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Abstract 

Cardiovascular disease (CVD) is the primary cause of death globally and is estimated to 

cause one-third of deaths in Canada. Each year, millions of Canadians are affected by CVD 

despite ongoing efforts to reduce risk through lifestyle modifications and pharmacological 

therapies. With the expected rise in CVD prevalence due to the obesity epidemic, we need to 

better understand the genetic basis of heritable, modifiable risk factors, including levels of 

high-density lipoprotein (HDL) cholesterol and triglyceride, for insights into future 

therapeutic treatments and risk prediction. Through the use of a targeted next-generation 

sequencing panel designed specifically to study lipid and metabolic disorders, I have 

explored a spectrum of genetic variation—including rare and common variants, single-

nucleotide and copy-number variants—in over 3,000 DNA samples isolated from individuals 

with abnormal lipid phenotypes, including: (i) hypoalphalipoproteinemia; (ii) 

hyperalphalipoproteinemia; and (iii) hypertriglyceridemia. From my research efforts, I 

demonstrated that the majority of individuals with abnormal HDL cholesterol levels did not 

carry many phenotypically-relevant genetic factors, but in those who did, rare variants were 

more prevalent in individuals with extremely low HDL cholesterol levels, while both rare 

variants and the accumulation of common variants were approximately equal in individuals 

with extremely high HDL cholesterol levels. Meanwhile, hypertriglyceridemia had a stronger 

genetic basis, with common variant accumulation being the most prevalent genetic 

determinant. Further, I uncovered that genetic determinants are more prevalent as the 

hypertriglyceridemia phenotype becomes more severe, and a genetic locus, CREB3L3, may 

have an extremely important, previously unappreciated role in hypertriglyceridemia 

susceptibility. By better understanding the genetic underpinnings of abnormal levels of HDL 

cholesterol and triglyceride, future efforts can explore the relationship between these 

phenotypes and their genetic determinants, and how we might leverage this information to 

develop better therapeutics to lower levels of these risk factors or create screening methods to 

identify individuals who might be at higher risk for CVD.  
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Summary for Lay Audience 

Heart disease is the second leading cause of death in Canada and affects millions of 

individuals each year. Despite efforts to reduce disease risk with healthy lifestyles and 

medications, these strategies are not always successful. The variation in effectiveness may be 

linked to differences in an individual’s genetic make-up (i.e. DNA), and how these changes 

in DNA might be impacting levels of well-established risk factors for heart disease, such as: 

high-density lipoprotein (HDL) cholesterol—also referred to as the “good” cholesterol—and 

triglyceride (i.e. fats). These two lipid factors have been observed to associate with heart 

disease risk, and medications have been designed specifically to alter these lipid levels to 

reduce disease risk. Here, I worked to better understand the different DNA changes, also 

called “genetic variants”, that can influence levels of HDL cholesterol and triglyceride, and 

to specifically study the genetic variants in individuals with extreme lipid disorders 

characterized by either: (i) extremely low HDL cholesterol levels; (ii) extremely high HDL 

cholesterol levels; or (iii) extremely high triglyceride levels. After studying the DNA of over 

3,000 individuals, I determined that each lipid disorder has a unique combination of rare and 

common genetic variants that help drive the presentation of each extreme lipid trait. During 

this research, I was also able to create two “genetic risk scores”—a method to aggregate 

information from many sites of common DNA variation into a single measure of disease 

risk—for both HDL cholesterol and triglyceride. From my collective research efforts, we 

now have a better understanding of the different DNA changes that can cause or increase risk 

for different lipid disorders, each of which have varying degrees of heart disease risk. By 

understanding the relevant genetic variants underlying lipid disorders involving abnormal 

levels of HDL cholesterol and triglyceride, future research efforts can explore how we might 

be able to take advantage of this information to develop better medications and therapeutics 

to lower levels of these heart disease risk factors or create genetic screening methods to 

identify individuals at higher risk for heart disease because of different types of genetic 

variation. 
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“Science knows no country, because knowledge belongs to humanity, and is the torch which 

illuminates the world.” 

 

— Louis Pasteur



viii 

Dedication 

For Mum, Dad, and Andrew. 

 

  



 

ix 

 

Acknowledgments 

I would not be where I am today—or who I am today—without the support from my 

mentors, family, friends, and colleagues. I am grateful for all of the experiences I have had, 

the things I have learned, and the incredible friendships I have made along the way! 

To Dr. Hegele: 

It has been an absolute honour and privilege to have had such an incredible PhD 

supervisor. I have grown and learned so much from your mentorship and guidance—I 

will forever be thankful! All of my successes and triumphs have been thanks to the 

wonderful opportunities you have provided me with. If I am ever privileged enough 

to have the chance to supervise my own students in the future, I hope that I can be for 

them what you have been for me. Your guidance, mentorship, patience, and 

encouragement have helped guide me towards the researcher I strive to be, and I 

would not be where I am today without you.  

Thank you for everything!  

To the Hegele Lab members: 

Matt, Adam, John, Jian, Henian, Ericka, Brooke, David, Jenn—thank you all so much 

for your support. You have each helped me in achieving my research goals in some 

way, and have definitely made me laugh on more than one occasion! Every time I 

have a Tim Horton’s smile cookie, celebrate a birthday with ice cream cake, sit at the 

back of a lecture hall, or be the first to line up for seminar snacks, I’ll be reminded of 

the great times I had in the lab with all of you! 

To Sali: 

You were my rock as I began navigating the treacherous waters of graduate school! 

Your dedication and work ethic inspired me and helped shape the type of researcher I 

wanted to be. You are an inspiration and I hope to be like you when I grow up! 

Thanks for being there for me, always listening and providing amazing advice, and 

for being an all-around amazing individual. I am so thankful to have shared an office 

with you and am honoured to call myself your lab mate, but more importantly, your 

friend! 



 

x 

 

To Alli, Rosettia, Michael, and Julie: 

I literally do not think I would have been able to stay sane the last 5 years without all 

of you! To Alli, Rosettia and Michael, looking back, I’m not really sure how we 

managed to get our research done while sharing an office, but we did… and we also 

managed to remain BFFs the whole time! Some of my best memories were in the 

office with the 3 of you—who needed windows when I worked with you 3 rays of 

sunshine every day?!  

Julie, I am so glad that you joined our lab as well! Even though a large portion of our 

time as lab mates has been interrupted by COVID-19, I love that we’ve been able to 

talk science and have fantastic video chats. It is wonderful knowing that friends (and 

colleagues) are only a call away! 

To the four of you, thank you for everything you have taught me along the way, for 

making me laugh, encouraging me, and being such amazing friends! I look forward to 

the future as we continue to be BFFs and succeed in all of our endeavours! 

To Cal and Praneet: 

Who knew I would get to work with some amazing undergraduate students along the 

way? Working with you both were some of the highlights of graduate school, and 

whether you know it or not, you both taught me many things! I am so glad I got the 

opportunity to help mentor you both, and I am especially glad that I can also consider 

you both friends, and dare I say, future colleagues? I’ll always be here to cheer you 

both on your own journeys, where ever you may go!  

To the Huff Lab members (and some 4th Floor extras): 

Murray, Dawn, Brian, Jane, Amy, Nadya, Corey, Zainab, Matt, and Caroline—an 

unexpected benefit of being part of the Hegele Lab was getting to be 4th Floor 

neighbours with all of you. I will forever consider you all part of my scientific family, 

who are happy to talk about lipids, lipoproteins (except for HDL, right Dawn?), and 

life! The support I felt from all of you was immense and I am so profoundly grateful. 

My graduate experience would not have been as enjoyable without all of you in it! 

 



 

xi 

 

As well, thank you Murray for your wonderful support as my graduate advisor. I 

knew that I could always count on having at least one person come to my poster, no 

matter what conference I was at! Thank you for your questions, your challenges, for 

introducing me to the wonderful individuals of the lipids community, and for 

welcoming me as an honorary member of your group while away at conferences—it 

is something I will never forget. 

To Tom, Wiggers, and Dylan: 

For all of the time you spent listening to me talk about my research (whether you 

understood it or not) asking me questions about it, and checking in on me… thank 

you for being such wonderful friends and for reminding me that a world exists outside 

the lab! I have learned that the secret to success is not only having support in 

research, but to have support outside of research as well!  

To my family: 

Mum, Dad, and Andrew, the three of you have been my biggest cheerleaders not only 

during graduate school, but for every challenge I have ever faced. I made it to where I 

am today because of the love and support I have received from all of you! I have only 

been able to believe in myself because you all taught me how to do it. Thank you for 

being with me every step of the way! I love you all so much! 

To Zach: 

Words cannot express how grateful I am to have had you support and encourage me 

during these last few years. I cannot imagine having gone through this experience 

without you—I have you to thank for becoming both the researcher and person I am 

today! I can’t wait to see what the future has in store for this “scientific power 

couple”!   



 

xii 

 

Funding Acknowledgments 

The research detailed in this Dissertation was supported by funds from the Canadian 

Institutes of Health (CIHR), the Heart and Stroke Foundation of Ontario, and Genome 

Canada through Genome Québec. 

Further, I am personally thankful for financial support from the CIHR Fredrick Banting and 

Charles Best Doctoral Research Award, the CIHR Michael Smith Foreign Supplement, the 

Ontario Graduate Scholarship, and both the Schulich School of Medicine and Dentistry, and 

School of Graduate and Postdoctoral Studies at Western University.  

 

 



 

xiii 

 

Table of Contents 

Abstract .............................................................................................................................. ii 

 

Summary for Lay Audience ............................................................................................ iv 

 

Co-Authorship Statement ................................................................................................ v 

 

Dedication ....................................................................................................................... viii 

 

Acknowledgments ............................................................................................................ ix 

 

Funding Acknowledgments ............................................................................................ xii 

 

Table of Contents ........................................................................................................... xiii 

 

List of Tables ................................................................................................................ xviii 

 

List of Figures ................................................................................................................. xix 

 

List of Appendices .......................................................................................................... xxi 

 

List of Abbreviations .................................................................................................... xxii 

 

Chapter 1 – Introduction ................................................................................................. 1 

1.1 Overview ................................................................................................................. 2 
1.2 Human genetic variation ......................................................................................... 5 

1.2.1 Single-nucleotide variants ........................................................................... 5 

1.2.2 Structural variants ....................................................................................... 8 
1.2.2.1 Insertions and deletions .............................................................. 10 

1.2.2.2 Copy-number variants ................................................................ 10 
1.2.2.3 Chromosomal alterations ............................................................ 12 

1.2.3 Variant frequency...................................................................................... 12 

1.2.3.1 Rare variants ............................................................................... 14 
1.2.3.2 Common variants ........................................................................ 14 

1.3 Genetic basis of traits and disease ........................................................................ 15 

1.3.1 Monogenic inheritance.............................................................................. 15 
1.3.1.1 Penetrance and expressivity ....................................................... 19 

1.3.2 Polygenic inheritance ................................................................................ 21 
1.3.2.1 Heritability .................................................................................. 22 

1.3.3 Methods to study genetic variation ........................................................... 22 
1.3.3.1 Sanger sequencing ...................................................................... 22 
1.3.3.2 Next-generation sequencing ....................................................... 23 

1.3.3.3 Microarrays ................................................................................. 26 
1.3.4 Approaches to study the genetic basis of diseases .................................... 26 

1.3.4.1 Linkage analysis in families or samples of related individuals .. 26 

1.3.4.2 Associating genotype with phenotype ........................................ 28 
1.3.4.3 Polygenic scores ......................................................................... 33 



 

xiv 

 

1.4 Lipids and lipoproteins ......................................................................................... 37 

1.4.1 Lipids ........................................................................................................ 37 

1.4.1.1 Cholesterol .................................................................................. 38 
1.4.1.2 Triglyceride ................................................................................ 38 
1.4.1.3 Plasma lipid sources ................................................................... 38 

1.4.2 Lipoproteins .............................................................................................. 40 
1.4.2.1 High-density lipoprotein ............................................................. 43 

1.4.2.2 Triglyceride-rich lipoproteins ..................................................... 46 
1.5 Dyslipidemia ......................................................................................................... 51 

1.5.1 Genetics of dyslipidemia........................................................................... 51 
1.5.2 Abnormalities in high-density lipoprotein cholesterol levels ................... 54 

1.5.2.1 Hypoalphalipoproteinemia ......................................................... 56 

1.5.2.2 Hyperalphalipoproteinemia ........................................................ 58 

1.5.3 Abnormalities in triglyceride levels .......................................................... 59 
1.5.3.1 Hypertriglyceridemia .................................................................. 61 

1.5.3.2 Hypotriglyceridemia ................................................................... 67 

1.6 Genetic assessment of dyslipidemia ..................................................................... 68 
1.6.1 LipidSeq: a targeted next-generation sequencing panel for dyslipidemia 

phenotypes ................................................................................................ 69 

1.7 Thesis outline ........................................................................................................ 72 
1.7.1 Overall research aim and objectives ......................................................... 72 

1.7.2 Hypothesis................................................................................................. 73 
1.7.3 Summary ................................................................................................... 73 

1.8 References  ............................................................................................................ 74 

 

Chapter 2 – Polygenic determinants in extremes of high-density lipoprotein 

cholesterol ................................................................................................................... 94 
2.1 Abstract ................................................................................................................. 95 

2.2 Introduction ........................................................................................................... 95 
2.3 Materials and Methods .......................................................................................... 97 

2.3.1 Study subjects ........................................................................................... 97 
2.3.2 DNA preparation and targeted sequencing ............................................... 98 
2.3.3 Bioinformatic processing of sequencing data ........................................... 98 

2.3.4 Annotation and analysis of rare variants ................................................... 99 
2.3.5 Polygenic risk score for high-density lipoprotein cholesterol levels ...... 102 
2.3.6 Statistical analysis ................................................................................... 102 

2.4 Results ................................................................................................................. 103 
2.4.1 Characteristics of study subjects ............................................................. 103 

2.4.2 Rare variants identified in high-density lipoprotein cholesterol-altering 

genes ....................................................................................................... 103 
2.4.3 Polygenic risk score development .......................................................... 106 
2.4.4 Testing and validation of the polygenic risk score ................................. 108 

2.5 Discussion ........................................................................................................... 115 

2.6 Conclusion .......................................................................................................... 118 
2.7 References ........................................................................................................... 120 

 

 



 

xv 

 

Chapter 3 – Large-scale deletions of the ABCA1 gene in patients with 

hypoalphalipoproteinemia ....................................................................................... 125 

3.1 Abstract ............................................................................................................... 126 
3.2 Introduction ......................................................................................................... 126 
3.3 Materials and Methods ........................................................................................ 128 

3.3.1 Study subjects ......................................................................................... 128 
3.3.2 DNA preparation and targeted sequencing ............................................. 128 

3.3.3 Bioinformatic processing of sequencing data ......................................... 128 
3.3.4 Detection of single-nucleotide and copy-number variants ..................... 128 
3.3.5 Validation of partial gene deletions ........................................................ 129 

3.3.5.1 Breakpoint identification .......................................................... 129 
3.3.5.2 Sanger confirmation ................................................................. 129 

3.3.6 Validation of full gene deletions ............................................................. 129 

3.3.6.1 Exome sequencing .................................................................... 129 
3.3.6.2 Microarray analysis .................................................................. 130 

3.3.6.3 Breakpoint identification .......................................................... 130 

3.3.6.4 Sanger confirmation ................................................................. 130 
3.4 Results ................................................................................................................. 130 

3.4.1 Study subjects ......................................................................................... 130 

3.4.2 ABCA1 copy-number variant detection .................................................. 131 
3.4.3 Copy-number variant validation and identifying breakpoints ................ 131 

3.5 Discussion ........................................................................................................... 141 
3.6 Conclusion .......................................................................................................... 143 
3.7 References ........................................................................................................... 144 

 

Chapter 4 – Severe hypertriglyceridemia is primarily polygenic ............................ 148 
4.1 Abstract ............................................................................................................... 149 
4.2 Introduction ......................................................................................................... 150 

4.3 Materials and Methods ........................................................................................ 152 
4.3.1 Study subjects ......................................................................................... 152 

4.3.2 DNA preparation and targeted sequencing ............................................. 152 
4.3.3 Bioinformatic processing of sequencing data ......................................... 153 
4.3.4 Annotation and analysis of rare single-nucleotide variants .................... 153 

4.3.5 Detection of rare copy-number variants ................................................. 153 
4.3.6 Polygenic risk score for elevated triglyceride levels .............................. 154 
4.3.7 Statistical analysis ................................................................................... 154 

4.4 Results ................................................................................................................. 154 
4.4.1 Characteristics of study subjects ............................................................. 154 

4.4.2 Rare variants identified in canonical triglyceride metabolism genes ..... 157 
4.4.3 Measuring accumulation of common triglyceride-raising alleles ........... 157 
4.4.4 Comparison of genetic profiles between cohorts .................................... 160 
4.4.5 Comparison of triglyceride levels between molecular forms of 

hypertriglyceridemia ............................................................................... 160 

4.5 Discussion ........................................................................................................... 163 
4.6 Conclusion .......................................................................................................... 167 
4.7 References ........................................................................................................... 168 

 



 

xvi 

 

Chapter 5 – Partial LPL deletions: rare copy-number variants contributing towards 

the polygenic form of severe hypertriglyceridemia............................................... 173 

5.1 Abstract ............................................................................................................... 174 
5.2 Introduction ......................................................................................................... 174 
5.3 Materials and Methods ........................................................................................ 176 

5.3.1 Study subjects ......................................................................................... 176 
5.3.2 DNA preparation and targeted sequencing ............................................. 176 

5.3.3 Bioinformatic processing of sequencing data ......................................... 176 
5.3.4 Detection of copy-number variants ......................................................... 176 
5.3.5 Validation of partial gene deletions ........................................................ 177 

5.3.5.1 Breakpoint identification .......................................................... 177 
5.3.5.2 Sanger confirmation ................................................................. 177 

5.4 Results ................................................................................................................. 177 

5.4.1 Study subjects ......................................................................................... 177 
5.4.2 LPL copy-number variant detection ........................................................ 177 

5.4.3 Copy-number variant validation and identifying breakpoints ................ 178 

5.5 Discussion ........................................................................................................... 183 
5.6 Conclusion .......................................................................................................... 186 
5.7 References ........................................................................................................... 187 

 

Chapter 6 – The polygenic nature of mild-to-moderate hypertriglyceridemia ....... 191 

6.1 Abstract ............................................................................................................... 192 
6.2 Introduction ......................................................................................................... 193 
6.3 Materials and Methods ........................................................................................ 194 

6.3.1 Study subjects ......................................................................................... 194 

6.3.2 DNA preparation and targeted sequencing ............................................. 195 
6.3.3 Bioinformatic processing of sequencing data ......................................... 195 
6.3.4 Annotation and analysis of rare single-nucleotide variants .................... 195 

6.3.5 Detection of rare copy-number variants ................................................. 195 
6.3.6 Polygenic risk score for elevated triglyceride levels .............................. 195 

6.3.7 Statistical analysis ................................................................................... 196 
6.4 Results ................................................................................................................. 196 

6.4.1 Characteristics of study subjects ............................................................. 196 

6.4.2 Rare variants identified in canonical triglyceride metabolism genes ..... 196 
6.4.3 Measuring accumulation of common triglyceride-raising alleles ........... 196 
6.4.4 Comparison of genetic profiles between cohorts .................................... 199 

6.5 Discussion ........................................................................................................... 202 
6.6 Conclusion .......................................................................................................... 204 

6.7 References ........................................................................................................... 205 

 

Chapter 7 – Loss-of-function CREB3L3 variants in patients with severe 

hypertriglyceridemia................................................................................................ 209 
7.1 Abstract ............................................................................................................... 210 

7.2 Introduction ......................................................................................................... 210 
7.3 Materials and Methods ........................................................................................ 212 

7.3.1 Study subjects ......................................................................................... 212 

7.3.2 DNA preparation and targeted sequencing ............................................. 213 
7.3.3 Bioinformatic processing of sequencing data ......................................... 213 



 

xvii 

 

7.3.4 Principal component analysis ................................................................. 213 

7.3.5 Annotation and analysis of loss-of-function variants ............................. 214 

7.3.6 Gene-based rare variant association analysis .......................................... 214 
7.3.7 Odds ratio assessment ............................................................................. 215 

7.4 Results ................................................................................................................. 215 
7.4.1 Characteristics of study subjects ............................................................. 215 
7.4.2 Loss-of-function variants identified from the LipidSeq gene panel ....... 220 

7.4.3 Gene-based rare variant association study using SKAT-O ..................... 220 
7.4.4 Gene-based odds ratio assessment .......................................................... 220 

7.5 Discussion ........................................................................................................... 224 
7.6 Conclusion .......................................................................................................... 226 
7.7 References ........................................................................................................... 228 

 

Chapter 8 – Discussion ................................................................................................. 232 
8.1 Overview ............................................................................................................. 233 

8.2 Summary of research findings ............................................................................ 233 

8.2.1 The genetic architecture of extreme high-density lipoprotein cholesterol 

levels ....................................................................................................... 233 
8.2.1.1 Hypoalphalipoproteinemia ....................................................... 235 

8.2.1.2 Hyperalphalipoproteinemia ...................................................... 236 
8.2.1.3 Genetic influences across high-density lipoprotein cholesterol 

levels ......................................................................................... 237 
8.2.2 The genetic architecture of hypertriglyceridemia ................................... 238 

8.2.2.1 Severe hypertriglyceridemia ..................................................... 238 

8.2.2.2 Mild-to-moderate hypertriglyceridemia ................................... 241 

8.2.2.3 Genetic influences across hypertriglyceridemia phenotypes ... 242 
8.3 Study strengths, limitations and caveats ............................................................. 245 

8.3.1 Strengths ................................................................................................. 245 

8.3.2 Caveats .................................................................................................... 246 
8.3.3 Limitations .............................................................................................. 248 

8.4 Applications and future directions ...................................................................... 251 
8.4.1 Estimating effects of genetic determinants ............................................. 251 
8.4.2 Screening for genetic risk ....................................................................... 251 

8.4.3 Updating lipid-based polygenic risk scores ............................................ 252 
8.4.3.1 Genome-wide scores ................................................................ 253 

8.4.4 Finding additional susceptibility genes ................................................... 254 

8.5 Risk for cardiovascular disease, and levels of high-density lipoprotein cholesterol 

and triglyceride ................................................................................................... 255 

8.6 Conclusions ......................................................................................................... 257 
8.7 References ........................................................................................................... 260 

 

Appendices ..................................................................................................................... 270 

 

Curriculum Vitae .......................................................................................................... 319 



 

xviii 

 

List of Tables 

Table 1.1 Dyslipidemia phenotypes and their genetic etiologies. .......................................... 53 

Table 2.1 Genes with candidate (primary) and non-candidate (secondary) influences on HDL 

cholesterol levels. .................................................................................................................. 101 

Table 2.2 Clinical and demographic information of patients with low HDL cholesterol levels 

(N=686). ................................................................................................................................ 104 

Table 2.3 Clinical and demographic information of patients with high HDL cholesterol 

levels (N=1,165). .................................................................................................................. 104 

Table 2.4 The 9 SNPs used in the polygenic risk score for HDL cholesterol levels. .......... 107 

Table 3.1 Clinical and demographic features of subjects with ABCA1 CNVs. ................... 132 

Table 3.2 Genomic coordinates and breakpoints of ABCA1 CNVs. .................................... 140 

Table 4.1 The 16 SNPs used in polygenic risk score for elevated triglyceride levels. ........ 155 

Table 4.2 Clinical and demographic information of severe hypertriglyceridemia cohorts 

(N=563). ................................................................................................................................ 156 

Table 5.1 Clinical and demographic features of subjects with LPL CNVs.......................... 180 

Table 5.2 Genomic coordinates and breakpoints of LPL CNVs. ......................................... 181 

Table 6.1 Clinical and demographic information of the mild-to-moderate 

hypertriglyceridemia patient cohort (N=134). ...................................................................... 197 

Table 7.1 Clinical and demographic information of patients with severe hypertriglyceridemia 

(N=265). ................................................................................................................................ 219 

Table 7.2 Output from SKAT-O analysis between severe hypertriglyceridemia (N=265) and 

normolipidemic controls (N=477). ....................................................................................... 221 

Table 7.3 The odds of severe hypertriglyceridemia patients (N=265) carrying a loss-of-

function variant in a particular gene compared to normolipidemic controls (N=477). ........ 222 

Table 8.1 Distinguishing between familial chylomicronemia syndrome, multifactorial 

chylomicronemia, and mild-to-moderate hypertriglyceridemia. .......................................... 244 

 



 

xix 

 

List of Figures 

Figure 1.1 Different types of SNVs defined by sequence ontology. ....................................... 7 

Figure 1.2 Different types of structural variants. ..................................................................... 9 

Figure 1.3 Small-scale structural variants. ............................................................................. 11 

Figure 1.4 Spectrum of genetic variation related to phenotypic effect and population 

frequency................................................................................................................................. 13 

Figure 1.5 Schematic representation of Mendelian inheritance patterns. .............................. 18 

Figure 1.6 Variant penetrance and expressivity. .................................................................... 20 

Figure 1.7 Regression models to determine genotype-phenotype associations. .................... 30 

Figure 1.8 Lipid and apolipoprotein composition of lipoprotein classes. .............................. 41 

Figure 1.9 Lipoprotein classes and their physical characteristics. ......................................... 42 

Figure 1.10 Metabolic lifecycle of HDL particles. ................................................................ 45 

Figure 1.11 Metabolic lifecycle of chylomicrons and their remnant particles. ..................... 47 

Figure 1.12 Metabolic lifecycle of VLDL, IDL, and their remnant particles. ....................... 48 

Figure 1.13 The genetic architecture underlying the spectrum of measurable HDL 

cholesterol levels. .................................................................................................................... 55 

Figure 1.14 The genetic architecture underlying the spectrum of measurable triglyceride 

levels. ...................................................................................................................................... 61 

Figure 1.15 Genes targeted by the LipidSeq panel. ............................................................... 71 

Figure 2.1 Summary of rare variants identified within patients from the Lipid Genetics 

Clinic cohort (N=255). .......................................................................................................... 105 

Figure 2.2 Polygenic risk score distribution of non-carrier patients between different cohorts.

............................................................................................................................................... 110 

Figure 2.3 Differences in extreme polygenic risk scores between carrier and non-carrier 

patients with low HDL cholesterol levels. ............................................................................ 111 

Figure 2.4 Differences in extreme polygenic risk scores between carrier and non-carrier 

patients with high HDL cholesterol levels. ........................................................................... 112 

Figure 2.5 The comparison of genetic profiles of extreme HDL cholesterol phenotypes 

between cohorts. ................................................................................................................... 113 



 

xx 

 

Figure 2.6 Association between polygenic risk score deciles and HDL cholesterol levels. 114 

Figure 3.1 Identification of ABCA1 CNVs using the VarSeq-CNV® caller algorithm on 

targeted sequencing data. ...................................................................................................... 136 

Figure 3.2 Confirmation of the full-gene ABCA1 CNV using the VarSeq-CNV® caller 

algorithm on exome data. ...................................................................................................... 137 

Figure 3.3 Validation of full-gene deletion of ABCA1 in Patient 4 with 

hypoalphalipoproteinemia. .................................................................................................... 138 

Figure 3.4 Validation of partial gene deletions of ABCA1 in Patients 1, 2, and 3 with 

hypoalphalipoproteinemia. .................................................................................................... 139 

Figure 4.1 Identification of a LPL CNV using the VarSeq-CNV® caller algorithm. ......... 158 

Figure 4.2 Polygenic risk score analysis for severe hypertriglyceridemia patients. ............ 159 

Figure 4.3 The comparison of genetic determinants of severe hypertriglyceridemia between 

cohorts. .................................................................................................................................. 161 

Figure 4.4 Differences in genetic determinants of severe hypertriglyceridemia between 

cohorts. .................................................................................................................................. 162 

Figure 5.1 Identification of LPL CNVs using the VarSeq-CNV® caller algorithm on targeted 

sequencing data. .................................................................................................................... 179 

Figure 5.2 Validation of deletions disrupting LPL in patients with severe 

hypertriglyceridemia. ............................................................................................................ 182 

Figure 6.1 Polygenic risk score distributions between cohorts. ........................................... 198 

Figure 6.2 The comparison of genetic profiles between cohorts. ........................................ 200 

Figure 6.3 Differences in genetic determinants of hypertriglyceridemia. ........................... 201 

Figure 7.1 Principal component analysis. ............................................................................ 218 

Figure 7.2 Odds ratio of loss-of-function variants across LipidSeq genes. ......................... 223 

Figure 8.1 The updated genetic architecture underlying the spectrum of measurable HDL 

cholesterol levels. .................................................................................................................. 234 

Figure 8.2 The updated genetic architecture underlying the spectrum of measurable 

triglyceride levels. ................................................................................................................. 239 

Figure 8.3 The comparison of genetic profiles of different dyslipidemia phenotypes. ....... 259 

 



 

xxi 

 

List of Appendices 

Appendix A. Copyright Permissions ................................................................................... 270 

Appendix B. University of Western Ontario - Ethics Approval .......................................... 279 

Appendix C. Summary of unique rare SNVs identified in primary HDL cholesterol genes.

............................................................................................................................................... 280 

Appendix D. Summary of unique rare SNVs identified in secondary HDL cholesterol genes.

............................................................................................................................................... 281 

Appendix E. Screening primers for ABCA1 copy-number variations. ................................ 282 

Appendix F. Summary of unique rare SNVs and CNVs identified in the Lipid Genetics 

Clinic cohort (N=251). .......................................................................................................... 283 

Appendix G. Summary of unique rare SNVs and CNVs identified in the UCSF cohort 

(N=312). ................................................................................................................................ 284 

Appendix H. Summary of unique rare SNVs identified in the reference 1000 Genomes 

Project cohort (N=503). ........................................................................................................ 285 

Appendix I. Screening primers for LPL CNVs. .................................................................. 286 

Appendix J. Summary of unique rare SNVs identified in mild-to-moderate 

hypertriglyceridemia patients (N=134). ................................................................................ 287 

Appendix K. Summary of unique rare LOF variants identified in multifactorial 

chylomicronemia patients (N=265). ..................................................................................... 288 

Appendix L. Exautomate: A user-friendly tool for region-based rare variant association 

analysis .................................................................................................................................. 289 

 

  



 

xxii 

 

List of Abbreviations 

A Adenine 

ABCA1 ATP-binding cassette transporter A1 

ABCG5 ATP-binding cassette transporter G5  

ABCG8 ATP-binding cassette transporter G8 

Acetyl-CoA Acetyl coenzyme A 

ACMG American College of Medical Genetics and Genomics  

ANGPTL3 Angiopoietin-like protein 3 

Apo Apolipoprotein 

APOBEC-1 Apo B mRNA editing enzyme catalytic subunit 1 

ASCVD Atherosclerotic cardiovascular disease 

ASSEDA Automated Splice Site and Exon Definition Analyses  

C Cytosine 

CADD Combined Annotation Dependent Depletion 

CETP Cholesteryl ester transfer protein 

CI Confidence interval 

CNV Copy-number variant 

CREBH Cyclic AMP-responsive element-binding protein H  

CVD Cardiovascular disease 

EL Endothelial lipase  

ESP Exome Sequencing Project  

ExAC Exome Aggregation Consortium 

F Forward 

FCS Familial chylomicronemia syndrome 

FED Fish-eye disease 

FH Familial hypercholesterolemia 

FISH Fluorescent in situ hybridization 

FLD Familial LCAT deficiency 

G Guanine 

GLGC Global Lipids Genetics Consortium  

gnomAD Genome Aggregation Database 



 

xxiii 

 

GPIHBP1 
Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding 

protein 1 

GWAS Genome-wide association study 

HDL High-density lipoprotein 

HL Hepatic lipase 

HMG-CoA β-hydroxy β-methylglutaryl-coenzyme A 

IDL Intermediate-density lipoprotein 

Indel Insertion or deletion 

LCAT Lecithin-cholesterol acyltransferase  

LD Linkage disequilibrium 

LDL Low-density lipoprotein 

LDLR Low-density lipoprotein receptor  

LMF1 Lipase maturation factor 1 

LOD Logarithm of the odds 

LPL Lipoprotein lipase 

LRP1 Low-density lipoprotein-related protein 1 

MAF Minor allele frequency 

MCM Multifactorial chylomicronemia  

MHI Montréal Heart Institute  

MLPA Multiplex ligation-dependent probe amplification 

MODY Mature-onset diabetes of the young 

MTP Microsomal triglyceride transfer protein  

NGS Next-generation sequencing  

NPC1L1 Niemann-Pick C1 like 1 protein  

OR Odds ratio 

PC Principal component 

PCA Principal component analysis 

PCSK9 Proprotein convertase subtilisin/kexin type 9  

PLTP Phospholipid transfer protein 

PolyPhen2 Polymorphism Phenotyping version 2 

R Reverse 

RVAS Rare variant association study 



 

xxiv 

 

SD Standard deviation 

SIFT Sorting Intolerant from Tolerant 

SKAT-O Optimal unified sequence kernel association test  

SNP Single-nucleotide polymorphism 

SNV Single-nucleotide variant 

SPANR Splicing Based Analysis of Variants 

SR-BI Scavenger receptor class B type I 

SREBP Sterol regulatory element binding protein  

SVS SNP & Variation Suite  

T Thymine 

UCSF University of California, San Francisco 

UPenn University of Pennsylvania  

UTR Untranslated region 

VLDL Very-low-density lipoprotein 

 

  



1 

 

Chapter 1 – Introduction  

The text contained in this Chapter has been adapted from previously published sources 

for brevity and to ensure consistency throughout this Dissertation. 

Dron, J.S., and Hegele, R.A. (2016). Genetics of Lipid and Lipoprotein Disorders and 

Traits. Curr Genet Med Rep 4, 130-141. 

 

Dron, J.S., and Hegele, R.A. (2017). Genetics of Triglycerides and the Risk of 

Atherosclerosis. Curr Atheroscler Rep 19, 31. 

 

Dron, J.S., and Hegele, R.A. (2017). Molecular Genetics of Hypertriglyceridemia. In 

eLS, L.E. John Wiley & Sons, ed., pp. 1-8. 

 

Dron, J.S., and Hegele, R.A. (2018). Polygenic influences on dyslipidemias. Curr Opin 

Lipidol 29, 133-143. 

 

Dron, J.S., and Hegele, R.A. (2019). The evolution of genetic-based risk scores for lipids 

and cardiovascular disease. Curr Opin Lipidol 30, 71-81. 

 

Dron, J.S., Wang, J., McIntyre, A.D., Iacocca, M.A., Robinson, J.F., Ban, M.R., Cao, H., 

and Hegele, R.A. (2020). Six years' experience with LipidSeq: clinical and research 

learnings from a hybrid, targeted sequencing panel for dyslipidemias. BMC Med 

Genomics 13, 23. 

  



2 

 

1.1 Overview 

Cardiovascular disease (CVD) is the primary cause of death globally and is estimated to 

cause one-third of deaths in Canada (Statistics Canada, 2015; World Health Organization, 

2020). With an expected increase in prevalence due to the obesity epidemic, CVD will 

continue to strain our health-care system and economy—over $20 billion is lost annually 

through hospital costs and decreased productivity (Genest et al., 2009). As such, there is a 

pressing need to characterize CVD risk factors for applications towards clinical risk 

prediction, prognosis indicators, and effective medical interventions to reduce risk.  

Interdisciplinary collaborations have implicated a number of risk factors for CVD, 

including hypertension, obesity, diabetes, smoking, and a sedentary lifestyle (Lloyd-

Jones, 2010; Lloyd-Jones et al., 2010). Importantly, one of the most heritable, modifiable 

identified risk factors are levels of plasma lipids, namely cholesterol and triglyceride, and 

their lipoprotein carriers (Castelli et al., 1986; Kannel et al., 1964; Wilson et al., 1980). 

Epidemiologic and clinical studies have identified three main quantitative traits 

associated with CVD risk, including circulating levels of: (i) low-density lipoprotein 

(LDL) cholesterol; (ii) high-density lipoprotein (HDL) cholesterol; and (iii) triglyceride. 

Researchers and physicians have so far collected extensive and compelling evidence—

genetic, mechanistic, and clinical trial data—supporting a direct causal relationship 

between LDL cholesterol levels and CVD (Ference et al., 2017). Several classes of drugs, 

including statins (Taylor et al., 2013), ezetimibe (Ballantyne et al., 2007) and proprotein 

convertase subtilisin/kexin type 9 (PCSK9) inhibitors (Sabatine, 2019), both lower 

plasma LDL cholesterol levels and reduce risk for CVD events and death; this knowledge 

has been translated into clinical practice guidelines (Anderson et al., 2016; Grundy et al., 

2019).  

In contrast, the path to clinically translating our understanding of HDL cholesterol and 

triglyceride levels has been less straightforward. Decades’ worth of observations in 

populations showing an inverse relationship between HDL cholesterol levels and CVD 

prompted clinical trials to attempt to pharmacologically increase HDL cholesterol levels 

with the expectation that this would lower CVD risk (Gordon et al., 1977; Sharrett et al., 
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2001). Unfortunately, trials of HDL cholesterol-raising agents like niacin, fibrates and 

cholesteryl ester transfer protein (CETP) inhibitors all failed to reduce CVD, and in some 

cases even paradoxically increased all-cause mortality (Chait and Eckel, 2016; Schwartz 

et al., 2012). These counterintuitive findings were mirrored by more recent Mendelian 

randomization studies, which used genetic markers to impute lifelong levels of HDL 

cholesterol and found no evidence of a causal link between HDL cholesterol levels and 

CVD (Frikke-Schmidt et al., 2008; Haase et al., 2012; Johannsen et al., 2009; Voight et 

al., 2012). A more rigorous characterization of the genetics underlying HDL cholesterol 

levels and subsequent analyses (like Mendelian randomization studies) may have alerted 

researchers to some of the challenges that were faced in clinical trials.  

The disappointing clinical results due to failure to show benefit with intervention on HDL 

cholesterol levels over the past 10 years have led to a shift in focus to triglyceride as an 

alternative, and perhaps more reasonable target for CVD risk reduction. While 

pharmacologic studies of triglyceride-lowering agents have generally been more positive 

than studies of HDL cholesterol reduction, there are still inconsistencies. In 

epidemiological studies, adjustments for confounding variables seemed to neutralize 

associations between triglyceride levels and CVD in epidemiological studies (Dron and 

Hegele, 2017a; Emerging Risk Factors Consortium et al., 2009), but Mendelian 

randomization studies have shown a causal relationship between triglyceride levels and 

CVD events, purported as being independent of other markers or variables (Allara et al., 

2019; Holmes et al., 2015; Jorgensen et al., 2014; Tg et al., 2014). 

Without a complete understanding of the mechanisms underlying variation in HDL 

cholesterol and triglyceride levels, challenges in developing strategies to target these 

traits for CVD risk reduction will remain. Therefore, a comprehensive assessment of the 

main factors driving these traits is necessary to overcome these uncertainties. With an 

estimated heritability for plasma lipid and lipoprotein levels ranging from 40-60% (Tada 

et al., 2014), it stands to reason that a thorough assessment of the genetic architecture 

underlying these traits will contribute towards our foundational understanding of both 

HDL cholesterol and triglyceride levels. 
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Early breakthroughs in understanding the genetic factors influencing these traits were 

seen with studies of relatively rare individuals who had extreme levels of the respective 

lipid of interest. Historically, the factors driving these phenotypes—initially characterized 

as rare genetic variations with large phenotypic effects—were identified through 

association studies and linkage analyses of affected kindreds (Breslow, 2000; Hegele, 

2009). These early studies unveiled many key genes and proteins involved in the 

respective metabolic pathways; however, relevant causal rare variants are not observed in 

all phenotypically affected individuals (Candini et al., 2010; Cohen et al., 2004; Hegele, 

2009; Holleboom et al., 2011; Kiss et al., 2007; Sadananda et al., 2015; Singaraja et al., 

2013; Talmud et al., 2013; Tietjen et al., 2012; Wang et al., 2016). As a result, the 

research focus has expanded to consider genetic variations with smaller phenotypic 

effects, namely single-nucleotide polymorphisms (SNPs), which are more frequent in the 

population, but because of their small effect size, require epidemiological-scale, genome-

wide association studies (GWASs) in large populations to be detected (Frazer et al., 

2009; Hegele, 2009).  

While individual research efforts have evaluated specific types of genetic determinants 

for either HDL cholesterol or triglyceride levels, there has been minimal effort or 

experience to date in assessing multiple types of determinants simultaneously. This is due 

to a reductionist focus on only one type of variation in most experimental designs, 

typically related to technological limitations. Heretofore separate methods have been 

required to study different types of genetic variation. Furthermore, practical challenges 

arise though the need to aggregate specialized cohorts enriched with the extreme 

phenotype of interest in order to achieve sufficient statistical power. 

Substantial efforts are necessary to study and understand the genetic underpinnings of 

HDL cholesterol and triglyceride levels before these traits can be rationally targeted 

therapeutically for CVD risk prevention—probing the complete, holistic genetic 

foundation of each trait is likely required. Such holistic evaluation requires multiple 

components: (i) technology enabling assessment of multiple types of genetic 

determinants simultaneously; (ii) large cohorts of patients with extreme levels of either 

HDL cholesterol or triglyceride with sufficient statistical confidence; and (iii) a robust 
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bioinformatic process to allow assessment of phenotype-genotype relationships.  

Promising associations can later be followed up using laboratory experiments involving 

in vitro or in vivo model systems; however, genetics often generates the earliest clues and 

leads for mechanisms that can be evaluated by functional and mechanistic experiments.  

1.2 Human genetic variation 

The human genome is the complete set of nucleic acid sequences encoded as DNA and 

resides primarily within 23 chromosome pairs in the nucleus, with a small amount in the 

mitochondria. The total length of the human genome is more than 3 billion nucleotide 

base pairs, of which there are four that comprise DNA: adenine (A), cytosine (C), 

guanine (G), and thymine (T). Together, the human genome sequence contains all the 

biological information necessary to support us throughout our life cycle. The human 

genome map has allowed for accurate, quantitative positioning of every base pair. While 

humans share up to 99.9% of their genomic sequence (Feuk et al., 2006), genetic 

variation exists across all individuals, which manifests as nucleotide sequence differences 

at particular positions along the genome map. These differences between individuals are 

usually silent at the phenotypic level, but occasionally they may give rise to unique and 

distinctive phenotypic characteristics and differences, including but not limited to 

differences in physical appearances, metabolic and biochemical activities, and disease 

risk (Frazer et al., 2009; Genomes Project et al., 2010).  

Different types of interindividual variations exist within the genome and these can be 

defined by various characteristics, including physical-chemical properties, frequency of a 

variant within the population, and associations of variants with differences in phenotypic 

outcomes.  

1.2.1 Single-nucleotide variants 

Single-nucleotide variants (SNVs) are defined as changes that involve single nucleotide 

positions and represent the most common form of human genetic variation (Frazer et al., 

2009; Timpson et al., 2018). Substitutions that occur between the purine nucleotides (A 

and G), or the pyrimidine nucleotides (C and T), are called “transitions”; while 

substitutions from a purine to a pyrimidine or vice versa are called “transversions”. These 
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simple substitutions can be further characterized by their impact on sequence ontology 

(Figure 1.1A), especially when the SNV occurs within a coding gene sequence. 

For instance, SNVs with no impact on the gene’s encoded protein product are referred to 

as “synonymous” variants; because of redundancy in amino acid codons, it is possible 

that a change in a single nucleotide can still result in the same translated amino acid 

sequence. Conversely, SNVs that alter the gene’s protein product are referred to as “non-

synonymous” variants, and can be subclassified further as: (i) “missense” variants that 

lead to a codon change and result in a different translated amino acid sequence; or (ii) 

“nonsense” variants that lead to the inappropriate introduction of a stop codon, often 

creating an early truncation of the encoded protein product. Because of such 

consequences, nonsense variants are one type of “protein-truncating” variant. Another 

potential type of protein-truncating variant involve changes that affect the RNA splicing 

machinery, such as “splice-donor” or “splice-acceptor” variants that fall within sequences 

at mRNA splice-junctions at the beginning or end of an intron, respectively (Figure 

1.1B) (Cartegni et al., 2002). 

SNVs that occur outside of protein-coding regions are by definition non-coding and 

cannot appropriately be labeled using terms such as “synonymous” or “nonsynonymous”. 

Instead, they are defined according to the type of regions in which they are found, such as 

within introns, 5’ or 3’ untranslated regions (UTRs), promoters, enhancers, silencers, 

non-coding genes, or pseudogenes.  

“SNPs” are a specific subtype of the more general “SNVs”, the latter of which is an 

agnostic term with respect to the variant’s population frequency—it has no connotation as 

to whether the variant is common or rare in the population. Describing a variant as a 

“SNP” is conventional when considering variants that occur more frequently in the 

population: a “SNP” implies a relatively prevalent SNV. SNPs are the workhorses of 

genetic association studies, as discussed further in Section 1.3.4.2 
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Figure 1.1 Different types of SNVs defined by sequence ontology. 

SNVs can be characterized by their impact on sequence ontology. A) Single nucleotide 

changes that occur within protein-coding regions of genes (i.e. exons) can be 

“synonymous” or “silent” if the encoded amino acid does not change, or “non-

synonymous” if the encoded amino acid changes. Non-synonymous variants are normally 

classified as “missense”, unless the SNV changes the amino acid to a stop codon, in which 

case it is defined as “nonsense”. B) An SNV disrupting an mRNA splice junction is defined 

as either a “splice-donor” or “splice-acceptor” variant, depending on whether the SNV 

occurs in the splice donor or splice acceptor site, respectively. Bolded red nucleotides 

reflect the SNV in each example; “X” could represent any nucleotide substitution.
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1.2.2 Structural variants  

“Structural variants” refer to a type of genetic variant larger than SNVs, ranging in size 

from only a few impacted nucleotides, up to full chromosomal segments (Frazer et al., 

2009). Estimates have suggested that structural variants may account for 5-14% of the 

human genome (Conrad et al., 2010; Sudmant et al., 2015; Zarrei et al., 2015). Given the 

physical impact these variants can have on the genome—with the potential to encompass 

genes in whole or in part—many have been associated and causally linked with certain 

diseases. On the other hand, certain structural variants have been reported to have either 

no apparent phenotypic consequence or even phenotypically beneficial ones 

(Weischenfeldt et al., 2013). 

Structural variants can be further classified into subgroups, including: insertions, 

deletions, duplications, inversions, and translocations (Figure 1.2) (Weischenfeldt et al., 

2013). The molecular mechanisms leading to these events are typically due to errors in 

DNA recombination (unequal crossing over), replication, and/or repair (Hastings et al., 

2009; Weischenfeldt et al., 2013). 
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Figure 1.2 Different types of structural variants. 

Structural variant sizes can range from 50 nucleotides up to full chromosomal segments. 

The loss of genetic material is defined as a “deletion”, while the gain of novel genetic 

material is defined as an “insertion”. “Duplications” reflect the insertion of genetic material 

that has been duplicated from an existing genomic locus. An “inversion” indicates a 

genomic locus that has flipped its orientation (ex. from the forward to the reverse 

orientation). A “translocation” is used to describe an event in which a genomic segment 

has been moved to a different chromosome (“inter-”) or to the opposing allele of the same 

chromosome (“intra-”). Each horizontal bar reflects a chromosomal region, with each 

coloured block reflecting a genomic locus of interest, such as a gene. The dashed box 

indicates the area of interest for each structural variant. The normal state of the human 

genome is diploid, with a copy number of 2. This figure and legend have been adapted 

from (Iacocca et al., 2019).
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1.2.2.1 Insertions and deletions 

As the terms suggest, insertions and deletions refer to the gain and loss of nucleotides, 

respectively. These types of variations are jointly referred to as “indels” and can occur 

anywhere throughout the genome, ranging in size from 1-50 nucleotides (Sudmant et al., 

2015).  

When an indel variant occurs within a protein-coding gene, it can sometimes have a 

substantial impact on the final protein product (Figure 1.3). For instance, indels that 

disrupt the codon reading frame are referred to as “frameshift” variants and can alter the 

protein’s amino acid sequence, effectively altering the originally encoded protein; as with 

nonsense variants, some frameshift variants can result in early termination of translation 

and are thus considered as protein-truncating. Indels can also shift the reading frame such 

that the normal stop codon is lost, and translation continues, producing a qualitatively 

abnormal, elongated protein product. Conversely, an “inframe” variant is due to an 

insertion or deletion of entire codons (i.e. in multiples of 3 nucleotides), but while 

slightly changing the length of the translated variant protein, they do not disrupt the 

overall reading frame, keeping the stop codon intact and are thus not protein-truncating.  

1.2.2.2 Copy-number variants 

As diploid organisms, humans normally have two copies of their nuclear genome—both a 

maternal and paternal copy. Changes to this diploid state at a particular locus or region 

through either duplication or deletion events are defined as changes in copy number; 

duplications lead to gains in copy number, while deletions lead to losses in copy number. 

By convention, the results of these events when spanning >50 nucleotides in length are 

referred to as copy-number variants (CNVs) (Redon et al., 2006; Sudmant et al., 2015). 

CNVs are the most common type of structural variant within the human genome (Conrad 

et al., 2010; Zarrei et al., 2015).  
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Figure 1.3 Small-scale structural variants. 

The gain or loss of nucleotides are defined as “insertions” and “deletions”, and can lead to 

changes in an encoded protein product when these events occur within genes. Insertions or 

deletions of 3n nucleotides between adjacent codons do not disrupt the reading frame and 

are called “inframe”; the original amino acid sequence is largely retained. Meanwhile, 

insertions or deletions that disrupt the original amino acid sequence due to a change in the 

reading frame are defined as “frameshift”. Bolded red nucleotides reflect the newly inserted 

or deleted nucleotide(s) in each example. 
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Outcomes related to a copy-number change could be beneficial, detrimental, or neutral to 

the organism, depending on the impacted regions of the genome (Zarrei et al., 2015); this 

spectrum of phenotypic impact can range from adaptive features to embryonic lethality 

(Conrad et al., 2010; Hastings et al., 2009; Zarrei et al., 2015).  

1.2.2.3 Chromosomal alterations 

Genetic variation defined as “chromosomal alterations” are often large enough to be 

observed using cytogenetic techniques, such as fluorescent in situ hybridization (FISH); 

some of the earliest alterations could be simply observed cytogenetically with a light 

microscope (Feuk et al., 2006). Translocations and inversions are examples of intra- and 

interchromosomal rearrangements, respectively (Feuk et al., 2006). Even larger 

alterations include abnormal chromosomal counts, defined as aneuploidy, which could be 

considered as chromosomal-scale CNVs. 

1.2.3 Variant frequency 

Through international collaborative efforts, publicly available databases of genetic 

information have provided detailed information for the frequencies at which genomic 

variants—both SNVs and structural variants—occur within the population (Genomes 

Project et al., 2015; Karczewski et al., 2020; Lek et al., 2016). This variant attribute is 

defined as “minor allele frequency” (MAF). The terminology is a remnant from the 

nomenclature of classical genetics, in which “major” and “minor” allele refer to the more 

and less common allele at a particular variant locus, respectively. This does not 

necessarily correspond to the “reference” and “alternate” allele distinctions, which are 

specifically relevant to the human reference genome. The population through which a 

MAF is determined can be defined as the general global population, a particular ancestral 

group, or specialized cohorts (e.g. those with a particular disease). This information can 

reveal insights into a variant in the context of its phenotypic consequence (Figure 1.4), 

ancestral significance, and its relationship with natural selection. It is notable that the 

terminology and designations are relative: there are many examples of variant or 

polymorphic loci at which the minor (less common) allele in one particular geographical 

or ancestral group is the major (more common) allele in a different group. 
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Figure 1.4 Spectrum of genetic variation related to phenotypic effect and population 

frequency. 

A genetic variant’s population frequency is a function of the variant’s phenotypic effect 

and how it impacts an organism’s fitness, discussed in Section 1.2.3. Rare and ultra-rare 

variants with large phenotypic effects are often the cause of Mendelian disorders (discussed 

in Section 1.3.1), while variants with smaller effects on a phenotype are more common and 

can be identified through population-scale association studies, like GWAS. Meanwhile, 

rare and ultra-rare variants with smaller phenotypic effects will only be uncovered as 

association study cohorts increase in size, and techniques to study rare variants improve. 

Figure adapted from (Assimes and Roberts, 2016). Abbreviations: GWAS = genome-wide 

association study.
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1.2.3.1 Rare variants 

Rare variants are almost universally defined as having a MAF of ≤1% (Katsanis, 2016; 

MacArthur et al., 2014), although, the term “ultra-rare” can be used to classify variants 

with stricter frequency thresholds (Katsanis, 2016). 

De novo variants are considered to be the rarest type of genetic determinant, as they occur 

spontaneously in an individual and in theory would have a virtually non-existent 

population frequency (Ku et al., 2012). If a de novo variant occurs in the germline, when 

the variant is passed along to the individual’s offspring, the variant is then classified as 

“inherited” and would still have a virtually absent population frequency.  

In addition to the spontaneous occurrence of de novo variants, variants that have been 

acted upon by natural selection can become rare over generations. For instance, variants 

that decrease an organism’s biological fitness are considered “deleterious” and undergo 

negative (purifying) selection, thus becoming less frequent in the population since the 

variant is not able to be passed along to subsequent generations (Lohmueller, 2014; 

Quintana-Murci, 2016).  

As mentioned above, sometimes allele frequencies in different ancestral groups can differ 

due to founder effects and population bottlenecks (Quintana-Murci, 2016). This is an 

important consideration in designing research studies and deriving conclusions, 

especially when statistically testing for differences in variant frequencies between two 

distinct population samples (e.g. cases and controls) and then drawing inferences about 

the potential biological relevance if a statistical difference is detected. If the experiment is 

not properly controlled, statistical differences in allele frequencies could reflect 

artifactual differences in the samples related to ancestry rather than a biological impact of 

the variant locus. 

1.2.3.2 Common variants 

In contrast to rare variants, common variants have a MAF of >1% (MacArthur et al., 

2014). Given their extensive range of frequency, common variants are further classified 

as “uncommon”, with frequencies between 1-5%. 
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A genetic variant with only a modest phenotypic impact that does not influence an 

organism’s fitness is unlikely to be acted upon by natural selection, and can therefore be 

inherited by subsequent generations largely undisturbed if the host organism survives to 

reproductive age. As such, changes in frequency of these variants with mild-to-neutral 

phenotypic effects are driven by genetic drift, and perhaps further punctuated through 

founder or bottleneck populations (Quintana-Murci, 2016). 

When a genetic variant improves an organism’s fitness, it can undergo positive selection 

within the population and become even more frequent since there is an increased chance 

of the variant being inherited by subsequent generations (Quintana-Murci, 2016).  

1.3 Genetic basis of traits and disease 

The genetic basis of a phenotype, whether it is a trait or a disease, is typically described 

as following either a monogenic or polygenic inheritance pattern. 

1.3.1 Monogenic inheritance  

A phenotype driven exclusively by genetic variation in a single (i.e. “mono-”) gene is 

defined as “monogenic”. The term is used synonymously with “Mendelian”, referencing 

the inheritance patterns described by Gregor Mendel (Abbott and Fairbanks, 2016). His 

observations in pea plant height and petal colour between parent and offspring eventually 

led to Mendel’s Laws of Inheritance, the foundation from which we began to understand 

monogenic phenotypes.  

“The Law of Segregation” states that during gamete formation in a parent, a gamete 

randomly receives a single gene allele, and through “The Law of Independent 

Assortment”, these alleles segregate independently from other gene alleles (Castle, 1903). 

When the gametes from two parents meet during conception, “The Law of Dominance” 

states that between two different alleles for the same gene, the stronger (i.e. “dominant”) 

allele will dominate the expression of the weaker (i.e. “recessive”) allele (Castle, 1903).  

A number of inheritance patterns exist for monogenic phenotypes and are dependent on: 

(i) the dominant and/or recessive nature of the alleles present; (ii) allelic zygosity; and 
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(iii) the area of genome under study, including autosomes (i.e. the non-sex 

chromosomes), sex chromosomes, or the mitochondrial genome.   

Monogenic phenotypes follow recessive, dominant, and co-dominant inheritance patterns 

(Figure 1.5). Phenotypes that only occur in the presence of two mutated alleles due to 

“bi-allelic” variants—either simple homozygous variants or distinct heterozygous 

variants on opposing alleles of the same gene—are considered to be recessive (Winsor, 

1988). In contrast, autosomal dominant conditions occur in the presence of a single copy 

of a mutated gene allele, brought about by a heterozygous variant (Winsor, 1988). 

“Haploinsufficiency” is a term used in the context of autosomal dominant phenotypes to 

describe a gene that cannot produce a normal phenotype without two normal alleles 

(Deutschbauer et al., 2005), such that a heterozygous loss-of-function variant leads to 

half-normal net activity of the products of the gene locus, since the heterozygous normal 

or “wild-type” allele still functions normally. This is distinct from “dominant negative”, 

which describes when a mutated gene allele produces an abnormal protein that interferes 

with the normal functioning of the protein produced from the non-mutated allele, thus 

causing a dominant phenotype, but with somewhat less than half of the total possible 

biological activity seen in an individual with two wild-type copies of the gene.    

Autosomal co-dominant phenotypes are a nuanced form of a dominant phenotype. Co-

dominance is distinguished by the fact that a mutated gene allele cannot fully overcome 

the expression of the normal gene allele, but rather, there is co-expression of each the 

normal and mutated allele, resulting in an intermediate phenotype between the 

homozygous states for having two normal alleles or two mutated alleles. 

Inheritance patterns also exist for gene variants on the X chromosome. In females, X-

linked phenotypes follow the same recessive and dominant patterns as autosomal 

phenotypes because there are two copies of the X chromosome. However in males, due to 

hemizygosity for the X chromosome, a single deleterious variant will have no 

concomitant wild-type allele, regardless as to whether the phenotype is considered to be 

recessive or dominant in females who are diploid for the X chromosome. Similarly, in 

mutated genes that are found on the Y chromosome, the terms “dominant” and 
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“recessive” do not apply, since a normal diploid male will only have one Y chromosome 

(Winsor, 1988). If a male inherits a mutated gene allele on the X or Y chromosome, the 

mutated allele will be expressed by default.  

Mutated genes in the mitochondrial genome follow a different inheritance pattern than 

those seen for autosomes and sex chromosomes. Since the mitochondrial genome 

exclusively follows maternal inheritance, if the mother carries a mutated mitochondrial 

gene and presents with a mitochondrial-related disorder, the mutation and resultant 

phenotype will always be present in the offspring as well (Hutchison et al., 1974).  
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Figure 1.5 Schematic representation of Mendelian inheritance patterns. 

The autosomal, sex chromosome, and mitochondrial inheritance patterns are provided for 

a single family pedigree comprised of two generations: (i) an unrelated father and mother; 

and (ii) four offspring: two daughters and two sons. Not shown: a father with a 

mitochondrial variant will not pass the variant to any offspring.
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1.3.1.1 Penetrance and expressivity  

Two important phenomena that are tied to monogenic inheritance include the 

“penetrance” and “expressivity” of variants (Figure 1.6) (Katsanis, 2016). “Penetrance” 

refers to the probability of carriers of the same variant expressing the same phenotype 

(Miko, 2008). A variant with perfect or complete penetrance would be characterized by 

presentation of the phenotype in 100% of carriers, while non-carriers would not express 

the phenotype. In contrast, incomplete penetrance refers to the situation in which carriers 

of the same variant do not all share the same phenotypic outcome; i.e. some proportion of 

carriers appear to be phenotypically normal or unaffected (Miko, 2008). Conversely, 

“expressivity” is a different property which refers to the situation when carriers of the 

same variant show differing or variable degrees of severity of a particular phenotype 

(Miko, 2008).  

In the context of monogenic phenotypes, a highly penetrant variant with stable 

expressivity is typically disease-causing or phenotype-driving. However, a variant with 

both incomplete penetrance and variable expressivity would be difficult to classify: in 

some individuals, it might be disease-causing, while in others it is simply a susceptibility 

factor. By definition, a variant with incomplete penetrance and/or variable expressivity 

would be considered a “polygenic” determinant, as it alone is not enough to drive a 

monogenic phenotype. 

  



20 

 

 

Figure 1.6 Variant penetrance and expressivity.  

Genetic variation can have differing degrees of both penetrance and expressivity. Carriers 

of variants with complete penetrance will always present the associated phenotype, while 

carriers of variants with incomplete penetrance may or may not present with the associated 

phenotype. Carriers of variants with variable expressivity will present with varying degrees 

of severity for the associated phenotype. Carriers of variants with both incomplete 

penetrance and variable expressivity may or may not present with some varying degree of 

severity for the associated phenotype. All silhouettes shown here represent carriers for a 

particular variant. A coloured silhouette represents an individual expressing a particular 

phenotype; the colour intensity reflects the severity of the phenotype.



21 

 

1.3.2 Polygenic inheritance 

In contrast to monogenic phenotypes in which a single mutated gene is the driving factor, 

polygenic phenotypes are the result from many (i.e. “poly-”) genetic variants found 

across the genome, including both common and rare variants, residing within both coding 

and non-coding regions (Dron and Hegele, 2018). These variants range in size from 

SNVs to structural variants and can have varying phenotypic impacts depending on 

whether the variant directly or indirectly impacts biologically relevant pathways. Variants 

within genes that encode proteins involved in the main mechanistic pathway tend to have 

larger impacts compared to variants with peripheral involvement (Boyle et al., 2017). 

With a spectrum of observable variation, quantitative or continuous traits are polygenic, 

as they are driven by many genetic factors that differ in type, impact, and genomic 

location (Boyle et al., 2017; Dron and Hegele, 2018). Even extreme manifestations of 

quantitative traits can be polygenic in nature due to an excess of polygenic determinants 

with a cumulatively large phenotypic impact; however, in some instances of these 

extreme phenotypes, particularly those with syndromic features affecting multiple 

systems and organs, a monogenic basis is more likely (Frazer et al., 2009; MacArthur et 

al., 2014). 

Because of the varying phenotypic impacts of polygenic determinants—the majority of 

which tend to be modest—it can be challenging in any particular individual to assign 

definitive causality to a set of genetic factors for an extreme quantitative trait (Marian, 

2014). Rather, the accumulation of polygenic factors is described as increasing an 

individual’s susceptibility for the phenotype, but is not absolutely causative, deterministic 

or guaranteed to be associated with its expression. The degree to which these factors 

increase susceptibility or “risk” may also differ between individuals, as genetic variants 

have been shown to have varying degrees of impact (i.e. expressivity), even between 

family members (Wright et al., 2019).   

Furthermore, polygenic phenotypes are often described as being “complex” to 

acknowledge the impact of not only genetic factors, but non-genetic factors as well—
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such as environmental and lifestyle—on the expression of the trait. As with the small-

effect genetic determinants, any of these individual components may not in and of itself 

be sufficient to cause phenotypic expression, but in aggregate, they act additively or 

synergistically. While these non-genetic factors are not a focus in the contents of this 

Dissertation, they should not be forgotten as important phenotypic contributors towards 

the presentation of quantitative traits.  

1.3.2.1 Heritability 

The term “heritability” refers to the proportion of interindividual variance observed for a 

particular trait that is attributed towards genetic factors (Manolio et al., 2009). For 

quantitative traits and diseases, the range of observable phenotypic variation suggests a 

spectrum of genetic factors contributing towards phenotypic presentation and 

susceptibility; not only does this include protein-coding variants with incomplete 

penetrance and variable expressivity, but intergenic variants as well.  

A common challenge faced when studying polygenic phenotypes is “missing 

heritability”, which refers to the phenotypic expression and/or measurable variance of a 

particular polygenic trait that cannot fully be explained by known, associated genetic 

determinants (Manolio et al., 2009). In Section 1.3.4.2, it is described how genotype-

phenotype association methods have been utilized in an attempt to uncover additional 

contributory genetic factors that could help account for some instances of missing 

heritability for different phenotypes. 

1.3.3 Methods to study genetic variation 

1.3.3.1 Sanger sequencing 

The ground-breaking development of Sanger sequencing allowed researchers to 

effectively “read” an entire DNA sequence, which assisted in the precise identification of 

genetic variation in individuals. From its initial description in 1977, this sequencing 

method relied on DNA fragments of different lengths, generated using special chain-

terminating nucleotides—one each for A, C, T, and G (Sanger et al., 1977). In the 

traditional Sanger method, four distinct PCR reactions were set up for each chain-
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terminating nucleotide, and the randomly-sized DNA fragments from each reaction could 

be run on polyacrylamide gels by electrophoresis (Heather and Chain, 2016). By knowing 

what chain-terminating nucleotide was used for each of the samples run on the four gel 

lanes, the exact 5’ to 3’ DNA sequence could be determined by “reading” the gel from 

the smallest to largest DNA fragment. In the modernized version of Sanger sequencing, 

chain-terminating nucleotides are fluorescently labelled—one label each for A, C, T, and 

G—so that when the different sized DNA fragments undergo size separation by capillary 

gel electrophoresis, the 5’ to 3’ DNA sequence can also be determined based on the 

measured fluorescence given off by the smallest to the largest DNA fragment (Heather 

and Chain, 2016). 

Although Sanger sequencing was a pivotal method that contributed towards the 

successful elucidation of the first human genome (Lander et al., 2001), it is laborious and 

cost-restrictive for studies that: (i) are studying larger cohorts; (ii) are interested in larger 

or multiple genomic areas; or (iii) are focused on gene or variant discovery.   

1.3.3.2 Next-generation sequencing  

Next-generation sequencing (NGS) techniques are an effective alternative to Sanger 

sequencing. NGS is a massively parallel, high-throughput sequencing approach that 

generates millions of sequencing reads for multiple genomic areas of interest (Shendure 

et al., 2017). With the high read-depth coverage generated across each sequenced 

nucleotide—that is, the number of times a nucleotide gets sequenced—allelic zygosity 

and dosage can be determined. Further, NGS can be used to sequence DNA from 

multiple samples simultaneously, which is revolutionary compared to what was feasible 

during the Sanger era. As a cost-effective method for large-scale sequencing efforts, NGS 

has been an incredibly useful tool in identifying phenotypically impactful variants and 

biologically relevant genes for both monogenic and polygenic phenotypes (Shendure et 

al., 2017).  

A common example of NGS is whole-exome sequencing, which has been used to map 

disease genes and variants without the constraint for familial relationships. As the name 

suggests, whole-exome sequencing is a subtype of NGS that targets the exons of all 
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protein-coding regions of the genome (i.e. the “exome”). This technique can be utilized 

for studies ranging from individual assessments, small-scale family studies, and large-

scale population studies (Chong et al., 2015; Cordell and Clayton, 2005; MacArthur et 

al., 2014; Timpson et al., 2018). With phenotype-altering SNVs and CNVs identified in 

almost 3000 genes and 85% of disease-causing variants being uncovered in protein-

coding regions, it is unsurprising that whole-exome sequencing continues to be a 

successfully applied method for variant and candidate disease-gene discovery (Chong et 

al., 2015; Rabbani et al., 2014). 

Another NGS subtype that generates data for the entire genome is aptly referred to as 

“whole-genome sequencing”. This method can be utilized for a range of studies, whether 

the focus is at an individual level or population level, or if the genetic variation of interest 

are protein-coding or non-coding variants, SNVs or CNVs. Although the cost to sequence 

a genome has dropped significantly—from over $100,000,000 for the first human 

genome sequence using Sanger methods to roughly $1000 almost 20 years later 

(Goodwin et al., 2016; National Human Genome Research Institute, 2020; Schwarze et 

al., 2020)—limitations remain. The computational resources required to bioinformatically 

process whole genomes are substantial and can pose as a significant barrier for both 

research and clinical laboratories that do not have the infrastructure to house and process 

the associated data files. Further, genome sequencing data is often generated with a low 

depth of coverage per nucleotide (2x to 4x read depth) to minimize costs and 

computational resources; however, this can cause an increase in incorrect genotype calls 

(Li et al., 2011). A generally accepted standard of 30x read depth has >99% genotype 

accuracy (Bentley et al., 2008), and many clinical laboratories aim for greater coverage to 

increase accuracy and confidence in identified variants (Rehm et al., 2013). Until these 

limitations are addressed, whole-exome sequencing remains a more practical NGS 

subtype compared to whole-genome sequencing. 

1.3.3.2.1 Variant interpretation  

With improvements to sequencing methods, identifying variants of potential phenotypic 

relevance has become quite straightforward. Following the generation of NGS data, 

variants of interest can be identified by: (i) prioritizing those with a MAF coinciding with 
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the phenotype’s population prevalence; (ii) considering variants with disruptive sequence 

ontology (i.e. nonsynonymous, frameshift); (iii) assessing predictions of how damaging a 

variant will be using tools that take into account nucleotide conservation between species, 

amino acid property changes, and protein-domain functionality; and (iv) utilizing 

previously published data relating to how a variant is known to alter RNA expression, 

protein expression, or protein function (MacArthur et al., 2014). This method typically 

results in a list of rare and uncommon variants. From here, when a potential variant of 

interest is identified, it cannot be classified or validated as “disease-causing” until: (i) 

functional studies have been conducted to mechanistically confirm the variant’s impact 

through observational changes to RNA or protein expression, protein function, or protein 

interactions; (ii) there is a confirmed relationship between the mutated gene and the 

phenotype of interest; and (iii) there are statistical analyses providing evidence that the 

observed relationship between the variant and phenotype is not due simply to chance 

(MacArthur et al., 2014).  

In 2015, the American College of Medical Genetics and Genomics (ACMG) published a 

framework to standardize the classification of identified variants of interest (Richards et 

al., 2015). While much of the data analysis described in this Dissertation was finalized 

before the wide-spread adoption of the ACMG framework1, it is worth mentioning the 

importance of these guidelines moving forward. The guidelines provide a number of 

recommendations based on categories for interpretation, such as population MAF, 

predictive in silico algorithms, functional data, segregation data, de novo status, and 

allelic data; some of these categories strongly overlap with the criteria outlined by 

MacArthur et al., 2014. From the ACMG guidelines, the final classification of a variant 

could be either: (i) pathogenic; (ii) likely pathogenic; (iii) uncertain significance; (iv) 

likely benign; or (v) benign (Richards et al., 2015). Importantly, a slightly altered 

 

1 In Chapters 2-7, when a “causal” classification cannot be assigned due to insufficient 

supporting functional data, variants with a high degree of evidence towards being 

phenotypically relevant and damaging are considered as variants that “contribute” 

towards disease susceptibility rather than “cause” disease. This type of consideration is 

particularly common when studying complex, polygenic phenotypes. 
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framework for classifying CNVs has also been published by the ACMG (Kearney et al., 

2011). 

1.3.3.3 Microarrays 

Unlike Sanger and NGS methods that assess stretches of sequential nucleotides, 

microarrays genotype specific loci interspersed at relatively equal intervals across the 

genome (Bumgarner, 2013). These loci are typically common SNPs that fall within 

coding or non-coding regions; since roughly 1% of the genome encodes for proteins, the 

majority of microarray targets are intergenic (Bumgarner, 2013). 

The general methodological overview of a microarray is relatively straightforward. First, 

DNA fragments containing the SNP loci of interest are captured and hybridized to a 

microarray chip. Subsequently, two fluorescently labelled probes are applied to the 

chip—one for each SNP allele—to determine the presence of different alleles at each 

locus, i.e. the SNP’s genotype (Bumgarner, 2013).  

As a relatively affordable genotyping method and the inclusion of unbiasedly selected 

SNPs across the genome, microarrays are a popular method in genetic association studies. 

While this is discussed further in the following Section 1.3.4.2.1, it is important to 

emphasize that the SNP markers captured by microarrays are virtually never directly 

causative for any trait or disease. Rather, they act as an associated “tag” or “proxy” for 

the variant mechanistically linked to the phenotype under study.  

1.3.4 Approaches to study the genetic basis of diseases  

1.3.4.1 Linkage analysis in families or samples of related 
individuals 

Large kindreds in which many members express the same disease phenotype have served 

as some of the original study cohorts to uncover disease-causing variants and the “disease 

gene” behind monogenic disorders. This is largely because a Mendelian disease’s 

inheritance pattern can be established from a well characterized pedigree, and the 

presence of a sufficient number of affected and unaffected relatives allows for a 

statistically well-powered, case-control comparison. From this natural study design, 
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“linkage analyses” could be performed in an attempt to identify the genomic region 

containing the candidate disease-gene and variant (Teare and Barrett, 2005).  

In a linkage analysis study, DNA samples from both affected and unaffected family 

members are obtained and DNA markers—typically polymorphic sites at SNP loci that 

can be detected either by restriction enzyme digestion, allele specific oligonucleotide 

hybridization or direct fragment sizing using gel electrophoresis—are assessed along 

each chromosome to establish “haplotypes” for an individual. A “haplotype” is the 

genetic pattern or signature of a chromosomal region or locus (International HapMap, 

2005; Teare and Barrett, 2005). Due to recombination during gamete formation, 

haplotype patterns become increasingly diverse with each subsequent generation, as new 

genetic material is introduced from the biological parent external to the primary pedigree 

and line of descent. When haplotype markers on the same chromosome are inherited 

together more frequently than what would be expected by chance, the markers are said to 

be in “linkage disequilibrium” (LD), which refers to significant allelic association or tight 

correlation (Cordell and Clayton, 2005; International HapMap, 2005; Teare and Barrett, 

2005).  

Linkage analysis tests whether the presumed locus or variant causing a phenotype in a 

family is always inherited together with certain DNA markers within a region of LD. If 

there is no divergence between the phenotype and the DNA markers, the phenotype is 

considered linked to the locus. Importantly, the markers themselves are almost never the 

direct pathogenic cause of the disease. The metric often used to report linkage is a 

logarithm of the odds (LOD) score, which evaluates the probability that a phenotype and 

set of markers in LD are always inherited together compared to the state of complete 

linkage equilibrium (e.g. the DNA markers and causative variant are inherited completely 

independently of each other). Linkage analysis requires several variables or parameters to 

compute and interpret: these include the recombination fraction for the genomic area of 

interest, the putative inheritance pattern, the frequency of DNA marker alleles, and the 

structure of the chromosomal haplotype (Teare and Barrett, 2005). Traditionally, a LOD 

score of ≥3 (i.e. odds favoring non-random association or linkage between a DNA marker 

and phenotype of ≥1000:1) is conventionally accepted as providing strong evidence to 
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support co-segregation of a particular haplotype of interest and the disease under study 

(Teare and Barrett, 2005). LOD scores this high are obtained only if there is a large 

number of family members and there is not a single instance of mis-inheritance deviating 

from affected family members each carrying the putative linked DNA marker, while all 

unaffected family members lack the marker.  

Typically with positive linkage, the candidate disease gene and causative variant are 

contained within the haplotype block. By assessing haplotype patterns across generations 

and between affected and unaffected relatives, a haplotype occurring exclusively in those 

with the phenotype is said to co-segregate with disease status, suggesting that the 

causative, mutated region of interest is contained within the chromosomal segment 

defined by the haplotype (Palmer and Cardon, 2005; Teare and Santibanez Koref, 2014). 

Once a region of interest has been established, it can be explored further using methods 

like Sanger sequencing to identify a phenotypically-disruptive variant within a 

biologically relevant gene (Teare and Santibanez Koref, 2014). It is also important to 

note that in these kindred-based studies, it is ideal that multiple, independent kindreds 

with the same disease phenotype can be studied and the results aggregated to build a joint 

LOD score, in an attempt to account for possible bias due to unmeasured genetic or 

environmental factors specific to a particular family (Hopper et al., 2005). 

1.3.4.2 Associating genotype with phenotype 

Common SNPs are incredibly informative markers of phenotypic association, serving as 

genetic proxies to causal variants that fall within the same LD block. Approximately 

500,000 SNPs are needed to sufficiently tag all LD blocks in individuals of non-African 

ancestry (International HapMap, 2005; Visscher et al., 2012). With a plethora of common 

tag SNPs, studies have been effective in assessing whether carriers of various SNP 

genotypes differ statistically for a particular phenotype. 

By definition, each SNP locus has two alleles and three possible genotypes (ex. AA, AB, 

or BB, with “A” signifying the reference allele, and “B” signifying the alternative allele). 

In consideration of quantitative phenotypes, linear regression is used to model the 

relationship between the dependent variable (i.e. phenotype of interest) and independent 
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variable (i.e. genotype). Since a SNP genotype may have 0, 1, or 2 alternative alleles, a 

linear regression model assesses how allelic dosage for the alternative allele impacts the 

phenotype of interest; importantly, an additive effect for each additional allele is assumed 

(Figure 1.7A). For statistically significant relationships in which the presence of an 

alternative allele modifies the phenotype, the beta coefficient of the regression model is 

designated as the “weight” or “effect” of the alternative allele. An important 

consideration when interpreting results from such regression models is that both variant 

alleles—the reference and alternative—have the same measured magnitude of effect but 

in different directions (Cordell and Clayton, 2005). Meanwhile, for dichotomous 

phenotypes, chi-squared analysis, Fisher’s exact test, or logistic regression is used to 

determine if there is a significant difference in the expected and observed frequencies of 

the phenotype under study for each SNP genotype (Figure 1.7B) (Cordell and Clayton, 

2005). When a significant association is observed, typically the calculated odds ratio 

(OR) is used as the allelic weight. 

For a SNP locus that is significantly associated with a quantitative trait, one allele 

associates with higher levels of the trait of interest, while the other allele associates with 

lower levels. Similarly, for a SNP locus significantly associated with a dichotomous 

phenotype, one allele associates with the presentation of the phenotype while the other 

allele associates with the absence of the phenotype. Earlier terminology such as “risk 

allele” or “protective allele” that was used to describe significantly associated alleles has 

given way to the more impartial term, “effect allele”; it is important that studies clearly 

indicate what allele is being considered as the “effect” allele and to what phenotypic 

outcome it associates with to avoid ambiguity. Importantly, effect alleles and their 

associated outcomes are probabilistic and not deterministic, since phenotypically normal 

individuals can also carry disease-associated effect alleles.  
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Figure 1.7 Regression models to determine genotype-phenotype associations. 

A) Linear regression models can be used to determine if there is an association between 

variant genotypes and a quantitative, continuous phenotype. Here, examples are provided 

for a strong positive correlation in which “B” is associated with increasing the trait, a strong 

negative correlation in which “B” is associated with decreasing the trait, and no correlation 

between either alleles and the trait. B) Logistic regression models can be used to determine 

if there is an association between variant genotypes and a dichotomous phenotype with two 

outcomes. The outcome (i.e. presentation of the phenotype) could be associated with either 

the A or B allele, or there could be no association between either allele and the outcome. 

Abbreviations: SNP = single-nucleotide polymorphism. 
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1.3.4.2.1 Genome-wide association studies 

Microarrays have proven to be a very accessible method to generate genotype 

information for millions of SNPs across the genome. The statistical analyses described in 

the previous Section can be performed for each SNP captured by a microarray in large 

population studies, which serves as the foundation for large-scale genetic association 

studies such as GWASs.  

GWASs allow for the simultaneous assessment of association between millions of SNPs 

and a particular phenotype (Tam et al., 2019). By performing GWASs in large 

populations that range in size from tens to hundreds of thousands of individuals, common 

genetic variants associated with small-to-modest effects towards a particular phenotype 

can be identified (Visscher et al., 2017). With simultaneous statistical testing for roughly 

1 million independent SNP genotypes, a Bonferroni-corrected alpha threshold of 5 x 10-8 

is the standard for considering whether the observed association between a SNP and 

phenotype meets “genome-wide significance” (Fadista et al., 2016). An important 

consideration is that for any significantly associated SNP, it is unlikely to be a directly 

causal variant for the phenotype of interest; rather, the SNP is likely tagging the truly 

causative variant that falls elsewhere in its LD block and was not directly genotyped by 

the microarray (Visscher et al., 2017).   

Early GWASs successfully identified common variants with more moderately-sized 

phenotypic effects, and as GWAS cohorts became magnitudes larger, common variants 

with even smaller effects across additional loci were identified (Visscher et al., 2017). 

For each GWAS that is performed, related “summary statistics” are generated, detailing 

the genomic coordinates, reference and alternative alleles, and the estimated effect 

associated with the alternate alleles for the phenotype of interest.  

1.3.4.2.2 Rare variant association studies 

Genetic association studies are often thought of in the context of common SNPs and their 

incremental phenotypic contributions due to the successes and discoveries of GWASs. 

However, rare variants with smaller phenotypic impacts that are not captured by GWASs 
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can also contribute towards the heritability of traits and disease (Zuk et al., 2014). This 

subset of rare, small-effect variants can be uncovered through “rare variant association 

studies” (RVASs) that also rely on large cohorts and microarray technologies, similarly 

to GWAS (Zuk et al., 2014).   

Improvements to sequencing and genotyping technologies have provided researchers the 

opportunity to utilize more cost-effective and accessible methods to perform RVAS on 

immense populations, addressing previous challenges related to uncovering rare variant 

associations due to insufficiently sized cohorts and statistical power (Auer and Lettre, 

2015; Lee et al., 2014). As well, modified study designs have provided additional 

opportunities for successful RVASs.  

One RVAS design is dependent on the use of an “exome-based” microarray that 

specifically targets lower frequency variants within protein-coding regions, rather than 

the common SNPs targeted in a traditional microarray. This alternative microarray design 

has enabled a distinct type of RVAS to be conducted, namely an “exome-wide 

association study”, to assess for associations between low frequency, protein-coding 

variants and phenotypic traits and diseases of interest. Because of this design, there are 

fewer variant loci to correct for after multiple testing; Bonferroni corrections to account 

for exome-wide significance lead to an alpha threshold of 5 x 10-7 (Fadista et al., 2016). 

This, coupled with the ability to sequence larger cohorts due to the affordability of an 

exome-based microarray (compared to whole-exome sequencing), has provided 

opportunities for rare protein-coding variants with smaller phenotypic effects to be 

identified (Lee et al., 2014). 

Another modified study design for an effective RVAS takes a “gene-focused” approach 

rather than the typical “variant-focused” approach. In a gene-focused or “gene-based” 

RVAS, rare variants are grouped by the gene they occur in (or some other genomic unit 

of consideration) and are assessed with either a burden or variance-component test (Auer 

and Lettre, 2015). With the underlying assumption that all rare variants have an impact 

towards the same phenotypic outcome, a burden test is used to determine whether carriers 

versus non-carriers for genetic variants are phenotypically distinct—that is, do they 
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significantly differ for a measurable trait mean or disease prevalence for continuous or 

dichotomous phenotypes, respectively (Auer and Lettre, 2015; Lee et al., 2014). 

Meanwhile, for variance-component tests, this method works under the assumption that 

variants in the same gene may have opposing effects for the same phenotype—that is, 

some variants could lead to an increase or decrease in a measurable trait, or could 

increase or decrease disease risk (Auer and Lettre, 2015; Lee et al., 2014). In a variance-

component test, the measurable variance of a trait is considered between carriers and non-

carriers for genetic variants rather than the mean: a larger degree of variance in carriers 

would suggest that the rare variants within the gene under study have measurable effects 

on the phenotype of interest, but in opposing directions. For a gene-based RVAS using 

either test method, when correcting for multiple tests under the assumption of ~20,000 

genes in the human genome, the resultant alpha threshold is 2.5 x 10-6 (Auer and Lettre, 

2015). 

1.3.4.3 Polygenic scores 

While GWASs were useful in identifying common SNPs associated with a particular 

phenotype, these variants alone had limited predictive power and were not overly 

informative when trying to explain heritability. In 2009, the International Schizophrenia 

Consortium demonstrated that schizophrenia had a sizable polygenic architecture that 

involved thousands of common SNPs with small effects, and together, these SNPs could 

explain a larger degree of phenotypic variance compared to individual common variants 

(International Schizophrenia et al., 2009). Similarly in 2010, Yang et al. reported that the 

simultaneous assessment of GWAS-identified SNPs could explain a greater degree of 

heritability for height, another polygenic trait, compared to individual common variants 

(Yang et al., 2010). This method to assess the accumulation of common SNPs 

contributing towards a particular phenotype came to be defined as a “polygenic score” or 

“polygenic risk score”—the latter term being preferentially used in the context of an 

unfavourable disease phenotype. Specifically, polygenic scoring is used to quantify an 

individual's total burden of phenotype-associated effect alleles across SNP loci of interest 

(Choi et al., 2020).  
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1.3.4.3.1 Polygenic score development 

When developing a polygenic score, the first step necessitates the selection of SNPs that 

will comprise the score. Early polygenic scores were constructed using a P-value 

thresholding approach, which involved the selection of a limited number of highly 

significant SNP loci, identified through GWAS for a particular phenotype. This approach 

was further refined, as considerations started being made to account for LD. Recall that a 

GWAS-identified SNP is not likely to be causal, but rather tags the causative variant that 

falls elsewhere in its LD block. If multiple SNPs from the same LD block are 

incorporated into a polygenic score, the calculation is effectively counting the same 

association signal multiple times, which over-inflates the score’s performance (Choi et 

al., 2020; Prive et al., 2019). The removal of SNPs based on LD is referred to as 

“clumping” or “pruning”.  

More recent SNP-selection methods have expanded beyond the P-value threshold 

approach and now consider larger numbers of SNPs, even those that are not statistically 

associated with the phenotype of interest. It came to be appreciated that SNPs passing 

genome-wide significance was somewhat arbitrary and study dependent; with sufficiently 

large study cohorts many previously “non-significant” loci would become nominally 

significant even with minimal measurable effect sizes (Dron and Hegele, 2019). This 

criteria liberalization and the inclusion of non-significant SNP loci allowed for orders of 

magnitudes of more SNPs to be considered in score development and has become 

popular for studies in which polygenic risk scores are being used for disease risk 

prediction (Choi et al., 2020).   

Once the set of SNPs has been selected, the polygenic risk score calculation can be 

finalized. At each SNP locus, there could be 0, 1, or 2 effect alleles, depending on 

zygosity. Counting the total number of effect alleles (ω) for n SNP loci yields a 

maximum score of 2n, indicating an individual who has inherited two effect alleles at 

every single locus included in the score. This provides the base equation for an 

unweighted polygenic risk score, which is the basic summation of effect alleles inherited 

by an individual: 
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𝑃𝑜𝑙𝑦𝑔𝑒𝑛𝑖𝑐 𝑟𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 =  ∑ (𝜔𝑖)
𝑛

𝑖=1
 

A weighted polygenic score expands upon this base equation by integrating each effect 

alleles’ calculated weight (β) towards the phenotype of interest: 

𝑃𝑜𝑙𝑦𝑔𝑒𝑛𝑖𝑐 𝑟𝑖𝑠𝑘 𝑠𝑐𝑜𝑟𝑒 =  ∑ (𝜔𝑖𝛽𝑖)
𝑛

𝑖=1
 

A SNP’s weight in a polygenic risk score is often the measured effect allele derived from 

a GWAS for the phenotype of interest. While GWAS effect estimates are widely used for 

polygenic risk score weights, novel statistical methods have been developed in an attempt 

to mitigate some of the limitations related to these estimates, including: (i) inability to 

adjust for LD patterns; and (ii) over-estimation of the effect for casual or tagged causal 

variants (i.e. Winner’s Curse) (Choi et al., 2020). Different “shrinkage” methods to 

reduce GWAS effect estimates have been published, each with different underlying 

assumptions and statistical foundations; however, the polygenic risk scores described in 

this Dissertation use GWAS effect estimates that have not been adjusted. 

When a novel polygenic score has been developed, it is crucial that: (i) the weights for 

each SNP were not derived from the same population in which the polygenic score is 

being calculated; and (ii) the score is tested and validated in two independent cohorts. 

These considerations are necessary to prevent overfitting of the risk score. “Overfitting” 

occurs when the polygenic risk score has been optimized for the cohort it was derived 

from; that is, if a weighted polygenic score is calculated in the same cohort from which 

the SNP effects were derived, then the score would perform extremely well and show 

strong associations between the score and phenotype of interest. However, once the score 

is calculated in another cohort, it would have a much poorer performance, leading to 

skewed results and incorrect conclusions (Choi et al., 2020). Having separate populations 

for weight derivation, score testing, and subsequent score validation, ensures the validity 

of the score and increases the confidence in any derived conclusions.  
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1.3.4.3.2 Applications of a polygenic score 

Depending on the cohort under study and relevant research questions, polygenic risk 

scores can be used for different types of analyses. For instance, in a case-control study, 

polygenic risk scores can be calculated to determine differences in the accumulation of 

risk-associated alleles between individuals with and without the phenotype of interest. A 

straightforward application of this approach compares the mean calculated risk score 

between cases and controls; a significant difference in the mean scores indicates that 

cases and controls are distinct with respect to the accumulation of small-effect genetic 

variants. Alternatively, the proportion of cases and controls with scores above a critical 

threshold can be compared using chi-square analyses or Fisher’s exact tests. The 

threshold for stratification of genetic risk is usually defined as a score percentile, 

determined after calculating the polygenic risk score en masse for a large population of 

healthy individuals and generating the distribution of scores in the general population. 

Individuals with an extremely high polygenic risk score—often defined as a score above 

the 90th percentile—are considered to have an extreme accumulation of risk-increasing 

alleles. This is the threshold for high polygenic risk that we have used in many studies 

from our laboratory. Formal evaluation tests the hypothesis that a case cohort has a much 

greater proportion of individuals with extreme risk scores compared to control cohorts, 

versus the null hypothesis that the prevalence of high score is the same in cases and 

controls. If statistical comparisons reject the null hypothesis, this suggests a strong 

polygenic component of the phenotype or disease of interest.  

In other experimental situations when the study cohort is a single prospectively sampled 

population, instead of generating score percentiles for comparison against a different 

cohort, the percentiles of risk score can be determined in the single population under 

study. Regression models can be used to determine the association between the score and 

phenotypic outcome of interest and the degree of phenotypic variation that can be 

explained. In a regression model, the polygenic risk score can be considered a continuous 

independent variable—with the input either being the raw calculated score or the score’s 

percentile—or as a binary independent variable indicating whether the score falls above 

or below some predetermined threshold (i.e. above or below the 90th percentile). 
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1.4 Lipids and lipoproteins  

Circulating levels of lipids and lipoproteins are common examples of quantitative traits 

that have been heavily studied using human genetic methodologies. Concentrations of 

plasma lipids and lipoproteins are regulated by a complex network of genetic 

determinants that encode key biochemical products, including receptors, adaptor proteins, 

transporters, enzymes, and co-factors, each of which have distinct biological roles 

(Daniels et al., 2009; Dron and Hegele, 2016; Feingold and Grunfeld, 2000). 

Furthermore, several secondary non-genetic factors—diet, smoking status, activity level, 

other medical conditions such as diabetes, obesity or hypothyroidism, and certain 

medications—can exacerbate the clinical presentation of lipid phenotypes and make it 

difficult to determine phenotypic contributions from genetic versus non-genetic sources 

(Brahm and Hegele, 2016; Johansen and Hegele, 2011). 

Extreme deviations of lipid traits from median population levels typically suggests a 

more prominent, underlying genetic influence (Hegele, 2009). Relatively more common 

in this situation is an extreme polygenic accumulation of common variants. Less 

commonly, these extreme trait deviations are monogenic in nature and are driven by a 

single large-effect variant. Most extreme lipid phenotypes appear to have a combination 

of both common and rare variants comprising their underlying genetic architecture, 

illustrating the complexities behind understanding the genetics of lipid and lipoprotein 

levels. However, the precise proportion of extreme lipid phenotypes driven by common 

versus rare variants has not been quantified because these different types of variation 

have not been studied concurrently in dyslipidemic patient cohorts. Extreme deviations of 

plasma lipid concentrations will be explained further in Section 1.5. 

1.4.1 Lipids 

Although circulating plasma lipids levels—both cholesterol and triglyceride—are 

recognized as risk factors for atherosclerotic CVD (ASCVD), they both also have 

extremely important biological roles. 
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1.4.1.1 Cholesterol 

Cholesterol is an amphipathic sterol molecule made up of four hydrocarbon rings, a 

hydrocarbon tail and a hydroxyl group (Ikonen, 2008; Simons and Ikonen, 2000). 

Cholesterol has many important physiological roles, including: (i) an integral component 

of all cell membranes; (ii) the backbone of steroid hormones; (iii) the precursor for bile 

acids; and (iv) a signalling molecule in the central nervous system (Porter and Herman, 

2011; Simons and Ikonen, 2000). Our largest source of cholesterol is endogenously 

synthesized though the liver; only a small amount comes from exogenous, dietary origins 

(Feingold and Grunfeld, 2000; Iqbal and Hussain, 2009).  

1.4.1.2 Triglyceride 

Triglyceride is a non-polar lipid molecule comprised of a glycerol esterified to three fatty 

acid chains. These lipid molecules can be further defined by the properties of their fatty 

acids. Depending on the number of double-bonded carbon (C=C) molecules, triglycerides 

can be saturated (no C=C) or unsaturated (1 or more C=C) and be further classified 

depending on where the C=C occurs along the fatty acid chain. 

Triglycerides are an incredibly important source of energy that are stored in adipose 

tissue; when metabolized, their fatty acid chains are released through hydrolysis and 

undergo fatty acid oxidation where they are converted into acetyl coenzyme A (acetyl-

CoA) for use in the Krebs cycle and mevalonate pathway. Our primary source for 

triglycerides are from exogenous, dietary origins (Iqbal and Hussain, 2009). 

1.4.1.3 Plasma lipid sources 

1.4.1.3.1 Exogenous  

Following the ingestion of food, dietary cholesterol and triglyceride form emulsions with 

phospholipids, fat soluble vitamins, plant sterols and hepatically synthesized bile acids; 

together, these molecules form mixed micelles (Feingold and Grunfeld, 2000; Iqbal and 

Hussain, 2009). In the duodenum of the small intestine, micelle contents are hydrolyzed 

by pancreatic enzymes, resulting in free fatty acids, mono- and di-acylglycerols, and 

glycerols (Feingold and Grunfeld, 2000; Iqbal and Hussain, 2009). Contents of these 
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micelles can be absorbed by intestinal enterocytes in the jejunum; fatty acids and 

glyceride compounds are taken up through both passive and active diffusion, while 

cholesterol is absorbed by the Niemann-Pick C1 like 1 protein (NPC1L1) transporter 

(Feingold and Grunfeld, 2000; Iqbal and Hussain, 2009). Once absorbed, these molecules 

can be resynthesized into triglycerides and cholesteryl esters for subsequent lipoprotein 

assembly in the intestine, which is discussed in the upcoming Section 1.4.2.2.1. Of the 

cholesterol that is taken up by the enterocytes, about 50% is actively transported back 

into the intestine by ATP-binding cassette transporter G5 (ABCG5) and by ATP-binding 

cassette transporter G8 (ABCG8) for excretion. The majority of remaining bile acids are 

reabsorbed by the terminal ileum of the small intestine and return to the liver (Feingold 

and Grunfeld, 2000; Iqbal and Hussain, 2009).   

1.4.1.3.2 Endogenous  

De novo cholesterol synthesis can occur within hepatocytes. In low states of free cellular 

cholesterol, sterol regulatory element binding protein (SREBP) transcription factors 

become activated and upregulate a number of cholesterol metabolism regulators, 

including the main enzyme involved in cholesterol synthesis, β-hydroxy β-

methylglutaryl-coenzyme A (HMG-CoA) reductase (Ikonen, 2008; Simons and Ikonen, 

2000). This enzyme is the rate-limiting step in cholesterol synthesis; an increase in the 

protein’s expression ultimately leads to an increase in the production of free cholesterol 

via the HMG-CoA reductase or mevalonate pathway, in which acetyl-CoA is the starting 

molecule (Ikonen, 2008). De novo triglyceride synthesis also occurs within hepatocytes, 

using free fatty acids derived from fatty acid synthesis and glycerol derived from 

glycolysis (Alves-Bezerra and Cohen, 2017). The newly synthesized lipids are assembled 

into hepatically-derived lipoproteins, which is discussed in the upcoming Section 

1.4.2.2.2. 
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1.4.2 Lipoproteins 

Due to the insoluble nature of cholesterol and triglyceride, lipoprotein particles are 

responsible for transporting these lipid molecules throughout the body. Lipoproteins are 

discrete macromolecular entities that vary in size, density and composition (Figure 1.8). 

These unique features arise because of qualitative and quantitative differences in their: (i) 

characteristic lipid-associated proteins or “apolipoproteins” (apo); (ii) amount and ratio of 

cholesterol and triglyceride content; and (iii) other lipids species, such as sphingolipids 

and phospholipids (Figure 1.9) (Feingold and Grunfeld, 2000; Hegele, 2009). At a first 

level of approximation, lipoproteins can be classified based on their cholesterol and 

triglyceride content. The main cholesterol-carrying lipoproteins include LDL and HDL, 

while chylomicrons and very-low-density lipoproteins (VLDL) are the main triglyceride-

carrying lipoproteins (Feingold and Grunfeld, 2000); VLDL also carries cholesterol, 

whose molar concentration is about one-third that of triglyceride, meaning that it is 

relatively cholesterol-poor and thus less dense compared to LDL and HDL. After VLDL 

is secreted by the liver and remodelled through the lipolytic process (discussed further in 

Section 1.4.2.2.2), the resulting remnant particle, sometimes called intermediate-density 

lipoprotein (IDL), is smaller, more dense and more cholesterol-rich. However, IDL is not 

usually considered as a primary carrier of either lipid.  
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Figure 1.8 Lipid and apolipoprotein composition of lipoprotein classes. 

This diagram shows the cross-sectional view of different lipoproteins. Lipoproteins are 

complex macromolecules made up of different combinations of lipids—free cholesterol, 

cholesteryl ester, phospholipid, triglyceride—and apolipoproteins. The major 

apolipoprotein constituents are shown for each lipoprotein. Abbreviations: apo = 

apolipoprotein; A = apo(a); A-I = apo A-I; A-V = apo A-V; B-48 = apo B-48; B-100 = apo 

B-100; C-II = apo C-II; C-III = apo C-III; E = apo E; HDL = high-density lipoprotein; IDL 

= intermediate-density lipoprotein; LDL = low-density lipoprotein; Lp(a) = lipoprotein(a); 

VLDL = very-low-density lipoprotein. Biological images adapted from 

https://biorender.com/. 

https://biorender.com/
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Figure 1.9 Lipoprotein classes and their physical characteristics.  

Lipoproteins are classified based on size (diameter, nm) and density (g/mL). These 

characteristics are driven by a particle’s composition of lipids and apolipoproteins (Figure 

1.8). Abbreviations: HDL = high-density lipoprotein; IDL = intermediate-density 

lipoprotein; LDL = low-density lipoprotein; Lp(a) = lipoprotein(a); VLDL = very-low-

density lipoprotein. Biological images adapted from https://biorender.com/.  

https://biorender.com/
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1.4.2.1 High-density lipoprotein 

HDL is a heterogenous particle comprised of both apolipoproteins and lipids. As the 

smallest and densest of the lipoproteins, more than half of an HDL particle is protein-

based; apo A-I is the defining protein of HDL and is the main structural component 

(Fisher et al., 2012). There is substantial intra-particle variation, with differences in 

composition, size, and charge, prompting the further subclassification of HDL particles 

into HDL2 (larger and less dense) and HDL3 (smaller and more dense) (Fisher et al., 

2012; Tosheska-Trajkovska and Topuzovska, 2017). Despite this distinction, when 

referring to circulating levels of HDL cholesterol in an individual, this measurement 

encompasses the total amount of cholesterol associated to all types of HDL particles. The 

primary physiological role of HDL is to transport cholesterol from peripheral tissues to 

the liver for eventual excretion in a process called “reverse cholesterol transport”; this 

transport pathway largely overlaps the natural HDL lifecycle (Figure 1.10) (Ouimet et 

al., 2019), which is explained in Section 1.4.2.1.2.   

1.4.2.1.1 High-density lipoprotein lifecycle 

The synthesis of HDL particles begins with the production of apo A-I from hepatic and 

intestinal sources (Fisher et al., 2012; Tosheska-Trajkovska and Topuzovska, 2017). Free 

apo A-I has a high affinity for cholesterol and becomes lipidated following the expulsion 

of free cholesterol and phospholipids from peripheral tissues by ATP-binding cassette 

transporter A1 (ABCA1) (Fisher et al., 2012; Tosheska-Trajkovska and Topuzovska, 

2017). The newly lipid-associated apo A-I takes on a discoidal shape and is considered a 

nascent HDL particle. From here, hepatically-synthesized circulating lecithin-cholesterol 

acyltransferase (LCAT) esterifies the free cholesterol of nascent HDL following its 

activation by apo A-I (Fisher et al., 2012; Tosheska-Trajkovska and Topuzovska, 2017). 

This prompts a structural change of the lipoprotein into a more spherical shape due to the 

increased cholesteryl ester content, which marks the transition of nascent HDL into 

HDL3 (Tosheska-Trajkovska and Topuzovska, 2017). When HDL3 undergoes further 

esterification by LCAT and acquires additional phospholipids via phospholipid transfer 



44 

 

protein (PLTP), the lipoprotein matures into an HDL2 particle (Albers et al., 2012; 

Daniels et al., 2009; Tosheska-Trajkovska and Topuzovska, 2017).  

Following maturation into HDL2, the particle is additionally modified by CETP, which 

originates from both hepatocytes and adipocytes (Daniels et al., 2009; Tosheska-

Trajkovska and Topuzovska, 2017). CETP is the main protein involved in the transfer of 

cholesteryl esters from HDL2 particles to triglyceride-rich lipoproteins in exchange for 

triglyceride (Tosheska-Trajkovska and Topuzovska, 2017). Because of the increased 

triglyceride content, this triglyceride-carrying HDL2 particle becomes a target for hepatic 

lipase (HL), a hepatically secreted enzyme that hydrolyzes triglyceride molecules into 

free fatty acids (Tosheska-Trajkovska and Topuzovska, 2017). These particles may be 

further targeted by endothelial lipase (EL), which works to hydrolyze the phospholipids 

of HDL2 (Paradis and Lamarche, 2006). Together, HL and EL help generate smaller 

HDL particles, often back into the HDL3 subclass (Daniels et al., 2009; Tosheska-

Trajkovska and Topuzovska, 2017; Yu et al., 2018). 

HDL3 particles bind with high affinity to scavenger receptor class B type I (SR-BI) 

located on the cell surface of many tissues, particularly the liver (Tosheska-Trajkovska 

and Topuzovska, 2017). Cholesteryl esters dissociate from the particle and are moved 

into the liver for delivery from peripheral tissues. 
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Figure 1.10 Metabolic lifecycle of HDL particles. 

After lipidation, apo A-I particles and associated lipid molecules take on a discoidal shape 

and become nascent HDL. Further modification by LCAT leads to particle maturation into 

HDL3. HDL3 particles can either interact with hepatic SR-BI and lose some of its 

cholesteryl ester content, or mature into HDL2 after further modification by PLTP and 

LCAT. HDL2 particles can exchange lipid content with triglyceride-rich lipoproteins via 

CETP, and then be modified by HL and EL, back into HDL3 particles. Abbreviations: 

ABCA1 = ATP-binding cassette transporter A1; apo = apolipoprotein; A-I = apo A-I; CE 

= cholesteryl ester; CETP = cholesteryl ester transfer protein; EL = endothelial lipase; FC 

= free cholesterol; HDL = high-density lipoprotein; HL = hepatic lipase; IDL = 

intermediate-density lipoprotein; LCAT = lecithin-cholesterol acyltransferase; P = 

phospholipid; PTLP = phospholipid transfer protein; SR-BI = scavenger receptor class B 

type I; TG = triglyceride; VLDL = very-low-density lipoprotein. Biological images adapted 

from https://biorender.com/. 

https://biorender.com/
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1.4.2.1.2 Reverse cholesterol transport 

The reverse cholesterol transport pathway encompasses the movement of excess cellular 

cholesterol—following the HDL lifecycle—out of peripheral tissues by HDL and its 

delivery to the liver for excretion or recycling into bile acids and salts (Ouimet et al., 

2019). The transport of cholesterol out of macrophages has been a focus of interest 

related to risk for ASCVD—cholesterol-laden macrophages can develop into foam cells, 

which are a prominent component of atherosclerotic lesions in the vascular wall. 

A measure of the reverse cholesterol transport process is tied to an HDL particle’s ability 

to accept cholesterol: this measure of HDL functionality is referred to as “cholesterol 

efflux”. There is a strong inverse correlation between HDL cholesterol efflux and 

ASCVD that is independent from HDL cholesterol levels (Khera et al., 2011); as such, 

this functional metric of HDL has been shown to be a better measure of ASCVD risk 

compared to measurable levels of HDL cholesterol (Rader and Hovingh, 2014). 

1.4.2.2 Triglyceride-rich lipoproteins 

Measured circulating triglyceride levels represent the integrated measurement of 

triglyceride molecules carried by all circulating triglyceride-rich lipoprotein species: 

chylomicrons, VLDL, and their metabolic remnants, including IDL. To a much lesser 

degree, triglyceride is carried within the main cholesterol-carrying lipoproteins, but the 

contribution of their triglyceride content to the total plasma measurement is miniscule 

(Dron and Hegele, 2017b). 

There are two distinct classes of triglyceride-rich lipoproteins: (i) those containing apo B-

48 (chylomicrons and remnants) (Figure 1.11), and (ii) those containing apo B-100 

(VLDL, IDL, and remnants) (Figure 1.12). While certain proteins are involved in both 

metabolic pathways, the lifecycle of these lipoproteins are largely independent, with 

intestinal and hepatic origins, respectively (Feingold and Grunfeld, 2000).  
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Figure 1.11 Metabolic lifecycle of chylomicrons and their remnant particles. 

Chylomicrons are assembled in the intestine, with apo B-48 as the structural scaffold. After 

entering circulation, additional apolipoproteins are added to the particle. Within the 

vasculature, endothelial-bound LPL hydrolyzes triglycerides from circulating 

chylomicrons after interactions with apo C-II and apo A-V. Apo C-III inhibits the 

hydrolytic action of LPL. The resultant chylomicron remnant loses additional triglyceride 

content due to HL, and once enriched in apo E, can interact with hepatic LDLR and LRP1 

for uptake into the liver. Abbreviations: apo = apolipoprotein; A-I = apo A-I; A-IV = apo 

A-IV; A-V = apo A-V; B-48 = apo B-48; C-II = apo C-II; C-III = apo C-III; CE = 

cholesteryl ester; E = apo E; GPIHBP1 = glycosylphosphatidylinositol-anchored high-

density lipoprotein binding protein 1; HL = hepatic lipase; LDLR = low-density lipoprotein 

receptor; LMF1 = lipase maturation factor 1; LPL = lipoprotein lipase; LRP1 = LDL-

related 1 protein; MTP = microsomal triglyceride transfer protein; P = phospholipid; TG = 

triglyceride. Biological images adapted from https://biorender.com/. 

https://biorender.com/
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Figure 1.12 Metabolic lifecycle of VLDL, IDL, and their remnant particles. 

VLDL is assembled in the liver with apo B-100 as the structural scaffold. After entering 

circulation, additional apolipoproteins are added to the particle. VLDL exchanges lipid 

content with HDL2 via CETP. Within the vasculature, endothelial-bound LPL hydrolyzes 

triglycerides from VLDL. The resultant IDL particles also exchange lipid content with 

HDL2 via CETP and can either be taken up by the liver through interactions between apo 

E and LDLR or LRP1, or can be further modified by HL, lose additional apolipoproteins, 

and become LDL. Abbreviations: apo = apolipoprotein; B-100 = apo B-100; C-II = apo C-

II; C-III = apo C-III; CE = cholesteryl ester; CETP = cholesteryl ester transfer protein; E = 

apo E; FC = free cholesterol; GPIHBP1 = glycosylphosphatidylinositol-anchored high-

density lipoprotein binding protein 1; HDL = high-density lipoprotein; HL = hepatic lipase; 

IDL = intermediate-density lipoprotein; LDL = low-density lipoprotein; LDLR = low-

density lipoprotein receptor; LPL = lipoprotein lipase; LRP1 = LDL-related 1 protein; MTP 

= microsomal triglyceride transfer protein; P = phospholipid; TG = triglyceride; VLDL = 

very-low-density lipoprotein. Biological images adapted from https://biorender.com/. 

https://biorender.com/
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1.4.2.2.1 Chylomicron metabolism  

Chylomicrons are the main lipoprotein responsible for delivering endogenously acquired 

dietary fats to different areas of the body for energy utilization (Xiao et al., 2019). 

Intestinally absorbed cholesterol and fatty acids are re-esterified into cholesteryl esters 

and triglycerides, respectively. Meanwhile, APOB is transcribed within enterocytes and 

edited by apo B mRNA editing enzyme catalytic subunit 1 (APOBEC-1), such that the 

resultant mRNA is translated into a protein that is 48% of the size of the original apo B-

100 protein, namely apo B-48 (Daniels et al., 2009), the main structural component of 

chylomicrons. A combination of triglyceride, cholesteryl esters, and phospholipids are 

assembled around the apo B-48 backbone by microsomal triglyceride transfer protein 

(MTP) to form a pre-chylomicron particle (Daniels et al., 2009). Chylomicrons do not 

become fully mature until they have moved from the endoplasmic reticulum to the Golgi 

apparatus to the cytoplasm, where additional apolipoproteins, including apo A-I, A-IV, 

and V, are added (Xiao et al., 2019). Fully matured chylomicrons are then able to enter 

the lymphatic system and eventually enter the circulatory system through the jugular 

vein; during this time, chylomicrons are modified through the addition of apo C-II, C-III, 

and E, which are relevant for downstream enzymatic interactions (Feingold and Grunfeld, 

2000). 

Once circulating, chylomicrons interact with lipoprotein lipase (LPL), the main enzyme 

responsible for hydrolyzing triglyceride-rich lipoproteins. As an extracellular lipase, LPL 

is anchored to the endothelial lining of vascular networks throughout adipose and muscle 

tissue, and interacts with circulating lipoproteins (Lambert and Parks, 2012; Zilversmit, 

1995). The catabolic action of LPL removes triglyceride from the core of chylomicrons, 

where they can be stored as energy reserves in adipose or used for metabolic processing 

in muscle (Boullart et al., 2012; Lambert and Parks, 2012). Through these actions, 

triglyceride levels are endogenously maintained.  

Apo C-II and apo A-V are important constituents of chylomicron particles that are 

required for LPL hydrolysis (Daniels et al., 2009; Feingold and Grunfeld, 2000; Hegele, 

2016). As a co-factor for LPL, apo C-II is essential for the interaction between circulating 
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chylomicrons and anchored LPL (Kei et al., 2012). And although its precise mechanism 

of action is not clearly determined, apo A-V normally enhances LPL function indirectly 

by interacting with glycosylphosphatidylinositol-anchored high-density lipoprotein 

binding protein 1 (GPIHBP1) (Forte et al., 2016).  

Other proteins are necessary for proper LPL functioning. Lipase maturation factor 1 

(LMF1) is a chaperone bound to the endoplasmic reticulum that assists in the folding and 

maturation of LPL (Doolittle et al., 2010). Another critical protein in the early stages of 

the LPL life-cycle is GPIHBP1. Following its interaction with LMF1, LPL is transported 

and anchored to the endothelial lining of the vascular wall by GPIHBP1 (Young and 

Zechner, 2013). When LPL dissociates from the cell surface through indirect inhibition of 

angiopoietin-like protein 3 (ANGPTL3), triglyceride hydrolysis from triglyceride-rich 

lipoproteins stops (Tikka and Jauhiainen, 2016). 

Subsequent to the hydrolyzing action of LPL, chylomicron particles become smaller 

remnant particles and lose apo C-II (Daniels et al., 2009; Feingold and Grunfeld, 2000). 

With the resultant enrichment of apo E, chylomicron remnants undergo additional 

remodelling by HL and are taken up by hepatocytes through endocytosis, mediated by the 

LDL receptor (LDLR) and LDL-related 1 protein (LRP1), both of which have a binding 

affinity for apo E (Daniels et al., 2009). The lipid molecules taken up by the liver are 

hydrolyzed and can be used in VLDL synthesis, while apo E is released back into 

circulation (Daniels et al., 2009). 

1.4.2.2.2 Very-low-density lipoprotein metabolism 

Endogenously synthesized lipids are transported out of the liver by VLDL. Since 

APOBEC-1 is not expressed in hepatocytes, the full form of APOB can be produced, 

namely apo B-100—the main structural component of both VLDL and LDL (Daniels et 

al., 2009; Feingold and Grunfeld, 2000). Like in the intestine, hepatic MTP aggregates 

triglyceride, cholesteryl esters, and phospholipids to the apo B-100 scaffold within the 

rough endoplasmic reticulum to form the basis of VLDL particles (Feingold and 

Grunfeld, 2000). As it matures throughout the cell, VLDL is released into circulation, 

where these nascent particles take up apo C-II, C-III, apo E, and cholesteryl esters from 
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HDL particles through interactions with CETP (Tosheska-Trajkovska and Topuzovska, 

2017). At this point, hydrolysis of triglyceride molecules in VLDL by LPL mimics the 

metabolic pathway described for chylomicrons in Section 1.4.2.2.1.   

As VLDL decreases in size through catabolic interactions, it loses a number of surface 

constituents, including phospholipids, free cholesterol, and apolipoproteins; these 

remnant particles are referred to as IDL. IDL can interact further with CETP, exchanging 

its triglyceride content for additional cholesteryl esters from HDL (Daniels et al., 2009). 

At this point, IDL may either be taken up by the liver through interactions between apo E 

and LDLR, or may undergo further triglyceride hydrolysis by HL and become an LDL 

particle after losing any remaining apo E, C-II, and C-III molecules (Daniels et al., 2009). 

The latter pathway allows for the delivery of cholesteryl esters to peripheral tissues via 

LDL transport. The metabolic pathway for LDL particles will not be discussed, as it is 

beyond the scope of this Dissertation. 

1.5 Dyslipidemia  

“Dyslipidemia” is defined as an extreme deviation of plasma lipid concentration, which is 

often due to dysfunctional lipid-related biochemical products including receptors, adaptor 

proteins, transporters, enzymes, and co-factors that disrupt the metabolic synthesis, 

processing, function, or catabolism of lipoproteins (Hegele, 2009). Many genetic 

factors—ranging in population frequency, ontology, and functional consequence—are 

often responsible for these dysfunctional metabolic proteins (Hegele, 2009); however, in 

some scenarios, a dyslipidemic profile can also be driven or exacerbated by non-genetic 

factors such as lifestyle behaviours (Cole et al., 2015; Dron and Hegele, 2016; Hegele, 

2009). Depending on the impacted lipoprotein(s), affected lipid trait(s), and additional 

phenotypic features, a more specific dyslipidemia diagnosis may be given.  

1.5.1 Genetics of dyslipidemia  

There are 24 named dyslipidemias with a variety of genetic underpinnings (Table 1.1) 

(Hegele et al., 2015). Most of these disorders were characterized at the molecular level 

>10 years ago using classical biochemical and genetic mapping methods, which allowed 

researchers to establish the important, casual genes related to each disease (Breslow, 
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2000; Hegele et al., 2015); the encoded protein products of these mutated genes have 

important roles in the metabolic pathway of relevant lipoprotein species, many of which 

were described in Section 1.4. The rarity of these phenotypes are reflected by the 

infrequency in which their causative genetic factors are seen in the general population. 

The majority of dyslipidemia cases are polygenic, resulting from the contributions of 

several types of genetic determinants that predispose an individual towards a more severe 

presentation of a lipid trait (Dron and Hegele, 2018; Kathiresan et al., 2009). 

Incompletely penetrant, rare variants in genes encoding lipid-related biochemical 

products contribute to polygenic dyslipidemias by conferring a state of susceptibility in 

carriers (Hegele, 2009). Often, these variants are seen at an increased frequency in 

cohorts of dyslipidemia cases compared to cohorts of healthy controls; however, these 

variants do not completely co-segregate with abnormal phenotypes in pedigrees. 

Nonetheless, their strong statistical relationship with perturbed lipids in dyslipidemia 

patients support their contributory role, although are not independently causative per se in 

a particular individual (Dron and Hegele, 2018). This distinction reflects the difference 

between determinism—i.e., rare variants directly cause specific monogenic dyslipidemia 

phenotypes—versus probability—i.e., rare variants act as polygenic contributors (among 

other factors) leading to susceptibility to dyslipidemia.  
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Table 1.1 Dyslipidemia phenotypes and their genetic etiologies. 

Lipid 

phenotype 
Clinical diagnosis 

Genetic 

basis 
Gene(s) 

High LDL 

cholesterol 

Familial 

hypercholesterolemia  
Co-AD LDLR; APOB; PCSK9 

Hypercholesterolemia Polygenic   

Phenocopy of familial 

hypercholesterolemia 

AD APOE 

AR LDLRAP1; LIPA 

Sitosterolemia AR ABCG5; ABCG8  

Low LDL 

cholesterol 

Abetalipoproteinemia * AR MTTP 

Hypobetalipoproteinemia 

AR; AD APOB *  

AD PCSK9 

AR SAR1B 

Combined hypolipidemia * AR ANGPTL3 

High Lp(a) Hyperlipoproteinemia(a) Co-AD LPA 

Low HDL 

cholesterol 

Tangier disease AR ABCA1 

Apo A-I deficiency AR APOA1 

Familial LCAT deficiency  AR LCAT 

Fish-eye disease AR LCAT 

Hypoalphalipoproteinemia Polygenic   

High HDL 

cholesterol 

CETP deficiency AR CETP 

SR-BI deficiency AR SCARB1 

Hepatic lipase deficiency AR LIPC 

Endothelial lipase 

deficiency 
AR LIPG 

Hyperalphalipoproteinemia Polygenic   

High 

triglyceride 

Familial chylomicronemia 

syndrome 
AR 

LPL; LMF1; GPIHBP1; 

APOA5; APOC2 

Infantile 

hypertriglyceridemia 
AR GPD1 

Dysbetalipoproteinemia 
AR; AD; 

polygenic 
APOE 

Multifactorial 

chylomicronemia 
Polygenic   

Mild-to-moderate 

hypertriglyceridemia 
Polygenic   

Low 

triglyceride 
Hypotriglyceridemia 

AR; AD; 

polygenic 

APOC3; ANGPTL3; 

ANGPTL4 
“*” denotes a phenotype that also has a low triglyceride levels. Abbreviations: apo = apolipoprotein; 

AR = autosomal recessive; AD = autosomal dominant; CETP = cholesteryl ester transfer protein; co-

AD = co-dominant; HDL = high-density lipoprotein; LCAT = lecithin-cholesterol acyltransferase; 

LDL = low-density lipoprotein; Lp(a) = lipoprotein(a); SR-BI = scavenger receptor class B type I.  
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The more frequent polygenic contributor are common genetic variants that have high 

population frequencies but individually modest influences on lipid traits. In aggregate, 

multiple common variants with smaller effects can together increase susceptibility 

towards a dyslipidemic state; this accumulation can be measured using polygenic scores, 

described in Section 1.3.4.3. Early GWASs from the Global Lipids Genetics Consortium 

(GLGC) were some of the first to identify common variants governing plasma lipids and 

lipoproteins in essentially normolipidemic populations (Teslovich et al., 2010; Willer et 

al., 2013). The 157 loci identified by the GLGC explain 10-20% of the total variation in 

total cholesterol, LDL cholesterol, HDL cholesterol, and triglyceride levels (Willer et al., 

2013). Over the last decade, >260 loci associated with blood lipid traits have been 

discovered using genetic association studies (Albrechtsen et al., 2013; Asselbergs et al., 

2012; Below et al., 2016; Chasman et al., 2009; Liu et al., 2017; Lu et al., 2017; Peloso et 

al., 2014; Teslovich et al., 2010; Willer et al., 2013). A recent meta-GWAS conducted in 

over 600,000 participants between the Million Veteran Program and GLGC cohorts 

revealed an additional 118 novel loci associated with these traits (Klarin et al., 2018).In 

addition to GWASs, exome-wide association studies have also successfully uncovered 

genetic variants with small effects on blood lipid traits (Liu et al., 2017; Lu et al., 2017). 

1.5.2 Abnormalities in high-density lipoprotein cholesterol levels 

HDL cholesterol levels are normally distributed in the general population (Figure 1.13) 

(Sachdeva et al., 2009). Extreme deviations in HDL cholesterol levels are often caused by 

genetic determinants, while the typical variation observed for this phenotype can be due 

to a combination of different genetic factors. 

Generally, extremely low and high levels of HDL cholesterol are diagnosed as 

hypoalphalipoproteinemia and hyperalphalipoproteinemia, respectively. Defining 

thresholds for these phenotypes are dependent on age, sex and race. A typical threshold 

for low HDL cholesterol levels in men and women are <1 mmol/L and <1.3 mmol/L, 

respectively (Schaefer et al., 2016); a extreme deficiency in HDL cholesterol is 

considered as levels <0.5 mmol/L (Schaefer et al., 2016). With respect to extremely high 

HDL cholesterol levels, levels above the 5th percentile based on age and sex are often 

accepted. 



55 

 

 

Figure 1.13 The genetic architecture underlying the spectrum of measurable HDL 

cholesterol levels. 

The distribution of HDL cholesterol levels has a normal distribution in the general 

population; however, it is important to note that this distribution includes both males and 

females, which have different thresholds for what is considered “low” and “high”. The 

thresholds shown in this figure are not exact and are for illustrative purposes only. Studies 

tend to focus on individuals with extreme HDL cholesterol levels, falling in the tail-ends 

of the distribution, to better understand the genetic determinants driving these phenotypes. 

Abbreviations: HDL = high-density lipoprotein.
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1.5.2.1 Hypoalphalipoproteinemia 

Extremely low levels of HDL cholesterol are suggestive of metabolic issues related to the 

inability to synthesize HDL particles. There are a number of monogenic syndromes for 

hypoalphalipoproteinemia that are defined by the causative mutated gene: ABCA1, 

APOA1, and LCAT. 

Tangier disease is an autosomal recessive disorder caused by rare bi-allelic variants in 

ABCA1 (Schaefer et al., 2010). With substantial disruptions to both copies of the ABCA1 

gene, the first stage in the development of HDL particles through lipidation of apo A-I 

cannot occur. In addition to having extremely low, virtually absent HDL cholesterol 

levels because of this functional deficit of ABCA1, individuals with Tangier disease also 

have moderately elevated triglyceride levels, reduced LDL cholesterol levels, and can 

present with both hepatosplenomegaly and enlarged, lipid-laden tonsils (Fredrickson et 

al., 1961). As well, manifestations of the disease can include peripheral neuropathy, 

corneal opacities, and an increased risk for CVD (Bale et al., 1971; Engel et al., 1967). 

Another autosomal recessive disorder with an extremely low HDL cholesterol level 

profile is apo A-I deficiency, caused by rare bi-allelic variants in APOA1 (Schaefer et al., 

2010). In the absence of apo A-I particles—due to either a decrease in expression or 

dysfunctional forms of the proteins—HDL particles cannot be synthesized, as there is no 

protein available for lipidation of free cholesterol exported out of cells via ABCA1. 

Beyond undetectable levels of apo A-I and severely decreased HDL cholesterol levels, a 

collection of clinical manifestations have been observed in patients, including xanthomas, 

cerebellar ataxia, corneal arcus and opacification, and premature CVD (Matsunaga et al., 

1991; Ng et al., 1994; Santos et al., 2008c). 

Familial LCAT deficiency (FLD) and fish-eye disease (FED) are two additional 

autosomal recessive disorders caused by rare bi-allelic variants in LCAT (Schaefer et al., 

2016; Schaefer et al., 2010). The disorders differ depending on which lipoproteins are 

impacted by the dysfunctional LCAT activity: (i) FLD encompasses issues impacting 

HDL and apo B-containing lipoproteins, and (ii) FED encompasses issues impacting only 
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HDL (Schaefer et al., 2016). Given the shared molecular disease etiology, there are a 

number of overlapping clinical features between FLD and FED in addition to decreased 

HDL cholesterol levels, including corneal opacification, elevated triglyceride and LDL 

levels, and risk for CVD later in life (Gjone et al., 1974; Norum and Gjone, 1967; Santos 

et al., 2008a; Schaefer et al., 2016; Schaefer et al., 2010). Since FLD impacts more 

lipoproteins, additional clinical features have been observed, including anemia and 

proteinuria (Norum and Gjone, 1967). 

Beyond the aforementioned syndromes, in non-monogenic instances of 

hypoalphalipoproteinemia, an increased prevalence of heterozygous rare variants in 

ABCA1, APOA1, and LCAT has been observed (Candini et al., 2010; Cohen et al., 2004; 

Holleboom et al., 2011; Kiss et al., 2007; Motazacker et al., 2013; Sadananda et al., 2015; 

Santos et al., 2008a; Santos et al., 2008b; Santos et al., 2008c; Schaefer et al., 2016; 

Singaraja et al., 2013; Tietjen et al., 2012; Wada et al., 2009). Damaging variants 

disrupting these genes may impact the synthesis and modification of HDL particles that 

lead to an overall lower circulating HDL cholesterol concentration. While these variants 

are not deterministic and are not guaranteed to cause hypoalphalipoproteinemia, they are 

instead probabilistic and increase an individual’s susceptibility towards deceased 

concentrations of HDL cholesterol.  

In addition to heterozygous rare variants, the polygenic aggregation of common SNPs 

associated with HDL cholesterol levels can modulate further an individual’s 

susceptibility towards the hypoalphalipoproteinemia phenotype; dozens of SNPs have 

shown significant associations to HDL cholesterol levels across many GWASs 

(Albrechtsen et al., 2013; Asselbergs et al., 2012; Below et al., 2016; Chasman et al., 

2009; Liu et al., 2017; Lu et al., 2017; Peloso et al., 2014; Teslovich et al., 2010; Willer 

et al., 2013). While each individual SNP may have only a small overall phenotypic 

impact, the aggregated effects from multiple SNP alleles associated with lower HDL 

cholesterol levels may substantially alter the HDL cholesterol phenotype; this 

aggregation can be quantified using a polygenic risk score (Aulchenko et al., 2009; 

Buscot et al., 2016; Justesen et al., 2015; Latsuzbaia et al., 2016; Lutsey et al., 2012; 
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Paquette et al., 2017; Piccolo et al., 2009; Raffield et al., 2013; Teslovich et al., 2010; 

Tikkanen et al., 2011; Zubair et al., 2014). 

1.5.2.2 Hyperalphalipoproteinemia  

Extremely elevated HDL cholesterol levels can be caused by dysfunctional proteins in the 

HDL metabolic pathway due to genetic variation in CETP, SCARB1, LIPC, and LIPG.  

CETP deficiency was first observed in Japanese kindreds and was found to be due to 

loss-of-function variants in CETP (Brown et al., 1989; Inazu et al., 1990; Yamashita et 

al., 1988). Normally, CETP facilitates the exchange of cholesteryl esters for triglycerides 

between HDL particles and apo B-containing lipoproteins (Tosheska-Trajkovska and 

Topuzovska, 2017). When this process is hindered, HDL particles retain their cholesterol 

content and the overall concentration for HDL cholesterol begins to increase; this 

mechanism was pharmacologically mimicked using CETP inhibitors—small molecules 

that prevented the normal functioning of CETP (Tall and Rader, 2018). While both 

longevity and a reduction in CVD risk are phenotypic outcomes that have been associated 

with CETP deficiency (Milman et al., 2014), there are also reports of individuals being at 

an increased CVD risk despite elevations in HDL cholesterol levels (Hirano et al., 1995; 

Hirano et al., 2014). 

Disruptions to SCARB1, another HDL-associated gene, have similar outcomes to what 

has been described for CETP deficiency. As a receptor for HDL, reductions in either the 

expression or activity of SR-BI decreases hepatic uptake of HDL-associated cholesteryl 

esters, which results in the increased plasma concentration of HDL cholesterol (Hoekstra 

et al., 2010). In mice, an overexpression of SR-BI leads to a decrease in HDL cholesterol 

levels (Ji et al., 1999; Kozarsky et al., 1997; Ueda et al., 1999; Wang et al., 1998), while 

deletions of the gene cause increased levels (Brundert et al., 2005; Varban et al., 1998). 

Importantly, a human individual with extremely high levels of HDL cholesterol was 

found to carry a rare, homozygous missense variant in SCARB1 (Zanoni et al., 2016). In 

both the knockout mice and homozygous human carrier, atherosclerotic plaque 

progression was observed, despite the elevated HDL cholesterol profile.  
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LIPC, encoding HL, is also closely related to HDL cholesterol levels. SNPs both in and 

around the LIPC locus have been associated with elevations in HDL cholesterol levels 

and decreases in HL activity (Guerra et al., 1997; Hodoglugil et al., 2010; McCaskie et 

al., 2006; Zambon et al., 1998). A decrease in HL function results in a decrease in 

catabolism of HDL particles through reductions in triglyceride hydrolysis and 

phospholipid lipolysis (Feitosa et al., 2009); this decrease in function results in elevations 

of HDL particles and by association, HDL cholesterol levels. Similarly, EL encoded by 

LIPG is another lipase in which a reduction in its activity leads to elevated HDL 

cholesterol levels. Many genetic variants in LIPG have shown strong associations with 

HDL cholesterol levels (deLemos et al., 2002; Edmondson et al., 2009; Tietjen et al., 

2012), and a functional analysis of loss-of-function LIPG variants showed that the 

resultant decrease in EL activity contributed towards the overall elevation in HDL 

cholesterol levels (Singaraja et al., 2013). 

Like hypoalphalipoproteinemia, hyperalphalipoproteinemia is largely influenced by 

variants disrupting canonical HDL metabolism genes, both rare and common. Elsewhere 

in the genome, SNPs identified through GWASs have also been associated with small 

elevations in levels of HDL cholesterol (Albrechtsen et al., 2013; Asselbergs et al., 2012; 

Below et al., 2016; Chasman et al., 2009; Liu et al., 2017; Lu et al., 2017; Peloso et al., 

2014; Teslovich et al., 2010; Willer et al., 2013). A polygenic basis for 

hyperalphalipoproteinemia has been reported (Motazacker et al., 2013), which aligns 

with the genetic architecture described for the opposing HDL cholesterol phenotype. 

Despite being on opposite ends of the phenotypic spectrum, as extremes of the same trait, 

it is unsurprising that similar types of genetic determinants appear to underlie both 

hyperalphalipoproteinemia and hypoalphalipoproteinemia. 

1.5.3 Abnormalities in triglyceride levels 

Fasting triglyceride levels follow a right-skewed distribution in the general population 

(Figure 1.14). While both environmental and genetic factors can influence triglyceride 

levels, the more extreme phenotypes primarily have a genetic basis, ranging from rare to 

common variants with varying phenotypic impacts (Hegele et al., 2009; Johansen et al., 

2010; Wang et al., 2008a; Wang et al., 2008b; Wang et al., 2007). The precise assortment 
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of variants differ among individuals; those with a greater quantitative and qualitative 

burden of triglyceride-raising variants are assumed to be predisposed to more severe 

pathological triglyceride elevations. Conversely, individuals with an extreme absence of 

these triglyceride-raising variants instead possess an extreme burden of triglyceride-

lowering variants and are more likely to present with very low triglyceride 

concentrations.  
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Figure 1.14 The genetic architecture underlying the spectrum of measurable 

triglyceride levels. 

The distribution of triglyceride levels has a positive skew in the general population. Normal 

levels of triglyceride are considered to be less than 2.0 mmol/L. Individuals with 

triglyceride levels between 2.0 to 9.9 mmol/L are diagnosed with mild-to-moderate 

hypertriglyceridemia, while individuals with triglyceride levels above 10.0 mmol/L are 

diagnosed with severe hypertriglyceridemia. Studies tend to focus on individuals with 

hypertriglyceridemia to better understand the genetic determinants driving this extreme 

phenotype.
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1.5.3.1 Hypertriglyceridemia  

A clinical diagnosis of “hypertriglyceridemia” is usually made by applying threshold 

values to the distribution of plasma triglyceride levels (Hegele et al., 2014). Different 

consensus committees recommend various threshold values for such discrete 

classifications as mild-to-moderate and severe hypertriglyceridemia (Hegele et al., 2014). 

From the Canadian Heart Health Surveys, the mean overall triglyceride level in adults is 

1.6 mmol/L (Connelly et al., 1999). A level of 2.0 mmol/L represents about the 75th 

percentile, while a level of 3.3 mmol/L represents the top 95th percentile (Connelly et al., 

1999; Johansen et al., 2011a); however, these thresholds can vary between geographic 

areas and jurisdictions, and can also be dependent on age, sex, and race.  

1.5.3.1.1 Severe hypertriglyceridemia  

Severe hypertriglyceridemia is defined as total plasma triglyceride ≥10 mmol/L (885 

mg/dL). Such an extreme elevation in triglyceride levels typically signals the persistence 

of large intestinally-derived chylomicrons, particularly in the fasting state, when these 

particles otherwise should have been physiologically cleared (Lewis et al., 2015). 

Chylomicrons, with their high ratio of volume-to-surface area, present the most direct 

physical mechanism to achieve severe hypertriglyceridemia (Brahm and Hegele, 2013; 

Brahm and Hegele, 2015); as such, severe hypertriglyceridemia is often referred to as 

“chylomicronemia” to better describe this abnormal lipoprotein content. Elevations of the 

remaining classes of smaller triglyceride-rich lipoproteins can further augment the 

phenotype and may have larger roles in potential risk for CVD, discussed in the 

upcoming Section 1.5.3.1.3. 

1.5.3.1.1.1 Familial Chylomicronemia Syndrome  

Familial chylomicronemia syndrome (FCS) is the monogenic form of severe 

hypertriglyceridemia and follows a classic autosomal recessive inheritance pattern 

(Brahm and Hegele, 2015). FCS is extremely rare in the population, with a prevalence of 

1 in 100,000-1,000,000 individuals (Brahm and Hegele, 2013; Brahm and Hegele, 2015; 

Gotoda et al., 2012). Clinical diagnosis can occur between infancy and early adulthood 
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(Brahm and Hegele, 2013; Brahm and Hegele, 2015). An accumulation of triglyceride-

rich chylomicrons starting at birth may lead to manifestation of clinical features including 

failure to thrive, lipemia retinalis, recurrent abdominal pain, nausea, vomiting, 

hepatosplenomegaly, and eruptive xanthomas on the trunk, extremities and buttocks 

(Feoli-Fonseca et al., 1998; Rahalkar and Hegele, 2008). Of these, the most serious 

complication is the increased risk of acute pancreatitis and its 5-6% associated mortality 

rate (Brahm and Hegele, 2015). A number of less common features may also appear and 

include anemia, diarrhea, intestinal bleeding, irritability, seizures, and encephalopathy 

(Feoli-Fonseca et al., 1998; Rahalkar and Hegele, 2008). 

As an autosomal recessive disease, the molecular basis underlying FCS involves the 

presence of rare, bi-allelic variants in the canonical triglyceride metabolism genes that 

exert large, disruptive effects on triglyceride hydrolysis. Specifically, variants that 

compromise the regulation or function of the LPL enzyme and impede the breakdown of 

chylomicrons, leading to extreme deviations of triglyceride levels from normal (Chokshi 

et al., 2014). The most common form of FCS—making up 95% or more of cases—results 

from bi-allelic variants within the LPL gene itself. Monogenic disruptions of related 

genes encoding factors that interact with LPL including LMF1, GPIHBP1, APOC2, and 

APOA5, are much less frequent than bi-allelic LPL variants and affect a total of <100 

reported families worldwide (Brahm and Hegele, 2015).  

1.5.3.1.1.2 Multifactorial Chylomicronemia 

In contrast to FCS, multifactorial chylomicronemia (MCM) is much more common, 

complicated and nuanced due to its polygenic nature (Chait and Eckel, 2019). Based on 

the reported Canadian prevalence of adults with severe hypertriglyceridemia, the 

estimated population prevalence of MCM is roughly 1 in 600-1,000 individuals (Dron 

and Hegele, 2020; Johansen et al., 2011a). Because lipolysis activity is only partially 

compromised by polygenic determinants, MCM encompasses a much broader population 

of elevated triglyceride-rich lipoprotein and remnant species than FCS, including 

chylomicrons, VLDL, IDL, and remnant particles. These mechanistic discrepancies are 

also reflected in different clinical features between monogenic FCS and polygenic MCM. 

For instance, onset of polygenic chylomicronemia typically begins in adulthood, and 
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while patients are likely to experience recurrent abdominal pain, nausea, and vomiting as 

in the monogenic form, they are less likely to present lipemia retinalis, and eruptive 

xanthomas (Brahm and Hegele, 2015; Chait and Eckel, 2019). In addition, while the 

absolute risk of acute pancreatitis is high, it occurs less commonly in MCM than in FCS; 

some estimates are ~10-20% over a lifetime, while rates in FCS have been estimated at 

~60-80% (Baass et al., 2020; Gotoda et al., 2012). Not surprisingly, the differences in 

these clinical manifestations and their underlying molecular mechanisms are attributable 

to the complex nature of polygenic inheritance, as there is a wider range of potential 

permutations of genetic factors. 

MCM is polygenic in nature, and unlike FCS, relevant genetic factors are probabilistic in 

that they increase the risk of developing MCM, but do not guarantee its clinical 

expression.  

Rare loss-of-function variants in LPL, LMF1, GPIHBP1, APOA5, and APOC2 are 

important genetic contributors to MCM; however, many heterozygotes for such 

dysfunctional variants have normal lipid profiles (Johansen et al., 2011b; Surendran et al., 

2012); a secondary factor is required to drive expression of the severe phenotype. Not 

only are patients with MCM more likely to carry disruptive heterozygous variants in 

these canonical genes, they are also more likely to carry rare variants in non-canonical 

genes involved in triglyceride metabolism (Johansen et al., 2010; Johansen et al., 2011b; 

Johansen et al., 2012). For instance, CREB3L3 encoding the transcription factor cyclic 

AMP-responsive element-binding protein H (CREBH), is an example of a gene that 

impacts triglyceride levels and was discovered through the use of animal models (Lee et 

al., 2011). In addition, GCKR encoding glucokinase regulatory protein, is an example of a 

gene that harbors rare large-effect determinants of human triglyceride levels that was 

initially identified as a common locus for triglyceride levels through GWAS (Rees et al., 

2014).  

In addition to the accumulation of heterozygous rare variants within triglyceride-related 

genes, another defining genetic feature of MCM is the increased burden of triglyceride-

associated SNPs (Teslovich et al., 2010; Wang et al., 2008b). Many GWASs have 
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successfully identified these common variants and their small phenotypic effects on 

triglyceride levels (Albrechtsen et al., 2013; Asselbergs et al., 2012; Below et al., 2016; 

Chasman et al., 2009; Liu et al., 2017; Lu et al., 2017; Peloso et al., 2014; Teslovich et 

al., 2010; Willer et al., 2013). Several of these SNPs are within loci already known to be 

involved in triglyceride metabolism, including LPL and APOA5 (Kuivenhoven and 

Hegele, 2014). Others were found in close proximity to genes that at the time were not 

relevant, but were found to be in subsequent studies (i.e. GCKR); and many SNPs 

identified were intergenic and may be important in regulatory processes. When 

considering triglyceride-associated SNPs in MCM patients compared to normolipidemic 

individuals, a distinct increase in SNP accumulation in these patients has been observed 

(Johansen et al., 2010; Johansen et al., 2011b). Individually, each SNP has a slight 

influence on triglyceride levels; however, when a substantial burden of multiple small-

effect variants is present in an individual, it can synergistically contribute towards an 

overall large phenotypic effect.  

The contributory effects coming from rare heterozygous variants with larger phenotypic 

influences and the excessive accumulation of common variants scattered throughout the 

genome, all work in concert to produce polygenic MCM due to perturbations of 

chylomicrons, as well as other triglyceride-rich lipoproteins.  

1.5.3.1.2 Mild-to-moderate hypertriglyceridemia  

Mild-to-moderate hypertriglyceridemia is defined as total plasma triglyceride between 

2.0 and 9.9 mmol/L (Hegele et al., 2014) and most often results from elevations of liver-

derived, triglyceride-rich lipoprotein species such as VLDL and their remnants, rather 

than chylomicrons. Thus, factors related to biosynthesis, secretion and catabolism of 

VLDL would be relatively more important in susceptibility for mild-to-moderate 

hypertriglyceridemia. In contrast, factors related to biosynthesis, secretion and catabolism 

of chylomicrons are relatively more important in susceptibility to severe 

hypertriglyceridemia, although there is considerable overlap with factors that modulate 

VLDL levels, particularly on the catabolic side (Dron and Hegele, 2016). 
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Unsurprisingly, a similar general architecture of genetic susceptibility is seen in patients 

with mild-to-moderate hypertriglyceridemia and in patients with polygenic MCM (Dron 

and Hegele, 2016; Hegele et al., 2014; Johansen et al., 2011b). This includes: (i) higher 

odds of carrying a heterozygous rare variant in one of the five canonical metabolism 

genes (Johansen et al., 2010; Johansen et al., 2011b; Johansen et al., 2012; Surendran et 

al., 2012); and (ii) an increased cumulative burden of small-effect SNPs (Johansen et al., 

2011b). The relative burden of these factors together with secondary non-genetic factors 

may determine the severity of the phenotype between individuals (Dron and Hegele, 

2016; Hegele et al., 2014).  

1.5.3.1.3 Hypertriglyceridemia and risk for cardiovascular 
disease 

The relationship between hypertriglyceridemia and CVD stems from the disturbed 

lipoprotein fractions in the individual. Mild-to-moderate hypertriglyceridemia is 

associated with a higher risk for CVD because the predominantly disturbed lipoproteins 

are VLDL and IDL (Brahm and Hegele, 2015). These triglyceride-rich lipoprotein 

species of hepatic origin are atherogenic in nature due to their increased cholesterol 

content compared to chylomicrons, as this cholesterol can contribute towards the build-up 

of atherosclerotic lesions (Varbo and Nordestgaard, 2016). This is a modernization of the 

seminal Zilversmit hypothesis, an early articulation of the atherogenic role of 

triglyceride-rich lipoproteins (Zilversmit, 1995): according to this model, triglyceride-

rich lipoproteins are metabolically independent of LDL cholesterol in atherogenesis, and 

act additively to further increase CVD risk.  

From the distribution of triglyceride levels within the population, most patients with 

hypertriglyceridemia fall within the mild-to-moderate range, and thus any potential 

atherosclerosis risk is tied to elevations in VLDL and IDL particles. At higher strata of 

triglyceride levels, chylomicrons and their remnants begin to predominate. In this 

important but much less prevalent subgroup, it has been more or less axiomatic that 

chylomicrons are too large to penetrate the arterial wall (Chait and Brunzell, 1992; Lewis 

et al., 2015). However, chylomicron remnants, especially on the smaller end of the 

spectrum, may contribute to atherogenesis since they are smaller in size and may be able 
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to directly contribute their cholesterol towards atherosclerotic lesions after passing 

through the arterial wall (Lewis et al., 2015).  

Thus, among the diverse range of patients with hypertriglyceridemia, those with 

monogenic impairment of triglyceride hydrolysis would primarily have chylomicronemia 

because the deficiency in LPL activity prevents their catabolism, and would be at a 

relatively low risk for atherosclerosis. In contrast, among individuals with the same 

degree of triglyceride elevation due to varied polygenic plus secondary factors, the 

spectrum of triglyceride-rich particles is much more diffuse, and includes many remnant 

particles, since lipolysis is not completely impaired (Johansen and Hegele, 2012). Here 

one could postulate that atherosclerosis risk is increased, due to the relative abundance of 

atherosclerosis-related remnants.   

1.5.3.2 Hypotriglyceridemia 

Hypotriglyceridemia is defined as very low or absent triglyceride levels. As with 

hypertriglyceridemia, genetic determinants of hypotriglyceridemia include ultra-rare 

monogenic syndromic disorders that are associated with a range of other lipoprotein, 

biochemical and clinical abnormalities, such as abetalipoproteinemia and homozygous 

hypobetalipoproteinemia, which result, respectively, from bi-allelic variants in MTTP and 

APOB (Hegele, 2009). Importantly, heterozygotes for MTTP loss-of-function variants 

have no obvious clinical or biochemical phenotypes. 

Non-syndromic forms of hypotriglyceridemia have been reportedly driven by 

deficiencies of apo C-III and ANGPTL3, which result from bi-allelic variants in APOC3 

and ANGPTL3, respectively (Musunuru et al., 2010; Pollin et al., 2008). Carriers for 

heterozygous loss-of-function variants in these genes, as well as in the ANGPTL4 gene, 

have been reported to have significantly lower triglyceride levels and a decreased risk for 

CVD (Dewey et al., 2016; Jorgensen et al., 2014; Myocardial Infarction et al., 2016; 

Pisciotta et al., 2012; Romeo et al., 2007; Stitziel et al., 2017; Tg et al., 2014). 
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1.6 Genetic assessment of dyslipidemia  

Historically, genetic researchers have availed themselves of the prevalent genetic 

technologies of any particular era. The low-hanging fruit—rare large-effect variants (i.e. 

highly penetrant, disease-causing mutations)—were first identified by studying kindreds 

containing individuals with clinically diagnosed dyslipidemia syndromes (Dron and 

Hegele, 2016; Hegele, 2009). In that era, Sanger sequencing was used to identify rare 

variants in candidate genes—sometimes highlighted through linkage analysis—driving 

monogenic forms of dyslipidemia (Dron and Hegele, 2016). The effects of these variants 

are so strong and highly penetrant that they faithfully co-segregate with disease 

phenotypes across generations; their pathogenicity can be inferred by studying only a few 

individuals or families.  

Over the last decade, the focus has shifted towards studying the influence of SNP 

genotypes on inter-individual variation of lipid traits in the general population. In contrast 

to rare large-effect variants, the weak and inconsistent effects of common SNPs are 

difficult to ascertain in families. Their modest phenotypic effects underlie low phenotypic 

penetrance, with no obvious co-segregation across generations. The inconsistent 

association of SNPs with lipid traits in small samples was also a feature of candidate 

gene-association studies performed in the 1990's and early 2000's (Hegele, 2002). More 

recently, aggregation and meta-analyses of large cohorts coupled with cost-effective, 

microarray-based, high-throughput genotyping has enabled informative GWASs that 

have revolutionized our understanding of the small phenotypic effects imparted by SNPs 

(Christoffersen and Tybjaerg-Hansen, 2015).  

GWASs have allowed researchers to uncover common variants dispersed across the 

genome—including intergenic and intronic regions—that are associated with small but 

consistent phenotypic effects in essentially normolipidemic individuals. To date, over 300 

SNPs with subtle effects on lipid or lipoprotein traits have been described (Albrechtsen et 

al., 2013; Asselbergs et al., 2012; Below et al., 2016; Chasman et al., 2009; Klarin et al., 

2018; Liu et al., 2017; Lu et al., 2017; Peloso et al., 2014; Teslovich et al., 2010; Willer 

et al., 2013). While many of the significantly associated loci were already well-known in 
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the field, the majority of loci uncovered by GWAS had no previous known connection to 

lipoprotein metabolism.  

We are now well into the “post-GWAS” era, in which NGS technologies have become 

more accessible in both clinical and research settings. Researchers can explore rare 

variants in important genetic loci that arose from candidate gene studies and GWASs, and 

can characterize rare large-effect variants in genes not previously known to be related to 

lipid traits. The present genetic technological methods have brought the field to a point 

where assessing multiple types of genetic factors across virtually all areas of the genome 

is feasible.   

1.6.1 LipidSeq: a targeted next-generation sequencing panel for 
dyslipidemia phenotypes 

One of the main objectives of the Hegele Lab is to uncover and understand the genetic 

factors underlying the phenotypes of patients from the London Lipid Genetics Clinic. 

Because the clinical practice encompasses all dyslipidemias and many metabolic 

syndromes, a primary focus has been on disease ontology (Fu et al., 2013; Hegele, 2009; 

Rahalkar and Hegele, 2008) and on documenting dyslipidemia-associated variants (Fu et 

al., 2013). With this focused interest, a targeted NGS panel, called “LipidSeq”, was 

designed to aid in the genetic diagnosis and research of this set of diseases and associated 

genetic variants (Dron et al., 2020; Johansen et al., 2014). 

Unlike whole-exome sequencing in which all genes are sequenced, or whole-genome 

sequencing in which the entire genome is sequenced, the LipidSeq panel was designed to 

target a specific subset of genes (Figure 1.15) underlying known dyslipidemias and other 

disorders for which dyslipidemia is a secondary manifestation, such as inherited forms of 

diabetes (Hegele, 2019; Johansen et al., 2014). With a high read-depth of coverage, 

sequencing data generated from LipidSeq has allowed for the ability to concurrently 

identify CNVs along with SNVs; previously, separate dedicated methods to identify 

CNVs were required, such as multiplex ligation-dependent probe amplification (MLPA) 

or microarrays (Iacocca and Hegele, 2017, 2018). Furthermore, because of our 

laboratory’s longstanding interest in the polygenic basis of plasma lipids (Hegele et al., 
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1995; Johansen et al., 2011b; Wang et al., 2008b), the panel was designed to 

simultaneously genotype 185 SNP loci that were reported from early GWASs to be 

associated with lipid and lipoprotein levels (Kathiresan et al., 2009; Teslovich et al., 

2010; Willer et al., 2013). This focused interest on a subset of SNPs negated the need for 

running full microarrays in conjunction with sequencing the phenotypically relevant 

genes of interest.  

Thus, LipidSeq is a targeted NGS panel that can be used to simultaneously detect: (i) 

functionally relevant rare SNVs and CNVs in genes underlying monogenic 

dyslipidemias; and (ii) SNPs associated with lipid and lipoprotein levels that can be used 

to develop lipid-specific polygenic scores (Dron et al., 2020). This method allows for the 

comprehensive assessment of a range of genetic determinants relevant to dyslipidemia 

phenotypes. Until now, the assessment of genetic factors related to dyslipidemia were 

dependent on the technology used: rare variants could only be identified through gene-

sequencing approaches like Sanger or whole-exome sequencing, while SNPs could only 

be assessed using microarrays or Sanger sequencing of SNP loci. Short of performing 

whole-genome sequencing—which was neither economically feasible for thousands of 

patient samples, nor computationally feasible for large-scale bioinformatically analysis—

there were no effective methodological options for the in-depth genetic assessments of 

dyslipidemia cohorts prior to the development of LipidSeq.  
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Figure 1.15 Genes targeted by the LipidSeq panel. 

The 69 genes that are targeted by LipidSeq panel, grouped by their associated lipid or 

metabolic phenotype. Bolded genes were included in Table 1.1, as they have causal or 

statistical associations with different named dyslipidemias. “*” denotes genes that appear 

in multiple lipid categories. Abbreviations: HDL = high-density lipoprotein; LDL = low-

density lipoprotein. 
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1.7 Thesis outline 

1.7.1 Overall research aim and objectives 

To date, independent studies have examined the genetic determinants underlying 

different dyslipidemia phenotypes—hypoalphalipoproteinemia, 

hyperalphalipoproteinemia, and hypertriglyceridemia. However, despite appreciation for 

the range of genetic variation that influence phenotypic susceptibility, the comprehensive 

genetic profile for each phenotype has not been objectively or rigorously quantified. It 

stands to reason that a more detailed characterization of multiple genetic determinants—

rare SNVs, CNVs, and common SNPs—related to each dyslipidemia of interest will help 

improve general academic knowledge of the full range of genetic factors driving these 

phenotypes. With this information, concerted efforts can be made to establish methods to 

better determine genetic risk for each dyslipidemia, with possible downstream 

applications related to mitigating associated health risks like CVD.  

The aim of my PhD research was to robustly characterize the genetic determinants of 

hypoalphalipoproteinemia, hyperalphalipoproteinemia, and hypertriglyceridemia using 

sequencing data generated from the targeted NGS panel, LipidSeq. 

My first objective was focused on the phenotypic extremes of HDL cholesterol levels and 

assessing the prevalence of rare SNVs and extreme accumulation of SNPs in 

hypoalphalipoproteinemia and hyperalphalipoproteinemia patients compared to 

normolipidemic individuals. Rare SNVs were screened for following a candidate gene 

approach for each phenotype, and I developed a novel polygenic risk score to quantify 

the accumulation of HDL cholesterol-associated SNPs. The details of these efforts are 

provided in Chapter 2. After the release of a novel CNV detection algorithm, I 

subsequently screened the study subjects from Chapter 2 for CNVs disrupting the same 

candidate genes of interest. The details of this effort are provided in Chapter 3. 

My second objective was focused on elevations in triglyceride levels and assessing the 

prevalence of rare SNVs, CNVs, and the extreme accumulation of SNPs in severe 

hypertriglyceridemia and mild-to-moderate hypertriglyceridemia patients, compared to 
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normolipidemic individuals. Rare variants were screened for following a candidate gene 

approach, and I developed a novel polygenic risk score to quantify the accumulation of 

triglyceride-associated SNPs. The details of these efforts for severe hypertriglyceridemia 

are provided in Chapters 4 and 5, while the details of these efforts for mild-to-moderate 

hypertriglyceridemia are provided in Chapter 6. 

My final objective was to employ a custom-designed bioinformatic pipeline (Appendix 

L) to perform a gene-based RVAS in an attempt to identify rare variants in non-candidate 

(i.e. “non-canonical”) genes that might be further contributing towards susceptibility 

towards extreme elevations in triglyceride levels, namely, severe hypertriglyceridemia. 

The details of these efforts are provided in Chapter 7. 

1.7.2 Hypothesis  

Extreme levels of circulating lipids, both HDL cholesterol and triglycerides, have 

distinctive and genetically diverse architectures made up of discrete combinations of rare 

SNVs and CNVs with larger phenotypic impacts and common SNPs with smaller 

phenotypic effects, that cumulatively contribute towards polygenic susceptibility for (i) 

hypoalphalipoproteinemia; (ii) hyperalphalipoproteinemia; or (iii) hypertriglyceridemia.  

1.7.3 Summary 

This Dissertation details my research related to uncovering and understanding the 

comprehensive genetic profile of patients with either: (i) hypoalphalipoproteinemia; (ii) 

hyperalphalipoproteinemia; or (iii) hypertriglyceridemia. To achieve this, I utilized the 

LipidSeq targeted NGS panel to capture genetic variation—ranging from rare SNVs and 

CNVs to common SNPs—across metabolically relevant genetic loci in over 3,000 patient 

and control samples. Collectively, this work has furthered our understanding of the 

genetic nature of the aforementioned phenotypes of interest. Importantly, my work has 

highlighted a prominent polygenic underpinning for each dyslipidemia phenotype, 

demonstrating the importance of considering common genetic variants—despite having 

smaller phenotypic effects—in conjunction with heterozygous rare, large-effect variants 

for an improved understanding towards genetic factors contributing towards the 

susceptibility for extremes of either HDL cholesterol or triglyceride levels.  
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2.1 Abstract 

Objective: Levels of high-density lipoprotein (HDL) cholesterol remain a superior 

biochemical predictor of cardiovascular disease risk, but its genetic basis is incompletely 

defined. In patients with extreme HDL cholesterol concentrations, we concurrently 

evaluated the presence of rare variants and the accumulation of multiple common 

variants.  

Methods and Results: In a discovery sample of 255 unrelated lipid clinic patients with 

extreme HDL cholesterol levels, we used a targeted next-generation sequencing panel to 

evaluate rare variants in known HDL metabolism genes, and simultaneously assessed the 

burden of common variants using a novel polygenic risk score. Two additional cohorts 

were used to validate our polygenic risk score, totaling 2,794 individuals. After 

combining cohorts, we found rare variants in 18.7% and 10.9% of low and high HDL 

cholesterol patients, respectively. We also found common variant accumulation—

indicated by extreme polygenic risk scores—in an additional 12.8% and 19.3% of overall 

cases of low and high HDL cholesterol extremes, respectively.  

Conclusions: The genetic basis of extreme HDL cholesterol concentrations encountered 

clinically is comprised of both rare and common variants. Multiple types of genetic 

variants should be considered as contributing factors in patients with extreme 

dyslipidemia.   

2.2 Introduction 

Despite apprehension over its direct causal role in atherogenesis and value as a drug 

target (Rosenson, 2016), high-density lipoprotein (HDL) cholesterol remains a valid 

biochemical predictor of cardiovascular disease (CVD) risk (Emerging Risk Factors 

Consortium et al., 2012; Parish et al., 2012; Perk et al., 2012). Understanding the full 

range of factors that determine plasma HDL cholesterol concentrations, including 

genetics, still has relevance for epidemiology and risk projection (Raffield et al., 2013). 

Furthermore, specific etiologies of extreme perturbations of HDL cholesterol may have 
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clinical importance in terms of diagnosis and directed therapies (Hovingh et al., 2015; 

Rosenson, 2016). 

Multiple genetic factors could be present in an individual, creating a polygenic network 

of influential determinants on HDL cholesterol levels (Cohen et al., 2004; Hegele, 2009; 

Motazacker et al., 2013). These determinants include monogenic disorders (Dron and 

Hegele, 2016; Weissglas-Volkov and Pajukanta, 2010), such as extremely low or absent 

HDL cholesterol levels (i.e. “hypoalphalipoproteinemia”) due to bi-allelic rare variants in 

ABCA1, LCAT and APOA1 (Brooks-Wilson et al., 1999; Kuivenhoven et al., 1996; Ng et 

al., 1994; Schaefer et al., 2016), and extremely elevated HDL cholesterol levels (i.e. 

“hyperalphalipoproteinemia”) due to rare variants in CETP, LIPC, SCARB1, and LIPG 

(Hegele et al., 1993; Inazu et al., 1990; Tietjen et al., 2012; Zanoni et al., 2016). In 

contrast, the potential role of other genetic determinants in extreme, non-monogenic HDL 

cholesterol phenotypes, namely common single-nucleotide polymorphisms (SNPs) 

(Rosenson, 2016), has not been systematically evaluated. 

Polygenic factors—which can be assessed by quantifying the accumulation of SNPs with 

small phenotypic effects using polygenic scores—contribute to numerous medical 

conditions, including coronary artery disease (McPherson and Tybjaerg-Hansen, 2016) 

and diabetes (Bonnefond and Froguel, 2015). Among dyslipidemias, polygenic factors 

play a substantial role in familial hypercholesterolemia (FH) (Talmud et al., 2013), which 

was previously considered an archetypal “monogenic” disorder. For instance, in patients 

referred with extremely elevated low-density lipoprotein (LDL) cholesterol, targeted 

next-generation sequencing (NGS) demonstrated that ~50% of individuals had 

heterozygous rare variants while another ~16% had an accumulation of common SNPs, 

identified previously from genome-wide association studies (GWASs) as determinants of 

LDL cholesterol (Wang et al., 2016). While earlier sequencing experiments indicate that 

11-35% of patients with extremely low HDL cholesterol and 5-20% of patients with 

extremely high HDL cholesterol have heterozygous rare variants driving the phenotypes, 

the proportion of such patients with excessive GWAS-identified SNPs, as quantified 

using polygenic risk scores, is unknown (Candini et al., 2010; Cohen et al., 2004; 
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Holleboom et al., 2011; Kiss et al., 2007; Sadananda et al., 2015; Singaraja et al., 2013; 

Tietjen et al., 2012).  

Here we used targeted NGS to robustly characterize the genetic determinants influencing 

HDL cholesterol levels in patients with low and high HDL cholesterol phenotypes. This 

allowed us to concurrently evaluate the burden of rare variants and common SNPs, the 

latter assessed using a polygenic score. We saw that ~30% of individuals at each HDL 

cholesterol extreme had an identifiable genetic determinant, with an extreme SNP 

accumulation being more common than the presence of a rare variant. Our findings 

illustrate that both types of determinants are enriched in individuals with extremely low 

and high HDL cholesterol levels compared to normolipidemic controls.   

2.3 Materials and Methods 

2.3.1 Study subjects 

Patients of interest included those of European ancestry and with either low or high levels 

of HDL cholesterol from the Lipid Genetics Clinic at the London Health Sciences Centre, 

University Hospital (London ON, Canada), the Montréal Heart Institute (MHI) Biobank 

(Montréal, QC, Canada), or the University of Pennsylvania (UPenn) (Philadelphia, PA, 

USA).  

Low HDL cholesterol was defined as ≤0.8 mmol/L and ≤1.0 mmol/L in males and 

females, respectively. High HDL cholesterol was defined as ≥1.4 mmol/L and ≥1.8 

mmol/L in males and females, respectively. These thresholds adhere closely to the top 

and bottom 10th percentiles of HDL cholesterol levels in a population largely of European 

ancestry (Rifkind and Segal, 1983). The two patient exclusion criteria were: 1) 

triglyceride levels ≥3.37 mmol/L—as low HDL cholesterol can simply be secondary to 

elevated triglycerides, which have their own distinct determinants—and 2) diagnosis of 

monogenic syndromes of extreme HDL cholesterol (e.g. Tangier disease). 

In adherence to the Declaration of Helsinki, all patients provided written, informed 

consent for collection of personal data and DNA with approval from the Western 
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University (London ON, Canada) ethics review board (no. 07290E) or the patients’ 

originating study centre. 

As a reference control cohort of normolipidemic individuals, the publicly available data 

pertaining to the European subgroup of the 1000 Genomes Project (N=503) were studied. 

An additional 1,198 normolipidemic individuals were assessed from the MHI Biobank, 

ascertained as previously described (Low-Kam et al., 2016). 

2.3.2 DNA preparation and targeted sequencing 

Genomic DNA was extracted from patient blood samples using the Puregene® DNA 

Blood Kit (Gentra Systems, Qiagen Inc., Mississauga, ON, Canada) (Cat No. 158389). 

Sequencing libraries consisting of 24 patient DNA samples were generated for indexing 

and enrichment with the Nextera® Rapid Capture Custom Enrichment Kit (Cat No. FC-

140-1009) “LipidSeq” design (Johansen et al., 2014). Briefly, samples were enriched for 

genomic areas in accordance with our “LipidSeq” panel, which captures 69 genes (all 

exons, and 50 bases into the intron from each splice junction) and 185 SNPs associated 

with dyslipidemia and other metabolic disorders (Figure 1.15) (Johansen et al., 2014). 

These libraries were then sequenced at the London Regional Genomics Centre 

(www.lrgc.ca; London ON, Canada) on an Illumina MiSeq personal sequencer (Illumina, 

San Diego CA, USA).  

Sequencing and genotyping methods performed at the MHI Biobank (Low-Kam et al., 

2016) and UPenn (Zanoni et al., 2016) are described elsewhere. 

2.3.3 Bioinformatic processing of sequencing data   

After sequencing, two FASTQ files were generated for each patient sample—one each 

for sequencing reads generated for forward and reverse strands—and imported into CLC 

Bio Genomics Workbench (version 7.5; CLC Bio, Aarhus, Denmark). For each patient 

sample, the sequencing reads within each FASTQ file were mapped and aligned against 

the human reference genome (GRCh37/hg19); a secondary local alignment was 

performed to control for possible misalignment due to insertions or deletions not present 

in the reference genome. Duplicate mapped reads due to PCR amplification from the 

http://www.lrgc.ca/
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library preparation were removed to ensure accurate depth-of-coverage metrics for each 

sequenced nucleotide. From the reassembled sequencing reads, variants with a minimum 

30-fold coverage and 35% variant frequency were called for each patient sample and 

exported into VCF files (Dilliott et al., 2018; Johansen et al., 2014). 

Sequence data from the European subset of the 1000 Genomes Project were downloaded 

and filtered for the genomic coordinates captured by our LipidSeq panel using PLINK 

v1.9 (Purcell et al., 2007). 

2.3.4 Annotation and analysis of rare variants 

Variants were annotated with a customized ANNOVAR annotation pipeline (Wang et al., 

2010). Annotation methods performed at the MHI Biobank (Low-Kam et al., 2016) and 

UPenn (Zanoni et al., 2016) are described elsewhere. 

Rare variants were defined as those with a minor allele frequency of ≤1% or missing in 

the 1000 Genomes Project (http://browser.1000genomes.org/index.html) (Genomes 

Project et al., 2015), Exome Sequencing Project (ESP; 

http://evs.gs.washington.edu/EVS/), and Exome Aggregation Consortium (ExAC; 

http://exac.broadinstitute.org/) (Lek et al., 2016) databases. Rare variants were considered 

to have large phenotypic effects if they met the following criteria: 1) sequence ontology 

of either missense, nonsense, deletion, insertion, splice-acceptor site, or splice-donor site; 

and 2) deleterious or damaging predictions in at least half of the available in silico 

prediction tools, including Polymorphism Phenotyping version 2 (PolyPhen2; 

http://genetics.bwh.harvard.edu/pph2/) (Adzhubei et al., 2013), Sorting Intolerant from 

Tolerant (SIFT; http://sift.jcvi.org/) (Kumar et al., 2009), MutationTaster 

(http://www.mutationtaster.org/), Combined Annotation Dependent Depletion (CADD; 

http://cadd.gs.washington.edu/score) (Kircher et al., 2014), Splicing Based Analysis of 

Variants (SPANR; http://tools.genes.toronto.edu/) (Xiong et al., 2015), and Automated 

Splice Site and Exon Definition Analyses (ASSEDA; http://splice.uwo.ca/) (Mucaki et 

al., 2013). 

http://browser.1000genomes.org/index.html
http://evs.gs.washington.edu/EVS/
http://exac.broadinstitute.org/
http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org/
http://www.mutationtaster.org/
http://cadd.gs.washington.edu/score
http://tools.genes.toronto.edu/
http://splice.uwo.ca/
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We also considered rare variants that did not necessarily meet the above criteria, but were 

previously reported in the Human Gene Mutation Database 

(http://www.hgmd.cf.ac.uk/ac/all.php) (Stenson et al., 2014) as causative for either 

lowering or raising levels of HDL cholesterol.  

Of the variants meeting the above criteria, those within lipid-associated genes with 

candidate (primary) and non-candidate (secondary) effects on HDL cholesterol levels 

were considered for analysis (Table 2.1). It is important to note that since the UPenn 

cohort comes from an established on-going study (the UPenn High HDL Cholesterol 

Study), the criteria used in identifying rare variants of interest differs slightly from what 

was considered here (Edmondson et al., 2009; Zanoni et al., 2016). To ensure consistent 

filtering criteria, the UPenn cohort was excluded from the rare variant analysis and was 

only used in the validation of our polygenic score.   

  

http://www.hgmd.cf.ac.uk/ac/all.php
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Table 2.1 Genes with candidate (primary) and non-candidate (secondary) influences 

on HDL cholesterol levels. 

Influence on 

HDL cholesterol 
Phenotype  Gene Related disorder  

Primary 

Low HDL 

cholesterol 

ABCA1 Tangier disease   

APOA1 Apolipoprotein A-I deficiency   

LCAT Familial LCAT deficiency 

High HDL 

cholesterol 

LIPC Hepatic lipase deficiency   

SCARB1 SR-BI deficiency 

CETP CETP deficiency   

LIPG Hyperalphalipoproteinemia 

Secondary 

Low 

triglyceride 
APOC3 Apolipoprotein C-III deficiency 

High 

triglyceride 

LPL Lipoprotein lipase deficiency   

APOA2 Apolipoprotein C-II deficiency  

APOA5 Apolipoprotein A-V deficiency 

LMF1 Lipase maturation factor deficiency 

GPIHBPI Severe hypertriglyceridemia 

GPD1 Infantile hypertriglyceridemia 

APOE Dysbetalipoproteinemia 

Genes of interest were selected based on phenotypic reporting by Johansen et al. (2014). Abbreviation: 

CETP = cholesteryl ester transfer protein; HDL = high-density lipoprotein; LCAT = lecithin-cholesterol 

acyltransferase; SR-BI = scavenger receptor class B type I.  
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2.3.5 Polygenic risk score for high-density lipoprotein cholesterol 
levels 

Between the LipidSeq targets and 1000 Genomes Project variant data, genotypes for 34 

HDL cholesterol-associated SNPs were available for study; these SNPs were selected 

from the most recent GWAS meta-analyses on blood lipids and lipoproteins, published 

by the Global Lipids Genetics Consortium (GLGC) (Willer et al., 2013). A polygenic 

score encompassing all available SNPs was calculated for patients in the discovery cohort 

(i.e. the Lipid Genetics Clinic cohort). In the interest of future application and usability, 

smaller sets of 10 SNPs or less were tested and compared to the original 34-SNP score—

the aim was to select a smaller number of SNPs that were just as informative as the full 

set of 34. For each SNP set, SNPs could not be in linkage disequilibrium (LD) with each 

other. 

Scores were calculated using a weighted approach; the number of alleles associated with 

raising HDL cholesterol at a locus (0, 1, or 2) were summed and multiplied by the 

reported effect size for the respective allele. The products for each locus were totalled to 

provide the overall polygenic risk score for an individual. The underlying assumption 

when calculating the polygenic risk score was that each allele had an additive effect 

towards their respective HDL cholesterol phenotypes. Higher scores indicated that 

individuals carried a greater number of alleles associated with raising HDL cholesterol 

levels, while lower scores indicated that individuals carried fewer alleles associated with 

raising HDL cholesterol, and therefore carried a greater number of alleles associated with 

lowering HDL cholesterol levels. 

2.3.6 Statistical analysis  

Normality was assessed using the D’Agostino and Pearson test. Differences between 

parametric data were assessed using an unpaired Students t-test while differences 

between nonparametric data were assessed using a Mann-Whitney test. Differences 

between mean polygenic risk scores were assessed using a one-tailed, unpaired Wilcoxon 

rank-sum tests. All tests were performed assuming unequal variances and are reported as 

the mean ± standard deviation (SD). Odds ratios (ORs) were derived using 2-by-2 
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contingency tables, with Fisher’s exact tests to assess significance. Statistical analyses 

were conducted using SAS (version 9.3; SAS Institute, Cary NC, USA). Statistical 

significance was defined as P<0.05. 

2.4 Results 

2.4.1 Characteristics of study subjects 

Two hundred and fifty-five unrelated patients were selected for study from the Lipid 

Genetics Clinic; 136 patients had low HDL cholesterol levels and 119 patients had high 

HDL cholesterol levels. An additional cohort of 201 and 347 patients with low and high 

HDL cholesterol levels, respectively, were selected from the MHI Biobank. Further, 349 

and 699 patients with low and high HDL cholesterol levels, respectively, were selected 

from UPenn, ascertained as previously described (Edmondson et al., 2009; Zanoni et al., 

2016). 

Clinical and demographic information for patients with low and high HDL cholesterol 

levels from the Lipid Genetics Clinic, the MHI Biobank, and UPenn are summarized in 

Table 2.2 and Table 2.3.  

2.4.2 Rare variants identified in high-density lipoprotein 
cholesterol-altering genes  

A total of 68 unique variants were identified in patients from the Lipid Genetics Clinic: 

43 were in primary genes, and 10 were in secondary genes (Figure 2.1A, Appendix C, 

Appendix D). When considering variants in the primary genes, 72.1% were missense, 

4.7% were splicing, 14.0% were frameshift, and 9.3% were nonsense (Figure 2.1B). One 

individual was homozygous for ABCA1 p.G851R, and one individual was a compound 

heterozygote for ABCA1 p.W590C and p.W590L. A single individual carried rare 

heterozygous variants in both a low and high HDL cholesterol-associated gene—i.e. 

ABCA1 and SCARB1—and presented with low HDL cholesterol levels.  



104 

 

Table 2.2 Clinical and demographic information of patients with low HDL cholesterol levels (N=686). 

 Lipid Genetics Clinic Montréal Heart Institute Biobank University of Pennsylvania 

Males Females Males Females Males Females 

N 90 46 131 70 202 147 

Age 48.1 ± 16.8* 45.4 ± 12.5* 64.4 ± 10.4 68.9 ± 8.4 56.0 ± 12.2 53.2 ± 15.0 

BMI (kg/m2) 29.0 ± 5.6* 28.8 ± 6.0* 31.0 ± 5.2* 31.4 ± 6.4* 32.4 ± 5.0* 34.5 ± 7.4* 

Total cholesterol (mmol/L) 4.2 ± 1.4 5.8 ± 2.3 3.4 ± 1.1 3.7 ± 1.0 4.0 ± 1.1 4.5 ± 1.3 

HDL cholesterol (mmol/L) 0.6 ± 0.2 0.8 ± 0.2 0.7 ± 0.1 0.9 ± 0.1 0.8 ± 0.2 0.9 ± 0.2 

LDL cholesterol (mmol/L) 2.7 ± 1.3 4.0 ± 2.3 2.2 ± 1.0 2.2 ± 0.9 2.7 ± 1.3 3.2 ± 1.7 

Triglyceride (mmol/L) 2.2 ± 1.3 2.0 ± 1.1 2.2 ± 0.7 2.3 ± 0.7 1.8 ± 0.7 1.6 ± 0.6 

CVD Hx 45.2%* 21.9%* 60.3% 67.1% 11.9%* 12.9%* 

Values are indicative of the mean ± SD. “*” indicates means were calculated with an incomplete dataset. Abbreviations: BMI = body-mass index; CVD Hx = 

cardiovascular disease history; HDL = high-density lipoprotein; LDL = low-density lipoprotein.  

Table 2.3 Clinical and demographic information of patients with high HDL cholesterol levels (N=1,165). 

 Lipid Genetics Clinic Montréal Heart Institute Biobank University of Pennsylvania 

Males Females Males Females Males Females 

N 60 59 280 67 217 482 

Age 58.5 ± 14.2 58.6 ± 10.5 65.6 ± 10.1 71.2 ± 7.2 58.7 ± 14.9 58.2 ± 11.7 

BMI (kg/m2) 26.5 ± 3.7 25.3 ± 3.5* 26.9 ± 4.5*  26.4 ± 6.0* 29.0 ± 5.0* 27.2 ± 7.0* 

Total cholesterol (mmol/L) 5.7 ± 1.4 6.9 ± 1.5 4.5 ± 1.0 a 5.2 ± 1.1 6.5 ± 1.6 6.4 ± 1.2 

HDL cholesterol (mmol/L) 2.1 ± 0.5 2.7 ± 0.7 1.7 ± 0.2 2.1 ± 0.3 2.5 ± 0.5 2.9 ± 0.5 

LDL cholesterol (mmol/L) 3.2 ± 1.4 3.7 ± 1.5 2.4 ± 0.9 a 2.5 ± 0.9 3.0 ± 1.2 3.6 ± 2.0 

Triglyceride (mmol/L) 1.0 ± 0.5 1.2 ± 0.6 1.4 ± 0.6 1.3 ± 0.5 0.9 ± 0.4 0.9 ± 0.4 

CVD Hx  29.8%* 16.7%* 40.7% 31.3% 6.0%* 4.1%* 

Values are indicative of the mean ± SD. “*” indicates means were calculated with an incomplete dataset. Abbreviations: BMI = body-mass index; CVD Hx = 

cardiovascular disease history; HDL = high-density lipoprotein; LDL = low-density lipoprotein.  
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Figure 2.1 Summary of rare variants identified within patients from the Lipid 

Genetics Clinic cohort (N=255). 

A) A total of 68 unique variants were identified: 43 were in primary genes, and 10 were in 

secondary genes. B) For each unique variant within the primary genes, breakdown by 

variant ontology has been presented for patients with low HDL cholesterol levels (left) and 

high HDL cholesterol levels (right). Abbreviations: HDL = high-density lipoprotein.
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Only a few rare variants were identified in secondary genes of interest (Appendix D). In 

nine low HDL cholesterol patients, missense variants were identified in LPL, APOA5, 

LMF1, GPD1, and APOE. In two high HDL cholesterol patients, the same splicing 

variant was identified in APOC3. All variants in the secondary genes were heterozygous. 

Overall, 30.1% and 12.6% of patients from the Lipid Genetics Clinic with low and high 

HDL cholesterol, respectively, carried at least one variant contributing towards their 

phenotype. In the MHI cohort, 10.9% and 10.4% of patients with of patients with low and 

high HDL cholesterol, respectively, carried rare variants—all were heterozygous. In the 

UPenn cohort, since different criteria were used in rare variant identification carriers 

were not considered for analysis. 

2.4.3 Polygenic risk score development 

After testing polygenic risk scores made up of 10 SNPs or less, a set of nine SNPs were 

selected to make up the polygenic risk score used in this study, as the score’s results were 

the most similar to the results from the original 34-SNP score. The nine SNPs were in 

linkage equilibrium and showed significant primary associations with plasma levels of 

HDL cholesterol; some of the loci were previously implicated either directly or indirectly 

to HDL metabolism (Table 2.4). Each SNP was selected on the basis of its reported P-

value; the most significantly associated SNPs were of top priority. The allele associated 

with higher HDL cholesterol levels was taken as the primary variable. 
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Table 2.4 The 9 SNPs used in the polygenic risk score for HDL cholesterol levels. 

Chr:position rsID 
Closest 

gene 

Effect 

allele  
Relation with HDL metabolism 

Variant 

ontology 

1:182199750 rs1689800 ZNF648 A (0.034) Mechanism is poorly characterized. Upstream 

1:230159944 rs4846914 GALNT2 A (0.048) 
Recently confirmed as an important determinant of HDL 

cholesterol (Khetarpal et al., 2016). 
Upstream 

9:104902020 rs1883025 ABCA1 C (0.07) Causative gene for Tangier disease (Hovingh et al., 2015). Downstream 

12:109562388 rs7134594 
MVK-

MMAB 
T (0.035) 

MVK encodes mevalonate kinase, which is involved in 

biosynthesis of cholesterol and isoprenoids (Browne and 

Timson, 2015), although the closely linked MMAB gene 

encoding cob(I)alamin adenosyltransferase may actually 

underlie the HDL cholesterol association at this locus 

(Fogarty et al., 2010).  

Upstream 

12:124777047 rs838880 SCARB1 C (0.048) Causative gene for SR-BI deficiency. Downstream 

15:58391167 rs1532085 LIPC A (0.107) Causative gene for hepatic lipase deficiency. Upstream 

16:56959412 rs3764261 CETP A (0.241) 

Causative gene for CETP deficiency. Facilitates the 

transfer of lipids between HDL and triglyceride-rich 

lipoproteins. 

Upstream 

16:81501185 rs2925979 CMIP C (0.035) Mechanism is poorly characterized. Intronic 

19:8368312 rs7255436 ANGPTL4 A (0.032) 

Regulates lipoprotein lipase with reciprocal effects on 

triglycerides and HDL cholesterol (Dijk and Kersten, 

2014). 

Upstream 

Variant information related to effect size was extracted from Willer et al. (2013). Effect alleles are in reference to trait elevation; the bracketed 

value denotes the effect size of each allele per increase in standard deviation. Variant ontology is relative to the closest gene. Abbreviations: chr 

= chromosome; CETP = cholesteryl ester transfer protein; HDL = high-density lipoprotein;  SR-BI = scavenger receptor class B type I. 
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2.4.4 Testing and validation of the polygenic risk score 

The polygenic score was tested in the Lipid Genetics Clinic cohort and then validated in 

the MHI and UPenn cohorts. The score distribution in each cohort, subdivided by 

phenotype and rare variant carrier status are illustrated in Figure 2.2. Only patients 

without identifiable rare variants (i.e. “non-carriers”) were considered in this analysis. 

In the Lipid Genetics Clinic cohorts, neither carrier group for low nor high HDL 

cholesterol had mean polygenic scores significantly different from the normolipidemic 

controls (data not shown). Compared to the mean polygenic score for normolipidemic 

controls (0.58 ± 0.19), non-carriers with low HDL cholesterol (0.48 ± 0.18, P<0.0001) 

and non-carriers with high HDL cholesterol (0.65 ± 0.21, P=0.0015) had significantly 

lower and greater mean scores, respectively (Figure 2.2A). In addition, 25.3% of non-

carriers with low HDL cholesterol had an excess of alleles associated with lowering HDL 

cholesterol levels, as defined by the bottom 10th percentile of polygenic scores in the 

normolipidemic controls. These patients were 3.00-times (95% CI [1.67-5.35]; 

P<0.0001), as likely to have extremely low polygenic scores compared to the 

normolipidemic controls Figure 2.3). Conversely, 20.2% of non-carriers with high HDL 

cholesterol had an excess of alleles associated with raising HDL cholesterol levels, as 

defined by the top 90th percentile of polygenic scores in the normolipidemic controls. 

These patients were 2.19-times (95% CI [1.21-3.96]; P=0.006), as likely to have 

extremely high polygenic scores compared to the normolipidemic controls (Figure 2.4). 

Patients were defined as having a more polygenic basis for their phenotype if they had an 

extreme polygenic score (extremely low for patients with low HDL cholesterol, and 

extremely high for patients with high HDL cholesterol) (Figure 2.5).  

When patients were grouped by polygenic score decile, there was a strong linear 

relationship between increasing scores and HDL cholesterol levels (Figure 2.6). 

Results from the MHI cohort were similar to those of the Lipid Genetics Clinic. 

Compared to the mean polygenic score for normolipidemic controls (0.58 ± 0.19), non-

carriers with low HDL cholesterol (0.55 ± 0.20, P=0.007) and non-carriers with high 
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HDL cholesterol (0.64 ± 0.20, P<0.0001) had significantly lower and greater mean 

scores, respectively (Figure 2.2B). However, in contrast to the Lipid Genetics Clinic 

cohort, only the non-carriers with high HDL cholesterol showed a significantly increased 

prevalence of having extremely high polygenic scores (OR: 2.12 [95% CI: 1.48-3.02]; 

P<0.0001) (Figure 2.5). 

From the UPenn cohort, only the non-carriers with high HDL cholesterol (0.66 ± 0.20, 

P<0.0001) had a mean polygenic score significantly greater than the normolipidemic 

controls (0.58 ± 0.19) (Figure 2.2C). Similarly, only in the non-carriers with high HDL 

cholesterol was there was a significantly increased prevalence of having extremely high 

polygenic scores (OR: 2.27 [95% CI: 1.59-3.24]; P<0.0001) (Figure 2.6). 
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Figure 2.2 Polygenic risk score distribution of non-carrier patients between different 

cohorts. 

Violin plots illustrate the distribution of polygenic risk scores in normolipidemic controls, 

patients with low HDL cholesterol, or patients with high HDL cholesterol in the A) Lipid 

Genetics Clinic cohort; B) the MHI Biobank cohort; and C) UPenn cohort. Red diamonds 

mark the mean score of the group. The top and bottom dashed lines represent the threshold 

for the top 90th and bottom 10th percentiles of scores in the normolipidemic controls from 

the 1000 Genomes Project, respectively. P-values were generated from a Kruskal-Wallis 

test and adjusted with Dunn’s multiple comparisons based on mean polygenic risk score 

values between groups. P-values: * <0.05; ** <0.01; *** <0.001. Abbreviations: HDL = 

high-density lipoprotein.
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Figure 2.3 Differences in extreme polygenic risk scores between carrier and non-

carrier patients with low HDL cholesterol levels. 

This forest plot illustrates the odds ratio of carriers or non-carriers for rare variants having 

an extreme accumulation of common HDL cholesterol-lowering alleles (as indicated by an 

extremely low polygenic risk score) in patients from different cohorts, compared to 

normolipidemic controls. The dashed line indicates an odds ratio of 1.0. P-values were 

generated using a Fisher’s exact tests. P-values: ** <0.01; **** <0.0001. Abbreviations: 

MHI = Montréal Heart Institute; UPenn = University of Pennsylvania.  
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Figure 2.4 Differences in extreme polygenic risk scores between carrier and non-

carrier patients with high HDL cholesterol levels. 

This forest plot illustrates the odds ratio of carriers or non-carriers for rare variants having 

an extreme accumulation of common HDL cholesterol-raising alleles (as indicated by an 

extremely high polygenic risk score) in patients from different cohorts, compared to 

normolipidemic controls. The dashed line indicates an odds ratio of 1.0. P-values were 

generated using a Fisher’s exact tests. P-values: ** <0.01; **** <0.0001. Abbreviations: 

MHI = Montréal Heart Institute; UPenn = University of Pennsylvania. 
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Figure 2.5 The comparison of genetic profiles of extreme HDL cholesterol phenotypes 

between cohorts. 

Percentages were determined for individuals from the A) Lipid Genetics Clinic cohort; B) 

the MHI Biobank cohort; C) UPenn cohort; and D) normolipidemic controls. It must be 

noted that the UPenn cohort was not screened for rare variants. Abbreviations: HDL = 

high-density lipoprotein; MHI = Montréal Heart Institute; UPenn = University of 

Pennsylvania.  
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Figure 2.6 Association between polygenic risk score deciles and HDL cholesterol 

levels. 

Mean HDL cholesterol levels for each polygenic risk score decile is shown for non-carriers 

from the Lipid Genetics Clinic cohort. There is a strong linear relationship between 

increasing polygenic scores and HDL cholesterol levels, as indicated by the R2 value of 

0.8696 (P<0.0001). Vertical bars indicate standard error of the mean.  Abbreviations: HDL 

= high-density lipoprotein.
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2.5 Discussion 

We report a polygenic risk score for HDL cholesterol that expands the proportion of 

individuals that have a relevant, identifiable genetic determinant. We first confirmed an 

excess of heterozygous rare variants in ABCA1, LCAT and APOA1, and in CETP, LIPC, 

LIPG, and SCARB1 among individuals with extremely low and high HDL cholesterol, 

respectively. Overall, 18.7% and 10.9% of patients with low and high HDL cholesterol 

levels, were rare variant carriers, respectively. Then, among the remaining non-carriers, 

we showed an ~1.5- to 2-fold increased risk of having an extreme polygenic score due to 

an extreme accumulation of SNPs. Overall, 12.8% and 19.3% of patients with low and 

high HDL cholesterol levels, respectively, had an extreme polygenic score. Cumulatively, 

>30% of patients had either a rare variant or an extreme accumulation of SNPs associated 

with their respective HDL cholesterol phenotype. Our study highlights the importance of 

polygenic effects as determinants of extreme HDL cholesterol, and reinforces the 

polygenic nature of this complex trait. 

From the Lipid Genetics Clinic, 47.7% and 30.2% of patients with low and high HDL 

cholesterol levels, respectively, had identifiable genetic factors contributing towards their 

phenotypes. The prevalence of rare variant carriers in the low HDL cholesterol subgroup 

was higher than the prevalence of rare variant carriers in the MHI cohort, perhaps 

reflecting ascertainment bias. Mean HDL cholesterol levels were markedly lower in the 

clinically ascertained low HDL cholesterol subgroup compared with the MHI and UPenn 

cohorts; rare variants may be more important determinants of the phenotype. 

Furthermore, it appeared that when a rare variant was present, it was the main 

determinant of the HDL cholesterol phenotype, overriding a polygenic score favouring 

the opposite phenotype.   

In contrast, among clinically ascertained carriers with low HDL cholesterol levels, many 

also had low polygenic scores. There were non-significant trends towards lower 

polygenic scores among non-carrier patients from MHI and UPenn. This pattern was 

mirrored by respective deficits of high polygenic risk scores in these cohorts (Figure 

2.3). This demonstrates that individuals with low HDL cholesterol levels and no large-
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effect variants had a more prominent polygenic contribution of small-effect variants. In 

the Lipid Genetics Clinic, MHI, and UPenn cohorts, among non-carriers with high HDL 

cholesterol levels, many had high polygenic risk scores (overall OR: 2.27 [95% CI: 1.82-

2.83]; P<0.0001). This pattern was mirrored by deficits of low polygenic risk scores in 

the same cohorts (Figure 2.4). This demonstrates that among individuals with high HDL 

cholesterol and no large-effect variants, there was a significant polygenic contribution 

from small-effect variants. 

We also found that individuals carrying a rare variant and having an extreme polygenic 

score, both in association with the same HDL cholesterol phenotype, did not have HDL 

cholesterol levels that were significantly different than carriers with a normal polygenic 

score (data not shown). This suggests that rare variants and polygenic determinants are 

independent, and when present together, are not necessarily additive: rare variants appear 

to predominantly determine the HDL cholesterol phenotype. This contrasts with 

conclusions derived from a whole-genome sequence analysis of individuals with less 

extreme phenotypes, in whom common variants were determined to be the predominant 

determinants of HDL cholesterol (Morrison et al., 2013). Of course, our cohorts were still 

relatively small: a possible additive or synergistic relationship between rare and common 

variants will require evaluation in much larger samples of such extreme individuals. 

Application of polygenic scores is becoming popular in the area of cardiovascular health 

and related complex traits (Smith et al., 2015). Mendelian randomization studies have 

previously evaluated these scores to infer a causal role of HDL cholesterol in CVD 

outcomes (Voight et al., 2012). However, until now there has been minimal to no 

evaluation of polygenic scores in individuals selected for extremes of HDL cholesterol 

levels.  

Among extreme dyslipidemias, polygenic scores have been well-studied in cohorts of 

patients with extremely high LDL cholesterol levels, particularly FH. For instance, 

among clinically ascertained individuals with likely FH, 50-80% have a heterozygous 

rare variant in either LDLR, APOB or PCSK9, while another 15-20% have an extreme 

polygenic score comprised for LDL cholesterol (Talmud et al., 2013; Wang et al., 2016). 
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The exact proportions of individuals with rare and common variants differ in our cohorts 

with extreme HDL cholesterol levels, but the overall pattern of genetic contributors to 

both complex lipoprotein traits is similar. One possible difference is that syndromic FH 

was intentionally enriched in the extreme LDL cholesterol studies, while we excluded 

patients with known clinical syndromes of extreme HDL cholesterol levels.   

Also, for LDL cholesterol, only individuals with extremely high levels are typically 

studied. In contrast, our current study assessed individuals with both extremes. The fact 

that our polygenic score was directionally associated with both extremes of HDL 

cholesterol (i.e. excessive high and low polygenic among individuals with high and low 

HDL phenotypes, respectively) indicates that this score applies bi-directionally for HDL 

cholesterol.  

There may be clinical relevance in knowing the genetic basis of a patient’s HDL 

cholesterol phenotype. For instance, in patients with high LDL cholesterol, the CVD risk 

compared to normolipidemic individuals was ~22-fold higher in those who carried a 

heterozygous rare variant versus ~6-fold higher among those who did not (Khera et al., 

2016). Although polygenic effects were not evaluated, extreme LDL cholesterol in at 

least some individuals in the latter subgroup likely had a polygenic basis. While both 

groups are at high risk, having such patient-substrata can be used to generate hypotheses 

for different interventions under the framework of precision medicine. For instance, 

prospective randomized studies may show that among individuals with extremely high 

LDL cholesterol, carriers of a rare variant may benefit relatively more from certain 

treatments, such as PCSK9 inhibitors, than individuals with a stronger polygenic basis 

(Santos et al., 2016). By analogy, individuals with extremely low HDL cholesterol who 

carry a rare variant versus those who have a high polygenic burden can be studied to 

determine if there are differential effects of therapies targeted towards raising HDL 

cholesterol (Zheng et al., 2016). 

This study has some limitations. First, patient ascertainment differed between the three 

cohorts: Lipid Genetics Clinic patients were referred because of abnormal lipid profiles, 

MHI Biobank participants were recruited based on cardiovascular health, and while 
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UPenn patients also came from lipid referrals, there was more of focus on high HDL 

cholesterol phenotypes. This may explain why the patients with low HDL cholesterol 

levels from the discovery cohort had a greater burden of rare variants: these individuals’ 

HDL cholesterol phenotypes were more pronounced, and perhaps more likely to have a 

genetic basis. In contrast, since CVD was of primary interest at the MHI, abnormal HDL 

cholesterol profiles were less extreme and perhaps more often secondary to other, non-

genetic health issues. Testing the polygenic score in other cohorts with more closely 

matched patient-ascertainment parameters would not only increase the power of our 

study, but also alleviate these biases. Second, application of the polygenic score assumes 

each allele has a linearly additive effect, with no epistatic interactions. Modelling 

epistasis could improve polygenic score accuracy and comprehension. Third, the 

polygenic score was tested largely in individuals of European ancestry and may not be 

generalizable to other ancestral groups. Also, we did not evaluate other factors—such as 

epigenetic regulators or large copy-number variants—as possible explanations for the 

extreme phenotypes. Additionally, some important variants may have been overlooked, 

since only genes with a known link to HDL cholesterol syndromes were screened, and 

only a subset of SNPs were considered; this could have led to a skew in the percentage of 

carriers identified or patients with an extreme SNP accumulation. Finally, given that low-

pass whole-genome sequencing was used to genetically characterize participants from the 

MHI Biobank, it is possible that rare variants may have been missed. Despite these 

limitations, we have demonstrated the genetic complexity underlying extreme HDL 

cholesterol phenotypes by considering both rare variants and the accumulation of 

common SNPs simultaneously, for the first time.  

2.6 Conclusion 

In summary, we concurrently detected both rare variants and the accumulation of 

common SNPs using our NGS platform. In patients with both low and high HDL 

cholesterol extremes, we confirmed the enrichment of rare variants, while simultaneously 

detecting individuals with extreme polygenic scores. This substantially expanded the 

number of individuals with a genetic contributor towards their phenotype: about one-

sixth of patients with extreme HDL cholesterol levels had an extreme polygenic score. 
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Loci for rare and common variants contributing to extreme HDL cholesterol levels 

encode products acting at all stages of the HDL lifecycle; we suggest that both rare and 

common variants be considered concurrently for understanding extreme HDL cholesterol 

levels. The large proportion of individuals still unaccounted for can be studied for 

additional mechanisms, such as possible new genes, gene-gene or gene-environment 

interactions, and non-Mendelian influences including mitochondrial or epigenetic effects. 

In addition to acquiring a more complete genetic picture of patients with extreme 

dyslipidemia, stratifying them genetically may help evaluate inter-individual differences 

in their clinical course or responses to interventions.  
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Chapter 3 – Large-scale deletions of the ABCA1 gene in 
patients with hypoalphalipoproteinemia 

The work contained in this Chapter has been edited from its original publication in the 

Journal of Lipid Research for brevity and to ensure consistency throughout this 

Dissertation. 

    
Dron, J.S., Wang, J., Berberich, A.J., Iacocca, M.A., Cao, H., Yang, P., Knoll, J., 

Tremblay, K., Brisson, D., Netzer, C., et al. (2018). Large-scale deletions of the ABCA1 

gene in patients with hypoalphalipoproteinemia. J Lipid Res 59, 1529-1535. 
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3.1 Abstract  

Objective: Copy-number variants (CNVs) have been studied in the context of familial 

hypercholesterolemia but have not yet been evaluated in patients with extreme levels of 

high-density lipoprotein (HDL) cholesterol.  

Methods and Results: We evaluated targeted next-generation sequencing (NGS) data 

from patients with extremely low levels of HDL cholesterol (i.e., 

hypoalphalipoproteinemia) with the VarSeq-CNV® caller algorithm to screen for CNVs 

disrupting the ABCA1, LCAT, or APOA1 genes. In four individuals, we found three 

unique deletions in ABCA1: a heterozygous deletion of exon 4, a heterozygous deletion 

that spanned exons 8 to 31, and a heterozygous deletion of the entire ABCA1 gene. 

Breakpoints were identified with Sanger sequencing, and the full-gene deletion was 

confirmed using exome sequencing and the Affymetrix CytoScan HD array. 

Conclusion: Previously, large-scale deletions in candidate HDL genes had not been 

associated with hypoalphalipoproteinemia; our findings indicate that CNVs in ABCA1 

may be a previously unappreciated genetic determinant of low levels of HDL cholesterol. 

By coupling bioinformatic analyses with NGS data, we can successfully assess the 

spectrum of genetic determinants of many dyslipidemias, including 

hypoalphalipoproteinemia.  

3.2 Introduction 

Extremely low levels of high-density lipoprotein (HDL) cholesterol, clinically 

characterized as “hypoalphalipoproteinemia”, can result from various molecular 

etiologies. DNA sequencing of candidate genes has shown that between ~10-35% of 

affected individuals have rare heterozygous missense, nonsense or splicing variants in 

ABCA1, APOA1 and LCAT genes, encoding ATP-binding cassette subfamily member A1 

(ABCA1), apolipoprotein (apo) A-I and lecithin cholesterol acyl transferase (LCAT), 

respectively (Candini et al., 2010; Cohen et al., 2004; Dron et al., 2017; Holleboom et al., 

2011; Kiss et al., 2007; Sadananda et al., 2015). We recently found that another ~18% of 

affected individuals have an extreme polygenic accumulation of common variants, as 
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quantified by a polygenic risk score that considers several common single-nucleotide 

polymorphisms (SNPs) associated with HDL cholesterol levels (Dron et al., 2017). 

However, the genetic basis of low HDL cholesterol in the majority of individuals with 

hypoalphalipoproteinemia remains to be characterized.  

Copy-number variants (CNVs) are deletions and duplications of genomic material that 

are much larger than single-nucleotide variations (SNVs); by convention, “CNVs” are 

deletions or duplications >50 bp in size (Zarrei et al., 2015). While CNVs have been 

commonly identified throughout the genome, there has been a surging focus on CNVs 

that are rare within the population, and their relationship to certain phenotypes and 

diseases (Iacocca and Hegele, 2018). This redefined focus has been due to improvements 

in bioinformatic tools, and targeted next-generation sequencing (NGS) panels designed 

for clinical utility. Previously, specialized molecular methods, such as multiplex ligation-

dependent probe amplification (MLPA), have been required to detect CNVs, and had to 

be performed concurrently to other genetic methods. Now, through the development of 

new bioinformatic methods, CNVs can be easily screened for in patient groups using data 

generated by a single genetic approach, namely, NGS. We recently reported that data 

generated with a targeted NGS panel designed to detect SNVs in genes related to familial 

hypercholesterolemia (FH) could be processed with dedicated bioinformatic tools to 

diagnose the presence of CNVs in LDLR, encoding the low-density lipoprotein (LDL) 

receptor. Results of our NGS-based CNV detection method showed 100% concordance 

with traditional MLPA of LDLR, with no false negative or false positive results (Iacocca 

et al., 2017).  

CNVs disrupting ABCA1, APOA1, or LCAT in individuals with 

hypoalphalipoproteinemia have not yet been reported. Here, we applied our novel 

bioinformatic approach on previously generated targeted NGS data from patients with 

hypoalphalipoproteinemia, with particular interest in patients without rare variants in 

HDL-associated genes or without an extreme polygenic accumulation of common 

variants (Dron and Hegele, 2018). Out of 288 patients screened, four carried one of three 

novel heterozygous CNVs within the ABCA1 gene; the variants were confirmed using 

independent methods. Our findings not only demonstrate the usefulness of applying 
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bioinformatically-based CNV calling algorithms to NGS data, but we also provide the 

first example of large-scale CNV deletions that may be contributing towards the 

hypoalphalipoproteinemia phenotype.  

3.3 Materials and Methods 

3.3.1 Study subjects 

Patients who were referred to the Lipid Genetics Clinic at the London Health Sciences 

Centre, University Hospital (London ON, Canada) for “low HDL cholesterol” or 

“hypoalphalipoproteinemia” were considered for this screening study. Patients provided 

signed consent with approval from the Western University ethics review board (no. 

07290E).  

3.3.2 DNA preparation and targeted sequencing 

DNA isolation and preparation for targeted sequencing follows the same methodology as 

described in Chapter 2, Section 2.3.2. 

3.3.3 Bioinformatic processing of sequencing data 

The bioinformatic processing of sequencing data follows the same methodology as 

described in Chapter 2, Section 2.3.3; however, an updated version of CLC Bio 

Genomics Workbench (version 8.5; CLC Bio, Aarhus, Denmark) was used. In addition to 

CLC Bio Genomics Workbench generating VCF files containing variant information for 

each patient, depth of coverage for a patient’s sequencing data was also exported as a 

BAM file. 

3.3.4 Detection of single-nucleotide and copy-number variants  

The BAM and VCF files generated for each patient were imported into VarSeq® (version 

1.4.8; Golden Helix, Inc., Bozeman MT, USA) for annotation of each genetic variant. 

SNVs were identified following methods described in Chapter 2, Section 2.3.4. 

Assessment of CNVs in ABCA1, APOA1, and LCAT was performed using the VarSeq-

CNV® caller algorithm. To identify CNVs, the depth-of-coverage information contained 

within each subject’s BAM file was compared against the average coverage information 
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from a set of samples that have been confirmed to not carry CNVs. Increases and 

decreases in read-depth indicate a duplication or deletion of genetic material, 

respectively. The exact criteria used to identify CNVs has been previously described 

(Iacocca et al., 2017).  

3.3.5 Validation of partial gene deletions 

3.3.5.1 Breakpoint identification 

To identify the presence of partial gene deletions, primers were designed to flank regions 

surrounding the putative deletions and were used for PCR amplification (Expand 20 kbplus 

PCR System, Roche, Mannheim, Germany) (Cat No. 11811002001). Forward (F) and 

reverse (R) primers flanking the deletion junctions were: F1 5’-

AGCACGATAGGAAGCATCTTC-3’ and R1 5’-ATCACTGTCTGTGGCAACCAG-3’ 

(exon 4 deletion); F2 5’-GACCCAGCTTCCAATCTTCATAA-3’ and R2 5’-

TAGACAGAATCAGGCCATAATCTG-3’ (exons 8-31 deletion). Gel electrophoresis of 

the PCR products was used as a visual confirmation of the mutant alleles. Sanger 

sequencing and primer-walking of the PCR products were performed to identify the 

deletion breakpoints. 

3.3.5.2 Sanger confirmation 

Once deletion breakpoints were identified, screening primers spanning the upstream or 

downstream breakpoint were designed for PCR and Sanger sequencing (Appendix E) to 

confirm the deletion breakpoint sequences for the wild-type or deleted alleles.  

3.3.6 Validation of full gene deletions 

3.3.6.1 Exome sequencing 

Patients with expected full-gene deletions had their DNA samples indexed and pooled 

using the TruSeq Rapid Exome Kit (Illumina, San Diego CA, USA) (Cat No. 20020616) 

in preparation for exome sequencing. Sequencing was then performed at the London 

Regional Genomics Centre (www.lrgc.ca; London ON, Canada), using a NextSeq 500 

(Illumina, San Diego CA, USA). The same bioinformatic approach described above was 

used to replicate the CNV call made by the VarSeq-CNV® caller algorithm. 

http://www.lrgc.ca/
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3.3.6.2 Microarray analysis 

Patients with expected full-gene deletions had their DNA samples assessed with the 

Affymetrix CytoScanTM HD Array (Thermo Fisher Scientific, Waltham MA, USA) for 

the genomic region containing the CNV. With >2 million probes on the array, deletions 

>25 kb can be detected. The microarray was performed following the manufacturer’s 

instructions at Victoria Hospital (London ON, Canada), and the resultant data were 

analyzed using the Chromosome Analysis Suite (version 3.2; Thermo Fisher Scientific, 

Waltham MA, USA). The regions between adjacent probes that differed in copy-number 

state were marked as containing the approximate breakpoints of the CNV and were used 

to gauge the approximate size of the deletion.  

3.3.6.3 Breakpoint identification  

Once establishing the magnitude of the deletion, the approximate locations of each 

breakpoint were estimated. Primers flanking the deletion junction were: F3 5’- 

CCTGGCTGCTTCTAAGAGCCTATGATC-3’ and R3 5’- 

TGTCTCTACATGGTCCTCCTTCTGTGC-3’, and were used for PCR amplification 

(Expand 20 kbplus PCR System, Roche, Mannheim, Germany) (Cat No. 11811002001). 

Gel electrophoresis of the PCR products was used as a visual confirmation of the mutant 

allele. Sanger sequencing and primer-walking of the PCR product were performed to 

identify the deletion breakpoints. 

3.3.6.4 Sanger confirmation  

Once deletion breakpoints were identified, screening primers spanning the upstream or 

downstream breakpoint were designed for PCR and Sanger sequencing (Appendix E) to 

confirm the deletion breakpoint sequences for the wild-type or deleted allele.  

3.4 Results 

3.4.1 Study subjects 

A total of 288 patients with “low HDL cholesterol” or “hypoalphalipoproteinemia” were 

sequenced with LipidSeq and screened for CNVs disrupting ABCA1, APOA1, and LCAT. 
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Clinical and biochemical characteristics of the four patients identified as carriers for 

CNVs are shown in Table 3.1.  

3.4.2 ABCA1 copy-number variant detection  

Analysis of LipidSeq output with the VarSeq-CNV® caller algorithm identified four 

hypoalphalipoproteinemia patients as carriers of large-scale deletions in ABCA1 (Figure 

3.1). Patient 1 had a heterozygous deletion spanning exon 4; Patient 2 and Patient 3, a 

pair of siblings had a heterozygous deletion spanning exons 8 to 31; and Patient 4 had a 

heterozygous deletion spanning the entire ABCA1 gene. None of these patients carried 

rare SNVs in ABCA1, APOA1 or LCAT. There were no CNVs detected in APOA1 or 

LCAT for any patients in this study.  

To determine the size of the deletion in Patient 4, the VarSeq-CNV® caller algorithm 

was used on exome data to confirm the heterozygous absence of ABCA1 (Figure 3.2), 

while the CytoScanTM analysis confirmed and replicated the heterozygous nature of this 

CNV (Figure 3.3A). Exome sequencing and CytoscanTM revealed that the CNV was ~2 

Mb in length, and encompassed six additional protein-coding genes, including SMC2, 

NIPSNAP3A, NIPSNAP3B, SLC44A1, FSD1L, and FKTN. 

3.4.3 Copy-number variant validation and identifying breakpoints 

Sanger sequencing across the CNV breakpoints in Patient 1 (Figure 3.4A), Patients 2 and 

3 (Figure 3.4B), and Patient 4 (Figure 3.3B) revealed the genomic coordinates involved 

in the deletion event and allowed us to determine the exact size of the CNV (Table 3.2). 

Screening primers spanning breakpoints were used to distinguish between wild-type and 

deleted alleles, as indicated in Figure 3.3C, Figure 3.4C and Figure 3.4D. 
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Table 3.1 Clinical and demographic features of subjects with ABCA1 CNVs. 

  Patient 1 Patient 2 Patient 3 Patient 4 

Age 37 34 59 40 

Sex Female Female Male Female 

BMI (kg/m2) 23.5 29.2  - 24.1 

Ancestry European European European European 

Total 

cholesterol  

(mmol/L) 

8.16  3.30  5.46 4.71 

Triglyceride  

(mmol/L) 
2.52  1.01  4.48  5.13  

HDL 

cholesterol  

(mmol/L) 

0.81  0.56  0.47  0.03  

LDL 

cholesterol  

(mmol/L) 

6.20  2.42 3.28  3.54  

apo A-I  

(g/L)  
- 0.59  0.60  0.09  

apo B  

(g/L) 
- 0.81  1.33  - 

Creatine kinase  

(U/L) 
79 - 78  113  

Fasting glucose 

(mmol/L) 
4.0 5.4 5.3  4.7  

Lp(a) (nmol/L) - - 290  363  

Co-morbidities 

Heterozygous 

FH (LDLR 

NM_000527 

p.V523M); 

minor carotid 

intimal 

thickening 

Obesity 

Hypertension; 

TIA; aortic 

valvular 

stenosis 

TIA; cerebral 

arteriosclerotic 

microangiopathy; 

hypertension; 

juvenile myoclonic 

epilepsy; diffuse 

non-Hodgkin’s 

lymphoma stage III 
Values provided are from first presentation to specialist lipid clinic, or date first obtained. Lp(a) 

conversions from g/L to nmol/L were done following the conversion factor described by Brown WV et al. 

(2010). Abbreviations: apo = apolipoprotein; BMI = body-mass index; FH = familial 

hypercholesterolemia; HDL = high-density lipoprotein; LDL = low-density lipoprotein; Lp(a) = 

lipoprotein(a); TIA = transient ischemic attack.  
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Figure 3.1 Identification of ABCA1 CNVs using the VarSeq-CNV® caller algorithm on targeted sequencing data. 

Chr9:107,542,273–107,697,356 (hg19 genome build) is the region visualized in each panel, with the CNV “ratio”, “Z score”, and “state” 

available for each subject. A) Subject 1, carrier of a heterozygous deletion of exon 4. B) Subject 2, carrier of a heterozygous deletion 

spanning exons 8 to 31. C) Subject 3, carrier of a heterozygous deletion spanning exons 8 to 31. D) Subject 4, carrier of a heterozygous 

deletion of the entire ABCA1 gene. Abbreviations: CNV = copy-number variant. 
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Figure 3.2 Confirmation of the full-gene ABCA1 CNV using the VarSeq-CNV® caller algorithm on exome data. 

Chr9:105,295,869–109,769,141 (hg19 genome build) is the region visualized, with the CNV “ratio”, “Z score”, and “state” available 

for the subject. Subject 4, carrier of a heterozygous deletion of the entire ABCA1 gene and surrounding loci. Abbreviations: CNV = 

copy-number variation. 
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Figure 3.3 Validation of full-gene deletion of ABCA1 in Patient 4 with 

hypoalphalipoproteinemia. 

A) Results of the CytoScanTM HD Array, visualized using Chromosome Analysis Suite 

“Copy Number State (segments)” identifies the region containing the CNV. “Probe 

Intensities” show a drop in signal, indicating a decrease in copy number at that position, 

evident under “Copy Number State”. The black arrows demonstrate the position and 

orientation of primers used in breakpoint identification and Sanger sequencing. The genes, 

both coding and non-coding, encompassed by the deletion are evident under “RefSeq 

Genes”; the image was taken and modified from and VarSeq®. B) Sanger sequencing 

results for the forward strand across upstream and downstream breakpoints, and the 

deletion junction. C) Gel electrophoresis of PCR products across upstream and 

downstream breakpoints, and deletion junction. Results from Patient 4 are presented on the 

top, with results from a normal control on the bottom. Lane 1 contains 100bp ladder, lane 

2 contains products across the upstream breakpoint, lane 3 contains products across the 

downstream breakpoint, and lane 4 contains products across the deletion junction. 

Abbreviations: bp = base pair; chr = chromosome; F = forward strand; P = primer; R = 

reverse strand.  



139 

 

 

Figure 3.4 Validation of partial gene deletions of ABCA1 in Patients 1, 2, and 3 with 

hypoalphalipoproteinemia. 

Sanger sequencing results for the reverse strand across upstream and downstream 

breakpoints, and the deletion junctions for A) Patient 1 and B) Patients 2 and 3. Underlined 

bases represent polymorphic sites between subjects. The black slashes indicate the 

sequence breakpoints, while the arrows demonstrate the position and orientation of primers 

used in breakpoint identification and Sanger sequencing. The gene transcript image was 

taken and modified from and VarSeq®. Gel electrophoresis of PCR products across 

upstream and downstream breakpoints, and deletion junction for C) Patient 1 and D) 

Patients 2 and 3. Results from each patient are presented on the top, with results from a 

normal control on the bottom. Lane 1 contains 100bp ladder, lane 2 contains products 

across the upstream breakpoint, lane 3 contains products across the downstream 

breakpoint, and lane 4 contains products across the deletion junction. Abbreviations: bp = 

base pair; chr = chromosome; P = primer. 
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Table 3.2 Genomic coordinates and breakpoints of ABCA1 CNVs. 

CNV 
Zygosity 

state 

Breakpoint 

Genomic 

coordinates 

Length 

(bp) 
HGVS notation 

Exon 4 Het 
chr9:107645536 to 

chr9:107649333 
3,798 

g.107645536_107649333delinsATCCA 

c.160_301del 

p.Cys54LeufsTer22 

Exons 8 

to 31 
Het 

chr9:107568343 to 

chr9:107619540 
51,197 

g.107568343_107619540del 

c.720_4463del 

p.Arg241_Gln1488del 

Full 

deletion 
Het 

chr9:106425268 

to 

chr9:108401467 

1,976,200 g.106425268_108401467del 

The sequences are in the forward-strand orientation, with genomic coordinates based on the hg19 human 

genome reference build. Abbreviations: bp = base pair; chr = chromosome; CNV = copy-number variation; 

het = heterozygous;  HGVS = Human Genome Variation Society. 

  



141 

 

3.5 Discussion 

In 288 patients with hypoalphalipoproteinemia, we identified three rare, large-scale 

deletions in ABCA1 in four individuals by applying specialized bioinformatic tools to 

NGS data. While it is not the first time CNVs have been observed in ABCA1 (Abecasis et 

al., 2012; Ahn et al., 2009; Alsmadi et al., 2014; Boomsma et al., 2014; Conrad et al., 

2010; Cooper et al., 2011; Itsara et al., 2009; Kidd et al., 2008; Mills et al., 2011; Park et 

al., 2010; Shaikh et al., 2009; Suktitipat et al., 2014; Teague et al., 2010; Tuzun et al., 

2005; Wong et al., 2013), it is the first report of ABCA1 CNVs being found specifically in 

patients with hypoalphalipoproteinemia, and may be large contributors towards the low 

HDL cholesterol phenotype.  

ABCA1 is a critical player in the reverse cholesterol transport pathway. Found on the 

surface of macrophages, ABCA1 mediates the transport of free cholesterol out of the cell, 

where it can be picked up by apo A-I, leading to the generation of nascent HDL particles 

(Lewis and Rader, 2005). Disruptions to this protein can alter its function and lead to 

problems with cholesterol efflux and the generation of circulating HDL particles. Rare 

homozygous variants in this gene have been shown to cause Tangier Disease (Bodzioch 

et al., 1999; Brooks-Wilson et al., 1999; Rust et al., 1999), while heterozygous mutations 

can lead to less severe forms of hypoalphalipoproteinemia (Brooks-Wilson et al., 1999; 

Marcil et al., 1999). Given the sizes of our identified CNVs and their predicted 

consequences on the protein product, they are likely loss-of-function, leading to a 

decrease in the generation of HDL particles and an overall decrease in circulating HDL 

cholesterol.  

The smallest CNV deletion is 3,798 bp in size, with its breakpoints in introns 3 and 4, 

causing a partial loss of both introns, and a full loss of exon 4. The deletion of the coding 

sequence caused a frameshift and a premature truncation of the protein at the 76th amino 

acid: 96.7% of the protein is lost. Since our study is limited in that we did not test mRNA 

levels, protein levels, or protein function, we cannot comment on the exact mechanism by 

which this ABCA1 CNV leads to low HDL cholesterol levels; however, given that the 
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CNV produces a premature stop codon, the truncated mRNA could be degraded through 

the nonsense-mediated decay pathway (Brogna and Wen, 2009).  

The intermediate CNV deletion is 51,197 bp size, with its breakpoints in introns 7 and 31, 

causing a partial loss of both introns, and a full loss of 23 exons. Since the deletion is in-

frame, there is no introduction of a premature stop codon, but 1248 out of 2261 amino 

acids are lost, accounting for 55.2% of the protein. The lost amino acids span from the 

first extracellular domain to the second, and include the intracellular nucleotide-binding 

domain, the first regulatory domain, and six transmembrane domains (Qian et al., 2017). 

Given the size of the deletion, there are many possibilities for mechanistic dysfunction. 

One possibility is that apo A-I is unable to interact with ABCA1 through its extracellular 

domains, while an alternative possibility is that cholesterol cannot be transported out the 

cell (Fitzgerald et al., 2004; Nagao et al., 2012; Vedhachalam et al., 2007; Wang et al., 

2000).  

The full-gene CNV deletion is ~2 Mb and encompasses seven protein-coding genes, 

including ABCA1. In contrast to the previous two CNVs, due to the complete loss of a 

functional allele, the mechanism of decreased HDL cholesterol may simply be based on a 

decrease in ABCA1 expression. As the largest CNV out of all four patients, it is also 

interesting to note that the patient carrying this deletion has the most severely decreased 

levels of HDL cholesterol, at 0.03 mmol/L.  

When considering the magnitude of each CNV, the size of the genomic deletion 

correlates to the severity of the HDL phenotype for each patient; however, the 

corresponding loss of amino acids does not. The patient with the smallest CNV had an 

HDL cholesterol level of 0.81 mmol/L, while the patients with the intermediate CNV had 

HDL cholesterol levels of 0.56 mmol/L and 0.47 mmol/L. Additional studies are 

necessary to fully understand the mechanistic consequences of each CNV—particularly 

the partial deletions—and how they impact each patients’ HDL phenotype. As well, the 

severity of each patients’ phenotype may not solely be due to the CNV, but may be 

influenced by additional genetic or environmental determinants (Cole et al., 2015). 

Others have noted a wide range in HDL cholesterol levels, ranging from ~15 to 70% of 
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normal values among heterozygous carriers of ABCA1 nonsense mutations resulting in 

premature protein truncation (Pisciotta et al., 2004); this inter-individual variation in 

HDL cholesterol reduction echoes the range of biochemical disturbances seen in the 

small patient sample studied here. Difficulty in attributing quantitative or pathogenic 

impact is also encountered in research on heterozygous ABCA1 SNVs that affect HDL 

cholesterol; functional studies may help understand the mechanistic impact of a SNV, but 

even between individuals who share the same genetic variant, there can be substantial 

differences in HDL cholesterol levels (Brunham et al., 2006). Such differences might 

result from unmeasured gene-gene interactions, unmeasured gene-environment 

interactions, epigenetic, mitochondrial or microbiome effects.  

3.6 Conclusion 

Our findings implicate a novel form of genetic variation that is likely impacting HDL 

cholesterol levels, and further emphasizes the complex genetic architecture underlying 

HDL phenotypes. Understanding that levels of HDL cholesterol can be influenced by rare 

SNVs, accumulation of common SNPs, and now the presence of rare CNVs, will 

influence future screening of individuals with extreme HDL phenotypes. Systematic 

screening for CNVs until recently had heretofore not been feasible due to time-

consuming and costly methods (Iacocca and Hegele, 2018); improvements to 

bioinformatic tools have enabled robust analysis of NGS data, leading to comprehensive, 

simultaneous assessment of multiple types of genetic determinants. These tools will 

likely reveal further diversity of the genetic basis for other dyslipidemia and metabolic 

phenotypes. Given their low frequency in our patient cohort, we anticipate that large-

scale CNVs, either deletions or insertions, will likely be infrequent among patients with 

dyslipidemias, but will nonetheless still need to be considered, in addition to small-scale 

rare genetic variants and polygenic risk.   
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Chapter 4 – Severe hypertriglyceridemia is primarily 
polygenic 

The work contained in this Chapter has been edited from its original publication in the 

Journal of Clinical Lipidology for brevity and to ensure consistency throughout this 

Dissertation. 
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4.1 Abstract 

Objective: Hypertriglyceridemia is a complex trait defined by elevated plasma 

triglyceride levels. Genetic determinants of hypertriglyceridemia have so far been 

examined in a piecemeal manner; understanding of its molecular basis, both monogenic 

and polygenic, is thus incomplete. Here, we characterize genetic profiles of severe 

hypertriglyceridemia patients and quantify their genetic determinants and molecular 

contributors.  

Methods and Results: We concurrently assessed rare and common variants in two 

independent cohorts of 251 and 312 severe hypertriglyceridemia patients of European 

ancestry. DNA was subjected to targeted next-generation sequencing of 69 genes and 185 

SNPs associated with dyslipidemia. LPL, LMF1, GPIHBP1, APOA5, and APOC2 genes 

were screened for rare variants, and a polygenic risk score was used to assess the 

accumulation of common variants. As there were no significant differences in the 

prevalence of genetic determinants between cohorts, data were combined for all 563 

patients: 1.1% had bi-allelic (homozygous or compound heterozygous) rare variants, 

14.4% had heterozygous rare variants, 32.0% had an extreme accumulation of common 

variants (i.e. high polygenic risk), and 52.6% remained genetically undefined. 

Hypertriglyceridemia patients were 5.77-times (95% CI [4.26-7.82]; P<0.0001) more 

likely to carry one of these types of genetic susceptibility compared to normolipidemic 

controls. 

Conclusions: We report the most in-depth, systematic evaluation of genetic determinants 

of severe hypertriglyceridemia to date. The predominant feature was an extreme 

accumulation of common variants (high polygenic risk score), while a substantial 

proportion of patients also carried heterozygous rare variants. Overall, 46.3% of patients 

had polygenic hypertriglyceridemia (i.e. multifactorial chylomicronemia), while only 

1.1% had monogenic hypertriglyceridemia (i.e. familial chylomicronemia syndrome). 
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4.2 Introduction 

Elevated fasting levels of plasma triglyceride is a common dyslipidemia that is clinically 

identified as hypertriglyceridemia. Depending on the degree of elevation, 

hypertriglyceridemia can be mild-to-moderate (≥2-9.9 mmol/L) or severe (≥10 mmol/L) 

(Hegele et al., 2014). Of particular importance is severe hypertriglyceridemia: with a 

prevalence of ~1 in 600 (Johansen et al., 2011a), affected individuals are at risk of several 

clinical manifestations, the most serious being acute pancreatitis (Brahm and Hegele, 

2015; Dron and Hegele, 2017). Although it is relatively prevalent in the population and 

can lead to life-threating medical emergencies, there remains substantial unfamiliarity 

with the molecular genetic determinants of severe hypertriglyceridemia, as well as the 

role of genetic testing in its diagnosis. 

Severe hypertriglyceridemia very often results from chylomicronemia, defined as the 

pathological accumulation of circulating chylomicrons (Brahm and Hegele, 2015). While 

abnormalities in the catabolic processing of other triglyceride-rich lipoproteins—namely, 

very-low-density lipoprotein (VLDL), intermediate-density lipoproteins (IDL), and 

remnant particles—can also contribute to the severe hypertriglyceridemia phenotype, 

chylomicrons are usually considered to be the primary lipoprotein of concern. 

Biochemically quantifying chylomicron concentration can be inconvenient and difficult, 

so a diagnosis of “chylomicronemia” is often based on the fasting triglyceride 

concentration and the presence of other suggestive features, such as a milky appearance 

of the patient’s blood plasma (Brahm and Hegele, 2013; Brahm and Hegele, 2015). 

Clinically, patients are at risk of pancreatitis and physical signs such as eruptive 

xanthomas, lipemia retinalis and hepatosplenomegaly can be observed. Due to the 

challenges in quantifying the abnormal lipoprotein fractions in patients with elevated 

triglyceride, we focus on the generalized “severe hypertriglyceridemia” phenotype, rather 

than subtypes defined by the presence of particular abnormal lipoprotein particles, as 

seen in the Fredrickson classification of hyperlipidemias (Beaumont et al., 1970). 

Severe hypertriglyceridemia is considered to have both monogenic and polygenic 

determinants (Brahm and Hegele, 2015). A subset of this patient group has familial 

chylomicronemia syndrome (FCS), a rare form of monogenic hypertriglyceridemia that 
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has textbook estimates of a prevalence of ~1 to 10 in a million (Johansen et al., 2011a). 

As an autosomal recessive disorder, definitive molecular diagnosis of FCS hinges on 

detection of rare, bi-allelic (homozygous or compound heterozygous) variants in the same 

gene (Johansen et al., 2011a); the canonical triglyceride metabolism genes found to be 

mutated in FCS include LPL, LMF1, GPIHBP1, APOA5, and APOC2. Genetic 

assessment has superseded biochemical assays of plasma post-heparin lipolytic activity as 

the current gold standard for diagnosis of deficiency of lipoprotein lipase (LPL), encoded 

by LPL, and related factors (Brahm and Hegele, 2015).  

The remainder of genetically-based, non-FCS cases of severe hypertriglyceridemia are 

considered to be polygenic in nature and can be referred to as “multifactorial 

chylomicronemia” (Brahm and Hegele, 2015). Here, several different genetic factors 

contribute to disease susceptibility, including rare heterozygous variants in canonical 

triglyceride genes, common variants associated with elevated triglyceride levels, and/or 

variants in non-canonical triglyceride genes (Johansen et al., 2010; Johansen et al., 

2011b; Johansen et al., 2012; Kathiresan et al., 2009; Surendran et al., 2012; Teslovich et 

al., 2010; Wang et al., 2008; Willer et al., 2013). As well, certain environmental factors 

can interact with this assortment of polygenic determinants to force expression of 

severely elevated triglyceride levels. Despite the detailed documentation of similarities 

and differences between monogenic and polygenic hypertriglyceridemia (i.e. FCS vs. 

multifactorial chylomicronemia), in practice, there is a tendency to equate “severe 

hypertriglyceridemia” with FCS (Brahm and Hegele, 2015). Usually, when triglyceride 

levels exceed 10 mmol/L, there is no monogenic cause identified (Brahm and Hegele, 

2015), making LPL deficiency or FCS a highly unlikely cause of severe 

hypertriglyceridemia.  

In our experience, a molecular diagnosis for a patient with severe hypertriglyceridemia 

requires simultaneous assessment of all possible genetic determinants—both common 

and rare variants. Here, we sought to systematically evaluate the genetic profiles of 

almost 600 severe hypertriglyceridemia patients to provide an updated and 

comprehensive description of the genetic landscape of this complex phenotype. With our 

custom-designed, targeted next-generation sequencing (NGS) panel, “LipidSeq”, and 
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bioinformatic tools, we can concurrently measure multiple genetic factors, including rare 

variants—both single-nucleotide variants (SNVs) and copy-number variants (CNVs)—

together with the accumulation of common variants (i.e. single-nucleotide 

polymorphisms [SNPs]) within a polygenic risk score, thus directly evaluating prevalence 

of each type of genetic determinant in severe hypertriglyceridemia. We demonstrate that 

severe hypertriglyceridemia in adults is most often associated with polygenic factors 

(either heterozygous rare variants or high polygenic risk scores), and that FCS due to 

monogenic bi-allelic variants (i.e. homozygous or compound heterozygous) is very 

uncommon in these patient cohorts.  

4.3 Materials and Methods 

4.3.1 Study subjects 

Patients of interest included those of European ancestry with triglyceride levels ≥10 

mmol/L; they were defined as having “severe” hypertriglyceridemia. 

In adherence to the Declaration of Helsinki, all patients provided written, informed 

consent for collection of personal data and DNA with approval from either the Western 

University (London ON, Canada) ethics review board (no. 07290E) or the Committee on 

Human Research of the University of California, San Francisco (UCSF). 

As a reference control cohort of normolipidemic individuals, the publicly available data 

pertaining to the self-reported healthy individuals from the European subgroup of the 

1000 Genomes Project (N=503) were studied. 

4.3.2 DNA preparation and targeted sequencing 

DNA isolation and preparation for targeted NGS follows the same methodology as 

described in Chapter 2, Section 2.3.2. 

From the UCSF cohort, genomic DNA was isolated as described elsewhere (Pullinger et 

al., 2015). 
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4.3.3 Bioinformatic processing of sequencing data 

The bioinformatic processing of sequencing data follows the same methodology as 

described in Chapter 3, Section 3.3.3; however, an updated version of CLC Bio 

Genomics Workbench (version 10.0; CLC Bio, Aarhus, Denmark) was used. 

4.3.4 Annotation and analysis of rare single-nucleotide variants  

The SNVs contained within each patients’ VCF file were annotated using VarSeq® 

(version 1.4.8; Golden Helix, Inc., Bozeman MT, USA). Variants of interest within LPL, 

LMF1, GPIHBP1, APOA5, and APOC2 were identified following a “rare variant” model. 

SNVs were identified as having a minor allele frequency of ≤1% or missing in the Exome 

Aggregation Consortium (ExAC; http://exac.broadinstitute.org/) (Lek et al., 2016) and 

1000 Genomes Project (http://browser.1000genomes.org/index.html) (Genomes Project 

et al., 2015) databases. Rare missense, nonsense, deletion, insertion, splice-acceptor, and 

splice-donor variants were retained. In silico prediction algorithms were then used to 

select SNVs with likely large phenotypic effects. The Combined Annotation Dependent 

Depletion (CADD; http://cadd.gs.washington.edu/score) (Kircher et al., 2014) PHRED-

scaled score was the primary metric considered for variant deleteriousness. Variants were 

required to have a CADD PHRED-scaled score ≥10, and be predicted to be deleterious or 

damaging by at least one additional prediction tool—Polymorphism Phenotyping version 

2 (PolyPhen2; http://genetics.bwh.harvard.edu/pph2/) (Adzhubei et al., 2013), Sorting 

Intolerant From Tolerant (SIFT; http://sift.jcvi.org/) (Kumar et al., 2009), and 

MutationTaster (http://www.mutationtaster.org/)—when classifications were available. 

SNVs with a read-depth of <30 were excluded. 

4.3.5 Detection of rare copy-number variants 

CNVs were identified following the same methodology as described in Chapter 3, 

Section 3.3.4. The genes in which CNVs were screened for included LPL, LMF1, 

GPIHBP1, APOA5, and APOC2. 

CNV analysis could not be performed on the 1000 Genomes Project data, as BAM files 

were not available. 

http://exac.broadinstitute.org/
http://browser.1000genomes.org/index.html
http://cadd.gs.washington.edu/score
http://genetics.bwh.harvard.edu/pph2/
http://sift.jcvi.org/
http://www.mutationtaster.org/
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4.3.6 Polygenic risk score for elevated triglyceride levels 

We created a weighted polygenic risk score consisting of 16 SNPs associated with 

triglyceride levels, as reported by the Global Lipids Genetics Consortium (GLGC) 

genome-wide association study (GWAS) (Willer et al., 2013), and calculated it for each 

patient (Table 4.1). The number of triglyceride-raising alleles at a locus (either 0, 1, or 2) 

was counted and multiplied by its beta coefficient, or phenotypic “effect size” as reported 

in the GLGC GWAS summary statistics. The products for each SNP locus were then 

totalled for the overall weighted polygenic risk score for each patient.   

4.3.7 Statistical analysis 

Normality was assessed using the D’Agostino and Pearson test. Differences between 

parametric data were assessed using an unpaired, one-tailed Students t-test while 

differences between nonparametric data were assessed using a Mann-Whitney test. 

Differences between mean polygenic risk scores and mean triglyceride levels across 

molecular hypertriglyceridemia cohorts were assessed using a Kruskal-Wallis test 

followed by a Dunn’s multiple comparison. All tests were performed assuming unequal 

variances and are reported as the mean ± standard deviation (SD). Odds ratios (ORs) 

were derived using 2-by-2 contingency tables, with one-tailed Fisher’s exact tests to 

assess significance. Statistical analyses were conducted using GraphPad Prism for 

Windows (version 7.04; GraphPad Software, La Jolla CA, USA). Statistical significance 

was defined as P<0.05. 

4.4 Results 

4.4.1 Characteristics of study subjects 

Two-hundred and fifty-one patients were selected for study from the Lipid Genetics 

Clinic at the London Health Sciences Centre, University Hospital (London ON, Canada). 

An additional 312 patients were also selected from the Genomic Resource in 

Arteriosclerosis and Metabolic Disease who were recruited at the Lipid, Diabetes, or 

Cardiology Clinics at UCSF (San Francisco, CA, USA). Clinical and demographic 

characteristics of both cohorts are defined in Table 4.2.
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Table 4.1 The 16 SNPs used in polygenic risk score for elevated triglyceride levels. 

Chr:position rsID 
Closest 

gene  

Effect 

allele 
Relation with triglyceride metabolism Variant ontology  

1:63025942 rs2131925 ANGPTL3 T (0.066) 
ANGPTL3 inhibits LPL and reduces triglyceride hydrolysis (Tikka 

and Jauhiainen, 2016). 
Upstream 

1:230295691 rs4846914 GALNT2 G (0.04) 
Impacts triglyceride clearance through interactions with apo C-III 

(Holleboom et al., 2011). 
Intronic 

4:88030261 rs442177 
KLHL8, 

AFF1 
T (0.031) Mechanism is poorly characterized. Downstream 

5:55861786 rs9686661 MAP3K1 T (0.038) Mechanism is poorly characterized. Upstream 

7:72982874 rs17145738 MLXIPL C (0.115) 
Helps regulate glycolysis, gluconeogenesis and lipogenesis 

(Nakayama et al., 2011). 
Downstream 

8:18272881 rs1495741 NAT2 G (0.04) Role in insulin sensitivity (Knowles et al., 2015).   Downstream 

8:19844222 rs12678919 LPL A (0.17) 
Hydrolyzes triglyceride from triglyceride-rich lipoproteins 

(Lambert and Parks, 2012). 
Downstream 

8:126490972 rs2954029 TRIB1 A (0.076) Regulates expression of lipogenic genes (Douvris et al., 2014). Downstream 

10:65027610 rs10761731 JMJD1C A (0.031) Regulates expression of lipogenic genes (Viscarra et al., 2020). Intronic 

11:61569830 rs174546 
FADS1-

S2-S3 
T (0.045) Modification of dietary fatty acids (Mathias et al., 2014). 

3’UTR, intronic, 

downstream 

11:116648917 rs964184 
APOA1-

C3-A4-A5 
G (0.234) 

Involved in the structure of triglyceride-rich lipoproteins and 

regulation of triglyceride hydrolysis (Feingold and Grunfeld, 2000).   

Downstream, upstream, 

downstream, downstream 

15:42683787 rs2412710 CAPN3 A (0.099) Mechanism is poorly characterized. Intronic 

15:44245931 rs2929282 FRMD5 T (0.072) Mechanism is poorly characterized. Intronic 

16:56993324 rs3764261 CETP C (0.04) 
Facilitates the transfer of lipids between HDL and triglyceride-rich 

lipoproteins (Daniels et al., 2009). 
Upstream 

19:19407718 rs10401969 
CSPG3, 

CILP2 
T (0.121) Mechanism is poorly characterized. Intronic 

20:44554015 rs6065906 PLTP C (0.053) Moves phospholipids between lipoproteins (Daniels et al., 2009).  Upstream 

Variant information related to effect size was extracted from Willer et al. (2013). Effect alleles are in reference to trait elevation; the bracketed value denotes the 

effect size of each allele per increase in standard deviation. Variant ontology is relative to the closest gene. Abbreviations: ANGPTL3 = angiopoietin-like protein 

3; apo = apolipoprotein; chr = chromosome; HDL = high-density lipoprotein; LPL = lipoprotein lipase; UTR = untranslated region.  
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Table 4.2 Clinical and demographic information of severe hypertriglyceridemia 

cohorts (N=563). 

 Lipid Genetics Clinic UCSF  

Males Females Males Females 

N 171 80 203 109 

Age 50.9 ± 11.2* 49.0 ± 15.0* 47.1 ± 11.7 50.3 ± 13.7 

BMI (kg/m2) 30.6 ± 4.42* 30.8 ± 6.03* 29.7 ± 4.86* 28.2 ± 4.68* 

Total cholesterol 

(mmol/L) 
11.0 ± 5.59* 11.9 ± 7.37* 11.1 ± 5.44* 12.3 ± 6.58* 

Triglyceride 

(mmol/L) 
26.6 ± 20.9 30.3 ± 26.3 22.1 ± 17.9 29.4 ± 32.5 

HDL cholesterol 

(mmol/L) 
0.83 ± 0.45* 0.77 ± 0.27* 0.74 ± 0.32* 0.81 ± 0.41* 

LDL cholesterol 

(mmol/L) 
3.24 ± 2.12* 3.67 ± 5.00* 2.11 ± 1.25* 2.09 ± 1.10* 

Diabetes 37.7%* 37.5%* 36.3%* 47.5%* 

Values are indicative of the mean ± SD. “*” indicates means were calculated with an incomplete dataset. 

Abbreviations: BMI = body-mass index; HDL = high-density lipoprotein; LDL = low-density lipoprotein; 

UCSF = University of California, San Francisco. 
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4.4.2 Rare variants identified in canonical triglyceride metabolism 
genes 

We assessed patients for rare SNVs or CNVs in the primary triglyceride-related genes 

(LPL, LMF1, GPIHBP1, APOA5, and APOC2). From the Lipid Genetics Clinic and 

UCSF, 15.9% (40/251) and 15.0% (47/312) of patients carried rare variants, respectively, 

compared to only 4.0% (20/503) of individuals from the normolipidemic controls. A total 

of 71 unique variants were present across all five genes in these samples.  

Across all three cohorts, the majority of rare SNVs were heterozygous and only a few 

were bi-allelic. Both bi-allelic SNVs and CNVs were exclusive to the patient cohorts. 

From the Lipid Genetics Clinic, three patients carried bi-allelic SNVs, and 37 patients 

carried heterozygous SNVs (Appendix F). From UCSF, three patients carried bi-allelic 

SNVs, 43 patients carried heterozygous SNVs, and one patient carried a CNV—a partial 

deletion of LPL (Figure 4.1 and Appendix G). Twenty individuals from the 1000 

Genomes cohort carried heterozygous SNVs (Appendix H). 

4.4.3 Measuring accumulation of common triglyceride-raising 
alleles 

When assessing our polygenic risk score, higher scores reflect increased accumulations of 

triglyceride-raising alleles. We considered scores ≥1.49 (90th percentile in accordance 

with scores from the normolipidemic controls) as “extreme” risk scores, indicating an 

extreme accumulation of triglyceride-raising alleles. 

From the Lipid Genetics Clinic and UCSF cohorts, 41.2% (87/211) and 35.0% (93/265) 

of patients without rare variants, respectively, had extreme risk scores, compared to only 

9.5% (48/473) of individuals without rare variants from the 1000 Genomes cohort. When 

considering all individuals from the Lipid Genetics Clinic and UCSF, 34.7% (87/251) 

and 29.8% (93/312) of patients had extreme polygenic risk scores, respectively, 

indicating a polygenic basis for their severe hypertriglyceridemia phenotype (Figure 4.2). 
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Figure 4.1 Identification of a LPL CNV using the VarSeq-CNV® caller algorithm. 

A patient from UCSF was found to carry a heterozygous deletion of LPL. This figure has been taken and modified from the VarSeq 

program. Chr8:19,794,505–19,826,742 (hg19 genome build) is the region visualized in each panel, with the CNV “ratio”, and “Z-score” 

for the deleted region. Spanning across two exons, the deleted region has an average target depth of 129.753, an average Z-score of -

7.248, and an average ratio of 0.546. Abbreviations: CNV = copy-number variant. 
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Figure 4.2 Polygenic risk score analysis for severe hypertriglyceridemia patients. 

Violin plots illustrate the distribution of polygenic risk scores in normolipidemic controls 

from the 1000 Genomes cohort and severe hypertriglyceridemia patients from the Lipid 

Genetics Clinic cohort and UCSF. Patients with an “extreme” accumulation of triglyceride-

raising SNP alleles are defined as having scores above the 90th percentile threshold (≥1.49) 

in the 1000 Genomes cohort, which is illustrated by the grey hashed line. The hashed lines 

within each violin plot represent the median and interquartile ranges. P-values were 

generated from a Kruskal-Wallis test and adjusted with Dunn’s multiple comparisons based 

on mean polygenic risk score values between groups. P-values: **** <0.0001. 

Abbreviations: UCSF = University of California, San Francisco.
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4.4.4 Comparison of genetic profiles between cohorts 

The genetic profiles for the Lipid Genetics Clinic, UCSF and 1000 Genomes Project are 

presented in Figure 4.3. The ORs comparisons for each type of genetic variant are 

detailed in Figure 4.4 and demonstrate that there is no genetic difference between the 

two patient groups, indicating a successful validation of the observations from the Lipid 

Genetics Clinic analysis. Overall, hypertriglyceridemia patients are 5.77-times (95% CI 

[4.26-7.82]; P<0.0001) more likely to carry one of the three types of genetic determinants 

linked to hypertriglyceridemia, compared to normolipidemic controls. There is a striking 

difference in the genetic profiles between patients with severe hypertriglyceridemia, and 

normolipidemic controls (see Figure 4.3 and Figure 4.4). 

4.4.5 Comparison of triglyceride levels between molecular forms 
of hypertriglyceridemia  

There was a nonsignificant trend towards elevated mean triglyceride levels in patients 

with FCS (N=6; 34.8 ± 13.8 mmol/L), compared to patients with polygenic (N=261; 25.5 

± 19.8 mmol/L; P=0.153) or genetically undefined (N=296; 26.3 ± 26.8 mmol/L; 

P=0.077) hypertriglyceridemia.
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Figure 4.3 The comparison of genetic determinants of severe hypertriglyceridemia 

between cohorts. 

Percentages were determined from individuals from the Lipid Genetics Clinic, UCSF 

cohort, combined patient cohort and the 1000 Genomes Project. Only the patient cohorts 

contain bi-allelic variants, which are the molecular hallmark of monogenic FCS. 

Abbreviations: SNPs = single-nucleotide polymorphism; UCSF = University of California, 

San Francisco.  
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Figure 4.4 Differences in genetic determinants of severe hypertriglyceridemia 

between cohorts.  

Each forest plot illustrates the odds ratio of patients from the Lipid Genetics Clinic and 

UCSF cohorts having rare variants (including SNVs and CNVs), the extreme accumulation 

of common triglyceride-raising alleles (as indicated by an extreme polygenic risk score), 

or either type of genetic determinant, compared to normolipidemic controls from the 1000 

Genomes Project. The dashed line indicates an odds ratio of 1.0. P-values were generated 

from one-tailed Fisher’s exact tests. P-values: * <0.05; **** <0.0001. Abbreviations: CI = 

confidence interval; UCSF = University of California, San Francisco.
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4.5 Discussion 

Here we report a comprehensive genetic analysis using NGS and bioinformatic tools to 

simultaneously assess multiple types of genetic variants in patients with severe 

hypertriglyceridemia. From the Lipid Genetics Clinic cohort of 251 patients, we 

identified ~50% of individuals with a genetic factor likely contributing towards their 

severe hypertriglyceridemia phenotype. Of importance was the virtually identical 

replication of this genetic profile in an independent cohort from UCSF of 312 severe 

hypertriglyceridemia patients. Across all 563 severe hypertriglyceridemia patients, 1.1% 

had bi-allelic rare SNVs, 14.2% had heterozygous rare SNVs, and 0.2% had 

heterozygous rare CNVs, 32.0% had extreme polygenic risk scores, and 52.6% were 

genetically undefined. In consideration of the genetic classifications of 

hypertriglyceridemia, 1.1% of patients had monogenic hypertriglyceridemia (defined as 

having bi-allelic variants in the same gene; i.e. FCS), 46.6% of patients had polygenic 

hypertriglyceridemia (defined as either a heterozygous mutant rare allele or high 

polygenic risk scores; i.e. multifactorial chylomicronemia), while the remaining 52.6% of 

patients had genetically uncharacterized hypertriglyceridemia. 

The presence of bi-allelic, loss-of-function variants in canonical triglyceride genes causes 

FCS; however only 1.1% of patients across both cohorts carried these variants. Our 

findings strengthen previous reports that bi-allelic variants and FCS are actually an 

extremely rare subset of the entirety of severe hypertriglyceridemia. Our findings confirm 

that polygenic hypertriglyceridemia or multifactorial chylomicronemia is 

overwhelmingly the most common form of this phenotype in adults. We note that the six 

hypertriglyceridemia individuals with bi-allelic variants tended to have higher 

triglyceride levels (by about 20%) than individuals with other defined genetic forms of 

hypertriglyceridemia. The impulse to think first of the ultra-rare monogenic explanation 

versus the more likely polygenic explanation when confronted with a patient whose 

triglyceride level exceeds 10 mmol/L should be restrained; although these rare patients 

with bi-allelic variants exist they constitute a tiny minority of adult patients with severe 

hypertriglyceridemia (Hegele, 2018). 
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Heterozygous SNVs were the most frequent type of rare variant identified and were 

extremely prevalent in hypertriglyceridemia patients compared to normolipidemic 

controls. Increased heterozygous rare variant frequency in patients compared to healthy 

individuals has been shown previously for hypertriglyceridemia and other dyslipidemias 

(Johansen et al., 2010; Johansen et al., 2011b; Johansen et al., 2012; Motazacker et al., 

2013). Interestingly, 4.0% of normolipidemic controls also carried heterozygous SNVs. 

Studies have reported that individuals sharing the same rare, heterozygous variant can 

have a wide range of triglyceride levels (Babirak et al., 1989; Hegele et al., 1991; 

Nordestgaard et al., 1997); secondary factors likely underlie these differences and help 

explain the presence of heterozygous rare variants with no apparent clinical consequences 

in some healthy individuals. Indeed, this is commonly seen in complex traits; while a rare 

heterozygous variant may not be sufficient to drive the severe hypertriglyceridemia 

phenotype, in concert with other genetic and environmental influences, it can act as a 

strong polygenic contributor that increases susceptibility to high triglyceride levels (Dron 

and Hegele, 2018; Hegele et al., 2014).  

We observed that CNVs in canonical triglyceride genes were the rarest of all genetic 

determinants. Although less frequent than bi-allelic variants, the identified CNV was 

heterozygous, and like heterozygous SNVs, is also insufficient to be considered a driver 

of FCS. While the LPL CNV deletion almost certainly resulted in no functional protein 

from the mutant allele, the patient was heterozygous, meaning that they potentially had 

one fully functional LPL allele. However, total potential lipolytic capacity would be 

diminished for this patient, creating vulnerability to the effects of a secondary factor that 

further compromised LPL activity. 

The most prevalent genetic feature underlying severe hypertriglyceridemia here was the 

polygenic accumulation of common variants—more specifically, the accumulation of 

triglyceride-raising alleles across multiple SNP loci. While it has been appreciated that 

SNPs with small phenotypic effects are enriched in hypertriglyceridemia patients (Hegele 

et al., 2009; Johansen et al., 2011b; Piccolo et al., 2009; Teslovich et al., 2010; Wang et 

al., 2008), and triglyceride-based risk scores have explained a portion of the variance in 

triglyceride levels (Aulchenko et al., 2009; Justesen et al., 2015; Latsuzbaia et al., 2016; 
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Lutsey et al., 2012; Tikkanen et al., 2011), direct comparisons between triglyceride 

polygenic risk scores in large severe hypertriglyceridemia cohorts and normolipidemic 

controls are scarce. For the first time, we illustrate that an extreme accumulation of 

common variants is the most predominant genetic determinant, present in >30% of severe 

hypertriglyceridemia patients, demonstrating that a large proportion of cases result from 

the accumulation of multiple small effects originating from numerous small-effect 

triglyceride-raising loci from across the genome. Our OR calculations confirm that an 

extreme accumulation of common variants is strongly associated with severe 

hypertriglyceridemia. Our results further emphasize the importance of considering 

“polygenic” hypertriglyceridemia as the most common type of genetically-derived severe 

hypertriglyceridemia. 

For the remaining 52.6% of patients without the above genetic determinants, there remain 

several possible factors that may contribute towards their phenotype. They may have rare 

variants with clinically relevant effect sizes within certain non-canonical 

hypertriglyceridemia genes that were not assayed in this study, such as GALNT2 or 

CREB3L3. This would also include genes involved in pathways that are secondarily 

associated with elevated triglyceride levels, such as diabetes, insulin resistance and 

hepatosteatosis. Furthermore, while variants in such genes are not directly associated 

with extremely elevated triglyceride levels like what is seen in patients with severe 

hypertriglyceridemia, perhaps they contribute to this phenotype in conjunction with other 

factors, such as environmental and lifestyle determinants. Studies have started to consider 

complex gene-environment interactions (Cole et al., 2015), and could guide future 

analyses in severe hypertriglyceridemia. Certain genotypes alone are likely insufficient to 

cause extreme elevations in triglyceride levels, but in the presence of certain 

environmental triggers such as poor diet, obesity, stress or alcohol use, these could 

contribute to phenotypic changes. For example, adiposity was shown to almost double the 

impact of triglyceride-associated SNPs incorporated into a weighted risk score (Cole et 

al., 2014). 

Compared to genetic analyses performed in individuals with extremes of low-density 

lipoprotein (LDL) cholesterol (Wang et al., 2016) and high-density lipoprotein (HDL) 
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cholesterol (Dron et al., 2017), the severe hypertriglyceridemia phenotype shows marked 

differences in prevalence and predominance of genetic determinants. Different extreme 

lipid phenotypes appear to have different underlying genetic architecture. For example, 

extremely high levels of LDL cholesterol, presenting as “suspected familial 

hypercholesterolemia” (FH), has a large monogenic component. When studying patients 

with extreme deviations of HDL cholesterol and triglyceride, researchers have often 

assumed an analogy with FH and have imposed a monogenic framework on their 

experiments to define genetic determinants of these complex dyslipidemias. However, a 

substantial proportion of patients with extreme lipid phenotypes have a primarily 

polygenic basis, even for many cases of FH (Futema et al., 2015; Talmud et al., 2013; 

Wang et al., 2016). Furthermore, with clearly defined monogenic dyslipidemias, there 

can be phenotypic differences depending on the underlying genetic basis, such as in the 

case of FCS patients who have bi-allelic LPL variants versus those with bi-allelic variants 

in the four minor canonical genes (Hegele et al., 2018). 

Another tendency when dealing with quantitative traits is to assume that more extreme 

deviations reflect stronger genetic components. This has been observed in FH, where 

patients with higher LDL cholesterol levels were more likely to have monogenic FH 

(Wang et al., 2016). However, this is not the case for hypertriglyceridemia. Among a 

subgroup of nine of our patients with triglyceride ≥100 mmol/L, only one had a rare 

heterozygous LPL variant, while another had an extremely high polygenic risk score, and 

the remaining seven had no defined genetic determinant. The initial clinical intuition 

might be that these patients must have monogenic FCS, and that the extreme deviation is 

due to bi-allelic, large-effect variants (i.e. FCS analogous to homozygous FH). However, 

this is not the case; hypertriglyceridemia is a volatile trait with genetics that are not 

analogous to FH or other dyslipidemias. 

Our study has some limitations. First, we have no triglyceride measurements for the 

normolipidemic controls from the 1000 Genomes Project. Since they were self-reported 

as healthy, we assumed this cohort followed the general distribution of triglyceride levels 

in a European population. With a prevalence of 1 in 600 individuals having severe 

hypertriglyceridemia, it is unlikely that any affected individuals were included. Second, 
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as previously mentioned, neither variants in non-canonical triglyceride genes nor gene-

environment interactions were considered. It is very likely that some of the remaining 

genetically undefined patients may carry one of these alternative genetic influences. To 

build on this study, future steps could incorporate these factors for an even more detailed 

look into the genetic landscape of severe hypertriglyceridemia. Also, to broaden our 

understanding of hypertriglyceridemia, genetic analysis could be extended to include 

individuals with mild-to-moderate hypertriglyceridemia. Finally, our study was limited to 

individuals of European ancestry, and may not be generalizable to other geographical 

ancestries, a shortcoming that is not unique to this study (Need and Goldstein, 2009; 

Popejoy and Fullerton, 2016). Given the emerging challenge of dyslipidemia in the 

developing world, it is crucial to evaluate hypertriglyceridemia patients of different 

geographical ancestries. 

4.6 Conclusion 

Here, we assessed genetic profiles of severe hypertriglyceridemia patients using our 

targeted NGS panel and bioinformatic tools. We report the most comprehensive and in-

depth portrait of genetic determinants of severe hypertriglyceridemia to date. After a 

concurrent assessment of rare variants, both SNVs and CNVs, and the accumulation of 

common variants, we found that the accumulation of common variants was the most 

predominant genetic feature, and almost half of the patients had some type of polygenic 

determinant. Patients with bi-allelic rare variants (i.e. FCS) are a very rare subset of this 

phenotype. Nonetheless, there is a very strong genetic component underlying severe 

hypertriglyceridemia; this is clearly polygenic in large proportion of patients with severe 

hypertriglyceridemia. 
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Chapter 5 – Partial LPL deletions: rare copy-number variants 
contributing towards the polygenic form of severe 

hypertriglyceridemia 

The work contained in this Chapter has been edited from its original publication in the 

Journal of Lipid Research for brevity and consistency throughout this Dissertation.  
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5.1 Abstract 

Objective: Severe hypertriglyceridemia is a relatively common form of dyslipidemia 

with a complex pathophysiology and serious health complications. Hypertriglyceridemia 

can develop in the presence of rare genetic factors disrupting genes involved in the 

triglyceride metabolic pathway, including large-scale copy-number variants (CNVs). 

Improvements in next-generation sequencing (NGS) technologies and bioinformatic 

analyses have better allowed assessment of CNVs as possible causes of or contributors to 

severe hypertriglyceridemia. 

Methods and Results: We screened targeted NGS data of 632 patients with severe 

hypertriglyceridemia and identified partial deletions of the LPL gene, encoding the 

central enzyme involved in the metabolism of triglyceride-rich lipoproteins, in four 

individuals (0.63%). We confirmed the genomic breakpoints in each patient with Sanger 

sequencing. Three patients carried an identical heterozygous deletion spanning the 5’ 

untranslated region (UTR) to LPL exon 2, and one patient carried a heterozygous deletion 

spanning the 5’UTR to LPL exon 1. All four heterozygous CNV carriers were determined 

to have the polygenic form of severe hypertriglyceridemia (i.e. multifactorial 

chylomicronemia).  

Conclusion: The predicted null nature of our identified LPL deletions may contribute to 

relatively higher triglyceride levels and a more severe clinical phenotype than other forms 

of genetic variation associated with the disease, particularly in the polygenic state. The 

identification of novel CNVs in patients with severe hypertriglyceridemia suggests that 

methods for CNV detection should be included in the diagnostic workflow and genetic 

evaluation of patients with high triglyceride levels.  

5.2 Introduction 

Elevations in fasting plasma triglyceride levels are diagnosed as hypertriglyceridemia; 

triglyceride levels ≥10 mmol/L are classified as “severe” hypertriglyceridemia (Hegele et 

al., 2014) and are seen in ~1 in 600 individuals (Dron and Hegele, 2017). As a relatively 

common form of dyslipidemia with serious health complications that include pancreatitis 
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(Brahm and Hegele, 2015; Dron and Hegele, 2017), there is a focus on identifying and 

understanding factors that can increase susceptibility or cause severe 

hypertriglyceridemia.  

A combination of rare single-nucleotide variants (SNVs) and common single-nucleotide 

polymorphisms (SNPs) can contribute permissively or causally towards the presentation 

of this complex disease (Brahm and Hegele, 2015). The monogenic form of severe 

hypertriglyceridemia—also referred to as familial chylomicronemia syndrome (FCS)—is 

caused by bi-allelic variants disrupting canonical genes involved in triglyceride 

metabolism, such as LPL, LMF1, GPIHBP1, APOA5, and APOC2 (Johansen et al., 

2011a). Conversely, increased susceptibility for the polygenic form of severe 

hypertriglyceridemia, called “multifactorial chylomicronemia”, is due to heterozygous 

rare variants, common triglyceride-raising alleles at certain SNP loci, or a combination of 

both (Dron et al., 2019; Johansen et al., 2010; Johansen et al., 2011b; Johansen et al., 

2012; Kathiresan et al., 2009; Surendran et al., 2012; Teslovich et al., 2010; Wang et al., 

2008; Willer et al., 2013).   

Previously, it has been shown that copy-number variants (CNVs) are an additional type 

of genetic variation that can markedly contribute to extreme perturbations of triglyceride 

levels (Benlian et al., 1995; Devlin et al., 1990; Langlois et al., 1989; Okubo et al., 2007), 

as well as other lipid traits and disorders (Dron et al., 2018; Iacocca et al., 2018a; Iacocca 

et al., 2019; Iacocca and Hegele, 2018; Iacocca et al., 2018b). Assessment of CNVs is 

becoming easier due to improvements in sequencing technologies and bioinformatic 

analysis tools (Iacocca and Hegele, 2018; Valsesia et al., 2013). Because of this, it is 

possible to screen for CNVs in patient samples concurrently with rare SNVs and SNPs 

(Iacocca et al., 2019), and assess them as possible causes or contributors towards severe 

hypertriglyceridemia. 

A previous study of 563 patients with severe hypertriglyceridemia led to the 

identification of one individual who was likely carrying a heterozygous CNV deletion in 

LPL (Dron et al., 2019). From our next-generation sequencing (NGS) method and data 

archive (Johansen et al., 2014), we expanded our search for additional LPL CNVs that 
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might be contributing towards the presentation of severe hypertriglyceridemia in a larger 

cohort of patients. We discovered a total of four out of 632 patients with severe 

hypertriglyceridemia who were heterozygous carriers for one of two novel CNV 

deletions disrupting LPL. We molecularly confirm and characterize each deletion and 

discuss their likely contribution to severe hypertriglyceridemia. 

5.3 Materials and Methods 

5.3.1 Study subjects 

Severe hypertriglyceridemia patients (defined as triglyceride levels ≥10 mmol/L on at 

least one occasion) from the Lipid Genetics Clinic at the London Health Sciences Centre, 

University Hospital (London ON, Canada), the Genomic Resource in Arteriosclerosis and 

Metabolic Disease recruited at the Lipid, Diabetes, or Cardiology Clinics (University of 

California, San Francisco CA, USA), or patient samples directly from collaborating 

research centres were screened for CNVs. Patients provided signed consent with approval 

from the Western University ethics review board (no. 07290E) or from the originating 

institution.   

5.3.2 DNA preparation and targeted sequencing 

DNA isolation and preparation for targeted NGS follows the same methodology as 

described in Chapter 2, Section 2.3.2. 

5.3.3 Bioinformatic processing of sequencing data 

The bioinformatic processing of sequencing data follows the same methodology as 

described in Chapter 3, Section 3.3.3; however, an updated version of CLC Bio 

Genomics Workbench (version 12.0; CLC Bio, Aarhus, Denmark) was used. 

5.3.4 Detection of copy-number variants  

CNVs were detected following the same methodology described in Chapter 3, Section 

3.3.4; however, an updated version of VarSeq® (version 2.1.0; Golden Helix, Inc., 

Bozeman MT, USA) was used. The LPL gene was specifically screened for CNVs. 
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5.3.5 Validation of partial gene deletions 

5.3.5.1 Breakpoint identification 

To confirm each deletion, we designed primers to flank the regions likely to contain the 

deletions and used them for PCR amplification (Expand 20 kbplus PCR System, Sigma-

Aldrich St. Louis MO, USA, cat. No. 11811002001). The forward (F) and reverse (R) 

primers used were: F1 5’-TACAAGACGGTGTGTTGTGTTGTGGCACGG-3’ and R1 

5’-GTGACTTGATCCACAGCACAGAGCTGGAG-3’ (5’ untranslated region [UTR] – 

exon 1 deletion); F2 5’-AAGCTAGCTAGCTAGCTGGCTGGCCAG-3’ and R2 5’-

GGGTCTCTTGCAGCTAAGTCAGAACTCCAG-3’ (5’UTR – exon 2 deletion). PCR 

products were run on a gel for visual confirmation of the mutant alleles. Sanger 

sequencing and primer-walking of the PCR products were performed to identify the 

deletion breakpoints. 

5.3.5.2 Sanger confirmation 

After identifying deletion breakpoints by primer-walking the PCR products, screening 

primers spanning the proximal or distal breakpoint were designed for PCR and Sanger 

sequencing (Appendix I).  

5.4 Results 

5.4.1 Study subjects 

A total of 632 patients with severe hypertriglyceridemia were screened for CNVs 

disrupting LPL. We identified four individuals (Table 5.1) who were carriers for partial 

deletions in LPL using the VarSeq-CNV® caller algorithm (Figure 5.1).  

5.4.2 LPL copy-number variant detection  

Subject 1 was detected as carrying a heterozygous deletion of the 5’UTR to exon 1. From 

our LipidSeq panel, the CNV was detected to cover a single probe, and had an average 

ratio of 0.504 and average Z score of -13.030. 

Subjects 2, 3, and 4 were all detected as carrying a heterozygous deletion of the 5’UTR to 

exon 2; the observation of Subject 4’s CNV was first reported by our group earlier this 
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year (Dron et al., 2019). From our LipidSeq panel, the CNV was detected to cover two 

probes. Subject 2 had an average ratio of 0.566 and average Z score of -7.058. Subject 3 

had an average ratio of 0.542 and average Z score of -9.713. Subject 4 had an average 

ratio of 0.546 and average Z score of -7.248. 

5.4.3 Copy-number variant validation and identifying breakpoints   

A combination of PCR primer-walking upstream and downstream of the putative CNVs 

and gel electrophoresis validated the deletions and allowed for their characterization 

(Table 5.2). The deletion in Subject 1 was found to be 5,917 bp in size. This deletion 

began 1,038 bp upstream of LPL, covered the 5’UTR and exon 1, and ended 4,420 bp 

downstream of the splice donor site in intron 1 (Figure 5.2). Subjects 2, 3, and 4 were 

found to have the exact same deletion, which was 11,598 bp in size. This deletion began 

1,432 bp upstream of LPL, covered the 5’UTR, exon 1 and exon 2, and ended 895 bp 

downstream of the splice donor in intron 2 (Figure 5.2). We currently do not have any 

information suggesting that these three individuals are related.  
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A 

 

B 

 

Figure 5.1 Identification of LPL CNVs using the VarSeq-CNV® caller algorithm on targeted sequencing data. 

Chr8:19,795,931-19,829,369 (hg19 genome build) is the region visualized in each panel. A) Subject 1, carrier of a heterozygous deletion 

spanning the 5’UTR and exon 1 of LPL. B) Subject 2, 3, and 4, carriers of a heterozygous deletion spanning the 5’UTR, exon 1 and 

exon 2 of LPL. Abbreviations: chr = chromosome; CNV = copy-number variant; het = heterozygous. 
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Table 5.1 Clinical and demographic features of subjects with LPL CNVs. 
 Subject 1 Subject 2 Subject 3 Subject 4 

Age 53 48 64 46 

Sex Male Male Male Female 

BMI (kg/m2) 30.3 28.9 31.2 34.6 

Race White and Hispanic White White  White 

Total 

cholesterol 

(mmol/L) 

10.1 4.98 7.54 17.4 

Triglyceride  

(mmol/L) 
36.1  16.7  35.9  36.4 

HDL 

cholesterol 

(mmol/L) 

0.59  0.76  0.45  0.39  

LDL 

cholesterol 

(mmol/L) 

1.76  - - 1.24  

apo B (g/L) 1.28 0.69  0.84  4.44 

Fasting 

glucose 

(mmol/L) 

10.0  6.3  10.0 11.0  

Co-

morbidities  

Acute pancreatitis x3; 

pancreatic pseudocyst; 

type 2 diabetes; carotid 

and aortoiliac plaque; 

hepatic steatosis, gout; 

historically highest 

triglyceride was 102 

mmol/L 

Herpes zoster; 

impaired glucose 

tolerance; 

hepatosteatosis 

Acute 

pancreatitis 

x3; type 2 

diabetes; 

CABG, MI 

x2; gout 

Acute pancreatitis; 

gallstones 

(cholecystectomy) 

Identified 

genetic 

factors 

LPL exon 1 deletion 

(het); common LPL 

p.D36N variant (het); 

normal polygenic risk 

score (<64th percentile) 

LPL exon 1-2 

deletion (het); 

normal polygenic 

risk score (<43rd 

percentile) 

LPL exon 1-2 

deletion (het); 

normal 

polygenic risk 

score (<77th 

percentile) 

LPL exon 1-2 

deletion (het); 

normal polygenic 

risk score (<31st 

percentile) 

Values provided are from first presentation to specialist lipid clinic, or date first obtained. Abbreviations: 

apo = apolipoprotein; BMI = body-mass index; CABG = coronary artery bypass graft; HDL = high-density 

lipoprotein; het = heterozygous; LDL = low-density lipoprotein; MI = myocardial infarction. 
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Table 5.2 Genomic coordinates and breakpoints of LPL CNVs. 

CNV 
Zygosity 

state 

Breakpoint 

Genomic 

coordinates 

Length 

(bp) 
HGVS notation 

5’UTR 

to exon 

1 

Het 
chr8:19,795,544  to 

chr8:19,801,460 
5,917 

g.19795544-19801460del 

c. 1_88del 

p. Met1? 

5’ UTR 

to exon 

2 

Het 
chr8:19,795,150 to 

chr8:19,806,747 
11,598 

g.19795150-19806747del 

c.1_249del 

p.Met1? 

The sequences are in the forward-strand orientation. Abbreviations: bp = base pair; chr = chromosome; 

CNV = copy-number variation; het = heterozygous; HGVS = Human Genome Variation Society. 
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Figure 5.2 Validation of deletions disrupting LPL in patients with severe 

hypertriglyceridemia. 

The LPL gene transcript with the approximate breakpoints of the smaller CNV deletion 

encompassing exon 1 (left) and the larger CNV deletion encompassing exons 1 and 2 

(right) are indicated in blue and yellow, respectively. The diagonal slashes along the 

transcript indicate sequence breakpoints, while the arrows demonstrate the position and 

orientation of primers used in breakpoint identification and Sanger sequencing. Gel 

electrophoresis of PCR products across upstream and downstream breakpoints, and 

deletion junctions for each deletion are shown for Subjects 1 to 4. The primer pairs used 

for each PCR are indicated underneath the corresponding gel lanes. Abbreviations: bp = 

base pair; chr = chromosome; NC = normal control; P = primer; S = subject.
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5.5 Discussion 

Out of 632 patients with severe hypertriglyceridemia, four (0.63%) were identified as 

carriers of one of two unique, partial gene deletions in LPL. CNVs involving LPL—both 

deletions and duplications—have previously been identified using older methods 

(Benlian et al., 1995; Devlin et al., 1990; Langlois et al., 1989; Okubo et al., 2007), but to 

our knowledge this is one of the first few reports identifying and characterizing LPL 

CNVs using an NGS-based bioinformatic method, with confirmation of the genomic 

breakpoints. A recent study identified an LPL CNV deletion in an individual with severe 

hypertriglyceridemia last year using different NGS-based methods (Marmontel et al., 

2018).  

LPL is the primary enzyme responsible for the hydrolysis of triglyceride-rich 

lipoproteins, such as chylomicrons and very-low-density lipoproteins (VLDL) 

(Olivecrona, 2016; Young and Zechner, 2013). After being chaperoned by lipase 

maturation factor 1 (LMF1) from parenchymal cells to endothelial cells, LPL is anchored 

to the vascular lumen by glycosylphosphatidylinositol-anchored high-density lipoprotein-

binding protein 1 (GPIHBP1) (Young and Zechner, 2013). From there, LPL binds to the 

apolipoprotein (apo) C-II component of circulating triglyceride-rich lipoproteins to 

initiate the catabolism of their triglyceride-rich cores (Young and Zechner, 2013). 

Molecular disruptions that impair LPL mobilization or activity lead to an overall decrease 

in the hydrolysis of triglyceride. With fewer triglyceride-rich lipoproteins being 

catabolized, there is a resultant increase in the circulating concentration of triglyceride, 

which is the defining feature of hypertriglyceridemia.  

Considering the two identified CNVs spanning the 5’UTR to exon 1 and the 5’UTR to 

exon 2 both delete the initiator codon, it is almost certain that these CNVs are null 

mutations (Walter et al., 2005). However, the exact molecular consequences of these 

partial gene deletions cannot be confirmed without functional data related to mRNA 

expression, protein expression, or protein function. Since only heterozygous deletions 

were found, each patient can be classified as presenting with the polygenic form of 

hypertriglyceridemia (Brahm and Hegele, 2015; Dron et al., 2019; Wang et al., 2008) 
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with additional factors—either genetic or environmental or both—contributing to their 

clinical phenotype (Cole et al., 2015); this can also be referred to as “multifactorial 

chylomicronemia”. Interestingly, none of these patients have a high polygenic risk score 

or any other rare variants in canonical triglyceride metabolism genes. Although the sizes 

of the CNVs are quite large and the reported triglyceride levels are extremely high, these 

patients are not considered to have FCS, which refers specifically to a highly penetrant 

autosomal recessive disease. Only individuals with bi-allelic variants disrupting one of 

the canonical triglyceride metabolism genes can be diagnosed with FCS.  

To our knowledge, these particular LPL CNV deletions have never been reported. 

Overall, publications on LPL CNVs have been infrequent. In 1989, Langlois et al. 

identified several LPL-deficient individuals with either a 2-kb insertion or a 6-kb deletion 

in LPL using Southern blotting (Langlois et al., 1989). The next year, Devlin et al. further 

characterized the insertion and showed that it was a 2-kb tandem duplication event 

disrupting exon 6 of LPL (Devlin et al., 1990). Some years later, the first report of a 

homozygous CNV deletion in LPL was reported by Benlian et al. who used a PCR-based 

approach to define a 2.1-kb deletion encompassing exon 9 and flanking intronic sequence 

in a patient with LPL deficiency (Benlian et al., 1995). The next report on a LPL CNV 

was published more than a decade later, when Okubo et al. described a complex deletion-

insertion event (Okubo et al., 2007). By using both Southern blot analysis and PCR, they 

found their LPL-deficient proband was a homozygous carrier for a 2.3-kb deletion across 

exon 2 and 150 bp insertion at the break junction (Okubo et al., 2007). When considering 

more modern detection methods, a recent study by Marmontel et al. identified a 

heterozygous LPL deletion of exons 3 to 7 in a young patient with severe 

hypertriglyceridemia (triglyceride = 87 mmol/L); this individual also carried a 

heterozygous SNV in LPL (c.642A>C) and was classified as having a bi-allelic variant, 

and thus was diagnosed with FCS (Marmontel et al., 2018).   

Given the rarity of LPL CNVs, it was interesting to find the same deletion in three of our 

patients, Subjects 2 to 4, who have no known relationship between them. Since their 

deletion breakpoints are identical by sequencing, it is possible that these individuals have 

a distant common ancestor who carried the CNV. Although these patients presently live 
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in different geographical locations, they all self-report similar ancestry. An alternative—

albeit far less likely—explanation is that the exact same CNV event occurred 

independently in each separate patient lineage. For this deletion, there is sequence 

homology and repeated sequence around the breakpoint junction, which increases the 

likelihood of slippage, replication errors, and CNV events (Hastings et al., 2009). Despite 

having features that promote CNV events, the rarity of this LPL deletion in the literature 

and public databases suggests that this CNV is more likely shared by a common ancestor, 

rather than a reoccurring, independent deletion. 

When considering triglyceride levels in these patients, we noted that Subject 1 who had 

the smallest CNV also had the highest measured triglyceride levels at 102 mmol/L, while 

Subjects 2 to 4 who shared the larger CNV had somewhat lower triglyceride 

measurements ranging between 16.7 mmol/L and 36.4 mmol/L. It is unclear as to 

whether CNV size corresponds to magnitude in triglyceride elevation, or if it gives any 

indication for the function of the resultant protein product. Overall, the patients ranged 

from 48 to 53 years old and presented with a variety of co-morbidities. Interestingly, 

Subjects 1, 3 and 4 had reported past instances of acute pancreatitis requiring 

hospitalization; Subjects 1 and 3 each had three reported episodes. Acute pancreatitis has 

heretofore been a more frequent manifestation among individuals with the monogenic 

form of severe hypertriglyceridemia (Paquette et al., 2019). Given that these four patients 

almost certainly have polygenic hypertriglyceridemia, we speculate these predicted null 

mutations may have predisposed to relatively higher triglyceride levels than other types 

of genetic variation. Without functional studies and larger cohorts, it is difficult to isolate 

the CNV-specific effects. Disparities in genotype-phenotype relationships have  

previously been observed with CNVs underlying depressed high-density lipoprotein 

(HDL) cholesterol levels, in which the same genetic variants were found in individuals 

with variable lipid profiles (Brunham et al., 2006; Dron et al., 2018). 

The reported non-genetic factors, including co-morbidities such as diabetes (Table 5.1), 

are likely contributing towards the overall severity of these patients’ hypertriglyceridemia 

phenotypes, and in turn may help to explain the frequency of acute pancreatitis episodes 

in these individuals. By considering these additional pieces of information, we can more 
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specifically diagnose our patients with multifactorial chylomicronemia. As stated 

previously, a single heterozygous variant is not enough to cause hypertriglyceridemia; 

given that the patients did not have any additional related genetic factors identified as 

contributing towards their phenotypes, these non-genetic factors must be considered as 

likely contributory factors.  

Future studies are required to characterize the functional impact of our identified CNVs 

on LPL activity and triglyceride clearance pathways. Moving forward, it is also important 

to screen for CNVs in the other canonical triglyceride metabolism genes, as they have 

been previously identified in individuals with hypertriglyceridemia, such as CNVs 

disrupting GPIHBP1 and APOC2 (Hegele et al., 2018; Patni et al., 2016; Rios et al., 

2012).  

5.6 Conclusion 

In summary, although they are relatively infrequent, LPL CNVs are an important type of 

genetic variation that should be screened for when establishing the genetic basis of 

hypertriglyceridemia, given their disruptive nature. With developments and 

improvements to NGS techniques and more accessible CNV detection methods, CNV 

assessment can be easily incorporated into routine screens of rare SNVs and polygenic 

risk score calculations (Iacocca et al., 2019; Iacocca and Hegele, 2018). Efforts must be 

taken to carefully characterize different determinants, including CNVs, SNVs, and the 

accumulation of SNPs. By assessing a larger spectrum of genetic factors, we can achieve 

a more comprehensive understanding of the genetic etiology underlying severe 

hypertriglyceridemia.  
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Chapter 6 – The polygenic nature of mild-to-moderate 
hypertriglyceridemia 

The work contained in this Chapter has been edited from its original publication in the 

Journal of Clinical Lipidology for brevity and consistency throughout this Dissertation. 
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nature of mild-to-moderate hypertriglyceridemia. J Clin Lipidol 14, 28-34 e22. 
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6.1 Abstract 

Objective: Patients with mild-to-moderate hypertriglyceridemia are thought to share 

specific genetic susceptibility factors that are also present in severe hypertriglyceridemia 

patients, but no data have been reported on this issue. Here, we characterized genetic 

profiles of mild-to-moderate hypertriglyceridemia patients and compared them to patients 

with severe hypertriglyceridemia. 

Methods and Results: DNA from patients with mild-to-moderate hypertriglyceridemia 

was sequenced using our targeted sequencing panel, “LipidSeq”. For each patient, we 

assessed: 1) rare variants disrupting five triglyceride metabolism genes; and 2) the 

accumulation of 16 common single-nucleotide polymorphisms (SNPs) using a polygenic 

risk score. The genetic profiles for these patients were then compared to normolipidemic 

controls and to patients with severe hypertriglyceridemia. Across 134 mild-to-moderate 

hypertriglyceridemia patients, 9.0% carried heterozygous rare variants and 24.6% had an 

excess accumulation of common SNPs. Mild-to-moderate hypertriglyceridemia patients 

were 2.38-times (95% CI [1.13-4.99]; P=0.021) more likely to carry a rare variant and 

3.26-times (95% CI [2.02-5.26]; P<0.0001) more likely to have an extreme polygenic 

risk score compared to normolipidemic controls from the 1000 Genomes Project. In 

addition, severe hypertriglyceridemia patients were 1.86-times (95% CI [0.98-3.51]; 

P=0.032) more likely to carry a rare variant and 1.63-times (95% CI [1.07-2.48]; 

P=0.013) more likely to have an extreme polygenic risk score compared to mild-to-

moderate hypertriglyceridemia patients. 

Conclusions: We report an increased prevalence of genetic determinants in patients with 

an increased severity of the hypertriglyceridemia phenotype when considering either rare 

variants disrupting triglyceride metabolism genes or an excess accumulation of common 

SNPs. As well, the findings confirm that the most prevalent genetic contributor to 

hypertriglyceridemia, regardless of severity, is polygenic SNP accumulation. 
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6.2 Introduction 

As a common dyslipidemia encountered in the clinic, hypertriglyceridemia is defined by 

elevated fasting triglyceride levels. Depending on the degree of elevation, individuals can 

present with mild-to-moderate hypertriglyceridemia (range 2-9.9 mmol/L) or severe 

hypertriglyceridemia (≥10 mmol/L) (Hegele et al., 2014). Numerous genetic determinants 

contribute to susceptibility and presentation of hypertriglyceridemia (Brahm and Hegele, 

2015). In severe hypertriglyceridemia patients with the monogenic recessive form of the 

disease—familial chylomicronemia syndrome (FCS)—bi-allelic rare variants disrupting 

canonical genes in the triglyceride metabolic pathway—including LPL, LMF1, 

GPIHBP1, APOA5, and APOC2—are casual factors (Johansen et al., 2011a). There is no 

reported autosomal dominant form of hypertriglyceridemia. By contrast, most individuals 

with severe hypertriglyceridemia have a complex polygenic predisposition; genetic 

susceptibility results from either incompletely penetrant heterozygous rare variants 

disrupting the aforementioned triglyceride metabolism genes, or the incremental effects 

from the accumulation of common triglyceride-associated single-nucleotide 

polymorphisms (SNPs), or a combination of these genetic factors (Johansen et al., 2010; 

Johansen et al., 2011b; Johansen et al., 2012; Kathiresan et al., 2009; Surendran et al., 

2012; Teslovich et al., 2010; Wang et al., 2008; Willer et al., 2013). This is referred to as 

multifactorial chylomicronemia. 

Previously, we characterized the genetic determinants underlying severe 

hypertriglyceridemia in a cohort of 563 patients and found: 1) 1.1% of cases were 

monogenic due to bi-allelic rare variants; and 2) 14.4% of cases carried heterozygous rare 

variants of variable penetrance; and 3) 32.0% had an excess accumulation of common 

SNPs (Dron et al., 2019). While that study advanced our understanding of the genetic 

profiles of severe hypertriglyceridemia patients, the genetic profiles of mild-to-moderate 

hypertriglyceridemia patients have not been examined.  

Despite having lower triglyceride levels compared to those with severe 

hypertriglyceridemia, patients with mild-to-moderate hypertriglyceridemia also have 

health concerns, including an increased risk for cardiovascular disease (Dron and Hegele, 

2017). The main disturbance in mild-to-moderate hypertriglyceridemia patients is an 
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excess of very-low-density lipoproteins (VLDL) and their remnants, including 

intermediate-density lipoproteins (IDL) (Brahm and Hegele, 2015; Varbo and 

Nordestgaard, 2016), which are considered atherogenic. Fasting chylomicrons are usually 

absent in mild-to-moderate hypertriglyceridemia patients, while in severe 

hypertriglyceridemia patients, chylomicrons are present typically together with excess 

VLDL and remnant particles (Chait and Brunzell, 1992; Dron et al., 2017; Lewis et al., 

2015). Some patients with mild-to-moderate hypertriglyceridemia can deteriorate into 

severe hypertriglyceridemia when excess VLDL saturates triglyceride removal 

mechanisms, such that incoming chylomicrons cannot be cleared and thus accumulate 

pathologically (Chait and Eckel, 2019). It has been assumed that patients with mild-to-

moderate hypertriglyceridemia share particular genetic susceptibility factors with severe 

hypertriglyceridemia patients. The phenotype can be further worsened by secondary 

factors such as diabetes, obesity, poor diet or alcohol use. Genetically characterizing 

mild-to-moderate hypertriglyceridemia patients may clarify potential underlying 

similarities and differences with severe hypertriglyceridemia. 

In our clinic, we routinely perform next-generation sequencing (NGS) on all consenting 

patients and obtain a complete profile of both rare variants of large effect and common 

variants of small effect underlying dyslipidemias, including mild-to-moderate and severe 

hypertriglyceridemia. Here, we report the use of our well-established sequencing panel to 

assess the genetic profiles of 134 mild-to-moderate hypertriglyceridemia patients and 

compare these with reported findings from patients with severe hypertriglyceridemia. 

6.3 Materials and Methods 

6.3.1 Study subjects 

Patients of interested included those of European ancestry with earliest reported 

triglyceride levels ≥3.3 mmol/L and <10 mmol/L, and a total cholesterol of <5 mmol/L. 

Patients with triglyceride levels ever reported as ≥10 mmol/L were excluded from 

consideration.  
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In adherence to the Declaration of Helsinki, all patients provided written, informed 

consent for collection of personal data and DNA with approval from the Western 

University (London ON, Canada) ethics review board (no. 07290E). 

As a reference cohort of normolipidemic controls, we used the European subset of the 

1000 Genomes Project (N=503) (Genomes Project et al., 2015). For additional 

comparison, we also utilized our cohort of 563 severe hypertriglyceridemia patients, in 

which all patients had triglyceride levels ≥10 mmol/L (Dron et al., 2019); this cohort is 

described in Chapter 4. 

6.3.2 DNA preparation and targeted sequencing 

DNA isolation and preparation for targeted NGS follows the same methodology as 

described in Chapter 2, Section 2.3.2. 

6.3.3 Bioinformatic processing of sequencing data 

The bioinformatic processing of sequencing data follows the same methodology as 

described in Chapter 5, Section 5.3.3.  

6.3.4 Annotation and analysis of rare single-nucleotide variants 

The annotation and analysis of rare single-nucleotide variants (SNVs) follows the same 

methodology as described in Chapter 4, Section 4.3.4; however, an updated version of 

VarSeq® (version 2.1.1; Golden Helix, Inc., Bozeman MT, USA) was used. 

6.3.5 Detection of rare copy-number variants 

Copy-number variants (CNVs) were identified following the same methodology as 

described in Chapter 4, Section 4.3.5; however, an updated version of VarSeq® (version 

2.1.1; Golden Helix, Inc., Bozeman MT, USA) was used. 

6.3.6 Polygenic risk score for elevated triglyceride levels 

The polygenic risk score used to assess for single-nucleotide polymorphisms (SNPs) 

associated with triglycerides is described in Chapter 4, Section 4.3.6. This score was 

calculated in all patients and controls assessed in this study.  
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6.3.7 Statistical analysis 

Statistical analyses were performed as described in Chapter 4, Section 4.3.7; however, an 

updated version of GraphPad Prism for Windows (version 8.0.2; GraphPad Software, La 

Jolla CA, USA) was used. 

6.4 Results 

6.4.1 Characteristics of study subjects 

One hundred and thirty-four patients were selected for study from the Lipid Genetics 

Clinic at the London Health Sciences Centre, University Hospital (London ON, Canada). 

The demographic and clinical characteristics of the 134 mild-to-moderate 

hypertriglyceridemia patients are summarized in Table 6.1.   

6.4.2 Rare variants identified in canonical triglyceride metabolism 
genes 

Mild-to-moderate hypertriglyceridemia patients were assessed for rare variants—both 

SNVs and CNVs—in the five canonical triglyceride metabolism genes. Overall, 9.0% 

(12/134) of patients were carriers for heterozygous rare SNVs, representing 11 unique 

variants (Appendix J). Neither bi-allelic SNVs nor CNVs were identified. Of interest, 

one patient carried two rare heterozygous SNVs: one in LPL and one in APOA5 (i.e. 

“double heterozygosity”).  

6.4.3 Measuring accumulation of common triglyceride-raising 
alleles 

An extreme accumulation of triglyceride-raising alleles at common SNP sites was 

defined as a polygenic risk score ≥1.49 (>90th percentile) (Dron et al., 2019). An extreme 

score was identified in 26.9% (36/134) of mild-to-moderate hypertriglyceridemia 

patients. The distribution of polygenic risk scores for each cohort are visualized in Figure 

6.1. 
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Table 6.1 Clinical and demographic information of the mild-to-moderate 

hypertriglyceridemia patient cohort (N=134). 

 Mild-to-moderate Severe  
P-value 

Males Females Total Total 

N 93 41 134 563  

Age 53.2 ± 11.8* 54.9 ± 12.6* 53.68 ± 12.0 49.12 ± 12.5* 0.0006 

BMI 

(kg/m2) 
31.18 ± 2.8*  30.87 ± 5.9* 30.07 ± 4.0 29.86 ± 5.0* 0.2201 

Total 

cholesterol 

(mmol/L) 

4.06 ± 0.6 4.14 ± 0.6  4.08 ± 0.6  11.3 ± 6.1* <0.0001 

Triglyceride 

(mmol/L) 
4.65 ± 1.3  4.73 ± 1.4  4.68 ± 1.3  26.03 ± 23.7  <0.0001 

HDL 

cholesterol 

(mmol/L) 

0.79 ± 0.2  0.86 ± 0.3  0.81 ± 0.2  0.81 ± 0.4* 0.0231 

Values are indicative of the mean ± SD. “*” indicates means that were calculated with an incomplete 

dataset. All reported P-values are two-tailed and show comparisons between the total mild-to-moderate 

hypertriglyceridemia and total severe hypertriglyceridemia cohort. Abbreviations: BMI = body-mass 

index; HDL = high-density lipoprotein. 
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Figure 6.1 Polygenic risk score distributions between cohorts. 

Each violin plot illustrates the distribution of the 16-SNP polygenic risk score calculated 

in the 1000 Genomes Project, mild-to-moderate hypertriglyceridemia, and severe 

hypertriglyceridemia cohorts. The 90th percentile is denoted by the hashed black line 

(1.49). The lines within each plot represent the median and quartiles for each cohort. P-

values were generated from a Kruskal-Wallis test and adjusted with Dunn’s multiple 

comparisons based on mean polygenic risk score values between groups. P-values: * <0.05; 

**** <0.0001.
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6.4.4 Comparison of genetic profiles between cohorts 

The genetic profile of the mild-to-moderate hypertriglyceridemia cohort was compared to 

individuals from the previously published 1000 Genomes Project and severe 

hypertriglyceridemia cohorts (Dron et al., 2019) (Figure 6.2). When considering rare 

variants only, 4.0% (20/503), 9.0% (12/134), and 15.5% (87/563) of individuals in the 

1000 Genomes Project, mild-to-moderate hypertriglyceridemia, and severe 

hypertriglyceridemia cohorts were carriers, respectively. When considering the 

accumulation of triglyceride-raising alleles, 10.1% (51/503), 26.9% (36/134), and 37.5% 

(211/563) of individuals in the 1000 Genomes Project, mild-to-moderate 

hypertriglyceridemia, and severe hypertriglyceridemia cohorts had extreme polygenic 

risk scores, respectively. When considering both rare variants or accumulated 

triglyceride-raising alleles (i.e. an extreme polygenic risk score), 13.5% (68/503), 33.6% 

(45/134), and 47.4% (267/563) of individuals in the 1000 Genomes Project, mild-to-

moderate hypertriglyceridemia, and severe hypertriglyceridemia cohorts had either 

genetic determinant, respectively. 

The forest plots in Figure 6.3 highlight differences in prevalence of genetic determinants 

between mild-to-moderate and severe hypertriglyceridemia patient cohorts, compared to 

the 1000 Genomes Project. Mild-to-moderate hypertriglyceridemia patients are 2.38-

times (95% CI [1.13-4.99]; P=0.021) more likely to carry a rare variant and 3.26-times 

(95% CI [2.02-5.26]; P<0.0001) more likely to have an extreme polygenic risk score 

compared to the 1000 Genomes Project. Severe hypertriglyceridemia patients are 1.86-

times (95% CI [0.98-3.51]; P=0.032) more likely to carry a rare variant and are 1.63-

times (95% CI [1.07-2.48]; P=0.013) more likely to have an extreme polygenic risk score 

compared to mild-to-moderate hypertriglyceridemia patients. These comparisons show a 

significant stepwise increase in the prevalence of genetic determinants—both rare and 

common—from control to mild-to-moderate to severe hypertriglyceridemia patients. 

Finally, in our mild-to-moderate hypertriglyceridemia cohort, only 3/12 patients (25%) 

with a rare variant also had an extreme polygenic risk score, while in our severe 

hypertriglyceridemia cohort, 30/87 patients (34.5%) with a rare variant also had an 

extreme polygenic risk score.   
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Figure 6.2 The comparison of genetic profiles between cohorts. 

Percentages were determined from normolipidemic controls and patients with either mild-

to-moderate or severe hypertriglyceridemia. The prevalence of genetic determinants in the 

1000 Genomes Project cohort and severe hypertriglyceridemia cohort have been previously 

reported by Dron et al. (2019). Abbreviations: SNPs = single-nucleotide polymorphisms.  
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Figure 6.3 Differences in genetic determinants of hypertriglyceridemia. 

Each forest plot illustrates the odds ratio of mild-to-moderate or severe 

hypertriglyceridemia patients having rare variants (including SNVs and CNVs), the 

extreme accumulation of common triglyceride-raising alleles (as indicated by an extreme 

polygenic risk score), or either type of genetic determinant, compared to the 

normolipidemic controls of the 1000 Genomes Project. The dashed line indicates an odds 

ratio of 1.0. P-values were generated from one-tailed Fisher’s exact tests. P-values: * <0.05; 

**** <0.0001. Abbreviations: CI = confidence interval.
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6.5 Discussion 

In this study, we performed a comprehensive assessment of the genetic determinants 

underlying mild-to-moderate hypertriglyceridemia. Using the same rare variant and 

polygenic risk score analysis as we reported previously in our severe 

hypertriglyceridemia cohort (Dron et al., 2019), we compared genetic profiles of patients 

who had varying hypertriglyceridemia severity. Across 134 mild-to-moderate 

hypertriglyceridemia patients, 9.0% carried heterozygous rare variants and 24.6% had an 

excess accumulation of common SNPs, totalling 33.6% of the study sample with an 

identifiable genetic determinant, while 66.4% were genetically undefined. 

Next, after comparing the genetic profiles of mild-to-moderate and severe 

hypertriglyceridemia patients (Dron et al., 2019), we noted a stepwise increase in the 

prevalence of genetic determinants as the hypertriglyceridemia phenotype became more 

severe. These differences were significant between pairwise comparisons. Cumulatively, 

our data show that mild-to-moderate hypertriglyceridemia patients have a genetic burden 

that is intermediate between normolipidemic controls and patients with severe 

hypertriglyceridemia.  

Despite the significantly increased overall prevalence of rare variants in severe 

hypertriglyceridemia patients compared to mild-to-moderate hypertriglyceridemia 

patients (Dron et al., 2019), certain rare variants were shared between individuals in the 

two patient groups, underscoring that a single rare variant is insufficient to distinguish 

between the hypertriglyceridemia sub-phenotypes (Babirak et al., 1989; Hegele et al., 

1991; Nordestgaard et al., 1997). These determinants might affect individuals differently 

or could have variable penetrance, making it challenging to isolate a single genetic factor 

responsible for causing hypertriglyceridemia, except for bi-allelic rare variants in 

monogenic FCS (Brahm and Hegele, 2015). Such underlying similarities are consistent 

with the complex nature of the disease. Not only might there be genetic determinants 

beyond what we assessed in this study, there are also environmental influences such as 

smoking, activity level, and diet that increase disease susceptibility and modulate 

triglyceride levels (Brahm and Hegele, 2015; Cole et al., 2015; Dron and Hegele, 2018; 
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Hegele et al., 2014; Johansen et al., 2010; Johansen et al., 2011b; Johansen et al., 2012; 

Kathiresan et al., 2009; Surendran et al., 2012; Teslovich et al., 2010; Wang et al., 2008; 

Willer et al., 2013). These additional factors may contribute to phenotype severity, 

perhaps determining whether a patient develops mild-to-moderate versus severe 

hypertriglyceridemia.  

Genetic factors increase risk of developing hypertriglyceridemia, but are not absolute 

indicators for causality, except for bi-allelic rare variants that cause monogenic FCS. 

Additionally, phenotypic severity can depend on a myriad of exposures that may change 

over time, possibly blurring the prediction at any time point of whether an individual will 

express the mild-to-moderate or severe form of the disease. Among patients with severe 

hypertriglyceridemia, those with a rare variant or extreme SNP accumulation had 

significantly more metabolic risk factors—including higher body-mass index, blood 

pressure, and fasting glucose—compared to patients with FCS (Paquette et al., 2019). 

Individuals may develop this phenotype due to a greater overall burden of both genetic 

and environmental risk factors that contribute towards disease presentation. In contrast, 

individuals with mild-to-moderate hypertriglyceridemia have an intermediate burden of 

genetic predisposing factors. But in the presence of secondary non-genetic factors, the 

milder genetic susceptibility in mild-to-moderate hypertriglyceridemia can be overcome, 

and patients could slip metabolically into a severe hypertriglyceridemia phenotype.  

To predict future risk of developing hypertriglyceridemia, either mild-to-moderate or 

severe, assessing genetic and non-genetic determinants simultaneously would seem 

logical. Genetic analysis could be broadened to include a genome-wide polygenic score 

that concurrently assesses millions of SNPs contributing towards hypertriglyceridemia 

susceptibility. Several such large-scale, genome-wide polygenic scores have been created 

for other complex diseases, including coronary artery disease, atrial fibrillation, type 2 

diabetes, inflammatory bowel disease, and breast cancer (Khera et al., 2018). In large 

populations, Khera et al. found that individuals with a high genome-wide polygenic score 

were at an equivalent risk for disease as individuals carrying a single pathogenic variant 

related to the disease (Khera et al., 2018). In addition, rare variants disrupting non-

canonical triglyceride genes could be examined for a better-defined genetic profile, as 
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other genes beyond the triglyceride metabolic pathway have reported relationships with 

triglyceride levels, such as CREB3L3, MLXIPL and GCKR (Kathiresan et al., 2009; 

Santoro et al., 2012; Willer et al., 2008). 

Finally, environmental factors must be considered in conjunction with the genetic profile 

when diagnosing and defining hypertriglyceridemia. Future research could study 

differences in environmental factors between individuals with similar genetic profiles yet 

differing severities of hypertriglyceridemia. We did not systematically record baseline 

environmental factors, which is a limitation as we would anticipate a lesser burden of 

non-genetic stressors among patients with mild-to-moderate hypertriglyceridemia versus 

severe hypertriglyceridemia. Larger and more systematically defined 

hypertriglyceridemia cohorts would be ideal going forward, for instance, when 

developing hypertriglyceridemia patient registries. 

6.6 Conclusion 

With more extreme hypertriglyceridemia severity, we see an increased prevalence of 

genetic determinants, including both variably penetrant heterozygous rare variants 

disrupting a triglyceride metabolism gene—including LPL, LMF1, GPIHBP1, APOA5, 

and APOC2—and an extreme accumulation of 16 common triglyceride-associated SNPs. 

Genetic testing alone cannot be used to accurately predict hypertriglyceridemia severity 

for any single patient at any particular time point. At present, we have no evidence that 

clinical outcomes or interventions differ according to the genotype, although its potential 

use in prognostication and predicting response to treatment should be evaluated. 

Additional research is required to consider environmental risk factors in conjunction with 

our established method of ascertaining genetic profiles related to hypertriglyceridemia. 

At present, we recommend that most clinical decisions—diet, statin, fibrate, new 

biologics (Laufs et al., 2020)—can be based on the biochemical severity of the lipid 

disturbance, without the need for extensive genetic testing.  
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Chapter 7 – Loss-of-function CREB3L3 variants in patients 
with severe hypertriglyceridemia 

The work contained in this Chapter has been edited from its original publication in 

Arteriosclerosis, Thrombosis, and Vascular Biology for brevity and consistency 

throughout this Dissertation. 
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7.1 Abstract 

Objective: Significant genetic determinants of severe hypertriglyceridemia include both 

common variants with small effects (assessed using polygenic risk scores) plus 

heterozygous and homozygous rare variants in canonical genes directly affecting 

triglyceride metabolism. Here we broadened our scope to detect statistical associations of 

rare loss-of-function variants in genes affecting non-canonical pathways, including those 

known to affect triglyceride metabolism indirectly. 

Methods and Results: From targeted next-generation sequencing of 69 metabolism-

related genes in 265 patients of European descent with severe hypertriglyceridemia (≥10 

mmol/L) and 477 normolipidemic controls, we focused on the association of rare 

heterozygous loss-of-function variants in individual genes. We observed that compared to 

controls, severe hypertriglyceridemia patients were 20.2-times (95% CI [1.11-366.1]; 

P=0.03) more likely than controls to carry a rare loss-of-function variant in CREB3L3, 

which encodes a transcription factor that regulates several target genes with roles in 

triglyceride metabolism. 

Conclusions: Our findings indicate that rare variants in a non-canonical gene for 

triglyceride metabolism, namely CREB3L3, contribute significantly to severe 

hypertriglyceridemia. Secondary genes and pathways should be considered when 

evaluating the genetic architecture of this complex trait. 

7.2 Introduction 

Severe hypertriglyceridemia is defined as triglyceride levels ≥10 mmol/L in the fasted 

state (Hegele et al., 2014). With a population prevalence of about 1 in 600, individuals 

with severely elevated triglyceride levels are at risk for several health complications, the 

most serious being acute pancreatitis (Brahm and Hegele, 2015; Dron and Hegele, 2017). 

As a multifactorial disease, severe hypertriglyceridemia can be caused by various genetic 

determinants, environmental factors, or some combination of both, which strongly 

reflects the phenotype’s complexity (Brahm and Hegele, 2015; Hegele et al., 2014).  
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When studying genetic influences on triglyceride levels, canonical genes involved in 

triglyceride metabolism—LPL, LMF1, GPIHBP1, APOA5, and APOC2—are screened 

for rare variants that disrupt the catabolism of triglyceride-rich lipoproteins and lead to 

marked elevations in plasma triglyceride concentration (Johansen and Hegele, 2012; 

Johansen et al., 2011). Additionally, we consider the accumulation of common 

triglyceride-associated single-nucleotide polymorphisms (SNPs) using polygenic scores; 

although individual SNPs have small phenotypic impacts, in aggregate they impart a 

larger cumulative increase in triglyceride levels (Dron et al., 2019). Assessing these 

different types of genetic determinants simultaneously is necessary to understand the 

broader genetic basis of hypertriglyceridemia.  

We recently studied rare variants and common SNPs in a cohort of 563 severe 

hypertriglyceridemia patients. We found that 1.1% of patients carried bi-allelic rare 

variants in canonical triglyceride metabolism genes (Dron et al., 2019). By definition, 

these patients were diagnosed with familial chylomicronemia syndrome (FCS), the 

monogenic form of severe hypertriglyceridemia. As an autosomal recessive disorder, 

FCS is the only instance in which a patient’s hypertriglyceridemia phenotype is driven 

exclusively by a single genetic factor. All other hypertriglyceridemia cases are non-

monogenic and follow a multifactorial model; this distinction of severe 

hypertriglyceridemia is defined as “multifactorial chylomicronemia”. From the same 

severe hypertriglyceridemia cohort, 46.4% of patients were found to carry genetic 

determinants contributing towards their phenotypes, including either heterozygous rare 

variants disrupting canonical metabolism genes or an excess accumulation of 

triglyceride-associated SNPs (Dron et al., 2019). The remaining 52.6% of patients did not 

carry any identified genetic determinant. With a multifactorial nature and strong 

polygenic background, many of these multifactorial patients likely have additional 

genetic factors contributing towards their severe hypertriglyceridemia phenotype that 

were not assessed in our initial study. 

Uncovering new genetic determinants contributing towards disease can be challenging, 

particularly when focusing on rare variants in non-canonical genes; large patient cohorts 

are required to provide adequate power to show associations between variants and the 



212 

 

phenotype of interest (Auer and Lettre, 2015; Lee et al., 2014; Michailidou, 2018). In 

smaller cohorts, gene-based rare variant association studies (RVAS) are an alternative 

method that can be used to boost statistical power by grouping variants according to 

function(s) of the gene product (Auer and Lettre, 2015; Ionita-Laza, 2013; Lee et al., 

2014). If a gene has an increased prevalence of rare variants in cases versus controls, it 

suggests that the gene may play some role in driving or influencing the phenotype of 

interest. This methodology has been successful in uncovering new gene associations in 

complex traits and diseases such as body-mass index, height, Alzheimer’s disease, and 

lipid levels (Marouli et al., 2017; Nho et al., 2016; Pirim et al., 2015; Turcot et al., 2018).  

Since the severe hypertriglyceridemia patients were previously sequenced using our 

targeted LipidSeq panel design, in addition to the five aforementioned canonical genes 

for FCS, sequencing data were also generated for 64 other genes associated with lipid 

traits and metabolic disorders. To better define the full spectrum of genetic determinants 

underlying severe hypertriglyceridemia, we evaluated the multifactorial and undefined 

hypertriglyceridemia patients using gene-based RVAS to identify rare loss-of-function 

variants in secondary or non-canonical genes. We thus explored a diverse range of 

genetic determinants across non-canonical triglyceride genes to further tease out the 

genetic underpinnings of severe hypertriglyceridemia and define in greater detail the 

multifactorial and polygenic nature of this phenotype. 

7.3 Materials and Methods 

7.3.1 Study subjects 

Patients of interest included those of European ancestry with triglyceride levels ≥10 

mmol/L. Importantly, patients with FCS, diagnosed by the presence of bi-allelic rare 

variants in canonical triglyceride metabolism genes (Dron et al., 2019) were excluded 

from consideration, since these patients have a clear, genetic explanation for their severe 

hypertriglyceridemia phenotype.  

Five hundred and fifty-seven patients met our criteria and were selected for study from 

either the Lipid Genetics Clinic at the London Health Sciences Centre, University 

Hospital (London ON, Canada), or the Lipid, Diabetes, and Cardiology Clinics at the 
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University of California, San Francisco. In adherence to the Declaration of Helsinki, all 

patients provided written, informed consent for collection of personal data and DNA with 

approval from either the Western University (London ON, Canada) ethics review board 

(no. 07290E) or the Committee on Human Research of the University of California, San 

Francisco. 

Clinical and demographic information for each patient were collected at the time of their 

first clinic visit. Fasting lipid profiles were measured according to clinical standards of 

care using the Roche Cobas C502 Analyzer (Hoffmann La Roche, Mississauga, Ontario). 

As a reference control cohort, we used the European subset of the 1000 Genomes Project 

(N=503) (Genomes Project et al., 2015). While phenotype information is not available for 

these individuals, we make the assumption that their triglyceride levels follow the typical 

distribution seen in a population with similar ancestral background (Castelli et al., 1977; 

National Cholesterol Education Program Expert Panel on Detection and Treatment of 

High Blood Cholesterol in Adults, 2002). Further, severe hypertriglyceridemia has a 

population prevalence of ~1 in 600 individuals, which suggests that it is very unlikely 

that anyone in the 1000 Genomes Project has extremely elevated triglyceride levels. For 

these reasons, we refer to this cohort as “normolipidemic”.   

7.3.2 DNA preparation and targeted sequencing 

DNA isolation and preparation for targeted next-generation sequencing (NGS) follows 

the same methodology as described in Chapter 2, Section 2.3.2. 

7.3.3 Bioinformatic processing of sequencing data 

The bioinformatic processing of sequencing data follows the same methodology as 

described in Chapter 5, Section 5.3.3.  

7.3.4 Principal component analysis 

To account for differential ancestry and batch effects of the patients and normolipidemic 

controls, a principal component analysis (PCA) was performed. VCF files were merged 

and filtered to include only single-nucleotide variants (SNVs) appearing within the 
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exonic and splice regions captured by the LipidSeq panel with a minor allele frequency of 

>0.5% in the Genome Aggregation Database (gnomAD; 

https://gnomad.broadinstitute.org/) (Karczewski et al., 2020). The merged VCF was then 

processed with Exautomate (https://github.com/exautomate/Exautomate-Core) (Davis et 

al., 2019) to produce MAP and PED files. Linkage disequilibrium pruning at a threshold 

of 0.5 and PCA were executed within SNP & Variation Suite v8.8.3 (SVS; Golden Helix 

Inc., Bozeman MT, USA). Significant principal components were identified using 

logistic regression within R. Multidimensional outlier detection (multiplier = 1.5) was 

performed using significant components within SVS v8.8.3. 

7.3.5 Annotation and analysis of loss-of-function variants  

Variant annotation using VarSeq® (Golden Helix, Inc., Bozeman MT, USA) was 

described in Chapter 6, Section 6.3.4.  

Loss-of-function variants in patients and normolipidemic controls were identified using 

the following criteria: 1) minor allele frequency of <1% or missing in gnomAD; 2) 

sequence ontology of nonsense, frameshift, splice donor, splice acceptor, or copy-number 

variant (CNV) deletion; 3) CADD PHRED-scaled score of ≥10; and 4) an American 

College of Medical Genetics (ACMG) classification of pathogenic, likely pathogenic, or 

uncertain significance (Richards et al., 2015).  

7.3.6 Gene-based rare variant association study 

The optimal unified sequence kernel association test (SKAT-O) (Lee et al., 2012a; Lee et 

al., 2012b)—a combination of burden and variance-component tests—was used to 

perform a gene-based RVAS between our patients and normolipidemic controls. To 

enrich for variants that likely have the largest phenotypic impact, only loss-of-function 

variants were considered in this analysis. We performed SKAT-O using a linear weighted 

kernel and the optimal adjustment method through the use of Exautomate 

(https://github.com/exautomate/Exautomate-Core) (Davis et al., 2019) (Appendix L). P-

values generated by SKAT-O were adjusted with the Bonferroni correction for multiple 

comparisons. Significant results were considered as P<0.05.   

https://gnomad.broadinstitute.org/
https://github.com/exautomate/Exautomate-Core
https://github.com/exautomate/Exautomate-Core
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7.3.7 Odds ratio assessment  

Since only SNVs can be considered using SKAT-O, we followed up by generating 2-by-2 

contingency tables for each gene by counting carriers versus non-carriers of loss-of-

function variants, including SNVs, frameshifts, and CNVs. After determining the odds 

ratios (ORs) and 95% confidence intervals (CIs) for each gene, P-values were generated 

using Fisher’s exact tests and adjusted with the Bonferroni correction for multiple 

comparisons. One-tailed P-values were generated if the gene was considered to be a 

canonical metabolism gene, and two-tailed P-values were generated for the remaining 

genes. To calculate ORs with cell counts of zero, the Haldane-Anscombe correction 

method was applied by adding 0.5 to each cell of the contingency table.  

Statistical analyses were performed using GraphPad Prism v8.0.1 (GraphPad Software, 

La Jolla, CA, USA).  

7.4 Results 

7.4.1 Characteristics of study subjects  

We performed a PCA and multidimensional outlier detection to remove samples that may 

have been affected by batch effects or were population outliers (Figure 7.1). Following 

outlier removal, the final dataset consisted of 265 patients and 477 normolipidemic 

controls. 

The demographic and clinical characteristics of the 265 severe hypertriglyceridemia 

patients are summarized in Figure 7.1 



216 

 

 

Figure 7.1 Principal component analysis. 

Principal component (PC) analysis of patients with severe hypertriglyceridemia (N=557) and the normolipidemic controls from the 

European subset of the 1000 Genomes Project (N=503). A) PC1 and PC2 of the HTG patients and normolipidemic controls. B) PC2 and 

PC3 and the severe hypertriglyceridemia patients and normolipidemic controls. C) PC1 and PC3 of the severe hypertriglyceridemia 

patients and normolipidemic controls.  Abbreviations: 1000G = 1000 Genomes Project; HTG = hypertriglyceridemia; PC = principal 

component.
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Table 7.1. Across the total patient cohort, the mean ± standard deviation (SD) triglyceride 

concentration and age were 26.7 ± 25.2 mmol/L and 50.9 ± 12.3 years, respectively. Most 

patients were male (64.2%) and of the 216 patients with data available, 44.4% had 

diabetes. 
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Figure 7.1 Principal component analysis. 

Principal component (PC) analysis of patients with severe hypertriglyceridemia (N=557) and the normolipidemic controls from the 

European subset of the 1000 Genomes Project (N=503). A) PC1 and PC2 of the HTG patients and normolipidemic controls. B) PC2 and 

PC3 and the severe hypertriglyceridemia patients and normolipidemic controls. C) PC1 and PC3 of the severe hypertriglyceridemia 

patients and normolipidemic controls.  Abbreviations: 1000G = 1000 Genomes Project; HTG = hypertriglyceridemia; PC = principal 

component.
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Table 7.1 Clinical and demographic information of patients with severe 

hypertriglyceridemia (N=265).  

 Males Females 

N 170 95 

Age 50.0 ± 10.9 52.6 ± 14.3  

BMI (kg/m2) 29.8 ± 4.4* 29.4 ± 5.2* 

Total cholesterol (mmol/L) 11.3 ± 6.4  12.0 ± 6.8* 

Triglyceride (mmol/L) 25.0 ± 22.6 29.8 ± 29.2 

HDL cholesterol (mmol/L) 0.77 ± 0.4* 0.82 ± 0.4* 

Diabetes 41.0%* 50.0%* 
Values are indicative of the mean ± SD. “*” indicates an incomplete dataset. Abbreviations: BMI = body-

mass index; HDL = high-density lipoprotein. 
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7.4.2 Loss-of-function variants identified from the LipidSeq gene 
panel 

In 37 carriers, we identified 26 unique loss-of-function variants across 15 different genes 

between our patients and normolipidemic controls (Appendix K). Of these unique 

variants, 10 (38.5%) were frameshifts, 9 (34.6%) were nonsense, two (7.7%) were splice 

donors, and five (19.2%) were CNV deletions.  

GCKR had the highest number of unique variants (4; 15.4%) and the highest number of 

carriers (10; 27.0%).  

7.4.3 Gene-based rare variant association analysis using SKAT-O 

From our SKAT-O analysis, only SNVs from 14 genes were considered. With such a 

small working dataset, there were no genes that had a significantly different number of 

variants between our patients and normolipidemic controls (Table 7.2). CREB3L3, 

APOA5, LIPC, and PLIN1 were the only genes that had a non-one P-value, although they 

were not significant. 

7.4.4 Gene-based odds ratio assessment  

In order to consider frameshift variants and CNVs along with SNVs, we performed OR 

assessments on 15 genes (Table 7.3). CREB3L3 had a significant increase in the 

prevalence of patients carrying loss-of-function variants compared to normolipidemic 

controls (Figure 7.2). Our severe hypertriglyceridemia patients were 20.2-times (95% CI 

[1.11-366.1]; two-tailed P=0.03) more likely to carry a rare loss-of-function variant in 

CREB3L3 compared to normolipidemic controls.  
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Table 7.2 Output from SKAT-O analysis between severe hypertriglyceridemia 

(N=265) and normolipidemic controls (N=477). 

Gene  Adjusted P-value Number of variants considered in analysis 

CREB3L3 0.090735 4 

APOA5 * 0.090735 3 

LIPC 0.090735 1 

PLIN1 0.090735 1 

GCKR 1 2 

KLF11 1 1 

ABCG5 1 1 

ABCG8 1 1 

NPC1L1 1 1 

BLK 1 1 

LPL * 1 1 

WRN 1 1 

PYGM 1 1 

LMF1 * 1 1 
P-values were adjusted using the Bonferroni correction method. “*” indicates canonical genes involved 

in the triglyceride metabolic pathway. 
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Table 7.3 The odds of severe hypertriglyceridemia patients (N=265) carrying a loss-

of-function variant in a particular gene compared to normolipidemic controls 

(N=477). 

 Gene OR (95% CI) 
Adjusted  

P-value 

Cases with 

variants 

Controls with 

variants 

CREB3L3 20.2 (1.11-366.1) 0.03 5 0 

LPL * 12.7 (0.66-247.5) 0.24 3 0 

LIPC 12.7 (0.66-247.5) 0.24 3 0 

APOA5 * 9.1 (0.43-189.4) 0.675 2 0 

PPARG 9.1 (0.43-189.4) 0.675 2 0 

HNF1A 5.4 (0.22-133.4) 1 1 0 

MTTP 5.4 (0.22-133.4) 1 1 0 

PLIN1 5.4 (0.22-133.4) 1 1 0 

LDLR 5.4 (0.22-133.4) 1 1 0 

LIPA 1.8 (0.11-28.94) 1 1 1 

ABCG8 0.6 (0.02-14.74) 1 0 1 

APOB 0.6 (0.02-14.74) 1 0 1 

BSCL2 0.6 (0.02-14.74) 1 0 1 

GCKR 0.4 (0.09-2.12) 1 2 8 

APOC3 * 0.3 (0.01-4.96) 1 0 3 

 “*” indicates canonical genes involved in the triglyceride metabolic pathway. P-values were generated 

using Fisher’s exact test and adjusted using the Bonferroni correction for multiple comparisons. Canonical 

genes have one-tailed P-values listed, while the remaining genes have two-tailed P-values listed. 

Abbreviations: CI = confidence interval; OR = odds ratio. 
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Figure 7.2 Odds ratio of loss-of-function variants across LipidSeq genes. 

Each forest plot illustrates the odds ratio of severe hypertriglyceridemia patients (N=265) 

carrying a loss-of-function variant in one particular gene compared to normolipidemic 

controls from the1000 Genomes Project (N=477). The dashed line indicates an odds ratio 

of 1.0. Canonical genes involved in the triglyceride metabolic pathway include APOA5, 

APOC3, LMF1, and LPL. P-values were generated using Fisher’s exact test and adjusted 

using the Bonferroni correction for multiple comparisons. Canonical genes have one-tailed 

P-values listed, while the remaining genes have two-tailed P-values listed. P-value: * 

<0.05. Abbreviations: CI = confidence interval.
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7.5 Discussion 

In this study, we considered genetic determinants beyond the canonical triglyceride 

metabolism genes in 265 patients of European decent with non-FCS, severe 

hypertriglyceridemia to determine whether rare variants in other genes contribute towards 

the phenotype. By analyzing this subset of patients from the initial severe 

hypertriglyceridemia cohort, we enriched for individuals likely carrying non-canonical, 

polygenic variants. Moreover, by focusing solely on loss-of-function variants in our 

analyses, we enriched our dataset for variants with likely larger impacts on triglyceride 

levels. 

Our initial gene-based RVAS using SKAT-O did not reveal any significant results. This 

was unsurprising, since we had two relatively small cohorts; if causative genes harbored 

only a few variants with modest influences on triglyceride levels affecting a few patients, 

these individual gene signals would be difficult to detect with such small sample sizes. 

From our SKAT-O analysis, CREB3L3 was one of four the genes that produced P-values 

not equal to one. It was interesting to note that CREB3L3 appeared as the most significant 

result in subsequent analyses that aggregated variants.  

SKAT-O is limited in that it cannot be used to consider multi-nucleotide variants, such as 

frameshifts and CNVs. Therefore, gene-specific 2-by-2 contingency tables for carriers of 

any type of loss-of-function variants were used to determine gene-specific ORs. With this 

approach, CREB3L3 was shown to have a significant enrichment for such variants in our 

patients compared to normolipidemic controls. The genes LPL and APOA5 appearing 

among the top most enriched genes, albeit not significantly, provided positive validation 

for our analysis, since both genes encode proteins directly involved in triglyceride 

metabolism (Brahm and Hegele, 2015; Hegele et al., 2014). We previously showed that 

46.4% of the initial severe hypertriglyceridemia cohort carried heterozygous rare variants 

in the canonical genes, including LPL and APOA5 (Dron et al., 2019). The present novel 

findings indicate that CREB3L3, a non-canonical gene, is associated with the severe 

hypertriglyceridemia phenotype with at least similar strength or magnitude as LPL and 

APOA5. 
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Severe hypertriglyceridemia patients were 20.2-times (P=0.03) more likely to carry rare 

loss-of-function variants in CREB3L3 compared to normolipidemic controls. CREB3L3 

encodes cAMP-responsive element-binding protein H (CREBH), a transcription factor 

primarily expressed in the liver and small intestine (Nakagawa and Shimano, 2018). 

CREBH has been shown to regulate apo C-II and A-IV expression, which helps activate 

triglyceride hydrolysis through its transfer from triglyceride-rich lipoproteins to high-

density lipoprotein (HDL) particles (Goldberg et al., 1990; Nakagawa and Shimano, 

2018; Weinberg and Spector, 1985; Xu et al., 2014). Previous reports have shown an 

excess of CREB3L3 rare variants in hypertriglyceridemia patients (Johansen et al., 2012); 

a very recent study noted a number of CREB3L3 variants in patients with multifactorial 

chylomicronemia (D'Erasmo et al., 2019). Furthermore, in an in vivo model, Creb3l3-/- 

mice had significantly higher plasma triglyceride levels compared to wild-type littermates 

(Lee et al., 2011), and when bred onto a full Ldlr-/- background, mice had increased very-

low-density lipoprotein (VLDL) levels and decreased hepatic apo A-I production when 

fed a Western diet (Park et al., 2016). Although bi-allelic, loss-of-function variants in 

CREB3L3 have not yet been found to cause FCS—these variants were absent in our 

clinical database and publicly available databases—the excess variants found in our 

patients and the mechanistic relationship with triglyceride metabolism demonstrate that 

CREB3L3 is an important non-canonical triglyceride gene in the context of 

hypertriglyceridemia. Previous studies have even suggested that certain loss-of-function 

variants with variable penetrance lead to severe hypertriglyceridemia (Cefalu et al., 

2015). 

After CREB3L3, LPL and APOA5 had the next highest prevalence of loss-of-function 

variants in severe hypertriglyceridemia patients, at 12.7-times (95% CI [0.66-247.5]; two-

tailed P=0.24) and 9.1-times (95% CI [0.43-189.4]; two-tailed P=0.675) compared to 

normolipidemic controls, respectively. LPL encodes lipoprotein lipase (LPL), the main 

enzyme involved in triglyceride hydrolysis (Boullart et al., 2012; Lambert and Parks, 

2012), while APOA5 encodes apo A-V, an apolipoprotein that assists in enhancing the 

function of LPL (Forte et al., 2016). With rare bi-allelic variants in these genes causing 

FCS, heterozygous loss-of-function variants likely lead to large elevations in triglyceride 

levels through partial disruptions in the metabolic pathway, contributing towards the 
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severe hypertriglyceridemia phenotype (Brahm and Hegele, 2015; Dron et al., 2019; 

Hegele et al., 2014).  

Although not significant, we observed that certain loss-of-function variants only occurred 

in normolipidemic controls and were absent in our patient cohort. Apo C-III, encoded by 

APOC3, is found on triglyceride-rich lipoproteins and inhibits LPL-mediated triglyceride 

hydrolysis by opposing the stimulatory action between apo C-II and LPL (Brahm and 

Hegele, 2015; Johansen et al., 2011; van Dijk et al., 2004). In vivo models have shown 

that mice overexpressing apo C-III have hypertriglyceridemia (Ito et al., 1990), while 

APOC3-deficient mice have hypotriglyceridemia (Maeda et al., 1994). Further, many 

studies have found human carriers of APOC3 loss-of-function variants to have reduced 

triglyceride levels (Kohan, 2015). Our results are in line with these findings, supporting 

the conclusion that lost or reduced apo C-III function reduces circulating triglyceride 

levels and “protects” against the hypertriglyceridemia phenotype. 

Despite the strengths of our study design, some limitations remain. By stringently only 

considering rare loss-of-function variants, their infrequency constrained the number of 

genetic determinants that could be considered for analysis, such as deleterious missense 

variants. Our study was also limited in that we were unable to discover new gene 

relationships since the LipidSeq panel was designed to target genes already known to be 

involved in dyslipidemic phenotypes and metabolic disorders. To address these 

limitations, a larger sample size would increase the statistical power and likelihood of 

identifying more variants of interest. An increased sample size would also be necessary if 

an even larger gene set were to be analyzed in the hopes of identifying genes with novel 

or unexplored relationships with the hypertriglyceridemia phenotype.  

7.6 Conclusion 

When evaluating the genetic determinants contributing towards a complex phenotype, it 

can be challenging to identify genes carrying variants with milder phenotypic impacts 

compared to genes associated with monogenic forms of disease. As such, rare variant 

association methods that group variants by gene can help to increase power and identify 

such additional genetic influencers. From our gene-based analysis, we found that the non-
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canonical triglyceride gene, CREB3L3, is an important contributor towards the severe 

hypertriglyceridemia phenotype. Importantly, the associated loss-of-function variants 

were more prevalent in CREB3L3 compared to both LPL and APOA5, both of which are 

well-established genes involved in triglyceride metabolism, and in which homozygous 

rare variants can cause FCS. Our findings suggest that searching beyond the canonical 

triglyceride metabolism genes may help better understand the genetic basis of severe 

hypertriglyceridemia. Future studies should widen the range of secondary factors and 

pathways for which genetic determinants may contribute to the pool of patients with 

severe hypertriglyceridemia. 
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8.1 Overview 

In this Dissertation, I have described in detail my efforts to comprehensively evaluate the 

genetic determinants underlying three dyslipidemia phenotypes: (i) 

hypoalphalipoproteinemia; (ii) hyperalphalipoproteinemia; and (iii) hypertriglyceridemia. 

By leveraging data produced by our laboratory’s targeted next-generation sequencing 

(NGS) panel, LipidSeq, I have assessed a range of genetic factors—rare single-nucleotide 

variants (SNVs), copy-number variants (CNVs), and common single-nucleotide 

polymorphisms (SNPs)—across metabolically relevant genetic loci that heretofore 

required separate, dedicated methods for identification. With the sequencing data 

generated using LipidSeq, I have successfully analyzed the genetic factors of over 3,000 

dyslipidemia patients and have detailed the genetic nature of each phenotype. 

8.2 Summary of research findings  

8.2.1 The genetic architecture of extreme high-density lipoprotein 
cholesterol levels 

A summary for the genetic architecture of extreme deviations in high-density lipoprotein 

(HDL) cholesterol levels is depicted in Figure 8.1. In order to establish this genetic 

summary, DNA samples collected from individuals with hypoalphalipoproteinemia and 

hyperalphalipoproteinemia across North America—including at the Lipid Genetics Clinic 

at the London Health Sciences Centre, University Hospital (London ON, Canada), the 

Montréal Heart Institute (MHI) Biobank (Montréal, QC, Canada), and the University of 

Pennsylvania (UPenn) (Philadelphia, PA, USA)—were carefully evaluated for various 

genetic determinants. 
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Figure 8.1 The updated genetic architecture underlying the spectrum of measurable 

HDL cholesterol levels. 

The distribution of HDL cholesterol levels has a normal distribution in the general 

population; however, it is important to note that this distribution includes both males and 

females. For the research described in this Dissertation, low levels of HDL cholesterol (i.e. 

“hypoalphalipoproteinemia”) were diagnosed for males and females with levels below 0.8 

and 1.0 mmol/L, respectively. High levels of HDL cholesterol (i.e. 

“hyperalphalipoproteinemia”) were diagnosed for males and females with levels above 1.4 

and 1.8 mmol/L, respectively. Normal levels were considered between these thresholds. 

The thresholds shown in this figure are not exact and are for illustrative purposes. More 

extreme phenotypes that fall at the tails of the distribution are more likely to have a genetic 

factor contributing towards the phenotype; monogenic syndromes of HDL cholesterol have 

either virtually non-existent levels of HDL cholesterol, or extremely high levels. The 

prevalence of heterozygous rare variants in genes involved in HDL metabolism was 

slightly higher in individuals with low HDL cholesterol levels. The accumulation of 

common SNPs had a similar prevalence between both extremes of HDL cholesterol. 

Abbreviations: HDL = high-density lipoprotein.
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8.2.1.1 Hypoalphalipoproteinemia  

The results described in Chapters 2 and 3 are the summation of the first comprehensive 

assessment of rare SNVs, CNVs, and common variant accumulation in individuals with 

extremely low levels of HDL cholesterol (Dron et al., 2018; Dron et al., 2017).  

A total of 686 DNA samples from patients with HDL cholesterol levels ≤0.8 mmol/L and 

≤1.0 mmol/L in males and females, respectively, were collected from the Lipid Genetics 

Clinic, MHI Biobank, and UPenn. Initially, rare variants disrupting candidate genes with 

primary effects on HDL cholesterol levels were screened for in ABCA1, APOA1, and 

LCAT; rare variants were also screened for in non-candidate genes with secondary effects 

on HDL cholesterol. Across cohorts, it was identified that 18.7% of patients carried at 

least one variant likely contributing towards their hypoalphalipoproteinemia phenotype. 

The difference in rare variant carriers between cohorts was discussed in Chapter 2, 

Section 2.5, and is likely due to differences in patient ascertainment and sequencing 

methods. 

With the majority of patients lacking an identifiable rare variant, we sought to determine 

whether there was an excess accumulation of common small-effect SNP alleles 

contributing towards the hypoalphalipoproteinemia phenotype. To achieve this, we 

developed a novel polygenic risk score using 9 SNPs identified from previous genome-

wide association studies (GWASs) that were highly associated with HDL cholesterol 

levels (Willer et al., 2013). The score was calculated for all 686 patients, and 12.8%, had 

extremely low scores—this reflected a severe absence of SNP alleles associated with 

raising HDL cholesterol levels. Collectively, rare variant non-carriers were 1.47-times 

(95% CI [1.11-1.96]; one-tailed P<0.01) more likely to have an extremely low polygenic 

risk score compared to normolipidemic controls. When considering patients from the 

Lipid Genetics Clinic cohort alone, rare variant non-carriers were 3.00-times (95% CI 

[1.67-5.35]; one-tailed P <0.0001) more likely to have an extremely low polygenic risk 

score compared to normolipidemic controls. 
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In the Lipid Genetics Clinic cohort (N=136), 47.8% of patients had an identifiable 

genetic determinant likely contributing towards their phenotypic presentation of 

hypoalphalipoproteinemia. For the remaining 52.2% of individuals, it is possible that they 

carried a contributory genetic determinant that was not captured by the rare variant 

assessment or 9-SNP polygenic risk score. Subsequent to the publication of these results, 

a new bioinformatic tool became available, allowing us to leverage read-depth coverage 

information generated by our LipidSeq panel to identify CNVs in our sequencing data.  

Including the 136 patient samples described in Chapter 2, a total of 288 

hypoalphalipoproteinemia patients from the Lipid Genetics Clinic were screened for 

CNVs in ABCA1, APOA1, and LCAT (Dron et al., 2018). Three unique deletions in 

ABCA1 were identified across four individuals, including: (i) a heterozygous deletion of 

exon 4; (ii) a heterozygous deletion that spanned exons 8 to 31; and (iii) a heterozygous 

deletion of the entire ABCA1 gene. These results presented in Chapter 3 were the first 

reported instance of hypoalphalipoproteinemia patients carrying CNVs in ABCA1 or any 

other candidate low HDL cholesterol gene, as the main genetic determinant for the 

phenotype (Dron et al., 2018). 

Together, the assessment of rare SNVs, CNVs, and polygenic risk scores allowed for the 

most comprehensive understanding to date about the genetic determinants underlying low 

HDL cholesterol levels, and highlighted the polygenic component of this phenotype. 

8.2.1.2 Hyperalphalipoproteinemia  

The results presented in Chapter 2 also highlight the polygenic nature of extremely high 

levels of HDL cholesterol through the presence of both rare SNVs and accumulation of 

common genetic SNPs (Dron et al., 2017).  

DNA samples from 1,165 patients with HDL cholesterol levels ≥1.4 mmol/L and ≥1.8 

mmol/L in males and females, respectively, were collected from the Lipid Genetics 

Clinic, MHI Biobank, and UPenn. Initially, rare variants disrupting candidate genes with 

primary effects on HDL cholesterol were screened for in genes previously linked to high 

HDL cholesterol phenotypes, including LIPC, SCARB1, CETP, and LIPG (Hegele et al., 
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1993; Inazu et al., 1990; Tietjen et al., 2012; Zanoni et al., 2016). Rare variants in a non-

candidate gene with secondary effects on HDL cholesterol, were also screened for. It was 

identified that 10.9% of patients carried at least one variant likely contributing towards 

their hyperalphalipoproteinemia phenotype.  

Following the rare variant assessment, the 9-SNP polygenic risk score was calculated in 

all 1,165 study participants to determine common SNP accumulation. It was identified 

that 10.3% of individuals had extremely high scores reflecting an excess of SNP alleles 

associated with raising HDL cholesterol levels. Collectively, rare variant non-carriers 

were 2.27-times (95% CI [1.82-2.83]; one-tailed P<0.0001) more likely to have an 

extremely high polygenic risk score compared to normolipidemic controls. When 

considering the Lipid Genetics Clinic cohort alone, rare variant non-carriers were 2.19-

times (95% CI [1.21-3.96]; one-tailed P<0.01) more likely to have an extremely high 

polygenic risk score compared to normolipidemic controls. 

Between rare variants and the extreme accumulation of SNP alleles in the Lipid Genetics 

Clinic cohort, 30.3% of patients had an identifiable genetic determinant contributing 

towards their phenotypic presentation of hyperalphalipoproteinemia. The subsequent 

assessment for rare CNVs in the candidate genes associated with elevated levels of HDL 

cholesterol did not reveal any changes in copy-number.  

8.2.1.3 Genetic influences across high-density lipoprotein 
cholesterol levels  

Collectively, my research has illustrated the prevalence of polygenic determinants across 

extremes of HDL cholesterol. Rare variants—both SNVS and CNVs—are more prevalent 

in individuals with hypoalphalipoproteinemia compared to hyperalphalipoproteinemia. 

Although the polygenic accumulation of SNPs is similar between HDL cholesterol 

extremes, there is a slight increase of extreme polygenic risk scores in patients with 

hyperalphalipoproteinemia.  

Across both extreme HDL cholesterol cohorts, more than half of the patients under study 

did not have an identifiable genetic factor relevant to their phenotype. This could suggest 

that in those patients, either: (i) they carry genetic factors that were not screened for; 
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and/or (ii) non-genetic factors—diet, medications and activity levels—may be 

influencing the HDL cholesterol phenotype. 

8.2.2 The genetic architecture of hypertriglyceridemia 

A summary for the genetic architecture of hypertriglyceridemia is depicted in Figure 8.2. 

In order to establish this genetic summary, DNA samples collected from individuals with 

varying severities of hypertriglyceridemia across North America—including at the Lipid 

Genetics Clinic at the London Health Sciences Centre, University Hospital (London ON, 

Canada) and the Lipid, Diabetes, or Cardiology Clinics at the University of California, 

San Francisco (UCSF) (San Francisco, CA, USA)—were carefully evaluated for various 

genetic determinants. 

8.2.2.1 Severe hypertriglyceridemia 

The research described in Chapters 4, 5, and 7 has culminated in the most comprehensive 

assessment of genetic factors in the largest cohort of severe hypertriglyceridemia patients 

to date (Dron et al., 2020a; Dron et al., 2019a; Dron et al., 2019b). Prior to this, studies 

focused on single types of genetic determinants at a time, effectively missing the overall 

spectrum of genetic variation contributing towards extreme elevations in triglyceride 

levels. 

A total of 563 individuals with severe hypertriglyceridemia (triglycerides ≥10 mmol/L) 

were screened for rare variants disrupting canonical triglyceride metabolism genes (i.e. 

LPL, LMF1, GPIHBP1, APOA5, APOC2). We identified only a small subset of patients 

with the monogenic, autosomal recessive disorder, familial chylomicronemia syndrome 

(FCS); this highlighted the rarity of FCS, since even in a specialized cohort enriched for 

individuals with extremely elevated triglyceride levels, only 1.1% (6/563) of patients had 

FCS due to the presence of bi-allelic rare variants in a canonical triglyceride metabolism 

gene (Dron et al., 2019a). When considering heterozygous rare variants, 14.4% (81/563) 

of individuals were carriers, and were thus considered to have multifactorial 

chylomicronemia, a polygenic form of severe hypertriglyceridemia. 
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Figure 8.2 The updated genetic architecture underlying the spectrum of measurable 

triglyceride levels. 

The distribution of triglyceride levels has a positive skew in the general population. Normal 

levels of triglyceride are considered to be less than 2.0 mmol/L. Individuals with 

triglyceride levels between 2.0 to 9.9 mmol/L are diagnosed with mild-to-moderate 

hypertriglyceridemia, while individuals with triglyceride levels above 10.0 mmol/L are 

diagnosed with severe hypertriglyceridemia. Although not focused on in this Dissertation, 

individuals with extremely low levels of triglyceride are diagnosed with 

hypotriglyceridemia (not shown in diagram). Severe hypertriglyceridemia cases caused by 

monogenic determinants (i.e. bi-allelic rare variants in triglyceride metabolism genes) are 

defined as familial chylomicronemia syndrome (FCS) and are extremely rare in the 

population, while cases driven by polygenic determinants (i.e. heterozygous rare variants 

in triglyceride metabolism genes and/or the extreme accumulation of SNPs) are defined as 

multifactorial chylomicronemia and are far more common relative to FCS.  
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In addition to rare variants, we sought to assess whether an excess of common SNPs with 

smaller phenotypic effects might also be contributing towards the hypertriglyceridemia 

phenotype. After developing a polygenic risk score comprised of 16 SNPs significantly 

associated to triglyceride levels (Willer et al., 2013), we calculated it in all patients under 

study and identified that 32.0% (180/563) of severe hypertriglyceridemia patients had 

extremely high polygenic risk scores. When considering both types of genetic 

determinants simultaneously, 30/87 patients (34.5%) with a rare variant also had an 

extreme polygenic risk score. 

When considering all types of genetic determinants, severe hypertriglyceridemia patients 

were 4.41-times (95% CI [2.67-7.29]; one-tailed P<0.0001) more likely to carry a rare 

variant compared to normolipidemic controls, and were 4.45-times (95% CI [3.15-6.30]; 

one-tailed P<0.0001) more likely to have an extremely high polygenic risk score 

compared to normolipidemic controls. Overall, severe hypertriglyceridemia patients were 

5.77-times (95% CI [4.26-7.82]; one-tailed P<0.0001) more likely to carry any type of 

genetic determinant linked to hypertriglyceridemia, compared to normolipidemic 

controls. 

As part of our rare variant screening, we identified and characterized novel CNV 

deletions disrupting LPL in a single individual; in Chapter 5, after further screening of 69 

severe hypertriglyceridemia patients, three additional individuals were found to carry 

CNVs in LPL. Collectively, the CNVs included: (i) a heterozygous deletion spanning the 

5’UTR to exon 2; and (ii) a heterozygous deletion spanning the 5’UTR to exon 1 (Dron et 

al., 2019b). Similarly to what has been observed for SNVs in canonical metabolism 

genes, the impact of CNVs on the processing of triglyceride-rich lipoproteins likely 

increases susceptibility for hypertriglyceridemia. Although CNVs as drivers of 

hypertriglyceridemia are not frequently reported, they are important phenotypic 

contributors that should be screened for (Iacocca et al., 2019).  

Chapter 7 describes further efforts to uncover genetic contributions towards severe 

hypertriglyceridemia susceptibility. A subset of 265 multifactorial chylomicronemia 

patients were screened for rare loss-of-function variants across all genes included on the 
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LipidSeq panel (Figure 1.15). Specifically, a gene-based rare variant association study 

(RVAS) using a variance-component test was performed between severe 

hypertriglyceridemia patients and normolipidemic controls to determine if rare loss-of-

function variants in non-canonical triglyceride metabolism genes were susceptibility 

factors towards the hypertriglyceridemia phenotype (Dron et al., 2020a). We identified 

that multifactorial chylomicronemia patients were 20.2-times (95% CI [1.11-366.1]; two-

tailed P=0.03) more likely to carry a rare loss-of-function variant in CREB3L3 compared 

to normolipidemic controls, suggesting that this gene has an important role in influencing 

measurable triglyceride levels and is important in the context of hypertriglyceridemia. 

CREB3L3 encodes cAMP-responsive element-binding protein H (CREBH), a 

transcription factor expressed in the liver and small intestine, that upregulates genes 

involved in the hydrolysis of triglyceride-rich lipoproteins (Goldberg et al., 1990; 

Nakagawa and Shimano, 2018; Weinberg and Spector, 1985; Xu et al., 2014). Since an 

enrichment of rare variants was more substantial than what was observed in the canonical 

triglyceride metabolism genes, our findings suggest that screening CREB3L3 for loss-of-

function variants may be incredibly useful in identifying individuals with increased 

susceptibility for extremely elevated triglyceride levels. 

Between rare variants in triglyceride metabolism genes, extremely high polygenic risk 

scores, and loss-of-function variants in CREB3L3, there is a variety of genetic 

determinants underlying severe hypertriglyceridemia. The collective findings here 

emphasize that the majority of severe hypertriglyceridemia cases are polygenic in nature, 

can be further classified as “multifactorial chylomicronemia”, and likely come about 

through the increased accumulation of genetic determinants that increase phenotypic 

susceptibility. 

8.2.2.2 Mild-to-moderate hypertriglyceridemia  

My research described in Chapter 6 details the genetic profile of patients with mild-to-

moderate hypertriglyceridemia and provides a clearer understanding behind the genetic 

architecture of this phenotype (Dron et al., 2020b).  
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Following the study design established for severe hypertriglyceridemia in Chapter 4, rare 

variants disrupting the canonical triglyceride metabolism genes and a triglyceride-

specific polygenic risk score were assessed in 134 individuals with mild-to-moderate 

hypertriglyceridemia (triglyceride between 2-9.9 mmol/L). It was determined that 9.0% 

(12/134) of patients were heterozygous rare variant carriers, while 24.6% (36/134) of 

patients had extremely high polygenic risk scores, reflecting an excess of SNP alleles 

associated with elevated triglyceride levels. When considering both types of genetic 

determinants simultaneously, only 3/12 patients (25%) with a rare variant also had an 

extreme polygenic risk score. 

Mild-to-moderate hypertriglyceridemia patients were 2.38-times (95% CI [1.13-4.99]; 

one-tailed P=0.021) more likely to carry a rare variant and 3.26-times (95% CI [2.02-

5.26]; one-tailed P<0.0001) more likely to have an extreme polygenic risk score 

compared to normolipidemic controls. Overall, these patients were 3.23-times (95% CI 

[2.08-5.02]; one-tailed P<0.0001) more likely to carry any type of genetic determinant 

linked to hypertriglyceridemia, compared to normolipidemic controls. 

Although the prevalence of genetic factors in patients with mild-to-moderate 

hypertriglyceridemia was not as high as patients with severe hypertriglyceridemia—

33.6% compared to 47.4%, respectively—the overall pattern remained the same: the most 

common genetic determinant was an increased accumulation of common variants (as 

denoted by a high polygenic risk score), followed by the presence of rare variants. 

8.2.2.3 Genetic influences across hypertriglyceridemia phenotypes 

Collectively, my research has demonstrated that hypertriglyceridemia—along its 

spectrum of severity—is largely polygenic, with both common and rare genetic 

susceptibility components; except for cases of FCS, which is monogenic in nature (Table 

8.1). Furthermore, clinical expression of the hypertriglyceridemia phenotype is likely 

related to qualitative and quantitative differences in the precise combination of variants in 

an individual’s genome. A higher burden of both rare and common triglyceride-raising 

variants likely associates with a more extreme phenotype, such as multifactorial 

chylomicronemia. Additional genetic factors not considered in the contents of this 
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Dissertation might also contribute towards differences in phenotypic presentation as well: 

this includes variation impacting other genomic loci beyond what is captured by 

LipidSeq, as well as concepts like variant penetrance and expressivity that were not 

accounted for here. Importantly, secondary non-genetic factors—including diet, alcohol 

intake, obesity, diabetes control, liver and renal disease—are important in determining 

the final quantitative triglyceride phenotype, although are not discussed here (Hegele et 

al., 2014). These additional considerations could be used to tease apart key differences in 

what drives a mild-to-moderate versus severe form of hypertriglyceridemia.  
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Table 8.1 Distinguishing between familial chylomicronemia syndrome, 

multifactorial chylomicronemia, and mild-to-moderate hypertriglyceridemia. 

 Severe hypertriglyceridemia 

Mild-to-moderate 

hypertriglyceridemia 
Familial 

chylomicronemia 

syndrome 

Multifactorial 

chylomicronemia 

Triglyceride 

range (mmol/L) 
≥10.0 2.0 to 9.9 

Primarily 

disturbed 

lipoprotein 

fractions 

Chylomicrons 

Chylomicrons 

and remnants 

VLDL 

IDL 

VLDL 

(IDL) 

Genetic basis 
Monogenic 

(autosomal recessive) 
Polygenic 

Relevant 

genetic 

determinants 

- Bi-allelic 

(homozygous or 

compound 

heterozygous) rare 

variants in canonical 

triglyceride 

metabolism genes 

(LPL, LMF1, 

GPIHBP1, APOA5, 

APOC2) 

- Heterozygous rare variants in canonical 

triglyceride metabolism genes (LPL, 

LMF1, GPIHBP1, APOA5, APOC2) 

- The accumulation of common SNPs 

associated with small elevations in 

triglyceride concentration  

- Rare variants in non-canonical genes 

peripherally involved in triglyceride 

metabolism (ex. CREB3L3) 

Is there an 

impact from 

environmental 

determinants? 

- Severity of the 

phenotype may be 

exacerbated by 

environmental 

factors, but the 

phenotype is driven 

by bi-allelic variants 

- Since these phenotypes are complex, a 

combination of genetic and 

environmental factors lead to the 

phenotype’s presentation. Gene-

environment interactions may account 

for phenotypic variability/severity 

Abbreviations: IDL= intermediate-density lipoprotein; SNPs = single-nucleotide polymorphisms; VLDL 

= very-low-density lipoprotein. 
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8.3 Study strengths, limitations and caveats 

In Chapters 2-7 of this Dissertation, the strengths and limitations specific to each study, 

along with caveats for consideration, were described in the relevant Discussion sections. 

Here, I will describe the overarching considerations—specifically related to study design, 

methodologies, and technological resources—that apply to my collective research efforts. 

8.3.1 Strengths 

The targeted nature of the LipidSeq panel was the main strength of my research, as it 

allowed for the assessment of: (i) rare and common variants; (ii) both SNVs and CNVs; 

and (iii) biologically relevant genomic loci for multiple dyslipidemia phenotypes. 

Separate methodologies were previously required to study rare SNVs (ex. Sanger 

sequencing, whole-exome sequencing), CNVs, (ex. multiplex ligation-dependent probe 

amplification, microarray), and common variants (ex. microarray, Sanger sequencing, 

TaqMan genotyping); with LipidSeq, these genetic variations can be studied using the 

same dataset. Further, because the LipidSeq panel was designed specifically for the 

patients of the Lipid Genetics Clinic, the genomic loci that the panel targets are relevant 

to the patients’ dyslipidemia and metabolic phenotypes (Dron et al., 2020c). Overall, 

LipidSeq led to the generation of a single dataset for robust assessment of multiple types 

of genetic factors and multiple phenotypes. 

With respect to the identification of CNVs, this was only made possible due to the high 

read-depth generated by the LipidSeq panel, at almost 300-times coverage (Johansen et 

al., 2014). Within the last decade, computational algorithms have been developed to 

leverage read-depth information from NGS runs to uncover genomic areas with an 

enrichment or a depletion of sequencing reads, which signals the presence of a CNV 

(Iacocca et al., 2019). Between the depth-of-coverage of the LipidSeq panel—greater 

coverage provides greater confidence in identifying CNVs—and the development of the 

VarSeq-CNV® caller algorithm (Golden Helix, Inc., Bozeman MT, USA), we could 

screen the LipidSeq sequencing data for each individual and uncover CNVs disrupting 

phenotypically relevant genes (Iacocca et al., 2019; Iacocca et al., 2017). This provided 

us the opportunity to perform one of the first large-scale, NGS screening efforts for 
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CNVs in dyslipidemia cohorts (Dron et al., 2020c). Many novel CNVs were identified in 

the process (Berberich et al., 2019a; Berberich et al., 2019b; Dron et al., 2018; Dron et 

al., 2019b; Iacocca et al., 2017; Iacocca et al., 2018).  

Beyond the benefits of LipidSeq, another strength of my research is attributed towards 

the number of patient DNA samples I had access to. For over 25 years, between our 

laboratory’s research efforts and the Lipid Genetics Clinic, we have collected and 

sequenced DNA from over 3,000 individuals with a variety of dyslipidemia and 

metabolic phenotypes (Dron et al., 2020c). Because of the samples obtained through our 

referral clinic and from external research collaborators, our studies often boast some of 

the largest specialized dyslipidemia study cohorts in the field. For example, although 

severe hypertriglyceridemia has a population prevalence of ~1 in 600, my study cohort 

was comprised of over 500 patient samples. The benefit here is that extreme 

phenotypes—both Mendelian disorders and extreme manifestations of quantitative 

traits—are more likely to have a genetic basis (MacArthur et al., 2014; Panarella and 

Burkett, 2019), so studying cohorts enriched for individuals with extreme dyslipidemia 

phenotypes increases the likelihood of uncovering relevant genetic factors contributing 

towards disease susceptibility. Notably, the size of the dyslipidemia cohorts I had access 

to was directly responsible for the success of my gene-based RVAS described in Chapter 

7. 

8.3.2 Caveats  

When considering the data presented in this Dissertation, certain caveats should be 

considered for appropriate interpretation of the conclusions and implications. 

The main results reported in this Dissertation were the prevalence of different genetic 

determinants within the study cohorts of interest—I did not quantify the estimated effects 

of each determinant towards the phenotype of interest (i.e. impact on disease 

susceptibility or effects on HDL cholesterol or triglyceride levels). Despite this, my 

results provide a sense of what types of genetic factors are the most common in a 

particular disease cohort. This information could help guide screening strategies to 

identify individuals at an increased genetic risk for hypoalphalipoproteinemia, 
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hyperalphalipoproteinemia, or hypertriglyceridemia, or could assist researchers in 

prioritizing what types of genetic variation should be studied further to better understand 

genetic-specific effects on these phenotypes (Bookman et al., 2006; Kwon and Goate, 

2000). In order to quantify effect estimates of genetic variation, linear or logistic 

regression models could be used to assess the effect of variants towards changes in 

measurable lipid levels or disease presentation, respectively; however, additional 

information would be required as covariates to adjust these models for other variables 

impacting lipid phenotypes (Cole et al., 2015; Heller et al., 1993; Johnson et al., 2004). 

Additional caveat considerations are in relation to the measured lipid concentrations for 

our study participants. Although blood samples are requested to be taken after a 12-hour 

fast, mechanisms were not in place to systematically confirm adherence. Individuals who 

did not fast likely had higher measurable lipid levels given the recent exogenous lipid 

source, particularly triglycerides. It is possible that non-fasting individuals may have had 

higher lipid measurements than normal; however, this is unlikely to have impacted 

patient recruitment for either extreme HDL cholesterol cohort. It is possible that non-

fasting individuals could have passed the lower bound of inclusion for the mild-to-

moderate hypertriglyceridemia cohort, but for the severe hypertriglyceridemia cohort, the 

inclusion criteria was so high, that even individuals non-compliant with the fasting 

recommendation would not have likely had triglyceride levels surpass that threshold 

(Nordestgaard et al., 2016). Although, if non-fasting individuals did present with a 

triglyceride profile surpassing our threshold of 10 mmol/L, that might be indicative of 

dysfunctional clearance of triglyceride-rich lipoprotein particles, potentially due to 

genetic factors—in which case, these individuals would be of interest to study. To 

address this potential issue of fasting vs. non-fasting in future studies, additional 

inclusion criteria could necessitate multiple triglyceride measurements above 10 mmol/L 

to ensure the severe hypertriglyceridemia phenotype is neither transient nor driven 

exclusively by non-genetic factors.    

Another caveat is in reference to the disease study cohorts. While a huge strength of this 

work is related to cohorts enriched for extreme dyslipidemia phenotypes, it also means 

that the results are not directly translatable to a general population (Panarella and Burkett, 
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2019). Further, if I had determined effect estimates for the genetic determinants under 

study, the estimates would be inflated and have a larger magnitude compared to if I had 

calculated effect estimates in a cohort more representative of the general population 

(Panarella and Burkett, 2019). 

Lastly, the polygenic risk scores developed for HDL cholesterol and triglyceride were 

constrained to the SNPs targeted by the LipidSeq panel. Having been designed in 2014, 

LipidSeq only captures the lipid-related SNP loci identified by GWAS published by that 

point—it does not include SNPs identified in more recent GWASs. Fortunately, because 

the SNPs targeted by LipidSeq were among the original loci found to be associated with 

lipid traits, these SNPs have larger phenotypic impacts compared to more recently 

uncovered loci, since they were identified in smaller study cohorts (Visscher et al., 2012). 

So while the polygenic risk scores used in this Dissertation were not large in terms of the 

number of SNPs that were included, they did include SNPs with larger phenotypic 

impacts.  

8.3.3 Limitations 

Clinical and biochemical variables were not systematically available for all study 

subjects, including: ancestry, body-mass index, diabetes status, smoking status, fasting 

status, diet, alcohol intake, activity level, etc. Without these additional data points, I was 

unable to assess environmental factors that may have been contributing towards the 

phenotypes under study (Cole et al., 2015; Heller et al., 1993; Johnson et al., 2004). As 

discussed in the previous Section, these variables could have been used as covariates in 

models to better estimate the effects of the genetic determinants and to uncover gene-

environment or gene-gene interactions. Interestingly, recent studies have modeled how 

polygenic determinants alter the penetrance of a rare variant for many phenotypes, 

including different lipid disorders, breast cancer, Huntington’s disease, and glaucoma  

(Craig et al., 2020; Fahed et al., 2020; Jong-Min Lee et al., 2015; Oetjens et al., 2019). 

This is an extremely important demonstration of the interplay between genetic 

determinants that was not assessed in my work, but could be in the future by following a 

rigorous standardization of covariate data for cases and controls, the latter for which we 

are extremely limited as we had no phenotypic information available.  
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Another limitation to consider is related to the polygenic risk scores developed in 

Chapters 2 and 4. The underlying assumption in the score’s calculation is that the 

cumulative effect from different alleles works in a linearly additive manner; however, 

this assumption may be invalid considering the complexities and non-linearity of 

pathways and networks in lipid metabolism. Further, allele effect estimates are also 

derived under this assumption of a simple additive effect (de Vlaming and Groenen, 

2015). Taken together, the method employed here for polygenic risk score derivation and 

calculation cannot account for potential non-linear epistatic effects that might occur in the 

presence of a certain combination of risk alleles. Additional work is needed to advance 

polygenic risk scores, specifically focusing on the linear additive assumption and 

assessing whether new frameworks can be established to better reflect the genetic 

complexities underlying different traits and disease. While there has been some effort in 

this area, polygenic risk scores out-perform other non-linear, machine-learning methods, 

suggesting that either polygenic risk scores and their linear assumptions are valid, or we 

have not developed the proper statistical methods to adequately address this research 

question (Gola et al., 2020; Vivian-Griffiths et al., 2019).  

Additionally, another limitation that is applicable to almost all polygenic risk scores 

studies is that these scores are tailored towards European populations (Martin et al., 

2019); across a 10-year span, more than 60% of studies using polygenic risk scores were 

made up exclusively of individuals of European ancestry (Duncan et al., 2019). This is 

arguably one of the biggest limitations not only in this Dissertation, but in the genetics 

community as a whole, as there is substantial bias and inequality in research towards 

Black, Indigenous and people of colour (Cell Editorial, 2020). The polygenic risk score 

bias is a product of selecting SNPs and their weights from GWAS that have been 

performed in individuals of European ancestry (Asselbergs et al., 2012; Aulchenko et al., 

2009; Chasman et al., 2009; Chasman et al., 2008; Duncan et al., 2019; Kathiresan et al., 

2007; Kathiresan et al., 2008; Kathiresan et al., 2009; Martin et al., 2019; Sabatti et al., 

2009; Surakka et al., 2015; Teslovich et al., 2010; Willer et al., 2013; Wu et al., 2013). 

Because GWASs rely on linkage disequilibrium (LD) blocks and “tag SNPs” to identify 

SNP associations with the nearby causal variant, differences in ancestral-specific LD 

patterns alter association signals; a tag SNP may be associated with a phenotype in one 
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ancestral group but not the other, simply because the SNP does not tag the same LD 

blocks between groups. Since LD blocks are larger in Europeans (Shifman et al., 2003): 

(i) more tag SNPs are required to effectively capture these additional LD blocks in non-

Europeans; and (ii) it is easier to identify an association signal in European cohorts 

because tag SNPs cover larger genomic regions (i.e. LD blocks) that might harbour the 

causative variant (Martin et al., 2019). The need for additional SNP genotypes to get the 

same amount of information between ancestral groups, coupled with the fact that there 

are fewer non-Europeans being included in GWASs, further impacts the bias (Martin et 

al., 2019). Fortunately, there have been efforts to increase the number of large-scale 

sequencing projects in non-European cohorts to identify ancestral-specific SNP 

associations and ancestral-specific effect estimates (Below et al., 2016; Kim et al., 2011; 

Liu et al., 2017; Takeuchi et al., 2012; Wu et al., 2013), which should allow for ancestral-

specific polygenic risk scores. There are also efforts to develop methods for trans-

ancestry polygenic risk scores, which could be applied to individuals of different 

ancestral groups (Wang et al., 2020b).  

As an extension of the aforementioned point, another limitation in this Dissertation was 

that the study cohorts were made up of individuals of European ancestry, due to our 

geographic location in Southern Ontario; to match our ancestry breakdown, collaborators 

could only provide European patient samples of as well. This prevented us from 

determining if the genetic determinants underlying different dyslipidemia phenotypes 

were consistent across ancestral groups, or if the genetic profile varied.  

Lastly, due to the LipidSeq panel design, novel gene discovery was not a feasible 

component of the research described in this Dissertation. While the targeted design 

provided huge strengths in terms of studying candidate genes related to each phenotype, 

this constraint prevented the discovery of genes with previously unknown links to HDL 

cholesterol or triglyceride metabolism; whole-exome sequencing would have provided 

this discovery opportunity. The gene-based RVAS that included non-candidate genes 

described in Chapter 7 was an effective alternative to novel gene discovery. CREB3L3 

had been reported previously in the literature with links to triglyceride levels, but there 

had not been strong evidence in human subjects linking it to severe hypertriglyceridemia 
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until recently (D'Erasmo et al., 2019). Rather than discovering a new gene, I instead 

provided additional evidence to support and further substantiate the importance of 

CREB3L3 in the context of hypertriglyceridemia.  

8.4 Applications and future directions 

With my research helping to enhance the foundational understanding of the genetic basis 

of extreme lipid disorders, there are now avenues to further explore the complex network 

of contributory factors towards these dyslipidemia phenotypes, and areas where this 

information could be applied towards more clinically relevant applications.  

8.4.1 Estimating effects of genetic determinants 

Future studies could quantify the effect estimates of specific genetic determinants 

towards either: (i) measurable changes to HDL cholesterol or triglyceride levels; and/or 

(ii) susceptibility for hypoalphalipoproteinemia, hyperalphalipoproteinemia, or 

hypertriglyceridemia. This work could be further expanded to consider interactive effects 

between rare variants and the accumulation of common SNPs, similarly to what was done 

in previous studies that assessed how a polygenic background could modify variant 

penetrance (Craig et al., 2020; Fahed et al., 2020; Jong-Min Lee et al., 2015; Oetjens et 

al., 2019). 

Assessing how the penetrance and expressivity of rare variants is polygenically modified 

through the use of polygenic risk scores is an area of extreme interest, as it is a relatively 

unexplored area in the lipids field. If researchers are able to quantify genetic effects and 

determine which factors have the largest contributions towards a particular disease state, 

then this information could be utilized in genetic screening endeavours to identify 

individuals, for example, at high risk for hypertriglyceridemia. 

8.4.2 Screening for genetic risk 

Screening individuals earlier in life for genetic factors increasing their risk for 

dyslipidemia provides an opportunity to proactively alter lifestyle behaviours to more 

aggressively combat negative genetic influences towards lipid profiles (Khera et al., 

2016). An early indication of being at high risk for a lipid disorder could also prompt 
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individuals to have their blood lipid profile monitored more frequently to catch when 

their lipids exceed a particular threshold, warranting medical attention and treatment.  

There is also the possibility that future studies could reveal therapeutic treatments tailored 

towards individuals with a particular genetic determinant (e.g. variants disrupting a 

particular gene) driving their phenotype or individuals who fall within a certain 

stratification of genetic risk (e.g. top 95th percentile of a polygenic risk score) (Mars et 

al., 2020). For example, inhibitors of proteins with key roles in different lipoprotein 

processing pathways have been of great clinical benefit, including: (i) evolocumab to 

inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) and lower levels of low-

density lipoprotein (LDL) cholesterol in individuals with increased genetic risk for 

cardiovascular disease (CVD) (Marston et al., 2020); (ii) volanesorsen to inhibit 

apolipoprotein (apo) C-III and lower levels of triglyceride in individuals with FCS 

(Witztum et al., 2019); and (iii) evinacumab to inhibit angiopoietin-like protein 3 

(ANGPTL3) and lower levels of LDL cholesterol in individuals with homozygous 

familial hypercholesterolemia (FH) (Raal et al., 2020). This level of specificity between 

an individual and therapy—down to the genetic level—is considered precision or 

personalized medicine, in which a therapeutic treatment is completely tailored towards 

the individual and their phenotype etiology. In the future, additional therapies may 

become available that are particularly effective for individuals with a high polygenic risk 

score for a particular dyslipidemia. 

8.4.3 Updating lipid-based polygenic risk scores 

With each additional lipid-centric GWAS, larger cohorts have revealed a larger number 

of significantly associated SNPs. In 2010, a GWAS of ~100,000 people identified 95 

SNP loci significantly associated at genome-wide levels with at least one plasma lipid 

trait (Teslovich et al., 2010). In 2013 and 2018, when the sample sizes increased to 

~188,000 and >600,000 people, respectively, an additional 62 (Willer et al., 2013) and 

118 (Klarin et al., 2018) new SNPs reached genome-wide levels of significance. The 

effect sizes of the newly associated SNP loci were very small—larger sample sizes 

permit the identification of SNPs with very small effects (Visscher et al., 2012). With 

additional statistically significant loci, researchers can incorporate more SNPs into their 
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risk scores when using the P-value threshold and pruning method, described in Chapter 1, 

Section 1.3.4.3. Further, improved methods to derive SNP weights have been developed 

by accounting for LD patterns and adjusting for the underlying genetic architecture of the 

phenotype of interest (Choi et al., 2020; Ge et al., 2019; Vilhjalmsson et al., 2015; Wang 

et al., 2020b); these effect weights can be incorporated into weighted polygenic scores for 

a more accurate measure of polygenic determinants for a particular phenotype. Concerted 

efforts must also be made to derive risk scores that can be utilized effectively in 

populations of non-European ancestry, through the use of SNPs and estimated effects 

derived from non-European populations and methods that account for ancestral LD 

patterns (Wang et al., 2020b). 

8.4.3.1 Genome-wide scores 

As polygenic scores and risk scores grew to encompass millions of SNP loci—the 

majority of them with non-significant trait effects—they were defined as “genome-wide 

scores”. These scores came to the forefront of polygenic research when Khera et al. 

described five different scores for five common diseases: coronary artery disease, atrial 

fibrillation, type 2 diabetes, inflammatory bowel disease, and breast cancer (Khera et al., 

2018a). In this study, the prevalence of individuals with extremely high genome-wide 

risk scores was compared to the prevalence of individuals carrying rare variants that 

conferred similar degrees of risk. Specifically for coronary artery disease, when 

considering genetic determinants that conferred a 3-fold increased risk for disease, 

individuals with high genome-wide risk scores were 20-fold as frequent in the population 

compared to rare variant carriers (Khera et al., 2018a). This incredible finding not only 

demonstrated the importance of genome-wide scores and using them to find more 

individuals at risk for disease, but it also demonstrated that considering the polygenic 

nature of common diseases and complex traits was extremely informative, despite the 

smaller associated effects from common SNPs. Genome-wide scores have since been 

used to consider early-onset myocardial infarction (Khera et al., 2018b), weight and 

obesity trajectories (Khera et al., 2019), ischemic stroke (Hachiya et al., 2020), severe 

hypercholesterolemia (Natarajan et al., 2018; Ripatti et al., 2020), and 

hypertriglyceridemia (Ripatti et al., 2020).  
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Specifically related to the hypertriglyceridemia genome-wide score, its degree of 

association was assessed against both triglyceride measurements and coronary artery 

disease risk in the Finnish National FINRISK Study population cohort and FinnGen 

project cohort, respectively (Ripatti et al., 2020). The authors demonstrated that the score 

could explain 5.1% of variation in triglyceride levels, and individuals with scores in the 

90th percentile had a 1.3-fold increased risk for coronary artery disease (Ripatti et al., 

2020). 

With respect to genome-wide risk scores, efforts have already been made in assessing 

their practicality in non-European groups in a concerted effort to deal with ancestral 

biases related to polygenic-based methodologies, as discussed in the previous section 

(Wang et al., 2020a).  

8.4.4 Finding additional susceptibility genes 

Gene-based RVAS may help to uncover genes with previously unappreciated or 

unreported links to HDL cholesterol and triglyceride metabolism. In consideration of the 

data presented in Chapter 7, with a larger sample cohort and exome-level data, a similar 

gene-based approach could be used to determine if there are non-candidate genes beyond 

what is targeted by LipidSeq that are enriched for rare variants and driving dyslipidemia 

phenotypes. Since there was a large proportion of study subjects in my Dissertation 

without an identifiable genetic factor related to their phenotype, a gene-based RVAS 

using exome sequencing data in those individuals might uncover genes with some 

currently unappreciated link towards HDL cholesterol or triglyceride metabolism, or a 

novel mechanistic pathway all together. For example, a recent study performed gene-

based RVASs for over 4,000 phenotypes using almost 50,000 exomes from the UK 

Biobank (Cirulli et al., 2020). Their findings related to HDL cholesterol and triglyceride 

levels showed a number of known metabolic genes, as well as genes not directly 

implicated with these two lipid traits, which provide new avenues of exploration. 

Although CREB3L3 did not appear in their top results related to triglyceride levels, the 

UK Biobank is made up largely healthy volunteers, which is distinct from the cohort of 

patients with severe hypertriglyceridemia studied in Chapter 7.  
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8.5 Risk for cardiovascular disease, and levels of high-
density lipoprotein cholesterol and triglyceride  

As we deepen our understanding of the genetic underpinnings of extreme circulating 

levels of HDL cholesterol and triglyceride, it becomes more feasible to critically assess 

these traits and their relationship with CVD, as well as develop a better appreciation for 

previous studies in this space.  

While HDL cholesterol levels remain a widely used risk predictor for CVD (Anderson et 

al., 2016; Grundy et al., 2019), bypassing this metabolic measurement and instead relying 

on associated genetic factors has not been an effective predictor. CVD was not a 

consistent outcome in individuals with monogenic forms of hypoalphalipoproteinemia. 

Despite understanding the genetic cause and mechanism leading to Tangier disease, apo 

A-I deficiency, familial LCAT deficiency (FLD) and fish-eye disease (FED), premature 

CVD was not explicitly shown to associate with these syndromes (Rader and Hovingh, 

2014). Even in cases of extremely high HDL cholesterol levels due to cholesteryl ester 

transfer protein (CETP) deficiency, there was no clear consensus on whether there was 

protection against CVD (Rader and Hovingh, 2014). Further, Mendelian randomization 

studies—an epidemiological approach that relies on genetic variants to assess causality of 

a modifiable exposure (i.e. lipids) on a particular phenotypic outcome (i.e. CVD), by 

leveraging the understanding of genetic variation with known associations to the 

modifiable exposure (Emdin et al., 2017)—demonstrated that genetic variants associated 

with HDL cholesterol levels beyond ABCA1, APOA1, LCAT and CETP failed to show 

causal links to CVD outcomes (Burgess and Thompson, 2015; Do et al., 2013; Voight et 

al., 2012). In many of these studies, only a small subset of relevant genetic factors were 

considered. As demonstrated by the findings presented in this Dissertation, multiple types 

of genetic determinants are responsible for driving HDL cholesterol levels, particularly 

towards extremes of the distribution (Dron et al., 2017). It remains to be seen whether a 

collective assessment of multiple genetic determinants, both rare and common, related to 

HDL cholesterol levels would associate with CVD. As mentioned in Chapter 1, Section 

1.1, it has been shown that the functionality of HDL or the number of HDL particles are 

better metrics to assess CVD risk compared to measurable HDL cholesterol levels 
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(Mackey et al., 2012; Mora et al., 2013). Perhaps future studies should focus on the 

genetic determinants related to HDL functionality and cholesterol efflux, rather than 

measurable levels of HDL cholesterol.  

In contrast, genetic variants associated with triglyceride concentration have shown 

stronger associations with CVD risk. For example, a number of loss-of-function variants 

in APOC3 were shown to reduce triglyceride levels and coronary artery disease risk 

(Jorgensen et al., 2014; Pollin et al., 2008; Tg et al., 2014). Further, a genome-wide score 

of ~6 million SNPs showed an association to coronary artery disease as well (Ripatti et 

al., 2020); however, adjustments were not made for HDL cholesterol levels. A challenge 

the field has faced in this space has been disentangling the joint, inverse association 

between HDL cholesterol and triglyceride levels, as both traits are often simultaneously 

abnormal when CVD associations are observed (see Table 1 from Dron and Hegele, 

2017) (Clee et al., 2001; Dewey et al., 2016; Do et al., 2015; Jorgensen et al., 2014; 

Mailly et al., 1996; Myocardial Infarction et al., 2016; Nordestgaard, 2016; Teslovich et 

al., 2010; Tg et al., 2014; Triglyceride Coronary Disease Genetics et al., 2010). There are 

few studies that show an association with only one of the aforementioned lipid traits and 

CVD risk. For example, after model adjustments, Do et al. identified that genetic 

determinants with predominantly triglyceride-related effects were correlated with 

increased coronary heart disease risk, while genetic determinants with predominantly 

HDL cholesterol-related effects were not (Do et al., 2013). This triglyceride-specific 

association might be related to the cholesterol content of triglyceride-rich lipoprotein 

particles and their remnants, specifically very-low-density lipoproteins (VLDL) and 

intermediate-density lipoprotein (IDL) (Ference et al., 2019; Varbo et al., 2013). This 

aligns with the association between CVD risk and mild-to-moderate 

hypertriglyceridemia: disturbances in levels of VLDL and IDL lead to elevations in 

triglyceride levels, and due to their cholesterol content, are likely also contributing 

towards CVD risk through atherosclerotic plaque development (Dron and Hegele, 2017). 

This is in contrast to severe hypertriglyceridemia, in which chylomicrons—with a very 

small cholesterol content—are the main lipoprotein disturbance, and the overall CVD risk 

is almost negligible. In considering differing severities of hypertriglyceridemia and the 
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associated health complications, it is evident that knowing what lipoprotein fractions are 

disturbed is useful in assessing CVD risk.    

With respect to both HDL particles and triglyceride-rich lipoproteins, it can be 

challenging to assess fraction breakdown, lipid-content per fraction, and lipoprotein 

particle numbers on a large-scale because of more involved techniques and assays; 

however, it might provide better risk predictions for CVD compared to the measurable 

circulating concentration of HDL cholesterol and triglyceride. If this holds true, then 

future genetic studies could look at associations between genetic variants and these 

measurements (i.e. fraction breakdown, lipoprotein functionality) to eventually work 

towards a genetic test for CVD prediction earlier in life. Or, findings from these studies 

may reveal an area of lipid and lipoprotein metabolic pathways that might be an attractive 

target for future therapies attempting to reduce CVD risk. 

To summarize, without a clear causal relationship or independent association, assessing 

the predictive power of single genetic variants related to either HDL cholesterol or 

triglyceride levels and CVD is not an ideal course of action. Either a collective genetic 

assessment spanning multiple types of determinants or coupling genetic data with 

functional information on lipoprotein fraction-specific data, might prove more useful in 

CVD risk prediction and possibly narrowing the focus towards mechanistically impactful 

metabolic areas that are therapeutically targetable for CVD risk reduction.  

8.6 Conclusions 

Fully understanding the genetic architecture of dyslipidemia is challenging. The 

perturbed lipid traits defining these phenotypes—cholesterol and triglyceride—are 

influenced by a complex network of genetic determinants that differ in population 

frequency, physical size, sequence ontology, and phenotypic impact. Throughout my 

Dissertation, I have assessed the diverse spectrum of genetic determinants present in 

groups of patients with different dyslipidemia phenotypes, including: (i) 

hypoalphalipoproteinemia (Chapters 2-3); (ii) hyperalphalipoproteinemia (Chapter 2); 

and (iii) hypertriglyceridemia (Chapters 4-7). This was made possible using the targeted 

NGS panel, LipidSeq, that produced a single dataset from which I could perform a robust 
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set of genetic analyses. From my research, I have demonstrated that despite being jointly 

considered as “lipid disorders”, each phenotype studied has a distinct genetic profile 

(Figure 8.3). By better understanding the genetic underpinnings of HDL cholesterol, 

triglyceride, and their dyslipidemic counterparts, future efforts can explore the 

relationship between these phenotypes and their co-morbidities, such as CVD. As 

demonstrated previously, genetics often provides invaluable insights into the biological 

mechanisms driving health and disease.  
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Figure 8.3 The comparison of genetic profiles of different dyslipidemia phenotypes. 

The percentage of individuals in each cohort that carried a particular type of genetic 

determinant relevant to the phenotype under study, either hypoalphalipoproteinemia (i.e. 

low HDL cholesterol), hyperalphalipoproteinemia (i.e. high HDL cholesterol), severe 

hypertriglyceridemia (including familial chylomicronemia syndrome and multifactorial 

chylomicronemia), or mild-to-moderate hypertriglyceridemia. Abbreviations: HDL = 

high-density lipoprotein; SNPs = single-nucleotide polymorphisms. 
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Appendix C. Summary of unique rare SNVs identified in primary HDL cholesterol genes. 

Gene Nucleotide change 
Amino acid 

change 

Sequence 

Ontology 

Allele 

count 
HGMD In silico predictions* 

Carrier’s HDL 

cholesterol phenotype 

ABCA1 

c.103A>G p.I35V Missense 1  22.9 | Benign | Damaging | Damaging Low 

c.206G>T p.W69L Missense 2  26.3 | Probably damaging | Damaging | Damaging Low 

c.208delG p.V70fsX53 Frameshift 2  22.9 | NA | NA | NA Low 

c.688C>T p.R230C Missense 1 Yes 19.22 | Benign | Tolerated | Tolerated Low 

c.1660T>C p.Y554H Missense 1  27.5 | Possibly damaging | Damaging | Damaging Low 

c.1770G>C p.W590C Missense 1 Yes 24.7 | Possibly damaging | Damaging | Damaging Low 

c.1769G>T p.W590L Missense 1 Yes 24.7 | Possibly damaging | Tolerated | Damaging Low 

c.2270T>C p.L757P Missense 2  28 | Probably damaging | Damaging | Damaging Low 

c.2328G>C p.K776N Missense 2 Yes 27.6 | Probably damaging | Damaging | Damaging Low 

c.2551G>A p.G851R Missense 2  34 | Probably damaging | Damaging | Damaging Low 

c.2819C>T p.T940M Missense 1 Yes 32 | Probably damaging | Damaging | Damaging Low 

c.3191A>G p.D1064G Missense 1  29.5 | Probably damaging | Damaging| Damaging Low 

c.3343_3344delTC p.S1115PfsX31 Frameshift 1 Yes 35 | NA | NA | NA Low 

c.3544G>A p.A1182T Missense 1  20.9 | Benign | Tolerated | Damaging Low 

c.4156G>A p.E1386K Missense 1  24.7 | Benign | Tolerated | Damaging Low 

c.4430G>T p.C1477F Missense 1 Yes 34 | Probably damaging | Damaging | Damaging Low 

c.5398A>C p.N1800H Missense 2 Yes 26.6 | Possibly damaging | Damaging | Damaging Low 

IVS42+1G>A  Splicing 1  27.2 | NA | NA | NA Low 

c.5672A>C p.E1891A Missense 1  25.2 | Probably damaging | Damaging | Damaging Low 

c.5774G>A p.R1925Q Missense 1  24.8 | Benign | Tolerated | Damaging Low 

APOA1 

c.85dupC p.Q29PfsX29 Frameshift 2 Yes 28.3 | NA | NA | NA Low 

c.535delC p.H179MfsX45 Frameshift 1  24.8 | Probably damaging | Damaging | Damaging Low 

c.566C>G p.P189R Missense 1 Yes 24.8 | Probably damaging | Damaging | Damaging Low 

c.718C>T p.Q240X Nonsense 1 Yes 35 | NA | NA | Damaging Low 

CETP 
c.164delC p.S56AfsX11 Frameshift 1  36 | NA | NA | Damaging High 

c.976C>T p.Q326X Nonsense 1 Yes 32 | NA | NA | NA High 

LCAT 

c.109_110delAC p.T37AfsX3 Frameshift 1  37 | NA | NA | Damaging Low 

c.321C>A p.Y107X Nonsense 1 Yes 31 | Probably damaging | Tolerated | Damaging Low 

c.491G>A p.R164H Missense 2 Yes 27.8 | Probably damaging | Damaging | Damaging Low 

c.892A>C p.T298P Missense 1  31 | Probably damaging | Damaging | Damaging Low 

c.997G>A p.V333M Missense 1 Yes 31 | Probably damaging | Damaging | Damaging Low 

c.1039C>T p.R347C Missense 1 Yes 18.3 | Benign | Damaging | Tolerated | Damaging Low 

c.1244A>G p.N415S Missense 1 Yes 22.8 | Possibly damaging | Tolerated | Damaging Low 

LIPC 

 

c.193C>T p.R65X Nonsense 1  35 | NA | NA | Damaging High 

c.866C>T p.S289F Missense 1 Yes 25.5 | Probably damaging | Damaging | Damaging High 

c.1214C>T p.T405M Missense 3 Yes 24.6 | Probably damaging | Damaging | Damaging High 

c.1231G>C p.G411R Missense 1  27.5 | Probably damaging | Damaging | Damaging High 

LIPG 

 

IVS5+1G>T  Splicing 1  23.2 | NA | NA | Damaging High 

c.1187A>G p.N396S Missense 4  23.8 | Probably damaging | Tolerated | Damaging High 

SCARB1 
c.520C>T p.R174C Missense 1  32 | Probably damaging | Damaging | Damaging High 

c.1258G>T p.G420W Missense 1  31 | Probably damaging | Damaging | Damaging Low 

“*” The order of prediction tool outcomes is: CADD PHRED Score, PolyPhen2, SIFT, and MutationTaster. Abbreviations: NA = not available; del = deletion; dup = duplication; 

ext = extension; fs = frameshift; HDL = HDL cholesterol; HGMD = Human Gene Mutation Database; SNV = single-nucleotide variant.  
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Appendix D. Summary of unique rare SNVs identified in secondary HDL cholesterol genes. 

Gene Nucleotide change Amino acid change 
Sequence 

Ontology 

Allele 

count 
HGMD In silico predictions* 

Carrier’s HDL 

cholesterol phenotype 
APOA5 c.944C>T p.A315V Missense 1 Yes 28 | Probably damaging | Damaging | Tolerated Low 

APOC3 IVS2+1G>A  Splicing 2 Yes 25.1 | NA | NA | Damaging High 

APOE 
c.433G>C p.G145R Missense 1  28.4 | Probably damaging | Damaging | Tolerated Low 

c.805C>G p.R269G Missense 2 Yes 25.6 | Benign | Damaging | Damaging Low 

GPD1 
c.208C>A p.P70T Missense 1  31 | Probably damaging | Damaging | Damaging Low 

c.760G>A p.E254K Missense 1  27.7 | Probably damaging | Damaging | Damaging Low 

LMF1 
c.1351C>T p.R451W Missense 2 Yes 24.9 | Probably damaging | Damaging | Tolerated Low 

c.1405G>A p.A469T Missense 2 Yes 29.7 | Probably damaging | Damaging | Damaging Low 

LPL 
c.644G>A p.G215E Missense 1 Yes 22 | Probably damaging | Tolerated | Damaging Low 

c.701C>T p.P234L Missense 1 Yes 34 | Probably damaging | Damaging | Damaging Low 

“*” The order of prediction tool outcomes is: CADD PHRED Score, PolyPhen2, SIFT, and MutationTaster. Abbreviations: NA = not available; del = deletion; dup = duplication; 

ext = extension; fs = frameshift; HDL = HDL cholesterol; HGMD = Human Gene Mutation Database; SNV = single-nucleotide variant.  
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Appendix E. Screening primers for ABCA1 copy-number variations. 

CNV Breakpoint 
Primer 

direction 

Primer sequence  

(5’ to 3’) 

Annealing 

temperature (°C) 

Primer labels in 

Figure 3.3 and 

Figure 3.4 

Exon 4 

Upstream 
FWD CCAAATAGCTGAGACTACAGGCATG 60 P1 

REV GTGATGGTGAAGGTATTTCAG 60 P2 

Downstream 
FWD CATGACTGCATTGGTATAAAGATG 60 P3 

REV ATCACTGTCTGTGGCAACCAG 60 P4 

Exons 8 to 

31 

Upstream 
FWD GACCCAGCTTCCAATCTTCATAATCCTC 60 P5 

REV GGTTGCAAAGATCCCTGTAGAG 60 P6 

Downstream 
FWD GAGATATCATGTTGGGAGGGTCTG 60 P7 

REV GCCACAGTCTGTCCTGTGACTTTAC 60 P8 

Full 

deletion 

Upstream 
FWD TATCATGCTACTCAGAACAGCATG 60 P9 

REV TGGTGATTCTTGTGTGCACAAAG 60 P10 

Downstream 
FWD CAGGATATTACATAGGTAAGCAGG 60 P11 

REV CTTAATGATAGTGGAAGACAAGGAG 60 P12 
The primers listed were designed to flank the two breakpoints for each CNV. The “Breakpoint” listed is relative to the deletion section of the gene. The sequence 

orientation for P1-P8 are relative to the ABCA1 gene, while the sequence orientation for P9-P12 are relative to the full chromosome. Abbreviations: CNV = 

copy-number variant; FWD = forward; REV = reverse. 
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Appendix F. Summary of unique rare SNVs and CNVs identified in the Lipid Genetics Clinic cohort (N=251). 

Variant information RefSeq gene information Minor allele frequencies In silico predictions 
Allele 

Counts Gene Chr:Pos Ref/Alt HGVS c.  HGVS p. Sequence Ontology ExAC 1KG CADD PHRED SIFT PolyPhen2 
Mutation 

Taster 

APOA5 

11:116661290 C/G c.655G>C p.Ala219Pro Missense   22.9 T PoD T 1 

11:116661305 C/G c.640G>C p.Ala214Pro Missense   24.2 D ProD D 2 

11:116661335 G/A c.610C>T p.Arg204Cys Missense 8.27E-06 0.000199681 33 D PoD D 2 

11:116661656 G/A c.289C>T p.Gln97Ter Nonsense 8.24E-05  36   D 1 

11:116663095 C/T c.-33+1G>A   Splice donor     24.4       1 

APOC2 19:45452024 A/C c.122A>C p.Lys41Thr Missense 0.0008731 0.000399361 15 D B D 4 

LMF1 

16:904642 C/T c.1594G>A p.Gly532Ser Missense     29.7 D ProD D 1 

16:919894 C/T c.1405G>A p.Ala469Thr Missense 0.0008543 0.000599042 29.7 D ProD D 1 

16:919912 C/T c.1387G>A p.Asp463Asn Missense 3.31E-05  28.3 D ProD D 1 

16:919948 G/A c.1351C>T p.Arg451Trp Missense 0.004243 0.00319489 24.9 D ProD T 3 

16:929680 G/A c.787C>T p.His263Tyr Missense 2.48E-05  24.9 D ProD D 2 

16:943023 A/G c.713T>C p.Met238Thr Missense   26.8 D ProD D 1 

16:1004615 CT/- c.244_245delAG p.Arg82Glyfs Frameshift 2.48E-05   22.9       1 

LPL 

8:19796997 CA/- c.46_47delCA p.Gln16Glufs Frameshift     35       2 

8:19805715 A/G c.113A>G p.Glu38Gly Missense 8.24E-06  24.3 D PoD D 1 

8:19805736 C/A c.134C>A p.Thr45Asn Missense 0.0001071  22.7 D PoD D 1 

8:19805756 G/C c.154G>C p.Asp52His Missense   28.9 D ProD D 1 

8:19809302 G/A c.272G>A p.Trp91Ter Nonsense   38   D 1 

8:19809316 G/C c.286G>C p.Val96Leu Missense 0.0001235  28.2 D ProD D 1 

8:19811733 G/A c.644G>A p.Gly215Glu Missense 0.0001318 0.000199681 22 T ProD D 9 

8:19811769 T/C c.680T>C p.Val227Ala Missense 3.30E-05 0.000199681 27 D PoD D 1 

8:19811790 C/T c.701C>T p.Pro234Leu Missense 4.94E-05  34 D ProD D 1 

8:19811806 T/A c.717T>A p.Phe239Leu Missense   26.5 D ProD D 1 

8:19813405 G/A c.829G>A p.Asp277Asn Missense 8.24E-06  32 D B D 1 

8:19813411 C/G c.835C>G p.Leu279Val Missense 0.0001318  25.7 D ProD D 1 

8:19813474 G/C c.898G>C p.Gly300Arg Missense   31 D ProD D 1 

8:19813594 G/A c.1018G>A p.Val340Ile Missense   23.3 D B D 1 

8:19816785 G/A c.1033G>A p.Val345Ile Missense 1.65E-05  18.9 T B D 1 

8:19816892 G/A c.1139+1G>A   Splice donor 8.24E-06   26.5     D 1 

Abbreviations: 1KG = 1000 Genomes Project; Alt = alternate; B = benign; CADD = Combined Annotation Dependent Depletion; CNV = copy-number variant; D = damaging; 

del = deletion; ExAC = Exome Aggregation Consortium; HGVS = Human Genome Variation Society; fs = frameshift; ins = insertion; PoD = possibly damaging; ProD = probably 

damaging; Ref = reference; SNV = single-nucleotide variant; T = tolerated. 
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Appendix G. Summary of unique rare SNVs and CNVs identified in the UCSF cohort (N=312). 

Variant information RefSeq gene information Minor allele frequencies In silico predictions 
Allele 

Counts Gene Chr:Pos Ref/Alt HGVS c.  HGVS p. 
Sequence 

Ontology 
ExAC 1KG 

CADD 

PHRED 
SIFT PolyPhen2 

Mutation 

Taster 

APOA5 

11:116660857 A/T c.1088T>A p.Leu363Gln Missense   10.58 D B T 1 

11:116661001 G/A c.944C>T p.Ala315Val Missense 0.000626 0.0003993 28 D ProD T 7 

11:116661057 T/- c.888delA p.Ile296Metfs Frameshift del   24.4    1 

11:116661062 G/A c.883C>T p.Gln295Ter Nonsense 8.24E-06  37   D 1 

11:116661656 G/A c.289C>T p.Gln97Ter Nonsense 8.24E-05  36   D 1 

11:116661734 G/- c.211delC p.Leu71Trpfs Frameshift del   17.42    1 

11:116662386 C/- c.77delG p.Gly26Alafs Frameshift del     24       1 

APOC2 
19:45451743 C/T c.8C>T p.Thr3Ile Missense 0.0003377 0.0007987 13.79 D B T 1 

19:45451745 C/G c.10C>G p.Arg4Gly Missense 9.88E-05  23.6 D ProD T 1 

19:45452024 A/C c.122A>C p.Lys41Thr Missense 0.0008731 0.0003994 15 D B D 1 

GPIHBP1 
8:144297206 G/A c.368G>A p.Gly123Glu Missense 0.0004616   17.35   B T 1 

8:144297361 G/C c.523G>C p.Gly175Arg Missense 0.0008799 0.0021965 14.89   PoD T 1 

LMF1 

16:919894 C/T c.1405G>A p.Ala469Thr Missense 0.0008543 0.0005990 29.7 D ProD D 2 

16:919908 C/T c.1391G>A p.Trp464Ter Nonsense   39   D 1 

16:919948 G/A c.1351C>T p.Arg451Trp Missense 0.004243 0.0031949 24.9 D ProD T 4 

16:919982 G/C c.1317C>G p.Tyr439Ter Nonsense   36   D 2 

16:920817 C/T c.1144G>A p.Val382Met Missense 6.61E-05 0.0001997 27.3 D ProD D 1 

16:921293 T/C c.946A>G p.Met316Val Missense 8.28E-06  15.58 T B D 1 

16:929617 C/T c.850G>A p.Gly284Ser Missense 2.48E-05  24.2 T PoD D 1 

16:943023 A/G c.713T>C p.Met238Thr Missense   26.8 D ProD D 1 

16:943053 C/G c.683G>C p.Gly228Ala Missense   24 D PoD D 1 

16:943053 C/T c.683G>A p.Gly228Glu Missense 0.000198   28.8 D PoD D 1 

LPL 

8:19796331-19806101 (approximate) Large-scale deletion            1 

8:19805730 -/T c.127_128insT p.Arg44Lysfs Frameshift ins   33    1 

8:19805815 C/G c.213C>G p.His71Gln Missense 0.001128 0.0037939 12.52 T B D 1 

8:19809322 G/A c.292G>A p.Ala98Thr Missense 0.0001647  33 D ProD D 1 

8:19811679 G/A c.590G>A p.Arg197His Missense 4.12E-05  29.3 D ProD D 1 

8:19811710 C/G c.621C>G p.Asp207Glu Missense   21.6 D ProD D 2 

8:19811711 G/A c.622G>A p.Val208Ile Missense   28.4 D ProD D 1 

8:19811733 G/A c.644G>A p.Gly215Glu Missense 0.0001318 0.0001997 22 T ProD D 8 

8:19811751 T/C c.662T>C p.Ile221Thr Missense 8.24E-06  27.1 D ProD D 2 

8:19811844 T/C c.755T>C p.Ile252Thr Missense 1.65E-05  24.8 D PoD D 1 

8:19811864 G/A c.775G>A p.Asp259Asn Missense   11.9 T B D 1 

8:19813465 T/C c.889T>C p.Phe297Leu Missense   29 D PoD D 1 

8:19813501 C/T c.925C>T p.Arg309Cys Missense 1.65E-05  35 D ProD D 1 

8:19813528 A/G c.952A>G p.Asn318Asp Missense   23.6 T B D 1 

8:19816785 G/A c.1033G>A p.Val345Ile Missense 1.65E-05  18.9 T B D 1 

8:19816888 C/T c.1136C>T p.Thr379Ile Missense 0.001911  20.2 D B T 1 

8:19818574 A/TTTT c.1302delinsTTTT p.Lys434delinsAsnPhe Inframe ins     18.857       1 

Abbreviations: 1KG = 1000 Genomes Project; Alt = alternate; B = benign; CADD = Combined Annotation Dependent Depletion; CNV = copy-number variant; D = damaging; 

del = deletion; ExAC = Exome Aggregation Consortium; HGVS = Human Genome Variation Society; fs = frameshift; ins = insertion; PoD = possibly damaging; ProD = probably 

damaging; Ref = reference; SNV = single-nucleotide variant; T = tolerated; UCSF = University of California, San Francisco. 
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Appendix H. Summary of unique rare SNVs identified in the reference 1000 Genomes Project cohort (N=503). 

Variant information RefSeq gene information 
Minor allele 

frequencies 
In silico predictions 

Allele 

Counts 
Gene Chr:Pos 

Ref/

Alt 
rsID HGVS c.  HGVS p. 

Sequence 

Ontology 
ExAC 1KG 

CADD 

PHRED 
SIFT PolyPhen2 

Mutation 

Taster 

APOA5 
11:116660983 T/A rs201201147 c.962A>T p.His321Leu Missense 0.001095 0.000599042 25.7 D PoD D 3 

11:116661335 G/A rs546060544 c.610C>T p.Arg204Cys Missense 8.27E-06 0.000199681 33 D PoD D 1 

APOC2 19:45452024 A/C rs120074114 c.122A>C p.Lys41Thr Missense 0.0008731 0.000399361 15 D B D 2 

GPIHBP1 8:144297142 C/T rs200196582 c.304C>T p.Leu102Phe Missense   0.000199681 13.7   B T 1 

LMF1 

16:904561 G/A rs199544373 c.1675C>T p.Arg559Cys Missense 3.33E-05 0.000199681 25.1 D ProD D 1 

16:919883 C/G rs200876477 c.1416G>C p.Gln472His Missense  0.000199681 23.3 T PoD D 1 

16:919894 C/T rs181731943 c.1405G>A p.Ala469Thr Missense 0.0008543 0.000599042 29.7 D ProD D 2 

16:919948 G/A rs138205062 c.1351C>T p.Arg451Trp Missense 0.004243 0.00319489 24.9 D ProD T 4 

16:920733 C/T rs199713950 c.1228G>A p.Gly410Arg Missense 0.0008925 0.000599042 26.4 D ProD D 1 

16:929692 G/C rs564167344 c.775C>G p.Pro259Ala Missense 8.28E-06 0.000199681 23.5 D ProD D 1 

16:1004447 G/C rs200382562 c.413C>G p.Ser138Cys Missense 0.0004132 0.000399361 10.68 T PoD T 1 

LPL 
8:19805792 G/A rs114101772 c.190G>A p.Val64Met Missense 2.47E-05 0.000199681 24.8 D PoD T 1 

8:19811631 G/A rs191402029 c.542G>A p.Gly181Asp Missense 8.24E-06 0.000199681 27 D ProD D 1 

8:19819628 T/G rs116403115 c.1325T>G p.Val442Gly Missense 0.0004036 0.000199681 25.6 D PoD D 1 

Abbreviations: 1KG = 1000 Genomes Project; Alt = alternate; B = benign; CADD = Combined Annotation Dependent Depletion; CNV = copy-number variant; D = damaging; 

del = deletion; ExAC = Exome Aggregation Consortium; HGVS = Human Genome Variation Society; fs = frameshift; ins = insertion; PoD = possibly damaging; ProD = probably 

damaging; Ref = reference; SNV = single-nucleotide variant; T = tolerated. 
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Appendix I. Screening primers for LPL CNVs. 

CNV Breakpoint 
Primer 

direction 

Primer sequence  

(5’ to 3’) 

Annealing 

temperature (°C) 

Primer labels in 

Figure 5.2 

5’UTR – 

exon 1 

Upstream 
F TTGTAGGTTAGAGTGAACGTGCACAG 60 P2 

R CATTATGCTGATGCTGCACAACTCTG 60 P3 

Downstream 
F TTCACACTTGATGGTCTCATTCAGTGG 60 P4 

R GATCAGACTGAATTGATTGGTCTGTTCAG 60 P5 

5’ UTR – 

exon 2 

Upstream 
F CTCTATTGGACGTGCTAATGGCACAG 60 P1 

R CATTATGCTGATGCTGCACAACTCTG 60 P3 

Downstream 
F ACTGACATGCTGACATGCCAGATG 60 P6 

R CATCTGTGTGAATTCTGTTAGTAGTAG 60 P7 
The primers listed were designed to flank the two breakpoints for each CNV. The “Breakpoint” listed is relative to the deleted section of the gene. The sequence 

orientation for P1-P7 are relative to LPL. Highlighted primer sequences are the same. Abbreviations: CNV = copy-number variant; F = forward; R = reverse; 

UTR = untranslated region. 
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Appendix J. Summary of unique rare SNVs identified in mild-to-moderate hypertriglyceridemia patients (N=134). 

Variant Information Minor allele frequencies In silico predictions 
Allele 

Counts Gene Chr:Pos 
Ref/

Alt 
HGVS c.  HGVS p.  

Sequence 

Ontology 
gnomAD ExAC 1KG 

CADD 

PHRED 
SIFT PolyPhen2 

Mutation 

Taster 

LPL 

8:19811733 G/A c.644G>A p.Gly215Glu Missense 6.46E-05 0.0001318 0.0001997 23.3 T ProD D 2 

8:19811864 G/A c.775G>A p.Asp259Asn Missense    22.9 T B D 1 

8:19813384 * C/T c.808C>T p.Arg270Cys Missense  1.65E-05  34 D ProD D 1 

8:19813481 G/T c.905G>T p.Cys302Phe Missense    32 D ProD D 1 

APOA5 

11:116661001 * G/A c.944C>T p.Ala315Val Missense 0.000581546 0.000626 0.0003994 24.4 D ProD T 1 

11:116661392 C/A c.553G>T p.Gly185Cys Missense 0.00531122 0.006132 0.0113818 22.7 D ProD T 2 

11:116661653 C/A c.292G>T p.Glu98Ter Nonsense    36   D 1 

11:116661656 G/A c.289C>T p.Gln97Ter Nonsense 6.46E-05 8.24E-05  37   D 1 

LMF1 
16:919894 C/T c.1405G>A p.Ala469Thr Missense 0.000258415 0.0008543 0.0005990 24.8 D ProD D 1 

16:921323 C/T c.916G>A p.Gly306Arg Missense  5.80E-05  27.5 D ProD D 1 

16:929650 T/G c.817A>C p.Ile273Leu Missense  4.13E-05  10.72 T B D 1 

“*” indicates the variants that occur in the same patient. Abbreviations: 1KG = 1000 Genomes Project; Alt = alternate; B = benign; CADD = Combined Annotation Dependent 

Depletion; D = damaging; del = deletion; ExAC = Exome Aggregation Consortium; HGVS = Human Genome Variation Society; fs = frameshift; ins = insertion; PoD = possibly 

damaging; ProD = probably damaging; Ref = reference; SNVs = single-nucleotide variants; T = tolerated.  
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Appendix K. Summary of unique rare LOF variants identified in multifactorial chylomicronemia patients (N=265). 

Variant Info MAF in silico Prediction Tools 
Total Allele 

Counts 

Chr: 
Position 

Ref/ 
Alt 

Gene HGVS c. HGVS p. 
Sequence  

Ontology 

gnomAD 

All Pops 
CADD  SIFT 

Poly 

Phen2 

Mutation 

Taster 
ACMG 

# 

Het 

# 

Hom 

2:21231489 C/A APOB NM_000384.2:c.8251G>T NP_000375.2:p.Glu2751Ter Nonsense  35   D LP 1 0 

2:27726415 C/T GCKR NM_001486.3:c.679C>T NP_001477.2:p.Arg227Ter Nonsense 0.0003185 35   D LP 1 0 

2:27730170 -/A GCKR NM_001486.3:c.1135dupA 
NP_001477.2:p.Thr379Asnfs*

36 
Frameshift 0.0012737 22.8    LP 3 0 

2:27745372 C/T GCKR NM_001486.3:c.1618C>T NP_001477.2:p.Arg540Ter Nonsense 0.0008602 35   D LP 5 0 

2:27746184 G/T GCKR NM_001486.3:c.1756G>T NP_001477.2:p.Glu586Ter Nonsense 0.0010832 35   D VUS 1 0 

2:44102404 G/A ABCG8 NM_022437.2:c.1608G>A NP_071882.1:p.Trp536Ter Nonsense 3.18E-05 51   D P 1 0 

3:12458392 
CTT

GA/- 
PPARG 

NM_015869.4:c.1014_1018delC

TTGA 

NP_056953.2:p.Asp338Glufs*

25 
Frameshift  35    P 1 0 

3:12475485 C/- PPARG NM_015869.4:c.1361delC 
NP_056953.2:p.Pro454Leufs*

14 
Frameshift  35    P 1 0 

4:100485266 -/GA MTTP 
NM_000253.3:c.-229_-

228dupAG 
  Frameshift  14.44    LP 1 0 

8:19795150-19806747 LPL NM_001715.2:c.1_249del NP_006184.2:p.Met1? CNV del       1 0 

8:19796997 CA/- LPL NM_000237.2:c.46_47delCA 
NP_000228.1:p.Gln16Glufs*2

4 
Frameshift  34    LP 1 0 

8:19805730 -/T LPL NM_000237.2:c.128dupT NP_000228.1:p.Arg44Lysfs*4 Frameshift  28.1    LP 1 0 

10:91005432 C/T LIPA NM_000235.3:c.229+1G>A   
Splice 

Donor 
 34   D LP 1 0 

10:90987706-90988405  LIPA Deletion encompassing: Exon 4 CNV del       1 0 

11:62458267 G/A BSCL2 NM_032667.6:c.953C>T NP_001124174.2:p.Gln271Ter Nonsense 9.56E-05 17.53 T B T LP 1 0 

11:116661062 G/A APOA5 NM_052968.4:c.883C>T NP_443200.2:p.Gln295Ter Nonsense 3.18E-05 39   S LP 1 0 

11:116661734 G/- APOA5 NM_052968.4:c.211delC NP_443200.2:p.Leu71Trpfs*4 Frameshift  22.4    LP 1 0 

11:116701354 G/A APOC3 NM_000040.1:c.55+1G>A   
Splice 

Donor 
0.0013398 31   D P 3 0 

12:121432117 -/C HNF1A NM_000545.6:c.863_864insC 
NP_000536.5:p.Pro289Alafs*2

7 
Frameshift  26.2    LP 1 0 

15:58723924-58724569  LIPC Deletion encompassing: Exon 1 CNV del       2 0 

15:58838104 -/CG LIPC NM_000236.2:c.738_739dupCG 
NP_000227.2:p.Gly247Alafs*

12 
Frameshift 0.0001912 35    VUS 1 0 

15:90213298 G/A PLIN1 NM_002666.4:c.511C>T NP_002657.3:p.Arg171Ter Nonsense  36   D LP 1 0 

19:4168357 C/T CREB3L3 NM_032607.2:c.724C>T NP_115996.1:p.Arg242Ter Nonsense 9.57E-05 39   D VUS 1 0 

19:4168365 -/G CREB3L3 NM_032607.2:c.732dupG 
NP_115996.1:p.Lys245Glufs*

130 
Frameshift 0.0003190 35    VUS 3 0 

19:4153347-4155274  CREB3L3 Deletion encompassing: 5'UTR to exon 2 CNV del       1 0 

19:11241706-11244755  LDLR Deletion encompassing: Exon 18 to the 3'UTR CNV del       1 0 

Abbreviations: Alt = alternate; B = benign; CADD = Combined Annotation Dependent Depletion; Chr = chromosome; CNV = copy-number variant; D = damaging; del = deletion; 

ExAC = Exome Aggregation Consortium; HGVS = Human Genome Variation Society; het = heterozygous; fs = frameshift; ins = insertion; LOF = loss-of-function; LP = likely 

pathogenic; MAF = minor allele frequency; P = pathogenic; pops = populations; Ref = reference; SNVs = single-nucleotide variants; T = tolerated; VUS = variant of uncertain 

significant. 
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Appendix L. Exautomate: A user-friendly tool for region-based rare variant 

association analysis 
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