

This means the same formulas and equations for convolution and starting weights can be

used as above with −α instead of +α.

Replacing J−α [y(x)] with the fractional quadrature formula then

h−α

m
∑

j=0

wm−jy(xj) + h−α

s
∑

j=0

wm,jy(xj) = f(xm, y(xm)) + Dα
0 Γm−1 [y; 0] (xm).

Extracting the j = m term from the first summand, multiplying throughout by hα, col-

lecting terms and dividing by w0 gives an expression for the approximated value ym as

ym =
1

w0

[

hαf(xm, y(xm)) −
m−1
∑

j=0

wm−jy(xj) −
s
∑

j=0

wm,jy(xj) + hαDα
0 Γm−1 [y; 0] (xm)

]

37

Chapter 3

where α > 0. We note that this differs from Weilbeer’s formula [34, Theorem 5.1.10] by a

factor 1/w0.

We now have a more workable expression to calculate ym as we are now using the values

ym calculated for the previous nodes of the interval.

Having determined both the the convolution weights and starting weights we are now

able to calculate ym for each node. However, due to the summation term with the starting

weights, each computation of the first s values of ym contain the first yn values (n = 1, ...s),

and thus form a set of linear equations. Hence we solve a set of linear equations for the

values y1 to ys and for the remaining values of ym we can use a step-by-step method using

the above formula to arrive at our final value as the solution of the equation.

3.3 Luchko and Diethelm’s operational calculus method

Diethelm and Luchko’s paper [12] uses the formulas of an analytical solution developed

by Luchko and Gorenflo [29] with a Green’s function representation, combines them with

the convolution quadrature and discretized operational calculus of Lubich [27], [28], [26] to

produce an algorithm to solve the following equation

Dα
0∗y(x) −

ν
∑

i=1

λi (D
αi

0∗y(x)) = f(x) (3.11)

where Dα
0∗ is the Caputo fractional differential operator; λi ∈ R; 0 < x ≤ T with T < ∞;

α > α1 > . . . > αν ≥ 0; mi − 1 < αi ≤ mi with mi ∈ N0.

The equation has the initial values y(k)(0) = ck where ck ∈ R, (k = 0, 1, . . . ,m − 1) and

m − 1 < α ≤ m (m ∈ N).

We need to begin by examining the use of fractional Green’s function in the solution of

fractional differential equations. Podlubny devotes a whole chapter of his book [31, Chapter

5] to the fractional Green’s function. He states the fractional Green’s function for the

equation

anD
βny(x) + an−1D

βn−1y(x) + . . . + a1D
β1y(x) + a0D

β0y(x) = f(x)

38

Chapter 3

as

Gn(x) =
1

an

∞
∑

m=0

(−1)m

m!

∑

k0+k1+...+kn−2=m
k0≥0;...;kn−2≥0

(m; k0, k1, . . . , kn−2)

×
n−2
∏

i=0

(

a1

an

)ki

x(βn−βn−1)m+βn+
Pn−2

j=0
(βn−1−βj)kj−1

×E
(m)

βn−βn−1,βn+
Pn−2

j=0
(βn−1−βj)kj

(

−an−1

an

xβn−βn−1

)

where (m; k0, k1, . . . , kn−2) is the multinomial coefficient. E
(j)
α,β is the jth derivative of the

Mittag-Leffler function as defined in Section 1.2 of this chapter. Diethelm and Ford have

expressed in their paper [11] the above equation and its fractional Green’s function in

a slightly different form, and state the multinomial coefficient as (m; k0, k1, . . . , kn−2) =

m!/
∏n−2

i=0 (ki!).

The paper of Luchko and Gorenflo [29, Theorem 4.1] has the proof of the solution of

fractional differential equation considered by Diethelm and Luchko. In theorem 1 of their

paper Diethelm and Luchko take f(x) = xγ−1f̂(x), and use the solution of Luchko and

Gorenflo given by the formula

y(x) = y(x)∼f +
m−1
∑

k=0

ckuk(x).

Here

y(x)∼f =

∫ x

0

Ẽ(α; x)f(x − t)dt (3.12)

is a solution of (3.11) with zero initial conditions, and the system of functions

uk(x) =
xk

k!
+

ν
∑

i=lk+1

λiẼ(k + 1 + α − αi; x), where k = 0, . . . ,m − 1,

satisfies the initial conditions u
(l)
k = δkl, k, l = 0, . . . ,m − 1 (δkl is the Kronecker symbol).

We can see that the function

Ẽ(β; x) = xβ−1E(α−α1,...,α−αν),β(λ 1x
α−α1 , . . . , λ νx

α−αν), where β > 0,

39

Chapter 3

is a Green’s function and can be stated in terms of the multivariate Mittag-Leffler function

E(α1,...,αν),β(z 1, . . . , z ν) :=
∞
∑

k=0

∑

l0+l1+...+lν=k
l1≥0;...;lν≥0

k!

l1! × · × lν !

∏ν
i=1 zli

i

Γ (β +
∑ν

i=1 αili)
.

Diethelm and Luchko’s method revolves around the specification of a new algorithm for the

evaluation of the multivariate Mittag-Leffler function. They use the method of Lubich to

obtain an inverse Laplace transform of Ẽ(β; x), together with his convolution quadrature

method in [27]. This involves applying the linear multistep methods described in Section

3.2, which are applied by Lubich via convolution quadrature and discretized operational

calculus. Diethelm and Luchko thus produce a numerical solution of the fractional dif-

ferential equation by a new algorithm which numerically approximates the multivariate

Mittag-Leffler function using the linear multistep scheme of Lubich. They then compute

some numerical examples, and with them compare their new method with the BDF method

of Diethelm [8] and the PECE method (Predict,Evaluate,Correct,Evaluate) method of Di-

ethelm and Freed [7].

The method firstly requires a Laplace transform of Ẽ(β; x) given by Podlubny [31] in

combination with Luchko and Gorenflo [29, Theorem 4.1] to obtain the formula

F (β; s) =
sα−β

sα −
∑ν

i=1 λisµi
(3.13)

Lubich’s convolution quadrature method states that for the convolution integral

∫ x

0

f(t)g(x − t) dt where x ≥ 0

the convolution weights Wj(h) are given by the coefficients of the the power series

F (δ(τ)/h) =
∞
∑

j=0

Wj(h)τ j

where F is the Laplace transform of the function f and δ(τ) is the generating function of

the linear multistep method.

In our case F (δ(τ)/h) ≡ F (β; δ(τ)/h), where F is the Laplace transform of Ẽ(β; x), so

40

Chapter 3

we can write

F (β; δ(τ)/h) =
∞
∑

j=0

Wj(h)τ j

where F is the Laplace transform of the function Ẽ(β; x) and δ(τ) is the generating function

of the linear multistep method.

The solution of the fractional differential equation is given by (3.12).

We can now approximate the convolution integral in equation (3.12) in the same manner as

Lubich’s convolution quadrature method. Thus we can express the approximated solution

y(xm)∼f at the mth node of the interval of operation [0, X] as

y(xm)∼f =
m
∑

j=0

Wj(h)f(xm−j)

where m = 1, . . . , N and N is the number of nodes of the operating interval.

For easier evaluation we now replace j with m − j with the resulting equation

y(xm)∼f =
m
∑

j=0

Wm−j(h)f(xj)

We can then find the convolution weights Wm−j by using (3.13) with β replaced by α.

For the full implementation of Lubich’s convolution quadrature method we need to add

some correction terms to compensate for the behaviour of the function near zero, giving

y(xm)∼f =
m
∑

j=0

Wm−jf(xj) +

q−1
∑

j=j0

Wm,jf(xj) (3.14)

where Wm,j are the correction or starting weights, and j0 = 1 if 0 < γ < 1 or j0 = 0 if

γ ≥ 1.

The parameter q is determined by the relation q − 1 < p − γ ≤ q.

The starting weights are found by the same method as in Section 3.2, that is taking the

above equation with a power function f(xj) = (xj)
η. Adopting the same technique as in

Section 3.2 we set η = k + γ − 1 where k = 0, 1, . . . , q − 1 giving the equation

y(xm)∼xk+γ−1 =
m
∑

j=0

Wm−j(xj)
k+γ−1 +

q−1
∑

j=j0

Wm,j(xj)
k+γ−1.

41

Chapter 3

Rearranging the terms we then have

q−1
∑

j=j0

Wm,j(xj)
k+γ−1 = y(xm)∼xk+γ−1 −

m
∑

j=0

Wm−j(xj)
k+γ−1.

Now Diethelm and Luchko [12] state that Luchko and Gorenflo showed the solution of

(3.11) for the power function f(x) = xη is

y(x)∼xη = Γ(η + 1)Ẽ(α + η + 1; x).

If we let η = k + γ − 1 then we can set the approximated value y(x)∼xη as

y(xm)∼xk+γ−1 = Γ(k + γ)Ẽ(k + α + γ; xm).

Substituting this into the starting weights equation gives us

q−1
∑

j=j0

Wm,j(xj)
k+γ−1 = Γ(k + γ)Ẽ(k + α + γ; xm) −

m
∑

j=0

Wm−j(xj)
k+γ−1. (3.15)

This equation can be solved to find the starting weights Wm,j at each interval node, pro-

viding we can evaluate Ẽ(β; x).

The Laplace transform of Ẽ(β; x) is F (β; s), so the inverse Laplace transform of F (β; s) is

the Mittag-Leffler type function.

Lubich’s paper [27, Section 4] states that the inverse Laplace transform of F (s) can be

approximated by Wn/h, where Wn are the coefficients of the convolution quadrature as-

sociated with F (s). Thus we can approximate Ẽ(k + α + γ; xm) for the mth node by

calculating the weight for β = k + α + γ at the mth node and dividing by the stepsize h.

Hence we can calculate the approximated value at each node of the interval using (3.14),

and thus eventually find the final solution to the fractional differential equation.

42

Chapter 4

Equation and Solution

Aim

In this chapter we will examine an example fractional differential equation and apply the

methods considered in Chapter 3. We will consider an equation with an exact solution,

find the solution, and use the numerical methods to find various approximate solutions.

1 Equation example

The equation we consider is derived from (3.2) in Chapter 3, namely

Dα
0∗y(x) = f(x, y(x))

with f(x, y) as the form f(x, y) = −λy + q(x). We consider the equation from Diethelm

and Ford’s paper [10] which we obtain by setting α = 0.5 in the equation, and choosing

λ = 1 so that

q(x) = x2 +
2

Γ(2.5)
x1.5.

Thus our equation for solution is

D0.5
0∗ y(x) = −y(x) + x2 +

2

Γ(2.5)
x1.5

with the initial conditions y(0) = 0 and y
′

(0) = 0. Diethelm and Ford’s paper [10] indicates

that this equation has an exact solution y(x) = x2. We can show this by the use of

Podlubny’s Laplace transform method from Chapter 3. Applying the Laplace transform

43

Chapter 4

operator then

L
{

D0.5
0∗ y(x)

}

= −L{y(x)} + L
{

x2
}

+ L
{

2

Γ(2.5)
x1.5

}

.

We have already shown the expression of Podlubny for the Laplace transform of the Ca-

puto derivative in Section 1.3 of Chapter 3, so we are now able to evaluate the above

transformation, taking into account the initial conditions.

s0.5Y (s) = −Y (s) +
Γ(3)

s3
+

2

Γ(2.5)
· Γ(2.5)

s2.5

Y (s) is the Laplace transform of y(x). Gathering terms together, cancelling factors and

setting Γ(3) = 2 we have

(

s0.5 + 1
)

Y (s) =
2

s3
+

2

s2.5
=

2

s3

(

1 + s0.5
)

Cancelling the factor s0.5 + 1 leaves a simple expression, and taking the inverse Laplace

transform, we then have our solution y(x) = x2.

1.1 Solution with Diethelm’s BDF method

We will now obtain numerically approximate the solution to the equation above by adopting

Diethelm’s BDF method.

For the equation

Dα
0∗y(x) = f(x, y(x))

we have seen from (3.2) that Diethelm’s BDF method gives the solution to the equation as

(hαΓ(2 − α)λ + β0j) yj = j−α(1 − α)y0 + hj1−αy′
0 + hαΓ(2 − α)q(tj) −

j
∑

k=1

βkjyj−k,

having taken f(x, y) as the form f(x, y) = −λy + q(x).

We now take as the initial conditions y0 and y′
0 = 0, thus giving the equation

(hαΓ(2 − α)λ + β0j) yj = hαΓ(2 − α)q(tj) −
j
∑

k=1

βkjyj−k. (4.1)

44

Chapter 4

We then have our expression for yj as

yj =
1

hαΓ(2 − α)λ + β0j

(

hαΓ(2 − α)q(tj) −
j
∑

k=1

βkjyj−k

)

where βkj is evaluated by the formula βkj = −α(1− α)j−ααkj and the various expressions

for interval weights given by (3.1).

The particular equation we are interested has α = 0.5 and λ = 1, so setting these values

we have our final expression for evaluation

yj =
1

h0.5Γ(1.5) + β0j

(

h0.5Γ(1.5)q(tj) −
j
∑

k=1

βkjyj−k

)

(4.2)

where q(tj) is taken from the formula above.

The solution is computed by the Scilab program detailed in Appendix E, and the results

are given in Chapter 5.

1.2 Solution with Lubich’s convolution quadrature method

We solve the same equation using Lubich’s convolution quadrature method, which from

Chapter 3 states the solution as

ym = hαf(xm, ym) −
m−1
∑

j=0

wm−jy(xj) −
s
∑

j=0

wm,jy(xj) + hαDαΓn−1[y; 0](xm).

In our treatment of Diethelm’s BDF method we stated that the fractional derivative of

the Taylor polynomial is expressed in terms of y0 and y′
0. We have taken as our initial

conditions y0 = 0 and y
′

0 = 0 so we are able to set this term to zero.

The form of f(x, y) we have adopted in this equation is f(x, y) = −λy + q(x), so we can

say

ym = hα(−λym + q(xm)) −
m−1
∑

j=0

wm−jy(xj) −
s
∑

j=0

wm,jy(xj).

Before we can calculate ym for each node in the interval, we must determine the convolution

weights and the starting weights for each node.

The convolution weights are found for the mth node by the simple formula which we derived

45

Chapter 4

in Chapter 3

wm =
1

mu0

m−1
∑

j=0

[−α(m − j) − j]wjum−j.

As we also stated stated in Chapter 3 we can use the same formula as the f(xm) version

of the method, merely replacing α with −α solely for the computation of the convolution

and starting weights.

The starting weights for the mth node are more difficult to calculate.

We use the formula from Chapter 3 for the computation of starting weights.

At each node we need to find the solution wm,j to the set of equations

s
∑

j=0

wm,jj
γ =

Γ(1 + γ)

Γ(1 + γ + α)
mγ+α −

m
∑

j=1

wm−jj
γ

where γ ∈ A and A = {k + lα} with k, j ∈ N and s = CardA− 1.

The same formula for the f(xm) version of the method is used, replacing α with −α.

For example with BDF2 and α = 0.5 then γ ∈ A = {0, 0.5, 1} and thus s = 2.

As there are as many values of γ as there are equations we can now write

s
∑

j=0

wm,jj
γj =

Γ(1 + γj)

Γ(1 + γj + α)
mγj+α −

m
∑

j=1

wm−jj
γj .

with γj = A{j} (j = 0, ..., s), solve this system of equations for wm,j, and obtain the

starting weights for each node in the interval.

Now collecting terms in the expression for ym we have

(1 + hαλ)ym = hαq(xm) −
m−1
∑

j=0

wm−jy(xj) −
s
∑

j=0

wm,jy(xj).

The equation we are dealing with has α = 0.5 and λ = 1 so we have

(1 + h0.5)ym = h0.5q(xm) −
m−1
∑

j=0

wm−jy(xj) −
s
∑

j=0

wm,jy(xj). (4.3)

We calculate the first s values ym (m = 1, ..., s) which all appear together in the system of

equations defined by (4.3). As we know the stepsize h from the number of steps specified

for the interval, and setting y(xj) = yj on the RHS so that they are designated as approx-

46

Chapter 4

imated values, the first values ym (m = 1, ..., s) can be determined by solving the set of

equations. Now the remaining values of ym (m = s+1, ..., N) are found step-by-step using

the approximated previous values of ym. The solution is computed by the Scilab program

detailed in Appendix G, and the results are given in Chapter 5.

1.3 Solution with Luchko and Diethelm’s operational calculus

method

We are seeking the solution to the equation

Dα
0∗y(x) = f(x, y(x))

where f(x, y) = −λy + q(x).

Comparing this with Diethelm and Luchko’s general expression (3.11) we have ν = 1,

αi = 0 and f(x) = q(x).

Thus we have our equation for solution, keeping Diethelm and Luchko’s notation, as

Dα
0∗y(x) − λy(x) = f(x) (4.4)

where α = 0.5, λ = −1 and f(x) = q(x). The initial conditions are y(0) = 0 and y
′

(0) = 0.

We have shown in Chapter 3 that Diethelm and Luchko’s operational calculus method

gives the solution as

y(xm)∼f =
m
∑

j=0

Wm−jf(xj) +

q−1
∑

j=j0

Wn,jf(xj). (4.5)

The convolution weights Wm−j and the starting weights Wn,j must be calculated to find

the value of y(xm)∼f .

The convolution weights are found using the Laplace transform formula F (β; s) given by

(3.13) with β = α. This gives the simplified expression for the Laplace transform of the

Mittag-Leffler type function, including the format of the equation above, as

F (β; s) =
1

sα − λ
.

47

Chapter 4

The actual convolution weights are found by setting s = δ(τ)/h, where δ(τ) is the generat-

ing function of the linear multistep method, and then determining the Taylor coefficients

of the related power series.

In Chapter 3 we referred to the principles of automatic differentiation when calculating the

convolution weights for Lubich’s convolution quadrature method. These principles allow

recursive formulas to be obtained for Taylor series coefficients. We can use these expres-

sions to calculate the convolution weights.

Firstly, we need to state some basic definitions. These can be found in the papers of Arm-

strong [2] and Blomquist, Hofshuster, and Krämer [13].

The Taylor expansion of an analytic function f(x) around the value x0 is

f(x) =
∞
∑

k=0

f (k)(x0)

k!
(x − x0)

k.

We define the Taylor coefficient as

(f)k ≡ f (k)(x0)

k!
.

For the constant function f(x) = c we have (c)0 = c, (c)k = 0, for k ≥ 1. Consider the two

analytic functions u(x) and v(x).

We then have the following expressions which we can use to derive the formula for the

convolution weights.

(u ± v)k = (u)k ± (v)k

(u · v)k =
k
∑

j=0

(u)j(v)k−j =
k
∑

j=0

(u)k−j(v)j

(uα)k =
1

k(u)0

k−1
∑

j=0

[α(k − j) − j](uα)j(u)k−j (4.6)

Taking our formula for F (β : s) with s = u(x)/h, we need to find an expression for the kth

Taylor coefficient of
1

(u/h)α − λ
=

hα

uα − λhα

48

Chapter 4

where we set u ≡ u(x) for easier algebraic manipulation.

Using the product property (u · v)k with

u =
uα − λhα

hα
and v =

hα

uα − λhα

we then have

(

uα − λhα

hα
· hα

uα − λhα

)

k

=
k
∑

j=0

(

uα − λhα

hα

)

j

(

hα

uα − λhα

)

k−j

.

Extracting j = 0 term, and noting that the left hand term of the equation is (1)k = 0 for

k ≥ 1 then

0 =
k
∑

j=1

(

uα − λhα

hα

)

j

(

hα

uα − λhα

)

k−j

+

(

uα − λhα

hα

)

0

(

hα

uα − λhα

)

k

.

Rearranging terms and dividing we then have

(

hα

uα − λhα

)

k

= −
(

hα

uα − λhα

)

0

k
∑

j=1

(

uα − λhα

hα

)

j

(

hα

uα − λhα

)

k−j

which on separating the first factor of the summand gives

(

hα

uα − λhα

)

k

= −
(

1

uα − λhα

)

0

k
∑

j=1

(uα)j

(

hα

uα − λhα

)

k−j

as (λ)j = 0 for j ≥ 1.

By definition the term on the left hand side is Wk and the similar factor on the right hand

side is Wk−j.

We now remember that u ≡ δ(τ), the generating function of the linear multistep method.

Thus for the mth node of the interval we have an expression for the convolution weights

with u as the generating function of the linear multistep method.

Wm = −
(

1

uα − λhα

)

0

m
∑

j=1

(uα)j Wm−j = − 1

((u)0)
α − λhα

m
∑

j=1

(uα)j Wm−j

49

Chapter 4

Each convolution weight for a node is found in terms of the convolution weights of the

previous nodes of the interval and the Taylor coefficient of the power function (uα)j. The

formula (4.6) given above enables us to find the Taylor coefficient of the power function

(uα)j at each of the previous nodes. The initial convolution weight W0 is found from the

expression

W0 =

(

hα

uα − λhα

)

0

=

(

hα

((u)0)α − λhα

)

.

The starting weights are found by solving equation (3.15), which we repeat here.

q−1
∑

j=j0

Wn,j(xj)
k+γ−1 = Γ(k + γ)Ẽ(k + α + γ; xm) −

m
∑

j=0

Wm−j(xj)
k+γ−1 (4.7)

We stated in Chapter 3 that Ẽ(k +α+γ; xm) can be approximated by using a convolution

quadrature to find a weight. This weight is the Taylor coefficient of the Laplace transform

F (β; s) with β = k + α + γ. Dividing this weight by the stepsize h then gives us the

approximation of the inverse Laplace transform of F (β; s). As Ẽ(β; s) is the inverse Laplace

transform of F (β; s) we then have the desired approximated value.

The complete expression for F (β; s), taking into account our equation, is

F (β; s) =
sα−β

sα − λ
.

So to approximate Ẽ(k + α + γ; xm) we need to find an expression for the kth Taylor

coefficient of
(u/h)α−β

(u/h)α − λ
=

hβ(u)α−β

uα − λhα

where s = u(x)/h and u ≡ u(x) as before.

We now use the product property (u · v)k with

u =
hβuα−β

uα − λhα
and v = uα − λhα

to give us the expression

(

hβuα−β

uα − λhα
· (uα − λhα)

)

k

=
k
∑

j=0

(uα − λhα)j

(

hβuα−β

uα − λhα

)

k−j

.

50

Chapter 4

Extracting the j = 0 term we then have

(

hβuα−β
)

k
=

k
∑

j=1

(uα − λhα)j

(

hβuα−β

uα − λhα

)

k−j

+ (uα − λhα)0

(

hβuα−β

uα − λhα

)

k

.

Rearranging the terms and dividing throughout by (uα − λhα)0

(

hβuα−β

uα − λhα

)

k

=
1

(uα − λhα)0

[

(

hβuα−β
)

k
−

k
∑

j=1

(uα − λhα)j

(

hβuα−β

uα − λhα

)

k−j

]

.

Now hβ is a constant and as (λhα)j = 0 for j ≥ 1 we then have

(

hβuα−β

uα − λhα

)

k

=
1

((u)0)α − λhα

[

hβ
(

uα−β
)

k
−

k
∑

j=1

(uα)j

(

hβuα−β

uα − λhα

)

k−j

]

.

We can use this expression to calculate the value of the Laplace transform F (β; s) for the

mth node with the appropriate substitution of β = k + α + γ.

Thus we can approximate Ẽ(k + α + γ; xm) for the mth node by taking this value and

dividing by h.

The starting weights for each node can be found by solving the system of equations (4.7).

We can now evaluate the solution of the differential equation (4.4) at each node using the

formula (4.5) with the convolution and starting weight values and the value of the function

f(xj) at each node.

The solution is computed by the Scilab program detailed in Appendix H, and the results

are given in Chapter 5.

51

Chapter 5

Results and Analysis

Aim

Here we present the results obtained for the solutions of the equation by the different

methods described in Chapter 3 and implemented by the numerical methods of Chapter 4.

1 Diethelms BDF method - Results for equation 4.2

The equation for our numerical solution is

D0.5
0∗ y(x) = −y(x) + x2 +

2

Γ(2.5)
x1.5

with the initial conditions y(0) = 0 and y
′

(0) = 0, and we evaluate the expression ym for

the each interval in turn of the required number of intervals (10, 20, 30 etc.) by means of

equation (4.2).

The results are obtained for a range of interval sizes from 10 to 200. As we are seeking a

solution for the value x = 1 this corresponds to a range of stepsize h of 0.1 to 0.005.

The results that are calculated for each interval size are given in the table in Appendix B,

and shown in graphical form as Figure 5.1. The execution times for each set of intervals

are shown as Figure 5.2, and are also included in Appendix B.

We can see from the graph that the results are stable, consistent, convergent and asymp-

totic.

52

Chapter 5

10 30 50 70 90 110 130 150 170 190 210
0.999

1.000

1.001

1.002

1.003

1.004

1.005

1.006

1.007

1.008

No. of nodes in Interval

Results

⊕

⊕

⊕

⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Figure 5.1: Diethelm’s BDF method - results for x=1

10 30 50 70 90 110 130 150 170 190 210

0

1

2

3

4

5

6

7

No. of nodes in Interval

Time
(secs.)

⊕ ⊕ ⊕ ⊕
⊕ ⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊕

Figure 5.2: Diethelm’s BDF method - execution times for x=1

53

Chapter 5

2 Lubich’s CQ method - Results for equation 4.3

We are solving the same equation as in the previous section, namely

D0.5
0∗ y(x) = −y(x) + x2 +

2

Γ(2.5)
x1.5.

with the initial conditions y(0) = 0 and y
′

(0) = 0.

We evaluate the expression ym for each interval in turn of the required number of intervals

(10, 20, 30 etc.) by means of equation (4.3).

The results are obtained for a range of interval sizes from 10 to 200. As we are seeking a

solution for the value x = 1 this corresponds to a range of stepsize h of 0.1 to 0.005.

The results are calculated for various BDF methods from BDF1 to BDF6, and are shown

in Appendix C as approximation errors compared with the exact solution at x = 1.

The graphical form of the numerical results is shown in Figure 5.3 for BDFp, where p is

the order of the BDF method and p=1,2,3,4,5,6.

The execution times for each set of intervals are shown as Figure 5.2, and are also included

in Appendix B.

The results for BDF6 at interval size 10 are not computed, as the value s to calculate the

first s values is greater than the interval size.

We can see from both the actual data and the graphical representations that the numerical

approximations converge quickly for increasing interval size for the BDF2 to BDF6 meth-

ods. Graphically we are unable to separate the methods at the higher interval sizes. For

the method BDF1 there is a perceptive difference between the numerically approximated

values, even at the higher interval sizes. The BDF1 method still exhibits convergent and

asymptotic behaviour.

The execution times for the different BDF methods show consistent results for increasing

interval size, as would be expected from the larger number of calculations, particularly for

starting weights.

54

Chapter 5

10 30 50 70 90 110 130 150 170 190 210

1.00

1.01

1.02

1.03

No. of nodes in Interval

Results

p=1

p=2

p=3 p=4 p=5 p=6

⊕

⊕

⊕

⊕
⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Figure 5.3: Lubich’s convolution quadrature method - results for x=1

10 30 50 70 90 110 130 150 170 190 210
0

10

20

30

40

50

60

70

80

90

No. of nodes in Interval

Times
(secs.)

p=1

p=2

p=3

p=4

p=5

p=6

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕

⊕
⊕

⊕
⊕

⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕ ⊕ ⊕ ⊕ ⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕ ⊕ ⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

Figure 5.4: Lubich’s Convolution quadrature method - execution times for x=1

55

Chapter 5

3 Luchko and Diethelm’s OC method - Results for

equation 4.4

The equation we are solving is the same equation as in the previous two sections, namely

D0.5
0∗ y(x) = −y(x) + x2 +

2

Γ(2.5)
x1.5.

with the initial conditions y(0) = 0 and y
′

(0) = 0.

We evaluate the expression ym for each interval in turn of the required number of intervals

by means of equation (4.4).

The results are obtained for a range of interval sizes from 10 to 100. As we are seeking a

solution for the value x = 1 this corresponds to a range of stepsize h of 0.1 to 0.01.

We restrict our selection of interval sizes because of the long execution time of the program.

For the same reason, we do not include the execution times of the program for the range

of intervals.

We show the results for the BDF methods BDF2 and BDF3.

For BDF2 we have the following table of results for the interval sizes 10, 20, 40, and 100

corresponding to stepsizes of 0.1, 0.05, 0.025 and 0.01 respectively.

The notation 1.23(−12) means 1.23 × 10−12.

Intervals Stepsize Error

10 0.10 1.44(-3)

20 0.05 3.57(-4)

40 0.025 8.91(-5)

100 0.01 1.42(-5)

Table 5.1: Luchko and Diethelm’s OC method - BDF2 - errors for x=1

For BDF3 we only have the results for the interval sizes 10, 20 and 40, again due to

the long execution time of the program.

56

Chapter 5

Intervals Stepsize Error

10 0.10 -3.22(-4)

20 0.05 -4.35(-5)

40 0.025 -6.2 (-6)

Table 5.2: Luchko and Diethelm’s OC method - BDF3 - errors for x=1

57

Chapter 6

Summary and Conclusion

Aim

We summarize the dissertation and comment on the results obtained for the different nu-

merical methods.

Finally, we give our conclusions.

1 Summary

The early chapters describe the evolution of Fractional Calculus, and the establishment of

basic definitions for fractional integral and differential operators.

Next we describe the three numerical methods to be investigated in the dissertation.

1. Diethelm’s Backwards Difference Forms method.

2. Lubich’s Convolution Quadrature method.

3. Luchko and Diethelm’s Operational Calculus method.

We develop formulas to express the solutions of these numerical solutions.

We write programs to calculate the solutions for each numerical method, and we discover

and tabulate the results.

Finally we compare the results in terms of accuracy and efficiency.

58

Chapter 6

Commentary on results.

Diethelm’s BDF method produced results that were consistent and convergent for de-

creasing stepsize (increasing number of intervals) over a wide range of stepsizes. The results

became more accurate as the stepsize decreased. The method exhibited a performance that

showed a smooth relationship with the stepsize. From the graph (Figure 5.2) this relation-

ship is observed to be non-linear.

Lubich’s Convolution Quadrature method produced results whose accuracy increased

with decreasing stepsize. We note that the results for the linear multistep methods BDF2

and above were significantly more accurate than the BDF1 method. Each implementation

of the different BDF methods exhibited a smooth non-linear relationship of performance

with stepsize. We note that for each particular stepsize the relative spacing of the exe-

cution times is reasonably constant. The greater complexity of the higher BDF methods

gave results that were more accurate.

Luchko and Diethelm’s Operational Calculus method produced results that were of the

same order of accuracy as Lubich’s Convolution Quadrature method. We produce results

only for the BDF2 and BDF3 linear multistep methods over a small set of stepsizes, due

to the long execution time of the Scilab program. This point is elaborated upon in the

Conclusion section of this chapter. The results demonstrate an increasing accuracy with

decreasing stepsize.

2 Conclusion

Diethelm’s BDF method is the most efficient method in that it has the least execution

time, but it is the least accurate. It also has the restriction that it can only be used to

solve simple fractional differential equations whose order is less than two. However due to

the relative simplicity of the method, it is the easiest Scilab program to write.

Lubich’s convolution quadrature method is more accurate than the BDF method of

Diethelm. However it is not as efficient as Diethelm’s BDF method, with the Scilab pro-

gram taking longer to execute. The overall execution time is acceptable for reasonable

values of the stepsize. It does cope with a wider range of order of a fractional differential

59

Chapter 6

equation than Diethelm’s BDF method, providing of course that there exists a solution to

that fractional differential equation.

Luchko and Diethelm’s method is of the same order of accuracy as Lubich’s convolution

quadrature method for the reduced set of stepsizes implemented. However our implemen-

tation of the method is very inefficient as the execution time of the Scilab program was

very long. The great advantage of Luchko and Diethelm’s method is its application to

more general types of fractional differential equations, containing several terms of frac-

tional derivatives of different order. This outweighs its more complex approach in that a

wide range of fractional differential equations can be solved numerically.

We feel we need to comment on our implementation of this method, as we believe

there is scope for improvement in the performance of the Scilab program. The program is

written in its primitive form in order to get the Operational Calculus method working, and

we believe it requires a serious re-examination of its structure. The program would benefit

being rewritten to eliminate repeated calculations, and possibly moving some calculations

outside embedded loops. In addition the functions that calculate the recursive Taylor Series

coefficients, mitt2tc and powtc, can be rewritten to eliminate duplicated calculations.

The calculations of starting weights involve calling the function mitt2tc, and it may be

possible to rewrite this calculation to pre-calculate the Taylor Series coefficients, so that

they are not repeatedly evaluated for each node of the working interval. The reason these

modifications have not been implemented has been the deadline to finish the dissertation,

coupled with the programmer’s maxim no. 1 that I have learnt over many years in writing

computer programs; “Never change a working program”.

60

Appendices

61

A Totals of published papers 1975 - 2006

Year Annual Total Running Total

1975 0 0

1976 4 4

1977 2 6

1978 1 7

1979 3 10

1980 0 10

1981 2 12

1982 0 12

1983 4 16

1984 3 19

1985 5 24

1986 3 27

1987 5 32

1988 3 35

1989 5 40

1990 5 45

1991 11 56

1992 13 69

1993 10 79

1994 10 89

1995 20 109

1996 20 129

1997 18 147

1998 24 171

1999 30 201

2000 32 233

2001 41 274

2002 60 334

2003 65 399

2004 68 467

2005 75 542

2006 79 621

62

B Diethelms BDF method - results for equation 4.2

The results are for x=1 in equation (4.2).

The times are in seconds.

Intervals Stepsize Value Times

10 0.10 1.0077248 0.023

20 0.05 1.0028153 0.074

30 0.03333̇ 1.001552 0.161

40 0.025 1.0010155 0.265

50 0.02 1.0007302 0.429

60 0.016̇ 1.0005575 0.566

70 0.01428. . . 1.0004436 0.770

80 0.0125 1.0003639 1.037

90 0.01111̇ 1.0003055 1.277

100 0.01 1.0002613 1.573

110 0.0090̇9̇ 1.0002268 1.894

120 0.00833̇ 1.0001993 2.208

130 0.00769. . . 1.0001769 2.560

140 0.00714 1.0001584 3.067

150 0.00666̇ 1.000143 3.390

160 0.00625 1.0001299 3.923

170 0.00588 1.0001187 4.382

180 0.00555̇ 1.000109 4.911

190 0.00526. . . 1.0001005 5.426

200 0.005 1.0000931 6.109

63

C Lubich’s CQ method - results for equation 4.3

Error values - BDFp - x=1

Intervals Stepsize p=1 p=2 p=3 p=4 p=5 p=6

10 0.10 2.75(-2) 1.01(-3) 0.00(-16) -3.33(-16) -1.66(-15) -

20 0.05 1.38(-2) 2.79(-4) 0.00(-16) 2.22(-16) 2.66(-15) 3.53(-08)

30 0.03333̇ 9.23(-3) 1.29(-4) -3.33(-16) 0.00(-16) -5.55(-16) 1.08(-08)

40 0.025 6.93(-3) 7.48(-5) 0.00(-16) 0.00(-16) 1.11(-15) 4.66(-09)

50 0.02 5.54(-3) 4.87(-5) -1.11(-16) 2.22(-16) 6.66(-16) 2.43(-09)

60 0.016̇ 4.62(-3) 3.43(-5) 2.22(-16) 6.66(-16) 2.22(-16) 1.44(-09)

70 0.01428. 3.96(-3) 2.55(-5) 0.00(-16) 4.44(-16) 0.00(-16) 9.31(-10)

80 0.0125 3.47(-3) 1.96(-5) -4.44(-16) -3.33(-16) -2.22(-16) 6.40(-10)

90 0.01111̇ 3.08(-3) 1.56(-5) -4.44(-16) -4.44(-16) -2.22(-16) 4.61(-10)

100 0.01 2.77(-3) 1.27(-5) -4.44(-16) 0.00(-16) 2.22(-16) 3.44(-10)

110 0.0090̇9̇ 2.52(-3) 1.06(-5) -1.11(-16) -5.55(-16) -1.11(-16) 2.65(-10)

120 0.00833̇ 2.31(-3) 8.90(-6) -6.66(-16) 0.00(-16) -5.55(-16) 2.09(-10)

130 0.00769. 2.13(-3) 7.60(-6) 2.22(-16) 0.00(-16) 6.66(-16) 1.68(-10)

140 0.00714 1.98(-3) 6.60(-6) -6.66(-16) -5.55(-16) -4.44(-16) 1.37(-10)

150 0.00666̇ 1.85(-3) 5.80(-6) 4.44(-16) 6.66(-16) 4.44(-16) 1.14(-10)

160 0.00625 1.73(-3) 5.10(-6) 0.00(-16) 4.44(-16) -1.11(-16) 9.59(-11)

170 0.00588 1.63(-3) 4.50(-6) 6.66(-16) 2.22(-16) 2.22(-16) 8.13(-11)

180 0.00555̇ 1.54(-3) 4.00(-6) 0.00(-16) 0.00(-16) 6.66(-16) 6.97(-11)

190 0.00526. 1.46(-3) 3.60(-6) 2.22(-16) 2.22(-16) 2.22(-16) 5.95(-11)

200 0.005 1.38(-3) 3.30(-6) -4.44(-16) -1.11(-16) -5.55(-16) 5.13(-11)

The notation 1.23(−12) means 1.23 × 10−12.

64

D Lubich’s CQ method - times for equation 4.3

Timing values (secs.) - BDFp - x=1

Intervals Stepsize p=1 p=2 p=3 p=4 p=5 p=6

10 0.10 0.08 0.25 0.30 0.44 0.56 -

20 0.05 0.20 0.48 0.75 1.06 1.37 1.86

30 0.03333̇ 0.38 0.88 1.39 2.03 2.59 3.36

40 0.025 0.64 1.41 2.26 3.13 4.07 5.21

50 0.02 0.96 2.12 3.37 4.59 5.83 7.53

60 0.016̇ 1.31 2.86 4.43 6.17 7.84 10.36

70 0.01428. 1.76 3.75 5.70 8.11 10.29 13.33

80 0.0125 2.26 4.83 7.40 10.20 13.04 16.65

90 0.01111̇ 2.78 5.95 9.14 12.75 16.01 20.57

100 0.01 3.29 7.26 11.15 15.55 19.50 24.91

110 0.0090̇9̇ 4.00 8.56 13.16 18.48 23.08 29.30

120 0.00833̇ 4.73 10.25 15.58 21.65 26.95 34.44

130 0.00769. 5.43 11.86 18.18 24.84 31.60 39.86

140 0.00714 6.25 13.49 20.66 28.68 36.39 45.43

150 0.00666̇ 7.13 15.50 23.52 32.64 41.37 52.51

160 0.00625 8.03 17.38 26.88 36.79 46.57 58.07

170 0.00588 9.08 19.58 30.25 41.15 52.26 64.83

180 0.00555̇ 10.08 21.80 33.59 45.84 58.16 72.17

190 0.00526. 11.25 24.13 37.35 50.99 64.20 79.76

200 0.005 12.37 26.75 41.35 55.79 70.56 87.32

65

E Diethelms BDF method - Scilab program

This program is for equation (4.2)

// John Landy

//

// Date: January 2009

//

// Dissertation: Fractional Differential Equations and Numerical Solutions

//

// Program written for SciLab package

//

// Abstract:

// Evaluate numerical solutions for Fractional Differential Equations

// Equation (4.2)

//

// Diethelm backward difference method

//

// Number of interval sizes

M=20;

//Int=linspace(0.0, M, M+1); // range of interval sizes

// Set up interval sizes (10,20,...) and

// initialise times for interval sizes

for i=1:M

Int(i)=i*10;

T(i)=0;

end; // i

// Order of equation

alpha=0.5;

// Variable value to evaluate

V=1; // Value

// Accumulate timings for loop of 20 to smooth out variations in cpu time

//for m=1:20

for m=1:1

// Find solution for each interval size

66

for i=1:M;

N=Int(i); // number of subintervals

q=linspace(0.0, V, N+1); // range of q

tj=linspace(0.0, V, N+1); // range of t_j

X=linspace(0.0, V, N+1); // range of interval

Yj=linspace(0.0, V, N+1); // range of answer

betakj=linspace(0.0, V, N+1); // range of beta_kj

// Multistep method

h=V/N; // Calculate stepsize

// Initial conditions

Yj(1)=0; // y(0)=0

// Set up common term used in calculation

term=(h^(alpha))*gamma(2-alpha);

//

// Set up tj values for each node

for k=0:N

tj(k+1)=(k)*h;

end; //k

for k=0:N

q(k+1)=((tj(k+1))^2)+(2/gamma(2.5))*(tj(k+1)^1.5);

end; //k

// Calculate betakj weights for the N+1 nodes (N intervals)

betakj(1)=1; //k=0

betasum=1;

for k=1:(N-1);

betakj(k+1)=((k-1)^(1-alpha)+(k+1)^(1-alpha)-2*(k)^(1-alpha));

end; //k

k=N;

betakj(N+1)=(k-1)^(1-alpha)-(k)^(1-alpha)-(alpha-1)*(k)^(-alpha); //k=N

beta0j=1; //k=0

// Evaluate each Yj in turn for N intervals

timer(); // start timer

for j=1:N;

// Calculate betasum with previous Yj values

67

betasum=0;

for k=1:j;

betasum=betasum+betakj(k+1)*Yj(j-k+1);

end; //k

Num=term*q(j+1)-betasum;

Den=term+beta0j;

Yj(j+1)=Num/Den; // calculate Yj for interval

end; //j

Yint(i)=Yj(j+1); // save final Y value for the interval size

T(i)=T(i)+(timer()); // stop timer, update time for interval size

Yerr(i)=Yint(i)-V*V; // calculate error for q(x) as stated

end; //i

end; //m

// Open file for interval sizes data

u=file(’open’,’c:\chester college\thesis\programs\de01\dintsize.txt’...

,’unknown’,"unformatted");

writb(u,Int);

file(’close’,u);

// Open file for interval values data

u=file(’open’,’c:\chester college\thesis\programs\de01\dintvals.txt’...

,’unknown’,"unformatted");

writb(u,Yint);

file(’close’,u);

// Open file for interval errors data

u=file(’open’,’c:\chester college\thesis\programs\de01\dinterrs.txt’...

,’unknown’,"unformatted");

writb(u,Yerr);

file(’close’,u);

// Open file for interval times data

u=file(’open’,’c:\chester college\thesis\programs\de01\dinttime.txt’...

68

,’unknown’,"unformatted");

writb(u,T);

file(’close’,u);

disp("finished")

69

F Lubich’s CQ method - Scilab program

This program is for equation (4.3).

This program calculates the approximated values using f(xm) at previous nodes.

// John Landy

//

// Date: February 2009

//

// Dissertation: Fractional Differential Equations and Numerical Solutions

//

// Program written for SciLab package

//

// Abstract:

// Evaluate numerical solutions for Fractional Differential Equations

// Equation (4.3)

//

// Lubich convolution quadrature method BDFp - function method

//

// Order of BDF

p=2;

// Number of interval sizes

M=20;

// Set up interval sizes (10,20,...) and

// initialise times for interval sizes

for i=1:M

Int(i)=i*10;

T(i)=0;

end; // i

if p==6

// Set up interval sizes (20,...) and

// initialise times for interval sizes

70

for i=2:M

Int(i-1)=i*10;

T(i-1)=0;

end; // i

M=M-1;

else

// Set up interval sizes (10,20,...) and

// initialise times for interval sizes

for i=1:M

Int(i)=i*10;

T(i)=0;

end; // i

end; // p=6

// Order of equation - less than one

alpha=0.5;

// Variables

//V=10; // Value

V=1; // Value

// Calculate gamma values as a set for starting weights using p and alpha

i=1;

if p<>1

j=0;

k=0;

gam=0;

for r=1:(p-1)

while gam<r

g(i)=k+j*alpha;

gam=k+(j+1)*alpha;

j=j+1;

i=i+1;

end; // gam<r

k=k+1;

71

j=0;

end; // r

end; // if p<>1

g(i)=p-1;

// Accumulate timings for loop of 20 to smooth out variations in cpu time

//for m=1:20

for m=1:1

// Find solution for each interval size

//for i=1:M

//for i=1:6

for i=1:1 // temp

//N=10;

N=20;

//N=Int(i); // number of subintervals

q=linspace(0.0, V, N+1); // range of q

tj=linspace(0.0, V, N+1); // range of t_j

X=linspace(0.0, V, N+1); // range of interval

Ym=linspace(0.0, V, N+1); // range of answer

// Multistep method

h=V/N; // Calculate stepsize

// Initial conditions

Ym(1)=0; // y(0)=0

// Set up x=tj values for (N+1) nodes

timer(); // start timer

for k=0:N

tj(k+1)=(k)*h;

end; //k

// Calculate q(x) for equation at each node

for k=0:N

q(k+1)=((tj(k+1))^2)+(2/gamma(3-alpha))*(tj(k+1)^(2-alpha));

end; //k

72

T(i)=T(i)+(timer()); // stop timer, update time for interval size

// Calculate aggregated Taylor polynomial coefficients

x=poly(0,"x");

a=0;

for k=1:p

a=a+((1-x)^k)/k;

end; //end k

un=coeff(a);

alpha=+0.5;

timer(); // start timer

// Calculate convolution weights for each interval node

cw(1)=1/(un(1)^alpha); // Interval node 0 - general

// Interval nodes 1 to p

for k=1:p

cw(k+1)=0;

for j=0:(k-1)

cw(k+1)=cw(k+1)+(-alpha*(k-j)-j)*cw(j+1)*un(k-j+1);

end; // j

cw(k+1)=cw(k+1)/(k*un(1)); // original

//cw(k+1)=cw(k+1)/(k*((un(1)^(alpha))));

end; // k

// Interval nodes p+1 to N

for k=(p+1):N

cw(k+1)=0;

for j=(k-p):(k-1)

cw(k+1)=cw(k+1)+(-alpha*(k-j)-j)*cw(j+1)*un(k-j+1);

end; // j

cw(k+1)=cw(k+1)/(k*un(1));

end; // k

T(i)=T(i)+(timer()); // stop timer, update time for interval size

73

alpha=+0.5;

// Calculate starting weights for each interval

// Number of starting weights (s+1) at each interval node

s=size(g,’r’)-1;

// Starting weights for all interval nodes

sw=zeros(N,s+1);

// Starting weights for current interval node

w=zeros(1,s+1);

// Calculate (s+1) starting weights for each interval

// Calculate (s+1) terms for the convolution weights

// (for starting weights) and store in array

// Calculate (s+1) gamma terms for the interval node

// Set up the calculation arrays for each interval

rA=zeros(s+1,1);

RR=zeros(s+1,1);

timer(); // start timer

// Calculate starting weights in turn for N interval nodes

for k=1:N

// Calculate (s+1) starting weights for each interval node

rB=zeros(s+1,1); // zero the convolution weight terms sum for the interval

for ja=1:(s+1)

for j=1:k // original

rB(ja,1)=rB(ja,1)+cw(k-j+1)*j^(g(ja)); // calc convolution weight terms

end; //j

for jb=1:(s+1)

lB(ja,jb)=(jb-1)^(g(ja)); // set up starting weight gamma power terms

//lB(ja,jb)=(jb)^(g(ja)); // set up starting weight gamma power terms

end; // jb

// set up interval gamma terms

rA(ja,1)=gamma(1+g(ja))*k^(g(ja)+alpha)/gamma(1+g(ja)+alpha);

RR(ja,1)=rA(ja,1)-rB(ja,1); // calculate RHS of equation

end; //ja

w=lB\RR; // calculate starting weights for the current interval node

74

// Save starting weights for current interval node

for j=1:(s+1)

sw(k,j)=w(j);

end; // j

end; // k

T(i)=T(i)+(timer()); // stop timer, update time for interval size

alpha=+0.5;

//******** COMMENT OUT

//if p<>1

//// The s expressions for Yn (n=1,...,s) contain the unknowns Y1 to Ys

//// Thus each Ym for a node cannot be determined on a step by step basis

//// A linear system of s equations with s unknowns is solved instead

//A=zeros(s,s);

//B=zeros(s,1);

//y=zeros(s,1);

//timer(); // start timer

//// For all equations in the linear system

//for u=0:(s-1)

//// Calculate coefficients of Yn (n=1,...,s) for LHS of equation

//for v=0:(s-1)

//if v==u then

// A(u+1,v+1)=cw(1)-sw(u+1,v+2)+h^(-alpha);

//elseif v<u then

// A(u+1,v+1)=cw(u-v+1)-sw(u+1,v+2);

//else

// A(u+1,v+1)=-sw(u+1,v+2);

//end; // if

//end; // v

//// Calculate RHS terms

//qsum=0;

75

//for v=0:(u+1)

//qsum=qsum+cw(u-v+2)*q(v+1);

//end; // v

//B(u+1,1)=(cw(u+2)-sw(u+1,1))*Ym(1)-qsum;

//end; // u

////Calculate Y1 to Ys by solving Ay+B=0

//[y,x]=linsolve(A,B);

//// Save the Y1 to Ys values in Ym for the s nodes

//for k=1:s

//Ym(k+1)=y(k);

//end; // k

//end; // if p<>1

//*****************

alpha=+0.5;

// Evaluate each Ym in turn for remaining interval nodes

//for k=(s+1):N // orig

for k=1:N

// Calculate convolution weight terms total for interval node

cwsum=0;

for j=0:k-1

cwsum=cwsum+cw(k-j+1)*(q(j+1)-Ym(j+1));

end; //j

// Calculate starting weight terms total for interval node

swsum=0;

for j=0:s

swsum=swsum+sw(k,j+1)*(q(j+1)-Ym(j+1)); // original

end; //j

Ym(k+1)=(h^alpha)*(cw(1)*q(k+1)+cwsum+swsum)/(1+cw(1)*h^alpha); // orig

//Ym(k+1)=(h^alpha)*(cw(1)*q(k+1)+cwsum)/(1+cw(1)*h^alpha);

end; //k

76

Yint(i)=Ym(k+1); // save final value for interval

T(i)=T(i)+(timer()); // stop timer, update time for interval size

alpha=+0.5;

end; // i interval size

end; // m smooth cpu timing loop

// Open file for interval sizes data

u=file(’open’,’c:\chester college\thesis\programs\de20\dintsize.txt’...

,’unknown’,"unformatted");

writb(u,Int);

file(’close’,u);

// Open file for interval values data

u=file(’open’,’c:\chester college\thesis\programs\de20\dintvals.txt’...

,’unknown’,"unformatted");

writb(u,Yint);

file(’close’,u);

// Open file for interval times data

u=file(’open’,’c:\chester college\thesis\programs\de20\dinttime.txt’...

,’unknown’,"unformatted");

writb(u,T);

file(’close’,u);

disp("finished")

77

G Lubich’s CQ method - Scilab program

This program is for equation (4.3).

This program calculates the approximated values using y(xm) at previous nodes.

// John Landy

//

// Date: February 2009

//

// Dissertation: Fractional Differential Equations and Numerical Solutions

//

// Program written for SciLab package

//

// Abstract:

// Evaluate numerical solutions for Fractional Differential Equations

// Equation (4.3)

//

// Lubich convolution quadrature method BDFp - approximated y method

//

lines(0);

// Order of BDF

p=2;

// Number of interval sizes

M=20;

if p==6

// Set up interval sizes (20,...) for p=6 and

// initialise times for interval sizes

for i=2:M

Int(i-1)=i*10;

T(i-1)=0;

end; // i

78

M=M-1;

else

// Set up interval sizes (10,20,...) for p=1 to 5 and

// initialise times for interval size

for i=1:M

Int(i)=i*10;

T(i)=0;

end; // i

end; // if p==6

// Order of equation - less than one

alphaorig=0.5;

// Variables

V=1; // Value

// Set alpha positive

alpha=+alphaorig;

//

// Calculate gamma values as a set using p and alpha

// for later starting weight caclulation

i=1;

if p<>1

j=0;

k=0;

gam=0;

for r=1:(p-1)

while gam<r

g(i)=k+j*alpha;

gam=k+(j+1)*alpha;

j=j+1;

i=i+1;

end; // gam<r

k=k+1;

j=0;

79

end; // r

end; // if p<>1

g(i)=p-1;

// Find solution for each interval size

//for i=1:M

for i=1:1

//N=Int(i); // number of subintervals

N=10;

q=linspace(0.0, V, N+1); // range of q

tj=linspace(0.0, V, N+1); // range of t_j

X=linspace(0.0, V, N+1); // range of interval

Ym=linspace(0.0, V, N+1); // range of answer

// Multistep method

h=V/N; // Calculate stepsize

// Initial conditions

Ym(1)=0; // y(0)=0

// Set up x=tj values for (N+1) nodes

timer(); // start timer

for k=0:N

tj(k+1)=(k)*h;

end; //k

// Calculate q(x) for equation at each node - alpha positive

for k=0:N

q(k+1)=((tj(k+1))^2)+(2/gamma(3-alpha))*(tj(k+1)^(2-alpha));

end; //k

T(i)=T(i)+(timer()); // stop timer, update time for interval size

// Calculate aggregated Taylor polynomial coefficients

x=poly(0,"x");

a=0;

for k=1:p

80

a=a+((1-x)^k)/k;

end; //end k

un=coeff(a);

// Set alpha negative for convolution weight and

// starting weight calculation

alpha=-alphaorig;

timer(); // start timer

// Calculate convolution weights for each interval node

cw(1)=1/(un(1)^alpha); // Interval node 0 - general

// Interval nodes 1 to p

for k=1:p

cw(k+1)=0;

for j=0:(k-1)

cw(k+1)=cw(k+1)+(-alpha*(k-j)-j)*cw(j+1)*un(k-j+1);

end; // j

cw(k+1)=cw(k+1)/(k*un(1)); // original

end; // k

// Interval nodes p+1 to N

for k=(p+1):N

cw(k+1)=0;

for j=(k-p):(k-1)

cw(k+1)=cw(k+1)+(-alpha*(k-j)-j)*cw(j+1)*un(k-j+1);

end; // j

cw(k+1)=cw(k+1)/(k*un(1)); // original

end; // k

T(i)=T(i)+(timer()); // stop timer, update time for interval size

// Keep alpha negative for starting weights calculation

//

// Calculate starting weights for each interval

// Number of starting weights (s+1) at each interval node

s=size(g,’r’)-1;

81

// Starting weights for all interval nodes

sw=zeros(N,s+1);

// Starting weights for current interval node

w=zeros(1,s+1);

// Calculate (s+1) starting weights for each interval

// Calculate (s+1) terms for the convolution weights

// (for starting weights) and store in array

// Calculate (s+1) gamma terms for the interval node

// Set up the calculation arrays for each interval

rA=zeros(s+1,1);

RR=zeros(s+1,1);

timer(); // start timer

// Calculate starting weights in turn for N interval nodes

for k=1:N

// Calculate (s+1) starting weights for each interval node

rB=zeros(s+1,1); // zero the convolution weight terms sum for the interval

for ja=1:(s+1)

for j=1:k

//for j=0:k

rB(ja,1)=rB(ja,1)+cw(k-j+1)*j^(g(ja)); // calc convolution weight terms

end; //j

for jb=1:(s+1)

lB(ja,jb)=(jb-1)^(g(ja)); // set up starting weight gamma power terms

end; // jb

// set up interval gamma terms

rA(ja,1)=gamma(1+g(ja))*k^(g(ja)+alpha)/gamma(1+g(ja)+alpha);

RR(ja,1)=rA(ja,1)-rB(ja,1); // calculate RHS of equation

end; //ja

w=lB\RR; // calculate starting weights for the current interval node

// Save starting weights for current interval node

for j=1:(s+1)

sw(k,j)=w(j);

end; // j

82

end; // k

T(i)=T(i)+(timer()); // stop timer, update time for interval size

// Set alpha back to positive for Ym calculation at all nodes of interval

alpha=+alphaorig;

// Y1 to Ys values not calculated for p=1

//

if p<>1

// The s expressions for Yn (n=1,...,s) contain the unknowns Y1 to Ys

// Thus each Ym for a node cannot be determined on a step by step basis

// A linear system of s equations with s unknowns is solved instead

A=zeros(s,s);

B=zeros(s,1);

y=zeros(s,1);

timer(); // start timer

// For all equations in the linear system

for u=0:(s-1)

// Calculate coefficients of Yn (n=1,...,s) for LHS of equation

for v=0:(s-1)

if v==u then

A(u+1,v+1)=sw(u+1,v+2)+cw(1)+h^(alpha);

elseif v<u then

A(u+1,v+1)=cw(u-v+1)+sw(u+1,v+2); // original

else

A(u+1,v+1)=sw(u+1,v+2); // original

end; // if

end; // v

// Calculate RHS terms

B(u+1,1)=(cw(u+2)+sw(u+1,1))*Ym(1)-h^(alpha)*q(u+2); // original

end; // u

//Calculate Y1 to Ys by solving Ay+B=0

[y,x]=linsolve(A,B);

83

// Save the Y1 to Ys values in Ym for the s nodes

for k=1:s

Ym(k+1)=y(k);

end; // k

T(i)=T(i)+(timer()); // stop timer, update time for interval size

end; // if p<>1

// Keep alpha positive for remaining Ym calculations

//

timer(); // start timer

// Evaluate each Ym in turn for remaining interval nodes

for k=(s+1):N

// Calculate convolution weight terms total for interval node

cwsum=0;

for j=0:k-1

cwsum=cwsum+cw(k-j+1)*Ym(j+1);

end; //j

// Calculate starting weight terms total for interval node

swsum=0;

for j=0:s

swsum=swsum+sw(k,j+1)*Ym(j+1);

end; //j

Ym(k+1)=(h^(alpha)*q(k+1)-cwsum-swsum)/(cw(1)+h^(alpha));

end; //k

Yint(i)=Ym(k+1); // save final value for interval

T(i)=T(i)+(timer()); // stop timer, update time for interval size

Yerr(i)=Yint(i)-V*V; // calculate error for y(x)

end; // i interval size

// Open file for interval sizes data

u=file(’open’,’c:\chester college\thesis\programs\de02\dintsize.txt’...

,’unknown’,"unformatted");

84

writb(u,Int);

file(’close’,u);

// Open file for interval values data

u=file(’open’,’c:\chester college\thesis\programs\de02\dintvals.txt’...

,’unknown’,"unformatted");

writb(u,Yint);

file(’close’,u);

// Open file for interval times data

u=file(’open’,’c:\chester college\thesis\programs\de02\dinttime.txt’...

,’unknown’,"unformatted");

writb(u,T);

file(’close’,u);

// Open file for interval errors data

u=file(’open’,’c:\chester college\thesis\programs\de02\dinterrs.txt’...

,’unknown’,"unformatted");

writb(u,Yerr);

file(’close’,u);

lines(72,28);

disp("finished")

85

H Luchko/Diethelm’s OC method - Scilab program

This program is for equation (4.4).

// John Landy

//

// Date: March 2009

//

// Dissertation: Fractional Differential Equations and Numerical Solutions

//

// Program written for SciLab package

//

// Abstract:

// Evaluate numerical solutions for Fractional Differential Equations

// Equation (4.4)

//

// Luchko & Diethelm operational calculus method

//

lines(0);

function tp=taylor(pol,n);

for i=1:n;

fd(1,i)=pol;

pol=derivat(pol);

end;

t=0;

for i=n:-1:1;

tp=horner(fd(1,i),0)/gamma(i)+t

t=tp*x;

end;

endfunction;

function mw=mitt2tc(n,a,b,f);

// Calculate n Taylor coefficients for

86

// Mittag-Leffler type function E(b;t)

// n - number of coefficients

// a - first Mittag-Leffler parameter

// b - second Mittag-Leffler parameter

// f - exit flag

// 0 - return final TC calculated value

// 1 - return array of TC calculated values

// Return the final TC calculated

w(1)=((un(1)^(a-b))*(h^b))/((un(1)^a)-lambda*(h^a)); // First coefficient

// Taylor coefficients 1 to n

for k=1:n

w(k+1)=0;

for j=1:k

w(k+1)=w(k+1)+powtc(j,a)*w(k-j+1); // method 2

end; // j

w(k+1)=(powtc(k,a-b)*(h^b)-w(k+1))/((un(1)^a)-lambda*(h^a)); // method 2

end; // k

if f==0 then

mw=w(k+1);

else

for k=1:(n+1)

mw(k)=w(k);

end; // k

end; // else

endfunction;

function pw=powtc(n,a);

// Calculate n Taylor coefficients for function u^(a)

// n - number of coefficients

// a - exponent of u

// Return the final TC calculated

w(1)=(un(1)^a); // First coefficient - orig

if n<=p then q=n; else q=p; end;

// Taylor coefficients 1 to p OR 1 to n if n<=p

87

for k=1:q

w(k+1)=0;

for j=0:(k-1)

w(k+1)=w(k+1)+(a*(k-j)-j)*w(j+1)*un(k-j+1);

end; // j

w(k+1)=w(k+1)/(k*un(1));

end; // k

// Taylor coefficients p+1 to n

if n>p then

for k=(p+1):n

w(k+1)=0;

for j=(k-p):(k-1)

w(k+1)=w(k+1)+(a*(k-j)-j)*w(j+1)*un(k-j+1);

end; // j

w(k+1)=w(k+1)/(k*un(1));

end; // k

end;

pw=w(k+1);

endfunction;

disp("start")

// Order of BDF

p=3;

// Order of equation - less than one

alpha=0.5;

lambda=-1;

// Variables

V=1; // Value

j0=0;

gam=0.5;

if gam<1 then j0=1;

88

// Calculate gamma values as a set for starting weights using p and j0

//if p<>1

for i=0:(p-1)

g(i+1)=i+j0+gam-1;

end; // i

//end; // if p<>1

// Calculate aggregated Taylor polynomial coefficients

x=poly(0,"x");

a=0;

for k=1:p

a=a+((1-x)^k)/k;

end; //end k

un=coeff(a);

// Find solution for interval size

N=10; // number of subintervals

q=linspace(0.0, V, N+1); // range of q

tj=linspace(0.0, V, N+1); // range of t_j

X=linspace(0.0, V, N+1); // range of interval

Ym=linspace(0.0, V, N+1); // range of answer

// Multistep method

h=V/N; // Calculate stepsize

// Initial conditions

Ym(1)=0; // y(0)=0

// Set up x=tj values for (N+1) nodes

for k=0:N

tj(k+1)=(k)*h;

end; //k

// Calculate f(x) for equation at each node

89

for k=1:N

f(k+1)=(tj(k+1))^(gam-1)*((tj(k+1))^(2-(gam-1))+...

(2/gamma(3-alpha))*(tj(k+1)^(2-(gam-1)-alpha))); // original

end; //k

disp("cw")

// Calculate convolution weights of the solution to the FDE

// for each interval node

// using a formula for the Taylor coefficients of u^alpha

cw(1)=(h^alpha)/((un(1)^alpha)-lambda*(h^alpha)); // Interval node 0

// Interval nodes 1 to N

for k=1:N

disp(k)

cw(k+1)=0;

for j=1:k

cw(k+1)=cw(k+1)+powtc(j,alpha)*cw(k-j+1);

end; // j

cw(k+1)=-cw(k+1)/(un(1)^alpha-lambda*(h^alpha));

end; // k

disp("sw")

// Calculate starting weights for each interval

// Number of starting weights (s+1) at each interval node

//s=size(g,’r’)-1;

s=size(g,’r’)-2;

// Starting weights for all interval nodes

sw=zeros(N,s+1);

// Starting weights for current interval node

w=zeros(1,s+1);

// Calculate (s+1) starting weights for each interval

// Calculate (s+1) terms for the convolution weights

// (for starting weights) and store in array

90

// Calculate (s+1) gamma terms for the interval node

// Set up the calculation arrays for each interval

RR=zeros(s+1,1);

// Calculate starting weights in turn for N interval nodes

for k=1:N

disp(k)

// Calculate (s+1) starting weights for each interval node

rA=zeros(s+1,1);

rB=zeros(s+1,1); // zero the convolution weight terms sum for the interval

for ja=1:(s+1)

for j=1:k

rB(ja,1)=rB(ja,1)+cw(k-j+1)*((j)^(g(ja))); // calc convolution wt terms

end; //j

rB(ja,1)=(h^(g(ja)))*rB(ja);

//for jb=1:(s+1)

for jb=j0:(s+1)

lB(ja,jb)=h^(g(ja))*((jb)^(g(ja))); // starting weight gamma power terms

end; // jb

// Taylor coefficient of Mittag-Leffler type function

mw=mitt2tc(k,alpha,g(ja)+alpha+1,0);

// Approximation of inverse Laplace transform of F(beta;s)

rA(ja,1)=mw*gamma(g(ja)+1)/h;

RR(ja,1)=rA(ja,1)-rB(ja,1); // calculate RHS of equation

end; //ja

w=lB\RR; // calculate starting weights for the current interval node

// Save starting weights for current interval node

for j=1:(s+1)

sw(k,j)=w(j);

end; // j

end; // k

disp("Y")

// Evaluate each Ym in turn for interval nodes m=1 to N

91

for k=1:N

disp(k)

// Calculate convolution weight terms total for interval node

cwsum=0;

//for j=0:k-1

for j=1:k

cwsum=cwsum+cw(k-j+1)*f(j+1);

end; //j

// Calculate starting weight terms total for interval node

swsum=0;

for j=0:s

swsum=swsum+sw(k,j+1)*f(j+1);

end; //j

Ym(k+1)=cwsum+swsum;

end; //k

disp("finished")

lines(72,28);

92

Bibliography

[1] Niels H. Abel. Solution de quelques problèmes à l’aide d’intégrals définies, Ouevres

Complètes. Christiania (Grondahl), 1881.

[2] J. Armstrong. Solving Ordinary Differential Equations with Recursive Taylor Series,

October 2005.

[3] Junesang Choi. A formula related to fractional calculus. Comm. Korean Math. Soc.,

12(No. 2):pp. 457–466, 1997.

[4] Nikesh S. Dattani. Linear Multistep Methods for Ordinary Differential Equations.

University of Waterloo, Waterloo, Ontario, Canada, October 2008.

[5] H.T. Davis. The Theory of Linear Operators. The Principia Press Inc., Bloomington,

Indiana, 1936.

[6] Lokenath Debnath. Recent applications of fractional calculus to science and engineer-

ing. In International Journal of Mathematics and Mathematical Sciences, volume 54,

pages 3413–3442. Hindawi Publishing Corp., 2003. Based on 2 lectures at the 2002

IEEE Conference on Decision and Control.

[7] K. Diethelm and A.D. Freed. On the solution of nonlinear fractional-order differential

equations used in the modeling of viscoplasticity. In H. Voss F. Keil, W. Mackens

and J. Werther, editors, Scientific Computing in Chemical Engineering II: Computa-

tional Fluid Dynamics, Reaction Engineering, and Molecular Properties, pages 217–

224. Springer Verlag, Heidelberg, 1999.

[8] Kai Diethelm. An algorithm for the numerical solution of differential equations of

fractional order. Elec. Trans. on Numerical Analysis, 5:pp. 1–6, 1997.

[9] Kai Diethelm. Fractional Differential Equations - Theory and Numerical Treatment.

Technical University of Braunschweig, February 2003.

93

BIBLIOGRAPHY BIBLIOGRAPHY

[10] Kai Diethelm and Neville J. Ford. Analysis of fractional differential equations. J.

Math. Anal. Appl., 265(2):229–248, 2002.

[11] Kai Diethelm and Neville J. Ford. Multi-order fractional differential equations and

their numerical solution. Appl. Math. Comput., 154:621–640, 2004.

[12] Kai Diethelm and Yuri Luchko. Numerical Solution of Linear Multi-Term Initial Value

Problems of Fractional Order, February 2005.

[13] W. Krämer F. Blomquist, W. Hofshuster. Real and Complex Taylor Arithmetic in

C-XSC. Bergische Universität Wuppertal, 2005.

[14] Rudolf Gorenflo and Francesco Mainardi. Fractional calculus:integral and differen-

tial equations of fractional order. In Fractals and Fractional Calculus in Continuum

Mechanics, pages 223–276. Springer Verlag, 1997.

[15] Rudolf Gorenflo and Francesco Mainardi. Essentials of Fractional Calculus. MaPhySto

Center, January 2000.

[16] A. K. Grünwald. Über “begrenzte” Derivation und deren Anwendung. Z. angew.

Math. und Phys., 12:441–480, 1867.

[17] http://isiwebofknowledge.com. ISI Web of Knowledge.

[18] Neville J. Ford Kai Diethelm, Judith M. Ford and Marc Weilbeer. Pitfalls in fast

numerical solvers for fractional differential equations. J. Comput. Appl., 186(2):482–

503, 2006.

[19] S. F. Lacroix. Traité du Calcul Différentiel et du Calcul Intégral, volume 3, sec. ed.,

pp. 409-410. Paris(Courcier), 1819.

[20] H. Laurent. Sur le calcul des dérivées à indices quelconques. Nouvelles Ann. Math,

3(3):pp. 240–252, 1884.

[21] G.W. Leibniz. Letter from Hanover, Germany to G.F.A. de l’Hôpital, September 30

1695, in Math. Schriften 1849, reprinted in 1962, Hildesheim, Germany (Olms Verlag),

2, pp 301-302.

[22] A. V. Letnikov. Theory of differentiation with an arbitrary index. Mat. Sb., 3:1–66,

1868. In Russian.

94

BIBLIOGRAPHY BIBLIOGRAPHY

[23] Joseph Liouville. Mémoire sur le théorème des complèmentaires. J. Reine Angew,

Math., 11:1–19, 1834.

[24] C. Lubich. On the stability of linear multistep methods for Volterra convolution

equations. IMA J. Math. Anal., 3(4):439–465, 1983.

[25] C. Lubich. Fractional linear multistep methods for Abel-Volterra equations of the

second kind. Math. Comp., 45(172):463–469, 1985.

[26] C. Lubich. Discretized fractional calculus. SIAM J. Math. Anal., 17(3):704–719, 1986.

[27] C. Lubich. Convolution quadrature and discretized operational calculus. I. Numer.

Math., 52:129–145, 1988.

[28] C. Lubich. Convolution quadrature and discretized operational calculus. II. Numer.

Math., 52:413–425, 1988.

[29] Yuri Luchko and Rudolf Gorenflo. An operational method for solving fractional dif-

ferential equations with the Caputo derivatives. Acta Vietnamica, 24:207–233, 1999.

[30] K.S. Miller and B. Ross. An Introduction to the Fractional Calculus and Fractional

Differential Equations. John Wiley and Sons, Inc., 1993.

[31] Igor Podlubny. Fractional Differential Equations. Mathematics in Science and Engi-

neering: Volume 198. Academic Press, 1999.

[32] Bertram Ross. Fractional calculus. Mathematics Magazine, 50(No. 3):pp. 115–122,

May 1977.

[33] Joulia Loutchko Rudolf Gorenflo and Yuri Luchko. Computation of the Mittag-Leffler

Function Eα,β(z) and its Derivative.

[34] Marc Weilbeer. Efficient Numerical Methods for Fractional Differential Equations and

their Analytical Background. Technical University of Braunschweig, 2005.

95

