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ABSTRACT
Depth cameras provide a natural and intuitive user interaction
mechanism in virtual reality environments by using hand gestures
as the primary user input. However, building robust VR systems
that use depth cameras are challenging. Gesture recognition ac-
curacy is affected by occlusion, variation in hand orientation and
misclassification of similar hand gestures. This research explores
the limits of the Leap Motion depth camera for static hand pose
recognition in virtual reality applications. We propose a system
for analysing static hand poses and for systematically identifying
a pose set that can achieve a near-perfect recognition accuracy.
The system consists of a hand pose taxonomy, a pose notation, a
machine learning classifier and an algorithm to identify a reliable
pose set that can achieve near perfect accuracy levels. We used this
system to construct a benchmark hand pose data set containing
2550 static hand pose instances, and show how the algorithm can
be used to systematically derive a set of poses that can produce an
accuracy of 99% using a Support Vector Machine classifier.

CCS CONCEPTS
•Computingmethodologies→ Supervised learning; •Human-
centered computing→ User interface design.
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1 INTRODUCTION
Virtual Reality (VR) systems simulate three-dimensional environ-
ments to provide an immersive experience that is achieved through
a VR head-mounted display, which displays a stereoscopic view
of the simulated world. Users typically interact with VR environ-
ments using hand-held controllers, cameras, or gloves. However,
hand-held and wearable devices detracts from the immersive expe-
rience. A more natural and intuitive means of interaction may be
provided by hand gestures and hand poses. Depth cameras, such
as the Leap Motion Controller (LMC) and Microsoft Kinect have
proven to be effective input devices for vision-based hand pose
recognition, as they make the task of separating foreground from
background considerably easier than RGB cameras. Depth cameras,
such as the LMC, that capture infrared are especially useful as they
are invariant to skin colour and visual lighting conditions.

The Leap Motion Controller (LMC) is a lightweight and afford-
able stereoscopic infrared camera that specializes in tracking a
user’s hands with sub-millimeter accuracy [8]. The device consists
of three infrared LEDs, that make it invariant to lighting conditions
and skin colour, and two infrared cameras that provide a stereo-
scopic view of the user’s hands, allowing it to create a depth map.
Due to its small weight, the device can be mounted onto virtual real-
ity head mounted displays that renders 3D environments. However,
gesture recognition systems using the LMC typically do not pro-
duce the level of recognition accuracy (> 99%) required for many
real world VR applications. Some of the causes of misclassification
are occlusion, the effect of hand orientation and confusion between
similar gestures.

This work explores the limits of the Leap Motion depth camera
for building an effective VR application. The paper describes and
evaluates a system for selecting a set of static hand poses with
near-perfect recognition accuracy.

The rest of the paper is organised as follows: Section 2 provides
a literature review, section 3 describes the pose analysis system,
section 4 presents a discussion and section 5 concludes.

2 LITERATURE REVIEW
2.1 Hand Poses for VR
The Leap Motion Camera (LMC) has been extensively applied to
the field of Sign Language recognition [5, 17–19, 30]. Other studies
have used the LMC for 3D virtual scene and object manipulation
[7, 13], television remote control [29], 3D painting [26], and medical
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rehabilitation [1, 11, 25]. Several studies have used the LMC for
gestural input and a VR head-mounted display for visual output.
These include data visualization and interaction through hand poses
[6], robotic arm remote operation [27], 3D model manipulation and
visualization [2, 14, 22], 3D virtual navigation [15], and medical
rehabilitation [3]. Hand pose recognition by the LMC was used in
a VR Computer Aided Design application [2]. The two-fingered
pinch pose was used to pick up a stationary component of a virtual
mechanical device, and users could freely move this component
around provided the pinch pose is held. Hand poses were also used
to control movement in VR [15].

Publicly available datasets of hand poses include the Innsbruck
Multi-View Hand Gesture dataset [23] (captured by the Kinect), the
ChaLearn dataset [9] (captured by the Kinect), and the dataset by
Molina et al. [20] (captured by a time-of-flight camera). Datasets
captured by an LMC have also been created, such as the LeapMotion-
Gesture3D Dataset and Handicraft-Gesture Dataset both by Lu et al.
[16], however these datasets consist of dynamic gestures. None of
the above datasets contain gestures that were made in VR environ-
ments.

2.2 Gesture Taxonomies
Gesture taxonomies that categorize gestures are useful in deriving
and describing hand poses. One way to categorize gestures is by the
style of gesture [12]. For example, gestures can be classified as being
either acts or symbols, where sign languages often employ symbolic
gestures, while acts are context-sensitive [24]. Vafaei argues that
previous taxonomies, such as the one by Karam and Schraefel [12],
are too broad, and do not capture specific dimensions, such as the
physical form of the hand [28]. Vafaei proposed a taxonomy by
adjusting and combining dimensions used in the taxonomies of
Wobbrock et al. [31] and Ruiz et al. [21]. The categories defined in
the taxonomy include: Nature, Form, Binding, Temporal, Context,
Dimensionality, Complexity, Body Part, Handedness, Hand Shape,
and Range of Motion. Since many recent studies in hand gesture
recognition involve user-elicitation, Choi et al. set the focus of their
study on developing a taxonomy that allows researchers to notate
these gestures systematically [4].

2.3 Classification of Hand Poses
Widely used techniques for recognizing hand poses utilizing dif-
ferent input devices and feature sets include the Support Vector
Machine, k-Nearest Neighbour algorithm, and Artificial Neural
Networks. The Leap Motion Controller, mounted onto the Oculus
Rift to capture hand poses for a virtual reality application [6], used
the k-Nearest Neighbour algorithm as a classifier and achieved a
recognition rate of 82.5% four distinct poses with a value of k = 3.
The LMC was used to detect the American Sign Language alphabet-
ical hand poses [5]. The k-Nearest Neighbour algorithm achieved a
72.78% accuracy, while the the Support Vector Machine achieved
an accuracy of 79.83%. Features used by both of these classifiers
consist of the pinch and grab strength, both of which are provided
by the Leap Motion API, and a set of derived features.

3 POSE ANALYSIS SYSTEM
The pose analysis system consists of the three key components:

(1) A pose taxonomy, pose notation and a pose data set
(2) A machine learning system for pose recognition.
(3) An algorithm to construct a reliable pose set.

The taxonomy, with the structured notation, facilitated the con-
struction of a pose data set. This ensured that the pose data set
had a good coverage of different poses. Various machine learning
techniques were evaluated for automated recognition of poses. The
results of the pose recognition experiments made it clear that the
machine learning algorithms were not capable of providing high
enough recognition accuracies for use in VR systems when using all
poses in the pose data set.. An algorithmwas therefore developed to
systematically derive a pose set that would guarantee recognition
accuracies suitable for use in VR systems.

3.1 A pose taxonomy, notation and data set
In order facilitate the acquisition and analyse of poses, we developed
a pose taxonomy and a pose notation and used this to construct a
pose data set.

3.1.1 Pose taxonomy and notation. The taxonomy was based on
Choi et al.’s comprehensive hand gesture taxonomy [4], which in-
cludes both hand gestures and static hand poses. Since this research
is limited to static poses, only the Hand Shape and Hand Orientation
parameters were included and the gesture type was set to one hand.
Dynamic gestures, hand location and arm shape were discarded.
Two other modifications were made to Choi’s taxonomy. The finger
inter relation parameter of the hand shape is ambiguous when a
finger crosses in front of another. This depends on whether the
hand is facing forwards or backwards, since the same finger would
now instead be behind the other. This is resolved by defining the
Cross (Fi in front of Fj ) as finger i crossing over finger j on the palm
side. The left and right hands are mirror-images of one another,
which would cause problems with the Hand orientation values of
Left and Right. To resolve this we renamed Left and Right to Inwards
and Outwards, where Inwards is left for the right hand and right for
the left hand, and Outwards is the opposite. The modified taxonomy
is shown in Figure 1.

As per Choi et al.’s notation, a single hand shape (HS) is rep-
resented by five finger poses, then four finger inter-relations be-
tween the thumb and each of the fingers, then three inter-relations
between adjacent non-thumb fingers. The format is as follows:
HS = f1 f2 f3 f4 f5; f12 f13 f14 f15 − f23 f34 f45 where fi represents the
finger pose of finger i , and fi j represents the finger inter-relation
between fingers i and j. Finger 1 is the thumb, and finger 5 is the
pinky. For example, a fist pose with the thumb pointing up would
be represented by 16666; 3222 − 333. Hand orientation (HO) is rep-
resented in the following format: HO = PO ; FFO where PO and
FFO are Palm Orientation and Fist-Face Orientation respectively.
In the case where the palm faces forward and the fists point up, the
Hand Orientation would be denoted as 5; 1.

3.1.2 The pose data set . A total of 2550 poses were captured from
25 1 participants. The dataset consists of 102 pose captures taken
for 29 different hand poses for each participant. A VR environment

1All participants were Computer Science students at the University of KwaZulu-Natal
who gave informed and voluntary consent for the capture and use of the data in the
study.
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Figure 1: A modified version of Choi et al.’s notation. The
Left and Right values are replaced by Inwards and Outwards
respectively, and the ambiguity in the Cross values has been
resolved.

was implemented using the Unity game engine and used to capture
the poses. The environment rendered the Leap Motion Controller’s
output as virtual hands, mimicking the participant’s physical hands.
In the event of the virtual hands displaying a significantly different
output to the pose they were attempting, the participants were
instructed to remove and re-introduce their hands to the scene in
the same pose. If on the second try, there was still erroneous output,
the pose was captured regardless.

Each participant was asked to make the hand pose displayed
in front of them at any orientation of their choosing. Once the
experimenter was satisfied that they were making the correct pose,
the pose was captured. They were then asked to do the same pose,
but in a different orientation of their choosing again. This is fol-
lowed by capturing the same pose twice in the orientation displayed
to them, known as the requested orientation. This results in two
poses being made at any orientation, followed by two poses in
the requested orientation. The requested orientation is the orien-
tation of a particular pose that attempts to minimize the number
of occluded fingers such that the LMC can detect finger positions
accurately. This process was repeated for the Fist Poses, Index Point-
ing Poses, Open-Palm Poses, Finger Touches and Loops, and Finger
Crosses poses. These poses will be referred to as the Normal Poses.
For the Thumbs-Up Poses, hand orientation plays an important role,
thus participants were not asked to choose a random orientation.
For these poses, two data captures were made at the requested ori-
entation. The requested orientation is not necessarily optimized for
the LMC, but rather illustrates to the participant which thumbs-up
hand orientation was required. A selection of the poses is given in
Fig 2.

The pose set includes all the common pose types found in LMC-
based VR applications. The pose set contains all the common poses
found in VR applications and includes the OpenHand, Point, Classic

Figure 2: A selection of Hand Poses

Fist, Pinch, and Thumbs-Up poses. The pose set covers a wide array
of possible poses, for each parameter in the Hand Shape and Hand
Orientation categories in the pose taxonomy shown in Figure 1.
It also contains several poses that are similar to one another for
testing separating power in pose recognition systems.

3.2 Pose Recognition
Three machine learning classification algorithms viz. k-Nearest
Neighbour, Multilayer Perceptron and Support Vector Machines,
were evaluated for pose recognition.

3.2.1 Feature Engineering. A set of features used in similar research
[6] was extracted from the LMC’s data and fed as training data to
the classifiers. Both Hand Shape and Hand Orientation features
were used to fully describe a pose. The choice of these features are
based on the modified version of Choi et al.’s hand pose notation
as seen in Figure 1. Further details can be found in [6].

(1) Hand Shape Feature:
• Normalized tip-to-palm distances A set of five length mea-
surements representing a normalized distance from each
of the fingertips to the centre of the palm. Each distance is
normalized by dividing the tip-to-palm distance of a finger
by the maximum extended length of that finger.
• Finger Tri-Areas A set of four area measurements, each
representing the area of the triangular space between ad-
jacent fingers. [5]

(2) Hand Orientation Features
• Palm Normal Vector A three dimensional normalized vec-
tor depicting the normal direction of the palm in Cartesian
coordinates. This feature can be extracted directly from
the Leap Motion API.
• Palm Direction Vector A three dimensional normalized
vector depicting the direction from the palm to the base
of the fingers in Cartesian coordinates. This feature can
be extracted directly from the Leap Motion API.

3.2.2 Pose Classification. The average recognition accuracy and
average recognition latency (average time in milliseconds for a
single pose to be recognised) were used as performance metrics for
comparing the algorithms. Hyper-parameters for each algorithm
were tuned manually.

The classification accuracy of the three algorithms were com-
pared across three experiments using stratified k-fold cross valida-
tion, with k = 25.

The three experiments are summarised below:
(1) Experiment 1 - Orientation-Independent Experiment: To de-

termine the effectiveness of a classifier in classifying hand
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Table 1: Results for the Orientation-Independent Experi-
ment.

Classifier Average Accuracy Average Latency Average Training Time
k-Nearest Neighbour 66.6667% 0.7835ms 0s

Artificial Neural Network 63.0980% 0.5874ms 145.691s
Support Vector Machine (PUK) 70.3922% 31.5743ms 2.525s
Support Vector Machine (Linear) 59.098% 0.0727ms 2.605s

Table 2: Results for the Requested Orientation Experiment.

Classifier Average Accuracy Average Latency Average Training Time
k-Nearest Neighbour 76.6087% 0.4037ms 0s

Artificial Neural Network 88.1739% 0.5845ms 76.77s
Support Vector Machine (PUK) 81.3913% 17.2373ms 0.725s
Support Vector Machine (Linear) 78.6087% 0.0721ms 0.609s

Table 3: Results for the Thumbs-Orientation Experiment.

Classifier Average Accuracy Average Latency Average Training Time
k-Nearest Neighbour 96.5714% 0.6547ms 0s

Artificial Neural Network 92.8571% 0.5314ms 141.305s
Support Vector Machine (PUK) 96.0% 44.8328ms 2.475s
Support Vector Machine (Linear) 92.8571% 0.1419ms 2.177s

poses regardless of orientation. All captured data was used,
with the exception that all Thumbs-Up Poses were grouped
together.

(2) Experiment 2 - Requested Orientation Experiment: To deter-
mine the effectiveness of a classifier in classifying hand poses
at the requested orientation. The results of this experiment
can be compared to the Orientation-Independent Experiment
to determine the effect of fixing the orientation.
Only requested orientation poses are used from the data
set. Most Thumbs-Up Poses were not used, except for the
Thumbs-up, fist-in pose which puts all the fingers in the
LMC’s view.

(3) Experiment 3 - Thumbs-Orientation Experiment: To deter-
mine the effectiveness of a classifier in classifying pose
shape and orientation simultaneously. The Thumbs-Up Poses
group differ from other pose groups by hand shape, and from
one another by hand orientation. By classifying the poses
in this group, a classifier would have its hand shape and
orientation-determining capabilities tested to achieve a cor-
rect classification. This provides insight into the orientation-
distinguishing capabilities of a classifier. All poses form part
of the training set, however only the Thumbs-Up Poses group
are tested.

The results from Experiment 1 show that when using all poses
in the data set, no classifier achieved a sufficient accuracy (>99%)
to be effectively used in a VR application. The SVM-PUK classifier
achieved a substantially higher accuracy than the other classifiers.
However, most VR applications require only a subset of these 29
unique poses. The next section provides a method for selecting
such a subset.

3.3 Constructing a reliable pose set
To reduce problematic poses we designed a method to measure
similarity and an algorithm that used this to reduce an input set of
poses to a set that will guarantee near-perfect recognition accuracy.

3.3.1 Measuring Similarity. A simple way to illustrate which poses
are often mis-classified as one another is through a confusion ma-
trix. Fig 3 shows such a matrix, with high classification occur-
rences highlighted in red. The matrix represents the results from
the orientation-independent SVM-PUK experiment. All rows show
accuracies in percent for each unique pose, except for the Thumbs-
Up pose in the last row which combines all Thumbs-Up poses and
shows counts out of a total of 350 as described in Experiment 1.
The other experiments showed similar patterns.Table 5.16: SVM-PUK confusion matrix of orientation-independent data in the benchmark
pose set.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W

ASL-A = A 56 12 4 6 4 0 2 0 0 0 1 0 0 0 0 1 0 1 1 4 0 0 8
Classic Fist = B 8 40 19 6 10 0 1 0 0 1 0 1 0 0 1 0 0 4 0 7 0 0 2

Hidden Thumb = C 4 16 51 16 5 0 1 0 0 0 0 0 0 0 0 0 0 1 2 4 0 0 0
ASL-M = D 5 7 16 52 10 0 2 0 0 0 0 0 0 0 1 0 0 0 2 1 0 0 4
ASL-N = E 6 8 8 14 51 0 1 0 0 1 0 1 0 0 1 0 0 3 2 2 0 0 2

Point = F 0 0 0 0 0 84 6 0 0 1 0 0 1 0 0 0 0 0 0 1 3 4 0
Index Forward = G 5 3 4 1 1 10 59 0 0 2 0 1 1 0 4 0 0 2 3 1 0 2 1

Open Hand = H 0 0 0 0 0 0 0 79 6 1 1 2 10 0 0 0 1 0 0 0 0 0 0
Neutral Hand = I 0 0 0 0 0 1 0 8 63 1 4 3 2 10 3 2 0 0 2 0 1 0 0

ASL-B = J 1 0 1 0 2 1 1 0 0 65 10 7 1 1 1 1 0 0 2 0 3 2 1
Flat Hand = K 1 0 0 0 0 0 0 0 3 5 78 8 2 1 0 0 0 0 1 0 0 0 1

Thumb-Middle Group = L 0 0 0 0 0 1 0 2 2 9 10 61 1 2 0 0 0 0 9 0 3 0 0
Spok = M 0 0 0 0 0 0 0 12 7 0 6 0 67 3 1 0 2 0 0 0 1 0 1
Claw = N 0 0 0 0 0 1 0 2 16 0 0 2 1 69 4 1 1 0 2 0 0 1 0

ASL-C = O 0 0 0 0 0 1 1 0 5 2 0 1 4 3 74 0 0 0 4 5 0 0 0
OK-Pose = P 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 94 2 0 1 0 0 0 0

Middle OK-Pose = Q 0 0 0 0 0 0 0 2 1 0 0 0 0 1 0 3 87 1 2 0 1 2 0
Pinch = R 4 2 0 1 1 1 4 0 0 0 0 0 0 1 0 0 0 71 5 9 1 0 0

Finger Purse = S 2 0 1 1 2 0 4 0 1 1 1 2 2 0 5 2 0 1 68 5 1 0 1
ASL-O = T 4 7 2 4 4 0 4 0 0 0 0 0 0 0 3 1 0 2 3 64 0 0 2
ASL-R = U 0 1 0 0 1 9 3 0 0 1 1 1 0 1 0 1 1 0 0 0 58 22 0

Inverse ASL-R = V 0 0 0 0 0 13 1 1 0 1 1 2 0 1 0 0 0 0 1 0 17 61 1
Thumbs-Up = W 0 2 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 343

all often misclassified as one another. Additionally, the ASL-O and Index Forward

poses are often confused with the Fist Poses and vice versa.

The Point pose has a high classification accuracy, however when the index finger is

dipped forward to form the Index Forward pose, accuracy drops significantly.

In the Open-Palm poses (poses H through O), significant misclassification occurred,

but was not as widespread as the Fist Poses. The Open Hand pose had the best

accuracy, and was sometimes confused with the Spok and Neutral Hand poses. The

Neutral Hand pose exists as an intermediate step in poses between the Open Hand

and Claw poses, and is thus misclassified as each often. The ASL-B, Flat Hand, and

Thumb-Middle Group poses are often classified correctly, albeit with some misclassi-

fications as one another. The Flat Hand pose was classified correctly the second most

often in the Open-Palm pose group. The Thumb-Middle Group pose had the lowest

accuracy with only 61% correct classifications, where it was sometimes even classified

as the Finger Purse and ASL-R poses. The Spok pose had a high accuracy, but was

sometimes confused with the Open Hand, Flat Hand and Neutral Hand poses. The

Claw pose was often confused with the Neutral Hand pose, and vice versa. ASL-C

had a high accuracy of 74%, but was sometimes classified as a Neutral Hand.

80

Figure 3: Confusion Matrix

From this table, it is evident that the Fist Poses (Poses A through
E) are all often misclassified as one another. Additionally, the ASL-O
and Index Forward poses are often confused with the Fist Poses and
vice versa. The Thumb-Middle Group pose had the lowest accuracy
with only 61% correct classifications, where it was sometimes even
classified as the Finger Purse and ASL-R poses. The Pinch, Finger
Purse, and ASL-O poses were all sometimes misclassified as a Fist
Poses and the Index Forward pose. Additionally, these three poses
are often misclassified as one another, leading to a low recogni-
tion accuracy for all of them.The ASL-R and Inverse ASL-R poses
(poses U and V) both have a low recognition accuracy rate. Both
were misclassified as one another very often, and were regularly
misclassified as the Point pose.

Since the notation strings are all of the same length, Hamming
Distance may be used as a simple measure of similarity. Hamming
Distance is the number of occurrences of differences between two
strings of equal lengths, and was introduced in [10]. For example,
the ASL-R and Open Hand poses have notation strings 61166; 2252−
423 and 31111; 2222 − 222, giving them a distance of 6. From this
example, one could predict that the Hamming Distance between
two poses is low if the poses appear to be visually similar to one-
another, and high if they’re visually different.

When comparing the distances to the misclassification errors
in Fig 3, some distances are too large for poses that are visually
not that different for e.g. ASL-M and the ASL-A has a distance of 6.
Also, the distance between the Point and ASL-A poses is less than
the distance of 6, implying that a Point is considered to be more
similar to the ASL-A pose than ASL-M. Flat Hand and ASL-A were
never misclassified as one-another, yet have a low distance of 4.
Conversely, Claw and Finger Purse have a single misclassification
between them, which should never happen between two poses at
maximum distance from one another with twenty-two other poses
to be chosen from.
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A possible solution to this problem is to create a weighted Ham-
ming Distance that would take silhouette changes into account.
Where previously any change between notation string elements
increases Hamming Distance by one, weighted Hamming Distance
would increase the distance according to how much the visual sil-
houette of the pose is changed. The change in visual silhouette is
not objectively measured, but is rather used as a tool to estimate
the weights to be assigned. For example, the difference between a
fully curled and fully extended finger should be much larger than
that of a fully curled and partially curled finger. These weightings
are depicted in Tables 4 and 5. A heatmap showing similarity scores
between pose pairs is given in Fig 4. Bright red cells with values
close to 0 indicate high similarity while lighter coloured cells with
high values indicate poses that are substantially different from one
another.

Table 4: Finger Pose Distance Weightings

Finger Pose Notator 1 2 3 4 5 6
Point (Up): 1 0.0

Point (Forward): 2 1.0 0.0
Point (Side): 3 1.0 1.0 0.0

Neutral: 4 0.3 0.5 0.5 0.0
Bend: 5 1.0 0.5 1.0 0.2 0.0
Close: 6 2.0 1.5 1.5 1.5 0.7 0.0

Table 5: Finger Inter-Relation Distance Weightings

Finger Inter-Relation
Notator 1 2 3 4 5 6 7

Neutral: 1 0.0
Separate: 2 0.2 0.0
Group: 3 0.6 1.0 0.0

Cross (i on palm-side of j): 4 0.6 1.0 0.2 0.0
Cross (j on palm-side of i): 5 0.6 1.0 0.2 0.1 0.0

Touch: 6 0.6 1.0 0.3 0.3 0.3 0.0
Loop: 7 2.0 2.0 1.5 0.9 0.9 0.5 0.0

3.3.2 The algorithm for creating a reliable pose set. In order for
the pose recognition system to work effectively, a set of poses
must be identified which achieves a near-perfect pose recognition
accuracy. We term such a pose set a reliable pose set. An algorithm
for constructing a reliable pose set is given in algorithm 1. The
algorithm takes a set of poses as input and iteratively identifies and
discards problematic poses until the target accuracy is achieved on
the remaining poses. Poses are discarded based on their weighted
Hamming distances to other other poses. In general, the poses
that are most frequently misclassified and that have the lowest
average distance to other poses are removed. Removing these poses
results in an increase in the recognition accuracy. This process
is repeated until the target accuracy is reached. However, certain
poses, or key poses can be tagged for inclusion in the reliable pose
set. These could be poses intuitive poses or poses typically used in
VR applications. These key poses are skipped during the removal
process and will be included in the final pose set. For example the

key pose set could consist of: Classic Fist, Point, OK-Pose, Thumbs-
up and either the Open Hand or Neutral Hand, but not both. If one
of the key poses is identified for removal it is skipped and the next
pose that is not a key pose is selected for removal.

Input: Set A: All pose types
Output: Set B: Reliable pose set

factorThreshold← 0.6
set B← clone(set A)

while SVM-PUK accuracy on Set B < 99% do
foreach pose P in set B do

calculate P.averageHammingDistance
calculate P.misclassificationPercent

end
foreach pose P in set B do

normalize P.averageHammingDistance
▷ Highest average Hamming Distance becomes 1,

lowest becomes 0

normalize P.misclassificationPercent
▷ Highest misclassification % becomes 1, lowest

becomes 0
P.factor <- P.averageHammingDistance *
P.misclassificationPercent

end
R← non-key pose in Set B with highest factor
if R.factor >= factorThreshold then

remove R from set B
skip to next iteration of while loop

end
R← non-key pose with lowest averageHammingDistance
remove R from set B

end

return Set B
Algorithm 1: Algorithm for creating a reliable pose set.

Following algorithm 1, the reliable pose set consists of three
poses, i.e. the Open Hand, OK-Pose, and Thumbs-Up poses. The
data set consisting of these three poses at arbitrary orientations
achieved an accuracy of 99.45% with the SVM-PUK classifier. This
algorithm could be used to produce other reliable pose sets. For
example, the key poses to be kept or the target accuracy could be
changed if desired. By changing the factorThreshold, one could
alter the frequency at which the poses with a high factor are
removed. Other parameters, like the pose input set and classification
algorithm, could also be changed.

4 DISCUSSION
In order to facilitate the acquisition and analyse of poses, we de-
veloped a taxonomy and a notation for hand poses. We used the
taxonomy to construct a representative pose data set consisting of
29 different static hand poses. Machine learning experiments for
pose recognition on the full pose set yielded accuracies that were
well below what might be expected in the VR industry. However,
typical VR applications will not require the full pose set. We thus
propose a method for analysing pose similarity and eliminating
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Table 5.20: Heatmap of weighted Hamming Distances between poses.

Ground Truth (Rows)
Classified As (Cols) A B C D E F G H I J K L M N O P Q R S T U V W

ASL-A = A 0.0 3.2 4.2 4.8 3.8 7.0 5.7 13.0 8.7 11.0 8.0 9.8 11.0 7.8 4.8 11.0 12.5 2.8 10.3 7.3 9.2 9.2 2.0
Classic Fist = B 3.2 0.0 1.2 3.5 2.5 4.0 2.6 14.5 10.9 10.0 11.2 10.9 12.5 8.5 5.5 11.1 11.1 4.3 10.1 5.3 8.2 8.2 3.5

Hidden Thumb = C 4.2 1.2 0.0 2.3 1.4 5.1 3.6 15.5 11.9 11.0 12.2 11.8 13.5 9.5 6.5 12.1 12.1 5.3 9.4 6.3 7.3 7.3 4.5
ASL-M = D 4.8 3.5 2.3 0.0 2.3 7.4 5.9 15.2 11.0 13.3 12.8 12.4 14.6 9.0 7.4 11.8 11.8 5.9 8.3 7.2 9.6 9.6 5.6
ASL-N = E 3.8 2.5 1.4 2.3 0.0 6.4 4.9 14.2 10.0 12.3 11.8 11.4 12.2 8.0 6.4 10.8 10.8 4.9 9.0 6.2 7.1 7.1 4.6

Point = F 7.0 4.0 5.1 7.4 6.4 0.0 2.0 10.5 8.9 8.0 11.0 9.4 10.5 6.8 5.8 12.1 7.7 5.5 11.3 7.7 6.0 6.0 5.5
Index Forward = G 5.7 2.6 3.6 5.9 4.9 2.0 0.0 12.5 9.5 10.0 11.2 9.4 12.5 7.3 6.3 10.5 9.7 3.8 9.6 6.1 8.0 8.0 6.0

Open Hand = H 13.0 14.5 15.5 15.2 14.2 10.5 12.5 0.0 2.5 4.5 5.0 5.2 2.0 5.0 8.0 4.6 4.6 12.0 12.0 12.0 8.5 8.5 11.0
Neutral Hand = I 8.7 10.9 11.9 11.0 10.0 8.9 9.5 2.5 0.0 4.7 3.9 4.3 3.3 1.8 3.0 3.3 3.5 7.9 7.9 6.8 7.7 7.7 8.5

ASL-B = J 11.0 10.0 11.0 13.3 12.3 8.0 10.0 4.5 4.7 0.0 3.0 4.6 2.5 7.7 4.7 5.5 5.5 9.5 9.5 8.7 6.2 6.2 9.5
Flat Hand = K 8.0 11.2 12.2 12.8 11.8 11.0 11.2 5.0 3.9 3.0 0.0 1.8 3.0 9.0 6.0 5.3 6.8 8.3 8.3 8.5 9.2 9.2 10.0

Thumb-Middle Group = L 9.8 10.9 11.8 12.4 11.4 9.4 9.4 5.2 4.3 4.6 1.8 0.0 4.6 9.2 7.6 5.1 5.7 9.9 8.2 8.0 10.6 10.6 11.6
Spok = M 11.0 12.5 13.5 14.6 12.2 10.5 12.5 2.0 3.3 2.5 3.0 4.6 0.0 7.0 6.0 5.4 5.4 10.0 10.0 10.0 6.7 6.7 9.0
Claw = N 7.8 8.5 9.5 9.0 8.0 6.8 7.3 5.0 1.8 7.7 9.0 9.2 7.0 0.0 3.0 5.6 5.6 7.1 9.5 7.0 7.1 7.1 6.8

ASL-C = O 4.8 5.5 6.5 7.4 6.4 5.8 6.3 8.0 3.0 4.7 6.0 7.6 6.0 3.0 0.0 6.8 6.8 4.1 6.5 4.0 6.3 6.3 3.8
OK-Pose = P 11.0 11.1 12.1 11.8 10.8 12.1 10.5 4.6 3.3 5.5 5.3 5.1 5.4 5.6 6.8 0.0 6.0 9.3 9.3 6.8 10.1 10.1 11.5

Middle OK-Pose = Q 12.5 11.1 12.1 11.8 10.8 7.7 9.7 4.6 3.5 5.5 6.8 5.7 5.4 5.6 6.8 6.0 0.0 11.0 9.3 6.8 10.1 10.1 11.5
Pinch = R 2.8 4.3 5.3 5.9 4.9 5.5 3.8 12.0 7.9 9.5 8.3 9.9 10.0 7.1 4.1 9.3 11.0 0.0 7.5 5.6 7.7 7.7 3.5

Finger Purse = S 10.3 10.1 9.4 8.3 9.0 11.3 9.6 12.0 7.9 9.5 8.3 8.2 10.0 9.5 6.5 9.3 9.3 7.5 0.0 5.5 11.0 11.0 11.0
ASL-O = T 7.3 5.3 6.3 7.2 6.2 7.7 6.1 12.0 6.8 8.7 8.5 8.0 10.0 7.0 4.0 6.8 6.8 5.6 5.5 0.0 10.3 10.3 7.8
ASL-R = U 9.2 8.2 7.3 9.6 7.1 6.0 8.0 8.5 7.7 6.2 9.2 10.6 6.7 7.1 6.3 10.1 10.1 7.7 11.0 10.3 0.0 0.1 7.7

Inverse ASL-R = V 9.2 8.2 7.3 9.6 7.1 6.0 8.0 8.5 7.7 6.2 9.2 10.6 6.7 7.1 6.3 10.1 10.1 7.7 11.0 10.3 0.1 0.0 7.7
Thumbs-Up = W 2.0 3.5 4.5 5.6 4.6 5.5 6.0 11.0 8.5 9.5 10.0 11.6 9.0 6.8 3.8 11.5 11.5 3.5 11.0 7.8 7.7 7.7 0.0

within the same group seen in the unweighted table (Table 5.16). For example, the

Fist Poses group is still visible as a block of very similar poses. The Open-Palm

Poses are also able to maintain similarity within the group, with the exception of the

Claw and ASL-C pose. These two poses involve all five fingers bending down in some

manner, causing a relatively large distance between themselves and the rest of the

Open-Palm Poses. The Finger Touches and Loops Poses (Poses P through T) do not

show as strong a similarity to one another as expected. A pose with a loop between

two fingers has a high distance between itself and a pose with a loop between two

other fingers. This can be seen in the distance of 6 between the OK and Middle OK

poses. The silhouette of the hand does not change much, however the string distance

between these poses is large. This is due to the fact that Hamming Distance does not

take adjacent string elements into account, such as the index and middle finger loops

in this case. Furthermore, adding additional loops in a pose should not increase the

distance by as much as adding in the first loop.

Using a weighted Hamming Distance does not provide a perfect solution to measuring

pose similarities, but it does provide a rough picture of which poses are very different

from one another and which are not.
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Figure 4: Heat Map showing weighted Hamming distance

similar poses which results in a selection of distinct poses that
meets industry performance requirements. By eliminating poses
to form a reliable set, a trade-off is made between including more
poses for a given VR application or a higher recognition accuracy.

Finger occlusion has been a persistent issue throughout this
research. Often, poses that have their features hidden from the
camera were not detected correctly. During the data gathering pro-
cess, it was often noted that the participant’s virtual hands did not
correctly mimic their real hands. This usually occurred whenever
the pose being made included some form of finger occlusion, either
due to the shape or orientation of the hand itself. Finger occlusion
significantly impacts recognition performance, possibly more so
than the choice in machine learning classifier. Some research has
attempted to solve this problem, such as [19], where two LMCs
were placed at right angles to gain different perspectives on the
same hand. They will be required to keep their hands in a station-
ary space for tracking, whereas a single camera can be mobile by
attaching it to the front of the head-mounted display. A solution
needs to be found where a second camera could be used without
restricting user movement.

The primary advantage of using cameras over hand-held con-
trollers is the freedom of being able to make any arbitrary hand
pose and having the environment react accordingly. In creating a
VR application with hand pose controls, it is up to the creator to
decide whether the freedom and convenience of a camera-based
approach is preferable to the reliability of remote-based controls.

5 CONCLUSIONS
This work explored the limits of the Leap Motion Controller to
capture hand pose input in a virtual reality environment. A pose
taxonomy, pose notation and pose data set was developed to analyse
and evaluate the use of the LMC for pose recognition. To achieve
acceptable recognition accuracies for VR applications, a system was

developed that systematically derived a pose set that could produce
an accuracy of 99% using the SVM-PUK classifier.

This work contributes a parameterized algorithm for producing
a pose set with the desired recognition accuracy. Further contribu-
tions include a benchmark pose set and dataset that can be used by
other researchers to compare machine learning classifiers for VR
pose recognition.

The findings of this research have shown that cameras suffer
from input inaccuracies too often to replace controllers. Poor input
data is generally caused by finger occlusion. However, cameras
allow for a wider array of poses, provide more freedom, and are
less cumbersome than hand-held controllers.
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