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Abstract

The background of this thesis is algorithmic differentat{AD) [GWO08] of in practice very computa-
tionally expensive vector functions : R O D — R™ given as computer programs. Traditionally,
most AD softwaré provide forward and reverse modes of AD for calculating theobian matrixy F(x)
accurately at a given point on some kind of internal representationfokept on memory or hard disk.
In fact, the storage is known to be the bottleneck of AD to hatatger problems efficiently in reverse
mode. For instance, a tape is the internal representatichai€e in the C++ operator overloading tool
ADOL-C [GIMT99] that presents an augmented versiornFofThus, VF can be obtained in forward
and reverse fashion by an interpretative forward and revergpagation of directional derivatives and
adjoints [NMRCO07] through the tape, respectively. The fardvmode AD can be implemented very
cheaply in terms of memory by single forward propagationicgdaional derivatives at runtime (tapeless
in ADOL-C terminology). However, the reverse mode needs$deessome data [HNPO5] in the so-called
forward sweep to allow the data flow reversal [Nau08] needebtdckward propagation of adjoints. The
latter is recently the focus of ongoing research activiiEthe AD community form = 1 as a single
application of reverse mode is enough to accumulate thdegradf . To handle the memory bottle-
neck, checkpointing schedules e.g. revolve [GWO00] have blegeloped for time-dependent problems.
However, they require user’s knowledge in both the funcfioas well as the reverse mode AD. In this
context, we aim to provide a tool, whichinimizes non-AD experts effortin application of the reverse
mode AD on their problems for large dimensions.

Chapter 2 of this thesis is concerned with the accumulatfdheoJacobian of”" by the application
of elimination techniques, which are very close to the Gamsslimination performed in sparse LU
factorization [PT08, FTPRO04]. Thereby, we present alhani that allow the application of elimination
techniques [GNO2] to the very large and sparse extendedidacof F' being a lower triangular matrix
of local partial derivative However, the extended Jacobian is of quadratic memory ity Hence,
compressed row storage [DER86] (CRS) representation id tasexploit its sparsity. This is done by
first performing the so-called symbolic elimination steptioa correspondinbit patternof the extended
Jacobian. This step predicts storage required for thecathtiallocated target CRS, which is used to
accumulate the Jacobian Bfatx.

Nonetheless, the capability of the static CRS is also bodibgehe memory consumption of the re-
spective bit pattern even though the memory usage of CRS&d@rably lower. To tackle this problem,
elimination techniques are applied locally to the denseredeéd Jacobian (i.e without exploiting sparsity)
and its CRS representation. Therefore, we keep track of #maarny usage during the evaluation Bf
and apply elimination techniques whenever the memory baingached. The elimination is supposed
to free memory enabling us to continue evaluatingn fact, the evaluation ot/ F' may require multiple
evaluation and elimination steps. The former is supposequduide the target data structure on which
the latter is performed. We refer to this approaciterstive Jacobian accumulation

The implementations of the ideas above are provided in the @perator overloading tool DAL

1Existing AD tools can be found on the community websitav. aut odi f . or g.
2DALG stands for Derivative Accumulation for Large Graphs.
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attached to this work. DALG can be used to accumulate Jaoshbiad gradients very cheaply in terms of
memory automatically without any user intervention andwdealge about the underlying function.

Moreover, in Chapter 3 we investigate methods to improveetk@oitation of structural sparsity
of in general derivative tensors such as Jacobians and afsssiExisting methods are based on the
knowledge of the nonzero pattern of target derivative stmes, where a compression is usually achieved
by the application of some coloring algorithms [GMPO05] to raghical representation. We consider
partial distance-2 coloring and star/acyclic coloringh# bipartite and adjacency graph of Jacobians and
Hessians, respectively, provided by the coloring packagP#&tk [NNH"11]. Hence, whenever we talk
about coloring Jacobians and Hessians we mean the coldrihg cespective graphs.

To achieve better compression, we distinguish betwegiable andconstant nonzeroswhere the
latter is supposed to be unchanged at all those points aksttavith fix flow of control. Hence, only
the former is needed to be computed at runtime. Thereforegrgeruntime algorithms are provided to
compute the variable pattern and the constant entries. $¥/also their performance in both runtime and
achieved colors in the process of sparse Jacobian and Hessigutation.

Furthermore, we present an algorithm to overestimate tesiblie sparsity pattern that is referred to
as theconservative Hessian pattern estimation It is the result of exploiting the partial separability
of F. We present numerical results on the computational cost #isaswehe coloring performance in
terms of runtime and achieved colors of the conservativeepatind compare them with those of the
exact (nonzero) Hessian pattern. The computational coditplef the latter is known to be quadratic as
proposed by Walther [Wal08].

Finally, the conservative algorithm is refined to a recwgsigrsion that is referred to as trexursive
Hessian pattern estimation The recursive algorithm is supposed to converge to thet@xaein both
runtime and the resulting pattern for sufficiently largeursion level. Thereby, the recursion level one
yields exactly the same pattern as the conservative one.
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Chapter 1

Foundations

The main focus of this thesis &gorithmic differentiation(AD) [CG91, BBCG96, CFG 02, BCH"06,
BBH™08] of multivariate vector functions

F:R"DD—=R" y=F(x) (1.12)
mapping a vector of inputs € R™ onto a vector of outputg € R™.

Assumption 1.1. F' is d times continuously differentiable in some neighborhootthefgiven argument
x € D for a given derivative degre@ > 1.

Furthermore}' is assumed to be implemented in some high-level imperativgrpmming language
like C, C++ or Fortran. Whenever we talk abddtwe mean the corresponding implementation that is
assumed to decompose intgiagle assignment cod8AC) at every point of interest as

forj=n+1,...,q

(1.2)
v; = ¢;(vi)i<;

with ¢ = n + p + m andi < j denoting a direct dependencewgfon v;. The transitive closure of this

relation is denoted byx* . Thereby, the result of eaclemental function

@i R'DD, —R

is assigned to a unique auxiliary variablewith [ = | P;|. By P; [S,] we denote the set of indices of all
arguments ofp; [those variables that hawg as argument]. Obviously, the basic arithmetic operations
{4+, —, %, \ } as well as the elementary functiofisn, cos, tan, exp} provided by the most imperative pro-
gramming languages are elemental. Thereby, we observiathatimber of arguments of most intrinsics
is bounded by two [Nau99]. The independent inputs = (v;);=1,...., are mapped onte: depen-
dent outputy = (vn4p+5)j=1,...,m iNvolving the computation of the values pfintermediate variables

z = (Untk)k=1,... p- Moreover, all those variables in SAC that represent curiresiances of program
variables are referred to ative variables, otherwise they denateadones.

1.1 First and Second-Order Derivative Models

In the following we use the notation @he Art of Differentiating Computer Prograrhg Naumann [Naul1].
We introduce here first and second order AD models that atinghis work.

11



12 CHAPTER 1. FOUNDATIONS

Thetangent-linear modgTLM)
vy = FW(x,xM) =< VF(x),xV >= VF(x) - xV (1.3)

of F computesy™ € R™ as the product of the Jacobian defined by Equation (1.7) tangisection
vectorx(!) € R”, where the expression

<Au>=b with b= (b)j=1. m (1.4)

represents @angent-linear projectiorof the matrixA € R™*™ in directionu € R" with b; =<
aj.,u>=Yy " a;; u; denoting the usual inner product of two vector&mforj = 1,...,m.

Theadjoint mode(ADM)
x(1) = Fry(x,y(1)) =< yq), VF(%) >= VF(x)" -y (1.5)

of F' computesx(;) € R" as the product of the transposed Jacobian(x)? times an adjoint vector
y) € R™, where the expression

<w,A>=c with c=(¢)i=1,.n (1.6)

represents aadjoint projectionof A € R™*™ in directionw € R™ with ¢; =< a,;, w >= Z;.":l aj;-
w; denoting the usual inner product of two vectorsift fori = 1,...,n. We note here that TLM and
ADM are also known as forward and reverse mode AD modelsectiyely.

Thus, the Jacobian _
(R™*" 3) VF = VF(x) = (fI,) " (1.7)

of I being the matrix of the first-order partial derivatives alsferred to asensitivitiesf; ; = %(x) of

F at pointx € R™ can be accumulated usidg") [F(;)] by lettingx(") [y(1,] range over Cartesian basis
vectors of the input [output] spac& [R™]. Hence, accumulatiny F'(x) using TLM and ADM can
be done at the computational cost@fn) - Cost(F) andO(m) - Cost(F), respectively, wher€'ost(F')
denotes the computational cost of evaluatindn case ofn = 1, the gradient o’ can be accumulated
very cheaply in terms of runtime by single evaluation of tHeMof F.

The corresponding vector formulation of both models abaeereferred to asangent-linear vector
model(TLVM)

YW =vVF(x) - xW (1.8)
andadjoint vector modelADVM)

Xay=VFx)" Yy , (1.9)

whereX® € Rk YD € Rm*F and X ;) € R™*F, V(5 € R™*k for k < n andk < m, respec-
tively.

Thesecond-order tangent-linear mod@OTLM) of F'is defined as

yI? = P2 (x xW x?) x12) = « VF(x), x1? > + < V2F(x),xP), x®) > (1.10)

=0




1.2. VERTEX ELIMINATION ON COMPUTATIONAL GRAPHS 13
with x?, x(M e R, y(1.2) ¢ R™ and< VF,x1? >= 0 for x(?) = 0. Thereby,
< V2F(x),x x® >=<< V?F(x),xM) > x?) >=y1:2)

with y(1:2) represents aecond-order tangent-linear projectiafithe Hessiaiv? F'(x) defined by Equa-
tion (1.12) in directionsc(!), x(?) as first-order tangent-linear projectien4, x(? > of

(ar)h=im = A=< V2R xW e R™ ™ with apy =< fi/;,,x) >= Zf% zV

’L

for x(V = (x (1))1 1. in directionx(?). A is the first-order tangent-linear projection Bf F'(x) in
directionx(!) as defined by Equation (1.4).

Thesecond-order adjoint mod€EOADM) of F' is defined as

x(1) = F 6%, y),y1) = < VF&)T,y(3) > + < yay, V2F(x),x@ > (1.11)

=0
with x| 8; eR", andy (1) Y1) €R™ and< VF(x)T ,ygg >=0 fory(2) = 0. The expression

()

<y, VPF(x),x®) >=<<ya), VIF(x) >, x® >=x)

with x(fg =(z g;)z 1,....n represents aecond-order adjoint projectioof the HessiarV2 F in directions
¥y, x? as first- order tangent-linear projectienB, x(®) > of

(bj,i)ji=1,..n. = B=<y(), V’F >€ R™" with b;;, =< oy >= Zf;ff” "Y1k
k=1

foryay = (yy;)i=1,...m in directionx(®). B is the first-order adjoint projection &% F(x) in direction
y (1) defined by Equation (1.6). Thus, the Hessian

VQF:VQF( ) c Rmxnxn — (fka)ic] 11mn (112)
as the symmetri@-tensor of the second-order sensitivitigs; ; = aijgl;i (x) of F at pointx can be

accumulated using SOTLM and SOADM at the computational 6bét(n?) - Cost(F) andO(n - m) -
Cost(F), respectively. This can be done in the former by lettidy) andx(?) range over Cartesian
basis vectors ifiR™. In the latter the same Hessian is accumulated by lettifiy andy) range over
Cartesian basis vectorski* andR™, respectively. In case ofi = 1, the product of the Hessian matrix
V2F € R™™ with a vectorx(?) € R" can be performed very cheaply using SOADM Bfat the
computational cost aD(1) - Cost(F).

1.2 Vertex Elimination on Computational Graphs
The SAC given by Equation (1.2) induces a directed acycbphrDAG)

G=GFx) = (V,E) with V={1,....q} and E={(i,j):i<j} . (1.13)
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The vertices are sorted topologically with respect to \deaependence, that is,
Vi, jeV:(G,j)e E=i<j

We distinguish between theindependenX = {1,...,n} thep intermediateZ = {n+1,...,n + p}
and them dependentY = {n+p+1,...,n+ p+ m} vertices, wherd = X UZUY.

Assumption 1.2. The setsX, Z, andY are mutually disjoint.

Moreover, we distinguish between live and dead vertices.fohmer [latter] are those corresponding
to alive [dead] SAC variables. Under the assumption thatlathental functions are continuously differ-
entiable in some neighborhood of their arguments all edges in DAG can be labeled with the value
of thelocal partial derivatives

0.
Cj,i = cj_,i(vk)kﬂ- = a—ij(vk)k<j . (114)

K2

This yields thelinearizedcomputational graph (I-DAG) of". From now on we usé&- to refer to the
linearized computational graph &t Thus, the JacobiakW F' in Equation (1.7) off’ can be obtained by
the elimination of all intermediate verticésof G yielding the bipartite graph

G=(V,E) with V=V -2 and E={(i,j):i<"jforie X,jeY} (1.15)

as proposed by Griewank and Reese [GR91] based on Baurgretation [Bau74] of each Jacobian

entry
Fiemami= > I e (1.16)

ne{i—j} (kl)em

as the elimination of all paths connecting an independent vertexc X to the dependent vertices
j € Y. The correctness of this approach results immediately floenchain rule. One way to achieve
this is to eliminate all intermediate vertices [Tad08] fram Therefore, each successore S; of an
intermediate vertex is connected to all of its predecessors P;. This corresponds tback-elimination
of all outedgegj, k) of vertexj, which we denote by

G—-j=G—-(jk) VYkels;
For (i, k) ¢ E a new edgéi, k) is generated with the label
Ck,i = Ck,j * Cj,i

as the value of the local partial derivati%%;h of vy, with respect ta); defined by Equation (1.14). Other-
wise the value of;, ; is updated as '

Ckit = C,j " Cji

In the former caséill-in is generated whereabsorptiontakes place in the latter. Finally, the vertgx
along with all of its incoming and outgoing edges are remdveh GG as illustrated in Figure 1.1.

Thus, the elimination of all intermediate vertices yiefél# Equation (1.15) with labels on remaining
edgesE representing exactly the nonzero element¥ éf according to Equation (1.16). In terms of com-
putational complexity we count the number of floating pointltiplication (MULS) performed during
the elimination procedure that represents an "upper boanthe number of performed additions” that
is affected by the elimination ordering as proposed by Naunjhlau04a]. More precisely, the number
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Figure 1.1: Vertex Elimination on DAGS.

of multiplications achieved by the elimination of a singkéermediate vertex is equal to its Markowitz
degree [Mar57] as

Mark(j) = |P;| - |S;]

Thereby, elimination of is likely to affect the Markowitz degree of its neighbors.

However, Naumann [Nau06] has shown th&T@AL JACOBIAN ACCUMULATION (OJA), that is,
accumulating the Jacobian & with minimum number of multiplications is NP-complete. Taby, he
assumes the local partial derivatives attached to the eafgégo be algebraically dependent. However,
this is not always the case such that the structural probéenains unsolved.

However, the elimination of an intermediate vertex can besered as a special case of edge elimi-
nation inG as proposed by Naumann [Nau02] with a refined version in fdrface elimination proposed
by the same author in [NauO4b]. For a comprehensive dismusdithe existing elimination techniques
we refer the reader to [GWO08]. However, the focus of the feilg will be on Jacobian accumulation
using pure vertex elimination technique as the main ohjeds to tackle the memory bottleneck of the
AD in reverse mode as introduced in detail at the beginnir@fafpter 2. Thereby, we aim to apply vertex
elimination locally to free memory at certain evaluationmof the target functior” whenever a given
memory bound is reached. Therefore, we consider vertexredtion to be much more suitable.

Given an elimination ordering of p = | Z| intermediate vertices the bijective mapping
o:{l,---,p} =2 (1.17)
denotes a permutation of the elementsoMoreover, we denote by

G—0o=G—[o(),...,0(p)]

the elimination of verticeg from G in o-order. In fact, there are exacty different orderings in which
the intermediate vertices can be eliminated, where twefit elimination orderings very likely yield
different number of multiplications and fill-in as well. Thegter becomes important when exploiting the
sparsity of extended Jacobians as introduced in the faligehapter. Two classical orderings are denoted
by forward andreversethat refer to the ascending and decreasing order in whiennmediate vertices
are visited, respectively. Henceforth, we do eliminateiges of G in forward and reverse ordering,
respectively.

Example 1.1. In order to support the discussion above let us have a clagss &t a very simple example
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functionF : R?2 — R? given as the following system of non-linear equations.

for i=1,....n
ﬁ:$1'$2—$2 (118)
x1 = sin(t) '

T2 = exp(t)

For n = 1 the SAC off is as follows.

U1 = T1; V2 = T2;
V3 = U1 - V2;
Vg = U3 — V2;
t = vy;
vs = sin(vy);
ve = exp(vy);

T1 = Us; X2 = Vg;

Independent variables,; andxz, are given by the SAC variables andv,, respectively. Intermediate
SAC variables are given by andv4. The latter represents the program varialilewhich is used in
the SAC statementg andvg representing the dependent variablesand z-, respectively. Hencey
denotes an alive SAC variable. As one can see here, inpudsd x5 are overwritten at every iteration
stepi and represent both inputs and outputs. The correspondiD§d is shown in Figure 1.2 (a) with
edge labels as shown in (b). Consider vefexth two incoming edged, 3) and(2, 3) and one outgoing
edge(3,4). The former are labeled with the value of the local partialidativescs 1 = z2 andcs 2 = 1,
respectively. The latter is labeled with 3 = —1. Henceforth, whenever we talk about the example
function we meai#” with the implementation in Example 1.1. Figure 1.3 illusdsithe accumulation of

31 = Vg

C32 = U1;

c3 = 1

Cqa2 = —1;

¢4 = cos(vy);

ca = exp(u);
(b)

Figure 1.2: Linearized DAG (&) with the Value of Edge Labdlx (

/ !/
the JacobiarR?*? > VF (21, x2) = (f1,1 fm) via forward vertex elimination, where

fan f2p

fia =cos(x1 - @y — x2) - xa;  fl g = cos(xy - o — x2) - 1 — cos(xy - By — T2)

f§,1 = exp(ry - T2 — T2) - Ta; f2/,2 = exp(z1 - T2 — T2) - ¥1 — exp(z1 - T2 — T2)
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Thereby, vertex 3 is eliminated by connecting vertices 12atwdvertex 4 resulting in a fill-irf1, 4) and
an absorption(2, 4) labeled as

c41 =C31-C43 =22, and cgot+ =c32-ca3=—-14+21

Additional elimination of vertex 4 yields the bipartite gtaG' resulting in four fill-in(1, 5), (1,6), (2, 5),
(2,6) labeled as follows.
C51 =C4,1 " C54 = X2 ° COS($1 s T — 1'2); C52 =C42 " C54 = (71 =+ 1‘1) . COS(IL‘l o $2)
C6,1 = C4,1 " Ce,4 = X2 ° eXp($1 c T2 — 172); C6,2 = C4,2 Co4 = (—1 + $1) -exp(x1 c T2 — £E2)
Analogous, the process of Jacobian accumulation via reveestex elimination is illustrated in Fig-

G=G-{3,4}

/‘,
PR
z
N
~

-
e
g

v'9) . T = 9

O
““““““;@

&

Figure 1.3: Forward Vertex Elimination yielding five Fit-iand one Absorption.

ure 1.4. The vertex 4 is eliminated by connecting the vertexwértices 5 and 6 resulting in fill-in (3,5),
(3,6), (2,5), (2,6) labeled as follows.

C53 =C54°C43 = COS(£E1 c T2 — $2); C6,3 = C6,4 * C4,3 = eXP(iE1 c T2 — $2)

C52 =C54 C42 = — COS($1 c T2 — 362); C6,2 = C6,4°C42 = — eXP($1 c T2 — !Ez)

Additional elimination of vertex 3 yields the bipartite gkaG yielding 2 fill-in (1,5), (1,6) and 2 absorp-
tions (2,5), (2,6) labeled as follows.

C5,1 = C3,1°C53 = X2 'COS(IE1 c T2 — !E2)
C5 2+ = C32- €53 = —cos(x1 - T2 — X2) + o1 - cos(z1 - T2 — T2)
C6,1 = €31 Cp,3 = T2 'eXp($1 c T — 172)
Co2F = €32 C63 = —exp(r1 - T2 — X2) + o1 - exp(z1 - T2 — 12)

Finally, the entriesf; ; with 4, j € {1,2} of the Jacobian are represented by the labgls, ; of the edges

(1, j +4) of the bipartite graph&; shown in Figure 1.3 and Figure 1.4, respectively. HenceJ#wbian

of our example function is accumulated with six and eightiplidations in forward and reverse ordering
with one and two fill-in, respectively. We note that this doesnecessarily mean that forward ordering
is generally better that reverse ordering. Indeed, oftem dipposite is the case in the practice as our

experimental results will show.

The DAG as an intuitive representation bfis widely used in AD to address conceptual as well
as runtime and memory [NauO8] issues arising in context obldian accumulation specially by the
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Y95 .8 = &9

Figure 1.4: Reverse Vertex Elimination yielding six Fitland two Absorptions.

application of elimination techniques. Nonetheless, wesater the DAG consisting of vertices and edges
as adynamicstructure in the way it deals with the memory as explained bif Bt al. [DER86] in the
context of sparse linear algebra. For instance, elimigatinertex means freeing the memory locations
of that vertex along with all of its incident edges as well Bscating new memory for fill-in edges as
they occur. Thereby, an edge is incident to a vertex, wheastthis vertex as target or source vertex.
The consequence is that the memory is accessed dynamigadliolbation and deallocation instructions
during the entire Jacobian accumulation process. In thisexo, we define by

q
Mem(G) = |E| - pe =Y |Pj| - pe (1.19)
Jj=n+1

the memory consumption @ in bits with u. representing the amount of storage in bits required by an
edge. Furthermore, we define edges by their source and tengiees, so that we get

Pe=2" oy + pF

wherep,, andur denote the amount of storage in bits needed for a vertex antiioiting point label of
an edge irG, respectively. Thereby, the verticEsof G are implicitly given by the edges as

V ={j:3(i,k) € Ewith j =iorj =k}

However, in the following chapter we introduce a lower tgatar matrix referred to as thextended
Jacobian TFPO3] representation of the SAC 8f The extended Jacobian matrix is supposed to be a static
structure. Furthermore, we manage to exploit its sparsitfirbt detecting the required memory pattern
for a given elimination ordering in a symbolic step as expdiin Section 2.4.1 and using the resulting
memory scheme to accumulate the Jacobian on a staticallya#did CRS representation of the extended
Jacobian as discussed in Section 2.2. The overhead of idgtextmory pattern for a given elimination
ordering can be regarded as a preprocessing step when agstimicontrol flow to be fixed at points
of interest in the input domail. However, in practice the input domain may be decomposedsintt
intervals, such that any interval changes would require mesnory pattern detection. In Section 2.5
we discuss also first ideas on parallelizing the Jacobianmaatation by elimination and present first
results on a shared memory architecture. Furthermore, tn@dince in Section 2.6 how to deal with the
memory bound by keeping track of the memory usage of the lyidgidata structure and enabling local
elimination whenever the given available memory boundashed.

Chapter 3 is concerned with retrieving the information dlonstant sensitivities of in general deriva-
tive tensors. Therefore, we present runtime algorithm®topute both constants and sparsity pattern of



1.2. VERTEX ELIMINATION ON COMPUTATIONAL GRAPHS 19

target tensors. Furthermore, we show how to exploit cotsiarthe process of sparse Jacobian as well
as Hessian computations and discuss them on exampleslyF8edtion 3.3 presents a fast algorithm to
overestimate the Hessian pattern under exploitation opéintal separability of”. The algorithm is then
generalized to a recursive one converging to the exactitthgofor sufficiently large recursion level.
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Chapter 2

Jacobian Accumulation on Extended
Jacobians

2.1 Motivation and Summary of Results

Traditionally, almost any AD software available at the coamity websitesww. aut odi f f . or g pro-
vides forward and reverse modes of AD for calculating th@B&mn matrixV F'(x) accurately at a given
pointx on some kind of internal representationffkept on memory or hard disk. In fact, the storage
is known to be the bottleneck of AD to handle larger problemseverse mode. For instance, a tape
is the internal representation of choice in the C++ operaterloading tool ADOL-C [GIM 99] that
presents an augmented versionfofThus, VF' can be obtained in forward and reverse fashion by an
interpretative forward and reverse propagation of dioeal derivatives and adjoints [NMRCOQ7] through
the tape, respectively. The forward mode AD can be impleetenéry cheaply in terms of memory by
single forward propagation of directional derivatives attime. However, the reverse mode needs to
store some data [HNPO5] in the so-called forward sweep tovelhe data flow reversal [Nau08] needed
for backward propagation of adjoints. The latter is regethié focus of ongoing research activities of the
AD community form = 1 as a single application of the reverse mode is enough to adeterthe gra-
dient of F' efficiently. To handle the memory bottleneck, checkpomschedules e.g. revolve [GWO0O]
have been developed for time-dependent problems. Howtingrrequire user’s knowledge in both the
function F' and the reverse mode AD as well.

To illustrate the memory problem in reverse mode and to destnaie the idea behind checkpointing
let us consider Figure 2.1. Here (a) represents a DAG of thetiion f : R? — R

fori=1,...,n
x1 = sin(xy - 2 — x2) (s1)
xo = exp(z1 - T2 — x2) (s2)
y=1z1+ 22 (s3)

for n = 2 as a light modification of our example function of Equatiorl@). Edge labels are missing
explicitly just for simplicity. Hence, eliminating interediate vertice$8, 4, . .., 10 in reverse mode yields
the complete bipartite graph as shown in (b) at a cost of ®mvetultiplications, whereas the forward
elimination yields the same gradient but at a total cost afnty-two multiplications’. Now let us
assume that there is not enough memory to store the DAG inTlag. reader may agree that given a

1The calculation of the respective number of multiplicasiarf both elimination orderings is left to the reader.
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memory bound one can find anwhere the resulting DAG would not fit into the memory. Consagly,
the reverse mode AD does not seem to be applicable anymore.

A closer look intof figures out that the two statementsandss at each loop iteration=1,...,n
overwrite the value of the inputs; andxs, which are their own arguments. We denote the respective
values of the inputs after the iteratiorusing the superscript For instancez? denotes the value of
x, after the iterations = 2. Hence, in order to reduce the memory consumption of the severode
checkpointing is applied in (c), wher@P (i) denotes a checkpoint in iteratiérstoring the value of the
variablesr; andxs before they get overwritten.

For this, the evaluation of for n = 2 at the beginning results in two checkpoiat® (1) andC P(2)
along with the DAG consisting only of the verticesl0 and11. The latter is the result ciugmented
evaluationof the statements;. The augmented evaluation of (a piece of) a function in ourtexdns
supposed to generate the respective (piece of) DAG. Howegerertex can be eliminated so far in (c).
The total memory consumption is- ug + 2 - ue wWith ur andpu,. denoting the amount of storage in
bits needed for an edge and a floating point value as explaindte end of the previous chapter. We
recapitulate that each of two checkpoints stores only twatifig point values.

Now, the augmented evaluation of the for loop fet 2 yields (d) withlocally eliminatablevertices
7,8,9,10. A detailed discussion about locally eliminatable vertieegiven at the beginning of Sec-
tion 2.6. However, the correct valuesmf andze must be read from the checkpoifit’(2) in advance.
Hence,C'P(2) can be deleted that results in a total memory consumptiéh @fr + 8 - .. We yield
(e) by eliminating10, 9, 8, 7 at a cost of six multiplications. Analog, we yield (f) by finrstading the
correct values of; andz, from C'P(1) followed by the augmented evaluationsafands, fori = 1 at
a memory cost o8 - u.. Finally, (b) results from the elimination &, 5, 4, 3 at a cost of six additional
multiplications yielding twelve multiplications in totalThis number is identical to the global reverse
mode resulting from (a), which is rather random and not ttse ¢a general. Thus/ f is computed by
checkpointing at the lower memory cost of at m®sj.r + 8 - u. instead ofl4 - y. in (a) for reasonably
HFE < He-

At this point it has to be mentioned that the memory redudbiprtheckpointing is achieved at the
expense of additional (augmented) loop evaluations at ebittose checkpoints. In general, the user of
checkpointing strategy has to take care of first its appiiitabo the underlying problen#. This requires
the deeper view into the program &t which in practice can be very large. Revolve, for instanse, i
designed especially for time-dependent problems withlaimstructure as our example functignin this
context, the for loop can be regarded as the time iteratitiereithe checkpointing is applied. However,
a major question that matters is about the size of the chétigod-or our simple example it was easy
to figure out which values to store. However, this is in geherare than an easy task [HNPO05]. Of
course conservatively one can store the values of all viesain the left hand side of assignments. With
a little imagination can be appreciated that in practice thay also exceed the memory bound. Hence,
the conservative checkpointing may turn out to be not féagibpractice at all.

However, "theCHECKPOINTING problem is to determine for a given upper bound on persistem-
ory K a set of values computed by the single assignment code asdfitcquation (1.2) such that the
computational cost of adjoint propagation becomes mirimglproposed by Naumann in [Nau09]. In
this work Naumann shows that DASEVERSAL problem (DAGR) i.e. finding a reversal scheme that
uses at mosk’ memory and: < C costs is NP-complete, wheée denotes the upper bound on the cost
of recomputing some (SAC) values. He shows alsodRECKPOINTING problem to be in fact the same
problem as DAGR, which follows the NP-completeness of thienfr too.

At this point, we hope the reader agrees that the applicaficheckpointing strategy [SG05, KWO06]
is not straightforward, despite the fact that not every wgishes to spend the necessary effort. Hence,
a black-box tool would be nice even if its performance dodsquite reach that of pure reverse mode
AD. This is exactly the motivation in the following, wherestmemory reduction is supposed to be done
automatically without any user intervention and expeiitiseD. Therefore, vertex elimination is applied
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Figure 2.1: Checkpointing Idea on a DAG, whe?d (i) for i = 1,2 denotes a checkpoint at loop
iterations storing the value of the variablas andx, before getting overwritten. The subscripto a
variable denotes its value aftéh iteration. The prefix "-" to a vertex index means that it lisnénated,
whereas "+” indicates its Generation.
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locally when the given memory bound at certain point of thecfion (augmented) evaluation is hit. The
memory usage is tracked at runtime. Hence, the Jacobialegtaf F' is accumulated while taking care
of the memory consumption at runtime. We refer to this apgh@siterative Jacobian accumulation

In our case, arbitrary elimination orderings (technigeesh as forward, reverse, or Markowitz-based
heuristics [AGNO3] can be applied locally. The latter is cohsidered in this work. As our experimental
results will show, the reverse mode exhibits much bettetimeresults than the forward one for the test
cases considered in this work. Thus, we consider our approsiag reverse mode AD rather lagal
reverse mode Aluring forward evaluation of.

In the following section we first introduce row elimination extended Jacobians being conceptually
the same as vertex elimination on the respective DAGs. Eurtbre, we manage to exploit the sparsity of
extended Jacobians using compressed row storage to rédhiicquadratic (in number of rows) memory
complexity in Section 2.3. The reason for using extendedhlaas as internal representation instead of
graphs is to avoid the dynamic memory access affecting thme of Jacobian accumulation by vertex
elimination. To show this a runtime comparison for compgitihe gradientvf € R™ of the scalar
function

fiR" SR, y=f(x) with y=]]a
=1

between the reverse mode AD on an early DAG and CRS impleti@mds presented in Figure 2.2.
Thereby, no sparsity is exploited &f is supposed to be a dense vectoRih. Moreover, we compare
the runtime of both CRS and DAG with that of forward finite diftnce approximation denoted by FFDA.
We observe that the elimination on CRS is orders of magnifaster compared with its DAG counterpart
as well as with FFDA. More precisely, far = 10000 the former needs 0.46 seconds to accumwafe
instead of 44.25 and 67.76 seconds in case of DAG and FFDpectisely. Hence, we believe that the
runtime loss in case of DAG to be mostly caused by the dynaneimary access. The runtime loss of
FFDA against two reverse AD variants (DAG and CRS) lies reabty in the fact that + 1 function
calls are required to accumul&igf.
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Figure 2.2: Runtimes of Gradient Computation using DAG, C&%l Finite Differences.

In the following we present first some numerical results iat®a 2.4.2 considering the static problem
of row elimination on extended Jacobians and their resge@RS. The numerical results show that the
sparsity exploitation of extended Jacobians using CRScexsitihhe memory consumption drastically by a
factor of roughly thirty-one. However, we observe at the same that CRS underperforms compared
with the dense extended Jacobian (DEJ) by increase in theegpncsize because of the linear overhead
of searching for dependencies and spots in the former. Hemloewhenever we talk aboutspot we
mean a memory unit that is used to store an extended Jacaign ét the same time the increase
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in problem size has a direct impact on the number of rows o$idened matrices meaning even larger
search spaces. The impact of the latter becomes more clear wé try to parallelize the process of
Jacobian accumulation in Section 2.5. The experimentaltesis Section 2.5.3 show the most part of the
speedup by parallelization to be gained simply by the deamitipn resulting in smaller search spaces
for dependencies. Hence, by focusing on the static problesrfjgure out that the search space has a
large impact on the runtime behavior of Jacobian accunaddy elimination on both DEJ and its CRS
counterpart, despite the fact that CRS has additionallyeali overhead to search for a particular entry or
spot in worst case.

Finally, we introduce in Section 2.6 the iterative approanlDEJ and CRS as well. The numerical
results are presented in Section 2.6.3. Thereby, we ob#eaveassignment level elimination exhibits
the best memory behavior as shown in Table 2.5 on page 93. \Howits runtime on a time-dependent
problem turns out to be not really comparable with that ofrwerse mode AD implemented in ADOL-
C. Nonetheless, we also observe that memory adaptinggrateording to Equation (2.24) improves
the runtime considerably with negligible loss in memory.eThntime and memory comparisons with
ADOL-C are shown in Figure 2.34 (a) and (b), respectively. hde that for this test case DEJ is
used instead of its CRS counterpart because of the bettémeiperformance of the former as shown
in Figure 2.34 (c).

2.2 Dense Jacobian Accumulation

The SAC in Equation (1.2) of the functidr can be written as a system of nonlinear equations [GWO08]

C(v) = (9 (vi)i<j = Vi) jps1,.. 4 =0 (2.1)
with v = (vy, -+ ,v4) andg = n + p + m. Differentiation of Equation (2.1) with respecttoyields the
lower triangular matrix

Cj,i |f Z =< j
C/ = C/(V) = (C/'7')i.,j:1.,....,q with C/-7- = -1 ifs :j
0  otherwise

referred to as thextended Jacobianf F' with rows and columns enumeratediag, k € V with V
defined by Equation (1.13). Henceforth, for better readsbite will replace the -1 on the diagonal
entries ofC” with the corresponding row indices.

Thereby, rowj of C’ contains the local partial derivatives; of v; with respect to all of its arguments
v; With ¢ < 5 as defined in Equation (1.14), where the binary relafion j indicates again the direct
dependence of row on row: on C’ if and only if ¢;; # 0. Analog, column;j contains the local
partial derivatives:;, ; of all v, with respect tov;, which havev; as their arguments with < k. The
extended Jacobian and the DAG Bfcorrespond to each other in such a way that a row/colgm@inC’
corresponds to the DAG vertgxMoreover, a local partial derivativg ; [cy ;] represents the label of the
incoming [outgoing] edgéi, ;) [(4, k)] to [from] vertexj. In the following we refer to a row/columpas
independent foj € X, as intermediate fof € Z, and as dependent fgre Y. For simplicity henceforth
we only talk about row elimination. Thus, analog@ the Jacobian can also be accumulated by row
elimination onC’. Therefore, the elimination of a particular intermediatetee onG is interpreted as
the elimination of the corresponding row 6H. We eliminate an intermediate royvby eliminating all
nonzero entries;, ; with j < k. Therebycy, ; is eliminated by performing Equation (2.2) for all nonzero
¢;.; of row j while generating fill-in and fill-out fory, ; = 0 andc,; # 0, respectively. We refer to
this aback-eliminatiorof the entryc;, ; on C’. A gain the terminologies forward and reverse are used to
refer to the ascending and decreasing order of intermeriate, respectively. Thus, the elimination of
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an intermediate vertekby back-elimination of its out-edges 6his interpreted as the elimination of row
J via back-elimination of all nonzeras ; on the columry. Hence, forward [reverse] vertex elimination
on G corresponds to the forward [reverse] row elimination@n

The following summarizes all transformations needed for eimination onC”.

Definition 2.1. The elimination of rowy on the extended Jacobid@i of F withj € Z,i € {1,...,j—1},
andk € {j+1,...,q} denoted by’ — j is defined as follows.

Chi =Chi+Crj-Ci Vk:j=<k and Vi:i<j (2.2)
;=0 Vk:j=<k (2.3)
ci=0 Vi:i<j (2.4)

Note that partial derivatives af, with respect tov; during the elimination of rowj are computed
according to the chain rule in 2.2. Hence, any sensitivitfes, on any of thev; with j < k as well as of
any of thev; onv; with ¢ < j are removed in Equation (2.3) and Equation (2.4), respalgtifill-out are
generated. Moreover, fey, ; = 0 then 2.2 lead tdill-in otherwise they yieldbsorption.

In the following, we introduce Algorithm 2.1 for Jacobiancamulation by row elimination on ex-
tended Jacobians that we refer todesse Jacobian accumulation by row eliminat{@JARE). It de-
scribe the general process of Jacobian accumulation by liovination on the extended Jacobian Bf
for a given elimination ordering(1), ..., o(|Z|) with o as defined by Equation (1.17). At this point, it
should be made clear that the algorithms introduced belovibeaconsidered as special cases of Gaussian
elimination known in context of sparse linear algebra [DER8

As described in Algorithm 2.2 an intermediate rgw= o (i) with i € {1,--- ,p} is eliminated via
back-elimination of all nonzero entrieg ; # 0 with j < k according to Equatlons 2.2 and 2.3. Hence,
all nonzeros of rovy are set to zero in I|nes 3-7 of Algorithm 2.1 after back-efiating allck according
to Equation (2.4). We note that, we use the notatiorexplicitly to denote the entries of the extended
Jacobian in our algorithms. '

Thus, the elimination of all intermediate rowsdrorder yields thesliminated extended Jacobian

@:Ofazdfbﬂ%”J@H (2.5)

containing exactly the entrleﬁ’ (n+p),i ;fori e X, j €Y of the JacobiarV F', which can be
extracted by Algorithm 2.4. Obwously, forward [reversejwelimination can be considered as special
cases of Algorithm 2.1 witlr representing the ascending [decreasing] ordering. of

Considering the elimination of an intermediate rpim forward ordering thaeearch spacén line 1 of
Algorithm 2.2 can be restricted to the dependent rdwsince all rowst € Z with j < k are eliminated
beforej and hence,C = 0. The termination of the process of Jacobian accumulatiomiwetimination
introduced above is stated by Lemma 2.1.

Lemma 2.1. Given an elimination ordering of a finite setZ of intermediate rows the process of Jaco-
bian accumulation by row elimination described in Algonitf2.2 terminates.

Proof. The proof of termination of Algorithm 2.2 follows immedi&tdrom the termination of the corre-
sponding vertex elimination process as a special case & edyination on the DAG of” as shown by
Naumann [Nau99, Nau0O4a]. O

Algorithm 2.1 (JRowElim (C’, o) : Jacobian by Row Elimination)

Require: : extended Jacobiafi’ and the elimination ordering of Z.
Ensure: : C’ after elimination of all intermediate rows inorder.
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1 for j=0(1) to o(p) do
> RowElim (C, j)

z for i=11t0 5—1 do
« if ¢, #0 then
5 C;‘,i =0
e endif
7 end for
s end for

Algorithm 2.2 (RowElim (C’, j) : Row Elimination)

Require: : extended Jacobiafi’ and the row index € Z.
Ensure: : C’ after elimination of the intermediate rojv

v for k=q to j+1 do
if ¢ ; #0 then
BackElim (C',k, j)

2
3
4: Cp i =
5
6

Algorithm 2.3 (BackElim (C', k, j) : Back-Elimination)

Require: : extended Jacobiafl’ and the indiceg, k € V with j < k.
Ensure: : C’ after back-elimination of; ;.

v fori=1,..,57—1do
2 if_ c;; #0 then
s if ¢, #0 then

/ N /
“ 0 Gt = Gy G
5. else

/ N /
& Cri = Cry i
» endif
s end if
o. end for

Algorithm 2.4 (JExtract (C', VF) : Jacobian Extraction)

Require: extended Jacobiafl’ of F.
Ensure: the values of the JacobianF.

1 for j=1 tomdo
for i=1 to n do

end for

2.
I A
3 gi = Cjtntp,i
4
s. end for

Example 2.1. At this point let us have a look again at our example functigth ¥ and C’ as shown
in Figure 2.3 (a) and (b), respectively. In the following Emtions we focus on the extended Jacobian.
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Nonetheless, the corresponding DAG transformations ase ptesented to clarify the relation between
these two structures. Independent and dependent rowk, &rand 5, 6, respectively. Intermediate rows
are given by3 and4. The latter represents the program variableBoth rowss and6 depend on rowt as
¢s,4 7 0 andceg 4 # 0. Considering the corresponding linearized DAG the localtgduderivativescs 4
andcg 4 are the labels of the outgoing edgels 5) and (4, 6) from vertexd, respectivelyc, 5 is the label

of the incoming edgg3, 4) to vertexd. The elimination of verteX via single back-elimination of the entry
cq,3 1S demonstrated in Figure 2.4 (b). Thereby, fill-in and alpdimn are generated as, 1 = c4,3 - 3,1
andcy o+ = ca 3 - 3,2, respectively. A fill-out is generated ags = 0.

(b)

1
0 2
0 0 3

€Y (b)

Figure 2.4: Elimination of Vertex and Row 3 @h(a) andC’ (b), respectively.

Figure 2.5 (a) and (b) illustrate the forward and reverse relimination, respectively. In (a), row 3 is
eliminated as first by single back-eliminationaafs, resulting in a fill-inc4,; and an absorptiomr, » as

c41 =cC43-¢31, and cgot =ca3-c32

Fill-out are generated ass3 = 0,c31 = 0, andcz 2 = 0. Additional elimination of row 4 yields
the eliminated extended Jacobiélh = C’ — [3, 4], finalizing the process of Jacobian accumulation by
forward row elimination. Likewise, elimination of row 4 (by back-elimination of the entries 4, and
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ce,4 Yields four fill-in as

€53 =C54°C43, C63=C64°Ca3 C52=C54"Ca2, anNd ce2=Cea-Ca2

Furthermore, fill-out are generated @54 = 0,¢s.4 = 0, cq 2 = 0, andcy 3 = 0. Additional elimination
of row 3 yields the eliminated extended Jacoli&in= C’" — [4, 3] that results in four fill-in as

C5,1 = C54°Ca1, C52=C54"C42, C61 =Cp4-Ca1, aNd o2 =Cp4-Ca2

This finalizes the process of Jacobian accumulation by sevesw elimination. Hence, accumulating
the Jacobian of our example function in forward and revelgairation ordering results in totally six
and eight multiplications, respectively. The former résin five fill-in one absorption and seven fill-out,
whereas the latter yields eight fill-in and eight fill-out. mte, the entrieg , with 7, j € {1,2} of the

Jacobian are represented by the entrigs, ; in the corresponding eliminated extended Jacoltisn

As discussed at the end of the previous chapter, the lirethfdAG as a data structure to accumu-
late Jacobians by vertex elimination, is dynamic in termmefory access. In opposite, the extended
Jacobian as a sub-diagonal matrix is considered stat&c data structureas fill-in and fill-out do not
cause any memory allocation and deallocation during theietition step, respectively. However, the
main problem using extended Jacobians as the internalseqmtagion is their quadratic memory usage,
since memory is also allocated for all thdsed zerogemaining zero over the entire elimination process.
However, we aim to exploit the sparsity of extended Jacabigging the CRS representation to reduce
the memory consumption [VNLOG6], which is discussed in vestadl in Section 2.4. In this context, fill-
in results in additional memory allocation, whereas filt-cepresents memory getting freed during the
elimination process. At this point it must be made clear thatfocus of the following is not on finding
an elimination ordering that minimizes the fill-in. Our gaslrather on finding approaches to reusing
fill-out for fill-in for a given elimination sequence.

Herley [Her93] proposes in a unpublished manuscript thdiriga vertex elimination ordering min-
imizing the number of fill-ins on DAGs in the context of Jacatiaccumulation is NP-complete. His
work bases on early works on minimizing fill-in [Yan81] in t&aussian elimination process in sparse
linear systems formulated by Rose and Tarjan [RT78] as axetimination problem on directed graphs.
A note on the NP-completeness of this problem is given by&silIfiGil80]. Hence, it seems to be very
unlikely to find an elimination ordering minimizing the filt-in a polynomial time.

2.3 Trading Fill-Out for Fill-In

As already mentioned, the process of Jacobian accumulagiosaw elimination on extended Jacobians
can resultin

o fill-in by changing zero entries to nonzeros,
o fill-out by changing nonzero entries to zeros, and

e absorptionsby updating nonzero entries.

Consider the extended Jacobian of our example function stadvthe top of Figure 2.5. Forward and
reverse row elimination result in five and six fill-ins, resfieely. This results in five and six additional
memory spots in the corresponding CRS representationshwi¥ill be illustrated in Section 2.4 in more
detail. At the same time the former resp. latter yields seesp. eight fill-out spots, which can poten-
tially be reused to store fill-in entries as we will discustobe Thus, the main focus in the following is
on reusing fill-out for fill-in as much as possible to reducettemory consumption of the CRS represen-
tation of extended Jacobians. Henceforth, whenever wetalkit aspot we mean a memory unit that is
used to store an extended Jacobian entry.
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Cl

0 0 0 C5,4 5

0 0 0 C6,4 0 6

U9 Cr
¢ N4
1 1
0 2 0 2
0 0 3 C3,1 C3,2 3
ca1 cg2 0 4 0 0 0 4
0 0 0 C5.4 5 0 Cs52 Cs3 0 5
0 0 0 Cp,4 0 6 0 Ce,2 Cg,3 0 0 6
C' —[3,4] C' —[4,3]
1 1
0 2 0 2
0 0 3 0 0 3
0 0 0o 4 0 0 0 4
C5,1 Cs5,2 0 0 5 C5,1 Cs5,2 0 0 5
Ce,1 Ce,2 0 0 0 6 Ce,1 Ce,2 0 0 0 6
(a) (b)

Figure 2.5: Forward (a) and Reverse (b) Row Elimination oteRated Jacobian, respectively.
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Notation Summary 2.1. We use the following symbols to classify the extended Jaeahitries with
respect to the type of their spots that we need to analyze¢hgomy pattern resulting from the application
of elimination orderings in combination with fill-out exjiktion techniques.

x identifies an initial nonzero element.

+ denotes the absorption of an initial nonzero element.
® represents a fill-in.

@ marks the absorption of a fill-in.

® marks a fill-out reused for fill-in.

©

marks a fill-out.

We introduce in the following two ideas for reusing fill-ottere, we assume that we want to eliminate
the intermediate row.

o Technique 1exploits the fact that the elimination of any; yields fill-out in the current memory
location. Consider the situation shown in Figure 2.6 (a)esehthe memory spot af; ; can be
reused to store the fill-in; . = ¢; ;- c; 1 @as shownin (b), wherg; ; is absorbed as; ;+ = ¢; ;- ¢ .

p l k p l k
0 Cil Cik 7 0 © © i
0 Cjl 0 Cj,i J 0 Cjl 0 Cj.k J

(@) (b)

Figure 2.6: Memory Pattern before (a) and after (b) the Aggpion of Technique 1.

e Technique 2 exploits the existence of sub-diagonal nonzero enitfjgs# 0 with j = ¢ + 1
representing the dependency< j between two neighboring rowisand j also referred to as
immediate successoes shown in Figure 2.7 (a). After the elimination @f; the entire row:
becomes zero. Hence, fill-out in rawcan be reused to store fill-in generated in rpas shown in
Figure 2.7 (b). As a consequence rgwxpands into row. We denote this by setting the diagonal
entry of the row: to j. Obviously, the absorptiosy; ,+ = ¢; ; - ¢; & could also be placed in the spot
for ¢; i, to avoidmemory fragmentationin order to achieve better cache efficiency [Tad08].

It is worth mentioning that the elimination of roiwia back-elimination of entries;, ; # 0 with

i < k needs to assure the correctness of the calculated partightikes as the spot aof; ; is
reused for fill-inc;; = ¢;; - ¢;,;. Nevertheless, this can be either achieved by savindefore it
gets overwritten or eliminating ; as the last dependency ariWe note that the initial (ascending)
ordering of row entries may get destroyed by the applicatforechnique 2, which implieslimear
search after the dependenciesver the column index space. An example situation is givearwh
eliminating row: in (b), wherec; ; stored in spot ot; ; appears before; ;, with h < [. However,
this can be avoided by rearranging nonzeros as

Cjn — Cil, Cjl = Cik, Cjk — Cin, and Cjn — Cji



32 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

p h l k n p h l k n

0 0 Ci,l Cik Cin 7 0 0 Cjl © Cjn J

0 Cj,h 0 Cjk 0 Cji 0 Cj,h 0 Cjk 0 (O]
(a) (b)

Figure 2.7: Memory Pattern before (a) and after (b) the Aggpion of Technique 2.

Figure 2.8 illustrates the application of fill-out reusingchiniques 1 and 2 introduced above during for-
ward (a) and reverse (b) row (b) elimination. The eliminataf row 3 in the former reuses fill-out
according to the Technique 2. Furthermore, the applicatfdrechniques 1 and 2 during the elimination
of row 4 in addition results in totally one fill-in and thred-filut. Analog, the elimination of row 4 in
reverse fashion reuses fill-out according to the Techniquasd 2. Additional application of the Tech-
nigue 2 during the elimination of row 3 yields totally two fili and four fill-out. Hence, the total number
of necessary spots for accumulating the Jacobian of our gbegfiimction by row elimination in forward
and reverse orderings is seven and eight, respectively. etiember that eleven and twelve fill-in are
generated without fill-out exploitation as shown in Figurd ga) and (b), respectively, in forward and
reverse modes. Obviously, the most memory savings arewchley the application of Technique 2,
which is considered in the following in more detail.

Maximum Immediate Successor Enumeration Problem

In order to maximize the number of reused fill-out spots adiogy to Technique 2, one has to find an
ordering of the rows of"” that maximizes the number of immediate successors. We fatenthis as the
MAXIMUM IMMEDIATE SUCCESSOR ENUMERATION (MISE) problem on the corresponding DAG bf
Therefore, we consider a topological ordering

top: V= A{1,...,|V|} (2.6)

of the DAG verticesV, wheretop(i) = k is the topological index of vertek € V. Our main goal is

to find a topological ordering referred to BBSE-orderingof V' such that the number of thmmmediate
successor edgés, j) with top(j) = top(i) + 1 is maximal. Theorem 2.1 states the NP-completeness of
the MISE problem. The proof idea was inspired by Andrew Lyons

Theorem 2.1. Given a directed acyclic grapy = (V, E) with integer verticed’. The maximum imme-
diate successor enumeration of graph vertites NP-complete.

Proof. Let G* = (V, E*) be the transitive closure af. It is well-known that there is a bidirectional
mapping betweet™* and the corresponding partially ordered set [St400k ,,) also referred to agoset
on the verticed” of G*. Let

r:V—={1---,|V[}

denote a linear extension of verticéssuch that

Vi, jeV i<, jer@i) <r(y) ,

2http://www.mcs.anl.gov/lyonsam
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o N

1 1

0 2 0 2

® © 4 O

0 + ©® 4 0 ® ® 5

0 0 0 * 5 0 0 0 @ 5

0 0 0 % 0 6 0 ® 0 ® 0 6
' —[3,4] ' — 4,3

1 1

0 2 0 2

® © 5 ® ©® 5

0 ® ® 5 0 ® ® 5

0 0 0 5 0 0 0 ® 5

® 0 0 ® 0 6 ® @ 0 ® 0 6
(a) (b)

Figure 2.8: Reusing Fill-out in Forward (a) Reverse (b) Rdinihation. The symbol®), ®, ®, and®
denote fill-out, reused fill-out, absorption of a fill-in, afitéin, respectively.
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wherer preserves the topological ordering of graph vertices shiah t

1<p ) =>1<pJ
Considering now two consecutive verticesndj in the linear expansion with(;) = r(7) + 1, we have
the following two cases:

e (i,j) € E* is a step (an immediate successor edge), or
e (i,j) ¢ E*is ajump, otherwise.

The jump [step] numbes(r) [w(r)] of G is the minimum [maximum] number of jumps [steps] in the
linear extension. Chein and Habib explained in [CH80], that any two DAGs witk game transitive
closure are equivalent with respect to the jump number prablt follows then that it can be considered
as a problem on the corresponding transitive clogiirand posetV, <,,), respectively. Note that every
consecutive pair of vertices inmust either be a jump or a step. In particular, we have

lo(r)] + |w(r)| = V] -1

Thus, any linear extension that maximizes the number ofsthpt is, the number of immediate successor
edges will also minimize the number of jumps. Hence,tt®P NUMBER PROBLEMiIs obviously the
MISE problem. Pulleyblank [Pul82] has shown that determgnihe jump number of a poset is NP-
complete. Hence, it follows also that the MISE problem is ¢¢fPaplete. O

Thus, it seems to be unlikely to find an exact MISE-orderingatynomial time. However, in the
following we introduce a modified version (TopSortAll) oftlexponential recursive algorithm proposed
by Knuth [KS74] that finds all topological arrangement ofties of a DAG. In addition to that, we
discuss a first idea on reducing the runtime complexity usirtranch and bound [Tal06] algorithm
(TopSortBB) as follows. We note that proof of concept impdatation of the ideas below is beyond the
scope of this work.

e TopSortAll computes all topological arrangements and picks out thendthehe maximum num-
ber of immediate successors at the end. The algorithm isrexg@l in the number of inputs in
worst case.

e TopSortBB uses the branch and bound idea to reduce the complexity &artfll by finding a cri-
terion to cut the recursion at the level that doesn't lead M SE-Ordering of vertices. Therefore,
let o' denote the number of the immediate successors among thedwisrtices at the recursion
levell € {1,---,|V|}. Furthermorep! = |V| — [ denotes the maximum possible number of the
immediate successor edges among the remaining verticesid&h is to cut the recursion at the
levell, if a' 4 b' < c. Thereby,c denotes the maximum number of immediate successarsimat
is supposed to be initially zero.

ConsiderG andC” of our example function as shown in Figure 2.3 (a) and (bpeetvely. The possible
topological orderings of graph vertices [extended Jacotmavs/columns] are the following.

top1 : 1,2,3,4,5,6

tops 1 1,2,3,4,6,5

tops : 2,1,3,4,5,6

topy : 2,1,3,4,6,5
Obviously,G consists of totally two maximum immediate successor edgesety (3,4) and (4,5) or
(4,6) over all four possible orderings above from whiglp, represents the initial one of the DAG by
creation. One can easily figure out that all four topologaalerings are equivalent in terms of fill-out

exploitation. Hence, there is no need of reorder@i@r C’ for this example. The resulting fill-out
exploitation schemes of the initial ordering has alreadgrb&hown in Figure 2.8.
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2.4 Sparse Jacobian Accumulation

As discussed at the beginning of this chapter rows of thenelet® Jacobian correspond to SAC variables
defined in Equation (1.2). Hence, a row can initially consfstonzero elements (local partial derivatives)
in the number of the parameters of the respective elemamiatibn. For instance, consider the extended
Jacobian of example function shown in Figure 2.3 with the $A@n in Example 1.1. Thereby, the row
3 results from the multiplication of two variables, wher#@s unary operatiosin yields the row 5.

In the following we illustrate the process of Jacobian acalation by row elimination under exploita-
tion of the sparsity of extended Jacobians [VNLO6], whichrefer to asparse Jacobian accumulation by
row elimination(SJARE). It consists of two main steps, namgynbolicandaccumulation The former
is concerned with memory prediction by simulating the etiation process on an integer representation
of thesparsity patterrof C’ defined by Equation (2.9) at the point of interestfter termination of the
symbolic elimination process a corresponding static Casged Row Storage (CRS) [DERS86] is allo-
cated. The symbolic step is the focus of Section 2.4.1. Tharaalation step uses the CRS allocated
by the former to accumulate the Jacobianxdiy initiating the elimination process. But, this time the
elimination happens on real data, that is, on the initigli@&®kS with the values of "initial” local partial
derivatives ak by evaluatingF' atx. The result of the accumulation step is hence the Jacobiahabk.

We note that the extended Jacobian along with its CRS reqa&en are runtime-dependent in the
sense that they depend on the control flowrchat often is assumed to be fixed, which holds for a bunch
of real world numerical applications. It is worth mentiogitihat actually this fact is the main motivation
for more and less any sparse approach. However, in genbealges in inputs may change the control
flow of F' and hence "potentially” change the sparsity pattern of thdeulying extended Jacobian. The
latter would imply that a new symbolic step has to be perfattoeget a valid [GINM 99] memory pattern
at the respective point. But, changes in control flow do naessarily have to lead to changes in the
sparsity pattern of”. It is, to some extent, possible that the latter remains umgbd, while the former
changes. This is even more likely when just focusing on thraler of spots of rows, regardless of the
orders. Here, changes in the sparsity pattern of rows cavldrated as long as their total number of spots
does not change. To clarify this let us consider the examflat®on given in Figure 2.9. For simplicity
let assume that only depends only on. Let us consideC’(F'(x;)) as the extended Jacobian resulting
by evaluatingF’ at x;. The elimination of the row results inC’(F(x1)) — 4 with one additional spot
for fill-in ¢; ;. Hence, the row requires three spots in total. Now, let assume that the atiatuof '
at another poink, results inC’(F(xz)) with a different dependency pattern comparedtdF'(x;)).
However, eliminating here yields the same amount of spots in total a€'t(F'(x;)).

More importantly, the memory pattern resulting from the bwfit step is only valid for the given
elimination ordering. Different elimination orderings yneequire different amounts of memory. Two
classical orderings, forward and reverse, have beenr#liest in Figure 2.5 with totally eleven (a) and
twelve (b) memory spots, respectively. The former [latregdults in CRS representation that is used
in Example 2.2 [2.3] to accumulate the target Jacobian.

In the following we use CRS consisting of

o afloating point value vectat,
e an integer column index vecter, and
e an integer row position vecter

to exploit the sparsity of extended Jacobians. The valutoveccontains row-wise the nonzero entries
of C’ with the corresponding column indices stored<inHence, bothv andx vectors are of the same
length that we denote hyz, which in our case represents the total number of memongsimiected by
the symbolic step. Thereby, the column index of the eleméijtis stored in<(i) fori = 1,--- ,nz. The
vectorp is of lengthg + 1 with p(¢+ 1) = nz+ 1 marking the end of the last extended Jacobian ).
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p l k p l k
Ci,p 0 Ci,k i © 0 © P
Cip <+ 0 - 0 -+ Cii -0 ] Cip =+ 0 - Gk -0 © - ]
—~
+=cjiCip =¢j,i°Ci,k
C'(F(x1)) C'(F(x1)) —i
Cip 0 Cik i © 0 ©} P
0 -+ 0 - Cik -+ Cji - Cip =+ 0 - Gk 0 © - ]
=cjiCip +=cjiCik
C'(F(x2)) C'(F(x2)) —i

Figure 2.9: Identically Amount of Storage on two structlyrdifferent Extended Jacobians.

withi € {n+1,--- , ¢} contains the position of the first nonzero element of iowhe firstn elements of
p correspond to the independent rows, which are initialiexero. Obviously, the length of a roine V'
can be gained by(i+1) — p(¢). Henceforth, we denote the CRS representatiofuby, p). At this point
let us have a look at the initial extended Jacobian of our g@function as shown in Figure 2.3 (b). Its
CRS representation is as follows.

o= (03,17 C3,2,C4,2,C4 3,C5 4, 06,4)
K= (1,2,2,3,4,4)
p= (0,0,1,3,5,6,7)

Rows 1 and 2 are independent, hep€é) = p(2) = 0. The first nonzero entry of row 3 is stored in
a(1), hencep(3) = 1. Similarly, p(4) = 3 points toa(3) containing the first nonzero element of the row
4 with the column index stored ir(3). The differencep(4) — p(3) yields two as the length of row 3.
However, as discussed previously fill-in has to be takenactount to provide enough memory needed
for Jacobian accumulation on CRS representation of exteddeobians. Analog to Equation (2.5) for
extended Jacobians the elimination of all intermediatesrowthe given ordet yields theeliminated
CRS

(dv"%aﬁ) = (Oé,/ﬁ,p)—O’E (Oé,li,p)—[(f(l),...,d(p)] :

Example 2.2. The following CRS is used to accumulate the JacoBidn of our example function by
forward row elimination. Fill-in spotsx(3) of row 4, a.(6), «(7) of row 5, andx(9), a(10) of row 6 are
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initialized to zero at the beginning of the elimination pess. Hence, we get the following initial CRS.

o = (03,17 C3,2, 07 C4,2,C4,3, 07 0) C5.4, 07 0) 0674)
=(1,2,1,2,3,1,2,4,1,2,4)
=(0,0,1,3,6,9,12)

e Elimination of row3 yields(«, k, p) — 3 as

a = (05 07 C4,1,C4,2, 0; 07 0) Cs5.4, 0) 07 06,4)
k=(0,0,1,2,3,1,2,4,1,2,4)
p=10,0,1,3,6,9,12)

with C4,1 =C3,1°C4,3 and0472—|— =32 C4,3-
e Elimination of row4 yields(a, %, p) = (o, &, p) — [3,4] as

a = (0,070,070,05,1,05,2,0706,1706,2,0)
K= (0,0,0,0,0,1,2,0,1,2,0)
p= (0,0,1,3,6,9,12)

with C5,1 = C4,1 *C54,C52 = C42 " C54,C6,1 = C4,1 * C6 .4, and6672 =C4,2 - C64-

Example 2.2 illustrates the accumulation of the Jacobiahe@&xample function by row elimination
in forward ordering as described in Algorithm 2.5.

Algorithm 2.5 (JRowElinm ((a, &, p), o) : Jacobian by Row Elimination)

Require: CRS representatiofa, , p) of C’ and the elimination ordering.
Ensure: (a, k, p) after elimination of all intermediate rows inorder.

1 for j=0(1) to o(p) do
2 RowElim ((«, K, p), j)

3 fOt‘l—p()tOp(j-i-l)—l do
« if a(l) #0 then

5 Oé(l) 0

6 k(l)=0

7 endif

s end for

o end for

Therefore, rowj = 3 in line 2 is eliminated by back-elimination of the enty5) = c4 3 as shown
in line 4 of Algorithm 2.6.

Algorithm 2.6 (RowElim ((a, k, p), j) : Row Elimination)

Require: : CRS representatiofa, x, p) of C’ and the row indey € Z.
Ensure: : (a, k, p) after elimination of the intermediate row

v for k=¢qto j—1 do
2 = Find((a,n,p),k,j)
s if I >0anda(l) #0 then
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« BackElim((a, K, p),k, j,1)
s a(l)=0
6: H(l) =0
7 endif
s end for

As shown, for instance, in line 2 of Algorithm 2.6 a naive Bnéndex search as described in Algo-
rithm 2.8 is used to find the dependengy;. Thereby, rowt depends on rovy if

[>0 and k(l)==j and «a(l)#0

Algorithm 2.7 (BackElim ((a, k, p), k, j, 1) : Back-Elimination)
Require: : CRS representatiofa, , p) of C’ andj, k € V with j < k andl € {p(k),...,p(k) — 1}.
Ensure: : (a, &, p) after elimination oty ;.

u for Iy =p(j) to p(j+1)—1 do
if I3 >0anda(ly)#0 then

s ly =Find (o, K, p), k, k(1))
& if I3 >0 then

5: if Ii(lQ) == Ii(ll) then
5 a(le)+ = a(ly) - al)
7 else

8 a(ly) = a(ly) - a(l)

9: H(lg) = Ii(ll)

10: end if

11: end if

2 endif

13 end for

Algorithm 2.8 (Find ((a, k, p), j, 1))

Require: (a, &, p) of C’ and the indiceg, i € V with i < j.
Ensure: Position! > 1 if exists! such that:(l) == i, or x(l) == 0, otherwisel = 0 of the element; ;
in CRS.

L p= 0

2 found = false

« for [=p(j)top(j+1)—1 do

« if k() ==0and found == false then
5 p = l

e  found = true
7 endif

s If k() ==1 then

oo return [

0. end if

1. end for

12 if p == 0 then

1z print ERROR : CRS Invalidity!
1 end if
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s return p

The algorithm returns an integer value larger than zero epdsition of the target entry in, oth-
erwise zero meaning that no spot is allocated for the tangey.e However, this indicates that CRS
is not valid at the current point for the reasons have beetuded at the beginning of this section.
As an alternative, binary index search can also be applieghwhe ascending ordering &f during
the entire elimination process is guaranteed. This is fem®gle the case when not reusing fill-out
for fill-in according to the Technique 2 as discussed in ®ac2.3. As only rowk = 4 depends
on row 3, single back-elimination af(5) = ¢4 3 is enough to eliminate row 3 yielding the fill-in
04(3) = Cq,1 = C3,1C43 with Ii(g) = 1, the absorptiom(4) =Cq2+ =C32°C43 with Ii(4) =2, and
the fill-outsa(5) = x(5) = 0, (1) = k(1) = 0, anda(2) = k(1) = 0. Additional elimination of row 4
yields (&, &, p) containing the nonzero entries OfF as

f{-,l = OL(G) = C5,1, f{72 = 04(7) = Cs5,2, f2/71 = 04(9) = Cg,1, and fé.,? = Oé(lO) = C6,2 -

Algorithm 2.9 (JExtract ((«, , p), VF) : Jacobian Extraction)

Require: (a, k, p) and the zero JacobiawF = 0.
Ensure: the JacobiaiV F' with numerical values.

1 for j=1to m do

2 for i=11to n do

3 | =Find ((a,k,p),j+n+p,1i)
« if I>0andk(l) ==+ then

_;7, = a(l)
e endif
7 end for
s end for

Thus, the accumulation of the example Jacobian in forwatdrimg needs totally eleven spots instead
of fifteen that are needed to store the entire sub-diagonaixr@'. Thus, we save four memory spots
for this little example. However, our experimental result®w that the savings are more substantial
for larger problems. Once the elimination process termmatdgorithm 2.9 can be used to extract the
JacobiarV F from (&, &, p). Analog, Example 2.3 illustrates the reverse row elimimatidgth a memory
consumption of totally twelve spots as shown in Figure 2)5 (b

Example 2.3. The following CRS is used to accumulafé’ of our example function by reverse row
elimination. Fill-in spotsx(5), a(6), a(7) of the row 5, andx(9), «(10), «(11) of the row 6 are initialized
to zero.
o = (03,15 C3,2,C4,2,C4,3, 0) 07 0) C5.4, 0) 07 0) 0674)
k=(1,2,2,3,1,2,3,4,1,2,3,4)
p=(0,0,1,3,5,9,13)
e Elimination of columnt yields(«, x, p) — 4 as
@ :(63,17 C3,2, 07 05 07 C5,2,C5,3, 07 05 Ce¢,2,Cs,3, 0)
k=(1,2,2,3,1,2,3,4,1,2,3,4)
p=(0,0,1,3,5,9,13)

Withcs o = c42 - C54,C53 = €43 - C5.4,C6,2 = C4,2 - Co,4, ANAcCe 3 = €43 - C6.4.
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¢ Elimination of columr8 yields(«, s, p) — [4, 3] as

o = (05 07 05 07 C5,1; C5_’2, 07 05 c6,1; 66,25 07 0)
k=(1,2,2,3,1,2,3,4,1,2,3,4)
p=1(0,0,1,3,5,9,13)

Withcs 1 = ¢3,1 - ¢5,3,C50+ =32 - C5,3,C6,1 = 3,1 - C6,3, ANdcg 2+ = €32 - C6,3-

Definition 2.2. Given an extended Jacobi&f and a CRS representatiqi, , p). The memory con-
sumption ofC” and(«, , p) are defined as

q
Mem(C") =) (i—1)-pur (2.7)
i=1
and
Mem(CRS) = Mem(a) + Mem(k) + Mem(p) , (2.8)

respectively. Thereby/em(a) = nz-pur, Mem(x) = nz-ur, andMem(p) = (¢+1)-pus, whereur and
wr denote the number of bits for floating-point and integer dgfees, respectivel/ em(-) is assumed
to return the memory size of the argument data type in bitszi@isly, the smaller the number of entire
nonzeros«z) the bigger the memory savings for CRS compared to its depsegentation. In opposite,
memory saving shrinks with increasing that in worst case may end up witiem(CRS) > Mem/(C”)
because of memory overheadxoénd p. However, such situation are unlikely at least for the testesa
considered here as discussed in Section 2.4.2.

So far we have discussed the Jacobian accumulation pronessngpressed row storage represen-
tation of extended Jacobians under the assumption thatitka gremory pattern is valid at the point
of interest. However, the focus of the following section is symbolic step. Therefore, we proposes
algorithms to predict the memory requirement for CRS regrttion of extended Jacobians for a given
elimination ordering. We note again that conservatively eariation in inputs that changes the sparsity
pattern ofC’ requires new memory detection. However, the memory usagains unchanged at all
those points, where the sparsity patterr6fdoes not change. Obviously, one and the same CRS can be
used to accumulate the Jacobian at all those points.

2.4.1 Symbolic Elimination

In the following we present conceptual algorithms and disahem with the help of examples that are
used in this work to predict the memory pattern required &mobian accumulation on CRS of extended
Jacobians, where the resulting memory scheme depends wety om the given elimination orderirg
Therefore, we use thait pattern

BP = BP(C")

representation of the extended Jacoliidnwhich can be obtained from isparsity pattern
P = P(C/) = (pj,i)i,j:L...,q W|th DPj,i S {0, 1} (29)

with 1's denoting nonzero entries. Each rgwe V of BP corresponds to row of P. The latter is
decomposed intd; = [ W blocks of lengthu; as the number of integer bitsBP(j, k) with k €

g

1224
{1,---b;} stores the integer value represented by blocRhe direct dependence of rginon rowi on
BP is given as

i<j¢>pj7i:1<:>BP(j,bi)&26:1,
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whereb; = hilw ande = (i — 1) % py with & resp. % denoting bit-wise AND resp. OR operators as

explained in Notation Summary 2.2. Henceforth, we considland B P as equivalent and prefer to use
1 < j to denote the dependency of rgwon row: on BP whenever appreciate. Moreover, every rpw
consists of one additional elementB#(j, k£ + 1) to store its total number of required memory spots.

Definition 2.3. The memory consumptidiem (B P) of the bit patternB P is defined as

Mem(BP) = i(bj +1)-pr, (2.10)

j=1

whereb; = {iw denotes the number pf-blocks of rowj € V.

Notation Summary 2.2. The following symbols are used in the context of symboliieétion algo-
rithms.

| represents bit-wise OR operation.

|| represents logical OR operation.

% represents the modulus operation.
& represents bit-wise AND operation.
[-] represents round up operation.

&& represents logical AND operation.

1 0 0

0 2 0 0

1 1 3 3 2

0 1 1 4 6 2

0 0 0 1 5 8 0 1

0 001 0 6 8 0 1
(@) (b)

Figure 2.10: Sparsity Pattei (a) and the corresponding 4-bit Integer Bit Patt&hR (b).

As an example let us consider the sparsity pattern and it$ idtbger® i.e. p; = 4 bit pattern
representation of the extended Jacobian of our exampléidemghown in Figure 2.10. Thereby, we have

BP(3,1)=2"+2'"=3; BP(3,2)=2;
BP(4,1)=2' +22=6; BP(4,2)=2;
BP(5,1)=2%=8; BP(5,2)=0; BP(53)=1;
BP(6,1)=2%=8; BP(6,2)=0; BP(6,3)=1.

3We consider 4-bit integers just for illustration purposéealistic number are 32-bit and 64-bits integers dependimghe
underlying hardware.
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Consider row 6 ofBP, it is decomposed int6S] = 2 blocks of 4-bit integers. Hence, the first block
yields the integer valug = 23 stored inBP(6, 1), whereas the second one isBP(6, 3) = 1 indicating
that row 6 requires initially a single memory spot. The defgeity4 < 6 is given asBP(6,1) & 23 = 1.
Thus, the detection of the memory consumption of SJARE irvargorders can be performed by the
application of symbolic row elimination to the initial bigfternB P yielding eliminated bit pattern

BP = BP — ¢ := BP —[o(1),...,0(p)] .

Here, the initialization of the bit pattern is performed idgrthe evaluation process of the underlying
function using Algorithm 2.15 at runtime. Moreover, Algibirin 2.10 eliminates rows dB P in o-order
by symbolic back-elimination of their nonzero entries. Eeforth, we use the notati@ymbolic forward
andsymbolic reverseo refer to the symbolic forward and symbolic reverse rownglation on the bit
pattern, respectively. The former and latter detect thelired amount of memory for accumulating
the Jacobian on the respective CRS in forward and reversgingdas illustrated in Example 2.2 and
Example 2.3, respectively. The respective memory detesfior the former and latter are illustrated in
Example 2.4 and Example 2.5, respectively.

We note that the symbolic algorithm needs to take the memuoys<of fill-out into account. One
way to do this is by keeping the corresponding 1's that werttefasfill-out 1's in BP to yield the entire
memory usage of the given elimination ordering at the enchefdymbolic elimination as described
by Algorithm 2.10. This enables us to keep nonzero entrigsw$ in CRS in ascending order, which is
the case here. Moreover, this would allow more efficient tyifradex search over kappa entries than the
linear one presented in Algorithm 2.8 under, however theragsion that the ordering remains unchanged
over entire elimination process. However, we will consiitethe following the latter as it is also used
in context of iterative approach to deal with the memory lmbum that context keeping fill-out 1's is
not necessary as the ordering of the kappa elements is natedes explained in much more detail in
Section 2.6. In particular, it is enough to maintain the maxin number of nonzeros of rows over entire
iterations. However, how much improvement on SJARE therlgisaarch would contribute remains an
open question.

Now, as an example let us consider the elimination of row 3Poshown in Example 2.4. Bold
1's such agy ; represent fill-in. Fill-out 1's corresponding i 1, ps 2, andps 3 remain unchanged.
Thus, they have to be ignored in further elimination proc&ss instance, additional elimination of row
4 should avoid the generation of fill-ips 3 andpg 3, Sincep, 3 represents a fill-out 1. In other words,
fill-out 1's should not be interpreted as dependencies dutie elimination. Doing this, we get only
four fill-ins (instead of six) by the elimination of row 4 thagsults in total memory spots of eleven. The
identification of a fill-out bit inB P that corresponds to a 1 in the respective sparsity paffecan be
done by introducing a Boolean vector

D e {false,true}?

of length¢ used inAlgorithm 2.10 to mark eliminated row# is assumed to be initially false. After
the elimination of rowj € {c(1)...,0(p)}, we mark row; as eliminated byD(j) = true as shown
inline 3. Hence, @;; =1 € Pwithj € {n+1,...,q},andi € {1,...,j — 1} represents a fill-out
if and only if D(j) = true or D(i) = true. The proof follows immediately from Equation (2.3) and
Equation (2.4), where the elimination of a rgwesults in fill-outsc;, ; = 0 andc;; = O forall j < k and

i < j, respectively. With other words, after the elimination of tow j all nonzeros of row and column
j are set to zero; hence they denote fill-out.

We note that the implementation of symbolic algorithmsdadtrced here might be different. In par-
ticular, we duplicate bit pattern rows to avoid elementenfif-in detection as shown in line 5 of Algo-
rithm 2.12. Therefore, the first instance of a row is suppdsdetep the real dependencies, whereas the
other contains fill-out 1's additionally that would enablmach faster block-wise binary OR) Ever bit
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pattern rows. However, this doubles the memory consumltidnit pattern as our experimental results
will show.

Example 2.4. We illustrate in the following symbolic forward row elimtian as described in Algo-
rithm 2.10 onB P shown in Figure 2.10 (b) that yields the memory pattern of GRS used in Exam-
ple 2.2.

1. Elimination of row 3 yield3 P — 3 with 7 = 20 4 2! + 22 as follows.

1 0 0
0 2 0 0
1 1 3 3 2
1 1 1 4 7 3
0 0 0 1 5 8§ 0 1
0 0 0 1 0 6 8§ 0 1
P-3 BP -3
2. Elimination of row 4 yield8BP — [3,4] with 11 = 2° + 21 4 23 as follows.
1 0 0
0 2 0 0
113 3 2
11 1 4 [
1 10 1 5 11 0 3
1 1 0 1 0 6 11 0 3
P—[3,4] BP —[3,4]

Hence, forward row elimination on the CRS of our exampletionaequiresll = 2 + 3 + 3 + 3 spots.

Algorithm 2.10 (JSRowElim (BP, D, o) : Memory Prediction for SJARE)

Require: bit patternB P, initially false Boolean vectoP of lengthq, and the elimination ordering.
Ensure: BP after the symbolic elimination of all intermediate rowssirorder.

v for j=0(1) to o(p) do

2 SRowElim (BP,D, j)

3 D(j) = true

+ end for

Algorithm 2.11 (SRowElim(BP, D, j) : Symbolic Row Elimination)
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Require: bit patternBP of the extended Jacobiary.
Ensure: BP after symbolic elimination of rovy.

ve=(—1)%u
2 by = H

s for k=qtoj—1 do

« if BP(k,b;)&2° ==1and D(k) == false then
s SBackElim (BP,D, j,k,bj)

e end if

7

. end for

Algorithm 2.12 (SBackElim(BP, D, j, k, b;) : Symbolic Back Elimination)

Require: BP, row indexj, block index/, and bit positionn.
Ensure: filled bit patternB P after front-elimination of the dependen@y — 1) - 7 + m) < j with

v for =110 b; do

2 for m=0to u;—1 do

s i=({—-1)-pur+m

« if D(i) == false and BP(j,1)&2™ == 1 and BP(k,1)&2™ == 0 then
5 BP(k,l) = BP(k,1l) | 2™

o BP(k[E|+1)=BP([£]+1)+1

7 endif

& end for

o end for

Example 2.5. We illustrate in the following the symbolic reverse row détiation according to Algo-
rithm 2.10 onB P shown in Figure 2.10 (b) yielding the memory pattern of th&SCRed in Example 2.3.

1. Elimination of column 4 yieldBP — 4 with 14 = 21 + 22 4 23 as follows.

1 0 0

0 9 0 0

1 1 3 3 2

0 1 1 4 6 2

01 1 1 5 14 0 3

01 1 1 0 6 14 0 3
P-4 BP —4

2. Symbolic elimination of column 3 yieldP — [4, 3] with 15 = 2° + 2! 4 22 4+ 23 as follows.
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1 0 0

0 2 0 0

1 1 3 3 2

0 1 1 4 6 2

11 1 1 5 15 0 4

1 1 1 1 0 6 15 0 4
P —[4,3] BP — [4,3]

Hence, reverse column elimination on CRS of our examplditmequiresi2 = 2 + 2 + 4 + 4 spots.

Algorithm 2.13 describes the CRS construction after thenieation of the symbolic elimination
proceduresJRowElim(BP, D, o) described in Algorithm 2.10. The lines 3, 11, and 12 call thetine
allocate(v,len), which allocates the memory for vector= «, «, p of the lengthlen. Since no local
partial derivatives are evaluated in symbolic medés initialized to zero as shown in line 21. On the
contrary, bothx andp vectors as shown in lines 5, 10, 15, 22, and 28 are initialpregerly according
to the memory pattern given by P. Thereby,o(¢ + 1) = len + 1 in line 10 marks the end ajth row.
For a nonzero row, p(j) in line 15 is initialized to the current counterThe counter incrementation of
line 23 yieldsp(j + 1) = ¢ + nz; denoting the start position of the next rgw- 1, wherenz; represents
the number of nonzeros of royv Fornz; = 0 the counter remains unchanged and thus we@ggt= ¢
as shown in line 28. Is worth mentioning that the correspogdipart of each nonzero royinitialized
in line 22 is in ascending order. Furthermore, we save thmimrdering ofx elements inkzq,., Which
is used to reuse CRS for the accumulafiof’ at another point of interest assuming the CRS validity in
terms of memory pattern for that point. Once CRS is constdigtigorithm 2.14 can be used to insert
local partial derivatives into CRS.

Algorithm 2.13 (ConstructCRS(BP, («, &, p), ksave) - CRS Construction)

Require: Bit patternB P containing the amount of spots for CRS, «, p).
Ensure: Initialized («, k, p) andksave-

rc=1
2 len =0
3 allocate(p,q+ 1)
;for i=11to n do
p(i) = 0;
. end for
:for j=n+1 to ¢ do
len = len + BP(j, [j—‘ +1)
o end for
w p(g+1)=len+1
u: allocate (o, len)
12 allocate (k, len)
wfor j=n+1to ¢ do
« if BP(j, [ﬂ +1) > 0then
s p(f) =c
J

16: bj == E

N o g &

[

i



46 CHAPTER 2. JACOBIAN ACCUMULATION ON EXTENDED JACOBIANS

v for [=1to b; do
18: for m=0to u;y —1 do
19: i:(l—l)-,uj—i—m

20: if BP(], l)&Qm ==1 then
21 alc) =0

2 Ksave(€) = k(c) =1
23: c=c+1

24: end if

25: end for

2 end for

2. else

w  p(j)=c

20 end if

3. end for

Algorithm 2.14 (Put((a, &, p), j, 1, ¢5,1) : Linear Partial Derivative Insertion)

Require: (e, &, p) after construction step in Algorithm 2.13 and the value gf
Ensure: (a, k, p) containing the partial derivativg ;.

v | =Find((a, K, p), j, 1)

2 if 1> 0 then

s If k() ==1 then
«  a(l)=cjy

5. else

6: a(l) =Cji

o k(l)=1

s endif

o end if

Algorithm 2.15 (SPut (BP, j, i) : Symbolic Nonzero Insertion)

Require: BP andindiceg,j € V withi < j.
Ensure: BP with additional entry on rowy representing; ;.

vk = h—]

2: 1{32 = ’Vi—‘ + 1

3 €= (Z — 1) % 1234

« if BP(j,k1)&2° == 0 then
s BP(j,k1) = BP(j,k1) + 2°
s BP(j,k2) = BP(j, ko) +1
7 end if

Algorithm 2.16 (ResetCRS((a, k, p), ksave) : CRS Reset)

Require: (a, k, p), and initial column index vectot,...
Ensure: Reseted CRS to the initial state resulted by Algorithm 2.13;

 for i=n+1 to ¢ do
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2 for l=p(i) to p(i+1)—1 do
« a(l)=0

v k() = Esave(l)

5. end for

e end for

Assumption 2.1. The control flow oft" is fixinI C D.

In the following we focus our interest on the JacobianFoat multiple pointsx € I, for which
Assumption 2.1 holds. Hence, the Jacobiarodit any point in/ can be accumulated on a static CRS
resulting from a single symbolic step as described in thevehg.

Procedure 2.1. The process of sparse Jacobian accumulation on a static mes@d row storage as
shown in Figure 2.11 can be summarized as follows. Here, timeva correspond to the routine calls,
whereas boxes represent the reached state after the rocdihattached to the corresponding incoming
arrows.

e (SYM)Symbolic Mode shown in the left column:
1. BP isinitialized during the evaluation df' at pointx by callingSPut ( BP, j , i ) attached
toarrow 1forallj =n+1,...,qwithi < 5 as described in Algorithm 2.15.
2. The filled bit patterrB P is computed by callingSRowElim(BP, D, o) attached to arrow 2.
3. CRSis constructed by calli@@nstructCRS(BP, (a, &, p), ksave) attached to arrow 3.
e (ACC)Accumulation Mode shown in the right column:
1. CRS is initialized by the evaluation 6t at pointx by calling Put((«, s, p), j,1,c;,:) at-
tachedto arrow 4 foralf =n+1,...,qwithi < j.

2. The eliminated CR&y, &, p) is computed by callingRowElim((a, &, p), o) attached to ar-
row 5.

3. The JacobialV F'(x) is extracted fronta, &, p) by callingJExtract((&, &, ), VF) attached
to arrow 6.

4. The steps 1-3 can be repeated to accumulate Jacobian gtermoint of interest after reset-
ting the CRS to the initial state by callifgsetCRS ((&, &, p), £save) attached to arrow 7.

2.4.2 Numerical Results

In the following we present numerical results on the enticepss of Jacobian accumulation by row elim-
ination on dense extended Jacobians (DJARE) as well as shective CRS representations (SJARE).
Henceforth, we will use CRS in our plots to denote the runttmd memory measurements for SJARE,
which the sum of those of the symbolic and accumulation stdpaceforth, we use the terminologies:

o DEJ to denote the dense extended Jacobian, and

o GFM and GRM to refer to the Jacobian accumulation on DEJ/@R&ward and reverse ordering,
respectively. Here, the entire DEJ/CRS is assumed to fithre@vailable memory. Otherwise, no
Jacobian accumulation is possible in this mode. We refédrisoctase also ason-iterativemode.
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rOperator Overloading‘
y = F(x) in C/C++

vj = p;(vi)i<j

j=n+1--q
A <.
-3 i (763
& . (1 (a .
& <
> 3,
v)
[ Initialized Bit Pattern | [ Initialized CRS |
| BP= P ] | (a,mp)=C" |
v 4
) <
3 S
= !
= =
e SY 5
H. & 5
= P o~
@ AP R
[ss} x5 A
o 06 2 =
o &L & >
2 > = 3
Y < \
[Filled Bit Pattern] :2" [Eliminated CRS]
| BP J 7 | (@rp=C |
O
g <)
2 A
o Ny
: W
M~ @d()
K;{'

[Jacobian Matrix]

v

Figure 2.11: Process of Jacobian accumulation via Elinonaif Rows on CRS imr-order.
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The tests are performed using the C++ operator overloadold¥ALG attached to this work on an Intel
Xeon X7460 @2.66GHz with 4 CPUs, 6 Cores per CPU, 3x3MByt&lazhe, 16 MByte L3-Cache, and
totally 128 GByte RAM representing a node of the linux SMPstéu at Computing and Communication
Center of the RWTH Aachen University.

The state-of-the-art implementation of DALG implementaast all algorithms and ideas illustrated
in this chapter, except for those for reusing fill-out for-fillas explained in Section 2.3. We emphasize
that DALG stores almost all of its internal data structuneshsas DEJ and CRS on heap.

Bratu Problem

As first test case we consider an implementation of the twieedsional Solid Fuel Ignition problem
also known as the Bratu problem from MINPACK-2 test problestiection [ACM91]. As described by
Naumann[Naul1l], the residual function shown in Listingi2.the result of replacing the differential

Py 0%y
Ay=— + —5
4 O + Ox?
in the elliptic partial differential equation
Ay—X-ey=0

with a set of algebraic equations using finite differencerapipnation as basic discretization method on
the unit squar€ = [0, 1]2 denoting the boundary domain. The total runtime and heapanebehavior

of DALG in non-iterative mode are shown in Figure 2.12 (a) &by respectively. The memory plot
(b) indicates the maximum allocated heap memory duringmiieseJacobian accumulation on DEJ resp.

CRS forn = 12,16, ...,100, where the inpuk is an x n floating point matrix. As one can see, the
T ‘ ‘ —
1()4;\ T T T T T ] 10° £ {227 pEy o7 1
- [-+- DEJ,GFM E E CRS s
| |-x- DEJ, GRM o0 F 50 1
£ m 4] P 4
107} CRS, GFM TSl g0t e e
g g CRS,GRM| 6% =" ] @ g % ]
i g e ] g i g ]
. e x = 3| & 4
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n : PROBLEM SIZE
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(a) (b)
Figure 2.12: Runtime (a) and Memory (b) Behavior of DALG ora@rin Non-Iterative Mode.

memory usage of DALG for computing the Jacobian of the diriten@:? x n?) of the Bratu function is
reduced drastically using CRS. The achieved gain on memsalyaut a factor of thirty-one far = 100.
More precisely, fom = 100 DEJ allocates roughly 90167 MByte of memory on heap, whe@RS
needs 2837 MByte for the same dimension. We note again thatupkcate bit pattern rows to keep
right dependencies as well as total required memory assisdin Section 2.4.1. Thus, the gain factor
of thirty-one seems to be reasonable on our 64-bit test maa@scribed above.
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We note that the memory measurements are given as integesvalMByte. Moreover, the memory
usage of CRS in both forward and reverse orderings are appataly the same in all of our experiments
with Bratu. Hence, we present only memory usage of the foimEigure 2.12 (b). To clarify this, let
us have a closer look at runtime and memory data of DALG 6f 52 as shown in Table 2.1. Here,
forward and reverse elimination yield 88800 and 44800rii;respectively. Thus, the respective CRS of
the former require$4000 = 88800 — 44800 more spots, that is, 704000 Bytes as

704000 = 44000 x jup 4+ 44000 x p; for pup =8 and u; =8

Hence, we ge0.67 ~ 704000/(1024)? MByte, which is negligibly small. In an analogous manner, it
holds forn = 100. Obviously, memory usage of DEJ is fixed for both orderings.shswn in (a), the

| Elimination Mode [ Time(DEJ) Time(CRS) #Muls #Fill-in  #Entries  w

Forward @ = 52) 110 sec. 92 sec. 93800 88800 141100 0.531259
Reversei = 52) 39 sec. 15 sec. 49800 44800 97100 0.0657p22
Forward (@ = 100) || 3162 sec. 7159sec. 362600 343392 544684 0.531]108
Reverse® = 100) 1082 sec. 1556 sec. 191688 172480 373772 0.0657927

Table 2.1: Summary of DALG Measurement Data for Bratu.

reverse elimination exhibits better runtime results orhlidEJ and CRS. Thereby, non-iterative forward
and reverse elimination show better runtime behavior onDEdcreasing the dimensionthan on their
CRS counterpart. However, the former can not be used futthieandle higher dimensions because of
the memory bandwidth.

Therefore, let us consider again Table 2.1. As one can seerseeelimination on DEJ is factor of
roughly2.8 ~ % faster than forward one. This becomes clear when consgl#renmultiplication ratio
1.9 ~ 388 The same holds in fact for reverse elimination on CRS thafasr of roughlys.1 ~ 22
faster than forward. We suspect the reason for this mighhbeeetter performance of the linear spot
search routin€ind(-) described in Algorithm 2.8 for reverse ordering with knodde that the forward
elimination yields a factor of roughly.45 ~ 1419 more nonzeros than its counterpart. In order to

97100
analyze this, we compute the average linear search ratio

w:a~w+w with a:Ci1
c

for every call ofFind(-) on CRS withc denoting the current total number of calls. Therdbgenotes
the number of entries on considered rows, where on everyirindicates how many of its elements are
considered until the algorithm terminates. For our exantpis ratio is about 0.53 resp. 0.065 in case
of forward resp. reverse elimination ordering. This shadwed the linear spot search in the former is far
inferior to in the latter. This example illustrates the immce of the spot search on CRS for performance
of SJIARE.

Listing 2.1: Bratu

1void bratu(int n, doublexx x, double 1) {
double h = 1./(n-1);
double r[n][n];
/!l enforce boundary condition
for (int i = 0; i < n; i++) {
x[i][0] = 0.; x[i][n=1] = 0.;  x[O][i] = 0.

© N o o A W N

for (int i = 0; i <n; i++) x[n-=-1][i] = 1.;
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9 /] iterate over inner points

o for (int i = 1; i < (n=1); i++) {

1 for (int j = 1; j < (n=1); j++) {

12 rlillil = 0. — ((x[i+1][j] — 2 = x[i][j] + x[i =1][j]) / (hxh))
13 — ((X[0+1] — 2 = x[i1[j] + x[i1[] —1]) / (hxh))
14 — I exp(x[il[ji]);

15 }

s}

17 /] updating the inner points

1 for (int i = 1; i < n=1; i++)

19 for (int j = 1; j < n=1; j++)

20 x[PiI0il = r[iI0i 0,

In conclusion, it is worth mentioning that the symbolic rolimenation forn = 52 needs totally 10
seconds to predict the memory requirement for the follonaegumulation step, which takes only 5
seconds. Hence, the latter seems to perform twice bettertitigaformer. We note that this behavior is
also observed for the following problem.

Heat Equation

As second test case we consider the objective fungtioR™* — R implemented in lines 20-26 of List-
ing 2.2. Our objective is to accumulate the gradi®ht needed in context of a steepest descent al-
gorithm minimizing the difference between the initial teengture (condition)™® and the distributed
simulated temperaturg™t = F(T°) : R"* — R"® afternt time steps of a simple integration of the
one-dimensiondheat equatiofiHea97]. A bar of given length is heated on one side for some.tiThe
simulated temperature distribution is returned at a nurobeliscrete points denoted byx. The Heat
problem is a linear ill-posed inverse problem. The routin@e_i nt egr ati onin line 9 of Listing 2.2
shows a C++ implementation @f"t.

Figure 2.13 compares both the runtime and memory behavi@AafG using DEJ and CRS for
nx = 10,15, ...,40 with nt = 10 - na. Analogous to the Bratu case DEJ hits the memory bound much
faster than CRS. The respective runtime behavior of botlvdodt and reverse is very similar to that of
Bratu as discussed previously.

Listing 2.2: heat

1// single time step
2 void single_ts (int nx, double deltat, double c,
s double xtemp, double xtempnew) {

4+ for (int j = 1; j < nx; j++)
s tempnew[j] = temp[j] +
6 cknxknxxdelta t«(temp[j+1]-2«temp[j]+temp[j—1]);

7

}

s // time stepping scheme

s void time_integration(int nx, int nt, double deltat ,
1 double ¢, double xtemp) {

u double xtemp.new = new double[nx+1];

12 /[ time integration

1z for (int i = 0; i < nt; i++) {

14 single_ts (nx,deltat ,c,temp,tempnew);

15 for (int j = 0; j < nx+1; j++) temp[j] = tempnew[j];
s}

v delete [] tempnew;
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8 }

19 // Objective function

20 void f(int nx, int nt, double deltat, double c,
as double xtemp, double xtemp.obs, double &cost) {
2 time_integration (nx,nt,deltat ,c,temp);

23 cost = 0.0;

24 for (int j = 0; j <= nx; j++)
25 cost += (temp[j}temp.obs[j])=«(temp[j]-temp.obs][j]);
2 }
——— ‘ ‘ — T ‘ ‘ —
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Figure 2.13: Runtime (a) and Memory (b) Usage of DALG on Hedton-Iterative Mode.

As summarized in Procedure 2.1 the CRS can be reused to ataterdacobians of one and the same
function at different points, assuming the unchangeghilithe control flow of the target function. The
function f represents exactly such a function. Figure 2.14 preseatsidan runtime

Z;‘:l tj

7

g(i) =

for computing the gradieri¥ f of f in the context of the steepest descent algorithm mentiobedea
Therefore, we manage to compWi& in reverse mode on DEJ resp. CRS at every iteratiofthe
algorithm fornz = 40 andnt = 400. As one can see the overhead of the symbolic step on CRS
is compensated in the accumulation step as proceeding teithtions, whereas DEJ behaves almost
consistently.

In conclusion with respect to our numerical results, we okestthat DEJ tends to hit the memory
limit very quickly. Here CRS can be used to yield better doititg by exploiting the sparsity of DEJ,
which improves the memory consumption substantially. H@xethe reader may agree that even the
capability of the SJIARE is limited by the memory consumptibthe bit pattern. Section 2.6 will present
our idea for handling this problem. Nonetheless, in bothsatered test cases we also observed that the
gain in runtime on CRS gets asymptotically smaller compavigid DEJ when increasing the dimension
of both problems. We conjecture the reason to lie in the fa&t increase im results in larger search
space for dependencies (largg¢as shown in line 1 of Algorithm 2.2 and line 1 of Algorithm 26 DEJ
and CRS, respectively. Moreover, we note that on CRS findiegiependency of a particular row on
another as well as finding a spot for an entry is done with alie@erhead, whereas DEJ needs O(1) in
both cases. Hence, the performance of SJARE seems to depgnehuch on the efficiency of the spot
search andhe size of the search spacas well. The impact of the latter on the performance of SJARE
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becomes more clear in context of parallel Jacobian accuionlan non-iterative fashion as introduced
below.

T T T T T
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Figure 2.14: Mean Time of DALG on Heat using DEJ resp. CRSifor= 40 andnt = 400.

2.5 Parallel Jacobian Accumulation

The focus in the following is on finding approaches to paliaileg the Jacobian accumulation process
discussed in the previous chapter, which we refer tparallel Jacobian accumulatioPJA) [VNO7].
For simplicity, ideas are illustrated a#r of F' defined by Equation (1.13). However, the correspondence
between DAG and both internal representations DEJ and CB&here along with the respective elimi-
nation algorithms have been explained in detail previously

Thus, we introduce in the following two ideas for parallglg vertex elimination onG. We still
assume that7 fits entirely into the available memory. Thus, eliminatiohadl intermediate vertices
Z in serial fashion yields the bipartite gragh = G — Z with edge labels representing the entries of
VF(x) as discussed in Section 1.2. To support the discussion leeidvto address issues related to the
parallelization of vertex elimination let us consideiof Figure 2.15 with vertices

V=A{1,...,14}, where X ={1,...,6}, Z={7,8,...,13}, and Y = {14}

Clearly, the elimination of intermediate vertices yieltie tomplete bipartite grapf with X andY’
as source and target vertices, respectively. Let us canee two disjoint decompositiong; =
{7,8,9,10} andZy = {11, 12,13} of Z representing twwertex decompositiorsf G. Obviously, Z;
and Z, can be eliminated simultaneously for instance by processesnd P, as there is no mutual
dependency among their vertices. The resulting DAG aftermptirallel elimination process is given by
G=G—(Z1UZ).

Let us now considefs in Figure 2.16 (a), which is a modified version@fin Figure 2.15, where/;
and Z, are not independent anymore because of the €@lg2). We refer to such an edge connecting
vertices of two different decompositions &fasout-of-range Now, let us assume thd and P, still
try to eliminate vertices 9 and 10 in parallel. Thereby, it tappen thaf9, 12) is accessed iread and
write fashion by P, and P, respectively or vice versa. This is a typical caselafa race where the
chain rule correctness can not be guaranteed anymore. $tanae, while back-eliminatin®, 12) of 9
by P, process?, may acces$§9, 12) to get the value of the local partial derivative attached,tehich is
needed for back-eliminating 2, 13).
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Figure 2.15: Parallel Vertex Elimination with no Commurtioa.

One way to solve this problem is to have the concerned preséssand P, communicate with each
other. For instance?; eliminates vertex 9 whilé, waits. Thereby, fill-in(7, 10), (8, 10), (7, 12), and
(8,12) are generated as shown @ — 9. We note that the communication here doesn’t have to be a
blocking one asP, can eliminate 11 and 13 while waiting for a signal frdpp in order to eliminate
12 as well. Unfortunately, eliminating vertex 9 not realgduces the communication cost as fill-ins
(7,12) and(8,12) are also out-of-range ones; this means even further conuaion betweerP; and
P», which may slow down PJA significantly. The easiest way touwinvent this problem is to avoid the
elimination of all those intermediate vertices incidenbtd-of-range edges that we refer toagical
vertices Nonetheless, this may decrease, on the other hand, theemwhleliminatable vertices of
the respective decompositions and thus affect the loachbialg. For our example, this could result
in Z; = {7,8,10} and Z, = {11,13} yielding G — {7,8,10,11,13}. Thereby, P, eliminates two
vertices, wherea$ does eliminate three. Thus, out of the total of seven intdiates two remains
in G —{7,8,9,11,13} and five are eliminated. Hence, a further elimination stapeisded to yield?.
However, in practice, it is very likely that multiple level§parallel vertex elimination sessions are needed
on the way ta7 as discussed below.

2.5.1 Atomic Decomposition

Due to the problem related to out-of-range edges discudsedkakeeping their number minimal is an
important and a more challenging task. In this step the madénd is on having balanced decompo-
sitions [MK08, CP08] to optimize the computational and commfgation cost in concurrent processes.
However, in the following we assume the decompositions theeesult of user-driven (hard-wired) code
instrumentation marking parallel fragmentsof which we assume to be at the loop level. An example
instrumentation is given in lines 16-19 of Listing 2.4. Mafetail on this is discussed in Section 2.5.4.
Nonetheless, in general we are looking for a decompositio@@ into » atomic subgraphslefined as
follows.

Definition 2.4. Given DAGG = (V, E) of F as defined by Equatiori (13 with topologically ordered
verticesV. We sayG is atomically decomposabiéthere exists subgraphs

G;=(Vi,E;) with V2Vi=(X;uY;UZ%Z) and E; CE, (2.11)

whereE; NE; =0andZ; N Z; = 0 fori,j € {1,---,v} suchthatV = {J;_, Vi andE = |J,_, E;.
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Figure 2.16: Parallel Jacobian Accumulation with Commatidam (a) and Reduction (b), respectively.
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Strictly speaking, a subgraph is atomic if all of its edges among vertices of that subgraph. Moreover,
X; andY; represent the local independent and local dependent we=ti€ the subgrapty;, respectively.
Furthermore,Z; = V; — (X; U Y;) represents the set of intermediate verticegpthat can be locally
eliminated. ThusX;, Y;, andZ; are mutually disjoint, whereby their vertices are suppadsdak mutually
independent as well. We call subgraghiisandG; neighbors forj = ¢ + 1.

Hence, we get the atomic subgraghs = (V1, E1) andGs = (Va, E2) as shown in Figure 2.16 (b)
for G of Figure 2.15, where

Xl = {15 274}5 Zl = {758795 10}7 Yl = {14}7
Xo = (3,56}, Z»={11,12,13}, and Y, = {14}

Here, the vertex 14 is the common vertex of both subgrahhandG,. However, this does not affect the
parallelization in terms of data race during the eliminafmocess as it is not eliminated by any of the
processe®; andP,. Hence, eliminating vertices, andZ; in parallel byP; andP; yieldslocal bipartite
graphsG; andGs, respectively. FinallyG; andG, are reduced t6:. The reduction step depends very
much on the type of involved atomic subgraphs that will bewksed below.

Under the assumption th&t of F' can be atomically decomposed intcatomic subgraphé:;
(Vi, E;) withi € {1,...,v}, F can be considered as a compositiondéinctions

F,:R" -R™ . w=F(v) with v=X; and w=Y;

with n; = | X;|, m; = |Y;| such thatX C (J;_, X; andY C |J;_, ;. The notatiorv = (v1,- -+ ,vy,,) =
X; [w = (w1, -+ ,wn,) = Y;] denotes that the vector elementsvoffw] are represented by verticég
[Y;] of G;. Thus, we get the local bipartite graph

Gi= Vi, E)=Gi — Z;

by eliminating its intermediate verticgs. This corresponds to the local application of Baur's formula
defined by Equation (1.16) yielding each entry

Ow.
fz'/,j,l = aivl](v) = Z H Ck,p

we{l—j} (p,k)em
of thelocal Jacobian
m; Xn; _ — j=1,...,m;

(R™i*™ 3) VF; = VE(v) = (filyj-,l)z:L...,m
as the elimination of all paths connecting an independent vertexc X; to a dependent ong €
Y;. Hence,G can be obtained front; in the reduction step. Here, we consider four types of atomic
decompositions as illustrated in Figures 2.17. Howevex,rdduction is performed in general by first
combining multiple local bipartite graphs tocamposition graptaccording to Definition (2.5) followed
by eliminating the resulting interface vertices, yielditig respective bipartite graphs as illustrated by
CASE 4.

Definition 2.5. Given atomic DAG$7; = (V;, E;) defined by Equatior2(11) fori ¢ M = {1,...,v}
with sets of independeny;, dependeny; and intermediate vertice8;. The notation

G(S) = (V(5), E(S)) = (Gj) (2.14)

JES

with S C M denotes the composition DAG consisting$jfatomicsG; with j € SandV (S) = U,c5 V;
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Figure 2.17: Reduction Step for Two Atomic Subgraphs slgdriterface Vertices.
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and(J, ¢ E; such that

X(S) = U X, — Inter face(S), Y(S)= U Y; — Interface(S), and
JES JES
Z(S) = U Z; U Interface(S) with Interface(S) = U (X;NY)U((X;nY;)
Jj€eS i#£jES
As an example let us considérin Figure 2.18 (a) with
X =1{1,2,3}, Z={4,5,6,...,19}, and Y ={20,21}

that is decomposed into totally four atomic subgraghsG,, G3, andG, as

X1 ={1,2,3}; Z;={4,5}; Y1 ={6,7},

Xo={6,7}; Zo={89}; Yo={10,11,12},

X5 ={10,11,12}; Zs={13,14}; Y3 ={15,16,17}, and
X, ={15,16,17}; Z,={18,19}; Y; = {20,21}

Thus, application of the vertex elimination locally to théographsG; for i = 1...,4 of G yields G;

with edge labels representing the entries\aff;. As one can see, our example DAG has the property
that dependents of a subgra@h serve as independents of its next neigh@r, that is,Y; = X;1.
Such a decomposition will be the main focus in the followi@pviously, the functiong’; and F; with

j =i+ 1 corresponding tér; andG; have the property that the outputsigfserve as inputs foF; for

i€ {1,...,v} with x; = x andx; = y; such thatF’ can be represented as the chain

y=F(x)=F,0...0F(x)
TherebyG; andG; shareY; as their interface vertices. Moreover, we have
X;=Y, X,nX;=0, and Z;nZ; =10
Consequently, the Jacobi& ¥ can be computed as chained product
VF=VF, x---xVE

of local Jacobian&/ F;. Hence, dynamic programming [GNO03] (DP) can be used to dpéitihe num-
ber of performed multiplications (MULS) by finding an optihtaacketing scheme. As shown in Fig-
ure 2.18 (b) the dense chained matrix product applied to xamele yields the following two optimal
bracketings

VFy x (VFg X (VFQ X VFl)) and VF; x ((VF3 X VFQ) X VFl))

resulting in 42 MULS, instead of 54, 54, and 63 MULS for theethremaining ones. The application of
the sparse method to the former yields 20 MULS, instead 022433, and 37 MULS for the four others.
It is worth mentioning here that the product of two local JsaasV F; andV F}; with j = ¢ + 1 can be
interpreted graphically as back-elimination of all inesigé vertices inY; resulting in their elimination
from G. For instance, vertices 15, 16, and 17 in Figure 2.19 are rethag a consequence of back-
eliminating all inedges of 20 and 21. Thereby, the producheffirst row ofV £y with first column of
V F; realizes the back-elimination ¢15,20) and(16, 21).

We note that the order in which vertices of an interface aimieated is not important as they are
assumed to be mutually disjoint. This means that any elitiinardering yields the same number of
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Figure 2.18: Vertex Elimination on Atomic Subgraphs (a) podsible Bracketing Schemes (b) for the
resulting local Jacobians. Entrigs: b] below of Arrows in the Former denote the resulting Number of
Multiplications (@) resp. Fill-in ().
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multiplications as well as fill-ins. However, this is notérin general, especially when we reduce more
than two local bipartite graphs, that is, reducing vertimesultiple interfaces at once.

Henceforth, we do not distinguish between a given bracgetaheme and the resulting vertex elim-
ination. The optimal sparse chained product of concernetdcea (local Jacobians) of Figure 2.18 (a)
are exercised in Example 2.6. The respective vertex elitioimés shown in Figure 2.19.

Example 2.6. In the following we apply the optimal bracketing scheme
((VFy-VF3)-VF,)-VE

resulted from DP to the local extended Jacobiank; for i = 1,2, 3, 4 corresponding to the local bipar-
tite graphsG; as shown in Figure 2.18 (a). Thereby, we show the correspured® vertex elimination
in Figure 2.19. For this, we considé¥s in (a) consisting of74, andG3 such that

X5 ={10,11,12}, Z5={15,16,17}, and Y; = {20,21}
Hence, computing the product

VFs =VF,-VE;3

€15,10 0 0
:(020,15 €20,16 0 ) e16.10 0 0 :(020,10 0 0 )

C21,15 C21,16 C21,17 0 C21,10 C21,11 C21,12
Ci7,11  C17,12

corresponds to the elimination of vertic&gs at a cost of six MULS, where
C20,10 = €20,15 - C15,10 + €20,16 - C16,10, €21,10 = C21,15 - C15,10 + €21,16 * C16,10,
C21,11 = C21,17 - 17,11, and c21,12 = ¢21,17 - C17,12

represent the labels of the fill-in edgé0, 20), (10,21), (11,21), and (12,21) in (b), respectively.
Thereby, the product of the first row BfF,, with first column ofV F; results in the elimination of (15,20)
and (16,20). Likewise, the elimination of verticgsof G with

X¢=1{6,7}, Zs=1{10,11,12}, and Ys={20,21}
cab be interpreted as the product of

C10,6 C10,7
€20,10 0 0 ' ' C20,6 C20,7
VFs =VF5-VFy, = ’ : 0 Ci,7 ) = ’ ’
C21,10 C21,11  C21,12 0 Clo.7 C21,6 C21,7

yielding six MULS with

€20,6 = €20,10 * €10,6, €20,7 = €20,10  €10,7; C21,6 = C21,10 - C10,6, and
C21,7 = C21,10 - C10,7 + C21,11 * C11,7 + C21,12 - C12,7
representing the labels 66, 20), (6,21), (7,20),and(7,21) in (c), respectively. Finally, we get the entire

bipartite graphG shown in(d) by eliminating the intermediate verticé% = {6, 7} with X; = X, and
Y; = Y; at a cost of eight MULS as

C20,1 = C20,6 " C6,1 + C20,7 " C7,1, C20,2 = C20,7"C7,2, C20,3 = C20,7" C7,3,

C21,1 = C21,6  C6,1 + C21,7 - C7,1, C21,2 =C21,7-Cr2, and c213=co17-Cr3
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Figure 2.19: Vertex Elimination corresponding to the optifdracketing Scheme.
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Elimination Mode MULS Fill-in

GFM 57 47
GRM 38 29
LFM 55 42
LRM 36 31
LFM+DP 38 32
LRM+DP 37 31

Table 2.2: Multiplication and Fill-in Comparison.

These represent the entries of the target Jacobian

Co 20,7 c61 0 0 C20,1 C20,2 C20,3
VEF =VF, =VFs-VF, = [ 206 7207} (%6 - : , 3
C21,6 C21,7 Cr1 Cr2 C73 C21,1 C21,2 C21.3

Hence, the Jacobian is computed at an optimal cost of totainty MULS.

To summarize and complete the discussion related to velimination on atomic subgraphs we
consider Table 2.2, which compares the resulting numbemdtiplications and fill-ins of different elim-
ination orderings orG of Figure 2.18 (a). Here, GFM and GRM mean that the verticesf G are
eliminated as usual in forward and reverse fashion. LFM [JRidicates local elimination of intermedi-
ates on subgraph; fori € S = {1,...,4} in forward [reverse ] ordering followed by eliminating the

entire intermediateg (S) of the remaining DAGG(S) = (G‘l, e 6'4) with

X(S)=Xy, Z(S)={6,7,10,11,12,15,16,17}, and Y(S)=Y,

as shown in Figure 2.19 (a) at once in forward [reverse] otdereover, LFM+DP [LRM+DP] eliminates
Z;of G, fori = 1,...,7 according to Equation (2.14) in forward [reverse] ordersamutively, where
the decomposition

Gs = G({3,4}), G¢=({2,5}), and G =G;=({1,6})

results from the optimal bracketing scheme using DP as séstlin Example 2.6.

For this example, we observe that GRM and LRM yield the sraatieamber of fill-in and multiplica-
tions, respectively. However, the decomposition of the D@ local elimination on subgraphs seem to
improve both operation and memory usage of global forwadeng. In the reverse case the former is
improved as well, whereas the latter gets close to the réspegobal version. We note that in the case
of LFM [LRM] we [would] get 18 [17] for the number of multiplations as well as for fill-iné as shown
in Figure 2.18 (a). Hence, the remaining number of 37 [19}iplidations and 24 [14]fill-ins result from
the elimination ofZ(.S) vertices in forward [reverse] order.

2.5.2 Pyramid Approach

In the following we present our fist idea for parallelizingtiiertex elimination on atomic subgraphs.
Here, thepyramid approactrealizes a level-based parallel vertex elimination thatescribed in List-
ing 2.3.

Listing 2.3: Pyramid Algorithm
1d= (logﬂ N-| ;

“We left the calculation of both multiplication and fill-in mbers for LRM to the reader.
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2 // Sessions
sfor 1=0,...,d
4+ if (1==0)

5 Ny=N
6 for j=1,...,NV;
7 Gh =G,
s else
9 N, = [—Nl[;l—‘
10 // Decomposition Step
1 for j=1,....N;
- ~l—1 ~l—1
2 Gy = (GG e G

13 // Elimination Step
1w for j=1,...,N;
15 G~lj=Glj—ZJl-

Therefore, we assume thatandg are given, where

e N denotes the number of initially atomic subgraphssiand

e [ represents the maximum number of atomics that can be conhtiigether at the decomposition
step as shown in lines 11-12.

We illustrate the pyramid algorithm o given in Figure 2.20 fotN. = 7 andg = 3. At the lowest
levell = 0 (lines 4-7) the computational gragh consists of seven\ = Ny = 7) atomic subgraphs
GY = G4,...,GY = G . Henceforth, we use the terminologgssiorto refer to a level € {0,...,d}
of pyramid algorithm with

d = [logg N| (2.15)

denoting the maximum number of sessions being tde=(2) for our example. In general, a session
consists of a decomposition followed by an elimination stepere forl = 0 the decomposition step is
not performed a&: is assumed to be initially decomposed. Thus, decompositisassior > 0 yields

Gi=(G1) o owith S={(G-1)-B+1,....5-5)

€S

for j = 1,..., N; with N; denoting the number of subgraphs at sessiaa shown in line 9. In other
words, the decomposition at the levas nothing else than building the composition of DAG accogdi
to Definition (2.5) out of3 consecutive (neighboring) eliminated subgraphs reguftiom the previous
sessiorl — 1. Obviously, only the elimination steps of sessiéns 0, ...,d — 1 can run in parallel with
a maximum number aN; processes, which decreases by increase in

We note here that the execution of the pyramid algorithm eawisualized as #—ary tree [Sto01]
with subgraphs denoting tree nodes that represent job® l@sdone by processes. One can easily figure
out thatd in Equation (2.15) denotes exactly the depth of thisary tree. An example is given fgr = 3
in Figure 2.20.

Thus, applying the vertex elimination as described in libésl5 to all seven subgraphs in parallel
using three processdy, P, and Ps yields GY, ..., GY representing the eliminated DAG® = G —
U:Zl Z? at sessiort = 0. The sessioi = 1 starts first with decomposition ¢¥° into three subgraphs

G};(ég,ég,ég), G;;(ég,ég,ég), and Gg;(ég) with
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Figure 2.20: Pyramid Approach on a DAG with initially sevetofic Subgraphs using three processes.

Xi=X) zi=YPuys; Y=Y,
X; =X Zy=Y/UY]; Yy =Y, and
X3 =Xp; Z3=0; Y3 =Y/

Hence, elimination at this level yields!, G}, andGy in G' = GO — [J2_, Z!. In a similar manner, we
get the desired bipartite grajgh = G? at! = 2 as the last session by eliminatiag vertices fromG?,
where

Gi=(Gl,....Gl) with XP=X!, z=Y]uY), and Y?=V]

Obviously, the elimination at this level proceeds seridlfypractice, it may make sense to jump prema-
turely to serial elimination , rather than processing uihid last session, to avoid unnecessary decompo-
sition overhead.

Lemma 2.2. Given a DAGG = (V, E) as defined by Definition (2.4) witN atomic subgraphs. Let
B denote the maximum number of atomics that are to be combagedher at level$ > 0 of pyramid
algorithm shown in line 12. Furthermore, let's assume ufiihmation cost ofc on all subgraphs in
pyramid process. Hence. the achievable speedup Mitireads can be computed as

27:0 Ny
S(P)=—=1=0_"1_ (2.16)
Yo [ %]

with d denoting the total number of sessions as defined by EquatitB) (
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Proof. Let T'(1) andT'(P) denote the resulting runtimes using one (serial) &ngbarallel) processes,
respectively. Obviously, the total number of subgraphs #ne to be eliminated is given byj:o N,
yielding a total serial time off'(1) = 27:0 N; - c. Moreover, execution of tasks at every session
[ =0,...,dvia P processes can be performed at a cosﬁ%ﬂ - ¢, which results in the total paral-
lel time of T'(P) = S0, [24] - ¢. Thus, following Amdahl’s law [Amd67] we get

S(P) = T(l) — Zld:O Nl - C _ ZldzoNl

T(P) s (M) 3F %]
O

Lemma 2.2 yields the speedup that can be achieved by the yagproach under the assumption of
unity elimination cost on all considered subgraphs. Hefuwzehe example above withh = 7 ands = 3
using three processes we would expect to get a speedup tdfidea

1 11
T34l 11,

51+ 151 +151 5
In the same way, we get a speedup of 2.75fc£ 6. Thus, duplicating the number of processes improves
the speedup by a factor of 1.25. The best speedup of rodgbyfor this example can be achieved with
P = 7 that guarantees enough processes to handle all tasks gi@warsimultaneously. However, this
is not likely in practice. On the contrary, often the numbkawailable processes is far smaller thatn the
number of tasks, which might affect the speedup of this eggir@onsiderably.

2.5.3 Master-Slave Approach

The master-slave approach [BBWO04] consists of two stepagheeliminationandreduction which are
illustrated for four types of atomic decompositions in Fig@.17.

As an example we consider the atomically decompased Figure 2.21 being the same as in Fig-
ure 2.20. Thereby, the vertex elimination 6 for i € {1,...,7} yielding G; is performed by three
slaveprocesse$’, P», andP; in parallel. All three processes get first three atomics dintgireate their
local intermediates, wherel¥; and P, are done simultaneously but earlier thian This may be caused
by the difference in the workload of involved processes.eAfermination ofP; and P, the resulting
local bipartite graphg; andG are send to the mastek£), which reduces them t6' by eliminating
Z'=Y,onG! = (G‘l, (?2) yielding G*. Each slave, for instand@ , gets the next tasis immediately
after termination of its previous job. It is worth mentiogihere that the master has to check weather the
eliminated subgraphs are reducible or not. For instaneetetiuction ofG', G3, andG’ at once is not
possible sinc&'s do not share any interface vertices with the first two. Thusster reduces onlg; and
G5 to G? and then, after receiving, can reduce it along with', andG's to G3. Finally, after receiving
G and G5 all subgraphs are reducedd representing the desirgd. Thus, totally seven elimination
and four reduction steps are performed to yield the entjpartie graph.

2.5.4 Numerical Results

In the following we present some numerical results on PJAémented in DALG. Here, we implement
pyramid approach witl# = 2 described in Section 2.5.1 using thleared memory parallehodel with
OpenMP [CDK"01] on our test system as described at the beginning of $e2tib2. Nonetheless, we
conjecture that the master-slave to be a more suitable apipifordistributed memory parallahodels
such asnessage passing interfa@PI) [Pac96, GLS99], which is the focus of ongoing implenadion
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Figure 2.21: Master-Slave Approach on a DAG with initialgven Atomic Subgraphs using four pro-
cesses.

activities for DALG. In addition to that, we aim to apply albgbrid approach [M1, Qui03] using MPI
and OpenMP at node interconnect and inside of a node, régggctin this way, we hope to achieve
better scalability and performance.

As test case we consider a light modification of Bratu funttiiven in Listing 2.4. As discussed at
the beginning of this section the decomposition in atomlegsaphs are supposed to be done via code
instrumentation by the user as shown in lines 16-19.

Thus, the compilation of Bratu code in C++ with predefinedypoeessor variablBARALLEL _MODE
results in call olnew.at om c() for everyi - s iteration of the loop in line 10 with < s < n — 2.
The routine is supposed to mark previously generated sphg@fa, as atomic after executing the s-th
loop fori € {1,...,n —2}. Hence, totaIIy["T*Q] atomic subgraphs are generated by calbngt u for
a particulam. Hence, we get — 2 subgraphs fog = 1, which is the case for tests performed below.
Obviously, the size of local subgraphs grows withvhereas theirs total number decreases. Hesce,
can be used to change the workload of concurrent processt®was in Figure 2.22 (f). Moreover, we
manage to combine two neighboring eliminated subgraphs ¢ in Listing 2.3) before proceeding with
the next parallel session.

Listing 2.4: Instrumented Bratu

1void bratu(int n, doublexx x, double |, int s) {
double h = 1./(n-1);
double r[n][n];
/I enforce boundary condition
for (int i = 0; i < n; i++) {
x[i][0] = O.; x[i][n-1] = 0.; x[O][i] = 0.;

~ o o A~ w N
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s for (int i = 0; i <n; i++) x[n=1][i] = 1.;
s // iterate over inner points

o for (int i = 1; i < (n=1); i++) {

1 for (int j = 1; j < (n=1); j++) {

12 rlillil = 0. — ((x[i+1][j] — 2 = x[i][j] + x[i =1][j]) / (h=xh))
13 — ((X[0+1] — 2 = x[i][j] + x[i1[] —1]) / (hxh))

14 }f s exp(x[T][]]1);

16 #if (PARALLEL_MODE)

17 if (i%s == 0)

18 new_atomic () ;

19 #endif

20 }

2/l updating the inner points

2 for (int i = 1; i < n=1; i++)

23 for (int j = 1; j < n=1; j++)

2 x[P100] = r[il0J ]

s}

Let us now consider Figure 2.22 (a) resp. (c) representingme results of PJA of Bratu function by
DALG in forward mode on DEJ resp. CRS using one (LFM #1) andhte{§FM #8) threads, which
we compare with the corresponding global forward elimmatrdering (GFM). Analog, proceeds in
(b) and (d) for reverse elimination ordering denoted by LR\ &RM, respectively. On both DEJ and
CRS, the runtime gainings achieved by local elimination #tamics) by a single thread is in order of
magnitude better than the global one. Therefore, consigéfable 2.3 LFM#1 [LRM#1] on DEJ is
about a factor ofl5.5 = % [5,3 = 120—0832] faster than GFM [GRM], which could be surprising at first
glance. Thus, the achieved high runtime gainings does ot $e be the benefit of parallelization. We
conjecture it to be rather caused by the much smaller sepextedor dependencies needed to eliminate
a particular row on atomic blocks than on the entire DEJ. &bgrthe elimination ofp intermediates
can be performed at computation cost@(fp - ¢?). A single rowi € Z can be eliminated at a cost of
(i—1)-(¢—1) < ¢*, whereas in case ¢fatomic decompositions the same intermediate can be eliedna

atacostofi—1)- % < % yielding a total cost 0O(p - %). Hence, we may gain theoretically a factor
of t = 98 for n = 100 in searching after dependencies just by decompositioneafitinerlying matrices.
Moreover, the gainings are more substantial on CRS in baotbeia and reverse modes that we believe to
be a consequence of sparsity exploitation. Thereby, evergtit1.7 ~ 315299 times less multiplications
are performed in forward mode than in reverse mode the lateyughly2.1 ~ % times faster than
the former, which we attribute to the better performancéra&dr search by an average factor of roughly

3.8 ~ %. Hence, the real achieved speedup using eight threads imfdijineverse] mode on DEJ

Elimination Mode || Time(DEJ) Time(CRS) #Muls  #Fill-in  #Entries  w |

GFM 3162 sec. 7159 sec. 362600 343392 544684 0.531108
GRM 1082 sec. 1556 sec. 191688 172480 373772 0.0657927
LFM (#1) 204 sec. 30 sec. 185402 166194 367486 0.321536
LFM (#8) 121 sec. 17 sec. 185402 166194 367486 0.321536
LRM (#1) 203 sec. 14 sec. 318290 299082 500374 0.0843
LRM (#8) 118 sec. 9 sec. 318290 299082 500374 0.0843

Table 2.3: Summary of Measurement Data for Bratu in ParkltEle forn = 100.

and CRS is roughly.6 ~ 21 [1.7 ~ 2%]and1.7 ~ 2 [1.5 ~ 1] as shown in Figure 2.22 (e). The

optimal speedup from Equation (2.16) with eight threadshim ppyramid model for. = 100 yielding
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n — 2 = 98 atomics forg = 2 would be

98+49+254+13+7+4+2+1 *@"‘686

T BT+ B+ (BT + T3] + (1 + [+ T3] 2
Thus, we observe that the parallelization itself does netrsto perform well as desired. Moreover, a
closer look to the line 12 of the Bratu function shows that[#[j] contributes directly to an output.
The latter may depend on common independents, but not onatgheh Moreover, no independent is
overwritten in the for loop. This case is illustrated in CA$Bf Figure 2.17. Hence, the reduction step
is nothing else than absorbing edge labels with no vertexiedition because of empty interfaces.

To conclude the discussion on PJA, we illustrate in Figu?2 2f) the impact of workload on runtime
of parallel mode forn = 100 ands = 1,2, 4, 6, 8, 10 with s denoting the block sizes. The respective code
fragmentis shown in line 17 of Listing 2.4. We observe thatéasing the sizes) of atomic blocks slows
down the parallelization considerably on both DEJ and CRSpectively. We believe that the reason
for this lies again in the increasing size of search spacesubmatrices, which grow asincreases.
Nonetheless, we observed so far that PJA has the potentiakcilerate the Jacobian accumulation on
both DEJ and its CRS counterpart considerably. As suspexttéide end of Section 2.4.2 the main
contribution to the speedup seems to be a side effect of snsdhrch spaces for dependencies within
(atomic) sub-matrices. However, we did not observe therdteal factor of roughly seven as defined
by Equation (2.16) with eight threads for our test case. ldehather research is planned to be invested
on improving the performance of PJA using Pyramid approach.

2.6 lterative Jacobian Accumulation

Sparsity exploitation of extended Jacobians using theesponding compressed row representations
tends to decrease the memory consumption as our experimesiéts previously have shown. How-
ever, our assumption so far was that there is enough mematgite the entire extended Jacobian or its
bit pattern/CRS of the underlying function. Thus, we arkistithe situation, where the memory bounds
the capability of Jacobian accumulation, which is the maimmon problem of any AD approach that
aims to accumulate derivatives on any kind of internal repnéation. In the following we present iterative
Jacobian accumulation to deal with this problem.

Here, we use the DAG representation instead of the exteratmabian
that are conceptually equivalent as discussed at the bagimf this chap-
ter. For illustration, we conside¥ in Figure 2.23 to represent the DAG of
our example function fon = 2. Its independent and dependent vertices are
given by1,2 and9, 10, respectively. Hence, elimination of the intermediate
vertices3, 4, 5, 6, 7, 8 yields the complete bipartite gragh= K- with 1, 2
as source angl, 10 as target vertices. Edge labels are missing in the following
examples just for simplicity Let us assume now that only thiegsaphG'; as
shown in Figure 2.24 with verticels . . ., 7 along with their incoming edges
fits into the available memory. Now, we eliminate verticemirG; to free
memory. Therefore, we nedalcal information about eliminatable vertices Figure 2.23: DAG ofF
of_G_7. As mentioned above_th_e vertl_claand2 are mo_le_pendent and hence nQefined by Equation 1.18
eliminatable. We can not eliminafeeither because it is not locally detectablg,, ,, — o
if itis used later or not. A DAG vertex is used if it appears gsedecessor of
some other vertices. The same argumentation holds in fattéoverticest, 5, and6, which are known
to be alive as they represent the current instancesaaf, andx, of F, respectively. Consequently, they
may be multiply used during the evaluation proces$’pfuch that we have to mark them also as not
eliminatable. Thus, we gétas the only eliminatable vertex. Its elimination yietds by the generation
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of the new edgél, 4) followed by deleting verteg and its incident edggg, 3), (2, 3), and(3, 4). Hence,
we gain memory for two edges, which enables us to add thexv@meth its incoming edge$7, 8) and
(6,8) into G yielding Gs. We know also that vertex ands correspond to the same program variable
t with 8 representing its current instance, which implies thig not alive anymore and hence can be
eliminated. After the generation of vert&and after single use of vertédxwe mark it as eliminatable
in Gg as it corresponds to a temporary (not program) variable iNow, we eliminatet and7 and yield
Gs, where we gain memory for two edges and hence can iBicby adding the last two verticésand

10 along with their incoming edgégs, 9) and(8, 10) to Gs. Finally, we getG = G4, by eliminating 5,

6, and 8.

One aspect of the iterative approach that should be poinietiere is that regardless of the local
elimination ordering of the choice is, the resulting globedering might be different. We refer here to
the resulting ordering aoss-countryrdering as proposed by Griewank [GWO08]. Moreover and obvi-
ously, the resulting fill-in pattern can also be differenhefefore, consider Figure 2.24, where we apply
forward elimination ordering locally. The resulting ordweyis 3,4, 7,5, 6, 8 differs from the global one
as3,4,5,6,7,8. Thereby, the resulting fill-ins are ten and fifteen in the fermnd latter, respectively. In

Gr Gr=Gr— {3}
6 0,
}\ eoe
ONRO
-4, 7
@) @
+9+10 ° e
0 (©)
OO G 0 ONRO
Gho = Gio — {5.6,8} Gs = Gs — {4,7}

Figure 2.24: Iterative Vertex Elimination. The ,,-” Prefix& Vertex Index means that it is eliminated,
whereas ,,+” indicates its Generation.

order to illustrate the idea behind the iterative Jacob@umulation by vertex elimination, we consider
G of F to be the result of the statement level execution of the &s@eSAC of Equation (1.2) as

Gj = (‘/J,E]) with ‘/j = ‘/j,1 U {j} and E]‘ = Ej,1 U {(’L,]) 11 < j} (217)

forj = 1,...,q with G = G, andG, = 0. Furthermore, the independeft;, dependent’;, and
intermediateZ; vertices ofG; are defined as

Xj:X, Y}Z(Dj—Xj)U{Z'E‘/jZSi:@}, and Zj:‘/j—(XjUY})

Here,D; = {i € V; : v, is alive SAC variablg¢ denotes the set of all alive vertices @f,. Clearly,
Gi; = ({1,...,i},0) forindependent vertices
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(1. Evaluation Process)
y = F(x) in C/C++

j=n+1,-q
if (MCost(G;)< M)

Nes m&

2. Build Process | 3. Elimination Process|
v; = ¢;(vi)i<; G = (V;, E))
G = (Vj, Ej) V, =V, — 2,
(2 =V; = (X; UY)) | if (j==q)
~e® &
Y
f5. Extraction Process] [4. Update Proces%
l Gy~ VF(x) J [ G; = top (G;) J

Figure 2.25: Iterative Process of Jacobian Accumulatiokdayex Elimination.

Figure 2.25 illustrates IJA on a restricted memad#y where every box represents a process. Arrows
represent the transitions between processes, where etiemofs labeled with the result of the condition
at the end of the corresponding source process. For instdaseon the arrow from process 1 to process
2 means that the conditiaem(G;) < M at the end of the evaluation process is satisfied and h&nce
can be built on the existing memony, where

MCos(Gj) = Mem(Gj-1) + | Ej - pe

denotes the memory consumption(®f that follows immediately from Equation (1.19). Furthermowre
assume that the termination of the leaf processes 2, 4, araifblmwed by a jump to the root process 1.
The latter jump happens if the Jacobian at another pointiistefest. Otherwise, process 5 is supposed
to finalize IJA process. Here, the evaluation process tesithe generation (process 2)@f based on
G;_1 for1l < j < qaslong ag7; fits into M. Otherwise, it starts the vertex elimination process yreddi
the eliminated DAG

Gj:(f/j,Ej> with ‘7J:‘/J7ZJ and EJ:Ejf{(Z,k)|’L€ZJ\/l€€ZJ}

In case ofj == ¢ at the end of the elimination process we get= G, representing the bipartite graph
of G defined by Equation (1.15). Hence, the nonzero entri&8/6fx) can be obtained (process 5) from
G just by reading its edge labels. Otherwise, and before wegem with the evaluation again, we set
G; = top (G;) representing the topological reordered versiot:gf so thatV; = top (V;) according to
Equation (2.6).

Theorem 2.2. Given the linearized DAG7 of F' as defined by Equatiorl (13 with the intermediate
verticesZ. The resulting elimination graph§ — o1 (W) andG — o2 (W) after eliminating the vertices
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W C Z in two different ordersr; resp.o, are equal, that is,

VO‘l 75 g9 . G —0‘1(W) =G - O’Q(W)

Proof. Mosenkis shows this in section 3 of [MN10] about minimum edgant problem on linearized
DAGs. o

From Theorem 2.2 it follows immediately that the memory afghe eliminated DAGSE — W does
not depend on the ordering in which the vertitEsare eliminated, that is ,

Vo, # o2 : Mem(G — 01 (W)) = Mem(G — o2(W))

Furthermore, lel Gain(G — i) = Fillout(G — i) — Fillin(G — i) denote the memory savings in the
number of edges after the elimination of vertex W from G with Fillout(G — ) and Fillin(G — i)
denoting the respective number of fill-out and fill-in edgespectively. It follows easily that

MGain(G — W) = |E(G)| - |[E(G = W)| = Y MGain(G —1i) ,
iew
where M Gain(G — W) denotes the total memory savings as a sum over the local nyesapings
MGain(G — 1) by eliminating all vertices € W. Even though the total memory savings for all possible
orderings of vertice$V are the same, the local savings in general do depend on thimation ordering
and hence might be different.

An example is given in Figure 2.26, where the elimination eftex3 and vertext in two possible
ordering3, 4 and4, 3 result in the same eliminated gragh— {3, 4}. However, eliminating verte first
yields G; — {3} with five edges, thereby reducing the size(oby two edges. Further elimination of
vertex4 results in the bipartite grapfi; — {3, 4} with six edges, which means a memory loss of one
edge comparing witli7; — {3}. On the contrary, eliminating first vertexresults inG — {4} with eight
edges, meaning memory loss of one edge. Additional elinoina&if vertex3 saves two edges, yielding a
total saving of one edge. Note that the total saving of one élthe same for both orderings.

In fact, this addresses one problem of the iterative appr,a@icere at certain iteration points the local
elimination (see process 3 of Figure 2.25) may exceed thibleamemory bound/ by adding more
fill-in edges than freeing fill-out ones. In order to illugeahis, let us consider again Figure 2.26 with
M = 7 as the available memory. Eliminating first vertgéwields G; — {3}, which still fits into the
memory, whereas eliminating vertéxdoes not becaus@; — {4} needs eight edges. Thus, at every
elimination step the general combinatorial problem is tegkihe DAG within the memory bound, which
is formulated as follows.

Problem 2.1. Given the DAGG = (V, E) as defined by Equatiorl(13 with Z C V denoting the
eliminatable vertices, find a subsBt C Z of eliminatable vertices and an appropriate elimination
orderingo that satisfies the memory bound over the entire eliminatfaredicesiv, that is,

W
> Mem(G - o(Wi)) < Mem(G) =M YW, CW with [W;] =i
=1

On the other hand, even though if we found an appropriateetab&liminatable vertices along with
an appropriate ordering that would solve Problem (2.1} @éione does not guarantee the success of the
iterative approach in general. This becomes clear when n&der the building process (2) in Figure 2.25
that generates eliminatable vertices, such #a# . In worst case it could be the case tigtis empty
or, as discussed previously, that the elimination procegs ot free a sufficient amount of memory
needed to proceed further with building DAG.
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Figure 2.26: Memory Issues on Elimination Process of 1JAergldashed Edges mark generated ones.

To tackle this problem, let us consid&¥ in Figure 2.27 with the memory bound = 7. Further-
more, let us assume the next build process would add thexv@néth its incoming edge$5, 8) and
(7,8) to G yielding G5 representing the final graph witkk = {4, 5, 7}. In case of eliminating vertex
and4 in a sequence we would end up with — {3, 4} with six edges that frees storage only for one edge,
whereas we need two of them fGi;. One possible solution could be to eliminate first veldekreeing
two edges, and then add vertgwvith its incoming edges t6:;. Now, we eliminate vertices, 7, and4
consecutively to satisfy the memory limit of 7 edges yiefithe bipartite graplt’s = Gs — {5,7,4}
with totally six edges.

So far we have discussed the combinatorics involved in 13%er&by, a locally conservative informa-
tion about eliminatable vertices is considered to be séde,raferred to aslimination safeto guarantee
the correctness of the elimination process. Furthermartegvery elimination ordering seems to satisfy
the memory boundary condition as formulated in Problem)(Zdme orderings may tend to exceed it
during the local elimination. In this case IJA fails to acauate the Jacobian df. One way to deal with
this problem is to allocate memory space for local DAGsin Equation (2.17) at every evaluation step
conservatively. Therefore, we consider the complete DAG

G;=(V;,E;) with V;=V; and E; ={(i,k) | Vi,keV; : i<k} D E, (2.18)

of G;, where every vertex € V has incoming edges from all previous vertices, he|rE¢e7 i — 1.

FurthermoreZJ denotes the intermediate vertlces@j Thus, the memory cost G{f} represents an
upper bound for the memory cost6f; as formulated in the following lemma.

Lemma 2.3. LetG = (V, E) denote a DAG as defined by Equatidnid and letG = (17, E) denote its
complete version as defined in Equati@@.

Mem(G) < Mem(éj) = Z(z — 1) e (2.19)
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Figure 2.27: Memory Issues on Build Process of 1JA.

Proof. The proof follows immediately from Equation (1.19) and thetfthat a vertex € V' can have at
mosti — 1 predecessors, that|if;| < i — 1. O

Furthermore, the following lemma shows that the elimimatiban intermediate vertexe 2]- yields
again a complete DAG:; — i with no fill-in edges. This means that, eliminating a pafcwertex on a
complete DAG results in another complete one.

Lemma 2.4. LetG = (\7, E) be the complete DAG @ defined by Equatior2(18 with j € V denoting
an intermediate vertex. Furthermore, we assumehistalso topologically ordered with respect to their
dependencies, that is, an ed@ek) € F implies thati < k. Thus,Fillin(G — j) = @ and henceér — j

is complete.

Proof. First we show in (1) by contradiction that eliminatiigoroduces no fill-in, which we refer to as
No-Fillin property. Then we show in (2) tha¥ — j is complete that we refer to & mpleteness property

1. No-Fillin property : By contradiction we show thdt“illz’n(@ — j) = 0. Therefore, let us assume
that during the elimination of we generate a new edgg k) ¢ E. Thus, we have ¢ P; and
k € S; becausdi, k) is generated by eliminating Thus, from the topology of it follows that
i < jandj < k, hencei < k. However, this would mean that is not complete, which then
contradicts the definition af.

2. Completeness property Because of the topological ordering of the vertice&/ofie have
Vi,k:ieP; and keS; = i<k

This means that there are direct edges from every predecesgdo all of its successors 6.
HenceG — j is also complete.

O
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Obviously, Lemma 2.4 holds also for the elimination of a @bk of intermediates?j. More sub-
stantially, the elimination ordering affects neither then@pleteness nor the No-Fillin property and hence
can be ignored in this context. Consequently, it becomes theat the elimination of the intermediate
verticesZ; C Vj; in arbitrary order can not exceed the given memory boundchviolves exactly the
problem during the local elimination as formulated in Pewbl(2.1). Thus, conservative memory accu-
mulation forG; prevents us from running out of memory during the eliminafwocess. We note here
that this still does not guarantee the success of IJA asshsdbelow in Figure 2.28. However, an upper
bound for the number of vertices 6f; can be determined for a given memory bouvidas formulated
by the following lemma.

Lemma 2.5. Let M represent the available memory in bits. The DAG= (V, E) as defined by Equa-
tion (1.13 can have at most

14 /1+ 8
g=——" (2.20)
2
vertices.
Proof. From Equation (2.19) it follows that
S v q-(¢—1)
Mem(G) < Mem(G) =Y (= 1) - pe = L=5— .
j=1 2
Hence, for the given memory boudd we get
“(g—1 2-M
M'N62M¢>Q2_q_ =0
2 He
The binomial formula yields the following two solutions tiet resulting polynomial above
8-M
_ 14+4/1+ e
q 9
wherel + % is a positive numbel 1 and square root and division operators are supposed taretur
integer values. U

To support the discussion above let us consider aGaim Figure 2.27, where a memory bound of
seven edges){ = 7) was taken to accumulate the corresponding bipartite géapiteratively. Our
focus in the following is on the conservative memory allamatand its impact on the entire iterative
model shown illustrated in Figure 2.28. Therefore, we replfte memory conditiot em(G;) < M in
the evaluation process of Figure 2.25M§em(@j) < M with

MCos(Gj) = Mem(Gj 1) + [V; 1| - pe
From Equation (2.20) it follows foM = 7 - u,. bits that conservatively four vertices would fit into the

available memory as
1+v1+8-7
2

qg= =4
Thus, the evaluation process initiates the eliminatioredrc with Mem(é4) =1+2+3=06Iiscon-
structed. The reason is that inserting veriexith an additional memory requirement of conservatively
four edges would exceed the memory bound of seven edges.vdowiee elimination of verteg yields
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Figure 2.28: Conservative Memory Approach.
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G with real two and conservatively three edges. Now, insgniiertex5 into G yields G5, while con-

suming additionally three edges and yieldifig = 6. Unfortunately, no elimination is possible anymore
because vertexis known to be alive, so that the iterative approach failsaimputeGs.

Let us now try to put§'7 entirely into memory. Therefore, we would need a memoryzf%i) =21
edges. Taking now/ = 21 as memory bound would cause the iterative approach to stiasdkustrated
in the bottom row of Figure 2.28. Thereby, the eliminatiorbaind 7 fromGy yields the same bipartite
graph asGs — {5, 7,4} in Figure 2.27.

At this point we recapitulate that taking the memory constiompof the complete variant of a given
DAG is considered the worst case solution of Problem (2.hgne we try to avoid running out of memory
during the elimination process. Here, all those edges ntitéroriginal DAG are considered a ,,place
holder” for potential fill-in. Obviously, the memory consption of the complete DAG is equivalent to
that of the extended Jacobian in dense formati.e. DEJ. Bachaf the latter is represented by an edges
of the former as discussed in the following.

2.6.1 lIterative Approach on Extended Jacobians

The relation between the linearized DAG and the extended Jacobiai of F' was the focus of the
discussions at the beginning of this chapter. An examplegig in Figure 2.3, where the nonzero
sub-diagonal entries af’ correspond to the edges 6f Moreover, the complete DAG relates even
more toC" as all those edges 6f not contained irG represent exactly the zero sub-diagonal entries of
C’. An example is given in Figure 2.29, where dashed edgé€s éorrespond to zeros @f'. Thus, it is

not surprising that the memory cost@fis in the same complexity class 6f. This becomes clear when
we consider the memory cost of the former and latter in Equg2.19) and Equation (2.7) and the re-
sulting number of allocatable vertices and rows as sugd@sieemma 2.5 and Lemma 2.6, respectively.
However, the main difference is made by required storagedges:. and floating valueg -, where we
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considen. < up reasonable as edges are labeled with floating point valubg oéspective local partial
derivatives.

o ©O O O = O =
SO O O = =N
o O O = W
e e

S O w»

[en N @)

\]

G c’

Figure 2.29: The complete DAG and the respective Extendeahian.

Lemma 2.6. Let M represent the available memory in bits. The extended Jaodli can have at most

14 ,/1+8M4
— v AP (2.21)

q= 5
rows.
Proof. From Equation (2.7) it follows that
q
qg-(g—1) 2-M 2-M
M=) (j-1)p p= @D M L =0
= 2 103 HF

The binomial formula yields the following two solutions dit resulting polynomial above

14 ,/14 M

wherel + %2 is a positive numbep 1. O

In the following we consider the update procesgnwhich is, in graphical term, nothing else than
topological reordering of DAG vertices. However, on theeexted Jacobian the topological reordering
of rows can mean copying nonzero elements from old locafisiasnew ones. It can easily be shown
that the topological ordering guarantees that there is gimotemory in the new location of a row. The
proof idea can be described as follows. Therefore, let usnasshat rowk of the extended JacobiarY
as shown in Figure 2.30 is free to be reused after its elintnatnd that there is no free rows before it.
Furthermore, let us assume that only rowswith k£ 4+ 1 < 4 < j are not eliminated so far, such that the
set of not eliminated rows can be denotedby= {1,...,k — 1,4,5}.

Hence,i andj are potential candidates to be moved into doafter its elimination yielding®” —

It is obvious that row;j can not be moved té& as it depends on > & and hence does not fit into
Moreover, movingj into k£ would also violate the topological orderingas: j. However, row: fits into
location ofk for sure as there is no roive {k + 1,...,7 — 1} with [ < ¢ by assumption. Otherwise,
row ¢ would be faced with the same problem as rpdid before. Thus, a possible topological ordering
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Figure 2.30: Update Step on Extended Jacobians.

as defined by Equation (2.6) with = D is as
top(1)=1 ... toplk—1)=k—1 top(i)=k top(j)=k+1

This means that we keep rows. ..,k — 1 unchanged, whereas rawesp. j are moved intd: resp.

k + 1. Thus, all rowsk + 2, ..., j are freed and thus can be used again during the evaluaticesso
Note that the dependency of roinon i has also to be maintained accordingly, that is, after moxdng

i into k row j depends on rowk. The following example illustrates the iterative processtumextended
Jacobian of our example function fer= 2. The corresponding DAG version has already been illustrated
in Figure 2.24 with a vertex [edge] number of totally sevevejiity one].

Example 2.7. For better illustration we consider a light modification bt SAC of our example function
as shown in Example 1.1 as follows.
fori=1,...,n

v =15 vh = o

vl = ] - v;

vl = U5 — v;

t =i
vl = sin(vy);
v = exp(vh);

i, — b
L1 ="Us; T2 = Vg,
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Here,v;'- denotes théeth instance of the SAC variablg. Furthermore, we replace the diagonal entries by
the corresponding SAC variables and denote an eliminatednpthe diagonal entry.. Analogousto the
DAG version, we assume a memory limit of seven (twenty ondiagbnal entries) extended Jacobian
rows. Thus, the evaluation process yields the extendediatad; with nonzero entries denoted by
fori = 1,...,8. For instance,c; = 1 represents the local partial derivative of with respect tovl.
Now, eliminating row? yields A with c; = ¢3 + ¢2 - ¢4 andeg = ¢; - ¢4 as follows.

vi v}

0 vl 0 vl

c1 C v% © © v

0 c3 Cq vi Cg c3 © vi

0 0 0 ¢ v 0 0 0 ¢ o

0 0 0 Co 0 vé 0 0 0 ¢ 0 vé

0 0 0 0 cr g U3 0 0 0 0 cr  cg v%
Ay Ay

The update process copies rows= 4,5,6,7 each one row higher té — 1 yielding A;. Hence, the

evaluation process is able to add the local partial derivatic;y = g—zg =1landc;; = g—zg = —1asthe
contribution of the statemenf = v3 — v, » that results inA,.

v3 vl

0 vl 0 v

co c3 vl co c3 v}

0 0 ¢ vi 0 0 ¢ vi

0 0 ¢ 0 v 0 0 e 0 v

0 0 0 ¢ cg 03 0 0 0 ¢ cg 3

0 0 0 0 0 0 v 0 0 0 0 cio c11 ]

As Ay

Thus, we eliminate rows} andv? and getAs, wherecis = ¢ - ¢5, c13 = ¢3 - ¢5, €14 = C9 - ¢, and
c15 = c3 - cg. Updating nowAs yields Ag, where the last two rows are freed to be used again.
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vt vl
0 v 0 vl
© © v 1

Ci12 Ci13 Vs

12 c3 © Us Cl4 C15 0 ’Ué

cy 5 © 0 ”é 0 0 cie cio v3

0 0 0 ® ® w 0 0 0 0 0 w

0 0 0 ec c0 © 07 0O 0 0 0 0 0 w
As Ag

2

The last evaluation step yield$; by adding the local partial derivatives; = —ng = cos(v?) resp.
4
6712

cis = 5.8 = exp(v?) as the contribution of the statemert = sin(v?) resp. vZ = exp(v3) to As.

Finally, the elimination of rows o}, v}, andv? results in Ag containing the Jacobian of our example
function forn = 2 as follows.

! !
Ji1=c19=ci7-(c16 - c12 + c10 - C14) Ji2=c20 = c17- (c16 - c13 + 10 - C15)
! !
f271 = (€21 = (18 * (616 “c12 + Cio C14) f272 = C22 = (18- (616 c13 + C1o '615)
1
v
1 v%
1
0 v 0 vl
1
C12 €13 Uj ©® ©® w
cia s 0 v§ © © 0 w
0 0 Ci6 C10 ’Ui © © ©@ © v
2
0 0 0 0 er o cs e 00 @ v
2
0 0 0 0 as 0 o2 1 2 0 0 @ 0 v
A
Az 8

2.6.2 lterative Sparsity Exploitation of Extended Jacobias

Sparsity of extended Jacobians can also be exploitediitelyat Therefore, the symbolic step on bit
pattern in iterative mode has to keep the given memory ltoitainterpreted as the number of rows
q defined by Equation (2.23), which represents the upper béomw number of bit pattern proven
by Lemma 2.7. The proof idea bases on the assumption\fieat(BP) < Mem(C’) with uy < pp.
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Hence, given a memory bound df = 21 - u bits a bit pattern of at most seven rows as

1++/1 - 21 14
g VI8 ;8 =5 =T (2.22)

fits into the memory, which is also the case for the extendeahlan discussed previously in Example 2.7.

Lemma 2.7. Let M represent the available memory in bits. The bit pattBrR can have at most

1+,/1+34
S (2.23)

q= B

rOws.

Proof. From Equation (2.10) it follows that

Mem(BP)Z([Mi‘I—‘ +1)-pr < Z(j*1)~uF _q (q2— 1) .

Hence, we set

(g—1 2-M
2 UF

The binomial formula yields the following two solutions dit resulting polynomial above

=0

14 /14 8M
J— HF
q_ 2 )

wherel + i—iﬁf is a positive numbep 1. O

Example 2.8 illustrates the iterative symbolic row elimiaa on bit pattern corresponding to those
performed on extended Jacobians of Example 2.7. The negultemory pattern is used in Example 2.9
to accumulate the Jacobian on the resulting CRS. Let usaentsie fourth row of3; related tou; with
Bi(4,1) = 6 = 2! + 22, whereB; (4, 2) stores the number of nonzeros of row 4Rg4,2) = 2. The
elimination of rowwv3 yields B, containing one fill-in asB2(4,1) = 3 = 2° + 2! and B»(4,2) = 3
that increases the amount of spots of row 4 to three. Now, wiated, and getBs. Let us consider
again row 4 that is moved into row 3. Its two nonzeros are mawedrow 3 yieldingBs(3,1) = 3 and
B3(3,2) = 2. Hence, row 5 can also be moved into row 4. Here we have to béutar¢h overwriting
the entryBs(4,2) = 3 with B3(5,3) = 1, since otherwise we lose the correct (maximum) number of
spots of row 4 in this iteration. Thus, we save this value a&sdirrent largest spot size of row 4 in
L[4] = 3 for L = L(B2) before we overwrite it, wheré& is a integer vector of lengtp

Example 2.8.We illustrate here the iterative symbolic elimination ohgattern of the extended Jacobian
of Example 2.7. Analogous to the extended Jacobian versi@assume a memory limit of seven rows as
computed in Equatior?(22 and four bit integer ag.; = 4. Thus, the evaluation process yields the bit
pattern B; corresponding to the extended Jacobi&nof Example 2.7. Elimination of row} yields Bs.
The update process copies roinvs 4, 5,6, 7to 7 — 1 yielding Bs as follows.
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0 0 of 0 0 ol 0 0 ol
0 0 w 0 0 vl 0 0 vl
3 2 v 0 2 w 3 2 Wl
6 2 v} 3 3 4 1 v
8 0 1 ol 8 0 1 vl 4 0 1 o}
8 0 1 8 0 1 8 1 2 2
0 3 2 0 3 2 3 00 0 w
B; By Bs

Thereby, we have
L(Bl):[0507252715172]7 L(BQ):[0507253715172]7 and L(B3): [0507253715272]

Now, the evaluation process yield by adding the contribution of the statemefit= v3 — vs o.
Thus, we eliminate rows} andv3 and getBs. Updating Bs yields Bg, where the last two rows are freed
to be used again.

0 0 o 0 0 o 0 0 ol

0 0 v 0 0 vl 0 0 vl

3 2 wul 0 2 w 3 2 v

4 1 vl 3 3 v 3 2

4 0 1 v 3 0 3 v 12 0 2 2

8 1 2 2 00 2 w 0 0 0 w

0 3 2 2 8 1 3 2 0 0 0 w
By Bs Bg

Thereby, we have
L(By) =10,0,2,3,1,2,2], L(Bs)=1[0,0,2,3,3,2,3], and L(Bs)=10,0,2,3,3,2,3]

The last evaluation step yieldingy, followed by elimination of rows?, v¢, andv? results inBs denoting
the eliminated bit pattern of our example function foe= 2.
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0 0 «wf 0 0 wf

0 0 wvi 0 0 wvi

3 2 vfl, 0 2 w

3 2 v} 0 2 v

12 0 2 o} 0 0 4 w,

0 1 1 v 3 0 3 o

0 1 1 3 0 3
By Bg

Thereby, we have
L(B;)=10,0,2,3,3,2,3], and L(Bs)=10,0,2,3,4,3,3]

In general, all three evaluation, elimination, and updatepsses have to take care of the right number
of row spots over the entire iterations in symbolic mode targutee the correct memory pattern needed
in the accumulation mode on CRS. Figure 2.31 illustratestitiee iterative symbolic elimination process
via symbolic elimination of rows of bit pattern in-order. Thereby denotes the iteration index such that
v indicates the execution of the statemenin kth evaluation step. Furthermore, the set of eliminatable
rows in iterationk is denoted by7;..

As shown before by an example, the detection of memory usa@R8 of our example function
for n = 2 needs three iterations in total. The last iteration yidiidswith the total number of fourteen
spots as the sum over spots of rows stored .ilknowing this the corresponding CRS can be statically
allocated, which is supposed to be initialized in the sea@raduation ofF' in the accumulation mode
with real values, which is shown in Figure 2.32. It is worthrtiening here that in iterative mode, we
do not care about the ordering of the nonzero elements in CRBsequently, the initialization as well
as elimination processes are free to put the values in arpiémpty spots in range of the corresponding
rows. However, one side effect of this is the linear indexd®aver row entries. Its impact on runtime of
sparse Jacobian accumulation on CRS representation afdedeacobians have already been discussed
with the test cases in Section 2.4.2. We note that for carsigtreasons we decided to use the linear
search algorithm overall in DALG. However, the implemeiatabf more efficient algorithms is the focus
of ongoing implementation activity on DALG.

In the following we show all those algorithms described st 2.2 and Section 2.4 that have to be
modified to make them work in iterative mode. Here, we assinai;trepresents the maximum number
of statically allocatable rows for bit pattern accordinggguation (2.23), where agaihis supposed to
be an initially zero integer vector of lengih Thereby,

(3

L(i) = r,{é;c(EPk (i, { W +1) with BPy = BP, — 7

wr
represents the maximum number of spots of few1, - - - , ¢ over allv iterations.B P}, denotes the elim-
inated bit pattern resulted from the elimination of intediate rowsZ;, at the iteratiork € {1,...,v}

on B P, which is supposed to be initialized in ttgh evaluation step. In the following algorithms we
assume = |Zy| to denote the number of intermediate rows of Mt iteration.
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(1. Evaluation of F |

ok =i (v))iz;

if (row_ctr < q)

(2. Initialized Bit Pattern | 3. Eliminated Bit Pattern
BPy BPy = BP, — Z
| row_ctr = row_ctr +1 | | if (7 <q) )
]
[
0
\ w
\m& =
o\ .
20 . 1 [
B\ Sy
o"'c’ @,
&5 =
o a
\O o
H
o
=
3
2]
\ A
5. Allocated CRS | [ 5. Updated Bit Pattern ]
(v, i, p) BPjiq
nz =7y . L(i) row_ctr = row-ctr — |Zy|

Figure 2.31: Iterative Symbolic Elimination Process onttern.



2.6. ITERATIVE JACOBIAN ACCUMULATION

Algorithm 2.17 (JSRowElim (BP,L,D, o) : Symbolic Row Elimination)

Require: Bit patternBP, integer vectol,, and Boolean vectab of lengthg.
Ensure: BP after elimination of all intermediate columnsdnordering.

1 for j=0(1) to o(p) do

2 SRowElim (BP,D, j)

s D(j) =true

« for i=11o0 ¢ do

& L(i) = max (L(i), BP(, [M_] +1))

& end for

7 end for

Algorithm 2.18 (SUpdate(BP, L, D, row.ctr) : Update Bit Pattern)

Require: Bit patternB P, integer vectol., Boolean vectoD of lengthg, and row counterow_ctr.
Ensure: Updated bit patteri3 P and L.
v for j=n+1 to ¢ do
if D(j) == true then
nz =10
for i=j+1to ¢ do
if (D(i) == false) then
6 for k=1 to [ﬁw do

a & w N

7 fOfmZOtOM[—l do

8 l=(k—-1)-pur+m

o if BP(i,k)&2™ == 1and D(l) == true then
10: nz=nz+1

11: end if

12: end for

13: BP(j,k) = BP(i, k)

14: BP(i,k)=0

15: end for

16: BP(], ’Vi—‘ + 1) =nz

w  BP(, [—] +1)=0

1224
18: # Replacing < k with j < k
19: for k=i+1 to ¢ do

if D(k) == false and BP(k, | ;- |)&20D% —= 1 then
o BP(k, [ £]) = BP(k, | ) | 26-%u

- BP(k, [£]) = BP(k, [ %) - 26-0%

23 end if

24; end for

25: end if

2 end for

a. L(j) = max (L(j),nz)
8 row-ctr =j
2 D(i) = true
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0. endif
a1 end for

Algorithm 2.19 (ConstructCRS(BP, L, (o, k, p)) : CRS Construction)

Require: Bit patternB P, integer vectol. of lengthg.
Ensure: Initialized CRS(a, &, p).

1+ free(BP)

z2c=1

» allocate(p,q+ 1)
«for i=1 1o n do

5: p(Z) =1

s end for

7z for i=n+1to ¢ do
e pli)=c

o c=c+ L(%)

1. end for

1. allocate(a, c)

12 allocate(k, c)

wfor i=110 c¢c—1 do

14: Oé(l) =0
15: H(Z) = 0
1. end for

1w plg+1)=c—1

After termination ofr symbolic row eliminations Algorithm 2.19 can be used to ¢nng the re-
sulting CRS for givenl andg, wherea, x andp are of lengthy?_ .| L(i) andq + 1, respectively.
Thereby, the routine cafiree(BP) in line 1 indicates that the memory allocated B¢ is freed and
hence the entire available memayy can be used to store CRS. However, the construction stepassu
that the resulting CRS fits intd/, that is, Mem(CRS) < M according to Equation (2.8), which we
consider reasonable.andp are initialized to zero as shown in lines 13-16. Elemiemth i = 1,--- | n
[i=n+1,---, q] of pisinitialized to one [the position of the first nonzero elemef row: in « vector
as shown in line 5 [8].

Once CRS is constructed Algorithm 2.14 can again be usedstatipartial derivatives into CRS.
Here, it has to be assured that exactly the same iteratiarigpaie taken as in symbolic mode. This is
essential because inconsistency in iterations may catfeeetit memory requirements. Consequently,
the evaluation process in accumulation mode has to jumptirgcelimination step at the same line in
the SAC of F' as done in symbolic mode. However, this can be simply donakingrow_ctr < q as
condition in evaluation process of both symbolic and acdatian modes as shown in Figures 2.31 resp.
2.32. Thus, at every elimination stépthe resulting CRS denoted ., «, p);. is transformed into the
eliminated version{a, &, p) via row elimination. After the last iteration the Jacobiamde extracted
using Algorithm 2.9. Otherwise, Algorithm 2.20 is providad update CRS before proceeding with
the next iteration of the evaluation process. Example A8tilates the Jacobian accumulation by row
elimination of our example function for = 2 step by step on the corresponding CRS of the extended
Jacobians of Example 2.7. The respective symbolic elirtnatthat yield the memory usage of CRS
have been illustrated in Example 2.8.

Algorithm 2.20 (Update((a, &, p),D) : Update CRS)
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(1. Evaluaion of ' |

ok =i (v))iz;

if (row_ctr < q)

2. Initialized CRS
(Oé, R, p)k:

L7“0w_ctr = row_ctr + 1J

zo

VF(x)

3. Eliminated CRS

(da R)ﬁ)k = (Oé, Kaﬂ) - Zk

if(j <q

RE-TY%

))eaepdn

ot}

R

L'}{(d ‘H 3

o
S—
\

5. Updated CRS

(Oé, R, p)k?Jrl

\

row-ctr = row_ctr — | Zy|

J

Figure 2.32: Iterative Elimination Process on CRS.
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Require: (a, &, p), Boolean vectoD of lengthg.
Ensure: Updated(a, &, p).

i for j=n+1to ¢ do

2 if D(j) == true then

a c=p(j)

« fori=j541to ¢q do

s if (D(i) == false) then

o for I =p(i) to p(i+1)—1 do
v ale) = all)

8 k(c) = k(1)

o al)=r(l)=0

10: c=c+1

11: end for

12: # Replacing < k with j < k
13 for k=i+1 to ¢ do

1 if (D(k) == false) then
15: ! =Find((o, K, p),k,1)

16 if {>0andx(l)==1 then
17: H(l) :j

18 end if

19: end if

20: end for

21: end if

22: end for

23 endif

22 end for

Example 2.9. The following illustrates the iterative accumulation oéthacobian of our example function
for n = 2 on the CRS, which is generated based on the bit patBsrof Example 2.8. Furthermore, we
assume that there is enough memory for the resulting CRSadlytéifteen nonzeros.

row3 row4d rowb row 6 row7
=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
(1,1,1,3,6,10,13,16)

o
K
p

First evaluation ofF yields the following CRS representation of the extendedhlao A; shown in Ex-
ample 2.7, which we use here for better illustration.

row3 row 4 row5 row 6 row7
aq :(Clv C2,C3, C4, Oa Cs, 07 Oa 07 Cé, 0; 0; Cr,Cs, 0)
k1 =(1,2,2,3,0,4,0,0,0,4,0,0,5,6,0)

p1 =(1,1,1,3,6,10,13, 16)

Elimination of row 3 related te] yields(a, 71, p1) that corresponds tol,. Therebycs andcy denote
an absorption and fill-in, respectivel. Fill-in, fill-out agell as absorptions are denoted by bold letters.
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. . Bvi _
Thereby, the dependence of row 4 on row 3 is giveaby Fol =
row3 row 4 row5 row 6 row 7

~ AN —— —— —
a1 :(0505c35070976570507076670;07 6756850)

I%l :(07 0’ 27 0’ 174’ 07 0’ 07 4’ 07 0’ 5767 0)
p1=(1,1,1,3,6,10,13,16)

The update process copies roiws 4,5, 6, 7 into row: — 1. Thus, we gefas, k2, p2) corresponding
to As as follows.

row3 row 4 row5 row 6 row7

e, — N — N /N AN
Q2 :(0376976570505065070507 0776870507050)
ke =(2,1,3,0,0,3,0,0,0,4,5,0,0,0,0)
p2 =(1,1,1,3,6,10,13, 16)

Hence, the evaluation process adds the contribution of thtementy; = v3 — v2 2 t0 (a2, ko, p2)
yielding the following CRS corresponding4q.

row3 row4 row5 row 6 row7

A N N N
Qo :(03;09;0550707cﬁ705070767708707010501170)
ke =(2,1,3,0,0,3,0,0,0,4,5,0,5,6,0)

p2 =(1,1,1,3,6,10,13,16)

The elimination of rows 3 and 6 related tg andv3 yields the corresponding CRS 4f as follows.
Thereby, the dependency of rows 5,6 on 3 and row 7 on 6 is ieped by the partialss, ¢ and ¢y,
respectively.

row 3 row 4 row5 row 6 row7
. AN ——
(6%) :(0, 0 y O, C12,C13, O, C14,C15, O, 0, O, 0, C10, 0, 016)
R‘I2 :(05 07 05 17 25 07 15 27 05 07 05 07 55 07 4)
g2 =(1,1,1,3,6,10,13, 16)

Updating(as, ke, p=2) yields the following CRS corresponding4g.

row3 row4 row5 row 6 row7
A —_———

a3 :(0127 C13, C14, C15, 07 C10, C16, 0, O, 07 0, O, 0, O7 0)

ks =(1,2,1,2,0,4,3,0,0,0,0,0,0,0,0)

ps =(1,1,1,3,6,10,13, 16)

The last evaluation step adds entrigs andc;s to row 6 and 7, respectively yielding the following CRS
of A7.

row3 row4 rowb row 6 row7
—N
az =(12, c13, €14, €15, 0, €10, €16, 0, 0, €17, 0, 0, €18, 0, 0)
ks =(1,2,1,2,0,4,3,0,0,5,0,0,5,0,0)
p3=(1,1,1,3,6,10,13,16)
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Finally, eliminating rows 3,4,5 related te!, v}, andv?, respectively results iffiz, &3, 53) corresponding
to Ag with row-wise Jacobian entriesg, cog andeay, co9.

row3 row4 row5 row 6 row7
. AN N —— ——
as :(0705070)0)070)070;O7C197C20;O7C217C22)
3 =(0,0,0,0,0,0,0,0,0,0,1,2,0,1,2)
ps =(1,1,1,3,6,10,13,16)

2.6.3 Numerical Results

In the following we present first numerical results on Jaankdaccumulation by row elimination on ex-
tended Jacobians as well as the respective CRS repreesestatiiterative fashion using DALG on both
test cases Bratu and Heat described in Section 2.4.2. Hettteke use the terminologies IRM and IFM
to denote iterative Jacobian accumulation on DEJ or CRS ladhl application of row elimination in
forward and reverse ordering, respectively. In this cantere use the available amount of memadi
and the resulting conservative number of allocatable rptyg Equation (2.21) interchangeably. Further-
more, we will compare the runtime behavior of iterative agmh by focusing on the impact of the size
of theactive blockusing both DEJ and CRS. An active block of an extended Jacaioiasists of all rows
for which memory is allocated; elimination process is suggubto act on this part. In other words, we
take a part of totally allocatable mematy and try to accumulate iteratively the target Jacobian on it.
We achieve this, for instance, by choosing

8-M,
oo a Pwenonem_1Ty1HEE

qs = 5 )
whereM; [¢s] denotes the memory usage [static row size] of the activelddior 0 < § < 1. Obviously,
the entire available memory is allocatable for= 1, which corresponds to the non-iterative fashion
with the difference that memory is freed after eliminatiaepsby the update process enabling further
evaluation steps. In case &f= 0 DALG performs assignment level elimination (ALE), meanihgt
every execution of an assignment in the progranmi’d$ succeeded by an elimination and update step.

Bratu Problem

Our focus is again on the accumulation of the Jacobian of taguBunction of Listing 2.1. Figure 2.33
(a) and (b) compare runtimes of DALG in iterative mode on DEJ @RS, respectively, with their non-
iterative serial counterparts. As one can see the reverse merforms better than the forward mode in
both non-iterative (GRM) and iterative (IRM) modes on boteIand CRS.

To clarify this, let us consider Table 2.4, which presentsintime of DALG in the three modes
non-iterative serial, non-iterative parallel (with eighteads), and iterative modes. We note again that the
capability of the first two modes is restricted by the memagdwidth.

As also discussed in Section 2.4.2 the non-iterative reversde (GRM) is about a factor @f9 ~
% faster than its forward counterpart (GFM). The runtimeeatiéhce was conjectured to be caused
mostly by the difference in the respective number of muittations asl.89 = 332639 along with some
cache effects.

Considering now iterative mode using assignment leveligltion, we observe analog runtime dif-
ference between forward and reverse elimination on DEJ&&®s= ‘2‘—;, which is even closer to the factor
1.89 achieved by the multiplication difference ab8vedowever, this is not really surprising, since the
resulting elimination sequence in forward/reverse at tieeaf 1JA is not different than the non-iterative

5We believe the reason for this to be the better cache behdurorg ALE.
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one as there is no dependence between the results of assignaie][j]) in Bratu function as shown in
line 13 of Listing 2.1. One can easily figure out that everyoetion of an assignment contributes directly
to a row of the target Jacobian. Hence, it is not surprisiag teverse elimination is faster than forward
mode. Thus, the iterative approach seems to accelerate DafR SJARE in both forward and reverse
orderings considerably. In particular, IRM in context ofARE [SJARE] is about a factor of roughly
43 ~ %22 [311 = %] faster than its GRM counter part.

Comparing now the runtimes of IRM by assignment level eletiion on DEJ with those of CRS we
observe that the latter is about a factor= 22 faster that the former. Thus, we observe that assignment
level elimination on CRS performs much better than on DE&se®f Bratu. However, our next test case
will show that this behavior may change.

[n=100 [ GFM GRM IFM IRM LFM(#8) LRM (#8) |

DEJ 3162 1082 47 25 121 118
CRS 7159 1556 15 5 17 9

Table 2.4: Runtime Measurement Data for Bratusfoe 100 in seconds.

The respective memory consumptions of DEJ and CRS in iteratbde are shown in (d). Thereby,
the memory consumption of DEJ grows polynomially as oppedsitCRS that behaves roughly linear
with n. The reason for hight memory consumption of DEJ is becauseiBenerates a lot of program
variables that can not be eliminated over entire IJA. Moezjzely, forn = 100 we measure that DEJ
allocates2881 MB heap memory. To clarify this let us considering the lined® and 18-20 of Bratu
function. One can easily see that all rows related smdx both of size(n — 2)? are alive and hence can
not be eliminated over iterations insidelmfat u. Therefore, all temporary rows generated by the right
hand side of the expression of line 12 can be eliminated tebged later. Hence, updating DEJ yields a
matrix with roughlyg ~ 2 x (n — 2)? rows. Thus, we get forn = 100 andur = 8 Bytes

19208 - (19208 — 1)
2

The reason for the difference between allocated memory by®And the one calculated above is that
DALG has to maintain some meta data in addition to DEJ to per&limination.

Furthermore, (c) compares runtimes of IRM on DEJ and CRS tlutir non-iterative parallel coun-
terparts using eight threads denoted by LRM (#8). As one earrsntime of LRM(#8) overtakes that
of IRM both on CRS for sufficiently large dimensions. Moregisely, forn = 200 the latter needs 310
seconds in total as opposed to 200 seconds in the formerdoadate the Jacobian of the Bratu function.
We note that the runtime gap may widen for even larger prolsiees.

Based on our results, so far we observed that assignmehelewation performs better in runtime
and memory usage as shown in (a) and (b), respectively. fidreréncreasing active block sizes by
choosing larget seems to scale down the performance. In fact, the same lwl@~S even when the
memory increase is not as strong as in case of DEJ. As distiusS&ection 2.5.4 main contribution to
the speedup of PJA was conjectured to be a side effect ofansalhrch spaces for dependencies. Hence,
high gain in runtime was observed on Bratu even with a sifglead compared with the serial version in
both forward and reverse ordering as shown in Table 2.3. ®&ottier hand, as shown in (e) IRM on both
DEJ and CRS underperforms asymptotically by increasingitteeof the active blocE. We believe that
the runtime loss is again because of the increase of the E&saoch space in larger active blocks, which
also results in higher memory usage as shown in (f). In (e) beerve also that DEJ perform better than
CRS for sufficient large active blocks, which conforms witle truntime in non-iterative mode shown
in Figure 2.12. Thus, we believe that combining IJA approaith the parallel one to be very promising.
Here, we intend to accumulate the entire available memoringihe function evaluation followed by

FEquation

g = 19208 @D, Mem(DEJ) =

- ur ~ 1407 MByte
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parallel elimination on sub-matrices. Termination of plaiaession is succeeded by the update step to
proceed with evaluating the function if necessary. Heneehape to achieve better scalability by 1JA
along with runtime improvement as side effect of smalleraeapaces by PJA.

Heat Equation

Figure 2.34 presents numerical results on runtime and meoaorsumption (b) of 1IJA by DALG for the
computation of the gradient f of f given in line 20 of Listing 2.2. The focus here is only on resger
ordering on DEJ as in Heat DEJ turns out to be almost fasterittd@ RS counterpart. Therefore, let us
consider (c) that compares runtime of DEJ with CRS. Here lteerate the active block size as discussed
on Bratu in Figure 2.33 (e). However, DEJ seems to perfornosairbetter than CRS, despite the fact
that it requires more memory by increasejirHowever, the default IJA mode namely assignment level
elimination foré = 0.0 seems to perform and keep the memory consumption low for diigiensions
nxz = 100, ...,1000 with nt = 100 - nz.

One can easily figure out that the memory usage of DALG on Heatuch better that on Bratu as
discussed previously in Figure 2.33 (d). The reason ageadriti the nature of the underlying program of
Heat. Here, DEJ consists of a constant factot.oflive and hence not eliminatable rows over the entire
iterative process. Thus, our numerical experiments shaivttie benefit of IJA depends very much on

nx = 100, nt = 10000 | nz = 200, nt = 20000 | nx = 300, nt = 30000
Secs. | MByte Secs. | MByte Secs. | MByte
IRM(6 =0) | 170 3 3024 4 27796 5
IRM(5<0) | 11 6 205 17 957 36
ADOLC, GRM 16 273 80 1097 213 2473

Table 2.5: Summary of Measurement Data for Heat using ADQAn@ DALG.

the implementation of the underlying problem as discusseiy detail at the beginning of Section 2.6.

A detailed view on runtime and memory of the iterative mod®ALG is given in Table 2.5. The
first row presents runtime (in seconds) and memory (in Metgthehavior of IRM by assignment level
elimination, that isy = 0. Let us now compare its runtime with the global reverse modemplemen-
tation of ADOL-C®. Here, ADOL-C stores the tape on the hard disk. As one canseegdut dimension
nz = 100 andnt = 10000 time steps IRM by ALE is roughly5 = 11—710 slower than GRM of ADOL-C.
On the contrary, IRM reduces the storage usage by a factayugfhly 45 ~ 2% Hence, the gain in
memory by IJA is much higher than the loss in runtime. Not¢ bwh runtime and storage gaps increase
considerably in both cases. We conjecture the reason fautitame loss of IRM by ALE to lie again in
the nature of Heat. Therefore, the reader may easily figurthatiroughlynz x nt assignments (lines 5-6
of Listing 2.2) are performed in the code pfHence, roughly.x - nt consecutive elimination and update
steps are performed over the entire iterative process,enhghe former approximately 5 intermediate
rows are eliminated. Hence, we believe the low number ofielitable intermediates over entire |JA to
be the reason for the loss on performance. In order to tabldetoblem we aim to perform ALE while
adapting the size of active blocks as

if(row-ctr > 1.1-ub) ub=min(2-row_ctr,q) . (2.24)

Thus, an assignment in the programjofeads to an elimination and hence update step if the current
row counterrow_ctr (see Figure 2.31) is at least ten percent greater than theteipdund.b, which is
assumed to be initially zero. Thereby, the update boundjisstetl by the factot.1, which shows so

far the best runtime behavior on Heat. To achieve this effe®fALG one has to choose a negative

6We use ADOL-C release 2.1.12 availablénat p: / / wwwv. coi n- or . or g/ pr oj ect s/ ADOL- C. xni
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Doing this for the Heat problem as shown in the second lineat& 2.5 we observe high improvement
in runtime of 1JA with negligible loss of memory. In partieu] V f for nz = 100 andnt = 10000 is
now computable in 11 seconds instead of 170 seconds by Allioutitmemory (row counter) adaption.
Thus, the runtime gap between 1JA by DALG and GRM using ADOIis@duced considerably by the
former. We note that we use IRM in memory adaptive mode in ¢atsga) and (b).

Based on our numerical results, we have considered tworeliffeéypes of problems, namely Bratu
and Heat. In the the Bratu case CRS turns out to be much maabkiio face the memory issue, whereas
in the case of Heat the opposite is the case. However, agphssignment level elimination seems to
be the most memory-friendly mode available in DALG that tuonit to be also more efficient in runtime
for Bratu but not for Heat. However, in the latter we obsertheat adapting the size of active blocks at
runtime according to Equation (2.24) improves the runtifhidA on DEJ considerably.

Our numerical results show the potential of IJA as the gdpergose approach to tackling the mem-
ory problem of the reverse mode AD by minimizing the usererivéntion. Hence, gradients of even
larger dimensions can be accumulated very cheaply in measing I1JA, where the global reverse mode
AD would fail. Thus, we consider the observed performanss mompared to the global reverse mode
AD provided by ADOL-C as acceptable.

At this point we note that checkpointing strategy would afise solve the memory problem of GRM.
Especially in the case of Heat as a linear inverse problemnplsicheckpoint using ADOL-C would be
enough to accumulat¥ f. However, as motivated at the beginning of this chapter th@icgtion of
checkpointing requires AD expertise. This may be easy ir edsHeat. However, discovering the
applicability of checkpointing and adapting it into real hebinverse problems [UHPO9] might be a
research project on its own.

However, our further investigations will focus in very détan runtime improvement of IJA. In that
context, we plan to implement IJA idea on DAGs for comparssohlere, the main focus will be on
reducing the dynamic effects resulted by the memory alionatnd deallocation instructions at runtime.
In particular, it is preferable that the elimination of a farlar vertex do not necessarily lead to the
memory deallocation of that vertex. In this context, a daletertex is supposed to kept in memory, so
that it can represent in general different (SAC) variablesr ¢he entire iterative process. Thus, we hope
to benefit from the local dependencies of vertices at eacdtite point given as their predecessors. We
recapitulate that this was encountered to matter on DEJtan@dRS by increasing the size) (of the
respective matrices. Thus, so far we can not benefit fromntieeeavailable memory using DEJ as well
as CRS. However, further research is planed to solve thisi@mand improve the runtime behavior of
CRS.
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Chapter 3

Detection and Exploitation of Sparsity
In Derivative Tensors

3.1 Motivation and Summary of Results

In the following we investigate methods for improving thegiction and exploitation of the sparsity of in
general derivative tensok&? ' such as JacobidWiF (d = 1) and HessialV? F' (d = 2) of the functionF”
defined by Equation (1.1). Existing compression techniG&R74] are based on the knowledge of the
nonzeros sparsity pattern of target Jacobians or Hessi@nachieve a better compression, Section 3.2
distinguish between the variable and constant nonzergesntf V¢F as defined by Equation (3.1);
the former does not depend on the input values as opposee fatthr, that needs to be computed at
runtime. Dynamic algorithms are provided in Section 3.21@ Section 3.2.3 for estimating the sparsity
pattern and constant entries'6f F, respectively. We note that both are supposed to be spaesetithir
nonzero counterparts. As two case studies, constants glatexl in the process of Jacobian and Hessian
computation in Section 3.2.4 and Section 3.2.5, respdytive

At this point it is worth mentioning that the compression aédbian or Hessian matrices is achieved
by applying some coloring heuristic to the respective greggresentations. The respective coloring
problem are known to be NP-complete. The heuristics useldisnare provided by the graph coloring
package ColPack [GMPO05].

Obviously, the generation of the graph of a particular dgiie matrix requires only the knowledge
about its sparsity pattern. Henceforth, whenever we tatkibboloring a matrix or its sparsity pattern we
mean coloring the respective graph of that matrix. In the @dsconstant exploitation we aim to color
the variable pattern of both Jacobians and Hessians. Ogriexgntal results in Section 3.2.6 show that
constant exploitation performs in terms of achieved colorsontext of sparse Jacobian accumulation
even on a originally very sparse (nhonzero) Jacobian. Horvawegain in colors is achieved by constant
exploitations in context of sparse Hessian computatiosic@ning the objective (scalar) function arising
in the context ofSimulated Moving Be{SMB) process a model for liquid chromatographic sepamatio
described by Gebremedhin et al. [GPWO08] as shown in Tabler8gage 122.

More precisely, star coloring of the adjacency graph of rdygwelve percent sparser variable Hes-
sian of dimension(34305 x 34305) yields 14401 colors instead of 12346 when coloring its nomze
pattern. Moreover, the star coloring of the variable pattenderperforms compared with its nonzero
counterpart. Note that the computation of constants aloitly tlve variable pattern is much more ex-
pensive. Walther [Wal08] has shown that the detection ohthrezero sparsity pattern is, in worst case,
guadratic in the maximum number of nonzeros per row overadidian rows. Thus, the coloring seems

97
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to be the major obstacle toward achieving a better coloringdmstant exploitation in context of sparse
Hessian computation. At this point we emphasize that thmblr Hessian of our test objective func-
tion is much sparser than the nonzero one. So far the cologsgts do not motivate our high effort in

estimating constant Hessian part along with its variabteepa

Nonetheless, Hessians are ingredients of a lot of numexpgalications such as theverse medium
problemas introduced in chapter 8 of [NS11] being a large scale P@1isteaint optimization problem.
There, the computation of the Hessian of an objective foncfi : R™ — R of the Lagrangian is of
interest in the preprocessing step for the real optimimatitéence, sparsity is exploited to accelerate the
Hessian accumulation using second-order adjoint modelb&A defined by Equation (1.11). However,
estimation of the nonzero Hessian sparsity pattern alsvresf to as exact Hessian pattern (EHP) takes
about 3400 seconds for a realistic input dimensios= 16896276. The overall computation time i.e.
preprocessing and optimization is about 33100 secondscd{éme computational cost of estimating the
exact Hessian pattern is roughly ~ 219 of the overall runtime , which is not really "negligibly”
small.

In order to accelerate the sparsity pattern detection osidas in Section 3.3 we exploit the partial
separability of the underlying functiof. This results in a conservative overestimated version (GHP)
the pattern of target Hessians as introduced in Sectio8.3r3the following we use also CHP to denote
the respective algorithm. As already mentioned, estirgatie exact Hessian pattern is of quadratic
complexity. The reason for this lies in the propagation absel-order dependencies as set of index pair
over the index domaiX for every SAC variable); of F, that is,sod(v;) C X x X. Thereby,sod(v;)
is computed as the cross product of first-order dependeifoi&s;) and the union okod(v;) of their
arguments < j in the case of nonlinear and linear operations, respegtivel

CHP overcomes this problem by restricting the computatiprexpensive cross products and the
unions ofsods to the nonlinear components Bf Hence, CHP takes now only 11.7 seconds as opposed
to 3400 seconds of EHP for inverse medium problem mentiobedea This means a runtime gain
by a factor of roughly290 ~ %9?. More interesting, the resulting Hessian pattern in botre ca®
identical. This is because the nonlinear components afnsist of no multiplication. We note that the
multiplication may produce overestimated Hessian enttesce, no change in the coloring performance
in terms of achieved colors and runtime is expected.

Even more substantially, we observe even better coloriaglt® using CHP in context of another
objective function as shown in Figure 3.4 (a-c) with nedfigiloss in runtime, despite the fact that CHP
is orders of magnitude faster than EHP as shown in (a). Atphist we recapitulate that we observed
similar behavior when coloring the variable Hessian pattdrthe same problem, which is sparser than
the exact (nonzero) one. We observe that the coloring uedenms by increase in sparsity for this test
case. This observation seems to be surprising at first glataeever, a deeper look into, for instance,
the sequential star coloring heuristic lead to the follayitherefore, we focus on the conservative and
exact pattern of the target Hessian in Figure 3.5. The forouossists of an overestimatéd x 4) block
in upper left corner. Consequently, the respective vestiaa get the same colors in the adjacency graph
of CHP. Henceforth, all most any other vertex can be coloredre of the used colors as opposed to
its EHP counterpart. Hence, the conservative nonzero tgeekns to route the star coloring to a much
better coloring, illustrates the importance of the struetof target Hessians. We believe this should be
taken more into account in the (existing) coloring hewsstilt should also be mentioned that changing
the ordering e.gsmallest lasbf vertices according their degrees (number of incidentsiii this case
does not really help as the vertices are of almost the sanreeleg

Finally, Section 3.3.3 generalizes the exploitation of plaetial separability yielding a recursive al-
gorithm for Hessian pattern estimation denoted by RHPt Rusnerical results on an artificial example
shows that RHP converges to CHP for sufficiently large recadevels. Moreover, RHP at level one and
CHP behave almost similarly in terms of runtime. We note @idP is supposed to be obtained by RHP
at recursion level one.
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3.2 Quantitative Dependence Analysis

In the following we investigate methods for exploiting thpassity of, in general, derivative tensor' F.
Existing compression techniques [CPR74] are based on tbelkdge of the nonzeros. To achieve a
better compression, we decompose the nonzeros into cématathvariables; the former does not depend
on the input values as opposed to the latter, that need torbpuded at runtime. Thus, we consider

ViF = VI, + VIF, with d>1 (3.1)

to be the sum of constaRt? F,. and variablév¢F, parts. Henceforth, we use the terminolagpnstants
[variableg to refer to the former [latter]. Moreover, we provide dyniaralgorithms for computing the
constants along with the sparsity pattern of the variabielssige prove their correctness.

Sparse derivative calculation, in general, consists ofrhain steps, namely sparsity detection and its
exploitation in the process of derivative accumulationevehthe former is often considered a preproces-
sor activity. A lot of work has already been done on this farakdan [TFE98, GPWO08, NN#11] and
Hessian [CM83, Wal08] computations as discussed in Se&tipd and Section 3.2.5, respectively. In
fact, sparsity detection can be performed either at runtimtgy a compiler, where the former and latter
are known aslynamicandstaticsparsity, respectively, the latter may result iocservative overestima-
tion of the target sparsity pattern as a consequence of exisimgat flow structures irf' as discussed
in [TFE98] for Jacobian matrices. However, our focus in thiéofving is on dynamic sparsity and con-
stant estimation that we refer to geantitative dependence analy$@DA) using operator overloading
technique as a new variant of the function evaluation by agating soméndex domaings done in the
case of Jacobians and Hessians in ADOL-C. Obviously, thamjmsparsity is valid only at the given
point, which follows that any changes in control flow may tesurecomputation of both sparsity pattern
as well as constants. As an example throughout this chagites lconsideF' in Example 3.1. A special
variant of dependence analysis [BC04] is used to discoved#pendencies of every outpyt; » on
every inputr,;—; » represented a3/, ;). This information yields the sparsity pattern of the Jaaalss
the matrix of the first-order sensitivitie§ , of F" atx = (z1, x2) defined by Equation (1.7). Here, the
dependencie§y;, z2) and(y2, z1) are of constant quantities -1 and 1, respectively.

Example 3.1. As an example considé? : R? — R? defined as follows.

y1 = sin(z1) — 22

Y2 =21 — T2 T2

(3.2)

The Jacobian of is (Cosgxl) 2;12). The entriesf] ; and f; , are variables, since they depend on the
values of inputs:; andx,, respectively. In the opposil , and f; ; are constants.

Quantitative dependence analysis is concerned with tissiitzation of the sensitivities of derivative
tensors such as Jacobians or Hessiansvati@ble (v), constant nonzer¢c), andzero(o) types of sen-
sitivities. Furthermorenonzerognz) are considered the union over variables and constantss, Thel
outcomes of the quantitative dependence analysis afe the sparsity pattern of the variables and the
constants. Strictly speaking, QDA computes the sparsitgpaP(V¢F,) of the variable&/? F,, and the
constantsV?F,, of V¢F for a given derivative degreé> 1.

Assumption 3.1. F’ of Equation (.1) is canonical in the sense that no algebraic simplificatisnsh as

log(e®) =z, /z~ = x, and Jf;ll =z — 1 are possible.

However, the target derivative tenséf F of F' can be obtained in AD by the running a corresponding
derivative code [Naul1l, HPO4]?. Ford larger than one we talk about higher-order sensitivitiesyliting
from the application of the correspondihigjher-order derivative codedbviously, the sparsity as well as
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constants of7 ' can be obtained by quantitative dependence analysis oégipective derivative codes.
However, compared t@' the size of such derivative codes grows, in general, expailgnwith the
derivative degred. An example of such a code fdr= 1 is given in listings 3.2. Moreover, higher ordered
derivative codes usually consist of nested loops of depitvigg linearly withd. Both facts complicate
the QDA of such codes. To deal with this problem we proposeraanhc algorithm for performing
QDA only on the original codé”. Therefore, we refer t&° as the SAC ofF at the current argument.
Henceforth, whenever we talk about the example functionmeanF’ of Example 3.1 with the SAC
given in Listing 3.1, where first and second assignmenfs afe decomposed into the SAC statements of
lines 3-5 and 6-8, respectively. Thasi maps the independent inputs, x2 onto dependent outputs=v

2, y2=v4 involving the computation of intermediate valudsandv3. Hence X = {1,2}, 7 = {3, 5},
andY = {4,6}. Here we avoid explicitly independent assignmertsx1 andv2=x2 for brevity as inputs
are not overwritten.

Listing 3.1: QF

1void O_F( float x1, float x2, float& yl, float& y2) {
float v3, v4, v5, v6;

2

3 v3 = sin(x1);
4 V4 = v3 — X2;
syl = v4;

6 Vb5 = X2 x X2;
7 v6 = X1 + v5;
s Y2 = v6;

0 }

3.2.1 Mathematical Background

We consider again the index sétdefined by Equation (1.13) representing the indices of SAGkes
the union of disjointindexset8§ = {1,--- ,n}, Z={n+1,...,n+p},andY = {n+p+1,--- ,q}.
Fork € ZUY we define

X, = X(Uk) = {Z eX:i<* k,} and X = X(’Uk) = (xi)ieXk (33)

as theindependent setndindependent vectaf the SAC variabley, respectively. Giverk

fiX o IN, A=(X,f) with d=|[A|=" f(i)
€X
represents a multiset o¥i with the multiplicity functionf and the cardinalityl. Giveni € X, thenf (i)
represents the number of the repetitions of the elerigrthe multisetd. The unionC' = (X, k) of two
multisetsA = (X, f) andB = (X, g) overX is defined as

C=AUB, VieX: h(i)=f(i)+g0) . (3.4)
A is a submultiset of3 denoted by

ACB ifandonlyif Vie X : f(i) <g(i)
Ais a prober submultiset a8 denoted by

ACB ifandonlyif Vie X : f(i) <g(i)
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Moreover, we define
X'={A=(X,f):|A| =d} (3.5)

as thedomainof V¢ F consisting of all multisets of cardinalityon X. Obviously,X* = {< i >:i € X}
and X are equivalent. Henceforth, we use the notatiorio denote multisets.

Example 3.2. Given X = 1,2 and multisets4d = (1,1,1), B = (1,1,2), C = (1,2,2), andD =
(2,2,2) of cardinality three. The uniod U B yields the multise{l, 1,1, 1, 1, 2) of cardinality six onX.
The set of all multisets o with cardinality three isX3 = {A, B, C, D}.

Given the SAC variable, with k € V and the multisefd = (i1, ...,i4) € X we refer to

advk ad’l}k
(x) = 35— :
ox 0x;, ... 0x;,

(x) (3.6)

ChA = CkA(X) =

as the sensitivity of;, with respect to the independents4fwhich can be of variable, constant, or zero
type as follows.

Definition 3.1. The type of the partial derivative, 4 defined in Equation3.6) of a SAC variabley,
ke Vwith |A] =dandA e X%is

1. variable ), if ¢, 4 depends ox;, defined by Equatior(3)

2. constantg), if cx, 4 is nonzero not depending o}, or

3. zero ), otherwise.
Hence;, 4 is considered a nonzero in the caselaind2.

Furthermore, fok € VV we define thaonzero domain

Plloy) = {A € X% :3x € Dwith ¢ a(x) = nz} = P4(vy) UPH(vy)
as the union of the variable and constant domains
Pl(vy) ={A € PUwy) : cpa(x) =v} and Pl(v,) ={A¢c P! vy):cpn=c} ,

respectively, where the notatiop 4 = t means that the partial derivativg 4 is of typet € {nz, v, c, o}.
Givem’,j e V,andl < dy,do withd = d; + do

Ph(v) W P%2(v;) = {A=BUC : B e P"“(v;) andC € P%(v;)}

denotes thabsorptionof two nonzero domain®® (v;) and P41 (v;) with the unionB U C as defined

by Equation (3.4). Obviously, the nonzero, variable, andstant domains o F represent, in fact,

the respective sparsity patterns. Henceforth, whenevesayehat a variable is nonzero, variable, and
constant with respect td € X<, we mean thatl € P¢(v), A € Pl(v), andA € P%(v), respectively.

3.2.2 Sparsity Pattern Estimation

In the following we consider

O =0y U{+,x} with ®y = {sin,cos,...,pow(u,v),pow(u,r)}
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which is the minimal subset of the mathematical operatiokimtrinsic functions provided by the math-
ematic librarymat h. h of the programming language C that we consider sufficiertustiate the algo-
rithmic behind QDA. However, a detailed view of provided ogg@ns and intrinsics is given in Table 3.1.
We note that some of operations and intrinsics are expliaitissing in® either because they can be
expressed using those @for because they are integer operations. Here, the symbolsv represent
floating-point and. integer variables, whereasr € R andk € IN denote constants. TSP estimation

| Operations | Replaced by Expression | Ignored |
w="v No
W=0*U No
w=v+u No
W=V*xC=C*0 No
w=v+c=c+v w=v No
w=v-—c w=v No
w=c—v w=—1xv No
w=v/c w=1/cxv No
w=c/v w = ¢ pow(v, —1) No
w=v-—u w=uv+(—1xu) No
w=uv/u w = v x pow(u, —1) No
w+ =v w=w+v No
wx = W=w*v No
w/ =v w = w * pow(v, —1) No
w— =v w=w+ (—1x%v) No
sin, cos, tan No
asin, acos, atan No
exp, log,log 10 No
w = pow(v,u) = v* No
w = pow(v,r) =v" No
w = atan 2(v, u) w = atan(v/u) No
w = pow(v, k) w = Hle v No
w = ldexp(v, k) w = v * pow(2, k) No
w = frexp(v, &n) w = v/ pow(2,n) No
w = modf (v, &n) w=v-—n No
w = fmod (v, u) w = v — floor(v,u) x u No
w = fabs(v) = |v] if (v>0)w=velsew=—1xv No
w = ceil(v) = [v] Yes
w = floor(v) = |v] Yes

Table 3.1: Operators and Intrinsicsradt h. h of the programming language C.

described in Algorithm 3.1 computes at runtime thegoing nonzero domai®utP(F) of F' on the
corresponding SAC from the givémcoming nonzero domainP (F) defined as

1 InPY(F) = Pjy(F)
OutP*(F) Ingﬂ(F) :dé
OutP(F) = : and InP(F) = : ;

OutPTTH(F) InP+L(F) = §
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where Pig(F) = {(z;, P'(z;)) : i € X} andOutP' (F) = {(Yk—(n+p), P'(vx) : k € Y} with
Pl(z;) = {{i)} forl = 1,...,d + 1. The correctness of TSP is stated by Theorem 3.1. Obviously,
the nonzero domain
Pt = PUVIF) = P(y;)
je{1,....m}

is the union of nonzero domaid¥!(y,) of dependents;. At the same timeP? = PZ¢ U P4 is the union
of variable and constant domains

Pi=piE)= ) Pl and PA=PEE) = | Pl
je{1,....m} je{1,....m}

that results easily from Equation (3.1). The variable domai
Pi(y;) = {A € PU(y,) : 3 B € P4 (y;) with A C B}

of y; can be extracted fron*?(y;) by having P?*1(y;) as a consequence of Lemma 3.1, which ex-
ploits theproper submultiset propertyetween two multisetel € P?(y;) andB € P?*1(y;). Conse-
quently, we can decompose the nonzero domafF into variables and constants by first computing
the nonzero domains of dependents up to dedred followed by extracting the variables.

Lemma 3.1. Given P!(v;) and P!*1(v;,) of the SAC variabley, withk € ZUY andl € {1,...,d}.
The variable patterP! (v;,) of v;, is computed as

Pl(v) = {A € P'(vy) : 3B € P[** with A C B}

Proof. We show that’A € P!(v;) there is aB € P! such thatd C B. Therefore, we consider
f(xk) = g%’; to be a function of independents. If f(xy) is variable in some independent X,
then% has to be nonzero. But, this means that

l I+1
Of(xk) 0 [a”k]:a % with B=AU{(i)} and ACB

or;  Ox; | 0xa Oxp

represents a nonzero sensitivity, thatisg P!*1(vy,). O

Algorithm 3.1 (TSP(d, SAC(F), InP(F), OutP(F)): Tensor Sparsity Pattern Estimation)

Require: derivative degred, incoming nonzero domaimP (F).
Ensure: Outgoing nonzero domai@utP (F) of V4F.

v for i=1ton do

2 Pl(Ui) :Pl(aci)

s end for

« for k=n+1to ¢ do
s if vy =v; + vy then

& forl=11t d+1 do
o Plog) = U PHws)
s end for

o endif

w. if vy =v;-v; then
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for iI=11to d+1 do
Pl(vy) = U, P'(v7)
for 1 =1tol—-1 do
for b =1tol—-1 do
if 1 =1+ 1yand P1(v;) # () and P'2(v;) # () then
Pl(v) = P'(vr) U (P (v;) & P2 (u))
end if
end for
end for
end for
end if
if o € ®y then
for I=11to d+1 do

24: A= Ui<k Xi
25: Pl(vk) = Al
2 end for

2 end if

2s. end for

20. forall k€Y do

for I=11to d+1 do
OutP' = OutP' U (y—(ntp) P'(vi))
end for

s end for

Theorem 3.1. Algorithm 3.1 computes the correct nonzero domaifw;, ) of the SAC variabley, with
keViforl=1,...,d+ 1.

Proof. We considerd € X'with1 <[ <d+ 1.

InP(F) is correct, since the first partial derivative of every inélegent variable;, with & € X is
only with respect to itself nonzero otherwise zero.

Lines 1-3 initialize the nonzero domains of the indepen&E variables to those of inpufs.

Lines 5-9: line 7 follows from the addition rule for higherrgial derivatives yielding

alvk _ 8lvi + 811)]-

3.7
8XA aXA 8xA ( )

Ly . .
Hence,%jL is nonzero, if and only if eith ;”i or 2% is nonzero, that isd € Pl(v;) U PY(v;).

A Ox A

Lines 10-21: Equations in lines 12 and 16 follow from the lre#bproduct rule for higher partial
derivatives yielding

l l1,),. l2,,.
M: Z 8’01.8’1}] with C=A- B, llz‘B

, and I =|C|. (3.8)

L . . . .
Hence,g Yt js nonzero if and only if either
XA

1. 9% £0ie A€ Pl(vy)for B=A,C=0or,

Ox A
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2. 24 20ie. Ae Plv)for B=0,C = Aor,

Ox A

3. %%Zi #0and %lizj #0i.e. B € Ph(v;) andC € P'2(v;) otherwise.

e Lines 22-27 : Equation in line 25 follows from the differeatton rule for pure nonlinear functions
of dy.

e Lines 29-33 : each dependent variaple (,, 4, with k € Y contributes in line 31 its nonzero
domainsP! (vy,) to Out P'(F).

O

It can be shown by induction that the worst case complexitheftensor sparsity pattern estimation
described in Algorithm 3.1 for a given degrée> 1 is as

OPS(TSP) € O(d-a®tt) | (3.9)
where
A 1 .
7 = max | P (v;)] (3.10)

denotes the maximum number of elementéirst-order dependencieB! (v;) over all SAC variables;
of F with ¢ € V. Moreover,OPS(F) denotes the number of floating point operations in the SAE. of

The main contribution to this complexity is made by nonlineperations of lines 22 and 10. Let us
consider first the multiplication in the latter. Furthermplet us assume to be interestediie= 1. The
union in line 12 can be performed (), which follows immediately from Equation (3.10). Hence, the
absorption ofP!(v;) and P! (v;) for I; = 1 andi, = 1 of the arguments ofy, in line 16 along with the
union of the result yield§P?(v;)| € O(7?) at the same quadratic computational cost.

Now let us assumé = 2. The absorptions aP" (v;) and P2 (v;) forl; = 1,1y = 2, andl; = 2,1, =
1 resultinP3(vy,), where| P3 (v, )| € O(73). The cardinality and the complexity of the absorption result
from the cardinality of the arguments as shown abovelfer1.

Likewise, cardinality and complexity are achieved (v, ) of line 25. From differentiation rule of
pure nonlinear functions it follows thdt! (v;,) = Al forl =1,...,d + 1. Note that| A| € O(7) and A’
denote the set of all multiset of cardinalitpver index setd as defined by Equation (3.5). Hence, it can
be shown thatP!(v;)| € O(A!).

Finally, the factord to the complexity results from the fact that the absorptiod anion operations
of line 16 are performed faf different combinations of, andl; such thatl + 1 =i + Is.

3.2.3 Computation of Constant Partial Derivatives

Algorithm 3.2 describes the computation of the constantigladerivatives ofV¢F separated from the
pattern computation for simplicity on the SAC &f Here, it assumes that at the time of computation of
constantg” for k € V the corresponding nonzero domaiRYvy,) and P!+ (v,) fori = 1,...,d are
given. These are needed to separate variables from conistémis, constants

Cvy) = {(A,cpn): A€ X andey 4 = ¢}

of each SAC variable,, consists of tupleéA, ¢, 4) with the constant sensitivities 4. Furthermore, we
define theabsorption

O (v) W C"2(vj) = {(A,a-b) : (B,a) € C"(v;) and(C,b) € C'2(v;)}
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of two constant€>!1 (v;) andC'2(v;) with i, 5 € V as used in line 21 of Algorithm 3.2. Moreover, we
assume that the union 6]‘5 andijj used in lines 12 and 21 has the property that

VAe X'if (A,a) € C}, and(A,b) € C,, = (A,a+b)eC, UC,,

Thus, Algorithm 3.2 computes at runtime thetgoing constant®utC(F) of F' on the corresponding
SAC from givenincoming constantbnC(F') defined as

1 InCY(F) = Cia(F)
OutC*(F) InC2(F) = 0
OutC(F) = and InC(F) = )

d :
OutC*(F) InC4(F) = 0
whereCiq(F) = {(z;,C*(z;)) : i € X} andOutCY(F) = {(Ys—(ntp)> C'(v)) : k € Y} with
C(z;) = {({i),1)} for I = 1...,d. Obviously and as shown in line 41 the constant§/df results
from the union

of constant&?(y;) of the dependents;. Theorem 3.2 proves the correctness of the constant congrutat

by Algorithm 3.2. We note that the most important operatioieirms of constant generation as well as
computational cost is the multiplication as shown in linés2l. Thereby, constants generated by the
multiplication may get destroyed later on as shown in lines2b, and 30. For instance, consider the
computation of constants of the following statementsifer 2.

V=11 - T //(,)ZQ(;’JC2 —1=2c¢

u=sin(v); // aZngQ = cos(v) — 2 - sin(v) -z = v
W= - To; //afjg}u— To =V

z=v+w; //835812;352 =1+2-23=v

As one can easily see the second-order sensit'gwgfi“if)g%2 of v with respecttd1, 2) is constant. Hence we
getC?(v) = {((1,2), 1.)}. However, none of the succeeding three statements andz are constant but
variable with respect tel. The reason is that the constantaafets destroyed in by nonlinear intrinsic
sin, in w by multiplyingv with x5 and finally inz by addingv andw.

Now, letd = 3. Hence% =2asw = 1z - 22 - x2 , Which is in factw = z; - pow(z2, 2.).
However, we geC?(w) = {({1,2,2), 1.)} by the multiplication rule in line 21 fo€'* (z2) = {((2),1.)}
andC?(v) = {((1,2),1.)}. Finally, we getC?3(w) = {((1,2,2),2)} by applying the power rule in line 38
forl =2, f(1) =1, andf(2) = 2.

In the following we use the notations € P! [A ¢ P'] for a given multiset A with| A| < [ andl > 2
to denote that

IBecP':AcB [}BecP':AcB]
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Algorithm 3.2 (TCE(d, SAC(F), InC(F), OutC(F)) : Tensor Constant Estimatian)

Require: derivative degred, incoming constantbnC(F).
Ensure: Outgoing constant domai@utC(F) of VF.

« for =1 to n do
Cl(vz):C(:pz)

2:

s end for

«for k=n+1to ¢ do

s if vy =c-v; then

e for I=1 to d do

7 Cl(vg) = {(A,ck,a) i cloa=c-cja}
s end for

o endif

w if vy, =v; + Vj then

uw for =1 to d do

o Cluy) = Clu)) UCHw;) — {(A,*): A€ Pt}
1. end for

1. end if

s 0f vy = V5 then

. for =1 to d do

17: Cl (Uk) = @

18: for ;=1 tol—1 do

10: for b =1 tol—-1 do

2 if 1=1,41yandCh(v;) # 0 and C'2(v;) # 0 then
21: Cl (Uk> = C’l(vk) U (Cll (U1) (] Cl2 (Uj))

22: end if

23 end for

24; end for

25: Cl(Uk) = Cl(vk) - {(A, *) A€ P]i-’_l}
26 end for

2z end if

s if @ € Oy then

20 for =1 to d do

30: Cl (Uk) = (Z)
. end for

2 endif

33 end for

s forall k€Y do

s for [=11to d do

s forall (A, c) € Cl(Uk) do

s forall i € Awith f(i) > 1do

w = c [0 - (G- )

30: end for

«  endfor

41 OutC! = OutC' U {(yk_(n+p), C’l(vk)}
42 end for

4 end for

107
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Theorem 3.2. Algorithm 3.2 computes the correct consta@sof the SAC variabley, with k € V for

I=1,...,

d.

Proof. Let us consider (X, f) with |A| = land1 < < d.

InC(F) is correct, since the first partial derivative of every ineiegent variable:;, with & € X is
with respect to itself constant one otherwise zero.

Lines 1-3 initialize constants SAC independent variablewith & € X to those of inputsX.

Lines 5-9 : Equation in line 12 follows from the appllcat|th®|bn|z product defined by Equa-

tion (3.8) for higher partial derivatives with = ¢ yielding 2= e =c- 8 =1 Hence,

(A,cja) € Cl(vj) = (A,c-cja)€ Cl(vk)

Lines 10-14 : W.l.o.g. we assume thate P!(v;) andA € P!(v;). Hence, Equation in line 12
follows from addition rule for higher partial derivativelsence,aifj of Equation (3.7) is constant
if A¢ P thatis,if(A4,c;4) € Cl(v;) and(A,c;j 4) € Cl(vy).

Lines 15-21 : Equations in lines 21 and 25 follows from theddhat
1. if A € P (vy) thenuy is not constant with respect
2. otherwisery. 4 of Equation (3.8) is constant, that (4, cx. 4) € C'(vy), if and only if
VB C A: (B, cip) e C'Pl(v;)and(D,¢;p) € C'Pl(v;)
whereD = A — B, B € PIBl(v;), andD € PIPl(v;).
Lines 28-32 : Equation in line 30 follow from the fact that iaearity destroys constants.

Lines 34-43 : dependent variablgs_ ) With k € Y contribute in line 41 their constants
Cl to OutC!(F). However, previously in line 38 the corresponding constanésmultiplied by
the respective factor according to the power rule to yighthtrconstant values in case of element
repetitions.

O

We note here that the computational complexity of tensostaon estimation TCE described in Al-
gorithm 3.2 is bounded by that of TSP defined by Equation @s9)

OPS(TCE) < OPS(TSP)

Note that the respective SAC operation in TSP is supposee petformed prior to that of TCP enabling
the separation of the variables from the constants. Oneasily éigure out thatC' (vy,)| < |P!(vy)| for
alli € Vforl=1,...,d. Hence, the absorptions and unions can be performétir}) in worst case.
However, the computation of constants along with the végiglattern results in more computational
effort even though the complexity class remains unchan@edexperimental results in context of sparse
Jacobian and Hessian computations will show that the gaim ftonstant exploitation depends very
much on the problenf’ and the coloring heuristics of use as well. The Fact is thaherariable pattern
estimation by TSP is a complexity class higher than the @diim of the nonzero pattern. Hence, in the
case of denser Jacobians or Hessians the runtime overheahpfiting constants might be acceptable.
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Example 3.3.1n the following we compute the nonzero domains and corstdiie JacobialV F(x1, x2)

and Hessiarv? F(z1, x2) on the SAC of our example functiéhby Equation 8.2). The SAC variables

v2 andv4 represent respectively the dependentandy,, as shown in line§ and8 of Listing 3.1. We set

PY(x1) = {(1)},P*(x2) = {(2)},Cl(x1) = {((1),1)}, andC*(x2) = {((2),2)} and get the following.
InP'(F) = {(xt,P'(x1)), (x2,P}(x2))}; InP*(F)=(); InP3(F)=;
InC'(F) = {(x1,C*(x1)), (x2,C*(x2))}; InC*(F) = 0;

1. vl =sin(x1)

Pi={(1)}; PI={(1, 1)} Pi={(1,1,1)}
ci=0; — Py,=Pj;

ci=0; — Py,=P%

2.v2 =vl —x2

P,={1),@}% PE={11)} Po={111)}
={(2.-1} - P={1)k

C;=0; — P;,=P%

3.yl =v2
PY(yl) =P3; P%*(y1) =P3; P(yl) =P;
cliyt) ={((2),-1)}; — Pylyt)={{1)};
C*(y1) =0; — Pi(y1) =P*(y1);
4. v3 =x2 % x2
P;={(2)}; Pi={(22)}; Pi=0;
C3=0; — Pia=Pg
Cg ={((2,2),1)}; — P\Qr.,s = 0;
5.v4 =x1 +v3
p}l: <1>a<2>}; Pi: {<2a2>}; PZZQ];
ci={((1,1)} — Pi.={2}
C£21 = {(<2a2>71')}; - P\27,4:®;
6. y2 =v4

; P2(y2) =P% P(y2)=0;
10,1)} = Py(y2)={(2)}
2a2>72')}; — P?;(YQ) = (Z);
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Hence, we obtain the following:

OutP*(F) = {(y1,P*(y1)), (y2,P*(y2)) };
OutP?(F) = {(y1,P*(y2)), (v2,P*(y2))};
0utP?(F) = {(y1, P*(y1));
OutC*(F) = {(y1,C*(y1)), (y2,C'(y2)) };
OutC*(F) = {(y2,C*(y2)) };

From P!(y1) andP*(y2) follows that the JacobiaW F'(z1, z2) is entirely nonzero. Frongt) € Pv(yl)
and(2) € Py(y2) follows thatf; ; and f; , are of variable type. Likewise, the constancefpf =
and f5 , = 1 follows from((2), 71) € CV(yl) and((1),1.) € c(y1), respectively. In the same Way,
from (1,1) € Pg(y1) and((2,2),2.) € C*(y2) it follows that the entrieg;’; ; and fy , , of the Hessian
V2F(x1,x2) defined by Equatiori(12 are variable and constant, respectwely.

3.2.4 Case Study | : Sparse Jacobian Computation

The [transposed] Jacobian Bfcan be computed using TLVM [ADVM] of" as defined in Equation (1.8)
[(1.9)] yielding compressed [transposed] Jacobian

R™P 35 B=VF(x)-S€R™ [R">B=VF(x)'-SeR™] (3.11)

as the result op [q] evaluations of the respective TLM [ADJM] defined by Equatid.3) [(1.5)]. The
seed matrixS € R™*? [§ e R™*4] is the result of partitioning the Jacobian into[q] groups of
structurally orthogonatolumns [rows] [CPR74]. Two columns [rowshnd; are structurally orthogonal,
if there is no row [columnk with f; ; # 0 andf; ; # 0 [f;, # 0andf], # 0]. Thus, an entryi, k)
of S [S] is one if theith column [row] of the Jacobian belongs to the graymnd zero otherwise. The
combinatorial problem is to find a minimal ¢], which can be stated as coloring problems [GMPO05] that
is known to be NP-complete on various graph representafigiy with

P=(pa)izin with py, € {0,1}
denoting the sparsity pattern ®fF. In the following and w.l.0.g. we denote the bipartite gragh{ P).
Thus, we obtairf [S] by application of thepartial distance-2 coloringilgorithm as implemented in the
graph coloring package ColPddo the column [row] vertices ofi(P). Two vertices can get the same
color, if they are not connected via a path of length two, otlige they get different colors. Finally,
we recover the nonzero entries Gf" from B [B] using a simple substitution procedure as described
in Algorithm 3.3.

Procedure 3.1. The entire process of sparse Jacobian computation (SJGE)fisllows:

S1. Evaluation off" at the given point yield$>,
S2. Coloring column [row] vertices af(P) yields S [S],
S3. TLVM [ADVM] with seed matri$ [S] yields B [B], and

S4. Recovery using Algorithm 3.3 yields the solution of Equg3.11) for unknown entries
of VF.

Ihttp://www.cscapes.org/coloringpage/
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Constant Exploitation
To achieve a better compression, we consider in the follgue JacobiatVF = VF, + VF, as the
sum of its variable and constant entries as

VF, = (U]z)lel 7777 ™ and VF,. = (iji)j:1 7777 m

O ) i=1,...,n

We compute the sparsity pattefp = P(VF,) resp.V F, by applying Algorithm 3.1 resp. Algorithm 3.2
for d = 1 and obtain

S, € R*™P»  gnd S, € R™MX%

by distance-2 coloringf the column and row vertices &f(V F, ), respectively. Thus, application of
TLVM resp. ADVM yields the compressed JacobiBine R™*P» resp.D € R"*% as

D=VF.S,=VF,-S,+VF.-S, resp. D=VFT.5,=VFT.5,+VFTI.§,

Having D resp.D we obtainV F, by solving the linear system
D-F .S,=F -8, resp. D-VF!.§5,=VF!.§, (3.12)

using Algorithm 3.4 to recover column resp. row entrie§/df,,.
Procedure 3.2. The entire process of sparse Jacobian computation withtaahexploitation (SJC2) is
as follows:

S1. Evaluation ofF" at the given point yield$>, and VF.,

S2. Coloring column [row] vertices af(P,) yields S, [S,],

S3. TLVM [ADVM] with seed matri%, [S,] yields D [D], and

S4. Recovery using Algorithm 3.4 yields the solution of Equg3.12) for unknown entries
of VF,.

Listing 3.2: 1F
1void 1_F(float x1, float& d_x1,
2 float x2, float& d_x2,
s float& y1, float& d._yl,
4+ float& y2, float& d_y2, int p) {

5
s float v1, v2, v3, v4;

7 float d.vl[p], d-v2[p], d.v3[p], d-v4[p];
8

9

int i;
o Vvl = sin(x1);
n V2 = vl — X2;
2yl = v2;
13 V3 = X2 x X2;
u Vv4 = x1 + v3;
15 Y2 = v4;

s for (i = 0; i <p; ++i) {
17 d.vl[i] = dx1[i]xcos(x1);
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18 d_v2[i] = d_vi[i] — d-x2[i];

19 dyl[i] = d-v2[i];

20 d.v3[i] = d_x2[i]*x2 + x2xd_x2[i];
21 dv4[i] = dx1[i] + d_v3[i];

22 d_y2[i] = d_v4[il];

23}

21 }

1F in Listing 3.2 represents the corresponding TLVM code ofregle functionF' of Example 3.1.
No compression is possible f& F', since there are no structurally orthogonal columns. Heweeset
S = I, to get the full Jacobian entries

Byy =dyl[0] =cos(z1), Bip=dyll]=—1, By =dy2[0] =1, Bys=dy2[1] =2z,

by calling1_F with seeding
dx1[0] =1, dx1[1] =0, dx2[0]=0, dx2[1]=1

However, columns one and two 8fF, are structurally orthogonal yielding the seed maffijx= (%)
Now, we get the compressed Jacobian entries

Dl,l = cos(acl) —1 and Dg,l =1-—-2-22
by calling1_F with seeding

dx1[0] =1 and dx2[0] =1

To recoverv; ; from D we subtract the constan{ » = —1 from the compressed ent@m to get
v12 = cos(z1). Similarly we subtract the constart; = 1 from Dy ; and yieldvg o = —2 - 25 which

solves Equation (3.12), where

~ [cos(z1) 0 (0 -1 =~ (cos(zl) — 1
VF”( 0 —2-:[;2)’ VFC<1 o>’ and D<1—2-x2

The left column of Figure 3.1 illustrates graphically SJ@pnesenting the entire process of Jacobian
accumulation with constant exploitation described in Bohre 3.2. However, in the following we assume
w.l.0.g to be interested in Jacobiansfoft inputsx; in I C D with ¢ > 1, wherex; denotes the starting
point under Assumption 2.1. We note again that any changesritrol flow results conservatively in
recomputation of both sparsity pattern as well as constdifss, first JacobiaW F'(x; ) is accumulated
at starting pointx; by performing the steps S1, S2, S3, and S4, whereas all otbgun#t from steps
S3 and S4 a®, as well asV F,. remain unchanged if. Here, we assume that the termination of step
S4 is followed by a jump to evaluation process, whenever #weldians at another point is of interest,
otherwise, S4 is supposed to finalize SJC2.

Another way to obtain constants of the Jacobian is illusttat the right column of Figure 3.1. Here,
we avoid the computation overhead of constants on the SAE a$ follows. At the starting point;
we obtain the Jacobian by SJC1 described in Procedure :ilowliy difference that we also estimate
along withP. Obviously, we get the constant patternfias= P — P,,. After termination of the recovery in
step S4 yieldingv F'(x;) and since we have, we obtain easilyv F,. from V F. Furthermore, we obtain
in step S2 both seed matricsresp. S, [S resp. S,] by distance-2 coloring of column [row] vertices
of G(P) resp.G(P,) such that in the following iterations we proceed to accurteutiae target Jacobians
just by performing the steps S3 and S4 of SJC2 shown in thedéimn of the same figure.
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Procedure 3.3. The alternative way to compute and exploit the Jacobianteons (SJC3) is as follows:

e At first iteration i.e. fori = 1 we perform an extended version of SJC1 as follows:

S1. Evaluation of" at the given point yield$> and P,,
S2. Coloring column [row] vertices af/(P) and G(P,) yields S and S, [S and S,],
S3. TLVM [ADVM] with seed matri$ [S] yields B [B], and

S4. Recovery using Algorithm 3.3 yields the solution of Eqng3.11) for unknown
entries of VI, where we extracV/ F, by knowingP, = P — P,.

e At all other iterations i.e. fo > 1 we perform the following last two steps of SJC2 as
follows:

S3. TLVM [ADVM] with seed matri$,, [S,] yields D [D], and

S4. Recovery using Algorithm 3.4 yields the solution of Eqng3.12) for unknown
entries of VF,,.

The following introduces the conceptual recovery algaonighn steps S4 of all three variants of sparse
accumulation processes SJC1, SJC2, and SJC3. Algorithfor3u3ode = T'LM recovers directly in
forward mode the Jacobi&iF from the compressed versidhfor given sparsity patter® and the seed
matrix S. In similar manner, the same Jacobian can be recovereddde = AD.JM from B in reverse
mode for givenP andS. Let

color(i) =k for ie{l,...,n[m]} if Ike{l,....,plq]}:Six #0[Six #0]

denote the compressed column [row] indegf Jacobian column [row] being the same as the color of
the respective column [row] vertex in the bipartite grapt?) from which.S [S] is obtained. Moreover,

group(k) ={i € {1,...,n[m]} | color(i) =k} for ke{l,...,p[q]}

denotes the set of all those columns [rows] of Jacobian tteat@ampressed to the column [rov]of

the compressed matri® [B]. Likewise, one can recové¥ F directly using Algorithm 3.4 fornode =
TLM [mode = ADJM] andp = p, [¢ = ¢,] in forward [reverse] mode from the compressed version
B=D|[B=D]forgivenP = P,, S =5, [5,],andVF = VE..

Algorithm 3.3 (JDR (mode, P, S, B, VF) : Jacobian Direct Recovery)

Require: Jacobian patter®, seed matrixS, mode = T'LM resp.mode = ADJM indicating column
resp. row compression, compressed JacoBiaand JacobiaV F' = 0., x,-
Ensure: the Jacobian matriX F' with numerical values.

v for j=1to m do
2z for i=1 10 n do
= if P[j,i #0 then

4 if mode ==TLM then

5 VF[j,i] = Blj, color(i)]

6 end if

7 if mode == ADJM then
8 VF[j,i] = Bleolor(j), ]

9 end if



114 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVAVE TENSORS

. endif
1. end for
2. end for

Algorithm 3.4 (EJDR (mode, P, S, B, VF) : Enhanced Jacobian Direct Recovery)

Require: Jacobian patteri, seed matrixS, mode = T LM resp.mode = ADJM indicating column
resp. row compression, compressed JacoBiagand constant Jacobianf’ = V F..
Ensure: the Jacobian matriX’ £’ with numerical values.

. for j=1 to m do
for i=1 to n do

s if P[j,i # 0 then

@ if mode ==TLM then

5 VF[j,i] = Bl[j, color(i)]

5 for k € group(color(i)) and k # ¢ do
VF[j,i]— = VF[j, k]

& end for

o end if

10: if mode == ADJM then
1w VF[j,i] = Bleolor(j), ]
12 for k € group(color(j)) and k # j do

13 VF[j,i]- = VFIk,i]
14 end for

15: end if

e endif

1z end for

1. end for

3.2.5 Case Study Il : Sparse Hessian Computation

In the following and for the sake of simplicity, we assumetthaof Equation (1.1) is scalar, that is,
n >> 1 andm = 1. Hence, the Hessian

0%y
Rnxn 2F =
> VIR (axj8$i>ji—1...n

is a symmetric matrix of second-order partial derivatives tan be computed by application of SOTLM
of F' defined by Equation (1.10) at the computational cogDof?) - Cost(F) by lettingx") = ¢; and

x(?) = ¢; range over Cartesian basis vecteyse; € D of the input domairD C R™ for j,i = 1,...,n
such that
1.2) T2 F(x). xD > %@ 9%y
2 —<< : >, >=
Y (X) x X 8:@»8301-

Likewise, the same Hessian can be computed using SOADM dgfined by Equation (1.11) at the
computational cost of)(n) - Cost(F) by settingy;y = 1 and lettingx(?) = ¢; range over Cartesian
basis vectors; € D fori = 1,...,n such that

0%y 0%y >

(2 _ 2 (2) —
X1 =< ya), < VE XY >>= (8$16$i7-“’axna$i



3.2. QUANTITATIVE DEPENDENCE ANALYSIS

Evaluation Process

x; € D CR"

y = F(x;) in C/C++

115

[Sl. Pattern + Constants Comp]
J

[ S1. Pure Pattern Comp. ]

PC:P—PUJ

4

[82. Coloring G(P) and G(PU)]

l S andS, [S andS,] J

l P, andVF, E lP andP, ~
Y
: [V
\/ E Y
[S2. ColoringG(P,) |
L S]] E
"A’/‘ \

4

[ S3. Compression by VTLM [VADJIM] |

[ S3. Compression by VTLM [VADJIM] |

l D=VF-§,[D=VFT.5, J l

B=VF-S[B=VFT.5] J

Y

A

S4. Recovery

}

4

D-VF.-S,=VF,-S, [D-VF!.S,=VF!.3,]

S4. Recover

VF, - VF =VF, +VF,

VF ~ VF,

J

Figure 3.1: Entire Process of sparse Jacobian Computattbrcanstant Exploitation.
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representing théth row of V2 F. We consider in the following SOADM as the model of choice fone
puting V2 F(x) because of linear runtime complexitysincompared to quadratic one of SOTLM. Here,
we consider SOADVM as a vector representation of SOADM tlehputes the compressed Hessian
matrix

R™P 5 B = V2F .S € R"*? (3.15)
by p times evaluation of SOADM of? in directionsx(?) = Sy fori = 1,...,p with S denoting
the seed matrix resulting from the partitioning of columris\& F. The partitioning can be done in
the same way as the Jacobian case by solving a graph colaob{em that is also known to be NP-
complete [CM83, CC86] on the corresponding graph reprasientof V2F. As shown by Coleman
and Moré [CM83], hereby the seed matrix can be obtained &y fiplication of eithestar coloringas a
variant of distance-1 coloring with the restriction tha¢gwpath over four vertices has to use at least three
colors in combination with direct recovery acyclic coloringas shown by Coleman and Cai [CC86] in
combination withindirect (via substitution) recovery on thadjacency graphof V2F. In the following

we focus on the former and denote 6y P?) the adjacency graph 672 F obtained from its sparsity
pattern

pP?= P(VQF) = (pj,i)j,i:l ,,,,, » With Pjyi € {0, 1}
Thus, we consider SHC1 described in Procedure 3.4, whichmauires the classical process of sparse
Hessian computation and assume, like in the Jacobian ¢egayeé are interested in Hessians at points
x € I C D with fixed control flow of F' in I. Algorithm 3.5, which is a modified version of

DI RECTRECOVERL algorithm proposed by Gebremedhin et al. [GTPWO09], is usg@dover the Hes-
sian entries from the compressed version.

Procedure 3.4. The entire process of sparse Hessian computation (SHC¥)fisllaws:

S1. Evaluation ofF at the given point yields Hessian sparsity pattéth,
S2. Star coloring of7(P?) yields S,
S3. SOADVM with seed matri yields B, and

S4. Direct recovery using Algorithm 3.5 yields the solutidrEquation 8.15 for unknown
entries of V2F.

Consequently,
color(i) =k for ie{l,...,n} if Jke{l,...,p} suchthat S;; #0
denotes the compressed column indexf Hessian column. Moreover,
group(k) ={i € {1,...,n} : color(i) =k} for ke{l,...,p}
denotes the set of all those columns of Hessian that are essgn to columh of B.

Example 3.4. In the following we consider the Hessian matfixand its compressed versidh= H - S
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resulted from the application of SOADVM using the seed matias follows.

hii hig+higs 0 hia4 hii hig 0 hig 0  hig 1.0 00
ha 1 ha o has+has 0O ha1 hao has 0  hes O 0100
0 h3,2 h373 h374 . 0 h3,2 h373 h3,4 0 0 0 0 1 0
ha hag hags haa | |hax 0 has haa 0 hag 0 0 01
0 hsothss  hss 0 0 hse 0 0 hss hso| [0 0 1 0
he,1 he,6 he,s he,4 he1 0 0 hesa hes hes 01 .00

S'is the result of star coloring of the adjacency graph/pfas follows.

aum 0

The vertex labels of the shape b indicate that vertex: has the colob. Hence, the coloring yields the
following four groups of columns.

group(l) = {1}, group(2) ={2,6}, group(3)={3,5}, and group(4)={4} ,
where
color(1) =1, color(2) = color(6) =2, color(3) = color(5) =3, color(4) =4

Finally, the Hessian values are recovered by Algorithm Bdy.instance, the entry/ [1,2] = B[2,1] =
ho.1 is obtained in line 5 forj = 1 andi = 2 from B.

Constant Exploitation
In order to exploit the constants of the Hessian and to gétbedmpression we consider the Hessian
V?F = V?F, + V°F,

as the sum of its constant®® F,, and variable entrie¥’2F,. We computeV2F, along with the sparsity
patternP? = P(V?*F,) of V2F, and obtainS, € R"*¢ by acyclic coloring ofG(P?). Thus, application
of SOADVM yields the compressed Hessian

D=V?*F.S,=V?F,-S, +V?F.-S, . (3.16)
Having D we obtainV2 F, by solving the linear system

D —-V?F,..S, =V?F, S, (3.17)

using Algorithm 3.6 to recover column and row entrieS&fE, . The entire process can be summarized
as follows.

Procedure 3.5. The entire process of sparse Hessian computation (SHCR)owitstant exploitation:
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S1. Evaluation of* at the given point yields variable Hessian sparsity pattéfhand con-
stant HessiarVv2F,,

S2. Star coloring of7(P?) yields S,,,
S3. SOADVM with seed matri, yields D, and
S4. Direct recovery using Algorithm 3.6 yields the solutidrEquation 8.15 for unknown

entries of V2F,,.

Example 3.5.In the following we consider the Hessian matkiof Example 3.5 with the constant entries
€1,6,C6,1,C2,3, C3,2, C4,6, C6,4, aNd ¢ 6. Thus, we get the compressed Hessian= H - S, by applying
SOADVM usingp, as follows.

hii+cie hig hia hiit hig 0 hig 0 cip 100
ho 1 hoyo +ca3 ha s h21 ha2 c23 0  hys O 0 10

0 C3,2 + h3,3 h3,4 _ 0 C3,2 h3,3 h374 0 0 0 1 0
ha1+cap ha3 haa | har 0O haz haa 0 cap 0 0 1
hs.6 hs 2 hs 5 0 hs o 0 0 hss hse 0 0 1
6,1 + Ce,6 0 he,5 + c6,4 hei 0 0 c6a hes cop 1 00

Sy is the result of star coloring of the adjacency graphif as follows.

G(H)

Thereby, we get three as total number of used colors, whibleti®r than four in case of coloring the
graph of H. The three groups of columns are as

group(1) = {1,6}, group(2) = (2,3}, and group(3) = {4,5}
where
color(1) = color(6) =1, color(2) = color(3) =2, color(4) = color(5) =3

Finally, the Hessian variable entries are recovered usitgpfithm 3.6. For instancef{ [2, 2] is obtained
for j = 2andi = 2 from D[2, 2] according to line 7. However, in order to get the right valdéfj2, 2] the
constant valu&/? F[2, 3] = c» 5 for k = 3 according to line 10 is subtracted froM|[2,2] = hs 5 + ca 3
yielding H[2,2] = D[2,2] — ¢c2,3 = ha 2. As One can seB®[6, 1] = cg 1 + ¢,6 IS @ pure sum of constant
entries, that obviously can be ignored in recovery step asgtolved constants are already known. Thus,
the recovery routine need only to care about recoveringalag elements.

Like the Jacobian sparsity exploitation process SJC3 it alsxy pay off to obtain constants without
the overhead of computing them on the SACFoAt runtime as illustrated in Figure 3.2. Therefore, first,
at the starting point;, we obtain the Hessian in the classical way as described @1SH Procedure 3.4
with only difference that we also propagd® along with P. Obviously, we get the constant pattern as
P? = p? — P2, After termination of the recovery step S4 yieldiRg F'(x;) and since we hav&? we
obtain easilyV2F, from V2F. Furthermore, we obtain in step S2 both seed matritesd S, by star
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coloring of vertices of7(P?) andG(P2), respectively such that in the following iterations we wed

to accumulate the target Hessians just by performing thess$8 and S4 of SHC2 shown in the left
column of the same figure. Here, we assume that the terminatitne leaf processes S4 of both left and
right columns are followed by a jump to the root process, éshessian at another point is of interest.
Otherwise, leaf processes are supposed to finalize the eptirse accumulation process.

Procedure 3.6. The alternative way to compute and exploit the Hessian eots{SHC3):

o At first iteration i.e. fori = 1 we perform an extended version of SHC1 as follows:

S1. Evaluation of?" at the given point yield$>? and P2,
S2. Star coloring of7(P?) and G(P?) yields S and S,
S3. SOADVM with seed matri yields B, and

S4. Recovery using Algorithm 3.5 yields the solution of Equg3.16) for unknown
entries of V2F, where we extrac¥/?F,. by knowingP? = P? — P2,

e At all other iterations i.e. for > 2 we perform the following last two steps of SHC2 as
follows:

S3. ADVM with seed matrig, yields D, and

S4. Recovery using Algorithm 3.6 yields the solution of Equg3.17) for unknown
entries of V2F,.

Algorithm 3.5 (HDR (P2, S, B, V2F) : Hessian Direct Recovery)

Require: : the Hessian patterR?, the seed matri¥ € R™*?, the compressed Hessighe R™"*?, and
zero HessialWV2F = 0,,xn,.
Ensure: : the Hessian matri%’? F with numerical values.

i for j=1tondo
fori=1tondo
if P[j,i] # 0then
if 3k # ¢ and P[j, k] # 0 and color(k) = color(i) then
V2F[j,i] = V2F[i, j] = Bli,color(j)]
else
V2F[j,i] = V2F[i, j] = B[j, color(i)]
end if
end if
. end for
1. end for

e ® N o a9 & W N

Algorithm 3.6 (EHDR (P2, P2, S,, D, V2F) : Enhanced Hessian Direct Recovery)

vyt oo

Require: : the variable resp. constant Hessian pattefnresp. P2, the seed matrix, € R"*4, the
compressed Hessidd € R"*4, and the HessialW?F := V2F, ¢ R™*" initialized to its constant
partV2F,.

Ensure: : the Hessian matriX’2 F with numerical values.

+ for j =1tondo
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2 fori=1tondo

s if Py[j,i] # 0then

a if 3k # i and P,[j, k] # 0 and color(k) = color(i) then
5 V2F[j,i| = V?FIi, j] = Dli, color(j)]

6 else
7 V2F[j,i] = V2F[i, j] = D[j, color(i)]
8 end if

«  for k € group(color(i)) and P2[j, k] # 0 do
10: VQF[Jv Z] = VQF[%J] = VQF[Jv Z] - VQF[ja k]

11: end for
12 endif

13 end for
1. end for

3.2.6 Numerical Results

In the following we present some numerical results on spemseputation of Jacobians of multivariate
functions of typef’ : R™ — R™ such as Bratu of Listing 2.1 as well as the one that arisesnmufated
Moving Bed (SMB) process a model for liquid chromatograpg@paration described by Gebremedhin
et al. [GPWO08], where in the former = m. Moreover, we present results on sparse computation of
the Hessian of the objective function of tye: R” — R arising in SMB. Therefore, we use ColPack
implementations of partial distance-2, acyclic, and stdoring algorithms with in ColPack terminology
natural ordering of graph vertices. Moreover, we use TLVM and SOADipiementations provided
by ADOL-C in order to accumulate accurate first and seconeroditectional derivatives whenever
appropriate.

The tests for Jacobian and Hessian compression with cdrestploitation are performed using the
C++ operator overloading to@lompJacHess The state-of-the-art implementation of the software com-
putes simultaneously constants and variable pattern obiat and Hessian of the underlying functions
written in a subset of programming language C/C++. Howeuament implementation activities of the
author focus on separating variable pattern estimatian fonstant retrieval that is needed in context of
SJC3 and SHC3.

Constant Exploitation

Table 3.2 compares runtimes of four steps of sparse Jacodmah Hessian computation with
(SJC2/SHC?2) and without (SJC1/SHC1) exploitation of thestants. The resulting humbers of col-
ors are given by colump. Here,p is the result of partial distance-2 and star coloring on tepective
graphs of target Jacobians and Hessians, respectivelyslaensider SJIC1 and SJC2 results of SMB pre-
sented in first two rows. As one can see the respective Jacwfitian = 211755 columns is compressed
to a one with only eight in the former and six in the latter eohs. Better compression is achieved on
Bratu with a gain of six colors. Thus, in both cases the garmimime of stes'3 is not considerably high,
which we consider reasonable. We note that retrieving emsof Jacobian is of quadratic complexity
as nonzero pattern fat = 2 are needed to specify variable entries as discussed onitgo8.1. For
the same reason the constant Hessian estimation is of coimiplexity. Les us consider now the sparse
computation of Hessian of SMB objective functignfor n = 34305 in the last two rows. Here, we
observe that the star coloring underperforms in both rumtémd achieved colors when we consider the
variable Hessian (SHC2) compared to that of the nonzerodespite the fact that the former is sparser
as roughly 12 % of the Hessian nonzeros turn out to be constetfitis context, we consider the coloring

2CompJacHess stands for Compressed Jacobian and Hessignit@tom



122 CHAPTER 3. DETECTION AND EXPLOITATION OF SPARSITY IN DERIVAVE TENSORS

Mode n T(S1) | T(S2)
SJC1(SMB) | 211755 | 0.63 1.77 0.23 | 0.07 | 27.9
SJC2 (SMB) | 211755 2.05 1.15 0.2 0.05 #

SHC1 (SMB)| 34305 6.58 | 161.87| 12364 121
SHC2 (SMB)| 34305 | 1757.72| 213.9 | 14401
SJC1 (Bratu) | 4000000 13.03 | 33.04 7 4.09 142 | 79.9
SJC2 (Bratu) | 4000000 51.22 | 14.93 1 294 | 047 #

T(S3) | T(S4) | %ocnz

o 03

Table 3.2: Runtime and Coloring Results on SJC and SHC.

a major obstacle toward achieving better compression bgtaahexploitation of Hessians. In fact, we
observe the same behavior when comparing the coloringtsesiUEHP (i.e. nonzero pattern) with that
of an conservative overestimated version of the same Hessizose coloring seems to perform much
better compared to EHP without noticeable loss of runtimgeseribed in the following.

3.3 Conservative Hessian Pattern Estimation

In the following we propose a method foonservative overestimatiaf the Hessian sparsity pattern
(CHP). Furthermore, we compare its runtime behavior witlt t4f the ADOL-C implementation of the
standard algorithm for exact Hessian pattern estimati¢tP)Eoroposed by Walther in [Wal08]. There-
fore, we introduce first the standard algorithm and proveataplexity. Moreover, we exploit the partial
separability [Gay96, Wal08, GT82] in CHP to reduce the nmetcomplexity of sparsity pattern estima-
tion that is known to be quadratic in the dimension of inpuits worst case. We also prove the complexity
of CHP, which is a light modification of the standard one.

Finally, we present a recursive algorithm for Hessian patéstimation (RHP) , which is obtained
by the reapplication of the partial separability to evergneént operation on the SAC &t Therefore,
not onlynonlinear componentsf the outputs are of interest but also those of all SAC véembRHP is
supposed to yield exactly the same pattern as CHP at rendesiel one. Moreover, CHP converges to
EHP for sufficiently large recursion level.

3.3.1 Exact Hessian Pattern Estimation

In the following we introduce an algorithm for estimatingtaxact sparsity patterR?> = P(V2F) of
the Hessian matriX’? F, which is a simplified version of TSP described by Algorithm &r d = 2.
Therefore, for every SAC variabtg, with £ € V' we define index and index pair set

fod(vy) = P'(vi) C X and sod(vy) = P?(v,) € X x X

as the first- and second-order dependency sets, @ independents, respectively. EHP described
in Algorithm 3.7 computes the exact second-order depenedesnai(y) of the outputsy of F' from the
first-order dependencidsoD(x) of its inputsx defined as

.....

on the SAC of F, respectively. The first-order dependencies of indepen&X€ variables in
lines 1-4 are initialized to those of independentsvhere the corresponding second-order dependencies
remain empty. The main computation effort is perfromednedi 5-16, where), | J, and]], x represent
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union and cross product of the corresponding (pair) sespeaively. In lines 17-19 the second-order
dependenciesod(v;) of each dependent SAC variahlgis added tasod(y).

Algorithm 3.7 (EHP (SAC(F),FoD(x), sod(y)) : Exact Hessian Pattern Estimation)

Require: SAC of F' and first-order dependenci€®D(x) of the inputsx.
Ensure: second-order dependenciegl(y) of the outputsy.

v for i:=11to n do

2 fod(v;) = fod(x;)

s sod(v;) =0

+ end for

s for k=n-+1,...q do

o fod(vg) = U, fod(v)

7z if o € {+} then

& sod(vg) = U~y sod(v;)

o endif

w0 if p € {x} then

- sod(vg) =[]~ fod(vi) U U,y sod(v;)
2. endif

1 f pr € Py then

w  sod(vk) = fod(vg) X fod(vg)
1. end if

1. end for

wfor j=n+p+1to g do

g sod(y) = sod(y) U sod(v;)

1. end for

i

One can easily see that the most costly operation in EHP isrthes product of lines 11 and 14,
which are performed fop;, € {x} andy, € @y, respectively. This fact makes this algorithm have a
quadratic complexity as proven by Theorem 3.3 that is inddigtht modification of the one proposed by
Walther [Wal08] form = 1. Note that this complexity would also follows from TSp o= 1.

Theorem 3.3. Given SAC of" defined in Equation1(.2) and letO P.S(EHP) denote the operation count
needed for Algorithm 3.7. Hence, we have

OPS(EHP) < OPS(F)-0O(7?%) |,
whereOPS(F) is the number of floating point operations in SACtbénd
f = e iy with iy = max nonzerqV>E; ;.
denotes the maximum number of nonzeros per row over all rothe diessians’ F;.
Proof. Obviously, there exists a positive constasuch that
n<ec-n . (3.18)
Furthermore, the number of elementsfiod(v;) for j € Z UY is bounded by i.e.

|fod(v;)] € O(R) . (3.19)
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Thus, it follows that the union in line 6 can be performedif:). From Equation (3.19) follows im-
mediately that the cross products in lines 11 and 14 can derpeed inO(722). At the same time we
have

[sod(v;)] € O(?)

representing the upper bound for the union operations pagdin lines 8 and 11. O

We recapitulate here that the quadratic complexity of EHEaissed by the computation eéd(vy,)
as the cross product g¢fod(v;) and the union okod(v;) of their arguments < & in case of nonlinear
and linear operations, respectively. In the following B@ttve introduce the conservative algorithm.

3.3.2 Exploitation of Partial Separability

In order to accelerate the Hessian pattern estimation waress the following thaf’ is partially sepa-
rable as

INF(F)]
F(x)= Y fix) with NF(F)=|]nf(v) (3.20)
i=1 JjEY

into nonlinear functiong;, which we refer to asionlinear frontier NF = N F(F) components of:.
Griewank and Toint [GT82] have shown th&tis partially separable iW2F is sparse. Thus, differenti-
ating I’ of Equation (3.20) with respect toyields

INF(F)|

VF(x) = Y Vfi(x)
i=1
Thus, the exact and conservative sparsity patteNi’af is given by

INF(F)| INF(F)|

sod(y) = U sod(f;) and ecsod(y) = U esod(fi)

i=1 i=1

respectively, where

csod(fi) = fod(fi)* = fod(f:) x fod(f:)

denotes theonservative second-order dependenoieg; on x with sod(f;) C csod(f;). Thus, we can
overestimate the sparsity patterrot F'(x) first by computingfod( f;) of all NF componentg; followed
by building a union of the self cross produgisd(f;)?.

Algorithm 3.8 (CHP(SAC(F), FoD(x), csod(y)) : Conservative Hessian Pattern Estimation)

Require: SAC ofF’ and first-order dependencid¢& D(x) of inputsx.
Ensure: conservative second-order dependensie®y) of the outputs.

 for i=1 to n do

2 fod(v;) = fod(x;)

s nf(v) =10

4 end for

s for k=n+1,...q do

o fod(vi) = U,_y, fod(v:)
w nf (o) = Uy get-nf (v;)
& endfor

o for j=n+p+1to g do
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w0 csod(y) = csod(y) U Uienf(vj) fod(v;)?
u: end for

Algorithm 3.8 illustrates the computation efod(v;) with j € ¥ of the outputsy on the SAC ofF.
Thereby, in addition to the computation féd(vy,) with k& € V, we propagate the NF set defined as

nf(v;) forey; € {+}
nf(og) = Jnf(v) with getnf(v;) =< {i} forg; € {x}Udy . (3.21)
i<k ) otherwise

Obviously, the NF of a SAC variablec V — X results from the union of the NF of its arguments &

as shown in line 7. Therefore, a nonlinear argument is swggptisreturn itself as a NF component of
vk, Whereas a linear one forwards its NFipas defined by Equation (3.21). In other words, we aim to
maintain a nonlinear frontier DAG (NF-DAG)

GNr = (VNF,ENF> (3.22)
with
VNF = {’L cV: i € {*} U (I)N} and Enp = {(’L,j) 11,] € Vnr and: € nf(vl)} (323)

at the time of evaluating’. Vertices represent the nonlinear elemental functionseaSt#hC of F, where
each vertex € V — X of NF-DAG representsy, for 5, € ® U {x}. Therefore, vertek is supposed to
store fod(v;) of each of the argumenis< k of v;.. Moreover, vertex: stores the information about its
predecessor vertices for the NF-DAG denoted here pyi ). We emphasize here that the computation-
ally expensive cross products along with their unions asvahio line 10 are performed only for output
variables in the number of their NF components and®&S(F') as in EHP. Theorem 3.4 proves the
computational complexity of CHP.

Theorem 3.4. Given SAC of' of Equation (.2) and letOP.S(C H P) denote the operation count needed
for Algorithm 3.8. Hence, we have

OPS(CHP) < |[NF(F)|-O(n?) + OPS(F) - O(7 + N)
N denotes the maximum number of NF components overall elehograrations off” as

N = max Inf(v;)| . (3.24)

Proof. As shown in Equation (3.18), there exists a positive conigtanch that < ¢ - 7. Furthermore,
the numbers of elements in bofled(v;) andnf(v;) for j € V are bounded by, and N, respectively,
such that

\fod(v;)] € O(h) and |nf(v;)| € O(N) . (3.25)

Thus, it follows that the unions in lines 6 and 7 can be perfxirm O(7 + N) operations. From
Equation (3.25) it follows immediately that the cross praduas well as the unions in line 10 can be
performed inO(7?) as|csod(v;)| € O(R?). O

At this point it should be made clear that the overestimat@side effect of treating a multiplication
operation as an operation of ty@ey such asin andexp . In fact, we can only obtain an overestimated
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version of the Hessian pattern by CHP when multiplicatiomscntained in the NF component bf
However, this is not alway the case as explained in the fafigexample.

v=exp(xi); //fod(v)={1l}; sod(v)={(1,1)}
w=vx*xy; //fod(w)={1}; sod(w)=fod(v)x fod(xs)={(1,1)};
y=v+w //fodly) = {1} sed(y)={(1,1)}; csod(y) = fod(v)>U fod(w) = {(1,1)}

The NF ofy is obviouslynf(y) = {v,w}. We obtain one and the same pattern by EHP and CHP as
fod(v) = fod(z1), which implies thatfod(w)? = fod(v) x fod(z1). Hence, performing self cross
product does not lead to any overestimation.

Example 3.6. Given a scalar functiod : R? — R defined as
y:F(xl,xg,x3):x1-x2+x§ . (3.26)

We illustrate the algorithms EHP and CHP for exact and oviamegte Hessian pattern computation on
the following SAC of'. Here, we illustrate at every SAC statemént 1, ..., 5, the computation of ods
(a), sods (b),nfs (c), andcsods (d).

1. v, =x; fori = 1,2,3
(@) fod(vs) = {i};
(b) sod(v;) = 0;
(©) nf(vs) = 0;
2. Vg = V1 * V2
(a) fod(va) = {1,2};
(b) sod(vs) = fod(vy) X fod(va) = {(1,2)};
(€) nf(vs) = 0;
3. v5 = v3
(a) fod(vs)
(b) sod(vs) =
(c) nf(vs) = 0;
4. y=wv4+vs
(@) fod(y) = {1,2}
(b) sod(y) = sod(va) Usod(vs) = {(1,2),(3,3)};
(c) nf(y) = getnf(vs) Ugetnf(vs) = {4,5};
(d) csod(y) = fod(vs) X fod(vs) Ufod(vs) X fod(vs) = {(1,1),(1,2),(2,2),(3,3)};

{3}
fod

(vs) X fod(vs) = {(3,3)};

Considering the multiplication in (2). The second-ordepeedenciesod(v,) of v, results from the
cross product ofod(v4) andfod(v,). The nonlinear frontier of, andvs are obviously empty as shown
in (2) and (3), respectively. The nonlinear component ofatidition operationy in (4) consists of its
both nonlinear arguments, namelyand5. Hence, the self cross product of thed(v,) andfod(vs) of
each nonlinear frontier componeatand5 of y followed by their union yields the overestimation of the
second-order dependeneyod(y) of the outpuy in (d) as(1, 1) and(2, 2) are not contained ikod(y).

The entire process is shown graphically in Figure 3.3, whisé and sod along withcsod are denoted

by dependency vectors and matrices, respectively. Thé¢ ard®verestimated nonzeros are denoted by
symbolsx and®, respectively.
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Figure 3.3: Exact (a) and conservative (b) Hessian PattstimBtion.

3.3.3 Recursive Hessian Pattern Estimation

As explained above the nonlinear frontier DAGy ¢ of Equation (3.22) is supposed to be the result of
evaluatingF' at given pointk. Each vertex is supposed to maintain its own nonlinear feowfiven as its
predecessors along with the fods of the arguments of thectigp SAC statement.

Note that in CHP the focus was only the nonlinear frontier wipots were of interest. There, per-
forming self-cross products of the fods of each of the NF congmts resulted in the conservative overes-
timation of the Hessian pattern. However, givér » we can also formulate a recursive version of CHP
that we refer to as recursive Hessian pattern estimatiorP{RFhus, one can formulate a recursive top-
down algorithm onG v that is supposed to interpret nonlinear frontiers levedaniThe interpretation
is nothing else than building cross products of fods of comeg nonlinear frontiers accordingly. Thus,
we believe that with increasing levels (going further dovmn(éy ) RHP converges to EHP. A proof of
concept implementation of this idea is attached to this work

To clarify the idea behind RHP, let us consider again FiguBg3) that we obtain by interpreting the
fods of the nonlinear components of the root hoxXNow, let us go one level down ta, andvs and let
assume that, has access to the fods of its argumentandv,. Now, despite the fact that, is the result
of the multiplication we can build the cross products of theés ofv; andwvs, yielding the pattern of the
local Hessian a®(V?v4) = fod(v1) x fod(vs) = {(1,2)}. In case ofvs nothing changes as its is the
result ofexp(vs) and hence a self cross product of its fods yields the exaetmpatsP (V2vs) = {(3,3)}.
Finally, the unionP(V2y) = sod(v4) U sod(vs) yields the exact Hessian pattermypof

We obtain RHP by replacing the statementin line 10 of CHRdwpute(j, sod(y), 1), wherel > 0
denotes the recursion level as described by Algorithm 3.9 supposed to denote the vertex corre-
sponding to SAC variable;. We note that SAC variables are also supposed to have acctsstdF
components on the NF-DAG. More precisely;(vy) of the SAC variabley, is supposed to point to the
respective vertices on NF-DAG.

Thus, callingcompute(j, P, 1) adds the contribution of the vertgsto the second-order dependencies
P = sod(y) depending on the levél The interpretation is performed in lines 2 and 9. In the fatme
the interpretation is performed in cases whier 0 or ¢; € ® . In this context, the interpretation is
nothing else than building self cross product of the fod ef plarticular vertex. Otherwise, we proceed
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recursively by callingcompute(i,P,1 — 1) for all the predecessofof k as shown in lines 4-6. Finally,
and after handling all the children &f we also add the contribution of the multiplication (line 8) t
P by building cross product of the fods of the parameterofWe emphasize here that we explicitly
distinguish between the parameters at SAC level and chiloineNF-DAG. The former do not necessarily
represent nonlinear operations as opposed to the lattés.isThxactly the reason for storing those fods
during the evaluation of" in NF-DAG vertices. One can easily figure out that tapute(-) algorithm
and hence the interpretation followslapth-first post-order strategy.

Thus, we believe that with increase in levels (going furttiewn on NF-DAG) RHP converges to
EHP. This behavior is demonstrated using the proof of cariogpementation of RHP in Section 3.3.4
on an artificial scalar function. The complexity class of gurting the exact Hessian pattern by RHP is
stated in Theorem 3.5. Nonetheless, further investigatioe needed to handle the memory bandwidth
as NF-DAG can potentially get very big. Hence, ideas arerdeéso reduce the memory consumption by
freeing the memory of all unnecessary vertices of NF-DAG&@iven recursion level to avoid running
out of memory. Therefore, we suppose to keep track of the mgasage and delete as many vertices as
possible whenever the memory bound is hit. As a first ideaaf make sense to mark a dead veitas
not eliminatable if it is in a distance (number edges) dist(i, k) < [ to at least one local dependent
vertex? k. The marking is supposed to be performed by a breath-firstsavgG y .

Theorem 3.5. Given the nonlinear DAGZyr = (Vnvr, Enr) defined by Equation3(22 and let
OPS(RH P) denote the operation count needed for RHP described by WhgoB.9. Hence, we have

OPS(RHP) < |Vyr|-O(7*) + OPS(F) - O(a + N) (3.27)
with Vxr and N being defined by Equatio8 23 and Equation 8.24), respectively.

Proof. As shown in Theorem 3.4 for CHP, the unions of lines 6—7 can dréopmed inO(7 + N)
operations for every SAC variable. From Equation (3.29pfe$ also that the cross products as well as
the unions in lines 2 and 9 of theonput e routine described by Algorithm 3.10 can be performed in
O(n?). We obtain Equation (3.27) taking into account that theseatjfmns are performed at mgs$ty |
times. O

Algorithm 3.9 (RHP(SAC(F), fod(x), sod(y), 1) : Recursive Hessian Pattern Estimation)

Require: SAC ofF" and recursion level > 0.
Ensure: Second-order dependenciesl(y) of the outputs.

. for i:=1ton do
fod(v;) = {i}

nf(vi) =0

. endfor

.for k=n+1,...q do
fod(vi) = U<, fod(vi)
nf (vr) = Uy get-nf (v;)
. endfor

.for k=n+p+1to q do
compute(vg, sod(y), 1)

. end for

© ® N o O A w N B

.
o

i
o

Algorithm 3.10 (compute(k, P, 1) : Computation of Second-Order Dependencies)

3A vertex in NF-DAG is marked as local dependent, if it has nocessors.
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Require: NF-DAG vertext with k € V' of F' and recursion level > 0.
Ensure: contribution ofvy, atlevellto P C X x X.

cifl ==0o0r @, € &y then
P=PU (U fod(vi))?
else
forall i € nf(v;) do
compute(i,P,1—1)
end for
end if
if o, € {x} then
P =PU]],., fod(v;)
. end if

e ® N 9o a9 & W N B

[
o

In the following we illustrate RHP in the example functionBduation (3.26). The respective ex-
act and conservative overestimated pattern by EHP and @dpectively, have already been illustrated
in Example 3.6.

Example 3.7. Given the scalar functio® : R? — R defined by Equation3(26) we illustrate RHP on
the following SAC of. Here, we illustrate at every SAC statemént 1,...,5 the computation of ods

(a) as well amfs (b). Moreover, the computation eéd(y) is exercised fof = 1 and! = 2 in (c) and

(d), respectively.

1 v, =ux fori = 1,2,3
(@) fod(vi) ={i};
(b) nf(v;) = 0;

2. Vg = V1 - V2
(@) fod(vs) ={1,2};
(b) nf(vy) = 0;

3. v5 = v3
(a) fod(vs) = {3};
(b) nf(vs) = 0;

4. y=wv4 + vs
(@) fod(y) = {1,2}

(b) nf(y) = getnf(vy) Ugetnf(vs) = {4,5};
(c) compute(y, sod(y), 2) with initial sod(y) = @ andi = 2

compute(4, sod(y), 1)

—  sod(y) =sod(y)Ufod(vy) x fod(vy) = {(1,2)}
compute(5, sod(y), 1)

—  sod(y) = sod(y) Ufod(vs) x fod(vs) = {(1,2),(3,3)}
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(d) compute(y, sod(y), 1) with initial sod(y) = 0§ andl = 1

compute(4,sod(y),0

—  sod(y) = sod(y) Ufod(vs) X fod(vs) = {(1,1),(1,2),(2,2)}

—  sod(y) = sod(y) Ufod(vs) x fod(vs) = {(1,1),(1,2),(2,2),(3,3)}
Hence, RHP results in overestimated and exact Hessianrpatter/ = 1 and/ = 2, respectively. The
overestimated pairs are marked as bold.

3.3.4 Numerical Results
Hessian Pattern Overestimation

In the following we consider numerical result on Hessiarigratoverestimation. Figure 3.4 (a) compares
the runtime of the conservative algorithm CHP against tlidgtP implemented in AD tool ADOL-

C on Hessian matrices of the objective functiprof SMB. We observe here a linear growth in input
dimensionn in case of CHP, whereas EHP tends to increase quadraticaéiywwWe observe also that
the resulting colorg, via star coloring of the conservative sparsity patternltagufrom CHP as shown

in Figure 3.4 (b) is much better than the one obtained from Bkt®vn in (c) with a loss in runtime by a
factor smaller than two in the former.

For instance, let us considar = 16980. Star coloring of EHP takes 37.86 seconds to yield 6094
colors, whereas it takes 43.74 seconds to yield 37 colorase of CHP as shown in columf% and
gs of (c) and (b), respectively. Moreover, we observe roughly same behavior in case of the acyclic
coloring algorithm with even better runtime in CHP as showgoelumnsT, andg,. Considering again
n = 16980, acyclic coloring of CHP yields 5 colors in 58.63 secondddad of 4861 colors in 88.14
in EHP. Thus, conservative estimation of the Hessian patteems to reduce the number of colors and
hence improve the compression resulting from both star eyclia coloring heuristics drastically without
significantly affecting the runtime. For the sake of comgheiss we provide in columns, andg, the
runtime and coloring results of partial distance-2 colgraigorithm without symmetry exploitation in
both EHP and CHP. Considerimg= 16980 again distance-2 coloring of EHP yields 7277 colors in 4.76
seconds. Hence, the gain in time compared with star [adyddiloring yielding 6094 [4861] colors is
roughly8 ~ 3186 [9 ~ 4370 by a loss ofl.2 ~ 2277 [1.5 ~ 22711 in the number of achieved colors.

In conclusion we note here that both heuristics do sequeatiaring, which we conjecture to be the
reason for different color results of EHP and CHP. Therefase consider in the following a snapshot
of the Hessian pattern of for n = 411 as shown in Figure 3.5. The labels j denote that vertex
gets the coloyj. The Symbol® denotes an overestimated entry of the Hessian. Firstiyddbcus on
first ten rows and columns of EHP and the resulting adjacerapgty>(E H P). Star coloring results in a
total of four colors, where the vertices 1-5 and 6 get thercbland 2, respectively. The latter is the case
because vertex 6 is directly connected to 1. Moreover, xéttieas to be colored as 3 since otherwise
the four vertices 6, 1, 7, and 4 connected by a path would hawetlors and not at least three, which
is required by star coloring. In fact the same argumentdtads for vertex 4. Consider now the entire
pattern including the row/column 11 and its adjacency gnajph vertex 11 and its incident edges. This
vertex exhibits exactly the same property as vertices 3 atftedeby increasing the color number by one.
Furthermore, we observe the same behavior by changing trezing of vertices with respect to their
degrees equal the number of incident vertices. This is lsscanost vertices here are almost of the same
degree. In opposite, star coloring of CHP first colors vedic= 1, 2, 3, 4 with ¢ while coloring most of
the remaining vertices with one of the used colors.
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(@)
n T dp T ds Ty da
8580 | 1.25 | 3677 | 1049 | 37| 1406 | 5
10680 | 1.93 4577 | 16.447| 7 2196 | 5
12780 2.78 | 5477 | 2364 | 7 3163 | 5
14880 3.73 | 6377 334 | 37| 4449 | 5
16980 4.85 | 7277 | 43.74 | 37| 5863 | 5
19080| 6.13 | 8177 | 55.25 | 7 7399 | 5
21180| 7.55 | 9077 68.7 7 9154 | 5
25555| 10.91| 10952 100.11| 7 | 133.83| 5
29755| 14.85| 12752 | 140.09| 67 | 186.44| 5
33955| 19.33| 14552 | 182.94| 67 | 242.86| 5
38155| 24.28 | 16352 | 231.26| 7 | 307.89| 5
(b)
n Tp dp T, qs T, Ga
8580 | 1.22 3677 9.13 3094 19.4 2461
10680 1.9 4577 14.31 | 3844 | 30.47 | 3061
12780 | 2.69 5477 21.04 | 4594 | 44.78 | 3661
14880 3.65 | 6377 28.7 5344 | 61.39 | 4261
16980 | 4.76 7277 | 37.86 | 6094 | 80.14 | 4861
19080| 5.98 | 8177 | 47.68 | 6844 | 101.68| 5461
21180| 7.35 | 9077 | 59.51 | 7594 | 126.55| 6061
25555| 10.68| 10952 | 88.69 | 9184 | 188.94| 7321
29755| 14.45| 12752 | 120.1 | 10684 | 257.86| 8521
33955| 18.83| 14552 | 158.45| 12184 | 338.73| 9721
38155| 23.77| 16352 | 200.5 | 13684 | 432.43| 10921
()
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Figure 3.4: Runtime Comparison (a) and Coloring Results R (b) and EHP (c) on SMB.
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1 X X X X
2 X X X X
3
4 X X X X
) X X X
6 x X X X
7 X X X X
8 X
9 X
10 x X X X
11 x X X X
G(EHP) G(EHP)
1 2 3 4 5 6 7 8 9 10 11
¥ & ® & X X X X
® ® ® ® X X X X
® ® ® ®
® ® ® ® X X X X
X X X
X X X X
X X X X
X ®
X &
X X X X
X X X X
G(CHP) G(CHP)

Figure 3.5: Star Coloring of the Adjacency Graph of CHP andPEfISMB.
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Recursive Hessian Pattern Estimation

As last test case we consider the scalar funcfioriR™ — R implemented in Listing 3.3 mapping =
pow(2, h) independents stored ¥{0][] ontoy while performing non-overlapping pairwise multiplicatio
[addition] of two consecutive entries gfi ][] for uneven [even] values afe 1, ..., h.

Note that the number of additions performed is almost hadf iiamber of multiplications. This
becomes important when comparing the runtime of estimakingxact Hessian pattern using EHP im-
plemented by ADOL-C and the one gained by RHP. In partictt&robserved gain of factor two by the
latter is due to the fact that the NF-DAG as defined by Equg8o?2) consists of vertices representing
nonlinear operations. Hence, the union of second-ordesrtiigncy sets are avoided in RHP for linear
operations as opposed to EHP as described by Algorithm 3.7.

For illustration, let us assume for the time being- 2. Hence, fori = 0 line 32 of Listing 3.3 results
in

x[1][0]=x[0][0] «x[0][1] ~and x[1][1]=x[0][2] +x[O][3]
Additionally, for: = 1 line 33 yieldsx[2][0]=x[1][0]+x[1][1] denoting the output. Hence, two multi-
plications and one addition are performed in total as reitoy f in line 36. The former and latter are
counted in lines 7 and 17, respectively. Obviouslys 4 asn = pow(2, h) = 22.

Listing 3.3: Artificial Scalar Functiorf

1/l multiplicates pairwise entries of s and stores the resulin t
2/l returns the number of performed multiplications
sint multiply(int n, doublex s, doublex t) {
4 int muls=0;
for (int j=0; j<(n/2); j++) {

5

6 t[jl=s[2*]j]*s[2«]+1];
7 muls ++;

s}

9 return muls;

w0}

u // adds pairwise entries of s and stores the results in t
12/l returns the number of performed additions

1z int add(int n, doublex s, doublex t) {

14 int adds=0;

s for (int j=0; j<(n/2); j++) {

16 t[jl=s[2*j]+s[2x]+1];
17 adds ++;

18}

19 return adds;

20 }

2/l x[0][] and y denote independents and dependents
2 // n and h denote the number of independents and Computatidd@mph Height
3/l returns the total number of performed multiplications darmdditions

2 int f(int h, doublexx& x, double& y) {

25 int muls=0, adds=0;

26 int n = pow(2,h);

27 X = new doublex [h+1];

s for (int i=0; i<=h; i++)

29 x[i] = new double [(int) pow(2, h-i)];

30
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afor (int i=0; i<h; i++) {
32 if (i%2==0) muls+=multiply (x[i], x[i+1], pow(2, hi));
33 else adds+=add(x[i], x[i+1], pow(2, hi));

}
sy = x[h][0];
3 return (muls+adds);

The computational grap&'(f) of f resulting forh = 2 is shown in Figure 3.6 (a). It is a balanced
tree of heighth with leaves [root] denoting the independents [dependesfces [vertex]. Note that
NF-DAG of f would only consist of two vertices 5 and 6 being NF componehtke outputy. In this
case, vertices 5 and 6 have to store the first-order depeiedesfche arguments of the respective SAC
statements. In particular, vertex 5 [6] has acces&tf(1) and fod(2) [ fod(3) and fod(4)].

7y = =[2)[0]]

fod(7) = {1,2,3,4} 1 2 3 4
+ 1 0 x 0 0
Sl T SN
fod(5) = {1,2} fod(6) = {3,4} 2 x 0 0 O
4 N 4 N 3 0 0 0 x
L{=[0][0]] 2 [z[0]1]] 3 [2[0][2]] 4[[0][3]]
fod(1) = {1} fod(2) = {2} fod(3) = {3} fod(4) = {4} 4 0 0 x O
@ :G(f)forh =2 (b) : EHP

1 2 3 4 1 2 3 4 1 2 3 4
1 ® X ® ® 1 ® x 0 0 1 0 x 0 0
2 X ® 0 ®& 2 x ® 0 0 2 x 0 0 O
3 ® ® ® X 3 0 0 ® X 3 0 0 0 x
4 ® ® X ® 4 0 0 x ® 4 0 0 x O

(c) : RHP(0) (d) : RHP(1) (e) : RHP(2)

Figure 3.6: Computational Graph ¢ffor h = 2 (a) and the resulting sparsity Pattern from EHP (b) and
RHP for Recursions 0 (c), 1 (d) and 2 (e). The symboland® denote exact and overestimated pattern
entries, respectively.

Figure 3.6 (b) shows the resulting exact sparsity pattetth@iHessian off for h = 2 obtained by
EHP. The resulting sparsity pattern from RHP for recursawels0, 1, and2 are given by (c), (d) and (e),
respectively. For a given recursion levethe resulting sparsity obtained by RHP is denoted by RHP(
Obviously, RHP(2) in (e) looks the same as (b), which illat#s the convergence of RHP to EHP for
recursion level 2. One can figure out that the convergencehigwed forl = £ + 1 for this example
function. Moreover, RHP(1) in (d) would also result from CH®&two multiplications of vertices 5 and 6
in (a) are the NF component gfas already mentioned.

More precisely, (c) results from RHP fér= 0 according to line 2 of Algorithm 3.10 by self cross
product

Fod(7) x fod(7) = {1,2,3,4} x {1,2,3,4}
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However, choosing = 1 would lead to the call of theompute(-) with recursiorl = 0 on 5 and 6 as NF
components of. Hence, self cross products

fod(5) x fod(5) ={1,2} x {1,2} and fod(6) x fod(6) = {3,4} x {3,4}

and their unions yields (d). Finally, in caselcf 2 the exact Hessian pattern is estimated as the recursion
level reached at vertices 5 and 6 is 1. Hence and as none ottheany NF componentthe cross products

Fod(1) x fod(2) = {1} x {2} and fod(3) x fod(4) = {3} x {4}

followed by their unions are performed according to the 8ra# Algorithm 3.10. Thus, the overestimated
diagonal entries of (d) are removed yielding (e). Obviousigrting from (c), the exact Hessian pattern
(2) is successively approximated by increasing recurgeel| Figure 3.7 presents first runtime results on

T : . . -108

X L
, X
= = . 2 1.3+ }
\ N 127 v 1
%) N \

2 650 L —— 2 8 A ]

g \ |- %= n=065536 m ' - x- n = 65536
2 L & 11 .

. o \
S 1 |
N =z
5.5 L. 0.9 B T (R
| 2\ ! 4‘1 I (\) L é . | | | | . | |

2 4 6 8

| : RECURSIONLEVEL I - RECURSIONL EVEL

@) (b)

n = 4096 nz T(P) T, Qa

RHP(1) | 8388608| 0.38 | 501.48| 2048
RHP(2) | 6291456/ 0.41 | 458.3 | 1536
RHP(3) | 5767168| 0.36 | 289.91| 1408
RHP(4) | 5636096/ 0.35 | 237.58| 1376
RHP(5) | 5603328| 0.34 | 223.91| 1368
RHP(6) | 5595136/ 0.33 | 220.16| 1366
RHP(7) | 5591040, 0.3 | 220.27| 1366
EHP 5591040| 0.82 | 220.65| 1366

(©

Figure 3.7: Runtimes for recursive Estimation HessianspaPattern (a) along the respective Number
of Nonzeros (b) depending on the Recursion Lévier f of Listing 3.3 withh = 14. A Detailed View
of Measurement Data is given in (c) fbr= 12.

the proof of concept implementation of RHP described in Alkpon 3.9 and ADOL-C implementation of
EHP for f of Listing 3.3. (a) shows the runtime behavior of the fornmerecursion levels=0,1...,8
for h = 14 with n = 2" = 65536 inputs. We denote again the achieved sparsity pattern daséie
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instance of RHP fof by RHP({). As already mentioned, RHB(is supposed to converge to EHP for
= % + 1, that is,l = 8 for h = 14. The number of nonzeros of the resulting pattern is presentgy).

A detailed view of measurement data foe= 12 is presented in (c), where the columfisandq, present
the runtime and the number of achieved colors by the appitalf the acyclic coloring implementation
of ColPack, respectively.

We observe that the exact Hessian patterl gfby RHP for both dimensions = 12 andh = 14 is
achieved at roughly the same computational time as showalimmT'(P) for P denoting the pattern
of V2f. Moreover, RHP is at least twice as fast as EHP. The reasornnlitee fact that the number
of performed multiplications is twice that of additions. Agentioned at the beginning of this section
RHP prevent us from performing (expensive) unions of seamadér dependencies as opposed to EHP
as shown in line 8 of Algorithm 3.7. More substantially, thewber of achieved colors of at about 4000
nonzeros denser sparsity pattern RHP(6) is equal to RHREER that the latter denotes the exact Hessian
pattern.

Figure 3.3.4 shows a sparsity pattern achieved by RHP fdatf#ssian off for h = 6. The resulting
pattern are obtained in the same way as discussed in Fighferd. = 2.

(a) RHP(1) (b) RHP(2)

(c) RHP(3) (d) RHP(4)

Figure 3.8: Application of RHP foh = 6 resulting inn = 64 inputs for f. The resulting Pattern of
RHP(0) is explicitly avoided as it is completely dense.

To conclude the discussion about the recursive estimafitiledHessians we have considered an ar-
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tificial example function given by Listing 3.3 for illustiah purposes. Our plain example clarifies the
contribution of the multiplication operation to overestition. At the same time, we used it to illus-

trate the difference between the complexities of the stahalgorithm EHP and RHP, which recursively

converges to the former. The latter was the result of exptpithe idea behind partial separability at
level of elemental operation resulting in a nonlinear frenDAG consisting of vertices corresponding to
nonlinear operation of the underlying function.

We have also showed that the application of RHP for recurigie#l one results in the same conser-
vative overestimated pattern as the conservative algor@hP [VRMN11]. Note that the latter makes
use of the direct nonlinear components of the outputs. Itiquéar, there is not really a need to build a
nonlinear DAG in that case. Moreover, we have shown the effiyj of CHP on realistic problems as dis-
cussed at the beginning of this chapter. Its runtime waspksgented for the computation of the Hessian
pattern of another scalar function arising in context ofidated moving bed (SMB) process described at
the beginning of Section 3.2.6. More substantially, colgrof the adjacency graph of the conservative
Hessian pattern achieved by CHP was turned out to be muchkeaffio terms of achieved colors that
coloring the exact Hessian pattern. We note that the latt&nown to be of quadratic complexity in worst
case. A runtime comparison of both algorithms was presentEjure 3.4.

We note that the current implementation activities of thehaufocus on tuning RHP to exhibit the
same runtime behavior for SMB as CHP for recursion level. elmy, as already shown on Figure 3.6,
the runtime of RHP(1) is very close to the converged versielding the exact Hessian pattern. Hence,
RHP may improve the runtime of estimating the exact Hessé&tem significantly. Moreover, further
investigations focus on reducing the memory consumptidRH to avoid running out of memory.

Moreover, as observed in columfy, of Figure 3.6 (c) the high runtime of the coloring algorithm
of use prevent us so far from determining the number of calbes particular (over) estimated sparsity
pattern at reasonable time. Therefore, further investigatare planned to design sophisticated coloring
algorithms [CM69], yet faster. This combined with RHP, waboben up room for deeper investigations
on the impact on the structure property of the concernedoeaton the resulting number of colors. Note
that so far this is not really possible for large dimensiogsghe coloring turns out to be significantly
slower than the sparsity pattern estimation.
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Chapter 4

Summary and Conclusion

The main objective of Chapter 2 was on reducing the memorguwoption of the reverse mode AD by
application of elimination techniques on extended Jacwhid underlying functions. Here, the focus was
on minimizing user’'s expertise in AD and the knowledge alibatunderlying problen#. As discussed
at the beginning of the chapter the memory is an issue for gtlmay AD approach that accumulates
derivatives such as gradients or Jacobians on an interpadgentation of choice kept on storage. Ex-
isting checkpointing strategies are developed face thablpm for time-dependent problems. We have
illustrated this for a simple example in Figure 2.1. Here |@aned that the application of checkpointing
is more than an easy task.

To tackle the memory problem we have first considered thi giedblem of Jacobian accumulation
by row elimination on extended Jacobians conceptually &ineesas vertex elimination on the respective
DAGs. The focus there was on the analysis of the runtime andangebehavior of row elimination on
extended Jacobians and their compressed row storageeatatans. Our numerical results have shown
that Jacobian accumulation on dense extended Jacobiatssttehit the memory limit very quickly. This
is not really surprising because of the quadratic (in nundfegows) memory complexity of extended
Jacobian. Furthermore, it has been shown that the spaxgityitation of extended Jacobians using com-
pressed row storage reduces the memory consumption didstidowever, we observe at the same time
that Jacobian accumulation on compressed representdtiextended Jacobians underperforms com-
pared with its dense counterpart by increase in the probieen $he reason turned out to lie in the linear
overhead of searching for dependencies and spots in thefokhthe same time it is observed that the
increase in problem size has a direct impact on the numbemaf of considered matrices meaning even
larger search spaces.

The impact of the latter became more clear when we have wipdrallelize the process of Jacobian
accumulation in Section 2.5 using OpenMP parallel paradi§wen though we observe much promising
runtime gain by parallelization, both extended Jacobiahincompressed storage counterpart seem to
hit the memaory bound relatively quickly. Thus, no realisti@lability is achievable so far without facing
the memory problem.

In our proof-of-concept implementation in DALG we manageréduce the (heap) memory con-
sumption by local application of row elimination as somedkaf cross country elimination, which we
presented in Section 2.6. We referred to this approach estiite Jacobian accumulation. Our exper-
imental results have shown that the iterative approachcesithe memory consumption drastically by
application of assignment level elimination, which desdtee default iterative mode in DALG. Hence,
Jacobians and gradients can be computed very cheaply is tfrmemory consumption automatically.
However, we have also observed that the runtime of the ieratode on dense extended Jacobian and
its compressed row representation turns out to be not ageffis that of ADOL-C.

139
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More precisely, the computation of the gradient of the tide@endent Heat problem (see Figure 2.34 (a))
in iterative mode is orders of magnitude slower than perfogthe same computation by the application
of the reverse mode AD provided by ADOL-C. For this reasosijgmsnent level elimination seems to
underperform as the number of time steps increases. Hoygraglients of even larger dimensions can
be accumulated this way, where the global reverse mode ADd#ail. Thus, we consider the observed
performance loss acceptable. Note that the memory reduistiblack-box to the user. Nonetheless, a
deeper investigation for this behavior shapes up the futhection of research on DALG. In this con-
text, we believe that the iterative mode combined with thalelization has the potential to perform as
well.

Moreover, it might also be interesting to use graphs as anateepresentation in the iterative mode.
Here, it is desirable to have an efficient graph implemeuwrdtioth in terms of memory and data access.
A first non-iterative implementation already works for shpabblems that we aim to extend to work in
iterative and parallel modes.

In the last chapter we have introduced the constant estmatid exploitation as an alternative way
to the classical sparse Jacobian and Hessian computaispecially, in the latter coloring turns out to
be the major problem to solve. Otherwise, no improvemenbmpression can be achieved by constant
exploitation, despite the fact that retrieving constastsiuch more expensive than pattern estimation. In
this context, it may make sense to retrieve only constanépain both Jacobian and Hessian cases and
gain constants by computation of each case in the classaabw described by Procedures 3.3 and 3.6,
respectively.

We have observed for an special problem that coloring thpeive graph of the exact Hessian
underperforms in terms of achieved colors compared witlcthreservative overestimated version. This
behavior is surprising at first glance, despite the factttieatormer is much sparser than the latter. Similar
behavior is observed when comparing the coloring resultiseéxact and the variable pattern in context
of constant exploitation as mentioned previously.

It looks like the traditional way of thinking "the sparseietbetter” does not really hold in Hessian
case. However, the reason for this behavior turned out t@atheer due to the impact of the heuristics
behind the coloring algorithms. Thus, implementation ofrensuitable heuristics as well as general
characterization of "critical” patterns are desired thék shape our further research activities.

Finally, we have introduced an algorithm for recursiveraation of the Hessian sparsity pattern and
shown its convergence to the exact one on example. Firdbrarmomparison of a proof-of-conceptim-
plementation of the recursive algorithm with that of thea@ne implemented by ADOL-C has shown
that the former even has the potential to improve the runtifrestimating exact Hessian pattern. How-
ever, further investigations are required to deal with tremary problem of the recursive algorithm as
a DAG of nonlinear frontier components is supposed to be htihe time of evaluation the underlying
function.
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