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ABSTRACT

Differential-Algebraic equation systems (DAEs) occur in a variety of applications in
science and engineering and interest in them has grown considerably during the
latter part of the twentieth century.

The aims of this thesis are:-

e to provide the interested reader with a comprehensible and informative
introduction to DAEs, whilst assuming no prior knowledge of the subject area.

« to give an indication to the reader with a DAE to solve whether or not they can
hope to be successful.

« to introduce the reader to possible methods of solution (either analytical,
numerical or both)

This work is original and has not been submitted previously
in support of any qualification or course.
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PREFACE

The scientist, engineer and the industrial or academic mathematician are likely to
have acquired some knowledge of both differential and algebraic equations through
the mathematical components of their education. However, they are less likely to
have encountered DAEs either during their mathematical education or in their
scientific or engineering training.

In Section 1 we introduce the reader to the basic types of DAE, to the Hessenberg
form of a DAE and to the important concept of the index. We highlight similarities
and differences between ODEs and DAEs and give examples of DAE applications.
Section 2 focuses on the solution of a DAE. After explaining what we mean by a
solvable DAE we move on to consider which types of DAEs can be solved using
established techniques. We indicate how particular classes of DAEs can be solved
analytically and briefly introduce numerical approaches to solving DAEs. The
purpose of Section 3 is to provide the reader with the information about numerical
methods applied to ODEs which is relevant to the material which we cover in Section
4. In the latter we give information about which numerical method is appropriate for
which DAE type, including comments on some of the problems encountered in their
solution, and also we include a brief introduction to the computer codes available and
their use. In Section 5 we provide further evidence of the applications of DAEs. This
is likely to be of particular interest to the academic mathematician who is seeking a
justification for the introduction of, or the interest in, the DAE, as well as to all readers
interested in the difficulties encountered in their solution.

We provide references to the source material throughout the thesis and include
examples of DAEs as an aid to understanding the theory.



SECTION 1: INTRODUCING DIFFERENTIAL-ALGEBRAIC EQUATIONS

1.1 WHY DO WE NEED TO INTRODUCE DIFFERENTIAL-ALGEBRAIC
EQUATIONS(DAEs)?

We begin by considering the first order system

F(1,y(),y'()) =0 (1.1)

where 'y, y'and Fare n-dimensional vectors and F is assumed to be sufficiently smooth.

If 625 is non-singular then the system can, in principle, be written in the explicit form
y

y' =F(t,y(®) (1.2)

to produce a system of ordinary differential equations, (ODEs), to which we can apply

standard ODE theory and numerical techniques.

Rewriting the system in this form is not always possible and in an increasing number of

applications preference is being given to working directly with the system (1.1).

1.2 INTRODUCING DIFFERENTIAL-ALGEBRAIC EQUATIONS

Marz in [12], after describing DAEs as “singular ODEs”, introduces them as “special implicit

ordinary differential equations (ODE) f (x’(t), x(t), t) = 0 where the partial Jacobian

fy' (y,x,t) is singular for all values of its arguments.”

In [4], [18] and [19] DAEs are introduced as systems of the form

0=F(,y,y’) where % may be singular.
y

08

We recall that the Jacobian Matrix can be expressed in the form gx or —= and thatitis
X
defined by
og og; . .
S = =—— for 1<i<n 1<j<k 1.3
[6x]_ . (gx)l,J axj' J (1-3)
1,]




In an expanded form this can be written as

o8, 0& g
ox, Oux, - ox,
og, 0g 08
3 ox, 0x, 0x,
g
e _ 1.4
ox _ . (1.4)
0g, 9&, 08,
ox, ox,  0x,

A DAE combines differential equations with algebraic equations, and we illustrate this in the

following example.

Exampie 1.1

In [4] Newton’s equations of motion for a simple, rigid pendulum of length L are given in the

form x=Ax (1.5a)
y=Ay-g (1.5b)
0 =x*+y -L? (1.5¢)

We observe that the first two equations are differential equations and that the third is an

algebraic equation, resulting from a constraint on the variables x and y.

DAEs arise naturally in many applications and have been known by a variety of names,
depending on the area of application. They may be known, for example, as descriptor
systems (e.g. in circuit analysis), generalised state space (e.qg. in system theory),
constrained systems, reduced order model and non-standard systems. In the simulation of a
physical problem the model often takes the form of a DAE, consisting of a collection of
relationships between the variables involved and some of their derivatives (as in equation
(1.5)). Previously, the solution of DAEs has involved a reformulation of the system as an
explicit ordinary differential equation (ODE) followed by the use of one of the many software
packages available. However, if a direct solution of the DAE is possible then the scientist or
engineer can more readily explore the effect of modelling changes and parameter variation.
(Changing parameter values can alter the relationship between variables and require

different explicit models with solution manifolds of different dimensions. The variables



usually have a physical significance, hence changing the model to ODEs may produce less
meaningful variables). In addition the need to accommodate boundary conditions and the
possibility of simplifying the underlying problem are avoided, and it may be possible to
exploit the system structure. In the study of more complex systems a direct solution will
avoid the need to repeat the reduction of a DAE to an ODE when the model is altered, thus
speeding up the solution. A direct solution of the DAE also makes it easier to interface

modelling software with design software.

1.3: BASIC TYPES OF DAEs

1.3.1 LINEAR CONSTANT COEFFICIENT DAE:s are regarded as the best understood

class of DAEs, (see [4]), and consist of a system of the form
AX(t) + Bx(t) = f(t) (1.6)

where A, B are square matrices of real or complex numbers, A singular, and t is a real
variable. We note that if A is nonsingular then the equation is an ODE, since we are able to
find A, multiply throughout by A" and solve the resulting equation by ODE methods. The
authors of [4] assume that the vectors are real for notational convenience but state that the

results are the same for the complex case.

Example 1.2
The system X, 2%, =0 (1.7a)

3x; —6x, +x, = ¢ (1.7b)

is a linear, constant coefficient DAE which can be written in the form (1.6) with

o =% 1) e 10-()
A= ,B= and f(r) =
0 3 6 1 2

The solution to the system (1.7) is  x;=¢ ,x, =£>.



1.3.2 LINEAR TIME-VARYING DAEs are of the form
At) X'(t) + B(t) x(t) = f(t) (1.8)
with A(t) singular for all t

Most of the established mathematical models seen by the authors of [4] have led to either
linear constant coefficient or nonlinear DAEs. However, although mathematical models
leading to linear time-varying DAEs have also been observed by the same authors, a more
important feature of DAE systems of the form (1.8) is that they “exhibit much of the
behaviour which distinguishes general DAEs from linear constant coefficient DAEs.” Up to
the time when [4] was written some techniques and results which seem appropriate for
nonlinear systems, (in that they correctly predict some of their behaviour), had only been
completely and rigorously proved for linear time-varying DAEs. The latter type have aiready
proved to be important by improving the understanding of more general systems and are
likely to “play an even greater role in future analytical and numerical work with nonlinear
DAEs" [4].

) +x; =t
0, +x,=t

Example 1.3 _ The DAE system (1.9)

is of the form (1.8) with A—(t 1)3—(0 0) df(t)—(tzj
Is of the form (1.8) wi _OO’_tlan —t.

. . 2y 3\
The solution of system (1.9)is x = ((1 —t°),t ) .
The semi-explicit linear DAE of the form
x((6) + B, (0x, () + B,, ()x, (1) = £,(1) (1.10a)

B21(t)x1(t)+322(t)x2(t)=f2(t) (1.10b)

1 0
is a special case of (1.8) with 4 = (O 0) .

1.3.3 GENERAL (OR FULLY IMPLICIT) NONLINEAR DAEs are of the form

Ft,y(t)y' () =0 (1.11)

where F is nonlinear. If (1.11) is linear in the derivative

e, A@YO)'()+E(,y(1)=0

then the system may be referred to as linearly implicit.



1.3.4 SEMI-EXPLICIT NONLINEAR DAEs are of the form

x'(1) = f(1,x,y)

0=g(,x,2) (1.12)

DAEs in the form (1.12) can also be described as an ODE with constraints or they may be
considered as a special case of (1.11). We note that in some applications a system in the
form
F(x'(0),x()y(t) =0 (1.13a)
Gx()y()t=0 (1.13b)

where F,, is nonsingular, may be referred to as semi-explicit.

Constant coordinate changes (i.e. not time dependent) are permitted [4] and a fully-implicit
linear constant coefficient DAE can always be transformed to a semi-explicit linear constant

coefficient DAE by a constant coordinate change.



1.4 THE INDEX OF A DAE

If we apply analytical differentiations to a given system, and eliminate where needed, the
process will yield an explicit ODE system for all the unknowns unless the problem is singular.
In [2] the index of the DAE is stated to be the number of differentiations for this
transformation to take place. We note that this process avoids performing numerical
differentiations by differentiating analytically, and that the index referred to here is also
known as the differential index, to distinguish it from the perturbation index which is defined
in [9] and which is motivated by the loss of smoothness in solutions to higher-index DAEs.

Definition 1.1 In [19] we find the following definition for the index of F(z,y,y’) =0 .

The index of a solvable DAE is the smallest nonnegative integer m such that F has m

continuous derivatives and the nonlinear system
F(t,y,y)=0

oF , OF
—_— +__=

0
oy’ "ot

d oF
Z_F " vy = '
~ ¢.y.y'.y") v

dt”
can be solved pointwise for y’ uniquely in terms of y and r:y’ = ¢ (y,1).

F(t,y,y,y" s y™ ) =0

Example 1.4
Consider y = f(t) (1.14)

If we differentiate (1.14) once we obtain y’ = f'(¢) which is an ODE for y. One differentiation

was needed ..index =1.

Example 1.5

Consider yi=f@® (1.15a)
=0 (1.15b)
3= (1.15¢)



Differentiating (1.15a) gives yi=f'(t)
(1.18b) .. ==y, =1"0
(1.15¢) .. yi=y,=y;=f"@)
Three differentiations are needed to obtain
Y =Ly =10, ()"
. Index of (1.15) is three.

The role of the index has been crucial in understanding the structure of the DAE, although
differentiation of the system is rarely carried out in practice. It is a rough measure of the
degree of singularity in the system, and in general the higher the index the more difficult the
problem is numerically. We note that DAEs with an index greater than 1 are often referred to

as higher-index DAEs, and that the index of an ODE is zero.

The index of a DAE is not only dependent upon the form of the DAE but also on the solution
and on the initial conditions, which must be consistent i.e. must satisfy the constraints of the
system. (More information about consistent initial conditions will be given in section 4.4).
Higher index DAEs may include some hidden constraints. The following examples are

included to illustrate these points.

Example 1.6 To illustrate the dependence of the index on the solution we will consider the
DAE system

V: =0 (1.16a)
0=(y;,-D(2~-y,) (1.16b)
0=y,(»; =D+»,2-y) -1’ (1.16c)

(1.16b) yields two solutions for y,(t), namely y; =1 or y; = 2.

We will first consider y; = 2, and substitute this value into (1.16¢) to obtain

0=y,-¢
= y, =t
(1.17)
2t
Using (1.16a) we find y, = 2t, giving the solution to the DAE as y(r) =| ¢
2



In this case we find that the index of the DAE is 2 since we need to differentiate (1.17) to
obtain y;(¢) = 2t, and also (1.16a) to obtain yi)=2.
We now consider the case when y; =1.

(1.16¢c) becomes 0=y, —¢*
y =t (1.18)
Using y, =¢* in (1.16a) gives

yy=t* (1.19)

3

Integration of (1.19) gives y,(r) = %+ ¥,(0).

t3
In this case the solution to the DAE is y(r) = (¢ SRRZ 0),1)"

The index in this case is 1 since the only differentiation required is that of (1.18) to obtain
»1(¢) . We note the need for an initial value, (or other value of y at a given t), in the case y;

=1.

Example 1.7 To illustrate how a higher-index DAE may include some hidden constraints we
consider the DAE

@O =t +1+2 (1.20a)

Y, () =y (1.20b)
The index of the system can be seen to be 2. Differentiation of (1.20a) leads to

yi =3t +1 (1.21)

Hence, in addition to the requirement to satisfy »(0)=2 and y,(0) = y;(0) we need to
satisfy y/(0) =1.

Example 1.8 This example illustrates the dependence of the index on the initial conditions.

Y= (1.22a)
y3=0 (1.22b)
0=, =D+»,2-y)-1’ (1.22¢)

(1.22b) = ys(t) is constant, say ys(t) = k.

Substitution of ys(t) =k in (1.22c) gives 0=y, (k-1)+y,(2~ k) -2,




Ifk =1, we have the system y, =y, (1.23a)
0=y, -1 (1.23b)
which has index 1, since one differentiation of (1.23b) is needed to obtain
y' =Q2t,20)".
However, if k = 2, we obtain the system ¥y, =¥ (1.24a)
0=y, -t (1.24b)

This system has index 2 since we need to differentiate (1.24b) to obtain y;and (1.24a) to
obtain y|.
Any DAE in the form (1.11) can be written in the semi-explicit form (1.12) by defining y’' = z.

The index is consequently increased by 1 but we note that merely rewriting the DAE in the

form

y'=z
0=F(t,y,2)

does not make it easier to solve. We observe that the class of fully implicit index-1 DAEs in

the form (1.11) is equivalent to the class of semi-explicit index-2 DAEs of the form (1.12).



1.5 HESSENBERG FORMS OF DAEs

Many higher-index problems encountered in practical applications can be expressed as
ODEs coupled with constraints. In systems called Hessenberg forms of the DAE the
algebraic and differential variables are explicitly identified for higher-index DAEs as well, and
in principle, the algebraic variables can be eliminated using the same number of

differentiations..

[19] refers to the system F(z,y,y’) = 0 being Hessenberg of index m if it can be written in

the form
x; =F (x,,x,,....X,,,1) (1.25a)
X, =F,(X,,X, 5., X,_1»1) (1.25b)
X; =Fi(xi—1’xia---axm—1at) (1250)
0=F, (x,_ 1) (1.25d)
F oF OF, || OF
where the matrix oF, LN 2 I =—L| is nonsingular.
0x, || 0x,_, Ox; || 0x,,

(Weneedtoadd 3<i<r1 to(1.25c)).

Example 1.9 The Hessenberg form of index 2 is

x; = F (x,,X,,?)

oF || 0F

0=F,(x,,t) with ox || g

nonsingular.

10




Example 1.10 The Hessenberg form of index 4 is

x; =F (x,,X,,X3,X,,)
x; = F,(X,,X,,X;,1)
x; = F;(x,,X;,1)

0=F4(X35t)

with OFy || 0F3 || 0Ky || OFy nonsingular.
0x3 || 0xp 0x) || x4

If we consider the linear time-varying DAE in the form (1.8) then [4] states that this system is

in Hessenberg form of size r if it can be written as

1 0 . . 0\x)\ (B, B, B, By \(x) (fi

0 1 B,, B,, O] . .
+ 0 =] (1.26)

I . - .

0 0/\x’ 0 0 B 0 \x f

T * r,r-1 r r

where the x; are vectors, B are matrices and the product B, B, ,.....B

r,r-1

nonsingular.
Example 1.11 A simple example of a DAE in Hessenberg form of size 2 is

x;{ +Byx, +Bp,x, = f

B, x, = f,

with B,,B,, nonsingular.

1.6 SIMILARITIES AND DIFFERENCES BETWEEN DAEs AND ODEs

The supposition that DAEs were considered to be essentially similar to regular implicit ODEs
was challenged by conflicting computation results, (e.g. Sincovec et al, 1981), and a more
thorough investigation of DAEs began. According to [4] C. W. Gear et al initiated a

discussion on DAEs with the publication of their famous paper in 1981.

In [2] integration is described as a “smoothing” process and differentiation as an
“antismoothing process”. An ODE involves integration, hence smoothing, but a DAE
involves both integrations and differentiations which may be “intertwined in a complex
manner”. (see page 232). We observe that all ODEs are DAEs but that the converse is not

true.

11




For initial value ODEs there is a theorem which guarantees solution, existence, uniqueness
and continuous dependence on initial data for a large class of problems (see [2], for
example) but no corresponding theorem exists in such generality for boundary value ODEs
and we cannot expect a simple, corresponding theorem for DAEs. In fact, by 1988,
theorems on the uniqueness and existence of a solution and expressions for closed-form
solutions had only been been resolved fully for linear constant coefficient DAE systems, the
solution of even linear variable coefficient DAE systems proving to be a much more intricate

problem (see{3]).

We note that we need, for an ODE of order m, m initial or boundary conditions in order to
specify the solution, and illustrate this in example 1.12.

Example 1.12 Consider the ODE

y"(x) = f(x) (1.27)
We integrate (1.27) to obtain
y'(x) =[5 f(s)ds+y'(0) (1.28)
and integrate (1.28) to give
() = 1§ f (wdu+ y'(0) s+ y(0) (1.29)

We observe that, since the system has 2 degrees of freedom, we need to know 2 values,

say y(0) and y/ (0), to specify the solution for this ODE of order 2.

However, as we illustrate in example 1.13, for simple DAEs, the solutions is determined by

the equation.

Example 1.1
x'=z+ t2 . . 2 2 . .

For the DAE the solutionis x =¢",z=2¢ —¢* , without the need to specify any
O=x-t

conditions.

12



If we consider the simple index two problem

W = f ()
Yo =0
= t
then the solution is ! f(, ) .
Y, =f'(0)

The solution depends on the forcing function f(t) and it's first derivative, both evaluated at the
current time only i.e. it does not depend upon the initial value or on the past history of f(t). In
general, for systems of index m the solution involves derivatives of order (m-1) of the forcing

function.

A major practical difference when we come to discuss the numerical solutions of ODEs and
DAEs is the need to start the solution of a DAE system with a consistent set of initial
conditions. E.g. Consider example 1.13. If x(0) = ¢ = a constant is imposed then we
find that this is inconsistent with the DAE unless ¢ = 0. However, in the latter case this gives
no further information i.e. it is superfluous. This aspect of DAEs is considered further in

section 4.4.

A problem formulated as an initial value ODE can be readily solved numerically using an
appropriate (computer) code. However, for a DAE we find that the processes of formulating
the problem and solving it numerically are combined in that a DAE formulation of the
problem is likely to need more user attention and intervention. As well as the usual
behaviour associated with ODEs, DAEs can exhibit additional behaviour such as the

bifurcation of solutions (see [4] for further information on bifurcation points).

1.7 APPLICATIONS OF DAEs IN THE “REAL WORLD”

We now move on to discuss where DAEs arise. We find that they are a natural way of

describing a wide variety of physical systems and are particularly useful in
¢ constrained variational problems
¢ network modelling
¢ classical singular perturbation theory

¢ solving partial differential equations (PDEs) by the method of lines

13




1.7.1 CONSTRAINED VARIATIONAL PROBLEMS

These include constrained mechanical systems and optimal control problems with
unconstrained controls. The latter involve a process and a cost and the problem to be
solved is to choose the control in order to minimise the cost subject to the given process and
specified initial or boundary conditions. Constrained mechanical systems arise in real-time
vehicle simulation and design, in computer-aided design of mechanical systems and in
robotics.
Example 1.14 A robot arm moving with an end point in contact with a surface is governed
by the following equations, given in [4].

M)x" + G(x,x") = U+ BT (x)A (1.31a)

0=¢(x) (1.31b)

withB=¢ (x), xe R", L e R",U € R” and M is the mass matrix.

G characterises the Coriolis, centrifugal and gravitational effects of the robot.
U = input (control) torque vector at the joints.

c defines the contact surface and B'A is the contact force vector.

1.7.2 NETWORK MODELLING

Here we start with a collection of quantities and known, or desired, relationships between
them. Examples are found in

e circuit analysis

* trajectory prescribed path control

e chemical process simulation
In circuit analysis the currents in the branches and the voltages at nodes, or voltage drops
on branches, are of physical interest. These quantities are related by laws, e.g. Kirchoff's
node (current) and loop (voltage) laws. For RLC circuits the equations are often linear,
constant coefficient and will be semi-explicit. However, if devices such as diodes or
nonlinear resistors are included then the system will be nonlinear. We note that computer-
aided design stimulated researchers to study DAEs and their direct numerical solution and
that, according to the authors of [4], the first paper on the numerical solution of DAEs

appeared in the IEEE Transactions on Circuit Theory in 1971.

14




Trajectory prescribed path control applications include the design of a safe re-entry profile
for the space shuttle and aiding the performance analysis for the design of a space vehicle.
Prescribed path contro! also arises when there are invariants present in the solution to a

system of ODEs.

Example 1.15 (taken from [4])

A process is governed by
x' =f(x,u,?) (1.32a)

where x are the state variables and u are the control variables. u is chosen so that the

trajectory x follows some prescribed path
g(x,u,1)=0 (1.32b)

We note that in practice u is frequently absent from (1.32b) and that this can lead to

numerical difficulties when solving the semi-explicit DAE.

1.7.3 CLASSICAL SINGULAR PERTURBATION THEORY

Classical singular perturbation theory is a rich source of DAEs. In a given model there may
be various small parameters which may be set equal to zero in an attempt to simplify the
model or to obtain a first order approximation to its behaviour. The resulting system is often

a DAE. [4] gives the classical singular perturbation in the form

x' =f(x,y,t,€) 0<e <<1 (1.33a)

ey’ =g(x,y,t,€) (1.33b)

which is an example of a stiff ODE. (see section 3.1.2 for further discussion on stiffness)

Even if the solution is needed for all t > 0 the solution can be added to a boundary layer
correction term corresponding to a fast time scale. Applications can be found in fluid
dynamics, the study of nonlinear oscillations with large parameters and in chemical kinetics

with slow and fast reactions.

15




1.7.4 METHOD OF LINES

These problems, in which the spatial derivatives are discretized by finite differences or finite
elements to obtain a DAE system, lead to an explicit ODE but many well-posed problems
which are of practical interest are more readily handled as a DAE. The addition of a physical
property to be satisfied, e.g.incompressibility, as a constraint in the spatial discretization,
leads to a DAE and may enable the numerical solution to satisfy the constraint as well as the

analytical solution. Examples of this method are found in
e combustion and chemical kinetics modelling
e chemical vapour decomposition
o the fabrication of integrated circuits
¢ incompressible fluid flows

e gas transfer in piping networks

16



SECTION 2: SOLVING DIFFERENTIAL-ALGEBRAIC EQUATIONS

We will now turn our attention to solving DAEs. We will consider systems of the form
0=F(,y,y'") (2.1)

2.1 WHAT IS MEANT BY A SOLVABLE DAE?

Solvability has been defined in various ways by different people. In [18] and [19] Petzold

defines solvability for (2.1) as:-

“The DAE is solvable for t in a finite interval I, if for each t, there is a manifold M, through
every point of which there is a smooth solution which exists over all of I, solutions never

bifurcate and two solutions beginning at distinct values never intersect in I.”

We find alternative definitions of solvability in [4] and [11]. Naturally they ensure that
solvable problems have solutions which do not bifurcate and which are uniquely determined

by their value at t = t,. We now give an example of a non-solvable DAE.

Example 2.1 We consider the system, from [13], which describes a nonlinear resistor
network.

x!—x=0 (2.2a)
X, +x,=0 (2.2b)
X, +x,%,+x,° =0 (2.2c)

One solution of this DAE is given as
t t 4
x()=2E=+1D)-3E+1),=+1)7
(0= (25 +1)’ 3(+ 1% 2 +1)
We can see that this is a solution by noting that
t 2
x| =(g+1) sothat x/ =xZ,

xX; = —3(2)(% + 1)% = —(% + 1) sothat x; =-—x,.

We can readily show that (2.2c) is satisfied. We note that x,(0) = (2,-3,1)".

17



However, x..(1)=(2+t-3-¢1)" is also a solution, since x! =1,x] = -1, along with
x..(t) can be shown to satisfy (2.2). We note that in this case also x..(0) = (2,-3,1)".
Consequently this singular, index-1 DAE displays bifurcation phenomena.

.. the DAE is not solvable along its singular curves, which take the form

x, +3x3 =0
since differentiation of (2.2c) with respect to t gives

' ' ' 2.1
X[ +x5%;, +x,x; +3x5x; =0

and substitution from (2.2a) and (2.2b) gives

X2 4+ (=x3)%; +X,%1 +3x2x, =0

which implies

xi(x, +3x2)=0.
Having given an example of a nonsolvable DAE we now move on to consider, in the next
subsection, which types of DAE are known to be solvable or for which a method of solution

exists if the DAE is solvable.

18



2.2 GUIDANCE ON WHICH DAEs CAN BE SOLVED CURRENTLY

The purpose of this section is to answer the following questions:-

1. Is it possible to determine whether a DAE is solvable by inspecting its system of

equations?

2. Is it always necessary to determine the index of the DAE before a decision about

its solvability is made?

3. Is it possible to be certain whether or not a DAE can be solved? (i.e. can

conclusive evidence be found in the research undertaken to date to make a

definite statement about its solvability?)

4. Is it easier to make a decision for some types of DAEs than for others?

In section 1.2 we saw that DAEs could be classified into different types. We now give a

visual representation of determining whether a DAE is solvable in Figure 2.2, along with

references to the original publication in Figure 2.1.

The first step is to decide which type of DAE you are interested in and for ease of reference

the following key has been adopted.

Type A:
Type B:
Type C:
Type D:

Linear Constant Coefficient DAE
Linear Time-Varying DAE
Semi-explicit DAE

A DAE in Hessenberg form

(see 1.3.1)
(see 1.3.2)
(see 1.3.4)
(see 1.5)

The emphasis in the research material which we have considered focuses largely on the

numerical solution to DAEs. Discussion about analytical solutions to DAEs is mainly

concerned with linear constant coefficient and linear time-varying DAEs, (i.e. types A and

B). By saying that a DAE is numerically solvable authors are implying that if the DAE has a

solution then current software is available to find it , e.g. in [19] it is stated that “The class of

DAEs which we consider has the property that solutions exist and are in some sense

unique.”
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We consider the questions raised at the beginning of this section with reference to Figure
2.2. We observe that if, on inspection of the DAE system it can be seen to be in Hessenberg
form then a decision can be made if the index is known. However, if the DAE is recognised
to be a linear constant coefficient DAE, i.e. type A, then knowledge of the index is not
required as solvability depends upon whether the matrix pencil is regular or not. We note
that, in relation to question 4, the analytical solvability of a linear time-varying DAE is more

complicated to determine than that of a linear constant coefficient DAE.

In general, merely inspecting the DAE will not be sufficient and further mathematical analysis
will be needed before a decision can be made regarding its analytical or numerical

solvability.

2.2.1 SUMMARY OF DEFINITIONS AND ADDITIONAL EXPLANATORY NOTES FOR
FIGURE 2.2

1. If A is a complex parameter then (AA + B) is called a matrix pencil.
2. [4] states that the DAE A(#)x'(¢) + B(¢)x(¢) = f(¢) is an r th order (lower) triangular

chain if it is in the form

A, 0 . . . 0)(x B, 0 . . . 0)\(x fi
A21 A22 : . : B21 B22
+ =
. .0 . . .0 . .
A, . . . . A Nx B, . . . . BJ\yx, /.
i-1
and each subsystem A.x!+B.x, = f, - Z(Aijxjf +Byx;
1

is either index-1, index zero, in Hessenberg form, or in standard canonical form.
3. In [4] we find that the system A(#)x'(¢) + B(¢#)x(¢) = f(¢) is in standard canonical
form (SCF) if it is in the form

(I 0 ) (c(t) 0)
X'+ x =1(1)
0 N(r) 0 I

where N is strictly lower (or upper) triangular.

P and Q are analytic and nonsingular and are such that transformations of the form
x = Q(t)y, and left multiplication of the equation by P(t) exist which transform the
linear time-varying DAE to SCF everywhere on L. i.e. P and Q are such that

PAQy’ + (PAQ’ + PBQ)y = Pf is analytically equivalent to
Ax'(t) + B(O)x(r) =1(1).
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4. The singular system
A@)X' (1) +x(t) = () where A(t) = PNt)P"
with P s x s, nonsingular and constant; N(t) analytic, s x s and strictly upper (or
lower) triangular,
has a unique solution. (see [3]).
5. The order of the variable step size BDF method needs to be greater than 1 for
Hessenberg index-3 DAEs and greater than 3 for Hessenberg index-4 DAEs.

(Further details on BDF methods can be found in sections 3 and 4).

2.3 ANALYTICAL SOLUTIONS TO DAEs
First we consider analytical solutions to linear constant coefficient and linear time-varying

DAEs. We follow this with examples of solving DAEs analytically.

2.3.1 LINEAR CONSTANT COEFFICIENT SYSTEMS
We consider the system

Ax’' + Bx =f(¢) (2.3)
which is solvable iff (AA + B) is not identically zero, i.e. the matrix pencil is regular.

Consider x = (x,,x,)",f() = (f,, f,)".
) I 0 C 0
Nonsingular P and Q exist such that PAQ = (O N) and PBQ = (O Ij .

[3] states that the solution to the equivalent system

yi(0)+Cy (1) = £,(1) (2.4a) ;
Ny; () +»,(t) = £,(1) (2.4b)
is given by
Y () = ey, (0) + [ cf, (s)ds (2.5a)
Y, (1) = g(-N)ifz‘i’ () (2.5b)

where N is nilpotent of degree v, i.e. N“"20 but N'=0.

We will consider example 1.2

where A= , B= and f(r)=| ,
0 3 6 1 t
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-2 A
We can see that XA+B=( )
-6 31+1

Since det(AA + B) = -2(3L + 1) + 61
=-2
20
then the matrix pencil is regular, and hence the DAE is solvable.
In this simple example v =1, N=0, ¢ =0 since we can write the system in the form
x/(t)=t
x, ()=t
We note that fi(t) =t and f,(t) = t2
Applying (2.5a) gives

x,(£) = e x,(0) + [ Odis = x, (0) + 1 (2.6)

0

and using (2.5b) we obtain
L= 0= 100 =1 @7

We note that the initial condition x4(0) in (2.6) can be chosen arbitrarily but that x,(0) must be

zero, (from(2.7)), in order to obtain a consistent initial condition of the DAE system.

2.3.2 LINEAR VARIABLE COEFFICIENT SINGULAR SYSTEMS

Solving linear variable coefficient systems of the form

Ax'(t)+B()x(t) =£(¢) (2.8)
has proven to be much more intricate than solving systems of the form (2.3). We are no
longer able to equate solvability with the regularity of the matrix pencil AA(t) + B(t). We
illustrate this, using examples from [2], by demonstrating that non-regularity of the pencil
does not imply nonsolvability in example 2.2, followed by example 2.3 which shows that

regularity of the pencil does not imply solvability of the DAE.

24




Example 2.2 Consider a DAE in the form (2.8) with

Al = 1 ¢ (00 fi
(1) = 0 0 and B(¢) = | ¢ and f,(1) = 7))

We find that AA(t) + B(t) = [K M]
1 ¢

from which we can show that det(AA(t) + B(t)) =0
AA(t) + B(t) is not a regular pencil.
However, by rewriting the system in the form
xi(1) + x5 (1) = £,(0) (2.9a)
x, (8) +1x, (1) = £, (1) (2.9b)
and differentiating (2.9b) to give
X () +x,(6) + 1x; (1) = (1)

we are able to obtain the solution

X0 = L0~ L)
x (0= (0 -1 +1f(1)

Hence nonregularity of the matrix pencil % nonsolvability of the DAE, since we have a DAE

with a singular pencil which is solvable.

t 1
We note that alternatively we can write x = ( i Oj y.

n thi 2.8)b (1 t) (1 0) +(r 1) , +(O O)(t 1) ¢
n IS case . ecomes =
( 0 o/llo oY 1 oY [T g o)

(1 oj ¢
’+ =
0o 17

which is a solvable, linear constant coefficient index-2 DAE.

0 1
which we can simplify to (O O)y
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Example 2.3 Consider a DAE in the form (2.8) with

- 2 1 0
Am:(—i tr]’ B(’)=(o 1)

2
We find that the matrix pencil is A+l At
A Ar+l
2
e are sple o show el oo M;l xM 18 (-M+ 1) (At + 1)-(-A*) = 1 =0,
- I+

We can thus conclude that the matrix pencil is regular.

t
However, if we consider x = ¢ (t)(lj where ¢ (¢) is any scalar function, then the LHS of

(2.8) with A(t) and B(t) as given becomes (:i t:){d)’(t)ﬁj +¢(t)((1)j}+ ((1) ?)(b(t)(i)

which equals (g)d) ")+ ¢(t)(:;] + (i)d)(t) =0

Hence the DAE is not solvable, since an initial value does not uniquely determine a solution,

and we have a DAE with no solution but with a regular matrix pencil.

We now return to solving systems in the form (2.8).

I
If we can rewrite the DAE in SCF (see section 2.2.1 Note 3) with PMHAM®)Q(t) = (O N(t))

c(t)

0
0 J AND P, Q analytic and nonsingular,

AND P(HA(D)Q'(t) + P()B(1)Q(t) = (

then [3] gives the analytic solution as

x=Q(@)y()
where y(f) = (y, (’)T,J’z(’)T)T

and (1) = DD (0)y,(0) + D), @' (5)f, (5)ds

70 = EENOD) ().
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We note that:-

e @ is a continuously differential fundamental solution matrix of y/(¢) +c(#)y,(r) =0

* y,4(0) is a given initial condition which can be chosen arbitrarily

o D is the differentiation operator, and N(t) is an analytic sxs matrix-valued function.
i.e. (-N(t)D) is defined as (-N(t)D) x(t) = -N(t)x(t) and

t+1

(—N(t)D)

x(t) = (-N(®D) (-N(t)x'(1))

2.3.3 FURTHER EXAMPLES OF SOLVING DAEs ANALYTICALLY

Example 2.4 We will consider a DAE of the form

AQX'(F) +x(t) = £(1)

(2.10)

where A(t) = PN(t)P'1 with P sxs, nonsingular and constant, N(t) analytic, sxs and strictly

upper triangular. We know from section 2.2 that this system is solvable. We will take the

following example from [3] as an illustration of how this approach can be used.

0t 0 2t
t-1 2t-1
0

0 0

0
NO=|
0

We note that det P =8 ... P is nonsingular

-1 1 0 O
] 4, 140 -1 1 0
We find that P~ =—
210 0 -1 1
-1 0 0 -1
We can show that
2t +3r -1
1| =22 +3t -1
A(D) =PN@HP"' ==
® © 21 =267 -1 +1
2t =3t +1

andthatdetA=0

. Ais singular.

, P =

0
0
0
_et
.e't
and f(t)=| | whichisequivalentto —e™

-1 -1 -1 -1
-1 -1 -1
1 -1 -1}’
1 1 1 -1
1
1
1
1
t -1 2P +2¢
—t 2t—1 2t +2¢
-t 1 -2t

-t 1 =2t =-2t
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Returning to (2.10) and using A(t) = PN(t)P'1 we can write
PN@®P'x'(t) + x(t) = (1)
Premultiplying by P~ will give
NP 'x'(t) + P'x(t) = P'f (1)
We can show, by considering each term separately, that
~2t%x! — ) +xt =27 x)
1| A-20)x] +(1-)x; —tx,
2 —x|{ —tx,
0

N@P'x/(t) =

—xl +x2
Pix=a| 270
2| —x; +x,

—X; — X,

and P'f(t)=e"

—~ o O O

(2.11)

(2.12)

(2.13)

(2.14)

Using (2.11) and substituting from (2.12), (2.13) and (2.14) we obtain the following four

equations:-
—2t%x! —tx) +tx) = 2t°x, —x, +x, =0
(1-20x/ +(1-t)x; —tx; —x, +x, =0
e =ty —x;+x, =0
—x, —x, =2e*
From (2.15d) we obtain
x, +x, =—2e*
which we can differentiate to obtain
x| +x; =2e"
if we substitute into (2.15c) we obtain
-tRe*)=x, —x,
Rewriting (2.15b) in the form

(el +x5) = t(x] +x5)—t(x] +x,)—x, +x, =0
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we can show that

X, — X, = —2t%e" (2.16¢)
Rewriting (2.15a) in the form

=2t* (x| +x)) —t(x) —x))—x,+x, =0
we can show that

2te = x, - x, (2.16d)
We now have (2.16), which is a system of 4 equations in 4 unknowns, and which can be

solved to give
x, =e'(-1-t-t> —t%)
x, =et(-1-t-t* +t%)
X, =et(=1-t+1t*> +1t%)
x, =e*(-1-t-t* +t°)
The expressions which we have for x;(t), xo(t), Xx3(t) and x4(t) are in agreement with the
solution given in [3].
Changing A(t) into the form PN(t)P™' has eased the solution of the DAE since if we start

with A(t) in its original form we do not obtain equations which are readily solvable.

Example 2.5 The equations (2.17) are taken from [2], (page 267).

1 ) 3¢
x!=|a = +(2—-thz+— 2.17a
! ( 2- )" @-rp 2—t¢ ( )
, l-a t
x2=(t_2)xl—x2+(a—1)z+2e (2.17b)
0=(©+2x, +(t* —dx, — (t*+t - 2)e’ (2.17¢)

where a is a parameter.
The DAE is in Pure Index-2 form (or Hessenberg form).
In seeking a solution we notice that in (2.17¢c) the coefficients of x4, x, and e' have a total of
zero
e (t+2)+(t°-4)-(t°+t-2)e'=0
. A possible solution involves x, = x, = ¢’ (2.18)
If we substitute from (2.18) into (2.17b) we obtain

e' :(1_§)e’ —e' +(@ -1k +2e'

{—
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(I‘Z)e’ +@-1k=0

[ —
!

(t-2)

, providing o = 1.

We rearrange (2.17a) into the form

, 1 3-t
b —(a—;)x, ——(2—t)xz=—

2-1

Evaluating the LHS using the expressions already obtained for x,, X, and z gives

LHS =¢' —(oc "il—_t)et —(2—r)a[:2)

,(3—t)
:e ——————e
2—t

In conclusion we find that (2.17a) and the solution given in [2], which is the same as the

solution deduced above, are inconsistent. A multiplying factor of ¢’ in the last term on the

RHS of (2.17a) would resolve the inconsistency.

Example 2.6 This is an example of an index-3 DAE (VnefR), taken from [12]. Consider

0 1 0 1 0 0
0 nt 1|x’(O)+|0 n+1 Ox(¥)=q(r) (2.19)
0 0 0 0 nt 1

By writing x(t)=(x1,x2,x3)T and q(t)z(%a%a%)T

we can rewrite the DAE as

X (1) +x,(t) =q,(?) (2.20a)
nax; () + x5 () + (M +D)x, (1) = g, (1) (2.20b)
N, (£) + x5 (1) = g5 (¢) (2.20¢)

The approach we will use in this example involves differentiaion of the constraint, i.e. the
algebraic equation, followed by substitution into the differential equation. More detail about
this technique is given in section 2.6.

Differentiation of (2.20c) gives

nx, () +nax; () +x3(6) = 93 (1) (2.21)
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from (2.20b) and (2.21) we deduce that
X, (1) = q,(t) —q5(?)

We can now substitute for x; (t) in (2.20a) to obtain

x, () =q,(t) — g, () + ;)
and for x(t) in (2.20c) to obtain

X3 () = q,(¢) =g, (t) +M1q;(¢)

(We notice that in this example the value of = 0 would reduce the DAE to a linear constant
coefficient DAE.)

1 A 0
The matrix pencilwouldbe [0 Anr+n+1 A

0 nt 1

and we can show that det(AA + B) =1 + 1, which is not identically zero.

.. the matrix pencil is regular and the DAE is solvable.

We now move on the consider non-analytical methods of solving DAEs and turn our

attention to numerical methods of solution.

2.4 AN INTRODUCTION TO NUMERICAL APPROACHES TO SOLVING DAEs
We begin by noting that when numerical methods are applied to a DAE we assume that the

DAE “makes sense’, i.e. it is solvable, and that the method is implementable, i.e. the
nonlinear system of equations solved at each time step has a solution. (see section 3 for
further information on numerical methods).

Numerical approaches to solving DAEs can be roughly divided into two groups

1. Direct discretization of the given system,

2. Methods which involve a reformulation (e.g. index reduction) combined with a

discretization.

We need to be able to identify which of the currently available numerical techniques will work
for a given problem since, in the views of the authors of [4], none of them work for all DAEs.
Direct discretization methods are preferred, when possible, since a reformulation of the DAE
may need more input and intervention from the user. Also the system size may be
increased, resulting in greater cost. However, the use of direct methods is limited to index-1

and semi-explicit index-2 DAE systems, and is not recommended by the authors of [2] for
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non-decoupled DAEs of index higher than 1, hence the popularity of reformulation
approaches. We note that by decoupling we mean splitting the solution components y into
differential and algebraic variables. Reformulation will be considered in greater detail in

section 2.5 and direct discretization methods in section 4.1.

Structural characteristics, e.g. the index, are important when considering the convergence
and stability properties of numerical methods. In general the higher the index the more
difficult the problem is to solve numerically. Advantages and disadvantages of index
reduction will be discussed in section 2.6. Section 3 and section 4 provide more extensive

detail about numerical approaches to solving DAEs.
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2.5 THE REFORMULATION OF DAEs
We will now consider advantages and disadvantages of reformulating a DAE since there is

often a choice of formulation for a particular problem, and this choice can influence the
performance of a numerical method. We may have choices in both the selection of the
equations to be satisfied and in the variables. We often have the option to reduce the index
but we note that a better implementation is not guaranteed.
We are able to write any DAE of the form F(¢,y,y’) = 0 in the semi-explicit form, but with
the index increased by 1, by defining y’ =z to obtain the system

y =z

0=1(t,y,z).
However, this reformulation does not ease the solution of the problem, but it does show that
the class of fully implicit index-1 DAEs is equivalent to the class of semi-explicit index-2
DAEs.
To illustrate what is meant by a reformulation of a problem we will consider the following
DAE system found in [2].

=AY — Y, (2.22a)
Y43 = @RS 00, 43,45 (- 7)’ (2.22)
0=y, —y, —2sint(y, - 1) (2.22c¢)
0=y, +y,—2(y, - 1)° (2.22d)

Here A is a parameter and initial conditions are givenas y,(0)=2,y,(0)=1.

The constant or time invariant, nonsingular transformation

X, =y (2.23a)
1

X, = E(yz +¥3) (2.23b)
1

z, = E(yz =) (2.23c)

Z, =Y, (2.23d)
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is used in [2] to convert (2.22) into the semi-explicit form (2.24)

X{=AX —2z, (2.24a)
xy =2\ —sin® H)x, + 2z} (2.24b)
0=z —sint(x; - 1) (2.24¢)
0=x,—(x, —1)? (2.24d)

We note that although (2.24) is in semi-explicit form it is not in Hessenberg form. A further

transformation using z, =sin#(x;, — 1), (from (2.24c), yields (2.25) which is Hessenberg

index-2.
X =AXx, ~2, (2.25a)
x) = (2A —sin® H)x, +sin® 1(x, 1) (2.25b)
0=x, —(x, 1) (2.25¢)

We note that in (2.24) z, and z, are algebraic variables, that z, is an index-1 variable and

that z, is an index-2 variable, (One differentiation is needed to find z{ but two

differentiations are needed to find z; ). This example has illustrated a change to semi-

explicit form (2.24) followed by a change to the Hessenberg of (2.25).

Next we will consider the reformulation of a second order ODE subject to constraints into a

Hessenberg index-3 DAE, and illustrate this by considering the motion of a simple pendulum.

VA4 / / L We will let the mass of the pendulum bob =1
‘_/ and let the length of the pendulum = 1.
©

We will assume that the motion is not affected by friction so that the motion is governed by

the simple second-order nonlinear ODE
O =-gsin®

We will now express the motion of the tiny pendulum bob in terms of the cartesian co-

ordinates (x4, X2), using A(t) as a Lagrange multiplier.
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Newton’s equations of motion give

£ - hx (2.26a)
%, = -Ax,—g (2.26b)
subject to the constraint x}+x; =1.

We can rewrite the two second-order ODEs as four first-order ODEs by defining
V= X{,V, = X;.

We then have

v =-Lx, (2.27a)
V= -Ax,—g (2.27b)
Xl =v, (2.27¢)
X =v, (2.27d)

which with the constraint in the form
0=x+x}-1 (2.27e)
gives a first-order DAE system which is Hessenberg index-3. Further discussion of this

problem can be found in section 5.

2.6 SOLVING HIGHER INDEX DAEs

We have a choice of several techniques when attempting to solve higher index systems.
These include:-

e Solve the system in its original form

¢ Differentiate the constraint one or more times and solve the resulting lower index system
¢ Use index reduction techniques

¢ Eliminate Lagrange multipliers analytically

¢ Use penalty functions or regularisations.

Solving the problem in its original form has the advantage that the system is easy to
formulate, and, since we do not rewrite the system in any way or differentiate the constraints,
the sparsity of the system is preserved and we satisfy the constraints at each step. On the
other hand we can encounter difficulties when using a variable step size BDF code to solve
the system. (See sections 3 and 4 for further information on variable step size BDF codes).
Although many of these difficulties can be overcome the authors of [4] do not consider it an

easy matter to obtain an accurate numerical solution.
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If we solve the DAE by differentiating the constraint one or more times, to reduce the index,
we introduce the problem that the lower index formulation of the DAE system does not
ensure that the constraints are satisfied on each step. We note that the essential concept
here is that the DAE is equivalent to an ODE with an invariant. We will illustrate this by
further discussion of the equations for the motion of a simple pendulum in the form (2.27).
If we differentiate the constraint, i.e. (2.27¢e), we obtain

0=xx+x,x;
which, using (2.27¢) and (2.27d), can be written as

0=xv, +x,v, (2.28)
which is known as the velocity constraint.
If we differentiate (2.28) we obtain

0=xv{ +x)v, +x3v, + x,v,

which, using (2.27¢) and (2.27d), can be written as

0=v] +xV] +V: +x,V} (2.29)
Using (2.27a), (2.27b) and (2.29) we find that
0=v] +v} -A—gx, (2.30)

From (2.30), which is known as the acceleration constraint, we can find an expression for A,
ie.  A=v +v-gx, (2.31)
We can substitute from (2.31) into (2.27) and, by rearranging the order, obtain the following

ODE, which has resulted from an unstabilized index reduction.

x| =V, (2.32a)
X; =V, (2.32b)
v =—(v; +v; - gx,)x, (2.32¢)
vi=—(vf +V; —gx,)x, — & (2.32d)

The constraints on the position and velocity levels give the invariant equations

2 2
O=x +x; -1
0=xy, +x,v,

which are now additional to the ODE (2.32)
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We note that [2] states that “index reduction of a DAE leads to an ODE with an invariant,”

x' = f(x)

h(x)=0

and that “an ODE with an invariant is equivalent to the Hessenberg index-2 DAE

x' =f(x)-D(x)z ,
0=h(x) '
i.e. the relationship between DAEs and ODEs with invariants goes both ways. Here D(x) is

any bounded matrix function such that HD, where H = hx is boundedly invertible for all t.

We now return to the problem of the constraints not being satisfied on each step, and note
also that the amount by which the constraint is not satisfied may increase from step to step,
i.e. a “drift” in the algebraic constraints is present. Small step sizes can be used to help to
keep the “drift” small, as can fairly stringent error tolerances in an automatic code. (See

section 4 for an introduction to computer software for solving DAEs.)

If the algebraic constraints (in the DAE) reflect important physical properties then the “drift”
can have serious implications. (see [4]). Gear proposed an idea which involved introducing
constraints which have been “lost” back into the system by augmenting the system as the
index reduction proceeds. In this way all original equations and their successive derivatives
are retained in the process and a consistent, but overdetermined, index-1 DAE is obtained.
However, consistency is generally lost when the system is discretized and special

techniques are required for its numerical solution.

In [15] index reduction techniques using a dummy derivative are discussed. We will outline

the method using an example from [15].

Consider x=y (2.33a)
y=z (2.33b)
x=f() (2.33¢)

We note that (2.33) is an index-3 DAE with solution x = f@®.y=Ff).z= £(t) and that it
can be thought of, according to the authors of [15], as prototypical for prescribed-trajectory
problems in mechanics, in which the calculation of the forces required for the system to
accomplish the desired action is required. In such an application x, y and z would represent
position, velocity and force per unit mass respectively, and f(t) is the prescribed trajectory for

the system.

37



We now consider the overdetermined but consistent system obtained by augmenting the

original system (2.33) by successive derivatives of (2.33a) and (2.33¢), i.e.

x=f(1)
x=f(1)
i=f()
y=x
y=x
z=y

We now eliminate X by putting x” =% i.e. use a dummy derivative x” for i, and note that
the dummy derivative is a purely algebraic variable and is not subject to discretization. In a
similar way we replace x by x' and y by y’ and thus we obtain the augmented but over-

determined system

x=f(t)
x'= ()
x" = f(1)
y=x'
y'=x"
z=y'

The system is purely algebraic and hence index-1, and it is mathematically equivalent to
(2.33). No initial conditions can be imposed and no discretization is required for its
numerical solution. The authors of [15] note that this system is special, but also that it
demonstrates that the system can be solved numerically without discretizing all derivatives.
The general case is discussed inn [15] but the merits of this technique are felt, by the
authors, to be the fact that the dummy derivatives are identified and excluded from
discretization. As a result over-discretization of the DAE is avoided and the differentiations
inherent in a high-index DAE are carried out analytically rather than numerically. In addition
we note that since the algebraic equations are still present in their original form there will be
no “drift” away from the solution manifold of the DAE, and hence no need for constraint

stabilization.
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Another idea, proposed by Gear, for reducing the index in semi-explicit systems of the form
x' =f(x,y,t)
0=g(x,y,n)
is to replace the undifferentiated variables y by w’. The index of the system is reduced by 1
but the solution of the new DAE system yields only x and w and consequently the computed

w will need to be differentiated to obtain y.

The strategy of eliminating Lagrange multipliers analytically to obtain a standard ODE is
illustrated by considering example (1.1) again. We will introduce x =L sinp and y=-L
cos¢, thus the algebraic constraint is satisfied. By differentiating with respect to t we can

obtain

L$ = —gsing
which is an alternative form of the ODE
+=2sin¢ =0
b+ sing

which in system theory and mechanics is known as the state space form or the Lagrange
equation of the second kind. We note that the authors of [14] consider that this approach

may be difficult to implement in general or for very large systems.

The regularization of a DAE is defined in [4] to be the introduction of a small parameter into
the DAE in such a way that the solution of the perturbed system approaches the solution of
the unperturbed system as the parameter tends to zero. However, the authors of [4]
suggest that, although approaches based on some regularization have definitely proven
successful in some applications, at the time of writing of [4] results on regularization as a

general technique for solving higher index systems are inconclusive.
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SECTION 3 NUMERICAL METHODS AND ODEs

3.1 THE ROLE OF NUMERICAL METHODS IN SOLVING ODEs
Many problems in physics , engineering, biology, chemistry etc. can be modelled by systems

of ODEs. However, as is stated by the author of [10] the number of instances where an
exact solution can be found by analytical methods is very limited, and the only general class
of systems for which exact solutions can always be found (subject to being able to find a
particular integral) consists of linear constant coefficient systems of the form

y' = Ay +F(x) (3.1)
where A is a constant matrix.
Exact analytical solutions can be found for particular linear variable coefficient or nonlinear
systems, but in general it is necessary to use either an approximate or numerical method to
solve an ODE.
We will focus our attention on numerical methods but note that an approximate method,
such as solutions in series or solutions which only hold asymptotically for large x, frequently
produces an approximate general solution whereas a numerical method produces a
particular solution satisfying given initial or boundary conditions.
In the numerical methods which we consider the idea of a discretization is involved. By this

we mean that “the continuous interval [a,b] of x is replaced by the discrete point set {x,,}

definedby x,=a+nh, n=0,1,2, ... ,N= (2;—61) " (see [10]).

The parameter h is called the step length and y, is used to denote an approximation to the

solution y(x,) at x,, i.e. y, = y(x,). Numerical methods may take many forms, e.g.

Yurz = Yur = §[3f(x,.+l ) =21 9] (32)
and
h
Vol =V, = 5(k1 +k,) (3.3a)
where
ki =f(x,5,) (3.3b)
k, = f(x, +h,y, +%hk1 + %hkz) (3.3c)
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Many numerical methods can be written in the general form (see [10])
k
Zg)ajyn*—j :h¢f(yn+k’yn+k—l""’yn’xn;h) (34)
p

where the subscript f on the RHS indicates that the dependence of ¢ on

Ve s Vneko15+--->Yns%, is through the function f(x, y). Two conditions are imposed on (3.4),
(see [10]). The first of these places a condition on the method and the second, a condition
on the problem for it to be solvable. These conditions are not found to be restrictive since all
methods we consider satisfy the first and the second follows from the assumption that the
problem satisfies a Lipchitz condition.

The choice of which numerical method to use depends partly on the accuracy requirements,
noting that the error for a given step size is smaller for higher order methods but also that

the cost of each step is higher for a higher-order method.

3.1.1 CONVERGENCE, CONSISTENCY AND STABILITY OF NUMERICAL
METHODS (applied to ODEs)

We consider the general method in the form (3.4). We require that the numerical solution

{yn,n =0,1,.....N= Ta} where y, is defined by (3.4) to become the exact solution y(x) of

the ODE; this in general terms is the meaning of convergence but a more precise definition
is given in [10] . the method is said to convergent if “for all initial value problems satisfying
the hypotheses of Theorem 1.1,” (the general existence and uniqueness theorem for ODESs),

“we have that

—>0 as h->0

max|y(x,) -y,

0<nsN

We define the residual R ,, , which is a measure of accuracy, by
k
Rn+k = Z(:)aj y(xn+j) - h¢ f(y(xn+k)’y(xn+k-1 )5"--5y(xn )’xn;h) (35)
pu

and note that R ,, is essentially the local truncation error. (see [5] for further details).
Consistency is defined in [10] as;-
“The method is said to be consistent if, for all initial value problems satisfying the hypotheses

.. » defined by (3.5) satisfies lim lRM: 0.

of Theorem 1.1, the residual R P

x=a+nh

We note that convergence implies consistency but that consistency does not imply

convergence.
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Various types of stability exist. “Totally stable” is said by the authors of [10] to be equivalent
to being “properly posed”. A method is said to zero-stable, (see [10] for example), if it
satisfies the root condition, i.e. “all the roots of the first characteristic polynomial have
modulus less than or equal to unity, and those of modulus unity are simple”, (i.e. it is a von
Neumann polynomial). If the region of absolute stability of the method contains the entire left
half-plane then the method is said to be A-stable (see [2] for example). The region of

absolute stability of a method is “that region of the complex z-plane such that applying the

method for the test equation y’ = A y, with z = h) from within this region, yields an
approximate solution satisfying the absolute stability requirement

<

Yol SWual» N=1,2, ... ”

(see [2] for further details).
The necessary and sufficient conditions for the method (3.4) to be convergent are that it is

consistent and zero-stable (see [10] for example).

3.1.2 STIFFNESS: WHAT IS MEANT BY STIFFNESS?

o “Stiff equations are problems for which explicit methods don’t work.” [9]

o “Stiffness occurs when stability requirements, rather than those of accuracy, constrain the
step length.” (We note that this statement is not entirely accurate since stiffness is
concerned with the accumulation of error). [10]

o “Stiffness occurs when some components of the solution decay much more rapidly than
others.” [10]

Stiffness cannot be defined satisfactorily in precise mathematical terms, (see [10]), even for

the class of linear constant coefficient systems. A variety of qualitative statements have

been made in an attempt to define the notion of stiffness, e.g.

“An IVP is stiff in some interval [0, b] if the step size needed to maintain stability of the

forward Euler method is much smaller than the step size required to represent the solution

accurately.” (see [2])

and

“the numerical method may be restricted to using very small steps, in the case that its

absolute stability region is limited, because of the presence of a fast time scale in the

differential equation.” (see [1]
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When applying a numerical method the choice of step size should ideally be dictated,
according to [2], by approximation accuracy requirements. However, for many methods h
must also be chosen sufficiently small to satisfy an absolute stability restriction. If the latter
restriction dictates a much smaller step size than the first then the problem is referred to as
stiff.

Stiffness is often described by scientists in terms of multiple time scales. A problem is
considered to be “stiff” if the solution modes or phenomena which change on fast scales are
stable. Examples of sources of stiffness are

1. a controller which is designed to bring a system rapidly back to a steady state

2. chemical reactions which occur much more rapidly than others in chemically reacting

systems.

In mathematical terms, in addition to the differential equation stiffness depends upon the
accuracy criterion, the length of the interval of integration and the region of absolute stability
of the method.

[17] notes that differential-algebraic equations are very similar to stiff systems.

eg. If ¢>>0 then

(E -g A) Z(t) = Az(t) + g(¢)

is a stiff system near to
Ez'(t) = Az(t) +g(¢).

3.2 COMPARISONS BETWEEN DIFFERENT TYPES OF NUMERICAL
METHODS

A numerical method leads to a difference equation involving a number of consecutive
approximations yn+j,j =0,1,....,k. Using this the sequence {yn|n =0,1,2,...,N canbe

computed sequentially. K is the step number of the method e.g. if k = 1 then the method is a

one-step method and if k > 1 then the method is a multistep or k-step method.
€9 Vo Vo = 2[3 S Ven) —2f(x,, yn] is an example of a 2-step method since

Y., and y, are needed to compute y, , .
For a one-step method we require one initial given value, say y,, but for a k-step method we

require K initial values, say y,,¥,,¥,,....¥;_; to start the method off.
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Euler's rule is the simplest of all numerical methods, and it uses the difference equation
Yo =V, tHf,. Itislinearin y, and f, and because it is a one-step method changing the

step length h presents no difficulty. However, it has very low accuracy.

A linear multistep method involves only linear combinations of

Yuejro S FneisVur;)sJ =0.1,....k. These methods achieve higher accuracy by retaining
linearity with respectto y,,; and f, ., j=0, 1, ...k but lose the one-step format.

Considerable difficulties are encountered when we want to change the step length.

Runge-Kutta methods also developed from Euler’s rule, but, in contrast to the linear
multistep methods the one-step form is retained but the linearity is sacrificed. Consequently,
changing the step length is not problematic but the structure of the local error is more
complex making it hard to decide when to change the step length. We note that although
these methods are said in [19] to be advantageous over multistep methods for some
systems, e.g. systems with frequent discontinuities, care must be taken when choosing a
Runge-Kutta method which is appropriate for DAEs since in general they do not achieve the

same order of accuracy for DAEs as they do for ODEs.

An implicit Runge-Kutta method attains a higher order for a given number of stages than an
explicit Runge-Kutta method. Many of the most commonly used implicit Runge-Kutta
methods are based on quadrature methods, and according to [2] these can be divided into
several classes. Gauss methods are the maximum order methods; Radau methods
correspond to quadrature rules where one end of the interval is included; Lobatto methods
involve sampling the function at both ends of the interval. Implicit Runge-Kutta methods can
also be categorised according to whether they are collocation methods. The basic principle
behind collocation methods is to choose a function (usually a polynomial) from a simple
space and a set of collocation points. We then require the function to satisfy the given

problem equations at the collocation points.

Multistep methods attributed to Adams were derived by integrating the polynomial which
interpolates past values of f but BDF methods are derived by differentiating this polynomial

and setting the derivative at t, equal to f(¢,,y,) -
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3.3 NUMERICAL METHODS: FURTHER DETAIL

We will now restrict ourselves to the numerical methods relevant to the material in section 4,
and give a brief outline of each method, noting relevant features concerning order, stability
and convergence. In Table 3.1 we provide information about different types of methods and
in  Table 3.2 we include information about specific methods, each time indicating a
reference for it's source. Since the focus of this thesis is on DAEs the reader should consult
material specifically written about numerical methods and ODEs e.g. [1] or [10] for further

information.

3.3.1 LINEAR MULTISTEP METHODS
The general form of a linear multistep method, or linear k-step method, is given in [2] by

k k
Yoy, =h2B ., (3.6)
=0 j=0

where o ;,[3; are the method's coefficients. We note that the method is implicit if §, = 0

and explicit if B, = 0. Itis assumed that o, # 0 and |ou,|+|B|, = 0 and to eliminate

arbitrary scaling we set oo, =1. The past k integraions steps are assumed to be equally

spaced.

The most popular linear multistep methods are based on polynomial interpolation, and the
methods typically come in families. The most popular for non-stiff problems is the Adams

family and for stiff problems it is the backward differentiation formula (BDF).

For all Adams methods we set o, =l,a, =-Loa; =0, j>1. The explicit Adams methods,

also called Adams-Bashforth methods, use the difference equation

k
Yo =Vua +hzaﬁjfn—j
Jj=

V! k-1 (1
where B,=C1)" % (j—lei

i=j-1

1 f -
v, =) J ( l.sjds (see [2])

The implicit Adams methods, also called Adams-Moulton methods, use the difference

equation

k
Yu = Vua +hZOijn—_,‘
j=
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A table of coefficients, § ;, can be found in [2] for methods up to order 6.

We note thatk = 1, B, = 0 gives the Backward Euler method, and k = 1 with 3, # 0 gives

the implicit trapezoidal method. Adams-Moulton methods have smaller error constants and
use one fewer step than the Adams-Bashforth of the same order. Their stability regions are
much larger but they have the disadvantage of being implicit. Adams-Moulton methods are
often used together with Adams-Bashforth methods for the solution of non-stiff ODEs in a

type of implementation called predictor-corrector.

In [2] we find the characteristic polynomials defined as

pE) = Yo "

() = >: B et

for the k-step linear multistep method given by (3.6).

The linear multistep method is consistent iff p(1) = 0,p’(1) =c (1), stable if all k roots of

(&) satisfy |¢,| <1 with

& ,.| =1 requiring that &, is a simple root and asymptotically stable if

k _
all roots satisfy [£,| <1, where ()= Xa &/ =0.
Jj=0

The method is convergent to order p if the root condition is satisfied and the method and the
initial values are accurate to order p. It is strongly stable if all roots of p(§) =0 are inside

the unit circle except for the root £ =1 and weakly stable if it is O-stable but not strongly

stable.

(see [2]).
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3.3.2 BDF METHODS

The difference equation, in scaled form (i.e. a, =1), for the BDF methods is given in [2] as

=~

oy, =hBf(,,y,) where o, =1. (3.7)
0

i

Backward Euler is the first BDF method and its associated difference equation is

Ype1 —Va = hf,.,. This can be seen to follow from (3.7) if k = 1, since (3.7) would become

1
%aiyn—i :hBOf(tn’yn) (38)
which can be rewritten as
a‘Oyn +a1yn—1 __'hBOf(tn’yn) (39)
and since oo, =-1.3, =1 (see[2]) this becomes

yn _yn—l = hf(tn’yn)
According to the authors of [2] the distinguishing feature of BDF is that f(t, y) is only

evaluated at the right end of the current step (7,,y,). They are usually implemented

together with a modified Newton method to solve the nonlinear system at each time step.
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3.4 NEWTON’S METHOD

We include this section since, according to the authors of [2], variants of Newton's method

are used in nearly all modern stiff ODE (computer) codes. We note that for a nonlinear

equation g(x) = 0 a sequence of iterates is defined as follows:-
x° is an initial guess
x" is a current iterate

Neglecting higher-order terms in the Taylor expansion we can define the next iterate x**' by

the linear equation

0= g(xv)+ g’(xVXxV+1 ~x’)

Replacing the first derivative of g by the Jacobian matrix g_g we obtain the iteration
X

-1
xM=x" - %}tv) g(x") v=0,1, ...

However, computing a matrix inverse is not considered to be good practice in [2] and it is

generally better to solve the linear system for the difference & between x'*! and x", and

then update. Hence & is computed by solving the linear system g_g 0= —g(xv) with the
X

Jacobian matrix evaluated at x"*.
The next Newton iterate is obtained by x**' =x" +8§ .

For the nonlinear system g(y,)=y, -y, -4 (t,,y,) =0 Newton’s method gives

-1

v, =y, - %;g; 2(v))

A
yo - I_h% O ~Yoi ~HEGyl) . V=01,

f
I- hg— is known as the iteration matrix and is evaluated at the current iterate y" .
y
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We note that the costs of forming it and solving the linear system, (for § =y*"' —y’), are
often the major factor in the costs of solving the problem.
The initial guess can be taken as y,? = y,, although better ones are often available.

Newton’s method is iterated until the error estimate due to terminating the iteration is less

v+l

than a user-specified tolerance, e.g. ly, —y.,| <NTOL.
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SECTION 4: NUMERICAL APPROACHES TO SOLVING DAEs

We now discuss numerical methods applied to DAEs. We consider the regularization of the
DAE
x' =f(1,x,2) (4.1a)
0=g(t,x,z) (4.1b)
in which (4.1b) is replaced by

ez =g(t,x,z) (4.1¢)
where 0<eg<<1.
The regularised ODE (4.1a) and (4.1c) is very stiff, hence we are led to consider methods for
stiff ODEs for the direct discretization of the limit DAE.

4.1 DIRECT DISCRETIZATION METHODS

In a direct discretization method we approximate y and y’ by a discretization formula e.g.
multistep or Runge-Kutta. We begin with the simplest method, namely the Backward Euler
Method.

4.1.1 THE BACKWARD EULER METHOD

If we consider only the simplest class of nonlinear DAEs i.e. semi-explicit index-1, we find
that the backward Euler retains the order, stability and convergence properties from the ODE
case. Consider

x'=1(t,x,2) (4.2a)

0=g(t,x,2) (4.2b)
where g_ is nonsingular.

-

the DAE (4.2) is equivalent to the ODE
By the implicit function theorem g exists such that z = g(¢,x)

Hence

x' = f(t,x,E(,%)) 4.3)
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We will now apply Backward Euler to (4.2)

X, ;X,,_l _ f(tn’xn ,zn) (4.4a)

0=g(t,,x,,z,) (4.4b)
Hence 3 g such that z, = g(¢,.x,,)

% = 1(;,.x,,8(,.X,)) (4.5)

n

We note that (4.5) is just the Backward Euler discretization of (4.3).

We now consider the general DAE
0=F(,y,y') (4.6)
and apply the Backward Euler method to (4.6) to give

0=F(t,,,y,,,y” ;yn-l)

h

which generally gives a system of m nonlinear equations for y, at each time step n.

The following example illustrates that even this simple method does not always work.

Example 4.1 (taken from [2])

0 0
(1 "’}y J{o 1+1Jy_( 0 @n)

This is a linear index-2, variable coefficient DAE which depends upon a parameter n. We

can rewrite (4.7) as
Ny, =q(1) (4.8a)

yi+tny,+(1+n)y, =0 (4.8b)

If we differentiate (4.8a) we obtain

yi+nty;+ny, =q'(0) (4.9)
We now rearrange (4.9) and substitute in (4.8b) to give the solution
Y, =—q'(t). (4.10)

Upon substitution from (4.10) into (4.8a) we obtain
yi=q(t)+4tq'(t),

and we note that this exact analytical solution is well defined for all values of 1.

54



We will now consider a direct discretization of (4.7) using Backward Euler.

0 O .
yn - yn—l 1 Tl tn — (Q(t,, )j
[1 nth(——hn )+[0 1+n]y" 0 (4.11)

We rewrite (4.11) to give
Vin NV, =4(2,) (4.12a)

h

hn

Yip = Vina 'H’]tn(yz’n ;‘lyz,n—lj +(1+TI)J’2J, -0 (4.12b)

Using (4.12a) we find that (4.12b) is equivalent to

q¢,) _9@,.)
h h

n n

+(1+n)y,, =0 (4.13)

We can see from (4.13) that y, , is undefined forn = -1, in contrast with the analytical

solution where no restriction is placed on n.

4.1.2 BDF AND GENERAL MULTISTEP METHODS
The constant step-size BDF method applied to a general nonlinear DAE in the form (4.6) is

given in [2] by

1 k
Flt,y,,—Yay, |=0
(,,y,. Bohjz‘:) iy ,)

where B, and a;,j=0, 1, ..., k are the coefficients of the BDF method.

4.1.3 RUNGE-KUTTA METHODS
The s-stage implicit Runge-Kutta method is defined in [2] by
0=F(.Y,. K,)

t,=t,,+Ch i=1.2,....8

Y, =Yy, +hiaijkj
=

and y,=Y.. +hibiki .
i=1

We note that the coefficient matrix A = (a;) is assumed to be nonsingular.
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4.2 NUMERICAL METHODS FOR DAEs
Historically the first numerical methods to be implemented for DAEs were the BDF. These

methods are suitable for solving a wide variety of DAE problems (see [19]) and form the
basis for the most widely used computer codes for DAEs. Higher index DAEs pose
problems. For example, convergence even with Backward Euler may not happen (see [19]).
In addition this method can be 'stable for small step sizes (see [19]). Algorithms requiring the
extensive use of symbolic or aut;matic differentiation are, according to [19 ], “the only known
means for dealing with the most general high-index DAE numerically.” Results on the
instability of numerical ODE methods when applied directly to high-index linear systems
have been discouraging but some important classes of high-index nonlinear problems have

been identified for which the numerical methods are stable and accurate.

Table 4.1 gives an indication of which numerical methods can be used to solve different
types of DAEs. Reasons are given where the methods are known not to be suitable for a
particular type of DAE and the origin of the information is shown. Further information
regarding the convergence, order etc. of a particular method applied to different DAE types

is given in tables A to E, togethef with a reference for the source of the information.
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TABLE 4.1 APPROPRIATE NUMERICAL METHODS FOR SOLVABLE DAES

NUMERICAL METHOD
K-STEP VARIABLE GENERAL RUNGE- BACKWARD
CONSTANT STEP-SIZE MULTISTEP KUTTA EULER
TYPE OF DAE STEP-SIZE BDF METHODS METHODS
BDF
LINEAR CONSTANT TABLE A TABLE B TABLE C TABLE D
COEFFICIENT ROW 1 ROW 1 ROW 1 ROW 1
LINEAR TABLE A TABLE B TABLE E
TIME-VARYING ROW 2 ROW 2 ROW 1
SEMI-EXPLICIT TABLE A TABLE B TABLE C TABLE D TABLE E
INDEX-1 ROW 3 ROW 6 ROW 2 ROW 2 ROW 2
SEMI-EXPLICIT TABLE A TABLE B TABLE E
INDEX-2 ROW 4 ROW 3 ROW 3
HESSENBERG TABLE A TABLE B TABLE C TABLE D
INDEX-1 ROW 6 ROW 10 ROW 4 ROW 4
HESSENBERG TABLE B TABLE C TABLE D
INDEX-2 ROW 10 ROW 3 ROW 3
HESSENBERG TABLE A TABLE B
INDEX-3 ROW 5 ROW 4
HESSENBERG TABLE B
INDEX-4 ROW 5
HESSENBERG TABLE B
INDEX-V ROW 10
GENERAL TABLE A TABLE B TABLE C TABLE D TABLE E
INDEX-1 ROW 6 ROW 6 ROW 3 ROW 4 ROW 4
TRANSFERABLE TABLE A TABLE C
INDEX-1 ROW 7 ROW 4
GENERAL XXX XXX
INDEX > 2 SEE NOTE 1 SEE NOTE 2
LINEAR CONSTANT TABLE B
COEFFICIENT ROW 7
INDEX V
UNIFORM TABLE A TABLE B
INDEX-1 ROW 8 ROW 8
NONLINEAR TABLE A TABLE B
SEMI-EXPLICIT ROW 9 ROW 9
INDEX-2
FIXED INDEX-2 OR 3 TABLE A
SEMI-EXPLICIT ROW 10
NOTE 1 Not stable and convergent - see [4], page 46
NOTE 2 Not convergent - see[19], page 127
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TABLEA  K-step constant step size BDF

ROW | DAE TYPE NOTES REF PAGE
1 LINEAR For k < 7 (index-v), it is convergent and stable; [3] 314
CONSTANT accurate to order O(h") after a maximum [4] 44
COEFFICIENT of (v- 1)k + 1 steps (71 720
[14] 244
2 LINEAR the system needs to be expressible in SCF; [3] 314, 318
TIME-VARYING for k < 7 it is transient stable and 320
3 SEMI-EXPLICIT An order k method converges with order k [14] 246
INDEX-1
4 SEMI-EXPLICIT With sufficiently accurate initial values it [18] 263
INDEX-2 converges to order O(h"), under appropriate [19] 127
assumptions, after (k + 1) steps
5 HESSENBERG for k < 7 it converges with kth order accuracy after [4] 57
INDEX-3 k + 1 steps under conditions on starting values
and algebraic equations
6 GENERAL fork<7it converges to O(h") if all initial values [2] 266
INDEX-1 are correct to O(h") and if the Newton iteration on [18] 263
each step is solved to accuracy O(h**").
7 TRANSFERABLE | for k < 7 it is stable for small enough h [4] 70
INDEX-1
8 UNIFORM fork < 7it converges to O(h") if all initial values [4] 51
INDEX-1 are correct to O(h") and if the Newton iteration on [18] 263
each step is solved to accuracy O(h**") [19] 127
9 NONLINEAR convergent and globally accurate to O(h") after [4] 55
SEMI-EXPLICIT (k + 1) steps - subject to conditions on the errors.
INDEX-2
10 i':l(gg INDEX-2 for g,. f, nonsingular it converges to o(h" [3] 315
accuracy after (k + 1) steps.
TABLE B Variable Step Size BDF
ROW | DAE TYPE NOTES REF PAGE
1 LINEAR unsuitable for DAE with arbitrary index [71 720
CONSTANT
COEFFICIENT
2 LINEAR possibility of stability problems even with index-2 [7] 722
TIME-VARYING
3 SEMI-EXPLICIT With sufficiently accurate initial values it is [2] 267
INDEX-2 suitable provided that the method is stable for [4] 56
standard ODEs; [18] 264
4 HESSENBERG converges if order of the method is > 1 [18] 264
INDEX-3 [19] 128
5 HESSENBERG convergent if the order of the method >3 BUT [18] 264
INDEX-4 there are practical problems to deal with. [19] 128
6 GENERAL for k < 7 it is convergent provided the method is [2] 266
INDEX-1 stable for standard ODEs (see table A, row 6) [4] 54
7 LINEAR If the ratio of adjacent steps is kept bounded then [4] 45
ggg?;é:TgNT the gl?bal error in the solution is O(h_ ) where
INDEX-V g =min(k, k - v +2)
8 UNIFORM convergent if method is stable for standard ODEs. [4] 54
INDEX-1
9 NONLINEAR convergent if the method is stable for standard [4] 56
SEMI-EXPLICIT ODEs
INDEX-2
10 HESSENBERG has order (k - v + 2) for index v provided that the [4] 57
INDEX-V step size sequence is stable for ODEs
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TABLE C General Multistep-Methods
ROW | DAE TYPE NOTES REF PAGE
1 LINEAR CONSTANT | Asymptotically stable under certain conditions [20] 5
COEFFICIENT
2 SEMI-EXPLICIT stable and convergent to the same order of [4] 47
INDEX-1 accuracy as for standard non-stiff ODEs [18] 264
3 HESSENBERG coefficients must satisfy order conditions, in [2] 267
INDEX-2 AND addition to those for ODEs, to achieve order >2
GENERAL INDEX-1
4 TRANSFERABLE stable if the method is stable for explicit initial [4] 70
INDEX-1 value problems
TABLE D Runge-Kutta Methods
ROW | DAE TYPE NOTES REF PAGE
1 LINEAR Asymptotically stable under strict stability [20] 7
CONSTANT conditions
COEFFICIENT
2 SEMI-EXPLICIT additional set of order conditions needed; [2] 269
INDEX-1 the constraint equations are satisfied exactly at [18] 266
each sfep
3 HESSENBERG additional order conditions needed to achieve [2] 269
INDEX-2 order > 2 - and other problems
4 GENERAL additional order conditions needed to achieve [2] 269
INDEX-1 order > 2; [3] 315
stable if method’s coefficients satisfy |r] < 1 [18] 254, 265
TABLE E Backward Euler
ROW | DAE TYPE NOTES REF PAGE
1 LINEAR stability problems; [3] 314
TIME-VARYING Taylor type methods called (|, j) methods [3] 315
2 SEMI-EXPLICIT | first-order accurate, stable and convergent if g, 2] 265
INDEX-1 is non-singular
3 SEMI-EXPLICIT convergent; [2] 266
INDEX-2 solution accurate to O(h) after 2 steps have been
taken
4 GENERAL Decouple the system into differential and [2] 265, 275
INDEX-1 algebraic parts - BUT problems!
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4.3 AN INTRODUCTION TO THE COMPUTER CODES USED TO SOLVE DAEs *

Solving problems from applications is the most compelling reason for developing methods
and analysis. However, the codes used to implement the methods need to be efficient,
robust, easy to use and well documented.

Several codes are available for s'olving index-one DAEs, but in the views of the authors of [4]
the most widely used production code at this time is DASSL (Differential-Algebraic Systems
SoLver), which is designed for solving IVPs in the implicit form F(t, y, y’) = 0 which are index
zero or one.

DASSL approximates the derivative using the kth order BDF, where k ranges from 1 to 5. It
selects the order k and stepsize h,,4 at every step and its choice is based on the behaviour
of the solution. A variable stepsize, variable order fixed leading coefficient implementation of
BDF formulae is used to advance the solution from one time step to the next. The standard
version of DASSL solves the DAE from time "T' to "TOUT where TOUT is specified by the
user. In some problems it would be more natural to stop the code at the root of some
function and an extension of DASSL, DASSLRT, is able to do this.

Three approaches can be used to extend fixed stepsize multistep methods to variable
stepsize, the three formulations being referred to as fixed coefficient, variable coefficient and
fixed leading coefficient. Fixed coefficient methods can be implemented very efficiently for
smooth problems but for problems requiring frequent stepsize adjustments they are
inefficient and possibly unstable. The most stable implementation, in the views of the
authors of [4], is that produced by variable coefficient methods but, due to the fact that they
have a tendency to require more evaluations of the Jacobian matrix in intervals when the
stepsize is changing, they are usually considered, in the views of the authors of [4], to be
less efficient than a fixed coefficient implementation for most problems. A compromise
between these two methods is given by the fixed leading coefficient formulation, offering less

stability and in general fewer Ja(;obian evaluations.
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The code LSODI is, in contrast to DASSL, a fixed coefficient implementation of the BDF
formulae. The question of which formulation is best for a general purpose code remains “an
open question for stiff ODEs and DAEs”. [see (4)]

How does a DAE code decide whether to accept or reject a step? This, in the view of the
author’s of [4] is one of the most important questions concerning the reliability of a DAE
code. Two sources of error concern us. Firstly, the local truncation error of the method and
secondly the error in interpolating to find the solution between mesh points for output
purposes. The local truncation error is the amount by which the solution to the DAE fails to
satisfy the BDF formula. (DASSL estimates the principal term of this error)

The code must decide which order method is to be used on the next step, irrespective of
whether or not the present step is rejected. We note that DASSL and LSODI differ in their
strategies used to select the order of the method.

After a step has been accepted or rejected, and the order of the method to be used for the
next step has been decided, DASSL decides upon the stepsize to use on the next step. In
all modern ODE solvers, the stepsize selection strategy reduces the stepsize as a response
to instability. Consequently, codes do not produce a faulty solution due to the instability for
large stepsizes. Instead the stepsize is reduced and they become very inefficient. (see [4])
DASSL keeps count of the number of failures since the last step, and after three consecutive
error test failures the order is reduced to one and the stepsize is reduced by a factor of one
quarter on every subsequent failure.

Selecting the initial stepsize is not straightforward, even for ODE codes. DASSL'’s strategy
yields a successful step for a zero th order method and is, in the views of the authors of [4],
quite conservative. DASSL also contains an option for the user to select the initial stepsize.

Further detailed information concerning DASSL can be found in [4].
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DASSL, according to [4], solves most DAE systems from applications without difficulty, but
some problems have been encountered with some systems. These include the problem of
the finite difference Jacobian caiculation, inconsistent initial conditions which may cause
DASSL to fail on the first step, a higher index formulation of a problem, a singular iteration
matrix and inappropriate error tolerances.
Table 4.1 introduces the codes c'urrently available for solving DAEs. We include information
on the basis of the codes, on applications and note problems encountered and/or other
relevant information.
DASSL is a powerful code which can handle a wide variety of problems. However, for some
problems it is unsuitable, and along with the need for a more efficient code, research into
developing extensions of DASSL continues. Extensions to DASSL include:-
1. DASSLRT - a root finding version, (see [18], Page 268 and [4], Page 136)
2. DASSAC - for sensitivity analysis (see [18], Page 268 and [4], Page 137)
3. DASPK - for large scale problems e.g. PDE systems in 2 or 3 dimensions.
We note that the user must supply the preconditioner, and that we
need to co'mbine iterative methods with discretizations developed
for DAEs. (see [18], Page 269 and [2], Page 290)

4, DASSLSO and DASPKSO - for sensitivity analysis. (see[4], Page 229)
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4.4 FINDING CONSISTENT INITIAL CONDITIONS .

The authors of [11] state that, when an ODE method such as BDF is used to solve a DAE,
“small inconsistencies in the initial values may cause the method to fail or become extremely
inefficient.” Numerical methods require initial values for all components and although
consistent initial values can sometimes be determined from physical considerations their
calculation often requires greater understanding of the underlying relationships between
variables than is needed to actually state the problem. In consequence such methods for
DAESs can create extra challenging work for the user. The authors of [4] regard the
determination of consistent initial conditions as “often the most difficult “part of solving a DAE

system.

When we use the term initial conditions we are referring to the vector (xo,xo,yo). We now
consider two examples, both takén from [16].

Example 4.2 Consider the DAE (4.14)
X=x+y (4.14a)
O=x+2y+a(t) (4.14b)
where a(t) is a given continuous and differentiable function of time.
If we differentiate (4.14b) with respect to t we obtain

0=x+2y+a'(t)
If we set y, = —%(xo +a'(t, )) then we can satisfy the equation for all initial values of the

variable x,. i.e. in this case no further constraints are imposed on the initial conditions.

Example 4.3 Consider the DAE (4.15)

X,+x, = a(t) (4.15a)

x,+x5 = b(t) (4.15b)
where a(t) and b(t) are continuous and differentiable functions of time. If we differentiate
(4.15b) we obtain

X, +2x,%, =b'(¢) (4.16)
In this case the initial conditions are (x, ,x, ,%; ,J'czo) and they must also satisfy (4.16) in
addition to the original system. i.e. extra constraints are imposed on the initial conditions.
From these two examples we can begin to appreciate that it would be useful to identify which

constraints, when differentiated, impose further constraints on the vector of the initial

conditions. Pantelides in [16] uses a graph-theoretical algorithm to locate those subsets of
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ii;
3

the system equations which need to be differentiated. The algorithm does not use any
arithmetic operations and consequently does not produce problems associated with
numerical algorithms,

e.g. rounding errors. However, a price is paid for this advantage since it is possible that an
equation subset which should be differentiated may not be detected as a consequence of
the sufficiency but not necessity of one of the criterion involved. (see [16]). In addition the
algorithm requires knowledge of ’analytical expressions for various derivatives of the problem
and the authors of [4] regard this as a drawback for large scientific problems.

In [5] the consistent initialisation of a class of DAEs in the form G(z.y,y’) =0, which
includes semi-explicit index-one systems, is considered. Two initialisation problems are
considered. For the first problem, referred to as “Initialisation Problem 1", such systems
are characterised in [5] by splitting the dependent variable vector y into a vector u of size Ny,
called the differential variables, and a vector v of size N,, called the algebraic variables such

that the equations have the form

u' =f(t,u,v)
0=g(t,u,v)
og

in which g = — is a nonsingular square matrix.
v

We are concerned with finding the initial value v, of v when the initial value u, for uis
specified. The class of problems can be generalised to include those in the form

f(t,u,v,u’)=0

« )=0 (i.e. the ODE subsystem for u may be implicit)
gu,u,v) =

where u,f eR and v,g eR™" with % being square and nonsingular.
u

“Initialisation Problem 2” is concerned with finding the initial value y, for y when the initial
value y, for y'is given. We note that in this problem putting y; = 0 corresponds to
beginning the DAE solution at a steady state, and that no splitting of y into differential and
algebraic parts is needed.

[5] generalises the application of the method further.

The requirement, in Initialisation Problem 1, that the differential and algebraic components
are separated into blocks in y is first dropped and the idea of a permutation matrix P of size

N is introduced such that
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Py=z=(u),u eRNe vy e RN
v

Subsequently problems in which the algebraic constraints are not necessarily identified
explicitly are considered. However, even with these further generalisations, the method
described in [5] does not include all fully implicit index-one DAEs.

We consider the index-1 DAE system (4.17) which is well posed for any given value of
y,(,) . (see[5))

yi+y;=g(ty) (4.17a)
Y, =& (1) (4.17b)
. I Oy N+, u ,
We note that using = = we can rewrite the DAE system as
0 V\y, Y2 Vv
u' =g (t,u,v) . (4.18a)
v=g,(t) (4.18b)

in which u is a differential variable and v is an algebraic variable.
1 Iy : :
Hence P = 0 1 is a permutation matrix.

The procedure outlined in [5] would find v, = ¥, correctly but the input initial value of vy,

may differ from g, (¢,) and both components of y, would be changed whilst preserving the
value of u, =y, +y,. i.e. the procedure determines a consistent set of initial values for the

transformed variables but not necessarily for the derivatives of the original variables.

An algorithm to solve initialisation problems 1 and 2, in the context of DAE solvers, such as
DASSL, DASPK, is given in [5]. Users of DASPK are required to set INFO(11) equal to 0, 1
or 2 depending upon whether the initial values are already consistent, or initialisation
problem 1 is to be solved, or initialisation problem 2 is to be solved respectively. The
authors of [5] regard the algorithm as “convenient for users” because the extra information
required, beyond that needed for solving the DAE system is minimal. Symbolic or automatic
differentiation software are not needed and it is immediately applicable, in the views of the

authors of [5], to a wide range of problems including very large scale systems.

66



SECTION 5 APPLICATIONS OF DAEs

We conclude this thesis with a section in which we explore further some of the applications
referred to in section 1.7, and highlight some of the problems encountered when attempting

to find numerical solutions of the relevant DAEs.

We begin with a discussion about reformulating and solving the general index-3 system for
constrained mechanical motion with reference being made to methods discussed in earlier
sections of the thesis. We revisit the pendulum problem and consider the differences in
numerical results when different formuiations of the problem are used and some of the

reasons for these differences.

We move on to briefly consider electrical networks in relation to DAEs and include an

example giving rise to a DAE.

5.1 CONSTRAINED MECHANICAL MOTION
Equations of constrained mechanical motion are typically developed from variational

principles, resulting in a system which can be considered as a differential equation (DE) on a

manifold, and which is mapped to an ODE.

In classical mechanics the resulting system is known as a Lagrange equation of the first kind

i.e. a constrained DE - or a DAE. [6] gives the equation as the index-three system

p=v (5.1a)
M(p)v = f(p,v,) - G (p)A (5.1b)
0= g(p) (5.1c)

where p,v eR™ , M(p) is a n, “x n, regular (symmetric, positive definite) mass matrix,

fis a vector of applied forces and A represents the n, Lagrange multipliers or constraint

forces coupled to the system by the n, x n, constraint matrix, G = S—g
P

67



[4] gives the equations in the form

M(x)x" = g(x,x',) + GT (x)A (5.2a)
0= (%) (5.2b)
where G=¢,, xeR", A eR™ andm<n.

[19] gives the equations in an equivalent form to (5.2). We note that (5.2) is equivalent to a

reformulation of (5.1) obtained b;l writing X' =v.

Returning to (5.1) we can rewrite this equation as an ODE, (i.e. obtain the underlying ODE to
the DAE), by differentiating the constraint (5.1c) twice with respect to time. This produces n,

constraint equations at the velocity level

ogop
0=-2"2  oro=G(p)v 5.3
op ot (p) (5.3)

and n, constraint equations on the acceleration level

0=G(p)v+g"(p)v.v) (5.4).

We note that if the position-level constraint (5.1c) is replaced by the velocity level constraint
(5.3) the resulting system has index-2, and if it is replaced by the acceleration-level
constraint the result is an index-1 system i.e. the index has been lowered. However, in the
first case the position-level const.raint is no longer satisfied and in the second case the
solution may drift away from satisfying both the position-level and the velocity-level
constraints. The solutions to the underlying ODE are solutions of the original DAE but, due
to the difficulty of obtaining accurate initial values and the presence of discretization errors in
the numerical solution of the problem, they do not in general satisfy the position constraints.
In the view of the authors of [6] the theoretical and practical behaviour of the drift from the
position constraints is unpredictable. Stabilisation against the undifferentiated constraints is
usually recommended to avoid the creation of a system with different stability properties,
possibly an unstable one, which can lead to a very inefficient or even inaccurate numerical
method. We remind ourselves that this can be achieved in several ways, e.g. by introducing
new variables and adding new algebraic equations to the system or by a method resulting in

an overdetermined system.
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An alternative option is to reformulate the problem in the state-space form, i.e. as an explicit .
system of ODEs in a minimal set of variables which completely describe the system. We
note that this transformation was necessary until recently but that such a transformation may
be an exceptionally difficult problem, since according to [6] the reduction depends on the

solution of nonlinear functional equations and their differentiation.

Direct discretization of the index-3 system is a third option. However, this class of DAEs was
not solvable by “state-of-the-art numerical software” at the time of writing of [6] and, in the
views of the authors of [19], the numerical methods yielded suffer from difficulties with error
estimation, step size control and other problems, and consequently they are often not very
robust. In addition to other problems the constraints can be highly nonlinear and since they
have a strong physical relevance it is usually felt important that the constraints, and
sometimes the time derivatives of the constraints, are satisfied very accurately. Other

potential difficulties exist in that

1. the constraints can become rank-deficient or nearly rank-deficient,

2. components of the solution may be oscillating at a high frequency , and
3. frequent discontinuities are possible.

In the first case the problem becomes poorly conditioned and numerical methods can
experience serious difficulties. Possible solutions include regularising the system or
eliminating the redundant constraints but we note that [19] states that there are difficuities
with either alternative. The second case can arise from components which are rotating or
from natural frequencies of the system. We note that often the long term solution behaviour
is more important than the details of the oscillating solution, i.e. the oscillations can be
neglected. If the amplitude is small enough then the oscillations may be damped by the
numerical method but according to [19] this can result in problems with Newton convergence
for the Lagrangian formulation. We note that methods for oscillations which cannot be
damped or neglected need to be developed. (see [19]). In addition real time simulation

imposes severe requirements on the solution method.
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We now include an example from [6] which demonstrates that the growth of the residual of

the original constraint is qualitatively different from the growth of the error in the solution

components.

Example 5.1
x'=y—ax® +u(t) . (5.5a)
y =ax’ (5.5b)

(5.5) has the state space form x’ = u(¢), (which is a Lagrange equation of the second kind),

with solution
t

x(1) =x, +U(1) where U(#) =[u(t)dt and x, =x(0) (5.6)

0

It follows that

y=(x, +U(®)’ (5.7)
However, if we differentiate the constraint, thus reducing the index, we obtain

y' =2axx' (5.8)
or y' =2ax(y—ax® +u(t)) (5.9)
to give the system

x'=y—ax® +u(t) (5.10a)

y' =2ax(y—ax’ +u(t)) (5.10b)

The system (5.10) has the solution
t
x(t) =U(t) +x,+[ (y — ax®)dt (5.11)
0

or

x(t) =U®t) +x,+t(y, — ax?) (5.12)
since (5.8) can be integrated to give y = ax” + ¢ with solution

y=ax’ +y, - ax; (5.13)
We can write (5.12) as

x(t) =gt + U(t) + x, (5.14)
where g, = y, —ax, = residual of the position constraint.
Using (5.14) gives

y(t) = a(e t +U() +x,)° +¢, (5.15)
If the initial conditions are consistent then £, = 0. In this case (5.7) and (5.15) give the

same solution. However the two problems have quite different numerical properties. (see

[6])
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We will now return to the pendulum problem, discussed in section 2.5
x"=-Ax

i.e. y'=-Ay-g
0=x+x; -1

We have already noted how to reformulate the system as an index-3 semi-explicit nonlinear
DAE in section 2.5

i.e . in the form X[ =V (5.16a)
X, =V, (5.16b)
v =-Ax, (5.16¢)
v, =-Ax,—g (5.16d)
0=x’+x2-1° (5.16e)

The velocity constraint, obtained through differentiation of (5.16e) is

0=xv, +x,v, (5.17)
Equations (5.16a) -(5.16d) and (5.17) form an index-two DAE in semi-explicit form.
Another index-two formulation is obtained by introducing a new variable p and replacing
(5.16a) and (5.16b) by

X =V, + X1 (5.18a)

Xy =V, +X,1 (5.18b)
The system (5.18) and (5.16c) - (5.16e) is known as the stabilised index-2 formulation of the

problem.
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We now consider the numerical solutions to three different formulations of the problem,

namely:-

1. the index-3 formulation

2. the index-1 formulation

3. the stabilised index-2 formulation

We will consider the data given for these problems in [4]. We are usingL=1,g=1and
consistent initial values x,(0) = 1,x, (0) = 0,v,(0) = 0, v,(0O)=1landr(0)=1att=0.

FORMULATION TYPE OF CODE NOTES PAGE TABLE
USED In [4] NO.
IN [4]
Index-3 A simple code The rate of convergence 155 6.2.1
implementing the two- remained second order in
step BDF method, with all the variables
constant stepsize, for a
sequence of fixed
stepsizes.
Index-1 DASSL for a sequence of | e the position constraint [ 155-1 56 6.2.2
local error tolerance is satisfied to a lower
inputs. accuracy than RTOL
- (the relative error
(The drift in the tolerance -specified
constraints is measured by the user)
att=1). ¢ ForRTOL<1.E-9
there is some drift in
satisfying the velocity
constraint
e No drift in satisfying
the acceleration
constraint - as
expected
Stabilised index-2 DASSL * Algebraic variables 155-156 6.2.3
have been excluded 6.2.4

from the integration
error control
estimates

e All variables were
included in the
convergence test for
the corrector iteration

e The problem of drift is

eliminated
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5.2 ELECTRICAL NETWORKS

DAEs arising in this field tend to be large and sparse, and are frequently linear, although
some circuit devices introduce nonlinearities. By convention, current is the net flow of
positive charge (from the positive node to the negative node). The voltage drop across each
branch is defined to be difference between the voltage at the positive node and that at the

negative node.

We note that energy is stored in a capacitor, in the form of a charge, and in the form of a

magnetic field in an inductor. Resistors are used to produce a loss or gain of power in a

.

branch.
The author of [14] gives Kirchhoff's laws in the form:-
(i) The algebraic sum of all currents meeting at any node in a circuit is zero.

(i) Around any closed loop in a circuit the sum of the voltage drops is equal to the sum

of the voltage sources in that loop.

We recall that the voltage and currents are related by
V =1R for aresistor (Ohm’s law) (5.22)

and by I= ng\ti for a capacitor. (5.23)



Example 5.2

We consider an electrical network, taken from [14], with resistors R,,R,,R,, capacitors
C,.C,, currents I1,,1,,1,, voltage drops V,,V,,V,.V,, V., respectively, and voltage source
E, as shown in the following diagram.

R
R A e ANRA W

I
—————VWWN '%‘I_'J' - T
S Rz IC‘. P

P is an example of a node and SPQR and PTUQ are examples of loops in a circuit.

We can use the first of Kirchhoff's laws at the node P to write
I,-1,-1,=0,
and the second law can be used’to give
E=V, +V,+V,
where the voltage drops at Ry, R, and C, are equal to V,,V,,V, respectively. We have,

using (5.22) and (5.23)

Vl =IIR1
szlsz
V, =LR,
dv.
I,=C,—
3 274t
\Y
I, =C,d—i
dt

where V; and V; are the voltage drops at R; and C,. Using the second of Kirchhoff's laws
we obtain 0=V, +V, for the circuit PTUQ, and no further useful information is found from

applying it to circuit STUR.
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We now have 8 equations, 2 of which are differential equations and the remaining 6 are
algebraic equations (derived from Kirchhoff's laws and Ohm’s law).

V! =Cj'l,

V! =C;l,

0=V, +V,+V, -E

0=V, +V;

0=I,-1,-1,

0=V, -R,

0=V, -R,I,

0=V, -R,I,

This is a DAE which can be expressed in the form

d{vel [ciT,
dt| Vs | |Cin,

V,) (E

11010 0 o o0)v]|o
00101 0 0 ofwvl o
0_|00 000 1 -1 -1V, |0
10000 -R 0 ofVv] |0
01000 R, o1 |o
00100 0 0 -RJL| |0
1,) \o

This is a linear constant coefficient DAE. It is typically large and sparse. (see [2])
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5.3 THE NEXT GENERATION OF DAE RESEARCH? N

DAE research continues to be stimulated by the desire to solve more complex problems
and the increasing use of computer models. Interest in, and literature on, DAEs is to be
found in many disciplines and is concerned with both advancing the knowledge about DAEs

and improving upon the numerical methods by which to solve them.

Research into numerical methods continues.

The characteristics of numerical methods which preserve symplecticity and the construction
of a new class of symplectic methods have attracted an avalanche of research since 1988
(see [8]). Such methods are particularly desirable for applications involving long time
integration, examples of which are found in molecular dynamics and celestial mechanics
simulations. Methods which can preserve certain features of the flow of constrained
conservative mechanical systems have recently been developed. These can retain the
symplectic and reversible structures of the flow and can achieve a better qualitative

behaviour than non-preserving methods.

“There is an increasing interest in large complex models involving many

different types of equations” [4].

Advantages of a direct solution of a model using a DAE are encouraging research into
“DAEs “ which include other types of equation than just ODEs and algebraic equations e.g.
Integral equations, delay systems and PDEs and composites of these systems. Also,
interest is growing in differential equations with algebraic inequality constraints which arise,

for example, in the field of optimal control or prescribed path control.
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