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Chapter 1: Introduction 

This chapter provides the overall organization of the thesis. In this thesis, three 

different research questions are addressed: (1) how to represent the change in the visual 

scanning strategy for a dynamic target tracking task;  (2) how to simplify visual scanpath 

representation for a dynamic target tracking task; and (3) how to evaluate the similarity of 

visual scanning strategies for a dynamic target tracking task.  

Chapter 2 addresses the research question of how to represent the evolution of 

visual scanning strategy for a dynamic target tracking task. In detail, the dynamic directed 

weighted network (DWN) framework, an extension of the directed weighted network 

model developed during my masters’ research, is adapted to analyze the eye movements of 

air traffic controllers. In addition, the DWN is used to represent the evolution of visual 

scanning strategies over time. Furthermore, three dynamic DWN-based measures, i.e. 

indegree, closeness, and betweenness, were adapted to evaluate target importance and flow 

of visual attention across time. Lastly, two different visualization approaches, namely the 

dot plot and the box plot were developed to represent the time evolution of the above-

mentioned three measures. The dot plot represents the evolution of the targets that were 

visually attended over time-intervals, whereas the bar plot enables the comparison of the 

targets that were visually attended across several participants.  

Chapter 3 contains two novel visualization approaches, the order plot and the norm-

cube plot, which are built upon the dynamic network framework presented in chapter 2. 

The order plot visualizes the relative importance of several dynamic targets based on the 

visual scanning strategy employed by an observer. Moreover, the order plot enables the 
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representation of the multiple observer’s data simultaneously facilitating comparisons of 

targets that were visually attended among the observers. The norm-cube plot allows the 

visualization of the three importance measures (i.e. indegree, closeness, and betweenness) 

simultaneously.   

Chapter 4 addresses the research question of how to simplify the visual scanpath 

representation for a dynamic target tracking task. A novel framework is developed to 

simplify the representation of the visual scanpaths for a dynamic object tracking and 

control task (i.e. air traffic control task). The framework first implements a spatial-temporal 

clustering mechanism to aggregate spatially and temporally neighboring eye fixations, and 

a time-ordered color scheme is implemented to enhance the visualization of the simplified 

visual scanpaths. Furthermore, the proposed framework provides two measures, first, to 

evaluate the amount of the simplification achieved in terms of reduction in constituent eye 

fixations, and second, the amount of abstraction in terms of shape similarity between the 

raw visual scanpath and its simplified counterpart. These two developed measures provide 

the decision-maker to consider better understand the overall visual attentions and provides 

the researcher with the freedom to choose the parameter values when applying the 

clustering mechanism.  

 Chapter 5 addresses the research question of how to evaluate the similarity of 

visual scanning strategies for a dynamic target tracking task. A novel framework is 

introduced to evaluate the similarity of scanpath sequences that allows finding the groups 

of highly similar scanpath sequences. The developed framework consists of two major 

steps. First, an n-gram based distance measure is developed to evaluate the similarity 

between scanpath sequences. Second, modularity-based network community detection 
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method is implemented to find groups of highly similar scanpaths. To evaluate the efficacy 

of the framework, the introduced approach was applied to air traffic control operations, 

especially when the air traffic controllers issued clearance commands such as clear to land, 

clear to take-off, and hold short. The results show promise on better analyzing visual 

scanning strategies of air traffic controllers.  

Research Contribution 

The thesis includes four major contributions as follows. First, a dynamic network-

based framework is developed to model and visualize the dynamic nature of the visual 

scanning strategies for a dynamic target tracking task. Second, two novel visualization 

methods are proposed, order plot and norm-cube plot, that shows which targets were more 

visually attended compared to other other targets based on three measures derived from the 

network framework. Third, a the spatial-temporal clustering has been adapted to simplify 

the representation of the visual scanpaths for a dynamic target tracking task. Fourth, n-

gram and network-based cluster detection methods were adapted to create clusters of 

similar visual scanpaths. 
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Chapter 2: Dynamic directed weighted networks 

and related visualizations.  

NOTE: The contents of this chapter has already been published in “Mandal, S., & Kang, 

Z. (2018). Using Eye Movement Data Visualization to Enhance Training of Air Traffic 

Controllers : A Dynamic Network Approach. Journal of Eye Movement Research, 11(4).” 

Therefore, the contents are directly taken from the published manuscript.  

Abstract 

The Federal Aviation Administration (FAA) forecasted a substantial increase in the 

US air traffic volume creating a high demand in Air Traffic Control Specialists (ATCSs). 

Training times and passing rates for ATCSs might be improved if expert ATCSs’ eye 

movement (EM) characteristics can be utilized to support effective training. However, 

effective EM visualization is difficult for a dynamic task (e.g. aircraft conflict detection 

and mitigation) that includes interrogating multi-element targets that are dynamically 

moving, appearing, disappearing, and overlapping within a display. To address the issues, 

a dynamic network-based approach is introduced that integrates adapted visualizations (i.e. 

time- frame networks and normalized dot/bar plots) with measures used in network science 

(i.e. indegree, closeness, and betweenness) to provide in-depth EM analysis. The proposed 

approach was applied in an aircraft conflict task using a high-fidelity simulator; employing 

the use of veteran ATCSs and pseudo pilots. Results show that ATCSs’ visual attention to 

multi-element dynamic targets can be effectively interpreted and supported through 

multiple evidences obtained from the various visualization and associated measures. In 

addition, we discovered that fewer eye fixation numbers or shorter eye fixation durations 
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on a target may not necessarily indicate the target is less important when analyzing the 

flow of visual attention within a network. The results show promise in cohesively analyzing 

and visualizing various eye movement characteristics to better support training. 

2.1 Introduction 

The Federal Aviation Administration (FAA) forecasted a 1.4% annual increase in 

the US air traffic volume; from currently 43.2 million aircraft to 60.3 million by 2040 

(FAA, 2018). However, the currently available number of expert air traffic control 

specialists (ATCSs) might not be sufficient to handle the anticipated increase of air traffic 

volume. Additionally, the current training completion time of the air traffic controllers 

takes many years of intensive training (Hampton, 2016). Therefore, the FAA has been 

trying to find ways to efficiently train the FAA Academy candidates.   

One of the critical tasks of ATCSs is to detect and mitigate possible aircraft 

conflicts (i.e. possible collisions) through visually scanning the radar screen. The ATCSs 

look for conflicting situations between aircraft pairs (or groups) to resolve it and guide 

them to their destination in a safe/timely manner. Thus, the ATCS’s task involves a 

significant amount of visual scanning of the radar display and, subsequently, cognitive 

processing of the observed information to take necessary actions. Eye-mind hypothesis 

(Just & Carpenter, 1976) showed there exists high correlation between the eye movement 

(EM) data and the cognitive process of an observer. Kang and Landry (2014) demonstrated 

that exposing novice controllers to the visual scanpath of the expert ATCSs improved their 

overall scanning efficiency by reducing their false positive cases of conflict detection 

among aircraft. On Similar lines, Rudi, Kiefer and Raubal (2018) demonstrated that 

visualization of EM data of pilot’s working in a cockpit might prove useful for flight 
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instruction purposes. Therefore, if we could effectively analyze, visualize, and interpret 

experts’ eye movement characteristics, we might be able to use those findings to train the 

candidates or novices. 

 
(a) Aircraft changing their shape on the radar display 

 
 (b) Overlapping aircraft on the radar display 

Figure 1: Dynamic aspects of aircraft representation on the radar display of an ATCS: (a) 

Location of the data blocks changes relative to the aircraft location. (b) Two overlapping 

aircraft.  

 

Effective analysis of ATCSs’ visual scanning process is challenging. The Radar 

display has, a large number of dynamic targets (i.e. aircraft on radar display) which have 

dynamic properties (e.g. radar representation of an aircraft can change their shape and 

position with time). Figure 1 represents the dynamic aspect of the radar representation of 

aircraft.  

Visualization of ATCSs’ EM data includes two steps. The first step involves 

developing a time-ordered mapping between the eye fixations (EFs) and the aircraft on the 

display. The second step consists of characterization of the developed scanpath sequences. 
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To develop the mapping function in case of moving and overlapping targets, Dynamic 

Areas of Interest (AOIs) can be created which are dynamic convex boundaries that fits the 

moving targets and considers the visual angle accuracy (Kang & Bass, 2014; Kang, 

Mandal, Crutchfield, Millan, & McClung, 2016; Papenmeier & Huff, 2010). However, as 

the number of targets increases, visualization of the scanpath sequences becomes 

challenging using the widely used visualization methods such as point based and AOI 

based methods (Blascheck, Kurzhals, Raschke, Burch, Weiskopf, & Ertl, 2014) (explained 

below in Background section), since these methods might create visual clutter when 

numerous targets are visualized. In addition, air traffic has a dynamic nature, meaning that 

an aircraft can dynamically move within the radar display for a certain amount of time, 

and/or two or more aircraft can overlap on one another. As a result, any aircraft’s relevance 

from the visual scanning point of view evolves with time. The prevalent visualization 

methods are unable to handle this dynamic aspect of the ATCS’s visual scanning process.  

In addition, other existing pivotal researches (Blascheck, Raschke, & Ertl, 2013; 

Burch, Beck, Raschke, Blascheck, & Weiskopf, 2014; Goldberg & Kotval, 1999) focus 

more on EF numbers and EF durations or simpler forms of scanpaths (explained in 

Background section); however, for a dynamic task such as air traffic control task, how the 

multiple targets (e.g. aircraft) are observed as a network (using the various EM transition 

characteristics) can also be important, meaning that even if there were fewer number of 

EFs or less durations, a target can be considered important if it plays a crucial role in the 

EM flow among multiple targets or acts as a bridge between two disconnected groups of 

targets. Furthermore, if we only consider the number of EFs on the aircraft, it might 

produce an incorrect interpretation about the important aircraft. For example, consider a 
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case when an aircraft has just entered the radar display. There is high chance that this new 

entrant aircraft might receive a substantial amount of EF duration, as the ATCSs might 

want to know about its destination, altitude, and other details; however, this new aircraft 

might not be important in terms of conflict resolution with the already existing set of 

aircraft on the display. As a result, the ATCSs will not fixate again on this aircraft, 

rendering it unimportant in terms of the overall scanning strategy. Zhang, Ren and Wu 

(2014) provided valuable findings using static networks in the air traffic control domain, 

but the dynamic aspects and the issues raised above were not addressed.  

Therefore, we need an improved analysis framework which will help us (1) develop 

visualization methods which can represent the EM data with a large number of targets with 

less visual clutter, (2) find measures that can accommodate the dynamic aspects of the 

moving targets, and (3) integrate the visualizations and measures for effective analyses and 

interpretations.  

In this paper, we provide several approaches to address the issues raised above. 

First is to adapt the dynamic network (DNet) approach (Burch et al., 2014) and modify its 

structural components for visualizing the EM data of the ATCSs. A DNet is a collection of 

time-ordered static networks. The DNet visualization enables easy handling of a large 

number of targets, thereby reducing visual clutter. Being a collection of several networks, 

the DNet can easily represent the evolution of a target’s importance over time and the 

dynamics of visual scanning characteristics. The adapted DNet is aligned with three “vertex 

importance measures” such as “indegree,” “closeness,” and “betweenness” (Freeman, 

1978) to better determine important targets. Furthermore, two types of normalization 

procedures (i.e. percent normalization and distance normalization) are introduced that 
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calculate the relative amount of visual attention given to a target in comparison to the 

maximum values obtained for a specific task. Finally, we adapted the dot plots and bar 

plots to either better represent the evolution of the important targets or compare the vertex 

importance measures among the participants. Note that we will replace the term “vertex” 

with “target” or “AOI” for easier understanding.  

2.2 Background 

2.2.1 Eye movement (EM) visualizations: Point based, area of interest 

(AOI) based, and hybrid 

Blascheck et al. (2014) have categorized the various EM visualization methods into 

point based, AOI based, and hybrid visualizations. Summaries and issues are as follows. 

Existing point based visualization methods, e.g. timeline visualization (Kurzhals, 

Heimerl, & Weiskopf, 2014), scanpath visualization (Goldberg & Helfman, 2010), 

attention maps (Kurzhals & Weiskopf, 2013), space-time cubes (Kurzhals & Weiskopf, 

2013) represent the time-ordered horizontal and vertical coordinates of the EFs occurring 

on the display. These methods are effective on visualizing the exact EF locations to unravel 

important regions (in absence of predefined targets) when given static stimuli. However, 

due to the visual angle error of the eye trackers, it is challenging to map the EFs with small 

and dynamic multi-element targets making it difficult to apply the point based methods 

(Mandal, Kang, & Millan, 2016). In addition, our interest is in investigating which moving 

targets were focused upon rather than the physically fixed area within a display. 

On the other hand, existing AOI based visualization methods allows EM analysis 

based on either pre-defined region or target on the display. The AOI based methods have 

been categorized into timeline and relational AOI visualizations (Blascheck et al., 2014). 
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Timeline AOI visualizations such as parallel scanpath (Raschke, Chen, & Ertl, 2012), scarf 

plot (Kurzhals, Fisher, Burch, & Weiskopf, 2015), and AOI river plot (Burch, Kull, & 

Weiskopf., 2013) focus on developing effective methods to represent the AOIs that have 

been fixated upon at various time intervals. However, these methods are challenging to 

apply for long duration tasks having large number of targets (e.g. twenty or more targets) 

and frequent EF transitions between them (e.g. air traffic control task). 

Relational AOI visualization methods are more appropriate to handle the issues 

raised above through visualizations using circular heat map transition diagram (Blascheck 

et al., 2013), transition matrix (Goldberg & Kotval, 1999) and network visualization (Burch 

et al., 2014). These methods visualize the aggregated EM data by showing the relationship 

that exists between the AOIS in terms of the EF transitions between them, unlike the 

timeline approaches. Relational AOI based approaches do not represent the physical 

location of the AOIs on the display. In detail, in circular heat map visualization (Blascheck 

et al., 2013), AOIs are represented as segments of a circular layout (using different colors 

and sizes) and the EF transitions are shown by directed arrows between the circular 

segments. Transition matrix visualization (Goldberg & Kotval, 1999) represents the EF 

transitions among the AOIs in a tabular fashion. The most appropriate approach to address 

the issues of a dynamic task is through the network visualization that shows the AOIs as 

vertices and the EF transitions between AOIs as the directed edges between the vertices of 

a network (Burch et al., 2014; Holmqvist, Holsanova, Barthelson, & Lundqvist, 2003; 

Mandal et al., 2016; Tory, Atkins, Kirkpatrick, Nicolaou, & Yang, 2005).  

However, if we try to apply the relational AOI visualization methods, we often run into 

possible visual clutter issues if there are large number of targets and it can be difficult to 
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represent all the EM characteristics using the existing network approach. The following 

subsections 2.2. and 2.3 provide summaries of the DNet mathematical framework and how 

various EM network characteristics can be integrated based on time intervals. 

2.2.2 Mathematical framework of DNet 

A DNet is as a sequence of static networks (also called networks), where each 

constituent network is associated with a time interval (Beck, Burch, Diehl, Weiskopf, 

2014). If the total time duration of the collected EM data is divided into 𝑇 time intervals, 

then a DNet representing such a data is written as 𝐷𝑦𝑛𝑁 = {𝑁1, 𝑁2, . . 𝑁𝑡 , . . , 𝑁𝑇}, where 

𝑁𝑡  is the network for time interval 𝑡, where 𝑡 = 1,2, . . , 𝑇.  

A network 𝑁𝑡  is written as 𝑁𝑡 = (𝑉𝑡 , 𝐸𝑡 , 𝑀𝑡 ), where, 𝑉𝑡  is the set of vertices 

(AOIs for the present study), 𝐸𝑡  is the set of edges (EF transitions for the present study) 

between the vertices, and 𝑀t  is the adjacency matrix which contains all edge weights 

(amount of EF transitions between AOI pairs).  

The set of vertices is written as 𝑉𝑡 = (𝑣1 , 𝑣2, … , 𝑣𝑚𝑡 ), where 𝑚𝑡 is the number of 

vertices for time interval 𝑡. A network can either have directed or undirected edges, 

although for EM visualization we only consider directed edges. The set 𝐸t  consists of 

ordered pairs of vertices (𝑣𝑖, 𝑣𝑗) showing that there exists a directed edge from the vertex 

𝑣𝑖 towards vertex 𝑣𝑗 . Thus, 𝐸𝑡 = {𝑒𝑖𝑗(𝑡)|𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝑡 , 𝑖 ≠ 𝑗}. Lastly, the adjacency matrix 

is written as 𝑀𝑡 = [𝑤𝑖𝑗(𝑡)]𝑚𝑡 ×𝑚𝑡 
, where, 𝑤𝑖𝑗(𝑡) is the weight of the edge 𝑒𝑖𝑗(𝑡) 

(Newman, 2004; Newman, 2010).  

2.2.3 DNet for EM visualization 

Beck et al. (2014) provided an exhaustive list of various DNet visualization 

approaches representing EM data. Depending on the representation of the time variable, 
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various visualization approaches have been categorized into two groups: Animation, and 

timeline visualization. Animation visualization refers to representing a DNet as an 

animated sequence of networks. Timeline visualization refers to representing a DNet as a 

sequence of networks in a single image showing the complete sequence of interactions 

between the targets. In the present work, we have applied the node-link based timeline 

approach for representing the DNet, because this visualization helps to preserve the mental 

map and reduces the cognitive load of the observer (Beck, Burch, & Diehl, 2013).   

As noted by various researchers (Archambault & Purchase, 2013; Ghani, Elmqvist, 

& Yi, 2012;  Purchase, Hoggan, & Görg, 2006), preserving the mental map (i.e. the abstract 

structural information layout about a network’s elements that an analyst develops in their 

mind as they visually scan the visualization) helps in tracing the change in vertex properties 

and edge paths across different time intervals. Additionally, the timeline visualization, 

using the node-link approach, provides an intuitive and efficient framework for analyzing 

the change of states of multiple vertices over time (Saraiya, Lee, & North, 2005; von 

Landesberger et al., 2011).  

However, the existing DNet approach only uses the number and duration of EFs on 

the AOI to measures the AOI importance. As noted in the introduction, these two raw 

measures may lead to misleading results in case of dynamic targets. Therefore, it is required 

to consider other target importance measures to address the highlighted issue.  

The next section discusses the three target importance measures (from the network 

science domain) that can be adapted for analysing AOI importance for dynamic scenarios.  
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2.2.4 Target (or AOI) importance measures 

The three most popular target importance measures in a given network are indegree, 

closeness, and betweenness (Freeman, 1978; Newman, 2004; Opsahl, Agneessens, & 

Skvoretz, 2010). Mandal et al. (2016) have shown some possibilities in applying the above-

mentioned measures to build a basic foundation for the proposed approach in this article. 

It is noted that we introduce the “time” element (“t”) within the three vertex importance 

measures to consider the dynamicity.  

Indegree of a vertex is defined as the sum of all incoming weights to it from all 

other vertices in the network. For the present study, incoming weights can be interpreted 

as the incoming EF transitions to a given AOI. Thus, indegree for the 𝑗𝑡ℎ AOI is given as 

𝐼𝑗 = ∑ 𝑤𝑘𝑗
𝑚
𝑘=1  (Newman, 2004), where, 𝑤𝑘𝑗 is the number of EF transitions from the 

𝑘𝑡ℎAOI to the 𝑗𝑡ℎAOI, and 𝑚 is the total number of AOIs on the display.  

We should note that the indegree measure, shown above, is static in nature. As a 

result, we modified it to develop the dynamic analogous, where the indegree for an AOI is 

defined for each of the time interval considered in the DNet framework. Thus, the modified 

indegree measure for the 𝑗𝑡ℎAOI for time interval 𝑡 is calculated as: 

𝐼𝑗(𝑡) = ∑ 𝑤𝑘𝑗(𝑡)
𝑚𝑡
𝑘=1
𝑘≠𝑗

                                                                                     (1) 

Where, 𝑤𝑘𝑗(𝑡) is the number of EF transitions coming for the 𝑘𝑡ℎAOI to 𝑗𝑡ℎAOI 

and 𝑚𝑡 is the number of unique AOIs in the AOI fixation sequence for time interval 𝑡. 

Large indegree value suggests higher importance for an AOI, as it received large number 

of EFs. Thus, indegree can be interpreted as a measure of direct attention received by an 

AOI.  



14 

 

However, indegree measure only considers the local structure (direct EF 

transitions) around a vertex but neglects the global structure of the network (Borgatti, 2005; 

Opsahl et al., 2010). This issue is addressed by the two measures named “closeness” and 

“betweenness.” 

Note that the network science (or graph theory) includes the concept of “outdegree” 

however, the indegree values and outdegree values are always the same within the EM 

network since there is no possibility of an inward single EM transition dividing into two or 

more outward transitions.  

Before we understand the two measures, we need to define the concept of distance 

between AOIs in a network visualizing EM data. In the present case, we define the distance 

from one AOI (e.g. ‘A’) to another AOI (e.g. ‘B’) as the inverse of the number of EF 

transitions from AOI A towards B. Thus, a large number of EF transitions between AOIs 

results in a smaller distance between them in terms of the visual scanning strategy.  

The closeness of a vertex measures its distance from all other vertices in the 

network. Thus, higher closeness value for a given vertex means it is easier to access any 

part of the network from it. In the present study, higher accessibility of an AOI can be 

interpreted as a greater association (both direct and indirect) with other AOIs in the 

network. High closeness value suggests that the AOI lies in the central location in terms of 

the observer’s visual scanning strategy. The closeness for the 𝑗𝑡ℎ AOI is given as 𝐶𝑗 =

∑ (1 𝑑𝑗𝑘
∗⁄ )𝑚

𝑘=1  (Opsahl et al., 2010), where, 𝑑𝑗𝑘
∗
 is the minimum distance from the 𝑗𝑡ℎAOI 

to the 𝑘𝑡ℎAOI (if multiple paths exist) and 𝑚 is the total number of AOIs on the display. 

Like the previous indegree measure case, the static closeness measure is also modified to 
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develop its dynamic analogous. Thus, the modified closeness measure for the 𝑗𝑡ℎ AOI for 

time interval 𝑡 is defined as follows: 

𝐶𝑗(𝑡) = ∑
1

𝑑𝑗𝑘
∗(𝑡)

𝑚𝑡
𝑘=1
𝑘≠𝑗

                                                                                                        (2) 

Where, 𝑑𝑗𝑘
∗(𝑡) is the minimum distance from the 𝑗𝑡ℎAOI to the 𝑘𝑡ℎAOI (if multiple 

paths exist) and 𝑚𝑡 is the number of unique AOIs in the AOI fixation sequence for time 

interval 𝑡.  

In a dynamic scenario, there are instances where due to visual scanning strategy of 

the observer, an AOI despite receiving small amount of direct attention (low indegree 

measure) and being present in a non-central location (low closeness value) can still play a 

significant role by connecting (acting as a bridge between) two groups of AOIs. Such an 

AOI plays a crucial role in controlling the flow of attention among the other AOIs on the 

display, and this aspect is measured through the concept of betweenness explained below. 

Betweenness for the 𝑗𝑡ℎ AOI is defined as 𝐵𝑗 = ∑ ∑ (𝑆𝑃𝑘𝑙
𝑗

𝑆𝑃𝑘𝑙⁄ )𝑚
𝑘=1,𝑗≠𝑙≠𝑘 

 

𝑚
𝑙=1  

(Opsahl et al., 2010), where 𝑆𝑃𝑘𝑙 represents the total number of shortest paths (if multiple 

paths exist) from the 𝑘𝑡ℎAOI to the 𝑙𝑡ℎAOI, and  𝑆𝑃𝑘𝑙
𝑗

 represents the number of such 

shortest paths that pass through the 𝑗𝑡ℎAOI. Thus, the modified betweenness measure for 

the 𝑗𝑡ℎ AOI for time interval 𝑡 is defined as follows: 

𝐵𝑗(𝑡) = ∑ ∑
𝑆𝑃𝑘𝑙

𝑗
(𝑡)

𝑆𝑃𝑘𝑙(𝑡)

𝑚𝑡
𝑙=1

 𝑗≠𝑙≠𝑘

𝑚𝑡
𝑘=1                                                                                    (3) 

 Where, 𝑆𝑃𝑘𝑙(𝑡) represents the total number of shortest paths (if multiple paths exist) 

from the 𝑘𝑡ℎAOI to the 𝑙𝑡ℎAOI, and  𝑆𝑃𝑘𝑙
𝑗

(𝑡) represents the number of such shortest paths 

which pass through the 𝑗𝑡ℎAOI for the time interval 𝑡.  
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2.3. Proposed approach 

Figure 2 represents the various steps in the proposed methodology for analyzing 

ATCS’s EM data.  

2.3.1 STEP 1. Collect observer’s EM and targets’ location data 

The input for the first step is the simulation experimental data. As output for this 

step, two types of data are obtained: (a) EM data, that consists of horizontal and vertical 

coordinates of the EF and its associated fixation duration, and (b) target location data, that 

consists of the pixel coordinates of the various targets on the display. 

2.3.2 STEP 2. Divide the experiment time into several smaller time 

intervals 

The input for step 2 is the time duration (in minutes or hours) for which the 

experiment has been conducted, and the output are several equal (unequal) sized time 

intervals which sum to the experimental time duration. For example, consider that the total 

experiment duration is divided into four equal time intervals (i.e. 𝑇 = 4, see section 2.2).  

Note that the time intervals can be chosen based on the task characteristics or the 

researcher’s judgment (i.e. fixed or event-based time intervals).   
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Figure 2: Flowchart showing the various steps of the proposed methodology for analyzing 

time interval-based EM data.  
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2.3.3 STEP 3. Select first time interval 

The inputs for this step are the various time intervals obtained in the previous step 

2. The intervals are indexed and arranged in a time-order sequence. In this step, we start 

with the first time interval to initiate developing the AOI fixation sequence.  

2.3.4 STEP 4. Develop AOI fixation sequence (i.e. scanpath sequence) 

for the selected time interval 

As input, step 4 receives three things, the time interval selected in step 3, and the 

EM and target location data for this time interval. As output from this step, we obtain the 

AOI fixation sequence for the time interval considered. The size of the AOI fixation 

sequence is directly proportional to the number of EFs in the time interval. The AOI 

fixation sequence is created for the selected time interval by adapting the approach 

suggested by Kang et al. (2016). Creating the AOI fixation sequence involves mapping the 

EFs with the AOIs. Only those EFs falling within any of the AOI boundaries are considered 

for AOI fixation sequence development, else they are ignored. AOIs are coded by assigning 

uppercase letters followed by lowercase alphabets (i.e. A, B, …, a, b). The developed AOI 

fixation sequence is the collapsed form of a raw AOI fixation sequence. In the collapsed 

form of the sequence, multiple consecutive fixations of the same AOI is collapsed to a 

single fixation case (e.g. AAA is collapsed into A). Thus, a raw AOI fixation sequence 

AABCC is collapsed to ABC. In addition, an overlapping AOI case is shown in parenthesis 

with individual constituent AOIs separated by a semi-colon. For example, if an EF falls 

within the overlapped region of AOIs A and B, it is represented as (A; B). After mapping 

all the EFs to the AOIs, we obtain a time-ordered sequence of AOIs, that shows which 

AOIs were fixated and in which order. Table 1 shows a sample AOI fixation sequence for 

four time intervals in a hypothetical scenario with seven AOIs. 
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2.3.5 STEP 5. Develop AOI transition matrix for the selected time 

interval 

Step 5 receives the AOI fixation sequence developed in step 4 as input. Afterwards, 

the AOI fixation sequence is transformed, as per the approach suggested by Noton and 

Stark (1971), for developing the associated AOI transition matrix, which is the output of 

this step. The size of the transition matrix depends on the number of unique AOI states 

(single and overlapped both) in the fixation sequence. The AOI transition matrix shows, in 

a tabular manner, how many transitions have occurred between various AOIs pairs. For 

example, Table 2 represents the AOI transition matrix associated with the AOI fixation 

sequence for time interval 1 in Table 1. The sequence shows there are three EF transitions 

from AOI A to B highlighted in grey within Table 2. A different AOI transition matrix is 

required for each time interval; thus, before moving to the next step, we need to create the 

associated AOI transition matrix for each time interval.  

 

Table 1: Samples AOI fixation sequences having overlaps 

 

Time interval AOI fixation sequence 

1 ABABABEBAEAEACACAEA 

2 EAEAEAEABABCBC(D; G)C(D;G) 

3 C(D;G)C(D;G)C(D;G)CEAEAEFEF 

4 EFEFEFCFC(D;G)C(D;G)FC(D;G) 
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Table 2. AOI transition matrix developed from the AOI fixation sequence for time 

interval 1 within Table 1. 

 

From AOI 

To AOI 

A B C E 

A 0 3 2 3 

B 3 0 0 1 

C 2 0 0 0 

E 3 1 0 0 

 

2.3.6 STEP 6. Develop DNet visualization 

The inputs for step 6 are the AOI transition matrix for all the time intervals obtained 

in step 2. As output from this step, we obtain the DNet representation of the EM data. 

Developing the DNet involves two steps. First, developing a static network for each of the 

time intervals considered in STEP 2. Second, arranging the static networks in a time-based 

order to visualize the DNet. The details of both the steps are given below.  

2.3.6.1 Develop static network for each time interval 

The static network is developed by adopting the design principles suggested by 

Mandal et al. (2016). Thus, a network’s vertex size is drawn proportional to the number of 

EFs received by the corresponding AOI and the vertex’s color is based on a sequential 

multihued color scale, where red color means high EF duration and yellow color means 

low EF duration occurring on the associated AOI. The thickness of an edge between a 

vertex pair is proportional to the number of EF transitions occurring between the vertices 
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in the edge’s direction. Therefore, for the example shown in Table 1, we have four time 

intervals, thus the DNet is written as 𝐷𝑦𝑛𝑁 = {𝑁1, 𝑁2, 𝑁3 , 𝑁4}, where 𝑁𝑖 is the static 

network for time interval 𝑖 (𝑖 = 1, … ,4).  

2.3.6.2 Visualize the DNet 

Before visualizing the DNet, the vertices of the component static networks are to 

be arranged in a specific layout for mental map preservation. We have used the rectangular 

grid layout for this purpose; in which, we start from the left bottom corner and move 

towards the right, ending at the top right corner. We sort the AOI positions using the natural 

ordering of English letters and putting uppercase AOI groups first and then lowercase AOI 

groups. The single AOIs are followed by overlapped AOI cases in the grid layout. The 

overlapped AOI cases are arranged in an increasing order of constituent AOI numbers, i.e. 

an overlapped AOI case with two AOIs comes before a case with three AOIs. For example, 

overlapped AOI (A;B) comes before (A;B;C), which comes before (A;B;C;D), and so on.  

Consider an AOI fixation sequence that has 𝑛 unique AOI states (including both 

single and overlapped AOIs). Therefore, the number of columns (number of AOIs in a 

single row) in the grid layout will be the smallest integer greater equal to √𝑛. Figure 3 

represents a sample ordering scheme of six AOIs in a rectangular grid layout.  

Once the component static networks are arranged in a grid layout, we visualize the 

DNet by arranging the static networks in a time-ordered sequence. Figure 4 represents a 

sample DNet visualization of the EM data for a hypothetical scenario (see section 3.4). 

Note that the relative location of all AOIs in Figure 4 remains constant in each of the 

networks corresponding to various time intervals. For example, AOI A is placed at the 

bottom row first column in all the constituent networks. This constant relative position of 
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each AOI helps in their navigation across various time intervals and thus helps to preserve 

the mental map of the observer. The DNet has four time intervals, and the AOI fixation 

sequences for all these intervals is shown in Table 1. We should note that, due to the 

dynamic nature of the AOIs and typical scanning strategy of ATCSs, some AOIs may not 

be fixated upon despite being present on the display. In addition, the overlapped AOI cases 

arise in the AOI fixation sequence only if they are fixated upon by the ATCSs. 

Theoretically, there can be many possible overlapped AOI cases as compared to what is 

observed in real life experimental data. For example, with 𝑛 unique AOIs, theoretically, 

we can have ∑ (𝑛
𝑟
) = ∑

𝑛!

𝑟!(𝑛−𝑟)!

𝑛
𝑟=1

𝑛
𝑟=1  possible AOIs cases (including both single and 

overlapped cases) on the display. Although, not all overlapped AOI states will appear on 

the display and even if they occur not all of them will be fixated upon by the ATCSs. This 

is also the case with single AOI cases.  

Thus, it is computationally expensive and inefficient approach to consider all those 

AOI states which have not being fixated at all and thus does not appear in the AOI fixation 

sequence. Consequently, we only consider those AOI states for visualization and analysis 

which appear at least once in the AOI fixation sequence of the ATCS’s. As a result, we 

ignore those AOIs which, despite being present on the display, received no EFs from the 

ATCSs. Therefore, not all AOIs appear in the DNet visualization for each of the ATCSs, 

which results in a change in the relative position of each AOI in the grid structure of the 

DNet visualization. In addition, for comparing various visual scanning strategies, we only 

consider the AOI cases which are common to all the AOI fixation sequences of various 

ATCS’s.  
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Figure 3: Sample AOI ordering scheme for the grid layout used in designing the networks 

in the DNet framework. 

2.3.7 STEP 7. Calculate target (or AOI) importance measures  

Step 7 involves calculating the measures using equations (i), (ii), and (iii). As a 

result, we provide the DNet as the input to this step, and as output we obtain all three 

importance measure values for each of the AOIs with respect to all the time intervals 

considered in the DNet. For example, consider the DNet visualization in Figure 4, where 

the indegree value of AOI B changes from 4 to 3 as we move from the time interval 1 to 2 

(Figure 4 (a)-(b)). For the given DNet in Figure 4, to calculate the closeness and 

betweenness value for AOI B, we first demonstrate how to calculate the distance between 

the AOIs. For example, in the first time interval, the distance from AOI B to A is given by 

𝑑𝐵𝐴(𝑡) = 1 𝑤𝐵𝐴(𝑡)⁄  and substituting 𝑡 = 1, we get 𝑑𝐵𝐴(1) = 1 3⁄ .  

To calculate the minimum distance between two AOIs consider Figure 4 (a), where 

there are two EF transition paths from AOI B to E: Direct path from AOI B to E, which 

has edge weight 1; indirect path from AOI B to A and then to E, which has edge weights 3 

and 3, respectively. Thus, the shortest distance from AOI B to E is defined as the path 

having the minimum distance of 𝑑𝐵𝐸
∗(𝑡) = 𝑚𝑖𝑛[𝑑𝐵𝐸(𝑡), (𝑑𝐵𝐴(𝑡) + 𝑑𝐴𝐸(𝑡))]. For the first 

time interval (𝑡 = 1), we obtain 𝑑𝐵𝐸
∗(1) = 𝑚𝑖𝑛[1/1, (1/3 + 1/3)]  = 𝑚𝑖𝑛[1, 2/3] =
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2/3. Thus, for the first time interval, the closeness and betweenness value of AOI B is 

given by 2.375 and 8, respectively. 

 

(a)                                                (b) 

 

 (c)                                             (d) 

Figure 4: Sample DNet visualization of EM data for the hypothetical scenario described 

in section 3.4. The DNet consists of four time intervals. The figure shows the important 

AOIs for each time interval, and how the importance of various AOI’s is changing with 

time. Sequentially: (a) Time interval 1. (b) Time interval 2. (c) Time interval 3. (d) Time 

interval 4.  

 

2.3.8 STEP 8. Normalize and visualize target (or AOI) importance 

measures 

The last step involves normalizing the calculated measures and subsequently 

visualizing the normalized measure values. Thus, the obtained AOI importance measures 

in step 7 acts as input for this step, and as output we obtain the normalized measure values 
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accompanied by their visualization. Equation (i), (ii), and (iii) shows that the three 

measures both depend on the number of AOIs and the amount of EFs. In addition, these 

measures also have different units, as a result, they are incommensurable. For the present 

dynamic scenario, both the number of AOIs and EFs are not constant for the different time 

intervals considered in the DNet analysis. In addition, to compare the AOI importance 

values across various time intervals and across multiple observers, we need to eliminate 

the units of importance measures, thereby bringing them to a similar scale. To address this 

issue, we present two normalization options. 

2.3.8.1 Percent normalization  

Percent normalization refers to dividing an importance measurement of an AOI by 

the sum of the same measurement of all the AOIs. The percent normalized indegree value 

of an AOI shows the percentage share of the total number of EFs received by an AOI. Thus, 

it can be interpreted as the percentage of the total attention attributed to an AOI. The 

percent normalized indegree value of the 𝑗𝑡ℎAOI for time interval 𝑡 is calculated as: 

𝐼�̅�(𝑡) =
 𝐼𝑗(𝑡)

∑  𝐼𝑗(𝑡)
𝑚𝑡
𝑗=1 

                                                                (4) 

Where, 𝐼�̅�(𝑡) is the percent normalized indegree value for time interval 𝑡. We get, 0 ≤

𝐼�̅�(𝑡) ≤ 1 and ∑ 𝐼�̅�(𝑡) = 1
mt
j=1 .  

2.3.8.2 Distance normalization 

Distance normalization refers to calculating how far away a given importance 

measurement of an AOI is from the maximum value observed for that measurement within 

a time interval. The distance normalization process is defined for all the three target 

importance measures. The distance normalized measure value of an AOI can be interpreted 

as the relative amount of attention given to an AOI as compared to the maximum amount 
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of attention given to any AOI. The distance normalized measure for the 𝑗𝑡ℎAOI, for time 

interval 𝑡, is calculated as:  

∅�̃�(𝑡) =
 ∅𝑗(𝑡)−min

𝑗
 ∅𝑗(𝑡)

max
𝑗

 ∅𝑗(𝑡)−min
𝑗

 ∅𝑗(𝑡)
                                                       (5) 

Where, max
𝑗

 ∅𝑗(𝑡), min
𝑗

 ∅𝑗(𝑡) and ∅�̃�(𝑡) is the maximum, minimum, and distance 

normalized value of the measure  ∅𝑗(𝑡) respectively (0 ≤ ∅�̃�(𝑡) ≤ 1).  ∅𝑗(𝑡) is applicable 

for representing any of the three target importance measures (i.e. indegree, closeness, and 

betweenness) whereas percent normalization is useful for only indegree due to manner in 

which the measures are calculated (see sections 2.2.4 and 2.3.7).  

2.3.8.3 Target (or AOI) importance measure visualization 

       Once the values of the target importance measures are normalized, the last step 

involves their subsequent visualization. We provide a couple of examples of visualization 

approaches: Dot plot based on multiple time intervals (for a single observer and single 

vertex importance measure) and bar plot based on multiple participants (for a single time 

interval and single vertex importance measure). There can be various ways to visually 

represent the combinations of importance measures, normalization methods, multiple time 

intervals, and number of participants. Another example of a bar plot that compares all 

importance measures of a single participant for a single time frame is also provided in the 

Results section. 

2.3.8.4 Adapted dot plot visualization 

Dot plots can better represent the evolution of the visual attention across various 

time intervals. We have adapted the dot plot to visualize the percent normalized indegree 

measure for all the time intervals considered in the DNet framework. Using the normalized 
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measurements helps in comparing the relative significance of AOIs within a single time 

interval and how an AOI’s importance is changing across various time intervals. Figure 5 

shows a sample dot plot for the normalized indegree measure for all the AOIs presented in 

the DNet in Figure 4. In Figure 5, the size of each dot is proportional to the percent 

normalized indegree value of the AOI for the given time interval.  

3.3.8.5 Adapted bar plot visualization 

Bar plots can better assist in comparing a single importance measure among multiple 

participants or multiple importance measures for a single participant.  Figure 6 shows an 

example of the adapted bar plot that compares the indegree measurements among multiple 

participants through the distance normalization approach. 

 

 
Figure 5: Sample dot plot showing the evolutions of the indegree measurements (for both 

single and overlapping AOIs) based on time frames using the results shown in Figure 4. 

Note that the time intervals need not be fixed but can be determined differently (e.g. 

dividing the time intervals based on events). 
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Figure 6: Sample bar plot showing the relative indegree values of various AOIs among 

multiple observers (i.e. P1, P2, and P3) using the results shown in Figure 4. For this 

example, the vertical axis represents the distance normalized indegree measure value. Only 

considering the indegree measure (in this example), AOI A is considered as the important 

AOI by all participants, whereas AOI B is considered important by only P2.  

 

2.4 Experiment 

The proposed approach was implemented into an air traffic control task. The task 

involved expert ATCSs observing the radar display to detect possible aircraft collisions. 

Details are as follows. 

2.4.1 Participants 

Three retired ATCSs (P1, P2 and P3) with over thirty years of experience were participants 

for the experiment. The ATCSs were recruited with the help of FAA Civil Aerospace Medical 

Institute (CAMI). Also, three FAA CAMI employees were also involved in the experiment as 

pseudo-pilots. They made the necessary maneuverings by following the ATCS’s voice commands. 

A simulated radio connection was used as the communication channel between the pseudo-pilots 

and ATCSs. 

2.4.2 Apparatus 

Hardware: A 19.83 × 19.83-inch monitor, with a 2048 × 2048-pixel active display area, 

was used for displaying the simulated air traffic scenarios. Apart from this, an additional monitor 
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(kept to the right of the simulation monitor) was used to display textual information about the 

aircraft, e.g. trajectory and possible future conflicts it might encounter (also known as the Enroute 

Automation Modernization tool). The ATCS’s used a keyboard, placed beneath the simulation 

display, to provide necessary input commands. FaceLab 5 eye tracker with an accuracy in the range 

of 0.5 − 1.0 degree visual angle error and sampling rate of 60 Hz (Eyetracking.com, 2017) was 

used to collect ATCSs’ EM data. A threshold of 100 milliseconds was used for defining fixations. 

The participants were seated within a range of 50-70 cm from the simulated radar display.  

Software:  A customized ISim software used by FAA CAMI was used for simulating the 

enroute air traffic scenario (with an update rate of 1 sec). EyeWorks software was used to process 

the raw eye tracking data collected through FaceLabs eye trackers. 

2.4.3 Scenario and task  

2.4.3.1 Scenario  

For the experiment we used one 20 minutes long simulated enroute air traffic 

scenario, which was developed and provided by the FAA. This scenario had a total of thirty 

nine unique aircraft (named as A, B, …, Z, a, b, …, m) with an average of twenty aircraft 

per frame. The scenario had a minimum of seven and maximum of thirty aircraft per frame. 

Figure 7 represents a screen capture of the simulated scenario. The scenario update rate 

was 1 second. The display shows various aircraft and a weather patch in blue color. The 

aircraft representation shows the direction in which the aircraft is moving (shown by the 

white line) and data block which contains information about the aircraft’s computer code 

name, altitude, current speed, and destination airport. For example, in Figure 7, the aircraft 

N7890 (AOI U) is flying at a constant altitude of 19,000 ft (as shown by 190C) with a 

speed of 402 knots and it going to KGPT airport (i.e. Gulfport–Biloxi International Airport 

in Mississippi). 
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2.4.3.2 Task  

The task involved controlling the simulated low altitude enroute airspace using the 

ERAM system. The ATCSs are required to fulfil two objectives: (1) Route the aircraft 

through the sector within the display and (2) avoid any conflict scenario by preventing loss 

of separation (vertical and horizontal separation of 1000 ft and 5 knots respectively) 

between aircraft. To achieve these objectives, the ATCSs gave voice commands (e.g. 

change is altitudes, speed and direction of the aircraft) to the pseudo pilots, using the 

simulated radio, for necessary maneuvering of the aircraft. 

2.4.4 Data analysis 

For the DNet analysis, the 20 minutes simulated scenario was divided manually, on 

trial and error basis, into four equal time intervals of 5 minutes. This choice was motivated 

by the fact that we observed on average an aircraft spends around 5 minutes on the radar 

display. Event based intervals were not applied in this research since many aircraft 

appeared and disappeared throughout.  

Matlab was used to develop the AOI fixation sequence for each of the four time 

intervals mentioned above. In addition, igraph package (Csardi & Nepusz, 2006) in R 

software was used to create the dynamic network representation of the AOI fixation 

sequences and also for AOI importance metric calculation and visualization. 

Figure 2 shows there are eight major steps in the proposed methodology. The time 

complexity (TC) of steps 1-4 for one time interval can be written as 𝑇𝐶1−4 = 𝛼1𝑒𝑡𝑛𝑡 , 

where, 𝑒𝑡 and 𝑛𝑡 are the number of eye fixations and number of AOIs in time interval 𝑡 

respectively, and 𝛼1 is some positive constant. Due to human physiological limitations the 

value of 𝑒𝑡 cannot increase arbitrability. Therefore, the governing factor of the time 

complexity for steps 1-4 is the number of AOIs. Thus, we can approximately write 𝑇𝐶1−4 =
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𝑂(𝑛𝑡). Taking the worst case scenario, we can find an upper bound for this value by taking 

the maximum number of AOIs across all time intervals. Let, 𝑛𝑚𝑎𝑥 be the maximum number 

of AOIs present during any of the time intervals. Thus, we get 𝑇𝐶1−4 = 𝛼1𝑛𝑚𝑎𝑥. Similarly, 

the time complexity of step 5 can be written as  𝑇𝐶5 = 𝛼2𝑛𝑚𝑎𝑥
2, where 𝛼2 is some positive 

constant. For 𝑇 time intervals the time complexity of step 1-4 and 5 can be written as 

𝑇𝐶1−4 = 𝑇𝛼1𝑛𝑚𝑎𝑥 and 𝑇𝐶5 = 𝑇𝛼2𝑛𝑚𝑎𝑥
2 respectively.  

As mentioned in section 3.6.2, in a given DNet visualization, the relative location 

of each AOI remains constant within the various constituent networks for various time 

intervals. As a result, for drawing the DNet, we need to consider all the unique AOI states 

that arise in the AOI fixation sequence of an ATCS. Therefore, the time complexity for 

step 6 can be written as, 𝑇𝐶6 = 𝑇𝛼3𝑛𝑢𝑛𝑖𝑞, where, 𝑛𝑢𝑛𝑖𝑞 is the number of unique AOI states 

(both single and overlapped) in the AOI fixation sequence and 𝛼3 is some positive constant. 

Step 7 consists of calculating three AOI importance measure. The time complexity for 

indegree, closeness and betweenness metric is 𝑇𝛼4𝑛𝑚𝑎𝑥, 𝑇𝛼5(𝑛𝑚𝑎𝑥
2 − 𝑛𝑚𝑎𝑥), 

𝑇𝛼6𝑛𝑚𝑎𝑥(𝑛𝑚𝑎𝑥 − 1)(𝑛𝑚𝑎𝑥 − 2) respectively.  

Thus, the time complexity for step 7 can be written as 𝑇𝐶7 = 𝑇𝛼4𝑛𝑚𝑎𝑥 +

𝑇𝛼5(𝑛𝑚𝑎𝑥
2 − 𝑛𝑚𝑎𝑥) + 𝑇𝛼6𝑛𝑚𝑎𝑥(𝑛𝑚𝑎𝑥 − 1)(𝑛𝑚𝑎𝑥 − 2).  

The time complexity of Step 8 can be written as 𝑇𝐶8 = 𝑇𝛼7𝑛𝑚𝑎𝑥, where, 𝛼7 is 

some positive constant. Adding all the time complexity for step 1-8, the total time 

complexity for the overall process can be written as: 𝑇𝐶𝑡𝑜𝑡 = 𝑇[𝛼1𝑛𝑚𝑎𝑥 + 𝛼2𝑛𝑚𝑎𝑥
2 +

𝛼3𝑛𝑢𝑛𝑖𝑞 + 𝛼4𝑛𝑚𝑎𝑥 +  𝛼5(𝑛𝑚𝑎𝑥
2 −   𝑛𝑚𝑎𝑥) + 𝛼6𝑛𝑚𝑎𝑥(𝑛𝑚𝑎𝑥 − 1)(𝑛𝑚𝑎𝑥 − 2) +

 𝛼7𝑛𝑚𝑎𝑥  ].  

On simple algebraic reorganization, we get that:       
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   𝑇𝐶𝑡𝑜𝑡 = 𝑇[𝛼6𝑛𝑚𝑎𝑥
3 + 𝑛𝑚𝑎𝑥

2(𝛼2 + 𝛼5 − 3𝛼6) +  𝑛𝑚𝑎𝑥(𝛼1 + 𝛼4 + 2𝛼6+𝛼7 −

𝛼5) + 𝛼3𝑛𝑢𝑛𝑖𝑞].  

Thus, neglecting the lower order terms of 𝑛𝑚𝑎𝑥, the approx. time complexity of the 

overall data analysis process reduces to the order of 𝑂(𝑇𝑛𝑚𝑎𝑥
3 + 𝑇𝑛𝑢𝑛𝑖𝑞). Thus, we can 

see that the number of time interval, maximum number of AOIs within any time interval 

and the number of unique AOI states in the AOI fixation sequence do impact the processing 

time of the proposed approach.  

2.5 Results 

2.5.1 Dynamic graph visualization  

Figure 8 represents the DNet visualization of the EM data of one ATCS for the 

simulated scenario shown in Figure 7. In Figure 8 (a) (i.e. time interval 0-5 minutes), AOI 

F (i.e. AAL68) and U (i.e. N7890) are the most important AOIs as they both have most EF 

numbers (circle size) and longest EF duration (circle color). In addition, there are highest 

EF transitions between AOI F and AOI U (based on the thickness of the link). AOI K (i.e. 

EJA33), despite having a small number of EFs, has substantially longer EF duration. AOI 

b and AOI d can also be considered as important AOIs based on how a researcher wants to 

set the threshold. 

For the second time interval (i.e. 5-10 minutes) shown in Figure 8 (b), the important 

AOIs have changed to AOI G (newly appeared aircraft not shown in Figure 8(a) and AOI 

K. Notice that AOI F has moved out of the display (see Figure 7(b)) and AOI U is still 

within the display but AOI U is not visually attended any longer. 

Besides, notice that AOI d (i.e. UAL1322) has been receiving consistent visual 

attention throughout the two time intervals 0-5 minutes and 5-10 minutes. Similarly, the 
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important AOIs change for the next two time intervals. In the last time interval, the 

overlapping AOI (i.e. AOI (J;f)) receives much visual attention. As we move across time 

intervals from 1 to 4, a visible trend is the increase in the complexity of the network, with 

increase in the number of AOIs and EF transitions among them. 

2.5.2 Adapted dot plot 

Figure 9 represents the dotplot visualization of the normalized indegree measure 

for all the AOIs present in DNet shown in Figure 8. For example, in Figure 9 (a), AOI F 

and U has high importance in first time interval (i.e. 0-5), although, their importance 

reduces drastically in the subsequent intervals. AOI d receives consistent visual attention 

throughout the first two intervals. The indegree results are in accordance with the DNet 

results in Figure 8 since indegree measures the number of EFs received by an AOI.  

The adapted dot plot better shows the evolution of important AOIs. Considering 

AOI K, we see that its importance initially grows as we move from the first time interval 

to the second, where it reaches its maximum and then starts decreasing for the last two time 

intervals. Another noticeable fact is that majority of the overlapped AOI cases have 

significant importance only in one time interval. These trends took more time to identify 

when observing the DNet. 

2.5.3 Adapted bar plot 

Figure 10 represents the relative importance of various AOIs present in the first 

time interval of participant 1 (i.e. P1). Again, AOI F and U are important, but also, we can 

identify that AOI b (i.e. SWA340) and AOI d can also be important AOIs when we 

additionally consider the closeness and betweenness values. We can also observe that AOI 

K had small EF numbers during the first interval, however, it can be considered as an 



34 

 

important AOI due to the long EF duration and relatively high closeness value. 

Furthermore, we can see that the AOI Q and AOI a might be an important AOI considering 

that AOI (Q;a) also has moderate indegree and closeness values.  

Figure 11 shows the measures (i.e. indegree, closeness, and betweenness) 

visualized based on participants for the first time interval. Although there are slight 

variations, we can see a consistent trend among the participants. In addition, it becomes 

more evident that AOI Q and AOI a can be important AOIs (considering the values of AOI 

(Q;a)) in addition to AOI F, AOI K, AOI b and AOI d. In detail, overlapping AOI (Q;a) 

received substantial EF duration (as shown by the vertex color in the DNet visualization) 

although it received moderate number of EFs on it (as shown by the vertex size in the DNet 

visualization). On the other hand, comparing the three importance measurements, AOI 

(Q;a), in spite of having moderate indegree and closeness value,  has insignificant 

betweenness value. 

This might be due to the short lifespan of the overlapped AOI state since AOI a 

(i.e. SWA2920 flying at 21000 ft with speed 424 knots overtakes AOI Q (i.e. N46332 

flying at 7000 ft with speed 163 knots very quickly on the display. As a result, it is highly 

unlikely that it will play a crucial role as a bridge for the flow of attention between other 

groups of aircraft.  

2.6 Discussion 

Results obtained from the DNet visualization coupled with multiple time interval 

visualizations enabled us to identify which are the important targets in each of the time 

intervals and how their importance evolves as we move across time intervals. Application 

of the three adapted target importance measures (i.e. indegree, closeness, and betweenness) 
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along with the various ways to visualize those values showed that we can better analyze 

target importance measures that accounts for the interaction among targets. 

In addition, we could identify various EM network characteristics of each 

participant and how the relative importance of various targets differs among them.  

DNet was better to visualize the EM flow of the overall network and EF transitions, 

whereas the adapted dot plot was better to visualize the evolution of importance of each 

AOI across various time intervals. It is noted that the results could have been different if 

we had used a different time interval. For example, if the time interval was to 10 minutes, 

the most important AOI would turn out to be AOI d and the importance of AOI F and AOI 

U would have been less substantial. However, such results can be misleading since AOI F 

and AOI U were important AOIs during the first 5 minutes.  

 
(a) Initial display (i.e. at time 0) 
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 (b) At the end of first time interval (i.e. at 5 minutes): AOI F is moving out of the 

display. 

 

Figure 7: Screen captures at the 0 and 5 minutes. The blue patch shows a weather feature 

(e.g. thunderstorm) which the aircraft needs to avoid. The characters and arrows in yellow 

color represent an AOI and the direction of the aircraft, respectively. These characters and 

arrows were not present during the experiment. Each AOI consists of an aircraft shown as 

a diamond shape, its direction shown as a vector line, and its associated data block (first 

line shows the aircraft ID, second line shows its altitude, third line shows its computer ID 

and speed, and forth line shows its destination). If the altitude changes, the aimed altitude 

is shown followed by letter “T” and the current altitude. For example, AOI F is AAL68 

(i.e. American Airlines 68) and flying toward northwest. Its current altitude is 21,300 ft (at 

5 minutes) and target altitude is 23,000 ft. Its speed is 345 knots (at 5 minutes) and 

destination is KDEN (i.e. Denver international airport). 
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(a) 0-5 mins                         (b) 5-10 mins 

            
 (c) 10-15 mins       (d) 15-20 mins 

Figure 8: DNet visualisation of the EM data of one ATCS for the simulated enroute air 

traffic scenario. The figure shows the important AOIs in terms of EF numbers and EF 

duration for all the four time intervals. It also shows how the importance of various AOIs 

changes as we move across various time intervals. The relative location of each of the AOIs 

remains constant across all the static networks associated with different time intervals. For 

example, AOI K is placed at the bottom row sixth column for all the constituent static 

networks.   
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         (a) Part 1 

 
        (b) Part 2 

Figure 9: Adapted dot plot visualization of the percent normalized indegree measure value 

for all AOIs (single and overlapped) present in the DNet visualization in Figure 8. 
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Figure 10: Distance normalized measure value for all AOIs present in the DNet for time 

interval 0-5 mins for P1 (see Figure 8(a)). “Norm Indeg,” “Norm Close,” and “Norm Bet” 

refers to normalized indegree, closeness, and betweenness values, respectively. The 

vertical axis represents the distanced normalized measure value. The vertical axis ranges 

from 0 to 1, thus it helps to analyze the relative importance of all three measures at a given 

time interval.   

  

  Selection of time interval thresholds (whether fixed or varied based on 

events/triggers) can be tricky and depend on the scenario characteristics. The adapted bar 

plots were better when multiple target importance measures and/or multiple participants’ 

measures were needed to be compared side-by-side. The normalized and adapted measure 

plots show that, despite receiving a substantial amount of EFs, an AOI may not be 

significant in terms of the flow of visual attention across the various AOIs within the 

display as shown by the closeness and betweenness measures. The proposed approach can 

be useful in increasing the training efficiency of the novice controllers. Novice controllers 

can know which are the important targets that need to be focused upon and how to move 

the attention across various targets as the scenario characteristics change. Furthermore, the 

trainees can better understand which targets are highly correlated for conflict mitigation 

through observing the EF transition characteristics using the DNet and evaluating the 

closeness/ between-ness values. 
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2.7 Conclusion 

In this research, we integrated the DNet framework with three target important 

measures (i.e. indegree, closeness, and betweenness). During the integration, we 

normalized the measurements and then adapted the dot plot and bar plot to better visualize 

the outputs. The approach facilitated the understanding of how visual attention occur on 

the dynamic network (i.e. EM network created from an aircraft conflict task) from various 

perspectives. The results obtained showed that the traditional approach of using the raw 

EM data measures (i.e. number and duration of EFs) might be misleading for dynamic 

scenarios where the targets’ lifespan on the display are non-uniform. The proposed 

approach enabled us to better understand how the observers’ attention was devoted to the 

various targets including the overlapping targets on the display. Also, in case of dynamic 

targets, to understand target importance we need to also consider which targets are integral 

in the smooth flow of attention across the various targets within the display. 

2.8 Limitations and Future work 

One challenging issue was determining the time intervals for effective analysis. We 

have used five minute time intervals for the experiment based on trial and errors and we 

could have applied time intervals based on specific events (e.g. when a target appears or 

disappears, or when a verbal control command is issued by an expert ATCS). However, 

event-based time intervals can create issues if too many events occur within very short 

times or too few events occur in very long times.  Instead, we could try applying shorter 

time intervals. For example, reducing the 5 minute interval to 1 minute interval).  However, 

we might be burdened with visualizing and analyzing too many out-puts. Therefore, formal 
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sensitivity analysis needs to be performed as part of a future study to determine an optimal 

range of values for the intervals. 

 
(a) Distance normalized indegree measure  

 
(b) Distance normalized closeness measure  

 
 (c) Distance normalized betweenness measure 

Figure 11: Comparison of three ATCS’s visual scanning strategy by analyzing the distance 

normalized importance measure values of AOIs.  The Figures (a), (b), and (c) shows the 

relative importance of AOIs in terms of distance normalized indegree, closeness, and 

betweenness value (as shown by their zero values in the vertical axis in Figure 10).  
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In addition, we have not used pre-determined thresholds to identify important AOIs 

and only identified them if all measures were relatively higher than others. Therefore, a 

statistical method should be developed that clearly differentiate the important AOIs from 

the non-important one. 

Moreover, as a future study, we can also analyze the variation of the saccade length and 

eye fixation duration with time and various air traffic scenario characteristics. For example, 

we can consider how the distance between several aircraft on the display affects the saccade 

length of the ATCS. This might help us analyze the type of search behaviors undertaken 

by them, i.e. is the search goal-oriented where they search for targets having similar 

characteristics or is it a random one.  

With the increase in the number of AOIs and EF transition between them, the visual 

scalability of the DNet visualization gets impacted negatively, as there are more instances 

of edge crossings in the network representations. Furthermore, increase in the number of 

time intervals also increases the number of static networks within a DNet framework. This 

leads to an increase in the cognitive load of the observers as they have to keep track of an 

AOI across more number of network representations. Thus, in terms of visualization 

scalability, we can apply various graph simplification processes, also known as graph 

filtering processes, where the unimportant edges (i.e. edges representing low EF 

transitions) are not considered for visualization purpose, thus reducing the visual clutter.  

Furthermore, it can be valuable to analyze the community structure of AOIs (cluster 

of AOIs having a high amount of EF transitions between them) and their evolution formed 

in the network representation of the EF data. Finally, we are planning to develop a mapping 

scheme between the visual scanning pattern classifications (Mcclung & Kang, 2016) with 
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the DNet results. This might help in understanding how different visual scanning strategies 

are related to the overall target’s importance. 
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Chapter 3: Novel DWN-based visualization 

techniques 

3.1 Introduction 

This chapter provides the details of two novel visualization methods, norm-cube 

and order plot, that further builds on visualization of the DWN-based target importance 

measures method introduced in Chapter 2. These two novel methods address the major 

limitations of the dot plot and bar plot methods, introduced earlier in Chapter 2. For a 

detailed analysis of the various limitations of the prevalent eye movement visualization 

method please refer to Chapter 2.  

In detail, dot plot method (refer to Chapter 2 for details) visualizes the evolution of 

target importance for several time intervals but, for only one measure. On the other hand, 

norm-cube plot (details explained in the following section), provides a way to visualize the 

overall target importance, considering all three target importance measures.  

Bar plot (refer to Chapter 2 for details), although allows representing of target 

importance for multiple observers, doesn’t provide the full picture. Note that, for the 

enroute traffic scenario there arises many unique overlapped AOI cases in the AOI fixation 

sequences which are unique for individual ATCs. As a result, it becomes challenging to 

compare these cases given the bar plot framework. This limitation is addressed by the order 

plot method (details explained in the following section), which can both handle multiple 

observer data and can easily represent the relative importance of overlapped AOI cases, 

and also provides a visual tool to compare across the relative ordering of various targets 

(AOIs) in the visual scanning strategy of multiple observers.  
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3.2 Norm-cube plot 

Norm-cube plot refers to visualizing the overall importance of targets (AOIs) in 

terms of all three network-based importance measures, i.e. Indegree, Closeness, and 

Betweenness (see Chapter 2). Note that, all three importance measures have different 

dimension and range; therefore, the norm-cube plot uses their normalized values to 

combine them into a single plot. Refer chapter 2 for details of the measure normalization 

process.  

Figure 12 shows an example of the norm-cube plot for one observer. The three axes 

represent the normalized values of the three different measures (i.e. Indegree, Closeness, 

and Betweenness) derived from the directed weighted network model explained in chapter 

2. Note that each norm-cube plot caters to only one time segment of analysis, e.g. 0-5 min, 

5-10 min etc.  

The circles represent various AOIs. The Euclidean distance of any AOI 

representation is proportional to its overall importance considering all three measures, i.e. 

Indegree, Closeness, and Betweenness. Besides, to enhance the visualization, the size of 

each circle is made proportional to its distance from the origin. Furthermore, the color on 

each AOI follows a multi-hued pattern, where it is proportional to cumulative eye fixation 

duration on each it. In this, red color represents high eye fixation duration and yellow 

suggest low eye fixation duration.  Furthermore, to reduce visual clutter, AOI names of 

those AOIs that have very close to origin, i.e. very low overall importance, are not shown 

(see two yellow circles in Figure 12). Considering all these above-mentioned aspects, it 
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can be inferred from Figure 12 that AOI A is the most important target overall, and it has 

very high eye fixation duration on it.   

 The major advantage of using the norm-cube plot is its ability to visualize the 

overall importance of a target (AOI) in terms of the visual scanning strategy of an ATCs. 

Although the norm-cube plot can be extended to multiple ATC data, however, for many 

AOI it might lead to visual clutter. Also, different color scheme might be required to denote 

different ATCs. It can be considered as future research work.  

 
Figure 12: Example of a Norm-cube plot. Norm: normalized, Indeg: indegree, Close: 

closeness, Bet: betweenness. 

3.3 Order plot 

Norm-cube plot despite its ability to represent targets’ overall importance falls short is 

visualizing multi-participant data when there are many AOIs on the display. To address the 

issue of displaying the importance of a large number of targets, and simultaneously provide 

a visual comparison tool for assessing similarity of visual scanning strategy among ATCs, 

the order plot has been developed. Order plot refers to visualizing the relative significance 

of AOIs, in decreasing order of importance, for any given target importance measure out 
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of the three measures which are indegree, closeness, and betweenness. Figure 13 shows an 

example order plot for four observers/participants case, where three AOIs are ranked as 

per decreasing importance for a given target importance measure (indegree for the 

example) for a single time interval.  

 Order plot provides a visual tool for comparing the overall scanning strategy of 

various participants, which in turn can help an analyst to find similarities and/or hidden 

patterns between various scanning strategies. Note that, for the case of enroute traffic (i.e. 

where aircraft representations overlap on each other), the singular AOI states are generally 

common to all the ATCs, however, for the overlapped AOI states it differs across ACTs. 

The presence or absence of overlapped AOI states in AOI fixation sequence dependent on 

whether the ATC has fixated on the specific overlapped region or not. Consequently, 

although order plot allows visual comparison of various singular AOI states importance 

across ATCs but, it’s challenging (even not possible for some cases) to evaluate the 

importance of every overlapped AOI states across different ATCs.  

To further aid the visual comparison of target importance across observers, the size 

of the targets’ representation is made proportional to their relative rank, and they also have 

been normalized across all the observers. In detail, at the beginning, the maximum and 

minimum values of targets, in terms of the measure criteria used across all the observers, 

are selected to determine the maximum and minimum size of the target representations. 

Subsequently, all the absolute target importance values are then normalized using these 

threshold values. For example, in Figure 13, the AOI A for participant/observer P1 has the 

maximum size and AOI C for participant/observer P3 has the smallest size. Rest of the 
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AOI representations are normalized using these to size values. This is similar to the 

distance normalization approach discussed earlier in Chapter 2 section 2.3.8.    

 
Figure 13: Order plot (indegree measure-based) showing the relative ranking of three 

AOIs A, B and C for various observers for a given time interval. 

3.4 Experimental  

NOTE: The experimental methodology for this chapter remains the same as 

mentioned in previous Chapter 2.  To avoid repetition, the details are not mentioned here.   

3.4 Results  

3.4.1 Norm-cube plots 

Figure 14 shows the result of norm-cube plot for an ATC for all four time intervals 

considered for analysis, i.e. 0-5 min, 5-10 min, 10-15 min, and 15-20 min intervals. To see 

the corresponding network representation of the ATC’s eye movement data please refer to 

Figure 8 in chapter 2.  
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Figure 14 (a) shows that for the first time interval, i.e. 0-5 min interval, AOI U is 

the most important target overall. The other very important AOIs are AOI b, Q, and F. For 

the next time interval, i.e. 5-10 min interval (see Figure 14 (b)), AOI U remains the most 

important AOI overall. Also, the overall importance of AOI Q and M increases. However, 

as we move further down the timeline, new AOIs (i.e. AOI G) become more prominent in 

terms of the visual scanning strategy of the ATC. Several other overlapping AOI states are 

also observed to be important, e.g. AOI (Q,e) and (K,Q). As we move further, i.e. 15-20 

min interval (see Figure 14 (d)), many AOIs become significant, which shows that due to 

heavy traffic volume on the radar display the ATC devotes their visual attention to several 

AOIs.  

 
(a) 0-5 min interval 
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(b) 5-10 min interval 

 
(c) 10-15 min interval 

 
(d) TS 4: 15-20 min 

Figure 14: Norm-cube plot for a single ATC showing the overall important AOIs for four 

different time intervals. Indeg: indegree, Close: closeness, Bet: betweenness. 

 

3.4.2 Order plots 

Figure 15 represents the shape and color code used to represent the various AOIs 

in the order plot visualization method. As the number of AOI increases, this codification 

scheme helps to reduce visual clutter in the order plot representations. In addition, it also 

enables a compact representation of the overlapped AOI cases.  
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Figure 15: Shape and color code used to represent various AOIs in the order plot. 

 

Figure 16 shows the order plot that represents the relative importance of various 

AOIs (both singular and overlapped states) for five expert ATCs and for all four time 

segments. The figure shows the ranking based on the Indegree measure. Note that other 

importance measures can also be used, i.e. Closeness, Betweenness. Note that, for 

demonstration purpose, only five expert ATCs data is shown, although, more ATCs data 

can also be visualized.   

Figure 16(a) shows a clear pattern in the relative importance of AOIs among all the 

expert ATCs, i.e. AOI F and Q are very important in the visual scanning strategy of all the 

expert ATCs shown.  AOI F holds the rank of either 1 or 2 for all five cases, and AOI Q 

holds the rank 3 in four among five cases. Another very significant AOI is b. As a move 

ahead in the timeline, as shown in Figure 16 (b)-(d), we observe a large number of AOIs 

(both singular and overlapped cases). Despite a large number of unique AOI states, 

interestingly, we can still identify some specific AOIs that are significant across various 

observers, e.g. AOI K and AOI e in Figure 16 (b), AOI M, I, and P in Figure 16(c), and 

AOI l and S in Figure 16(d). Another interesting thing to note is that some specific AOIs 

appear to be significant both as a singular and overlapped state, e.g. AOI G, f , and l (see 

Figure 16(d)).   
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(a) 0-5 min interval 

 

(a) 5-10 min interval 
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(c) 10-15 min interval 

 
(a) 15-20 min interval 

Figure 16: Order plot showing the ranking of various AOIs (singular and overlapped AOI 

states) for four time intervals in terms of visual scanning strategy of five expert ATCs. The 

present example only shows the ranking based on the Indegree measure. 

 

3.5 Discussion 

In this research, two novel visualization methods, (i) norm-cube, and (ii) order plot, 

are developed to represent the target importance in terms of the visual scanning strategy of 
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observers involved in a dynamic target tracking task. These developed frameworks are 

based on the dynamic DWN-based modelling of eye movement data of observers (ATCs 

for this specific research).  

The norm-cube plot allows visualization of the overall target importance, 

considering three importance measures simultaneously. This enables the reader to 

comprehend how important a target is not only in terms of the amount of direct visual 

attention it receives (i.e. Indegree measure), but also how significant it is as far as the flow 

of visual attention is concerned, and also what critical role a target plays in forming a 

bridging link between different groups of targets which otherwise are not connected in 

terms of scanning strategy employed by the observer. The results from the norm-cube plots 

show how the evolution of the visual scanning strategy was happening with time as the 

important targets were changing as we are moving from the first to the last time interval of 

analysis.  

Order plot framework allows visualization of multiple observes data 

simultaneously, although for one target importance measure only. This is useful as it 

provides a visual exploration and comparison tool, where the reader can see which 

targets/AOIs are significant across different observers’ visual scanning strategy.  The 

results from the order plot were useful as it provided a very comprehensive view of the 

relative ranking of the same AOI/ target across the diverse visual scanning strategy. 

Besides, simple visual exploration also allowed for a clear understanding of which are the 

very crucial AOIs, as they appear having very row ranks both as a singular state and in 

overlapping states with other AOIs.  
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Both these visualization frameworks might provide an easy to use tool to 

understand which are the important targets to focus upon for different time intervals, and 

eventually help novice ATCs to effectively modify their visual scanning strategy so that 

they also attend to these important targets.  

3.6 Limitation and Future work 

One major limitation of the norm-cube plot is that, given the current format, it can 

only visualize one observer data. Also, we need multiple norm-cube plots to showcase the 

evolution of the target importance values. Furthermore, the norm-cube plot being a three-

dimensional representation, it becomes difficult to provide visualize it one a two-

dimensional paper. As a result, software making it possible to change the angle of view of 

the norm-cube plot will further enhance its utility in understanding the overall importance 

of targets more comprehensibly.   

On the other hand, the major limitation of the order plot framework is that we can 

show the relative ranking of the targets based on only one target importance measure. 

Moreover, as the number of AOIs increases, more shaper and color code scheme needs to 

be generated; as a result, the reader needs to go back-n-forth between the coding scheme 

and the plot to understand the relative ordering of the AOIs and also compare the similarity 

across ATCs.  

For future research, in case of the norm-cube plot framework, we can omit 

insignificant AOIs (i.e. AOIs very close to the origin) by selecting a threshold distance 

from origin below which AOIs will not be visualized. This will reduce visual clutter for 

cases where there are many AOIs/targets to visualize. Besides, this will also allow to 

include multiple observers’ data, where a different color scheme can be used to indicate 
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different observers (e.g. ATCs). This will enable a visual comparison of the visual scanning 

strategy of multiple observers, where all three target importance measures are incorporated 

simultaneously. 

For the case of order plot, we might consider developing a filtering mechanism that 

is can show results on the go, i.e. a software tool will allow us to show results dependent 

on various filtering criteria, e.g. showing the relative position of only selected AOIs across 

different observers. Many other filtering options can also be included. This will enable 

improved visual exploration of the results obtained.   
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Chapter 4: Simplifying Visual Scanpath 

Representation to Facilitate Training in 

Dynamic Target Tracking Tasks: Spatial-

Temporal Clustering Approach 

NOTE: This chapter has been submitted for publication in IEEE Transaction for Human-

Machine Systems. Therefore, the contents are directly taken from the submitted 

manuscript. Although to keep the reference style consistent throughout the dissertation, the 

in-text and references section has been changed to APA format.  

4.1 Introduction  

As the saying goes, ‘it takes two to tango; similarly, for safe and efficient air travel 

management it takes both experienced pilots and expert air traffic controllers (ATCs). 

Expert ATCs form the major underpinning component in providing both timely and safe 

navigation of flights, even more so in case of ever-changing and severe weather conditions 

(e.g. heavy thunderstorms, rapid changes in wind speed and pressure). A recent study by 

the Federal Aviation Administration (FAA) estimates that by 2040, the air traffic volume 

will reach 60 million from the current value of 40 million (Federal Aviation 

Administration, 2018). However, adding to our concern, the study by Hampton (Hampton, 

2016) shows that, given the prevalent training approach of ATCs, which takes very long to 

complete, the projected available workforce of expert ATCs might fall short to maintain 

the same safety standards and service levels for this anticipated high traffic volume. Thus, 
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it becomes imperative for the FAA to explore more efficient training methods for their 

candidates, both in terms of cost and time.  

Note that, irrespective of ATCs’ workstation, i.e. enroute (very high altitude) or 

airport tower control (very low altitude), one substantial aspect of their job comprises of 

visual scanning. Depending on the altitude, the controllers are either monitoring the air 

traffic by visually scanning the radar display (in case of enroute traffic or for arriving traffic 

to the airport) or by looking outside the tower window trough naked eyes (in case of looking 

for the ground traffic in the airport area). Due to this integral nature of the visual scanning 

activity associated with the air traffic control operations, it becomes essential to analyze 

and understand their eye movements. This understanding will pave the way towards 

formalization of the expert’s visual scanning strategy and in turn, will help to make the 

training process of novice ATCs more efficient. Researches in Kang and Landry (2014), 

Mcclung and Kang (2016), Mandal et al. (2016), and Mandal and Kang (2018) show that 

eye-tracking technology can facilitate the understanding of expert ATCs’ visual scanning 

strategy while they monitor and control air traffic. In detail, Kang and Landry (2014) 

showed the potential application of experts’ visual scanpath (VS), the time-ordered 

sequence of eye fixations, as a training tool to increase conflict detection efficiency for 

novice ATCs. Two other recent studies, Mandal et al. (2016) and Mandal and Kang (2018) 

demonstrated how a network-based VS analysis and visualization can help us in 

understanding the cognitive processes of expert ATCs involved in enroute air traffic 

control tasks. Propelled by these findings, the present study aims to analyze the VSs of 

expert ATCs involved in airport control tower operation, also known as local controllers 

(LCs).  
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LCs are mainly responsible for a smooth flow of traffic, both inbound and outbound 

from the airport region, e.g. providing landing and takeoff clearances to incoming and 

outgoing aircraft respectively. Besides, they also provide instructions for both aircraft and 

other vehicle movements on or across runways. Figure 17 shows an example of a typical 

LC’s viewing field, where the computer screens represent the various radar display (also 

called ‘inside the tower view’). The radar displays are used by LCs to see the incoming and 

outgoing aircraft which are otherwise invisible to naked eye. Additionally, the LCs 

investigate the runway region, using a combination of radar display and naked eyes, which 

is also called ‘out of the window view’ (shown by the yellow dotted boundary in Figure 

17).     

The two major challenges in the analysis of LCs’ EM data because, first, raw EM 

data is very complex to visualize, even for a meaningful small duration (e.g. task 

completion time of 10 or 20 s); and second, in the absence of any predefined order of visual 

scanning, each LC employ a variety of scanning strategies to manage traffic, making it 

challenging to extract relevant patterns that can be taught.  

Mcclung and Kang (2016) and Palma Fraga et al. (2018) examined the enroute ATCs’ 

VS patterns and classified them into several groups. However, note that the observed VS 

patterns are very much correlated with the spatial distribution of the targets on the display, 

i.e. aircraft representations on the enroute radar display. Therefore,  change in scenario 

context may lead to a change in observed VS patterns. Also, unlike the enroute case, the 

traffic flow is very different for the airport control tower, where aircraft have designated 

arrival and departure location, and there exist numerous other operations, e.g. aircraft 

move, line up and wait on in and around the taxiway. Furthermore, our emphasis is on VSs 
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associated with various clearance commands executed by LCs, e.g. landing, takeoff. This 

is useful for developing enhanced training materials for novice LCs because, ability to map 

VSs to the commands will facilitate in our understanding of the context behind the 

observed visual scanning strategy, which otherwise is very difficult to articulate even for 

experts. 

There exist only a few previous pieces of research that deal with control tower 

traffic studies and especially analyzing LCs’ visual scan paths. The study by Chhaya et al. 

(2018) talks about developing a better training curriculum for novice controllers, however, 

they focus on developing better training simulation scenarios. Muthumanickam et al. 

(2019) analyzed the evolution of expert ATCs’ visual scanning strategy, leading to the 

change in areas of interests on the display, using a hierarchical clustering technique for 

long hour remote tower simulation studies. Although pertinent in understanding the visual 

scanning strategy over long durations this analysis doesn’t particularly provide many 

insights in understanding the visual scan paths of expert controllers. Manske and Schier 

(2015) undertook a control tower simulation study where they evaluated the probability of 

LCs’ fixating on various regions of the display during providing clearance commands. 

Similarly, Svensson (2015) provided a simple description of LCs’ EM data while giving 

various clearances. Another study by Li et al. (2018) undertook a multiple tower simulation 

study. These previous studies were limited to the analysis of basic EM measures, e.g. eye 

fixation count and duration, pupil size, and saccade amplitude. Also note that, in absence 

of any clear sequential order associated with the visual scanning task of LCs, it is found 

that variety of scanning strategies exists, giving rise to non-homogenous VS among expert 

ATCs (Kang & Landry, 2014). Consolidating these observations, we can infer that, 



61 

 

although the basic EM measures are useful in providing a broad understanding of the LCs’ 

visual scanning strategy, in absence of any visual scanpath analysis, the results obtained 

are not sufficient to facilitate the development of training materials for novice LCs.  

In this research, we focus on analyzing the VS of LCs just before giving clearance 

commands. Moreover, we also propose an intuitive VS representation approach, which 

abstracts the complex EM data into a simple representation that enables understanding of 

the underlying VS pattern easily.  

 
Figure 17: Example figure showing the view of the LCs from inside the airport control 

tower. 

 

To address these above-mentioned issues, we developed a novel framework for VS 

simplification using a spatial-temporal clustering method. Moreover, the framework also 

provides a decision-making tool that facilitates selecting optimal parameter values for the 

clustering method while considering the scenario context to make meaningful VS 

simplification. Furthermore, the developed framework also includes a time-ordered color 

scheme attribute to the simplified Vs which further enhances their visualization.  

For validation purposes, we implemented our approach to simplify VSs obtained 

from a mixed reality airport control tower experiment involving expert LCs.  
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The rest of the paper is organized as follows. Section 4.2 describes the details of 

the various algorithms used in the proposed VS simplification framework. Section 4.3 

discusses the various steps involved in implementing the framework, from obtaining raw 

VSs to developing its simplified representation. Section 4.4 talks about the experimental 

process involved in obtained expert ATCs’ raw VS. Section 4.5 and 4.6 provides the results 

obtained and their discussion respectively.   

4.2 Design Concepts 

4.2.1 ST-DBSCAN  

ST-DBSCAN, an extension of well-know DBSCAN method, is a density-based 

clustering method to discover arbitrary shaped clusters in data, where a cluster is defined 

as contiguous regions that have densely packed data points (i.e. high-density regions), and 

such different clusters are separated with contiguous regions with loosely packed data 

points (i.e. low-density regions) (Ester, Kriegel, & Sander, 1996). ST-DBCAN, unlike 

DBSCAN, allows multiple non-commensurable attributes (e.g. spatial and temporal 

attributes of EM data) to be used as distance measures for clustering (Birant & Kut, 2007). 

To cluster EM data, ST-DBSCAN method needs three input values: (i) 𝜃𝑠: spatial distance 

threshold (in pixels); (ii) 𝜃𝑡: temporal distance threshold (in milliseconds); and (iii) 𝑃𝑚𝑖𝑛: 

minimum number of data points to define a dense region.  

The algorithm starts with a data sample 𝑝 and evaluates the total number of data 

points within the 𝛿-neighborhood of it, i.e. data points within a distance of 𝛿 from 𝑝. 

Mathematically, it’s the cardinality of the neighborhood set, i.e. |𝑁𝛿(𝑝)|, where 𝑁𝛿(𝑝) =

{𝑥: 𝐷(𝑝, 𝑥) ≤ 𝛿} and 𝐷(𝑝, 𝑥) is the distance (Euclidean or other metric-based) between 

point 𝑝 and 𝑥. For two distance attributes (i.e. spatial and temporal), we get 𝑁𝛿(𝑝) =
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 {𝑁𝛿=𝜃𝑠
(𝑝) ∩ 𝑁𝛿=𝜃𝑡

(𝑝)}, where 𝜃𝑠 and 𝜃𝑡 are spatial and temporal distance threshold 

values respectively. If |𝑁𝛿(𝑝)| ≥ 𝑃𝑚𝑖𝑛, 𝑝 is considered a core point and is assigned to a 

new cluster, if not already been assigned to a preexisting one. Subsequently, all points in 

𝑁𝛿(𝑝) are assigned to the cluster 𝑝 belongs. However, if |𝑁𝛿(𝑝)| < 𝑃𝑚𝑖𝑛 and it doesn’t 

contain a core point, it’s termed an outlier or noise point. Next, the algorithm moves to the 

next point in the sample and repeats the neighborhood calculation and cluster assignment 

process mentioned above till all points in the sample are evaluated. In summary, if point 𝑝, 

either core or border point (see Figure 18) belongs to a cluster, then all points density 

connected to it also belongs to the same cluster.  For a more detailed analysis of ST-

DBSCAN, refer Birant and Kut (2007). 

For our present research, the VS data can be considered a time-ordered sequence of 

eye fixation points (𝑃1, 𝑃2, … , 𝑃𝑁), where 𝑃𝑖 is the 𝑖𝑡ℎ eye fixation. Each eye fixation having 

spatial and temporal attributes can be written as 𝑃𝑖 = (𝑆𝑖, 𝑇𝑖), where, 𝑆𝑖 = (𝑥𝑖 , 𝑦𝑖) 

represents the spatial location, with 𝑥𝑖 and 𝑦𝑖 as the horizontal and vertical position 

respectively, and 𝑇𝑖 = (𝑡𝑠,𝑖, 𝑡𝑒,𝑖) showing the temporal position, with 𝑡𝑠,𝑖  and 𝑡𝑒,𝑖 as the 

starting and ending time respectively. Thus, the duration of the 𝑖𝑡ℎ eye fixation is ∆𝑡𝑖 =

𝑡𝑒,𝑖 −  𝑡𝑠,𝑖. Therefore, spatial distance (𝐷𝑠) and temporal distance (𝐷𝑡) between the 𝑖𝑡ℎ and 

𝑗𝑡ℎ eye fixations (where 𝑗 > 𝑖) can be written as follows: 

𝐷𝑠(𝑖, 𝑗) = √(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2                        (6) 

𝐷𝑡(𝑖, 𝑗) = |𝑡𝑠,𝑗 − 𝑡𝑒,𝑖|                                                  (7) 

Using (6) and (7), the spatial neighborhood of eye fixation 𝑃𝑖 is 𝑁𝛿=𝜃𝑠
(𝑃𝑖) =

{𝑃𝑗: 𝐷𝑠(𝑖, 𝑗) ≤ 𝜃𝑠 , 𝑗 ≠ 𝑖}, and the temporal neighborhood is 𝑁𝛿=𝜃𝑡
(𝑃𝑖) = {𝑃𝑗: 𝐷𝑡(𝑖, 𝑗) ≤

𝜃𝑡  , 𝑗 ≠ 𝑖}. Thus, we get,  
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𝑁𝛿(𝑃𝑖) =  𝑁𝛿=𝜃𝑠
(𝑃𝑖) ∩ 𝑁𝛿=𝜃𝑡

(𝑃𝑖)                        (8) 

 

 

Figure 18: Visual representation of various terminologies associated with ST-DBSCAN.  

 

 

Figure 18 shows that 𝒑 is a core data because |𝑵𝜹(𝒑)| ≥ 𝑷𝒎𝒊𝒏; 𝒓 is a border data 

because |𝑵𝜹(𝒓)| < 𝑷𝒎𝒊𝒏 but 𝒑 ∈ 𝑵𝜹(𝒓), where 𝒑 is a core data; and 𝒏 is a noise/outlier 

because |𝑵𝜹(𝒏)| < 𝑷𝒎𝒊𝒏 and ∀𝒑 ∈ 𝑲, 𝒑 ∉ 𝑵𝜹(𝒏), where 𝑲 is the set of core data. 𝒓 and 

𝒑 are density reachable as both the data instances belong to the  𝜹-neighborhood of the 

other. 𝒒 and 𝒑 are density connected because there exists a chain of data instances (i.e. 

𝒌𝟏, 𝒌𝟐) with 𝒑 and 𝒒 as the first and last element (or vice-versa) of the chain respectively 

and the consecutive elements of the chain are density reachable.  
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4.2.2 Dynamic Time Warping distance measure  

Dynamic time warping (DTW) is a method to calculate the similarity between two 

temporal sequences of varying lengths (Bemdt & James, 1994; Jeong et al., 2011). This is 

very useful for the present research as LCs’ employ visual scanning strategies which are 

non-homogenous both in terms of pattern and length (Kang & Landry, 2014; Mcclung & 

Kang, 2016). Therefore, many previous studies have used DTW to measure the spatial 

similarity between VSs (Le Meur & Liu, 2015; Li & Chen, 2018). In detail, DTW method 

employs a non-linear sequence alignment (see Figure 19) to account for the phase 

difference between two temporal sequences. The left side in Figure 19 shows the linear 

(one-one) mapping between the various elements of two sequences (shown in grey dotted 

lines). Unlike this, the right side in Figure 19 shows the non-linear (many-to-many) 

alignment of elements of the two sequences. DTW method then creates a cost matrix 

associated with all possible non-linear alignments between all the elements of the two 

sequences. The cost associated for each such alignment is calculated using the absolute 

difference between the spatial location of the elements (e.g. Euclidean distance). A warping 

path in this cost matrix (i.e. starting from upper right corner cell and ending at lower left 

corner cell), associated with the least traversal cost is selected as the DTW distance 

between the two given sequences. For example, given two VSs, 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑁} and 

𝐵 = {𝑏1, 𝑏2, … , 𝑏𝑀}, the cost matrix 𝐷𝑇𝑊 ∈ ℝ𝑁×𝑀 is evaluated using the recursive 

formula given below:  

𝐷𝑇𝑊(𝑖, 𝑗) = 𝐷(𝑖, 𝑗) + 𝑚𝑖𝑛 {

𝐷𝑇𝑊(𝑖, 𝑗 − 1)

𝐷𝑇𝑊(𝑖 − 1, 𝑗)

  𝐷𝑇𝑊(𝑖 − 1, 𝑗 − 1)
                    (9)  
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Where, 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 𝑀, and 𝐷(𝑖, 𝑗) is the Euclidean distance between 

𝑎𝑖 and 𝑏𝑗. i.e. 𝑖𝑡ℎ and 𝑗𝑡ℎ eye fixation in VSs 𝐴 and 𝐵 respectively. Figure 20 shows an 

example cost matrix between VSs 𝐴 and 𝐵. The warping path starts from the top right 

corner, i.e. cell (𝑁, 𝑀), moves along other cells, and ends at the bottom left corner of the 

matrix, i.e. cell (1,1).  Further, Figure 20 shows the various allowed movements for 

developing the warping math, e.g. at cell (i,j) only three movement directions are permitted: 

(i) left horizontal or cell (i,j-1), (ii) down vertical, i.e. cell (i-1,j-1), and (iii) below diagonal, 

i.e. cell (i-1,j). The direction of movement depends on which of the three cell has the 

minimum cost. The warping path is created by joining all the cells traversed from start to 

end, and the DTW distance between VSs 𝐴 and 𝐵 is the summation of the cost of each cell 

forming the warping path. Mathematically, if the  warping path is  𝑊 = {𝑤1, 𝑤2, . . 𝑤𝐿} 

where, 𝑤𝑙 = 𝐷𝑇𝑊(𝑎𝑖, 𝑏𝑗), 1 ≤ 𝑙 ≤ 𝐿, and 𝑚𝑎𝑥(𝑁, 𝑀) ≤ 𝐿 ≤ (𝑁 + 𝑀) (Liu et al., 2019), 

the DTW distance between VSs 𝐴 and 𝐵 is as follows: 

𝐷𝑇𝑊(𝐴, 𝐵) = ∑ 𝑤𝑙
𝐿
𝑙=1                          (10) 

 
Figure 19: Linear and non-linear sequence alignment process examples. Seq 1 and Seq 2 

represent two sequences 1 (black colored) and 2 (red colored). The grey dotted lines show 

the alignment (either linear or non-linear) between the various elements of the two 

sequences. 
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Figure 20: Example of a cost matrix showing the various allowed movements while 

creating the warping path for evaluating the DTW distance between two VSs of size N and 

M. 

4.3 Methods 

Figure 22 shows that methodological flowchart to develop the simplified VS 

representation from the raw VS of the expert ATCs. The various steps involved are 

described below in detail.  

Step 1: Collect raw VS for various participants 

The first step involves collecting the raw VS data of various participants as obtained 

from commercial eye trackers. The VS for the 𝑘𝑡ℎ participant can be written as 𝑉𝑆𝑘 =

(𝑃𝑘,1, 𝑃𝑘,2, … , 𝑃𝑘,𝑁), where 𝑃𝑘,𝑖 is the 𝑖𝑡ℎ eye fixation for the 𝑘𝑡ℎ participant. 𝑃𝑘,𝑖 =

(𝑆𝑘,𝑖 , 𝑇𝑘,𝑖), where 𝑆𝑘,𝑖 = (𝑥𝑘,𝑖 , 𝑦𝑘,𝑖) and 𝑇𝑖 = (𝑡𝑘,𝑠,𝑖 , 𝑡𝑘,𝑒,𝑖)  are the spatial and temporal 

position of the eye fixations.  

Step 2: Apply spatial-temporal clustering to raw VSs for a given 

parameter setting 

The second step involves applying the spatial-temporal clustering method on the 

raw VSs, for a given spatial and temporal threshold values, to obtain their simplified 
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representation. The clustering method transforms a raw VS into its simplified 

representation, which is a time-ordered sequence of clusters of eye fixations. If 𝑉𝑆𝑘 =

(𝑃𝑘,1, 𝑃𝑘,2, … , 𝑃𝑘,𝑁) represents the raw VS for the 𝑘𝑡ℎ participant, then its simplified form 

can be represented as  𝑉𝑆�̂� = (𝐶𝑘,1, 𝐶𝑘,2, … , 𝐶𝑘,𝑀), where 𝐶𝑘,𝑗 is the 𝑗𝑡ℎ clustered eye 

fixation point, 1 ≤ 𝑗 ≤ 𝑀, and M is the total number of clusters (𝑀 < 𝑁). Each clustered 

eye fixation point 𝐶𝑘,𝑗 is an aggregate of its constituent eye fixation points. In detail, if 𝐶𝑘,𝑗 

is the aggregate of 𝑤 eye fixations,  starting from index 𝑟 i.e. 𝑃𝑘,𝑟 , 𝑃𝑘,𝑟+1 , . . . , 𝑃𝑘,𝑟+(𝑤−1), 

then we get the following: 

𝐶𝑘,𝑗 = (�̂�𝑘,𝑗 , �̂�𝑘,𝑗) = 𝑃𝑘,𝑟 ⊙ 𝑃𝑘,𝑟+1 ⊙ … ⊙ 𝑃𝑘,𝑟+(𝑤−1) 

Where ⊙ represents the aggregation operation, and �̂�𝑘,𝑗 and �̂�𝑘,𝑗 are the spatial and 

temporal attributes of 𝐶𝑘,𝑗 respectively. �̂�𝑘,𝑗 is the average of the spatial attributes of the 

component eye fixations, and �̂�𝑘,𝑗 is the cumulative duration of the constituent eye 

fixations. Mathematically, the aggregation can be written as follows: 

�̂�𝑘,𝑗 = (�̂�𝑘,𝑗, �̂�𝑘,𝑗)  

where, �̂�𝑘,𝑗 =
1

𝑤
 ∑ 𝑥𝑘,𝑟

𝑤
𝑟=1  and �̂�𝑘,𝑗 =  

1

𝑤
∑ 𝑦𝑘,𝑟

𝑤
𝑟=1                         (11) 

�̂�𝑘,𝑗 = (�̂�𝑘,𝑠,𝑗, �̂�𝑘,𝑒,𝑗)  

where, �̂�𝑘,𝑠,𝑗 = 𝑡𝑘,𝑠,𝑟 and �̂�𝑘,𝑒,𝑗 = 𝑡𝑘,𝑒,𝑟+𝑤−1                                    (12) 

Step 3: Generate simplified VSs 

The output of this step is the simplified VSs, obtained after applying the clustering 

method described previously.   
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Step 4: Calculate normalized DTW distance and # of eye fixations for 

the simplified VSs 

Once the simplified VS is obtained, the next step involves two tasks: (i) evaluating 

how many eye fixations it contains (i.e. aggregated eye fixations), and (ii) how different it 

is from the raw VS used to generate it. The first task requires calculating the cardinality of 

the simplified VS, i.e. |𝑉𝑆𝑘 |̂. For the second task, the DTW distance between the raw VS 

and its simplified representation quantifies how different two VSs are. For this purpose, 

we use the DTW method described earlier (see Section 4.2).  

If we have 𝐾 participants, the set of all VSs can be written as 𝑉𝑆 =

{𝑉𝑆1, 𝑉𝑆2, . . . , 𝑉𝑆𝐾}. The DTW distance for the 𝑘𝑡ℎ participant for a given parameter 

setting Φ can be written as 𝐷𝑇𝑊Φ,k = 𝐷𝑇𝑊Φ(𝑉𝑆𝑘, 𝑉�̂�𝑘) and 𝐷𝑇𝑊Φ = {𝐷𝑇𝑊Φ,k}𝑘=1
𝐾  is 

the set of DTW distance for K participants, for a given setting Φ. To compare across 

various Φ values (note that different Φ results in simplified VSs of different lengths), it’s 

advisable to use the normalized DTW values, which is written as follows: 

  𝐷𝑇𝑊Φ,k =
𝐷𝑇𝑊Φ,k 

|𝑉𝑆𝑘 |̂+|𝑉𝑆𝐾|
                                 (13) 

Where,  |𝑉𝑆𝑘 |̂ + |𝑉𝑆𝐾| is the sum of the cardinality of the VS and its simplified 

representation for the 𝑘𝑡ℎ participant. Subsequently, the average DTW distance, given 

parameter setting Φ, for K participants can be written as follows: 

𝜇𝐷𝑇𝑊Φ
=

1

𝐾
∑ 𝐷𝑇𝑊Φ,k

𝐾
𝑘=1                             (14) 

Similarly, the average number of eye fixations, given parameter setting Φ, for K 

participants can be calculated as follows: 

 𝜇𝐸𝐹Φ
=

1

𝐾
∑ |𝑉�̂�𝑘| 𝐾

𝑘=1                                     (15) 
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Where, |𝑉𝑆𝑘 |̂ is the cardinality of the simplified VS representation for the 𝑘𝑡ℎ 

participant.  

Step 5: Plot both average normalized DTW distance and # of eye 

fixations for all parameter settings 

If we consider 𝑆 and 𝑇 different numbers of spatial and temporal threshold 

respectively, then we have 𝑆 × 𝑇 number of different parameter settings for the clustering 

method. Thus, the parameter set can be written as Φ =  {Φ𝑙}𝑙=1
𝑆×𝑇 where, Φ𝑙 = (𝜃𝑠

𝑖 , 𝜃𝑇
𝑗), 

where 1 ≤ 𝑖 ≤ 𝑆 and 1 ≤ 𝑗 ≤ 𝑇. Therefore, we will have one average DTW value (𝜇𝐷𝑇𝑊Φ
) 

and one average eye fixation number (𝜇𝐸𝐹Φ
) for each parameter setting. Hence, this step 

involves plotting 𝜇𝐷𝑇𝑊Φ
 and 𝜇𝐸𝐹Φ

 for all different parameter settings.  

Step 6: Select best parameter setting 

It’s challenging to develop any single analytical function to find the best parameter 

values (both spatial and temporal) for the clustering method to be applied in any general 

context. Therefore, one feasible way to find context-specific optimal parameter values is 

to take the empirical analysis route, i.e. analyze how 𝜇𝐷𝑇𝑊Φ
 and 𝜇𝐸𝐹Φ

 change with change 

in parameter values. Afterwards, we can use domain knowledge to select the optimal 

parameter values that serve our central purpose, i.e. enhanced understanding of the visual 

scanning strategy while simplifying the VS representation. Therefore, parameter values 

that substantially reduces the information content of the simplified VS (i.e. reduces 
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𝜇𝐸𝐹Φ
substantially), while keeping it similar to the raw VS (i.e. low 𝜇𝐷𝑇𝑊Φ

) would be a 

desirable choice.  

Step 7: Add time order-based color scheme 

Once the best spatial (𝜃𝑠) and temporal (𝜃𝑡) threshold values are selected, the next 

step involves adding a time-ordered color scheme to the VS representation. To this purpose, 

a sequential multihued color scale is developed, where yellow color suggests past eye 

fixations and red color implies most immediate eye fixations. Adding this color scheme to 

the simplified VS representation further enhances its interpretability, as it allows the easy 

distinction of overlapping eye fixations without the observer relying on the eye fixation 

index numbers, which are otherwise difficult to comprehend for overlapping eye fixations 

case. Furthermore, a black color border attribute is also added to the clustered eye fixation 

representation in the simplified VS, to allow easier identification of the aggregated eye 

fixations (i.e. clustering locations).   

Step 8: Visualize simplified VS 

The last step involves visualizing the simplified VS, showing the aggregated eye 

fixations and the saccades joining them. Figure 22  shows an example where a raw VS 

along with its simplified representation having the time-ordered color scheme has been 

visualized.  

4.4. Experimental Process  

4.4.1 Participants  

Ten expert ATCs participated in this data collection process. Besides, two FAA 

employees also participated, one as the pseudo pilot and another as the ground controller. 
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Although, for the present research, the results of only three expert ATCs have been shown 

as a proof of concept.   

4.4.2 Apparatus 

Hardware: Twelve 55” HD (1080p) monitors were used to display the simulation 

scenario. Tobii Pro Glasses 2 (Tobii Technology, 2020) (with gaze sampling frequency 

100 Hz) was used to capture ATCs’ gaze data.  

Software: MaxSim simulators, developed by Adacel Systems Inc. (Adacel Systems, 

2020), was used to develop the simulation scenario. Tobii Pro Lab (Tobii Technology, 

2020) was used to process the ATCs’ raw EM data. The experiment was conducted at the 

FAA Civil Aerospace Medical Institute in Oklahoma City, which provided all the above-

mentioned hardware and software.  

4.4.3 Scenario 

One simulated airport control tower scenario of approx. 20 minutes was used for 

the experiment data collection.  

4.4.4 Task 

The participants were responsible for checking flight schedules, giving landing 

clearance commands while ensuring safe separation between incoming aircraft on runway 

1 (Figure 17). Furthermore, they were to communicate with the ground controller, who 

was responsible for ensuring smooth and safe ground traffic flow towards and from the 

runways. There was one pseudo pilot (FAA employee) who oversaw the task of piloting 

various aircraft in the scenario and executing all ATCs’ voice commands. Communications 

were conducted via simulated radio connection.  
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Figure 21: Methodological flowchart showing the steps involved to develop simplified VS 

representation 
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Figure 22: Example of raw VS and its simplified representation using a time-ordered color 

scheme.  The red dotted circles in the raw VS show the spatial-temporal cluster locations. 

Raw eye fixations 1,2, and 3 were aggregated as 1 in simplified VS,  and 4 and 5 in raw 

VS were aggregated as 2 in simplified VS representation. The black border around the eye 

fixations 1 and 2 in the simplified VS represents aggregated eye fixations. Absence of black 

border around eye fixation 3 (bottom figure) suggests it is a direct mapping from the raw 

VS.   

 

4.4.5 Data Analysis 

We’ve used R (R Team, 2019) to implement the spatial-temporal clustering 

algorithm (Hahsler & Piekenbrock, 2019) and the DTW (Giorgino, 2009) method. 

MATLAB 2019 (Mathworks, 2019) was used to develop the VS visualization.       

The complexity of the visual scanpath simplification method is 𝑂(𝑆𝑇𝐾𝑁 2) where 

𝐾 is the number of VSs, 𝑆 is number of spatial parameters used in the ST-DBSCAN,  T is 

the number temporal parameters used in ST-DVSCAN, and N the maximum length of the 

VS.  
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4.5 Results 

For the present research, we have used seven different values of temporal and 

spatial thresholds, i.e. 𝜃𝑡 = {0, 500, 1000, 1500, 2000, 2500, 3000} and 𝜃𝑆 =

{0, 50, 100, 150, 200, 250, 300}. Fig. 8 shows the effect of 𝜃𝑠and 𝜃𝑡parameters on 𝜇𝐸𝐹 

and 𝜇𝐷𝑇𝑊 values. Fig. 23 (a) shows that with increasing 𝜃𝑡 and 𝜃𝑠 the 𝜇𝐸𝐹 value decreases. 

Furthermore, for a given 𝜃𝑡value (e.g. 1500 ms), as the 𝜃𝑠changes from 0 pixel to 50 pixels, 

the reduction in 𝜇𝐸𝐹 is substantial. However, as 𝜃𝑠 further increases (i.e. from 100 to 300 

pixels), instead of further reducing rapidly, the different 𝜇𝐸𝐹 values seem to band together. 

Unlike this, Figure 23 (b) shows that, as the 𝜃𝑡increases, for a fixed 𝜃𝑠, the rate of decrease 

for 𝜇𝐸𝐹 remains approximately the same. Unlike this, the 𝜇𝐷𝑇𝑊 value increases with 

increasing 𝜃𝑡 and 𝜃𝑠. In other words, 𝜇𝐷𝑇𝑊 follows a similar trend like 𝜇𝐸𝐹 but in the 

opposite direction, i.e. as 𝜃𝑠 changes from 0 to 50 pixels, there occurs a rapid increase in 

the 𝜇𝐷𝑇𝑊 for all different values of 𝜃𝑡. Similarly, with further increase in 𝜃𝑠 (i.e. from 100 

to 300 pixels), for a given 𝜃𝑡, the rate of increase of 𝜇𝐷𝑇𝑊 reduces significantly, and the 

values tend to be close to each other (see Figure 23 (b)). Furthermore, as 𝜃𝑡 changes from 

500 ms to 2000 ms, the rate of increase of 𝜇𝐷𝑇𝑊 is very steep; however, this rate flattens 

out quickly for any further increase in the 𝜃𝑡 value.  

Note that for 𝜃𝑡 = 1500 ms and 𝜃𝑠 = 200 pixel, we get an average 50% reduction 

in the information contained in the simplified VSs, i.e. Figure 23(a) 𝜇𝐸𝐹 = 13 for 𝜃𝑡 =

1500 ms and 𝜃𝑠 = 200 pixel, which is half of 𝜇𝐸𝐹=24 for 𝜃𝑡 = 0 ms and 𝜃𝑠 = 0 pixel 

(raw VS). Similarly, Figure 23 (b) also shows that the parameter setting of  𝜃𝑡 = 1500 ms 

and 𝜃𝑠 = 200 pixel results in a considerable simplification of the raw VS (𝜇𝐷𝑇𝑊 = 300), 

which is roughly 50% of the maximum simplification (𝜇𝐷𝑇𝑊 ≈ 700).  
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Notice that, the two intents behind implementing the clustering process are, first, it 

should lead to a substantial reduction in the information content of the VSs, and second, it 

should preserve the overall shape of the raw VS (such that observer can comprehend the 

overall pattern of the ATCs’ visual scanning strategy). Combining these two criteria, in 

conjunction with the above-mentioned results, we choose 𝜃𝑡 = 1500 ms and 𝜃𝑠 = 200 

pixel as the optimal parameter setting for the clustering method. 

 
(a) effect of 𝜃𝑠 and 𝜃𝑡 on 𝜇𝐸𝐹 
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(b) effect of 𝜃𝑠 and 𝜃𝑡 on 𝜇𝐷𝑇𝑊 

Figure 23: Effect of the spatial (𝜽𝒔)  and temporal (𝜽𝒕) parameters on VS simplification 

process. (a) Effect on average eye fixation count (𝝁𝑬𝑭), (b) Effect on average normalized 

DTW (𝝁𝑫𝑻𝑾). 

 

Figure 24 and 25 show the raw VS and its simplified representation for three ATCs 

for the clearance commands ‘Cleared to land’ and ‘Cleared to take off’ respectively. On 

visual inspection, one can notice that the spatial-temporal clustering method indeed reduces 

the visual clutter of the raw VSs while keeping their overall shape intact. For example, 

Figure 24 (a) and (b) shows that spatial-temporal clustering has indeed reduced the 

complexity of the raw VS (with simplified VS having only 10 eye fixations, unlike 30 in 

the raw VS) while keeping it an overall shape similar. Furthermore, the time-ordered color 

scheme allows us to locate that the ATC start their scanning from the entry point of the 

runway 1, makes two and movement between this location and the radar displays. 

Similarly, Figure 25 (a) and (b) shows that the simplified VS has significantly low eye 

fixations, and it preserves the overall shape of the raw VS, i.e. in both cases, the ATC 
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initially focuses at the radar displays, then moves the attention on the entry point on runway 

1, and finally at the exit location on the runway 1.  

 

(a) Raw VS of P1 

 

(b) Simplified VS of P1 

 
(c) Raw VS of P2 

 

 
(d) Simplified VS of P2 
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(e) Raw VS of P3 

 

 
 (f) Simplified VS P3 

Figure 24: Raw and simplified VSs of three expert ATCs. The VSs correspond to 20 s 

prior to giving the clearance command ‘Cleared to land’. The parameter setting of the 

clustering method is: 𝜽𝒕=1500 ms and 𝜽𝒔= 200 pixels. P1, P2, and P3 indicate ATC’s 

index. 

 

 
 

(a) Raw VS of P1 
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(b) Simplified VS of P1 

 
(c) Raw VS of P2 

 
(d) Simplified VS of P2 
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(e) Raw VS of P3 

 

 
 (f) Simplified VS of P3 

Figure 25: Raw and simplified VSs of three expert ATCs. The VSs corresponds to 20 

seconds prior to giving the clearance command ‘Cleared to take off’. The parameter setting 

of the clustering method is: 𝜽𝒕=1500 ms and 𝜽𝒔= 200 pixels. P1, P2, and P3 indicates three 

ATCs. 

4.6 Discussion 

In this research, a methodology was developed to simplify the representation of 

complex VSs obtained in dynamic target tracking tasks, e.g. air traffic control tasks. The 

framework serves two objectives. First, it simplifies the representation of the raw VS by 

employing a spatial-temporal clustering method. Second, it facilitates the decision-maker 

to incorporate context-dependent factors for selecting the optimal parameter for the 

clustering method used the VS simplification. These properties allow for an approximate 

VS representation that can be used for better training purpose where expert ATCs’ visual 

scanning strategy can be visualized with reduced complexity, thereby enhancing the 
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understanding of novices while maintaining its significant visual pattern, essential for 

learning. 

4.6.1 VS simplification 

The proposed methodology provides two measures to quantify the extent of VS 

simplification:(i) amount of information in the simplified VS, i.e. the number of eye 

fixations, and (ii) dissimilarity between the raw and simplified VS, i.e. DTW distance 

between the raw and simplified VS. Note that, 𝜇𝐸𝐹 is found to be inversely proportional to 

both temporal (𝜃𝑡) and spatial (𝜃s) thresholds. Unlike this, 𝜇𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅ is directly proportional 

to both 𝜃𝑡 and 𝜃s. Both these trends are in accordance to the fact that as both the threshold 

value increases, the associated neighborhood size for each data point (i.e. eye fixations in 

raw VS) also increases, leading to more distant (both temporally and spatially) eye 

fixations belonging to the same cluster. As a result, the amount of eye fixations in the 

simplified VS reduces and simultaneously its final shape becomes more dissimilar to the 

raw VS it is developed from, leading to increased DTW distance and 𝜇𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅. However, note 

that, the rate of decrease of 𝜇𝐸𝐹 and the rate of increase in 𝜇𝐷𝑇𝑊̅̅ ̅̅ ̅̅ ̅  is not constant, but it 

reduces as the threshold values extend beyond certain values, e.g. for 𝜃𝑡>2000 ms and 

𝜃s>200 pixels.  

Furthermore, extending the threshold values beyond a certain point doesn’t serve 

our purpose of developing a simplified yet meaningful VS. This is because 

oversimplification (large 𝜃𝑡 and 𝜃𝑠 values) while reducing the amount of information to 

process (i.e. constituent eye fixations in the simplified VS) will inevitably severely modify 

the shape of the raw VS, resulting in high DTW distance, thus making it difficult for the 

observers to learn the actual visual scanning strategy employed by the expert ATCs.  
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Note that the developed VS simplification methodology is different from two 

earlier studies in Li and Chen (2018),  Li et al. (2017), and Dewhurst et al. (2012). Li and 

Chen (2018) and Li et al. (2017), unlike the present research that deals with individual VS 

simplification, provides a methodology to develop representative VS for analysis group 

viewing pattern. The method in (Li & Chen, 2018) and (Li et al., 2017) is not suitable for 

the present research as we intend to learn all possible visual scanning strategy exhibited by 

expert ATCs while giving clearance commands, and not an approximate group 

representation of experts ATCs. On the other hand, the VS simplification in (Dewhurst et 

al., 2012) was intended to facilitate VS similarity evaluation, where only saccade direction 

and amplitude was used for the simplification process. Although, the saccade amplitude is 

analogous to our spatial threshold, however, (Dewhurst et al., 2012) doesn’t consider the 

temporal attributes for the VS simplification. In addition, no justification was provided for 

saccadic amplitude threshold of 10% of the length of the diagonal of the display size.  

4.6.2 Visualization of simplified VS 

The VS results show that incorporation of the novel time-ordered color attribute 

further enhances the interpretability of simplified VSs: (i) allowing for easier identification 

of overlapped eye fixations, and (ii) the observer doesn’t have to solely rely on the eye 

fixation indexes to comprehend the time order of the VS representation.  

In conclusion, we developed an objective framework for simplifying the 

representation of raw VSs obtained in dynamic target tracking tasks, e.g. air traffic control 

tasks. In detail, the developed framework initially implements a spatial-temporal clustering 

method, aggregating spatially and temporally nearby eye fixations, and then includes a 

time-ordered color scheme to develop the simplified VS representation. Besides, the 
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framework enables to evaluate the extent of VS simplification by quantifying two aspects: 

(i) amount of information reduction, and (ii) similarity between raw and simplified VS. As 

a result, this simplification reduces the inherent complexity (i.e. the visual clutter) 

associated with raw VSs and further enhances its visualization. The enhanced 

representation of expert ATCs’ VS might aid the training process of novice ATCs by 

facilitating easier comprehension of the overall shape of expert ATCs’ VS and their 

associated visual attention flow while controlling complex traffic scenarios.   

4.6.3. Limitations and Future Work  

One major limitation of the study is the small sample size of expert ATCs used in 

the experimental data collection. Also, despite the decision-making framework, we still 

need domain expertise to modify the parameters of the clustering method to develop 

context-specific meaningful simplification of the VS that is helpful for learning purposes. 

For future work, we can perform empirical studies to quantify the effectiveness of 

the VS simplification process towards the learning of novice ATCs. Besides, the utility of 

the developed framework in simplifying task-specific longer VSs (e.g. 60 s, 120 s) should 

be studied. Furthermore, we should also consider other complex tasks, that involves a 

substantial amount of visual scanning, apart from air traffic control, e.g. driving. 

Furthermore, previous studies have shown that novice ATCs who were shown the 

expert ATCs’ visual scanpaths, showed an improvement in their task performance. 

Besides, the raw visual scanpaths of expert ATCs’ are very complex to visualize even for 

short durations, e.g. 30 s or 60s. Thus, having a simplified and enhanced representation of 

the expert ATCs’ raw visual scanpaths will further enhance the understanding of novice 

ATCs, and they can be exposed to even long duration visual scanpath patterns. Thus, the 
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proposed visual scanpath simplification process have potential to be used for increasing 

the training performance of novice ATCs.  

Additionally, evaluating the effectiveness of the proposed method might require 

performing an experiment where the difference in the performance levels of two groups of 

novice ATCs can be measured; with one group having the exposure to the simplified 

representation of the visual scanpath expert ATCs  and the other group acting as a control. 

The task performance can be measured using various key traffic control metrics, e.g. 

amount of aircraft conflict situations detected and resolved, time taken to detect the conflict 

between multiple aircraft pairs etc.    
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Chapter 5: Framework to compare visual scanning 

strategies for dynamic target tracking tasks:  

Combining n-gram and network community 

detection method 

5.1 Introduction 

Understanding the visual scanning strategy (having underlying patterns if any) of 

expert air traffic controllers (ATCs) forms the bedrock of developing better training 

materials for novice ATCs. Besides, improving the current training materials is warranted 

by the fact that as per the recent projection by the Federal aviation administration (FAA) 

the air traffic volume will increase substantially from 40 million to 60 million by 2040 

(FAA, 2018). However, the available population of expert ATCs might not be sufficient to 

fulfil the anticipated demand of expert ATCs required to maintain the current levels of 

safety and efficiency of the air traffic movement.  

One significant aspect of ATCs’ job comprises of acquiring and processing visual 

information, either from a radar display (e.g. while managing enroute traffic) or by 

scanning outside the control tower, depending solely on naked eyes, in case of airport 

control tower traffic management. Therefore, analyzing expert ATCs’ visual scanning 

strategy, looking for hidden patterns in them,  might provide useful insights into the 

attention deployment strategies employed by expert ATCs.  

The three main aspects that give rise to very complex visual scanpaths are: (i) 

dynamic nature of the targets, changing shape and position with time, being tracked by the 

ATCs’; (ii) absence of any predefined starting and ending location for attention 
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deployment; and (iii) existence of significant individual differences among expert ATCs in 

terms of visual attention deployment strategies (Kang & Landry, 2015; Mcclung & Kang, 

2016).  Besides, Mcclung and Kang (2016) provided several examples showcasing the 

heterogeneous nature of expert ATCs’ scanpaths, observed while managing enroute air 

traffic even for a small duration. Moreover, the difficulty associated with developing a 

single objective framework to characterize scanpaths of the experts into intuitive geometric 

shapes makes it further challenging to employ the scanpaths directly into developing 

learning materials. Therefore, it might be useful to search for similarity among the 

scanpaths; thereby enabling the development of representative scanpaths, that can be used 

to develop better training materials for novice controllers. Furthermore, the ability to 

measure the similarity among the scanpaths will enable us to analyze the consistency in the 

decision-making of individual experts while they manage similar traffic scenarios.  

The prevalent scanpath similarity evaluation methods can be broadly categorized 

into three categories (explained in detail in the background section, see Figure 26): first, 

methods comparing raw scanpaths; second, methods analyzing similarity between scanpath 

sequences (SSs); and third, methods evaluating the distance between eye fixation transition 

matrices.  

Methods belonging to the first category uses the exact eye fixation locations and 

duration to compare scanpaths. However, with increasing target numbers and traffic flow 

complexity, the raw scanpaths become very diverse. Thus, it becomes challenging to find 

any substantial similarity among the scanpaths. Therefore, for complex tasks such as air 

traffic control, these methods are either too strict in their definitions or too complex to 

implement. On the other hand, methods associated with the third category, that employs 
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comparison among the transition matrices, completely ignore the order associated with the 

visual attention switching behavior for the ATCs. Unlike these, the scanpath analysis 

methods belonging to the second category compare SSs, to evaluate the similarity between 

the scanning strategy of ATCs. SSs are obtained from the raw scanpath data in two steps: 

first, dividing the display area into discrete regions or areas of interest (AOIs); and second, 

mapping the eye fixations with the AOIs (which are represented with character codes, e.g. 

‘A’, ‘B’ etc.), followed by developing the sequence of characters.    

Interestingly, unlike category three methods analyzing transition matrices, these 

methods incorporate the order of eye fixations while evaluating the similarity between SSs. 

Besides, by considering eye fixations falling on various locations inside the same AOI as 

semantically similar,  the SS analysis methods cut down heavily the inherent complexity 

associated with the implementation of the methods using scanpaths directly. Due to the 

aforementioned reasons, in the present research, we propose similarity evaluation methods 

that work upon the SSs.  Besides, we also require some method that can help us identify 

homogenous groups of highly SSs, such that the consistency of visual scanning strategy of 

expert ATCs can be evaluated.  

To this purpose, we present a novel framework that accomplishes two objectives: 

(1) provides two new SS similarity measures, adapted and modified from the n-gram 

method frequently used in analyzing string sequences; and (2) developed an objective way 

to identify groups of highly similar SSs by implementing a modularity-based network-

community detection method. For the present research, we have focused on analysis on the 

scanpaths observed before the issuance of clearance commands by expert ATCs. Although, 
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the proposed methodology can be easily extended to the analysis of scanpaths belonging 

to other operation also.  

The rest of the chapter is organized as follows. Section 5.2 provides the details of 

the various prevalent SS comparison methods and their limitations. Section 5.3 includes 

the proposed methodology, explaining the intricacies of the n-gram similarity evaluation 

and the modularity-based network community detection method.  Section 5.4 contains the 

experimental setup used to collect expert ATCs eye movement data associated with the 

issuance of clearance commands. The results and associated discussion are included in 

Section 5.5 and 5.6 respectively. At last, section 5.6 provides the limitations associated 

with the proposed method and proposed future studies that can address these limitations.  

5.2 Background 

  Figure 26 shows the broad categorization of different methods that are used to 

evaluate the similarity of scanpaths (and in turn the visual scanning strategies). As we move 

from group 1 to 3 (see Figure 26), the granularity of analysis decreases.   

 

Figure 26: Categorization of methods used to evaluate the similarity of scanpaths.   

 

Fahimi and Bruce (2020) provide a thorough analysis of the pros and cons 

associated with each such scanpath analysis methods. Moreover, Kang and Landry (2015), 
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detailed out how these prevalent scanpath analysis methods have some limitations when 

analyzing scanpath associated with air traffic control operations.  

Group 1 methods consist of techniques that directly work on the scanpaths by 

analyzing the similarity between their shapes, involving the evaluation of the Euclidean 

distance between them.  Mannan distance (Mannan et al., 1996), although, uses Euclidean 

distance, but doesn’t account for the sequential order of the fixations while evaluating the 

distance between scanpaths. ‘Eyeanalysis’ approach by Mathôt et al. (2012) implement 

double mapping maps, which involves mapping every eye fixation in one scanpath to more 

than one fixation in another scanpath. However, one-to-many eye fixation mapping cases 

have been noticed  (Fahimi & Bruce, 2020). Both the one-to-one and double mapping cases 

might lead to incorrect results as physical proximity of eye fixation location doesn’t entail 

proximity in the temporal dimension also. Moreover, eye fixations falling on semantically 

different regions on the display (for a given task under consideration) might appear to be 

physically proximal if the regions share a common boundary. Therefore, ignoring the 

sequential order and temporal attribute of the scanpath while evaluating similarity between 

them is not suitable particularly for dynamic scenarios. On the other hand, MultiMatch 

(Dewhurst et al., 2012), a vector-based method, needs preprocessing of the raw scanpaths 

before they are geometrically aligned, followed by their comparison in terms of multiple 

attributes. Rodrigues and Spalink (2018) showed some simple examples of aggregation 

schemes used to simplify scanpaths before MultiMatch-based similarity was evaluated 

between scanpaths. However, Fahimi and Bruce (2020) noted that pre-processing of 

scanpaths might lead to significant loss of information. For example, scanning strategies 

associated with localized exploration (having consecutive saccades with small amplitudes) 
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by experts ATCs might fall on semantically different AOIs (that may be sharing a common 

border). Therefore, aggregation of these low amplitude saccades, leading to simpler 

scanpath,  may result in loss of crucial task-relevant scanning strategy, that might be crucial 

from an information gathering standpoint before issuing any clearance command.  

Furthermore, the process of shape-based alignment scanpaths is challenging for 

dynamic scenarios because of two reasons: first, the targets keep changing their position 

and in turn, it affects scanpath shape as the latter heavily dependent on the distribution of 

targets over the display area; and second, there is no predefined order for scanning the 

targets, as a result, scanpath of variable lengths are observed even for a given expert ATC 

(Kang & Landry, 2015).  

Group 3 methods, that analyzes the AOI transition matrices, present a very 

aggregated level of analysis, where, only the amount of eye fixation transitions between 

various AOIs pairs are compared. These methods are useful if we are only interested in the 

broad overview of how the expert ATCs’ distribute their visual attention across various 

AOIs, without being concerned about their visual attention switching behaviour strategy 

among AOI pairs.  Although, there is some merit in using these methods for cases involving 

conflict resolution between two targets, as the transition order between two targets might 

be irrelevant from the control point of view (Kang & Landry, 2015).  

However, transition matrix comparison methods that utilize pairwise comparison 

of analogous cell values across different transition matrices, are computationally expensive 

to apply for scenarios having a large number of AOIs (e.g. airport control tower 

operations). For example, a scenario having 𝑛 AOIs will generate an AOI transition matrix 

of size 𝑛 ∗ 𝑛, thereby will require 𝑛 ∗ 𝑛 pairwise tests for a given matrix comparison 
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evaluation (Underwood & Foulsham, 2009). Besides, results from transition matrix 

comparison, where the whole matrix is treated as a random variable also suffer from 

sensitivity issues (Kang & Landry, 2010) because,  for scenarios having a large number of 

AOIs, cases with zero transitions between AOIs also become frequent.  Moreover, 

developing sample visual scanning strategies (involving the interrogation of more than two 

AOIs) from transition matrix is challenging as we no longer preserve the eye fixation order. 

Unlike these above-mentioned methods, Group 2 methods that analyze the SSs to 

compare scanpaths provide a nice sweet spot in terms of the granularity of analysis, 

preservation of the order visual attention deployment, and enabling the development of 

sample visual scanning strategies which are semantically similar to each other  (useful in 

developing training materials for novice controllers). Moreover, once the AOIs have been 

defined using experts’ opinion (i.e. expert ATCs, FAA subject matter experts), all eye 

fixations falling within an AOI boundary (although at different locations) can be treated as 

semantically equivalent as far an understanding the visual scanning strategy of expert 

ATCs is involved. Therefore, in the present research, we advocate the use of SS-based 

similarity evaluation of visual scanning strategies of expert ATCs. 

The prevalent SS analysis methods are also known as string-based methods, as the 

SS can be viewed as a string of characters, where each character represent on AOI.  One 

popular approach named string-edit algorithm (Privitera & Stark, 2000) measures the 

similarity by evaluating the cost involved in transforming one SS to another by performing 

operations such as insertion, deletion, and substitution. ScanMatch (Privitera & Stark, 

2000) improves upon the limitation of the string-edit algorithm by allowing the inclusion 

of eye fixation duration and context-specific semantic information in the analysis.   
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n-gram method preserves the order of the eye fixations when similarities are 

analyzed among the SSs. Additionally, we can search for longer common subsequences by 

varying the length of the n-gram. Therefore, n-gram method is more effective when 

analyzing SSs compared to other text-mining methods such as string-edit algorithm, word 

embedding, string kernels etc. Note that, being an alignment-free method, the common 

subsequences identified by n-gram method can occur at different locations within the two 

SSs. Therefore, the n-gram method facilitates the similarity evaluations among the ATCs’ 

overall visual scanning strategies. The detail working of the n-gram method is explained 

below.  

5.3 Proposed methodology 

Figure 27 shows the various steps involved in evaluating the similarity among SSs 

using the n-gram approach and how these similarity values can be used to detect clusters 

of homogenous SSs using the graph-based community detection method.  

 
Figure 27: Steps for finding similar visual scanning strategy using n-gram analysis and 

network community detection method.  

Step 1: Collect SSs for clearance commands 

The first step involves collecting the SSs of expert ATCs associated with various 

clearance commands. This is accomplished by performing a high-fidelity simulation 

experiment, that involves collecting eye movement data of expert ATCs providing 

clearance commands to control airport control tower traffic. The details of the experimental 

1. Collect SSs for 
clearance 
commands

2. Evaluate 
similarity between 
SSs using n-gram 
analysis  

3. Obtain clusters of 
similar SSs using  
network community 
detection method



94 

 

process are provided in Section 5.4. The raw eye movement data are mapped to various 

AOIs that are defined to segregate the ATCs’ visual field into discrete regions. The SSs are 

obtained as the output of this mapping process.   

Step 2: Evaluate similarity between SSs using n-gram analysis   

 Once the SSs are obtained, the next step involves evaluating the n-gram based 

similarity among them. Before evaluating the similarity values, we need to first understand 

how to develop the n-gram of a SS.  

Let there be 𝐿 unique AOIs, then the set of AOIs can be represented as 𝐴 =

{𝑎1, 𝑎2, . . . , 𝑎𝐿}. Therefore, the SS (also known as AOI fixation sequence) for the 𝑖𝑡ℎ ATC 

can be written as: 𝑆𝑖 = (𝑎1, … , 𝑎𝑘, … , 𝑎𝑁𝑖
), where 𝑁𝑖 is the length of the SS. n-gram of  𝑆𝑖 

is a subsequence of length 𝑛, where 1 ≤ 𝑛 ≤ 𝑁𝑖. Thus, n-gram of length 𝑛 and starting at 

position 𝑘 of the SS 𝑆𝑖 can be written as: 

𝑛𝑔𝑘(𝑆𝑖) = (𝑎𝑘, 𝑎𝑘+1, … , 𝑎𝑘+𝑛−1)                                                        (16) 

Therefore, the set of all such n-grams, of length n, for 𝑆𝑖 can be written as: 

𝑁𝐺𝑖 = {𝑛𝑔𝑘(𝑆𝑖)| ∀ 𝑘 = 1,2, … 𝑁𝑖 − 𝑛 + 1}                                        (17) 

Once the set of all n-gram of all the SSs is obtained, the next step involves finding 

the similarity among the SSs using their n-gram set representation. To this purpose, 

Maetschke et al. (2010) provided a very intuitive measure, where the similarity is defined 

as the proportion of n-grams shared by two SSs relative to the length of the smallest SS. 

Mathematically, the similarity ∅ between SS 𝑆𝑖 and 𝑆𝑗 is defined as follows: 

𝜙𝑖𝑗 =
|𝑁𝐺𝑖∩𝑁𝐺𝑗|

min(|𝑁𝐺𝑖|,|𝑁𝐺𝑗|)
                                                                                 (18) 

However, using the length of the smaller 𝑁𝐺 set in the denominator (see equation 

18) might lead to incorrect interpretation of similarity because this indicates that even when 
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SSs are of significantly different lengths they will still end up having a similarity value of 

1. For example, consider three SSs: (i) 𝑆1: ‘ab’; (2) 𝑆2: ‘abcd’; and (iii) 𝑆3: ‘abcde’. For a 

2-gram case, using equation 18, we get 𝜙13 = 𝜙23 = 1. Note that, although, 𝑆2 and 𝑆3 are 

more similar to each other compared to 𝑆1 and 𝑆3, using the approach advocated by 

Maetschke et al. (2010) leads to the incorrect conclusion that both 𝑆1 and 𝑆2 are equally 

simialr to 𝑆3. To address this issue and reward similarity between longer SSs, we propose 

a modified measure where the denominator of equation 18 is changed to the maximum of 

the cardinality the 𝑁𝐺 set. Mathematically, it can be written as follows: 

𝜙𝑖𝑗 =
|𝑁𝐺𝑖∩𝑁𝐺𝑗|

max(|𝑁𝐺𝑖|,|𝑁𝐺𝑗|)
                                                                                                      (19) 

On the other hand, the newly proposed relaxed n-gram approach, on the other hand, 

modifies the numerator of equation 19. For the relaxed n-gram approach, the order of the 

AOIs in the n-grams are disregarded and thus, any permutation of the constituent elements 

of n-gram is considered the same while evaluating their intersections across various SSs. 

For example, consider three n-grams of length 3, i.e. ‘abc’, ‘bca’, and ‘cba’. In case of the 

usual definition of n-gram similarity,  all three n-gram cases are different, however, as per 

the relaxed n-gram case, since all three n-grams are a permutation of the constituent 

elements (i.e. ‘a’, ‘b’, and ‘c’), thus, they are considered same. This modified definition 

impacts the value of the numerator of the equation (19), such that, we observe more similar 

cases between the SSs of expert ATCs.   

Step 3: Obtain clusters of similar SSs using network community 

detection method 

After the similarity evaluation between SSs, the next step involves obtaining the 

cluster of highly similar SSs using the graph-community detection method. This is essential 
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because currently, we don’t have any threshold similarity value that can be used to suggest 

which SSs are similar and which are not. It depends on the decision-maker on what value 

to treat as the threshold for the given context. Therefore, to avoid the impact of this 

subjective decision on the similarity analysis result, we propose the application of an 

unsupervised clustering method (without requiring the need to explicitly provide the 

number of clusters required) that uses relative similarity/distance between SSs to divide 

them into groups of homogenous SSs. To this purpose, we propose using the modularity-

based graph-community detection method (Newman & Girvan, 2004; Clauset et al., 2004).  

The community detection method involves the following three steps. First, 

modelling the n-gram similarity values between the SSs as a weighted network, where the 

nodes represent SSs and the edges between them indicate the n-gram (or relaxed n-gram) 

similarity between them.  

Second, to avoid the chances of having overlapping communities (clusters) and 

abridge the effect of unrelated SSs on the community detection method, we remove those 

edges whose weights are less than a chosen threshold, e.g. remove all edges having weights 

less than 0.3. This weight threshold-based edge removal is analogous to the transformation 

of the relative distance between objects in the spectral clustering method (clustering 

method that uses the relative distance/similarity between objects; similar to our case) (Ng 

et al., 2002 and Shi & Malik, 2000). In spectral clustering approach, the pairwise distance 

between objects is transformed (using a gaussian kernel method) to an affinity matrix, 

where objects having stronger ties are further emphasized (leading to a more stronger 

connection), and on the contrary, weaker ties are diluted. Empirically it has been found that 

the above-mentioned transformation leads to better segregation of dissimilar objects into 
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separate clusters. Building upon this idea, in the present research, a weight threshold of 0.3 

is chosen. As a result, network edges with weight below 0.3 are removed prior to 

implementing the network community detection method. This allows for better partitioning 

of nodes into distinct groups/clusters.  

Third, implement modularity-based community detection method on the modified 

network obtain after removing low weight edges. A brief explanation of the modularity-

based network community detection is provided below. For a detailed exposition, please 

refer to Clauset et al. (2004) and Newman and Girvan (2004).  

Modularity is a measure that evaluates the quality of the division process of a 

network into different communities. Consider a network with 𝑛 nodes, 𝑚 edges, and the 

𝑨 = [𝐴𝑖𝑗] is the adjacency matrix. Thus, we get,   

𝐴𝑖𝑗 = {
𝑤𝑖𝑗, 𝑖 𝑎𝑛𝑑 𝑗 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0, 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒
  

The degree of node 𝑖 can be defined as 𝑘𝑖 = ∑ 𝐴𝑖𝑗
𝑛
𝑗=1 . Consider that the network 

has been divided into communities, and node 𝑖 belongs to the community 𝑐𝑖, then, the 

modularity is defined as follows (Brandes et al., 2007; Clauset et al., 2004; Newman & 

Girvan, 2004; Tantardini et al., 2019):   

𝑄 =
1

2𝑚
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
)𝑖𝑗 𝛿(𝑐𝑖, 𝑐𝑗)                                                                                    (20) 

Where, 𝛿 is a type of indicator function, such that 𝛿(𝑢, 𝑣) = 1 if 𝑢 = 𝑣, or 0 

otherwise. Generally, for connected networks, we get  
−1

2
≤ 𝑄 ≤ 1, and for 𝑄 > 0 suggest 

that the observed number of intra-community edges is more than what is expected in case 

of a random scenario. Besides, 𝑄 > 0.3 is considered a good indication that a substantial 

amount of community structure exists in the network under consideration (Clauset et al., 
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2004). For the present research, we have used the igraph package (Csardi & Nepusz, 2006) 

in R to implement the modularity-based community detection method.  

5.4 Experiment  

NOTE: The experimental design and data collection process are the same as 

mentioned earlier in Chapter 4. Therefore, to avoid repetition the details are not provided. 

Although ten expert ATCs have participated in the data collection process, for the present 

research, the results from only one expert ATC have been shown as a proof of concept.    

5.4.1. Data Analysis 

MATLAB 2019 have been used to process raw eye movement data of expert ATCs 

to produce the VSs visualization and SSs. Subsequently, we’ve used R software to perform 

two tasks: (i) develop n-gram and relaxed n-gram similarity method; and (ii) use the 

similarity results to perform unsupervised clustering using a graph-based community 

detection method and its subsequent visualization.   

The complexity of the n-gram based similarity evaluation method is O(𝐾2(𝑁 −

𝑛 + 1)2) where 𝐾 is the number of VSs, 𝑁 is the maximum length of the VSs, and 𝑛 is the 

size of the n-gram. The complexity of the modularity-based network detection method is 

O (𝐾2) where 𝐾 is the number of VSs being compared. Thus, the overall complexity of the 

proposed method is O (𝐾2+ 𝐾2(𝑁 − 𝑛 + 1)2). 
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5.5 Results 

5.5.1 Visual Scanpath of expert ATCs 

Figure 28 shows examples of different VSs examples associated with three different 

clearance commands (i.e. CL, CTO, and LW) of an expert ATC. The VSs corresponds to 

30 seconds before issuing the clearance command by the expert ATC. In Figure 28, sample 

1 and 2 represents two different occurrences of VSs associated with the same clearance 

command. On simple visual exploration of the VSs plots, both within and between 

clearance commands, we can infer that there exists a multitude of ways that a singular 

expert ATC deploys their visual attention before giving clearance commands. Besides, we 

can see that it is challenging to visually evaluate the similarity among these VSs, and in 

turn assess the consistency of visual scanning strategy of expert ATCs, even when they are 

of very for a short duration (i.e. 30 seconds).  Therefore, next, we provide the results from 

the n-gram and relaxed n-gram similarity evaluation process.  

 
(a) ‘Clear to land’ (CL) - Sample 1 

 
(b) ‘Clear to land’ (CL) - Sample 2 
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(c) ‘Clear to take off’ (CTO) - Sample 1 

 
(d) ‘Clear to take off’ (CTO) - Sample 2 

 
 (e) ‘Line up and wait’ (LW) - Sample 1 

 
(f) ‘Line up and wait’ (LW) - Sample 2 

Figure 28: Example VSs associated with three different clearance commands of an expert 

ATC. The VSs are observed 30 seconds prior to issuing the clearance commands. The 

characters (in white) show the AOI names used for analysis. The yellow circles and the 

number on it represent the eye fixations and the eye fixation index respectively.   
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5.5.2 n-gram similarity and heatmaps 

The list of raw SSs used for the analysis is provided in the Appendix section, 

Chapter 5.  Figure 29  shows the heatmaps representing the n-gram and relaxed n-gram 

based similarity values between various instances of SSs associated with three different 

clearance commands (i.e. CL, CTO, and LW). The row and column names in the heatmaps 

(Figure 29) indicate both the command name and its sample index. For example, ‘CTO7’ 

implies the 7th sample of the VS associated with clearance command ‘Clear to take off’.  

The heatmaps enable easier visual exploration and comprehension of the similarity 

between SSs. To ensure better comprehension, SSs very similar to each other have been 

placed nearby on the heatmap representation. The red dotted rectangle in Figure 29 (a), 2-

gram similarity heatmap, shows a group of highly similar SSs. Similarly, the various red 

dotted rectangles in Figure 29 (b), relaxed 2-gram heatmap, indicates the various groups of 

similar SSs. The diagonal elements in the heatmaps show the self-similarity of SSs, as a 

result, they are colored blue and indicate a similarity value of 1. Note that, for the same n-

gram length, the relaxed n-gram case has more similar SSs compared to the n-gram. This 

results in a greater number of blue cells in the relaxed n-gram heatmap representations 

compared to the n-gram. As a result, more clusters which are also bigger (blue colored 

block structures) can be observed in the relaxed n-gram heatmaps (see Figure 29 (a) and 

(b)).  

On the other hand, if we compare across n-gram of varying lengths, i.e. compare 

between 2-gram and 3-gram (see Figure 29 (a) and (c)), or relaxed 2-gram and relaxed 3-

gram (see Figure 29 (b) and (d)), we can observe that the number of similar SSs reduces, 

leading to less frequent and smaller size cluster of similar SSs.   
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Note that, although, heatmaps allows easy detection of similar SSs and their 

clusters, however, it depends on the decision-maker on what values they choose as a 

threshold to define the clusters. Therefore, an objective method, which computes the cluster 

of similar SSs, without needing the supervision of the decision-maker, would be helpful to 

validate the developed n-gram based similarity evaluation approach. Thus, next, we 

provide the results obtained from the network-based community detection method applied 

to the network developed using both the n-gram and the relaxed n-gram similarity values.  

 
(a) 2-gram similarity heatmap 

Similar SS  
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(b) Relaxed 2-gram similarity heatmap 

 
(c) 3-gram similarity heatmap 
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(d) Relaxed 3-gram similarity heatmap 

 
(e) 4-gram similarity heatmap 
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(f) Relaxed 4-gram similarity heatmap 

 
(g) 5-gram similarity heatmap 
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 (h) Relaxed 5-gram similarity heatmap 

Figure 29: Heatmap showing the similarity (both n-gram and relaxed n-gram) between 

various clearance command related VSs of an expert ATC. The VSs are associated with 30 

seconds before issuing the clearance commands.  

 

5.5.3 Network-based visualization of VS similarity 

Figure 30 represents the modularity values for various combination of n-gram and 

relaxed n-gram with both the whole network and threshold-based edge removed case. Note 

that higher modularity value indicates a better partition of the network into communities. 

And, the modularity values in Figure 30 show that we obtain a better partition of the 

network into communities if we remove edges with low weights. Therefore, in the next 

section, we only present the results for the case where low weight edges have been removed 

before network community detection was performed.  

Moreover, for the case of n-gram and relaxed n-gram, with edges removed, the 

modularity values are very similar, except for the case of 5-gram, where it experiences a 

sudden increase in value and reaches approx 0.5. Unlike this, for the relaxed n-gram case 
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with edges removed, the modularity drops for 5-gram case, however, every other 

combination sees an improvement in their modularity value with increase in the n-gram 

length.     

 

Figure 30: Modularity values for the network-communities obtained for different n-gram 

lengths. ng: n-gram; relax ng: relaxed n-gram; ER: edge removed. 

 

To aid the understanding of the reader Figure 31 shows an example network-based 

representation of the similarity between various SSs obtained from applying modularity-

based community detection method on the network generated from the n-gram similarity 

values. In Figure 31, each node represents one instance of a clearance command, e.g. node 

with label ‘CTO9’ represents the 9th SS sample observed for the clearance command ‘Clear 

to take off’. Accordingly, CL and LW represents ‘Clear to land’ and ‘Line up and wait’ 

clearance commands respectively. Furthermore, nodes having the same color (e.g. all nodes 

in pink), except for the nodes colored white, are highly similar to each other. The red dotted 

circle in Figure 31 shows one such group of highly similar nodes, where each node is 

colored in pink. Also, similar nodes are joined by an edge between them (shown in grey 
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color in Figure 31). To aid visual clarity, the edge thickness has been made proportional to 

the similarity between nodes, i.e. thicker the edge between two nodes, more similar they 

are to each other.  

Moreover, to avoid visual clutter edges having weight less than 0.3 have been 

removed. Although, any other weight value (e.g. 0.2, or 0.4) can also be chosen as the 

threshold level for edge removal purpose and depends on the decision-maker.  

 

Figure 31: Weighted network-based visualization of expert ATC’s visual scanpath 

similarity. 

 

Figure 32 represents the results of the modularity-based community detection 

method, showing the similarities between the various SSs for three different clearance 

commands (i.e. CL, CTO, and LW) for an expert ATC.  Figure 32 (a) and (b) indicates that 

there are three distinct groups of SSs, shown in orange, yellow, and pink color nodes, for 

both the 2-gram and relaxed 2-gram case. Although, the number of groups is same in both 

the cases (i.e. general and relaxed 2-gram), the membership of some SSs are different in 

both the network representations, e.g. CL6 switched from yellow (2-gram) to orange group 

(relaxed 2-gram).   
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Interestingly, as we move to 3-gram case (see Figure 32 (c) and (d)), the impact of 

the newly proposed relaxed n-gram approach becomes more prominent because despite 

having the same number of groups of nodes, the number of constituent nodes is some 

groups have increased significantly, e.g. the red group. This result is expected for the case 

of relaxed n-gram method, all permutation of constituent elements of an n-gram is treated 

to be semantically similar. Another important aspect, which agrees with the results 

obtained in the heatmap visualization of the n-gram similarity values, that as the length of 

the n-gram increase, the size of the groups also decreases and there exist many isolated 

nodes which are not similar to any other nodes. For example, 4-gram has four different 

groups and 4-gram has only two groups and a large number of island nodes, neither 

belonging to any group nor connected to any other node (see Figure 32 (e)-(h)).  This result 

is similar to the heatmap representation, where for the case of 5-gram, there is hardly any 

identifiable block of similar SSs.   

 
(a) 2-gram similarity  
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(b) Relaxed 2-gram similarity 

 
(c) 3-gram similarity 
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(d) Relaxed 3-gram similarity  

 
(e) 4-gram similarity 
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(f) Relaxed 4-gram similarity 

 
(g) 5-gram similarity 
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 (h) Relaxed 5-gram similarity 

Figure 32: Network-based representation of similarity between various clearance 

command related VSs of an expert ATC. Both n-gram and relaxed n-gram based similarity 

values for various n-gram levels are shown. The VSs are associated with 30 seconds before 

issuing the clearance commands. 

5.6 Discussion 

In this research, we developed a framework to evaluate the similarity among SSs 

obtained in dynamic target tracking and control tasks, e.g. air traffic control tasks. The 

framework consists of initially evaluating the similarity between SSs using an n-gram 

based approach.  To this purpose, two new n-gram based similarity evaluation methods are 

proposed: (i) involves computing the number of common n-gram subsequences between 

the SSs as a proportion of the length of largest SS; and (ii) consists of modifying the 

traditional n-gram definition with its relaxed version where the order of the constituent 

elements of the n-gram is ignored, and any permutation of these elements are considered 

same.  Afterwards, the n-gram based similarity values are used to implement a modularity-

based network community detection method, which enables identification of highly similar 
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SSs without explicitly providing the number of groups/clusters being provided by the 

decision-maker.  

The example VSs for the various clearance commands demonstrates that it’s indeed 

challenging to visually explore and identify the commonality among the SSs associated 

with the clearance commands, even when they are of short duration (i.e. 30 seconds). As a 

consequence, this justifies the utility of the proposed framework which provides an 

objective way to discover groups of similar SSs.  

The results of the heatmaps, displaying the n-gram (and the relaxed n-gram) 

similarity values between SSs, show that we were able to identify several cases of very 

similar SSs. As expected, for small n-gram lengths (2 and 3), there are several cases of high 

similarity between SSs, and we could locate multiple blocks of homogenous Sss across the 

diagonal of the heatmap representation. With the increase in the n-gram length (4 and 5), 

the similarity between SSs decreases and very few blocks of homogenous SSs are visible. 

Besides this, for a given n-gram length, the relaxed definition led to the higher similarity 

among SSs as the order of the n-gram elements were ignored.  Although, we were able to 

identify a few instances of similar SSs which were placed along the diagonal of the 

heatmaps, however, for it’s quite cumbersome to locate off-diagonal similar SSs as the 

number fo SSs compared increases. Moreover, the absence of any context-specific 

benchmark value for similarity,  makes it difficult to identify groups of homogenous  SSs. 

This gap is addressed by the network community detection method, that uses the n-gram 

similarity scores to determine groups of highly similar SSs using a modularity-based 

method.  
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The network community detection and its subsequent visualization allow for easy 

identification of highly similar SSs, as the node color attribute enable enhanced visual 

segregation of similar SSs. The community detection results show that as the n-gram length 

increases, the cluster size of homogenous SSs also shrinks, thereby indicating that the 

similarity reduces with increasing n-gram length. This is expected, as with longer 

subsequences, it is less probable that the expert ATC will exhibit similar scanning behavior 

for different instances of same clearance command and far less for different clearance 

commands. Interestingly, for a given n-gram length, the size of the SS 

clusters/communities is larger for the relaxed n-gram case. This is consistent with the 

heatmap results, as the relaxed n-gram allows for all permutations of n-gram constituent 

elements to be considered equivalent. Moreover, the network visualization also highlights 

those particular SSs which are very dissimilar from other SSs, by showing them as isolated 

nodes. And as expected, the number of isolated nodes increases with the length of the n-

gram.  

A closer analysis of the SSs clusters will help us understand about the consistency 

of the visual scanning strategy of expert ATCs while issuing clearance commands. In 

detail, different instances of the SSs associated with the same clearance command, 

belonging to the same cluster will indicate that expert ATCs have an inbuilt consistent 

strategy to deploy their visual attention across the display while they provide similar 

clearance commands. This might imply a top-down control on the visual attention 

distribution strategy of expert ATCs.  On the other hand, if SSs associated with the same 

clearance command belongs to difference cluster, and found to be similar to other SSs 

belonging to different clearance commands, it might indicate that the bottom-up influence 
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is more substantial, as with time the scenario context evolves even while the same clearance 

command needs to be issued (e.g. different traffic volume and characteristics near the 

runway). Although, further in-depth investigation of the scenario attributes for those 

particular time intervals is warranted before can identify the reason behind the non-

homogenous nature of the SSs.  

5.7 Limitation and Future Work 

One limitation of the present study in the small sample size. Currently, we have 

only provided an analysis of one expert ATC’s case. Moreover, the SSs analyzed were of 

short duration, i.e. 30 seconds, and they were observed just before the issuance of the 

various clearance commands. Besides, the present framework evaluates the similarity 

between SSs by only using n-gram based methods. It’s to be noted that, n-gram based 

methods don’t consider the eye fixation duration into account while evaluating similarity..  

One limitation of the proposed  method is that the similarities were analyzed using 

all the clearance commands combined for a single ATC. Future research involves 

implementing the n-gram method based on each clearance command and/or each expertise 

level (i.e. novices and experts). 

The proposed method provides various colors for visualization and those who are 

color-blinded might not be able to benefit from the proposed approach. To consider those 

who are color-blinded one method can be using different shape rather than colors. In 

addition, instead of using multiple colors a single color can be used by implementing 

lightness contrast.  
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Therefore, as future work, we should include SSs for more number of expert ATCs. 

Furthermore, we should also consider analyzing SSs of longer duration (e.g. 60 seconds), 

and both before and after the clearance commands are issued.  

Besides, we should explore similarity evaluation methods that also accommodate 

the eye fixation duration. Further, in-depth analysis is required, focusing on the underlying 

scenario contexts responsible for the observed similarity across SSs, and the unearth 

particular aspect of the SSs (exact subsequences shared across SSs) which led to the 

similarity among their various manifestations.    
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Chapter 6: Conclusion  

In conclusion, the current research addresses three pertinent questions that will 

enhance our understanding of the visual scanning strategies of observers involved in a 

dynamic target tracking task.  

The first topic was related to the effective visualizing of the eye movement 

characterisitics for a dynamic target tracking task. To address the question, a dynamic 

network-based framework was developed that allows identification of important targets 

whcih were visually attended and how their importance evolved over time. Moreover, four 

different visualization methods were introduced: Dot plot, bar plot, norm-cube plot, and 

order plot. The plots further helped in identifying the important targets that were visually 

attended. The four types of plots had unique strengths and weaknesses. The proposed 

methods were applied to an enroute air traffic control tasks to better analyze the visual 

scanning strategies of expert air traffic controllers.  

The second topic was on the visualization of the complex visual scanpaths for a 

dynamic target tracking task.A novel spatial-temporal clustering method was introduced 

that allows the simplication of the complex visual scanpaths through aggregating the eye 

fixations that are both spatially and temporally close to one another. The proposed method 

was  applied in air traffic control operations. The simplified visual scanpath results showed 

that the overall geometric shape of the visual scanpaths can be retained even if the amount 

of complexity (constituent eye fixation count) of the visual scanpaths were reduced up to 

50%. The reduction of the visual scanpath complexity shows promise on representing 

clearer visual search strategies of the expert air traffic controllers that might be used to 

better traing the novice air traffic controllers.   
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The third  research topic was on finding similar visual scanning scanpaths for a 

dynamic target tracking task. The proposed  method computes the n-gram based similarities 

among the visual scanpath sequences, and then implements the modularity-based network 

community detetion method to cluster the scanpath sequences. The proposed method  does 

not require the researcher to pre-define any parameter values prior to clustering the visual 

scanpath sequences. The proposed method was applied in air traffic control operations and 

showed promise on formulating representative visual scanpaths within each cluster.  
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Chapter 7: Limitations and Future Work  

A  limitation of the dynamic network-based framework in the absence of a 

systematic approach to divide the whole experimental time into smaller intervals that can 

best show the evolution of the eye movement characterisitics. As a future work, the 

systematic approach needs to be developed based on different experiment times and task 

types.  

Regarding the plots to visualize the eye movements their outputs are currently 

static, meaning that the users are not able to interact with the plots. Future work involves 

finding interactive methods to reduce visual clutter, filtering data, and being able to 

simultaneously show multiple eye movement characteristics  and/or outputs obtained from 

multiple participants to enable more efficient comparisons. 

The limitation of the scanpath simplification methodology is that till now only a 

small sample of data was used to evaluate the proposed method. A larger sample will be 

used in the future. Furthermore, long duration scanpath sequences (e.g. 60 s or 120 s) will 

be used to investigate how the the length of scanpath sequnces impact the overall clustering 

outcomes.   

The proposed methods were effective in visualizing the eye movement 

characteristics and comparing the similarities among the visual scanpath sequences. Future 

research involves investigating whether the proposed methods might be used to increase 

the novice performance. In addition, investigations are needed to possibly use the outputs 

from the proposed methods to evaluate training performance.    
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Appendix  

Chapter 5 

Table 3 shows the list of scanpath sequences for three different clearance commands 

associated with 30 seconds prior to issuing the clearance commands for an expert ATC. 

CL: ‘Clear to land’; CTO: ‘Clear to take off’; and LW: ‘Line up and wait’.  

Table 3: Scanpath Sequence of 30 seconds immediately before issuing clearance 

command. 

CL1:FTBTFBABFTBTABFTRTB 
CL2:DFTBTFTFBDBFTFTFTRDTFB 
CL3:FBFTBTRFDRMRBFRBARDB 
CL4:FDRMBFTFTFTFTATABATFTRTRTRFRFRFTFTF 
CL5:TDFTABADABABRDB 
CL6:DABFTBTDTBRCDTDABD 
CL7:FTATDCDTRDTDAFTFTB 
CL8:ABABABARMFTFTABR 
 

CTO1:RBRDRTFTFBTDTDB 
CTO2:RTBTBTBATFTFTBTFTFB 
CTO3:ABDRDCDRTADT 
CTO4:BDCRDRBADABABABAD 
CTO5:DFBABDADFTAFTFDCATAFTDA 
CTO6:AFTBTFTFTBDTFTBATBADCD 
CTO7:DTFTFBDRTDTFTFTBDTFTFBTAB 
CTO8:TDTFTABTBADTFBADRDTFTATRTBAT 
CTO9:BADRDTFTATRTBATDRTFABATDAD 
CTO10:BABATBADBADTBADTFRDA 
 

LW1:DTFTRTFTBFTBDTFTFATF 
LW2:DFTBTFABTFBFTBAF 
LW3:FTFDRDFBFBRTBADTBRDFRDRA 
LW4:BDTBTFTDTBATR 
LW5:AFBTFTBADTFTBTFTBFTBA 
LW6:ADFATDADTRMDRDTFTFRAT 
LW7:TABTBRTRDRDRFRDADADMDCTFTAFA 
LW8:TCDCTFRDRDRDRTDTFDA 

 

 


