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Textile and clothing is an important world industry that is currently being transformed by the adoption of the
Industry 4.0 concept. In this paper, we use Data Mining (DM) technology and the CRoss-Industry Standard
Process for DM (CRISP-DM) methodology to model the textile testing process, which assures that products
are safe and comply with regulations and client needs. Real-world data were collected from a Portuguese
textile company, which has the goal to reduce the number of attempts they take in order to produce a woven
fabric. Thus, predicting the outcome of a given test is beneficial to the company because it can reduce the
number of physical samples that are needed to be produced when designing new fabrics. In particular, we
target two important textile regression tasks: the tear strength in warp and weft directions. To better focus on
feature engineering and data transformations, we adopt an Automated Machine Learning (AutoML) during the
modeling stage of the CRISP-DM. Several iterations of the CRISP-DM methodology were employed, using
different data preprocessing procedures (e.g., removal of outliers). The best predictive models were achieved

after 2 (for warp) and 3 (for weft) CRISP-DM iterations.

1 INTRODUCTION

The textile and clothing industry is one of the
largest industrial sectors in the world (Shishoo, 2012).
However, in a highly competitive market as the tex-
tile one, companies must find a way to differentiate
themselves from the competitors, thus are compelled
to improve their production processes, improving the
quality of the products and/or lowering the produc-
tion prices. Under this context, the Industry 4.0 con-
cept, which assumes the digitalization of the produc-
tive processes (e.g., digital sensors with connectiv-
ity capabilities) and a stronger usage of Information
Technology (Lasi et al., 2014) is thus an opportunity
for the textile industry enhancement.

In this industry, in order to create the final product,
the raw materials undergo a series of processes, where
fibers are combined into yarns and the combination
of these yarns creates a fabric, which receives a series
of textile treatments, creating the final product that
is delivered to costumers. Automation technologies
can be utilized in several parts of this productive pro-
cess. In particular, a large amount of data is created
and stored, such as the properties of each yarn (e.g.,
color, thickness), the configuration of each machine
used in the creation process (e.g., spinning, weaving)
(Mozafary and Payvandy, 2014), and the results of the
specific tests that the company executes. All these
data can be processed by Data Mining (DM) and Ma-
chine Learning (ML) methods, allowing the discovery

of valuable knowledge in order to improve the textile
manufacturing process (Yildirim et al., 2018).

This paper presents an implementation of a DM
project using Automated ML (AutoML) and the
CRoss-Industry Standard Process for DM (CRISP-
DM) methodology (Wirth and Hipp, 2000) to predict
the results of tear strength test (warp and weft direc-
tions) on fabrics. The data were collected from a Por-
tuguese textile company, aiming to reduce the number
of attempts required to produce a fabric that complies
with the industry standards and fulfills the client re-
quirements. The paper is structured as follows. Sec-
tion 2 introduces the concepts of fabric testing, DM
and AutoML. Then, Section 3 presents the data and
methods used, including the three CRISP-DM itera-
tions. The obtained results are discussed in Section 4.
Finally, Section 5 presents the main conclusions and
future work.

2 BACKGROUND

2.1 Fabric Testing

Every time a textile company creates a new woven
fabric, it will typically execute a series a tests. These
tests have a crucial role in evaluating the product qual-
ity (Hu, 2008). The International Organization for
Standardization (ISO) has launched several standards
related to fabric testing for a whole series of tests that



examine the physical, mechanical and chemical prop-
erties of fabrics. Some tests can be made to test two
different aspects, such as the tensile strength in warp
and weft direction (Dimitrovski et al., 2004) or one
aspect, such as pilling (Beltran et al., 2006).

Each time a new fabric is created, the tests are
made using a sample that the company must produce.
The sample is then analyzed and several results are
possible: the sample can pass all the tests and met
the requirements, thus the fabric is read for massive
production; the sample did not met the client require-
ments, so the developer must start again the fabric de-
sign and change some of the characteristics; or the
fabric did not pass the standard tests and it must be
verified if the flaw is in conception phase or in the pro-
duction phase. This process can be repeated several
times until all the requirements are made, resulting
in additional time and costs. It should be noted that
the loom that manufactures the fabric sample needs
to produce a minimum of several meters of a fabric
in each design attempt. Thus, the dematerialization
of this process, by means of a DM predictive mod-
eling, can potentially improve the analysis of fabric
design parametrization changes and reduce the num-
ber of physical fabric sample productions, saving time
and costs.

2.2 CRISP-DM and AutoML

The CRISP-DM is a open analytic process stan-
dard for increasing the success of DM projects.
The methodology is based on a hierarchical process
model, described at four levels of abstraction: phase,
generic task, specialized task, and process instance
(Wirth and Hipp, 2000). Overall, CRISP-DM pro-
vides an overview to the life cycle of a data mining
project, with iterations of several phase sequences,
as shown in Figure 1. The iterative execution of the
methodology also assumes an interaction between the
business experts and the DM analysts.

During the Modeling phase of CRISP-DM, Ma-
chine Learning (ML) algorithms are often used to
extract valuable knowledge from the data. Due to
the relevance of ML, several algorithms have been
proposed is the last decades, each one presenting
its advantages. Examples of popular regression al-
gorithms include (Witten et al., 2016): Regression
Trees, Linear Regression, Generalized Linear Mod-
els, Support Vector Machines, Ensembles (including
Boosting and Random Forest) and Neural Networks
(including Deep Learning).

In practice, the ML model creation process tends
to involve a highly iterative exploratory process. In
this sense, an effective ML modeling process requires

Figure 1: Phases of the CRISP-DM model, adapted from
(Wirth and Hipp, 2000).

solid knowledge and understanding of the different
types of ML algorithms and their hyperparameter ad-
justment (Maher and Sakr, 2019). In effect, the selec-
tion of the best ML algorithm is often performed us-
ing a trial-and-error procedure, which can be guided
by the analyst expert knowledge or heuristics (Gib-
ert et al., 2018). Such iterative and explorative na-
ture of the modeling process is commonly tedious and
time-consuming. Moreover, the quality of the ML re-
sults is also dependent of data and feature engineer-
ing aspects (e.g., feature selection, outlier detection)
(Domingos, 2012) that are typically performed on
the Data Understanding and Data Preparation CRISP-
DM stages (Gibert et al., 2016).

To focus on these aspects, in this work we use Au-
tomated Machine Learning (AutoML) (Feurer et al.,
2015), during the Modeling stage of CRISP-DM. Au-
toML systems are developed to automate this chal-
lenging and time-consuming process. These intelli-
gent systems increase the accessibility and scalabil-
ity of various ML applications by efficiently solv-
ing an optimization problem to discover pipelines that
yield satisfactory outcomes, such as prediction accu-
racy (Le et al., 2019). Therefore, AutoML allows the
DM analysts to focus their effort in applying their ex-
pertise in other important components, such as feature
and data engineering, model validation and deploy-
ment.

2.3 Data Mining Applied to Fabrics

The process of fabric manufacturing generates large
amounts of data. DM techniques started being used
in textile engineering during recent years, aiming
to solve the difficulties of classical mathematical
and statistics in modeling the complex relationships
present in the data. Most DM applications to the tex-
tile industry involve classification tasks, such as qual-



ity control (e.g., textile image inspection) (Yildirim
et al., 2018). The application of DM to test areas is
more scarce, in particular regarding the prediction of
tear strength.

The tear strength is usually a measure of the force
(tensile stress) required to propagate a tear and is of-
ten used to give a direct assessment of the service-
ability of the fabric (Teli et al., 2008). Tear strength
can be tested in both warp and weft directions and it
is considered one of the most important performance
attributes of woven textiles (Malik et al., 2011). Most
of the tear strength prediction studies employ linear
models, which are rather rigid and thus fail when non-
linear relationships exist among the data attributes. In
(Kotb, 2009), linear regression models were used to
predict the fabric tearing force based on 9 identified
input features, concluding that tearing force is largely
affected by the type and number of weft yarns, weft
density, ground structure, and ground yarns, while the
shape of the pile and the change in pile designation
have minor effects. In another study, the linear regres-
sion was also used to predict the fabric tear strength in
warp and weft direction for woven wool fabrics, ob-
taining a Pearson correlation between the actual and
the predicted strength for warp and weft of 0.976 and
0.975, respectively (Malik et al., 2011). The same lin-
ear regression model was used in (Eltayib et al., 2016)
to predict the relationship between fabric tear strength
and other independent variables, such as yarn ten-
sile strength, yarn count and fabric linear density. In
(Zeydan, 2010), a flexible nonlinear model, based on
an Evolutionary Artificial Neural Network, was pro-
posed to predict the tensile strength in a woven fabric,
outperforming a linear regression model.

In this paper, we use recent data, collected by a
Portuguese textile company, aiming to predict the tear
strength test, at both warp and weft directions, of fab-
rics. Within our knowledge, this is the first textile
industry study that employed an AutoML procedure,
which automatically tested five families of flexible
regression algorithms during the Modeling stage of
CRISP-DM. Such an automatic selection of the best
ML method allowed us to perform more quickly dif-
ferent CRISP-DM iterations (described in Sections
3.2, 3.3 and 3.4), after obtaining feedback from the
textile company and aiming to explore different data
and feature engineering approaches.

3 MATERIALS AND METHODS

In this paper, we use recent data, collected by
a Portuguese textile company, aiming to predict the
tear strength test, at both warp and weft directions,

of fabrics. This Portuguese textile company creates
and produces fabrics for fashion and clothing collec-
tions from diverse customers. The current fabric de-
sign is based on the designer experience and intuition
and several trial-and-error fabric sample production
experiments. When designing new fabrics, in order to
meet the requirements of the client, the company pro-
duces several small sample attempts. In each attempt,
several laboratory tests are used to verify if the fabric
complies with quality goals. If this sample is not ap-
proved, the design process must be repeated, which is
translated into more time and costs for the company.
The fabric design process generates data that is related
to the several components of the fabric, as well as the
quality test results.

Within our knowledge, this is the first textile in-
dustry study that employed an AutoML procedure,
which automatically tested five families of flexible
regression algorithms during the Modeling stage of
CRISP-DM. Such an automatic selection of the best
ML method allowed us to perform more quickly dif-
ferent CRISP-DM iterations (described in Sections
3.2, 3.3 and 3.4), after obtaining feedback from the
textile company and aiming to explore different data
and feature engineering approaches.

3.1 Computational Environment

All executed experiments were conducted in two dif-
ferent open source computational environments: the
R statistical tool and its rminer package, for data ma-
nipulation and ML result analysis, including the com-
putation of the regression metrics and regression error
characteristic (REC) curves (Cortez, 2010); and H20,
which implements an easy to use AutoML algorithm
(Landry et al., 2018). The AutoML was configured to
automatically select the regression model and its hy-
perparameters based on the best Mean Absolute Error
(MAE) over a validation set, using a 10-fold cross-
validation that is applied over the whole training data.
A total of five different regression families were auto-
matically compared by the AutoML. These include
three individual base learners, namely Generalized
Linear Models (GLM), Gradient Boosting Machines
(GBM) and distributed Random Forests (XRF), and
two stacking ensembles, one using all trained models
(Stacking All) and other using just the best model per
ML base algorithm (Stacking Best).

3.2 First CRISP-DM Iteration

In this iteration, we performed the first five phases of
the CRISP-DM, Business Understanding to Evalua-
tion, aiming to predict the two fabric tear strength tar-



gets (warp and weft).

3.2.1 Business Understanding

During this phase, the textile company expressed the
need to reduce the number of attempts that were nec-
essary to produce a fabric sample. The two fabric tear
strength numeric attributes (warp and weft directions)
were also identified as relevant prediction targets, thus
setting two regression tasks. We also selected the
computational tools (R and H20), as detailed in Sec-
tion 3.1.

3.2.2 Data Understanding

First, we analyzed the textile company two main fab-
ric data sources: the Enterprise Resource Planning
(ERP), which included the 88,653 fabric main data
records, and the laboratory testing database, which
contained the fabric quality tests performed between
February 2012 to March 2019. After merging the two
data sources, the resulting dataset had 12,088 exam-
ples for the warp test and 12,143 for weft. Table 1
summarizes the initial set of input attributes, as sug-
gested by the textile company. Most attributes are nu-
meric and the exceptions are the type of fabric and
yarn code. The last 5 rows are related with yarn at-
tributes. We note that the each fabric can include sev-
eral types of yarns, which is a relevant issue that is
handled in Section 3.2.3. Figure 2 shows the box plot
distribution of the fabric weft and warp tear strength.
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Figure 2: Box plot of the test targets used in First CRISP-
DM iteration.

3.2.3 Data Preparation

A Data Warehouse system was implemented, in
which an Extraction, Transform, Load (ETL) pro-
cess was used to merge the ERP and laboratory test
databases and preprocessing some data records. The
preprocessing included the removal of fabric records
with missing components (e.g., with not registered
yarns). Also, in some cases it was detected that the
same fabric had different quality test values, related

with repeated tests conducted at different fabric pro-
duction stages. In order to have a single test value
per fabric, the distinct test values for the same fabric
were averaged. The resulting preprocessed data in-
cluded 8,453 observations for the warp test and 8,423
examples for the weft tear strength.

Each fabric can include several types of yarns. In
this work, we propose a novel input combination of
features in which we include the sequence of all pos-
sible yarns (up to 9 in our dataset), for both warp
and weft. Since each yarn is represented by 5 fea-
tures (Table 1), the regression models are fed with
1249x5x2 (warp and weft)=102 input variables. A
zero padding (i.e., addition of zero values to missing
elements) was performed on all fabrics that had less
than 18 yarn codes. Finally, before feeding the data to
the ML algorithms, the numeric input attributes were
standardized to a zero mean and one standard devi-
ation, while the nominal variables were transformed
using the one-hot binary encoding, which sets one bi-
nary variable per possible level.

3.24 Modeling

To evaluate the predictive models, an external hold-
out split was executed, in which the data was ran-
domly divided into training (75%) and test (25%)
data. The quality of the predictions is measured by
using (Cortez, 2010; Witten et al., 2016): the Mean
Absolute Error (MAE), Adjusted R2 (Adj. R2) and
classification Tolerance. For MAE, the lower the val-
ues, the better are the predictions. Regarding Adj. R2
and Tolerance, higher the values indicate better pre-
dictions. Adj. R2, known as the adjusted coefficient
of determination, is often used in multiple linear re-
gression and it ranges from O to 1. The Tolerance
value is based on the REC analysis and it measures
the percentage of correctly classified examples when
assuming a fixed absolute error tolerance (Bi and Ben-
nett, 2003). In this paper, three tolerance values were
set: 5%, 10% and 20%. We note that the percent-
age of error tolerance is computed by considering the
range of the true values.

Using only training data, the AutoML procedure
was applied, as described in Section 3.1. Figure 3
shows the REC curves and respective MAE values,
computed using validation data, for the best five ML
algorithms that were obtained when using the internal
10-fold procedure for the warp and weft tear strength
predictions. The REC curve shows the error tolerance
on the x-axis versus the percentage of correctly pre-
dicted points within the tolerance on the y-axis. In all
AutoML experiments conducted in this study, and for
both targets, the selected ML algorithm was a stacked
ensemble that used all trained models (Stacking All).



Table 1: List of input attributes used for regression.

Name Description (data type) Min. Max. Average
T_cm Number of finished threads per centimeter (numeric) 18 1,321 115.60
P_cm Number of finished picks per centimeter (numeric) 7 510 88.87
weight/m? Weight (in grams) per square meter (numeric) 22 1,690  241.70
finished width  Width in centimeters (numeric) 90 168 140.00
weave design ~ Weave pattern of the fabric (nominal with 21 levels) - - -
reed width Width of the reed in centimeters (numeric) 30 242 188.80
denting Number of the reed dents per centimeter (numeric) 0 252 126.80
ends/dent Number of yarns per dent (numeric) 0 88 2.30
n_picks Number of picks on loom per centimeter (numeric) 0 81 16.50
weft code Identification code of the weft (nominal with 6,883 levels) - - -
warp code Identification code of the warp (nominal with 5,353 levels) - - -
warp total ends Total number of threads on the warp (numeric) 477 21,858 6,950.00
yarn code Identification code of the yarn (nominal with 11,020 levels) - - -
n_folds Number of single yarns twisted (numeric) 1 12 1.60
yarn count Mass per unit length of the yarn 2 268 47.70
yarn usage If the yarn is used in warp or weft (binary) - - -
yarn repetitions Number of yarn repetitions in warp or weft 1 8 1.42
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Figure 3: AutoML validation REC curves for the warp (top)
and weft (bottom) tear strengths.

3.2.5 Evaluation

The obtained predictions, computed over the 25% test
data, are shown in Figure 4, in terms of the predicted
(yv-axis) versus real (x-axis) values. The scatter plots
show an interesting initial fit, with most points being
close to the perfect prediction, represented by the red
diagonal line, although there are high errors, particu-
larly when the real target values increase. This behav-
ior alerted the textile company experts for the need to
discard outliers, which was addressed in the second
CRISP-DM iteration.

3.3 Second CRISP-DM Iteration

In order to improve the previous results, a new itera-
tion of CRISP-DM was defined. During a new Busi-
ness Understanding phase execution, the textile com-
pany provided a list business normal ranges for the
tear strength values. Thus, all test values that were
inferior to 0.4 and superior to 25 were discarded in a
new Data Preprocessing stage, since these tests were
considered outliers (e.g., related with special uncom-
mon military fabrics). The resulting dataset included
8,431 observations for the warp shear strength target
and 8,399 examples for weft one. Figure 5 presents
the box plot values of the two analyzed targets. The
Modeling and Evaluation phases were then executed,
similarly to what is detailed in Section 3.2. When the
predictive results (presented in Section 4) were shown
to the textile company, they were considered more
satisfactory. However, the textile experts suggested
a new CRISP-DM iteration, which would test the im-
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Figure 4: Regression scatter plot for the first CRISP-DM
iteration warp (top) and weft (bottom) tear strength predic-
tions.

pact of using the overall composition of the fabric as
an useful and extra input element.
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Figure 5: Box plot of the test targets used in Second CRISP-
DM iteration.

3.4 Third CRISP-DM Iteration

In the third CRISP-DM iteration, we tested if addi-
tion of the final composition of the fabric (e.g., over-
all percentage of cotton and polyester), as an extra
input feature, could improve the quality of the tear
strength predictions. During a new Data Understand-
ing stage, we collected the final composition attribute.

The attribute, which contained 1,164 distinct levels,
was treated as nominal, being thus preprocessed us-
ing the one-hot transform. The remaining CRISP-DM
iteration was executed similarly to the second CRISP-
DM iteration (e.g., with outlier removal), except that
the predictive models used a total of 103 input vari-
ables (and not 102).

4 RESULTS

Table 2 presents the overall predictive results for
the test data (25%) and the three CRISP-DM itera-
tions. For comparison purposes, we also tested a base-
line method that is equivalent to the first CRISP-DM
iteration except that it uses the classical multiple lin-
ear regression model, as implemented in the rminer
R package (Cortez, 2010). In all three CRISP-DM
iterations, and as previously explained, the AutoML
selected model was the ensemble that included all
searched AutoML models (Stacking All).

The analysis of the tear strength warp results
shows an improvement from the first to second
CRISP-DM iteration but not from the second to the
third one. In effect, the best predictive results (for
all regression metrics) were achieved during the sec-
ond CRISP-DM iteration, showing that outlier re-
moval is beneficial when predicting the warp test, al-
though there is no gain in including the final fabric
composition as an input variable. Regarding the tear
strength weft, the results confirms the progress of the
CRISP-DM iterations, where each iteration resulted
in a lower MAE value. Also, the Adj. R? values im-
proved in a similar way. Thus, the best prediction re-
sults were obtained in the third iteration, which also
corresponds to the best classification Tolerance for all
5%, 10% and 20% values. This confirms that remov-
ing outliers and using the final fabric composition is
valuable for improving the weft quality predictions.

As for the baseline results, they are clearly worst
when compared to the AutoML method and for both
prediction goals, confirming that the regression tasks
are nonlinear. The MAE differences are higher when
comparing the linear method with the AutoML re-
sults for the first CRISP-DM iteration than when com-
paring different AutoML CRISP-DM iterations (e.g.,
the differences are 0.65, 0.08 and 0.02 for the weft
test), which clearly backs the AutoML as an interest-
ing modeling method.

To complement this analysis, Figure 6 plots the
REC curves for the predictive models from Table 2.
The plots include also the Normalized Regression Er-
ror Characteristic (NAREC) value for each curve (the
higher, the better). The REC curves confirm the best



Table 2: Overall predictive results for the test data (best values in bold)

Target

Regression Metrics

Test Iteration Interval

MAE Tol. 5%

Tol. 10% Tol. 20% Adj. R?

Baseline [0.52,50.00 2.06

I [0.52,50.00 1.30

Tear warp ond [0.44,24.00]  0.70

2% 4% 7%

6% 12% 23%
8% 16% 29%
6% 14% 23%

0.44
0.68
0.92
0.75

Baseline  [0.50,44.52] 1.92
18t [0.50,44.52] 1.27
ond [0.56,24.25] 1.18
3rd [0.56,24.25] 1.16

]
]
]
3rd [0.44,24.00] 1.20
1
Tear weft }

2% 4% 8% 0.49
5% 12% 20% 0.69
5% 11% 22% 0.71
6% 12% 21% 0.72

performance of the third CRISP-DM iteration model
for tear weft and second CRISP-DM iteration model
for tear warp. The quality of the best model pre-
dictions can be visualized in Figure 7. The regres-
sion scatter plots show that the predictions are more
closer to the real values when compared with the scat-
ter plots of the first CRISP-DM iteration (Figure 4).
In particular, a high quality regression was achieved
for the warp tear strength prediction (top of Figure 7).
These regression results were shown to the textile
company experts, which provided a positive feedback.

S CONCLUSIONS

In this paper, a DM approach guided by the
CRISP-DM methodology was used to predict the re-
sults of fabric tear strength tests in warp and weft di-
rections. A total of three CRISP-DM iterations were
executed, aiming to explore distinct data preprocess-
ing operations (e.g., outlier removal, inclusion of ad-
ditional inputs) for the two regression tasks. The data
were collected from a Portuguese textile company and
it included an initial database of thousands of fabric
records from 2012 to 2019. A Data Warehouse was
created, allowing to clean and merge these records
with the laboratory test data, resulting in a warp and
weft test datasets with around 8,400 examples. Dur-
ing the Modeling stage of CRISP-DM, an AutoML
was adopted, automatically tuning and selecting the
best ML model for a particular dataset. The Au-
toML tool always selected a stacking ensemble that
included all tested ML models and that obtained much
better regression results when compared with a linear
regression baseline model.

The best warp tear strength predictions were
achieved at the second CRISP-DM iteration, which
involved outlier removal, while the best weft test re-
sults were obtained at the third CRISP-DM iteration,
which included the final fabric composition as an ex-
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Figure 6: REC curves for the warp (top) and weft (bottom)
tear strength prediction models.

tra input feature. The best predictive results were an-
alyzed as valuable by the textile company experts. In
future work, we intend to apply a similar approach
in the prediction of other fabric quality tests, such as
pilling. Moreover, we intend to apply the best predic-
tion models in a real textile environment, aiming to
reduce the number of fabric sample creation attempts.
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Figure 7: Regression scatter plot of best models for the warp
(top) and weft (bottom) tear strength predictions.
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