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Shortcut fusion is a well-known optimization technique for functional programs. Its aim 
is to transform multi-pass algorithms into single pass ones, achieving deforestation of the 
intermediate structures that multi-pass algorithms need to construct. Shortcut fusion has 
already been extended in several ways. It can be applied to monadic programs, maintaining 
the global effects, and also to obtain circular and higher-order programs. The techniques 
proposed so far, however, only consider programs defined as the composition of a single 
producer with a single consumer. In this paper, we analyse shortcut fusion laws to deal 
with programs consisting of an arbitrary number of function compositions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Shortcut fusion [1] is an important optimization technique for functional programs. It was proposed as a technique for 
the elimination of intermediate data structures generated in function compositions fc ◦ fp, where a producer fp :: a → t
builds a data structure t, which is then traversed by a consumer fc :: t → b to produce a result. When some conditions are 
satisfied, we may transform these programs into equivalent ones that do not construct the intermediate structure of type t.

Extended forms of shortcut fusion have also been proposed to cope with cases of function compositions in which the 
producer and the consumer communicate through some additional context information, besides the intermediate structure 
itself. These extensions transform compositions fc ◦ fp, where fp :: a → (t, z) and fc :: (t, z) → b, into circular [2,3] and higher-
order [3,4] equivalent programs, increasing the applicability scope of shortcut fusion. Nevertheless, they consider programs 
consisting of the composition between two functions only. As a consequence, it is not possible to (straightforwardly) apply 
such techniques to programs that rely on multiple traversal strategies, like compilers and advanced pretty-printing algo-
rithms [5].

The main contribution of this paper is to present generalized forms of shortcut fusion which apply to an arbitrary 
number of function compositions of the form fn ◦ · · · ◦ f0, for n >= 2. We establish sufficient conditions on each f i that 
guarantee that consecutive fusion steps are applicable when following both a left-to-right and a right-to-left strategy. By 
means of what we call chain laws, we show how to obtain the intermediate fused definitions in such a way that further 
fusion steps apply. The formulation of the chain laws is the result of combining two fusion approaches: that of shortcut 
fusion and the one used in the formulation of fusion laws known as acid rain [6]. The fusion laws we present are surely not 

* Corresponding author.
E-mail addresses: pardo@fing.edu.uy (A. Pardo), jpf@di.ubi.pt (J.P. Fernandes), jas@di.uminho.pt (J. Saraiva).
http://dx.doi.org/10.1016/j.scico.2016.07.004
0167-6423/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2016.07.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:pardo@fing.edu.uy
mailto:jpf@di.ubi.pt
mailto:jas@di.uminho.pt
http://dx.doi.org/10.1016/j.scico.2016.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2016.07.004&domain=pdf


78 A. Pardo et al. / Science of Computer Programming 132 (2016) 77–95
surprising, but, on the other hand, have the merit of dealing with nonstandard cases. Our fusion method, characterized by 
requiring certain conditions on the functions involved in the compositions, differs from that employed by warm fusion [7].

In this work our approach is essentially theoretical. We study the formalities associated with the formulation of the new 
laws, but we do not include performance results and benchmarks related with the application of the laws in practice.

We analyse two forms of multi-traversal programs: a) the standard case where only a data structure is passed between 
producer and consumer, and b) programs where in each composition, besides a data structure, some additional information 
is passed. Case (b) is particularly interesting because it is the case where it is possible to derive circular and higher-order 
programs by the application of fusion.

The fact that we are able of deriving circular programs from multiple function compositions also has strong connections 
with well-established research on Attribute Grammars (AG) [8]. Indeed, as Johnson [9] and Kuiper and Swierstra [10] orig-
inally showed, attribute grammars are naturally implemented in a lazy setting as circular programs. In the AG community, 
however, a program that relies on multiple function compositions (so, on multiple intermediate data structures) is usually 
derived from an AG (i.e., from a circular program) using advanced attribute scheduling algorithms [11,12] whose correct-
ness is hard to establish in a formal way. By studying and proving the correctness of the opposite transformation, that is, 
how a circular program (i.e., an AG) can be derived from a program based on multiple function compositions, we hope to 
shed even more light into the relationship between attribute grammars/circular programs and their non-lazy implementa-
tions/equivalents.

Throughout the paper we will use Haskell notation, assuming a semantics in terms of pointed cpos (complete partial 
orders), but without the presence of the seq function [13].

The paper is structured as follows. In order to make the contents more accessible to a wider audience, we have decided 
to divide the paper into two parts. The first part, composed by Sections 2–4, develops the whole concepts and laws, but 
tailored to the specific case of the list type. In this part laws are presented without proofs. Section 2 reviews shortcut 
fusion, while Section 3 does so with the derivation of circular and higher-order programs. In Section 4 we discuss laws 
that pose the sufficient conditions for fusing multi-traversal programs over lists. The second part is formed by Sections 5–6
and is where the generic formulation of the concepts and laws developed is presented. By generic we mean valid for a 
wide class of datatypes. In Section 5 we present the theoretical concepts necessary for building the generic definitions. 
Section 6 discusses the laws necessary for fusing multi-traversal programs, but now over arbitrary data structures. A proof 
is presented for each of these laws. Finally, Section 7 concludes the paper.

2. Shortcut fusion on lists

Shortcut fusion [1] is a program transformation technique for the elimination of intermediate data structures generated in 
function compositions. In this section we focus on the elimination of lists as intermediate data structures. The formulation 
for arbitrary data structures is described later in Section 5.

For its application, shortcut fusion requires the consumer to process all the elements of the intermediate data structure 
in a uniform way. This condition is established by requiring that the consumer is expressible as a fold [14], a program 
scheme that captures function definitions by structural recursion. For example, for lists, fold is defined as:

fold :: (b,a → b → b) → [ a ] → b
fold (nil, cons) [ ] = nil
fold (nil, cons) (a : as) = cons a (fold (nil, cons) as)

This function corresponds to the well-known foldr function [14]. It traverses the list and replaces [ ] by the constant nil and 
the occurrences of (:) by function cons. The pair (nil, cons) is called an algebra. The formal definition of an algebra is given 
in Section 5.

For example, the function filter, which selects the elements of a list that satisfy a given predicate:

filter :: (a → Bool) → [ a ] → [ a ]
filter p [ ] = [ ]
filter p (a : as) = if p a then a : filter p as else filter p as

can be written in terms of fold as follows:

filter p = fold (fnil, fcons)
where fnil = [ ]

fcons a r = if p a then a : r else r

The producer, on the other hand, must be a function such that the computation that builds the output data structure 
consists of the repeated application of the data type constructors. To meet this condition the producer is required to be 
expressible in terms of a function, called build [1], which carries a “template” (a producer skeleton as called by Chitil [15]) 
that abstracts the occurrences of the constructors of the intermediate data type. To guarantee correctness, the template 
should be a polymorphic function. In the case of lists, build is defined as follows:

build :: (∀ b . (b,a → b → b) → c → b) → c → [ a ]
build g = g in
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where we denote by in = ([ ], (:)) the algebra composed by the list constructors. The polymorphic type of g ensures that the 
result value of type b can only be constructed by using the operations of the argument algebra of type (b, a → b → b). As 
a result, build returns a list that is uniformly constructed by the repeated application of the list constructors [ ] and (:). For 
example, the function that constructs the list of numbers between n and 1:

down :: Int → [ Int ]
down 0 = [ ]
down n = n : down (n − 1)

can be written in terms of build as follows:

down = build gd
where gd (nil, cons) 0 = nil

gd (nil, cons) n = cons n (gd (nil, cons) (n − 1))

The essential idea behind shortcut fusion is then to replace, in the producer, the occurrences of the intermediate datatype’s 
constructors (abstracted in the “template” of the build) by appropriate values/functions specified within the consumer (the 
algebra carried by the fold). As a result, one obtains a definition that computes the same as the original composition but 
without building the intermediate data structure. This transformation is usually referred to as the fold/build law.

Law 1 (fold/build).

fold (nil, cons) ◦ build g = g (nil, cons)

This law is a direct consequence of a parametricity property (a “free theorem” [16]) associated with the polymorphic 
type of the template g of build. (See e.g. [1] for details).

Due to its rank-2 type, build cannot be defined in standard Haskell since Haskell type system is based on the Hindley–
Milner type system [17], where type variables are only quantified at the outer level. It can be defined, however, in the 
Glasgow Haskell Compiler by compiling it with the language extension option RankNTypes which enables function defini-
tions with higher-rank types.

Example 1. Let us consider the function that computes the proper factors of a non-negative number (i.e. the factors not 
including itself):

factors :: Int → [ Int ]
factors n = filter (‘isFactorOf ‘ n) (down (n ‘div‘ 2))

where x ‘isFactorOf ‘ n = n ‘mod‘ x == 0

Since filter is a fold and down a build, we can apply the law to eliminate the intermediate list. If we define fd p = filter p ◦
down then factors n = fd (‘isFactorOf ‘ n) (n ‘div‘ 2) and by Law 1 we obtain that fd p = gd (fnil, fcons), where (fnil, fcons) is the 
algebra of the fold for filter. Inlining we get the following recursive definition:

fd p 0 = [ ]
fd p n = if p n then n : fd p (n − 1) else fd p (n − 1)

2.1. Extended shortcut fusion

It is possible to formulate an extended form of shortcut fusion which captures the case where the intermediate data 
structure is generated as part of another structure. This extension has been fundamental for the formulation of shortcut 
fusion laws for monadic programs [18,19], and for the derivation of (monadic) circular and higher-order programs [3]. It is 
based on an extended form of build:

buildN :: (∀ b . (b,a → b → b) → c → N b) → c → N [ a ]
buildN g = g in

where N represents a data structure in which the produced list is contained. Technically, N is a functor, i.e. a type constructor 
N of kind � → � which comes equipped with a map function mapN :: (a → b) → (N a → N b) that preserves identities and 
compositions:

mapN id = id mapN (f ◦ g) = mapN f ◦ mapN g

Informally, the idea is that for a given a function f of type a → b and a structure t of type N a, mapN f t returns a structure 
t′ with the same shape as t and where each value v of type a contained in t has been replaced by the corresponding value 
f v of type b.

A functor N is said to be strictness-preserving when function mapN preserves strict functions, i.e. if f is strict then so is 
mapN f .

The above is a natural extension of the standard build function. In fact, build can be obtained from buildN by considering 
the identity functor corresponding to the identity type constructor: type N a = a and mapN f = f .
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Based on this extension of build an extended shortcut fusion law can be formulated:

Law 2 (extended fold/build). For strictness-preserving N,

mapN (fold (nil, cons)) ◦ buildN g = g (nil, cons)

Example 2. Let us consider the following composition, where positivesLen is such that, given a list of numbers, it returns 
a pair formed by a list containing the positive numbers and the length of that list. Given functions f and g, we denote by 
(f × g) the function such that (f × g) (x, y) = (f x, g y). By id we denote the identity function.

sumPosLen = (sum × id) ◦ positivesLen

sum :: Num a ⇒ [ a ] → a
sum [ ] = 0
sum (a : as) = a + sum as

positivesLen :: Num a ⇒ [ a ] → ([ a ], Int)
positivesLen [ ] = ([ ], 0)

positivesLen (x : xs) = if x > 0 then (x : ys,1 + l) else (ys, l)
where (ys, l) = positivesLen xs

In order to simplify the expression of sumPosLen we first observe that positivesLen can be written in terms of buildN with 
functor N a = (a, Int) and mapN f = f × id.

positivesLen = buildN gPL
where

gPL (nil, cons) [ ] = (nil,0)

gPL (nil, cons) (x : xs) = if x > 0 then (cons x ys,1 + l) else (ys, l)
where (ys, l) = gPL (nil, cons) xs

On the other hand, sum is a fold: sum = fold (0, (+)). Therefore, we can write that sumPosLen = mapN (fold (0, (+))) ◦
buildN gPL. By applying Law 2 we finally obtain that sumPosLen = gPL (0, (+)), which corresponds to the following recursive 
definition:

sumPosLen [ ] = (0,0)

sumPosLen (x : xs) = if x > 0 then (x + s,1 + l) else (s, l)
where (s, l) = sumPosLen xs

3. Derivation of circular and higher-order programs on lists

In this section we review shortcut fusion laws that make it possible to derive both circular and higher-order programs 
from function compositions that communicate through an intermediate pair (t, z), where t is a data structure and z some 
additional information that is passed between the functions. The derivation of programs of this kind can be done both for 
pure and monadic programs (see [3,20,21]). In this section we focus on the case in which the structure t is a list; the 
generic formulation for arbitrary data types is presented in Section 6.

Like for standard shortcut fusion, in this case it is required that both consumer and producer be expressible in terms of 
certain program schemes.

The consumer is required to be a structural recursive definition writeable as a pfold, a program scheme similar to fold
which takes in addition a constant parameter for its computation. For lists, it corresponds to the following definition:

pfold :: (z → b,a → b → z → b) → ([ a ], z) → b

pfold (hnil,hcons) = pf
where pf ([ ], z) = hnil z

pf (a : as, z) = hcons a (pf (as, z)) z

The producer, on the other hand, is required to be expressible in terms of a kind of build function, called buildp, that returns 
a pair formed by a data structure and a value instead of simply a data structure. For lists:

buildp :: (∀ b . (b,a → b → b) → c → (b, z)) → c → ([ a ], z)
buildp g = g in

Note that buildp corresponds to buildN with functor N a = (a, z) for some z.

3.1. Derivation of circular programs

Circular programming was originally introduced as an efficient paradigm to avoid multiple traversals of data struc-
tures [2]. As the name suggests, circular programs are characterized by holding what appears to be a circular definition, 
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Fig. 1. Data dependencies in the circular definition of addLen.

where arguments of a function call depend on results of that same call. Although this seems to introduce non-termination, 
the fact is that lazy evaluation is able of determining the right evaluation order for these calls, if such an order exists.

Due to their nice properties, circular programs have been studied in varied contexts ranging from the implementation 
of efficient data structures [22] and traversal strategies [23] to the construction of Haskell compilers [24,25] and to express 
pretty printing algorithms [5] and type systems [26], for example.

Circular programs can be derived by the application of the following law. We frame circular arguments in order to 
improve the understanding of circular definitions.

Law 3 (pfold/buildp).

pfold (hnil,hcons) ◦ buildp g $ c = v
where (v, z ) = g (knil,kcons) c

knil = hnil z
kcons x r = hcons x r z

where f $ x = f x. It is interesting to see how the circularity arises as a consequence of this law: in the local definition (the 
where clause) function g computes two values, v and z, such that z (one of the resulting values) is used by the operations 
of the algebra (knil, kcons) to compute v (the other result).

Example 3. Let us consider

addLen = addL ◦ positivesLen

addL ([ ], l) = [ ]
addL (x : xs, l) = (x + l) : addL (xs, l)

First, we express addL and positivesLen in terms of pfold and buildp:

addL = pfold (hnil,hcons)
where hnil l = [ ]

hcons x r l = (x + l) : r

positivesLen = buildp gPL

where gPL is the same function presented in Example 2. Then, by applying Law 3 we derive the following circular definition:

addLen xs = ys

where (ys, l ) = gk xs
gk [ ] = ([ ],0)

gk (x : xs) = if x > 0 then ((x + l ) : ys,1 + n) else (ys,n)

where (ys,n) = gk xs

Observe how l, the length of the output list that is computed as the second component of the pair returned by gk, is used 
by gk itself for the computation of the first component of the resulting pair, which is a list containing the positive elements 
of the input list xs, each one incremented by precisely l. Fig. 1 shows the data dependencies within the circular definition 
of addLen.

Like standard shortcut fusion, Law 3 can also be extended. The extension works on an extended form of buildp and 
represents the case where the intermediate pair is produced within another structure given by a functor N.

buildpN :: (∀ b . (b,a → b → b) → c → N (b, z)) → c → N ([ a ], z)
buildpN g = g in

For the formulation of the new law it is necessary to assume that functor N possesses an associated polymorphic function 
εN :: N a → a that projects a value of type a from a structure of type N a. A free theorem [16] associated with the type of 
εN states that for every f ,

f ◦ εN = εN ◦ mapN f (1)



82 A. Pardo et al. / Science of Computer Programming 132 (2016) 77–95
The extension of Law 3 is as follows.

Law 4 (pfold/buildpN). Let (N, εN) be strictness-preserving.

pfold (hnil,hcons) ◦ εN ◦ buildpN g $ c = v
where (v, z ) = εN (g (knil,kcons) c)

knil = hnil z
kcons x r = hcons x r z

3.2. Derivation of higher-order programs

Starting from the same kind of compositions used to derive circular programs it is possible to derive, by alternative laws, 
higher-order programs [3]. Higher-order programs are sometimes preferred over circular ones as they are not restricted to 
a lazy setting and their running performance is often better than that of their circular equivalents.

The transformation into higher-order programs is based on the fact that every pfold can be expressed as a higher-order 
fold. Given pfold (hnil, hcons) :: ([ a ], z) → b, with hnil :: z → b and hcons :: a → b → z → b, we can write it as a fold of type 
[ a ] → z → b:

pfold (hnil,hcons) (xs, z) = fold (knil,kcons) xs z
where knil = hnil

kcons x r = λz → hcons x (r z) z

With this relationship at hand we can state the following law, which is the instance to our context of a more general 
program transformation technique called lambda abstraction [27].

Law 5 (h-o pfold/buildp).

pfold (hnil,hcons) ◦ buildp g $ c = f z
where (f , z) = g (knil,kcons) c

knil = hnil
kcons x r = λz → hcons x (r z) z

Like in Law 3, g (knil, kcons) returns a pair, but now composed by a function of type z → b and a value of type z. The 
final result then corresponds to the application of the function to that value.

Example 4. Let us consider again the composition addLen = addL ◦ positivesLen. By applying Law 5 we get the following 
definition:

addLen xs = f l
where (f , l) = gk xs

gk [ ] = (λl → [],0)

gk (x : xs) = if x > 0 then (λl → (x + l) : f ′ l,1 + l′) else (f ′, l′)
where (f ′, l′) = gk xs

The following is an extension of the previous law.

Law 6 (h-o pfold/buildpN). Let (N, εN) be a strictness-preserving functor.

pfold (hnil,hcons) ◦ εN ◦ buildpN g $ c = f z
where (f , z) = εN (g (knil,kcons) c)

knil = hnil
kcons x r = λz → hcons x (r z) z

4. Multiple intermediate lists deforestation

In this section we analyse how we can deal with a sequence of compositions fn ◦ · · · ◦ f0, for n >= 2, where all the 
intermediate structures are lists. We start with the analysis of the standard case in which a single list is generated in each 
composition. We look at the conditions the functions f i need to satisfy in order to be possible to derive a monolithic 
definition from such a composition. We then turn to the analysis of more interesting situations where the intermediate lists 
are passed between functions as part of a pair. As we saw in Section 3, compositions of this kind give rise to circular and 
higher-order definitions.
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4.1. Standard case

Let us suppose that in every composition f i+1 ◦ f i only an intermediate data structure (a list) is produced. To derive a 
monolithic definition from the whole sequence fn ◦ · · · ◦ f0 the involved functions need to satisfy certain conditions. Clearly, 
f0 needs to be a producer and fn a consumer. Functions f1, . . . , fn−1 are more interesting since they all need to be both 
consumers and producers simultaneously in order to be possible to fuse each of them with their neighbor functions.

Suppose, for example, that we want to test whether a number is perfect. A number is said to be perfect when it is equal 
to the sum of its proper factors:

perfect n = sumFactors n == n

sumFactors n = sum (factors n)

By expanding the definition of factors we see that two intermediate lists are generated within sumFactors:

sumFactors n = sum ◦ filter (‘isFactorOf ‘ n) ◦ down $ n ‘div‘ 2

To eliminate those lists the expression to be fused is sum ◦ filter p ◦ down where p = (‘isFactorOf ‘ n). From Section 2 we know 
that down is a producer and sum is a consumer (a fold). Concerning filter p, it is a consumer, but it can also be seen as a 
producer even maintaining its formulation as a fold. This is possible by appealing to the notion of an algebra transformer, 
traditionally used in the context of fusion laws known as acid rain [6]. Similar to the “template” of a build, a transformer 
makes it possible to abstract, from the body of a fold, or which is the same, from the operations of the algebra of a fold, 
the occurrences of the constructors of the data structure that is produced as result. In the case of filter p, we can write:

filter p = fold (τ in)

where τ (nil, cons) = (nil, λa r → if p a then cons a r else r)

The algebra transformer

τ :: ∀ b . (b,a → b → b) → (b,a → b → b)

simply abstracts the list constructors from the algebra

([ ], λa r → if p a then a : r else r)

of the fold for filter p by replacing its occurrences by the components of an arbitrary algebra (nil, cons). As mentioned 
above, transformers are useful in the context of acid rain laws because they permit to specify producers given by folds. The 
following is an acid rain law with a transformer between list algebras.

Law 7 (fold-fold fusion).

τ :: ∀ b . (b,a → b → b) → (b,a′ → b → b)

⇒
fold (nil, cons) ◦ fold (τ in) = fold (τ (nil, cons))

Returning to the composition sum ◦ filter p ◦ down, there are various ways in which fusion can proceed in this case. 
One way is to proceed from left-to-right by first fusing sum with filter p, and then fusing the result with down. For fusing 
sum ◦ filter p we can apply Law 7, obtaining as result fold (τ (0, (+))). Fusing this fold with down by Law 1 we obtain 
gd (τ (0, (+))) as final result.

An equivalent alternative is to proceed from right-to-left by first fusing filter p with down and then fusing the result 
with sum. Fusion of filter p ◦ down is performed by applying Law 1, obtaining gd (τ in) as result; this coincides with the 
function fd p shown in Example 1. If we now want to fuse sum with gd (τ in) then we first need to rewrite this function as 
a build. It is in such a situation that a new law, that we call chain law, comes into play. It states conditions under which the 
composition of a consumer with a producer can be fused resulting in a producer. The key idea of this law is the appropriate 
combination of the fusion approaches represented by shortcut fusion and acid rain. We present the case of the chain law 
for an algebra transformer with the same type as in Law 7.

Law 8 (chain law).

τ :: ∀ b . (b,a → b → b) → (b,a′ → b → b)

⇒
fold (τ in) ◦ build g = build (g ◦ τ )

In our concrete case, we can apply this law obtaining that filter p ◦ down = build (gd ◦ τ ), which can be directly fused with 
sum, obtaining gd (τ (0, (+))) as before. To see its recursive definition, let us define sfd p = gd (τ (0, (+))). Inlining,

sfd p 0 = 0

sfd p n = if p n then n + sfd p (n − 1) else sfd p (n − 1)
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It is then natural to state a chain law associated with the extension of build.

Law 9 (extended chain law). For strictness-preserving N,

τ :: ∀ b . (b,a → b → b) → (b,a′ → b → b)

⇒
mapN (fold (τ in)) ◦ buildN g = buildN (g ◦ τ )

The next law describes a more general situation where the transformer τ returns an algebra whose carrier is the result 
of applying a functor W to the carrier of the input algebra. Law 9 is then the special case where W is the identity functor. 
By NW we denote the composition of functors N and W , that is, NW a = N (W a) and mapNW f = mapN (mapW f ).

Law 10. Let W be a functor. For strictness-preserving N,

τ :: ∀ b . (b,a → b → b) → (W b,a′ → W b → W b)

⇒
mapN (fold (τ in)) ◦ buildN g = buildNW (g ◦ τ )

4.2. Derivation of programs with multiple circularities

We now analyse laws that make it possible the derivation of programs with multiple circularities. We consider that the 
sequence of compositions fn ◦ · · · ◦ f0 is such that a pair (ti, zi) of a data structure ti (a list) and a value zi is generated in 
each composition. Like before, f0 needs to be a producer, fn a consumer, whereas f1, . . . , fn−1 need to be simultaneously 
consumers and producers. Therefore, we assume a sequence of compositions of the form pfold hn ◦ · · · ◦ pfold h1 ◦ buildp g .

Like in the standard case, we want to analyse the transformation in both directions: left-to-right and right-to-left. We will 
see that in this case there are significant differences between both transformations, not in the result, but in the complexity 
of the laws that need to be applied in each case.

4.2.1. Right-to-left transformation
Following a similar approach to the one used for the standard case, when the transformation proceeds from right to left 

it is necessary to state sufficient conditions that permit us to establish when the composition of a pfold with a buildp is 
again a buildp. Interestingly, the resulting definition would be not only a producer (a buildp) that can be fused with the 
next pfold in the sequence, but by Law 3 it would be also a circular program that internally computes a pair (v, z) formed 
by the result of the program (v) and the circular argument (z). Therefore, by successively fusing the compositions in the 
sequence from right to left we finally obtain a program with multiple circular arguments, one for each fused composition. 
During this process, we incrementally introduce a new circular argument at every fusion step without affecting the circular 
arguments previously introduced.

At the i-th step, the calculated circular program internally computes a nested product of the form ((. . . (vi, zi), . . .), z1), 
where vi is the value returned by that program and z1, . . . , zi are the circular arguments introduced so far. As a consequence 
of this, at each step it is necessary to employ an extended shortcut fusion law because the pair (ti , zi) to be consumed by the 
next pfold is generated within the structure formed by the nested product. In other words, we will be handling extensions 
with functors of the form N a = ((. . . (a, z j), . . .), z1).

Therefore, to deal with this process appropriately we need to state a chain law in the sense of Law 9 but now associated 
with the composition of a pfold with an extended buildp. Given a transformer

σ :: ∀ b . (b,a → b → b) → (z → W b,a′ → W b → z → W b)

where W is a functor and, for each algebra k, σ k = (σ1 k, σ2 k), it is possible to derive an algebra transformer:

τ :: ∀ b . (b,a → b → b) → (W b,a′ → W b → W b)

such that τ k = (τ1 k, τ2 k) with τ1 k = σ1 k z and τ2 k x r = σ2 k x r z, for a fixed z. Such a σ is used in the next law to 
represent the case where the consumer, given by a pfold, is also a producer. In fact, observe that the pfold in the law has 
type ([ a′ ], z) → ([ a ], y).

Law 11 (chain rule). Let (N, εN) be a strictness-preserving functor, and M a = N (a, z). Let W a = (a, y), for some type y. Let σ k =
(σ1 k, σ2 k).
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σ :: ∀ b . (b,a → b → b) → (z → W b,a′ → W b → z → W b)

⇒
pfold (σ in) ◦ εN ◦ buildpN g $ c = p

where (p, z ) = εN (buildpM (g ◦ τ ) c)
τ k = (τ1 k, τ2 k)
τ1 k = σ1 k z
τ2 k x r = σ2 k x r z

Example 5. Given a set of points in a plane, the following program returns the maximum distance between the points 
located above the average height and the highest point below it. We first compute the average height by means of function 
avrgHeight, which is a tail recursive definition with two accumulators. Then, with takePoints, we take the points that are 
above the average height and determine the highest point below the average. Finally, we compute the maximum distance 
between that point and the points selected.

type Point = (Float, Float)
type Height = Float
type Distance = Float

distance :: [ Point ] → Distance
distance = maxDistance ◦ takePoints ◦ avrgHeight 0 0

avrgHeight :: Height → Integer → [ Point ] → ([ Point ],Height)
avrgHeight h l [ ] = ([ ],h / fromInteger l)
avrgHeight h l ((x,y) : ps) = let (ps′,avH) = avrgHeight (y + h) (1 + l) ps

in ((x,y) : ps′,avH)

takePoints :: ([ Point ],Height) → ([ Point ],Point)
takePoints ([ ],avH) = ([ ], (0,0))

takePoints ((x,y) : ps,avH) = let (ps′,hp) = takePoints (ps,avH)

in if y > avH then ((x,y) : ps′,hp)

else (ps′, if y > snd hp then (x,y) else hp)

maxDistance :: ([ Point ],Point) → Distance
maxDistance ([ ],hp) = 0
maxDistance ((x,y) : ps,hp@(hx,hy))

= sqrt ((x − hx)2 + (y − hy)2) ‘max‘ maxDistance (ps,hp)

In order to fuse this composition, first we need to express these functions in terms of the corresponding program schemes.

avrgHeight = buildp gavrgH
where gavrgH (nil, cons) h l [ ] = (nil,h / fromInteger l)

gavrgH (nil, cons) h l ((x,y) : ps)
= let (ps′,avH) = gavrgH (nil, cons) (y + h) (1 + l) ps

in (cons (x,y) ps′,avH)

takePoints = pfold (tnil, tcons)
where tnil avH = ([ ], (0,0))

tcons (x,y) r avH = let (ps,hp) = r
in if y > avH then ((x,y) : ps,hp)

else (ps, if y > snd hp then (x,y) else hp)

maxDistance = pfold (hnil,hcons)
where hnil hp = 0

hcons (x,y) r hp@(hx,hy) = sqrt ((x − hx)2 + (y − hy)2) ‘max‘ r

By observing that the algebra (tnil, tcons) can be expressed as σ in, where σ is the transformer:

σ (nil, cons) = (λavH → (nil, (0,0))

, λ(x,y) r avH →
let (ps,hp) = r
in if y > avH then (cons (x,y) ps,hp)

else (ps, if y > snd hp then (x,y) else hp))

our program corresponds to the following composition:

distance = pfold (hnil,hcons) ◦ pfold (σ in) ◦ buildp gavrgH 0 0
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Now we are in conditions to apply fusion laws. The transformation from right to left then proceeds by first applying Law 11
and then Law 4. The circular program obtained contains two circular arguments, u and z :

distance ps = d
where (d, u ) = w

(w, z ) = gk 0 0 ps
gk h l [ ] = ((0, (0,0)),h / fromInteger l)
gk h l ((x,y) : ps) =

let (r,avH) = gk (y + h) (1 + l) ps
in (let (md,hp) = r

in if y > z

then (sqrt ((x − fst u )2 + (y − snd u )2) ‘max‘ md,hp)

else (md, if y > snd hp then (x,y) else hp)

,avH)

The program obtained has a local definition gk, which computes a nested pair containing the result d and the intermediate 
context values that are produced by the original composition. Those context values are now the circular arguments z and 
u , which denote, respectively, the average height and the height of the highest point below the average height. Notice that 

the value of z is taken into account to compute the result of the function but also the value of the other circular argument 
u .

4.2.2. Left-to-right transformation
When the transformation is from left to right we worry about the opposite situation. Except for the last step, at each 

intermediate stage of the transformation process we are interested in that the definition that results from the fusion step 
is a consumer. If that is the case then it is guaranteed that we can successively apply fusion until the end. We then state 
sufficient conditions to establish when the composition of two pfolds is again a pfold. The following is an acid rain law 
inspired in fold-fold fusion (Law 7).

Law 12 (pfold–pfold fusion).

σ :: ∀ b . (b,a → b → b) → (z → b,a′ → b → z → b)

⇒
pfold (hnil,hcons) ◦ pfold (σ in) $ c = v

where (v, z ) = pfold (σ (knil,kcons)) c
knil = hnil z
kcons x r = hcons x r z

Observe that, unlike the right to left transformation, now we do not need to worry about any data structure (a nested 
pair) inside of which fusion is performed. A nested pair is in fact created, but it is on the result side of the consumers 
(pfolds) that are successively obtained by fusion. It is interesting to see how the nested pairs that appear in the successive 
circular programs calculated are incrementally generated in each transformation. In the left-to-right transformation the 
nested pairs are generated from inside outwards, i.e. the pair generated in each fusion step contains the previous existing 
pair,

(v, zn), ((v, zn), zn−1), . . . , ((. . . ((v, zn), zn−1), . . .), zi),

whereas in the right-to-left transformation the nested pair is generated from outside inwards,

(v1, z1), ((v2, z2), z1), . . . , ((. . . (vi, zi), . . .), z1).

Returning to Example 5, the transformation from left to right proceeds by simply applying Law 12 and then Law 3. The 
program obtained is of course the same as before.

4.3. Derivation of higher-order programs

Now we turn to the analysis of laws that make it possible the derivation of higher-order programs from a sequence of 
compositions fn ◦ · · · ◦ f0. Like in the case of simple compositions, the derivation of a higher-order program from a sequence 
of compositions represents the independence from a language with lazy evaluation.

Like in Subsection 4.2, we assume that a pair (ti, zi) of a data structure and a value is generated in each composition. 
Again, f0 needs to be a producer, fn a consumer, whereas f1, . . . , fn−1 need to be simultaneously consumers and producers.

During the transformation to a higher-order program we will deal once again with a nested structure. Instead of a nested 
pair we will incrementally construct a structure of type
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(z1 → (z2 → (· · · → (zi → a, zi) · · ·), z2), z1)

where the zs are the types of the context parameters that are passed in the successive compositions. So, a structure of this 
type is a pair (p1, z1) composed by a function p1, which returns a pair (p2, z2) such that p2 is a function that returns 
again a pair, and so on. Associated to each of these structures we can define a functor N a = (z1 → (z2 → (· · · → (zi →
a, zi) · · ·), z2), z1) whose projection function εN :: N a → a is given by iterated function application: εN (p1, z1) = pi zi where 
(p j, z j) = p j−1 z j−1, j = 2, i.

Like for circular programs, we will see differences in the process of derivation of a higher-order program when we 
transform a sequence of compositions fn ◦ · · · ◦ f0 from right to left and from left to right. Again one of the differences is 
the order in which the nested structure is generated.

4.3.1. Right-to-left transformation
For the transformation in this order we need to analyse again the conditions that make it possible that a consumer 

(pfold) composed with a producer (buildp) is again a producer (buildp). The situation is similar to that of Law 11, with the 
only difference that now we are in the context of a higher-order program derivation. Given a transformer:

σ :: ∀ b . (b,a → b → b) → (z → W b,a′ → W b → z → W b)

where W is a functor and, for each algebra k, σ k = (σ1 k, σ2 k), it is possible to derive an algebra transformer:

τ :: ∀ b . (b,a → b → b) → (z → W b,a′ → (z → W b) → (z → W b))

where τ k = (τ1 k, τ2 k) with

τ1 k = λz → σ1 k z and τ2 k x r = λz → σ2 k x (r z) z

Notice that the pfold in the next law has type ([ a′ ], z) → ([ a ], y).

Law 13 (h-o chain rule). Let (N, εN) be a strictness-preserving functor and M a = N (a, z). Let W a = (a, y), for some type y. Let 
σ k = (σ1 k, σ2 k).

σ :: ∀ b . (b,a → b → b) → (z → W b,a′ → W b → z → W b)

⇒
pfold (σ in) ◦ εN ◦ buildpN g $ c = f z

where (f , z) = εN (buildpM (g ◦ τ ) c)
τ k = (τ1 k, τ2 k)
τ1 k = λz → σ1 k z
τ2 k x r = λz → σ2 k x (r z) z

Example 6. Recall the function distance presented in Example 5. The higher-order program derivation in right to left order 
applied to this function proceeds by first applying Law 13 and then Law 6. The higher-order program obtained is the 
following:

distance ps = f u
where

(f ,u) = g z
(g, z) = gk 0 0 ps
gk h l [ ] = (λz → (λu → 0, (0,0)),h / fromInteger l)
gk h l ((x,y) : ps) =

let (r,avH) = gk (y + h) (1 + l) ps
in (λz →

let (md,hp) = r z
in if y > z

then (λu → sqrt ((x − fst u)2 + (y − snd u)2) ‘max‘ (md u),hp)

else (λu → md u, if y > snd hp then (x,y) else hp),avH)

In this case, function gk returns a pair formed by a function g, that takes an integer denoting the average height as param-
eter, and the average height z. The application of g to z then returns a new pair formed by a new function f , that takes an 
integer denoting the height of the highest point below the average height, and precisely that height, denoted by u. Finally, 
f is applied to u to compute the final result.
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4.3.2. Left-to-right transformation
For the transformation in this other direction we proceed similarly as we did for standard circular programs. The same 

considerations hold in this case. The calculation of the successive consumers from left to right is performed using the 
following acid rain law.

Law 14 (h-o pfold–pfold fusion).

σ :: ∀ b . (b,a → b → b) → (z → b,a′ → b → z → b)

⇒
pfold (hnil,hcons) ◦ pfold (σ in) $ c = f z

where (f , z) = pfold (σ (knil,kcons)) c
knil = λz → hnil z
kcons x r = λz → hcons x (r z) z

Concerning the example of function distance, the left-to-right derivation of the higher-order program proceeds by apply-
ing Law 14 and then Law 5.

5. Data type theory

The programs schemes and laws introduced so far are actually valid for a wide class of datatypes and not only for lists. 
In this section we introduce the theoretical underlying concepts that are necessary for the generic formulation of program 
schemes and laws.

We write π1 :: (a, b) → a and π2 :: (a, b) → b to denote the product projections. The split of two functions f and g is 
defined as (f � g) x = (f x, g x). Among other properties, it holds that:

f ◦ π1 = π1 ◦ (f × g) (2)

g ◦ π2 = π2 ◦ (f × g) (3)

f = (π1 ◦ f )� (π2 ◦ f ) (4)

The structure of datatypes can be captured using the concept of a functor. Recall that a functor consists of a type 
constructor F together with a function mapF :: (a → b) → (F a → F b), which preserves identities and compositions.

Semantically, recursive datatypes are understood as least fixed points of functors: Given a datatype declaration it is 
possible to derive a functor F such that the datatype is the least solution to the equation x ∼= F x. We write μF to denote 
the type corresponding to the least solution. The isomorphism between μF and F μF is provided by two strict functions 
inF :: F μF → μF and outF :: μF → F μF , inverses of each other. Function inF packs the constructors of the datatype while 
outF the destructors (for more details see e.g. [28,29]).

Example 7. The structure of the list type [ a ] is captured by a functor L on two variables (what is usually called a bifunctor) 
due to the presence of the type parameter.

data L a b = FNil | FCons a b

mapL :: (a → c) → (b → d) → L a b → L c d
mapL f g FNil = FNil
mapL f g (FCons a b) = FCons (f a) (g b)

We will use μ(L a) and [ a ] interchangeably. Then,

inLa :: L a [ a ] → [ a ]
inLa FNil = [ ]
inLa (FCons a as) = a : as

outLa :: [ a ] → L a [ a ]
outLa Nil = FNil
outLa (a : as) = FCons a as

5.1. Fold

Given a functor F that captures the structure of a datatype and a function k :: F a → a (called an F-algebra), fold [29] is 
defined as the least function such that:

foldF :: (F a → a) → μF → a

foldF k ◦ inF = k ◦ F (foldF k)
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If functor F is given by n constructors,

data F a = FC1 t1,1 · · · t1,r1 | · · · | FCn tn,1 · · · tn,rn

then an algebra k :: F a → a has n components (k1, . . . , kn), each with type ki :: ti,1 → ·· · → ti,ri → a, such that 
k (F Ci vi,1 · · · vi,ri ) = ki vi,1 · · · vi,ri . For example, an algebra for the functor L a is a function k :: L a b → b of the form:

k FNil = nil
k (FCons a b) = cons a b

with components nil :: b and cons :: a → b → b. This is the reason why in the specific instance of fold for the list type [a] 
(defined in Section 2) we wrote an algebra simply as a pair (nil, cons). The same can be done with algebras associated to 
other datatypes.

Given a functor F , we can define a corresponding build operator that captures producer functions that generate structures 
of type μF .

buildF :: (∀ a . (F a → a) → c → a) → c → μF
buildF g = g inF

Notice that the abstraction of the datatype’s constructors is given in terms of an F-algebra. Associated with build we have 
the following shortcut fusion law [30].

Law 15 (fold/build). For strict k,1

foldF k ◦ buildF g = g k

5.2. Fold with parameters

We are interested in consumer functions of the form f :: (μF , z) → a, defined by structural recursion on μF and with 
context information of type z. Such functions can be defined as a higher-order fold of type μF → (z → a). Another alter-
native is to avoid the use of higher-order and to define them directly in terms of a program scheme called pfold (a fold 
with parameters) [31]. The definition of pfold relies on the concept of strength of a functor F , a polymorphic function 
stF :: (F a, z) → F (a, z) that distributes the value of type z to the variable positions of functor F (i.e. those of type a). To be 
a strength, stF must satisfy certain coherence axioms (see [31,32] for details).

For instance, the strength corresponding to functor L a is given by:

stLa :: (L a b, z) → L a (b, z)
stLa (FNil, z) = FNil
stLa (FCons a b, z) = FCons a (b, z)

The strength plays an important role in the definition of pfold as it represents the distribution of the context information 
to the recursive calls.

Given a functor F and a function h :: (F a, z) → a, pfold [31] is defined as the least function such that:

pfoldF :: ((F a, z) → a) → (μF , z) → a
pfoldF h ◦ (inF × id) = h ◦ ((mapF (pfoldF h) ◦ stF ) � π2)

A function h is something similar to an algebra, but it also accepts the value of the parameters. In fact, if functor F is given 
by n constructors,

data F a = FC1 t1,1 · · · t1,r1 | · · · | FCn tn,1 · · · tn,rn

then h :: (F a, z) → a has also n components (h1, . . . , hn), now each with type hi :: ti,1 → ·· · → ti,ri → z → a. For example, 
for functor L a, h :: (L a b, z) → b is of the form:

h (FNil, z) = hnil z
h (FCons a b, z) = hcons a b z

where hnil :: z → b and hcons :: a → b → z → b are the component functions. Like with algebras, in the specific instances of 
pfold we write the tuple of components instead of h. We did so in the instance for lists defined in Section 3.

The following equation shows one of the possible relationships between pfold and fold. For h with components 
(h1, . . . , hn), by fixing the value z we have that:

pfoldF h (t, z) = foldF k t where ki x̄ = hi x̄ z (5)

By x̄ we denote a sequence of values x1 · · · xri . Observe that k is an algebra with components (k1, . . . , kn).

1 The strictness condition on k was not mentioned in the concrete instance of the law for lists (Law 1, shown in Section 2) because a function defined 
by pattern matching is strict. That is the case of the algebras considered in those instances.
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5.3. Extended shortcut fusion

By extended shortcut fusion we mean the case where the intermediate data structure is generated as part of another 
structure. This extension has been a fundamental tool for the formulation of shortcut fusion laws for monadic programs 
[18,19], and for the derivation of (monadic) circular and higher-order programs [21,20]. It is based on an extended form of 
build:

buildF ,N :: (∀ a . (F a → a) → c → N a) → c → N μF
buildF ,N g = g inF

where N is a functor that represents the structure in which the produced data structure is contained. This is a natural 
extension of the standard build function as buildF can be obtained from buildF ,N by considering the identity functor.

Law 16 (extended fold/build). For strict k and strictness-preserving N,

mapN (foldF k) ◦ buildF ,N g = g k

Proof. See e.g. [18]. �
6. Multiple intermediate structure deforestation, generically

In this section we present the generic formulation of the laws that give sufficient conditions for the derivation of mono-
lithic programs from sequences of compositions. We start with the analysis of the standard case of a sequence of consumers 
given by folds followed by a build. Then we analyse the case of a sequence of pfolds followed by a buildp which gives rise 
to programs with multiple circularities or nested higher-order.

6.1. Standard case

As we saw in the list case, when the consumers are given by folds, i.e. when the sequence of compositions is of the form 
fold kn ◦ · · · fold k1 ◦ build g , both transformations (left-to-right and right-to-left) are of the same degree of complexity.

The left-to-right transformation is based on the following standard acid rain law for fold which states conditions for fusing 
consumers. It is a generic version of Law 7 which shows the case for lists. The transformer τ has now a generic formulation, 
specifying a transformation from F-algebras to G-algebras, for arbitrary functors F and G.

Law 17 (fold-fold fusion). For strict k,

τ :: ∀ a . (F a → a) → (G a → a)

⇒
foldF k ◦ foldG (τ inF ) = foldG (τ k)

Proof. We use the fact that acid rain laws can be expressed in terms of shortcut fusion [30]. By defining g k = foldG (τ k) it 
follows that foldG (τ inF ) = buildF g and therefore by Law 15 we obtain the desired result. �

After fusing all consumers from left to right, the resulting fold is finally fused with the producer (the build function) 
using standard shortcut fusion.

The right-to-left transformation starts by fusing the producer with the first consumer. In order to keep going with the fu-
sion process it is necessary that, at each intermediate step of the transformation, the result of fusing producer and consumer 
is again a producer. This condition is stated by the following law.

Law 18 (chain law). For strictness-preserving τ ,

τ :: ∀ a . (F a → a) → (G a → a)

⇒
foldG (τ inF ) ◦ buildG g = buildF (g ◦ τ )

It is then natural to state a chain law for the extension. The previous law is simply the case where N is the identity 
functor.

Law 19 (extended chain law). For strictness-preserving τ and N,

τ :: ∀ a . (F a → a) → (G a → a)

⇒
mapN (foldG (τ inF )) ◦ buildG,N g = buildF ,N (g ◦ τ )
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Proof. The algebra τ inF is strict because inF is a strict algebra and τ preserves strictness.

N (foldG (τ inF )) ◦ buildG,N g

= { Law 16 }

g (τ inF )

= { g ◦ τ :: ∀ a . (F a → a) → c → N a,definition of extended build }
buildF ,N (g ◦ τ ) �

We can apply the generalization a step further. The following law describes a situation where the transformer τ returns 
an algebra whose carrier is not exactly the carrier of the input algebra but the application of a function on it.

Law 20. Let W be a functor. For strictness-preserving τ and N,

τ :: ∀ a . (F a → a) → (G (W a) → (W a))

⇒
mapN (foldG (τ inF )) ◦ buildG,N g = buildF ,NW (g ◦ τ )

The proof is similar to that of the previous law.

6.2. Derivation of programs with multiple circularities

The derivation of circular programs on arbitrary datatypes uses the generic version of buildp:

buildpF :: (∀ a . (F 2a → a) → c → (a, z)) → c → (μF , z)
buildpF g = g inF

Law 21 (pfold/buildp). For h with components (h1, . . . , hn),

pfoldF h ◦ buildpF g $ c = v
where (v, z ) = g k c

ki x̄ = hi x̄ z

Proof. See [20]. �
Like we saw in the case of lists, a sequence of compositions pfold hn ◦ · · · ◦ pfold h1 ◦ buildp g gives rise to a program with 

multiple circularities whenever some conditions are satisfied. Before stating those conditions in the generic case, we present 
an extension of the previous law which will be used later. It uses an extension of buildp that captures the case where the 
pair is returned as part of another structure.

buildpF ,N :: (∀ a . (F a → a) → c → N (a, z)) → c → N (μF , z)
buildpF ,N g = g inF

As we did for lists, we assume that functor N has associated a polymorphic function εN :: N a → a.

Law 22. Let (N, εN) be strictness-preserving. For h with components (h1, . . . , hn),

pfoldF h ◦ εN ◦ buildpF ,N g $ c = v
where (v, z ) = εN ◦ g k $ c

ki x̄ = hi x̄ z

Proof. This proof is a simply generalization of that of Law 21.

pfoldF h ◦ εN ◦ buildpF,N g $ c

= { definition of buildp }

pfoldF h ◦ εN ◦ g inF $ c

= { (4) }

pfoldF h $ (π1 ◦ εN ◦ g inF )� (π2 ◦ εN ◦ g inF ) $ c

= { (5), ki x̄ = hi x̄ z }

foldF k ◦ π1 ◦ εN ◦ g inF $ c where z = π2 ◦ εN ◦ g inF $ c

= { (2) }

π1 ◦ (foldF k × id) ◦ εN ◦ g inF $ c where z = π2 ◦ εN ◦ g inF $ c
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= { (1) }

π1 ◦ εN ◦ mapN (foldF k × id) ◦ g inF $ c where z = π2 ◦ εN ◦ g inF $ c

= { Law 16 with functor M a = N (a, z) }

π1 ◦ εN ◦ g k $ c where z = π2 ◦ εN ◦ g inF $ c

= { (1) and mapN π2 ◦ g inF = mapN π2 ◦ g k }

π1 ◦ εN ◦ g k $ c where z = π2 ◦ εN ◦ g k $ c

= { (4) }

v where (v, z ) = εN $ g k $ c
ki x = hi x̄ z �

We start analyzing the right-to-left transformation. In order to proceed, it is necessary that, at each intermediate step 
of the transformation, the result of fusing a producer (buildp) with a consumer (pfold) is again a producer (buildp). This 
condition is established by the following laws.

Given a transformer σ ::∀ a . (F a → a) → ((G a, z) → a) such that, for each algebra k, σ k has components (σ1 k, . . . , σn k), 
it is possible to derive an algebra transformer τ :: ∀ a . (F a → a) → (G a → a) from σ , such that τ k has components 
(τ1 k, . . . , τn k), where τi k ̄x = σi k ̄x z for a fixed z. In the same manner, an algebra transformer

τ :: ∀ a . (F a → a) → (G (W a) → W a)

can be derived from

σ :: ∀ a . (F a → a) → ((G (W a), z) → W a)

Such a σ is used in the next law to represent the case where the consumer is also a producer. Observe that pfoldG (σ inF ) ::
(μG, z) → W μF .

Law 23. Let (N, εN) be strictness-preserving and M a = N (a, z). Let σ k = (σ1 k, . . . , σn k).

σ :: ∀ a . (F a → a) → ((G (W a), z) → W a)

⇒
pfoldG (σ inF ) ◦ εN ◦ buildpG,N g $ c = v

where (v, z ) = εN ◦ buildF ,MW (g ◦ τ ) $ c
τi k x̄ = σi k x̄ z

Proof.

pfold (σ inF ) $ εN $ buildpG,N g $ c

= { Law 22 }

v where (v, z ) = εN $ g (τ inF ) $ c
τi k x̄ = σi k x̄ z

= { g ◦ τ :: ∀ a . (F a → a) → c → M (W a), definition of build }

v where (v, z ) = εN $ buildF,MW (g ◦ τ ) $ c
τi k x̄ = σi k x̄ z �

By taking W a = (a, y) in the previous law and observing that, for that W , buildF,MW g = buildpF ,M g, we get the following 
chain rule that is the essential tool for the right-to-left derivation of programs with multiple circularities. In this case 
pfoldG (σ inF ) :: (μG, z) → (μF , y).

Law 24 (chain rule). Let (N, εN) be strictness-preserving and M a = N (a, z). Let W a = (a, y), for some type y, and σ k =
(σ1 k, . . . , σn k).

σ :: ∀ a . (F a → a) → ((G (W a), z) → W a)

⇒
pfoldG (σ inF ) ◦ εN ◦ buildpG,N g $ c = p

where (p, z ) = εN ◦ buildpF ,M (g ◦ τ ) $ c
τi k x̄ = σi k x̄ z

The left-to-right transformation is much easier and is supported by the following acid rain law.
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Law 25 (pfold–pfold fusion).

σ :: ∀ a . (F a → a) → ((G a, z) → a)

⇒
pfoldF h ◦ pfoldG (σ inF ) $ c = v

where (v, z ) = pfoldG (σ k) c
ki x̄ = hi x̄ z

Proof. Like fold-fold fusion, this law can also be formulated in terms of shortcut fusion. By defining g k = pfoldG (σ k), we 
have that pfoldG (σ in) = buildpG g. Then, by Law 21 the result follows. �
6.3. Derivation of higher-order programs

The transformation into higher-order programs is based on the fact that every pfold can be expressed in terms of a 
higher-order fold: For h :: (F a, z) → a,

pfoldF h = apply ◦ (foldF ϕh × id) (6)

with the algebra ϕh :: F (z → a) → (z → a) given by

ϕh = curry (h ◦ ((mapF apply ◦ stF ) � π2))

where apply :: (a → b, a) → b is function application apply (f , x) = f x. Therefore, foldF ϕh :: μF → (z → a) is the curried 
version of pfoldF h.

Using this relationship we can state the following law. As mentioned for lists, this law is a special case of a more general 
program transformation technique called lambda abstraction [27].

Law 26 (h-o pfold/buildp). For left-strict h,2

pfoldF h ◦ buildpF g $ c = f z
where (f , z) = g ϕh c

As for circular programs, we can also formulate an extended version.

Law 27. Let (N, εN) be strictness-preserving functor. For left-strict h,

pfoldF h ◦ εN ◦ buildpF ,N g $ c = f z
where (f , z) = εN ◦ g ϕh $ c

The right-to-left transformation requires the chain law that we present below. Given a transformer

σ :: ∀ a . (F a → a) → ((G (W a), z) → W a)

with W an arbitrary functor, it is possible to derive an algebra transformer

τ :: ∀ a . (F a → a) → (G (z → W a) → (z → W a))

from σ , given by τ k = ϕσk .

Law 28. Let (N, εN) be strictness-preserving and M a = N (z → a). Let σ be strictness-preserving.

σ :: ∀ a . (F a → a) → ((G (W a), z) → W a)

⇒
pfoldG (σ inF ) ◦ εN ◦ buildpG,N g $ c = f z

where (f , z) = εN ◦ buildF ,MW (g ◦ τ ) $ c
τ k = ϕσk

Finally, by considering W a = (a, y) and using the fact that buildF,MW g = buildpF ,M g we get the chain law.

2 By left-strict we mean strict on the first argument, that is, h (⊥, z) = ⊥.
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Law 29 (h-o chain rule). Let (N, εN) be strictness-preserving and M a = N (z → a). Let W a = (a, y), for some type y, and σ
strictness-preserving.

σ :: ∀ a . (F a → a) → ((G (W a), z) → W a)

⇒
pfoldG (σ inF ) ◦ εN ◦ buildpG,N g $ c = p

where (f , z) = εN ◦ buildpF ,M (g ◦ τ ) $ c
τ k = ϕσk

The left-to-right transformation relies on the following acid rain law.

Law 30 (h-o pfold–pfold fusion). For left strict h,

σ :: ∀ a . (F a → a) → ((G a, z) → a)

⇒
pfoldF h ◦ pfoldG (σ inF ) $ c = f z

where (f , z) = pfoldG (σ ϕh) c

7. Conclusions

In this paper, we presented a shortcut fusion approach to deforestation in programs consisting of an arbitrary number 
of function compositions. Indeed, while shortcut fusion was originally conceived for compositions of a single consumer 
function with a single producer function, we showed how multiple compositions can be fused together in a single function 
definition. We addressed cases of standard shortcut fusion [1] as well as extensions from which it is possible the derivation 
of circular and higher-order programs [3]. Our approach was calculational and established sufficient conditions for fusion 
to proceed. A relevant aspect of our work was the combination of shortcut fusion with the fusion approach based on the 
formulation of acid rain laws. This combination of fusion approaches led to the definition of the chain laws, which constitute 
one of the tools for the formulation of sufficient conditions for the fusion of multiple compositions.

We also analyzed the order in which the fusion process may be applied (left-to-right or right-to-left) and we showed 
that both cases are indistinct since they lead to exactly the same result (same code). The difference between them is in 
the complexity of their steps. Comparing the two, the left-to-right transformation is perhaps the simplest one as it only 
requires the successive application of acid rain laws (for fold or pfold) and a shortcut fusion law at the end. In contrast, the 
right-to-left transformation requires the successive application of chain laws, concluding with the application of a shortcut 
fusion law.

The derivation of circular programs is strongly associated with attribute grammar research [12,33], and we expect our 
work to clarify even further their similar nature. On the other hand, the derivation of higher-order programs is motivated by 
efficiency. Indeed, as the programs we considered here are of the same kind as the ones we have compared in an exploratory 
way in [34], we expect the derived higher-order programs to be more efficient when compared to their multiple traversal 
and circular counterparts. We believe, however, that comparing the performance characteristics (both in terms of runtime 
and memory efficiency) of the different types of programs we considered requires a non-trivial, systematic, complete and 
representative benchmark that on its own sets a very interesting path for future research.

In this work we only analyzed the case of multiple compositions of purely functional programs. The extension for multi-
ple compositions of monadic programs (i.e. programs that produce effects modeled by monads) is left for future work. The 
starting point for this extension will be the shortcut fusion laws for single compositions of monadic programs [3,18].
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