
Exploitation of Structural Sparsity in Algorithmic Differ entiation

Von der Fakultät Mathematik, Informatik und Naturwissenschaften
der RWTH Aachen University

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Ebadollah Varnik

aus Bandar Torkman, Iran

Berichter : Universitätsprofessor Dr. Uwe Naumann
Universitätsprofessor Dr. Andrea Walther

Tag der mündlichen Prüfung : 09.11.2011

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36448059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Contents

1 Foundations 11
1.1 First and Second-Order Derivative Models 11
1.2 Vertex Elimination on Computational Graphs 13

2 Jacobian Accumulation on Extended Jacobians 21
2.1 Motivation and Summary of Results 21
2.2 Dense Jacobian Accumulation 25
2.3 Trading Fill-Out for Fill-In 29
2.4 Sparse Jacobian Accumulation 35

2.4.1 Symbolic Elimination 40
2.4.2 Numerical Results 47

2.5 Parallel Jacobian Accumulation 53
2.5.1 Atomic Decomposition 54
2.5.2 Pyramid Approach .. . 62
2.5.3 Master-Slave Approach 65
2.5.4 Numerical Results 65

2.6 Iterative Jacobian Accumulation 69
2.6.1 Iterative Approach on Extended Jacobians 76
2.6.2 Iterative Sparsity Exploitation of Extended Jacobians 80
2.6.3 Numerical Results 90

3 Detection and Exploitation of Sparsity in Derivative Tensors 97
3.1 Motivation and Summary of Results 97
3.2 Quantitative Dependence Analysis 99

3.2.1 Mathematical Background 100
3.2.2 Sparsity Pattern Estimation 101
3.2.3 Computation of Constant Partial Derivatives 105
3.2.4 Case Study I : Sparse Jacobian Computation 110
3.2.5 Case Study II : Sparse Hessian Computation 114
3.2.6 Numerical Results 121

3.3 Conservative Hessian Pattern Estimation 122
3.3.1 Exact Hessian Pattern Estimation 122
3.3.2 Exploitation of Partial Separability 124
3.3.3 Recursive Hessian Pattern Estimation 127
3.3.4 Numerical Results 130

4 Summary and Conclusion 139

3

4 CONTENTS

List of Symbols

AD Algorithmic Differentiation . 11
F Multivariate Vector Function . 11
n Number of Inputs . 11
m Number of Outputs . 11
x Input Vector . 11
y Output Vector . 11
SAC Single Assignment Code . 11
q Number of SAC Variables . 11
vj SAC Variable . 11
i ≺ j Direct Dependence ofvj onvi . 11
ϕj Elemental Function . 11
Pj Number of Arguments ofϕj . 11
Sj Number of Elemental Functions havingvj as Argument 11
TLM Tangent-Linear Model . 12
ADM Adjoint Model . 12
TLVM Tangent-Linear Vector Model .12
ADVM Adjoint Vector Model . 12
SOTLM Second-Order Tangent-Linear Model 12
SOADM Second-Order Adjoint Model .13
DAG Directed Acyclic Graph . 13
G Linearized Computational Graph ofF 13
V Index Set denoting Vertices ofG [SAC Variables] 13
E Index Pair Set denoting Edges ofG 13
X Index Set of Independent Vertices [SAC Variables] 14
p Number of Intermediate DAG Vertices [SAC Variables] 14
Z Index Set of Intermediate Vertices [SAC Variables] 14
Y Index Set of Dependent Vertices [SAC Variables] 14
cj,i Local Partial Derivative ofvj with respect tovi 14
l-DAG Linearized DAG . 14
G̃ G after Elimination of all intermediate Vertices 14
Ṽ Vertices ofG̃ . 14
Ẽ Edges ofG̃ . 14
G− j Elimination of Vertexj fromG . 14
G− (j, k) Back-Elimination of Edge(j, k) fromG 14
Mark(j) Markowitz Degree of Vertexj . 15
µe Amount of Storage in Bits for an Edge 18
µv Amount of Storage in Bits for a Vertex 18

5

6 LIST OF SYMBOLS

µF Amount of Storage in Bits for a Floating Point Value 18
DEJ Dense Extended Jacobian . 24
C′ Extended Jacobian Matrix . 25
DJARE Dense Jacobian Accumulation by Row Elimination 26
C̃′ Eliminated Extended Jacobian . 26
∗ Nonzero Entry . 31
+ Absorption of a Nonzero Entry . 31
⊛ Fill-in . 31
⊕ Absorption of a Fill-in . 31
⊗ Fill-out reused for Fill-in . 31
⊚ Fill-out . 31
SJARE Sparse Jacobian Accumulation by Row Elimination 35
CRS Compressed Row Storage . 35
nz Number of Nonzeros . 35
(α, κ, ρ) CRS Representation ofC′ . 36
(α̃, κ̃, ρ̃) (α, κ, ρ) after Elimination of all intermediate Rows 36
µI Amount of Storage in Bits for an Interger Value40
BP Bit Pattern . 40
GFM Global (Non-Iterative) Forward Mode 47
GRM Global (Non-Iterative) Reverse Mode 47
PJA Parallel Jacobian Accumulation .. 53
G(S) Composition DAG of|S| Atomic Subgraphs 56
LFM Local Forward Mode . 62
LRM Local Reverse Mode . 62
DP Dynamic Programming . 62
IRM Iterative Reverse Mode . 90
IFM Iterative Forward Mode . 90
ALE Assignment Level Elimination . 90
EHP Exact Hessian Pattern . 98
QDA Quantitative Dependence Analysis 99
TSP Tensor Sparsity Pattern . 102
OPS(F) Number of Performed Floating Point Operations inF. 105
TCE Tensor Constant Estimation . 108
SJC Sparse Jacobian Computation . 110
SHC Sparse Hessian Computation . 116
SMB Simulated Moving Bed . 121
CHP Conservative Hessian Pattern .122
RHP Recursive Hessian Pattern . 122
NF = NF (F) Nonlinear Frontier ofF . 124
GNF = (VNF , ENF) Nonlinear Frontier DAG (NF-DAG) 125

Abstract

The background of this thesis is algorithmic differentiation (AD) [GW08] of in practice very computa-
tionally expensive vector functionsF : Rn ⊇ D → Rm given as computer programs. Traditionally,
most AD software1 provide forward and reverse modes of AD for calculating the Jacobian matrix∇F (x)
accurately at a given pointx on some kind of internal representation ofF kept on memory or hard disk.
In fact, the storage is known to be the bottleneck of AD to handle larger problems efficiently in reverse
mode. For instance, a tape is the internal representation ofchoice in the C++ operator overloading tool
ADOL-C [GJM+99] that presents an augmented version ofF. Thus,∇F can be obtained in forward
and reverse fashion by an interpretative forward and reverse propagation of directional derivatives and
adjoints [NMRC07] through the tape, respectively. The forward mode AD can be implemented very
cheaply in terms of memory by single forward propagation of directional derivatives at runtime (tapeless
in ADOL-C terminology). However, the reverse mode needs to store some data [HNP05] in the so-called
forward sweep to allow the data flow reversal [Nau08] needed for backward propagation of adjoints. The
latter is recently the focus of ongoing research activitiesof the AD community form = 1 as a single
application of reverse mode is enough to accumulate the gradient of F. To handle the memory bottle-
neck, checkpointing schedules e.g. revolve [GW00] have been developed for time-dependent problems.
However, they require user’s knowledge in both the functionF as well as the reverse mode AD. In this
context, we aim to provide a tool, whichminimizes non-AD experts effortin application of the reverse
mode AD on their problems for large dimensions.

Chapter 2 of this thesis is concerned with the accumulation of the Jacobian ofF by the application
of elimination techniques, which are very close to the Gaussian elimination performed in sparse LU
factorization [PT08, FTPR04]. Thereby, we present algorithms that allow the application of elimination
techniques [GN02] to the very large and sparse extended Jacobian ofF being a lower triangular matrix
of local partial derivative. However, the extended Jacobian is of quadratic memory complexity. Hence,
compressed row storage [DER86] (CRS) representation is used to exploit its sparsity. This is done by
first performing the so-called symbolic elimination step onthe correspondingbit patternof the extended
Jacobian. This step predicts storage required for the statically allocated target CRS, which is used to
accumulate the Jacobian ofF atx.

Nonetheless, the capability of the static CRS is also bounded by the memory consumption of the re-
spective bit pattern even though the memory usage of CRS is considerably lower. To tackle this problem,
elimination techniques are applied locally to the dense extended Jacobian (i.e without exploiting sparsity)
and its CRS representation. Therefore, we keep track of the memory usage during the evaluation ofF
and apply elimination techniques whenever the memory boundis reached. The elimination is supposed
to free memory enabling us to continue evaluatingF. In fact, the evaluation of∇F may require multiple
evaluation and elimination steps. The former is supposed toprovide the target data structure on which
the latter is performed. We refer to this approach asiterative Jacobian accumulation.

The implementations of the ideas above are provided in the C++ operator overloading tool DALG2

1Existing AD tools can be found on the community websitewww.autodiff.org.
2DALG stands for Derivative Accumulation for Large Graphs.

7

8 LIST OF SYMBOLS

attached to this work. DALG can be used to accumulate Jacobians and gradients very cheaply in terms of
memory automatically without any user intervention and knowledge about the underlying function.

Moreover, in Chapter 3 we investigate methods to improve theexploitation of structural sparsity
of in general derivative tensors such as Jacobians and Hessians. Existing methods are based on the
knowledge of the nonzero pattern of target derivative structures, where a compression is usually achieved
by the application of some coloring algorithms [GMP05] to a graphical representation. We consider
partial distance-2 coloring and star/acyclic coloring of the bipartite and adjacency graph of Jacobians and
Hessians, respectively, provided by the coloring package ColPack [NNH+11]. Hence, whenever we talk
about coloring Jacobians and Hessians we mean the coloring of the respective graphs.

To achieve better compression, we distinguish betweenvariable andconstant nonzeros, where the
latter is supposed to be unchanged at all those points of interest with fix flow of control. Hence, only
the former is needed to be computed at runtime. Therefore, general runtime algorithms are provided to
compute the variable pattern and the constant entries. We test also their performance in both runtime and
achieved colors in the process of sparse Jacobian and Hessian computation.

Furthermore, we present an algorithm to overestimate the Hessian sparsity pattern that is referred to
as theconservative Hessian pattern estimation. It is the result of exploiting the partial separability
of F. We present numerical results on the computational cost as well as the coloring performance in
terms of runtime and achieved colors of the conservative pattern and compare them with those of the
exact (nonzero) Hessian pattern. The computational complexity of the latter is known to be quadratic as
proposed by Walther [Wal08].

Finally, the conservative algorithm is refined to a recursive version that is referred to as therecursive
Hessian pattern estimation. The recursive algorithm is supposed to converge to the exact one in both
runtime and the resulting pattern for sufficiently large recursion level. Thereby, the recursion level one
yields exactly the same pattern as the conservative one.

Acknowledgment

At first place, I wish to thank to my supervisor, Prof. Dr. Uwe Naumann for his guidance and support
throughout this work. Special thanks go also to Prof. Dr. Andrea Walther at the University of Paderborn
who has supported me with test cases suitable for this thesis.

Moreover, I would like to thank to my colleges Lukas Razik, Viktor Mosenkis, Ekkapot Charoen-
wanit, Markus Beckers, and Johannes Lotz at Lehr- und Forschungsgebiet Informatik 12, Software and
Tools for Computational Engineering (STCE) of the RWTH Aachen University who have supported me
in any respect during the completion of the thesis. I wish to thank also the rest of the STCE group, for all
the discussions that have considerably broadened my knowledge in computer science.

Special thanks go also to my colleges Georg Schramm and Sascha Bücken at Computing and Com-
munication Center of RWTH Aachen University who have supported me with the test system used in this
work.

Finally, I am grateful to my family, especially my Wife Olga and my children Fabian and Olesja for
their support through this phase of my life.

9

10 LIST OF SYMBOLS

Chapter 1

Foundations

The main focus of this thesis isalgorithmic differentiation(AD) [CG91, BBCG96, CFG+02, BCH+06,
BBH+08] of multivariate vector functions

F : Rn ⊇ D → Rm, y = F (x) (1.1)

mapping a vector of inputsx ∈ Rn onto a vector of outputsy ∈ Rm.

Assumption 1.1. F is d times continuously differentiable in some neighborhood ofthe given argument
x ∈ D for a given derivative degreed ≥ 1.

Furthermore,F is assumed to be implemented in some high-level imperative programming language
like C, C++ or Fortran. Whenever we talk aboutF we mean the corresponding implementation that is
assumed to decompose into asingle assignment code(SAC) at every point of interest as

for j = n+ 1, . . . , q

vj = ϕj(vi)i≺j

(1.2)

with q = n + p +m andi ≺ j denoting a direct dependence ofvj on vi. The transitive closure of this
relation is denoted by≺∗ . Thereby, the result of eachelemental function

ϕj : Rl ⊇ Dϕj
→ R

is assigned to a unique auxiliary variablevj with l = |Pj |. By Pj [Sj] we denote the set of indices of all
arguments ofϕj [those variables that havevj as argument]. Obviously, the basic arithmetic operations
{+,−, ∗, \} as well as the elementary functions{sin, cos, tan, exp} provided by the most imperative pro-
gramming languages are elemental. Thereby, we observe thatthe number of arguments of most intrinsics
is bounded by two [Nau99]. Then independent inputsx ≡ (vi)i=1,...,n are mapped ontom depen-
dent outputsy ≡ (vn+p+j)j=1,...,m involving the computation of the values ofp intermediate variables
z ≡ (vn+k)k=1,...,p. Moreover, all those variables in SAC that represent currentinstances of program
variables are referred to asalive variables, otherwise they denotedeadones.

1.1 First and Second-Order Derivative Models

In the following we use the notation ofThe Art of Differentiating Computer Programsby Naumann [Nau11].
We introduce here first and second order AD models that are used in this work.

11

12 CHAPTER 1. FOUNDATIONS

Thetangent-linear model(TLM)

y(1) = F (1)(x,x(1)) ≡< ∇F (x),x(1) >= ∇F (x) · x(1) (1.3)

of F computesy(1) ∈ Rm as the product of the Jacobian defined by Equation (1.7) timesa direction
vectorx(1) ∈ Rn, where the expression

< A,u >= b with b ≡ (bj)j=1,...,m (1.4)

represents atangent-linear projectionof the matrixA ∈ Rm×n in directionu ∈ Rn with bj =<
aj,∗,u >=

∑n
i=1 aj,i · ui denoting the usual inner product of two vectors inRn for j = 1, . . . ,m.

Theadjoint model(ADM)

x(1) = F(1)(x,y(1)) ≡< y(1),∇F (x) >= ∇F (x)T · y(1) (1.5)

of F computesx(1) ∈ Rn as the product of the transposed Jacobian∇F (x)T times an adjoint vector
y(1) ∈ Rm, where the expression

< w, A >= c with c ≡ (ci)i=1,...,n (1.6)

represents anadjoint projectionof A ∈ Rm×n in directionw ∈ Rm with ci =< a∗,i,w >=
∑m

j=1 aj,i ·
wj denoting the usual inner product of two vectors inRm for i = 1, . . . , n. We note here that TLM and
ADM are also known as forward and reverse mode AD models, respectively.

Thus, the Jacobian

(Rm×n ∋) ∇F = ∇F (x) ≡
(
f ′
j,i

)j=1,...,m

i=1,...,n
(1.7)

of F being the matrix of the first-order partial derivatives alsoreferred to assensitivitiesf ′
j,i =

∂yj

∂xi
(x) of

F at pointx ∈ Rn can be accumulated usingF (1) [F(1)] by lettingx(1) [y(1)] range over Cartesian basis
vectors of the input [output] spacesRn [Rm]. Hence, accumulating∇F (x) using TLM and ADM can
be done at the computational cost ofO(n) ·Cost(F) andO(m) ·Cost(F), respectively, whereCost(F)
denotes the computational cost of evaluatingF. In case ofm = 1, the gradient ofF can be accumulated
very cheaply in terms of runtime by single evaluation of the ADM of F.

The corresponding vector formulation of both models above are referred to astangent-linear vector
model(TLVM)

Y (1) = ∇F (x) ·X(1) (1.8)

andadjoint vector model(ADVM)

X(1) = ∇F (x)T · Y(1) , (1.9)

whereX(1) ∈ Rn×k, Y (1) ∈ Rm×k andX(1) ∈ Rn×k, Y(1) ∈ Rm×k for k ≤ n andk ≤ m, respec-
tively.

Thesecond-order tangent-linear model(SOTLM) ofF is defined as

y(1,2) = F (1,2)(x,x(1),x(2),x(1,2)) ≡ < ∇F (x),x(1,2) >︸ ︷︷ ︸
=0

+ < ∇2F (x),x(1),x(2) > (1.10)

1.2. VERTEX ELIMINATION ON COMPUTATIONAL GRAPHS 13

with x(2),x(1) ∈ Rn, y(1,2) ∈ Rm, and< ∇F,x(1,2) >= 0 for x(1,2) = 0. Thereby,

< ∇2F (x),x(1),x(2) >≡<< ∇2F (x),x(1) >,x(2) >= y(1,2)

with y(1,2) represents asecond-order tangent-linear projectionof the Hessian∇2F (x) defined by Equa-
tion (1.12) in directionsx(1),x(2), as first-order tangent-linear projection< A,x(2) > of

(ak,j)
k=1,...,m
j=1,...,n ≡ A =< ∇2F,x(1) >∈ Rm×n with ak,j =< f ′′

k,j,∗,x
(1) >=

n∑

i=1

f ′′
k,j,i · x(1)

i

for x(1) ≡ (x
(1)
i)i=1,...,n in directionx(2). A is the first-order tangent-linear projection of∇2F (x) in

directionx(1) as defined by Equation (1.4).

Thesecond-order adjoint model(SOADM) ofF is defined as

x
(2)
(1) = F

(2)
(1) (x,x

(2),y(1),y
(2)
(1)) ≡ < ∇F (x)T ,y

(2)
(1) >︸ ︷︷ ︸

=0

+ < y(1),∇2F (x),x(2) > (1.11)

with x(2),x
(2)
(1) ∈ Rn, andy(2)

(1),y(1) ∈ Rm and< ∇F (x)T ,y
(2)
(1) >= 0 for y(2)

(1) = 0. The expression

< y(1),∇2F (x),x(2) >≡<< y(1),∇2F (x) >,x(2) >= x
(2)
(1)

with x
(2)
(1) ≡ (x

(2)
(1))i=1,...,n represents asecond-order adjoint projectionof the Hessian∇2F in directions

y(1),x
(2) as first-order tangent-linear projection< B,x(2) > of

(bj,i)j,i=1,...,n ≡ B =< y(1),∇2F >∈ Rn×n with bj,i =< f ′′
∗,j,i,y(1) >=

m∑

k=1

f ′′
k,j,i · y(1)k

for y(1) ≡ (y(1)j)j=1,...,m in directionx(2). B is the first-order adjoint projection of∇2F (x) in direction
y(1) defined by Equation (1.6). Thus, the Hessian

∇2F = ∇2F (x) ∈ Rm×n×n ≡
(
f ′′
k,j,i

)k=1,...,m

i,j=1,...,n
(1.12)

as the symmetric3-tensor of the second-order sensitivitiesf ′′
k,j,i = ∂2yk

∂xj∂xi
(x) of F at pointx can be

accumulated using SOTLM and SOADM at the computational costof O(n2) · Cost(F) andO(n ·m) ·
Cost(F), respectively. This can be done in the former by lettingx(1) andx(2) range over Cartesian
basis vectors inRn. In the latter the same Hessian is accumulated by lettingx(2) andy(1) range over
Cartesian basis vectors inRn andRm, respectively. In case ofm = 1, the product of the Hessian matrix
∇2F ∈ Rn×n with a vectorx(2) ∈ Rn can be performed very cheaply using SOADM ofF at the
computational cost ofO(1) · Cost(F).

1.2 Vertex Elimination on Computational Graphs

The SAC given by Equation (1.2) induces a directed acyclic graph (DAG)

G ≡ G(F (x)) = (V,E) with V = {1, . . . , q} and E = {(i, j) : i ≺ j} . (1.13)

14 CHAPTER 1. FOUNDATIONS

The vertices are sorted topologically with respect to variable dependence, that is,

∀i, j ∈ V : (i, j) ∈ E ⇒ i < j .

We distinguish between then independentX = {1, . . . , n} thep intermediateZ = {n+ 1, . . . , n+ p}
and them dependentY = {n+ p+ 1, . . . , n+ p+m} vertices, whereV = X ∪ Z ∪ Y.

Assumption 1.2. The setsX , Z, andY are mutually disjoint.

Moreover, we distinguish between live and dead vertices. The former [latter] are those corresponding
to alive [dead] SAC variables. Under the assumption that allelemental functions are continuously differ-
entiable in some neighborhood of their arguments all edges(i, j) in DAG can be labeled with the value
of the local partial derivatives

cj,i = cj,i(vk)k≺j ≡
∂ϕj

∂vi
(vk)k≺j . (1.14)

This yields thelinearizedcomputational graph (l-DAG) ofF. From now on we useG to refer to the
linearized computational graph ofF. Thus, the Jacobian∇F in Equation (1.7) ofF can be obtained by
the elimination of all intermediate verticesZ of G yielding the bipartite graph

G̃ = (Ṽ , Ẽ) with Ṽ = V − Z and Ẽ = {(i, j) : i ≺∗ j for i ∈ X, j ∈ Y } (1.15)

as proposed by Griewank and Reese [GR91] based on Baur’s interpretation [Bau74] of each Jacobian
entry

f ′
j−(n+p),i =

∑

π∈{i→j}

∏

(k,l)∈π

cl,k (1.16)

as the elimination of all pathsπ connecting an independent vertexi ∈ X to the dependent vertices
j ∈ Y. The correctness of this approach results immediately from the chain rule. One way to achieve
this is to eliminate all intermediate vertices [Tad08] fromG. Therefore, each successork ∈ Sj of an
intermediate vertexj is connected to all of its predecessorsi ∈ Pj . This corresponds toback-elimination
of all outedges(j, k) of vertexj, which we denote by

G− j ≡ G− (j, k) ∀k ∈ Sj .

For (i, k) /∈ E a new edge(i, k) is generated with the label

ck,i = ck,j · cj,i

as the value of the local partial derivative∂vk
∂vi

of vk with respect tovi defined by Equation (1.14). Other-
wise the value ofck,i is updated as

ck,i+ = ck,j · cj,i .

In the former casefill-in is generated whereasabsorptiontakes place in the latter. Finally, the vertexj
along with all of its incoming and outgoing edges are removedfromG as illustrated in Figure 1.1.

Thus, the elimination of all intermediate vertices yieldsG̃ in Equation (1.15) with labels on remaining
edgesẼ representing exactly the nonzero elements of∇F according to Equation (1.16). In terms of com-
putational complexity we count the number of floating point multiplication (MULS) performed during
the elimination procedure that represents an ”upper bound for the number of performed additions” that
is affected by the elimination ordering as proposed by Naumann [Nau04a]. More precisely, the number

1.2. VERTEX ELIMINATION ON COMPUTATIONAL GRAPHS 15

l i

j

k

l i

k

G

c j,
l

c
j,i

c
k
,i

ck,j

G− j

c k
,l
=
c k

,j
· c j

,l

c
k
,i +

=
c
k
,j · c

j,i

−j

Figure 1.1: Vertex Elimination on DAGs.

of multiplications achieved by the elimination of a single intermediate vertexj is equal to its Markowitz
degree [Mar57] as

Mark(j) = |Pj | · |Sj | .

Thereby, elimination ofj is likely to affect the Markowitz degree of its neighbors.

However, Naumann [Nau06] has shown that OPTIMAL JACOBIAN ACCUMULATION (OJA), that is,
accumulating the Jacobian ofF with minimum number of multiplications is NP-complete. Thereby, he
assumes the local partial derivatives attached to the edgesof G to be algebraically dependent. However,
this is not always the case such that the structural problem remains unsolved.

However, the elimination of an intermediate vertex can be considered as a special case of edge elimi-
nation inG as proposed by Naumann [Nau02] with a refined version in form of face elimination proposed
by the same author in [Nau04b]. For a comprehensive discussion of the existing elimination techniques
we refer the reader to [GW08]. However, the focus of the following will be on Jacobian accumulation
using pure vertex elimination technique as the main objective is to tackle the memory bottleneck of the
AD in reverse mode as introduced in detail at the beginning ofChapter 2. Thereby, we aim to apply vertex
elimination locally to free memory at certain evaluation point of the target functionF whenever a given
memory bound is reached. Therefore, we consider vertex elimination to be much more suitable.

Given an elimination orderingσ of p = |Z| intermediate vertices the bijective mapping

σ : {1, · · · , p} → Z (1.17)

denotes a permutation of the elements ofZ. Moreover, we denote by

G− σ = G− [σ(1), . . . , σ(p)]

the elimination of verticesZ fromG in σ-order. In fact, there are exactlyp! different orderings in which
the intermediate vertices can be eliminated, where two different elimination orderings very likely yield
different number of multiplications and fill-in as well. Thelatter becomes important when exploiting the
sparsity of extended Jacobians as introduced in the following chapter. Two classical orderings are denoted
by forward andreversethat refer to the ascending and decreasing order in which intermediate vertices
are visited, respectively. Henceforth, we do eliminate vertices ofG in forward and reverse ordering,
respectively.

Example 1.1. In order to support the discussion above let us have a closer look at a very simple example

16 CHAPTER 1. FOUNDATIONS

functionF : R2 → R2 given as the following system of non-linear equations.

for i = 1, . . . , n

t = x1 · x2 − x2

x1 = sin(t)

x2 = exp(t)

(1.18)

For n = 1 the SAC ofF is as follows.

v1 = x1; v2 = x2;

v3 = v1 · v2;
v4 = v3 − v2;

t = v4;

v5 = sin(v4);

v6 = exp(v4);

x1 = v5; x2 = v6;

Independent variablesx1 andx2 are given by the SAC variablesv1 andv2, respectively. Intermediate
SAC variables are given byv3 and v4. The latter represents the program variablet, which is used in
the SAC statementsv5 andv6 representing the dependent variablesx1 andx2, respectively. Hence,v4
denotes an alive SAC variable. As one can see here, inputsx1 andx2 are overwritten at every iteration
stepi and represent both inputs and outputs. The corresponding l-DAG is shown in Figure 1.2 (a) with
edge labels as shown in (b). Consider vertex3 with two incoming edges(1, 3) and(2, 3) and one outgoing
edge(3, 4). The former are labeled with the value of the local partial derivativesc3,1 = x2 andc3,2 = x1,
respectively. The latter is labeled withc4,3 = −1. Henceforth, whenever we talk about the example
function we meanF with the implementation in Example 1.1. Figure 1.3 illustrates the accumulation of

1 [x1] 2 [x2]

3 [∗]

4 [−]

5 [sin] 6 [exp]

c3,1 c3,2

c4,2

c4,3

c5,4 c6,4 c3,1 = v2;
c3,2 = v1;
c4,3 = 1;
c4,2 = −1;
c5,4 = cos(v4);
c6,4 = exp(v4);

(a) (b)

Figure 1.2: Linearized DAG (a) with the Value of Edge Labels (b).

the JacobianR2×2 ∋ ∇F (x1, x2) =

(
f ′
1,1 f ′

1,2

f ′
2,1 f ′

2,2

)
via forward vertex elimination, where

f ′
1,1 = cos(x1 · x2 − x2) · x2; f ′

1,2 = cos(x1 · x2 − x2) · x1 − cos(x1 · x2 − x2)

f ′
2,1 = exp(x1 · x2 − x2) · x2; f ′

2,2 = exp(x1 · x2 − x2) · x1 − exp(x1 · x2 − x2) .

1.2. VERTEX ELIMINATION ON COMPUTATIONAL GRAPHS 17

Thereby, vertex 3 is eliminated by connecting vertices 1 and2 to vertex 4 resulting in a fill-in(1, 4) and
an absorption(2, 4) labeled as

c4,1 = c3,1 · c4,3 = x2, and c4,2+ = c3,2 · c4,3 = −1 + x1 .

Additional elimination of vertex 4 yields the bipartite graphG̃ resulting in four fill-in(1, 5), (1, 6), (2, 5),
(2, 6) labeled as follows.

c5,1 = c4,1 · c5,4 = x2 · cos(x1 · x2 − x2); c5,2 = c4,2 · c5,4 = (−1 + x1) · cos(x1 · x2 − x2)

c6,1 = c4,1 · c6,4 = x2 · exp(x1 · x2 − x2); c6,2 = c4,2 · c6,4 = (−1 + x1) · exp(x1 · x2 − x2)

Analogous, the process of Jacobian accumulation via reverse vertex elimination is illustrated in Fig-

1 2

3

4

5 6

1 2

4

5 6

1 2

5 6

c 3,
1

c
3,2

c
4
,2

c
4
,3

c
5,4 c 6,

4

G
c 4
,1
=
c 3
,1
· c

4
,3

c
4
,2 +

=
c
3
,2 · c

4
,3

c
5,4 c 6,

4

G− 3

c
5
,1
=

c
4
,1 ·

c
5
,4

c 6
,1
=
c 4
,1
· c 6

,4

c
5
,2
=
c
4
,2 · c

5
,4

c
6
,2
=

c
4
,2 ·

c
6
,4

G̃ = G− {3, 4}

Figure 1.3: Forward Vertex Elimination yielding five Fill-in and one Absorption.

ure 1.4. The vertex 4 is eliminated by connecting the vertex 4to vertices 5 and 6 resulting in fill-in (3,5),
(3,6), (2,5), (2,6) labeled as follows.

c5,3 = c5,4 · c4,3 = cos(x1 · x2 − x2); c6,3 = c6,4 · c4,3 = exp(x1 · x2 − x2)

c5,2 = c5,4 · c4,2 = − cos(x1 · x2 − x2); c6,2 = c6,4 · c4,2 = − exp(x1 · x2 − x2)

Additional elimination of vertex 3 yields the bipartite graphG̃ yielding 2 fill-in (1,5), (1,6) and 2 absorp-
tions (2,5), (2,6) labeled as follows.

c5,1 = c3,1 · c5,3 = x2 · cos(x1 · x2 − x2)

c5,2+ = c3,2 · c5,3 = − cos(x1 · x2 − x2) + x1 · cos(x1 · x2 − x2)

c6,1 = c3,1 · c6,3 = x2 · exp(x1 · x2 − x2)

c6,2+ = c3,2 · c6,3 = − exp(x1 · x2 − x2) + x1 · exp(x1 · x2 − x2)

Finally, the entriesf ′
j,i with i, j ∈ {1, 2} of the Jacobian are represented by the labelscj+4,i of the edges

(i, j+4) of the bipartite graphs̃G shown in Figure 1.3 and Figure 1.4, respectively. Hence, theJacobian
of our example function is accumulated with six and eight multiplications in forward and reverse ordering
with one and two fill-in, respectively. We note that this doesnot necessarily mean that forward ordering
is generally better that reverse ordering. Indeed, often the opposite is the case in the practice as our
experimental results will show.

The DAG as an intuitive representation ofF is widely used in AD to address conceptual as well
as runtime and memory [Nau08] issues arising in context of Jacobian accumulation specially by the

18 CHAPTER 1. FOUNDATIONS

1 2

3

4

5 6

1 2

3

5 6

1 2

5 6

c 3,
1

c
3,2

c
4
,2

c
4
,3

c
5,4 c 6,

4

G

c 3,
1

c
3,2

c
6
,2
=

c
3
,2 ·c

6
,4

c
5
,3
=
c
4
,3 · c

5
,4

c 6
,3
=
c 4
,3
· c 6

,4

c 5
,2
=

c 4
,2
· c

5
,4

G− 4

c
5
,1 +

=
c
4
,1 ·

c
5
,4

c 6
,1
=
c 4
,1
· c 6

,4

c
5
,2
=
c
4
,2 · c

5
,4

c
6
,2
=

c
4
,2 ·c

6
,4

G̃ = G− {4, 3}

Figure 1.4: Reverse Vertex Elimination yielding six Fill-in and two Absorptions.

application of elimination techniques. Nonetheless, we consider the DAG consisting of vertices and edges
as adynamicstructure in the way it deals with the memory as explained by Duff et al. [DER86] in the
context of sparse linear algebra. For instance, eliminating a vertex means freeing the memory locations
of that vertex along with all of its incident edges as well as allocating new memory for fill-in edges as
they occur. Thereby, an edge is incident to a vertex, when it has this vertex as target or source vertex.
The consequence is that the memory is accessed dynamically by allocation and deallocation instructions
during the entire Jacobian accumulation process. In this context, we define by

Mem(G) = |E| · µe =

q∑

j=n+1

|Pj | · µe (1.19)

the memory consumption ofG in bits withµe representing the amount of storage in bits required by an
edge. Furthermore, we define edges by their source and targetvertices, so that we get

µe = 2 · µv + µF ,

whereµv andµF denote the amount of storage in bits needed for a vertex and the floating point label of
an edge inG, respectively. Thereby, the verticesV of G are implicitly given by the edges as

V = {j : ∃(i, k) ∈ E with j = i or j = k} .

However, in the following chapter we introduce a lower triangular matrix referred to as theextended
Jacobian[TFP03] representation of the SAC ofF . The extended Jacobian matrix is supposed to be a static
structure. Furthermore, we manage to exploit its sparsity by first detecting the required memory pattern
for a given elimination ordering in a symbolic step as explained in Section 2.4.1 and using the resulting
memory scheme to accumulate the Jacobian on a statically allocated CRS representation of the extended
Jacobian as discussed in Section 2.2. The overhead of detecting memory pattern for a given elimination
ordering can be regarded as a preprocessing step when assuming the control flow to be fixed at points
of interest in the input domainD. However, in practice the input domain may be decomposed intosuch
intervals, such that any interval changes would require newmemory pattern detection. In Section 2.5
we discuss also first ideas on parallelizing the Jacobian accumulation by elimination and present first
results on a shared memory architecture. Furthermore, we introduce in Section 2.6 how to deal with the
memory bound by keeping track of the memory usage of the underlying data structure and enabling local
elimination whenever the given available memory bound is reached.

Chapter 3 is concerned with retrieving the information about constant sensitivities of in general deriva-
tive tensors. Therefore, we present runtime algorithms to compute both constants and sparsity pattern of

1.2. VERTEX ELIMINATION ON COMPUTATIONAL GRAPHS 19

target tensors. Furthermore, we show how to exploit constants in the process of sparse Jacobian as well
as Hessian computations and discuss them on examples. Finally, Section 3.3 presents a fast algorithm to
overestimate the Hessian pattern under exploitation of thepartial separability ofF. The algorithm is then
generalized to a recursive one converging to the exact algorithm for sufficiently large recursion level.

20 CHAPTER 1. FOUNDATIONS

Chapter 2

Jacobian Accumulation on Extended
Jacobians

2.1 Motivation and Summary of Results

Traditionally, almost any AD software available at the community websitewww.autodiff.org pro-
vides forward and reverse modes of AD for calculating the Jacobian matrix∇F (x) accurately at a given
pointx on some kind of internal representation ofF kept on memory or hard disk. In fact, the storage
is known to be the bottleneck of AD to handle larger problems in reverse mode. For instance, a tape
is the internal representation of choice in the C++ operatoroverloading tool ADOL-C [GJM+99] that
presents an augmented version ofF. Thus,∇F can be obtained in forward and reverse fashion by an
interpretative forward and reverse propagation of directional derivatives and adjoints [NMRC07] through
the tape, respectively. The forward mode AD can be implemented very cheaply in terms of memory by
single forward propagation of directional derivatives at runtime. However, the reverse mode needs to
store some data [HNP05] in the so-called forward sweep to allow the data flow reversal [Nau08] needed
for backward propagation of adjoints. The latter is recently the focus of ongoing research activities of the
AD community form = 1 as a single application of the reverse mode is enough to accumulate the gra-
dient ofF efficiently. To handle the memory bottleneck, checkpointing schedules e.g. revolve [GW00]
have been developed for time-dependent problems. However,they require user’s knowledge in both the
functionF and the reverse mode AD as well.

To illustrate the memory problem in reverse mode and to demonstrate the idea behind checkpointing
let us consider Figure 2.1. Here (a) represents a DAG of the functionf : R2 → R

for i = 1, . . . , n

x1 = sin(x1 · x2 − x2) (s1)

x2 = exp(x1 · x2 − x2) (s2)

y = x1 + x2 (s3)

for n = 2 as a light modification of our example function of Equation (1.18). Edge labels are missing
explicitly just for simplicity. Hence, eliminating intermediate vertices3, 4, . . . , 10 in reverse mode yields
the complete bipartite graph as shown in (b) at a cost of twelve multiplications, whereas the forward
elimination yields the same gradient but at a total cost of twenty-two multiplications1. Now let us
assume that there is not enough memory to store the DAG in (a).The reader may agree that given a

1The calculation of the respective number of multiplications of both elimination orderings is left to the reader.

21

22 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

memory bound one can find ann, where the resulting DAG would not fit into the memory. Consequently,
the reverse mode AD does not seem to be applicable anymore.

A closer look intof figures out that the two statementss1 ands2 at each loop iterationi = 1, . . . , n
overwrite the value of the inputsx1 andx2, which are their own arguments. We denote the respective
values of the inputs after the iterationi using the superscripti. For instance,x2

1 denotes the value of
x1 after the iterationi = 2. Hence, in order to reduce the memory consumption of the reverse mode
checkpointing is applied in (c), whereCP (i) denotes a checkpoint in iterationi storing the value of the
variablesx1 andx2 before they get overwritten.

For this, the evaluation off for n = 2 at the beginning results in two checkpointsCP (1) andCP (2)
along with the DAG consisting only of the vertices9, 10 and11. The latter is the result ofaugmented
evaluationof the statements3. The augmented evaluation of (a piece of) a function in our context is
supposed to generate the respective (piece of) DAG. However, no vertex can be eliminated so far in (c).
The total memory consumption is4 · µF + 2 · µe with µF andµe denoting the amount of storage in
bits needed for an edge and a floating point value as explainedat the end of the previous chapter. We
recapitulate that each of two checkpoints stores only two floating point values.

Now, the augmented evaluation of the for loop fori = 2 yields (d) withlocally eliminatablevertices
7, 8, 9, 10. A detailed discussion about locally eliminatable verticesis given at the beginning of Sec-
tion 2.6. However, the correct values ofx1 andx2 must be read from the checkpointCP (2) in advance.
Hence,CP (2) can be deleted that results in a total memory consumption of2 · µF + 8 · µe. We yield
(e) by eliminating10, 9, 8, 7 at a cost of six multiplications. Analog, we yield (f) by firstreading the
correct values ofx1 andx2 fromCP (1) followed by the augmented evaluation ofs1 ands2 for i = 1 at
a memory cost of8 · µe. Finally, (b) results from the elimination of6, 5, 4, 3 at a cost of six additional
multiplications yielding twelve multiplications in total. This number is identical to the global reverse
mode resulting from (a), which is rather random and not the case in general. Thus,∇f is computed by
checkpointing at the lower memory cost of at most2 · µF + 8 · µe instead of14 · µe in (a) for reasonably
µF ≤ µe.

At this point it has to be mentioned that the memory reductionby checkpointing is achieved at the
expense of additional (augmented) loop evaluations at eachof those checkpoints. In general, the user of
checkpointing strategy has to take care of first its applicability to the underlying problemF. This requires
the deeper view into the program ofF, which in practice can be very large. Revolve, for instance, is
designed especially for time-dependent problems with similar structure as our example functionf. In this
context, the for loop can be regarded as the time iteration, where the checkpointing is applied. However,
a major question that matters is about the size of the checkpoints. For our simple example it was easy
to figure out which values to store. However, this is in general more than an easy task [HNP05]. Of
course conservatively one can store the values of all variables on the left hand side of assignments. With
a little imagination can be appreciated that in practice this may also exceed the memory bound. Hence,
the conservative checkpointing may turn out to be not feasible in practice at all.

However, ”theCHECKPOINTINGproblem is to determine for a given upper bound on persistentmem-
ory K a set of values computed by the single assignment code as defined in Equation (1.2) such that the
computational cost of adjoint propagation becomes minimal” as proposed by Naumann in [Nau09]. In
this work Naumann shows that DAGREVERSAL problem (DAGR) i.e. finding a reversal scheme that
uses at mostK memory andc ≤ C costs is NP-complete, whereC denotes the upper bound on the cost
of recomputing some (SAC) values. He shows also theCHECKPOINTINGproblem to be in fact the same
problem as DAGR, which follows the NP-completeness of the former too.

At this point, we hope the reader agrees that the applicationof checkpointing strategy [SG05, KW06]
is not straightforward, despite the fact that not every userwishes to spend the necessary effort. Hence,
a black-box tool would be nice even if its performance does not quite reach that of pure reverse mode
AD. This is exactly the motivation in the following, where the memory reduction is supposed to be done
automatically without any user intervention and expertisein AD. Therefore, vertex elimination is applied

2.1. MOTIVATION AND SUMMARY OF RESULTS 23

CP (1)

CP (2)

CP (1) CP (1)

1 [x1] 2 [x2]

3 [∗]

4 [−]

5 [x1
1] 6 [x1

2]

7 [∗]

8 [−]

9 [x2
1] 10 [x2

2]

11 [y]

x1 x2

x1
1 x1

2

9 [x2
1] 10 [x2

2]

11 [y]

x1 x2

5 [x1
1] 6 [x1

2]

7 [∗]

8 [−]

9 [x2
1] 10 [x2

2]

11 [y]

x1 x2

5 [x1
1] 6 [x1

2]

11 [y]

1 [x1] 2 [x2]

3 [∗]

4 [−]

5 [x1
1] 6 [x1

2]

11 [y]

1 [x1] 2 [x2]

11 [y]

(a)

i = 1

i = 2

(c)

+5, . . . ,+8

i = 2

(d)

−10, . . . ,−5

(e)

+
1
,.
..
,+

4

i
=

1

(f)

−6, · · · ,−3−10, · · · ,−3

(b)

Figure 2.1: Checkpointing Idea on a DAG, whereCP (i) for i = 1, 2 denotes a checkpoint at loop
iterationi storing the value of the variablesx1 andx2 before getting overwritten. The subscripti to a
variable denotes its value afterith iteration. The prefix ”-” to a vertex index means that it is eliminated,
whereas ”+” indicates its Generation.

24 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

locally when the given memory bound at certain point of the function (augmented) evaluation is hit. The
memory usage is tracked at runtime. Hence, the Jacobian/gradient ofF is accumulated while taking care
of the memory consumption at runtime. We refer to this approach asiterative Jacobian accumulation.

In our case, arbitrary elimination orderings (techniques)such as forward, reverse, or Markowitz-based
heuristics [AGN03] can be applied locally. The latter is notconsidered in this work. As our experimental
results will show, the reverse mode exhibits much better runtime results than the forward one for the test
cases considered in this work. Thus, we consider our approach using reverse mode AD rather aslocal
reverse mode ADduring forward evaluation ofF.

In the following section we first introduce row elimination on extended Jacobians being conceptually
the same as vertex elimination on the respective DAGs. Furthermore, we manage to exploit the sparsity of
extended Jacobians using compressed row storage to reduce their quadratic (in number of rows) memory
complexity in Section 2.3. The reason for using extended Jacobians as internal representation instead of
graphs is to avoid the dynamic memory access affecting the runtime of Jacobian accumulation by vertex
elimination. To show this a runtime comparison for computing the gradient∇f ∈ Rn of the scalar
function

f : Rn → R, y = f(x) with y =

n∏

i=1

xi

between the reverse mode AD on an early DAG and CRS implementations is presented in Figure 2.2.
Thereby, no sparsity is exploited as∇f is supposed to be a dense vector inRn. Moreover, we compare
the runtime of both CRS and DAG with that of forward finite difference approximation denoted by FFDA.
We observe that the elimination on CRS is orders of magnitudefaster compared with its DAG counterpart
as well as with FFDA. More precisely, forn = 10000 the former needs 0.46 seconds to accumulate∇f
instead of 44.25 and 67.76 seconds in case of DAG and FFDA, respectively. Hence, we believe that the
runtime loss in case of DAG to be mostly caused by the dynamic memory access. The runtime loss of
FFDA against two reverse AD variants (DAG and CRS) lies reasonably in the fact thatn + 1 function
calls are required to accumulate∇f.

0.2 0.4 0.6 0.8 1

·104
10−2

10−1

100

101

102

n : PROBLEM SIZE

R
U

N
T

IM
E

[S
E

C]

FFDA
DAG
CRS

Figure 2.2: Runtimes of Gradient Computation using DAG, CRS, and Finite Differences.

In the following we present first some numerical results in Section 2.4.2 considering the static problem
of row elimination on extended Jacobians and their respective CRS. The numerical results show that the
sparsity exploitation of extended Jacobians using CRS reduces the memory consumption drastically by a
factor of roughly thirty-one. However, we observe at the same time that CRS underperforms compared
with the dense extended Jacobian (DEJ) by increase in the problem size because of the linear overhead
of searching for dependencies and spots in the former. Henceforth, whenever we talk about aspot, we
mean a memory unit that is used to store an extended Jacobian entry. At the same time the increase

2.2. DENSE JACOBIAN ACCUMULATION 25

in problem size has a direct impact on the number of rows of considered matrices meaning even larger
search spaces. The impact of the latter becomes more clear when we try to parallelize the process of
Jacobian accumulation in Section 2.5. The experimental results in Section 2.5.3 show the most part of the
speedup by parallelization to be gained simply by the decomposition resulting in smaller search spaces
for dependencies. Hence, by focusing on the static problem,we figure out that the search space has a
large impact on the runtime behavior of Jacobian accumulation by elimination on both DEJ and its CRS
counterpart, despite the fact that CRS has additionally a linear overhead to search for a particular entry or
spot in worst case.

Finally, we introduce in Section 2.6 the iterative approachon DEJ and CRS as well. The numerical
results are presented in Section 2.6.3. Thereby, we observethat assignment level elimination exhibits
the best memory behavior as shown in Table 2.5 on page 93. However, its runtime on a time-dependent
problem turns out to be not really comparable with that of thereverse mode AD implemented in ADOL-
C. Nonetheless, we also observe that memory adapting strategy according to Equation (2.24) improves
the runtime considerably with negligible loss in memory. The runtime and memory comparisons with
ADOL-C are shown in Figure 2.34 (a) and (b), respectively. Wenote that for this test case DEJ is
used instead of its CRS counterpart because of the better runtime performance of the former as shown
in Figure 2.34 (c).

2.2 Dense Jacobian Accumulation

The SAC in Equation (1.2) of the functionF can be written as a system of nonlinear equations [GW08]

C(v) = (ϕj(vi)i≺j − vj)j=n+1,...,q = 0 (2.1)

with v = (v1, · · · , vq) andq = n+ p+m. Differentiation of Equation (2.1) with respect tov yields the
lower triangular matrix

C′ = C′(v) ≡ (c′j,i)i,j=1,...,q with c′j,i =





cj,i if i ≺ j

−1 if i = j

0 otherwise

referred to as theextended Jacobianof F with rows and columns enumerated asi, j, k ∈ V with V
defined by Equation (1.13). Henceforth, for better readability we will replace the -1 on the diagonal
entries ofC′ with the corresponding row indices.

Thereby, rowj of C′ contains the local partial derivativescj,i of vj with respect to all of its arguments
vi with i ≺ j as defined in Equation (1.14), where the binary relationi ≺ j indicates again the direct
dependence of rowj on row i on C′ if and only if cj,i 6= 0. Analog, columnj contains the local
partial derivativesck,j of all vk with respect tovi, which havevi as their arguments withj ≺ k. The
extended Jacobian and the DAG ofF correspond to each other in such a way that a row/columnj of C′

corresponds to the DAG vertexj. Moreover, a local partial derivativecj,i [ck,j] represents the label of the
incoming [outgoing] edge(i, j) [(j, k)] to [from] vertexj. In the following we refer to a row/columnj as
independent forj ∈ X , as intermediate forj ∈ Z, and as dependent forj ∈ Y. For simplicity henceforth
we only talk about row elimination. Thus, analog toG, the Jacobian can also be accumulated by row
elimination onC′. Therefore, the elimination of a particular intermediate vertex onG is interpreted as
the elimination of the corresponding row onC′. We eliminate an intermediate rowj by eliminating all
nonzero entriesck,j with j ≺ k. Thereby,ck,j is eliminated by performing Equation (2.2) for all nonzero
cj,i of row j while generating fill-in and fill-out forck,i = 0 andck,i 6= 0, respectively. We refer to
this aback-eliminationof the entryck,j onC′. A gain the terminologies forward and reverse are used to
refer to the ascending and decreasing order of intermediaterows, respectively. Thus, the elimination of

26 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

an intermediate vertexj by back-elimination of its out-edges onG is interpreted as the elimination of row
j via back-elimination of all nonzerosc∗,j on the columnj. Hence, forward [reverse] vertex elimination
onG corresponds to the forward [reverse] row elimination onC′.

The following summarizes all transformations needed for row elimination onC′.

Definition 2.1. The elimination of rowj on the extended JacobianC′ ofF with j ∈ Z, i ∈ {1, . . . , j−1},
andk ∈ {j + 1, . . . , q} denoted byC′ − j is defined as follows.

ck,i = ck,i + ck,j · cj,i ∀k : j ≺ k and ∀i : i ≺ j (2.2)

ck,j = 0 ∀k : j ≺ k (2.3)

cj,i = 0 ∀i : i ≺ j (2.4)

Note that partial derivatives ofvk with respect tovi during the elimination of rowj are computed
according to the chain rule in 2.2. Hence, any sensitivitiesof vk on any of thevj with j ≺ k as well as of
any of thevj onvi with i ≺ j are removed in Equation (2.3) and Equation (2.4), respectively. fill-out are
generated. Moreover, forck,i = 0 then 2.2 lead tofill-in otherwise they yieldabsorption.

In the following, we introduce Algorithm 2.1 for Jacobian accumulation by row elimination on ex-
tended Jacobians that we refer to asdense Jacobian accumulation by row elimination(DJARE). It de-
scribe the general process of Jacobian accumulation by row elimination on the extended Jacobian ofF
for a given elimination orderingσ(1), . . . , σ(|Z|) with σ as defined by Equation (1.17). At this point, it
should be made clear that the algorithms introduced below can be considered as special cases of Gaussian
elimination known in context of sparse linear algebra [DER86].

As described in Algorithm 2.2 an intermediate rowj = σ(i) with i ∈ {1, · · · , p} is eliminated via
back-elimination of all nonzero entriesc′k,j 6= 0 with j < k according to Equations 2.2 and 2.3. Hence,
all nonzeros of rowj are set to zero in lines 3-7 of Algorithm 2.1 after back-eliminating allc′k,j according
to Equation (2.4). We note that, we use the notationc′·,· explicitly to denote the entries of the extended
Jacobian in our algorithms.

Thus, the elimination of all intermediate rows inσ order yields theeliminated extended Jacobian

C̃′ = C′ − σ ≡ C′ − [σ(1), . . . , σ(p)] (2.5)

containing exactly the entriesf ′
j−(n+p),i = c′j,i for i ∈ X , j ∈ Y of the Jacobian∇F , which can be

extracted by Algorithm 2.4. Obviously, forward [reverse] row elimination can be considered as special
cases of Algorithm 2.1 withσ representing the ascending [decreasing] ordering ofZ.

Considering the elimination of an intermediate rowj in forward ordering thesearch spacein line 1 of
Algorithm 2.2 can be restricted to the dependent rowsY, since all rowsk ∈ Z with j ≺ k are eliminated
beforej and hencec′k,j = 0. The termination of the process of Jacobian accumulation by row elimination
introduced above is stated by Lemma 2.1.

Lemma 2.1. Given an elimination orderingσ of a finite setZ of intermediate rows the process of Jaco-
bian accumulation by row elimination described in Algorithm 2.2 terminates.

Proof. The proof of termination of Algorithm 2.2 follows immediately from the termination of the corre-
sponding vertex elimination process as a special case of edge elimination on the DAG ofF as shown by
Naumann [Nau99, Nau04a].

Algorithm 2.1 (JRowElim (C′, σ) : Jacobian by Row Elimination).

Require: : extended JacobianC′ and the elimination orderingσ of Z.
Ensure: : C′ after elimination of all intermediate rows inσ order.

2.2. DENSE JACOBIAN ACCUMULATION 27

1: for j = σ(1) to σ(p) do
2: RowElim (C′, j)
3: for i = 1 to j − 1 do
4: if c′j,i 6= 0 then
5: c′j,i = 0
6: end if
7: end for
8: end for

Algorithm 2.2 (RowElim (C′, j) : Row Elimination).

Require: : extended JacobianC′ and the row indexj ∈ Z.
Ensure: : C′ after elimination of the intermediate rowj.

1: for k = q to j + 1 do
2: if c′k,j 6= 0 then
3: BackElim (C′, k, j)
4: c′k,j = 0
5: end if
6: end for

Algorithm 2.3 (BackElim (C′, k, j) : Back-Elimination).

Require: : extended JacobianC′ and the indicesj, k ∈ V with j ≺ k.
Ensure: : C′ after back-elimination ofc′k,j .

1: for i = 1, .., j − 1 do
2: if c′j,i 6= 0 then
3: if c′k,i 6= 0 then
4: c′k,i+ = c′k,j · c′j,i
5: else
6: c′k,i = c′k,j · c′j,i
7: end if
8: end if
9: end for

Algorithm 2.4 (JExtract (C′,∇F) : Jacobian Extraction).

Require: extended JacobianC′ of F.
Ensure: the values of the Jacobian∇F.

1: for j = 1 to m do
2: for i = 1 to n do
3: f ′

j,i = c′j+n+p,i

4: end for
5: end for

Example 2.1. At this point let us have a look again at our example function with G andC′ as shown
in Figure 2.3 (a) and (b), respectively. In the following explanations we focus on the extended Jacobian.

28 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

Nonetheless, the corresponding DAG transformations are also presented to clarify the relation between
these two structures. Independent and dependent rows are1, 2 and5, 6, respectively. Intermediate rows
are given by3 and4. The latter represents the program variablet. Both rows5 and6 depend on row4 as
c5,4 6= 0 andc6,4 6= 0. Considering the corresponding linearized DAG the local partial derivativesc5,4
andc6,4 are the labels of the outgoing edges(4, 5) and(4, 6) from vertex4, respectively.c4,3 is the label
of the incoming edge(3, 4) to vertex4. The elimination of vertex3 via single back-elimination of the entry
c4,3 is demonstrated in Figure 2.4 (b). Thereby, fill-in and absorption are generated asc4,1 = c4,3 · c3,1
andc4,2+ = c4,3 · c3,2, respectively. A fill-out is generated asc4,3 = 0.

1 2

3

4

5 6

c3,1 c3,2

c4,2

c4,3

c5,4 c6,4

1

0 2

c3,1 c3,2 3

0 c4,2 c4,3 4

0 0 0 c5,4 5

0 0 0 c6,4 0 6

(a) (b)

Figure 2.3: Linearized DAG (a) corresponding to the extended Jacobian (b).

1 2

4

5 6

c
4
,2 +

=
c
4
,3 · c

3
,2c 4

,1
=
c 4
,3
· c

3
,1

c5,4 c6,4

1

0 2

0 0 3

c4,1 c4,2 0 4

0 0 0 c5,4 5

0 0 0 c6,4 0 6

(a) (b)

Figure 2.4: Elimination of Vertex and Row 3 onG (a) andC′ (b), respectively.

Figure 2.5 (a) and (b) illustrate the forward and reverse rowelimination, respectively. In (a), row 3 is
eliminated as first by single back-elimination ofc4,3, resulting in a fill-inc4,1 and an absorptionc4,2 as

c4,1 = c4,3 · c3,1, and c4,2+ = c4,3 · c3,2 .

Fill-out are generated asc4,3 = 0, c3,1 = 0, and c3,2 = 0. Additional elimination of row 4 yields
the eliminated extended JacobiañC′ = C′ − [3, 4], finalizing the process of Jacobian accumulation by
forward row elimination. Likewise, elimination of row 4 (b)by back-elimination of the entriesc5,4 and

2.3. TRADING FILL-OUT FOR FILL-IN 29

c6,4 yields four fill-in as

c5,3 = c5,4 · c4,3, c6,3 = c6,4 · c4,3 c5,2 = c5,4 · c4,2, and c6,2 = c6,4 · c4,2 .

Furthermore, fill-out are generated asc5,4 = 0, c6,4 = 0, c4,2 = 0, andc4,3 = 0. Additional elimination
of row 3 yields the eliminated extended JacobianC̃′ = C′ − [4, 3] that results in four fill-in as

c5,1 = c5,4 · c4,1, c5,2 = c5,4 · c4,2, c6,1 = c6,4 · c4,1, and c6,2 = c6,4 · c4,2 .

This finalizes the process of Jacobian accumulation by reverse row elimination. Hence, accumulating
the Jacobian of our example function in forward and reverse elimination ordering results in totally six
and eight multiplications, respectively. The former results in five fill-in one absorption and seven fill-out,
whereas the latter yields eight fill-in and eight fill-out. Hence, the entriesf ′

j,i with i, j ∈ {1, 2} of the

Jacobian are represented by the entriescj+4,i in the corresponding eliminated extended JacobianC̃′.

As discussed at the end of the previous chapter, the linearized DAG as a data structure to accumu-
late Jacobians by vertex elimination, is dynamic in terms ofmemory access. In opposite, the extended
Jacobian as a sub-diagonal matrix is considered as astatic data structure, as fill-in and fill-out do not
cause any memory allocation and deallocation during the elimination step, respectively. However, the
main problem using extended Jacobians as the internal representation is their quadratic memory usage,
since memory is also allocated for all thosefixed zerosremaining zero over the entire elimination process.
However, we aim to exploit the sparsity of extended Jacobians using the CRS representation to reduce
the memory consumption [VNL06], which is discussed in very detail in Section 2.4. In this context, fill-
in results in additional memory allocation, whereas fill-out represents memory getting freed during the
elimination process. At this point it must be made clear thatthe focus of the following is not on finding
an elimination ordering that minimizes the fill-in. Our goalis rather on finding approaches to reusing
fill-out for fill-in for a given elimination sequence.

Herley [Her93] proposes in a unpublished manuscript that finding a vertex elimination ordering min-
imizing the number of fill-ins on DAGs in the context of Jacobian accumulation is NP-complete. His
work bases on early works on minimizing fill-in [Yan81] in theGaussian elimination process in sparse
linear systems formulated by Rose and Tarjan [RT78] as a vertex elimination problem on directed graphs.
A note on the NP-completeness of this problem is given by Gilbert [Gil80]. Hence, it seems to be very
unlikely to find an elimination ordering minimizing the fill-in in a polynomial time.

2.3 Trading Fill-Out for Fill-In

As already mentioned, the process of Jacobian accumulationby row elimination on extended Jacobians
can result in

• fill-in by changing zero entries to nonzeros,

• fill-out by changing nonzero entries to zeros, and

• absorptionsby updating nonzero entries.

Consider the extended Jacobian of our example function shown at the top of Figure 2.5. Forward and
reverse row elimination result in five and six fill-ins, respectively. This results in five and six additional
memory spots in the corresponding CRS representations, which will be illustrated in Section 2.4 in more
detail. At the same time the former resp. latter yields sevenresp. eight fill-out spots, which can poten-
tially be reused to store fill-in entries as we will discuss below. Thus, the main focus in the following is
on reusing fill-out for fill-in as much as possible to reduce the memory consumption of the CRS represen-
tation of extended Jacobians. Henceforth, whenever we talkabout aspot, we mean a memory unit that is
used to store an extended Jacobian entry.

30 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

1

0 2

c3,1 c3,2 3

0 c4,2 c4,3 4

0 0 0 c5,4 5

0 0 0 c6,4 0 6

1

0 2

0 0 3

c4,1 c4,2 0 4

0 0 0 c5,4 5

0 0 0 c6,4 0 6

1

0 2

0 0 3

0 0 0 4

c5,1 c5,2 0 0 5

c6,1 c6,2 0 0 0 6

1

0 2

c3,1 c3,2 3

0 0 0 4

0 c5,2 c5,3 0 5

0 c6,2 c6,3 0 0 6

1

0 2

0 0 3

0 0 0 4

c5,1 c5,2 0 0 5

c6,1 c6,2 0 0 0 6

C
′ − 3 C ′− 4

C′ − [3, 4] C′ − [4, 3]

C′

(a) (b)

Figure 2.5: Forward (a) and Reverse (b) Row Elimination on Extended Jacobian, respectively.

2.3. TRADING FILL-OUT FOR FILL-IN 31

Notation Summary 2.1. We use the following symbols to classify the extended Jacobian entries with
respect to the type of their spots that we need to analyze the memory pattern resulting from the application
of elimination orderings in combination with fill-out exploitation techniques.

∗ identifies an initial nonzero element.

+ denotes the absorption of an initial nonzero element.

⊛ represents a fill-in.

⊕ marks the absorption of a fill-in.

⊗ marks a fill-out reused for fill-in.

⊚ marks a fill-out.

We introduce in the following two ideas for reusing fill-out.Here, we assume that we want to eliminate
the intermediate rowi.

• Technique 1exploits the fact that the elimination of anycj,i yields fill-out in the current memory
location. Consider the situation shown in Figure 2.6 (a), where the memory spot ofcj,i can be
reused to store the fill-incj,k = cj,i ·ci,k as shown in (b), wherecj,l is absorbed ascj,l+ = cj,i ·ci,l.

p l k

0 ci,l ci,k· · · · · · · · ·

.. .
...

...
...

i

0 cj,l 0 cj,i· · · · · · · · · · · ·

.. .
...

...
...

...

j

(a)

p l k

0 ⊚ ⊚· · · · · · · · ·

. . .
...

...
...

i

0 cj,l 0 cj,k· · · · · · · · · · · ·

. . .
...

...
...

...

j

(b)

Figure 2.6: Memory Pattern before (a) and after (b) the Application of Technique 1.

• Technique 2 exploits the existence of sub-diagonal nonzero entriescj,i 6= 0 with j = i + 1
representing the dependencyi ≺ j between two neighboring rowsi and j also referred to as
immediate successorsas shown in Figure 2.7 (a). After the elimination ofcj,i the entire rowi
becomes zero. Hence, fill-out in rowi can be reused to store fill-in generated in rowj as shown in
Figure 2.7 (b). As a consequence rowj expands into rowi. We denote this by setting the diagonal
entry of the rowi to j. Obviously, the absorptioncj,k+ = cj,i · ci,k could also be placed in the spot
for ci,k to avoidmemory fragmentation in order to achieve better cache efficiency [Tad08].

It is worth mentioning that the elimination of rowi via back-elimination of entriesck,i 6= 0 with
i ≺ k needs to assure the correctness of the calculated partial derivatives as the spot ofci,l is
reused for fill-incj,l = ci,l · cj,i. Nevertheless, this can be either achieved by savingci,l before it
gets overwritten or eliminatingcj,i as the last dependency oni. We note that the initial (ascending)
ordering of row entries may get destroyed by the applicationof Technique 2, which implies alinear
search after the dependenciesover the column index space. An example situation is given when
eliminating rowi in (b), wherecj,l stored in spot ofci,l appears beforecj,h with h < l. However,
this can be avoided by rearranging nonzeros as

cj,h → ci,l, cj,l → ci,k, cj,k → ci,n, and cj,n → cj,i .

32 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

p h l k n

0

...

· · · 0

...

· · · ci,l

...

· · · ci,k

...

· · · ci,n

...

· · ·

. . .

i

0 · · · cj,h · · · 0 · · · cj,k · · · 0 · · · cj,i j

(a)

p h l k n

0

...

· · · 0

...

· · · cj,l

...

· · · ⊚

...

· · · cj,n

...

· · ·

. . .

j

0 · · · cj,h · · · 0 · · · cj,k · · · 0 · · · ⊚ j

(b)

Figure 2.7: Memory Pattern before (a) and after (b) the Application of Technique 2.

Figure 2.8 illustrates the application of fill-out reusing Techniques 1 and 2 introduced above during for-
ward (a) and reverse (b) row (b) elimination. The elimination of row 3 in the former reuses fill-out
according to the Technique 2. Furthermore, the applicationof Techniques 1 and 2 during the elimination
of row 4 in addition results in totally one fill-in and three fill-out. Analog, the elimination of row 4 in
reverse fashion reuses fill-out according to the Techniques1 and 2. Additional application of the Tech-
nique 2 during the elimination of row 3 yields totally two fill-in and four fill-out. Hence, the total number
of necessary spots for accumulating the Jacobian of our example function by row elimination in forward
and reverse orderings is seven and eight, respectively. We remember that eleven and twelve fill-in are
generated without fill-out exploitation as shown in Figure 2.5 (a) and (b), respectively, in forward and
reverse modes. Obviously, the most memory savings are achieved by the application of Technique 2,
which is considered in the following in more detail.

Maximum Immediate Successor Enumeration Problem

In order to maximize the number of reused fill-out spots according to Technique 2, one has to find an
ordering of the rows ofC′ that maximizes the number of immediate successors. We formulate this as the
MAXIMUM IMMEDIATE SUCCESSOR ENUMERATION (MISE) problem on the corresponding DAG ofF.
Therefore, we consider a topological ordering

top : V → {1, . . . , |V |} (2.6)

of the DAG verticesV, wheretop(i) = k is the topological index of vertexi ∈ V. Our main goal is
to find a topological ordering referred to asMISE-orderingof V such that the number of theimmediate
successor edges(i, j) with top(j) = top(i) + 1 is maximal. Theorem 2.1 states the NP-completeness of
the MISE problem. The proof idea was inspired by Andrew Lyons2.

Theorem 2.1. Given a directed acyclic graphG = (V,E) with integer verticesV. The maximum imme-
diate successor enumeration of graph verticesV is NP-complete.

Proof. Let G∗ = (V,E∗) be the transitive closure ofG. It is well-known that there is a bidirectional
mapping betweenG∗ and the corresponding partially ordered set [Sta00](V,<p) also referred to asposet
on the verticesV of G∗. Let

r : V → {1, · · · , |V |}

denote a linear extension of verticesV, such that

∀ i, j ∈ V : i <r j ⇔ r(i) < r(j) ,

2http://www.mcs.anl.gov/lyonsam

2.3. TRADING FILL-OUT FOR FILL-IN 33

1

0 2

∗ ∗ 3

0 ∗ ∗ 4

0 0 0 ∗ 5

0 0 0 ∗ 0 6

1

0 2

⊗ ⊚ 4

0 + ⊚ 4

0 0 0 ∗ 5

0 0 0 ∗ 0 6

1

0 2

⊗ ⊚ 5

0 ⊗ ⊚ 5

0 0 0 ⊚ 5

⊛ 0 0 ⊗ 0 6

1

0 2

∗ ∗ 3

0 ⊗ ⊗ 5

0 0 0 ⊚ 5

0 ⊛ 0 ⊗ 0 6

1

0 2

⊗ ⊚ 5

0 ⊕ ⊚ 5

0 0 0 ⊚ 5

⊛ ⊕ 0 ⊚ 0 6

C
′ − 3 C ′− 4

C′ − [3, 4] C′ − [4, 3]

C′

(a) (b)

Figure 2.8: Reusing Fill-out in Forward (a) Reverse (b) Row Elimination. The symbols⊚,⊗,⊕, and⊛
denote fill-out, reused fill-out, absorption of a fill-in, andfill-in, respectively.

34 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

wherer preserves the topological ordering of graph vertices such that

i <p j ⇒ i <r j .

Considering now two consecutive verticesi andj in the linear expansion withr(j) = r(i) + 1, we have
the following two cases:

• (i, j) ∈ E∗ is a step (an immediate successor edge), or

• (i, j) /∈ E∗ is a jump, otherwise.

The jump [step] numberσ(r) [ω(r)] of G is the minimum [maximum] number of jumps [steps] in the
linear extensionr. Chein and Habib explained in [CH80], that any two DAGs with the same transitive
closure are equivalent with respect to the jump number problem. It follows then that it can be considered
as a problem on the corresponding transitive closureG∗ and poset(V,<p), respectively. Note that every
consecutive pair of vertices inr must either be a jump or a step. In particular, we have

|σ(r)| + |ω(r)| = |V | − 1 .

Thus, any linear extension that maximizes the number of steps, that is, the number of immediate successor
edges will also minimize the number of jumps. Hence, theJUMP NUMBER PROBLEMis obviously the
MISE problem. Pulleyblank [Pul82] has shown that determining the jump number of a poset is NP-
complete. Hence, it follows also that the MISE problem is NP-complete.

Thus, it seems to be unlikely to find an exact MISE-ordering inpolynomial time. However, in the
following we introduce a modified version (TopSortAll) of the exponential recursive algorithm proposed
by Knuth [KS74] that finds all topological arrangement of vertices of a DAG. In addition to that, we
discuss a first idea on reducing the runtime complexity usinga branch and bound [Tal06] algorithm
(TopSortBB) as follows. We note that proof of concept implementation of the ideas below is beyond the
scope of this work.

• TopSortAll computes all topological arrangements and picks out the onewith the maximum num-
ber of immediate successors at the end. The algorithm is exponential in the number of inputs in
worst case.

• TopSortBB uses the branch and bound idea to reduce the complexity of TopSortAll by finding a cri-
terion to cut the recursion at the level that doesn’t lead to aMISE-Ordering of vertices. Therefore,
let al denote the number of the immediate successors among the visited vertices at the recursion
level l ∈ {1, · · · , |V |}. Furthermore,bl = |V | − l denotes the maximum possible number of the
immediate successor edges among the remaining vertices. The idea is to cut the recursion at the
level l, if al + bl ≤ c. Thereby,c denotes the maximum number of immediate successors inG that
is supposed to be initially zero.

ConsiderG andC′ of our example function as shown in Figure 2.3 (a) and (b), respectively. The possible
topological orderings of graph vertices [extended Jacobian rows/columns] are the following.

top1 : 1, 2, 3, 4, 5, 6

top2 : 1, 2, 3, 4, 6, 5

top3 : 2, 1, 3, 4, 5, 6

top4 : 2, 1, 3, 4, 6, 5

Obviously,G consists of totally two maximum immediate successor edges namely(3, 4) and(4, 5) or
(4, 6) over all four possible orderings above from whichtop1 represents the initial one of the DAG by
creation. One can easily figure out that all four topologicalorderings are equivalent in terms of fill-out
exploitation. Hence, there is no need of reorderingG or C′ for this example. The resulting fill-out
exploitation schemes of the initial ordering has already been shown in Figure 2.8.

2.4. SPARSE JACOBIAN ACCUMULATION 35

2.4 Sparse Jacobian Accumulation

As discussed at the beginning of this chapter rows of the extended Jacobian correspond to SAC variables
defined in Equation (1.2). Hence, a row can initially consistof nonzero elements (local partial derivatives)
in the number of the parameters of the respective elemental function. For instance, consider the extended
Jacobian of example function shown in Figure 2.3 with the SACgiven in Example 1.1. Thereby, the row
3 results from the multiplication of two variables, whereasthe unary operationsin yields the row 5.

In the following we illustrate the process of Jacobian accumulation by row elimination under exploita-
tion of the sparsity of extended Jacobians [VNL06], which werefer to assparse Jacobian accumulation by
row elimination(SJARE). It consists of two main steps, namelysymbolicandaccumulation. The former
is concerned with memory prediction by simulating the elimination process on an integer representation
of thesparsity patternof C′ defined by Equation (2.9) at the point of interestx. After termination of the
symbolic elimination process a corresponding static Compressed Row Storage (CRS) [DER86] is allo-
cated. The symbolic step is the focus of Section 2.4.1. The accumulation step uses the CRS allocated
by the former to accumulate the Jacobian atx by initiating the elimination process. But, this time the
elimination happens on real data, that is, on the initialized CRS with the values of ”initial” local partial
derivatives atx by evaluatingF atx. The result of the accumulation step is hence the Jacobian ofF atx.

We note that the extended Jacobian along with its CRS representation are runtime-dependent in the
sense that they depend on the control flow ofF that often is assumed to be fixed, which holds for a bunch
of real world numerical applications. It is worth mentioning that actually this fact is the main motivation
for more and less any sparse approach. However, in general, changes in inputs may change the control
flow of F and hence ”potentially” change the sparsity pattern of the underlying extended Jacobian. The
latter would imply that a new symbolic step has to be performed to get a valid [GJM+99] memory pattern
at the respective point. But, changes in control flow do not necessarily have to lead to changes in the
sparsity pattern ofC′. It is, to some extent, possible that the latter remains unchanged, while the former
changes. This is even more likely when just focusing on the number of spots of rows, regardless of the
orders. Here, changes in the sparsity pattern of rows can be tolerated as long as their total number of spots
does not change. To clarify this let us consider the example situation given in Figure 2.9. For simplicity
let assume that onlyj depends only oni. Let us considerC′(F (x1)) as the extended Jacobian resulting
by evaluatingF at x1. The elimination of the rowi results inC′(F (x1)) − i with one additional spot
for fill-in cj,k. Hence, the rowj requires three spots in total. Now, let assume that the evaluation ofF
at another pointx2 results inC′(F (x2)) with a different dependency pattern compared toC′(F (x1)).
However, eliminatingi here yields the same amount of spots in total as onC′(F (x1)).

More importantly, the memory pattern resulting from the symbolic step is only valid for the given
elimination ordering. Different elimination orderings may require different amounts of memory. Two
classical orderings, forward and reverse, have been illustrated in Figure 2.5 with totally eleven (a) and
twelve (b) memory spots, respectively. The former [latter]results in CRS representation that is used
in Example 2.2 [2.3] to accumulate the target Jacobian.

In the following we use CRS consisting of

• a floating point value vectorα,

• an integer column index vectorκ, and

• an integer row position vectorρ

to exploit the sparsity of extended Jacobians. The value vector α contains row-wise the nonzero entries
of C′ with the corresponding column indices stored inκ. Hence, bothα andκ vectors are of the same
length that we denote bynz, which in our case represents the total number of memory spots detected by
the symbolic step. Thereby, the column index of the elementα(i) is stored inκ(i) for i = 1, · · · , nz. The
vectorρ is of lengthq+1 with ρ(q+1) = nz+1 marking the end of the last extended Jacobian row.ρ(i)

36 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

p l k

ci,p 0 ci,k· · · · · · · · ·

. . .
...

...
...

i

cj,p 0 0 cj,i· · · · · · · · · · · ·

. . .
...

...
...

...

j

C′(F (x1))

p l k

⊚ 0 ⊚· · · · · · · · ·

. . .
...

...
...

i

cj,p
︸︷︷︸

+=cj,i·ci,p

0 cj,k
︸︷︷︸

=cj,i·ci,k

⊚· · · · · · · · · · · ·

. . .
...

...
...

...

j

C′(F (x1))− i

p l k

ci,p 0 ci,k· · · · · · · · ·

. . .
...

...
...

i

0 0 cj,k cj,i· · · · · · · · · · · ·

. . .
...

...
...

...

j

C′(F (x2))

p l k

⊚ 0 ⊚· · · · · · · · ·

. . .
...

...
...

i

cj,p
︸︷︷︸

=cj,i·ci,p

0 cj,k
︸︷︷︸

+=cj,i·ci,k

⊚· · · · · · · · · · · ·

. . .
...

...
...

...

j

C′(F (x2))− i

Figure 2.9: Identically Amount of Storage on two structurally different Extended Jacobians.

with i ∈ {n+1, · · · , q} contains the position of the first nonzero element of rowi. The firstn elements of
ρ correspond to the independent rows, which are initialized to zero. Obviously, the length of a rowi ∈ V
can be gained byρ(i+1)−ρ(i). Henceforth, we denote the CRS representation by(α, κ, ρ). At this point
let us have a look at the initial extended Jacobian of our example function as shown in Figure 2.3 (b). Its
CRS representation is as follows.

α = (c3,1, c3,2, c4,2, c4,3, c5,4, c6,4)

κ = (1, 2, 2, 3, 4, 4)

ρ = (0, 0, 1, 3, 5, 6, 7)

Rows 1 and 2 are independent, henceρ(1) = ρ(2) = 0. The first nonzero entry of row 3 is stored in
α(1), henceρ(3) = 1. Similarly,ρ(4) = 3 points toα(3) containing the first nonzero element of the row
4 with the column index stored inκ(3). The differenceρ(4) − ρ(3) yields two as the length of row 3.
However, as discussed previously fill-in has to be taken intoaccount to provide enough memory needed
for Jacobian accumulation on CRS representation of extended Jacobians. Analog to Equation (2.5) for
extended Jacobians the elimination of all intermediate rows in the given orderσ yields theeliminated
CRS

(α̃, κ̃, ρ̃) = (α, κ, ρ)− σ ≡ (α, κ, ρ)− [σ(1), . . . , σ(p)] .

Example 2.2. The following CRS is used to accumulate the Jacobian∇F of our example function by
forward row elimination. Fill-in spotsα(3) of row 4,α(6), α(7) of row 5, andα(9), α(10) of row 6 are

2.4. SPARSE JACOBIAN ACCUMULATION 37

initialized to zero at the beginning of the elimination process. Hence, we get the following initial CRS.

α = (c3,1, c3,2, 0, c4,2, c4,3, 0, 0, c5,4, 0, 0, c6,4)

κ = (1, 2, 1, 2, 3, 1, 2, 4, 1, 2, 4)

ρ = (0, 0, 1, 3, 6, 9, 12)

• Elimination of row3 yields(α, κ, ρ)− 3 as

α = (0, 0, c4,1, c4,2, 0, 0, 0, c5,4, 0, 0, c6,4)

κ = (0, 0, 1, 2, 3, 1, 2, 4, 1, 2, 4)

ρ = (0, 0, 1, 3, 6, 9, 12)

with c4,1 = c3,1 · c4,3 andc4,2+ = c3,2 · c4,3.

• Elimination of row4 yields(α̃, κ̃, ρ̃) = (α, κ, ρ)− [3, 4] as

α = (0, 0, 0, 0, 0, c5,1, c5,2, 0, c6,1, c6,2, 0)

κ = (0, 0, 0, 0, 0, 1, 2, 0, 1, 2, 0)

ρ = (0, 0, 1, 3, 6, 9, 12)

with c5,1 = c4,1 · c5,4, c5,2 = c4,2 · c5,4, c6,1 = c4,1 · c6,4, andc6,2 = c4,2 · c6,4.

Example 2.2 illustrates the accumulation of the Jacobian ofthe example function by row elimination
in forward ordering as described in Algorithm 2.5.

Algorithm 2.5 (JRowElim ((α, κ, ρ), σ) : Jacobian by Row Elimination).

Require: CRS representation(α, κ, ρ) of C′ and the elimination orderingσ.
Ensure: (α, κ, ρ) after elimination of all intermediate rows inσ order.

1: for j = σ(1) to σ(p) do
2: RowElim ((α, κ, ρ), j)
3: for l = ρ(j) to ρ(j + 1)− 1 do
4: if α(l) 6= 0 then
5: α(l) = 0
6: κ(l) = 0
7: end if
8: end for
9: end for

Therefore, rowj = 3 in line 2 is eliminated by back-elimination of the entryα(5) = c4,3 as shown
in line 4 of Algorithm 2.6.

Algorithm 2.6 (RowElim ((α, κ, ρ), j) : Row Elimination).

Require: : CRS representation(α, κ, ρ) of C′ and the row indexj ∈ Z.
Ensure: : (α, κ, ρ) after elimination of the intermediate rowj.

1: for k = q to j − 1 do
2: l = Find ((α, κ, ρ), k, j)
3: if l > 0 and α(l) 6= 0 then

38 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

4: BackElim ((α, κ, ρ), k, j, l)
5: α(l) = 0
6: κ(l) = 0
7: end if
8: end for

As shown, for instance, in line 2 of Algorithm 2.6 a naive linear index search as described in Algo-
rithm 2.8 is used to find the dependencyck,j . Thereby, rowk depends on rowj if

l ≥ 0 and κ(l) == j and α(l) 6= 0 .

Algorithm 2.7 (BackElim ((α, κ, ρ), k, j, l) : Back-Elimination).

Require: : CRS representation(α, κ, ρ) of C′ andj, k ∈ V with j ≺ k andl ∈ {ρ(k), . . . , ρ(k)− 1}.
Ensure: : (α, κ, ρ) after elimination ofck,j .

1: for l1 = ρ(j) to ρ(j + 1)− 1 do
2: if l1 > 0 and α(l1) 6= 0 then
3: l2 = Find ((α, κ, ρ), k, κ(l1))
4: if l2 > 0 then
5: if κ(l2) == κ(l1) then
6: α(l2)+ = α(l1) · α(l)
7: else
8: α(l2) = α(l1) · α(l)
9: κ(l2) = κ(l1)

10: end if
11: end if
12: end if
13: end for

Algorithm 2.8 (Find ((α, κ, ρ), j, i)).

Require: (α, κ, ρ) of C′ and the indicesj, i ∈ V with i < j.
Ensure: Positionl ≥ 1 if existsl such thatκ(l) == i, or κ(l) == 0, otherwisel = 0 of the elementcj,i

in CRS.

1: p = 0
2: found = false
3: for l = ρ(j) to ρ(j + 1)− 1 do
4: if κ(l) == 0 and found == false then
5: p = l
6: found = true
7: end if
8: if κ(l) == i then
9: return l

10: end if
11: end for
12: if p == 0 then
13: print ERROR : CRS Invalidity!
14: end if

2.4. SPARSE JACOBIAN ACCUMULATION 39

15: return p

The algorithm returns an integer value larger than zero as the position of the target entry inα, oth-
erwise zero meaning that no spot is allocated for the target entry. However, this indicates that CRS
is not valid at the current point for the reasons have been discussed at the beginning of this section.
As an alternative, binary index search can also be applied when the ascending ordering ofκ during
the entire elimination process is guaranteed. This is for example the case when not reusing fill-out
for fill-in according to the Technique 2 as discussed in Section 2.3. As only rowk = 4 depends
on row 3, single back-elimination ofα(5) = c4,3 is enough to eliminate row 3 yielding the fill-in
α(3) = c4,1 = c3,1 · c4,3 with κ(3) = 1, the absorptionα(4) = c4,2+ = c3,2 · c4,3 with κ(4) = 2, and
the fill-outsα(5) = κ(5) = 0, α(1) = κ(1) = 0, andα(2) = κ(1) = 0. Additional elimination of row 4
yields(α̃, κ̃, ρ̃) containing the nonzero entries of∇F as

f ′
1,1 = α(6) = c5,1, f ′

1,2 = α(7) = c5,2, f ′
2,1 = α(9) = c6,1, and f ′

2,2 = α(10) = c6,2 .

Algorithm 2.9 (JExtract ((α, κ, ρ),∇F) : Jacobian Extraction).

Require: (α, κ, ρ) and the zero Jacobian∇F = 0.
Ensure: the Jacobian∇F with numerical values.

1: for j = 1 to m do
2: for i = 1 to n do
3: l = Find ((α, κ, ρ), j+ n+ p, i)
4: if l > 0 and κ(l) == i then
5: f ′

j,i = α(l)
6: end if
7: end for
8: end for

Thus, the accumulation of the example Jacobian in forward ordering needs totally eleven spots instead
of fifteen that are needed to store the entire sub-diagonal matrix C′. Thus, we save four memory spots
for this little example. However, our experimental resultsshow that the savings are more substantial
for larger problems. Once the elimination process terminates Algorithm 2.9 can be used to extract the
Jacobian∇F from (α̃, κ̃, ρ̃). Analog, Example 2.3 illustrates the reverse row elimination with a memory
consumption of totally twelve spots as shown in Figure 2.5 (b).

Example 2.3. The following CRS is used to accumulate∇F of our example function by reverse row
elimination. Fill-in spotsα(5),α(6), α(7) of the row 5, andα(9),α(10),α(11) of the row 6 are initialized
to zero.

α = (c3,1, c3,2, c4,2, c4,3, 0, 0, 0, c5,4, 0, 0, 0, c6,4)

κ = (1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4)

ρ = (0, 0, 1, 3, 5, 9, 13)

• Elimination of column4 yields(α, κ, ρ)− 4 as

α =(c3,1, c3,2, 0, 0, 0, c5,2, c5,3, 0, 0, c6,2, c6,3, 0)

κ = (1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4)

ρ =(0, 0, 1, 3, 5, 9, 13)

with c5,2 = c4,2 · c5,4, c5,3 = c4,3 · c5,4, c6,2 = c4,2 · c6,4, andc6,3 = c4,3 · c6,4.

40 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

• Elimination of column3 yields(α, κ, ρ)− [4, 3] as

α = (0, 0, 0, 0, c5,1, c5,2, 0, 0, c6,1, c6,2, 0, 0)

κ = (1, 2, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4)

ρ = (0, 0, 1, 3, 5, 9, 13)

with c5,1 = c3,1 · c5,3, c5,2+ = c3,2 · c5,3, c6,1 = c3,1 · c6,3, andc6,2+ = c3,2 · c6,3.
Definition 2.2. Given an extended JacobianC′ and a CRS representation(α, κ, ρ). The memory con-
sumption ofC′ and(α, κ, ρ) are defined as

Mem(C′) =

q∑

i=1

(i− 1) · µF (2.7)

and
Mem(CRS) = Mem(α) +Mem(κ) +Mem(ρ) , (2.8)

respectively. Thereby,Mem(α) = nz·µF ,Mem(κ) = nz·µI , andMem(ρ) = (q+1)·µI ,whereµF and
µI denote the number of bits for floating-point and integer datatypes, respectively.Mem(·) is assumed
to return the memory size of the argument data type in bits. Obviously, the smaller the number of entire
nonzeros (nz) the bigger the memory savings for CRS compared to its dense representation. In opposite,
memory saving shrinks with increasingnz that in worst case may end up withMem(CRS) > Mem(C′)
because of memory overhead ofκ andρ. However, such situation are unlikely at least for the test cases
considered here as discussed in Section 2.4.2.

So far we have discussed the Jacobian accumulation process on compressed row storage represen-
tation of extended Jacobians under the assumption that the given memory pattern is valid at the point
of interest. However, the focus of the following section is on symbolic step. Therefore, we proposes
algorithms to predict the memory requirement for CRS representation of extended Jacobians for a given
elimination ordering. We note again that conservatively any variation in inputs that changes the sparsity
pattern ofC′ requires new memory detection. However, the memory usage remains unchanged at all
those points, where the sparsity pattern ofC′ does not change. Obviously, one and the same CRS can be
used to accumulate the Jacobian at all those points.

2.4.1 Symbolic Elimination

In the following we present conceptual algorithms and discuss them with the help of examples that are
used in this work to predict the memory pattern required for Jacobian accumulation on CRS of extended
Jacobians, where the resulting memory scheme depends very much on the given elimination orderingσ.
Therefore, we use thebit pattern

BP = BP (C′)

representation of the extended JacobianC′, which can be obtained from itssparsity pattern

P = P (C′) ≡ (pj,i)i,j=1,...,q with pj,i ∈ {0, 1} (2.9)

with 1’s denoting nonzero entries. Each rowj ∈ V of BP corresponds to rowj of P. The latter is

decomposed intobj =
⌈

j
µI

⌉
blocks of lengthµI as the number of integer bits.BP (j, k) with k ∈

{1, · · · bj} stores the integer value represented by blockk. The direct dependence of rowj on row i on
BP is given as

i ≺ j ⇔ pj,i = 1 ⇔ BP (j, bi)& 2e = 1 ,

2.4. SPARSE JACOBIAN ACCUMULATION 41

wherebi =
⌈

i
µI

⌉
ande = (i − 1) % µI with & resp. % denoting bit-wise AND resp. OR operators as

explained in Notation Summary 2.2. Henceforth, we considerP andBP as equivalent and prefer to use
i ≺ j to denote the dependency of rowj on row i onBP whenever appreciate. Moreover, every rowj
consists of one additional element asBP (j, k + 1) to store its total number of required memory spots.

Definition 2.3. The memory consumptionMem(BP) of the bit patternBP is defined as

Mem(BP) =

q∑

j=1

(bj + 1) · µI , (2.10)

wherebj =
⌈

j
µI

⌉
denotes the number ofµI -blocks of rowj ∈ V .

Notation Summary 2.2. The following symbols are used in the context of symbolic elimination algo-
rithms.

| represents bit-wise OR operation.

|| represents logical OR operation.

% represents the modulus operation.

& represents bit-wise AND operation.

⌈·⌉ represents round up operation.

&& represents logical AND operation.

1

0 2

1 1 3

0 1 1 4

0 0 0 1 5

0 0 0 1 0 6







0 0

0 0

3 2

6 2

8 0 1

8 0 1







(a) (b)

Figure 2.10: Sparsity PatternP (a) and the corresponding 4-bit Integer Bit PatternBP (b).

As an example let us consider the sparsity pattern and its 4-bit integer 3 i.e. µI = 4 bit pattern
representation of the extended Jacobian of our example function shown in Figure 2.10. Thereby, we have

BP (3, 1) = 20 + 21 = 3; BP (3, 2) = 2;

BP (4, 1) = 21 + 22 = 6; BP (4, 2) = 2;

BP (5, 1) = 23 = 8; BP (5, 2) = 0; BP (5, 3) = 1;

BP(6,1) = 23 = 8; BP(6,2) = 0; BP(6,3) = 1 .

3We consider 4-bit integers just for illustration purposes.Realistic number are 32-bit and 64-bits integers dependingon the
underlying hardware.

42 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

Consider row 6 ofBP , it is decomposed into⌈ 6
4⌉ = 2 blocks of 4-bit integers. Hence, the first block

yields the integer value8 = 23 stored inBP (6, 1), whereas the second one is 0.BP (6, 3) = 1 indicating
that row 6 requires initially a single memory spot. The dependency4 ≺ 6 is given asBP (6, 1) & 23 = 1.
Thus, the detection of the memory consumption of SJARE in a given orderσ can be performed by the
application of symbolic row elimination to the initial bit patternBP yielding eliminated bit pattern

B̃P = BP − σ := BP − [σ(1), . . . , σ(p)] .

Here, the initialization of the bit pattern is performed during the evaluation process of the underlying
function using Algorithm 2.15 at runtime. Moreover, Algorithm 2.10 eliminates rows ofBP in σ-order
by symbolic back-elimination of their nonzero entries. Henceforth, we use the notationsymbolic forward
andsymbolic reverseto refer to the symbolic forward and symbolic reverse row elimination on the bit
pattern, respectively. The former and latter detect the required amount of memory for accumulating
the Jacobian on the respective CRS in forward and reverse ordering as illustrated in Example 2.2 and
Example 2.3, respectively. The respective memory detections for the former and latter are illustrated in
Example 2.4 and Example 2.5, respectively.

We note that the symbolic algorithm needs to take the memory spots of fill-out into account. One
way to do this is by keeping the corresponding 1’s that we refer to asfill-out 1’s in BP to yield the entire
memory usage of the given elimination ordering at the end of the symbolic elimination as described
by Algorithm 2.10. This enables us to keep nonzero entries ofrows in CRS in ascending order, which is
the case here. Moreover, this would allow more efficient binary index search over kappa entries than the
linear one presented in Algorithm 2.8 under, however the assumption that the ordering remains unchanged
over entire elimination process. However, we will considerin the following the latter as it is also used
in context of iterative approach to deal with the memory bound. In that context keeping fill-out 1’s is
not necessary as the ordering of the kappa elements is not required as explained in much more detail in
Section 2.6. In particular, it is enough to maintain the maximum number of nonzeros of rows over entire
iterations. However, how much improvement on SJARE the binary search would contribute remains an
open question.

Now, as an example let us consider the elimination of row 3 onP shown in Example 2.4. Bold
1’s such asp4,1 represent fill-in. Fill-out 1’s corresponding top3,1, p3,2, andp4,3 remain unchanged.
Thus, they have to be ignored in further elimination process. For instance, additional elimination of row
4 should avoid the generation of fill-inp5,3 andp6,3, sincep4,3 represents a fill-out 1. In other words,
fill-out 1’s should not be interpreted as dependencies during the elimination. Doing this, we get only
four fill-ins (instead of six) by the elimination of row 4 thatresults in total memory spots of eleven. The
identification of a fill-out bit inBP that corresponds to a 1 in the respective sparsity patternP can be
done by introducing a Boolean vector

D ∈ {false, true}q

of lengthq used inAlgorithm 2.10 to mark eliminated rows.D is assumed to be initially false. After
the elimination of rowj ∈ {σ(1) . . . , σ(p)}, we mark rowj as eliminated byD(j) = true as shown
in line 3. Hence, apj,i = 1 ∈ P with j ∈ {n + 1, . . . , q}, andi ∈ {1, . . . , j − 1} represents a fill-out
if and only if D(j) = true or D(i) = true. The proof follows immediately from Equation (2.3) and
Equation (2.4), where the elimination of a rowj results in fill-outsck,j = 0 andcj,i = 0 for all j ≺ k and
i ≺ j, respectively. With other words, after the elimination of the rowj all nonzeros of row and column
j are set to zero; hence they denote fill-out.

We note that the implementation of symbolic algorithms introduced here might be different. In par-
ticular, we duplicate bit pattern rows to avoid element-wise fill-in detection as shown in line 5 of Algo-
rithm 2.12. Therefore, the first instance of a row is supposedto keep the real dependencies, whereas the
other contains fill-out 1’s additionally that would enable amuch faster block-wise binary OR (|) over bit

2.4. SPARSE JACOBIAN ACCUMULATION 43

pattern rows. However, this doubles the memory consumptionof bit pattern as our experimental results
will show.

Example 2.4. We illustrate in the following symbolic forward row elimination as described in Algo-
rithm 2.10 onBP shown in Figure 2.10 (b) that yields the memory pattern of theCRS used in Exam-
ple 2.2.

1. Elimination of row 3 yieldsBP − 3 with 7 = 20 + 21 + 22 as follows.

1

0 2

1 1 3

1 1 1 4

0 0 0 1 5

0 0 0 1 0 6







0 0

0 0

3 2

7 3

8 0 1

8 0 1







P − 3 BP − 3

2. Elimination of row 4 yieldsBP − [3, 4] with 11 = 20 + 21 + 23 as follows.

1

0 2

1 1 3

1 1 1 4

1 1 0 1 5

1 1 0 1 0 6







0 0

0 0

3 2

7 3

11 0 3

11 0 3







P − [3, 4] BP − [3, 4]

Hence, forward row elimination on the CRS of our example function requires11 = 2 + 3 + 3 + 3 spots.

Algorithm 2.10 (JSRowElim (BP, D, σ) : Memory Prediction for SJARE).

Require: bit patternBP, initially false Boolean vectorD of lengthq, and the elimination orderingσ.
Ensure: BP after the symbolic elimination of all intermediate rows inσ order.

1: for j = σ(1) to σ(p) do
2: SRowElim (BP, D, j)
3: D(j) = true

4: end for

Algorithm 2.11 (SRowElim(BP, D, j) : Symbolic Row Elimination).

44 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

Require: bit patternBP of the extended JacobianC′.
Ensure: BP after symbolic elimination of rowj.

1: e = (j − 1) % µI

2: bj =
⌈

j
µI

⌉

3: for k = q to j − 1 do
4: if BP (k, bj)&2e == 1 and D(k) == false then
5: SBackElim (BP, D, j, k, bj)
6: end if
7: end for

Algorithm 2.12 (SBackElim(BP, D, j, k, bj) : Symbolic Back Elimination).

Require: BP , row indexj, block indexl, and bit positionm.
Ensure: filled bit patternBP after front-elimination of the dependency((l − 1) · µI +m) ≺ j with

1: for l = 1 to bj do
2: for m = 0 to µI − 1 do
3: i = (l − 1) · µI +m
4: if D(i) == false and BP (j, l)&2m == 1 and BP (k, l)&2m == 0 then
5: BP (k, l) = BP (k, l) | 2m
6: BP (k,

⌈
k
µI

⌉
+ 1) = BP (k,

⌈
k
µI

⌉
+ 1) + 1

7: end if
8: end for
9: end for

Example 2.5. We illustrate in the following the symbolic reverse row elimination according to Algo-
rithm 2.10 onBP shown in Figure 2.10 (b) yielding the memory pattern of the CRS used in Example 2.3.

1. Elimination of column 4 yieldsBP − 4 with 14 = 21 + 22 + 23 as follows.

1

0 2

1 1 3

0 1 1 4

0 1 1 1 5

0 1 1 1 0 6







0 0

0 0

3 2

6 2

14 0 3

14 0 3







P − 4 BP − 4

2. Symbolic elimination of column 3 yieldsBP − [4, 3] with 15 = 20 + 21 + 22 + 23 as follows.

2.4. SPARSE JACOBIAN ACCUMULATION 45

1

0 2

1 1 3

0 1 1 4

1 1 1 1 5

1 1 1 1 0 6







0 0

0 0

3 2

6 2

15 0 4

15 0 4







P − [4, 3] BP − [4, 3]

Hence, reverse column elimination on CRS of our example function requires12 = 2 + 2 + 4 + 4 spots.

Algorithm 2.13 describes the CRS construction after the termination of the symbolic elimination
procedureSJRowElim(BP, D, σ) described in Algorithm 2.10. The lines 3, 11, and 12 call the routine
allocate(v, len), which allocates the memory for vectorv = α, κ, ρ of the lengthlen. Since no local
partial derivatives are evaluated in symbolic modeα is initialized to zero as shown in line 21. On the
contrary, bothκ andρ vectors as shown in lines 5, 10, 15, 22, and 28 are initializedproperly according
to the memory pattern given bỹBP. Thereby,ρ(q + 1) = len+ 1 in line 10 marks the end ofqth row.
For a nonzero rowj, ρ(j) in line 15 is initialized to the current counterc. The counter incrementation of
line 23 yieldsρ(j + 1) = c+ nzj denoting the start position of the next rowj + 1, wherenzj represents
the number of nonzeros of rowj. Fornzj = 0 the counter remains unchanged and thus we setρ(j) = c
as shown in line 28. Is worth mentioning that the correspondingκ part of each nonzero rowj initialized
in line 22 is in ascending order. Furthermore, we save the initial ordering ofκ elements inκsave, which
is used to reuse CRS for the accumulation∇F at another point of interest assuming the CRS validity in
terms of memory pattern for that point. Once CRS is constructed Algorithm 2.14 can be used to insert
local partial derivatives into CRS.

Algorithm 2.13 (ConstructCRS(BP, (α, κ, ρ), κsave) : CRS Construction).

Require: Bit patternBP containing the amount of spots for CRS(α, κ, ρ).
Ensure: Initialized (α, κ, ρ) andκsave.

1: c = 1
2: len = 0
3: allocate(ρ, q+ 1)
4: for i = 1 to n do
5: ρ(i) = 0;
6: end for
7: for j = n+ 1 to q do
8: len = len+BP (j,

⌈
j
µI

⌉
+ 1)

9: end for
10: ρ(q + 1) = len+ 1
11: allocate (α, len)
12: allocate (κ, len)
13: for j = n+ 1 to q do

14: if BP (j,
⌈

j
µI

⌉
+ 1) > 0 then

15: ρ(j) = c

16: bj =
⌈

j
µI

⌉

46 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

17: for l = 1 to bj do
18: for m = 0 to µI − 1 do
19: i = (l − 1) · µI +m
20: if BP (j, l)&2m == 1 then
21: α(c) = 0
22: κsave(c) = κ(c) = i
23: c = c+ 1
24: end if
25: end for
26: end for
27: else
28: ρ(j) = c
29: end if
30: end for

Algorithm 2.14 (Put((α, κ, ρ), j, i, cj,i) : Linear Partial Derivative Insertion).

Require: (α, κ, ρ) after construction step in Algorithm 2.13 and the value ofcj,i.
Ensure: (α, κ, ρ) containing the partial derivativecj,i.

1: l = Find((α, κ, ρ), j, i)
2: if l > 0 then
3: if κ(l) == i then
4: α(l) = cj,i
5: else
6: α(l) = cj,i
7: κ(l) = i
8: end if
9: end if

Algorithm 2.15 (SPut (BP, j, i) : Symbolic Nonzero Insertion).

Require: BP and indicesi, j ∈ V with i ≺ j.
Ensure: BP with additional entry on rowj representingcj,i.

1: k1 =
⌈

i
µI

⌉

2: k2 =
⌈

j
µI

⌉
+ 1

3: e = (i − 1) % µI

4: if BP (j, k1)&2e == 0 then
5: BP (j, k1) = BP (j, k1) + 2e

6: BP (j, k2) = BP (j, k2) + 1
7: end if

Algorithm 2.16 (ResetCRS((α, κ, ρ), κsave) : CRS Reset).

Require: (α, κ, ρ), and initial column index vectorκsave.
Ensure: Reseted CRS to the initial state resulted by Algorithm 2.13;

1: for i = n+ 1 to q do

2.4. SPARSE JACOBIAN ACCUMULATION 47

2: for l = ρ(i) to ρ(i+ 1)− 1 do
3: α(l) = 0
4: κ(l) = κsave(l)
5: end for
6: end for

Assumption 2.1. The control flow ofF is fix in I ⊆ D.

In the following we focus our interest on the Jacobian ofF at multiple pointsx ∈ I, for which
Assumption 2.1 holds. Hence, the Jacobian ofF at any point inI can be accumulated on a static CRS
resulting from a single symbolic step as described in the following.

Procedure 2.1. The process of sparse Jacobian accumulation on a static compressed row storage as
shown in Figure 2.11 can be summarized as follows. Here, the arrows correspond to the routine calls,
whereas boxes represent the reached state after the routinecall attached to the corresponding incoming
arrows.

• (SYM)Symbolic Modeshown in the left column:

1. BP is initialized during the evaluation ofF at pointx by callingSPut(BP,j,i) attached
to arrow 1 for all j = n+ 1, . . . , q with i ≺ j as described in Algorithm 2.15.

2. The filled bit patternB̃P is computed by callingJSRowElim(BP, D, σ) attached to arrow 2.

3. CRS is constructed by callingConstructCRS(~BP, (α, κ, ρ), κsave) attached to arrow 3.

• (ACC)Accumulation Mode shown in the right column:

1. CRS is initialized by the evaluation ofF at pointx by calling Put((α, κ, ρ), j, i, cj,i) at-
tached to arrow 4 for allj = n+ 1, . . . , q with i ≺ j.

2. The eliminated CRS(α̃, κ̃, ρ̃) is computed by callingJRowElim((α, κ, ρ), σ) attached to ar-
row 5.

3. The Jacobian∇F (x) is extracted from(α̃, κ̃, ρ̃) by callingJExtract((~α, ~κ, ~ρ),∇F) attached
to arrow 6.

4. The steps 1-3 can be repeated to accumulate Jacobian at another point of interest after reset-
ting the CRS to the initial state by callingResetCRS ((~α, ~κ, ~ρ), κsave) attached to arrow 7.

2.4.2 Numerical Results

In the following we present numerical results on the entire process of Jacobian accumulation by row elim-
ination on dense extended Jacobians (DJARE) as well as the respective CRS representations (SJARE).
Henceforth, we will use CRS in our plots to denote the runtimeand memory measurements for SJARE,
which the sum of those of the symbolic and accumulation steps. Henceforth, we use the terminologies:

• DEJ to denote the dense extended Jacobian, and

• GFM and GRM to refer to the Jacobian accumulation on DEJ/CRS in forward and reverse ordering,
respectively. Here, the entire DEJ/CRS is assumed to fit intothe available memory. Otherwise, no
Jacobian accumulation is possible in this mode. We refer to this case also asnon-iterativemode.

48 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

Operator Overloading

y = F (x) in C/C++

vj = ϕj(vi)i≺j

j = n+ 1, · · · q

Initialized Bit Pattern

BP =̂ P ′

Filled Bit Pattern

B̃P

Initialized CRS

(α, κ, ρ) =̂ C′

Eliminated CRS

(α̃, κ̃, ρ̃) =̂ C̃′

Jacobian Matrix

∇F (x)

1 :
: S
Pu
t (
BP
, j
, i
)

4 :: Put ((α, κ, ρ), j, i, c
j,i)

2
::
J
S
R
o
w
E
l
i
m
(B
P
,
D
,σ

)

5
::
J
R
o
w
E
l
i
m
((α

,κ
,ρ
),σ

)3
::
Co
ns
tr
uc
tC
RS
(
~BP
, (
α,
κ,
ρ)
, κ

sa
ve
)

6
:: J

Ex
tr
ac
t (
(~α
, ~κ
, ~ρ
),∇

F)

7
::
R
e
s
e
t
C
R
S
((
~α
,~κ

,
~ρ
),
κ
s
a
v
e
)

Figure 2.11: Process of Jacobian accumulation via Elimination of Rows on CRS inσ-order.

2.4. SPARSE JACOBIAN ACCUMULATION 49

The tests are performed using the C++ operator overloading tool DALG attached to this work on an Intel
Xeon X7460 @2.66GHz with 4 CPUs, 6 Cores per CPU, 3x3MByte L2-Cache, 16MByte L3-Cache, and
totally 128 GByte RAM representing a node of the linux SMP cluster at Computing and Communication
Center of the RWTH Aachen University.

The state-of-the-art implementation of DALG implements almost all algorithms and ideas illustrated
in this chapter, except for those for reusing fill-out for fill-in as explained in Section 2.3. We emphasize
that DALG stores almost all of its internal data structures such as DEJ and CRS on heap.

Bratu Problem

As first test case we consider an implementation of the two-dimensional Solid Fuel Ignition problem
also known as the Bratu problem from MINPACK-2 test problem collection [ACM91]. As described by
Naumann[Nau11], the residual function shown in Listing 2.1is the result of replacing the differential

∆y ≡ ∂2y

∂x2
0

+
∂2y

∂x2
1

in the elliptic partial differential equation

∆y − λ · ey = 0

with a set of algebraic equations using finite difference approximation as basic discretization method on
the unit squareΩ = [0, 1]2 denoting the boundary domain. The total runtime and heap memory behavior
of DALG in non-iterative mode are shown in Figure 2.12 (a) and(b), respectively. The memory plot
(b) indicates the maximum allocated heap memory during the entire Jacobian accumulation on DEJ resp.
CRS forn = 12, 16, . . . , 100, where the inputx is an × n floating point matrix. As one can see, the

20 40 60 80 100

100

101

102

103

104

n : PROBLEM SIZE

R
U

N
T

IM
E

[S
E

C]

DEJ, GFM
DEJ, GRM
CRS, GFM
CRS, GRM

20 40 60 80 100

101

102

103

104

105

n : PROBLEM SIZE

M
E

M
O

R
Y

[M
B

Y
T

E
]

DEJ
CRS

(a) (b)

Figure 2.12: Runtime (a) and Memory (b) Behavior of DALG on Bratu in Non-Iterative Mode.

memory usage of DALG for computing the Jacobian of the dimension (n2 × n2) of the Bratu function is
reduced drastically using CRS. The achieved gain on memory is about a factor of thirty-one forn = 100.
More precisely, forn = 100 DEJ allocates roughly 90167 MByte of memory on heap, whereasCRS
needs 2837 MByte for the same dimension. We note again that weduplicate bit pattern rows to keep
right dependencies as well as total required memory as discussed in Section 2.4.1. Thus, the gain factor
of thirty-one seems to be reasonable on our 64-bit test machine described above.

50 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

We note that the memory measurements are given as integer values in MByte. Moreover, the memory
usage of CRS in both forward and reverse orderings are approximately the same in all of our experiments
with Bratu. Hence, we present only memory usage of the formerin Figure 2.12 (b). To clarify this, let
us have a closer look at runtime and memory data of DALG ofn = 52 as shown in Table 2.1. Here,
forward and reverse elimination yield 88800 and 44800 fill-ins, respectively. Thus, the respective CRS of
the former requires44000 = 88800− 44800 more spots, that is, 704000 Bytes as

704000 = 44000× µF + 44000× µI for µF = 8 and µI = 8 .

Hence, we get0.67 ≈ 704000/(1024)2 MByte, which is negligibly small. In an analogous manner, it
holds forn = 100. Obviously, memory usage of DEJ is fixed for both orderings. Asshown in (a), the

Elimination Mode Time(DEJ) Time(CRS) #Muls #Fill-in #Entries ω

Forward (n = 52) 110 sec. 92 sec. 93800 88800 141100 0.531259
Reverse (n = 52) 39 sec. 15 sec. 49800 44800 97100 0.0657922
Forward (n = 100) 3162 sec. 7159 sec. 362600 343392 544684 0.531108
Reverse (n = 100) 1082 sec. 1556 sec. 191688 172480 373772 0.0657927

Table 2.1: Summary of DALG Measurement Data for Bratu.

reverse elimination exhibits better runtime results on both DEJ and CRS. Thereby, non-iterative forward
and reverse elimination show better runtime behavior on DEJby increasing the dimensionn than on their
CRS counterpart. However, the former can not be used furtherto handle higher dimensions because of
the memory bandwidth.

Therefore, let us consider again Table 2.1. As one can see, reverse elimination on DEJ is factor of
roughly2.8 ≃ 110

39 faster than forward one. This becomes clear when considering the multiplication ratio
1.9 ≃ 93800

49800 . The same holds in fact for reverse elimination on CRS that is afactor of roughly6.1 ≃ 92
15

faster than forward. We suspect the reason for this might be the better performance of the linear spot
search routineFind(·) described in Algorithm 2.8 for reverse ordering with knowledge that the forward
elimination yields a factor of roughly1.45 ≈ 141100

97100 more nonzeros than its counterpart. In order to
analyze this, we compute the average linear search ratio

ω = a · ω +
(1− a) · d

l
with a =

c− 1

c

for every call ofFind(·) on CRS withc denoting the current total number of calls. Thereby,l denotes
the number of entries on considered rows, where on every rowd indicates how many of its elements are
considered until the algorithm terminates. For our example, this ratio is about 0.53 resp. 0.065 in case
of forward resp. reverse elimination ordering. This shows that the linear spot search in the former is far
inferior to in the latter. This example illustrates the importance of the spot search on CRS for performance
of SJARE.

Listing 2.1: Bratu

1 void b r a t u (i n t n , double∗∗ x , double l) {
2 double h = 1 . / (n−1) ;
3 double r [n] [n] ;
4 / / e n f o r c e boundary c o n d i t i o n
5 f o r (i n t i = 0 ; i < n ; i ++) {
6 x [i] [0] = 0 . ; x [i] [n −1] = 0 . ; x [0] [i] = 0 . ;
7 }
8 f o r (i n t i = 0 ; i < n ; i ++) x [n−1][i] = 1 . ;

2.4. SPARSE JACOBIAN ACCUMULATION 51

9 / / i t e r a t e over i n n e r p o i n t s
10 f o r (i n t i = 1 ; i < (n−1) ; i ++) {
11 f o r (i n t j = 1 ; j < (n−1) ; j ++) {
12 r [i] [j] = 0 . − ((x [i +1] [j] − 2 ∗ x [i] [j] + x [i −1][j]) / (h ∗h))
13 − ((x [i] [j +1] − 2 ∗ x [i] [j] + x [i] [j −1]) / (h∗h))
14 − l ∗ exp (x [i] [j]) ;
15 }
16 }
17 / / u p d a t i n g t h e i n n e r p o i n t s
18 f o r (i n t i = 1 ; i < n−1; i ++)
19 f o r (i n t j = 1 ; j < n−1; j ++)
20 x [i] [j] = r [i] [j] ;
21 }

In conclusion, it is worth mentioning that the symbolic row elimination for n = 52 needs totally 10
seconds to predict the memory requirement for the followingaccumulation step, which takes only 5
seconds. Hence, the latter seems to perform twice better than the former. We note that this behavior is
also observed for the following problem.

Heat Equation

As second test case we consider the objective functionf : Rnx → R implemented in lines 20-26 of List-
ing 2.2. Our objective is to accumulate the gradient∇f needed in context of a steepest descent al-
gorithm minimizing the difference between the initial temperature (condition)T 0 and the distributed
simulated temperatureT nt = F (T 0) : Rnx → Rnx afternt time steps of a simple integration of the
one-dimensionalheat equation[Hea97]. A bar of given length is heated on one side for some time. The
simulated temperature distribution is returned at a numberof discrete points denoted bynx. The Heat
problem is a linear ill-posed inverse problem. The routinetime integration in line 9 of Listing 2.2
shows a C++ implementation ofT nt.

Figure 2.13 compares both the runtime and memory behavior ofDALG using DEJ and CRS for
nx = 10, 15, . . . , 40 with nt = 10 · nx. Analogous to the Bratu case DEJ hits the memory bound much
faster than CRS. The respective runtime behavior of both forward and reverse is very similar to that of
Bratu as discussed previously.

Listing 2.2: heat

1 / / s i n g l e t ime s t e p
2 void s i n g l e t s (i n t nx , double d e l t a t , double c ,
3 double ∗ temp , double ∗ temp new) {
4 f o r (i n t j = 1 ; j < nx ; j ++)
5 temp new [j] = temp [j] +
6 c∗nx∗nx∗ d e l t a t ∗ (temp [j +1]−2∗ temp [j]+ temp [j−1]) ;
7 }
8 / / t ime s t e p p i n g scheme
9 void t i m e i n t e g r a t i o n (i n t nx , i n t nt , double d e l t a t ,

10 double c , double ∗ temp) {
11 double ∗ temp new = new double[nx + 1] ;
12 / / t ime i n t e g r a t i o n
13 f o r (i n t i = 0 ; i < n t ; i ++) {
14 s i n g l e t s (nx , d e l t a t , c , temp , tempnew) ;
15 f o r (i n t j = 0 ; j < nx +1; j ++) temp [j] = tempnew [j] ;
16 }
17 d e l e t e [] tempnew ;

52 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

18 }
19 / / O b j e c t i v e f u n c t i o n
20 void f (i n t nx , i n t nt , double d e l t a t , double c ,
21 double ∗ temp , double ∗ temp obs , double &c o s t) {
22 t i m e i n t e g r a t i o n (nx , nt , d e l t at , c , temp) ;
23 c o s t = 0 . 0 ;
24 f o r (i n t j = 0 ; j <= nx ; j ++)
25 c o s t += (temp [j]− temp obs [j]) ∗ (temp [j]− temp obs [j]) ;
26 }

10 15 20 25 30 35 40

100

101

102

103

104

n : PROBLEM SIZE

R
U

N
T

IM
E

[S
E

C]

DEJ, GFM
DEJ, GRM
CRS, GFM
CRS, GRM

10 15 20 25 30 35 40
102

103

104

n : PROBLEM SIZE

M
E

M
O

R
Y

[M
B

Y
T

E
]

DEJ, GRM
CRS, GRM

(a) (b)

Figure 2.13: Runtime (a) and Memory (b) Usage of DALG on Heat in Non-Iterative Mode.

As summarized in Procedure 2.1 the CRS can be reused to accumulate Jacobians of one and the same
function at different points, assuming the unchangeability of the control flow of the target function. The
functionf represents exactly such a function. Figure 2.14 presents the mean runtime

g(i) =

∑i
j=1 tj

i

for computing the gradient∇f of f in the context of the steepest descent algorithm mentioned above.
Therefore, we manage to compute∇f in reverse mode on DEJ resp. CRS at every iterationi of the
algorithm fornx = 40 andnt = 400. As one can see the overhead of the symbolic step on CRS
is compensated in the accumulation step as proceeding with iterations, whereas DEJ behaves almost
consistently.

In conclusion with respect to our numerical results, we observed that DEJ tends to hit the memory
limit very quickly. Here CRS can be used to yield better scalability by exploiting the sparsity of DEJ,
which improves the memory consumption substantially. However, the reader may agree that even the
capability of the SJARE is limited by the memory consumptionof the bit pattern. Section 2.6 will present
our idea for handling this problem. Nonetheless, in both considered test cases we also observed that the
gain in runtime on CRS gets asymptotically smaller comparedwith DEJ when increasing the dimension
of both problems. We conjecture the reason to lie in the fact that increase inn results in larger search
space for dependencies (largerq) as shown in line 1 of Algorithm 2.2 and line 1 of Algorithm 2.6on DEJ
and CRS, respectively. Moreover, we note that on CRS finding the dependency of a particular row on
another as well as finding a spot for an entry is done with a linear overhead, whereas DEJ needs O(1) in
both cases. Hence, the performance of SJARE seems to depend very much on the efficiency of the spot
search andthe size of the search spaceas well. The impact of the latter on the performance of SJARE

2.5. PARALLEL JACOBIAN ACCUMULATION 53

becomes more clear in context of parallel Jacobian accumulation in non-iterative fashion as introduced
below.

0 10 20 30 40 50
100

200

300

400

500

i : NUMBER OF ITERATIONS

g
(i
)
:M

E
A

N
T

IM
E

[S
E

C]
DEJ, GRM
CRS, GRM

Figure 2.14: Mean Time of DALG on Heat using DEJ resp. CRS fornx = 40 andnt = 400.

2.5 Parallel Jacobian Accumulation

The focus in the following is on finding approaches to parallelizing the Jacobian accumulation process
discussed in the previous chapter, which we refer to asparallel Jacobian accumulation(PJA) [VN07].
For simplicity, ideas are illustrated onG of F defined by Equation (1.13). However, the correspondence
between DAG and both internal representations DEJ and CRS used here along with the respective elimi-
nation algorithms have been explained in detail previously.

Thus, we introduce in the following two ideas for parallelizing vertex elimination onG. We still
assume thatG fits entirely into the available memory. Thus, elimination of all intermediate vertices
Z in serial fashion yields the bipartite graph̃G = G − Z with edge labels representing the entries of
∇F (x) as discussed in Section 1.2. To support the discussion belowand to address issues related to the
parallelization of vertex elimination let us considerG of Figure 2.15 with vertices

V = {1, . . . , 14}, where X = {1, . . . , 6}, Z = {7, 8, . . . , 13}, and Y = {14} .

Clearly, the elimination of intermediate vertices yields the complete bipartite graph̃G with X andY
as source and target vertices, respectively. Let us consider now two disjoint decompositionsZ1 =
{7, 8, 9, 10} andZ2 = {11, 12, 13} of Z representing twovertex decompositionsof G. Obviously,Z1

andZ2 can be eliminated simultaneously for instance by processesP1 andP2 as there is no mutual
dependency among their vertices. The resulting DAG after the parallel elimination process is given by
G̃ = G− (Z1 ∪ Z2).

Let us now considerG in Figure 2.16 (a), which is a modified version ofG in Figure 2.15, whereZ1

andZ2 are not independent anymore because of the edge(9, 12). We refer to such an edge connecting
vertices of two different decompositions ofZ asout-of-range. Now, let us assume thatP1 andP2 still
try to eliminate vertices 9 and 10 in parallel. Thereby, it can happen that(9, 12) is accessed inread and
write fashion byP1 andP2, respectively or vice versa. This is a typical case ofdata race, where the
chain rule correctness can not be guaranteed anymore. For instance, while back-eliminating(9, 12) of 9
byP1 processP2 may access(9, 12) to get the value of the local partial derivative attached to it, which is
needed for back-eliminating(12, 13).

54 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

1

2

4

3

5

6

7

8

9 10

11

12

13

14

1

2

4

3

5

6

14

G G̃ = G− (Z1 ∪ Z2)

P1 : −7,−8,−9,−10

P2 : −11,−12,−13

Figure 2.15: Parallel Vertex Elimination with no Communication.

One way to solve this problem is to have the concerned processesP1 andP2 communicate with each
other. For instance,P1 eliminates vertex 9 whileP2 waits. Thereby, fill-in(7, 10), (8, 10), (7, 12), and
(8, 12) are generated as shown inG − 9. We note that the communication here doesn’t have to be a
blocking one asP2 can eliminate 11 and 13 while waiting for a signal fromP1 in order to eliminate
12 as well. Unfortunately, eliminating vertex 9 not really reduces the communication cost as fill-ins
(7, 12) and(8, 12) are also out-of-range ones; this means even further communication betweenP1 and
P2, which may slow down PJA significantly. The easiest way to circumvent this problem is to avoid the
elimination of all those intermediate vertices incident toout-of-range edges that we refer to ascritical
vertices. Nonetheless, this may decrease, on the other hand, the number of eliminatable vertices of
the respective decompositions and thus affect the load balancing. For our example, this could result
in Z1 = {7, 8, 10} andZ2 = {11, 13} yielding G − {7, 8, 10, 11, 13}. Thereby,P2 eliminates two
vertices, whereasP1 does eliminate three. Thus, out of the total of seven intermediates two remains
in G − {7, 8, 9, 11, 13} and five are eliminated. Hence, a further elimination step isneeded to yield̃G.
However, in practice, it is very likely that multiple levelsof parallel vertex elimination sessions are needed
on the way toG̃ as discussed below.

2.5.1 Atomic Decomposition

Due to the problem related to out-of-range edges discussed above keeping their number minimal is an
important and a more challenging task. In this step the main focus is on having balanced decompo-
sitions [MK08, CP08] to optimize the computational and communication cost in concurrent processes.
However, in the following we assume the decompositions to bethe result of user-driven (hard-wired) code
instrumentation marking parallel fragments ofF , which we assume to be at the loop level. An example
instrumentation is given in lines 16-19 of Listing 2.4. Moredetail on this is discussed in Section 2.5.4.
Nonetheless, in general we are looking for a decomposition of G into ν atomic subgraphsdefined as
follows.

Definition 2.4. Given DAGG = (V,E) of F as defined by Equation (1.13) with topologically ordered
verticesV. We sayG is atomically decomposableif there existν subgraphs

Gi = (Vi, Ei) with V ⊇ Vi = (Xi ∪ Yi ∪ Zi) and Ei ⊆ E , (2.11)

whereEi ∩ Ej = ∅ andZi ∩ Zj = ∅ for i, j ∈ {1, · · · , ν} such thatV =
⋃ν

i=1 Vi andE =
⋃ν

i=1 Ei.

2.5. PARALLEL JACOBIAN ACCUMULATION 55

1 2 4 3 5 6

7 8

9

10

11

12

13

14

1 2 4 3 5 6

7 8

10

11

12

13

14

1 2 4 3 5 6

9 12

14

G

P
1
:
−
9

P
2
:
w
a
i
t
s

P
1
:−

7
,−

8
,−

1
0

P
2
:−

1
1
,−

1
3

G− 9

G− {7, 8, 10, 11, 13}

(a)

1 2 4 3 5 6

7 8

9

10

11

12

13

14 14

1 2 4 3 5 6

14 14

1 2 3 4 5 6

14

G1 G2
P
1
:−

7
,−

8
,−

1
0

P
2
:−

1
1
,−

1
2
,−

1
3

G̃1 G̃2

Reduction

G̃

(b)

Figure 2.16: Parallel Jacobian Accumulation with Communication (a) and Reduction (b), respectively.

56 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

Strictly speaking, a subgraph is atomic if all of its edges are among vertices of that subgraph. Moreover,
Xi andYi represent the local independent and local dependent vertices of the subgraphGi, respectively.
Furthermore,Zi = Vi − (Xi ∪ Yi) represents the set of intermediate vertices ofGi that can be locally
eliminated. Thus,Xi, Yi, andZi are mutually disjoint, whereby their vertices are supposedto be mutually
independent as well. We call subgraphsGi andGj neighbors forj = i+ 1.

Hence, we get the atomic subgraphsG1 = (V1, E1) andG2 = (V2, E2) as shown in Figure 2.16 (b)
for G of Figure 2.15, where

X1 = {1, 2, 4}, Z1 = {7, 8, 9, 10}, Y1 = {14},
X2 = {3, 5, 6}, Z2 = {11, 12, 13}, and Y2 = {14} .

Here, the vertex 14 is the common vertex of both subgraphsG1 andG2. However, this does not affect the
parallelization in terms of data race during the elimination process as it is not eliminated by any of the
processesP1 andP2. Hence, eliminating verticesZ1 andZ2 in parallel byP1 andP2 yieldslocal bipartite
graphsG̃1 andG̃2, respectively. Finally,̃G1 andG̃2 are reduced tõG. The reduction step depends very
much on the type of involved atomic subgraphs that will be discussed below.

Under the assumption thatG of F can be atomically decomposed intoν atomic subgraphsGi =
(Vi, Ei) with i ∈ {1, . . . , ν}, F can be considered as a composition ofν functions

Fi : R
ni → Rmi : w = Fi(v) with v ≡ Xi and w ≡ Yi

with ni = |Xi|, mi = |Yi| such thatX ⊆ ⋃ν
i=1 Xi andY ⊆ ⋃ν

i=1 Yi. The notationv = (v1, · · · , vni
) ≡

Xi [w = (w1, · · · , wmi
) ≡ Yi] denotes that the vector elements ofv [w] are represented by verticesXi

[Yi] of Gi. Thus, we get the local bipartite graph

G̃i = (Ṽi, Ẽi) = Gi − Zi

by eliminating its intermediate verticesZi. This corresponds to the local application of Baur’s formula
defined by Equation (1.16) yielding each entry

f ′
i,j,l =

∂wj

∂vl
(v) =

∑

π∈{l→j}

∏

(p,k)∈π

ck,p

of the local Jacobian

(Rmi×ni ∋) ∇Fi = ∇Fi(v) ≡
(
f ′
i,j,l

)j=1,...,mi

l=1,...,ni

as the elimination of all pathsπ connecting an independent vertexl ∈ Xi to a dependent onej ∈
Yi. Hence,G̃ can be obtained from̃Gi in the reduction step. Here, we consider four types of atomic
decompositions as illustrated in Figures 2.17. However, the reduction is performed in general by first
combining multiple local bipartite graphs to acomposition graphaccording to Definition (2.5) followed
by eliminating the resulting interface vertices, yieldingthe respective bipartite graphs as illustrated by
CASE 4.

Definition 2.5. Given atomic DAGsGi = (Vi, Ei) defined by Equation (2.11) for i ∈ M = {1, . . . , ν}
with sets of independentXi, dependentYi and intermediate verticesZi. The notation

G(S) = (V (S), E(S)) ≡ (Gj)j∈S
(2.14)

withS ⊆ M denotes the composition DAG consisting of|S| atomicsGj with j ∈ S andV (S) =
⋃

j∈S Vj

2.5. PARALLEL JACOBIAN ACCUMULATION 57

G1 G2

G̃1 G̃2

G̃

1 2

4

5

9 10

2 3

6 7

8

11 12

1 2

9 10

2 3

11 12

1 2 3

9 10 11 12

CASE 1
c 4,
1

c
4,2

c
5
,4

c
9,5

c 10
,5

c
6
,2

c
7
,3

c 8,
6

c
8,7

c
11,8

c
1
2
,7

−
4
,−

5

−
6
,−

7
,−

8

Elimination

c 9
,5
·c

5
,4
·c

4
,1

c 1
0,
5
· c 5

,4
· c 4

,1

c
9
,5 · c

5
,4 · c

4
,2

c 1
0
,5
·c

5
,4
·c

4
,2

c 1
1
,8
·c

8
,6
·c

6
,2 c

11
,8 · c

8
,7 · c

7
,3

c
1
2
,7 ·c

7
,3

Reduction

c
9
,5 · c

5
,4 · c

4
,1

c 1
0
,5
· c

5
,4
· c

4
,1

c
9,5 · c

5,4 · c
4,2 c

9
,5 · c

5
,4 · c

4
,2 c 1

1
,8
· c

8
,6
· c

6
,2 c

1
1
,8 · c

8
,7 · c

7
,3

c 1
2
,7
· c

7
,3

G1 G2

G̃1 G̃2

G̃

1 2

5

6

10 11

3 4

7 8

9

11 12

1 2

10 11

3 4

11 12

1 2 3 4

10 11 12

CASE 2

c 5,
1 c

5,2

c
6
,5

c
10,6

c 11
,6

c
7
,3

c
8
,4

c 9,
7

c
9,8

c
11,9

c
1
2
,8

−
5
,−

6

−
7
,−

8
,−

9

Elimination

c 1
0
,6
·c

6
,5
·c

5
,1

c 1
1,
6
· c 6

,5
· c 5

,1

c
10
,6 · c

6
,5 · c

5
,2

c 1
1
,6
·c

6
,5
·c

5
,2

c 1
1
,9
·c

9
,7
·c

7
,3 c

11
,9 · c

9
,8 · c

8
,4

c
1
2
,8 ·

c
8
,4

Reduction

c 1
0
,6
· c

6
,5
· c

5
,1

c 11
,6
· c 6

,5
· c 5

,1

c
1
0
,6 · c

6
,5 · c

5
,2

c 1
1
,6
· c

6
,5
· c

5
,2

c
1
1
,9 · c

9
,7 · c

7
,3

c
11,9 · c

9,8 · c
8,4

c
1
2
,8 · c

8
,4

G1 G2

G̃1 G̃2

G̃

1 2

4

5

9 10

2 3

6 7

8

10 11

1 2

9 10

2 3

10 11

1 2 3

9 10 11

CASE 3

c 4,
1

c
4,2

c
5
,4

c
9,5

c 10
,5

c
6
,2

c
7
,3

c 8,
6

c
8,7

c
10,8

c
1
1
,7

−
4
,−

5

−
6
,−

7
,−

8

Elimination

c 9
,5
·c

5
,4
·c

4
,1

c 1
0,
5
· c 5

,4
· c 4

,1

c
9
,5 · c

5
,4 · c

4
,2

c 9
,5
·c

5
,4
·c

4
,2

c 1
1
,8
·c

8
,6
·c

6
,2 c

11
,8 · c

8
,7 · c

7
,3

c
1
1
,7 ·c

7
,3

Reduction

c 9
,5
·c

5
,4
·c

4
,1

c 1
0,
5
· c 5

,4
· c 4

,1

c
9
,5 · c

5
,4 · c

4
,2

c 1
0
,5
·c

5
,4
·c

4
,2
+
c 1

0
,8
·c

8
,6
·c

6
,2

c
10
,8 · c

8
,7 · c

7
,3

c
1
1
,7 ·c

7
,3

G1 G2

G̃1 G̃2

G̃

1 2

3

4

5 6

5 6

7 8

9

10 11

1 2

5 6

5 6

10 11

1 2

10 11

CASE 4

c 3,
1

c
3,2

c
4
,3

c
5,4

c 6,
4

c
7
,5

c
8
,6

c 9,
7

c
9,8

c
10,9

c
1
1
,8

−
3
,−

4

−
7
,−

8
,−

9

Elimination

c 5
,4
·c

4
,3
·c

3
,1

c 6
,4
· c 4

,3
· c 3

,1

c
5
,4 · c

4
,3 · c

3
,2

c 6
,4
·c

4
,3
·c

3
,2

c 1
0
,9
·c

9
,7
·c

7
,5 c

10
,9 · c

9
,8 · c

8
,6

c
1
1
,8 ·

c
8
,6

Reduction by Eliminating5, 6

c 1
0
,5
·c

5
,1
+
c 1

0
,6
·c

6
,1

c 1
1,
6
· c 6

,1

c
10
,5 · c

5
,2 +

c
10
,6 · c

6
,2

c 1
1
,6
·c

6
,2

Figure 2.17: Reduction Step for Two Atomic Subgraphs sharing Interface Vertices.

58 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

and
⋃

j∈S Ej such that

X(S) =
⋃

j∈S

Xj − Interface(S), Y (S) =
⋃

j∈S

Yj − Interface(S), and

Z(S) =
⋃

j∈S

Zj ∪ Interface(S) with Interface(S) =
⋃

i6=j∈S

(Xi ∩ Yj) ∪ (Xj ∩ Yi) .

As an example let us considerG in Figure 2.18 (a) with

X = {1, 2, 3}, Z = {4, 5, 6, . . . , 19}, and Y = {20, 21}

that is decomposed into totally four atomic subgraphsG1, G2, G3, andG4 as

X1 = {1, 2, 3}; Z1 = {4, 5}; Y1 = {6, 7},
X2 = {6, 7}; Z2 = {8, 9}; Y2 = {10, 11, 12},
X3 = {10, 11, 12}; Z3 = {13, 14}; Y3 = {15, 16, 17}, and

X4 = {15, 16, 17}; Z4 = {18, 19}; Y4 = {20, 21} .

Thus, application of the vertex elimination locally to the subgraphsGi for i = 1 . . . , 4 of G yields G̃i

with edge labels representing the entries of∇Fi. As one can see, our example DAG has the property
that dependents of a subgraphGi serve as independents of its next neighborGi+1, that is,Yi = Xi+1.
Such a decomposition will be the main focus in the following.Obviously, the functionsFi andFj with
j = i + 1 corresponding toGi andGj have the property that the outputs ofFi serve as inputs forFj for
i ∈ {1, . . . , ν} with x1 = x andxj = yi such thatF can be represented as the chain

y = F (x) = Fν ◦ . . . ◦ F1(x) .

Thereby,Gi andGj shareYi as their interface vertices. Moreover, we have

Xj = Yi, Xi ∩Xj = ∅, and Zi ∩ Zj = ∅ .

Consequently, the Jacobian∇F can be computed as chained product

∇F = ∇Fν × · · · × ∇F1

of local Jacobians∇Fi. Hence, dynamic programming [GN03] (DP) can be used to optimize the num-
ber of performed multiplications (MULS) by finding an optimal bracketing scheme. As shown in Fig-
ure 2.18 (b) the dense chained matrix product applied to our example yields the following two optimal
bracketings

∇F4 × (∇F3 × (∇F2 ×∇F1)) and ∇F4 × ((∇F3 ×∇F2)×∇F1))

resulting in 42 MULS, instead of 54, 54, and 63 MULS for the three remaining ones. The application of
the sparse method to the former yields 20 MULS, instead of 24,28, 33, and 37 MULS for the four others.
It is worth mentioning here that the product of two local Jacobians∇Fi and∇Fj with j = i + 1 can be
interpreted graphically as back-elimination of all inedges of vertices inYj resulting in their elimination
from G. For instance, vertices 15, 16, and 17 in Figure 2.19 are removed as a consequence of back-
eliminating all inedges of 20 and 21. Thereby, the product ofthe first row of∇F4 with first column of
∇F3 realizes the back-elimination of(15, 20) and(16, 21).

We note that the order in which vertices of an interface are eliminated is not important as they are
assumed to be mutually disjoint. This means that any elimination ordering yields the same number of

2.5. PARALLEL JACOBIAN ACCUMULATION 59

X ≡ X1

Y1 ≡ X2

Y2 ≡ X3

Y3 ≡ X4

Y ≡ Y4

∇F1 =


c6,1 0 0

c7,1 c7,2 c7,3


G̃1 ≡

∇F2 =




c10,6 c10,7
0 c11,7
0 c12,7


G̃2 ≡

∇F3 =




c15,10 0 0
c16,10 0 0

0 c17,11 c17,12


G̃3 ≡

∇F4 =


c20,15 c20,16 0

c21,15 c21,16 c21,17


G̃4 ≡

1 2 3

4

5

6 7

8 9

10 11 12

13 14

15 16 17

18

19

20 21

1 2 3

6 7

10 11 12

15 16 17

20 21

G1

G2

G3

G4

−4,−5

[5 : 5]

−8,−9

[4 : 4]

−13,−14

[4 : 4]

−18,−19

[5 : 5]
c 3
,1

c 6
,1

c 4
,2

c
4,3

c 5
,4

c 7,
5

c 8
,6

c
8,7 c

9
,7

c
1
0
,8

c
1
1
,9

c 1
2
,9

c 1
3
,1
0

c 1
4
,1
1

c
1
4
,1
2

c
1
5
,1
3 c 1

6
,1
3

c 1
7
,1
4

c 1
9
,1
5

c 1
8
,1
6

c 2
1
,1
7

c 1
9
,1
8

c
20,19 c 21

,1
9

c 6
,1 c 7
,1

c 7
,2

c 7
,3

c 1
0
,6

c
10,7

c
1
1
,7

c 1
2
,7

c 1
5
,1
0

c 1
6
,1
0

c 1
7
,1
2

c 1
7
,1
2

c 2
0
,1
5

c 2
1,
15

c
2
0
,1
6 c 2

1
,1
6

c 2
1
,1
7

(a)

(2× 3)

∇F4

(3× 3)

∇F3

(3× 2)

∇F2

(2× 3)

∇F1

(2× 3)

18 [6]

(2× 2)

12 [6]

42 [20]

(2× 3)

12 [8]

(3× 3)

18 [10]

(3× 3)

27 [12]

63 [37]

(2× 3)

18 [15]

54 [28]

(2× 3)

18 [12]

(3× 2)

18 [6]

(2× 2)

12 [10]

(3× 3)

18 [12]

42 [24]

(2× 3)

12 [8]

54 [33]

(2× 3)

18 [12]

(b)

Figure 2.18: Vertex Elimination on Atomic Subgraphs (a) andpossible Bracketing Schemes (b) for the
resulting local Jacobians. Entries[a : b] below of Arrows in the Former denote the resulting Number of
Multiplications (a) resp. Fill-in (b).

60 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

multiplications as well as fill-ins. However, this is not true in general, especially when we reduce more
than two local bipartite graphs, that is, reducing verticesof multiple interfaces at once.

Henceforth, we do not distinguish between a given bracketing scheme and the resulting vertex elim-
ination. The optimal sparse chained product of concerned matrices (local Jacobians) of Figure 2.18 (a)
are exercised in Example 2.6. The respective vertex elimination is shown in Figure 2.19.

Example 2.6. In the following we apply the optimal bracketing scheme

((∇F4 · ∇F3) · ∇F2) · ∇F1

resulted from DP to the local extended Jacobians∇Fi for i = 1, 2, 3, 4 corresponding to the local bipar-
tite graphsG̃i as shown in Figure 2.18 (a). Thereby, we show the correspondence to vertex elimination
in Figure 2.19. For this, we considerG5 in (a) consisting ofG̃4 andG̃3 such that

X5 = {10, 11, 12}, Z5 = {15, 16, 17}, and Y5 = {20, 21} .

Hence, computing the product

∇F5 = ∇F4 · ∇F3

=

(
c20,15 c20,16 0
c21,15 c21,16 c21,17

)
·



c15,10 0 0
c16,10 0 0
0 c17,11 c17,12


 =

(
c20,10 0 0
c21,10 c21,11 c21,12

)

corresponds to the elimination of verticesZ5 at a cost of six MULS, where

c20,10 = c20,15 · c15,10 + c20,16 · c16,10, c21,10 = c21,15 · c15,10 + c21,16 · c16,10,
c21,11 = c21,17 · c17,11, and c21,12 = c21,17 · c17,12

represent the labels of the fill-in edges(10, 20), (10, 21), (11, 21), and (12, 21) in (b), respectively.
Thereby, the product of the first row of∇F4 with first column of∇F3 results in the elimination of (15,20)
and (16,20). Likewise, the elimination of verticesZ6 ofG6 with

X6 = {6, 7}, Z6 = {10, 11, 12}, and Y6 = {20, 21}

cab be interpreted as the product of

∇F6 = ∇F5 · ∇F2 =

(
c20,10 0 0
c21,10 c21,11 c21,12

)
·



c10,6 c10,7
0 c11,7
0 c12,7


 =

(
c20,6 c20,7
c21,6 c21,7

)

yielding six MULS with

c20,6 = c20,10 · c10,6, c20,7 = c20,10 · c10,7, c21,6 = c21,10 · c10,6, and

c21,7 = c21,10 · c10,7 + c21,11 · c11,7 + c21,12 · c12,7 .

representing the labels of(6, 20), (6, 21), (7, 20),and(7, 21) in (c), respectively. Finally, we get the entire
bipartite graphG̃ shown in(d) by eliminating the intermediate verticesZ7 = {6, 7} with X7 = X1 and
Y7 = Y6 at a cost of eight MULS as

c20,1 = c20,6 · c6,1 + c20,7 · c7,1, c20,2 = c20,7 · c7,2, c20,3 = c20,7 · c7,3,
c21,1 = c21,6 · c6,1 + c21,7 · c7,1, c21,2 = c21,7 · c7,2, and c21,3 = c21,7 · c7,3 .

2.5. PARALLEL JACOBIAN ACCUMULATION 61

1 2 3

6 7

10 11 12

15 16 17

20 21

1 2 3

6 7

10 11 12

20 21

1 2 3

6 7

20 21

1 2 3

20 21

(a) (b)

(c)(d)

G1

G2

G5

G1

G6

G7G̃

−15,−16,−17

[6 : 4]
−
1
0
,−

1
1
,−

1
2

[6
:
4
]

−6,−7

[8 : 6]

c 6
,1 c7,

1

c 7
,2

c
7
,3

c 1
0
,6

c
10,7

c
11
,7

c
1
2
,7

c 1
5
,1
0

c 1
6,
10

c 1
7,
11

c
1
7
,1
2

c 2
0
,1
5

c21
,1
5

c
20
,16 c 2

1,
16

c
2
1
,1
7

c
6
,1

c7,
1

c 7
,2

c
7
,3

c
1
0
,6

c
10,7

c
11
,7

c
1
2
,7

c 2
0
,1
0

c 2
1,
10

c 2
1
,1
1 c

2
1
,1
2

c
6
,1

c7,
1

c 7
,2

c
7
,3

c 2
0
,6

c
2
0
,7

c 2
1
,6

c 2
1
,7

c 2
0
,1

c 2
1
,1

c
2
0
,2 c 2

1
,2

c
2
0
,3

c 2
1
,3

Figure 2.19: Vertex Elimination corresponding to the optimal Bracketing Scheme.

62 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

Elimination Mode MULS Fill-in

GFM 57 47
GRM 38 29
LFM 55 42
LRM 36 31
LFM+DP 38 32
LRM+DP 37 31

Table 2.2: Multiplication and Fill-in Comparison.

These represent the entries of the target Jacobian

∇F = ∇F7 = ∇F6 · ∇F1 =

(
c20,6 c20,7
c21,6 c21,7

)
·
(
c6,1 0 0
c7,1 c7,2 c7,3

)
=

(
c20,1 c20,2 c20,3
c21,1 c21,2 c21,3

)
.

Hence, the Jacobian is computed at an optimal cost of totallytwenty MULS.

To summarize and complete the discussion related to vertex elimination on atomic subgraphs we
consider Table 2.2, which compares the resulting number of multiplications and fill-ins of different elim-
ination orderings onG of Figure 2.18 (a). Here, GFM and GRM mean that the verticesZ of G are
eliminated as usual in forward and reverse fashion. LFM [LRM] indicates local elimination of intermedi-
ates on subgraphsGi for i ∈ S = {1, . . . , 4} in forward [reverse] ordering followed by eliminating the

entire intermediatesZ(S) of the remaining DAGG(S) ≡
(
G̃1, . . . , G̃4

)
with

X(S) = X1, Z(S) = {6, 7, 10, 11, 12, 15, 16, 17}, and Y (S) = Y4

as shown in Figure 2.19 (a) at once in forward [reverse] order. Moreover, LFM+DP [LRM+DP] eliminates
Zi of Gi for i = 1, . . . , 7 according to Equation (2.14) in forward [reverse] order consecutively, where
the decomposition

G5 ≡ G({3, 4}), G6 ≡ ({2, 5}), and G = G7 ≡ ({1, 6})

results from the optimal bracketing scheme using DP as discussed in Example 2.6.
For this example, we observe that GRM and LRM yield the smallest number of fill-in and multiplica-

tions, respectively. However, the decomposition of the DAGand local elimination on subgraphs seem to
improve both operation and memory usage of global forward ordering. In the reverse case the former is
improved as well, whereas the latter gets close to the respective global version. We note that in the case
of LFM [LRM] we [would] get 18 [17] for the number of multiplications as well as for fill-ins4 as shown
in Figure 2.18 (a). Hence, the remaining number of 37 [19] multiplications and 24 [14] fill-ins result from
the elimination ofZ(S) vertices in forward [reverse] order.

2.5.2 Pyramid Approach

In the following we present our fist idea for parallelizing the vertex elimination on atomic subgraphs.
Here, thepyramid approachrealizes a level-based parallel vertex elimination that isdescribed in List-
ing 2.3.

Listing 2.3: Pyramid Algorithm
1 d =

⌈

logβ N
⌉

;

4We left the calculation of both multiplication and fill-in numbers for LRM to the reader.

2.5. PARALLEL JACOBIAN ACCUMULATION 63

2 / / S e s s i o n s
3 f o r l = 0, . . . , d

4 i f (l == 0)
5 Nl = N

6 f o r j = 1, . . . , Nl

7 Gl
j = Gj

8 e l s e

9 Nl =
⌈

Nl−1

β

⌉

10 / / Decompos i t ion Step
11 f o r j = 1, . . . , Nl

12 Gl
j ≡

(

G̃l−1
(j−1)·β+1, . . . , G̃

l−1
j·β

)

13 / / E l i m i n a t i o n Step
14 f o r j = 1, . . . , Nl

15 G̃l
j = Gl

j − Zl
j

Therefore, we assume thatN andβ are given, where

• N denotes the number of initially atomic subgraphs inG and

• β represents the maximum number of atomics that can be combined together at the decomposition
step as shown in lines 11-12.

We illustrate the pyramid algorithm onG given in Figure 2.20 forN = 7 andβ = 3. At the lowest
level l = 0 (lines 4-7) the computational graphG consists of seven (N = N0 = 7) atomic subgraphs
G0

1 = G1, . . . , G
0
7 = G7 . Henceforth, we use the terminologysessionto refer to a levell ∈ {0, . . . , d}

of pyramid algorithm with

d =
⌈
logβ N

⌉
(2.15)

denoting the maximum number of sessions being two (d = 2) for our example. In general, a session
consists of a decomposition followed by an elimination step, where forl = 0 the decomposition step is
not performed asG is assumed to be initially decomposed. Thus, decompositionat sessionl > 0 yields

Gl
j ≡

(
G̃l−1

i

)
i∈S

with S = {(j − 1) · β + 1, . . . , j · β}

for j = 1, . . . , Nl with Nl denoting the number of subgraphs at sessionl as shown in line 9. In other
words, the decomposition at the levell is nothing else than building the composition of DAG according
to Definition (2.5) out ofβ consecutive (neighboring) eliminated subgraphs resulting from the previous
sessionl − 1. Obviously, only the elimination steps of sessionsl = 0, . . . , d− 1 can run in parallel with
a maximum number ofNl processes, which decreases by increase inl.

We note here that the execution of the pyramid algorithm can be visualized as aβ−ary tree [Sto01]
with subgraphs denoting tree nodes that represent jobs has to be done by processes. One can easily figure
out thatd in Equation (2.15) denotes exactly the depth of thisβ−ary tree. An example is given forβ = 3
in Figure 2.20.

Thus, applying the vertex elimination as described in lines14-15 to all seven subgraphs in parallel
using three processesP1, P2 andP3 yields G̃0

1, . . . , G̃
0
7 representing the eliminated DAGG0 = G −⋃7

i=1 Z
0
i at sessionl = 0. The sessionl = 1 starts first with decomposition ofG0 into three subgraphs

G1
1 ≡

(
G̃0

1, G̃
0
2, G̃

0
3

)
, G1

2 ≡
(
G̃0

4, G̃
0
5, G̃

0
6

)
, and G1

3 ≡
(
G̃0

7

)
with

64 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

Level 0

G0

Level 1

G1

Level 2

G2

G0
1 G̃0

1

G0
2 G̃0

2

G0
3 G̃0

3

G0
4 G̃0

4

G0
5 G̃0

5

G0
6 G̃0

6

G0
7 G̃0

7

G1
1 G̃1

1

G1
2 G̃1

2

G1
3 G̃1

3

G2
1 G̃2

1 = G̃

P1

P2

P3

P2

P1

P3

P3

P1

P2 P1

Time Line

Figure 2.20: Pyramid Approach on a DAG with initially seven Atomic Subgraphs using three processes.

X1
1 = X0

1 ; Z1
1 = Y 0

1 ∪ Y 0
2 ; Y 1

1 = Y 0
3 ,

X1
2 = X0

4 ; Z1
2 = Y 0

4 ∪ Y 0
5 ; Y 1

2 = Y 0
6 , and

X1
3 = X0

7 ; Z1
3 = ∅; Y 1

3 = Y 0
7 .

Hence, elimination at this level yields̃G1
1, G̃1

2, andG̃1
3 in G1 = G0 −⋃3

i=1 Z
1
i . In a similar manner, we

get the desired bipartite graph̃G = G̃2
1 at l = 2 as the last session by eliminatingZ2

1 vertices fromG2
1,

where

G2
1 ≡

(
G̃1

1, . . . , G̃
1
3

)
with X2

1 = X1
1 , Z2

1 = Y 1
1 ∪ Y 1

2 , and Y 2
1 = Y 1

3 .

Obviously, the elimination at this level proceeds serially. In practice, it may make sense to jump prema-
turely to serial elimination , rather than processing untilthe last session, to avoid unnecessary decompo-
sition overhead.

Lemma 2.2. Given a DAGG = (V,E) as defined by Definition (2.4) withN atomic subgraphs. Let
β denote the maximum number of atomics that are to be combined together at levelsl > 0 of pyramid
algorithm shown in line 12. Furthermore, let’s assume unit elimination cost ofc on all subgraphs in
pyramid process. Hence. the achievable speedup withP threads can be computed as

S(P) =

∑d
l=0 Nl∑d

l=0

⌈
Nl

P

⌉ (2.16)

with d denoting the total number of sessions as defined by Equation (2.15).

2.5. PARALLEL JACOBIAN ACCUMULATION 65

Proof. Let T (1) andT (P) denote the resulting runtimes using one (serial) andP (parallel) processes,
respectively. Obviously, the total number of subgraphs that are to be eliminated is given by

∑d
l=0 Nl

yielding a total serial time ofT (1) =
∑d

l=0 Nl · c. Moreover, execution of tasks at every session
l = 0, . . . , d via P processes can be performed at a cost of

⌈
Nl

P

⌉
· c, which results in the total paral-

lel time ofT (P) =
∑d

l=0

⌈
Nl

P

⌉
· c. Thus, following Amdahl’s law [Amd67] we get

S(P) =
T (1)

T (P)
=

∑d
l=0 Nl · c∑d

l=0

⌈
Nl

P

⌉
· c

=

∑d
l=0 Nl∑d

l=0

⌈
Nl

P

⌉ .

Lemma 2.2 yields the speedup that can be achieved by the pyramid approach under the assumption of
unity elimination cost on all considered subgraphs. Hence,for the example above withN = 7 andβ = 3
using three processes we would expect to get a speedup of ideally

7 + 3 + 1⌈
7
3

⌉
+
⌈
3
3

⌉
+
⌈
1
3

⌉ =
11

5
= 2.2 .

In the same way, we get a speedup of 2.75 forP = 6. Thus, duplicating the number of processes improves
the speedup by a factor of 1.25. The best speedup of roughly3.66 for this example can be achieved with
P = 7 that guarantees enough processes to handle all tasks at every level simultaneously. However, this
is not likely in practice. On the contrary, often the number of available processes is far smaller thatn the
number of tasks, which might affect the speedup of this approach considerably.

2.5.3 Master-Slave Approach

The master-slave approach [BBW04] consists of two steps, namelyeliminationandreduction, which are
illustrated for four types of atomic decompositions in Figure 2.17.

As an example we consider the atomically decomposedG in Figure 2.21 being the same as in Fig-
ure 2.20. Thereby, the vertex elimination onGi for i ∈ {1, . . . , 7} yielding G̃i is performed by three
slaveprocessesP1, P2, andP3 in parallel. All three processes get first three atomics and eliminate their
local intermediates, wherebyP1 andP2 are done simultaneously but earlier thanP3. This may be caused
by the difference in the workload of involved processes. After termination ofP1 andP2 the resulting
local bipartite graphs̃G1 andG̃2 are send to the master (M), which reduces them tõG1 by eliminating

Z1 = Y1 onG1 ≡
(
G̃1, G̃2

)
yieldingG̃1. Each slave, for instanceP1, gets the next taskG5 immediately

after termination of its previous job. It is worth mentioning here that the master has to check weather the
eliminated subgraphs are reducible or not. For instance, the reduction ofG̃1, G̃3, andG̃5 at once is not
possible sincẽG5 do not share any interface vertices with the first two. Thus, master reduces onlỹG1 and
G̃3 to G̃2 and then, after receiving̃G4, can reduce it along with̃G4 andG̃5 to G̃3. Finally, after receiving
G̃6 andG̃7 all subgraphs are reduced toG4 representing the desired̃G. Thus, totally seven elimination
and four reduction steps are performed to yield the entire bipartite graph.

2.5.4 Numerical Results

In the following we present some numerical results on PJA implemented in DALG. Here, we implement
pyramid approach withβ = 2 described in Section 2.5.1 using theshared memory parallelmodel with
OpenMP [CDK+01] on our test system as described at the beginning of Section 2.4.2. Nonetheless, we
conjecture that the master-slave to be a more suitable approach fordistributed memory parallelmodels
such asmessage passing interface(MPI) [Pac96, GLS99], which is the focus of ongoing implementation

66 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

G1 G̃1

G2 G̃2

G3 G̃3

G4 G̃4

G5 G̃5

G6 G̃6

G7 G̃7

G1 G̃1

G2 G̃2

G3 G̃3

G4 G̃4 = G̃

P1

P2

P3

P2

P1

P3

P1

M = P0

M

M

M

Time Line

Figure 2.21: Master-Slave Approach on a DAG with initially seven Atomic Subgraphs using four pro-
cesses.

activities for DALG. In addition to that, we aim to apply alsohybrid approach [M̈01, Qui03] using MPI
and OpenMP at node interconnect and inside of a node, respectively. In this way, we hope to achieve
better scalability and performance.

As test case we consider a light modification of Bratu function given in Listing 2.4. As discussed at
the beginning of this section the decomposition in atomic subgraphs are supposed to be done via code
instrumentation by the user as shown in lines 16–19.

Thus, the compilation of Bratu code in C++ with predefined preprocessor variablePARALLEL MODE
results in call ofnew atomic() for everyi · s iteration of the loop in line 10 with1 ≤ s ≤ n − 2.
The routine is supposed to mark previously generated subgraphGi·s as atomic after executing thei · s-th
loop for i ∈ {1, . . . , n− 2}. Hence, totally

⌈
n−2
s

⌉
atomic subgraphs are generated by callingbratu for

a particularn. Hence, we getn − 2 subgraphs fors = 1, which is the case for tests performed below.
Obviously, the size of local subgraphs grows withs, whereas theirs total number decreases. Hence,s
can be used to change the workload of concurrent processes asshown in Figure 2.22 (f). Moreover, we
manage to combine two neighboring eliminated subgraphs (β = 2 in Listing 2.3) before proceeding with
the next parallel session.

Listing 2.4: Instrumented Bratu
1 void b r a t u (i n t n , double∗∗ x , double l , i n t s) {
2 double h = 1 . / (n−1) ;
3 double r [n] [n] ;
4 / / e n f o r c e boundary c o n d i t i o n
5 f o r (i n t i = 0 ; i < n ; i ++) {
6 x [i] [0] = 0 . ; x [i] [n −1] = 0 . ; x [0] [i] = 0 . ;
7 }

2.5. PARALLEL JACOBIAN ACCUMULATION 67

8 f o r (i n t i = 0 ; i < n ; i ++) x [n−1][i] = 1 . ;
9 / / i t e r a t e over i n n e r p o i n t s

10 f o r (i n t i = 1 ; i < (n−1) ; i ++) {
11 f o r (i n t j = 1 ; j < (n−1) ; j ++) {
12 r [i] [j] = 0 . − ((x [i +1] [j] − 2 ∗ x [i] [j] + x [i −1][j]) / (h ∗h))
13 − ((x [i] [j +1] − 2 ∗ x [i] [j] + x [i] [j −1]) / (h∗h))
14 − l ∗ exp (x [i] [j]) ;
15 }
16 # i f (PARALLEL MODE)
17 i f (i%s == 0)
18 new atomic () ;
19 # e n d i f
20 }
21 / / u p d a t i n g t h e i n n e r p o i n t s
22 f o r (i n t i = 1 ; i < n−1; i ++)
23 f o r (i n t j = 1 ; j < n−1; j ++)
24 x [i] [j] = r [i] [j] ;
25 }

Let us now consider Figure 2.22 (a) resp. (c) representing runtime results of PJA of Bratu function by
DALG in forward mode on DEJ resp. CRS using one (LFM #1) and eight (LFM #8) threads, which
we compare with the corresponding global forward elimination ordering (GFM). Analog, proceeds in
(b) and (d) for reverse elimination ordering denoted by LRM and GRM, respectively. On both DEJ and
CRS, the runtime gainings achieved by local elimination (onatomics) by a single thread is in order of
magnitude better than the global one. Therefore, considering Table 2.3 LFM#1 [LRM#1] on DEJ is
about a factor of15.5 = 3162

204 [5, 3 = 1082
203] faster than GFM [GRM], which could be surprising at first

glance. Thus, the achieved high runtime gainings does not seem to be the benefit of parallelization. We
conjecture it to be rather caused by the much smaller search space for dependencies needed to eliminate
a particular row on atomic blocks than on the entire DEJ. Thereby, the elimination ofp intermediates
can be performed at computation cost ofO(p · q2). A single rowi ∈ Z can be eliminated at a cost of
(i−1) ·(q−i) ≤ q2, whereas in case oft atomic decompositions the same intermediate can be eliminated

at a cost of(i− 1) · q−i
t

≤ q2

t
yielding a total cost ofO(p · q2

t
). Hence, we may gain theoretically a factor

of t = 98 for n = 100 in searching after dependencies just by decomposition of the underlying matrices.
Moreover, the gainings are more substantial on CRS in both forward and reverse modes that we believe to
be a consequence of sparsity exploitation. Thereby, even thought1.7 ≈ 318290

185402 times less multiplications
are performed in forward mode than in reverse mode the latteris roughly2.1 ≈ 30

14 times faster than
the former, which we attribute to the better performance of linear search by an average factor of roughly
3.8 ≈ 0.321536

0.0843 . Hence, the real achieved speedup using eight threads in forward [reverse] mode on DEJ

Elimination Mode Time(DEJ) Time(CRS) #Muls #Fill-in #Entries ω

GFM 3162 sec. 7159 sec. 362600 343392 544684 0.531108
GRM 1082 sec. 1556 sec. 191688 172480 373772 0.0657927

LFM (#1) 204 sec. 30 sec. 185402 166194 367486 0.321536
LFM (#8) 121 sec. 17 sec. 185402 166194 367486 0.321536

LRM (#1) 203 sec. 14 sec. 318290 299082 500374 0.0843
LRM (#8) 118 sec. 9 sec. 318290 299082 500374 0.0843

Table 2.3: Summary of Measurement Data for Bratu in ParallelMode forn = 100.

and CRS is roughly1.6 ≈ 204
121 [1.7 ≈ 203

118] and1.7 ≈ 30
17 [1.5 ≈ 14

9] as shown in Figure 2.22 (e). The
optimal speedup from Equation (2.16) with eight threads in the pyramid model forn = 100 yielding

68 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

40 50 60 70 80 90 100

101

102

103

n : PROBLEM SIZE

R
U

N
T

IM
E

[S
E

C]

DEJ, GFM
DEJ, LFM (#1)
DEJ, LFM (#8)

40 50 60 70 80 90 100

101

102

103

n : PROBLEM SIZE

R
U

N
T

IM
E

[S
E

C]

DEJ, GRM
DEJ, LRM (#1)
DEJ, LRM (#8)

(a) (b)

50 100 150 200

100

101

102

103

104

n : PROBLEM SIZE

R
U

N
T

IM
E

[S
E

C]

CRS, GFM
CRS, LFM (#1)
CRS, LFM (#8)

50 100 150 200

100

101

102

103

n : PROBLEM SIZE

R
U

N
T

IM
E

[S
E

C]

CRS, GRM
CRS, LRM (#1)
CRS, LRM (#8)

(c) (d)

2 4 6 8

1

1.2

1.4

1.6

1.8

p : NUMBER THREADS

S
P

E
E

D
U

P

DEJ, LFM
DEJ, LRM
CRS, LFM
CRS, LRM

1 4 8 12 16 20

20

40

60

80

100

120

s : BLOCK SIZE

R
U

N
T

IM
E

[S
E

C.
]

CRS, LRM (#2)
CRS, LRM (#8)

(e) (f)

Figure 2.22: Runtime Results on Parallel Jacobian Accumulation by DALG on Bratu.

2.6. ITERATIVE JACOBIAN ACCUMULATION 69

n− 2 = 98 atomics forβ = 2 would be

98 + 49 + 25 + 13 + 7 + 4 + 2 + 1⌈
98
8

⌉
+
⌈
49
8

⌉
+
⌈
25
8

⌉
+
⌈
13
8

⌉
+
⌈
7
8

⌉
+
⌈
4
8

⌉
+
⌈
2
8

⌉
+
⌈
1
8

⌉ =
199

29
≈ 6.86 .

Thus, we observe that the parallelization itself does not seem to perform well as desired. Moreover, a
closer look to the line 12 of the Bratu function shows that ar[i][j] contributes directly to an output.
The latter may depend on common independents, but not on eachother. Moreover, no independent is
overwritten in the for loop. This case is illustrated in CASE1 of Figure 2.17. Hence, the reduction step
is nothing else than absorbing edge labels with no vertex elimination because of empty interfaces.

To conclude the discussion on PJA, we illustrate in Figure 2.22 (f) the impact of workload on runtime
of parallel mode forn = 100 ands = 1, 2, 4, 6, 8, 10with s denoting the block sizes. The respective code
fragment is shown in line 17 of Listing 2.4. We observe that increasing the size (s) of atomic blocks slows
down the parallelization considerably on both DEJ and CRS, respectively. We believe that the reason
for this lies again in the increasing size of search spaces onsubmatrices, which grow ass increases.
Nonetheless, we observed so far that PJA has the potential toaccelerate the Jacobian accumulation on
both DEJ and its CRS counterpart considerably. As suspectedat the end of Section 2.4.2 the main
contribution to the speedup seems to be a side effect of smaller search spaces for dependencies within
(atomic) sub-matrices. However, we did not observe the theoretical factor of roughly seven as defined
by Equation (2.16) with eight threads for our test case. Hence, further research is planned to be invested
on improving the performance of PJA using Pyramid approach.

2.6 Iterative Jacobian Accumulation

Sparsity exploitation of extended Jacobians using the corresponding compressed row representations
tends to decrease the memory consumption as our experimental results previously have shown. How-
ever, our assumption so far was that there is enough memory tostore the entire extended Jacobian or its
bit pattern/CRS of the underlying function. Thus, we are still in the situation, where the memory bounds
the capability of Jacobian accumulation, which is the main common problem of any AD approach that
aims to accumulate derivatives on any kind of internal representation. In the following we present iterative
Jacobian accumulation to deal with this problem.

1 2

3

4

5 6

7

8

9 10

Figure 2.23: DAG ofF
defined by Equation 1.18
for n = 2.

Here, we use the DAG representation instead of the extended Jacobian
that are conceptually equivalent as discussed at the beginning of this chap-
ter. For illustration, we considerG in Figure 2.23 to represent the DAG of
our example function forn = 2. Its independent and dependent vertices are
given by1, 2 and9, 10, respectively. Hence, elimination of the intermediate
vertices3, 4, 5, 6, 7, 8 yields the complete bipartite graph̃G = K2×2 with 1, 2
as source and9, 10 as target vertices. Edge labels are missing in the following
examples just for simplicity Let us assume now that only the subgraphG7 as
shown in Figure 2.24 with vertices1, . . . , 7 along with their incoming edges
fits into the available memory. Now, we eliminate vertices from G7 to free
memory. Therefore, we needlocal information about eliminatable vertices
of G7. As mentioned above the vertices1 and2 are independent and hence not
eliminatable. We can not eliminate7 either because it is not locally detectable
if it is used later or not. A DAG vertex is used if it appears as apredecessor of
some other vertices. The same argumentation holds in fact for the vertices4, 5, and6, which are known
to be alive as they represent the current instances oft, x1, andx2 of F, respectively. Consequently, they
may be multiply used during the evaluation process ofF, such that we have to mark them also as not
eliminatable. Thus, we get3 as the only eliminatable vertex. Its elimination yieldsG̃7 by the generation

70 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

of the new edge(1, 4) followed by deleting vertex3 and its incident edges(1, 3), (2, 3), and(3, 4). Hence,
we gain memory for two edges, which enables us to add the vertex 8 with its incoming edges(7, 8) and
(6, 8) into G̃7 yieldingG8. We know also that vertex4 and8 correspond to the same program variable
t with 8 representing its current instance, which implies that4 is not alive anymore and hence can be
eliminated. After the generation of vertex8 and after single use of vertex7 we mark it as eliminatable
in G8 as it corresponds to a temporary (not program) variable inF. Now, we eliminate4 and7 and yield
G̃8, where we gain memory for two edges and hence can buildG10 by adding the last two vertices9 and
10 along with their incoming edges(8, 9) and(8, 10) to G̃8. Finally, we getG̃ = G̃10 by eliminating 5,
6, and 8.

One aspect of the iterative approach that should be pointed out here is that regardless of the local
elimination ordering of the choice is, the resulting globalordering might be different. We refer here to
the resulting ordering ascross-countryordering as proposed by Griewank [GW08]. Moreover and obvi-
ously, the resulting fill-in pattern can also be different. Therefore, consider Figure 2.24, where we apply
forward elimination ordering locally. The resulting ordering is 3, 4, 7, 5, 6, 8 differs from the global one
as3, 4, 5, 6, 7, 8. Thereby, the resulting fill-ins are ten and fifteen in the former and latter, respectively. In

1 2

3

4

5 6

7

1 2

4

5 6

7

1 2

4

5 6

7

8

1 2

5 6

8

1 2

5 6

8

9 10

1 2

9 10

G7

-3

G̃7 = G7 − {3}

+8

G8

-4, -7

G̃8 = G8 − {4, 7}

+9, +10

G10

-5, -6, -8

G̃10 = G10 − {5, 6, 8}

Figure 2.24: Iterative Vertex Elimination. The ,,-” Prefix to a Vertex Index means that it is eliminated,
whereas ,,+” indicates its Generation.

order to illustrate the idea behind the iterative Jacobian accumulation by vertex elimination, we consider
G of F to be the result of the statement level execution of the respective SAC of Equation (1.2) as

Gj = (Vj , Ej) with Vj = Vj−1 ∪ {j} and Ej = Ej−1 ∪ {(i, j) : i ≺ j} (2.17)

for j = 1, . . . , q with G = Gq andG0 = ∅. Furthermore, the independentXj , dependentYj , and
intermediateZj vertices ofGj are defined as

Xj = X, Yj = (Dj −Xj) ∪ {i ∈ Vj : Si = ∅}, and Zj = Vj − (Xj ∪ Yj) .

Here,Dj = {i ∈ Vj : vi is alive SAC variable} denotes the set of all alive vertices ofGj . Clearly,
Gi = ({1, . . . , i}, ∅) for independent verticesi.

2.6. ITERATIVE JACOBIAN ACCUMULATION 71

1. Evaluation Process

y = F (x) in C/C++

j = n+ 1, · · · q
if (MCost(Gj) ≤ M)

2. Build Process

vj = ϕj(vi)i≺j

Gj = (Vj , Ej)

Zj = Vj − (Xj ∪ Yj)

3. Elimination Process

G̃j = (Ṽj , Ẽj)

Ṽj = Vj − Zj

if (j == q)

4. Update Process

Gj = top (G̃j)

5. Extraction Process

G̃q ∇F (x)

Yes
No

N
o

Ye
s

Figure 2.25: Iterative Process of Jacobian Accumulation byVertex Elimination.

Figure 2.25 illustrates IJA on a restricted memoryM, where every box represents a process. Arrows
represent the transitions between processes, where each ofthem is labeled with the result of the condition
at the end of the corresponding source process. For instance, Yes on the arrow from process 1 to process
2 means that the conditionMem(Gj) ≤ M at the end of the evaluation process is satisfied and henceGj

can be built on the existing memoryM , where

MCos(Gj) = Mem(Gj−1) + |Ej | · µe

denotes the memory consumption ofGj that follows immediately from Equation (1.19). Furthermore, we
assume that the termination of the leaf processes 2, 4, and 5 are followed by a jump to the root process 1.
The latter jump happens if the Jacobian at another point is ofinterest. Otherwise, process 5 is supposed
to finalize IJA process. Here, the evaluation process initiates the generation (process 2) ofGj based on
Gj−1 for 1 ≤ j ≤ q as long asGj fits intoM. Otherwise, it starts the vertex elimination process yielding
the eliminated DAG

G̃j = (Ṽj , Ẽj) with Ṽj = Vj − Zj and Ẽj = Ej − {(i, k) | i ∈ Zj ∨ k ∈ Zj} .

In case ofj == q at the end of the elimination process we getG̃ = G̃q representing the bipartite graph
of G defined by Equation (1.15). Hence, the nonzero entries of∇F (x) can be obtained (process 5) from
G̃ just by reading its edge labels. Otherwise, and before we proceed with the evaluation again, we set
Gj = top (G̃j) representing the topological reordered version ofG̃j , so thatVj = top (Ṽj) according to
Equation (2.6).

Theorem 2.2. Given the linearized DAGG of F as defined by Equation (1.13) with the intermediate
verticesZ. The resulting elimination graphsG − σ1(W) andG − σ2(W) after eliminating the vertices

72 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

W ⊆ Z in two different ordersσ1 resp.σ2 are equal, that is,

∀σ1 6= σ2 : G− σ1(W) = G− σ2(W) .

Proof. Mosenkis shows this in section 3 of [MN10] about minimum edgecount problem on linearized
DAGs.

From Theorem 2.2 it follows immediately that the memory costof the eliminated DAGG−W does
not depend on the ordering in which the verticesW are eliminated, that is ,

∀σ1 6= σ2 : Mem(G− σ1(W)) = Mem(G− σ2(W)) .

Furthermore, letMGain(G− i) = Fillout(G− i)− Fillin(G− i) denote the memory savings in the
number of edges after the elimination of vertexi ∈ W from G with Fillout(G− i) andFillin(G− i)
denoting the respective number of fill-out and fill-in edges,respectively. It follows easily that

MGain(G−W) = |E(G)| − |E(G−W)| =
∑

i∈W

MGain(G− i) ,

whereMGain(G − W) denotes the total memory savings as a sum over the local memory savings
MGain(G− i) by eliminating all verticesi ∈ W. Even though the total memory savings for all possible
orderings of verticesW are the same, the local savings in general do depend on the elimination ordering
and hence might be different.

An example is given in Figure 2.26, where the elimination of vertex3 and vertex4 in two possible
ordering3, 4 and4, 3 result in the same eliminated graphG− {3, 4}. However, eliminating vertex3 first
yieldsG7 − {3} with five edges, thereby reducing the size ofG by two edges. Further elimination of
vertex4 results in the bipartite graphG7 − {3, 4} with six edges, which means a memory loss of one
edge comparing withG7 − {3}. On the contrary, eliminating first vertex4 results inG− {4} with eight
edges, meaning memory loss of one edge. Additional elimination of vertex3 saves two edges, yielding a
total saving of one edge. Note that the total saving of one edge is the same for both orderings.

In fact, this addresses one problem of the iterative approach, where at certain iteration points the local
elimination (see process 3 of Figure 2.25) may exceed the available memory boundM by adding more
fill-in edges than freeing fill-out ones. In order to illustrate this, let us consider again Figure 2.26 with
M = 7 as the available memory. Eliminating first vertex3 yieldsG7 − {3}, which still fits into the
memory, whereas eliminating vertex4 does not becauseG7 − {4} needs eight edges. Thus, at every
elimination step the general combinatorial problem is to keep the DAG within the memory bound, which
is formulated as follows.

Problem 2.1. Given the DAGG = (V,E) as defined by Equation (1.13) with Z ⊆ V denoting the
eliminatable vertices, find a subsetW ⊆ Z of eliminatable verticesZ and an appropriate elimination
orderingσ that satisfies the memory bound over the entire elimination of verticesW, that is,

|W |∑

i=1

Mem(G− σ(Wi)) ≤ Mem(G)−M ∀ Wi ⊆ W with |Wi| = i .

On the other hand, even though if we found an appropriate subset of eliminatable vertices along with
an appropriate ordering that would solve Problem (2.1), this alone does not guarantee the success of the
iterative approach in general. This becomes clear when we consider the building process (2) in Figure 2.25
that generates eliminatable vertices, such thatZj 6= ∅. In worst case it could be the case thatZj is empty
or, as discussed previously, that the elimination process does not free a sufficient amount of memory
needed to proceed further with building DAG.

2.6. ITERATIVE JACOBIAN ACCUMULATION 73

1 2

3

4

5 6 7

1 2

4

5 6 7

1 2

5 6 7

1 2

3

4

5 6 7

1 2

3

5 6 7

1 2

5 6 7

G7

-3

G7 − 3

-4

G̃7 = G7 − {3, 4}

G7

-4

G7 − 4

-3

G̃7 = G7 − {4, 3}

Figure 2.26: Memory Issues on Elimination Process of IJA, where dashed Edges mark generated ones.

To tackle this problem, let us considerG7 in Figure 2.27 with the memory boundM = 7. Further-
more, let us assume the next build process would add the vertex 8 with its incoming edges(5, 8) and
(7, 8) to G̃7 yieldingG8 representing the final graph withZ8 = {4, 5, 7}. In case of eliminating vertex3
and4 in a sequence we would end up withG7−{3, 4} with six edges that frees storage only for one edge,
whereas we need two of them forG8. One possible solution could be to eliminate first vertex3, freeing
two edges, and then add vertex8 with its incoming edges tõG7. Now, we eliminate vertices5, 7, and4
consecutively to satisfy the memory limit of 7 edges yielding the bipartite graph̃G8 = G8 − {5, 7, 4}
with totally six edges.

So far we have discussed the combinatorics involved in IJA. Thereby, a locally conservative informa-
tion about eliminatable vertices is considered to be safe, also referred to aselimination safe, to guarantee
the correctness of the elimination process. Furthermore, not every elimination ordering seems to satisfy
the memory boundary condition as formulated in Problem (2.1); some orderings may tend to exceed it
during the local elimination. In this case IJA fails to accumulate the Jacobian ofF. One way to deal with
this problem is to allocate memory space for local DAGsGj in Equation (2.17) at every evaluation step
conservatively. Therefore, we consider the complete DAG

Ĝj = (V̂j , Êj) with V̂j = Vj and Êj = {(i, k) | ∀ i, k ∈ V̂j : i < k} ⊇ Ej (2.18)

of Gj , where every vertexi ∈ V̂j has incoming edges from all previous vertices, hence|Pi| = i − 1.

Furthermore,Ẑj denotes the intermediate vertices ofĜj . Thus, the memory cost of̂Gj represents an
upper bound for the memory cost ofGj as formulated in the following lemma.

Lemma 2.3. LetG = (V,E) denote a DAG as defined by Equation (1.13) and letĜ = (V̂ , Ê) denote its
complete version as defined in Equation (2.18).

Mem(G) ≤ Mem(Ĝj) :=

q∑

i=1

(i − 1) · µe (2.19)

74 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

1 2

3

4

5 6 7

1 2

4

5 6 7

1 2

4

5 6 7

8

1 2

4

6 78

1 2

4

6 8

1 2

6 8

G7

-3

G̃7 = G7 − {3}

+8

G8

G8 − {5}

-5 -7

G8 − {5, 7}

-4

G̃8 = G8 − {5, 7, 4}

Figure 2.27: Memory Issues on Build Process of IJA.

Proof. The proof follows immediately from Equation (1.19) and the fact that a vertexi ∈ V can have at
mosti− 1 predecessors, that is,|Pi| ≤ i− 1.

Furthermore, the following lemma shows that the elimination of an intermediate vertexi ∈ Ẑj yields
again a complete DAĜGj − i with no fill-in edges. This means that, eliminating a particular vertex on a
complete DAG results in another complete one.

Lemma 2.4. LetĜ = (V̂ , Ê) be the complete DAG ofG defined by Equation (2.18) with j ∈ V̂ denoting
an intermediate vertex. Furthermore, we assume thatĜ is also topologically ordered with respect to their
dependencies, that is, an edge(i, k) ∈ Ê implies thati < k. Thus,Fillin(Ĝ− j) = ∅ and hencêG− j
is complete.

Proof. First we show in (1) by contradiction that eliminatingj produces no fill-in, which we refer to as
No-Fillin property. Then we show in (2) that̂G−j is complete that we refer to asCompleteness property.

1. No-Fillin property : By contradiction we show thatFillin(Ĝ− j) = ∅. Therefore, let us assume
that during the elimination ofj we generate a new edge(i, k) /∈ Ê. Thus, we havei ∈ Pj and
k ∈ Sj because(i, k) is generated by eliminatingj. Thus, from the topology of̂V it follows that
i < j andj < k , hencei < k. However, this would mean that̂G is not complete, which then
contradicts the definition of̂G.

2. Completeness property: Because of the topological ordering of the vertices ofĜ we have

∀i, k : i ∈ Pj and k ∈ Sj ⇒ i < k .

This means that there are direct edges from every predecessor of j to all of its successors in̂G.
Hence,Ĝ− j is also complete.

2.6. ITERATIVE JACOBIAN ACCUMULATION 75

Obviously, Lemma 2.4 holds also for the elimination of a subsetW of intermediateŝZj . More sub-
stantially, the elimination ordering affects neither the Completeness nor the No-Fillin property and hence
can be ignored in this context. Consequently, it becomes clear that the elimination of the intermediate
verticesẐj ⊂ V̂j in arbitrary order can not exceed the given memory bound, which solves exactly the
problem during the local elimination as formulated in Problem (2.1). Thus, conservative memory accu-
mulation forGj prevents us from running out of memory during the elimination process. We note here
that this still does not guarantee the success of IJA as discussed below in Figure 2.28. However, an upper
bound for the number of vertices ofGj can be determined for a given memory boundM as formulated
by the following lemma.

Lemma 2.5. LetM represent the available memory in bits. The DAGG = (V,E) as defined by Equa-
tion (1.13) can have at most

q =
1 +

√
1 + 8·M

µe

2
(2.20)

vertices.

Proof. From Equation (2.19) it follows that

Mem(G) ≤ Mem(Ĝ) =

q∑

j=1

(j − 1) · µe =
q · (q − 1)

2
· µe .

Hence, for the given memory boundM we get

q · (q − 1)

2
· µe = M ⇔ q2 − q − 2 ·M

µe

= 0 .

The binomial formula yields the following two solutions of the resulting polynomial above

q =
1±

√
1 + 8·M

µe

2
,

where1 + 8·M
µe

is a positive number≥ 1 and square root and division operators are supposed to return
integer values.

To support the discussion above let us consider againG7 in Figure 2.27, where a memory bound of
seven edges (M = 7) was taken to accumulate the corresponding bipartite graphG̃8 iteratively. Our
focus in the following is on the conservative memory allocation and its impact on the entire iterative
model shown illustrated in Figure 2.28. Therefore, we replace the memory conditionMem(Gj) ≤ M in
the evaluation process of Figure 2.25 byMem(Ĝj) ≤ M with

MCos(Ĝj) = Mem(Ĝj−1) + |V̂j−1| · µe .

From Equation (2.20) it follows forM = 7 · µe bits that conservatively four vertices would fit into the
available memory as

q =
1 +

√
1 + 8 · 7
2

= 4 .

Thus, the evaluation process initiates the elimination onceG4 with Mem(Ĝ4) = 1 + 2 + 3 = 6 is con-
structed. The reason is that inserting vertex5 with an additional memory requirement of conservatively
four edges would exceed the memory bound of seven edges. However, the elimination of vertex3 yields

76 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

1 2

3

4

1 2

4

1 2

4

5

1 2

3

4

5 6 7

1 2

5 6 7

1 2

5 6 7

8

G4

MCost(G4) = 4

MCost(Ĝ4) = 6

-3

G̃4 = G4 − 3

MCost(~G4) = 2

MCost(~̂G4) = 3

+5

G5

MCost(G5) = 3

MCost(Ĝ4) = 6

G7

MCost(G7) = 7

MCost(Ĝ7) = 21

-3, -4

G̃7 = G7 − {3, 4}

MCost(~G7) = 6

MCost(~̂G7) = 10

+8

G8

MCost(G8) = 8

MCost(Ĝ8) = 15

Figure 2.28: Conservative Memory Approach.

G̃4 with real two and conservatively three edges. Now, inserting vertex5 into G̃4 yieldsG5, while con-

suming additionally three edges and yieldinĝ̃G5 = 6. Unfortunately, no elimination is possible anymore
because vertex4 is known to be alive, so that the iterative approach fails to computeG̃8.

Let us now try to put̂G7 entirely into memory. Therefore, we would need a memory for7·(7−1)
2 = 21

edges. Taking nowM = 21 as memory bound would cause the iterative approach to succeed as illustrated
in the bottom row of Figure 2.28. Thereby, the elimination of5 and 7 fromG8 yields the same bipartite
graph asG8 − {5, 7, 4} in Figure 2.27.

At this point we recapitulate that taking the memory consumption of the complete variant of a given
DAG is considered the worst case solution of Problem (2.1), where we try to avoid running out of memory
during the elimination process. Here, all those edges not inthe original DAG are considered a ,,place
holder” for potential fill-in. Obviously, the memory consumption of the complete DAG is equivalent to
that of the extended Jacobian in dense format i.e. DEJ. Each entry of the latter is represented by an edges
of the former as discussed in the following.

2.6.1 Iterative Approach on Extended Jacobians

The relation between the linearized DAGG and the extended JacobianC′ of F was the focus of the
discussions at the beginning of this chapter. An example wasgiven in Figure 2.3, where the nonzero
sub-diagonal entries ofC′ correspond to the edges ofG. Moreover, the complete DAĜG relates even
more toC′ as all those edges of̂G not contained inG represent exactly the zero sub-diagonal entries of
C′. An example is given in Figure 2.29, where dashed edges inĜ correspond to zeros ofC′. Thus, it is
not surprising that the memory cost ofĜ is in the same complexity class ofC′. This becomes clear when
we consider the memory cost of the former and latter in Equation (2.19) and Equation (2.7) and the re-
sulting number of allocatable vertices and rows as suggested in Lemma 2.5 and Lemma 2.6, respectively.
However, the main difference is made by required storage foredgesµe and floating valuesµF , where we

2.6. ITERATIVE JACOBIAN ACCUMULATION 77

considerµe ≤ µF reasonable as edges are labeled with floating point values ofthe respective local partial
derivatives.

1 2

3

4

5

6

7 1

0 2

1 1 3

0 1 1 4

0 0 0 1 5

0 0 0 1 0 6

0 0 0 1 0 0 7

Ĝ C′

Figure 2.29: The complete DAG and the respective Extended Jacobian.

Lemma 2.6. LetM represent the available memory in bits. The extended JacobianC′ can have at most

q =
1 +

√
1 + 8·M

µF

2
(2.21)

rows.

Proof. From Equation (2.7) it follows that

M =

q∑

j=1

(j − 1) · µF =
q · (q − 1)

2
· µF ⇔ 2 ·M

µF

= q2 − q ⇔ q2 − q − 2 ·M
µF

= 0 .

The binomial formula yields the following two solutions of the resulting polynomial above

q =
1±

√
1 + 8·M

µF

2
,

where1 + 8·M
µF

is a positive number≥ 1.

In the following we consider the update process onC′, which is, in graphical term, nothing else than
topological reordering of DAG vertices. However, on the extended Jacobian the topological reordering
of rows can mean copying nonzero elements from old locationsinto new ones. It can easily be shown
that the topological ordering guarantees that there is enough memory in the new location of a row. The
proof idea can be described as follows. Therefore, let us assume that rowk of the extended JacobianC′

as shown in Figure 2.30 is free to be reused after its elimination and that there is no free rows before it.
Furthermore, let us assume that only rowsi, j with k + 1 < i < j are not eliminated so far, such that the
set of not eliminated rows can be denoted byD = {1, . . . , k − 1, i, j}.

Hence,i andj are potential candidates to be moved into rowk after its elimination yieldingC′ − k.
It is obvious that rowj can not be moved tok as it depends oni > k and hence does not fit intok.
Moreover, movingj into k would also violate the topological ordering asi < j. However, rowi fits into
location ofk for sure as there is no rowl ∈ {k + 1, . . . , i − 1} with l ≺ i by assumption. Otherwise,
row i would be faced with the same problem as rowj did before. Thus, a possible topological ordering

78 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

l1 l2 l3 l4· · · · · · · · ·

∗ 0 0 ∗ k· · · · · · · · · · · ·
0 0 0 0 0 k + 1· · · · · · · · · · · ·
...

...
...

...
...

...

0 ∗ 0 0 ∗ 0 i· · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

0 0 ∗ 0 0 0 ∗ j· · · · · · · · · · · · · · · · · ·

C′

−k

l1 l2 l3 l4· · · · · · · · ·

⊚ 0 0 ⊚ k· · · · · · · · · · · ·
0 0 0 0 0 k + 1· · · · · · · · · · · ·
...

...
...

...
...

...

⊛ ∗ 0 ⊛ ⊚ 0 i· · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

0 0 ∗ 0 0 0 ∗ j· · · · · · · · · · · · · · · · · ·

C′ − k

top(i) = k

l1 l2 l3 l4· · · · · · · · ·

⊛ ∗ 0 ⊛ k· · · · · · · · · · · ·
0 0 0 0 0 k + 1· · · · · · · · · · · ·
...

...
...

...
...

...

0 0 0 0 0 0 i· · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

0 0 ∗ 0 ∗ 0 0 j· · · · · · · · · · · · · · · · · ·

top(j) = k + 1

l1 l2 l3 l4· · · · · · · · ·

⊛ ∗ 0 ⊛ k· · · · · · · · · · · ·
0 0 ∗ 0 ∗ k + 1· · · · · · · · · · · ·
...

...
...

...
...

...

0 0 0 0 0 0 i· · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

0 0 0 0 0 0 0 j· · · · · · · · · · · · · · · · · ·

Figure 2.30: Update Step on Extended Jacobians.

as defined by Equation (2.6) withZ = D is as

top (1) = 1 . . . top (k − 1) = k − 1 top (i) = k top (j) = k + 1 .

This means that we keep rows1, . . . , k − 1 unchanged, whereas rowi resp. j are moved intok resp.
k + 1. Thus, all rowsk + 2, . . . , j are freed and thus can be used again during the evaluation process.
Note that the dependency of rowj on i has also to be maintained accordingly, that is, after movingrow
i into k row j depends on rowk. The following example illustrates the iterative process onthe extended
Jacobian of our example function forn = 2. The corresponding DAG version has already been illustrated
in Figure 2.24 with a vertex [edge] number of totally seven [twenty one].

Example 2.7. For better illustration we consider a light modification of the SAC of our example function
as shown in Example 1.1 as follows.

for i = 1, . . . , n

vi1 = x1; vi2 = x2;

vi3 = vi1 · vi2;
vi4 = vi3 − vi2;

t = vi4;

vi5 = sin(vi4);

vi6 = exp(vi4);

x1 = vi5; x2 = vi6;

2.6. ITERATIVE JACOBIAN ACCUMULATION 79

Here,vij denotes theith instance of the SAC variablevj . Furthermore, we replace the diagonal entries by
the corresponding SAC variables and denote an eliminated row by the diagonal entryv·· . Analogous to the
DAG version, we assume a memory limit of seven (twenty one sub-diagonal entries) extended Jacobian
rows. Thus, the evaluation process yields the extended JacobianA1 with nonzero entries denoted byci
for i = 1, . . . , 8. For instance,c3 = 1 represents the local partial derivative ofv14 with respect tov13 .
Now, eliminating rowv13 yieldsA2 with c3 = c3 + c2 · c4 andc9 = c1 · c4 as follows.

v11

0 v12

c1 c2 v13

0 c3 c4 v14

0 0 0 c5 v15

0 0 0 c6 0 v16

0 0 0 0 c7 c8 v23

A1

v11

0 v12

⊚ ⊚ v··

c9 c3 ⊚ v14

0 0 0 c5 v15

0 0 0 c6 0 v16

0 0 0 0 c7 c8 v23

A2

The update process copies rowsi = 4, 5, 6, 7 each one row higher toi − 1 yieldingA3. Hence, the

evaluation process is able to add the local partial derivativesc10 =
∂v2

4

∂v2

3

= 1 andc11 =
∂v2

4

∂v2

2

= −1 as the

contribution of the statementv24 = v23 − v2,2 that results inA4.

v11

0 v12

c9 c3 v14

0 0 c5 v15

0 0 c6 0 v16

0 0 0 c7 c8 v23

0 0 0 0 0 0 v··

A3

v11

0 v12

c9 c3 v14

0 0 c5 v15

0 0 c6 0 v16

0 0 0 c7 c8 v23

0 0 0 0 c10 c11 v24

A4

Thus, we eliminate rowsv14 andv23 and getA5, wherec12 = c9 · c5, c13 = c3 · c5, c14 = c9 · c6, and
c15 = c3 · c6. Updating nowA5 yieldsA6, where the last two rows are freed to be used again.

80 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

v11

0 v12

⊚ ⊚ v··

c12 c13 ⊚ v15

c14 c15 ⊚ 0 v16

0 0 0 ⊚ ⊚ v··

0 0 0 c16 c10 ⊚ v24

A5

v11

0 v12

c12 c13 v15

c14 c15 0 v16

0 0 c16 c10 v24

0 0 0 0 0 v··

0 0 0 0 0 0 v··

A6

The last evaluation step yieldsA7 by adding the local partial derivativesc17 =
∂v2

5

∂v2

4

= cos(v24) resp.

c18 =
∂v2

6

∂v2

4

= exp(v24) as the contribution of the statementv25 = sin(v24) resp. v26 = exp(v24) to A6.

Finally, the elimination of rows ofv15 , v
1
6 , andv24 results inA8 containing the Jacobian of our example

function forn = 2 as follows.

f ′
1,1 = c19 = c17 · (c16 · c12 + c10 · c14) f ′

1,2 = c20 = c17 · (c16 · c13 + c10 · c15)
f ′
2,1 = c21 = c18 · (c16 · c12 + c10 · c14) f ′

2,2 = c22 = c18 · (c16 · c13 + c10 · c15)

v11

0 v12

c12 c13 v15

c14 c15 0 v16

0 0 c16 c10 v24

0 0 0 0 c17 v25

0 0 0 0 c18 0 v26

A7

v11

0 v12

⊚ ⊚ v··

⊚ ⊚ 0 v··

⊚ ⊚ ⊚ ⊚ v··

c19 c20 0 0 ⊚ v25

c21 c22 0 0 ⊚ 0 v26

A8

2.6.2 Iterative Sparsity Exploitation of Extended Jacobians

Sparsity of extended Jacobians can also be exploited iteratively. Therefore, the symbolic step on bit
pattern in iterative mode has to keep the given memory limitation interpreted as the number of rows
q defined by Equation (2.23), which represents the upper boundfor row number of bit pattern proven
by Lemma 2.7. The proof idea bases on the assumption thatMem(BP) ≤ Mem(C′) with µI ≤ µF .

2.6. ITERATIVE JACOBIAN ACCUMULATION 81

Hence, given a memory bound ofM = 21 · µF bits a bit pattern of at most seven rows as

q ≤ 1 +
√
1 + 8 · 21
2

=
14

2
= 7 (2.22)

fits into the memory, which is also the case for the extended Jacobian discussed previously in Example 2.7.

Lemma 2.7. LetM represent the available memory in bits. The bit patternBP can have at most

q =
1 +

√
1 + 8·M

µF

2
(2.23)

rows.

Proof. From Equation (2.10) it follows that

Mem(BP) =

q∑

j=1

(

⌈
j

µI

⌉
+ 1) · µI ≤

q∑

j=1

(j − 1) · µF =
q · (q − 1)

2
· µF .

Hence, we set

q · (q − 1)

2
· µF = M ⇔ q2 − q − 2 ·M

µF

= 0 .

The binomial formula yields the following two solutions of the resulting polynomial above

q =
1±

√
1 + 8·M

µF

2
,

where1 + 8·M
µF

is a positive number≥ 1.

Example 2.8 illustrates the iterative symbolic row elimination on bit pattern corresponding to those
performed on extended Jacobians of Example 2.7. The resulting memory pattern is used in Example 2.9
to accumulate the Jacobian on the resulting CRS. Let us consider the fourth row ofB1 related tov14 with
B1(4, 1) = 6 = 21 + 22, whereB1(4, 2) stores the number of nonzeros of row 4 asB1(4, 2) = 2. The
elimination of rowv13 yieldsB2 containing one fill-in asB2(4, 1) = 3 = 20 + 21 andB2(4, 2) = 3
that increases the amount of spots of row 4 to three. Now, we updateB2 and getB3. Let us consider
again row 4 that is moved into row 3. Its two nonzeros are movedinto row 3 yieldingB3(3, 1) = 3 and
B3(3, 2) = 2. Hence, row 5 can also be moved into row 4. Here we have to be careful with overwriting
the entryB3(4, 2) = 3 with B3(5, 3) = 1, since otherwise we lose the correct (maximum) number of
spots of row 4 in this iteration. Thus, we save this value as the current largest spot size of row 4 in
L[4] = 3 for L = L(B2) before we overwrite it, whereL is a integer vector of lengthq.

Example 2.8.We illustrate here the iterative symbolic elimination on bit pattern of the extended Jacobian
of Example 2.7. Analogous to the extended Jacobian version,we assume a memory limit of seven rows as
computed in Equation (2.22) and four bit integer asµI = 4. Thus, the evaluation process yields the bit
patternB1 corresponding to the extended JacobianA1 of Example 2.7. Elimination of rowv13 yieldsB2.
The update process copies rowsi = 4, 5, 6, 7 to i − 1 yieldingB3 as follows.

82 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

0 0 v11

0 0 v12

3 2 v13

6 2 v14

8 0 1 v15

8 0 1 v16

0 3 2 v23

B1

0 0 v11

0 0 v12

0 2 v··

3 3 v14

8 0 1 v15

8 0 1 v16

0 3 2 v23

B2

0 0 v11

0 0 v12

3 2 v14

4 1 v15

4 0 1 v16

8 1 2 v23

0 0 0 v··

B3

Thereby, we have

L(B1) = [0, 0, 2, 2, 1, 1, 2], L(B2) = [0, 0, 2, 3, 1, 1, 2], and L(B3) = [0, 0, 2, 3, 1, 2, 2] .

Now, the evaluation process yieldsB4 by adding the contribution of the statementv24 = v23 − v2,2.
Thus, we eliminate rowsv14 andv23 and getB5. UpdatingB5 yieldsB6, where the last two rows are freed
to be used again.

0 0 v11

0 0 v12

3 2 v14

4 1 v15

4 0 1 v16

8 1 2 v23

0 3 2 v24

B4

0 0 v11

0 0 v12

0 2 v··

3 3 v15

3 0 3 v16

0 0 2 v··

8 1 3 v24

B5

0 0 v11

0 0 v12

3 2 v15

3 2 v16

12 0 2 v24

0 0 0 v··

0 0 0 v··

B6

Thereby, we have

L(B4) = [0, 0, 2, 3, 1, 2, 2], L(B5) = [0, 0, 2, 3, 3, 2, 3], and L(B6) = [0, 0, 2, 3, 3, 2, 3] .

The last evaluation step yieldingB7 followed by elimination of rowsv15 , v
1
6 , andv24 results inB8 denoting

the eliminated bit pattern of our example function forn = 2.

2.6. ITERATIVE JACOBIAN ACCUMULATION 83

0 0 v11

0 0 v12

3 2 v15

3 2 v16

12 0 2 v24

0 1 1 v25

0 1 1 v26

B7

0 0 v11

0 0 v12

0 2 v·,·

0 2 v·,·

0 0 4 v·,·

3 0 3 v25

3 0 3 v26

B8

Thereby, we have

L(B7) = [0, 0, 2, 3, 3, 2, 3], and L(B8) = [0, 0, 2, 3, 4, 3, 3] .

In general, all three evaluation, elimination, and update processes have to take care of the right number
of row spots over the entire iterations in symbolic mode to guarantee the correct memory pattern needed
in the accumulation mode on CRS. Figure 2.31 illustrates theentire iterative symbolic elimination process
via symbolic elimination of rows of bit pattern inσ-order. Thereby,k denotes the iteration index such that
vkj indicates the execution of the statementvj in kth evaluation step. Furthermore, the set of eliminatable
rows in iterationk is denoted byZk.

As shown before by an example, the detection of memory usage of CRS of our example function
for n = 2 needs three iterations in total. The last iteration yieldsB8 with the total number of fourteen
spots as the sum over spots of rows stored inL. Knowing this the corresponding CRS can be statically
allocated, which is supposed to be initialized in the secondevaluation ofF in the accumulation mode
with real values, which is shown in Figure 2.32. It is worth mentioning here that in iterative mode, we
do not care about the ordering of the nonzero elements in CRS.Consequently, the initialization as well
as elimination processes are free to put the values in arbitrary empty spots in range of the corresponding
rows. However, one side effect of this is the linear index search over row entries. Its impact on runtime of
sparse Jacobian accumulation on CRS representation of extended Jacobians have already been discussed
with the test cases in Section 2.4.2. We note that for consistency reasons we decided to use the linear
search algorithm overall in DALG. However, the implementation of more efficient algorithms is the focus
of ongoing implementation activity on DALG.

In the following we show all those algorithms described in Section 2.2 and Section 2.4 that have to be
modified to make them work in iterative mode. Here, we assume thatq represents the maximum number
of statically allocatable rows for bit pattern according toEquation (2.23), where againL is supposed to
be an initially zero integer vector of lengthq. Thereby,

L(i) =
ν

max
k=1

(B̃P k (i,

⌈
i

µI

⌉
+ 1) with B̃P k = BPk − Zk

represents the maximum number of spots of rowi = 1, · · · , q over allν iterations.B̃P k denotes the elim-
inated bit pattern resulted from the elimination of intermediate rowsZk at the iterationk ∈ {1, . . . , ν}
on BPk, which is supposed to be initialized in thekth evaluation step. In the following algorithms we
assumep = |Zk| to denote the number of intermediate rows of thekth iteration.

84 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

1. Evaluation ofF

vkj = ϕj(v
k
i)i≺j

j = n+ 1, · · · q
if (row ctr ≤ q)

2. Initialized Bit Pattern

BP k

row ctr = row ctr + 1

5. Allocated CRS

(α, κ, ρ)

nz =
∑q

i=n+1 L(i)

3. Eliminated Bit Pattern

B̃P k = BPk − Zk

if (j < q)

5. Updated Bit Pattern

BPk+1

row ctr = row ctr − |Zk|

Ye
s
:: S

Pu
t(
BP

k
, j
, i
)

No :: SJRowElim(BP
k , L, D, σ)

Y
e
s
::
S
U
p
d
a
t
e
(
~BP

k ,
L
,
D
,
r
o
w
c
t
r
)

No
:: C

on
st
ru
ct
CR
S(
~BP
, L,

(α
, κ
, ρ)

)

Figure 2.31: Iterative Symbolic Elimination Process on BitPattern.

2.6. ITERATIVE JACOBIAN ACCUMULATION 85

Algorithm 2.17 (JSRowElim (BP, L, D, σ) : Symbolic Row Elimination).

Require: Bit patternBP , integer vectorL, and Boolean vectorD of lengthq.
Ensure: BP after elimination of all intermediate columns inσ ordering.

1: for j = σ(1) to σ(p) do
2: SRowElim (BP, D, j)
3: D(j) = true
4: for i = 1 to q do

5: L(i) = max (L(i), BP (i,
⌈

i
µI

⌉
+ 1))

6: end for
7: end for

Algorithm 2.18 (SUpdate(BP, L, D, row ctr) : Update Bit Pattern).

Require: Bit patternBP, integer vectorL, Boolean vectorD of lengthq, and row counterrow ctr.
Ensure: Updated bit patternBP andL.

1: for j = n+ 1 to q do
2: if D(j) == true then
3: nz = 0
4: for i = j + 1 to q do
5: if (D(i) == false) then

6: for k = 1 to
⌈

i
µI

⌉
do

7: for m = 0 to µI − 1 do
8: l = (k − 1) · µI +m
9: if BP (i, k)&2m == 1 and D(l) == true then

10: nz = nz + 1
11: end if
12: end for
13: BP (j, k) = BP (i, k)
14: BP (i, k) = 0
15: end for
16: BP (j,

⌈
j
µI

⌉
+ 1) = nz

17: BP (i,
⌈

i
µI

⌉
+ 1) = 0

18: # Replacingi ≺ k with j ≺ k
19: for k = i+ 1 to q do
20: if D(k) == false and BP (k,

⌈
i
µI

⌉
)&2(i−1)%µI == 1 then

21: BP (k,
⌈

j
µI

⌉
) = BP (k,

⌈
j
µI

⌉
) | 2(j−1)%µI

22: BP (k,
⌈

i
µI

⌉
) = BP (k,

⌈
i
µI

⌉
)− 2(i−1)%µI

23: end if
24: end for
25: end if
26: end for
27: L(j) = max (L(j), nz)
28: row ctr = j
29: D(i) = true

86 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

30: end if
31: end for

Algorithm 2.19 (ConstructCRS(BP, L, (α, κ, ρ)) : CRS Construction).

Require: Bit patternBP , integer vectorL of lengthq.
Ensure: Initialized CRS(α, κ, ρ).

1: free(BP)
2: c = 1
3: allocate(ρ, q+ 1)
4: for i = 1 to n do
5: ρ(i) = 1
6: end for
7: for i = n+ 1 to q do
8: ρ(i) = c
9: c = c+ L(i)

10: end for
11: allocate(α, c)
12: allocate(κ, c)
13: for i = 1 to c− 1 do
14: α(i) = 0
15: κ(i) = 0
16: end for
17: ρ(q + 1) = c− 1

After termination ofν symbolic row eliminations Algorithm 2.19 can be used to construct the re-
sulting CRS for givenL andq, whereα, κ andρ are of length

∑q
i=n+1 L(i) andq + 1, respectively.

Thereby, the routine callfree(BP) in line 1 indicates that the memory allocated forBP is freed and
hence the entire available memoryM can be used to store CRS. However, the construction step assumes
that the resulting CRS fits intoM , that is,Mem(CRS) ≤ M according to Equation (2.8), which we
consider reasonable.α andρ are initialized to zero as shown in lines 13–16. Elementi with i = 1, · · · , n
[i = n+ 1, · · · , q] of ρ is initialized to one [the position of the first nonzero element of row i in α vector
as shown in line 5 [8].

Once CRS is constructed Algorithm 2.14 can again be used to insert partial derivatives into CRS.
Here, it has to be assured that exactly the same iteration points are taken as in symbolic mode. This is
essential because inconsistency in iterations may cause different memory requirements. Consequently,
the evaluation process in accumulation mode has to jump intothe elimination step at the same line in
the SAC ofF as done in symbolic mode. However, this can be simply done by takingrow ctr < q as
condition in evaluation process of both symbolic and accumulation modes as shown in Figures 2.31 resp.
2.32. Thus, at every elimination stepk the resulting CRS denoted by(α, κ, ρ)k is transformed into the
eliminated version(α̃, κ̃, ρ̃)k via row elimination. After the last iteration the Jacobian can be extracted
using Algorithm 2.9. Otherwise, Algorithm 2.20 is providedto update CRS before proceeding with
the next iteration of the evaluation process. Example 2.9 illustrates the Jacobian accumulation by row
elimination of our example function forn = 2 step by step on the corresponding CRS of the extended
Jacobians of Example 2.7. The respective symbolic eliminations that yield the memory usage of CRS
have been illustrated in Example 2.8.

Algorithm 2.20 (Update((α, κ, ρ), D) : Update CRS).

2.6. ITERATIVE JACOBIAN ACCUMULATION 87

1. Evaluaion ofF

vkj = ϕj(v
k
i)i≺j

j = n+ 1, · · · q
if (row ctr ≤ q)

2. Initialized CRS

(α, κ, ρ)k

row ctr = row ctr + 1

5. Jacobian

∇F (x)

3. Eliminated CRS

(α̃, κ̃, ρ̃)k = (α, κ, ρ)− Zk

if (j < q)

5. Updated CRS

(α, κ, ρ)k+1

row ctr = row ctr − |Zk|

Ye
s
::
Pu
t(
(α
, κ
, ρ
) k
, j
, i
, c

j,
i
) No

:: JRowElim((α, κ, ρ)
k , D, σ)

Y
e
s
::
U
p
d
a
t
e
((
~α
,
~κ
,
~ρ)

k ,
D
)

No
:: J

Ex
tr
ac
t((

~α,
~κ,
~ρ)k

,∇F
(x)

)

Figure 2.32: Iterative Elimination Process on CRS.

88 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

Require: (α, κ, ρ), Boolean vectorD of lengthq.
Ensure: Updated(α, κ, ρ).

1: for j = n+ 1 to q do
2: if D(j) == true then
3: c = ρ(j)
4: for i = j + 1 to q do
5: if (D(i) == false) then
6: for l = ρ(i) to ρ(i+ 1)− 1 do
7: α(c) = α(l)
8: κ(c) = κ(l)
9: α(l) = κ(l) = 0

10: c = c+ 1
11: end for
12: # Replacingi ≺ k with j ≺ k
13: for k = i+ 1 to q do
14: if (D(k) == false) then
15: l = Find((α, κ, ρ), k, i)
16: if l > 0 and κ(l) == i then
17: κ(l) = j
18: end if
19: end if
20: end for
21: end if
22: end for
23: end if
24: end for

Example 2.9.The following illustrates the iterative accumulation of the Jacobian of our example function
for n = 2 on the CRS, which is generated based on the bit patternB8 of Example 2.8. Furthermore, we
assume that there is enough memory for the resulting CRS of totally fifteen nonzeros.

α =(

row 3︷︸︸︷
0, 0 ,

row 4︷ ︸︸ ︷
0, 0, 0,

row5︷ ︸︸ ︷
0, 0, 0, 0,

row 6︷ ︸︸ ︷
0, 0, 0,

row 7︷ ︸︸ ︷
0, 0, 0)

κ =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ρ =(1, 1, 1, 3, 6, 10, 13, 16)

First evaluation ofF yields the following CRS representation of the extended JacobianA1 shown in Ex-
ample 2.7, which we use here for better illustration.

α1 =(

row 3︷ ︸︸ ︷
c1, c2,

row 4︷ ︸︸ ︷
c3, c4, 0,

row 5︷ ︸︸ ︷
c5, 0, 0, 0,

row 6︷ ︸︸ ︷
c6, 0, 0,

row 7︷ ︸︸ ︷
c7, c8, 0)

κ1 =(1, 2, 2, 3, 0, 4, 0, 0, 0, 4, 0, 0, 5, 6, 0)

ρ1 =(1, 1, 1, 3, 6, 10, 13, 16)

Elimination of row 3 related tov13 yields(α̃1, κ̃1, ρ̃1) that corresponds toA2. Thereby,c3 andc9 denote
an absorption and fill-in, respectivel. Fill-in, fill-out aswell as absorptions are denoted by bold letters.

2.6. ITERATIVE JACOBIAN ACCUMULATION 89

Thereby, the dependence of row 4 on row 3 is given byc4 =
∂v1

4

∂v1

3

= 1.

α̃1 =(

row 3︷︸︸︷
0,0 ,

row 4︷ ︸︸ ︷
c3,0, c9,

row 5︷ ︸︸ ︷
c5, 0, 0, 0,

row 6︷ ︸︸ ︷
c6, 0, 0,

row 7︷ ︸︸ ︷
c7, c8, 0)

κ̃1 =(0,0,2,0,1, 4, 0, 0, 0, 4, 0, 0, 5, 6, 0)

ρ̃1 =(1, 1, 1, 3, 6, 10, 13, 16)

The update process copies rowsi = 4, 5, 6, 7 into row i− 1. Thus, we get(α2, κ2, ρ2) corresponding
to A3 as follows.

α2 =(

row 3︷ ︸︸ ︷
c3, c9,

row 4︷ ︸︸ ︷
c5, 0, 0,

row 5︷ ︸︸ ︷
c6, 0, 0, 0,

row 6︷ ︸︸ ︷
c7, c8, 0,

row 7︷ ︸︸ ︷
0, 0, 0)

κ2 =(2, 1, 3, 0, 0, 3, 0, 0, 0, 4, 5, 0, 0, 0, 0)

ρ2 =(1, 1, 1, 3, 6, 10, 13, 16)

Hence, the evaluation process adds the contribution of the statementv24 = v23 − v2,2 to (α2, κ2, ρ2)
yielding the following CRS corresponding toA4.

α2 =(

row 3︷ ︸︸ ︷
c3, c9,

row 4︷ ︸︸ ︷
c5, 0, 0,

row 5︷ ︸︸ ︷
c6, 0, 0, 0,

row 6︷ ︸︸ ︷
c7, c8, 0,

row 7︷ ︸︸ ︷
c10, c11, 0)

κ2 =(2, 1, 3, 0, 0, 3, 0, 0, 0, 4, 5, 0, 5, 6, 0)

ρ2 =(1, 1, 1, 3, 6, 10, 13, 16)

The elimination of rows 3 and 6 related tov14 andv23 yields the corresponding CRS ofA5 as follows.
Thereby, the dependency of rows 5,6 on 3 and row 7 on 6 is represented by the partialsc5, c6 andc11,
respectively.

α̃2 =(

row 3︷︸︸︷
0,0 ,

row 4︷ ︸︸ ︷
0, c12, c13,

row 5︷ ︸︸ ︷
0, c14, c15,0,

row 6︷ ︸︸ ︷
0,0, 0,

row 7︷ ︸︸ ︷
c10,0, c16)

κ̃2 =(0,0,0,1,2,0,1,2, 0,0,0, 0,5,0,4)

ρ̃2 =(1, 1, 1, 3, 6, 10, 13, 16)

Updating(α̃2, κ̃2, ρ̃2) yields the following CRS corresponding toA6.

α3 =(

row 3︷ ︸︸ ︷
c12, c13,

row 4︷ ︸︸ ︷
c14, c15, 0,

row 5︷ ︸︸ ︷
c10, c16, 0, 0,

row 6︷ ︸︸ ︷
0, 0, 0,

row 7︷ ︸︸ ︷
0, 0, 0)

κ3 =(1, 2, 1, 2, 0, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0)

ρ3 =(1, 1, 1, 3, 6, 10, 13, 16)

The last evaluation step adds entriesc17 andc18 to row 6 and 7, respectively yielding the following CRS
of A7.

α3 =(

row 3︷ ︸︸ ︷
c12, c13,

row 4︷ ︸︸ ︷
c14, c15, 0,

row 5︷ ︸︸ ︷
c10, c16, 0, 0,

row 6︷ ︸︸ ︷
c17, 0, 0,

row 7︷ ︸︸ ︷
c18, 0, 0)

κ3 =(1, 2, 1, 2, 0, 4, 3, 0, 0, 5, 0, 0, 5, 0, 0)

ρ3 =(1, 1, 1, 3, 6, 10, 13, 16)

90 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

Finally, eliminating rows 3,4,5 related tov15 , v16 , andv24 , respectively results in(α̃3, κ̃3, ρ̃3) corresponding
toA8 with row-wise Jacobian entriesc19, c20 andc21, c22.

α̃3 =(

row 3︷︸︸︷
0,0 ,

row 4︷ ︸︸ ︷
0,0, 0,

row 5︷ ︸︸ ︷
0,0, 0, 0,

row 6︷ ︸︸ ︷
0, c19, c20,

row 7︷ ︸︸ ︷
0, c21, c22)

κ̃3 =(0,0,0,0,0,0,0, 0, 0,0,1,2,0,1,2)

ρ̃3 =(1, 1, 1, 3, 6, 10, 13, 16)

2.6.3 Numerical Results

In the following we present first numerical results on Jacobian accumulation by row elimination on ex-
tended Jacobians as well as the respective CRS representations in iterative fashion using DALG on both
test cases Bratu and Heat described in Section 2.4.2. Henceforth, we use the terminologies IRM and IFM
to denote iterative Jacobian accumulation on DEJ or CRS withlocal application of row elimination in
forward and reverse ordering, respectively. In this context, we use the available amount of memoryM
and the resulting conservative number of allocatable rowsq by Equation (2.21) interchangeably. Further-
more, we will compare the runtime behavior of iterative approach by focusing on the impact of the size
of theactive blockusing both DEJ and CRS. An active block of an extended Jacobian consists of all rows
for which memory is allocated; elimination process is supposed to act on this part. In other words, we
take a part of totally allocatable memoryM and try to accumulate iteratively the target Jacobian on it.

We achieve this, for instance, by choosing

Mδ = δ ·M Equation (2.21)−−−−−−−−−−→ qδ =
1 +

√
1 + 8·Mδ

µF

2
,

whereMδ [qδ] denotes the memory usage [static row size] of the active block for 0 ≤ δ ≤ 1. Obviously,
the entire available memory is allocatable forδ = 1, which corresponds to the non-iterative fashion
with the difference that memory is freed after elimination step by the update process enabling further
evaluation steps. In case ofδ = 0 DALG performs assignment level elimination (ALE), meaningthat
every execution of an assignment in the program ofF is succeeded by an elimination and update step.

Bratu Problem

Our focus is again on the accumulation of the Jacobian of the Bratu function of Listing 2.1. Figure 2.33
(a) and (b) compare runtimes of DALG in iterative mode on DEJ and CRS, respectively, with their non-
iterative serial counterparts. As one can see the reverse mode performs better than the forward mode in
both non-iterative (GRM) and iterative (IRM) modes on both DEJ and CRS.

To clarify this, let us consider Table 2.4, which presents the runtime of DALG in the three modes
non-iterative serial, non-iterative parallel (with eightthreads), and iterative modes. We note again that the
capability of the first two modes is restricted by the memory bandwidth.

As also discussed in Section 2.4.2 the non-iterative reverse mode (GRM) is about a factor of2.9 ≈
3162
1082 faster than its forward counterpart (GFM). The runtime difference was conjectured to be caused
mostly by the difference in the respective number of multiplications as1.89 = 362600

191688 along with some
cache effects.

Considering now iterative mode using assignment level elimination, we observe analog runtime dif-
ference between forward and reverse elimination on DEJ as1.88 = 47

25 , which is even closer to the factor
1.89 achieved by the multiplication difference above5. However, this is not really surprising, since the
resulting elimination sequence in forward/reverse at the end of IJA is not different than the non-iterative

5We believe the reason for this to be the better cache behaviorduring ALE.

2.6. ITERATIVE JACOBIAN ACCUMULATION 91

one as there is no dependence between the results of assignments (r[i][j]) in Bratu function as shown in
line 13 of Listing 2.1. One can easily figure out that every execution of an assignment contributes directly
to a row of the target Jacobian. Hence, it is not surprising that reverse elimination is faster than forward
mode. Thus, the iterative approach seems to accelerate DJARE and SJARE in both forward and reverse
orderings considerably. In particular, IRM in context of DJARE [SJARE] is about a factor of roughly
43 ≈ 1082

25 [311 ≈ 1556
5] faster than its GRM counter part.

Comparing now the runtimes of IRM by assignment level elimination on DEJ with those of CRS we
observe that the latter is about a factor5 = 25

5 faster that the former. Thus, we observe that assignment
level elimination on CRS performs much better than on DEJ in case of Bratu. However, our next test case
will show that this behavior may change.

n = 100 GFM GRM IFM IRM LFM (#8) LRM (# 8)

DEJ 3162 1082 47 25 121 118
CRS 7159 1556 15 5 17 9

Table 2.4: Runtime Measurement Data for Bratu forn = 100 in seconds.

The respective memory consumptions of DEJ and CRS in iterative mode are shown in (d). Thereby,
the memory consumption of DEJ grows polynomially as opposite to CRS that behaves roughly linear
with n. The reason for hight memory consumption of DEJ is because Bratu generates a lot of program
variables that can not be eliminated over entire IJA. More precisely, forn = 100 we measure that DEJ
allocates2881 MB heap memory. To clarify this let us considering the lines 8–16 and 18–20 of Bratu
function. One can easily see that all rows related tor andx both of size(n− 2)2 are alive and hence can
not be eliminated over iterations inside ofbratu. Therefore, all temporary rows generated by the right
hand side of the expression of line 12 can be eliminated to be reused later. Hence, updating DEJ yields a
matrix with roughlyq ≈ 2 ∗ (n− 2)2 rows. Thus, we get forn = 100 andµF = 8 Bytes

q = 19208
Equation (2.7)−−−−−−−−−→ Mem(DEJ) =

19208 · (19208− 1)

2
· µF ≈ 1407 MByte .

The reason for the difference between allocated memory by DALG and the one calculated above is that
DALG has to maintain some meta data in addition to DEJ to perform elimination.

Furthermore, (c) compares runtimes of IRM on DEJ and CRS withtheir non-iterative parallel coun-
terparts using eight threads denoted by LRM (#8). As one can see runtime of LRM(#8) overtakes that
of IRM both on CRS for sufficiently large dimensions. More precisely, forn = 200 the latter needs 310
seconds in total as opposed to 200 seconds in the former to accumulate the Jacobian of the Bratu function.
We note that the runtime gap may widen for even larger problemsizes.

Based on our results, so far we observed that assignment level elimination performs better in runtime
and memory usage as shown in (a) and (b), respectively. Therefore, increasing active block sizes by
choosing largerδ seems to scale down the performance. In fact, the same holds for CRS even when the
memory increase is not as strong as in case of DEJ. As discussed in Section 2.5.4 main contribution to
the speedup of PJA was conjectured to be a side effect of smaller search spaces for dependencies. Hence,
high gain in runtime was observed on Bratu even with a single thread compared with the serial version in
both forward and reverse ordering as shown in Table 2.3. On the other hand, as shown in (e) IRM on both
DEJ and CRS underperforms asymptotically by increasing thesize of the active blockδ. We believe that
the runtime loss is again because of the increase of the size of search space in larger active blocks, which
also results in higher memory usage as shown in (f). In (e) we observe also that DEJ perform better than
CRS for sufficient large active blocks, which conforms with the runtime in non-iterative mode shown
in Figure 2.12. Thus, we believe that combining IJA approachwith the parallel one to be very promising.
Here, we intend to accumulate the entire available memory during the function evaluation followed by

92 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

50 100 150 200

100

101

102

103

n : PROBLEM SIZE

R
U

N
T

IM
E

[S
E

C]

DEJ, GFM
DEJ, GRM
DEJ, IFM
DEJ, IRM

50 100 150 200

100

101

102

103

104

n : PROBLEM SIZE

R
U

N
T

IM
E

[S
E

C]

CRS, GFM
CRS, GRM
CRS, IFM
CRS, IRM

(a) (b)

50 100 150 200

100

101

102

103

n : PROBLEM SIZE

R
U

N
T

IM
E

[S
E

C]

DEJ, IRM
CRS, IRM

DEJ, LRM #8
CRS, LRM #8

0 50 100 150 200

101

102

103

104

105

n : PROBLEM SIZE

M
E

M
O

R
Y

[M
B

Y
T

E
]

DEJ, IFM
CRS, IFM

(c) (d)

0 0.2 0.4 0.6 0.8

101

102

103

δ

R
U

N
T

IM
E

[S
E

C]

DEJ, IRM
CRS, IRM

0 0.2 0.4 0.6 0.8

102

103

104

105

δ

M
E

M
O

R
Y

[M
B

Y
T

E
]

DEJ
CRS

(e) (f)

Figure 2.33: Runtime and Memory Results of DALG in IterativeMode using DEJ and CRS on Bratu.

2.6. ITERATIVE JACOBIAN ACCUMULATION 93

parallel elimination on sub-matrices. Termination of parallel session is succeeded by the update step to
proceed with evaluating the function if necessary. Hence, we hope to achieve better scalability by IJA
along with runtime improvement as side effect of smaller search spaces by PJA.

Heat Equation

Figure 2.34 presents numerical results on runtime and memory consumption (b) of IJA by DALG for the
computation of the gradient∇f of f given in line 20 of Listing 2.2. The focus here is only on reverse
ordering on DEJ as in Heat DEJ turns out to be almost faster than its CRS counterpart. Therefore, let us
consider (c) that compares runtime of DEJ with CRS. Here, we alternate the active block size as discussed
on Bratu in Figure 2.33 (e). However, DEJ seems to perform almost better than CRS, despite the fact
that it requires more memory by increase inδ. However, the default IJA mode namely assignment level
elimination forδ = 0.0 seems to perform and keep the memory consumption low for highdimensions
nx = 100, . . . , 1000 with nt = 100 · nx.

One can easily figure out that the memory usage of DALG on Heat is much better that on Bratu as
discussed previously in Figure 2.33 (d). The reason again lies in the nature of the underlying program of
Heat. Here, DEJ consists of a constant factor ofnx alive and hence not eliminatable rows over the entire
iterative process. Thus, our numerical experiments show that the benefit of IJA depends very much on

nx = 100, nt = 10000 nx = 200, nt = 20000 nx = 300, nt = 30000

Secs. MByte Secs. MByte Secs. MByte

IRM (δ = 0) 170 3 3024 4 27796 5
IRM (δ < 0) 11 6 205 17 957 36

ADOLC, GRM 16 273 80 1097 213 2473

Table 2.5: Summary of Measurement Data for Heat using ADOL-Cand DALG.

the implementation of the underlying problem as discussed in very detail at the beginning of Section 2.6.
A detailed view on runtime and memory of the iterative mode ofDALG is given in Table 2.5. The

first row presents runtime (in seconds) and memory (in Megabyte) behavior of IRM by assignment level
elimination, that is,δ = 0. Let us now compare its runtime with the global reverse mode ADimplemen-
tation of ADOL-C6. Here, ADOL-C stores the tape on the hard disk. As one can see for input dimension
nx = 100 andnt = 10000 time steps IRM by ALE is roughly15 ≈ 170

11 slower than GRM of ADOL-C.
On the contrary, IRM reduces the storage usage by a factor of roughly 45 ≈ 273

6 . Hence, the gain in
memory by IJA is much higher than the loss in runtime. Note that both runtime and storage gaps increase
considerably in both cases. We conjecture the reason for theruntime loss of IRM by ALE to lie again in
the nature of Heat. Therefore, the reader may easily figure out that roughlynx×nt assignments (lines 5-6
of Listing 2.2) are performed in the code off . Hence, roughlynx ·nt consecutive elimination and update
steps are performed over the entire iterative process, where in the former approximately 5 intermediate
rows are eliminated. Hence, we believe the low number of eliminatable intermediates over entire IJA to
be the reason for the loss on performance. In order to tackle this problem we aim to perform ALE while
adapting the size of active blocks as

if(row ctr ≥ 1.1 · ub) ub = min(2 · row ctr, q) . (2.24)

Thus, an assignment in the program off leads to an elimination and hence update step if the current
row counterrow ctr (see Figure 2.31) is at least ten percent greater than the update boundub, which is
assumed to be initially zero. Thereby, the update bound is adjusted by the factor1.1, which shows so
far the best runtime behavior on Heat. To achieve this effectin DALG one has to choose a negativeδ.

6We use ADOL-C release 2.1.12 available athttp://www.coin-or.org/projects/ADOL-C.xml

94 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

200 400 600 800 1,000

101

102

103

104

105

nx [nt = 100 · nx]

R
U

N
T

IM
E

[S
E

C]

DEJ, IRM
ADOLC, GRM

200 400 600 800 1,000

101

102

103

104

nx [nt = 100 · nx]

M
E

M
O

R
Y

[M
B

Y
T

E
]

DEJ, IRM
ADOLC, GRM

(a) (b)

0 0.2 0.4 0.6 0.8

100

101

102

103

δ

R
U

N
T

IM
E

[S
E

C]

DEJ, IRM
CRS, IRM

0 0.2 0.4 0.6 0.8
100

101

102

103

104

105

δ

M
E

M
O

R
Y

[M
B

Y
T

E
]

DEJ, IRM
CRS, IRM

(c) (d)

Figure 2.34: Runtime and Memory Results of DALG in IterativeMode on DEJ and CRS on Heat.

2.6. ITERATIVE JACOBIAN ACCUMULATION 95

Doing this for the Heat problem as shown in the second line of Table 2.5 we observe high improvement
in runtime of IJA with negligible loss of memory. In particular,∇f for nx = 100 andnt = 10000 is
now computable in 11 seconds instead of 170 seconds by ALE without memory (row counter) adaption.
Thus, the runtime gap between IJA by DALG and GRM using ADOL-Cis reduced considerably by the
former. We note that we use IRM in memory adaptive mode in our plots (a) and (b).

Based on our numerical results, we have considered two different types of problems, namely Bratu
and Heat. In the the Bratu case CRS turns out to be much more suitable to face the memory issue, whereas
in the case of Heat the opposite is the case. However, applying assignment level elimination seems to
be the most memory-friendly mode available in DALG that turns out to be also more efficient in runtime
for Bratu but not for Heat. However, in the latter we observedthat adapting the size of active blocks at
runtime according to Equation (2.24) improves the runtime of IJA on DEJ considerably.

Our numerical results show the potential of IJA as the general purpose approach to tackling the mem-
ory problem of the reverse mode AD by minimizing the users intervention. Hence, gradients of even
larger dimensions can be accumulated very cheaply in memoryusing IJA, where the global reverse mode
AD would fail. Thus, we consider the observed performance loss compared to the global reverse mode
AD provided by ADOL-C as acceptable.

At this point we note that checkpointing strategy would of course solve the memory problem of GRM.
Especially in the case of Heat as a linear inverse problem a simple checkpoint using ADOL-C would be
enough to accumulate∇f. However, as motivated at the beginning of this chapter the application of
checkpointing requires AD expertise. This may be easy in case of Heat. However, discovering the
applicability of checkpointing and adapting it into real world inverse problems [UHP+09] might be a
research project on its own.

However, our further investigations will focus in very detail on runtime improvement of IJA. In that
context, we plan to implement IJA idea on DAGs for comparisons. Here, the main focus will be on
reducing the dynamic effects resulted by the memory allocation and deallocation instructions at runtime.
In particular, it is preferable that the elimination of a particular vertex do not necessarily lead to the
memory deallocation of that vertex. In this context, a deleted vertex is supposed to kept in memory, so
that it can represent in general different (SAC) variables over the entire iterative process. Thus, we hope
to benefit from the local dependencies of vertices at each iteration point given as their predecessors. We
recapitulate that this was encountered to matter on DEJ and its CRS by increasing the size (q) of the
respective matrices. Thus, so far we can not benefit from the entire available memory using DEJ as well
as CRS. However, further research is planed to solve this problem and improve the runtime behavior of
CRS.

96 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

Chapter 3

Detection and Exploitation of Sparsity
in Derivative Tensors

3.1 Motivation and Summary of Results

In the following we investigate methods for improving the prediction and exploitation of the sparsity of in
general derivative tensors∇dF such as Jacobian∇F (d = 1) and Hessian∇2F (d = 2) of the functionF
defined by Equation (1.1). Existing compression techniques[CPR74] are based on the knowledge of the
nonzeros sparsity pattern of target Jacobians or Hessians.To achieve a better compression, Section 3.2
distinguish between the variable and constant nonzero entries of ∇dF as defined by Equation (3.1);
the former does not depend on the input values as opposed to the latter, that needs to be computed at
runtime. Dynamic algorithms are provided in Section 3.2.2 and Section 3.2.3 for estimating the sparsity
pattern and constant entries of∇dF, respectively. We note that both are supposed to be sparser than their
nonzero counterparts. As two case studies, constants are exploited in the process of Jacobian and Hessian
computation in Section 3.2.4 and Section 3.2.5, respectively.

At this point it is worth mentioning that the compression of Jacobian or Hessian matrices is achieved
by applying some coloring heuristic to the respective graphrepresentations. The respective coloring
problem are known to be NP-complete. The heuristics used in this are provided by the graph coloring
package ColPack [GMP05].

Obviously, the generation of the graph of a particular derivative matrix requires only the knowledge
about its sparsity pattern. Henceforth, whenever we talk about coloring a matrix or its sparsity pattern we
mean coloring the respective graph of that matrix. In the case of constant exploitation we aim to color
the variable pattern of both Jacobians and Hessians. Our experimental results in Section 3.2.6 show that
constant exploitation performs in terms of achieved colorsin context of sparse Jacobian accumulation
even on a originally very sparse (nonzero) Jacobian. However, no gain in colors is achieved by constant
exploitations in context of sparse Hessian computation considering the objective (scalar) function arising
in the context ofSimulated Moving Bed(SMB) process a model for liquid chromatographic separation
described by Gebremedhin et al. [GPW08] as shown in Table 3.2on page 122.

More precisely, star coloring of the adjacency graph of roughly twelve percent sparser variable Hes-
sian of dimension(34305 × 34305) yields 14401 colors instead of 12346 when coloring its nonzero
pattern. Moreover, the star coloring of the variable pattern underperforms compared with its nonzero
counterpart. Note that the computation of constants along with the variable pattern is much more ex-
pensive. Walther [Wal08] has shown that the detection of thenonzero sparsity pattern is, in worst case,
quadratic in the maximum number of nonzeros per row overall Hessian rows. Thus, the coloring seems

97

98 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

to be the major obstacle toward achieving a better coloring by constant exploitation in context of sparse
Hessian computation. At this point we emphasize that the variable Hessian of our test objective func-
tion is much sparser than the nonzero one. So far the coloringresults do not motivate our high effort in
estimating constant Hessian part along with its variable pattern.

Nonetheless, Hessians are ingredients of a lot of numericalapplications such as theinverse medium
problemas introduced in chapter 8 of [NS11] being a large scale PDE-constraint optimization problem.
There, the computation of the Hessian of an objective function f : Rn → R of the Lagrangian is of
interest in the preprocessing step for the real optimization. Hence, sparsity is exploited to accelerate the
Hessian accumulation using second-order adjoint model of AD as defined by Equation (1.11). However,
estimation of the nonzero Hessian sparsity pattern also referred to as exact Hessian pattern (EHP) takes
about 3400 seconds for a realistic input dimensionn = 16896276. The overall computation time i.e.
preprocessing and optimization is about 33100 seconds. Hence, the computational cost of estimating the
exact Hessian pattern is roughly110 ≈ 3400

33100 of the overall runtime , which is not really ”negligibly”
small.

In order to accelerate the sparsity pattern detection of Hessians in Section 3.3 we exploit the partial
separability of the underlying functionF. This results in a conservative overestimated version (CHP)of
the pattern of target Hessians as introduced in Section 3.3.2. In the following we use also CHP to denote
the respective algorithm. As already mentioned, estimating the exact Hessian pattern is of quadratic
complexity. The reason for this lies in the propagation of second-order dependencies as set of index pair
over the index domainX for every SAC variablevj of F, that is,sod(vj) ⊆ X ×X. Thereby,sod(vj)
is computed as the cross product of first-order dependenciesfod(vi) and the union ofsod(vi) of their
argumentsi ≺ j in the case of nonlinear and linear operations, respectively.

CHP overcomes this problem by restricting the computationally expensive cross products and the
unions ofsods to the nonlinear components ofF. Hence, CHP takes now only 11.7 seconds as opposed
to 3400 seconds of EHP for inverse medium problem mentioned above. This means a runtime gain
by a factor of roughly290 ≈ 3400

11.7 . More interesting, the resulting Hessian pattern in both case are
identical. This is because the nonlinear components off consist of no multiplication. We note that the
multiplication may produce overestimated Hessian entries. Hence, no change in the coloring performance
in terms of achieved colors and runtime is expected.

Even more substantially, we observe even better coloring results using CHP in context of another
objective function as shown in Figure 3.4 (a-c) with negligible loss in runtime, despite the fact that CHP
is orders of magnitude faster than EHP as shown in (a). At thispoint we recapitulate that we observed
similar behavior when coloring the variable Hessian pattern of the same problem, which is sparser than
the exact (nonzero) one. We observe that the coloring underperforms by increase in sparsity for this test
case. This observation seems to be surprising at first glance. However, a deeper look into, for instance,
the sequential star coloring heuristic lead to the following. Therefore, we focus on the conservative and
exact pattern of the target Hessian in Figure 3.5. The formerconsists of an overestimated(4 × 4) block
in upper left corner. Consequently, the respective vertices can get the same colors in the adjacency graph
of CHP. Henceforth, all most any other vertex can be colored by one of the used colors as opposed to
its EHP counterpart. Hence, the conservative nonzero blockseems to route the star coloring to a much
better coloring, illustrates the importance of the structure of target Hessians. We believe this should be
taken more into account in the (existing) coloring heuristics. It should also be mentioned that changing
the ordering e.g.smallest lastof vertices according their degrees (number of incident edges) in this case
does not really help as the vertices are of almost the same degree.

Finally, Section 3.3.3 generalizes the exploitation of thepartial separability yielding a recursive al-
gorithm for Hessian pattern estimation denoted by RHP. First numerical results on an artificial example
shows that RHP converges to CHP for sufficiently large recursion levels. Moreover, RHP at level one and
CHP behave almost similarly in terms of runtime. We note thatCHP is supposed to be obtained by RHP
at recursion level one.

3.2. QUANTITATIVE DEPENDENCE ANALYSIS 99

3.2 Quantitative Dependence Analysis

In the following we investigate methods for exploiting the sparsity of, in general, derivative tensor∇dF.
Existing compression techniques [CPR74] are based on the knowledge of the nonzeros. To achieve a
better compression, we decompose the nonzeros into constants and variables; the former does not depend
on the input values as opposed to the latter, that need to be computed at runtime. Thus, we consider

∇dF = ∇dFv +∇dFc with d ≥ 1 (3.1)

to be the sum of constant∇dFc and variable∇dFv parts. Henceforth, we use the terminologyconstants
[variables] to refer to the former [latter]. Moreover, we provide dynamic algorithms for computing the
constants along with the sparsity pattern of the variables and we prove their correctness.

Sparse derivative calculation, in general, consists of twomain steps, namely sparsity detection and its
exploitation in the process of derivative accumulation, where the former is often considered a preproces-
sor activity. A lot of work has already been done on this for Jacobian [TFE98, GPW08, NNH+11] and
Hessian [CM83, Wal08] computations as discussed in Section3.2.4 and Section 3.2.5, respectively. In
fact, sparsity detection can be performed either at runtimeor by a compiler, where the former and latter
are known asdynamicandstaticsparsity, respectively, the latter may result in aconservative overestima-
tion of the target sparsity pattern as a consequence of existing control flow structures inF as discussed
in [TFE98] for Jacobian matrices. However, our focus in the following is on dynamic sparsity and con-
stant estimation that we refer to asquantitative dependence analysis(QDA) using operator overloading
technique as a new variant of the function evaluation by propagating someindex domainsas done in the
case of Jacobians and Hessians in ADOL-C. Obviously, the dynamic sparsity is valid only at the given
point, which follows that any changes in control flow may result in recomputation of both sparsity pattern
as well as constants. As an example throughout this chapter let us considerF in Example 3.1. A special
variant of dependence analysis [BC04] is used to discover the dependencies of every outputyj=1,2 on
every inputxi=1,2 represented as(yj , xi). This information yields the sparsity pattern of the Jacobian as
the matrix of the first-order sensitivitiesf ′

j,i of F at x = (x1, x2) defined by Equation (1.7). Here, the
dependencies(y1, x2) and(y2, x1) are of constant quantities -1 and 1, respectively.

Example 3.1. As an example considerF : R2 → R2 defined as follows.

y1 = sin(x1)− x2

y2 = x1 − x2 · x2

(3.2)

The Jacobian ofF is
(
cos(x1) −1

1 2·x2

)
. The entriesf ′

1,1 and f ′
2,2 are variables, since they depend on the

values of inputsx1 andx2, respectively. In the oppositef ′
1,2 andf ′

2,1 are constants.

Quantitative dependence analysis is concerned with the classification of the sensitivities of derivative
tensors such as Jacobians or Hessians intovariable(v), constant nonzero(c), andzero(o) types of sen-
sitivities. Furthermore,nonzeros(nz) are considered the union over variables and constants. Thus, the
outcomes of the quantitative dependence analysis ofF are the sparsity pattern of the variables and the
constants. Strictly speaking, QDA computes the sparsity patternP (∇dFv) of the variables∇dFv and the
constants∇dFc of ∇dF for a given derivative degreed ≥ 1.

Assumption 3.1. F of Equation (1.1) is canonical in the sense that no algebraic simplificationssuch as
log(ex) = x,

√
x
2
= x, and x2−1

x+1 = x− 1 are possible.

However, the target derivative tensor∇dF of F can be obtained in AD by the running a corresponding
derivative code [Nau11, HP04]F d. Ford larger than one we talk about higher-order sensitivities, resulting
from the application of the correspondinghigher-order derivative code. Obviously, the sparsity as well as

100 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

constants of∇dF can be obtained by quantitative dependence analysis of the respective derivative codes.
However, compared toF the size of such derivative codes grows, in general, exponentially with the
derivative degreed.An example of such a code ford = 1 is given in listings 3.2. Moreover, higher ordered
derivative codes usually consist of nested loops of depth growing linearly withd. Both facts complicate
the QDA of such codes. To deal with this problem we propose a dynamic algorithm for performing
QDA only on the original codeF. Therefore, we refer toF 0 as the SAC ofF at the current argument.
Henceforth, whenever we talk about the example function, wemeanF of Example 3.1 with the SAC
given in Listing 3.1, where first and second assignments ofF are decomposed into the SAC statements of
lines 3-5 and 6-8, respectively. Thus,0 F maps the independent inputsx1, x2 onto dependent outputsy1=v
2, y2=v4 involving the computation of intermediate valuesv1 andv3. Hence,X = {1, 2}, Z = {3, 5},
andY = {4, 6}. Here we avoid explicitly independent assignmentsv1=x1 andv2=x2 for brevity as inputs
are not overwritten.

Listing 3.1: 0F

1 void 0 F (f l o a t x1 , f l o a t x2 , f l o a t& y1 , f l o a t& y2) {
2 f l o a t v3 , v4 , v5 , v6 ;
3 v3 = s i n (x1) ;
4 v4 = v3 − x2 ;
5 y1 = v4 ;
6 v5 = x2 ∗ x2 ;
7 v6 = x1 + v5 ;
8 y2 = v6 ;
9 }

3.2.1 Mathematical Background

We consider again the index setV defined by Equation (1.13) representing the indices of SAC variables
the union of disjoint index setsX = {1, · · · , n}, Z = {n+1, . . . , n+ p}, andY = {n+ p+1, · · · , q}.
Fork ∈ Z ∪ Y we define

Xk = X(vk) = {i ∈ X : i ≺∗ k, } and xk = x(vk) = (xi)i∈Xk
(3.3)

as theindependent setandindependent vectorof the SAC variablevk, respectively. GivenX

f : X → IN, A = (X, f) with d =
∣∣A

∣∣ =
∑

i∈X

f(i)

represents a multiset onX with the multiplicity functionf and the cardinalityd. Giveni ∈ X , thenf(i)
represents the number of the repetitions of the elementi in the multisetA. The unionC = (X,h) of two
multisetsA = (X, f) andB = (X, g) overX is defined as

C = A ∪B, ∀ i ∈ X : h(i) = f(i) + g(i) . (3.4)

A is a submultiset ofB denoted by

A ⊆ B if and only if ∀ i ∈ X : f(i) ≤ g(i) .

A is a prober submultiset ofB denoted by

A ⊂ B if and only if ∀ i ∈ X : f(i) < g(i) .

3.2. QUANTITATIVE DEPENDENCE ANALYSIS 101

Moreover, we define
Xd = {A = (X, f) :

∣∣A
∣∣ = d} (3.5)

as thedomainof ∇dF consisting of all multisets of cardinalityd onX. Obviously,X1 = {< i >: i ∈ X}
andX are equivalent. Henceforth, we use the notation〈·〉 to denote multisets.

Example 3.2. GivenX = 1, 2 and multisetsA = 〈1, 1, 1〉, B = 〈1, 1, 2〉, C = 〈1, 2, 2〉, andD =
〈2, 2, 2〉 of cardinality three. The unionA ∪B yields the multiset〈1, 1, 1, 1, 1, 2〉 of cardinality six onX.
The set of all multisets onX with cardinality three isX3 = {A,B,C,D}.

Given the SAC variablevk with k ∈ V and the multisetA = 〈i1, . . . , id〉 ∈ Xd we refer to

ck,A = ck,A(x) =
∂dvk
∂xA

(x) =
∂dvk

∂xi1 . . . ∂xid

(x) (3.6)

as the sensitivity ofvk with respect to the independents ofA, which can be of variable, constant, or zero
type as follows.

Definition 3.1. The type of the partial derivativeck,A defined in Equation (3.6) of a SAC variablevk,
k ∈ V with

∣∣A
∣∣ = d andA ∈ Xd is

1. variable (v), if ck,A depends onxk defined by Equation (3.3)

2. constant (c), if ck,A is nonzero not depending onxk, or

3. zero (o), otherwise.

Hence,ck,A is considered a nonzero in the case of1 and2.

Furthermore, fork ∈ V we define thenonzero domain

P d(vk) = {A ∈ Xd : ∃x ∈ D with ck,A(x) =̂ nz} = P d
v (vk) ∪ P d

c (vk) ,

as the union of the variable and constant domains

P d
v (vk) = {A ∈ P d(vk) : ck,A(x) =̂ v} and P d

c (vk) = {A ∈ P d(vk) : ck,A =̂ c} ,

respectively, where the notationck,A =̂ tmeans that the partial derivativeck,A is of typet ∈ {nz,v, c,o}.
Giveni, j ∈ V , and1 ≤ d1, d2 with d = d1 + d2

P d1(vi) ⊎ P d2(vj) = {A = B ∪ C : B ∈ P d1(vi) andC ∈ P d2(vj)}

denotes theabsorptionof two nonzero domainsP d1(vi) andP d1(vj) with the unionB ∪ C as defined
by Equation (3.4). Obviously, the nonzero, variable, and constant domains of∇dF represent, in fact,
the respective sparsity patterns. Henceforth, whenever wesay that a variablev is nonzero, variable, and
constant with respect toA ∈ Xd, we mean thatA ∈ P d(v), A ∈ P d

v (v), andA ∈ P d
c (v), respectively.

3.2.2 Sparsity Pattern Estimation

In the following we consider

Φ = ΦN ∪ {+, ∗} with ΦN = {sin, cos, . . . , pow(u, v), pow(u, r)} ,

102 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

which is the minimal subset of the mathematical operations and intrinsic functions provided by the math-
ematic librarymath.h of the programming language C that we consider sufficient to illustrate the algo-
rithmic behind QDA. However, a detailed view of provided operations and intrinsics is given in Table 3.1.
We note that some of operations and intrinsics are explicitly missing inΦ either because they can be
expressed using those ofΦ or because they are integer operations. Here, the symbolsv, u, w represent
floating-point andn integer variables, whereasc, r ∈ R andk ∈ IN denote constants. TSP estimation

Operations Replaced by Expression Ignored

w = v No
w = v ∗ u No
w = v + u No
w = v ∗ c = c ∗ v No
w = v + c = c+ v w = v No
w = v − c w = v No
w = c− v w = −1 ∗ v No
w = v/c w = 1/c ∗ v No
w = c/v w = c ∗ pow(v,−1) No
w = v − u w = v + (−1 ∗ u) No
w = v/u w = v ∗ pow(u,−1) No
w+ = v w = w + v No
w∗ = v w = w ∗ v No
w/ = v w = w ∗ pow(v,−1) No
w− = v w = w + (−1 ∗ v) No

sin, cos, tan No
asin, acos, atan No
exp, log, log 10 No
w = pow(v, u) = vu No
w = pow(v, r) = vr No
w = atan 2(v, u) w = atan(v/u) No
w = pow(v, k) w =

∏k
i=1 v No

w = ldexp(v, k) w = v ∗ pow(2, k) No
w = frexp(v,&n) w = v/ pow(2, n) No
w = modf(v,&n) w = v − n No
w = fmod(v, u) w = v − floor(v, u) ∗ u No
w = fabs(v) = |v| if (v ≥ 0)w = v elsew = −1 ∗ v No

w = ceil(v) = ⌈v⌉ Yes
w = floor(v) = ⌊v⌋ Yes

Table 3.1: Operators and Intrinsics ofmath.h of the programming language C.

described in Algorithm 3.1 computes at runtime theoutgoing nonzero domainOutP(F) of F on the
corresponding SAC from the givenincoming nonzero domainInP(F) defined as

OutP(F) =




OutP 1(F)
...

OutP d+1(F)


 and InP(F) =




InP 1(F) = Pid(F)
InP 2(F) = ∅

...
InP d+1(F) = ∅


 ,

3.2. QUANTITATIVE DEPENDENCE ANALYSIS 103

wherePid(F) = {(xi, P
1(xi)) : i ∈ X} andOutP l(F) = {(yk−(n+p), P

l(vk) : k ∈ Y } with
P 1(xi) = {〈i〉} for l = 1, . . . , d + 1. The correctness of TSP is stated by Theorem 3.1. Obviously,
the nonzero domain

P d = P d(∇dF) =
⋃

j∈{1,...,m}

P d(yj)

is the union of nonzero domainsP d(yj) of dependentsyj. At the same time,P d = P d
v ∪P d

c is the union
of variable and constant domains

P d
v = P (∇dFv) =

⋃

j∈{1,...,m}

P d
v (yj) and P d

c = P (∇dFc) =
⋃

j∈{1,...,m}

P d
c (yj)

that results easily from Equation (3.1). The variable domain

P d
v (yj) = {A ∈ P d(yj) : ∃ B ∈ P d+1(yj) with A ⊂ B}

of yj can be extracted fromP d(yj) by havingP d+1(yj) as a consequence of Lemma 3.1, which ex-
ploits theproper submultiset propertybetween two multisetsA ∈ P d(yj) andB ∈ P d+1(yj). Conse-
quently, we can decompose the nonzero domain of∇dF into variables and constants by first computing
the nonzero domains of dependents up to degreed+ 1 followed by extracting the variables.

Lemma 3.1. GivenP l(vk) andP l+1(vk) of the SAC variablevk with k ∈ Z ∪ Y and l ∈ {1, . . . , d}.
The variable patternP l

v(vk) of vk is computed as

P l
v(vk) = {A ∈ P l(vk) : ∃B ∈ P l+1

k with A ⊂ B} .

Proof. We show that∀A ∈ P l
v(vk) there is aB ∈ P l+1

k such thatA ⊂ B. Therefore, we consider

f(xk) = ∂lvk
∂xA

to be a function of independentsxk. If f(xk) is variable in some independenti ∈ Xk,

then ∂f(xk)
∂xi

has to be nonzero. But, this means that

∂f(xk)

∂xi

=
∂

∂xi

[
∂lvk
∂xA

]
=

∂l+1vk
∂xB

with B = A ∪ {〈i〉} and A ⊂ B

represents a nonzero sensitivity, that is,B ∈ P l+1(vk).

Algorithm 3.1 (TSP(d, SAC(F), InP(F), OutP(F)) : Tensor Sparsity Pattern Estimation).

Require: derivative degreed, incoming nonzero domainInP(F).
Ensure: Outgoing nonzero domainOutP(F) of ∇dF .

1: for i = 1 to n do
2: P 1(vi) = P 1(xi)
3: end for
4: for k = n+ 1 to q do
5: if vk = vi + vj ; then
6: for l = 1 to d+ 1 do
7: P l(vk) =

⋃
i≺k P

l(vi)
8: end for
9: end if

10: if vk = vi · vj then

104 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

11: for l = 1 to d+ 1 do
12: P l(vk) =

⋃
i≺k P

l(vi)
13: for l1 = 1 to l − 1 do
14: for l2 = 1 to l − 1 do
15: if l = l1 + l2 and P l1(vi) 6= ∅ and P l2(vj) 6= ∅ then
16: P l(vk) = P l(vk) ∪ (P l1(vi) ⊎ P l2(vj))
17: end if
18: end for
19: end for
20: end for
21: end if
22: if ϕk ∈ ΦN then
23: for l = 1 to d+ 1 do
24: A =

⋃
i≺k Xi

25: P l(vk) = Al

26: end for
27: end if
28: end for
29: for all k ∈ Y do
30: for l = 1 to d+ 1 do
31: OutP l = OutP l ∪ (yk−(n+p), P

l(vk))
32: end for
33: end for

Theorem 3.1. Algorithm 3.1 computes the correct nonzero domainP l(vk) of the SAC variablevk with
k ∈ V for l = 1, . . . , d+ 1.

Proof. We considerA ∈ X l with 1 ≤ l ≤ d+ 1.

• InP(F) is correct, since the first partial derivative of every independent variablexk with k ∈ X is
only with respect to itself nonzero otherwise zero.

• Lines 1-3 initialize the nonzero domains of the independentSAC variables to those of inputsX.

• Lines 5-9: line 7 follows from the addition rule for higher partial derivatives yielding

∂lvk
∂xA

=
∂lvi
∂xA

+
∂lvj
∂xA

. (3.7)

Hence,∂
lvk

∂xA
is nonzero, if and only if either∂

lvi
∂xA

or ∂lvj
∂xA

is nonzero, that is,A ∈ P l(vi) ∪ P l(vj).

• Lines 10-21: Equations in lines 12 and 16 follow from the Leibniz product rule for higher partial
derivatives yielding

∂lvk
∂xA

=
∑

∀B⊆A

∂l1vi
∂xB

· ∂
l2vj
∂xC

with C = A−B, l1 =
∣∣B

∣∣, and l2 =
∣∣C

∣∣ . (3.8)

Hence,∂
lvk

∂xA
is nonzero if and only if either

1. ∂lvi
∂xA

6= 0 i.e.A ∈ P l(vi) for B = A,C = ∅ or,

3.2. QUANTITATIVE DEPENDENCE ANALYSIS 105

2. ∂lvj
∂xA

6= 0 i.e.A ∈ P l(vj) for B = ∅, C = A or,

3. ∂l1vi
∂xB

6= 0 and ∂l2vj
∂xC

6= 0 i.e.B ∈ P l1(vi) andC ∈ P l2(vj) otherwise.

• Lines 22-27 : Equation in line 25 follows from the differentiation rule for pure nonlinear functions
of ΦN .

• Lines 29-33 : each dependent variableyk−(n+p) with k ∈ Y contributes in line 31 its nonzero
domainsP l(vk) toOutP l(F).

It can be shown by induction that the worst case complexity ofthe tensor sparsity pattern estimation
described in Algorithm 3.1 for a given degreed ≥ 1 is as

OPS(TSP) ∈ O(d · n̂d+1) , (3.9)

where
n̂ = max

i∈V
|P 1(vi)| (3.10)

denotes the maximum number of elements offirst-order dependenciesP 1(vi) over all SAC variablesvi
of F with i ∈ V. Moreover,OPS(F) denotes the number of floating point operations in the SAC ofF.

The main contribution to this complexity is made by nonlinear operations of lines 22 and 10. Let us
consider first the multiplication in the latter. Furthermore, let us assume to be interested ind = 1. The
union in line 12 can be performed inO(n̂), which follows immediately from Equation (3.10). Hence, the
absorption ofP 1(vi) andP 1(vj) for l1 = 1 andl2 = 1 of the arguments ofvk in line 16 along with the
union of the result yields|P 2(vk)| ∈ O(n̂2) at the same quadratic computational cost.

Now let us assumed = 2. The absorptions ofP l1(vi) andP l2(vj) for l1 = 1, l2 = 2, andl1 = 2, l2 =
1 result inP 3(vk), where|P 3(vk)| ∈ O(n̂3). The cardinality and the complexity of the absorption results
from the cardinality of the arguments as shown above ford = 1.

Likewise, cardinality and complexity are achieved forP l(vk) of line 25. From differentiation rule of
pure nonlinear functions it follows thatP l(vk) = Al for l = 1, . . . , d + 1. Note that|A| ∈ O(n̂) andAl

denote the set of all multiset of cardinalityl over index setA as defined by Equation (3.5). Hence, it can
be shown that|P l(vk)| ∈ O(n̂l).

Finally, the factord to the complexity results from the fact that the absorption and union operations
of line 16 are performed ford different combinations ofl1 andl2 such thatd+ 1 = l1 + l2.

3.2.3 Computation of Constant Partial Derivatives

Algorithm 3.2 describes the computation of the constant partial derivatives of∇dF separated from the
pattern computation for simplicity on the SAC ofF. Here, it assumes that at the time of computation of
constantsCl

k for k ∈ V the corresponding nonzero domainsP l(vk) andP l+1(vk) for l = 1, . . . , d are
given. These are needed to separate variables from constants. Thus, constants

Cd(vk) = {(A, ck,A) : A ∈ Xd andck,A =̂ c}

of each SAC variablevk consists of tuples(A, ck,A) with the constant sensitivitiesck,A. Furthermore, we
define theabsorption

Cl1(vi) ⊎Cl2(vj) = {(A, a · b) : (B, a) ∈ Cl1(vi) and(C, b) ∈ Cl2(vj)}

106 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

of two constantsCl1(vi) andCl2(vj) with i, j ∈ V as used in line 21 of Algorithm 3.2. Moreover, we
assume that the union ofCl

vi
andCl

vj
used in lines 12 and 21 has the property that

∀A ∈ X l if (A, a) ∈ Cl
vi

and(A, b) ∈ Cl
vj

⇒ (A, a+ b) ∈ Cl
vi
∪ Cl

vj
.

Thus, Algorithm 3.2 computes at runtime theoutgoing constantsOutC(F) of F on the corresponding
SAC from givenincoming constantsInC(F) defined as

OutC(F) =



OutC1(F)

...
OutCd(F)


 and InC(F) =




InC1(F) = Cid(F)
InC2(F) = ∅

...
InCd(F) = ∅


 ,

whereCid(F) = {(xi, C
1(xi)) : i ∈ X} andOutCl(F) = {

(
yk−(n+p), C

l(vk)
)
: k ∈ Y } with

C1(xi) = {(〈i〉, 1)} for l = 1 . . . , d. Obviously and as shown in line 41 the constants of∇dF results
from the union

Cd(F) =
⋃

j∈{1,...,m}

Cd(yj)

of constantsCd(yj) of the dependentsyj . Theorem 3.2 proves the correctness of the constant computation
by Algorithm 3.2. We note that the most important operation in terms of constant generation as well as
computational cost is the multiplication as shown in lines 15-27. Thereby, constants generated by the
multiplication may get destroyed later on as shown in lines 12, 25, and 30. For instance, consider the
computation of constants of the following statements ford = 2.

v = x1 · x2; //
∂2v

∂x1∂x2
= 1 =̂ c

u = sin(v); //
∂2u

∂x1∂x2
= cos(v)− x2 · sin(v) · x1 =̂ v

w = v · x2; //
∂2w

∂x1∂x2
= 2 · x2 =̂ v

z = v + w; //
∂2z

∂x1∂x2
= 1 + 2 · x2 =̂ v

As one can easily see the second-order sensitivity∂2v
∂x1∂x2

of v with respect to〈1, 2〉 is constant. Hence we
getC2(v) = {(〈1, 2〉, 1.)}.However, none of the succeeding three statementsu,w, andz are constant but
variable with respect toA. The reason is that the constants ofv gets destroyed inu by nonlinear intrinsic
sin, in w by multiplyingv with x2 and finally inz by addingv andw.

Now, letd = 3. Hence ∂3w
∂x1∂x2∂x2

= 2 asw = x1 · x2 · x2 , which is in factw = x1 · pow(x2, 2.).

However, we getC3(w) = {(〈1, 2, 2〉, 1.)} by the multiplication rule in line 21 forC1(x2) = {(〈2〉, 1.)}
andC2(v) = {(〈1, 2〉, 1.)}. Finally, we getC3(w) = {(〈1, 2, 2〉, 2)} by applying the power rule in line 38
for l = 2, f(1) = 1, andf(2) = 2.

In the following we use the notationsA ∈ P l [A /∈ P l] for a given multiset A with|A| < l andl ≥ 2
to denote that

∃B ∈ P l : A ⊂ B [∄B ∈ P l : A ⊂ B] .

3.2. QUANTITATIVE DEPENDENCE ANALYSIS 107

Algorithm 3.2 (TCE(d, SAC(F), InC(F), OutC(F)) : Tensor Constant Estimation).

Require: derivative degreed, incoming constantsInC(F).
Ensure: Outgoing constant domainOutC(F) of ∇dF.

1: for i = 1 to n do
2: C1(vi) = C(xi)
3: end for
4: for k = n+ 1 to q do
5: if vk = c · vj then
6: for l = 1 to d do
7: Cl(vk) = {(A, ck,A) : ck,A = c · cj,A}
8: end for
9: end if

10: if vk = vi + vj then
11: for l = 1 to d do
12: Cl(vk) = Cl(vi) ∪ Cl(vj)− {(A, ∗) : A ∈ P l+1

k }
13: end for
14: end if
15: if vk = vi · vj then
16: for l = 1 to d do
17: Cl(vk) = ∅
18: for l1 = 1 to l − 1 do
19: for l2 = 1 to l − 1 do
20: if l = l1 + l2 and Cl1(vi) 6= ∅ and Cl2(vj) 6= ∅ then
21: Cl(vk) = Cl(vk) ∪ (Cl1(vi) ⊎ Cl2(vj))
22: end if
23: end for
24: end for
25: Cl(vk) = Cl(vk)− {(A, ∗) : A ∈ P l+1

k }
26: end for
27: end if
28: if ϕk ∈ ΦN then
29: for l = 1 to d do
30: Cl(vk) = ∅
31: end for
32: end if
33: end for
34: for all k ∈ Y do
35: for l = 1 to d do
36: for all (A, c) ∈ Cl(vk) do
37: for all i ∈ A with f(i) > 1 do
38: c = c ·∏min(l,f(i))

j=1 (f(i)− (j − 1)) !
39: end for
40: end for
41: OutCl = OutCl ∪ {(yk−(n+p), C

l(vk)}
42: end for
43: end for

108 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

Theorem 3.2. Algorithm 3.2 computes the correct constantsCl
k of the SAC variablevk with k ∈ V for

l = 1, . . . , d .

Proof. Let us considerA(X, f) with
∣∣A

∣∣ = l and1 ≤ l ≤ d.

• InC(F) is correct, since the first partial derivative of every independent variablexk with k ∈ X is
with respect to itself constant one otherwise zero.

• Lines 1-3 initialize constants SAC independent variablesvk with k ∈ X to those of inputsX.

• Lines 5-9 : Equation in line 12 follows from the application of Leibniz product defined by Equa-

tion (3.8) for higher partial derivatives withvi = c yielding ∂lvk
∂xA

= c · ∂lvj
∂xA

. Hence,

(A, cj,A) ∈ Cl(vj) ⇒ (A, c · cj,A) ∈ Cl(vk) .

• Lines 10–14 : W.l.o.g. we assume thatA ∈ P l(vi) andA ∈ P l(vj). Hence, Equation in line 12

follows from addition rule for higher partial derivatives.Hence,∂
lvk

∂xA
of Equation (3.7) is constant

if A /∈ P l+1, that is, if (A, ci,A) ∈ Cl(vi) and(A, cj,A) ∈ Cl(vj).

• Lines 15-21 : Equations in lines 21 and 25 follows from the facts that

1. if A ∈ P l+1(vk) thenvk is not constant with respect toA

2. otherwiseck,A of Equation (3.8) is constant, that is,(A, ck.A) ∈ Cl(vk), if and only if

∀B ⊂ A : (B, ci,B) ∈ C|B|(vi) and(D, cj,D) ∈ C|D|(vj) ,

whereD = A−B, B ∈ P |B|(vi), andD ∈ P |D|(vj).

• Lines 28-32 : Equation in line 30 follow from the fact that nonlinearity destroys constants.

• Lines 34-43 : dependent variablesyk−(n+p) with k ∈ Y contribute in line 41 their constants
Cl

k to OutCl(F). However, previously in line 38 the corresponding constantsare multiplied by
the respective factor according to the power rule to yield right constant values in case of element
repetitions.

We note here that the computational complexity of tensor constant estimation TCE described in Al-
gorithm 3.2 is bounded by that of TSP defined by Equation (3.9)as

OPS(TCE) ≤ OPS(TSP) .

Note that the respective SAC operation in TSP is supposed to be performed prior to that of TCP enabling
the separation of the variables from the constants. One can easily figure out that|Cl(vk)| ≤ |P l(vk)| for
all i ∈ V for l = 1, . . . , d. Hence, the absorptions and unions can be performed inO(n̂l) in worst case.
However, the computation of constants along with the variable pattern results in more computational
effort even though the complexity class remains unchanged.Our experimental results in context of sparse
Jacobian and Hessian computations will show that the gain from constant exploitation depends very
much on the problemF and the coloring heuristics of use as well. The Fact is that even variable pattern
estimation by TSP is a complexity class higher than the estimation of the nonzero pattern. Hence, in the
case of denser Jacobians or Hessians the runtime overhead ofcomputing constants might be acceptable.

3.2. QUANTITATIVE DEPENDENCE ANALYSIS 109

Example 3.3. In the following we compute the nonzero domains and constants of the Jacobian∇F (x1, x2)
and Hessian∇2F (x1, x2) on the SAC of our example functionF by Equation (3.2). The SAC variables
v2 andv4 represent respectively the dependentsy1 andy2, as shown in lines5 and8 of Listing 3.1. We set
P1(x1) = {〈1〉}, P1(x2) = {〈2〉}, C1(x1) = {(〈1〉, 1)}, andC1(x2) = {(〈2〉, 2)} and get the following.

InP1(F) = {(x1, P1(x1)), (x2, P1(x2))}; InP2(F) = ∅; InP3(F) = ∅;
InC1(F) = {(x1, C1(x1)), (x2, C1(x2))}; InC2(F) = ∅;

1. v1 = sin (x1)

P11 = {〈1〉}; P21 = {〈1, 1〉}; P31 = {〈1, 1, 1〉};
C11 = ∅; → P1v,1 = P11;

C11 = ∅; → P1v,1 = P21;

2. v2 = v1 − x2

P12 = {〈1〉, 〈2〉}; P22 = {〈1, 1〉}; P32 = {〈1, 1, 1〉};
C12 = {(〈2〉,−1)}; → P1v,2 = {〈1〉};
C22 = ∅; → P1v,2 = P22;

3. y1 = v2

P1(y1) = P12; P2(y1) = P22; P3(y1) = P32;

C1(y1) = {(〈2〉,−1.)}; → P1v(y1) = {〈1〉};
C2(y1) = ∅; → P2v(y1) = P2(y1);

4. v3 = x2 ∗ x2

P13 = {〈2〉}; P23 = {〈2, 2〉}; P33 = ∅;
C13 = ∅; → P1v,3 = P13;

C23 = {(〈2, 2〉, 1.)}; → P2v,3 = ∅;

5. v4 = x1 + v3

P14 = {〈1〉, 〈2〉}; P24 = {〈2, 2〉}; P34 = ∅;
C14 = {(〈1〉, 1.)}; → P1v,4 = {〈2〉};
C24 = {(〈2, 2〉, 1.)}; → P2v,4 = ∅;

6. y2 = v4

P1(y2) = P14; P2(y2) = P24; P3(y2) = ∅;
C1(y2) = {(〈1〉, 1.)}; → P1v(y2) = {〈2〉};
C2(y2) = {(〈2, 2〉, 2.)}; → P2v(y2) = ∅;

110 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

Hence, we obtain the following:

OutP1(F) = {(y1, P1(y1)), (y2, P1(y2))};
OutP2(F) = {(y1, P2(y2)), (y2, P2(y2))};
OutP3(F) = {(y1, P3(y1));
OutC1(F) = {(y1, C1(y1)), (y2, C1(y2))};
OutC2(F) = {(y2, C2(y2))};

From P1(y1) andP1(y2) follows that the Jacobian∇F (x1, x2) is entirely nonzero. From〈1〉 ∈ P1v(y1)
and〈2〉 ∈ P1v(y2) follows thatf ′

1,1 andf ′
2,2 are of variable type. Likewise, the constance off ′

1,2 = −1
andf ′

2,1 = 1 follows from(〈2〉,−1) ∈ C1v(y1) and (〈1〉, 1.) ∈ C2v(y1), respectively. In the same way,
from 〈1, 1〉 ∈ P2v(y1) and(〈2, 2〉, 2.) ∈ C2(y2) it follows that the entriesf ′′

1,1,1 andf ′′
2,2,2 of the Hessian

∇2F (x1, x2) defined by Equation (1.12) are variable and constant, respectively.

3.2.4 Case Study I : Sparse Jacobian Computation

The [transposed] Jacobian ofF can be computed using TLVM [ADVM] ofF as defined in Equation (1.8)
[(1.9)] yielding compressed [transposed] Jacobian

Rm×p ∋ B̃ = ∇F (x) · S̃ ∈ Rn×p
[
Rn×q ∋ B̄ = ∇F (x)T · S̄ ∈ Rm×q

]
(3.11)

as the result ofp [q] evaluations of the respective TLM [ADJM] defined by Equation (1.3) [(1.5)]. The
seed matrixS̃ ∈ Rn×p [S̄ ∈ Rm×q] is the result of partitioning the Jacobian intop [q] groups of
structurally orthogonalcolumns [rows] [CPR74]. Two columns [rows]i andj are structurally orthogonal,
if there is no row [column]k with f ′

k,i 6= 0 andf ′
k,j 6= 0 [f ′

i,k 6= 0 andf ′
j,k 6= 0]. Thus, an entry(i, k)

of S̃ [S̄] is one if theith column [row] of the Jacobian belongs to the groupk, and zero otherwise. The
combinatorial problem is to find a minimalp [q], which can be stated as coloring problems [GMP05] that
is known to be NP-complete on various graph representationsG(P) with

P ≡ (pj,i)
j=1,...,m
i=1,...,n with pj,i ∈ {0, 1}

denoting the sparsity pattern of∇F. In the following and w.l.o.g. we denote the bipartite graph by G(P).
Thus, we obtaiñS [S̄] by application of thepartial distance-2 coloringalgorithm as implemented in the
graph coloring package ColPack1 to the column [row] vertices ofG(P). Two vertices can get the same
color, if they are not connected via a path of length two, otherwise they get different colors. Finally,
we recover the nonzero entries of∇F from B̃ [B̄] using a simple substitution procedure as described
in Algorithm 3.3.

Procedure 3.1. The entire process of sparse Jacobian computation (SJC1) isas follows:

S1. Evaluation ofF at the given point yieldsP,

S2. Coloring column [row] vertices ofG(P) yields S̃ [S̄],

S3. TLVM [ADVM] with seed matrix̃S [S̄] yields B̃ [B̄], and

S4. Recovery using Algorithm 3.3 yields the solution of Equation (3.11) for unknown entries
of ∇F.

1http://www.cscapes.org/coloringpage/

3.2. QUANTITATIVE DEPENDENCE ANALYSIS 111

Constant Exploitation

To achieve a better compression, we consider in the following the Jacobian∇F = ∇Fv + ∇Fc as the
sum of its variable and constant entries as

∇Fv ≡ (vj,i)
j=1,...,m
i=1,...,n and ∇Fc ≡ (cj,i)

j=1,...,m
i=1,...,n .

We compute the sparsity patternPv = P (∇Fv) resp.∇Fc by applying Algorithm 3.1 resp. Algorithm 3.2
for d = 1 and obtain

S̃v ∈ Rn×pv and S̄v ∈ Rm×qv

by distance-2 coloringof the column and row vertices ofG(∇Fv), respectively. Thus, application of
TLVM resp. ADVM yields the compressed JacobianD̃ ∈ Rm×pv resp.D̄ ∈ Rn×qv as

D̃ = ∇F · S̃v = ∇Fv · S̃v +∇Fc · S̃v resp. D̄ = ∇FT · S̄v = ∇FT
v · S̄v +∇FT

c · S̄v .

HavingD̃ resp.D̄ we obtain∇Fv by solving the linear system

D̃ − F ′
c · S̃v = F ′

v · S̃v resp. D̄ −∇FT
c · S̄v = ∇FT

v · S̄v (3.12)

using Algorithm 3.4 to recover column resp. row entries of∇Fv.

Procedure 3.2. The entire process of sparse Jacobian computation with constant exploitation (SJC2) is
as follows:

S1. Evaluation ofF at the given point yieldsPv and∇Fc,

S2. Coloring column [row] vertices ofG(Pv) yields S̃v [S̄v],

S3. TLVM [ADVM] with seed matrix̃Sv [S̄v] yields D̃ [D̄], and

S4. Recovery using Algorithm 3.4 yields the solution of Equation (3.12) for unknown entries
of ∇Fv.

Listing 3.2: 1F

1 void 1 F (f l o a t x1 , f l o a t& d x1 ,
2 f l o a t x2 , f l o a t& d x2 ,
3 f l o a t & y1 , f l o a t & d y1 ,
4 f l o a t & y2 , f l o a t & d y2 , i n t p) {
5

6 f l o a t v1 , v2 , v3 , v4 ;
7 f l o a t d v1 [p] , d v2 [p] , d v3 [p] , d v4 [p] ;
8

9 i n t i ;
10 v1 = s i n (x1) ;
11 v2 = v1 − x2 ;
12 y1 = v2 ;
13 v3 = x2 ∗ x2 ;
14 v4 = x1 + v3 ;
15 y2 = v4 ;
16 f o r (i = 0 ; i < p ; ++ i) {
17 d v1 [i] = d x1 [i] ∗ cos (x1) ;

112 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

18 d v2 [i] = d v1 [i] − d x2 [i] ;
19 d y1 [i] = d v2 [i] ;
20 d v3 [i] = d x2 [i] ∗ x2 + x2∗d x2 [i] ;
21 d v4 [i] = d x1 [i] + d v3 [i] ;
22 d y2 [i] = d v4 [i] ;
23 }
24 }

1 F in Listing 3.2 represents the corresponding TLVM code of example functionF of Example 3.1.
No compression is possible for∇F , since there are no structurally orthogonal columns. Hence, we set
S = I2 to get the full Jacobian entries

B̃1,1 = d y1[0] = cos(x1), B̃1,2 = d y1[1] = −1, B̃2,1 = d y2[0] = 1, B̃2,2 = d y2[1] = 2 · x2

by calling1 F with seeding

d x1[0] = 1, d x1[1] = 0, d x2[0] = 0, d x2[1] = 1 .

However, columns one and two of∇Fv are structurally orthogonal yielding the seed matrixS̃v =
(
1
1

)
.

Now, we get the compressed Jacobian entries

D̃1,1 = cos(x1)− 1 and D̃2,1 = 1− 2 · x2

by calling1 F with seeding

d x1[0] = 1 and d x2[0] = 1 .

To recoverv1,1 from D̃ we subtract the constantc1,2 = −1 from the compressed entrỹD1,1 to get
v1,2 = cos(x1). Similarly we subtract the constantc2,1 = 1 from D̃2,1 and yieldv2,2 = −2 · x2 which
solves Equation (3.12), where

∇Fv =

(
cos(x1) 0

0 −2 · x2

)
, ∇Fc =

(
0 −1
1 0

)
, and D̃ =

(
cos(x1)− 1
1− 2 · x2

)
.

The left column of Figure 3.1 illustrates graphically SJC2 representing the entire process of Jacobian
accumulation with constant exploitation described in Procedure 3.2. However, in the following we assume
w.l.o.g to be interested in Jacobians ofF at inputsxi in I ⊆ D with i ≥ 1, wherex1 denotes the starting
point under Assumption 2.1. We note again that any changes incontrol flow results conservatively in
recomputation of both sparsity pattern as well as constants. Thus, first Jacobian∇F (x1) is accumulated
at starting pointx1 by performing the steps S1, S2, S3, and S4, whereas all othersresult from steps
S3 and S4 asPv as well as∇Fc remain unchanged inI. Here, we assume that the termination of step
S4 is followed by a jump to evaluation process, whenever the Jacobians at another point is of interest,
otherwise, S4 is supposed to finalize SJC2.

Another way to obtain constants of the Jacobian is illustrated in the right column of Figure 3.1. Here,
we avoid the computation overhead of constants on the SAC ofF as follows. At the starting pointx1

we obtain the Jacobian by SJC1 described in Procedure 3.1 with only difference that we also estimatePv

along withP. Obviously, we get the constant pattern asPc = P−Pv. After termination of the recovery in
step S4 yielding∇F (x1) and since we havePc we obtain easily∇Fc from∇F. Furthermore, we obtain
in step S2 both seed matricesS̃ resp. S̃v [S̄ resp. S̄v] by distance-2 coloring of column [row] vertices
of G(P) resp.G(Pv) such that in the following iterations we proceed to accumulate the target Jacobians
just by performing the steps S3 and S4 of SJC2 shown in the leftcolumn of the same figure.

3.2. QUANTITATIVE DEPENDENCE ANALYSIS 113

Procedure 3.3. The alternative way to compute and exploit the Jacobian constants (SJC3) is as follows:

• At first iteration i.e. fori = 1 we perform an extended version of SJC1 as follows:

S1. Evaluation ofF at the given point yieldsP andPv,

S2. Coloring column [row] vertices ofG(P) andG(Pv) yields S̃ and S̃v [S̄ and S̄v],

S3. TLVM [ADVM] with seed matrix̃S [S̄] yields B̃ [B̄], and

S4. Recovery using Algorithm 3.3 yields the solution of Equation (3.11) for unknown
entries of∇F , where we extract∇Fc by knowingPc = P − Pv.

• At all other iterations i.e. fori > 1 we perform the following last two steps of SJC2 as
follows:

S3. TLVM [ADVM] with seed matrix̃Sv [S̄v] yields D̃ [D̄], and

S4. Recovery using Algorithm 3.4 yields the solution of Equation (3.12) for unknown
entries of∇Fv.

The following introduces the conceptual recovery algorithms in steps S4 of all three variants of sparse
accumulation processes SJC1, SJC2, and SJC3. Algorithm 3.3for mode = TLM recovers directly in
forward mode the Jacobian∇F from the compressed versioñB for given sparsity patternP and the seed
matrix S̃. In similar manner, the same Jacobian can be recovered formode = ADJM from B̄ in reverse
mode for givenP andS̄. Let

color(i) = k for i ∈ {1, . . . , n [m]} if ∃ k ∈ {1, . . . , p [q]} : S̃i,k 6= 0 [S̄i,k 6= 0]

denote the compressed column [row] indexk of Jacobian column [row]i being the same as the color of
the respective column [row] vertex in the bipartite graphG(P) from whichS̃ [S̄] is obtained. Moreover,

group(k) = {i ∈ {1, . . . , n [m]} | color(i) = k} for k ∈ {1, . . . , p [q]}

denotes the set of all those columns [rows] of Jacobian that are compressed to the column [row]k of
the compressed matrix̃B [B̄]. Likewise, one can recover∇F directly using Algorithm 3.4 formode =
TLM [mode = ADJM] andp = pv [q = qv] in forward [reverse] mode from the compressed version
B = D̃ [B = D̄] for givenP = Pv, S = S̃v [S̄v], and∇F = ∇Fc.

Algorithm 3.3 (JDR (mode, P, S, B,∇F) : Jacobian Direct Recovery).

Require: Jacobian patternP , seed matrixS, mode = TLM resp.mode = ADJM indicating column
resp. row compression, compressed JacobianB, and Jacobian∇F = 0m×n.

Ensure: the Jacobian matrix∇F with numerical values.

1: for j = 1 to m do
2: for i = 1 to n do
3: if P [j, i] 6= 0 then
4: if mode == TLM then
5: ∇F [j, i] = B[j, color(i)]
6: end if
7: if mode == ADJM then
8: ∇F [j, i] = B[color(j), i]
9: end if

114 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

10: end if
11: end for
12: end for

Algorithm 3.4 (EJDR (mode, P, S, B,∇F) : Enhanced Jacobian Direct Recovery).

Require: Jacobian patternP, seed matrixS, mode = TLM resp.mode = ADJM indicating column
resp. row compression, compressed JacobianB, and constant Jacobian∇F = ∇Fc.

Ensure: the Jacobian matrix∇F with numerical values.

1: for j = 1 to m do
2: for i = 1 to n do
3: if P [j, i] 6= 0 then
4: if mode == TLM then
5: ∇F [j, i] = B[j, color(i)]
6: for k ∈ group(color(i)) and k 6= i do
7: ∇F [j, i]− = ∇F [j, k]
8: end for
9: end if

10: if mode == ADJM then
11: ∇F [j, i] = B[color(j), i]
12: for k ∈ group(color(j)) and k 6= j do
13: ∇F [j, i]− = ∇F [k, i]
14: end for
15: end if
16: end if
17: end for
18: end for

3.2.5 Case Study II : Sparse Hessian Computation

In the following and for the sake of simplicity, we assume that F of Equation (1.1) is scalar, that is,
n >> 1 andm = 1. Hence, the Hessian

Rn×n ∋ ∇2F (x) ≡
(

∂2y

∂xj∂xi

)

j,i=1,...,n

is a symmetric matrix of second-order partial derivatives that can be computed by application of SOTLM
of F defined by Equation (1.10) at the computational cost ofO(n2) · Cost(F) by lettingx(1) = ej and
x(2) = ei range over Cartesian basis vectorsej, ei ∈ D of the input domainD ⊆ Rn for j, i = 1, . . . , n
such that

y(1,2) =<< ∇2F (x),x(1) >,x(2) >=
∂2y

∂xj∂xi

.

Likewise, the same Hessian can be computed using SOADM ofF defined by Equation (1.11) at the
computational cost ofO(n) · Cost(F) by settingy(1) = 1 and lettingx(2) = ei range over Cartesian
basis vectorsei ∈ D for i = 1, . . . , n such that

x
(2)
(1) =< y(1), < ∇2F,x(2) >>=

(
∂2y

∂x1∂xi

, . . . ,
∂2y

∂xn∂xi

)

3.2. QUANTITATIVE DEPENDENCE ANALYSIS 115

Evaluation Process

xi ∈ D ⊆ Rn

y = F (xi) in C/C++

S1. Pattern + Constants Comp.

Pv and∇Fc

S2. ColoringG(Pv)

S̃v

[
S̄v

]

S3. Compression by VTLM [VADJM]

D̃ = ∇F · S̃v

[
D̄ = ∇FT · S̄v

]

S4. Recovery

D̃ −∇Fc · S̃v = ∇Fv · S̃v

[
D̄ −∇FT

c · S̄v = ∇FT
v · S̄v

]

∇Fv → ∇F = ∇Fv +∇Fc

S1. Pure Pattern Comp.

P andPv Pc = P − Pv

S2. ColoringG(P) and G(Pv)

S̃ andS̃v

[
S̄ andS̄v

]

S3. Compression by VTLM [VADJM]

B̃ = ∇F · S̃
[
B̄ = ∇FT · S̄

]

S4. Recovery

∇F ∇Fc

SJ
C2

: i
=
1 SJC3 : i =

1

i≥
2

Figure 3.1: Entire Process of sparse Jacobian Computation with constant Exploitation.

116 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

representing theith row of∇2F. We consider in the following SOADM as the model of choice for com-
puting∇2F (x) because of linear runtime complexity inn compared to quadratic one of SOTLM. Here,
we consider SOADVM as a vector representation of SOADM that computes the compressed Hessian
matrix

Rn×p ∋ B = ∇2F · S ∈ Rn×p (3.15)

by p times evaluation of SOADM ofF in directionsx(2) = S∗,i for i = 1, . . . , p with S denoting
the seed matrix resulting from the partitioning of columns of ∇2F. The partitioning can be done in
the same way as the Jacobian case by solving a graph coloring problem that is also known to be NP-
complete [CM83, CC86] on the corresponding graph representation of ∇2F. As shown by Coleman
and Moré [CM83], hereby the seed matrix can be obtained by the application of eitherstar coloringas a
variant of distance-1 coloring with the restriction that every path over four vertices has to use at least three
colors in combination with direct recovery oracyclic coloringas shown by Coleman and Cai [CC86] in
combination withindirect (via substitution) recovery on theadjacency graphof ∇2F. In the following
we focus on the former and denote byG(P 2) the adjacency graph of∇2F obtained from its sparsity
pattern

P 2 = P (∇2F) ≡ (pj,i)j,i=1,...,n with Pj,i ∈ {0, 1} .

Thus, we consider SHC1 described in Procedure 3.4, which summarizes the classical process of sparse
Hessian computation and assume, like in the Jacobian case, that we are interested in Hessians at points
x ∈ I ⊆ D with fixed control flow ofF in I. Algorithm 3.5, which is a modified version of
DIRECTRECOVER1 algorithm proposed by Gebremedhin et al. [GTPW09], is used to recover the Hes-
sian entries from the compressed version.

Procedure 3.4. The entire process of sparse Hessian computation (SHC1) is as follows:

S1. Evaluation ofF at the given point yields Hessian sparsity patternP 2,

S2. Star coloring ofG(P 2) yieldsS,

S3. SOADVM with seed matrixS yieldsB, and

S4. Direct recovery using Algorithm 3.5 yields the solutionof Equation (3.15) for unknown
entries of∇2F.

Consequently,

color(i) = k for i ∈ {1, . . . , n} if ∃ k ∈ {1, . . . , p} such that Si,k 6= 0

denotes the compressed column indexk of Hessian columni. Moreover,

group(k) = {i ∈ {1, . . . , n} : color(i) = k} for k ∈ {1, . . . , p}

denotes the set of all those columns of Hessian that are compressed to columnk of B.

Example 3.4. In the following we consider the Hessian matrixH and its compressed versionB = H ·S

3.2. QUANTITATIVE DEPENDENCE ANALYSIS 117

resulted from the application of SOADVM using the seed matrix S as follows.




h1,1 h1,2 + h1,6 0 h1,4

h2,1 h2,2 h2,3 + h2,5 0
0 h3,2 h3,3 h3,4

h4,1 h4,6 h4,3 h4,4

0 h5,2 + h5,6 h5,5 0
h6,1 h6,6 h6,5 h6,4




=




h1,1 h1,2 0 h1,4 0 h1,6

h2,1 h2,2 h2,3 0 h2,5 0
0 h3,2 h3,3 h3,4 0 0

h4,1 0 h4,3 h4,4 0 h4,6

0 h5,2 0 0 h5,5 h5,6

h6,1 0 0 h6,4 h6,5 h6,6




·




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 1 0 0




S is the result of star coloring of the adjacency graph ofH as follows.

1 : 1

2 : 2 3 : 3

4 : 4

5 : 3

6 : 2

G(H)

The vertex labels of the shapea : b indicate that vertexa has the colorb. Hence, the coloring yields the
following four groups of columns.

group(1) = {1}, group(2) = {2, 6}, group(3) = {3, 5}, and group(4) = {4} ,

where

color(1) = 1, color(2) = color(6) = 2, color(3) = color(5) = 3, color(4) = 4 .

Finally, the Hessian values are recovered by Algorithm 3.5.For instance, the entryH [1, 2] = B[2, 1] =
h2,1 is obtained in line 5 forj = 1 andi = 2 fromB.

Constant Exploitation

In order to exploit the constants of the Hessian and to get better compression we consider the Hessian

∇2F = ∇2Fc +∇2Fv

as the sum of its constants∇2Fc and variable entries∇2Fv. We compute∇2Fc along with the sparsity
patternP 2

v = P (∇2Fv) of ∇2Fv and obtainSv ∈ Rn×q by acyclic coloring ofG(P 2
v). Thus, application

of SOADVM yields the compressed Hessian

D = ∇2F · Sv = ∇2Fv · Sv +∇2Fc · Sv . (3.16)

HavingD we obtain∇2Fv by solving the linear system

D −∇2Fc · Sv = ∇2Fv · Sv (3.17)

using Algorithm 3.6 to recover column and row entries of∇2Fv. The entire process can be summarized
as follows.

Procedure 3.5. The entire process of sparse Hessian computation (SHC2) with constant exploitation:

118 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

S1. Evaluation ofF at the given point yields variable Hessian sparsity patternP 2
v and con-

stant Hessian∇2Fc,

S2. Star coloring ofG(P 2
v) yieldsSv,

S3. SOADVM with seed matrixSv yieldsD, and

S4. Direct recovery using Algorithm 3.6 yields the solutionof Equation (3.15) for unknown
entries of∇2Fv.

Example 3.5. In the following we consider the Hessian matrixH of Example 3.5 with the constant entries
c1,6, c6,1, c2,3, c3,2, c4,6, c6,4, and c6,6. Thus, we get the compressed HessianD = H · Sv by applying
SOADVM usingSv as follows.



h1,1 + c1,6 h1,2 h1,4

h2,1 h2,2 + c2,3 h2,5

0 c3,2 + h3,3 h3,4

h4,1 + c4,6 h4,3 h4,4

h5,6 h5,2 h5,5

c6,1 + c6,6 0 h6,5 + c6,4




=




h1,1 h1,2 0 h1,4 0 c1,6
h2,1 h2,2 c2,3 0 h2,5 0
0 c3,2 h3,3 h3,4 0 0

h4,1 0 h4,3 h4,4 0 c4,6
0 h5,2 0 0 h5,5 h5,6

h6,1 0 0 c6,4 h6,5 c6,6




·




1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
1 0 0




Sv is the result of star coloring of the adjacency graph ofHv as follows.

1 : 1

2 : 2 3 : 2

4 : 3

5 : 3

6 : 1

G(Hv)

Thereby, we get three as total number of used colors, which isbetter than four in case of coloring the
graph ofH. The three groups of columns are as

group(1) = {1, 6}, group(2) = {2, 3}, and group(3) = {4, 5} ,

where

color(1) = color(6) = 1, color(2) = color(3) = 2, color(4) = color(5) = 3 .

Finally, the Hessian variable entries are recovered using Algorithm 3.6. For instance,H [2, 2] is obtained
for j = 2 andi = 2 fromD[2, 2] according to line 7. However, in order to get the right value ofH [2, 2] the
constant value∇2Fc[2, 3] = c2,3 for k = 3 according to line 10 is subtracted fromD[2, 2] = h2,2 + c2,3
yieldingH [2, 2] = D[2, 2]− c2,3 = h2,2. As one can seeD[6, 1] = c6,1 + c6,6 is a pure sum of constant
entries, that obviously can be ignored in recovery step as the involved constants are already known. Thus,
the recovery routine need only to care about recovering variable elements.

Like the Jacobian sparsity exploitation process SJC3 it mayalso pay off to obtain constants without
the overhead of computing them on the SAC ofF at runtime as illustrated in Figure 3.2. Therefore, first,
at the starting pointx1, we obtain the Hessian in the classical way as described in SHC1 of Procedure 3.4
with only difference that we also propagateP 2

v along withP. Obviously, we get the constant pattern as
P 2
c = P 2 − P 2

v . After termination of the recovery step S4 yielding∇2F (x1) and since we haveP 2
c we

obtain easily∇2Fc from ∇2F. Furthermore, we obtain in step S2 both seed matricesS andSv by star

3.2. QUANTITATIVE DEPENDENCE ANALYSIS 119

Evaluation Process

xi ∈ D ⊆ Rn

y = F (xi) in C/C++

S1. Pattern + Constants Comp.

P 2
v and∇2Fc

S2. ColoringG(P 2
v)

Sv

S3. Compression by VSOADJM

D = ∇2F · Sv

S4. Recovery

D −∇2Fc · Sv = ∇2Fv · Sv

∇2Fv ∇2F = ∇2Fv +∇2Fc

S1. Pure Pattern Comp.

P 2 andP 2
v P 2

c = P 2 − P 2
v

S2. ColoringG(P 2) and G(P 2
v)

S and Sv

S3. Compression by VSOADJM

B = ∇2F · S

S4. Recovery

∇2F ∇2Fc

SH
C2

: i
=
1 SH

C3 : i =
1

i≥
2

Figure 3.2: Entire Process of sparse Hessian Computation with constant Exploitation.

120 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

coloring of vertices ofG(P 2) andG(P 2
v), respectively such that in the following iterations we proceed

to accumulate the target Hessians just by performing the steps S3 and S4 of SHC2 shown in the left
column of the same figure. Here, we assume that the termination of the leaf processes S4 of both left and
right columns are followed by a jump to the root process, is the Hessian at another point is of interest.
Otherwise, leaf processes are supposed to finalize the entire sparse accumulation process.

Procedure 3.6. The alternative way to compute and exploit the Hessian constants (SHC3):

• At first iteration i.e. fori = 1 we perform an extended version of SHC1 as follows:

S1. Evaluation ofF at the given point yieldsP 2 andP 2
v ,

S2. Star coloring ofG(P 2) andG(P 2
v) yieldsS andSv,

S3. SOADVM with seed matrixS yieldsB, and

S4. Recovery using Algorithm 3.5 yields the solution of Equation (3.16) for unknown
entries of∇2F , where we extract∇2Fc by knowingP 2

c = P 2 − P 2
v .

• At all other iterations i.e. fori > 2 we perform the following last two steps of SHC2 as
follows:

S3. ADVM with seed matrixSv yieldsD, and

S4. Recovery using Algorithm 3.6 yields the solution of Equation (3.17) for unknown
entries of∇2Fv.

Algorithm 3.5 (HDR (P2, S, B,∇2F) : Hessian Direct Recovery).

Require: : the Hessian patternP 2, the seed matrixS ∈ Rn×p, the compressed HessianB ∈ Rn×p, and
zero Hessian∇2F = 0n×n.

Ensure: : the Hessian matrix∇2F with numerical values.

1: for j = 1 to n do
2: for i = 1 to n do
3: if P [j, i] 6= 0 then
4: if ∃k 6= i and P [j, k] 6= 0 and color(k) = color(i) then
5: ∇2F [j, i] = ∇2F [i, j] = B[i, color(j)]
6: else
7: ∇2F [j, i] = ∇2F [i, j] = B[j, color(i)]
8: end if
9: end if

10: end for
11: end for

Algorithm 3.6 (EHDR (P2v, P
2
c, Sv, D,∇2F) : Enhanced Hessian Direct Recovery).

Require: : the variable resp. constant Hessian patternP 2
v resp. P 2

c , the seed matrixSv ∈ Rn×q, the
compressed HessianD ∈ Rn×q, and the Hessian∇2F := ∇2Fc ∈ Rn×n initialized to its constant
part∇2Fc.

Ensure: : the Hessian matrix∇2F with numerical values.

1: for j = 1 to n do

3.2. QUANTITATIVE DEPENDENCE ANALYSIS 121

2: for i = 1 to n do
3: if Pv[j, i] 6= 0 then
4: if ∃k 6= i and Pv[j, k] 6= 0 and color(k) = color(i) then
5: ∇2F [j, i] = ∇2F [i, j] = D[i, color(j)]
6: else
7: ∇2F [j, i] = ∇2F [i, j] = D[j, color(i)]
8: end if
9: for k ∈ group(color(i)) and P 2

c [j, k] 6= 0 do
10: ∇2F [j, i] = ∇2F [i, j] = ∇2F [j, i]−∇2F [j, k]
11: end for
12: end if
13: end for
14: end for

3.2.6 Numerical Results

In the following we present some numerical results on sparsecomputation of Jacobians of multivariate
functions of typeF : Rn → Rm such as Bratu of Listing 2.1 as well as the one that arises in Simulated
Moving Bed (SMB) process a model for liquid chromatographicseparation described by Gebremedhin
et al. [GPW08], where in the formern = m. Moreover, we present results on sparse computation of
the Hessian of the objective function of typef : Rn → R arising in SMB. Therefore, we use ColPack
implementations of partial distance-2, acyclic, and star coloring algorithms with in ColPack terminology
natural ordering of graph vertices. Moreover, we use TLVM and SOADM implementations provided
by ADOL-C in order to accumulate accurate first and second order directional derivatives whenever
appropriate.

The tests for Jacobian and Hessian compression with constant exploitation are performed using the
C++ operator overloading toolCompJacHess2. The state-of-the-art implementation of the software com-
putes simultaneously constants and variable pattern of Jacobian and Hessian of the underlying functions
written in a subset of programming language C/C++. However,current implementation activities of the
author focus on separating variable pattern estimation from constant retrieval that is needed in context of
SJC3 and SHC3.

Constant Exploitation

Table 3.2 compares runtimes of four steps of sparse Jacobianand Hessian computation with
(SJC2/SHC2) and without (SJC1/SHC1) exploitation of the constants. The resulting numbers of col-
ors are given by columnp. Here,p is the result of partial distance-2 and star coloring on the respective
graphs of target Jacobians and Hessians, respectively. Letus consider SJC1 and SJC2 results of SMB pre-
sented in first two rows. As one can see the respective Jacobian withn = 211755 columns is compressed
to a one with only eight in the former and six in the latter columns. Better compression is achieved on
Bratu with a gain of six colors. Thus, in both cases the gain inruntime of stepS3 is not considerably high,
which we consider reasonable. We note that retrieving constants of Jacobian is of quadratic complexity
as nonzero pattern ford = 2 are needed to specify variable entries as discussed on Algorithm 3.1. For
the same reason the constant Hessian estimation is of cubic complexity. Les us consider now the sparse
computation of Hessian of SMB objective functionf for n = 34305 in the last two rows. Here, we
observe that the star coloring underperforms in both runtime and achieved colors when we consider the
variable Hessian (SHC2) compared to that of the nonzero one,despite the fact that the former is sparser
as roughly 12 % of the Hessian nonzeros turn out to be constant. In this context, we consider the coloring

2CompJacHess stands for Compressed Jacobian and Hessian Computation

122 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

Mode n T (S1) T (S2) p T (S3) T (S4) %cnz
SJC1 (SMB) 211755 0.63 1.77 8 0.23 0.07 27.9
SJC2 (SMB) 211755 2.05 1.15 6 0.2 0.05 #
SHC1 (SMB) 34305 6.58 161.87 12364 12.1
SHC2 (SMB) 34305 1757.72 213.9 14401
SJC1 (Bratu) 4000000 13.03 33.04 7 4.09 1.42 79.9
SJC2 (Bratu) 4000000 51.22 14.93 1 2.94 0.47 #

Table 3.2: Runtime and Coloring Results on SJC and SHC.

a major obstacle toward achieving better compression by constant exploitation of Hessians. In fact, we
observe the same behavior when comparing the coloring results of EHP (i.e. nonzero pattern) with that
of an conservative overestimated version of the same Hessian, whose coloring seems to perform much
better compared to EHP without noticeable loss of runtime asdescribed in the following.

3.3 Conservative Hessian Pattern Estimation

In the following we propose a method forconservative overestimationof the Hessian sparsity pattern
(CHP). Furthermore, we compare its runtime behavior with that of the ADOL-C implementation of the
standard algorithm for exact Hessian pattern estimation (EHP) proposed by Walther in [Wal08]. There-
fore, we introduce first the standard algorithm and prove itscomplexity. Moreover, we exploit the partial
separability [Gay96, Wal08, GT82] in CHP to reduce the runtime complexity of sparsity pattern estima-
tion that is known to be quadratic in the dimension of inputsn in worst case. We also prove the complexity
of CHP, which is a light modification of the standard one.

Finally, we present a recursive algorithm for Hessian pattern estimation (RHP) , which is obtained
by the reapplication of the partial separability to every element operation on the SAC ofF. Therefore,
not onlynonlinear componentsof the outputs are of interest but also those of all SAC variables. RHP is
supposed to yield exactly the same pattern as CHP at recursion level one. Moreover, CHP converges to
EHP for sufficiently large recursion level.

3.3.1 Exact Hessian Pattern Estimation

In the following we introduce an algorithm for estimating the exact sparsity patternP 2 = P (∇2F) of
the Hessian matrix∇2F, which is a simplified version of TSP described by Algorithm 3.1 for d = 2.
Therefore, for every SAC variablevk with k ∈ V we define index and index pair set

fod(vk) = P 1(vk) ⊆ X and sod(vk) = P 2(vk) ⊆ X ×X

as the first- and second-order dependency sets ofvk on independentsx, respectively. EHP described
in Algorithm 3.7 computes the exact second-order dependenciessod(y) of the outputsy of F from the
first-order dependenciesFoD(x) of its inputsx defined as

sod(y) =

m⋃

j=1

sod(yj) and FoD(x) =
(
fod(xi) := {i}

)
i=1,...,n

on the SAC ofF, respectively. The first-order dependencies of independentSAC variables in
lines 1–4 are initialized to those of independentsx, where the corresponding second-order dependencies
remain empty. The main computation effort is perfromed in lines 5–16, where∪,⋃, and

∏
,× represent

3.3. CONSERVATIVE HESSIAN PATTERN ESTIMATION 123

union and cross product of the corresponding (pair) sets, respectively. In lines 17–19 the second-order
dependenciessod(vj) of each dependent SAC variablevj is added tosod(y).

Algorithm 3.7 (EHP (SAC(F), FoD(x), sod(y)) : Exact Hessian Pattern Estimation).

Require: SAC ofF and first-order dependenciesFoD(x) of the inputsx.
Ensure: second-order dependenciessod(y) of the outputsy.

1: for i := 1 to n do
2: fod(vi) = fod(xi)
3: sod(vi) = ∅
4: end for
5: for k = n+ 1, . . . q do
6: fod(vk) =

⋃
i≺k fod(vi)

7: if ϕk ∈ {+} then
8: sod(vk) =

⋃
i≺k sod(vi)

9: end if
10: if ϕk ∈ {∗} then
11: sod(vk) =

∏
i≺k fod(vi) ∪ ⋃

i≺k sod(vi)
12: end if
13: if ϕk ∈ ΦN then
14: sod(vk) = fod(vk)× fod(vk)
15: end if
16: end for
17: for j = n+ p+ 1 to q do
18: sod(y) = sod(y) ∪ sod(vj)
19: end for

One can easily see that the most costly operation in EHP is thecross product of lines 11 and 14,
which are performed forϕk ∈ {∗} andϕk ∈ ΦN , respectively. This fact makes this algorithm have a
quadratic complexity as proven by Theorem 3.3 that is in facta light modification of the one proposed by
Walther [Wal08] form = 1. Note that this complexity would also follows from TSp ford = 1.

Theorem 3.3. Given SAC ofF defined in Equation (1.2) and letOPS(EHP) denote the operation count
needed for Algorithm 3.7. Hence, we have

OPS(EHP) ≤ OPS(F) · O(n̂2) ,

whereOPS(F) is the number of floating point operations in SAC ofF and

n̂ = max
j∈{1,...,m}

n̂j with n̂j = max
i∈X

nonzero(∇2Fj,i,∗)

denotes the maximum number of nonzeros per row over all rows of the Hessians∇2Fj .

Proof. Obviously, there exists a positive constantc such that

n ≤ c · n̂ . (3.18)

Furthermore, the number of elements infod(vj) for j ∈ Z ∪ Y is bounded bŷn i.e.

|fod(vj)| ∈ O(n̂) . (3.19)

124 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

Thus, it follows that the union in line 6 can be performed inO(n̂). From Equation (3.19) follows im-
mediately that the cross products in lines 11 and 14 can be performed inO(n̂2). At the same time we
have

|sod(vj)| ∈ O(n̂2)

representing the upper bound for the union operations performed in lines 8 and 11.

We recapitulate here that the quadratic complexity of EHP iscaused by the computation ofsod(vk)
as the cross product offod(vi) and the union ofsod(vi) of their argumentsi ≺ k in case of nonlinear
and linear operations, respectively. In the following section we introduce the conservative algorithm.

3.3.2 Exploitation of Partial Separability

In order to accelerate the Hessian pattern estimation we assume in the following thatF is partially sepa-
rable as

F (x) =

|NF (F)|∑

i=1

fi(x) with NF (F) =
⋃

j∈Y

nf(vj) (3.20)

into nonlinear functionsfi, which we refer to asnonlinear frontierNF = NF (F) components ofF.
Griewank and Toint [GT82] have shown thatF is partially separable if∇2F is sparse. Thus, differenti-
atingF of Equation (3.20) with respect tox yields

∇2F (x) =

|NF (F)|∑

i=1

∇2fi(x) .

Thus, the exact and conservative sparsity pattern of∇2F is given by

sod(y) =

|NF (F)|⋃

i=1

sod(fi) and csod(y) =

|NF (F)|⋃

i=1

csod(fi) ,

respectively, where
csod(fi) = fod(fi)

2 = fod(fi)× fod(fi)

denotes theconservative second-order dependenciesof fi onx with sod(fi) ⊆ csod(fi). Thus, we can
overestimate the sparsity pattern of∇2F (x) first by computingfod(fi) of all NF componentsfi followed
by building a union of the self cross productsfod(fi)

2.

Algorithm 3.8 (CHP(SAC(F), FoD(x), csod(y)) : Conservative Hessian Pattern Estimation).
Require: SAC ofF and first-order dependenciesFoD(x) of inputsx.
Ensure: conservative second-order dependenciessod(y) of the outputsy.

1: for i = 1 to n do
2: fod(vi) = fod(xi)
3: nf(vi) = ∅
4: end for
5: for k = n+ 1, . . . q do
6: fod(vk) =

⋃
i≺k fod(vi)

7: nf(vk) =
⋃

i≺k get nf(vi)
8: end for
9: for j = n+ p+ 1 to q do

3.3. CONSERVATIVE HESSIAN PATTERN ESTIMATION 125

10: csod(y) = csod(y) ∪⋃
i∈nf(vj)

fod(vi)
2

11: end for

Algorithm 3.8 illustrates the computation ofcsod(vj) with j ∈ Y of the outputsy on the SAC ofF.
Thereby, in addition to the computation offod(vk) with k ∈ V, we propagate the NF set defined as

nf(vk) =
⋃

i≺k

nf(vi) with get nf(vi) =





nf(vi) for ϕi ∈ {+}
{i} for ϕi ∈ {∗} ∪ΦN

∅ otherwise

. (3.21)

Obviously, the NF of a SAC variablek ∈ V −X results from the union of the NF of its argumentsi ≺ k
as shown in line 7. Therefore, a nonlinear argument is supposed to return itself as a NF component of
vk, whereas a linear one forwards its NF tovk as defined by Equation (3.21). In other words, we aim to
maintain a nonlinear frontier DAG (NF-DAG)

GNF = (VNF , ENF) (3.22)

with

VNF = {i ∈ V : ϕi ∈ {∗} ∪ ΦN} and ENF = {(i, j) : i, j ∈ VNF andi ∈ nf(vi)} (3.23)

at the time of evaluatingF. Vertices represent the nonlinear elemental functions at the SAC ofF, where
each vertexk ∈ V −X of NF-DAG representsvk for ϕk ∈ ΦN ∪{∗}. Therefore, vertexk is supposed to
storefod(vi) of each of the argumentsi ≺ k of vk. Moreover, vertexk stores the information about its
predecessor vertices for the NF-DAG denoted here bynf(vk). We emphasize here that the computation-
ally expensive cross products along with their unions as shown in line 10 are performed only for output
variables in the number of their NF components and notOPS(F) as in EHP. Theorem 3.4 proves the
computational complexity of CHP.

Theorem 3.4. Given SAC ofF of Equation (1.2) and letOPS(CHP) denote the operation count needed
for Algorithm 3.8. Hence, we have

OPS(CHP) ≤ |NF (F)| ·O(n̂2) +OPS(F) · O(n̂+N) .

N denotes the maximum number of NF components overall elemental operations ofF as

N = max
j∈V

|nf(vj)| . (3.24)

Proof. As shown in Equation (3.18), there exists a positive constant c such thatn ≤ c · n̂. Furthermore,
the numbers of elements in bothfod(vj) andnf(vj) for j ∈ V are bounded bŷn andN , respectively,
such that

|fod(vj)| ∈ O(n̂) and |nf(vj)| ∈ O(N) . (3.25)

Thus, it follows that the unions in lines 6 and 7 can be performed in O(n̂ + N) operations. From
Equation (3.25) it follows immediately that the cross products as well as the unions in line 10 can be
performed inO(n̂2) as|csod(vj)| ∈ O(n̂2).

At this point it should be made clear that the overestimationis a side effect of treating a multiplication
operation as an operation of typeΦN such assin andexp . In fact, we can only obtain an overestimated

126 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

version of the Hessian pattern by CHP when multiplications are contained in the NF component ofF.
However, this is not alway the case as explained in the following example.

v = exp(x1); // fod(v) = {1}; sod(v) = {(1, 1)};
w = v ∗ x1; // fod(w) = {1}; sod(w) = fod(v)× fod(x1) = {(1, 1)};
y = v+ w; // fod(y) = {1}; sod(y) = {(1, 1)}; csod(y) = fod(v)2 ∪ fod(w)2 = {(1, 1)}

The NF ofy is obviouslynf(y) = {v, w}. We obtain one and the same pattern by EHP and CHP as
fod(v) = fod(x1), which implies thatfod(w)2 = fod(v) × fod(x1). Hence, performing self cross
product does not lead to any overestimation.

Example 3.6. Given a scalar functionF : R2 → R defined as

y = F (x1, x2, x3) = x1 · x2 + x2
3 . (3.26)

We illustrate the algorithms EHP and CHP for exact and overestimate Hessian pattern computation on
the following SAC ofF. Here, we illustrate at every SAC statementk = 1, . . . , 5, the computation offods
(a),sods (b),nfs (c), andcsods (d).

1. vi = xi for i = 1, 2, 3

(a) fod(vi) = {i};
(b) sod(vi) = ∅;
(c) nf(vi) = ∅;

2. v4 = v1 · v2
(a) fod(v4) = {1, 2};
(b) sod(v4) = fod(v1)× fod(v2) = {(1, 2)};
(c) nf(v4) = ∅;

3. v5 = v23

(a) fod(v5) = {3};
(b) sod(v5) = fod(v5)× fod(v5) = {(3, 3)};
(c) nf(v5) = ∅;

4. y = v4 + v5

(a) fod(y) = {1, 2};
(b) sod(y) = sod(v4) ∪ sod(v5) = {(1, 2), (3, 3)};
(c) nf(y) = get nf(v4) ∪ get nf(v5) = {4, 5};
(d) csod(y) = fod(v4)× fod(v4) ∪ fod(v5)× fod(v5) = {(1, 1), (1, 2), (2, 2), (3, 3)};

Considering the multiplication in (2). The second-order dependenciessod(v4) of v4 results from the
cross product offod(v1) andfod(v2). The nonlinear frontier ofv4 andv5 are obviously empty as shown
in (2) and (3), respectively. The nonlinear component of theaddition operationy in (4) consists of its
both nonlinear arguments, namely4 and5. Hence, the self cross product of thefod(v4) andfod(v5) of
each nonlinear frontier component4 and5 of y followed by their union yields the overestimation of the
second-order dependencycsod(y) of the outputy in (d) as(1, 1) and(2, 2) are not contained insod(y).
The entire process is shown graphically in Figure 3.3, wherefod andsod along withcsod are denoted
by dependency vectors and matrices, respectively. The exact and overestimated nonzeros are denoted by
symbols× and⊗, respectively.

3.3. CONSERVATIVE HESSIAN PATTERN ESTIMATION 127

[
× 0 0

]

v1

[
0 × 0

]

v2

[
0 0 ×

]

v3



0 × 0
× 0 0
0 0 0




[
× × 0

]

v4



0 0 0
0 0 0
0 0 ×




[
0 0 ×

]

v5



0 × 0
× 0 0
0 0 ×




[
× × ×

]

y

[
× 0 0

]

v1

[
0 × 0

]

v2

[
0 0 ×

]

v3

nf(v4) = ∅;
[
× × 0

]

v4

nf(v5) = ∅;
[
0 0 ×

]

v5

nf(y) = {4, 5};


⊗ × 0
× ⊗ 0
0 0 ×




[
× × ×

]

y

(a) (b)

Figure 3.3: Exact (a) and conservative (b) Hessian Pattern Estimation.

3.3.3 Recursive Hessian Pattern Estimation

As explained above the nonlinear frontier DAGGNF of Equation (3.22) is supposed to be the result of
evaluatingF at given pointx. Each vertex is supposed to maintain its own nonlinear frontier given as its
predecessors along with the fods of the arguments of the respective SAC statement.

Note that in CHP the focus was only the nonlinear frontier of outputs were of interest. There, per-
forming self-cross products of the fods of each of the NF components resulted in the conservative overes-
timation of the Hessian pattern. However, givenGNF we can also formulate a recursive version of CHP
that we refer to as recursive Hessian pattern estimation (RHP). Thus, one can formulate a recursive top-
down algorithm onGNF that is supposed to interpret nonlinear frontiers level-wise. The interpretation
is nothing else than building cross products of fods of concerned nonlinear frontiers accordingly. Thus,
we believe that with increasing levels (going further down on GNF) RHP converges to EHP. A proof of
concept implementation of this idea is attached to this work.

To clarify the idea behind RHP, let us consider again Figure 3.3 (b) that we obtain by interpreting the
fods of the nonlinear components of the root boxy. Now, let us go one level down tov4 andv5 and let
assume thatv4 has access to the fods of its argumentsv1 andv2. Now, despite the fact thatv4 is the result
of the multiplication we can build the cross products of the fods ofv1 andv2, yielding the pattern of the
local Hessian asP (∇2v4) = fod(v1) × fod(v2) = {(1, 2)}. In case ofv5 nothing changes as its is the
result ofexp(v3) and hence a self cross product of its fods yields the exact pattern asP (∇2v5) = {(3, 3)}.
Finally, the unionP (∇2y) = sod(v4) ∪ sod(v5) yields the exact Hessian pattern ofy.

We obtain RHP by replacing the statement in line 10 of CHP bycompute(j, sod(y), l),wherel ≥ 0
denotes the recursion level as described by Algorithm 3.9.j is supposed to denote the vertex corre-
sponding to SAC variablevj . We note that SAC variables are also supposed to have access totheir NF
components on the NF-DAG. More precisely,nf(vk) of the SAC variablevk is supposed to point to the
respective vertices on NF-DAG.

Thus, callingcompute(j, P, l) adds the contribution of the vertexj to the second-order dependencies
P = sod(y) depending on the levell. The interpretation is performed in lines 2 and 9. In the former,
the interpretation is performed in cases whenl = 0 or ϕj ∈ ΦN . In this context, the interpretation is
nothing else than building self cross product of the fod of the particular vertex. Otherwise, we proceed

128 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

recursively by callingcompute(i, P, l− 1) for all the predecessorsi of k as shown in lines 4–6. Finally,
and after handling all the children ofk, we also add the contribution of the multiplication (line 9) to
P by building cross product of the fods of the parameter ofvk. We emphasize here that we explicitly
distinguish between the parameters at SAC level and children on NF-DAG. The former do not necessarily
represent nonlinear operations as opposed to the latter. This is exactly the reason for storing those fods
during the evaluation ofF in NF-DAG vertices. One can easily figure out that thecompute(·) algorithm
and hence the interpretation follows adepth-first post-order strategy.

Thus, we believe that with increase in levels (going furtherdown on NF-DAG) RHP converges to
EHP. This behavior is demonstrated using the proof of concept implementation of RHP in Section 3.3.4
on an artificial scalar function. The complexity class of computing the exact Hessian pattern by RHP is
stated in Theorem 3.5. Nonetheless, further investigations are needed to handle the memory bandwidth
as NF-DAG can potentially get very big. Hence, ideas are desired to reduce the memory consumption by
freeing the memory of all unnecessary vertices of NF-DAG fora given recursion level to avoid running
out of memory. Therefore, we suppose to keep track of the memory usage and delete as many vertices as
possible whenever the memory bound is hit. As a first idea, it may make sense to mark a dead vertexi as
not eliminatable if it is in a distance (number edges)0 < dist(i, k) ≤ l to at least one local dependent
vertex3 k. The marking is supposed to be performed by a breath-first traversingGNF .

Theorem 3.5. Given the nonlinear DAGGNF = (VNF , ENF) defined by Equation (3.22) and let
OPS(RHP) denote the operation count needed for RHP described by Algorithm 3.9. Hence, we have

OPS(RHP) ≤ |VNF | ·O(n̂2) +OPS(F) · O(n̂+N) (3.27)

with VNF andN being defined by Equation (3.23) and Equation (3.24), respectively.

Proof. As shown in Theorem 3.4 for CHP, the unions of lines 6–7 can be performed inO(n̂ + N)
operations for every SAC variable. From Equation (3.25) follows also that the cross products as well as
the unions in lines 2 and 9 of thecompute routine described by Algorithm 3.10 can be performed in
O(n̂2). We obtain Equation (3.27) taking into account that these operations are performed at most|VNF |
times.

Algorithm 3.9 (RHP(SAC(F), fod(x), sod(y), l) : Recursive Hessian Pattern Estimation).
Require: SAC ofF and recursion levell ≥ 0.
Ensure: Second-order dependenciessod(y) of the outputsy.

1: for i := 1 to n do
2: fod(vi) = {i}
3: nf(vi) = ∅
4: end for
5: for k = n+ 1, . . . q do
6: fod(vk) =

⋃
i≺k fod(vi)

7: nf(vk) =
⋃

i≺k get nf(vi)
8: end for
9: for k = n+ p+ 1 to q do

10: compute(vk, sod(y), l)
11: end for

Algorithm 3.10 (compute(k, P, l) : Computation of Second-Order Dependencies).

3A vertex in NF-DAG is marked as local dependent, if it has no successors.

3.3. CONSERVATIVE HESSIAN PATTERN ESTIMATION 129

Require: NF-DAG vertexk with k ∈ V ofF and recursion levell ≥ 0.
Ensure: contribution ofvk at levell to P ⊆ X ×X.

1: if l == 0 or ϕk ∈ ΦN then
2: P = P ∪ (

⋃
i≺k fod(vi))

2

3: else
4: for all i ∈ nf(vk) do
5: compute(i, P, l− 1)
6: end for
7: end if
8: if ϕk ∈ {∗} then
9: P = P ∪∏

i≺k fod(vi)
10: end if

In the following we illustrate RHP in the example function ofEquation (3.26). The respective ex-
act and conservative overestimated pattern by EHP and CHP, respectively, have already been illustrated
in Example 3.6.

Example 3.7. Given the scalar functionF : R2 → R defined by Equation (3.26) we illustrate RHP on
the following SAC ofF. Here, we illustrate at every SAC statementk = 1, . . . , 5 the computation offods
(a) as well asnfs (b). Moreover, the computation ofsod(y) is exercised forl = 1 and l = 2 in (c) and
(d), respectively.

1. vi = xi for i = 1, 2, 3

(a) fod(vi) = {i};
(b) nf(vi) = ∅;

2. v4 = v1 · v2

(a) fod(v4) = {1, 2};
(b) nf(v4) = ∅;

3. v5 = v23

(a) fod(v5) = {3};
(b) nf(v5) = ∅;

4. y = v4 + v5

(a) fod(y) = {1, 2};
(b) nf(y) = get nf(v4) ∪ get nf(v5) = {4, 5};
(c) compute(y, sod(y), 2) with initial sod(y) = ∅ andl = 2

compute(4, sod(y), 1)

→ sod(y) = sod(y) ∪ fod(v1)× fod(v2) = {(1, 2)}
compute(5, sod(y), 1)

→ sod(y) = sod(y) ∪ fod(v5)× fod(v5) = {(1, 2), (3, 3)}

130 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

(d) compute(y, sod(y), 1)with initial sod(y) = ∅ andl = 1

compute(4, sod(y), 0)

→ sod(y) = sod(y) ∪ fod(v4)× fod(v4) = {(1,1), (1, 2), (2,2)}
compute(5, sod(y), 0)

→ sod(y) = sod(y) ∪ fod(v5)× fod(v5) = {(1,1), (1, 2), (2,2), (3, 3)}

Hence, RHP results in overestimated and exact Hessian patterns for l = 1 and l = 2, respectively. The
overestimated pairs are marked as bold.

3.3.4 Numerical Results

Hessian Pattern Overestimation

In the following we consider numerical result on Hessian pattern overestimation. Figure 3.4 (a) compares
the runtime of the conservative algorithm CHP against that of EHP implemented in AD tool ADOL-
C on Hessian matrices of the objective functionf of SMB. We observe here a linear growth in input
dimensionn in case of CHP, whereas EHP tends to increase quadratically with n. We observe also that
the resulting colorsqs via star coloring of the conservative sparsity pattern resulting from CHP as shown
in Figure 3.4 (b) is much better than the one obtained from EHPshown in (c) with a loss in runtime by a
factor smaller than two in the former.

For instance, let us considern = 16980. Star coloring of EHP takes 37.86 seconds to yield 6094
colors, whereas it takes 43.74 seconds to yield 37 colors in case of CHP as shown in columnsTs and
qs of (c) and (b), respectively. Moreover, we observe roughly the same behavior in case of the acyclic
coloring algorithm with even better runtime in CHP as shown in columnsTa andqa. Considering again
n = 16980, acyclic coloring of CHP yields 5 colors in 58.63 seconds instead of 4861 colors in 88.14
in EHP. Thus, conservative estimation of the Hessian pattern seems to reduce the number of colors and
hence improve the compression resulting from both star and acyclic coloring heuristics drastically without
significantly affecting the runtime. For the sake of completeness we provide in columnsTp andqp the
runtime and coloring results of partial distance-2 coloring algorithm without symmetry exploitation in
both EHP and CHP. Consideringn = 16980 again distance-2 coloring of EHP yields 7277 colors in 4.76
seconds. Hence, the gain in time compared with star [acyclic] coloring yielding 6094 [4861] colors is
roughly8 ≈ 37.86

4.76 [9 ≈ 43.74
4.76] by a loss of1.2 ≈ 7277

6094 [1.5 ≈ 7277
4861] in the number of achieved colors.

In conclusion we note here that both heuristics do sequential coloring, which we conjecture to be the
reason for different color results of EHP and CHP. Therefore, we consider in the following a snapshot
of the Hessian pattern off for n = 411 as shown in Figure 3.5. The labelsi : j denote that vertexi
gets the colorj. The Symbol⊗ denotes an overestimated entry of the Hessian. Firstly, letus focus on
first ten rows and columns of EHP and the resulting adjacency graphG(EHP). Star coloring results in a
total of four colors, where the vertices 1-5 and 6 get the color 1 and 2, respectively. The latter is the case
because vertex 6 is directly connected to 1. Moreover, vertex 7 has to be colored as 3 since otherwise
the four vertices 6, 1, 7, and 4 connected by a path would have two colors and not at least three, which
is required by star coloring. In fact the same argumentationholds for vertex 4. Consider now the entire
pattern including the row/column 11 and its adjacency graphwith vertex 11 and its incident edges. This
vertex exhibits exactly the same property as vertices 3 and 4, thereby increasing the color number by one.
Furthermore, we observe the same behavior by changing the ordering of vertices with respect to their
degrees equal the number of incident vertices. This is because most vertices here are almost of the same
degree. In opposite, star coloring of CHP first colors verticesi = 1, 2, 3, 4 with i while coloring most of
the remaining vertices with one of the used colors.

3.3. CONSERVATIVE HESSIAN PATTERN ESTIMATION 131

0 0.5 1 1.5 2 2.5

·106

10−2

10−1

100

101

102

103

n : INPUT DIMENSION

R
U

N
T

IM
E

IN
S

E
C
.

EHP
CHP

(a)

n Tp qp Ts qs Ta qa
8580 1.25 3677 10.49 37 14.06 5
10680 1.93 4577 16.447 7 21.96 5
12780 2.78 5477 23.64 7 31.63 5
14880 3.73 6377 33.4 37 44.49 5
16980 4.85 7277 43.74 37 58.63 5
19080 6.13 8177 55.25 7 73.99 5
21180 7.55 9077 68.7 7 91.54 5
25555 10.91 10952 100.11 7 133.83 5
29755 14.85 12752 140.09 67 186.44 5
33955 19.33 14552 182.94 67 242.86 5
38155 24.28 16352 231.26 7 307.89 5

(b)

n Tp qp Ts qs Ta qa
8580 1.22 3677 9.13 3094 19.4 2461
10680 1.9 4577 14.31 3844 30.47 3061
12780 2.69 5477 21.04 4594 44.78 3661
14880 3.65 6377 28.7 5344 61.39 4261
16980 4.76 7277 37.86 6094 80.14 4861
19080 5.98 8177 47.68 6844 101.68 5461
21180 7.35 9077 59.51 7594 126.55 6061
25555 10.68 10952 88.69 9184 188.94 7321
29755 14.45 12752 120.1 10684 257.86 8521
33955 18.83 14552 158.45 12184 338.73 9721
38155 23.77 16352 200.5 13684 432.43 10921

(c)

Figure 3.4: Runtime Comparison (a) and Coloring Results on CHP (b) and EHP (c) on SMB.

132 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

1 : 1 2 : 1 3 : 1 4 : 1 5 : 1

6 : 2 7 : 3 8 : 2 9 : 2 10 : 4

11 : 5

1 2 3 4 5 6 7 8 9 10 11

1 × × × ×

2 × × × ×
3

4 × × × ×

5 × × ×

6 × × × ×

7 × × × ×

8 ×

9 ×

10 × × × ×

11 × × × ×

G(EHP) G(EHP)

1 : 1

2 : 2

3 : 3

4 : 4

5 : 1

6 : 3 7 : 3 8 : 2 9 : 2 10 : 3

11 : 3

1 2 3 4 5 6 7 8 9 10 11

1 ⊗ ⊗ ⊗ ⊗ × × × ×

2 ⊗ ⊗ ⊗ ⊗ × × × ×

3 ⊗ ⊗ ⊗ ⊗

4 ⊗ ⊗ ⊗ ⊗ × × × ×

5 × × ×

6 × × × ×

7 × × × ×

8 × ⊗

9 × ⊗

10 × × × ×

11 × × × ×

G(CHP) G(CHP)

Figure 3.5: Star Coloring of the Adjacency Graph of CHP and EHP of SMB.

3.3. CONSERVATIVE HESSIAN PATTERN ESTIMATION 133

Recursive Hessian Pattern Estimation

As last test case we consider the scalar functionf : Rn → R implemented in Listing 3.3 mappingn =
pow(2, h) independents stored inx [0][] ontoy while performing non-overlappingpairwise multiplication
[addition] of two consecutive entries ofx[i][] for uneven [even] values ofi ∈ 1, . . . , h.

Note that the number of additions performed is almost half the number of multiplications. This
becomes important when comparing the runtime of estimatingthe exact Hessian pattern using EHP im-
plemented by ADOL-C and the one gained by RHP. In particular,the observed gain of factor two by the
latter is due to the fact that the NF-DAG as defined by Equation(3.22) consists of vertices representing
nonlinear operations. Hence, the union of second-order dependency sets are avoided in RHP for linear
operations as opposed to EHP as described by Algorithm 3.7.

For illustration, let us assume for the time beingh = 2. Hence, fori = 0 line 32 of Listing 3.3 results
in

x[1][0]=x [0][0] ∗x [0][1] and x[1][1]=x [0][2] ∗x [0][3] .

Additionally, for i = 1 line 33 yieldsx[2][0]=x[1][0]+x [1][1] denoting the outputy. Hence, two multi-
plications and one addition are performed in total as returned by f in line 36. The former and latter are
counted in lines 7 and 17, respectively. Obviously,n = 4 asn = pow(2, h) = 22.

Listing 3.3: Artificial Scalar Functionf

1 / / m u l t i p l i c a t e s p a i r w i s e e n t r i e s of s and s t o r e s t h e r e s u l ts i n t
2 / / r e t u r n s t h e number of per formed m u l t i p l i c a t i o n s
3 i n t m u l t i p l y (i n t n , double∗ s , double∗ t) {
4 i n t muls =0;
5 f o r (i n t j =0 ; j <(n / 2) ; j ++) {
6 t [j]= s [2∗ j] ∗ s [2∗ j + 1] ;
7 muls ++;
8 }
9 re tu rn muls ;

10 }
11 / / adds p a i r w i s e e n t r i e s of s and s t o r e s t h e r e s u l t s i n t
12 / / r e t u r n s t h e number of per formed a d d i t i o n s
13 i n t add (i n t n , double∗ s , double∗ t) {
14 i n t adds =0;
15 f o r (i n t j =0 ; j <(n / 2) ; j ++) {
16 t [j]= s [2∗ j]+ s [2∗ j + 1] ;
17 adds ++;
18 }
19 re tu rn adds ;
20 }
21 / / x [0] [] and y deno te i n d e p e n d e n t s and dependen ts

22 / / n and h deno te t h e number of i n d e p e n d e n t s and Computa t i onal Graph Height

23 / / r e t u r n s t h e t o t a l number of per formed m u l t i p l i c a t i o n s and a d d i t i o n s

24 i n t f (i n t h , double∗∗& x , double& y) {
25 i n t muls =0 , adds =0;
26 i n t n = pow (2 , h) ;
27 x = new double∗ [h + 1] ;
28 f o r (i n t i =0 ; i <=h ; i ++)
29 x [i] = new double [(i n t) pow (2 , h− i)] ;
30

134 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

31 f o r (i n t i =0 ; i<h ; i ++) {
32 i f (i %2==0) muls+= m u l t i p l y (x [i] , x [i +1] , pow (2 , h− i)) ;
33 e l s e adds +=add (x [i] , x [i +1] , pow (2 , h− i)) ;
34 }
35 y = x [h] [0] ;
36 re tu rn (muls+adds) ;
37 }

The computational graphG(f) of f resulting forh = 2 is shown in Figure 3.6 (a). It is a balanced
tree of heighth with leaves [root] denoting the independents [dependent] vertices [vertex]. Note that
NF-DAG of f would only consist of two vertices 5 and 6 being NF componentsof the outputy. In this
case, vertices 5 and 6 have to store the first-order dependencies of the arguments of the respective SAC
statements. In particular, vertex 5 [6] has access tofod(1) andfod(2) [fod(3) andfod(4)].

1 [x[0][0]]

fod(1) = {1}
2 [x[0][1]]

fod(2) = {2}
3 [x[0][2]]

fod(3) = {3}
4 [x[0][3]]

fod(4) = {4}

5 [x[1][0]]

fod(5) = {1, 2}
∗

6 [x[1][1]]

fod(6) = {3, 4}
∗

7 [y = x[2][0]]

fod(7) = {1, 2, 3, 4}
+

1 2 3 4

1 0 × 0 0

2 × 0 0 0

3 0 0 0 ×

4 0 0 × 0

(a) : G(f) for h = 2 (b) : EHP

1 2 3 4

1 ⊗ × ⊗ ⊗

2 × ⊗ ⊗ ⊗

3 ⊗ ⊗ ⊗ ×

4 ⊗ ⊗ × ⊗

1 2 3 4

1 ⊗ × 0 0

2 × ⊗ 0 0

3 0 0 ⊗ ×

4 0 0 × ⊗

1 2 3 4

1 0 × 0 0

2 × 0 0 0

3 0 0 0 ×

4 0 0 × 0

(c) : RHP(0) (d) : RHP(1) (e) : RHP(2)

Figure 3.6: Computational Graph off for h = 2 (a) and the resulting sparsity Pattern from EHP (b) and
RHP for Recursions 0 (c), 1 (d) and 2 (e). The symbols× and⊗ denote exact and overestimated pattern
entries, respectively.

Figure 3.6 (b) shows the resulting exact sparsity pattern ofthe Hessian off for h = 2 obtained by
EHP. The resulting sparsity pattern from RHP for recursion levels0, 1, and2 are given by (c), (d) and (e),
respectively. For a given recursion levell, the resulting sparsity obtained by RHP is denoted by RHP(l).
Obviously, RHP(2) in (e) looks the same as (b), which illustrates the convergence of RHP to EHP for
recursion level 2. One can figure out that the convergence is achieved forl = h

2 + 1 for this example
function. Moreover, RHP(1) in (d) would also result from CHPas two multiplications of vertices 5 and 6
in (a) are the NF component ofy as already mentioned.

More precisely, (c) results from RHP forl = 0 according to line 2 of Algorithm 3.10 by self cross
product

fod(7)× fod(7) = {1, 2, 3, 4}× {1, 2, 3, 4} .

3.3. CONSERVATIVE HESSIAN PATTERN ESTIMATION 135

However, choosingl = 1 would lead to the call of thecompute(·) with recursionl = 0 on 5 and 6 as NF
components ofy. Hence, self cross products

fod(5)× fod(5) = {1, 2} × {1, 2} and fod(6)× fod(6) = {3, 4} × {3, 4}

and their unions yields (d). Finally, in case ofl = 2 the exact Hessian pattern is estimated as the recursion
level reached at vertices 5 and 6 is 1. Hence and as none of themhas any NF component the cross products

fod(1)× fod(2) = {1} × {2} and fod(3)× fod(4) = {3} × {4}

followed by their unions are performed according to the line9 of Algorithm 3.10. Thus, the overestimated
diagonal entries of (d) are removed yielding (e). Obviously, starting from (c), the exact Hessian pattern
(2) is successively approximated by increasing recursion level. Figure 3.7 presents first runtime results on

2 4 6 8

5.5

6

6.5

7

l : RECURSIONLEVEL

R
U

N
T

IM
E

[S
E

C]

n = 65536

2 4 6 8

0.9

1

1.1

1.2

1.3

·108

l : RECURSIONLEVEL

N
U

M
B

E
R

O
F

N
O

N
Z

E
R

O
S

n = 65536

(a) (b)

n = 4096 nz T (P) Ta qa
RHP(1) 8388608 0.38 501.48 2048
RHP(2) 6291456 0.41 458.3 1536
RHP(3) 5767168 0.36 289.91 1408
RHP(4) 5636096 0.35 237.58 1376
RHP(5) 5603328 0.34 223.91 1368
RHP(6) 5595136 0.33 220.16 1366
RHP(7) 5591040 0.3 220.27 1366
EHP 5591040 0.82 220.65 1366

(c)

Figure 3.7: Runtimes for recursive Estimation Hessian sparsity Pattern (a) along the respective Number
of Nonzeros (b) depending on the Recursion Levell for f of Listing 3.3 withh = 14. A Detailed View
of Measurement Data is given in (c) forh = 12.

the proof of concept implementation of RHP described in Algorithm 3.9 and ADOL-C implementation of
EHP forf of Listing 3.3. (a) shows the runtime behavior of the former for recursion levelsl = 0, 1 . . . , 8
for h = 14 with n = 2h = 65536 inputs. We denote again the achieved sparsity pattern as well as the

136 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

instance of RHP forl by RHP(l). As already mentioned, RHP(l) is supposed to converge to EHP for
l = h

2 + 1, that is,l = 8 for h = 14. The number of nonzeros of the resulting pattern is presentedin (b).
A detailed view of measurement data forh = 12 is presented in (c), where the columnsTa andqa present
the runtime and the number of achieved colors by the application of the acyclic coloring implementation
of ColPack, respectively.

We observe that the exact Hessian pattern of∇f by RHP for both dimensionsh = 12 andh = 14 is
achieved at roughly the same computational time as shown in columnT (P) for P denoting the pattern
of ∇2f. Moreover, RHP is at least twice as fast as EHP. The reason liesin the fact that the number
of performed multiplications is twice that of additions. Asmentioned at the beginning of this section
RHP prevent us from performing (expensive) unions of second-order dependencies as opposed to EHP
as shown in line 8 of Algorithm 3.7. More substantially, the number of achieved colors of at about 4000
nonzeros denser sparsity pattern RHP(6) is equal to RHP(7).Note that the latter denotes the exact Hessian
pattern.

Figure 3.3.4 shows a sparsity pattern achieved by RHP for theHessian off for h = 6. The resulting
pattern are obtained in the same way as discussed in Figure 3.6 for h = 2.

0

10

20

30

40

50

60

0 10 20 30 40 50 60

(a) RHP(1)

0

10

20

30

40

50

60

0 10 20 30 40 50 60

(b) RHP(2)

0

10

20

30

40

50

60

0 10 20 30 40 50 60

(c) RHP(3)

0

10

20

30

40

50

60

0 10 20 30 40 50 60

(d) RHP(4)

Figure 3.8: Application of RHP forh = 6 resulting inn = 64 inputs forf. The resulting Pattern of
RHP(0) is explicitly avoided as it is completely dense.

To conclude the discussion about the recursive estimation of the Hessians we have considered an ar-

3.3. CONSERVATIVE HESSIAN PATTERN ESTIMATION 137

tificial example function given by Listing 3.3 for illustration purposes. Our plain example clarifies the
contribution of the multiplication operation to overestimation. At the same time, we used it to illus-
trate the difference between the complexities of the standard algorithm EHP and RHP, which recursively
converges to the former. The latter was the result of exploiting the idea behind partial separability at
level of elemental operation resulting in a nonlinear frontier DAG consisting of vertices corresponding to
nonlinear operation of the underlying function.

We have also showed that the application of RHP for recursionlevel one results in the same conser-
vative overestimated pattern as the conservative algorithm CHP [VRMN11]. Note that the latter makes
use of the direct nonlinear components of the outputs. In particular, there is not really a need to build a
nonlinear DAG in that case. Moreover, we have shown the efficiency of CHP on realistic problems as dis-
cussed at the beginning of this chapter. Its runtime was alsopresented for the computation of the Hessian
pattern of another scalar function arising in context of simulated moving bed (SMB) process described at
the beginning of Section 3.2.6. More substantially, coloring of the adjacency graph of the conservative
Hessian pattern achieved by CHP was turned out to be much efficient in terms of achieved colors that
coloring the exact Hessian pattern. We note that the latter is shown to be of quadratic complexity in worst
case. A runtime comparison of both algorithms was presentedin Figure 3.4.

We note that the current implementation activities of the author focus on tuning RHP to exhibit the
same runtime behavior for SMB as CHP for recursion level. However, as already shown on Figure 3.6,
the runtime of RHP(1) is very close to the converged version yielding the exact Hessian pattern. Hence,
RHP may improve the runtime of estimating the exact Hessian pattern significantly. Moreover, further
investigations focus on reducing the memory consumption ofRHP to avoid running out of memory.

Moreover, as observed in columnTa of Figure 3.6 (c) the high runtime of the coloring algorithm
of use prevent us so far from determining the number of colorsof a particular (over) estimated sparsity
pattern at reasonable time. Therefore, further investigations are planned to design sophisticated coloring
algorithms [CM69], yet faster. This combined with RHP, would open up room for deeper investigations
on the impact on the structure property of the concerned matrices on the resulting number of colors. Note
that so far this is not really possible for large dimensions as the coloring turns out to be significantly
slower than the sparsity pattern estimation.

138 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVATIVE TENSORS

Chapter 4

Summary and Conclusion

The main objective of Chapter 2 was on reducing the memory consumption of the reverse mode AD by
application of elimination techniques on extended Jacobians of underlying functions. Here, the focus was
on minimizing user’s expertise in AD and the knowledge aboutthe underlying problemF. As discussed
at the beginning of the chapter the memory is an issue for almost any AD approach that accumulates
derivatives such as gradients or Jacobians on an internal representation of choice kept on storage. Ex-
isting checkpointing strategies are developed face this problem for time-dependent problems. We have
illustrated this for a simple example in Figure 2.1. Here, welearned that the application of checkpointing
is more than an easy task.

To tackle the memory problem we have first considered the static problem of Jacobian accumulation
by row elimination on extended Jacobians conceptually the same as vertex elimination on the respective
DAGs. The focus there was on the analysis of the runtime and memory behavior of row elimination on
extended Jacobians and their compressed row storage representations. Our numerical results have shown
that Jacobian accumulation on dense extended Jacobians tends to hit the memory limit very quickly. This
is not really surprising because of the quadratic (in numberof rows) memory complexity of extended
Jacobian. Furthermore, it has been shown that the sparsity exploitation of extended Jacobians using com-
pressed row storage reduces the memory consumption drastically. However, we observe at the same time
that Jacobian accumulation on compressed representation of extended Jacobians underperforms com-
pared with its dense counterpart by increase in the problem size. The reason turned out to lie in the linear
overhead of searching for dependencies and spots in the former. At the same time it is observed that the
increase in problem size has a direct impact on the number of rows of considered matrices meaning even
larger search spaces.

The impact of the latter became more clear when we have tried to parallelize the process of Jacobian
accumulation in Section 2.5 using OpenMP parallel paradigm. Even though we observe much promising
runtime gain by parallelization, both extended Jacobian and its compressed storage counterpart seem to
hit the memory bound relatively quickly. Thus, no realisticscalability is achievable so far without facing
the memory problem.

In our proof-of-concept implementation in DALG we manage toreduce the (heap) memory con-
sumption by local application of row elimination as some kind of cross country elimination, which we
presented in Section 2.6. We referred to this approach as iterative Jacobian accumulation. Our exper-
imental results have shown that the iterative approach reduces the memory consumption drastically by
application of assignment level elimination, which denotes the default iterative mode in DALG. Hence,
Jacobians and gradients can be computed very cheaply in terms of memory consumption automatically.
However, we have also observed that the runtime of the iterative mode on dense extended Jacobian and
its compressed row representation turns out to be not as efficient as that of ADOL-C.

139

140 CHAPTER 4. SUMMARY AND CONCLUSION

More precisely, the computation of the gradient of the time-dependent Heat problem (see Figure 2.34 (a))
in iterative mode is orders of magnitude slower than performing the same computation by the application
of the reverse mode AD provided by ADOL-C. For this reason, assignment level elimination seems to
underperform as the number of time steps increases. However, gradients of even larger dimensions can
be accumulated this way, where the global reverse mode AD would fail. Thus, we consider the observed
performance loss acceptable. Note that the memory reduction is black-box to the user. Nonetheless, a
deeper investigation for this behavior shapes up the further direction of research on DALG. In this con-
text, we believe that the iterative mode combined with the parallelization has the potential to perform as
well.

Moreover, it might also be interesting to use graphs as a internal representation in the iterative mode.
Here, it is desirable to have an efficient graph implementation both in terms of memory and data access.
A first non-iterative implementation already works for small problems that we aim to extend to work in
iterative and parallel modes.

In the last chapter we have introduced the constant estimation and exploitation as an alternative way
to the classical sparse Jacobian and Hessian computations.Especially, in the latter coloring turns out to
be the major problem to solve. Otherwise, no improvement in compression can be achieved by constant
exploitation, despite the fact that retrieving constants is much more expensive than pattern estimation. In
this context, it may make sense to retrieve only constant pattern in both Jacobian and Hessian cases and
gain constants by computation of each case in the classical way as described by Procedures 3.3 and 3.6,
respectively.

We have observed for an special problem that coloring the respective graph of the exact Hessian
underperforms in terms of achieved colors compared with theconservative overestimated version. This
behavior is surprising at first glance, despite the fact thatthe former is much sparser than the latter. Similar
behavior is observed when comparing the coloring results ofthe exact and the variable pattern in context
of constant exploitation as mentioned previously.

It looks like the traditional way of thinking ”the sparser the better” does not really hold in Hessian
case. However, the reason for this behavior turned out to be rather due to the impact of the heuristics
behind the coloring algorithms. Thus, implementation of more suitable heuristics as well as general
characterization of ”critical” patterns are desired that will shape our further research activities.

Finally, we have introduced an algorithm for recursive estimation of the Hessian sparsity pattern and
shown its convergence to the exact one on example. First runtime comparison of a proof-of-concept im-
plementation of the recursive algorithm with that of the exact one implemented by ADOL-C has shown
that the former even has the potential to improve the runtimeof estimating exact Hessian pattern. How-
ever, further investigations are required to deal with the memory problem of the recursive algorithm as
a DAG of nonlinear frontier components is supposed to be built at the time of evaluation the underlying
function.

Bibliography

[ACM91] B. Averik, R. Carter, and J. Moré. The Minpack-2 test problem collection (preliminary
version). Technical Report 150, Mathematical and ComputerScience Division, Argonne
National Laboratory, Argonne, IL, 1991.

[AGN03] A. Albrecht, P. Gottschling, and U. Naumann. Markowitz-type heuristics for computing
Jacobian matrices efficiently. InICCS’03: Proceedings of the 2003 international conference
on Computational science, pages 575–584, Berlin, Heidelberg, 2003. Springer-Verlag.

[Amd67] G. Amdahl. Validity of the single processor approach to achieving large-scale computing
capabilities. InAFIPS Conference Proceedings, volume 30, pages 483–485, 1967.

[Bau74] F. L. Bauer. Computational graphs and rounding error. SIAM Journal on Numerical Analysis,
11(1):87–96, 1974.

[BBCG96] M. Berz, C. Bischof, G. Corliss, and A. Griewank, editors. Computational Differentiation:
Techniques, Applications, and Tools. Proceedings Series. SIAM, Philadelphia, 1996.

[BBH+08] C. Bischof, H. M. Bücker, P. Hovland, U. Naumann, and J. Utke, editors. Advances in
Automatic Differentiation, number 64 in LNCSE, Berlin, 2008. Springer.

[BBW04] C. H. Bischof, H. M. Bücker, and P. T. Wu. Time-parallel computation of pseudo-adjoints
for a leapfrog scheme.International Journal of High Speed Computing, 12(1):1–27, 2004.

[BC04] M. G. Burke and R. K. Cytron. Interprocedural dependence analysis and parallelization.
SIGPLAN Not., 39(4):139–154, 2004.

[BCH+06] M. Bücker, G. Corliss, P. Hovland, U. Naumann, and B. Norris, editors.Automatic Differen-
tiation – Applications, Theory, and Impelmentations. Springer, New York, 2006.

[CC86] T. F. Coleman and J. Cai. The cyclic coloring problem and estimation of sparse Hessian
matrices.SIAM J. Alg. Disc. Meth., 7(2):221–235, 1986.

[CDK+01] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, andR. Menon. Parallel pro-
gramming in OpenMP. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[CFG+02] G. Corliss, C. Faure, A. Griewank, L. Hascoet, and U. Naumann, editors.Automatic Dif-
ferentiation of Algorithms – From Simulation to Optimization. Computer and Information
Science. Springer, New York, 2002.

[CG91] G. Corliss and A. Griewank, editors.Automatic Differentiation: Theory, Implementation,
and Application. Proceedings Series. SIAM, Philadelphia, 1991.

141

142 BIBLIOGRAPHY

[CH80] M. Chein and M. Habib. The jump number of dags and posets. Ann. Disc. Math, 9:189–194,
1980.

[CM69] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. InProceed-
ings of the 1969 24th national conference, ACM ’69, pages 157–172, New York, NY, USA,
1969. ACM.

[CM83] T. F. Coleman and J. J. Moré. Estimation of sparse Hessian matrices and graph coloring
problems.SIAM Journal on Numerical Analysis, 20(1):187–209, 1983.

[CP08] C. Chevalier and F. Pellegrini. Pt-scotch: A tool forefficient parallel graph ordering.Parallel
Comput., 34(6-8):318–331, 2008.

[CPR74] A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse Jacobian matrices.
Journal of the Institute of Mathematics and Applications, 13:117–119, 1974.

[DER86] I. Duff, A. Erisman, and J. Reid.Direct Methods for Sparse Matrices. Clarendon Press,
Oxford, 1986.

[FTPR04] S. A. Forth, M. Tadjouddine, J. D. Pryce, and J. K. Reid. Jacobian code generated by source
transformation and vertex elimination can be as efficient ashand-coding.ACM Transactions
on Mathematical Software, 30(3):266–299, 2004.

[Gay96] D. M. Gay. More AD of nonlinear AMPL models: Computing Hessian information and
exploiting partial separability. In M. Berz, C. Bischof, G.Corliss, and A. Griewank, editors,
Computational Differentiation: Techniques, Applications, and Tools, pages 173–184. SIAM,
Philadelphia, PA, 1996.

[Gil80] J.R. Gilbert. A note on the np-completeness of vertex elimination on directed graphs.SIAM
Journal on Algebraic and Discrete Methods, 1:292, 1980.

[GJM+99] A. Griewank, D. Juedes, H. Mitev, J. Utke, O. Vogel, and A.Walther. ADOL-C: A package
for the automatic differentiation of algorithms written inC/C++. Technical report, Institute
of Scientific Computing, Technical University Dresden, 1999. Updated version of the paper
published inACM Trans. Math. Software22, 1996, 131–167.

[GLS99] W. Gropp, E. Lusk, and A. Skjelllum.Using MPI : Portable Parallel Programming with the
Message Passing Interface. The MIT Press, 1999.

[GMP05] A. H. Gebremedhin, F. Manne, and A. Pothen. What color is your Jacobian? graph coloring
for computing derivatives.SIAM Review, 47(4):629–705, 2005.

[GN02] A. Griewank and U. Naumann. Accumulating Jacobians by vertex, edge, and face elimina-
tion. In 6e Colloque Africain sur la Recherche en Informatique. INRIA, 2002.

[GN03] A. Griewank and U. Naumann. Accumulating Jacobians as chained sparse matrix products.
Math. Prog., 3(95):555–571, 2003.

[GPW08] A. H. Gebremedhin, A. Pothen, and A. Walther. Exploiting sparsity in Jacobian computation
via coloring and automatic differentiation: A case study ina simulated moving bed process.
In Bischof et al. [BBH+08], pages 327–338.

[GR91] A. Griewank and S. Reese. On the calculation of Jacobian matrices by the Markovitz rule.
In [CG91], pages 126–135, 1991.

BIBLIOGRAPHY 143

[GT82] A. Griewank and P. L. Toint. On the unconstrained optimization of partially separable func-
tions. In Michael J. D. Powell, editor,Nonlinear Optimization 1981, pages 301–312. Aca-
demic Press, New York, NY, 1982.

[GTPW09] A. H. Gebremedhin, A. Tarafdar, A. Pothen, and A. Walther. Efficient computation of
sparse Hessians using coloring and automatic differentiation. INFORMS J. on Computing,
21(2):209–223, 2009.

[GW00] A. Griewank and A. Walther. Algorithm 799: Revolve: An implementation of checkpoint for
the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathe-
matical Software, 26(1):19–45, mar 2000. Also appeared as Technical University of Dresden,
Technical Report IOKOMO-04-1997.

[GW08] A. Griewank and A. Walther.Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. Number 105. SIAM, Philadelphia, PA, 2nd edition, 2008.

[Hea97] M. T. Heath.Scientific Computing : An Introductory Survey. McGraw-Hill, 1997.

[Her93] K. Herley. Presentation at : Theory Institute on Combinatorial Challenges in Computa-
tional Differentiation. Mathematics and Computer Division, Argonne National Laboratory,
Argonne , IL, USA, 1993.

[HNP05] L. Hascoët, U. Naumann, and V. Pascual. To-be-recorded analysis in reverse mode automatic
differentiation.Future Generation Computer Systems, 21(8):1401–1417, 2005.

[HP04] L. Hascoët and V. Pascual. TAPENADE 2.1 user’s guide. Rapport technique 300, INRIA,
Sophia Antipolis, 2004.

[KS74] D. E. Knuth and J. L. Szwarcfiter. A structured programto generate all topological sorting
Arrangements.Inf. Process. Lett., 3(22):153–157, 1974.

[KW06] A. Kowarz and A. Walther. Optimal checkpointing for time-stepping procedures in ADOL-
C. In V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra, editors,Com-
putational Science – ICCS 2006, volume 3994 ofLecture Notes in Computer Science, pages
541–549, Heidelberg, 2006. Springer.

[M0̈1] F. Müller, editor. High-Level Parallel Programming Models and Supportive Environments,
6th International Workshop, HIPS 2001 San Francisco, CA, USA, April 23, 2001, Proceed-
ings, volume 2026 ofLecture Notes in Computer Science. Springer, New York, NY, 2001.

[Mar57] H. M. Markowitz. The elimination form of the inverseand its application.Management
Science, 3:257–269, 1957.

[MK08] I. Moulitsas and G. Karypis. Architecture aware partitioning algorithms. InICA3PP ’08:
Proceedings of the 8th international conference on Algorithms and Architectures for Parallel
Processing, pages 42–53, Berlin, Heidelberg, 2008. Springer-Verlag.

[MN10] V. Mosenkis and U. Naumann. The minimum edge count problem in linearized dags. Tech-
nical report, Institute of Computer Science, RWTH Aachen University, Germany, 2010.

[Nau99] U. Naumann.Efficient Calculation of Jacobian Matrices by Optimized Application of the
Chain Rule to Computational Graphs. PhD thesis, Technical University of Dresden, Decem-
ber 1999.

144 BIBLIOGRAPHY

[Nau02] U. Naumann. Elimination techniques for cheap Jacobians. In G. Corliss, C. Faure,
A. Griewank, L. Hascoët, and U. Naumann, editors,Automatic Differentiation of Algo-
rithms: From Simulation to Optimization, Computer and Information Science, chapter 29,
pages 247–253. Springer, New York, NY, 2002.

[Nau04a] U. Naumann. Optimal accumulation of Jacobian Matrices by Elimination Methods on the
dual Computational Graph.Math. Prog., 99(3):399–421, April 2004.

[Nau04b] U. Naumann. Optimal accumulation of Jacobian matrices by elimination methods on the
dual computational graph.Math. Prog., 99(3):399–421, 2004.

[Nau06] U. Naumann. Optimal Jacobian accumulation is NP-complete. Math. Prog., 112:427–441,
2006.

[Nau08] U. Naumann. Call tree reversal is NP-complete. In Bischof et al. [BBH+08], pages 13–22.

[Nau09] U. Naumann. DAG reversal is NP-complete.J. Discr. Alg., 7:402–410, 2009.

[Nau11] U. Naumann.The Art of Differentiating Computer Programs. SIAM, 2011. To appear.

[NMRC07] U. Naumann, M. Maier, J. Riehme, and B. Christianson. Automatic first- and second-order
adjoints for Truncated Newton. In M. Ganzha et al., editor,Proceedings of IMCSIT’07, pages
541–555. PTI, 2007.

[NNH+11] S. H. K. Narayanan, B. Norris, P. Hovland, D. Nguyen, and A. H. Gebremedhin. Sparse
jacobian computation using adic2 and colpack. Proceedingsof International Conference on
Computational Science (ICCS), to appear, 2011.

[NS11] U. Naumann and O. Schenk.Combinatorial Scientific Computing. Computational Science
Series. Chapman & Hall / CRC Press, Taylor and Francis Group,2011. To appear.

[Pac96] P. S. Pacheco.Parallel Programming with MPI. Morgan Kaufmann, 1996.

[PT08] J. D. Pryce and E. M. Tadjouddine. Fast automatic differentiation Jacobians by compact LU
factorization.SIAM Journal on Scientific Computing, 30(4):1659–1677, 2008.

[Pul82] W. Pulleyblank. On minimizing setups in precedenceconstrained scheduling.Unpublished
Manuscript, 1982.

[Qui03] M. J. Quinn.Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education
(ISE Editions), September 2003.

[RT78] D. J. Rose and R. E. Tarjan. Algorithmic aspects of vertex elimination on directed graphs.J.
Appl. Math., 34(1):176–197, January 1978.

[SG05] J. Sternberg and A. Griewank. Reduction of storage requirement by checkpointing for time-
dependent optimal control problems in ODEs. In H. M. Bücker, G. F. Corliss, P. D. Hovland,
U. Naumann, and B. Norris, editors,Automatic Differentiation: Applications, Theory, and
Implementations, volume 50 ofLecture Notes in Computational Science and Engineering,
pages 99–110. Springer, New York, NY, 2005.

[Sta00] R. P. Stanley, editor.Enumerative Combinatorics, volume 1. Cambridge University Press,
2000.

[Sto01] J. A. Storer, editor.An Introduction to Data Structures and Algorithms. Birkhäuser, Boston,
2001.

BIBLIOGRAPHY 145

[Tad08] E. M. Tadjouddine. Vertex-ordering algorithms forautomatic differentiation of computer
codes.The Computer Journal, 51(6):688, 2008.

[Tal06] E. G. Talbi.Parallel combinatorial optimization. Wiley-Blackwell, 2006.

[TFE98] M. Tadjouddine, C. Faure, and F. Eyssette. Sparse Jacobian computation in automatic differ-
entiation by static program analysis. In G.Levi, editor,Lecture Notes in Computer Science,
volume 1503 ofStatic Analysis, pages 311–326. Springer, 1998.

[TFP03] M. Tadjouddine, S. A. Forth, and J. D. Pryce. Hierarchical automatic differentiation by
vertex elimination and source transformation. In V. Kumar,M. L. Gavrilova, C. J. K. Tan, and
P. L’Ecuyer, editors,Computational Science and Its Applications – ICCSA 2003, Proceedings
of the International Conference on Computational Science and its Applications, Montreal,
Canada, May 18–21, 2003. Part II, volume 2668 ofLecture Notes in Computer Science,
pages 115–124. Springer, Berlin, 2003.

[UHP+09] J. Ungermann, L. Hoffmann, P. Preusse, M. Kaufmann, and M. Riese. Tomographic retrieval
approach for mesoscale gravity wave observations by the PREMIER Infrared Limb-Sounder.
Atmospheric Measurement Techniques Discussions, 2:2809–2850, 2009.

[VN07] E. Varnik and U. Naumann. Parallel Jacobian accumulation. In Proceedings of the 2007
Conference on Parallel Computing (PARCO 2007), pages 311–318, September 2007.

[VNL06] E. Varnik, U. Naumann, and A. Lyons. Toward low static memory Jacobian accumulation.
WSEAS Transactions on Mathematics, 5(7):109–117, 2006.

[VRMN11] E. Varnik, L. Razik, V. Mosenkis, and U. Naumann. Fast conservative estimation of Hessian
sparsity. In M. Beckers, J. Lotz, V. Mosenkis, and U. Naumann, editors,Fifth SIAM Work-
shop on Combinatorial Scientific Computing, volume AIB-2011-09 ofAachener Informatik
Berichte, pages 18–21. RWTH Aachen University, 2011.

[Wal08] A. Walther. Computing sparse Hessians with automatic differentiation.ACM Transaction on
Mathematical Software, 34(1):3:1–3:15, 2008.

[Yan81] M. Yannakakist. Computing the minimum fill-in is NP-complete.SIAM Journal on Algebraic
and Discrete Methods, 2:77–79, March 1981.

