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IntroductIon

Distance metric learning approaches[1‑3] work by learning 
embedding representations that keep close together for similar 
data points while maintaining them far for dissimilar data 
points. Among distance metric learning applications, we can 
find face recognition,[4] signature verification,[5] authorship 
verification,[6] few‑shot learning,[7,8] plant recognition, [9] and 
visual similarity for product design[10] among others. With the 
popularization of convolutional neural networks,[11,12] deep 
metric learning has been deeply analyzed in the last years. Deep 
metric learning[6,7,13‑16] has proven to be effective at learning 
nonlinear embeddings of the data outperforming existing 
classical methods. Normally, specific network architectures are 

trained to minimize a Euclidean‑based loss function where a 
nonlinear embedding representation is learned to bond together 
embeddings from similar classes while taking apart embeddings 
of different classes. The definition of appropriate loss functions 
is crucial for fast convergence and optimal global minimum 
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search[7] and they have received a lot of attention in the last years. 
In this sense, losses such as contrastive loss function[17] focus 
same‑class or different‑class pairs are normally used. Triplet 
loss function[2,18] extended contrastive loss by considering a 
query sample and two additional samples (one positive and one 
negative). This triplet loss simultaneously enlarges the distances 
between the embeddings of the query and negative sample 
while reducing the distance between the positive and query 
samples. However, these methods suffer from slow convergence 
and poor local optima[16] as, at each update, embeddings are 
only optimized against one negative class. This was partially 
solved by the incorporation of the multi‑class N‑pair loss[16] 
that generalizes triplet loss by simultaneously optimizing 
against N‑1 negative samples from different classes instead 
of a single negative class yielding to better performance and 
faster convergence. However, multi‑class N‑pair loss functions 
still ignore the distances among the different negative classes 
among them and thus, not assuring optimization among the 
different negative class embeddings. In this work, we extend 
multiclass‑N‑pair loss with the proposed constellation loss 
metric, where the distances among all class combinations 
are simultaneously learned. Figure 1 graphically shows the 
interaction among the different class samples distances during 
a single gradient descent step for the analyzed losses and the 
newly proposed constellation loss.

In this work, we validate experimentally that constellation loss 
outperforms other metrics for class embedding tasks resulting 
in higher class classification performance and better cluster 
separability metrics such as Silhouete[19] and Davis‑Boulding 
index.[20] We also remove the need of using specific supporting 
architectures such as Siamese Neural Networks[7] for learning 
the embedding representations. To this end, we propose the 
use of smart batch selection dealing with the same functional 
cost. This improves both multi‑class scalability and reducing 
training memory needs that occur when using Siamese 
approaches.

Discriminative loss functions for distance metric learning
Conventionally, most of the image classification networks 
such as AlexNet,[10] VGGNet,[21] GoogleNet,[22] or ResNet[18] 

adopted cross‑entropy based softmax loss function to solve 
classical classification problems. However, discriminative metric 
learning loss functions have better generalization ability[23] and 
have received more attention for feature learning purposes in 
the latest years not only for verification problems[2,4] but also 
for few‑shot learning[7,8] as they overcome learning capabilities 
of traditional classification approaches under the small number 
of training images conditions. This is achieved by learning an 
image embedding fi from an image xi. This embedding represents 
a class‑representative vector, that is, a vector that contains the 
most important features associated with the corresponding 
class of the image. This is commonly performed by Euclidean 
distance‑based loss functions. These loss functions conceptually 
constrain the learned embeddings fi to fulfil the condition of 
presenting distance 0 among elements of the same class and 
greater distances among elements from different classes. The 
Euclidean‑distance‑based loss functions like contrastive loss[17] 
measure pairs of samples. This was extended by triplet loss[2] 
by comparing triplets with a positive and a negative sample. 
Multiclass‑N‑pair loss objective function[16] has focused 
on improving previous distance metric loss functions by 
generalizing triplet loss. First, it allows joint comparison among 
more than one negative example, concretely, N‑1 negative 
examples, and second, an efficient batch construction strategy 
was introduced to reduce computation. This loss function has 
demonstrated superiority over triplet loss as well as other metric 
learning functions. Finally, we propose the constellation loss 
where distances among all negative classes among them are 
taken into account simultaneously.

The different losses are detailed below.

Contrastive loss
Contrastive loss (1) only focuses on positive and negative 
pairs. Positive pairs are composed by same‑class images and 
negative ones by distinct‑class pairs. Formally, the network 
transforms the pair of input images x1, i and x2, i into f1, I, and 
f2, i embedding vectors. The labels are either yi = 0 for positive 
pairs or yi = 1 for the negative pairs.
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where m is the margin, usually set to 1 and N is the batch size. 
Intuitively, this loss penalizes when a positive pair is far away 
or a negative pair too close. Therefore, in an optimal case, 
positives are nearby 0.0 and negatives close to 1.0.

Triplet loss
Triplet loss (2) goes one step further by considering positive 
and negative pairs at the same time. This is done by setting 
an anchor, from which a distance will be calculated to a 
sample of the same class (positive) and a sample of a different 
class (negative). Hence, the set of input images is a triplet of 
an anchor, a positive and a negative class { , , }x x xi
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Figure 1: Visual representation of a gradient descent step for each of the 
compared losses: Contrastive loss,[17] triplet loss,[2] multi-class N-pair 
loss[16] and the proposed Constellation loss. Each color represents a 
different class sample
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where α is a parameter to avoid convergence to trivial solutions 
and N is the batch size. The aim of this loss is to maximize the 
distance between the anchor and the negative while minimizing 
the distance between the anchor and positive. Nonetheless, 
there is no gain when � � � �f f f fi
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that reason, hard‑triplet mining is commonly applied. This 
technique considers only hard or semi‑hard triplets, that is, 
using for computation only the triplets that give a positive loss. 
This way, it forces the network to try harder and it improves 
convergence.

Multiclass‑N‑pair objective loss
Multi‑class‑N‑pair loss objective is a generalization of triplet 
loss that incorporates at each optimization update the other 
negative classes that the triplet loss does not consider. This 
allows joint comparison among more than one negative 
example at each update while reducing the computational 
burden of evaluating deep embedding vectors. Hence, when 
having N classes, the distances to the N‑1 negative classes 
are also considered. When only one negative sample is used 
for calculation (N = 1), this loss in comparable to triplet loss.
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where refers f a to the anchor, f a ꞌ refers to the transpose of the 
ith embedding vector and f i

p to an embedding of a positive pair.

Constellation loss
The proposed loss is a similar formulation to multiclass‑N‑pair 
loss, but it also includes the distances among the different 
negative samples among themselves, as depicted in Figure 1. 
The hyperparameter K sets the number of negative samples 
we want to incorporate in the formula, this way, considering 
more negative terms than the usual triplet loss. Even though 
increasing K parameter means a bigger computational effort, 
we prove for our dataset that at some point, the fact of increasing 
K does not affect much the result. This is due to the randomness 
in the choice of each term, which can be composed of several 
distinct negative values. Therefore, there is no need for a high 
K value to improve triplet loss or multiclass‑N‑pair loss. The 
main difference is that multiclass‑N‑pair‑loss subtracts dot 
products of same class pairs whereas constellation loss does 
something like triplet loss by subtracting a dot product of an 
anchor and negative embedding; and a dot product of an anchor 
and positive embedding.
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where f a refers to the anchor embedding, f p to the positive 
embedding and f n to negative embeddings.

 c
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The number of taken combinations is defined by equation (5) 
where spc refers to the samples per class present in input batch. 
The maximum number of combinations we can get is defined 
by (6) referring. Nt to the number of exponential terms present 
in each constellation. For a small number of classes, K = N‑1 
makes see, but when the number of classes is significantly 
large, Nc and Nt become computationally expensive. Due to 
this problem, we need to find an optimal choice of K, when the 
results are good and computationally feasible. Also, a smaller 
K allows more same‑class pairs on a batch without depleting 
computing resources. Even if we just have one sample per 
class, one‑shot learning, we can assume that augmented pairs 
are distinct images of the same class.

Deep neural network for embedding learning
One way to perform deep embedding extraction is by using 
a siamese neural network architecture[7,6] in a similar way as 
done in.[8] These networks employ a twin network architecture 
where their weights are tied and joined by a loss function that is 
computed in the top. However, some loss functions like triplet 
loss are already implemented for single network architecture. 
This network is normally selected from the state‑of‑the‑art 
CNN architectures such as VGGNet,[21] that was successfully 
used by,[7,8] Inception[24] or ResNet[25] among others. In 
our experiments, we have chosen Resnet50 classification 
architecture, where the last layer is replaced as suggested 
by[16] by a global average pooling layer and a 128‑neuron 
layer as an embedding layer, fi, that acts as a low‑dimensional 
representation of the input images. The embedding layer has a 
sigmoid activation and it is L2 normalized in the case of triplet 
and constellation loss. L2 normalization makes the training 
process more stable for these loss functions. There is no need 
for L2 normalization when training with multiclass‑N‑pair 
objective loss as it already incorporates in the loss. After loss 
optimization procedure, the trained base network is able to 
extract a embedding fi from an image xi that is able to keep 
similar samples together and dissimilar one apart.

Validation
In this paper, we validate the proposed loss function on two 
clustering metrics and classification accuracy. The proposed 
backbone network (Resnet50) is trained by means of any of the 
previous loss functions in order to learn the image embeddings 
fi. This embedding vector is a low‑dimensional representation 
of Xi that minimizes its correspondent loss function and thus, 
are designed to estimate the distance among classes. In order 

Figure 2: Illustration of the validation procedure for the extracted 
embeddings using a shallow classifier
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to validate the suitability of these embeddings we analyze, 
the quality of the class clusters generated by the embedding 
vector and also the performance of a classification task that 
can be achieved by the learned embeddings. This validation 
procedure is illustrated in Figure 2.

Clustering metrics
We analyze the quality of the class clusters that are generated 
by the embedding vectors sets to measure the quality of 
the generated clusters. As the main goal of the network is 
to create better, these metrics show how well are the test 
embeddings grouped in clusters. Two specific metrics were 
selected: Davis‑Boulding index[20] is a metric that evaluates 
clustering quality. The smaller the value, the better the result. 
The index uses quantities and features inherent to the dataset 
and its drawback is that good value does not imply the best 
information retrieval. The Silhouette score[19] is a measure of 
how similar an object is to its own cluster compared to other 
clusters. The value of this metric ranges from‑1‑1 and the 
closest to 1, the better the result.

Classification metrics
We also evaluate the classification accuracy that a machine 
learning model can obtain by using the learned embeddings. 
To this end, we select k‑nearest neighbors as the simpler 
shallow classifier to predict the class associated with each 
embedding. First, images go through the network and it outputs 
the embeddings of all the images, both training and test sets. 
Then, a k‑nearest neighbour classifier is used to predict the 
classes of the test embeddings.

We selected the balanced accuracy metric (7) for performance 
evaluation as it is a single and accurate metric that eliminates 
the effect of unbalanced datasets normally causes to the 
accuracy metric.

BAC sensibility specificity
=

+
2

�  (7)

Methods

We assess the performance of the proposed constellation 
loss for visual class embedding extraction. We validate the 
capability of the tested loss functions to extract appropriate 
embeddings for the entrusted visual task of histology image 
classification.

Dataset
Public dataset[26] from the University Medical Center 
Mannheim (Germany). Contains tissue samples obtained 
from low‑grade and high‑grade primary tumors of digitalized 
colorectal cancer tissue slides. The database is divided into 
eight different types of textures that are present on the tumors 
samples: (1) tumor epithelium, (2) simple stroma, (3) complex 
stroma, (4) immune cells, (5) debris and mucus, (6) mucosal 
glands, (7) adipose tissue and (8) background, as depicted in 
Figure 3. There are 625 image samples per class, producing a 
total dataset of 5000 image tiles of dimension 150 px × 150 
px (74 µm × 74 µm).

Computing infrastructure
The experiments were run on a Gigabyte GeForce GTX Titan X 
12GB GDDR5 GPU. The GPU is installed in a local server that 
we access by an SSH client. We used an Anaconda distribution 
and the main libraries we used are Keras, Tensorflow, and 
Scikit‑Learn. Keras was used for the main architecture and 
Tensorflow for the loss functions. Scikit‑Learn was very 
helpful for machine learning models like k‑nearest neighbors, 
and also for BAC, David‑Bouldin index and Silhouette metrics.

Training
Our main goal is to evaluate the capabilities of the different 
loss functions to embed the image description. To validate 
this, we train the deep metric learning architecture detailed in 
section 3 for the different losses to obtain a network capable 
of extracting the embedding vector, fi, from an input signal. 
As a baseline, we trained a classical classification Resnet‑50 
network by learning with a softmax loss function. The same 

Figure 3: Sample images from the dataset. First row: Tumour epithelium, simple stroma, complex stroma, immune cells. Second row: debris, mucosa, 
adipose and empty tile samples are depicted
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Resnet‑50 architecture is trained with different loss functions 
with the necessary modifications.

All the experiments were run for 30 epochs and optimized 
with Adam with a learning rate value 0.0001. A very simple 
generator was used in order to feed the images to the network. 
The size of the image is not modified during this process, and 
no augmentation was used, as the aim of the loss function we 
are working with is to train on datasets that have not enough 
images per class. The batch size was set to 40 for baseline, 
triplet, and multiclass‑N‑pair. In the case of the constellation, 
we tried different setups by changing k but we kept spcK < 100 
to avoid dealing with a very large computational effort.

We trained each network on 20 samples per class. Training 
was repeated ten times and each time the samples selected 
was different, but always maintaining same splits for the 
different networks for comparison purposes. The test set is 
the same for all the experiments. We calculated the metrics 
for each split and gathered them in Table 1 by averaging 
over the splits. This way, we show the mean value and the 
standard deviation.

results

Table 1 shows the results obtained by the different approaches. 
Balanced accuracy (BAC) metric measures the classification 
performance of the method, whereas Silhouette and 
Davis‑Boulding metrics measure their clustering capabilities.

To serve as a baseline method, we employ the embeddings 
extracted by resnet50 pretrained over the image dataset 

following by minimizing the categorical cross‑entropy function 
in a similar way than in.[8] The triplet and the Multi‑class‑N‑pair 
and the proposed constellation loss are compared. Constellation 
loss is set with three different K: 3,5 and 7.

In addit ion,  a  t ‑distr ibuted Stochast ic  Neighbor 
Embedding (t‑SNE)[27] visualization method is used to project 
the generated multidimensional clusters into a two‑dimensional 
graph. This methodology is capable of maintaining the cluster 
distances that are present in the high dimensional space when 
these are projected into the two‑dimensional space, and thus, 
the differences among clusters can be visualized. Figure 4 
depicts the clusters generated by the different classes.

dIscussIon

Table 1 shows that constellation loss scored better results on 
clustering metrics beating both triplets and multiclass‑npairs in 

Table 1: Accuracy, silhouette and Davis‑Bouldin metrics 
of the different experiments 20 samples per class

Loss Metrics

BAC Silhouette Davis‑Bouldin
Imagenet 78.1±0.2 0.12±0.00 2.97±0.00
Triplet 84.6±1.0 0.23±0.01 1.99±0.10
Npairs 84.6±0.9 0.35±0.01 1.48±0.04
Cn*3 85.0±0.6 0.37±0.02 1.41±0.08
Cn*5 84.4±0.8 0.37±0.02 1.43±0.09
Cn*7 84.5±0.3 0.37±0.02 1.43±0.09
BAC: Balanced accuracy

Figure 4: Comparison of the clustering capabilities. The figure shows a two-dimensional t-distributed Stochastic Neighbor Embedding[27] visualization 
of the embedding vectors in the test set for the triplet, N-pairs and the proposed constellation loss
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all cases and that it also surpassed or equaled the other methods 
on classification performance (BAC).

If we analyze Figure 4 where the embeddings are shown in 
a reduced two‑dimensional space,[27] we clearly see more 
compact clusters in the case of multiclass N‑pair‑loss and 
constellation loss than in the other losses in concordance with 
the obtained silhouette and Davis‑Bouldin metrics.

In Figure 5, we depict the t‑SNE visualization for the 
constellation loss by including sampled images of that class. 
We can appreciate that different clusters have been created. 
For example, the adipose tissue, which is characterized by 
large cells with empty space, are clustered together in a very 
compact cluster. This adipose cluster is separated but not far 
from the cluster representing the empty classes where not 
tissue is present as it presents some similarity (empty space) 
among them. Healthy mucosa and tumoral mucosa were 
separated into two well defined and separated clusters. As 
both healthy and tumoral tissues are of the mucosa, we can 
appreciate that the clusters are close together. Besides this, 
we can appreciate a spurious image from tumoral tissue that 
is close to the healthy mucosa cluster, representing probably 
an incipient tumor or mixed tissue. Lymphoid tissue, debris, 
and stroma are also well characterized into three differentiated 
clusters, and the complex class that represents various tissue 
types at the same time is represented as an equidistant center 
class from all the others. This shows the capabilities of 
constellation loss not only to generate appropriate clusters 
for the different classes but to allow extracting meaningful 
information over the visual similarity and clinical relationship 
among the different classes.

When analyzing the balanced accuracy obtained by the 
different methods, we appreciate that all metric learning‑based 
methods outperform the results obtained by classical 
fine‑tuning based deep learning methods. It is noteworthy to 
explain the importance of the K value for the constellation 

loss as it will depend on the dataset characteristics and on 
the number of classes, and it is a hyperparameter that has 
to be taken into account when setting constellation loss 
applications.

conclusIons

In this work, we have compared the performance of 
different metric learning losses for extracting discriminative 
embeddings under deep metric learning approach over 
histology images. Our proposed constellation loss metric 
considers the distances among all class combinations that 
are simultaneously learned. The extracted embeddings have 
been validated for image classification tasks over the selected 
dataset, showing that our loss function overperforms the 
other methods by obtaining more compact clusters. This 
better representation of the classes allows machine learning 
models such as k‑nearest neighbors achieve better results in 
classification especially when showing images from classes 
not previously seen during the training process. Moreover, 
we showed that constellation loss surpasses Multiclass‑N‑pair 
loss in classification accuracy by using a similar mathematical 
formulation. This demonstrates that few‑shot techniques can 
be successfully used in the medical domain for learning in 
situations of data scarcity.
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