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Incorporation of Region of Interest in a
Decomposition-Based Multi-Objective
Evolutionary Algorithm

Ivan Reinaldo Meneghini and Frederico Gadelha Guimarães and António
Gaspar-Cunha and Miri Weiss Cohen

Abstract Preference-based Multi-Objective Evolutionary Algorithm (MOEA) re-
strict the search to a given region of the Pareto front preferred by the Decision
Maker (DM), called the Region of Interest (ROI). In this paper, a new preference-
guided MOEA is proposed. In this method, we define the ROI as a preference cone
in the objective space. The preferential direction and the aperture of the cone are
parameters that the DM has to provide to define the ROI. Given the preference
cone, we employ a weight vector generation method that is based on a steady-state
evolutionary algorithm. The main idea of our method is to evolve a population of
weight vectors towards the characteristics that are desirable for a set of weight vec-
tors in a decomposition-based MOEA framework. The main advantage is that the
DM can define the number of weight vectors and thus can control the population
size. Once the ROI is defined and the set of weight vectors are generated within the
preference cone, we start a decomposition-based MOEA using the provided set of
weights in its initialization. Therefore, this enforces the algorithm to converge to the
ROI. The results show the benefit and adequacy of the preference cone MOEA/D for
preference-guided many-objective optimization.
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1.1 Introduction

Multi-objective evolutionary algorithms (MOEA) are recognized as suitable meth-
ods to find high quality approximations to the set of solutions to multi-objective
optimization problems [18]. These optimal solutions, known as Pareto optimal solu-
tions, are characterized by the trade-off relation between the conflicting objectives,
such that some improvement in one objective function must lead to deterioration in
at least one of the other objectives. However, as the number of objectives grows,
we reach the field of many-objective optimization problems (MaOPs) [10]. This
boundary is usually defined when the number of objective functions is greater than
three or four, given empirical studies about the downgrading performance of most
multi-objective algorithms when the number of objectives increase, see for instance
[2].

Without any prior preference provided by the decision-maker (DM), MOEA are
designed to find an unbiased, well-distributed approximation of the entire Pareto
Front (PF), a task that becomes increasingly harder in MaOPs. This brings a number
of challenges related to converging to such a large set of solutions, visualizing solu-
tions found, performing decision-making with a large number of alternatives [10].
Moreover, a high computational cost of properly sampling of the high-dimensional
Pareto front. For this reason, many preference-based MOEA have been proposed
in the literature [3], designed to converge to a subset of Pareto-optimal solutions
located at a given region of the PF preferred by the DM, usually called Region
of Interest (ROI). These preference-based MOEA are an intermediate approach for
incorporating preferences in multi-objective optimization: a priori information is
needed to define the ROI and, after some desirable solutions are found, the DM
can select the most satisfying one a posteriori or restart the process by adjusting
the ROI, hence following an interactive approach. With this novel approach, one
can avoid the main disadvantages of the a priori methods. Defining the ROI might
be easier for the DM than modelling the preferences into specific parameters of a
parameterized single-objective optimization problem. Furthermore, it can alleviate
the high computational cost and time consumption of full a posteriori methods.

The proposed methodology in this paper is therefore an intermediate approach for
incorporating preferences into many-objective optimization problems. Its’ a method-
ology aligned with the trend of interactive approaches, and follows the framework
of any MOEA based on decomposition.

In the last decade, MOEA based on decomposition/aggregation methods have
attracted the attention of the evolutionary multi-objective optimization community,
with several studies to show their potential and limitations, and to improve their
performance in constrained multi- and many-objective optimization problems [16].
The decomposition-based MOEA rely on aggregation functions that are based on
different weight vectors. Those weight vectors might represent a weighted aggre-
gation of objectives or a preference direction in objective space depending on the
interpretation and the context of the decomposition method adopted within the algo-
rithm. The key point is that the weight vector generation method is the primary step
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in decomposition-based MOEA, affecting the diversity of the Pareto approximation
and overall performance of the algorithm.

In this paper, we define the ROI as a preference cone in the objective space.
The preference cone could be defined by a preferential direction vector v, which
corresponds to the axis of the cone, having the origin or utopian point as the apex,
and the angle τ between the axis and the generating lines (generatrix). The preferential
direction and the aperture of the cone are the parameters that the DM has to provide
to define the ROI. Given the preference cone, we employ a weight vector generation
method that is based on a steady-state evolutionary algorithm. The main idea of our
method is to evolve a population of weight vectors towards the characteristics that are
desirable for a set of weight vectors in a decomposition-based MOEA framework.
Once the ROI is defined and the set of weight vectors are generated within the
preference cone, we start a decomposition-based MOEA using the provided set of
weights in its initialization. Therefore, this enforces the algorithm to converge to the
preference cone, which in turn represents the ROI to the DM.

1.2 Background

1.2.1 Many-objective optimization

A multi-objective optimization problem (MOP) [18] is defined by:

x? = arg min F(x) = ( f1(x), . . . , fM (x))

subject to:


G(x) ≤ 0,
H(x) = 0,
x ∈ Ω

(1.1)

where x ∈ Ω are the decision variables in the decision space Ω. Their image,
y = F(x) given by the function F, is the objective space. The functions G(x) =
(g1(x), . . . , gP(x)) and H(x) = (h1(x), . . . , hQ(x)) define the inequality and equality
constraints respectively. The constraint functions define the feasible set Ω ⊆ X and
the feasible region in the objective space F(Ω) ⊆ Y . This paper will consider only
the case where X ⊆ RN andY ⊆ RM . In the application F : X → Y , each coordinate
fi(x) of F(x) = ( f1(x), . . . , fM (x)) is an objective function of the MOP defined in
(1.1).

The solution of problem (1.1) uses the following relationship betweenRM vectors:
Let u = (u1, · · · , uM ) and v = (v1, · · · , vM ) be vectors in RM . Then u ≺ v if and
only if ui ≤ vi ∀i ∈ {1, . . . , M} and ∃ i ∈ {1, . . . , M} such that ui , vi .

If u ≺ v then u (Pareto) dominates v and if neither u ⊀ v nor v ⊀ u then u
and v are said to be non-dominated. In this case, the solution of the MOP (1.1) is
defined by the set P = {x ∈ Ω;� s ∈ Ω such that F(s) ≺ F(x)}. This set is called
the Pareto-optimal Set of the MOP (1.1) and its elements are minimal solutions by
the partial order ≺. The image F(P) of the points in P in the objective space Y is
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(in general) an (M − 1)-dimensional manifold (for continuous problems), called the
Pareto Front (PF).

Obtaining the exact solution of a MOP is a very difficult task. Since the objectives
in a MOP are conflicting and the order relation that establishes the best solution is a
partial order. There is no single solution for a givenMOP, but a set of non-dominated
solutions of large or even infinite cardinality. The general desirable solution of aMOP
consists of an approximation of a subset of P (or F(P)) with the following important
characteristics:

• the approximation set is sufficiently close to a subset of the Pareto Front;
• the approximation set presents maximum coverage of the Pareto Front.

This second item guarantees the existence of feasible solutions in any part of the
Pareto Front. In a hypothetical situation of no preference on the part of the decision
maker, any of these solutions can be chosen arbitrarily.

An efficient way of determining an approximation of the solution of these prob-
lems is through Multi-Objective Evolutionary Algorithms (MOEA) [18]. In this
methodology, in each iteration a set of new candidate solutions is produced from the
current population in order to determine, a set of non-dominated points (from the
objective space sets). The main difference between the types of MOEA is according
to the selection of a new population. These algorithms are categorized as follows[18]:

• Decomposition-based MOEA: In this approach, a set of weight vectors (or direc-
tion vectors) are created along the objective space and associated to the popula-
tion. Then, the MOP is decomposed into a number of Single Objective Problems,
each one representing a parameterized scalarizing function. MOEA/D [17] and
NSGA-III [6] are examples of algorithms that use this method.

• Dominance-based MOEA: In this approach, all the objectives are optimized
simultaneously and the new individuals in the populations are selected using the
dominance relation. NSGA-II [5] and SPEA2 [20] are examples of algorithms
that use this method.

• Indicator-based MOEA: In this approach, all the objectives are optimized si-
multaneously and the new individuals in the populations are selected using a
quality indicator, as the hypervolume. IBEA [19] and HypE [1] are examples of
algorithms which are based on this method.

Usually, if M > 3, the problem (1.1) becomes a MaOP [3]. The increase in the
number of objectives is accompanied by the exponential increase in the number of
non-dominated solutions, incomparable by the criteria of optimality, Hence, result-
ing, the convergence of the population becomes an extremely difficult task. Another
problem is the generation and the selection of new individuals in the population,
since the high number of non-dominated points in the population causes the selec-
tion to be random due to the lack of similarity parameters or differences between
the points. In addition to the loss of selective pressure, the set of points required
to represent or approximate the Pareto Front becomes very large. This increase in
the number of points capable of representing the real Pareto Front implies in the
increase of the population size used in the evolutionary algorithms, which becomes
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unnecessarily large. Finally, visualization of the final solution in the objective space
is very limited in MaOPs.

1.2.2 Introducing Preferences in MOEA

The incorporation of preferences by the DM in MOEA can be determined in a
threefoldmanner: before the search (a priori approach), during the search (interactive
approach) or after the search (a posteriori approach).

Without any prior preference provided by the DM, MOEA methods are designed
to obtain an unbiased, well-distributed approximation of the entire Pareto front, a
task that becomes definitely harder inMaOPs. Preference-basedMOEA are designed
to converge to a subset of Pareto-optimal solutions located at a specific region of the
Pareto Front preferred by the DM, usually called Region of Interest (ROI), which
can be defined in several ways.

For dominance-basedMOEA, a popular method areMOEA based on an Achieve-
ment Scalarizing Function (ASF) [13]. Those MOEA use a reference (or goal) point
in the Objective Space, representing the DM preference. Combining the information
of dominance and the reference point, theMOP is transformed into a single objective
problem by the minimization of the scalarizing function. In a decomposition-based
MOEA, the preferences of the DM can be articulated through weight vectors[4].

1.3 Methodology

1.3.1 The Preference Cone

The proposed method uses a cone of vectors to define the ROI. A cone is defined as
a geometric shape formed by a set of half-lines connecting to a common coordinate
point (apex). The base is a defined plane which does not contain the apex point
(coordinates). A preference cone is defined by a preferential direction vector v,
which corresponds to the axis of the cone. The origin or utopian point serves as
the apex, and the angle τ between v and the generating lines (generatrix). These
elements are illustrated in Fig. 1.1.

The preferential direction vector v indicates the preference of the DM. The co-
ordinates of this vector can be the desired value for each objective or present the
relative importance between each of them. For example, in a problem with three
objectives, if the first objective has double importance value in comparison of the
remaining two, this information translates into the vector v = (2, 1, 1). The aperture
angle τ indicates the extension of the ROI: a small value produces a small region,
providing a localized solution search. Increasing the value of this angle extends the
search to a larger region. Important methods to obtain these parameters are avail-



6 Authors Suppressed Due to Excessive Length

Fig. 1.1 The axis v and angle τ of the cone.

able in the literature such as the Analytical Hierarchy Process (AHP) [14] and the
Stepwise Weight Assessment Ratio Analysis (SWARA) [9] methods.

Similar to the weight vectors used in Decomposition/Aggregation-based algo-
rithms, the weight vectors of the cone are located in the hypercube [0, 1]M ⊂ RM .
The generation of weight vectors inside the preference cone is based on a steady-state
evolutionary algorithm. The basic idea is to evolve an initial populationW containing
n vectors w1, . . . ,wn in the hypercube [0, 1]M ⊂ RM at random. Next, normalize
these vectors and calculate the distance matrix di, j between every pair wi and wj .
For each vector wi ∈ W , create a new vector w′i from wi and calculate the distance
d ′j between w′i and wj ∈ W . The new vector w′i is created by adding a Gaussian
perturbation to wi . After that, remove one vector from W in order to maximize the
shortest distance between the new vector w′i and the remaining vectors wj ∈ W ,
following an ES(µ + 1, µ) selection scheme. The sum of the distances to the closest
neighbors in W is the fitness function that guides the evolution of the set of weight
vectors. Algorithm 1 presents the summarized structure of the proposed method.
The details of the method are described in the following steps.

iter ← 0;
W = {w1, . . .wn } ← Initialize population;
W ← Normalize population(W );
di, j ← Evaluate distance between wi and w j ;
φ(wi ) ← Evaluate fitness function for wi ∈W ;
while stop criterion is not met do

Choose i from {1, . . . , n} at random;
w′i ← wi + δ;
d′j ← Evaluate distance between w′i and w j ∈W ;
ξi ← Evaluate the angle between the new element w′i and the axis v of the cone;
φ(w′i ) ← Evaluate fitness function of the new element w′i ;
Replace the worst w j fromW by w′i ;
di, j ← Update the distance matrix;
iter ← iter + 1;

end
Algorithm 1: Weight Vector Generation pseudo code

Initialization: In this step the initial parameters are defined.
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1. Define the number of weight vectors n to be generated.
2. Define the axis v and the angle τ of the cone.
3. Define the p-norm to be used. Let x = (x1, . . . , xM ) be a vector in the M-

dimensional vectorial space, its p-norm is given by

‖x‖p =

(
M∑
i=1
|xi |p

)1/p

(1.2)

If p = 1, the Manhattan norm is defined, and if p = 2 the Euclidean norm is
described. The following equation is characterized:

y =
x
‖x‖p

(1.3)

we define ‖y‖p = 1. By this, ‖y‖2 is a point on a sphere centered atO = (0, . . . , 0)
and unitary radius, while ‖y‖1 is on the plane x1 + . . . + xM = 1.

4. Define the maximum number of iterations itermax and the number of neighbors
T . The value of T is used in the fitness function computation. After conducting
some test, we ascertained the value T = 2.

After establishing these initial parameters, generate the initial population W at
random and normalized according to (1.3). Finally, calculate the Euclidean distance
matrix di, j between pairs of wi and wj .

Evolutionary cycle: While the stop criteria is false, repeat the following steps
below:

1. Choose an arbitrary element wi ∈ W at random.
2. Create a new weight vector

w′i = wi + δi (1.4)

The perturbation vector δi is obtained as follows:

a. Determine the smallest distance di,min between wi and other vectors wj ∈

W, i , j.
b. Compute the penalty α = (1− t)a+ tb with t = k

itermax , where k is the current
iteration and itermax is the maximum number of iterations. In our tests we
use a = 1.5 and b = 0.1.

c. Calculate δi = (δi1, . . . , δiM ), where δi j is a random variable with normal
distribution of zero mean and standard deviation σi = α × di,min, that is, δi j ∼
N(0, σi). This choice allows the adaptation of the mutation size according to
the neighborhood of the point. Moreover, it favors exploration in the beginning
and local search towards the end.

d. Normalize the new vector w′i = (w
′
i1, . . . ,w

′
iM ) using Equation (1.3).

3. Calculate the Euclidean distance between w′i and the remaining vectors wj ∈ W .
4. Calculate the angle ξi between w′i and the axis of the cone v.
5. Calculate the fitness function φ(wj), wj ∈ W .
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6. Let
wmin = arg min

j
φ(wj), wj ∈ W (1.5)

If φ(w′i) > φ(wmin) replace wmin by w′i in W and update the distance matrix di, j .
Otherwise discard w′i .

7. Update the iteration counter.

The fitness function φi(wi) of wi ∈ W is given by the sum ST (wi) of the distances
from wi to its T closest neighbors in W , penalized by the angle ξi between w′i and
the axis of the cone v. If ξi > τ, thus the vector lies outside the cone and therefore its
fitness function value should be penalized. The fitness function is defined as follows:

φ(wi) = ST (wi) − M ×max (ξi − τ, 0) (1.6)

1.4 Results and discussion

This section presents some experiments using the problems (case studies) DTLZ1,
DTLZ2 [7] andWFG1 [8]with 3, 5 and 10 objectives. The aimof these experiments is
to compare Dominance-based and Decomposition-Based MOEA in the exploration
of a ROI in the Objective Space, using multi-objective problems. The Dominance-
based algorithm selected is the g-NSGA-II [12] and the MOEA/D [17] representing
the decomposition-based algorithm. For the decomposition-based algorithm, a cone
of weight vectors is used instead the usual weight vector generation. As mentioned
in [6], the set of weight vectors can represent the preferences of the DM for the
location of the solutions in the objective space.

1.4.1 Experimental setup

The experiments were performed using the PLATEMO platform [15]. In this work,
the common method of weight vector generations was substituted by the proposed
novel method of generating a cone of weight vectors in the MOEA/D algorithm. All
MOEA/D methods employ the same following parameters:

• Population size: The population size is 300+ 15×M individuals, where M is the
number of objectives.

• Maximum number of iterations: 500 iterations;
• Genetic operators: SBX recombination (µc = 20) and polynomialmutation (µm =

20);

In the Decomposition Algorithm, other than the cone of vectors that define the
preferences of the DM, other auxiliary weight vector cones were created. This was
done by using the vectors of the canonical basis of the decision space as axis.
Each extra cone consists of 15 vectors, restricted to the first orthant, i.e., for each
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weight vector in the auxiliary cones w = (w1, . . . ,wM ), we define wi ≥ 0 i =
1, . . . , M . These extra cones are required to guide the population to the correct
location indicated by the cone of preferences. Experiments were performed with and
without the extra cones and best results were obtained with the use of the auxiliary
cones.

Table 1.1 IGD and HV metrics for the problems with 3, 5 and 10 objectives in the v1 direction.

DTLZ1 DTLZ2 WFG1

3 objectives

IGD gNSGAII 2.217e+00(3.570e+00) 3.759e-01(1.237e-03) 1.272e+00(3.184e-02)
MOEA/D 1.354e-01(6.500e-05) 3.681e-01(2.238e-04) 1.300e+00(2.943e-03)

HV gNSGAII 2.536e-02(3.127e-02) 2.775e-01(2.255e-03) 3.058e+01(1.859e+00)
MOEA/D 7.683e-02(8.592e-05) 2.896e-01(2.485e-04) 3.942e+01(6.912e-02)

5 objectives

IGD gNSGAII 5.948e+02(1.444e+02) 1.626e+00(6.276e-01) 2.938e+00(8.431e-01)
MOEA/D 1.480e-01(7.993e-05) 4.828e-01(5.274e-04) 1.621e+00(4.876e-02)

HV gNSGAII 0(0) 2.832e-04(7.921e-04) 1.333e+03(1.229e+03)
MOEA/D 2.800e-02(9.229e-05) 3.546e-01(1.938e-03) 4.881e+03(1.764e+01)

10 objectives

IGD gNSGAII ? 7.913e+00(2.663e+00) 6.514e+00(1.777e+00)
MOEA/D 1.828e-01(2.365e-03) 7.574e-01(1.942e-02) 2.708e+00(1.358e-01)

HV gNSGAII ? 0(0) 4.142e+08(8.492e+08)
MOEA/D 1.313e-03(5.117e-05) 2.117e-01(3.408e-02) 7.096e+09(8.364e+08)

Table 1.2 IGD and HV metrics for the problems with 3, 5 and 10 objectives in the v2 direction.

DTLZ1 DTLZ2 WFG1

3 objectives

IGD gNSGAII 1.688e+01(3.883e+01) 4.154e-01(1.641e-03) 1.662e+00(2.155e-02)
MOEA/D 1.457e-01(6.822e-05) 4.084e-01(1.331e-03) 1.664e+00(3.792e-03)

HV gNSGAII 1.598e-02(2.702e-02) 2.784e-01(2.192e-03) 3.649e+01(1.076e+00)
MOEA/D 7.676e-02(4.079e-05) 2.882e-01(1.566e-03) 3.954e+01(6.408e-02)

5 objectives

IGD gNSGAII 5.840e+02(1.593e+02) 1.825e+00(9.919e-01) 3.287e+00(1.025e+00)
MOEA/D 1.524e-01(1.473e-04) 5.031e-01(3.834e-04) 1.929e+00(2.632e-02)

HV gNSGAII 0(0) 1.922e-05(5.783e-05) 1.254e+03(1.287e+03)
MOEA/D 2.812e-02(9.667e-05) 3.679e-01(1.667e-03) 4.855e+03(8.508e+01)

10 objectives

IGD gNSGAII ? 7.724e+00(2.670e+00) 7.002e+00(1.568e+00)
MOEA/D 1.843e-01(2.685e-03) 6.848e-01(3.813e-03) 2.782e+00(6.948e-02)

HV gNSGAII ? 0(0) 1.523e+08(5.646e+08)
MOEA/D 1.315e-03(5.233e-05) 4.215e-01(1.012e-02) 7.435e+09(7.131e+08)
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Table 1.3 IGD and HV metrics for the problems with 3, 5 and 10 objectives in the v3 direction.

DTLZ1 DTLZ2 WFG1

3 objectives

IGD gNSGAII 4.190e-01(7.944e-01) 5.309e-01(1.846e-03) 9.045e-01(1.002e-02)
MOEA/D 1.820e-01(9.186e-05) 5.251e-01(1.507e-03) 9.602e-01(8.225e-02)

HV gNSGAII 5.380e-02(2.732e-02) 2.782e-01(9.709e-04) 4.093e+01(3.744e-01)
MOEA/D 7.150e-02(6.373e-05) 2.824e-01(1.500e-03) 4.002e+01(1.875e+00)

5 objectives

IGD gNSGAII 5.052e+02(1.477e+02) 1.788e+00(8.907e-01) 4.124e+00(1.795e+00)
MOEA/D 1.652e-01(1.527e-04) 5.590e-01(5.380e-04) 1.608e+00(4.128e-02)

HV gNSGAII 0(0) 2.732e-05(1.187e-04) 1.028e+03(1.057e+03)
MOEA/D 2.687e-02(8.523e-05) 3.689e-01(1.858e-03) 4.801e+03(1.573e+02)

10 objectives

IGD gNSGAII ? 9.493e+00(2.404e+00) 8.698e+00(8.120e-01)
MOEA/D 1.736e-01(3.873e-04) 7.037e-01(2.822e-03) 2.706e+00(1.346e-01)

HV gNSGAII ? 0(0) 2.028e+07(3.188e+07)
MOEA/D 1.549e-03(1.956e-05) 4.315e-01(1.074e-02) 6.605e+09(1.106e+09)

Table 1.4 IGD and HV metrics for the problems with 3, 5 and 10 objectives in the v4 direction.

DTLZ1 DTLZ2 WFG1

3 objectives

IGD gNSGAII 7.918e+00(1.558e+01) 4.331e-01(2.067e-03) 1.641e+00(2.516e-02)
MOEA/D 1.502e-01(8.893e-05) 4.249e-01(1.821e-04) 1.644e+00(4.087e-03)

HV gNSGAII 1.759e-02(2.640e-02) 2.637e-01(1.860e-03) 3.256e+01(1.655e+00)
MOEA/D 7.637e-02(6.880e-05) 2.750e-01(3.371e-04) 3.722e+01(1.164e-01)

5 objectives

IGD gNSGAII 6.379e+02(1.810e+02) 2.592e+00(1.695e+00) 2.714e+00(6.954e-01)
MOEA/D 1.576e-01(1.705e-04) 5.292e-01(8.470e-04) 1.860e+00(4.701e-02)

HV gNSGAII 0(0) 0(0) 1.724e+03(1.162e+03)
MOEA/D 2.818e-02(1.272e-04) 3.626e-01(1.533e-03) 4.675e+03(3.658e+01)

10 objectives

IGD gNSGAII 8.886e+02(6.025e+01) 8.543e+00(2.488e+00) 4.022e+00(8.363e-01)
MOEA/D 1.737e-01((7.081e-04) 7.022e-01(2.897e-03) 2.740e+00(9.967e-02)

HV gNSGAII 0(0) 0(0) 1.452e+09(1.820e+09)
MOEA/D 1.586e-03(2.086e-05) 4.298e-01(1.136e-02) 7.150e+09(7.259e+08)

To analyze the performance of the algorithms, the obtained solutions are classified
in three groups according to their convergence in the ROI defined by the preference
cone. The first group consists of solutions located in the region defined by the
preference cone, ie, the angle θ between the solution p and the axis v of the cone
is less than or equal to the angle τ that define the cone. The second group is
composed of solutions located in the neighborhood of the region defined by the
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cone. In the experiments performed, a obtained solution is in the group 2 if the
angle θ between the obtained solution p and the axis v of the cone is greater than τ
and smaller than 2τ, i.e., τ < θ < 2τ. All other solutions are classified in group 3.
The classification of solutions into groups aims to verify the ability of each method
to obtain solutions that adequately reflect the aspirations of the decision maker.
Convergence and distribution of the solutions obtained will be verified through the
usual metrics, restricted to solutions obtained in the selected groups.

For the experiments carried out, we considered only the solutions of group 1 and
2. All solutions p belonging to group 2 are penalized by the factor:

r = (θ − τ)2 + e(1+θ−τ)
2

(1.7)

where τ is the angle that defines the preference cone and θ is the angle between the
obtained solution p and the axis v of the preference cone. If p is a solution of group
2, it will be evaluated as r · p. The solutions in group 1 and the penalized solutions in
group 2 are analyzed using the performance metrics Inverted Generational Distance
(IGD) [22] and Hypervolume Indicator (HV) [21].

1.4.2 ROI definition

For the decomposition algorithms defines the ROI is calculated by an axis v and
an aperture angle τ. Table 1.5 shows four different directions used as axis of the
preference cone.

Table 1.5 Directions used in the experiments

Objectives v1 v2 v3 v4

3 (1, 1, 1) (1, 1, 0.5) (0.1, 1, 1) (2, 1, 1)
5 (1, 1, 1, 1, 1) (1, 1, 1, 1, 0.5) (0.1, 1, 1, 1, 1) (2, 1, 1, 1, 1)
10 (1, 1, . . . , 1) (1, . . . , 1, 0.5) (0.1, 1, . . . , 1) (2, 1, . . . , 1)

For all cones, including auxiliary cones, the angle τ is defined as τ =
arccos(1/

√
M)/5, where M is the number of objectives. The chosen directions have

the following characteristics:

Direction v1: The ROI defined in the direction v1 uses the hyperdiagonal of the
Objective Space. This direction choice seeks to maximize the balance among
objectives.

Direction v2: In direction v2, the last objective is equal to 0.5 and all the remaining
are equal to 1. By choosing these values, the defined ROI will be further away
from the last objective, but is balanced in relation to the others.
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Direction v3: The direction v3 presents a low value in the first coordinate (only
1/10 of the value of the other objectives). As a result, the ROI defined in this
direction will contain few points (or no point) in this region.

Direction v4: In the direction v4, the first coordinate is equal to 2 and all the others
are equal to 1. By this, the defined ROI will be closer to the first objective and
farther from the remaining objectives.

For the g-NSGA-II algorithm, the ROI is defined by a reference point G. Since
all problem have the true pareto front well defined, the G point is easy to define: let
G = {g1 . . . gq} be points in the PF located in the ROI defined by the preference
cone and set G the ideal point of G.

Thirty instances of each algorithm were performed for each ROI. Table 1.5
presents the direction vectors that define the ROI used in the experiments and Table
1.6 presents the success rate of each experiment. An experiment was considered
successful if at least one solution of group 1 or 2 was found. Tables 1.1 to 1.4
present the average and the standard deviation of the IGD and HV metrics of the
tests performed, highlighting the best and the worst result. A?marker is used when
no results from group 1 or 2 were found.

Table 1.6 Success rate for the problems with 3, 5 and 10 objectives.

3 objectives 5 objectives 10 objectives

DTLZ1 DTLZ2 WFG1 DTLZ1 DTLZ2 WFG1 DTLZ1 DTLZ2 WFG1

v1 gNSGAII 0.60 1.00 1.00 0.57 1.00 1.00 0.00 1.00 1.00
MOEA/D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

v2 gNSGAII 1.00 1.00 1.00 0.90 1.00 1.00 0.00 1.00 1.00
MOEA/D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

v3 gNSGAII 0.87 1.00 1.00 0.70 1.00 1.00 0.00 1.00 1.00
MOEA/D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

v4 gNSGAII 0.73 1.00 1.00 0.93 1.00 1.00 0.07 1.00 1.00
MOEA/D 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Figure 1.3 presents the obtained solution (blue dots) for the DTLZ2 problem with
10 objectives in v4 direction and the ROI (red dots) using CAP-vis visualization tool
[11]. The points represented at the beginning of track C of each sector represent the
solutions found in the auxiliary cones. The ROI is entirely localized in sector 1 and
it is possible to observe the alignment of the solutions obtained with this region.

1.4.3 Discussion

The decomposition algorithm proposed in this work, using the cone of weight vectors
obtained better results than the dominance algorithm using ASF strategy. Figure 1.2
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Fig. 1.2 Obtained solutions (blue dots) for the DTLZ1 problem with 3 objectives in v1 direction.

depicts the obtained solutions of a single run for each method in the v1 direction,
highlighting group 1 and group 2 solutions for the DTLZ1 problem. Algorithm
gNSGAII presented better performance only in the three objective WFG1 problem,
regardless of the ROI analyzed. However, in other problems, this method presented a
high variance of results in most cases. This phenomenon is caused by the prevalence
of solutions of Group 2 which due to its penalty makes the value of its metric
increased. Moreover, the results obtained reinforce the inadequacy of the algorithms
based on dominance for problems with many objectives.

Fig. 1.3 Obtained solutions for the DTLZ2 problem with 10 objectives in v4 direction
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From the experiments conducted, it can be concluded that different regions of the
objective space present different challenges for the optimizer of the same problem.
As an example, the value of the IGD metric obtained in the region defined by
the direction v3 in the problem WFG1 indicates that in this region the algorithms
used can obtain solutions with better convergence than others directions that were
analyzed.

1.5 Conclusions

Due to the fundamental characteristics of many-objective optimization problems,
obtaining a well-distributed and representative approximation of the Pareto Front is a
hard task. Moreover, the analysis of the solutions obtained and the subsequent choice
of a particular solution are challenging. Moreover, defining exactly the preferences
of the DM in an a priori approach is difficult in most practical cases. Researching a
noncommittal approach becomes attractive in such a scenario, in which the search for
solutions in a specific region of the objective space that corresponds to the aspirations
of the DM is a way to make this type of optimization problem less difficult.

This paper presented a new preference-based methodology to perform the search
for solutions in the ROI, defined by a preference cone in the Objective Space.
The exploration of the ROI using the preference cone presented good convergence
and dispersion of the solutions, showing that this is an adequate methodology for
preference-guided many-objective optimization. In addition, this approach of de-
termining the ROI is more intuitive and is able to reflect the preferences of the
decision-maker.
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9. Keršulienė, V., Zavadskas, E.K., Turskis, Z.: Selection of rational dispute resolution method
by applying new step-wise weight assessment ratio analysis (swara). Journal of Business
Economics and Management 11(2), 243–258 (2010). DOI 10.3846/jbem.2010.12

10. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: A survey. ACM
Computing Surveys 48(1), 1–35 (2015). DOI 10.1145/2792984

11. Meneghini, I.R., Koochaksaraei, R.H., Guimarães, F.G., Gaspar-Cunha, A.: Information to
the eye of the beholder: Data visualization for many-objective optimization. In: 2018 IEEE
Congress on Evolutionary Computation (CEC). IEEE (2018). DOI 10.1109/cec.2018.8477889

12. Molina, J., Santana, L.V., Hernández-Díaz, A.G., Coello, C.A.C., Caballero, R.: g-dominance:
Reference point based dominance for multiobjective metaheuristics. European Journal of
Operational Research 197(2), 685–692 (2009). DOI 10.1016/j.ejor.2008.07.015

13. Ruiz, A.B., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for mul-
tiobjective optimization: the weighting achievement scalarizing function genetic algorithm.
Journal of Global Optimization 62(1), 101–129 (2014). DOI 10.1007/s10898-014-0214-y

14. Saaty, T.L.: The analytic hierarchy process : planning, priority setting, resource allocation.
McGraw-Hill International Book Co., New York; London (1980)

15. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: A MATLAB platform for evolutionary
multi-objective optimization [educational forum]. IEEE Computational Intelligence Magazine
12(4), 73–87 (2017). DOI 10.1109/mci.2017.2742868

16. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary
algorithms based on decomposition. IEEE Transactions on Evolutionary Computation 21(3),
440–462 (2017). DOI 10.1109/tevc.2016.2608507

17. Zhang, Q., Li, H.: MOEA/d: Amultiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on Evolutionary Computation 11(6), 712–731 (2007). DOI 10.1109/tevc.
2007.892759

18. Zhou, A., Qu, B.Y., Li, H., Zhao, S.Z., Suganthan, P.N., Zhang, Q.:Multiobjective evolutionary
algorithms: A survey of the state of the art. Swarm and Evolutionary Computation 1(1), 32–49
(2011). DOI 10.1016/j.swevo.2011.03.001

19. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Conference on
Parallel Problem Solving from Nature (PPSN VIII), pp. 832–842. Springer (2004)

20. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary
Algorithm for Multiobjective Optimization. In: K. Giannakoglou, et al. (eds.) Evolution-
ary Methods for Design, Optimisation and Control with Application to Industrial Problems
(EUROGEN 2001), pp. 95–100. International Center for Numerical Methods in Engineering
(CIMNE) (2002)

21. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms— a compar-
ative case study. In: A.E. Eiben, T. Bäck, M. Schoenauer, H.P. Schwefel (eds.) Lecture Notes
in Computer Science, pp. 292–301. Springer Berlin Heidelberg, Berlin, Heidelberg (1998).
DOI 10.1007/bfb0056872

22. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assess-
ment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary
Computation 7(2), 117–132 (2003). DOI 10.1109/tevc.2003.810758


