Jungquartäre Landschafts- und Klimageschichte der Südmongolei

Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch -Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigte Dissertation

vorgelegt von

Thomas Felauer M.A.

aus Viersen

Berichter:Univ.-Prof. Dr.rer. nat. Frank LehmkuhlUniv.-Prof. Dr.rer. nat. Jörg Grunert

Tag der mündlichen Prüfung: 07. 02.2011

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Vorwort

Diese Arbeit entstand im Rahmen des DFG-Projektes ,Spätpleistozäne, holozäne und aktuelle Geomorphodynamik in abflusslosen Becken der Gobi (Südmongolei)⁴, das in Kooperation mit den geographischen Instituten der Universitäten Köln und Mainz sowie der Mongolischen Akademie der Wissenschaften erfolgte. Der Deutschen Forschungsgemeinschaft (DFG) möchte ich für die finanzielle Unterstützung dieses Projektes danken.

Am Gelingen dieser Arbeit waren viele Menschen in unterschiedlicher Weise beteiligt, denen ich an dieser Stelle herzlich dafür danken möchte.

Ich danke Herrn Prof. Dr. Frank Lehmkuhl für die Betreuung dieser Arbeit, die sich nicht nur durch anregende wissenschaftliche Diskussionen, sondern ebenso in Form einer jederzeitigen Unterstützung auszeichnete. Des Weiteren gilt mein Dank Herrn Prof. Dr. Jörg Grunert für die Übernahme des Koreferates und die begleitende Unterstützung im Rahmen des Projektes.

Herzlich danken möchte ich ebenfalls Dr. Nils Hempelmann, Dr. Alexandra Hilgers, Daniela Hülle und Dr. Frank Schlütz, die mir während der Mongolei Expeditionen und im Laufe der vergangenen Jahre durch zahlreiche Ratschläge und einen regen Informationsaustausch beigestanden haben.

Die Expeditionen erfolgten in Zusammenarbeit mit dem Geographischen Institut der Mongolischen Akademie der Wissenschaften. Ein Dank gilt hierbei Prof. Dr. Dechingungaa Dorjgotov und Frau Altangerel Tschimegsaichan, die zum erfolgreichen Verlauf des Projektes erheblich beigetragen haben. Insbesondere möchte ich Narangerel Serd-Yanjiv danken, der die Geländearbeiten durch einen fachlichen Austausch und einen unermüdlichen organisatorischen Einsatz unterstützt hat.

Ich möchte Herrn PD Dr. Bernhard Diekmann danken, der mir die Nutzung der Messgeräte am AWI Bremerhaven (Alfred-Wegener-Institut für Polar- und Meeresforschung) ermöglichte und mich mit methodischen Ratschlägen unterstützte. Meinen Kollegen am Geographischen Institut der RWTH Aachen möchte ich ebenfalls herzlich für eine sehr gute Zusammenarbeit danken. Hierbei sind insbesondere Marianne Dohms, Melanie Herzog, Dr. Martin Knippertz, Dr. Rene Löhrer, Jens Protze und Dr. Georg Stauch zu erwähnen, mit denen ich seit Beginn als studentische Hilfskraft zusammengearbeitet habe. Ebenso gilt mein Dank Dr. Holger Kels, mit dem ich in den Jahren 2009 und 2010 zwei erfolgreiche Geländekampagnen in Rumänien durchführen konnte.

Ein besonderer Dank gilt Paula und meiner Familie sowie meinen Freunden, die mir jederzeit mit Zuversicht, Motivation und viel Geduld beigestanden haben.

Brüggen, im April 2011

Thomas Felauer

Inhaltsverzeichnis

InhaltsverzeichnisI				
Abbild	Abbildungsverzeichnis IV			
Tabelle	TabellenverzeichnisVII			
Abkürz	AbkürzungsverzeichnisVIII			
1.	Einlei	Einleitung und Problemstellung1		
2.	Stand	Stand der Forschung3		
3.	Methodik9			
3.1.	Fer	nerkundung und Geländeuntersuchungen12		
3.2.	Lab	oranalytik13		
3.	.2.1.	Korngrößenanalyse14		
3.	.2.2.	CNS- Analyse15		
3.	.2.3.	Bestimmung des Carbonatgehaltes15		
3.	.2.4.	Röntgenfluoreszenzanalyse (RFA)16		
3.	.2.5.	Magnetische Suszeptibilität17		
3.	.2.6.	Elektrische Leitfähigkeit17		
3.3. Palynologie17				
3.4. Datierungsmethoden17				
3.4.1.		Optisch-stimulierte-Lumineszenz (OSL) Datierung18		
3.4.2.		Radiocarbon, ¹⁴ C AMS Datierung18		
4.	Physi	ogeographische Grundlagen des Untersuchungsgebietes19		
4.1.	Geo	ographische Lage19		
4.2.	Geo	ologie		
4.3.	Geomorphologie23			
4.4.	. Hydrographie25			
4.5.	Klima			
4.6.	Böc	len und Vegetation		

5.	Ergeb	nisse	30
5.1	. Bay	an To	phomiin Nuur
5	5.1.1.	Lag	e und Einzugsgebiet des Bayan Tohomiin Nuur30
5	5.1.2.	Sed	imentologische Ergebnisse
	5.1.2.2	1.	Allgemeine Beschreibung des Bohrkerns33
	5.1.2.2	2.	KEO I Kernabschnitt I (700-585cm)37
	5.1.2.3	3.	KEO I Kernabschnitt II (584-538cm)41
	5.1.2.4	4.	KEO I Kernabschnitt III (537-430cm)44
	5.1.2.5	5.	KEO I Kernabschnitt IV (429-383cm)48
	5.1.2.6	6.	KEO I Kernabschnitt V (382-260cm)51
	5.1.2.7	7.	KEO I Kernabschnitt VI (259-240cm)55
	5.1.2.8	8.	KEO I Kernabschnitt VII (239-212cm)57
	5.1.2.9	9.	KEO I Kernabschnitt VIII (211-201cm)59
	5.1.2.2	10.	KEO I Kernabschnitt IX (200-0cm)61
5	5.1.3.	Paly	nologische Kennwerte62
5	5.1.4.	Chr	onostratigraphie64
5	5.1.5.	Inte	erpretation der Detailergebnisse67
5.2	. Oro	g Nu	ur83
5	5.2.1.	Lag	e und Einzugsgebiet des Orog Nuur83
5	5.2.2.	Sed	imentologische Ergebnisse (ONW I)85
	5.2.2.2	1.	Allgemeine Beschreibung des Bohrkerns85
	5.2.2.2	2.	ONW I Kernabschnitt I (600-561cm)89
	5.2.2.3	3.	ONW I Kernabschnitt II (560-511cm)92
	5.2.2.4	4.	ONW I Kernabschnitt III (510-353cm)95
	5.2.2.5	5.	ONW I Kernabschnitt IV (352-238cm)99
	5.2.2.6	6.	ONW I Kernabschnitt V (237-165cm)102
	5.2.2.7	7.	ONW I Kernabschnitt VI (164-99cm)105

	5.2.2.8	3.	ONW I Kernabschnitt VII (98-51cm)	
	5.2.2.9	€.	ONW I Kernabschnitt VIII (50-0cm)	
5	5.2.3.	Chro	onostratigraphie (ONW I)	
5	5.2.4.	Inte	rpretation der Detailergebnisse (ONW I)	
5	5.2.5.	Sedi	mentologische Ergebnisse (ONW II)	
	5.2.5.1	L.	Allgemeine Beschreibung des Bohrkerns	
	5.2.5.2	2.	ONW II Kernabschnitt I (1335-1268cm)	
	5.2.5.3	3.	ONW II Kernabschnitt II (1267-1167cm)	
	5.2.5.4	1.	ONW II Kernabschnitt III (1166-850cm)	
	5.2.5.5	5.	ONW II Kernabschnitt IV (849-391cm)	
	5.2.5.6	5.	ONW II Kernabschnitt V (390-215cm)	
	5.2.5.7	7.	ONW II Kernabschnitt VI (214-105cm)	
	5.2.5.8	3.	ONW II Kernabschnitt VII (104-28cm)	
5	5.2.6.	Chro	onostratigraphie (ONW II)	
5	5.2.7.	Inte	rpretation der Detailergebnisse (ONW II)	
6.	Diskus	ssion		
6.1	. Palä	ioklim	natische Befunde aus dem Untersuchungsgebiet	
6.2	. Einc	ordnu	ng in den überregionalen Kontext	
7.	Fazit u	und A	usblick	
8.	Litera	turve	rzeichnis	
Anhar	וg			

Abbildungsverzeichnis

Abb.	1: Paläoklimatische Archive der Mongolei4
Abb.	2: Methodische Vorgehensweise zur Auswertung der paläoklimatischen Archive der Südmongolei
Abb.	3: Geländearbeiten im Süden der Mongolei13
Abb. 4	4: Landschaftseinheiten der Mongolei und Lage des Untersuchungsgebietes20
Abb. !	5: Transekt des Untersuchungsgebietes20
Abb.	6: Tektonische Krustenbewegungen in Zentralasien21
Abb.	7: Morphologische Regionen im Untersuchungsgebiet24
Abb. 3	8: Klimadiadiagramme ausgewählter Klimastationen aus dem Untersuchungsgebiet28
Abb. 9	9: Einzugsgebiet des Bayan Tohomiin Nuur mit der Position der Bohrung KEO I
Abb.	10: Fotos aus dem Einzugsgebiet des Bayan Tohomiin Nuur31
Abb.	11: KEO I Bohrkern unterteilt nach Kernabschnitten34
Abb.	12: Sedimentologische Proxidaten des KEO I Kerns unterteilt nach Sedimentationseinheiten35
Abb.	13: KEO I Kernabschnitt I (700-585cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen
Abb.	14: KEO I Kernabschnitt II (584-538cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen41
Abb.	15: KEO I Kernabschnitt III (537-430cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen
Abb.	16: KEO I Kernabschnitt IV (429-383cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen
Abb.	17: KEO I Kernabschnitt V (382-260cm) mit Sedimentstrukturen und exemplarischenKorngrößenverteilungen
Abb.	18: KEO I Kernabschnitt VI (259-240cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen
Abb.	19: KEO I Kernabschnitt VII (239-212cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen
Abb.	20: KEO I Kernabschnitt VIII (211-201cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Abb. 21: KEO I Kernabsch	nitt IX (200-0cm), exemp	larische Korngrößenvo	erteilungen	61
Abb. 22: Pollen und Ostra	coden des KEO I Bohrke	rns mit Einteilung in Se	edimentabschnitte I – '	VIII 63
Abb. 23: Alters-Tiefen Mo I-IX	odell des KEO I Bohrkern	s mit Abgrenzung der	Sedimentationseinhei	ten 66
Abb. 24: Zusammenhäng	e ausgewählter sedimen	tologischer Parameter	des KEO I Bohrkerns	69
Abb. 25: Einzugsgebiet Seebecken	des Orog Nuur mit de	er Position der Bohr	ungen ONW I, ONW	ll; 83
Abb. 26: Fotos aus dem E	inzugsgebiet des Orog N	uur		84
Abb. 27: ONW I Bohrkern	unterteilt nach Kernabs	chnitten		86
Abb. 28: Sedimento Sedimentationse	logische Proxidaten nheiten	des ONW I K	erns unterteilt n	ach 87
Abb. 29: ONW I Kernal Korngrößenverte	oschnitt I (600-561cm) ilungen	mit Sedimentstruktu	ren und exemplarisch	nen 89
Abb. 30: ONW I Kernal Korngrößenverte	oschnitt II (560-511cm) ilungen	mit Sedimentstruktu	ren und exemplarisch	nen 92
Abb. 31: ONW I Kernat Korngrößenverte	schnitt III (510-353cm) ilungen	mit Sedimentstruktu	ren und exemplarisch	nen 95
Abb. 32: ONW I Kernab Korngrößenverte	schnitt IV (352-238cm) ilungen	mit Sedimentstruktu	ren und exemplarisch	nen 99
Abb. 33: ONW I Kernal Korngrößenverte	oschnitt V (237-165cm) ilungen	mit Sedimentstruktu	ren und exemplarisch	nen 102
Abb. 34: ONW I Kernal Korngrößenverte	oschnitt VI (164-99cm) ilungen	mit Sedimentstruktu	ren und exemplarisch	nen 105
Abb. 35: ONW I Kerna Korngrößenverte	oschnitt VII (98-51cm) ilungen	mit Sedimentstruktu	ren und exemplarisch	nen 108
Abb. 36: ONW I Kerna Korngrößenverte	bschnitt VIII (50-0cm) ilungen	mit Sedimentstruktu	ren und exemplarisch	nen 111
Abb. 37: Alters-Tiefe Sedimentationse	n Modell des ON nheiten I-VIII	W I Bohrkerns	mit Abgrenzung	der 115
Abb. 38: Zusammenhäng	e ausgewählter sedimen	tologischer Parameter	des ONW I Bohrkerns	118
Abb. 39: ONW II Bohrkeri	n unterteilt nach Kernab	schnitten		130
Abb. 40: Sedimento Sedimentationse	logische Proxidaten nheiten	des ONW II K	erns unterteilt n	ach 131

Abb. 41: ONW II Kernabschnitt I (1335-1268cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen
Abb. 42: ONW II Kernabschnitt II (1267-1167cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen137
Abb. 43: ONW II Kernabschnitt III (1166-850cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen140
Abb. 44: ONW II Kernabschnitt IV (849-391cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen144
Abb. 45: ONW II Kernabschnitt V (390-215cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen
Abb. 46: ONW II Kernabschnitt VI (214-105cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen152
Abb. 47: ONW II Kernabschnitt VII (104-28cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen155
Abb. 48: Alter-Tiefen Modell des ONW II Bohrkerns mit Abgrenzung der Sedimentationseinheiten I-VII159
Abb. 49: Zusammenhänge ausgewählter sedimentologischer Parameter des ONW II Bohrkerns 162
Abb. 50: Rekonstruktion der paläoklimatischen Bedingungen innerhalb des Untersuchungsgebietes anhand der drei Bohrkerne174
Abb. 51: Übersicht über OSL Datierungen innerhalb des Untersuchungsgebietes nach Sedimentarchiven

Tabellenverzeichnis

Tab. 1: Sedimentologische Daten der KEO I Bohrung in Mittelwerten und Standardab nach Kernabschnitten	weichung 36
Tab. 2: Übersicht der KEO I ¹⁴ C Datierungen	65
Tab. 3: Sedimentologische Daten der ONW I Bohrung in Mittelwerten und Standardab nach Kernabschnitten	weichung 88
Tab. 4: Übersicht der ONW I ¹⁴ C Datierungen	113
Tab. 5: Sedimentologische Daten der ONW II Bohrung in Mittelwerten und Standardab nach Kernabschnitten	weichung 132
Tab. 6: Übersicht der ONW II ¹⁴ C Datierungen	158
Tab. 7: OSL Datierungen der morphologischen Befunde aus dem Untersuchungsgebiet.	179

Abkürzungsverzeichnis

AMS	engl.: Accelerator Mass Spectrometry =Beschleuniger- Massenspektrometrie
CNS-Analyse	Kohlenstoff, Stickstoff, Schwefel Analyse
DFG	Deutsche Forschungsgemeinschaft
ELA	engl.: Equilibrium Line Altitude = Schneegrenze
GSD	engl.: Grain Size Distribution = Korngrößenverteilung
ka	1000 Jahre
cal. BP	kalibriertes Alter vor heute
MIS	Marines Isotopen Stadium
OSL	optisch stimulierte Lumineszenz
ppm	engl.: parts per million
RFA	Röntgenfluoreszenzanalyse
SRTM	engl.: Shuttle Radar Topography Mission
ТОС	engl.: Total Organic Carbon = Gesamter organischer Koh- lenstoff
ü.M.	über Meeresspiegel

1. Einleitung und Problemstellung

Die Paläoklimaforschung stellt einen Bereich der Geowissenschaften dar, der während der vergangenen Jahrzehnte eine zunehmende Bedeutung erfahren hat und im engen Zusammenhang mit der Diskussion über einen Klimawandel steht. Um Aussagen über zukünftige klimatische Bedingungen treffen zu können ist es erforderlich, die klimatische Entwicklung der Vergangenheit nachvollziehen zu können. Dies beinhaltet insbesondere, die unterschiedlichen sedimentologischen und morphologischen Prozesse sowie die ökologische Situation abzuleiten, so dass deren Auswirkungen auf die Landschaft rekonstruiert und somit wiederum Rückschlüsse auf das vorherrschende Klima gezogen werden können. Auf der Grundlage dieses Wissens werden wichtige Informationen für Prognosen gewonnen, wodurch das Ausmaß eines Klimawandels anhand vergleichbarer vergangener Phasen abgeleitet werden kann.

Für einige Regionen der Erde wurden bereits eine Vielzahl an Paläoklima- Daten erhoben (z.B. Mitteleuropa, Nordamerika), wohingegen andere Bereiche nur wenig untersucht wurden. Die Paläoklimaforschung für Zentralasien konzentrierte sich überwiegend auf Regionen mit gut erhaltenen Klimaarchiven (z.B. Lössablagerungen in China und Russland, Seen in der Nordmongolei), so dass für weite Bereiche keine bzw. lediglich lückenhafte Daten verfügbar sind. Die ariden Regionen im Süden der Mongolei stellen ein Gebiet dar, für das nur eine sehr geringe Anzahl an paläoklimatischen Befunden existieren (Kap. 2), so dass eine Datenlücke zwischen Untersuchungen aus dem Norden der Mongolei und den Archiven aus Nordchina besteht.

Die Erstellung dieser Arbeit erfolgte im Zusammenhang mit dem von der DFG geförderten Forschungsprojekt "Spätpleistozäne, holozäne und aktuelle Geomorphodynamik in abflusslosen Becken der Gobi (Südmongolei)". Das Ziel dieses Kooperationsprojektes der geographischen Institute der Universitäten Aachen, Köln, Mainz und dem geographischen Institut der mongolischen Akademie der Wissenschaften stellte die erstmalige Rekonstruktion der jungquartären Landschaftsgeschichte der Südmongolei dar. Im Hinblick auf dieses Ziel sowie die vorher genannten Probleme stellen sich für diese Arbeit folgende Fragestellungen:

- Ist es möglich für den ariden Raum der Südmongolei eine kontinuierliche klimatische Entwicklung vom Pleistozän bis ins Holozän zu rekonstruieren?
- Wie weit reicht die zeitliche Auflösung der Paläoklimasignale zurück?
- Lässt sich die in der Paläoklimaforschung bestehende Datenlücke für die Südmongolei schließen? Stimmen die Klimasignale mit anderen Forschungsergebnissen aus den angrenzenden Regionen überein?

Den Schwerpunkt der Arbeit stellt die sedimentologische Auswertung von Bohrkernen aus trockengefallenen Seebecken der Südmongolei dar. Die Analyse unterschiedlicher Parameter dient dabei der Rekonstruktion von Sedimentationsprozessen, Seespiegelschwankungen und Umweltbedingungen im Verlauf des Spätpleistozäns und des Holozäns. In Ergänzung dazu werden morphologische Befunde aus dem Untersuchungsgebiet hinzugezogen. Die Kombination von hochauflösenden, kontinuierlichen Archiven mit morphologischen Einzelbefunden dient somit der Rekonstruktion der jungquartären Landschafts- und Klimageschichte der Südmongolei.

2. Stand der Forschung

Die geowissenschaftliche Erforschung der Mongolei spielt seit Mitte des 20. Jahrhunderts eine wichtige Rolle (Murzaev 1954, Thiel 1958). Bis zum Zerfall der Sowjetunion dominierte die Forschung im russisch-sprachigen Raum, so dass kaum international veröffentlicht wurde. Die Schwerpunkte der russischen Mongoleiforschung stellten insbesondere die Bereiche Bodenkunde, Geomorphologie, Geologie und Vegetationskunde dar, da diese eng mit der wirtschaftlichen Inwertsetzung des Landes verknüpft waren. Einzelne Zusammenfassungen der langjährigen Untersuchungen wurden zum Ende des 20. Jahrhunderts veröffentlicht (Klimek und Starkel 1980, Haase 1983, Kowalkowski und Mycielska-Dowgiaelo 1985, Kowalkowski 1989, Gunin et al. 1999).

In der Paläoklimaforschung erfolgte ein Großteil der Arbeiten im Norden der Mongolei. Eine hohe Dichte dieser Paläoklimadaten wurde aus verschiedenen Seen und den zugehörigen Einzugsgebieten erhoben. Hierbei wurden Pollen-, Diatomeen- und sedimentologische Untersuchungen an Bohrkernen sowie sedimentologische Analysen an fluvialen und äolischen Sedimenten ausgewertet. Sedimentologisch-bodenkundliche Untersuchungen an Löss-Paläoböden Sequenzen im Norden der Mongolei geben weitere Informationen, die zur Rekonstruktion des Paläoklimas beitragen. Einen weiteren Bereich stellen u.a. morphologische Untersuchungen an Gletschern dar, für welche die unterschiedlichen Ausdehnungen während des Pleistozäns und Holozäns rekonstruiert wurden. Im Folgenden werden die unterschiedlichen paläoklimatischen Erkenntnisse aus den Archiven der Nordmongolei vorgestellt.

Abb. 1: Paläoklimatische Archive der Mongolei (A:Changai Gebirge; B: Turgen Gebirge; C: Darhad Becken; D: Uvs Nuur Becken; E: Buregkhanga Lössprofil; F: Shamaar Lössprofil; G: Orog Nuur; H: Adagiin Tsagaan Nuur; I: Khongoryn Els; J: Gobi Altai; 1: Hovsgol; 2: Telmen Nuur; 3: Uvs Nuur; 4: Ugii Nuur; 5: Gun Nuur; 6: Hoton Nuur)

Im Changai und dem Turgen Gebirge (Abb. 1-A, B) weisen unterschiedliche Moränenstände auf Vergletscherungen während des Pleistozäns hin (Lehmkuhl 1998). Eine Rekonstruktion der Pleistozänen ELA (Equilibrium Line Altitude) im Vergleich zur Holozänen ELA wurde von Lehmkuhl et al. (2003) untersucht. Durch kosmogene Radionuklid-Datierungen an Moränen im Darhad Becken (Abb. 1-C) konnten drei Stadien der maximalen Vereisung für das Pleistozän (53-35ka, 19-17ka, 11ka) rekonstruiert werden (Gillespie et al. 2008).

Untersuchungen an Bohrkerndaten aus dem See Hovsgol (Abb. 1-Nr. 1) zeigen starke Schwankungen der Proxidaten (Diatomeen, Elementkonzentrationen, Carbonat, TOC) während des Überganges vom Pleistozän zum Holozän, die als klimatische Veränderungen gedeutet werden (Fedotov et al. 2000, Fedotov et al. 2004). Für das Holozän konnten eine feuchte (11 bis 9ka) und eine kurze trockene Periode (ca. 5,5ka) rekonstruiert werden. Pollenanalysen von Prokopenko et al. (2007) zeigen einen Anstieg der Feuchtigkeit von 14ka bis zum Beginn des Holozäns (11ka), woraufhin ein Temperaturanstieg bis 10,5ka erfolgte. Das Holozäne Klimaoptimum im Einzugsgebiet des Hovsgol Sees wurde im Zeitraum von 9-7,5ka

4

durch kühle Sommer und hohe Niederschläge geprägt. Für das Jungholozän konnte ein Aridisierungs-Trend nachgewiesen werden.

Pollenanalysen und sedimentologische Daten von Bohrkernen aus dem See Telmen Nuur (Abb. 1-Nr. 2) deuten auf Klimaschwankungen während des Holozäns (Peck et al. 2002, Fowell et al. 2003). Niedrige Seespiegel und eine erhöhte Anzahl von *Artemisia* Pollen weisen auf ein arides Klima zwischen 7,5-4,5ka hin, wohingegen eine humide Phase (Feuchtigkeitsoptimum) zwischen 4,5-1,6ka rekonstruiert wurde.

Untersuchungen im Uvs Nuur Becken im Nordwesten der Mongolei (Abb. 1-D, Nr. 3) führten zu einer Vielzahl unterschiedlicher paläoklimatischer Daten, die aus limnischen, fluvialen und äolischen Sedimenten gewonnen wurden. Die morphologische Erfassung von Strandwällen, Seesedimenten und Dünen deutet auf Seehochstände und eine reduzierte äolische Dynamik, die in die Feuchtphase im MIS 3 einzuordnen und somit wahrscheinlich älter als 30ka sind (Walther 1999, Grunert et al. 2000). Für den Zeitraum der maximalen Eisausdehnung bis zum Spätglazial (24-13ka) wird aufgrund von verstärkter Dünenaktivität, niedriger Seespiegelstände sowie geringer Vegetationsbedeckung auf ein arides und kaltes Klima geschlossen (Grunert et al. 1999, Walther 1999, Grunert et al. 2000, Grunert und Dasch 2000) Für das Holozän wurden wechselnde klimatische Bedingungen im Uvs Nuur Einzugsgebiet rekonstruiert. Niedrige Seespiegel des Uvs Nuur und des Bayan Nuur sowie eine erhöhte Dünenaktivität weisen auf ein trockeneres Klima im Frühholozän hin (Naumann 1999, Walther 1999, Krengel 2000). Untersuchungen an Strandwällen zeigen auf einen Anstieg der Seespiegel während des Mittelholozäns, wodurch auf ein feuchteres Klima geschlossen werden konnte. Verstärkte äolische Prozesse während des Jungholozäns sind übereinstimmend mit sinkenden Seespiegeln des Uvs Nuur und Bayan Nuur, so dass eine aride Phase vermutet werden kann (Naumann 1999, Walther 1999, Krengel 2000).

Am Ugii Nuur (Abb. 1-Nr. 4) weisen morphologische und sedimentologische Untersuchungen auf kurzzeitige Klimaschwankungen während des Holozäns. Schwanghart et al. (2008) und Schwanghart et al. (2009) rekonstruierten ein mildes, trockenes Klima für das Frühholozän (10,6-7,9ka). Für das Mittelholozän (7,6-4,2ka) weisen hohe Seespiegel auf eine höhere Feuchtigkeit hin. Während des Jungholozäns konnten eine aride Phase (4,2-2,8ka) sowie eine stabile feuchtere Phase (2,8-0ka) bestimmt werden. Palynologische Analysen von Wang et al. (2009) lieferten eine abweichende Umweltrekonstruktion. Für das Frühholozän (8,67,8ka) wird ein mildes, semihumides Klima angenommen, woraufhin im Mittelholozän (6,8-3,1ka) ein warmes, trockenes Klima vorherrschend war. Für das Jungholozän (3,1-1,6ka) wurde ein feuchtes, kühles Klima rekonstruiert.

Sedimentologische Bohrkerndaten aus dem Gun Nuur See (Abb. 1-Nr. 5) zeigen abrupte Wechsel zwischen kalt/feuchten und warm/trockenen Umweltbedingungen, die auf 9,2ka, 7,2ka, 5,2ka, 4ka, 2,8ka und 1,8ka datiert wurden (Wang et al. 2004).

Pollenanalysen aus dem Hoton Nuur (Abb. 1-Nr. 6) weisen auf trockene Klimabedingungen mit Steppenvegetation für das Frühholozän (<9ka) hin (Tarasov et al. 2000). Eine anschließende feuchtere Phase mit Kiefernwaldvegetation konnte für das Mittelholozän rekonstruiert werden (9-4ka). Eine Paläoklimarekonstruktion von Rudaya et al. (2009) lässt dagegen feuchte Bedingungen von 11-8ka und trockene Bedingungen bis >5ka vermuten.

Die Untersuchung von Löss-Paläoboden Sequenzen (Abb. 1-E, F) im Norden der Mongolei (Buregkhanga, Shamaar) zeigte die Bildung von Paläoböden zwischen35-24ka (MIS 3), so dass auf ein feuchteres Klima geschlossen wurde (Feng et al. 1998, Feng 2001). Für den Zeitraum zwischen 21-16ka und 13-8,6ka wurde ein arides, kaltes Klima mit Löss-Akkumulation rekonstruiert, unterbrochen von einer kurzen Phase mit Bodenbildung (15-13ka). Für das Mittelholozän wurde eine Phase mit warm/trockenen Bedingungen (Wärmeoptimum, 8,6-4,5ka) sowie eine darauffolgende Phase mit warmen/feuchten Bedingungen (Feuchteoptimum, 4,5-2,5ka) rekonstruiert.

Im Süden der Mongolei weisen die Paläoklimadaten im Vergleich zum Norden eine wesentlich geringere Dichte auf (Abb. 1). Des Weiteren basieren die meisten Rekonstruktionen ausschließlich auf einzelnen morphologischen Befunden, so dass keine hochauflösende Stratigraphie entwickelt wurde. Im Folgenden werden die einzelnen paläoklimatischen Befunde der Südmongolei erläutert.

In der Gobi deuten morphologische Untersuchungen an Strandwällen von zum Teil trockengefallenen Seen auf erhebliche Schwankungen im Spätquartär hin. Am Orog Nuur und dem benachbarten Adagiin Tsagaan Nuur (Abb. 1-G, H) konnten verschiedene Strandwallniveaus zwischen 5m und 30m über dem rezenten Seespiegel auskartiert werden, für die ein Spätpleistozänes bzw. Holozänes Alter angenommen wird (Walther 1998, Komatsu et al. 2001, Lehmkuhl und Lang 2001, Walther et al. 2003). Lakustrine Sedimente nördlich des Orog Nuur, die auf 70-80ka datiert wurden, deuten auf ein ca. 60m höheren Seespiegel hin (Lehmkuhl und Lang 2001).

Verschiedene Arbeiten an Dünenfeldern zeigen eine wechselnde Dynamik der äolischen Aktivität, so dass unterschiedliche Dünengenerationen untergliedert wurden (Basaan 2004, Grunert et al. 2009). Untersuchungen von Hülle et al. (2010) zeigen eine Interaktion von Dünensand und Stillwasserablagerungen am Khongoryn Els (Abb. 1-I). Demnach können zwei äolische Akkumulationsphasen um 27ka sowie 15ka ausgewiesen werden. Untersuchungen von Grunert und Dasch (2004) und Grunert und Lehmkuhl (2004) weisen auf eine Hauptphase der äolischen Aktivität im Spätglazial.

Südlich des Gobi Altai (Abb. 1-J) zeigen Datierungen von Eiskeilfüllungen und kryogenen Strukturen in Schwemmfächern eine Südverlagerung der Permafrostgrenze zwischen 22ka und 13ka (Owen et al. 1998). Die Entwicklung der Schwemmfächer in der Gobi erfolgte nach Lehmkuhl (2000) während des Pleistozäns, woraufhin ein Einschneiden während des Holozäns erfolgte.

Eine großräumige Zusammenstellung und Interpretation der einzelnen paläoklimatischen Daten der Mongolei erfolgte u.a. von Tarasov et al. (2000), Yang et al. (2004), An et al. (2008) und Chen et al. (2008). Für das Holozän konnten generell höhere Temperaturen sowie ein Anstieg der Feuchtigkeit verzeichnet werden. Des Weiteren zeigen die verschiedenen Daten eine unterschiedliche Ausprägung der Temperatur- und Feuchte Optima, die auf regionale Unterschiede sowie auf eine unterschiedliche Auflösung der Archive zurückgeführt werden können.

Die Bereiche der Neotektonik bzw. Geologie stellen weitere geowissenschaftliche Forschungsgebiete in der Mongolei dar. Hierbei stehen insbesondere die Verwerfungslinien des Gobi Altai und Mongolischen Altai im Mittelpunkt (Baljinnyam et al. 1994, Cunningham et al. 1997, Owen et al. 1997, Kurushin et al. 1998, Bayasgalaan et al. 1999, Owen et al. 1999, Howard et al. 2003, Cunningham 2005, Vassallo et al. 2005, Vassallo et al. 2007, Nissen et al. 2009).

Die Verbreitung der Waldsteppen und Gebirgswaldsteppen in der Nordmongolei wurde von Opp und Barsch (1993), Treter (1996) und Sommer und Treter (1999) untersucht. Eine Kar-

tierung und Einteilung der Vegetationsgesellschaften in der Mongolei erfolgte von Opp und Hilbig (2003).

Die rezente Geodynamik äolischer Sedimente sowie die Auswirkungen von Desertifikation und Bodenerosion stellen ein weiteres Forschungsfeld in der Mongolei dar. Untersuchungen zeigen, dass die Trockenregionen der Mongolei eine der Haupt-Staubquellen Zentralasiens darstellen. Die Identifizierung einzelner geochemischer "Tracer" sowie die Modellierung der Flugbahnen wurde von Sun et al. (2007), Maher et al. (2009) und Hempelmann (2010) untersucht.

3. Methodik

Die Rekonstruktion der jungquartären Landschafts- und Klimageschichte in der südlichen Mongolei stützt sich auf die Kombination verschiedener sedimentologischer sowie geochemischer Parameter, die aus ausgewählten Archiven der Region gewonnen wurden (Abb. 2). Den Schwerpunkt der Daten liefern Bohrkerne aus den zwei limnischen Archiven des Bayan Tohomiin Nuur und des Orog Nuur. In Ergänzung dazu erfolgte die Untersuchung und Datierung von glazialen (Moränen), periglazialen (Schuttdecken), fluvialen (Schwemmfächer, Terrassen) und äolischen Sedimenten (Dünen, äolische Deckschichten) innerhalb der jeweiligen Einzugsgebiete bzw. in deren nahem Umfeld.

Zusätzlich zur sedimentologischen Analyse der Bohrkerne und Bodenprofile wurden palynologische Untersuchungen der limnischen Ablagerungen durchgeführt, die am Albrecht-von-Haller Institut für Pflanzenwissenschaften an der Universität Göttingen erfolgten (Waheed Murad, Dr. Frank Schlütz).

Aufgrund der Position der Bohrungen in abflusslosen Becken (=Erosionsbasis) kann bei lakustrinen Sedimenten von einer kontinuierlichen und hochauflösenden Sedimentation ausgegangen werden (Abb. 2), so dass nur geringe bzw. keine Diskordanzen zu erwarten sind. Des Weiteren lassen veränderte sedimentologische Eigenschaften auf wechselnde Umweltbedingungen (kalt-warm, trocken-feucht, starke-schwache äolische Aktivität) im Einzugsgebiet schließen.

Die Untersuchung der terrestrischen Archive dient der Verifizierung der Ergebnisse, die aus den lakustrinen Ablagerungen gewonnen wurden. Eine Besonderheit terrestrischer Archive in ariden Räumen besteht darin, dass viele Prozesse meist als Extremereignisse auftreten, so dass ein Großteil der Formen, die durch periodische Ablagerungen geschaffen wurden, durch nachfolgende Ereignisse wieder abgetragen bzw. umgelagert werden (z.B. Schwemmfächer, Dünen, etc.) (Abrahams und Parsons 1994). Diese starke Dynamik führt zur Bildung von Diskordanzen (z.B. Erosionsterrassen, Schwemmfächerniveaus, etc.). Daher spiegeln terrestrische Formen Aktivitätsphasen glazialer, fluvialer und äolischer Prozesse wider, die auf stark veränderte Klima- bzw. Umweltbedingungen (Gletschervorstöße, Aufschüttung von Terrassenkörpern, Umlagerung von periglazialem Hangschutt, Deposition von Dünensand) zu einzelnen Zeitabschnitten schließen lassen. Die Kombination von hochauflösenden, kontinuierlichen Daten mit Einzelbefunden über Aktivitätsphasen dient daher als Methode (Abb. 2), Aussagen über die Entwicklung von Klima und Landschaft im Verlauf des späten Pleistozäns und des Holozäns treffen zu können. Die Wahl zweier Einzugsgebiete mit unterschiedlicher Größe und Anbindung (Kap. 4) erlaubt des Weiteren einen Vergleich der Daten auf eine unterschiedliche Intensität der paläoklimatischen Signale.

Abb. 2: Methodische Vorgehensweise zur Auswertung der paläoklimatischen Archive der Südmongolei

3.1. Fernerkundung und Geländeuntersuchungen

Die Geländearbeiten wurden in zwei je sechswöchigen Kampagnen in den Jahren 2007 und 2008 durchgeführt, in denen ein Transekt vom Changai bis in die Gobi bearbeitet wurde. Die Auswahl der Untersuchungsgebiete erfolgte durch Fernerkundungsmethoden/GIS. Hierbei dienten Landsat 7 ETM+ (Enhanced Thematic Mapper) Satellitenbilder (GLCF 2008), SRTM Höhendaten (CGIAR-CSI 2008) sowie topographische Karten als Grundlage. Die Auswahl der Seebecken erfolgte anhand unterschiedlicher Kriterien wie Erreichbarkeit, Austrocknen des Seebodens (Möglichkeit zum Bohren) sowie der Größe des Einzugsgebietes. Für die Berechnung der Einzugsgebiete wurde ArcMap[™] Version 9.2 mit der ESRI Erweiterung "Spatial Analyst Plus" (Hydrologic Surface Analysis) genutzt.

Innerhalb der Einzugsgebiete wurden geomorphologische Formen bzw. Archive (Moränen, Terrassen, Schwemmfächerniveaus, Dünen) kartiert, dokumentiert und beprobt. Die Aufnahme der Referenz-Profile erfolgte an natürlichen Aufschlüssen bzw. an ausgehobenen Bodenprofilen. Zur Dokumentation wurden diese in sedimentologische und bodenkundliche Einheiten eingeteilt, beschrieben und skizziert (Abb. 3). In Abhängigkeit von Profilmächtigkeit und Anzahl der unterschiedlichen Horizonte wurden Sedimentproben in 5-20cm Intervallen entnommen. An ausgewählten Horizonten wurden Proben für "optisch stimulierte Lumineszenz–Datierungen" (OSL) in lichtundurchlässigen Stahlzylindern genommen. Zudem erfolgte eine Entnahme von Umgebungsmaterial im Umfeld von 20cm zur Bestimmung der Dosisleistung.

Methodik

Abb. 3: Geländearbeiten im Süden der Mongolei; A und B: Durchführung der Bohrungen; C: Entnahme von OSL Proben

In den Seebecken wurden an ausgewählten Positionen Bohrungen durchgeführt, um hochauflösende und lückenlose Sedimentarchive zu erhalten. Die Bohrungen erfolgten mit einer geschlossenen Rammkernsonde und Kunststoff-Inlinern (1m Länge und 5cm Durchmesser) (Abb. 3), die anschließend verschlossen und nach Deutschland transportiert wurden.

3.2. Laboranalytik

Zur Beprobung der Bohrkerne wurden die Plastik-Inliner zunächst am Geographischen Institut der RWTH Aachen mit einer Oszillationssäge geöffnet, woraufhin die Sedimente mit einem Schneidedraht in zwei Kernhälften geteilt wurden. Die Kernhälften wurden gesäubert (mit Spachtel und Klingen), geglättet und visuell beschrieben. Dabei wurden Untergliederungen verschiedener Einheiten, Farbe, Sedimentstrukturen, Körnung und die Konzentration von Pflanzenresten dokumentiert. Des Weiteren erfolgte eine Dokumentation der Kernhälften mit Übersichts- und Detailfotos. Die Kernhälften der Bohrkerne KEOI und ONWI (Kap. 5) wurden jeweils aufgeteilt und zur Bearbeitung im Geographischen Institut der RWTH Aachen belassen sowie an das Albrechtvon-Haller Institut für Pflanzenwissenschaften (Universität Göttingen) gesendet. Die Beprobung der Sedimentkerne erfolgte mit einem Spachtel, mit dem 2cm Abschnitte in Intervallen von 5-10cm entnommen wurden. Die variablen Intervalle dienten dazu, auch geringmächtige Lagen beproben zu können.

Eine Hälfte des ONWII Bohrkerns wurde in 1cm Scheiben zerschnitten und für Sediment- und Pollenanalyse gelagert. Die zweite Hälfte wurde in Plastikfolie eingeschweißt und archiviert. Für die sedimentologischen Analysen des ONWII Kerns wurden die 1cm Scheiben in 5-10cm Intervallen untersucht.

Die Laboranalytik wurde an der RWTH Aachen durchgeführt und umfasst die Korngrößenanalyse, die Bestimmung von CNS (Kohlenstoff, Stickstoff, Schwefel), Carbonat, Röntgenfluoreszenzanalyse (RFA), magnetische Suszeptibilität, elektrische Leitfähigkeit sowie die Berechnung der organischen Substanz (TOC). Die Messungen wurden an Mischproben durchgeführt, d.h. es erfolgte keine Trennung in unterschiedliche Korngrößenfraktionen.

3.2.1. Korngrößenanalyse

Die Probenvorbereitung für die Laserbeugung erfolgte nach der Standard-Vorgehensweise von Konert und Vandenberghe (1997). Hierbei wurden die Proben bei 36°C im Trockenschrank getrocknet und anschließend gemörsert. Da die Probeneinwaage die Messkonzentration der Lösung beeinflusst, welche mit der Korngröße variiert, mussten die Sedimente mit unterschiedlichen Einwaagen gemessen werden. Für toniges Material wurden Einwaagen von ca. 0,1g verwendet, wohingegen für sandiges Material ca. 1g benutzt wurde. Die Zerstörung der organischen Substanz erfolgte mit Wasserstoffperoxid (30% H₂O₂). Hierbei wurden 0,75mg Wasserstoffperoxid mit der Einwaage in ein Reagenzglas gegeben und bei 70°C für 24h im Trockenschrank erhitzt. Es erfolgte eine Zugabe von je $0,5mg H_2O_2$ bis die gesamte organische Substanz zerstört wurde. Anschließend wurden die Reagenzgläser mit dest. Wasser auf ca. 5ml Flüssigkeit aufgefüllt, woraufhin 1,25ml Natriumpyrophosphat (0,1mol) als Dispergierlösung hinzugegeben wurden. Anschließend wurden die Proben für 24h auf dem Überkopfschüttler dispergiert. Die Korngrößenanalyse anhand von statischer Lichtstreuung (Laserbeugung) LS13320 der Beckman Coulter wurde mit dem Firma

(http://www.beckmancoulter.de) durchgeführt. Hierbei wird die durchschnittliche Partikelgröße in einem Größenspektrum von 0,04-2000µm ermittelt, wobei der Meßfehler bei ca. 2% liegt. Für alle Messungen wurde das optische Model ,Fraunhofer.rf780d' (incl. PIDS) verwendet. Die Proben wurden jeweils neunfach gemessen und gemittelt um Fehlmessungen ausschließen zu können. Aus den gemessenen Daten wurden mit Hilfe der Beckman Coulter LS Software folgende Parameter berechnet:

Korngrößenverteilung (=Grain Size Distribution GSD) Mittlere Korngröße Volumenprozent Ton Volumenprozent Silt Volumenprozent Sand

3.2.2. CNS- Analyse

Für die Bestimmung von Kohlenstoff, Stickstoff und Schwefel wurden die Proben bei 36°C im Trockenschrank getrocknet und anschließend gemörsert. Daraufhin wurde das Material mit einer Probenmühle zermahlen und in Zinkkapseln eingewogen. Die Messung wurde mit einem CHNS Analyzer EA3000 der Firma Eurovector (http://www.eurovector.it) durchgeführt. Die Bestimmung der Elementanteile erfolgt nach Verbrennung spektroskopisch durch die Messung der Gasemissionen und den Vergleich mit Standards.

3.2.3. Bestimmung des Carbonatgehaltes

Die Messung des Carbonatgehaltes erfolgte durch die gasvolumetrische Bestimmung nach Scheibler (DIN 19684). Die gasvolumetrische Analyse bestimmt die Summe aller Carbonate (z.B. Calcit (CaCO₃), Siderit (FeCO₃), Dolomit (CaMg(CO₃)²), von denen jedoch CaCO₃ den überwiegenden Anteil ausmacht. Daher wird im Folgenden der Carbonatgehalt mit dem CaCO₃ –Gehalt gleichgesetzt. Zur Probenvorbereitung gehörten das Trocknen bei 36°C sowie das Mörsern der Sedimente. Aufgrund des schwankenden Carbonatgehaltes wurden ca. 1-5g Material als Einwaage genutzt. Die Berechnung des Carbonatgehaltes erfolgte nach folgender Gleichung:

 $CaCO_{3}(\%) = (V * p * 0,1602 / (273 + t) * E) * K$ $V = Volumen CO_{2} in cm^{3}$ p = Luftdruck in mm Hg t = Raumtemperatur in °C E = Einwaage in g $K = Korrekturfaktor (Eichung CaCO_{3}) ~ 2$

3.2.4. Röntgenfluoreszenzanalyse (RFA)

Die Elementanalytik an den Bohrkernen KEOI und ONWI erfolgte mit einem Handgerät (Analyticon XLT 700, Modus: Soil) der Firma Analyticon (http://www.analyticoninstruments.de). Die Messung wurde an den geöffneten nicht getrockneten Kernen durchgeführt, so dass keine Trennung der Korngrößenfraktionen erfolgte. Daher müssen eventuelle Korngrößeneffekte in der Interpretation der Ergebnisse beachtet werden. Die Messungen erfolgten als Einzelmessungen in 2cm Auflösung, so dass evtl. Fehlmessungen (einzelne Peaks) durch die Probendichte relativiert werden können. Nach Berechnung der Standardabweichung konnten folgende Elementgehalte für die Analyse verwendet werden:

K, Ca, Ti, Mn, Fe, Rb, Sr

Die Multielement-Analyse des ONWII Bohrkerns erfolgte am Alfred-Wegener-Institut für Polar- und Meeresforschung (AWI) in Bremerhaven (PD. B. Diekmann) mit einem stationären AVAATECH XRF Core-Scanner (http://www.avaatech.com). Die Analysen wurden an den geöffneten und feuchten Kernhälften durchgeführt, so dass eine Vergleichbarkeit mit den Daten der KEOI und ONWI Kerne gewährleistet ist. Die Messung der Elemente erfolgte in 1cm Intervallen und mit jeweils einer Leistung von 30kV und 10kV. Zusätzlich zur Elementanalytik wurden durch eine CCD line-scan-camera (http://www.avaatech.com) RGB Daten in 1mm Auflösung sowie Farbbilder der Bohrkerne ermittelt.

3.2.5. Magnetische Suszeptibilität

Die magnetische Suszeptibilität wurde am Institut für Angewandte Geophysik der RWTH Aachen gemessen. Zur Messung wurde ein Multi-Sensor-Core-Logger der Firma Geotek (http://www.geotek.co.uk) mit einem Barrington MS2 Messgerät mit MS2 E Sensor (http://www.bartington.com) genutzt. Die magnetische Suszeptibilität wurde an den Bohrkernhälften des KEOI und ONWI Kerns in jeweils 1cm Auflösung gemessen.

3.2.6. Elektrische Leitfähigkeit

Die Messung der elektrischen Leitfähigkeit erfolgte an den Proben der Bohrkerne KEOI und ONWI in einem Intervall von 5-10cm. Die Sedimente wurden bei 36°C im Trockenschrank getrocknet, gemörsert und eingewogen (1g). Daraufhin wurden die Proben in 50ml dest. Wasser gelöst und nach einer Wartezeit von 30min gemessen. Zur Kalibrierung der Messungen diente0,01g KCL, gelöst in 50ml dest. Wasser. Die Analyse erfolgte mit dem Messgerät LF 196 der Firma WTW (http://www.wtw.com).

3.3. Palynologie

Die Aufbereitung und Analyse der Pollendaten erfolgte am Albrecht-von-Haller Institut für Pflanzenwissenschaften der Universität Göttingen (Waheed Murad, Dr. Frank Schlütz). Daher wurden in der vorliegenden Arbeit nur exemplarische Daten (KEO I Bohrkern) zu Vergleichszwecken genutzt. Die Interpretation aller palynologischen Daten erfolgte durch Dr. Frank Schlütz und Waheed Murad.

3.4. Datierungsmethoden

Die Datierung der Sedimente erfolgte anhand zweier unterschiedlicher Methoden. Aus den Bodenprofilen im Umfeld der Einzugsgebiete wurden größtenteils optisch-stimulierte-Lumineszenz (OSL) Proben entnommen, wohingegen die Bohrkerne anhand der Radiocarbon-Methode datiert wurden. Insgesamt wurden 34 OSL Proben und 18¹⁴C AMS Proben entnommen.

3.4.1. Optisch-stimulierte-Lumineszenz (OSL) Datierung

Aufbereitung und Auswertung der OSL Proben erfolgte am Geographischen Institut der Universität Köln durch Dr. Alexandra Hilgers und Daniela Hülle. Die Vorbereitung der Proben sowie die zur Altersbestimmung genutzten Parameter und Messprotokolle sind u.a. in Hülle et al. (2010) beschrieben.

3.4.2. Radiocarbon, ¹⁴C AMS Datierung

Die Radiocarbondatierung erfolgte an ausgewählten Bohrkernabschnitten, für die ein erhöhter Anteil an Organik (hohe TOC Werte) gemessen wurde. Diese Auswahl erfolgte, um ausreichend organisches Material für verlässliche ¹⁴C Alter zu erhalten. Die Beprobung erfolgte nach der Säuberung des Bohrkerns. Hierbei wurden 1cm Scheiben aus dem Bohrkern geschnitten und ca. 1cm³ Probenmaterial aus der Mitte entnommen. Die Proben wurden als ,bulk sample' in drei Serien an das AMS Labor in Erlangen gesendet, wo die Aufbereitung und Messung der Proben erfolgte. Die erste Probenserie wurde im Juni 2008 bearbeitet und enthielt u.a. zwei Proben des KEO I Kerns (353cm, 674cm) sowie zwei Proben des ONW Kerns (386cm, 588cm). Zur Verdichtung der Daten erfolgte eine weitere Messung zweier Proben des KEO I Kerns (253cm, 526cm) im April 2009. Die dritte Probenserie, die 8 Proben des ONW II Kerns beinhaltete (91cm, 199cm, 271cm, 392cm, 571cm, 778cm, 1192cm, 1272cm) wurde im Mai 2010 in Auftrag gegeben. Eine weitere Probenserie von vier Proben aus dem KEO I Kern wurde aus 665-666cm, 536-537cm, 367-368cm sowie 247-248cm entnommen und an das ¹⁴C Radiocarbon Labor in Poznan (Polen) gesendet.

Die Kalibrierung und Umrechnung der Ergebnisse in Kalenderjahre erfolgte mit der Online Software CalPal (http://www.calpal.de/) und der Kalibrationskurve 173 CalPal2007-HULU (Weninger und Jöris 2008). Für alle ¹⁴C Alter in der vorliegenden Arbeit gilt daher, wenn nicht anders angegeben, die Einheit cal. BP.

4. Physiogeographische Grundlagen des Untersuchungsgebietes

4.1. Geographische Lage

Die Mongolei befindet sich im kontinentalen Bereich Zentralasiens, angrenzend an die Staaten China (Süden) und Russland (Norden). Die Landschaft wird durch weite Steppenebenen geprägt, die im Norden in Waldsteppen- und Taigaregionen, und im Süden in Wüstensteppen- und Wüstenbereiche übergehen. Ein Großteil der Ebenen und Hügelländer liegt in einer Höhe von 1000-1500m ü.M., so dass die Mongolei mit einer mittleren Höhe von 1500m ü.M. ein Hochland darstellt. Die Gebirgszüge des russischen Altai im Westen, des Gobi Altai im Süden und des Changai im zentralen Bereich erreichen zum Teil Höhen von bis zu 4000m ü.M..

Auf einer Fläche von 1,56 Mio km² lebt eine Bevölkerung von 3,1 Mio EW, so dass das Land mit einer Bevölkerungsdichte von ca. 2 EW/km² eine der am dünnsten besiedelten Regionen der Erde darstellt.

Das Untersuchungsgebiet mit einer Fläche von ca. 60.000 km² befindet sich in der südlichen Mongolei und erstreckt sich vom 42. bis zum 47. Breitengrad. Nach Westen wird das Gebiet vom 100., nach Osten vom 105. Längengrad eingegrenzt. Es umfasst u.a. zwei Seen (Orog Nuur und Bayan Tohomiin Nuur) mit ihren zugehörigen Einzugsgebieten, die ein Nord-Süd Transekt vom Changai Bergland bis in die Wüste Gobi bilden (Abb. 4, 5).

Den nördlichen Bereich des Untersuchungsgebietes stellt das Changai Gebirge (Höhe bis ca. 3500m ü.M.) und seine Südabdachung dar, welche in die Gebirgsvorlandzone übergeht. Nördlich an das Untersuchungsgebiet schließen sich die Nordabdachung des Changai Gebirges und die Bereiche des Høvsgol- und Baikal- Grabensystems an. Der Orog Nuur befindet sich im Tal der Gobiseen, einem tektonischen Grabenbereich, der sich an das Changai Vorland anschließt und im Süden durch die Gebirgskette des Gobi Altai (ca. 4000m ü.M.) begrenzt wird (Abb. 4, 5). Westlich angrenzend an das Untersuchungsgebiet liegen das Tal der großen Seen und die Gebirgskette des mongolischen Altai. Nach Osten schließt sich das Chentei Bergland (NO) und die hügeligen Steppenebenen der Ostmongolei (SO) an. Der Gobi Altai streicht in südöstlicher Richtung in mehreren flacheren W-O streichenden Gebirgszügen und Beckenbereichen aus, die den Übergang zur Wüste Gobi bilden. Eines der Becken bildet

das Einzugsgebiet des Bayan Tohomiin Nuur, und stellt die südliche Abgrenzung des Untersuchungsgebietes dar.

Abb. 4: Landschaftseinheiten der Mongolei und Lage des Untersuchungsgebietes (schraffierter Bereich), die blau umrandeten Gebiete stellen die Einzugsgebiete der beiden untersuchten Seen dar, A, A´ und B, B´ bezeichnen die Lage des Transektes (Abb. 5), Bayankhongor und Dalanzadgad bezeichnen die Lage der Klimastationen innerhalb des Untersuchungsgebietes

Abb. 5: Transekt des Untersuchungsgebietes (gemittelte Höhenangaben), die Lage der Profile ist in Abb. 4 durch A, A´, B und B´gekennzeichnet

4.2. Geologie

Geologisch besteht die Mongolei aus unterschiedlichen Terranen (Kratone, Passive Kontinentränder, Ophiolite, Akkretionskeile, Inselbögen), die eingekeilt zwischen dem Sibirischen-, dem Tarim- und dem Sino-Koreanischen Kraton einen Teil des zentralasiatischen Orogens bilden (Badarch et al. 2000, Cunningham 2005). Die unterschiedliche geologische Herkunft der Terrane bedingt eine Vielzahl unterschiedlicher anstehender Gesteine, die größtenteils zum Typ der Metasedimente, Metamorphite und magmatischen Gesteinen zählen (Geologische Karte der Mongolei 1998).

Die Kollision der indischen mit der asiatischen Kontinentalplatte im Paläogen führte zu einer Nordost gerichteten Kompression der einzelnen Terrane (Abb. 6), so dass ein komplexes System aus Überschiebungen, Blattverschiebungen und Abschiebungen entstand (Baljinnyam 1994). Als Folge dieser tektonischen Bewegungen bildeten sich u.a. "transpressive Gebirgsbereiche" (Mongolischer Altai, Gobi Altai) und Senkungsbereiche (Tal der Gobi Seen, Tal der Großen Seen, Ostmongolische Senke) (Baljinnyam 1994, Cunningham 2005).

Abb. 6: Tektonische Krustenbewegungen in Zentralasien (nach Cunningham 2005)

Der Changai stellt einen Kraton der variszisch mongolisch-ochotskischen Faltenzone dar, der größtenteils aus paläozoischen Graniten und kristallinen Gesteinen zusammengesetzt ist (Barthel 1988, Geologische Karte der Mongolei 1998). Dieser Kraton bildet den Überrest einer kreidezeitlichen Einebnungsfläche, die durch interne Abschiebungen in unterschiedliche Plateaus untergliedert werden kann (Baljinnyam et al. 1994). Durch känozoischen Vulkanismus bildeten sich Basaltintrusionen, so dass einige Regionen des Changai durch Basaltströme und -kegel geprägt sind (Geologische Karte der Mongolei 1998). Die Changai Scholle wird nach Norden durch die Bulnay/Tsetserleg Verwerfung abgegrenzt (Baljinnyam et al. 1994). Südlich des Changai bildet die Bayan Hongor Verwerfung, eine im Plio- Pleistozän reaktivierte paläozoische Abschiebung eine Übergangszone zum Changai Vorland (Baljinnyam et al. 1994). Das Changai Vorland stellt eine Zone aus Ophioliten, metamorphen Kernkomplexen und stark gefalteten Gesteinspaketen dar, die größtenteils proterozoischen Ursprungs sind (Geologische Karte der Mongolei 1998). Die anstehenden Gesteine gehören größtenteils zur Gruppe der Metamorphite, ultrabasischen Vulkanite sowie Plutonite.

Das Tal der Gobiseen schließt sich südlich an das Changai Vorland an und bildet eine tektonische Senke, die im Zuge der Hebung des Gobi-Altai entstand (Cunningham 2005). Das Becken ist größtenteils mit quartären Sedimenten gefüllt, die durch unterschiedliche Blattverschiebungs- und Abschiebungssysteme z.T. gegeneinander versetzt wurden (Geologische Karte der Mongolei 1998). Die Gesteine in diesem Beckenbereich sind hauptsächlich aus dem Paläogen stammende Sedimentgesteine (Sandsteine, Konglomerate).

Der Gobi Altai bildet einen NW-SO streichenden Bereich, der sich aus Turbidit- Terranen und Inselbogen- Terranen zusammensetzt (Tektonische Karte der Mongolei 2002). Der Gebirgszug aus paleozoischen Vulkaniten, Metasedimentgesteinen und Plutoniten stellt einen Teil einer Einebnungsfläche dar, die sich im Verlauf der Kreidezeit ausbildete (Baljinnyam 1994, Cunningham 1997). Im Zuge der Kollision der indischen und der asiatischen Kontinentalplatten im Känozoikum resultierte eine bis heute andauernde Hebung entlang des Gobi Altai Verwerfungssystems (Baljinnyam 1994). Die Hebungsraten des Gobi Altai im Spätquartär wurden von Cunningham (1997) auf 0,1-1m/ka rekonstruiert. Die Gobi Altai Verwerfung ist ein NW-SO streichendes Verwerfungssystem, das eine transpressive sinistrale Bewegungsrichtung von 1-10 mm/a aufweist (Baljinnyam 1994, Cunningham 1997, Kurushin et al. 1998, Bayasgalan 1999, Cunningham 2005). Als Folge der Kompression der Platten ist eine starke seismische Aktivität zu verzeichnen, die bis heute auftritt. Das letzte große Erdbeben der Gobi Altai Verwerfung erfolgte im Jahre 1957 mit einer Magnitude von M=8,3 (Barthel 1988, Baljinnyam 1994, Cunningham 1997, Kurushin et al. 1998 Cunningham 2005). Hierbei entstanden Horizontal- und Vertikalversätze von bis zu 10m, die über 100km entlang der Hauptverwerfungslinie der Bogd Verwerfung auftraten (Baljinnyam 1994).

Die Gurvan Saihan und Dzoolon Uul Gebirgsketten im südöstlichen Bereich des Untersuchungsgebietes (Abb. 9) bilden einen Teil des Gurvan Saihan Inselbogen Terranes, das sich aus Ophiolith Komplexen, paläozoischen Metasediment-Gesteinen und Vulkaniten zusammensetzt, die in Folge der känozoischen Kompression herausgehoben wurden (Geologische Karte der Mongolei 1998, Badarch 2000). In den Beckenbereichen liegen kreidezeitliche Sedimentgesteine, die von quartären Ablagerungen überdeckt werden. Die NW-SO verlaufenden Gebirgsketten und Becken stellen den sich nach SO auffächernden Teil des Gobi Altai Verwerfungssystems dar. Die Gurvan Saihan Verwerfung ist ebenso wie die Bogd Verwerfung durch starke seismische Aktivität gekennzeichnet. Das "Ünegt Beben" im Jahre 1903 erreichte eine Magnitude von M=7,8 und für das "Buuryn Haar Beben" im Jahre 1960 wurden Erschütterungen mit einer Magnitude von M=7,0 gemessen (Baljinnyam 1994).

4.3. Geomorphologie

Das Untersuchungsgebiet lässt sich in die vier Regionen Changai Gebirge, Tal der Gobiseen, Gobi Altai und Wüste Gobi untergliedern, die aufgrund ihrer Höhenlage und ihres geologischen Ursprungs durch unterschiedliche morphologische Prozesse geprägt wurden (Abb. 7).

Der Changai bildet einen Gebirgszug mit ausgedehnten Hochflächen, die eine durchschnittliche Höhe von 2500 bis 3000m ü.M. aufweisen. Der Hauptkamm des Gebirges verläuft W-O und erreicht Höhen von 3535m ü.M. am Erhet Hayrhan Uul, dem höchsten Punkt im Norden des Untersuchungsgebietes. Innerhalb dieses Gebietes weist das Changai Gebirge keine rezenten Vergletscherungen auf (einziger rezenter Gletscher am Otgon Tenger Uul, Westchangai), jedoch deuten glaziale Formen wie Kare, U-Täler und Moränen auf Vergletscherungen während des Pleistozäns hin. Einzelne Vergletscherungen im Changai und der Nordmongolei wurden u.a. von Lehmkuhl und Lang (2001) und Gillespie (2008) für das MIS 2 und 4 rekonstruiert. Die Hänge in Höhenlagen zwischen 3500m und 2500m ü.M. sind durch periglaziale Prozesse abgerundet und weisen typische Formen kryogener Prozesse auf (Steinstreifen, Talasymmetrie, z.T. Solifluktionsloben und Frostmusterböden) (Abb. 7). Unterhalb von 2500m ü.M. sind die Hochflächen stark durch Täler zerschnitten und die Hangformung erfolgt überwiegend durch fluviale Prozesse, so dass kleine Schwemmfächer und Terrassen akkumuliert werden. Das südliche Changai Vorland setzt sich aus Plateauresten und einzelnen Bergkuppen mit Höhen von 1700-2000m ü.M. zusammen, welche durch den aus dem Changai stammenden Fluss Tuyn Gol in N-S Richtung durchschnitten werden (Thiel 1958, Barthel 1988).

Abb. 7: Morphologische Regionen im Untersuchungsgebiet (A: Changai, B: Tal der Gobiseen, C: Gobi Altai, D: Gobi)

Das Tal der Gobiseen stellt einen Senkungsbereich dar (ca. 1200m ü.M.), der größtenteils von Flüssen aus dem Changai gespeist wird und in verschiedene Becken mit meist periodischen Salzseen unterteilt ist (Grunert und Lehmkuhl 2004) (Abb. 7). Die Senken sind von mehreren Generationen quartärer Schwemmfächer bedeckt, die zu Fußflächen zusammengewachsen sind. Die Hauptzuflüsse aus dem Changai bilden Terrassensysteme, die bis zu 30m Höhenunterschiede aufweisen (Walther 1998, Lehmkuhl und Lang 2001). Große Bereiche der Becken sind durch äolische Prozesse überprägt, so dass Dünenfelder, Barchane, Deflationspflaster und Kupsendünen zum Formenschatz dieser Region zählen (Grunert und Lehmkuhl 2004, Basaan 2004).

Der Gobi Altai ist ein West-Ost streichender Gebirgszug der sich aus mehreren Horsten mit vereinzelten innermontanen Senken zusammensetzt. Die höchste Erhebung stellt das Bogd Gebirge mit 3957m a.sl. (Icht Bogd) dar. Aufgrund der starken Hebung (s.o.) sind große Reliefunterschiede zwischen dem Gobi Altai und dem Tal der Gobiseen zu verzeichnen, so dass z.T. auf einer Distanz von 30km Höhendifferenzen von bis zu 2700m vorkommen. Der Gobi Altai weist keine rezenten Vergletscherungen auf, jedoch werden kleine Vereisungen während MIS 2 und MIS 4 diskutiert (Lehmkuhl und Lang 2001, Gillespie 2008). Die Bereiche oberhalb von ca.2500m ü.M. sind durch periglaziale Prozesse geprägt, so dass Solifluktionsformen, Frostmusterböden sowie Kryoplanationsterrassen und Frostkliffs auftreten. Unterhalb von 2500m ü.M. werden die steilen Hänge stark durch fluviale Prozesse erodiert, so dass das Gebirge durch tiefe Kerbtäler zerschnitten wird (Abb. 7). Am Gebirgsfuß bilden Schwemmfächer den Übergang zu den Becken. In östlicher Richtung erfolgt eine Auffächerung der Gebirgskämme in mehrere kleinere Komplexe, so dass dort eine geringere Reliefenergie zu verzeichnen ist. So weist das Gurvan Saihan Gebirge im südöstlichen Untersuchungsgebiet eine maximale Höhe von 2825m ü.M. auf.

Die Wüste Gobi bildet den südlichen Bereich des Untersuchungsgebietes und erstreckt sich über weite Distanzen bis in die ariden Regionen Chinas hinein. Die Landschaft ist geprägt durch weite Ebenen, die durch vereinzelte tektonisch bedingte Gebirgskämme unterbrochen werden (s.o.). Die vorherrschenden Prozesse dieser Region sind überwiegend äolisch, so dass Deflationspflaster, Dünenfelder und Barchane einen Großteil der Formen ausmachen (Abb. 7).

4.4. Hydrographie

Das Gewässernetz im Untersuchungsgebiet schließt sich südlich an die asiatische Kontinentalwasserscheide an. Diese verläuft in W-O Richtung durch das Changai Gebirge und teilt die nordasiatischen Regionen mit Entwässerung zum arktischen und pazifischen Ozean(Jenissei bzw. Amur) von den zentralasiatischen Binnenentwässerungsgebieten. Somit befindet sich das Untersuchungsgebiet im Bereich der asiatischen Binnenentwässerung und weist die Charakteristika eines ariden Raumes auf.

Aufgrund orographischer und klimatischer Gegebenheiten bildet sich im Changai ein dichtes Gewässernetz aus, welches zum einzigen Fluss im Untersuchungsgebiet, dem Tuyn Gol zusammenwächst. Dieser verläuft über eine Distanz von ca. 220km als Fremdlingsfluss durch
das südliche Changai-Vorland und mündet im Tal der Gobi Seen in den abflusslosen See Orog Nuur. Hydrographisch bildet das Tal der Gobiseen eine Vielzahl von abflusslosen Senken, die von Salzsümpfen und periodischen sowie perennierenden Salzseen eingenommen werden. Unterschiedliche Strandwallsysteme der benachbarten Seen deuten auf Schwankungen der Seespiegel hin, so dass eine hydrologische Verbindung der Seen während des Pleistozäns diskutiert wird (Lehmkuhl und Lang 2001, Komatsu et al. 2001). Das häufige Vorkommen von Trockentälern deutet auf starke episodische Niederschläge hin, die aus den Gebirgsregionen in die Becken ablaufen. Das Gewässernetz des Gobi Altai ist durch kurze perennierende Bäche gekennzeichnet, die in den Haupttälern zusammenfließen und am Gebirgsfuß in Schwemmfächer übergehen. Ein Großteil des Abflusses versickert auf den Schwemmfächero und gelangt als Grundwasser in die Becken. Ein Abfluss auf der Schwemmfächeroberfläche erfolgt meist nur bei episodischen Starkniederschlägen.

4.5. Klima

Die Mongolei ist durch die extreme kontinentale Lage geprägt, so dass ein Trockenklima mit kalten Wintern vorherrschend ist (Peck 2002, Prokopenko 2007, An 2008). Die durchschnittlichen Jahresniederschläge nehmen von Norden nach Süden ab und liegen zwischen 500 und < 50mm. Die Jahresmitteltemperaturen weisen ebenfalls einen N-S Gradienten auf und liegen im Bereich von -10 und 10°C. Die Permafrostgrenze verläuft bei ca. 47°N und löst sich in südlicher Richtung in einzelne orographisch bedingte Permafrostinseln auf (Mongolei Atlas 2004).

Im Winter (Oktober-April) wird das Klima durch die stabile sibirisch-mongolische Antizyklone gesteuert, die sich über dem Südchentei ausbildet (Barthel 1988, Peck 2002). Hierbei erfolgt ein Zustrom polarer Luftmassen, die zu einer Abkühlung der bodennahen Luft führen. Dies führt zur Bildung von Inversionen in Beckenbereichen, so dass Temperaturen von -40°C in Bereichen der Gobisenken erreicht werden können. Die Januarmitteltemperaturen liegen im Norden bei -30°C (Suhbaatar) und im Süden bei -15°C (Dalanzadgad) (Abb. 8). Die Niederschläge im Winter sind sehr gering und der Boden ist größtenteils schneefrei (Monatsmittel Dalandsadgad 1mm). Aufgrund der niedrigen Temperaturen und der fehlenden Schneedecke reicht die Bodengefrornis bis zu 4m Tiefe, so dass bis in die Gobi einzelne Inseln mit Bodenfrost über mehrere Jahre überdauern können (Barthel 1988).

Das Klima der Mongolei ist durch sehr kurze Übergangsjahreszeiten geprägt in denen extreme Temperaturanstiege bzw. -abfälle zu verzeichnen sind. Dies resultiert in einer hohen Anzahl an Sand- und Staubstürmen und hohen Windgeschwindigkeiten, die im Frühjahr bis zu 20m/sec. erreichen können.

Im Sommer erfolgt eine Verlagerung der Polarfront bis in den Nordwesten der Mongolei, so dass einige Bereiche in den Einfluss der Westwinddrift gelangen. Dies hat einen Wechsel von Tief- und Hochdruckgebieten zur Folge, so dass wechselhafte Wetterbedingungen vorherrschen. Die Temperaturen sind stark abhängig von Höhe und geographischer Breite und liegen im Juli bei einem Monatsmittel von 21°C (Dalanzadgad) (Abb. 8). In der Gobi können Tageshöchstwerte von > 45°C erreicht werden. Die Niederschläge fallen größtenteils im Sommer und machen 65-75% der Jahresniederschläge aus. Der Regen fällt in Form von zyklonalen, länger anhaltenden Regenereignissen oder als konvektiver Starkregen und weist eine hohe Variabilität auf. Die Durchschnittswerte in Dalanzadgad liegen bei 38mm für den Monat Juli (Abb. 8).

Abb. 8: Klimadiadiagramme ausgewählter Klimastationen aus dem Untersuchungsgebiet (www.Klimadiagramme.de); Lage der Stationen in Abb. 4

4.6. Böden und Vegetation

Die Boden- und Vegetationseinheiten der Mongolei sind durch eine zonale sowie eine orographische Abfolge geprägt. Eine detaillierte Studie zu Böden und Vegetation der Mongolei wurde u.a. von Haase (1983) und Opp und Hilbig (2003) durchgeführt.

Den Norden des Untersuchungsgebietes bildet das Changai Gebirge, in dem Gebirgskastanoseme, und initiale Tschernoseme die am weitesten verbreiteten Bodentypen sind. In höher gelegenen Bereichen (>2000m) nimmt die Mächtigkeit der Böden ab und es erfolgt ein Übergang zu Regosolen. Die Vegetation ist durch Vertreter der Gebirgssteppe wie Erbsensträucher (*Caragana*), Gräser, insbesondere Federgräser (*Stipa*), Edelweiß, Enzian und

weitere Kräuter geprägt. Bewaldete Bereiche treten vornehmlich an nordexponierten Hängen auf und bilden im Komplex mit der Gebirgssteppe die Gebirgswaldsteppe.

An die Gebirgssteppen und Gebirgswaldsteppen schließen oberhalb die subalpine und alpine Stufe an, in der *Kobresia* und *Carex*- Arten dominieren. Mit dem Übergang zum Changaivorland schließen sich weitgehend waldfreie Steppen, und zum Tal der Gobiseen die Wüstensteppen (Halbwüsten) an. In diesem Bereich sind helle Kastanoseme und Regosole die hauptsächlichen Bodentypen. In den Senken, beeinflusst durch Seespiegel- und Grundwasserschwankungen, sind Solonetz und Solontschak verbreitete Bodentypen. Zur Steppenvegetation zählen u.a. Federgräser (*Stipa capillata*) und Wermut- bzw. Beifußarten (*Artemisia*). In südlicher Richtung sinkt der Deckungsgrad der Vegetation auf unter 50% und die Arten *Stipa gobica, Stipa oriantalis* sowie die Zunahme von Dornensträuchern kennzeichnen den Wechsel zur Wüstensteppe. In Senken und unmittelbarer Nähe zu Seen und Grundwasseraustritten bilden sich Vegetationsgürtel aus Schilf (Phragmites communis) und unterschiedlichen Halophyten, inbesondere der Familie Chenopodiaceae aus. Die hauptsächlichen Bodentypen des Gobi Altai stellen Kastanoseme auf Hangschutt dar, die in den höheren Lagen in dunkle Gebirgskastanoseme und Regosole übergehen. Die dominierende Vegetation des Gobi Altai ist die Gebirgssteppe, die ab ca. 3000m ü.M. in subalpine Matten übergeht.

Südlich des Gobi Altai beginnt die Wüste Gobi. Innerhalb des Untersuchungsgebietes sind hier helle Kastanoseme und Regosole dominierende Bodentypen. Die Vegetation ist u.a. durch verschiedene dornige Vertreter sowie stellenweise durch kleine Gruppen der baumförmigen Chenopodiaceae (u.a. *Haloxylon ammodendron*) geprägt. Der Deckungsgrad sinkt in der Wüste auf unter 10%.

5. Ergebnisse

5.1. Bayan Tohomiin Nuur

5.1.1. Lage und Einzugsgebiet des Bayan Tohomiin Nuur

Der Bayan Tohomiin Nuur befindet sich im südöstlichen Bereich des Untersuchungsgebietes (43°34′N, 103°11′E, 1410 m ü.M.) in einem kleinen NW-SE streichenden Becken mit einer Fläche von ca. 300km² (Abb. 9). Die Senke wird von NW-SE streichenden Gebirgsketten eingerahmt, die Teile des Gurvan Saihan Inselbogen-Terranes darstellen (Tektonische Karte der Mongolei 2002). Die Gebirgszüge bestehen aus unterschiedlichen Metasediment-, und Vulkangesteinen, die durch känozoische Tektonik des Bogd-Verwerfungssystems herausgehoben wurden (Kap. 4).

Abb. 9: Einzugsgebiet des Bayan Tohomiin Nuur (weiße Umrandung) mit der Position der Bohrung KEO I; Seebecken (gestrichelte Linie)

Die im Norden befindliche Gebirgskette des Gurvan Saihan erreicht 2600m ü.M., wohingegen das südliche Dzoolon Uul Gebirge auf eine Höhe von 2400m ü.M. ansteigt (Abb. 9). Der Gebirgsfuß wird von mehreren Generationen von Schwemmfächern bedeckt (bis zu 20km Länge), die den Übergang zum abflusslosen Becken bilden das in einer Höhe von ca. 1410m ü.M. liegt (Abb. 10). Das Becken ist mit quartären Sedimenten gefüllt, die sich aus lakustrinen Schluffen und Tonen zusammensetzen, die mit fluvialem Hangmaterial und äolischen Sedimenten alternieren.

Abb. 10: Fotos aus dem Einzugsgebiet des Bayan Tohomiin Nuur; A) rezente Wasserfläche des Bayan Tohomiin, B) Position der Bohrung in den Salzwiesen nördlich des Sees, C) Fußfläche westlich des Sees mit Barchanfeld, D) Khongoryn Els Dünen ca. 30km westlich des Bayan Tohomiin

Im Westen, angrenzend an das Becken des Bayan Tohomiin Nuur, befinden sich Ausläufer des Khongoryn Els Dünenfeldes (Abb. 9, 10), welches ca. 150km nordwestlich beginnt. Das Dünenfeld bedeckt weite Teile des Grabens mit einer Fläche von über 1000km² und setzt sich aus vielen Generationen komplexer Dünen zusammen, die Höhen von bis zu 100m erreichen (Basaan 2004). Im östlichen Bereich des Khongoryn Els nimmt die Höhe der Dünenkörper ab und es erfolgt ein Übergang von Barchanfeldern zu den lakustrinen Sedimenten des Bayan Tohomiin Nuur (Abb. 10).

Das Einzugsgebiet des Bayan Tohomiin Nuur hat eine Fläche von 1750km² und besteht aus ephemeren Zuflüssen, die aus den Gebirgszügen und den Schwemmfächern in das Becken verlaufen. Aufgrund der ariden klimatischen Bedingungen (geringe Niederschläge und hohe Evaporation) sind große Teile des Beckens ausgetrocknet. Ein Salzsumpf im Zentrum der Senke wird durch Grundwasser aus den Schwemmfächern gespeist. Den Übergang zwischen Schwemmfächer- und Seesedimenten bildet ein Ring aus kleinen Dünen (<2m), die durch *Achnatherum splendens* (Poaceae) fixiert werden. Mehrere Strandwälle, die bis zu 9m über dem rezenten Wasserspiegel liegen deuten auf mehrere Expansionsphasen des Sees (Grunert et al. 2009). Die Vegetation im Einzugsgebiet setzt sich aus Wüstensteppenarten zusammen (*Stipa gobica, Caragana leucophloea*), die den Übergangsbereich zwischen den Steppenbereichen und der Wüste Gobi charakterisieren.

5.1.2. Sedimentologische Ergebnisse

5.1.2.1. Allgemeine Beschreibung des Bohrkerns

Die Bohrung erfolgte ca. 100m nördlich des Bayan Tohomiin Nuur auf einer Salzwiese (43°34'23,979"N, 103°11'38,24"E, 1412m ü.M.) (Abb. 9, 10). Die Bohrung reicht bis zu einer Tiefe von sieben Metern, von denen die oberen 200cm aufgrund der lockeren Lagerung nicht erhalten sind. In diesem Fall wurden einzelne Mischproben in 10cm Abständen entnommen.

Der Sedimentkern besteht überwiegend aus Ton und Schluff mit vereinzelten Sandlagen bzw. Sandeinschlüssen. Die Bereiche von 700cm bis 325cm weisen eine dunkelgraue bis schwarze Färbung auf und setzten sich aus homogenen Bändern sowie fein laminierten Lagen zusammen. Die Sedimente oberhalb von 325cm bestehen aus einheitlichen Lagen, die sowohl eine graue/hellgraue sowie braune Färbung aufweisen. Anhand der optischen Beschreibung sowie der sedimentologischen und palynologischen Daten (Abb. 11, 12, 21) wird der Kern in neun Einheiten unterteilt und beschrieben. Die Untergliederung der neun Sedimentationseinheiten erfolgte hierbei anhand von Schwankungen der sedimentologischen Parameter, so dass Bereiche mit durchschnittlich höheren von denen mit niedrigeren Werten abgegrenzt wurden (Tab. 1).

<u>Ergebnisse</u>

Abschnitte)

TOC [%]	s	0,77	0,98	0,17	0,10	0,54	0,28	0,34	0,67	0,37	0,85
	ø	1,60	2,75	1,17	1,30	1,77	1,15	1,14	1,89	1,29	1,63
CaCO ₃ [%]	s	7,4	11,2	0,4	2,3	9,4	6,1	3,7	6,6	3,1	4,3
	ø	18,3	21,8	20,4	25,5	15,5	22,6	12,9	19,5	10,7	14,8
%]	s	0,25	0,01	0,01	0,01	0,01	0,15	0,24	0,30	0,17	0,22
s [ø	0,23	0,00	0,02	0,04	0,03	0,10	0,27	0,33	0,40	0,41
C [%]	s	1,05	1,71	0,05	0,30	0,84	0,76	0,44	0,90	:hnitt II 11 7 29 6 69 3 3 3 0,11 0,02 2,03 0,48 0,40 0,17 10,7 3,1 1,29 0,37 :hnitt 1 12 4 27 8 70 8 3 3 0,13 0,03 2,72 0,79 0,41 0,22 14,8 4,3 1,63 0,85	
	ø	3,13	4,22	3,13	3,81	2,88	3,38	2,21	3,43	2,03	2,72
[%]	s	0,04	0,05	0,00	0,01	0,03	0,01	0,02	0,05	0,02	0,03
N	ø	0,11	0,17	0,08	0,07	0,10	0,08	0,10	0,12	0,11	0,13
Sand <2000µm [%]	s	3	4	2	2	2	1	1	2	3	3
	ø	3	6	e	4	°,	2	1	2	3	3
Schluff <63µm [%]	s	5	3	-	2	4	3	2	4	3	8
	ø	67	64	8	62	69	67	69	65	69	70
Ton <2µm [%]	s	5	4	33	2	5	3	3	4	9	8
	ø	30	27	34	34	27	31	30	33	29	27
lere ße [µm]	s	5	9	°,	3	°,	2	3	3	7	4
Mitt Korngröl	Ø	11	19	10	12	13	10	6	10	11	12
		Gesamtkern	Kernabschnitt IX	Kernabschnitt VIII	Kernabschnitt VII	Kernabschnitt VI	Kernabschnitt V	Kernabschnitt IV	Kernabschnitt III	Kernabschnitt II	Kernabschnitt I

[SI] Leitfähigkeit [mS] S ø S	3,2 0,17 0,07	3,2 0,17 0,07 0,06 0,02	3,2 0,17 0,07 0,06 0,02 2,3 0,07 0,03	3,2 0,17 0,07 0,06 0,02 0,02 2,3 0,07 0,03 2,3 0,09 0,03	3,2 0,17 0,07 0,06 0,02 2,3 0,07 0,03 2,3 0,09 0,03 2,3 0,09 0,03 2,1 0,09 0,04	3,2 0,17 0,07 0,06 0,02 0,02 2,3 0,07 0,03 2,3 0,09 0,03 2,1 0,09 0,03 2,1 0,09 0,04 2,2 0,18 0,06	3,2 0,17 0,07 2,3 0,06 0,02 2,3 0,07 0,03 2,3 0,09 0,03 2,3 0,09 0,03 2,3 0,09 0,03 2,1 0,09 0,04 2,2 0,18 0,06 2,7 0,18 0,02	3,2 0,17 0,07 2,3 0,06 0,02 2,3 0,07 0,03 2,3 0,09 0,03 2,1 0,09 0,04 2,1 0,09 0,04 2,1 0,09 0,04 2,1 0,09 0,04 2,2 0,18 0,06 5,7 0,18 0,06 5,7 0,18 0,00	3,2 0,17 0,07 2,3 0,06 0,02 2,3 0,07 0,03 2,3 0,09 0,03 2,1 0,09 0,04 2,1 0,09 0,04 2,1 0,09 0,04 2,2 0,18 0,06 5,7 0,18 0,02 2,8 0,22 0,09 2,2 0,18 0,06
Aag. Sus. [S ø S	11,5		10,9	11,3 10,9 12,6	11,3 10,9 12,6 12,6	11.3 10,9 12,6 10,5	11. 3 12,6 12,6 14,0	11.3 10.9 10.5 10.5 10.5	11. 3 12,6 12,5 14,0 13,8 13,8
m] N s 661		751 -	751 - 80	751 - 80 250	751 - 80 250 349	751 - 80 250 349 587	751 - 80 250 349 587 274	751 - 80 250 349 587 587 274 805	751 - 80 - 250 - 349 - 587 - 587 - 587 - 587 - 274 - 206 - 206 -
Sr [pp ø 1006		1984	1984 1564	1984 1564 1612	1984 1564 1612 620	1984 1564 1612 620 1133	1984 1564 1612 620 1133 465	1984 1564 1612 620 1133 465 1278	1984 1564 1612 620 1133 465 1278 354
[mqq]		11	17 3	17 3 5	17 5 8	17 5 6 8	17 5 6 6	17 5 6 6 8 8 8	17 6 8 8 8 8 8 8 8
Rb ø 46		89	68 52	68 52 46	68 52 46 61	68 52 61 43	68 52 46 61 43 49	68 52 61 61 43 43 43 49	68 52 61 61 46 43 49 42 48
ppm] S 3968		7812	7812 1039	7812 1039 1631	7812 1039 1631 2656	7812 1039 1631 2656 2330	7812 1039 1631 2656 2330 2490	7812 1039 1631 2656 2330 2490 3369	7812 1039 1631 2656 2330 2490 3369 3369 2160
Fe [₁ ø 20572		30330	30330 23279	30330 23279 18755	30330 23279 18755 25371	30330 23279 18755 25371 18616	30330 23279 18755 25371 18616 23182	30330 23279 18755 25371 18616 23182 18584	30330 23279 25371 25371 18616 23182 23182 23182 23182 23182 23182
[ppm] s 193		327	327 118	327 118 101	327 118 101 152	327 118 101 152 119	327 118 101 152 119 176	327 118 101 152 176 176	327 118 101 152 119 176 144 108
Mn ø 530		1151	1151 747	1151 747 531	1151 747 531 508	1151 747 531 508 467	1151 747 531 531 508 467 543	1151 747 531 538 508 467 543 519	1151 747 531 508 508 543 519 519 497
ppm] S 486		659	659 94	659 94 240	659 94 240 584	659 94 240 584 340	659 94 240 584 340 341	659 94 240 584 584 341 413	659 94 240 584 341 341 413 283
Ті [₁ ø 2785		2432	2432 2621	2432 2621 2211	2432 2621 2211 3343	2432 2621 2211 3343 2608	2432 2621 2211 3343 3343 2608 3147	2432 2621 2211 3343 343 2608 3147 2493	2432 2621 2621 2211 2343 3147 2608 3147 2493 2493
ppm] S 26512		65808	65808 1876	65808 1876 9981	65808 1876 9981 26093	65808 1876 9981 26093 16064	65808 1876 9981 26093 16064 9787	65808 1876 9981 26093 16064 9787 23736	65808 1876 9981 26093 16064 9787 23736 9059
Ca [} ø 62420		105974	105974 75835	105974 75835 92839	105974 75835 92839 36889	105974 75835 92839 36889 68555	105974 75835 92839 36889 68555 42194	105974 75835 92839 36889 68555 42194 71582	105974 75835 92839 36889 68555 42194 71582 38377
pm] S 2302		3366	3366 402	3366 402 1666	3366 402 1666 2653	3366 402 1666 2653 1593	3366 402 1666 2653 1593 1993	3366 402 1666 2653 1593 1993 2109	3366 402 1666 2653 1593 1993 2109 2109
K [p ø 17427		18581	18581 19656	18581 19656 16745	18581 19656 16745 21550	18581 19656 16745 21550 16379	18581 19656 16745 21550 16379 18542	18581 19656 16745 21550 16379 18542 18542	18581 19656 16745 21550 16379 18542 16034 18818
Gesamtkern		Kernabschnitt IX	Kernabschnitt IX Kernabschnitt VIII	<pre> </pre> </td <td>Kernabschnitt IX Kernabschnitt VIII Kernabschnitt VII Kernabschnitt VI</td> <td>Kernabschnitt IX Kernabschnitt VIII Kernabschnitt VII Kernabschnitt VI</td> <td>Cernabschnitt IX Cernabschnitt VIII Cernabschnitt VII Cernabschnitt VI Kernabschnitt V Kernabschnitt IV</td> <td>Cernabschnitt IX Cernabschnitt VIII Cernabschnitt VII Cernabschnitt VI Kernabschnitt V Kernabschnitt IV Kernabschnitt III</td> <td>Cernabschnitt IX Cernabschnitt VIII Cernabschnitt VII Cernabschnitt VI Cernabschnitt V Kernabschnitt II Cernabschnitt III</td>	Kernabschnitt IX Kernabschnitt VIII Kernabschnitt VII Kernabschnitt VI	Kernabschnitt IX Kernabschnitt VIII Kernabschnitt VII Kernabschnitt VI	Cernabschnitt IX Cernabschnitt VIII Cernabschnitt VII Cernabschnitt VI Kernabschnitt V Kernabschnitt IV	Cernabschnitt IX Cernabschnitt VIII Cernabschnitt VII Cernabschnitt VI Kernabschnitt V Kernabschnitt IV Kernabschnitt III	Cernabschnitt IX Cernabschnitt VIII Cernabschnitt VII Cernabschnitt VI Cernabschnitt V Kernabschnitt II Cernabschnitt III

<u>Ergebnisse</u>

Tab. 1: Sedimentologische Daten der KEO I Bohrung in Mittelwerten und Standardabweichung nach Kernabschnitten

5.1.2.2. KEO I Kernabschnitt I (700-585cm)

Abb. 13: KEO I Kernabschnitt I (700-585cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der unterste Abschnitt des Sedimentkerns besteht aus tonigem Schluff und weist eine schwarze bis dunkelgraue Färbung auf (bei Öffnung des Kerns). Der Kontakt mit Sauerstoff nach der Öffnung der Bohrkerne führte zu einer Oxidation der Oberflächen bis in 3-4mm Tiefe, so dass unterschiedliche Bänder mit braun- und Grautönen entstanden (Abb. 13). Im Bereich von 700-668cm sind die Sedimente in Lagen von 0,5-1cm fein horizontal laminiert. Der anschließende Bereich (667-600cm) besteht aus homogenen, massigen Lagen von 5-10cm Mächtigkeit. Die Sedimentlagen zwischen 667-585cm weisen eine feine laminierte Schichtung auf, deren Lagen zwischen 0,5-3cm betragen. Die Sedimente im Bereich 696cm und 662-667cm zeigen hellgrau-gelbe Flecken bzw. ein hellgraues Band (Abb. 13). Zwischen 625cm und 650cm kommen Versatz-/Turbationsstrukturen vor, die V-förmig bis zu 10cm nach unten reichen.

Die mittlere Korngröße des Sedimentabschnitts I schwankt zwischen 10 und 20µm, wobei Schluff (2-63µm) mit 60-80% den Hauptanteil ausmacht (Abb. 12). Der Schluffanteil zeigt zwei Maxima bei 645cm und 624cm, bei denen 85-90% erreicht werden. Der Tonanteil liegt zwischen 20-30%. Zwei Minimalwerte liegen bei 645cm (10%) und 628-624cm (11-12%), bei denen die Tonfraktion eine gegenläufige Tendenz zum Schluff und Sandgehalt aufweist (z.B. absinkender Tongehalt bei 620-630cm und ansteigende Schluff- und Sandanteile). Der Sandanteil im KEO I Bohrkern ist generell niedrig (Tab. 1 ϕ =3%), und schwankt in diesem Kernabschnitt zwischen 0-10%. Mehrere Maxima in 680cm (9,9%), 650cm (5,3%) und 628cm (7,5%) bewirken einen jeweiligen Anstieg der mittleren Korngröße. Die Korngrößenverteilung der Proben aus Abschnitt I lassen sich in zwei unterschiedliche GSD-Typen (Grain Size Distribution) unterteilen. Der GSD Typ 1 nähert sich einer unimodalen Verteilung an, deren Maximum im Ton- und Feinstschluffbereich (1-10µm) liegt (Abb. 12). Die rechte Seite der Verteilung weist z.T. kleine relative Maxima auf, die zwischen 15-100µm auftreten. GSD Typ 2 zeigt eine bimodale Verteilung, bei der sich ein Maximum im Ton- und Feinstschluffbereich (1-10µm), und ein weiteres im Grobschluff- Sandbereich (50-150µm) befinden. Die Ausprägung der Maxima des GSD Typ 2 wechseln im Verlauf des Bohrkernabschnittes, so dass z.T. das Schluff-Sand Maximum (Bsp. 628cm), z.T. das Ton- Schluffmaximum (Bsp. 680cm) dominiert (Abb. 12).

Der Anteil an Kalium (K) im Kernabschnitt I liegt im Durchschnitt bei 17800ppm, und liegt damit etwas über dem Mittelwert des gesamten Bohrkerns (Tab. 1). Zwischen 700-671cm weist der K- Gehalt höhere Werte auf die bei 693cm mit 24632ppm ein Maximum bilden. Oberhalb von 669cm sinken die Werte mit geringen Schwankungen bis auf ca. 14700ppm bei 589cm. Der Mittelwert an Calcium (Ca) für Abschnitt I liegt mit einem Wert von 53347ppm unter dem mittleren Ca-Gehalt des KEO I Kerns. Nahe der Basis des Kerns weist das Calcium starke Schwankungen auf, mit einem Maximum bei 697cm (105664ppm), einem Minimum bei 693cm (17800ppm) und einem weiteren Maximalwert bei 685cm (85154ppm). Der weitere Kurvenverlauf zeigt nur geringe Schwankungen, bis auf ein weiteres Maximum bei 603cm mit 83059ppm.

Das Element Titan (Ti) liegt mit durchschnittlichen 3016ppm in Einheit I über dem mittleren Gehalt des Kerns. Die Daten verlaufen dabei mit einer leichten Oszillation der Werte. Ein Maximalwert von 3779pm in 693cm und ein Minimum bei 607cm (2406ppm) bilden die einzige Dynamik in diesem Kernabschnitt (Abb. 12). Mangan (Mn) weist eine mittlere Konzentration von 485ppm im Abschnitt I auf und liegt damit unter dem Mittelwert des Kerns. Die Elementkonzentration zeigt ein Maximum nahe der Basis bei 693cm (829ppm). Nach oben erfolgt eine kontinuierliche Abnahme der Werte unter leichten Schwankungen. Bei 591cm wird ein Minimalwert von 252ppm erreicht.

Der Eisenanteil (Fe) im Kernabschnitt I liegt mit durchschnittlich 20487ppm im Bereich des mittleren Eisengehaltes des Kerns. Der Verlauf zeigt ein eindeutiges Maximum bei 693cm mit 32433ppm, woraufhin die Fe Konzentration dann auf ca. 20000ppm absinkt und mit

kleinen Schwankungen weiter verläuft. Der Rubidium Gehalt (Rb) zeigt Werte die bei durchschnittlich 46ppm im Bereich des Mittelwertes liegen. Ein Maximum bei 693cm erreicht eine Konzentration von 73ppm, wohingegen bei 593cm ein Minimalwert von 33ppm gemessen wurde. Der übrige Kernabschnitt zeigt eine leichte Oszillation, die aber ansonsten keinen Trend aufweist.

Der Anteil an Strontium (Sr) liegt mit 791ppm unter dem Mittelwert des Bohrkerns (Tab. 1). Nahe der Basis zeigen sich starke Schwankungen des Sr Gehaltes. Hierbei werden zwei Maxima erreicht (1596ppm bei 697cm; 1692ppm bei 658cm), die von einem Minimalwert voneinander getrennt werden (274ppm bei 693cm). Im Mittleren Bereich (670-610cm) verläuft der Sr Anteil mit leichten Schwankungen, worauf ein weiteres Maximum bei 605cm mit 1209ppm erreicht wird. Der Stickstoffgehalt (N) des untersten Kernsegments liegt mit 0,13% über dem Mittelwert der Bohrung. Nahe der Basis sind starke Schwankungen erkennbar, die ein Maximalwert von 0,17% bei 696cm und 670cm zeigen. Im Bereich von 680cm erreicht der Graph einen Minimalwert von 0,1%. Im oberen Teil des Abschnitts verlaufen die Werte mit kleinen Schwankungen im Bereich von 0,13-0,14%.

Die mittlere Kohlenstoffkonzentration (C) von 2,72% liegt in diesem Kernabschnitt unter dem Mittelwert im Kern. Der C- Gehalt bildet zwei Maxima im unteren Bereich mit 4,8% (696cm) und 4,2% (663cm), die von einem relativen Minimum unterbrochen werden (1,6% in 693cm). Weitere Schwankungen treten im oberen Bereich auf, so dass ein Minimum von 1,8% in 628cm sowie ein Maximum von 3,5% in 605cm auftreten. Der Mittelwert von Schwefel (S) im untersten Bohrkernsegment liegt mit 0,41% über dem durchschnittlichen Schwefelgehalt des Bohrkerns. Nahe der Basis (693cm) wird ein maximaler Wert von 0,9% verzeichnet, der bei 685cm in ein Minimum von 0,2% übergeht. Die Schwefelgehalte in Segment I weisen starke Schwankungen auf, zeigen jedoch auf einen abnehmenden Trend. In 605cm wird ein weiteres Minimum mit einem Wert von 0,1% erreicht.

Der Gehalt an CaCO₃ liegt in diesem Abschnitt bei durchschnittlich 14,8% und somit unter dem Mittelwert (Abb. 12, Tab. 1). Der unterste Bereich zeigt starke Schwankungen, die ein Maximalwert von 24,4% in 696cm, gefolgt von einem Minimum von 4,5% bei 693cm aufweisen. Zwischen 680-620cm verlaufen die Werte geradlinig, woraufhin ein zweites Minimum (10,8%) bei 616cm gefolgt von einem weiteren Maximum (21,6%) bei 605cm gemessen wurde. Die Konzentration an organischem Kohlenstoff (TOC) zeigt mittlere Werte von 1,63%, die über dem Durchschnitt des Kerns liegen. Der Verlauf der TOC Konzentration zeigt starke Schwankungen, so dass kein Trend ausgewiesen werden kann. Drei Maximalwerte erreichen 3,1% bei 696cm, 4% bei 663cm und 2,2% in einer Tiefe von 595cm. Zwischen diesen Werten befinden sich Minima mit 0,9% in 675cm sowie 0,8% bei 628cm.

Die magnetische Suszeptibilität (Mag. Sus.) liegt bei Werten um 10,2SI, so dass der Wert unter dem Durchschnitt liegt. Im untersten Bereich (696cm) wird ein Minimum von 2SI erreich, woraufhin die Werte zwischen 9-11SI schwanken. Die elektrische Leitfähigkeit (el. Leitf.) weist Werte auf, die um 1,9mS schwanken und somit über dem Mittelwert des Bohrkerns liegen. Die Daten zeigen eine starke Streuung, weisen aber einen linearen Trend auf.

5.1.2.3. KEO I Kernabschnitt II (584-538cm)

Abb. 14: KEO I Kernabschnitt II (584-538cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Kernabschnitt II besteht aus tonigem Schluff, der schwarz-dunkelgrau gefärbt ist. Die äußere Schicht weist eine braune-graue Färbung auf, die wie in Kernabschnitt I, durch Oxidation nach der Öffnung verursacht wurde. Der Bereich zwischen 584-565cm besteht aus horizontal laminierten Lagen, die eine Schichtmächtigkeit von 1-3cm aufweisen (Abb. 14). Der obere Bereich von 565cm bis 538cm ist durch massige, homogene Lagen geprägt, die geringe Ansätze einer internen Laminierung aufweisen. Im Ausschnitt von 550-540cm tritt eine Zone mit rotbraunen Oxidationsflecken auf.

Die mittlere Korngröße des Abschnitts II liegt bei 11µm, was dem Durchschnittswert des Bohrkerns entspricht (Tab. 1). Der Verlauf der mittleren Körnung lässt zwei Einheiten unterscheiden. Im Bereich von 584-566cm ist ein Anstieg der durchschnittlichen Korngröße erkennbar, die ein Maximum von 27µm bei 566cm bildet. Anschließend fällt der Wert auf 8µm und bleibt bis 539cm im Bereich von 7-8µm. Der Schluffgehalt bleibt in diesem Abschnitt konstant bei 70-75% und zeigt nur geringe Schwankungen. Zwischen 581-560cm weisen die Messungen eine etwas größere Streuung auf, die anschließend zurückgeht. Der Anteil an Ton im Kernabschnitt II zeigt eine abnehmende Tendenz von 581-566cm und erreicht bei 566cm einen Minimalwert von 17,3%. Ab 560cm steigt der Tonanteil mit geringen Schwankungen bis auf 31% bei 539cm. Der Sandanteil im Abschnitt II schwankt zwischen 0-2%. Zwei Maxima im unteren Bereich erreichen Werte von 4% in 575cm und 11% in 566cm. Die Korngrößenverteilungen der unterschiedlichen Proben lassen sich in Anlehnung an Kernbereich I in zwei Typen einteilen: Die Korngrößenverteilung vom GSD Typ 1 zeigt eine Annäherung an eine unimodale Verteilung, deren Maximum im Bereich von 1-10µm liegt. Auf der rechten Seite der Verteilung können relative Maxima auftreten, die im Bereich von 15-100µm liegen (Abb. 14). Der GSD Typ 2 kommt in einer Probe vor (566cm) und zeigt eine bimodale Verteilung, deren Maxima bei 50-150µm sowie 1-10µm auftreten.

Der Kaliumgehalt (K) in Abschnitt II liegt im Durchschnitt bei 18818ppm, so dass ein Anstieg gegenüber Bereich I zu verzeichnen ist (Tab. 1). Der Graph steigt bei 582cm auf ca. 19000ppm und bildet ein langgezogenes Maximum, das mit leichten Schwankungen bis 539cm bestehen bleibt. Der Anteil an Calcium (Ca) fällt in diesem Abschnitt auf einen Mittelwert von 38377ppm. Die Werte sinken vom Maximum (63948ppm) bei 579cm auf 23416ppm bei 543cm. Der Kurvenverlauf zeigt dabei leichte Schwankungen.

Das Element Titan (Ti) zeigt im Kernabschnitt II durchschnittlich höhere Werte (Mittelwert 3287ppm) als im unteren Kernabschnitt. Die Elementkonzentration beschreibt einen ansteigenden Trend, der von einem Minimum (2791ppm) bei 583cm beginnt und mit einigen Schwankungen bis zum Maximum bei 541cm verläuft (3712ppm) (Abb. 12). Der Mangangehalt (Mn) in Einheit II liegt mit 497ppm geringfügig höher als in Abschnitt I, wobei der Mittelwert im Bohrkern nicht erreicht wird. Die Werte zeigen keinen eindeutigen Verlauf und schwanken zwischen mehreren Maximal- (in 577cm 673ppm und 691ppm in 555cm) und Minimalwerten (335ppm bei 581cm, 332 bei 549cm).

Der Anteil an Eisen (Fe) zeigt mit durchschnittlich 21987ppm eine Zunahme zu Abschnitt I. Der Kurvenverlauf beschreibt einen Anstieg zu Beginn des Abschnittes II, woraufhin die Werte auf einem hohen Niveau bleiben und bei 543cm ein Maximum mit 25052ppm bilden. Ein kurzer Rückgang der Elementkonzentration bei 565cm erreicht einen Minimalwert von 17358ppm. Rubidium (Rb) erreicht mit einem mittleren Anteil von 48ppm eine erhöhte Konzentration, die über dem Kernmittel liegt. die Kurve zeigt einen ansteigenden Verlauf vom Minimalwert (27ppm) in 583cm zu einem Maximum von 66,8ppm bei 575cm. Bis zum obersten Bereich des Kernabschnittes II zeigt die Rb- Konzentration einen gleichbleibenden Verlauf im Bereich von 50-60ppm.

Der Strontiumgehalt (Sr) im Abschnitt II weist mit mittleren 354ppm den niedrigsten Wert im Bohrkern auf. Dabei fällt die Kurve von einem Maximum bei 579cm mit 956ppm auf kontinuierlich niedrige Werte, die sich im Bereich von 200-300ppm befinden (Abb. 12, Tab. 1). Der Stickstoffanteil (N) liegt in diesem Kernabschnitt bei einem Mittelwert von 0,11% und liegt damit im Bereich des Kerndurchschnittes. Die Konzentration zeigt eine leicht fallende Tendenz, die von einem Minimum von 0,06% bei 566cm unterbrochen wird.

Der geringe Kohlenstoffanteil (C) von durchschnittlich 2,03% beginnt mit einem Maximalwert von 2,6% in 581cm. Zum mittleren Bereich sinken die Werte bis auf ein Minimum von 1,4% (566cm) ab, woraufhin die Kurve wieder ansteigt. Der Maximalwert von 3% wird bei 539cm erreicht. Der Kernabschnitt II weist eine erhöhte Konzentration an Schwefel (S) auf, die durchschnittlich bei 0,4% liegt. Hierbei verlaufen die Werte erst zu einem Maximum bei 575cm, bei dem ein Wert von 0,55% erreicht wird. Anschließend fällt die Konzentration bis zu einem Tief von 0% bei 566cm um daraufhin wieder 0,53% bei 556cm zu erreichen.

Der Carbonatgehalt (CaCO₃) sinkt in diesem Abschnitt auf mittlere 10,7%. Die Werte sinken dabei zuerst von einem Maximum bei 581cm (15,9%) bis auf einen Minimalwert von 7,3% bei 575cm. Anschließend verläuft die Konzentration gleichbleibend bei ca. 10% um daraufhin einen Höchstwert von 16,1% bei 539cm zu erreichen. Der niedrige Anteil an organischem Kohlenstoff (TOC) liegt bei einem Durchschnitt von 1,29%, was unter dem Kernmittel liegt. Dabei zeigt die Kurve eine schwankende Tendenz, da die Werte zwischen zwei Minima und Maxima oszillieren. In einer Tiefe von 581cm liegt der Minimalwert von 0,1%. Anschließend steigen die Werte bis zu einem Wert von 1,7% bei 566cm um dann wieder bis auf 0,6% (566cm) zurückzugehen. Der Maximalgehalt von 1,8% wird bei 539cm erreicht.

Die magnetische Suszeptibilität (Mag. Sus.) liegt mit durchschnittlich 13,8SI über dem Wert für Kernabschnitt I (Tab. 1). Die Werte zeigen einen ansteigenden Verlauf vom Minimalwert von 8SI bei 584cm bis zum Maximum (18SI) bei 554cm. Anschließend bleibt der Verlauf gleichbleibend. Die elektrische Leitfähigkeit (el. Leitf.) weist in diesem Bereich eine sinkende Tendenz auf. Dabei nehmen die Werte vom Maximalwert (0,24mS) bei 570cm bis auf 0,12mS in 545cm ab.

5.1.2.4. KEO I Kernabschnitt III (537-430cm)

Abb. 15: KEO I Kernabschnitt III (537-430cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Bohrkernabschnitt in einer Tiefe von 537-430cm wurde als Sedimentationseinheit III ausgewiesen und besteht ebenso wie I und II aus schwarzem, tonigen Schluff. Nach der Öffnung weisen die Bereiche von 540-490cm äußerlich eine einheitliche graue Oxidationsschicht auf, wohingegen von 490cm bis 430cm hellgraue, graue und braune Streifen auftreten. Die Sedimente lassen sich ebenso in zwei Einheiten unterteilen. Der tiefere Bereich (537-490cm) bildet eine homogene Sedimentlage, innerhalb der vereinzelte Ansätze einer feinen Laminierung erkennbar sind (Abb. 15). Im gesamten Abschnitt treten schwarze Flecken auf, die eine Größe von weniger als 1mm aufweisen. Von 490cm bis 430cm besteht der Bohrkern aus feinen laminierten, horizontal abgelagerten Bändern mit zwischen 1mm und 2cm schwankender Mächtigkeit. Im Abschnitt zwischen 463-453cm weisen die Bänder eine flaserförmige Struktur auf, die eine Lagenmächtigkeit von 1-3mm aufweisen. Innerhalb der laminierten Lagen in 477-474cm und 465cm treten kleine Verwerfungsstrukturen auf, die einen Vertikalversatz von bis zu 1cm aufweisen (Abb. 15). Zwischen 483cm und 478cm ist das Sediment durch Reste des Kernfängers gestört.

Die Korngröße im Sedimentabschnitt III liegt im Mittel bei 10µm und weist damit einen niedrigeren Wert auf. Die mittlere Korngröße verläuft von 534cm bis 470cm mit geringen Schwankungen im Bereich von 7-10µm, woraufhin die Werte dann bis 430cm mit größeren Schwankungen zunehmen und einen Maximalwert von 16,9µm bei 435cm erreichen (Abb. 12). Der Schluffanteil liegt im Durchschnitt bei 65% und zeigt nur geringe Schwankungen. Ein Maximalwert tritt bei 466cm mit 77,2% auf. Der mittlere Tongehalt des Abschnittes liegt bei 33%, was über dem mittleren Anteil im Bohrkern liegt. Der Kurvenverlauf zeigt größtenteils gleichbleibende Werte, die sich mit leichten Schwankungen zwischen 30-36% befinden. In 466cm geht sinkt der Tongehalt auf einen Minimalwert von 21,6% ab, steigt daraufhin aber wieder bis zum Mittelwert an. Der Anteil an Sand in diesem Bohrkernabschnitt liegt gemittelt bei 2%, wobei der untere Bereich (534 -470cm) größtenteils Werte zwischen 0-1% aufweist. Nach einem relativen Maximum bei 490cm (3,1%) steigt der Sandanteil mit starken Schwankungen an und erreicht einen maximalen Anteil von 6% bei 455cm und 7,7% bei 435cm. Die Korngrößenverteilung im Kernabschnitt III ist hauptsächlich vom GSD Typ 1 geprägt, für den eine annähernd unimodale Verteilung mit einem Maximum im Bereich von 1-10µm charakteristisch ist. Vereinzelte Korngrößenverteilungen (z.B. 435cm) zeigen Zwischenstufen zum GSD Typ 2. Hierbei ist ein Übergang von der unimodalen zur multimodalen Verteilung zu beobachten, bei der mehrere Maximalwerte zwischen 20-200µm auftreten (Abb. 15).

Die Konzentration an Kalium (K) verläuft im Abschnitt 537-430cm mit einem Mittelwert von 16034ppm weiter unter dem Durchschnitt. Der Kurvenverlauf beschreibt eine leicht abfallende Tendenz der Werte, wobei der Bereich zwischen 500cm und 430cm eine starke Oszillation zeigt. Innerhalb dieses Bereiches werden Maximalwerte von 19821ppm (495cm) und 22661ppm (467cm) und ein Minimum von 12737ppm (431cm) erreicht. Der Anteil an Calcium (Ca) liegt in Abschnitt III mit 71582ppm über dem mittleren Ca- Anteil des Bohrkerns. Von 537-500cm bleiben die Werte konstant, wohingegen die oberen Bereiche (499-430cm) große Schwankungen zeigen. In diesem Bereich bilden mehrere abwechselnde Minima (499cm: 28252ppm, 481cm: 34821ppm, 467cm: 13553ppm, 451cm: 50637ppm) und Maxima (477cm: 100727ppm, 455cm: 130594ppm, 435cm: 125743ppm) einen leicht ansteigenden Trend (Abb. 12).

Die Titankonzentration (Ti) im Kernabschnitt liegt mit 2493ppm unter dem Mittelwert des Kerns und fällt von ca. 2700ppm in 537cm auf 2000ppm in 431cm. Die Werte im Bereich von 537cm bis 500cm verlaufen mit geringer Streuung. Im Anschluss daran bilden sich drei Maxima, die Werte von 3354ppm (493cm), 3735ppm (467cm) und 3024ppm (451cm) erreichen. Die Konzentration von Mangan (Mn) liegt mit 519ppm im Bereich des Mittelwertes und verzeichnet keine Veränderungen innerhalb der Sedimentationseinheit. Der Kurvenverlauf bleibt stetig mit moderater Streuung im Bereich von ca. 500ppm. Drei Maxima treten bei 517cm (724ppm), 491cm (871ppm) und 465cm (923ppm) auf.

Der Eisenanteil (Fe) weist eine leicht rückgängige Tendenz auf, deren Werte von ca. 18000 auf 16000ppm sinken. Damit liegt der mittlere Wert mit 18584ppm unter dem Wert des gesamten Bohrkerns (Tab. 1). Der absteigende Kurvenverlauf wird von drei Spitzen unterbrochen, die bei 499cm mit 29484ppm, bei 467cm mit 28789ppm und bei 449cm mit 20694ppm auftreten. Die Höchstwerte verlaufen von 89ppm in 499cm über 82ppm in 467cm zu 83ppm in 453cm. Die Minima liegen mit 27, 31 und 13ppm bei 477, 457 und 435cm. Der Rubidiumgehalt (Rb) liegt mit durchschnittlich 42ppm unter dem Bohrkerndurchschnitt. Unterhalb von 500cm verlaufen die Werte konstant um die 43ppm. Im oberen Abschnitt sind starke Schwankungen zu verzeichnen die zwischen Werten von 65ppm (499cm: 61ppm, 467cm: 62ppm, 453cm: 53ppm) und 25ppm (479cm: 30ppm, 459cm: 24ppm) oszillieren.

Der Anteil an Strontium im Abschnitt von 537-430cm liegt mit 1278ppm über dem Kerndurchschnitt. Im Bereich von 537-500cm verlaufen die Werte konstant bei ca. 990ppm, um im Anschluss daran mit wechselnden Minima und Maxima anzusteigen. Nach einem Minimum bei 497cm (281ppm) folgt ein Maximum bei 281cm (497ppm), woraufhin weitere Minimal- und Maximalwerte folgen (467cm: 268ppm, 455cm: 3627ppm, 451cm: 673ppm, 431cm 3274ppm). Der Verlauf des Stickstoffgehaltes (N) zeigt größtenteils Werte im Bereich von 0,1%. Der Abschnitt zwischen 495-460cm verzeichnet ansteigende Werte, die ein Maximum bei 490cm mit 0,28% bilden.

Der Kohlenstoffanteil (C) liegt mit 3,43% über dem Durchschnitt. Im Bereich von 537-500cm zeigen die Werte einen kontinuierlichen Verlauf ohne Abweichungen. Oberhalb von 500cm sinken die Werte auf Minimalwerte von 1,8% (495cm) und 1,9% (466cm) um anschließend mit größeren Abweichungen wieder um 3-4% zu streuen. Der Verlauf des Schwefelgehaltes (S) kann in zwei Unterbereiche eingeteilt werden. Unterhalb von 500cm liegen die Werte größtenteils bei 0,1% und weisen einen kontinuierlichen Verlauf auf. Der Abschnitt zwischen 499-430cm zeigt erhebliche Schwankungen (Abb. 12), die Maximalwerte von 0,8% in 495cm und 0,9% in 466cm erreichen. Von 460-430cm sinken die Werte langsam ab, streuen aber weiterhin zwischen 0,6-0,1%.

Die Konzentration an Carbonat im liegt mit 19,5% über dem Kerndurchschnitt und ist durch starke Schwankungen geprägt. Im Abschnitt von 537-500cm liegt der CaCO₃ Gehalt konstant

bei ca. 22%. Oberhalb davon folgt ein Rückgang der Werte, die mit Schwankungen bei ca. 15% liegen und zwei Minima mit 8,8% (495cm) und 4,4% (466cm) erreichen. Zwischen 460-430cm steigt die Konzentration wieder an und erreicht stark schwankende Werte zwischen 17% und 30%. Der Anteil an organischer Substanz (TOC) liegt mit 1,89% ebenfalls über dem Kerndurchschnitt. Die Werte zeigen große Schwankungen auf und streuen im unteren Abschnitt um 1,9%. Anschließend folgt ein Minimalwert von 1,3% in einer Tiefe von 495cm, woraufhin die TOC Konzentration bis 460cm höhere Werte aufweist und Maxima von 3,2% (490cm) und 3,1% (460cm) ausbildet. Zwischen 455-430cm fallen die Werte wieder mit Schwankungen auf ca. 1,5% ab.

Die magnetische Suszeptibilität weist mit 10,5SI einen zu Abschnitt II gesunkenen Durchschnittswert auf. Der Kurvenverlauf zeigt eine abfallende Tendenz von 15SI in 537cm bis auf 9 SI in 430cm. Im Bereich zwischen 480-450cm treten größere Schwankungen auf und ein Maximum von 17SI tritt bei 466cm auf. Die elektrische Leitfähigkeit verzeichnet mit 0,22mS den höchsten Mittelwert im Bohrkern (Tab. 1). Im unteren Bereich von 537-500cm liegen die Werte bei 0,1mS, woraufhin ein starker Anstieg folgt und die anschließenden Werte um 0,28mS streuen.

5.1.2.5. KEO I Kernabschnitt IV (429-383cm)

Abb. 16: KEO I Kernabschnitt IV (429-383cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Die Sedimentationseinheit IV reicht von 429-383cm und besteht aus tonigem Schluff. Wie in den vorangegangenen Abschnitten sind die Sedimente schwarz gefärbt, zeigen jedoch eine nachträgliche Verfärbung mit Braun- und Grautönen, die nach der Öffnung der Bohrkerne eintrat. Die Sedimente von 429cm bis 405cm setzen sich aus bis zu 5cm mächtigen, meist homogenen Bändern zusammen. Innerhalb vereinzelter Bänder ist eine schwache Laminierung erkennbar. Zwischen 410-405cm tritt eine flaserförmige Schichtung auf (Abb. 16), deren Lagenmächtigkeit ca. 0,5cm aufweist. Oberhalb von 405cm bis 383cm setzt sich der Bohrkern aus ca. 2cm dünnen, horizontal gelagerten Sedimenten zusammen, die eine Laminierung zeigen.

Die Korngröße in diesem Abschnitt weist mit 9µm den kleinsten Mittelwert innerhalb des Bohrkerns KEO I auf (Tab. 1). Der Verlauf des Mittewertes zeigt eine abnehmende Korngröße von 425-397cm, woraufhin ein Minimum von 5,9µm bei 397cm erreich wird. Anschließend folgt ein Anstieg der mittleren Korngröße auf 12,3µm bei 386cm. Der Tonanteil in Sedimentationseinheit IV zeigt größtenteils gleich bleibende Werte zwischen 25% und 30%. In einer Tiefe von 397cm erfolgt ein kurzer Anstieg des Tonanteils auf 34%, der anschließend jedoch wieder zurückgeht. Die Schluffkonzentration innerhalb des Abschnitts zeigt keine Dynamik und schwankt geringfügig zwischen 65-72%. Die Konzentration an Sand liegt größtenteils im Bereich von 0-1,5%. Die Werte zeigen einige Schwankungen, bei denen Maxima von 3,3% (415cm) und 2,3% (386cm) erreicht werden. Die Korngrößenverteilungen innerhalb des Abschnittes zeigen nur eine geringe Variation und lassen sich zum GSD Typ 1 zuordnen (Abb. 16). Die Verteilungen zeigen eine unimodale Verteilung mit einem Maximum im Bereich von 2-10μm. Vereinzelte Ansätze relativer Maxima auf der rechten Seite der Verteilung im Bereich von 50-100μm weisen auf eine Zwischenstufe zu GSD Typ 2 hin.

Der Kaliumgehalt (K) im Kernabschnitt IV verzeichnet einen Anstieg zur vorherigen Sedimentationseinheit auf einen Mittelwert von 18542ppm (Tab. 1). Der Kurvenverlauf zeigt zuerst ansteigende Werte von ca. 15000ppm zu einem langgezogenen Maximum im Bereich von 421-391cm. Hierbei wird ein Maximalwert von 22069ppm in einer Tiefe von 413cm erreicht. Im Bereich von 401cm erfolgt ein Rückgang der Kaliumkonzentration auf einen Minimalwert von 14863ppm. Der folgende Abschnitt (389-383cm) verzeichnet einen Rückgang auf 15370ppm. Der Mittelwert an Calcium (Ca) im Abschnitt IV liegt mit 42194ppm wesentlich niedriger als der im vorherigen Abschnitt. Der Kurvenverlauf der Konzentration zeigt sinkende Werte von ca. 56000ppm (429cm) auf 27215ppm in 403cm. Im Bereich zwischen 421-391cm treten größtenteils niedrige Werte auf, unterbrochen von einem relativen Maximum bei 403cm (58314ppm). Von 389cm bis 383cm erfolgt ein Anstieg auf ca. 61000ppm.

Die Titankonzentration (Ti) zeigt eine deutliche Zunahme auf durchschnittlich 3147ppm. Die Werte verlaufen dabei ansteigend auf einen langgezogenen "Peak", der im Bereich von 3000ppm liegt (Abb. 12). In der Tiefe von 401cm tritt ein lokales Minimum von 2406ppm auf, woraufhin die Werte wieder zunehmen. Oberhalb von 385cm beginnt ein Rückgang der Werte auf ca. 2600ppm. Der mittlere Mangangehalt (Mn) des Kernabschnitts IV liegt mit 543ppm im Bereich des Kerndurchschnitts. Die unteren Bereiche (429-400cm) zeigen einen stark schwankenden Kurvenverlauf, der durch jeweils drei wechselnde Minima und Maxima geprägt ist. Die Minimalwerte fallen bis auf 403ppm in 429cm, 336ppm in 419cm und 281ppm in 411cm. Dagegen erreichen die Maxima Mangankonzentrationen von 617ppm in 425cm, 989ppm in 415cm und 908ppm in 403cm. Anschließend verlaufen die Werte mit geringen Schwankungen im Bereich von 500ppm.

Die Konzentration an Eisen (Fe) innerhalb dieses Abschnitts weist einen erhöhten mittleren Gehalt von 23182ppm auf. Die Werte zeigen eine ansteigende Tendenz von ca. 19000ppm in 429cm auf ein stabiles Niveau mit Konzentrationen von ca. 24000ppm im Bereich von 417-391cm Tiefe. Innerhalb dieses Niveaus (407cm) tritt ein Maximalwert auf, welcher einen Wert von 28306ppm erreicht (Abb. 12). Von 389cm bis 383cm erfolgt ein Rückgang der Eisenanteile bis auf 18000ppm. Der Rubidiumgehalt (Rb) in Kernabschnitt IV zeigt einen Anstieg des mittleren Elementgehaltes auf 49ppm. Hierbei erfolgt zunächst eine geringe Zunahme der Werte bis zu einem Maximalwert von 58ppm in 413cm. Im Anschluss folgt ein Rückgang der Rb-Werte, die zwischen 55-42ppm verlaufen.

Das Element Strontium (Sr) verzeichnet einen starken Werterückgang innerhalb dieses Kernabschnittes auf durchschnittlich 465ppm. Der Kurvenverlauf sinkt dabei von 1341ppm in 429cm (Einheit III) auf 432ppm in 427cm. Die Werte bleiben gleichbleibend niedrig und schwanken zwischen 200-400ppm. Ein Anstieg der Sr Konzentration erfolgt in 403-401cm, wobei die Werte 783ppm bzw. 470ppm erreichen und anschließend wieder auf das niedrige Niveau zurücksinken. Ab 387cm ist ein weiterer Anstieg zu verzeichnen, der in Abschnitt V übergeht. Der Anteil an Stickstoff (N) liegt mit einem Mittelwert von 0,1% im Bereich des Kernmittels. Der Kurvenverlauf beschreibt im unteren Bereich von Abschnitt IV einen Anstieg des N-Gehaltes von 0,09% (425cm) bis zu einem Maximalwert von 0,13% in 410cm. Daraufhin erfolgt ein Rückgang auf 0,07% (386cm).

Der Kohlenstoff (C) innerhalb des Abschnitts liegt mit einem Durchschnitt von 2,21% niedriger als im Abschnitt III. Die Werte zeigen eine rückläufige Tendenz im Bereich von 425cm (2,7%) bis 392cm mit einem Wert von 1,7%. Anschließend beginnt ein Anstieg auf 2,7% in 386cm. Die Schwefelkonzentration (S) innerhalb des Abschnitts liegt mit 0,27% über dem Kernmittel. Der Kurvenverlauf beschreibt zunächst einen Anstieg von 0,29% auf 0,6% in 405cm. Anschließend fallen die Werte auf einen Schwefelgehalt von 0% (Abb. 12).

Der Anteil an CaCO₃ weist einen auf 12,9% gesunkenen Mittelwert auf. Dabei erfolgt zunächst ein Rückgang der Werte von 17,5% auf ein Minimum von 10,6% in 397cm. Oberhalb steigt die Carbonatkonzentration wieder auf 19,1% in 386cm an. Die organische Substanz (TOC) weist mit einem Mittel von 1,14% den niedrigsten Wert innerhalb des Kerns auf (Tab. 1). Hierbei verlaufen die Werte zunächst positiv und steigen von 1,1% auf 1,6% (410cm). Nach diesem Maximalwert erfolgt ein Rückgang auf 0,7% in 392cm.

Die durchschnittliche magnetische Suszeptibilität (Mag. Sus.) liegt 14SI über dem Kernmittel. Der Trend zeigt zuerst einen Anstieg von 11SI in 429cm auf 34SI in 412cm. Daraufhin fällt die Suszeptibilität auf 10SI in 383cm. Die elektrische Leitfähigkeit (el. Leitf.) in Kernabschnitt IV zeigt eine rückläufige Tendenz. Die Werte verlaufen mit kleinen Schwankungen von 0,21mS (425cm) zu 0,16mS (386cm).

5.1.2.6. KEO I Kernabschnitt V (382-260cm)

Abb. 17: KEO I Kernabschnitt V (382-260cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Bereich 382-260cm wurde als Kernabschnitt V abgegrenzt. Die Sedimente setzen sich weiterhin aus schwarzem tonigen Schluff zusammen, der oberflächlich eine nachträgliche Verfärbung aufweist. Die Farbe der Sedimente ändert sich oberhalb einer Tiefe von 325cm zu unterschiedlichen Grau- und Brauntönen (Abb. 17). Die Schichtung im unteren Bereich des Kernabschnittes (382-ca. 335cm) besteht aus fein laminierten horizontalen Lagen, die eine Mächtigkeit von 1-2cm aufweisen. Oberhalb davon (335-260cm) besteht das Sediment aus homogenen massigen Schichten mit bis zu 20cm Mächtigkeit. Im Bereich von 300-285cm treten zwei ca. 4cm mächtige, dunkelbraune Zonen auf, die stark verdichtet sind und weiße Flecken mit einer Größe von ca. 1mm enthalten.

Die Korngröße im Kernabschnitt V liegt bei einem Mittelwert von 10µm, unterhalb des Kerndurchschnittes. Im untersten Bereich von 380-365cm liegen die Werte im Bereich von 10µm und ein Maximalwert von 13,8µm wird in 370cm erreicht. Anschließend verläuft die Kurve mit geringen Abweichungen im Bereich von 8µm. Ein zweiter Maximalwert von 14µm tritt bei 280cm auf, woraufhin die Werte wiederum auf 8,6µm in 260cm fallen. Der Tonanteil befindet sich mit durchschnittlich 31% geringfügig über dem Kerndurchschnitt und zeigt einen konstanten Trendverlauf mit geringen Schwankungen. Zwischen 375-360cm erfolgt ein Rückgang auf 23,7%, wohingegen eine Zunahme des Tonanteils im Bereich von 275-260cm zu vermerken ist. Die Schlufffraktion zeigt keine Veränderung innerhalb des Abschnittes und verläuft kontinuierlich im Bereich von 67%. Der Anteil an Sand liegt bei durchschnittlich 2%. In zwei Bereichen kann ein gestiegener Sandanteil beobachtet werden (Abb. 12): von 380cm bis 365cm steigt Sandkonzentration bis zu 4,3% an, in 289-280cm erreicht der Sandanteil 4,8%. Innerhalb dieses Abschnitts treten zwei Typen von Korngrößenverteilungen auf, von denen Typ 1 (unimodale Verteilung mit Maximum zwischen 1-10µm) am häufigsten vorkommt. Der GSD Typ 2 tritt als Übergangsform auf, bei deren Verteilung ein zweites Maximum im Bereich von 50-150µm vorkommt (Abb. 17).

Der Kaliumgehalt (K) weist niedrige Werte auf, deren Durchschnitt bei 16379ppm liegt. Der Kurvenverlauf zeigt niedrige, schwankende Werte, die im Bereich von 357cm von einem Maximum (19474ppm) unterbrochen werden und anschließend kontinuierlich bis auf 12509ppm in 299cm abfallen (Abb. 12). Daraufhin verlaufen die Werte gleichbleibend im Bereich von 15000-18000ppm (297-261cm). Der Anteil an Calcium (Ca) ist gegenüber Kernabschnitt IV auf durchschnittlich 68555ppm angestiegen und befindet sich über dem Kernmittel. Von 382-339cm ist gekennzeichnet durch mehrere Schwankungen, die drei Maximalwerte (104182ppm in 379cm / 92407ppm in 369cm / 72208ppm in 349cm) und zwei Minima (49949ppm in 375cm / 36777ppm in 357cm) erreichen. Daraufhin steigen die Ca- Werte von 42786ppm in 337cm auf 85332ppm in 271cm, unterbrochen von einem Maximum in 321cm und einem Minimum bei 289cm.

Der Titangehalt (Ti) zeigt einen Verlauf, dessen Werte unterhalb von 323cm im Bereich von 2800ppm liegen. Ein Maximum wird in einer Tiefe von 357cm mit 3486ppm erreicht. Im Abschnitt von 323-261cm sinkt die Titankonzentration auf ein niedrigeres Niveau und bildet ein Minimalwert von 1884ppm in 301cm. Der durchschnittliche Mangangehalt (Mn) innerhalb des Abschnitts beträgt 467ppm. Der Verlauf beschreibt überwiegend niedrige Konzentrationen und stark schwankende Werte. Drei Maximalwerte ragen in 371cm (629ppm), 315cm (511ppm) und 295cm (775ppm) heraus.

Die Konzentration an Eisen (Fe) im Bohrkernabschnitt liegt bei einem Mittelwert von 18616ppm. Unterhalb einer Tiefe von 337cm schwankt der Eisengehalt in einem Bereich zwischen 13000 und 24000ppm. Darauf verzeichnen die Werte einen Rückgang bis zu einem

Minimum von 14168ppm in 301cm Tiefe. Bis 289cm steigen die Werte dann auf ca. 20000ppm, wobei ein Spitzenwert von 26054ppm in 289cm erreicht wird. Das Element Rubidium (Rb) sinkt in Abschnitt V auf mittlere Werte von 43ppm. Nach einem Minimalwert in 379cm (36ppm) steigt die Elementkonzentration auf ein Maximum von 52ppm in 377cm. Der Bereich bis 303cm verzeichnet einen Rückgang der Werte bis auf 26ppm. Anschließend verbleiben die Werte konstant zwischen 40-50ppm.

Der Strontiumgehalt (Sr) im Kernabschnitt V beschreibt einen Anstieg auf durchschnittlich 1133ppm. Der Bereich zwischen 382-359cm weist hohe Konzentrationen bis zu 2729ppm (369cm) auf, unterbrochen von einem Minimum (485ppm) in 371cm. Im Anschluss folgt ein Bereich mit niedrigen Konzentrationen, die zwischen 300-800ppm verlaufen. Bis 279cm steigt die Elementzusammensetzung über drei langgezogene Maximalwerte an, welche 2391ppm in 321cm, 2277ppm in 299cm und 1869ppm in 283cm erreichen. Daraufhin fällt der Kurvenverlauf auf konstante Werte um 1000ppm. Der Stickstoffanteil (N) beschreibt niedrige Werte, die durchschnittlich bei 0,08% liegen und kaum Veränderungen innerhalb des Kernabschnitts zeigen. Ein kurzer Anstieg auf 0,13% in einer Tiefe von 289cm stellt die einzige Dynamik innerhalb des Bereiches dar.

Kohlenstoff (C) weist einen Mittelwert von 3,38% auf und beschreibt einen Kurvenverlauf, der von 380-339cm eine mit Streuung absinkende Tendenz von 4,9% auf 2,3% zeigt. Zwei anschließende Bereiche mit hohem C- Gehalt bilden sich bei 305cm (4,3%) und 275cm (4,1%) aus, zwischen denen ein kurzer Rückgang auf 2,3% (289cm) erfolgt. Der Elementanteil an Schwefel (S) kennzeichnet sich durch drei Spitzenwerte in 339cm (0,4%), 320cm (0,39%) und 280cm (0,3%), die von Bereichen unterbrochen werden, in denen der Schwefelanteil auf 0% sinkt (Abb. 12).

Die Konzentration an Carbonat (CaCO₃) zeigt mit durchschnittlich 22,6% einen stark angestiegenen Wert. Von 380cm bis 339cm fällt der CaCO₃ zunächst von 35,7% auf 14,9%, wobei die Werte stark streuen. Anschließend erfolgen ein Anstieg auf 31% in 305cm und ein weiterer Maximalwert von 28,5% in 275cm, die von einem Minimum in 289cm unterbrochen werden (9,7%). Der Anteil an organischem Kohlenstoff (TOC) beginnt mit niedrigen Werten, die von 380-325cm kontinuierlich bei 1% liegen. Bis zur Obergrenze des Abschnitts (260cm) findet ein leichter Anstieg auf 1,3% statt. Die kontinuierlich steigenden Werte werden von zwei Maxima unterbrochen, die 1,5% (320cm) und 2% (289cm) erreichen. Die magnetische Suszeptibilität (Mag. Sus.) verzeichnet gleichbleibend niedrige Werte in Abschnitt V, die im Bereich von 10,5SI liegen. Zwischen 310-295cm tritt ein Minimum auf, das auf 3SI in 299cm zurückgeht. Der Verlauf der elektrischen Leitfähigkeit verzeichnet einen konstanten Anstieg von 0,14mS in 380cm auf 0,3mS in 289cm. Anschließend sinken die Werte auf 0,1mS in 260cm ab.

5.1.2.7. KEO I Kernabschnitt VI (259-240cm)

Abb. 18: KEO I Kernabschnitt VI (259-240cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Bereich von 259-240 lässt sich als Kernabschnitt VI abgrenzen. Die Sedimente sind dunkelbraun gefärbt, wobei von 259-255cm ein hellerer Braunton vorherrschend ist. Die Sedimente bestehen aus einer homogenen Lage ohne jegliche Stratifizierung, und weisen keinerlei Strukturen auf (Abb. 18).

Die Sedimente bestehen aus tonigem Schluff, dessen mittlere Korngröße in diesem Kernabschnitt auf 13µm angestiegen ist. Der Kurvenverlauf zeigt dabei eine Zunehme von 8µm auf 15µm in 245cm und einen anschließenden Rückgang auf 8µm (Abb. 12). Der Tonanteil weist einen starken Rückgang auf, dessen Minimum 23,6% in 250cm liegt. Die Schluff- Korngrößenfraktion beschreibt einen leichten Anstieg auf 74%, wohingegen der Sandanteil mit Schwankungen auf 5% in 245cm ansteigt. Die Korngrößenverteilungen in Abschnitt VI fallen in die Kategorie des GSD Typ1 mit unimodaler Verteilung, deren Maximum im Bereich von 1-10µm liegt. Die GSD Kurve in 255cm bildet neben dem Maximum in 1-10µm einen weiteren sekundären Maximalwert, der im Bereich der Sandfraktion (100-200µm) auftritt (Abb. 18).

Eine Auffälligkeit des Kernabschnitts VI stellt die Ausbildung von Extremwerten (Minima und Maxima) im Großteil der geochemischen Daten dar. Der Kaliumgehalt (K) steigt auf durchschnittlich 21550ppm und bildet damit den Kernabschnitt mit dem höchsten Mittelwert. Der Kurvenverlauf beschreibt dabei einen Anstieg auf ein Maximum bei 24137ppm in 249cm, gefolgt von absinkenden Werten. Die Konzentration an Calcium (Ca) verzeichnet einen extremen Rückgang auf durchschnittlich 36889ppm (Tab. 1), wobei das Minimum von 11555ppm in 251cm erreicht wird.

Mit durchschnittlich 3343ppm steigt die Konzentration an Titan (Ti) auf den höchsten Mittelwert im Bohrkern an, wobei in 251cm 3936ppm das Maximum darstellt. Die Mangankonzentration (Mn) innerhalb von Abschnitt VI zeigt zunächst einen negativen Verlauf von 762ppm in 259cm auf 463ppm in 245cm. Im Anschluss erfolgt eine Zunahme auf 544ppm in einer Tiefe von 241cm.

Der Eisenanteil (Fe) steigt auf mittlere 25317ppm an und erreicht einen Spitzenwert bei 249cm (28672ppm). Der Verlauf des Rubidiumgehaltes (Rb) zeigt ebenfalls hohe Werte, die in 251cm das Maximum von 74ppm erreichen.

Ein extremer Rückgang der Elementkonzentration von Strontium (Sr) verläuft auf einem Niveau zwischen 300-400ppm. Die Stickstoffkonzentration beschreibt einen Anstieg bis zum Maximum von 0,12% in 250cm, woraufhin die Werte wiederum rückläufig sind.

Für den Kohlenstoffanteil kann ein Rückgang verzeichnet werden, dessen Kurvenverlauf ein Minimum von 2,1% in 255cm bildet. Der Schwefelgehalt verläuft ohne Dynamik im Bereich von 0%.

Ein extremer Rückgang des Carbonatgehaltes erreicht einen Minimalwert von 6,4% in 250cm Tiefe, steigt anschließend aber wieder auf 20% an. Der Anteil an organischer Substanz beschreibt einen Maximalwert in 250cm, bei dem eine Konzentration von 2,4% erreicht wird.

Der Verlauf der magnetischen Suszeptibilität zeigt keine Änderungen, so dass die Werte mit durchschnittlich 12,5SI auf einem relativ hohen Niveau verbleiben. Der Kurve der elektrischen Leitfähigkeit verläuft auf einem relativ geringen Niveau, bildet jedoch ein Maximum von 0,13mS in 245cm.

5.1.2.8. KEO I Kernabschnitt VII (239-212cm)

Abb. 19: KEO I Kernabschnitt VII (239-212cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Kernabschnitt VII liegt in einer Tiefe von 239-212cm und besteht aus hellgrauem, tonigen Schluff. Die Sedimente zeigen keine Schichtung und bilden ein homogenes massiges Band. Im Bereich von 225 -220cm treten dunkle Flecken auf, die eine Größe von 2-5mm haben (Abb. 19).

Die mittlere Korngröße zeigt einen geringfügigen Rückgang auf mittlere 12µm. Dabei verläuft die Kurve zunächst im Bereich von 8-10µm, um anschließend ein Maximum von 16,3µm in 225cm zu erreichen. Der Tongehalt steigt auf 34% und verbleibt kontinuierlich innerhalb dieses Niveaus (Abb. 12). Der Schluffanteil sinkt auf durchschnittlich 62% und verläuft gleichbleibend in diesem Bereich. Die Konzentration an Sand nimmt mit Schwankungen zu und steigt von 1,4% in 235cm auf 6,2% in 215cm. Die Sedimente im Abschnitt zwischen 239-212cm lassen sich in zwei GSD Typen untergliedern (Abb. 19), den GSD Typ 1 (unimodal, Maximum bei 1-10µm) sowie des Typ2 (bimodal, zweiter Maximalwert 100-200µm).

Der abgesunkene Kaliumgehalt (K) in Kernabschnitt VII erreicht einen Mittelwert von 16745ppm und beschreibt einen Trendrückgang. Die Werte fallen dabei von ca. 18000ppm auf 1300ppm in 221cm. Bis 213cm steigen die Werte wieder auf 19500ppm. Der Anteil an Calcium (Ca) ist gegenüber Abschnitt VI stark angestiegen und liegt durchschnittlich bei 92839ppm (Tab. 1). Die Werte bleiben konstant im Bereich von 8000-9000ppm und werden von einem Maximalwert von 113122ppm in 223cm unterbrochen.

Der Titananteil (Ti) befindet sich in einem niedrigen Bereich (Mittelwert 221ppm) und verzeichnet einen negativen Trend. Dieser verläuft von 2253ppm auf 1891ppm in 221cm Tiefe. Daraufhin steigen die Werte bis 213cm auf 2765ppm an. Der Mangangehalt (Mn) liegt mit durchschnittlich 531ppm im Kernmittel, zeigt jedoch eine leicht steigende Tendenz von 472cm auf 725cm (217cm).

Nachdem der mittlere Eisenanteil (Fe) in diesem Abschnitt auf unter 19000ppm gesunken ist, zeigt die Kurve einen konstanten Verlauf. Der Rubidiumgehalt (Rb) liegt unterhalb des Wertes in Abschnitt VI und befindet sich im Bereich von 46ppm.

Die Elementkonzentration an Strontium (Sr) erreicht einen auf 1612ppm gestiegenen Mittelwert. Der Kurvenverlauf beschreibt einen Rückgang der Konzentration von 1897ppm auf 1400 -1500ppm, unterbrochen von einem Maximalwert (2091ppm) in 221cm. Der Stickstoffanteil liegt im Bereich von 0,07%, und verbleibt auf diesem Niveau.

Der Kohlenstoffanteil verzeichnet einen kurzen Anstieg von 3,9% (235cm) auf 4,2% (225cm), woraufhin die Werte wieder auf 3,3% abfallen. Die Elementkonzentration von Schwefel bleibt unverändert im Bereich von 0 (Abb. 12).

Der Carbonatgehalt erreicht dagegen einen mittleren Anteil von 25,5%, dem höchsten Durchschnitt im Bohrkern. Der TOC Anteil in Abschnitt VII sinkt auf durchschnittlich 1,3%, zeigt jedoch keine steigende oder fallende Tendenz.

Die magnetische Suszeptibilität verläuft von 239-224cm in einem hohen Niveau und bildet anschließend ein Maximum von 19SI in 221cm. Die elektrische Leitfähigkeit verbleibt in einem niedrigen Niveau von 0,09mS.

5.1.2.9. KEO I Kernabschnitt VIII (211-201cm)

Abb. 20: KEO I Kernabschnitt VIII (211-201cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Bereich von 211-201cm wird als Sedimenteinheit VIII ausgewiesen. Der Kernabschnitt setzt sich aus grauem, tonigen Schluff zusammen, der als massiges homogenes Band mit leichten internen Laminierungsstrukturen abgelagert wurde (Abb. 20). Als einzige Strukturen treten schwarze und vereinzelte weiße Flecken auf, die maximal 1mm groß sind.

Die mittlere Korngröße des Abschnitts sinkt auf durchschnittlich 10µm, wobei der Kurvenverlauf eine relativ weite Streuung zeigt (7-12µm). Der Tongehalt zeigt im Vergleich zu Einheit VII keine Veränderung und bleibt im Bereich von 34%. Die gleiche Tendenz ist beim Schluff zu beobachten, der bei 63% verläuft. Ein abweichender Trend ist in der Sandfraktion zu verzeichnen, deren mittlerer Anteil auf 3% zurückgeht. Die Korngrößenverteilungen innerhalb des Abschnitts gehören zum unimodalen (210cm) sowie zum bimodalen GSD- Typ (205cm) (Abb. 20).

Der Kaliumanteil (K) innerhalb des Abschnitts verläuft auf einem angestiegenen Niveau von durchschnittlich 19656ppm und verbleibt in diesem Level. Eine gegenläufige Tendenz ist beim Calciumgehalt (Ca) zu beobachten, der gleichbleibend geringe Werte zwischen 73000ppm und 77000ppm aufweist.

Der Kurvenverlauf von Titan (Ti) liegt auf einem geringfügig angestiegenen Level von durchschnittlich 2621ppm. Die Elementkurve von Mangan (Mn) zeigt angestiegene Werte, die jedoch starken Schwankungen unterliegen. Der Anteil an Eisen (Fe) liegt mit durchschnittlich 23279ppm über dem Kernmittel und beschreibt einen positiven Trend von ca. 22000ppm auf ca. 25000ppm. Rubidium (Rb) steigt auf durchschnittlich 52ppm an und zeigt eine von 46ppm auf 53ppm ansteigende Tendenz.

Die mittleren Strontiumwerte (Sr) verbleiben auf einem hohen Niveau von 1564ppm (Tab. 1). Die Elemente Stickstoff (N), Kohlenstoff (C) und Schwefel (S) zeigen ebenfalls einen gleichbleibenden Trend, wobei N mit durchschnittlich 0,08% den geringsten Anteil im Bohrkern erreicht.

Kohlenstoff verbleibt mit 0,13% im Kerndurchschnitt, und Schwefel verbleibt mit 0,02% im unteren Bereich. Der Carbonatgehalt (CaCO₃) fällt geringfügig auf 20% ab. Die Konzentration an organischer Substanz (TOC), die magnetische Suszeptibilität (Mag. Sus.) sowie die elektrische Leitfähigkeit (el. Leitf.) verzeichnen ebenfalls einen schwachen Rückgang auf 1,17% (TOC), 10,9 SI(Mag. Sus.) und 0,07mS (el. Leitf.).

5.1.2.10. KEO I Kernabschnitt IX (200-0cm)

Abb. 21: KEO I Kernabschnitt IX (200-0cm), exemplarische Korngrößenverteilungen

Der Bereich von 200-0cm wird als Kernabschnitt IX ausgewiesen und kann aufgrund der fehlenden Kernstücke und der Analysen anhand von Mischproben (165 -115cm, 55-25cm) nicht weiter untergliedert werden. Die Sedimente bestehen aus grauem, tonigen Schluff, der in Form von homogenen und massigen Lagen abgelagert wurde.

Die mittlere Korngröße steigt im oberen Abschnitt auf 19µm an, den höchsten Wert im Bohrkern (Tab. 1). Von 165-155cm liegt die mittlere Korngröße dabei noch im Bereich von 10-11µm, steigt daraufhin in 145cm auf 23µm an und verbleibt bis 25cm mit einigen Schwankungen im Bereich von 16 -27µm. Der Tongehalt beschreibt von 165 -115cm eine rückläufige Tendenz (33-21,6%), steigt aber anschließend von 23,5% in 55cm auf 28% in 25cm an (Abb. 12). Die Konzentration an Schluff verläuft unverändert zwischen 60-64%. Der Sandanteil in Abschnitt IX verzeichnet einen extremen Anstieg auf mittlere 9%. Die Werte steigen dabei von 2,6% in 165cm auf 11,3% in 145cm und verbleiben auf diesem hohen Level. Die Werte zeigen dabei jedoch große Abweichungen, so dass der Sandanteil zwischen 6-14% schwankt. Die Korngrößenverteilungen in diesem Bereich des Bohrkerns lassen sich größtenteils zum GSD Typ 2 zuordnen, da die Verteilungen bimodal ausgeprägt sind. Das primäre Maximum liegt dabei im Bereich von 1-10µm, ein sekundäres erscheint meist zwischen 50-200µm (Abb. 21).

Der mittlere Gehalt an Kalium (K) im obersten Kernabschnitt liegt bei 18581ppm und zeigt einen zunehmenden Verlauf von 165-115cm, wobei die Werte von 16654ppm auf 23042ppm (145cm) ansteigen und anschließend im Bereich um 20000ppm schwanken. Die Werte zwischen 45-25cm liegen in einem niedrigen Bereich (12000-15000ppm). Der Calciumanteil stellt mit durchschnittlich 105974ppm den höchsten Mittelwert im Bohrkern dar (Tab. 1).
Dabei verlaufen die Werte von 165cm bis 125cm zwischen 50000 und 70000ppm, und steigen dann auf bis zu 247507ppm in 35cm Tiefe.

Die Titankonzentration (Ti) bildet einen Maximalwert von 3047ppm in 145cm und sinkt anschließend auf niedrigere Werte (1583ppm in 25cm). Die Elemente Mangan (Mn), Eisen (Fe) und Rubidium (Rb) verzeichnen einen extremen Anstieg im Bereich von 155-125cm, bei dem die höchsten Werte im Bohrkern erreicht werden (Mn: 1798ppm, Fe: 38696ppm, Rb: 89ppm). Von 55cm bis 25cm erfolgt ein Rückgang der Elementkurven auf mittlere Konzentrationen.

Der durchschnittliche Strontiumgehalt (Sr) von 1984ppm stellt den Maximalwert des Bohrkerns dar (Tab. 1, Abb. 12). Die Werte bilden zunächst ein Maximum in 155cm, bei dem der Wert 2279ppm erreicht wird. Anschließend folgt ein Minimalwert von 1051ppm in 125cm, woraufhin die Kurve auf 3365ppm in 25cm ansteigt. Der Stickstoffanteil (N) verzeichnet einen positiven Trend, der von einem Minimalwert von 0,09% in 165cm auf 0,22% in 25cm ansteigt.

Der Verlauf von Kohlenstoff (C) beschreibt zunächst eine rückschreitende Tendenz auf 2,7% in 145cm, um daraufhin auf einen Maximalwert von 7,2% in 35cm anzusteigen. Der Schwefelanteil zeigt keine weitere Änderung und verbleibt bei 0%.

Die Entwicklung der Carbonatkonzentration zeigt starke Schwankungen innerhalb des Abschnittes IX. Dabei verlaufen die Werte zunächst rückläufig und bilden ein Minimum von 9% in 125cm. Bis zum Top des Bohrkerns steigt der CaCO₃- Gehalt stark an und erreicht 42% in 35cm. Der Anteil an organischer Substanz (TOC)zeigt einen kontinuierlich steigenden Verlauf von 1,3% in 165cm auf 3,9% in 25cm. Der Kurvenverlauf von elektrischer Leitfähigkeit (el. Leitf.) zeigt keine Änderung und schwankt geringfügig im Bereich von 0,05mS und 0,1mS.

5.1.3. Palynologische Kennwerte

Die palynologischen Daten decken sich mit den sedimentologischen Ergebnissen, so dass der Bohrkern in Korrespondenz mit den Sedimentationseinheiten in acht Pollenzonen von 700-200cm unterteilt werden kann (Abb. 22). Der Bereich von 200-0cm konnte aufgrund der Mischproben (s.o.) nicht analysiert werden, so dass keine palynologischen Daten für Einheit IX vorliegen.

Abb. 22: Pollen und Ostracoden des KEO I Bohrkerns mit Einteilung in Sedimentabschnitte I – VIII (für Abschnitt IX sind keine Pollendaten verfügbar)

Die Pollen Taxa Artemisia und Chenopodiaceae sowie Ephedra stellen die dominanten Pollenspektren im Diagramm dar. Dabei weisen Artemisia und Chenopodiaceae einen gegenläufigen Trend mit wechselnden hohen und niedrigen Werten auf, der Höchstwerte von 70% bzw. 58% erreicht (Abb. 22). Das Verhältnis von Artemisia/Chenopodiaceae (A/C) reicht von 0,2 bis 5,5 und verzeichnet niedrige Werte innerhalb der Abschnitte II, IV, VI und VIII. Die Abschnitte mit einer hohen Konzentration an Chenopodiaceae (Mittelwerte Abschnitt II: 42%, Abschnitt IV: 38%, Abschnitt VI: 30%, Abschnitt VIII: 26%) weisen ebenfalls eine Zunahme der Ephedra Pollen auf (Mittelwerte Abschnitt II: 24%, Abschnitt IV: 36%, Abschnitt VI: 48%, Abschnitt VIII32%). Innerhalb derselben Abschnitte steigt ebenfalls der Anteil der Glomus Sporen auf 7% (Abschnitt II), 6% (Abschnitt IV), 10% (Abschnitt VI) und 3% im Abschnitt VIII an. Diese Pollen- und Sporentaxa sinken dagegen innerhalb der Abschnitte I, III, V und VII auf niedrige Konzentrationen ab, so dass der Anteil an Chenopodiaceae zwischen 20-24% schwankt, und Ephedra Werte zwischen 16-24% erreicht (Abb. 22). Die Anzahl der Glomus Sporen verbleibt innerhalb der Pollenzonen (I, III, V, VII) im Bereich von 2%. Innerhalb dieser Abschnitte erfolgt ein Anstieg der Artemisia Pollen auf 45% (I), 48% (III), 57% (V) sowie 52% (VII). Der Anteil an Poaceae weist eine abnehmende Tendenz auf, die von einem Maximalwert von 7,25% in Abschnitt I auf 0-0,75% in den Abschnitten VII und VIII absinkt.

5.1.4. Chronostratigraphie

Die vier in Erlangen gemessenen ¹⁴C AMS Datierungen am KEO I Kern umfassen eine Altersspanne von 12,7ka cal. BP in 674cm bis 6,7ka cal. BP in einer Tiefe von 253cm. Die Datierung aus 353cm fügt sich mit einem Alter von 9,6ka cal. BP chronostratigraphisch in die weiteren Alter ein, wohingegen 6,8ka cal. BP in 526cm zu einer Altersumkehr führt (Tab. 2). Die Ergebnisse der vier angrenzend (665cm, 536cm, 367cm und 247cm) entnommenen Proben verifizieren diese Daten (Tab. 2). Hierbei wurde die Probe in 367cm zweifach gemessen.

Bohrkern	Tiefe [cm]	Lab. Nr.	¹⁴ C Alter und Fehler [yr. BP]	δ ¹³ C [% ₀]	kalibrierte Alter und Standard Abw. [kal. yr. BP]	Material
KEO I	247	Poz-37868	5495 ± 35	-21,3	6299 ± 24	Mischprobe
KEO I	253	Erl-13181	5880 ± 46	-20.5	6709 ± 45	Mischprobe
KEO I	353	Erl-12109	8697 ± 56	-22.7	9674 ± 85	Mischprobe
KEO I	367	Poz-37949	9270 ± 50	-25,1	10441 ± 88	Mischprobe
KEO I	367	Poz-37869	9320 ± 60	-24,6	10523 ± 90	Mischprobe
KEO I	526	Erl-13182	6037 ± 47	-21.6	6884 ± 64	Mischprobe
KEO I	536	Poz-37870	6920 ± 40	-26,8	7222 ± 36	Mischprobe
KEO I	674	Erl-12110	10661 ± 56	-23.3	12661 ± 65	Mischprobe
KEO I	665	Poz-37871	11170 ± 70	-27,4	13073 ± 125	Mischprobe

Tab. 2: Übersicht der KEO I¹⁴C Datierungen

Bezüglich der Aussagekraft der Datierungen müssen nachstehende Überlegungen berücksichtigt werden. Im Einzugsgebiet des Sees stehen keine carbonathaltigen Gesteine an, so dass kein geogenes Carbonat die Datierungen beeinflussen kann. Dies kann durch eine negative Korrelation des Elements Titan mit dem Carbonatgehalt der Sedimente bestätigt werden, die auf einen von fluvialen Prozessen unabhängigen Eintrag in den See hinweist (Kap. 5.1.5). Der hohe Carbonatanteil (Mittelwert 18,3%) der Sedimente ist typisch für abflusslose Senken in ariden Regionen, in denen eine Anreicherung von Evaporiten stattfindet. Da eine Vielzahl an Quellen für diese Carbonate in Betracht kommen, die unabhängig vom fluvialen Einzugsgebiet des Sees sind (äolischer Eintrag, Feldspatverwitterung), kann ein Reservoir Effekt nicht ausgeschlossen werden (Geyh et al. 1999). Unterschiedliche Veröffentlichungen aus Zentralasien berichten von einer Altersüberschätzung, die von einigen hunderten Jahren bis zu ca. 2000 Jahren betragen kann (Rickettsa et al. 2001, Feng et al. 2005, Guo et al. 2007).

Aus den Datierungen wurde ein Alters-Modell entwickelt (Abb. 23), welches folgende vereinfachende Annahmen beinhaltet:

- der Sedimentkern weist keinen Hiatus auf
- die Ablagerung erfolgte kontinuierlich

- die Oberfläche hat ein rezentes Alter d.h. es erfolgte keine Erosion
- ein evtl. Reservoir Effekt wurde nicht berücksichtigt

Abb. 23: Alters-Tiefen Modell des KEO I Bohrkerns mit Abgrenzung der Sedimentationseinheiten I-IX; die Alter in einer Tiefe von 526cm und 536cm wurden nicht berücksichtigt

Das in 526cm bzw. 536cm ermittelte Alter scheint einen zu jungen Wert aufzuweisen, so dass von einer Kontamination durch jüngeren bzw. rezenten Kohlenstoff ausgegangen werden kann und dieses Alter im Modell keine Berücksichtigung fand. Rückstände von Wasserpflanzen können in diesem Fall ausgeschlossen werden, da diese hohe δ^{13} C Konzentrationen aufweisen, so dass aufgrund des Reservoir Effektes überschätzte Alter resultieren würden (Herzschuh et al. 2005). Eine Kontamination aufgrund von Durchwurzelung bzw. pedologischer Aktivität wird nicht ersichtlich, da der Bohrkernbereich keinerlei Turbationsstrukturen aufweist (Abb. 15). Dennoch kann eine Durchmischung innerhalb dieses Bereichs nicht ausgeschlossen werden. Im Alters-Tiefen Modell des KEO I Kerns kann der Wandel vom Pleistozän zum Holozän anhand des Überganges von Kernabschnitt II zu III, und somit während des Zeitraumes 11,4ka cal. BP rekonstruiert werden (s.u.). Dieses Alter stimmt mit anderen Paläoklimarekonstruktionen aus der Mongolei und Asien überein (Morrill et al. 2003, Walther et al. 2003, Herzschuh et al. 2005, Andreev und Tarasov 2007, Stebich et al. 2009). Den einzelnen Kernabschnitten (I-IX) wurden die dem Alters-Modell entsprechenden Zeiteinheiten zugeordnet (Abb. 23). Diese Zuordnungen stellen aufgrund der o.g. Annahmen keine exakten Altersbegrenzungen der stratigraphischen Einheiten dar, sondern dienen als Anhaltspunkte zur zeitlichen Einordnung der Bohrkernabschnitte. Die Ergebnisse der vier ausstehenden Datierungen (Kap. 3) können zur Verifizierung bzw. zur Anpassung des Modells genutzt werden.

5.1.5. Interpretation der Detailergebnisse

Der Bayan Tohomiin Nuur stellt aufgrund der Lage in einem kleinen abflusslosen Becken sowie der möglichen wechselnden Bedingungen zwischen See, Salzsumpf und Salztonebene ein empfindliches Archiv dar, in dem unterschiedliche klimatische Bedingungen anhand von Veränderungen der sedimentologischen Parameter abgeleitet werden. Dabei können anhand der schwankenden Elementzusammensetzung, Korngrößendaten sowie den relativen Veränderungen der Parameter zueinander Rückschlüsse auf Transport- und Ablagerungsprozesse sowie Seespiegelschwankungen getroffen werden.

Die sedimentologischen Parameter lassen sich in mehrere Gruppen kategorisieren, die in unterschiedlicher Intensität miteinander korrelieren (Abb. 24):

Die Elemente K, Ti, Mn, Fe und Rb zeigen grundsätzlich eine hohe Korrelation (Abb. 24, Anhang), so dass von einem einheitlichen Ablagerungsprozess ausgegangen werden kann. Als Ursprung für diese Elemente können die verschiedenen Arten von anstehendem Gestein innerhalb des Einzugsgebietes angesehen werden, die durch Verwitterungs- und fluviale Verlagerungsprozesse zerkleinert und über die Schwemmfächer in die Becken transportiert werden. Daher können diese Elemente als ,geogenes' Signal innerhalb des Bohrkerns interpretiert werden (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghardt et al. 2008). Die Parameter Ca, Sr und CaCO₃ weisen ebenfalls eine hohe Korrelation auf (Anhang), die auf einen identischen Ablagerungsprozess schließen lassen. Diese Ablagerung erfolgt überwiegend in Form einer Ausfällung von Carbonaten. Die negative Korrelation der Carbonate mit den "geogenen" Parametern (Abb. 24) verweist auf einen unabhängigen Ursprung, der in Form von Staubeintrag, Grundwasser oder Mineralneubildung erfolgen kann.

Die Konzentration des TOC Gehaltes verweist auf die Akkumulation von organischer Substanz im Sediment. Diese Anreicherung von Organik im See kann in Form von Wasserpflanzen sowie durch den Eintrag von organischer Substanz aus dem Einzugsgebiet (Ufervegetation, fluvial eingetragene Pflanzenreste, verlagerte humose Sedimente) erfolgen. Diese heterogene Herkunft kann durch die geringe Korrelation mit den unterschiedlichen Parametergruppen (geogen, carbonatisch) verifiziert werden (Abb. 24, Anhang).

Die unterschiedliche Ausprägung der einzelnen Parameter und Parametergruppen kann daher genutzt werden, um die Ablagerungsprozesse und klimatischen Bedingungen der einzelnen Kernabschnitte zu rekonstruieren.

Abb. 24: Zusammenhänge ausgewählter sedimentologischer Parameter des KEO I Bohrkerns; die Nummerierungen von 1-9 entsprechen den Mittelwerten der Sedimentabschnitte I-IX

Abschnitt I (700-585cm; 12,9-11,8ka cal. BP): semihumides und kaltes Klima, Artemisia Steppe, Dünenaktivität

Der unterste Sedimentabschnitt besteht aus tonig- schluffigen Sedimenten, die in horizontalen Bändern sowie fein laminierten Abschnitten abgelagert wurden. Die Korngrößenanalysen belegen eine Dominanz der Feinschluff- und Tonfraktion, die überwiegend zum GSD Typ 1 zugerechnet werden können. Die Korngrößenverteilung deutet auf ein Ablagerungsmilieu hin, in dem eine geringe Transportenergie vorherrschte, so dass nur sehr kleine Partikel bis hier transportiert werden konnten (Prins et al. 2000). Diese Verteilungskurve ist daher typisch für (flach-)limnische Sedimente. Der erhöhte Anteil an Sand, der vermehrt im Bereich von 680-628cm auftritt, deutet auf einen weiteren Transportprozess hin, der unabhängig von der limnischen Ton/Schluff- Akkumulation stattfand. Dies wird aus der GSD Verteilung (GSD Typ 2) ersichtlich, die ein weiteres Maximum im Bereich von 50-150µm aufweist, welches unabhängig vom Maximum in 1-10µm ausgebildet wird (Abb. 13). Ein fluvialer Transport kann für diese Feinsand- Maxima ausgeschlossen werden, da die Verteilungskurve in diesem Fall einen ungleichmäßigeren Verlauf mit einem breiteren Maximum beschreiben bzw. ein ,fining upward' Prozess im Sedimentkern erkennbar sein würde (Prins et al. 2000). Daher weist der zweite Maximalwert in der GSD 2 Verteilung auf einen äolischen Eintrag hin, der zusätzlich zur limnischen Sedimentation erfolgte. Da diese Korngrößenverteilung innerhalb des Kernabschnitts I vermehrt vorkommt, kann darauf geschlossen werden, dass das Klima durch eine verstärkte äolische Aktivität geprägt war.

Die schwarze Färbung der Sedimente sowie der relativ hohe Schwefelgehalt deuten auf ein anoxisches Milieu hin, bei dem nach der Bildung von Schwefelwasserstoff (H₂S) eine Fällung von Eisensulfiden (FeS sowie FeS₂) ermöglicht wurde (Peck et al. 2002, Banks et al. 2004, Tomkins et al. 2005, Melles et al. 2007). Hierbei kann jedoch davon ausgegangen werden, dass die Bildung dieser sauerstoffarmen Bedingungen nachträglich als diagenetischer Prozess erfolgte, da die drei Bohrkerne KEO I, ONW I und ONW II, unabhängig vom Alter, eine schwarze bzw. dunkelgraue Färbung unterhalb von ca. 3m Tiefe aufweisen.

Die Elemente Kalium, Titan, Mangan, Eisen und Rubidium stellen den "geogenen" Hintergrund der Elementzusammensetzung dar, der in Form von klastischen Sedimenten durch fluviale Prozesse aus dem Einzugsgebiet in den See eingetragen wird (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Die o.g. Parameter zeigen eine überwiegend hohe Korrelation (Abb. 24), so dass eine gemeinsame Quelle bestätigt werden kann. Die moderaten Werte in Abschnitt I (Abb. 12, Tab. 1) deuten darauf hin, dass in dieser Phase nur ein geringer Eintrag an klastischen Sedimenten in den See erfolgte, so dass auf eine stabile Oberflächenbedeckung im Einzugsgebiet geschlossen werden kann. Die kurzzeitig ansteigenden Werte (693cm) weisen auf eine Phase mit erhöhtem Sedimenteintrag hin.

Die Parameter Stickstoff (N), Kohlenstoff (C) und organischer Kohlenstoff (TOC) dienen sowohl als Indikator der biologischen Aktivität des Sees, als auch der Produktivität des Einzugsgebietes (Chen et al. 2003, Jin et al. 2006). Das Verhältnis von TOC/N liegt innerhalb des Abschnitts I im Bereich von 10-20, so dass von einem größtenteils autochthonen Kohlenstoffeintrag in Form von Wasserpflanzen, Algen usw. ausgegangen werden kann (Horiuchi et al. 2000, Chen et al. 2003, Wang et al. 2004, Herzschuh et al. 2005, Jin et al. 2006, Guo et al. 2007). Die schwankenden Werte innerhalb des Abschnitts (Abb. 12) deuten auf eine unbeständige, moderate Produktivität des Sees hin.

Der Verlauf von Calcium (Ca), Carbonat (CaCO₃) sowie Strontium (Sr) weist eine negative Korrelation zu den Elementen Titan (Ti) (Abb. 24) sowie Eisen (Fe) auf, so dass auf eine unabhängige Herkunft dieser Elemente geschlossen werden kann und diese nicht durch klastischen Eintrag in den See gelangen. Mögliche Quellen hierfür stellen Grundwasser sowie äolischer Staubeintrag dar, woraufhin eine Akkumulation von Carbonaten im Becken erfolgen kann. Da die Ausfällung von Carbonaten im Wesentlichen von der Temperatur sowie dem CO₂ Gehalt des Wassers abhängig ist, kann der Carbonatgehalt als Indikator für die Temperatur des Seewassers genutzt werden (Guo et al. 2007). Die niedrigen Konzentrationen an Ca, CaCO₃ und Sr im Kernabschnitt I (Abb. 12, Tab. 1) deuten auf eine geringe Ausfällung an Carbonaten, so dass in dieser Phase die Wassertemperatur in einem niedrigen Bereich lag. Aufgrund der niedrigen Wassertemperatur kann ebenfalls auf kalte klimatischen Bedingungen geschlossen werden.

Die moderaten Werte der elektrischen Leitfähigkeit (el. Leitf.) weisen auf einen mittleren Salzgehalt des Sees hin. Das Vorkommen von *Candona weltneri, Fabaeformiscandona angusta* und *Cyclocypris ovum* weist ebenfalls auf eine geringe bis moderate Salinität hin (Abb. 12, 22, Felauer et al. In prep.).

Die Pollenanalysen zeigen einen Artemisia Anteil von 45% sowie eine Konzentration an Chenopodiaceae von 24%. Das Verhältnis von Artemisia/Chenopodiaceae (A/C) erreicht daher mittlere Werte um 2, so dass weder ein besonders trockenes, noch ein feuchtes Klima vorherrschend war. Es kann davon ausgegangen werden, dass die Landschaft von einer Artemisia Steppe bedeckt war, die an trockenen Standorten in Ephedra Sträucher überging.

Die sedimentologischen und palynologischen Parameter für den Zeitabschnitt 12,9-11,8ka cal. BP deuten auf ein kaltes und semihumides Klima, in dem ein Großteil des Einzugsgebietes von einer *Artemisia* Steppe mit vereinzelten *Ephedra* Sträuchern bedeckt war. Aufgrund dieser Vegetationsbedeckung wurden Oberflächenprozesse reduziert, so dass nur ein geringer Eintrag an klastischen Sedimenten in den See erfolgen konnte. Die Bedingungen im See waren durch eine moderate biologische Aktivität sowie eine mäßige Salinität geprägt. Für diese Phase kann ebenfalls eine starke äolische Aktivität verzeichnet werden.

Abschnitt II (585-538cm; 11,8-11,4ka cal. BP): trockenes und kaltes Klima, Chenopodiaceae Wüste

Die tonig- schluffigen Sedimente innerhalb des Abschnittes weisen weiterhin auf ein limnisches Ablagerungsmilieu hin, in dem eine geringe Transportenergie vorherrschte. Dies wird durch die fein laminierten Lagen sowie durch den dominierenden GSD Typ 1 bestätigt. Die in 566cm auftretende Korngrößenverteilung des GSD Typ 2 weist auf eine Periode, in der eine äolische Sedimentation zusätzlich zur limnischen Akkumulation erfolgte (Prins et al. 2000). Der äolische Ursprung dieser feinsandigen Sedimente lässt sich aus der sehr guten Sortierung (geringe Streuung im zweiten Maximum) sowie der Trennbarkeit in zwei Kurven ableiten.

Die schwarze Färbung der Sedimente kann weiterhin durch den hohen Schwefelgehalt begründet werden, so dass von einem Sauerstoffabschluss ausgegangen werden kann (s.o.).

Die ansteigenden Werte von Kalium, Titan, Mangan, Eisen und Rubidium korrespondieren mit den abgesunkenen Anteilen an Kohlenstoff, Stickstoff und organischem Kohlenstoff, so dass ein erhöhter Eintrag von klastischen Sedimenten in den See verifiziert wird. Der steigende Eintrag an Klastika deutet auf eine verringerte Vegetationsbedeckung hin, so dass fluviale Oberflächenprozesse in dieser Periode eine stärkere Wirkung erzeugen konnten (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Die abgesunkenen Parameter C, N und TOC bestätigen ebenfalls eine verringerte biologische Aktivität im See sowie in dessen Einzugsgebiet. Das auf 10-15 gefallene TOC/N Verhältnis weist auf eine verringerte autochthone Produktion organischer Substanz (Horiuchi et al. 2000, Chen et al. 2003, Wang et al. 2004, Herzschuh et al. 2005, Jin et al. 2006, Guo et al. 2007). Sowohl die verringerte Vegetationsbedeckung und biologische Aktivität, als auch der angestiegene Sedimenteintrag deuten daraufhin, dass eine Phase mit ariden klimatischen Bedingungen vorherrschte. Dies kann durch die gestiegene elektrische Leitfähigkeit belegt werden, die auf eine durch Evaporation erhöhte Salinität hinweist.

Die niedrigen Werte des Carbonat- (CaCO₃) sowie Calcium- und Strontiumgehaltes belegen eine weiterhin geringe Carbonatausfällung, so dass auf eine niedrige Wassertemperatur und ein kaltes Klima geschlossen werden kann (Guo et al. 2007).

Das niedrige Verhältnis von Artemisia/Chenopodiaceae (A/C) und die hohen Anteile an *Ephedra* Pollen deuten auf eine Chenopodiaceae Wüste mit geringer Vegetationsbedeckung hin. Einen weiteren Indikator für eine geringe Oberflächenbedeckung und ein arides Klima stellt der gestiegene Anteil an *Glomus* Sporen dar, der durch fluvialen Oberflächenabtrag in Form von Starkregenereignissen in den See eingetragen wurde.

Die Untersuchungen an Sedimentabschnitt II deuten daraufhin, dass ein kaltes und arides Klima vorherrschte. Die Vegetation im Einzugsgebiet wurde durch eine Cenopodiaceae Wüste geprägt, die durch einen geringen Deckungsgrad einen starken Oberflächenabfluss ermöglichte, der in Form von Starkregenereignissen erfolgte. Das trockene Klima sowie der Eintrag an klastischen Sedimenten in den See führten zu einer geringen biologischen Aktivität und einer steigenden Salinität. Abschnitt III (538-430cm; 11,4-10,4ka cal. BP): semihumides unstabiles Klima, Artemisia Steppe

Die Sedimente im Kernabschnitt III setzen sich aus tonigem Schluff zusammen. Die überwiegend vorkommenden Korngrößenverteilungen des GSD Typs 1 weisen auf eine kontinuierliche Ablagerung von lakustrinen Sedimenten hin. Im Bereich von 459-435cm werden die Korngrößenverteilungen um eine Schluff- und Feinsandkomponente ergänzt (s.o.), die auf einen weiteren Transportprozess hinweist. Die multimodale Verteilung der Sedimente sowie die Überlagerung der verschiedenen Signale deuten auf einen fluvialen Eintrag hin. Die schwarze Farbe der Sedimente sowie der Schwefelgehalt können auf weiterhin anoxische Bedingungen zurückgeführt werden (Peck et al. 2002, Banks et al. 2004, Tomkins et al. 2005, Melles et al. 2007).

Eine hohe Konzentration an TOC, N und C lassen auf eine gestiegene Vegetationsbedeckung und eine erhöhte biologische Produktivität des Sees schließen. Die Oszillationen der Parameter TOC und C deuten darauf hin, dass in diesem Zeitraum häufige Schwankungen der Bioproduktivität sowie der Vegetationsbedeckung auftraten, so dass von einem semihumiden, wechselhaften unstabilen Klima ausgegangen werden kann. Diese Schwankungen decken sich mit den Korngrößenanalysen, die einen fluvialen Eintrag von Schluff und Sand in den See bestätigen (s.o.). Das zwischen 10-40 schwankende TOC/N Verhältnis verweist auf unterschiedliche Quellen für die organische Substanz, so dass neben der autochthonen C- Produktion ebenfalls ein Eintrag aus dem Einzugsgebiet erfolgte (Horiuchi et al. 2000, Chen et al. 2003, Wang et al. 2004, Herzschuh et al. 2005, Jin et al. 2006, Guo et al. 2007).

Im Kontrast zu einer Vegetationszunahme erfolgte ein Rückgang des Eintrages von klastischen Sedimenten in den See, wie aus den gesunkenen Konzentrationen von Kalium, Titan, Magnesium, Eisen und Rubidium abgeleitet werden kann (Abb. 12, Tab. 1). Die starken Schwankungen im Bereich von 500-430cm weisen jedoch auf kurze Phasen mit einem erhöhten Oberflächenabfluss hin, so dass ebenfalls Hinweise auf kurzzeitige Trockenperioden vorkommen.

Die angestiegenen Konzentrationen von Carbonat, Calcium und Strontium lassen darauf schließen, dass eine erhöhte Ausfällung von Carbonaten im See erfolgte, was auf eine an-

steigende Wassertemperatur hinweist (Guo et al. 2007). Dieser Temperaturanstieg des Bayan Tohomiin Nuur verweist ebenfalls auf wärmer werdendes Klima, so dass mit dem Übergang von Abschnitt II zu Abschnitt III der Wandel von Pleistozän zum Holozän rekonstruiert werden kann. Eine Zunahme der Temperatur wird ebenfalls aus der ansteigenden elektrischen Leitfähigkeit ersichtlich, die auf eine erhöhte Evaporation hinweist.

Die palynologischen Proxidaten weisen darauf hin, dass von 11,4-10,4ka cal. BP ein feuchteres Klima mit einer dichteren Vegetationsbedeckung vorherrschte. Dies zeigt sich aus einer starken Zunahme der *Artemisia* Pollen und einem Rückgang der Chenopodiaceae sowie der *Glomus* Sporen, so dass A/C Verhältnisse von über 2 erreicht werden.

Der Verlauf der unterschiedlichen Parameter lässt darauf schließen, dass mit dem Beginn von Abschnitt III der Übergang vom Pleistozän zum Holozän erfolgte, so dass das Klima wärmer und feuchter wurde. Die Vegetation im Einzugsgebiet war dabei überwiegend von einer *Artemisia* Steppe geprägt, die aufgrund des hohen Deckungsgrades einen Sedimenteintrag in den See verhinderte. Mehrere Abschnitte mit einem erhöhten Eintrag klastischer Sedimente sowie einem gesunkenen A/C Verhältnis deuten auf kurze aride Phasen hin.

Abschnitt IV (430-383cm; 10,4-9,9ka cal. BP): trockenes und kaltes Klima, Chenopodiaceae Wüste

Der Sedimentabschnitt IV setzt sich aus leicht laminierten Lagen aus Ton und Schluff zusammen, deren unimodale Korngrößenverteilungen (GSD Typ 1) auf ein limnisches Sedimentationssystem hinweisen. Der fehlende Sandanteil weist auf einen reduzierten äolischen Eintrag in den See hin. Die schwarze Färbung der Ablagerungen sowie der hohe Schwefelanteil deuten auf eine weiterhin andauernde anoxische Umgebung hin.

Ein Anstieg der ,geogenen' Proxidaten (K, Ti, Mn, Fe, Rb) verweist auf einen erneuten Wandel zu trockenen Umweltbedingungen mit erhöhtem Oberflächenabfluss und Eintrag von klastischen Sedimenten in den Bayan Tohomiin Nuur (Abb. 12, Tab. 1) (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Ein Rückgang der organischen Substanz sowie des Kohlenstoffs ist auf eine geringe Vegetationsdecke und eine verminderte Seeproduktivität zurückzuführen. Das auf 8-12 herabgesunkene TOC/N Verhältnis belegt eine überwiegend autochthone Herkunft der organischen Substanz (Horiuchi et al. 2000, Chen et al. 2003, Wang et al. 2004, Herzschuh et al. 2005, Jin et al. 2006, Guo et al. 2007). Der kontinuierliche Kurvenverlauf der ,geogenen' sowie der ,biologischen' Parameter deutet dabei auf eine stabile klimatische Situation.

Eine geringe Konzentration an Ca, CaCO₃ und Sr verweist auf eine verringerte Ausfällung von Carbonaten, wodurch auf einen erneuten Temperaturabfall geschlossen werden kann. In Übereinstimmung damit sinkt die elektrische Leitfähigkeit auf niedrigere Werte. Daraus lässt sich folgern, dass das Wasser eine geringere Salinität aufwies, so dass von einer niedrigen Evaporation ausgegangen werden kann.

Die palynologischen Parameter weisen ebenfalls auf ein trockenes Kima hin. Das Artemisia/Chenopodiaceae Verhältnis verzeichnet einen Rückgang, so dass eine Chenopodiaceae Wüste als die vorherrschende Vegetationsform angenommen werden kann. Ein gestiegener Anteil an *Ephedra* deutet ebenfalls auf kalte Umweltbedingungen, während eine hohe Konzentration von *Glomus* Sporen auf einen verstärkten Oberflächenabtrag hinweist.

Die sedimentologischen und palynologischen Parameter im Abschnitt IV deuten darauf hin, dass ein kaltes und trockenes Klima vorherrschte in dem die Landschaft von einer Chenopodiaceae Wüste geprägt war. Die geringe Vegetationsbedeckung ermöglichte einen erhöhten Sedimenteintrag in den See, wohingegen die biologische Aktivität innerhalb des Sees aufgrund der gesunkenen Temperaturen zurückging. Die Sedimentationsprozesse innerhalb des Abschnitts V weisen auf ein kontinuierliches Ablagerungsmilieu hin, in dem Ton und Schluff sedimentiert wurden. Die Korngrößenverteilungen des GSD Typ 1 deuten auf vorherrschende lakustrine Bedingungen hin (Prins et al. 2000). Eine äolische Aktivität kann aufgrund des geringen Anteils an Feinsand in einem Großteil der Proben ausgeschlossen werden. Der abgesunkene Schwefelanteil sowie die geänderte Farbe (Kap. 5.1.2.6) sind auf einen Übergang zu oxidierenden Bedingungen zurückzuführen.

Der Verlauf von Stickstoff, Kohlenstoff und organischer Substanz (Abb. 12, Tab. 1) deutet daraufhin, dass nach einem kurzen Rückgang die Vegetationsbedeckung und Seeproduktivität anstiegen. Daraus lässt sich rekonstruieren, dass nach einer zunächst trockenen Phase ein feuchtes Klima dominierte, das durch stabile Oberflächen sowie Bodenbildung geprägt wurde (Horiuchi et al. 2000, Chen et al. 2003, Wang et al. 2004, Herzschuh et al. 2005, Jin et al. 2006, Guo et al. 2007). Dies wird durch niedrige K, Ti, Mn, Fe und Rb Werte verifiziert, die auf einen geringen Eintrag von klastischen Sedimenten in den See deuten (Abb. 12, Tab. 1) (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Ein erhöhter Eintrag in 360-320cm verweist in Übereinstimmung mit den N, C und TOC Werten auf eine kurzzeitige Phase mit ariden Bedingungen und einem reduzierten Deckungsgrad der Vegetation.

Die Entwicklung der Parameter CaCO₃, Ca und Sr weisen darauf hin, dass eine hohe Carbonatausfällung im Gewässer erfolgte, so dass ein überwiegend warmes Klima vorherrschend war (Guo et al. 2007). Eine kurze Phase mit kühleren klimatischen Bedingungen stimmt mit dem erhöhten Sedimenteintrag in den See sowie der verringerten Vegetationsbedeckung überein (Abb. 12). Die ansteigenden Werte der elektrischen Leitfähigkeit verweisen auf eine zunehmende Salinität des Sees, die ebenfalls auf eine zunehmende Wassertemperatur zurückzuführen ist.

Die Ergebnisse der palynologischen Auswertung belegen, dass in Abschnitt V ein zunehmend feuchteres Klima vorherrschte. Der stark zunehmende Anteil an *Artemisia* sowie die niedrigen Chenopodiaceae Werte resultieren in einem sehr hohen A/C Verhältnis, woraus auf die Dominanz einer *Artemisia* Steppenlandschaft geschlossen werden kann. Dies kann ebenfalls

durch ein niedriges Vorkommen von *Ephedra* und *Glomus* verifiziert werden, die als Zeiger für Oberflächenabtrag sowie kalte klimatische Verhältnisse gelten (Abb. 22).

Die Ergebnisse des Sedimentabschnitts V deuten darauf hin, dass während 9,6-6,9ka cal. BP ein zunehmend feuchtes und warmes Klima vorherrschte, in dem die Oberflächenprozesse von einer dichten *Artemisia* Steppe verhindert wurden. Die Sedimentation erfolgte ausschließlich in einem lakustrinen Milieu und ein äolischer Eintrag fand nicht statt.

Abschnitt VI (260-240cm; 6,9-6,4ka cal. BP): arides und kaltes Klima, Chenopodiaceae Wüste

Das Auftreten starker Schwankungen innerhalb der meisten Parameter verweist auf einen wesentlichen Wandel der klimatischen Bedingungen, der nur für eine kurze Periode andauerte. Die Korngrößenanalysen weisen einen überwiegenden Anteil an Ton und Feinschluff auf, die in einem Milieu mit niedriger Transportkraft akkumuliert wurden. Dabei zeigen die Korngrößenverteilungen mehrere sich überschneidende Signale von Schluff und Feinsand (multimodale Verteilung), die auf einen fluvialen Sedimenteintrag hinweisen (Abb. 18). Die Ablagerung in Form von einem deutlich ausgrenzbaren dunklen Band sowie die Korngrößenverteilung lassen auf einen ufernahen Standort schließen, der durch fluvialen Sedimenteintrag beeinträchtigt wurde.

Ein Eintrag von fluvialen klastischen Sedimenten kann durch den starken Anstieg von Kalium, Titan, Magnesium, Eisen und Rubidium verifiziert werden, die auf ein arides Klima mit einem verstärkten Oberflächenabfluss hinweisen (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Hohe Stickstoffwerte sowie ein hoher Anteil an organischem Kohlenstoff (Abb. 12) korrespondieren ebenfalls mit dem dunklen Sedimentband (s.o.), so dass hierbei von einer kolluvialen Ablagerung ausgegangen werden kann. Der stark abgesunkene Anteil an Calcium, Carbonat sowie Strontium erklärt eine niedrige Carbonatausfällung, was auf ein kaltes Klima hinweist (Guo et al. 2007). Dies wird vom Verlauf der elektrischen Leitfähigkeit bestätigt, die aufgrund von niedrigen Werten auf eine geringe Salinität deutet. Der Verlauf der palynologischen Proxidaten zeigt einen starken Rückgang der Artemisia Pollen, wohingegen Ephedra und Glomus ansteigen. Dies zeigt, dass ein extrem arides und kaltes Klima vorherrschte, in dem der geringe Deckungsgrad der Vegetation einen fluvialen Oberflächenabfluss begünstigte. Das niedrige Artemisia/Chenopodiaceae Verhältnis lässt darauf schließen, dass die dominierende Vegetationsform im Einzugsgebiet eine Chenopodiaceae Wüste darstellte.

Der Sedimentabschnitt VI umfasst eine kurze Phase, die durch extrem aride und kalte klimatische Bedingungen geprägt wurde. Pollen- sowie sedimentologische Daten belegen einen starken Eintrag an fluvialen bzw. kolluvialen Sedimenten, deren Umlagerung durch eine geringe Vegetationsbedeckung begünstigt wurde.

Abschnitt VII (240-212cm; 6,4-5,6ka cal. BP): semihumides warmes Klima, Artemisia Steppe

Die Sedimente des Kernabschnitts VII setzen sich aus überwiegend tonig- schluffigen Lagen zusammen, deren Korngrößenverteilungen zu den GSD Typen 1 und 2 gezählt werden können. Dies verweist auf flachlimnische Ablagerungen, in die im schwankenden Ausmaß eine fluviale Komponente eingetragen wurde.

Der zunehmende Anteil an C, TOC und N können auf eine gestiegene Vegetationsbedeckung sowie Seeproduktivität zurückgeführt werden, so dass von einem feuchteren Klima ausgegangen werden kann (Horiuchi et al. 2000, Chen et al. 2003, Wang et al. 2004, Herzschuh et al. 2005, Jin et al. 2006, Guo et al. 2007). Die TOC/N Werte im Bereich von 16-18 verweisen dabei auf einen hohen Anteil an autochthoner organischer Substanz (Algen, Wasserpflanzen, usw.). In Übereinstimmung zur dichten Vegetationsbedeckung erfolgte ein geringer Eintrag an klastischen Sedimenten in den See. Dies kann durch den niedrigen Anteil der ,geogenen' Parameter (K, Ti, Mn, Fe, Rb) verifiziert werden (Abb. 12, Tab. 1).

Die hohen Konzentrationen von Carbonat sowie Calcium und Strontium deuten auf einen geringen CO₂ Anteil im Seewasser, so dass eine Ausfällung von Carbonaten erfolgte. Dies kann als Hinweis auf ein warmes Klima gedeutet werde(Guo et al. 2007).

Ein erneut hohes Verhältnis von Artemisia/Chenopodiaceae korrespondiert mit den sedimentologischen Daten und verweist auf eine hohe Vegetationsbedeckung durch Artemisia.

Die Ergebnisse für den Bereich von 6,4-5,6ka cal. BP deuten aufgrund der hohen Vegetationsbedeckung durch eine *Artemisia* Steppe sowie einer hohen biologischen Aktivität des Sees auf ein feuchteres und warmes Klima hin.

Abschnitt VIII (212-200cm; 5,6-5,1ka cal. BP): arides kaltes Klima, Chenopodiaceae Wüste

Die Sedimente des Abschnitts VIII setzen sich aus homogenen Ton- und Schlufflagen zusammen. Die Korngrößenanalysen zeigen einen geringen Sandanteil, so dass die unimodale Korngrößenverteilung dominierend ist (Abb. 20). Dies verweist auf ein limnisches Sedimentationsmilieu, so dass von einem flachen See ausgegangen werden kann. Dies kann durch das Vorkommen von unterschiedlichen Ostrakoden (*Heterocypris salina, Cyclocypris ovum, Fabaeformiscandona angusta, Ilyocypris bradyi* und *Candona weltneri*) verifiziert werden (Felauer et al. in prep., Abb. 22).

Aufgrund von steigenden Anteilen der "geogenen" Parameter (K, Ti, Mn, Fe, Rb) kann davon ausgegangen werden, das ein erhöhter Sedimenteintrag in den See erfolgte (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Dies lässt auf trockene klimatische Bedingungen mit einem verringerten Deckungsgrad der Vegetation schließen. Eine niedrige Produktion von organischer Substanz (niedrige TOC, C, N Anteile) belegt diese Interpretation.

Niedrige Ca, CaCO₃ und Sr Werte sind auf eine reduzierte Ausfällung von Carbonat zurückzuführen, so dass eine niedrigere Wassertemperatur und damit ein kühleres Klima rekonstruiert werden können. Das kühlere Klima hatte ebenfalls eine geringere Evaporation zur Folge, so dass das Wasser des Sees eine geringe Salinität aufwies (niedrige elektrische Leitfähigkeit). Mit dem Übergang zu Abschnitt VIII sinkt der Anteil an *Artemisia* Pollen ab wohingegen die Konzentrationen von Chenopodiaceae und *Ephedra* zunehmen. Dies verweist ebenfalls auf ein trockenes und kaltes Klima.

Sowohl sedimentologische als auch palynologische Auswertungen weisen darauf hin, dass von 5,6-5,1ka cal. BP ein arides und kühles Klima vorherrschte, das durch eine geringe Vegetationsbedeckung, eine geringe Produktivität des Sees sowie eine niedrige Wassertemperatur geprägt war.

Abschnitt IX (200-0cm; 5,1-0ka cal. BP): Trockenfallen des Sees, arides warmes Klima, zunehmende Dünenaktivität

Aufgrund der fehlenden Kernstücke kann keine eindeutige Interpretation der Ergebnisse erfolgen, jedoch können generelle Tendenzen diskutiert werden. Die Korngrößenverteilungen zeigen eine unimodale Verteilung mit einem Maximum im Bereich von 1-10µm (GSD 1), woraus ein limnisches Ablagerungsmilieu mit einer geringen Transportkraft angenommen wird. In einigen Bereichen zeigen die Korngrößenanalysen einen zunehmenden Sandanteil (GSD 2), so dass eine Phase der äolischen Akkumulation rekonstruiert werden kann (Prins et al. 2000). Dieser zunehmende Trend deutet auf eine Austrocknung des Sees, begleitet von der Bildung eines Dünengürtels, der sich bis heute an das Seeufer anschließt.

Zunehmende Anteile von K, Ti, Mn, Fe und Rb im Bereich von 160-110cm deuten auf einen ansteigenden Oberflächenabfluss mit dem Eintrag von klastischen Sedimenten. Oberhalb davon sinken die Konzentrationen ab, was durch das Eintrocknen des Sees begründet werden kann. Im gleichen Bereich steigen die Werte von C, TOC und N stark an, so dass von einer stabilen Phase mit Bodenbildung bzw. Vegetationsbedeckung ausgegangen werden kann. Diese Bodenbildung und Vegetationsbedeckung erfolgte bis heute in einer Zone mit Sumpfvegetation, die sich zwischen dem Seebecken sowie dem anschließenden Kupsendünen- Gürtel erstreckt (Abb. 10). Die hohen Calcium-, Carbonat- und Strontiumanteile sowie die geringfügig steigende elektrische Leitfähigkeit im oberen Bereich verweisen auf eine starke Ausfällung von Carbonaten. Da ,geogene', granulomterische und biologische Parameter auf ein Austrocknen des Sees hinweisen, kann von einer terrestrischen Ausfällung von Carbonaten durch Evaporitbildung ausgegangen werden.

5.2. Orog Nuur

5.2.1. Lage und Einzugsgebiet des Orog Nuur

Das Einzugsgebiet des Orog Nuur (45°4'N, 100°40'E, 1215m ü.M.) bildet den nördlichen Bereich des Untersuchungsgebietes. Der See befindet sich in einem abflusslosen Becken (Fläche des Beckens ca. 1400km²) nördlich angrenzend an die Gebirgskette des Gobi Altai (Abb. 25). Im Süden grenzt das Becken an gefaltete bzw. verformte paläozoische vulkanische und plutonische Gesteine, die durch känozoische Aktivität des Bogd- Verwerfungssystems gehoben wurden (Kap. 4). Die Gebirgszüge des Gobi- Altai erreichen Höhen von 3957m ü.M. am Icht Bogd sowie 3590m ü.M. am östlich gelegenen Baga Bogd.

Abb. 25: Einzugsgebiet des Orog Nuur (weiße Umrandung) mit der Position der Bohrungen ONW I, ONW II; Seebecken (gestrichelte Linie)

Mehrere Reliefgenerationen von quartären Schwemmfächern mit einer Längserstreckung von fünf bis zu acht Kilometern bilden den Übergang vom Gebirge in die Sedimente des Beckenbereiches. Der nördlich angrenzende Bereich besteht aus paläozoischen Vulkaniten, die durch einen Nebenzweig der Bogd Verwerfung angehoben wurden, so dass sich eine Bruchstufe von 1400m ü.M. Höhe entwickelte. Diese Stufe wird aus nördlicher Richtung vom Fluss Tuyn Gol durchschnitten, der im Changai Gebirge (3540m ü.M.) entspringt, und den Hauptzufluss des Orog Nuur darstellt.

Abb. 26: Fotos aus dem Einzugsgebiet des Orog Nuur; A) ausgetrocknetes Westbecken des Orog Nuur - Bohrposition 2008, B) Barchanfeld nördlich des Orog Nuur, C) Terrassen des Tuyn Gol nahe der Siedlung Jinst, D) Moränen im Khuremt Tal (nördlicher Teil des Einzugsgebietes)

Das Einzugsgebiet des Orog Nuur erstreckt sich auf einer Fläche von ca. 12130km² von der Wasserscheide des Gobi Altai bis in das nördlich gelegene Changai Gebirge (Abb. 25). Der See teilt sich in drei west-ost verlaufende Becken auf, die eine Fläche von ca. 140km² ein-

nehmen und eine maximale Wassertiefe von 5m erreichen. Aufgrund des ariden Klimas und der schwankenden Abflussmenge des Tuyn Gol variiert die Ausdehnung des Sees, so dass das westliche Becken teilweise trocken fallen kann (Abb. 26). Angrenzend an den See folgt ein Gürtel mit Sumpfpflanzen, der auf den Grundwasserspiegel des Sees sowie der Schwemmfächer eingestellt ist. Mehrere Strandwälle in 23m, 16m, 10m und 3m über dem rezenten Seespiegel deuten auf unterschiedliche Phasen hin, in denen der See eine weitere Ausdehnung besaß (Komatsu et al. 2001, Lehmkuhl und Lang 2001, Walther et al. 2003, Yang et al. 2004). Nördlich des Orog Nuur bedecken kleine Dünenfelder und Barchane die fluvialen und lakustrinen Beckensedimente und bilden einen Übergang zum Nugin Els, einem Dünenfeld östlich des Sees, das aus mehreren Dünengenerationen mit bis zu 100m Höhe besteht (Baasan 2004). Die Vegetation innerhalb des Beckens setzt sich aus typischen Arten der Trockensteppe zusammen (*Stipa gobica, Caragana leucophloea*).

5.2.2. Sedimentologische Ergebnisse (ONW I)

5.2.2.1. Allgemeine Beschreibung des Bohrkerns

Die Bohrung ONW I (45°4'22,302"N, 100°34'48,503"E, 1212m ü.M.) erfolgte im trockengefallenen westlichen Seebecken, ca. 1000m vom Nordufer entfernt. Der Sedimentkern reicht bis in 6m Tiefe und setzt sich aus lakustrinen Ton- und Schlufflagen zusammen, die mit einzelnen Sandschichten alternieren. Im Bereich von 600-380cm zeigt der Bohrkern eine schwarze bzw. dunkelgraue Färbung, wohingegen die oberen Bereiche (379-0cm) grau, hellgrau und braun gefärbt sind. Der Kern kann anhand der sedimentologischen Daten sowie der optischen Beschreibung in acht Kernabschnitte untergliedert werden, die im Anschluss erläutert werden. Die Einteilung in acht Sedimentationsabschnitte erfolgte anhand von Schwankungen der sedimentologischen Parameter, wobei Bereiche mit durchschnittlich hohen bzw. niedrigen Werten voneinander abgegrenzt wurden (Tab. 3).

[%]	S	0,45	0,16	0,25	0,22	0,52	0,19	0,30	0,24	0,07
TOC	Ø	0,67	0,83	0,93	1,41	1,08	0,47	0,42	0,21	0,49
3 [%]	s	11,8	4,2	7,2	8,5	10,3	1,7	2,6	2,4	1,8
CaCO	Ø	17,2	28,4	31,6	34,1	27,0	10,4	8,0	7,2	11,1
[%]	S	0,105	0,021	0,028	0,011	0,009	0,070	0,120	0,050	0,174
s [Ø	0,077	0,032	0,041	0,005	0,004	0,040	0,122	0,201	0,191
[%]	S	1,64	0,58	0,96	1,03	1,52	0,29	0,44	0,39	0,22
c [Ø	2,45	3,89	4,33	4,91	3,86	1,52	1,20	0,99	1,61
%]	S	0,015	0,008	0,007	0,008	0,019	0,010	0,010	0,012	0,005
] N	Ø	0,050	0,064	0,059	0,069	0,053	0,047	0,040	0,032	0,059
:000µm	s	19	2	4	m	7	10	17	17	10
Sand <2 [%	ø	23	4	9	~	21	4	35	53	19
<63µm 6]	S	13	2	5	5	7	7	13	12	8
Schluff [%	Ø	54	60	62	64	57	60	47	33	59
[%] ur	S	7	2	3	e	9	e	5	5	3
Ton <2	Ø	23	36	32	28	23	22	18	14	21
lere ße [µm]	s	51	2	9	7	25	27	49	55	24
Mitt Korngrö	ø	58	11	14	23	53	43	88	147	46
		Gesamtkern	Cernabschnitt VIII	Kernabschnitt VII	Kernabschnitt VI	Kernabschnitt V	Kernabschnitt IV	(ernabschnitt III	(ernabschnitt II	Kernabschnitt I

	K [p	[mo	Ca [p	[md	Ti [p;	[mc	Mn [p	[mdi	Fe [p	[md	Rb [p	[md	Sr [p	[md	Mag. Su	IS. [SI]	Elektri Leitfähigk	sche eit [mS]
	Ø	s	ø	s	ø	s	ø	s	ø	s	ø	s	ø	s	ø	S	ø	s
Gesamtkern	18959	2720	68189	41257	2415	559	514	126	21551	3711	56	6	836	410	46	45	0,16	0,05
Kernabschnitt VIII	16952	2400	82046	14572	1857	324	593	141	26068	1835	58	5	1459	242	10	3	0,23	0,05
Kernabschnitt VII	18628	2036	112045	30018	2153	389	473	124	20208	3465	48	7	1038	275	13	3	0,21	0,01
Kernabschnitt VI	17127	2361	132194	27604	1943	403	457	66	18196	3209	44	7	1287	609	10	3	0,21	0,02
Kernabschnitt V	18047	1837	105978	38475	2123	331	497	103	21284	2675	51	~	1063	345	13	3	0,15	0,04
Kernabschnitt IV	21542	1814	40123	5389	3003	274	542	112	23881	2319	ន	9	566	56	3	24	0,13	0,03
Kernabschnitt III	19377	2391	39063	10134	2578	475	533	136	20846	3310	58	7	601	62	103	44	0,14	0,03
Kernabschnitt II	16456	2397	38241	9616	2047	404	408	83	17957	2873	54	5	676	20	68	11	0,12	0,02
Kernabschnitt I	20682	1871	46180	11511	2900	386	558	122	24214	2393	62	9	539	65	48	10	0,19	0,03

<u>Ergebnisse</u>

Tab. 3: Sedimentologische Daten der ONW I Bohrung in Mittelwerten und Standardabweichung nach Kernabschnitten

5.2.2.2. ONW I Kernabschnitt I (600-561cm)

Abb. 29: ONW I Kernabschnitt I (600-561cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der unterste Abschnitt des ONW I Kerns (600-561cm) besteht im Bereich von 600 -575cm aus schwarzen tonigem Schluff, der nach Öffnung des Kerns eine graue Verfärbung aufweist. Ab 574cm erfolgt ein Übergang zu sandigem Schluff, der dunkelgrau gefärbt ist, und ebenfalls eine nachträgliche Farbänderung der Grautöne zeigt. Zwischen 600cm und 575cm bestehen die Sedimente aus einer homogenen und massigen Schicht, die schwache interne Laminierungsstrukturen aufweist. Die durch eine klare Grenze anschließende homogene Sandlage zeigt keinerlei Strukturen und geht bis 561cm in zunehmend tonig siltige Sedimente über.

Die mittlere Korngröße des Kernabschnittes liegt bei einem Durchschnitt von 46µm (Tab. 3) und verzeichnet zunächst eine ansteigende Tendenz von 22µm in 595cm auf 86µm in 573cm. Bis 563cm erfolgt ein Rückgang auf 55µm. Der Ton- und Schluffgehalt liegen bei einem Durchschnitt von 21% (Ton) und 59% (Schluff) und verlaufen gegenläufig zur mittleren Korngröße. Der Kurvenverlauf zeigt zunächst einen Rückgang zwischen 595cm bis 573cm von 22-16% in der Tonfraktion und von 70-48% in der Schlufffraktion. Nach diesem Minimalwert von Ton und Schluff erfolgt ein Anstieg auf 21% Ton sowie 56% Schluff in 563cm Tiefe. Der Anteil an Sand liegt in Abschnitt I im Durchschnitt bei 19%. Der Kurvenverlauf zeigt dabei von 595-580cm niedrige Werte die in Bereich von 8-15% liegen. In 573cm erfolgt ein Sprung auf ein Maximum von 35%, woraufhin der Sandanteil bis 563cm wieder auf 22% absinkt. Die Korngrößenverteilung der Sedimente können in zwei Klassen untergliedert werden. Der GSD

Typ 1 zeigt eine unimodale Korngrößenverteilung, deren Maximum im Bereich von 1-10μm ausgeprägt ist. Der zweite Typ der Korngrößenverteilungen bildet eine bimodale Verteilung, die neben dem Maximum im Ton- und Feinschluffbereich ein sekundäres Maximum zwischen 100μm und 300μm aufweist (Abb. 29).

Der durchschnittliche Kaliumgehalt (K) liegt mit 20682ppm über dem Kernmittelwert. Der Verlauf zeigt dabei eine rückläufige Tendenz von einem Maximum mit 23461ppm in 599cm auf 18285ppm in 561cm. Der Trend wird im Bereich von 573-569cm von einem Minimum unterbrochen, das auf einen Kaliumanteil von 15841ppm zurücksinkt. Die Konzentration an Calcium (Ca) im Abschnitt I verzeichnet einen Durchschnittswert von 46180ppm (Tab. 3) und beschreibt einen zunehmenden Verlauf im Bereich von 599-583cm (32791-52685ppm). Im Anschluss daran geht der Calciumgehalt bis auf ein Minimum von 33322ppm in 579cm zurück und steigt dann wiederum zu einem langgezogenen Maximum an (50000-68000ppm).

Die Konzentration an Titan (Ti) weist hohe Werte auf, die im Durchschnitt bei 2900ppm liegen. Der Bereich von 599-577cm ist durch gestiegene Titankonzentrationen zwischen ca. 3000ppm und 3300ppm gekennzeichnet. Anschließend fallen die Werte auf ein Minimum in 573cm (1966ppm) und steigen wieder bis auf 2785ppm in 563cm an. Eine vergleichbare Tendenz ist auch für das Element Mangan (Mn) zu beobachten, welches mit durchschnittlich 558ppm in einer relativ hohen Konzentration im Sediment vorhanden ist. Der Kurvenverlauf zeigt eine rückläufige Tendenz, wobei die Werte von ca. 600-700ppm (595-599cm) auf ca. 300-400 ppm (565-561cm) absinken.

Der Eisengehalt (Fe) im untersten Bereich des Bohrkerns verläuft mit mittleren 24214ppm auf einem hohen Niveau (Abb. 28). In einer Tiefe von 599cm liegt der die Fe- Konzentration bei 27594ppm und verläuft bis 561cm mit leichter Abnahme der Werte auf 20547ppm. Der mittlere Rubidiumgehalt (Rb) des Kernabschnitts I liegt mit 62ppm über dem Kerndurchschnitt. Der Kurvenverlauf setzt sich aus mehreren Minima und Maxima (70ppm in 597cm, 66ppm in 581cm, 67ppm in 565cm) zusammen, die eine negative Tendenz aufweisen.

Das Element Strontium (Sr) verzeichnet mit durchschnittlich 539ppm eine geringe Konzentration die unter dem Kernmittel liegt (Tab. 3). Der Kurvenverlauf zeigt eine geringfügig zunehmende Tendenz, die von 430ppm auf ca. 550ppm ansteigt. Der Stickstoffanteil (N) liegt über dem Durchschnitt (0,059%) und gliedert sich in zwei Bereiche. Von 595-580cm erfolgt ein Anstieg von 0,058% auf 0,066%, woraufhin ein Werterückgang stattfindet. Von 573-563cm steigen die Werte von 0,051% auf 0,059%.

Die Konzentration an Kohlenstoff (C) liegt mit 1,61% in einem niedrigen Level. Der Kurvenverlauf beschreibt einen konstanten Trend, dessen Werte zwischen 1,2-2% schwanken. Der Sedimentabschnitt I weist eine hohe Konzentration an Schwefel (S) auf, die einen Mittelwert von 0,19% bildet. Der Bereich von 595-585cm zeigt zunächst niedrige Schwefelwerte, die von 0,05% bis 0,08% reichen. Im Anschluss daran steigt die Konzentration auf ein Maximum (0,5%) in 573cm und verläuft dann unter starken Schwankungen auf einem hohen Niveau (0,1-0,3%) (Abb. 28).

Der Carbonatanteil (CaCO₃) innerhalb des Abschnitts liegt mit durchschnittlich 11,1% unterhalb des Kernmittels. Der Werteverlauf zeigt eine gleichbleibende Tendenz, wobei die CaCO₃ Konzentration zwischen 8-14% schwankt. Der Anteil an organischer Substanz (TOC) liegt mit einem Mittelwert von 0,49% ebenfalls unter dem Durchschnitt des Sedimentkerns. Die Werte zeigen von 595 -580cm einen konstanten Verlauf zwischen 0,48-0,55%. Ab 573cm verlaufen die Werte mit einer stärkeren Streuung (0,34-0,52%).

Die magnetische Suszeptibilität (Mag. Sus.) liegt konstant in einem Bereich von ca. 50SI und zeigt keine besonderen Abweichungen. Der Verlauf der elektrischen Leitfähigkeit (el. Leitf.) beginnt auf einem hohen Niveau von 0,2mS im Bereich von 595-580cm. Von 573-563cm erfolgt ein Rückgang der Leitfähigkeit auf 0,16-0,15mS).

5.2.2.3. ONW I Kernabschnitt II (560-511cm)

Abb. 30: ONW I Kernabschnitt II (560-511cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen (zunehmender Ton und Schluffgehalt)

Der Bereich von 560-511cm wird als Bohrkernabschnitt II ausgewiesen und besteht aus schwarzen und dunkelgrauen Sedimenten, die eine nachträgliche Verfärbung an der Oberfläche aufweisen. Der Kernabschnitt setzt sich aus zwei Bereichen zusammen, von denen der untere mit einem homogenen Band aus Sand beginnt (558-560cm), in dem der Schluff- und Tongehalt bis 532cm zunimmt. In einer Tiefe von 532cm erfolgt ein scharfer Übergang zu einem weiteren Bereich, der aus mehreren horizontalen, bis zu 2cm mächtigen Sandlagen besteht (Abb. 30). Ab 520-510cm erfolgt ein weiterer Zyklus, in dem der Schluff- und Tonanteil wieder zunehmen.

Die durchschnittliche Korngröße innerhalb des Abschnitts II stellt mit 145µm den gröbsten Bereich des Bohrkerns dar (Tab. 3). Der Mittelwert sinkt hierbei zunächst von einem Maximum von 158µm in 559cm auf einen Minimalwert von 89µm in 535cm. Anschließend steigt die Korngröße auf durchschnittlich 220µm und verbleibt in einem hohen Niveau von 160-220µm. Die Anteile von Ton und Schluff beschreiben die niedrigsten Werte im Bohrkern mit 14% Ton und 33% Schluff. Der Verlauf des Tongehaltes gliedert sich in zwei Bereiche, die jeweils von einem Minimum auf ein Maximum ansteigen (Abb. 28). Von 559-535cm steigt der Tonanteil von 9-19% an, von 530-515cm steigt er von 7% auf 14% an. Innerhalb der Abschnitte erfolgt auch eine jeweilige Zunahme des Schluffanteils, der von 24-45% ansteigt sowie von 17-35%. Der Sandanteil des Abschnitts II verzeichnet mit 53% den höchsten Mittelwert des Bohrkerns (Tab. 3). Die Konzentration zeigt dabei eine zum Schluff und Ton gegenläufige Tendenz. So sinkt der Sandanteil zwischen 559-535cm von 66% auf 36% ab. Im Bereich von 530cm bis 520cm verbleibt der Sandanteil auf einem hohen Level (70-77%) und sinkt anschließend geringfügig auf 50% ab (515cm). Der Abschnitt II zeigt unterschiedliche Abstufungen von Korngrößenverteilungen, die in zwei Kategorien eingeteilt werden können. Der GSD Typ 2 bildet eine bimodale Verteilung, deren Maximalwerte im Bereich von 1-10µm sowie 100-300µm liegen (Abb. 30). Der GSD Typ 3 zeigt eine unimodale Verteilung mit einem Maximum, das sich im Bereich von 100-300µm ausbildet.

Der Kaliumgehalt (K) in Abschnitt II verzeichnet einen Rückgang auf durchschnittlich 16456ppm, den niedrigsten Wert innerhalb des Bohrkerns (Tab. 3). Der Verlauf der Werte lässt sich in zwei Bereiche unterteilen, von denen im unteren (559-533cm) ein Anstieg von 15379ppm auf ein Maximum von 19820ppm erfolgt. Zwischen 531-515cm sinkt der Kaliumanteil auf niedrige Werte, die zwischen 13000-14000ppm verlaufen. Von 513-511cm steigt die Konzentration auf 18778ppm an. Der mittlere Anteil an Calcium (Ca) beschreibt ebenfalls den geringsten Wert im Bohrkern (38241ppm). Von 559-537cm verlaufen die Werte schwach ansteigend von ca. 32000 auf 52424ppm, woraufhin der Ca- Gehalt auf ein langgezogenes Minimum bis 519cm sinkt (20000-30000ppm). Im Bereich von 517-511cm steigen die Werte von 29383ppm auf 42752ppm.

Das Element Titan (Ti) ist in Abschnitt II auf durchschnittlich 2047ppm abgesunken. Der Kurvenverlauf beginnt mit einem relativen Minimum zwischen 559cm und 553cm, welches auf einen Wert von 1892ppm in 555cm abfällt. Der Bereich von 551-533cm verläuft auf einem hohen Niveau zwischen ca. 2200-2600ppm. Oberhalb von 531cm bildet sich ein lang gestrecktes Minimum, dessen Werte zwischen 1500ppm und 1700ppm schwanken, um in 513 -511cm auf 2408ppm anzusteigen. Der Verlauf von Mangan (Mn) verzeichnet einen Rückgang auf mittlere 408ppm, den Minimalwert des Kerns (Tab. 3). Der Bereich von 559 -531cm beschreibt relativ hohe Werte, die starken Schwankungen unterliegen (290 -544ppm). In 529cm sinkt der Mn Wert auf ein Minimum von 269ppm und steigt anschließend bis 511cm auf 454ppm an.

Der durchschnittliche Gehalt an Eisen (Fe) erreicht einen geringen Wert von 17957ppm innerhalb des Abschnitts II. Der Kurvenverlauf zeigt dabei im Bereich von 559-553cm einen Anstieg der Werte von 17679ppm auf 19303ppm, um anschließend bis 533cm auf einem hohen Niveau von ca. 20000ppm zu verbleiben. Von 531-517cm bildet der Eisengehalt ein konstant verlaufendes Minimum von ca. 14000-15000ppm, steigt dann bis 511cm auf 21600ppm an. Der Anteil an Rubidium (Rb) sinkt auf mittlere 54ppm ab, wobei sich der Kurvenverlauf in zwei Bereiche untergliedern lässt. Von 559-533cm steigt der Rubidiumgehalt auf 50-60ppm an, um anschließend (531-511cm) auf 45-50ppm abzusinken.

Der Strontiumgehalt (Sr) verzeichnet einen leichten Anstieg des Mittelwertes auf 676ppm. Die Werte verlaufen mit geringen Schwankungen im Bereich von 600 -700ppm. Der Stickstoffanteil (N) erreicht mit 0,032ppm den geringsten Mittelwert des Kerns (Tab. 3). Der Kurvenverlauf beschreibt eine steigende Tendenz von 0,02% auf 0,05% (559-535cm) und verläuft daraufhin von 530 -520cm im Bereich von 0,01%. In 515cm steigt die Konzentration wieder auf 0,03% an.

Die Konzentration an Kohlenstoff (C) bildet mit 0,9% ebenfalls den niedrigsten Mittelwert des Bohrkerns. Die Werte verlaufen dabei zunächst von 0,6% in 559cm auf einen Maximalwert von 1,4% in 540cm. Der Bereich zwischen 530 -520cm bildet ein Minimum aus, dessen Werte in 525cm auf 0,4% absinken. Der Schwefelgehalt (S) verzeichnet eine gegenläufige Tendenz und erreicht mit 0,2% den höchsten Wert der Kernabschnitte (Abb. 28). Im Bereich von 559-525cm verlaufen die Werte von einem Maximum (0,28%) bis auf einen Wert von 0,1%. In 520-515cm steigt der Schwefelanteil wieder auf 0,2%.

Der durchschnittliche Carbonatanteil (CaCO₃) erreicht das Kernminimum von 7,2% in Abschnitt II. Zwischen 559-535cm steigen die Werte an und bilden ein Maximum von 10,4% in 550cm. Anschließend fällt die Kurve auf einen Minimalwert von 3,9% (530cm) und verläuft mit steigendem Trend auf 7,7% in 515cm. Die Konzentration an organischer Substanz (TOC) fällt innerhalb des Abschnitts auf durchschnittliche 0,21% zurück. Dabei verlaufen die Werte zunächst in einem positiven Trend von 0,2% auf 0,6%. Der Bereich von 530-515cm weist sehr geringe Werte zwischen 0 -0,1% auf.

Die magnetische Suszeptibilität (Mag. Sus.) weist einen auf 68SI gestiegenen Durchschnittswert auf. Die Werte innerhalb des Abschnitts beschreiben einen Anstieg von ca. 50SI auf 80SI. Der Verlauf der elektrischen Leitfähigkeit (el. Leitf.) beschreibt zwei Phasen, die jeweils mit einem Minimum starten und bis zu einem Maximalwert ansteigen. Von 559-535cm entwickelt sich die Leitfähigkeit von 0,09mS auf einen Wert von 0,14mS. Anschließend erfolgt ein erneuter Anstieg von 0,07mS auf 0,13mS in 515cm.

5.2.2.4. ONW I Kernabschnitt III (510-353cm)

Abb. 31: ONW I Kernabschnitt III (510-353cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Bohrkernabschnitt III reicht von einer Tiefe von 510cm bis in 353cm und setzt sich aus verschiedenen Lagen sandiger, schluffiger und toniger Sedimente zusammen, deren Farbe von schwarz zu dunkelgrau variiert. Die oberflächlichen Bereiche zeigen nach der Öffnung des Kerns eine nachträgliche Verfärbung, so dass hellere grau- und brauntöne vorherrschen. Ab der Tiefe von ca. 380cm geht die schwarze Färbung der Sedimente in grau und brauntöne über, so dass oberhalb keine nachträgliche Farbveränderung mehr erfolgte. Der Kernabschnitt setzt sich aus verschiedenen Sedimentlagen zusammen, deren Mächtigkeit zwischen 5-20cm schwankt. Innerhalb der Lagen sind schwache, horizontal laminierte Bereiche erkennbar, die zwischen 0,5cm und 3cm Schichtdicke schwanken (Abb. 31). Mehrere kleine Sandlagen, die im mittleren Bereich vorkommen (490-489cm, 463-462cm, 430-429cm), verzahnen sich mit dem tonigen Schluff. Zwei Sandlagen im oberen Abschnitt weisen eine größere Mächtigkeit auf (387-381cm, 372-353cm). In 384cm wurde ein Gesteinsstück aus dem Bohrkern entnommen, welches eine Kantenlänge von ca. 2,5mm aufweist und metamorphen Ursprungs ist.

Die mittlere Korngröße des Sedimentabschnitts sinkt auf einen Durchschnitt von 88µm (Tab. 3) und zeigt einen stark schwankenden Verlauf. Der Bereich von 510-390cm beschreibt Werte, die zwischen 40-80µm oszillieren und in 461cm und 430cm von zwei Maxima (199µm und 172µm) unterbrochen werden. Der Abschnitt zwischen 384-355cm ist durch stark ansteigende Werte gekennzeichnet, die zwischen 100-190µm schwanken. Der durchschnittliche Tongehalt liegt weiterhin auf einem niedrigen Level von 18% und zeigt einen konstanten Kurvenverlauf. Dieser Trend wird von drei Minima unterbrochen, die in 461cm (8%), 430cm (11%) sowie 369cm (8%) auftreten. Der mittlere Schluffgehalt verzeichnet einen Anstieg auf 47% und verläuft dort auf einem konstanten Niveau (Abb. 28). In den Bereichen um 461cm, 430cm sowie 369cm sinkt der Schluffgehalt auf 20%, 27% und 21% zurück. Der Sandanteil des Abschnitts III sinkt auf durchschnittlich 35% zurück und verläuft auf dem Niveau mit starken Schwankungen. Im unteren Bereich (510-375cm) erfolgen zwei Abweichungen vom mittleren Trend, indem Maximalwerte von 71% (461cm) bzw. 61% (430cm) erreicht werden. Im Abschnitt von 369-355cm Steigt der Sandanteil auf ein langgezogenes Maximum mit Werten um 56-70%. Die Korngrößenverteilungen der Sedimente variieren und können in GSD Typ 2 (bimodal, Maxima von 1-10µm und von 100-300µm) sowie GSD Typ 3 (monomodal, Maximum von 100-500µm) unterteilt werden (Abb. 31).

Der mittlere Kaliumgehalt (K) zeigt gestiegene Werte, die von 509cm bis 371cm auf einem Niveau von ca. 21000ppm verlaufen, das in mehreren Bereichen von Minima unterbrochen wird. Diese treten in 479cm (16135ppm), 431cm (15489ppm), 397cm (14894ppm) sowie in 381cm (14707ppm) auf. Von 369-353cm sinkt die Kaliumkurve auf konstante Werte von ca. 15000ppm ab. Der durchschnittliche Anteil an Calcium (Ca) verzeichnet mit 39063ppm einen weit unter dem Kernmittel liegenden Wert (Tab. 3). Der Abschnitt 509-465cm beschreibt eine leicht steigende Tendenz von 44429ppm auf 55798ppm. Im anschließenden Bereich (463-371cm) verlaufen die Werte gleichbleibend in einer Höhe von 30000-40000ppm, werden aber durch mehrere relative Maxima unterbrochen, die 55982ppm (441cm), 53911ppm (417cm) und 58635ppm (405cm) erreichen. Der Abschnitt von 369-353cm verzeichnet kontinuierlich niedrige Werte, die zwischen 20000-30000ppm streuen.

Die Konzentration des Elements Titan (Ti) zeigt einen Anstieg des Durchschnittswertes auf 2578ppm, einen Wert, der sich über dem Kerndurchschnitt befindet. Kennzeichnend für den Sedimentabschnitt III ist eine kontinuierliche Abfolge von Maximal- und Minimalwerten im

Bereich von 509-371cm (Abb. 28). Die Maxima treten in 495cm, 451cm, 415cm, 389cm und 377cm auf und erreichen Werte, die zwischen 3000ppm und 3500ppm liegen. Die Minima gehen in 481cm, 431cm, 401cm und 381cm auf ca. 2000ppm zurück. Der anschließende Bereich (369-535cm) verzeichnet konstant ansteigende Werte, die von 1469-2144ppm verlaufen. Der Anteil an Mangan (Mn) steigt in Abschnitt III auf mittlere 533ppm. Der untere Bereich von 509-441cm zeigt einen Kurvenverlauf, der aus zwei Maxima (495cm: 785ppm, 445cm: 850ppm) besteht, die in 461cm von einem Minimum (308ppm) getrennt werden. Zwischen 439-373cm verläuft die Kurve auf einem konstanten Level, dessen Werte zwischen 400ppm und 700ppm schwanken. Im Anschluss daran erfolgt ein Anstieg von ca. 200ppm auf ca. 500ppm.

Die durchschnittliche Konzentration an Eisen (Fe) steigt auf einen mittleren Bereich von 20846ppm. Zwischen 509cm und 371cm zeigen die Werte einen konstanten Verlauf mit Schwankungen zwischen 14000-26000ppm. Der Bereich von 369-353cm verzeichnet niedrige Konzentrationen um 11000-16000ppm. Der Rubidiumgehalt (Rb) steigt auf einen Durchschnitt von 58ppm, einen Wert der unter dem Kernmittel liegt. Der Kurvenverlauf beschreibt eine steigende Tendenz von 55ppm auf 72ppm im Bereich von 509-445cm. Im Anschluss daran folgen ein Minimum (46ppm in 435cm) sowie ein Maximalwert von 77ppm in 415cm. Im Bereich von 413cm bis 353cm folgt ein Werterückgang von 64-47ppm.

Der Mittelewert an Strontium (Sr) liegt in einer Höhe von 601ppm. Der Kurvenverlauf zeigt dabei einen konstanten Trend mit Schwankungen zwischen 550-750 ppm. Der Stickstoffgehalt (N) des Abschnitts III steigt auf einen Mittelwert von 0,04%. Die Werte verbleiben dabei zwischen 510-375cm auf einem konstanten Niveau von 0,04-0,05%. Zwei Minimalwerte in 461cm sowie 430cm sinken auf 0,023% ab. In 369-355cm verlaufen die Werte anschließend auf einem Niveau von 0,02%.

Das Element Kohlenstoff (C) liegt mit durchschnittlich 1,2% unter dem Kernmittelwert (Tab. 3). Der Kurvenverlauf teilt sich dabei in zwei Bereiche. Von 510-465cm erfolgt ein konstanter Anstieg von 1,4% auf 1,9%. Anschließend fallen die Werte bis 355cm wieder auf 0,6% ab. Die Konzentration des Elements Schwefel (S) liegt im Durchschnitt bei 0,12%. Von 510cm bis 461cm sinken die Schwefelwerte von 0,25% auf 0%. Daraufhin daran steigen die Werte bis auf einen Maximalwert von 0,4% in 380cm. Der Bereich von 375-355cm kennzeichnet sich durch Konzentrationen, die in einem niedrigen Niveau von 0,1% schwanken.
Der mittlere Carbonatgehalt (CaCO₃) des Abschnitts III liegt bei 8% und der Kurvenverlauf ist vergleichbar mit dem des Kohlenstoffs. Die Werte steigen zunächst von 10-12% im Bereich von 510-465cm. Daraufhin fallen die Werte bis auf 5% in 355cm zurück. Der Anteil der organischen Substanz (TOC) liegt bei einem durchschnittlichen Wert von 0,42%. Die Werte beschreiben ein langgestrecktes Maximum von 510-375cm, das 0,75% erreicht und bei 461cm auf 0,2% sowie in 430cm auf 0,16% zurückgeht (Abb. 28). Im Bereich von 369-355cm liegt der TOC Anteil bei 0%.

Die magnetische Suszeptibilität (Mag. Sus.) verläuft weiter ansteigend von 70SI auf 143SI in 406cm. Daraufhin beginnt ein stark schwankender Bereich, in dem sich ein Minimum von 15SI (397cm) sowie ein Maximalwert von 383SI (383cm) ausbilden. Im anschließenden Abschnitt von 382-355cm schwanken die Werte zwischen 40-80SI. Der Verlauf der elektrischen Leitfähigkeit (el. Leitf.) beschreibt eine fallende Tendenz von 0,16mS in 510cm auf 0,08mS in 461cm. Bis 375cm erfolgt ein Anstieg auf 0,18mS, gefolgt von einem Minimum (0,1mS) das bis 355cm reicht.

5.2.2.5. ONW I Kernabschnitt IV (352-238cm)

Abb. 32: ONW I Kernabschnitt IV (352-238cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Kernabschnitt IV setzt sich aus braun und grau gefärbten Sedimenten zusammen, die größtenteils aus tonigem Schluff bestehen. In 328-320cm sowie 268-261cm treten Sandlagen auf, die nach einer scharfen Untergrenze zum Hangenden in Lagen aus Schluff und Ton übergehen. Die Sedimente weisen eine massige Struktur auf und zeigen nur geringe Laminierungsstrukturen (Abb. 32).

Die mittlere Korngröße im Abschnitt IV sinkt auf einen Durchschnittswert von 43µm. Der Kurvenverlauf beschreibt dabei eine gleichbleibende Tendenz im Bereich von 20-40µm. Zwei Maxima in 321cm sowie262cm erreichen 126µm und 90µm. Der Anteil der Tonfraktion weist einen konstanten Verlauf auf, der im Durchschnitt bei 22% liegt. Zwei Minimalwerte sinken auf 14,5% in 321cm und 17% in 262cm (Abb. 28). Die Entwicklung des Schluffgehalts zeigt einen Anstieg auf mittlere 60%. Der Verlauf der Werte liegt dabei auf einem gleichbleibenden Trend, der in 321cm und 262cm auf Minimalwerte von 37% und 48% absinkt. Der auf durchschnittlich 18% gesunkene Sandanteil beschreibt eine zum Ton und Schluff gegenläufige Tendenz. Die Sandkonzentration verläuft überwiegend im Bereich von 10-20%, steigt in 321cm und 262cm auf 47% sowie 34% an. Die Korngrößenverteilungen des Abschnitts schwanken von unimodalen Verteilungen (GSD Typ 1) zu bimodalen Verteilungen des GSD Typs 2 (Maxima in 1-10µm und 100-400µm) (Abb. 32).

Die Konzentration an Kalium (K) erreicht mit einem Durchschnitt von 21542ppm den höchsten Wert im Kern (Tab. 3). Der Kurvenverlauf beschreibt dabei einen geradlinigen Trend, der von zwei Minima in 321cm (16094ppm) sowie 265cm (16997ppm) unterbrochen wird. Der Anteil an Calcium (Ca) liegt mit durchschnittlich 40123ppm unter dem Kernmittelwert und beschreibt einen konstanten Kurvenverlauf.

Die Entwicklung des Titangehaltes (Ti) zeigt die höchste Konzentration der Kernabschnitte mit 3003ppm. Hierbei bilden die Ti- Werte zunächst ein Maximum, das sich von 351-329cm erstreck und Werte von 3400ppm erreicht (Abb. 28). Anschließend folgen ein Rückgang auf ein Minimum von 2244ppm in 321cm und ein weiterer Anstieg auf 3305ppm in 315cm. Von diesem relativen Maximum erfolgt ein Rückgang auf 2387ppm in 261cm. Der folgende Bereich verzeichnet ein erneutes Maximum von 3368ppm in 253cm und eine lückläufige Tendenz auf 2882ppm in 239cm. Der Mittelwert des Mangananteils (Mn) des Kernabschnitts IV liegt mit 542ppm über dem Kerndurchschnitt. Der Kurvenverlauf steigt zunächst zu einem Maximalwert von 711ppm in 341cm Tiefe und sinkt daraufhin auf 267ppm in 321cm. Der Bereich von 319-267cm verzeichnet ein langgezogenes Maximum, das ca. 800ppm in 289cm erreicht. Von 287 -239cm verlaufen die Werte zunächst zwischen 400-600ppm, steigen dann aber auf 741ppm an.

Der Anteil an Eisen (Fe) liegt bei einem Durchschnitt von 23881ppm. Der Bereich von 351 -297cm beschreibt einen konstanten Trendverlauf zwischen 22000-25000ppm, der in 321cm von einem Minimum unterbrochen wird, dessen Wert auf 16633ppm sinkt (Abb. 28). Von 295-261cm sowie von 259-239cm erfolgt ein Rückgang von einem Maximum (25778ppm bzw. 27127ppm) auf Minimalwerte von 20460ppm und 21193ppm. Der mittlere Rubidiumgehalt (Rb) von 63ppm stellt den höchsten Wert im Bohrkern dar. Der Kurvenverlauf beschreibt zwei Maxima und Minima, die Werte von 69ppm (347cm) und 52ppm (341cm) sowie 69ppm (333cm) und 49ppm (325cm) erreichen. Der nachfolgende Bereich (323-239cm) verläuft mit einem kontinuierlichen Trend zwischen 50-70ppm.

Der Strontiumgehalt (Sr) verläuft weiterhin auf einem niedrigen Level und zeigt keinerlei Dynamik. Die Werte verlaufen kontinuierlich im Bereich von 560ppm. Das Element Stickstoff (N) verzeichnet keine Änderung und verläuft im Bereich von 0,05%. In 321cm sowie in 266cm fällt die Stickstoffkonzentration auf 0,02% bzw. 0,03% ab (Abb. 28). Der Anteil an Kohlenstoff (C) beschreibt ebenso einen kontinuierlichen Trend, der Werte zwischen 1,3-1,8% aufweist. Zwei Minima in 321cm und 266cm führen zu einem Werterückgang auf 0,6% und 1%. Der Schwefelgehalt (S) beschreibt zunächst eine Kurve, die mit zwei relativen Maxima (0,14% in 350cm, 0,07% in 321cm) und einem Minimum (0% in 340cm) verläuft. Im Anschluss daran folgen ein Maximalwert von 0,29% und ein Rückgang der Werte auf 0%.

Die Konzentration an Carbonat (CaCO₃) verläuft auf einem niedrigen Niveau von 10%, das in 321cm auf 6% und in 266cm auf 7,3% absinkt. Ein vergleichbarer Trend ist beim Anteil der organischen Substanz (TOC) erkennbar. Hier werden drei langgezogene Maxima mit Werten im Bereich von 0,4 -0,6% von zwei Minima getrennt, die auf 0% (321cm) und 0,2% (262cm) abfallen.

Der Verlauf der magnetischen Suszeptibilität (Mag. Sus.) beschreibt einen Anstieg von 68SI in 354cm bis zu einem Maximum von 120SI in 321cm und fällt daraufhin auf 36SI in 301cm zurück. Oberhalb von 300cm verlaufen die Werte in einem konstanten niedrigen Niveau von 15SI. Die elektrische Leitfähigkeit (el. Leitf.) zeigt einen stetigen Verlauf im Bereich zwischen 0,15-0,11µm und wird von zwei Minima unterbrochen, die auf 0,1mS (321cm) und 0,01mS (270cm) sinken.

5.2.2.6. ONW I Kernabschnitt V (237-165cm)

Abb. 33: ONW I Kernabschnitt V (237-165cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Kernabschnitt V umfasst eine Tiefe von 237-165cm und besteht aus sandigen Lagen im unteren Bereich (237-ca. 200cm), die anschließend in tonig schluffige Sedimente übergehen. Die Farbe des Sedimentbereichs wechselt von graubraunen (237-180cm) zu grauen Schichten (179-165cm). Es können zwei Bereiche untergliedert werden, von denen der untere mit einem massigen Band aus Sand beginnt (237-219cm), in dem keine Schichtungsstrukturen erkennbar sind (Abb. 33). Bis in eine Tiefe von ca. 200cm erfolgt ein Übergang zu schwach laminierten Lagen aus Schluff und Ton, die von einzelnen Sandbändern mit einer Mächtigkeit von ca. 1cm unterbrochen werden. Der obere Bereich des Abschnitts V (ca. 200-165cm) setzt sich aus unterschiedlichen Lagen fein laminierter, horizontal abgelagerter Sedimente zusammen.

Die mittlere Korngröße des Abschnitts V steigt auf 53µm. Der Kurvenverlauf bildet einen Bereich mit gestiegenen Werten von 236-220cm mit einem Maximum von 102µm in 230cm. Von 215cm bis 165cm verzeichnet die mittlere Korngröße eine rückläufige Tendenz von ca. 40µm auf 30µm (Abb. 28). Der Anteil an Ton steigt auf einen Durchschnitt von 23% und verläuft in einem zunehmenden Trend von 18% (236cm) auf 30% in 165cm. Der Kurvenverlauf wird von zwei Minima unterbrochen, die auf 12,6%in 230cm sowie 18,4% in 186cm zurückgehen. Die Konzentration an Schluff verbleibt bei durchschnittlichen 57% (Tab. 3). Im Bereich von 236-220cm verzeichnet der Schluffgehalt niedrige Werte, die auf ein Minimum von 41% in 230cm absinken. Der anschließende Abschnitt (215-180cm) beschreibt ansteigende Werte von 60% auf 65%, die anschließend auf 56% fallen (175-165cm). Der mittlere Sandanteil in Kernabschnitt V steigt auf 21% an. Nach einem Maximum, in dem der Sandanteil auf 46% ansteigt (230cm), erfolgt ein abnehmender Trend, der auf Werte von 13% in 165cm zurückgeht. Die Korngrößenverteilungen im Abschnitt V beschreiben einen Übergang vom GSD Typ 2 mit bimodaler Verteilung (Maxima von 1-10µm und 50-300) zum Typ1 mit unimodaler Verteilung (Maximum von 1-10µm) (Abb. 33).

Der Anteil an Kalium (K) sinkt auf einen Mittelwert von 18047ppm ab. Der Kurvenverlauf zeigt einen negativen Trend, der in zwei Bereiche unterteilt werden kann. Von 237-219cm sinken die Werte zunächst von 20504ppm auf 18496ppm, um im Anschluss auf ein Maximum von21935ppm (213cm) zu steigen. Von 203-165cm fällt der Kaliumgehalt auf ein gleichbleibend niedriges Niveau von ca. 16000-18000ppm zurück. Die Konzentration des Elements Calcium (Ca) steigt auf einen mittleren Gehalt von 105978ppm an, den bislang höchsten Wert im Bohrkern (Tab. 3). Der Verlauf der Kurve beschreibt einen starken Anstieg von 44540ppm in 237cm auf 145129ppm in 197cm. Anschließend verbleiben die Ca- Werte auf diesem hohen Level und schwanken zwischen 120000ppm und 160000ppm.

Der Titangehalt (Ti) des Abschnitts V zeigt eine rückläufige Tendenz und fällt auf eine mittlere Konzentration von 2123ppm. Der Kurvenverlauf zeigt ein konstantes Niveau für den Bereich 237-203cm, in dem die Werte zwischen 2200-2600ppm streuen. Ab einer Tiefe von 201cm bis 165cm verlaufen die Ti- Werte im Bereich von 1600-2000ppm (Abb. 28). Die durchschnittliche Konzentration von Mangan (Mn) fällt auf einen Wert von ca. 500ppm zurück. Die Werte beschreiben dabei einen geradlinigen Verlauf, der durch starke Schwankungen zwischen 350-700ppm gekennzeichnet ist.

Der mittlere Eisengehalt (Fe) sinkt auf einen Wert von 21284ppm. Der Kurvenverlauf ist durch zwei langgezogene relative Maxima geprägt, die Konzentrationen von 22000-26000ppm aufweisen. In 229cm, 199cm und 175-165cm sinkt der Eisengehalt auf 16000-18000ppm ab. Der Rubidiumgehalt (Rb) des Abschnitts V sinkt auf einen Mittelwert von 51ppm. Die Werte verlaufen dabei in einem Bereich von 237-207cm konstant von 60ppm auf 50ppm. Anschließend erfolgt der Rückgang über zwei Maxima und Minima, die Werte von 64ppm (205cm), 42ppm (195cm), 51ppm (185cm) und 39ppm in 173cm erreichen.

Die Konzentration des Elements Strontium (Sr) beschreibt einen Anstieg auf durchschnittliche 1063ppm (Tab. 3). Die Werte zeigen dabei zunächst eine kontinuierlich ansteigende Tendenz von 712ppm in 237cm auf 1101ppm in 201cm Tiefe. Nach einem Maximum von 1873ppm in 199cm sinken die Sr Werte auf 722ppm in177cm ab. In einem weiteren Maximum von 175-165cm werden Werte von 2308ppm erreicht. Der Stickstoffgehalt (N) des Kernabschnitts V beschreibt einen Anstieg von einem Minimum (0,036% in 236cm) auf ein Niveau von 0,07% in 195cm. Im weiteren Verlauf (190 -165cm) bleiben die Werte im Bereich von 0,07%.

Der Mittelwert des Elements Kohlenstoff (C) steigt auf 3,86%. Der Kurvenverlauf beschreibt ebenfalls einen Anstieg, der von 1,8% (236cm) auf 5,1% (195cm) erfolgt (Abb. 28). Daraufhin verbleibt der Kohlenstoffgehalt im Bereich von 4,5-6% (190-165cm). Der Schwefelverlauf (S) zeigt keine Änderung und verläuft kontinuierlich im Bereich von 0%.

Der Carbonatgehalt (CaCO₃) steigt auf einen Mittelwert von 27%. Der Kurvenverlauf weist dabei eine steigende Tendenz von ca. 10-40% auf. Ein vergleichbarer Trend ist für die organische Substanz (TOC) erkennbar, die auf durchschnittlich 1% ansteigt. Hierbei erfolgt ein Ansteig von einem Minimum (0,07%) in 230cm auf ein Maximum von 1,74% in 170cm.

Der Verlauf der Magnetischen Suszeptibilität (Mag. Sus.) zeigt keine Änderung und liegt im Bereich von 13SI. Die durchschnittliche elektrische Leitfähigkeit (el. Leitf.) steigt auf 0,15mS. Die Werte entwickeln sich dabei von einem Minimum von 0,09mS in 230cm zu einem Maximalwert von 0,2mS in 170cm.

5.2.2.7. ONW I Kernabschnitt VI (164-99cm)

Abb. 34: ONW I Kernabschnitt VI (164-99cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Sedimentabschnitt VI setzt sich aus Ton- und Schlufflagen zusammen, die in unterschiedlichen Grau- und Brauntönen gefärbt sind. Die Sedimente bestehen aus massigen Schichten, die in Mächtigkeiten von 3-15cm gelagert sind (Abb. 34). Intern zeigen die Ablagerungen eine homogene Struktur mit leichten horizontal laminierten Lagen.

Die mittlere Korngröße sinkt in Abschnitt VI auf einen Werte von 23µm und zeigt eine rückläufige Tendenz. Dabei sinken die Werte von 33µm in 161cm kontinuierlich bis auf 16,5µm in 106cm (Abb. 28). Der Tonanteil des Sedimentabschnitts steigt auf einen Durchschnittswert von 28%. Die Werte verlaufen im Bereich von 161-131cm mit geringen Schwankungen zwischen 28-33% und sinken daraufhin auf einen Anteil von 24-27% (125-106cm). Der mittlere Schluffgehalt steigt in Abschnitt VI auf 64%, den höchsten Wert im Bohrkern. Die Werte liegen dabei zwischen 161-150cm im Bereich von 61% und sinken dann in 144cm auf 52% ab. Anschließend steigt die Schluffkonzentration auf 66,7% (140cm) an und verbleibt in dieser Höhe bis 106cm. Die Konzentration an Sand sinkt auf einen Durchschnittswert von 8%. Der Kurvenverlauf beschreibt dabei einen kontinuierlichen Rückgang von 10,2% in 161cm auf 6,5% in106cm, unterbrochen von einem Minimalwert von 2,7% in 131cm. Die Korngrößenverteilungen lassen sich überwiegend zum GSD Typ 1 zuordnen, der eine unimodale Verteilung besitzt, dessen Maximum im Bereich von 1-10µm liegt. Teilweise treten Übergangstypen zum GSD Typ 2 auf, dessen bimodale Verteilung einen zweiten Maximalwert im Wertebereich von 100-300µm aufweist (Abb. 34). Der Kaliumgehalt (K) sinkt auf einen mittleren Wert von 17127ppm und liegt damit unter dem Kernmittel. Der Kurvenverlauf erreicht in 161cm zunächst einen Maximalwert von 22263ppm und fällt daraufhin auf 16713ppm in 157cm Tiefe. Zwischen 157-105cm verlaufen die Werte konstant im Wertebereich von 16000-18000ppm und fallen anschließend auf einen Minimalwert von 7965ppm in 101cm. Der durchschnittliche Calciumanteil (Ca) von 132194ppm stellt den höchsten Wert des Kerns dar (Tab. 3). Der Abschnitt beginnt zunächst mit einem Minimalwert von 74941ppm in 163cm, woraufhin die Werte auf 127409ppm in 159cm steigen. Bis zu einer Tiefe von 137cm erfolgt ein weiterer Anstieg auf einen Maximalwert von 197333ppm, gefolgt von einem Minimum, das in 131cm auf 74088ppm zurückgeht. Der folgende Bereich (123-99cm) verzeichnet eine abnehmende Tendenz, indem die Werte von 164523ppm auf 84276ppm absinken.

Das Element Titan (Ti) sinkt auf einen mittleren Wert von 1943ppm. Nach einem Maximalwert, der in 163cm auftritt und Werte von 2886ppm erreicht, sinkt der Kurvenverlauf nach einigen Schwankungen auf ein Minimum von1405ppm in 135cm. Nach einem weiteren Maximalwert (2757ppm) in 131cm folgt ein Rückgang auf ein konstantes Niveau mit Werten von 1700ppm bis 1900ppm. Die Konzentration an Mangan (Mn) liegt mit einem Durchschnitt von 457ppm unter dem Kernmittelwert. Die Werte zeigen eine starke Streuung und sinken von 639ppm in 163cm auf einen Minimalwert von 291ppm in 119cm ab (Abb. 28). Im Bereich von 117-99cm verläuft der Mn- Gehalt konstant im Niveau von 400-500ppm.

Der Eisengehalt (Fe) des Abschnitts VI sinkt auf einen niedrigen Durchschnittswert von 18196ppm ab. Die Werte fallen dabei von 24151ppm in 163cm auf einen Minimalwert von 12626ppm in 137cm. Der Abschnitt von 133-129cm bildet ein Maximum, das einen Eisengehalt von 26525ppm erreicht. Von 127cm bis 107cm steigt die Kurve von 17045ppm auf einen Wert von 21086ppm. Anschließend tritt ein weiterer Minimalwert auf, der auf 10929ppm in 101cm zurückgeht. Der Rubidiumanteil (Rb) beschreibt einen kontinuierlichen Trend, der im Bereich von 40-50ppm schwankt. Der Mittelwert von 44ppm stellt dabei den niedrigsten Wert im Bohrkern dar (Tab. 3).

Der Anteil des Elements Strontium (Sr) steigt auf einen Durchschnittswert von 1287ppm, einem Wert der weit über dem Kernmittel liegt. Der Kurvenverlauf zeigt starke Schwankungen und bildet drei Minima in 161cm (811ppm), 131cm (599ppm) und 107cm (827ppm) sowie drei Maximalwerte in 145cm (2555ppm), 117cm (1659ppm) und 101cm (3413cm). Der durchschnittliche Stickstoffgehalt (N) von 0,069% stellt den höchsten Wert des Bohrkerns dar. Der Bereich von 161-144cm zeigt einen kontinuierlichen Trend mit Werten von ca. 0,06%. Im Anschluss daran steigt die N- Konzentration auf 0,082% in 140cm und sinkt mit Schwankungen auf 0,07% in 106cm ab.

Die Konzentration des Elements Kohlenstoff (C) steigt auf den höchsten Wert im Kern (4,91%). Der Kurvenverlauf lässt sich in zwei Bereiche teilen, von denen der untere (161-131cm) ein Maximum bildet (6,4% in 136cm). Von 125-106cm verbleiben die Werte zwischen 4,5-5,5%. Der Schwefelgehalt des Abschnitts VI verbleibt im Bereich von 0%.

Der auf durchschnittlich 34% angestiegene Carbonatgehalt (CaCO₃) stellt den höchsten Wert im Bohrkern dar und weist einen zum Kohlenstoff parallelen Verlauf auf (Tab. 3). In 144cm zeigt der Verlauf ein Maximum von 43%, welches von zwei Minima in 161cm (21,3%) und 131cm (15,4%) umfasst ist. Der Bereich von 125-106cm verzeichnet einen konstanten Rückgang von 38,7% auf 30,4%. Der Anteil der organischen Substanz (TOC) steigt im Abschnitt VI ebenfalls auf den höchsten Mittelwert des Kerns (1,41%). Der Kurvenverlauf zeigt einen Bereich mit hohen Werten zwischen 161-144cm, der ein Maximum in 155cm mit 1,45% ausbildet (Abb. 28). Auf einen weiteren Maximalwert von 1,9% in 140cm folgt ein Werterückgang bis auf 1,4% in 106cm.

Die magnetische Suszeptibilität (Mag. Sus.) verläuft weiterhin kontinuierlich im Bereich von 10SI. Die elektrische Leitfähigkeit (el. Leitf.) steigt auf einen Durchschnitt von 0,21mS und verzeichnet ansteigende Werte von 0,2mS in 161cm auf 239mS in 106cm.

5.2.2.8. ONW I Kernabschnitt VII (98-51cm)

Abb. 35: ONW I Kernabschnitt VII (98-51cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Kernabschnitt VII reicht von einer Tiefe von 98-51cm und setzt sich aus tonigen und schluffigen Sedimenten zusammen. Die Farbe der Ablagerungen variiert in unterschiedlichen Grautönen. Der untere Bereich (98-69cm) setzt sich aus unterschiedlichen massigen Lagen zusammen, deren Mächtigkeit um 5cm schwankt. Innerhalb der Lagen sind Laminierungsstrukturen erkennbar, die eine Lagenmächtigkeit von 1-3mm aufweisen (Abb. 35). Von 68cm bis 51cm bilden die Sedimente eine massige, homogene Lage mit einem kompaktierten krümeligen Gefüge.

Die mittlere Korngröße des Abschnitts sinkt auf einen Durchschnittswert von 14µm und beschreibt einen gleichbleibenden Kurvenverlauf. Die Werte schwanken zwischen 10-15µm und werden von einem Maximum in 70cm Tiefe unterbrochen, bei dem die Kurve auf 27,9µm ansteigt. Der Tonanteil steigt weiter auf 32% und verzeichnet einen mit Schwankungen zunehmenden Verlauf. Die Werte fallen dabei von 33,9% (95cm) auf 27% (85cm), steigen dann auf 34,6% (75cm) um anschließend wieder auf 29,4% (65cm) zurückzusinken. Bis 55cm Tiefe erreicht der Tongehalt wieder 35,5%. Der Schluffanteil zeigt ebenso einen schwankenden Verlauf der Werte, die von 60% in 95cm auf 69% in 85cm ansteigen und anschließend wieder bis auf 50,7% in 70cm absinken (Abb. 28). Von 65cm bis 55cm verbleibt der Anteil an Schluff zwischen 61-66%. Der Sandgehalt des Abschnitts VII sinkt auf einen Mittelwert von 6% ab und beschreibt einen kontinuierlichen Kurvenverlauf mit Werten zwischen 3-6%. In 70cm steigt der Sandgehalt auf einen Maximalwert von 15,3% an, und sinkt anschließend wieder zurück. Die Korngrößenverteilungen innerhalb des Abschnitts können dem GSD Typ 1 zugeordnet werden. Sie beschreiben eine unimodale Verteilung mit einem Maximum, das sich zwischen 1-10µm ausprägt (Abb. 35). Ein Übergang zu einer bimodalen Verteilung (GSD Typ 2) erfolgt in 70cm Tiefe, da ein zweiter relativer Maximalwert im Bereich von 100-300µm ansetzt.

Der Anteil an Kalium (K) befindet sich mit einem Durchschnittswert von 18628ppm im Bereich des Kernmittels. Der Verlauf der Werte beschreibt einen Anstieg von 14409ppm in 95cm auf 21337ppm in 87cm, woraufhin ein konstanter Trend bis 73cm erfolgt. In 71cm sinkt die Konzentration auf einen Minimalwert von 13010ppm ab, steigt daraufhin wieder auf 21149ppm an (67cm) und verläuft dann mit einem negativen Trend bis 53cm mit 18299ppm. Die Konzentration an Calcium (Ca) liegt mit einem Mittelwert von 112045ppm weit über dem Kerndurchschnitt, verzeichnet aber einen rückläufigen Trend (Abb. 28). Der Kurvenverlauf sinkt dabei mit starken Schwankungen zwischen mehreren Maxima (93cm: 177430ppm; 79cm: 141646ppm) und Minima (97cm: 129073ppm; 87cm: 73368ppm) auf 56092ppm in 73cm Tiefe. Im Anschluss daran steigt der Anteil an Calcium wieder auf 127119ppm in 53cm.

Der Titangehalt (Ti) verzeichnet einen stark schwankenden Verlauf von 97-69cm, der von einem Minimum (1328ppm) in 95cm auf einen relativen Maximalwert von 2727ppm in 87cm ansteigt und anschließend zwischen ca. 2900-1400ppm schwankt. Zwischen 67-53cm erfolgt ein Rückgang der Werte von 2670ppm auf 1836ppm. Der Mangangehalt (Mn) liegt mit einem Mittelwert von 473ppm unter dem Kerndurchschnitt (Tab. 3). Im Bereich von 95-83cm treten zwei Minima auf (381ppm, 247ppm), die von einem Maximum (638ppm) in 87cm getrennt werden. Anschließend beginnt ein steigender Trend von 276ppm in 81cm, der 693ppm in 53cm erreicht.

Der Anteil an Eisen (Fe) im Abschnitt VII steigt auf einen durchschnittlichen Wert von 20208ppm. Der Bereich von 97-71cm weist starke Schwankungen auf, die zwischen Werten von ca. 12000ppm und 27000ppm oszillieren (Abb. 28). Ab 69cm beschreibt die Kurve einen konstanten Verlauf mit Anteilen im Bereich von 20000ppm. Der Kurvenverlauf des Elements Rubidium (Rb) beschreibt einen gleichbleibenden Trend, der im Bereich von 50ppm verläuft. In 97 -91cm sowie 71 -69cm wird der Verlauf von zwei Minimalwerten unterbrochen, die bis auf 34,8ppm (93cm) und 37ppm (69cm) absinken.

Das Element Strontium (Sr) weist einen stark schwankenden Verlauf für den Bereich 97-69cm auf, der mit einem Maximum in 93cm mit 1496ppm beginnt, um anschließend auf 625ppm in 87cm zu fallen. Bis 69cm folgen weitere Maxima (1325ppm in 77cm; 1631ppm in 69cm), zwischen denen die Konzentration bis auf 56ppm (73cm) absinkt. Von 67-55cm verlaufen die Werte konstant um 1000ppm, um daraufhin auf 1344ppm (51cm) anzusteigen. Die Konzentration an Stickstoff (N) sinkt in diesem Abschnitt auf einen Mittelwert von 0,059% (Tab. 3). Der Elementkurve zeigt eine negative Tendenz, deren Werte von 0,069% in 95cm auf 0,059% in 60cm fallen. In 70cm unterbricht ein Minimum die Kurve und sinkt auf 0,047% ab.

Der Kohlenstoffgehalt (C) verringert sich auf einen durchschnittlichen Wert von 4,33%. Der Kurvenverlauf beschreibt ebenfalls einen sinkenden Trend von 6% in 95cm auf 4% in 55cm Tiefe. Zwei Minimalwerte unterbrechen den Verlauf und fallen auf 3% (85cm, 65cm) ab. Der Schwefelanteil (S) des Kernabschnitts zeigt einen geringen Anstieg der Werte auf 0,04%.

Der Carbonatgehalt (CaCO₃) fällt geringfügig auf einen Mittelwert von 31,6%. Dabei beschreibt der Kurvenverlauf einen negativen Trend mit Werten, die von 43,7% (95cm) auf 29,3% in 55cm absinken. In 85cm sowie 65cm wird der Verlauf durch zwei Minimalwerte von 20,9% und 21,8% unterbrochen. Die Konzentration der organischen Substanz (TOC) liegt mit 0,93% über dem Kernmittelwert. Der Bereich von 95-65cm beschreibt einen negativen Verlauf von 1,37% auf 0,65%. Anschließend verlaufen die Werte in einer Höhe von 0,9% (60-55cm).

Der Verlauf der magnetischen Suszeptibilität (Mag. Sus.) zeigt keine Änderung und verbleibt im Wertebereich von 13SI. Die elektrische Leitfähigkeit (el. Leitf.) erreicht einen Mittelwert von 0,21mS und zeigt einen leicht schwankenden Kurvenverlauf, dessen Werte zwischen 0,19-0,23mS liegen.

5.2.2.9. ONW I Kernabschnitt VIII (50-0cm)

Abb. 36: ONW I Kernabschnitt VIII (50-0cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der oberste Sedimentabschnitt reicht von 50-0cm und besteht aus grau gefärbten Schluff und Ton. Der Bereich von 50-23cm bildet eine homogene Schicht, die ein lockeres krümeliges Gefüge aufweist, welches schwach kompaktiert ist (Abb. 36). Im folgenden Abschnitt (22-0cm) wechselt das Gefüge zu einem sehr lockeren, krümeligen Gefüge, das durch sehr große Porenräume gekennzeichnet ist.

Die mittlere Korngröße sinkt auf einen Durchschnittswert von 11µm, den niedrigsten Wert im Bohrkern (Tab. 3). Die Konzentration an Ton steigt auf einen Mittelwert von 36% und erreicht damit den höchsten Wert im Kern. Der Kurvenverlauf zeigt zunächst Werte von 33% (50-40cm) steigt dann aber auf einen kontinuierlich verlaufenden Wertebereich von 36-38% (35-5cm). Der mittlere Schluffanteil des Abschnitts verzeichnet einen geringen Rückgang auf 60%. Der Kurvenverlauf beschreibt dabei einen negativen Trend, der von ca. 64% auf 57% abfällt. Der Sandanteil fällt auf einen durchschnittlichen Wert von 4% ab, den geringsten Anteil im Sedimentkern (Abb. 28). Im Bereich von 50 -25cm verläuft der Sandgehalt kontinuierlich um 2-3% und steigt bis 5cm auf 7,4% an. Die Korngrößenverteilungen des Abschnitts können dem GSD Typ 1 zugeordnet werden, der eine unimodale Verteilung mit einem Maximum zwischen 1-10µm aufweist (Abb. 36).

Der Anteil an Kalium (K) sinkt auf einen Mittelwert von 16952ppm, der unter dem Kernmittelwert liegt. Im Bereich von 49-21cm fällt die K- Konzentration von ca. 21000ppm auf ein Niveau von 14000ppm. Anschließend verbleiben die Werte im Bereich von 1300015000ppm. Die Konzentration an Calcium (Ca) im obersten Kernabschnitt sinkt auf einen Durchschnittswert von 82064ppm. Der Verlauf der Elementkurve setzt sich aus drei Teilen zusammen und beginnt mit einem Minimalwert von 54803ppm in 43cm. Im Anschluss folgt ein Bereich mit hohen Werten, die zwischen 95000-110000ppm schwanken (39-25cm). Bis zur Oberfläche fallen die Werte auf 65773ppm (3cm) ab.

Der mittlere Titangehalt (Ti) sinkt auf 1857ppm, den Minimalwert des Kerns ab und beschreibt einen ebenfalls sinkenden Trend (Tab. 3). Der Kurvenverlauf sinkt mit leichten Schwankungen von einem Maximalwert in 45cm (2614ppm) auf 1527ppm in 3cm Tiefe. Die Konzentration des Elements Mangan (Mn) erreicht den höchsten Mittelwert des Kerns mit 593ppm. Der Verlauf der Werte zeigt zunächst einen Bereich (49-29cm) mit geringer Mn-Konzentration (450-550ppm), der von einem Maximalwert unterbrochen wird (887ppm in 37cm) und in einem Minimum endet (352ppm in 29cm). Von 27-3cm streuen die Werte auf einem gestiegenen Level zwischen 600-800ppm.

Der Eisengehalt (Fe) steigt mit einem Mittelwert von 26068ppm ebenfalls auf den höchsten Wert des Bohrkerns an. Der Kurvenverlauf beschreibt zunächst einen Anstieg auf ein Maximum von 27905ppm in 41cm und sinkt anschließend auf ein Minimum in 35cm (22649ppm). Von 33cm bis 3cm steigen die Fe- Werte von 24000ppm auf ca. 29000ppm an. Der Rubidiumgehalt (Rb) steigt mit einem Mittelwert von 58ppm über den Kerndurchschnittswert. Die Werte verlaufen dabei in einem kontinuierlichen Trend von 52ppm in 45cm auf 68ppm in 3cm (Abb. 28).

Die Konzentration an Strontium (Sr) erreicht den höchsten Durchschnittswert des Bohrkerns (1459ppm) (Tab. 3). Im Bereich von 49-41cm sinken die Werte zunächst auf ein Minimum von 931ppm (45cm) ab und steigen anschließend wieder auf einen Wert von 1401ppm in 39cm. Bis zur Oberfläche steigt der Sr- Gehalt auf einen Wert von 1593ppm an. Der Stickstoffgehalt (N) steigt auf einen mittleren Anteil von 0,064% an. Der Werteverlauf beschreibt einen kontinuierlich steigenden Trend von 0,05% in 50cm auf 0,08% in 5cm.

Das Element Kohlenstoff (C) sinkt auf eine mittlere Konzentration von 3,89%. Der Kurvenverlauf lässt sich in zwei Bereiche untergliedern, von denen im ersten (50-40cm) ein Minimum ausgebildet wird, welches bis auf 2,67% in 45cm zurückgeht. Von 35-5cm sinkt der Kohlenstoffanteil von 4,2% auf 3,7%. Die Konzentration des Elements Schwefel (S) verzeichnet einen geringen Abfall auf einen Mittelwert von 0,03%. Die Werte bleiben dabei zwischen 5015cm kontinuierlich im Bereich von 0,02-0,04%, um anschließend auf 0,06% anzusteigen (10-5cm).

Der mittlere Carbonatgehalt (CaCO₃) sinkt auf einen Wert von 28,4% und weist einen Kurvenverlauf auf, der in zwei Abschnitte untergliedert werden kann. Im Bereich von 50-35cm erfolgt ein Rückgang der Werte auf ein Minimum von 19,5% (45cm), gefolgt von einem Anstieg auf 32% in 35cm (Abb. 28). Von 30cm bis 5cm Tiefe fallen die Werte geringfügig von 31% auf 27% ab. Der Anteil der organischen Substanz (TOC) beschreibt einen vergleichbaren Verlauf der Werte. Nach einem Minimum in 40cm, bei dem die Konzentration auf 0,56% absinkt, steigen die Werte bis 30cm auf 1%. Im folgenden Bereich (25-10cm) fällt die TOC- Konzentration auf 0,8%.

Der Verlauf der magnetischen Suszeptibilität (Mag. Sus.) zeigt keine Änderung und verbleibt innerhalb des Abschnitts VIII im Bereich von 10SI. Die elektrische Leitfähigkeit (el. Leitf.) steigt auf einen Durchschnittswert von 0,23mS und erreicht somit den höchsten Wert innerhalb des Bohrkerns. Der Kurvenverlauf beschreibt einen steil ansteigenden Trend, dessen Werte von 0,2mS in 50cm auf 0,34mS in 5mS steigen.

5.2.3. Chronostratigraphie (ONW I)

Zwei ¹⁴C AMS Datierungen wurden am ONW I Sedimentkern entnommen (Kap. 3) und ergaben 21ka cal. BP in 588cm sowie 19,2ka cal. BP in einer Tiefe von 386cm (Tab. 4).

Bohrkern	Tiefe [cm]	Lab. Nr.	¹⁴ C Alter und Fehler [yr. BP]	δ ¹³ C [‰]	kalibrierte Alter und Standard Abw. [kal. yr.	Material
ONW	386	Erl-12107	16020 ± 105	-28,1	19163 ± 230	Mischprobe
ONW	588	Erl-12108	17642 ± 112	-23,4	21044 ± 329	Mischprobe

Tab. 4: Übersicht der ONW I¹⁴C Datierungen

In Anlehnung an die Chronostratigraphie der KEO I Bohrung müssen ebenfalls nachstehende Überlegungen bezüglich der Aussagekraft der Datierungen einbezogen werden. Aufgrund der Lage in einem abflusslosen Becken unter ariden klimatischen Bedingungen erfolgt eine Akkumulation von Carbonaten, so dass die Seesedimente einen hohen Anteil an CaCO₃ aufweisen (Mittelwert 17,2%). Das Verhältnis vom Titangehalt zum Carbonatanteil zeigt eine zweigeteilte Abhängigkeit der beiden Parameter (Abb. 38). Die positive Korrelation der Carbonatwerte <20% mit dem Element Titan weist auf einen gleichen Ursprung der beiden Parameter. Daher verweist dies auf einen partiellen fluvialen Carbonateintrag in den See. Der Anteil an Carbonat, der eine negative Korrelation mit dem ,geogenen' Titan aufweist, kann auf weitere vom fluvialen Eintrag unabhängige Quellen zurückgeführt werden (Grundwasser, äolischer Staub). Die unterschiedlichen Quellen für das Carbonat innerhalb der Seesedimente bedeuten in Hinblick auf die Datierungen, dass eine Verfälschung der ¹⁴C Konzentration möglich ist, so dass ein Reservoir Effekt nicht ausgeschlossen werden kann (Geyh et al. 1999).

Ein Alters-Tiefen Modell (Abb. 37) wurde unter den gleichen Annahmen wie für den KEO I Bohrkern entwickelt, bei dem ebenfalls folgende Vereinfachungen zugrunde liegen:

- der Sedimentkern weist keinen Hiatus auf
- die Ablagerung erfolgte kontinuierlich
- die Oberfläche hat ein rezentes Alter d.h. es erfolgte keine Erosion
- ein evtl. Reservoir Effekt wurde nicht berücksichtigt

Abb. 37: Alters-Tiefen Modell des ONW I Bohrkerns mit Abgrenzung der Sedimentationseinheiten I-VIII

Das Alters- Modell zeigt, dass die Sedimentabschnitte I-IV (600-238cm) in einem Bereich von 22ka cal. BP bis 11,5-12ka cal. BP fallen. Somit kann der Übergang vom Pleistozän zum Holozän für den Abschnitt V festgelegt werden (s.u.) was mit den Daten des KEO I Bohrkerns sowie weiteren Veröffentlichungen aus dem Bereich Paläoklima der Mongolei und Asien (Morrill et al. 2003, Walther et al. 2003, Herzschuh et al. 2005, Andreev und Tarasov 2007, Stebich et al. 2009) übereinstimmt. Die Abschnitte V bis VIII zeigen unterschiedliche Phasen des Holozäns auf. Die Interpolation der Altersgrenzen für die einzelnen Kernabschnitte legt keine exakten Altersangaben der sedimentologischen Einheiten fest, sondern dient der groben zeitlichen Einordnung der Kernabschnitte.

5.2.4. Interpretation der Detailergebnisse (ONW I)

Die Analyse des ONW I Bohrkerns anhand von unterschiedlichen Parametern ermöglicht Rückschlüsse auf die jeweiligen Sedimentationsbedingungen, so dass dadurch eine Rekonstruktion des vorherrschenden Klimas erfolgen kann. Anhand von Schwankungen der unterschiedlichen Parameter (Elementzusammensetzung, Korngrößendaten) sowie der relativen Veränderungen dieser zueinander können dabei Rückschlüsse auf Transport- und Sedimentationsprozesse getroffen werden. Des Weiteren geben die unterschiedlichen Kurvenverläufe Hinweise auf mögliche Seespiegelschwankungen.

Die sedimentologischen Parameter lassen sich in mehrere Gruppen untergliedern, die in unterschiedlicher Intensität miteinander korrelieren (Abb. 38):

Die Elemente K, Ti, Mn, Fe und Rb zeigen in Anlehnung an die Ergebnisse der KEO I Bohrung eine hohe Korrelation zueinander (Abb. 38, Anhang), so dass von einem einheitlichen Ablagerungsprozess ausgegangen werden kann. Als Ursprung für diese Elemente können die anstehenden Gesteine innerhalb des Einzugsgebietes angesehen werden, die durch Verwitterung und fluvialen Transport zerkleinert und über die Schwemmfächer in die Becken gelangen. Daher können diese Elemente als ,geogenes' Signal innerhalb des Bohrkerns interpretiert werden (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghardt et al. 2008).

Die Parameter Ca, Sr und CaCO₃ weisen ebenfalls eine hohe Korrelation auf (Anhang), die auf einen gleichen Ablagerungsprozess in Form von Carbonatausfällung schließen lassen. Die Korrelation der carbonatischen mit den geogenen Parametern zeigt eine geteilte Korrelation der Elemente (Abb. 38). Hierbei weisen die Sedimente mit einem Anteil von >20% CaCO₃ eine negative Korrelation mit dem ,geogenen' Signal auf (z.B. Ti), so dass auf einen unabhängigen Ursprung in Form von Staub, Grundwasser und Mineralneubildung geschlossen werden kann. Bereiche mit einem CaCO₃ Gehalt <20% zeigen dagegen eine positive Korrelation mit dem ,geogenen' Signal, so dass in diesem Fall ebenfalls von einer geogenen Herkunft des Carbonats ausgegangen werden kann (Feldspatverwitterung, carbonatische Gesteine im Einzugsgebiet).

Der TOC- Gehalt deutet auf die Anreicherung von organischem Material im Sediment, die in Form von Wasserpflanzen sowie durch einen Eintrag aus dem Einzugsgebiet erfolgen kann (Uferpflanzen, fluvial eingetragene Pflanzenreste und humose Sedimente). Die zweigeteilte Korrelation der Vegetationsparameter mit den weiteren Parametergruppen (geogen, carbonatisch) (Abb. 38) belegt den heterogenen Ursprung der organischen Substanz. Die unterschiedliche Ausprägung der einzelnen Parameter und Parametergruppen kann daher genutzt werden, um die Ablagerungsprozesse und klimatischen Bedingungen der einzelnen Kernabschnitte zu rekonstruieren.

Abb. 38: Zusammenhänge ausgewählter sedimentologischer Parameter des ONW I Bohrkerns; die Nummerierungen von 1-8 entsprechen den Mittelwerten der Sedimentabschnitte I-VIII

Abschnitt I (600-561cm; 21,3-20,7ka cal. BP): arides und kaltes Klima, Dünenaktivität

Die Sedimente des untersten Abschnitts bestehen aus tonigem Schluff, der in einem limnischen Ablagerungsmilieu sedimentiert wurde. Die Korngrößenverteilungen des GSD Typ 1 belegen dies anhand der unimodalen Verteilungen mit Maxima im Bereich von 1-10µm, so dass auf eine sehr geringe Transportenergie geschlossen werden kann (Prins et al. 2000). Eine Zunahme des Sandgehalts zeigt sich durch Korngrößenverteilungen im oberen Bereich, die einen zweiten Maximalwert aufweisen. Der zweite Peak im GSD Typ 2 tritt unabhängig vom Ton und Feinschluffbereich auf, so dass auf einen weiteren Transportprozess mit guter Sortierung geschlossen werden kann. Daher kann von einem äolischen Eintrag ausgegangen werden (Prins et al. 2000), der auf eine Phase der Dünenaktivierung hinweist.

Der hohe Anteil an Schwefel im Zusammenhang mit der schwarzen Färbung der Sedimente lässt auf anoxische Bedingungen schließen. Hierbei fand unter Sauerstoffabschluss eine Bildung von Schwefelwasserstoff (H₂S) statt, die zur Ausfällung von Schwefelsulfiden (FeS und FeS₂) führte (Peck et al. 2002, Banks et al. 2004, Tomkins et al. 2005, Melles et al. 2007).

Eine hohe Konzentration der Elemente K, Ti, Mn, Fe und Rb ist auf einen verstärkten Eintrag klastischer Sedimente zurückzuführen, so dass diese das "geogene" Signal des Einzugsgebietes repräsentieren (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Dieser erhöhte Eintrag deutet auf eine geringe Vegetationsbedeckung innerhalb des Einzugsgebietes, wodurch fluviale Oberflächenprozesse begünstigt wurden.

Die in einem niedrigen Bereich verlaufenden Konzentrationen von Kohlenstoff, Stickstoff und organischem Kohlenstoff sind auf eine geringe biologische Produktivität des Sees sowie einen niedrigen Vegetationsdeckungsgrad innerhalb des Einzugsgebietes zurückzuführen. Das niedrige TOC/N Verhältnis von 6-10 deutet auf eine überwiegend autochthone, aber schwache Produktion der Biomasse in Form von Algen und Wasserpflanzen (Horiuchi et al. 2000, Chen et al. 2003, Wang et al. 2004, Herzschuh et al. 2005, Jin et al. 2006, Guo et al. 2007).

Der Verlauf der Parameter CaCO₃, Ca und Sr zeigt niedrige Werte, so dass auf eine geringe Ausfällung von Carbonaten im See geschlossen werden kann. Da eine Carbonatausfällung von dem CO₂ Gehalt und der Wassertemperatur abhängig ist, kann davon ausgegangen werden, dass kalte klimatische Verhältnisse vorherrschend waren (Guo et al. 2007). Das Verhältnis von CaCO₃/Ti zeigt, dass die Herkunft des Carbonates in zwei Gruppen unterteil werden muss. Die Kernbereiche mit geringen CaCO₃ Werten (unter 20%) weisen eine positive Korrelation mit den geogenen Elementen auf (Ti, Mn, Fe, usw.), so dass von einem klastischen Eintrag von Carbonaten ausgegangen werden kann (Abb. 38). Diese Herkunft kann in Form von Kalksteinen sowie von carbonathaltigen quartären Sedimenten erfolgen, die über fluvialen Transport in den Orog Nuur gelangen. Die Bereiche mit hohen CaCO₃ Gehalten zeigen dagegen eine negative Korrelation mit den klastischen Elementen, so dass auf einen von fluvialen Prozessen unabhängigen Transport geschlossen werden kann. Diese Akkumulation von Carbonaten kann in Form von Grundwassereintrag, so wie durch äolischen Eintrag von carbonathaltigem Staub erfolgen.

Die hohen Werte der elektrischen Leitfähigkeit können als Hinweis auf eine hohe Salinität des Sees dienen. Da die Interpretation der weiteren Parameter auf ein kühles Klima hinweist, steht die hohe Salinität im Widerspruch damit, da hierfür eine hohe Evaporation maßgeblich ist. Das in dieser Phase vorherrschende aride Klima kann jedoch ebenfalls die hohe Salinität des Orog Nuur begründen.

Der unterste Abschnitt des Orog Nuur Kerns deutet auf ein arides und kaltes Klima hin, das durch eine geringe Vegetationsbedeckung sowie Seeproduktivität geprägt wurde. Dies führte zu einem hohen Eintrag an klastischen Sedimenten in den See. Des Weiteren kann eine zunehmende Dünenaktivität nachgewiesen werden, die zu vermehrten Sandakkumulationen im See führte. Abschnitt II (560-511cm; 20,7-20,4ka cal. BP): Regressions- und Transgressionsphasen, arides und kaltes Klima, starke Dünenaktivität

Die Sedimente innerhalb des Abschnitts II verzeichnen das Vorkommen mehrerer Phasen, die von einem sandigen Sediment zu einem tonigen Schluff übergehen. Die Korngrößenverteilungen wechseln dabei von einer unimodalen (GSD Typ 3) über eine bimodale (GSD 2) zu einer unimodalen (Typ1). Die Maximalwerte der Korngrößenverteilungen im Bereich von 100-300µm deuten auf einen gut sortierten Transport, so dass von einer äolischen Akkumulation auszugehen ist (Prins et al. 2000). Die fehlenden limnischen Sedimente in den Verteilungskurven des GSD Typ 3 deuten auf einen rein äolischen Eintrag, so dass auf einen schnellen Ablagerungsprozess geschlossen werden kann. Es besteht jedoch auch die Möglichkeit dass die wechselnden GSD Typen einen Transgressionszyklus von einer äolischen Sandschicht auf dem ausgetrockneten See zu einem flachlimnischen Sediment nachvollziehen.

Die hohen Schwefelwerte deuten im Zusammenhang mit der schwarzen Färbung weiterhin auf ein anoxisches Milieu. Da dies einer Ablagerung von äolischem Sand auf einer trockengefallenen Seeoberfläche widerspricht, besteht die Möglichkeit einer nachträglichen Bildung von H₂S (Kap. 5.1.5). Als Ursprung der hohen Schwefelkonzentration kann ebenso eine Bildung von Evaporiten (CaSO₄) diskutiert werden, die mit der Eintrocknung des Sees einhergehen. Die in zwei Phasen ansteigende elektrische Leitfähigkeit bestätigt diese Bildung von Evaporiten.

Die niedrigen Anteile der Elemente Kalium, Titan, Mangan, Eisen und Rubidium weisen auf einen geringen fluvialen Eintrag an klastischen Sedimenten hin (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Dies bestätigt die These einer äolischen Lage, die auf einer eingetrockneten Seeoberfläche abgelagert wurde. Die stark abgesunkenen Werte im Bereich von 530-515cm können durch einen methodischen Korngrößeneffekt erklärt werden. Dieser Matrixeffekt tritt bei RFA-Messungen auf, die an groben Sedimenten durchgeführt werden, und täuscht eine niedrige Elementkonzentration vor. Die Anteile an C, TOC und N deuten ebenfalls auf einen geringen Eintrag an Organik hin, so dass dies ebenfalls auf ein trockenes Klima verweist. Die niedrigen Konzentrationen der Parameter Carbonat, Calcium und Strontium sind auf eine niedrige Temperatur zurückzuführen, die aufgrund des hohen CO₂ Anteils eine Ausfällung im See verhinderte (Guo et al. 2007). Innerhalb der sandigen Sedimente sind die niedrigen Carbonat- Anteile dadurch zu erklären, dass die Ablagerungen aus reinem Dünensand bestehen, der nur einen geringen Carbonatgehalt aufweist und bei einer Transgression des Sees eine Auswaschung des Carbonats begünstigt.

Die Proxidaten des Bohrkernabschnitts II lassen ein weiterhin arides und kaltes Klima rekonstruieren, wobei jedoch eine verstärkte äolische Aktivität vorherrschend war. Die Sedimentationsabfolgen deuten auf mehrere Bereiche, in denen die Bohrposition trocken fiel, so dass unterschiedliche Regressions- und Transgressionsphasen erfolgten.

Abschnitt III (510-353cm; 20,4-17,5ka cal. BP): Regressions- und Transgressionsphasen, arides und kaltes Klima, episodische Dünenaktivität

Die Korngrößenanalysen innerhalb des Abschnitts III weisen auf einen zum vorherigen Abschnitt vergleichbaren Trend hin. Mehrere Lagen aus Sand gehen in schluffig tonige Sedimente über, wobei ein Wechsel der Korngrößenverteilungen von GSD 3 (unimodal, Sandpeak) zu GSD 2 (bimodal, Sand- und Feinschluffpeak) erfolgt. Dies deutet auf weitere Abfolgen hin, in denen äolische Sedimente von limnischen überdeckt werden, so dass von weiteren Regressions- und Transgressionszyklen ausgegangen werden kann.

Die wechselnden Abfolgen von Evaporation und Transgression spiegeln sich ebenfalls im schwankenden Werten der elektrischen Leitfähigkeit sowie den hohen Schwefelanteilen wider (Abb. 28). Die hohen Schwefelkonzentrationen deuten dabei auf die Entstehung von Evaporitfolgen (NaCl, CaCO₃, CaSO₄), so dass ebenfalls von einer Austrocknung des Bereichs ausgegangen werden kann.

Die mit Abweichungen ansteigenden Werte der Elemente K, Ti, Mn, Fe, Rb deuten auf einen episodischen Eintrag an klastischen Sedimenten in das Becken. Da dieser Eintrag von fluvialem Material an limnische Prozesse gekoppelt ist, weisen die Bereiche mit hohen Konzentrationen auf eine Wasserbedeckung der Bohrposition, so dass eine limnische Sedimentation erfolgen konnte.

Die geringen Anteile der Parameter C, TOC und N deuten auf eine geringe Aktivität des Sees sowie des Einzugsgebietes hin, so dass weiterhin ein arides Klima vorherrschend war (Chen et al. 2003, Jin et al. 2006).

Die niedrigen Anteile an Carbonat, Calcium sowie Strontium belegen, dass kühle klimatische Bedingungen vorherrschten, da eine geringe Ausfällung von Carbonaten im See erfolgte. Eine geringfügige Akkumulation an Carbonat konnte während der Austrocknungsphasen erfolgen, so dass der CaCO₃, Ca und Sr Verlauf leichte Abweichungen aufweist.

Für die Phase von 20,4-17,5ka cal. BP kann rekonstruiert werden, dass ein arides und kaltes Klima vorherrschte, in dem mehrere Austrocknungs- und Transgressionszyklen des Orog Nuur stattfanden. Häufig vorkommende äolische Sandlagen deuten auf eine episodische Aktivierung von Dünen.

Abschnitt IV (352-238cm; 17,5-11,7ka cal. BP): arides und kaltes Klima, einzelne Phasen mit Dünenaktivität

Die Sedimente des Abschnitts IV setzen sich aus tonigem Schluff zusammen, der in einigen Bereichen von Sandlagen unterbrochen wird. Die Korngrößenanalysen zeigen eine überwiegend monomodale Verteilung (GSD 1), die aufgrund der guten Sortierung und der geringen Transportkraft auf ein limnisches Ablagerungsmilieu hindeutet. In einigen Bereichen weisen unabhängige Signale innerhalb der Verteilungskurven (GSD 2) auf einen äolischen Sandeintrag (Prins et al. 2000), der parallel zur limnischen Sedimentation erfolgte (Abb. 32), so dass auf eine kontinuierliche Seebedeckung geschlossen werden kann.

Die kontinuierlich hohen Anteile an Kalium, Titan, Mangan, Eisen und Rubidium deuten auf einen starken Eintrag klastischer Sedimente in den See. Dies deutet darauf hin, dass ein arides Klima vorherrschte in dem eine geringe Vegetationsbedeckung vorherrschte, so dass ein fluvialer Oberflächenabtrag begünstigt wurde (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Ein weiterer Grund für den Anstieg der klastischen Sedimente kann in dem Eintrag von Schmelzwässern liegen, die aus dem Changai Gebirge stammen. Da bislang keine Datierungen über den Rückgang der Gletscher im Ostchangai vorliegen kann diese Theorie nicht verifiziert werden.

Der geringe Vegetationsbedeckungsgrad wird durch niedrige Anteile an Kohlenstoff, Stickstoff und organischem Kohlenstoff bestätigt, die neben der geringen Vegetationsbedeckung im Einzugsgebiet auf eine schwache biologische Aktivität des Sees hinweisen. Die niedrigen TOC/N Werte zeigen, dass der geringe Anteil an Organik auf autochthone Quellen (Algen, Wasserpflanzen) zurückzuführen ist (Horiuchi et al. 2000, Chen et al. 2003, Wang et al. 2004, Herzschuh et al. 2005, Jin et al. 2006, Guo et al. 2007).

Die kontinuierlich auf niedrigem Niveau verlaufenden Carbonat- Calcium- und Strontiumwerte deuten auf eine stabile, kalte Wassertemperatur hin, so dass ebenfalls von einem kalten Klima ausgegangen werden kann. Die niedrigen Werte der elektrischen Leitfähigkeit verweisen auf eine niedrige Salinität, was ebenfalls auf ein kaltes Klima mit geringer Evaporation verweist.

Die Umweltbedingungen im Abschnitt von 17,5-11,7ka cal. BP können als arid und kalt eingestuft werden. Aufgrund des kalten und trockenen Klimas wies die Landschaft nur eine geringe Vegetationsdeckung auf, so dass ein Oberflächenabtrag durch episodische Starkregen erleichtert wurde. Vereinzelte Sandsignale innerhalb der limnischen Sedimente deuten auf Phasen der Dünenaktivität. Abschnitt V (237-165cm; 11,7-8,2ka cal. BP): semihumides warmes Klima, Dünenaktivität zu Beginn

Die Ablagerungen des Abschnitts V bestehen aus sandig schluffigen Lagen, die in tonig schluffige Sedimente übergehen. Die Korngrößenverteilungen zeigen zwei getrennte Signale die innerhalb einer Verteilung vorkommen (GSD Typ 2), wodurch auf separate Ablagerungsmechanismen hingewiesen wird (Prins et al. 2000). Das Maximum im Bereich von 1-10µm verweist auf ein ruhiges limnisches Ablagerungsmilieu, in dem eine gute Sortierung der Sedimente erfolgte. Dagegen weist das Maximum zwischen 100-300µm auf einen stärkeren Transportmechanismus, der ebenfalls eine gute Sortierung ermöglicht, so dass auf einen äolischen Eintrag von Sand geschlossen werden kann. Im oberen Bereich des Abschnitts erfolgt ein Übergang zum GSD Typ 1, der ausschließlich auf eine limnische Sedimentation hinweist.

Die stark ansteigenden Werte der Parameter Carbonat, Calcium und Strontium verweisen auf eine erhöhte Carbonatausfällung im See. Dies ist auf einen sinkenden CO₂ Anteil im Wasser zurückzuführen, der durch eine steigende Wassertemperatur bedingt wird. Daher kann von wärmeren klimatischen Bedingungen ausgegangen werden. Die zunehmende elektrische Leitfähigkeit deutet ebenfalls auf eine angestiegene Salinität, die durch erhöhte Evaporation bedingt wurde.

Der Anteil der ,geogenen' Proxidaten (K, Ti, Mn, Fe, Rb) beschreibt einen stark rückläufigen Trend, so dass auf einen verringerten Eintrag klastischer Sedimente in den See geschlossen werden kann. Dieser Rückgang der klastischen Sedimente deutet auf eine dichtere Vegetationsdecke, so dass ein verringerter Oberflächenabtrag erfolgte (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Die dagegen ansteigenden Werte der Elemente N, C und TOC belegen eine Zunahme der Vegetationsbedeckung sowie der biologischen Produktivität des Sees. Die hohen Werte des TOC/N Verhältnis verweisen auf einen autochthonen sowie externen Eintrag der organischen Substanz. Der Rückgang der klastischen Sedimente sowie die stark steigenden Proxidaten der Bioproduktion lassen darauf schließen, dass ein feuchteres Klima vorherrschte. Die zunehmende Feuchtigkeit sowie das erstmals wärmer werdende Klima deuten auf den Wandel zwischen Pleistozän und Holozän. Der Abschnitt V stellt daher den Übergang von Pleistozän zum Holozän dar, indem ein Umschwung von einem ariden und kalten zu einem semiariden und warmen Klima stattfand.

Abschnitt VI (164-99cm; 8,2-5ka cal. BP): klimatisches Feuchte- und Wärmeoptimum

Der Sedimentabschnitt VI ist aus tonig schluffigen Sedimenten zusammengesetzt, die in einem limnischen Milieu abgelagert wurden. Dies lässt sich durch die Korngrößenverteilungen des GSD Typ 1 bestätigen, die auf ein Ablagerungsmilieu mit geringer Transportkraft hindeuten (Abb. 34) (Prins et al. 2000). Ein schwacher äolischer Eintrag kann aus den Korngrößenverteilungen im Bereich von 161cm abgeleitet werden (GSD 2), die einen schwachen zweiten Maximalwert im Bereich von 100-300µm aufweisen.

Die vorherrschenden hohen Werte des Carbonatanteils, Calcium- und Strontiumgehalts deuten auf die höchste Ausfällung von Carbonat im Kern, so dass von einer angestiegenen Wassertemperatur ausgegangen werden kann, die durch einen geringen CO₂ Anteil eine Carbonatausfällung begünstigte. Diese hohe Wassertemperatur deutet auf eine Klimaphase, in der ein Wärmeoptimum vorherrschte. Dies wird ebenfalls durch eine hohe elektrische Leitfähigkeit verifiziert, die mit hohen Werten auf eine gestiegene Salinität schließen lässt.

Die Maximalwerte im Bereich von Kohlenstoff, Stickstoff und organischer Substanz verweisen auf die höchste biologische Aktivität innerhalb des Bohrkerns. Dies weist auf ein Feuchteoptimum hin, dass eine dichte Vegetationsdecke sowie eine hohe Produktion an organischer Substanz im See ermöglichte. Das Vorhandensein einer durch Vegetation stabilisierten Oberfläche resultiert in einem verringerten fluvialen Abtrag. Dies ist in Übereinstimmung mit niedrigen Anteilen an K, Ti, Ka, Mn und Rb, die auf einen geringen Eintrag klastischer Sedimente hinweisen (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008).

Die geringen Anteile der ,geogenen'- sowie die hohen Konzentrationen der ,bio'- Indikatoren verweisen auf ein warmes und feuchtes Klima, das als holozänes Feuchte- und Wärmeoptimum interpretiert werden kann. Abschnitt VII (99-51cm; 5-2,5ka cal. BP): sinkende Temperaturen und zunehmend arides Klima

Die Korngrößenanalyse des Abschnitts VII zeigt eine überwiegende Ablagerung von tonigem Schluff, der in einem Milieu abgelagert wurde, dass eine geringe Transportenergie aufwies und eine gute Sortierung der Sedimente zur Folge hatte. Dies wird aus den Korngrößenverteilungen ersichtlich, die überwiegend zum GSD Typ 1 zuzuordnen sind. Das Auftreten einer Korngrößenverteilung mit mehreren sich überlagernden Signalen (GSD 2 in 70cm) deutet auf einen kurzzeitigen fluvialen Eintrag in den See.

Ein Rückgang der Konzentrationen von Carbonat, Calcium und Strontium lassen auf eine Abnahme der Carbonatausfällung im See schließen, so dass von einer sinkenden Temperatur ausgegangen werden kann, aus der ein Anstieg des CO₂-Gehaltes im Wasser resultierte. Somit kann von kühleren klimatischen Verhältnissen ausgegangen werden (Guo et al. 2007). Dies kann ebenfalls durch die sinkenden Werte der elektrischen Leitfähigkeit bestätigt werden, die auf einen geringeren Salzgehalt des Orog Nuur schließen lassen, so dass eine geringere Evaporation angenommen werden kann.

Der Verlauf der Elemente K, Ti, Mn, Fe und Rb deutet auf einen geringen Eintrag klastischer Sedimente in den See, so dass ein weiterhin hoher Deckungsgrad der Vegetation rekonstruiert werden kann. Dies lässt auf andauernd feuchte klimatische Verhältnisse schließen. Das Auftreten von Schwankungen sowie ein ansteigender Trend der klastischen Indikatoren, verweisen auf das zunehmende Vorkommen von trockenen Phasen (Abb. 28). In Übereinstimmung mit den ansteigenden klastischen Parametern ist ein Rückgang der Elemente Kohlenstoff, Stickstoff und organischem Kohlenstoff zu beobachten (Abb. 28). Dies lässt auf einen sinkenden Vegetationsanteil im See sowie im Einzugsgebiet des Orog Nuur schließen, so dass ein Trend der Aridisierung zu verzeichnen ist (Chen et al. 2003, Jin et al. 2006).

Die geochemischen Parameter des Sedimentabschnitts VII belegen einen Rückgang der Temperaturen sowie eine Abnahme der Feuchtigkeit nach Beendigung des Holozänen Wärme- und Feuchteoptimums. Nach einer Phase der Oberflächenstabilität kann davon ausgegangen werden, dass aus einer verringerten Vegetationsbedeckung ein erneut ansteigender fluvialer Oberflächenabfluss resultierte. Der oberste Sedimentabschnitt setzt sich aus tonigem Schluff zusammen, der in einem limnischen System abgelagert wurde. Dies kann anhand der Korngrößenverteilungen verifiziert werden, die eine unimodale Verteilung mit einem Maximum im Bereich von 1-10µm aufweisen (GSD 1), wodurch auf eine Ablagerung in einem System mit geringer Transportkraft geschlossen werden kann (Prins et al. 2000).

Die zunehmenden Anteile an CaCO₃, Ca und Sr verweisen auf eine angestiegene Wassertemperatur des Orog Nuur, da aufgrund des abnehmenden CO₂ Gehaltes eine geringere Lösung der Carbonate im Wasser erfolgen konnte. Die erhöhte Carbonatausfällung deutet daher auf wärmere klimatische Bedingungen. Die im obersten Bereich ansteigenden Werte der elektrischen Leitfähigkeit sowie des Schwefelgehaltes bestätigen das rezente Trockenfallen des Sees. Die steigende Salinität, abgeleitet aus den hohen Werten der elektrischen Leitfähigkeit, verweist auf eine temperaturbedingte Ausfällung von u.a. KCl und NaCl. Der parallel mit Ca und Sr ansteigende Anteil an Schwefel deutet auf weitere Bildung der Evaporitserie (CaSO₄, CaCO₃).

Der Verlauf der Elemente Mn, Fe und Rb verzeichnet eine zunehmende Tendenz, so dass auf einen steigenden Eintrag klastischer Sedimente geschlossen werden kann. Dies deutet auf eine weiterhin abnehmende Vegetationsbedeckung hin, die zu einem verstärkten fluvialen Oberflächenabtrag im Einzugsgebiet führt. Somit kann auf ein arides Klima geschlossen werden. Steigende Anteile an Kohlenstoff, Stickstoff und organischem Kohlenstoff sowie ein Rückgang der Elemente Kalium und Titan verweisen dagegen auf eine dichtere Vegetationsbedeckung sowie eine gestiegene biologische Aktivität des Sees. Dies lässt auf einen verringerten klastischen Sedimenteintrag in den See schließen, der durch ein feuchteres Klima bedingt wird. Diese widersprüchlichen Interpretationen der geochemischen Parameter sind nicht zu erklären, können jedoch unter Umständen mit der rezenten Übernutzung der Wasserressourcen sowie den Desertifikationserscheinungen in der Mongolei in Verbindung gebracht werden (Batkhishig und Lehmkuhl 2003).

5.2.5. Sedimentologische Ergebnisse (ONW II)

5.2.5.1. Allgemeine Beschreibung des Bohrkerns

Die Bohrung ONW II (45°4'4,934"N, 100°34'31,465"E, 1212m ü.M.) erfolgte im trockengefallenen westlichen Seebecken des Orog Nuur, ca. 1700m vom Nordufer entfernt. Die Distanz zum ONW I Kern beträgt ca. 700m. Der Bohrkern reicht bis in eine Tiefe von 13,35m und ist in 13 Kernstücke untergliedert. Die Sedimente bestehen aus Schluff- und Tonschichten, die mit unterschiedlichen Sandlagen alternieren. Die Farbe der Sedimente wechselt von Grautönen in den unteren drei Metern über eine schwarze Farbe im mittleren Teil (ca. 4-10m) zu einer hellgrauen und braunen Färbung nahe der Oberfläche. Der Sedimentkern wird anhand der optischen Beschreibung sowie der sedimentologischen Daten in sieben Abschnitte unterteilt (Abb. 39). Die Abgrenzung der Abschnitte erfolgte anhand von Schwankungen der sedimentologischen Parameter, wobei Bereiche mit hohen bzw. niedrigen durchschnittlichen Konzentrationen unterteilt wurden (Tab. 5).

Abb. 39: ONW II Bohrkern unterteilt nach Kernabschnitten

	Mittlere K [µr	(orngröße n]	Ton <2µ	[%] ur	Schluff <6	3µm [%]	Sand <200	0µm [%]	s] N	[%	cI	[%]	ld] S	[mo	CaCO	3 [%]	TOC	[%]
	ø	s	ø	s	ø	s	ø	s	ø	s	0	s	ø	s	ø	s	ø	s
Gesamtkern	11	71	21	6	39	17	29	25	0,052	0,021	1,94	1,23	2755	1504	14	10	0,496	0,452
Kernabschnitt VII	11	2	38	9	5 8	9	4	Ļ	0,054	0,019	4,08	0,63	1307	227	31,5	6,0	0,528	0,291
Kernabschnitt VI	25	38	31	7	09	7	6	1	0,055	0,012	4,70	1,03	1377	272	36,2	8,6	0,620	0,406
Kernabschnitt V	129	86	15	6	37	22	48	30	0,034	0,022	1,18	0,63	2168	1425	7,9	3,9	0,403	0,364
Kernabschnitt IV	64	43	22	9	53	11	25	16	0,054	0,014	1,53	0,40	3109	1110	10,8	2,7	0,416	0,451
Kernabschnitt III	80	66	18	8	49	18	32	25	0,062	0,026	1,76	0,76	3710	1628	11,1	5,1	0,732	0,534
Kernabschnitt II	72	32	19	ŝ	53	7	27	10	0,049	0,008	1,85	0,38	1349	913	13,5	2,9	0,404	0,155
Kernabschnitt I	182	107	12	80	28	19	60	27	0,028	0,019	0,84	0,66	3600	1177	6,5	5,2	0,108	0,180

Tab. 5: Sedimentologische Daten der ONW II Bohrung in Mittelwerten und Standardabweichung nach Kernabschnitten

	AI [p	[md	Si [p	[md	K [p	[m	Ca [p	[mo	Ti (pp	Έ	Mn [p	[md	Fe [p	[md	Rb [p	[mo	Sr [p	[md	Zr (pp	[E
	0	s	ø	s	ø	s	ø	s	ø	s	ø	s	ø	s	0	s	۵	s	ø	s
Gesamtkern	2507	552	26488	3558	14872	2733	65108	32706	4078	965	1036	334	45342	11182	574	101	3676	1385	1203	224
cernabschnitt VII	1999	311	22274	2824	14365	1685	109630	19573	3621	449	993	223	45313	5337	452	89	5701	1333	1043	148
cernabschnitt VI	1894	326	21185	2626	12492	1565	138693	29653	3226	485	1001	214	40818	6328	418	8	6253	2573	1010	215
(ernabschnitt V	2262	573	26024	2869	13887	3334	42143	18902	3687	1225	868	387	38828	14294	566	75	3208	402	1217	256
(ernabschnitt IV	2789	410	28129	2808	16267	1977	57247	11391	4624	648	1158	276	50523	7403	613	81	3101	492	1275	199
(ernabschnitt III	2551	486	26714	2795	14676	2617	57972	19909	4127	895	1036	337	45752	11247	598	84	3562	617	1186	203
(ernabschnitt II	2921	435	28949	2976	16178	1932	62579	14145	4338	551	1111	259	48282	7122	614	83	3276	507	1292	207
(ernabschnitt I	2067	385	25609	2151	11689	2378	34108	23083	2829	903	682	415	29773	12394	554	81	3351	373	1132	183

<u>Ergebnisse</u>

5.2.5.2. ONW II Kernabschnitt I (1335-1268cm)

Abb. 41: ONW II Kernabschnitt I (1335-1268cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der unterste Abschnitt des ONW II Kerns reicht von 1335-1268cm und setzt sich aus mehreren Sandlagen zusammen, die in feinkörnigere Sedimente übergehen. Die Färbung der Ablagerungen schwankt zwischen grauen, dunkelgrauen und blaugrauen Abstufungen. Der unterste Bereich setzt sich aus einem massigen, homogenen Ton- Schluffband zusammen, das eine Mächtigkeit von ca. 5cm aufweist. Im Anschluss daran folgen zwei Sedimentationssequenzen, in denen homogene Sandlagen in Schluff- und Tonbänder übergehen (Abb. 41).

Die mittlere Korngröße von 182µm (Tab. 5) stellt den höchsten Wert innerhalb des Bohrkerns dar. Der Kurvenverlauf beschreibt einen Anstieg von 35µm in 1330cm auf einen Maximalwert von 395µm in 1305cm. Anschließend sinkt die mittlere Korngröße auf 84,9µm in 1270cm zurück. Die durchschnittlichen Anteile an Ton und Schluff liegen mit 12% bzw. 28% unterhalb der folgenden Kernabschnitte. Der Kurvenverlauf des Tonanteils zeigt einen sinkenden Trend von 25,6% (1330cm) auf 1,2% (1305cm), gefolgt von einem Anstieg auf einen relativen Maximalwert von 17,4% in 1285cm. Von 1280-1270cm findet ein erneuter Anstieg von einem Minimum (9,3%) zu einem Wert von 19,6% statt. Die Entwicklung des Schluffgehalts beschreibt einen vergleichbaren Trend, beginnend mit einer Abnahme von 59% (1330cm) auf 2,2% in 1305cm. Der folgende Anstieg wird von einem weiteren Minimum in 1280cm (25%) unterbrochen, und erreicht 50% in 1270cm. Die mittlere Konzentration an Sand erreicht mit 60% den höchsten Wert des ONW II Kerns (Abb. 40). Die Werte zeigen dabei einen Anstieg von 15,4% in 1330cm auf 96,4% in 1305cm und fallen dann bis 1285cm auf 39,7%. Nach diesem relativen Minimum erfolgt eine kurze Zunahme der Sandkonzentration
(65% in 1280cm), gefolgt von einer Abnahme auf 30% (1270cm). Die Korngrößenverteilungen des Abschnitts können in zwei Kategorien unterschieden werden, von denen die erste eine bimodale Verteilung aufweist (GSD Typ 2). Die Maxima liegen in diesem Fall im Bereich von 1-10µm sowie 100-500mµ. Der weitere Typ (GSD Typ 3) weist eine unimodale Verteilung auf, deren Maximum zwischen 200-600µm auftritt (Abb. 41).

Der durchschnittliche Anteil an Aluminium (Al) liegt mit 2067ppm unter dem Durchschnitt des Bohrkerns. Der Bereich von 1335-1310cm setzt sich aus zwei Maxima (1330cm: 2911ppm; 1311cm: 2963ppm) und einem Zwischenbereich mit gesunkenen Werten (1800-2100ppm) zusammen. Im Anschluss fällt die Kurve auf einen Minimalwert von 1552ppm in 1309cm und verbleibt unter 2000ppm bis 1274cm (1585ppm). Zwischen 1273-1268cm erfolgt ein Werteanstieg mit einem Maximum in 1271cm (2738cm). Die Konzentration des Elements Silizium (Si) liegt mit durchschnittlichen 25609ppm in einem moderaten Level. Der Kurvenverlauf zeigt einen kontinuierlichen Rückgang von ca. 28000ppm in 1333cm auf 21000ppm in 1268cm.

Der Kaliumanteil (K) bildet mit einem Mittelwert von 11689ppm den niedrigsten Wert innerhalb des Kerns (Tab. 5). Nach einem Abschnitt mit zwei Maxima (1329cm:16812ppm; 1311cm: 17132ppm) fallen die Werte auf ein Minimum von 8609ppm in 1309cm. Bis 1268cm Tiefe steigt der Kaliumgehalt auf ca. 12000ppm. Die Calciumkonzentration (Ca) des Abschnitts I liegt bei einem Mittelwert von 34108ppm und stellt damit ebenfalls den niedrigsten Wert im Bohrkern dar. Der Kurvenverlauf erreicht zwei Maximalwerte von 78876ppm in 1329cm sowie 84849ppm in 1313cm und sinkt daraufhin auf niedrige Konzentrationen im Bereich von 12000-25000ppm (1310-1272cm). Dieser Verlauf wird von einem Maximum in 1284-1282cm unterbrochen (55676ppm). Ab 1273cm steigen die Ca- Werte von 29600ppm auf 67335ppm in 1269cm an.

Der Anteil an Titan (Ti) beschreibt einen vergleichbaren Kurvenverlauf, der mit zwei Maximalwerten im Bereich von 1331cm (4557ppm) und 1311cm (4316ppm) beginnt. Der Bereich von 1310-1268cm verläuft zunächst zwischen 1500-1900ppm und steigt anschließend mit Schwankungen von 1285 -1274cm auf Werte von 3824ppm (Abb. 40). Die Mangankonzentration (Mn) des Abschnitts beläuft sich auf einen Mittelwert von 682ppm. Im Bereich zwischen 1335-1311cm erreichen die Werte 1571ppm in 1330cm sowie 1780ppm in 1311cm und sinken dann auf 43ppm in 1306cm. Im Anschluss daran steigt der Mangananteil mit stark oszillierenden Werten auf 1223ppm in 1269cm.

Der Eisengehalt (Fe) erreicht ebenfalls den niedrigsten Durchschnitt im Kern (29773ppm) und zeigt einen mit Titan vergleichbaren Trend. Die Werte im unteren Bereich erreichen zwei Maxima in 1331cm (52768ppm) und 1311cm (51312ppm). Von 1310-1292cm verbleibt ein konstantes Niveau zwischen 15000-17000ppm, gefolgt von einem Anstieg auf 48576ppm in 1268cm. Die Konzentration des Elements Rubidium (Rb) zeigt einen konstanten Verlauf, der mit Abweichungen im Bereich von 400-600ppm liegt.

Einen ebenso kontinuierlichen Verlauf beschreibt der Strontiumgehalt (Sr), der innerhalb des Kernabschnitts I im Bereich von 3350ppm liegt. Der Zirkoniumanteil (Zr) liegt mit einem Durchschnittswert von 1132ppm unter dem Kernmittelwert. Der Kurvenverlauf beschreibt einen sinkenden Zr- Gehalt von ca. 1300ppm in 1335cm auf ca. 900ppm in 1305cm. Anschließend steigt die Konzentration auf ca. 1200ppm in 1268cm an.

Der Anteil an Stickstoff (N) weist mit einem Durchschnitt von 0,02% den niedrigsten Wert des Bohrkerns auf (Abb. 40). Der Kurvenverlauf zwischen 1335-1300cm beschreibt eine negative Tendenz von 0,05% auf ein Minimum von 0,007%. Im Anschluss erfolgt ein Anstieg auf 0,044% (1290cm), gefolgt von einem weiteren Rückgang auf 0,01%. Der Kohlenstoffanteil (C) beginnt ebenfalls mit dem niedrigsten Durchschnittswert (0,84%) und weist einen negativen Kurvenverlauf auf, der von 2% auf 0,24% in 1300cm absinkt. Nach weiteren Abweichungen steigt die C- Konzentration auf einen Wert von 1,5% in 1270cm an.

Der Anteil des Elements Schwefel (S) beschreibt einen Kurvenverlauf, der sich in zwei Bereiche unterteilen lässt. In 1328-1308cm sowie 1286-1270cm bilden sich Bereiche mit hoher Schwefelkonzentration aus, die Maximalwerte in 1316cm (7291ppm) und 1271cm (6712ppm) erreichen. Der Bereich von 1307-1287cm sinkt auf Werte um 2500ppm ab. Der Carbonatgehalt (CaCO₃) des untersten Bohrkernabschnitts erreicht einen Durchschnittswert von 6,5% und stellt damit ebenfalls den niedrigsten Wert im Sedimentkern dar. Die Elementkurve beschreibt dabei einen negativen Trend von 16,7% auf 1,6% (1335-1295cm). Im Anschluss daran folgt ein weiterer Zyklus mit absinkenden Werten von 11,8% (1285cm) auf 2,8% (1275cm). Die Konzentration der organischen Substanz (TOC) liegt mit einem Mittelwert von 0,1% in einem geringen Bereich, der einen kontinuierlichen Verlauf zwischen Werten von 0,04% und 0,15% beschreibt. Zwei relative Maxima treten in 1335-1330cm sowie 1290cm auf und erreichen Werte von 0,45% bzw. 0,32%.

5.2.5.3. ONW II Kernabschnitt II (1267-1167cm)

Abb. 42: ONW II Kernabschnitt II (1267-1167cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Bohrkernabschnitt II reicht von 1267-1167cm Tiefe und besteht aus tonig schluffigen Ablagerungen, die eine graue Färbung (z.T. mit helleren bzw. rotbraunen Flecken gemasert) aufweisen (Abb. 42). Die Sedimente bilden eine homogene massige Lage, welche von vereinzelten Sandlinsen durchzogen wird. In einer Tiefe von 1177-1173cm enthält der Bohrkern Pflanzenreste mit einen Größe von ca. 1cm.

Die durchschnittliche Korngröße des Sedimentabschnitts II sinkt auf einen Wert von 72µm (Tab. 5). Der Verlauf der Werte weist dabei eine gleichbleibende Tendenz auf einem niedrigen Level im Bereich von 60µm auf, und steigt nur in 1243cm (105µm), 1219(110µm) und 1174cm (185µm) auf eine gröbere Körnung an. Der Tongehalt steigt auf einen Durchschnitt von 19% und weist einen kontinuierlich stabilen Trend im Bereich von 21% auf, der in 1234 - 1219cm auf 15% sowie in 1174-1169cm auf ca. 10% absinkt. Ein vergleichbarer Verlauf kennzeichnet den Schluffanteil, der auf durchschnittliche 53% ansteigt. Die Werte verlaufen gleichbleibend um 56%, fallen in 1234-1219cm auf 46% und in 1174cm auf ca. 30%. Die Sandkonzentration sinkt auf einen moderaten Wert von 27% und weist ebenfalls einen konstanten Verlauf auf. Im Bereich von 1234-1219cm und 1174cm steigt der Sandgehalt von ca. 23% auf 38% bzw. 60% an. Die Korngrößenverteilungen des Abschnitts II können in die Kategorie des GSD Typs 2 eingeordnet werden, da sie eine bimodale Verteilung aufweisen, deren Maxima sich in 1-10µm sowie 50-500µm ausbilden (Abb. 42). Der Anteil an Aluminium (Al) steigt auf einen Durchschnittswert von 2921ppm. Der Kurvenverlauf beschreibt einen langgezogenen Bereich mit steigender Konzentration von 2500ppm (1266-1260cm) auf 3200ppm (1205-1195cm), unterbrochen von Minima in 1230-1228cm sowie 1180cm (2000ppm). Die mittlere Konzentration an Silizium (Si) steigt auf den Höchstwert des Bohrkerns in Höhe von 28949ppm (Tab. 5). Die Werte verlaufen dabei von 24465ppm (1267cm) auf 32511ppm in 1168cm. Minimalwerte von 20194ppm in 1230cm und 20116ppm in 1182cm weichen vom übrigen Kurvenverlauf.

Der Kaliumgehalt (K) steigt auf eine hohe mittlere Konzentration von16178ppm und zeigt einen zum Element Si parallelen Verlauf der Werte (Abb. 40). Von 1267cm bis 1209cm steigen die Werte von ca. 14000ppm auf ein Niveau von 19000ppm in 1202cm. Zwei Minima in 1230cm (12310ppm) und 1186cm (12717ppm) senken den Kurvenverlauf ab. Die Entwicklung des Calciumgehaltes (Ca) zeigt einen angestiegenen Mittelwert von 69579ppm. Die Bereiche von 1267-1237cm sowie 1213-1167cm verzeichnen hohe Ca- Konzentrationen, die im Bereich von 70000-80000ppm liegen. Dagegen sinken die Anteile in 1236-1214cm auf Werte zwischen 40000-60000ppm ab.

Die Konzentration an Titan (Ti) erreicht einen Durchschnitt von 4338ppm und zeigt einen ansteigenden Trend von 3700-4700ppm (1267-1200cm). Innerhalb dieses Verlaufes werden die Werte von einem Minimalwert von 3337ppm (1230cm) unterbrochen. Ab 1199cm erfolgt ein Rückgang der Ti- Konzentration auf ein Minimum von 3295ppm in 1186cm, gefolgt von einem Bereich mit einer hohen, stark schwankenden Konzentration zwischen 3600-5200ppm (1180-1176cm) (Abb. 40). Der Mangangehalt (Mn) im Abschnitt II steigt auf einen hohen Mittelwert von 1111ppm. Dabei beschreiben die Werte ein langgezogenes Maximum, das von ca. 1100ppm bis 1500ppm verläuft. Einzelne Werte weichen stark von Kurvenverlauf ab und sinken auf 700-1000ppm ab. In einer Tiefe von 1230-1226cm geht der Kurvenverlauf auf einen Minimalwert von 589ppm zurück und steigt ab 1227cm wieder an.

Das Element Eisen (Fe) liegt mit einer mittleren Konzentration von 48282ppm über dem Durchschnitt des Kerns. Die Werte verlaufen auf einem hohen Niveau und steigen von ca. 40000ppm auf ca. 60000ppm in 1216cm an, um bis 1167cm wieder auf ca. 50000ppm zu sinken. Unterbrochen wird der Kurvenverlauf von einem Minimum, das sich von 1230-1225cm ausprägt und auf einen Wert von 32261ppm absinkt. Die Konzentration an Rubidium (Rb) steigt auf den höchsten Durchschnittswert innerhalb des Bohrkerns und erreicht 614ppm (Tab. 5). Der Kurvenverlauf verzeichnet dabei einen leichten Anstieg von 550ppm in 1266cm auf ein Niveau von 650ppm in 1200cm.

Der Strontiumgehalt (Sr) verbleibt in einem niedrigen Bereich von mittleren 3276ppm und weist einen kontinuierlichen Kurvenverlauf auf, der nur im Bereich von 1227-1225cm auf ein Maximum von 5434ppm ansteigt. Der Anteil des Elements Zirkonium (Zr) steigt auf einen Mittelwert von 1292ppm. Der Bereich von 1267-1200cm weist eine steigende Konzentration auf, die unterbrochen von einem Minimalwert in 1230cm (886ppm) von ca. 1100ppm auf 1400ppm ansteigt. Nach einem Bereich mit bis auf 839ppm absinkenden Werten (1201-1181cm) steigt die Zr- Konzentration wieder auf Werte von 1300ppm an.

Der Stickstoffgehalt (N) liegt mit einem Durchschnitt von 0,049% unter dem Kernmittel. Der Kurvenverlauf beschreibt dabei eine abfallende Tendenz, deren Werte von 0,065% (1255cm) auf 0,038% (1219cm) absinken und daraufhin wieder auf 0,06% ansteigen (1209cm). Bis 1174cm erfolgt ein weiterer Rückgang auf einen Wert von 0,032%. Die Konzentration an Kohlenstoff (C) weist einen kontinuierlichen Trend im Bereich von 2% auf, der zwischen 1224-1214cm auf 1,1% absinkt.

Der Verlauf des Schwefelanteils (S) liegt mit mittleren 1349ppm in einem sehr niedrigen Bereich. Die Elementkurve bildet dabei von 1267-1236cm ein Maximum, das auf 5421ppm ansteigt und anschließen auf ein Niveau von 700-800ppm zurückgeht. Von 1230-1167cm beschreibt der Schwefelanteil einen gleichbleibenden Verlauf mit Werten zwischen 700-800ppm. Der Carbonatgehalt (CaCO₃) steigt auf einen mittleren Wert von 13,5% und beschreibt einen Verlauf von 17% auf 9% von 1265cm bis 1219cm (Abb. 40). Anschließend steigen die Werte auf ein Niveau von 16% in 1189cm und sinken dann wieder ab (6% in 1174cm).

Der Anteil an organischer Substanz (TOC) beschreibt einen kontinuierlichen Verlauf im Bereich von 0,4%. In einer Tiefe von 1219-1214cm sinkt der TOC- Wert auf ein Minimum von 0,1%, steigt daraufhin aber wieder an.

5.2.5.4. ONW II Kernabschnitt III (1166-850cm)

Abb. 43: ONW II Kernabschnitt III (1166-850cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Kernabschnitt III umfasst einen großen Bereich des Bohrkerns und erstreckt sich von einer Tiefe von 1166cm bis 850cm. Die Sedimente des Abschnitts setzen sich aus unterschiedlichen Lagen toniger und schluffiger Ablagerungen zusammen die mit Sandlagen alternieren (Abb. 43). Von 1166cm bis 1017cm weisen die Sedimente eine graue und z.T. braune Färbung auf, die anschließend bis 850cm in schwarz übergeht. Der Bereich von 1166cm bis 1115cm setzt sich aus massigen homogenen Sandlagen mit einer Mächtigkeit zwischen 3-15cm zusammen, die in Schluff- und Tonbänder mit 2-8cm Dicke übergehen. Eine Besonderheit ist das häufige Vorkommen von Pflanzenresten innerhalb der Sandlagen. Nach einem überwiegend tonig schluffigen Bereich (1114-1057cm) folgt bis 1017cm eine weitere Sequenz aus wechselnden Sand- und Ton- Schlufflagen, in welcher ebenfalls Pflanzenreste auftreten. Der Bereich von 1016-850cm setzt sich aus massigen, homogenen Lagen zusammen die überwiegend aus Schluff und Ton bestehen.

141

Die mittlere Korngröße des Abschnitts III zeigt einen Anstieg auf einen Durchschnittswert von 80µm. Der Kurvenverlauf verzeichnet eine schwankende Tendenz, die höhere Werte zwischen 1164 -1117cm (100-250μm) und 1056-186cm (100-300μm) aufweist. Die übrigen Bereiche verbleiben im Niveau von 10-50µm (Abb. 40). Einzelne Extremwerte treten auch in diesen Abschnitten auf und steigen auf höhere Werte (z.B. 267µm in 894cm). Der Tongehalt weist einen Verlauf auf, der überwiegend zwischen 15-25% schwankt. In einzelnen Bereichen (1164-1154cm, 1127-1117cm, 1056-1051cm, 894cm) sinkt der Tongehalt auf Werte unter 10% ab. Die Konzentration an Schluff sinkt geringfügig auf einen mittleren Anteil von 49% und schwankt größtenteils im Bereich von 50-60%. Einzelne Minima treten in 1154cm (14%), 1127cm (6%), 1051cm (3%) und 894cm (6%) auf und unterbrechen den kontinuierlichen Kurvenverlauf. Die Sandkonzentration steigt auf einen Mittelwert von 32% an. Der Kurvenverlauf von 1164-986cm weist extreme Schwankungen auf, die Werte zwischen 10-95% erreichen. Von 981-853cm sinkt die Sandkonzentration auf Werte ab, die überwiegend zwischen 10-40% verlaufen. Vereinzelte Maximalwerte steigen auf 45% (934cm) bzw. 91% (894cm). Die Korngrößenverteilungen des Sedimentabschnittes III können in drei Kategorien untergliedert werden, von denen GSD Typ 1 eine unimodale Verteilung aufweist, deren Maximum im Bereich von 1-10µm liegt. GSD Typ 3 zeigt ebenfalls eine unimodale Verteilung, deren Maximum von 100-600µm ausgeprägt ist. Die weitere Korngrößenverteilung (GSD Typ 2) bildet eine Zwischenform, die bimodal verteilt ist und jeweils ein Maximum von 1-10µm sowie 100-600µm aufweist (Abb. 43).

Der Anteil an Aluminium (Al) sinkt auf einen Mittelwert von 2551ppm und weist einen stark schwankenden Kurvenverlauf auf. Von 1166cm bis 1117cm sinkt der Al- Gehalt von 2500ppm auf 1300ppm. Der anschließende Bereich von 1113cm bis 850cm beschreibt einen Rückgang von ca. 3000ppm auf ca. 2300ppm (1000-950cm), gefolgt von einem steigenden Trend auf 3000ppm in 870cm. Der kontinuierliche Trend wird in 1050cm (1118ppm), 928cm (1949ppm) und 893cm (1655ppm) von Minima unterbrochen. Die Siliziumkonzentration (Si) beschreibt einen Kurvenverlauf, der von 32000ppm in 1166cm auf 17000ppm in 1117cm absinkt. Der weitere Trend innerhalb des Abschnitts III zeigt eine absinkende Tendenz von 30000ppm (1110cm) auf 20000ppm (960cm), woraufhin ein Anstieg erfolgt (30000ppm in 870cm). Mehrere Minima und Maxima in 1050 -1034cm sowie 927cm weichen vom Trend ab und erreichen Werte von 18000ppm bis 29000ppm.

Der Kaliumgehalt (K) sinkt auf einen Mittelwert von 14676ppm und beschreibt einen im Bereich von 15000ppm liegenden Werteverlauf, der in unterschiedlichen Abschnitten absinkt (Tab. 5). Diese Minima sinken auf 9890ppm (1155cm), 8019ppm (1127cm), 8220ppm (1052), 10632ppm (928cm) sowie 8060ppm in 893cm. Die Konzentration des Calciumgehaltes (Ca) sinkt auf einen Durchschnittswert von 57972ppm. Der Bereich von 1166-1025cm zeigt einen stark schwankenden Verlauf, der zwischen niedrigen (1166-1142cm, 1130-1116cm, 1048-1032cm) und angestiegenen Werten (1114-1057cm) wechselt. Von 1016cm bis 850cm verläuft die Elementkurve mit einem kontinuierlichen Trend im Bereich von 50000-70000ppm, der von einzelnen Minima unterbrochen wird (895-892cm: ca. 20000ppm).

Der Titangehalt (Ti) fällt auf einen moderaten Durchschnitt von 4127ppm. Der Kurvenverlauf zeigt einen gleichbleibenden Trend in Höhe von 4000-4500ppm, der an mehreren Stellen auf Minimalwerte abfällt (2170ppm in 1152cm; 1455ppm in 1128cm; 1696ppm in 1049cm; 1681ppm in 894cm) und anschließend wieder auf den Durchschnittswert ansteigen. Der Anteil an Mangan (Mn) sinkt auf den Wert des Kernmittels (1036ppm) und weist einen Kurvenverlauf auf, der durch extreme Schwankungen charakterisiert wird (Abb. 40). Der Großteil der Werte verläuft dabei in einem Niveau von 700-1300ppm. Vier Minima weichen vom sonstigen Verlauf ab und sinken bis auf 268ppm (1156cm), 75ppm (1125ppm), 121ppm (1051cm) und 300ppm (892cm).

Eine vergleichbare Tendenz ist für den Eisengehalt (Fe) zu beobachten, der einen gleichbleibenden Verlauf im Bereich von 40000-60000ppm aufweist. In einer Tiefe von 1163-1150cm (ca. 27000ppm), 1129-1123cm (ca. 18000ppm), 1055-1047cm (ca. 20000ppm) sowie 898-891cm (ca. 27000ppm) weichen Die Werte vom Trend ab. Der Rubidiumanteil (Rb) sinkt auf einen Durchschnittswert von 598ppm und liegt damit im Bereich des Kerndurchschnitts. Der Kurvenverlauf liegt zunächst zwischen 1166-1050cm im Bereich von 550ppm, steigt dann aber von 1016cm bis 850cm geringfügig auf ein Level von ca. 600ppm an.

Der Strontiumgehalt (Sr) beschreibt einen weiterhin kontinuierlichen Verlauf, dessen Werte im Bereich von 3000ppm streuen. Drei Abschnitte mit Maxima können ausgewiesen werden, die 7889ppm (1054cm), 9021ppm (1033cm) und 6093ppm in 886cm erreichen. Die Konzentration an Zirkonium (Zr) sinkt auf einen Mittelwert von 1186ppm. Nach einem anfänglichen Maximum (ca. 1700ppm in 1145-1136cm) folgt ein Minimalwert, der auf 527ppm in 1127cm zurück geht. Der weitere Werteverlauf (1120-850cm) schwankt im Bereich von 1000-1300ppm.

Der Anteil an Stickstoff (N) steigt mit 0,062% auf den höchsten Durchschnittswert des Kerns. Die Werte verlaufen dabei auf einem hohen Level von 0,06-0,07%, werden aber von mehreren Minimalwerten unterbrochen. Diese treten in 1164-1154cm (0,01%), 1127cm (0,009%), 1056-1046cm (0,01%), 996-986cm (0,02%) und 898-894cm (0,01%) auf. Der Kohlenstoffanteil (C) verläuft mit vielen regelmäßigen Schwankungen im Bereich von 1,76%. Der Kurvenverlauf verzeichnet einen Bereich mit höheren Werten von 1144-1092cm (1,5-3,6%). Der weitere Verlauf zeigt kontinuierliche Werte, die zwischen Maxima von 2,5% und Minima von 0,2% alternieren.

Der Schwefelgehalt (S) steigt mit einem Mittelwert von 3710ppm auf den höchsten Wert innerhalb des Bohrkerns an (Tab. 5). Nach einem Maximum, das sich von 1141 -1113cm ausprägt und Werte bis 9470ppm erreicht, folgt ein Bereich mit bis auf ca. 1300ppm abgesunkenem Schwefelanteil (1112-1066cm). Von 1053-927cm folgt ein Abschnitt mit konstanten hohen S- Werten (4000-5000ppm), gefolgt von einem Rückgang auf 3000ppm. Ein weiterer Maximalwert in 895-893cm steigt auf 9433ppm. Der Carbonatanteil (CaCO₃) sinkt geringfügig auf einen Mittelwert von 11%. Der Kurvenverlauf beschreibt eine steigende Tendenz, die im unteren Bereich des Abschnitts mit 5-10% beginnt und bis 853cm unter Schwankungen auf 10-15% ansteigt. Ein langgestrecktes Maximum von 1102-1062 erreicht Werte von 15-25%.

Die Konzentration an organischer Substanz (TOC) erreicht mit 0,732% den höchsten Wert im Bohrkern. Die Werte steigen nach einem Minimum in 1164-1154cm (0,07%) auf einen Maximalwert von 2,49% in 1134cm und fallen anschließend bis 1051cm auf 0,1%. Im Anschluss folgt ein Bereich mit stark streuenden Werten, deren Durchschnitt im Bereich von 0,8% liegt. Die Extremwerte innerhalb dieses Bereichs schwanken von 0% bis 2,4%.

5.2.5.5. ONW II Kernabschnitt IV (849-391cm)

Abb. 44: ONW II Kernabschnitt IV (849-391cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Bohrkernabschnitt IV umfasst die Bereiche von 849-391cm Tiefe. Die Sedimente setzen sich aus überwiegend tonigem Schluff zusammen, in dem vereinzelte Sandschichten auftreten. Die Farbe der Sedimente im unteren Bereich (470-849cm) schwankt zwischen schwarzen und einzelnen dunkelgrauen Lagen, wohingegen im Anschluss (391-469cm) ein Übergang zu einer grauen Färbung stattfindet (Abb. 44). Verschiedene Bereiche (z.B. 753-721cm) weisen hellbräunliche Flecken auf, die auf eine nachträgliche Oxidation rückschließen lassen. In drei Bereichen treten Sandlagen mit einer Mächtigkeit von 3-5cm auf, die zum Hangenden in Schluff und Ton übergehen (669-647cm; 536-532cm; 405-398cm). In einer Tiefe von 675cm befinden sich kleine Steine (2-3mm Korngröße) im Sediment. Die tonig schluffigen Sedimente weisen eine homogene, massige, horizontale Lagerung auf (Mächtigkeit von 5-50cm), in der vereinzelte schwache laminierte Strukturen erkennbar sind.

Die mittlere Korngröße im Abschnitt sinkt auf einen Durchschnitt von 64µm. Die Werte weisen einen Verlauf auf, der kontinuierlich zwischen 10µm und 70µm schwankt (Abb. 40). Einzelne Extremwerte weichen vom Trendverlauf ab und steigen auf eine mittlere Korngröße von 127µm (848-828cm), 203µm (674-654cm), 283µm (549 -523cm), 127µm (456-451cm) und 196µm (403-398cm) an. Der Tongehalt, auf einen Mittelwert von 22% angestiegen, weist ebenfalls einen Verlauf auf, der in einem kontinuierlichen Niveau verbleibt (20-25%). In einigen Bereichen weichen die Werte vom Trend ab und bilden Maximalwerte von 51% (735cm), 43,8% (519cm) und 38,9% (475cm) sowie Minima von 14% (828cm), 5,7% (664cm), 2,4% (535cm), 15% (451cm) und 7,5% (403cm)aus. Der Schluffanteil steigt auf einen Durchschnitt von 53% und beschreibt einen zum Ton vergleichbaren Kurvenverlauf. Die Werte verlaufen mit leichten Schwankungen im Bereich von 40-50% und sinken nur in 828cm, 664cm, 535cm und 403cm auf Minimalwerte von unter 20% ab. Die Konzentration an Sand sinkt auf einen Mittelwert von 25% und weist einen schwankenden Verlauf auf, der sich größtenteils im Bereich von 5-30% bewegt. Maximalwerte bilden sich an fünf Abschnitten aus, in denen der Sandanteil auf 50% (828cm), 78% (664cm), 93% (535cm), 44% (451cm) sowie 76% (403cm) ansteigt. In diesem Abschnitt treten Korngrößenverteilungen aller drei Kategorien auf. Die Verteilungen des GSD Typ1 weisen eine unimodale Verteilung auf, deren Maximum von 1-10µm auftritt. Dagegen bildet die GSD Kurve des dritten Typs eine unimodale Verteilung mit einem Maximum, das sich von 100-600µm ausbildet. GSD Typ 2 stellt mit einer bimodalen Verteilung (Maxima in 1-10µm sowie 100-600µm) die Übergangsform dar (Abb. 44).

Der Anteil an Aluminium (AI) steigt auf einen Mittelwert von 2789ppm und weist einen gleichbleibenden Verlauf auf, der nach einem Minimum (1400-2500ppm in 849-818cm) im Bereich von 2800ppm verbleibt. Von 710-510cm sinkt der Kurvenverlauf auf ein Niveau von ca. 2500ppm ab, einhergehend mit einer zunehmenden Anzahl von Minima, die bis auf <2000ppm sinken (z.B. 697cm, 668cm, 535cm). Im folgenden Bereich (509-391cm) steigt der Kurvenverlauf wieder auf Werte, die zwischen 2800-3200ppm schwanken. Die Siliziumkonzentration (Si) beschreibt einen mit geringen Abweichungen konstanten Kurvenverlauf, der im Durchschnitt bei 28129ppm liegt. Zwei Bereiche, in denen die Werte absinken treten in 849-818cm (20000-16000ppm) und 551-531cm (25000-20000ppm) auf. Einzelne Minima treten als Einzelwerte auf (z.B. 697cm: 21249ppm).

Der Kaliumgehalt (K) steigt auf einen Mittelwert von 16267ppm und erreicht damit den höchsten Wert im ONW II Bohrkern. Der Werteverlauf bleibt dabei konstant im Bereich von 15000-17000ppm und wird nur in Einzelfällen von Minima unterbrochen (668cm, 545cm, 535cm, 450cm), die bis auf 10000ppm sinken. Die Konzentration an Calcium (Ca) verbleibt auf einem niedrigen Level von 57247ppm, weist jedoch einen konstanteren Kurvenverlauf auf im Vergleich zu Abschnitt III. Die Werte zeigen nur geringe Schwankungen und sinken nur in vier Bereichen deutlich unter den Durchschnitt (30000ppm in 825cm; 15000ppm in 668cm; <20000ppm in 545-534cm; 15000ppm in 404cm).

Die Elemente Titan (Ti), Mangan (Mn) und Eisen (Fe) steigen mit jeweils 4624ppm (Ti), 1158 (Mn) und 50523ppm (Fe) auf die höchsten Mittelwerte an (Tab. 5). Die Elementkurven weisen nach einem Rückgang der Werte in 549-518cm einen stabilen Trend auf, der im Bereich der Durchschnittswerte liegt und nur geringe Abweichungen aufweist. Vier Bereiche weichen stark vom Mittelwert der Elemente ab. In 668-662cm sinken die Konzentrationen auf 2137ppm (Ti), 71ppm (Mn) und 22071ppm (Fe). Weitere Minima treten in 546-532cm, 450cm sowie 404cm auf. Der Rubidiumgehalt (Rb) steigt auf einen Durchschnittswert von 613ppm. Die Elementkurve beschreibt einen Verlauf, der kontinuierlich schwankende Werte zwischen 500-700ppm aufweist.

Der Anteil an Strontium (Sr) sinkt auf 3101ppm, den niedrigsten Wert im Bohrkern. Der Kurvenverlauf zeigt einen von 849-585cm konstant bleibenden Trend, der zwischen 2500-3500ppm schwankt. Ab 584cm steigen die Werte auf mehrere langgezogene Maxima mit 4100-4400ppm an, die in 577cm, 490cm, 458cm, 414cm und 394cm auftreten und anschließend wieder auf ca. 3000ppm zurücksinken. Der Zirkoniumgehalt (Zr) steigt auf einen hohen Wert von durchschnittlich 1275ppm an. Der Bereich von 849-818cm weist sinkende Zr- Anteile auf, die von 1200ppm auf 840ppm fallen. Von 817cm bis 391cm erfolgt eine geringfügig steigende Tendenz der Werte, die von 1200ppm auf 1400ppm ansteigen.

Der Stickstoffanteil (N) sinkt auf einen durchschnittlichen Gehalt von 0,054%. Nach einem Minimalwert von 0,048% in 848cm steigen die Werte auf ein Niveau mit zwischen 0,05-0,07% schwankenden Werten. In 725cm und 664cm sinken Minima auf 0,02%, steigen anschließend aber wieder auf das Ausgangslevel an. Im Bereich von 584-393cm fällt der Kurvenverlauf geringfügig auf 0,04-0,06% ab und wird ebenfalls von Minima unterbrochen (0,014% in 535cm und 403cm). Die Konzentration an Kohlenstoff (C) geht auf einen Mittel-

wert von 1,53% zurück und beschreibt ebenfalls einen unter geringfügigen Schwankungen gleichbleibenden Verlauf. Die Werte innerhalb des Abschnitt IV schwanken kontinuierlich zwischen 1,3-2%. Vier Minima treten in 725cm, 664cm, 535cm und 403cm auf und fallen bis auf 0,2-0,5% ab.

Der Anteil des Elements Schwefel (S) sinkt auf einen Durchschnittswert von 3109ppm. Die Werte zeigen einen stark schwankenden Verlauf, der zwei Bereiche mit höheren Werten um 3800-4000ppm aufweist (849-790cm; 598-484cm). Der Kurvenverlauf im Bereich von 789cm-599cm sowie 483-391cm sinkt auf Werte, die zwischen 2500-2900ppm schwanken. Der Carbonatgehalt (CaCO₃) des Kernabschnitts IV verbleibt auf einem niedrigen Level von 10,8% (Tab. 5). Der Werteverlauf beschreibt einen kontinuierlichen, oszillierenden Trend im Bereich von 9-14%, der in 828cm, 669cm, 535cm und 403cm auf 1,7-6,6% absinkt.

Die Konzentration der organischen Substanz (TOC) fällt auf einen mittleren Wert von 0,41%. Nach einem Maximalwert von 1,65% in 828cm verläuft die Elementkurve mit Schwankungen auf einem Niveau von 0,04%. Der weitere Kurvenverlauf wird durch mehrere Minima unterbrochen, die auf 0-0,06% fallen (725cm, 664cm, 554cm, 456cm, 403cm).

5.2.5.6. ONW II Kernabschnitt V (390-215cm)

Abb. 45: ONW II Kernabschnitt V (390-215cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Abschnitt V des ONW II Kerns reicht von einer Tiefe von 390cm bis 215cm und setzt sich aus zwei Sandhorizonten zusammen, die von einem Ton- Schluffbereich getrennt werden. Anhand der Farbe kann der Abschnitt in zwei Bereiche unterteilt werden, von denen der untere (390-275cm) eine dunkelgraue bis graue Färbung aufweist. Im weiteren Bereich (274-215cm) wechselt die Farbe zu einem rötlichen braun. Die Sedimente bilden homogene, massige Lagen mit einer Mächtigkeit von 10-20cm, die eine horizontale Lagerung aufweisen (Abb. 45). Im Bereich von 390-360cm tritt eine massige Sandlage auf, die bis 332cm in Ton und Schluff übergeht. Von 264cm bis 215cm tritt eine weitere massige Sandlage auf, die Turbationsspuren aufweist.

Die durchschnittliche Korngröße des Abschnitts steigt auf einen Wert von 129µm und weist einen wechselnden Kurvenverlauf auf. Nach einem Bereich mit hohen Mittelwerten, die ein Maximalwert von ca. 300µm in 374cm erreichen sinken die Werte auf 10-40µm (329-290cm) (Abb. 40). Daraufhin steigt die mittlere Korngröße wieder auf ein weiteres Maximum in 221cm an (264µm). Die Tonfraktion sowie der Schluffanteil sinken auf durchschnittliche Werte von 15% bzw. 37% ab. Der Kurvenverlauf des Tonanteils beginnt mit einem Minimalbereich von 398-364cm, in dem die Werte zwischen 1,5-3% liegen. Von 354cm bis 218cm steigt der Tonanteil auf ein Maximum von 30% an (310cm) und fällt wieder auf 2-10% ab. Der Schluffgehalt verläuft von 389-364cm zwischen 3-5%, um anschließend bis 295cm auf ein Maximum von 67% anzusteigen. Von 290cm bis 218cm sinken die Werte mit starken Schwankungen auf ein Niveau von 10-20% ab. Der mittlere Sandanteil steigt auf einen Wert von 48%. Nach einem Maximum von 96% in 384cm sinkt der Sandanteil auf 4% in 310cm und steigt dann wieder bis 221cm auf 91% an. Die Korngrößenverteilungen innerhalb des Abschnitts V weisen einen Wechsel auf, der von GSD Typ3 (unimodale Verteilung, Maximum von 100-600µm), über GSD Typ2 (bimodal, Maxima von 1-10µm und 100-600µm) zu GSD Typ 1 (unimodal, Maximum von 1-10µm) reicht und sich wieder zum dritten Typ entwickelt (Abb. 45).

Der Anteil an Aluminium (Al) sinkt auf einen durchschnittlichen Wert von 2262ppm ab. Nach einem Bereich mit niedriger Konzentration (1400-1700ppm) in 390 -358cm steigen die Werte mit Schwankungen auf einen Maximalwert von 3400ppm in 326cm an. Von 325-215cm sinken die Al-Werte auf einen Bereich zwischen 1400-1900ppm ab. Die Konzentration des Elements Silizium (Si) sinkt auf einen Mittelwert von 26024ppm ab und beschreibt einen leicht oszillierenden Kurvenverlauf, der von einem Minimalwert von 22234ppm in 385cm auf ein Maximum in 343cm (32035ppm) ansteigt (Abb. 40). Bis 215cm sinken die Werte wieder auf ca. 21000ppm ab.

Der Kaliumgehalt (K), auf einen Durchschnitt von 13887ppm gesunken, verläuft von 390-364cm in einem niedrigen Bereich von 7000-10000ppm. Von 363cm steigt die Konzentration mit einigen Abweichungen bis 331cm auf ein Maximum von ca. 19000ppm an und fällt daraufhin wieder bis 217cm auf Werte zwischen 8000-10000ppm. Der Anteil an Calcium (Ca) sinkt auf einen niedrigen Durchschnitt von 42143ppm. Im Bereich von 390-359cm verbleiben die Werte zwischen 11000-19000ppm, steigen dann aber auf einen langgezogenen Bereich an(358 -265cm), in dem die Werte zwischen 40000-60000ppm schwanken. Von 264cm bis 215cm fallen die Ca- Werte mit starken Schwankungen auf ein Minimum von 11436ppm.

Die Konzentration des Elements Titan (Ti) verläuft ebenfalls von 390-358cm in einem niedrigen Bereich zwischen 1300-2000ppm und steigt anschließend auf einen Maximalwert von 5611ppm in 331cm an. Bis 215cm erfolgt ein oszillierender Rückgang der Werte auf 1556ppm. Die Mangankurve (Mn) innerhalb des Abschnitts zeigt starke Schwankungen und lässt sich in drei Abschnitte untergliedern (Abb. 40). Von 390-360cm weist der Kurvenverlauf Werte zwischen 0-800ppm auf und steigt dann im zweiten Bereich (359-256cm) auf Werte zwischen 800-1400ppm an. Von 255-215cm sinken die Werte wieder auf 0 -1000ppm ab.

Der durchschnittliche Eisengehalt (Fe) sinkt auf einen Wert von 38828ppm und weist einen Kurvenverlauf auf, der mit niedrigen Werten (12000-20000ppm) im Bereich von 390-358cm beginnt. Nach einem Anstieg auf ein Maximum von 58958ppm (324cm) sinken die Werte unter Schwankungen wieder auf ein Level von 15000-20000ppm in 215cm. Der Rubidiumanteil (Rb) steigt auf einen Durchschnitt von 566ppm an. Der Kurvenverlauf zeigt einen geringfügigen Anstieg von 550ppm in 390cm Tiefe auf ca. 700ppm in 300cm. Anschließend verläuft die Kurve in einem negativen Trend bis auf ein Niveau von 500ppm in 215cm.

Die durchschnittliche Konzentration an Strontium (Sr) verbleibt weiterhin in einem niedrigen Bereich von 3208ppm und weist einen kontinuierlichen Kurvenverlauf auf. Zwei Abweichungen vom gleichbleibenden Trend stellen die Maximalwerte in 304cm sowie 269cm auf die auf 4437ppm und 4211ppm ansteigen (Abb. 40). Der Zirkoniumanteil (Zr) beschreibt einen Verlauf der Werte, der durch starke Schwankungen geprägt ist. Nach einem Bereich mit niedrigen Werten (390 .358cm) zwischen 700-1300ppm steigt die Kurve auf ein Maximum (ca. 1800ppm) in 341cm. Im Anschluss daran erfolgt ein Rückgang auf ca. 1000ppm in 215cm.

Der Gehalt an Stickstoff (N) sinkt auf einen Durchschnittswert von 0,034% ab. Der Kurvenverlauf steigt von einem langgezogenen Minimum (389-359cm) mit Werten von 0,01% auf einen Maximalwert von 0,077% in 299cm an. Nach diesem Maximum erfolgt ein Rückgang der N- Konzentration auf 0,01% in 221cm. Die Konzentration des Elements Kohlenstoff (C) verbleibt in einem niedrigen Niveau von durchschnittlich 1,2%. Der Verlauf der Werte steigt von einem Minimum (0,2-0,4%) in 289-264cm auf einen Höchstwert von 2,4% in 302cm und sinkt daraufhin auf 0,2% in 248cm.

Das Element Schwefel sinkt in Kernabschnitt V auf einen Mittelwert von 2168ppm. Die Elementkurve zeigt dabei einen Anstieg auf einen Bereich mit hohen Schwefelwerten (2000-5000ppm) von 378-292cm, der einen Höchstwert von 6458ppm in 352cm erreicht. Oberhalb von 292cm sinken die Werte auf ein Niveau von 800-1000ppm, in dem sie stabil verlaufen. Der Carbonatgehalt (CaCO₃) sinkt auf einen Mittelwert von 7,3% (Tab. 5). Der Kurvenverlauf beschreibt einen Anstieg von einem Minimalbereich (389-359cm), der Werte zwischen 1-4% aufweist auf ein Maximum in 302cm mit 14% CaCO₃. Anschließend sinken die Werte ab und verlaufen bis 218cm mit Abweichungen zwischen 2% und 10%.

Die durchschnittliche Konzentration der organischen Substanz (TOC) verbleibt in einem Bereich von 0,4%. Die Werte steigen dabei nach einem Bereich mit geringer Konzentration (389-359cm: 0,1-0,2%) auf ein Niveau >0,5% an und erreichen zwei Maximalwerte von 1,48% (354cm) und 1,19% in 302cm. Von 290-218cm sinkt der TOC Wert auf einen stark schwankenden Bereich zwischen 0-0,6%.

5.2.5.7. ONW II Kernabschnitt VI (214-105cm)

Abb. 46: ONW II Kernabschnitt VI (214-105cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der Bereich von 214-105cm wird als Kernabschnitt VI ausgewiesen und setzt sich aus tonigem Schluff zusammen. Die Färbung variiert von Brauntönen (214-188cm) über graue und hellgraue Lagen (187-153cm) zu dunkelbraunen Schichten (152-130cm). Die Sedimente setzen sich aus unterschiedlichen 5-10cm mächtigen Lagen zusammen, die aus horizontalen, massigen Schichten bestehen (Abb. 46).

Die mittlere Korngröße des Abschnitts VI verzeichnet einen starken Rückgang auf einen Wert von 25µm. Der Werteverlauf zeigt eine stark absinkende Tendenz von 188µm in 214cm auf einen Wert von 11µm in 178cm. Oberhalb von 178cm verbleibt der Kurvenverlauf mit einigen geringen Abweichungen im Bereich von 9 -15µm. Der Tonanteil, auf einen Mittelwert von 31% gestiegen, beschreibt eine leicht oszillierende, zunehmende Tendenz von 11% (214cm) auf 41% in 123cm. Die Konzentration an Schluff steigt mit einem Mittelwert von 60% auf den höchsten Wert im Bohrkern (Tab. 5). Die Werte zeigen dabei einen konstanten Verlauf mit Werten zwischen 57-65%. Der Sandanteil verzeichnet einen extremen Rückgang auf einen Mittelwert von 9%. Der Werteverlauf beschreibt eine Abnehmende Tendenz von 53% in 214cm auf 11,4% in 183cm Tiefe. Im Bereich zwischen 178-108cm verbleibt der Sandanteil im Bereich von 3-9%. Die Korngrößenverteilungen können überwiegend zum GSD Typ 1 zugeordnet werden, für den eine unimodale Verteilung mit einem Maximum von 1-10µm typisch ist (Abb. 46). Ein Übergang zu einer bimodalen Verteilung tritt in 188cm auf, in der ein weiterer Maximalwert von 50-200µm vorkommt.

Die Aluminiumkonzentration (Al) sinkt auf einen Mittelwert von 1894ppm. Der Verlauf der Werte zeigt eine starke Streuung und reicht von 1175ppm (126cm) bis zu 2824ppm (163cm). Der Siliziumanteil (Si) fällt mit einem Mittelwert von 21185ppm ebenfalls unter den Kerndurchschnitt. Im Bereich von 214cm bis 175cm verläuft die Kurve konstant im Bereich von 20000-22000ppm, um dann von 174-105cm mit Schwankungen zwischen 16000ppm-29000ppm fortzufahren.

Der Kaliumgehalt (K) sinkt auf einen Durchschnitt von 12492ppm und weist einen stark schwankenden Verlauf zwischen 214-127cm auf (11000-15000ppm). In 126-119cm sinken Die Werte auf einen Minimalwert von 9000ppm und steigen anschließend auf ein Maximum in 114-108cm (14000-15000ppm). Das Element Calcium (Ca) steigt mit 138693ppm auf den höchsten Mittelwert des ONW II Bohrkerns (Tab. 5). Der Kurvenverlauf zeigt dabei einen Bereich mit hohen Werten über 100000ppm von 200cm bis 110cm. Die Kurve erreicht einen Maximalwert von 195440ppm in 120cm Tiefe.

Der Titangehalt (Ti) beschreibt einen gleichbleibenden Kurvenverlauf von 214-129cm, dessen Werte zwischen 3000-4000ppm schwanken. Nach einem Bereich mit abgesunkenen Werten in 127-118cm (2200-2900ppm) steigt die Kurve auf einen Maximalwert von 4232ppm in 113cm an. Die Konzentration an Mangan (Mn) steigt auf einen Mittelwert von 1001ppm und liegt damit knapp unter dem Kernmittel. Der Kurvenverlauf zeigt eine starke Streuung der Werte, die zwischen 600-1300ppm liegen. In 146-133cm wird der Kurvenverlauf von einem Bereich mit konstant niedrigen Werten (400-800ppm) unterbrochen.

Der Eisengehalt (Fe) sinkt auf einen Mittelwert von 40818ppm und beschreibt einen von 214-119cm abfallenden Trend, dessen Werte von 45000-50000ppm auf ca. 30000ppm zurückgehen (Abb. 40). Von 118-105cm steigen die Werte wieder auf ein Niveau von 40000-50000ppm an. Die Konzentration des Elements Rubidium (Rb) sinkt auf einen Durchschnittswert von 418ppm. Die Werte beschreiben dabei einen negativen Kurvenverlauf, der von 400-500ppm (200cm) auf 300ppm (118cm) fällt. Vier Maxima in 207cm, 163cm, 129cm und 113cm steigen auf 658ppm, 600ppm, 569ppm sowie 562ppm an.

Der Anteil an Strontium (Sr) steigt auf einen Durchschnitt von 6253ppm und erreicht damit den höchsten Wert des Kerns (Tab. 5). Der Kurvenverlauf weist drei klare Maximalwerte auf, die auf 12510ppm in 172cm, 12615ppm in 155cm sowie 13938ppm in 122cm ansteigen. Ein weiteres langgezogenes Maximum steigt auf 5000-8000ppm in 201-188cm. Zwischen den Maximalwerten des Abschnitts sinkt die Sr- Konzentration wieder auf 3000-4000ppm zurück. Der Verlauf des Elements Zirkonium (Zr) beschreibt einen rückläufigen Trend, dessen Werte von 1100-1300ppm (214cm) auf 500 -900ppm (117cm) fallen. Von 115-106cm steigen die Werte auf ein Maximum an, das 1433ppm (113cm) erreicht.

Der Stickstoffgehalt (N) steigt auf einen mittleren Wert von 0,055% und liegt damit über dem Durchschnitt des Bohrkerns. Nach einem Anstieg der Werte von 0,02% in 214cm auf einen Maximalwert von 0,08% (178cm) folgt ein Verlauf im Bereich von 0,05-0,06%. Zwei weitere Maxima in 148cm und 108cm steigen auf 0,07% an. Der Anteil an Kohlenstoff (C) erreicht mit 4,7% den Maximalwert des Sedimentkerns. Der Kurvenverlauf steigt von 1,7% in 214cm auf einen langgezogenen Bereich (198-108cm), dessen Werte zwischen 4-6% schwanken.

Das Element Schwefel (S) sinkt auf einen niedrigen Durchschnittswert von 1377ppm. Von 214-169cm erfolgt ein Anstieg von ca. 1000ppm auf 1952ppm, woraufhin die Werte bis 106cm wieder auf 1085ppm abfallen. Der durchschnittliche Carbonatgehalt (CaCO₃) des Abschnitts VI verzeichnet mit einem Anstieg auf 36,2% ebenfalls den höchsten Wert im Kern. Die CaCO₃ Werte steigen dabei von 13,3% in 214cm auf 40% in 198cm an und verlaufen mit Schwankungen bis 118cm in dieser Höhe. Von 112-108cm erfolgt ein Rückgang auf ca. 30%.

Die Konzentration an organischer Substanz (TOC) steigt auf durchschnittlich 0,62% und liegt damit über dem Kernmittelwert. Von 214-178cm steigt der Kurvenverlauf von 0,05% auf einen Maximalwert von 1,6% an und fällt dann mit schwankenden Werten bis auf ein Minimum von 0,1% in 118cm. Ein weiterer Maximalwert erreicht 0,87% in 108cm.

5.2.5.8. ONW II Kernabschnitt VII (104-28cm)

Abb. 47: ONW II Kernabschnitt VII (104-28cm) mit Sedimentstrukturen und exemplarischen Korngrößenverteilungen

Der oberste Kernabschnitt VII reicht von einer Tiefe von 104-28cm und setzt sich aus tonigem Schluff zusammen. Von 104cm bis 53cm weisen die Sedimente eine wechselnde Färbung auf die zwischen Hellgrau- und Brauntönen alterniert. Der Bereich setzt sich aus massigen, homogenen Lagen zusammen, die eine Mächtigkeit von 2-5cm aufweisen. In einer Tiefe von 53-28cm wechselt die Farbe der Sedimente in ein Dunkelgrau. Die Ablagerungen treten als homogenes massiges Band auf, und weisen ein krümeliges und lockeres Gefüge auf (Abb. 47).

Die durchschnittliche Korngröße sinkt auf 11µm und erreicht damit den niedrigsten Wert des Bohrkerns (Tab. 5). Von 104cm bis 47cm kann eine abnehmende Tendenz von 13-6,9µm verzeichnet werden. Im Anschluss steigt der Wert wieder leicht an und erreicht 12,4% in 28cm. Der Tonanteil steigt auf einen Mittelwert von 38% und verzeichnet damit den höchsten Wert des Sedimentkerns. Im Bereich von 87-62cm steigt der Tongehalt von 32% auf einen Maximalwert von 52% an und sinkt daraufhin auf 33% in 28cm (Abb. 40). Der Anteil an Schluff sinkt innerhalb des Abschnitts auf 58%. Die Werte verlaufen dabei kontinuierlich im Bereich von 55-60% und sinken nur in 62cm Tiefe auf einen Minimalwert von 44%. Die Konzentration an Sand sinkt auf einen mittleren Anteil von 4% und erreicht damit den niedrigsten Wert im Kern. Der Verlauf der Werte liegt gleichbleibend im Bereich von 3-5%. In 47cm Tiefe erfolgt ein Rückgang auf einen Minimalwert von 1,6%. Die Korngrößenverteilungen bilden eine unimodale Verteilung, deren Maximum im Bereich von 1-10µm liegt, so dass GSD Typ 1 vorliegt (Abb. 47).

Der Aluminiumgehalt (Al) steigt auf einen durchschnittlichen Wert von 1999ppm und verzeichnet einen schwankenden Verlauf, dessen Werte zwischen mehreren Maxima (2740ppm, 2468ppm, 2304ppm) und Minima (975ppm, 1481ppm) alternieren. Der Anteil an Silizium (Si) steigt auf einen Mittelwert von 22274ppm, liegt damit aber weiterhin unter dem Durchschnitt. Der Kurvenverlauf zeigt nach einem Minimum (13556ppm in 103cm) und einem Maximalwert (28026ppm in 88cm) einen oszillierenden Trend, der im Bereich von 20000-25000ppm verläuft.

Die Konzentration an Kalium (K) steigt auf einen Durchschnitt von 14365ppm, einen Wert im Bereich des Kernmittels. Der Verlauf der Werte unterliegt einigen Schwankungen, so dass diese zwischen 13000-17000ppm liegen. Mehrere Minimalwerte in 103cm (8924ppm), 54cm (11533ppm) und 31cm (1073ppm) unterbrechen den Kurvenverlauf (Abb. 40). Der Calciumanteil (Ca) verbleibt auf einem hohen Niveau von durchschnittlich 109630ppm und weist ebenfalls einen schwankenden Kurvenverlauf auf. Der Bereich von 104-67cm zeigt eine starke Schwankung der Werte, so dass Minima von 59000ppm (103cm) und 51000ppm (88cm) sowie Maximalwerte von 132000ppm (97cm und 79cm) erreicht werden. Von 66-28cm beschreiben die Werte nach einem Maximum in 56cm (139139ppm) einen konstanten Verlauf zwischen 100000-120000ppm.

Der Titangehalt (Ti) verläuft weiterhin mit unterdurchschnittlichen Werten im Bereich von 3621ppm. Die Werte zeigen einen kontinuierlichen Verlauf, der im Bereich von 3500-4500ppm schwankt. Die Konzentration des Elements Mangan (Mn) beschreibt einen stark streuenden Verlauf, der von 600-900ppm in 104cm auf 800-1300ppm (28cm) ansteigt.

Der Eisengehalt (Fe) erreicht mit 45313ppm den durchschnittlichen Gehalt des Sedimentkerns. Von 104-54cm beschreibt der Kurvenverlauf stark schwankende Werte, die zwischen 30000ppm (92cm) und 60000ppm (88cm) oszillieren. Oberhalb von 53cm verbleiben die Werte kontinuierlich in einem Bereich von 46000-50000ppm. Der Anteil an Rubidium (Rb) beschreibt einen schwankenden Verlauf, dessen Werte zwischen 300-500ppm liegen. Mehrere Maxima in 88cm (707ppm), 50cm (560ppm) und 29cm (581ppm) weichen vom sonstigen Verlauf ab (Abb. 40). Das Element Strontium (Sr) verbleibt auf einem hohen Niveau von durchschnittlich 5701ppm. Von 104-66cm weist der Kurvenverlauf starke Schwankungen auf und bildet Maxima in 98cm (8881ppm), 90cm (5466ppm) und 83cm (10766ppm). Zwischen den Maxima sinken die Werte auf 4000-5000ppm zurück. Im Bereich von 65-54cm erfolgt ein Anstieg auf ein Maximum von 8086ppm, gefolgt von kontinuierlich verlaufenden Sr- Werten zwischen 6000-6500ppm. Die Konzentration an Zirkonium (Zr) befindet sich mit mittleren 1043ppm unter dem Kerndurchschnitt. Die Werte beschreiben einen gleichbleibenden Verlauf zwischen Minima mit 700-800ppm und Maximalwerten im Bereich von 1000-1200ppm.

Der Stickstoffgehalt (N) weist einen abnehmenden Trend auf der von 0,06% in 104cm auf 0,039% in 57cm absinkt, um bis 28cm wieder auf 0,11% anzusteigen. Der Anteil an Kohlenstoff (C) verbleibt auf einem hohen Level von durchschnittlich 4,08%. Nach einem Maximalwert von 5,7% in 98cm und einem Minimum von 3% in 87cm erfolgt ein kontinuierlicher Verlauf zwischen 3,6-4,1%.

Die Schwefelkonzentration (S) sinkt auf einen mittleren Wert von 1307ppm und erreicht damit den niedrigsten Anteil im Bohrkern (Tab. 5). Die Werte zeigen einen kontinuierlichen Verlauf, der im Bereich von 900-1900ppm schwankt. Der Carbonatgehalt (CaCO₃) bleibt mit einem Durchschnitt von 31,5% weit über dem Kernmittel. Nach einem Maximum von 47,6% in 98cm erfolgt ein Rückgang auf einen Minimalwert von 22,8% in 87cm. Von 57-28cm erfolgt ein weiterer Rückgang von einem zweiten Maximum (38,9%) auf ein Minimum (24,8%).

Die Konzentration an organischer Substanz (TOC) beschreibt einen positiven Trend, der von einem Minimum in 92cm (0,27%) auf einen Maximalwert von 1,15% in 28cm ansteigt.

5.2.6. Chronostratigraphie (ONW II)

Die acht ¹⁴C AMS Datierungen des ONW II Bohrkerns, die in 91cm, 199cm, 271cm, 392cm, 571cm, 778cm, 1192cm und 1272cm entnommen wurden, umfassen eine Altersspanne von ca. 48-13ka cal. BP (Tab. 6). Die Alter im Bereich von 91-778cm beschreiben einen überwiegend kontinuierlichen Anstieg, der in 271cm und 392cm eine geringfügige Altersumkehr aufweist (19215ka; 19192ka). Die Datierungen in 1192cm (48072ka cal. BP) sowie 1272cm (42241ka cal. BP) zeigen ebenfalls eine Umkehr der Alter (Tab. 6).

Tab. 6: Übersicht der ONW II¹⁴C Datierungen

Bohrkern	Tiefe [cm]	Lab. Nr.	¹⁴ C Alter und Fehler [yr. BP]	δ ¹³ C [‰]	kalibrierte Alter und Standard Abw. [kal. yr. BP]	Material
ONW II	91	Erl-15622	12581 ± 103	-25,4	12973 ± 323	Mischprobe
ONW II	199	Erl-15623	13242 ± 85	-24,2	14223 ± 413	Mischprobe
ONW II	271	Erl-15624	17733 ± 149	-25,4	19215 ± 354	Mischprobe
ONW II	392	Erl-15625	17713 ± 180	-24,5	19192 ± 379	Mischprobe
ONW II	571	Erl-15626	19738 ± 179	-23,8	21670 ± 348	Mischprobe
ONW II	778	Erl-15627	21501 ± 217	-24,2	23714 ± 444	Mischprobe
ONW II	1192	Erl-15628	46103 ± 2281	-25,4	48072 ± 3111	Mischprobe
ONW II	1272	Erl-15629	40429 ± 1340	-24,92	42241 ± 1147	Mischprobe

Bezüglich der Interpretation der ¹⁴C Datierungen müssen nachfolgende Überlegungen diskutiert werden. Aufgrund der trockenen klimatischen Bedingungen innerhalb des Untersuchungsraumes erfolgt eine Anreicherung an Evaporiten innerhalb der abflusslosen Senken, so dass u.a. eine Akkumulation an Carbonaten (CaCO₃) in den Sedimenten erfolgt. Die Herkunft des Calciums (Ca) kann auf unterschiedliche Quellen zurückgeführt werden, die nicht eindeutig voneinander separiert werden können. Das Ti/CaCO₃ Verhältnis belegt eine zweigeteilte Abhängigkeit der beiden Parameter (Abb. 49). Die positive Korrelation der Carbonatwerte <20% mit Titan weist auf eine parallele Ablagerung hin, so dass von einem gleichen Ursprung (fluvial) ausgegangen werden kann. Die negative Korrelation der Carbonatwerte >20% mit dem Element Ti deutet auf weitere, von fluvialen Prozessen unabhängige Quellen hin (z.B. äolischer carbonathaltiger Staub). Durch die unterschiedlichen Möglichkeiten der Carbonatherkunft ist eine Verfälschung der ¹⁴C Konzentration möglich, so dass ein Reservoir Effekt nicht ausgeschlossen werden kann (Geyh et al. 1999). Hierbei kann die Altersüberschätzung zwischen einigen hunderten bis zu ca. 2000 Jahren betragen (Rickettsa et al. 2001, Feng et al. 2005, Guo et al. 2007).

Abb. 48: Alter-Tiefen Modell des ONW II Bohrkerns mit Abgrenzung der Sedimentationseinheiten I-VII.

Die Erstellung eines Alters-Tiefen Modells (Abb. 48) erfolgte anhand von gemittelten Altersdaten, so dass die Bereiche mit einer Altersumkehr (s.o.) ausgeglichen wurden. In Übereinstimmung zu den Altersmodellen des KEO I und ONW I Kerns beinhaltet das Modell der ONW II Bohrung folgende vereinfachende Annahmen:

- der Sedimentkern weist keinen Hiatus auf
- die Ablagerung erfolgte kontinuierlich

- die Oberfläche hat ein rezentes Alter d.h. es erfolgte keine Erosion
- ein evtl. Reservoir Effekt wurde nicht berücksichtigt

Anhand des Alters-Tiefen Modells des ONW II Kerns lassen sich die Kernabschnitte I-V in das Pleistozän einordnen. Mit Beginn des Sedimentabschnitts VI erfolgt ab ca. 13ka cal. BP der Übergang zum Holozän. Diese geringfügige zeitliche Abweichung zu den Altersdaten des KEO I Kerns sowie zu Daten der angrenzenden Regionen (Morrill et al. 2003, Walther et al. 2003, Herzschuh et al. 2005, Andreev and Tarasov 2007, Stebich et al. 2009) kann auf die geringe zeitliche Auflösung der obersten 1-2m des ONW II Sedimentkerns zurückgeführt werden. Anhand des Altersmodells können Beginn sowie Dauer der einzelnen Sedimenteinheiten nachvollzogen werden, so dass die paläoklimatischen Informationen der Kernabschnitte durch Altersdaten ergänzt werden. Aufgrund der vereinfachenden Annahmen (s.o.) sowie der Interpolation der Altersdaten (Abb. 48) stellen die Altersgrenzen der Kernabschnitte eine zeitliche Einordnung dar, die ggf. vom reellen Alter abweichen kann.

5.2.7. Interpretation der Detailergebnisse (ONW II)

Die Interpretation der Ergebnisse aus dem ONW II Bohrkern ermöglichen eine Rekonstruktion der Paläoumweltbedingungen während eines Zeitabschnitts von 50ka cal. BP bis heute. Dabei kann anhand des Verlaufs der sedimentologischen Parameter sowie der wechselnden Elementverhältnisse auf die Ablagerungsbedingungen und somit auf das Klima geschlossen werden.

Die sedimentologischen Daten lassen sich in mehrere Parametergruppen unterteilen, die unterschiedlich miteinander korrelieren (Abb. 49):

In Anlehnung an die Ergebnisse des ONW I Bohrkerns zeigen die Elemente Al, Si, K, Ti, Mn, Fe, Rb und Zr eine hohe Korrelation untereinander (Abb. 49, Anhang), so dass auf einen einheitlichen Ablagerungsprozess geschlossen werden kann. Hier stellen ebenfalls die anstehenden Gesteine innerhalb des Einzugsgebietes die Quelle für diese Elemente dar (s.o.), so dass Al, Si, K, Ti, Mn, Fe, Rb und Zr als ,geogenes' Signal angesehen werden (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghardt et al. 2008).

Die Parameter Ca, Sr und CaCO₃ weisen ebenfalls eine hohe Korrelation auf (Anhang), die auf einen Ablagerungsprozess in Form von Carbonatausfällung schließen lassen. Die Korrelation der carbonatischen mit den geogenen Parametern zeigt eine zweigeteilte Korrelation der Gruppen (Abb. 49). Hierbei weisen die Sedimente mit einem Anteil von >20% CaCO₃ eine negative Korrelation mit dem ,geogenen' Signal auf (z.B. Ti). Hierbei kann von einem unabhängigen Ursprung in Form von Staub, Grundwasser und Mineralneubildung ausgegangen werden. Bereiche mit einem CaCO₃ Gehalt <20% zeigen dagegen eine positive Korrelation mit dem ,geogenen' Signal, so dass auf eine geogene Herkunft des Carbonats geschlossen werden kann (Feldspatverwitterung, carbonatische Gesteine im Einzugsgebiet).

Der TOC- Gehalt lässt auf die Anreicherung von organischem Material im Sediment schließen. Diese Akkumulation kann in Form eines Eintrags durch Wasserpflanzen sowie durch Ufervegetation und fluvial eingetragene Pflanzenreste und humose Sedimente erfolgen. Die geringe Korrelation der Vegetationsparameter mit den "geogenen" sowie carbonatischen Parametergruppen (Abb. 49) verifiziert die unterschiedlichen Quellen der organischen Substanz im Sedimentkern.

Anhand der wechselnden Ausprägung der Parameter und Parametergruppen können unterschiedliche Ablagerungsprozesse rekonstruiert werden, die auf schwankende klimatische Bedingungen innerhalb der Kernabschnitte verweisen.

Abb. 49: Zusammenhänge ausgewählter sedimentologischer Parameter des ONW II Bohrkerns; die Nummerierungen von 1-7 entsprechen den Mittelwerten der Sedimentabschnitte I-VII

Abschnitt I (1335-1268cm; 50-47ka cal. BP): arides und kaltes Klima, Dünenbildung mit Transgressionsphasen

Der Abschnitt I des ONW II Kerns setzt sich aus Sandlagen zusammen, in denen ein zunehmender Anteil an Ton und Schluff beobachtet werden konnte (Abb. 41). Die Korngrößenverteilungen der Sandlagen zeigen eine monomodale Verteilung (GSD Typ 3) deren Werte ausschließlich in den Bereich zwischen 100-500µm fallen, so das von einem sehr gut sortierten Sediment ausgegangen werden kann. Daher kann auf einen äolischen Sedimentationsprozess unter subaerischen Bedingungen geschlossen werden (Prins et al. 2000). Der zunehmende Anteil an Ton und Schluff spiegelt sich im Wandel von GSD Typ 3 zu GSD 2. Die Korngrößenverteilung im GSD Typ 2 weist zwei unabhängige Signale (1-10µm und 100-500µm) auf, die parallel sedimentiert wurden. Die Ablagerungen im Bereich von 1-10µm deuten auf limnische Sedimente die in einem Milieu mit geringer Transportkraft abgelagert wurden. Dies lässt darauf schließen, dass die äolischen Sande einen Dünengürtel in Ufernähe repräsentieren, der durch steigende Seespiegel und limnische Sedimentation überprägt wurde.

Die Elemente Al, Si, K, Ti, Mn, Fe, Rb und Zr spiegeln das "geogene" Signal innerhalb der unterschiedlichen Parameter wider, da diese Elemente aufgrund ihrer hohen Verwitterungsresistenz in Form von klastischen Sedimenten in ein limnisches System eingetragen werden. Demzufolge spiegelt ein hoher Anteil dieser Elemente einen erhöhten Eintrag an Klastika dar (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Die hohen Anteile dieser Elemente im untersten Bereich des Abschnitts I deuten auf ein limnisches System mit einem hohen Eintrag klastischer Sedimente, so dass von trockenen klimatischen Bedingungen mit einem erhöhten Oberflächenabfluss ausgegangen werden kann. Dies lässt ebenfalls auf eine geringe Vegetationsbedeckung und ein arides Klima schließen, in dem Starkregenereignisse für fluviale Verlagerung sorgten. Die absinkenden Werte im mittleren Bereich können auf den hohen Sandanteil zurückgeführt werden, der zu einer methodischen Abweichung führt, bei der aufgrund der groben Korngröße eine zu geringe Konzentration der Elemente gemessen wird (Abb. 40). Als weiterer Grund für die geringen Anteile der geogenen Elemente kann das äolische Ablagerungsmilieu angeführt werden, da der Dünensand überwiegend aus Quarz (SiO₂) besteht und daher nur geringe Anteile der weiteren Elemente vorkommen.

Die geringen Anteile an Stickstoff, Kohlenstoff und organischem Kohlenstoff weisen auf eine geringe Vegetationsbedeckung sowie eine niedrige Seeproduktivität (Algen, Wasserpflanzen, Mikroorgansimen, usw.) hin. Das geringe Verhältnis von TOC/N bestätigt, das ein überwiegender Anteil der organischen Substanz auf autochthonen Eintrag zurückzuführen ist (Horiuchi et al. 2000, Chen et al. 2003, Wang et al. 2004, Herzschuh et al. 2005, Jin et al. 2006, Guo et al. 2007). Aufgrund des niedrigen Organikanteils kann jedoch auf eine geringe autochthone Produktion geschlossen werden. Dies kann als Hinweis auf ein arides Klima gedeutet werden (Chen et al. 2003, Jin et al. 2006).

Die niedrigen Werte der Parameter CaCO₃, Ca und Sr verweisen auf eine geringe Ausfällung an Carbonaten, die u.a. in Abhängigkeit von dem CO₂ Gehalt des Wassers stehen, so dass auf eine niedrige Wassertemperatur geschlossen werden kann (Guo et al. 2007). Eine geringe Wassertemperatur des Orog Nuur verweist ebenfalls auf kalte klimatische Bedingungen im Einzugsgebiet. Die starken Schwankungen im mittleren Bereich des Abschnitts sind auf den Korngrößeneffekt zurückzuführen, da aufgrund des hohen Sandanteils ein zu niedriger Wert ermittelt wird.

Das Verhältnis von CaCO₃/Titan bestätigt die im ONW I Kern diskutierten Vermutungen über zwei unterschiedliche Carbonatquellen (s.o.). Der Carbonatanteil mit Werten unter 20% zeigt eine Korrelation mit den ,geogenen' Parametern, so dass von einem fluvialen Eintrag ausgegangen werden kann. Dies deutet einerseits auf carbonathaltige Gesteine im Einzugsgebiet, kann aber andererseits auch auf Feldspatverwitterung und Bodenbildung im Einzugsgebiet zurückgeführt werden. Hohe Carbonatgehalte beschreiben eine negative Korrelation mit den Elementen Titan, Aluminium, Eisen usw. (Abb. 49), so dass eine weitere Quelle in Betracht gezogen werden muss. Da dieses Signal unabhängig vom fluvialen Eintrag verläuft, kommt ein äolischer Input in Form von carbonathaltigem Staub sowie eine Zufuhr durch Grundwasser in Betracht.

Der hohe Schwefelgehalt korrespondiert mit der dunklen Färbung der Sedimente und verweist auf anoxische Bedingungen. Hierbei erfolgte unter Sauerstoffabschluss eine Bildung von H₂S, das mit Eisen reagierte und als FeS und FeS₂ ausfiel (Peck et al. 2002, Banks et al. 2004, Tomkins et al. 2005, Melles et al. 2007). Da die Lage in Ufernähe bzw. im terrestrischen Milieu einen Sauerstoffabschluss ausschließt, kann von einer sekundären Bildung in Form eines diagenetischen Prozesses ausgegangen werden. Für den untersten Bohrkernabschnitt kann ein arides und kaltes Klima rekonstruiert werden, das durch eine geringe Vegetationsbedeckung und einen zeitweise austrocknenden See charakterisiert wird. Während der Trockenphasen erfolgte eine Akkumulation von ufernahen Dünen, welche während der Transgressionsphasen durch limnische Sedimente überprägt wurden.

Abschnitt II (1267-1167cm; 47-42,5ka cal. BP): arides und kaltes Klima, ufernaher Standort mit Wasserpflanzen

Die Sedimentzusammensetzung im Kernabschnitt II lässt auf ein weiterhin andauerndes flachlimnisches Milieu schließen. Die Korngrößenanalysen zeigen bimodale Verteilungen, deren Maxima in 1-10µm sowie 50-500µm auftreten. Das Signal im Feinschluffbereich lässt auf ein limnisches Milieu mit geringer Transportenergie schließen, wohingegen der Sand auf einen gut sortierten äolischen Eintrag hinweist (s.o.). Daher kann von einer Position am Seeufer ausgegangen werden, die in unterschiedlicher Intensität durch eine äolische Komponente geprägt wurde. Dies kann durch die organischen Rückstände und Pflanzenreste bestätigt werden (s.o.).

Die gestiegenen Konzentrationen an Al, Si, K, Ti, Mn, Fe, Rb und Zr verweisen auf einen hohen Eintrag klastischer Sedimente, so dass von einer geringen Vegetationsbedeckung ausgegangen und somit auf einen starken Oberflächenabtrag geschlossen werden kann (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Dies spricht für ein weiterhin arides Klima im Einzugsgebiet des Orog Nuur. Die geringen Anteile von Kohlenstoff, Stickstoff und organischem Kohlenstoff sowie das weiterhin niedrige TOC/N Verhältnis deuten auf eine geringe Vegetationsproduktivität des Sees, so dass ebenfalls auf ein arides Klima geschlossen werden kann.

Die Konzentration von Calcium, Calciumcarbonat und Strontium weisen niedrige Werte auf, so dass von einer geringen Kalkausfällung ausgegangen werden kann. Dies deutet auf einen geringen CO₂ Gehalt des Gewässers und somit auf eine niedrige Temperatur (Guo et al. 2007). Die sedimentologischen Auswertungen belegen, das im Zeitraum von 31,5-29, 5ka cal. BP ein arides und kaltes Klima vorherrschend war, das einen Eintrag klastischer Sedimente in den See ermöglichte. Daher kann ebenfalls von einer geringen Vegetationsbedeckung ausgegangen werden.

Abschnitt III (1166-850cm; 42,5-29ka cal. BP): Evaporations- und Transgressionsphasen, arides und kaltes Klima, ufernaher Standort mit Dünenakkumulation

Der Abschnitt III setzt sich aus tonigem Schluff zusammen, der durch wechselnde Sandlagen bzw. Sandanteile geprägt wird. Die Korngrößenanalyse zeigt mehrere Sandlagen, deren Korngrößenverteilung (GSD Typ 3) auf eine äolische Ablagerung ohne Anzeichen auf ein limnisches Milieu hinweist (Abb. 43). Das Vorkommen von Pflanzenresten in diesen Bereichen (s.o.) lässt auf einen Dünengürtel schließen, der durch die ufernahe Vegetation akkumuliert werden konnte. Ein Übergang zu einem lakustrinen System kann aus der Korngrößenverteilung des GSD Typ 2 abgeleitet werden. Das Hinzukommen von einem weiteren Maximum verweist auf eine parallele Akkumulation von äolischen und limnischen Sedimenten. Die Korngrößenverteilung mit einem Maximum im Bereich von 1-10µm (GSD 1) gibt Hinweise auf eine lakustrine Sedimentation ohne äolischen Eintrag (Prins et al. 2000). Die Sedimentationsabfolgen in Abschnitt III deuten auf mehrere Regressionsphasen des Orog Nuur, in denen die Bohrposition trocken lag und eine äolische Ablagerung erfolgte. Ein steigender Seespiegel führte zu einem ufernahen Standort, der durch parallele äolische und limnische Sedimentation geprägt wurde, bis hin zu Phasen in der kein äolischer Eintrag von Sand zu verzeichnen war.

Der Verlauf der Schwefelwerte stimmt weiterhin mit der schwarzen Färbung der Sedimente überein, so dass auf ein anoxisches Bedingungen geschlossen werden kann.

Die hohen Anteile der ,geogenen' Parameter verweisen auf einen weiterhin andauernden Eintrag klastischer Ablagerungen, so dass aride klimatische Bedingungen angenommen werden können. Die vereinzelten Minima treten in Phasen auf in denen der See zurückwich und nur äolischen Quarz -Sand zurückließ. Des Weiteren muss in diesen Fällen erneut der Korngrößeneffekt in Betracht gezogen werden (s.o.). Die mit Schwankungen hohen Anteile der Elemente Kohlenstoff, Stickstoff sowie des organischen Kohlenstoffs können auf die Lage in Ufernähe zurückgeführt werden, so dass auf einen hohen Organik- Anteil aufgrund der Ufervegetation (sowohl lakustrin als auch terrestrisch) geschlossen werden kann.

Die geringen Konzentrationen an CaCO₃, Ca und Sr verweisen auf einen hohen CO₂ Gehalt des Sees, so dass nur eine geringe Kalkausfällung erfolgte. Somit kann weiterhin von einem kalten Gewässer sowie von kalten klimatischen Umständen ausgegangen werden.

Die Proxidaten des Sedimentabschnitts III weisen auf ein arides und kaltes Klima hin, das durch mehrere Evaporations- und Transgressionsphasen des Orog Nuur geprägt wurde. Während der limnischen Phasen erfolgte ein hoher Eintrag an Klastika, wohingegen während der Trockenphasen äolischer Sand in der Ufervegetation akkumuliert wurde.

Abschnitt IV (849-391cm; 29-18,5ka cal. BP): Evaporations- und Transgressionsphasen, arides und kaltes Klima, ufernaher Standort mit Dünenakkumulation

Die Ablagerungen des Kernabschnitts IV bestehen aus tonigem Schluff, in den unterschiedliche Anteile an Sand integriert wurden. Die Ergebnisse der Korngrößenbestimmung verweisen auf einen überwiegend vorherrschenden limnischen Sedimenteintrag, der durch ein Maximum innerhalb der Korngrößenverteilungen (GSD 1 und 2) im Bereich von 1-10µm erkennbar ist. Dies deutet auf eine gut sortierte Ablagerung, die unter sehr schwacher Transportkraft sedimentiert wurde. Das Auftreten eines Sandsignals (100-600µm, GSD 2), deutet auf einen Eintrag, für den eine höhere Transportenergie vorausgesetzt werden muss. Die gute Sortierung bei gleichzeitig hoher Transportenergie lassen auf eine äolische Komponente schließen (Prins et al. 2000), so dass von einem Dünensand ausgegangen werden kann, der parallel zur limnischen Ablagerung sedimentiert wurde. Das Auftreten von reinen Sandablagerungen (GSD 3) deutet auf eine rein äolische Sedimentation, so dass von einer Verlandung bzw. von einer sehr schnellen Akkumulation ausgegangen werden kann. Die fließenden Übergänge zum Hangenden deuten dabei auf einen Transgressionsvorgang hin (s.o.). Die schwarze Färbung der Sedimente deutet auf eine anhaltende Reaktion von unter anoxischen Bedingungen gebildetem H₂S mit Eisen, so dass eine Ausfällung von FeS bzw. FeS₂ erfolgte.

Die ,geogenen' Parameter (Al, Si, K, Ti, Mn, Fe, Rb, Zr) verlaufen kontinuierlich auf einem hohen Niveau (Abb. 40, Tab. 5), so dass von einem anhaltenden Eintrag durch klastische Sedimente ausgegangen werden kann (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Dies deutet auf weiterhin aride klimatische Bedingungen, die einen fluvialen Oberflächenabtrag begünstigten. Die vereinzelt vorkommenden Minima sind durch das Trockenfallen des Bereichs zu begründen, so dass ein Aussetzen der limnischen Ablagerung resultiert. Des Weiteren treten die Minima an Vorkommen von äolischen Sanden auf, so dass ein Korngrößeneffekt (Abb. 40) in Betracht gezogen werden muss.

Der Verlauf der Stickstoff- und Kohlenstoffkonzentration sowie der Anteil der organischen Substanz zeigt eine schwache Dynamik in einem niedrigen Wertebereich. Dies verweist auf ein geringes Vegetationsvorkommen im Einzugsgebiet und im See, wodurch Rückschlüsse auf ein kaltes Klima getroffen werden können. Das Ansteigen der Werte im Umfeld der Sandlagen deutet darauf hin, dass der erhöhte Organikanteil auf eine Ufervegetation zurückzuführen ist (s.o.).

Der geringe Anteil an Calcium, Carbonat und Strontium im Sediment deutet auf eine weiterhin geringe Wassertemperatur und einen hohen Kohlendioxidgehalt des Wassers. Aufgrund der geringen Kalkausfällung können daher kalte klimatische Bedingungen rekonstruiert werden (Guo et al. 2007). Analog zu den Minima der weiteren Parameter in diesem Abschnitt, sind die Minimalwerte von Ca, CaCO₃ und Sr auf das Trockenfallen des Sees bei gleichzeitiger Dünenbildung zurückzuführen, wodurch eine geringere Carbonatausfällung ermöglicht wurde.

Die sedimentologischen Parameter im Verlauf des Abschnitts IV deuten auf ein kaltes und arides Klima, das durch einen Wechsel von flachlimnischer Sedimentation und Austrocknung geprägt wurde. Des Weiteren verweisen in wechselndem Ausmaß vorkommende Sandlagen auf eine Dünenaktivität. Abschnitt V (390-215cm; 18,5-13ka cal. BP): Regressions- und Transgressionsphasen, arides und kaltes Klima, Dünenakkumulation

Die Sedimente des Bohrkernabschnitts V setzen sich aus zwei Sandlagen zusammen, die von einem Ton- Schluffband unterbrochen werden. Die Korngrößenverteilungen der Sandlagen zeigen ein Signal (GSD Typ 3), dass auf eine ausschließlich äolische Akkumulation hinweist (Prins et al. 2000). Daher kann von einem Trockenfallen des Seebereichs ausgegangen werden, so dass eine Phase mit Dünenakkumulation in Ufernähe stattfand. Der von 354-218cm zunehmende Anteil an Ton und Schluff wird durch den Übergang von GSD 2 (bimodal, Maximum in 100-600µm und 1-10µm) zu GSD 1 (unimodal, Maximum in 1-10µm) ersichtlich. Dies deutet auf eine Transgression des Orog Nuur hin, wobei die Uferdünen durch limnische Sedimente überlagert wurden. Ein erneutes Trockenfallen dieses Bereichs des Orog Nuur kann aus der erneuten Zunahme von Dünensand (GSD 2 und GSD 3) abgeleitet werden.

Die Farbänderung der Sedimente erfolgt in Übereinstimmung mit dem Rückgang des Schwefelgehalts, so dass ein Wechsel zu einem oxidierenden Milieu gefolgert werden kann.

Der schwankende Kurvenverlauf der Elemente Al, Si, K, Ti, Mn, Fe, Rb und Zr ist u.a. durch das Trockenfallen des Bereiches zu erklären, so dass die limnische Sedimentation unterbrochen wurde und eine ausschließlich äolische Sedimentation erfolgte (s.o.). Neben der methodischen Abweichung, hervorgehoben durch den Korngrößeneffekt (s.o.), fällt die Meßkonzentration der Elemente ab, da der äolische Sand größtenteils aus Quarz (SiO₂) besteht, so dass die weiteren Elemente nur in geringen Konzentrationen auftreten. Dies kann anhand der geringen Abweichungen des Si Anteils bestätigt werden. Die hohen Anteile der geogenen Proxidaten im mittleren Bereich deuten auf eine limnische Akkumulation, die durch einen hohen Anteil an verwitterten Klastika geprägt wird. Somit kann in Ergänzung zu den Austrocknungsphasen des Sees ebenfalls auf ein arides Klima geschlossen werden, in dem ein hoher Anteil an fluvial umgelagerten Sedimenten in den See gelangte. Die hohen Anteile an C, N und TOC verweisen auf eine überwiegende Beeinflussung durch die Ufervegetation des Sees.

Niedrige Konzentrationen der Parameter Calcium, Strontium und Calciumcarbonat belegen ein weiterhin kaltes Klima, das eine geringe Wassertemperatur und damit eine niedrige
Carbonatausfällung bedingte (Guo et al. 2007). Die Minima in 390-359cm sowie 264-215cm sind auf das Trockenfallen des Sees zurückzuführen, so dass keine limnische Carbonatausfällung erfolgen konnte.

Die Untersuchung des Abschnitts V weist auf ein extrem arides und kaltes Klima hin, in dem der Orog Nuur teilweise austrocknete und wieder anstieg. Während der Regressionsphasen erfolgt eine Akkumulation von Dünen, die bei einer Transgression durch flachlimnische Sedimente und Ufervegetation überdeckt wurden.

Abschnitt VI (214-105cm; 13-9ka cal. BP): Temperatur- und Feuchtigkeitsoptimum

Die Sedimentanalysen des Abschnitts VI verzeichnen einen Wandel der Ablagerungsbedingungen von alternierenden limnischen und äolischen Ablagerungen hin zu einem kontinuierlichen limnischen Sedimentationsprozess. Dies kann anhand der Korngrößenverteilungen rekonstruiert werden, die ausschließlich zum GSD Typ 1 zuzuordnen sind (Abb. 46). Das Maximum der Verteilungen im Bereich von 1 -10µm weist auf eine Ablagerung in einem limnischen System, die bei einer geringen Transportkraft des Gewässers zu einer sehr guten Sortierung der Sedimente führt.

Die absinkenden Anteile der ,geogenen' Parameter deuten auf eine reduzierte Akkumulation von verwitterten Klastika, so dass auf einen geringeren fluvialen Oberflächenabtrag geschlossen werden kann (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Dies impliziert ein feuchteres Klima, in dem eine dichtere Vegetationsdecke innerhalb des Einzugsgebietes für eine Stabilisierung der Oberfläche sorgte, so dass ein großflächiger fluvialer Abtrag verhindert werden konnte. Das Vorherrschen von feuchten klimatischen Umweltbedingungen kann ebenfalls durch die hohen C, N und TOC Werte verifiziert werden, die auf eine hohe biologische Produktion des Sees verweisen (Wasserpflanzen, Algen, Mikroorganismen) und weiterhin einen Eintrag von Organik aus dem Einzugsgebiet vermuten lassen. Die stark ansteigenden Konzentrationen der Elemente Calcium und Strontium sowie der hohe Anteil an Carbonat weisen auf einen extremen Wandel der Umweltbedingungen hin. Der hohe Carbonatanteil in einem limnischen Milieu kann dadurch erklärt werden, dass aufgrund einer angestiegenen Wassertemperatur der CO₂ Anteil zurückging, woraus eine hohe Carbonatausfällung resultierte. Dies deutet auf einen klimatischen Wandel von kalten Umweltbedingungen hin zu einem warmen Klima.

Die Sedimente des Abschnitts VI deuten auf einen klimatischen Wandel, der mit Einsetzen des Abschnitts eintrat und von ariden und kalten Umweltbedingungen zu einem semihumiden und warmen Klima wechselte. Daher kann mit dem Beginn des Abschnitts eindeutig der Wandel vom Pleistozän zum Holozän nachvollzogen werden. Aufgrund der geringen Schwankungen und der geringen zeitlichen Auflösung (1m = ca. 6000Jahre) können keine weiteren Unterteilungen des Zeitabschnitts 13-9ka cal. BP erfolgen.

Abschnitt VII (104-0cm; 9-0ka cal. BP): arides und trockenes Klima

Die Sedimente des Abschnitts VII setzen sich aus tonigem Schluff zusammen, der in einem limnischen Umfeld abgelagert wurde. Die Korngrößenverteilungen (GSD 1) belegen eine Deposition in einem geringenergetischen Milieu, so dass eine gute Sortierung der Sedimente ermöglicht wurde.

Der Verlauf der Elemente Al, Si, K, Ti, Mn, Fe, Rb und Zr verzeichnet eine steigende Tendenz, so dass von einem zunehmenden Eintrag von klastischen Sedimenten ausgegangen werden kann (Wünnemann et al. 1998, Fedotov et al. 2000, Mischke et al. 2003, Mischke et al. 2005, Jin et al. 2006, Schwanghart et al. 2008). Dies deutet auf einen Rückgang der Vegetationsbedeckung und einen Anstieg des fluvialen Oberflächenabtrags. Daher kann von einem zunehmend ariden Klima ausgegangen werden.

Dies bestätigt sich durch eine rückläufige Tendenz der Kohlenstoff- und Stickstoffanteile sowie der Konzentration der organischen Substanz. Die gesunkenen Konzentrationen dieser ,bio'- Parameter deuten daraufhin, dass u.a. eine geringere Vegetationsbedeckung im Einzugsgebiet zu einem abgeschwächten Eintrag an Organik in den See führte. Des Weiteren kann davon ausgegangen werden, dass die Vegetationsproduktivität des Orog Nuur ebenfalls zurückging.

Die abgesunkenen Anteile an Carbonat, Calcium und Strontium verweisen auf einen gestiegenen CO₂ Gehalt und somit eine kühlere Wassertemperatur. Dies lässt ebenfalls Rückschlüsse auf das Klima zu, so dass von einer geringfügig niedrigeren Temperatur ausgegangen werden kann (Guo et al. 2007).

Die Parameter des obersten Abschnitts weisen auf ein arides und warmes Klima, das durch zunehmende fluviale Oberflächenprozesse geprägt wird.

6. Diskussion

6.1. Paläoklimatische Befunde aus dem Untersuchungsgebiet

Die Untersuchungen an drei limnischen Bohrkernen aus zwei unterschiedlichen Einzugsgebieten zeigen wechselnde klimatische Bedingungen im Verlaufe des späten Pleistozäns und des Holozäns (Kap. 5). Für eine flächige Rekonstruktion des Paläoklimas innerhalb des Untersuchungsgebietes ist es erforderlich die Daten der Bohrkerne abzugleichen und parallele bzw. unterschiedliche Klimasignale herauszustellen. Hierzu erfolgt eine Zusammenfassung der einzelnen Paläoklima-Parameter in drei Kategorien: hygrische Bedingungen, Temperatur und Sedimentationsmilieu (Abb. 50).

Der Vergleich der Klimainterpretationen der drei Bohrkerne zeigt eine generelle Übereinstimmung bezüglich der hygrischen Bedingungen, der Temperatur und des vorherrschenden Ablagerungsmilieus. Die geringfügig abweichenden Interpretationen des ONW II und ONW I Kerns (Abb. 50) können darauf zurückgeführt werden, dass die einzelnen stratigraphischen Schichten (z.B. Sandlagen) auf eine Distanz von ca. 700m nicht in gleicher Mächtigkeit vorkommen müssen bzw. ausstreichen können. Die Betrachtung der Klimasignale aus dem Orog Nuur und dem Bayan Tohomiin Nuur zeigt, dass innerhalb der Sedimente des Bayan Tohomiin Nuur Schwankungen mit einer höheren zeitlichen Auflösung nachvollzogen werden können. Dies ist auf die geringere Größe des Einzugsgebietes zurückzuführen (Kap. 5), so dass lokale bzw. kleinräumige Schwankungen des Klimas erfasst werden können. Die Größe des Einzugsgebietes des Orog Nuur führt dazu, dass sich unterschiedliche lokale Paläoklimasignale ausgleichen und somit ein ,durchschnittlicher' Verlauf des Paläoklimas erfasst werden kann.

In Ergänzung zu den Archiven der abflusslosen Becken liefern Datierungen von morphologischen Befunden (Abb. 51) ebenfalls Informationen über die vorherrschenden Prozesse innerhalb der Region, so dass weitere Kenntnisse über die klimatischen Bedingungen gewonnen werden können (Kap. 3). Anhand der morphologischen Befunde sowie der limnischen Bohrkerne kann eine chronologische Interpretation der paläoklimatischen Situation innerhalb des Untersuchungsgebietes im Verlauf des Spätquartärs erfolgen.

	Deschielbung	Alter [III ka]
1	Terrassen, Baidrag	21,7 / 9,5 / 1,5
2	Moränen im Khuremt Tal	2,9-2,4
3	Strandwälle, Adagiin Tsagaan Nuur	8,7 / 1,5
4	Terrassen des Tuyn Gol	141-135 / 72
5	Seesedimente, Orog Nuur	75-71
6	Seesedimente, Orog Nuur	4,6-1,8 / 3,7-1,6
7	Seesedimente, Orog Nuur	6,7-4,1
8	Dünenfeld östlich des Orog Nuur	<0,8
9	Periglazialer Hangschutt, Bodenbildung, Gobi Altai	14,8-14,4 / 6,2
10	Schwemmfächer ('forebergs') nördlich des Baga Bogd	29-27 / 16,4-11,4
11	Schwemmfächer ('forebergs') nördlich des Artsa Bogd	31,7
12	Kryoturbationsstrukturen, südlich des Artsa Bogd	22,4-17,1 / 18,8-12,9
13	Kryoturbationsstrukturen, nördlich des Gurvan Saihan	15,7
14	Schwemmfächer, westlich des Gurvan Saihan	14-10,6 / 4,3
15	Schwemmfächer, Bayan Tohomiin Nuur	17,3-12,6
16	Dünen, Bayan Tohomiin Nuur	2,4-1 / <0,3
17	Dünen, Khongoryn Els	27,1 / 16,5-12 / <1,5

Abb. 51: Übersicht über OSL Datierungen innerhalb des Untersuchungsgebietes nach Sedimentarchiven (2;4;6-9;15-16: persönliche Mitteilung von A. Hilgers und D. Hülle; 1;3;5: Lehmkuhl und Lang 2001; 10-11: Owen et al. 1999; Alter 12-14: Owen et al. 1998; Alter 17: Hülle et al. 2010)

Pleistozän:

Die ältesten Anhaltspunkte zum Paläoklima innerhalb des Untersuchungsgebietes stammen von Terrassensequenzen des Flusses Tuyn Gol, die als 20m sowie 10m Niveau über dem rezenten Flussbett verlaufen (Abb. 51, Tab. 7). OSL Datierungen aus der 20m Terrasse (ca. 18m und 13m Tiefe) lassen auf eine Akkumulation des Terrassenkörpers um 150-120ka schließen. Datierungen vom Top der 10m Terrasse ergeben Alter von ca. 60-80ka. Diese Phase, die durch eine Akkumulation der Terrassenkörper des Tuyn Gol geprägt wurde, deutet auf eine von heute abweichende Abflussbasis hin, so dass von einem höheren Seespiegel des Orog Nuur ausgegangen werden kann. Datierungen an lakustrinen Sedimenten nördlich des Orog Nuur ergaben ein Alter von 70 -80ka (TL Datierung) und verweisen auf einen Seespiegel, der 82m über dem rezenten Orog Nuur lag (Lehmkuhl und Lang 2001, Yang et al. 2004). Diese Befunde lassen auf erheblich feuchtere klimatische Bedingungen schließen, die in den Zeitraum von ca. 140-70ka einzuordnen sind. Aufgrund der starken neotektonischen Aktivität innerhalb des Untersuchungsgebietes (Kap. 4) muss ein Vertikalversatz in Betracht gezogen werden, so dass eine Verfälschung der Höhendifferenzen möglich ist (Komatsu et al. 2001, Lehmkuhl und Lang 2001).

Für den Verlauf des späten Pleistozäns konnten anhand der Bohrkerne überwiegend aride und kalte klimatische Bedingungen rekonstruiert werden. Ein hoher Eintrag an klastischen Sedimenten in den Orog Nuur verweist auf eine geringe Vegetationsbedeckung innerhalb des Untersuchungsgebietes, so dass von einer starken Oberflächenformung durch morphologische Prozesse ausgegangen werden kann. Des Weiteren führte das kalte und aride Klima zu niedrigen Seespiegeln, so dass eine geringe biologische Produktivität innerhalb des Sees erfolgte. Die Sedimente des Orog Nuur im Bereich von 50-35ka cal. BP verweisen auf niedrige Seespiegel und wurden durch eine parallele Ablagerung von (flach)limnischen- sowie äolischen Sedimenten geprägt. Der überwiegende Anteil der Ablagerungen ist auf einen reinen äolischen Akkumulationsprozess zurückzuführen, so dass von einer Verlandung des westlichen Seebeckens und der Bildung eines Dünenfeldes ausgegangen werden kann. Das Vorkommen von Pflanzenresten innerhalb der äolischen Sande verweist dabei auf die Bildung eines Uferdünengürtels. Die Bohrkerndaten im Bereich von ca. 35-26ka deuten auf ein weiterhin arides und kaltes Klima im Untersuchungsraum, welches durch geringfügig höhere Seespiegel geprägt wurde, so dass im Westbecken des Orog Nuur eine überwiegend limnische Sedimentation erfolgen konnte (Kap. 5). Ein Rückgang der äolischen Aktivität lässt sich aus dem verringerten Sandeintrag in den See ableiten. Eine weitere Phase der verstärkten Dünenaktivität kann für den Zeitraum von 26-13ka gefolgert werden. Die Schwankungen zwischen reinen äolischen Sandlagen und limnischen Sedimenten mit äolischem Eintrag können als weitere Phase interpretiert werden in der die Bohrposition abwechselnd verlandete und von Dünen (Uferdünen) bedeckt bzw. von einem Flachwasserbereich geprägt wurde. Der Eintrag von Klastika sowie die geringe Bioproduktivität sind auf kalte und trockene Umweltbedingungen zurückzuführen. Diese Phase mit einer starken Dünenaktivität kann durch Datierungen am Kongoryn Els verifiziert werden, die an der Basis einer Wechselsequenz aus Dünensand und Schlufflagen ein Alter von 27ka ergaben (Hülle et al. 2010) (Abb. 51).

Morphologische Befunde aus dem Untersuchungsgebiet bestätigen ein arides und kaltes Klima innerhalb des späten Pleistozäns. Im Gobi Altai südlich des Orog Nuur wurden Sedimentprofile aufgenommen, die periglaziale Hangschuttdecken zeigen, die von Bodenhorizonten überdeckt werden. OSL Datierungen von äolischen Schluff- und Feinsandablagerungen innerhalb der periglazialen Lagen weisen Alter von ca. 15ka auf (Tab. 7). Dies lässt auf eine kalte Klimaphase schließen, die durch hohe physikalische Verwitterung geprägt wurde, so dass die Schuttlagen gebildet werden konnten. Ein gleichzeitiger Eintrag von äolischem Schluff im Gebirge erfolgte parallel zur Sandakkumulation in den Beckenbereichen, so dass von einer großräumigen äolischen Landschaftsüberprägung ausgegangen werden kann. Die Analyse von Schwemmfächerniveaus im Untersuchungsgebiet lässt drei Hauptphasen der Schwemmfächertätigkeit unterscheiden. Die höchsten Schwemmfächeroberflächen liegen ca. 20m über dem rezenten Abfluss und konnten bisher nicht datiert werden. Es kann jedoch ein Zusammenhang mit den 20m Terrassen des Tuyn Gol vermutet werden, so dass diese Sedimentkörper auf eine höhere Erosionsbasis im Zeitraum von 140-70ka schließen lassen (s.o.). Da das gesamte Untersuchungsgebiet von tektonischer Aktivität beeinflusst ist, kann es sich bei den 20m Niveaus jedoch auch um relativ gehobene Bereiche handeln. Ein Großteil der Schwemmfächer -Flächen liegt zwischen 1-2m über dem aktuellen Abflussniveau. OSL Datierungen aus einem Schwemmfächerniveau (1m über der rezenten Abflussbahn) nördlich des Bayan Tohomiin Nuur verweisen auf eine Akkumulation der Schwemmfächersedimente im Zeitraum zwischen 17-12ka (Abb. 51, Tab. 7), gefolgt von einer Phase der Eintiefung. Diese hohe Schwemmfächeraktivität im späten Pleistozän verifiziert die kalten und ariden klimatischen Bedingungen und den hohen Eintrag von Klastika in die Becken. Die starke äolische Aktivität innerhalb des Untersuchungsgebietes im späten Pleistozän kann durch weitere OSL Datierungen aus einer Sequenz von Dünensand und Schlufflagen im Khongoryn Els (s.o.) belegt werden (Abb. 51). Die Untersuchungen zeigen eine Phase der Dünenakkumulation, die von 16-12ka andauerte (Hülle et al. 2010).

Tab. 7: OSL Datierungen der morphologischen Befunde aus dem Untersuchungsgebiet (persönliche Mitteilung von A. Hilgers und D. Hülle)

Develop the sec	T () () ()					
Beschreibung	Liete (cm)	Breite	Länge	Höhe [m ü.M.]	Alter+/-A	bw. In ka
	20				-	-
	50			1220	0,14	0,02
Dunenfeld östlich des Orog Nuur	80	45°02'06.5"N	100°55'18.0"E	1238	-	-
	100				0,79	0,01
	50				1,88	0,23
Orog Nuur, Seesediment in Barchanen, 10m über dem Seespiegel	115	45°06'08.6"N	100°46'27.8"E	1229	-	-
	135				4,62	0,55
Orog Nuur, Seesediment in Barchanen,	35			1225	1,63	0,20
16m über dem Seespiegel	100	45°06'52.8"N	100°46'04.8"E	1235	3,73	0,45
Orog Nuur, Strandwall auf Schwemmfä-	15			1000	4,49	0,54
cherablagerungen, 23m über dem See- spiegel	60	45°03'07.4"N	100°32'33.7"E	1239	6,69	0,80
Orog Nuur, Strandwall auf Schwemmfä-	20			1000	4,17	0,67
cherablagerungen, aolischer Sand im Lee des Walls, 23m über dem Seespiegel	70	45°04'88.9"N	100°35'67.4"E	1238	5,52	0,66
	75				1,0	0,15
Dünengürtel am Nordufer des Bayan Tohomiin Nuur	125	43°34'53.4''N	103°11'55.1"E	1432	1,4	0,22
	170				2,4	0,38
	40				<0.3	-
	64				<0.3	-
Dünenfeld am Südrand des Bayan Tohomiin Nuur	80	43°33'13.7"N	103°10'24.4"E	1430	<0.3	-
	125				<0.3	-
	145				0,3	-
Schwammfächarnivagu, närdlich das	30				12,6	-
Bayan Tohomiin Nuur, ca. 1m über dem	60	43°35°15.4"N	103°12'09.4"E	1425	-	-
rezenten Level	100				17,3	2,3
Gobi Altai, Bodenbildung über Hangschutt	20	44°56'40.9"N	100°29'26.1"E	2829	6,25	0,58
	80			2446	14,8	1,5
Gobi Altal, Periglaziale Hangschuttlagen	45	44°54°33.2°N	100°34°56.5°E	2416	14,4	1,4
	1300		100826110 1115	1420	135	17
Terrassen des Tuyn Gol, 10-20m über dem	1850	45 26 51.3 N	100 36 19.1 E	1438	141	14
rezenten Flusslauf	8	45°24'41.3''N	100°36'52.4''E	1407	-	-
	19	45°24'56.1''N	100°36'42.6''E	1407	72	7
	24	46°27'22.0''N	101°08'00.6''E	2836	2,92	0,31
Südost Changai, Moränen im Khuremt Tal	20	46°26'33.8''N	101°06'54.1"E	2690	-	-
	15	46°26'18.7''N	101°05'57.1"E	2664	2,38	0,23

Holozän:

Der Übergang vom Pleistozän zum Holozän kann innerhalb der lakustrinen Sedimente im Zeitraum von 13-11ka cal. BP nachvollzogen werden (Abb. 50). Dieser Wandel lässt sich aus einer ansteigenden Temperatur und einem feuchteren Klima ableiten, so dass eine steigende Bioproduktion im See verzeichnet werden kann (Kap. 5). Neben der gestiegenen biologischen Aktivität der Seen kann von einer höheren Vegetationsbedeckung ausgegangen werden, die einen fluvialen Oberflächenabtrag verhinderte, so dass nur ein geringer Anteil an verwitterten klastischen Sedimenten in die Senken gelangen konnte. Die Ergebnisse der drei Bohrkerne zeigen einen generellen Trend mit einer Phase mit warmen und feuchten klimatischen Verhältnissen, die von ca. 11-6ka cal. BP andauerte. Innerhalb der Sedimente des Orog Nuur kann keine genauere Unterteilung nachvollzogen werden, da kurzzeitige lokale Phänomene durch die Größe des Einzugsgebietes ausgeglichen wurden (s.o.). Die Daten des KEO I Bohrkerns deuten auf das Auftreten von kurzzeitigen Phasen mit kalten und ariden klimatischen Bedingungen um 10ka sowie 7ka. Diese Perioden dauerten ca. 500 Jahre und waren durch eine geringere Vegetationsbedeckung (Chenopodiaceae Wüste) geprägt so dass ein erhöhter Oberflächenabtrag erfolgen konnte. Ein Klimaoptimum kann nach der Interpretation der Bohrkerndaten für den Zeitraum von ca. 9-6ka abgeleitet werden, wobei keine Unterscheidung in Feuchte- und Temperaturoptimum möglich ist. Die Untersuchung von Sedimentprofilen aus dem Gobi Altai südlich des Orog Nuur verweist auf eine Phase der Bodenbildung, die in äolischen Ablagerungen über periglazialen Schuttdecken erfolgte. Die OSL Datierungen aus dem Bodenhorizont ergeben Alter von 6,25ka (Abb. 51, Tab. 7), so dass für diesen Zeitraum ebenfalls auf eine stabile Phase mit warmen und feuchteren Bedingungen geschlossen werden kann.

Die Bohrkerndaten im Bereich von 6-0ka verzeichnen einen Wandel von feuchten und warmen hin zu trockenen, warmen klimatischen Verhältnissen. Für diesen Zeitraum kann ein Rückgang der Vegetationsbedeckung rekonstruiert werden, so dass fluviale Oberflächenprozesse begünstigt wurden. Dieser Flächenabtrag resultierte in einem steigenden Eintrag an klastischen Sedimenten in den Becken (Kap. 5). Die Seen zeigten eine rückläufige Tendenz des Wasserspiegels, die bis zur Verlandung im Falle des Bayan Tohomiin Nuur führte. Der Orog Nuur verzeichnete von 6-0ka ebenfalls einen Rückgang des Seespiegels bis hin zur periodischen Austrocknung im Laufe der letzten 50 Jahre. Die Verlandung der Bohrposition im Bayan Tohomiin Nuur verläuft parallel mit einer Zunahme von äolischen Ablagerungen, so dass auf eine zunehmende Dünenaktivität (Khongoryn Els) gefolgert werden kann. Im Falle des Orog Nuur kann diese Reaktivierung von äolischen Sedimenten nicht innerhalb der Bohrkerne nachvollzogen werden. Das Fehlen von Dünensand ist dadurch zu erklären, dass die Oberfläche des teilweise ausgetrockneten Sees keine Akkumulation von Sand begünstigt, so dass ein Weitertransport der Sandpartikel erfolgte. Dieser Prozess kann rezent nachvollzogen werden und stellt einen Ausgangsmechanismus zur Ablösung von Schluff- und Tonteilchen dar, die als Staub in die Atmosphäre gelangen (Hempelmann 2010).

Verschiedene morphologische Befunde aus der Region bestätigen einen Wandel von feuchten zu ariden klimatischen Verhältnissen. Im Khuremt Tal (Südost Changai) wurden Sedimentprofile in Moränen eines ehemaligen Talgletschers angelegt. OSL Datierungen aus äolischen Decksedimenten, die auf mehreren Moränen auftraten, ergeben Alter von 3-2,4ka (Abb. 51, Tab. 7), so dass auf einen Rückgang der Gletscher geschlossen werden kann. Da Gletscher in kontinentalen Regionen überwiegend von der Niederschlagsmenge abhängen, verifiziert der Rückgang der Gletscher einen Wandel von feuchten zu ariden Bedingungen. Im Laufe der Geländearbeiten wurden mehrere Strandwälle an der Westseite des Orog Nuur aufgenommen, die 23m, 16m und 10m über dem rezenten Seespiegel liegen. Datierungen der Sedimente des 23m Strandwalls streuen im Bereich von 5,5ka, wohingegen das 16m Niveau ca. 3,7ka und das 10m Niveau ca. 4-2ka aufweist (Abb. 51, Tab. 7). Dies deutet auf einen Rückgang des Seespiegels des Orog Nuur von mindestens 23m über dem heutigen Niveau bis auf < 10m und weist damit auf einen Wandel von feuchten zu trocken Umweltbedingungen.

Verschiedene äolische Formen im Untersuchungsgebiet deuten ebenfalls auf eine zunehmende äolische Aktivität im Verlauf von 6-0ka. Die Untersuchungen des 23m Dünenprofils im Khongoryn Els Dünenfeld ergaben holozäne Alter von 2-0ka in einer Tiefe von 0-3m (Hülle et al. 2010) (Abb. 51). Des Weiteren wurden Sedimentprofile in den Dünengürteln am Nordsowie Südufer des Bayan Tohomiin Nuur aufgenommen und analysiert (Grunert et al. 2009). OSL Datierungen der Dünenprofile belegen eine Akkumulation im Zeitraum von 2,4-0ka (Abb. 51, Tab. 7).

6.2. Einordnung in den überregionalen Kontext

Die Ergebnisse der Multi- Parameter Untersuchungen an Bohrkernen sowie die Datierung von äolischen und fluvialen Formen im Untersuchungsgebiet konnten zu einer kontinuierlichen Rekonstruktion der Paläoumweltbedingungen im Zeitraum der vergangenen 50ka genutzt werden. Diese Paläoumweltrekonstruktion wurde durch Einzelbefunde bis zu einem Alter von ca.150ka ergänzt. Der Vergleich von paläoklimatischen Daten aus unterschiedlichen Regionen Zentralasiens stellt einen wichtigen Schritt dar, um die Prozesse, Auswirkungen und den Verlauf der wechselnden klimatischen Bedingungen flächendeckend nachvollziehen zu können. Im Folgenden werden die für die Südmongolei gewonnenen paläoklimatischen Informationen mit weiteren Klimaarchiven Zentralasiens abgeglichen.

Das älteste Paläoklimasignal innerhalb des Untersuchungsgebietes stammt von der beginnenden Aufschüttung der Terrassen des Tuyn Gol im Zeitraum von ca. 150-120ka (s.o.). Untersuchungen an Schwemmfächern im Gobi Altai bestätigen dies indem eine Aufschüttung der Schwemmfächerkörper im Bereich von 120ka rekonstruiert wurde (Vassallo et al. 2005). Des Weiteren belegen Untersuchungen an Dünen, Terrassen und lakustrinen Sedimenten aus dem Uvs Nuur Becken trockene und kalte Umweltbedingungen innerhalb des Zeitraumes von ca. 180-90ka (Naumann 1999, Grunert et al. 2000, Grunert und Dasch 2000). Die Oberflächendatierung von Moränen im Darhad Becken (N. Mongolei) weisen auf einen Vorstoß der Gletscher während des MIS 6 hin (Gillespie et al. 2008). Der Vergleich mit überregionalen Archiven (Sibirien und Nordchina) zeigt, dass z.T. geringfügig abweichende Rekonstruktionen zum Paläoklima vorliegen. Bodenkundliche Untersuchungen von Lössprofilen in Sibirien (Kurtak Löss) verweisen auf ein kaltes und trockenes Klima während des MIS 6 (170-130ka) (Chlachula 2003,Rutter et al. 2003). Die Analyse von Diatomeen aus dem Baikalsee deuten auf ein Interglazial, dass von 127-115ka andauerte und somit warme und feuchte Bedingungen impliziert (Prokopenko et al. 2002).

Die maximale Aufschüttung der Terrassen des Tuyn Gol gefolgt von der Einschneidung auf ein 10m Niveau sowie die Hinweise auf einen Höchststand des Orog Nuur um 70-80ka deuten auf eine feuchte Phase innerhalb des Untersuchungsgebietes. Dies ist in Übereinstimmung mit einem Seehochstand des Uvs Nuur im Zeitraum von ca. 90-75ka (Naumann 1999). Das Auftreten von Paläoböden in Lössprofilen Sibiriens (u.a. Kurtak Löss) bestätigt eine wärmere und feuchtere Phase, die im Zeitraum von 130-74ka (MIS 5) erfolgte (Chlachula 2003). Eine feuchte Phase mit milderen Temperaturen wurde ebenfalls aus chinesischen Lössprofilen abgeleitet. So verweisen u.a. Pye und Zhou (1989), Rutter et al. (2003) auf ein feuchtes und warmes Interglazial (MIS 5), das von ca. 110-80ka andauerte und zur Bildung des S1 Paläobodenkomplexes führte. Dagegen deutet eine Rekonstruktion der Umweltbedingungen von Feng et al. (1998) auf ein trockenes MIS 5, das von 128-73ka andauerte und anschließend in ein feuchtes und kaltes Klima (MIS 4, 73-60ka) wechselte.

Für das Untersuchungsgebiet konnte im Zeitraum von 50-13ka ein überwiegend kaltes und arides Klima mit niedrigen Seespiegeln rekonstruiert werden, dass durch zwei Phasen verstärkter Dünenaktivität geprägt wurde (s.o.). Innerhalb des ONW II Bohrkerns verweisen ein Rückgang der äolischen Aktivität sowie steigende Seespiegel zwischen 35-26ka auf feuchtere Bedingungen während des MIS 3 (Abb. 50). Die Kartierung und Auswertung von Strandwällen des Orog Nuur sowie des Tsagaan Nuur bestätigen eine feuchte Phase mit hohen Seespiegeln während des MIS 3, gefolgt von einem anschließenden Rückgang während MIS 2 (Komatsu et al. 2001). Untersuchungen an Schwemmfächerablagerungen im Gobi Altai deuten auf ein relativ feuchtes Klima hin, das von ca. 40-23ka vorherrschte (Owen et al. 1997). Weitere Archive aus der Mongolei verweisen ebenfalls auf feuchte und kalte Bedingungen im Verlauf des MIS 3. Hierzu können Gletschervorstöße im Darhad Becken genannt werden, die von 53-35ka erfolgten (Gillespie et al. 2008). Des Weiteren deuten hohe Seespiegel im Norden der Mongolei (Uvs Nuur, Bayan Nuur) auf feuchte klimatische Bedingungen (Walther 1999, Grunert et al. 2000, Grunert und Dasch 2000, Lehmkuhl und Haselein 2000). Untersuchungen an Löss-Paläoboden Sequenzen im Norden der Mongolei (Buregkhanga, Shaamar, Khyaraany) verifizieren eine feuchte und warme Phase, die während des MIS 3 (34-24ka) vorherrschte (Feng 2001). Dies stimmt mit den feuchteren Verhältnissen im Einzugsgebiet des Orog Nuur überein, die für 35-26ka rekonstruiert werden konnten. Ein Wechsel zu ariden und kalten Umweltbedingungen kann innerhalb des Untersuchungsgebietes für den Zeitraum von 26-13ka (MIS 2) abgeleitet werden (Abb. 50). Die Analyse von Schwemmfächerablagerungen aus dem Gobi Altai bestätigen kalte und trockene klimatische Bedingungen, die von ca. 30-15ka vorherrschten (Owen et al. 1997, Owen et al. 1998, Vassallo et al. 2005). Für den Norden der Mongolei konnten ebenfalls niedrige Seespiegel sowie ein kaltes und arides Klima rekonstruiert werden: Naumann (1999), Walther (1999) sowie Grunert et Diskussion

al. (2000) verweisen auf einen Tiefstand des Uvs Nuur zwischen ca. 32-13ka. Des Weiteren belegen Untersuchungen an Dünen im Uvs Nuur und Bayan Nuur Becken trockene und kalte Bedingungen, die zu einer Akkumulation von Dünen von 20-13ka führten (Grunert und Dasch 2000, Grunert und Dasch 2004). Der Vorstoß von Gletschern im russischen Altai und Darhad Becken konnte für einen Zeitraum von ca. 30-15ka datiert werden, wodurch ebenfalls kalte klimatische Verhältnisse angenommen werden konnten (Lehmkuhl und Haselein 2000, Lehmkuhl et al. 2007, Gillespie et al. 2008). Anhand von Untersuchungen in Lößprofilen der Nordmongolei konnte ein kaltes und trockenes Klima für den Zeitraum von 24-15ka hergeleitet werden (Feng 2001). Paläoklimatische Daten aus Sibirien und Nordchina zeigen eine gute Übereinstimmung mit der Interpretation für die Mongolei im Zeitraum von 50-13ka. Untersuchungen an Paläobodensequenzen im sibirischen Löss lassen auf ein feuchteres und durch steigende Temperaturen geprägtes Klima während 59-23ka schließen (Chlachula 2003). Bohrkernanalysen aus dem Baikalsee sowie aus weiteren sibirischen Seen deuten auf eine anschließend trockene und kalte Phase zwischen 24-12ka (Tarasov et al. 1999, Horiuchi et al. 2000). Paläoklimadaten aus NW China wurden als feuchte Phase interpretiert, die von ca. 35-25ka andauerte und zu hohen Seespiegeln, vorstoßenden Gletschern sowie Bildung von Paläoböden in Lößsequenzen führte (Pachur et al. 1995, Feng et al. 1998, Yang 2000, Yu et al. 2000, Zhang et al. 2002, Rutter et al. 2003). Unterschiedliche Daten von Untersuchungen an Seesedimenten und Dünen im Nordwesten Chinas weisen dagegen gegensätzliche Interpretationen auf: Feng et al. (1998), Wünnemann et al. (1998) sowie Mischke et al. (2005) diskutieren ein feuchtes und relativ warmes Klima im Zeitraum von ca. 50-30ka, während Zhang et al. (2002) von kalten und trockenen Bedingungen ausgehen. Für das MIS 2 zeigen Untersuchungen an Seesedimenten, Dünen- sowie Lössprofilen in Übereinstimmung mit den Ergebnissen aus Sibirien und der Mongolei einen Wandel zu trockenen und kalten Verhältnissen (Pachur et al. 1995, Feng et al. 1998, Starkel 1998, Wünnemann et al. 1998, Yu et al. 2000, Zhang et al. 2002, Chlachula 2003, Rutter et al. 2003, Mischke et al. 2005).

Innerhalb des Untersuchungsgebietes erfolgt ein Übergang vom Pleistozän zum Holozän im Zeitraum zwischen 13 -11ka. Dieser Wechsel lässt sich an einem starken Anstieg der Temperatur sowie an einem zunehmend feuchteren Klima ableiten, was zu einem Anstieg der Seespiegel, einer erhöhten Bioproduktivität sowie Oberflächenstabilität führte (s.o.). Dies ist in Übereinstimmung mit ansteigenden Seespiegeln in der Mongolei, China und Russland, der Degradierung von Permafrost und der Bildung von Böden (Owen et al. 1998, Walther 1999, Fedotov et al. 2000, Komatsu et al. 2001, Chen et al. 2003, Walther et al. 2003, Mischke et al. 2005, Chen et al. 2006).

Für den Untersuchungsraum konnte eine Phase mit maximaler Feuchtigkeit sowie maximaler Temperatur für den Zeitraum von 9 -6ka rekonstruiert werden. Für diesen Zeitraum wird ebenfalls ein Anstieg der Seespiegel des Uvs Nuur sowie des Bayan Nuur diskutiert so dass von einem feuchten und warmen Klima ausgegangen werden kann (Naumann 1999, Walther 1999, Grunert et al. 2000). Weitere Maximalstände zwischen 9-5ka wurden ebenfalls für die Seen Hoton Nuur, Hovsgol, Gun Nuur, Adagyn Tsagaan Nuur sowie Ugii Nuur erörtert (Tarasov 2000, Tarasov et al. 2000, Lehmkuhl und Lang 2001, Wang et al. 2004, Prokopenko et al. 2007, Schwanghart et al. 2008). Im Gegensatz dazu verzeichnet der See Telmen Nuur niedrige Seespiegel im Verlauf des Mittelholozän (Peck et al. 2002). Datierungen von Paläoböden in Dünen (Uvs Nuur) belegen eine Bodenbildung im Mittlelholozän (Grunert et al. 2004), was auf ein warmes und feuchtes Klima verweist. Weitere Befunde aus Löss- Paläoboden Sequenzen verifizieren diese günstigen klimatischen Verhältnisse (Feng et al. 2005). Untersuchungen aus Sibirien und China verzeichnen ebenfalls ein Klimaoptimum während des Mittelholozäns. Bohrkerndaten aus dem Baikalsee deuten auf feuchte und warme Bedingungen währen ca. 8-6ka (Harrison et al. 1996, Horiuchi et al. 2000). Dies ist in Übereinstimmung mit Seehöchstständen aus der Inneren Mongolei, die aus Sedimenten der Seen Daihai, Gaxun Nuur und Bosten sowie weiteren Befunden aus der Badain Jaran und Tengger Wüste geschlossen werden konnten (Pachur et al. 1995, Wünnemann et al. 1998, Yu et al. 2000, Chen et al. 2003, Wünnemann et al. 2003, Yang 2003, Wang et al. 2004, Peng et al. 2005, Jiang et al. 2007). Bodenkundliche Analysen aus Tibet bestätigen ebenfalls eine Phase der Bodenbildung während des Mittelholozäns (Klinge und Lehmkuhl 2003).

Für das Untersuchungsgebiet konnte ein Trend der Aridisierung von 6ka bis heute festgestellt werden, die in Form von einem Rückgang der Seespiegel, einer abnehmenden Vegetationsbedeckung sowie eine zunehmenden Dünenaktivität erfolgte. Dies korrespondiert mit niedrigen Seespiegeln des Bayan Nuur und des Uvs Nuur sowie der steigenden Dünenaktivität innerhalb dieser Region (Naumann 1999, Walther et al. 2003). Niedrige Seespiegel des Hoton Nuur und des Ugii Nuur sowie palynologische Untersuchungen aus dem Turgen Kharkhiraa verweisen gleichfalls auf warme und trockene Umweltbedingungen (Schlütz 2000, Rudaya et al. 2009, Wang et al. 2009). Weitere paläoklimatische Befunde aus der Mongolei zeigen dagegen eine unterschiedliche Interpretation für das Jungholozän. Für den Telmen Nuur, Ugii Nuur und weitere Seen der Nordmongolei wurden hohe Seespiegel für das Jungholozän rekonstruiert (Peck et al. 2002, Fowell et al. 2003, Schwanghart 2008). Die Untersuchung von Strandwällen des Adagyn Tsagaan Nuur lassen auf einen hohen Seespiegel um 1,5ka schließen (Lehmkuhl und Lang 2001). Paläoklimatische Auswertungen von lakustrinen und äolischen Ablagerungen in China weisen ähnliche Unterschiede auf. Wünnemann et al. (1998) und Starkel (1998) verweisen auf feuchtere Bedingungen während des Jungholozäns, wohingegen Chen et al. (2003), Yang und Williams (2003), Demske und Mischke (2003), Mischke et al. (2003) von ariden und warmen klimatischen Bedingungen ausgehen.

Der Vergleich der unterschiedlichen paläoklimatischen Daten zeigt, dass ein genereller Trend der Klimaentwicklung Zentralasiens innerhalb der vergangenen 140000 Jahre nachvollzogen werden kann. Die Gegenüberstellung von Detailbefunden sowie kurzzeitiger Ereignisse und Schwankungen erweist sich dagegen als problematisch. Als Ursache hierfür kann in Betracht gezogen werden, dass aufgrund der unterschiedlichen natürlichen Bedingungen bzw. des räumlichen Versatzes kurzzeitige klimatische Signale in unterschiedlicher Intensität in den Sedimentarchiven erhalten werden. Dies zeigt sich beispielsweise aus dem Vergleich der Bohrkerne des Bayan Tohomiin Nuur und des Orog Nuur. Der KEO I Bohrkern deutet auf kurzzeitige klimatische Veränderungen im Verlaufe des Holozäns, wohingegen die ONW Kerne ein "gemitteltes" paläoklimatisches Signal anzeigen (s.o.). Ein weiteres Problem stellt der Einfluss des Menschen dar, der in Zentralasien seit dem Mittelholozän die Landschaft durch Ackerbau und Viehzucht beeinflusst (Lehmkuhl et al. 2000, Schlütz 2000, Schlütz und Lehmkuhl 2009). Aufgrund der räumlich abweichenden Nutzungsintensität und der unterschiedlichen natürlichen Bedingungen muss von einer unterschiedlichen Auswirkung des menschlichen Einflusses auf die Landschaft bzw. Klimaarchive ausgegangen werden.

7. Fazit und Ausblick

Die sedimentologische Analyse von limnischen Bohrkernen aus dem Bayan Tohomiin Nuur und dem Orog Nuur sowie die Interpretation von morphologischen Befunden innerhalb deren Einzugsgebiete gibt Aufschluss über die jungquartäre Landschafts- und Klimageschichte der Südmongolei.

Anhand der Analyse unterschiedlicher geochemischer und granulometrischer Parameter konnte die paläoklimatische Entwicklung innerhalb des Untersuchungsgebietes im Verlauf der vergangenen 50000 Jahre rekonstruiert werden. Der Abgleich der sedimentologischen Daten mit den morphologischen Befunden der Region verifiziert die aus den limnischen Archiven gewonnenen Informationen. Hierbei konnten insbesondere äolische Phasen sowie fluvialmorphologische Ereignisse (z.B. Terrassenbildung, Bildung von Schwemmfächern) datiert werden. Die untersuchten morphologischen Befunde reichten zum Teil zeitlich weiter zurück, so dass die kontinuierliche Rekonstruktion der limnischen Archive um Einzeldaten ergänzt werden konnte. Hieraus lässt sich die Entwicklung der Umweltbedingungen für den Süden der Mongolei innerhalb des Zeitraumes von ca. 140ka bis heute nachvollziehen.

Zur Landschaftsentwicklung erfolgte eine Einteilung in unterschiedliche Phasen.

Anhand der Terrassenablagerungen des Tuyn Gol konnten kalte und aride Bedingungen für den Zeitraum von 150-120ka rekonstruiert werden. Im Anschluss daran erfolgte ein Wandel zu warmen und feuchten Umweltverhältnissen im Bereich von 80-70ka, die aus einer Phase mit extrem angestiegenen Seespiegeln abgeleitet wurden, so dass von einer interglazialen Phase ausgegangen werden konnte. Die morphologischen Einzelbefunde ergaben keinerlei Daten für den Zeitraum von 70-50ka, so dass eine kontinuierliche Erfassung der Umweltbedingungen ab 50ka erfolgte. Für den Zeitraum von 50-13ka wurden kalte und aride klimatische Umweltbedingungen gefolgert, die durch häufig auftretende Dünenaktivität, eine geringe Vegetationsbedeckung innerhalb des Einzugsgebietes sowie teilweise austrocknende Seen gekennzeichnet wurden. Diese Phase wurde im Bereich von 35-26ka durch eine Periode mit feuchteren Umweltbedingungen unterbrochen. Ein extremer Wandel konnte für das Holozän abgeleitet werden, das zwischen 13-11ka einsetzte und durch zunehmend feuchtere und wärmere Bedingungen geprägt wurde. Unterbrochen von einigen kurzen Phasen mit kalten und ariden Bedingungen konnte das holozäne Temperatur- und Feuchteoptimum für den Bereich 9-6ka nachvollzogen werden. Seitdem erfolgte ein Wandel zu warmen und ariden Umweltbedingungen, die zu einer (partiellen) Austrocknung der Seen und zu einer Reaktivierung von Dünen führte.

Der Vergleich zu weiteren paläoklimatischen Daten Zentralasiens zeigt, dass ein genereller Trend der Paläoklimaentwicklung der vergangenen 140ka für diesen Raum nachvollzogen werden kann, so dass weitere Daten für diesen gering erforschten Raum zur Verfügung stehen. Die Betrachtung detaillierter und kurzzeitiger Schwankungen erweist sich allerdings aufgrund der unterschiedlichen geographischen Lage und den daraus resultierenden veränderten Auswirkungen von Klimaänderungen als problematisch. Für eine zeitlich hoch aufgelöste Rekonstruktion der paläoklimatischen Bedingungen innerhalb Zentralasiens ist es daher nötig, dass zunächst eine kleinräumige Erfassung und Interpretation der Daten erfolgt. Hierbei ist insbesondere auf die unterschiedlichen Methoden und Interpretationsansätze der verschiedenen Projekte zu achten, so dass eine einheitliche Auswertung erfolgen kann.

Nachdem die Ergebnisse dieser Arbeit den ersten hochauflösenden paläoklimatischen Datensatz für den Süden der Mongolei darstellen, ist es weiterhin erforderlich, diese Daten zu erweitern und zu verifizieren, so dass eine großflächige und feinere Rekonstruktion der Umweltbedingungen für diesen Raum erfolgen kann.

8. Literaturverzeichnis

- ABRAHAMS, A., & PARSONS, A. (Hrsg.) (1994): Geomorphology of Desert Environments. Chapman and Hall, London.
- ADMINISTRATION OF LAND AFFAIRS, G. A. C. (2004): Geographic Atlas of Mongolia. Ulaanbaatar.
- AN, C., CHEN, F., & BARTON, L. (2008): Holocene environmental changes in Mongolia: A review. Global and planetary change 63: 283-289.
- ANDREEV, A. A., PIERAU, R., KALUGIN, I. A., DARYIN, A. V., SMOLYANINOVA, L. G., & DI-EKMANN, B. (2007): Environmental changes in the northern Altai during the last millennium documented in Lake Teletskoye pollen record. Quaternary Research 67: 394-399.
- BAASAN, T. (2004): Aeolian sands of Mongolia. Munkhiin useg Co., Ltd., Ulaanbaatar.
- **BADARCH, G., WINDLEY, B., & KROENER, A. (2000)**: Geology and plate tectonic evolution of Mongolia. Berliner geowissenschaftliche Abhandlungen **A:** 118-121.
- BALJINNYAM, I., BAYASGALAN, A., BORISOV, B., CISTERNAS, A., DEM'YANOVICH, M., GANBAATAR, L., KOCHETKOV, V., KURUSHIN, R., MOLNAR, P., PHILIP, H., & VASHCHILOV, Y. (Hrsg.) (1994): Ruptures of major earthquakes and active deformation in Mongolia and its surroundings.
- BANKS, D., PARNACHEV, V. P., FRENGSTAD, B., HOLDEN, W., KARNACHUK, O. V., & VE-DERNIKOV, A. A. (2004): The evolution of alkaline, saline ground- and surface waters in the southern Siberian steppes. Applied Geochemistry 19: 1905-1926.
- BARTHEL, H. (1988): Mongolei-Land zwischen Taiga und Wüste. VEB Hermann Haack, Gotha.
- **BATKHISHIG, O., & LEHMKUHL, F. (2003)**: Degradation und Desertifikation in der Mongolei. Petermanns Geographische Mitteilungen **147**: 48-49.
- **BAYASGALAN, A., JACKSON, J., RITZ, J., & CARRETIER, S. (1999)**: `Forebergs', flower structures, and the development of large intra-continental strike-slip faults: the Gurvan Bogd fault system in Mongolia. Journal of Structural Geology **21**: 1285-1302.
- CGIAR-CSI (2008): Void-filled seamless SRTM data V3 2008: International Centre for Tropical Agriculture (CIAT) available from CGIAR-CSI SRTM 90m Database: http://srtm.csi.cgiar.org. 15.07.2008.
- CHEN, C. A., LAN, H., LOU, J., & CHEN, Y. (2003): The Dry Holocene Megathermal in Inner Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology **193**: 181-200.

- CHEN, F., CHENG, B., ZHAO, Y., ZHU, Y., & MADSEN, D. B. (2006): Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China. The Holocene 16: 675-684.
- CHEN, F., WU, W., HOLMES, J., MADSEN, D., ZHU, Y., JIN, M., & OVIATT, C. (2003): A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia China. Chinese Science Bulletin **48**: 1401-1410.
- CHEN, F., YU, Z., YANG, M., ITO, E., WANG, S., MADSEN, D. B., HUANG, X., ZHAO, Y., SATO, T., B., J., BIRKS, H., BOOMER, I., CHEN, J., AN, C., & WÜNNEMANN, B. (2008): Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews 27: 351-364.
- CHLACHULA, J. (2003): The Siberian loess record and its significance for reconstruction of Pleistocene climate change in north-central Asia. Quaternary Science Reviews 22: 1879-1906.
- CUNNINGHAM, D. (2005): Active intracontinental transpressional mountain building in the Mongolian Altai: Defining a new class of orogen. Earth and Planetary Science Letters 240: 436-444.
- CUNNINGHAM, W. D., WINDLEY, B. F., OWEN, L. A., BARRY, T., DORJNAMJAA, D., & BA-DAMGARAV, J. (1997): Geometry and style of partitioned deformation within a late Cenozoic transpressional zone in the eastern Gobi Altai Mountains, Mongolia. Tectonophysics 277: 285-306.
- **DEMSKE, D., & MISCHKE, S. (2003)**: Palynological investigation of a Holocene profile section from the Palaeo-Gaxun-Nur-Basin. Chinese Science Bulletin **48**: 1418-1422.
- FEDOTOV, A., BEZRUKOVA, E., CHEBYKIN, E., KHLYSTOV, O., KRAPIVINA, S., LEVINA, O., MAZEPOVA, G., MIZANDRONTSEV, I., SEMENOV, A., VOROBYOVA, S., ZHELEZNYA-KOVA, T., & GRACHEV, M. (2000): Potential value of bottom sediments of Lake Khuvsgul (Mongolia) for paleoclimate reconstructions. Berliner geowissenschaftliche Abhandlungen A: 107-112.
- FEDOTOV, A., CHEBYKIN, E., YU, S., VOROBYOVA, S., YU, O., GOLOBOKOVA, L., POGODAE-VA, T., ZHELEZNYAKOVA, T., GRACHEV, M., TOMURHUU, D., OYUNCHIMEG, T., NA-RANTSETSEG, T., TOMURTOGOO, O., DOLGIKH, P., ARSENYUK, M., & DE BATIST, M. (2004): Changes in the volume and salinity of Lake Khubsugul (Mongolia) in response to global climate changes in the upper Pleistocene and the Holocene. Paleogeography, Paleoclimatology, Paleoecology 209: 245-257.
- FENG, Z. -, CHEN, F. -, TANG, L. -, & KANG, J. (1998): East Asian monsoon climates and Gobi dynamics in marine isotope stages 4 and 3. CATENA 33: 29-46.

- **FENG, Z.-(2001):** Gobi dynamics in the Northern Mongolian Plateau during the past 20,000+yr: preliminary results. Quaternary International 76-77: 77-83.
- FENG, Z., WANG, W. G., GUO, L. L., KHOSBAYAR, P., NARANTSETSEG, T., JULL, A. J. T., AN, C. B., LI, X. Q., ZHANG, H. C., & MA, Y. Z. (2005): Lacustrine and eolian records of Holocene climate changes in the Mongolian Plateau: preliminary results. Quaternary International 136: 25-32.
- **FOWELL, S., HANSEN, B., PECK, J., KHOSBAYAR, P., & GANBOLD, E. (2003)**: Mid to late Holocene climate evolution of the Lake Telmen Basin, North Central Mongolia, based on palynological data. Quaternary Research **59**: 353-363.
- GEYH, M., GROSJEAN, M., NÚNEZ, L., & SCHOTTERER, U. (1999): Radiocarbon Reservoir Effect and the Timing of the Late-Glacial/Early Holocene Humid Phase in the Atacama Desert (Northern Chile). Quaternary Research 52: 143-153.
- GILLESPIE, A. R., BURKE, R. M., KOMATSU, G., & BAYASGALAN, A. (2008): Late Pleistocene glaciers in Darhad Basin, northern Mongolia. Quaternary Research 69: 169-187.
- **GLCF (2008)**: Global Landcover Facility. Satellite Pictures. Institute for Advanced Computer Studies. University of Maryland. http://glcf.umiacs.umd.edu/index.shtml. 20.07.2008.
- **GRUNERT, J., & DASCH, D. (2000)**: Paleoclimatic implications of dunes in the Uvs Nuur-Basin, Western Mongolia. Berliner geowissenschaftliche Abhandlungen A: 2-8.
- GRUNERT, J., & DASCH, D. (2004): Dynamics and evolution of dune fields on the northern rim of the Gobi Desert (Mongolia). Zeitschrift für Geomorphologie N.F. Suppl.-Vol. 133: 81-106.
- **GRUNERT, J., & LEHMKUHL, F. (2004)**: Aeolian sedimentation in arid and semi-arid environments of Western Mongolia. Paleoecology of Quaternary Drylands: - Lecture Notes in Earth Sciences **102**: 195-218.
- GRUNERT, J., KLEIN, M., STUMBÖCK, M., & DASH (1999): Bodenentwicklung auf Altdünen im Uvs Nuur Becken. Die Erde 130: 97-115.
- **GRUNERT, J., LEHMKUHL, F., & WALTHER, M. (2000)**: Paleoclimatic evolution of the Uvs Nuur basin and adjacent areas (Western Mongolia). Quaternary International **65-66**: 171-192.
- GRUNERT, J., STOLZ, C., HEMPELMANN, N., HILGERS, A., HÜLLE, D., LEHMKUHL, F., FELAU-ER, T., & DASCH, D. (2009): The Evolution of small lake basins in the Gobi desert in Mongolia. Quaternary Sciences 29: 677-686.
- GUNIN, P., VOSTOKOVA, E., DOROFEYUK, N., TARASOV, P., & BLACK, C. (Hrsg.) (1999): Vegetation Dynamics of Mongolia. Dordrecht, Boston, London.

- GUO, L., FENG, Z., LI, X., LIU, L., & WANG, L. (2007): Holocene climatic and environmental changes recorded in Baahar Nuur Lake core in the Ordos Plateau, Inner Mongolia of China. Chinese Science Bulletin 52: 959-966.
- HAASE, G. (1983): Beiträge zur Bodengeographie der Mongolischen Volksrepublik.
- HARRISON, S., YU, G., & TARASOV, P. (1996): Late Quaternary Lake-Level Record from Northern Eurasia. Quaternary Research 45: 138-159.
- **HEMPELMANN, N. (2010)**: Aeolian geomorphodynamics in endorheic basins of the Mongolian Gobi Desert. Mainz.
- HERZSCHUH, U., ZHANG, C., MISCHKE, S., HERZSCHUH, R., MOHAMMADI, F., MINGRAM, B., KÜRSCHNER, H., & RIEDEL, F. (2005): A late Quaternary lake record from the Quilian Mountains (NW China): evolution of the primary production and the water depth reconstructed from macrofossil, pollen, biomarker, and isotope data. Global and Planetary Change 46: 361-379.
- HORIUCHI, K., MINOURA, K., HOSHINO, K., ODA, T., NAKAMURA, T., & KAWAI, T. (2000): Paleoenvironmental history of Lake Baikal during the last 23000 years. Paleogeography, Paleoclimatology, Paleoecology **157**: 95-108.
- HOWARD, J. P., CUNNINGHAM, W. D., DAVIES, S. J., DIJKSTRA, A. H., & BADARCH, G. (2003): The stratigraphic and structural evolution of the Dzereg Basin, western Mongolia: clastic sedimentation, transpressional faulting and basin destruction in an intraplate, intracontinental setting. Basin Research 15: 45-72.
- HÜLLE, D., HILGERS, A., RADTKE, U., STOLZ, C., HEMPELMANN, N., GRUNERT, J., FELAUER,
 T., & LEHMKUHL, F. (2010): OSL dating of sediments from the Gobi Desert, Southern
 Mongolia. Quaternary Geochronology 5: 107-113.
- JIANG, Q., SHEN, J., LIU, X., ZHANG, E., & XIAO, X. (2007): A high-resolution climatic change since Holocene inferred from multi-proxy of lake sediment in westerly area of China. Chinese Science Bulletin 52: 1970-1979.
- JIN, Z., LI, F., CAO, J., WANG, S., & YU, J. (2006): Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: Implications for provenance, sedimentary sorting, and catchment weathering. Geomorphology 80: 147-163.
- KLIMEK, K., & STARKEL, L. (Hrsg.) (1980): Environment of the Sant Valley (Southern Khangai Mountains). Warschau.
- KLIMEK, K., & STARKEL, L. (Hrsg.) (1980): Vertical Zonality in the Southern Khangai Mountains (Mongolia). Warschau.

- **KLINGE, M., & LEHMKUHL, F. (2003)**: Paleosols and aeolian mantles in southern and eastern Tibet - Results and Implications for Late Quaternary climatic change. Berliner Paläobiologische Abhandlungen 62-64.
- KOMATSU, G., BRANTINGHAM, P. J., OLSEN, J. W., & BAKER, V. R. (2001): Paleoshoreline geomorphology of Boon Tsagaan Nuur, Tsagaan Nuur and Orog Nuur: the Valley of Lakes, Mongolia. Geomorphology 39: 83-98.
- KONERT, M., & VANDENBERGHE, J. (1997): Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44: 523-535.
- **KOWALKOWSKI, A. (1989)**: Genese der Braunerden und Schwarzerden und. Petermanns Geographische Mitteilungen **133**: 7-22.
- KOWALKOWSKI, A., & MYCIELSKA-DOWGIALLO, E. (1985): Weathering of quartz grains in the liquefied horizon of permafrost solonchaks in the arid steppe zone, Central Mongolia. CATENA 12: 179-190.
- KRENGEL, M. (2000): Discourse on history of vegetation and climate in Mongolia palynological report of sediment core Bayan Nuur I (NW-Mongolia). Berliner geowissenschaftliche Abhandlungen A: 80-84.
- KURUSHIN, R. A., BAYASGALAN, A., LZIYBAT, M., ENHTUVSHIN, B., MOLNAR, P., BAYAR-SAYHAN, C., HUDNUT, K. W., & LIN, J. (1998): The Surface Rupture of the 1957 Gobi-Altay, Mongolia, Earthquake. Special Paper 320: The Surface Rupture of the 1957 Gobi-Altay, Mongolia, Earthquake 320: 1-144.
- **LEHMKUHL, F. (1998)**: Quaternary glaciations in Central and Western Mongolia. Quaternary Proceedings **6:** 153-167.
- **LEHMKUHL, F. (2000)**: Alluvial fans and pediments in Western Mongolia and their implications for neotectonic events and climate change. Berliner geowissenschaftliche Abhandlungen **A:** 14-21.
- **LEHMKUHL, F., & HASELEIN, F. (2000)**: Quaternary paleoenvironmental change on the Tibetan Plateau and adjacent areas (Western China and Western Mongolia). Quaternary International **65-66:** 121-145.
- **LEHMKUHL, F., & LANG, A. (2001)**: Geomorphological investigations and luminescence dating in the southern part of the Khangay and the Valley of the Gobi Lakes (Central Mongolia). Journal of Quaternary Science **16:** 69-87.
- LEHMKUHL, F., KLINGE, M., REES-JONES, J., & RHODES, E. J. (2000): Late Quaternary aeolian sedimentation in central and south-eastern Tibet. Quaternary International **68-71:** 117-132.

- LEHMKUHL, F., ZANDER, A., & FRECHEN, M. (2007): Luminescence chronology of fluvial and aeolian deposits in the Russian Altai (Southern Siberia). Quaternary Geochronology 2: 195-201.
- MAHER, B. A., MUTCH, T. J., & CUNNINGHAM, D. (2009): Magnetic and geochemical characteristics of Gobi Desert surface sediments: Implications for provenance of the Chinese Loess Plateau. Geology 37: 279-282.
- MELLES, M., BRIGHAM-GRETTE, J., GLUSHKOVA, O. Y., MINYUK, P., NOWACZYK, N., & HUBBERTEN, H. (2007): Sedimentary geochemistry of core PG1351 from Lake El'gygytgyn a sensitive revord of climate variability in the East Siberian Arctic during the past three glacial-interglacial cycles. Journal of Paleolimnology **37**: 89-104.
- MINERAL RESOURCES AUTHORY OF MONGOLIA; MONGOLIAN ACADEMY OF SCIENCES (1998): Geological map of Mongolia. Ulaanbaatar.
- MINERAL RESOURCES AUTHORY OF MONGOLIA; MONGOLIAN ACADEMY OF SCIENCES (2002): Tectonics of Mongolia. Ulaanbaatar.
- MISCHKE, S., DEMSKE, D., & SCHUDACK, E. (2003): Hydrologic and climatic implications of a multi-disciplinary study of the mid to late Holocene Lake Eastern Juyanze. Chinese Science Bulletin 48: 1411-1417.
- MISCHKE, S., HERZSCHUH, U., ZHANG, C., BLOEMENDAL, J., & RIEDEL, F. (2005): A Late Quaternary lake record from the Qilian Mountains (NW China): lake level and salinity changes inferred from sediment properties and ostracod assemblages. Global and Planetary Change 46: 337-359.
- MORRILL, C., OVERPECK, J., & COLE, J. (2003): A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. Holocene **13**: 465-476.
- **MURZAEV, E. (1954)**: Die Mongolische Volksrepublik. VEB Geographisch-Kartographische Anstalt, Gotha.
- NAUMANN, S. (1999): Spät- und postglaziale Landschaftsentwicklung im Bajan Nuur Seebecken (Nordwestmongolei). Die Erde 130: 117-130.
- NISSEN, E., WALKER, R. T., BAYASGALAN, A., CARTER, A., FATTAHI, M., MOLOR, E., SCHNA-BEL, C., WEST, A. J., & XU, S. (2009): The late Quaternary slip-rate of the Har-Us-Nuur fault (Mongolian Altai) from cosmogenic 10Be and luminescence dating. Earth and Planetary Science Letters 286: 467-478.
- OPP, C., & BARSCH, H. (1993): Geomorphological Geoecological Processes in the Mountain Forest Steppe of Northern Mongolia. Zeitschrift für Geomorphologie Suppl.-Bd. 92: 145-157.

- OPP, C., & HILBIG, W. (2003): Verbreitungsregeln von Böden und Pflanzengesellschaften im nördlichen Zentralasian unter besonderer Berücksichtigung des Uvs-Nuur_Beckens. Petermanns Geographische Mitteilungen 147: 16-23.
- OWEN, L. A., CUNNINGHAM, D., RICHARDS, B. W. M., RHODES, E., WINDLEY, B. F., DORJ-NAMJAA, D., & BADAMGARAV, J. (1999): Timing of formation of forebergs in the northeastern Gobi Altai, Mongolia: implications for estimating mountain uplift rates and earthquake recurrence intervals. Journal of the Geological Society **156**: 457-464.
- OWEN, L. A., RICHARDS, B., RHODES, E. J., CUNNINGHAM, W. D., WINDLEY, B. F., BADAM-GARAV, J., & DORJNAMJAA, D. (1998): Relic permafrost structures in the Gobi of Mongolia: age and significance. Journal of Quaternary Science 13: 539-547.
- OWEN, L. A., WINDLEY, B. F., CUNNINGHAM, W. D., BADAMGARAV, J., & DORJNAMJAA D., (1997): Quaternary alluvial fans in the Gobi of southern Mongolia: evidence for neotectonics and climate change. Journal of Quaternary Science 12: 239-252.
- PACHUR, H., WÜNNEMANN, B., & ZHANG, H. (1995): Lake Evolution in the Tengger Desert, Northwestern China, during the Last 40,000 Years. Quaternary Research 44: 171-180.
- PECK, J. A., KHOSBAYAR, P., FOWELL, S., PEARCE, R., ARIUNBILEG, S., HANSEN, B., & SO-NINKHISHIG, N. (2002): Mid to Late Holocene climate change in north central Mongolia as recorded in the sediments of Lake Telmen. Paleogeography, Paleoclimatology, Paleoecology 183: 135-153.
- PENG, Y., XIAO, J., NAKAMURA, T., LIU, B., & INOUCHI, Y. (2005): Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China. Earth and Planetary Science Letters 233: 467-479.
- PRINS, M. A., POSTMA, G., CLEVERINGA, J., CRAMP, A., & KENYON, N. H. (2000): Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Indus Fan. Marine Geology 169: 327-349.
- PROKOPENKO, A. A., KHURSEVICH, G. K., BEZRUKOVA, E. V., KUZMIN, M. I., BOES, X., WIL-LIAMS, D. F., FEDENYA, S. A., KULAGINA, N. V., LETUNOVA, P. P., & ABZAEVA, A. A. (2007): Paleoenvironmental proxy records from Lake Hovsgol, Mongolia, and a synthesis of Holocene climate change in the Lake Baikal watershed. Quaternary Research 68: 2-17.
- **PROKOPENKO, A., KARABANOV, E., WILLIAMS, D., & KHURSEVICH, G. (2002)**: The stability and the abrupt ending of the Last Interglaciation in Southeastern Siberia. Quaternary Research **58**: 56-59.

- PYE, K., & ZHOU, L. (1989): Late Pleistocene and Holocene aeolian dust deposition in North China and the Northwest Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 73: 11-23.
- RICKETTSA, R., JOHNSONA, T., BROWNA, E., RASMUSSEN, K., ROMANOVSKYC, V. (2001): The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeography, Palaeoclimatology, Palaeoecology **176**: 207-227.
- RUDAYA, N., TARASOV, P., DOROFEYUK, N., SOLOVIEVA, N., KALUGIN, I., ANDREEV, A., DARYIN, A., DIEKMANN, B., RIEDEL, F., TSERENDASH, N., & WAGNER, M. (2009): Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: a step towards better understanding climate dynamics in Central Asia. Quaternary Science Reviews 28: 540-554.
- RUTTER, N. W., ROKOSH, D., EVANS, M. E., LITTLE, E. C., CHLACHULA, J., & VELICHKO, A. (2003): Correlation and interpretation of paleosols and loess across European Russia and Asia over the last interglacial-glacial cycle. Quaternary Research 60: 101-109.
- SCHLÜTZ, F. (2000): Palynological investigations in the Turgen-Kharkhiraa mountains, Mongolian Altay. Berliner geowissenschaftliche Abhandlungen A: 85-90.
- SCHLÜTZ, F., & LEHMKUHL, F. (2009): Holocene climatic change and the nomadic Anthropocene in Eastern Tibet: palynological and geomorphological results from the Nianbaoyeze Mountains. Quaternary Science Reviews 28: 1449-1471.
- SCHWANGHART, W., FRECHEN, M., KUHN, N., & SCHÜTT, B. (2009): Holocene environmental changes in the Ugii Nuur basin, Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology 279: 160-171.
- SCHWANGHART, W., SCHÜTT, B., & WALTHER, M. (2008): Holocene Climate Evolution of the Ugii Nuur Basin, Mongolia. Advances in atmospheric sciences 25: 986-998.
- **SOMMER, M., & TRETER, U. (1999)**: Die Lärchenwälder der Gebirgswaldsteppe in den Randgebirgen des Uvs Nuur-Beckens. Die Erde **130**: 173-188.
- **STARKEL, L. (1998)**: Geomorphic response to climatic and environmental changes along a Central Asian transect during the Holocene. Geomorphology **23**: 293-305.
- STEBICH, M., MINGRAM, J., HAN, J., & LIU, J. (2009): Late Pleistocene spread of (cool-)temperate forests in Northeast China and climate changes synchronous with the North Atlantic region. Global and Planetary Change 65: 56-70.
- SUN, Y., TADA, R., CHEN, J., CHEN, H., TOYODA, S., TANI, A., ISOZAKI, Y., NAGASHIMA, K., HASEGAWA, H., & JI, J. (2007): Distinguishing the sources of Asian dust based on

electron spin resonance signal intensity and crystallinity of quartz. Atmospheric Environment **41**: 8537-8548.

- **TARASOV, P. (2000)**: Holocene vegetation and climate changes in Hoton-Nur basin, northwest Mongolia. Boreas **29**: 117-126.
- TARASOV, P., DOROFEYUK, I., SEVASTYANOV, D., & NAKAGAWA, T. (2000): Holocene vegetation and climate changes in Mongolia derived from lake status, pollen and plant macrofossil records. Berliner geowissenschaftliche Abhandlungen 205: 94-99.
- TARASOV, P. E., PEYRON, O., GUIOT, J., BREWER, S., VOLKOVA, V. S., BEZUSKO, L. G., DO-ROFEYUK, N. I., KVAVADZE, E. V., OSIPOVA, I. M., & PANOVA, N. K. (1999): Last Glacial Maximum climate of the former Soviet Union and Mongolia reconstructed from pollen and plant macrofossil data. Climate Dynamics 15: 227-240.
- THIEL, E. (1958): Die Mongolei. ISAR Verlag, München.
- TOMKINS, J., LAMOUREUX, S., ANTONIADES, D., & VINCENT, W. (2005): Long-term water balance variability in Lake A, northern Ellesmere Island.
- **TRETER, U. (1996)**: Gebirgs-Waldsteppe in der Mongolei. Geographische Rundschau **48**: 655-661.
- VASSALLO, R., JOLIVET, M., RITZ, J., BRAUCHER, R., LARROQUE, C., SUE, C., TODBILEG, M.,
 & JAVKHLANBOLD, D. (2007): Uplift age and rates of the Gurvan Bogd system (Gobi-Altay) by apatite fission track analysis. Earth and Planetary Science Letters 259: 333-346.
- VASSALLO, R., RITZ JEAN-FRANCOIS; BRAUCHER, BRAUCHER, R., & CARRETIER, S. (2005): Dating faulted alluvial fans with cosmogenic 10Be in the Gurvan Bogd mountain range (Gobi-Altay, Mongolia): climatic and tectonic implications. Terra Nova **17**: 278-285.
- WALTHER, M. (1998): Paläoklimatische Untersuchungen zur jungpleistozänen Landschaftsentwicklung im Changai-Bergland und in der nördlichen Gobi (Mongolei). Petermanns Geographische Mitteilungen 142: 207-217.
- WALTHER, M. (1999): Befunde zur jungquartären Klimaentwicklung rekonstruiert am Beispiel der Seespiegelstände des Uvs Nuur-Beckens (NW-Mongolei). Die Erde 130: 131-150.
- WALTHER, M., WÜNNEMANN, B., & TSCHIMEKSAICHAN, A. (2003): Seen und Paläoseen in der Mongolei und Nordwestchina. Petermanns Geographische Mitteilungen 147: 40-47.

- WANG, W., FENG, Z., LEE, X., ZHANG, H., MA, Y., AN, C., & GUO, L. (2004): Holocene abrupt climate shifts recorded in Gun Nuur lake core, northern Mongolia. Chinese Science Bulletin 49: 520-526.
- WANG, W., MA, Y., FENG, Z., MENG, H., SANG, Y., & ZHAI, X. (2009): Vegetation and climate changes during the last 8660 cal. a BP in central Mongolia, based on a highresolution pollen record from Lake Ugii Nuur. Chinese Science Bulletin 54: 1579-1589.
- WENINGER, B., & JÖRIS, O. (2008): A 14C age calibration curve for the last 60 ka: The Greenland- Hulu U/Th time-scale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia. Journal of Human Evolution 55: 772-781.
- WÜNNEMANN, B., CHEN, F., RIEDEL, F., ZHANG, C., MISCHKE, S., CHEN, G., DEMSKE, D., & MING, J. (2003): Holocene lake deposits of Bosten Lake, southern Xinjiang, China. Chinese Science Bulletin 48: 1429-1432.
- WÜNNEMANN, B., PACHUR, H. J., JIJUN, L., & HUCAI, Z. (1998): Chronologie der pleistozänen und holozänen Seespiegelschwankungen des Gaxun Nur/Sogo Nur und Baijian Hu, Innere Mongolei, Nordwestchina. Petermanns Geographische Mitteilungen 142: 191-206.
- YANG, X. (2000): Landscape evolution and precipitation changes in the Badain Jaran Desert during the last 30000 years. Chinese Science Bulletin **45**: 1042-1047.
- YANG, X. (2003): Die Veränderungnen der Dünenstabilität und des Seespiegels im Gebiet der Badain Jaran Wüste der Inneren Mongolei, China, seit dem Spätquartär. Geoöko 24: 177-188.
- YANG, X., & WILLIAMS, M. (2003): The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia; China. Catena **51**: .
- YANG, X., ROST, K. T., LEHMKUHL, F., ZHENDA, Z., & DODSON, J. (2004): The evolution of dry lands in northern China and in the Republic of Mongolia since the Last Glacial Maximum. Quaternary International 118-119: 69-85.
- YU, G., XUE, B., WANG, S., & LIU, J. (2000): Lake records and LGM climate in China. Chinese Science Bulletin 45: 1158-1164.
- ZHANG, H., MA, Y., PENG, J., LI, J., CAO, J., QI, Y., CHEN, G., FANG, H., MU, D., PACHUR, H.,
 WÜNNEMANN, B., & FENG, Z. (2002): Palaeolake and palaeoenvironment between
 42 and 18 kaBP in Tengger Desert NW China. Chinese Science Bulletin 47: 1946-1956.

Anhang

							elektr.		К	yse				
Tiefe [cm]	N [%]	C [%]	S [%]	CaCO₃ [%]	тос [%]	TOC/N	Leitf. [mS]	Mittelwert [µm]	St.Abw.	Ton <2μm [%]	Schluff <63µm [%]	Sand <2000µm [%]		
25	0,22	7,01	0,00	39,5	3,90	17,7	0,10	19,9	32,3	28,4	61,9	9,6		
35	0,19	7,24	0,02	42,5	3,67	19,6	0,08	20,7	33,9	29,7	59,7	10,6		
45	0,19	5,25	0,00	26,4	3,57	19,2	0,07	19,7	31,4	25,8	64,8	9,4		
55	0,18	3,78	0,00	16,6	3,07	17,2	0,05	16,9	23,7	23,5	70,0	6,6		
115	0,20	4,19	0,00	19,3	3,21	16,3	0,06	27,6	43,4	21,6	64,1	14,3		
125	0,20	2,98	0,00	9,3	3,21	15,8	0,04	16,9	26,2	25,4	67,1	7,5		
135	0,17	2,80	0,00	10,6	2,61	15,1	0,04	20,5	38,2	26,7	63,0	10,2		
145	0,12	2,79	0,00	15,5	1,61	13,7	0,05	23,4	47,8	27,9	60,8	11,3		
155	0,09	3,08	0,00	19,3	1,32	14,5	0,05	11,6	21,0	32,1	64,0	3,9		
165	0,10	3,08	0,00	19,0	1,36	13,9	0,05	10,1	16,8	32,6	64,7	2,6		
205	0,08	3,16	0,03	20,1	1,29	16,5	0,09	12,0	21,8	32,0	63,8	4,2		
210	0,09	3,09	0,02	20,7	1,05	12,3	0,05	7,7	12,4	36,5	62,2	1,3		
215	0,08	3,38	0,03	21,9	1,30	16,5	0,09	15,5	31,4	31,2	62,5	6,2		
220	0,07	3,80	0,03	25,3	1,32	18,0	0,13	11,9	22,6	33,9	62,0	4,1		
225	0,08	4,21	0,03	28,0	1,45	17,4	0,07	16,3	31,5	33,8	59,0	7,2		
230	0,07	3,73	0,04	25,3	1,20	17,9	0,09	10,4	15,7	33,4	63,6	3,0		
235	0,07	3,93	0,04	26,8	1,23	18,6	0,06	8,1	12,9	36,7	61,9	1,4		
240	0,07	3,90	0,04	26,4	1,25	18,4	0,06	8,4	12,5	34,3	64,6	1,1		
245	0,10	3,24	0,03	20,0	1,44	15,2	0,13	15,7	26,1	26,8	6/,/	5,5		
250	0,13	2,20	0,03	6,5	2,46	19,4	0,12	12,8 16,6		23,6	74,1	2,3		
255	0,12	2,19	0,01	9,0	1,91	15,9	0,05	14,7	21,3	24,2	71,4	4,4		
260	0,07	3,65	0,02	23,8	1,37	19,3	0,10	8,7	13,0	33,3	65,4	1,3		
265	0,07	3,82	0,04	26,2	1,16	17,8	0,06	8,0	11,4	33,2	66,1	0,7		
270	0,06	4,07	0,07	27,9	1,25	20,1	0,07	9,4	15,5	32,9	65,0	2,1		
275	0,07	4,16	0,18	28,6	1,26	19,0	0,12	8,3	12,1	33,9	65,2	0,9		
280	0,08	3,97	0,33	26,8	1,31	17,2	0,16	14,1	20,4	27,9	67,3	4,8		
289	0,14	2,34	0,29	9,7	2,01	14,9	0,30	11,5	19,2	32,0	64,8	3,2		
295	0,08	3,13	0,28	20,1	1,23	15,8	0,31	6,6	7,8	30,6	69,4	0,1		
305	0,07	4,35	0,00	31,2	1,04	15,1	0,28	9,8	15,7	36,5	61,2	2,2		
310	0,07	3,88	0,00	27,4	1,02	14,4	0,25	0.7	10,9	32,0	65,4	2,5		
315	0,08	3,02	0,29	23,9	1,29	15,5	0,24	8,7	13,7	33,2	65,1	1,7		
320	0,08	4,03	0,39	20,5	1,55	10,7	0,21	0,4	13,0	24,0	64.2	1,5		
325	0,08	2 11	0,00	22,1	0,96	12,5	0,21	0,5 8.6	12,0	27.2	67.0	1,0		
335	0,00	2 57	0,00	17.0	0,03	11,0	0,20	7.8	12,5	33.6	65.6	0,7		
330	0,08	2,37	0,00	1/ 9	0,32	10.5	0,10	,,0 8.6	12.1	30,0	68.8	0,0		
345	0,00	2,50	0,40	17.1	0,00	10,5	0,17	6.4	9/	35.4	64.1	0,5		
350	0.08	3 20	0.00	22.0	0.97	12.0	0.19	10.7	15.9	27.9	69.7	2.4		
355	0.08	1 98	0.00	12.4	0.86	10.5	0.17	9.1	12.7	30.3	68.7	1.0		
360	0.09	3 42	0.00	22.8	1 18	13.1	0.18	9.7	12.9	26.3	72 7	1.0		
365	0.08	2.90	0.00	20.3	0.81	10.0	0.17	11.4	16.2	27.6	70.2	2.3		
370	0.08	3,83	0,10	25.2	1.39	17.8	0,15	13.8	18.8	23.7	72.5	3.8		
375	0.09	2,59	0.00	16.4	1.06	12.0	0,17	9.7	14.5	27.7	70.6	1.7		
380	0.07	4,96	0.00	35.8	1.14	15.4	0.14	13.3	20.9	30.3	65.4	4.3		
386	0.07	2.79	0.00	19.1	0.85	11.9	0,16	12.4	16.6	25.1	72.5	2,4		
392	0,08	1,72	0,00	11,1	0,67	8,5	0,16	7,5	11,7	33,6	65,3	1,1		
397	0,09	1,77	0,00	10.7	0,84	9.5	0,17	6.0	8.2	34.2	65.6	0,3		
405	0,11	2,10	0,62	10.9	1,35	12.6	0,20	9.1	14.2	29.6	68.8	1,6		
410	0,13	1,99	0,45	8,9	1,59	12,7	0,18	7,2	9,1	31,4	68,5	0,1		

Tab. A1: Sedimentologische Laborergebnisse der KEO I Bohrung (Daten in ca. 5cm Abständen)

		elektr.					Korngrößenanalyse							
Tiefe [cm]	N [%]	C [%]	S [%]	CaCO₃ [%]	тос [%]	TOC/N	Leitf. [mS]	Mittelwert [µm]	St.Abw.	Ton <2μm [%]	Schluff <63µm [%]	Sand <2000μm [%]		
415	0,11	2,62	0,46	14,4	1,52	13,6	0,20	12,8	20,1	26,4	70,3	3,3		
420	0,11	1,95	0,30	10,6	1,17	10,9	0,17	6,3	7,2	31,6	68,4	0,0		
425	0,10	2,78	0,30	17,5	1,16	12,2	0,21	10,2	14,5	28,7	69,7	1,6		
430	0,08	2,87	0,20	18,2	1,19	14,5	0,23	-	-	-	-	-		
435	0,08	4,87	0,06	28,4	2,52	31,1	0,26	17,0	30,4	29,8	62,4	7,7		
440	0,10	2,85	0,67	17,7	1,24	12,8	0,32	9,1	15,1	35,2	63,0	1,8		
445	0,10	4,26	0,22	26,7	1,81	18,6	0,25	10,0	15,6	31,2	66,9	1,8		
450	0,09	2,91	0,37	16,8	1,52	17,7	0,26	11,2	16,9	30,8	66,6	2,6		
455	0,09	4,45	0,13	30,6	1,33	14,1	0,30	14,3	26,3	31,1	62,9	6,0		
460	0,17	4,88	0,32	25,9	3,06	18,1	0,31	14,1	19,6	23,4	73,3	3,3		
466	0,15	1,94	0,90	4,4	2,43	16,4	0,24	11,3	13,6	21,6	//,2	1,2		
470	0,11	1,95	0,61	11,0	1,08	9,6	0,25	6,4	9,1	35,8	63,7	0,5		
4/5	0,19	4,27	0,60	22,3	2,73	14,8	0,27	8,4	12,8	35,6	63,2	1,2		
480	0.14	2,34	0,44	12 /	1,01	14.2	0,30	7,U	9,5	34,0 22.2	05,U	0,4		
405	0,10	3,55	0,01	16,4	2,50	14,2	0,29	9,1 10.8	14,1	31.3	65.6	3.1		
490	0,28	1.8/	0,70	8.8	1 35	10.4	0,23	10,8 6.4	83	33,3	66.0	0.3		
504	0,15	3 57	0,78	22.8	1,55	16.2	0,27	7.8	11.6	36.3	62.9	0,5		
509	0.09	3,3,	0.00	24.2	1 42	15.8	0.09	7,6	11,0	36.7	62,5	0.5		
514	0.10	3.53	0.09	22.4	1.45	14.2	0.10	8.6	12.5	34.0	65.1	0.9		
520	0.09	3.81	0.00	17.6	2.92	34.0	0.11	8.8	13.4	35.1	63.5	1.4		
524	0,10	3,53	0,04	22,3	1,48	15,3	0,09	8,1	11,7	36,0	63,2	0,8		
529	0,10	3,48	0,00	19,8	1,91	18,7	0,11	8.3 11.9		34,4	64,7	0,8		
534	0,09	3,78	0,10	23,5	1,64	18,1	0,13	8,3	12,6	35,2	63,6	1,1		
539	0,11	3,01	0,43	16,1	1,85	16,8	0,15	9,1	13,0	31,4	67,4	1,2		
545	0,11	1,92	0,46	10,3	1,17	10,8	0,12	7,2	9,2	31,8	68,0	0,2		
551	0,11	1,68	0,49	8,5	1,13	10,1	0,16	7,1	9,0	32,1	67,7	0,2		
556	0,12	1,79	0,53	9,1	1,19	10,2	0,21	6,8	8,2	32,0	68,0	0,0		
560	0,11	1,80	0,37	9,5	1,13	10,1	0,21	8,1	9,6	29,6	70,3	0,0		
566	0,06	1,48	0,00	9,2	0,64	10,5	0,15	27,0	25,8	17,4	71,4	11,3		
570	0,11	2,16	0,34	10,3	1,59	14,3	0,24	7,1	9,5	32,9	66,9	0,2		
575	0,13	1,89	0,55	7,4	1,72	13,3	0,18	16,0	19,7	20,9	75,2	3,9		
581	0,12	2,58	0,40	15,9	1,16	9,8	0,21	8,6	12,7	31,3	67,7	1,0		
585	0,14	2,74	0,38	18,0	1,00	7,1	0,25	8,8	12,4	27,2	71,7	1,1		
590	0,13	2,43	0,40	15,7	0,93	7,3	0,23	9,3	14,6	32,7	65,5	1,7		
595	0,15	3,22	0,40	15,9	2,25	15,0	0,19	9,8	15,3	31,5	66,3	2,2		
605	0,09	3,50	0,11	21,6	1,57	16,7	0,12	8,4	13,1	36,5	62,2 72 F	1,3		
616	0,13	2,01	0,40	10.0	1,58	0 1	0,19	10,9	10.0	23,5	72,5	2,0		
624	0,11	1,00	0,54	10,8	0.82	9,1	0,20	9,9 17 3	10,9	12.1	77,0 85.1	2.9		
628	0,10	1,76	0,45	10,5	0,02	83	0.20	22.4	22.5	11 1	81.3	7.6		
635	0.11	2 61	0.17	17.3	0.91	8.2	0.20	9.0	14.5	33.2	65.2	15		
640	0.14	2.84	0.39	15.6	1.67	11.7	0.21	9.1	12.1	27.2	72.1	0.7		
645	0,12	2,60	0,52	10,3	2,34	19,8	0,21	15,5	13,8	10,2	89,4	0,4		
650	0,14	2,85	0,45	15,8	1,64	11,4	0,11	14,5	27,1	29,8	, 64,9	5,3		
655	0,12	2,21	0,44	12,6	1,21	10,4	0,19	9,4	17,1	34,6	63,1	2,3		
663	0,22	4,16	0,83	15,4	3,98	17,8	0,19	9,3	14,8	31,0	67,2	1,8		
670	0,18	3,22	0,77	14,5	2,54	14,3	0,17	11,4	18,9	29,5	67,2	3,4		
675	0,11	2,41	0,19	15,5	0,95	8,8	0,16	14,9	24,6	29,8	64,1	6,1		
680	0,10	2,28	0,22	14,1	1,01	9,8	0,23	18,3	26,9	27,8	62,2	9,9		
685	0,11	3,00	0,22	18,0	1,44	12,9	0,18	17,2	26,2	27,5	64,1	8,4		
693	0,14	1,62	0,90	4,5	1,85	13,1	0,14	9,6	12,9	26,3	72,4	1,3		
696	0,17	4,76	0,21	24,4	3,15	18,2	0,19	11,8	21,2	32,2	63,6	4,2		

Tab. A1 (Forts.): Sedimentologische Laborergebnisse der KEO I Bohrung (Daten in ca. 5cm Abständen)

Tiefe	Messz	к	к	Ca [ppm]	Ca	Ti	Ti	Mn	Mn	Fe	Fe	Rb	Rb	Sr	Sr
[cm]	eit	[ppm]	Fehler		Fehler	[ppm]	Fehler								
	[sec]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]
25	90	15573	1350	194678	2178	1583	149	1028	256	18685	756	50	10	3366	96
35	90	12950	1363	247507	2446	1288	145	780	228	15640	686	41	9	3038	90
45	90	15094	1231	122012	1725	1813	145	1119	289	27814	973	49	10	2074	80
55	90	21032	1380	95022	1589	2920	173	1138	270	33309	976	77	11	1330	60
115	90	18532	1288	92981	1537	2387	158	947	248	28085	901	59	10	1630	66
125	90	22063	1336	49389	1172	3123	174	1584	301	36816	1014	77	11	1051	53
135	90	19966	1281	48916	1158	3014	169	1798	325	38696	1061	84	12	1260	59
145	90	23043	1397	72281	1404	3048	175	864	254	36609	1044	89	12	1850	71
155	90	20899	1322	76403	1408	2688	162	1321	307	34753	1063	70	12	2280	82
165	90	16654	1171	60556	1232	2457	149	932	269	32888	1033	82	12	1964	77
201	90	19349	1297	77598	1438	2668	165	911	230	24022	801	53	10	1658	64
203	90	20043	1306	74338	1408	2704	164	668	211	25029	818	54	10	1675	65
205	90	19217	1297	77015	1/37	2603	165	567	189	22714	7/2	51	4	1513	59
203	00	10064	1205	75247	1416	2005	160	760	206	22714	742	51	0	1515	60
207	30	10211	1303	73247	1410	2430	100	201	200	22234	743	47	9	1525	60
209	90	19311	1284	73153	1393	2011	101	301	215	22794	702	47	9	1502	50
211	90	20055	1318	77659	1444	2691	167	776	207	22858	747	52	9	1509	59
213	90	19588	1301	/56/0	1423	2766	167	519	179	21309	/0/	55	9	1418	56
215	90	19627	1299	76947	1430	2628	163	624	194	22227	737	54	9	1431	57
217	90	18366	1282	87398	1513	2341	158	725	197	19793	683	47	9	1550	58
219	90	16343	1232	93835	1550	2049	152	661	191	18219	665	42	8	1461	57
221	90	13655	1171	104567	1616	1891	145	492	177	16313	637	43	9	2091	69
223	90	15433	1232	113123	1687	1994	150	480	173	16648	636	46	9	2072	68
225	90	15714	1209	90387	1519	2072	150	542	178	17802	648	41	8	1597	59
227	90	16467	1212	89276	1499	2081	147	414	176	19187	715	47	9	1433	60
229	90	15818	1200	87309	1488	2085	149	541	181	17895	665	42	8	1264	54
231	90	16723	1241	94125	1554	2136	151	645	191	18604	671	39	8	1470	57
233	90	18144	1284	96734	1583	2317	156	454	173	18953	678	47	9	1592	60
235	90	16725	1231	91100	1524	2192	153	361	168	19755	708	49	9	1561	61
237	90	15534	1224	101447	1609	2142	152	505	176	17923	659	48	9	1732	62
239	90	16285	1239	97830	1585	2254	155	472	174	17945	661	49	9	1897	65
241	90	17714	1236	71343	1368	2344	156	545	186	21002	726	56	9	1416	58
243	90	18916	1270	57757	1262	2810	168	502	172	23049	715	55	9	668	38
245	90	22045	1305	25583	89/	3552	180	464	172	27737	813	69	10	452	33
245	00	22045	1241	10295	807	2722	100	220	147	27102	770	67	10	206	20
247	90	23730	1241	1/102	722	2951	194	233	147	27133	972	62	9	405	21
243	90	24130	1340	14155	723	2027	100	420	172	20073	800	74	10	403	20
251	90	22940	1305	11550	000	3937	101	428	1/3	2//23	300	74	10	374	30
253	90	23978	1333	16439	754	3707	181	593	192	26588	790	63	9	387	30
255	90	23338	1313	18800	/8/	3690	179	534	181	24147	747	61	9	408	31
257	90	21463	1339	53628	1235	3319	180	666	192	25487	766	51	9	674	39
259	90	17208	1258	80306	1464	2488	163	763	204	22107	727	50	9	1028	48
261	90	16708	1213	73585	1384	2351	154	665	197	20652	713	54	9	948	47
263	90	16927	1230	74263	1400	2371	157	583	187	20246	694	45	8	956	46
265	90	18046	1268	81821	1469	2501	160	417	162	18980	653	48	8	946	45
267	90	17095	1246	83422	1479	2372	158	367	159	19534	673	46	8	972	46
269	90	18571	1285	82917	1481	2536	162	590	181	19296	661	40	8	977	46
271	90	16979	1243	85332	1491	2338	155	446	165	18965	658	45	8	1008	47
273	90	17948	1259	81955	1463	2469	158	360	151	17480	621	44	8	930	44
275	90	17167	1251	85467	1497	2533	161	601	173	18020	619	48	8	922	43
277	90	16226	1227	85655	1494	2482	160	391	156	17651	622	45	8	999	46
279	90	16340	1231	82231	1472	2313	157	473	167	18495	647	45	8	1283	52
281	90	17938	1260	78765	1442	2332	156	452	165	19318	666	40	8	986	46
283	90	17039	1252	87205	1512	2578	162	664	189	19703	677	46	9	1869	63
285	90	16693	1207	68838	1342	2641	159	556	183	19849	693	46	9	1389	56
287	90	17080	1206	54266	1212	2675	161	687	193	23052	735	47	8	899	45
289	90	17574	1202	49091	1151	2803	161	600	198	26054	815	51	9	870	46
291	90	15774	1189	77181	1408	2260	152	579	189	19697	700	47	9	1507	59
202	90	16/61	1220	81266	1/60	2712	16/	572	176	10775	667	12	2 2	1672	50
295	90	17/02	1242	73500	1306	2712	165	776	200	20823	605	51	0	12023	52
207	30	16/07	1243	95200	1/00	2/20	103	270	162	19000	671	40	9	2055	67
297	90	10497	1402	03200	1405	2485	15/	3/9	102	12024	0/1	49	9	2055	70/
299	90	12510	1102	82/84	1436	2044	143	505	193	1/954	690	41	9	22/8	/4

Tab. A2: Sedimentologische Laborergebnisse der KEO I Bohrung (Daten in 2cm Abständen)

Tiefe	Messz	к	к	Ca [ppm]	Ca	Ti	Ti	Mn	Mn	Fe	Fe	Rb	Rb	Sr	Sr
[cm]	eit	[ppm]	Fehler		Fehler	[ppm]	Fehler								
	[sec]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]
					1000				100				_		
301	90	12959	1117	75232	1390	1885	145	305	133	14446	536	33	7	924	42
303	90	14077	1150	79104	1424	2080	148	271	131	14169	538	26	6	1006	44
305	90	13963	1147	77085	1408	2119	149	451	154	15121	559	40	7	1001	44
307	90	14127	1149	72450	1373	2309	153	537	161	15706	564	35	7	1047	45
309	90	14725	1164	70471	1359	2586	158	391	150	16563	585	35	7	1027	45
311	90	15112	1185	75599	1408	2383	156	433	155	16437	581	43	8	1955	61
313	90	14799	1159	67634	1330	2295	153	425	156	17211	603	33	7	1857	60
315	90	15002	1168	65513	1318	2503	159	512	159	17422	596	40	7	1353	51
317	90	15764	1218	92618	1543	2269	155	380	152	15687	584	42	8	2040	64
319	90	16039	1200	70510	1363	2449	157	371	150	17949	616	40	8	1451	53
221	90	12699	1160	02061	1544	2255	15/	/191	162	15/2/	570	22	7	2201	60
222	00	14000	1100	72092	1204	2233	161	220	102	16120	575	20	, 7	1412	52
323	90	14002	1158	/3982	1394	2000	101	329	138	10139	574	39	/	1412	52
325	90	16443	1196	57359	1245	2668	162	344	145	18852	624	37	/	882	42
327	90	16616	1203	58473	1256	2920	167	363	141	17354	576	37	7	708	36
329	90	16858	1217	54629	1229	2791	167	618	175	19761	639	50	8	599	35
331	90	16131	1189	55236	1227	2908	166	511	163	18477	612	39	7	665	36
333	90	16907	1203	54283	1214	2825	165	539	173	20160	674	44	8	661	38
335	90	18241	1241	48799	1170	2907	168	411	150	19772	626	41	7	442	30
337	90	17560	1204	42786	1094	3056	168	502	163	19368	637	48	8	439	30
220	90	10070	1259	42700	1110	2224	172	502	179	22862	701	46	0 0	433	20
335	30	19079	1230	43000	1110	2124	173	338	170	10546	701	40	0	425	30
341	90	18549	1244	46667	1146	3134	172	448	153	19546	622	44	/	425	29
343	90	16309	1210	69870	1362	2558	161	602	1/0	17952	607	36	/	828	40
345	90	18451	1245	44781	1129	3294	176	579	170	21339	663	44	8	446	30
347	90	16089	1186	60021	1266	2684	162	342	142	16420	576	35	7	661	36
349	90	15623	1194	72209	1380	2583	161	522	159	16297	573	47	8	1261	49
351	90	17589	1222	49229	1171	2802	167	352	141	17953	585	35	7	422	28
353	90	19169	1253	37482	1045	3211	174	473	159	21155	653	55	8	310	25
355	90	18887	1240	38894	1057	3393	176	252	139	20867	663	51	8	343	27
357	90	19/7/	1262	36777	1040	3/86	179	3/1	155	2379/	723	50	8	351	28
250	00	15910	1107	70920	1269	2622	161	250	155	19100	(20	42	0	1677	20 F0
339	90	13610	1197	70829	1300	2035	101	336	155	10190	020	45	° -	1077	50
361	90	14789	11/8	/3/82	1394	2684	163	334	144	16/32	587	36	/	1520	54
363	90	13902	1143	82272	1442	2111	148	260	157	17711	667	48	9	2147	70
365	90	15655	1174	57037	1238	2842	165	302	150	20079	671	45	8	1300	52
367	90	14944	1185	84568	1474	2256	154	552	176	17138	628	35	8	1847	63
369	90	14844	1186	92408	1530	2437	155	459	166	15618	600	42	8	2729	76
371	90	17638	1224	53612	1212	2850	165	630	177	20066	652	51	8	486	32
373	90	17040	1210	51348	1191	2881	166	525	168	20454	658	49	8	579	35
375	90	17073	1209	49950	1176	2851	166	493	163	19426	637	42	8	688	37
377	90	17209	1212	58578	1255	2855	164	312	146	19144	645	52	9	1126	48
270	90	1/2/9	1190	10/192	1617	2208	152	297	152	12/00	544	26	9 9	2220	68
201	00	16656	1212	64692	1017	2200	155	400	102	10206	654	20	7	670	20
202	30	15274	1172	60070	1070	2770	104	439	100	19300	622	38	/	1117	38
383	90	153/1	11/3	00970	12/6	2844	105	434	159	16452	032	40	ð	111/	48
385	90	15895	1174	60750	1264	2698	160	504	170	18029	635	41	8	614	36
387	90	17487	1217	51720	1191	3121	170	527	172	21053	682	46	8	418	30
389	90	18178	1236	46278	1141	3345	175	530	169	22026	689	45	8	341	27
391	90	20824	1304	36720	1048	3577	182	552	173	24797	724	54	8	306	26
393	90	18919	1255	42459	1105	3284	175	324	157	24579	743	52	8	361	29
395	90	19929	1277	37915	1056	3342	178	487	170	24095	726	43	8	326	27
397	90	19638	1269	36812	1043	3534	181	456	162	23687	708	48	8	273	25
399	90	20509	1288	35297	1025	3754	185	423	166	24093	733	56	9	319	27
401	90	14864	1101	42252	1055	2406	148	442	191	23367	812	49	9	741	_ <i>.</i> 45
402	00	17777	1220	50214	1000	2400	160	000	210	23307	720	11	0	70/	10
403	90	17027	1220	20514	1022	20004	100	308	513	22429	/53	41	0	704	45
405	90	1/93/	1223	365/1	1033	3094	1/1	/44	208	269/9	812	5/	9	326	29
407	90	19483	1266	36117	1034	3280	176	659	203	28307	836	56	9	282	27
409	90	20226	1268	36353	1029	3392	176	513	177	23784	749	55	9	338	29
411	90	20424	1267	27216	914	3291	175	282	149	24409	735	58	9	255	25
413	90	22069	1312	30343	960	3398	177	526	179	24638	744	59	9	289	26
415	90	17468	1222	41571	1094	2997	171	990	226	25888	792	44	8	412	32
417	90	20174	1271	34245	1006	3206	174	818	204	24717	751	49	8	282	26
419	90	20310	1263	28516	930	3483	178	337	159	24928	755	53	9	296	27
													1 1		

Tab. A2 (Forts.): Sedimentologische Laborergebnisse der KEO I Bohrung (Daten in 2cm Abständen)

Tiefe	Messz	к	к	Ca [ppm]	Са	Ti	Ti	Mn	Mn	Fe	Fe	Rb	Rb	Sr	Sr
[cm]	eit	[ppm]	Fehler		Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler
	[sec]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]
421	90	10605	1252	20788	1062	2227	174	420	164	22120	707	48	0	254	20
421	90	19095	1233	41665	1002	297/	1/4	525	104	22135	696	40	8	/27	31
425	90	16425	1192	52628	1199	2894	166	617	183	21520	698	50	8	556	35
425	90	17050	1196	42505	1093	3090	169	600	180	21520	695		8	/33	31
429	90	15223	1150	55651	1216	2644	158	404	164	19478	676	54	9	1322	54
425	90	12738	1151	107476	1639	1988	1/9	308	1/6	1/529	582	J4 //1	8	327/	83
431	90	1/601	1170	87655	1/188	2217	151	447	17/	17323	657	41	9	2/2/4	74
433	90	11525	11/0	125744	1400	1924	1/15	447	162	1/100	584	22	9	2424	24 84
435	90	16570	1149	02527	1/01	2280	145	419	102	14100	504 622	33	0	1000	64
437	90	16041	1215	00004	1439	2280	152	205	100	10393	664	47	9	1000	65
435	90	15/07	1100	80542	1447	2241	152	402	154	16571	604	35	7	1566	57
441	90	12767	1100	11/662	1690	2200	1/0	433	164	14521	584	24	, o	2121	27
445	90	150/2	1107	76528	1410	2013	145	443	104	14521	507	40	0 0	1001	47
445	30	12262	1130	11/120	1410	1071	145	432	162	12404	557	40	0	2266	47
447	30	16407	1140	114133 EEE20	1001	2012	145	202	162	20604	552	27	0	704	42
449	90	17407	1210	53556	1220	2025	167	505	102	20094	600	37	0	674	42
451	90	17461	1210	72018	1200	2662	160	284	1/0	19724	660	45 54	0	1/20	59
455	90	17103	11224	120505	1390	1945	100	204	149	14244	610	26	9	2620	02
455	90	12020	1100	07200	1/00	2101	140	440	157	16244	610 E 94	20	0	1906	92
457	90	13320	1141	87280	1487	1925	150	428	157	15240	584	30	7	2820	02 70
459	90	13727	1100	02205	1002	1625	140	202	103	14070	500	24	7	2050	79
401	90	14100	1170	92385	1329	2100	152	293	140	14890	571	31	7	2057	04 40
403	90	14119	1140	/13/3	1302	2345	154	024	105	10750	572	39	/	1251 F12	49
405	90	10400	1198	33545	711	2717	104	924	204	19750	030	49	°	513	33
467	90	22661	1314	13554	/11	3730	184	709	200	28790	815	62	9	269	26
409	90	18409	1244	40405	1144	3058	172	044	184	21702	691	45	°	530	37
4/1	90	1/945	1223	37700	1046	3203	1/4	382	155	22025	689	47	8	546	34
4/3	90	16192	1206	/1512	1372	2/18	164	396	147	16951	591	36	/	1395	52
475	90	15274	1193	80144	1444	2328	156	509	162	16363	591	41	8	894	43
4//	90	14302	1188	100727	1596	2077	150	668	182	15288	586	32	/	1572	57
479	90	13388	1087	53707	1181	2268	147	647	190	17892	663	31	/	573	37
481	90	14068	1076	34822	9/2	2565	152	4/4	1/5	21359	/11	46	8	401	31
483	90	14862	1190	90328	1520	2331	154	443	167	17789	651	36	8	1893	65
485	90	16684	1215	62765	1301	2682	164	698	187	20315	667	45	8	982	45
487	90	15186	1213	94298	1561	2339	158	601	180	18159	647	44	8	1/01	60
489	90	18033	1251	61392	1295	28//	167	411	155	19869	643	39	/	1164	48
491	90	1/315	1239	63511	1316	2915	169	8/2	213	22943	/38	56	9	1105	50
493	90	18533	1240	40244	1076	3355	1//	/81	204	23830	742	43	8	362	29
495	90	19821	1269	36440	1034	3233	175	/18	200	24652	765	51	9	325	28
497	90	18582	1220	34328	995	3179	1/0	690	204	25629	798	50	9	282	27
499	90	18829	1207	28253	908	2961	164	556	211	29485	928	61	10	293	30
501	90	14029	1125	68640	1324	2418	151	496	1/6	18/58	082	41	ð	1518	59
503	90	153/9	11/2	08080	1338	2242	153	4/3	160	17785	015	42	× c	989	45
505	90	16289	1205	71101	1360	2408	154	345	149	17/10	618	45	8	944	44
507	90	10288	1101	73453	1384	2388	150	203	109	17210	233	38	/	1012	45
509	90	10052	1191	/2452	13/4	2243	153	483	155	16700	289	42	/	1073	45
511	90	15611	1186	09/50	1345	2142	149	428	153	17000	587	44	ð	913	42
513	90	17000	1184	70012	1355	2306	154	462	158	10100	569	47	ð	970	43
515	90	1/389	1221	62429	1291	2530	159	715	181	18468	615	43	8	966	43
517	90	10555	1229	/4599	1411	2483	162	/25	185	19036	035	41	8	929	43
519	90	15887	1185	68163	1335	2377	154	6/8	183	18809	642	44	8	1008	46
521	90	14350	1139	6/267	1318	21/6	148	509	164	16967	602	45	8	1049	46
523	90	15832	11/6	6/139	1321	2218	150	512	169	1/890	632	39	8	1031	4/
525	90	18655	1272	/0353	1375	2692	164	657	181	19794	643	46	8	1044	45
527	90	17775	1241	70105	1364	2590	161	471	156	17834	603	41	7	953	43
529	90	18325	1243	60210	1273	2674	162	516	167	19655	645	50	8	761	39
531	90	16429	1214	69330	1359	2611	163	464	160	19017	629	44	8	1027	45
533	90	16022	1194	72213	1372	2318	154	394	147	16440	584	42	8	889	42
535	90	16226	1208	75105	1402	2356	156	411	152	17684	610	43	8	942	43
537	90	19445	1284	65109	1329	2699	164	514	163	19698	637	43	8	786	39
539	90	19998	1283	32224	993	3542	183	509	166	24346	711	44	8	291	25

Tab. A2 (Forts.): Sedimentologische Laborergebnisse der KEO I Bohrung (Daten in 2cm Abständen)

Tiefe	Messz	к	к	Ca [ppm]	Ca	Ti	Ti	Mn	Mn	Fe	Fe	Rb	Rb	Sr	Sr
[cm]	eit	[ppm]	Fehler		Fehler	[ppm]	Fehler								
	[sec]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]
5/1	90	20256	1270	25/11	800	2712	195	20/	154	22270	682	54	0	212	22
541	90	19172	1279	23411	863	3680	187	579	178	25053	736	59	0 Q	213	22
545	90	19068	1235	30415	955	3496	178	496	163	22120	676	42	7	237	24
547	90	20475	1237	30782	958	3423	178	396	103	2/120	722	46	, 8	257	23
549	90	18903	1253	33721	1007	3776	186	333	147	23247	690	40	8	233	24
551	90	17938	1207	33260	985	3255	173	455	166	23149	716	52	8	210	24
553	90	18209	1207	34342	1002	3394	176	435	164	23302	716	44	8	240	24
555	90	19752	1267	35174	1002	3420	179	691	190	24300	729	51	8	244	24
557	90	18393	1207	36/11	1020	3509	180	605	177	23081	698	46	8	241	24
559	90	18760	1240	35765	1014	3225	171	658	192	23001	729	52	9	267	25
561	90	18237	1210	38707	1014	3139	169	457	170	21610	707	46	8	207	23
563	90	20262	1275	44779	1123	3299	174	488	167	21767	689	56	9	310	26
565	90	18529	1203	44781	1097	2970	162	383	154	17359	618	49	8	385	20
567	90	17599	1198	38451	1042	2965	166	461	160	19811	644	54	8	301	26
569	90	18397	1231	41195	1042	3195	172	626	180	21237	674	47	8	299	26
571	90	18405	1236	43292	1108	3032	169	624	176	21237	666	47	7	323	26
573	90	19621	1250	41272	1091	3291	176	521	166	20989	659	42	7	298	25
575	90	20936	1280	31542	970	3546	178	409	169	24312	756	67	10	314	28
577	90	19140	1262	43197	1114	3071	172	674	181	21228	663	52	8	349	27
579	90	17326	1202	63948	1308	2747	164	499	166	18267	623	44	8	956	44
581	90	17687	1229	53672	1215	3128	172	336	147	20538	657	33	7	818	41
583	90	15659	1167	47402	1145	2792	164	403	145	17820	587	27	,	808	39
585	90	14975	1147	51913	1193	2689	167	403	151	17468	594	37	7	766	38
587	90	15505	1166	53182	1201	2754	162	324	144	18879	633	49	, 8	902	43
589	90	14785	1144	49861	1166	2880	165	515	160	17887	602	36	7	941	43
591	90	16882	1196	49506	1166	3043	168	252	137	19230	631	36	7	786	39
593	90	16038	1191	54136	1220	2920	168	445	157	18983	618	34	7	784	39
595	90	14509	1140	57382	1226	2520	158	474	156	17040	594	34	7	981	44
597	90	16493	1179	38734	1050	3281	173	405	156	20541	656	46	8	443	30
599	90	18243	1264	54454	1241	3429	181	294	144	21884	676	47	8	754	39
603	90	18351	1278	83060	1480	2687	163	399	165	20731	699	48	9	1129	50
605	90	17393	1251	80740	1457	2516	161	591	185	20791	699	46	9	1210	50
607	90	16196	1183	68951	1333	2/06	152	586	105	20200	7/3	57	10	1210	55
609	90	16635	1202	66081	1318	2606	152	575	182	19839	682	47	8	1007	47
611	90	17677	1219	57363	1241	2872	164	440	163	20063	674	38	8	826	42
613	90	17530	1231	63507	1305	2910	166	339	151	19697	657	47	8	1040	46
615	90	18169	1224	47911	1149	3075	170	394	164	21965	715	45	8	771	42
617	90	17865	1230	55516	1230	3003	168	587	182	20481	687	41	8	748	41
619	90	18496	1234	45153	1124	3308	173	558	181	22818	728	49	8	502	34
621	90	18359	1236	42184	1097	3486	179	429	159	21307	667	44	8	440	30
623	90	19570	1265	47050	1149	3207	174	748	186	20542	652	35	7	547	33
625	90	18418	1240	49903	1176	3191	172	428	157	19671	638	41	7	612	35
627	90	19377	1222	43740	1086	3019	162	357	155	18567	652	53	9	429	31
629	90	18291	1211	43599	1095	3063	166	501	167	19083	648	52	8	365	29
631	90	18592	1244	43348	1111	3227	174	510	164	20656	650	43	7	340	27
633	90	20660	1290	44651	1126	3403	177	507	167	21164	669	52	8	387	29
635	90	18916	1251	47535	1153	3181	172	431	164	21973	701	53	9	572	35
637	90	19111	1256	47187	1151	3071	171	535	169	20609	660	40	7	626	36
639	90	15762	1178	52319	1198	2948	169	446	153	18394	609	45	8	805	39
641	90	17058	1203	46985	1143	3213	173	395	147	18751	612	44	8	723	37
643	90	17965	1228	44765	1125	3264	174	370	143	18822	602	41	7	658	35
645	90	17196	1218	59148	1263	3054	169	304	144	18592	622	35	7	888	42
647	90	17972	1235	55267	1230	3084	171	441	159	19542	642	45	8	760	39
649	90	17869	1222	46986	1143	3345	175	506	163	20491	657	49	8	587	35
651	90	16130	1179	51960	1188	2881	165	360	153	20461	677	46	8	896	44
653	90	16160	1189	54484	1218	2913	166	440	160	19714	651	52	8	865	42
655	90	17230	1193	35166	1008	3420	175	443	157	19585	636	42	7	494	32
657	90	15146	1139	45421	1113	2876	163	352	163	21777	726	52	9	693	40
659	90	16766	1205	48326	1163	3049	172	448	159	20124	635	44	8	684	36
661	90	18421	1260	58877	1274	3087	171	602	172	19661	639	46	8	747	39

Tab. A2 (Forts.): Sedimentologische Laborergebnisse der KEO I Bohrung (Daten in 2cm Abständen)
Tiefe [cm]	Messz eit [sec]	K [ppm]	K Fehler [ppm]	Ca [ppm]	Ca Fehler [ppm]	Ti [ppm]	Ti Fehler [ppm]	Mn [ppm]	Mn Fehler [ppm]	Fe [ppm]	Fe Fehler [ppm]	Rb [ppm]	Rb Fehler [ppm]	Sr [ppm]	Sr Fehler [ppm]
663	90	16651	1220	67518	1345	2781	165	457	160	19415	643	51	8	891	42
665	90	19589	1282	47498	1165	3450	181	369	146	20445	631	44	7	463	30
667	90	18897	1257	50336	1186	3059	171	425	157	20671	655	41	7	659	36
669	90	19182	1272	56934	1254	2727	166	582	175	20290	658	49	8	916	43
671	90	18368	1252	57229	1254	2739	165	659	176	20328	646	47	8	872	41
673	90	17156	1211	52473	1200	2733	163	531	164	18931	624	45	8	909	42
675	90	19874	1271	38183	1055	3197	173	659	184	23163	706	44	8	392	29
677	90	19100	1256	47298	1151	3206	173	420	159	22091	688	47	8	705	38
679	90	18232	1221	32686	983	3314	175	424	158	22735	690	49	8	461	31
681	90	17756	1243	72808	1385	2674	163	590	180	19175	664	38	8	1548	58
683	90	18202	1247	71068	1367	2884	165	386	156	18252	636	46	8	1541	56
685	90	17312	1252	85155	1492	2640	162	439	167	19422	671	49	9	1693	60
687	90	20039	1288	54779	1232	3009	170	480	168	21725	691	49	8	941	44
689	90	17490	1225	49493	1176	3107	171	562	175	22270	699	43	8	729	39
691	90	19462	1275	39764	1080	3292	178	661	193	25401	764	58	9	654	38
693	90	24632	1377	17800	793	3779	187	829	221	32434	905	74	10	274	27
695	90	21265	1290	34304	1003	3274	173	674	186	23228	707	43	8	610	36
697	90	14102	1190	105665	1632	2149	152	626	185	16223	621	39	8	1597	59
699	90	19015	1305	73460	1419	2955	173	735	199	23749	738	51	9	1310	53

Tiefe	Mag. Suszept.
[cm]	[SI]
25	-
35	-
45	-
115	-
125	-
135	-
145	-
155	-
165	-
201	10
202	9
203	9
205	11
206	11
207	13
208	14
209	12
210	13
211	12
212	14
214	15
215	14
216	14
217	13
218	15
219	12
220	13
221	19
223	15
224	12
225	14
226	13
227	12
228	10
229	10
231	9
232	11
233	12
234	11
235	11
236	10
237	12
238	10
239	12
241	11
242	13
243	13
244	5
245	12
246	14
247	14
240	14
250	10
251	14

	Mag. Suszept.		Ti [c
	12		3
	14		3
	15		3
	13		3
	13		3
	12		3
	13		3
	12		3
	11		3
	13		3
	14		2
_	10		2
_	13		3
	14		3
	14		3
	12		3
	13		3
	13		3
	15		3
	13		3
	12		3
	14		3
	13		3
	14		3
	14		3
	13		3
	12		3
	12		3
	12		3
	12		3
	11		3
	12		3
	12		2
_	10		2
_	10		3
_	13		3
_	14		3
_	15		3
	14		3
	1/		3
	12		3
	11		3
	10		3
	11		3
	9		3
	11		3
	9		3
	9		3
	9		3
	3		3
	4		3
	9		3
	7		3
	9		3
	8		3
	7		3
	7		3
	10		3
	10		3
	10		3
	9		3
	11		3
	10		3
	10	1	3

Tiefe	Mag.	
[cm]	Suszept.	
313	8	
314	7	
315	7	
316	9	
317	9	
318	8	
319	10	
320	11	
321	7	
322	9	
323	9	
324	10	
325	10	
326	10	
327	11	
328	11	
329	10	
330	11	
331	10	
332	12	
333	11	
334	12	
335	13	
336	13	
337	12	
338	12	
339	13	
340	10	
341	11	
342	11	
343	8	
344	10	
345	10	
346	10	
347	9	
348	11	
349	10	
350	10	
351	11	
352	11	
353	11	
354	13	
300	12	
300	12	
250	12	
350	12	
360	10 Q	
361	9	
362	8	
363	10	
364	9	
365	9	
366	9	
367	9	
368	6	
369	8	
370	10	
371	9	
372	11	
373	10	

Tiefe [cm]	Mag. Suszept. [SI]
374	10
375	9
376	9
377	10
378	10
379	7
380	7
381	10
382	10
383	10
384	9
385	10
386	11
387	14
388	12
389	13
390	13
391	12
392	10
393	11
394	8
305	11
395	11
207	10
200	12
390	10
399	14
400	/
401	10
402	9
403	13
404	12
405	11
406	12
407	18
408	18
409	22
410	31
411	33
412	34
413	21
414	12
415	12
416	12
417	12
418	14
419	14
420	15
421	15
422	16
423	14
424	11
425	11
426	14
427	13
428	13
429	11
430	9
431	8
432	8
433	8
434	9
	-

Tiefe [cm]	Mag. Suszept.
435	6
436	10
437	10
438	9
439	11
440	11
441	8
442	8
443	8
444	10
445	10
446	7
447	7
448	10
449	10
450	12
451	12
452	14
453	12
454	9
400	7
450	7
458	9
459	9
460	7
461	8
462	9
463	10
464	11
465	11
466	17
467	16
468	12
469	11
470	13
471	13
472	11
473	11
474	12
4/5	9
4/0	0
477	8
470	4
480	6
481	10
482	8
483	7
484	5
485	10
486	11
487	15
488	8
489	11
490	10
491	11
492	9
493	12
494	13
495	11

Tiefe [cm]	Mag. Suszept. [SI]	
496	7	
497	9	
498	12	
499	14	
500	10	
501	11	
502	11	
503	10	
504	9	
505	11	
506	10	
507	8	
508	8	
509	9	
510	10	
511	10	
512	9	
513	8	
514	10	
515	11	
516	12	
517	13	
518	13	
519	13	
520	16	
521	7	
522	13	
523	15	
524	13	
525	15	
526	13	
527	13	
528	11	
529	15	
530	15	
531	14	
532	11	
533	15	
534	17	
535	14	
536	15	
537	15	
538	16	
539	16	
540	15	

Tab. A3 (Forts.): Sedimentologische Laborergebnisse der K	(EO I Bohrung (Daten in 1cm Abständen)
---	--

Mag. Suszept. [SI]

Tiefe [cm]

Tiefe [cm]	Mag. Suszept. [SI]
586	10
587	11
588	16
589	8
590	8
591	9
592	12
593	12
594	10
595	10
596	9
597	10
598	10
599	6
600	22
601	8
602	10
603	13
604	11
605	10
606	9
607	5
600	9
610	10
611	8
612	7
613	7 9
614	0 0
615	9
616	8
617	9
618	11
619	10
620	11
621	4
622	11
623	11
624	11
625	12
626	13
627	15
628	12
629	12
630	11

Tiefe [cm]	Mag. Suszept. [SI]
631	11
632	10
633	10
634	11
635	10
636	9
637	10
638	8
639	10
640	9
641	8
642	10
643	10
644	11
645	9
646	10
647	11
648	10
649	11
650	9
651	11
652	10
653	11
654	10
655	9
656	9
657	11
658	8
659	10
660	11
661	13
662	10
663	10
664	8
665	10
666	10
667	10
668	10
669	10
670	9
671	9
672	11
673	11
674	10
675	12

Mag. Suszept. [SI] 676 11 677 12 678 12 679 10 680 11 681 12 682 11 683 12 684 12 685 11 686 10 687 12 688 11 689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8		
676 11 677 12 678 12 679 10 680 11 681 12 682 11 683 12 684 12 685 11 686 10 687 12 688 11 689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	Tiefe [cm]	Mag. Suszept. [SI]
677 12 678 12 679 10 680 11 681 12 682 11 683 12 684 12 685 11 686 10 687 12 688 11 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	676	11
678 12 679 10 680 11 681 12 682 11 683 12 684 12 685 11 686 10 687 12 688 11 689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	677	12
679 10 680 11 681 12 682 11 683 12 684 12 685 11 686 10 687 12 688 11 689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	678	12
680 11 681 12 682 11 683 12 684 12 685 11 686 10 687 12 688 11 689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	679	10
681 12 682 11 683 12 684 12 685 11 686 10 687 12 688 11 689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	680	11
682 11 683 12 684 12 685 11 686 10 687 12 688 11 689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	681	12
683 12 684 12 685 11 686 10 687 12 688 11 689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	682	11
684 12 685 11 686 10 687 12 688 11 689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	683	12
685 11 686 10 687 12 688 11 689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	684	12
686 10 687 12 688 11 689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	685	11
687 12 688 11 689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	686	10
688 11 689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	687	12
689 10 690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	688	11
690 11 691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	689	10
691 11 692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	690	11
692 13 693 12 694 13 695 11 696 2 697 11 698 7 699 8	691	11
693 12 694 13 695 11 696 2 697 11 698 7 699 8	692	13
694 13 695 11 696 2 697 11 698 7 699 8	693	12
695 11 696 2 697 11 698 7 699 8	694	13
696 2 697 11 698 7 699 8	695	11
697 11 698 7 699 8	696	2
698 7 699 8	697	11
699 8	698	7
	699	8

							elektr.	Korngrößenanalyse				
Tiefe [cm]	N [%]	C [%]	S [%]	CaCO₃ [%]	тос [%]	TOC/N	Leitf. [mS]	Mittelwert [µm]	St.Abw.	Ton <2μm [%]	Schluff <63µm [%]	Sand <2000µm [%]
5	0,08	3,79	0,05	27,00	0,95	11,76	0,34	15,1	33,1	34,7	57,9	7,4
10	0,08	3,91	0,06	28,59	0,82	10,95	0,26	13,7	30,6	35,6	58,1	6,4
15	0,07	3,98	0,04	29,00	0,86	13,01	0,23	12,0	27,1	36,6	58,2	5,2
20	0,06	4,30	0,02	31,30	0,93	15,19	0,22	10,3	22,7	36,8	59,5	3,7
25	0,06	4,34	0,00	31,41	0,98	15,85	0,25	8,0	17,0	38,3	59,3	2,4
30	0,00	4,32	0,02	32.08	0.70	17,41	0,20	83	18.4	38.2	59.5	2,5
40	0.06	3.05	0.00	22.67	0.57	9,99	0,18	10.3	19.0	32.6	64.4	3.1
45	0,06	2,67	0,06	19,50	0,57	9,57	0,23	9,7	19,1	33,4	64,0	2,6
50	0,06	4,28	0,03	31,27	0,91	15,44	0,21	9,4	17,2	35,1	62,5	2,4
55	0,06	4,04	0,05	29,37	0,88	14,71	0,21	10,1	20,9	35,5	61,5	3,0
60	0,06	4,29	0,06	31,03	0,97	16,51	0,20	11,6	22,9	34,3	61,9	3,8
65	0,05	3,01	0,04	21,89	0,66	12,14	0,21	12,7	23,9	29,5	66,7	3,8
70	0,05	4,49	0,00	33,89	0,72	15,42	0,19	27,9	51,0	33,9	50,8	15,3
75	0,06	4,08	0,05	30,99	0,63	11,40	0,23	11,8	22,8	34,6	61,3	4,1
80	0,06	4,86	0,01	34,67	1,20	18,76	0,22	13,6	24,8	31,6	63,4	5,1
85	0,07	3,05	0,08	20,95	0,92	13,98	0,23	11,5	28.4	27,9	69,3	2,8
90	0,00	6.05	0,01	43 75	1,02	10,97	0,21	13,2	28,4	31,5	60.2	5.8
106	0.07	4.51	0.00	30.41	1,50	20.74	0.24	16.5	30.7	27.3	66.2	6.5
110	0,07	4,92	0,00	34,00	1,44	20,63	0,24	19,8	48,7	27,2	66,7	6,1
115	0,07	5,35	0,01	37,85	1,38	21,27	0,22	16,1	26,4	24,6	69,5	5,9
120	0,07	5,26	0,00	36,93	1,42	19,16	0,22	30,3	73,9	24,1	66,2	9,7
125	0,07	5,41	0,01	38,73	1,31	19,88	0,20	20,5	57,3	26,6	68,1	5,4
131	0,08	2,75	0,04	15,50	1,53	19,16	0,24	10,4	22,6	31,7	65,6	2,8
136	0,07	6,48	0,00	46,28	1,59	22,65	0,19	22,6	63,4	28,8	64,6	6,6
140	0,08	5,30	0,00	34,87	1,91	23,31	0,23	21,4	49,9	26,8	66,8	6,4
144	0,06	5,81	0,00	43,16	1,08	19,70	0,19	36,7	88,2	32,6	52,7	14,6
150	0,06	4,84	0,00	34,80	1,15	18,20	0,21	20,7	39,3	29,5	61,2 F0.1	9,3
155	0,00	3 24	0,00	21 37	1,40	17 57	0,22	33.2	88.8	28.0	61.7	10.2
165	0.06	5,44	0.01	39.39	1,10	19.78	0,20	30.7	64.3	30.4	56.4	13.2
170	0,07	5,91	0,00	40,79	1,74	24,92	0,20	32,9	77,0	31,5	57,2	11,3
175	0,07	5,10	0,03	34,59	1,63	22,98	0,19	54,5	130,2	28,3	56,1	15,6
180	0,07	4,82	0,00	32,40	1,61	22,30	0,18	35,7	89,9	22,8	65,3	11,9
186	0,07	4,86	0,00	33,87	1,37	20,08	0,16	48,5	99,0	18,4	62,6	19,0
190	0,07	4,58	0,00	31,04	1,46	20,05	0,18	19,8	34,7	25,4	65,5	9,1
195	0,07	5,15	0,00	36,22	1,38	19,47	0,18	53,4	125,8	26,5	56,5	17,0
205	0,04	2,90	0,00	20,06	0,85	22,24	0,13	57,9	115,5	22,7	54,7	22,6
210	0,04	2 83	0,00	21,74	0,98	14 36	0,13	39.3	90,1 83.4	22,7	60.9	10,4
220	0,03	2,16	0,00	14,98	0,62	20,62	0,11	89,5	145,4	16,5	49,4	34,1
225	0,03	1,94	0,00	13,59	0,54	17,89	0,11	81,6	121,4	15,5	49,5	35,1
230	0,02	1,36	0,00	11,02	0,07	3,21	0,09	102,2	131,5	12,7	41,2	46,1
236	0,04	1,89	0,00	12,93	0,58	16,16	0,12	71,6	126,3	18,1	54,3	27,6
240	0,04	1,62	0,00	10,87	0,54	13,27	0,12	45,2	92,2	22,0	58,9	19,1
245	0,04	1,88	0,00	12,49	0,66	16,10	0,13	26,9	67,1	26,2	63,9	9,9
250	0,05	1,81	0,00	12,04	0,63	12,82	0,13	30,8	64,9	22,9	64,3	12,8
255	0,05	1,5/	0,00	10,39	0,56	12,09 9.16	0,13	24,8	57,4	25,3	64,8 48 2	9,9
262	0,03	1 10	0.00	0,35 7 <u>4</u> 0	0,25	11 55	0,11	90,8 80.4	127 7	18.2	40,2 50 1	34,0
270	0.04	1.42	0.00	8.71	0.64	15.25	0.01	50.9	100.3	20.5	57.5	22.0
275	0,05	1,79	0,00	11,45	0,72	14,16	0,14	26,7	63,3	25,9	63,8	10,3
280	0,05	1,84	0,00	12,08	0,67	13,87	0,14	27,2	58,4	24,6	64,1	11,3
285	0,05	1,60	0,04	10,31	0,63	13,92	0,14	39,4	79,3	23,4	59,6	17,0
290	0,05	1,54	0,15	9,65	0,66	13,20	0,15	36,2	66,6	19,8	63,6	16,6
295	0,05	1,50	0,29	9,32	0,66	12,14	0,17	39,9	84,5	20,3	63,9	15,8
305	0,06	1,60	0,05	11,26	0,43	7,00	0,15	21,8	37,9	23,1	66,8	10,1
310	0,05	1,46	0,01	10,46	0,36	7,19	0,15	25,7	50,2	23,4	64,3	12,3

							elektr.	elektr.				
Tiefe [cm]	N [%]	C [%]	S [%]	CaCO₃ [%]	тос [%]	TOC/N	Leitf. [mS]	Mittelwert [µm]	St.Abw.	Ton <2μm [%]	Schluff <63µm [%]	Sand <2000µm [%]
315	0,05	1,38	0,05	9,57	0,40	7,83	0,15	36,7	79,9	22,2	62,2	15,7
321	0,02	0,68	0,07	6,16	-0,11	-4,64	0,10	126,7	162,2	14,5	37,7	47,8
325	0,05	1,23	0,07	9,43	0,17	3,52	0,13	60,8	112,0	21,5	54,4	24,1
330	0,06	1,38	0,04	9,62	0,38	6,80	0,15	26,1	63,3	26,2	63,3	10,5
335	0,06	1,64	0,00	11,37	0,48	8,65	0,15	29,1	53,3	23,0	62,1	14,9
340	0,06	1,84	0,00	13,37	0,41	7,20	0,16	19,1	35,8	24,9	66,6	8,5
345	0,06	1,55	0,02	10,89	0,42	7,42	0,15	22,0	41,0	24,2	65,3	10,5
350	0,06	1,47	0,14	10,18	0,42	7,66	0,16	38,0	78,3	23,0	59,6	17,3
355	0,02	0,69	0,10	5,30	0,09	3,87	0,10	100,3	142.2	12.2	20,7	02,3 E6 7
365	0,02	0,09	0,04	3,99 4 55	-0,05	7.45	0,12	163.2	142,2	10.0	26.3	50,7 63.6
369	0,02	0,03	0,10	4.65	-0.73	-38 54	0,10	195.6	165.3	8.1	20,3	70.6
375	0.05	1 33	0.04	9 1 9	0.39	7 22	0.18	40.3	89.9	24.5	59.6	15.9
380	0.04	1,05	0.42	7.34	0.31	7.30	0.16	95.7	139.5	18.3	43.7	38.0
384	0.04	0.90	0.37	6.28	0.25	5.91	0.20	122.9	186.1	17.4	42.9	39.7
390	0,05	0,95	0,27	6,16	0,36	7,26	0,21	49,4	93,3	18,8	58,0	23,2
395	0,05	0,91	0,34	5,57	0,42	8,48	0,22	57,1	98,8	18,9	54,0	27,1
405	0,04	1,79	0,00	11,51	0,70	16,69	0,16	73,8	124,9	19,7	50,0	30,3
410	0,05	1,09	0,22	6,08	0,63	13,32	0,13	71,4	123,4	18,6	50,9	30,5
415	0,05	1,50	0,13	9,61	0,59	12,24	0,16	40,1	83,6	23,0	59,2	17,9
420	0,05	1,50	0,16	9,35	0,64	13,95	0,13	55,4	103,6	21,3	54,7	24,0
426	0,04	1,02	0,00	5,32	0,66	17,85	0,11	99,0	128,4	14,5	38,9	46,6
430	0,02	0,69	0,08	4,96	0,16	7,12	0,10	172,1	196,5	11,5	27,3	61,3
435	0,03	1,04	0,18	6,96	0,35	10,29	0,11	106,2	139,0	14,4	41,1	44,5
440	0,05	1,79	0,16	11,64	0,68	15,16	0,13	69,8	128,7	22,1	51,4	26,5
445	0,05	1,52	0,15	10,01	0,55	11,04	0,14	35,0	77,9	23,2	62,4	14,4
450	0,05	1,19	0,17	7,59	0,48	9,74	0,15	31,4	60,1	21,8	63,2	15,0
455	0,05	1,20	0,15	7,70	0,47	9,31	0,13	37,2	81,0	23,9	60,7	15,4
461	0,02	0,56	0,00	3,37	0,27	11,61	0,08	199,6	171,7	8,0	20,8	71,2
465	0,05	1,89	0,00	12,48	0,68	14,44	0,12	57,4	108,5	20,7	55,8	23,6
470	0,05	1,90	0,00	12,16	0,76	15,80	0,12	52,9	97,3	20,7	55,1	24,2
475	0,04	1,72	0,08	0.27	0,66	14,89	0,12	75,0	129,0	19,5	49,1	31,4
485	0,04	1,40	0,00	0,37 10.17	0,08	10,27	0,12	66.0	116.8	19.6	44,4 52.4	28.0
490	0.04	1,52	0,00	6 15	0,51	18 71	0.12	74.6	108.9	17.0	48.0	35.0
495	0.05	1 30	0.00	8 20	0.54	11 51	0.18	36.5	77 5	23.3	60.4	16.3
505	0.05	1.49	0.07	10.10	0.48	10.13	0.16	75.1	122.7	20.6	49.2	30.2
510	0,05	1,42	0,26	11,00	0,18	3,70	0,17	91,2	144,3	18,7	46,1	35,2
515	0,04	1,04	0,21	7,75	0,19	5,41	0,14	164,2	229,1	14,8	35,2	50,1
520	0,02	0,53	0,23	4,91	-0,10	-5,32	0,11	225,8	240,3	9,0	19,9	71,1
525	0,02	0,47	0,13	4,94	-0,21	-13,67	0,09	203,9	160,9	6,7	15,8	77,5
530	0,02	0,51	0,15	3,92	0,07	4,94	0,08	220,1	196,2	7,3	17,7	75,0
535	0,05	1,32	0,15	7,91	0,64	12,80	0,14	89,2	135,2	18,9	45,0	36,1
540	0,04	1,43	0,19	10,05	0,38	9,18	0,13	94,4	139,1	18,4	45,1	36,5
545	0,04	1,34	0,25	9,70	0,30	7,38	0,14	102,5	164,8	19,9	44,2	35,9
550	0,04	1,38	0,19	10,42	0,22	5,81	0,13	87,5	119,7	17,9	43,3	38,8
554	0,04	1,19	0,23	8,09	0,38	10,57	0,13	124,2	168,2	14,6	38,5	46,8
559	0,03	0,70	0,28	4,76	0,22	8,03	0,10	158,8	140,4	9,7	24,2	66,1
563	0,06	1,71	0,31	11,98	0,47	/,98	0,16	55,3	107,1	21,4	56,6	22,0
568	0,05	1,65	0,11	12,06	0,34	6,38	0,16	67,8	108,6	19,5	50,4	30,1
573	0,05	1,53	0,53	10,19	0,53	10,31	0,16	85,9	132,0	16,5	48,1	35,4
580	0,07	1,29	0,17	8,35	0,49	7,43	0,23	29,7	05,6	22,9	64,5	12,6
585	0,06	2,01	0.07	10.60	0,54	8,79 8,00	0,22	30,U	/5,/ 50.1	22,0	62,5	15,5
595	0,00	1,50	0.08	10,00	0,48	8,29	0,21	21.8	49.6	22.9	69.1	8,0

Tiefe	Messz	к	к	Ca	Ca	Ti	Ti	Mn	Mn	Fe	Fe	Rb	Rb	Sr	Sr
[cm]	eit	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler
	[sec]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]
3	90	13681	1070	65774	1245	1528	124	639	246	29077	1010	68	12	1593	72
5	90	15829	1148	74473	1335	1573	129	453	211	26381	912	61	11	1557	67
7	90	15651	1153	78543	1373	1601	130	861	266	29232	987	61	11	1689	72
9	90	15001	1127	75569	1340	1646	130	710	249	28012	978	63	11	1734	74
11	90	14218	1101	73724	1321	1579	127	733	247	26940	960	53	11	1628	72
13	90	14941	1128	76788	1351	1583	129	638	239	28422	987	62	11	1655	72
15	90	14306	1095	70882	1292	1407	122	787	249	25379	925	59	11	1509	69
17	90	14806	1126	77124	1355	1533	128	568	235	26820	957	61	11	1695	73
19	90	14786	1120	74826	1334	1659	129	615	237	27026	966	62	11	1628	72
21	90	13478	1089	76052	1342	1553	127	529	221	25191	907	62	11	1626	70
23	90	16332	1188	83967	1429	1785	137	698	229	25223	873	62	11	1586	67
25	90	18203	1267	95873	1543	2035	148	624	216	24932	849	50	10	1512	64
27	90	17574	1252	96969	1550	1860	145	738	226	24323	838	56	10	1555	64
29	90	17005	1221	91694	1497	1879	142	352	193	24994	881	52	10	1615	68
31	90	19543	1323	108944	1651	1946	149	509	203	24986	856	59	10	1487	64
33	90	19630	1320	109046	1647	1837	144	541	208	23717	840	62	11	1550	65
35	90	16982	1224	93575	1512	1857	141	439	190	22650	801	46	9	1403	61
37	90	18081	1261	97457	1551	1894	144	888	245	23893	851	56	10	1409	63
39	90	20440	1343	106233	1638	2175	154	475	199	24707	842	54	10	1401	61
41	90	18659	1249	75125	1377	2128	148	520	207	27906	903	62	10	1117	55
43	90	16768	1157	54804	1171	1993	139	495	215	27820	937	55	10	944	53
45	90	21928	1332	65866	1318	2615	162	441	187	27251	847	52	9	932	48
47	90	21048	1312	68646	1339	2524	159	517	204	27031	872	58	10	1038	52
49	90	17948	1229	77152	1387	2373	151	469	198	23709	847	59	10	1146	57
51	90	19902	1317	108612	1637	2155	151	611	213	21229	791	53	10	1344	60
53	90	18300	1308	127119	1763	1836	147	693	217	19342	757	46	9	1260	59
55	90	1967/	133/	121597	1732	2140	153	535	193	19032	730	51	9	923	19
57	90	18096	128/	106/95	1628	2140	154	650	219	22670	819	61	10	1044	54
59	90	18386	1265	97932	1551	2030	1/8	364	182	22070	800	50	10	881	50
61	90	10226	1205	100710	1646	2030	152	507	102	120/2	714	16	10	1024	50
62	90	10709	1282	20207	1/20	2220	152	572	205	22610	709	54	10	057	50
65	90	20265	1202	70775	1425	2350	155	200	191	22013	790	56	10	012	18
67	00	20303	1246	06057	1560	2550	162	452	176	22550	705	45	0	1022	40
60	90	16022	1340	117669	1715	1702	103	433	200	21009	724	43	0 0	1621	49 64
71	30	12010	1000	97100	1/13	1/03	147	274	162	14521	655	37	0	1031	E2
71	90	13010	1088	8/100	1428	1418	125	274	103	14531	700	47	9	1026	25
73	90	21442	1325	56093	1238	2914	169	431	178	20003	796	53	9	561	30
75	90	19280	1290	120046	1455	2517	159	470	179	22199	741	50	9	1282	54
70	90	20088	1345	141047	1/32	2310	150	404	175	16020	695	51	9	1325	5/
79	90	191/0	1350	121020	1704	1903	151	464	162	10700	100/	40	9	1289	55
82	90	19420	1301	100044	1/94	2032	150	2/0	102	10700	732	50	9	333	52
83	90	18436	1298	109844	1655	2203	153	248	156	19706	/0/	46	8	630	39
85	90	20171	1320	83315	1471	2578	162	520	193	25724	822	55	9	628	40
87	90	21337	1344	/3368	1398	2/27	166	638	198	25462	/88	53	9	626	38
89	90	18577	1333	133550	1818	2221	157	470	191	20228	/56	50	9	1128	54
91	90	1/218	1310	145527	1883	1881	149	402	176	1/227	686	39	8	944	49
93	90	16370	1338	177431	2077	1662	148	359	169	15135	639	35	8	1496	61
95	90	14409	1260	170433	2002	1329	137	381	170	12481	599	35	8	1041	52
97	90	18156	1328	129074	1798	2069	157	612	196	20214	724	45	8	915	47
99	90	17061	1234	84268	1459	2318	155	489	191	22996	785	53	9	1213	55
101	90	7966	1023	136216	1743	691	111	319	179	10930	624	25	9	3413	103
103	90	13935	1219	134754	1806	1549	140	481	180	17208	675	37	8	2103	71
105	90	18122	1289	109164	1649	2161	153	551	187	19509	705	54	9	1395	57
107	90	19417	1306	94394	1549	2235	156	381	168	21086	726	51	9	828	44
109	90	18570	1343	142732	1876	1895	151	486	184	18096	693	39	8	1069	51
111	90	16746	1270	129377	1769	1798	144	392	177	17819	698	39	8	958	49
113	90	17467	1303	130828	1796	1874	150	535	186	18915	705	47	9	988	49

Tiefe	Messz	к	к	Ca	Ca	Ti	Ti	Mn	Mn	Fe	Fe	Rb	Rb	Sr	Sr
[cm]	eit	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler
	[sec]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]
															-
115	90	18828	1374	160809	1990	1822	152	399	175	17717	693	51	9	1535	62
117	90	17307	1321	147373	1901	1919	151	394	177	17754	696	41	9	1660	64
119	90	18024	1323	137186	1838	1989	152	291	160	17801	683	43	8	1194	54
121	90	16232	1293	150976	1912	1828	148	331	167	17206	696	41	9	1014	52
123	90	16953	1329	164524	1997	1901	151	580	194	15941	663	44	9	946	49
125	90	17177	1324	159426	1963	1773	148	477	182	16111	659	35	8	769	44
127	90	17782	1322	144880	1881	1945	150	354	167	17046	682	45	9	699	43
129	90	15843	1282	138370	1849	2036	153	330	170	19850	737	40	8	727	44
131	90	19191	1305	74089	1409	2757	168	410	174	26526	796	52	9	600	37
133	90	20010	1338	106241	1642	2169	154	563	202	23460	800	48	9	829	46
135	90	15575	1298	174216	2033	1406	141	349	165	13351	610	37	8	1078	53
137	90	16272	1349	197334	2171	1593	145	371	167	12626	590	48	9	1160	54
139	90	17876	1324	124208	1775	2062	155	506	183	20631	716	38	8	1269	54
141	90	17546	1344	151520	1941	1955	156	400	175	18891	710	41	9	1817	67
143	90	14041	1220	145001	1854	1477	136	371	167	14112	621	32	8	2212	74
145	90	15316	1257	140956	1846	1679	142	561	192	16274	662	40	9	2556	79
147	90	15887	1273	132788	1810	1772	147	430	172	17503	658	35	8	1865	65
147	90	16725	1294	134892	1824	1987	152	485	179	16794	655	49	9	1908	67
149	90	17413	1288	116644	1705	2174	155	424	174	18668	696	43	8	1434	58
151	90	16512	1287	138686	1841	1904	148	572	191	16457	653	53	9	1231	54
153	90	16932	1295	140694	1851	1835	147	655	199	16025	655	51	9	978	49
155	90	17635	1318	137563	1844	1878	149	569	187	17954	676	41	8	818	44
157	90	16713	1291	133793	1815	1788	147	488	183	19084	708	46	9	860	46
159	90	17869	1309	127409	1777	2180	154	381	170	18498	692	47	9	849	46
161	90	22263	1357	78334	1430	2824	167	589	184	21669	710	56	9	811	42
163	90	21111	1332	74942	1404	2886	168	639	201	24152	776	57	9	961	48
165	90	16893	1295	141266	1853	1821	147	407	174	16009	649	43	9	1718	64
167	90	15746	1296	143593	1892	1723	149	357	168	19618	716	44	9	1193	54
169	90	16728	1336	163282	2005	1490	146	496	186	17336	682	44	9	1245	55
171	90	16332	1323	158004	1976	1609	147	655	205	17813	696	41	9	1641	64
173	90	16565	1308	150000	1915	1817	150	566	188	16301	656	39	8	2309	74
175	90	16365	1323	155123	1961	1709	151	591	184	17100	645	42	8	1015	48
177	90	18637	1355	131789	1832	2157	157	410	175	22177	753	39	8	756	43
177	90	18550	1353	130204	1823	1977	156	419	174	21758	737	46	8	723	41
179	90	18379	1353	140827	1881	1973	155	431	178	21106	741	39	8	787	44
181	90	17911	1334	138411	1858	1868	151	291	174	21867	792	43	9	858	48
183	90	18535	1345	131042	1819	2060	155	517	198	22883	801	48	9	868	48
185	90	16162	1309	147417	1914	1733	150	300	166	20827	754	51	9	981	50
187	90	16088	1284	136192	1834	2041	154	485	193	20283	753	50	9	1001	51
189	90	15859	1318	163901	2008	1789	151	575	202	19160	739	35	8	1090	54
189	90	15995	1318	162449	1997	1891	153	504	194	19208	742	47	9	1117	55
191	90	18581	1334	113360	1708	2181	159	446	194	25849	844	56	10	1261	57
193	90	16696	1319	127474	1813	1867	155	564	198	24961	809	45	9	1344	57
195	90	16619	1305	138740	1858	1849	152	436	185	20724	752	42	9	1457	61
197	90	15044	1282	145129	1901	1900	151	610	197	19553	710	42	8	1558	61
199	90	14800	1217	118612	1701	1622	141	476	184	17115	674	45	9	1874	67
201	90	15379	1128	68282	1281	1649	130	495	210	22329	838	50	10	1101	57
203	90	18699	1274	85857	1474	2141	151	398	175	23025	773	55	9	1039	50
205	90	20124	1319	87111	1498	2483	160	492	189	23406	783	64	10	1038	51
207	90	20823	1361	90571	1547	2620	167	509	188	25764	807	51	9	960	48
209	90	20230	1333	86467	1504	2413	160	593	205	26845	845	58	10	1034	51
209	90	20891	1348	87203	1511	2619	165	570	199	24994	805	61	10	1000	49
211	90	20452	1344	95795	1572	2433	162	294	166	23331	774	50	9	947	48
213	90	21936	1370	91439	1541	2480	162	528	188	24093	781	53	9	904	47
215	90	21133	1355	85949	1504	2642	166	479	181	23961	764	50	9	872	45
217	90	20217	1295	75639	1393	2362	154	518	185	21850	740	60	9	872	45

Tiefe	Messz	к	к	Ca	Ca	Ti	Ti	Mn	Mn	Fe	Fe	Rb	Rb	Sr	Sr
[cm]	eit	[ppm]	Fehler												
	[sec]		[ppm]												
219	90	18496	1224	68946	1313	2210	146	487	186	20863	740	58	10	915	48
219	90	18398	1217	66197	1287	2234	145	613	194	19975	708	55	9	850	45
221	90	18652	1250	76305	1388	2421	153	713	208	21233	738	58	9	924	47
223	90	17994	1223	70725	1334	2295	149	424	179	21292	742	57	9	846	46
225	90	16741	1179	61951	1251	2392	150	633	211	23715	814	62	10	904	49
227	90	18424	1208	56231	1197	2533	152	685	202	20005	710	59	9	741	42
229	90	18217	1176	49809	1120	2444	146	429	174	18674	679	59	9	740	42
231	90	18655	1196	51943	1146	2231	143	347	168	20856	734	66	10	785	44
233	90	18856	1206	54219	1171	2408	148	511	190	20614	734	59	9	785	44
235	90	18605	1197	53099	1157	2364	146	598	200	20415	732	62	10	809	45
237	90	20505	1254	44541	1091	2573	155	521	184	23746	756	60	9	712	41
239	90	21529	1291	42496	1081	2882	164	742	208	24576	771	62	9	682	40
241	90	20022	1218	37112	995	2881	158	533	184	21194	719	62	9	648	39
243	90	22566	1315	42570	1084	3159	169	709	204	25224	786	67	10	633	39
245	90	22261	1318	47918	1144	2851	165	648	200	25328	792	68	10	666	40
247	90	22686	1333	48748	1156	3100	170	473	175	24397	751	67	9	588	36
249	90	22486	1328	46552	1134	3190	171	559	186	24647	755	62	9	598	37
251	90	22154	1313	43263	1095	3205	172	580	191	26832	811	72	10	618	38
253	90	23581	1341	39271	1052	3368	174	456	175	25925	783	65	9	588	37
255	90	21910	1301	38064	1036	3289	172	517	185	26120	789	67	10	599	37
257	90	23471	1341	40370	1066	3191	172	454	180	26283	801	73	10	629	39
259	90	22587	1326	42639	1092	3137	170	587	198	27127	821	74	10	662	40
261	90	17854	1151	34770	955	2388	145	422	174	20461	713	53	9	633	39
263	90	19805	1214	35430	976	2812	157	504	189	23513	776	67	10	656	40
265	90	16998	1109	27864	859	2520	145	440	175	20004	708	61	9	575	37
267	90	20924	1247	33487	961	2799	159	558	190	23567	762	65	10	588	38
269	90	18895	1197	32977	950	2896	160	623	201	24230	785	61	9	596	38
271	90	21065	1246	32650	949	2923	161	529	187	23217	761	62	9	617	39
273	90	20776	1245	35563	985	2989	162	420	172	22173	723	65	9	554	36
275	90	24053	1364	45471	1127	2970	168	603	192	25046	768	68	10	612	37
277	90	22218	1320	48081	1146	3028	168	604	193	24589	762	54	9	559	36
279	90	21094	1282	44688	1103	2920	165	625	190	23526	744	60	9	578	36
281	90	20981	1290	47141	1135	2846	164	628	195	24416	761	63	9	627	38
283	90	20588	1286	44835	1115	2916	167	561	189	26664	800	53	9	618	38
285	90	21272	1284	42670	1081	3007	165	674	200	24790	772	63	9	611	38
287	90	21685	1287	41988	1070	3083	167	545	186	23497	748	66	9	634	38
289	90	18830	1203	38321	1015	2804	158	797	220	23973	793	62	10	618	40
291	90	20978	1271	40776	1056	2986	165	424	179	25578	796	62	9	590	38
293	90	21923	1287	39526	1041	3022	165	657	205	26254	826	72	10	561	38
295	90	22523	1308	39100	1041	3024	166	614	200	25778	804	59	9	519	36
297	90	20637	1262	38648	1031	2980	164	769	230	30067	918	64	10	581	40
299	90	23243	1323	38386	1035	3326	171	543	181	24247	749	59	9	522	34
301	90	23671	1338	33087	979	3310	173	619	199	27385	816	72	10	472	34
303	90	22207	1306	37867	1033	2961	166	565	187	24834	762	65	9	498	34
305	90	21337	1288	41614	1072	3082	168	349	165	25058	770	58	9	483	34
307	90	22664	1315	39154	1046	3301	172	721	202	25111	773	66	9	488	34
309	90	22004	1287	38269	1026	3102	166	506	185	23872	767	67	10	531	36
311	90	22300	1304	40346	1058	3216	169	463	179	24457	771	60	9	526	35
313	90	23945	1351	41712	1081	3147	171	323	163	25393	766	66	9	499	34
315	90	22009	1306	41783	1077	3306	173	550	177	22783	713	58	9	496	33
317	90	22923	1325	41928	1079	2848	164	566	184	23628	734	57	9	504	34
319	90	22542	1311	41714	1072	2966	164	478	164	21831	684	52	8	505	33
321	90	16095	1081	29981	879	2244	137	267	148	16634	630	54	9	586	37
323	90	17763	1131	29406	881	2251	140	360	159	18069	659	62	9	582	37
325	90	17526	1137	31723	916	2384	144	352	157	19623	671	50	8	550	35
327	90	19512	1208	34684	969	2601	152	510	180	22281	727	63	9	532	35

Tiefe	Messz	к	к	Ca	Ca	Ti	Ti	Mn	Mn	Fe	Fe	Rb	Rb	Sr	Sr
[cm]	eit	[ppm]	Fehler												
	[sec]		[ppm]												
329	90	23057	1334	37822	1040	3352	176	377	172	25935	786	63	9	546	36
331	90	23221	1329	36505	1020	3384	175	470	168	23306	715	65	9	477	32
333	90	21965	1296	37702	1028	3189	170	513	184	24914	770	69	10	525	35
335	90	21672	1302	46653	1129	3253	171	538	180	23121	724	66	9	543	35
337	90	21944	1312	51156	1176	3003	167	463	167	21954	697	60	9	539	34
339	90	22448	1322	47537	1140	3177	171	660	188	22373	708	59	9	507	33
341	90	24246	1379	53469	1213	3062	171	712	192	22727	702	53	8	472	32
343	90	23327	1346	44648	1116	3458	176	536	180	24189	743	70	9	510	34
345	90	22690	1324	43268	1095	3351	174	598	185	23584	735	60	9	507	34
347	90	23544	1345	39400	1058	3136	172	579	182	23531	722	69	9	505	33
349	90	22419	1315	39680	1056	3006	167	482	170	24224	730	61	9	527	34
351	90	20565	1239	38100	1012	2667	155	494	172	20486	685	59	9	543	35
353	90	15627	1054	27325	837	1862	125	456	170	16802	634	47	8	604	37
355	90	17125	1100	28446	859	2144	135	488	168	16003	607	49	8	647	38
357	90	17177	1098	28893	863	2217	135	440	160	14968	578	51	8	580	35
359	90	16260	1075	30027	875	2100	133	277	144	14769	580	48	8	644	37
361	90	16946	1102	33278	919	2024	132	647	186	15665	605	43	8	660	38
363	90	16260	1067	27215	835	1969	129	288	145	15531	603	57	9	636	38
365	90	16234	1045	22946	767	1822	122	440	170	14624	600	52	9	686	40
367	90	15131	1003	20864	729	1510	111	286	142	11904	532	61	9	648	38
369	90	14761	987	18608	692	1470	110	205	136	11587	542	44	8	640	39
371	90	19127	1184	36787	982	2381	145	398	161	18655	645	49	8	561	35
373	90	21295	1274	42403	1072	2984	163	831	203	20958	691	54	8	636	37
375	90	22365	1296	38239	1028	2943	163	451	170	21995	712	60	9	573	36
377	90	21817	1279	36008	999	3021	164	749	192	20421	665	62	9	561	34
379	90	20266	1231	38222	1012	2758	156	650	190	21326	706	56	9	644	38
381	90	14707	1020	27681	833	1882	125	589	179	14093	583	47	8	719	40
383	90	17845	1149	37031	979	2391	144	498	171	18507	657	56	9	631	38
385	90	19885	1234	39682	1037	2669	157	487	173	21767	697	62	9	529	34
387	90	21447	1265	29962	925	2960	164	509	175	22590	710	54	8	505	33
389	90	21792	1291	31524	955	3223	171	650	183	22372	694	52	8	466	31
391	90	20805	1260	28728	915	3162	168	674	192	23844	730	55	8	473	32
393	90	21709	1283	27617	903	3126	168	466	174	25615	769	55	9	453	32
395	90	21749	1277	26681	887	3075	167	598	182	23478	710	60	9	458	31
397	90	14894	1049	21337	763	2145	136	695	231	22753	843	58	10	510	40
401	90	15765	1087	43320	1030	2095	134	479	190	18785	735	59	10	730	45
403	90	17102	1156	53449	1155	2197	143	590	201	21257	758	58	10	697	42
405	90	18977	1219	58635	1218	2465	150	564	187	19932	704	57	9	638	39
407	90	19114	1209	51169	1142	2373	148	433	170	20539	699	50	8	591	37
409	90	19531	1205	34825	967	2766	155	584	198	24213	800	69	10	638	40
411	90	20433	1224	33036	948	2952	159	714	200	22428	728	65	9	532	35
413	90	21667	1273	33210	965	3068	164	547	192	25152	781	64	9	530	36
415	90	22624	1306	38824	1036	3267	170	513	183	24454	765	77	10	512	35
417	90	20266	1259	53911	1187	2764	158	527	188	22840	755	66	10	596	38
419	90	21151	1261	47360	1114	2782	156	448	170	20920	700	58	9	512	34
421	90	19608	1218	43282	1066	2745	155	644	200	22140	746	63	10	575	38
423	90	19916	1217	37566	1001	2833	157	487	181	22715	747	61	9	556	36
425	90	19948	1212	31958	935	2666	154	399	167	22270	722	60	9	529	35
427	90	18060	1138	32946	923	2207	138	527	180	19360	687	57	9	595	37
429	90	17741	1126	33285	924	2164	136	490	172	16767	635	54	9	679	39
431	90	15489	1056	30728	881	1929	128	485	173	16400	638	62	9	709	41
433	90	16930	1110	34892	942	1996	132	619	193	19102	698	58	9	708	41
435	90	16119	1081	29388	872	2063	134	586	192	20167	724	47	9	661	41
437	90	17654	1145	38370	993	2295	142	401	171	19860	702	56	9	652	39
439	90	19175	1203	46951	1097	2383	146	479	174	19572	681	56	9	681	39
441	90	21505	1294	55982	1212	2857	162	586	183	20845	700	61	9	731	40

Tiefe	Messz	к	к	Ca	Ca	Ti	Ti	Mn	Mn	Fe	Fe	Rb	Rb	Sr	Sr
[cm]	eit	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler	[ppm]	Fehler
	[sec]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]
443	90	21422	1301	55339	1213	2891	164	645	195	22520	729	64	9	649	38
445	90	22923	1326	40742	1067	3259	172	851	214	25098	772	72	10	523	35
447	90	21868	1298	38/31	1041	3144	169	740	207	25695	/82	68	10	550	36
449	90	22627	1304	35180	995	3328	1/1	745	212	26042	803	73	10	527	36
451	90	22145	1293	32704	966	3523	175	577	184	23320	728	65	9	468	32
453	90	22075	1294	33028	971	3438	174	842	205	22796	710	62	9	450	31
455	90	23167	1321	35895	1007	3449	1/4	4/1	180	25536	/83	59	9	539	36
457	90	21879	1289	35873	1004	3130	168	574	188	25222	778	59	9	539	36
459	90	21581	1205	36489	999	3007	102	208	184	22899	735	58	9	554	30
401	90	18/88	1156	20180	076	2290	142	308	150	10719	602	57	9	593	37
405	90	10249	1155	50600	370	2350	145	300	107	19/10	725	02 F0	9	015	30
405	90	19348	1234	55798	1198	2371	151	428	171	22280	735	58	9	706	40
407	90	22477	1232	62014	1224	2403	153	550	199	21010	733	65	10	700	41
403	90	21011	1201	61746	1267	2387	150	562	180	22230	680	58	10	652	20
471	90	19706	1231	50034	1139	2/13	150	512	195	20184	798	56	9	7//	/3
475	90	18695	1233	56400	1201	2421	150	504	178	24003	702	50	9	726	43
475	90	17306	11/6	44638	1062	2420	1/1	360	162	17765	650	57	9	720	41
479	90	16136	1092	355/19	9/9	2047	13/	331	160	18607	678	59	9	663	41
481	90	17426	1150	46897	1085	2027	137	368	164	18118	668	53	9	722	40
483	90	18499	1200	46123	1098	2648	154	677	200	22835	746	67	10	626	38
485	90	20780	1263	49346	1138	2962	163	590	190	22468	738	62	9	627	38
487	90	22398	1299	44647	1096	2804	160	593	192	23750	764	67	10	593	38
489	90	16491	1084	27781	849	2045	132	371	164	18162	668	51	9	545	36
491	90	18128	1181	40782	1036	2502	149	398	170	22380	740	64	9	548	36
493	90	22125	1308	44520	1105	3089	168	764	209	24565	771	59	9	524	35
495	90	22546	1314	39132	1047	3192	171	786	211	25154	784	70	10	480	34
497	90	21086	1254	38441	1019	2597	154	657	201	23384	766	59	9	516	36
499	90	21620	1297	45363	1113	3010	167	559	184	25159	765	65	9	556	36
501	90	15771	1103	43605	1045	2106	137	507	193	20276	745	51	9	621	40
503	90	19301	1213	47852	1111	2390	148	556	185	20023	696	54	9	610	38
505	90	20254	1241	45432	1094	2641	155	425	172	21274	714	60	9	582	37
507	90	19828	1233	46518	1105	2514	152	516	186	21599	734	56	9	624	39
509	90	20856	1265	44429	1092	2799	160	547	183	22444	726	56	9	554	36
511	90	18779	1189	42753	1051	2408	148	455	181	21600	744	58	9	637	40
513	90	16111	1104	38396	989	2183	139	449	173	18090	668	47	8	612	38
515	90	14156	1030	34553	927	1681	123	523	190	17641	696	48	9	648	41
517	90	13950	1005	29383	854	1747	122	366	165	15845	645	53	9	628	40
519	90	13004	960	22446	753	1597	116	334	158	14067	606	49	9	587	38
521	90	14056	999	25274	799	1767	122		209	15912	654	48	9	751	44
523	90	13137	975	28571	839	1578	116	378	166	13298	597	51	9	742	43
525	90	14282	1006	31992	881	1359	110	368	161	13326	584	53	9	719	42
527	90	13279	979	28528	838	1516	115	273	147	13789	583	51	9	643	39
529	90	13966	999	30261	862	1504	116	270	144	13433	574	49	8	694	40
531	90	14262	993	22915	762	1538	114	444	171	14063	597	47	8	613	38
533	90	19821	1207	34681	964	2609	150	509	174	19724	678	58	9	603	37
535	90	19599	1205	33025	947	2777	155	360	167	20791	710	56	9	579	37
537	90	17539	1174	52425	1153	2197	145	545	196	20674	743	57	9	688	42
539	90	17680	1190	55437	1190	2378	149	427	167	19742	685	47	8	709	40
541	90	17554	1162	47135	1094	2285	143	318	162	19550	696	61	9	649	39
543	90	19000	1191	43615	1058	2370	146	516	183	20119	707	55	9	667	40
545	90	19906	1232	51026	1146	2395	149	450	175	20123	701	61	9	782	43
547	90	18478	1183	44654	1071	2260	144	382	172	21322	728	63	9	797	43
549	90	19719	1225	47058	1106	2583	152	442	178	21054	721	62	9	734	42
551	90	17965	1176	47730	1103	2358	147	457	176	20622	716	56	9	790	43
553	90	17907	1158	45094	1066	2153	140	505	183	19303	699	63	10	770	43
555	90	14935	1077	42328	1029	1892	132	331	161	19036	695	52	9	611	39

Tiefe [cm]	Messz eit	K [ppm]	K Fehler	Ca [ppm]	Ca Fehler	Ti [ppm]	Ti Fehler	Mn [ppm]	Mn Fehler	Fe [ppm]	Fe Fehler	Rb [ppm]	Rb Fehler	Sr [ppm]	Sr Fehler
	[sec]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]		[ppm]
557	90	16928	1127	44811	1056	1940	132	-	217	18118	670	52	9	662	40
559	90	15379	1066	31925	903	2105	134	292	155	17679	657	48	8	575	37
561	90	18286	1175	37876	999	2446	149	492	174	20547	696	65	9	526	35
563	90	18673	1229	54521	1195	2786	159	295	159	23404	748	62	9	564	36
565	90	19756	1263	60501	1255	2596	156	552	195	25370	807	67	10	592	38
567	90	19600	1243	56256	1206	2542	154	592	186	21140	711	59	9	594	37
569	90	19285	1252	68258	1317	2471	154	487	170	19023	657	60	9	620	37
571	90	18474	1211	50962	1152	2343	149	539	196	24815	805	53	9	628	40
573	90	15842	1124	37794	1000	1967	139	282	168	25723	811	58	9	592	38
575	90	19782	1270	68683	1327	2648	159	675	198	20900	717	53	9	587	37
577	90	21400	1289	36735	1020	3273	172	662	193	24017	744	66	9	464	33
579	90	21586	1299	33323	985	3252	174	399	170	26246	779	60	9	448	32
581	90	22188	1315	37795	1038	3293	175	533	183	24875	754	66	9	480	33
583	90	20899	1306	52685	1200	2944	168	757	208	25361	781	64	9	552	36
585	90	21798	1322	59257	1257	2945	167	537	196	25831	822	61	10	671	41
587	90	21629	1301	44226	1104	3052	169	575	186	24135	755	66	9	486	34
589	90	22190	1316	42804	1092	3222	171	613	193	26083	786	59	9	515	35
591	90	20784	1280	43213	1091	2988	168	555	190	25420	790	58	9	557	37
593	90	21496	1299	46814	1131	3154	169	583	188	23515	751	64	9	559	36
595	90	23512	1328	35306	1001	3140	169	551	188	25045	774	61	9	486	34
595	90	21887	1295	36937	1019	3243	170	705	207	25877	800	67	10	493	35
597	90	21795	1303	33047	982	3362	175	631	197	27477	821	73	10	436	33
599	90	23462	1330	32792	974	3230	172	699	208	27595	828	62	9	459	34

Tab. A6: Sedimentologische Laborergebnisse der ONW I Bohrung (Daten in 1cm Abständen)

Tiefe [cm]	Mag. Suszept. [SI]
0	15
1	5
2	4
3	8
4	8
5	5
6	11
7	11
8	6
9	10
10	7
11	5
12	5
13	7
14	4
15	6
16	11
17	10
18	13
19	12
20	10
21	13
22	9
23	11
24	10
25	11
26	12
27	11
28	10
29	11
30	16
31	18
32	17
33	14
34	8
35	8
36	8
37	9
38	13
39	13
40	13
41	12
42	11
43	9
44	10
45	10
46	11
40	11
48	10
40	12
50	11
51	11
52	14
53	12
54	<u>، د</u>
55	3 10
56	10
50	0
57	9 11
50	11
59	10
61	13
01	14

Tiefe [cm]	Mag. Suszept. [SI]
62	15
63	15
64	9
65	11
66	10
67	11
68	0
70	
71	11
72	9
73	14
74	13
75	11
76	12
77	15
78	14
79	14
80	14
81	17
82	20
83	10
04 85	13
86	14
87	18
88	10
89	11
90	15
91	14
92	13
93	13
94	12
95	12
96	11
97	12
98	8
99	7
100	8
101	5
102	4
103	8
104	<u>ک</u>
105	່ວ 11
100	11
108	6
109	10
110	7
111	5
112	5
113	7
114	4
115	6
116	11
117	10
118	13
119	12
120	10
121	13
122	9
123	11

Tiefe	Mag.							
[cm]	Suszept. [SI]							
124	10							
125	11							
126	12							
127	11							
128	10							
129	11							
130	16							
131	18							
132	17							
133	14							
134	8							
135	8							
136	8							
137	9							
138	13							
139	13							
140	13							
141	12							
142	11							
143	9							
144	10							
145	10							
146	11							
147	11							
148	10							
149	12							
150	11							
151	11							
152	14							
153	12							
154	9							
155	10							
156	12							
157	9							
150	11							
160	12							
161	13							
162	14							
162	15							
164	13							
165	11							
166	10							
167	11							
168	11							
169	9							
170	11							
171	11							
172	9							
173	14							
174	13							
175	11							
176	12							
177	15							
178	14							
179	14							
180	14							
181	17							
182	20							
183	16							
184	13							
185	14							

Tiefe [cm]	Mag. Suszept.
186	17
187	17
188	11
189	11
190	15
191	14
192	13
193	13
194	12
195	12
196	11
197	12
198	8
199	7
200	8
201	6
202	11
203	13
204	12
205	16
206	16
207	15
208	15
209	14
210	15
211	15
212	15
213	15
214	15
215	15
210	16
217	10
210	15
213	14
221	10
222	14
223	15
224	14
225	13
226	-4999
227	13
228	15
229	14
230	14
231	12
232	14
233	15
234	15
235	14
236	17
237	16
238	16
239	17
240	15
241	16
242	16
243	15
244	16
245	16
246	15
247	15

Tiefe [cm]	Mag. Suszept. [SI]
248	16
249	15
250	15
251	16
252	15
253	15
254	13
255	15
256	14
257	12
258	14
259	14
260	15
201	14
202	14
263	15
265	15
203	1/
267	15
268	15
269	16
270	18
271	16
272	15
273	14
274	14
275	13
276	14
277	15
278	15
279	15
280	15
281	14
282	16
283	15
284	16
285	15
286	16
287	17
288	15
289	15
290	15
291	15
292	10
293	16
295	17
296	15
297	16
298	18
299	14
300	0
301	36
302	41
303	49
304	48
305	49
306	57
307	61
308	52
309	56

Tiefe [cm]	Mag. Suszept. [SI]
310	53
311	50
312	52
313	54
314	49
315	59
316	49
317	66
318	75
319	57
320	99
321	120
322	94
323	90
324	101
325	79
326	66
327	64
328	47
329	43
330	41
331	41
332	43
333	37
334	47
335	59
336	43
337	42
338	41
339	29
340	25
341	23
342	26
343	28
344	28
345	25
346	21
347	25
348	25
349	26
350	32
351	31
352	61
353	92
354	68
355	62
356	61
357	64
358	69
359	62
360	71
361	66
362	85
363	82
364	/8
365	68
366	55
367	49
368	49

Tiefe	Mag.	
[cm]	Suszept. [SI]	
369	54	
370	41	
371	51	
372	38	
373	36	
374	33	
375	44	
376	39	
377	40	
378	40	
379	43	
291	40 61	
202	162	
382	383	
384	201	
385	137	
386	145	
387	258	
388	184	
389	148	
390	164	
391	176	
392	122	
393	195	
394	127	
395	127	
396	66	
397	15	
398	0	
399	-1	
400	75	
401	103	
402	102	
403	00 00	
405	129	
406	143	
407	139	
408	146	
409	121	
410	116	
411	131	
412	123	
413	107	
414	106	
415	93	
416	102	
41/	101	
418	9/	
419	11/	
421	98	
422	115	
423	90	
424	99	
425	112	
426	160	
427	136	

Tiefe [cm]	Mag. Suszept. [SI]
428	121
429	142
430	125
431	111
432	117
433	116
434	141
435	120
436	121
400	121
407	105
430	105
439	90
440	03
441	80
442	81
443	96
444	109
445	94
446	101
447	111
448	96
449	131
450	131
451	110
452	98
453	96
454	91
455	92
456	101
457	99
457	33
450	92 110
409	100
460	120
461	117
462	99
463	102
464	112
465	101
466	115
467	97
468	99
469	108
470	118
471	120
472	119
473	113
474	145
475	108
476	150
477	135
478	139
479	131
480	102
481	121
482	116
492	107
400	115
404	110
400	100
486	108

Tiefe	Mag.
[cm]	Suszept. [SI]
487	102
488	108
489	146
490	109
491	105
492	105
493	81
494	100
495	105
496	131
400	117
498	111
400	04
499 500	110
500	05
501	00 70
502	73
503	-4993
504	/8
505	/2
506	92
507	83
508	75
509	65
510	71
511	73
512	82
513	89
514	78
515	82
516	78
517	72
518	80
519	91
520	78
521	57
522	54
523	65
524	50
525	78
526	48
527	95
528	70
529	64
530	66
531	79
532	50
522	55
524	50
534	59
535	07
536	6/
537	68
538	57
539	67
540	74
541	75
542	61
543	64
544	63
545	56

Tiefe [cm]	Mag. Suszept. [SI]
546	60
547	68
548	61
549	69
550	70
551	75
552	80
553	69
554	70
555	58
556	75
557	58
558	64
559	66
560	56
561	45
562	43
563	49
564	60
565	53
566	56
567	49
568	47
569	51
570	52
5/1	53
572	56
573	42
574	42
576	39
577	40 50
578	
579	41
590	40
581	47
582	42
583	39
584	46
585	52
586	57
587	63
588	53
589	52
590	54
591	54
592	48
593	55
594	49
595	54
596	49
597	50
598	51
599	47
600	0

							Korngrößenanalyse					
Tiefe [cm]	N [%]	C [%]	S [%]	CaCO₃ [%]	тос [%]	TOC/N	Mittelwert [µm]	St.Abw.	Ton <2μm [%]	Schluff <63µm [%]	Sand <2000µm [%]	
25	0,11	3,65	0,00	24,84	1,16	10,15	12,4	26,6	33,6	61,7	4,7	
32	0,07	3,86	0,07	27,63	0,93	13,88	11,3	23,9	35,4	60,2	4,5	
37	0,06	4,05	0,00	30,50	0,66	10,85	9,4	20,7	38,7	58,1	3,3	
42	0,06	4,17	0,00	31,29	0,71	11,76	8,5	18,6	38,7	58,6	2,8	
47	0,05	4,20	0,00	32,11	0,59	11,64	7,0	14,7	40,8	57,6	1,7	
52	0,06	4,22	0,00	33,02	0,45	7,60	8,8	22,0	41,7	55,1	3,2	
57	0,04	4,88	0,00	38,96	0,35	8,89	13,1	28,1	38,9	55,5	5,7	
62	0,04	4,76	0,00	36,73	0,61	15,15	8,3	17,0	52,7	44,2	3,2	
67	0,04	3,68	0,07	29,50	0,23	5,71	12,5	25,2	34,7	60,7	4,7	
72	0,04	3,53	0,09	25,92	0,72	18,40	8,8	16,4	40,8	57,0	2,2	
77	0,04	4,05	0,00	32,07	0,34	7,66	12,3	23,6	35,2	60,3	4,6	
82	0,04	4,10	0,00	32,86	0,27	6,22	15,8	29,4	33,4	59,7	6,9	
87	0,04	3,03	0,00	22,88	0,48	10,92	11,0	19,9	32,2	64,7	3,2	
92	0,05	3,91	0,08	31,22	0,28	5,51	11,5	23,0	34,8	61,3	3,9	
98	0,04	5,/1	0,01	47,62	-0,02	-0,38	13,4	24,0	40,2	54,7	5,2	
104	0,06	3,54	0,00	26,13	0,70	11,08	11,/	23,5	34,5	61,5	4,1	
108	0,07	3,87	0,00	27,98	0,87	12,65	13,4	28,6	34,2	60,5	5,3	
112	0,07	4,05	0,04	31,08	0,55	7,97	12,4	26,0	35,1	60,3	4,7	
110	0,05	4,00	0,02	58,24	0,13	2,49	12,9	20,2	35,5	59,8	4,9	
123	0,05	0,31 E 11	0,00	51,00	0,32	0,51	11,4	23,9	41,5	54,4	4,Z	
128	0,05	5,11	0,04	42,72	-0,03	-0,05	14,0	20,0	30,1	57,8	2.0	
133	0,05	4,85	0,00	20.15	0,02	11,78	11.8	21.1	20.1	67.5	2,5	
1/2	0,05	4,00	0,00	21 56	0,23	12.06	0.2	15.2	20,1	67.6	1.9	
145	0,00	4,22	0,00	26.51	0,74	10.70	14.7	28.0	21.9	61.7	6.5	
154	0.05	5 58	0,00	45.88	0,73	2.83	17.3	31.3	35.8	56.0	83	
158	0.07	5 33	0.00	41 36	0.63	9.66	15.5	30.8	36.0	57.2	6.8	
163	0.06	3 91	0.00	27.06	1 15	18 50	93	17.5	33.1	64 5	2 4	
168	0.05	5.71	0.07	43.23	0.89	16.87	17.1	33.1	31.2	61.0	7.8	
173	0.05	6.14	0.00	48.05	0.64	12.63	, 16.1	31.0	35.3	58.1	6.7	
178	0,08	4,98	0,07	33,70	1,60	20,04	11,2	21,2	33,4	63,1	3,5	
183	0,06	4,45	0,00	32,12	1,03	17,45	29,0	58,8	21,9	66,7	11,5	
188	0,06	5,40	0,05	40,19	0,99	16,48	23,1	39,9	25,8	62,1	12,2	
193	0,05	4,43	0,00	33,69	0,67	12,65	25,9	41,8	25,3	60,9	13,9	
198	0,05	5,22	0,03	40,02	0,72	14,38	24,2	39,4	26,7	60,6	12,7	
207	0,04	3,03	0,00	25,01	0,06	1,58	45,9	104,2	25,4	58,1	16,5	
214	0,02	1,78	0,00	13,33	0,30	12,54	188,3	219,2	11,7	34,9	53,5	
218	0,02	1,54	0,00	10,77	0,43	20,36	177,2	224,9	12,8	35,6	51,7	
221	0,01	0,28	0,01	2,00	0,06	5,78	264,4	143,4	2,9	5,7	91,4	
228	0,02	1,70	0,00	11,74	0,51	23,00	142,0	168,0	13,5	34,0	52,5	
233	0,02	0,79	0,01	5,82	0,16	9,37	185,4	186,6	10,1	26,1	63,9	
237	0,01	0,78	0,02	6,63	-0,03	-2,41	163,8	175,6	9,9	29,4	60,8	
242	0,02	1,02	0,00	8,63	-0,03	-1,93	134,8	170,5	13,2	36,8	50,1	
248	0,01	0,26	0,01	2,99	-0,17	-15,33	217,2	163,5	6,3	14,2	79,5	
253	0,02	0,94	0,00	7,18	0,14	8,19	147,1	163,7	11,2	31,1	57,8	
258	0,03	1,32	0,00	10,31	0,14	5,22	97,1	127,2	15,8	43,1	41,2	
263	0,02	0,67	0,00	4,42	0,24	12,84	118,6	130,4	10,2	35,0	54,9	
268	0,04	1,68	0,03	11,30	0,55	14,18	113,0	1/2,7	21,2	39,6	39,3	
2/3	0,03	1,52	0,00	11,58	0,23	7,95	88,5	129,9	20,3	43,2	30,0	
2/8	0,03	1,04	0,00	/,12	0,31	11.20	137,9	144,9	12,9	30,9	56,2	
282	0,03	1,20	0,00	8,38	0,32	11,20	111,Z	146,/	17,0	38,U	45,1	
260	0.05	1,29	0,06	0,/0 11.65	0,40	9,70	01,5 20 1	128,2 82 4	20,4	40,9	32,8 15.7	
290	0,05	1,07	0,00	10.69	0,40	3,00	30,1 17 2	02,4 24.0	24,/	53,7	7.2	
295	0,00	1,72	0.37	10,08	0,70	11 27	10.2	54,U /10.2	23,8 27.9	62.7	7,3	
302	0,08	2 41	0,20	14 29	1 19	16 54	49.2	98.7	27,0	55.9	20.9	
	3,07	-,	3,00		-,			55,1	_3,3	55,5	,_	

							Korngrößenanalyse					
Tiefe [cm]	N [%]	C [%]	S [%]	CaCO₃ [%]	тос [%]	TOC/N	Mittelwert [µm]	St.Abw.	Ton <2μm [%]	Schluff <63µm [%]	Sand <2000µm [%]	
310	0,07	1,75	0,35	11,19	0,71	10,88	13,6	29,0	29,9	65,2	4,9	
314	0,07	1,94	0,59	13,10	0,64	8,60	16,7	35,6	27,3	66,2	6,5	
319	0,06	2,07	0,00	13,90	0,69	11,48	23,4	52,2	23,9	67,0	9,2	
324	0,06	1,79	0,35	11,03	0,81	12,80	23,2	44,4	23,8	65,1	11,1	
329	0,06	1,68	0,00	10,68	0,68	11,98	33,2	75,4	25,0	61,1	13,9	
334	0,05	1,59	0,44	9,21	0,82	15,56	68,3	115,0	21,4	49,6	29,1	
339	0,04	1,12	0,00	6,99	0,49	13,58	96,9	136,3	18,9	42,5	38,7	
344	0,05	1,41	0,70	9,10	0,55	10,80	56,6	106,4	22,3	54,0	23,7	
349	0,04	1,32	0,30	9,10	0,40	9,22	95,8	147,3	18,2	45,4	36,4	
354	0,05	1,64	0,07	0,47	1,48	29,12	222.0	191,8	13,8	33,1 12.9	53,1 70 5	
364	0,02	0,34	0,31	1.80	0,10	19.40	223,0	124.8	1.8	27	95.6	
369	0.01	0.25	0,15	2 20	-0.02	-2 72	231,4	148.4	2.0	3.5	94 5	
374	0.01	0.32	0.00	1.74	0.19	26.89	299.0	195.4	1.5	2,4	96.1	
379	0.01	0.23	0.20	2.01	-0.03	-3.58	298.7	222.1	1.7	2.8	95.5	
384	0,01	0,24	0,14	1,85	0,02	3,79	244,3	116,1	1,5	2,5	96,0	
389	0,01	0,40	0,25	2,26	0,22	20,09	227,1	128,6	2,7	5,8	91,5	
393	0,06	1,76	0,28	10,83	0,79	13,10	51,9	103,5	23,5	55,6	21,0	
398	0,05	1,33	0,38	8,99	0,43	9,33	94,4	152,2	19,8	46,6	33,7	
401	0,04	1,38	0,44	8,55	0,61	14,22	88,0	147,7	19,7	48,3	32,0	
403	0,01	0,30	0,00	2,64	-0,03	-1,87	196,7	150,4	7,6	15,9	76,6	
408	0,05	1,40	0,43	9,44	0,45	8,91	47,1	89,9	23,2	55,1	21,8	
416	0,05	1,72	0,38	8,41	1,22	23,84	67,0	116,8	20,6	52,5	27,0	
421	0,06	1,97	0,21	14,97	0,29	5,36	52,3	111,4	22,7	58,7	18,7	
426	0,06	1,76	0,27	11,73	0,60	10,12	59 <i>,</i> 8	113,1	20,7	56,8	22,6	
431	0,05	1,45	0,13	11,04	0,22	4,11	35,3	77,0	23,9	61,9	14,3	
436	0,06	1,89	0,00	13,52	0,46	7,93	49,9	99,4	22,8	57,1	20,2	
441	0,06	1,60	0,22	11,52	0,37	6,79	29,3	63,1	25,3	62,5	12,3	
446	0,06	1,/1	0,16	11,01	0,66	10,81	65,8	119,6	21,0	52,0	26,9	
451	0,04	1,19	0,00	8,50	0,30	8,06	127,3	1/8,2	15,6	39,5	44,9	
450	0,05	1,20	0,43	10,18	0,07	1,40	87,1 E1.4	139,9	19,3	47,4	33,4	
462	0,03	1,00	0,00	8 79	0,40	7 90	13.4	88.9	23,0	58.1	20,4	
400	0.06	1,34	0.00	13 53	0,30	5.87	44.4	96.0	23.4	58.8	17.9	
475	0.05	1.68	0.21	12,40	0.33	6.65	37.9	64.3	39.0	47.2	13.9	
480	0,05	2,03	0,00	14,77	0,44	8,21	43,8	92,1	24,2	58,5	17,4	
485	0,06	2,04	0,00	14,18	0,58	9,08	35,1	71,9	24,5	59,4	16,1	
490	0,06	2,16	0,14	14,40	0,74	11,99	33,5	70,8	24,9	60,1	15,1	
495	0,06	1,81	0,00	12,58	0,52	9,40	75,9	132,6	20,6	49,4	30,1	
499	0,05	1,67	0,00	12,59	0,28	6,16	50,7	99,4	22,4	56,3	21,4	
504	0,05	1,57	0,13	9,76	0,68	13,10	66,4	120,5	20,5	53,7	25,9	
511	0,05	1,36	0,14	9,10	0,46	10,27	62,2	117,6	21,1	54,4	24,6	
519	0,04	1,13	0,16	8,61	0,17	4,51	80,7	122,3	43,9	34,8	21,4	
524	0,04	1,45	0,00	10,52	0,32	7,62	65,7	123,0	21,9	54,3	23,9	
529	0,05	1,48	0,00	11,80	0,12	2,46	65,4	127,8	22,0	53,7	24,4	
532	0,04	0,94	0,20	6,58	0,26	6,65	109,7	133,7	15,9	38,2	45,9	
535	0,01	0,28	0,09	1,/8	0,11	7,64	284,0	1405	2,4	4,2	93,4	
542	0.03	0,08	0,00	4,/8	1.05	1,28	114 7	162.2	12,2	29,2 //1.2	58,0 12.1	
554	0.04	1 08	0.00	12 30	-0.68	-18 /18	60.0	103,2	22 5	+1,2 53.0	+2,+ 24.6	
559	0.05	1,00	0.21	8,88	0.67	13 15	94 5	147 2	19.8	45.1	35.2	
564	0.05	1.54	0,15	11.63	0,25	5,16	69.7	117.3	21.8	50.3	27.9	
569	0,05	1,47	0,00	10,29	0,41	8,53	91,8	149,5	19,3	46,6	34,2	
574	0,05	1,59	0,00	11,05	0,45	9,21	85,9	133,5	18,6	47,8	33,7	
579	0,04	1,42	0,13	10,02	0,37	8,57	96,9	147,2	17,7	44,5	37,9	
584	0,04	1,39	0,00	10,03	0,33	7,61	72,2	113,7	20,4	48,1	31,6	

								Kor	ngrößenanaly	/se	
Tiefe [cm]	N [%]	C [%]	S [%]	CaCO₃ [%]	тос [%]	TOC/N	Mittelwert [µm]	St.Abw.	Ton <2μm [%]	Schluff <63µm [%]	Sand <2000µm [%]
589	0,04	0,93	0,27	5,93	0,38	10,48	105,8	117,2	16,2	30,4	53,5
594	0,06	1,67	0,08	11,43	0,51	8,87	60,6	104,2	20,2	53,2	26,7
599	0,06	1,56	0,18	10,06	0,61	10,88	72,2	144,0	21,1	53,4	25,6
604	0,06	1,42	0,17	9,49	0,48	8,12	34,7	75,7	24,0	60,6	15,5
609	0,06	1,80	0,00	12,51	0,51	7,94	24,1	46,8	25,1	63,7	11,3
614	0,05	1,93	0,00	13,65	0,50	10,19	36,8	83,4	24,9	59,8	15,4
619	0,06	1,16	0,17	7,31	0,48	7,51	15,/	33,3	27,5	66,5	6,1
624	0,08	1,81	0,10	12,18	0,60	7,98	23,9	59,1	25,3	65,9	8,8
630	0,06	1,00	0,24	10,80	0,62	9,69	47,0	104,8	23,8	59,4	16,9
640	0,07	1,74	0,23	11 27	0,42	7 23	/2,4	132,5 01 /	22,5	58.6	20,0
644	0.06	1,55	0.14	11.45	0,41	10.92	65.3	126.7	24,2	54.6	23.1
649	0.06	1 52	0.65	10 79	0.38	6 11	52.0	104.9	23.1	57.1	19.9
654	0.06	1.72	0.00	11.99	0.47	8.04	70.3	144.8	21.7	54.6	23.8
659	0,06	1,42	0,83	10,05	0,37	6,49	63,4	115,4	21,6	53,4	25,1
664	0,02	0,57	0,31	4,64	0,02	0,91	203,4	159,7	5,7	15,6	78,7
669	0,03	0,68	0,00	4,52	0,23	6,88	124,0	137,3	13,6	33,3	53,2
674	0,06	1,58	0,29	10,18	0,61	10,91	77,8	119,2	18,9	48,9	32,3
679	0,06	1,73	0,00	11,82	0,53	8,95	52,5	105,9	23,3	56,4	20,4
684	0,07	2,14	0,16	13,85	0,83	11,17	25,5	62,6	26,9	63,6	9,5
689	0,07	1,91	0,30	14,10	0,38	5,57	18,4	36,5	28,7	63,5	7,8
695	0,07	2,00	0,23	13,41	0,68	9,80	25,3	55,8	27,4	61,5	11,2
700	0,05	1,43	0,00	10,35	0,32	6,96	79,5	125,3	19,7	47,4	33,0
704	0,07	1,99	0,19	13,34	0,68	10,09	32,4	72,8	24,6	62,5	13,0
709	0,05	1,63	0,00	12,13	0,29	5,82	52,3	107,2	24,0	56,9	19,2
715	0,05	1,45	0,00	9,86	0,45	9,86	89,6	154,9	19,3	50,5	30,3
725	0,01	0,21	0,30	14,71	-2,67	-242,6	20,6	42,1	25,8	65,8	8,5
730	0,07	2,06	0,09	12,12	1,04	15,78	15,5	33,0	27,7	66,7	5,7
735	0,07	1,70	0,00	10.00	0,04	9,55	20.4	37,0 86.0	25.3	43,0	4,0
740	0,00	1,54	0,19	9.76	0,39	14 11	59,4 44.8	93.5	23,1	58.1	10,1
750	0.05	1.44	0.28	9.88	0.44	8.41	59.0	117.8	21.9	55.1	23.0
755	0.06	1.27	0.32	9.56	0.22	3.98	40.1	94.1	25.5	60.4	14.2
760	0,05	1,28	0,05	9,61	0,22	3,98	46,8	99,8	23,4	58,7	18,0
765	0,08	1,56	0,00	9,04	0,81	10,64	51,7	107,0	23,7	56,0	20,4
770	0,06	1,47	0,30	10,71	0,31	5,61	44,4	93,9	23,0	59,3	17,8
775	0,07	1,38	0,00	12,41	-0,18	-2,84	25,9	58,3	25,1	63,9	11,0
780	0,07	1,76	0,16	12,75	0,40	5,99	21,2	41,2	24,6	66,9	8,6
785	0,07	2,05	0,28	14,49	0,54	7,52	12,1	26,3	29,9	66,2	4,0
790	0,07	1,63	0,00	13,11	0,09	1,34	16,9	36,3	27,5	65,4	7,2
795	0,08	1,91	0,00	13,94	0,40	4,90	14,1	28,9	28,1	66,4	5,6
801	0,07	1,92	0,00	12,71	0,68	9,99	23,9	52,8	26,3	62,6	11,2
805	0,07	1,79	0,00	13,69	0,25	3,63	24,5	52,8	26,4	61,9	11,8
810	0,08	1,98	0,00	13,54	0,61	8,15	34,1	76,4	24,0	60,9	15,2
815	0,05	2 25	0,28	12 22	0,01	0,17	49,7 60.0	92,4	21,5	52.6	22,8
828	0,09	1 76	0,00	6 66	1,15	26.25	127.6	157 /	14.6	36.2	20,5 49.7
833	0.05	1,73	0.22	9,35	0.60	12 04	93.5	133.5	16 7	44.4	39.0
838	0,05	1,50	0,00	10.63	0,39	7,26	86.3	148.8	19.7	50.2	30.1
843	0,05	1,16	0,00	10,43	-0,15	-3,15	49,6	98,9	22,2	57,1	20,8
848	0,05	1,24	0,27	7,64	0,56	11,61	123,8	173,1	15,3	40,1	44,7
853	0,06	1,54	0,00	9,42	0,70	11,12	79,5	130,0	19,0	49,3	31,7
859	0,09	2,14	0,20	13,05	0,99	11,69	39,2	86,8	23,7	60,6	15,8
863	0,07	2,03	0,32	13,17	0,78	10,78	67,3	121,4	21,4	53,6	25,1
868	0,08	2,13	0,31	14,40	0,68	8,64	33,7	76,6	24,4	62,2	13,4
873	0,08	2,24	0,22	15,35	0,69	8,48	20,4	41,6	25,4	66,1	8,6

								Kor	ngrößenanal	yse	
Tiefe [cm]	N [%]	C [%]	S [%]	CaCO₃ [%]	тос [%]	TOC/N	Mittelwert [µm]	St.Abw.	Ton <2μm [%]	Schluff <63µm [%]	Sand <2000µm [%]
878	0,09	2,12	0,19	14,59	0,63	6,88	26,2	58,8	25,0	63,8	11,2
883	0,09	1,81	0,33	10,94	0,86	9,25	41,5	93,2	25,4	58,1	16,6
889	0,09	2,21	0,00	13,00	1,12	12,35	45,5	92,3	22,6	58,5	19,0
894	0,01	0,22	0,31	1,89	-0,02	-1,77	267,3	146,2	2,6	6,2	91,2
898	0,02	0,60	0,39	4,10	0,18	8,10	91,8	93,1	15,4	43,4	41,3
903	0,10	2,54	0,01	16,13	1,03	10,74	11,8	21,2	26,6	71,0	2,5
908	0,08	1,83	0,00	14,62	0,13	1,69	13,9	26,2	26,0	69,8	4,3
913	0,10	2,25	0,21	14,42	0,89	9,04	13,2	25,7	27,2	69,0	3,8
918	0,09	2,16	0,22	13,42	0,94	10,30	24,0	58,7	26,3	64,5	9,3
923	0,04	1,24	0,27	8,01	0,48	11,75	68.1	1/4,3	14,4	45,4	26.0
934	0.04	1,50	0,30	7 31	0,55	9.22	112 7	136.3	14.4	39.8	45.9
939	0.06	1 79	0.12	12 14	0.57	9 44	46.3	87.5	21.2	58.0	20.9
944	0,08	2,04	0,12	13,56	0,71	9,46	43,6	93,8	23,1	59,4	17,6
948	0,09	2,47	0,10	14,82	1,19	13,62	15,5	28,2	25,5	68,6	6,0
961	0,07	2,09	0,15	12,68	0,98	14,39	55,8	106,2	20,7	57,6	21,8
966	0,11	2,61	0,00	14,11	1,57	14,27	17,0	31,9	25,1	68,4	6,6
971	0,07	1,95	0,27	13,13	0,64	8,83	24,8	49,2	24,5	64,5	11,1
976	0,08	2,17	0,00	13,32	0,98	12,50	33,3	66,5	23,7	62,8	13,6
981	0,07	1,66	0,10	11,26	0,53	7,63	47,8	92,5	23,8	55,8	20,4
986	0,03	0,72	0,14	5,68	0,07	2,46	184,1	171,7	11,8	22,9	65,3
991	0,06	1,43	0,28	8,26	0,75	11,95	72,3	115,9	18,6	51,5	30,0
996	0,02	0,57	0,14	3,96	0,17	7,28	210,8	206,0	6,8	21,3	71,9
1001	0,06	1,78	0,32	10,58	0,88	14,63	52,2	99,2	19,6	59,3	21,2
1006	0,06	1,54	0,11	9,34	0,71	12,75	96,3	135,0	15,7	45,9	38,5
1011	0,08	2,12	0,00	3,50	0.10	20,55	75,0	125,7	17,2	52,4	20.5
1010	0,08	1,58	0,00	13.01	0,19	2,30	25.4	64.1	29.8	60.8	95
1021	0.09	2.10	0.00	12.54	1.03	11.79	28.1	59.4	22,8	64.6	12.6
1032	0.04	1.09	0.19	5.49	0.74	17.98	130.2	142.9	7.9	33.9	58.2
1036	0,10	2,56	0,30	10,07	2,33	22,43	73,6	132,7	17,9	52,3	29,9
1041	0,04	1,08	0,38	5,27	0,77	19,25	113,2	124,5	12,8	33,4	53,9
1046	0,03	0,92	0,23	6,03	0,35	10,17	169,7	221,9	10,4	32,1	57,5
1051	0,01	0,45	0,18	3,16	0,13	10,50	285,3	144,5	1,9	3,1	95,0
1056	0,02	0,63	0,15	3,63	0,34	15,31	180,6	127,8	5,5	16,5	78,1
1062	0,06	2,07	0,42	15,64	0,33	5,74	65,4	121,5	21,8	53,1	25,2
1067	0,07	2,85	0,07	21,37	0,49	7,35	40,6	83,7	27,1	57,4	15,6
1072	0,06	2,41	0,08	18,41	0,34	5,81	58,1	110,1	22,5	55,3	22,3
1077	0,06	2,81	0,10	19,55	0,81	12,79	15,7	35,0	29,5	65,0	5,6
1082	0,06	2,6/	0,38	19,09	0,66	11,18	41,2	83,1 68.2	22,/	59,1	18,3
1087	0,00	2,32	0,27	6 20	0,00	9,90	120.8	1/1 5	21,0	28.5	62.0
1085	0.04	1 74	0,23	10.44	0,34	10.65	41 7	75.0	22.4	58.2	19.5
1098	0.07	3.26	0.33	24.49	0.56	7.78	29.0	65.3	25.5	62.6	12.0
1102	0,07	2,55	0,00	18,72	0,52	7,54	45,5	82,4	21,4	56,3	22,3
1107	0,07	2,00	0,24	12,34	0,89	12,83	37,9	65,8	20,1	62,6	17,4
1112	0,07	1,69	0,54	9,31	0,99	13,97	66,8	119,0	17,6	56,6	25,9
1117	0,07	1,46	0,50	3,69	1,75	25,74	211,3	273,9	5,9	22,1	72,0
1122	0,08	2,00	0,59	10,56	1,27	16,88	58,8	103,7	18,6	55,3	26,2
1127	0,01	0,25	0,22	1,91	0,03	3,10	230,8	134,4	2,9	6,0	91,1
1134	0,11	3,61	0,00	17,95	2,50	22,32	38,5	76,0	25,7	58,9	15,5
1139	0,08	2,25	0,37	8,51	2,11	27,09	131,4	210,6	14,0	44,5	41,6
1144	0,06	2,45	0,75	16,16	0,88	14,48	29,8	62,3	20,8	67,6	11,7
1149	0,05	1,49	0,00	10,33	0,44	9,49	83,0	149,4	1/,7	54,2	28,2
1154	0,02	0,50	0,35	3,81	0,07	4,38	150.9	158,4	4,2	14,3	81,5 79.6
1159	0,02	0,43	0,52	3,51	0,08	4,00	130,8	14/,4	4,9	13,0	19,0

								Kor	ngrößenanal	yse	
Tiefe [cm]	N [%]	C [%]	S [%]	CaCO₃ [%]	тос [%] тос,	TOC/N	Mittelwert [µm]	St.Abw.	Ton <2μm [%]	Schluff <63µm [%]	Sand <2000µm [%]
1164	0,01	0,71	0,00	5,90	0,01	0,37	136,6	112,1	5,3	19,9	74,8
1169	0,04	2,03	0,00	13,59	0,69	15,59	55,5	97,2	16,1	59,3	24,7
1174	0,03	0,96	0,00	6,14	0,38	11,74	185,4	206,2	9,7	29,0	61,3
1179	0,05	2,01	0,00	14,15	0,54	11,04	47,9	100,4	21,7	59,1	19,3
1185	0,05	1,46	0,01	10,42	0,36	7,88	73,1	111,3	18,0	48,8	33,3
1189	0,04	2,16	0,00	16,81	0,25	6,18	65,7	126,3	21,3	52,7	26,1
1194	0,05	2,26	0,00	16,41	0,49	9,65	50,5	101,1	21,6	57,8	20,7
1199	0,05	1,88	0,00	14,12	0,32	6,64	61,9	128,5	21,3	56,8	22,0
1204	0,05	1,77	0,00	12,86	0,38	7,48	53,4	102,0	19,6	57,8	22,6
1209	0,06	2,06	0,00	14,83	0,49	8,16	45,4	89,2	22,0	58,7	19,4
1214	0,04	1,46	0,00	11,36	0,16	3,65	59,7	112,2	19,9	55,3	24,9
1219	0,04	1,18	0,00	9,32	0,11	2,77	110,4	173,8	15,2	46,7	38,2
1224	0,05	1,42	0,00	10,31	0,32	6,59	65,3	107,1	16,9	52,2	30,9
1234	0,04	1,79	0,00	12,92	0,42	10,44	105,8	164,2	15,9	47,1	37,1
1240	0,05	2,35	0,00	17,26	0,48	9,27	51,1	106,2	22,6	57,6	19,9
1245	0,05	2,01	0,00	13,47	0,67	14,61	65,9	125,3	20,6	53,6	25,8
1250	0,06	2,02	0,00	14,13	0,55	8,79	58,4	118,4	21,2	57,6	21,3
1255	0,07	2,13	0,00	15,76	0,41	6,29	73,0	152,9	22,4	55,7	22,0
1260	0,06	2,06	0,08	15,16	0,42	7,41	75,9	139,0	20,5	51,8	27,8
1265	0,05	2,19	0,00	17,12	0,24	4,51	60,7	109,4	21,4	53,3	25,4
1270	0,04	1,53	0,00	12,86	-0,02	-0,41	84,9	152,9	19,7	50,1	30,3
1275	0,02	0,43	0,37	2,82	0,16	8,92	137,9	154,7	12,6	34,8	52,7
1280	0,02	0,55	0,35	4,21	0,07	2,96	149,9	143,5	9,4	25,2	65,5
1285	0,04	1,34	0,00	11,80	-0,13	-3,69	94,7	137,9	17,5	42,8	39,8
1290	0,04	0,76	0,00	4,76	0,32	7,30	213,7	229,5	10,2	22,5	67,3
1295	0,01	0,26	0,33	1,93	0,04	3,28	295,8	179,7	2,6	6,2	91,2
1300	0,01	0,24	0,22	1,70	0,06	9,23	289,2	181,8	1,9	4,2	93,9
1305	0,01	0,24	0,12	1,71	0,06	6,10	395,1	256,0	1,3	2,2	96,5
1310	0,01	0,24	0,00	1,60	0,08	10,21	323,3	196,9	1,6	3,1	95,2
1316	0,03	0,97	0,52	7,48	0,12	3,77	137,8	160,3	11,5	32,9	55,7
1320	0,03	0,95	0,15	8,49	-0,12	-3,89	134,2	158,7	13,5	32,3	54,3
1325	0,01	0,24	0,15	2,06	-0,02	-2,09	182,3	186,8	14,0	28,6	57,5
1330	0,06	2,27	0,00	16,73	0,45	7,04	35,4	73,9	25,6	59,0	15,4
1335	0,06	1,79	0,17	12,81	0,43	7,77	73,0	137,0	21,0	51,9	27,2

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
	[]	()	[ppm]	(,	[ppm]	(,	199.03	([ppm]	()	[ppm]
28	20	1864	2	20530	5	13804	5	86319	10	3868	3
29	20	2140	2	22961	5	15578	5	93950	10	3900	3
30	20	1591	2	16226	4	11807	4	/4646	9	3091	3
31	20	1505	2	14034	4	10751	4	76546	9	2810	3
33	20	2211	2	22480	5	15059	5	106846	11	3479	3
34	20	2611	3	25849	6	16848	5	120184	12	3931	3
35	20	2236	2	23033	5	16013	5	113027	11	3529	3
36	20	2284	2	24244	5	16120	5	117309	12	3885	3
37	20	2095	2	23371	5	15468	5	114067	11	3554	3
38	20	2319	2	24092	5	16073	5	121811	12	3790	3
39	20	2189	2	23382	5	16163	5	117284	11	3770	3
40	20	2263	2	23963	5	16145	5	116891	11	3631	3
41	20	2163	2	23494	5	15774	5	120088	12	3827	3
42	20	2048	2	22779	5	14600	5	118757	11	3533	3
44	20	2050	2	22687	5	14890	5	113794	11	3940	3
45	20	2075	2	22362	5	14950	5	116144	11	3633	3
46	20	2091	2	22968	5	15030	5	111161	11	3497	3
47	20	2417	2	23675	5	15085	5	119524	12	3735	3
48	20	2116	2	23782	5	15705	5	117284	11	3842	3
49	20	2236	2	23737	5	15844	5	118937	12	3498	3
50	20	1999	81	23286	173	16055	213	119715	614	3664	95
51	20	2084	2	23549	5	15832	5	117417	12	3484	3
52	20	2201	2	22681	5	15112	5	10/418	11	3583	3
53	20	2052	2	17929	5	11522	5	122555	11	3745	3
55	20	1481	2	19734	5	13113	5	137846	12	3046	3
56	20	1523	2	18889	5	12434	5	139139	12	2906	3
57	20	1594	2	21035	5	13728	5	136706	12	3238	3
58	20	1805	2	21266	5	13972	5	127421	12	3338	3
59	20	1699	2	20701	5	13479	5	131617	12	3423	3
60	20	1864	2	21306	5	14162	5	132233	12	3530	3
61	20	1898	2	21283	5	14157	5	127361	12	3452	3
62	20	2075	2	22145	5	13913	5	126509	12	3505	3
64	20	1//1	2	21502	5	14055	5	126193	12	3513	3
65	20	2069	2	22920	5	15193	5	116634	12	4152	3
66	20	2207	2	25215	5	16130	5	105566	11	4163	3
67	20	2279	2	25349	5	16502	5	99930	11	4174	3
68	20	2109	2	23811	5	15296	5	104289	11	3785	3
69	20	1958	2	22296	5	14405	5	114154	11	3463	3
70	20	2071	2	22828	5	14834	5	116301	11	3753	3
71	20	2057	2	23140	5	14893	5	110753	11	3746	3
72	20	2347	2	24248	5	15252	5	96265	10	3908	3
73	20	2304	2	26446	5	15695	5	90748	10	2747	3
74	20	1968	2	22181	5	13966	5	114999	10	3385	3
76	20	1672	2	20378	5	13357	5	118923	12	3402	3
77	20	1771	2	20918	5	13549	5	114244	11	3488	3
78	20	2043	2	22244	5	14135	5	122094	12	3366	3
79	20	2069	2	22555	5	14245	5	132207	12	3274	3
80	20	2018	2	22370	5	13926	5	114192	11	3579	3
81	20	1895	2	22606	5	13947	5	107486	11	3666	3
82	20	1892	2	22181	5	13538	5	115602	11	3737	3
83	20	1699	2	19804	5	12657	5	133515	12	3184	3
85	20	2207	2	212/8	5	13942	5	91652	11	3043	3 2
86	20	2372	2	25495	5	15716	5	80258	10	4319	3
87	20	2468	2	27450	6	16252	5	80654	10	4589	3
88	20	2740	2	28026	- 6	16870	- 5	51915	8	4969	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Febler	Si [ppm] (10kV)	Si Febler	K [ppm] (10kV)	K Fehler	Ca [ppm] (10kV)	Ca Febler	Ti [ppm] (10kV)	Ti Fehler
	[300]	(1000)	[ppm]	(1000)	[ppm]	(1000)	[bbiii]	(1000)	[ppm]	(1000)	[ppm]
89	20	2465	2	27803	6	16850	5	63459	9	4674	3
90	20	1925	2	23080	5	13674	5	113705	11	3642	3
91 92	20	1984	2	22352	5	13653	5	124669	12	3524	3
93	20	2022	77	22583	170	13396	196	126153	611	3494	90
94	20	2409	2	26006	6	15109	5	85133	10	4219	3
95	20	2381	2	26130	6	15471	5	74040	9	4452	3
96	20	1770	2	22343	5	13882	5	110528	11	3390	3
97	20	1429	72	17946	155	11128	192	132554	654	2947	87
98	20	975	2	13748	4	8361	5	128259	12	2339	3
100	20	1699	2	19108	5	11898	195	81438	10	3497	3
103	20	1214	2	13556	4	8924	4	59309	8	2646	2
104	20	1943	2	20702	5	13287	5	87536	10	3336	3
105	20	1938	2	19923	5	13168	5	80575	10	3285	3
106	20	1803	2	19140	5	12504	5	82945	10	3121	3
107	20	1675	2	17600	5	11918	4	75814	9	3260	3
108	20	2202	2	24027	5	15094	5	98558	11	3958	3
110	20	2229	2	23611	5	15403	5	107221	11	3855	3
111	20	2013	2	22009	5	14261	5	97898	11	3648	3
112	20	2335	2	25208	5	14581	5	112697	11	3853	3
113	20	2516	3	26790	6	15188	5	106928	11	4232	3
114	20	2567	3	27261	6	15844	5	109227	11	4082	3
115	20	2030	2	23017	5	13067	5	155046	13	3249	3
110	20	1729	2	24153	5	13512	5	132240	13	3310	3
117	20	1806	2	21017	5	11938	5	148229	13	2946	3
119	20	1345	2	16265	5	9343	5	190026	14	2340	3
120	20	1429	2	17654	5	9793	5	195440	15	2477	3
121	20	1641	2	20912	5	11145	5	175445	14	2827	3
122	20	1357	74	17886	156	9957	185	167178	753	2507	85
123	20	1274	2	16997	5	9347	5	141929	12	2297	3
125	20	1261	2	16499	5	9299	5	171830	13	2533	3
126	20	1175	2	16503	5	9256	5	172480	14	2383	3
127	20	1511	2	19196	5	11071	5	164070	13	2785	3
128	20	1915	2	22185	5	12862	5	146306	13	3278	3
129	20	1674	2	20519	5	11991	5	113755	11	3402	3
130	20	2080	2	23293	5	13312	5	138792	12	3498	3
132	20	1901	2	22287	5	12428	5	145925	13	3256	3
133	20	2048	2	24987	5	13381	5	140155	13	3110	3
134	20	1941	2	23541	5	13005	5	149533	13	3104	3
135	20	1799	76	20549	164	11284	192	166721	743	2804	86
136	20	2053	2	22883	5	12500	5	152306	13	3161	3
137	20	1963	2	23103	5	12489	5	153903	13	3005	3
139	20	2064	2	22053	5	11598	5	157434	13	2648	3
140	20	2090	2	22995	5	12267	5	142050	13	3129	3
141	20	2163	2	24612	5	13072	5	143319	13	3168	3
142	20	2529	3	27082	6	14269	5	125966	12	3557	3
143	20	2261	3	25286	6	13439	5	136155	12	3129	3
144	20	1904	2	20248	5	10914	5	188283	14	2546	3
146	20	1842	2	19994	5	10761	5	190922	14	2314	3
147	20	2009	2	22603	5	12676	5	141621	13	3494	3
148	20	1986	2	24187	5	13352	5	140093	12	3654	3
149	20	2215	2	23424	5	13136	5	151354	13	3408	3
150	20	2165	2	23579	5	13420	5	160986	13	3261	3
151	20	1990	2	20450	5	11/21	5	108//6	14	∠804	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
		. ,	[ppm]	. ,	[ppm]	. ,		. ,	[ppm]	. ,	[ppm]
152	20	1604	2	18182	5	10893	5	159189	13	2845	3
153	20	1766	2	19660	5	11800	5	134720	12	3064	3
154	20	1349	2	17219	5	10320	5	167702	14	2634	3
156	20	1635	2	19389	5	11389	5	149495	13	3327	3
157	20	1736	2	18872	5	11108	5	139934	12	3015	3
158	20	1688	2	20578	5	12365	5	145802	13	3205	3
159	20	1726	2	20407	5	12518	5	151968	13	3061	3
160	20	1901	2	21340	5	12918	5	145069	13	3018	3
161	20	2075	2	22810	5	13437	5	141793	13	3240	3
162	20	2824	3	28738	6	16916	5	99432	12	4612	3
164	20	1780	2	19900	5	11876	5	169882	14	3001	3
165	20	1648	2	18971	5	11400	5	161497	13	3108	3
166	20	1802	2	20957	5	12640	5	143492	13	3255	3
167	20	1470	2	18585	5	10818	5	146455	13	2626	3
168	20	1452	2	16670	5	10/8/	5	16/629	14	2380	3
109	20	1440	2	19742	5	10964	5	165876	14	2547	3
170	20	1493	2	18253	5	11380	5	171696	14	2738	3
172	20	1100	2	15729	5	9507	5	172169	14	2621	3
173	20	1614	2	19202	5	11522	5	140856	13	3096	3
174	20	1892	2	20153	5	12371	5	138201	12	3314	3
175	20	1663	2	19237	5	11786	5	133917	12	3017	3
176	20	1828	2	20954	5	12671	5	142428	13	3417	3
177	20	2109	2 78	22275	5 170	12856	5 195	145699	13 658	3284	3
178	20	2019	2	20511	5	12070	5	162215	13	3088	3
180	20	1882	2	21681	5	12633	5	149059	13	3544	3
181	20	2007	2	20879	5	12681	5	152909	13	3396	3
182	20	2015	2	21569	5	12945	5	132844	12	3266	3
183	20	2193	2	22498	5	14033	5	129501	12	3756	3
184	20	1868	2	20114	5	11975	5	1//450	14	3181	3
185	20	1841	2	20470	5	12372	5	135937	14	3358	3
187	20	1722	2	18845	5	11818	5	165263	13	2872	3
188	20	1878	2	22336	5	13859	5	143280	13	3536	3
189	20	2718	3	24954	5	14593	5	120832	12	4054	3
190	20	2411	2	23565	5	13516	5	130969	12	3783	3
191	20	2238	2	22975	5	13366	5	139582	12	3601	3
192	20	1731	2	19888	5	13351	5	147271	13	3006	3
193	20	1920	2	21272	5	12769	5	125491	11	3576	3
195	20	2255	2	23234	5	14013	5	112519	11	4056	3
196	20	2466	2	23306	5	14165	5	106985	11	4077	3
197	20	1896	77	19256	160	11249	192	148894	709	2906	87
198	20	1733	2	19472	5	12035	5	159385	13	3086	3
200	20	2068	2	21681	5	13011	5	139506	12	3780	3
200	20	1559	2	18294	5	11242	5	147192	12	3012	3
206	20	2166	75	21586	164	14954	198	103062	542	3777	93
207	20	2157	2	23521	5	15204	5	95434	10	3822	3
208	20	1902	2	20031	5	11881	4	61728	8	3282	3
209	20	1969	2	21761	5	13804	5	68106	9	3629	3
210	20	2082	2	21072	5	13365	5	66587	9	3640	3
211 212	20	1973	2	20003 18565	5	12014	5	77008	9 9	3749	3 2
212	20	1993	2	21538	5	13911	5	86414	10	3848	3
214	20	1966	2	21681	5	13523	5	85209	10	3836	3
215	20	1951	2	20979	5	12900	5	76432	9	3734	3
216	20	1572	2	21634	5	10784	4	37972	7	2568	2

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
			[ppm]		[ppm]				[ppm]		[ppm]
217	20	1345	2	20625	5	8732	4	23857	5	1896	2
218	20	1439	2	22648	5	8804	4	15708	5	1771	2
219	20	1502	2	25038	5	8918	4	12549	4	1849	2
220	20	1787	2	20335	5	9747	4	12450	4	2076	2
222	20	1540	2	23751	5	10820	4	17374	5	2338	2
223	20	1923	2	23751	5	12226	4	40859	7	2977	3
224	20	1761	2	21383	5	11372	4	42743	7	3208	3
225	20	1496	2	20959	5	8912	4	24396	6	2418	2
226	20	1527	63	22084	160	10227	153	22360	234	2916	76
227	20	1809	2	24817	5	10266	4	20098	5	2595	2
228	20	1568	2	24568	5	10177	4	14809	5	2452	2
229	20	1494	2	23043	5	9870	4	20301	5	2048	2
231	20	2132	2	25083	5	12825	4	35687	7	3629	3
232	20	1994	70	24401	169	13507	174	40546	314	3722	89
233	20	1840	2	22008	5	13511	5	48586	8	3675	3
234	20	1951	2	21189	5	13253	5	45525	7	3849	3
235	20	1973	2	21826	5	13859	5	46572	8	4069	3
236	20	2021	2	22723	5	14307	5	53567	8	3943	3
237	20	2081	2	22144	5	13354	192	48390	8	4126	3
238	20	2230	73	22944	105	13758	5	44916	337	4157	32
235	20	1792	2	21433	5	11620	4	32300	6	3014	3
241	20	1906	2	22255	5	12161	4	36059	7	3225	3
242	20	1739	2	20519	5	12152	4	36572	7	3097	3
243	20	2379	2	24462	5	14565	5	58718	8	3824	3
244	20	1987	2	21963	5	12921	5	47240	7	3637	3
245	20	1800	2	21853	5	12229	4	33232	6	2958	3
246	20	1984	2	24992	5	12041	4	26711	6	3656	3
247	20	1681	2	24820	5	10062	4	12215	4	2178	2
249	20	2177	2	25410	5	12934	4	26946	6	3789	3
250	20	2043	2	23658	5	13743	5	38830	7	3995	3
251	20	1967	2	23408	5	13692	5	41477	7	4081	3
252	20	1621	2	21606	5	11786	4	39296	7	3426	3
253	20	1706	2	19814	5	11290	4	46347	7	3355	3
254	20	2159	2	22027	5	12878	5	58701	8	3984	3
255	20	2362	2	20605	5	13162	5	77396	8	3739	3
257	20	2718	2	26600	6	16576	5	68007	9	5015	3
258	20	2657	2	27559	6	16076	5	55285	8	4624	3
259	20	2289	2	26988	5	13617	4	27021	6	3792	3
260	20	2174	2	27263	5	12283	4	15662	5	3056	3
261	20	1794	2	27151	5	10593	4	14347	4	2650	2
262	20	2429	2	26362	5	14568	5	25021	6	4787	3
263	20	2467	76	27745	180	14979	183	31053	2//	4472	94
265	20	2490	2	25801	6	155601	5	67204	0 9	4225	3
266	20	2518	2	25460	5	15811	5	69154	9	4129	3
267	20	2506	2	26781	6	16261	5	70959	9	4302	3
268	20	2674	2	27835	6	16734	5	66993	9	4753	3
269	20	2754	2	27751	6	16601	5	70892	9	4518	3
270	20	2573	2	27416	6	16509	5	69397	9	4126	3
271	20	2477	2	27000	6	16096	5	66750	9	4521	3
272	20	2453	2	26095	5	15482	5	62421 57770	9	4286	3
273	20	2008	2	26249	5	15323	5	52045	ہ 8	4089	3
275	20	2142	2	24301	5	14034	5	44881	7	3808	3
276	20	2339	2	25474	5	15742	5	56125	8	4307	3
277	20	2265	2	23587	5	14518	5	48871	8	3856	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler [ppm]	Si [ppm] (10kV)	Si Fehler [ppm]	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler [ppm]	Ti [ppm] (10kV)	Ti Fehler [ppm]
278	20	2165	2	24286	5	14858	5	54627	8	3918	3
279	20	2285	2	25511	5	15345	5	60661	8	4256	3
280	20	2344	75	25246	174	15372	190	53158	370	4102	95
281	20	2516	2	27025	6	16824	5	58065	8	4283	3
282	20	2510	2	27577	6	16717	5	56613	8	4301	3
283	20	2506	2	27463	6	16038	5	53238	8	4108	3
284	20	2336	2	26095	5	14920	5	43561	7	3724	3
285	20	2184	2	23554	5	12120	5	20222	7	2724	3
200	20	2150	2	20170	5	1/63/	5	39232	7	1299	3
288	20	2430	2	26113	5	15825	5	37445	7	4700	3
289	20	2403	2	26643	6	16009	5	52050	8	4667	3
290	20	2572	2	26658	6	16705	5	55386	8	4714	3
291	20	2914	2	28615	6	17130	5	50085	8	4893	3
292	20	2684	2	28876	6	17708	5	51217	8	5084	3
293	20	2758	2	27971	6	16890	5	47377	8	5133	3
294	20	2993	2	29694	6	18077	5	48250	8	5152	3
295	20	2864	2	29286	6	17784	5	47421	8	5114	3
296	20	2868	2	29158	6	18103	5	46995	8	5155	3
297	20	2847	2	29119	6	17455	5	49371	8	4728	3
298	20	2915	3	29104	6	17437	5	531/1	8	4910	3
300	20	2870	3	29060	6	16691	5	69539	o Q	4024	3
301	20	2463	81	25466	178	15550	198	73695	454	3786	94
302	20	2593	2	27175	6	15864	5	76319	9	4053	3
303	20	2224	2	25480	5	14389	5	70693	9	3604	3
304	20	2308	2	25247	5	14892	5	79026	10	3735	3
309	20	3146	3	30754	6	18580	5	48131	8	5268	3
310	20	3213	3	29624	6	17405	5	54005	8	5177	3
311	20	3109	3	30646	6	18063	5	64645	9	5045	3
312	20	3251	3	31670	6	18400	5	67162	9	5112	3
313	20	2664	2	28473	6	16955	5	59483	8	4938	3
314	20	2977	3	30650	6	18079	5	58228	8	5165	3
315	20	3151	3	30229	6	1//6/	5	61195	9	4904	3
310	20	2930	3	29656	6	18095	5	64241	9	5203	3
318	20	2890	3	29494	6	17902	5	67821	9	5154	3
319	20	2836	3	28299	6	16915	5	61068	8	4985	3
320	20	2924	3	30512	6	18136	5	60400	8	4924	3
321	20	2996	3	29392	6	18183	5	55101	8	5292	3
322	20	2981	3	29920	6	18685	5	49751	8	5199	3
323	20	3127	3	30383	6	18076	5	50720	8	5326	3
324	20	2843	3	30291	6	18166	5	53982	8	5390	3
325	20	3221	3	30423	6	18720	5	57659	8	5257	3
326	20	3401	3	31777	6	18379	5	57197	8	5267	3
327	20	3206	3	30950	6	18135	5	52447	8	5344	3
320	20	2924	3	29470	6	17178	5	52803	0 8	4983	3
330	20	3207	3	31495	6	18698	5	59101	8	5104	3
331	20	3082	3	31271	6	18801	5	58006	8	5611	3
332	20	2632	2	28274	6	16824	5	54945	8	4712	3
333	20	2709	2	27505	6	17121	5	58048	8	4317	3
334	20	2532	81	26518	181	16065	197	57786	390	4218	95
335	20	2450	2	26588	6	15696	5	57610	8	4229	3
336	20	2595	2	26392	6	15254	5	49687	8	3886	3
337	20	2634	2	26661	6	15627	5	48484	8	4157	3
338	20	2188	2	24535	5	13921	5	38250	7	3831	3
339	20	2129	2	23320	5	12/96	4 F	31146	0 7	3452	3
340	20	2/30	2	20822	6	17/67	5	41968	7	4389 5026	3
342	20	3393	3	31446	6	18316	5	48405	8	5330	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
			[ppm]		[ppm]				[ppm]		[ppm]
343	20	3271	3	32035	6	18910	5	52118	8	5410	3
344	20	3239	3	31003	6	18344	5	54717	8	5257	3
345	20	3279	3	28083	6	16574	5	52714	8	4745 5421	3
347	20	3154	3	29708	6	17220	5	54136	8	5140	3
348	20	2610	2	27074	6	16603	5	55943	8	4491	3
349	20	2265	2	24681	5	14721	5	53264	8	4299	3
350	20	2301	2	24153	5	14130	5	49064	8	3662	3
351	20	2742	2	26837	6	15527	5	56789 48676	8	4249	3
352	20	2455	2	27285	6	14759	5	56749	° 8	4197	3
354	20	2700	2	27838	6	16583	5	59724	8	4362	3
355	20	2334	2	25850	5	13720	5	43826	7	3428	3
356	20	2069	2	25049	5	12778	4	37244	7	3135	3
357	20	2191	2	26538	5	12499	5	35176	7	3052	3
358	20	1703	2	23869	5	9750	4	21734	5	2169	2
359	20	1531	67	23413	5	9499	4	1//04	5	2122	2
361	20	1684	2	28392	6	10430	4	17465	5	2095	2
362	20	1936	2	29079	6	10965	4	16216	5	1925	2
363	20	1635	2	27855	6	10065	4	16574	5	1896	2
364	20	1584	2	24910	5	9832	4	15210	5	1679	2
365	20	1575	2	25788	5	9150	4	14654	4	2137	2
366	20	1709	2	25869	5	8647	4	13544	4	1989	2
367	20	1581	2	25572	5	8519	4	15055	4	2140	2
369	20	1586	2	25916	5	9939	4	17165	5	1904	2
370	20	1566	2	25261	5	9665	4	16072	5	2056	2
371	20	1522	63	24421	167	9140	145	16931	208	1726	66
372	20	1613	2	24786	5	8727	4	14932	4	1855	2
373	20	1480	2	24914	5	8733	4	13469	4	1523	2
374	20	1575	2	25514	5	9324	4	16614	5	1715	2
375	20	1580	2	25620	5	9480	4	15137	5	1962	2
377	20	1575	2	24846	5	10115	4	14174	4	1469	2
378	20	1461	2	24728	5	9220	4	15268	5	1835	2
379	20	1575	2	24830	5	8789	4	15884	5	1698	2
380	20	1627	2	25182	5	8531	4	16314	5	1948	2
381	20	1453	2	24502	5	8448	4	16387	5	1732	2
382	20	1423	2	23987	5	8702	4	17367	4	1928	2
384	20	1410	2	23415	5	7702	3	16108	5	1701	2
385	20	1304	2	22234	5	8060	4	15667	5	1491	2
386	20	1310	2	22940	5	7884	3	11058	4	1552	2
387	20	1430	2	22684	5	7440	4	12829	4	1348	2
388	20	1504	2	23403	5	8831	4	15517	5	1719	2
389	20	2139	2	23211	5	9666 14990	4	18275 45774	5	4360	2
391	20	3518	3	33242	6	19360	5	47414	8	5529	3
392	20	3318	3	31866	6	18672	5	54908	8	5065	3
393	20	3078	3	30946	6	17741	5	63943	9	5019	3
394	20	2982	3	27774	6	17151	5	70624	9	4404	3
395	20	2645	2	26706	6	15544	5	68112	9	4039	3
396	20	2762	3	28436	6	16143	5	59565	9	4441	3
398	20	3116	2	29663	6	17883	5	60362	ہ 8	4424	3
399	20	2975	3	29885	6	17582	5	55524	8	4736	3
400	20	3436	3	31982	6	17918	5	56097	8	4954	3
401	20	3200	3	31116	6	18001	5	54423	8	4859	3
402	20	2029	73	25964	175	11616	168	22898	247	2831	81
403	20	2071	2	24158	5	11782	4	21252	5	2883	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
			[ppm]		[ppm]				[ppm]		[ppm]
404	20	1588	2	24700	5	10400	4	15652	5	2208	2
405	20	2455	2	28055	6	13466	5	41407	7	3527	3
406	20	3293	3	31881	6	18795	5	55386	8	5344	3
407	20	2617	2	25388	5	14862	5	45572	7	4380	3
400	20	3192	3	31594	6	18504	5	76825	9	4924	3
413	20	3015	3	30914	6	18013	5	82397	10	4623	3
414	20	2963	3	30813	6	17507	5	76490	9	4868	3
415	20	2923	3	29915	6	17320	5	79901	10	4451	3
416	20	2805	2	27985	6	16123	5	77565	9	4568	3
417	20	2815	2	28349	6	16479	5	72548	9	4260	3
418	20	3095	3	30407	6	17230	5	74653	9	4908	3
419	20	2932	3	30514	6	1/25/	5	73074	9	4917	3
420	20	3030	3	20817	6	17011	5	75710	10	4804	3
421	20	2614	2	23817	6	15577	5	70733	9	4072	3
423	20	3019	3	29588	6	17409	5	76501	9	5010	3
424	20	3123	3	31276	6	17225	5	68983	9	5101	3
425	20	3572	3	32497	6	18371	5	64827	9	4915	3
426	20	3139	3	31798	6	17706	5	62579	9	4932	3
427	20	3251	3	31146	6	17904	5	59327	8	5167	3
428	20	2508	2	26569	5	14742	5	49804	8	4412	3
429	20	3067	2	30475	6	17224	5	45444	7	4915	3
430	20	3315	3	32108	6	17537	5	52936	8	4774	3
431	20	3140	3	31323	6	1/852	5	59151	8	5037	3
432	20	3040	3	32333	6	18222	5	66489	8 9	5084	3
434	20	3176	3	31157	6	16809	5	66049	9	5083	3
435	20	2861	3	31064	6	17953	5	64883	9	4858	3
436	20	3404	3	32269	6	18057	5	65195	9	5211	3
437	20	3421	3	31219	6	18133	5	66188	9	4983	3
438	20	3303	3	31778	6	18274	5	62156	9	5360	3
439	20										
440	20	3192	3	31617	6	18020	5	56210	8	5254	3
441	20	2835	2	28596	6	16354	5	54440	8	4700	3
442	20	2958	3	29370	6	16487	5	58414	8	4831	3
444	20	3295	3	31890	6	18005	5	60399	8	4867	3
445	20	3213	3	32153	6	18134	5	63083	9	5089	3
446	20	3462	3	32388	6	18735	5	71936	9	5105	3
447	20	2891	3	29667	6	16919	5	63708	9	4491	3
448	20	3001	2	29117	6	16792	5	58914	8	4571	3
449	20	2338	2	25988	5	13393	5	40470	7	3157	3
450	20	1654	66	22853	165	10174	154	34198	289	2408	73
451	20	2389	2	25753	5	13412	5	51414	8	3679	3
452	20	2581	2	2/301	b 102	18120	5	71564	9	4358	3
454	20	2914	76	24826	173	14477	187	53716	365	4373	90
455	20	2644	2	26769	6	15695	5	56843	8	4350	3
456	20	2468	2	25116	5	14122	5	48811	8	3900	3
457	20	2500	2	27180	6	14698	5	55870	8	4118	3
458	20	2916	3	29802	6	17205	5	78778	10	4819	3
459	20	2856	3	28589	6	16272	5	72499	9	4217	3
460	20	2548	80	27105	181	16545	197	75219	440	4263	96
461	20	3002	3	30381	6	17544	5	58737	8	5139	3
462	20	2770	2	2/197	6	15819	5	4/259	8	4/98	3
463	20	3145	3	30142	6	19581	5	40/48	ð 7	4937	3
465	20	3348	3	32934	6	19195	5	43755	, 7	5806	3
466	20	3262	3	31440	6	17639	5	53134	8	5081	3
467	20	2802	2	29025	6	16960	5	59906	8	4842	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
			[ppm]		[ppm]				[ppm]		[ppm]
468	20	3168	3	31759	6	18462	5	68429	9	5186	3
469	20	2930	3	28539	6	16311	5	63068	9	4/16	3
470	20	2801	2	27820	6	15958	5	62202	8	4639	3
471	20	2037	2	26529	5	10385	5	59/3/	9	4041	3
472	20	2303	3	31094	6	17598	5	68974	9	5021	3
474	20	2815	83	28467	187	16461	198	65025	411	4553	97
475	20	2902	3	29823	6	16705	5	68135	9	4912	3
476	20	3024	3	28532	6	16668	5	67521	9	4841	3
477	20	2721	2	27738	6	16509	5	62947	9	4621	3
478	20	2795	3	28235	6	16955	5	72221	9	4835	3
479	20	3003	3	28619	6	16481	5	76840	9	4866	3
480	20	3013	3	29290	6	16850	5	75446	9	4924	3
481	20	3041	3	31200	6	17849	5	74887	9	5468	3
482	20	2977	3	28363	6	16477	5	67864	9	4894	3
483	20	2792	3	28729	6	16945	5	68110	9	5113	3
484	20	2633	2	26950	6	15165	5	56803	8	4422	3
485	20	2736	2	26827	6	15263	5	59484	8	4363	3
486	20	2872	2	28578	6	16621	5	65183	9	4830	3
487	20	2860	3	29140	6	1/350	5	/3816	9 10	4920	3
400	20	2950	3	28555	6	16967	5	191/0	10	4005	3
409	20	2337	3	26355	6	16292	5	67115	9	4694	3
490	20	3062	2	20172	6	10292	5	77518	10	4371	3
492	20	2740	2	27141	6	16327	5	67998	9	4587	3
493	20	2470	2	26661	6	15444	5	62377	9	4129	3
494	20	2652	2	27074	6	16175	5	71143	9	4140	3
495	20	2888	3	28750	6	17493	5	72184	9	4660	3
496	20	3183	3	30297	6	18345	5	65852	9	5171	3
497	20	3025	3	29779	6	17748	5	70218	9	4907	3
498	20	2881	2	27981	6	16185	5	58282	8	4579	3
499	20	3231	3	31312	6	18023	5	60030	8	5060	3
500	20	3371	3	31901	6	18491	5	54827	8	5416	3
501	20	3329	3	31564	6	18872	5	52506	8	5652	3
502	20	3451	3	31206	6	17653	5	58350	8	5366	3
503	20	3195	84	30307	189	17842	199	56630	372	4907	100
504	20	3355	3	31098	6	18224	5	54171	8	5311	3
505	20	2956	2	29432	6	16/23	5	45110	/	4782	3
506	20	3281	3	31461	6	18012	5	50214	8	5342	3
507	20	2097	2	21154	6	17720	5	55127	0	5126	2
508	20	3135	3	29350	6	16594	5	48980	8	4752	3
510	20	3261	3	30657	6	17937	5	51645	8	5252	3
515	20	2649	2	27217	6	16547	5	66721	9	4680	3
516	20	2630	2	26843	6	16312	5	63326	9	4633	3
517	20	2511	2	27571	6	16745	5	64575	9	4755	3
518	20	2640	2	27101	6	16100	5	57569	8	4659	3
519	20	2507	2	26940	6	15805	5	54121	8	4252	3
520	20	2041	2	22372	5	12707	5	45114	7	3631	3
521	20	2548	2	26825	6	15845	5	58018	8	4555	3
522	20	2495	2	26555	6	15625	5	56183	8	4479	3
523	20	2700	2	28083	6	17039	5	61680	9	5052	3
524	20	2769	3	28379	6	17766	5	62433	9	4996	3
525	20	2617	2	26556	6	16800	5	52267	8	4796	3
526	20	2686	2	27742	6	17240	5	54187	8	5050	3
527	20	2651	2	26202	6	16335	5	53912	8	4636	3
528	20	2014	2	20/35	6	17210	5	55851 60105	ð	4819	3
520	20	2022	2 2	26362	6	16271	5	50255	3 Q	4937	2
530	20	2430	2	23154	5	13644	5	39042	7	3820	3
532	20	1863	69	22361	163	11656	165	27541	262	3171	82

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
			[ppm]		[ppm]				[ppm]		[ppm]
533	20	1752	2	22820	5	11199	4	26642	6	2726	2
534	20	1676	2	23840	5	9174	4	1/55/	5	2335	2
535	20	1666	2	24723	5	9021	4	27524	5	1915	2
530	20	2/35	2	25095	5	10291	5	63/12	0 Q	2720	2
538	20	2433	74	22562	167	15664	193	54730	378	4418	97
539	20	2108	2	22985	5	15366	5	55657	8	4253	3
540	20	2053	2	22158	5	15505	5	49602	8	4423	3
541	20	2191	2	24237	5	14234	5	41514	7	3998	3
542	20	1976	2	24873	5	11388	4	23354	6	2799	3
543	20	1749	2	22927	5	11429	4	31209	6	2750	2
544	20	1644	2	20745	5	9479	4	22683	5	2386	2
545	20	1690	63	22620	162	8216	141	19401	222	2061	70
546	20	1811	2	22266	5	10853	4	29708	6	2809	3
547	20	2340	2	23816	5	13637	5	48387	8	3954	3
548	20	2362	2	25480	5	14705	5	54916	8	4357	3
549	20	2321	2	25675	5	15583	5	60435	8	4297	3
550	20	2370	2	24373	5	13476	5	50898	8	3729	3
551	20	2466	2	25802	5	14936	5	54718	8	4526	3
552	20	2770	3	2/3//	6	16702	5	62050	9	4991	3
553	20	2019	2	27505	6	16271	5	62050	9	4/10	3
554	20	2037	2	27602	19/	15708	100	62052	9 405	4434	3
556	20	2905	3	27095	6	16023	199	62177	405 9	4554	33
557	20	2603	2	27543	6	16394	5	58272	8	4560	3
558	20	2797	2	27220	6	15945	5	53005	8	4609	3
559	20	2850	82	28822	186	16576	197	57297	383	4607	97
560	20	2316	2	25300	5	14763	5	42510	7	4005	3
561	20	2096	2	23777	5	12078	4	44938	7	3731	3
562	20	2329	76	25487	176	13983	183	50929	360	4042	92
563	20	2504	2	25810	5	16407	5	52706	8	4800	3
564	20	2876	3	28374	6	17219	5	66774	9	5036	3
565	20	2590	2	25867	6	15788	5	66330	9	4722	3
566	20	2550	3	26851	6	15885	5	73862	9	4590	3
567	20	2684	3	28355	6	16981	5	72997	9	5128	3
568	20	2737	2	28105	6	16382	5	64186	9	4611	3
569	20	2971	3	28397	6	16397	5	64013	9	4785	3
570	20	2543	2	26191	5	14969	5	57348	8	4505	3
5/1	20	2960	84	29227	188	1/505	200	65479	407	5068 40E1	203
572	20	2950	2	27714	6	16481	5	68261	9	4931	2
574	20	2300	2	27652	6	16266	5	64498	9	4830	3
575	20	2706	2	26553	6	15065	5	61880	9	4284	3
576	20	2668	3	27652	6	15556	5	66862	9	4409	3
577	20	2555	81	26342	180	15540	198	67631	432	4036	95
578	20	2870	3	28244	6	16292	5	70493	9	4783	3
579	20	2688	3	26828	6	15822	5	66415	9	4524	3
580	20	2570	2	26771	6	15620	5	63096	9	4371	3
581	20	2835	3	28056	6	16588	5	60982	9	4551	3
582	20	2881	3	28425	6	16459	5	57203	8	4531	3
583	20	2832	3	28209	6	16413	5	61346	9	4412	3
584	20	2870	3	28659	6	16582	5	67060	9	4505	3
585	20	2767	3	27543	6	16356	5	68761	9	4266	3
586	20	2404	2	25751	5	14480	5	56571	8	3911	3
587	20	2709	2	27097	6	15/44	5	55303	8	4484	3
588	20	2496	2	27093	6	15827	5	55135	ð	4465	3
589	20	2003	2	2/453	5	13222	5	20931 47724	ð g	4204	3
590	20	2337	2	24301	6	15/223	5	5/156	ی و	<u></u> ⊿507	2
592	20	2516	2	26459	6	16338	5	63776	9	4600	3
593	20	2301	2	24936	5	15179	5	65048	9	4519	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
			[ppm]		[ppm]				[ppm]		[ppm]
594	20	2555	2	25580	5	15563	5	68200	9	4250	3
595	20	2568	2	26896	6	16021	5	70916	9	4607	3
596	20	2404	2	24841	5	14006	5	63756	9	4377	3
598	20	2509	2	26306	6	15154	5	58387	8	4543	3
599	20	3028	3	30097	6	17690	5	50723	8	5111	3
600	20	2835	2	28680	6	16853	5	47417	8	4992	3
601	20	2998	2	29263	6	16744	5	41544	7	5212	3
602	20	2857	3	28833	6	16701	5	42963	7	5151	3
603	20	3059	3	30109	6	17508	5	47585	8	5340	3
604	20	3138	3	30263	6	17754	5	51272	8	5305	3
605	20	3303	2	28008	6	16893	5	55844 64062	8	4941 5247	3
607	20	3290	3	30719	6	17996	5	62117	9	5279	3
608	20	3308	3	31275	6	17902	5	63541	9	5433	3
609	20	3137	3	31264	6	18509	5	62709	9	5444	3
610	20	3231	3	31689	6	18428	5	61224	9	5316	3
611	20	2128	2	22194	5	12762	5	45293	7	3956	3
612	20	2262	2	23666	5	14220	5	52616	8	4090	3
613	20	2413	2	25192	5	14695	5	53463	8	4411	3
614	20	2952	2	28444	6	15905	5	58965	8	4735	3
618	20	3234	3	33388	6	20174	5	37984	7	6236	3
619	20	3399	3	32467	6	19651	5	36760	7	5951	3
621	20	2861	3	27950	6	16730	5	59289	8	4792	3
622	20	2996	85	29714	190	17063	206	61774	403	4671	100
623	20	3349	3	31495	6	18700	5	61215	9	5075	3
624	20	3401	3	32235	6	19328	5	55313	8	5508	3
625	20	3201	3	30986	6	18195	5	63327	9	4941	3
626	20	3290	3	31187	6	18843	5	62622	9	5461	3
627	20	2997	3	29423	6	17607	5	56570	8	4957	3
628	20	2937	2	28027	6	16404	5	54208	8	4675	3
629	20	2965	3	28638	6	1/151	5	58275	8	4944	3
631	20	2002	3	27725	6	16706	5	58390	0 8	4097	3
632	20	2792	3	28711	6	16882	5	62752	9	4759	3
633	20	2800	2	27361	6	16636	5	66835	9	4644	3
634	20	2421	2	25383	5	14805	5	65194	9	4466	3
635	20	2388	2	26057	6	15201	5	63848	9	4221	3
636	20	2409	2	26506	6	16342	5	65360	9	4333	3
637	20	2804	2	28275	6	16832	5	64913	9	4887	3
638	20	3034	3	29681	6	17742	5	58983	8	5044	3
640	20	2901	3	29207	6	1/4/5	5	52524	0 9	4947	3
641	20	2331	78	26339	177	15411	192	53561	367	4733	95
642	20	2626	2	26194	5	15287	5	56316	8	4142	3
643	20	2834	2	29144	6	16871	5	65857	9	4784	3
644	20	2879	3	27884	6	16075	5	57364	8	4567	3
645	20	2498	2	25046	5	13904	5	50591	8	3711	3
646	20	2324	2	24426	5	13329	5	49368	8	3575	3
647	20	2633	2	26677	5	15046	5	49323	8	4491	3
648	20	3072	84	29308	187	1/033	198 F	54150	373	4/38	98
650	20	3243	3	31029	6	17502	5	59422	ð 9	51//	3
651	20	2935	2	27463	6	16137	5	59351	8	4314	3
652	20	2425	76	24296	171	14248	187	55639	379	3938	92
653	20	2810	3	28928	6	16488	5	61110	9	4690	3
654	20	2778	2	26684	6	15384	5	59858	8	4663	3
655	20	2590	2	26825	6	15517	5	52271	8	4604	3
656	20	2955	3	29784	6	17250	5	58291	8	4667	3
657	20	2876	3	29478	6	16979	5	57241	8	4793	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler Innml	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
			[bbiii]		[ppiii]		_		[bbiii]	10.00	[bbiii]
658	20	2553	2	26488	5	14680	5	50507	8	4265	3
659	20	2484	2	25988	5	15330	5	48748	8	4516	3
660	20	2795	2	27582	6	10393	5	39886	7	4784	3
662	20	2022	2	20778	5	11125	4	20220	6	2762	3
663	20	2022	2	24743	5	10577	4	25821	6	2703	2
664	20	2000	2	27033	6	11860	4	25854	6	2563	2
665	20	1978	2	28240	6	10797	4	18571	5	2368	2
666	20	2754	2	28134	6	14966	5	27904	6	4584	3
667	20	2452	77	26116	176	15566	191	28636	271	4584	96
668	20	1572	2	21269	5	8519	4	14899	5	2137	2
669	20	2286	2	26015	5	14614	5	45258	7	3963	3
670	20	3096	3	30092	6	18493	5	60643	8	4995	3
671	20	3163	3	31499	6	18018	5	64050	9	5059	3
672	20	3166	3	29995	6	17080	5	67108	9	4747	3
673	20	2638	2	26840	6	15244	5	56833	8	4168	3
674	20	2955	3	29778	6	17810	5	62572	9	4970	3
675	20	2477	76	24525	172	14687	191	52779	366	4301	92
676	20	2657	2	26327	5	15340	5	54333	8	4725	3
677	20	2917	2	27883	6	16762	5	63606	9	4464	3
678	20	2979	3	29553	6	18005	5	62671	9	5110	3
679	20	3161	3	30478	6	18562	5	64973	9	5305	3
680	20	3174	3	30924	6	18510	5	65906	9	5208	3
681	20	2876	2	27154	6	15956	5	64565	9	4400	3
682	20	3026	3	28846	6	16869	5	63742	9	4842	3
683	20	2671	2	27072	6	16184	5	58165	8	4375	3
684	20	2692	2	28133	6	16872	5	64896	9	4823	3
685	20	2632	2	27419	6	16695	5	65260	9	4648	3
686	20	2994	3	29495	6	17732	5	66924	9	5080	3
687	20	3001	3	29839	6	17649	5	66025	9	5198	3
688	20	2826	3	28756	6	16937	5	58393	8	4/14	3
689	20	3108	3	30125	6	17707	5	66521	9	5245	3
690	20	2663	2	26818	6	15848	5	56624	8	4522	3
691	20	3007	3	29030	0	17207	5	57087	°	5221	3
692	20	2975	3	29609	0	17340	206	62028	9	5308	3 104
694	20	3013	85	29717	189	17740	200	66001	407	5141	104
695	20	2875	3	28781	6	16900	5	66902	9	4818	3
696	20	2688	2	27965	6	16136	5	65351	9	4667	3
697	20	1679	2	21249	5	10454	4	32418	6	3233	3
698	20	2568	2	26305	6	15545	5	50748	8	4409	3
699	20	2752	82	27234	183	16517	197	61271	394	4626	98
700	20	2932	3	28743	6	17588	5	65644	9	5037	3
701	20	2827	3	28300	6	16960	5	63070	9	5125	3
702	20	2377	2	25478	5	15682	5	59120	8	4384	3
703	20	2853	3	29357	6	17533	5	66482	9	4954	3
704	20	2788	2	28469	6	17089	5	64181	9	4958	3
705	20	3042	3	30345	6	18084	5	67205	9	4981	3
706	20	2861	3	29495	6	17945	5	65869	9	5062	3
707	20	2928	3	29691	6	17980	5	63685	9	5047	3
708	20	3093	88	31082	195	18532	211	66673	422	5308	104
709	20	2775	2	28189	6	16180	5	60861	9	4869	3
710	20	2962	3	29622	6	17934	5	57796	8	5357	3
711	20	2784	2	27938	6	16378	5	48647	8	4583	3
712	20	2919	3	29302	6	17066	5	58804	8	5018	3
713	20	2816	3	28224	6	17150	5	60934	8	4676	3
714	20	3125	3	31250	6	18085	5	62451 70356	9	5037	3
721	20	3205	3	30164	6	1//0/	5	70256	9	5225	3
722	20	2950	3	29250	6	17520	5	63926	9	4849	3
723	20	2398	3	21200	0 6	17710	5	70071	9	4952	3
/24	20	5280	3	21300	0	1//10	5	10011	9	4932	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
			[ppm]		[ppm]				[ppm]		[ppm]
725	20	3320	3	33007	6	18613	5	76670	9	5085	3
726	20	3146	3	32160	6	18371	5	66783	9	4752	3
727	20	3440	3	32502	6	18638	5	66417	9	5006	3
728	20	3541	3	33683	6	18851	5	56495 58630	9	5286	3
729	20	3290	3	32923	6	19609	5	58/31	0 8	5360	3
730	20	3748	3	34933	6	19009	5	60481	9	5242	3
732	20	3528	88	33493	200	18942	205	60816	386	5242	103
733	20	3383	3	33012	6	18560	5	57114	8	5333	3
734	20	3076	3	31312	6	17276	5	56055	8	4894	3
735	20	3527	3	32022	6	18175	5	57559	8	5118	3
736	20	3684	3	34907	6	19427	5	58644	8	5459	3
737	20	3760	3	34033	6	18834	5	55370	8	5322	3
738	20	3361	86	32867	197	18028	198	52019	356	5265	99
739	20	3419	3	32787	6	17904	5	54566	8	4920	3
740	20	3231	3	32362	6	18152	5	56344	8	5034	3
741	20	3352	3	33495	6	18684	5	55735	8	5233	3
742	20	3250	3	31284	6	17254	5	53085	8	4853	3
743	20	3315	3	32272	6	18040	5	53328	8	5239	3
744	20	3237	3	31129	0 10/	17862	5	53801	8 367	4934	3 100
745	20	31/9	3	31924	194	17866	198	56674	302 8	5063	3
740	20	3157	3	29892	6	16973	5	54686	8	4913	3
748	20	3265	86	31199	193	17324	204	55193	375	4726	100
749	20	2937	3	30066	6	16407	5	52069	8	4574	3
750	20	2993	3	29568	6	16507	5	53290	8	4734	3
751	20	2592	2	26385	5	15592	5	45050	7	4451	3
752	20	2350	2	25459	5	14105	5	36769	7	4178	3
753	20	3191	3	30835	6	17490	5	43110	7	5300	3
754	20	3117	3	30161	6	17440	5	47966	8	5103	3
755	20	3306	3	30435	6	17654	5	48960	8	5033	3
756	20	3145	3	29623	6	17670	5	51298	8	5340	3
757	20	2815	2	26886	6	15653	5	46163	8	4808	3
758	20	2934	2	28941	6	16983	5	41324	7	5054	3
759	20	2973	3	29965	6	16604	5	46410	8	4977	3
760	20	3001	3	30375	6	17801	5	52921	0 0	5191	3
762	20	2942	2	29005	6	17141	5	507/8	0 8	4952 5247	3
763	20	3095	3	28807	6	17243	5	51180	8	5025	3
764	20	2745	2	26714	6	15969	5	43769	7	4887	3
765	20	2922	2	27931	6	16104	5	47285	8	4790	3
766	20	2929	2	27718	6	16207	5	47299	8	4846	3
767	20	2547	2	27699	6	16382	5	49052	8	4699	3
768	20	2834	3	28226	6	15897	5	59301	8	4622	3
769	20	3059	3	29739	6	17083	5	57376	8	5017	3
770	20	2812	2	27659	6	16160	5	51531	8	4789	3
771	20	2952	3	28741	6	17413	5	55318	8	4945	3
772	20	2880	2	27232	6	16141	5	53431	8	4767	3
773	20	2901	2	28570	6	16258	5	56958	8	4726	3
774	20	2907	3	28//9	6	15/19	5	59549	8	5050	3
776	20	2940	2	27005	6	17707	5	6501/	ہ ۵	4328	3
777	20	2983	2	29292	6	17391	5	59574	8	4981	3
778	20	3098	3	29697	6	17480	5	55635	8	5119	3
779	20	3078	3	28919	6	16847	5	54537	8	5299	3
780	20	2885	2	28868	6	16364	5	58400	8	4695	3
781	20	2756	2	27012	6	15581	5	54059	8	4435	3
782	20	2951	3	29289	6	17077	5	60262	8	4946	3
783	20	2849	3	28720	6	17048	5	60479	9	4946	3
784	20	2934	3	28554	6	16704	5	61006	9	5063	3
785	20	2685	3	27215	6	16664	5	61243	9	5035	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
			[ppm]		[ppm]				[ppm]		[ppm]
786	20	2641	2	25995	5	15259	5	57098	8	4534	3
787	20	2870	3	28645	6	16718	5	62857	9	4662	3
788	20	3052	3 85	28305	ь 187	16743	203	58525	9 396	4649	3 100
790	20	2761	3	27954	6	16447	5	56289	8	5133	3
791	20	2839	3	27325	6	16025	5	57818	8	4967	3
792	20	2980	3	28116	6	16471	5	59097	8	4865	3
793	20	2766	2	26920	6	16361	5	59030	8	4911	3
794	20	3065	3	28612	6	17549	5	60355	8	5093	3
795	20	2047	2	25974	5	16942	5	64354	0 9	4002	3
797	20	3213	3	29785	6	18168	5	63555	9	5107	3
798	20	2835	3	26666	6	16178	5	60449	9	4793	3
799	20	3001	3	27374	6	16329	5	61515	9	5118	3
800	20	2801	2	26797	6	16333	5	59884	8	4793	3
801	20	3090	3	28598	6	17148	5	58553	8	4889	3
802	20	2762	2	27534	6	16437	5	57559	8	4867	3
803	20	2930	3	29037	6	17597	5	63086	9	5012	3
805	20	2801	3	27860	6	17037	5	64668	9	4764	3
806	20	2743	3	27158	6	16204	5	65189	9	4646	3
807	20	2650	2	25933	6	16283	5	64192	9	4561	3
808	20	2901	3	26865	6	15963	5	64132	9	4496	3
809	20	2927	3	28177	6	16858	5	66163	9	4959	3
810 911	20	2809	3	28387	0 195	17450	202	67420	9	4991	3
812	20	2701	3	27377	6	16871	5	71973	9	4685	3
813	20	2385	2	23995	5	15085	5	61383	9	4200	3
814	20	2575	2	26667	6	16460	5	60768	8	4615	3
815	20	2705	3	27184	6	16184	5	63193	9	4277	3
816	20	2629	2	24793	5	14400	5	57736	8	4147	3
817	20	2679	2	27211	6	15832	5	64285	9	4436	3
825	20	1411	2	21316	4 5	10797	4	28140	6	2773	2
826	20	2097	2	23103	5	13077	5	44346	7	3769	3
827	20	2184	2	23345	5	13436	5	43817	7	3799	3
828	20	1628	2	20336	5	10254	4	31285	6	2623	3
829	20	1763	2	20000	5	11306	4	40654	7	3241	3
830	20	2248	2	22895	5	13681	5	46418	8	3993	3
832	20	2303	2	22439	5	15157	5	65319	0 9	4443	3
833	20	2406	2	25199	5	15910	5	66555	9	4529	3
834	20	2290	2	24458	5	14594	5	67676	9	4407	3
835	20	2133	2	22590	5	13455	5	57181	8	3799	3
836	20	2193	76	23351	170	13681	186	58027	392	3882	92
837	20	2261	2	23043	5	13134	5 10 <i>6</i>	54526	8	3532	3
839	20	2430	2	25547	5	15834	5	56835	384 8	4359	3
840	20	2543	2	25391	5	16877	5	59899	8	4704	3
841	20	2154	2	22717	5	14260	5	57121	8	4087	3
842	20	2335	2	24617	5	14460	5	58734	8	4198	3
843	20	2542	2	25680	5	15854	5	56947	8	4440	3
844	20	2367	2	25671	5	14867	5	51184	8	4338	3
845	20	2243	2	24183	5	13303	5	49696 38761	8 7	3913	3
847	20	2235	2	24226	5	15472	5	51138	8	4304	3
848	20	1767	2	20165	5	12795	5	46953	8	3956	3
849	20	2102	2	22831	5	13665	5	47436	8	4087	3
850	20	2412	2	25401	5	14873	5	54106	8	4206	3
851	20	2649	81	26481	180	16297	202	62805	412	4526	98
852	20	2678	2	26108	5	15260	5	54899	8	4295	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler (ppm)	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
		, ,	[ppm]	, ,	[ppm]	(,		()	[ppm]	, ,	[ppm]
853	20	2643	2	26930	6	16397	5	54111	8	4272	3
854	20	2648	2	26983	6	15891	5	55743	8	4498	3
856	20	2577	2	24696	5	14979	5	58785	8	4153	3
857	20	2750	3	26745	6	16113	5	62262	9	4684	3
858	20	2908	3	28987	6	17386	5	69353	9	4855	3
859	20	2931	3	28429	6	16533	5	68708	9	4544	3
860	20	2744	3	28847	6	17263	5	73103	9	4660	3
861	20	2794	3	27491	6	16150	5	73245	9	4594	3
862	20	2607	2	26938	6	16363	5	70390	9	4643	3
863	20	2881	3	26912	6	16180	5	69585	9	4329	3
864	20	2775	2	27950	6	16572	5	69533	9	4463	3
865	20	3179	3	29583	6	17850	5	69587	9	5022	3
866	20	2/11	80	27625	183	15707	192	57513	381	4406	96
868	20	2838	3	27806	6	16398	5	69126	9	4708	3
869	20	2938	3	28541	6	16659	5	77230	10	4749	3
870	20	2881	3	28452	6	17100	5	74456	9	4768	3
871	20	2971	3	29452	6	17581	5	73372	9	5037	3
872	20	3081	3	29507	6	17726	5	71654	9	5146	3
873	20	3115	3	29526	6	17199	5	77697	10	5183	3
874	20	2821	82	27625	183	17173	200	67025	412	4939	100
875	20	2871	81	27157	181	16401	197	66285	409	4950	101
876	20	3109	3	28246	6	17271	5	70341	9	4976	3
877	20	2927	3	29386	6	16915	5	71626	9	5013	3
878	20	2792	3	28305	6	16941	5	72532	9	4835	3
879	20	2033	3	28619	6	17739	5	66960	9	4844	3
881	20	2859	3	27152	6	16483	5	53853	8	4931	3
882	20	3090	3	28815	6	17050	5	56392	8	5055	3
883	20	2931	3	29886	6	17381	5	64000	9	4880	3
884	20	2957	3	28337	6	16877	5	71920	9	4721	3
885	20	2868	3	28554	6	17072	5	77563	9	4809	3
886	20	2768	3	27543	6	16675	5	82691	10	4742	3
887	20	2609	2	26302	6	14817	5	64306	9	4393	3
888	20	2980	85	27951	185	17223	206	76859	458	4531	101
889	20	2570	2	26881	6	15874	5	74635	9	4513	3
890	20	2240	2	24733	5	14275	5	52570	0 0	3832	3
892	20	1754	2	27616	6	9251	4	17939	5	1954	2
893	20	1655	2	25549	5	8060	4	18886	5	1683	2
894	20	1795	2	28666	6	9493	4	19255	5	1681	2
895	20	1882	2	27949	6	9917	4	17975	5	1946	2
896	20	2160	2	28198	6	12151	4	33798	6	3238	3
897	20	2233	2	26044	5	11328	4	36460	7	3001	3
898	20	1767	2	22389	5	10419	4	37170	7	3007	3
899	20	2678	2	27074	6	16226	5	63373	9	4579	3
900	20	3214	3	30490	6	18322	5	54946	9	5419	3
901	20	3545	3	32155	6	18533	5	72485	9	5282	3
903	20	3230	3	31093	6	17188	5	68843	9	4959	3
904	20	3194	3	30411	6	17351	5	69241	9	4837	3
905	20	3108	3	30637	6	17150	5	64744	9	4946	3
906	20	3237	3	30840	6	18061	5	63892	9	4919	3
907	20	3311	3	31683	6	17803	5	68686	9	5299	3
908	20	3268	3	31871	6	18340	5	65482	9	5287	3
909	20	3098	3	30985	6	17726	5	68214	9	4850	3
910	20	3034	3	29250	6	17774	5	62718	9	5129	3
911	20	3045	3	29745	6	17859	5	64689	9	4866	3
912	20	3060	3	29976	6	18226	5	62214	9	5302	3
913	20	3293	3	31485	6	1/9/3	5	64227	9	5442	3

Tiefe [cm]	Messzeit	Al [ppm]	Al	Si [ppm]	Si	K [ppm]	K Fehler	Ca [ppm]	Ca Foblor	Ti [ppm]	Ti Fablar
	[sec]	(10KV)	[ppm]	(10KV)	[ppm]	(10KV)	[bbui]	(10KV)	[ppm]	(10KV)	[ppm]
914	20	3257	3	30350	6	18074	5	61670	9	4792	3
915	20	3236	3	29840	6	17504	5	61643	9	5018	3
916	20	3264	3	31489	6	18504	5	63719	9	4928	3
917	20	2935	84	29530	188	17363	203	60468	398	4705	100
918	20	2930	85	28273	186	16560	202	58194	394	4617	100
919	20	2931	3	28190	6	16752	5	58545	8	4872	3
920	20	2799	3	27676	6	15563	5	59477	8	4629	3
927	20	2041	2 71	21127	5	11094	4	50059	8	3279	3
929	20	2734	2	21232	5	14309	5	57708	330	3772	3
930	20	2600	2	25090	5	13882	5	49920	8	4351	3
931	20	2818	2	26834	6	15452	5	53489	8	4507	3
932	20	2627	2	26056	6	15214	5	53596	8	4472	3
933	20	2470	2	24738	5	14074	5	42657	7	4208	3
934	20	2218	2	24179	5	12658	4	41649	7	3963	3
935	20	2798	3	28901	6	15751	5	53811	8	4368	3
936	20	3130	3	29999	6	16340	5	59577	8	4378	3
937	20	3245	3	30452	6	17157	5	65831	9	4739	3
938	20	3153	3	31056	6	1/542	5	68765	9	4695	3
939	20	2629	3	29792	6	15389	5	60123	9	4458	3
941	20	2574	2	25491	5	14149	5	56263	8	4104	3
942	20	2590	2	25663	5	13566	5	57038	8	4124	3
943	20	2890	3	28390	6	16692	5	61204	8	4414	3
944	20	2537	2	27842	6	15951	5	59376	8	4326	3
945	20	3029	3	29817	6	16781	5	66070	9	4786	3
946	20	3103	3	28544	6	16276	5	68741	9	4294	3
947	20	2767	2	26783	6	15830	5	69577	9	4564	3
948	20	2168	2	22669	5	13343	5	55797	8	3934	3
950	20	2315	2	24488	5	15335	5	/1236	9	4471	3
951	20	2100	2	22407	5	14294	5	67627	9	4206	2
953	20	2456	2	24254	5	14303	5	67202	9	4401	3
954	20	2363	2	24218	5	14395	5	65540	9	4319	3
955	20	2308	2	24686	5	15225	5	70630	9	4444	3
956	20	2623	2	25282	5	15951	5	63201	9	4682	3
957	20	2680	2	26673	6	16884	5	66686	9	4691	3
958	20	2718	2	26090	6	15935	5	68326	9	4579	3
959	20	2567	81	25534	178	15372	198	66005	418	4540	98
960	20	2586	2	24248	5	15255	5	68///	9	4692	3
962	20	1951	2	23300	5	13818	5	59023	9	4362	3
963	20	1799	2	20417	5	13232	5	56740	8	4250	3
964	20	2067	2	21262	5	13812	5	60993	8	4402	3
965	20	2231	2	22667	5	14047	5	63526	9	4027	3
966	20	2388	2	23823	5	14790	5	65489	9	4356	3
967	20	2161	2	23059	5	14591	5	61759	9	4509	3
968	20	2003	2	21586	5	14003	5	59041	8	4327	3
969	20	2503	2	24224	5	15036	5	58315	8	4650	3
970	20	2624	2	25431	5	14881	5	54574	8	4660	3
972	20	2610	2	20304	5	15832	5	57676	0 8	4391	3 2
973	20	2704	2	25216	5	15531	5	59285	8	4368	3
974	20	2196	2	22986	5	14366	5	58206	8	4206	3
975	20	2409	2	25204	5	15602	5	66509	9	4588	3
976	20	1742	68	22365	164	11444	166	37056	307	3029	82
977	20	2127	2	23692	5	13218	5	37797	7	3852	3
978	20	2369	2	25606	5	13581	5	40431	7	3747	3
979	20	2795	2	28067	6	16053	5	51242	8	4742	3
980	20	2679	2	28042	6	17386	5	47402	8	4900	3
981	20	2349	2	24750	5	14844	5	53048	8	4217	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
			[ppm]		[ppm]				[ppm]		[ppm]
982	20	2150	2	23063	5	13143	5	49521	8	3556	3
983	20	2130	2	22900	5	12835	5	45571	/	3606	3
984	20	2172	2	22872	5	13483	5	46219	/	3562	3
986	20	2037	2	23399	5	12127	5	38/35	7	A216	3
987	20	2932	2	27264	6	16019	5	46727	8	5140	3
988	20	2560	2	25255	5	14761	5	67868	9	4582	3
989	20	2785	2	27449	6	15431	5	66297	9	4753	3
990	20	2487	2	24903	5	14954	5	59878	8	4368	3
991	20	2755	2	26912	6	15461	5	67861	9	4611	3
992	20	2737	2	27890	6	16021	5	72433	9	4700	3
993	20	2663	2	26498	6	15449	5	66367	9	4250	3
994	20	2719	2	26757	6	15209	5	63609	9	4161	3
995	20	2502	2	25790	5	14746	5	59197	8	4294	3
996	20	2533	2	26779	6	14726	5	58659	8	4232	3
997	20	2432	2	25958	5	14645	5	55942	8	4406	3
998	20	2657	2	28020	6	15871	5	59830	8	4558	3
999	20	3088	3	29463	6	16805	5	60987	9	4935	3
1000	20	3075	3	29976	6	1/383	5	58448	8	5120	3
1001	20	2706	2	28024	6	15904	5	52078	8	4506	3
1002	20	2655	2	265/2	0 F	10204	5	54292	ð	448/	3
1003	20	2015	2	25854	5	14409	5	77524	0	3920	3
1004	20	2640	3	27435	6	15521	5	78402	9 10	4313	3
1005	20	2985	3	29481	6	17212	5	68866	9	4822	3
1007	20	3048	3	29253	6	16844	5	68968	9	4699	3
1008	20	3259	3	30277	6	17743	5	71636	9	4848	3
1009	20	3368	3	29865	6	18118	5	63944	9	5055	3
1010	20	2651	2	26393	6	15408	5	57092	8	4568	3
1011	20	2495	2	25347	5	15244	5	54107	8	4656	3
1012	20	2495	2	26297	6	15264	5	49930	8	3877	3
1013	20	2672	2	26965	6	16282	5	52583	8	4415	3
1014	20	2657	2	27602	6	16490	5	56734	8	5011	3
1015	20	2607	2	26958	6	16170	5	62560	9	4634	3
1016	20	2463	2	25066	5	15251	5	62563	9	4642	3
1032	20	2011	70	23268	166	11461	163	36775	301	3616	87
1033	20	1862	2	26430	5	11173	4	38006	7	3074	3
1034	20	1558	2	21/93	5	10034	4	26139	6	3207	3
1035	20	1880	2	21839	5	11909	4	36417	/	3/3/	3
1030	20	2011	2	20708	5	14624	5	67528	9	4315	2
1037	20	2430	2	25868	5	13781	5	54648	8	3610	3
1039	20	2692	2	28651	6	15072	5	52210	8	4256	3
1040	20	2446	2	27034	6	14182	5	38202	7	3983	3
1041	20	2950	2	28590	6	15301	5	42853	7	4669	3
1042	20	3233	3	31214	6	18309	5	54164	8	5495	3
1043	20	3121	3	29265	6	17352	5	50455	8	5231	3
1044	20	2410	2	26031	5	15657	5	40975	7	4297	3
1045	20	2176	71	25217	172	12062	163	32485	279	3407	84
1046	20	1908	2	22549	5	11356	4	31508	6	2932	3
1047	20	1618	2	22395	5	8425	4	24502	5	2299	2
1048	20	1481	62	24163	167	7437	133	26441	250	1715	67
1049	20	1118	2	18821	5	7530	3	40118	7	1696	2
1050	20	1138	2	21391	5	7395	3	31291	6	1733	2
1051	20	1271	2	21506	5	8223	4	29444	6	1968	2
1052	20	1604	65	24313	169	8220	137	24070	240	2021	/2
1053	20	1/15	2	24792	5	9013	4	27829	0 271	2077	2
1054	20	1720	66	20407	172	9423 8007	1/17	19/60	2/1	2033	60
1055	20	2197	2	25257	5	12609	4	45186	7	3671	3
1057	20	2564	2	25573	5	15712	5	86607	10	4216	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler [ppm]	Si [ppm] (10kV)	Si Fehler [ppm]	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler [ppm]	Ti [ppm] (10kV)	Ti Fehler [ppm]
1058	20	2462	2	26402	6	15782	5	94196	10	4475	2
1058	20	2402	3	26829	6	16141	5	98340	10	4473	3
1060	20	2685	2	26737	6	15955	5	93851	10	4247	3
1061	20	2500	2	25379	5	15431	5	89417	10	4342	3
1062	20	2277	2	25069	5	14689	5	59236	8	4023	3
1063	20	2481	2	26181	5	14470	5	44130	7	3839	3
1064	20	2512	2	27661	6	14004	5	43503	7	4076	3
1065	20	2357	2	25319	5	14526	5	83904	10	3626	3
1065	20	2488	2	25138	5	14201	5	95761	10	3647	3
1068	20	2303	2	27336	6	15338	5	93386	10	4181	3
1069	20	2912	3	27595	6	15550	5	102201	10	4256	3
1070	20	2551	3	26123	6	14818	5	104350	11	3998	3
1071	20	2999	3	27720	6	15694	5	97369	11	4464	3
1072	20	2340	2	25597	5	14341	5	73266	9	3951	3
1073	20	2992	3	28752	6	16555	5	81418	10	4508	3
1074	20	2970	3	27628	6	16307	5	89473	10	4528	3
1075	20	2726	3	27340	6	15747	5	89161	10	4123	3
1076	20	2585	2	26452	6	15437	5	87646	10	4169	3
1077	20	2903	3	27696	6	16058	5	92195	10	4289	3
1078	20	2095	3	27820	6	15/12	5	88677	10	4094	3
1075	20	2759	3	27543	6	15732	5	92195	10	4188	3
1081	20	2583	3	27240	6	16012	5	94832	10	4198	3
1082	20	2818	2	26855	6	15606	5	88616	10	3960	3
1083	20	2681	2	27252	6	15493	5	86614	10	4119	3
1084	20	2635	3	27403	6	15920	5	90230	10	4405	3
1085	20	2763	3	27186	6	15235	5	88787	10	4235	3
1086	20	2857	3	27828	6	15529	5	70839	9	4317	3
1087	20	2943	3	29534	6	15720	5	54872	8	4999	3
1088	20	2277	2	2/46/	6	13352	4	29206	6	3212	3
1089	20	2464	2	28435	6	12645	4	26484	б 7	3457	3
1090	20	3248	3	29970	6	16827	5	48831	8	4966	3
1092	20	3301	3	30846	6	17829	5	58274	8	4946	3
1093	20	3665	3	32678	6	18608	5	60991	9	5263	3
1094	20	3280	3	32663	6	18057	5	63802	9	4957	3
1095	20	2540	2	26107	5	13556	5	63338	9	3888	3
1096	20	2550	2	27987	6	15086	5	85854	10	4014	3
1097	20	2879	3	28826	6	16714	5	118046	12	4201	3
1098	20	2779	3	27852	6	15964	5	104291	11	4326	3
1099	20	2018	3	20982	5	12051	5	98340 81452	10	3900	3
1100	20	2723	3	26976	6	15370	5	88059	10	4304	3
1102	20	2869	3	28491	6	16336	5	85899	10	4177	3
1103	20	3084	3	29548	6	16453	5	82755	10	4615	3
1104	20	2870	3	28224	6	15629	5	75377	9	4451	3
1105	20	2344	76	25655	176	13340	178	55127	370	3466	89
1106	20	2730	2	27314	6	15610	5	67228	9	4772	3
1107	20	3128	3	30518	6	17227	5	67620	9	5019	3
1108	20	3448	3	32404	6	18134	5	66556	9	5332	3
1109	20	3330	3	31320	6	17706	5	02043 50207	9 9	5243	3
1110	20	2886	2	27288	6	15352	5	52534	8	4614	3
1112	20	3123	85	29778	189	16489	195	56264	375	5008	100
1113	20	3041	3	28519	6	16068	5	52969	8	4953	3
1114	20	2523	2	26579	6	14360	5	42702	7	4396	3
1115	20	1911	2	22807	5	11688	4	30956	6	3231	3
1116	20	1319	2	18305	5	8436	4	19168	5	2215	2
1117	20	1313	2	16782	4	8744	4	21981	5	2548	3
1118	20	1258	58	17665	145	7566	136	20273	226	2048	74

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
			[ppm]		[ppm]			, - , ,	[ppm]		[ppm]
1119	20	2098	2	21931	5	13357	4	38204	7	3744	3
1120	20	2383	2	23957	5	15317	5	52919	8	4557	3
1121	20	1959	2	22005	5	11609	5 4	48551 37357	ہ 7	4321 3250	3 3
1123	20	1673	2	24700	5	9018	4	20457	5	2053	2
1124	20	1514	2	24472	5	9246	4	23054	5	2202	2
1125	20	1910	2	27000	5	9908	4	22216	5	2281	2
1126	20	1901	2	27096	5	9988	4	18000	5	1805	2
1127	20	1540	2	22846	5	8019	4	16536	5	1666	2
1128	20	1380	2	23074	5	8360	4	13259	4	1455	2
1129	20	1456	2	21745	5	8292	3	17255	5	1836	2
1133	20	2420 1859	2	23500	5	14414	5	39350	10	4050 2654	3
1134	20	1855	2	25925	5	10744	4	34761	6	2944	2
1136	20	2084	2	28930	6	11562	4	33916	6	3460	3
1137	20	1975	2	26469	5	10658	4	30628	6	2652	2
1138	20	1826	2	21881	5	11016	4	40093	7	3167	3
1139	20	2456	2	24104	5	14390	5	68031	9	4414	3
1140	20	2302	2	24640	5	14441	5	68639	9	4341	3
1141	20	2644	3	26677	6	16171	5	68129	9	4873	3
1142	20	2729	2	27061	6	15580	5	61980	9	4661	3
1143	20	2920	3	28163	6	16199	5	71/96	9	491/	3
1144	20	2929	3	29400	6	1/30/	5 5	63522	9	5477	3
1146	20	2404	2	28079	6	13183	5	41538	7	4471	3
1147	20	2803	2	28355	6	15385	5	54590	8	5060	3
1148	20	2823	3	28561	6	16182	5	61995	9	5020	3
1149	20	2197	2	21187	5	12563	4	36048	7	3547	3
1150	20	2022	2	21140	5	11445	4	31744	6	2938	3
1151	20	1991	2	22759	5	11181	4	35873	7	2603	2
1152	20	1948	68	25077	170	10466	153	23862	245	2170	73
1153	20	2113	2	27684	6	10522	4	22219	5	3012	2
1154	20	1990	b/ ۲	25585	1/2 5	10899	154	27432	257 5	2728	/o 2
1155	20	1904	2	24300	5	9792	4	22303	5	2240	2
1157	20	2030	2	27782	6	10841	4	23223	5	2923	2
1158	20	2185	2	28794	6	11464	4	22818	5	3089	2
1159	20	2011	2	26653	5	11766	4	25683	6	2992	2
1160	20	2010	2	26606	5	11154	4	35327	7	2946	2
1161	20	1942	2	24994	5	11371	4	35940	7	3152	3
1162	20	2232	2	29352	6	12738	4	34548	7	2908	3
1163	20	2436	2	33480	6	13561	4	28611	6	3088	3
1164	20	2382	2	32049	6	13003	3	39332	0 7	3698	3
1166	20	2502	2	26648	5	14279	5	49635	8	4395	3
1167	20	2951	3	29936	6	17460	5	79373	10	4640	3
1168	20	3546	89	32511	196	18869	208	77096	442	5165	104
1169	20	3305	3	32160	6	18213	5	74862	9	5264	3
1170	20	3342	3	31647	6	17850	5	86386	10	4781	3
1171	20	2931	3	29822	6	16424	5	65172	9	4852	3
1172	20	2581	2	27835	6	13799	4	3/210	/	3682	3
1173	20	3139	3	30414	6	14781	5	54952	9	4730	3
1174	20	2685	2	27227	6	16076	5	64063	9	4102	3
1176	20	3477	3	32149	6	18773	5	79853	10	4705	3
1177	20	3455	3	32587	6	19343	5	77433	10	4930	3
1178	20	3633	90	32623	198	18701	210	70218	432	4902	100
1179	20	3540	3	31982	6	18385	5	67443	9	4797	3
1180	20	3689	3	33394	6	19886	5	74023	9	5192	3
1181	20	2053	2	20747	5	13638	5	61957	9	3838	3
1182	20	1985	71	20116	157	13066	190	60301	407	3872	90
Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
------------	-------------------	--------------------	--------------	--------------------	--------------	-------------------	-------------------	--------------------	--------------	--------------------	--------------
			[ppm]		[ppm]			1	[ppm]		[ppm]
1183	20	3423	3	31410	6	18224	5	77085	9	4971	3
1184	20	2811	2	28646	6	13870	5	44235	7	3654	3
1185	20	2075	2	29252	5	12717	5	47455	8 8	3037	3
1187	20	2858	- 3	27967	6	15811	5	93117	10	4097	3
1188	20	2863	3	28657	6	16246	5	95777	10	4127	3
1189	20	2740	3	28447	6	16007	5	89197	10	4061	3
1190	20	2896	2	28091	6	15423	5	85316	10	4393	3
1191	20	3313	3	30023	6	16376	5	86604	10	4620	3
1192	20	2374	2	27131	6	13560	5	55295	8	3476	3
1193	20	2887	2	28641	6	14681	5	67754	9	3608	3
1194	20	3399	3	32241	5	17611	5	55920	10	2496	3
1196	20	3093	3	29474	6	16666	5	69064	9	4361	3
1197	20	3484	3	32331	6	17919	5	75125	9	4646	3
1198	20	3117	3	30443	6	17176	5	73645	9	4693	3
1199	20	3246	3	31203	6	17859	5	71316	9	4357	3
1200	20	3656	3	33980	6	18801	5	73502	9	4906	3
1201	20	3659	3	33691	6	18874	5	72397	9	5185	3
1202	20	3639	3	33943	6	19619	5	72960	9	5062	3
1203	20	3628	90	33322	199	18438	212	71737	436	5006	100
1204	20	2430	2	26159	5	13401	5	48254	8	3772	3
1205	20	3546	90	32655	0 198	18528	5 210	74946	9	4384 5088	3 102
1200	20	3397	3	32340	6	19016	5	75141	9	4990	3
1208	20	3233	3	31605	6	17706	5	72000	9	5042	3
1209	20	3473	3	33196	6	19423	5	77076	9	5120	3
1210	20	3521	3	33111	6	18678	5	72085	9	5061	3
1211	20	2840	2	28030	6	15815	5	59322	8	4456	3
1212	20	3029	3	30025	6	17682	5	62373	9	4724	3
1213	20	3320	3	31775	6	18661	5	57682	8	5261	3
1214	20	3195	3	31173	6	17712	5	64103	9	5144	3
1215	20	3424	3	32701	6	18635	5	61251	9	5114	3
1217	20	3412	3	31620	6	17923	5	59017	8	4779	3
1218	20	2743	2	28225	6	14603	5	42506	7	3764	3
1219	20	3002	83	30017	188	16548	195	52002	364	4618	96
1220	20	2855	2	28459	6	15921	5	48567	8	4602	3
1221	20	3183	3	30487	6	16882	5	55201	8	4565	3
1222	20	3191	85	31946	194	18331	201	60362	384	5165	99
1223	20	3340	2	32051	6	10388	5	57155	0 8	4095	3
1225	20	2616	2	29136	6	14569	5	47116	8	3963	3
1226	20	2741	2	29331	6	15212	5	48830	8	4024	3
1227	20	2559	2	28185	6	13973	5	46583	7	3733	3
1228	20	2351	2	27874	6	13252	5	40847	7	3372	3
1229	20	2090	2	22911	5	12310	4	53633	8	3444	3
1230	20	1938	2	20194	5	11061	4	59628	8	3337	3
1236	20	2501	2	25711	5	14750	5	6/200	9	4037	3
1237	20	2451	3	26289	6	15362	193	91960	469	4030	33
1230	20	2874	3	27738	6	16138	5	89501	10	4409	3
1240	20	3098	3	28849	6	16864	5	87930	10	4421	3
1241	20	3101	3	29780	6	16858	5	82832	10	4515	3
1242	20	2929	3	28619	6	16613	5	80730	10	4432	3
1243	20	2974	84	29147	188	16781	199	77307	446	4461	95
1244	20	2647	3	28337	6	15472	5	65613	9	4274	3
1245	20	2634	2	26340	5	14282	5	63254	9	3832	3
1246	20	2858	3	2/507	6	15440	5	65465	9	41/5	3
1247	20	3137	3	29374	6	16668	5	54867	3	4728	3

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler	Si [ppm] (10kV)	Si Fehler	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler	Ti [ppm] (10kV)	Ti Fehler
			[ppm]		[ppm]				[ppm]		[ppm]
1249	20	3227	3	30560	6	17273	5	69577	9	4630	3
1250	20	2694	2	26454	6	14547	5	73714	9	3878	3
1251	20	2607	80	26394	179	14911	190	84070 02781	4/1	4025	92
1252	20	2691	3	26320	6	1/1871	5	7/871	10	4280	3
1253	20	2031	2	20413	5	14015	5	70275	9	3701	3
1255	20	2918	3	27804	6	15858	5	84617	10	4033	3
1256	20	2408	2	25509	5	14279	5	77919	9	3693	3
1257	20	2826	2	29133	6	16478	5	80293	10	4345	3
1258	20	2639	2	27629	6	15538	5	89168	10	4108	3
1259	20	2329	2	24276	5	13138	5	57060	8	3435	3
1260	20	2757	3	27786	6	16125	5	70183	9	4146	3
1261	20	2366	2	25516	5	14319	5	81971	10	3635	3
1262	20	2603	2	25440	5	14314	5	85457	10	3583	3
1263	20	2408	3	26572	6	15340	5	98500	11	3890	3
1264	20	2289	2	24611	5	13824	5	77590	9	3611	3
1265	20	2331	80	26359	181	14628	192	84076	478	3723	92
1266	20	2/31	3	27/16	6	16101	5	95658	10	4257	3
1267	20	2347	2	25465	5	13743	5	/3303	y o	3623	3
1268	20	21/0/	2	20902	5	12764	4	52576 67225	8	3182	3
1209	20	2145	2	23100	5	12078	3	41260	3	2520	3
1270	20	2144	2	24337	6	1/63/	4 5	41300	7	3973	3
1271	20	2325	2	27515	6	12645	4	27255	6	3112	3
1273	20	2202	2	25022	5	11842	4	29600	6	3373	3
1274	20	1585	62	20496	155	8743	141	20366	220	2551	72
1275	20	1863	2	22974	5	10895	4	23858	5	2606	2
1276	20	1798	2	22647	5	10072	4	23509	5	2549	2
1277	20	1784	2	22113	5	10464	4	22238	5	2580	2
1278	20	1859	67	22431	163	9906	158	23515	243	2776	78
1279	20	1899	2	23426	5	10921	4	26330	6	2951	3
1280	20	1901	2	23038	5	11016	4	28101	6	3259	3
1281	20	1898	2	24396	5	11172	4	28486	6	2781	2
1282	20	1953	2	23524	5	11572	4	40297	7	3326	3
1283	20	2074	2	22674	5	12304	4	52275	8	3303	3
1284	20	1924	2	22935	5	12303	4	55676	8	3004	3
1285	20	1897	2	24943	5	10747	4	26620	6	2673	2
1285	20	2007	2	24339	5	11377	4	26363	6	2/36	3
1288	20	1820	2	24145	5	10122	4	20408	5	2291	2
1289	20	1830	2	22233	5	11033	4	23371	6	2840	2
1290	20	1743	2	23766	5	9938	4	18775	5	2178	2
1291	20	1821	66	24363	168	10166	149	16353	204	2000	69
1292	20	1785	2	23741	5	10258	4	13857	4	1965	2
1293	20	1699	2	25313	5	9711	4	12751	4	1761	2
1294	20	1786	2	26480	5	9419	4	11503	4	1573	2
1295	20	1765	2	25967	5	9871	4	12835	4	1648	2
1296	20	1715	2	26072	5	9641	4	11858	4	1708	2
1297	20	1632	2	25063	5	9447	4	12522	4	1952	2
1298	20	1841	2	26329	5	10338	4	13325	4	1867	2
1299	20	1554	64	24515	168	8439	142	11950	184	1595	65
1300	20	1880	2	26746	5	9639	4	15551	5	1977	2
1301	20	1913	2	2/425	5	9819	4	14534	4	2539	2
1302	20	1811	2	26296	5	9626	4	12221	4	2096	2
1303	20	1601	2	20524	5 171	9008	4	11590	4	1207	2 64
1304	20	178/	205	23423	5	0U3U 3111	140	12280	102	150/	04 2
1305	20	1874	2	20305	5	9324	4	12764	4	1723	2
1307	20	1703	2	26685	5	9518	4	12951	4	2093	2
1308	20	1710	2	25999	5	8814	4	12111	4	1999	2
1309	20	1552	2	25688	5	8609	4	13245	4	1828	2

Tiefe [cm]	Messzeit [sec]	Al [ppm] (10kV)	Al Fehler [ppm]	Si [ppm] (10kV)	Si Fehler [ppm]	K [ppm] (10kV)	K Fehler [ppm]	Ca [ppm] (10kV)	Ca Fehler [ppm]	Ti [ppm] (10kV)	Ti Fehler [ppm]
1310	20	1764	2	25555	5	8884	4	12923	4	1601	2
1311	20	2963	3	28805	6	17132	5	77503	10	4316	3
1312	20	2729	83	26978	182	16142	200	82787	473	4027	96
1313	20	2674	3	26989	6	16011	5	84849	10	4047	3
1314	20	2792	2	26945	6	14923	5	70273	9	3798	3
1315	20	2124	2	26004	5	11905	4	41830	7	2938	3
1316	20	2363	2	27232	6	13608	5	38038	7	3853	3
1317	20	2560	2	26139	5	14167	5	50575	8	3956	3
1318	20	2718	2	26718	6	14863	5	75087	9	4170	3
1319	20	2304	2	27346	6	12573	4	39141	7	3059	3
1320	20	2167	2	26491	6	13229	5	50289	8	3243	3
1321	20	1950	2	26642	5	11245	4	30787	6	2766	2
1322	20	2116	73	26409	176	11202	162	27735	267	2447	77
1323	20	2091	2	25785	5	11326	4	22221	5	2582	2
1324	20	1995	71	29064	183	10944	158	17238	215	2169	73
1325	20	2185	2	27524	6	11621	4	17049	5	2516	2
1326	20	1961	2	30207	6	10983	4	14394	4	1754	2
1327	20	1890	2	29850	6	11561	4	12744	4	1835	2
1328	20	2618	2	29121	6	15214	5	49950	8	3792	3
1329	20	2883	3	28097	6	16812	5	78876	10	4557	3
1330	20	2911	3	27966	6	16295	5	78334	10	4239	3
1331	20	2671	3	27950	6	16201	5	76382	9	4601	3
1332	20	2540	2	26908	6	14879	5	69945	9	4339	3
1333	20	2795	3	27810	6	15727	5	72929	9	4324	3
1334	20	2638	2	26674	6	15898	5	74189	9	4337	3
1335	20	1943	2	22459	5	12857	5	53885	8	3410	3

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
28	20	1322	3	47047	7	430	64	5225	79	1207	117
29	20	1054	3	48180	8	581	63	5678	82	1177	115
30	20	887 932	2	39880	7	510	61	53/3	80	971	111
32	20	1054	2	38943	7	444	59	5261	73	840	107
33	20	1310	3	46286	7	433	62	5866	83	998	113
34	20	1350	3	51339	8	433	63	6487	87	932	118
35	20	1340	3	47176	7	367	58	5884	82	1022	112
36	20	1281	3	49760	8	413	62	6303	85	934	116
37	20	1384	3	48152	8	380	60	6275	85	939	113
38	20	1346	3	50232	8	529	62	6678	87	1087	116
39	20	/39	3	48921	8	427	62	6437	87	968	114
40	20	1112	3	46754	0 8	395	64	6328	86	1105	111
42	20	998	3	47795	8	442	60	6469	86	1100	113
43	20	1157	3	46329	7	415	64	6500	87	993	115
44	20	1037	3	47318	7	512	62	6144	84	963	110
45	20	736	3	47460	7	398	60	6166	85	1025	114
46	20	1075	3	47166	7	363	62	6322	86	1240	116
47	20	1197	3	48871	8	496	65	6333	86	1056	115
48	20	818	3	50452	8	493	49	6298	85	919	93
49	20	1171	3	49424	8	506	65	6736	88	917	114
50	20	966	211	481/5	560 °	200	65	6628	8/	1068	120
52	20	1199	3	49802	8	343	64	6223	85	990	117
53	20	757	3	47346	7	394	61	6241	85	1165	114
54	20	852	3	36362	7	386	60	8086	96	688	111
55	20	1174	3	38752	7	446	62	7716	93	1064	116
56	20	1085	3	37007	7	399	61	7719	94	907	114
57	20	854	3	39779	7	358	63	7003	90	952	116
58	20	1009	3	41827	7	388	65	6442	87	1046	117
59	20	920	3	40604	7	419	66	6663	89	1244	119
60	20	1206	3	42971	7	486	64	6521	87	846	115
62	20	1209	3	42230	7	405	64	6403	80	913	115
63	20	999	3	43560	7	415	63	6086	84	1064	115
64	20	1041	3	46699	7	456	67	5815	84	1147	118
65	20	1211	3	47103	8	387	65	5323	81	1305	121
66	20	1185	3	50799	8	428	67	4921	76	1215	120
67	20	1218	3	51563	8	474	69	4901	77	1271	121
68	20	923	3	46227	7	515	65	5086	77	1219	117
69	20	620	3	43872	7	512	63 65	4941	77	1072	114
70	20	1208	3	43540	7	415	66	4940	77	12/2	115
72	20	862	3	50269	8	480	64	5128	78	1184	115
73	20	853	3	52019	8	475	68	4657	76	908	115
74	20	717	3	46167	7	535	65	4230	72	1035	111
75	20	538	3	42059	7	419	61	4894	77	843	111
76	20	1078	3	39516	7	471	61	4877	75	931	111
77	20	905	3	40905	7	496	59	4915	77	973	108
78	20	1140	3	44186	7	464	61	5557	80	960	110
79	20	931	3	42485	7	489	63 61	5398	8U 70	1057	115
81	20	1000	3	48374	, 8	404	62	5811	82	1009	117
82	20	877	3	47471	8	358	62	7858	95	967	118
83	20	953	3	39435	7	439	63	10776	110	1097	126
84	20	1006	3	44365	7	400	63	5448	80	1125	118
85	20	782	3	48748	8	352	64	3714	68	1148	113
86	20	795	3	52995	8	443	69	3361	64	1224	117
87	20	1099	3	55078	8	643	72	3578	67	1278	123
88	20	730	3	59257	8	707	66	2735	60	1305	118

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
89	20	604	3	51164	8	482	68	3845	70	1247	119
90	20	805	3	40948	7	367	62 65	5466	80	1008	114
91	20	493	3	42196	7	473	67	3922	75	/34 1227	116
93	20	663	198	36951	448	404	65	3844	69	978	110
94	20	603	3	49349	8	455	65	3473	66	1187	115
95	20	915	3	56666	8	539	64	3831	69	1070	117
96	20	1218	3	46128	7	438	63	6280	86	938	118
97	20	849	207	39364	491	419	59	7380	91	905	114
98	20	1039	2	30002	506	347	57	8881 4270	99 71	596 828	110
100	20	830	3	41336	7	416	63	4989	71	1245	114
103	20	688	2	33494	6	486	58	3991	69	925	102
104	20	961	2	42344	7	518	61	4783	75	1153	109
105	20	922	2	43565	7	404	63	4826	76	956	112
106	20	1140	2	40949	7	423	62	5416	80	1018	113
107	20	8//	2	39860	/	464	63	4903	76	1223	116
108	20	974 1076	3	50395	8	500	62	5706	82	1039	110
110	20	1152	3	48804	8	463	62	6191	85	1015	113
111	20	1041	3	47483	7	455	60	5544	81	1012	114
112	20	996	3	47627	8	509	64	3984	70	1143	113
113	20	799	3	50292	8	562	67	3155	63	1433	119
114	20	1141	3	51620	8	514	65	3736	69	1217	117
115	20	6//	3	3/286	/	292	64 50	5144	/8	1082	118
110	20	935	3	41841	7	365	60	4466	74	913	110
118	20	1373	3	41117	7	312	61	8500	98	810	118
119	20	1169	3	29457	6	321	61	11851	114	678	122
120	20	1041	3	31775	6	395	60	8929	101	781	118
121	20	996	3	36040	7	381	62	11916	115	757	122
122	20	895	198	30820	419	324	60 56	13938	124	606	122
123	20	888	2	29585	6	308	56	10900	113	580	115
125	20	1018	3	31597	6	431	62	12548	118	833	123
126	20	760	3	33297	6	380	59	11158	111	586	116
127	20	1022	3	35768	7	372	65	8112	96	851	118
128	20	847	3	41641	7	402	62	7961	96	1054	117
129	20	1235	3	44624	7	569	67	7172	92	1141	122
130	20	795	3	40383	7	345 444	55 65	5058	96 78	504 1176	111
131	20	1011	3	35849	7	366	63	4982	70	962	114
133	20	670	3	41365	7	482	62	4826	76	1131	112
134	20	842	3	38939	7	390	61	6174	85	785	113
135	20	912	201	32192	417	222	59	7620	93	645	112
136	20	599	3	36732	7	421	61	5848	82	904	112
137	20	690	3	36069	7	330	59 61	3391	71 66	915	108
139	20	427	2	35226	7	330	63	3434	66	928	114
140	20	467	2	38635	7	273	62	3154	64	909	111
141	20	883	3	40862	7	460	66	3159	64	1081	112
142	20	819	3	49599	8	392	65	3169	64	994	113
143	20	694	3	44655	7	380	61	3726	68	808	110
144	20	495 684	2	31644	6	311	57	4310 4612	72	812	107
145	20	782	2	33370	6	347	61	4895	76	770	111
147	20	1359	3	43238	7	456	63	5694	82	1114	115
148	20	924	3	45366	7	385	65	6840	89	910	119
149	20	1026	3	42776	7	317	63	7339	92	1146	119
150	20	1294	3	39326	7	392	62	8000	96	1191	119
151	20	913	3	35377	7	362	62	9937	106	763	118

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
152	20	834	3	31534	6	421	62	10627	109	1240	124
153	20	900	3	38659	7	405	63	7148	91	1072	118
154	20	991 836	3	33489	6	421	62	12314	117	979 704	124
155	20	1202	3	38156	7	275	60	9488	103	924	122
157	20	942	3	35666	7	516	62	7667	94	825	115
158	20	973	3	38059	7	419	66	6332	86	1212	118
159	20	1092	3	34945	7	405	63	4963	77	979	112
160	20	759	3	38269	7	410	64	4867	77	875	113
161	20	1115	3	41881	7	473	65	4856	77	1065	115
162	20	1165	3	49339	8	463	68	4800	77	1305	120
163	20	922	3	53910	8	600	70	5190	79	1336	121
165	20	919	3	37088	7	4/1	64	8399	98	1004	120
165	20	1209	3	42333	7	555	64	5633	81	696	116
167	20	1193	3	37493	7	325	61	5890	84	752	112
168	20	968	3	32908	6	355	62	6170	85	807	115
169	20	1053	3	34318	6	299	61	6403	87	702	115
170	20	1189	3	38981	7	361	62	8213	96	937	121
171	20	1415	3	36651	7	336	62	10103	107	679	117
172	20	1070	3	32975	6	348	59	12510	117	785	123
173	20	1068	3	39070	7	429	65	9682	105	1185	124
174	20	1301	3	40300	/	385	60	5231	79	875	112
175	20	716	3	41211	7	354	67	4195	71	970	114
170	20	955	3	46547	7	416	64	3989	71	1160	117
178	20	1073	208	45352	494	468	66	3964	70	1015	114
179	20	1081	3	37817	7	452	63	4203	71	988	112
180	20	944	3	41738	7	370	62	3921	70	1169	115
181	20	1049	3	37618	7	442	63	3881	69	948	114
182	20	1117	3	48583	8	430	63	3472	66	1141	117
183	20	1178	3	49301	8	477	66	3993	70	1164	121
184	20	1073	3	41513	7	335	63	4607	76	1109	113
185	20	763	3	37/92	7	413	64	4813	76	1110	110
187	20	923	3	34638	6	353	62	4964	73	1007	115
188	20	1136	3	46577	7	348	64	5101	78	1127	118
189	20	1304	3	54559	8	530	64	5414	79	1466	125
190	20	1071	3	50039	8	447	63	5772	82	1242	119
191	20	995	3	49031	8	404	64	6082	84	1045	119
192	20	1321	3	40129	7	357	64	6616	88	1436	119
193	20	847	2	33588	6	497	63	6135	85	1334	119
194	20	1100	3	44952 E2E91	/	487	63	6426	80	1189	118
195	20	1379	3	55362	8	517	65	5527	81	1283	123
197	20	798	205	39732	494	294	59	5858	83	1020	113
198	20	1354	3	41552	7	470	60	5836	83	1073	113
199	20	881	3	45763	7	499	63	5704	82	1127	114
200	20	1309	3	47190	7	447	63	6419	86	1253	117
201	20	1155	3	41639	7	399	61	7845	94	1093	116
206	20	1060	207	51781	563	442	65	4784	75	1249	114
207	20	1085	3	20711	8	658	68 71	4669	/5 _0	1366	120
208	20	1163	2	73300	7	521	67	3867	60	1272	124
210	20	1231	3	41190	7	640	64	3975	70	1056	116
211	20	990	3	44487	7	495	62	3967	69	1189	113
212	20	924	3	44112	7	406	58	3711	67	750	104
213	20	1040	3	48458	8	544	62	4046	70	1036	114
214	20	1264	3	45396	7	513	63	3974	69	1323	116
215	20	731	3	43232	7	423	66	4039	71	1379	118
216	20	1035	2	27900	6	475	68	3658	68	1041	116

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
	[500]	(1000)	[ppm]	(1000)	[ppm]	(50117)	[ppm]	(50117)	[ppm]	(50117)	[ppm]
217	20	3	2	22757	5	473	68	3209	65	898	114
218	20	481	2	19670	5	482	67	3109	63	803	111
219	20	695	2	17465	5	539	67	2879	62	934	111
220	20	568	2	14951	5	557	64	3240	63	818	108
221	20	49 277	2	19836	5	413	65	3063	64	11/6	110
222	20	277	2	23488	6	504	68	3208	69	1201	117
223	20	755	2	34220	6	565	67	35/5	67	1003	115
225	20	387	2	24515	6	557	63	2870	60	984	113
226	20	705	170	26700	444	384	70	3107	64	983	116
227	20	268	2	25825	6	539	66	3190	63	1121	116
228	20	448	2	21198	5	578	66	3161	64	1051	115
229	20	517	2	21962	5	532	65	2998	62	1012	112
230	20	431	2	24791	6	566	66	2794	60	1030	120
231	20	999	2	35361	7	502	68	3271	65	1322	121
232	20	870	200	37606	486	546	64	3027	63	1077	115
233	20	688	3	41961	7	531	65	2848	60	1158	116
234	20	816	3	43737	7	538	65	2766	61	1548	121
235	20	1002	3	46112	7	643	72	3097	64	1398	120
236	20	912	3	46372	7	561	69	3118	63	1456	127
237	20	1019	3	46860	7	522	69	2727	60	1223	120
238	20	861	206	46257	557	552	67	2820	61	1294	118
239	20	698	3	45722	7	558	67	3096	63	1216	121
240	20	509	2	32338	6	610	68	2897	61	1298	116
241	20	705	2	35361	7	584	/1	2861	62	963	117
242	20	009	2	35070	/ 8	507	67	2704	50	974	110
243	20	812	3	49219	7	540	67	2035	61	1184	112
245	20	472	2	36792	7	436	66	2841	62	1279	117
246	20	50	2	36709	7	598	72	3076	64	1128	119
247	20	235	2	22951	5	547	69	2890	62	1020	116
248	20	-47	2	22105	5	588	64	2690	59	610	111
249	20	680	3	36725	7	607	71	2886	62	1267	120
250	20	508	3	42489	7	516	70	2936	62	1247	122
251	20	735	3	45644	7	526	69	3205	64	1111	116
252	20	761	3	36237	7	613	69	3233	64	1104	118
253	20	735	3	38815	7	440	63	2910	61	1030	110
254	20	951	3	45324	7	569	66	2952	62	1078	119
255	20	858	3	42132	7	513	64	3182	64	992	112
256	20	1475	3	50811	8	495	69	3631	68	1429	121
257	20	1371	3	53938	8	550	72	3522	67	1683	125
258	20	1482 027	3	26050	8	623	70	3057	64	1455	124
255	20	627	3	20844	6	494 572	71 60	2021	62	1257	124
260	20	321	2	29844	6	573	67	2831	61	1301	125
262	20	899	3	46580	7	693	71	2523	58	1687	130
263	20	547	208	46097	568	587	71	3133	64	1674	127
264	20	1286	3	47870	8	561	69	3483	67	1481	122
265	20	1219	3	49663	8	590	67	3981	70	1364	120
266	20	1425	3	45913	7	520	71	4030	71	1077	121
267	20	1502	3	46901	7	542	68	4261	72	1111	120
268	20	1133	3	53258	8	535	70	4002	71	1453	123
269	20	1077	3	51239	8	561	68	4211	72	1332	121
270	20	813	3	52377	8	649	69	4018	70	1413	124
271	20	1157	3	53259	8	554	69	3858	70	1388	123
272	20	1189	3	53485	8	604	73	3757	69	1422	128
273	20	1364	3	47171	8	620	69	3742	69	1296	119
274	20	765	3	44325	7	597	70	3511	67	1430	126
275	20	736	3	37482	7	594	71	3437	66	1023	122
276	20	1251	3	42437	7	468	71	3585	68	1211	126
277	20	1347	3	37797	/	560	6/	3499	6/	1127	121

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
278	20	690	3	39446	7	485	66	3719	68	1134	118
279	20	1168	3	42832	517	515	71	3730	69 66	1262	123
280	20	1235	3	40238	7	547	69	3435	66	1000	118
282	20	1212	3	44128	7	427	70	3565	68	1370	123
283	20	1321	3	42584	7	644	70	3478	67	1112	115
284	20	714	3	37184	7	577	71	3448	66	1386	123
285	20	561	3	39518	7	584	69	3088	63	873	111
286	20	960	3	39119	7	594 649	64 67	2432	56	917	106
288	20	1248	3	46094	8	612	70	2400	58	1038	117
289	20	1074	3	46251	7	575	70	2667	60	1328	127
290	20	768	3	47441	8	567	69	2566	59	1317	120
291	20	832	3	47058	8	764	72	2559	59	1200	124
292	20	871	3	51186	8	608	72	2647	59	1209	122
293	20	698	3	50694	8	643 726	73	2540	57	1298	121
294	20	999	3	55856	8	623	72	2513	58	1559	123
296	20	1038	3	54884	8	683	75	2586	59	1275	126
297	20	664	3	52980	8	744	72	2839	61	1209	121
298	20	698	3	50750	8	666	72	2960	62	1244	122
299	20	1316	3	51048	8	576	69	3216	63	1419	118
300	20	780	3	49496	8	634	70	3661	69	1221	119
301	20	1067	210	44202	525	456	70	3892	70	1351	123
302	20	1142	3	45882	7	550	6/	4270	72	1041	119
303	20	1241	3	42303	7	489	67	4437	74	1117	115
309	20	1358	3	56317	8	628	73	2918	61	1401	125
310	20	1557	3	54340	8	662	71	3030	63	1604	124
311	20	1116	3	55345	8	706	76	3343	66	1624	128
312	20	1376	3	54741	8	663	73	3502	67	1595	127
313	20	1294	3	51989	8	706	71	3062	62	1272	123
315	20	976	3	52566	8	697	72	3028	63	1431	120
316	20	1131	3	53070	8	559	72	3106	64	1605	123
317	20	1026	3	53392	8	677	72	3065	64	1412	124
318	20	1285	3	54842	8	669	72	3345	65	1438	124
319	20	1195	3	53585	8	599	71	2965	62	1749	127
320	20	1142	3	54587	8	585	69 72	2932	62	1481	119
321	20	1360	3	55647	8	662	75	2828	61	1494	123
323	20	1178	3	56013	8	675	74	2842	61	1517	130
324	20	1084	3	58958	8	629	74	2964	62	1504	126
325	20	1253	3	57621	8	634	74	2955	62	1615	126
326	20	1278	3	58167	8	605	73	2850	62	1492	123
327	20	1116	3	55562	8	545	/1	2627	59 60	1481	124
328	20	1272	3	55229	8	614	70	2909	62	1563	123
330	20	1491	3	57595	8	628	75	3128	65	1542	127
331	20	1198	3	56929	8	563	71	3169	64	1682	126
332	20	1115	3	52357	8	660	73	3106	63	1307	121
333	20	1347	3	51148	8	618	74	3223	65	1492	125
334	20	1221	213	48268	563	500	69	3359	66 65	1113	119
335	20	1011	3	47902	8 7	584 554	58 70	3276	65	1316	119
337	20	1289	3	45166	7	666	70	3277	65	1271	126
338	20	1224	3	41978	7	640	70	3111	64	1492	124
339	20	1072	2	37606	7	519	65	3048	63	1156	115
340	20	1490	3	48618	8	667	69	2776	60	1061	119
341	20	1047	3	55790	8	547	72	2874	62	1796	128
342	20	980	3	56780	8	735	73	3019	62	1470	125

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]	. ,	[ppm]	. ,	[ppm]		[ppm]		[ppm]
343	20	1360	3	53727	8	557	71	3193	65	1738	130
344	20	1276	3	53277	8	643	74	3142	64	1608	128
345	20	1196	3	52026	8	595	73	3256	65	1681	132
347	20	1437	3	52518	8	604	68	3257	65	1390	120
348	20	1039	3	46365	7	547	68	3342	67	1364	123
349	20	1171	3	44451	7	544	66	3640	68	1383	120
350	20	1084	3	38739	7	648	68	3612	67	1197	122
351	20	1294	3	43224	7	475	71	3912	70	1515	127
352	20	1000	3	46302	7	585	66	3493	66	1151	117
354	20	938	3	46821	8	468	68	3751	69	1416	122
355	20	908	3	38776	7	620	70	3753	69	1065	120
356	20	1028	3	32148	6	582	71	3744	69	1087	118
357	20	992	2	29409	6	531	73	3660	69	1129	119
358	20	219	2	20222	5	402	66	3255	65	885	115
359	20	005 522	2 176	18345	5 382	500 502	68	537ð	66	902 1379	113
361	20	501	2	16855	5	567	70	3545	67	860	114
362	20	199	2	16999	5	581	68	3470	66	871	115
363	20	332	2	17098	5	427	68	3284	65	889	113
364	20	368	2	16324	5	475	71	3398	66	938	115
365	20	203	2	15097	5	622	67	3105	63	785	112
366	20	296	2	14186	4	472	71	2944	62	812	114
367	20	352	2	16/19	5	592 614	67 71	3125	67	945	115
369	20	507	2	16527	5	515	70	3400	65	1090	117
370	20	270	2	16530	5	444	70	3201	64	866	118
371	20	409	171	16990	367	502	72	3536	67	789	119
372	20	558	2	15558	5	495	64	3037	62	1168	116
373	20	273	2	15105	5	466	67	3046	63	1031	111
374	20	786	2	17010	5	481	69	3270	65	913	117
375	20	482	2	16707	5	586	68	3297	65	883	114
377	20	797	2	15968	5	572	70	3017	63	1032	113
378	20	907	2	15129	5	512	67	3305	65	688	110
379	20	822	2	15343	5	394	63	3125	63	764	111
380	20	432	2	16372	5	430	68	3058	64	901	117
381	20	452	2	16430	5	537	69	3318	65	977	119
382	20	715	2	15438	5	563	70 67	3341	66	763	121
384	20	684	2	14700	5	516	64	3308	64	902	111
385	20	143	2	14907	5	534	68	3361	66	1324	120
386	20	404	2	12871	4	504	65	2825	60	891	111
387	20	-76	2	12651	4	421	62	2780	60	731	108
388	20	-28	2	16771	5	499	66	3092	63	701	110
389	20	269	2	45933	5	657	58 70	3415	67	1059	121
391	20	1114	3	57518	8	661	70	3303	66	1474	121
392	20	1286	3	53613	8	599	72	3451	67	1593	124
393	20	995	3	51148	8	646	72	4021	72	1336	125
394	20	1666	3	46502	8	572	67	4105	71	1380	120
395	20	1142	3	44988	7	598	70	3675	69	1199	121
396	20	1029	3	4/196	8	592 572	/1	3438	67 64	1219	121
398	20	1256	3	50748	8	583	72	2955	63	1737	127
399	20	1307	3	50228	8	746	75	2889	62	1302	127
400	20	1013	3	50819	8	574	72	2937	62	1524	126
401	20	1383	3	49729	8	699	75	2686	60	1518	126
402	20	761	188	27384	481	544	66	2777	61	912	114
403	20	668	2	27650	6	558	69	2987	62	947	120

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
404	20	568	2	19616	5	421	67	3041	63	1131	116
405	20	615	3	37338	7	562	71	3064	63	1553	123
406	20	1277	3	57241	8	723	76	2876	62	1858	129
407	20	1209	3	43822	7	589	68	2526	58	1020	113
412	20	1315	3	52566	8	626	70	4184	71	1403	122
413	20	1466	3	51334	8	579	69	3936	70	1591	122
414	20	1482	3	51262	8	558	71	4274	73	1402	122
415	20	1613	3	50638	8	647	68	3898	70	1084	118
416	20	1223	3	46818	7	640	69	3704	68	1145	115
417	20	1115	3	47644	8	587	69	3382	66	1291	119
418	20	1234	3	51369	8	569	72	3354	66	1334	124
419	20	1426	3	52035	0 8	524	73	3460	66	1315	125
421	20	1122	3	49000	8	538	67	3098	63	1573	120
422	20	1373	3	46491	7	631	67	2760	59	1252	119
423	20	1463	3	50219	8	546	71	3068	63	1318	118
424	20	1273	3	49981	8	792	75	2942	61	1292	125
425	20	1179	3	51833	8	582	72	2805	61	1431	127
426	20	1411	3	50895	8	611	73	2714	60	1560	126
427	20	1067	3	49323	8	722	74	2834	61	1245	122
428	20	1099	3	43773	7	507	65	2240	55	987	111
429	20	1463	3	51347	8	766	72	2330	50	1141	121
430	20	919	3	52316	8	591	71	2505	59	1395	125
432	20	1441	3	53118	8	755	72	2889	61	1344	119
433	20	1239	3	53686	8	645	71	2783	60	1454	124
434	20	1377	3	51858	8	589	68	2659	60	1334	121
435	20	1449	3	51818	8	588	70	2803	60	1689	121
436	20	1205	3	53839	8	664	70	2920	62	1182	123
437	20	1308	3	53127	8	581	68	2830	61	1514	121
438	20	1289	3	53157	8	693	72	2763	60	1431	122
439	20	1307	3	53327	8	550 660	52 72	2770	58 60	1/98	98
441	20	993	3	50269	8	488	64	2750	58	1441	119
442	20	978	3	50014	8	729	69	3003	62	1438	125
443	20	1530	3	51878	8	624	72	3194	64	1608	126
444	20	1270	3	53350	8	666	70	3199	65	1634	126
445	20	1479	3	53687	8	498	70	3365	65	1618	126
446	20	1648	3	54239	8	776	72	3766	68	1587	126
447	20	889	3	50556	8	525	69	3374	65	1394	121
448	20	905	3	36788	8 7	529	70	3411	67	1350	118
450	20	460	169	25979	, 409	604	66	3699	67	862	112
451	20	971	2	39242	7	600	68	3392	65	1092	116
452	20	1741	3	45717	7	633	67	4020	70	1351	117
453	20	1651	219	49095	551	563	71	4187	72	1420	124
454	20	804	195	42440	512	609	66	3466	66	1173	113
455	20	1005	3	45603	7	589	64	3507	66	1017	111
456	20	879	3	41656	7	640	72	3466	66	1471	123
457	20	1115	3	44119	/	525	70 69	3907 4219	70	13/6	123
459	20	1391	3	48465	8	475	65	3774	69	1086	113
460	20	1236	211	46616	531	592	69	3929	71	1200	120
461	20	1554	3	50977	8	610	71	3271	65	1206	122
462	20	1167	3	50018	8	531	66	2593	58	1071	115
463	20	1268	3	53312	8	488	67	2315	57	1199	116
464	20	1480	3	57410	8	720	72	2624	59	1462	129
465	20	1268	3	55852	8	647	70	2773	61	1561	124
466	20	1415	3	53415	8	/03	72	2844	60	1482	121
407	20	1113	3	21090	0	498	70	2709	01	1415	121

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
468	20	1077	3	55965	8	486	69	3191	64	1472	122
469	20	1220	3	51045	8	561	65	2864	61	1282	119
470	20	1133	3	51614	8	654	70	3075	63	1323	120
471	20	867	3	47654	8	517	67	3119	64	1198	120
473	20	1120	3	53989	8	606	72	3407	67	1130	123
474	20	1152	215	51035	563	527	67	3105	63	1313	124
475	20	1472	3	53221	8	603	72	3307	66	1602	129
476	20	904	3	52330	8	606	69	3230	64	1132	120
477	20	1238	3	53662	8	574	67	3147	64	1233	117
478	20	1339	3	56879	8	630	70	3513	67	1376	125
479	20	1278	3	53972	8	609	70	3565	67	1400	123
481	20	1498	3	57312	8	489	67	3496	67	1404	124
482	20	1424	3	54746	8	339	66	3316	65	1531	119
483	20	1340	3	54997	8	592	70	3582	67	1425	126
484	20	1285	3	48997	8	462	70	3614	68	1421	125
485	20	664	3	50207	8	623	68	3603	67	1540	122
486	20	1334	3	53878	8	718	72	3940	70	1431	125
487	20	1193	3	55234	8	525 685	70	4350	73	1472	126
489	20	1165	3	53909	8	628	70	4170	73	1545	123
490	20	1102	3	55407	8	571	72	4446	73	1814	128
491	20	1503	3	57734	8	535	50	4339	70	1610	100
492	20	1191	3	51642	8	578	66	3709	67	1282	117
493	20	1119	3	48646	8	492	66	3860	69	1380	119
494	20	933	3	50415	8	578	65	3646	67	1253	118
495	20	1534	3	5/3//	8	6/3	72	3394	66	1319	120
490	20	1170	3	55835	8	636	74 68	3251	64	1347	125
498	20	913	3	50430	8	607	71	2945	62	1329	110
499	20	1434	3	58176	8	630	68	3017	63	1533	122
500	20	1282	3	58532	8	671	73	2975	62	1485	128
501	20	1305	3	61160	9	630	75	2815	61	1520	128
502	20	1579	3	56329	8	552	72	2683	61	1693	124
503	20	1475	214	56654	597	566	73	2516	59	1557	128
504	20	1297	3	55889	8	702	73	2/5/	60	1442	123
505	20	1583	3	56597	8	613	72	2038	60	1438	123
507	20	1231	3	51943	8	645	73	2790	62	1568	126
508	20	1162	3	52739	8	823	73	2672	60	1447	124
509	20	1042	3	52293	8	581	73	2647	60	1254	123
510	20	1280	3	56669	8	700	72	2712	60	1573	128
515	20	1361	3	50750	8	619	68	3448	66	1301	121
510	20	1210	3	51728	ہ 8	503 639	71	3069	64	1413	118
518	20	1011	3	50580	8	637	73	3270	65	1231	124
519	20	951	3	46500	7	708	74	3105	64	1185	120
520	20	1064	3	39251	7	613	71	2634	60	940	119
521	20	1017	3	48398	8	589	73	3055	64	1244	123
522	20	1271	3	48487	8	572	71	2990	63	1250	122
523	20	1691	3	53288	8	675	75	3007	63	1432	125
524	20	12/3	3	55487	8 8	583	73	3008	63	1298	124
525	20	1247	3	53014	8	641	68	2906	62	1258	118
527	20	1268	3	50330	8	585	71	2719	60	1233	123
528	20	1244	3	52834	8	584	73	2967	63	1153	120
529	20	1041	3	56453	8	746	75	3183	64	1399	125
530	20	1331	3	50171	8	655	71	3347	66	1290	122
531	20	1049	3	40340	7	596	73	3137	64	1139	120
532	20	691	191	34428	498	545	66	2952	62	970	111

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
	[000]	(2011)	[ppm]	(2000)	[ppm]	(00.17)	[ppm]	(00.17)	[ppm]	(00.07)	[ppm]
533	20	909	2	30133	6	520	70	3082	63	1001	117
534	20	207	2	23208	5	589	69	3249	65	930	112
535	20	391 438	2	22560	5	403 559	67	3273	64	943	111
537	20	983	3	47376	8	606	71	3717	69	1310	122
538	20	1185	218	51172	585	519	69	3373	66	1403	125
539	20	1387	3	49637	8	654	74	3468	67	1566	129
540	20	1496	3	49061	8	658	73	3490	67	1463	124
541	20	1085	3	44344	7	625	71	3538	67	1427	121
542	20	520	2	27631	6	528	55	3403	65	1030	114
544	20	387	2	25344	6	471	64	2952	63	853	109
545	20	529	175	22346	406	498	65	2932	62	759	110
546	20	175	2	30830	6	510	68	3287	65	1131	118
547	20	1323	3	41247	7	552	70	3487	67	1288	118
548	20	1082	3	48498	8	679	73	3442	66	1087	120
549	20	1479	3	50784	8	560	69	3316	65	1249	117
550	20	1035	3	43395 47720	/ &	594	67	3512	67	1253	121
551	20	1331	3	53036	8	646	70	3560	67	1004	121
553	20	1526	3	51642	8	675	68	3490	67	1069	119
554	20	801	3	51720	8	586	67	3623	68	1212	113
555	20	811	213	49282	554	481	66	3917	69	1389	118
556	20	1231	3	48869	8	553	68	3804	69	1198	116
557	20	1101	3	51004	8	438	68	3766	69	1085	118
558	20	1033	3	49469	8	504	70	3654	68 70	1546	119
559	20	837	3	48208	578	588 400	68	4087	70	1585	121
561	20	688	3	38417	7	441	67	4001	70	1407	120
562	20	1023	203	44286	541	658	70	3849	69	1258	120
563	20	1174	3	54684	8	616	70	3591	67	1230	120
564	20	1620	3	57940	8	589	71	4209	72	1335	123
565	20	1014	3	52737	8	582	71	4125	71	1417	120
565	20	1179	3	52104	8	550	74	4106	72	1237	126
568	20	1362	3	53124	8	662	71	4170	72	1433	127
569	20	1108	3	51379	8	676	72	4012	70	1321	124
570	20	959	3	49141	8	539	72	3651	68	1250	123
571	20	1486	220	56095	598	762	70	4131	71	1537	122
572	20	1454	3	54011	8	562	68	3916	70	1507	121
573	20	1452	3	53227	8	470	70	4044	/1	1335	125
575	20	1013	3	47178	8	582	69	4073	71	1334	119
576	20	1101	3	49823	8	473	69	4082	71	1335	124
577	20	942	214	45706	556	661	71	4313	73	1082	120
578	20	1182	3	52386	8	567	70	4099	71	1283	122
579	20	1118	3	48201	8	598	69	4026	71	1207	119
580	20	1000	3	49473	8	601 602	69 71	4106	72	1432	121
582	20	1395	3 2	49240	0 8	605	69	3770	66	1293	120
583	20	1004	3	51629	8	640	74	3539	67	1202	123
584	20	1051	3	49027	8	651	70	3568	68	1146	120
585	20	1422	3	47698	8	437	69	3322	66	1378	127
586	20	1102	3	43175	7	557	68	3139	63	1137	115
587	20	1209	3	47235	8	568	70	3033	63	1187	118
588	20	949	3	47695	8	652	72	3143	62	1267	123
589	20	802	3	4/4/4	ہ 7	523	66	2949	61	994	115
591	20	1066	3	50035	8	718	72	3014	63	1167	124
592	20	911	3	52655	8	570	69	2843	61	1214	118
593	20	1199	3	50162	8	546	65	2761	61	1140	118

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
594	20	1136	3	49483	8	529	68	3038	62	1146	116
595	20	1053	3	50330	8	651	71	3243	65	1613	124
596	20	1007	3	47274	8	588	70	3033	64	1065	119
597	20	1098	3	48243	8 8	555	68	3050	63	1198	110
599	20	1038	3	56412	8	694	71	3019	62	1315	121
600	20	1330	3	55074	8	714	72	2756	60	1469	124
601	20	1159	3	54884	8	686	74	2764	60	1264	124
602	20	1215	3	56912	8	580	71	2887	61	1377	124
603	20	1414	3	59978	8	643	74	2865	61	1550	125
604	20	1307	3	58929	8	649	74	2798	61	1480	129
605	20	1334	3	51701	8	581	73	2870	62	1358	125
606	20	1627	3	55547	8	615	74	3085	64	1430	127
608	20	1485	3	57397	ہ 8	704	74	2857	62	1190	125
609	20	1700	3	57904	8	628	73	2972	63	121	122
610	20	1300	3	58609	8	644	74	3018	64	1390	124
611	20	998	3	42344	7	658	66	2477	57	949	112
612	20	1220	3	46391	7	632	66	2507	57	869	116
613	20	1009	3	48341	8	643	69	2677	58	1256	118
614	20	1284	3	53967	8	427	69	2968	63	1532	122
618	20	1293	3	67970	9	715	75	2499	58	1756	127
619	20	1583	3	67090	9	685	74	2246	56	1470	127
620	20	1185	3	63042 F4144	9	713	75	2412	58	1625	125
621	20	1077	3 218	55367	603	742	71	2432	57	1347	113
623	20	1498	3	61198	8	701	76	2645	60	1347	124
624	20	1273	3	62802	9	617	71	2679	60	1448	122
625	20	1144	3	57015	8	615	73	2809	60	1253	121
626	20	1444	3	58283	8	579	72	2777	62	1287	122
627	20	1468	3	55625	8	486	70	2669	59	1164	120
628	20	950	3	56453	8	658	70	2751	59	1154	117
629	20	1245	3	57185	8	654	74	3097	63	1383	120
630	20	862	3	54052	8	665	72	3064	63	1262	120
632	20	971	3	51584	8	613	70	2909	61	1101	117
633	20	1226	3	54442	8	517	66	2823	61	1104	116
634	20	990	3	50379	8	548	67	2667	58	1113	113
635	20	1061	3	50230	8	668	69	2699	59	1162	115
636	20	1290	3	51248	8	653	68	2899	61	1222	117
637	20	1100	3	54234	8	654	73	2862	62	1487	123
638	20	1403	3	53865	8	626	72	2680	61	1355	123
639	20	1098	3	54932	8	695	75	2530	59	1204	119
640	20	768	3 205	53879 79383	563	589	71 68	2333	57	1296	120
642	20	875	3	46780	7	602	69	2764	60	1280	121
643	20	1323	3	51561	8	567	71	2839	61	1243	118
644	20	1038	3	46829	8	472	67	2680	60	1181	115
645	20	891	3	38528	7	530	69	2797	61	1114	116
646	20	1239	2	42883	7	490	65	2768	60	936	110
647	20	1236	3	46784	7	665	66	2412	56	899	112
648	20	1160	209	47071	559	483	69 75	2569	58	1453	124
650	20	1080	3	2111U 22001	ð R	676	75	2008	61	1480	125
651	20	1003	3	45062	° 7	656	72	2763	60	1431	122
652	20	825	199	39888	499	558	67	2400	57	1031	111
653	20	1071	3	42583	7	528	68	2974	63	1411	119
654	20	895	3	42256	7	499	67	2780	60	1003	115
655	20	1012	3	42418	7	733	68	2780	60	996	121
656	20	1340	3	46283	8	671	69	2958	62	1155	119
657	20	1308	3	44643	7	638	68	3242	64	1186	117

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
658	20	861	3	43714	7	600	67	3047	62	1024	115
659	20	983	3	45440	7	825	70	2770	59	1055	117
660 661	20	913	3	39844	8	639 518	68 67	2809	60 64	760	117
662	20	660	2	27670	6	447	64	3742	68	1205	115
663	20	453	2	22634	6	562	68	3711	68	921	115
664	20	282	2	25103	6	576	65	3894	69	897	112
665	20	431	2	22071	5	535	66	3335	66	1153	114
666	20	903	3	43387	7	733	72	3489	67	1298	122
667	20	1206	205	43431	566	793	72	3124	64	1104	120
669	20	-71	2	23696	7	430 529	67	2480	57 61	1080	105
670	20	1140	3	47633	8	664	73	3396	66	1384	125
671	20	1484	3	48213	8	670	69	3644	68	1349	119
672	20	892	3	48937	8	651	69	3397	65	1105	119
673	20	901	3	48945	8	691	67	3163	63	1115	114
674	20	1329	3	49652	8	622	71	3399	66	1319	120
675	20	1085	199	42189	512	668	66	2876	60	1050	111
675	20	1055	3	45030	7	536 645	60 60	2928	65	1351	113
678	20	1040	3	51289	8	612	70	3346	66	1569	120
679	20	1320	3	53716	8	632	74	3559	67	1467	126
680	20	1334	3	54968	8	648	72	3301	66	1454	124
681	20	1254	3	51764	8	568	70	3228	65	1291	122
682	20	1157	3	52565	8	576	72	2966	62	1341	123
683	20	1205	3	50567	8	638	69	3022	62	1258	120
684	20	1414	3	54872	8	563	68 72	2833	60	1359	122
686	20	1550	3	55076	8	518	72	2775	63	1377	120
687	20	1330	3	58457	8	669	75	3154	64	1461	120
688	20	1499	3	54191	8	500	71	2803	61	1347	124
689	20	1683	3	57779	8	684	73	3095	64	1359	122
690	20	1214	3	51595	8	510	66	2680	60	1420	120
691	20	1296	3	55329	8	641	72	3054	63	1269	122
692	20	1385	3	56313	8 627	641	74 68	3445	67	1409	126
694	20	1088	218	56696	617	756	72	3694	67	1582	127
695	20	1067	3	54797	8	613	69	3763	68	1290	121
696	20	1305	3	54032	8	551	68	3537	66	1336	118
697	20	604	2	35239	7	474	60	2895	60	1003	110
698	20	1011	3	51169	8	541	70	3594	68	1319	122
699	20	1497	215	52379	579	414	68	3893	70	1471	124
700	20	1373	3	55033	8	545 817	72	3339	65	1575	125
701	20	941	3	50492	8	530	73	2776	61	1028	120
703	20	1411	3	55313	8	664	74	3142	63	1353	126
704	20	1384	3	55171	8	663	70	3102	63	1431	123
705	20	1081	3	57153	8	592	75	3333	66	1567	128
706	20	1738	3	56426	8	670	75	3460	67	1546	126
707	20	1323	3	56676	8	650	/5 72	3341	66 68	1351	126
709	20	841	3	50825	8	548	73	3463	66	1112	124
710	20	934	3	54045	8	667	73	3305	65	1123	122
711	20	1312	3	51186	8	613	72	2860	62	1102	119
712	20	1452	3	53340	8	556	68	3053	64	1312	119
713	20	1161	3	52510	8	705	74	3168	64	1455	122
714	20	1416	3	53855	8	733	72	3363	65	1397	122
721	20	1531	3	55951	8	572	69	2989	63	1398	121
722	20	1380	3 2	52478	8 8	552 659	69 74	2566	58 60	945	114
724	20	1273	3	53099	8	690	71	2833	61	1527	122

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]		[ppm]		[ppm]		[ppm]	(,	[ppm]
725	20	1228	3	54804	8	669	70	2756	60	1308	121
726	20	1299	3	55624	8	758	75	2611	59	1291	124
728	20	1304	3	54968	8	741	68	2666	58	1194	121
729	20	1185	3	52232	8	622	69	2428	57	1312	121
730	20	1192	3	57742	8	647	74	2579	59	1384	124
731	20	1600	3	58954	8	627	71	2555	58	1488	121
732	20	1510	218	60194	614	697	70	2585	59	1332	120
733	20	1281	3	57170	8	663	73	2464	58	1323	126
735	20	1081	3	55190	8	698	71	2510	58	1196	120
736	20	1507	3	57904	8	713	73	2624	59	1568	123
737	20	1064	3	55939	8	626	67	2563	58	1377	120
738	20	1081	217	52880	577	563	71	2604	59	1258	117
739	20	1465	3	52584	8	561	69	2829	61	1261	119
740	20	1522	3	52029	8	551	73	2877	67	1381	126
741	20	1301	3	52543	8	635	70	2833	60	1224	119
743	20	1509	3	53361	8	698	71	2982	62	1105	116
744	20	1236	3	53996	8	626	68	2704	60	1135	114
745	20	1448	214	53733	580	603	68	2807	61	1364	121
746	20	1471	3	56139	8	693	71	2992	62	1373	119
747	20	912	3	51969	8	505	67	2946	61	1522	117
748	20	1284 881	217	54926 49877	590 8	564	65	3184 2930	61	1074	117
750	20	988	3	50453	8	519	69	3256	65	1064	115
751	20	776	3	49500	8	657	66	2610	58	968	111
752	20	834	2	43694	7	595	66	2470	57	873	107
753	20	1154	3	57443	8	672	73	2403	57	1100	123
754	20	1042	3	56132	8	583	71	2661	59	1409	120
755	20	1425	3	55604	8	728	71	2555	59	1059	118
757	20	1339	3	56641	8	674	69	2304	56	1122	120
758	20	1158	3	54438	8	768	71	2434	58	1178	119
759	20	875	3	56183	8	602	73	2251	56	994	123
760	20	1046	3	58828	8	680	73	2534	59	1309	124
761	20	1139	3	57021	8	724	71	2608	59	1268	122
762	20	759	3	55840	8	635 720	75	2473	58	082	126
764	20	1025	3	51497	8	743	70	2393	56	982	117
765	20	920	3	54012	8	689	68	2341	56	1158	115
766	20	794	3	54720	8	668	72	2475	58	1264	120
767	20	1427	3	56089	8	679	72	2493	58	1154	119
768	20	741	3	51452	8	554	69 71	2679	60	1190	121
769	20	545	3	51659	8	534	68	2646	60	1203	119
771	20	1585	3	57528	8	705	73	2628	59	1090	121
772	20	577	3	56362	8	650	72	2480	58	1201	123
773	20	1128	3	58833	8	587	71	2562	58	1350	122
774	20	1110	3	56856	8	625	75	2601	59	1351	122
775	20	1363	3	53039	8	592	70	2447	57	1307	122
775	20	14/4	3 2	56208	8 8	720	71	2914	60	1239	129
778	20	893	3	56625	8	591	70	2741	60	1400	120
779	20	1013	3	55190	8	731	71	2518	58	1106	114
780	20	960	3	54248	8	687	72	2555	58	1070	119
781	20	1217	3	52011	8	730	71	2579	57	1209	122
782	20	1488	3	54215	8	703	71	2694	60	1302	123
783	20	1063	3	59910	8	861 7/1	75	2575	59	1219	123
785	20	1016	3	58477	8	635	72	2519	59	1157	120

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]		[ppm]		[ppm]		[ppm]		[ppm]
786	20	1321	3	57797	8	500	69	2406	56	1344	121
787	20	943	3	55174	8	585	70	2563	59	1380	122
788	20	1375	3 219	54856	8 614	724	73	2526	58	1025	119
790	20	1239	3	62790	9	565	72	2428	58	1361	126
791	20	1201	3	55643	8	705	76	2302	57	1261	124
792	20	1315	3	55897	8	600	71	2338	57	1108	118
793	20	1285	3	58615	8	558	75	2403	57	1109	120
794	20	002	3	59187	8	6/3 721	78	2373	58	1269	125
796	20	1179	3	57605	8	692	70	2513	58	1205	121
797	20	1405	3	58021	8	625	72	2561	59	1115	121
798	20	1322	3	55661	8	786	73	2519	57	1216	119
799	20	828	3	56829	8	602	72	2361	57	1198	120
800	20	848	3	55730	8	604	71	2451	59	1180	114
801	20	1044	3	57842	8	651	72	2446	58	1301	121
802	20	1052	3	57493	8	780 553	74	2093	59 61	1121	120
804	20	1032	3	59332	8	659	72	3028	63	1508	125
805	20	1285	3	56113	8	624	76	3138	64	1390	123
806	20	1271	3	54240	8	674	71	3251	65	1071	116
807	20	1314	3	52159	8	529	70	3381	66	1330	121
808	20	999	3	51123	8	618	70	3327	65	1131	117
809	20	1550	3	55013	8	808	75	3423	66	1342	127
810	20	1109	3 218	50893	8 587	664	75	3693	69	1156	123
812	20	1579	3	55371	8	600	71	3846	70	1139	121
813	20	1299	3	49743	8	517	64	3199	64	977	110
814	20	1088	3	54564	8	827	74	3321	66	1085	119
815	20	1132	3	53320	8	546	67	3553	67	1350	116
816	20	1293	3	47704	8	575	69	3256	64	1166	115
817	20	1020	3	49556	8	627 500	70	3684	68 58	1045	117
825	20	608	2	27990	6	479	65	3037	62	841	110
826	20	832	3	41260	7	670	70	3560	67	840	120
827	20	873	3	41854	7	571	69	3484	66	1154	116
828	20	509	2	32656	6	505	64	3319	65	891	113
829	20	991	2	37230	7	600	64	3351	64	1028	112
830	20	780	3	45611	7	541 603	69	3350	65	1044	115
832	20	1415	3	48811	8	679	73	4019	71	1037	118
833	20	1416	3	49478	8	553	69	3788	70	1132	118
834	20	1580	3	47018	7	558	66	3449	66	1140	114
835	20	629	3	43884	7	527	68	2973	63	942	114
836	20	1117	210	43689	554	542	68	3190	63	991	115
837	20	1043	3	40/43 42507	/	468 5 <i>1</i> .2	68 70	3164	64	917	113
839	20	1003	3	49382	8	572	68	2995	64	1235	116
840	20	1111	3	52956	8	574	72	3093	63	1335	120
841	20	1095	3	47086	8	518	67	2896	61	836	111
842	20	857	3	49144	8	648	69	3142	63	941	116
843	20	1179	3	51073	8	708	72	3457	66	1263	121
844	20	9/6	3	4/0//	8	695	69 69	3625	67	1055	116
846	20	759	3	36571	7	547	65	3239	64	1060	114
847	20	1041	3	47976	8	702	73	3328	65	1051	120
848	20	1177	3	42554	7	642	67	2662	59	933	111
849	20	559	3	45373	7	597	66	3067	63	1219	116
850	20	1091	3	47338	8	556	70	3226	65	1146	121
851	20	1063	221	51884	602	594	70	3126	64	1016	116
852	20	1143	3	50649	ŏ	594	69	2995	62	1322	120

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
853	20	1168	3	51926	8	575	69	2865	61	1133	117
854	20	802	3	50560	8	552	75	2869	62	1072	120
855	20	946	3	52396	8	598	72	2632	60 60	1021	119
857	20	1024	3	54580	8	673	72	2703	62	1351	124
858	20	1252	3	56443	8	595	74	3036	63	1238	121
859	20	1387	3	54220	8	594	69	3280	65	1190	118
860	20	1687	3	53146	8	566	71	3336	66	1303	121
861	20	1330	3	50268	8	524	69	3098	64	1203	117
862	20	1266	3	51509	8	512	70	3461	66	1044	117
863	20	1275	3	51858	8	747	71	3469	65	1066	119
864	20	1078	3	53319	8	719	74	3351	66	1160	121
866	20	1151	3 205	57203 48300	556	619	72	3375	64	1031	118
867	20	1425	3	52673	8	657	73	3109	64	852	120
868	20	1308	3	55148	8	629	72	3156	64	1293	120
869	20	1354	3	54505	8	659	73	3002	63	1163	121
870	20	1185	3	57098	8	672	74	3112	64	1171	122
871	20	1318	3	58394	8	713	77	3035	64	1279	125
872	20	1186	3	58303	8	508	75	3085	64	1554	126
873	20	948	3	56938	8	605	73	3009	63	1588	125
874	20	1215	214	55680	587	655	68	3010	62	1040	117
875	20	1423	215	54114	589	667 592	72	2939	62	1210	120
870	20	939	3	58537	8	582 807	75	3073	63	1254	124
878	20	1398	3	58308	8	638	73	2896	63	1280	123
879	20	1320	3	55359	8	658	71	3057	63	1429	124
880	20	1351	3	56607	8	646	72	3062	62	1296	121
881	20	1051	3	55490	8	610	71	2943	62	1356	120
882	20	1152	3	58060	8	593	70	3399	66	1552	126
883	20	1280	3	56794	8	698	73	4433	73	1190	124
884	20	1045	3	54658	8	501	68	4978	77	1491	124
885	20	1287	3	53425	8	619	71	5524	81	1211	125
887	20	1354	3	51925	8	490 554	70	4875	65 77	1317	123
888	20	1163	219	48992	, 573	731	73	5393	81	1338	121
889	20	1599	3	50923	8	624	70	5424	80	1335	123
890	20	1113	3	43813	7	558	65	4804	76	1209	116
891	20	580	3	38875	7	635	73	4721	77	1090	121
892	20	319	2	20458	5	538	68	3270	64	915	114
893	20	-22	2	21670	5	388	66	3217	64	780	110
894	20	478	2	20466	5	470	67	3294	65	818	111
895	20	609	2	20094	5	555	69	3479	60	916	114
897	20	817	2	29966	6	561	64	3430	65	1100	113
898	20	1139	2	39514	7	516	63	2960	62	1116	110
899	20	1243	3	43884	7	638	72	4196	72	1197	122
900	20	1337	3	52469	8	617	74	3776	69	1618	126
901	20	1182	3	50894	8	640	73	3596	69	1330	125
902	20	1602	3	51001	8	696	75	3418	66	1383	122
903	20	1546	3	70984	9	652	70	2990	61	1148	121
904	20	1203	3	54322	ŏ ۵	592	/1	3183	61	1224	119
906	20	1632	3 2	62626	9 9	771	74	3094	64	1339	125
907	20	1280	3	51878	8	722	74	3197	65	1396	127
908	20	1620	3	53804	8	764	78	3209	65	1436	126
909	20	1084	3	51831	8	915	77	3271	65	1274	124
910	20	872	3	56120	8	633	72	2802	60	1258	122
911	20	1083	3	59191	8	699	71	2851	62	1339	122
912	20	1346	3	60967	8	738	75	2902	62	1345	123
913	20	1103	3	61321	9	690	74	3128	63	1518	126

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
914	20	1226	3	58691	8	650	76	2928	62	1302	124
915	20	1277	3	57911	8	657	73	2910	62	1602	122
916	20	1240	3	58840	622	719 607	74	2970	63	1431	121
918	20	1272	222	57407	623	647	73	3103	63	1338	123
919	20	1200	3	55616	8	735	73	3151	64	1466	123
920	20	1579	3	48448	8	622	71	3376	66	1252	119
927	20	593	2	35577	7	588	65	3266	64	1272	113
928	20	590	181	32930	458	656	65	2945	61	920	111
929	20	1308	3	45071	7	630	70	2928	61	1225	118
930	20	1185	3	45318	7	617	70	2980	61	1241	118
931	20	1465	3	50120	8	644	71	2861	61	1340	123
932	20	1470	3	54845	8	655	7Z 69	2868	65	1043	124
934	20	803	3	47702	7	575	71	3584	67	1200	120
935	20	943	3	49797	8	650	71	3557	67	1292	123
936	20	753	3	53400	8	608	71	3074	63	1322	118
937	20	1394	3	54391	8	639	70	3168	64	1203	119
938	20	1031	3	53872	8	735	73	3238	64	1336	122
939	20	1038	3	52562	8	503	72	2981	62	1041	118
940	20	1129	3	50913	8	651	67	2830	60	924	111
941	20	1063	3	48286	8	622	67	2789	60	983	114
942	20	914	3	4/219	8	598	65	2581	58	816	107
943	20	1279	3	54724	8	492 677	72	3245	64	1136	110
945	20	1324	3	54687	8	600	71	3085	64	1043	117
946	20	1272	3	51206	8	712	68	3391	65	1159	112
947	20	1109	3	53247	8	715	71	3243	64	1099	117
948	20	1077	3	45627	7	530	63	2844	60	934	110
950	20	1546	3	52662	8	585	70	3453	66	1341	116
951	20	1134	3	48087	8	624	66	3269	64	1035	113
952	20	1431	3	50274	8	600	70	3062	64	1007	113
953	20	619	3	4/9/0	8	532	68	3075	62	1037	114
955	20	934	3	49973 51500	0 8	503	68	2716	61	1027	114
956	20	1137	3	58039	8	666	72	2869	61	1080	110
957	20	971	3	55955	8	493	70	2802	61	1145	119
958	20	1168	3	53781	8	683	71	2819	61	1183	117
959	20	1160	216	53380	594	670	72	2876	61	1210	117
960	20	1045	3	51108	8	605	73	2932	62	908	118
961	20	980	3	48612	8	668	68	2930	61	937	115
962	20	919	3	44638	7	522	68	2693	59	978	115
964	20	702	3	40323	8	523	67	2401	58	1029	111
965	20	1082	3	48445	8	805	67	2747	59	1025	115
966	20	695	3	51099	8	570	68	2985	61	1199	117
967	20	1243	3	51382	8	504	66	2652	59	1183	117
968	20	1102	3	49301	8	504	62	2811	60	1110	111
969	20	1069	3	51809	8	614	70	2889	61	940	115
970	20	1138	3	50780	8	670	70	3134	62	1123	121
9/1	20	889	3	52327	8	654 522	/1	3633	68 69	883	115
973	20	1151	3	54140	0 8	709	70	3787	69	1254	114
974	20	958	3	52619	8	663	67	4116	71	1154	114
975	20	906	3	51978	8	581	68	4658	75	902	114
976	20	377	185	32405	464	610	67	3452	66	689	113
977	20	1021	3	41280	7	563	69	3703	68	1181	116
978	20	517	3	37716	7	529	65	3633	67	1075	114
979	20	1342	3	52496	8	703	72	3531	67	1190	120
980	20	1530	3	58104	8	613	69	3491	67	1177	119
981	20	1066	3	48396	ð	572	68	3531	66	1082	110

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
982	20	1035	2	39716	7	626	68	3611	67	881	112
983	20	1005	3	40631	7	489	64	3124	63	1149	111
984	20	659	3	42949	7	622	70	3400	6/ 71	1107	117
986	20	972	3	44684	7	604	70	3995	70	1038	121
987	20	1238	3	60642	8	630	72	3516	67	1334	121
988	20	1653	3	54987	8	576	67	3469	67	1311	117
989	20	1203	3	57079	8	662	70	3532	67	1320	124
990	20	875	3	52865	8	540	69	2990	62	1166	116
991	20	1334	3	57308	8	566	72	3083	63	1477	121
992	20	1120	3	57321	8	704	71	3402	66	1293	119
993	20	949	3	52297	8	551	70	3175	65	1364	124
994	20	959 13/0	3	47207	ہ 8	509	69	3305	64	1353	119
996	20	1161	3	45267	7	535	70	3069	63	1200	119
997	20	1020	3	42572	7	659	69	3053	62	1167	121
998	20	1290	3	45427	7	680	70	3210	65	1365	120
999	20	1171	3	50454	8	637	69	3262	65	1584	121
1000	20	1102	3	49903	8	794	74	3298	65	1349	124
1001	20	985	3	53185	8	492	64	3058	62	1187	111
1002	20	1099	3	48825	8	505	69	3597	67	1237	119
1003	20	1010	3	43261	7	591	67	3553	66	1287	116
1004	20	1454	3	4/28/	8	555	69 71	3679	69	1314	118
1005	20	1010	3	47345 53212	ہ 8	695	71	3/21	66	1293	118
1000	20	1167	3	52152	8	637	73	3091	64	1098	120
1008	20	1520	3	55921	8	735	72	3209	65	1310	120
1009	20	1147	3	52706	8	566	71	3039	64	1302	120
1010	20	857	3	47576	8	705	69	2763	60	930	112
1011	20	915	3	50988	8	637	71	2697	60	1109	117
1012	20	1469	3	48030	8	454	71	2878	62	1197	119
1013	20	1183	3	53650	8	593	71	3193	65	1366	118
1014	20	1251	3	56182	8	743	72	3195	64	1344	119
1015	20	1420	3	54515	8	672	70	3326	65	1090	122
1010	20	983	3 190	34844	° 492	546	68	5274	80	1424	122
1033	20	827	2	28166	6	433	64	9021	101	1145	124
1034	20	805	3	29647	6	608	73	3818	70	1377	130
1035	20	720	3	36223	7	692	75	3053	63	1051	126
1036	20	1425	3	53640	8	568	68	3608	67	1251	119
1037	20	1337	3	48765	8	595	66	3675	67	1110	116
1038	20	901	3	40269	7	675	68	3630	67	988	115
1039	20	1050	3	46557	8	474	/1	3485	66	1464	124
1040	20	049 779	3 3	40307	/ 8	543 646	72	3286	65	1158	118
1042	20	1507	3	59324	8	756	73	3751	68	1479	123
1043	20	1042	3	56502	8	743	73	3519	67	1612	123
1044	20	954	3	47152	8	641	68	3244	64	1387	120
1045	20	765	187	34996	469	655	70	3566	67	1016	119
1046	20	563	2	31866	6	612	69	3822	70	1055	116
1047	20	540	2	21822	5	404	66	3435	66	841	111
1048	20	443	161	20403	354	351	60	4270	72	781	107
1049	20	441	2	18315	5	481	59	6829	88	809	110
1050	20	028 599	2	10/24	5	409 408	67	4491 4330	74	924 721	113
1051	20	327	170	21496	376	413	60	4158	72	794	111
1053	20	121	2	20129	5	430	64	5368	80	962	115
1054	20	432	165	19493	338	433	63	7889	95	883	116
1055	20	270	167	22441	397	488	62	3455	66	907	113
1056	20	1202	3	38272	7	510	65	3940	70	1088	114
1057	20	1244	3	48177	8	588	68	4593	74	1089	115

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
1058	20	1174	3	49900	8	595	68	4783	75	1058	116
1059	20	1244	3	49471	8	803	72	4823	76	1205	120
1060	20	1041	3	47347	8	508	68	4733	76	1173	119
1061	20	1174	3	45820	7	520	67	4207	71 68	1094	115
1062	20	699	3	41819	7	580	70	3933	70	1162	119
1064	20	838	3	42200	7	659	68	3999	70	1127	118
1065	20	1021	3	43358	7	544	65	4401	74	1092	113
1066	20	836	3	43106	7	573	65	4252	72	998	112
1067	20	1249	3	43148	7	475	67	4285	72	902	115
1068	20	1326	3	46263	7	481	68	4234	72	1156	119
1069	20	1075	3	46068	7	478	67	4486	73	1380	119
1070	20	969	3	44978	7	535	67	4337	73	1256	119
10/1	20	1335	3	47392	8	571	67	4479	74	821	115
1072	20	903	3	43508	8	578	68	3951	70 69	1250	117
1073	20	1352	3	48790	8	656	66	3939	69	980	117
1075	20	1122	3	48187	8	559	63	3913	70	1194	115
1076	20	1010	3	47439	7	458	65	3943	69	1413	117
1077	20	1413	3	48180	8	564	69	4165	71	988	116
1078	20	1190	3	47391	8	547	65	3896	70	1216	114
1079	20	1193	3	48357	8	594	70	4339	73	1061	118
1080	20	1548	3	48256	8	487	68	4401	73	986	115
1081	20	1105	3	47818	8	580	68	4335	73	1218	117
1082	20	1301	3	47115	7	584	67	4307	72	1155	117
1083	20	1112	3	47477	7	617	68	4090	70	1145	117
1084	20	1097	3	48122	8	553	66	4014	70	1141	117
1085	20	1230	3	49370	0 7	575	69	3788	69	1200	112
1000	20	936	3	46984	8	566	71	3407	66	1251	120
1088	20	492	2	31945	6	572	68	3593	68	948	116
1089	20	624	2	31135	6	539	67	3607	68	1280	118
1090	20	840	3	50793	8	706	67	3773	68	942	114
1091	20	949	3	53523	8	609	68	3133	63	1270	116
1092	20	584	3	53997	8	589	70	3402	66	1266	115
1093	20	1066	3	55282	8	649	72	3598	68	1317	122
1094	20	1299	3	54469	8	723	73	4293	73	1440	124
1095	20	844	3	42906	7	605	64	5002	77	854	112
1096	20	1481	3	44421	8	380	66	5322	78 80	1082	114
1098	20	1294	3	47512	8	558	67	4942	77	874	115
1099	20	1177	3	45684	7	587	67	4771	76	1108	115
1100	20	888	3	43388	7	532	67	4613	75	964	115
1101	20	1010	3	46196	7	562	66	4664	75	1243	113
1102	20	1228	3	47767	8	580	71	4707	75	1427	123
1103	20	1099	3	46986	8	644	70	4516	75	1189	117
1104	20	911	3	45848	7	550	67	4247	72	1123	118
1105	20	533	189	41823	513	519	65	3667	67	911	106
1106	20	1077	3	49461	8	590	67	3846	69	1138	116
1107	20	1209	3	54841	8	521	58 70	3876	70	1191	119
1109	20	1285	3	55726	8	617	73	4085	71	1354	120
1110	20	1252	3	54801	8	735	72	3724	68	1254	119
1111	20	1099	3	50014	8	590	66	3478	66	1057	113
1112	20	1171	215	54731	592	576	71	3502	66	1240	119
1113	20	1257	3	54214	8	552	70	3743	69	1408	121
1114	20	1183	3	45807	7	644	72	3322	65	1147	119
1115	20	659	2	35621	7	576	72	3154	63	964	122
1116	20	617	2	25848	6	548	69	2865	62	866	117
1117	20	635	2	27481	6	520	75	2938	64	1250	132
1118	20	661	171	22962	417	481	67	2735	60	916	113

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
1119	20	811	3	42184	7	684	74	2946	62	963	119
1120	20	1443	3	53036	8	716	72	2948	63	1332	119
1121	20	842 801	3	47249	8	674	72	3728	69 73	1304	122
1122	20	383	2	20288	5	593	69	3150	64	1002	113
1124	20	285	2	20008	5	535	65	3137	64	881	110
1125	20	75	2	20716	5	442	68	3483	67	1025	116
1126	20	588	2	18433	5	545	69	3368	65	839	115
1127	20	156	2	15122	5	517	63	2851	60	527	102
1128	20	-141	2	14822	4	630	65	2725	59	630	107
1129	20	259	2	1/314	5	435	66 71	2/20	60	1006	113
1133	20	845	2	30229	° 6	623	66	3548	67	1545	122
1135	20	537	2	29177	6	411	64	3492	66	1644	126
1136	20	536	2	29535	6	461	67	3069	63	1767	129
1137	20	780	2	26695	6	529	70	3540	66	1220	119
1138	20	662	3	37498	7	549	73	3612	68	1148	118
1139	20	1572	3	54411	8	688	75	3819	70	1201	125
1140	20	1546	3	52191	8	533	73	3939	71	1558	131
1141	20	952	3 2	50008	8 8	507 675	71 69	35/5	58 68	1325	125
1142	20	1690	3	55308	8	708	71	4260	72	1516	125
1144	20	1759	3	60285	8	628	68	4371	73	1617	123
1145	20	1723	3	51701	8	648	68	3742	68	1752	126
1146	20	640	3	38651	7	462	67	2992	62	1491	123
1147	20	935	3	51757	8	592	69	3498	67	1623	124
1148	20	1373	3	55986	8	610	71	3443	65	1520	122
1149	20	956	3	41848	/	677	70	2921	61	1136	120
1150	20	1272	2	28428	6	489	69	3278	65	1238	119
1151	20	822	175	22418	408	679	71	3241	64	1189	122
1153	20	684	2	23590	6	536	64	3250	65	1214	117
1154	20	693	180	26897	413	561	67	3252	63	1093	118
1155	20	615	2	22597	5	595	70	3028	63	1064	114
1156	20	268	2	20694	5	519	66	2972	62	886	115
1157	20	381	2	25780	6	568	68	3215	64	1177	120
1158	20	593 673	2	27742	6	575	70	3082	65	1248	120
1155	20	668	2	30193	6	535	68	3400	66	1247	119
1161	20	884	2	30381	6	621	70	3444	66	1261	119
1162	20	944	2	28900	6	618	69	3361	65	1149	116
1163	20	596	2	29978	6	577	68	3342	65	1261	120
1164	20	1123	3	37516	7	498	69	3878	70	1213	121
1165	20	743	3	30160	6	571	68	4106	71	1659	125
1166	20	762	3	40729	/	610	64	3114	62	1214	116
1167	20	1305	217	56328	°	831	71	4245	72	1323	117
1169	20	1319	3	56311	8	713	72	4289	73	1413	122
1170	20	1365	3	55213	8	624	66	3840	68	1439	117
1171	20	1298	3	48468	8	502	68	3349	65	1356	119
1172	20	1023	3	34413	7	526	68	3048	62	1299	121
1173	20	1143	3	48365	8	718	70	3091	62	1363	121
1174	20	883	3	39930	7	604	70	2998	62	1208	121
1175	20	1002	3	44113 56376	8	0∠ð 619	69 69	2789	60	1368	110
1170	20	1200	3	57737	8	745	73	2867	61	1471	124
1178	20	1320	215	54194	575	759	72	2871	60	1329	120
1179	20	1164	3	51924	8	653	71	2697	59	1303	116
1180	20	1339	3	58028	8	670	77	2695	60	1515	123
1181	20	1053	3	45938	7	567	64	2136	53	839	104
1182	20	838	192	43684	535	611	62	2107	53	913	105

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
1183	20	1099	3	56185	8	527	62	2169	54	827	107
1184	20	717	3	35751	7	556	69	2895	61	1211	118
1185	20	961 604	3	33934	7	585 607	71 67	3045	62	1168	119
1180	20	1473	3	49387	8	470	65	3533	67	1112	113
1188	20	1177	3	52201	8	677	69	3522	67	1177	115
1189	20	1363	3	47861	8	571	65	3521	66	1085	112
1190	20	1521	3	50115	8	573	67	3215	64	1177	115
1191	20	1480	3	53723	8	584	68	3235	64	1395	116
1192	20	753	3	35953	7	553	67	3268	65	1291	118
1193	20	889	3	42303	7	545	73	3332	66	1502	119
1194	20	1554	3	55335 40800	8	639 582	72 68	3332	60	1329	122
1195	20	1401	3	40803	8	607	68	2906	61	1182	115
1197	20	1177	3	54158	8	671	71	2786	60	1151	119
1198	20	1355	3	52406	8	604	70	2709	60	1309	117
1199	20	1298	3	52759	8	613	71	2898	61	1229	119
1200	20	1103	3	54555	8	645	74	3005	63	1672	124
1201	20	1507	3	55188	8	667	72	3004	63	1549	123
1202	20	919	3	54710	8	870	76	2894	62	2022	135
1203	20	1023	217	52842	577	666	71	2961	62	1262	120
1204	20	456	2	37076	/	589	69	2898	61	1132	117
1205	20	1224	3 220	50344	615	732	75	2710	61	1213	117
1200	20	1475	3	58833	8	730	72	2817	61	1406	121
1208	20	1483	3	58828	8	559	73	2673	60	1502	120
1209	20	1245	3	60097	8	626	69	2813	61	1533	117
1210	20	1561	3	57438	8	695	75	2834	62	1556	123
1211	20	1324	3	54819	8	714	75	2842	61	1442	125
1212	20	1115	3	58157	8	540	71	2674	60	1499	120
1213	20	1280	3	59880	8	693	75	2854	61	1497	125
1214	20	940	3	57459	8	696	72	3049	63	1430	122
1215	20	1130	3	55119	8	625	75	3124	63	1470	125
1210	20	1297	3	51722	8	728	74	3568	67	1320	120
1218	20	693	3	38225	7	581	68	3408	66	1337	120
1219	20	761	206	46725	578	700	71	3200	64	1402	122
1220	20	901	3	44948	7	720	70	2850	62	1337	118
1221	20	1043	3	49909	8	696	72	3166	63	1393	121
1222	20	1028	209	55522	576	600	74	3188	64	1360	126
1223	20	538	3	47780	8	739	70	3212	64	1266	120
1224	20	024	3	28700	8	5/1	70	3/61	08 71	1478	120
1225	20	405	3	39354	7	581	68	4671	75	1344	119
1227	20	1231	3	37153	7	675	67	5434	80	1302	119
1228	20	754	2	32261	6	580	68	3734	67	971	114
1229	20	589	2	36392	7	583	66	3510	66	1218	116
1230	20	881	2	35080	7	537	63	3081	61	886	105
1236	20	1208	3	45763	7	655	68	3005	63	1198	115
1237	20	1186	201	45952	521	560	66	3373	65	1087	114
1238	20	0/7	3	40383	/	549 542	/1	3723	67	1220	121
1239	20	1552	3	50794	8	604	70	3572	67	1373	118
1241	20	1449	3	49196	8	622	67	3516	67	1308	119
1242	20	1097	3	50951	8	597	69	3218	64	1360	116
1243	20	763	211	51499	550	512	67	3359	64	1616	121
1244	20	1053	3	54637	8	566	65	3236	64	1321	115
1245	20	1065	3	46813	7	587	69	3368	65	1151	120
1246	20	951	3	46056	7	696	72	3165	64	1173	121
1247	20	1341	3	54248	8	568	72	3139	64	1595	122
1248	20	885	3	52892	ð	806	72	3028	63	1241	113

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler	Fe [ppm] (10kV)	Fe Fehler	Rb [ppm] (30kV)	Rb Fehler	Sr [ppm] (30kV)	Sr Fehler	Zr [ppm] (30kV)	Zr Fehler
			[ppm]								
1249	20	1243	3	52386	8	588	71	3592	67	1558	123
1250	20	970	3	43643	7	595	70	3667	68	1114	119
1251	20	1239	3	42301	496	405 631	68	3738	68	1214	112
1253	20	1022	3	43845	7	609	71	3581	67	1335	120
1254	20	1142	3	43369	7	519	66	3495	66	1043	113
1255	20	1020	3	45765	7	592	69	3696	68	1109	117
1256	20	880	3	41521	7	376	66	3692	68	1299	117
1257	20	1074	3	49466	8	525	68	3457	67	1219	118
1258	20	845	3	39406	7	606	70 69	3167	63	1237	120
1260	20	1259	3	48029	8	477	68	3265	65	1158	117
1261	20	1018	3	42529	7	584	69	3774	68	1248	118
1262	20	990	3	41033	7	666	70	3913	69	902	114
1263	20	1302	3	44318	7	595	68	3821	69	1116	117
1264	20	773	3	41828	7	493	67	3660	68	949	113
1265	20	1120	206	45240	523	459	68	3696	58 70	997	110
1267	20	1221	3	40545	7	513	63	3486	66	1208	113
1268	20	541	2	48576	7	485	61	3046	61	958	109
1269	20	1223	3	46994	7	570	65	3192	63	1178	112
1270	20	915	2	40405	7	531	68	3137	64	1124	117
1271	20	755	3	46408	7	645	71	3155	65	1223	120
1272	20	538	2	32955	6	577	67	2979	62	883	111
1273	20	310	2 158	33221	391	391	69 69	2839	62	1136	118
1274	20	909	2	28081	6	488	73	3089	64	1175	125
1276	20	383	2	28055	6	722	69	3297	64	1098	119
1277	20	546	2	28818	6	367	68	2964	62	1040	116
1278	20	676	176	30977	479	752	71	3198	64	1037	116
1279	20	778	2	31176	6	623	71	3187	64	1609	126
1280	20	690	2	31420	6	590	69 70	3222	64	1290	119
1281	20	790	2	35835	7	613	68	3147	64	1160	120
1283	20	848	2	39188	7	628	67	3383	66	1099	116
1284	20	861	3	35549	7	492	65	3524	67	1179	116
1285	20	675	2	24799	6	411	66	3100	64	1337	121
1286	20	808	2	29735	6	416	68	3097	63	1217	118
1287	20	-111	2	23831	6	601	70	3135	64	1249	117
1289	20	566	2	20110	6	631	70	3159	63	871	114
1290	20	641	2	19365	5	602	71	3224	65	1149	118
1291	20	279	171	20536	392	638	68	3167	64	1198	121
1292	20	139	2	16847	5	494	68	3156	64	1039	114
1293	20	309	2	16378	5	560	69	3158	64	898	111
1294	20	343	2	15628	5	585	70	3064	63	981	116
1295	20	280	2	15326	5	583	65	3020	64	1049	118
1297	20	285	2	16271	5	545	70	2995	63	892	114
1298	20	194	2	16146	5	433	67	3389	66	984	112
1299	20	453	166	15275	368	505	66	2874	61	851	112
1300	20	794	2	17954	5	526	70	3242	65	1186	122
1301	20	355	2	17762	5	432	65	3165	64	1079	118
1302	20	310	2	16259	5	514	68	338/ 3352	66	815 867	118
1304	20	229	162	15083	365	560	73	3148	64	1034	117
1305	20	372	2	16041	5	513	70	3156	65	654	111
1306	20	43	2	15721	5	719	72	3288	65	992	115
1307	20	362	2	16359	5	496	70	3119	64	1212	119
1308	20	93	2	17063	5	584	72	3032	63	805	116
1309	20	929	2	16347	5	568	64	3290	64	863	114

Tiefe [cm]	Messzeit [sec]	Mn [ppm] (10kV)	Mn Fehler [ppm]	Fe [ppm] (10kV)	Fe Fehler [ppm]	Rb [ppm] (30kV)	Rb Fehler [ppm]	Sr [ppm] (30kV)	Sr Fehler [ppm]	Zr [ppm] (30kV)	Zr Fehler [ppm]
1310	20	183	2	17628	5	502	68	2986	62	1024	115
1311	20	1780	3	51312	8	641	73	4274	73	1283	118
1312	20	1274	214	48111	543	502	69	3957	70	1200	121
1313	20	1080	3	47408	8	701	71	4338	73	1237	118
1314	20	1187	3	42397	7	502	66	3993	70	1095	114
1315	20	1019	2	32210	6	560	62	3603	66	1357	115
1316	20	726	3	43167	7	691	70	3498	65	1339	119
1317	20	931	3	41515	7	499	66	3608	67	1098	115
1318	20	1178	3	44692	7	566	69	4168	72	1398	119
1319	20	1330	3	31124	6	527	66	3357	66	949	115
1320	20	649	3	34552	7	561	69	3704	68	1111	118
1321	20	940	2	26355	6	552	71	3243	65	953	119
1322	20	794	181	24544	425	486	70	3414	66	1340	123
1323	20	501	2	23647	6	530	71	3336	65	1165	121
1324	20	654	181	20751	423	500	68	3166	64	1418	122
1325	20	361	2	21064	5	586	72	3154	65	973	118
1326	20	-42	2	17400	5	473	69	3098	63	1158	119
1327	20	363	2	16017	5	595	72	3042	63	1143	122
1328	20	983	3	43183	7	636	73	3658	68	1131	118
1329	20	1269	3	50589	8	693	71	4114	71	1371	121
1330	20	1571	3	51395	8	575	68	3854	70	1548	117
1331	20	1456	3	52768	8	578	70	4069	71	1288	121
1332	20	1140	3	50376	8	541	69	4048	71	1220	123
1333	20	1315	3	49800	8	663	71	4133	72	1255	126
1334	20	1272	3	49408	8	593	69	3905	70	1316	119
1335	20	1125	2	38498	7	471	68	3630	67	1296	119

Bohrkern	Tiefe [cm]	Lab. Nr.	¹⁴ C Alter und Fehler [yr. BP]	δ ¹³ C [‰]	kalibrierte Alter und Standard Abw. [kal. yr. BP]	Material	Proben Serie
KEO I	247	Poz-37868	5495 ± 35	-21,3	6299 ± 24	Mischprobe	Poz 1
KEO I	253	Erl-13181	5880 ± 46	-20.5	6709 ± 45	Mischprobe	Erl 2
KEO I	353	Erl-12109	8697 ± 56	-22.7	9674 ± 85	Mischprobe	Erl 1
KEO I	367	Poz-37949	9270 ± 50	-25,1	10441 ± 88	Mischprobe	Poz 1
KEO I	367	Poz-37869	9320 ± 60	-24,6	10523 ± 90	Mischprobe	Poz 1
KEO I	526	Erl-13182	6037 ± 47	-21.6	6884 ± 64	Mischprobe	Erl 2
KEO I	536	Poz-37870	6920 ± 40	-26,8	7222 ± 36	Mischprobe	Poz 1
KEO I	674	Erl-12110	10661 ± 56	-23.3	12661 ± 65	Mischprobe	Erl 1
KEO I	665	Poz-37871	11170 ± 70	-27,4	13073 ± 125	Mischprobe	Poz 1
ONW	386	Erl-12107	16020 ± 105	-28,1	19163 ± 230	Mischprobe	Erl 1
ONW	588	Erl-12108	17642 ± 112	-23,4	21044 ± 329	Mischprobe	Erl 1
ONW II	91	Erl-15622	12581 ± 103	-25,4	12973 ± 323	Mischprobe	ERL 3
ONW II	199	Erl-15623	13242 ± 85	-24,2	14223 ± 413	Mischprobe	ERL 3
ONW II	271	Erl-15624	17733 ± 149	-25,4	19215 ± 354	Mischprobe	ERL 3
ONW II	392	Erl-15625	17713 ± 180	-24,5	19192 ± 379	Mischprobe	ERL 3
ONW II	571	Erl-15626	19738 ± 179	-23,8	21670 ± 348	Mischprobe	ERL 3
ONW II	778	Erl-15627	21501 ± 217	-24,2	23714 ± 444	Mischprobe	ERL 3
ONW II	1192	Erl-15628	46103 ± 2281	-25,4	48072 ± 3111	Mischprobe	ERL 3
ONW II	1272	Erl-15629	40429 ± 1340	-24,9	42241 ± 1147	Mischprobe	ERL 3

Tab. A10: Übersicht der ¹⁴C Datierungen an den Bohrkernen

Sand	0,303	0,349	-0,315	0,218	0,389	-0,322	0,485	0,312	0,267	0,436	-0,277	0,441	0,039	-0,130	0,942	-0,394	-0,199	×
Schluff	0,033	-0,447	0,336	-0,486	-0,085	0,194	-0,381	0,007	0,039	-0,164	0,457	-0,395	0,250	0,030	0,109	-0,822	х	
Ton	-0,207	0,217	-0,133	0,330	-0,146	0,005	0,076	-0,188	-0,192	-0,099	-0,268	0,115	-0,257	0,028	-0,649	x		
Körnung Mittelwert	0,277	0,239	-0,243	0,103	0,357	-0,282	0,377	0,298	0,242	0,351	-0,171	0,337	0,091	-0,101	×			
mag. Sus.	-0,104	-0,358	0,080	-0,347	-0,092	-0,248	-0,375	0,419	0,401	0,103	0,306	-0,331	0,436	x				
ч	0,103	-0,561	0,104	-0,633	-0,060	-0,365	-0,520	0,718	0,748	0,308	0,774	-0,569	x					
Са	0,151	0,881	-0,337	0,824	0,434	-0,172	0,852	-0,229	-0,330	0,158	-0,862	x						
ц	0,017	-0,832	0,336	-0,838	-0,294	0,064	-0,794	0,382	0,482	-0,052	x							
ЧМ	0,418	0,137	-0,100	-0,057	0,436	-0,408	0,195	0,616	0,725	x								
Fe	0,290	-0,349	0,000	-0,501	0,174	-0,418	-0,189	0,882	х									
Rb	0,214	-0,240	-0,107	-0,373	0,178	-0,509	-0,114	х										
Sr	0,010	0,758	-0,343	0,712	0,367	-0,112	х											
el. Leitf.	0,076	-0,189	0,537	-0,165	-0,116	x												
TOC	0,814	0,549	0,149	0,147	×													
CaCO ₃	-0,170	0,908	-0,496	x														
s	0,422	-0,355	x															
c	0,202	x													rrelation	> 0,7	درu < <-0,5	<-0,7
z	×														N N			
n=102	z	C	S	caco3	TOC	el. Leitt.	Sr	Rb	Fe	Mn	Ті	Ca	К	mag. Sus.	Körnung Mittelwert	Ton	Schluff	Sand

-

-

- -

-

- -

Abb. A1: Korrelation ausgewählter sedimentologischer Parameter des KEO I Bohrkerns

Ton Schluff Sand	0,793 0,808 -0,855		0,755 0,531 -0,654	0,755 0,531 -0,654 -0,370 -0,331 0,369	0,755 0,531 -0,654 -0,370 -0,331 0,369 0,753 0,498 -0,632	0,755 0,531 -0,654 -0,370 -0,331 0,369 0,753 0,498 -0,632 0,655 0,627 -0,679	0,755 0,531 -0,654 -0,370 -0,331 0,369 -0,370 -0,331 0,369 0,753 0,498 -0,632 0,655 0,627 -0,679 0,757 0,589 -0,694	0,755 0,531 -0,654 -0,370 -0,331 0,369 0,753 0,498 -0,632 0,655 0,627 -0,679 0,657 0,589 -0,694 0,757 0,589 -0,694 0,624 0,204 -0,694	0,755 0,531 -0,654 -0,370 -0,331 0,369 0,753 0,498 -0,632 0,655 0,498 -0,679 0,655 0,627 -0,679 0,655 0,627 -0,694 0,655 0,589 -0,694 0,757 0,589 -0,694 0,624 0,204 -0,383 -0,190 0,103 0,006	0,755 0,531 -0,654 -0,370 -0,331 0,369 0,753 0,498 -0,632 0,753 0,498 -0,679 0,655 0,627 -0,679 0,655 0,627 -0,694 0,654 0,629 -0,694 0,654 0,589 -0,694 0,624 0,204 -0,383 0,624 0,204 -0,383 0,624 0,204 -0,383 0,6343 0,582 0,006 0,343 0,582 0,526	0,755 0,531 -0,654 -0,370 -0,331 0,369 0,753 0,498 -0,632 0,753 0,498 -0,679 0,655 0,627 -0,679 0,655 0,627 -0,694 0,654 0,589 -0,694 0,757 0,589 -0,694 0,624 0,589 -0,694 0,624 0,204 -0,383 0,624 0,204 -0,383 0,6343 0,582 0,526 0,343 0,582 0,526 0,242 0,360 -0,337 0,242 0,360 -0,337	0,755 0,531 -0,654 -0,370 -0,331 0,369 -0,753 0,498 -0,632 0,753 0,498 -0,679 0,655 0,627 -0,679 0,757 0,589 -0,694 0,757 0,589 -0,694 0,624 0,589 -0,694 0,624 0,204 -0,383 0,624 0,204 -0,383 0,624 0,204 -0,383 0,624 0,204 -0,383 0,793 0,582 -0,526 0,343 0,582 -0,537 0,242 0,360 -0,337 0,242 0,360 -0,337 0,242 0,362 -0,501 -0,107 0,362 -0,201	0,755 0,531 -0,654 -0,370 -0,331 0,369 -0,753 0,498 -0,632 0,753 0,498 -0,632 0,753 0,498 -0,632 0,753 0,589 -0,694 0,757 0,589 -0,694 0,757 0,589 -0,694 0,624 0,589 -0,694 0,624 0,589 -0,694 0,624 0,204 -0,333 0,624 0,204 -0,333 0,9343 0,103 0,006 0,343 0,582 -0,526 0,343 0,582 -0,537 0,242 0,360 -0,337 0,242 0,360 -0,337 0,242 0,362 -0,201 0,619 0,459 -0,562	0,755 0,531 -0,654 -0,370 -0,331 0,369 0,753 0,498 -0,632 0,753 0,498 -0,632 0,655 0,627 -0,679 0,655 0,627 -0,694 0,654 0,589 -0,694 0,624 0,589 -0,694 0,624 0,589 0,006 0,103 0,103 0,006 0,343 0,582 -0,526 0,343 0,582 -0,5337 0,343 0,582 -0,5337 0,242 0,360 -0,3337 0,242 0,360 -0,3337 0,242 0,360 -0,3337 0,242 0,360 -0,3337 0,242 0,360 -0,3337 0,619 0,459 -0,562 0,619 0,459 -0,562 0,086 0,520 -0,382	0.755 0.531 0.654 0.755 0,331 0,369 0.753 0,498 0,632 0.753 0,498 0,679 0.655 0,627 0,679 0.655 0,627 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.759 0,593 0,006 0.343 0,103 0,006 0.343 0,582 -0,337 0.343 0,582 -0,337 0.343 0,582 -0,337 0.242 0,360 -0,337 0.242 0,362 -0,337 0.561 0,459 -0,337 0.619 0,459 -0,382 0.619 0,520 -0,382 0.619 0,520 -0,382 0.6169 0,520 -0,382	0.755 0.531 0.654 0.755 0,531 0,369 0.753 0,498 0,369 0.753 0,498 0,652 0.655 0,627 0,654 0.757 0,589 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.7190 0,103 0,006 0.343 0,582 -0,533 0.343 0,582 -0,533 0.343 0,582 -0,533 0.242 0,360 -0,337 0.242 0,360 -0,337 0.242 0,362 -0,337 0.245 0,360 -0,337 0.6107 0,459 -0,552 0.6108 0,520 -0,382 0.6108 0,520 -0,386 0.6962 0,966 0,546 <th>0.755 0.531 0.654 0.755 0,531 0,369 0.753 0,498 0,369 0.753 0,498 0,653 0.655 0,627 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.7190 0,103 0,006 0.9191 0,103 0,006 0.2422 0,240 0,337 0.2423 0,582 -0,526 0.2423 0,562 -0,337 0.242 0,360 0,383 0.242 0,360 -0,337 0.242 0,360 -0,337 0.242 0,360 -0,382 0.9619 0,459 -0,382 0.9610 0,459 0,546 0.9610 0,546 0,546 0.744 0,546 0,844 <th>0,755 0,531 0,654 0,753 0,331 0,369 0,753 0,498 0,632 0,753 0,498 0,632 0,753 0,498 0,632 0,753 0,498 0,694 0,757 0,589 0,694 0,757 0,589 0,694 0,654 0,204 0,333 0,624 0,204 0,333 0,624 0,204 0,006 0,100 0,103 0,006 0,242 0,582 0,583 0,242 0,360 0,006 0,242 0,360 0,333 0,242 0,362 0,333 0,242 0,362 0,362 0,243 0,362 0,362 0,046 0,459 0,546 0,066 0,520 0,986 0,0862 0,966 0,946 x 0,744 0,894</th></th>	0.755 0.531 0.654 0.755 0,531 0,369 0.753 0,498 0,369 0.753 0,498 0,653 0.655 0,627 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.757 0,589 0,694 0.7190 0,103 0,006 0.9191 0,103 0,006 0.2422 0,240 0,337 0.2423 0,582 -0,526 0.2423 0,562 -0,337 0.242 0,360 0,383 0.242 0,360 -0,337 0.242 0,360 -0,337 0.242 0,360 -0,382 0.9619 0,459 -0,382 0.9610 0,459 0,546 0.9610 0,546 0,546 0.744 0,546 0,844 <th>0,755 0,531 0,654 0,753 0,331 0,369 0,753 0,498 0,632 0,753 0,498 0,632 0,753 0,498 0,632 0,753 0,498 0,694 0,757 0,589 0,694 0,757 0,589 0,694 0,654 0,204 0,333 0,624 0,204 0,333 0,624 0,204 0,006 0,100 0,103 0,006 0,242 0,582 0,583 0,242 0,360 0,006 0,242 0,360 0,333 0,242 0,362 0,333 0,242 0,362 0,362 0,243 0,362 0,362 0,046 0,459 0,546 0,066 0,520 0,986 0,0862 0,966 0,946 x 0,744 0,894</th>	0,755 0,531 0,654 0,753 0,331 0,369 0,753 0,498 0,632 0,753 0,498 0,632 0,753 0,498 0,632 0,753 0,498 0,694 0,757 0,589 0,694 0,757 0,589 0,694 0,654 0,204 0,333 0,624 0,204 0,333 0,624 0,204 0,006 0,100 0,103 0,006 0,242 0,582 0,583 0,242 0,360 0,006 0,242 0,360 0,333 0,242 0,362 0,333 0,242 0,362 0,362 0,243 0,362 0,362 0,046 0,459 0,546 0,066 0,520 0,986 0,0862 0,966 0,946 x 0,744 0,894
Sus. Körnung Mittelwert	80 -0,823		33 -0,605	33 -0,605 49 0,360	33 -0,605 49 0,360 41 -0,581	33 -0,605 49 0,360 41 -0,581 98 -0,645	33 -0,605 49 0,360 41 -0,581 98 -0,645 74 -0,653	33 -0,605 49 0,360 41 -0,581 98 -0,645 98 -0,645 30 -0,653	33 -0,605 49 0,360 41 -0,581 98 -0,645 30 -0,653 31 -0,653 32 -0,345 33 -0,0345	33 -0,605 49 0,360 41 -0,581 98 -0,645 98 -0,653 30 -0,653 30 -0,345 95 -0,049 95 -0,0556	33 -0,605 49 0,360 41 -0,581 98 -0,645 98 -0,645 98 -0,645 93 -0,345 11 -0,556	33 -0,605 49 0,360 41 -0,581 98 -0,645 98 -0,645 98 -0,645 95 -0,049 95 -0,049 95 -0,049 95 -0,049 95 -0,0366 11 -0,556 62 -0,254	33 -0,605 49 0,360 41 -0,581 98 -0,645 98 -0,653 30 -0,653 31 -0,653 95 -0,049 95 -0,049 95 -0,049 95 -0,0566 11 -0,357 62 -0,254 62 -0,502	33 -0,605 49 0,360 41 -0,581 98 -0,645 98 -0,645 98 -0,645 14 -0,645 98 -0,645 15 -0,653 95 -0,049 95 -0,049 95 -0,0556 11 -0,357 62 -0,254 67 -0,502 60 -0,420	33 -0,605 49 0,360 41 -0,581 98 -0,645 98 -0,645 98 -0,645 30 -0,645 31 -0,656 35 -0,656 11 -0,357 62 -0,556 63 -0,562 64 -0,562 67 -0,562 67 -0,562 60 -0,420 60 -0,420	33 -0,605 49 0,360 41 -0,581 41 -0,581 98 -0,645 98 -0,645 30 -0,645 30 -0,656 11 -0,656 11 -0,357 62 -0,556 63 -0,502 64 -0,502 67 -0,502 67 -0,502 67 -0,505 7 -0,505 7 -0,505 7 -0,505 7 -0,505 7 -0,505	33 -0,605 49 0,360 41 -0,581 41 -0,581 98 -0,645 98 -0,653 30 -0,656 11 -0,656 11 -0,345 95 -0,049 95 -0,049 95 -0,049 95 -0,049 95 -0,0505 67 -0,502 00 -0,420 0 -0,505 0,505	33 -0,605 49 0,360 41 -0,581 42 -0,645 98 -0,645 98 -0,645 91 -0,653 95 -0,656 11 -0,345 95 -0,049 95 -0,049 95 -0,049 95 -0,049 95 -0,049 95 -0,049 95 -0,049 95 -0,049 95 -0,049 10 -0,502 11 -0,505 11 -0,505 11 -0,505 12 -0,505 13 -0,505 14 -0,505
K mag.	0,124 -0,4		-0,309 -0,6:	-0,309 -0,6	-0,309 -0,6 -0,059 0,42 -0,340 -0,6	-0,309 -0,60 -0,059 0,44 -0,340 -0,6 -0,6	-0,309 -0,60 -0,059 0,44 -0,340 -0,66 -0,094 -0,40 -0,024 -0,37	-0,309 -0,6 -0,059 0,4/ -0,054 -0,6 -0,094 -0,4/ -0,024 -0,4/ -0,024 -0,3/ -0,024 -0,3/ -0,024 -0,3/ -0,501 -0,5	-0,309 -0,65 -0,059 0,44 -0,340 -0,6 -0,094 -0,44 -0,024 -0,34 -0,024 -0,33 -0,501 -0,55 -0,501 -0,55 -0,501 -0,55 -0,501 -0,55 -0,512 0,513	-0,309 -0,65 -0,059 0,44 -0,340 -0,6 -0,094 -0,44 -0,024 -0,3 -0,501 -0,5 -0,642 0,25 0,632 -0,1	-0,309 -0,65 -0,059 0,44 -0,340 -0,6 -0,094 -0,4 -0,024 -0,3 -0,024 -0,3 -0,024 -0,3 0,024 -0,3 0,632 0,1 0,632 -0,1 0,416 0,0	-0,309 -0,65 -0,059 0,44 -0,340 -0,6 -0,340 -0,6 -0,094 -0,4 -0,024 -0,3 -0,024 -0,3 0,024 -0,3 0,642 0,2 0,632 -0,1 0,632 -0,1 0,919 0,2 0,919 0,2	-0,309 -0,65 -0,059 0,44 -0,054 -0,66 -0,034 -0,44 -0,024 -0,37 -0,024 -0,37 -0,024 -0,37 -0,622 -0,1 0,632 -0,1 0,632 -0,1 0,632 -0,1 0,316 0,21 -0,316 -0,5	-0,309 -0,65 -0,059 0,44 -0,0340 -0,66 -0,0340 -0,64 -0,024 -0,34 -0,024 -0,34 -0,024 -0,34 -0,024 -0,34 -0,622 -0,14 0,642 0,24 0,642 0,24 0,916 0,07 -0,316 -0,55 -0,316 -0,55 -0,316 -0,55 -0,316 -0,55 -0,316 -0,55 -0,316 -0,55 -0,316 -0,55 -0,316 -0,55	-0,309 -0,65 -0,059 0,44 -0,0340 -0,66 -0,0344 -0,44 -0,0244 -0,43 -0,0244 -0,55 -0,0244 -0,55 -0,642 0,26 0,642 0,26 0,6416 0,07 0,9119 0,27 -0,3116 -0,55 -0,3116 -0,51 -0,3116 -0,51 -0,3116 -0,51 -0,3116 -0,51 -0,3116 -0,51 -0,3116 -0,51 -0,3116 -0,51 -0,3116 -0,51 -0,3116 -0,51 -0,3116 -0,51 -0,3116 -0,51 -0,3116 -0,51 -0,3116 -0,51	-0,309 -0,65 -0,059 0,44 -0,054 -0,66 -0,0340 -0,64 -0,024 -0,34 -0,024 -0,35 -0,024 -0,35 -0,024 -0,35 -0,501 -0,55 -0,516 -0,55 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,516 -0,51 -0,516 -0,51 -0,516 -0,51 -0,516 -0,51 -0,516 -0,51 -0,516 -0,51 -0,516 -0,51 -0,516 -0,51	-0,309 -0,65 -0,059 0,44 -0,0340 -0,66 -0,0340 -0,64 -0,0341 -0,34 -0,0342 -0,34 -0,0342 -0,34 -0,0342 -0,34 -0,642 0,35 0,416 0,07 0,319 0,24 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51	-0,309 -0,65 -0,059 0,44 -0,054 -0,66 -0,0340 -0,66 -0,0340 -0,66 -0,0341 -0,37 -0,0342 -0,37 -0,642 0,37 0,416 0,07 0,416 0,07 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51 -0,316 -0,51
- Ca	0,669		(23 0,967	23 0,967 06 -0,421	23 0,967 06 -0,421 553 0,923	(23 0,967 06 -0,421 553 0,923 287 0,860	(23 0,967 06 -0,421 653 0,923 287 0,860 176 0,550	(23 0,967 06 -0,421 53 0,923 87 0,860 176 0,550	(23 0,967 06 -0,421 53 0,923 (87 0,860 176 0,550 549 0,709 31 -0,667	(23 0,967 06 -0,421 53 0,923 (87 0,860 176 0,550 549 0,708 31 -0,667 37 -0,274	(23 0,967 06 -0,421 153 0,923 153 0,550 176 0,550 179 0,550 179 0,550 179 0,550 179 0,550 179 0,550 179 0,550 179 0,550 179 0,550 170 0,550 181 -0,550 181 -0,570 181 -0,567 183 -0,274 186 -0,135	 (23 0,967 (6 -0,421 (53 0,923 (76 0,550 (76 0,550 (37 0,667 (37 -0,574 (66 -0,135 (66 -0,135 (76 -0,539 	(23 0,967 (5 -0,421 (53 0,923 (550 (76 0,550 (49 0,709 (31 -0,667 (37 -0,274 (06 -0,135 (06 -0,135 (7 -0,539 (7 -0,539 (7 -0,539) (7 -	23 0,967 66 -0,421 53 0,923 76 0,550 79 0,709 31 -0,667 37 -0,274 06 -0,135 06 -0,135	(23 0,967 (53 0,923 (53 0,923 (76 0,550 (49 0,709 (49 0,709 (49 0,709 (67 -0,539 (67 -0,135 (7 -0,539 (7 -0,539 (7 -0,539	(23 0.967 06 -0,421 53 0,923 53 0,923 64 0,550 31 -0,550 37 -0,274 06 -0,135 06 -0,135 07 -0,539 06 -0,135 07 -0,539 08 -0,539 09 -0,539	(23 0,967 (53 0,923 (53 0,923 (56 0,550 (76 0,550 (49 0,709 (49 0,709 (31 0,574 (37 0,539 (4 0,539 (4 0,539 (4 0,539 (4 0,539	(23 0,967 (53 0,923 (53 0,923 (56 0,550 (49 0,708 (49 0,708 (49 0,708 (4 0,539 (5 -0,135 (5 -0,135 (5 -0,135 (5 -0,135 (5 -0,135 (5 -0,135 (5 -0,539 (5 -0,135 (5 -0,539) (5 -0,
Mn	0,146 -0,0		-0,055 -0,5	-0,055 -0,5 -0,063 0,10	-0,055 -0,5 -0,063 0,10 -0,05	-0,055 -0,5 -0,063 0,10 -0,078 -0,5 0,072 -0,2	-0,055 -0,5 -0,063 0,10 -0,078 -0,5 0,072 -0,2 0,137 -0,1	-0,055 -0,5 -0,063 0,10 -0,078 -0,5 0,072 -0,2 0,137 -0,1 0,137 -0,1	-0,055 -0,5; -0,063 0,10 -0,078 -0,5 0,072 -0,2 0,137 -0,1 -0,137 -0,1 0,437 0,7	-0,055 -0,55 -0,063 0,10 -0,078 -0,5 -0,072 -0,5 0,072 -0,2 0,137 -0,1 -0,137 -0,1 -0,137 -0,1 -0,137 -0,1 -0,137 -0,1 -0,137 -0,1 -0,1437 0,7 -0,489 0,6	-0,055 -0,5 -0,063 0,10 -0,078 -0,5 0,137 -0,1 -0,137 -0,1 -0,137 -0,1 -0,489 0,6 	-0,055 -0,5 -0,063 0,10 -0,078 -0,5 0,137 -0,1 0,137 -0,1 0,489 0,6 0,489 0,6 0,489 0,6	-0,055 -0,5 -0,063 0,10 -0,078 -0,5 0,137 -0,1 0,137 -0,1 0,437 -0,1 0,489 0,6 x 0,4	-0,055 -0,5 -0,063 0,10 -0,078 -0,5 0,137 -0,1 -0,137 -0,1 -0,437 0,7 0,489 0,6 0,489 0,6 	-0,055 -0,5 -0,063 0,10 -0,078 -0,5 0,072 -0,2 0,137 -0,1 -0,137 -0,1 -0,23 -0,6 0,437 0,7 0,437 0,7 	-0,055 -0,5 -0,063 0,10 -0,078 -0,5 0,072 -0,2 0,137 -0,1 -0,137 -0,1 -0,437 0,7 0,439 0,6 × 0,449 0,6 × x x	-0,055 -0,5 -0,063 0,10 -0,078 -0,5 0,072 -0,2 0,137 -0,1 -0,137 -0,1 -0,437 0,7 -0,489 0,6 -, x x 0,44 - x x - 0,41 	-0,055 -0,5 -0,063 0,10 -0,078 -0,5 0,137 -0,1 -0,137 -0,1 -0,437 0,7 x x 0,4 x x x 0,4 x x 0,4 - x x 0,4
ъ	3 0,321		2 -0,146	2 -0,146 6 0,011	2 -0,146 6 0,011 6 -0,175	2 -0,146 6 0,011 6 -0,175 17 0,034	2 -0,146 6 0,011 0 -0,175 7 0,034 6 0,236	2 -0,146 6 0,011 0 -0,175 7 0,034 6 0,236 6 0,236	2 -0,146 6 0,011 0 -0,175 7 0,034 6 0,236 6 0,236 0 -0,140 0 0,662	2 -0,146 6 0,011 0 -0,175 7 0,034 6 0,236 6 0,236 10 -0,140 0 -0,140	2 -0,146 6 0,011 7 0,034 6 0,236 6 0,236 10 -0,140 0,662 7 x	2 -0,146 6 0,011 7 0,034 6 0,236 6 0,236 6 0,236 7 0,034 7 0,034 7 x x	2 -0,146 6 0,011 7 0,034 6 0,236 6 0,236 6 0,236 7 0,034 7 0,034 7 × ×	2 -0,146 6 0,011 7 0,034 6 0,236 6 0,236 6 0,236 7 0,034 7 0,062 7 x	2 -0,146 6 0,011 7 0,034 6 0,236 6 0,236 0 -0,140 0 -0,140 x x	2 -0,146 6 0,011 7 0,034 6 0,236 6 0,236 6 0,236 7 0,034 7 0,062 8 x	2 -0,146 6 0,011 7 0,034 6 0,236 6 0,236 0 -0,140 0 -0,140 0 -0,140 0 -0,140 0 -0,140 0 -0,140 0 -0,175 -0,176 -0,175 -0,175 -0,175 -0,175 -0,175 -0,175 -0,175 -0,175 -0,175 -0,175 -0,175 -0,175 -0,176 -0	2 -0,146 6 0,011 7 0,034 6 0,236 6 0,236 6 0,236 7 0,034 7 0,062 8 x x
Sr	0,450 -0,24.		0,797 -0,61:	0,797 -0,61 ¹ -0,359 0,146	0,797 -0,611 -0,359 0,146 0,817 -0,63	0,797 -0,611 -0,359 0,146 0,817 -0,63 0,573 -0,42	0,797 -0,613 -0,359 0,146 -0,817 -0,63 0,817 -0,63 0,573 -0,42 0,514 -0,26	0,797 -0,611 -0,359 0,146 0,817 -0,633 0,573 -0,422 0,514 -0,266 0,514 -0,266 x -0,500	0,797 -0,611 -0,359 0,146 0,817 -0,63 0,573 -0,42 ⁻ 0,514 -0,26 x -0,50 x x	0,797 -0,611 -0,359 0,146 0,817 -0,63 0,573 -0,42 ⁻ 0,514 -0,26 x -0,50 x -0,50	0,797 -0,611 -0,359 0,146 0,817 -0,63 0,514 -0,26i x -0,50 x x -0,50	0,797 -0,611 -0,359 0,146 0,817 -0,63 0,573 -0,42 x -0,26 x -0,50 x x	0,797 -0,611 -0,359 0,146 0,817 -0,63 0,573 -0,42 0,514 -0,26i x x x x	0,797 -0,611 -0,359 0,146 0,817 -0,63 0,573 -0,42 x -0,50 x x x x x	0,797 -0,611 -0,359 0,146 0,817 -0,63 0,573 -0,42 x -0,50 x x x x x	0,797 -0,611 -0,359 0,146 0,817 -0,63 0,573 -0,42 ⁻ 0,514 -0,26 ⁰ x -0,50 ⁰ x x	0,797 -0,611 -0,359 0,146 0,817 -0,63 0,514 -0,26i x -0,50 x x x	0,797 -0,611 0,817 -0,63 0,573 -0,42 x -0,26i x x x
el. Leitt.	0,824		0,649	0,649	0,649	0,649 0,644 0,644 0,583	0,649 -0,077 -0,644 0,644 x	0,649 - 0,077 - 0,644 0,583 x x	0,649 - 0,077 - 0,644 - x x	0,649 - 0,077 - 0,644 - x x	0,649 - 0,077 - 0,644 - x - x - x	0,649 - 0,077 - 0,644 - x x x	0,649 -0,077 -0,077 -0,583 0,077 0,077 0,077 0,077 0,077 0,077 0,077 0,077 0,077 0,077 0,077 0,077 0,077 0,077 0,077 	0,649 - 0,077 - 0,644 - 0,583 - x - x - x	0,649 0,077 0,077 0,077 0,077 0,077 	0,649 0,077 0,077 0,077 0,077 0,077 0,077 	0,649 - 0,077 - 0,077 - 0,583 0,077 	0,649 - 0,077 - 0,077 - 0,583 0,077
caCO ₃ TOC	0,709 0,801	320 0 300	0,940 0,670	0,439 -0,384	1,996 U,676 0,439 -0,384 x 0,829	7,996 0,439 0,439 0,439 0,439 0,439 0,439 0,439 x 0,829 x x x x x x x x x x x x x x x x x x x	, 1,990 0,439 0,439 0,439 0,439 2,9	0,439 0,439 0,439 v,439	0,439 0,439 0,439 0,439 x,439	7,990 0,439 0,439 0,439 v,400	0,439 0,439 0,439 0,439 1,000	0,439 0,439 0,439 0,439 0,439 0,439 x x x x x x x x x x x x x x x x x x x	0,439 0,439 0,439 0,439 0,439 x x x x x x x x x x x x x x x x x x x					
s	-0,221	-0.441																
U z	x 0,741		×	×	×	×	×	×	×	×	×	×	×	×	×	x x Korrelation N	x x korrelation b 0,7	x x Korrelation > 0,5 <-0,5
n=114	z	(c	ى د	္ရေပ ဒင္ရင္က လ င	Toc caco ₃ s c	c c caco ₃ s c c	e. Leitt	Rb Sr CC CaCO3 S CC	E B S S C CaCo ₃ S C C	Man Fe Hitt	a Babara Caco. a Babara a Caco. a Ca	Calco A H A R R Calco Calco A H A R Calco	× Ca ユ 単 番 密 で 「Fitt To Co 3 の Ca Ca Co 3 の Ca	Cacco ₃ s c Cacco ₃ s s Rb Rb Rb Rb Rb Rb Rb Rb Rb Rb Rb Rb Rb	C CaCO ₃ S C CaCO ₃ S S C CaCO ₃ S S C CaCO ₃ S S S S S S S S S S S S S S S S S S S	Caco ₃ s caco ₃ s radius field fie	CaCO ₃ S Sr TOC TOC CaCO ₃ Sr TOC TOC TOC Sr TOC TOC Schuld

Tab. A12: Korrelation der sedimentologischen Parameter des ONW I Bohrkerns

Abb. A2: Korrelation ausgewählter sedimentologischer Parameter des ONW I Bohrkerns

Anhang

Abb. A2 (Forts.): Korrelation ausgewählter sedimentologischer Parameter des ONW I Bohrkerns

Fe	0,6654	0,2032	0,1571	0,2546	-0,1486	0,4499	0,7271	0,9421	0,3376	0,9209	-0,7449	0,5443	0,787	-0,7393	0,5906	0,8085	0,5649	0,0553	×
s	0,1347	-0,3255	-0,3702	0,1198	-0,2615	0,2211	0,0337	0,045	-0,3342	-0,036	0,1144	-0,2113	-0,0728	0,1286	0,0423	0,0297	0,0537	×	
Si	0,2127	-0,3835	-0,3945	-0,0439	-0,521	0,5998	0,4087	0,703	-0,2363	0,7737	-0,1732	-0,0172	0,2456	-0,1607	0,583	9006'0	x		
АІ	0,4579	-0,1634	-0,1968	0,1087	-0,4164	0,6251	0,6122	0,8945	-0,0063	0,9274	-0,4648	0,2386	0,5335	-0,4524	0,6487	х			
Zr	0,2845	-0,1389	-0,1726	0,1163	-0,2828	0,4694	0,4796	0,6765	-0,0569	0,6533	-0,3189	0,119	0,3525	-0,2844	×				
Sand	-0,759	-0,6816	-0,6511	-0,3012	-0,2436	-0,1059	-0,5265	-0,6159	-0,6777	-0,6161	0,9738	-0,9044	-0,9721	×					
Schluff	0,7957	0,5799	0,5382	0,3262	0,119	0,2026	0,5603	0,6862	0,5889	0,6702	-0,9552	0,7791	×						
Ton	0,581	0,7668	0,7611	0,2116	0,4347	-0,0855	0,3879	0,3977	0,7402	0,4276	-0,865	x							
Körnung Mittelwert	-0,7378	-0,6475	-0,6182	-0,2878	-0,235	-0,1221	-0,5352	-0,6384	-0,6543	-0,6273	x								
К	0,5371	0,0273	-0,0048	0,1499	-0,2722	0,5401	0,6908	0,9583	0,1922	×									
Са	0,3784	0,9226	0,9334	0,1756	0,6936	-0,3722	0,3172	0,1433	×										
ц	0,5754	0,0008	-0,0419	0,1903	-0,2894	0,5671	0,6839	×											
ЧИ	0,4827	0,1731	0,1331	0,2199	-0,0301	0,3189	×												
Rb	0,2778	-0,431	-0,4693	0,066	-0,5374	×													
Sr	0,0215	0,7408	0,7728	0,0372	×														
тос	0,6694	0,3429	0,1369	×															
caco ₃	0,3221	0,9775	×																
С	0,448	×													elation	> 0,7	> 0,5	< -0,5	<-0,7
z	×														Korr				
n= 250	z	υ	caco₃	TOC	Sr	Rb	MM	ц	Ca	¥	Körnung Mittelwert	Ton	Schluff	Sand	Zr	АІ	Si	S	Fe

Kurzfassung

Die Südmongolei stellt eine Region innerhalb Zentralasiens dar, für die nur wenige Informationen zur Klimaentwicklung während des Jungquartärs vorliegen. Die Schwerpunkte bisheriger Untersuchungen stellen überwiegend Paläoklima-Archive aus den Regionen der nördlichen Mongolei bzw. Nordchina dar, so dass eine Datenlücke für die Südmongolei existiert.

Im Rahmen dieser Arbeit konnten die klimatischen Bedingungen sowie die daraus resultierenden sedimentologischen und morphologischen Prozesse im Verlauf der vergangenen 50ka für zwei Seeeinzugsgebiete (Orog Nuur, Bayan Tohomiin Nuur) in der Südmongolei rekonstruiert werden. Den Schwerpunkt stellten hierbei drei lakustrine Bohrkerne dar, die anhand von ¹⁴C Proben datiert und sedimentologisch ausgewertet wurden. In Ergänzung dazu erfolgte eine Datierung unterschiedlicher morphologischer Strukturen (äolische und fluviale Formen) innerhalb der Einzugsgebiete durch optisch stimulierte Lumineszenz Datierungen (OSL).

Morphologische Einzelbefunde aus dem Untersuchungsgebiet deuten auf ein kaltes und arides Klima, das im Zeitraum von ca. 150-120ka vorherrschte und zur Akkumulation von Terrassen führte. Zwischen 80-70ka verweisen hohe Seespiegel auf eine Phase mit warmen und humiden klimatischen Bedingungen. Die Analyse der Bohrkerne belegt ein überwiegend kaltes und arides Klima, das von 50ka bis 13ka andauerte und durch partiell austrocknende Seen und häufige Dünenaktivität gekennzeichnet wurde. Innerhalb des Zeitraumes von 35-26ka verweisen geringfügig steigende Seespiegel, sowie ein Rückgang der äolischen Aktivität auf feuchtere Umweltbedingungen. Mit dem Übergang zum Holozän zwischen 13-11ka erfolgte ein Wandel zu feuchten und wärmeren klimatischen Bedingungen, die ein Temperatur- und Feuchteoptimum zwischen 9-6ka ausbildeten. Eine partielle Austrocknung der Seen sowie eine Reaktivierung von Dünenfeldern verweist auf ein zunehmend wärmeres und trockeneres Klima, das um ca. 6ka einsetzte und bis heute andauert.

Die Ergebnisse dieser Arbeit stellen den ersten hochauflösenden Datensatz dar, der aus Paläoklima-Archiven der Südmongolei gewonnen wurde. Die Ergebnisse zeigen eine generelle Übereinstimmung mit weiteren Datensätzen aus Zentralasien. Für eine flächige und detaillierte Rekonstruktion unterschiedlicher Klimasignale innerhalb Zentralasiens ist eine Verdichtung der Paläoklimadaten erforderlich.

Abstract

In palaeoclimate research concerning central Asia, up to now the focus was set on regions as Russia, northern Mongolia and China. Therefore only a few palaeoclimatic data are published on southern Mongolia. In order to understand the climatic development of central Asia and to get an impression of future environmental conditions, information on minor investigated areas are important.

This study sets focus on palaeoclimate and the sedimentological and morphological processes of two catchment areas of southern Mongolia (Orog Nuur, Bayan Tohomiin Nuur). The multiparameter analysis of three sediment cores yields information to reconstruct lake level changes, processes of transport, sedimentation and weathering during the last 50ka within the catchment of the lakes. Optical stimulated luminescence (OSL) data from selected sections (fluvial and aeolian sediments) give additional information on palaeoenvironmental conditions of the drainage area. Investigations on terrace sections hint towards cold and arid conditions during 150-120ka. Between 80-70ka a warm and humid climate cloud be reconstructed from lake transgressions. The sedimentological analysis of the lacustrine cores indicate low lake levels, accompanied by several phases of increased aeolian activity during 50ka and 13ka, pointing towards predominantly arid and cold climatic conditions. During 35-26ka a change towards a more humid climate could be reconstructed by a lake transgression, accompanied by declining aeolian sedimentation. The proxy data show a more warm and humid climate during the onset of the Holocene (13-11ka). A maximum of temperature and moisture occurred during 9-6ka, interrupted by several short time drying events. Within the investigation area a trend of aridization and remobilization of dune sand can be observed since 6ka.

This study offers the first continuous set of palaeoclimatic data from southern Mongolia. The results show a general consistence to adjacent investigation areas of central Asia. Yet, more palaeoclimatic archives from southern Mongolia are required to understand the complex development of climate during the late Quaternary.

Lebenslauf

Thomas Felauer Roermonder Straße 99 41379 Brüggen

Persönliche Daten:

Geburtsdatum:	02.09.1981
Geburtsort:	Viersen
Staatsangehörigkeit:	deutsch
Familienstand:	ledig
Schulausbildung:	
1988 bis 1992	Grundschule in Born
1992 bis 2001	Albertus-Magnus-Gymnasium in Dülken
Abschluss	Abitur Juli 2001
Zivildienst:	
2001–2002	Städtisches Krankenhaus Nettetal (Techn. Abteilung)
Studium:	
2002-2007	Magisterstudiengang in Geographie, Geologie und Wirt-
	schaftsgeographie an der RWTH Aachen
2007	Erlangung des Grades "Magister Artium"
Berufslaufbahn:	
seit 2007	wissenschaftlicher Mitarbeiter am Lehrstuhl für Physische
	Geographie und Geoökologie Prof. Dr. F. Lehmkuhl an der
	RWTH Aachen