
Submitted to the “Advances in Human-Computer Interaction” – 2013 1 

Interaction	
   tasks	
   and	
   controls	
   for	
   public	
   display	
  
applications	
  

Abstract	
  

Public displays are becoming increasingly interactive and a broad range of interaction 

mechanisms can now be used to create multiple forms of interaction. However, the lack of 

interaction abstractions forces each developer to create specific approaches for dealing with 

interaction, preventing users from building consistent expectations on how to interact across 

different display systems. There is a clear analogy with the early days of the graphical user 

interface, when a similar problem was addressed with the emergence of high-level interaction 

abstractions that provided consistent interaction experiences to users and shielded developers 

from low-level details. This work takes a first step in that same direction by uncovering 

interaction abstractions that may lead to the emergence of interaction controls for applications 

in public displays. We identify a new set of interaction tasks focused on the specificities of 

public displays; characterise interaction controls that may enable those interaction tasks to be 

integrated into applications; create a mapping between the high-level abstractions provided by 

the interaction tasks and the concrete interaction mechanisms that can be implemented by 

those displays. Together, these contributions constitute a step towards the emergence of 

programming toolkits with widgets that developers could incorporate into their public display 

applications.   

 

Keywords	
  
Interactive public displays; pervasive displays; interaction tasks; interaction controls; input 
mechanisms 

1.	
  Introduction	
  

Public digital displays are becoming increasingly ubiquitous artefacts in the technological 

landscape of urban spaces. Many of those displays are also becoming more interactive, 

enabling various forms of user engagement, such as playing games, submitting photos or 

downloading content. In general, interaction is clearly recognized as a key feature for public 

displays in both the research literature and commercial systems, and a very broad range of 

interaction techniques have been proposed to create all sorts of interactive display systems. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/364397436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Submitted to the “Advances in Human-Computer Interaction” – 2013 2 

Still, even if creating a particular interactive solution is not in itself a major technical 

challenge, the approaches used are essentially ad-hoc solutions that are specific to one 

particular system and interaction experience. The problem is that there are no abstractions for 

incorporating interactivity into public display applications that may help interaction support 

to become a commodity in public displays. As summarized by Belluci et al. [1], “At present, 

there are no accepted standards, paradigms, or design principles for remote interaction with 

large, pervasive displays”.  

The fundamental reason why this happens is because display systems are still based on 

proprietary technology and displays networks are operated as multiple isolated islands, each 

with its own concepts and technologies. We envision public displays to progressively move 

away from a world of closed display networks to scenarios in which large-scale networks of 

pervasive public displays and associated sensors are open to applications and content from 

many sources [2]. In these scenarios, displays would become a communication medium ready 

to be appropriated by users for their very diverse communication goals. Third-party 

application developers would be able to create interactive display applications that would run 

across the many and diverse displays of the network and interaction would necessarily 

become an integral part of the whole system. 

However, the current lack of interaction abstractions represents a major obstacle to this vision 

and to the widespread adoption of interactive features in public displays, for both application 

developers and users. For developers, this means that they all have to develop their own 

approach for dealing with a particular interaction objective using a particular interaction 

mechanism, leading to extra development effort outside of the core application functionality. 

In addition, each developer replicates this effort, potentially originating poor designs, and 

wasted effort. For users, the lack of well-known interaction abstractions is also a problem, as 

they need to deal with inconsistent interaction models across different displays. Without 

familiar abstractions people are not able to use their previous experiences to develop 

expectations and practices regarding interaction with new public displays.  

There is a clear analogy between these problems and the early days of the graphical user 

interface, when desktop computer programmers had to make a similar effort to support their 

interaction with users. The problem was addressed with the emergence of reusable high-level 

interaction abstractions that provided consistent interaction experiences to users and shielded 

application developers from low-level interaction details, as in the XToolkit [3]. Nowadays, 

when developing desktop applications, developers can focus on the interaction features of 

their applications, and abstract away from low-level issues, such as receiving mouse pointer 

events, recognizing a click on a specific button or changing the visual state of a button that 



Submitted to the “Advances in Human-Computer Interaction” – 2013 3 

has just been clicked. These low-level input events are encapsulated by user interface widgets 

that provide developers with high-level interaction abstractions, thus facilitating the task of 

creating an application. From the usability perspective, widgets also enforce consistency of 

the interface, allowing users to learn to interpret their affordances in a way that enables them 

more easily to tackle new interfaces and programs by building on their previous experience.  

This type of abstractions may now also provide an important inspiration for addressing the 

similar problem being faced by public displays, where the transition to a new era of 

generalized interaction support will also require a step up in the abstraction scale. As 

described by Mackinlay et al. [4]: “to achieve a systematic framework for input devices, 

toolkits need to be supported by technical abstractions about the nature of the task a input 

device is performing”.  The proliferation of input devices and techniques for public displays 

reached a point at which it is both possible and fundamental to systematize the knowledge 

that may support the design of interaction toolkits for public display systems and ultimately 

enable interaction to become a common element of any display application in open display 

networks. 

Our objective is to take a first step in that direction by uncovering interaction abstractions that 

may lead to the emergence of interaction controls for applications in public displays. Given 

the broad diversity of public display systems and interactions models, any solid contribution 

in this area needs to be anchored on a clear identification of the main assumptions being made 

about the nature of the displays and the interactions they aim to support. In our work, we 

assume an interaction context in which large shared displays are being used as the execution 

environment for multiple applications, each with potentially various concurrent users that 

interact with them through various interaction modalities, e.g. Bluetooth, SMS or visual 

codes. We also assume that interactions are based on a shared model of appropriation in 

which no single user can be expected to fully appropriate the main public display at any 

moment. This considerably reduces the applicability of our work to displays where individual 

appropriation is normally assumed, such as those based on touch or gesture-based interfaces.  

To reach our goal, we have made an extensive review of 52 publications about interactive 

public display systems, and coded the description of their interaction features. The codes 

generated from that process were then aggregated into major interaction tasks, a concept 

borrowed from Foley et al. [5], each with its own properties and possible values for those 

properties. We then matched these interaction tasks against the concrete interaction 

mechanisms identified in the literature, plotting the various implementations found on the 

literature in a spatial layout of a design space that extends previous work by Ballagas et al. 

[6]. Finally, we explored different combination of properties and values associated with the 



Submitted to the “Advances in Human-Computer Interaction” – 2013 4 

interaction tasks, and outlined a set of concrete interaction controls that can provide a starting 

point for the development of interaction toolkits for interactive public display applications.  

The novel contributions of this work are a new set of interaction tasks focused on the 

specificities of public display interaction, a characterization of interaction controls that may 

enable those interaction tasks to be integrated into applications for public displays, and a 

mapping between the high-level abstractions provided by the interaction tasks that have been 

identified and the concrete interaction mechanisms that can be supported by public displays. 

Together these contributions constitute a step towards the emergence of programming toolkits 

with interaction controls that developers could incorporate into their public display 

applications.   

2.	
  Abstracting	
  interaction	
  

As a first step in our research, we have made a more in depth analysis of the concept of 

interaction abstraction and particularly to what extent the approaches from the desktop 

domain could be applied to this new domain of public displays. 

2.1	
  Revisiting	
  desktop	
  abstractions	
  
In the early days of graphical user interfaces, application developers were facing a similar 

problem as the one currently posed by public displays, as there was not a consistent way to 

integrate interaction features – actions interpreted in the context of the application's semantic 

domain, provided by the application to a user – into the applications. This was addressed with 

the emergence of various conceptual frameworks for interaction, such as pointer based 

graphical interaction.  

Mackinlay et al. [4] proposed a design space of input devices, using a human-machine 

communication approach. In their design space, they consider the human, the input device, 

and the application: the human action is mapped into parameters of an application via 

mappings inherent in the device. “Simple input devices are described in terms of semantic 

mappings from the transducers of physical properties into the parameters of the 

applications.” A device is described as a six-tuple composed of: a manipulation operator, 

input domain of possible values, a current state, an output domain, and additional device 

properties. This six-tuple can be represented diagrammatically, and this graphical 

representation of the design space has been used extensively to characterize and compare 

different input devices.  



Submitted to the “Advances in Human-Computer Interaction” – 2013 5 

Foley et al. [5], produced a taxonomy which organizes interaction techniques around the 

interaction tasks they are capable of performing. The interaction tasks represent high-level 

abstractions that essentially define the kind of information that applications receive in result 

of a user performing the task. They form the building blocks from which more complex 

interactions, and in turn complete interaction dialogues, can be assembled. They are user-

oriented, in that they are the primitive action units performed by a user.  Foley’s tasks were 

based on the work by Deecker & Penny [7] which identified six common input information 

types for desktop graphical user interfaces: position, orient, select, path, quantify, and text 

entry. Foley also identified various interaction techniques that can be used for a given task 

and discussed the merit of each technique in relation to the interaction task. In this work, we 

use the concept of interaction task as defined by Foley to analyse interaction with public 

displays. 

Myers [8] proposed interactor objects as a model for handling input from the mouse and 

keyboard. An interactor can be thought of as an intermediary abstraction between Foley’s 

taxonomy and concrete graphical user interface (GUI) widgets. Interactors support the 

graphical subtasks, but abstract the concrete graphics system, hide the input handling details 

of the window manager, and provide multiple behaviours, such as different types of graphical 

feedback, that can be attached to user interface objects.  Myers defined six interactors: menu-

interactor, move-grow-interactor, new-point-interactor, angle-interactor, text-interactor, trace-

interactor. The same interactor can be used to implement various concrete GUI widgets. 

This type of research led to the now widely used concept of user interface widget (also known 

as “interaction objects”, “controls”, or simply "widget"): an abstraction that hides the low-

level details of the interaction with the operator, transforming the low-level events performed 

by the operator into higher level events – Bass & Coutaz [9]. Widgets provide support for the 

three main stages of the human action cycle [10]: goal formation, execution, and evaluation. 

Their graphical representations and feedback support mainly the goal formation and 

evaluation stages. Widgets have a graphical representation that application developers use to 

compose the graphical user interface (GUI) of the application, supporting users in the goal 

formation stage by providing graphical representations to the interaction features of an 

application.  Widgets also support the evaluation stage by providing immediate graphical 

feedback about their state. For example, a textbox widget echoes the typed characters to show 

what users have already written and shows a blinking text cursor to indicate that it can accept 

more input. The internal behaviour of a widget supports the execution stage and insulates 

applications from low-level input events transforming them into high-level interaction events. 

For example, an application that needs users to input a text string does not need to handle 



Submitted to the “Advances in Human-Computer Interaction” – 2013 6 

individual key presses; it can use a textbox widget that does this low-level handling and 

passes back to the application the complete text string. In widget toolkits, interaction events 

are usually defined as asynchronous function calls made by the interaction software system to 

the application. The kind of information carried by the interaction event defines what 

interaction task is being accomplished. From an informational perspective, multiple types of 

widgets could be used to accomplish a desired task. For example, to allow users to input a 

number, programmers often have at their disposal several types of data entry widgets – 

number type-in boxes, sliders, spinners – that can restrict the type of accepted data and 

provide different interaction events (a type-in box usually triggers an event only after the 

number is entered, while a slider fires a sequence of events with intermediate values as the 

user drags the slider). Even though our work is strongly inspired by the widget metaphor, in 

this paper we use the more general term control to designate the same kind of abstraction. 

This is because widgets have a strong connotation with a particular graphics and interaction 

paradigm that may not be appropriate for public displays.  

There are also model-based user interface development languages and tools that provide 

support and useful abstractions for various phases of the software development cycle. For 

example, the MARIA language [11] is a model-based user interface description language 

targeted at applications for ubiquitous environments. Interactive public display applications, 

however, are not yet mature enough for the emergence and use of model-based tools. By 

characterizing the interaction tasks and controls that are suitable for public display 

interaction, our work may help to consolidate the level of abstraction needed to successfully 

use model-based tools and languages.  

2.2	
  Interaction	
  in	
  Public	
  Displays	
  
While it seems reasonable to apply successful lessons from the desktop world, there are 

significant differences that need to be accounted for when considering the adaptation of those 

principles to the specifics of the interaction environment around public displays. Using the 

concept of “ecosystem of displays” introduced by Terrenghi et al. [12], we could generally 

describe the public display environment as perch/chain sized ecosystems for many-many 

interaction, composed of displays of various sizes (from handheld devices, to medium/large 

wall mounted displays), and where “many people can interact with the same public screens 

simultaneously” [12]. Although there can be many kinds of social interaction in these spaces, 

we are focusing essentially on many-many interactions where there is not a single person or 

small group that “owns” the information of a display. Instead, the aim is to create a shared 

information space where everyone can have the same opportunities to interact and where the 

different displays offer different views to the information or different possibilities to interact 



Submitted to the “Advances in Human-Computer Interaction” – 2013 7 

with it. The different sized displays afford different types of interaction but they can function 

in an integrated way in the ecosystem, offering different synergies and opportunities [13]. For 

example, touch-sensitive surfaces in the tables of a bar, or the personal devices of people in 

that same bar may all be used as privileged input devices to a public display system for 

sharing content on a larger vertical public display. Multiple users may generally share these 

public display systems at the same time, even if in a non-coordinated way, interacting with 

the various features of the system, using different interaction mechanisms, both remotely (e.g. 

using a mobile device) or at close distance (e.g. touching the public display itself).  

Unlike desktop systems, which usually rely on a very small set of input devices – most often 

just a keyboard and mouse – public display interaction can take advantage of very different 

interaction mechanisms. For example, Ballagas et al. [14], have proposed two mechanisms 

that make use of camera-phones to interact with public displays: the sweep technique, where 

the camera-phone is used as a mouse with the optical flow determining the amount and 

direction of movement from sequential images taken by the phone’s camera; and the point & 

shoot technique, where an overlay of visual codes on the public display is used to allow the 

phone to determine the absolute coordinates of the point the camera is pointing at. Bluetooth 

naming [15], [16] has also been used as an interaction mechanism by providing a simple 

command language that users can use in the names of their Bluetooth devices, which are 

continually scanned and evaluated by the display system. Bluetooth file exchanges between 

users’ devices and the display system has also been explored, e.g., by Cheverst et al. [17] in 

the Hermes Photo display system. Dearman & Truong [18] have proposed a DTMF (dual-

tone multi-frequency signalling) based solution for interacting with public displays where 

users can control applications by connecting their phone to the display system via Bluetooth 

and pressing keys on the mobile phone that are mapped to different actions on the application. 

Many other input mechanisms such as SMS/MMS [19], email and instant messaging [20], 

Twitter [19], RFID tags [21], gestures [22], face detection [23], to name a few,  have been 

explored for public display interaction. The UBI-Oulu infrastructure is a relevant example of 

a multi-application network of public displays that offers a wide range of services via various 

interaction modalities [24], including a 57” capacitive touch screen, two overhead cameras, 

an NFC/RFID reader, and Bluetooth. A number of web-based interactive applications can be 

accessed through an application menu and used through a combination of the interaction 

modalities. 

The breadth of mobile interaction mechanisms has already motivated research that tries to 

systematize the cumulative knowledge around mobile techniques for interaction. Building on 

Foley’s interaction tasks, Ballagas et al. [6] developed a design space for comparing how 



Submitted to the “Advances in Human-Computer Interaction” – 2013 8 

different mobile device based input techniques could a support a given interaction task. The 

input techniques were compared along various dimensions such as the number of physical 

dimensions (1d, 2d, 3d), the interaction style supported, the type of feedback provided, and 

whether the technique provides absolute or relative values. As stated by the authors, their 

design space is “an important tool for helping designers […] select the most appropriate 

input technique for their interaction scenarios”. The work by Ballagas et al. [6] provides a 

valuable design space for reasoning about the multiple types of interaction with public 

displays using mobile devices. We thus used this as a starting point for our own work and 

extended it in two ways: by considering not just the smart-phone, but also other interaction 

devices; and by considering the existence of new interaction tasks, beyond the ones defined 

by Foley et al., which may give a broader and more specific view of the interaction space 

with public displays.  

3.	
  Interaction	
  tasks	
  for	
  public	
  displays	
  

To uncover interactive tasks for public displays, we have made a comprehensive study of 

existing publications around the topic of interactive public displays. This approach aimed to 

go beyond specific interaction techniques and allow common interaction patterns to emerge 

from the assumptions and approaches applied across a broad range of interactive display 

systems. Our research followed an approach based on the grounded theory methodology [25], 

borrowing many of its phases: open, selective, and theoretical coding; memoing; and sorting.  

We started with an initial set of 12 papers and did a first phase of open coding, in which we 

produced our first set of codes corresponding to specific attributes of the respective 

interactions. We then analysed these codes to aggregate some of them and remove others that 

were deemed not relevant from the interaction point of view. This much smaller set of 

relevant codes was used as the starting point in a second coding phase, where we coded 40 

additional papers. These additional papers were selected from standard academic services 

(ACM Digital Library, IEEE Xplore Digital Library, Google Scholar) based on keyword 

searches for interactive public displays. We further refined the paper selection task to 

guarantee a balanced combination of various interaction mechanisms, various application 

domains, and various types of displays. This paper selection process was iterative and 

simultaneous to the coding procedure. Following upon Ground Theory principles, we 

continued to select new papers until the coding was saturated. Simultaneously, we started a 

third theoretical coding phase, identifying relationships between the existing codes, and 

producing new codes to reflect these relationships. In this phase, we started organizing the 



Submitted to the “Advances in Human-Computer Interaction” – 2013 9 

existing codes into categories of interactions, along with their properties and concrete values 

associated with those properties. We adopted the definitions of categories and properties from 

Glaser & Strauss [25]: “A category stands by itself as a conceptual element of a theory. A 

property, in turn, is a conceptual aspect or element of a category”. 

To identify and distinguish categories, we analysed the interaction features that were being 

described, based on the underlying types of information that had to be exchanged between the 

user and the display system. These second and third phases were highly iterative and 

intermixed: we recoded previously coded papers more than once to make sure their coding 

was up-to-date with the latest categories and properties. For example, if we identified a new 

property while coding a paper, we would go back to previous publications and make sure we 

coded that property, in case we had missed it originally. The complete process originated a 

total of 87 codes that referenced 448 text segments in the 52 papers [26]. 

Memoing, i.e., writing ideas associated with codes, was also an important part of the 

methodology and this went in parallel with all the coding phases. We used memos to start 

relating our codes together and forming a structured view (of categories, properties, and 

values) of all the interaction tasks that were emerging. We also used memos to note possible 

missing properties and values that we needed to search in additional publications to make sure 

our categories were saturated. The memos associated with the categories became the first raw 

descriptions of our interaction tasks in the final description and analysis, after we sorted them 

to chain the ideas that emerged during the coding phases and turn them into a more logical 

narrative. 

The categories that resulted from the coding process correspond to the interaction tasks that 

define the general information that the application needs to specify and the information that 

the application receives in the interaction events. The interaction tasks have properties that 

can take different concrete values and restrict the information or the behaviour associated 

with the task. These properties and values of the interaction tasks are mapped directly from 

the properties and values that resulted from the coding process. For example, the passage 

"CoCollage users who are connected to the web site in the café may also send messages 

directly to CoCollage via a textbox near the upper right of any page" is describing an 

interaction feature that allows users to send a text message to the display. In the third coding 

phase, this feature was coded with "data entry" (category), "bounds" (property), and "text" 

(value).  

The result of this analysis is the list of 6 interaction tasks summarised in Table 1. As 

previously defined in section 2.1, these interaction tasks should be seen as representing the 



Submitted to the “Advances in Human-Computer Interaction” – 2013 10 

main types of information exchange that may occur between the system and a user as part of 

an interactive event. They are essentially low-level tasks that focus on interaction itself, and 

are not meant to represent high-level user goals, as is normally the case in the context of task 

analysis and modelling. 

We will now describe in more detail each of those interaction tasks, characterizing them in 

terms of the respective information exchange, the associated properties and the possible 

values for those properties. Whenever appropriate, we will illustrate these properties with 

specific examples from the surveyed display systems. 

Table 1. Interaction tasks, properties and values. 

Task Property Values 
Select Type of selection [Action, Option] 
Data entry Bounds [Unbounded, Bounded] 
Upload Media type [Text, Image, Video, Audio, etc.] 
 Media location type [Personal device, Public location] 
Download Media type [Text, Image, Video, Audio, etc.] 
 Media location type [Display system, Public location] 
 Target device [Smartphone, Email, USB stick, Print] 
 Target user [Self, Other] 
Signal presence Location disclosure [Automatic, Manual] 
 Location verification [Verified, Unverified] 
Dynamic manipulation Type of manipulation [Cursor, Joystick, Keyboard, 

Skeleton/silhouette] 

3.1	
  Select	
  
The select task is equivalent to the select task of Foley et al. [5], allowing users to trigger 

actions or select options in an application. It requires applications to specify the complete set 

of options or actions they wish to provide to users. The interaction event triggered by the 

display system will include the action or option identification, so that the application can 

determine which one was selected. 

Type	
  of	
  selection	
  

The type of selection property refers to what users are selecting: an action to be triggered 

immediately by the application, or an object from a list of possible objects. Using the 

terminology of Cooper et al. [27], in action selection users input a verb (what action the 

application should perform), and the noun (the object on which to act) is usually implicit. In 

object selection, users input a noun, and later a verb (or the verb is implicit). These two types 

of selection are traditionally represented graphically in very different forms; for example, on 

desktop systems programmers usually have at their disposal different sets of widgets for 

triggering actions (menus, toolbars, buttons), and for selecting objects (listboxes, dropdowns).   



Submitted to the “Advances in Human-Computer Interaction” – 2013 11 

In regard to triggering actions, Vogel & Balakrishnan [22] in the Interactive Public Ambient 

Displays system provide an example using hand gestures: “Two complimentary hand postures 

are used to hide and show the display of a user’s own proxy bar. The hide action is performed 

with a palm away posture consisting of an open hand pointing up with palm facing the 

display […], analogous to the commonly seen “stop” gesture used for traffic signalling in 

real life.” QR codes are also a common alternative to provide users with a visual 

representation for an action, whether in a live public display, or printed on paper. In the 

Mobile Service Toolkit/Mobile Service Explorer (MST/MSE) [28], for example, users could 

scan a visual code to have access to various actions: “Sally, can click on the tag using her 

MSE-enabled phone to establish a Bluetooth connection with the service. As soon as the 

phone connects with the service, her phone displays a message containing the current 

queuing time and asks whether she’d like to join the queue.” Another example is the Bluetone 

system [18], where users can use their phone’s keypad to issue commands: “[…] a user is 

able to watch a particular YouTube video, but also has the added ability of controlling 

audio/video playback. The user presses ‘5’ on their mobile phone to pause the video [...]” 

Selecting an object or item from a set of related items is also a frequently used feature, as the 

following examples show. The e-Campus system [16] provided a Bluetooth naming based 

interaction mechanism for selecting a song to play: “By subsequently changing their device 

name to ‘\ec juke <song id>’ the selected music track will be added to the queue of songs to 

be played.” In this case users explicitly enter the action to be performed (i.e., ‘juke’) and the 

item on which the action should take place (i.e., the song id). More often, the action is 

implicit and users just need to select the item to be acted on from a list presented by the 

public display, as in this Plasma Poster [29] example, which used a touch-screen interface: 

“… this was the last item posted to the Plasma Poster Network, and the display cycle is about 

to begin again. Readers can select any thumbnail to be displayed by pressing it.” SMS is also 

frequently used for this purpose, as in Locamoda’s Polls [19] application were users would 

vote by selecting a choice from a list presented by the display. 

3.2	
  Data	
  entry	
  
The data entry task allows users to input simple data (text or numeric data) into a public 

display. Applications need to specify which type of data they wish to receive (text, numeric, 

dates, etc.), and possible bounds, or patterns, on the values they can accept. The interaction 

event that the application receives carries the user-submitted data. The data entry task is 

equivalent to the combination of the “quantify” and “text entry” tasks defined by Foley et al. 

[5]. We chose to combine them because, when we abstract the interaction paradigm (instead 

of focusing on graphical manipulation interfaces), and consider the information exchange 



Submitted to the “Advances in Human-Computer Interaction” – 2013 12 

between user and application quantifying and entering text are essentially the same: users 

input values to the application. Cooper et al. [27] also group quantify and text entry into data 

entry controls in their classification of desktop application controls.  

Bounds	
  

The bounds property of the data entry task refers to whether the application accepts free text 

from the user, or whether it imposes some pre-defined format to the data. For example, 

integer number within a limit or text that corresponds to a valid email address. This is an 

important property to consider because it imposes restrictions on the possible interaction 

mechanisms that can be used. For example, there is no easy way to guarantee that a value 

entered via an SMS message, Bluetooth naming, email, or other text-based interaction 

mechanisms conforms to the format accepted by the display system, before the user sends it.  

Special care should be taken if these mechanisms are used for bounded data entry as they can 

result in user frustration if the display system rejects the input. 

Unbounded text entry corresponds to Foley’s text entry task, in which users are allowed to 

submit a string of text that does not need to conform to any specific rule. Text entry can be 

used to send messages, comments, and keywords, to the public display. In CoCollage [30], 

for example, users could send messages to the display by entering text in the display systems' 

web page. Entering search terms is also a common use of text entry feature in public displays. 

Davies et al. [16], for example, provided a Flickr search application in their e-Campus 

system: “Users can access photos on Flickr by changing their [Bluetooth] device name to ‘ec 

flickr <search term>’. For example ‘ec flickr oranges’ would cause photos retrieved using 

the search term ‘oranges’ to be displayed.” SMS is also frequently used to allow user input. 

Locamoda’s Jumbli application [19], for example, allows users to play a word game by 

texting their words. Touch interfaces can also be used for these interactions, supporting the 

traditional desktop entry controls such as sliders and dials, but also text-entry via onscreen 

keyboards as in the Digifieds [31] system. 

Bounded data entry restricts the type, pattern, and range of the values that are entered. For 

example, in Visual Code Widgets, Rohs [32] described how visual widgets could be used 

with a camera phone: “Unlike free-form input widgets, which provide ‘unbounded’ input, 

sliders are ‘bounded’ data entry widgets. The slider can be moved across a certain range, the 

selected value being proportional to the current slider position. […] there are horizontal and 

vertical sliders. Input can either be continuous or discrete.” Rating is another example of a 

bounded entry control, which usually allows users to enter a 1-5 value for an item. In CWall 

[33] users could rate the content items presented by the public display by touching an icon 



Submitted to the “Advances in Human-Computer Interaction” – 2013 13 

near the item. Bluetone [18] also allowed users to input bounded numeric values, in this case, 

using the mobile phone’s keyboard.  

3.3	
  Upload	
  media	
  
The upload task allows applications to receive media files sent by users. Applications should 

be able to specify the type of media they are interested in, but other parameters such as the 

maximum file size, or maximum media duration (for video and audio) could also be of 

interest. The interaction event received just needs to specify the URL of the uploaded file.  

Media	
  type	
  

The media type property of the upload task indicates the type of media file being uploaded: 

image, video, audio, html, and many other types of office documents. In JoeBlogg [34], for 

example, images were used to create an artistic composition on the public display. In other 

cases, images were used as free-hand comments to existing content, creating a discussion 

thread, as in the Digital Graffiti project [35]. Audio and video are also often used media 

types. In the Dynamo system [36] for example, students could upload a variety of media files 

into the surface, including video and music files: “During the two-week deployment, the use 

of Dynamo varied considerably: students displayed and exchanged photos, video and music, 

which they had created themselves or brought in from home […]”. 

Media	
  location	
  type	
  

The media location type property of the upload task refers to the original location of the 

media. In many cases, the public display system accepts content that is stored in a personal 

device such as a mobile phone or even an USB pen drive. In these cases content is sent 

directly to the public display by attaching the pen drive or by transferring the file via 

Bluetooth OBEX or via a custom mobile application. In the Hermes Photo Display [17], for 

example users could transfer photos from their mobile phones to the display using OBEX: 

“This version of the Hermes Photo Display also enables a user to […] use her mobile 

phone’s built-in ‘picture’ application in order to send a picture to the photo display over 

Bluetooth […]”. In JoeBlogg, users would send personal pictures stored in their mobile 

phones via MMS. In Dynamo, users would simply attach their USB pen drives to the display 

to copy the media files into a shared space. Email has also been explored in the Plasma 

Posters [29] display system: "Posted content can be images and movies (sent in email as 

attachments), formatted text and URLs.” 

In other cases, however, users don’t actually have a copy of the content in a personal device, 

but know the respective address. In these cases, the display receives a reference to the 

content, instead of the content itself. WebWall [37], for example, accepted URLs of media 



Submitted to the “Advances in Human-Computer Interaction” – 2013 14 

files to play in the public display: “[…] there are other service classes that are better defined 

first over the Web-client: Video and picture galleries (service class Gallery) can be used to 

display multimedia content by composing URLs of the media to display […]”. 

3.4	
  Download	
  media	
  
The download task allows users to receive a content item from the display and store it in a 

personal device or account for later viewing or reference. The interaction event received by 

the application can simply be an acknowledgement that the file was, or is about to be, 

downloaded.  

Media	
  type	
  

The media type property is analogous to the media type property of the upload task. 

Just as in upload task, various media types may be provided by a display system and made 

available for users to download.  The Hermes Photo Display [17], for example, allows users 

to “[…] use the interface on the Photo Display to select a picture and then receive this 

picture onto her phone via Bluetooth.” Videos are also a common media type that users may 

want to download. In ContentCascade [38], for example: “The display is playing trailers of 

upcoming movies. Bob sees the Shrek movie and decides ‘I like that!’ and wants to download 

the movie clip. He pulls out his Bluetooth enabled cell phone [...]”. 

Media	
  location	
  type	
  

The media location type property is analogous to it’s counterpart in the upload task: content 

to be downloaded can either be already publicly available and the display system just 

provides the address on the web, or it can be content stored internally at the display system 

that is transferred to the user. For example, in ContentCascade users could also receive URLs 

in their mobile device, instead of the video itself. In Hermes Photo Display, however, the 

photos were stored internally in the display system and downloading involved establishing a 

Bluetooth connection between the display and user’s mobile device to transfer the photo. 

Target	
  device	
  

The target device property refers to where the downloaded content is transferred as a result of 

the interactions. Downloaded media can be received in a variety of destination devices or 

personal accounts, using various communication protocols. Content can be downloaded to a 

personal mobile device, for example, using SMS as in Locamoda’s Community Board 

application [19]. OBEX is another protocol that can be used for receiving media files as in the 

Hermes Photo Display. There are also examples of display systems that use custom mobile 

applications and communication protocols for receiving files on the mobile device. Touch & 



Submitted to the “Advances in Human-Computer Interaction” – 2013 15 

interact [39] for example consists of a public display and a mobile application in which “[…] 

the user interacts with a picture board by touching the picture with the phone and in 

response, the picture moves from the dynamic display to the phone.” Users can also receive 

files in a USB pen drive, as in the Dynamo [36] system, or download to their mobile device 

by scanning a QR code as in Digifieds. Mobile devices, however, are not the only possibility 

for receiving media files. A popular approach is to allow users to receive the content in their 

email. In the Digital Graffiti project [35] for Plasma Posters for example: “Later, Jane is 

passing by the Plasma Poster and sees all the annotations that have been posted over her 

original content. She is amused to discover her post has caused so much response and debate 

and forwards the recommended URL to her home email so she can read it later.” Finally, a 

less common but also possible solution for specific media types it to allow users to print the 

content. Also in the Plasma Posters [29] project, users could print a displayed item directly 

from the public display. 

Target	
  person	
  

The target person property refers to whether the content is transferred to the interacting user, 

or to another person. Often, users want to download content for themselves, in order to get an 

offline copy of the content or as a reference to view later. However, there are also cases 

where a user wants to download a content item and forward it to someone else. In this case, 

users are effectively sharing content from the display. Plasma Posters, for example, allows 

content to be forwarded to others: “Items can be forwarded to others, or to oneself for 

reading later at a personal computer.” The same could be done with Digifieds, which 

allowed users to send content via email: “Digifieds can also be taken away […] by sending 

them to an email address, […]”. 

3.5	
  Signal	
  presence	
  
The signal presence task allows the application to be notified about events regarding the 

presence of users in the vicinity. Although all interactions with a display system can be used 

to determine the presence of users (if a button was pressed in a touch screen, it means that 

there was someone there), in this section, we are considering only those interactions 

specifically designed for determining the presence of users.  

Location	
  disclosure	
  

The location disclosure property refers to whether the user manually sets his presence, or 

whether the presence is sensed automatically by the display system. The manual form 

corresponds to a check-in interaction where users decide when they would like to announce 

their presence to the public display. 



Submitted to the “Advances in Human-Computer Interaction” – 2013 16 

Check-in can be accomplished through a number of different ways, for example using 

hardware that reads a personal identity card or a personal mobile device. Magnetic card 

readers, RFID readers, or even Bluetooth detection can be used to accomplish this type of 

check-in. Russel & Gosswiler [40] for example, used personal cards that users could swipe on 

a card reader in the BlueBoard display to access their personal data (in this case, the feature 

worked as a login because it allowed access to personal information, but it could also be used 

for check-in): “The net effect is that a user can ‘log in’ by simply swiping their badge at the 

display, getting rapid access to their content.” Check-in can also be accomplished solely 

through software, for example through a mobile application or web page. CoCollage [30] 

provides a check-in feature to its users through a button on a web page. The automatic 

sensing of users around the display can itself be subdivided into three forms according to the 

level of information sensed: presence detection, characterization, and identification. Presence 

detection corresponds to an on/off detection where the display either detects someone (but not 

who, or how many) in its vicinity, or detects no one. This can be used to trigger a change in 

the display’s mode from an ambient mode to a more interactive mode, as in the Aware 

Community Portals [23]: “[…] a weather map triggered by the user walking by vs. a news 

article shown when the user lingers to browse.” Presence characterization corresponds to a 

more rich detection, where the display is able to sense more information about the people in 

the vicinity, such as how many, their position, where they are gazing, the estimated age, etc. 

CWall [33] used computer vision techniques to infer if people were standing in front of the 

display, and looking at it. In presence identification, the display is able to identify users and, 

possibly, associating personal information. This can be used to provide personalized content 

on a public display as in the Proactive Displays [21]: “When attendees are near a proactive 

display, content from their profiles can be shown.” 

Location	
  verification	
  

The location verification property indicates whether the system can verify that the user is 

really where he says he is. In the automatic presence sensing, the system can have stronger 

guarantees that users, or at least their devices, are in the vicinity of the display. Sensors are 

assumed to be located near the display, and they usually have a limited detection range. The 

same happens in the manual presence sensing that makes use of personal cards or other 

physical items that are detected by a card reader or other sensor near the display system. Even 

if the check-in is accomplished via software, the user’s location can still be verified. 

CoCollage, for example, uses the local Wi-Fi network to verify the user’s location: “The 

presence of users is established via an explicit ‘check-in’ through the use of […] a web page 

that is enabled only when the user’s computer is connected to the wireless Internet router in 

the café.” 



Submitted to the “Advances in Human-Computer Interaction” – 2013 17 

In many cases however, the user’s location is not verified by the system. Most location based 

social networks such as Foursquare, Google Latitude, and Facebook Places provide mobile 

applications that allow to check-in in any place, without any system verification about the real 

location of the user. This is something that is normally accepted by people as part of the 

semantics of presence through these check-in procedures. Some public display systems take 

advantage of these existing location based networks. Locamoda’s Check-in application [19], 

for example, “leverages widely adopted location based applications such as Facebook Places 

and Foursquare to display relevant venue Check-In activity on venue digital displays.” The 

Instant Places [41] display network provides its own mobile client with similar check-in 

semantics: “Explicit session activation can be accomplished through a check-in mechanism 

available in our instant place mobile app.” 

3.6	
  Dynamic	
  manipulation	
  
The dynamic manipulation task corresponds to continuous interactions were users manipulate 

graphical objects in the application’s interface. Dynamic manipulation represents tasks in 

which it is fundamental to provide a direct-manipulation style, particularly “rapid, 

incremental, reversible operations whose impact on the object of interest is immediately 

visible.” as described by Shneiderman [42]. In this task, the application receives a continuous, 

timely, flow of information, which it can then map to various graphical objects.  

Although the dynamic manipulation task requires a direct manipulation interaction style, not 

all interactions in a direct manipulation style represent dynamic manipulation tasks. For 

example, the activation of a button, even if using some cursor-like interaction, is still a 

selection task, as the application would only be interested in receiving an action selection 

event.  

Type	
  of	
  manipulation	
  

The type of manipulation property refers to the type of action performed by the user and the 

information received by the application. We defined four values for this property: cursor, 

joystick, keyboard, and skeleton/silhouette input. Although their names may suggest physical 

devices, these types of input may be generated by highly diverse mechanisms (for example, 

joystick input can be generated by a physical joystick, but also by specially arranged 

keyboard keys, and even by a virtual multi-touch joystick). 

Cursor events carry information about the position and velocity of multiple cursors on a 2D or 

3D environment, and can be used for mouse, multi-touch, or even 3D interactions. For 

example, Dynamo [36], allows users to “carve” rectangular regions on the display to 

appropriate them for individual use. This is done by simply “drawing” a rectangle using the 



Submitted to the “Advances in Human-Computer Interaction” – 2013 18 

mouse: “Carves can be created by a mouse drag gesture to create privately owned areas in 

which only the user and their chosen members can interact.” In CityWall [43], users used 

multi-touch gestures to move, scale, and rotate photos. 

Joystick events carry information about the angle and state of joystick/gamepad buttons. In 

Point & Shoot [14] users could use their camera phone as a mouse or joystick and select, 

rotate and move jigsaw puzzle pieces: “The phone display is used to aim at a puzzle piece on 

a large display. […] Pressing the joystick indicates selection and a visual code grid flashes 

on the large display to compute the target coordinates […]”. In the Vodafone Cube [44], 

users could dial a phone number and control various games, including a car racing game, 

using the phone’s keyboard as a joystick.  

Keyboard events carry information about a succession of key presses in a physical or 

emulated keyboard. In MST/MSE [28]  for example, the mobile client supported keyboard 

input: “transmits all keypress events from the phone’s keypad back to the MST server in real 

time.” Remote Commander [45] is another example were keyboard input was important: 

“This allows […] the PalmPilot [...] input to emulate the PC’s keyboard input. The important 

point is that this works with all existing PC applications, without requiring any modifications 

to the applications themselves.” It should be noted that keyboard events do not necessarily 

mean that the application is interested in receiving text data (a keyboard could be used to play 

music, for example).  

Skeleton/silhouette events carry information about the position of the user’s body joints 

and/or about the user’s silhouette. This type of input has recently gained wide exposure due to 

the Kinect depth camera controller, but it can also be accomplished with other sensor 

technologies such as body suits, stereo cameras, or motion capture systems.  This kind of 

input has been mostly explored in artistic interactive projects, but it has also been applied 

successfully in public display systems. Muller et al. [46] in project Looking Glass, used a 

Kinect to extract user’s silhouettes and provide a gaming experience in a public display of a 

shop window, by allowing users to wave their arms to push balls on the display. 

4.	
  A	
  design	
  space	
  of	
  interaction	
  controls	
  for	
  public	
  displays	
  

Based on the interaction tasks described in the previous section it is possible to frame a new 

design space for interaction with public displays around those tasks. In this section, we 

analyse how the interaction tasks could be mapped to interaction mechanisms and what 

interaction controls can be derived from them. 



Submitted to the “Advances in Human-Computer Interaction” – 2013 19 

4.1	
  Mapping	
  between	
  interaction	
  tasks	
  and	
  mechanisms	
  
The first step in our analysis is to explore the relationship between interaction mechanisms 

and the set of interaction tasks. This mapping provides a comprehensive view of how 

different mechanisms can be used to support a given interaction tasks and also of how the 

various interactions tasks are represented in the various concrete system implementation from 

the research literature.  

To facilitate the mapping, we created a spatial layout that shows how the different interaction 

tasks can be implemented with various interaction mechanisms. This mapping is inspired by 

the spatial layout from Ballagas et al. [6], but we omitted the attributes dimensionality and 

relative vs. absolute, which were not relevant for our analysis, and we added a new interaction 

distance attribute. The resulting layout, depicted in Tables 2, 3, 4, and 5, represents how the 

interactive displays from the literature are distributed between the interaction tasks and the 

mechanisms that support those tasks. We have plotted each interaction mechanism that 

appeared in the surveyed interaction public display systems.  

The reference to each interactive display system is complemented with a classification of the 

interaction along three secondary dimensions: interaction style, feedback, and interaction 

distance. The interaction style can be direct, or indirect: "in direct interactions, the input 

actions are physically coupled with the user-perceivable entity being manipulated, appearing 

as if there was no mediation, translation, or adaptation between input and output. In indirect 

interactions, user activity and feedback occur in disjoint spaces (e.g., using a mouse to 

control an on-screen cursor)" – Ballagas et al. [6]. Feedback can be continuous, or discrete: 

"continuous interactions describe a closed-loop feedback, where the user continuously gets 

informed of the interaction progress as the subtask is being performed. Discrete interactions 

describe an open-loop feedback, where the user is only informed of the interaction progress 

after the subtask is complete" – Ballagas et al. [6].  For the purpose of this analysis, we are 

only considering shared feedback shown on the public display itself, and not the individual 

feedback that may be generated on the mobile device for example, which may be 

considerably more flexible. In the interaction distance we distinguish between close-up and 

remote interaction. Close-up interaction requires users to touch the display with their body 

(often fingers and hands) or with a hand-held device, whereas in remote interaction users can 

interact at a distance. This dimension has implications on the physical placement of the public 

display (close-up interaction require displays that are at arms reach), or on which interaction 

mechanisms are suitable for an already deployed public display. Each entry in the table is 

labelled with an ordered set of letters corresponding to the possible values for the three 

dimensions: Direct/Indirect, Continuous/Discrete, Close-up/Remote. 



Submitted to the “Advances in Human-Computer Interaction” – 2013 20 

 
We now use Tables 2 through 5 to analyze how four common categories of interaction 

mechanisms – touch-screen based public displays, interaction via mobile devices, device-free 

interaction, and desktop-like interaction – can be used to support the various interaction tasks, 

using concrete examples from the design space.  

Interaction	
  based	
  on	
  touch-­‐screens	
  
Table 2. Mapping between interaction tasks and touch-screen based interaction mechanisms. 

Interaction	
  
mechanism	
  

Interaction	
  task	
  

	
   Select	
   Entry	
   Upload	
   Download	
   Presence	
   Dyn.	
  Manip.	
  
Touch	
  screen	
   DDC:	
  Plasma	
  Posters;	
  Hermes	
  

Photo	
  Display;	
  OutCast;	
  Blueboard;	
  
Jukola;	
  AgentSalon;	
  Digifieds;	
  
Spalendar;	
  iSchool;	
  FizzyVis;	
  Semi-­‐
public	
  displays;	
  Cwall;	
  UBI-­‐hotspot;	
  
Vista	
  

DCC:	
  Plasma	
  
Posters;	
  
Digifieds;	
  
Spalendar;	
  
Cwall	
  

	
   DDC:	
  Plasma	
  
Posters;	
  
iSchool;	
  Cwall	
  

DDC:	
  UBI-­‐
hotspot	
  

DCC:	
  Plasma	
  
Posters;	
  Blueboard;	
  
FizzyVis;	
  CityWall;	
  
Semi-­‐public	
  displays	
  

Touch	
  screen	
  +	
  
Bluetooth	
  OBEX	
  

	
   	
   IDC:	
  
Hermes	
  
Photo	
  
Display	
  

IDC:	
  Hermes	
  
Photo	
  Display	
  

	
   	
  

Touch	
  screen	
  +	
  
Mobile	
  
application	
  

	
   	
   IDC:	
  
Digifieds	
  

IDC:	
  Digifieds	
   	
   	
  

Touch	
  screen	
  +	
  
printer	
  

	
   	
   	
   DDC:	
  Plasma	
  
Posters	
  

	
   	
  

 

Touch-screens can be used without the need for any other device so they are a good solution 

for walk-up-and-use, close-up interaction displays, provided that they can be placed in a 

location that allows users to directly touch it. Touch-screens can be used to support most of 

the interaction tasks for public displays. Select, entry, and dynamic manipulation tasks are 

obviously well supported. Download media can be accomplished in a limited way by 

forwarding the content to a personal email address entered using a virtual keyboard, or by 

selecting a username from a list in case the display system has registered users. Signalling 

presence can be supported in a manual way as in the Ubi-hotspot [47] system were users 

would touch the display to make it transition to an interactive mode. None of the public 

display systems we surveyed used a touch-screen (without any other device) for uploading 

media, although one could conceive that it could be used for uploading by entering the public 

address of a file using a virtual keyboard. However, touch-screens in conjunction with other 

devices can provide richer interactive experiences and better support for the full range of 

interaction tasks. The download and upload tasks in particular can take advantage of personal 

mobile devices for an easier transfer of media files by using an approach similar to the one 

used by the Hermes Photo Display with Bluetooth OBEX transfers, or the Digifieds approach 

with visual and textual codes. Signalling presence can also be made more flexible by 



Submitted to the “Advances in Human-Computer Interaction” – 2013 21 

incorporating personal card readers into the display as in the BlueBoard or Ubi-hotspot 

display systems. 

Interaction	
  based	
  on	
  personal	
  mobile	
  devices	
  
Table 3. Mapping between interaction tasks and interaction mechanisms based on personal mobile devices. 

Interaction	
  
mechanism	
  

Interaction	
  task	
  

	
   Select	
   Entry	
   Upload	
   Download	
   Presence	
   Dyn.	
  Manip.	
  
Bluetooth	
  
detection	
  

	
   	
   	
   	
   IDR:	
  BluScreen	
   	
  

Bluetooth	
  naming	
  IDR:	
  e-­‐Campus	
   IDR:	
  e-­‐Campus;	
  
Instant	
  Places;	
  
Bluemusic	
  

	
   	
   IDR:	
  Instant	
  
Places	
  

	
  

Custom	
  mobile	
  
personal	
  device	
  

IDR:	
  Pendle	
  
ICR:	
  VisionWand	
  

ICR:	
  VisionWand	
   	
   	
   IDR:	
  Pendle;	
  
AgentSalon	
  

ICR:	
  VisionWand	
  

DTMF	
   	
   	
   	
   	
   	
   ICR:	
  Vodafone	
  Cube	
  
DTMF	
  +	
  Bluetooth	
  
mobile	
  phone	
  

IDR:	
  Bluetone	
   ICR:	
  Bluetone	
   	
   	
   	
   ICR:	
  Bluetone	
  

MMS	
   	
   	
   IDR:	
  JoeBlogg	
   	
   	
   	
  
Mobile	
  
application	
  

DDR:	
  Jukola	
  
DCR:	
  C-­‐Blink	
  
IDR:	
  Mobilenin	
  

IDR:	
  Digital	
  
graffitti;	
  
Hello.Wall;	
  Cwall;	
  
Mobile	
  Service	
  
Toolkit	
  

DDR:	
  C-­‐Blink	
  	
  
IDR:	
  Digital	
  
graffitti;	
  Cwall	
  

DDR:	
  C-­‐Blink	
  
IDR:	
  Hello.Wall;	
  
Mobile	
  Service	
  
Toolkit	
  

IDR:	
  Hello.Wall;	
  
Mobile	
  Service	
  
Toolkit	
  

ICR:	
  Digital	
  graffitti;	
  
Remote	
  
Commander;	
  
Mobile	
  Service	
  
Toolkit	
  

Mobile	
  
application	
  +	
  	
  
Bluetooth	
  mobile	
  
phone	
  

	
   	
   IDR:	
  Publix	
   IDR:	
  
ContentCascade;	
  
Publix	
  

IDR:	
  Publix	
   ICR:	
  Publix	
  

Mobile	
  
application	
  +	
  
Camera	
  phone	
  

ICR:	
  Sweep	
   	
   	
   	
   	
   DCR:	
  Sweep	
  
ICR:	
  Jeon	
  et	
  al.	
  

Mobile	
  
application	
  +	
  
Camera	
  phone	
  +	
  
visual	
  codes	
  

DDR:	
  Point	
  &	
  
Shoot	
  
IDR:	
  Visual	
  code	
  
widgets;	
  Mobile	
  
Service	
  Toolkit	
  

IDR:	
  Visual	
  code	
  
widgets	
  

	
   DDR:	
  Digifieds	
   	
   ICR:	
  Jeon	
  et	
  al.	
  

Mobile	
  
application	
  +	
  NFC	
  
phone	
  +	
  NFC	
  
display	
  

DDC:	
  Touch	
  &	
  
Interact;	
  
Hello.Wall	
  	
  DDR:	
  
Hello.Wall	
  

	
   DDC:	
  Touch	
  &	
  
Interact	
  

DDC:	
  Touch	
  &	
  
Interact	
  

IDC:	
  Touch	
  &	
  
Interact	
  

DCC:	
  Touch	
  &	
  
Interact	
  

Personal	
  id	
  card	
   	
   	
   	
   	
   DDC:	
  
Blueboard;	
  UBI-­‐
hotspot	
  
IDR:	
  CoCollage;	
  
Proactive	
  
displays;	
  
GroupCast	
  

	
  

SMS	
   IDR:	
  Locamoda	
   IDR:	
  Webwall;	
  
Locamoda	
  

IDR:	
  
Locamoda	
  

	
   	
   	
  

 

Remote interaction can be accomplished through many interaction mechanisms. A popular 

approach is to provide a custom mobile application (usually for smartphones) for interacting 

with the display. Some mobile applications require specific mobile hardware to function 

properly, such as having a camera, Bluetooth, infrared, NFC; other mobile applications 

require the display to be able to generate visual codes. Most of these mobile applications 

provide an indirect interaction style with the public display where the user’s focus is on the 

mobile device interface. Some however, turn the mobile device into a tracked object as in C-



Submitted to the “Advances in Human-Computer Interaction” – 2013 22 

Blink and Point & Shoot, or into a viewport into the public display interface, as in the Visual 

Code Widgets, which provides a direct interaction style but also requires users to stand closer 

to the display and hold the device in front of it. These solutions cover the complete set of 

interaction tasks for public displays, allowing users to have a rich interaction experience with 

a public display, remotely.  

Another frequent alternative is to use the standard processing and communication features of 

mobile devices, without the need to install additional applications. Bluetooth detection, 

Bluetooth naming, SMS, Multimedia Message Service (MMS), and Dual-Tone Multi-

Frequency (DTMF), have been used to support different interactive features. Although these 

interaction mechanisms do not support all the interaction tasks, they may still be a viable 

solution for specific interactions. Bluetooth has the advantage of being widely supported by 

mobile devices and cost-free for the user. Bluetooth detection, i.e., scanning the area near the 

public display for Bluetooth enabled devices and reading their ids, can be used to estimate the 

number of people that are present and to determine which devices have been near the display 

and when, as in the BluScreen system. SMS and Bluetooth naming, i.e., interpreting the 

Bluetooth name of the device as commands to the display system, can be used for selection 

and data entry, even if in a simple way, as in the e-Campus, and Instant Places systems.  

MMS can be used to upload or download pictures and other media files. The downside of 

both SMS and MMS is that require users or display system to incur in costs (which can be 

considerable for MMS) when sending the messages. Finally, DTMF can be used to support 

selection and data entry tasks as in the Bluetone system, and dynamic manipulation as in the 

Vodafone Cube. DTMF also has costs for users, unless it is done over Bluetooth as in 

Bluetone. 

Device-­‐free	
  interaction	
  
Table 4. Mapping between interaction tasks and device-free interaction mechanisms. 

Interaction	
  
mechanism	
  

Interaction	
  task	
  

	
   Select	
   Entry	
   Upload	
  Download	
   Presence	
   Dyn.	
  Manip.	
  
Camera	
   IDR:	
  Aware	
  

Community	
  Portals	
  
ICR:	
  Beye	
  &	
  

Meier	
  
	
   	
   IDR:	
  Aware	
  Community	
  Portals;	
  

ReflectiveSigns;	
  Cwall;	
  Cwall;	
  
UBI-­‐hotspot;	
  SmartKiosk	
  

	
  

Camera	
  (Kinect)	
   DCR:	
  MAID	
   	
   	
   	
   IDR:	
  Code	
  Space	
   DCR:	
  Looking	
  Glass;	
  
Code	
  Space;	
  MAID	
  

Camera	
  (MoCap	
  
system)	
  

IDR:	
  Interactive	
  
Public	
  Ambient	
  

Displays;	
  Spalendar	
  

ICR:	
  
Spalendar;	
  
Spalendar	
  

	
   	
   IDR:	
  Interactive	
  Public	
  Ambient	
  
Displays;	
  Spalendar	
  

DCR:	
  Spalendar	
  
ICR:	
  Interactive	
  
Public	
  Ambient	
  

Displays;	
  Spalendar	
  
Electromagnetic	
  
sensor	
  (gestures)	
  

ICR:	
  Gesture	
  Frame	
   	
   	
   	
   	
   ICR:	
  Gesture	
  Frame	
  

Sound	
  (finger	
  click)	
   IDR:	
  Gesture	
  Frame	
   	
   	
   	
   	
   	
  

 



Submitted to the “Advances in Human-Computer Interaction” – 2013 23 

Device-free interaction with public displays can be accomplished with cameras (standard web 

cameras, or depth sensing cameras such as the Kinect) and computer vision techniques.  

Device-free interaction has the advantage of providing a walk-up-and-use interaction and not 

requiring users to directly touch the display, allowing it to be positioned in a way that allows 

multiple users to see and interact with it simultaneously. With devices such as the Kinect, it 

can be a viable solution in scenarios such as shop windows where it can also be used to detect 

and attract passers-by. Selection, data entry, presence, and dynamic manipulation tasks can be 

accomplished with these interaction mechanisms. Although device-free interaction by itself 

does not support download and upload tasks, it is possible to use additional devices for this 

purpose as in Bragdon et al. [48]. 

Desktop-­‐like	
  interaction	
  
Table 5. Mapping between interaction tasks and desktop-like mechanisms. 

Interaction	
  
mechanism	
  

Interaction	
  task	
  

	
   Select	
   Entry	
   Upload	
   Download	
   Presence	
   Dyn.	
  Manip.	
  
Desktop	
  application	
   ICR:	
  Notification	
  

Collage	
  
ICR:	
  Notification	
  

Collage	
  
	
   ICR:	
  Notification	
  

Collage	
  
	
   ICR:	
  Notification	
  

Collage	
  
Email	
   IDR:	
  WebGlance	
   IDR:	
  Locamoda;	
  

WebGlance	
  
IDR:	
  Plasma	
  Posters;	
  

Cwall	
  
IDR:	
  Digifieds	
   	
   	
  

Instant	
  messaging	
   IDR:	
  WebGlance	
   IDR:	
  WebGlance	
   	
   	
   	
   	
  
Mouse	
  &	
  Keyboard	
   ICR:	
  Dynamo;	
  

Opinionizer	
  
ICR:	
  Dynamo;	
  
Opinionizer	
  

	
   	
   	
   ICR:	
  Dynamo	
  

Mouse	
  &	
  Keyboard	
  +	
  
USB	
  stick	
  

	
   	
   ICR:	
  Dynamo	
   ICR:	
  Dynamo	
   	
   	
  

Web	
  application	
   ICR:	
  CoCollage	
   IDR:	
  CoCollage	
   IDR:	
  CoCollage;	
  
Webwall;	
  Digifieds	
  

IDR:	
  Digifieds	
   IDR:	
  
CoCollage	
  

	
  

 

It is also possible to support all the interaction tasks through desktop-like interfaces. One 

possibility is to provide a custom native or web application that enables users to interact with 

the public display. All the interaction tasks can easily be supported in this manner. For 

example, Notification Collage, CoCollage, and Digifieds, provide applications that mediate 

the interaction with the public display itself. It is also possible to provide a desktop-like 

interaction where the public display application itself behaves in a similar manner to a 

desktop application as in the Dynamo display where users simply pick up a mouse and 

keyboard to interact with the display. As in the case of mobile devices, it is also possible to 

use standard desktop applications such as email or instant messaging to interact with a public 

display system as in Plasma Posters, CWall, WebGlance, and other systems. Although it is 

not possible to support all the interaction tasks (for example, dynamic manipulation is not 

possible with email or instant messaging), it can still be a plausible solution in some cases, as 

it leverages on existing applications thus obviating the need to install additional software. 



Submitted to the “Advances in Human-Computer Interaction” – 2013 24 

4.2	
  Interaction	
  Controls	
  
Interaction controls provide the next element that is needed to enable applications to benefit 

from the interaction tasks that we have identified. The high level of abstraction that is 

associated with the interaction tasks needs to be instantiated into specific controls that can be 

integrated into applications to support interaction. A control can still maintain independence 

from the concrete interaction mechanism, but it refines the specific information being 

exchanged, defines additional optional and mandatory parameters, and can manage input in a 

specific way before triggering the interaction event. Just as we have several types of data 

entry controls for desktop applications, public display applications also need different 

controls for the same interaction task. These controls will form the main components that 

applications will use to provide their interaction features. 

As part of our analysis of the interaction tasks, we sought to identify a representative set of 

controls that could illustrate how the various tasks could be instantiated. To define the set of 

controls we have considered the need to include all the interaction tasks, the key variations 

within each task and also what seemed to be the most common forms of interaction in the 

research literature, as illustrated in Tables 2 through 5. Still, this is not meant to be an 

exhaustive listing (As Foley et al. [p. 20] put it “their number is limited only by one’s 

imagination”), but it provides a good overview and comparison of the possibilities for 

implementing the various tasks for public display interaction and it should provide a relevant 

starting point for designing interaction systems for public display applications. The relevance 

of these specific controls will ultimately depend on their real world usage, which may lead to 

the emergence of totally new controls, changes to existing ones and the disappearance of 

others.  

In this description, we focus on the interaction events and information processing associated 

with the controls. We leave out the graphical representation and feedback aspects usually 

associated with widgets in desktop systems, as these would be very dependent on the specific 

implementation of the interaction system. Table 3 provides a list of possible controls for the 

various tasks. 

Table 6. List of possible controls for supporting the various interaction tasks. 

Task	
   Control	
   Description	
  
Select 	
   Action	
   A generic action control, which causes the application to execute an action; 

similar to a desktop button. Triggers an event that identifies the action.	
  
 Option List	
   A generic list control, which presents several options and allows users to select 

one (or more). Triggers an event with the selected option when a user makes a 
selection. 

 Vote	
   Time based action control with a list of alternatives that waits for interactions 
during a pre-defined period of time. Triggers an event with the most voted 
alternative, when the time expires. 



Submitted to the “Advances in Human-Computer Interaction” – 2013 25 

Data entry	
   Unbounded text	
   Allows users to input any string of text . Triggers an event with the input string.	
  
 Bounded text	
   Supports various text patterns (such email addresses, phone numbers, dates, etc.).  

Triggers events with input string that conform to the specified pattern. 
 Numeric entry	
   Generic numeric entry control allows users to input numbers, possibly with lower 

and upper limits, integer or floating point. Triggers event with the input number.	
  
 Rate	
   Allows users to rate content. May support various formats such as different scales, 

discrete/continuous rating scale. Triggers event with the input rating. 
Upload 	
  
media	
  

Generic upload	
  
	
  

An upload control that accepts any media file, possibly with a parameter to limit 
the total file size. Triggers an event with the location of the uploaded file.	
  

 Video upload	
  
 

Accepts only video files. Allows applications to specify the maximum duration of 
the video, and supported video formats. Automatically converts between 
unsupported video formats to supported ones, for example, or simply does not 
allow unsupported formats. 

 Image upload	
  
 

Accepts only images. Allows applications to specify the maximum/minimum 
image size, and supported image formats. Automatically converts images that do 
not conform to the specified size and format restrictions. 

 Audio upload	
   Accepts audio files. Allows applications to specify the supported formats and 
maximum audio duration.	
  

Download 
media	
  

Download	
   Allows application to specify the media type and location of a content item that 
users can download. Triggers an event that identifies the downloaded file.  

 Share	
   Allows users to share a content item with other people. Triggers an event that 
identifies the shared file. 

Signal 
Presence	
  

Check-in	
  
	
  

Allows users to explicitly signal their presence near a display. Optionally, the 
interaction event can carry the location verification status, allowing the display 
system to give more weight to check-ins with verified locations, for example. 

 Presence	
   Signals the presence of users obtained implicitly from sensors. The information 
carried on the interaction event may vary, depending on the concrete types of 
sensors available, but we can generally categorize it according to the levels of 
information that are sensed: presence detection, characterization, and 
identification. 

Dynamic 
manipulation	
  

Cursor	
   Allows users to dynamically interact via (multiple) cursor positions. The 
interaction event is a continuous flow of cursor positions. 

Joystick	
   Provides joystick information (direction, gamepad button states), for gaming 
purposes. The interaction event is a continuous flow of direction and button states. 

 Keyboard	
   Provides keystroke events. The interaction event is a continuous flow of key 
presses. 

 
Skeleton	
   Provides positioning of body joints, and/or user’s silhouette information (full or 

partial body parts). The interaction event is a continuous flow of 
skeleton/silhouette data.	
  

 

Together, the mapping between the interaction mechanisms and interaction tasks, and the 

characterization of the controls that support those tasks, forms a design space for interaction 

abstractions for public displays that can be used in several ways. A designer of an interaction 

toolkit for public display applications can use the design space to understand the kinds of 

high-level controls that the toolkit should provide to application developers and which 

interaction mechanisms can support those controls. For someone deploying a public display 

system, the design space can be used help make informed choices regarding the interaction 

mechanisms that should be deployed in order to support a specific set of interaction tasks. It 

can also be used to determine the interaction characteristics those interaction mechanisms 

impose. Application developers can use the design space to understand which controls can be 

supported by public display systems and decide how the interaction features of their 

applications can be implemented using those controls. Additionally, the various concrete 



Submitted to the “Advances in Human-Computer Interaction” – 2013 26 

examples of display systems listed in the design space can also be used as reference, or design 

patterns, for the implementation of the various controls in the interaction toolkit.  

4.3	
  PuReWidgets	
  toolkit	
  
As part of our work on interaction abstractions for public displays, we have also created the 

PuReWidgets (Public, Remote Widgets) programming toolkit [49] for web-based interactive 

public display applications. This toolkit instantiates most of the interaction controls that 

constitute our design space, enabling us to demonstrate the overall applicability of the design 

space in the context of the specific needs of multiple interactive applications for public 

displays.  

We targeted web-based public display applications and created a programming library that 

developers of public display applications can incorporate into their applications to take 

advantage of widget-based interaction abstractions. In our current implementation, the 

programming library is available for the Google Web Toolkit [50] development framework. 

Our widgets were derived from the controls presented earlier and they abstract input from a 

variety of interaction mechanisms, provide graphical representations, and provide a standard 

object-oriented programming interface. The following widgets are currently provided: 

Button. A button widget represents an action control (select task) and it allows users to trigger 

actions in the public display application. An action button is graphically represented on the 

public display as a standard web button with a label (Figure 1a).  

List box. The list box widget represents an option list control (select task) and allows users to 

select among a set of related items. List boxes are graphically represented as a vertical list of 

text items with a title at the top (Figure 1e).  

Text box. A text box widget represents an unbounded text control (data entry task) and it 

allow users to input free text. Text boxes are graphically represented as standard web text 

boxes with a label inside (Figure 1f).  

Upload. An upload widget represents a generic upload control (upload media task) and it 

allows users to submit media files to the public display application. An upload widget is 

graphically represented as box with a down arrow and a label inside (Figure 1c). 

Download. A download widget represents a generic download control (download media task) 

and it allows the application to provide files that users can download to their personal devices. 

A download widget is graphically represented as box with an up arrow and a label inside 

(Figure 1b).  



Submitted to the “Advances in Human-Computer Interaction” – 2013 27 

Check-in. A Check-in widget represents a check-in control (signal presence task) and it 

allows users to signal the application that they are present. It is graphically represented as a 

location marker with a label on the side (Figure 1d).   

 

Figure 1. Default graphical representations for widgets. 

These widgets can be interacted with using various mechanisms, but programmers are 

shielded from the details of the particular mechanism used to interact: all widgets trigger 

high-level events that are independent of the concrete mechanism used by a particular user. 

Our toolkit supports the following types of interaction mechanisms: Text-based interaction 

includes various different input mechanisms such as SMS, instant messaging, email, 

Bluetooth naming, and other mechanisms where the communication is made mainly via text 

messages. The toolkit generates unique textual references that users input in the text message 

to allow the system to identify the target application and widget. The toolkit also supports 

smart-devices by automatically generating a graphical user interface for mobile devices. The 

toolkit is also capable of generating QR codes for widgets, allowing interaction with specific 

application features simply by scanning a visual code. Finally, widgets are also touch-

enabled, allowing users to interact directly with the application via touch-displays.  

We have already created and deployed various interactive public display applications created 

with this toolkit and we have evaluated it with independent programmers and application 

users in a real-world setting. Figure 2 shows an example of the Public YouTube Player 

application created with our toolkit. This application searches for, and plays YouTube videos 

providing several interaction features to users such as “liking” videos that have been recently 

played; getting the URL of a recently played video to play it in their own devices; selecting a 

video to be played next from the list of search results; and reporting inappropriate videos. 



Submitted to the “Advances in Human-Computer Interaction” – 2013 28 

Any user can interact with any of these features at any time, using any of the interaction 

mechanisms mentioned before. 

 

 

Figure 2. Widgets in the context of a public display application. 

A full evaluation of this toolkit can be found in [51]. Our experience with the toolkit 

reinforces the suitability of the design space of interaction controls we have proposed in this 

paper. We created three applications that had different requirements for interaction features: a 

video player, a word game, and a polls application. These applications were created without 

any specific interaction mechanism in mind but they were deployed and interacted with using 

different mechanisms (SMS, email, QR codes, smartphone app). Users successfully interacted 

with and understood the different types of controls and feedback that were provided by each 

application. In addition, independent programmers used our toolkit to create interactive 

content, and reported no major difficulty understanding the concepts behind the provided 

high-level interaction abstractions that the toolkit provides. 

5.	
  Conclusion	
  

We have presented a study about interaction tasks and controls for public display 

applications, grounded on the existing descriptions of concrete interactive display systems 

available in scholarly publications. The key contributions of this work are as follows: We 

have characterized six high-level interaction tasks focused on the specificities of public 

display interaction, more specifically select, data entry, upload, download, signal presence, 



Submitted to the “Advances in Human-Computer Interaction” – 2013 29 

and dynamic manipulation. These tasks represent a classification of the major types of 

interaction between users and public displays; we have also identified various types of 

concrete interaction controls that may enable those interaction tasks to be integrated into 

applications for public displays. These controls constitute a first step towards a list of controls 

that may compose future interaction toolkits for public displays; we have also organized the 

various interaction mechanism for public displays in a design space adapted from Ballagas et 

al. [6] that sketches a mapping between the high-level abstractions provided by the interaction 

tasks that have been identified and the concrete interaction mechanisms that can be 

implemented by those displays.  

We realize that although interaction tasks define different types of information exchanges 

between user and system, there are borderline cases where different interaction tasks could be 

used to implement the same interaction feature. For example, an important difference between 

data entry and select tasks is that in data entry tasks it is generally impossible for the 

application to enumerate all possible values. In cases where it is possible to enumerate all 

possible values, the two types of tasks could be used interchangeably.  However, using data 

entry to mimic a select task would require applications to perform extra validation and 

processing of the received data. This is also valid for other cases, such as uploading, 

downloading, and signal presence tasks, which could be mimicked by applications using other 

tasks, at the expense of extra processing and validation. 

We also realize that, through abstraction, we lose some of the detail that may be important for 

certain types of application. For example, in some games, a very-fine grained control of 

gesturing can be a fundamental part of the playing experience and may not be properly 

addressed by high-level abstractions. In these cases, the interaction experience is tightly 

coupled with the interaction mechanism, and abstracting the interaction into tasks loses the 

detail about the bodily movements. For these cases, a different approach would obviously be 

needed and by no means do we claim with our work to cover the whole interaction design 

space. Our focus is the broad range of simple interaction techniques that are highly common, 

essentially the same across different displays systems, and yet also need to depend on totally 

ad-hoc approaches to work. It is in that space that even small steps towards increased 

abstraction can make a huge difference towards systems that are more usable and easier to 

develop. 

Finally, we understand that the abstractions embedded in the desktop computing model exist 

at multiple levels and are the result of many years of evolution in interface design. In this 

work, we do not aim to reach anywhere near the equivalent of that for public displays, but 

simply to provide a first step in that direction. With the interaction tasks, the mapping 



Submitted to the “Advances in Human-Computer Interaction” – 2013 30 

between tasks and mechanisms, and the interaction controls, we have a tool to structure an 

interaction system for public display applications. This is a valuable tool for allowing 

application developers to make more informed decisions on the types of controls that they 

would need, considering for example the applications goal but also the envisioned interaction 

modalities. We have made a first demonstration of how this can be achieved through the 

instantiation of the interactive controls of our design space in the PW toolkit. Hopefully, this 

design space will be the basis for various others infrastructures, toolkits, and libraries, with 

different aims and offering different interaction models, contributing to open up the 

development of interactive public display applications. 

Acknowledgements	
  

The research has received funding from the European Union Seventh Framework Programme 

(FP7/2007-2013) under grant agreement no. 244011 (PD-NET). Jorge Cardoso has been 

supported by “Fundação para a Ciência e Tecnologia” (FCT) and “Programa Operacional 

Ciência e Inovação 2010”, co-funded by the Portuguese Government and European Union by 

FEDER Program and by FCT training grant SFRH/BD/47354/2008. 

References	
  

[1] A. Bellucci, A. Malizia, P. Diaz, and I. Aedo, “Human-Display Interaction Technology: Emerging 

Remote Interfaces for Pervasive Display Environments,” IEEE Pervasive Comput., vol. 9, no. 2, pp. 72–

76, Apr. 2010. 

[2] N. Davies, M. Langheinrich, R. Jose, and A. Schmidt, “Open Display Networks: A Communications 

Medium for the 21st Century,” Computer (Long. Beach. Calif)., vol. 45, no. 5, pp. 58–64, May 2012. 

[3] R. R. Swick and M. S. Ackerman, “The X Toolkit: More Bricks for Building User Interfaces, or Widgets 

for Hire,” in Proceedings of the Usenix Winter 1988 Conference, 1988, pp. 221–228. 

[4] J. D. Mackinlay, S. K. Card, and G. G. Robertson, “A Semantic Analysis of the Design Space of Input 

Devices,” Human-Computer Interact., vol. 5, no. 2&3, pp. 145–190, 1990. 

[5] J. D. Foley, P. Chan, and V. L. Wallace, “The human factors of computer graphics interaction 

techniques,” 1980. 

[6] R. Ballagas, M. Rohs, J. G. Sheridan, and J. Borchers, “The Design Space of Ubiquitous Mobile Input,” 

in Handbook of Research on User Interface Design and Evaluation for Mobile Technology, vol. 1, J. 

Lumsden, Ed. IGI Global, 2008, pp. 386–407. 



Submitted to the “Advances in Human-Computer Interaction” – 2013 31 

[7] G. F. P. Deecker and J. P. Penny, “Standard input forms for interactive computer graphics,” ACM 

SIGGRAPH Comput. Graph., vol. 11, no. 1, pp. 32–40, Apr. 1977. 

[8] B. A. Myers, “A new model for handling input,” ACM Trans. Inf. Syst., vol. 8, no. 3, pp. 289–320, 1990. 

[9] L. Bass and J. Coutaz, Developing Software for the User Interface. Addison Wesley, 1991. 

[10] D. A. Norman, The Design of Everyday Things. Basic Books, 2002. 

[11] F. Paterno’, C. Santoro, and L. D. Spano, “MARIA: A universal, declarative, multiple abstraction-level 

language for service-oriented applications in ubiquitous environments,” ACM Trans. Comput. Interact., 

vol. 16, no. 4, pp. 1–30, Nov. 2009. 

[12] L. Terrenghi, A. Quigley, and A. J. Dix, “A taxonomy for and analysis of multi-person-display 

ecosystems,” Pers. Ubiquitous Comput., vol. 13, no. 8, pp. 583–598, Jun. 2009. 

[13] A. J. Dix and C. Sas, “Mobile Personal Devices meet Situated Public Displays  : Synergies and 

Opportunities,” Int. J. Ubiquitous Comput., vol. 1, no. 1, pp. 11–28, 2010. 

[14] R. Ballagas, M. Rohs, and J. G. Sheridan, “Sweep and Point & Shoot: Phonecam-Based Interactions for 

Large Public Displays,” in CHI ’05: CHI  '05 extended abstracts on Human factors in computing systems, 

2005, pp. 1200–1203. 

[15] R. José, N. Otero, S. Izadi, and R. Harper, “Instant Places: Using Bluetooth for Situated Interaction in 

Public Displays,” IEEE Pervasive Comput., vol. 7, no. 4, pp. 52–57, Oct. 2008. 

[16] N. Davies, A. Friday, P. Newman, S. Rutlidge, and O. Storz, “Using bluetooth device names to support 

interaction in smart environments,” in Proceedings of the 7th international conference on Mobile systems, 

applications, and services - Mobisys ’09, 2009, pp. 151–164. 

[17] K. Cheverst, A. J. Dix, D. Fitton, C. Kray, M. Rouncefield, C. Sas, G. Saslis-Lagoudakis, and J. G. 

Sheridan, “Exploring bluetooth based mobile phone interaction with the hermes photo display,” in 

Proceedings of the 7th international conference on Human computer interaction with mobile devices & 

services - MobileHCI ’05, 2005, p. 47. 

[18] D. Dearman and K. N. Truong, “BlueTone: a framework for interacting with public displays using dual-

tone multi-frequency through bluetooth,” in Proceedings of the 11th international conference on 

Ubiquitous computing - Ubicomp ’09, 2009, pp. 97–100. 

[19] LocaModa, “LocaModa App Store,” 2010. [Online]. Available: http://locamoda.com/apps/. 

[20] T. Paek, M. Agrawala, S. Basu, S. Drucker, T. Kristjansson, R. Logan, K. Toyama, and A. Wilson, 

“Toward universal mobile interaction for shared displays,” in CSCW ’04: Proceedings of the 2004 ACM 

conference on Computer supported cooperative work, 2004, pp. 266–269. 



Submitted to the “Advances in Human-Computer Interaction” – 2013 32 

[21] D. W. McDonald, J. F. McCarthy, S. Soroczak, D. H. Nguyen, and A. M. Rashid, “Proactive displays: 

Supporting awareness in fluid social environments,” ACM Trans. Comput. Interact., vol. 14, no. 4, pp. 1–

31, Jan. 2008. 

[22] D. Vogel and R. Balakrishnan, “Interactive Public Ambient Displays: Transitioning from Implicit to 

Explicit, Public to Personal, Interaction with Multiple Users,” in Proceedings of the 17th annual ACM 

symposium on User interface software and technology - UIST ’04, 2004, pp. 137–146. 

[23] N. Sawhney, S. Wheeler, and C. Schmandt, “Aware Community Portals: Shared Information Appliances 

for Transitional Spaces,” Pers. Ubiquitous Comput., vol. 5, no. 1, pp. 66–70, Feb. 2001. 

[24] T. Ojala, V. Kostakos, H. Kukka, T. Heikkinen, T. Linden, M. Jurmu, S. Hosio, F. Kruger, and D. Zanni, 

“Multipurpose Interactive Public Displays in the Wild: Three Years Later,” Computer (Long. Beach. 

Calif)., vol. 45, no. 5, pp. 42–49, May 2012. 

[25] B. Glaser and A. Strauss, The Discovery of Grounded Theory. AldineTransaction, 1967, p. 271. 

[26] J. Cardoso and R. José, “Interaction tasks and controls for public display applications - list of analysed 

publications,” Mar. 2014. 

[27] A. Cooper, R. Reimann, and D. Cronin, About face 3: the essentials of interaction design. New York, NY, 

USA: John Wiley & Sons, Inc., 2007. 

[28] E. Toye, R. Sharp, A. Madhavapeddy, and D. Scott, “Using smart phones to access site-specific services,” 

IEEE Pervasive Comput., vol. 4, no. 2, pp. 60–66, 2005. 

[29] E. F. Churchill, L. Nelson, L. Denoue, J. Helfman, and P. Murphy, “Sharing multimedia content with 

interactive public displays,” in Proceedings of the 2004 conference on Designing interactive systems 

processes, practices, methods, and techniques - DIS ’04, 2004, pp. 7–16. 

[30] J. F. McCarthy, S. D. Farnham, Y. Patel, S. Ahuja, D. Norman, W. R. Hazlewood, and J. Lind, 

“Supporting community in third places with situated social software,” in Proceedings of the fourth 

international conference on Communities and technologies - C&T ’09, 2009, pp. 225–234. 

[31] F. Alt, T. Kubitza, D. Bial, F. Zaidan, M. Ortel, B. Zurmaar, T. Lewen, A. S. Shirazi, and A. Schmidt, 

“Digifieds: Insights into Deploying Digital Public Notice Areas in the Wild,” in Proceedings of the 10th 

International Conference on Mobile and Ubiquitous Multimedia - MUM ’11, 2011, pp. 165–174. 

[32] M. Rohs, “Visual Code Widgets for Marker-Based Interaction,” in 25th IEEE International Conference 

on Distributed Computing Systems Workshops, 2005, pp. 506–513. 

[33] A. Grasso, M. Muehlenbrock, F. Roulland, and D. Snowdon, “Supporting communities of practice with 

large screen displays,” in Public and Situated Displays - Social and Interactional Aspects of Shared 

Display Technologies, K. O’Hara, E. Perry, E. Churchill, and D. M. Russel, Eds. Kluwer, 2003, pp. 261–

282. 



Submitted to the “Advances in Human-Computer Interaction” – 2013 33 

[34] K. Martin, A. Penn, and L. Gavin, “Engaging with a situated display via picture messaging,” in CHI ’06 

extended abstracts on Human factors in computing systems - CHI  '06, 2006, p. 1079. 

[35] S. Carter, E. F. Churchill, L. Denoue, J. Helfman, and L. Nelson, “Digital graffiti: public annotation of 

multimedia content,” in CHI ’04 extended abstracts on Human factors in computing systems, 2004, pp. 

1207–1210. 

[36] H. Brignull, S. Izadi, G. Fitzpatrick, Y. Rogers, and T. Rodden, “The introduction of a shared interactive 

surface into a communal space,” in Proceedings of the 2004 ACM conference on Computer supported 

cooperative work - CSCW ’04, 2004, p. 49. 

[37] A. Ferscha, G. Kathan, and S. Vogl, “WebWall - An Architecture for Public Display WWW Services,” in 

The Eleventh International World Wide Web Conference, 2002. 

[38] H. Raj, R. Gossweiler, and D. Milojicic, “Contentcascade incremental content exchange between public 

displays and personal devices,” in Mobile and Ubiquitous Systems, Annual International Conference on, 

2004, vol. 0, pp. 374–381. 

[39] R. Hardy and E. Rukzio, “Touch & interact: touch-based interaction of mobile phones with displays.,” in 

Mobile HCI, 2008, pp. 245–254. 

[40] D. M. Russell and R. Gossweiler, “On the Design of Personal & Communal Large Information Scale 

Appliances,” in UbiComp ’01: Proceedings of the 3rd international conference on Ubiquitous 

Computing, 2001, pp. 354–361. 

[41] R. José, H. Pinto, B. Silva, A. Melro, and H. Rodrigues, “Beyond interaction: Tools and practices for 

situated publication in display networks,” in Proceedings of the 2012 International Symposium on 

Pervasive Displays - PerDis ’12, 2012, pp. 1–6. 

[42] B. Shneiderman, “Direct Manipulation: A Step Beyond Programming Languages,” Computer (Long. 

Beach. Calif)., vol. 16, no. 8, pp. 57–69, Aug. 1983. 

[43] P. Peltonen, E. Kurvinen, A. Salovaara, G. Jacucci, T. Ilmonen, J. Evans, A. Oulasvirta, and P. Saarikko, 

“It’s Mine, Don't Touch!: interactions at a large multi-touch display in a city centre,” in CHI 08 

Proceeding of the twentysixth annual SIGCHI conference on Human factors in computing systems, 2008, 

vol. 16, pp. 1285–1294. 

[44] Ydreams, “Vodafone Cube,” 2003. [Online]. Available: 

http://www.ydreams.com/#/en/projects/publicurbanexperiences/giantinteractivebillboardsvodafone/. 

[45] B. A. Myers, H. Stiel, and R. Gargiulo, “Collaboration using multiple PDAs connected to a PC,” in 

CSCW ’98: Proceedings of the 1998 ACM conference on Computer supported cooperative work, 1998, 

pp. 285–294. 



Submitted to the “Advances in Human-Computer Interaction” – 2013 34 

[46] J. Müller, R. Walter, G. Bailly, M. Nischt, and F. Alt, “Looking glass: a field study on noticing 

interactivity of a shop window,” in Proceedings of the 2012 ACM annual conference on Human Factors 

in Computing Systems - CHI ’12, 2012, p. 297. 

[47] T. Ojala, H. Kukka, T. Lindén, T. Heikkinen, M. Jurmu, S. Hosio, and F. Kruger, “UBI-Hotspot 1.0: 

Large-Scale Long-Term Deployment of Interactive Public Displays in a City Center,” in 2010 Fifth 

International Conference on Internet and Web Applications and Services, 2010, pp. 285–294. 

[48] A. Bragdon, R. DeLine, K. Hinckley, and M. R. Morris, “Code space: touch + air gesture hybrid 

interactions for supporting developer meetings,” in Proceedings of the ACM International Conference on 

Interactive Tabletops and Surfaces - ITS ’11, 2011, p. 212. 

[49] J. C. S. Cardoso and R. José, “PuReWidgets: a programming toolkit for interactive public display 

applications,” in Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive computing 

systems - EICS ’12, 2012, p. 51. 

[50] Google, “Google Web Toolkit,” 2011. [Online]. Available: http://code.google.com/webtoolkit/. 

[51] J. C. S. Cardoso and R. José, “Evaluation of a programming toolkit for interactive public display 

applications,” in Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia 

- MUM ’13, 2013, pp. 1–10.  

 


