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Abstract Injection stretch blow molding is a very important thermoplastic pro-
cessing technique producing hollow containers with mechanical performance. One 
of the main challenges in optimizing this process consists in finding the best thick-
ness profile for each part in order to achieve the desired mechanical properties with 
less material use. In a previous study, a new methodology based on a neuroevolu-
tionary multiobjective optimization approach was proposed to enhance the entire 
process, which considers that the process is optimized by phases, starting by the 
end. In that initial study only the final phase of the process was addressed, where 
the best thickness profile for an industrial bottle was found in order to satisfy the 
required mechanical properties with less material use. In the present study, the focus 
is the second stage of the optimization methodology, concerning the blowing phase 
of injection blow molding process. The optimal results obtained in the first phase 
are used as the optimal thickness profile for the bottle with the goal to find the best 
preform thickness profile which produces the desired bottle. The same procedures 
are used and the results shown that the methodology was successfully applied to its 
second phase. 

1 Introduction 

Injection stretch blow molding is one of the most important processes in the industry 
to produce hollow plastic containers, such as bottles, jars and several kind of differ-
ent hollow plastic parts. Basically, this thermoplastic processing technique com-
prises the following steps: 1) injection of molten raw material into a cavity to pro-
duce the desired shape of the preform; ii) heating the preform, typically by radiation, 
so that the material acquires deformation capability; iii) stretch and blowing the 
heated preform in order to ensure that the preform reproduces the contours of the 
mold. The stretch, made mechanically by the action of a plug, and the blowing, 
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using air under pressure, can occur sequentially (stretch followed by blowing) or at 
the same time; iv) finally, the part is cooled and removed from the mold. 

Since the amount of material used in blow molded products represents a 
significant share of the total manufacture costs, the minimization of material 
utilization is required [1]. However, there are several important mechanical 
properties which are also dependent on this feature. Numerical approaches can be 
applied to avoid empirical tests to find the process input variables which gives the 
best tradeoff between the material utilization and the desired mechanical properties. 
Several studies in the literature present different approaches concerning injection 
stretch blow molding design process and optimization [1, 2, 3, 4, 5, 6]. One of the 
major challenges in optimizing this process is to define the complete thickness 
profile and shape of the final part and of the preform in order to achieve desired 
mechanical properties with less material utilization. 

In [1] and [2] a global optimization methodology for injection stretch blow 
molding process is presented and detailed. This methodology uses a 
neuroevolutionary multiobjective approach and is composed by steps (or phases) 
that should be performed to optimize the whole process in order to find the best 
thickness profile of the final part and of the preform. In both studies only the first 
phase of the optimization, which comprises the final stage of manufacturing 
process, is addressed. This study focuses on the second phase of the optimization 
methodology, which comprises the blowing of a stretched preform in the 
manufacturing process. In the previous study, optimal thickness distributions of the 
final part were obtained. The main goal of this study is find the best thickness 
distributions of the preform that will leads to final parts (after the blowing phase) 
with the optimal thickness profiles found on the previous study.  

2 Global optimization methodology 

The proposed optimization methodology for the injection stretch blow molding 
summarizes the whole process in five main phases: Injection, Stretching, Blowing, 
Mold opening and Blow-molded part. The injection phase comprises the melting of 
raw material and its injection into a cavity to form the preform. The stretching 
phase, that is not always present in the manufacturing process, comprises the 
stretching of the preform in order to maximize the amount of material at the bottom 
of the final part. The blowing phase comprises the injection of air under pressure to 
expand the preform towards the mold, acquiring its shape. Mold opening comprises 
the phase where the mold is opening and the final part is pulled out. Finally, Blow-
molded part comprises the last production phase, where the final part is cooled and 
becomes ready for packaging. 

After summarize the five main phases in the blow molding process, the 
optimization methodology establishes four phases (or steps) for the optimization 
process (O1 to O4). However, the optimization starts by the last production phase, 
i.e., when the final part is done. The first optimization step (O1) comprises in 
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optimize the thickness profile of the final part, i.e., find the best thickness profile of 
the final part which provides the desired mechanical properties with less material 
utilization. Step O2 comprises in optimizing the preform thickness profile after 
stretching, i.e., find the thickness profile of the preform which will produce (after 
blowing) the final part with the optimal profile found in step O1. This study 
concerns on this phase. The step O3 comprises in the optimization of the preform 
thickness profile before stretch, i.e., finding the thickness profile of the preform 
(before stretch) that will produce (after stretch) the preform with the optimal profile 
found in step O2. Finally, the step O4 also optimizes the preform thickness profile, 
but injection conditions and cavity geometry are used as decision variables. 

2.1 Neuroevolutionary multiobjective optimization 

One of the insights of the proposed methodology is treat a container’s thickness 
distribution as a function of its geometry. In this context, Artificial Neural Networks 
(ANNs) are built to compute the wall thickness at any location of the part (based on 
the corresponding 3D coordinate). To allow many evaluations throughout the opti-
mization process, simulations are carried out through finite element models (FEMs). 
Thus, by using ANNs the search space can be drastically reduced once each FEM 
model is composed by a 3D mesh with thousands or even millions of points. In the 
evolutionary algorithm, each solution is represented by an ANN which gives a 
thickness distribution profile for a given FEM (3D mesh). The attributes of the ANN 
are evolved to find the networks that give optimal distributions. Fig. 1 illustrates 
the ANN representation. 

 

 
Fig. 1. A FEM model (bottle) mesh. Each coordinate of the mesh is an input to the ANN to calcu-
late the thickness in the corresponding point. 

The multiobjective optimization evolutionary algorithm of the methodology is 
based on the SMS-EMOA [7]. Fig. 2 illustrates the basic workflow for the 
optimization. 
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Fig. 2. Neuroevolutionary optimization methodology workflow 

Each population is composed by a set of individuals (solutions), each one 
representing an ANN. The weights and biases of the ANN are encoded in a real 
number chromosome. Thus, the size of the chromosome depends of the ANN 
topology instead of the size of FEM model mesh. The initial population is generated 
randomly. 

To evaluate a solution, the coordinates of each point of a given mesh are feed 
into the ANN to define the thickness in each one of the points, forming the thickness 
profile that is considered as the input by the simulation process. In the evolutionary 
algorithm, selection is performed by a uniform distribution and variation is 
performed by the SBX-Crossover operator, which is designed to work with real 
number representations. Replacement strategy is based on Pareto front and 
hypervolume [8] measure. As a result of the optimization process, there will be a set 
of optimal solutions where each of them represents an ANN that gives the wall 
thickness distribution for the model mesh. All solutions will provide different 
tradeoffs between the considered objectives, such as mass versus mechanical 
properties, for instance. 
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3 Experimental design 

In the first phase of the optimization methodology an industrial bottle model was 
considered in the experiments. The bottle is 45mm in diameter and 182mm in 
height, composed by plastic material with mass density of 1.15g/cm3 and Poison´s 
ratio of 0.4. The applied air (blowing) pressure and Young´s module ratio is 0.0027. 
Fig. 3 shows the 3D mesh model with dimensions indicated. The vertical lines of 
the mesh are highlighted to illustrate the points where the wall thickness is calcu-
lated. 

 

Fig. 3. Bottle model with vertical lines of the mesh highlighted 

In the first phase three objective functions were considered to be minimized: 푓 , 
the total mass of the bottle; 푓 , the maximum strain suffered by the bottle and 푓 , 
which is the maximum difference between the thickness profile of all vertical lines, 
measured by RMSE index (root mean square error). This objective measures how 
uniform is the thickness distribution, since the same thickness profile for all vertical 
lines, i.e., along the bottle, is desirable. 

Fig. 4 and Fig. 5 show the Pareto front of the final population for the first phase 
of the optimization. In Fig. 4 it can be seen that all solutions have low value for 
RMSE error (all below 0.01), which means that the algorithm was able to find 
uniform distributions. In Fig. 5 only the objectives 푓  and 푓  are plotted. All 
solutions are well distributed along the Pareto curve, providing different tradeoffs 
between the total mass (푓 ) and the maximum strain (푓 ). Five optimal solutions (S1 
to S5) are highlighted in the curve. Solutions S2 and S3, which are located in the 
knee area, are considered to give the best (balanced) relationship between 푓  and 푓  
objectives. Thus, they were considered as the optimal designs to be achieved by the 
second optimization phase on this study. 
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Fig. 4. Pareto front for final population for the first phase of the optimization process. 

 

Fig. 5. Pareto front of the first phase with only objective functions 푓 and 푓  plotted. 

Fig. 6 shows the thickness distribution for the optimal solutions S2 and S3. The 
x-axis comprises the points located from the bottleneck towards the bottom of the 
bottle. Each line (distribution) represents the mean thickness values between all 
vertical lines of the mesh (Fig. 3). Both distributions presented the same behavior. 
Concerning solution S2, all the points presented mean thickness values of 0.30mm 
which decreases faster up to 0.03mm when reaches the bottom of the bottle. 
Solution S3 had the same behavior, but the mean thickness value was 0.58mm 
decreasing up to 0.06mm at the bottom. From a physical point of view, these results 
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make sense. In S2, the bottle wall is thinner, using less material, but it suffers more 
strain than solution S3, where the wall is thicker, using more material, but it suffers 
lower maximum strain. Tab. 1 lists 푓  (total mass) and 푓  (maximum strain) values 
for both solutions. 

 

Fig. 6. Thickness distribution of optimal solutions S2 and S3 

Table 1. Total mass and maximum strain values for solutions S2 and S3 

Solution Total Mass (g) Maximum Strain (x10-3) 

S2 9.8 9.4 

S3 15.2 4.8 

 
Once the optimal thickness distributions for the final part (bottle) were obtained 

in the first phase of the optimization, the second phase comprises in find the best 
thickness profile of the preform, before the blowing phase, that will produce the 
final part (with optimal thickness profile) after blowing procedure. To compare the 
thickness distribution of the final part (after blowing) with an optimal thickness 
distribution, two objectives were defined for the second phase: 
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Where 푦 ,푦 , … , 푦  comprise the mean thickness value for each point along all 
vertical lines in the final part (after blowing) and 푦 ,푦 , … , 푦  comprise the mean 
thickness value for the corresponding points in the optimal (or target) distribution, 
such as in S2 or S3. Thus, 푓 is the mean error between the distributions and 푓 is the 
maximum error. 

A preform 3D mesh model was designed to produce the same bottle model used 
in the first phase throughout a blow molding simulation using ANSYS Workbench 
software. An initial population composed by a set of ANNs that provide preform 
thickness profiles were randomly generated and evolved through the optimization 
algorithm. The same parameters (number of individuals per population, number of 
generations and network topology) from the first phase were used. 

Two experiments (Exp1 and Exp2) were carried out: in Exp1 the optimal 
solution S2 (from first phase) was considered as the optimal (target) thickness 
profile to be reached in the final part (after the blowing procedure). In Exp2, the 
optimal solution S3 was considered as the optimal profile. 

4 Results and discussion 

Figure 7 shows the evolution of the hypervolume on each generation for Exp1 and 
Exp2 (normalized values). It can be seen that both experiments presented higher 
hypervolume on its final populations, evidencing the evolution of each population 
throughout the optimization process. 

 

Fig. 7. Evolution of the hypervolume on each generation for Exp1 and Exp2 

Fig. 8 and Fig. 9 emphases the optimization process by showing the initial and 
final population for Exp1 and Exp2, respectively. 
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Fig. 10 and Fig. 11 show the Pareto front (all non-dominated solutions) of final 
population for Exp1 and Exp2. An optimal solution was manually selected in each 
curve taking into account the most balanced relationship between the two 
objectives. In Exp1, solutions are spread across the curve while in Exp 2 solutions 
are concentrate between 0.055 and 0.06 on the x-axis. Also, a lower number of non-
dominated solutions were found when comparing with Exp1. 

 

Fig. 8. Initial and final population for Exp 1 

 

Fig. 9. Initial and final population for Exp 2 
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Fig. 10. Pareto front of Exp 1. Optimal solution S1 is highlighted 

 

Fig. 11. Pareto front of Exp 2. Optimal solution S1 is highlighted 

Fig. 12 and Fig. 13 show the thickness distribution for the optimal solutions 
selected from Exp 1 and Exp 2. The corresponding target distribution, i.e., the 
optimal distribution found in the first phase, is also presented on each graph. Tab. 
2 lists the numerical values for objective functions of both solutions. 
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Fig. 12. Thickness distribution of solution S1 from  Exp1 (target distribution is S2 from the first 
phase) 

Table 2. Objective function values for optimal solutions selected from Exp1 and Exp2 

Solution f1 f2 

S1 – Exp1 0.0575 0.0596 

S1 – Exp2 0.2386 0.2026 
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Fig. 13. Thickness distribution of solution S1 from Exp2 (target distribution is S3 from the first 
phase) 

Both solutions presented mean error (푓 ) of order 0.05. Concerning the precision 
generally involved in the manufacturing process, this error is irrelevant, which 
means that the thickness profiles found for the preform will produce the final bottle 
with the desired thickness distribution after the blowing process. 

Concerning the maximum error (푓 ), the values obtained were 0.2386 and 
0.2026 for Exp1 and Exp2, respectively. Although it represents around 20% of 
error, it is important to point out that 푓  is a single point with the highest divergence 
between the resulted and the target thickness. For a mean thickness distribution of 
0.3mm, 20% represents 0.06mm, which is also very small concerning the 
manufacturing process. 

5 Conclusions 

Injection stretch blow molding is a process widely used by the industry to produce 
hollow plastic parts. The optimization of this process can heavily decrease produc-
tion costs by finding thickness profiles which gives best tradeoffs between different 
objectives, such as material utilization and mechanical properties. Previous studies 
had proposed a neuroevolutionary multiobjective optimization methodology for this 
process. The methodology is divided in four phases (or steps), but only the first step 
was previously covered. This study addressed the second phase of the methodology, 
which corresponds to the optimization of the blowing phase in the manufacturing 
process. 

Using the optimal thickness profile of the final part found in the first phase of 
the optimization process, the second phase performed the optimization with the goal 
to find the preform thickness profile that produces the final part with the optimal 
profile after the blowing process. Two optimal profiles from the first phase were 
considered and the same procedures for optimization were followed, defining the 
appropriate objective functions and FEM models for the current phase. The results 
comprise a set of solutions that provide different thickness distributions for the 
preform (through ANNs) that will produce the final part with the desired optimal 
profile with a mean error of 5%, which is irrelevant considering the precision of 
manufacturing process. Two optimal preform thickness profiles were selected from 
the Pareto front and can be used in the next phase of the optimization process. 

Future works should address the other steps of the optimization methodology. 
The next phase of the optimization should consider the optimal preform profiles 
found on this study. 
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