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ABSTRACT

This paper introduces the concept of energy debt: a new metric,

reflecting the implied cost in terms of energy consumption over

time, of choosing a flawed implementation of a software system

rather than amore robust, yet possibly time consuming, approach. A

flawed implementation is considered to contain code smells, known

to have a negative influence on the energy consumption.

Similar to technical debt, if energy debt is not properly addressed,

it can accumulate an energy “interest”. This interest will keep in-

creasing as new versions of the software are released, and eventually

reach a point where the interest will be higher than the initial en-

ergy debt. Addressing the issues/smells at such a point can remove

energy debt, at the cost of having already consumed a significant

amount of energywhich can translate into high costs.We present all

underlying concepts of energy debt, bridging the connection with

the existing concept of technical debt and show how to compute

the energy debt through a motivational example.

CCS CONCEPTS

• Software and its engineering→ Automated static analy-

sis; Software performance.
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1 INTRODUCTION

Technical Debt (TD) describes the gap between the current state of

a software system and the ideal state of that same software. The key

idea of technical debt is that software systems may include artifacts

which can be hard to understand/maintain/evolve, causing higher

costs in the future software development andmaintenance activities.
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These extra costs can be seen as a type of debt that developers owe

the software system.

Although technical debt is still a recent area of research, it has

gained significant attention over the past years: A recent systematic

mapping study [16] identified ten different types of technical debt,

namely requirements, architectural, design, code, test, build, docu-

mentation, infrastructure, versioning, and defects technical debt. In

fact, TD is a concern both for researchers and software developers.

The current widespread use of non-wired computing devices is

also making energy consumption a key aspect not only for hard-

ware manufacturers, but also for researchers and software develop-

ers [27]. Indeed, several energy inefficient programming practices

have been reported in literature, namely, energy patterns for mobile

applications [5, 7], the energy impact of code smells [20, 21, 28],

energy-greedy API usage patterns [18], energy (inefficient) data

structures [24], programming languages [25], etc. which do have

significant impact on the energy consumption of software.

All these research works show that energy-greedy programming

practices, also called energy smells, do often occur in software

systems. These can be attributed to the current lack of knowledge

software developers have in order to build energy efficient software,

and the lack of supporting tools [27].

This paper defines energy debt as the additional estimated en-

ergy cost of executing a software system, due to the occurrence

of energy smells in the software’s source code, when compared

to the estimated energy cost of executing the non-energy smelly

(i.e. energy ideal) version of that same software. To express energy

debt we consider a set of energy code smells presented in the cur-

rent state of the art literature on green software, together with

the energy savings reported in the studies where such smells have

been presented. Thus, the energy debt of a program is computed

after knowing the number of occurrences and their locations in the

program’s source code: energy smells inside loops/recursion, single

statements, or inside dead code do have different debt weights.

This paper is structured as follows: Section 2 thoroughly de-

scribes the notion of our novel concept of energy debt, and how it

should be expressed/calculated; Section 3 presents the related work;

finally, our conclusions and future work are included in Section 4.

2 INTRODUCING ENERGY DEBT CONCEPTS

In this section, we will explain a novel concept called energy debt,

which is very much aligned with technical debt in the sense that it

presents developers and decision makers with information regard-

ing the evolution of energy inefficiency of their software systems.

As presented in a recent ACM communications [27], developers

fall into energy-greedy practices and tendencies due to the lack of
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knowledge and the lack of tools to help understand, locate, and

optimize energy inefficiencies. Additionally, other practicioners and

decision makers also lack the necessary tools to help interpret how

energy inefficiencies can impact their product lifecycle, and what

they should focus on tackling in order to reduce energy costs [19].

2.1 Concept Overview

Before we present the definition of energy debt, let us recall the

metaphor of technical debt. Technical debt reflects the cost arising

from performing additional work on a software system, due to

developers taking “shortcuts that fall short of best practices” [2].

Hence, this cost can be defined as the technical effort, in working

hours, required for fixing all issues associated with bad program-

ming practices, in a given release. The cost keeps increasing, as new

versions (with new issues) keep getting released, and if the initial

issues are not properly addressed, they accumulate interest [4].

Based on the underlying concept of technical debt, we define

Energy Debt as the amount of unnecessary energy that a software

system uses over time, due to maintaining energy code smells for

sustained periods.

A visual comparison of the two concepts is depicted in Figure 1.

The left-hand side of the figure illustrates the well-known represen-

tation of technical debt, including the concepts of refactoring and

maintenance effort, along with the definition of interest. On the

right-hand side we present the definition of energy debt, where we

assume that evolving the software (i.e., introducing new features on

new releases) will eventually result in the addition of new (energy)

code smells, hence the Energy Debt (ED) increases per version.
The main difference between technical and energy debt, at this

point, is the fact that the former can be presented as a unique cost

value expressing how much effort would be necessary to address

the issues, whereas the same approach cannot be applied to the

latter. The cost of maintaining energy code smells in a software

release is always directly proportional to the amount of time that

the same release operates. As an example, if two software systems

S1 and S2 have the exact same energy code smells, the amount of
excessive energy consumed by S1 might be higher than S2 if it is
intended to be used longer, during the same timespan.

A

A’ B’

B

Maintenance effort

R
ep
ay
m
en
t
E
ff
o
rt A

B

A’

B’E
n
er
g
y
D
eb
t

Release Timeline

effortm(actual)

effortm(optimal) interest

ef
f
o
r
t r in
te
re

st
E
D

re
fa
ct
or

evolv
e

Figure 1: Technical Debt vs Energy Debt Terminology

Given the previous assumptions, we argue that the energy debt

ED of a software release must be expressed not as a cost value,

but as a cost function, which receives, as input, two variables: a

software release r , and a usage time t . Equation 1 defines such a
function, and it allows us to obtain, for a given release r , its energy
debt ED after a given usage time of t :

ed (r, t ) = cost (r ) ∗ t (1)

The cost (r ) function included in the equation represents the

energy cost of release r , per unit of time. In other words, it relates
to the existing number of energy code smells in that version, and

the energy cost (per unit of time) of each one. The definition of that

function is expressed as Equation 2:

cost (r ) =
N∑
i=1

wi (r ) × E (i ) (2)

Here, N is the number of smells included in the considered

catalog, while wi (r ) returns a weight value for smell i , which is

affected by the number of i smells found in release r and the context
in which they were found (we will discuss this with greater detail

in Section 2.2). E (i ) returns the expected energy debt per time unit
of smell i , as defined in the smell catalog.

The formulas presented thus far assume that each considered

energy code smell has an associated energy debt value, expressed

in function of time units (for instance, per minute). Nevertheless,

when studying the energy consumption impact of code smells,

researchers often tend to present the potential gains/savings as an

interval (i.e., highest and lowest observed energy saving).

The highest/lowest saving approach adds valuable information

regarding potential energy savings. Fixing a certain smell can result

in savings between, e.g., 150mJ and 3000 mJ per minute. When

compared to another smell with savings between 300 mJ and 900

mJ per minute, we know that in a best-case scenario refactoring the

first one would result in higher gains, but in a worst-case scenario

the second presents better savings. Hence, a developer can use this

information to decide how to properly focus their attention when

refactoring code smells, depending on the project goals [5].

In accordance with the previous assumption, we decided that

our approach for energy debt should consider, for each code smell,

two energy values: the highest (Emax ) and lowest (Emin ) observed

energy savings. Since energy debt must be expressed in a function

of the usage time, it is expected that Emax will be much higher

with the increase of usage time, as depicted in Figure 2.
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Figure 2: Energy Debt Thresholds Increase Over Time

There are two represented versions of a release in this figure:

the optimal version, with all smells removed (A′), and the energy
smelly version (A). The optimal version already has a constantly
increasing energy consumption, as it would be expected. Energy

debt can be summed up as the area between the line for A′, and the
(red) line for A, which becomes much larger when considering the
maximum values. This will introduce changes to Equation 1, which

will consider two cost values, in the form of two functions:

ed (r, t ) =

(
costmin (r ) × t ; costmax (r ) × t

)
(3)

The energy debt will therefore always be presented in the form

of an interval. Consequently, each of the cost functions will need

to refer to the proper energy debt per time unit. In other words, the
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E (i ) function in Equation 2 will be Emin (i ) for the lowest savings,
and Emax (i ) for the highest savings.

Finally, as previously stated, an energy smell catalog is necessary

in order to estimate energy debt. Such information is already present

within state-of-the-art research works [5, 7, 20, 21, 28], which report

the energy impact of different smells and the associated maximum

and minimum cost (or potential savings) per time unit, which can

be mapped directly into the energy debt estimation.

2.2 Counting Expenses & Estimating Debt

The next step towards estimating energy debt is to define a strategy

to analyze the occurrence of such smells in a given release. The

starting point for this task will be to use a common source code

analysis tool capable of detecting code smells. There are several

ways to achieve this. For instance, SonarQube, which is a widely

used tool for technical debt estimation, provides an API for defining

detection rules for issues/smells of different languages.

Detecting smell occurrences, however, is a necessary but not the

sole requirement to properly analyze its impact on energy debt. A

smell can be detected, for instance, inside a block of dead/unreach-

able code, or it can be placed inside a procedure which may only be

executed once in a software lifecycle (eg. an initial setup). On the

other hand, a code smell can also be part of a mechanism designed

to be re-utilized several times, such as a loop or a thread. These

scenarios should be considered when estimating energy debt, and

since our approach implies using statical analysis mechanisms, we

can follow already defined strategies for static energy analysis.

A very common and well-established approach for these situ-

ations is to define weights for smells, depending on the context

on which they occur. For instance, Jabbarvand et al. [13] defined a

strategy for weighing instructions which might be repeated. First,

it extracts the full method call graph of a program, and provide for

each method an energy score; such a score depends on 3 things:

(i) how many paths can be taken to reach that node from the root

node, (ii) whether it is found inside a loop, and if so (iii) what is the

expected loop’s bound; this statically obtained information is then

used to increase/decrease the energy score of the node.

Several strategies have been suggested for this task, all of which

accepted by the community. This leads us to believe that, although

it is important to weight code smells depending on the occurrence

context, several factors can influence the decision on what approach

to follow (e.g. how much information is extracted from the smell

detection tool, or trading off information detail with the analysis

time). Hence, we argue that the selected strategy is also context de-

pendent, and can be as simple or as detailed as desired. Nevertheless,

whatever approach one follows, an update to Equation 2 is neces-

sary to consider it. As an example, we considered a simplification

of the strategy from Jabbarvand et al. [13]:

w (i, r ) =
C∑
j=1

paths (j ) × LB (4)

In this equation, (i) C is the number of i smells found in the

release r ; (ii) paths (j ) represents the number of paths in the call

graph through which the jth occurrence of smell i is reachable; (iii)

LB will be 1 if the jth of the smell is outside a loop, or a constant

indicating the loop bound; it can be inferred if possible, or pre-

established.

In order to better explain how all these concepts connect with

each other, when aiming at estimating the energy debt of different

software releases, we have prepared a running example, depicted in

Figure 3. In this example, we have a catalog with 3 smells, each one

with the energy gains thresholds defined (values are in milliJoules

per minute), and 3 releases with the analysis report for each. The

report is a list of the detected smells, where for each one there is

information regarding (i) the number of paths through which the

smell is reachable (paths), and (ii) whether it was found inside a
loop (LB > 1) or not (LB = 1).
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Figure 3: Estimating Energy Debt per Release

Using the formula from Equation 4, we can determine the weight

to be applied to each smell. For example, for release v1, the weights
for smell s1 and s2 would be:

w (s1, v1) = (2 × 1) + (1 × 10) = 12
w (s2, v1) = (2 × 1) = 2

We can apply the computed weights in the formula from Equa-

tion 2, to obtain an estimated value for the energy debt of release

v1. As previously mentioned, our energy debt definition considers
two reference values: the lowest and highest estimated energy debt.

This means that the cost function in Equation 2 must be computed
twice: the first using the lowest estimated gains per smell (Emin ),

and the second using the highest (Emax ). Once again, for release

v1, we would have the following costmin and costmax values:

costmin (v1) = (w (s1, v1) × Emin (s1)) + (w (s2, v1) × Emin (s2))

⇔ costmin (v1) = (12 × 2) + (2 × 4) = 32

costmax (v1) = (w (s1, v1) × Emax (s1)) + (w (s2, v1) × Emax (s2))

⇔ costmax (v1) = (12 × 10) + (2 × 8) = 136
These two reference values represent the energy debt for release

v1. This means that energy debt can vary from a minimum of 32 to

a maximum of 136 milliJoules per minute. As explained previously,

energy debt is expressed as a function of usage time. Therefore, if

one wants to know how much debt this release accumulates after

being used for, e.g., one hour, this can be estimated as follows:

ed (v1, 60min) =

(
costmin (v1) × 60; costmax (v1) × 60

)

⇔ ed (v1, 60min) =

(
1, 920mJ ; 8, 160mJ

)

The estimated values indicate an energy debt varying between

1.92 and 8.16 Joules per hour. This means that, for every hour that

release v1 is being used, it could be consuming at least 1.92J less,
and the savings could be up to 8.16J .

Finally, it is important to point out that the accuracy of the esti-

mated thresholds rely on the adequacy/robustness of the analysis

components, namely the smells catalog, the code analysis tool, and

the weighing function for repeated smell’s executions. It is possible
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to use our energy debt approach to compute reference values for the

energy inefficiency of a release, rather then to produce extremely

accurate estimates of the potential energy savings per usage time.

It depends on how one wants to apply the concept.

2.3 Paying Interests

The concept of interest in technical debt has already been formu-

lated [4], and its practical application has also been studied [1, 3, 30].

The concept is based on the fact that, as a software system evolves

(i.e., new versions are released), the cost/effort of adding features

to a new release (maintenance effort, expressed as working hours)

keeps increasing if the task of addressing the technical debt keeps

being postponed. Maintaining a release with technical debt requires

more effort than to maintain the same release without it; the effort

difference between the two is called the technical debt interest.

The left-hand side of Figure 1 illustrates the interest concept.

There is a software version,A, containing code smells, and therefore
technical debt. At this point, a decision can be made on what to

prioritize: (i) invest effort in fixing the smells (repayment effort)

and release an optimal version of that release,A′, without technical
debt, or (ii) release the version with the smells. If the priority is

(ii), then the evolution effort to a new release B will be higher. This

additional effort could be avoided, but the priority was releasing a

new version, which can happen for a wide variety of reasons (e.g.

client demands, faster market reach, etc.); this resembles the idea

of accumulation of debt, and debt needs to be re-payed.

Chatzigeorgiou et al. [4] presented a technique to predict the

technical debt breaking point, i.e., when the accumulated interest is

higher than the initial effort to remove the technical debt (i.e., the

principal). With this, it is possible to present developers another

choice: if technical debt keeps being “ignored”, then they have

approximately until release number N to properly deal with it;

otherwise, from that moment on, the additional maintenance effort

will always be higher than the effort to deal with the principal. In

conclusion, at that point they are wasting development time.

time/release

Interest1

Interest2

MIN

v1 v2 v30

32
37

57

E
D

Figure 4: Accumulation of Interest

When considering energy instead of technical debt, the interest

concept needs another definition. First, it will not indicate how

much more maintenance effort is being applied, since energy debt

does not measure effort, but the drainage of a resource. In that

sense, energy debt interest is the amount of excessive energy con-

sumed over time, that could be avoided if the issues were properly

addressed earlier. In simple terms, it is the accumulated energy debt

after n releases. This concept complements energy debt in the sense
that it can be used to estimate the “real-world” cost of not fixing the

smells, which can be monetary (as energy costs money) or uptime

related (if the analyzed software is targeted for IoT/mobile devices).

Figure 4 illustrates our perception of energy interest, using our

example from Figure 3. Again, 3 software releases are considered:

v1, v2, and v31. For this example, we are assuming that, as new
versions are released, the issues from previous versions were not

addressed. Hence, energy debt is always increasing. For v1, we
consider that no interest was accumulated, due to the fact that

energy debt depends on usage time. Hence, at the exact instant

when the version was released, it was never used.

For releasev2, we know that it added a new smell, s3. If all smells
from the previous version (v1) were fixed upon release, then this
v2’s minimum energy debt would be 5. However, sincev1 contained
smells, from the time interval comprised between the two releases,

the software was excessively consuming 32 mJ for each minute it

was being used (i.e., the energy debt fromv1). Therefore, for release
v2, the accumulated debt (i.e., the interest) is 32 mJ per minute.

When considering releasev3, however, the reasoning to infer the
interest requires adjustments. For once, v3 has two predecessors,
while v2 has only one. Between v1 and v2, the energy debt was
32, and between v2 and v3 it was 37. To estimate how much debt

was accumulated, we should infer a value based on the two. One

possible way to tackle this is to compute the average of all energy

debts from previous releases. In this particular case, the minimum

accumulated interest would be
(32+37)

2 = 34.5.

Finally, it is important to interpret interest similarly to how

energy debt is interpreted: a minimum/maximum energy being

excessively consumed per usage time. Hence, we argue that, when

considering the interest for the nth release, the expected usage time
should be higher than the one for any previous release. Therefore

it is guarantee that, even though energy debt is reduced from one

release to another, the interest will be inflated for later releases.

3 RELATEDWORK

Technical debt is a term which refers to the pitfalls of creating sub-

optimal software to fit a shorter interval, introduced by Cunning-

ham [9]. As software evolves, it’s liable to take on debt from several

sources: “technological obsolescence, change of environment, rapid

commercial success, advent of new and better technologies, and so

on — in other words, the invisible aspects of natural software aging

and evolution.” [14]. As already known, allowing technical debt to

continuously build up without a level of debt management raises

the risk of producing unmanageable and inefficient code, which can

hamper the addition of new or updating existing functionalities.

Thus, the longer such code goes unattended, the more resources

will be needed to correct it and with diminishing returns [4].

One such inefficiency in software is of high energy consumption.

In fact, the energy efficiency of software has become a vey active

research field. Studies have shown that developers are aware of the

energy consumption problem, and often times seek help in solving

such issues [27]. Currently, there is a broad range of work done

on understanding what aspects in programming languages can

contribute to high energy costs such as different data structures [11,

17, 24, 26], languages [25], or design patterns [29]. Specific to the

Android ecosystem, there has been research in topics such as the

classification of Android applications as being more/less energy

efficient [13], identifying energy green APIs [18], estimating energy

1The presented values refer to the minimum estimated debt

65



consumption in code fragments [6], etc. In fact, energy efficiency

in Android is a very active area of research [5, 7, 20, 21, 28]. The

results of most of these studies are able to quickly translate into our

energy smell catalog to be used in the calculation of energy debt.

Additionally, much research has been conducted in providing

several approaches to the measurement of energy consumption. For

example, for Android energy analysis there is eCalc [10], vLens [15],

eProf [22], or Trepn [12, 13]. Nevertheless, there is evidence that

relying only on profilers and measuring tools are not enough to

locate efficiency problems [23]. There is also work in automatic

tools to help detect energy greedy code spots [23], refactoring for

the most energy efficient data structure [26], or refactoring energy

greedy Android patterns [5, 8]. These works, however, do not yet

translate their potential gains across a period of time into the actual

energy savings a developer or business can have on the software by

applying such transformations. It is our belief that, our work closes

this gap in not only knowing if an alternative solution is more

energy efficient, but by how much can we save (in energy/money)

over time if and when we adopt the energy efficient alternative.

4 CONCLUSIONS AND FUTUREWORK

This paper presented the concept of energy debt as the additional

energy cost over time of a software system due to the occurrences

of energy code smells in its source code. It is expressed as a function

considering (i) the number of smells, (ii) the context in which they

were detected, and (iii) the expected usage time of the application.

Energy debt interest is also expressed as the accumulation of energy

debt per release, which could be avoided by eliminating energy

smells in previous releases.

Currently, we are concluding the construction of a catalog of re-

ported state-of-the-art energy code smells, and their known energy

costs per usage time, which can be considered when calculating

energy debt. Additionally, an extension of the concept of energy

debt is being developed within the SonarQube framework, where it

will support the inference of the context and number of detected

smells, based on our catalog.
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