
 
 
 
 
 
Electrophysiological Characterization of the Acid Sensing 

Ion Channel shark ASIC1b and Identification of Amino 

Acids Controlling the Gating of ASIC1 

 
 
 

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH 
Aachen University zur Erlangung des akademischen Grades eines Doktors der 

Naturwissenschaften genehmigte Dissertation 
 
 
 
 

vorgelegt von  
 
 
 

Diplom-Biologe 
 

Andreas Springauf 
 

aus Würzburg 
 
 
 
 
 
 
Berichter:  Universitätsprofessor Dr. rer. nat. Stefan Gründer 
  Universitätsprofessor Dr. rer. nat. Hermann Wagner 
 
 
 
Tag der mündlichen Prüfung: 04. Februar 2011 
 
 
 
Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online 
verfügbar.  
	  
	  
	  
	  



Table of contents 

 1 

 

Table of contents 
 

Table of contents                 1 
 

Summary                  5
          
Zusammenfassung                7
                

1. General Introduction              10
 1.1 The Superfamily of Deg/ENaC Ion Channels         11
  1.1.1  Discovery and classification (of the Deg/ENaC Ion channel   

   family)               11 

  1.1.2  Common sequence features and characteristics              12

  1.1.3  Subfamilies of the Deg/ENaC Superfamily          13 

       1.1.3.1 ENaC (epithelial sodium channel)          14   
   1.1.3.2 BLINaC/hINaC            15   

   1.1.3.3 FaNaCs (FMRF-amide gated sodium channels)        16    

   1.1.3.4 HyNaCs (Hydra Sodium Channels)          16   

   1.1.3.5 DEGs (degenerins)            17   

   1.1.3.6 Pickpocket/Ripped Pocket (PPK/RPK) genes of   

      Drosophila             18   

   1.1.3.7 Fluoride Resistant Mutation proteins (FLRs)        19 

   1.1.3.8 Acid Sensing Ion Channels (ASICs)          19 

 1.2 Acid Sensing Ion Channels (ASICs)          19 
  1.2.1 The apparent affinity for H+            20 
  1.2.2  Biophysical characteristics and physiological functions         21 

   1.2.2.1 ASIC1a/ASIC1b            21 

   1.2.2.2 ASIC2a/ASIC2b            23 

   1.2.2.3 ASIC3              24 

   1.2.2.4 ASIC4              25 

  1.2.3   3D-structure of chickenASIC1           26 

  1.2.4  Evolution of proton-sensitivity and important amino acids        27 

 1.3 Aims of this study             30 

 
 



Table of contents 

 2 

 
2. Materials and Methods              31

 2.1 Materials                  31 
  2.1.1 Chemicals              31 

  2.1.2 Biological Materials             31 

   2.1.2.1 TOP10 E. coli Competent Cells; Invitrogen         31 

   2.1.2.2 Xenopus laevis oocytes           31 

  2.1.3 Materials for molecularbiological purpose          32 

   2.1.3.1 Ready-to-use materials           32 

   2.1.3.2 Oligonucleotides (Primers)           32 

   2.1.3.3 Oocyte expression vector           32 

   2.1.3.4 Commercially available Kit systems          33 

   2.1.3.5 Enzyms             33 

   2.1.3.6 Antibodies             33 

   2.1.3.7 Solutions and Buffers for molecular biology         33 

  2.1.4 Electrophysiological materials and setups          35 

   2.1.4.1 Capillaries and electrodes           35 

   2.1.4.2 Setup for measuring oocytes with the two-electrode    

       voltage-clamp-technique (TEVC)            35 

   2.1.4.3 Solutions for electrophysiology and bioluminescence  

       assay              37 

   2.1.4.4 Disulfide-bridge building chemicals and channel blockers       38 

2.2 Methods               38 
  2.2.1 Molecular biological Methods            38 

   2.2.1.1 Agarose gel electrophoresis           38 

   2.2.1.2 Polymerase Chain Reaction (PCR)          39 

    2.2.1.2.1 Colony-PCR           40 

    2.2.1.2.2 Recombinant PCR           40 

    2.2.1.2.3 Targeted point mutagenesis with the Quick- 

         Change-Method           41 

   2.2.1.3 Restriction digest of PCR-products und plasmid   

        vectors             43 
   2.2.1.4 Ligation of PCR fragments into plasmid vectors        44 

   2.2.1.5 Preparation of heat-competent cells (E.coli, Top10)       44 

   2.2.1.6 Transformation of heat-competent cells (E.coli TOP10)       44 

   2.2.1.7 Isolation of plasmid DNA – „Miniprep“         45 

   2.2.1.8 DNA-Sequencing            45 

   2.1.2.9 cRNA-production via in-vitro-Transcription         46 



Table of contents 

 3 

 

  2.2.2 Electrophysiological Methods            46 

   2.2.2.1 Preparation und handling of Xenopus-oocytes        47 

   2.2.2.2 cRNA-microinjection in Xenopus-oocytes          47 

   2.2.2.3 Bioluminescence analysis to determine surface   

       expression of ion channels           48 

   2.2.2.4 Two-electrode-voltage-clamp technique (TEVC)        48 

   2.2.2.5 Recording and analysis of the data          51 

 

3. An Acid-sensing ion channel from shark (Squalus acanthias)            
 mediates transient and sustained responses to protons        54 

3.1 Abstract               54 
 3.2 Introduction              54 

 3.3 Methods               56 
  3.3.1 Electrophysiology             56 

  3.3.2 Determination of surface expression           57 

  3.3.3 Data analysis              58 

 3.4 Results               59 
  3.4.1 Functional characterization of shark ASIC1b          59 

  3.4.2 Pharmacology of shark ASIC1b           63 

  3.4.3 Mutational analysis of shark ASIC1b           66 

  3.4.4 The sustained current of shark ASIC1b          68 

 3.5 Discussion              69 
  3.5.1 The H+ sensitivity signature            70 

3.5.2 When did H+ sensitivity of ASICs evolve?          71

 3.5.3 The sustained current of shark ASIC1b          72 

 

4. The interaction between two extracellular linker regions controls         
    sustained opening of acid-sensing ion channel 1         75
  4.1 Abstract               75

  4.2 Introduction              75 
  4.3 Materials and Methods            77 
  4.3.1 Molecular Biology             77 

  4.3.2 Electrophysiology             77

  4.3.3 Data analysis              78 

  

 



Table of contents 

 4 

 

 4.4 Results               79 
  4.4.1 The proximal ectodomain controls sustained opening of ASIC1       80

  4.4.2 Amino acids 109 – 111 control sustained opening of ASIC1;  

           amino acid 110 is especially important          83 

  4.4.3 Accessibility of residue 110 is state-dependent         86 

  4.4.4 Residue 110 is in close contact with residue 428 in the  

            β11 – β12 linker              91 

  4.4.5 Cross-linking of residue 110 and 428 traps sASIC1b in the   

                     desensitized state             92

 4.5 Discussion              95 

  4.5.1 What is the basis for the sustained openings?         96

  4.5.2 The role of the β1 – β2 and β11 – β12–linkers in desensitization  

                    gating                 98 

 
5. General Discussion            100 

 5.1 The appearance of proton-sensitivity in ASICs       100 

 5.2 Gating behaviors and the generation of sustained currents    101

 5.3 The crystal structure of chicken ASIC1 confirms observations of 
        gating mutants and uncovers interacting regions     103 

 5.4 Cysteine-modification assays complement the static picture of the     
       crystal structure           104  

 
6. List of abbrevations            106 
 
7. References             111 

 
8. Danksagung             121 
 
9. Curriculum Vitae            122 
 

 
 
 
 

   



Summary 

 5 

 

Summary 
 
Acid sensing ion channels  (ASICs) are sodium-selective and proton-sensitive 

members of the DEG/ENaC gene family and are expressed in the chordate lineage 

while being absent in evolutionary older animals. Although members of the 

DEG/ENaC family share similarities with respect to topology, selectivity for sodium 

and sensitivity to the blocking agent amiloride, the family comprises ion channels of 

various functions and diverse gating mechanisms.  

So far, four ASIC genes have been identified in mammals (asic1-asic4) that code for 

at least six different ASIC subunits.  

Amino acid sequences of the members of the ASIC subfamily are at least 45% 

identical and they are composed, like all members of the DEG/ENaC family, of two 

transmembrane domains, a large extracellular loop domain and rather short 

intracellular termini.  

So far, ASICs have been cloned from urochordates, jawless vertebrates, cartilaginous 

shark and bony fish, from chicken and different mammals. Proton-sensitivity, 

however, was postulated to have evolved with the rise of bony fish and ASICs from 

lower chordate species were characterized as proton-insensitive. 

Since the crystal structure of chicken ASIC1 was resolved in 2007 it is known that 

functional ASIC channels are trimeric structures that assemble in a homo- or 

heteromeric fashion in vivo and in vitro. Depending on the subunit composition they 

exhibit different functional features regarding proton sensitivity or gating kinetics.  

Some ASICs, like the abundant ASIC1a, are broadly expressed in the peripheral as 

well as in the central nervous system whereas the expression pattern of other ASICs, 

for example ASIC1b and ASIC3, is restricted to the peripheral nervous system. 

Predominantly located at the postsynaptic membrane, ASICs are supposedly 

implicated in modulation of synaptic transmission and pain perception, but they also 

contribute to pathophysiological processes like ischemia, epilepsy as well as to 

axonal degeneration during neuroinflammation. Moreover, knockout of the asic1 gene 

leads to deficits in spatial memory and learned fear, suggesting a contribution to 

higher brain functions. Because of such important implications and the limited 

pharmacological toolkit for ASIC modulation, it is desirable to find new specific drugs 

for ASIC modulation and understanding of the gating process of ASICs would be of 

great benefit for designing new highly specific drugs. 
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The first part of this work shows that proton-sensitivity evolved latest in cartilaginous 

fish and that ASIC1b from shark (Squalus acanthias) indeed responds to extracellular 

acidification. Furthermore, a detailed characterization of homomeric shark ASIC1b 

channels revealed that the current of these channels exhibit unique features and that 

it can be divided into two components. The fast transient current component shows a 

time constant of desensitization (τ) of less than 50 ms and is followed by a highly 

proton sensitive sustained current component that does not completely desensitize as 

long as protons are present in the extracellular solution. 

In addition, the second part of this thesis elucidates the amino acids that are crucial 

for the unique sustained current component of shark ASIC1b.  An amino acid triplet 

(M109DS) in the proximal region of the extracellular domain that is located in the linker 

region between two β-sheets partially controls the time constant of desensitization 

and is necessary for the generation of the sustained current of shark ASIC1b. 

Additionally, it is shown that the same triplet is also sufficient to introduce a sustained 

current in rat ASIC1a, a channel that usually completely desensitizes during 

prolonged acidification.  

Moreover, when the most critical residue of this triplet at position 110 is mutated to 

cysteine, different MTS-modification rates at this position in the closed and the 

desensitized state, respectively, provide evidence that this residue is moving during 

the gating transition.  

Finally, engineering of a cysteine at position 110 (position 82 in rat) and at an 

adjacent position in the β11-β12-linker leads to spontaneous formation of a disulfide 

bond that traps shark ASIC1a and rat ASIC1a in the desensitized conformation.  

Collectively the results presented in this work suggest that the β1-β2 and β11-β12 

linkers are dynamic during gating and tightly oppose each other during desensitization 

gating. Obstruction of this tight opposition leads to reopening of the channel. It results 

that the β1-β2 and β11-β12 linkers modulate gating movements of ASIC1 and may 

thus be drug targets for modulation of ASIC activity. 
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Zusammenfassung 
 

Acid sensing ion channels  (ASICs) sind Natrium-selektive und protonen-aktivierbare 

Ionenkanäle der DEG/ENaC-Genfamilie. Sie werden in Wirbeltieren exprimiert, sind 

jedoch nicht in entwicklungsgeschichtlich älteren Lebewesen zu finden. Obwohl die 

Mitglieder der DEG/ENaC Familie Gemeinsamkeiten hinsichtlich ihrer Topologie, ihrer 

Selektivität für Natrium und der Sensitivität für den Kanalblocker Amilorid zeigen, 

erfüllen die verschiedenen Mitglieder jedoch sehr unterschiedliche physiologische 

Funktionen und benötigen diverse Aktivierungs-Stimuli. 

Bisher konnten in Säugern vier ASIC-Gene (asic1 – asic4) identifiziert werden, die für 

mindestens sechs ASIC-Untereinheiten kodieren. Die Sequenzen innerhalb der 

Mitglieder der ASIC-Unterfamilie sind zu mindestens 45% homolog. ASICs haben, 

wie auch die anderen Mitglieder der DEG/ENaC Familie, zwei Transmembran-

Domänen, eine große extrazelluläre Domäne und kurze Enden, die ins Zellinnere 

gerichtet sind. 

ASIC-Untereinheiten konnten bisher aus entwicklungsgeschichtlich verschiedenen 

Spezies wie Urochordaten, kieferlosen Vertebraten, Knorpel- und Knochenfischen, 

sowie aus dem Huhn und verschiedenen Säugern kloniert werden. Jedoch wurde 

geraume Zeit angenommen, dass Protonen-sensitive ASICs erst mit der Entstehung 

von Knochenfischen entstanden sind, da ASICs aus dem Manteltier, dem Neunauge 

und dem Haifisch als insensitiv gegenüber Protonen charakterisiert wurden.  

Seit im Jahre 2007 die Kristallstruktur von ASIC1 aus dem Huhn bekannt ist, weiß 

man, dass funktionelle Kanäle durch drei ASIC-Untereinheiten gebildet werden, die 

sich in vivo und in vitro zu Homomeren oder Heteromeren zusammenlagern können. 

Abhängig von der Zusammensetzung der Untereinheiten haben die Kanäle 

unterschiedliche Eigenschaften bezüglich ihrer Protonen-Sensitivität oder ihrer 

Kinetik. 

Während manche ASIC-Untereinheiten sowohl im peripheren als auch im zentralen 

Nervensystem exprimiert werden, ist die Expression anderer Untereinheiten, wie etwa 

von ASIC1b und ASIC3, auf das periphere Nervensystem beschränkt. ASICs sind 

vorzugsweise an der postsynaptischen Membran zu finden, wobei sie an der 

Modulation der synaptischen Übertragung und der Schmerzwahrnehmung beteiligt 

sind, aber auch mit pathophysiologischen Prozessen wie Ischämie, Epilepsie oder 

axonaler  Degeneration  während  neuronaler  Entzündungen  in Verbindung gebracht  
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werden. Darüber hinaus ist aus Studien mit Knockout-Mäusen bekannt, dass der 

Verlust des asic1-Gens zu Defiziten im räumlichen Gedächtnis und bei Furcht-

Konditionierung führt, was zudem eine Beteiligung an höheren Gehirnfunktionen 

vermuten lässt. Da ASICs mit solch wichtigen Symptomen in Verbindung gebracht 

werden können und da pharmakologische Werkzeuge für ASICs sehr begrenzt   sind,   

ist    es    außerordentlich    wünschenswert,    neue    und     für    ASICs   spezifische 

Pharmaka zu entwickeln. Ein besseres Verständnis des Gating-Prozesses dieser 

Kanäle wäre in diesem Zusammenhang von großem Nutzen. 

 

Der erste Teil dieser Arbeit zeigt, dass Protonen-Sensitivität von ASICs bereits in 

Knorpelfischen entwickelt war und dass shark ASIC1b aus dem Dornhai (Squalus 

acanthias) darüber hinaus einen einzigartigen Protonen-aktivierten Ionenstrom zeigt. 

Die detaillierte Charakterisierung ließ erkennen, dass die Ströme von shark ASIC1b in 

zwei Komponenten unterteilt werden können. Die sehr schnell desensitivierende 

transiente Komponente weist eine Zeitkonstante von weniger als 50 ms auf und wird 

von einer zweiten Stromkomponenten gefolgt, die auch durch sehr geringe 

Protonenkonzentrationen aktiviert werden kann und die nicht desensitiviert solange 

Protonen extrazellulär vorhanden sind.  

Zusätzlich werden im zweiten Teil der Arbeit die Aminosäuren identifiziert, die für das 

außergewöhnliche Gating-Verhalten von shark ASIC1b verantwortlich sind. Ein 

Aminosäuretriplet (M109DS) in der proximalen Region der extrazellulären Domäne, 

das kurz hinter der ersten Transmembrandomäne und zwischen zwei β-Faltblatt-

Strukturen liegt, kontrolliert zum Teil die Geschwindigkeit der Desensitivierung und ist 

maßgeblich für die Generierung des nicht-desensitivierenden Stromes verantwortlich. 

Weiterhin konnte gezeigt werden, dass dieses Triplet nicht nur für den nicht-

desensitivierenden Strom in shark ASIC1b verantwortlich ist, sondern auch einen 

nicht-desensitivierenden Strom in ASIC1a der Ratte induzieren kann, einem Kanal 

der typischer Weise selbst in Anwesenheit von Protonen komplett desensitiviert. 

Weiterhin wurde durch MTS-Modifikations-Versuche an Position 110 gezeigt, dass 

diese Aminosäure während der Gating-Bewegung dynamisch ist und daher direkt 

Einfluss auf den Gating-Vorgang ausüben kann. Schließlich wurden Doppel-Cystein-

Mutanten  an  Positionen  110  und  428  konstruiert.  Beide  Positionen liegen in der 

Krystallstruktur zwischen zwei β−Faltblättern und befinden sich im desensitivierten 

Zustand  in  unmittelbarer  Nähe  zueinander.   Durch  die  spontane  Formation  einer  
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Disulfidbrücke zwischen diesen beiden Positionen, die den Kanal im desensitivierten 

Zustand festhalten, konnte die direkte Wechselwirkung dieser Positionen in der  

desensitivierten Konformation von ASIC1 gezeigt werden. 

Mit den in dieser Arbeit präsentierten Ergebnissen kann ein Modell für ASIC1 

vorgeschlagen werden, bei dem sich während der Desensitivierung des Kanals zwei 

Linker-Regionen, die jeweils zwischen zwei β-Faltblatt-Strukturen liegen, aufeinander 

zu bewegen und im desensitivierten Zustand in direkter Wechselwirkung zueinander 

stehen. Aus diesem Grund sind beide Positionen vielversprechende Bereiche für die 

Entwicklung spezifischer Pharmaka zur Modulierung von ASICs. 
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1. General Introduction 
 

Cells of every Phylum are surrounded and delimited from the environment or other 

cells by a membrane consisting of a lipophilic lipid bilayer. To interact with other cells, 

transfer information and maintain a certain physiological state of homeostasis cells 

need to exchange substances and ions. Because most hydrophilic substances and 

ions cannot cross the membrane, certain structures and proteins are required to allow 

such an exchange. 

Ion channels are a class of proteins that span the cell membrane and form water filled 

pores through those lipid bilayers, thus providing a selective or unselective gate for 

ions to cross cell membranes. They can be found in every phylum and are expressed 

in almost every cell of all organisms. Most functional ion channels are built up by 

several similar or identical subunits giving rise to a high number of possible 

quaternary structures and different functional characteristics. Despite their high 

variety regarding topologies and three-dimensional structures, most subunits of ion 

channels contain at least two hydrophobic regions of around 20 amino acids which 

form the transmembrane domains and which are connected to each other via a loop 

region, that can be located intra- or extracellularly. The pore regions of all ion 

channels are formed by the transmembrane domains or by special pore loops located 

between the transmembrane domains.  

Most ion channels display selectivity for certain ions thus acting as molecular sieves. 

This capacity is achieved by the architecture of the pore, its size or its pore lining 

amino acids, which can interact with certain ions and retract others. Thus the pore 

can differentiate ions with regard to their size and their charge.  

Taking a look at the open probability of ion channels, two main characters can be 

distinguished at first sight: constitutively open channels and channels that need 

special ligands or other stimuli such as changes in the membrane potential or 

membrane tension to be transferred from the closed to the open state. 

Ligands that open ion channels are even more diverse than the class of ion channels 

itself, comprising protons as the simplest ligands possible as well as complex 

oligopeptides with intricate three-dimensional structures.  

Ion Channels can be classified into ion channel families according to their structure, 

their  ion - selectivity,  their  ligands   and  even  to  their  physiological  function.  Until    
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today, most molecular correlates for physiological currents through cell membranes 

are identified, cloned and characterized. 

 

 

1.1  The Superfamily of DEG/ENaC Ion Channels 
 

1.1.1  Discovery and classification  
Discovered at the beginning of the 1990s, the DEG/ENaC gene family comprises ion 

channels with diverse properties according to their gating mechanisms, their 

expression patterns and their physiological functions (Mano and Discroll, 1999). The 

first part of the designation of the DEG/ENaC superfamily refers to one of the first 

genes that have been identified, deg-1 (the second is called mec-4) (Chalfie and Au, 

1989; Chalfie and Wolinsky, 1990). Deg-1 encodes a mechanosensitive protein that is 

required for touch sensation in C. elegans. Mutation of this gene causes neuronal 

degeneration. At the same time a channel was cloned and identified that was already 

known to play a crucial role in sodium absorption in distal tubule of the kidney. This 

channel was the α-subunit of the amiloride-sensitive epithial sodium channel, αENaC. 

Sequence comparison revealed a substantial homology between αENaC and 

Degenerins thus suggesting a common family of ion channels, the DEG/ENaC ion 

channel family (Canessa et al., 1993, Lingueglia, et al., 1993). New subfamilies 

emerged within this ion channel family, formed by subsequently found members, 

which have been identified by sequence homology.  

All members of this channel family identified so far are exclusively expressed in 

animals of the metazoan kingdom, which are characterized by a body plan including 

organs for reproduction, digestion and coordination. The expression restricted to the 

metazoan kingdom distinguishes them from very ancient channels in evolution like 

potassium, chloride or water channels. 

Another striking feature of the members of this ion channel family is their functional 

heterogeneity associated with and caused by the wide tissue distribution of the 

different family members. Gating features are as diverse as mechanosensitivity of the 

degenerins and ligand gating of other members. The ligands themselves are very 

different just as protons (ASICs) or small peptides (FaNaC and HyNaCs). 

Furthermore, ENaCs that  are  expressed  in the kidney, are constitutively open.  One  
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can conclude that the divergent evolution of the DEG/ENaC gene family was directed 

by the task to achieve very different functions in the cell. 

 
 
1.1.2  Common sequence features and characteristics 
The sizes of the proteins that are encoded by DEG/ENaC genes range from 

approximately 500 to 800 amino acids.  All channels share a common topology with 

two transmembrane domains (TM1 and TM2), a large extracellular loop and rather 

small intracellular N- and C-termini. The extracellular loop makes up two thirds of the 

whole protein and represents a unique structural feature that is not found in other ion 

channel families (Kellenberger and Schild, 2002). The channels contain domains or at 

least several amino acids that are highly or even completely conserved among all 

family members (Fig. 1.1). The conserved residues are thought to represent elements 

that are crucial for proper channel folding and function (Kellenberger and Schild, 

2002).  

 

 

 
 

 
Figure 1.1. Members of the DEG/ENaC family of ion channels show highly conserved residues.  
Schematic transmembrane topology organization of the DEG/ENaC superfamily of ion channels that 
shows localization of conserved domains. Scheme shows a single subunit. (CRD, cysteine rich 
domain; ERD, extracellular regulatory domain unique to C. elegans degenerins; M1/M2, 
transmemebrane domain 1 and 2; deg, mutation at this site causes degeneration of cells expressing 
this mutant channel. (Adapted from Kellenberger and Schild, 2002). 
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The highest degree of conservation is displayed by the Histidine-Glycine pair located 

intracellularly upstream of the first transmembrane domain (Fig. 1.1), the FPxxTxC 

sequence that follows TM1 and several residues upstream from and within the 

second transmembrane domain (Kellenberger and Schild, 2002). Additionally, the 

extracellular loop contains two cysteine rich domains (Fig. 1.1). Through conformation 

of disulfide bridges these domains ensure the precise formation and maintenance of 

the tertiary structure.  Moreover, two cysteine-pairs of ENaCs were identified to play a 

crucial role for trafficking of the channel to the plasma membrane (Firsov et al., 1999).  

Other residues, even if not conserved within the entire DEG/ENaC family, are at least 

shared by members of the same subfamilies. For example, the members of the ASIC 

subfamily, which are activated by extracellular protons, display several extracellular 

sequence features that distinguish them from other subfamilies (see also 1.2.3).  

Other common characteristics of the DEG/ENaC family are a selectivitiy for Na+ over 

K+ and Ca2+ and sensitivity regarding to the diuretic amiloride.  

Nevertheless, it has to be considered that a lot of channels of this family have not 

been characterized electrophysiologically in-vivo or in-vitro and it remains unclear if 

the mentioned features are indeed shared by all members of this family.  

 

 
1.1.3  Subfamilies of the DEG/ENaC Superfamily 
According to sequence homology, the identified members of the DEG/ENaC family 

can be divided into eight subfamilies (Fig 1.2). These are the SCNN (sodium channel 

gene family) genes encoding the α−, β−, γ- and δ−subunits of ENaC subfamily and the 

UNC, MEC, DEG and DEL genes from C. elegans forming the degenerin subfamily.  

Another major subfamily comprises the acid sensing ion channels (ASICs) that are 

gated by protons. Other subfamilies like the pickpocket (PPK/dmdNaC1) and ripped 

pocket (RPK/dGNaC1) genes and the peptide gated sodium channels FaNaC were 

found in Drosophila and the snail Helix aspersa, respectively. The FLR-1 genes from 

C. elegans, which are clearly distinct from the degenerins provide another subfamily. 

Moreover, the DEG/ENaC family also comprises the mammalian BLINaC gene (brain-

liver-intestine amiloride Na+-channel), which was cloned from rat and from mouse,   

and its human ortholog INaC (intestine Na+  channel). The most recently described 

subfamily comprises the HyNaC genes, which were cloned from the cnidarian Hydra 

magnipapillata,  the  most  ancient  known organism that encodes  DEG/ENaC genes.  
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Figure 1.2. Phylogenetic tree created with the software Treepuzzle-50.  
The length of the branches are proportional to the evolutionary distances. Different colors represent 
animal groups that are also indicated in the cladogram at the bottom. (Adapted from Golubovic et al., 
2007) 
 

 

 

1.1.3.1 ENaC (epithelial sodium channel) 

In mammals the subfamily of the epithelial sodium channels comprises the four 

subunits α−, β−, γ− and δ-ENaC, which share an amino acid homology of 30 – 35%.  

Expressed in Xenopus oocytes the three subunits α, β and γ form functional 

heteromeric and constitutively open channels that produce higher currents than the 

homomeric α−subunit alone (Canessa et al., 1994; McDonald, 1995). Currents from 

the heterotrimeric  channels  are  very  similar  to those observed in vivo  (Palmer and  
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Frindt, 1986). The β− and γ− subunit cannot form functional channels alone or in 

combination. 

The δ-subunit, identified in 1995 (Waldmann et al., 1995), shows a different 

expression pattern than the other three subunits, (Waldmann et al., 1995; Yamamura 

et al., 2004), and it can substitute the α-subunit and is suspected to have a regulatory 

function.  

Like all other members of the DEG/ENaC family, functional ENaC channels are 

voltage independent with a linear current-voltage relationship and display a high 

selectivity for Na+ over K+ (Lingueglia et al., 1993; Canessa et al., 1994, Garty and 

Palmer, 1997). Located at the apical membrane of the epithelia of kidney, lung, colon, 

sweat and salivary glands, ENaC is the central component of the pathway that 

controls sodium reabsorption from the exterior medium back into the cell thus 

maintaining salt homeostasis (Garty and Palmer, 1997). Because of this important 

function, ENaC is tightly controlled by hormones such as aldosterone, vasopressin 

and insulin (Rossier et al., 2002). Furthermore, mutations in ENaC can cause several 

severe diseases in humans like hypertension, Liddle’s syndrome, hypokalemia and 

salt-wasting syndrome (Gründer, 2000) further confirming the important function of 

this channel.  

  

 

1.1.3.2 BLINaC/hINaC 

Three orthologs of the BLINaC subfamily from rat, mouse and human have been 

cloned by homology to other DEG/ENaC channels. RT-PCR analysis for rat BLINaC 

revealed a predominant tissue distribution in brain, liver and small intestine hence the 

name BLINaC. For mouse, additional expression of BLINaC has been shown in 

kidney and lung (Sakai et al., 1999). In contrast, the human ortholog, hINaC, is 

predominantly expressed in the intestine (human intestine Na+ channel) (Schaefer et 

al., 2000). Only very little is known about the physiological role of these channels but 

the tissue distribution with the emphasis on expression in non-neural tissues like 

kidney suggests a participation in epithelial transport similar to ENaC.  

Recently, a functional study shed light on rat and mouse BLINaC and showed very 

different behaviours of both channels when expressed in Xenopus oocytes  despite  

the  high  amino  acid  sequence  homology of  97%  (Wiemuth  and Gründer, 2010). 

Rat  BLINaC  exhibits  small and unselective currents that are only weakly sensitive to  
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amiloride. Removal of extracellular Ca2+ leads to robust currents with much higher 

Na+-selectivity. On the other hand, the mouse ortholog shows a 250-fold lower 

sensitivity for Ca2+, thus leading to constitutively open channels under physiological 

conditions. Additionally, mBLINaC displays a much higher Na+-selectivity and 

amiloride-sensitivity (Wiemuth and Gründer, 2010). The different affinities for Ca2+ 

and amiloride are determined by the difference at one single amino acid (A387S) 

between rat and mouse (Wiemuth and Gründer, 2010).  

 

 

1.1.3.3 FaNaCs (FMRF-amide gated sodium channels) 

Another subfamily of the DEG/ENaC family of ion channels are the FaNaCs, which 

are exclusively expressed in snails. The first FaNaC was cloned from the snail Helix 

aspersa in 1995 (Lingueglia et al., 1995) and during the last years three orthologs 

have been identified from Helisoma trivolvis (Jeziorski et al., 2000), Lymnaea 

stagnalis (Perry et al., 2001) and Aplysia kurodai (Furukawa et al., 2006). In general, 

FaNaC was the first ionotropic receptor that could be directly activated by the 

neuropeptide FMRFamide, a common peptide in the nervous system of snails 

(Cottrell et al., 1990; Lingueglia, 1995). The expression of FaNaCs is restricted to 

neurons (Davey, 2001). Although their function and physiological role remains 

unknown there are speculations about a participation in fast synaptic transmission 

(Lingueglia, 2006). 

 

 

1.1.3.4 HyNaCs (Hydra Sodium Channels) 

So far, four genes have been cloned and characterized from the HyNaC subfamily. 

An additional gene, hynac1, is probably a pseudogene (Golubovic et al., 2007; 

Dürrnagel et al., 2010). As mentioned above, Hydra magnipapillata belongs to the 

phylum Cnidaria and displays a radial symmetry and a primitive nervous system that 

extensively uses neuropeptides for neuronal transmission (Grimmelikhujizen et al., 

1982). This suggests that peptide-gating is an ancient feature of DEG/ENaC channels 

which was preserved during evolution in members of the Protostomia, such as snails, 

but was probably lost in Deuterostomia, such  as mammals  (Golubovic et al.,  2007;   

Dürrnagel et al.,  2010).   Whole-mount  in situ hybridization revealed a location of the 
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three functional subunits around the base of the tentacles (Golubovic et al., 2007) and 

thus shows a co-localization with the Hydra neuropeptides Hydra-RFamides I and II 

(Hansen et al., 2000), which had previously been isolated and identified from the 

Hydra nervous system (Moosler et al., 1996). Functional HyNaCs that can be 

activated by Hydra-FRamides are composed of the HyNaC-subunits 2 and 3 or 2, 3 

and 5. Both functional assemblies exhibit markedly different characteristics regarding 

surface expression and sensitivity for the activating peptides and to the blocking 

agent amiloride (Golubovic et al., 2007; Dürrnagel et al., 2010). In this regard, the 

trimeric assembly of the HyNaC subunits 2, 3 and 5 displays a higher surface 

expression, higher selectivity for Na+ and a higher sensitivity for amiloride (Dürrnagel 

et al., 2010).  

By investigating the feeding reaction of Hydra in the absence and presence of 

amiloride it has been observed that the channels are not required for the general 

movement of the tentacles but that they might be involved in the coordinated tentacle 

movement associated with the feeding reflex (Golubovic et al., 2007; Dürrnagel et al., 

2010).   

Besides the characterization of the gating behaviour and regulation of the HyNaCs 

themselves, these channels provide interesting insights into the development of the 

DEG/NaC channel family and shed light on the question how distinct features of this 

channel family have been changed or are conserved during evolution. 

 

 

1.1.3.5 DEGs (Degenerins) 

The mechanosensory degenerins are exclusively expressed in C. elegans and are 

used to convert mechanical forces into cellular responses (Driscoll and Chalfie, 1991; 

Huang and Chalfie, 1994; Liu et al., 1996; Tavernarakis et al., 1997).  They have 

been shown to play crucial roles in different physiological functions, such as touch 

sensation and proprioception, while also being involved in the development, survival, 

proper function and regulation of touch receptor neurons (Chalfie and Au, 1989). A 

genetic analysis identified 16 so-called mec genes that disrupt body touch sensation 

when mutated. Not all of them belong to the family of DEG/ENaC ion channels but 

mutations of genes that cause cell degeneration, such as MEC-4 and MEC-10, are 

members of this family. Cells that express other mutant proteins like UNC-8, UNC-

105  or  DEG-1  show similar phenotypes, meaning swelling and subsequent death of  
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these cells hence resulting in the name degenerins (DEGs) for this subfamily (Chalfie 

and Wolinsky, 1997; Tavernarakis and Driscoll, 1997). Although the 

mechanosensitivity remains to be shown in heterologous expression systems 

constitutively active channels were obtained after co-expression of MEC-4 and MEC-

10 together with MEC-2. With regard to these findings it is postulated that MEC-4 and 

MEC-10 are core elements of a touch-transducing complex and the co-expression of 

multiple subunits plus associated cytosolic or extracellular proteins are required for 

proper function and expression (Gu et al., 1996; Tavernarakis and Driscoll, 1997; 

Goodman et al., 2002). MEC-4 and MEC-10 expression is restricted to 

mechanosensitive neurons (Huang and Chalfie, 1994), whereas two other genes of 

the degenerin subfamily, UNC-8 and DEG-1 are expressed in motoneurons 

(Tavernarakis et al., 1997). It is believed that in this class of neurons, UNC-8 and 

DEG-1 form a similar core of a stretch-sensitive complex as MEC-4 and MEC-10 in 

mechanosensitive neurons, thus mediating C. elegans locomotion (Tavernarakis and 

Driscoll, 2000).  

 

 

1.1.3.6 Pickpocket/Ripped Pocket (PPK/RPK) genes of Drosophila melanogaster 

The PPK/RPK subfamily of DEG/ENaC channels comprises a rather diverse group of 

ion channels. Since the first two members (RPK and PPK) were identified in the 

genome of Drosophila melanogaster (Adams et al., 1998; Darboux et al., 1998) about 

25 candidates have been identified so far (Littleton and Ganetzky, 2000). 

Until today, 16 members have been cloned (Darboux et al., 1998; Liu et al., 2003) and 

RPK is the only member that generates currents when heterologously expressed in 

Xenopus oocytes.  These currents exhibit a high Na+-selectivity and a low affinity to 

amiloride (Adams et al., 1998). Although little is known about the gating 

characteristics and pore features of these channels, transgenic Drosophila models, in-

situ-hybridization- and RNAi-approaches, as well as behavioural assays shed light 

into the expression patterns and associated functions of these channels. RPK, for 

example, was shown to be maternally derived and to play a role in early development 

(Adams et al., 1998; Darboux et al., 1998). The PPK gene product, on the other hand, 

appears at later developmental stages of Drosophila. It is expressed in sensory 

dendrites of peripheral neurons in late-stage embryos and early larvae. This finding 

led  to  speculations  about  an  involvement  of  PPK  in the function rather than in the  
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differentiation  of  these  neurons (Darboux et al., 1998). Additionally, nine PPK genes 

show distinct temporal and spatial expression patterns in the tracheal system of 

Drosophila as development progresses and especially PPK4 and PPK11 point to an 

involvement in liquid clearance when the airways develop, a function similar to ENaCs 

in mammals (Liu et al., 2003a). Furthermore, it has also been shown that PPK11 

together with PPK19 is expressed in neurons of the taste bristles of labelum, legs and 

wing margins, where they play a key role in detecting Na+ and K+ salts (Liu et al., 

2003b).  

Finally, a recent study identified PPK28 as the molecular correlate for water taste in 

Drosophila and raised the possibility that DEG/ENaC ion channels may also 

participate in osmosensation of flies as well as in other animals, including humans 

(Cameron et al., 2010).  

 

 

1.1.3.7 Fluoride Resistant Mutation proteins (FLRs) 

Eight members of this subfamily have been defined so far. All genes were identified 

by a conserved extracellular region (Take-Uchi et al., 1998). FLR-1, which is 

expressed in intestine of C. elegans and is thought to control defecation rhythm 

(Take-Uchi et al., 1998), is the only gene that was cloned but has yet not been 

expressed heterologously (Take-Uchi et al., 1994). The subfamily got their name from 

C. elegans-FLR-1 mutants that display resistance to fluoride ions (Katsura et al., 

1998). 

 

 

1.1.3.8. Acid Sensing Ion Channels 

Since this work particularly deals with ASICs, this subfamily of the DEG/ENaC 

superfamily is discussed in detail in the next chapter. 

 
 

1.2  Acid Sensing Ion Channels (ASICs) 
The acid sensing ion channels (ASICs) are a small subfamily of the DEG/ENaC 

family. The first member of this subfamily, ASIC1a from rat brain, was cloned in 1997 

by sequence homology of around 25% to ENaC (Waldmann et al., 1997). ASICs are 

restricted to chordates and the evolutionary oldest  ASIC gene is found in the genome   
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of  the  urochordate  Ciona  intestinalis   (Coric et al., 2008).  To date, ASIC genes 

were cloned from very diverse species like the jawless vertebrate lamprey (Coric et 

al., 2008), from the cartilaginous fish spiny dogfish (Coric et al., 2008), from the bony 

fish toadfish and zebrafish (Coric et al., 2003; Paukert et al., 2004), from chicken 

(Coric et al., 2005) and from different mammals. Six different members of the ASIC 

subfamily have been identified in mammals (ASIC1a, ASIC1b, ASIC2a, ASIC2b, 

ASIC3 and ASIC4). ASIC1a and ASIC1b as well as ASIC2a and ASIC2b are splice 

forms of the same gene (Chen et al., 1998; Bässler et al., 2001). The definition of 

ASICs is based on their sequence homology and the ASIC subunits ASIC2b and 

ASIC4 are not sensitive to protons (Lingueglia et al., 1997; Akopian et al., 2000).  

Although belonging to the same subfamily and sharing a lot of similarities, channels 

that are composed of different subunits display differences with regard to expression 

patterns, proton-affinity and gating behaviour.  

 

 
1.2.1 The apparent affinity for H+ 
Especially the proton-affinity is a crucial feature of ASICs from a physiological point of 

view. Figure 1.3 shows a basic scheme of different possible states of ASICs. Protons 

can bind to closed ASIC channels (C), upon binding ASICs undergo conformational 

changes causing channel opening (O) and currents that are mainly based on an influx 

of Na+-ions. Open channels are of high potential energy and unstable thus reaching a 

desensitized state (D) after a characteristic and rather short time even in the presence 

of protons. As shown in the scheme, the channel can also enter the desensitized 

state without reaching an apparent open conformation. This mechanism is called 

steady-state desensitization. For both, activation and steady-state desensitization, the 

apparent proton affinities are different for each ASIC and can be determined and fitted 

using the Hill-equation.  

 

 

 

 

 
Figure 1.3. Scheme of the different possible states of an ASIC channel 
Upon binding of protons, ASICs can open. After a certain time they reach the desensitized state while 
protons are still bound to the channel. The desensitized state can also be directly reached from the 
closed state without opening of the channel (steady-state-desensitization).  
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For example, ASIC1a displays apparent proton affinities for half-maximal activation 

and steady-state desensitization of pH 6.5 and 7.25, respectively, leading to the 

assumption that activation and steady-state desensitization are processes completely 

separate from each other (Gründer and Chen, 2010). Additionally, the values for half-

maximal activation and steady-state desensitization suggest that acidification in small 

steps leads to complete desensitization of all channels without any apparent current.   

A contrary hypothesis, however, is that activation and steady-state desensitization are 

tightly linked. Slight acidification can cause channel opening with low probability within 

a certain time. And such an un-concerted opening of only a few channels at one time 

will not lead to visible currents at whole cell level thus remaining unnoticed (Gründer 

and Chen, 2010). Moreover, mutagenesis studies of ASIC1a report changes in the 

apparent H+-affinity for activation that also affect affinities of steady-state 

desensitization (Babini et al., 2002). Another publication reports a mutation in ASIC3, 

which causes a shift in the curve for steady-state desensitization without affecting the 

activation curve (Cushman et al., 2007) and thus suggesting that the reported 

mutation uncouples the mechanisms of activation and steady-state desensitization. 

Irrespective of the two suggested possibilities, it was shown in several publications 

that ASICs are sensitive sensors for protons and are also implicated in several 

physiological and pathophysiological states. 

 

 
1.2.2  Biophysical characteristics and physiological functions  
 

1.2.2.1 ASIC1a/ASIC1b 

Alternative splicing of the ASIC1 gene leads to ASIC1a- and ASIC1b-subunits, which 

differ in the first transmembrane domain and the proximal part of the large 

ectodomain (Chen et al., 1998; Bässler et al., 2001). The last two thirds of both 

channels are identical. Both subunits display several differences when forming 

homomeric channels. 

ASIC1a, as the best investigated ASIC, is expressed in sensory neurons and 

throughout the brain, with the highest expression levels in cerebellum, hippocampus 

and other distinct areas (Waldmann et al., 1997), whereas ASIC1b is specifically 

found in  sensory  neurons  (Chen  et al.,  1998).  Both channels exhibit fast transient 

currents   that   completely   desensitize   in  the  continued  presence  of  extracellular  
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protons. When strongly activated with an acidic solution of pH 5.0, ASIC1b shows a 

desensitization time constant of around 500 ms whereas ASIC1a desensitizes slower 

with a time constant of around 1.5 s (Chen et al., 2006). Homomeric ASIC1a and 

ASIC1b channels are selective for Na+ over K+ and ASIC1a is the only ASIC channel 

that also displays a slight permeability for Ca2+-ions (Waldmann et al., 1997; Bässler 

et al., 2001).  

A unique feature of ASIC1a and ASIC1b is the sensitivity to Psalmotoxin1 (PcTx1), a 

polypeptide toxin of the South American tarantula Psalmopoeus cambridgei. 

Interestingly, both ASIC1 channels show different behaviours upon modification by 

PcTx1.  ASIC1a is inhibited by PcTx1 with an EC50 of around 1 nM (Escoubas et al., 

2000). The toxin increases its apparent H+ affinity, pushing the channel into a 

desensitized state at a resting pH of 7.4 (Chen et al., 2005). Contrary, steady-state 

desensitization of ASIC1b is just weakly affected by PcTx1 while activation is strongly 

promoted (Chen et al., 2006a). These observations lead to the conclusion that the 

affinity of PcTx-binding strongly depends on the state of both channels (Chen et al., 

2006). In the desensitized state ASIC1a shows a much higher affinity for PcTx than in 

the open state. On the other hand, ASIC1b affinity for PcTx1 is maximal in the open 

state thus explaining the promotion and stabilization of the open state and the slowing 

of the time course for desensitization of ASIC1b (Chen et al., 2006a).  

Another possibility to shift the proton affinity of ASICs is the alteration of the 

extracellular Ca2+ concentration. In general, rising extracellular concentrations of Ca2+ 

stabilize the closed state (Waldmann et al., 1997; de Weille and Bassilana, 2001; 

Zhang and Canessa, 2002) and shift the curves for H+-dependent activation and 

steady-state desensitization of ASICs while at the same time exhibiting an open 

channel block (Babini et al., 2002; Immke and McCleskey, 2003). This sensitivity to 

Ca2+ is shared with other ion channels like P2X receptors (Cook et al., 1998), nicotinic 

actylcholine receptors (Mulle et al., 1992) and the metabotropic glutamate receptors 

(Kubo et al., 1998). A possible mechanism is illustrated by a model where H+ and 

Ca2+ compete at a common binding site and a relief of Ca2+, which keeps the channel 

in the closed conformation, is achieved when H+ is applied extracellularly to the 

channel (Immke and McCleskey, 2003; Paukert et al., 2004a). Although most 

observations confirm this model,  there are also results,  which point to a more 

complicated mechanism  with  at least two Ca2+-binding sites and an additional 

modulating-site within the extracellular loop domain of ASICs (Paukert et al., 2004a). 



1. General Introduction 

 23 

 

Knock-out studies and behavioural assays increased our knowledge of the 

physiological function of ASIC1a.  

First of all, ASIC1a was shown to be particularly expressed at postsynaptic 

membranes of synapses in the hippocampus (Zha et al., 2006). In a scenario where 

synaptic vesicles, which also contain protons as co-transmitters, release their content 

into the synaptic cleft leads to a possible activation of ASIC1a at the postsynapse and 

thus ASIC1a can contribute to the excitatory postsynaptic current. The knock-out of 

ASIC1a would lead to a reduced postsynaptic reaction that can cause several 

pathophysiological states. Indeed, knock-out mice revealed an involvement of ASIC1 

in long-term-potentiation (Wemmie et al., 2002), in fear conditioning (Wemmie et al., 

2003; Coryell et al., 2007), spatial learning and memory (Wemmie et al., 2002) and 

also a participation in seizure termination (Zieman et al., 2008) and pain-sensitivity 

(Mogil et al., 2005).  

 

 

1.2.2.2 ASIC2a/ASIC2b 

The ASIC2 gene also gives rise to two splice forms, ASIC2a and ASIC2b, where only 

ASIC2a forms a functional homomeric channel when heterologously expressed. 

ASIC2b, on the other hand, cannot form functional homomeric channels but was 

shown to tune ASIC currents when forming heteromeric channels together with other 

ASIC subunits (Lingueglia et al., 1997; Askwith et al., 2004; Hesselager et al., 2004). 

It was already shown, for example, that hippocampal and cortical neurons exhibit acid 

evoked currents that arise from ASIC1a/ASIC2-heteromers (Baron et al., 2002; 

Askwith et al., 2004; Gao et al., 2004). Compared to ASIC1a, homomeric ASIC2a 

displays a much lower sensitivity to protons (Lingueglia et al., 1997; Benson et al., 

2002) and the desensitization kinetics of ASIC2a for upon half-maximal activation is 

significantly slower (Baron et al., 2008). The expression patterns of ASIC2a and 

ASIC2b in the brain are similar to ASIC1a  (Kellenberger and Schild, 2002) but 

ASIC2a is additionally found in taste buds of the circumvallate papillae where  it  may 

contribute to sour taste perception  (Ugawa et al., 1998).  Furthermore, ASIC2a plays 

a role in facilitating ASIC1a localization to dendritic spines, where they form 

heteromeric channels (Zha et al., 2009). This suggests ASIC2a as a partner for 

ASIC1a that brings ASIC1a to or retains it from excitatory synapses (Zha et al., 2009). 

Hence  it  can  be  proposed  that  ASIC2a  indirectly modulates the proper function of  
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ASIC1a. Finally, two independent ASIC2-knock-out mice lines suggested 

involvements of ASIC2 in mechanosensation (Prize et al., 2000; Roza et al., 2004). 

 

 

1.2.2.3 ASIC3 

In contrast to other ASIC subunits, ASIC3 is exclusively expressed in sensory 

neurons of the peripheral nervous system (Waldmann et al., 1997), where it is 

localized at nerve terminals and possibly transduces various sensory stimuli (Price et 

al., 2001). Specifically, ASIC3 has been proposed to play a role as H+ sensor in 

cardiac afferents (Sutherland et al., 2001) and has been implicated in the 

development of mechanical hyperalgesia (Sluka et al., 2003) and high intensity pain 

sensations (Chen et al., 2003). Detailed analysis revealed co-localization and 

heteromeric assemblies of ASIC3 with other subunits in vivo and in vitro (Chen et al., 

2006; Hattori et al., 2009). Homomeric ASIC3, together with homomeric ASIC1a, 

exhibits the highest H+-sensitivity of mammalian ASICs (Waldmann et al., 1997; 

Sutherland et al., 2001). The time constant of desensitization of ASIC3 is in the range 

of 300 to 400 ms (Sutherland et al., 2001). ASIC3 has the unique capacity to encode 

sustained currents when activated with solutions of pH 5 and lower. Additionally, a 

striking feature of ASIC3 is the capacity to encode slight acidification in a narrow 

physiological range between pH 7.3 and 6.7 by the generation of a sustained current 

(Fig. 1.4 A) (Yagi et al., 2006). The overlap of dose-response curves for steady-state 

desensitization and activation accounts for the ability of ASIC3 to encode such small 

changes in H+ concentration (Fig. 1.4 B) (Yagi et al., 2006).  Thus, the sustained 

current between pH 7.3 and 6.7 is a so-called window current, which can be 

described by a condition where a small fraction of channels is always in the open 

state (Fig. 1.4 C). This feature underlines the role of ASIC3 as a sensor for 

nociceptive stimuli that are caused by mild acidification like muscle ischemia, and that 

last longer than a few seconds (Prize et al., 2001; Yagi et al., 2006). The  window  

current  was  the  first  explanation  for  a possible mechanism of generating a 

sustained current in the physiological range and underlined the importance of ASIC3 

for encoding long lasting changes in extracellular pH.  
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Figure 1.4. Sustained currents of ASIC3. 
(A) Representative acid-evoked sustained currents of CHO cells transfected with ASIC3. (B) Hill plots 
of the activation and inactivation of peak, transient ASIC3 currents, normalized to pH 7.4 (inactivation) 
and pH 5.0 (activation). The blow-up shows the tight overlap of inactivation and activation curves. (C) 
The current vs. pH relationship of measured sustained currents (triangles) from (A) and predicted 
window currents (smooth curve) calculated by multiplying values at each pH of activation and 
inactivation fits in (B). (Adapted from Yagi et al., 2006) 
 
 
 

1.2.2.4 ASIC4  

Besides ASIC2b, ASIC4 is the second ASIC-subunit that is not activated by protons 

when expressed as a homomer. In addition, no functional heteromeric assembly with 

other subunits was examined so far and the function of this subunit remains unkown 

(Akopian et al., 2000; Gründer et al., 2000). However, ASIC4 is broadly expressed in 

the mammalian nervous system, especially in pituitary gland (Gründer et al., 2000). 

Some observations suggest that ASIC4 assembles with ASIC1a and downregulates 

the expression of ASIC1a (Donier et al., 2008). A yeast two-hybrid assay revealed a 

unique interaction of ASIC4 with polyubiquitin and other proteins of various functions 

that might be a first step to uncover the possible role of ASIC4 (Donier et al., 2008). 
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1.2.3   Crystal-structure of chicken ASIC1 
In 2007 ASIC1 from chicken was crystallized at a resolution of 1.9 Å (Jasti et al., 

2007). The first crystal, however, was resolved from a non-functional deletion mutant 

that lacked most of its C- and N-termini. A functional chicken ASIC1 was crystallized 

two years later at a resolution of 3.0 Å (Gonzales et al., 2009). Most of the C-terminus 

of this functional chicken ASIC1 was also deleted, but not the N-terminus that is 

essential for the gating of the channel (Gonzales et al., 2009). The most striking 

difference between both channels was the symmetric order of the transmembrane 

domains of the functional channel (Gonzales et al., 2009). 

Because both structures were resolved at acidic pH values, the crystal represents the 

desensitized conformation of the channel. Surprisingly, the chicken ASIC1 crystallized 

in units of two trimers (Jasti et al., 2007). Since rat ASIC1 and human ASIC1 show an 

amino acid identity of about 70% to chicken ASIC1 it is likely that the structures and 

even structural details are highly conserved between chicken ASIC1 and ASIC1 of 

mammals.  

 

 

 
 
Figure 1.5. Crystal structure of chicken ASIC1. 
(A) Functional channels are built by three channel subunits. Each subunit consists of two 
transmembrane domains (TM) with rather short cytosolic C- and N-termini and a large extracellular 
loop that is connected to TM via a flexible wrist. (B) The extracellular domain of a single subunit has 
the shape of a clenched hand and is divided into five subdomains named knuckle, finger, thumb, palm, 
β-ball and two transmembrane domains. 
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The shape of the large extracellular domain of each subunit resembles a clenched 

hand (Fig. 1.5) that can be divided into five subdomains that are named palm, finger, 

knuckle, thumb and β-ball (Jasti et al., 2007). The central subdomain of the 

extracellular loop is the palm domain, because it spans almost the entire height of the 

extracellular loop and it connects the extracellular domain with both, transmembrane 

domain 1 and 2 via the so-called β1- and β12-strand, respectively (Jasti et al., 2007). 

Identified subunit contacts, built mainly by hydrogen bonds and disulfide bridges, are 

between different domains of the palm of the same subunit and the palm domain of 

one subunit to the thumb domain of another. Five disulfide bridges within one thumb 

domain are thought to provide structural integrity and a faithful transduction of 

conformational changes to the ion pore forming transmembrane domain (Jasti et al., 

2007).  

The so-called acidic pocket containing several acidic residues, which form three pairs 

of carboxylic acid-carboxylate groups, was another noticeable feature of the chicken 

ASIC1 structure. This acidic pocket is formed by several intra- and inter-subunit 

contacts and has a rather far distance of 45 Å from the ion pore (Jasti et al., 2007). 

The acidic pocket provides an attractive site for H+-sensing in ASICs. While the 

negatively  charged  side  chains  coordinates  a   Ca2+  ion  in  the  closed  state,  

upon protonation of one of the two carboxylates from each pair both side chains 

would come close to each other in the desensitized state by forming an acidic residue 

pair (Paukert et al., 2008). 

The transmembrane domains form α-helices that cross the membrane in a symmetric 

fashion while, in line with previous studies (Waldmann et al., 1995; Kellenberger et 

al., 1999; Schild et al., 1997), the second transmembrane domain of each subunit 

lines the ion pore.   

Because the crystal of the chicken ASIC1 is a snapshot of the desensitized state of 

the channel, it would be interesting to resolve the channel also in the closed and the 

open state, to get a clear picture of conformational changes during the gating 

motions.  

 

 

1.2.4  Evolution of proton-sensitivity and important amino acids 
The first ASIC genes were identified and cloned from mammals like mouse, rat and 

human  and  were  named  ASIC1 – ASIC4 (Waldmann  et  al., 1998;  Akopian  et  al.,  
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2000; Gründer et al., 2000). So far, many ASIC homologs were cloned from very 

diverse members of the chordate lineage that belong to different evolutionary stages 

(Fig. 1.6). The most ancient one is the ASIC1 gene from the ascidian Ciona 

intestinalis that gives rise to two spliced forms and exhibits no H+-sensitive currents 

when expressed in Xenopus oocytes (Coric et al., 2008). Other ASIC homologs were 

cloned from cyclostome lamprey (Coric et al., 2005), from the chondrichthyes spiny 

dogfish shark (Squalus acanthias) (Coric et al., 2005) and elephant shark (Li et al., 

2010c), from the teleosts toadfish  (Coric  et  al.,  2003,  2005)  and zebrafish  

(Paukert  et  al., 2004b), from the frog Xenopus laevis (Li et al., 2010b), and from 

chicken (Coric et al., 2005).  Moreover, genetic analysis and the rising number of 

sequenced genomes revealed that ASICs are only expressed in the chordate lineage 

and that ASIC genes are absent from evolutionary older organisms. Comparison of 

sequences and related currents that are conducted by ASIC channels of the diverse 

species and a broad mutagenesis screen for rat ASIC1a shed light to the questions: 

When did H+-sensitivity arise? What are the crucial domains that are sufficient for H+-

sensitivity? And what are the gating-properties of ancient ASIC channels?  

 

 

 
 
 
Figure 1.6. Relationship of ASICs from different species. 
(A) Phylogenetic tree representing selected ASICs from evolutionary different species and their 
relationship to each other. (B) Phylogenetic tree of the main chordate clades. The colors of the ASICs 
in (A) corresponds to the colors of the different clades in (B). (Adapted from Gründer and Chen, 2010) 
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So far, no H+ sensitivity could be determined for ASICs from Ciona, lamprey and 

shark suggesting that proton-sensitivity arose with bony fish approximately 450 million 

years ago (Coric et al., 2005, 2008) and led to different suggestions that evolutionary 

early ASICs might be activated by ligands different from protons.  
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1.3 Aims of this study 
 

A recent broad mutagenesis screen uncovered four amino acids (Glu63, His72/His73 

and Asp 78) that are involved in proton gating of rat ASIC1a (Paukert et al., 2008). All 

four amino acids are highly conserved among diverse proton sensitive ASIC 

homologs and orthologs and so far only two exceptions are known: zASIC2 from 

zebrafish and sASIC1b from shark contain all four crucial amino acids but were 

described as proton insensitive.  

These controversial data were the main reason for the first part of this work: 

 (1) to re-evaluate the H+-sensitivity of shark ASIC1b, which is closely related to 

 rat ASIC1a and zebrafish ASIC1.1 and to electrophysiologically characterize 

 the currents of shark ASIC1b that are elicited by extracellular acidification. 

 

The electrophysiological characterization of shark ASIC1b revealed currents that are 

unique among the members of the ASIC subfamily. Shark ASIC1b exhibits a very fast 

desensitizing transient current that is followed by a highly proton sensitive sustained 

current, which does not desensitize as long as extracellular protons are present.  

Thus, the second part of this work addressed the question: 

 (2) What are the crucial amino acids that control the sustained current of  shark 

 ASIC1b and are there possible interacting regions that are involved in 

 controlling of the gating kinetics of this channel? 
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2. Material and Methods 
 
2.1 Material 

 
2.1.1 Chemicals 

All used standard chemicals were purchased from Sigma-Aldrich (Diesenhofen), 

Merck (Darmstadt), Abbott (Wiesbaden) and Roth (Karlsruhe) in analytic quality. 

 

 

2.1.2 Biological Materials 
 

2.1.2.1 TOP10 E. coli Competent Cells; Invitrogen 

Top10 Competent Cells were used for all transformations of double stranded plasmid-

DNA performed in this work. They were deduced from the DH10B™strain, have a 

high transformation efficiency of 109 cfu/µg and are characterized by the genotype: 

F- mcrA (mrr-hsdRMS-mcrBC) 80lacZ M15 lacX74 recA1 ara

139 (ara-leu)7697 galU galK rpsL (StrR) endA1 nupG. 

 

 

2.1.2.2 Xenopus laevis oocytes 

Xenopus laevis oocytes are precursors of mature egg cells (Fig. 3.1). Oocytes of 

development stages V and VI were used as expression system for all wildtyp -, 

mutant - and chimeric channels for electrophysiological purposes. The oocytes are 

around 1 mm in diameter and show a characteristic bipolar look. These two poles are 

the dark brown animal pole and the yellow vegetal pole. One to four days after 

injection of RNA whole cell currents of the oocytes were measured with the two-

electrode-voltage-clamp-technique.  
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2.1.2 Materials for molecular biological purposes 
 

2.1.3.1 Ready-to-use materials 

DNA-ladder, 1 kb   Gene Ruler, Fermentas, St. Leon-Rot  

DNA-ladder, 100 bp   NEB, Frankfurt 

DNA-ladder    Ribo Ruler, Fermentas, St. Leon-Rot 

DNA-loading buffer   Ambion, Austin, USA 

DEPC-H2O    Roth, Karlsruhe 

Ethidiumbromide   Roth, Karlsruhe 

Red-Save    Hiss, Freiburg 

 

 

2.1.3.2 Oligonucleotides (Primers) 

All primers used in this project were ordered from MWG Eurofins, Martinsried, as 

HPLC purified, unmodified DNA oligos. Working concentrations were 10ng/µl. 

 

 

2.1.3.3 Oocyte expression vector 

All used constructs were cloned in the oocyte expression vector pRSSP-6009. 

Containing the 5’-untranslated region from Xenopus β-globin and a poly-A-tail at the  

 

 

 

Figure 2.1. Healthy oocytes of Xenopus laevis (left) are composed of a 
dark brown animal pole and a yellow vegetal pole (right). 
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3’ region of the constructs this vector was optimized for expression in Xenopus 

oocytes. 

 

 

2.1.3.4 Commercially available Kit systems 

The following Kit systems were used according to manufacturer’s instructions 

 

High Pure PCR Product Purification Kit   Roche , Mannheim 

High Pure Plasmid Isolation Kit    Roche , Mannheim 

mMessage Machine Kit, SP6    Ambion, Austin, USA 

 

 

2.1.3.5 Enzymes 

Taq-DNA-polymerase     New England Biolabs, Frankfurt 

Kappa Hifi-DNA-polymerase    Clontech, Erlangen 

Alkaline phosphatase     New England Biolabs, Frankfurt 

T4-Ligase       New England Biolabs, Frankfurt 

Ligate-IT™ Rapid Ligation Kit    Wooburn Green, UK 

 

 

2.1.3.6 Antibodies 

anti-HA Klon 3F19 (rat, monoclonal)   Roche, Mannheim  

anti-rat-IgG-HRP               Jackson ImmunoResearch 

(goat, F(ab’)2 fragment (H+L)    Laboratories 

 

 

2.1.3.7 Solutions and Buffers for molecular biology 

Agarplates    15 g Agar-Agar 

     ad 1 l ddH2O 

  

Agarose-Gels   x g Agarose 

     ad 30 ml bzw. 100 ml 1xTAE  

 

Antibiotics    Ampicilin: 50 mg/ml 
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dNTPs für PCR   concentration: 10 mM 

     ⇒1:10-dilution of the 100 mM-stock solution 

     dATP, dCTP,dGTP, dTTP 

 

LB-medium    LB Broth Base 20 g/1000 ml 

     pH 7-7.4 

 

MOPS (5x)       0.1 M MOPS (pH 7,0) 

     40 mM NaAc  

     5 mM EDTA (pH 8) 

     ad 1 l DEPC-H2O 

 

TFB I     300 mM NaAc 

     50 mM MnCl2 

     100 mM NaCl 

      

     10mM CaCl 

     15% Glycerin (99%) 

 

TFB II     10 mM MOPS  

     110 mM NaCl 

     75 mM CaCl2   

     15% Glycerin  

 

TAE (50x)    242 g Tris Base    

     57.1 ml pure acetic acid 100% 

     100 ml 0,5 M EDTA (pH 8) 

     ad 1 l ddH2O 
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2.1.4 Electrophysiological materials and setups 

 

2.1.4.1 Capillaries and electrodes 

Glas capillaries for RNA-Injektion: 1.14 mm OD, 0.5 mm ID, World Precision 

Instruments 

Borosilicate capillaries for TEVC-measurements: 0.7 mm-1.0 mm, Science Products 

GmbH 

Silverwire for current and voltage electrodes: AG-15T, Science Products, Hofheim. 

 

 

2.1.4.2 Setup for measuring oocytes with the two-electrode-voltage-clamp-technique 

(TEVC) 

Cellworks software 5.1.1 was used for electrophysiological characterization and 

measurement of the mutant and chimeric channels. Cellworks was connected to the 

oocyte testing carousel, OTC-20 (npi, electronic instruments) via an interface.  The 

automated, pump-driven solution exchange together with the small chamber for the 

oocyte allows exchange of 80 % of the solution within 300 ms (Chen et al. 2006b). 

The oocyte chamber is located in the center of the grounded acryl glass frame (Fig. 

2.2; 6). The intracellular current and voltage electrodes were connected to the acryl 

glass frame  (Fig. 2.2; 2, 7).   The solutions were applied to the  

oocytes while the testing carousel is turning the solution underneath the induction 

pipe. Opening of the valve as well as rotation of the dishes are also controlled by the 

Cellworks 5.1.1 software. 

Further components of the setup are the TurboTec03X amplifier (npi electronic 

imstruments), an oscilloscope HM507 (Hameg instruments) (Fig. 2.3) and a computer 

(Macintosh G4). Data acquisation was also managed by Cellworks 5.1.1 software (npi 

electronic imstruments). 
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Figure 2.2. Experimental chamber of the carousel solution exchange system. 1: Solution 
containing dish carousel for the transport of solutions; 2: Voltage electrode; 3: Reference 
electrode; 4: Automated valve for the solution exchange; 5: Ground electrode  6: 
“Maltese cross” bath chamber containing the oocyte; 7: Current electrode; 8: Petri dish 
containing the soltions that is applied to the oocyte 

Figure 2.3. Components of the TECV-setup:1. oscilloscope (HM 507, Hameg); 2.TEVC- 
amplifier (Turbo Tec-03X, npi); 3. Interface to control  (OTC-20, Oocyte Testing Carousel, npi) 
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2.1.4.3 Solutions for electrophysiology and bioluminescence assay 

 

OR-2;  pH = 7.3 

 

NaCl    82.5 mM 

KCl        2.5 mM 

Na2HPO4            1 mM   

HEPES            5 mM   

PVP           0.5 g/l  

MgCl2             1 mM   

CaCl2                               1 mM   

H20             ad 1 l 

 

ND-96-Solution; pH = 7,4 

NaCl        96 mM 

KCl         2 mM 

CaCl2      1.8 mM 

MgCl2         2 mM 

HEPES        5 mM 

 

Standard bath – solution; pH 7.8 – pH 6.8 

NaCl      140 mM     

HEPES      10 mM     

CaCl2 (1M)      1.8 mM  

MgCl2 (1M)      1.0 mM     

 

Standard bath – solution; pH 6,7 – pH 4,0 

NaCl       140 mM     

MES         10 mM     

CaCl2 (1M)       1.8 mM  

MgCl2 (1M)       1.0 mM 
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2.1.4.4 Disulfide-bridge building chemicals and channel blockers 

Amiloride    Sigma, Diesenhofen 

Psalmotoxin    Alamone Labs Ltd, Jerusalem   

Aminoethyl Methanethiosulfonate Hydrobromide (MTSEA-Bromide) 

     Toronto Research Chemicals, Kanada 

 

           

 

2.2 Methods 
 

2.2.1 Molecular biological Methods 
The methods described below were used to create chimeric ion channels, to insert 

HA-tags into ORFs of certain ion channels, to create point mutants of ion channels 

and to synthesize cRNA of all constructs for expression in Xenopus laevis oocytes. 

 

 

2.2.1.1 Agarose gel electrophoresis 

Agarose gel electrophoresis is a standard method to analyze DNA and RNA 

according to its length and its concentration/amount or to isolate different DNA-

fragments in the same sample from each other. In this project, agarose gel 

electrophoresis was carried out in horizontal BioRad chambers (Munich). Agarose 

concentrations from 0.8 to 1.5 % (w/v) were used in 1xTAE buffer. After boiling the 

agarose solution, 0.1 ‰ (w/v) red safe was added and the solution was poured into 

the gel cast chamber. Wells were formed by a plastic comb. After cooling down, the 

gel was placed in a running chamber. 1xTAE was used as running buffer.  Before 

loading the wells, DNA loading buffer was added to the samples and a voltage of 100 

V was applied for approximately 30 to 40 min to separate the DNA fragments. A DNA 

ladder running parallel to the samples was used to determine the size of the DNA 

fragments. To visualize the DNA, safe and print the data, a UV-Transilluminator 

(BioRad, Munich) was used in combination with a PC and the software Quantity One 

(BioRad, Munich).  

Agarose gel electrophoresis was also used to isolate DNA-fragments of interest. After 

cutting out of a gel a distinct DNA band, the DNA was purified from the gel using the 

High Pure PCR Product Purification Kit  (Roche, Mannheim).  This kit uses a silica gel  
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matrix that binds DNA in a pH and salt dependent manner. After one or two washing 

steps the DNA was finally eluted with a special elution buffer and the concentration 

was determined by measuring the absorption at 260 nm.  

 

 

2.2.1.2 Polymerase Chain Reaction (PCR) 

The polymerase chain reaction technique (PCR), invented in the mid 1980s (Saiki et 

al. 1985) is an effective method to amplify specific DNA fragments. The method is 

based on the elongation of two oligonucleotides (primers), which flank a particular 

DNA sequence, by a thermostable DNA-polymerase enzyme. The sequence between 

the two primers  serves as a template for DNA polymerase. 

The PCR can be divided into different phases. The initial step is the denaturation of 

the template DNA at a temperature of 95°C. Afterwards the annealing of the primers 

to the DNA template is achieved at temperatures between 45°C and 60°C, depending 

on the length and the GC-base content of the primers. The third step is performed at 

72°C when the thermo-stable DNA polymerase elongates the primers with the result 

that the specific template DNA sequence was copied. Several repeats of the three 

steps lead to a high amplification rate of the template DNA sequence. Several 

parameters contribute to the success of a PCR. 

The most important ones are the number and duration of the amplification steps, the 

salt concentrations, especially of MgCl2, and the annealing temperature. 

All standard PCR procedures were performed with the Biometra T3000 Thermocycler 

with the following volumes:  

 

template-DNA (cDNA, 100 ng)   x    µl 

Primer 1, sense (10 pmol/µl)   2    µl 

Primer 2, antisense (10 pmol/µl)   2    µl 

DNA-polymerase reaction buffer (10x)  5    µl 

dNTPs (10 mM each)    1    µl 

taq-polymerase (2.5 U/ml)    0.5 µl 

H2O, bidest.      x    µl 
 

total volume      20  µl 
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2.2.1.2.1 Colony-PCR 

The colony PCR was used to proof the success of plasmid transformations. False-

positive colonies could be easily distinguished from the right ones. Several bacterial 

colonies served as the template. They were harvested with a pipette tip from an 

antibiotica plate and were pipetted in a reaction tube that contains all ingredients for a 

PCR-reaction. Before transferring the colony in the reaction tube, it was stamped on a 

second antibiotica plate to easily assign each reaction tube to a harvested clone. 

The hypotonic reaction mix cracked the bacteria membrane and set free the DNA and 

all containing plasmids. Appropriate primer pairs were used to control if the plasmids 

in the harvested clones carried the inserts of interest.  

 

 

2.2.1.2.2 Recombinant PCR 

The method of the recombinant PCR was used to insert mutations of more than 6 

bases, to clone chimeric channels and to insert the HA-epitope into the open reading 

frame of the sharkASIC1b and the related M27-sharkASIC1b construct.  

Two distinct reactions were performed in the first step. Each reaction is executed with 

a gene-specific primer and a second recombinant primer (Fig. 2.4, A). This second 

recombinant primer carries a gene-specific sequence at the 3’ end and the sequence 

of the HA-tag, the desired mutation or the sequence of a second gene that is inserted 

in the gene of interest at the 5’-end. The gene-specific 3’ end anneals with the 

template DNA while the 5’ end overlaps in the first reaction. This overlapping 

sequence should be at least 12 bases in length. 

The 5’ ends of the two primers overlapped so that each of the two reactions contain 

complementary sequences and they can hybridize in a third PCR reaction (Fig. 2.4, 

C).  

In this third reaction the amplification starts when the two products of the first two 

reactions overlap and hybridize.  The resulting products contain the desired 

mutations, the HA-epitope or the chimeric border (Fig. 2.4, D). In the next 

amplification steps, the reaction starts again with the elongation of the outer primers.  

The annealing temperature was determined according to the content of GC-bases 

and the length of overlapping sequences.  
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A gel electrophoresis was performed to proof the success of each individual reaction 

and to isolate the DNA products of interest from buffers and enzymes used in the 

PCR reactions in order to prepare them for further downstream reactions. 

 

 

 
 

Figure. 2.5: The recombinant PCR is an effective method for creating recombinant DNA fragments. 
The method requires recombinant primers that contain sequence fragments of two dfferent genes and 
that are also complementary to each other (indicated red and green). 

 

 

 

2.2.1.2.3 Targeted point mutagenesis with the Quick-Change-Method 

The Quick-Change-Method is a time saving method to insert point mutations into 

plasmid-DNA. Complementary primers with a length of 24 bases are used that carry 

the desired mutation in the middle of its sequences (Fig. 2.6). After primer annealing, 

the polymerase amplifies the whole plasmid in each amplification step. Because of 

the long sequence that is amplified during each step it is important to use a 

polymerase with a 3’-5’-exonuclease-activity („proof-reading“) to avoid unwanted 

mutations that are caused by the error rate of the polymerase. In contrast to the  
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mutated plasmid DNA products the template plasmid DNA is methylated. A restriction  

digest  with  the enzyme DpnI follows the PCR  reaction because  DpnI cuts only 

methylated DNA-sequences (Fig. 2.6). This restriction digest leaves only the 

unmethylated mutated plasmid DNA products that are subsequently transformed into 

competent cells. 

 

The standard PCR approach for the Quick-Change mutagenesis was as follows: 

 

5x Kappa Hifi polymerase reactions buffer   10  µl    

template plasmid-DNA (20 ng)           x  µl   

mutagenesis Primer 1 (10 pmol/µl)   1,5 µl  

mutagenesis Primer 2 (10 pmol/µl)   1,5 µl  

dNTPs (10 mM each)     1,0 µl   

kappa Hifi DNA-polymerase (1 U/µl)    0,5 µl 

H2O, bidest.         y  µl 

total volume        50  µl  

 

 

Standard conditions for the Quick-Change mutagenesis: 

 

Denaturation   95°C   30 sec 

Annealing   55°C   60 sec 

Elongation   72°C   180 sec (30 sec/1kb plasmid length) 
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2.2.1.3 Restriction digest of PCR-products und plasmid vectors 

PCR products were cloned into appropriate vector backgrounds with restriction 

enzymes. 

The digestion of PCR products and vectors with adequate restriction enzymes 

produced 5’ or 3’ prime overhangs that were complementary to each other. This 

allows the insertion of a PCR fragment into a plasmid vector. In most cases a site-

directed insertion was necessary. For this purpose a double digest with two different 

restriction enzymes was used.  

All restriction enzymes used in this project were purchased from NEB (Frankfurt).  

 

 

 

Figure 2.6. Mutagenesis with the Quick-Change-method is a time saving method for mutating few 
bases of a gene which is inserted in a plasmid vector. 
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2.2.1.4 Ligation of PCR fragments into plasmid vectors 

In the ligation reaction the enzyme ligase catalyses the generation of a 

phosphodiester bond between the 3’-hydroxyl group and the 5’ phosphate of double 

stranded DNA under the consumption of one molecule ATP.   

Before the reaction was started, the concentration ratio between PCR fragment and 

vector had to be determined with an analytical gel electrophoresis.  

 

The ratio was calculated with the following formula: 

       

         x µl volume (vector)        3 x size (insert)   

volume (insert)   =                           x 

         concentration factor  (insert) (gel)         size (vector) 

 

Subsequently the reaction was carried out with the „Ligate IT™ Rapid Ligation Kit“ for 

ten minutes at room temperature. 

 

 

2.2.1.5 Preparation of heat-competent cells (E.coli, Top10)  

A single colony of the bacterial strain E.coli, Top10 was picked from a tetracycline 

containing agar plate, inoculated as a starter culture in 3 ml LB medium, and 

incubated over night at 37°C with vigorous shaking at 220 rpm.  

The next day the culture was transferred into 50 ml of fresh LB medium without 

antibiotics and incubated until an OD600 of 0.5 to 0.6 was reached. The cells were 

centrifuged at 5000 rpm (rotor JA20, centrifuge J2-MC, Beckmann, Osterode) and the 

pellet was resuspended in 12.5 ml ice cold TFBI. After 10 min on ice the suspension 

was centrifuged again for 5 min at 4°C and 5000 rpm. The pellet was resuspended 

again in 4 ml TFBII buffer and aliquots of 200 µl were shock frozen in liquid nitrogen 

and then stored at -80°C. 

 

 

2.2.1.6 Transformation of heat-competent cells (E.coli, TOP10) 

Plasmid vectors were transformed into heat-competent cells in order to amplify them 

with a high efficiency. To amplify plasmid vectors they were transformed into 

competent  cells,  which  take  up  the  plasmid  DNA through the cell wall and amplify 
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the plasmid DNA while the cells are growing and dividing.  

In this project heat competent E. coli cells of the strain TOP10 were used. The cells 

were thawed on ice and 20 µl of a ligation reaction was added to the suspension. 

After 30 min incubation on ice, a 45 sec heat shock at 42°C was followed by another 

1 min incubation on ice. 200 µl LB medium was then added and the cells were 

incubated at 37°C for 1 h with vigorous shaking at 220 rpm. 

In the last step the whole volume or just part of it was plated on an ampiciline 

containing agar plate. 

  

 

2.2.1.7 Isolation of plasmid DNA – „Miniprep“ 

A commercially available kit from Roche was used to purify plasmid DNA from 

competent cells. The plasmid preparation was performed according to the 

manufacturer’s instruction.  

The method is based on the principle that the competent cells are lysated and the 

plasmid DNA is bound to silica membrane. After one or two washing steps the 

plasmid DNA is eluted from the silica membrane and diluted in an appropriate buffer.  

In this thesis 4 ml LB medium containing ampiciline was inoculated with a colony 

transformed with a specific plasmid. After incubation at 37°C over night at 220 rpm 

the medium was ready for plasmid isolation. 

 

 

2.2.1.8 DNA-sequencing  

To verify the identity of cloned plasmid-DNA, DNA-sequencing was carried out at 

MWG-Eurofins, Martinsried. 

For each reaction, an aliquot of 1 µl plasmid DNA diluted in 15 µl was sent to MWG. 

The result of each sequencing was downloaded from the Company’s website. 
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2.1.2.9 cRNA-production via in-vitro-Transcription 

For electrophysiological measurements of ion channels expressed in Xenopus 

oocytes cRNA synthesized from the plasmid DNA templates by in-vitro-transcription. 

In the first step, the plasmid DNA was cut and opened (linearized) 3’ from the clone of 

interest in order to avoid the transcription of the whole plasmid. The DNA was 

extracted from the reaction mix using phenol/chloroform and was then precipitated 

over night at -20°C with ethanol (100%) and 3 M NaAc.  

After centrifugation and resuspension of the linearized DNA, the in-vitro-transcription 

was performed using the mMessage Machine kit (Ambion, Austin, USA) according to 

manufacturer’s instructions.  

The reaction mix was precipitated over night at -20°C for a second time using LiCl. 

After centrifugation, the cRNA was dried and resuspended in DEPC-H2O and the 

concentration was determined via an analytical gel electrophoresis and the 

synthesized cRNA was visually adjusted to a standard cRNA with a concentration of 

200 ng/µl. 

 

 

2.2.2 Electrophysiological Methods 

The methods illustrated in the following chapters were performed to 

electrophysiologically analyze the cloned ion channels and to determine the surface 

expression of certain channels.  

Channels were electrophysiologically characterized using the two-electrode-voltage-

clamp technique (TEVC) on oocytes of the South American frog Xenopus laevis. This 

expression system was introduced by Gurdon (Gurdon 1971) and refined by Miledi 

who could show that injection of cRNA leads to the expression of proteins and 

especially membrane spanning proteins (Barnard 1982). The oocyte expression 

system is ideal for measuring channels and receptors located at the membrane 

because they contain only few endogenous channels. Another advantage is the 

relatively big size and robustness that provides an uncomplicated handling. 

However, channels expressed in oocytes may function differently than in their native 

invironment because the posttranslational modification may be different.  

Nevertheless, Xenopus oocytes have become a common expression system to 

investigate and characterize various ion channels and receptors. 
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The electrophysiological measurements were complemented by a bioluminescence 

approach to determine the expression of certain ion channels on the cell surface of 

oocytes  

Only oocytes in developmental stages V to VI were used for all performed 

experiments as previously described (2.1.2.2). 

 

 

2.2.2.1 Preparation und handling of Xenopus laevis oocytes 

Before operation and removal of the oocytes, the frog was anaesthetized with 2.5 g/l 

Tricaine for around 30 min. The anaesthetized frog was placed on its back and was 

opened by a small cut along its body axis. A sufficient number of oocytes was 

removed from the ovary and put in a dish containing OR-2 medium. The cuts in the 

subcutaneous musculature and in the abdominal skin were stitched separately. The 

frog was kept in a bucket of a small volume for one to two hours before it was set 

back in the aquarium. The same frog can be operated 4-6 times and the interval 

between the operations should be at least 3 months (Goldin 1992). 

The follicle cell layer surrounding the oocyte was removed by a two-hour incubation in 

OR-2 medium containing 1 mg/ml collagenase Type IIA (Sigma-Aldrich, 

Diesenhofen). Three to four washing steps were applied to remove the collagenase 

from the oocytes and to prepare the oocytes for cRNA injection. 

 

 

2.2.2.2 cRNA-microinjection in Xenopus laevis oocytes  

For injection of cRNA into oocytes, pulled glass capillaries (1.14 mm OD and 0.5 mm 

ID, World Precision Instruments, Inc.) were used. Capillaries were pulled with an 

automatic Puller (Flaming/Brown Micropipette Puller Model P-97; Sutter Instrument 

Co.) and the tips were broken manually to a diameter of about 10-20 µm, which 

allowed more easy penetration of the oocyte membrane. In order to reduce the air 

volume and water evaporation from the RNA solution, capillaries were filled with 

paraffin oil before they were attached to the injector. A hand-driven coarse 

manipulator (Nanoliter 2000, World Precision Instruments, Inc.) was used to pilot the 

injection. A total volume of about 40 nl of diluted cRNA was injected for each oocyte.  
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2.2.2.3 Bioluminescence analysis to determine surface expression of ion channels 

The HA-epitope (amino acid sequence: YPYDVPDYA) was inserted in the 

extracellular loop of sASIC1b between residues R161 and N162 by recombinant PCR 

in order to determine the surface expression of the ion channels. If the tagged ion 

channels are expressed at the cell surface the monoclonal anti-HA-antibody is able to 

bind to the HA-epitope. A second antibody against the anti-HA-antibody was coupled 

to the enzyme horseradish peroxidase (HRP), which emits a luminescence signal 

when stimulated. This luminescence could be detected and quantified. The amount of 

luminescence is proportional to the expression of ion channels at the surface of the 

oocytes. 

After injection of cRNA, the oocytes were incubated for two days at 19°C. After a mild 

incubation with collagenase (0.3 mg/ml), the follicle membrane of each individual 

oocyte was removed manually. Oocytes were blocked in ND-96/1% BSA at 4°C for 30 

min. Afterwards incubation with the first antibody (anti-HA, clone 3F19, (rat, 

monoclonal; 0,5 µg/ml) in ND-96/1 % BSA was performed at 4°C for 60 min. Five 

washing steps were performed in 24-well-plates with ND-96/1 %BSA before the 

oocytes were incubated with the second antibody (anti-rat-IgG-HRP (goat, F(ab’)2 

fragment (H+L)) in ND-96/1% BSA-solution for 40 min. After incubation with the 

second antibody, the oocytes were washed thoroughly in ten washing steps. The first 

four washing steps were performed in ND-96/1 % BSA-solution, the last six washing 

steps were performed in ND-96 solution without BSA to avoid background signals. 

For detection of the luminescence signal the oocytes were placed in 96-well plates 

and the signal was recorded in an Orion II Microplate Luminometer. Two seconds 

after 50 µl of the substrate (SuperSignal ELISA Femto Maximum Sensitivity 

Substrate, Pierce) was added to each individual oocyte, the signal was recorded for 

five seconds. The luminescence was expressed as relative light units (RLUs). The 

oocytes expressing sharkASIC1b-wt channels without HA-epitope were used  as a 

negative control. 

 

 

2.2.2.4 Two-electrode-voltage-clamp technique (TEVC) 

The method of the two-electrode-voltage-clamp technique (TEVC) was invented by 

von Marmont und Cole in 1949. Generally, an electric capacitor is defined as two 

conductive   materials   that   are separated   by   an   isolator.    Cellular   membranes    



2. Materials and Methods 

 49 

 

are excellent capacitors.  Basic characteristic of a capacitor is its ability to store 

positive and negative charges simultaneously on its surface. Capacitance of 

membranes (Cm) is the ability to store charge (Q) when there is a voltage change 

(ΔV) across the two sides of the membrane:  

 

Q = Cm *ΔVm 

 

The capacitance of all biological membranes (Cm) is about 1 µF/cm2. Since C is 

constant, the current flow through the capacitor is proportional to the voltage change 

with time:  

 

Ic = ΔQm /Δt = Cm *ΔVm /Δt 

 

 

The total current Im flowing through the membrane is the sum of the resistance or 

ionic current Ii, and the capacitative current Ic: 

 

Im = Ii +Ic 

 

If Vm does not change, Qm is constant and there is no capacitative current Ic flowing 

through the membrane. In this case, measured Im is nearly equal to Ii, flowing 

exclusively through ion channels in the membrane. Applying above-mentioned 

principles, Marmont and Cole (1949) invented the voltage- clamp technique to 

overcome the problem of disturbing capacitative currents. With this method they 

uncoupled the opening and closing of voltage dependent ion channels from the 

membrane potential. In voltage clamp measurements, it is possible to control the 

membrane voltage (clamping the voltage) and measure the transmembrane current 

that is required to maintain the clamped voltage. As mentioned above, elimination of 

capacitative currents is a big advantage of this system and that is why the current flow 

through the membrane is only proportional to the number of open channels and, thus, 

can be correctly measured. 
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The voltage clamp is a negative feedback mechanism where the membrane potential 

is kept stable and the current necessary for keeping that potential is measured. In the 

two electrode voltage clamp technique, two intracellular electrodes are used, one to 

pass the feedback current and the other to measure the membrane potential (see Fig. 

2.7). Latter (Vm) is recorded by a unity-gain amplifier (A1) connected to the voltage-

recording potential electrode (v). A second high-gain differential amplifier (A2) 

compares Vm to the command potential (Vhold) and adjusts the difference between Vm 

and Vhold. The voltage at the output of A2 forces the current to flow through the 

current-passing microelectrode (i) into the cell. 

Thus, there is a negative feed back loop: the membrane potential is clamped at a 

determined value by the command voltage. So, current is produced via the clamping 

amplifier output if the membrane potential is different from this command voltage and 

this current flows through the microelectrode i to compensate the difference. This 

compensating current is the measured parameter. 

An additional potential recording electrode (reference electrode) was placed in the 

bath solution in our voltage clamp studies to avoid polarization errors that arise from 

the current passing through the ground electrode. In this configuration, the difference 

between the intracellular potential electrode and the reference electrode was equated 

with the transmembrane potential. 

 

Figure 2.7. Circuit diagram of the TEVC setup. 
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Several considerations have to be made when measuring big cells, like Xenopus 

oocytes, with the two-electrode voltage clamp technique. The most important is that 

oocytes possess a large surface of around 106 µm2 that has to be charged in order to 

clamp the cell. Additionally, invaginations of the surface are doubling or tripling the 

amount of surface compared to an ideal spherical oocyte. Another point is that 

injection of mRNA, depending on the protein, can lead to high expression levels. 

Currents up to 50 µA or even larger can cause enormous resistance errors. Since the 

response time (τ) of a voltage clamp to a step voltage change is, 

 

τ = Ri * Cm/ A  , 

 

where Ri is the resistance of the current electrode, Cm is the membrane capacitance, 

and A is the gain of the command amplifier, the lowest Ri and the largest A possible 

are usually used to achieve fast clamping of the oocyte. 

 

 

2.2.2.5 Recording and analysis of the data 

As mentioned in chapter 3.1.4.2, the electrophysiological data was recorded with the 

Cellworks 5.1.1 software (npi, electronic instruments) with a sampling rate of 1 kHz. 

Statistical analysis and determination of significances were calculated in Micrsosoft 

Excel 2008 using Student’s t test. The software IgorPro  4.02 (Wave Metrics, Lake 

Oswego, OR) was used for fitting of dose-response-curves and for fitting ASIC 

currents with an exponential function for analysis of the time constants of 

desensitization.   

 

Concentration-response-curves were determined by fitting the data to the Hill-

function: 

 

I = a + (Imax – a) / (1 + (EC50 / [H]n ) , 

 

where  

 Imax   = maximal current amplitude 

 a    = residual current 

 H   = proton concentration  
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 EC50    = pH/concentration at which half-maximal activation/block of the 

      transient current component was achieved 

 n  = Hill-coefficient 

 

Current decay kinetics of the fast transient currents were fitted with a mono-

exponential function: 

 

I = A0 + Ae-1/τ , 

 

where  

 A0   =  relative amplitude of the non-desensitizing current 

 A   = relative amplitude of the desensitizing current 

 τ  = time constant of desensitization  

 

Current decay kinetics of the slow sustained currents were best fit with the sum of two 

exponential functions: 

 

I = A0 + A1e-1/τ1 
+  A2e-1/τ2 , 

 

where  

 A0, A1, A2 = relative amplitudes of the corresponding various components  

   τ1, τ2 = time constants of the slow and the fast time constants,  

       respectively 

  

 

To determine the reversal potentials of the slow and the fast current components 

activated with different pH solutions, the currents were described by a linear function:  

 

I = ax + y , 

  

where 

 a  = slope of the linear function 

 y  = relative current amplitude at 0 mV clamped voltage 
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Graphs and figures were generated using the Canvas 10 software (Deneba Systems) 

and Photoshop CS3 (Adobe Systems Incorporated, San Jose, USA). 

 

If not otherwise indicated, all measurents were performed at a holding potential of -70 

mV and at room temperature (20 – 25°C). For each experiment oocytes from two 

different frogs were used. 

 

All results are reported as means s.e.m. They represent the mean of n individual 

experiments of different oocytes.  
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3. An acid-sensing ion channel from shark (Squalus 

 acanthias) mediates transient and sustained    

 responses to protons 
 

3.1 Abstract 
Acid-sensing ion channels (ASICs) are proton-gated Na+ channels. They are 

implicated in synaptic transmission, detection of painful acidosis, and possibly sour 

taste. The typical ASIC current is a transient, completely desensitizing current that 

can be blocked by the diuretic amiloride. ASICs are present in chordates but are 

absent in other animals. They have been cloned from urochordates, jawless 

vertebrates, cartilaginous shark and bony fish, from chicken and different mammals. 

Strikingly, all ASICs that have so far been characterized from urochordates, jawless 

vertebrates, and shark are not gated by protons, suggesting that proton-gating 

evolved relatively late in bony fish and that primitive ASICs had a different and 

unknown gating mechanism. Recently, amino acids that are crucial for proton-gating 

of rat ASIC1a have been identified. These residues are completely conserved in 

shark ASIC1b (sASIC1b), prompting us to re-evaluate proton-sensitivity of sASIC1b. 

Here we show that, contrary to previous findings, sASIC1b is indeed gated by protons 

with half-maximal activation at pH 6.0. sASIC1b desensitizes quickly but incompletely, 

efficiently encoding transient as well as sustained proton signals. Our results show 

that the conservation of the amino acids crucial for proton-gating can predict proton 

sensitivity of an ASIC and increase our understanding of the evolution of ASICs. 
 

 

3.2 Introduction 
Acid-sensing ion channels (ASICs) are ligand-gated channels that are gated open by 

the binding of protons – the simplest ligand possible. In the continued presence of 

protons, ASICs desensitize. They are involved in synaptic transmission (Wemmie et 

al., 2002) and transduction of painful acidosis (Jones et al., 2004; Yagi et al., 2006; 

Deval et al., 2008) and have been implicated in cell death accompanying stroke 

(Xiong et al., 2004), in autoimmune inflammation of the central nervous system 

(Friese et al., 2007), and in seizure termination during epilepsy (Ziemann et al., 2008). 

Mammals contain four genes coding for ASICs:   ASIC1 – 4  (Waldmann & Lazdunski,  
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1998; Gründer et al., 2000); the use of alternative first exons gives rise to the variants 

ASIC1b (Chen et al., 1998; Bässler et al., 2001) and ASIC2b (Lingueglia et al., 1997). 

One characterizing feature of ASIC subtypes is their time course of desensitization: 

time constants vary over a 100-fold range from 10 ms (Paukert et al., 2004b) to 

several seconds (Lingueglia et al., 1997). Usually, desensitization is complete; among 

homomeric ASICs, only rat ASIC3 desensitizes incompletely (Waldmann et al., 1997; 

Hesselager et al., 2004; Salinas et al., 2009), but at rather low pH values (pH ≤5,0).  

The primary sequence of ASICs shows two hydrophobic domains that could span the 

membrane, a large loop (>350 amino acids) between these domains and rather short 

N- and C-termini. A topology with two transmembrane domains, a large ectodomain 

and intracellular N- and C-termini has been experimentally confirmed (Saugstad et al., 

2004). All ASICs contain 14 conserved cysteine residues within the ectodomain 

(Paukert et al., 2004b) that may stabilize its structure (Firsov et al., 1999). In addition, 

each ASIC contains at least one consensus sequence for N-glycosylation and 

glycosylation may assist the proper folding of the ectodomain (Kadurin et al., 2008). 

These features have recently been confirmed by the crystal structure of a chicken 

ASIC1 deletion mutant (Jasti et al., 2007). Moreover, the crystal structure revealed 

the three-dimensional folding of the ectodomain: it is composed of five subdomains 

which are connected to the membrane-spanning domains by an apparently flexible 

wrist (Jasti et al., 2007). The crystal represents the desensitized conformation of the 

channel (Gonzales et al., 2009); thus, it does not provide direct evidence for the 

proton sensor of ASICs. A recent comprehensive mutagenesis screen of conserved 

titratable amino acids identified four amino acids of ASIC1a that are important for 

proton-gating: Glu63, His72/His73, and Asp78 (Paukert et al., 2008). The presence of 

these amino acids correlated well, though not perfectly, with proton sensitivity of 

ASICs (Paukert et al., 2008). 

To gain further insight into the structural determinants of proton-sensitivity of ASICs 

and to understand whether proton-sensitivity is an ancient feature of ASICs, ASICs 

have been cloned from different chordate species; they are absent in other animals 

like Drosophila or C. elegans. ASICs have been cloned from the urochordate Ciona 

(Coric et al., 2008), the simple, jawless vertebrate lamprey (Coric et al., 2005), the 

cartilaginous shark spiny dogfish (Coric et al., 2005), and the teleosts toadfish 

(Coricet al., 2003; Coric et al., 2005) and zebrafish (Paukert et al., 2004b); moreover 

from chicken  (Coric et al., 2005)  and different mammals.  It  has  been  reported  that  
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ASICs from Ciona, lamprey and shark are not gated by protons (Coric et al., 2005; 

Coric et al., 2008), suggesting that proton-gating first evolved in bony fish and that 

ASICs of primitive chordates have a different and unknown gating stimulus. Since 

related channels from the Cnidaria Hydra are gated by neuropeptides (Golubovic et 

al., 2007), it is, for example, conceivable that early ASICs were gated by 

neuropeptides. 

From shark, so far two ASICs have been cloned, sASIC1a and sASIC1b; both have 

been cloned from brain. sASIC1a and 1b have highest sequence homology to rat 

ASIC1b and zebrafish ASIC1.1 (zASIC1.1; (Coric et al., 2005). The amino acids that 

are critical for H+-sensitivity of rat ASIC1a are completely conserved in sASIC1b, 

prompting us to re-evaluate proton-sensitivity of sASIC1b. Here we show that 

sASIC1b is indeed gated by protons and produces typical rapidly desensitizing Na+ 

currents that are sensitive to amiloride. In addition and in contrast to other ASICs, a 

small sustained current persists during even slight acidification (pH <7.0). Our results 

show that proton-sensitivity of ASICs arose earlier in evolution than previously 

thought, at latest in cartilaginous fish. Moreover, they consolidate the definition of a 

“proton-sensitivity signature” in ASICs. 

 

  

3.3 Methods 
 

3.3.1 Electrophysiology  
The cDNA of shark ASIC1b was cloned from the brain of the spiny dogfish Squalus 

acanthias (Coric et al., 2005); it was a kind gift of C.M. Canessa (Yale University). Our 

sequence analysis of this cDNA differs from the sASIC1b sequence, which is in the 

DDBJ/EMBL/GenBank databases (accession no. AY956392), at two residues in the 

cytoplasmic C-terminus: an R instead of a K at position 496 and an A instead of a V at 

498. The same amino acids (R and A) are found at the corresponding positions in the 

closely related toadfish ASIC1.1 and zASIC1.1.  

We subcloned this cDNA into expression vector pRSSP, which is optimized for 

functional expression in Xenopus oocytes, containing the 5´- untranslated region from  

Xenopus β-globin and a poly(A) tail (Bässler et al., 2001). Chimeric and mutant 

channels were generated by recombinant PCR using standard protocols with KAPA 

HiFi DNA polymerase  (Peqlab).  All PCR-derived fragments were entirely sequenced.  
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Oocytes were surgically removed under anaesthesia from adult Xenopus laevis 

females and kept in OR-2 medium (82.5 mM NaCl, 2.5 mM KCl, 1.0 mM Na2HPO4, 

5.0 mM HEPES, 1.0 mM MgCl2, 1.0 CaCl2, and 0.5 g/liter polyvinylpyrrolidone). 

Anaesthetized frogs were killed after the final oocyte collection by decapitation. 

Animal care and experiments followed approved institutional guidelines at RWTH 

University Aachen.  

Synthesis of cRNA was done as previously described (Paukert et al., 2004b). We 

injected 0.8 - 8 ng of sASIC1b cRNA per oocyte. Whole cell currents were recorded 

after 1 - 4 days with a TurboTec 03X  amplifier (npi electronic, Tamm, Germany) 

using an automated, pump-driven solution exchange system together with the oocyte 

testing carousel controlled by the interface OTC-20 (npi electronic) (Madeja et al., 

1995). With this system, 80% of the bath solution (10 – 90%) is exchanged within 300 

ms (Chen et al., 2006b). Data acquisition and solution exchange were managed using 

CellWorks version 5.1.1 (npi electronic). Data were filtered at 20 Hz and acquired at 

1kHz. Holding potential was -70 mV if not otherwise indicated. All experiments were 

performed at room temperature (20-25°C). Psalmotoxin was purchased from 

Alomone Labs (Jerusalem, Israel). 

Bath solution for the two-electrode voltage clamp contained 140 mM NaCl, 1.8 mM 

CaCl2, 1.0 MgCl2, 10 mM HEPES. For the acidic test solutions, HEPES was replaced 

by MES buffer. Solutions containing PcTx1 were supplemented with 0.05% BSA 

(Sigma-Aldrich) in order to avoid absorption by the tubing. Glass electrodes filled with 

3M KCl and a resistance of 0.3-1.5 MΩ were used. 

 

 
3.3.2 Determination of surface expression 
The hemagglutinin (HA) epitope (YPYDVPDYA) of influenza virus was inserted in the 

extracellular loop of sASIC1b between residues R161 and N162. HA-tagged sASIC1b 

formed a proton-activated channel with an estimated apparent H+ affinity 

indistinguishable from untagged channels (results not shown). The oocytes were 

injected with 8 ng of cRNA and surface expression was determined as previously 

described (Zerangue et al., 1999; Chen & Gründer, 2007; Chen et al., 2007). Briefly, 

oocytes expressing shark ASIC1b were placed for 30 min in ND96 with 1% BSA to 

block unspecific binding, incubated for 60 min with 0,5 µg/ml of rat monoclonal anti-

HA  antibody  (3F10, Roche),  washed extensively with ND96/1% BSA, and incubated  
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for 90 min with 2 µg/ml of horseradish peroxidase-coupled secondary antibody (goat 

anti-rat Fab fragments, Jackson ImmunoResearch). Oocytes were washed six times 

with ND96/1% BSA and three times with ND96 without BSA. All steps were performed 

on ice. Oocytes were then placed individually in wells of microplates and 

luminescence was quantified in a Berthold Orion II luminometer (Berthold detection 

systems; Pforzheim, Germany). The chemiluminescent substrates (50 µl Power 

Signal Elisa; Pierce) were automatically added and luminescence measured after 2 

sec for 5 sec. Relative light units (RLUs)/s were calculated as a measure of surface 

expressed channels. RLUs of HA-tagged channels were at least 400-fold higher than 

RLUs of untagged channels. The results are from two independent frogs; at least 

eight oocytes were analyzed for each experiment and each condition.  

 

 

3.3.3 Data analysis  
Data were analyzed with the software IgorPro (Wave metrics, Lake Oswego, OR). 

Concentration response curves were fit to the Hill-Function 

 

 I = a + (Imax – a)/(1 + (EC50/[H]n))  

 

where Imax is the maximal current, a is the residual current, EC50 is the 

pH/concentration at which half-maximal activation/block of the transient current 

component was achieved, and n is the Hill-coefficient. For pH-activation and steady-

state-desensitization curves, Imax was set to 1 and a to 0.  

Current decay kinetics of the fast transient currents were fit with a mono-exponential 

function: 

 

 I = A0 + Ae-1/τ  

 

where A0 is the relative amplitude of the non-desensitizing component, A is the 

relative amplitude of the desensitizing component and τ is the time constant of 

desensitization.  
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Current decay kinetics of the slow “sustained” currents were best fit with the sum of 

two exponential components 

 

 I = A0 + A1e-1/τ1+ A2
-1/τ2,  

 

where A0, A1, and A2 are the relative amplitudes of the of various components, and τ1 

and τ2 are the slow and fast time constants, respectively. 

Results are reported as means ± S.E.M. They represent the mean of n individual 

measurements on different oocytes. Statistical analysis was done with Student´s 

unpaired t test. 

 

  

3.4 Results 
 

3.4.1 Functional characterization of shark ASIC1b.  
Oocytes expressing sASIC1b generated robust currents when stimulated by pH 6.4. 

These currents were typical rapidly activating and desensitizing ASIC currents (Fig. 

3.1); we did not observe such currents in oocytes that did not express sASIC1b (Fig. 

3.1). The sASIC1b current desensitized with a time constant < 50 ms; the rapid gating 

of this channel precluded a more precise determination of the time course of 

desensitization. Most of the current rapidly declined due to desensitization, a small 

fraction (~5%), however, persisted even after prolonged (90 s) acid application 

without any sign of desensitization (Fig. 1).  

 

 

 

 

 

 

 
 
 
Figure 3.1. Shark ASIC1b is H+-sensitive.  
Top, representative traces of sASIC1b currents at pH 6.4 and pH 5.0. Note the sustained current at pH 
6.4 and the two current components at pH 5. The current rise phase and the initial desensitization 
phase are also shown on an expanded time scale. Bottom, representative current trace of an 
uninjected oocyte. No currents are elicited by pH 5.0.  
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Such a sustained current is known from ASIC3 (Waldmann et al., 1997); ASIC3, 

however, generates a sustained current only at very acidic pH ≤5 (Waldmann et al., 

1997; Salinas et al., 2009). Application of pH 5.0 to oocytes expressing sASIC1b 

generated transient currents of larger amplitude than pH 6.4. Moreover, at pH 5, after 

a short delay a second current component developed with a variable amplitude 

around 50% of the amplitude of the transient current. This second current component 

desensitized much slower than the initial transient current. The time course of 

desensitization of the slow current component was best fit by a double-exponential 

function with time constants τ1 = 16 ± 4 s and τ2 = 3.1 ± 0.2 s (n = 7; Table 1). Similar 

to the current at pH 6.4, the current at pH 5.0 did not completely desensitize but 

relaxed to a sustained steady-state level; the double-exponential fit revealed a level of 

2.6 ± 0.5% of the initial amplitude of the slow component at steady-state (Table 1), 

which is on the same order as the sustained level at higher pH (normalized to the 

transient current at pH 5; see below). At pH 5, the sASIC1b current is, thus, 

qualitatively very similar to the ASIC3 current (Salinas et al., 2009). In the remainder 

of this study, we will refer to the typical transient ASIC current as the “transient 

current” and to the second slow current component at pH 5.0 as the “slow current”. 

 

Parameter Value SEM n 

a0 2,6% 0,5% 7 

a1 24,1% 2,2% 7 

a2 73,3% 2,4% 7 

t1 16 s 4 s 7 

t2 3,1 s 0,2 s 7 

 
 

 

Repetitive application of pH 6.4 to oocytes expressing sASIC1b with an interval of 30 

s elicited transient currents of similar amplitude (Fig. 3.2A), showing that recovery 

from desensitization was complete in 30 s. As expected for a non-desensitizing 

current, also the amplitude of the sustained current did not change with repetitive 

applications of pH 6.4. Repetitive application of pH 5 also elicited transient currents of 

similar amplitude (Fig. 3.2A); in contrast, the initial amplitude of the slow current 

diminished progressively towards a steady-state level  (Fig. 3.2A). Even after intervals  

Table 1: Parameters describing desensitization of the slow current component of shark 
ASIC1b at pH 5.0.  
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of 3 min, the slow current did not recover (not shown). This result shows that the slow 

current recovers slowly from desensitization, if at all, similar to ASIC3 (Salinas et al., 

2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the slow current developed after the transient current and did not completely 

desensitize, we wondered whether this current has the same basis as the sustained 

current  at  pH  6.4.  In  order  to  address  this  question,  we  asked whether the slow  

 

Figure 3.2. Characterization of the sustained sASIC1b current.  
(A) Top, representative current traces of sASIC1b that was repeatedly activated by application of either 
pH 6.4 or 5 for 3 s. Channels were allowed to recover in conditioning pH 7.4 for 30 s. Bottom, current 
amplitudes were normalized to the first amplitude. The initial amplitude of the slow current component 
at pH 5 decreased progressively. Absolute values of the initial amplitudes were 4.1 ± 0.5 mA (transient 
current at pH 6.4; n = 7), 0.3 ± 0.05 mA (sustained current at pH 6.4; n = 7), 5.8 ± 1.8 mA (transient 
current at pH 5; n = 6), and 1.7 ± 0.4 mA (slow current at pH 5; n = 6), respectively. (B) Desensitization 
of the sustained current at pH 6.4 by application of pH 5.0. Channels were alternatively activated by pH 
6.4 and pH 5.0. The amplitude of the sustained current (magnified in the insets) successively 
decreased after application of pH 5.0. (C) Current-voltage relationship for the transient and the 
sustained current at pH 5.0 and 6.4, respectively. For the transient currents, channels had been 
repeatedly activated at different holding potentials; for the sustained and slow currents, channels had 
been activated with pH 6.4 or 5.0, respectively, and voltage steps from -70 to +70 mV of 1 s duration 
were applied. Voltage steps at pH 5.0 were applied 60 s after activation when the slow current had 
relaxed to a constant amplitude. Absolute values of the current amplitudes at -70 mV were 19.4 ± 4.5 
mA (transient current at pH 5.0; n = 6), 0.78 ± 0.12 mA (transient current at pH 6.4; n = 12), 0.33 ± 0.07 
mA (sustained current at pH 5.0; n = 9 - 11 for voltage jumps between -70 mV and +30 mV; n = 3 - 5 
for voltage jumps at +50 mV and +70 mV) and 0.44 ± 0.09 mA (sustained current at pH 6.4; n = 7), 
respectively. 
 

A B 

C 
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current at pH 5.0 cross-desensitizes the sustained current at pH 6.4. This was indeed 

the case: after a 1 min-application of pH 5.0 the amplitude of the sustained current at  

pH 6.4 was significantly smaller (49 ± 10% of the initial amplitude, p < 0.01) than 

before the pH 5.0 application (Fig. 3.2B). A second pH 5.0-application further 

decreased the sustained current at pH 6.4 (42 ± 10% of the initial amplitude, p < 0.05; 

Fig. 3.2B). This is in contrast to several applications of pH 6.4, which did not 

desensitize the sustained current (Fig. 3.2A). Cross-desensitization of the sustained 

current at pH 6.4 by pH 5.0 suggests that the sustained current has a similar basis as 

the slow current. This interpretation implies that the slow current starts to desensitize 

only at pH values <6.4 (see also below). 

The reversal potential of the transient current was around 50 mV (Fig. 3.2C), 

indicating a Na+-selective current, which is typical for ASICs. For the sustained 

current at pH 6.4, the reversal potential was shifted by approximately 30 mV to the left 

(Fig. 3.2C), indicating a lower Na+ selectivity. The reversal potential of the slow 

current at pH 5.0 was similar to the reversal potential of the sustained current (Fig. 

3.2C), supporting the  

idea that both currents have the same basis. Similar nonselective sustained currents 

are also carried by the ASIC3/2b heteromer (Lingueglia et al., 1997). 

The amplitude of the transient sASIC1b current increased with increasing H+ 

concentrations and saturated at pH 5.0 (Fig. 3.3A); half-maximal activation was 

reached at pH 6.0 ± 0.04 (n = 15; Fig. 3.3C). Due to the long-lasting desensitization, 

the apparent H+ affinity of the slow current could not be determined precisely. Pre-

conditioning by slight acidification for 60 s revealed that the number of channels 

available for activation diminished at pH values below 7.4 so that at a pre-conditioning 

pH of 6.55 no transient currents could be recorded any more (Fig. 3.3B). Steady-state 

desensitization of the transient current was half-maximal at pH 6.9 ± 0.01 (n = 11; Fig. 

3.3C). In contrast, even at a conditioning pH of 6.4, small sustained currents were still 

elicited (Fig. 3.3B).  
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Figure 3.3. Apparent H+ affinity of shark ASIC1b.  
(A) Representative current trace of oocytes expressing sASIC1b. Channels were activated for 3 s by 
varying low pH, as indicated. Conditioning pH 7.4 was applied for 30 s. (B) Channels were activated by 
pH 5.0 with varying pre-conditioning pH, as indicated. Conditioning pH was applied for 60 s. (C) pH-
response curves for activation (open circles) and steady-state desensitization (grey circles); lines 
represent fits to the Hill function. Dotted lines indicate EC50 values. Only the transient current was 
analyzed. The overlapping region of the activation and inactivation curves is magnified (inset). 
Absolute values of the current amplitudes were 4.9 ± 1.2 mA (activation curve, pH 5.0; n = 15) and 8.4 
± 1.9 mA (steady-state desensitization curve, conditioning pH 7.4; n = 11), respectively. 
 

 
3.4.2 Pharmacology of shark ASIC1b 
The sASIC1b current was sensitive to amiloride: the transient current was half-

maximally blocked by 78 ± 12 µM amiloride (n = 21; Fig. 3.4A), similar to other ASICs 

(Paukert et al., 2004b). Amiloride at concentrations up to 4 mM did not completely 

block this current (not shown); however, the fast desensitization of the transient 

current may mask a higher amiloride affinity of the channel. In agreement with this 

hypothesis, 1 mM amiloride blocked the slow current to a larger extent than the 

transient current (Fig. 3.4B). The kinetics, Na+ selectivity, pH activation and steady-

state desensitization curves, and block by amiloride all identify the transient sASIC1b 

current as a typical ASIC current.  
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Figure 3.4 Apparent H+ affinity of shark ASIC1b.  
(A) Representative current trace of oocytes expressing sASIC1b. Channels were activated for 3 s by 
varying low pH, as indicated. Conditioning pH 7.4 was applied for 30 s. (B) Channels were activated by 
pH 5.0 with varying pre-conditioning pH, as indicated. Conditioning pH was applied for 60 s. (C) pH-
response curves for activation (open circles) and steady-state desensitization (grey circles); lines 
represent fits to the Hill function. Dotted lines indicate EC50 values. Only the transient current was 
analyzed. The overlapping region of the activation and inactivation curves is magnified (inset). 
Absolute values of the current amplitudes were 4.9 ± 1.2 mA (activation curve, pH 5.0; n = 15) and 8.4 
± 1.9 mA (steady-state desensitization curve, conditioning pH 7.4; n = 11), respectively. 
 

The spider toxin psalmotoxin 1 (PcTx1) is a specific inhibitor of homomeric ASIC1a 

(Escoubas et al., 2000); it inhibits ASIC1a by increasing its apparent H+ affinity (Chen 

et al., 2005), transferring all channels into the desensitized conformation at pH 7.4. By 

contrast, homomeric ASIC1b is not inhibited by PcTx1 but opened at slight 

acidification (Chen et al., 2006a). Thus, binding of PcTx1 is state-dependent: for 

ASIC1a, it binds with highest affinity to the desensitized state and for ASIC1b, to the  

open state (Chen et al., 2006a). So far, modulation has been shown for rat, mouse, 

and chicken ASIC1 (Escoubas et al., 2000; Chen et al., 2005, 2006a; Samways et al., 

2009). To investigate whether ASIC1b from shark is also modulated by PcTx1, we 

investigated the effect of PcTx1 on the steady-state desensitization and pH activation 

curves of sASIC1b. This tests the stabilization of the desensitized and the open  

conformation, respectively. 100 nM PcTx1 did not significantly shift the steady-state 

desensitization or the activation curve of sASIC1b (Fig. 3.5A).   
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Figure 3.5. Shark ASIC1b is slightly modulated by psalmotoxin 1. 
A) pH-response curves for activation (squares) and steady-state desensitization (circles) with (black 
symbols) and without (open symbols) pre-application of 100 nM psalmotoxin (PcTx); PcTx was present 
only in the conditioning period (60 s). For activation curves, channels had been activated for 3 s by 
varying low pH, as indicated. For steady-state desensitization curves, channels had been activated for 
3 s by pH 5.0 with varying pre-conditioning pH, as indicated. Lines represent fits to the Hill function. 
Absolute values of the current amplitudes were 8.4 ± 2.6 mA (activation curve, pH 5.0, without PcTx; n 
= 6), 8.3 ± 1.8 mA (activation curve, pH 5.0, with PcTx; n = 6), 8.9 ± 2.7 mA (steady-state 
desensitization curve, conditoning pH 7.4, without PcTx; n = 6) and 4.5 ± 1.4 mA (steady-state 
desensitization curve, conditoning pH 7.4, with PcTx; n = 6), respectively. (B) Bar graphs comparing 
normalized current amplitudes at slight acidification for the data from (A). White bars, without PcTx1; 
black bars, with PcTx1. For conditioning pH 6.9, significantly more channels were desensitized when 
PcTx was present; similarly, for activation by pH 6.8 - 6.4 current amplitudes were significantly larger 
when PcTx was present. *, p < 0.05; **, p < 0.01; ***, p < 0.001.  
 

 

For comparison, 30 nM PcTx1 shifts the steady-state desensitization curve of rat 

ASIC1a by ~0.3 pH units (Chen et al., 2005) and 100 nM PcTx1 shifts the activation 

curve of rat ASIC1b by ~0.4 pH units (Chen et al., 2006a). In contrast to rat ASIC1b 

(Chen et al., 2006a), there were also no effects of PcTx1 on the desensitization of  

sASIC1b. Furthermore, the amplitude of the sustained current relative to the transient 

current  at  pH  6.6  was  not significantly different when PcTx1 was present or absent  
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(results not shown). Thus, PcTx1 does not strongly stabilize the desensitized or the 

open state of sASIC1b.  

There were subtle effects of PcTx1, however, that led to significant changes of the 

current amplitudes at certain pH values. At steady-state and a conditioning pH of 6.9, 

significantly more channels were desensitized when PcTx1 was present than when it 

was absent (Fig. 3.5B). Similarly, slight acidification (pH 6.8 - 6.4) opened significantly 

more channels in the presence than in the absence of PcTx1 (Fig. 3.5B). This result 

shows that PcTx1 slightly promotes desensitization and opening of sASIC1b at low 

agonist-concentrations, suggesting that PcTx1 indeed binds to and stabilizes the 

desensitized and the open conformation of sASIC1b, qualitatively similar to rat ASIC1 

(Chen et al., 2006a). The comparatively subtle effects of PcTx1 can be due to either a 

low PcTx1 affinity of sASIC1b or a subtle effect of PcTx1 binding on gating of 

sASIC1b. In summary, subtle effects of PcTx1 on sASIC1b suggest that the PcTx1 

binding site (Pietra, 2009; Qadri et al., 2009) is partially conserved in sASIC1b, 

suggesting that it is an evolutionary old pocket in the three-dimensional structure of 

ASIC1. 

 

 

3.4.3 Mutational analysis of shark ASIC1b 
A pair of histidines that is indispensable for H+ sensitivity of rat ASIC1a is conserved 

in sASIC1b (Paukert et al., 2008). When both histidines were exchanged by 

asparagines (H101/H102N), sASIC1b was no longer sensitive to H+ (pH ≥ 4; Fig. 

3.6A): both the transient and the slow current were no longer elicited by H+. This 

result shows that also fundamental structural requirements for H+ sensing are 

conserved in sASIC1b. Collectively, these results suggest that the gating mechanism 

of ASICs is conserved from shark to mammals. Amplitudes of transient sASIC1b 

currents usually ranged between 1 and 10 µA (Fig. 3.6B, first bar). Amplitudes of rat 

ASIC1b, which are of similar magnitude, can be increased by deletion of an N-

terminal domain (Bässler et al., 2001), which is conserved in sASIC1b. Deletion of 

this N-terminal  domain increases surface expression of zASIC4.1 (Chen et al., 2007). 

 

 

 

 



3. Characterization of shark ASIC1b 

 67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6. A pair of histidines is indispensable for H+-sensitivity of shark ASIC1b. (A) Top, 
schematic illustration of the topology of sASIC1b. TM1, TM2: transmembrane domains. The arrow 
indicates the position of the N-terminal truncation in construct M27; the two conserved histidines 
localize to the proximal ectodomain. Bottom, representative current traces for sASIC1b-H101/102N, -
M27, and -M27-H74/75N. Note that for M27-H74/75N, application of H+ slightly reduced the 
background current. (B) Bars representing the peak current amplitude (mean ± SEM) of oocytes 
expressing wild-type sASIC1b (wt), the histidine mutant (H101/102N), and the two M27-mutants (n ≥ 
6); channels had been activated by pH 5.0. The amounts of cRNA that had been injected into each 
oocyte were 0.8 ng (wt and M27) or 8 ng (H101/102N and M27-H74/75N), respectively. ***, p << 0.01. 
(C) Bars representing surface expression of sASIC1b and -M27; untagged sASIC1b served as a 
control (left bar). Results are expressed as relative light units (RLUs)/oocyte/s (n = 36). ***, p << 0.01. 
 

 

Deletion of this domain in sASIC1b (sASIC1b-M27) increased current amplitudes by 

about ten-fold (Fig. 3.6B, third bar), indicating that the N-terminal domain controls 

surface expression of sASIC1b. Substitution of the conserved histidine pair (H74/H75, 

corresponding to H101/102 in the wild-type) rendered also the highly expressing 

variant sASIC1b-M27 H+-insensitive (Fig. 3.6A and 3.6B, fourth bar), confirming the 

importance of these histidines. Sustained and slow current were identical between 

wild-type sASIC1b and sASIC1b-M27 (Fig. 3.6A), as well as the apparent affinity for 

H+ of the transient current (not shown), suggesting that the N-terminal domain has a 

specific role in the trafficking of sASIC1b.  
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To more specifically address surface expression of sASIC1b-M27, we introduced an 

HA-epitope in the ectodomain of sASIC1b and sASIC1b-M27 and assessed the 

presence of epitope-tagged channels on the surface of intact oocytes using a 

monoclonal anti-HA antibody and a luminescence assay (see Methods). Deletion of 

the N-terminal domain in sASIC1b-M27 increased surface-expression 4.5-fold 

compared to wild-type (Fig. 3.6C), showing that the N-terminal domain indeed leads 

to inefficient surface expression of shark ASIC1b. Inefficient surface expression 

together with the fast kinetics may be the reason why a previous study reported that 

sASIC1b is H+-insensitive (Coric et al., 2005). 

 

 
3.4.4 The sustained current of shark ASIC1b  
A striking feature of sASIC1b was the sustained current at mild acidification (Fig. 3.1). 

It endows this ASIC with the capacity to encode also sustained H+ signals of small 

amplitude, as illustrated in Fig. 3.7. Similar to a previous study that mimicked the 

effect of mild acidification on ASIC3 (Yagi et al., 2006), pH was decreased from 7.4 to 

6.2 in steps of 0.2 units, with each step held for 10 seconds (Fig. 3.7A). Under these 

conditions, sASIC1b generated non-desensitizing currents already at pH 7.0. Slightly 

stronger acidification to pH 6.8 and 6.6 generated transient currents in addition to 

sustained currents, which were of slightly larger amplitude than at pH 7.0. Below pH 

6.6, due to steady-state desensitization of the transient current (Fig. 3.3C), only the 

sustained currents remained, the amplitude of which further increased. Only at pH 

6.2, some desensitization of the sustained current became apparent. This result 

demonstrates that sASIC1b generates sustained H+ signals over a pH range from 7.0 

to 6.4 without any apparent desensitization. 

As was previously shown for ASIC3, overlap of steady-state activation and 

desensitization curves can generate a sustained “window current” (Yagi et al., 2006). 

In order to determine the window current of sASIC1b, we multiplied values of the two 

curves that were fit to the data in Fig. 3.3C (Fig. 3.7B, smooth curve). We then 

compared the predicted window current with the current amplitude of the sustained 

current (expressed as a fraction of the transient current amplitude at pH 5) that we 

actually measured. As can be seen in Fig. 3.7B, both curves matched well from pH 

7.4  to  7.0,  suggesting that the sustained current at pH  7.0 is a pure window current.  
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Figure 3.7. Small pH steps evoke sustained shark ASIC1b currents.  
(A) pH was stepped from 7.4 to 6.2 in steps of  0.2 units (first step: 0.4 units; top). A representative 
current trace is shown (bottom). (B) Current versus pH relationship of sustained currents (filled circles; 
n = 12) measured as in A and the predicted window current (smooth curve). The window current was 
calculated by multiplying values at each pH of the activation and steady-state desensitization curve fits 
from Fig. 3C; the fit for the activation curve was refined for low H+ concentrations by measuring 
transient currents also at pH 6.95 (I = 0 mA; n = 15). 
 

At pH values below pH 7.0, however, the plot for the sustained current starts to 

deviate from the predicted window current. The additional sustained current, which 

cannot be explained by the window current, is likely carried by the nonselective 

sustained current that we observed at pH 6.4. Thus, the sustained current between 

7.0 and 6.6 is a mixture of window current and the nonselective sustained current and 

at pH values below 6.6, the sustained current is solely carried by the nonselective 

sustained current. If this interpretation were correct, the nonselective sustained 

current of sASIC1b would start to activate just below pH 7.0, effectively being the so 

far most sensitive sustained ASIC current that is not a window current.  

 

  

3.5 Discussion 
 

Our study has two key findings: 1) we show that the presence of the “proton-

sensitivity signature” can predict H+-sensitivity of an ASIC, and 2) we show that H+ 

sensitivity of ASICs evolved latest in cartilaginous fish. Moreover, we show that 

sASIC1b has a sustained current component, which is unusually sensitive to H+. 
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3.5.1 The “H+ sensitivity signature”  

A recent study identified a few amino acids that are important for H+-sensitivity of rat 

ASIC1a (Paukert et al., 2008). These amino acids are E63, H72/H73, and D78 and 

cluster in the proximal ectodomain. Substitution of E63 or D78 together with amino 

acids that mediate open channel block by Ca2+ (Paukert et al., 2004a) renders 

ASIC1a H+-insensitive; substitution of the histidine pair H72/H73 has the same effect. 

The crucial role of a histidine at this position had previously also been shown for 

ASIC2a (Baron et al., 2001; Smith et al., 2007). The precise role of these amino acids 

for ASIC gating is unknown, but it has been proposed that protonation of H72/H73 

induces channel opening (Paukert et al., 2008). All ASICs that contain these amino 

acids are H+-sensitive, with two exceptions: sASIC1b and zASIC2 (Paukert et al., 

2008). In the present study we show that sASIC1b is indeed H+-sensitive, reducing 

the number of H+-insensitive ASICs containing the “H+ sensitivity signature” to one; 

we speculate that zASIC2 contains some unknown sequence features that render this 

channel H+-insensitive despite the presence of the critical amino acids.  

The critical amino acids are not conserved in all H+-sensitive ASICs (Paukert et al., 

2008). For example, zASIC1.1 does not contain the crucial His residue. Thus, it is 

clear that at present we cannot predict with certainty H+-sensitivity of an ASIC solely 

based on the amino acid sequence. However, the present study is an example that 

we can predict it with some fidelity, justifying the definition of a “H+-sensitivity 

signature”. 

Other regions implicated in H+-sensitivity of ASICs are a putative Ca2+-binding site in 

the ion pore (Immke & McCleskey, 2003) and a cluster of acidic amino acids, the 

acidic pocket, that was identified in the crystal structure of chicken ASIC1 (Jasti et al., 

2007). Both elements are supposed to hold a Ca2+ ion in the closed state. H+ would 

compete with these Ca2+ ions and displace them during acidification, triggering the 

opening of the ion pore. Both elements individually are not absolutely necessary for 

H+-sensitivity of an ASIC (Paukert et al., 2004a; Li et al., 2009), but likely contribute to 

H+-sensitivity. The acidic pocket for example, determines apparent proton affinity of 

an ASIC (Sherwood et al., 2009). Crucial elements of the Ca2+-binding site in the ion 

pore are two acidic amino acids (Paukert et al., 2004a) and are conserved in sASIC1b 

(Glu441 and Asp448). Similarly, the eight acidic amino acids, which form three 

carboxyl-carboxylate pairs composing the acidic pocket and a fourth pair outside the 

acidic  pocket  (Jasti et al.,  2007),  are also conserved in  sASIC1b (Glu108,  Glu235,  
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Asp253, Glu254, Asp361, Glu365, Asp423, and Glu432). Although the exact role of 

both elements for H+-sensitivity of ASICs is still uncertain, their presence in sASIC1b 

is in agreement with its H+-sensitivity. 

 

 

3.5.2 When did H+ sensitivity of ASICs evolve?  
Previous studies (Coric et al., 2005; Coric et al., 2008) suggested that proton-gating 

first evolved in bony fish (Fig. 3.8) and that ASICs of primitive chordates have a 

different gating stimulus. Here we clearly show that this is not true for shark. sASIC1b 

generates typical ASIC currents, showing that H+ sensitivity evolved latest in 

cartilaginous fish. Cartilaginous fish evolved some 80 million years earlier than bony 

fish, approximately 500 million years ago (Kumar & Hedges, 1998) (Fig. 3.8). What 

about the ASICs from chordates that diverged even earlier from higher vertebrates? 

 

 
 
Figure 3.8. Phylogenetic tree illustrating the main branches of chordates.  
Individual ASICs are shown on the right; proton-sensitive ASICs in green, presumably proton-
insensitive ASICs in red; sASIC1b is shown on a grey background. Genera from which ASICs have 
been cloned are also indicated. An estimate of the time of some branching events is given (Kumar & 
Hedges, 1998). 
  
 
ASIC1 from the jawless vertebrate lamprey is H+-insensitive (Coric et al., 2005) and 

does not contain the H+ sensitivity signature (Paukert et al., 2008). Since mammalian 

ASIC1a has a high H+ affinity and a widespread expression in the nervous system, H+ 

insensitivity of lamprey ASIC1 is a striking feature, suggesting a ligand different from 

H+ for this ASIC. However, so far only ASIC1 has been cloned and characterized from 

lamprey and it remains an open question whether lamprey does also contain H+-

sensitive ASICs.  Higher vertebrates,  for example,  contain H+-insensitive ASICs,  for  
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example ASIC2b and ASIC4 of mammals (Lingueglia et al., 1997; Gründer et al., 

2000) and zASIC2 and zASIC4.2 of zebrafish (Paukert et al., 2004b), together with 

H+-sensitive ASICs. If such channels existed also in lamprey, it would be possible that 

lamprey ASIC1 contributes to H+-gated channels by formation of heteromeric 

channels, as it has been shown for other H+-insensitive ASICs (Lingueglia et al., 

1997; Chen et al., 2007). 

Concerning the urochordate Ciona (Fig. 3.8), the Ciona genome contains a single 

ASIC gene, which gives rise to two splice forms (Coric et al., 2008). The cDNA 

sequence for one of these subtypes can be found in the public EMBL database. 

Similar to sASIC1b, this ASIC from Ciona contains the proton-sensitivity signature, 

suggesting that H+-sensitivity of this subtype should also be re-evaluated. Irrespective 

of H+-sensitivity of Ciona ASIC, H+-insensitivity could also be a secondary, acquired 

feature. Given the close relationship of ASICs with peptide-gated channels from 

Cnidaria (Golubovic et al., 2007), it is tempting to postulate an agonist different from  

H+ for ASICs from primitive chordates; however, the possibility that some of these 

ASICs are H+-sensitive and that H+ are the original gating stimulus of ASICs should 

not be dismissed. 

 

 

3.5.3 The sustained current of shark ASIC1b 
Whereas the typical ASIC current is a transient current, a few ASICs also generate 

sustained currents (Hesselager et al., 2004). However, these currents are usually 

generated only at unphysiological acidic pH. For example, homomeric rat ASIC3, a 

well studied subtype, generates sustained currents only at pH ≤5.0 (Waldmann et al., 

1997). Nevertheless is it believed that ASIC3, a sensory neuron-specific ASIC, is a 

sensor of acidic and inflammatory pain (Deval et al., 2008). How can a channel that 

carries transient currents encode sustained acidification during a painful 

inflammation? This paradox has been solved by showing that pH activation and 

steady-state desensitization curves of ASIC3 overlap, allowing ASIC3 to carry a 

sustained “window current” at the pH values of overlap (Yagi et al., 2006). The 

window of overlap is tiny, however, limiting the pH range where ASIC3 can carry 

sustained currents from 7.3 to 6.7 (Yagi et al., 2006); moreover, ASIC1a, another 

highly H+-sensitive ASIC, does not support such sustained window currents (Yagi et 

al., 2006).  
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Our results show that sASIC1b carries a bell-shaped window current at mild 

acidification between pH 7.4 and 6.6 (Fig. 3.7B), similar to ASIC3. Unique among 

homomeric ASICs, however, a second sustained current component developed 

already at only slightly more acidic pH below 7.0. Thus, the sustained current 

between pH 7.0 and 6.6 is a mix of a window current and a nonselective sustained 

current. The sustained current at pH 6.4 has no longer any contribution by the window 

current and is a pure nonselective sustained current (Fig. 3.7B). The tight overlap of 

window current and nonselective sustained current results in sustained sASIC1b 

currents over the whole pH range below pH 7.0. This behaviour is similar to 

heteromeric ASIC3/2a (Yagi et al., 2006), with the exception that the fractional 

sustained current of sASIC1b is up to 5-fold larger over the pH range from 7.0 to 6.2. 

The relation of the nonselective sustained current at slight acidification (e.g. pH 6.4) 

and the slow current at pH 5.0 is not entirely clear. Cross-desensitization of the 

sustained current at pH 6.4 by the slow current (Fig. 3.2B) and unselectivity of both  

currents (Fig. 3.2C) suggest, however, that both currents are carried by the same 

state of the channel. This interpretation would imply that the slow current starts to 

develop at pH <7.0, gradually increases in amplitude with increasing acidification and 

gets slowly, but profoundly desensitized by pH values <6.2. 

Other homomeric ASICs that generate sustained currents are zASIC4.1 and -4.2 

(Paukert et al., 2004b; Chen et al., 2007). The sustained current of these subtypes 

differs from the sASIC1b sustained current in several ways: 1) it develops only slowly 

over 1 s (Chen et al., 2007) whereas the sASIC1b current develops at least ten times 

faster (Fig. 3.1); 2) it is insensitive to amiloride (Chen et al., 2007) whereas the 

sASIC1b current is sensitive to amiloride (Fig. 3.4B); 3) it depends on the presence of 

the N-terminal domain (Chen et al., 2007) whereas also the sASIC1b deletion mutant 

(M27) developed the sustained current (Fig. 3.6A). Thus, it seems that the sustained 

current of zASIC4.1 and 4.2 is unrelated to the sustained current of sASIC1b. 

The sustained sASIC1b current endows this channel with the capacity to encode also 

sustained acidification. ASIC3, with which sASIC1b shares many features, is involved 

in detection of painful acidosis (Yagi et al., 2006; Deval et al., 2008). Although there is 

now clear evidence for nociception in bony fish (Sneddon, 2004), nociception in 

sharks, however, remains contested (Snow et al., 1993). Moreover, sASIC1b has 

been cloned from shark brain and its expression in DRGs is unknown, rendering a 

role  for  sASIC1b  in  nociception  hypothetical.  In the brain,  sASIC1b  would carry a  
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sustained depolarizing current during acidosis, suggesting that the extracellular pH 

has an important impact on neurons in shark brain. 
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4.  The interaction between two extracellular linker 

 regions controls sustained opening of acid-sensing 

 ion channel 1 
 

4.1 Abstract 
Activation of acid-sensing ion channels (ASICs) contributes to neuronal death during 

stroke, to axonal degeneration during neuroinflammation, and to pain during 

inflammation. While understanding ASIC gating may help to modulate ASIC activity 

during these pathologic situations, at present it is poorly understood. The ligand, H+, 

probably binds to several sites, among them amino acids within the large extracellular 

domain (ECD). The ECD is linked to the two transmembrane domains by the wrist 

region that is connected to two anti-parallel β-sheets, β1 and β12. Thus, the wrist 

region together with those β-sheets may have a crucial role in transmitting ligand 

binding to pore opening and closing. Here we show that amino acids in the β1-β2-

linker determine constitutive opening of ASIC1b from shark. The most crucial residue 

within the β1-β2 linker (D110), when mutated from aspartate to cysteine, can be 

altered by cysteine-modifying reagents much more readily when channels are closed 

than when they are desensitized. Finally, engineering of a cysteine at position 110 

and at an adjacent position in the β11-β12 linker leads to spontaneous formation of a 

disulfide bond that traps the channel in the desensitized conformation. Collectively our 

results suggest that the β1-β2 and β11-β12 linkers are dynamic during gating and 

tightly appose to each other during desensitization gating. Hindrance of this tight 

apposition leads to reopening of the channel. It results that the β1-β2 and β11-β12 

linkers modulate gating movements of ASIC1 and may thus be drug targets to 

modulate ASIC activity. 

 
 

4.2 Introduction 
Acid-sensing ion channels (ASICs) are H+-gated Na+ channels and are abundantly 

expressed throughout the central and the peripheral nervous system (Wemmie et al., 

2006). They probably contribute to the excitatory postsynaptic current in many 

neurons (Baron et al., 2002; Wemmie et al., 2002; Askwith et al., 2004; Xiong et al., 

2004; Weng et al., 2010)  and  to  detection of  painful  acidosis  in  peripheral  tissues  
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(Deval et al., 2008; Deval et al., 2010). ASIC1a is the most abundant ASIC subunit in 

the mammalian CNS and most ASICs in central neurons are homomeric ASIC1a or 

heteromeric ASIC1a/2a (Baron et al., 2002; Askwith et al., 2004; Vukicevic and 

Kellenberger, 2004). During prolonged acidosis that accompanies brain ischemia and 

autoimmune inflammation, ASIC1a gets activated and enhances brain injury and 

axonal damage, respectively (Xiong et al., 2004; Friese et al., 2007). Thus, a better 

understanding of ASIC1 gating is desirable and may lead to pharmacological 

interventions aimed at modulating ASIC1 activity during diverse neuropathological 

states (Sluka et al., 2009). 

After a rapid drop in pH, ASICs open within milliseconds (Bässler et al., 2001). During 

prolonged acidification they desensitize; kinetics of desensitization varies over a 100-

fold range from 10 msec (Coric et al., 2003; Paukert et al., 2004) to several seconds 

(Lingueglia et al., 1997). For most ASICs, desensitization is complete but some 

ASICs have small, sustained currents that do not desensitize in the continuous 

presence of protons (Waldmann et al., 1997; Hesselager et al., 2004; Springauf and 

Gründer, 2010). Such sustained currents could have a major contribution to the 

harmful effects of ASIC activity during prolonged acidosis. However, despite the 

importance of desensitization gating and sustained opening of ASICs, our molecular 

understanding of these processes is incomplete. 

The crystal structure of chicken ASIC1 (cASIC1) has been solved at acidic pH (Jasti 

et al., 2007; Gonzales et al., 2009), probably representing the desensitized 

conformation of the channel. It provides a structural framework to understand ASIC 

gating (Gründer and Chen, 2010), in particular desensitization gating. The cASIC1 

structure is characterized by the symmetric arrangement of three subunits. Each 

subunit has two transmembrane domains (TMDs) that are linked to the large 

extracellular domain (ECD) by an apparently flexible wrist. The ECD resembles a 

clenched hand and consists of five subdomains, namely the palm, thumb, finger, 

knuckle, and β-ball domains (Jasti et al., 2007). 

In this study, we identified amino acids in the β1-β2- and β11-β12-linkers of the palm 

domain that determine the presence of a sustained current in sASIC1b. Moreover, our 

results indicate that the β1-β2- and β11-β12-linkers are dynamic during gating and 

come in close apposition in the desensitized state. Hindrance of this tight apposition 

destabilizes the desensitized state inducing sustained re-opening of the channel. 

Covalently  linking  the  two linkers traps the channel in the desensitized state.  These  
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linkers have a similar role in rASIC1a, suggesting that they have a conserved role for 

ASIC1 gating. The crucial role of these two linkers makes them interesting targets for 

drugs that modulate ASIC gating. 

 
 

4.3 Materials and Methods 
 

4.3.1 Molecular Biology  
Chimeras of rat ASIC1a and shark ASIC1b were obtained by recombinant PCR. 

Amino acids substitutions were generated by site-directed mutagenesis using 

standard protocols. KAPPA HiFi polymerase (peqlab, Erlangen, Germany) was used 

for all PCR reactions and PCR- derived fragments were controlled by sequencing. All 

constructs were cloned in the oocyte expression vector pRSSP, which is optimized for 

functional expression in Xenopus oocytes (Bässler et al., 2001). Using the mMessage 

mMachine kit (Ambion, Austin, TX), capped cRNA was generated by SP6 RNA 

polymerase from linearized plasmids. 

 

 

4.3.2 Electrophysiology  
Surgical removal of oocytes was done as described elsewhere (Springauf and 

Gründer, 2010). Between 0.016 and 8 ng cRNA were injected into stage V or VI 

oocytes of Xenopus laevis, oocytes were kept in OR-2 medium (in mM: 82.5 NaCl, 

2.5 KCl, 1.0 Na2HPO4, 5.0 HEPES, 1.0 MgCl2, 1.0 CaCl2, and 0.5 g/liter 

polyvinylpyrrolidone) at 19°C, and studied 24 – 72h after injection. Whole cell currents 

were recorded with a TurboTec 03X amplifier (npi electronic, Tamm, Germany) using 

an automated, pump-driven solution exchange system together with the oocyte 

testing carousel controlled by the interface OTC-20 (npi electronic) (Madeja et al., 

1995). With this system, 80% of the bath solution (10–90%) is exchanged within 300 

ms (Chen et al., 2006). Data acquisition and solution exchange were managed using 

CellWorks version 5.1.1 (npi electronic). Data were filtered at 20 Hz and acquired at 1 

kHz. Holding potential was -70 mV, except when otherwise indicated. All experiments 

were performed at room temperature (20 - 25°C). The bath solution for two-electrode 

voltage clamp contained (in mM) 140 NaCl, 1.8 CaCl2, 1.0 MgCl2, and 10 HEPES. For 

solutions with a pH ≤ 6.6, HEPES was replaced by MES. 
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2-aminoethyl methanethiosulfonate (MTSEA) (Toronto Research Chemicals, North 

York, Canada) was dissolved in bath solution and kept on ice when not in use. Fresh 

solutions were prepared every 20 minutes to ensure desired concentrations. Wild-

type channels showed no detectable changes upon exposure to MTS compounds, 

DTT or H2O2. Before application, pH was adjusted for bath solutions containing MTS 

compounds, DTT or H2O2.  

 

 

4.3.3 Data analysis 
Data were collected and pooled from at least two preparations of oocytes isolated on 

different days from different animals. Data were analyzed with the software IgorPro 

(Wave metrics, Lake Oswego, OR).  

Concentration response curves were fit to the Hill-Function 

 

 I = 1/(1 + (EC50/[H]n) , 

 

where EC50 is the pH at which half-maximal activation/desensitization of the transient 

current component was achieved, and n is the Hill-coefficient.  

Current decay kinetics of the transient currents were fit with a mono-exponential 

function: 

 

 I = A0 + Ae-1/τ , 

 

where A0 is the relative amplitude of the non-desensitizing component, A is the 

relative amplitude of the desensitizing component and τ is the time constant of 

desensitization.  

Current decay kinetics of the slow “sustained” currents of sASIC1b-wt were best fit 

with the sum of two exponential components 

 

 I = A0 + A1e-1/τ1+ A2-1/τ2 , 

 

where A0, A1, and A2 are the relative amplitudes of the various components, and τ1 

and τ2 are the slow and fast time constants, respectively. 

Results  are  reported  as  means ± S.E.M.  They  represent  the  mean of n individual  
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measurements on different oocytes. Statistical analysis was done with Student’s 

unpaired t test. 

 

 

4.4 Results 
Fig. 4.1 illustrates the gating kinetics of rat ASIC1a (rASIC1a) to mild and strong 

acidification (pH 6.4 and 5.0). Application of pH 6.4 or 5.0 elicits transient currents 

that completely desensitize with a time constant τ = ~2 sec. Recently we 

characterized ASIC1b from shark (sASIC1b) that shares 70 % amino acid identity with 

rASIC1a but desensitizes strikingly different (Springauf and Gründer). As illustrated in 

Fig. 4.1, application of pH 6.4 elicits transient sASIC1b currents that decline at least 

40- fold faster than that of rASIC1a (τ < 50 msec). More importantly, desensitization is 

incomplete and a sustained current remains as along as pH is acidic. The level of the 

sustained current is ~5% of the peak current amplitude (Fig. 4.1). pH 5.0 also elicits 

transient currents and, in addition, shortly after the initial peak a second current 

component develops with variable amplitude around 50% of the amplitude of the 

transient current (Fig. 4.1). This second current component desensitizes much slower 

than the initial transient current. We referred to the typical transient ASIC current as 

the ‘transient current’ and to the second slow current component at pH 5.0 as the 

‘slow current’ (Springauf and Gründer, 2010). Thus, both the kinetics and the extent of 

desensitization are different between sASIC1b and rASIC1a. The transient and slow 

sASIC1b currents are both unselective whereas the transient current is Na+-selective 

(Springauf and Gründer, 2010). Moreover, the slow current cross-desensitizes the 

sustained but not the transient current (Springauf and Gründer, 2010). These 

characteristics suggest that the sustained and slow sASIC1b currents share a 

conformation that is different from the typical transient open conformation. Thus, there 

are clearly two different open states for sASIC1b that can be separated 

macroscopically. 
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Figure 4.1. Representative current traces for rASIC1a (top) and sASIC1b (bottom) illustrating the 
different desensitization kinetics at mild and strong acidification (pH 6.4 and 5.0). The time constant of 
desensitization of transient rASIC1a currents was τ = 2.1 ± 0.2 sec at pH 6.4 (n = 13) and τ = 1.8 ± 0.2 
sec at pH 5.0 (n = 13; p = 0.1). Desensitization was complete and no sustained current remained. 
Desensitization of the transient sASIC1b currents was much faster than for rASIC1a (τ < 50 msec, n = 
13; p < 0.001) but incomplete. Desensitization of the second current component at pH 5.0 was best 
described by 2 time constants (τ1 = 7 ± 0.4 sec and τ2 = 2.1 ± 0.4 sec; n = 6). Note that current 
amplitudes at pH 5.0 were larger than at pH 6.4. 
 

The slight delay of onset of the slow current at pH 5.0 suggests that the second 

unselective open state is reached from the desensitized state, which can be 

described by the following kinetic scheme: 

 
This scheme is solely intended to illustrate the basic idea of two macroscopically 

separable open states, O1 and O2, and for the sake of simplicity it does not 

incorporate further closed and open states. The scheme implies that sASIC1b opens 

to a Na+-selective open state O1 from which it quickly reaches the desensitized state 

D, from which it reopens to an unselective open state O2. It follows that the 

desensitized state of sASIC1b is energetically unstable, whereas for most other 

ASICs, including rASICa, it is stable in the continued presence of H+ and channels do 

not reopen. Since the sustained sASIC1b current is comparatively small, at 

equilibrium most (> 90%) of the channels are probably in the desensitized state and 

few channels (< 10%) are in the open state O2. 

 
 
4.4.1 The proximal ectodomain controls sustained opening of ASIC1 

To identify the amino acids that determine sustained opening of sASIC1b, we 

generated   a   series   of  chimeras,  in  which  we  exchanged  different  parts  of  the  
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extracellular domain (ECD) of sASC1b by corresponding sequences from rASIC1a, 

and measured currents at pH 6.4 and 5. First, we exchanged the whole ECD of 

sASIC1b. The resulting chimera (srs6) showed transient inward currents upon 

application of low pH (Fig. 4.2). At pH 5, currents desensitized completely with a time 

constant τ = 1.5 ± 0.2 sec (n = 14), not significantly different from rASIC1a (p = 0.44). 

Moreover, the desensitization rate at pH 6.4 was similar to that at pH 5 (Fig. 4.2).  

 

 
Figure 4.2. A small region shortly after TMD1 determines sustained opening of sASIC1b. Left, 
schematic drawings of rASIC1a and sASIC1b and chimeras. Middle, representative traces of currents 
at pH 6.4 and 5.0. Scale bars correspond to 2 µA, except when otherwise indicated. Right, time 
constants of desensitization of the transient current at pH 6.4 (open circles) and 5 (filled circles). n > 6. 
***, p < 0.001 (compared to sASIC1b). 
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Thus, desensitization of this chimera was indistinguishable from rASIC1a, showing 

that the ECD determines the kinetics of desensitization and the presence of a 

sustained current in ASIC1. Therefore, we substituted gradually smaller parts of the 

ECD of sASIC1b. Substitution of either the first two-thirds or the first one-third of the 

ECD of sASIC1b (chimeras srs5 and srs4) yielded channels that desensitized ~3-

times more rapidly than rASIC1a currents (at pH 5: τ = 0.7 ± 0.1 sec, n = 14, and τ = 

0.5 ± 0.04 sec, n = 29, respectively; p < 0.001) and > 10-times more slowly than 

sASIC1b currents (p < 0.001). For both chimeras the desensitization rate at pH 6.4 

was similar to that at pH 5 (Fig. 4.2). Most importantly, both chimeras desensitized 

completely to pH 6.4 and pH 5 and there was no sustained or slow current. Thus, the 

first one-third of the ECD of sASIC1b is necessary for the fast desensitization and the 

presence of the slow sustained current of this channel. 

Substitution of either the first 123 or the first 24 amino acids of the sASIC1b ECD 

(chimeras srs3 and srs2) had essentially the same effect: the kinetics of 

desensitization was intermediate to rASIC1a and sASIC1b (at pH 5: τ = 0.3 ± 0.02 

sec, n = 15, and τ = 0.2 ± 0.02 sec, n = 13, respectively; p < 0.001) and similar at pH 

6.4 and pH 5. Moreover, there was no sustained or slow current. When we substituted 

only the first 14 amino acids of the ECD, we obtained a chimera (srs1) with a very 

different desensitization kinetics: desensitization of the transient current was very fast 

(τ < 50 msec) and incomplete. Thus, this chimera desensitized basically as sASIC1b 

wild type. In summary, the most striking difference in desensitization was observed 

between chimeras srs1 and srs2, which differ in only 7 amino acids. 

The results obtained with the chimeras between sASIC1b and rASIC1a revealed that 

a small region of the ECD (residues 109 – 115) shortly after TMD1 is necessary for 

the presence of a sustained current at pH 6.4 and a slow current at pH 5. Moreover, 

in agreement with a previous report (Coric et al., 2003), this same region largely 

determines the kinetics of desensitization of the transient current; other regions that 

determine the kinetics of desensitization to a lesser extent seem to be scattered over 

the ECD. As is shown in Fig. 4.3, the critical region lies in a linker that connects β-

sheet 1 of the palm domain to β-sheet 2 of the β-ball. We next analyzed in more detail 

the effect on desensitization of these 7 amino acids, Met109 – Tyr115, in the β1-β2 

linker. 
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4.4.2 Amino acids 109 - 111 control sustained opening of ASIC1; amino acid 110 
  is especially important  

A previous study identified an amino acid triplet in the proximal ECD as a determinant 

of the slow desensitization kinetics of rASIC1a (Coric et al., 2003). This triplet is 

S83QL in rASIC1a and P112FM in sASIC1b and falls into the critical region identified 

by our chimeras (Fig. 4.3). Therefore, we next substituted the PFM triplet of sASIC1b 

by the SQL triplet of rASIC1a. sASIC1b-SQL desensitized rapidly with a time constant 

τ < 50 msec (n = 10) and it still had a sustained current at pH 6.4 and a slow current 

at pH 5 (Fig. 4.4A), clearly showing that the PFM triplet is not necessary for sustained 

sASIC1b opening. However, the amplitude of the slow current at pH 5.0 was 

significantly (p < 0.001) decreased compared to sASIC1b-wt and was about 10% of 

the initial fast transient current amplitude. Unexpectedly, although due to the fast 

desensitization we cannot exclude some slowing of the desensitization of sASIC1b by 

the SQL substitution, the SQL triplet did not determine slow desensitization kinetics of 

the transient sASIC1b current (Fig. 4.4A). 

 

 
 
Figure 4.3. Residues 109 – 115 of sASIC1b localize to the β1- β2 linker. A, Ribbon representation of 
the desensitized cASIC1 structure. The different domains of the ECD are shown in different colors 
(TMDs in red, palm in yellow, thumb in green, knuckle in turquoise, finger in purple, and β-ball in 
orange). B, β-sheets 1 and 12 from one subunit and the linkers that connect them to β-sheets 2 and 
11, respectively, are shown. C, Schematic representation of (B). D, Amino acid sequences of the β1-
β2- and the β11-β12-linkers of sASIC1b, rASIC1a, and cASIC1, respectively. The carboxyl-carboxylate 
pair between β-sheets 1 and 12 is illustrated by a red line. 
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Figure 4.4. Aspartate 110 is most crucial for sustained opening of sASIC1b. A, B, Left, representative 
current traces at pH 6.4 and 5.0 for sASIC1b (A), rASIC1a (B), and amino acid substitutions in the β1-
β2 linker. Scale bars correspond to 2 µA, except when otherwise indicated. The insets show the 
current decline after washout of acidic pH on a 4-fold expanded scale. Right, time constants of 
desensitization of the transient current at pH 6.4 (open circles) and 5 (filled circles). n > 8. *, p < 0.05, 
***, p < 0.001 (compared to wild-type). C, Left, current–voltage relationship for the transient and the 
sustained current of rASIC1a-MDS at pH 5.0. Channels had been repeatedly activated at different 
holding potentials and currents normalized to the current at -70 mV. Absolute values of the current 
amplitudes at −70 mV were 7.2 ± 1.7 µA (transient current; n = 11), and 0.77 ± 0.13 µA (sustained 
current; n = 10), respectively. Right, representative current trace illustrating constitutive activity of 
rASIC1a-MDS. Amiloride (1 mM) and substitution of Na+ by the large cation NMDG+ reduced the 
background current revealing some constitutive activity of rASIC1a-MDS at pH 7.4. 
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We then substituted in sASIC1b the three amino acids just upstream of the PFM 

triplet, M109DS, by those of rASIC1a, V80AA. sASIC1b-VAA desensitized rapidly with 

a time constant τ < 100 msec (n = 16) but strikingly it no longer had a sustained 

current at pH 6.4 nor a slow current at pH 5 (Fig. 4.4A), clearly showing that the MDS 

triplet in sASIC1b is necessary for sustained sASIC1b opening. Combined 

substitution of both triplets, MDS and PFM, by VAASQL yielded a channel that had no 

sustained openings and desensitized with a time constant τ = 160 ± 11 msec (n = 23), 

similar to chimera srs2 (p = 0.13; Fig. 4.4A). These results demonstrate that both 

triplets, MDS and PFM, contributed to the kinetics of desensitization of the sASIC1b 

current, but that only the MDS triplet was necessary for sustained opening of 

sASIC1b. 

To further define the role of individual amino acids within the MDS triplet for sASIC1b 

desensitization, we substituted the three amino acids individually by those found in 

rASIC1a, (V, A, A, respectively). sASIC1b with any of the three individual 

substitutions, M109V, D110A, and S111A, desensitized very rapidly (τ < 50 msec, n = 

8, Fig. 4A). sASIC1b-M109V had no sustained currents at pH 6.4 but still at pH 5. In 

contrast, sASIC1b-D110A had no sustained currents at pH 6.4 or at pH 5 (Fig. 4.4A), 

not even at pH 4 (not shown). sASIC1b-S111A still had sustained openings at pH 6.4 

and slow openings at pH 5. Collectively, these results show that the MDS triplet in the 

proximal ECD is necessary for sustained sASIC1b opening and that D110 has an 

especially crucial role within the triplet. 

To further corroborate these findings we did inverse substitutions in rASIC1a (Fig. 

4.4B). rASIC1a-PFM desensitized slightly faster than rASIC1a wild type (τ = 1.2 ± 

0.14 sec, n = 10, compared with τ = 1.8 ± 0.16 sec, n = 13; p = 0.12) and had no 

sustained or slow current (Fig. 4.4B), showing that this triplet is not sufficient for 

sustained opening of rASIC1a. In sharp contrast, rASIC1a-MDS desensitized much 

faster than rASIC1a wild type (τ < 50 msec, n = 10; p < 0.001) and displayed robust 

sustained currents at pH 5 (Fig. 4.4B). Combined substitution of the two triplets, VAA 

and SQL, by MDSPFM had similar effects as substitution of VAA by MDS alone: fast 

desensitization of the transient current (τ < 50 msec, n = 7) and sustained openings at 

pH 6.4 and pH 5 (Fig. 4.4B). These findings clearly show that the MDS triplet is not 

only necessary for sustained opening of sASIC1b but also sufficient to introduce 

sustained opening into rASIC1a. Since D110 had an especially prominent role for 

sustained  opening   of  sASIC1b,  we  substituted  the  corresponding  amino  acid  in  
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rASIC1a, A81, by a D. rASIC1a-A81D desensitized significantly faster (τ = 340 ± 50 

msec, n = 11; p < 0.001) than rASIC1a wild-type and showed sustained opening with 

an amplitude of 2% of the transient current at pH 5 (Fig. 4.4B), showing that a D at 

this position is a determinant of fast desensitization and is sufficient to introduce 

sustained opening in rASIC1a. 

Sustained sASIC1b currents are unselective whereas transient currents are Na+-

selective (Springauf and Gründer, 2010). In agreement, reversal potentials of 

sustained rASIC1a-MDS currents were also significantly shifted by 20 mV to the left 

compared to transient currents (1 ± 2 mV compared with 21 ± 3 mV; n = 10; p < 

0.001; Fig. 4.4C). The reversal potential of the transient current was also less positive 

than expected for a Na+-selective ion pore. This result is likely explained by low 

constitutive activity of rASIC1a-MDS at pH 7.4, as revealed by amiloride block and 

sensitivity of the background current to exchange by the large cation NMDG+ (Fig. 

4.4C). Constitutive activity will lead to Na+-uptake and consequently shift the Na+ 

equilibrium potential. Thus, the MDS triplet introduces unselective sustained currents 

into rASIC1a; some sustained activity is even induced at pH 7.4. 

 

 
4.4.3 Accessibility of residue 110 is state-dependant. 
By which mechanism does an aspartate at position 110 (in sASIC1b) keep the ASIC1 

pore constitutively open? One possibility is that this residue moves during the gating 

transitions of ASIC1 and that it sterically destabilizes the desensitized conformation. 

To get evidence for movement of this residue during gating of ASIC1, we assessed 

the accessibility of residue 110 of sASIC1b to modification by cysteine-reactive 2-

aminoethyl methanethiosulfonate (MTSEA), a positively charged MTS reagent. 

Introduction of a cysteine at position 110 resulted in channels that desensitized 

rapidly and did not have a sustained current (Fig. 4.5A), similar to the introduction of 

an alanine at the same position (Fig. 4.4A). We first investigated MTS-modification in 

the closed state (Fig. 4.5A). Application of a low concentration (0.5 µM) of MTSEA in 

the interval between applications of pH 6, dramatically altered the currents of 

sASIC1b-D110C: peak amplitude gradually increased two-fold and a robust sustained 

current appeared, which had an amplitude of ~30% of the peak current. After 5 

applications of 10 sec duration the modification of the current was complete (Fig. 

4.5A).  
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Figure 4.5. MTS-modification of sASIC1b-D110C leads to sustained opening. A, 500 nM MTSEA was 
applied for 5 sec in the interval between activation of the channel (at pH 7.4). Activation was with pH 6 
for 5 sec. B, A higher concentration of MTSEA (1 mM) than in (A) was applied at pH 6 when channels 
were desensitized. Note also the different time scales in panels (A) and (B). The sustained currents 
could be reversed by application of 10 mM DTT. C, Increase in sustained currents as a function of 
exposure time (time exposed X concentration MTSEA) when MTSEA was applied at pH 7.4 (open 
squares) or at pH 6 (open circles). D, Activation curves (circles) and SSD curves (squares) for peak 
currents of sASIC1b-D110C before (open symbols) and after MTSEA modification (100 µM for 60 sec 
at pH 7.4; filled symbols). The dotted lines illustrate the expected increase in peak current at pH 6 by 
MTS modification. 
 

For wild-type sASIC1b, MTSEA had no effect on the peak amplitude or on the 

appearance of the sustained current (not shown), suggesting that MTSEA specifically 

modified C110. 

Application of a 2,000-fold higher MTSEA concentration (1 mM) at pH 6.0 (instead of 

pH 7.4) similarly led to the slow appearance of a sustained current (Fig. 4.5B), 

suggesting that MTSEA also modified the channel when it was in the desensitized 

conformation,   albeit   with  a  dramatically  smaller  reaction  rate   (see below).  After  
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recovery at pH 7.4, the amplitude of the transient current also was increased, further 

suggesting MTSEA modification of sASIC1b-D110C at pH 6.0. Application of the 

reducing agent DTT (10 mM) reversed the increase in sustained current (Fig. 4.5B). 

Together these results suggest that MTSEA covalently modified C110 and that this 

modification strongly increased peak amplitude and enables sustained opening of 

sASIC1b. MTSEA-modification was faster at pH 7.4 than at pH 6 albeit a 2.000-fold 

smaller concentration used to modify the channel. Consequently, exponential fits of 

the fractional increase of the sustained current vs. exposure time (in mM x seconds; 

Fig. 4.5C) yielded a reaction rate of 100,000 M-1 sec-1 at pH 7.4 that was 22,000-fold 

higher than at pH 6 (4.6 M-1 sec-1; p < 0.005). Thus at pH 7.4, C110 was modified by 

MTSEA with a rate comparable to mercaptoethanol in solution (Stauffer and Karlin, 

1994), suggesting unhindered access to this residue in the closed conformation. 

The increase of the peak current amplitude after MTSEA modification suggested an 

increased apparent H+ affinity. However, MTSEA modification (100 µM for 60 sec) 

shifted apparent H+ affinity of activation only slightly, showing that an increased 

apparent H+ affinity cannot explain the large increase in peak current amplitude. In 

contrast, steady-state desensitization (SSD) curves were significantly shifted to the 

right by ~0.3 pH units (p < 0.001; Fig. 4.5D) so that larger concentrations of H+ were 

needed to induce SSD. Similar to the appearance of a sustained current, this 

requirement for larger concentrations of H+ to induce SSD after MTSEA modification 

further suggests that MTSEA destabilized the desensitized state of sASIC1b. 

The profound difference in reaction rate at pH 7.4 versus 6.0 could be due to a 

dependence of the modification on the state of the channel (closed vs. desensitized) 

or on the pH (pH 7.4 vs. 6). To differentiate between these possibilities, we used the 

dependence of SSD on extracellular Ca2+ (Babini et al ., 2002) to find a single pH at 

which channels were predominantly in the desensitized or in the closed state, 

respectively, depending solely on the extracellular Ca2+ concentration (but not on pH). 

We determined SSD-curves in the presence of 1 mM and 20 mM Ca2+ with and 

without MTS modification. SSD curves were shifted by ~0.4 pH units by the different 

Ca2+ concentrations and by about the same amount by MTS modification (Fig. 4.6A). 

We chose pH 7.0 to determine the reaction rate of MTS modification because at this 

pH and 1 mM Ca2+, all unmodified channels were in the desensitized conformation, 

whereas at 20 mM Ca2+, ~50% of the unmodified channels were desensitized and the  

other 50% were closed (Fig. 4.6A).  



4. Linker regions controlling sustained ASIC1 opening 

 89 

 

 

 
 
Figure 4.6. MTS-modification of sASIC1b-D110C is state-dependent. A, SSD curves for peak currents 
of sASIC1b-D110C in 1 mM Ca2+ (circles) and 20 mM Ca2+ (squares), before (open symbols) and after 
MTSEA modification (100 µM for 60 sec at pH 7.4; filled symbols). The dotted line illustrates the partial 
desensitization at pH 7 and in 20 mM Ca2+ (before MTS modification). B, 600 nM MTSEA was applied 
in 20 mM Ca2+ for 10 sec in the interval between activation (pH 6, 5 sec) of the channel. C, A higher 
concentration of MTSEA (20 µM) than in (B) was applied in 1 mM Ca2+ for 30 sec in the interval 
between activation (pH 6, 5 sec) of the channel. Note also the different time scales in panels (B) and 
(C). D, Increase in sustained currents as a function of exposure time (time exposed X concentration 
MTSEA) when MTSEA was applied in 20 mM Ca2+ (open squares) or in 1 mM Ca2+ (open circles). For 
both Ca2+ concentrations, conditioning pH was 7.0. 
 

We argued that the partial desensitization with 20 mM Ca2+ might not strongly affect 

the reaction rate, because MTS modification happened so quickly at pH 7.4 that it 

should quickly absorb modified channels into the closed state. In fact, reaction rate at 

pH 7, 20 mM Ca2+, was not significantly different (35,000 M-1 sec-1, n = 4; p = 0.2) 

than at pH 7.4 and 1.8 mM Ca2+ but ~100-fold higher than with 1 mM Ca2+, (320 M-1 

sec-1, n = 4; p < 0.05; Fig. 6B and C), clearly demonstrating state-dependence of the 

MTS-modification. Reaction rate at pH 7, 1 mM Ca2+, was ~70-fold higher than at pH 

6, suggesting some pH dependence of the modification (Karlin and Akabas, 1998). 

But in any case the significantly faster reaction rate  at  pH  7  with  20  mM  Ca2+ than  
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with 1 mM Ca2+ clearly shows that the modification of C110 by MTSEA was state-

dependant and suggests that residue 110 is well accessible for MTSEA in the open 

conformation and moves upon desensitization to become less accessible. 

The introduction at residue 110 of a long side chain with a positive charge had 

dramatic effects on sASICb currents. To confirm this result, we introduced a 

permanent positive charge at this position. The side chain of a lysine closely 

resembles the side chain of a cysteine modified by MTSEA (Fig. 4.7). As expected 

from this close resemblance, the kinetics of currents carried by sASIC1b-D110K was 

virtually identical to those carried by sASIC1b-D110C after MTSEA modification: the 

transient current was followed by a large sustained current that was much more 

pronounced than for wild-type sASIC1b (~60% of the peak current at pH 6.4 and 

>100% at pH 5; Fig. 7). This result confirms that, at position 110, a long side chain 

with a positive charge strongly favors sustained opening of sASIC1b. 

 

 

 
 
Figure 4.7. A Lys at position 110 mimics MTSEA-modification. Left, chemical structures of an MTSEA-
modified cysteine and a lysine. Right, representative current traces for MTSEA-modification of 
sASIC1b-D110C (top) and for sASIC1b-D110K (bottom). Currents for sASIC1b-D110K are shown at 
three different pH values. The current rise time is also shown on an expanded time scale. 
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4.4.4 Residue 110 is in close contact with residue 428 in the β11- β12 linker  
Results so far suggest that certain residues at position 110 destabilize the 

desensitized conformation of sASIC1b, leading to constitutive opening of the channel. 

Amino acids with short, neutral side chains (Ala, Cys) do not destabilize the 

desensitized conformation, whereas the desensitized conformation becomes slightly 

destabilized by a negatively charged side chain (Asp) and strongly destabilized by a 

large, positively charged side chain (MTSEA-modified Cys, Lys). In addition, state-

dependence of MTS-modification shows that residue 110 becomes less accessible in 

the desensitized conformation, suggesting that in this conformation its side chain gets 

buried in a pocket of the protein. 

What is the structural basis for destabilization of the desensitized conformation and 

sustained opening of sASIC1b by large, charged residues? Given the high homology 

of sASIC1b with chicken ASIC1 (cASIC1; 70% amino acid identity), we considered 

the crystal structure of cASIC1 as a good model for the desensitized state of sASIC1b 

and modeled an aspartate at the position corresponding to D110 of sASIC1b (A82). 

Structural analysis showed that an Asp residue at position 82 of cASIC1 is not easily 

accommodated because this residue is indeed buried. An Asp could form an H-bond 

with Asn415 but at the same time there would be unfavourable interactions with the 

main chain oxygens of Ala413, which would probably trigger some local structural 

changes. 

The unfavourable interaction of D82 with the main chain oxygen atoms of Ala413 in 

the β11- β12 linker (Fig. 4.3) suggested that such an interaction might destabilize the 

desensitized conformation and lead to sustained opening of sASIC1b. To test this 

prediction, we substituted the residue corresponding to chicken Ala413 in sASIC1b 

(A428) by a negatively charged amino acid (D). The resulting channels (sASIC1b-

A428D) had a normal transient current, followed by a sustained current that was 

much larger than the sustained current of wild-type sASIC1b (Fig. 4.8), confirming 

that this exchange further destabilized the desensitized state of sASIC1b. Since 

sASIC1b-D110A had no sustained current we made the double-substitution D110A-

A428D. The resulting channels had a phenotype that very much resembled that of 

wild-type sASIC1b (Fig. 4.8), providing further support for an interaction of amino acid 

110 and 428. If both amino acids have short side chains, no sustained currents 

develop, if one has a negatively charged side chain, robust sustained currents 

develop,  and  if  both  have  a negatively  charged  side  chain, the resulting channels  
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have a strong sustained current with an amplitude similar to the transient current. 

 

 
 
Figure 4.8. Representative current traces at pH 6.4 and 5.0 for sASIC1b-wt, -D110A, -A428D, and - 
D110A/A428D, respectively. 
 

 
4.4.5 Cross-linking of residues 110 and 428 traps sASIC1b in the desensitized 
  state 
We searched for further evidence for a tight interaction of residues 110 and 428 in the 

desensitized conformation of the protein. When we modeled two cysteines at the 

corresponding residues in the cASIC structure and selected the best side chain 

rotamer conformations, the two S-atoms were at a distance of 2.9 Å (Fig. 4.9A), which 

would be compatible with the formation of an intramolecular disulfide bond. The 

discrepancy of ~1 Å between the observed and the ideal distance (2.05 Å) together 

with a non-perfect dihedral angle of ~120° (ideal is 90°) predicted a strained disulfide 

bond between C82 and C413. 

To  test  this  prediction  we  engineered  two  cysteines  at  positions  110  and 428 of  
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sASIC1b. After stimulation with pH 5, the resulting channels (sASIC1b- 

D110C/A428C) showed transient and sustained currents, both of comparatively small 

amplitude (Fig. 4.9C). Repeated activation with pH 5 further reduced current 

amplitudes (Fig. 4.9C), which is expected if a disulfide bond formed rapidly when the 

channels are desensitized in the presence of H+, and if this disulfide bond trapped 

channels in the desensitized conformation. 

 

 
 
Figure 4.9. Cross-linking of residues 110 and 428 traps sASIC1b in the desensitized state. A, Left, 
detail from the cASIC1 crystal structure, in which two Cys residues had been modeled, one at position 
82 and one at position 413 (corresponding to positions 110 and 428 of sASIC1b). Right, schematic 
representation with the two cysteines as blue bars. B, Reducing and oxidizing conditions had no effect 
on sASIC1b-wt currents. C, Left, sASIC1b-D110C/A428C current amplitude gradually decreased with 
repeated stimulation by ligand (pH 5.0). Switching the pH to 7.8 or reducing conditions strongly 
increased current amplitude. Right, oxidizing conditions strongly reduced current amplitude of 
sASIC1b-D110C/A428C. 
 

We reasoned that the disulfide bond also might have formed spontaneously (at pH 

7.4) and that spontaneous trapping explains the small current amplitudes when 

channels were activated the first time. In fact, switching the conditioning pH from 7.4 

to 7.8 strongly increased the amplitude of the currents elicited by pH 5 (Fig. 4.9C), 

which is expected if the putative disulfide bond were under considerable strain and 

spontaneously hydrolyzes when the pH is slightly raised and the desensitized state 

further destabilized. Alternatively, the two Cys substitutions might have simply shifted 

the SSD curve. Application of the oxidizing reagent H2O2 (0.15 %) at pH 7.8 strongly 

reduced current amplitudes (Fig. 4.9C), which is not expected if Cys substitutions had  
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shifted the SSD curve and thus clearly argues for formation of a disulfide bond. 

Moreover, application of the reducing reagent DTT (10 mM) at pH 7.4 strongly 

increased current amplitudes (Fig. 4.9C), which is in agreement with hydrolysis of a 

disulfide bond and ensuing recovery from desensitization. Neither H2O2 nor DTT had 

an effect on sASIC1b wt (Fig. 4.9B). Together these results strongly suggest the 

spontaneous formation of a strained disulfide bond between C110 and C428, which 

trapped sASIC1b in the desensitized conformation. It follows that i) in the desensitized 

conformation both residues are in tight contact with each other, and that ii) both 

residues have to move a considerable distance away from each other for recovery 

from desensitization and the transition into the closed state. 

We wanted to confirm the relevance of these findings for rASIC1a and introduced Cys 

residues at the corresponding positions of rASIC1a (residues 81 and 412; Fig. 4.3). 

For rASIC1a-A81C/V421C, at a conditioning pH 7.4, application of pH 6.4 induced 

currents of comparatively small amplitude. Repetitive activation further reduced 

current amplitudes (Fig. 4.10B). Such a sequential reduction is also known for 

ASIC1a-wt (Chen and Gründer, 2007) but was significantly more pronounced for the 

double-cysteine mutant (Fig. 4.10C), suggesting that a disulfide bond formed in the 

desensitized state at pH 6.4 and cumulatively trapped channels in this state. At 

conditioning pH 7.8 amplitudes were only slightly increased (Fig. 4.10B), suggesting 

that if a disulfide bond had formed it was under less strain than for sASIC1b. 

Application of 10 mM DTT, however, strongly increased the current amplitude (Fig. 

4.10B), an effect that was not seen with rASICa wt (Fig. 10A) and which therefore 

strongly suggests formation of a disulfide bond that trapped channels in the 

desensitized state. In agreement with this conclusion, application of 0.15% H2O2 

strongly decreased current amplitudes (Fig. 4.10B). Thus, rASIC1a-A81C/V421C 

reproduced the basic findings from sASIC1b- D110C/A428C, suggesting that the two 

critical residues also are in close apposition in rASIC1a. 
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Figure 4.10. Cross-linking of residues 81 and 412 traps rASIC1a in the desensitized state. A, 
Reducing and oxidizing conditions had no effect on rASIC1a-wt currents. B, Left, rASIC1a-
A81C/V412C current amplitude gradually decreases with repeated stimulation by ligand (pH 6.4). 
Switching the pH to 7.8 has no effect on current amplitude, whereas reducing conditions dramatically 
increased current amplitude. Right, oxidizing conditions reduced current amplitude of rASIC1a-
A81C/V412C. C, Quantification of tachyphylaxis for rASIC1a-wt and -A81C/V412C (“2C”). Channels 
were repeatedly activated and current amplitudes normalized to the first amplitude. Repeated 
activation reduced rASIC1a-A81C/V412C currents significantly more strongly than wt currents. 
Absolute values of the initial amplitudes were 14.3 ± 2.5 µA (wt; n = 6), and 1.0 ± 0.2 µA (A81C/V412C; 
n = 6), respectively. Lines represent fits to a mono-exponential function. ***, p < 0.001. 
 
 

4.5 Discussion 
In this paper we present several-fold evidence that the interaction of the β1-β2- and 

β11-β12-linkers modulates desensitization gating of ASICs and that a pair of amino 

acids, each in one of the linkers, is especially crucial for this modulation. First, we 

identify a triplet of amino acids (M109DS) in the β1- β2-linker that determines 

sustained opening of sASIC1b (Figs. 2 and 4). Within this triplet, aspartate 110 has a 

predominant effect (Fig. 4.4). Second, we show that modification by MTS reagents of 

residue 110, when mutated to cysteine, strongly depends on the state of the channel: 

modification in the closed state happens at least 100-fold faster than in the 

desensitized state (Figs. 5 and 6), showing that residue 110 becomes partially buried 

in the desensitized state. Third, substitutions of residue 428 in the β11-β12 linker that  

tightly apposes with residue 110 in the desensitized conformation of cASIC also affect 

re-opening of  sASIC1b  (Fig. 4.8).  Fourth, cysteines engineered at positions 110 and  
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428 lead to spontaneous formation of a disulfide bond that traps the channel in the 

desensitized state (Fig. 4.9). All these observations suggest the following model: β1-

β2- and β11-β12-linkers are dynamic during ASIC gating and tightly appose in the 

desensitized conformation, occluding residue 110. Hindrance of this apposition 

destabilizes the desensitized state and leads to sustained re-opening. During 

recovery from desensitization, β1-β2- and β11-β12-linkers “open up” again, exposing 

residue 110 to solvent. Occlusion in the desensitized state and exposition in the 

closed state readily explains the state- dependence of MTS modification of residue 

110. We found that introduction of the MDS triplet into rASIC1a is sufficient for robust 

sustained opening of the rASIC1a pore (Fig. 4.4). Moreover, a disulfide bond also 

formed between two cysteines in rASIC1, engineered at positions corresponding to 

110 and 428, trapping rASIC1a in the desensitized state (Fig. 4.10). Thus, there is 

evidence that the interaction of this pair of amino acids has a general role for 

desensitization gating of ASIC1. 

The spontaneous formation of the disulfide bond between residues 110 and 428 (Fig. 

4.9) was surprising but is not without precedence. Two cysteines engineered into 

lobes of the ligand-binding domain of AMPA receptors also spontaneously form a 

disulfide bond, trapping the AMPA receptors in the desensitized state (Plested and 

Mayer, 2009). This spontaneous trapping has been interpreted as a significant 

mobility of the glutamate binding domains in the absence of ligand (Plested and 

Mayer, 2009). Similarly, spontaneous formation of the disulfide bond between 

residues 110 and 428 suggests conformational flexibility of the β1-β2- and β11-β12-

linkers in the absence of H+. Alternatively, ambient concentrations of H+ in the 

extracellular medium and/or in the intracellular compartments, through which ASIC 

traffic on their way to the plasma membrane, may be high enough to induce opening 

and desensitization of ASICs with a low probability. 

 

 
4.5.1 What is the basis for sustained openings? 
We propose that in sASIC1b the interaction of D110 and Α428 destabilizes the 

desensitized state, leading to re-opening of the ion pore. In this model, sustained 

currents would not reflect incomplete desensitization from the transient open state O1 

but rather re-opening from the desensitized state to a new open state O2. Evidence 

for  this  model  is first,  the  rebound of current that follows the transient current at low  
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pH (for example pH 5.0, Fig. 4.1; (Springauf and Gründer, 2010), and second, the 

different selectivity of the ion pore during transient and sustained openings (Springauf 

and Gründer, 2010). In the simplest case, it follows that a sustained current develops 

whenever channels enter the desensitized state. In fact, transient sASIC1b currents 

are always followed by sustained currents (Springauf and Gründer, 2010). This 

situation is different for rASIC3, an ASIC that shows transient currents at pH < 6.9 but 

sustained currents only at pH ≤ 5.0 (Waldmann et al., 1997; Salinas et al., 2009). For 

ASIC3, the development of sustained currents would thus require at least one 

additional H+ binding step. Such additional protonation steps could also explain the 

slow sASIC1b currents, which develop at low pH and also desensitize (Fig. 4.1; 

(Springauf and Gründer, 2010). We speculate that slow structural relaxations 

accommodate β1-β2- and β11-β12-linkers at low pH (e.g. pH 5) and lead to slow 

desensitization of sustained currents. 

A completely different way of generating sustained currents is by window currents, 

which are generated by the overlap of the activation and desensitization curves (Yagi 

et al., 2006). In the narrow window of overlap sustained currents are generated that 

can be calculated by the multiplication of the fractional activation and desensitization 

at a given pH. Thus, sustained window currents are mediated by the transient open 

state O1 and do not require a separate open state O2. Window currents have first 

been described for rASIC3 (Benson et al., 1999; Yagi et al., 2006) and are also 

generated by sASIC1b but only in the small pH range from 7.4 to 6.6 (Springauf and 

Gründer, 2010). Below pH 6.6, sustained sASIC1b currents are entirely unselective 

sustained currents (Springauf and Gründer, 2010), which we propose are mediated 

by the second open state O2. 

A sustained current that develops in the declining phase of a transient peak current is 

also characteristic for currents mediated by FMRFamide-activated Na+ channel, 

FaNaC (Cottrell et al., 1990; Lingueglia et al., 1995), and Hydra Na+ channels, 

HyNaCs (Golubovic et al., 2007; Dürrnagel et al., 2010), peptide-gated channels that 

are related to ASICs (Golubovic et al., 2007). The kinetics of the peptide-induced 

currents is very similar to sASIC1b currents only that the sustained currents are 

larger, amounting to 50-100% of the peak current amplitude (Lingueglia et al., 1995; 

Golubovic et al., 2007; Dürrnagel et al., 2010). Since HyNaCs are closely related to 

ASICs (Golubovic et al., 2007) and since their sustained currents are unselective 

cation  currents  (Golubovic et al.,  2007;   Dürrnagel et al.,  2010)  like  the  sustained  
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sASIC1b currents, we speculate that HyNaCs and perhaps FaNaC also re- open to a 

second open state from the desensitized state. Future studies will show whether this 

speculation is true and whether interactions of the β1-β2- and β11-β12-linkers also 

determine sustained opening of HyNaCs. 

 
 

4.5.2 The role of the β1-β2- and β11-β12-linkers in desensitization gating  
Results from previous studies that addressed desensitization gating of ASICs 

(reviewed in (Gründer and Chen, 2010) largely confirm our own findings. In ASIC3, 

residue 79 at the end of β-sheet 1 (corresponding to E108 in sASIC1b; Fig. 4.3), if 

replaced by a cysteine, cannot react with MTS reagents when channels are 

desensitized (Cushman et al., 2007), suggesting that it is deeply buried. In fact, in the 

crystal structure of desensitized cASIC1, β-sheets 1 and 12 tightly appose and E79 

(E80 in cASIC1) forms a carboxyl-carboxylate pair with E417 (cASIC1) at the 

beginning of β-sheet 12 (Fig. 4.3; Jasti, 2007). In contrast, in the closed state residue 

79 can react with MTS reagents with a rate of ~200 M-1 sec-1, suggesting that the 

carboxyl-carboxylate pair forms only during desensitization and that the tight 

apposition between β-sheets 1 an 12 is not maintained in the closed state. The 

comparatively low reaction rate (reaction rate was 100,000 M-1 sec-1 for modification 

of D110 in the closed state; Figs. 4.5 and 4.6) indicates that residue 79 is partially 

buried also in the closed state of ASIC3. Moreover, MTS modification of ASIC3-E79C 

dramatically slowed desensitization (Cushman et al., 2007), suggesting that volume 

on residue 79 destabilizes the desensitized state by hindrance of the tight apposition 

of β-sheets 1 and 12. This is in agreement with our own results. 

In rASIC1, the S83QL triplet in the β1-β2-linker (the triplet just following the MDS 

triplet; Fig. 4.3) is one determinant of desensitization kinetics (Coric et al., 2003), 

which suggests that it determines the energy barrier between open and desensitized 

states. This conclusion perfectly agrees with the notion that movement of the β1-β2-

linker accompanies desensitization gating. In Xenopus ASIC1, the last residue of this 

triplet (M114 in sASIC1b), if replaced by a cysteine, is modified by MTS reagents with 

an equal rate (~100 M-1 sec-1) in the closed and the desensitized states, suggesting 

that this residue is partially buried in both conformations of the protein (Li et al., 2010).  

Equal reaction rates do not provide evidence for rearrangement of this residue during 

desensitization.    It   was   proposed   that   this   residue   interacts   with   a   residue  
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(corresponding to N430 in sASIC1b; Fig. 4.3) in the β11-β12-linker (Li et al., 2010). 

No direct interaction was found, however, and both residues contribute independently 

to the stability of the desensitized state (Li et al., 2010). Thus, although those 

previous results confirm a general role of the β1-β2- and β11-β12-linkers for 

desensitization gating, our results highlight a tight interaction between D110 and A428 

in those linkers of sASIC1b and show that this interaction controls sustained re-

opening. 

In summary, our results add to a better understanding of desensitization gating of 

ASICs and to the molecular basis of sustained ASIC currents. They identify the β1-

β2- and β11-β12-linkers as a possible target for pharmacological modulation of ASIC 

activity. 
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5. General Discussion 
 

5.1 The appearance of proton-sensitivity of ASICs 
The first part of this work describes the identification of shark ASIC1b as a proton-

sensitive ASIC and the characterization of the currents that are generated by this 

channel in response to various proton-concentrations and additionally sheds light on 

the development of proton sensitivity of Acid Sensing Ion Channels. 

Several amino acids that were previously identified by mutational screening as crucial 

residues for proton sensitivity of ASIC1, namely Glu63, His72/His73 and Asp78 

(Paukert et al., 2007), are entirely conserved in sASIC1b. Although previous 

publications reported the proton-insensitivity of shark ASIC1b (Coric et al., 2005) the 

striking conservation of these amino acids was the main reason for re-evaluating this 

issue.  

The finding that sASIC1b indeed responded to extracellular acidification confirmed the 

importance of the four identified amino acids in sASIC1b and showed that we can 

predict the proton-sensitivity of an ASIC with some reliability, which also justifies the 

definition of a ‘H+ sensitivity signature’. Additionally, it reduced the number of proton-

insensitive ASICs that contain the four crucial amino acids to one, which is zASIC2 

from zebrafish. With respect to the remaining zASIC2 we speculate that this channel 

contains some unknown sequence features that might be responsible for the proton-

insensitivity of zASIC2 and that cover the impact of the four crucial amino acids. 

However, it has to be mentioned that this ‘H+ sensitivity signature’ is not conserved in 

all ASICs that show sensitivity to protons. For example, the proton-sensitive zASIC1.1 

does not contain the crucial histidine residues. Thus, there are still some exceptions 

that prevent an unequivocal prediction for proton sensitivity, solely based on the 

amino acid sequence. 

The characterization of the proton sensitive shark ASIC1b led also to the question, 

when proton-sensitivity first appeared in ASICs. So far, shark ASIC1b is the most 

ancient ASIC that has been shown to be proton-sensitive, a fact that contradicts the 

earlier conclusion of an appearance of proton-sensitivity of ASICs with the rise of 

bony fishes.  

Moreover, several other findings support the view that chordates even lower than 

cartilaginous  fish  express  proton-sensitive ASICs.  First  of  all,  the  genome  of  the  
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urochordate Ciona contains one ASIC gene that gives rise to two spliced forms (Coric 

et al., 2008) that also comprise the ‘H+ sensitivity signature’. This suggests that the 

proton-sensitivity of this ASIC should be also re-evaluated. Second, although the 

cloned ASIC1 from the jawless vertebrate lamprey was also identified as a proton-

insensitive channel (Coric et al., 2005) and even though it does not contain the ‘H+ 

sensitivity signature’ the lamprey genome possibly comprises other ASIC genes that 

contain the ‘H+ sensitivity signature’ and thus also might be proton-sensitive. Even 

mammals contain ASICs such as ASIC2b and ASIC4, which are not proton-sensitive. 

However, ASIC2b was shown to be able to assemble with other proton-sensitive 

subunits to form heteromeric channels with distinct properties. If the genome of 

lamprey also contains other ASIC genes it could be possible that ASIC1 assembles 

with these subunits to form heteromeric and proton-sensitive channels. Recently, it 

was shown that lamprey ASIC1 can be converted into a channel that responds to 

extracellular acidification with non-desensitizing currents after replacement of only two 

residues in the proximal part of the extracellular domain (Li et al., 2010). One might 

speculate that the proton-insensitivity of ASICs from Ciona and lamprey are 

secondary acquired features caused by point-mutations early in evolution. On the 

other hand, the fact that the closely related HyNaC channels from the freshwater-

polyp Hydra magnipapillata are activated by neuropeptides (Golubovic et al., 2007; 

Dürrnagel et al., 2010) suggests that ASICs from evolutionary early species could 

also be activated by other ligands than protons and that the first proton-sensitive 

ASIC evolved with the rise of cartilaginous fish. 

 

 

5.2 Gating kinetics and the generation of sustained currents 

In addition to the identification of shark ASIC1b as a proton-sensitive ion channel this 

work showed that the sustained current component is a striking feature of this channel 

and unique among the members of the ASIC subfamily. 

Detailed characterization of this sustained current revealed several properties that 

distinguishes the sustained current of shark ASIC1b from the sustained currents of 

other ASICs:  

(1) it is the most pH-sensitive sustained current (Fig. 3.7 A, B) that is not a window 

current (as known for ASIC3 (Yagi et al., 2006), and 
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(2) it can be blocked by amiloride (Fig. 3.5), different from the sustained currents of 

zebrafish ASIC4.1 and ASIC4.2 (Paukert et al., 2004b; Chen et al., 2007). 

 

Although most ASICs exhibit only transient and completely desensitizing currents 

several studies pointed to an involvement of ASICs to acidic and inflammatory pain. 

But is it possible that channels with transient currents are able to function as sensors 

for long lasting stimuli? This paradox was solved when it was shown that pH 

activation and steady-state desensitizing curves of ASIC3 overlap (Yagi et al., 2007), 

thus providing a mechanism for ASIC3 to carry sustained currents. However, the 

window of overlap of those two curves is in a narrow pH range and the sustained 

currents of ASIC3 that are based on the window current are rather small compared to 

the transient currents elicited by strong acidification. 

The first part of the results shows that sASIC1b also carries a bell-shaped window 

current at mild acidification between pH 7.4 and pH 6.6 (Fig. 3.7 A, B). However, also 

a second sustained current component developed at slightly more acidic pH values 

below pH 7.0. This shows that the sustained current between pH 7.0 and pH 6.6 is a 

mix of window current and an unselective sustained current. At pH 6.4 the window 

current no longer contributes to the sustained current (Fig. 3.7 A,B). Because the 

transient current was shown to be selective for sodium ions whereas the sustained 

current was an unselective current, we postulated that both current components are 

generated by different open states (O1 and O2) of the channel. 

Further investigations uncovered the amino acids crucial for the generation of this 

sustained current in the β1-β2 linker region at the proximal part of the extracellular 

domain near the first α-helical transmembrane domain.  

Powerful evidence for the importance of the amino acid triplet (M109DS) and especially 

residue D110 in this linker region for generating sustained currents was provided by 

the observation that this sequence is not only necessary for the sustained current in 

shark ASIC1b but that it is also sufficient to introduce sustained currents in 

homomeric rat ASIC1a channels (Fig. 4.4). 

Again, this approach revealed that a single aspartate (D110) is sufficient for generating 

a sustained current effect (Fig. 4.4). 

Furthermore, amino acid substitutions between shark ASIC1b and rat ASIC1a 

showed  that  the   M109DS   triplet   induces  not  just  a  sustained  current  in  ASIC1    

 



5. General Discussion 

 103 

 

channels   but   also  influences   the  time  constants   of   desensitization  of shark 

ASIC1b and rat ASIC1a (Fig 4.4). 

The picture that was drawn from these observations led to the conclusion that the 

amino acids in this linker region control the stability of the open state of the channel, 

which is partly displayed by the speed of desensitization, and the stability of the 

desensitized conformation, observable by the generation of the sustained current. 

 

 

5.3 The crystal structure of chicken ASIC1 confirms observations of      

 gating mutants and uncovers interacting regions 

Since shark ASIC1b and chicken ASIC1 share 70% of their amino acids, the crystal 

structure of chicken ASIC1 (Fig. 1.5) also provides a good model for the desensitized 

state of shark ASIC1b.  

The crystal structure provides information which can explain the importance of the 

amino acid triplet M109DS for the generation of the sustained current on the basis of 

unfavorable amino acid interactions in the desensitized state of the channel. 

Modulation of the crystal structure of cASIC1 suggests that residue D110 in sASIC1b 

comes in close contact to residue A428 in the linker region between β11 and β12, near 

the second transmembrane domain. Mutation of D110 to an alanine yields a channel 

that no longer shows a sustained current (Fig. 4.8), whereas the A428D mutant 

displays a highly increased sustained current component compared to the wildtype 

shark ASIC1b (Fig. 4.8). Both mutant channels support predictions made by the 

crystal structure and endorse the idea that the sustained current of shark ASIC1b is 

indeed generated by unfavorable interactions between those two linker regions. Two 

neutral residues (alanine) at positions 110 and 428 do not show sterical forces and 

thus no sustained current is generated. When both positions carry negatively charged 

residues (aspartates) that are able to repel each other the sustained current was 

much more pronounced compared to the shark ASIC1b wildtype which carries one 

negatively charged (D110) and one neutral residue (A428). 

Moreover, modeling of two cysteines at positions 110 and 428 and selection of the 

best side chain rotamer conformations revealed a distance between the S-atoms of 

both cysteines of less than 3 Å suggesting a possible formation of a disulfide bridge in 

the desensitized state of the channel (Fig. 4.9 A).  Because of the discrepancy of 1 Å 

between the observed and the ideal distance of a disulfide bridge  (ideal  are  2.05  Å)  
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and the non-perfect dihedral angle  of  120° (instead  of  the  ideal  90°)   we  

predicted a strained disulfide bond. Electrophysiological recordings of the shark 

ASIC1b double cysteine mutant firstly confirmed the prediction of a possible formation 

of a disulfide bond, which traps channels under standard conditions (pH 7.4) in the 

desensitized state. Raising the pH from 7.4 to 7.8 or by application of the reducing 

agent DTT at pH 7.4 easily hydrolyzes the disulfide bridge thus also providing 

evidence that this disulfide bond is under considerable strain (Fig 4.9 C).  

Furthermore, it was also shown that cysteine mutations of the residues at 

corresponding positions in the mammalian rat ASIC1a also form disulfide bonds in the 

desensitized state (Fig 4.10 B). This observation strongly confirmed the relevance of 

the findings for the shark ASIC1b double cysteine mutant and suggests a general 

mechanism for the desensitization gating of ASIC1. 

 

 

5.4 Cysteine-modification assays complement the static picture of                       
 the crystal structure 

As shown previously, the crystal structure of chicken ASIC1 provided a valuable basis 

for uncovering possible interacting regions. Again, the aspartate at position 110 in 

shark ASIC1b was identified as the most crucial residue for the generation of a 

sustained current. Furthermore, in the desensitized state the position 110 is in close 

proximity to residue 428, as supported by the double cysteine mutants. Unfortunately, 

the crystal structure represents only a static picture of the desensitized state of the 

channel. In order to get a more dynamic image and to shed light on possible gating 

movements of the channel, MTS-modification assays were performed with promising 

results for the single cysteine mutant at position 110 (shark ASIC1b D110C). 

MTS reagents are sulfhydryl reactive reagents that are commonly used for 

modification assays where they from disulfide bonds with cysteine residues of 

proteins, for example ion channels, and influence the function of modified channels. 

With this assay it was shown that position 110 of shark ASIC1b was modified much 

faster in the closed state at pH 7.4 than in the desensitized state at pH 6.0 (Fig. 4.5). 

This finding led to the interpretation that residue 110 is accessible in the closed state 

but might  be  buried  within  the  channel  or  is  interacting  with a different residue in 

the desensitized state. Moreover, this result clearly showed that position 110 is 

dynamic during the desensitization movement. 
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The MTS-modification assays provided additional evidence that the β1-β2 linker 

region belongs to the important regions that influence and direct the gating kinetics of 

shark ASIC1b.  

Taken together, in this work the gating kinetics of the acid sensing ion channel shark 

ASIC1b were characterized and the unique sustained current of shark ASIC1b was 

discovered. Additionally, the regions that are important for the specific gating kinetics 

and the generation of the sustained current were identified and the direct interaction 

of two linker regions was uncovered on the basis of the crystal structure of chicken 

ASIC1 and was confirmed by the construction and electrophysiological 

characterization of appropriate channel mutants. 

Taken together, the results of this thesis contribute to a better understanding of 

desensitization gating of ASICs and provide possible targets for pharmacological 

approaches seeking to modify the gating mechanisms of ASICs.  
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6. List of abbrevations 

µA   microampere 

µl   microliter 

µM   micromoles per liter 

τ   time constant 

A   alanine 

amil   amiloride 

ASIC   acid-sensing ion channel 

°C   degree Celsius 

Ca2+   calcium 

CaCl2   calcium chloride 

C.elegans  Caenorhabditis elegans 

cDNA    complement DNA 

Cl-    chloride 

cm    centimeter 

Cm    membrane capacitance 

CNS    central nervous system 

CRD    cysteine-rich-domain 

cRNA   complement RNA 

D    aspartic acid 

DEG    degenerin 

DEL    degenerin-like protein 

DEPC   diethylpyrocarbonate 

DNA    deoxyribonucleic acid 

DRG    dorsal root ganglion 
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ECM    extracellular matrix 

EC50   ligand concentration necessary for half– maximal activation 

EDTA    ethylenediaminetetraacetic acid  

ENaC    epithelial sodium channel 

ERD    extracellular regulatory domain 

F    phenylalanine 

FaNaC   FMRFamide-gated sodium channel 

Fig.    figure 

FLR-1   fluoride resistant mutant-1 

FMRFamide  phenylalanine-methionine-arginine- phenylalanine amide 

G   glycine 

GPCR   G-protein coupled receptor 

h    hour 

H+   proton 

HA   hemagglutinin 

HG    histidine-glycine 

H3N+-    amino terminus 

5-HT    5-hydroxytryptamine (serotonine) 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HyNaC  Hydra sodium channel 

I    current  

Ic    capacitative current 

IC50   ligand concentration necessary for half– maximal inhibition 

ID   inner diameter 
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Ii   ionic current 

Im   membrane current 

Imax   maximal current 

INaC   intestinal sodium channel  

K   lysin  

K+   potassium 

KCl    potassium chloride 

kDa    kiloDalton 

L    leucine 

M   moles per liter 

M    methionine 

MEC    mechanosensitive mutations 

MES    2-(N-morpholino)ethanesulfonic acid 

MDEG   mammalian degenerin 

mg    milligram 

Mg2+    magnesium     

MgCl2   magnesium chloride 

min    minute 

ml    milliliter 

mm    millimeter 

mM    millimoles per liter 

mRNA   messenger ribonucleic acid  

mV    millivolt 

MSD    membrane spanning domain 

MΩ    MegaOhm 
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N    asparagine 

n    number 

Na+    sodium 

NaCl    sodium chloride 

ng    nanogram 

Na2HPO4   di-sodium hydrogen phosphate 

nm    nanometer 

NMDA   N-methyl-D-aspartic acid 

NMDG+   D(-)-N-Methylglucamine nitric oxide 

OD    outer diameter 

OR-2    oocyte ringer ́s solution 2 

OTC-20   oocyte testing carousel – 20 

P    proline 

p    probability 

PNS    peripheral nervous system 

post-TM1   post-transmembrane domain 1 

PVP    polyvinylpyrrolidone 

PPK   pickpocket 

Q    glutamine 

Qm    membrane charge 

R    arginine 

Ri    resistance of the current electrode 

RNA    ribonucleic acid 

RPK    ripped pocket 

S   serine 
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SD    standard deviation 

sec    second 

SEM    standard error of mean 

T    threonine 

Tab.    Table 

TEVC    two electrode voltage clamp 

TM    transmembrane domain 

trunc.    truncated 

U   units 

UNC    uncoordinated locomotion mutant 

UV   ultra violet 

V   voltage 

V   valine 

Vhold    holding potential 

Vm   membrane potential 
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