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Abstract

This thesis is concerned with changes in the behaviour of solutions to parameter-
dependent stochastic delay differential equations of the general form

(1) Y (t) = Y (t0) +

∫ t

t0

F (s, Y (s), Y (s− τ))ds+

∫ t

t0

G(s, Y (s), Y (s− τ))dW (s)

as the values of a parameter varies. This equation is often written, in the Itô
sense, in the shorthand form

(2) dY (t) = F (t, Y (t), Y (t− τ))dt+G(t, Y (t), Y (t− τ))dW (t), t ≥ t0

Since there is, in general, no closed-form solution available, one needs to consider
numerical approximations. We consider the effect on these critical parameter
values of

1. changing levels of noise,

2. the choice of approximation method,

3. the choice of step length.

Many of our results focus on the basic stochastic linear delay equation

dY (t) = λY (t− τ)dt + μY (t)dW (t), t ≥ 0

Y (t) = Φ(t), t ∈ [−τ, 0].(3)

and on the stochastic logistic delay equation

dY (t) = λY (t− τ)[1 + Y (t)]dt+ μY (t)dW (t), t ≥ 0

Y (t) = Φ(t), t ∈ [−τ, 0].(4)

We conclude

1. a phenomenological approach to the investigation is insufficient for our
purposes,

2. a dynamical approach based on estimates for Lyapunov exponents provides
a more reliable underlying method,

3. the inter-relationship of critical parameter values, step length and choice
of method can be established in a reliable way.

Finally, we give evidence that indicates that, as the level of noise increases, so
the apparent order of a numerical method may be reduced.
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Chapter 1

Introduction

Ordinary differential equations (ODEs) have long been used in many fields to
model mathematically real life situations. Typically, examples can be found in
modelling populations, (see [41, 16, 14]), diffusion [53], chemical kinetics [18],
wave propagation [53], drug kinetics [11], biosciences [14], bending beams [33],
electrical circuits [29], ‘predator-prey’ [18], planetary motion [18] and atomic
waste disposal [14], to name just a few. As we try to improve and extend these
models there are two natural paths that we can take. If we take the accepted
logistic model [41] for populations we can take account of the gestation period of
reproduction. To cope with this refinement we can add a delay to our ODE [28,
45, 70]

(1.1) dP (t) = rP (t)

[
1 − P (t)

E

]
dt

to produce the delay differential equation (DDE)

(1.2) dP (t) = rP (t)

[
1 − P (t− τ)

E

]
dt

where τ is our delay or gestation period, E is the equilibrium population level
and r is a constant depending upon proportionate birth and death rates. The
deterministic equation needs an initial population value, P0, but our delay equa-
tion needs an initial function defined on an interval of length τ . Most commonly,
either [−τ, 0] or [0, τ ] is used.

Our second path is to consider perturbations to our equations caused by
random changes in the system. For instance we could just add a small random
perturbation μdW , usually referred to by the term “noise”(see [73]), to equation
(1.1) to give the equation

(1.3) dP (t) = rP (t)

[
1 − P (t)

E

]
dt+ μdW.
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Deterministic Stochastic
Scalar ODEs Scalar SODEs

Instantaneous Finite-dimensional; Infinite-dimensional;
response Solution depends Solution depends on initial value;

on initial value; Solution is a stochastic process;
Scalar DDEs Scalar SDDEs

Delayed Infinite-dimensional Infinite-dimensional;
response Solution depends Solution depends on initial function;

on initial function; Solution is a stochastic process;

Table 1.1: Solution spaces of types of differential equations

The term dW is frequently taken as an increment of a Brownian motion path,
and both dW and Brownian motion will be discussed fully in chapter 3. We note
that in the equation (1.3) the noise term does not include the dependent variable
P , and hence the equation is referred to as a stochastic differential equation
(SODE) with additive noise. However, it may be more natural to consider our
extension from equation (1.1) by looking at the proportionate population change
dP (t)/P (t) and adding our stochastic term to this quantity. This gives us

dP (t)

P (t)
= r

[
1 − P (t)

E

]
dt

which now becomes

dP (t)

P (t)
= r

[
1 − P (t)

E

]
dt+ μdW.

Multiplying by P (t) gives us the following SODE with multiplicative noise

(1.4) dP (t) = rP (t)

[
1 − P (t)

E

]
dt+ μP (t)dW.

This seems the more natural approach, and we will only consider equations with
multiplicative noise in this thesis.

In this thesis we will be taking both of these paths together and consider
stochastic delay differential equations (SDDEs). SDDEs can be approached ei-
ther as SODEs with added delay or DDEs with noise [5]. We will take the second
approach as work has already been published on bifurcations in DDEs. The table
in [5] neatly sums up the solution spaces of the four types of differential equation
and it is repeated here as table 1.1.

DDEs have infinite-dimensional solution space as a result of the infinite num-
ber of values of the initial functions and SODEs have infinite-dimensional solution
space as a result of the infinite number of stochastic trajectories available. As
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a consequence, a SDDE has both of these conditions, “increasing the scope of
interesting bifurcation behaviour”, [5]. It is bifurcations in SDDEs, and how they
are perturbed by numerical methods of solution that is the main interest of this
thesis.

1.1 ODEs and bifurcations

A general first order ODE is an equation of the form

(1.5) y′(t) = f(t, y(t)), y(t0) = y0

1.1.1 Existence and uniqueness of solutions

There are a number of theorems concerning the existence and uniqueness of such
equations, see [11, 14, 22, 28, 76]. We quote a typical theorem, taken from [23],
with conditions on the function f(t, y(t)):

Theorem 1.1.1 Assume the following conditions are satisfied

1. The function f(t, y) is continuous on the set D : |t− t0| ≤ a, |y− yo| ≤ b.

2. f(t, y) satisfies the Lipschitz condition with respect to y
|f(t, y1) − f(t, y2)| ≤ L|y1 − y2|.

Then, there exists a unique solution y = y(t) of equation (1.5). This solution is
defined on the interval

|t− t0| ≤ δ = min{a, b
M

}
where M = sup|f(t, y)|, (t, y) ∈ D.
Moreover, the solution is the uniform limit on |t − t0| ≤ δ of the sequence of
functions {yn(t)}, where y0(t) = y0 and

yn(t) = y0 +

∫ t

t0

f(s, yn−1(s))ds, n = 1, 2, . . .

1.1.2 Stability

There are various descriptions of stability. As this thesis is not primarily dealing
with ODEs we will only give some informal ideas at this stage, but see [11, 15,
23, 47] for full details. If we introduce small changes in the initial value and/or
the parameters of the equation (1.5) then we say the solution is

1. relatively stable if the percentage change in the solution remains bounded,
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2. relatively asymptotically stable if the percentage change in the solution
tends to zero,

3. stable if the actual change in the solution remains bounded,

4. asymptotically stable if the actual change in the solution tends to zero.

1.1.3 Bifurcations in ODEs

The main aim of this thesis is to investigate the relationships between parameter
values at changes in the behaviour of numerical solutions to stochastic delay
differential equations. In particular we will look mostly at the linear equation,
but we will make reference to the logistic equation. We will start in this chapter
by introducing the concept of bifurcations, showing simple examples with the
linear ODE. We will also demonstrate that the basic numerical ϑ-methods do
not always have the same parameter values at bifurcations as predicted by the
theory. Consider the linear ODE

(1.6) y′(t) = λy(t), y(t0) = A

This equation has solution
y(t) = Aeλt

This solution bifurcates at �(λ) = 0 as

y(t) −→
⎧⎨
⎩

0, �(λ) < 0
oscillates, �(λ) = 0
is unbounded, �(λ) > 0

For convergence to the stable solution we require a value of λ in the negative
� half plane. Figure 1.1 demonstrates this bifurcation at λ = 0.

1.2 Numerical methods

Numerical methods are considered fully in [59, 56, 47]. Equations of the form

(1.7) y′(t) = f(t, y(t)) t ∈ [t0, T ]

will not, in general, have explicit solutions. We will more often than not need to
find an approximation to the exact solution using a numerical method.
Brugnano and Trigiante (in [15]) state that we need the following three steps:

1. construct a mesh {ti}N
i=0 in the interval [t0, T ],

2. replace the continuous problem by a discrete one, described on the discrete
set (grid points) {ti}N

i=0,

4
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Figure 1.1: Bifurcation of the solution to dy
dt

= λy, y(0) = 10, at λ = 0.
Top curve λ = 0.1 : Middle curve λ = 0 : Bottom curve λ = −0.1.

3. solve the discrete problem.

The most simple grid points are ti = t0 + ih, i = 1, 2, . . .N , where h = T−t0
N

is the constant increment between consecutive grid points, called the step size.
“An easy to understand and implement method is the Euler method described

by Euler in 1768”, [47]. In this method we replace y′(t) in equation (1.7) at t = ti
by the simple approximation yi+1−yi

h
and hence we have

yi+1 − yi

h
= f(ti, y(ti)) = f(ti, yi).

Hence we have the recurrence formula

yi+1 = yi + hf(ti, yi)

for y(t) at all of the grid points. Iserles [56] states “the method can easily be
extended to cater for variable step sizes as follows:

yi+1 = yi + hif(ti, yi) ”

How good is this approximation? We will discuss this question during this sec-
tion, where we will also look at two types of numerical schemes, linear multistep
formulae (LMF) and Runge-Kutta methods (RK).

1.2.1 Linear multistep formulae

Iserles [56] writes a general s-step method for equation (1.7) in the form

(1.8)
s∑

m=0

amyi+m = h
s∑

m=0

bmf(ti+m, yi+m), i = 0, 1, . . . , N
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Iserles [56] also writes that the method can be characterised in terms of the
polynomials

(1.9) ρ(z) =

s∑
m=0

amz
m σ(z) =

s∑
m=0

bmz
m

Clearly the Euler method classifies as a 1-step LMF since we can write it as

yi+1 − yi = h[f(ti, yi)] = h[0.f(ti+1, yi+1) + 1.f(ti, yi)],

giving ρ(z) = z − 1, σ(z) = 1. Hairer et al [47] quote the implicit 2-step
Adams-Moulton formula as:

yi+2 − yi+1 = h

[
5

12
f(ti+2, yi+2) +

2

3
f(ti+1, yi+1) − 1

12
f(ti, yi)

]
,

giving ρ(z) = z2 − z, σ(z) = 5
12
z2 + 2

3
z − 1

12
. We note that with this scheme

we need to obtain a value for y1 in addition to our initial value y0 in order to
initiate the recurrence for y2, . . . , yN .

Brugnano and Trigiante [15] give the conditions for an LMF to be of order
at least 1, (see the following definition on order). These are usually called the
consistency conditions and can be written in the form

ρ(1) = 0, ρ′(1) = σ(1) (see [15]).

It is easy to check that both pairs of characteristic equations for the two methods
given above satisfy the condition and so both have order of at least 1. We will
see below that we can justify a higher order for the Adams-Moulton LMF.

Definition (2.3 in [47]).
An s-step LMF is said to be of order p if the local error, y(ti) − yi, is O(hp+1)
for all sufficiently regular differential equations.

Theorem (2.4 in [47]).
An s-step LMF is of order p if and only if

1.
s∑

m=0

am = 0 and

2.
s∑

m=0

amm
q = q

s∑
m=0

bmm
q−1 for q = 1, 2, . . . , p

It is easy to verify that the coefficients of the Euler method in LMF format
satisfy these conditions for q = 1, but not for q = 2, confirming the method is of
order 1. We can also confirm that the implicit 2-step Adams-Moulton method’s
coefficients satisfy the conditions for q = 1, 2, 3 but not for q = 4, confirming
that this method is of order 3. At this point we note that we will be referring
to this Adams-Moulton LMF, and in particular its order, in chapter 4. Further
work on this topic can be found in [18, 59, 72].
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1.2.2 Runge-Kutta methods

To generate LMFs we used a numerical approximation for the derivative on the
left hand side of equation (1.7). An alternative is to find a numerical approxi-
mation for the integral on the right hand side using quadrature formulae. For
instance, if we integrate by the mid point method we get

yi+1 = yi + hf(ti +
1

2
h,

1

2
(yi+1 + yi)).

“This gives a simple second order implicit mid point rule and a special case of
the Runge-Kutta method”, [56]. Runge-Kutta methods are described in some
detail in [56, 47]. We will complete this section by listing the steps of a typical
RK method. We will take Heun’s order 3 explicit RK method listed in [47].

ki1 = f(ti, yi),

ki2 = f(ti +
1

3
h, yi +

1

3
ki1),

ki3 = f(ti +
2

3
h, yi +

2

3
ki2),

yi+1 = yi + h(
1

4
ki1 +

3

4
ki3).

1.2.3 Summary

For this thesis we will be using the ϑ-methods, (see [56]). These methods are
both 1-step LMF and RK methods [56, 47], and so make the obvious prototypes
for our research.

1.2.4 ϑ-methods

The ϑ-methods applied to equation (1.5) produce the following recurrence equa-
tions

yn+1 = yn + (1 − ϑ)hfn + ϑhfn+1

y(0) = y0

For equation (1.6) these reduce to

yn+1 = yn + (1 − ϑ)hλyn + ϑhλyn+1

y(0) = A,

which can be written as

yn+1 =
[1 + (1 − ϑ)hλ]

[1 − ϑhλ]
yn

y(0) = A,
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which finally gives us the numerical solution

(1.10) yn =

[
1 + (1 − ϑ)hλ

1 − ϑhλ

]n

A.

We can now take the three methods with ϑ = 0, 0.5 and 1, to investigate
these solutions.

Question: Do the ϑ-methods preserve the bifurcation value of λ = 0 for the
solutions to equation (1.6)?

1.2.5 Forward Euler, ϑ = 0

The recurrence equation reduces to

yn = [1 + hλ]nA,

For stability we need |1 + hλ| < 1, so the region of stability needs hλ to be
contained in the unit circle, centre z = −1, of the complex plane. This is in
contrast to the theoretic values, which require λ to be in the negative � half
plane. Figure 1.2 shows the difference between the theoretical and forward Euler
stability regions. There is a large area not hatched in the negative half plane
where the forward Euler method should, but does not, converge to the theoretical
stable y = 0 solution.

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

ℜ

ℑ

Figure 1.2: Stability region for hλ:
Theoretical, left hand half plane (shaded);
forward Euler, unit circle ( cross hatch)
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1.2.6 Backward Euler, ϑ = 1

The recurrence equation reduces to

yn =
A

[1 − hλ]n
,

For stability we need |1 − hλ| > 1, so the region of stability needs hλ to
be outside the unit circle, centre z = 1, of the complex plane. This is again in
contrast to the theoretic values, as shown in figure 1.3, where there is a large area
hatched in the real half plane showing the backward Euler method incorrectly
converging to the stable solution of y = 0.

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

ℜ

ℑ

Figure 1.3: Stability region for hλ:
Theoretical, left hand half plane (darker shaded region);
backward Euler, outside unit circle (all shaded region)

1.2.7 Trapezium, ϑ = 0.5

The recurrence equation reduces to

yn =

[
1 + 1

2
hλ

1 − 1
2
hλ

]n

A

For stability we need
∣∣2+hλ
2−hλ

∣∣ < 1, so the region of stability needs �(hλ) < 0,
which does correspond to the theoretical negative � half plane, as h > 0.

1.2.8 Graphical comparisons

We have shown that even with the elementary equation (1.6) the basic numerical
methods do not necessarily reproduce the theoretical solutions.
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Figure 1.4: Theoretical and forward Euler solutions of y′(t) = λy(t), y0 = 1
Top: λ = −10, h = 0.2, hλ = −2
Middle: λ = −6, h = 0.2, hλ = −1.2
Bottom: λ = 1, h = 0.2, hλ = 0.2

Figure 1.4 demonstrates the situation. The top figure has hλ = −2. This
value is in the negative � half plane so the theoretical solution has y → 0.
However, −2 is on the border of the unit circle, centre z = −1, and we can see
that the forward Euler method is oscillating and not reflecting the true solution.
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The middle figure has hλ = −1.2. This value is in the negative � half plane
and in unit circle, centre z = −1, so y → 0 can be seen for both the theoretical
and forward Euler graphs.

Finally, the bottom figure has hλ = 1. This value is outside of the stability
regions for both the theoretical and forward Euler solutions, and consequently
we can see y → ∞ for both solutions.

Backward Euler

We refer to figure 1.5. The top graph has hλ = −2, which is in the negative �
plane, so the theoretical solution will converge to zero. The value is also outside
the unit circle, centre z = 1, so the backward Euler method should also converge.
The graph does in fact confirm that for both solutions we have y → 0.

The middle graph has hλ = 0.2 which gives us a value in the positive � plane
and inside the relevant unit circle. As predicted by the theory in the previous
section we can see that the solutions both show y → ∞.

In the bottom diagram we have hλ = 2.001 in the positive � plane, which
theoretically should diverge. However, this value is outside the unit circle and
the diagram confirms an incorrect convergence to zero.

Trapezium rule

Figure 1.6 confirms that the theoretical and numerical method diverge or con-
verge together depending upon the sign of hλ.

1.2.9 Section summary

This section has demonstrated that the solution of the simple linear ODE un-
dergoes a bifurcation as the parameter λ passes through zero, but that the basic
ϑ-methods do not precisely replicate this phenomenon. We have included this
section at some length to demonstrate this problem as the main theme of this
thesis is to investigate the more complex situation with the linear stochastic
delay differential equation.

1.3 DDEs and bifurcations

We will just consider equations where the delay is not state dependent. These
are equations of the form

y′(t) = f(t, y(t), y(t− τ(t))) t ≥ t0,(1.11)

y(t) = φ(t) t ≤ t0.

There are many applications of DDEs, covering a wide range of models in popula-
tion [24, 70], ‘predator-prey’ [45, 58], relativity [58], feedback control [45], nuclear
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Figure 1.5: Theoretical and Backward Euler solutions of y′(t) = λy(t), y0 = 1
Top: λ = −10, h = 0.2, hλ = −2
Middle: λ = 1, h = 0.2, hλ = 0.2
Bottom: λ = 10.005, h = 0.2, hλ = 2.001

reactors [58], biosciences [4], chemotherapy [58] and ecology [58], to name just a
few.

1.3.1 Existence and uniqueness of solutions

We quote the theorem given in [12]
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Figure 1.6: Theoretical and Trapezium rule solutions of y′(t) = λy(t), y0 = 1
Top: λ = −2, h = 0.2, hλ = −0.4
Bottom: λ = 2, h = 0.2, hλ = 0.4

Theorem 1.3.1 (Local existence) Consider the equation

y′(t) = f(t, y(t), y(t− τ(t))) t ≥ t0,

y(t) = φ(t) t ≤ t0.

Let U ⊆ �m and V ⊆ �m be neighbourhoods of φ(t0) and φ(t0 − τ(t0)) respec-
tively and assume that the function f(t, u, v) is continuous with respect to t and
Lipschitz continuous with respect to u and v in [t0, t0 + h] × U × V . Moreover,
assume that the initial function φ(t) is Lipschitz continuous for t ≤ t0 and that
the delay function τ(t) ≥ 0 is continuous with respect to t.Then the equation has
a unique solution in [t0, t0 + δ) for some δ > 0 and this solution continuously
depends on the initial data.

Driver [28] proved this theorem with multiple delays. We refer to [12, 45, 48, 58]
for more comprehensive analysis of the stability of DDEs.
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1.4 Solutions of DDEs

In this section we will investigate methods for finding solutions to DDEs. In
general, analytical solutions are not obtainable, so we will restrict our work to
equations with constant delay, where it may be possible to use the method of
steps to find solutions which can be used to compare numerical solutions. We
will consider the equation

y′(t) = f(t, y(t), y(t− τ)) t ≥ t0,(1.12)

y(t) = φ(t) t0 − τ ≤ t ≤ t0

and also use the test equation

y′(t) = −3

2
y(t− 1) t ≥ 0,(1.13)

y(t) = t+
1

2
− 1 ≤ t ≤ 0

We have chosen this test equation as it is a member of the family of deterministic
equations that are examined in detail later in this thesis.

1.4.1 Method of steps

Details of this method can be found in [12, 28, 48]. We will apply the method
to equation (1.12).
Step 1. Take t ∈ [t0, t0 + τ ], so that t− τ ∈ [t0 − τ, t0]. We now have y(t− τ) =
φ(t− τ). We can now substitute into the DDE to give

y′(t) = f(t, y(t), φ(t− τ))

which is an ODE. If f(u, v, w) satisfies the conditions given earlier in theo-
rem 1.1.1 then we can solve this ODE to give y(t) = y1(t) on [t0, t0 + τ ].
Step 2. We now consider t ∈ [t0 + τ, t0 + 2τ ], so t − τ ∈ [t0, t0 + τ ], and hence
y(t− τ) = y1(t− τ) and equation (1.12) becomes

y′(t) = f(t, y(t), y1(t− τ))

which is another ODE. Under the usual conditions we can solve this equation to
give y(t) = y2(t) on t ∈ [t0 + τ, t0 + 2τ ].
Further steps. We now continue in this manner to find the solution y(t) = yn(t)
for t ∈ [t0 + (n− 1)τ, t0 + nτ ], where yn(t) is the solution of

y′(t) = f(t, y(t), yn−1(t− τ)).
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Our complete solution is

y(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1(t) t ∈ [t0, t0 + τ ],
y2(t) t ∈ [t0 + τ, t0 + 2τ ],
y3(t) t ∈ [t0 + 2τ, t0 + 3τ ],
. . .
yn(t) t ∈ [t0 + (n− 1)τ, t0 + nτ ],
. . .

The solution propogates discontinuities at the ends of each interval. However,
the solution can be shown to be smoothing as the number of steps increases.
Usually, at t0, y(t) is continuous but y′(t) is discontinuous. At t0 + τ , y(t) and
y′(t) are continuous but y′′(t) is discontinuous. This smoothing continues so
that at t0 + nτ , y(n+1)(t) is discontinuous while all of the lower derivatives are
continuous, see [58, 12].

We can now demonstrate the technique by completing the first three steps
with equation (1.13).
In the interval [0, 1], the equation becomes

y′(t) = −3

2
y(t− 1)

= −3

2
φ(t− 1)

= −3

2
(t− 1) − 3

4
y(0) = φ(0)

=
1

2
.

This can be solved to give

y1(t) = −3

4
(t− 1)2 − 3

4
t+

5

4
.

In the interval [1, 2], the equation becomes

y′(t) = −3

2
y(t− 1)

= −3

2
y1(t− 1)

=
9

8
(t− 2)2 +

9

8
(t− 1) − 15

8
y(1) = y1(1)

=
1

2
.
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This can be solved to give

y2(t) =
3

8
(t− 2)3 +

9

16
(t− 1)2 − 15

8
t +

11

4
.

In the interval [2, 3], the equation becomes

y′(t) = −3

2
y(t− 1)

= −3

2
y2(t− 1)

= − 9

16
(t− 3)3 − 27

32
(t− 2)2 +

45

16
(t− 1) − 33

8
y(2) = y2(2)

= − 7

16
.

This can be solved to give

y3(t) = − 9

64
(t− 3)4 − 9

32
(t− 2)3 +

45

32
(t− 1)2 − 33

8
t +

419

64
.

We can now check for discontinuities in our solutions.

At t = 0, φ(0) = y1(0) = 1
2
,

but φ′(0) = 1 	= y′1(0) = 3
4
. Hence there is a discontinuity at y′(0).

At t = 1, y1(1) = y2(1) = 1
2
, y′1(1) = y′2(1) = −3

4
,

but y′′1(1) = −3
2
	= y′′2(1) = −9

8
. Hence there is a discontinuity at y′′(1).

At t = 2, y2(2) = y3(2) = −7
6
, y′2(2) = y′3(2) = −3

4
, y′′2(2) = y′′3(2) = 9

8
,

but y′′′2 (2) = 9
4
	= y′′′3 (2) = 27

16
. Hence there is a discontinuity at y′′′(2).

These results are exactly as predicted in our discussion about the smoothing
of the solution.

1.4.2 Exponential solutions

For linear DDEs with constant delay we can look for solutions of the form
y(t) = Aekt, see [11, 28, 24]. Consider the equation

y′(t) = ψy(t) + λy(t− τ), t ≥ t0

y(t) = φ(t), t0 − τ ≤ t ≤ t0(1.14)

Substituting y(t) = Aekt into equation (1.14) gives

Akekt = ψAekt + λAek(t−τ)
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which simplifies to

(1.15) (k − ψ)ekτ − λ = 0.

This equation (1.15) is the characteristic equation and every root ki of this equa-
tion gives a solution to equation (1.14) in the form Aekit. In fact, the general
solution can be obtained this way as described in the following theorem.

Theorem 1.4.1 (Taken from chapter 4 in [11]).
Suppose that φ(t) is C1[t0 − τ, t0]. Let {ki} be a sequence of zeros of equa-
tion (1.15) arranged in order of decreasing real parts (or of increasing imaginary
parts or absolute values). Then

(1.16) y(t) =
∞∑
i=1

pi(t)e
kit, t ≥ t0

is the solution of equation (1.14), where pi(t) is a polynomial of degree less than
the multiplicity of the root {ki}.

The expression
∞∑
i=1

ekitpi(t) is called the quasi-polynomial.

For our test equation (1.13) the characteristic equation is

kek +
3

2
= 0
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0
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16
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Figure 1.7: Graph showing the characteristic equation kek + 3
2

= 0 has no real
roots

Figure 1.7 shows that there are no real roots to this equation. There are,
however, infinitely many complex roots, so consequently this is not a practical
method for solving our DDE. However, the approach gives useful information
about solutions to DDEs.
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1.4.3 Laplace transforms

Applying Laplace transforms to DDEs also gives us useful information about the
solutions but again we do not usually obtain explicit solutions. We will apply
the method on our test equation. We will write the Laplace transform L(y) of
y(t) as ȳ, where

ȳ =

∫ ∞

0

y(t)e−stdt

If we take Laplace transforms of y′(t) = −3
2
y(t− 1) we get∫ ∞

0

y′(t)e−stdt =

∫ ∞

0

−3

2
y(t− 1)e−stdt

sȳ − y(0) = −3

2

∫ ∞

−1

y(u)e−s(u+1)du

sȳ − 1

2
= −3

2
e−s

∫ ∞

0

y(u)e−sudu− 3

2
e−s

∫ 0

−1

y(u)e−sudu

= −3

2
e−sȳ − 3

2
e−s

∫ 0

−1

(u+
1

2
)e−sudu

(s+
3

2
e−s)ȳ =

1

2
− 3

2
e−s[− 1

2s
− 1

s2
− (

1

2s
− 1

s2
)es]

∴ ȳ =
1
2

+ 3
4s

− 3
2s2 + ( 3

4s
+ 3

2s2 )e−s

s+ 3
2
e−s

Hence we can find y(t) as a contour integal as the inverse transform

y(t) = L−1

[ 1
2

+ 3
4s

− 3
2s2 + ( 3

4s
+ 3

2s2 )e−s

s+ 3
2
e−s

]
.

Further work on Laplace transforms can be found in [11, 24, 29].

1.4.4 Numerical methods

We refer to section 4.1 in chapter 4 for the formula for several linear multistep
methods for solving DDEs numerically. However, at this point it is interesting to
compare the graphs of solutions using these methods, with different step lengths,
with the exact solution using the method of steps.

Figure 1.8 shows that the second order trapezium rule and third order Adams
Moulton rule coincide with the method of steps solution even with a step length
of 0.1. All three solutions show as the green of the final solution added in the
production of the graph. The two first order Euler methods improve considerably
as h reduces from 0.1 to 0.01.
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Figure 1.8: Graphs showing the convergence to the true solution as step length
h decreases.
Top: h = 0.1 Bottom: h = 0.01
Exact (steps solution) - black; Adams Moulton - cyan; trapezium - green; back-
ward Euler - magenta; forward Euler - red.

1.4.5 Computer packages

There are now quite a number of computer codes available for solving DDEs.
Archi, [109], written by Paul in Fortran with the support of NAG, uses the
Dormand and Prince fifth-order Runge-Kutta method. We used Archi in the
application presented in the following chapter.

Bellen and Zennaro [12] gives a comprehensive list of software,which we repeat
here with their references: CTMS [91, 92], DDE-STRIDE [83], DDVERK [85],
DELH [93], DESOL [94], DIFSUB-DDE [82], DMRODE [88, 89], DRLAG6 [84],
RADAR [86], RETARD [47] and SNDDELM [87].

DDE23 (Shampine & Thompson), [90], can be found as a code in MATLAB,
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and is used as an example on our test equation. Figure 1.9 shows the result of
running the basic DDE23 code supplied on MATLAB. Using the options facility
to reduce the step length would improve the fit, especially at the turning points
of the curve.
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Figure 1.9: Basic DDE23 solution (red) compared with exact solution (black).

1.5 Stability

We will consider the criteria for stability in this section, restricting our review
to equations with constant delay. We will use the equation

y′(t) = f(t, y(t), y(t− τ)) t ≥ 0,(1.17)

y(t) = φ(t) − τ ≤ t ≤ 0

and define stability in the usual manner, quoting from [11]

Definition (Section 11.4 in [11]). Let x(t) be a function, continuous for t > −τ ,
which satisfies the equation 1.17 for t > 0. This solution is said to be stable as
t → ∞ if, given two positive numbers t0 and ε, there exists a corresponding
positive number δ such that every continuous solution y(t) of the equation 1.17
which satisfies

(1.18) max
t0≤t≤t0+τ

|y(t) − x(t)| ≤ δ

will also satisfy

(1.19) max
t0≤t

|y(t) − x(t)| ≤ ε

The solution is said to be uniformly stable if, given ε, there exists a δ such that for
any t0 ≥ 0 and any solution y(t) which satisfies (1.18), y(t) also satisfies (1.19).

20



Definition (Section 11.4 in [11]) The solution x(t) above is said to be asymp-
totically stable if

1. it is stable;

2. for each t0 ≥ 0 there is a δ such that every solution y(t) which satisfies (1.18)
will also satisfy

(1.20) lim
t→∞

|y(t) − x(t)| = 0.

It is said to be asymptotically stable in the large if it is stable and if every
solution y(t) satisfies the relation (1.20).

If we consider the linear DDE

(1.21) y′(t) = ψy(t) + λy(t− τ)

then we get the following result

Theorem 1.5.1 : (Corollary 4.2 in [11]) A necessary and sufficient condition
for all continuous solutions of equation 1.21 to approach zero as t → ∞ is that
all the roots of its characteristic equation, ekτ (k−ψ)− λ = 0, have negative real
parts.

The method of steps for DDEs with constant delay reduces the DDE to a set
of ODEs over successive intervals of length τ . Consequently we can apply many
of the results on uniqueness and stability of ODEs to this family of DDEs.

1.6 Bifurcations in DDEs

We showed in section 1.1 that the solutions to an ODE can bifurcate. We will
show in this section that solutions of DDEs can also bifurcate at particular
parameter values. If we consider the linear equation

(1.22)
dy(t)

dt
= λy(t− 1)

we see that the solutions diverge for λ < −π
2

and converge for λ > −π
2
. Fig-

ure 1.10 clearly shows this phenomenon. The significance of the value −π
2

is
emphasised in theorem 1.6.1.We also investigate this situation in detail in chap-
ter 4.

Theorem 1.6.1 : The steady state solution to the linear delay equation

(1.23)
dY (t)

dt
= −λY (t− τ)

is stable if 0 ≤ λτ ≤ π
2
.
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Figure 1.10: Solutions with λ < −π
2
, diverging (black) and λ > −π
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, converging
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Proof: This result is central to this thesis so a proof, adapted from [70] is given
in detail.

First, we non-dimensionalise the linear equation by writing t∗ = λt and τ ∗ =
λτ . Substitution in our equation gives

(1.24)
dY

dt∗
= −Y (t∗ − τ ∗)

We look for solutions of the form Y (t∗) = Aekt∗ , where A is a constant and,
substituting in equation (1.24), the eigenvalues k are the roots of the equation

(1.25) k = −e−kτ∗

The solutions of equation (1.25) are difficult to obtain. However, we are only
interested in the solutions with �(k) < 0 which implies stability, as Y (t∗) will
decay exponentially in this case.
Now let k = v+ iω and take the modulus of (1.25) to get |k| = e−vτ∗

. If |k| → ∞
then e−vτ∗ → ∞, which requires v → −∞. Thus there must be a value v0 such
that �(k) < v0.

We now introduce z = 1
k

and define f(z) = 1 + ze−
τ∗
z .

We note that f(z) has an essential singularity at z = 0 and so, by Picard’s
theorem, f(z) = 0 has infinitely many complex roots in the neighbourhood of
z = 0. As f(z) = 0 is equivalent to equation (1.25) we see that this equation has
infinitely many roots k, with �(k) < v0.
We now take the real and imaginary parts of equation (1.25) to give

(1.26) v = −e−vτ∗
cos(ωτ ∗), ω = e−vτ∗

sin(ωτ ∗)
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and we require the range of values of τ ∗ such that v < 0. That is, we want to
find the conditions such that the upper limit of v0 on v is negative.
We take the two cases:
Case(i) k is real.
This requires ω = 0, which clearly satisfies the second part of (1.26). Substituting
into the first part of (1.26) gives us the equation v = −e−vτ∗

. For τ ∗ > 0 we can
see graphically that there are no positive roots for v to this equation.
Case(ii): ω 	= 0, so k is not real
Without loss of generality we can take ω > 0, as if ω satisfies equations (1.26)
then −ω is also a root.
Now the first part of equation (1.26) tells us that if v < 0 then ω < π

2
, since

−e−vτ∗
< 0 for all vτ ∗. We can now see that as τ ∗ increases from zero we first

get v = 0 when ωτ ∗ = π
2
. We can also see that in this case, and with v = 0, the

only relevant solution to the second part of equation (1.26) is ω = 1.
This now gives us the bifurcation situation where ω = 1 and ωτ ∗ = τ ∗ = π

2
.

Hence we have the condition for stability as 0 < τ ∗ < π
2
. returning to our original

equation (1.23) we have 0 < λτ < π
2
.

Hence the condition for the steady state solution of equation (1.23) is

(1.27) 0 < λ <
π

2τ
.

1.6.1 Numerical methods and bifurcations

In his PhD thesis [81] Wulf proved that when we apply a numerical scheme to
solve equation (1.23) the position of the apparent bifurcation value of λ is per-
turbed from the theoretical value of π

2
. Further, he showed that this perturbation

is O(hn), where h is the step length and n is the order of the numerical scheme.
In chapter 4 we review this result and confirm it phenomenologically.

1.6.2 An example

We conclude this opening chapter by looking at the characteristic equation of

(1.28)
dy(t)

dt
= λy(t− 1), see [75]

Substituting y(t) = Aekt we get

(1.29) Akekt = λAek(t−1)

which leads to

(1.30) k = λe−k

We have three situations in the case
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1. λ > 0: In this case, equation (1.30) can be shown to have exactly one
real root for k, giving a real solution for y(t). However, equation (1.30)
will have infinitely many complex roots and, as we will see below, some of
these will lead to real solutions y(t). As stated in section 1.4.2 the general
solution is made up of a combination (depending upon the initial function
φ(t)) of these solutions.

2. λ = 0: The solution is the trivial solution, k = 0, corresponding to
y(t) = A.

3. λ < 0: There are three cases

(a) λ ∈ (−e−1, 0): There are two real solutions k1, k2 of equation (1.30),
satisfying k1 < −1 < k2 < 0, together with infinitely many complex
roots.

(b) λ = −e−1: We have exact one real root, k = −1, together with the
complex roots. We note that for this value of λ if the initial function
is φ(t) = Ae−t then the solution of equation (1.28) can be expressed
explicitly as y(t) = Ae−t.

(c) λ < −e−1: For this final case it is easy to show that we have no
real solutions to equation (1.30). We only have the infinite number
of complex solutions. However, as we will show below, this does not
mean that there are no real solutions to our DDE.
Take λ = −π

2
< −e−1, which is our critical value in the bifurcation

theory. k = ±π
2
i are solutions of the characteristic equation. Hence

we have
y(t) = A cos(

π

2
t) +B sin(

π

2
t)

as a real solution of

dy(t)

dt
= −π

2
y(t− 1).
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Chapter 2

An application

In our paper [3] we looked at the progression from ODEs to DDEs in immunology
model selection, and we used computational approaches to estimate the param-
eters to establish the best choice of model. Relevant sections of our paper are
included here to demonstrate the technique:

“Abstract: One of the significant challenges in biomathematics (and other
areas of science) is to formulate meaningful mathematical models. Our problem
is to decide on a parametrized model which is, in some sense, most likely to
represent the information in a set of observed data. In this paper, we illustrate the
computational implementation of an information-theoretic approach (associated
with a maximum likelihood treatment) to modelling in immunology.

The approach is illustrated by modelling LCMV infection using a family of
models based on systems of ordinary differential and delay differential equations.
The models (which use parameters that have a scientific interpretation) are cho-
sen to fit data arising from experimental studies of virus-cytotoxic T lymphocyte
kinetics; the parametrized models that result are arranged in a hierarchy by the
computation of Akaike indices. The practical illustration is used to convey more
general insight. Because the mathematical equations that comprise the models
are solved numerically, the accuracy in the computation has a bearing on the
outcome, and we address this and other practical details in our discussion.”

The abstract refers to Akaike indices for finding the hierarchy of the models,
and we define these indices in section 2.1 below. We follow on with further
sections of the paper, to complete this chapter.

2.1 Sections from Immunology paper [3]

The paper is reproduced from Section 2.0.3
“A scoring mechanism: Given a family of models (each one with a best-fit set

of parameters), the question is how to rank them by giving each a score (thus
arriving at a hierarchy of parametrized models). The goodness of fit associated
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with parameter estimates p̃ can be characterized, when one has confidence in
the form of the model, by the size of an objective function Φ�(p̃). This is the
data-fitting approach, and here p̃ may be an approximation (however obtained)
to p̂ such that Φ�(p̂) = minp Φ�(p). Thus, one criterion by which to judge a
model may be the size of Φ�(p̃) (see [100]). However, if there is a number of
candidate models, our task is not simply to identify one with the smallest objec-
tive function but to incorporate other criteria for discriminating between models
of differing complexity. There are (information-theoretic) criteria, such as the
Akaike, Schwarz, and Takeuchi information criteria1 and generalizations related
to informational complexity of models, which depend not only upon the max-
imum likelihood estimation bias [95, 102, 110] but incorporate the number of
parameters and the number of observations in a quantitative evaluation of dif-
ferent models. Burnham and Anderson [102] review, as a natural basis for model
selection, both the concept of K-L information and maximum likelihood.

For the Akaike and the corrected Akaike criteria, the indicators are the size
of the measures μAIC and μcAIC given by

μAIC = −2 ln L(p̂) + 2(L + 1),(2.1a)

μcAIC = −2 ln L(p̂) + 2(L + 1) +
2(L + 1)(L + 2)

n − L − 2
, with n = NM,(2.1b)

respectively; see [102]. These indicators are expressed in terms of the MLE L(p̂).
There are L+1 parameters being estimated, comprising p1, p2, . . . , pL and σ, since
we currently assume that a single value σ, which we also estimate, characterizes
all the variances. The advice quoted by Burnham and Anderson in [102] is that
(2.1a) is satisfactory if n > 40(L + 1), otherwise (2.1b) is preferred by these
authors. As n→ ∞, μcAIC → μAIC .

Our interest is in the relative size of the indicators; thus (omitting technical
details) it is convenient to discard extraneous terms and employ the revised
indicators

(2.2a) μ̆AIC = n · ln(ΦΩLS(p̂)) + 2(L + 1),

(2.2b) μ̆cAIC = μ̆AIC +
2(L+ 1)(L+ 2)

n− L− 2

where 
n( ) denotes the natural logarithm,
(2.2c)
n = NM (the sample size), and L is the number of parameters estimated.

1The Akaike criterion is based upon the Kullback-Leibler notion of information or distance
between two probabilistic models (information loss) [107] approximated using the maximum
likelihood estimation [95, 102]
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2.2 Experimental LCMV Infection

2.2.1 Immune response to infection

The infection of a mouse with Lymphocytic Choriomeningitis Virus (LCMV)
provides a basic experimental system used in immunology to address funda-
mental issues of virus-host interaction [111]. The infection results in the ac-
tivation of immune responses and clonal burst [101] of virus-specific cytotoxic
T-lymphocytes (CTL). We note that Ehl et al. [105] observed that “The use
of a well-characterized murine infectious disease, which has been shown to be
almost exclusively controlled by CTL-mediated perforin-dependent cytotoxicity,
provides an exceptionally solid basis for the formulation of [models]”.

At discrete times, it is possible to measure, experimentally, (i) the amount
of the virus, measured in plaque forming units (pfu), and (ii) the virus-specific
CTL (measured in the number of cells found per spleen2).

2.2.2 The experimental framework and the observations

In general, it is possible that data comes from a single experiment, or that the
data arises from several experiments or a series of observations. Our mathemati-
cal models rely upon data being of a certain type: we assume the mean values of
data are, at each time, normally or log-normally distributed, and independent.

The experimental data is provided in table 2.1. It was obtained as follows. A
batch of genetically identical C57BL/6 mice were infected with 200 pfu (plaque
forming units) of LCMV (WE strain), delivered intravenously. Viral titers in
spleens were determined at days 1, 2, 3, 4, 6, 8, 10, 12 and 14 days post-infection
and the clonal expansion of CTL cells specific for the gp33 epitope in spleens was
assessed using tetramer analysis (see below). The techniques are standard; see for
example [96, 99]. At the indicated time-points after infection, two mice were bled
and single cell suspensions were prepared of spleen, prior to the determination
of absolute cell counts using FACS and Neubauer equipment.

An important feature is that the mice were genetically identical, produced by
inbreeding. Inbred strains reduce experimental variation; their immune responses
can be studied in the absence of variables introduced by individual genetic dif-
ference. When the mice are genetically identical, it is argued that large numbers
of mice are not required and the mean obtained represents the mean of a larger
set of data. This assertion merits closer examination and testing, but we proceed
on the basis that it is correct.

For reliable parameter estimation it is useful to have an idea of the CTL
kinetics at times earlier than 6 days post infection – before the virus population
starts to decrease. The quantity of virus-specific CTL below 5000 cell/spleen

2Some modellers introduce as a variable the amount of virus-specific memory CTL, a subset
of (ii) that is harder to quantify reliably.

27



V (t) E(t)
Time Set 1 - Virus Set 2 - Virus Set 1 CTLs Set 2 - CTL
(days) Population Population Population Population

(pfu) (pfu) (cells) (cells)
1 3.55 × 104 1.20 × 104 b.d.l. b.d.l.
2 5.0 × 105 1.6 × 106 b.d.l. b.d.l.
3 3.8 × 106 3.9 × 106 b.d.l. b.d.l.
4 3.2 × 106 2.1 × 106 b.d.l. b.d.l.
6 3.7 × 104 1.25 × 105 8.33 × 105 9.85 × 105

8 3.1 × 104 2.6 × 104 4.75 × 106 4.03 × 106

10 2.5 × 102 8.0 × 104 4.16 × 106 5.8 × 106

12 2.0 × 102 7.5 × 102 3.07 × 106 2.25 × 106

14 b.d.l. b.d.l. 2.22 × 106 2.89 × 106

“b.d.l.” means “below the detection limit”.

Table 2.1: Data set for the virus and cytotoxic T lymphocyte kinetics in the spleen
after systemic infection with 200 pfu of LCMV-WE

cannot be detected using the tetramer technique. Our experience (arising from
numerous studies with the LCMV system) suggests that after injection of 200 pfu
of LCMV the proliferating CTLs should reach the detection threshold at about
two and a half days. This evidence was considered in the parameter estimation,
by supplementing table 2.1 with a CTL reading (representing the least possible
detection level) at day 2.5.

The detection threshold for LCMV in the spleen is about 100 pfu. LCMV-WE
dropped below the detection threshold by day 14; however, it is believed that
the virus still persisted below the detection level for some time. To ensure that
the LCMV number in the model remains below the detection threshold, between
days 12 to 14 we supplement the data with an assumption that the virus quantity
on day 14 was 10 pfu/spleen.

2.3 Hierarchy of mathematical models

A priori immunological and mathematical knowledge enter the models in the
form of simplifying assumptions. Potentially, the interaction between virus and
immune system can be described by multiple mechanisms and considering various
sets of differential equations. One may thus argue that different mechanisms
and their functional forms might equally well describe the data set and the
goodness-of-fit (i.e., the maximized likelihood function) is not sufficient to judge
whether the model is correct. It has been observed elsewhere that the maximum
likelihood principle leads to choosing the models with higher possible complexity
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(corresponding to more parameters) [110]. If there is a number of candidate
models, our task is not simply to identify the one with the smallest objective
function but to consider the principle of parsimony in model evaluation, and the
maximum use of information implicit in the data. We suggest a hierarchy of
mathematical models that were distilled from the existing literature.

The mathematical models for the virus-CTL interaction in LCMV infection
are defined within a set of two or three dimensional ODEs or DDEs for the
evolution of the virus, V(t), and virus-specific CTL (activated and memory cells
- E(t), Em(t)) population dynamics.

The equation for the rate of change of the virus population is the same for all
the models and is based upon a Verhulst-Pearl logistic growth term and second
order elimination kinetics. The models differ in the way the immune response is
described - an issue of some controversy in today’s mathematical immunology.
Specifically, the models differ with respect to the following building blocks:

1. virus-dependent CTL proliferation (basic predator-prey versus the Holling
type II response);

2. whether a time-lag in the division of CTL (cell division time) is included;

3. consideration of homeostasis for naive CTL precursors;

4. whether a separate equation for the memory CTL is used.

The death rate of CTL is assumed constant. Overall we consider the following five
models that have their counterparts in the literature. See table 2.2 for biological
definitions of the parameters included in the model.

Model 1 (M1): (simplest predator-prey consideration of the CTL dynamics)

(2.3)
d

dt
V (t) = β · V (t) ·

(
1 − V (t)

K

)
− γ · V (t) · E(t)

(2.4)
d

dt
E(t) = b1 · V (t) ·E(t) − αE · E(t)

Model 2 (M2): (virus-dependent with saturation CTL proliferation)

(2.5)
d

dt
V (t) = β · V (t) ·

(
1 − V (t)

K

)
− γ · V (t) · E(t)

(2.6)
d

dt
E(t) = b2 · V (t) ·E(t)/(ϑSat + V (t))︸ ︷︷ ︸

A modification of model 1

−αE · E(t)
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Model 3 (M3): (virus-dependent with saturation CTL proliferation with time
lag)

(2.7)
d

dt
V (t) = β · V (t) ·

(
1 − V (t)

K

)
− γ · V (t) · E(t)

(2.8)
d

dt
E(t) = b3 · V (t− τ) ·E(t− τ)/(ϑSat + V (t))︸ ︷︷ ︸

As in model 2 but incorporating delay

−αE · E(t)

Model 4 (M4): (primary CTL homeostasis)

(2.9)
d

dt
V (t) = β · V (t) ·

(
1 − V (t)

K

)
− γ · V (t) · E(t)

(2.10)
d

dt
E(t) = b4 · V (t− τ) · E(t− τ)/(ϑSat + V (t)) − αE ·E(t) + T ∗︸ ︷︷ ︸

includes additive term

Model 5 (M5): (Additional equation for the population of memory CTL)

(2.11)
d

dt
V (t) = β · V (t) ·

(
1 − V (t)

K

)
− γ · V (t) · E(t)

(2.12)
d

dt
E(t) = b5 ·V (t− τ) ·E(t− τ)/(ϑSat +V (t))−αE ·E(t)− rm ·E(t) +T ∗

(2.13)
d

dt
Em(t) = rm · E(t) − αm ·Em(t)

Observe that Model 1 is not a special case of Model 2 (the models are not nested);
however, Models 2 to 5 are nested.

Remark 2.3.1 The parameters in all the above models are meaningful only if
they have non-negative values. This can be accommodated by, for example, writ-
ing p�2

� for every non-negative parameter p�, where p�
� =

√
p

�
, in an unconstrained

optimization. (The parameters to be recovered remain the original {p�}.)

In this study, we take as initial data

V (t) = 0, t ∈ [−τ, 0), V (0) = V0; E(t) = E0, t ∈ [−τ, 0]; Em(0) = 0;

(with t0 = 0) and
V0 = 200 and E0 = 265.

Here, V0 and E0 are the initial values for the dose of infection (measured in
pfu) and the number of naive CTL (measured in cells). These parameters were
considered to be fixed. The problem of identifying initial data is not addressed
here; see [98], the references therein, and related work.
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Parameter (units) Notation
The units are d (days), pfu (plaque forming units)
Virus exponential growth rate (d−1) β
Carrying capacity for the virus (copies/spleen) K
Virus elimination rate (1/copy/d) γ
CTL stimulation rate (1/copy/d, M1; d−1, M2 to M5 ) bi
CTL division time (d) τ
Viral load for half-maximal CTL stimulation (copy/spleen) ϑSat

Death rate of CTL (d−1) αE

Specific precursor CTL export from thymus (cell/spleen/d) T ∗

Reversion activated CTL into the memory state (d−1) rm

Death rate of memory CTL (d−1) αm

Table 2.2: Biological definition of the model parameters for virus-CTL dynamics in
the spleen during primary LCMV infection. The spleen volume is estimated to be
about 0.1 (milliliters).

2.4 Computational methodology and numerical

results

2.4.1 Description of numerical techniques

Minimization of a functional dependent on the solution of a system of ODEs or
DDEs is based on two components: (i) an ability to find the numerical solution
of the DDE (and thereby evaluate the objective function) and (ii) an ability
to find the parameters that provide a global minimum of an objective function
when there are constraints on the parameters (eg., τ ≥ 0). The availability of
codes, and their suitability, depends upon the computer system (eg., Windows
or Linux) and the computer package or language (eg., matlab or a version of
fortran).

In similar works, a degree of “sanitization” sometimes occurs: it is rarely
mentioned that the objective function that is to be minimized is not computed
exactly3 (in our case, the solution of an ODE or DDE is computed using certain
prescribed tolerances that govern the accuracy); see §2.4.2. In the illustrations
below, we shall present differing results arising from different tolerances.

The user of a “black-box” code generally has the task of selecting tolerances
that govern the accuracy of the computation. In practice, it is desirable to choose
a tolerance sufficiently small that one has confidence in the parameters (it is

3It has to be remarked that the determination of error estimates, or confidence limits,
can be as computationally expensive as the calculation of the approximation (possibly more
expensive).
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possible to compute confidence intervals), but large enough that the calculations
are tractable given the demand on computer memory and processing speed. In
a well-written code, tolerances are input via a parameter list. In some codes,
it could prove necessary to “take the cover off the black box” (thus invalidating
any warranty from the author!!) in order to exercise the required options.

2.4.2 Numerical methods for ODEs and DDEs

There is a wide choice of codes available for the numerical solution of ODEs. The
situation for DDEs is less satisfactory. Most (if not all) codes for evolutionary
problems proceed in an evolutionary mode, computing the solution over succes-
sive steps [tn, tn+1] using a “step” of length hn = tn+1 − tn. For DDE codes we
refer to, eg.,

• http://www.mathworks.com/access/helpdesk/help/techdoc/ref/dde23.html

for matlab,

• the code Archi, at www.ma.man.ac.uk/~chris/reports/rep283.pdf, for
fortran (and the related codes Archi-L, Archi-N) and

• the code RETARD (the initial version to be found in [106]).

The parameters in ODE and DDE solvers usually include an “error-per-step”
tolerance (eps). Codes for ODEs are usually optimized for “non-stiff” problems
or “stiff” problems; a few are type-insensitive. Robust DDE codes that can
cope with behaviour akin to “stiffness” are, at the time of writing, wanting. A
practical difficulty when solving DDEs arises from the need to store the “history”
(an approximation over an interval of the form [t − τ, t]) which imposes large
storage demands when the step-size is small relative to τ .

2.4.3 Numerical methods for optimization

Computer codes available for optimization exist in matlab and in fortran:
see

(a) http://www.mathtools.net/MATLAB/Optimization/ for matlab and

(b) http://www.nag.co.uk/numeric/fortran%5Flibraries.html for NAg
routines in fortran and

(c) http://www.sbsi-sol-optimize.com/manuals/SNOPT%20Manual.pdf,
and http://www.sbsi-sol-optimize.com/asp/sol product snopt.htm.
for snopt (invented by Gill, Murray and Saunders) which may be called
from a driver program in fortran, or matlab;
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Parameter Significance Low accuracy High accuracy
of parameter calculation calculation

In Archi error-per-step tolerance
eps in the ODE or DDE solver 10−6 10−15

In LMDIF1 the relative errors in the
epsfcn objective functions ≈ epsfcn default (0) 10−15

ftol relative change in the
estimated minimum 10−6 10−12

xtol relative change in the
estimated parameter value 10−6 10−12

Table 2.3:

(d) ftp://ftp.numerical.rl.ac.uk/pub/lancelot for the fortran pack-
age lancelot developed at Rutherford [103] (free to academic users, sub-
ject to conditions); see
http://www.numerical.rl.ac.uk/lancelot/blurb.html.

Optimization procedures are generally iterative and the tolerances specified by
the user govern the successful conclusion of an iterative process for determining
the minimum of an objective function: (i) ftol4,governing the relative change
in the estimated minimum value of the objective function, (ii) xtol, governing
the relative change in the argument at which the estimate of the minimum is at-
tained. A parameter that is sometimes hidden (but can be of prime importance)
is that specifying the accuracy to which the objective function is computed. In
this respect, one may need to exercise caution about default parameter values.
Thus, LMDIF1 is a version5 of LMDIF in which the calling sequence is simplified
through the use of default parameter values (the user is required to specify fewer
parameters). In consequence, a call to LMDIF1 employs a default value (zero) of
epsfcn. Our experience was transformed beyond recognition when the param-
eter epsfcn was set to an appropriate (non-default) value. Similar experience
is likely with other codes. The calculations in our illustrations are based on the
values in table 2.3.

Remark 2.4.1 Codes found in [109] are meant to facilitate parameter estima-
tion. The code Archi-L includes a modified version of the optimization routine
LMDIF; Archi-N invokes a NAg constrained minimization routine E04UNF [108]
(in previous versions, E04UPF), to find the optimum parameter values.

4 We use names employed in LMDIF.
5See http://www.netlib.org/minpack/lmdif1.f.
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In our view6, it is quite important to find (if possible) an optimization routine
that, in searching for a solution to a constrained minimization problem, does
not violate constraints that are essential to the code that evaluates the objective
function. Thus, (i) DDE-solvers should not be expected to obtain a solution
if τ is assigned a negative value, (ii) a problem in which the parameters can
give rise to symptoms of stiffness may require different treatment from one that
cannot. Where the optimizing routine does not have this feature (and more
generally), it is helpful to have good initial estimates of the optimum parameters.
These may be obtained from the optimum parameters for a simpler model in the
hierarchy, or (a time-consuming process not given to automation) by plotting
contour plots corresponding to parameters taken in pairs. Contour plotting is
valuable when what is believed to be an optimum value has been located, as it
allows a check to be made to ascertain the sensitivity of the objective function
in the neighbourhood and to distinguish local and global minima.

Remark 2.4.2 A multitude of apparent local minima can be a consequence of
too large an error tolerance in the ODE/DDE solver. (Compare the minimum of
x2n with the minima of x2n +ε sin(mx) where n,m are integers and ε corresponds
to the maginitude of a perturbation.)

Contour plotting as an aid: potential problems

In practice, success in identifying parameters is related to the shape of the ob-
jective function, in terms of the parameters. The examples displayed here relate
to actual models for the data presented.

Figure 2.1: Contours suggesting that parameter estimation can be achieved suc-
cessfully

6 Others – we believe unwisely – take a more relaxed view.
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Figure 2.2: Contour plots.
Left: Model 4, log-least squares (vertical axis ϑSat, horizontal axis b4). Any
combination of parameter components corresponding to the valley floor is equally
effective at providing a small objective function.
Right: Model 1, ordinary least squares. Numerous local minima (which are
spurious; see the text) cause a problem in the computation of best-fit parameter
estimates. Vertical axis K, horizontal axis β.

A visual assessment can be obtained from graphical displays of the behaviour
of Φ(p). Thus, successful minimization is relatively easily obtained when the
objective function has a contour plot appearing like that in figure 2.1. However,
a valley-type behaviour (figure 2.2, left-hand contour) implies a high correlation
between corresponding parameters. The left-hand contour plot in figure 2.2
indicates that when ϑSat and b4 are appropriately related the objective function
changes very little (the values of the residuals on all the included contours are
identical to four decimal places). Actually, a large change in b4 with a related
large change in ϑSat can result in a very small change in the objective function7.
On the other hand, the right-hand contour in figure 2.2 shows a cluster of local
minima near the global minimum. These apparent local minima are spurious, in
the sense that they arise from using using too large a tolerance when solving the
differential equations. Here, it is quite feasible that differing initial estimates of
the parameters (employed to start the search for optimal values) could produce
any one of the local minima.

7This example illustrates that the two parameters are not separately identifiable. The issue
of a priori identifiability is addressed in [97].
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2.4.4 Ordinary least squares objective function ΦOLS(p)

Parameter M1 M2 M3 M4 M5

β 4.44 × 100 4.36 × 100 4.52 × 100 4.52 × 100 4.50 × 100

K 3.99 × 106 3.23 × 106 3.17 × 106 3.17 × 106 3.19 × 106

γ 3.02 × 10−6 3.48 × 10−6 3.45 × 10−6 3.48 × 10−6 3.63 × 10−6

bi 1.23 × 10−6 1.92 × 100 2.52 × 100 2.41 × 100 2.40 × 100

ϑSat − 2.46 × 104 1.34 × 105 1.31 × 105 1.15 × 105

τ − − 7.17 × 10−2 8.98 × 10−2 9.54 × 10−2

αE 0.0 9.14 × 10−2 8.62 × 10−2 9.1 × 10−2 9.31 × 10−2

T ∗ − − − 1.24 × 102 1.40 × 102

rm − − − − 5.17 × 10−3

αm − − − − 2.55 × 10−1

ΦOLS 1.05 × 1013 4.49 × 1012 4.04 × 1012 3.91 × 1012 3.78 × 1012

μ̆cAIC 472.2 467.0 475.4 488.9 544.4

Table 2.4: Best-fit parameter estimates for ordinary least-squares and the corrected
Akaike indicator. Calculations are based on LMDIF and the values eps = 10−6, ftol
= 10−6, xtol = 10−6, epsfcn = 0.

Parameter estimation results obtained using ordinary least squares approach
for Models 1 to 5 are summarized in table 2.4. An increase in the number
of model parameters provides a better description of the data in terms of the
minimized value of the objective function. However, the increasing values of the
corrected Akaike index indicate a gradual information loss for the given data
set, as the complexity of models increases. Variation of the best-fit parameter
estimates between the models is within ±10%, except for the estimate of ϑSat.
Further, the data set does not provide a biologically correct estimate of the time
lag of cell division τ . (Rather, the delay estimate obtained via ordinary least
squares corresponds to a realistic duration of some stage of the cell cycle.) Visual
inspection of graphs of V (t) and E(t) suggests that Model 1 nicely approximates
the viral load data, but rather poorly approximates the CTL data. The other
models describe much better the CTL kinetics at the expense of a somewhat
poorer agreement with the virus data (V (t)).

2.4.5 Weighted least squares objective function ΦΩLS(p)

We used ΦΩLS(p) =
N∑

j=1

M∑
i=1

{
ω

[j]
i

[
yi(tj , p) − yi

j

] }2
with the weights ωj

i = {yi
j}−1

obtained using the means yi
j of the data in table 2.1. The best-fit parameter

estimates are summarized in table 2.5. Again, an increase in the number of
model parameters reduces bias in the description of the data but is associated
with an increasing value of the Akaike criterion. Interestingly, the weighted least
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squares approach ensured biologically correct estimates of the mean cell division
time, the delay τ ranging from 5 to 7 hours. Qualitatively, Models 1 to 4 provide
a similar approximation of the viral load data whereas model 5 fits the CTL data
somewhat better than the other models from the set

Parameter Model 1, M1 Model 2, M2 Model 3, M3 Model 4, M4 Model 5, M5

β 4.68 × 100 4.67 × 100 4.60 × 100 4.59 × 100 4.60 × 100

K 2.80 × 106 2.79 × 106 2.86 × 106 2.83 × 106 3.04 × 106

γ 5.19 × 10−6 7.29 × 10−6 9.30 × 10−6 9.99 × 10−6 1.48 × 10−5

bi 1.09 × 10−6 2.31 × 100 2.48 × 100 2.02 × 100 2.03 × 100

ϑSat − 3.12 × 105 1.90 × 105 9.65 × 104 4.64 × 104

τ − − 0.291 × 100 0.207 × 100 0.276 × 100

αE 0.0 10−32 0.0 3.30 × 10−7 2.2 × 10−2

T ∗ − − − 8.27 × 102 8.22 × 102

rm − − − − 8.73 × 10−4

αm − − − − 1.60 × 10−4

ΦΩLS 6.36 × 100 6.06 × 100 5.99 × 100 4.95 × 100 4.43 × 100

μ̆cAIC 50.2 57.0 66.9 78.0 132.3

Table 2.5: Best-fit parameter estimates for weighted least-squares and the corrected
Akaike indicator. Calculations are based on LMDIF and eps = 10−6, ftol = 10−6,
xtol = 10−6, epsfcn = 0.

The best-fit values of the objective function suggest (in each case) that the
maximum likelihood estimate of the data variance is about σ̂2 ≈ 0.3 to 0.4.

(σ̂2 =
1

NM

∑
j

‖diag−1[ω
[j]
1 , ω

[j]
2 , . . . , ω

[j]
M ][y(tj, p̂) − yj ]‖2 =

1

NM
ΦΩLS(p̂)).

2.4.6 Log-least squares objective function ΦLogLS(p)

Parameter estimation results obtained using log-least squares approach for Mod-
els 1 to 5 are shown in table 2.6. (We fit to data summarized as the means of
the log-values rather than the log of the means.) An increase in the number of
parameters does not affect the bias in the data description by Models 1 to 3 but
it does provide a better description of the data when applying Models 4 and 5.
The increasing value of the corrected Akaike indicator suggests a gradual infor-
mation loss for the given data set as the complexity of the models increases. The
log-least squares strategy fails to identify reliably the parameters bi and ϑSat, as
these appear to be highly correlated (see fig. 2.2). From another viewpoint, the
estimates of rm, αm, the memory CTL turnover, appear to be biologically more
consistent than those obtained with ordinary- or weighted least squares. Again,
the strategy does not support the need to consider a delay in the model for the
given data set.
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Parameter M1 M2 M3 M4 M5

β 5.49 × 100 5.49 × 100 5.49 × 100 4.70 × 100 4.70 × 100

K 9.45 × 105 9.45 × 105 9.45 × 105 1.31 × 106 1.31 × 106

γ 2.12 × 10−6 2.12 × 10−6 2.12 × 10−6 2.25 × 10−6 2.24 × 10−6

bi 2.05 × 10−6 4.78 × 106 4.78 × 106 3.88 × 107 3.88 × 107

ϑSat − 2.33 × 1012 2.33 × 1012 3.07 × 1013 3.07 × 1013

τ − − 0.00 0.00 5.60 × 10−3

αE 2.35 × 10−2 2.35 × 10−2 2.35 × 10−2 1.39 × 10−2 1.31 × 10−2

T ∗ − − − 1.345 × 103 1.343 × 103

rm − − − − 1.10 × 10−2

αm − − − − 9.10 × 10−3

ΦLogLS 2.443 × 100 2.443 × 100 2.443 × 100 1.761 × 100 1.764 × 100

μ̆cAIC 35.9 43.4 53.4 62.5 118.5

Table 2.6: Best-fit parameter estimates for log least-squares and the corrected Akaike
indicator. Calculations were based on LMDIF and eps = 10−6, ftol = 10−6, xtol
= 10−6, epsfcn = 0.

All the models with parameters estimated following the log-least squares
strategy seem to capture the overall kinetics of the data quite well.

2.4.7 Computing with greater accuracy

Parameter M1 M2 M3 M4 M5

β 4.61 × 100 4.51 × 100 4.62 × 100 4.61 × 100 4.61 × 100

K 2.70 × 106 4.69 × 106 5.01 × 106 4.98 × 106 5.07 × 106

γ 1.39 × 10−6 8.04 × 10−5 3.29 × 10−4 2.96 × 10−4 2.45 × 10−4

bi 9.22 × 10−7 1.42 × 100 1.14 × 100 1.16 × 100 1.22 × 100

ϑSat − 0 8.79 × 10−6 4.59 × 10−6 2.45 × 10−4

τ − − 4.38 × 10−2 4.15 × 10−2 4.38 × 10−2

αE 9.29 × 10−2 2.01 × 10−1 1.02 × 10−1 1.02 × 10−1 1.03 × 10−14

T ∗ − − − 1.09 × 100 134 × 100

rm − − − − 2.12 × 10−1

αm − − − − 2.20 × 10−1

ΦOLS 6.54 × 1012 7.82 × 1011 1.60 × 1012 1.60 × 1012 1.37 × 1012

μ̆cAIC 465.1 440.8 461.5 475.5 529.2

Table 2.7: Best-fit parameter estimates for ordinary least-squares and the corrected
Akaike indicator when the higher accuracy numerical solution is used: Calculations
were based on Archi-N with E04UNF, and eps = 10−15, ftol = 10−12, xtol =
10−12, epsfcn = 10−15.
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Parameter M1 M2 M3 M4 M5

β 5.14 × 100 4.56 × 100 4.57 × 100 4.60 × 100 4.60 × 100

K 1.23 × 105 4.42 × 106 4.46 × 106 3.27 × 106 3.26 × 106

γ 1.90 × 10−6 5.47 × 10−5 7.93 × 10−5 2.14 × 10−5 2.23 × 10−5

bi 1.37 × 10−5 1.41 × 100 1.41 × 100 2.34 × 100 2.41 × 100

ϑSat − 0 3.49 × 10−13 4.854 × 104 5.39 × 104

τ − − 1.76 × 10−2 5.18 × 10−1 5.04 × 10−1

αE 2.09 × 10−2 1.09 × 10−1 1.09 × 10−1 1.09 × 10−1 2.52 × 10−10

T ∗ − − − 1.663 × 103 1.508 × 103

rm − − − − 1.32 × 10−1

αm − − − − 5.10 × 10−1

ΦΩLS 5.23 × 100 5.36 × 100 5.15 × 100 4.18 × 100 4.18 × 100

μ̆cAIC 47.3 55.2 64.6 75.5 131.5

Table 2.8: Best-fit parameter estimates for weighted least-squares and the corrected
Akaike indicator when the higher accuracy numerical solution is used: Calculations
were based on Archi-N with E04UNF, and eps = 10−15, ftol = 10−12, xtol =
10−12, epsfcn = 10−15.

The calculations represented in table 2.4 were checked by refining the param-
eters that govern the accuracy. The original values eps = 10−6, ftol = 10−6,
xtol = 10−6, epsfcn = 0 were replaced by eps = 10−15, ftol = 10−12, xtol
= 10−12, epsfcn = 10−15, and the figures in table 2.7 were then obtained. The
refined tolerances have a noticeable effect on the parameter values and in con-
sequence on the ranking of the parametrized models. Models with parameters
computed with lower tolerance are ranked with respect to the information loss
in the ranking :

M2 (best) - M1 - M3 - M4 - M5;

with parameters computed to the higher tolerance we obtain the ranking

M2 (best) - M3 - M1 - M4 - M5.

In both cases Model 2 has the least Akaike index. The parameter ϑSat (which
represents the viral load for half-maximal CTL-stimulation) does not occur in
Model 1; in the high-accuracy figures for Model 2 it is close to zero. Such a
small value represents an effectively immediate response to the infection (what
is considered to be a “programmed” response, in [104]), irrespective of the viral
load.

If we use Model 5, the data does not support a biologically correct estimation
of the memory cell life-span αm. We note that in a similar parameter estimation
study [104] the parameter αm was assigned a value rather than estimated.

Table 2.9 summarizes the analysis of the confidence in the best-fit parameter
estimates for Models 1 to 3 using high accuracy solutions and following OLS.
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The ranking of the models according to the Akaike criteria suggests that the
least information loss should be the feature of Model 2 as compared to Models
1 or 3. The reader may compare the widths of the confidence intervals for the
same parameter in differing models, displayed in table 2.9. Other things being
equal, a narrower interval is to be preferred. An unduly large confidence interval
indicates that the parameter is unidentifiable for practical purposes.

Parameter M1 M2 M3

β 4.61 ×100 4.51 ×100 4.62 ×100

95% CI : [4.00 ×100, 5.23 ×100] [4.23 ×100, 4.76 ×100] [4.43 ×100, 4.85 ×100]
K 2.70 ×106 4.69 ×106 5.01 ×106

95% CI : [2.28 ×106, 3.00 ×106] [4.20 ×106, 5.20 ×106] [4.62 ×106, 5.45 ×106]
γ 1.39 ×10−6 8.04 ×10−5 3.29 ×10−4

95% CI : [1.17 ×10−6, 1.71 ×10−6] [7.54 ×10−5, 8.58 ×10−5] [3.20 ×10−4, 3.31 ×10−4]
bi 9.22 ×10−7 1.42 ×100 1.141 ×100

95% CI : [7.96 ×10−7, 1.01 ×10−6] [1.40 ×100, 1.43 ×100] [1.134 ×100, 1.143×100]
ϑSat − 0 (3.23 ×10−176) 8.79 ×10−6

95% CI : − [0, 1.2 ×10−164] [5.25 ×10−6, ϑmax ]
If ϑSat = 0, (2.16) results. where ϑmax ≥ 8 ×10−5.

τ − − 4.38 ×10−2

95% CI : − − [4.24 ×10−2, 4.43 ×10−2]
αE 9.29 ×10−2 2.01 ×10−1 1.02 ×10−1

95% CI : [4.84 ×10−2, 1.73 ×10−1] [1.19 ×10−1, 2.14 ×10−1] [1.01 ×10−1, 1.15 ×10−1]
ΦOLS 6.54 ×1012 7.82 ×1011 1.6 ×1012

μ̆cAIC 465.1 440.8 461.5

Table 2.9: Estimates of 95% confidence intervals, for the best-fit high accuracy
parameter estimates for Models 1 to 3 using ordinary least-squares. Estimates were
computed using Archi-N (see Remarks 2.4.1 & 2.4.3), with E04UNF, eps = 10−15,
ftol = 10−12, xtol = 10−12, epsfcn = 10−15 as in table 2.7.

Remark 2.4.3 The evaluation of confidence intervals for parameter estimates
is easily described but can be computationally difficult.

• The process is often computationally highly expensive. This is particularly
the case where the interval is large; asking for 67% confidence rather than
95% confidence will reduce the length of the interval.

• We have found little difficulty when using the NAg minimization routine
E04UNF [108] (apart from the demands for computer time), provided the
positivity constraints are incorporated as indicated in Remark 2.3.1. The
use of an output parameter IFAIL in E04UNF allows monitoring of “soft
failure” as well as “hard failure”. The numbers in table 2.9 were obtained
with this optimization code, in Archi-N. We recalculated those estimates
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using LMDIF1 in Archi-L, and obtained the same optimum parameters but
somewhat different confidence intervals.

• The optimization codes proceed iteratively and the starting estimate may
affect the outcome. Confidence intervals are produced by investigating a
range of values p� and optimizing over the remaining parameters. It is a
reasonable strategy to take the optimum parameters for p� as a starting
estimate for the optimum values for p� + δp�. Values in table 2.9 were ob-
tained with this strategy. However one can envisage situations where the
optimization code was not sufficiently robust to compute a global minimum.
Further investigation into robust optimization codes, and their useage, ap-
pears to be suggested.

The Akaike indices suggest that the best model is Model 2 (M2). One might
therefore anticipate that M2 would have the smallest confidence intervals for
the best-fit parameter estimates. In reality, it appears that M3 is characterized
by smaller confidence intervals. This might be a consequence of a number of
factors, for example (i) the Akaike indices provide approximate indicators, (ii)
one needs to check whether the differences in the estimated Akaike indicators
are statistically significant, given the errors in the data.

As stated above, the values of the Akaike indicators suggest that for the given
data set the model which ensures the least information loss is Model 2:

(2.14)
d

dt
V (t) = β · V (t) ·

(
1 − V (t)

K

)
− γ · V (t) · E(t)

(2.15)
d

dt
E(t) = b2 · V (t)

ϑSat + V (t)
· E(t) − αE · E(t)

For this model, the best-fit estimate for the viral load necessary for the half-
maximal CTL division rate (ϑSat) is close to zero. If ϑSat = 0 and V (t) 	= 0 ,
(2.15) becomes

(2.16)
d

dt
E(t) = b2 · E(t) − αE · E(t).

As long as a virus population is present in the host, the second equation of Model
2 can be replaced by the simplified linear form:

(2.17)
d

dt
E(t) = b2 ·HV ϑSat ·E(t)︸ ︷︷ ︸

Modification suggested by the best-fit estimate

−αE · E(t),

where the cell proliferation term on the right-hand side uses the Heaviside func-
tion

HV ϑSat = 0 for V ≤ V ϑSat; HV ϑSat = 1 for V ≥ V ϑSat;
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as a characteristic value for V ϑSat one can take V ϑSat ≈ 1. It is remarkable
that the best-approximating model for the typical data set for the LCMV-CTL
population dynamics in primary infection appears to be the one which was in-
troduced elsewhere in an ad hoc manner (see [104]). Biologically, the form of the
proliferation term implies that the CTL response to a low-dose LCMV infection
is a process regulated by the virus load in an “on” (full activation) and “off” (no
activation at all) way.”
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Figure 2.3: Ordinary least squares.
(a) Model 1 computed using low accuracy (table 2.4);
(b) Model 2 computed using high accuracy (table 2.7).
Shown are the best-fit predictions (solid lines) for the viral load, V (t) and for the
number of CTLs, E(t), and the mean values (* symbols) for the original data.
Horizontal axes: 0 ≤ t ≤ 15; vertical axes: 0 ≤ V (t) ≤ 4×106; 0 ≤ E(t) ≤ 6×106.
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Chapter 3

Introduction to stochastic
processes

3.1 Brownian motion and MATLAB simulations

In this section we will introduce the idea of Brownian motion and investigate the
simulation of discretized Brownian paths using MATLAB.

3.1.1 Brownian motion

In 1828 the Scottish botanist Robert Brown described the motion of a pollen
particle suspended in fluid. He observed that a particle moved in a random
irregular fashion and from this he obtained the equations for what has been called
Brownian motion [61, 73]. Louis Bachelier (1900), Albert Einstein (1905) and
Norbert Wiener (1923) began developing the theory of Brownian motion [66].
Some texts refer to Brownian motion as the physical process and refer to the
mathematical process as a Wiener process [61].

A clear, precise definition of a scalar Brownian motion is given in Higham [49],
and is quoted below.

“A scalar standard Brownian motion, or standard Wiener process, over [0, T ]
is a random variable W (t) that depends continuously on t ∈ [0, T ] and satisfies
the following three conditions:

1. W (0) = 0 (with probability 1).

2. For 0 ≤ s < t ≤ T the random variable given by the increment W (t)−W (s)
is normally distributed with mean zero and variance t − s; equivalently,
W (t) − W (s) ∼ √

t− sN(0, 1), where N(0, 1) denotes a normally dis-
tributed random variable with zero mean and unit variance.

3. For 0 ≤ s < t < u < v ≤ T the increments W (t)−W (s) and W (v)−W (u)
are independent.”
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To extend our investigations to SDDEs we will need to simulate discretized Brow-
nian paths ofW (t), specified at discrete t values. We will divide our interval [0, T ]
into N equal intervals of width h = T/N . With the usual notation we define
Wi = W (ti) where ti = ih. Condition 1 of the definition gives W0 = 0. Condition
2 gives us the recurrence Wi = Wi−1 +dWi, i = 1, 2, . . . , N, where each dWi is a
random variable of the form

√
hN(0, 1), and condition 3 states that the dWi are

independent. To simulate our path we need to generate N independent values
from the N(0, 1) distribution. For this we can use MATLAB’s random number
generator command “randn(′state′, n)”. This command has the advantage of
making experiments repeatable. If we set n = 1, randn will produce the same
sequence of random variables at each run of the program. Setting n to some
other integer value will produce a different repeatable sequence. We can now
scale our random values by

√
h to simulate the N values of dWi. The remain-

der of this thesis depends upon the production of 500 simulated Brownian paths
so it would be prudent at this point to discuss the process by which MATLAB
generates randn and to check that the command actually produces values from
the N(0, 1) distribution.

3.1.2 MATLAB’s randn(′state′, n) command

Marsaglia’s ziggurat algorithm with a period of approximately 264 is used to
generate randn(′state′, s), with s taking any integer value from 0 to 232 − 2 to
initiate the algorithm. See MATLAB’s “help” toolbar for this information.

The Marsaglia Ziggurat Algorithm

We give here a simplified description of the algorithm.
The area of the right hand half of y = e−x2/2, the non-standardised shape

of N(0, 1), is split into a large number of horizontal strips of equal area. The
figure 3.1 shows this split for just 3 strips, but in practice 128 or 256 are used. A
random y coordinate can be selected using the uniform distibution by y = U(0, 1).
This y coordinate selects the horizontal strip, Si, say. If we define the lower
boundary of this strip by the interval [0, xi] then another selection from the
uniform U(0, 1) distribution supplies our random N(0, 1) variate as x = xi.U .
However, it is possible that the point (x, y) is not contained within the density
curve, especially if x is close to xi. This occurs when the point (x, y) is in the top
righthand corner of a strip, outside of the curve. The labels B1, B2 in figure 3.1
are actually placed in such positions. In this case our value is rejected and
the method is repeated. The method is defined in more detail in Marsaglia &
Tsang [65].
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Figure 3.1: Example of a three-way ziggurat partitioning of the normal density
curve, taken from [27].

Validation of randn output

Recent papers [27, 62] have questioned the efficiency of the algorithm. In [27, 62]
it is suggested that an improved version, using a different random number gen-
erator, passes statistical tests for normality. With some doubt expressed about
the ziggurat algorithm it would seem prudent to conduct experimental work on
randn to confirm that we do actually get normal variates for our later exper-
iments. We used a simple MATLAB code, listed in appendix B, to produce
vectors containing 10000 and 100000 values from randn. These values were cho-
sen as they represent the minimum and maximum vector sizes for our following
experiments on SDDEs. Figures 3.2, 3.3 show histograms of the values, together
with superimposed standard normal curves. Both show that the histograms are
very good approximations to the expected standard normal curve.

As a further check a similar figure 3.4 was produced using a vector of 1000000
values and we can see that the histogram is a nearly perfect fit to the standard
normal curve.

We used same code to check the mean and standard deviation of the vectors
of values from randn. For the more relevant vectors of size 10000, 100000 we
produced five vectors using different settings in the state statement. However,
to consider the limiting case as the magnitude of the vector increases we also
produced the parameter values for vectors of length 1000000 and 10000000. All
of the experimental results are given in table 3.1.

The table clearly confirms the results we are hoping for. The mean values
are all very close to zero and the standard deviation values are very close to
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Figure 3.2: Histogram of 10000 values from randn, with superimposed normal
distribution curve
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Figure 3.3: Histogram of 100000 values from randn, with superimposed normal
distribution curve

unity, with these approximations improving as the vector length increases. We
can conclude that randn will give us good variates from the standard normal
distribution.

3.1.3 Brownian paths using randn

We can now confidently use randn with MATLAB to simulate the Brownian
paths required for the remaining chapters of this thesis. Using the coding listed
in appendix B, we have produced figure 3.5 showing a single path and figure 3.6
showing ten paths. Finally, figure 3.7 shows 20 paths together with their mean
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Figure 3.4: Histogram of 1000000 values from randn, with superimposed normal
distribution curve

Vector length ”state” Mean Standard deviation

10000 1 0.007456 1.0111
10000 2 -0.000655 0.9962
10000 3 -0.012478 1.0021
10000 4 0.001682 0.9962
10000 5 -0.002675 0.9901
100000 1 0.005173 1.0014
100000 2 0.001578 1.0002
100000 3 -0.004220 1.0012
100000 4 0.001380 0.9983
100000 5 -0.003255 0.9965
1000000 1 0.000857 0.99979
10000000 1 0.000050 1.00023

Table 3.1: Mean and Standard deviation values

value, in red, at each point in time. As we would expect, the mean value ap-
proximates to the line y = 0.

3.2 Stochastic calculus

Sample Brownian paths are nowhere differentiable and have unbounded varia-
tion, and this has major consequences for the definition of the stochastic inte-
gral with respect to Brownian paths, [66]. In this section we will give a brief
summary of the process of finding a stochastic integral. We refer the reader
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Figure 3.6: Ten Brownian paths

to [57, 61, 66, 73, 78, 75] for a more rigorous approach. If we consider the inte-

gral
∫ b

a
f(t)dt then we can partition [a, b] by a = t0 < t1 < . . . < tn = b. If we let

δti = ti − ti−1 then we can define the Riemann sum

Sn =
n∑

i=1

f(xi)δti

where xi ∈ [ti−1, ti]. If the limit exists,

lim
n→∞

Sn =

∫ b

a

f(t)dt.
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Figure 3.7: Twenty Brownian paths, with mean path (in red)

We would now like to be able to define
∫ 1

0
f(t)dW (t) where f(t) is a function or

a stochastic process on [0, 1] and W (t) is a Brownian path. Unfortunately, W (t)
does not have a derivative and so we cannot write our integral as a Riemann
integral, [73]. However, the Riemann-Stieltjes integral allows us to find a kind
of pathwise integral, [66]. Mikosch [66] states that we can evaluate integrals of

the form
∫ 1

0
etdW (t), but not explicitly in terms of Brownian motion. A major

problem is that Brownian paths do not have bounded variation and hence the
Riemann-Stieltjes integral approach must fail, [61].

3.2.1 Definitions of Itô and Stratonovich integrals

The following definitions are taken from [73]. If we define the indicator function
by

χ[ti,ti+1](t) =

{
1 when t ∈ [ti, ti+1],
0 otherwise.

and take t∗i ∈ [ti, ti+1] then we can approximate f(t) by∑
i

f(t∗i ).χ[ti,ti+1](t).

We can now define
∫ 1

0
f(t)dW (t) as the limit∑
i

f(t∗i )[Wti+1
−Wti ] as n→ ∞.

We note that if we take

1. t∗i = ti then we have defined the Itô integral, while taking
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2. t∗i = ti+ti+1

2
gives us the Stratonovich integral.

The most common example used in texts is
∫ T

0
WdW (for example, [61, 66,

73]). It can be shown that in the Itô definition this integral is 1
2
(W 2(T ) − T ),

whereas with the Stratonovich definition gives 1
2
W 2(T ), as one would expect from

ordinary calculus. The difference between these two integrals follows from the
lack of smoothness of W (t), and can be explained by Itô’s stochastic chain rule
formula, [73]. The choices of t∗i for the two integrals defined above are the most
useful. The Itô integral is a martingale and the Stratonovich gives the results
expected from ordinary calculus, [61]. It is to be noted that the stochastic inte-
grals depend upon the particular Brownian path. We will investigate stochastic
integrals using Matlab in the next section.

3.3 Stochastic integral simulations

Using randn we simulated a Brownian path with increment 0.00005. First we
used this path to estimate both the Itô and the Stratonovich integrals of

∫ 1

0
WdW

with δt decreasing from 1 to 0.00001 and hence n increasing from 1 to 10000.
We also used two different simulated Brownian paths. Tables 3.2, 3.3 show the
results for the two integration definitions. Finally, table 3.4 shows the Itô and
Stratonovich mean values for

∫ 1

0
WdW over 10000 paths for various step sizes. As

expected the difference between the integrals is approaching the exact difference
of 0.5 as the step size decreases.

Steps randn(′state′, 1) randn(′state′, 200)

1 0 0
10 -0.30770 -0.54033

100 -0.46139 -0.43228
1000 -0.46442 -0.33178

10000 -0.46368 -0.32890

W (1) -0.28442 -0.61642
1
2
(W 2(1) − 1) -0.45955 -0.31001

Table 3.2: Itô values for
∫ 1

0
WdW with exact values, 1

2
(W 2(1) − 1)

It is interesting to note that Higham, in [49], actually regards the Riemann
sum as an approximation to the stochastic integral. We will also see that the
numerical methods used later will adopt this approach. We can investigate this
by using the definitions to estimate both the Itô and the Stratonovich integrals of∫ 1

0
tdW for one of the sample paths used in the previous experiment. Table 3.5

shows the results for our particular path. As f(t) = t is a smooth increasing
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Steps randn(′state′, 1) randn(′state′, 200)

1 -0.13246 0.24761
10 0.22114 0.03972

100 0.12990 0.27099
1000 0.02547 0.16020

10000 0.04440 0.18659

W (1) -0.28442 -0.61642
1
2
W 2(1) 0.04048 0.18999

Table 3.3: Stratonovich values for
∫ 1

0
WdW with exact values, 1

2
W 2(1)

Steps Itô Stratonovich Itô Stratonovich
mean mean standard deviation standard deviation

1 0 0.49543 0 0.8487
10 -0.00624 0.49210 0.6424 0.6966

100 -0.00954 0.49010 0.6750 0.6803
1000 -0.01069 0.48916 0.6782 0.6787

10000 -0.01085 0.48918 0.6786 0.6787

Table 3.4:
∫ 1

0
WdW using 10000 paths

Steps Itô Stratonovich

1 0 -0.14299
10 -0.07325 -0.08755

100 -0.07612 -0.07755
1000 -0.07395 -0.07409

10000 -0.07381 -0.07382

Table 3.5:
∫ 1

0
tdW using path randn(′state′, 1)

function we find that the Stratonovich value is marginally greater than the Itô
value. The tables indicate that the integrals are converging. We also calculated
the integral with 10000 different paths and table 3.6 shows the mean and standard
deviation for both types of integral using the same step sizes.

3.3.1 Conclusion

The experiments conducted using MATLAB and its random normal variate gen-
erator indicate that we can be fairly confident in using these features in our
future experimental work.
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Figure 3.8: Histogram of values of
∫ 1

0
WdW using 10000 paths

Top: Itô integral Bottom: Stratonovich integral

Steps Itô Stratonovich Itô Stratonovich
mean mean standard deviation standard deviation

1 0 -0.006193 0 0.4946
10 -0.003851 -0.004470 0.5261 0.5684

100 -0.004110 -0.004172 0.5644 0.5687
1000 -0.004127 -0.004134 0.5683 0.5687

10000 -0.004131 -0.004132 0.5687 0.5687

Table 3.6:
∫ 1

0
tdW using 10000 paths

3.4 Stochastic differential equations

In the preface of their book [61] Kloeden and Platen state that during the past
decade (the 1990s) there has been an accelerating interest in the development
of numerical methods for stochastic differential equations. They add that this
activity has been as strong in engineering and physical sciences as it has in
mathematics. Oksendal [73] adds that SDEs have a wide range of applications
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outside mathematics and that there are many fruitful connections to other math-
ematical disciplines and the subject has a rapidly developing life of its own as
a fascinating research field with many interesting unanswered questions. As an
indication of the modelling applications of SDEs we list biology [20], spread of
infections [13, 19, 5], population dynamics [20] and finance [42, 52], where the
Black-Scholes equation is widely used [78].

Before starting the main investigations of this thesis we need to introduce a
few ideas about stochastic ordinary differential equations (SODEs) and stochastic
delay differential equations (SDDEs). SODEs are defined in [73] by the equation

(3.1)
dX(t)

dt
= f(t, X(t)) + g(t, X(t))W (t)

and in differential form as

(3.2) dX(t) = f(t, X(t))dt+ g(t, X(t))dW (t).

If g(t, X(t)) = g(t), that is the function g is independent of X(t), then the second
term of the equation (3.2) is called additive noise. Otherwise this term is called
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multiplicative noise, [61]. Kloeden and Platen [61] state that, unfortunately,
explicitly solvable SODEs are rare in practical applications. However, to give an
example of an equation which is solvable we quote the Langevin equation

(3.3) dX(t) = −aX(t)dt + bdW (t),

which has solution X(t) = X(0) exp
((
a− 1

2
b2

)
t+ bW (t)

)
. We will use this

equation in chapter 5, when we will be investigating the order of convergence of
SODEs.

We can extend our definition to SDDEs by adding a delay term X(t− τ) to
either or both of the functions in equation (3.2), (see [5]), to give

(3.4) dX(t) = f(t, X(t), X(t− τ))dt + g(t, X(t), X(t− τ))dW (t).

For interest we note at this point that the software SDELab has been written
at Manchester University to give solutions of SDEs using MATLAB [43].

In [5] the authors quote three different types of stability for SODEs and
SDDEs, (taken from Mao [64]).

Definition (3.1 in [5]) For some p > 0, the null solution of the SDDE (3.4) is
termed

1. locally stable in the pth mean, if for each ε > 0, there exists a δ ≥ 0 such
that E(|Y (t; t0,Φ)|p) < ε (where the notation E denotes the expectation)
whenever t ≥ t0 and E(supt∈[t0−τ,t0]|Φ(t)|p) < δ;

2. locally asymptotically stable in the pth mean, if it is stable in the pth mean
and if there exists a δ > 0 such that whenever E(supt∈[t0−τ,t0]|Φ(t)|p) < δ
then E(|Y (t; t0,Φ|p) → 0 for t→ ∞;

3. locally exponentially stable in the pth mean if it is stable in the pth mean
and if there exists a δ > 0 such that whenever E(supt∈[t0−τ,t0]|Φ(t)|p) < δ
there exists some finite constant C and a ν∗ > 0 such that
E(|Y (t; t0,Φ)|p) ≤ CE(supt∈[t0−τ,t0]|Φ(t)|p)exp(−ν∗(t− t0)) for t0 ≤ t ≤ ∞.

If, in the above, δ may be taken as arbitrarily large then the stability is in each
case global rather than local [5]. The authors of [5] go on to illustrate a different
approach to stability, that of stochastic stability or stability in probability, with
a parallel to one of the above definitions:

Definition (3.2 in [5]) The null solution of the SDDE (3.4) is termed stochas-
tically stable in probability, if for each e ∈ (0, 1) and ε > 0, there exists a
δ ≡ δ(e, ε) ≥ 0 such that P (|Y (t; t0,Φ)| ≤ ε for all t ≥ t0) ≥ 1 − e (where
P denotes probability) whenever t ≥ t0 and supt∈[t0−τ,t0]|Φ(t)|p < δ with proba-
bility 1. Finally, the authors add that extensions for the definitions of stability
to apply to non-null solutions follow the usual lines. Stability of the stochastic
logistic model is discussed in [44], while Burrage et al give an overview in [17].
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As mentioned earlier, Kloeden and Platen stated that explicitly solvable
SODEs are rare. Once we add the delay to the problem this statement be-
comes much stronger and it is very unlikely that we will find an explicit solution
to a SDDE. To reach any conclusion with these equations we must resort to
experimental or Monte Carlo techniques, and this is the route followed for our
investigations throughout the remainder of this thesis.
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Chapter 4

Early results: setting the
objectives

1 The general form of stochastic delay differential equation that we would like
to consider takes the form

(4.1) Y (t) = Y (t0)+

∫ t

t0

F (s, Y (s), Y (s−τ))ds+

∫ t

t0

G(s, Y (s), Y (s−τ))dW (s)

with Y (t) = Φ(t) for t ∈ [t0 − τ, t0].

This equation is often written, in the Itô sense, in the shorthand form

dY (t) = F (t, Y (t), Y (t− τ))dt+G(t, Y (t), Y (t− τ))dW (t), t ≥ t0

Y (t) = Φ(t), t ∈ [t0 − τ, t0](4.2)

where τ is the constant time-lag and W (t) is a standard Wiener process. Follow-
ing the terminology used in [5], F is called the drift term and G is the diffusion
term.

The analysis of equations of the general form (4.1) is still under develop-
ment and there is comparatively little known about the qualitative behaviour
of solutions of such a general equation as t → ∞. For this reason, we choose
to restrict our attention to a simple linear test equation. Despite its simplicity,
the test equation continues to present challenges both to classical and numerical
analysis. In our test equations we take the time-lag τ = 1.

dY (t) = λY (t− 1)dt+ μY (t)dW (t), t ≥ 0

Y (t) = t+
1

2
, t ∈ [−1, 0].(4.3)

1The content and the approach in this chapter appeared as ‘Predicting changes in dynamical
behaviour in solutions to stochastic delay differential equations’ in Communications on Pure
and Applied Analysis, Volume 5, Number 2, June 2006, pp. 367-382, [71].
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We shall also refer to the stochastic delay logistic equation of the form

dY (t) = λY (t− 1)[1 + Y (t)]dt + μY (t)dW (t), t ≥ 0

Y (t) = t +
1

2
, t ∈ [−1, 0].(4.4)

Y (t) = t + 1
2

was selected as a simple bounded non-constant initial function
for our test analyses.

Equation (4.3) arises when one linearises equation (4.4) about the zero solu-
tion. Classically one uses results about the deterministic linear equation (μ = 0
in (4.3))

dY (t) = λY (t− 1)dt, t ≥ 0

Y (t) = t +
1

2
, t ∈ [−1, 0].(4.5)

to make predictions about the stability of solutions to the delay logistic equation
(μ = 0 in (4.4))

dY (t) = λY (t− 1)[1 + Y (t)]dt, t ≥ 0

Y (t) = t +
1

2
, t ∈ [−1, 0].(4.6)

Of particular interest to us is the investigation of the analogous behaviour (in
the stochastic case) of the loss of stability in the deterministic linear case and
the Hopf bifurcation in the deterministic logistic equation.

The equations (4.5,4.6) are known to have a bifurcation, where there is a
fundamental change in the qualitative behaviour of solutions, at the value λ =
−π

2
(for example, see [70] p.17–19, or [45]). Figure 4.1 illustrates this change in

behaviour for the linear equation (4.5).

Remark 4.0.1 Naturally one can express equations (4.5) and (4.6) in the form
of an integrodifferential equation with a singular kernel. In this way, delay differ-
ential equations may be used to give more general insight into analytical methods
for other classes of functional differential equation ([24, 48]).

4.1 Basic numerical methods

Numerical methods for stochastic differential equations with delays are very
under-developed. They must usually be adapted (with considerable care) from
methods either for deterministic delay differential equations, or for stochastic
ordinary differential equations. Direct analysis of methods for SDDEs has been
considered, for example, in [6, 8, 7, 10, 54, 55]. We refer the reader also to the
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works [17, 50, 51, 61] for background material for stochastic ordinary differential
equations and to the recent book [12] for a survey of methods for delay differential
equations.

In this chapter we base our discussions on the standard linear ϑ-methods for
the deterministic equations. We take ϑ = 0, 0.5, 1, corresponding to the forward
Euler, trapezium and backward Euler methods. We also use the third order
implicit Adams Moulton method.

For the deterministic equation

Y ′(t) = F (t, Y (t), Y (t− τ)), t ≥ t0

Y (t) = Φ(t), t ∈ [t0 − τ, t0]

(4.7)

the ϑ methods, for fixed h > 0, take the form

yn+1 = yn + (1 − ϑ)hFn + ϑhFn+1,

and the Adams Moulton method takes the form

yn+1 = yn +
h

12
(5Fn+1 + 8Fn − Fn−1)

where Nh = τ, yn � Y (nh), Fn = F (nh, yn, yn−N) and y−N , . . . , y0 are given
by our initial function.

For the stochastic equations we use the stochastic variant of the ϑ-methods,
often known as the semi-implicit Euler methods (see [50]). We again use ϑ =
0, 0.5, 1. ϑ = 0 gives the classical Euler-Maruyama method. These schemes are
described more fully in section 5.2.

4.2 A phenomenological approach to bifurca-

tions

4.2.1 A deterministic equation

The investigation of bifurcation problems using numerical methods is well estab-
lished. The work of [25, 26, 46] concentrates on ordinary differential equations.
For delay differential equations, we refer to the works [30, 31, 32, 63] as well
as [81]. For stochastic delay differential equations there has been little previous
work published (see [5]).

We describe here the results of simple numerical experiments that were carried
out on the deterministic equations in order to get an insight into the bifurcation
problem.The idea of the phenomenological approach is that one should be able
to detect by eye changes in the dynamical behaviour of the solutions.
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With this in mind, we present numerical solutions of the linear equation
(4.5) computed over the interval [0, 200000] using a variety of step sizes with
a range of λ values close to −π

2
which is the analytical bifurcation value for

this equation shown earlier. For each method and step size we focused on the
value of λ = λbif , where the graph of the numerical solution appeared to change.
Figure 4.2 indicates the way the solutions change over this time interval.

We seek to find λbif , the value of λ where the behaviour changes. Figure 4.2
shows that for λ = −1.4945 the solution, using forward Euler with h = 0.1,
has converged to Y (t) = 0 as t → ∞, whereas for λ = −1.4947 the solution
is oscillating with a rapidly increasing amplitude, and |Y (t)| is unbounded as
t→ ∞. The figure shows λbif ∈ [−1.4947,−1.4945] for the forward Euler method
with a step size of 0.1. By producing further diagrams with increasing lower limit
and decreasing upper limit it was possible to obtain the point at which the shape
changed with a some accuracy. Figure 4.3 shows the method approaching the
value of λ = −1.494602 for the forward Euler method with h = 0.1.

We repeated this technique for step sizes of 0.2, 0.1, 0.025 and also used the
backward Euler, trapezium and implicit Adams Moulton methods. The observed
values of λbif for each step-size are shown in Table 4.1.

Forward Backward Implicit
h Euler Euler Trapezium Adams

Moulton
0.2 -1.423148 -1.736482 -1.5838444 -1.56974848
0.1 -1.494602 -1.651587 -1.5740341 -1.57064978
0.05 -1.532109 -1.610638 -1.5716043 -1.57077707
0.025 -1.551306 -1.590575 -1.5709982 -1.57079386

Table 4.1: P-bifurcation values, λbif (Analytical value = −π
2

= −1.57079633)

Since we know the exact values −π
2

at which the true bifurcation happens,
we can calculate the errors in the apparent bifurcation values. These are given
in Table 4.2.

One can immediately see that the changes in behaviour are detected at differ-
ent parameter values, according to the choice of method, and the step length h.
We can investigate the relationship more precisely: By defining d =

∣∣λbif − (−π
2
)
∣∣

we can now plot the graphs of log(d) against log(h) for each method, and add the
least squares regression lines to our plots, see [77]. All four lines have correlation
coefficients of r = 1, confirming the excellent fits [77]. The regression analysis
gives us the following approximations for the bifurcation values of λ in terms of
h,
λbif ≈ −1.568802 + 0.730786h for forward Euler;
λbif ≈ −1.569027 − 0.835127h for backward Euler;
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Figure 4.2: Forward Euler, step size h = 0.1
Top: λ = −1.4945 > λbif

Bottom: λ = −1.4947 < λbif
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Figure 4.3: Forward Euler, step size h = 0.1
Top: λ = −1.494601 > λbif

Bottom: λ = −1.494603 < λbif

λbif ≈ −1.570785 − 0.326388h2 for the trapezium rule;
λbif ≈ −1.570790 + 0.130364h3 for the implicit Adams Moulton rule.

The plots are shown in figure 4.4 and gradients of these lines are given in
table 4.3.

The results of these simple experiments indicate that the numerical method
advances or retards the apparent bifurcation value of λ, depending upon the
method, and the error in the approximation of the exact bifurcation point varies
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Forward Backward Implicit
h Euler Euler Trapezium Adams

Moulton
0.2 0.147648 -0.165686 -0.0130481 0.00104785
0.1 0.076194 -0.080790 -0.0032378 0.00014655
0.05 0.038687 -0.039842 -0.0008080 0.00001926
0.025 0.019490 -0.019779 -0.0002018 0.00000247

Table 4.2: Error, λbif − (−π
2
).
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Figure 4.4: Variation of perturbation with step size
+ Forward Euler x Backward Euler,
o Trapezium * Implicit Adams Moulton.

as hn, where n is the order of the method. If we let h tend to zero we can obtain
the bifurcation values for each numerical scheme predicted by our technique.
Table 4.4 shows these values, which are all close to the theoretical value of −π

2
=

−1.57079633, with the this comparison improving as the order of the numerical
scheme increases.

In a sense, this should come as no surprise. In the works [37, 38, 39, 40,
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Method Gradient Order of Method
Forward Euler 0.974 1
Backward Euler 1.022 1
Trapezium 2.005 2
Adams Moulton 2.911 3

Table 4.3: Gradients of the log graphs

Method λbif

Forward Euler -1.568802
Backward Euler -1.569027
Trapezium -1.570785
Adams Moulton -1.570790

Table 4.4: Phenomenological estimates of bifurcation value

81] it was shown that suitable numerical methods applied close to this type
of bifurcation induce discrete schemes that display the same type of change in
behaviour. Indeed, it was shown that the approximation of the parameter value
where the change in behaviour occurs is to the order of the method being used.
The point of this experiment is that we have shown that one can detect this
change of behaviour quite accurately by eye, and this validates the basic idea of
a phenomenological approach to finding bifurcations that we shall apply to the
stochastic equation in the following section.

However, although the analytical results described in the previous paragraph
apply equally to certain non-linear equations such as the delay logistic equation,
the phenomenological approach is not so effective now. The logistic equation
undergoes a Hopf bifurcation at λ = −π

2
and Y (t) may oscillate for parameter

values less than −π
2

instead of becoming unbounded, as in the linear case. Fig-
ure 4.5 shows the solution, using forward Euler with stepsize h = 0.1, appearing
to converge for λ = −1.4945 and to oscillate for λ = −1.4947. It is much more
difficult to detect the differences between persistent oscillations and very slowly
growing or decaying oscillations over any finite time interval and therefore there
is considerable scope for uncertainty in predictions of the parameter value where
solution behaviour changes.

We can obtain more insight into the logistic bifurcation by considering the
amplitude of the oscillatory solutions. The variation of sup[199900,200000](|Y (t)|)
with λ is shown in figure 4.6. This figure suggests that λbif ≈ −1.49454. It is not
surprising that this value is a reasonable approximation to the value −1.494602
obtained from the linear analysis.

65



−5 0 5 10 15 20

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

Y
(t

)

−5 0 5 10 15 20

x 10
4

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

Y
(t

)

Figure 4.5: Logistic equation, forward Euler, step size = 0.1
Top: λ = −1.4945 > λbif Bottom: λ = −1.4947 < λbif?
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Figure 4.6: Logistic equation, forward Euler, step size = 0.1

4.2.2 Application to a stochastic equation

We carried out similar numerical experiments in order to gain some insight into
the behaviour of the solution to equation (4.3), the stochastic variant of equa-
tion (4.5), for values of λ close to −π

2
, the bifurcation value for the deterministic

equation. For each value of λ we used the Euler-Maruyama method

(4.8) yn+1 = yn + hλyn−N + μynΔWn

where Nh = 1 and y−N , . . . , y0 are given by our initial function, to obtain a
numerical solution in the interval [0, 200000]. Of course, when μ = 0 this method
reduces to the forward Euler method for the deterministic equation. We could
present results for other stochastic ϑ−methods but remark that no fresh insight
comes from these alternative schemes.

As shown in chapter 3, using Matlab’s random number generator it is possible
to simulate the values of dW (t) to repeat an identical Brownian motion path.
Using this single path will ensure that only λ is varied in successive trajectories.
Taking μ = 0.1 and maintaining the stepsize h = 0.1 for consistency with the
deterministic case we used the Euler-Maruyama method to obtain solutions to
equation (4.3) for values of λ close to the bifurcation value. Figure 4.7 shows six
solutions.
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Figure 4.7: Trajectories of equation (4.3) for μ = 0.1 and stepsize h = 0.1, using
the fixed initial Brownian path in every trajectory.
Left: Right:
λ = −1.4925 λ = −1.4926
λ = −1.4927 λ = −1.4928
λ = −1.4929 λ = −1.4930

As we can see from figure 4.7 the value of the parameter λ at which the so-
lution changes behaviour is not as clearly defined as in the deterministic case.
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As λ increases from -1.4925 to -1.4930 we can see that for the first trajectory
|Y (t)| → 0 very quickly as t → ∞. The second trajectory has a small interval
of small oscillations at t ≈ 110000, but again |Y (t)| → 0 as t → ∞. This oscil-
lation has a much larger amplitude during the third trajectory. This amplitude
is greatly increased in the fourth trajectory and a further period of oscillation
is evident as t approaches 200000. The final two trajectories show |Y (t)| is un-
bounded. Therefore one cannot tell from a single trajectory a precise parameter
value at which all trajectories change in behaviour.

We can also find sup |Y (t)| for t ∈ [190000, 200000], and this value was plotted
in figure 4.8 for values of λ ≈ −1.4972. This figure also shows that we can only
estimate an interval of values for λbif , with sup |Y (t)| approaching zero for a
number of values of λ between -1.492745 and -1.492695.
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Figure 4.8: Variation with λ of the maximum amplitude of Y (t) for t ∈
[190000, 200000].

However, for the stochastic equation, it is meaningless to talk about the
solution because each solution depends on a particular Brownian motion path.
Figure 4.9 shows that if we use a different Brownian motion path then the interval
containing λbif (in this case (−1.4935,−1.4930)) is disjoint from the interval
determined using the first Brownian path (which was (−1.4930,−1.4925)).

At this stage in the investigation we have used a single coefficient of noise,
μ = 0.1. Our bifurcation range with μ = 0.1 does not include the value from the
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deterministic case μ = 0, so it would be reasonable to expect that a different noise
coefficient will move the interval of bifurcation. Figure 4.10 shows trajectories
with μ = 0.3 for the same Brownian path that produced figure 4.9. For μ = 0.3
the behaviour of the solution is now in the region of (−1.4805,−1.4795).

Therefore we need to consider the simulation of solution trajectories. To take
account of the fact that different Brownian motion paths might, in principle
at least, lead to quite different qualitative behaviour of the solution, it will be
necessary to consider a large number of solution trajectories for each choice of
method, parameter values and step length so that we can see whether common
features can be deduced.

The phenomenological approach of estimating the value of λbif by eye will be
inadequate to analyse such a large number of trajectories.

Considering the results of our basic experiments in this chapter we come up
with the following objectives for this project:

1. find a better way of identifying the changes in behaviour for the stochastic
case,

2. forecast the bifurcation value for each ϑ−method,

3. forecast the bifurcation value as h varies,

4. forecast the bifurcation value as μ varies.

Finally, we can test the conjecture that the deterministic case will be extended
to the stochastic case for objectives 2 and 3.
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Figure 4.9: Trajectories of equation (4.3) for μ = 0.1 and stepsize h = 0.1, using
a second fixed Brownian path.
Left: Right:
λ = −1.4930 λ = −1.4935
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Figure 4.10: Trajectories of equation (4.3) for μ = 0.3 and stepsize h = 0.1,
applying the fixed Brownian path used for figure 4.9.
Left: Right:
λ = −1.4795 λ = −1.4805
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Chapter 5

Towards greater precision:
P-bifurcations and D-bifurcations

2 In the previous chapter we considered the use of the Euler-Maruyama method
for detecting bifurcation points in the numerical solution of (4.3). We adopted
a phenomenological approach: we sought changes in the dynamical behaviour of
solutions to the equation. In [5] the authors produced the following summarised
findings:

1. for equation (4.3) they detected changes in the dynamical behaviour of
solution trajectories as λ varies close to −π/2

2. the value of λ at which the behaviour changes varies with the step length
h and the coefficient of noise

3. it is quite hard to detect the precise parameter value at which changes have
occurred

4. they identified intervals for the parameter value λ over which the solution
trajectories changed their behaviour

5. they conjectured that there may be no precise parameter value at which
every approximate trajectory changes its behaviour.

In the context of known theory for stochastic functional differential equa-
tions (see, for example, [68, 69]) these observations are somewhat surprising.
One usually hopes to see the underlying dynamical behaviour of all the solution
trajectories to change in the same way as the parameter λ passes through some
critical value. The fact that this property does not show up in the investigations
in [5] could be caused by one of the following:

2The content and the approach in this chapter appeared as ‘Numerical Investigation of D-
bifurcations for a stochastic delay logistic equation’ in Stochastics and Dynamics, Volume 5,
Number 2 (2005), pp. 211-222, [34].
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1. it could be a property of the numerical method used (or indeed of all nu-
merical methods) that the underlying dynamics are not recreated faithfully
in the discrete problem

2. it could be a feature of the phenomenological approach to detecting changes
in behaviour. The phenomenological approach requires interpretation of
changes in dynamical behaviour of solution trajectories and a more precise
approach would be useful

3. it could be the result of the fact that the theory given in [68, 69] describes
asymptotic results as t→ ∞. Clearly this situation is not easily replicated
in numerical experiments since we must derive our results for some (large)
finite time.

The methods adopted in the current chapter are designed to address these
uncertainties.

5.1 The attraction of a D-bifurcation approach

The phenomenological approach adopted in previous work concerns the detec-
tion of subtle changes in the solution trajectories as the parameter λ varies. The
approach leads to the identification of so-called P-bifurcations. An alternative
approach is to look for changes in the underlying dynamical system through cal-
culating values of Lyapunov exponents and detecting parameter values at which
a Lyapunov exponent changes sign. This leads to the so-called D-bifurcation
method.

We do not give a full discussion of Lyapunov exponents in this thesis and for
more details we refer, for example, to [1, 2]. To define a Lyapunov exponent we
need to have a linear equation (or the linearised form of a nonlinear problem), and
we use a particular moment (in this case the first moment). A linear stochastic
delay equation has infinitely many Lyapunov exponents (see [5]) and we are
interested here in sign changes of the principal (right-most) Lyapunov exponent
in the complex plane. It turns out that this value, Λ, is simple to define in terms
of expectations of the solution:

(5.1) Λ = lim
t→∞

supE(
1

t
log |Y (t)|)

In this thesis we consider the approximation of Lyapunov exponents through
solution trajectories simulated by numerical methods applied to equations (4.3,4.4).
Therefore we are undertaking a form of numerical D-bifurcation analysis, [1].
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5.2 The numerical methods under considera-

tion

Previous results for the deterministic equation (4.5) under numerical approxima-
tion motivates us to consider a family of numerical schemes for the stochastic
equation (4.3). This approach will help us to understand how changing the nu-
merical method influences the conclusions we might draw about bifurcations.
One such family for deterministic equations is the set of linear ϑ methods. Here
we shall use their stochastic counterparts. Stochastic ϑ−methods for stochastic
ordinary differential equations are analysed in [50]. With these methods any
implicitness of the method is applied only to the drift term and this avoids the
known instability issues when implicit methods are applied directly to stochastic
differential equations. Thus the deterministic ϑ−method for solving

(5.2) y′(t) = λy(t); y(0) = α

takes the form

(5.3) yn+1 = yn + (1 − ϑ)hλyn + ϑhλyn+1; y0 = α

and is adapted for the stochastic problem

(5.4) dY (t) = λY (t)dt+ μY (t)dW (t); y(0) = α

to take the form

(5.5) Yn+1 = Yn + (1 − ϑ)hλYn + ϑhλYn+1 + μYn �Wn; Y0 = α.

Methods of this type can be called semi-implicit Euler methods. Of course, when
ϑ = 0 the method reduces to the classical Euler-Maruyama method.

These stochastic ϑ−methods can be adapted quite naturally for stochastic
delay differential equations. Thus, we shall use the schemes

(5.6) Yn+1 = Yn + (1 − ϑ)hλYn−N + ϑhλYn+1−N + μYn �Wn

and

(5.7) Yn+1 = Yn + (1 − ϑ)hλYn−N(1 + Yn) + ϑhλYn+1−N (1 + Yn+1) + μYn �Wn

(where Nh = 1 and Y−N , ..., Y0 are given by the initial function) for approx-
imating the solution trajectories of equations (4.3,4.4) respectively. We shall
concentrate on the most common choices of ϑ = 0, 1

2
, 1.
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5.3 Convergence

Before we use the three schemes described in the previous section we need to
determine if the schemes are all reliable. In [49] two types of convergence are
defined and investigated for the Euler-Maruyama (ϑ = 0) method on SDEs. We
will extend this work to also include the ϑ = 0.5 and ϑ = 1 methods. We need to
test our methods on an equation with a known solution. For this reason we will
apply our methods to a SDE rather than a SDDE3. It is known that (see [61])
the Black-Scholes equation

(5.8) dY (t) = λY (t)dt + μY (t)dW (t), Y (0) = Y0

has the solution

(5.9) Y (t) = Y0e
(λ−0.5μ2)t+μW (t)

We state the definitions given in [49]:
Strong convergence:
A method is said to have strong order of convergence γ if there exists a constant
C such that, for sufficiently small step length h, E|Yn − Y (tn)| ≤ Chγ where
Y (tn) is the exact value of the solution at gridpoint tn ∈ [0, 1].
Weak convergence:
A method is said to have weak order of convergence γ if there exists a constant
C such that, for sufficiently small step length h, |E(Yn) − E(Y (tn))| ≤ Chγ.
In [49] Higham shows that the Euler-Maruyama method has strong order of
convergence γ = 0.5 and weak order of convergence γ = 1. It is noted that if
μ = 0, giving us a deterministic equation, the strong order of convergence is 1.
We will now adapt the method of Higham to produce the orders of convergence
for all three of our ϑ-methods.

5.3.1 Strong convergence

Basically, this is concerned with the expected error at each gridpoint. We plan
to find the solution over the interval [0, 1] and to find the expected error at the
endpoint, t = 1, which we would expect to have the maximum error over the
interval. The SDE we will use is

dY (t) = 3Y (t) + 2Y (t)dW (t), Y (0) = 1

which has the solution
Y (t) = et+2W (t)

3We realise here that the convergence of a numerical method for a SDE does not guarantee
its convergence for a SDDE, just as we have already observed that a scheme converging for
an ODE doesn’t guarantee its convergence for a DDE. However, with no analytical solutions
available to test on SDDEs, this section was considered to be a compromise.
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and hence for our experiments the exact solution at t = 1 is

Y (1) = e1+2W (1)

Our MATLAB code produces 5000 discrete Brownian paths over [0, 1] with δt =
1

4000
. We use each path with the 9 step lengths h = 1

4000
, 1

2000
, 1

1000
, 1

800
, 1

500
, 1

400
, 1

250
, 1

200
, 1

100

to estimate Yn, our approximation to Y (1) for every path and for each ϑ. For
each step length we calculate the 5000 values of the absolute error |YN − Y (1)|
and estimate E|Yn − Y (tn)| by the mean of these 5000 values.

If we write
ES = |Yn − Y (tn)|

then the definition of strong convergence requires

ES ≤ Chγ

or, by taking logarithms

log(ES) ≤ γ log(h) + log(C).

We can plot the nine points of log(ES) against log(h) for each method and these
are shown in figures 5.1, 5.2 and 5.3. We can see excellent linear relationships
with all three plots, so we have added the least squares regression lines.
For ϑ = 0 the equation of the regression line is

log(ES) ≈ 0.5224 log(h) + 1.8780

which gives us
ES ≈ 6.5404h0.5224.

For ϑ = 0.5 the equation of the regression line is

log(ES) ≈ 0.5289 log(h) + 1.8999

which gives us
ES ≈ 6.6852h0.5289.

Finally for ϑ = 1 the equation of the regression line is

log(ES) ≈ 0.5396 log(h) + 1.9395

which gives us
ES ≈ 6.9553h0.5396.

All three cases imply that all our methods have a strong order of convergence
γ = 0.5. We repeat here that for the deterministic equation with μ = 0 the order
of convergence is γ = 1 for ϑ = 0, 1, and γ = 2 for ϑ = 0.5.
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Figure 5.1: Variation of log(absolute mean endpoint error) with log(step length)
for ϑ = 0

5.3.2 Weak convergence

For weak convergence we are now looking at the absolute error between the
expected value of the numerical solution and the expected true solution. We will
again use the interval [0,1] and consider the error at the end point t = 1. For
these experiments we will use the SDE

dY (t) = 2Y (t) + 0.1Y (t)dW (t), Y (0) = 1

as in [49] it is shown that E(Y (1)) = e2. If we write

EW = |E(Yn) − E(Y (1))| = |E(Yn) − e2|

then the definition of weak convergence gives us

(5.10) EW ≤ Chγ

or, by taking logarithms

(5.11) log(EW ) ≤ γ log(h) + log(C).
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Figure 5.2: Variation of log(absolute mean endpoint error) with log(step length)
for ϑ = 0.5

Before actually investigating the weak convergence of the ϑ-methods, we con-
firm that, for this equation, they converge to E(Y (1)) = e2 as h→ 0 for all values
of ϑ.

Our equation is

dY (t) = 2Y (t) + 0.1Y (t)dW (t), Y (0) = 1

and the ϑ−methods give us the scheme

yn+1 = yn + 2h[(1 − ϑ)yn + ϑyn+1] + 0.1
√

(h)ξn

where ξn ∈ N(0, 1), the standard normal distribution with zero mean and unit
standard deviation. We can rearrange the scheme to get

yn+1 =
1 + 2h(1 − ϑ)

1 − 2hϑ
yn +

√
(h)

1 − 2hϑ
ξn

If we take expectactions, noting that E[ξn] = 0, we get

E[yn+1] =
1 + 2h(1 − ϑ)

1 − 2hϑ
E[yn]
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Figure 5.3: Variation of log(absolute mean endpoint error) with log(step length)
for ϑ = 1

Hence

E[yn] =

[
1 + 2h(1 − ϑ)

1 − 2hϑ

]n

E[y0]

We have y0 = 1, yn = y(1) and nh = 1 and so

E[y(1)] =

[
1 + 2h(1 − ϑ)

1 − 2hϑ

]1/h

→ e2(1−ϑ)

e−2ϑ
, as h→ 0

= e2,

as predicted.
Once again we used MATLAB to simulate numerical solutions. For ϑ = 0, 1

we used 20000 Brownian paths with increment δt = 1
1600

to produce 20000 nu-
merical solutions for each of the 8 step lengths h = 1

800
, 1

400
, 1

200
, 1

160
, 1

100
, 1

50
, 1

25
, 1

20
.

We estimated E(Yn) for each step size by calculating the mean of the 20000
values of Yn. We can now calculate EW and plot the points for log(EW ) against
log(h). Once again we found excellent linear fits and the plots, together with the
least squares regression lines are shown in figures 5.4 and 5.5. For ϑ = 0 the
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Figure 5.4: Variation of log(weak error) with log(step length) for ϑ = 0

equation of the regression line is

log(EW ) ≈ 1.0120 log(h) + 2.6637

which gives us
ES ≈ 14.3493h1.0120.

For ϑ = 1 the equation of the regression line is

log(EW ) ≈ 0.9967 log(h) + 2.7621

which gives us
ES ≈ 15.8331h0.9967.

We can see that for ϑ = 0, 1 both methods have weak order of convergence γ = 1.
Initial experiments using the same scheme with ϑ = 0.5 were inconclusive.

However, when we increased the number of Brownian paths to 400000 and added
the five additional step lengths h = 1

1600
, 1

16
, 1

10
, 1

8
, 1

4
we produced the points shown

in figure 5.6. It was noted that the six larger step lengths produce an excellent
linear fit given by

log(EW ) ≈ 1.9460 log(h) + 1.5428
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Figure 5.5: Variation of log(weak error) with log(step length) for ϑ = 1

or
EW ≈ 4.6777h1.9460,

showing weak order of convergence γ ≈ 2. The regression line has been added
to the figure. The weak error EW for the smaller step lengths appear very small
and fairly constant.

Further discussion on order of stochastic convergence can be found in [67, 51].
In conclusion, the convergence experiments in this section indicate that we

are justified in using all three stochastic ϑ−methods in our future work. For
further analysis to the convergence of ϑ−methods in particular we refer the
reader to [50, 60, 9].

5.4 Methodology

In the following section we shall give details of our numerical results from running
experiments. Our approach is as follows: we fix values for λ and μ and, for a fixed
value of ϑ ∈ [0, 1], we choose a fixed step length h = 1/N for some natural number
N . Using Matlab (and its built-in random number generator), we simulate a
large number of solution trajectories each for the same initial function and each
solution is calculated over [0, T ] for some large value of T . For either the linear
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Figure 5.6: Variation of log(weak error) with log(step length) for ϑ = 0.5

equation (4.3) or the nonlinear equation (4.4), for each solution trajectory Y we

can calculate S = sup[T−ε,T ](|Y |) and we use this value to calculate L = log(S)
T

which, for the linear equation at least, we regard as an estimate for the (local)
Lyapunov exponent ([80]) based on the single solution trajectory Y . Thus, over
a large number of simulations, we obtain, for each trajectory, a value of L. This
gives us a large sample of estimates of the Lyapunov exponent and we consider the
probability distribution of these values L. Of course, for the nonlinear equation
(4.4) the limit given in (5.1) does not necessarily exist and we are not estimating
a Lyapunov exponent, but instead the values of L that we calculate give us
information about the dynamical behaviour of each solution trajectory.

We are interested in the following questions:

1. Can we identify the probability distribution of L values with some degree
of confidence?

2. Can we detect how the values of ϑ, h, λ, μ, ε influence the distribution of L
values?

3. Can we use the insights gained to give a clearer statement about stochastic
bifurcations and to resolve some of the uncertainties identified in the P-
bifurcation approach from [5].
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5.5 Experimental results

Using the notation of the previous section, we fix T = 5000. We need to choose
ε to enable us to estimate the lim sup in (5.1) so we know ε must be positive.
Experimental work showed that ε = 50h gave reliable results. We are then able
to present some results for various values of ϑ, h, λ, μ. In each case we report the
least, the greatest, the mean and the standard deviation of the estimates of the
Lyapunov exponent for the 500 solution paths we calculated. We produced data
files for L using the following parameter values:

1: For the linear equation (4.3) we used 51 values of λ from -1.80 to -1.30 in
steps of 0.01. (This range of values is roughly centred on −π

2
). For each value

of λ we took μ =0, 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3. For each combination we
applied the seven stepsizes h =0.5, 0.25, 0.2, 0.125, 0.1, 0.0625 and 0.05. Finally
we used three values of ϑ = 0, 0.5 and 1. Consequently, we compiled 3x51x7x7
= 7497 values of L.

2: For the logistic equation (4.4) we restricted our experiments to μ =0.1
and h =0.1 only and took our range for λ as -1.85 to -1.45. We added extra
linear experiments in order to make a comparison between the linear and logistic
results at these parameter values. For the reasons stated in the following chapter
we did not think it necessary to produce the same comprehensive set of results
for this logistic equation.

Remark 5.5.1 We considered carefully our choices of T and ε and the number
of solution paths. The natural changes one might make to ε and to the number
of solution paths made little difference to our results and the values we used are a
compromise between speed of calculation and the need for a large enough sample
to provide consistent results. We also repeated our experiments for different finite
values of T without significant changes in our conclusions. The choice of a value
for T provides an interesting insight into the difference between numerical and
analytical approaches. The analytical approach describes asymptotic behaviour
of solutions as T → ∞. However if a very large value of T is chosen then the
values of the solution (even after all reasonable attempts at scaling) may be
either zero or infinite (to machine precision). In other words, the limitations
on the sizes of number (both large and small) that can be recorded accurately
by the computer becomes a restriction on the ability to estimate accurately
the value L for very large T . We believe that this is an important (and often
neglected) factor in the use of simulations to show long term dynamical behaviour
of solutions to equations. It was a factor observed previously in [79] who adopted
a similar scaling formula for the calculation of approximate Lyapunov exponents
that avoid these difficulties. However our motivation is to see how far numerical
schemes reflect the underlying dynamics of the problem and therefore it is not
our primary purpose simply to find a more efficient estimate for the values of
Λ. To re-emphasise, the values of L describe the behaviour of solutions over
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[0, T ] while the value of Λ provides information about the theoretical behaviour
of solutions as T → ∞. By considering the distribution of values of L one can
deduce whether or not they can be used to give a reliable indication of the value
of Λ.

We first need to consider the consistency of the sets of 500 values of L at each
parameter setting. For the linear equation and the case ϑ = 0, h = 0.1, μ = 0.1
we have drawn histograms of the values of L for λ = −1.65,−1.49,−1.34. In
all three cases we get bell-shaped curves. We have added normal distribution
curves, with the same mean and standard deviation, to these histograms and we
can see that there is a very close fit. These histograms are shown as figure 5.7.
The Kolmogorov-Smirnov statistical test can be used to test if the distribution
of L fits a normal distribution, [77]. The results of applying this test, using the
SPSS statistical package, are given in table 5.1. A significance value of less than
0.05 would give evidence that the distributions are not normal. All three of our
histograms give p-values greater than 0.200 and hence we conclude that there is
no evidence to say that our distributions of L are not normal. Similar results
were obtained for a random selection of other parameter settings, but not all
7497 cases were considered.

Kolmogorov-Smirnova normality test
λ Statistic degrees of freedom Significance

-1.65 0.020 500 0.200∗

-1.49 0.025 500 0.200∗

-1.34 0.019 500 0.200∗

Table 5.1: SPSS table for normal distribution fit of the histograms
∗ This is a lower bound of the true significance,
a Lilliefors significance correction.

Looking at the range of values of L for the three histograms we should not be
too surprised at these values. At λ = −1.65 the phenomenological experiments
indicated that the solutions to the linear equation becomes unbounded. All 500
results of L at this value of λ are positive. At λ = −1.34 the phenomenological
experiments indicated that the solutions to the linear equation converge to zero.
All 500 results of L at this value of λ are negative. Finally, the phenomenological
experiments put λ = −1.49 into a region of uncertainty and the values of L
span zero, indicating that some solutions become unbounded and some converge,
depending upon the Brownian path used. The mean value of L is -0.001328, very
close to zero.

The three tables 5.2, 5.3 and 5.4 give examples of our data collected for the
linear equation (4.3) for ϑ = 0, 0.5 and 1 respectively. The tables all use a stepsize
of h = 0.1 and noise coefficient μ = 0.1. The values in the table are given to
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Figure 5.7: Histogram of the 500 values of L for ϑ = 0, μ = 0.1 and stepsize
h = 0.1
Top:λ = −1.65
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Bottom: λ = −1.34
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6 decimal places, but we note that the data files were produced in MATLAB’s
long format mode to 15 decimal places.

All three tables 5.2, 5.3 and 5.4 show fairly similar results. The values of
Lmin, Lmean and Lmax all appear to decrease at a similar steady rate for all three
values of ϑ. There is also very little variation in the standard deviation of L
across the values of λ and ϑ, ranging approximately from -0.0007 at λ = −1.3
to -0.0006 at λ = −1.8. However, this is not a constant increase as λ increases.
Figure 5.8 clearly shows the variation of the standard deviation of L, confirming
very little variation.
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Figure 5.8: Variation of the standard deviation of L for h = 0.1, μ = 0.1
ϑ = 0: Blue ϑ = 0.5: Red ϑ = 1: Green

We now consider the effect on L of varying the step length. We use the value
λ = −1.57 and keep μ at 0.1. Tables 5.5, 5.6 and 5.7 to give the results for the
Euler Maruyama, Semi-implicit trapezium and Euler rules respectively.

We note at this point that tables 5.5, 5.6 and 5.7 show no particular pattern
in the values of the stardard deviations as h varies.

Finally in this chapter we consider the effect on L of varying the noise co-
efficient. We again use the value λ = −1.57 and keep h at 0.1. Tables 5.8, 5.9
and 5.10 give the results for the Euler Maruyama, Semi-implicit trapezium and
Euler rules respectively.
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λ Lmin Lmean Lmax LStandard deviation

-1.80 0.125696 0.127203 0.129467 0.000636
-1.79 0.121622 0.123360 0.125211 0.000614
-1.78 0.117992 0.119548 0.121777 0.000577
-1.77 0.113750 0.115720 0.117549 0.000591
-1.76 0.110093 0.111871 0.113710 0.000607
-1.75 0.106262 0.107970 0.109446 0.000598
-1.74 0.102413 0.104070 0.105727 0.000623
-1.73 0.097770 0.100131 0.102324 0.000593
-1.72 0.094544 0.096156 0.097865 0.000572
-1.71 0.090348 0.092147 0.094711 0.000621
-1.70 0.086109 0.088214 0.090290 0.000607
-1.69 0.082100 0.084158 0.085716 0.000617
-1.68 0.078722 0.080134 0.081711 0.000559
-1.67 0.074561 0.076060 0.077643 0.000596
-1.66 0.068938 0.071973 0.073805 0.000628
-1.65 0.066243 0.067877 0.069558 0.000599
-1.64 0.061837 0.063713 0.065542 0.000618
-1.63 0.057768 0.059592 0.061584 0.000589
-1.62 0.053654 0.055401 0.057312 0.000611
-1.61 0.049075 0.051211 0.052994 0.000636
-1.60 0.045156 0.046968 0.048924 0.000636
-1.59 0.040832 0.042669 0.044500 0.000623
-1.58 0.036722 0.038417 0.040472 0.000639
-1.57 0.032551 0.034093 0.036211 0.000631
-1.56 0.027892 0.029741 0.032026 0.000658
-1.55 0.023601 0.025392 0.027206 0.000619
-1.54 0.018852 0.021045 0.022701 0.000633
-1.53 0.014776 0.016588 0.018400 0.000655
-1.52 0.010178 0.012110 0.014359 0.000628
-1.51 0.005969 0.007695 0.009414 0.000639
-1.50 0.001550 0.003210 0.005319 0.000643
-1.49 -0.003188 -0.001328 0.001100 0.000658
-1.48 -0.007740 -0.005871 -0.003872 0.000643
-1.47 -0.012154 -0.010492 -0.008343 0.000627
-1.46 -0.016888 -0.015106 -0.013391 0.000633
-1.45 -0.022140 -0.019750 -0.017955 0.000636
-1.44 -0.026084 -0.024429 -0.022442 0.000663
-1.43 -0.031114 -0.029131 -0.027093 0.000638
-1.42 -0.035916 -0.033894 -0.031982 0.000686
-1.41 -0.040636 -0.038619 -0.036827 0.000684
-1.40 -0.045154 -0.043385 -0.041458 0.000654
-1.39 -0.050181 -0.048274 -0.046355 0.000643
-1.38 -0.054813 -0.053148 -0.051360 0.000642
-1.37 -0.060171 -0.058072 -0.055989 0.000672
-1.36 -0.065142 -0.062943 -0.060652 0.000658
-1.35 -0.070033 -0.067943 -0.066053 0.000679
-1.34 -0.074742 -0.072934 -0.070458 0.000684
-1.33 -0.080270 -0.078028 -0.075960 0.000657
-1.32 -0.085634 -0.083084 -0.081031 0.000650
-1.31 -0.090096 -0.088245 -0.085680 0.000701
-1.30 -0.095153 -0.093354 -0.090911 0.000666

Table 5.2: L values for h = 0.1, μ = 0.1, ϑ = 0
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λ Lmin Lmean Lmax LStandard deviation

-1.80 0.094212 0.096078 0.098069 0.000626
-1.79 0.090461 0.092120 0.093989 0.000600
-1.78 0.086519 0.088170 0.090245 0.000597
-1.77 0.082166 0.084174 0.086281 0.000597
-1.76 0.078209 0.080156 0.082316 0.000598
-1.75 0.074231 0.076072 0.077923 0.000622
-1.74 0.070114 0.071966 0.073960 0.000622
-1.73 0.065739 0.067858 0.070242 0.000616
-1.72 0.062022 0.063689 0.066115 0.000627
-1.71 0.057747 0.059541 0.061628 0.000625
-1.70 0.053523 0.055394 0.057368 0.000618
-1.69 0.049490 0.051209 0.053097 0.000631
-1.68 0.045191 0.047022 0.048744 0.000620
-1.67 0.041138 0.042756 0.044575 0.000599
-1.66 0.036702 0.038469 0.040719 0.000614
-1.65 0.032254 0.034219 0.035982 0.000624
-1.64 0.028143 0.029867 0.031920 0.000637
-1.63 0.023922 0.025516 0.027158 0.000618
-1.62 0.019345 0.021132 0.023198 0.000631
-1.61 0.014952 0.016751 0.018489 0.000610
-1.60 0.010644 0.012383 0.014320 0.000594
-1.59 0.005962 0.007908 0.009949 0.000620
-1.58 0.001157 0.003460 0.005791 0.000660
-1.57 -0.003083 -0.001092 0.000744 0.000641
-1.56 -0.007360 -0.005620 -0.003231 0.000635
-1.55 -0.012035 -0.010137 -0.008254 0.000644
-1.54 -0.016631 -0.014719 -0.012811 0.000640
-1.53 -0.021334 -0.019322 -0.017068 0.000640
-1.52 -0.026138 -0.023987 -0.022032 0.000614
-1.51 -0.030700 -0.028672 -0.026152 0.000650
-1.50 -0.034971 -0.033385 -0.031606 0.000612
-1.49 -0.039650 -0.038079 -0.036292 0.000612
-1.48 -0.044789 -0.042862 -0.041242 0.000648
-1.47 -0.049391 -0.047600 -0.045760 0.000639
-1.46 -0.055027 -0.052430 -0.050497 0.000669
-1.45 -0.059569 -0.057287 -0.055127 0.000627
-1.44 -0.064067 -0.062176 -0.060003 0.000669
-1.43 -0.069160 -0.067024 -0.064703 0.000655
-1.42 -0.074139 -0.072020 -0.070262 0.000674
-1.41 -0.078877 -0.076987 -0.074741 0.000647
-1.40 -0.083900 -0.082015 -0.079894 0.000682
-1.39 -0.088938 -0.087059 -0.084840 0.000684
-1.38 -0.094348 -0.092098 -0.090305 0.000669
-1.37 -0.099259 -0.097252 -0.095216 0.000712
-1.36 -0.104802 -0.102433 -0.100083 0.000697
-1.35 -0.109357 -0.107604 -0.105410 0.000681
-1.34 -0.114909 -0.112802 -0.110494 0.000680
-1.33 -0.119989 -0.118048 -0.115331 0.000677
-1.32 -0.125559 -0.123368 -0.121536 0.000674
-1.31 -0.130544 -0.128733 -0.126832 0.000653
-1.30 -0.136436 -0.134108 -0.132036 0.000713

Table 5.3: L values for h = 0.1, μ = 0.1, ϑ = 0.5
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λ Lmin Lmean Lmax LStandard deviation

-1.80 0.063275 0.065329 0.067415 0.000601
-1.79 0.059346 0.061138 0.063047 0.000629
-1.78 0.055302 0.056933 0.058531 0.000614
-1.77 0.050758 0.052655 0.055021 0.000610
-1.76 0.046678 0.048380 0.050480 0.000607
-1.75 0.042383 0.044137 0.046021 0.000635
-1.74 0.038156 0.039802 0.041698 0.000623
-1.73 0.033310 0.035497 0.037811 0.000603
-1.72 0.029403 0.031161 0.033175 0.000618
-1.71 0.024575 0.026833 0.028436 0.000603
-1.70 0.020426 0.022424 0.024566 0.000608
-1.69 0.016204 0.017980 0.019871 0.000592
-1.68 0.011701 0.013548 0.016302 0.000632
-1.67 0.007071 0.009076 0.010990 0.000648
-1.66 0.002679 0.004584 0.006735 0.000644
-1.65 -0.002031 0.000028 0.001969 0.000655
-1.64 -0.006274 -0.004455 -0.002459 0.000643
-1.63 -0.010920 -0.009046 -0.007175 0.000662
-1.62 -0.015825 -0.013675 -0.011893 0.000654
-1.61 -0.020576 -0.018294 -0.016273 0.000645
-1.60 -0.024579 -0.022968 -0.021100 0.000640
-1.59 -0.029464 -0.027656 -0.025100 0.000655
-1.58 -0.034453 -0.032372 -0.030495 0.000633
-1.57 -0.039270 -0.037144 -0.034987 0.000667
-1.56 -0.044396 -0.041870 -0.039304 0.000636
-1.55 -0.048557 -0.046663 -0.044615 0.000612
-1.54 -0.053737 -0.051468 -0.049301 0.000635
-1.53 -0.058034 -0.056328 -0.053986 0.000644
-1.52 -0.063040 -0.061211 -0.058626 0.000653
-1.51 -0.067981 -0.066201 -0.063764 0.000657
-1.50 -0.073253 -0.071171 -0.069049 0.000653
-1.49 -0.078185 -0.076134 -0.074247 0.000661
-1.48 -0.082835 -0.081073 -0.079490 0.000639
-1.47 -0.088188 -0.086150 -0.083954 0.000659
-1.46 -0.093395 -0.091190 -0.089378 0.000675
-1.45 -0.098941 -0.096357 -0.094304 0.000682
-1.44 -0.103377 -0.101528 -0.099790 0.000685
-1.43 -0.108852 -0.106717 -0.104828 0.000675
-1.42 -0.114175 -0.111885 -0.109738 0.000665
-1.41 -0.119479 -0.117120 -0.115102 0.000657
-1.40 -0.124474 -0.122438 -0.120428 0.000683
-1.39 -0.129823 -0.127792 -0.125205 0.000687
-1.38 -0.134978 -0.133090 -0.130805 0.000653
-1.37 -0.140284 -0.138473 -0.136256 0.000718
-1.36 -0.145886 -0.143916 -0.141710 0.000636
-1.35 -0.151404 -0.149448 -0.146932 0.000670
-1.34 -0.156885 -0.154941 -0.153179 0.000666
-1.33 -0.162351 -0.160524 -0.158463 0.000640
-1.32 -0.168096 -0.166081 -0.163768 0.000679
-1.31 -0.173361 -0.171697 -0.169692 0.000650
-1.30 -0.179505 -0.177375 -0.174561 0.000711

Table 5.4: L values for h = 0.1, μ = 0.1, ϑ = 1
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h Lmin Lmean Lmax LStandard deviation

0.5 0.138783 0.140232 0.138027 0.000524
0.25 0.076646 0.078879 0.080973 0.000583
0.2 0.062613 0.064688 0.066410 0.000599
0.125 0.040349 0.042078 0.044135 0.000618
0.1 0.032551 0.034093 0.036211 0.000631
0.0625 0.020187 0.021782 0.024462 0.000660
0.05 0.015351 0.017638 0.019735 0.000657

Table 5.5: L values for λ = −1.57, μ = 0.1, ϑ = 0

h Lmin Lmean Lmax LStandard deviation

0.5 -0.036212 -0.034328 -0.032719 0.000569
0.25 -0.010057 -0.008390 -0.006546 0.000630
0.2 -0.007139 -0.005221 -0.002734 0.000671

0.125 -0.004045 -0.001839 0.000095 0.000649
0.1 -0.003083 -0.001092 0.000744 0.000641

0.0625 -0.001971 -0.000242 0.002589 0.000689
0.05 -0.001944 -0.000064 0.001631 0.000643

Table 5.6: L values for λ = −1.57, μ = 0.1, ϑ = 0.5

h Lmin Lmean Lmax LStandard deviation

0.5 -0.240643 -0.238684 -0.236666 0.000699
0.25 -0.103207 -0.101423 -0.099657 0.000636
0.2 -0.080953 -0.078734 -0.076817 0.000641

0.125 -0.048771 -0.047080 -0.044789 0.000652
0.1 -0.039270 -0.037144 -0.034987 0.000669

0.0625 -0.024748 -0.022632 -0.020262 0.000676
0.05 -0.020067 -0.017942 -0.015648 0.000659

Table 5.7: L values for λ = −1.57, μ = 0.1, ϑ = 1
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μ Lmin Lmean Lmax LStandard deviation

0.00 -0.037800 -0.037800 -0.037800 0.000000
0.05 -0.038820 -0.037779 -0.036694 0.000320
0.10 -0.039270 -0.037144 -0.034987 0.000669
0.15 -0.038895 -0.036017 -0.033175 0.000961
0.20 -0.038327 -0.034502 -0.030356 0.001333
0.25 -0.037770 -0.032522 -0.027188 0.001599
0.30 -0.035337 -0.030171 -0.024711 0.001905

Table 5.8: L values for λ = −1.57, h = 0.1, ϑ = 1

μ Lmin Lmean Lmax LStandard deviation

0.00 -0.001892 -0.001892 -0.001892 0.000000
0.05 -0.002551 -0.001694 -0.000551 0.000306
0.10 -0.003083 -0.001092 0.000744 0.000641
0.15 -0.002730 -0.000074 0.002629 0.000976
0.20 -0.002713 0.001308 0.005354 0.001272
0.25 -0.001366 0.003008 0.007558 0.001498
0.30 0.000093 0.005142 0.010712 0.001899

Table 5.9: L values for λ = −1.57, h = 0.1, ϑ = 1

μ Lmin Lmean Lmax LStandard deviation

0.00 0.033362 0.033362 0.033362 0.000000
0.05 0.032736 0.033545 0.034341 0.000305
0.10 0.032551 0.034093 0.036211 0.000631
0.15 0.032097 0.035027 0.037929 0.000983
0.20 0.032977 0.033383 0.033755 0.000126
0.25 0.034509 0.038014 0.043767 0.001512
0.30 0.033907 0.039933 0.046412 0.001838

Table 5.10: L values for λ = −1.57, h = 0.1, ϑ = 1
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The tables 5.8, 5.9 and 5.10 clearly indicate a linear relationship between the
standard deviation of the 500 values of L and the noise coefficient μ. Figure 5.9
highlights this linear relationship. It appears that doubling the noise coefficient
will double the spread of values for the 500 results of L, which is not surprising.
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Figure 5.9: Variation of Lstandard deviation at different noise coefficients for h = 0.1,
λ = −1.57
ϑ = 0: * ϑ = 0.5: + ϑ = 1: o

5.6 Review of conclusions

Our motivation in this initial investigation has been to consider (using a more
precise approach than that adopted in the paper [5]) how reliably numerical
schemes perform when they are used to predict changes in the dynamical be-
haviour of solutions to stochastic delay differential equations.

We can draw the following conclusions, with reference to the questions in the
chapter’s introduction.

1. The different numerical schemes we have tried for varying values of ϑ give
a consistent story but the detailed results are different for each choice of
scheme, ϑ, step length, h, and noise coefficient μ.
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2. Different (finite) values of T lead to essentially the same results. Theoret-
ical results about the asymptotic behaviour as t → ∞ do not necessarily
give accurate information about what will be seen in a solution over a finite
time interval.

At the beginning of the chapter we stated that our principal concern is to find
out whether numerical methods can be relied upon to give accurate and pre-
cise information about changes in the qualitative behaviour of the solutions to
equations. In our previous work we showed that this was indeed the case for de-
terministic equations undergoing a bifurcation. However this chapter has shown
clearly that insights gained from numerical simulations of stochastic equations
should be treated with much greater caution. In particular, one must not expect
to draw reliable conclusions about the long-term dynamical behaviour of solu-
tions to a stochastic delay differential equation using results from simulations
based on a single numerical scheme and step length over a finite interval.
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Chapter 6

The search for a formula: I

4 The objective of this chapter is to start the development of a formula to predict
the parameter relationships at the bifurcation of the numerical solution to our
test equation. This proves to be quite a complex task and it will occupy this
and the following two chapters as we refine our approach. Here we aim to find a
formula, using all three ϑ-methods, for L, our estimate of the lyapunov exponent,
in terms of the parameter λ for a particular step size. We will then solve the
equation L = 0 to compute a D-bifurcation value for λ. We can then compare
this value with the P-bifurcation value we produced in chapter 4.

6.1 A possible linear relationship

We continue to take T = 5000 which is sufficiently large to give consistent results
without being so large that the experiments take excessive time and take ε so
that for our experiments we took the final 50 values of Yn for calculating S.
This value of ε also gave reliable results. The graphs of the minimum, mean and
maximum values of L for the linear and logistic equations, using h = 0.1 and
μ = 0.1, are shown for ϑ = 0, 0.5, 1 in figures 6.1, 6.2.

It can be seen that the graphs for the linear equations produce curves which
are extremely close to straight lines. The logistic equations give the same approx-
imate straight lines for λ > λbif . For values of λ < λbif the graphs of L against λ
for the logistic equations become unpredictable. This change in the distribution
of L for the two equations is not surprising. A condition for the linearisation
of the logistic equation is Y (t) ≈ 0, and this condition no longer holds beyond
the bifurcation point (where |Y (t)| increases). For both the linear and logistic
equation we find that |Y (t)| → 0 for λ > λbif so we would expect the values of L
to be very close for this region. However, for λ < λbif |Y (t)| → ∞ for the linear

4The content and the approach in the next two chapters appeared as ‘Predicting changes in
dynamical behaviour in solutions to stochastic delay differential equations’ in Communications
on Pure and Applied Analysis, Volume 5, Number 2, June 2006, pp. 367-382, [71].
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Figure 6.1: Minimum, mean and maximum values of L, h = 0.1, μ = 0.1
Top: ϑ = 0
Middle: ϑ = 0.5
Bottom: ϑ = 1
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Figure 6.2: Minimum, mean and maximum values of L, μ = 0.1
Top: ϑ = 0, h = 0.05
Bottom: ϑ = 0, h = 0.01

equation, but oscillates for the logistic equation. Different distributions of L can
now be expected. As this is an initial search for a formula we will restrict most
of the remaining work in this chapter to a stepsize h = 0.1 and noise coefficient
μ = 0.1. However, we will conclude the chapter with a collection of graphs that
demonstrate the generalised results with a mix of stepsize and noise coefficients.

Following the comments on the linearisation of the logistic equation
and the clear indication in figures 6.1, 6.2 of the lack of uniformity of
the positive L values we will restrict all the further work in this thesis
to the linear equation.

We converted the MATLAB data files into SPSS1 files for our statistical
analysis. Using SPSS we can calculate the least squares regression lines for the

1Statistical Package for Social Scientists, a commercial statistics computer package for
analysing data, marketed by SPSS inc.
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ϑ Regression line R2

Min L = −0.431λ− 0.646 0.999
0 Mean L = −0.431λ− 0.644 1

Max L = −0.430λ− 0.640 0.999
Min L = −0.432λ− 0.683 0.999

0.5 Mean L = −0.432λ− 0.680 0.999
Max L = −0.432λ− 0.678 0.999
Min L = −0.456λ− 0.755 0.999

1 Mean L = −0.455λ− 0.752 0.999
Max L = −0.454λ− 0.750 0.999

Table 6.1: Equations of regression lines of L against λ

ϑ D-bifurcation P-bifurcation
Min Mean Max

0 -1.4988 -1.4942 -1.4884 -1.4946
0.5 -1.5810 -1.5741 -1.5694 -1.5740
1 -1.6557 -1.6527 -1.6520 -1.6516

Table 6.2: Linear regression values of λbif

linear equations in the form L = aλ + b for the minimum, mean and maximum
lines for each value of ϑ. SPSS will give us the values of a and b, and the
correlation coefficient R. We can also calculate the coefficient of determination,
R2, a measure of the reliability of the straight line fits, [77]. R2 is known to vary
from 0 to 1, with 1 giving a perfect fit. The equations are given in table 6.1. All
nine equations have an R2 value of at least 0.999, which indicate an excellent fit.
An example of the lines is shown in figure 6.3.

We are detecting the parameter value at which the Lyapunov exponent changes
sign. We can use our least squares equations to estimate the values of λ at which
L changes sign and compare these values with the values of λbif found earlier for
our P-bifurcations. Table 6.2 shows these values.

Table 6.2 shows that the D-bifurcation estimates correspond very closely to
the P-bifurcations found in section 4.2 for the deterministic equation. However,
we would not expect equal values for the P- and the D-bifurcations. The dif-
ferences observed reflect the fact that λbif will depend upon the magnitude of
the coefficient of the multiplicative noise as well as on the choice of numeri-
cal scheme and step length. We can see from the figures that, for smaller step
lengths, λbif becomes closer to −π

2
as in the deterministic case. We have μ = 0

for the P-bifurcations in section 4.2 and μ = 0.1 for the D-bifurcations here.
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Figure 6.3: Mean L, with the linear regression line, for μ = 0.1
Top: ϑ = 0
Middle: ϑ = 0.5
Bottom: ϑ = 1
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6.2 Further graphs

We finish this chapter with a collection of further graphs, figure 6.4, showing the
near linear relationship between �L and λ for some different parameter values.
These graphs show consistent results across a range of parameter values.

6.3 Conclusions

In this chapter we have clearly seen that the value of L depends upon λ in a
predictable way, and that a linear relationship gives us a good initial approxima-
tion. We have also shown that the solution of the equation L(λ) = 0 will provide
us with a good estimate of the bifurcation value of λ.
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Figure 6.4: Mean L against λ with the equations of the regression lines
Top: ϑ = 0.5, μ = 0.0, h = 0.5 Line L = −0.428227λ− 0.710665
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Chapter 7

The search for a formula: II

5 The graphs in the previous chapter showed us that there is a relationship
between Lmean and λ. Our first attempts to find a formula for this relationship,
using a linear fit, gave us reasonable results. In this chapter we aim to improve
upon this initial approach.

7.1 Quadratic relationships

7.1.1 Variation of L with λ

Fixing h

A visual inspection of the regression lines indicates that the data follow a graph
that is very slightly concave upwards. We will continue to use the statistical
package SPSS to analyse our data. Using regression analysis we found that the
mean values of L appear to follow a near perfect quadratic curve. We used
SPSS to find the least squares quadratic formulae for the cases μ = 0, 0.1,
0.2, 0.3 with h = 0.1 for all three of our ϑ values. These formulae are given
in table 7.1, together with their coefficients of determination, R2. All twelve
coefficients R2 = 1, confirming our perfect fits. We can show these fits with Lmean

plotted as points, with the regression curves superimposed, as figures 7.1, 7.2.
Figure 7.1 shows a series of graphs for a fixed ϑ value and varying μ. We can

see that changes in μ move the curves in very small increments to the right. In
fact, the curves are so close that they are almost identical. We can also show the
curves for fixed μ and varying ϑ. These curves are shown in figure 7.2 and we
can see that these curves are further apart. By completing and comparing both
sets of figures we can see that all twelve curves are close to being parallel.

5Much of the content and the approach in this chapter appeared as ‘Using approximations
to Lyapunov exponents to predict changes in dynamical behaviour in numerical solutions to
stochastic delay differential equations’, Algorithms for Approximation, [35].
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ϑ μ Quadratic equation R2

0 0.0 L = −0.13619λ2 − 0.86265λ− 0.98525 1
0.1 L = −0.13558λ2 − 0.86002λ− 0.98189 1
0.2 L = −0.13415λ2 − 0.85355λ− 0.97303 1
0.3 L = −0.13183λ2 − 0.84286λ− 0.95835 1

0.5 0.0 L = −0.14166λ2 − 0.89887λ− 1.06387 1
0.1 L = −0.14111λ2 − 0.89647λ− 1.06065 1
0.2 L = −0.13883λ2 − 0.88725λ− 1.04941 1
0.3 L = −0.13498λ2 − 0.87179λ− 1.03078 1

1 0.0 L = −0.14998λ2 − 0.94961λ− 1.15914 1
0.1 L = −0.14974λ2 − 0.94805λ− 1.15638 1
0.2 L = −0.14903λ2 − 0.94349λ− 1.14832 1
0.3 L = −0.14630λ2 − 0.93113λ− 1.13139 1

Table 7.1: Quadratic regression curves, with h = 0.1.

With our dynamical approach for finding D-bifurcations we need to find the
parameter values at which L = 0. For our first tabulated case, ϑ = 0, h = 0.1,
μ = 0, we need to solve the equation

L = −0.13619λ2 − 0.86265λ− 0.98525 = 0
to find the λ values at bifurcation. This gives us two roots, -4.8392 and -1.4950,
and from observations of the shape of the curves we clearly need the greater
root, −1.4950. Repeating for the other eleven equations we can summarise our
results in table 7.2. We have added the corresponding P-bifurcation values for
the deterministic equation to this table. We would expect the P-bifurcation
values to be close to the D-bifurcation values at μ = 0. Inspection of the table
confirms this fact.

Fixing μ

If we now keep ϑ = 0 and set μ = 0.1 we can find the variation in L with different
values of stepsize h = 0.5, 0.25, 0.2, 0.125, 0.1, 0.0625, 0.05. Using SPSS we can
find the seven quadratic regression curves, and these are given in table 7.3. The
coefficients of determination R2 = 1, to three decimal places, in all seven cases,
showing perfect fits.

The values of L are plotted for each h in figure 7.3, with the regression curves
superimposed. The curves are clearly close to parallel.

Solving the equations L = 0, and taking the relevant root, we can find the
value of λ at the D-bifurcations.The values, together with the P-bifurcation val-
ues for the deterministic equation (μ = 0) found by the techniques in chapter 4,
are shown in table 7.4.

Clearly we would not expect the same values for the P-bifurcation and the
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Quadratic D-bifurcation P-bifurcation
ϑ μ value of λ value of λ
0 0.0 -1.4950 -1.4946

0.1 -1.4932
0.2 -1.4879
0.3 -1.4727

0.5 0.0 -1.5740 -1.5740
0.1 -1.5722
0.2 -1.5670
0.3 -1.5584

1 0.0 -1.6513 -1.6516
0.1 -1.6495
0.2 -1.6441
0.3 -1.6352

Table 7.2: Quadratic regression values of λbif , with h = 0.1.

h Quadratic equation R2

0.5 L = −0.118576λ2 − 0.745596λ− 0.738039 1
0.25 L = −0.127790λ2 − 0.809591λ− 0.877140 1
0.2 L = −0.129967λ2 − 0.824641λ− 0.909579 1
0.125 L = −0.134155λ2 − 0.851038λ− 0.963252 1
0.1 L = −0.135577λ2 − 0.860018λ− 0.981888 1
0.0625 L = −0.138171λ2 − 0.875473λ− 1.012050 1
0.05 L = −0.138904λ2 − 0.880319λ− 1.022054 1

Table 7.3: Lmean against λ with μ = 0.1, ϑ = 0.

D-bifurcation P-bifurcation
h value of λ value of λ
0.5 -1.2308 -1.2361
0.25 -1.3872 -1.3892
0.2 -1.4214 -1.4232
0.125 -1.4748 -1.4763
0.1 -1.4932 -1.4946
0.0625 -1.5212 -1.5226
0.05 -1.5307 -1.5321

Table 7.4: Quadratic regression values of λbif , ϑ = 0, μ = 0.1.
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Figure 7.1: Mean L, with the quadratic regression curves for μ = 0, 0.1, 0.2, 0.3
left to right on each graph, with h = 0.1
Top: ϑ = 0
Middle: ϑ = 0.5
Bottom: ϑ = 1
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D-bifurcation (we have different values for μ), but we would expect close values.
The table confirms this.

7.1.2 Variation of L with h

Finally we can investigate how Lmean varies with h for fixed λ.
We already know that for a fixed μ and h we obtain an excellent fit for Lmean

as a quadratic function of λ. We can now investigate the fit for Lmean if we fix
λ and μ. We need to begin by determining an appropriate model to choose. We
base this on the following insight: For the deterministic case we know that it
can be shown (theoretically) that the numerical bifurcation point approximates
the exact bifurcation to the order of the method. Therefore it makes sense to
base our models on the order of the numerical methods in use. It has been
shown in [49] that the Euler Maruyama method has strong order of convergence
γ = 0.5 and weak order of convergence γ = 1, and for ϑ = 0.5 we have a weak
order γ = 2. Consequently we looked for a relationship using h

1
2 , h and h2 as

the dominant terms. The results of experiments with different combinations in
the models are given in table 7.5 for the case λ = −1.50, together with the

107



Equation R
Lmean = 0.4795h2 − 0.00074 .954

Lmean = 0.2641
√
h− 0.07847 .995

Lmean = 0.2835h− 0.02506 .998

Lmean = 0.170250h+ 0.107215
√
h− 0.047085 .99993

Lmean = −0.143577h2 + 0.362442h− 0.031696 .999997

Lmean = −0.1215886h2 + 0.3323459h+ 0.0170465
√
h− 0.0341816 1

Lmean = −0.2140995h1.5 + 0.4660743h− 0.0180839
√
h− 0.0309053 1

Table 7.5: Simple regression formulae for ϑ = 0 and λ = −1.50

λ Quadratic equation R2

-1.8 L = −0.119031h2 + 0.303866h+ 0.097956 1
-1.7 L = −0.126717h2 + 0.322257h+ 0.057182 1
-1.6 L = −0.133858h2 + 0.341172h+ 0.014109 1
-1.5 L = −0.143577h2 + 0.362442h− 0.031696 1
-1.4 L = −0.152311h2 + 0.383909h− 0.080388 1
-1.3 L = −0.164308h2 + 0.408497h− 0.132665 1

Table 7.6: Lmean against h with μ = 0.1, ϑ = 0.

correlation coefficients, R. The closer the value of R is to 1, the better the fit.
The conclusions here need to be interpreted with care and there is scope for

further experimentation to reach a completely firm conclusion. One must bear
in mind the fact that, by introducing additional complexity in the model, one
may obtain falsely accurate results. Both of the final two equations provide
an almost perfect fit of the data points (R = 1 to 10 significant figures) but
there is a much stronger dependency on the terms in h and of higher order
than on the term in

√
h. Both this observation, and further experimentation

with other values of λ has led us to conclude that we should use the quadratic
model in our analysis but this decision is provisional and needs to be reviewed
when further analytical and/or numerical evidence becomes available. We can
now examine this relationship further. Taking ϑ = 0, μ = 0.1 we can plot the
graph of Lmean against h for a range of values of λ, using our seven values of
h = 0.5, 0.25, 0.2, 0.125, 0.1, 0.0625, 0.05. Again, using SPSS, we find that we get
perfect quadratic fits and the quadratic regression curves are given in table 7.6.

Figure 7.4 shows our points together with these regression curves superim-
posed. Once again all of the curves visually appear parallel.

For completeness we can solve all seven quadratic equations L = 0, to find
the values of h that give the bifurcation at the six values of λ used. These values
are shown in table 7.7. For λ = −1.8,−1.7,−1.6 the roots are negative and, as
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h > 0, they are not feasible. This indicates that these λ give solutions to our
test equation that all tend to infinity for any Brownian path.

7.2 Conclusions

In this chapter we have shown that our values for L and, in particular Lmean give
a consistent picture of the bifurcation points of the solutions to our equation,
with excellent sets of regression curves as we vary the equation and numerical
method parameters. For each ϑ we can find values of Lmean for a combination of
values for the equation parameters λ and μ and the numerical method stepsize
h. We have shown there are a number of excellent quadratic regression curve fits
for Lmean in terms of either λ or h when the other parameter values are fixed.
In particular, we have produced quadratic relationships for

1. Lmean in terms of λ for fixed h. A change in the ϑ-method gives a set
of parallel curves, while further sets of parallel curves are produced for
changes in the value of μ.
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D-bifurcation
λ value of h
-1.8 No value
-1.7 No value
-1.6 No value
-1.5 0.0907
-1.4 0.2305
-1.3 0.3841

Table 7.7: Quadratic regression values of h, μ = 0.1, ϑ = 0.

2. Lmean in terms of h for fixed λ. Different values of λ give us a set of
parallel curves. Again, a change in the ϑ-method gives a further set of
parallel curves. We have also shown that further sets of parallel curves
are produced for changes in the value of μ, but, as h is usually taken as a
simple fraction of the equation delay (τ=1), this analysis was thought to
be less useful.

In each case we have solved the quadratic equation Lmean = 0 to find the appro-
priate parmeter value at the D-bifurcation. Comparisons, where possible, have
been made with the P-bifurcation values from chapter 4, producing expected sim-
ilarities in results. This all appears to confirm the suitability of our approach to
analysing the bifurcations in the solutions to our test equation and this analysis
is taken forward to a higher level in the following chapter.
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Chapter 8

Further formulae and their
implications

8.1 Introduction

6 We now aim to pull together the separate analyses of the preceding chapters.

8.2 Multivariate quadratic relationships

In the previous chapter we found quadratic regression fits for Lmean in terms of λ
and h, with μ fixed, separately. We will now investigate the relationship with λ
and h together. If we plot the values of Lmean against λ and h for ϑ = 0, μ = 0.1
we see, in figure 8.1, a smooth surface. As in the previous chapters we can use
SPSS to find a second order regression formula for Lmean in terms of λ and h.
Tables 8.1, 8.2 and 8.3 list the formulae for the 21 cases we considered. In every
case the correlation coefficient R ≈ 1, indicating near perfect fits7.

We can add the surface given by the regression formula for ϑ = 0, μ = 0.1 to
the plot of points and the combined graph is shown in figure 8.2.

In the two dimensional case we found that all of our regression curves were
parallel for different values of μ. We can now investigate this situation in three
dimensions. Figure 8.3 shows the surfaces for ϑ = 0 with μ = 0 and μ = 0.3 and
the two surfaces clearly look parallel. Figure 8.4 shows the effect of changing the
ϑ-method. It shows the surfaces for ϑ = 0, ϑ = 0.5 and ϑ = 1 with μ = 0.1. In

6The content and the approach in this chapter has been accepted for publication in the
proceedings to the “Second international workshop on analysis and numerical approximations of
singular problems” as “Noise-induced changes to the behaviour of semi-implicit Euler methods
for stochastic delay equations undergoing bifurcation”, [36].

7In order to simplify the algebra we omitted the term in λh. We considered the improve-
ment in R from 0.9999886 to 0.9999892 to be insignificant. However, this approach could be
investigated at a later stage.
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μ Equation R
0.00 Lmean = −.1324985λ2 − .1382667h2 − .8378776λ+ .3516786h− .9896782 .999
0.05 Lmean = −.1323627λ2 − .1386083h2 − .8372673λ+ .3520501h− .9888930 .999
0.10 Lmean = −.1318815λ2 − .1394995h2 − .8352395λ+ .3531157h− .9864279 .999
0.15 Lmean = −.1311747λ2 − .1410140h2 − .8321481λ+ .3549305h− .9825467 .999
0.20 Lmean = −.1301694λ2 − .1433929h2 − .8277879λ+ .3576682h− .9771360 .999
0.25 Lmean = −.1288605λ2 − .1465803h2 − .8221417λ+ .3613273h− .9701922 .999
0.30 Lmean = −.1274131λ2 − .1506332h2 − .8157371λ+ .3660038h− .9621623 .999

Table 8.1: Regression formulae for ϑ = 0

μ Equation R
0.00 Lmean = −.1385855λ2 − .1337073h2 − .8835123λ− .0019131h− 1.0460225 1.000
0.05 Lmean = −.1384194λ2 − .1340008h2 − .8827959λ− .0013900h− 1.0451492 1.000
0.10 Lmean = −.1378855λ2 − .1347155h2 − .8805295λ+ .0001020h− 1.0424380 1.000
0.15 Lmean = −.1371017λ2 − .1360919h2 − .8770965λ+ .0027371h− 1.0382274 1.000
0.20 Lmean = −.1358635λ2 − .1382031h2 − .8718543λ+ .0065807h− 1.0320209 1.000
0.25 Lmean = −.1342600λ2 − .1410728h2 − .8651043λ+ .0116786h− 1.0240963 1.000
0.30 Lmean = −.1323592λ2 − .1450999h2 − .8570765λ+ .0183135h− 1.0146818 1.000

Table 8.2: Regression formulae for ϑ = 0.5

μ Equation R
0.00 Lmean = −.1613891λ2 − .3028416h2 − 1.0160353λ− .3373565h− 1.1974603 .997
0.05 Lmean = −.1610697λ2 − .3023180h2 − 1.0147701λ− .3367636h− 1.1961002 .997
0.10 Lmean = −.1603796λ2 − .3009093h2 − 1.0118034λ− .3348000h− 1.1926925 .997
0.15 Lmean = −.1593837λ2 − .2984645h2 − 1.0073553λ− .3315786h− 1.1874168 .997
0.20 Lmean = −.1577823λ2 − .2951257h2 − 1.0004679λ− .3269734h− 1.1795373 .997
0.25 Lmean = −.1555875λ2 − .2909900h2 − 0.9911997λ− .3209129h− 1.1691346 .997
0.30 Lmean = −.1528499λ2 − .2864202h2 − 0.9797878λ− .3131905h− 1.1564873 .997

Table 8.3: Regression formulae for ϑ = 1
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Figure 8.1: Lmean against λ and h for μ = 0.1
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Figure 8.2: Lmean against λ and h for μ = 0.1
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this case the cross section along constant h are parallel, but those along constant
λ are not.
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Figure 8.3: Lmean against λ and h for ϑ = 0, with μ = 0 and μ = 0.3

We are interested in the parameter values of λ at Lmean = 0, as this will give
us a value for λbif at the bifurcation point. Adding the plane Lmean = 0 to our
initial figure 8.1 gives a clear picture of the situation with figure 8.5,

8.3 Results

We can write each equation for Lmean = 0 as

(8.1) aλ2 + bλ + c+ dh+ eh2 = 0

We can solve the equation for λ in terms of increasing powers of h.
First, for convenience, we let D2 = b2 − 4ac.
Using the quadratic formula , we obtain
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Figure 8.4: Lmean against λ and h for ϑ = 0, 0.5, 1 with μ = 0.1

λ =
−b± √

b2 − 4a(c+ dh+ eh2)

2a

=
−b±D

√
1 − 4a(dh+ eh2)/D2

2a
(8.2)

Now, if we have

(8.3) −D2 ≤ 4a(dh+ eh2) ≤ D2

we can expand equation (8.2) in terms of h. With reference to Figure 8.2, we
take the larger root of equation (8.2) which becomes

λ =
−b−D[1 − 1

2
4a(dh+ eh2)/D2 − 1

8
16a2(dh+ eh2)2/D4 + . . .

2a

=
(−b−D)

2a
+

(dh+ eh2)

D
+
a(dh + eh2)

D3
+ . . .

=
(−b−D)

2a
+
d

D
h + (

e

D
+
ad2

D3
)h2 + . . . terms in h3 and higher(8.4)
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Figure 8.5: Lmean against λ and h for μ = 0.1, with the plane Lmean = 0

If we substitute the values of the coefficients of our equation for ϑ = 0 and
μ = 0.10 we find

(8.5) λ = −1.570419 − 0.838713h− 0.551683h2 + . . .

Substituting in equation (8.3) shows that this expansion is valid for −0.737 ≤
h ≤ 3.268, a range which clearly includes all of our values of h.

We have repeated this analysis for all 21 of the cases tabled above, and the
equations are shown in table 8.4.

In line with the deterministic equation, ϑ = 0, 1 give formulae for λbif which
are a close O(h) approximation to −π

2
. For ϑ = 0.5, which corresponds to the

second order trapezium method, the h coefficients are very small, so we have (to
working accuracy) an O(h2) approximation to −π

2
. In this case it is also evident

that as μ, the noise coefficient, increases the h coefficient in the formula for λbif

becomes more significant.
We also note that by symmetry, we should expect equation (4.3) will clearly

give us a similar family of solutions to equation

dY (t) = λY (t− 1)dt− μY (t)dW (t), t ≥ 0

Y (t) = t+
1

2
, t ∈ [−1, 0].(8.6)
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ϑ μ Equation
0.00 λ = -1.571912 + 0.834695h - 0.547274h2

0.05 λ = -1.571528 + 0.835740h - 0.548515h2

0.10 λ = -1.570419 + 0.838713h - 0.551683h2

0 0.15 λ = -1.548589 + 0.843807h - 0.557288h2

0.20 λ = -1.566100 + 0.851446h - 0.566000h2

0.25 λ = -1.562969 + 0.861674h - 0.577721h2

0.30 λ = -1.559247 + 0.874770h - 0.593051h2

0.00 λ = -1.571133 - 0.004270h - 0.298433h2

0.05 λ = -1.570780 - 0.003103h - 0.299150h2

0.10 λ = -1.569733 + 0.000278h - 0.300944h2

0.5 0.15 λ = -1.568048 + 0.006121h - 0.304378h2

0.20 λ = -1.565737 + 0.014742h - 0.309660h2

0.25 λ = -1.562846 + 0.026218h - 0.316905h2

0.30 λ = -1.559441 + 0.041722h - 0.327114h2

0.00 λ = -1.570182 - 0.662504h - 0.733830h2

0.05 λ = -1.569866 - 0.661547h - 0.732357h2

0.10 λ = -1.568979 - 0.658357h - 0.728407h2

1 0.15 λ = -1.567504 - 0.653117h - 0.721807h2

0.20 λ = -1.565492 - 0.645613h - 0.712586h2

0.25 λ = -1.562970 - 0.635669h - 0.700930h2

0.30 λ = -1.559988 - 0.622769h - 0.687417h2

Table 8.4: Equation for λ in terms of h at L = 0
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This indicates that the coefficients in our formulae are very likely to depend
only on even powers of μ. Hence, for each ϑ, it makes sense to plot the graphs
of each quadratic equation coefficient from table 8.4 against μ2. Figures 8.6, 8.7
and 8.8 show these graphs for ϑ = 1. The apparent straight lines confirm our
conjecture that the quadratic coefficients depend upon even powers of μ. We can
calculate the regression formulae for these three coefficients and repeat for the
other two ϑ values. In all nine cases R = 1.000, giving near perfect linear fits,
and confirming the dependency on μ2. Using linear regression on these figures
we obtain

h2 coefficient = −0.73357 + 0.51702μ2

h coefficient = −0.66280 + 0.43965μ2

constant term = −1.57183 + 0.14092μ2

≈ −π
2

+ 0.14092μ2
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Figure 8.6: Regression line for the h2 quadratic coefficients against μ2 for ϑ = 1

We can now obtain approximations to the value of the parameter λbif where
the bifurcations of the linear stochastic delay differential equation occur in terms
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Figure 8.7: Regression line for the h quadratic coefficients against μ2 for ϑ = 1

of the stepsize h and noise coefficient μ. For ϑ = 0,
(8.7)
λ = (−1.57183+0.14092μ2)+(0.83428+0.44343μ2)h+(−0.54665−0.50542μ2)h2

For ϑ = 0.5,
(8.8)
λ = (−1.57105+0.13017μ2)+(−0.00481+0.50704μ2)h+(−0.29785−0.31503μ2)h2

For ϑ = 1,
(8.9)
λ = (−1.57011+0.11346μ2)+(−0.66280+0.43965μ2)h+(−0.73357+0.51702μ2)h2

These results seem very satisfactory. First we note that, by putting μ = 0,
we recover an excellent representation of the known behaviour of these schemes
for the deterministic problem. Secondly, we can observe the way in which the
presence of noise influences the approximation of the bifurcation point in each
of the methods.

For the cases ϑ = 0, 1 the deterministic problem leads to an O(h) approxima-
tion of the exact bifurcation value. We can see that the presence of noise leads
to a change in each of the three coefficients in equations (8.7) and (8.9). This
means that, in the limit as h → 0 we would expect to obtain an approximation
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Figure 8.8: Regression lines for the constant quadratic coefficients against μ2 for
ϑ = 1

for the bifurcation value that differs from −π
2

by an amount proportional to μ2.
During the limiting process, we expect to observe O(h) convergence.

Now, for the case ϑ = 0.5 one needs to interpret equation (8.8) particularly
carefully. If μ is small, then equation (8.8) will provide an apparent O(h2) rate
of convergence as h → 0 in experimental data. It is only when the value of μ is
larger that the true convergence rate O(h) will become apparent. This explains
why some experiments involving equations with small noise can predict an O(h2)
approximation to λ. In fact,if μ = 0.0974 then the h term disappears and the
method is clearly O(h2).

8.4 Conclusions

The results of this chapter provide a systematic approach to analysing the ap-
proximate bifurcation values for equation (4.3) and show how the approximations
are influenced both by the choice of numerical scheme and its step length and
by the level of noise in the equation. There are some observations and questions
that are significant and motivate further investigation:

1. The estimates of the bifurcation value (obtained by putting h = 0 in equa-

120



tions (8.7), (8.8) and (8.9)) all indicate that the presence of the noise has
induced a change in the bifurcation value.

2. The presence of the μ2 term in the coefficient of h in (8.8) means that
the observed behaviour of approximations might change in a significant
way when the level of noise varies. One needs to be particularly careful in
applying small noise insights to general problems.
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Chapter 9

Conclusions and possibilities for
further work

In this thesis we have investigated bifurcations in delay differential equations.
We have limited our investigations to the linear delay differential equation and
stochastic linear delay differential equation with multiplicative instantaneous
noise and, to a lesser extent, to the logistic forms. We have investigated the
values of the equation parameters at the bifurcation point and in particular how
numerical methods affect these parameter values. For the deterministic equa-
tions we found that it was possible to approach the problem phenomenologically,
by observing the graphs of numerical solutions as we varied our parameters. For
the stochastic equations we needed a more dynamical approach and introduced
the Lyapunov exponent

Λ = lim
t→∞

supE(
1

t
log |Y (t)|)

which we estimated with L = log(S)
T

, where S = sup[T−ε,T ](|Y |). We used L to
investigate the bifurcation points.

9.1 Conclusions

1. For the deterministic linear delay differential equation

dY (t) = λY (t− 1)dt, t ≥ 0

Y (t) = t +
1

2
, t ∈ [−1, 0]

it is known that there is a bifurcation for λ = −π
2
. We have confirmed that

for numerical solutions the bifurcation occurs for λbif = −π
2

+O(hn) where
n is the order of the numerical method. The phenomenological approach
gave us very precise values.
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2. The logistic delay differential equation

dY (t) = λY (t− 1)[1 + Y (t)]dt, t ≥ 0

Y (t) = t+
1

2
, t ∈ [−1, 0].

has a Hopf bifurcation at λ = −π
2
. Our phenomenological approach again

showed that λbif = −π
2
+O(hn), confirming the work of Wulf [81]. However,

the phenomenological values are not as precise as for the linear equation.

3. The phenomenological approach does not give a clear indication of bifurca-
tion values for stochastic delay differential equations. Use of the Lyapunov
exponent was far more productive. However, for the logistic equation

dY (t) = λY (t− 1)[1 + Y (t)]dt + μY (t)dW (t), t ≥ 0

Y (t) = t +
1

2
, t ∈ [−1, 0].

we found that where the values of L are positive the values become less pre-
dictable. At this point of the investigation we restricted our investigation
to the linear equation

dY (t) = λY (t− 1)dt+ μY (t)dW (t), t ≥ 0

Y (t) = t+
1

2
, t ∈ [−1, 0].

4. For the linear SDDE we have shown that, for fixed noise coefficient μ, our
approximation to the Lyapunov exponent L varied quadratically with λ.
When we solved the quadratic equation L = 0 we get an estimate of λbif

which, when μ = 0, corresponds favourably with the phenomenological
value for the deterministic equation.

5. For the linear SDDE we have shown that, for fixed noise coefficient μ, our
approximation to the Lyapunov exponent L varied quadratically with h.

6. For the linear SDDE we have shown that, for fixed noise coefficient μ, our
approximation to the Lyapunov exponent L varied quadratically with both
λ and h together.

7. Using the relationship above we have shown that solving L = 0 for λ in
terms of h gives us a formula for the bifurcation value of λ in the form
λbif ≈ −π

2
+ O(hn), where n is the order of the numerical method.

8. Finally, we have shown that if the form above is λ ≈ a+ bh + ch2 then

a ≈ a0 + a2μ
2

b ≈ b0 + b2μ
2

c ≈ c0 + c2μ
2
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9.2 Further investigations

This thesis leads to the following questions and possible further investigations.

1. The estimates of the bifurcation value (obtained by putting h = 0 in equa-
tions (8.7), (8.8) and (8.9)) all indicate that the presence of the noise has
induced a change in the bifurcation value. Can this change be established
analytically for the underlying SDDE, or is it nevertheless an artefact in-
duced by the numerical scheme?

2. Can a formula be developed that combines equations (8.7), (8.8) and (8.9))
into a single expression with ϑ as parameter? Can such an expression lead
to establishing some critical value of ϑ (other than 0, 0.5 and 1) for which
the numerical approach displays enhanced properties?

3. How does the choice of the initial function Y0(t) affect the investigations?
(Note that some initial work has been completed on this question and the
results are contained in Appendix A
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Appendix A

Varying the initial function

We present here some results from repeating our investigations with different
initial functions. We will give the results alongside the results from using the
initial function applied throughout this thesis for an immediate comparison. We
will consider

dY (t) = λY (t− 1)dt+ μY (t)dW (t), t ≥ 0

with our original initial function

Y (t) = t+
1

2
, t ∈ [−1, 0]

and two further initial functions

Y1(t) = 2000e−t+1 − 4000, t ∈ [−1, 0]

and
Y2(t) = 2000 cos(2t) − 1000, t ∈ [−1, 0].

We have added a monotonic exponential function and a sinusoidal function, both
with large values at t = 0, to our simple linear function to ensure we have a much
different situation. As this is only a preliminary investigation to verify that the
choice of initial function has a minor effect and the choice is not vital to the work
of this thesis we have restricted the experiments to the case ϑ = 0 and μ = 0.15,
and we have applied all seven step lengths. Figure A.1 shows the graphs of Lmean

against λ with the seven step lengths for each of our initial functions. The three
graphs in figure A.1 look identical. We can now draw the three dimensional
graphs of Lmean against λ and h for each of our initial functions, and these are
shown in figure A.2. Once again we can see no visual difference between the three
dimensional graphs for the three initial functions. To find a difference between
the diagrams we need to return to our analysis using SPSS. We can find the
least squares quadratic regression equations and these are given in table A.1.
We again see that R = 0.999, showing excellent fits. We can see from table A.1
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Figure A.1: Mean L against λ for our step lengths with ϑ = 0 and μ = 0.15, for
the initial functions:
Top: Y (t) = t + 1

2

Middle: Y1(t) = 2000e−t+1 − 4000
Bottom: Y2(t) = 2000 cos(2t) − 1000
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Figure A.2: Mean L against λ and h with ϑ = 0 and μ = 0.15, for the initial
functions:
Top: Y (t) = t + 1

2

Middle: Y1(t) = 2000e−t+1 − 4000
Bottom: Y2(t) = 2000 cos(2t) − 1000
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Equation R
Lmean = −.131175λ2 − .141014h2 − .832148λ+ .354931h− .982547 .999
Lmean = −.131225λ2 − .141016h2 − .832355λ+ .355011h− .980905 .999
Lmean = −.131165λ2 − .141025h2 − .832131λ+ .354989h− .980992 .999

Table A.1: Regression formulae for ϑ = 0, μ = 0.15, for the initial functions:
Top: Y (t) = t + 1

2

Middle: Y1(t) = 2000e−t+1 − 4000
Bottom: Y2(t) = 2000 cos(2t) − 1000

Equation
λ = -1.548589 + 0.843807h - 0.557288h2

λ = -1.564907 + 0.841982h - 0.555042h2

λ = -1.564215 + 0.841604h - 0.554642h2

Table A.2: Equation for λ in terms of h at Lmean = 0 for ϑ = 0, μ = 0.15, for
the initial functions:
Top: Y (t) = t + 1

2

Middle: Y1(t) = 2000e−t+1 − 4000
Bottom: Y2(t) = 2000 cos(2t) − 1000

that the change in initial function has caused very small changes in the regression
coefficients. We conclude this investigation by solving the equation Lmean = 0 for
λ in terms of h, and show these relationships in table A.2. Once again we can see
from table A.2 that the change in initial function has caused very small changes
in the coefficients. Finally, we can use the formulae in table A.2 to predict values
for λbif where ϑ = 0 and μ = 0.15 for a particular step length. For instance, if we
substitute h = 0.1 into the formulae we get the values shown in table A.3. The
three initial functions produce values for λbif which agree to two decimal places.
The experiments completed in this appendix confirm that more work needs to
be completed on this problem, but the results are consistent with the previous
investigations of this project.

Initial function λbif

Y (t) = t+ 1
2

-1.4898
Y1(t) = 2000e−t+1 − 4000 -1.4863
Y2(t) = 2000 cos(2t) − 1000 -1.4856

Table A.3: λbif for h = 0.1 with ϑ = 0, μ = 0.15 for our three initial functions.
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Appendix B

MATLAB code

In this appendix we give the code for the main programs used in this thesis.

1. Used in section 1.2.8 to show that bifurcations in ODEs are not always
duplicated in numerical solutions

%Program to compare numerical solutions with true solutions

lambda=input(’lambda’)

theta=input(’theta’)

h=input(’stepsize’)

t=0:0.001:1;

z=exp(lambda.*t); %exact value

n=1/h;

y=zeros(1,n+1);

y(1)=1;

for i=1:n %compute numerical solution

y(i+1)=(1+(1-theta)*h*lambda)/(1-theta*h*lambda)*y(i);

end

t0=0:h:1;

plot(t,z,t0,y)

2. Verification of validity of randn in section 3.1.2

%program to verify randn is N(0,1)

N=input(’vector size’)

randn(’state’,1)

dW=randn(1,N);

g=[-5:0.2:5];

hist(dW,g)

hold on

x=[-4:0.01:4];

y=N/5*exp(-x.^2/2)/sqrt(2*pi);
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plot(x,y)

m=mean(dW)

s=std(dW)

3. Twenty Brownian paths, with mean path in section 3.1.3

randn(’state’,1);

h=0.01;

T=10;

t=[0:h:T];

n=20;

dW=sqrt(h)*randn(n,T/h);

W=[zeros(n,1) cumsum(dW,2)];

for i=1:n;

plot(t,W(i,:))

hold on

end

Wmean=mean(W);

plot(t,Wmean,’r’)

4. Stochastic integrals of
∫ 1

0
tdW in section 3.3

% Integrals of tdW from 0 to 1

randn(’state’,1);

step=input(’stepsize’);

dt=0.00005;

N=1/dt;

dB=sqrt(dt)*randn(1,N);

B=[0 cumsum(dB)];

t=0:dt:1;

ito=0;

strato=0;

length=N/step;

for count =1:step;

dW=B(count*length+1)-B((count-1)*length+1);

ito=ito+t((count-1)*length+1)*dW;

strato=strato+t((count-0.5)*length+1)*dW;

end

ito

strato

5. Stochastic integrals of
∫ 1

0
WdW in section 3.3
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% Integrals of WdW from 0 to 1

step=input(’stepsize’);

randn(’state’,1);

dt=0.00005;

N=1/dt;

dB=sqrt(dt)*randn(1,N);

B=[0 cumsum(dB)];

t=0:dt:1;

ito=0;

strato=0;

length=N/step;

for count =1:step;

dW=B(count*length+1)-B((count-1)*length+1);

ito=ito+B((count-1)*length+1)*dW;

strato=strato+B((count-0.5)*length+1)*dW;

end

ito

strato

B(N)

6. To produce the tables of values for
∫ 1

0
tdW in section 3.3

% Integrals of tdW from 0 to 1

randn(’state’,1);

step=input(’stepsize’);

dt=0.00005;

t=0:dt:1;

N=1/dt;

itolist=zeros(1,10000);

stratolist=zeros(1,10000);

length=N/step;

for i=1:10000

dB=sqrt(dt)*randn(1,N);

B=[0 cumsum(dB)];

ito=0;

strato=0;

for count =1:step;

dW=B(count*length+1)-B((count-1)*length+1);

ito=ito+t((count-1)*length+1)*dW;

strato=strato+t((count-0.5)*length+1)*dW;

end

itolist(i)=ito;

stratolist(i)=strato;
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end

mean(itolist)

mean(stratolist)

std(itolist)

std(stratolist)

7. To produce the tables of values for
∫ 1

0
tdW in section 3.3

% Integrals of WdW from 0 to 1

step=input(’stepsize’);

randn(’state’,1);

itolist=zeros(1,10000);

stratolist=zeros(1,10000);

dt=0.00005;

N=1/dt;

t=0:dt:1;

for i=1:10000

dB=sqrt(dt)*randn(1,N);

B=[0 cumsum(dB)];

ito=0;

strato=0;

length=N/step;

for count =1:step;

dW=B(count*length+1)-B((count-1)*length+1);

ito=ito+B((count-1)*length+1)*dW;

strato=strato+B((count-0.5)*length+1)*dW;

end

itolist(i)=ito;

stratolist(i)=strato;

end

mean(itolist)

mean(stratolist)

std(itolist)

std(stratolist)

8. To produce the diagrams in section 4.2 using forward Euler. One line
change is needed for the other three methods.

k=input(’lambda’);

h=input(’h’);

N=1/h;

X=ones(1,200001*N+1);

Y=ones(1,200001*N+1);
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for x=1:N+1

t=(x-N-1)/N;

X(x)=t;

Y(x)=t+1/2;

end

for x=N+2:200001*N+1

t=(x-N-1)/N;

X(x)=t;

Y(x)=Y(x-1)+h*k*Y(x-1-N); %code for forward Euler

end

plot(X,Y,’-’)

9. To produce the diagrams 4.7 using Euler-Maruyama.

% Euler-Maruyama for dY(t)=lambda*Y(t-1)+ mu*Y(t)dW(t)

lambda = input(’lambda =’);

mu = input(’mu =’);

h = input(’step size =’);

randn(’state’,100)

T = 200000;

N = 1/h;

M = (T+1)*N;

Y=zeros(1,M);

for i = 1:N+1

Y(i) = (i-1)/N-0.5;

end

dW = sqrt(h)*randn(1,N*T);

for n = N+1:M

Y(n+1) = Y(n) + h*lambda*Y(n-N) + mu*Y(n)*dW(n-N);

end

pen = Y(140001*N:150001*N);

fin = Y(190001*N:200001*N);

p = max(abs(pen))

f = max(abs(fin))

t = [-1:h:T];

plot(t,Y)

10. To test for strong convergence in section 5.3.1.
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randn(’state’,100);

q=input(’theta’);

inc=[1 2 4 5 8 10 16 20 40];

N=4000;

dt=1/N;

y0=1;

p=5000;

yerr=zeros(p,9);

for s=1:p

dW=sqrt(dt)*randn(1,N);

W=cumsum(dW);

yexact=y0*exp(1+2*W(end));

for count=1:9

h=inc(count)*dt;

n=1/h;

ytemp=y0;

for i=1:n

Winc=sum(dW(inc(count)*(i-1)+1:inc(count)*i));

ytemp=ytemp*(1+(1-q)*3*h+2*Winc)/(1-q*3*h);

end;

yerr(s,count)=abs(ytemp-yexact);

end;

end;

step=inc/(2*N/100);

A=[ones(9,1), log(step)’]

b=log(mean(yerr)’)

reg=A\b

t=log(step);

x=reg(2).*t+reg(1);

plot(t,b,’*’,t,x)

11. To test for weak convergence in section 5.3.2 for θ = 0 and θ = 1.

randn(’state’,100);

q=input(’theta’);

inc=[2 4 8 10 16 32 64 80];

N=1600;

dt=1/N;

y0=1;

p=20000;

yerr=zeros(8,1);

yend=zeros(p,8);

for s=1:p
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dW=sqrt(dt)*randn(1,N);

W=cumsum(dW);

for count=1:8

h=inc(count)*dt;

n=1/h;

ytemp=y0;

for i=1:n

Winc=sum(dW(inc(count)*(i-1)+1:inc(count)*i));

ytemp=ytemp*(1+(1-q)*2*h+0.1*Winc)/(1-q*2*h);

end;

yend(s,count)=ytemp;

end;

end;

exact=exp(2);

ylast=mean(yend)

yerr=abs(ylast-exact);

step=inc/N;

A=[ones(8,1), log(step)’]

b=log(yerr)’

reg=A\b

t=log(step);

x=reg(2).*t+reg(1);

plot(t,b,’*’,t,x)

12. To test for weak convergence in section 5.3.2 for θ = 0.5

randn(’state’,100);

q=input(’theta’);

inc=[1 2 4 8 10 16 32 64 80 100 160 200 400];

N=1600;

dt=1/N;

y0=1;

p=400000;

yerr=zeros(13,1);

yend=zeros(p,13);

for s=1:p

dW=sqrt(dt)*randn(1,N);

W=cumsum(dW);

for count=1:13

h=inc(count)*dt;

n=1/h;

ytemp=y0;
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for i=1:n

Winc=sum(dW(inc(count)*(i-1)+1:inc(count)*i));

ytemp=ytemp*(1+(1-q)*2*h+0.1*Winc)/(1-q*2*h);

end;

yend(s,count)=ytemp;

end;

end;

exact=exp(2);

ylast=mean(yend)

yerr=abs(ylast-exact);

step=inc/N

step1=inc(8:13)/N;

A=[ones(6,1), log(step1)’];

b=log(yerr)’

b1=log(yerr(8:13))’

reg=A\b1

t=log(step);

t1=log(step1);

x=reg(2).*t1+reg(1);

%plot(t,b,’*’,t1,x)

plot(t,b,’*’)

hold on

plot(t1,x)

13. To produce the 147 files, each containing the 51 values of L.

%EM Euler-Maruyama method on linear SDDE

% SDDE is dY = lambda*Y(t-1) dt + mu*Y(t)dW,

% with Y(t)=t+1/2 -1<=t<=0

theta = input(’theta = ?’);

mu = input(’mu = ?’);

Dt = input(’step size =?’);

T = 5000; N = 1/Dt;

L = T*N;

for i = 1:N+1

Ym(i) = (i-1)/N-0.5;

end

iters = 51;

me = zeros(1,iters); mi = zeros(1,iters);

ma = zeros(1,iters); st = zeros(1,iters);

for k = 1:iters

136



lambda(k) = -1.8+ (k-1)*0.01;

randn(’state’,100)

lypend = zeros(1,500);

for j = 1:500

p = 0;

dW = sqrt(Dt)*randn(1,T*N);

W = cumsum(dW);

Yi = zeros(1,L);

Yem = [Ym Yi];

for n = 1:L-50

Winc = sum(dW((n-1)+1:n));

Yem(n+1+N) = Yem(n+N) + (1-theta)*Dt*lambda(k)*Yem(n)

+ theta*Dt*lambda(k)*Yem(n+1) + (mu*Yem(n+N)+nu*Yem(n))*Winc;

x1 = abs(Yem(N+n+1));

x2=round(log10(x1));

Yem(n:N+1+n) = Yem(n:N+1+n).*10^(-x2);

p = p + x2;

end

for n = L-49:L

Winc = sum(dW((n-1)+1:n));

Yem(n+1+N) = Yem(n+N) + (1-theta)*Dt*lambda(k)*Yem(n)

+ theta*Dt*lambda(k)*Yem(n+1) + (mu*Yem(n+N)+nu*Yem(n))*Winc;

x1 = abs(Yem(N+n+1));

x2=round(log10(x1));

Yem(L-49:N+1+n) = Yem(L-49:N+1+n).*10^(-x2);

p = p + x2;

end

lend = (log(max(abs(Yem(:,N+1+L-50:N+1+L))))

+p*log(10))/T;

lypend(j) = lend;

end

%hist(lypend,20)

%plot([-1:Dt:T],Yem), hold off

me(1,k) = mean(lypend);

mi(1,k) = min(lypend);

ma(1,k) = max(lypend);

st(1,k) = std(lypend);

end

m1=mi’;

m2=me’;

m3=ma’;

m4=st’;

matlin=[m1 m2 m3 m4]
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z=zeros(1,iters);

plot(lambda,me,lambda,mi,lambda,ma,lambda,z)

14. To plot the 3 dimensional surface L against λ and h in section 8.2.

lambda=-1.8:0.01:-1.3;

h=[.5 .25 .2 .125 0.1 0.0625 0.05];

load L131.dat

for i = 1:7

[X,Y]=meshgrid(lambda,h(i));

plot3(X,Y,L131([1+51*(i-1):51*i],4))

hold on

end

followed by

t = input(’type, min=3,mean=4,max=5,st dev=6’);

lambda=-1.8:0.01:-1.3;

h=[.5 .25 .2 .125 .1 .0625 .05];

load L131.dat

for i = 1:51

[X,Y]=meshgrid(lambda(i),h);

plot3(X,Y,L131([i:51:i+306],t))

hold on

end
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