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CHAPTER 1

Introduction

The methods of conveying and storing information are linked to the progression of human

knowledge. From stone inscriptions and papyri to handwritten books, from cablegrams to

the cloud, humans have always been on the lookout for innovative techniques to transfer

and preserve knowledge, as such techniques are likely to open new paths into the pursuit of

knowledge and understanding.

In the past decades the way of accessing information has changed drastically. To give an

example, let me take you to the dining table at my parents’ house. Fifteen years ago during

our discussions, we would regularly have to check with the Brockhaus Encyclopedia. This

changed with the wider distribution of laptops, probably around the year 2002. Instead of

going to the bookshelf it was now faster to grab the laptop from behind, and instead of an

Encyclopedia came Wikipedia1. Nowadays, we are no longer limited to the dining table - we

just take a multi touch smart phone. The source of information is readily accessible at our

fingertips wherever we are due to fast internet access via the cellular network.

This development is even accelerated by the availability of cloud based services [1] and

synchronization via the cloud. People get used to having their documents, music and photos

available wherever they are and on every device they own. This demands more and more

data storage capacity both in the mobile devices and the cloud. The development of new

data storage concepts with higher data densities and lower power consumption remains

essential. Especially the development of fast non-volatile memories is important. A memory

combining the speed of DRAM and the non-volatility of FLASH would simplify the daily

1http://www.wikipedia.org
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Chapter 1: Introduction

usage of computers, while at the same time reduce the power consumption of them. With a

non-volatile DRAM replacement the procedure of powering up the computer in the morning

would take only a few seconds, as it is not necessary to write the information back to the

DRAM. Nowadays the information stored in the DRAM has to be constantly refreshed, as

DRAM can store information only on a µs time scale. This, of course, consumes energy

even in idle. This technology could replace both FLASH and DRAM chips in mobile devices

and allow for smaller sizes and longer battery time. One likely candidate to meet these

requirements is Phase-Change Random Access Memory (PCRAM)[2]. In phase-change

materials the optical and electrical property contrast of the crystalline and the amorphous

phase is used to store information. This study analyzes aspects of phase-change materials

that are of interest both scientifically and commercially. In this study the focus lies on the

crystalline phase of phase-change materials. The crystalline phase has an exceptional high

degree of disorder and is characterized by a unique bonding mechanism, resonant bonding.

The degree of disorder in the crystalline phase is comparable with the degree of disorder

found in amorphous metals. As the resistivity of crystalline phase will be analyzed, it will be

shown that the conduction mechanism is governed by disorder. Especially the annealing

dependency of the resistivity can be correlated to a disorder induced localization of the

charge carriers. As disorder plays a decisive role for the resistivity, the structural properties

of crystalline phase-change materials and distortions in the short to medium range order are

studied in detail. To analyze the degree of disorder neutron pair distribution measurements

of crystalline phase change materials will be analyzed and discussed. To round this up and

give a more device oriented perspective, ideas for future generation phase-change memory

technologies based on disorder induced localization will be presented. Along with this, the

preparation and characterization of current state-of-the-art phase change memory cells

is investigated. In this phase-change memory characterization, the limits of the switching

speed are tested.

1.1. Phase-Change Materials

Phase-change materials are a class of materials with a unique portfolio of properties

[3]. At ambient temperatures, they are stable in both the crystalline and the amorphous

phase. However, if a suitable temperature profile is applied, phase-change materials can be

switched reversibly between the two phases. There is a pronounced contrast between the

properties of the two phases, both for the optical reflectivity and the electrical resistivity. This

2



1.1. Phase-Change Materials

contrast makes it possible to use phase-change materials as a means for non-volatile data

storage. Concepts employing phase-change materials as optical non-volatile, rewritable

memory in a commercially available product date back to the early 1990s [2], in particular

the PCR with 500 MB storage capacity. The development has progressed via the rewritable

CD (650 MB) and the rewritable DVD (9,4 GB) to the rewritable BluRay XL with 100 GB capac-

ity, which Panasonic have announced recently [4]. The contrast in electrical resistivity can

be used in non-volatile electrical data storage devices like PCRAM (Phase-Change Random

Access Memory). The unique combination of both speed and non-volatility with a high

storage density makes PCRAM a competitor for both Flash and DRAM.

Figure 1.1 contrasts the properties of a phase-change material such as GeTe with an

ordinary covalent bonded material like SiO2. For both materials, an amorphous and a

crystalline phase exist at room-temperature, as the diffraction patterns in the top part

of figure 1.1 show. The crystalline phase shows sharp Bragg reflexes corresponding to

the existence of a long range order, whereas the amorphous phase has no sharp reflexes.

The amorphous phase lacks long range order but has a rather well-defined local atomic

arrangement. In figure 1.1, one can see no difference in physical appearance between

the amorphous and the crystalline SiO2 samples (fig. 1.1 (c)). In contrast, one can easily

see a difference in reflectivity between the written amorphous part in the center and the

unwritten crystalline part in the outer region of the phase-change material in the DVD-RAM

(fig. 1.1 (d)). The measurement of the optical transmission for SiO2 and the reflectivity for

GeTe shown in figure 1.1 (e) and (f) support this observation. For SiO2, the transmission in

the visible spectra is the same for the amorphous and the crystalline sample, whereas GeTe

shows an increase of reflectivity of 50 % on crystallization.

The outcome of these simple comparisons demonstrates that phase-change materials,

unlike ordinary covalently bonded materials, change their properties on crystallization. Why

GeTe and SiO2 behave in such a different way needs further examination and explanation.

In systems like SiO2, the local structure of the amorphous and the crystalline phase do not

change significantly. Studies using EXAFS (Extended X-ray Absorption Fine Structure) have

demonstrated that with phase-change materials the local structures of the amorphous and

the crystalline phase are quite different [5]. Ab initio calculations reproduce this change

upon amorphization [6].

The different local atomic arrangements cause the optical contrast observed in phase-

change materials. The physical origin of this contrast, however, is not evident. Fermi’s golden

3
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(a) X-ray diffraction pattern of SiO2, amorphous

and crystalline.
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(b) X-ray diffraction pattern of GeTe, amorphous
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(c) Picture of SiO2, amorphous and crystalline.

There is no visible difference except for the shape.

(the right one is crystalline)

(d) Picture of a DVD-RAM (picture taken

by Dominic Lencer). The reflectivity contrast

between the written (inner) and unwritten (crys-

talline) regions is obvious.
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(f) Reflectivity of GeTe, amorphous and crys-

talline.

Figure 1.1.: Property contrast between amorphous and crystalline phase of a covalent
bonded material and a phase-change material. For both SiO2 and GeTe, an

amorphous and a crystalline phase can be prepared, as can be seen by the x-ray

diffraction patterns of SiO2 (a) and GeTe (b). No difference between the amorphous

and the crystalline SiO2 can be seen in (c), while one can clearly distinguish between

the amorphous and crystalline parts in the picture of the DVD (d). The observation

of (c,d) is supported by the measurements of optical transmission and reflectivity for

SiO2 and GeTe (e,f), respectively.
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1.2. Resonant bonding in crystalline Phase-Change materials

rule gives a quantum mechanical picture of the probability of an optical transition. It states

that a change in the joint density of states (JDOS) or in the transition matrix elements can

cause a difference in the transition rate. Wełnic et al. [7] have shown that in phase-change

materials a difference in transition matrix element is dominant for the optical contrast

between the amorphous and the crystalline phase.

1.2. Resonant bonding in crystalline Phase-Change materials

Measurements of the reflectivity in the infrared to visible spectra of light were another key

advance in the understanding of the characteristics of phase-change materials and the

subsequent identification of design rules for phase-change materials. These measurements

allowed the identification of a unique bonding mechanism, which is characterized by an

extraordinary increase in electronic polarizability on crystallization [8]. Fourier transformed

infrared spectroscopy (FTIR) has been performed on thin films of phase-change materials

deposited on a metallic mirror. Figure 1.2 shows a measurement for Ge2SbTe4. The special

sample design leads to interferences between the reflected light from the phase-change

film and the reflected light from the metallic mirror. These interferences depend on the

optical path. The distance of the minima is therefore inversely proportional to the product

of the film thickness t and the refractive index n of the phase-change film. For the crystalline

sample, the contribution of the free Drude electrons to the spectra is visible at low photon

energies. The interference maxima are smaller in the crystalline phase due to subgap

absorption in the crystalline phase. The most important difference in the spectra is the fact

that the spacing of the interference minima is about 40 %. As the lowering in film thickness

on crystallization of about 6 % would enlarge the spacing even more, the refractive index

is about 50 % larger in the crystalline phase. The concomitant lowering of band gap on

crystallization is as well visible in the data. For Photon energies larger than the band gap the

oszillations strongly decrease.

The Clausius-Mossotti model [9] can calculate the optical dielectric constant of a com-

pound from the atomic weights mi and density ni by assigning a polarizability αi to each

element. The optical dielectric constant can be calculated in this model from

ε∞−1

ε∞+2
= ρ

3 ε0
∑

i ni mi

∑
j

n j a j (1.1)

with the density ρ and the permeability of free space ε0.

5



Chapter 1: Introduction

Figure 1.2.: Infrared reflectance spectra of Ge2SbTe4 film. The experimental data are shown

in solid lines, whereas the dashed lines denote the simulation results. On crystallization,

the thickness decreased from 0.53 to 0.50 µm. Arrows mark the contributions of

different phase-change film properties to the reflectance curve [8].
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Figure 1.3.: Resonant bonding in GeTe. Two dimensional cut through the NaCl-like GeTe

structure. On average, 3 p-electrons are available in the valence band of GeTe. Thus

the material has two different configurations to form covalent bonds, depicted left and

right. However, GeTe can lower its energy by forming a hybrid wavefunction, shown in

the center pattern. This bonding mechanism, called resonant bonding, is responsible

for the high electronic polarizability observed in crystalline phase-change materials.

The optical dielectric constant ε∞ of the amorphous phase is in good agreement with the

Clausius-Mossotti model, while it is off by about 30 % for the crystalline phase. This increase

in polarizability can be attributed to a change in bonding configuration. Phase-change

materials such as GeTe or GeSb2Te4 crystallize in a NaCl-like structure. The bonding is based

on directional p-type bonds. As GeTe has 3 p-electrons in the valence band on average, two

bonding configurations for covalent bonds would be possible. This situation is depicted in

figure 1.3, left and right pattern. Chains of bonds form in both configurations. However,

GeTe can minimize its energy by forming a hybrid wave function. This special bonding is

described as resonant bonding. It is shown in the center pattern of figure 1.3. Each bond

is occupied by only one electron on average, which leads to the observed high electronic

polarizability. This unique bonding mechanism has been found to be a key characteristic of

crystalline phase-change materials. The resonant bonding leads to a ordering and alignment

of p orbitals on neighboring atomic sites [10]. This alignment has a strong effect on the

optical matrix elements, which were previously identified to be responsible for the optical

contrast [7]. Therefore, the alignment and ordering of the p orbitals caused by resonant

bonding leads to an enhanced ε∞. In the amorphous state, the lack of long range order

impedes the formation of resonant bonds [10].

7
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1.3. Treasure Map of Phase-Change materials

Since research on phase-change materials began, design rules have stimulated the field.

Phase-change materials typically contain chalcogens, in particular Te, or pnicogens such as

Sb, for example GeTe, GeSb2Te4, Ge2Sb2Te5, and doped Sb or Sb2Te. In 1991, Yamada et al.

[11] identified numerous phase-change materials along the pseudo-binary line spanning

from GeTe to Sb2Te3. These materials have since proved to be a rich playground for further

discoveries. Once Shportko et al. [8] had identified resonant bonding as a fingerprint for

phase-change materials, Lencer et al. [12] were able to derive a treasure map for phase-

change materials by looking into the conditions needed for resonant bonding.

Prior to identification of resonant bonding it was already known that a characteristic of

phase-change materials is an octahedral-like atomic arrangement in the crystalline state.

The average number of s- and p-electrons per atom Nsp was identified as a measure to

separate octahedral from tetrahedral atomic arrangement. Materials with values for Nsp

well above four were identified as octahedrally coordinated [13]. In contrast tetrahedral

semiconductors like Si, Ge, GaAs, GaN or CuInS2 only have an Nsp value of four. This Nsp

value makes sp3-hybridization energetically favorable, leading to tetrahedral coordination2.

For phase-change materials with more than four valence electrons, a hypothetic tetrahedral

arrangement would lead to an occupation of anti-bonding sp3-states, which is energetically

unfavorable. Therefore bonding via p-states is dominant and leads to an octahedral-like

atomic arrangement.

Most phase-change materials have three p-electrons per atom on average. The materials

of the pseudo-binary-line between GeTe and Sb2Te3 crystallize in a meta-stable NaCl-like

structure, with Te occupying one sublattice (anion site) and Ge/Sb and vacancies occupying

the other sublattice (cation site). The number of vacancies per unit cell has to be taken into

account when calculating the average number of p-electrons, thus the calculated average

number of electrons is an average per atomic site. GeSb2Te4, for example, has four Tellurium

atoms, two Antimony atoms, one Germanium atom, and one vacancy, thus GeSb2Te4 has

on average three p-electrons; (4 ·4+2 ·3+1 ·2+1 ·0)/8 = 3. This calculation holds for all

materials on the pseudo-binary line.

Figure 1.4 shows one possible route to endanger resonant bonding. The distortion for

2Note that the underlying concept of averaging breaks down if the atomic species are to different, that is for

example CsCl, which has an Nsp of 4 but crystallizes in a cubic structure.dis
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Figure 1.4.: Resonant bonding vs. distortion. An increase in distortion leads to a reduction of

resonant bonding and consequently to a reduction of ε∞

GeTe increases from left to right. As an undistorted case with perfect resonant bonding is

gradually impaired by distortions, a splitting into three short and three long bonds occurs

(in this 2-dimensional cut, only a 2+2 splitting can be seen). The splitting leads to a saturated

p-type covalent bond of the valence electrons in the three short bonds. As a consequence,

the high electronic polarizability of the resonant bonds is reduced. This splitting occurs

especially if the system shows a tendency for hybridization of the bonds [14]. In addition, a

strong degree of ionicity also leads to a reduced polarizability of the electrons around the

cation site. The system therefore needs a combination of small hybridization and small

ionicity to form resonant bonds.

As many phase-change materials have three p-electrons on average, they resemble the

electron configuration of IV-VI compounds with equal amounts of anions and cations, like

GeTe, GeS, GeSe or SnTe. Elements of group V have also three p-electrons. The structure and

bonding of these materials has been studied in the past. A diagram well-suited to classify

the bonding and the structure of these materials was proposed by Littlewood [15, 16]. He

was able to draw a simple structure map that can predict the bonding type and therefore the

crystal structure of a given stoichiometry by introducing two coordinates r ′
σ and r−1

π . The

coordinates are defined as

r ′
σ = r A

p − r B
p (1.2)

r−1
π =

[(
r A

p − r A
s

)
+

(
r B

p − r B
s

)]−1
. (1.3)

The valence radii of the s- and p-orbital are represented by rs and rp for atom A and B. These

two coordinates provide a measure for the degree of ionicity (r ′
σ) and the covalency (r−1

π ).

Many phase-change materials are ternary or even quaternary alloys. So the coordinates

9



Chapter 1: Introduction

proposed by Littlewood [15] had to be generalized for alloys containing more than two

elements. To this end, Lencer et al. [12] calculated an equivalent binary alloy for the ternary

or quaternary alloys. This is done by calculating the stoichiometric average values for the

anion and cation sites, respectively. For a material like GeSb2Te4, the anion site is simply Te,

whereas for the cation site one Ge- and two Sb-atoms have to be averaged. The coordinates

are calculated by weighting the corresponding orbital radii with the number of atoms ni of

the species i per formula unit. The average coordinates r ′
σ and r−1

π are defined as follows:

r ′
σ =

(∑
i ni rp,i∑

i ni

)
︸ ︷︷ ︸

Anions

−
(∑

j n j rp, j∑
j n j

)
︸ ︷︷ ︸

Cations

(1.4)

r ′
π =


(∑

i ni (rp,i − rs,i )∑
i ni

)
︸ ︷︷ ︸

Anions

+
(∑

j n j (rp, j − rs, j )∑
j n j

)
︸ ︷︷ ︸

Cations



−1

(1.5)

With these coordinates it was possible to draw the treasure map for phase-change materials

shown in figure 1.5. Phase-change materials all lie in the region of small hybridization and

small ionicity, as was to be expected from the deliberations above. Oxides, sulfides, selenides

and tellurides are in close proximity within their group.
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Figure 1.5.: Treasure map for phase-change materials. The tendency towards hybridization

and ionicity is shown for many materials. Displayed are materials from group V

elements (AV), binary IV-VI compounds (AIVBVI) and ternary alloys with different

stoichiometries (AIV
xBV

yCVI
z). Phase-change materials all line up in the region of

the lower left corner, whereas oxides, sulfides and selenides are shifted to higher values

of both coordinates. Illustrations of the effect of both hybridization and ionicity are

shown next to the equivalent axis. A higher degree of hybridization leads to more

saturated bonds, and ionicity leads to a localization of the charge carriers at the ion

cores. Both ionicity and hybridization lead to a reduction of the resonant character of

the bonds. [12]

11



Chapter 1: Introduction

1.4. Crystal Structure and Disorder in Phase-Change Materials

The concept of the treasure map for phase-change materials can make predictions on

the suitability of a material candidate as a phase-change material. The concept of the

map assumes a rocksalt structure and calculates average values for the anion and the

cation site each. Therefore characteristics of phase-change materials that are dependent

on variations of atomic positions or the occupation cannot be predicted by the map. For

example crystalline resistivity is strongly dependent on the amount of disorder, which will be

shown later. Therefore we will now focus on the crystal structure of phase-change materials

and the observed disorder.

Phase-change materials crystallize in a distorted cubic structure, stabilized by resonant

bonding via p-orbitals. For the different possibilities of disorder GeSb2Te4 acts as an example

material with a high degree of disorder. However also materials with less disorder, like GeTe,

show for a crystalline material much disorder. GeSb2Te4 crystallizes in a meta-stable NaCl

like structure. One sublattice is occupied by Tellurium, while the other is occupied by

50 % Antimony, 25 % Germanium and 25 % intrinsic vacancies. The Ge/Sb/Vac. sublattice

is assumed to be randomly occupied [17]. On annealing to higher temperatures (above

250 °C) the meta-stable structure transforms to a stable hexagonal structure. Even though

the structure changes from cubic to hexagonal phase, the bonding is still via p-orbitals,

thus resonant bonding is maintained. In this stable structure the Ge, Sb and vacancies are

ordered in layers [18]. As the hexagonal phase is layered, there has to be an ordering process

of the vacancies into layers as well as an ordering process of Germanium and Antimony

for this transformation. These two processes mark the first channels for disorder, chemical

disorder on the Ge/Sb sublattice and vacancy ordering.

In the assumption of a perfect crystal symmetry all atoms are located on a Bravais lat-

tice. The crystalline phase of phase-change materials are not fulfilling this for all atoms.

Displacements for example of Germanium in GeSb2Te4 have been reported [19]. Also the

displacement patterns of Germanium in GeTe is under discussion [20]. Displacements can

be either a collective displacement as observed in the Peierls-like 3+3 splitting in GeTe or

non-collective of single atoms. These non-collective displacements could be either corre-

lated or non correlated. The reduction of collective displacements would increase the order

in phase-change materials. For random orientated displacements, an increase in correlation

of the displacement directions would as well increase the order

12



1.4. Crystal Structure and Disorder in Phase-Change Materials

Different methods are available to determine the crystal structure and the amount of

disorder prevalent in a crystalline material. In the following different methods to determine

degrees of disorder as listed above will be reviewed. Also results already gained with them

will be presented.

The first method that comes to ones mind to determine crystal structure of a solid is

x-ray diffraction. Indeed measurements of x-ray diffraction of GeTe and GeSb2Te4 have

been reported in literature [17, 21, 22]. As phase-change materials crystallize on a nanosec-

ond time-scale they form small crystallites in the range of 15-50 nm with random crystal

orientation [17]. These small grain sizes make an in depth analysis of x-ray diffraction

data complicated, because the peak width is broad (i.e. about 1° for GeSb2Te4 and Cu Kα

radiation). The peak broadening due to finite grain size can be calculated using the Scherrer-

formula. Best results can be obtained by powder diffraction. Collective displacements as the

Peierls-like 3+3 splitting of the Germanium atom found in GeTe can be detected [22]. For the

meta-stable phase of GeSb2Te4 a cubic structure is observed, displacements or distortions

are not resolved in powder diffraction data [17]. The Rietveld analysis [23] of these powder

diffraction data have shown large Debye-Waller factors for the Ge/Sb site. Rietveld analyzes

only the contribution of the Bragg peaks and not the diffuse scattering in between the peaks.

A non-collective, random distortion of single atoms would average out in xrd [20]. There

have been attempts to prepare samples with larger grain sizes. Two different approaches

have been followed: growth of epitaxial thin films on GaSb [24] and preparation of bulk

single crystals [25]. The epitaxial growth of thin films with stoichiometry close to Ge2Sb2Te5

has shown Peierls distortion along [1 1 1] in both x-ray and RHEED measurements. The

preparation of bulk single crystals seems only possible for stoichiometries on the pseudo-

binary line between Sb2Te3 and GeTe for materials close to GeTe, like Ge7Sb2Te10. These

sample show as well streaks along [1 1 1] in HRTEM and SAED measurements. Effort has

also been put into numerical calculations of the crystal structure of phase-change materials.

Density functional theory (DFT) calculations have also evidenced the Peierls splitting [26] in

GeSb2Te4. Calculations of the total energy by means of DFT have shown a displacement of

single atoms away from their crystallographic position which depends on the local atomic

arrangement, especially of the vacancies [14].

With extended x-ray absorption fine structure measurements (EXAFS) it is possible to

probe the local atomic arrangement up to a distance of about 6 Å around one specific

chemical element. This enables to determine bond length, coordination numbers and the

13



Chapter 1: Introduction

bonding elements. EXAFS measurements have been reported for different phase-change

materials, like GeSb2Te4 [27], Ge2Sb2Te5 [5] or Ge15Sb85 [28]. In the following the results

for crystalline GeSb2Te4 will be discussed. In figure 1.6 the real space function χ(R) of

crystalline GeSb2Te4 is plotted for measurement temperatures between 300 K and 10 K. The

function χ(R) is a pseudo pair distribution function. Due to two reasons it is only a pseudo

pair distribution function. First due to the phase shift of the photoelectron upon traveling

across the non uniform inter-atomic potential one has to add about 0.2 Å to the distances

plotted3. Second the peak height is correlated with the Debye-Waller factor and not the

number of neighbors. The peak height is clearly increasing with decreasing measurement

temperature. So the thermal motion, or thermal disorder, of the atoms is drastically reduced

on cooling. This is observed for all solid state materials, but seldom in such an extreme way.

One can also see the disappearance of the higher shells for temperatures above 10 K. These

large thermal displacement are caused by the broad anharmonic potential of GeSb2Te4 [29].

Interestingly the Debye-Waller factors of GeSb2Te4 are larger in the crystalline phase than in

the amorphous.

In figures 1.7 and 1.8 the real space functions χ(R) of the EXAFS spectra for GeTe and

GeSb2Te4 are plotted for the amorphous and crystalline phase for all K-edges. All measure-

ments were performed at 10 K by van Eijk et al. [27]. For GeTe in the amorphous phase a

well defined local order and no medium or long range order is observed. In the crystalline

phase one can see contributions of multiple shells. This is expected due to the long range

order in the crystalline phase.

For GeSb2Te4 the data draw a different picture. Of course as expected for an amorphous

phase, it shows no higher shells as expected as it has no long range order. The crystalline

phase, however, also has only little contributions from higher shells. Only the data of

the Te-edge show clear signatures of higher shells. Comparing the amorphous with the

crystalline phase, one can see that the Germanium edge has the largest difference in nearest

neighbor distance. Thus the bonding lengths around Ge changes the most. The peak height

of the amorphous and crystalline phase differ. The peak height is correlated with disorder in

atomic displacements. Normally these atomic displacements are due to the thermal motion

of the atoms, or thermal disorder. As these measurements were performed at 10 K, thermal

disorder can be excluded as an origin. Therefore static disorder must be responsible for

the large displacements. Surprisingly the amorphous phase shows a higher first peak than

3Precise bond lengths can be obtained from a fit of the data.
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Figure 1.6.: EXAFS data of GeSb2Te4 measured at different temperatures. The EXAFS

data were measured at the K-edge of Tellurium in crystalline GeSb2Te4 at temperatures

between 10 K and 300 K. The information content of the data is obviously enhanced

by cooling. For the 10 K data even contributions from the fourth shell around 6 Å are

visible. The strong temperature dependence of the Debye-Waller factor can be seen

by the increasing peak height for low temperatures. From [27].
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Figure 4.2: Absorption spectra of GeTe in the amorphous (red) and the crystalline
phase (black) measured at 10 K. Noticeable are the differences between both phases,
such as the differences in amplitude and peak positions, which indicate a different
local order in both phases.

the first coordination shell can be observed.
Moreover it can be seen that, at both absorption edges, the peak with highest

amplitude in the amorphous phase is shifted towards smaller distances as compared
to the highest peak in the crystalline phase. Although, due to the phase shift the
actual distances cannot be determined from Fig. 4.2, it can be concluded that the
bond distances are shorter in the amorphous phase than in the crystalline phase.

Another dominant feature seen in Fig. 4.2 is the change in amplitude from the
crystalline to the amorphous phase, especially at the Te edge, where the amplitude of
the first peak of the crystalline phase is approximately twice as large of the peak of
the amorphous phase. Several parameters influence the amplitude (e.g., amplitude
reduction factor S2

0 , mean-square displacement factor σ2, coordination numbers N ),
but this large change in amplitude can only be explained by a change in local order,
probably accompanied by a change of coordination numbers upon crystallization.

It is thus apparent that the local order differs largely in amorphous and crystalline
GeTe, since the peaks in |χ(R)| are located at different radial distances and also the
amplitude of the peaks is different. One would expect that the EXAFS spectrum
of the amorphous phase exhibits one peak which is located at the same position
as the first peak of the crystalline phase of the same material, since usually the
bond length to the nearest neighbours is the same in both phases [45]. For common
semiconductors, like Ge or Si, it is known that the number of nearest neighbours
is equal in the crystalline and amorphous phase and therefore it is observed that
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4.2. Crystalline Phase

Table 4.4: Lattice parameters of the rhombohedral and the hexagonal setting of the
GeTe α-phase.

Rhombohedral Hexagonal

lattice constants: ar 4.277 Å ah 4.16 Å
c 10.59 Å

bond angle: α 58.29 °
displacement: x 0.528 u 0.236

4.2.2 RMC Simulations

Reverse Monte Carlo (RMC) simulations have been beneficial for investigations
of disorder also in crystalline materials [50]. Moreover, using RMC simulation to
model EXAFS spectra, we have convincingly shown that phase separation occurs in
Ge15Sb85 upon crystallization at 250 ◦C [51]. In the previous section, it has been
found that also in crystalline GeTe a phase separation occurs, since GeGe bonds
with a bond length of 2.45 Å exist in the material, which result from germanium
clusters. Therefore the EXAFS data of crystalline GeTe are also investigated using
RMC simulations, to gain further insight into the structure. In this simulations,
apart from the experimental data additional information (e.g., densities and minimal
neighbour distances) is used to constrain the fitted configuration, thus we expect to
learn more on the origin of the existing GeGe bonds at 2.45 Å and obtain the vacancy
concentration and the fraction of atoms in Ge clusters with a higher precision.

To create the initial configuration the crystal parameters obtained from the least
squares refinement of the previous section are used. In order to create the starting
configuration the hexagonal setting of the crystalline structure is used to describe the
structure. While the rhombohedral cell is the elementary cell of the structure, the
hexagonal cell contains three times the volume of the rhombohedral cell and thus
contains 3 Ge and 3 Te atoms. The cell parameters of both the rhombohedral and the
hexagonal setting are listed in Table 4.4. According to the crystal symmetry, lattice
points are placed in an orthorhombic box, with cell dimension [24.97 28.83 21.18]
and periodic boundary conditions are applied. This cell contains 576 atomic sites.
While these number is small, considering that the configuration in RMC modelling
often contains some thousands of atoms, the box size is large enough to image the
possible disorder and identify important features. Moreover, the sampling time
critically depends on the number of atoms, thus it seems wise to start the simulation
on a rather small box.

Several simulations are run and various possible constraints are varied to check
their influence on the resulting configuration and improve the agreement between
the simulations and the experimental data. Thereby the following observation are
made:

• The atoms are moved at random during the RMC simulations. To assure that
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Figure 1.7.: EXAFS data of GeTe: amorphous vs. crystalline. EXAFS data, measured at

10 K, plotted in real space for Germanium and Tellurium K-edge. Due to the lack of

long range order of the amorphous phase only the nearest neighbor distance is well

defined. For the crystalline phase peaks corresponding to higher coordination shells

can be seen. From [30].
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5.1. Comparison of the Amorphous and Crystalline Phase
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Figure 5.2: Absorption spectra of Ge1Sb2Te4 in the amorphous (red) and the crystalline
phase (black) measured at 10 K. Noticeable are the differences between both phases,
such as the differences in amplitude and peak positions, which indicate a different
local order in both phases.

(Section 5.3), the differences in both phases are discussed on the basis of their Fourier
transforms |χ(R)| (see Figure 5.2).

The differences between the spectra of the two phases are evident at first sight.
Due to the lack of medium and long range order in the amorphous phase, only
contributions of the first coordination shell, until approx. 3 Å, are visible in the
Fourier transform, while especially at the Te edge peaks until approx. 6 Å can be
seen. It is interesting to note that the peaks corresponding to the higher coordination
shells are clearly visible at the Te edge, while at the Ge and Sb edge, the peaks of the
higher shells can barely be observed.

Contrary to the expectations and results of ordinary semiconductors is the large
difference in amplitude between the spectra of both phases. In common semicon-
ductors like Ge or Si [45, 49], it can be observed that the peaks in the spectra of the
amorphous phase are a little bit lower in amplitude and possibly broader due to the
higher disorder in the amorphous phase as compared to the crystalline phase. But it
is expected that the peak positions are similar and also the amplitudes of the peaks
are at least comparable in the spectra of both phases. In contrast, for amorphous and
crystalline Ge1Sb2Te4 the amplitude of the largest peak is significantly higher in
the amorphous phase than in the crystalline phase. In addition, the peak is shifted
towards smaller distances in the amorphous phase as compared to the crystalline
phase, which is most obvious at the germanium edge. From these observations, i.e.,
the change in peak position and amplitude, it must be concluded that the local order
in amorphous Ge1Sb2Te4 differs significantly from the local order in crystalline
Ge1Sb2Te4. After the analysis of the structure of both phases we will be able to
quantify these findings and specify the differences in local order between both phases
(Section 5.4).
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Figure 1.8.: EXAFS data of GeSb2Te4: amorphous vs. crystalline. EXAFS data, measured

at 10 K, plotted in real space for Germanium Antimony and Tellurium K-edge. As for

GeTe the amorphous phase is characterized by the lack of long range order. However

in contrast to GeTe, GeSb2Te4 shows a higher nearest neighbor peak in the amorphous

data. As the peak height is strongly correlated to the order, it can be concluded

that the crystalline phase of GeSb2Te4 shows a less pronounced order in the nearest

neighbor surrounding than in the amorphous phase. From [30].

the crystalline phase for all three edges. This implies that the amorphous phase has higher

static order than the crystalline in the short range order.

Neutron pair distribution function (PDF) probes the local atomic arrangement in a range

of about 50 Å around an average atom. Compared to EXAFS this large range is an advan-

tage, whereas neutron PDF is not element specific. Measurements of the Pair distribution

function G(r) have been performed for Ge2Sb2Te5 [19, 31] as well as Sb rich Ge2Sb2Te5

and GeBi2Te4 [32]. These measurements have shown displacements of individual atoms,

especially Germanium, from the crystallographic positions. In the framework of this thesis

neutron PDF measurements of GeTe and different annealing states of GeSb2Te4 have been

performed. The theoretical background as well as the results will be discussed in chapter 3.
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CHAPTER 2

Disorder Induced Localization

The concept of resonant bonding in phase-change materials opened up the possibility to

develop the treasure map for phase-change materials [8, 12]. Despite the predictive power

of the map, there are inherent limitations. In the map, the coordinates are calculated with

average values for the cation and the anion site. Therefore effects that are not governed by an

average but rather by a distribution cannot affect the map. Disorder, like vacancy ordering or

displacements of single atoms, obviously are characteristics of phase-change materials that

are not contained within the map. In this chapter the origin of the electrical conductivity of

crystalline phase-change materials will be analyzed in detail. The tuning of the resistivity

is of great interest for building electronic data storage devices. It actually opens up a new

scientific playground for the study of electrical conductivity in disordered materials. As

we look at the resistivity of crystalline phase-change materials, especially the annealing

dependance, we might be inclined to deduce two classes of phase-change materials, one

with an annealing independent resistivity and one with a distinct annealing temperature

dependency of the resistivity. The analysis, however, will show that the difference between

the two classes rather results from the amount of disorder present in the material. GeTe and

GeSb2Te4 shall act as prototype materials for this study.

The detailed analysis of the conduction mechanism as presented here was possible thanks

to a joint research project coordinated by Prof. M. Wuttig and Prof. T. Siegrist [33] 1.

1M. Woda and P. Merkelbach prepared the samples. Measurements were carried out by M. Woda (high-

temperature R(T )), P. Merkelbach (X-ray) and H. Volker (low-temperature R(T), Hall effect). The custom-

designed Hall set-up was developed by C. Schlockermann. Analysis of the data was carried out by P. Jost.
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Figure 2.1.: Classification of metal and insulator. Differences of the temperature dependent

behavior of the resistivity of insulators and metals. Insulators show a thermally activated

charge-carrier transport, which leads to a negative slope (dρ/dT < 0), whereas the

resistivity of metals increases with increasing temperatures as a consequence of phonon

scattering.

2.1. Resistivity of solids

Studies of the charge-carrier transport mechanism have stimulated scientific research and

opened up new fields of solid state physics. Examples for such remarkable new insights

are high TC superconductivity [34] and Quantum Hall effect [35]. As the resistivity ρ of

solids spans over more than 32 orders of magnitude [36] it has demonstrated its ability to

characterize solids by a single value. From the viewpoint of a theoretician, this spreading of

values can be classified into two separate groups by looking at the low-temperature limit of

the resistivity. Materials showing a finite resistivity at T = 0 K are called metals; materials

showing resistivity values going to infinity as T goes to 0 K are classified as insulators. From

an experimentalist’s point of view, T = 0 K cannot be reached and extrapolations from low

temperature measurements have to be performed. As these extrapolations are not trivial, a

different type of classification often employed is preferred in this study: namely the tem-

perature coefficient of resistivity (TCR). The temperature coefficient of resistivity (dρ/dT )

separates metallic (dρ/dT > 0) from insulating (dρ/dT < 0) behavior. This classification is

depicted in figure 2.1. The diagram also shows that the TCR criterion is usually compat-

ible with the zero temperature limit. Materials undergoing the metal-to-insulator (MIT)

transition and the underlying mechanisms will be discussed in the next chapter.
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2.2. Metal-Insulator Transition

2.2. Metal-Insulator Transition

The classification of materials into metals and insulators raises the question if materials

can be systematically changed from a metallic state to an insulating state and vice versa.

Indeed various materials undergoing a metal to insulator transition (MIT) via different

underlying mechanisms have been found. Examples are doped semiconductors like Si:P or

transition-metal compounds like VO2. Independent of the physical origin of the MIT, Ioffe

and Regel derived an approach to give a measure for the occurrence of a metal-insulator

transition.

2.2.1. Ioffe-Regel condition

Ioffe and Regel studied the impact of scattering for electronic transport [37]. They assumed

electronic transport via extended Bloch states, with scattering modeled by a finite mean

free path λe in the limit of weak scattering. For mean free paths λe shorter than the electron

wavelength λF, the concept of Bloch wave breaks down. As long as the product of Fermi

wave vector and electronic mean free path is larger than one (kFλe > 1), metallic transport

via Bloch states can be expected. For values of kFλe < 1 insulating behavior [37, 38] is

observed. The Ioffe-Regel condition therefore gives an indicator for the occurrence of an

MIT, that is the point where kFλe = 1. Gunnarsson et al. [39] have shown that the Ioffe-Regel

condition can be derived quantum mechanically if one assumes non-interacting electrons

and if one assumes the bandwidth of the relevant band W to be significantly larger than the

thermal energy kB T . The model of Ioffe and Regel is built independently of the scattering

mechanism, and is therefore independent of the origin of the MIT. As for the observation

of an MIT a small product of kFλe is needed, it is possible to decrease either kF or λe. The

Fermi wave vector can be calculated from charge carrier density n by

kF =
[

3π2 n

M

]1/3
, (2.1)

with M being the multiplicity of the relevant valence band maximum. Therefore the value

of the Fermi wave vector is reduced with the charge carrier density n1/3. The mean free

path of the charge carriers can be reduced by an increase of scattering, that can result from

crystallographic defects and phonons.
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2.2.2. Types of Metal-Insulator Transition

Metal to insulator transitions (MIT) are often a consequence of a change in crystallo-

graphic long-range order [40]. In VO2, a transition takes place between a tetragonal high-

temperature phase and a monoclinic low-temperature phase [41, 42]. At this transition point

the charge carrier density changes by more than 5 orders of magnitude, leading to a change

in conductivity by about 4 orders of magnitude. A change in crystallographic phase for an

MIT is not mandatory. There are two well-known concepts of an MIT without a change in

crystallographic phase, namely the Mott [43] and the Anderson [44] transition.

In figure 2.2, a schematic is drawn for both Mott and Anderson type MIT. In the Mott

picture, metallic conduction is present above a critical carrier concentration nc. For this

concentration, there is an interaction between neighboring charge-carriers, which leads

to metallic transport. A decrease of the carrier concentration below nc leads to insulating

behavior. The critical carrier concentration nc can be calculated with the isotropic Bohr

radius a∗
H from

n1/3
c a∗

H = 0.26. (2.2)

The isotropic Bohr radius a∗
H itself depends on the effective mass and the static dielectric

constant (a∗
H = 0.53 Å εst me / m*). In a Mott MIT, the interplay of two different parameters

is important, namely carrier concentration and isotropic Bohr radius.

However, in an Anderson metal-to-insulator transition, it is not the number of carriers

which is varied. Instead, disorder leads to a localization of the free electrons. This can be

either disorder of the location of the electronic states as depicted in figure 2.2 or disorder in

the energy eigenvalues of the electrons. From a certain level onwards, both types of disorder

lead to a localization level that no longer allows electronic transport.

The schematic pictures in figure 2.2 show perfect order of the charge-carriers for the

Mott case and a constant number of charge-carriers for the Anderson case. This, of course,

cannot be realized in an experiment. If the charge-carrier density is varied by way of doping,

some positional disorder of the doping atoms will come into play. Therefore a true Mott-like

transition is not achievable in an experiment.

A well-studied MIT is the Si:P system. It shows an MIT upon increasing the phosphorus

doping concentration [45–47]. Due to the positional disorder of the phosphorous atoms,

Si:P has been discussed as an example for an Anderson type MIT [48–50]. As doping of

semiconductors shows aspects of both Mott and Anderson, they cannot be associated with
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2.2. Metal-Insulator Transition

one of them alone. A solid showing only Anderson-like features without Mott-like features

has not yet been identified.

2.2.3. Energy scales of MIT transitions

To further distinguish between Mott and Anderson metal-to-insulator transitions, a closer

look at the relevant energy scales is enlightening. The Hamiltonian H0 for a periodic system

is extended by a non-periodic potential Vnp and a term for the electron-electron correlation

Hee .

H = p2

2m
+Vp︸ ︷︷ ︸

H0

+Vnp +Hee (2.3)

with Vp being the periodic potential. The question is which part the Hamiltonian dominates

in what situation. If both the non-periodic potential and the electron-electron (Coulomb)

term are negligible, the system can be described, text-book like with energy eigenvalues

E = ħ2k2

2m∗ . For a Mott-like case the electron-electron correlation energy or Coulomb energy

(EC ) is in the same order as the Fermi energy, and the non-periodic potential is much smaller

than that. When the non-periodic potential is of the order of H0 and the electron electron

correlation much smaller than both, it is a disorder controlled system, or Anderson case.

For the Mott case the relevant electron-electron correlation energy is the Coulomb energy,

whereas for the Anderson case, the mobility edge Eµ is relevant. These energies have to be

set in relation to the Fermi energy EF .

The Mott MIT is governed by electron correlation; therefore, a localization of the charge-

carriers is at play as long as the Coulomb energy EC of the charge-carriers is larger than

the Fermi energy EF [40, 50–52]. These energies can be calculated from the charge-carrier

density n, the static dielectric constant εst , the degeneracy of the valence band maximum

M and the effective mass m∗:

EC = e2

4πε0εst
n1/3 ≥ EF = ħ2(3π2n/M)2/3

2m∗ . (2.4)

Due to an increase in the carrier concentration n, the Fermi energy is shifted towards the

Coulomb energy, passing it at the Mott MIT.

In the case of an Anderson transition, the comparison of the mobility edge Eµ and the

Fermi energy EF is relevant. The non-periodic potential Vnp causing the localization can

have its origin in two different causes. Either the energy eigenvalues of the different atomic
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Chapter 2: Disorder Induced Localization

sites can be varying or the transfer matrix element between adjacent sites. The Hamiltonian

in a single band approximation [38] can be written as

H =∑
i
εi ni +

∑
i 6= j

Ji j c†
i c j (2.5)

The energy eigenvalues εi are diagonal and therefore this case is often referred to as diagonal

Anderson. The second sum is due to the creation and annihilation operators acting on

different atomic sites, hence it is off-diagonal. Systems that are dominated by a varying

transfer matrix elements are thus called off-diagonal Anderson localization. The mobility

edge Eµ separates the localized from the delocalized states. As long as the Fermi energy EF

lies within the region of localized states no metallic transport is possible (shaded region in

figure 2.13). Therefore disorder has to be reduced for metallic transport until the mobility

edge is lifted above the Fermi energy:

|Eµ| > |EF |. (2.6)

It can be concluded that the comparison of the Coulomb energy EC and mobility edge

Eµ with respect to the Fermi energy EF is crucial to the determination of the prevalent

mechanism, Mott or Anderson.
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n=nc

Mott Metall Isolator Übergang

n<nc

Isolator

n>nc

Metal

decreasing doping
(a)Anderson Metall Isolator Übergang

increasing disorder

Metal Insulator

(b)

Figure 2.2.: Comparison of two metal-insulator transition (MIT) concepts: Mott and An-
derson. Two different routes for an MIT are prominent: one via changing the carrier

concentration (Mott), the other via changing the degree of disorder (Anderson). (a)
A Mott MIT is induced by a change in carrier concentration n. With a carrier concen-

tration n above a critical concentration nc , the system shows metallic behavior. Below

this critical concentration the system is insulating. (b) An Anderson MIT is driven by

increasing disorder, leading to a localization of the charge-carriers. Via this change

in order, the material changes from metal to insulator. Note that the charge-carrier

concentration is constant.
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2.3. Temperature dependance of the Resistivity in GeTe and GeSb2Te4

Figure 2.3 shows the sheet resistance of thin film samples of GeTe and GeSb2Te4 with

film thicknesses of 80 nm and 100 nm respectively. The as deposited amorphous films

were heated at a rate of 5 K/min. They were then held at the annealing temperature for

30 min and subsequently cooled down to room-temperature. Both materials lower their

amorphous resistance upon heating. As this lowering is reversible, it can be concluded that

the amorphous phase shows a thermally activated transport mechanism. The resistance

drops significantly when the crystallization temperature is reached. From this point onward,

GeTe and GeSb2Te4 show a different behavior.

For GeTe, the resistance drop on crystallizing to the rhombohedral phase is very steep.

Within an interval of just 6 °C (186 - 192 °C), the sheet resistance drops by more than four

orders of magnitude. The resistance only decreases by a factor of two on further heating

to 300 °C. A strong annealing dependence of the resistivity in the crystalline phase can

therefore be excluded. The subsequent cooling down to room-temperature reveals the

metallic conduction mechanism of crystalline GeTe. This can be seen in the positive slope

of the temperature dependent resistance data (TCR > 0). The room-temperature resistance

has decreased by more than six orders of magnitude between the as deposited amorphous

and the crystalline phase.

The measurements in figure 2.3 for GeSb2Te4, however, show a rather complex behavior

of the sheet resistance once the crystallization temperature has reached the cubic phase.

The step-like decrease of the sheet resistance on reaching the crystallization temperature is

not as steep as for GeTe. The drop in sheet resistance for the first crystallization is only about

two orders of magnitude over a range of 15 °C (143 - 158 °C). On further heating to 325 °C,

the resistance decreases continuously by another two orders of magnitude. On subsequent

cooling to room-temperature, GeSb2Te4 shows metallic behavior for high annealing temper-

atures only. It is worth noting that the transition to the hexagonal phase is not evident from

the R (T) plot.

Step annealing was performed for GeSb2Te4 with steps of 25 °C in oder to analyze the

continuos decrease in resistance of the crystalline phase. These annealing steps are also

shown in figure 2.3, marked by the area with the dotted line, where no annealing is done

to the sample. In this region the sample is being cooled down to room temperature and is

lower than the maximum temperature the sample was exposed to. The region of the dotted
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Figure 2.3.: Temperature dependent sheet resistance of GeTe (80 nm thick) and GeSb2Te4
(100 nm thick). Beginning in the amorphous semiconducting phase, both materials

crystallize, which results in a reduction of the resistance by at least three orders of

magnitude. One material (GeTe) does not change its metallic resistance with further

annealing, while the resistance of the other (GeSb2Te4) is continuously lowered with

annealing. The reduction of the crystalline sheet resistance is accompanied by a change

in slope from negative (semiconducting) to positive (metallic) values. Measurements

performed by Woda [53]
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line confirms the continuos lowering of the room-temperature resistance by more than

two orders of magnitude on annealing. Along with this lowering, the slope also changes

continuously from negative values to positive ones, showing a transition from non-metallic

to metallic behavior for GeSb2Te4.

Further measurements with other pseudo-binary materials were performed to deepen the

understanding of the continuos change in resistance and slope on annealing of GeSb2Te4.

Figure 2.4 shows measurements for 100 nm thick films of GeSb4Te7, GeSb2Te4,Ge2Sb2Te5

and Ge3Sb2Te6. Only data on cooling to room-temperature are shown in order to decouple

annealing effects from temperature dependent behavior. The data shown in 2.4 are the same

as the data marked by the dotted region in figure 2.3. It is remarkable to see that all four

different GeSbTe alloys show qualitatively and quantitatively the same behavior on step

annealing. They all show a non-metallic behavior at the lowest crystallization temperature.

Both the slope and the room-temperature value of the materials change continuously,

almost like parallel lines, which leads to a change from non-metallic to metallic behavior.

The boundary separating metallic from non-metallic behavior is at a critical resistivity

ρC = 2−3 mΩcm for all materials.

This behavior of four different GeSbTe alloys is a first indication for a generic metal-

to-insulator transition in a group of phase-change materials. As discussed above (see

2.2.2) up to now no MIT has been observed, which could be identified as a pure Anderson

type MIT. Phase-change materials are known to have an unusual degree of disorder in

the crystalline phase (see 1.4) and the driving force for the MIT seem to be a thermally

induced relaxation process. Therefore it is in the nature of a scientist to perform further

measurements to gain insight into the underlying mechanisms of this MIT. Thereby the

frontier in the field of physics can be pushed to widen the knowledge. With step annealed

samples of GeTe and GeSb2Te4 measurements were taken on low temperature resistivity,

Hall, Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction. The results

will be discussed in the following sections.
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Figure 2.4.: Effect of annealing on the resistivity and its temperature dependance.
A systematic change of resistivity and slope (TCR) is observed for four different

GeSbTe alloys. Only data on cooling are shown (see marked region in Fig. 2.3) in

order to exclude annealing effects. The conduction mechanism changes at a critical

value of 2-3 mΩcm from non-metallic (dρ/dT < 0) to metallic behavior (dρ/dT > 0).

The both qualitative and quantitative equal behavior for the different alloys supports

the generic MIT on annealing. Measurements performed by Woda [53]
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2.4. Low temperature measurements of GeSb2Te4

To verify the existence of the MIT at low temperatures and to verify the consistency of

the TCR criterion with the low temperature limit of the resistivity, low temperature resis-

tivity measurements were performed. The van der Pauw technique [54] was applied in

combination with a liquid helium glass cryostat (measurements performed by Volker [55]).

In figure 2.5, resistivity data down to 5 K are shown for samples annealed between 150 °C

and 325 °C. For samples annealed to temperatures lower than 275 °C, a negative slope is

observed, which indicates non-metallic behavior. The most pronounced increase in resis-

tivity is observed for the sample annealed to 150 °C. In the low temperature regime from

5 to 70 K, this sample can be fitted by a variable range hopping model of the conductivity

σ=σ0exp[−(T0/T )1/4] [56, 57]. In the Mott variable range hopping model electrical con-

duction via hopping is assumed [58]. The hopping probability is dependent on the spatial

separation of the states as well as there energy mismatch. Therefore the variable range hop-

ping model is valid especially for systems that are governed by disorder. The extrapolation of

this model yields a freeze-out of the conductivity for T→0 K. The good agreement of the data

with this model solidifies the existence of an MIT in phase change materials. The samples

annealed to 275 °C show a vanishing slope that is maintained down to 5 K. For samples

annealed above 275 °C, the slope changes to positive, consistent with a metallic transport

mechanism. With respect to figure 2.4, it is worth noting that both the metal-to-insulator

transition is maintained in the entire measurement range from 5 K to 600 K, and the critical

resistivity value also remains constant at 2.7 mΩcm. To clarify the origin of the MIT observed

here, XRD, Hall, and FTIR measurements were performed with the step annealed samples

of GeSb2Te4. XRD measurements are carried out to determine changes in crystallographic

phase and grain size effects. GeSb2Te4 is known to change its crystallographic phase from a

meta-stable NaCl-like phase to the stable hexagonal phase [17]. Therefore it is important to

study the transition temperature of the change in crystallographic phase. The combination

of Hall and FTIR measurements are used to deduce the annealing dependend transport

parameters for electrical transport, that is the conductivity σ, the carrier concentration n,

the mobility µ, the scattering time τ, the effective mass m∗, the Fermi wave-vector kF, the

Fermi energy EF, the mean free path λe and the resistivity ratio rσ.
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Figure 2.5.: Low temperature resistivity of different annealed crystalline GeSb2Te4 films.
Resistivities between 5 and 300 K are shown for eight samples annealed in the range

from 150 to 325 °C. The non-metallic character of the TCR for annealing temperatures

lower than 275 °C is preserved down to 5 K (compare Fig. 2.4). This implies a

charge-carrier freeze-out at zero temperature. The resistivities of the samples annealed

to temperatures higher than 275 °C remain metallic (TCR>0) throughout the range.

It is noteworthy that the critical boundary resistivity between metallic and non-metallic

behavior observed in Fig. 2.4 is valid throughout the temperature range. See also Fig.

B.1 (Data taken by Volker [55].)
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Figure 2.6.: Variable range hopping model fitted to GeSb2Te4. For low measurement tem-

peratures - between 5 and 70 K - the resistivity of the GeSb2Te4 sample annealed

at 150 °C can be fitted with a variable range hopping model. This supports the

assumption of a freeze out in conductivity as T goes to 0 K.
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2.5. X-ray diffraction analysis of the MIT

An MIT has been observed in VO2, for example, with a change in crystallographic phase.

VO2 undergoes at 340 K a change from an insulating monoclinic phase (below 340 K) to

a metallic rutile structure [41]. Temperature dependent changes of resistivity, as well as

charge carrier density, and mobility is plotted in fig. 2.7. Accompanied with this change

in crystal structure at 340 K the resistivity is lowered by about four orders of magnitude

[41]. Hall measurements reveal an increase of the carrier concentration at the transition

temperature of more than 5 orders of magnitude to values higher than one carrier per V

atom [42]. As the carrier mobility hardly changes, it can be concluded that the structural

change of VO2 leads to an increase of the carrier concentration and this leads to a change

from non-metallic to metallic behavior.

As can be seen from VO2, the determination of the crystal phase and the transport pa-

rameters were the key elements to clarify the origin of the MIT. To see if the MIT observed

for GeSb2Te4 is related to the known structural transition from cubic to hexagonal phase

in a similar way, x-ray diffraction (xrd) was carried out on step annealed films of GeTe and

GeSb2Te4. Changes in the crystallographic phase and grain size effects can be analyzed with

these measurements. Following this section Hall and FTIR measurements will be discussed.

X-ray diffraction measurements were performed using Copper Kα x-rays with a wave-

length λ= 1.5418 Å in an x-ray diffractometer from PANalytical2. All measurements were

performed in gracing incidence geometry [61] with the identical thin film samples that had

already been used for the FTIR experiments. In figure 2.8, the corresponding diffraction

patterns for step-annealed GeTe and GeSb2Te4 are shown.

GeTe crystallizes into a rhombohedral phase with a lattice constant of a = 4.29 Å and a

rhombohedral angle α = 58.5° on annealing to 225 °C. Further annealing does not change

the crystallographic phase, but at 250 °C a peak corresponding to pure Germanium appears

at 2θ = 27.35° in the diffraction pattern, indicating phase segregation. On further annealing,

this Germanium peak sharpens, but the peak area remains constant. Therefore, it is very

likely that Germanium was present alongside the GeTe structure. High resolution TEM

analysis supports this assumption. Laptyeva [63] has shown that GeTe films crystallized at

250 °C show a Ge excess within the grain boundaries of GeTe crystallites. Figure 2.9 shows

these TEM measurements. In the bright field image (BF) a grain boundary can be seen,

2http://www.panalytical.com/
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Fig. 1.
VO2. Resistivity vs. reciprocal temperature showing anisotropy [65B].

(a)

Fig. 2.
VO2. (Hall) carrier concentration (per V atom) vs. temperature near Ttr [73R].

(b)

Fig. 1.
VO2. Hall mobility || cR vs. temperature near Ttr [73R].

(c)

Montag, 29. August 2011

Figure 2.7.: Transport parameters of VO2 as a function of temperature. (a) The resistivity

measurement of VO2 shows a step-like transition from non-metallic to metallic behavior

at 340 K [41, 59]. At the transition point, the carrier concentration increases by five

orders of magnitude (b), while the mobility is showing only a small change [42, 60].
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Figure 2.8.: X-ray diffraction pattern and its evolution on annealing of GeTe and GeSb2Te4.
(a) Annealing effect on X-ray diffraction pattern of GeTe. GeTe crystallizes in the

rhombohedral α phase at 225 °C. On further annealing, a small fraction of Ge is

segregated from the GeTe lattice and crystallizes as pure Germanium, visible as a peak

at 2θ = 27,35°. This is consistent with the crystallization temperature of pure Ge of

250 °C [62]. (b) GeSb2Te4 crystallizes into an NaCl-like cubic structure on annealing

to 150 °C. Further annealing to 175 °C and 200 °C does not render visible differences

in the XRD spectra. At 225 °C, the diffraction pattern changes and consequently, at

250 °C, the final transition leads to the hexagonal phase.
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going from the upper left corner to the lower right corner. The element specific images for

Ge and Te show a lower Te concentration within the grain boundary compared to the rest of

the image, whereas the Ge-elemental map shows an enhanced Ge concentration within the

grain boundary. The segregation of Ge clusters into the grain boundary is also compatible

with the finding of Ge empty lattice sites in GeTe [30].

The situation expected for GeSb2Te4 is more complex than the one for GeTe, as GeSb2Te4

shows a strong annealing dependence of the conductivity along with the observed MIT. In

figure 2.8, the diffraction patterns of step-annealed samples are shown. At 150 °C, GeSb2Te4

crystallizes into an NaCl-like structure, which is preserved up to 200 °C. On annealing to

225 °C, the diffraction pattern shows both peaks of the cubic and the hexagonal phase. This

transition to the hexagonal phase is completed at 250 °C. On first sight, one might consider

to link this phase transition to the observed MIT. However, the transition temperatures

of crystallographic transition at 225 °C and MIT at 275 °C are not compatible with each

other. In contrast to VO2, where a gap at the Fermi energy opens due to a change in local

bonding, the p-type bonding in GeSb2Te4 does not change with the transition from cubic to

hexagonal. The transition is dominated by an ordering of Ge, Sb and vacancies into layers.

The bond length and bond angles however do not change significantly (see section 3.7).

Therefore in contrast to VO2 the relevant band is not changed.

The change in conductivity and the MIT observed in GeSb2Te4 on annealing could be

attributed to changes in grain size and grain boundary. Such a model has, indeed, been

proposed by Prokhorov et al. [64]. However, there are a number of reasons why this is not

the case in GeSb2Te4. In order to evaluate the possible effects of grain growth, figure 2.10

shows the evolution of the full width at half maximum (FWHM) of the cubic (200) reflex

for GeSb2Te4 and GeTe. The FWHM reduces for both materials on annealing, but even for

GeSb2Te4 the change is less than a factor of two. As the FWHM is inverse proportional to

the grain size [65], the change of the FWHM by less than a factor of two would lead to a

similar change in grain sizes. The grain size can be estimated to change from 150 Å to about

300 Å. This change in grain size is not expected to alter the conductivity to such an extent as

observed here. Especially when comparing the grain size to the mean free paths calculated

from Hall measurements (see section 2.6). The mean free paths for GeSb2Te4 and GeTe is for

all annealing stages smaller than 25 Å(in the order of four unit cells), thus more than 1 order

of magnitude smaller than the grain size. In granular metals, like Al or Ni-SiO2 [66], hopping

transport with scattering at the grain boundaries was observed. Therefore a modification of
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Fig. 6.5 Grain boundary in crystalline Ge53Te47 sample, annealed at 250°C: (a) BF image; (b) Te- and  

(c) Ge-elemental map 

 

Fig. 6.6 Metallurgical organization model in crystalline Ge2Sb2+xTe5 [Yamada, 2000] 

Grain boundary in crystalline Ge53Te47 sample, annealed at 250°C: (a) BF image; (b) Te- and (c) Ge-elemental map

(a) BF-image (b) Te-elemental map

(c) Ge-elemental map

Mittwoch, 27. Juli 2011

Figure 2.9.: Ge segregation in the grain boundaries of GeTe. (a) The bright field image (BF)

shows a grain boundary in crystalline GeTe across the image. The elemental maps

of Te (b) and Ge (c) reveal a higher Ge concentration and a lower Te concentration

within the region of the grain boundary as compared to the rest of the sample [63].

A crystallization of Ge segregated into the grain boundaries can therefore be a likely

explanation for the Ge peak seen in figure 2.8.
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the grain boundaries in GeSb2Te4 could also be relevant. This can, however, be excluded as

a cause for the change in conductivity. Measurements of the conductivities via the van der

Pauw method and calculated values from the FTIR fits agree with each other (see 2.1). In the

FTIR model no grain boundaries are incorporated [67], and therefore the agreement of the

two methods excludes grain boundaries as dominant origin of the conductivity.
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Figure 2.10.: Changes of the FWHM of GeTe and GeSb2Te4 on annealing. Full width at

half maximum (FWHM) of the cubic (200) diffraction peak of GeTe and GeSb2Te4
as a function of annealing temperature. The spectra were measured with Cu Kα

radiation in grazing incidence geometry (ω=1°). For both materials, the FWHM

decreases continuously with higher annealing temperatures. GeTe crystallizes into

the rhombohedral phase after annealing to 225°C. The decrease of the FWHM is

accompanied by Ge segregation at 250°C (Fig. 2.8). GeSb2Te4 crystallizes at 150°C

into the meta-stable cubic phase. Subsequent annealing results in the transition to

the hexagonal phase at 225°C.
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2.6. Transport parameter of GeTe and GeSb2Te4

In the following, the transport parameter will be studied in detail to identify the origin of

the MIT found in phase-change materials. Hall, FTIR, and X-ray diffraction measurements

were performed with the step-annealed samples of GeTe and GeSb2Te4. The charge-carrier

density n and the charge-carrier mobility µ can be calculated from Hall and van der Pauw

data. The FTIR data were analyzed using a semiconductor model (Tauc-Lorenz oscillator)

with a free electron Drude contribution. From this, the scattering time τ and the, by the

effective mass m* modified, charge-carrier density ñ = nme /m∗ can be calculated.

The transport parameters are determined in the framework of a degenerately doped

semiconductor with the Fermi level located within the valence band [68]. The multiplicity

M of the valence band maximum must be taken into account when calculating the Fermi

wave vector or related quantities. In literature, the relevant valence band maximum for IV-VI

compounds (GeTe[69, 70], PbTe[69, 71]) is given at the L-point, with a fourfold degeneracy.

The same fourfold multiplicity (M=4) is assumed in all calculations both for GeTe and step-

annealed GeSb2Te4. Therefore the transport parameters are calculated by the following

equations:

Fermi wave vector kF =
[

3π2 nHall

M

]1/3
(2.7)

effective mass
m∗

me
= nHall[

n · me
m∗

]
FTIR

(2.8)

Fermi energy EF = ħ2 k2
F

2 m∗ (2.9)

Fermi velocity vF = ħ k f

m∗ (2.10)

mobility µ = σvdP

e nHall
(2.11)

mean free path λ = ħ
e2 σvdP

[
3π2

n2
Hall M

]1/3

(2.12)

Conductivity ratio rσ = σmeasured / σmin =σmeasured ·ρmax (2.13)
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2.6. Transport parameter of GeTe and GeSb2Te4

The values of the transport parameters determined with the model of a degenerately

doped semiconductor are displayed in figure 2.11 and table 2.1, both for GeTe and GeSb2Te4.

As mentioned above, no strong annealing effect is expected for GeTe. Indeed, the conductiv-

ity σ changes only by about 30 % between annealing temperatures of 225 °C and 325 °C. This

holds true for values determined by van der Pauw measurements and for values calculated

from the FTIR spectra. The changes of the carrier concentration n and the carrier mobility µ

gained from Hall measurements show that the change in conductivity is due to a change in

carrier mobility by 30 %. The resistivity ratio rσ is above 1 for all annealing temperatures

indicating metallic transport. This is in line with the assumption of GeTe to be a degenerated

semiconductor [72]. The resistivity ratio value of four in crystalline GeTe is still very close to

the MIT.

As GeSb2Te4 shows a strong annealing effect of the resistivity, the evaluation of the

transport parameter is expected to change more strongly with annealing than for GeTe.

Figure 2.11 top shows a change in room-temperature conductivity by more than a factor of

400 on annealing between 150 °C and 325 °C (values also listed in table 2.1). Even though

the conductivity changes so much, the carrier concentration n increases only by a factor of

3. The carrier mobility, however, changes by a factor of more than 100. This indicates that

this change is the cause both for the change in conductivity and for the MIT itself.

With the Ioffe-Regel condition, we can estimate the minimum metallic conductivity

predicted by Mott [73], using 1/σ = ρ = 3π2ħ/e2k2
Fλe M (see section 2.2.1). The product

kFλe is one at the MIT. The minimum metallic conductivity can be calculated with the

fourfold degeneracy of the valence band maximum (M=4) using:

1/σmi n = ρmax = 3π2ħ/4e2kF . (2.14)

The Fermi wave vector kF can be calculated from the carrier concentration n by

kF = (3π2n/M)1/3 (2.15)

(table 2.1). For GeSb2Te4 the minimum metallic conductivity calculated is σmi n = 37 S/cm,

equalling a maximum metallic resistivity ofρmax = 2.7 mΩcm. This agrees with the measured

critical resistivity observed in all GeSbTe alloys, see figure 2.4. Note that these two values

have been determined independently, one is calculated from the carrier density measured

with Hall, the other is determined by the change in TCR.
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Figure 2.11.: Summary of the transport parameter of GeTe and GeSb2Te4. Displayed from

top to bottom are electrical conductivity σ , carrier density n, mobility µ and

resistivity ratio rσ = ρmax/ρmeasur ed . Electrical-measurement values (Hall and van

der Pauw) are shown as red squares; optical measurements (FTIR) are shown as

blue diamonds. Open diamonds indicate that the Drude parameters (τ and n me /m

) cannot be decoupled. (a) Almost no annealing temperature dependence of the

transport parameters can be observed except for the small effect caused by Ge

segregation (occurring) between 225 and 250 °C (Fig 2.8). The conductivity ratio rσ
for degenerate semiconductors is significantly larger than 1, as expected. (b) Optical
and electrical conductivities show a pronounced increase on annealing, whereas the

Hall carrier density is almost constant, evidence that this effect is caused by a mobility

increase. The transition of the resistivity ratio rσ from values smaller than one to

values larger than one is indicative of a transition from localized to delocalized

charge-carriers. This is in line with the change in sign of the TCR (see figures 2.3

and 2.4).
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2.6. Transport parameter of GeTe and GeSb2Te4

Table 2.1.: Transport parameter of GeTe and GeSb2Te4. Listed are: conductivity measured

with van der Pauw geometry σvdP, conductivity determined by FTIR σFTIR, charge-

carrier density n determined by Hall and FTIR (nme/m∗), charge-carrier mobility µ,

scattering time τ, effective mass m∗/me, Fermi wave vector kF and Fermi energy EF,

mean free path λe , resistivity ratio rσ, temperature coefficient of resistivity TCR and

the crystallographic phase. All values were calculated using a model of a degenerated

semiconductor with a fourfold degeneracy of the valence-band maximum. This model

breaks down for low annealing temperatures of GeSb2Te4 as the resistivity ratio rσ

shows. The un-physically low mean free paths, lower than the atomic spacing, also

demonstrate the breakdown of the model.

Material GeTe

Annealing temp. 225 °C 250 °C 325 °C

σvdP (S/cm) 1799 2074 2319

σFTIR (S/cm) 1012 1339 1352

n (1020 cm-3) 5.3 5.7 5.1

n me/m* (1020 cm-3) 14.7 19.5 20.2

µ (cm2/Vs) 21.1 22.5 28.3

τ (fs) 2.5 2.4 2.4

m* / me 0.4 0.3 0.3

kF (107 cm-1) 1.58 1.62 1.56

EF (eV) 0.26 0.34 0.37

λe (Å) 21.9 24.0 29.0

rσ = kFλ 3.46 3.89 4.52

TCR = ∆R/R / ∆T/T 2.53·10-5 2.59·10-5 n.a.

Crystalline phase rhomb. rhomb. rhomb.

Material GeSb2Te4

Annealing temp. 150 °C 175 °C 200 °C 225 °C 250 °C 275 °C 300 °C 325 °C

σvdP (S/cm) 2.6 6.7 10.1 24.8 170 370 794 962

σFTIR (S/cm) 15 26 52 114 414 531 711 885

n (1020 cm-3) 0.8 1.2 1.2 1.2 1.4 2.0 2.2 2.2

n me/m* (1020 cm-3) > 0.5 > 0.9 > 2.3 3.2 4.4 5.2 5.0 5.8

µ (cm2/Vs) 0.2 0.4 0.5 1.3 7.5 11.4 22.6 27.5

τ (fs) < 1.0 < 1.0 < 0.8 1.3 3.4 3.6 5.1 5.5

m* / me < 1.5 < 1.2 < 0.5 0.4 0.3 0.4 0.4 0.4

kF (107 cm-1) 0.83 0.95 0.95 0.96 1.01 1.14 1.17 1.17

EF (eV) 0.02 0.03 0.07 0.09 0.12 0.13 0.12 0.14

λe (Å) 0.11 0.23 0.34 0.81 5.0 8.6 17.5 21.3

rσ = kFλ 0.01 0.02 0.03 0.08 0.51 0.98 2.05 2.49

TCR = ∆R/R / ∆T/T -9.37·10-5 -3.48·10-5 -2.24·10-5 -1.33·10-5 -2.85·10-5 0.00E+00 2.59·10-5 3.55·10-5

Crystalline phase rocksalt rocksalt rocksalt trans. hex. hex. hex. hex.
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Chapter 2: Disorder Induced Localization

The occurrence of the MIT at annealing temperature of 275 °C is therefore supported by

three criteria:

• the change of the sign of TCR at the MIT

• the zero temperature limit of the resitivity

• the maximum metallic resistivity

With these clear indications for the existence of the MIT, the question of its origin is still to

be answered. Edwards et al. [40] have shown for the electron correlation driven case (Mott

MIT) that the critical carrier concentration derived by Mott [43]

n
1/3
c a∗

H = 0.26 (2.16)

is a valuable measure for a large range of materials. The Mott criterion can be understood

as well in the framework of the energy arguments, discussed earlier. At the Mott transition

the Coulomb energy EC exceeds the Fermi Energy EF and therefore the electron-electron

correlation can no longer be neglected. The Bohr radius a∗
H of the donor/acceptor state is

calculated from the effective mass and the static dielectric constant εst as

a∗
H = 0.53Å εst

me

m∗ . (2.17)

The isotropic Bohr radius is 130 Å for GeSb2Te4 with an effective mass of 0.4 and a static

dielectric constant of 98 [74]. This results in a critical charge-carrier concentration of

nC = 8.0 ·1015 cm-3. The charge-carrier concentration determined by Hall measurements at

the MIT is 2.0 ·1020 cm-3, which leads to a difference of more than a factor of 25,000. Such a

strong deviation from the Mott criterion is not known in any other solid.

The degree of violation of the Mott criterion can be seen in figure 2.12. Edwards et al.

[40] have shown the predictive power of the Mott criterion for a large range of materials.

The criterion fails completely for GeSb2Te4 excluding electron correlation effects as the

driving force of the observed MIT. The failure of an electron-electron interaction approach

as an explanation for the MIT could be also understood from the energy criterion discussed

above.

In section 2.2.3, the differences between Fermi energy, Coulomb energy, and mobility

edge were considered as instruments to decide wether correlation or disorder is at play.

These energies will be discussed now. In equation 2.4, the Coulomb energy depends on
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Figure 2.12.: The Mott criterion applied to GeSb2Te4. The Mott criterion (n1/3
C a∗

H = 0.26)

predicts the critical carrier density where doped semiconductors turn from insulating

to metallic behavior. Data points to the left of the line are insulators, metals are to

the right of the Mott line. The predictive power has been shown for many materials

over a range of more than 8 orders of magnitude (redrawn from [75]). For GeSb2Te4
however the Mott criterion fails. Consequently, the MIT in GeSb2Te4 cannot be a

classical Mott transition governed by electron-correlation effects.

43



Chapter 2: Disorder Induced Localization

EF

! < !min ! = !min ! > !min

E

D(E)

E"
E"

E"
EC

Figure 2.13.: Disorder induced localization: Energy scales and Density of states. As long

as the Fermi energy EF lies within the localized states (shaded regions) the system

is insulating (left). With reduction of disorder due to annealing the mobility edge

Eµ rises up to the Femi energy. At this point (centre) the ‘Anderson like’ transition

to metallic behavior (right) occurs. The graph showing the Coulomb energy EC is

designed so as to allow a comparison with EF .
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2.6. Transport parameter of GeTe and GeSb2Te4

the charge-carrier density and the static dielectric constant, whereas the Fermi energy is

calculated from the charge-carrier density and the effective mass. At the MIT, the values of

table 2.1 lead to energies of EF = 130 meV. The static dielectric constant of εst = 98 leads to

a small value of the Coulomb energy of EC = 8.6 meV. The origin of the large value for the

static dielectric constant can be seen in the effective screening due resonant bonding in

phase-change materials. As the Coulomb energy is much smaller than the Fermi energy,

electron correlation effects can be excluded as origin of the MIT. Table 2.1 shows that all

three parameters relevant for the Coulomb and Fermi energy (n, m* and εst ) are almost

annealing independent. Thus for all annealing temperatures the Coulomb energy is much

lower than the Fermi energy. This results in a situation for GeSb2Te4 that is compatible with

the situation sketched in figure 2.13.

The origin of the MIT observed in GeSb2Te4 must be an intra-grain effect that is not

governed by electron correlation. One pronounced difference between GeSb2Te4 and an

ordinary sp3 bonded semiconductor is the high degree of disorder. In the following the

different aspects of disorder present in GeTe and GeSb2Te4 are discussed.

As seen in section 2.5, GeTe and GeSb2Te4 crystallize in a distorted NaCl phase. Te atoms

form an initial fcc sub-lattice in the fast crystallization process [17, 18]. Due to the short

time of the crystallization a randomly distributed occupation result on the other sub-lattice

with Ge, Sb, and vacancies. Figure 2.14 sketches the bonding situation in GeSb2Te4 in a

2-dimensional cut. Tellurium occupies one sub-lattice of the NaCl structure. Germanium,

Antimony, and empty lattices sites occupy the other sub-lattice, thus opening up multi-

ple possibilities for disorder, as will be shown in the following. Ge, Sb, and vacancies are

randomly distributed on the one sub-lattice in the simplest assumption of the GeSb2Te4

structure. The random occupation of the Ge/Sb/vacancy site will lead to different electronic

potentials for the conduction electrons. Therefore it can be attributed to a diagonal An-

derson localization. It is conceivable that some ordering mechanism of Ge, Sb, or vacancy

will lead to a reduction of disorder within the sub-lattice, either with respect to themselves

or to each other. This ordering process is very likely to start already within the NaCl-like

phase. With the transition from the NaCl-like phase to the hexagonal phase the ordering

of the empty lattice sites into layers has been completed to such an extent that the cubic

symmetry is no longer maintained. A step-like ordering is not compatible with the continu-

ously change in rσ. As the transition is expected to be a continuous, it will not be completed

at the point of the transition observed in the xrd diffraction pattern. Further ordering and
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Chapter 2: Disorder Induced Localization

reduction of anti-sites between the Ge, Sb and vacancy layers will take place. These ordering

processes would therefore reduce the diagonal Anderson localization. In literature such

an ordering has already been discussed, but only with respect to the cubic-to-hexagonal

transition [17].

Static displacements of individual atoms away from their ideal crystallographic positions

is another possible disorder mechanism. A displacement of single atoms leads to a change

of the transfer matrix element, and thus to an off-diagonal Anderson localization effect.

In this situation the displacements could be lowered on annealing, which would lead to a

reduction of disorder. A collective displacement of one sub-lattice with respect to the other,

or else a displacement depending on the local enviroment of the atom are further options.

A distortion of the cubic cell to a rhombohedral cell is also possible. However this would

lead to additional peaks in the XRD diffraction pattern, for example a splitting of the (111)

reflex. This is not observed in GeSb2Te4 and therefore limits this type of structural change

to small distortions that would lead to a small peak broadening, rather than a splitting. A

larger rhombohedral local distortions could be possible, if it would average out in the long

range order and therefore would not be visible in the XRD measurements.

The bonding has a high degree of directionality due to resonant bonding via p-orbitals

in crystalline phase change materials. The system is therefore very sensitive to changes in

bond angles and lengths. In GeSb2Te4, the crystal structure undergoes small changes on

annealing. These subtle changes will consequently affect in resonant bonding, resulting in

changed electronic properties. We may therefore deduce that the pronounced disorder in

GeSb2Te4 is the underlying cause of the observed MIT in GeSb2Te4. GeTe shows annealing

independent metallic conduction it is, however, not far away from the MIT. The low values

of rσ shows that the conductivity of GeTe is influenced by disorder as well.

46



2.6. Transport parameter of GeTe and GeSb2Te4

EF

! < !min ! = !min ! > !min

E

D(E)

E"
E"

E"
EC

Figure 2.14.: Schematic presentation of the unique crystal structure and bonding situation
in GeSb2Te4. Two-dimensional cut sketching the bonding situation in the rock-

salt-like structure of GeSb2Te4. The anion sub-lattice is occupied with Te atoms

(red) whereas the cation sub-lattice is randomly occupied with Ge atoms, Sb atoms

(light yellow and blue, respectively) and empty lattice sites. It is evident that the

random occupation in combination with distortions leads to tremendous variations

of the atomic orbital overlap, thus giving rise to pronounced disorder-related effects

on the band structure. These effects are reinforced by the strong directionality of

the resonant p bonds, which makes the overlap more sensitive to distortions than in

sp3-bonded systems.
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2.7. Conclusions

In this chapter the conduction mechanism of different phase-change materials has been

studied. In phase-change materials like GeSb2Te4 the conductivity within the crystalline

phase is strongly dependent on annealing. The room temperature value of the conductivity

in crystalline GeSb2Te4 can be varied between 2.6 S/cm and 962 S/cm on annealing to

temperatures between 150 °C and 325 °C. Not only does the conductivity itself vary, but the

conduction mechanism also changes from a non-metallic to a metallic behavior (fig. 2.3).

This metal-to-insulator transition (MIT) was verified for multiple phase-change materials

on the pseudo-binary line (fig. 2.4). The critical minimum metallic resistivity observed for

GeSb2Te4 turns out to be constant over a temperature range from 5 K to 600 K (fig. 2.5). The

transport parameters derived from Hall, van der Pauw, and FTIR measurements support the

observation of the MIT. These parameters exclude electron correlation (Mott) as the origin

of the MIT. The characteristic bonding mechanism in crystalline phase-change materials

- resonant bonding - leads to a high static dielectric constant. This results in an effective

screening of the electron-electron interaction and thus correlation. Even though disorder is

the dominating origin of the MIT, x-ray diffraction measurements do not give a clear hint

which disorder is responsible. Therefore a more detailed analysis of the crystallographic

phase of GeTe and GeSb2Te4 will be undertaken next, along with an analysis of the annealing

dependent changes in the structure of GeSb2Te4.
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CHAPTER 3

Crystallographic Analysis of Disorder

As described in the previous chapter 2, the conductivity of phase-change materials shows

two different annealing dependencies. GeTe and GeSb2Te4 can be treated as prototype

materials for these two behaviors. Both crystallize in a distorted rock salt like structure with

GeTe showing an annealing independent metallic behavior, whereas GeSb2Te4 changes

its conduction mechanism from non-metallic (insulating) to metallic on annealing. The

difference in behavior is attributed to the larger degree of disorder in GeSb2Te4 compared

to GeTe. The focus will now be set on the crystallographic differences of these two materials

and the annealing dependent changes in GeSb2Te4.

3.1. Neutron Pair Distribution Function technique

A conventional scattering experiment, e.g. x-ray or neutron diffraction, seems a suitable

means to analyze the crystal structure of solids. However, there are two reasons why such

an approach is not likely to contribute significantly to the understanding of the metal

insulator transition (MIT) observed in GeSb2Te4. Firstly, the grain sizes of crystalline phase-

change materials are quite small. These small grain sizes lead to a broadening of the

diffraction peaks, which hinders a detailed analysis. A small splitting of a peak, for example,

is much harder to detect for a broad peak. Secondly, the origin of the disorder induced

localization is expected to be a change in short to medium range order rather than in

long range order1, as a disorder induced localization of charge carriers will depend on

1In this study, the usage of the terms short, medium and long range order are defined by the following distances:

short range order equals the nearest neighbor distance (r = 2.5 - 3.5 Å), medium range order extends up to
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the local atomic arrangement. A change in long range order is not mandatory for this

change in local arrangement. Moreover, experiments like x-ray diffraction only probe the

average structure when analyzed with for instance the Rietveld [23] method. In addition

Rietveld analyzes only the data at the position of the Bragg peaks. In contrast, neutron pair-

distribution function (PDF) is a local probe analyzing both Bragg and diffuse components of

the scattering together. For example displacements of single atoms that are not correlated

would average out in XRD, but can be detected in a PDF analysis. For these reasons, the

neutron PDF technique was chosen to study effects in the short to medium range order

[76]. This local probing method has demonstrated its strength in analyzing the structure of

complex materials such as nano-crystalline materials and nano-particles. With grain sizes

below 20 nm and local distortions, phase-change materials seem to be a material class well

suited for this method probing in a range of up to 50 Å

around an average atom.

3.1.1. Diffraction by disordered systems

In the following section, the diffraction of neutrons by disordered systems will be presented

in a generalized formalism for both neutron and x-ray diffraction. The scattering centers will

be treated as point-like. The results can, however, be generalized for the case of extended

scattering centers by superimposing the extended scattering centers at each point of the

point-like scattering centers. The formalism presented here is adapted from [77].

The incident beam is considered as monochromatic, and the distance from the source is

assumed large enough to treat the incident beam as plane waves. For the incident amplitude

at the point~r this results in

Ψi nc =ψi nc ei [~k0·~r−ω0t ] =ψ0(t ) ei~k0·~r (3.1)

where ~k0 is the incident wave vector of magnitude k0 = 2π/λ0. The scattering is treated

elastically. Thus the incident and diffracted wavelength are the same, and multiple scattering

is not taken into account. This is often referred to as kinematic approximation. For a single

scattering center i at the origin of the coordinates, the scattered wave is a spherical wave

Ψscat t ,1 = −ψobi

R
ei k f R , (3.2)

where k f is the magnitude of the final wave vector~k f , and R the distance from the scattering

center. The time dependency of the incident and the scattered wave has been factored out

the cubic lattice constant (r = 3.5 - 6 Å) and whatever exceeds (r > 6 Å) is called long range order.
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and incorporated into the ψ0 term. The constant bi is the scattering length in the case of

neutrons or the atomic form factor in the case of x-rays for scattering center i . As x-rays

scatter from the extended electron cloud of an atom which is in the same dimension as

the wavelength of the x-rays, the atomic form factor is dependent on the scattering angle.

Neutrons scatter at the atomic nucleus, which is five orders of magnitude smaller than

the wavelength. Therefore neutron scattering at the nucleus can be treated as point like

scattering. The scattering length for neutrons is a dimensionless length, and is in general a

complex value. The magnitude and the sign of bi depend on the properties of the interaction

between the scattering center and the scattered quantum. It is possible to distinguish two

types of nucleus from their scattering behavior. For the first type the scattering length

is complex and dependends on the neutron energy. For those nuclei the scattering is

associated with the formation of a compound nucleus, consisting of the original nucleus

and the neutron, with energies close to an excited state. Examples of nuclei of this type are
103Rh, 113Cd, 157Gd, and 176Lu [78]. The imaginary part of the scattering lengths materials of

this type is large, corresponding to an absorption of neutrons. The majority of nuclei belong

to the second type of nuclei. For those the absorption and therefore the imaginary part of

the scattering length is small and the real part is mainly independent of the neutron energy.

The materials investigated in this study, Ge, Sb, and Te have coherent scattering length of

8.185 fm, 5.71 fm, and 5.8 fm, respectively. Only 73Ge has a non neglectable incoherent

scattering length, but 73Ge has only a natural abundance of 7.8 %. Therefore in the following

the scattering length will be treated to be a real quantity. By convention, the scattering

length is positive for a repulsive scattering potential in neutron scattering. This results in

the negative sign in equation 3.2.

For scattering centers at a position~ri instead of at the origin, an additional phase shift of

~q ·~ri can be deduced, where ~q =~k0 −~k f is called the wave vector transfer. This is valid for

R À ri . The scattered wave of a sample comprising N point-like scattering centers i with

scattering lengths bi is given by

Ψscat t ,N = −ψ0

R
ei k f R

N∑
i=1

bi ei~q·~ri (3.3)

at a distance ~R parallel to~k f . At the distance R, a detector is placed with an area dS ¿ R2

covering a small solid angle dΩ= dS/R2 with respect to the sample.

The differential scattering cross-section is defined by

dσ

dΩ
def= number of quanta scattered per second towards the detector into dΩ

ΦdΩ
, (3.4)
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with the incident fluxΦ. With cm−2s−1 being the unit for the flux and steradian (str) for dΩ,

the unit of dσ/dΩ becomes cm2/str. Instead often the unit barn/str is used, with 1 brn =

10−24 cm2. For a single scattering center at the origin the differential scattering cross section

can be written as:

dσ

dΩ

∣∣∣∣
1
= |Ψscat t ,1|2 dS

|Ψi nc |2 dΩ
= (ψ2

0|bi |2/R2)(R2dΩ)

ψ2
0dΩ

= |bi |2 or b2
i . (3.5)

The result is as expected isotropic scattering. For a sample with N scattering centers the

differential scattering cross section becomes

dσ

dΩ
(~q) =

〈∣∣∣∣ N∑
i=1

bi ei~q·~ri

∣∣∣∣2
〉
=

〈∣∣∣∣ N∑
i , j

bi b∗
j ei~q·~ri j

∣∣∣∣2
〉

(3.6)

with~ri j =~ri −~r j being the vector for the relative position of scattering centers i and j . The

brackets 〈〉 denote a thermal average, as the positions of the scattering centers are not fixed

over time due to thermal motion.

The intensity I (~q) measured in counts-per-seconds by the detector for a solid angle dΩ

can be derived from equation 3.4 to

I (~q) =Φdσ

dΩ
(~q) dΩ (3.7)

The measured intensity is only dependent on the wave vector transfer ~q . As ~q is dependent

on both the wavelength λ and the detector angle θ by

q = 2k0 sinθ = 4π

λ0
sinθ, (3.8)

one can either vary the wavelength λ, the scattering angle θ or both to measure a diffrac-

togram.

We will now consider the scattering by a monoatomic sample and derive the structure

factor S(~q) for it. We will see, that is it possible to decompose the differential scattering cross

section into different parts. Two different ways will be presented in the following. In the

first, the introduction of the interference function H(~q) will lead to a distinct part, which is

correlated to the interference between different atomic sites and a self part, containing the

isotropic scattering from single sites. The second, more commonly route, is to decompose

the scattering into a coherent and an incoherent part. This is done by introducing the

structure factor S(~q). It will be seen that both the interference function H(~q) and the

structure factor S(~q) contain the same physical information. We will see as well, that
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these function are independent of the radiation type used for the scattering and are only

dependent on the atomic structure of the material under investigation.

A monoatomic sample consist of different isotopes due to the natural abundance of

elements. As neutron scatter at the nucleus, the scattering length depends on the isotope.

For a monoatomic system one, therefore, has to calculate the weighted average of the

different scattering lengths with the natural abundance as weight. We will assume no

correlation between the scattering lengths and the position of different scattering centers.

The average scattering length can then be calculated as

b =∑
i

ci bi (3.9)

and

|b|2 =∑
i

ci

∣∣∣bi
∣∣∣2

(3.10)

with ci = Ni /N the concentration of the isotop i . The average in equation 3.6 can thus be

calculated as

bi b∗
j =

∣∣∣b∣∣∣2
(1−δi j )+b

2
δi j (3.11)

=
∣∣∣b∣∣∣2 +

(
|b|2 −

∣∣∣b∣∣∣2
)
δi j (3.12)

=
∣∣∣b∣∣∣2 +

∣∣∣b −b
∣∣∣2
δi j (3.13)

Therefore we can consider two cases for each term in the summation of equation 3.6:

bi b∗
j = bi b∗

i = b2 i = j (same site), (3.14)

bi b∗
j = bi b∗

j = b
2

i 6= j (different site), (3.15)

leading to a differential scattering cross section of

dσ

dΩ
(~q) = b

2
〈

N∑
i , j 6=i

ei~q·~ri j

〉
+N b2 (3.16)

= b
2
〈

N∑
i , j

ei~q·~ri j

〉
+N

(
b2 −b

2)
The differential cross section is separated in the first line of the equation into a ’distinct’ term

for the diffraction interference from different atomic sites and a ’self’ term for the isotropic
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Chapter 3: Crystallographic Analysis of Disorder

diffraction from individual atomic sites. By introducing the dimensionless interference

function H(~q) as

H(~q)
def= 1

N

〈
N∑

i , j 6=i
ei~q·~ri j

〉
(3.17)

which for a disordered system is converging to 0 for q →∞, one can write the differential

scattering cross section per atom as

1

N

[
dσ

dΩ
(~q)

]
= 1

N

[
dσ

dΩ
(~q)

]distinct

+ 1

N

[
dσ

dΩ
(~q)

]self

(3.18)

= b
2

H(~q)+ b2.

This equation explicitly shows that the differential scattering cross section is only dependent

on ~q .

Another route, which is more commonly used, is to decompose dσ/dΩ into a coherent

and an incoherent part. This separation is already be done in equation 3.16, second line.

The coherent part takes diffraction from all atomic sites into account. This includes self

scattering from a single atom and is independent of the distribution in scattering lengths. In

contrast the incoherent part depends only on the distribution of scattering lengths present

in the sample and is independent of the spatial correlation of the atomic sites. It therefore

leads to an isotropic diffraction. The coherent and incoherent scattering lengths are thereby

defined as

bcoh
def= b and b2

incoh
def=

(
b2 −b

2) =
∣∣∣b −b

∣∣∣2
. (3.19)

The coherent scattering length is defined as the average and the incoherent as the standard

deviation of the sample’s scattering length distribution. Values of bcoh and bincoh for both

natural isotopic compositions and single isotopes are given in [79].

The structure factor S(~q) is introduced as

S(~q)
def= 1

N

〈
N∑
i , j

ei~q·~ri j

〉
= H(~q) + 1. (3.20)

It is dimensionless and converges to 1 for ~q →∞. The differential scattering cross section

per atom can be rewritten with the structure factor for a monoatomic system:

1

N

[
dσ

dΩ
(~q)

]
= 1

N

[
dσ

dΩ
(~q)

]coh

+ 1

N

[
dσ

dΩ
(~q)

]incoh

= b
2

S(~q)+
(
b2 −b

2)
(3.21)

= b2
coh S(~q)+ b2

incoh
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Neutron and x-ray diffraction studies of liquids and glasses 245

d
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σ1
N
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q
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S(q)

-

 interatomic~2π/r

Figure 2. Differential scattering cross-section per atom (1/N)dσ/d" = b
2
S(q) + (b2 − b

2
) for a

monatomic liquid or glass. The position of the first peak is inversely proportional to the interatomic
distance, rinteratomic.

where the q-dependence is again emphasized. Note that the above expression can be derived
from equation (2.14) by the simple operation of subtracting the coherent self-scattering b

2

from the second term and adding it to the first. Figure 2 shows the differential scattering cross-
section per atom for a typical monatomic liquid or glass. We emphasize that S(q) depends
only on the relative coordinates of the scattering centres in the system and is independent of
the nature of the probe–system interaction.

It follows from equation (2.8) that the (static) structure factor S(q) can be expressed in
terms of a more general quantity S(q, ω) which is known as the (coherent) dynamic structure
factor (van Hove 1954):

S(q) =
∫ +∞

−∞
d(h̄ω)S(q, ω), (2.19)

where h̄ω is the energy transfer between the incident quantum and the sample and S(q, ω)

is in turn directly proportional to the double differential scattering cross-section for coherent
scattering d2σ/(d" dE)|coh. As mentioned earlier, in reality the integration is limited by the
(maximum) incident energy of the beam, thus leading to the ‘snapshot’ time, τsnapshot, and
possible inelasticity corrections (discussed in section 3.1).

The structure of a monatomic sample can be described in real space (figure 3) in terms of
its pair-distribution function g(r) which is proportional to the probability of finding an atom
at a position r relative to a reference atom taken to be at the origin. The functions S(q) and
g(r) are related by the Fourier transforms:

S(q) − 1 = ρo

∫
[g(r) − 1] eiq·r dr (2.20)

and

g(r) − 1 = 1
ρo(2π)3

∫
[S(q) − 1] e−iq·r dq, (2.21)

Figure 3.1.: Differential scattering cross section per atom for a monoatomic system. Dif-

ferent quantities that are directly linked to the shape of the differential scattering cross

section per atom (1/N ) dσ/dΩ = b
2

S(~q)n + (b2 −b
2
) are marked. The interatomic

distance rinteratomic can be calculated from the position of the first peak. Taken from

[77].

From this equation it can be seen that in the differential cross section per atom only the

coherent scattered quanta show a dependency on ~q , while the incoherent scattered quanta

are isotropic.

3.1.2. Pair distribution function

After deriving the structure factor S(q), a function in reciprocal-space, the focus will now lie

on the pair-distribution function (PDF), a real-space function. It describes how many other

atoms are located around an average atom and at what distances they are located. Three

different real-space functions often associated with PDF are plotted in figure 3.2. They all

can be calculated via a Fourier transformation of the measured total structure factor S(q).

They differ by the pre-factors. The pair-distribution function g(r) and the structure factor
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Chapter 3: Crystallographic Analysis of Disorder

Figure 3.2.: Examples of real-space functions. From top to bottom: (a) pair-distribution

function g(r), (b) pair-distribution function G(r) and (c) radial distribution function

RDF(r). The different functions can be transformed into each other by changing the

pre-factor. Therefore the physical information encoded in the three functions is the

same. Due to the different pre-factors the weighting is different. In the g(r) function

small distances are weighted more than in the function G(r). In the Radial distribution

function RDF(r) the integral from r1 to r2 gives the absolut number of atoms between

these two distances. Figure adapted from [80]
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S(q) are transformed into each other by

S(q)−1 = 4πρ0

q

∫ ∞

0
r [g (r )−1]sin(qr ) dr (3.22)

g (r )−1 = 1

2π2rρ0

∫ ∞

0
q [S(q)−1]sin(qr ) d q, (3.23)

withρ0 being the density, q the momentum transfer, and r the distance. The pair-distribution

function G(r) is defined as

G(r ) = 4πr ρ0 [g (r )−1] = 2

π

∫ ∞

0
q [S(q)−1]sin(qr ) d q. (3.24)

This definition explains why in figure 3.2 the slope for r-values below the inter-atomic

distance is proportional to the density. The radial distribution function can be calculated as

follows

RDF(r ) = 4πr 2 ρ0 g (r ). (3.25)

Both the slope and the damping of the oscillations are different for g(r), G(r), and RDF(r),

but the information that can be gathered from them is the same. The g(r) function shows

small oscillations around zero below the minimum bonding length (r1). At values higher

than r1 the oscillations are associated with neighboring atoms. For r →∞ the value of g(r)

converges to one. G(r), however, has a negative slope proportional to the density below r1.

The oscillations for r > r1 vanish slower than the oscillations of g(r) and converge to zero.

The radial distribution function RDF(r) increases proportionally to r2, as it is proportional to

the absolute number of neighboring atoms found at a distance r.

3.2. Beamline D4 at Institut Laue-Langevin, Grenoble

The Institut Laue-Langevin2 (ILL) in Grenoble, France, is an international research center.

Its high-flux reactor provides the most intense continuous neutron flux (1.5 · 1015 n/(s cm2))

in the world. The ILL provides beam-time to visiting scientists at 40 different beamlines.

The data analyzed in this study were taken under the proposal No. 6-05-839 at beamline

D4. This beamline is optimized for measuring non-crystalline and nano-crystalline materi-

als in detail. A large Q-range and a stable and low background are essential for successful

measuring. A sketch of the diffractometer is shown in figure 3.3. D4 is a two-axis diffrac-

tometer using short-wavelength neutrons from the hot source. The neutrons are being

2http://www.ill.eu
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Chapter 3: Crystallographic Analysis of Disorder

monochromated with a Cu single crystal monochromator. The monochromated beam is

collimated, and slits ensure that only the cylindrical sample is illuminated. The detector

bank is mounted around the sample with 9 position sensitive detectors. Gaps in between the

detector are not covered due to the geometry of the detectors. Therefore the entire detector

bank has to be moved around the sample to cover those gaps and to obtain a complete

diffraction pattern. For the experiments in this thesis a wavelength of 0.5 Å was chosen

because this wavelength allows a Q-range of up to 25 Å−1.

3.2.1. Sample geometry, data treatment, and data analysis

The samples were prepared by sputtering from a compound target with the desired stoi-

chiometry. After sputtering, the films were scratched off the glass substrates and filled into

thin walled silica capillaries. This procedure yielded cylindrical samples with a diameter

of 2 mm and a height of about 60 mm. The total sample mass in the beam was 250 - 300

mg. Only 20 mg of the sample container were enclosed in the beam as the wall thickness

was just 0.01 mm. This excellent ratio of sample to container mass facilitates subsequent

processing of the data.

Still, it requires some effort to obtain a structure factor that contains no more than the

sample itself. Fischer et al. [77] offer an excellent introduction to the underlying theory and

to the treatment of the data in their review paper. Further measurements were needed in

order to subtract the background and for normalization: empty instrument, empty sample

container, a known Nickel and a known Vanadium sample. Nickel was used to calibrate

the wavelength and Vanadium was used to normalize the diffraction intensities to a known

scattering cross section. Vanadium has the advantage of an almost completely incoherent

and therefore isotropic cross section [77].

For multiple scattering and absorption correction of the data, the following sample param-

eters are necessary: stoichiometry, density, packing fraction, and Hydrogen concentration

within the sample. Density was taken from X-ray reflectivity measurements (XRR). The

packing fraction was calculated from the sample mass, its density, and the measured vol-

ume. The Hydrogen concentration was adjusted by fitting the Placzek falloff. This falloff

is very strong for light atoms like H because of their to the strong inelastic scattering. This

effect is shown in Figure 5 of [77] for light water (H2O), heavy water (D2O), and a 1 : 1

mixture of both. For the different samples, the H concentration was 1.6 % and 2.6 % for

GeTe and GeSb2Te4, respectively. With these parameters and with the help of the program
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3.2. Beamline D4 at Institut Laue-Langevin, Grenoble

Figure 3.3.: Instrument D4 at Institut Laue-Langevin. D4, a two-axis diffractometer, uses

short-wavelength neutrons from the hot source and measures diffraction patterns

over a large Q-range. This feature allows characterization of local atomic order of

non-crystalline and nano-crystalline materials with excellent accuracy. The gaps in

between the large array of microstrip detectors make it necessary to move the detector

bank during the measurement so as to cover these gaps. Adapted from [81]
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package correct from the ILL, the total structure factors S(q) were calculated. The structure

factors and pair-distribution functions of GeTe and GeSb2Te4, annealed at 225°C and 150°C

respectively, are displayed in figure 3.4.

As within the framework of this thesis the short to medium range order is of interest, the

real space pair-distribution function G(r) needs to be calculated from the structure factor

S(q). The data have therefore to be Fourier transformed (see 3.22). A comparison of the total

structure factor S(q) and the resulting total pair-distribution function G(r) is given in figure

3.4.

The data are Fourier transformed up to a maximum value qmax. This value is correlated to

the resolution of the pair-distribution function G(r). The minimum peak width in the G(r)

scales with 2π/qmax. Fourier transforming the data only to the first peak in S(q) results in

a sine function in G(r). The peak broadening leads to a damping of this sine with higher

r-values. Every peak in S(q) leads to a sine in the G(r), and therefore the G(r) is composed of

a superposition of these different damped sine functions. Figure 3.5 shows the evolution

of G(r) with an increasing value of qmax for GeTe. At first only one sine is visible, but with

extended q-range more and more structure can be seen in the pair distribution function

G(r). For example, the 3+3-type splitting of the nearest neighbor at 3 Å is only visible at high

qmax values.

The peak width σi j of a single G(r) peak contains contributions from thermal and zero

point displacement as well as from static displacement. The isotropic thermal displacement

uiso of the atoms leads to a width σ′
i j . The correlation of the atomic motion of two different

atoms is highly dependent on their distance. The motion is uncorrelated for large distances

r, but a strong correlated motion is expected for small distances r. This correlation leads to a

sharpening of the first peak(s) in the PDF. The final width σi j is modeled by two parameters,

δ2 and Qbr oad

σi j =σ′
i j

√√√√1− δ2

r 2
i j

+Q2
br oad r 2

i j . (3.26)

The correlated motion of neighboring atoms is corrected by the parameter δ2, the peak

broadening caused by the finite q resolution of the diffractometer is corrected by Qbr oad .

Limited q resolution of the diffractometer also results in an exponential dampening of

the PDF peak height B(r ). This dampening envelope is modeled by the parameter Qd amp of

the form

B(r ) = e−
(r Qd amp )2

2 . (3.27)
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Figure 3.4.: Total structure factor and pair-distribution function of crystalline GeTe and
GeSb2Te4. (a) Total structure factor S(q) of GeTe and GeSb2Te4. The Bragg peaks

are broadened because of the the finite q-resolution of the diffractometer D4. By

Fourier transforming from the reciprocal space to real space one obtains the pair

distribution function G(r) (b). Data was collected on beamline D4 at the Institut Laue-

Langevin with neutrons with a wavelength λ = 0.5 Å. The annealing temperatures

were 225 °C for GeTe and 150 °C for GeSb2Te4.
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Figure 3.5.: Evolution of the pair distribution function G(r) with increasing qmax. To il-

lustrate the effect of an increasing maximum wave vector transfer qmax, the total

structure factor S(q) of GeTe is Fourier transformed with different values of qmax. For

low qmax values, the G(r) is composed only of one sine. With every Bragg peak in the

S(q) that contributes to the G(r) one more sine is added. This leads to a beating of

many sines. At high qmax values, the first peak at 3 Å develops into a double peak.
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3.3. Modeling of the short to medium range order in phase-change

materials

In the following section, the total pair-distribution G(r) of GeTe and GeSb2Te4 will be an-

alyzed with respect to the short to medium range order. As in chapter 2, GeTe acts as a

reference phase-change material. The program package PDFgui was used to perform fits

to the G(r) so as to model the structure of the short-to-medium range order. PDFgui is a

graphical user interface to the program package PDFfit2. The programs were developed by

Farrow et al. [82]. The aim of PDFgui is real-space refinement of crystal structures, without

imposing symmetry, based on pair-distribution functions. The basic input values are box

dimensions and fractional coordinates of atoms placed in a box that is continued with

periodic boundary conditions.

As for both GeTe and GeSb2Te4 a distorted NaCl-like structure is assumed [17, 21, 22, 83], a

rhombohedral unit cell was chosen as a box with one Te atom at (0, 0, 0) and a Ge/Sb/vacancy

at (0.5, 0.5, 0.5). A rhombohedral cell resembles an NaCl structure at a rhombohedral angle

α of 60°. Therefore it has the advantage to be valid for both an NaCl structure and, of course,

a rhombohedral structure. Figure 3.7 shows the resemblance of the rhombohedral cell

to an NaCl cell. The main fitting parameters in this model are the rhombohedral lattice

parameters (lattice constant a and angle α) and a static atomic displacement of the Ge/Sb

site along the [1 1 1] direction, referred to as Atomic Displacement Parameter (ADP). From

long range order measurements it is known that GeTe shows a Peierls-like 3+3-type splitting

of the nearest neighbors into three shorter and three longer bonds. This splitting can be

modeled successfully with the ADP parameter along [1 1 1].

If we fit a rhombohedral cell to the short and medium range order, both alone and

combined, we may compare the results gained for those two regions. We may also compare

the results with the values obtained from measurements of the long range order.

To visualize the effects of a change in the rhombohedral model on the G(r), a GeTe rhom-

bohedral structure is taken to simulate the corresponding G(r) (figure 3.6). Two parameters

are varied, the rhombohedral angle α and the atomic displacement along [1 1 1]. The lower-

ing of the rhombohedral angle α yields a shortening of some Te-Te bonds to lower values.

The shortened Te-Te distance is plotted as a dotted line in the schematics in figure 3.6. As

not all Te-Te distances change on rhombohedral distortion, a shoulder of the peak at the

undistorted position is visible. A displacement of the Ge site along [1 1 1] (ADP) results in
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Figure 3.6.: Effects of rhombohedral distortion and atomic displacement on the pair dis-
tribution function G(r). To study the effects of a change in rhombohedral angle

α and the atomic displacement along [1 1 1] (ADP) pair distribution functions G(r)

are plotted for different values of α and ADP. The starting point is the undistorted

rhombohedral angle α = 60 ° and an atomic displacement of ADP = 0.5. A change

in angle α leads to a shift of the peak around 4.2 Å. This is due to a shortening of

the Te-Te distance indicated by the dotted line. Displacing the Ge atom along [1 1 1]

leads to a splitting of the 6 nearest neighbor distances into three shorter and three

longer ones. This can be seen in the splitting of the first peak.
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a splitting of the first peak into a double peak. The six nearest neighbors of Ge change on

displacement to three shorter and three longer bonds. A combination of a rhombohedral

distortion of α = 57° and an atomic displacement of APD = 0.534 enhances the 3+3-type

splitting.

3.4. Structure of GeTe

We know from x-ray diffraction measurements of the long range order that GeTe crystallizes

into a rhombohedral α phase. Goldak et al. [21] have determined the lattice parameters to

a = 4.240 Å, α = 58.8° with an atomic displacement along [1 1 1] ADP = 0.526. More recent

measurements determined the lattice parameters to a = 4.281 Å, α = 58.30° and ADP = 0.52

[22][83]. These measurements differ in sample preparation: Goldak et al. [21] used mixed

stoichiometric powder with subsequent melting, whereas [22] and [83] used powder from

sputtered samples. The samples for this study were prepared by sputtering, so their values

are expected to be closer to [22] and [83] .

To test the validity of the rhombohedral model of the short to medium range order in GeTe,

fits with different r-ranges were performed. Three different fitting ranges were selected,

whole range (r = 2.5 - 20-5 Å), short to medium range (r = 2.5 - 6 Å), and long range order

(r = 6 - 20.5 Å). Fitting only the short range (r = 2.5 - 3.6 Å) order was possible, but the errors

increased by another order of magnitude compared to the short to medium range.

The resulting parameters are listed in table 3.1. In figures 3.8 and 3.9 data, fits, and the

corresponding residuum are plotted for the whole range and the short to medium range

respectively. The values determined for the different r-ranges differ only within their error

margin. The static displacement of the Te within the rhombohedral cell along [1 1 1] leads

to a Peierls-like splitting of the octahedral bonded atoms in three shorter (2.83 Å) and three

longer (3.19 Å) bonds. This splitting is visible in figure 3.9 showing the short to medium range

fit of GeTe. A double peak is visible around 3 Å confirming the well-ordered displacement in

GeTe. These values are also compatible with the literature values determined for the long

range order. It may be concluded that the structure of GeTe can appropriately be described

with a rhombohedral model and a static displacement along the [1 1 1] direction. This model

holds for the short, the medium, and the long range order.
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Figure 3.7.: Structure of GeTe. GeTe crystalizes in a distorted rhombohedral structure (space

group R3m). The rhombohedral cell is made visible by the green lines (lattice constant

a = 4.291 Å, angle α = 58.49°). One sub-lattice is occupied by Ge atoms (blue), while

the Te atoms occupy the other sub-lattice. The Ge sub-lattice is shifted half a space

diagonal in respect to the Te sub-lattice. GeTe shows a Peierls-like distortion pattern

along the [1 1 1] direction (displacement x = 0.529), which leads to a splitting of the

bonds into three longer (3.19 Å) and three shorter (2.83 Å) ones (values determined

by Neutron Pair Distribution technique see chapter 3.1, fit is shown in figure 3.8).

The resemblance of the rhombohedral cell to an NaCl structure is easy to recognize.
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Table 3.1.: Fit parameters for a rhombohedral GeTe model. The fit has been performed with

different ranges. Listed are the lattice constant a, rhombohedral angle α, displacement

parameter ADP, and Rw value of the fit. A variation of the fitting range does not lead

to a significant change of the fit parameters. All values confirm the literature data, and

thus support the approach to fit the pair-distribution function with a crystalline model.

r-range 2.5 - 20.5 Å 2.5 - 6 Å 6 - 20.5 Å

lattice constant a (Å) 4.291 ± 0.005 4.270 ± 0.032 4.291 ± 0.007

angle α (°) 58.49 ± 0.10 58.88 ± 0.65 58.48 ± 0.01

ADP 0.529 ± 0.001 0.528 ± 0.001 0.531 ± 0.002

Rw 0.2024 0.153 0.215

5 1 0 1 5 2 0
- 4

- 2

0

2

4

Pa
ir d

istr
ub

uti
on

 fu
nc

tio
n G

(r)

R a d i u s  r  i n  �

 M e a s u r e d
 C a l c u l a t e d
 D i f f e r e n c e

Figure 3.8.: Fit of a rhombohedral model to the total pair-distribution function of GeTe
(range 2.5 - 20.5 Å). Space group R3m, Ge occ 0.97 at (0, 0, 0) Te occ 1 at

(0.5, 0.5, 0.5), lattice constant 4.291 ± 0.005 Å, rhombohedral angle α = 58.49 ±
0.10°, displacement parameter 0.5293 ± 0.0011
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Figure 3.9.: PDF of short to medium range order of GeTe. Peierls-like splitting of the nearest

neighbors into 3 shorter (2.83 Å) and three longer (3.19 Å) bonds is indicated by the

dotted lines.

3.5. Comparison of the structure of GeTe and GeSb2Te4

As the pair-distribution technique has shown its capabilities for a well-understood structure

such as GeTe, it is time to move to new frontiers and see what can be learned from applying

this method to a more complex material such as GeSb2Te4. The pair-distribution functions

of GeTe and GeSb2Te4 are compared in figures 3.10 and 3.11. They both show a similar

pattern of peaks in the G(r) indicating a strong similarity of the structure. Some details,

however, do show differences. Especially in figure 3.11, the clear Peierls-like splitting of

the first neighbor peak is absent in GeSb2Te4. However, the peak is broad and therefore

represents a range of distances. To deepen the understanding of this behavior, the structure

and the static displacement in GeSb2Te4 will be analyzed in detail in the following section.

68



3.5. Comparison of the structure of GeTe and GeSb2Te4

4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

- 2

0

2

4

Pa
ir d

istr
ub

uti
on

 fu
nc

tio
n G

(r)



����������

�	�������������
�	���������

Figure 3.10.: Total pair-distribution function G(r) of GeTe and GeSb2Te4. In the overview

from short to long range order of the total pair-distribution function for GeTe and

GeSb2Te4 the general similarity of the structure of the two materials can be seen. All

basic features seen in GeTe can also be found in GeSb2Te4. This overview already

shows a better ordering of GeTe as it has sharper and higher peaks in the PDF.

Compare as well with B.2.
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Figure 3.11.: Comparison of the short to medium range order of GeTe and GeSb2Te4.
GeTe and GeSb2Te4 show similar distances. A clear Peierls-like splitting of the

first neighbors can be seen for GeTe. GeSb2Te4 shows a broadening of the nearest

neighbor. It is not evident how many distances are causing this broadening. However,

the distribution of the distances is narrow enough to exclude tetrahedral coordinated

Ge, with a Ge-Te distance of 2.6 Å, as proposed by Liu et al. [84]. For the second

nearest neighbor, a sharper peak is observed for GeTe, which indicates a higher

degree of order in the crystalline phase. The annealing of GeSb2Te4 shows only

slight changes in the PDF. Compare as well with B.2.
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3.6. Structure of GeSb2Te4

GeSb2Te4 has been described as an NaCl-like cubic structure [17] with a lattice constant a =

6.043 Å. In the NaCl structure, two fcc sub-lattices are shifted along the [1 1 1] direction by

half a space diagonal. One sub-lattice is occupied with Te atoms while the other is randomly

occupied with 25% Ge, 50 % Sb, and 25 % vacancies.

3.6.1. Rhombohedral model for GeSb2Te4

A rhombohedral model can be applied to an NaCl structure, see figure 3.7. This has the

advantage of fewer free parameters. Starting from the GeTe model, the Germanium atoms

have to be replaced by 25% Germanium, 50 % Antimony, and 25% empty lattice sites. This is

done by occupation factors for Ge and Sb of 0.25 and 0.5 respectively. Just as in the model

for GeTe, a static displacement of the Ge/Sb atoms along the [1 1 1] direction is introduced

(ADP). For a rhombohedral model, the value from Matsunaga & Yamada [17] converts to

a = 4.273 Å and α = 60°.

As for GeTe (see chapter 3.4), fits with different r-ranges were performed for GeSb2Te4. A

fit of the whole data range (r = 2.5 - 20.7 Å) is displayed in figure 3.12. The fit shows good

agreement with the data, especially in the long range order. With lattice parameters of

a= 4.286 ± 0.013 Å and α = 59.67° ± 0.28°, the model also agrees with the literature findings.

The Peierls-like displacement has an atomic displacement parameter ADP = 0.52 for all the

fitting ranges, that is a bit lower than for GeTe.

Fits of the data for short to medium range order (r = 2.5 - 6 Å) and long range order

(r = 6 - 20.7 Å) are displayed in figure 3.13. Both fits show an excellent agreement with the

data. However, the values determined for these two regions differ from each other (see table

3.2). Fitting the long range order leads to the same values within the error bar as fitting the

whole range. In the short to medium range order both the angle α and the lattice constant

a differ significantly from the one determined for the long range order. As the long range

order and the whole range order values are similar, the whole range fit is dominated by the

long range data. The change of α for the local to medium range indicates a difference in

local arrangement compared to the long range data, which is averaged out for the long range

order. The deviation of the rhombohedral angle α in the short to medium range order can

already be seen in the second peak around 4.2 Å, which is not perfectly fitted (compare fig.

3.12 and 3.6).
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Figure 3.12.: Rhombohedral fit of the pair-distribution function G(r) for r = 2.5 - 20.7 Å
for crystalline GeSb2Te4 annealed at 150 °C. Parameters of the fit are lattice

constant a=4.2857 Å, angle α = 59.67° and ADP = 0.5185. Fitting this range leads

to a cubic like rhombohedral cell with an angle close to 60°. The atomic displacement

parameter (ADP) allows a displacement only along the [1 1 1] direction.

The chosen model of the crystal structure of GeSb2Te4 only allowed an atomic displace-

ment along [1 1 1] direction, which leads to a splitting of the 6 nearest neighbor bonds into

three shorter and three longer ones. This lowers the number of free parameters besides

the small box of only two atom sites. This has the disadvantage that more complex atomic

displacements can not be represented. However, fitting a larger number of atoms and

displacing these atoms freely has not worked out; these fits were not stable and the program

normally ended up in the same χ2 minimum.

3.6.2. Displacement model from DFT calculations

In order to test a more sophisticated structural model, mainly in the short to medium range

order, data from density functional theory (DFT) calculations [85] were compared to the data

of this study. Lencer [14] calculated the local structure for different non-binary phase-change
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Figure 3.13.: Comparison between the short to medium range order and the long range order in

crystalline GeSb2Te4 annealed at 150°C. The rhombohedral distortion is much larger

in the short to medium range order. The displacement along [1 1 1] is not effected by

the change in fitting range within its error margin. (a) In the short to medium range

order (from 2.5 - 6 Å), the rhombohedral distortion is much clearer as compared to

3.12, as can be seen from the angle α= 58.83° . (b) In the long range order r = 6 -

20 Å the rhombohedral distortion is avaraged out, as can be seen from the value α

= 59.71°.
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Table 3.2.: Fit parameters for rhombohedral GeSb2Te4 model. The fit has been performed

with different ranges. Listed are the lattice constant a, rhombohedral angle α, dis-

placement parameter ADP and Rw value of the fit. Compared to GeTe, the values are

more dependent on the fitting range. Even though the errors are larger as well, the

differences are significant with respect to the errors. Fitting the long range order leads

to values in agreement with literature [17]. The rhombohedral angle of the short to

medium range order fit (r = 2.5 - 6 Å) shows a significant deviation from 60°, thus the

short to medium range order shows a rhombohedral distortion that averages out in the

long range.

r-range 2.5 - 20.7 Å 2.5 - 6 Å 6 - 20.7 Å

lattice constant a (Å) 4.286 ± 0.013 4.360 ± 0.047 4.283 ± 0.014

angle α (°) 59.67 ± 0.28 58.83 ± 0.95 59.71 ± 0.3

ADP 0.519 ± 0.002 0.520 ± 0.002 0.518 ± 0.004

Rw 0.146 0.140 0.135
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materials. His attention was primarily focussed on the volume (or pressure) dependence

of the structure. By varying the lattice constant of a 56-atom DFT box, he showed that the

displacement of the atoms is reduced with smaller lattice constants (equivalent to higher

pressure). In addition, a displacement pattern depending on the local environment was

identified. A 3+3-type splitting (corresponding to a [1 1 1]-type distortion) was found to

be likely if the fourth shell contained no vacancies (see figure 3.15), that is to say if the

surrounding is GeTe-like, the displacement pattern is also GeTe-like (along [1 1 1]).

To test the validity of this displacement model, the coordinates of a 56 atom DFT box

taken from Lencer [14] were put into the structural model for GeSb2Te4 in PDFgui. The only

parameter fitted was the box dimension, as DFT overestimates bond length when using

GGA potentials, see figure 3.14. The agreement of the fit was rather uncorrelated to the

fitting range. The Rw values differed only between Rw = 0.126 for the short to medium range

and Rw = 0.118 for the long range order. In figure 3.14, the short range order shows a better

agreement to the fit than the rhombohedral model does.

With this model the differences in peak shape for the nearest neighbor in the G(r) between

GeTe and GeSb2Te4 seen in figure 3.11 can be understood. A clear double peak is visible

in GeTe, corresponding to the 3+3-type splitting, whereas one broad peak is observed for

GeSb2Te4. The latter consists of both 3+3-type splitting and a further displacement pattern

in the vicinity of the vacancies.
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Figure 3.14.: Comparison of DFT data with the experimental data. The relative coordinates

of the 56 atom box remained unchanged, only the box size was fitted (DFT calcu-

lations from Lencer [14]). With a value Rw = 0.124, the agreement between the

fit and the data is better than for the simple rhombohedral model. Particularly the

model for the short range order appears improved. The displacement pattern of the

DFT calculation is displayed in 3.15.
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Figure E.�.: Continuation of Fig. E.�. �e rotated three digit-numbers describe the local neighbor-
hood. XY Z means there are X Ge-, Y Sb-atoms and Z vacancies in the fourth shell. Clearly, the
occurrence of a �+�+�-type split (corresponding to a [111]-type distortion) is very likely if Z = 0.
�e local distortion pattern is mostly independent of the volume.

E-57

Figure 3.15.: Displacement pattern in GeSb2Te4 calculated by DFT. Bond length distribu-

tion plotted for Ge (blue), Sb (green), and Te (orange) for a 56-cell of GeSb2Te4.

Horizontal lines indicate the respective unique bond lengths expected for undistorted

rocksalt structures. The three digit numbers on the x-axis describe the local environ-

ment of Ge and Sb. XYZ means there are X Ge-, Y Sb-atoms, and Z vacancies in the

fourth shell (atom behind the nearest neighbor). Lencer [14] found the occurrence

of a 3+3-type splitting (corresponding to a [1 1 1]-type distortion) to be likely if

Z = 0. The calculation was performed with a lattice constant of a = 6.107 Å. [14].
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3.7. Annealing effects on structure of GeSb2Te4

In this section, the annealing-dependent changes in the short-to-medium range order of

the rhombohedral model for GeSb2Te4 will be analyzed. Especially with respect to the

disorder-induced localization in chapter 2, it is very interesting to see which changes in

bonding might be responsible for the metal-to-insulator transition.

The pair-distribution function G(r) is plotted for the short to medium range order in figure

3.16. The differences between the annealing steps are not easily evaluated as they are so

small. One needs to keep in mind that the transition temperature from cubic to hexagonal

is at 225 °C. This transition is only visible in the small shoulder at 3.8 Å corresponding to

the shortening of the Te-Te distances across the vacancy layers that form in the hexagonal

phase. Therefore it can be concluded that the bond lengths do not change significantly on

annealing. This is inline with results gained from EXAFS measurements, where only a small

increase in bond length is observed [86].

To take a closer look at the differences in the pair-distribution function on annealing, fits

with the previously introduced rhombohedral model (see section 3.6.1) were performed

starting with the 150 °C annealed sample. In the following annealing stages, refined values

of the previous annealing step was sequentially used as input parameters. The refined

parameters in these fits were the lattice constant a, the rhombohedral angle α and the

atomic displacement parameter ADP along [1 1 1]. The evolution of the parameters and the

corresponding errors is shown in figure 3.17.

As expected from the small changes in the G(r) on annealing (Fig. 3.16), the changes of

the fit parameters are not significant, particularly if the error bars are taken into account.

Both lattice constant a and rhombohedral angle α do not change significantly or even

systematically on annealing. The correlation of the parameters for lattice constant a and

angle α reduces the significance of the change in these parameters for the 225 °C annealing

step. The atomic displacement along [1 1 1], however, is reduced continuously from ADP =

0.520 ± 0.002 to ADP = 0.512 ± 0.004 on annealing to 275°C. DFT calculations of Zhang [87]

have shown that a reduction of displacement is energetically favorable.

Further fits were performed in order to test the assumption of the annealing dependent

behavior of lattice constant angle and displacement (dashed lines in fig. 3.17). A change on

annealing can be excluded for lattice constant a and angleα as the error of the slope for both

is negligible compared to the error. The reduction of the displacement, however, has an error
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Figure 3.16.: Annealing effect on short to medium range order PDF of GeSb2Te4. The

differences between the annealing temperatures are small, so trends are difficult to

foretell. The differences between the annealing temperatures are remarkably small if

we consider the temperature of 225 °C at transition from cubic to hexagonal phase.

Obviously, the transition does not affect the short to medium range order.
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Figure 3.17.: Neutron PDF fit parameters of GeSb2Te4 on annealing. Changes on annealing

shown from top to bottom: atomic displacement along [1 1 1] ADP, lattice constant

a, and rhombohedral angle α. Both lattice constant and angle show no trend within

the error margin. The atomic displacement is distinctly reduced with increasing

annealing temperature. Linear fits to the data were performed (dashed lines) as they

serve as indication for the temperature dependance. For both a and α, the error is

larger than the slope by more than a factor of three. The slope of the fit for the

displacement ADP has an error of about 7%. In a local picture the distortion can be

seen as a displacement of the octahedral coordinated Ge/Sb atoms in such a way

to form 3 shorter and 3 longer bonds. This is consistent with the reduction of the

disorder induced localization described in chapter 2
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Table 3.3.: Linear fit parameters for annealing dependence of GeSb2Te4. Linear fits to the

data in figure 3.17 have been performed. The slope for the lattice constant and the

angle vanishes with respect to the error and confirms that these values do not change

on annealing. Nevertheless the displacement is significantly reduced on annealing: the

error on the slope is less than 10 %.

slope intercept

ADP - (6.169 ± 0.446) ·10−5 0.529 ± 0.001

lattice constant a (3.3 ± 15.4) ·10−5 4.352 ± 0.003

rhombohedral angle α (1.3 ± 4.9) ·10−3 58.34 ± 1.04

of only about 7%. We may conclude for the rhombohedral model that a reduction of atomic

displacement along [1 1 1] dominates the lowering of the disorder induced localization in

GeSb2Te4.

3.8. Summary of Crystallographic Analysis of Disorder

The crystal structure of GeTe and GeSb2Te4 were analyzed using the neutron pair-distribution

method. It is a local probing method and well suited to determine the local structure rather

than the average structure determined by normal scattering experiments.

GeTe crystallizes in a rhombohedral structure with a lattice constant a = 4.291 Å, an angle

α = 58.49° and an atomic displacement ADP = 0.529. The displacement of Ge along the [1 1 1]

direction leads to a 3+3-type splitting. Literature values for GeTe determined by coherent

scattering claim the same results. It can therefore be concluded that for GeTe the local and

the average structure are the same.

The crystal phase of GeSb2Te4 is generally assumed to be a distorted NaCl-like phase and

can be modeled successfully using a rhombohedral structure. For a rhombohedral angle of

α = 60° these two structures are the same. The local and the average structures of GeSb2Te4

differ, in contrast to GeTe: the rhombohedral distortion is larger for the short to medium

range order than for the long range order.

GeSb2Te4 also shows an atomic displacement away from the symmetry lattice sites. It
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can be modeled with a distortion along [1 1 1], but a more complex model based on DFT

calculations describes the structure better. In the DFT based model, the distortion pattern

depends on the amount of vacancies in the fourth shell around the corresponding atom.

For Ge2Sb2Te5, large displacements of Ge have already been shown by Shamoto et al.

[19] with neutron PDF measurements. These data were analyzed with PDFfit [88], the

predecessor program package of PDFfit2.

The annealing dependent changes were analyzed with respect to the disorder induced

localization in GeSb2Te4 discussed in chapter 2. It could be shown that the displacement of

Ge/Sb is reduced on annealing, which results in a reduction of disorder. As the MIT observed

in GeSb2Te4 is disorder driven, the reduction of displacement is likely to be a relevant for

the observed MIT.
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CHAPTER 4

Electrical Switching in Phase-Change Materials

In the previous chapters it has been shown that phase-change materials are an extraor-

dinary material class offering multiple chances to study interesting physical phenomena.

In the following chapter, however, the focus will lie more on application of phase-change

materials as electronic data storage. Two different aspects of storing information in a phase-

change memory cell are addressed. First, after a introduction in the basic principles of a

phase-change memory cell, a new approach of storing information with disorder encoded

GeSb2Te4 memory will be presented. Second the limitations of the switching speed in state

of the art memory cells will be tested for GeTe.

Data storage is, of course, one of the key features of a personal computer, but the demands

on the kind of storage vary for different applications. While long-term data storage is the

most important feature for applications like archiving data, for others, speed is the ultimate

challenge. For example SRAM close to the processor, speed is most important, but storage

times are needed on a µs timescale only. As speed and volatility are the two main competing

properties1 for the design of data storage, different types of storage are nowadays used for

personal computers. The aim is to combine advantages and to overcome limitations of the

different types. Any new memory class will have to find its own niche within the existing

application range. Another approach is to try to replace an existing type with a similar one

of higher speed, higher volatility, or reduced production costs.

Phase-change materials could provide [89] data retention of years [90] and speed below

100 ns [91]. They could therefore enter the memory market in between high speed but

1Energy consumption may also be important, especially for mobile devices.

83



Chapter 4: Electrical Switching in Phase-Change Materials

volatile DRAM and non-volatile but low speed Flash memory. In order to examine the

options, switching speed was tested with state-of-the-art nanometer-scaled phase-change

memory devices. In addition, possibilities of new multi-level states were explored, namely

storing multiple logical bits in one physical memory cell [92].

4.1. Working principle of phase-change memory

Phase-change memory does not store its data in a charge or magnetic state, but encoded

in a structural state. The two states are the amorphous and the crystalline state that differ

significantly in resistivity (see figure 2.3). The basic operations of a phase-change random-

access memory (PCRAM) are displayed in figure 4.1. The figure shows a two dimensional

cut through a phase-change memory cell in a bottom heater geometry [93]. The active

phase-change material is sandwiched in between a small bottom electrode and a larger top

electrode. The bottom electrode is often referred to as heater, because due to the design

of the two electrodes most of the Joule heating is within the bottom electrode and in its

vicinity. The two write operations SET/RESET are sketched in figure 4.1, top part. (1) To write

an amorphous region (RESET) into the crystalline phase-change material, a high voltage

pulse is applied, which results in a partial melting of the material. A subsequent quenching

of the molten phase into the amorphous phase leads to the so-called RESET state. (2) To

recrystallize the amorphous region (SET) and, therefore, to erase the bit, a moderate voltage

pulse has to be applied. This causes the phase-change material to heat above the glass

transition temperatures, which, in turn, leads to a crystallization of the cell (Set state). Both

RESET state (3) and SET state (4) can easily be sensed via a low voltage pulse due to their

large contrast in resistance.

Erasing the amorphous region in the SET operation is generally accepted to be the time-

limiting operation (see [2]). It is a complex step: The amorphous cell has a resistance in the

MΩ regime, and a current of a few mA is needed to heat the cell above the glass-transition

temperature. So one would expect that a voltage of kV is required to produce the necessary

temperature, in accordance with Ohms law. However, the threshold effect in amorphous

semiconductors, discovered by Ovshinsky [94] in 1968, is also involved. The threshold effect

describes a highly non-linear current-voltage dependence. On applying a voltage to the

phase-change memory cell the current rises slowly as expected by Ohms law. After reaching

the threshold voltage, the amorphous phase-change material changes from igh resistive

amorphous off-state to a low resistive amorphous on-state and the current rises significantly.
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Figure 1: Working principle of a Phase Change 
RAM cell shown in a cross section. RESET and 
SET state are written with a high (1) or a medium 
voltage pulse (2), respectively. Both can be easily 
sensed with a low pulse (3) & (4).

Figure 4.1.: Working principle of a phase-change memory cell shown in a cross section.
RESET and SET state are written with a high (1) or a medium voltage pulse (2),

respectively. Both can easily be sensed with a low pulse (3) & (4).

85



Chapter 4: Electrical Switching in Phase-Change Materials

0 . 0 0 . 5 1 . 0 1 . 50

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

T h r e s h o l d  s w i t c h

Cu
rre

nt 
I (µ

A)

V o l t a g e  U  ( V )

G e 2 S b 2 T e 5

Figure 4.2.: Threshold switch in Ge2Sb2Te5. Shown is an I-V curve of an amorphous (RESET)

bottom contact cell with Ge2Sb2Te5 as active phase-change material. For voltages

below the threshold voltage only a neglect able current flows though the cell due to

the high resistance of the amorphous off-state. After reaching the threshold voltage,

the phase-change material switches to the low resistive amorphous on-state. This

can be seen by the sudden increase in current. Due to this increase in current, the

temperature of the cell is raised above the crystallization temperature, so the cell is

crystallized (memory switch). From [3]

.
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Due to this effect, even voltage pulses with a few V can cause currents in the mA regime,

which will lead to a crystallization of the cell. The microscopic mechanism of this process is

still under scientific discussion [95–98]. A recent study has used a different geometry to show

that the threshold switch of phase-change cells is, indeed, a material-intrinsic property that

depends on the local electric field [99].

4.2. Disorder encoded multi-level storage in phase-change memory

In multi-level storage, multiple logical bits are stored within one physical memory cell. Two

states are normally used to encode the binary information 0 and 1 in one cell. In a multi-level

cell, more than two states are used to store information, for example four different cell states

to encode the information of two bits (00, 10, 10 and 11). Therefore multi-level storage offers

the possibility to increase the storage density by a factor of two, or even more, simply by

changing the logic of addressing the cells.

The GeTe phase-change memory cells discussed in the following sections show the possi-

bility of using at least four different states for encoding information. The different states

include a fully crystalline cell and three states with different sizes of the amorphous region.

Two problems arise from using different amorphous spot sizes, the instability of very small

amorphous regions, and the drift of the resistivity within the amorphous phase. The resis-

tivity of the amorphous phase drifts to higher values with increasing duration [100–102].

Therefore, after some time, the resistance of a mid-state will no longer be distinguishable

from a high-resistance state. These problems are illustrated for a bridge cell in figure 4.3,

upper part.

Figure 4.3, lower part, shows one possible way out of this dilemma. Phase-change materi-

als like GeSb2Te4 show a wide spread in resistivity within the crystalline phase. This spread

depends on the prevalent degree of disorder (chapter 2). The disorder induced localiza-

tion effect is a generic effect of all GeSbTe samples studied within this work. Therefore a

memory cell based on a the degree of disorder, as proposed here, would be very tolerant for

variations in stoichiometry. In general the precise control of the stoichiometry is essential

in the semiconductor business, as the conductivities strongly depend on the doping level.

In phase-change materials in general the properties do not depend on a stoichiometry

variation within less than 1 %. This is especially true for materials along the pseudo-binary

line between GeTe and GeSb2Te4.

If disorder in a phase-change memory cell could be controlled by using different SET
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Line-Cell with dimensions 135 x 45 x 3 nm would have resistances between 13 kΩ and 3,8 MΩ
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Figure 4.3.: Enabling multi-level PCRAM cells with a new approach. Instead of controlling

the size of the amorphous region (instability and drift problems), one can control

the resistance of the cell by the degree of disorder-induced localization. With cell

dimensions of 135 x 45 x 3 nm, four levels between 13 kΩ and 3.8 MΩ are possible.

temperatures, for example, multi-level phase-change memory cells are conceivable that do

not entail problems such as drift or instability.

4.3. Phase-change memory cell preparation

A cooperation with the former Qimonda AG, Dresden, allowed the preparation and study

of phase-change memory cells in a bottom heater geometry. The analysis was carried out

as a joint project with my colleague Gunnar Bruns [103]. Qimonda provided 300 mm base

wafers containing pre-structured cells with contact pad pairs. One of each pair is connected

to a TiN heater with a diameter of 60 nm via a buried Tungsten line (see figure 4.4 left). The

wafers were shipped to Aachen, where the subsequent preparation steps were performed.

The wafer was cleaved into single chips (see figure 4.4 center). The active phase-change
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4.3. Phase-change memory cell preparation

Figure 4.4.: PCRAM base wafer and single cell. In cooperation with Qimonda a 300 mm wafer

was prestructured and subsequently shipped to RWTH Aachen, where single chips

(center) were cleaved to finalize the PCRAM single bit cells with the active material

and the top contact (right).

material and a Ti/TiN2 top contact were deposited by sputtering. To separate top and

bottom electrode contact pads, optical lithography with subsequent lift-off was used. The

resulting L-shaped phase-change memory cell can be seen in figure 4.4 right.

After cleaving the 300 mm wafer into single chips, each containing 120 phase-change

memory cells, the processing continued in the clean-room of the 2. Institute of Physics,

RWTH Aachen. The chips were first cleaned using organic solvents (Acetone and Propanol)

in an ultra-sonic bath. Photo resist with a thickness of 1.5 µm was applied with a spin

coater. After baking the resist at 90 °C for 5 minutes, a Suss MicroTec mask aligner was

used to expose the sample to UV light (Hg discharge lamp) through a patterned lithography

mask. The exposed resist was removed in the developer bath. To ensure a good electrical

contact between the 60 nm heater bottom contact and the active phase-change material,

the heater was cleaned with Hydrofluoric acid (HF-dip). This removes any oxides that may

have developed on the TiN and passivates the surface for a short period of time. With a

narrow time window (less then 15 min) the sample was transfered into the sputtering tool

at the 1. Institute of Physics, RWTH Aachen to deposit the active phase-change material

and the Ti/TiN top electrode. The photo resist was removed with Acetone after sputtering,

2The Ti acts as an adhesion layer for the TiN.
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and the L-shaped parts seen in figure 4.4 were left over. Subsequently, the phase-change

memory cells were crystallized in a tube furnace under Argon atmosphere. Phase-change

memory cells with GeTe as the active material and with a thickness of 20 nm were processed

for this study.

Figure 4.5 shows an atomic force microscope image (AFM) of the bottom electrode heater.

A Tungsten line appears at the top, buried under Silicon-nitride and connected to the bottom

electrode pad. In the center of the image one can see an elliptical shape, which is a bit

higher than the SiN. This is the bottom electrode heater. The other structures in 4.5 result

from processing the wafer at Qimonda, Dresden. The HF-dip that was used to clean the TiN

heater slightly changed its morphology and its surrounding structures. AFM scans of heater

structures before and after the HF-dip revealed that the surrounding SiN was etched a little

deeper than the TiN heater was (scans not shown). The heater structure in figure 4.5 gives

the impression of a pillar. In fact, the heater resembles a flat hill rather than a pillar, as the

x-y scale and z-scale are different.
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4.3. Phase-change memory cell preparation

Figure 2: Atomic force microscope image (2 x 2 µm) 
of the TiN bottom contact. The contact has a size of 
57 nm by 81 nm and is about 8 nm higher than the 
surrounding SiN.

15 nm

-15 nm

81 nm

57 nm

Figure 4.5.: Atomic force microscopy image of a bottom electrode (heater) of a PCRAM
cell. The lowest metal line of the wafer (M0) reaches from top to the center. The

bottom electrode with a diameter of about 60 nm is visible in the center. The other

structures are supporting structures for the polishing process in the production of the

heater electrode.
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4.4. Pulsed Electrical Tester

The samples were measured with an electrical test setup, called Pulsed Electrical Tester

(PET). This setup was designed and built by Schlockermann [104] and Bruns [103] within

the framework of their PhD theses. The heart of the setup is a custom-designed printed

circuit board with probing needles to contact a single phase-change memory cell. It is

designed both to match the impedance of the memory cell, the oscilloscope, and the pulse

generator. The printed circuit board also amplifies the signal with a low-noise amplifier in

close proximity to the wafer. The printed circuit board was applied in combination with a

500 MHz oscilloscope and an electrical pulse generator, with shortest pulses of 1 ns plateau

and 2 ns rise and fall times. In this setup, the PET allows highly accurate measurements of

electrical cells. In addition, the setup can measure both the current through the cell and the

voltage discharged by the pulse generator.

4.5. Electrical switching in GeTe

Phase-change memory cells with GeTe as an active material were used to test the switching

speed of this material. As the SET (crystallization) process is the time-limiting process,

this was analyzed in detail. For this purpose, test pulses with different pulse lengths were

applied to a GeTe memory cell. The leading and trailing edges were kept constant at 2 ns

each. As a starting point, the GeTe phase-change memory cell was re-initialized before each

test pulse into a well-defined (high resistive) RESET state. The resistance was chosen so

as to secure equal starting conditions for every test pulse. Figure 4.6 shows the results of

these measurements. For all pulse lengths, a SET operation to cell resistances < 15 kΩwas

successful for currents between 400 µA and 1.1 mA. Only long pulses (16 ns) were able to

reach the lowest cell resistances of 3 kΩ. With currents exceeding 1.2 mA, the resistance was

again in the MΩ range due to a re-amorphization of the cell. Long pulses heated the sample

above the melting temperature and the short trailing edge resulted in a quenching of the

sample to the amorphous state.

An observation not depicted in fig. 4.6 is that the pulse current does not only depend

on the pulse voltage but also on the pulse length. Higher voltages were needed for shorter

pulses to reach the SET current for crystallizing the cell. It would not have been possible

to make the plot in figure 4.6 without the custom-made setup that allowed to measure the

current during the pulse. This plot highlights the importance of the current. Furthermore,
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Nanosecond switching in GeTe phase change memory cells
G. Bruns,1 P. Merkelbach,1 C. Schlockermann,1 M. Salinga,1 M. Wuttig,1,a! T. D. Happ,2

J. B. Philipp,3 and M. Kund3
1I. Physikalisches Institut (IA), RWTH Aachen University, 52056 Aachen, Germany
2Qimonda Dresden GmbH &. Co. OHG, Königsbrücker Strasse 180, 01099 Dresden, Germany
3Qimonda AG, Bibergerstr. 93, 82008 Unterhaching, Germany

!Received 4 February 2009; accepted 9 July 2009; published online 28 July 2009"

The electrical switching behavior of GeTe-based phase change memory devices is characterized by
time resolved experiments. SET pulses with a duration of less than 16 ns are shown to crystallize
the material. Depending on the resistance of the RESET state, the minimum SET pulse duration can
even be reduced down to 1 ns. This finding is attributed to the increasing impact of crystal growth
upon decreasing switchable volume. Using GeTe or materials with similar crystal growth velocities,
hence promises nonvolatile phase change memories with dynamic random access memorylike
switching speeds. © 2009 American Institute of Physics. #DOI: 10.1063/1.3191670$

Phase change materials possess a unique portfolio of
properties that holds considerable promise for applications in
data storage.1 They can be rapidly and reversibly switched
between the amorphous and crystalline states, which differ
substantially in their properties. While the principle of a
phase change random access memory !PCRAM" was already
demonstrated in the 1960s,2 only in the last two decades
materials such as Ge2Sb2Te5 !Ref. 3" and Ag and In doped
Sb2Te 4 were discovered that crystallized rapidly enough to
enable competitive solutions for rewritable optical data stor-
age. Recently, however, the main focus of attention has
shifted to the use of phase change materials in nonvolatile
electronic memories. This application benefits from the re-
sistance contrast of up to five orders of magnitude between
the amorphous and crystalline state.5 The large contrast
promises to facilitate the development of multilevel storage
concepts.6 Other attractive attributes include high switching
speed, flash memorylike retention, and superior endurance.
Hence there is a significant interest to develop a nonvolatile
memory based on this material class. One of the crucial char-
acteristics is the switching speed between the two distinct
resistance states. Crystallization of the amorphous regions is
the slowest process and hence will determine the maximum
speed. In recent years a number of authors have reported
crystallization times of less than 60 ns.7–9 This transforma-
tion time is already much faster than the write speed of about
10 !s for flash, presently the dominant solution for nonvola-
tile memory applications. Attractive market opportunities
would arise, however, if nonvolatile memories could be
developed that reach dynamic random access memory
!DRAM"-like switching speeds of around 10 ns.

In this report we present data for GeTe that demonstrate
such speeds and provide a high resistance contrast. The de-
termination of such short crystallization times puts severe
constraints on the experimental setup. Hence, for a reliable
exploration of the speed limits of PCRAMs a high frequency
impedance matched setup is crucial. For this analysis, a fast
pulse generator and oscilloscope are combined with a custom
made contact board including a low noise amplifier in close
proximity to the wafer. The pulse generator allows pulses

down to a plateau length of 1 ns with rise/fall times of 2 ns.
Voltage pulses with a plateau length between 1 and 128 ns
were applied to individual phase change memory cells in the
classical bottom heater geometry.10 A titanium nitride heater
with a diameter of 60 nm is embedded in an isolating silicon
nitride layer and covered by a 20 nm thick GeTe layer de-
posited from a stoichiometric target by dc magnetron sput-
tering. The resulting film composition was determined to
Ge53Te47 by laser ablation inductively coupled plasma mass
spectrometry !ICP-MS". Subsequently, a 3 nm titanium ad-
hesion layer and a 20 nm thick TiN top electrode layer have
been sputter-deposited and patterned by a lift-off process.
Finally the phase change material was crystallized in argon
atmosphere at 250 °C resulting in a cell resistance of ap-
proximately 3 k".

The switching properties of several cells were electri-
cally characterized using dynamic stimulation. In Fig. 1, the
typical R-I switching curves for cell resistance versus pulse
current are presented for different pulse lengths in the range
of 1–16 ns !defined as the time between reaching and leaving
90% of the pulse maximum". For all pulse lengths down to 1
ns, a successful set operation to cell resistances #15 k" is
possible for currents between 400 !A and 1.1 mA. How-
ever, the lowest cell resistance of 3 k" is only reached with
the longer 16 ns pulses. For currents exceeding 1.2 mA, the
highly resistive reset state is recovered.

a"Electronic mail: wuttig@physik.rwth-aachen.de.
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FIG. 1. Cell resistance vs pulse current for applied reset and set pulses in the
range from 1 to 16 ns.
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Figure 4.6.: SET window for switching GeTe. Cell resistance vs. pulse current for test pulses

applied between 1 and 16 ns. All pulse lengths successfully SET and RESET the cell,

while the minimum resistance was only reached for longer pulses [105].

figure 4.6 allows to derive a dependence of the RESET resistance on the pulse current for

the 16 ns pulse. RESET resistances between 2 and 7 MΩ are possible with currents between

1.2 mA and 1.5 mA. Therefore multi-level storages with at least four memory states (2 bit)

within one cell are conceivable.

A two-dimensional scan of pulse height (voltage) and pulse length was performed in order

to investigate the parameters for a successful SET operation of GeTe in detail. Figure 4.7

shows the outcome of this test. Plotted is the plateau height (voltage) vs. the pulse length

and in color code the resistance after the pulse. The initial high resistance in the MΩ range

is not changed for low pulse heights or very short pulses. Pulses below a voltage of about 1 V

do not change the cell state, because such pulses do not exceed the threshold voltage, and

current flows are negligible. Pulses with voltages higher than 1 V and longer than 8 ns lead

to a crystallization (SET) of the cell. This becomes visible if the resistance drops down to the

kΩ range. Pulses of 1.6 V and above re-amorphized the cell thus leading to resistances in
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Figure 3: Cell resistance after application of SET 
pulses with different amplitude and length, each 
starting from the amorphous RESET state.
The color of each data point represents the cell 
resistance after the test pulse.
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Figure 4.7.: Cell resistance after application of SET pulses with different amplitude and
length. Before each pulse, the cell was re-initialized into a well-defined amorphous

RESET state of 6 MΩ. Afterwards, the test pulse was applied as indicated by voltage

and length. The color of each data point represents the cell resistance after the test

pulse [105].

the MΩ range. In order to ensure a uniform and reproducible initial state before each test

pulse, the cell was fully SET (3 kΩ) and subsequently RESET to the amorphous state with a

resistance of 6 MΩ.

These extremely high switching speeds of 1-5 ns are especially remarkable within the

context of earlier laser-induced switching experiments. Recrystallization speeds for GeTe

were reported around 30 ns [106, 107]. To set these different results into the right perspective,

a closer look at the crystallization mechanism is needed. In general, the recrystallization pro-

cess is considered as a thermal process proceeding once a material is heated sufficiently long

to elevated temperatures. Hence, nucleation and growth rates should be similar both for

laser and current induced experiments. The observed difference in the experiments could

therefore have its origin in a size effect. For laser experiments, the amorphous spots are typi-

cally around 1 µm in size. Here the amorphous region is dominated by the heater size, thus
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20-60 nm. Phase-change materials are generally divided into different classes depending on

their recrystallization mechanism [107], either growth-dominated or nucleation-dominated.

In growth-dominated materials, the crystalline phase develops from the crystalline interface

around the amorphous spot in the crystalline surrounding (mark). Recrystallization is gov-

erned by the growth of the crystalline phase. In contrast, nucleation-dominated materials

form many different crystalline nuclei within the amorphous region. Laser experiments

have looked for a dependency between the mark size of the amorphous region and the

recrystallization speed in order to distinguish the two classes. Indeed, growth-dominated

materials show a dependency, whereas nucleation-dominated materials show an indepen-

dent recrystallization speed. It is possible that the domination of crystal growth from the

crystalline rim causes the high crystallization speeds observed in the electrical cells3. If the

switching time is dominated by the growth from the crystalline rim, this would lead to a

inverse proportionality of the switching time and the diameter of the amorphous region. A

larger amorphous diameter of the switchable volume will lead to an increase of the RESET

resistance. To validate this hypothesis the SET speed was studied in dependence of the

initial amorphous RESET state. The different levels of the RESET state are attributed to

different sizes of the amorphous volume within the cell.

Figure 4.8 shows a systematic analysis of the parameters for the SET operation for different

initial resistances. The bottom row shows the cell resistance after a test pulse as a function of

the applied voltage, the middle row shows the same data as a function of the pulse current,

whereas the top row indicates the initial resistance before each test pulse. A sketch of a two

dimensional cut through the cell (top of figure 4.8) also indicates the assumed initial state

of the cell. For this sketch, it was assumed that the initial states with lower resistance are

caused by a smaller amorphous region. Figure 4.8 depicts a dependency of the SET speed

on the initial resistance, as the initial state of 2 MΩ can be recrystallized with pulses as low

as 1 ns. For the initial state of 6 MΩ the minimum pulse length for a SET operation increases

to 16 ns. This supports the hypothesis of a growth-dominated recrystallization mechanism.

Moreover, a clear trend of the threshold voltage becomes apparent. This trend can be seen

in the pulse current plot of figure 4.8 in the increasing region that is not accessible at low

current values with an increasing initial resistance. In the voltage plots of figure 4.8 the

trend is visible in the increasing voltage that is needed to crystallize the increasing initial

resistance. This supports the assumption of an increase of the amorphous volume for

3The TiN heater is an second interface to the amorphous region, which could facilitate crystallization
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higher initial RESET states, as the threshold voltage is assumed to be a field effect [99]. An

almost constant melting current of about 1.2 mA arises from the current plot and leads to

re-amorphization. The voltage plot for short pulse lengths shows that higher voltages are

needed to generate these currents. This dependence of the pulse current for short pulses

has already been discussed for figure 4.6 and is confirmed here.

Growth-dominated materials in phase-change electrical cells lead to an increase of SET

speed. This has been reported previously for Ge2Sb2Te5 [108]. For GeTe, however, studies

of laser-recrystallization of marks with µm sizes have observed a nucleation-dominated

behavior [109]. This implies that the recrystallization mechanism can change with the size

of the amorphous spot. This is plausible for 2 reasons. Firstly, with decreasing volume the

number of nuclei needed to form within the amorphous region in order to crystallize it

decreases and secondly, the interface-to-volume ratio increases.
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4.5. Electrical switching in GeTe

Figure 4: The crystallization behavior of GeTe was 
tested for four different RESET states. (Same color 
code as in Fig. 3).
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Figure 4.8.: Change of SET speed with initial RESET resistance. The crystallization behavior

of GeTe was tested for four different RESET states. In the top part schematic cross

sections of the initial state of the cell are displayed. The initial RESET states vary

from 2 to 6 MΩ, which is attributed to different sizes of the amorphous region within

the cell. The middle and the bottom part of the figure show the resistance after the

test pulse for different pulse lengths. In the middle part these values are plotted for

the current during the pulse, while for the bottom part the applied voltage is used.

The pulse length needed to SET the memory cell is at 1 ns for the cell with a low

initial RESET state, but increases with increasing initial resistances to values of 16 ns

for the intial state of 6 mΩ. (Color code as in Fig. 4.7) [105].
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Chapter 4: Electrical Switching in Phase-Change Materials

4.6. Summary of electrical switching in phase-change materials

State-of-the-art phase-change memory cells with GeTe as an active material were produced

in cooperation with Qimonda. With these 60 nm cells, we were able to demonstrate for the

first time that switching speeds of 1-5 ns are possible with phase-change memory [105].

The study of cells with different initial RESET resistances showed an increase of switching

speed for lower RESET state resistances. The threshold voltage showed lower values for

the decreased RESET resistance. This allows the assumption that the variation in RESET

resistance results from different sizes of the amorphous region. Therefore GeTe, assumed

as a nucleation dominated material in laser experiments, shows signatures of a growth

dominated material in our study. It was observed that the crystallization mechanism of

GeTe changes on decreasing the switchable volume.

With respect to multi-level storage a new approach is proposed: It is based only on the

crystalline phase and its resistivity change due to disorder induced localization. This tackles

the problem of the non-stable resistivity of the amorphous phase over time.

We may conclude that phase-change materials show a path towards a non-volatile mem-

ory with dynamic random-access (DRAM) switching speeds.
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CHAPTER 5

Summary and Outlook

In this study phase-change materials have been analyzed with respect to the resistance of

the crystalline phase, the crystallographic origin of the resistance and their suitability as a

universal memory.

In chapter 2, phase-change materials on the pseudo binary line such as GeSb2Te4 were

shown to have a strong annealing dependence of the resistivity in the crystalline phase. This

leads to a reduction of the resistivity of more than 3 orders of magnitude with increasing

annealing temperature. Accompanied by this change, the electrical transport mechanism

changes from non-metallic to metallic behavior. Low temperature as well as high temper-

ature measurements reveal that this metal-to-insulator transition (MIT) is preserved in a

range from 5 K to 600 K. Metal-to-insulator transitions are often caused by an increase in

carrier concentration, which leads to an electron correlation based change in the conduc-

tion mechanism. The concept of the Mott transition has high predictive power for a variety

of materials in all conductivity ranges. However, for the phase-change materials studied

here the prediction of the critical carrier concentration by the Mott criterion fails. Hall

measurements have revealed that the carrier concentration varies only little on annealing,

while the carrier mobility increases drastically at the same time. Phase-change materials

on the other hand show a high degree of disorder in the crystalline phase. Crystallization

in a distorted NaCl-like phase with Te on one sublattice and Ge, Sb, and empty lattice sites

on the other sublattice opens up multiple channels for disorder. The MIT observed in

GeSbTe pseudo binary materials is characterized by a disorder induced localization of the

charge carriers. This finding of a disorder induced MIT opens up new possibilities to study

disordered systems both experimentally and theoretically. One could try to enhance the
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disorder within a metallic phase-change material like GeTe or metallic GeSb2Te4 via ion

bombardment to turn it into an insulator.

In chapter 3, the structural origin of the metal-to-insulator transition was analyzed. The

origin was not found in a change of the long range order, as in materials like VO2 [41].

Therefore the analysis focused on changes in the short to medium range order. To do so,

neutron pair distribution technique (PDF) was chosen. Two materials were characterized:

GeTe and GeSb2Te4. GeTe shows no strong annealing dependence of the resistivity and has

metallic properties for all annealing temperatures. It crystallizes in a rhombohedral structure

with a static displacement of Ge along the [1 1 1] direction. This structure is confirmed by

the neutron PDF measurements. The rhombohedral model holds both qualitatively and

quantitatively for fitting ranges in the short, medium, and long range order. A 3+3-type

splitting of the nearest neighbor can be seen from the data, as expected for the displacement

along the [1 1 1] direction.

For GeSb2Te4, two different aspects were analyzed in detail. The structure of GeSb2Te4

annealed just above the crystallization temperature was investigated first. For these anneal-

ing temperatures GeSb2Te4 is non-metallic. Long range order studies have proposed an

NaCl-like cubic structure for this phase. The neutron PDF data evaluation, however, draws

a different picture. For the long range data, the literature values were reproduced, but the

short to medium range data differ. Especially a rhombohedral distortion was found for

fitting distances below 6 Å. This distortion averages out in the long range.

GeSb2Te4 also shows a displacement pattern along the [1 1 1] direction, but it is not as

clear as for GeTe. DFT studies have found a correlation between the local atomic arrange-

ment and the local displacement pattern. It was found that a 3+3-type splitting of Ge or Sb is

likely if there are no vacancies in the fourth shell around it. From the coordinates of this DFT

calculation the corresponding PDF was calculated. The data match the calculations very

good, indicating that such a displacement pattern is a good approximation. For GeSb2Te4,

the annealing dependencies of the structural parameters lattice constant, rhombohedral

angleα, and atomic displacement parameter ADP were investigated for the short to medium

range order for samples annealed between 150 °C and 275 °C. On annealing, only the static

displacement along [1 1 1] drops significantly, whereas the lattice constant and the rhom-

bohedral angle remain constant. The reduced displacement leads to a better formation

of resonant bonding and enhances the mobility of the charge carriers. This reduction in

displacement is considered one key element responsible for the MIT observed in GeSb2Te4.
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DFT calculations have shown that the distortion decreases under pressure [14]. It should

therefore be possible to have a low-annealed (insulating) GeSb2Te4 sample switch between

insulating and metallic state under the influence of moderate pressure. This switching

should even be reversible.

The disorder-induced MIT inaugurates a new concept to store data within a phase-change

memory cell. It offers a solution to the problem of a resistivity of the amorphous phase

which is not stable over time. Using different degrees of disorder within the crystalline phase

is a promising mechanism. The launching of PCRAM is delayed mainly due to the unsolved

drift in the amorphous phase. This solution, using only crystalline phases, would accelerate

the development of new mobile devices with superior speed and improved battery lifetime.

In chapter 4, the possibilities to use phase-change materials as non-volatile memories

were evaluated with respect to the switching time. To this end, phase-change memory

cells with GeTe as an active material were prepared in cooperation with Qimonda. With

dimensions of 20 x 60 nm of the active material state of the art memory cells were available.

The switching time for the SET state was analyzed in detail, as it is the time limiting operation

of a PC-RAM cell. Switching times below 4 ns were found to be sufficient to operate the

cells. Further analysis of the dependency of the switching speed on the initial RESET state

shows an increase of switching speed down to 1 ns for decreasing RESET resistances. The

change in the RESET resistance is attributed to a change of the amorphous volume in the cell.

Therefore, the increasing switching speed is a sign for a growth dominated crystallization of

GeTe from the crystalline surrounding. This is an interesting result, as GeTe is categorized as

nucleation dominated from laser experiments. The analysis has shown that crystallization

kinetics can change if the relevant size of the active material changes. The switching speeds

found in GeTe are sufficiently high to be used as phase-change based memory devices.

GeTe are therefore high potential contenders for the replacement of FLASH memory and

especially of DRAM in mobile applications.
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APPENDIX A

New stoichiometric frontiers

In order to apply the existing sputter tool to a wider range of stoichiometries, co-sputtering

from two different compound targets was tested in this thesis. As a proof of principle GeTe

and Sb2Te3 were co-sputtered to see if the deposited films resemble the material properties

of a GeSbTe alloy. Therefore the existing sputtering tool was used with standard dynamic

sputtering, that means multiple substrates rotate over the plasma of the target, leading to a

coating layer by layer. In the co-sputtering geometry chosen in this work instead of from one

target, from two targets with different stoichiometries was sputtered at the same time. This

leeds to a sample with alternating layers of the compositions of the two targets. We did not

simply aim at a multi-layer of GeTe and Sb2Te3. Instead, we wished to produce an isotropic

film with both stoichiometries, intermixed as well as possible. To this end, the deposition

rates of each target were lowered by lowering the sputtering power to 10 W. This lead to

sputtering rates of 0.0497 nm/s for both materials (GeTe on Magnetron 3 and Sb2Te3 on

Magnetron 2). The sample holder does 30 revolutions per minute, therefore the single layer

of the multi-layer film will be in the order of 1 Å. With interatomic distances of about 3 Å

the ’multi-layer’ can be assumed as a well intermixed film. To calculate a ratio of the atomic

rates deposited from each target, both the mass density and the average atomic weight

had to be taken into account. The densities were determined by XRR to be 5.76 g/cm3 for

GeTe and 6.51 g/cm3 for Sb2Te3. With the average atomic weight numbers the calculated

stoichiometry is Ge2.6Sb2Te5.6. With this method samples for van der Pauw resistivity, x-ray

diffraction, x-ray reflectivity and FTIR measurements were prepared.

Figure A.1 shows the van der Pauw measurement of a 100 nm thick sample. The as

deposited amorphous sample shows a resistivity of 820 Ωcm. This value lies in between
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Figure A.1.: Temperature dependent sheet resistance of different co-sputtered GeTe-
Sb2Te3 samples. Samples prepared with GeTe-Sb2Te3 co-sputtering with 10 W

power for each target with a thickness of 100 nm. The calculated stoichiometry is

Ge2.6Sb2Te5.6, based on the single deposition rates of GeTe and Sb2Te3. The onset

of the crystallization of 158 °C is a bit higher compared to GeSb2Te4 (143 °C) or

Ge2Sb2Te5 (147 °C) [53], as expected for a material closer to GeTe. Pre-annealing at

100 °C for 12 h showed an increase of the amorphous sheet resistance, as expected.

The crystallization behavior, however, did not change.
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Figure A.2.: X-ray diffractogramm of a co-sputterd GeTe-Sb2Te3 sample. The as deposited

sample shows no sharp peaks in the diffractogram, as was to be expected for an

amorphous sample. Annealing to 170 °C and 300 °C leads to crystallization in a cubic

phase with a lattice constant of a = 6.01 Å.

the values of amorphous Ge2Sb2Te5 and GeTe with values of 170 Ωcm and 2400 Ωcm,

respectively. Heating leads to a continuous decrease of the sheet resistance, as expected for

a thermally activated semiconductor. At 158 °C the resistivity shows a steep drop due to the

onsetting crystallization. Heating to 200 °C lowers the resistivity further. The negative slope

of the resistivity (TCR) on cooling reveals non-metallic behavior. The room-temperature

value of the resistivity of ρ = 0.048 Ωcm (conductivity σ = 20.8 S/cm) is in between the

values for GeSb2Te4 annealed at 200 °C and 225 °C (see table 2.1). Pre-annealing for 12 h at

100 °C was tested for a better intermixture of the multi-layer film. It resulted in an increase

of the amorphous resistivity to 2000Ωcm, which can be attributed to the known effect of

resistance drift in the amorphous phase (see i.e. [110]). Other than that, the pre-annealed

samples show the same behavior as the as deposited.

X-ray diffraction was performed for as deposited samples as well as samples annealed to

170 °C and 300 °C for 30 minutes. The measurements were performed in gracing incidence

geometry with an incident angle of ω = 1° and Cu Kα radiation. The results are shown in

figure A.2. The as deposited samples shows no sharp diffraction peaks, thus the sample is

amorphous. For both the 170 °C and the 300 °C annealed sample diffraction peaks of cubic

phase with an lattice constant of a = 6.01 Å are visible. Interestingly for the co-sputtered
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Figure A.3.: FTIR spectra of a co-sputterd GeTe-Sb2Te3 sample The FTIR spectra show the

same features expected for a sample with a stoichiometry close to Ge1Sb2Te4. The

bandgap is lowered on crystallization, as can be seen by the dying-out of the oscillations

at lower energies due to absorption. The shortening of the oscillation periods indicates

a change in εinf which leads to a change of refractive index n. Measurement performed

by Jost [111], compare [8]

film with stoichiometry Ge2.6Sb2Te5.6 no cubic to hexagonal transition like in GeSb2Te4 or

Ge2Sb2Te5 is observed.

As a final proof FTIR measurements of the co-sputtered films with a thickness of 550

nm were performed. The results for the as deposited amorphous and an oven crystallized

sample are shown in figure A.3. From the raw data two striking differences are visible; the

interference fringes have a smaller spacing in the crystalline phase and damping of the

oszillations at lower energies. The change in spacing of the interference fringes is caused

by a change in refractive index, whereas a lowering of the band gap on crystallization

leads to the earlier die out. Evaluation of the data with respect to the value of the optical

dielectric constant ε∞ leads to values of 19 and 39 for the amorphous and the crystalline,

respectively. These values are a little bit higher than the values for Ge2Sb2Te5 (compare [67]).

The deviation might have its origin in the not exactly characterized film thickness of the

106



FTIR samples. Therefore we can conclude that the method of co-sputtering was successfully

employed to the existing phase-change sputtering tool available at the institute. This new

preparation technique was successfully employed by König [112] to preparing GeTe1-xSbx

samples for her Diploma thesis.
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APPENDIX B

Additional Plots
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Figure B.1.: Resistivity at low temperatures of GeSb2Te4 samples annealed around the
MIT. Samples annealed in the range from 250 °C to 325 °C are displayed. For an

annealing temperature of 250 °C non-metallic, i.e. a negative TCR is observed. The

resistivity of the samples annealed to high temperatures (300 °C and 325 °C) remains

metallic in the whole range. The critical boundary resistivity between metallic and

insulating behavior is valid in the whole temperature range. With no clear slope the

sample annealed to 275 °C falls right into this transition regime. (Data taken by

Volker [55].)
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Figure B.2.: Comparison of the Neutron PDF data with the number of neighbors. Plotted

are the Neutron DPF data of GeTe and GeSb2Te4, top part, and the calculated

number of neighbors around an atom, assuming an perfect NaCl structure with a

lattice constant of 6 Å. The comparison shows the nice agreement of the peak heights

in the PDF data, supporting the validity of the NaCl like model.
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