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Abstract 

 

Microbial screening experiments are of utmost importance for developing biotechnological 

processes. The cultivation parameters for selecting the most suited microorganisms during 

these screening experiments should match the parameters for the subsequent production 

process as exact as possible. It is absolutely necessary, to apply comparable cultivation con-

ditions in small-scale screenings and large-scale production processes, to ensure a 

meaningful analysis of the screening experiments as well as a successful scale-up of its 

results. In the presented work, different facets of screening processes were analyzed and 

solutions for their optimization regarding the aforementioned general principles were 

investigated. 

 

One key factor to improve the comparability of screening and production-scale experiments is 

to establish an online monitoring of cultivation parameters not only in large- but also in small-

scale cultivations. To enhance the online information obtained during screening and process 

development in shake flasks, the RAMOS device for measuring respiration activities in shake 

flaks and a fiber optical, online pH-measurement technique were successfully combined.  

 

To further improve the comparability between the different scales and to enable a more 

reliable scale-up of experiments, the cultivation strategy (i.e. the progression of pH-value and 

substrate concentration during the cultivation) has to be comparable in small- and in large-

scales. Thus, the in large-scale applied pH-control and fed-batch operational mode have to be 

adapted to small scale screening experiments.  

 

A disc-shaped polymer-based controlled-release system for pH-control in shake flasks was 

developed and applied in this thesis. It consists of a polymer matrix in which sodium 

carbonate as pH-control reagent is encased. When applied in cultivation media, this system 

releases sodium carbonate in pre-defined kinetics. With this system, it was possible to 

substantially reduce the buffer concentrations in shake flask cultivations of Escherichia coli, 

while the pH-values remained in the physiological range of microbial growth.  
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An additional physiological effect of the pH-value is its influence on the growth behavior of 

the microorganisms and thereby especially on the duration of the lag-phase. Different lag 

times of the microorganisms considerably affect the outcome of screening processes. In this 

work it could be shown that the initial pH-value of the cultivation media has an enormous 

strain dependent effect on the lag time of E. coli cultures. For three E. coli strains a lower 

initial pH-value resulted in a shorter lag phase and one strain showed the opposite behavior. 

This parameter should be considered in the design of production processes as well as of 

screening experiments. 

 

Another analyzed facet of the screening process was the microbial growth in precultures. It 

could be demonstrated, that differences in the inoculum from precultures in shaken 

bioreactors have a tremendous effect on the microbial growth and thus on rational design of 

screening processes. Therefore, a new technique applying fed-batch mode in high-throughput 

precultivations for equalizing the initial parameters of subsequent screening experiments was 

introduced. For fed-batch cultivation in shake flasks, glucose containing polymer-based 

controlled-release discs were applied. For high-throughput applications a new fed-batch 

microtiter plate, with immobilized polymer-based controlled-release systems at the bottom of 

each well were presented. The newly developed fed-batch precultivation method enables 

equalized growth of all screened strains and will generate, therefore, more relevant and 

reliable data in subsequent main screening experiments. The feasibility of the presented 

concept has been proven for cultivations of E. coli and Hansenula polymorpha. 

 

All these results demonstrate the importance of choosing the correct cultivation parameters 

for a successful microbial screening. Especially the control of the pH-value and the 

controlled-release of substrate are important for several aspects of screening experiments. The 

systems and methodologies described in the current work significantly improve screening 

procedures and the meaningful analysis and scale-up of the obtained results.  
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Zusammenfassung 

 
Mikrobielle Screeningexperimente sind von großer Bedeutung für die Entwicklung biotech-

nologischer Prozesse, u.a. zur Auswahl des geeignetsten Mikroorganismus. Die Kultivie-

rungsbedingungen in solchen Versuchen sollten den Bedingungen eines nachfolgenden Pro-

duktionsprozesses so gut wie möglich entsprechen. Dabei ist es absolut notwendig, vergleich-

bare Kultivierungsbedingungen in Kleinkulturscreenings und im großen Produktionsmaßstab 

zu verwenden, um sowohl eine aussagekräftige Analyse der Screeningexperimente treffen zu 

können, als auch ein erfolgreiches Scale-up zu realisieren. In dieser Arbeit werden 

verschiedene Facetten von Screeningexperimenten analysiert und Lösungen für die 

Optimierung in Hinsicht auf die vorher genannten, generellen Prinzipien untersucht. 

 

Ein zentraler Punkt zur Verbesserung der Vergleichbarkeit von Screeningexperimenten und 

Versuchen im Produktionsmaßstab ist, eine online Überwachung von Kultivierungsparame-

tern sowohl im großen, als auch im kleinen Maßstab zu etablieren. Zur Weiterentwicklung der 

online im Schüttelkolben gemessenen Parameter während des Screenings und der Prozess-

entwicklung, wurden das „Respiration Activity Monitoring System“ (RAMOS) zur Messung 

von Atmungsaktivitäten und eine optische online pH-Messtechnik erfolgreich kombiniert.  

 

Zur Verbesserung der Vergleichbarkeit der verschiedenen Maßstäbe und um zuverlässiges 

Scale-up zu ermöglichen, müssen die Kultivierungsstrategien (z.B. der Verlauf der pH-Werte 

und der Substratkonzentrationen während der Kultivierung) im kleinen und im großen 

Maßstab vergleichbar sein. Aus diesen Gründen müssen die im großen Maßstab verwendete 

pH-Regelung und die Fed-batch-Betriebsweise für Screeningexperimente etabliert werden. 

 

Ein scheibenförmiges, polymerbasiertes Freisetzungssystem zur pH-Kontrolle in Schüttel-

kolben wurde in dieser Arbeit vorgestellt und verwendet. Es besteht aus einer Polymermatrix, 

in die Natriumcarbonat als pH-Stellmittel eingebettet wurde. Wird es im Kultivierungs-

medium verwendet, setzt es das Natriumcarbonat in einer bestimmten Kinetik frei. Mit Hilfe 

dieses Freisetzungssystems war es möglich, die Pufferkonzentrationen in Escherichia coli 
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Schüttelkolbenkultivierungen drastisch zu reduzieren. Dabei konnten die pH-Werte in einem 

Bereich gehalten werden, welcher für die Mikroorganismen physiologisch verträglich ist.        

 

Die pH-Werte in Kultivierungsmedien haben einen starken physiologischen Einfluss auf das 

mikrobielle Wachstum von Mikroorganismen, wobei insbesondere die Länge der Lag-Phase 

beeinflusst wird. Unterschiedliche Lagzeiten von Mikroorganismen haben wesentliche Aus-

wirkungen auf die Ergebnisse von Screeningexperimenten. In dieser Arbeit wird demonstriert, 

dass Start-pH-Werte von Kultivierungsmedien enorme, stammspezifische Effekte auf die 

Lagzeit von E. coli Kulturen aufweisen. Für drei verschiedene E. coli Stämme konnte eine 

verkürzte Lagzeit bei niedrigeren Start-pH-Werten und für einen weiteren Stamm das gegen-

teilige Verhalten nachgewiesen werden. Dieser Parameter sollte daher bei der Auslegung von 

Produktionsprozessen, als auch von Screeningexperimenten berücksichtigt werde.      

 

Ein anderer analysierter Aspekt von Screeningexperimenten war das mikrobielle Wachstum 

von Vorkulturen. Es konnte demonstriert werden, dass Unterschiede im Inoculum von Vor-

kulturen in geschüttelten Bioreaktoren einen sehr großen Einfluss auf das Wachstum von 

Mikroorganismen haben und damit das rationale Design von Screeningprozessen maßgeblich 

beeinflussen. Aus diesem Grund wurde eine neue Technik zur Hochdurchsatz fed-batch 

Kultivierung von Vorkulturen präsentiert, mit der die Startparameter anschließender 

Screeningexperimente entsprechend angepasst werden können. Für die fed-batch Kultivierung 

in Schüttelkolben wurden glukosehaltige, polymerbasierte Freisetzungsscheiben verwendet. 

Für Anwendungen im Hochdurchsatz wurde eine neue Fed-batch-Mirkrotiterplatte vorgestellt, 

die am Boden von jedem Well ein immobilisiertes, polymerbasiertes Freisetzungssystem 

enthält. Diese neu entwickelte Methode zur fed-batch Vorkultivierung erlaubt das Angleichen 

des Wachstums aller gescreenten Stämme und generiert dadurch zuverlässigere Daten im 

anschließenden Screeningexperiment. Die erfolgreiche Anwendung dieser neuen Methode für 

die Vorkultivierung von E. coli und Hansenula polymorpha wird in dieser Arbeit dargestellt. 

 

Die vorgestellten Ergebnisse demonstrieren, wie wichtig eine sorgfältige Auswahl der 

Kultivierungsparameter für ein erfolgreiches mikrobielles Screening ist. Insbesondere die 

Kontrolle des pH-Wertes und die kontrollierte Freisetzung von Substraten sind relevant für 

verschiedene Aspekte von Screeningexperimenten. Die in dieser Arbeit entwickelten Systeme 

und Methoden verbessern signifikant das Screening von Mikroorganismen und ermöglichen 

ein sinnvolles Scale-up in den Produktionsmaßstab.     
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cHA  acid concentration of buffer   [mol/L] 

cHA,0  initial acid concentration of buffer  [mol/L] 

cA-  base concentration of buffer   [mol/L] 

cA-,0  initial base concentration of buffer  [mol/L] 

cH+  concentration of free protons   [mol/L] 

cHA+A-  total concentration of buffer   [mol/L] 

pKA  acid dissociation constant   [-] 

a.u.  arbitrary units  

 

Feedrate  feeding rate   [g/L/h] 

Kd decay term   [1/h] 
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1. Introduction 

 

1.1 Screening processes 

 

Biotechnological process development consists of the selection of optimal producing 

microorganisms and culture conditions to produce value-added product and the scale-up into 

large-scale processes (Fig 1-1). The first step is the primary screening of potential production 

microorganisms. Here, a large number of experiments have to be performed in parallel to 

identify a small number of production microorganism candidates. In the secondary screening, 

the previously selected microorganisms are analyzed in detail to finally choose the production 

strain. Furthermore, the cultivation parameters such as the media, optimal pH-values etc. are 

investigated. After a production strain is selected the next step is the process development in 

lab- and pilot-scale fermentations to determine the optimal process conditions for a successful 

production process. Finally, the process is scaled up to the large production-scale. 

 

The selection of the optimal strain determines the effectiveness of the large-scale production 

process. After screening, the characteristics of the chosen strain limit the productivity of the 

process. If the wrong strain has been chosen, these limits can not be compensated even with 

an optimal process development. Therefore, the characterization and the layout of optimal 

screening conditions are crucial issues (Stöckmann et al. 2003b). Here, optimal screening 

conditions means: as close as possible to the final production process.    
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Fig. 1-1: Different scales in biotechnological process development. Primary screening: shake flasks 
on a shaker (Schott, Mainz, Germany); secondary screening: six parallel lab-scale fermentors (Infors, 
Einsbach, Germany) process development: three pilot-scale fermentors (Bioengineering, Wald, 
Switzerland), production scale: three production-scale fermentors (Lactosan, Kapfenberg, Austria)  
(adapted from (Jeude 2007)) 
 

1.2 Drawbacks of state-of-the-art screening processes  

 

Freyer et al. defined a representative screening system with the following statement: 

“Optimization objectives perform similarly in screening and production system” (Freyer et al. 

2004). Therefore, it is absolutely necessary to define these optimization objectives, such as 

the productivity, carbon yield or growth conditions, for the screening with the same values as 

in the production scale. To obtain similar and optimal results in the different scales it is 

essential to apply the cultivation parameters of the desired production processes also in the 

screening experiments. Only then, screening experiments can provide the microorganism 

optimally suited for the parameters applied in the subsequent large-scale process. Otherwise, 

microorganisms will be identified, that are optimally adapted to the parameters used in small-

scale processes. Therefore, the problems and challenges of such screening processes have to 

be identified and solved, so that the small-scale optimally represents the production process 

and meets the requirements of high throughput applications. 

 

Shaken bioreactors — especially shake flasks and microtiter plates — are typically applied in 

biotechnological high-throughput screening and process development (Büchs 2001; Duetz 

2007; Rao et al. 2009). In shaken bioreactors batch operational mode, where all nutrients are 

provided from the beginning, is generally used for microbial cultivations (Kennedy et al. 

1994; Kumar et al. 2004; Weuster-Botz et al. 2001). In the batch operational mode, high 

initial substrate concentrations and buffer concentrations to prevent excessive pH-drifts 

during the cultivation, are applied. In contrast, biotechnological processes in the industrial 
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scale are usually conducted in fed-batch cultivation mode, where substrates (i.e. the carbon 

source) are added during the cultivation and the pH-value is actively monitored and regulated 

(Kim et al. 2004; Larsson et al. 1997; Wittmann et al. 1995). These differences between the 

screening and the production process are tremendously influencing rational strain selection for 

an optimal production process and hinder an effective scale-up.  

 

The high substrate and buffer concentrations applied in small-scale media may directly inhibit 

microorganism growth or product formation (Stöckmann et al. 2003b). For example, high 

substrate concentrations may repress product formation in catabolite repressed systems 

(Browning et al. 2005; Kramarenko et al. 2000; Stasyk et al. 2004; van Wijk 1968). 

Moreover, some microorganisms such as Escherichia coli and Hansenula polymorpha 

respond to high substrate concentrations by exhibiting overflow metabolism (Gellissen 2002; 

Xu et al. 1999), where large amounts of undesired by-products, such as acetic acid or ethanol, 

are secreted.  

 

The different operational modes (batch or fed-batch) indeed change the metabolic parameters 

of microorganisms. Jeude et al. compared controlled-release fed-batch and batch mode 

fermentations of H. polymorpha (Jeude et al. 2006). They hereby found that delivering low 

levels of glucose avoids by-product formation caused by overflow metabolism. Moreover, 

derepression occurred for H. polymorpha RB11 pC10-FMD (PFMD-GFP) leading to a 35-fold 

and 420-fold GFP formation on Syn6-MES and YNB mineral media, respectively, compared 

to batch mode. Oh et al. showed that also the carbon source significantly affects the 

transcription profile of this microorganism (Oh et al. 2004). They demonstrated that the 

expression of 32 genes changed with methanol as carbon source compared to glucose as 

carbon source (Oh et al. 2004).  

 

The necessary high buffer and substrate concentrations in small-scale cultivation media lead 

to low water activity and high osmolarity. These conditions negatively influence the growth 

of microorganisms. For example, since the optimal osmolarity of a medium to cultivate 

Escherichia coli is approximately 0.3 Osmol/L, increasing or decreasing the osmolarity 

results in reduced bacterial growth rates (McLaggan et al. 1990; Record et al. 1998). 

Consequently, having to use high buffer and substrate concentrations might mask the 

screening for optimal production strains of microorganisms with low osmotolerance. 
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Therefore, finding a new system which would avoid the use of highly concentrated buffer 

would enhance the output of the screening.  

 

Another important parameter for cultivating microorganisms is the pH-value. The best pH-

range for cultivating Escherichia coli, i.e. 6.5-7.5, and varies with temperature (Davey 1994; 

Munro 1970). The metabolic activity of the cultivated microorganisms influences the pH-

value of the surrounding medium in different ways. One of the most important pH affecting 

parameter in microbial cultivation processes is, for example, the consumption of ammonium, 

where the uptake of one ammonium molecule generates one proton (Christensen and Eriksen 

2002; Siano 1995). Other examples are the the consumption of nitrogen containing complex 

compounds, the production and consumption of organic acids (i.e. acetic or lactic acid) and 

metabolically generated bicarbonate ions (Losen et al. 2004; Siano 1995). Therefore, the pH-

values change significantly during fermentations. Consequently, a pH-control is absolutely 

vital to maintain physiological pH values during microbial cultivation (Weuster-Botz 2005). 

 

An often underestimated problem while working with different clones in screening processes 

is the non parallel and non equal growth of batch cultures. These growth differences are 

caused by variances of individual clones regarding, for example, initial biomass 

concentrations, lag phases or specific growth rates. The non parallel growth in precultures 

can, therefore, have a tremendous effect on the performance of bioprocesses. Studier (2005) 

emphasizes that it is very difficult in high-throughput screening to obtain all of the cultures in 

a comparable state of growth. One strategy for achieving uniform conditions is to cultivate the 

microorganisms until the stationary growth phase (saturation) (Studier 2005). Though, when 

using this principle it has to be assured that the final pH of the cultures is not too acidic when 

they reach saturation. Moreover, the stationary growth phase in batch mode is characterized 

by tremendous structural and physiological effects on bacterial cells (Baev et al. 2006; 

Hengge-Aronis 1996; Huisman et al. 1996). Some authors have described that precultures 

remaining unequal time periods in the stationary phase show variations in the lag phase of 

main cultures (Hornbaek et al. 2004; Pin and Baranyi 2008). It is also known that the 

inoculum history is very important for the whole main cultivation process regarding 

reproducibility of growth kinetics (Ferenci 1999; Neves et al. 2001; Webb and Kamat 1993). 

Consequently, the growth of precultures to stationary phase can have negative effects on the 

following main cultivation. These factors make screening for the best producing clones very 

difficult with conventional approaches.  
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1.3 Screening tools 

 

For optimizing screening processes different tools and devices were developed in the last 

years (Betts and Baganz 2006). Anderlei et al., for example, presented the Respiration 

Activity MOnitoring System (RAMOS) for online measurements of the respiration activity 

parameters (oxygen transfer rate (OTR), carbon dioxide transfer rate (CTR) and the 

respiratory quotient (RQ)) in shake flasks (Anderlei and Büchs 2001; Anderlei et al. 2004). 

Measuring OTR online during cultivation is the most suitable way to quantify the 

physiological state of aerobic microorganisms. For example, oxygen limitations, product 

inhibition and diauxic growth can be identified. The RAMOS device was successfully 

employed in different projects (Danielson et al. 2004; Hermann et al. 2001; Peter et al. 2004; 

Seletzky et al. 2006; Seletzky et al. 2007). Losen et al., for example, used it to optimize 

culture conditions and nutrient composition of an Escherichia coli fermentation medium in 

shake flasks (Losen et al. 2004). Furthermore, the RAMOS technology is especially suitable 

for optimizing screening cultures. Stoeckmann et al., for instance, demonstrated the impact of 

oxygen limitations during screening processes with Hansenula polymorpha (Stöckmann et al. 

2003a; Stöckmann et al. 2003b) and Zimmermann et al. for Corynebacterium glutamicum 

(Zimmermann et al. 2006).  

 

For the cultivation of microorganisms in microtiter plates (MTP) the BioLector was 

developed recently (Kensy et al. 2009; Samorski et al. 2005). The BioLector is able to 

measure online the microbial growth, fluorescence of reporter proteins, the pH and DOT in 

microtiter plates (MTPs) without interrupting the shaking of the plate. Therefore, the oxygen 

supply and the mixing of the cultures are permanently provided during the online 

measurements. This system consists of an orbital shaker, a MTP holder, an x-y positioning 

device, an optical fiber, a spectrophotometer for measuring the MTP and a computer. 

Furthermore, Huber et al. presented the Robo-Lector, a platform for high-throughput 

cultivations using a combination of the BioLector and a liquid handling robot (Huber et al. 

2009). With these characteristics the BioLector is an excellent tool for screening experiments 

and process development.      
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1.4 Polymer-based controlled-release systems for fed-batch cultivation and 

pH-control in shaken bioreactors 
 

To enhance the comparability of small-scale cultivations in shaken bioreactors and large scale 

fermentations some methods have been developed for cultivating microorganism in high-

throughput, utilizing fed-batch mode in shake flasks or MTPs. Penula-Perälä et al. introduced 

a technique for cultivation in fed-batch mode in shaken bioreactors using an enzyme 

controlled glucose auto-delivering system (Panula-Perälä et al. 2008). Moreover, Jeude et al. 

presented an easy-to-use polymer-based controlled-release system for the fed-batch 

cultivation in shake flasks without the need for additional enzymes or equipment such as 

pumps and tubes etc. (Fig. 1-2) (Jeude et al. 2006). This controlled-release system contains a 

silicone elastomer (polydimethylsiloxane) matrix in which glucose is encased (Fig. 1-2a). In 

an aqueous system, such as culture media, the glucose is released in defined kinetics, 

depending on diffusion and swelling of the controlled-release system (Dittrich 2006; Jeude et 

al. 2006). Working principle is that water diffusing into the polymer matrix leads to the 

formation of micro-cracks in the polymer matrix. These micro-cracks then increase the release 

of the glucose from the matrix (Dittrich 2006).  

 

A comparable technique for fed-batch cultivation in microtiter plates with an immobilized 

polymer-based controlled-release systems at the bottom of each well was published 

(Stöckmann et al. 2009) (compare chapter 6). With these controlled-release fed-batch MTPs it 

was demonstrated for H. polymorpha strains that fed-batch screening with glucose as carbon 

source is considerably better than screening in batch mode with glycerol or glucose as C-

source (Scheidle et al. 2010; Stöckmann et al. 2009). In these studies, screenings of clone 

libraries of H. polymorpha were performed. Three different experimental set-ups were used to 

demonstrate the impact of the operational mode on the screening. The authors used batch 

cultivation with (1) glucose as substrate which catabolite represses the product formation and 

(2) glycerol as carbon source which is partially repressing, respectively. The third set-up used 

fed-batch cultivation with glucose (3) as limiting substrate using the controlled-release 

system. Interestingly, screenings in fed-batch mode with glucose as substrate resulted in 

different yeast strains being selected than those cultivated in batch mode with glycerol or 

glucose (Scheidle et al. 2010). The differences occurred due to the influence of the various 

cultivation parameters on the metabolism of the microorganisms. These results lead to the 
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conclusion that fed-batch screening is the preferable method for selecting production 

microorganisms.  

 
Fig. 1-2: Polymer-based controlled-release systems for shake flasks. a: Cut and top-view of a disc-
shaped controlled-release systems with enclosed glucose or sodium carbonate crystals; b: regular 
shake flask with three disc-shaped controlled-release systems (adapted from Jeude et al. (2006)) 
 

One of the most important differences between small- and large-scale cultivations is 

controlling the pH of the medium. As discussed in chapter 1.2, high buffer concentrations are 

typically used to prevent excessive pH-drifts during microbial cultivations in shaken 

bioreactors. This high buffer concentration leads to high osmolarity and, therefore, signi-

ficantly influences the cultivation process compared to large-scale fermentation. It is 

necessary to develop systems for pH-control in shaken bioreactors that do not need high 

buffer concentration in the medium. Weuster-Botz et al. presented a functional system for pH-

control in shake flasks that applies pH-probes, pumps and other equipment (Weuster-Botz 

2005; Weuster-Botz et al. 2001). However, because this system is very complex, it is 

impractical for high-throughput applications. Therefore, it is necessary to develop an easy-to-

use system for pH-control in shake flasks without the need for additional equipment. 
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2. Objectives 

 

In this work different crucial parts of microbial screening experiments were analyzed and 

methods were developed to optimize the screening process. Here, the main focus is to develop 

methods and cultivation conditions in small-scale that are comparable to large-scale 

processes. The main tools to realize this goal are controlled-release systems for fed-batch 

mode cultivation and for pH-control in small-scale cultivations.  

 

To enhance the information output of screening processes and process development steps in 

small-scale cultivations in shake flaks, a combination of the RAMOS device and an optical 

fiber pH-measurement technique will be presented in chapter 3. With this combination an 

efficient development of controlled-release systems for pH-control in shake flasks will be 

possible. 

 

One of the most important cultivation parameter is the pH-value. To control this value during 

fermentations in shaken bioreactors, high buffer concentrations are used. These highly 

concentrated buffers lead to high osmotic pressure (as described in chapter 1.2), which may 

negatively influence the growth of microorganisms. Additionally, strains screened in media 

with high osmotic pressure may possibly be selected for their osmotolerance but not for the 

parameters required in the large-scale process, such as the productivity. To reduce the buffer 

concentration in such media and to establish conditions in shake flasks that are comparable to 

actively pH-controlled large-scale fermentors, a polymer-based controlled-release system for 

pH-control in shake flasks will be presented in chapter 4. 

  

Another important cultivation parameter in screening and production processes is the initial 

pH-value of the medium. As the initial pH-value dramatically influences the lag-phase of 

microorganisms, it is important to investigate this influence on the used microorganisms. In 

chapter 5 the influence of the initial pH-value on the lag-phase of four different E. coli strains 

is investigated. 
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Furthermore, different biomass concentrations and physiological states (i.e. growth phases) of 

various microorganisms in precultures have a tremendous influence on the main screening 

process. In this work, a new concept to cope with these problems in high-throughput 

precultures is elaborated. The strategy behind this concept is to use the fed-batch mode 

instead of the conventional batch mode in the precultivation step. For fed-batch cultivation, 

disc-shaped polymer-based controlled-release systems for shake flasks are used. Together 

with the Institute of Textile Chemistry and Macromolecular Chemistry (ITMC) of the RWTH 

Aachen University new MTPs with polymer-based controlled-release matrices immobilized at 

the bottom of each well are developed and applied in this work to demonstrate the high-

throughput application of this strategy. The principle of this precultivation strategy is 

described by a mathematical model and studied experimentally with an E. coli and a 

Hansenula polymorpha strain (see chapter 6).  
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3. Measuring pH and oxygen transfer rates using a combination 

of fiber optical technique and RAMOS 

 

3.1 Introduction  

 
Up to now shaking bioreactors are the most commonly used reaction vessels in microbiology 

and biotechnology (Büchs 2001). Several thousand shake flask experiments are carried out 

annually for strain development, screening processes and media optimization in large 

companies (Büchs 2004; Freyer et al. 2004). For such applications, especially for media 

optimization, monitoring of cultivation parameters is essential. The information obtained from 

these experiments with online monitoring gives a better insight into limitations, inhibitions 

and the physiological state of the microorganisms during the cultivation, thus, allowing the 

development of optimized production processes in the biotechnology industry.    

 

In chapter 1.3 the RAMOS device for online measurements of the respiration activity 

parameters (OTR, CTR and RQ) in shaking flasks is described. This system gives valuable 

information about, for example, oxygen limitations, product inhibition and diauxic growth of 

the cultivated and screened microorganisms. Other critical parameters during fermentation 

processes are pH-values and pH changes. There are different factors that affect the pH-value 

during the growth of microorganisms as discussed in chapter 1.2.  

 

For monitoring pH-values of dairy starter cultures in 96-well microtiter plates, John et al. 

presented an optical method based on two different fluorophores (John et al. 2003). One 

fluorophore is pH sensitive (indicator) and the other one is pH insensitive (reference). To 

determine the actual pH in the solution the fluorescence intensities of both fluorophores are 

measured and with the ratio of both values the pH is calculated (John et al. 2003).  
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Another method for the fiber optical pH-measurement in small scale fermentation processes is 

the dual lifetime referencing (DLR). This method was published by Huber et al. for optical 

measurement of seawater salinity (Huber et al. 2000). DLR is based on the measurement of 

fluorescence decay times of an indicator. The intensity of the excitation light is modulated at a 

specific frequency and the over-all phase shift of the light emitted by a pH-indicator and a 

reference fluorophore is evaluated. The company Presens (Precision Sensing GmbH, 

Regensburg, Germany) commercialized this technology in form of sensor spots, e.g. for the 

pH measurement in microtiter plates (Hydroplates). This technique was used by Puskeiler et 

al. for atline pH-determination in microtiter plates (Puskeiler et al. 2005). Additionally, Kensy 

et al. demonstrated the application of this technology for online monitoring of dissolved 

oxygen and pH in continuous shaken E. coli cultivations performed in 24-well microtiter 

plates (Kensy et al. 2005).  

 

In this chapter a fiber optical online pH-measurement, using DLR, is combined with the OTR-

measurement in the RAMOS device is presented. This combination gives additional online 

information of cultures in screening and process development experiments. The successful 

combined application of both measurement techniques are demonstrated in E. coli 

cultivations.   

 

3.2 Material and Methods  

 

Organism and cultivation conditions 

E. coli BL 21 pRset eYFP-IL6 was maintained at -80°C in LB medium with 100µg/mL 

ampicilin. This strain was described by Samorski et al. (2005) with an additional plasmid 

pLysS. Stock solutions contained 200 g/L glycerol (Carl Roth GmbH & Co. KG, Karlsruhe, 

Germany). 

 

All cultivations were performed at 37°C in 250 mL normal shaking flasks or RAMOS flasks, 

respectively, with 10 mL filling volume (VL). Shaking machines (LS-W in case of RAMOS 

device; ISF-4-W in case of normal shaking flasks) with a shaking diameter (d0) of 50 mm 

from Adolf Kühner AG, Birsfelden, Switzerland were used. The shaking frequency (n) was 

350 rpm. 
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Media and solutions 

A modified Wilms & Reuss (Jeude 2007; Wilms et al. 2001) medium was used for the 

cultivations (henceforth referred to as Wilms-MOPS medium). The medium consists of 20 

g/L glucose; 5 g/L (NH4)2SO4; 0.5 g/L NH4Cl; 3 g/L K2HPO4; 2 g/L Na2SO4; 0.5 g/L 

MgSO4•7H2O; 41,85 g/L 3-(N-morpholino)-propanesulfonic acid (MOPS); 0.1 g/L 

ampicillin; 0.01 g/L thiamine hydrochloride; 1 mL/L trace element solution (0.54 g/L 

ZnSO4•7H2O; 0.48 g/L CuSO4•5H2O; 0.3 g/L MnSO4•H2O; 0.54 g/L CoCl2•6H2O; 41.76 g/L 

FeCl3•6H2O; 1.98 g/L CaCl2•2H2O; 33.39 g/L Na2EDTA (Titriplex III)). The pH was 

adjusted to 7.3 with NaOH. All reagents were of analytical grade and purchased from Carl 

Roth GmbH & Co. KG, Karlsruhe, Germany. 

 

Online measurement of oxygen transfer rates with the RAMOS device 

The RAMOS device for online measuring of OTR in shake flasks was introduced by Anderlei 

et al. (Anderlei and Büchs 2001; Anderlei et al. 2004). The cultivations in the RAMOS device 

were performed in modified 250 mL Erlenmeyer flasks. In the RAMOS flasks the 

hydrodynamic conditions and the concentrations in the gas-phase of the head space are the 

same as in regular Erlenmeyer flasks with cotton plugs (Anderlei et al. 2004).    

 

Samples and offline pH-measurement  

Büchs 2001 described the problem of oxygen limitation while taking samples from the 

RAMOS flasks during the cultivation (Büchs 2001). Therefore, to measure offline data of the 

experiments, additional Erlenmeyer flasks were used for sampling. The E. coli were cultivated 

in parallel in these flasks under the same conditions as the cultivations in the RAMOS device. 

For the first sample 1 mL of the cultivation broth was withdrawn from the respective flask 

and the flask was refilled with sterile, purified water. Then, the same respective flask was 

used for a second sample. Here, only the flask taken for the first sample undergoes a short 

period of oxygen limitation. 

 

The offline pH was measured with a CyberScan pH 510 (Eutech, Nijkerk, The Netherlands) 

pH meter at 37°C. 
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Online pH-measurement by fiber optical technique  

Commercially available sterile pH sensitive sensor spots (Presens, Regensburg, Germany) 

were applied for the fiber optical online pH-measurement in the RAMOS flask. For gluing 

senor spots into the RAMOS flasks, silicone rubber compound (RS, Mörfelden-Walldorf, 

Germany) was used. The spot was glued with a wet stick under the clean bench at the inside 

glass wall of autoclaved flasks at the point with the highest flask diameter (Fig. 3-1). A pH-1 

mini (Presens, Regensburg, Germany) with an optical fiber to illuminate and collect the 

emitted fluorescence from the sensor spot, was applied as pH meter. 

 

The calibration was performed unsterile prior to a cultivation experiment with one sensor 

spot. For calibration six different buffers adjusted to different pH values between pH 4 and 9 

were used to cover the measuring range. It was proven that the calibration was stable for the 

following online measurements with further sterile sensor spots from the same batch (data not 

shown). After 5 experiments a new calibration was performed.   

 

For the online analysis of the optical pH measurement and the calculation of the pH-values 

from the phase shift values, a Visual Basic application in Microsoft Excel was kindly 

provided by Frank Kensy (m2p-laps, Aachen, Germany). 

 

Combination of online pH-measurement and the RAMOS device 

To fix the optical fiber on the RAMOS plate, a holder was mounted next to one of the 

RAMOS flasks (Fig. 3-1), so that the fluorescence intensities of the fluorophores in the sensor 

spot could be measured.  
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Fig. 3-1: Principal set-up of RAMOS in combination with fiber optical, online pH measurement. 
 

3.3 Results and Discussion 

  
Online measurement of OTR and pH in the Respiration Activity MOnitoring System 

(RAMOS) 

E. coli BL 21 pRset eYFP-IL6 was cultivated in the RAMOS device, both with and without a 

sensor spot for pH online monitoring. Fig. 3-2 shows the development of the OTR and the pH 

in the RAMOS-flask with sensor spot.  

 

The OTR of the cultivations with and without sensor spot proceeded more or less in parallel. 

In the flask with sensor spot the OTR curve is only slightly delayed. This might be due to 

slightly different inocula, for example, small variances in the initial biomass concentrations. 

 



3. Measuring pH and OTR using a combination of fiber optical technique and RAMOS 15 

 

Fig. 3-2: Online measurement of OTR and pH in E. coli BL 21 pRset eYFP-IL6 cultivations; Wilms-
MOPS medium; cultivation conditions: T = 37°C; d0 = 50 mm; n = 350 rpm; VL = 10 mL; ODt0 = 0.5; 
pH0 = 7.3; legend: ( ) OTR (flask without pH measurement); (●) OTR (flask with online pH 
measurement); (—) online pH  
 

Without any lag-phase the bacteria started to grow so that the OTR increases directly. At the 

beginning of the cultivation the pH stays constant, because the acidification of the medium, 

caused by the metabolic activity of the microorganisms, is completely compensated by the 

buffer capacity. During the exponential growth of the microorganisms after 2 hours 

fermentation time, the pH decreases due to the increasing consumption of ammonium and the 

production of acetate in the overflow metabolism as discussed by Christensen et al. 

(Christensen and Eriksen 2002). After 6 h the first carbon source glucose is exhausted and 

therefore, the OTR plummeted. Thereafter, the OTR shows a second peak, while 

simultaneously the pH rises. From this point the microorganisms consume acetate as second 

carbon source. Due to the removal of acidic acetate, the pH of the medium increases until the 

acetate is depleted and the microorganisms enter the stationary growth phase after 9 h. In the 

stationary growth phase the pH stays constant and the OTR declines to a low level.  

 

Comparison of offline and online pH-measurement  

To compare online and offline pH measurements E. coli BL 21 pRset eYFP-IL6 was 

cultivated in the RAMOS device and in parallel in normal shake flasks for sampling. Fig.3-3 

shows the courses of both measured pH values.  
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Fig. 3-3: Comparison of offline and online pH measurements in an E. coli BL 21 pRset eYFP-
IL6 cultivation; Wilms-MOPS medium; cultivation conditions: T = 37°C; d0 = 50 mm; n = 350 rpm; 
VL = 10 mL; OD0 = 0.5 pHt0 = 7.3; legend: (—) online pH; ( ) offline pH 
 

The pH courses show typical shapes for cultivations of E. coli BL 21 pRset eYFP-IL6 under 

the given conditions, which was already discussed in Fig. 3-2. Both curves proceed in parallel 

and the maximum difference between online and offline pH measurement was ± 0.05 pH. The 

highest difference occurs at the beginning of the cultivation.    

 

The error in the different measurements averages to pH-values of ± 0.02, which lies in sum of 

the accuracies of the Eutech pH meter (Eutech Instruments Europe B.V., Nijkerk, 

Netherlands) and the pH-mini (Precision Sensing GmbH, Regensburg, Germany) with 0.01 

pH-values, respectively (according to manufacturers). Therefore, the online pH measurement 

in the RAMOS device gives reliable results compared to the offline measurement.  

 

3.4 Conclusion 

 
The combination of the fiber optical, online pH and OTR measurements in the RAMOS 

device was successfully applied. The presented technique enables pH-measurements in 

RAMOS flasks without sampling and stopping the shaking machine. Therefore, mass transfer 

and mixing are not interrupted during the cultivation. Seletzky et al. showed that interruptions 

could lead to anaerobic periods during cultivation and changes in the metabolic activity of the 

microorganisms (Seletzky et al. 2006). Another advantage of this system is that the filling 

volume in the flasks does not change due to sampling, which allows an undisturbed growth of 
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microorganisms. Moreover, pH-values during cultivations in RAMOS flasks and normal 

shake flasks are comparable.  

 

The pH effects on the OTR during growth of microorganisms, e.g. inhibited growth due to 

low-pH values, can easily be identified with this measuring setup. Furthermore, the online 

pH-measurement gives a higher resolution than the offline pH-measurement. For instance, pH 

changes could be resolved more precisely in the online measured pH-value compared to the 

offline measurement, thus, providing better information about the process.    

 

Adaptation and regulation of growth conditions is of utmost importance for microorganisms 

with complex growth behavior, which for example produce and/or consume different pH 

affecting substances like acetate, lactate or glutamate. For instance, Gluconobacter oxydans 

produces 5-keto-D-gluconate, 2-ketogluconate and 2,5-diketogluconate on glucose as sole 

carbon source, whereas the product formation is highly dependent on the pH-value and the 

oxygen supply during the fermentation (De Ley et al. 1984; Levering et al. 1988; Qazi et al. 

1991; Silberbach et al. 2003). Thereby the pH-profile of the G. oxydans cultivation must be 

adjusted to the desired product (Losen et al. 2004) and the acidification caused by the 

products must be considered. The here presented measurement technique is especially useful 

for media and cultivation optimizations and oxygen supply and additionally, buffer 

concentrations of media can be analyzed and adapted to the requirements of the microbial 

growth. 

 

The combination of the online OTR and pH measurement gives a lot of information about the 

cultivation and, therefore, is a powerful tool for monitoring of shake flask experiments for 

screenings as well as for process development. This additional pH-monitoring reduces the gap 

between small-scale and large-scale information output of cultivations. Furthermore, the 

development of a controlled-release system for pH-control in shake flasks will be improved 

with the online pH-measurement (see chapter 4).   
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4. Controlling pH in shake flasks using polymer-based controlled- 

release systems with pre-determined release kinetics 

 

4.1 Introduction  

 
Biotechnological processes are usually conducted in fed-batch cultivation mode with active 

pH-monitoring and regulation. In contrast, shake flask experiments are usually conducted in 

batch mode without active pH-control, but with high initial buffer concentrations to prevent 

excessive pH-drifts during the cultivation (Jeude et al. 2006; Kumar et al. 2004) (see chapter 

1.2). High buffer and substrate concentrations in small-scale cultivation media lead to low 

water activity and high osmolarity. These conditions may inhibit the growth of 

microorganisms. For example, since the optimal osmolarity of a medium to cultivate 

Escherichia coli is approximately 0.3 Osmol/L, increasing or decreasing the osmolarity here 

results in reduced bacterial growth rates (McLaggan et al. 1990; Record et al. 1998). 

Consequently, the application of high buffer and substrate concentrations in the screening for 

optimal production strains might handicap microorganisms with high potential but low 

osmotolerance. Therefore, a new system which would avoid the use of buffer in screening 

experiments would enhance the output of screening projects.  

 

For fed-batch cultivation of microorganisms in shake flasks a polymer-based controlled-

release system without the need of additional equipment or enzymes was developed by Jeude 

et al. (2006) (see chapter 1.4). This controlled-release of glucose in fed-batch cultivations in 

shake flasks thereby allows the user to reduce the initial substrate concentration in the 

medium. 

  

The pH-value is an important parameter for cultivating microorganisms. The best pH-range 

for cultivating e.g. Escherichia coli is 6.5-7.5, and varies with temperature (Davey 1994; 

Munro 1970). The metabolic activity of the cultivated microorganisms influences the pH-

value of the surrounding medium in different ways as described in chapter 1.2 and 3. 

 



4. Controlling pH using controlled-release systems with pre-determined release kinetics 19 

Therefore, the pH-value changes significantly during fermentations. Consequently, a pH-

control is absolutely vital to maintain physiological pH values during microbial cultivation 

(Weuster-Botz 2005). 

 

One of the most important differences between small- and large-scale is the control of the pH 

of the medium. Weuster-Botz et al. presented a system for pH-control in shake flasks that 

applies pH-probes, pumps, storage vessels for pH controlling agents and other equipment 

(Weuster-Botz 2005; Weuster-Botz et al. 2001). However, as this system is complex, it is 

impractical for high-throughput applications.  

 

An easy-to-use polymer-based controlled-release system for keeping the pH in shake flasks in 

reasonable range, based on the fed-batch system described by Jeude et al. (Jeude et al. 2006) 

(see chapter 1.4), is presented in this chapter. This newly developed system consists of a 

biocompatible silicone matrix (polydimethylsiloxane) in which the alkaline reagent sodium 

carbonate is embedded (Fig. 1-2a). This sodium carbonate is then gradually released from the 

system in pre-determined kinetics and thus increases the pH-value of the medium. The focus 

of this chapter is to reduce buffer concentrations in cultivation media in order to decrease the 

osmolarity of small-scale media so that they can be better compared to large-scale media. 

Furthermore, the pH values during the fermentation should stay in the physiological range of 

the microorganisms. To demonstrate the applicability of this controlled-release system in 

shake flask cultures, Escherichia coli K12 and Escherichia coli BL21 pRSET eYFP-IL6 were 

used as model microorganisms and were cultivated in media containing glycerol or glucose as 

carbon source, respectively.  

 

4.2 Material and Methods 

 

Organisms 

E. coli K12 and E. coli BL21 pRSET eYFP-IL6 (Samorski et al. 2005) were used as model 

microorganisms. Stock solutions were maintained in glycerol at -80°C in LB medium. E. coli 

BL21 pRSET eYFP-IL6 cultures additionally contained 100 μg/mL ampicilin. 

 

Media and Solutions 

Modified Wilms & Reuss synthetic medium (henceforth referred to as Wilms-MOPS 

medium) was used for E. coli cultivations (Jeude 2007; Wilms et al. 2001). The medium 
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consists of 20 g/L glucose or 20 g/L glycerol; 5 g/L (NH4)2SO4; 0.5 g/L NH4Cl; 3 g/L 

K2HPO4; 2 g/L Na2SO4; 0.5 g/L MgSO4•7H2O; 41.85 g/L (0.2 M) 3-(N-morpholino)-

propanesulfonic acid (MOPS); 0.1 g/L ampicillin; 0.01 g/L thiamine hydrochloride; 1 mL/L 

trace element solution (0.54 g/L ZnSO4•7H2O; 0.48 g/L CuSO4•5H2O; 0.3 g/L MnSO4•H2O; 

0.54 g/L CoCl2•6H2O; 41.76 g/L FeCl3•6H2O; 1.98 g/L CaCl2•2H2O; 33.39 g/L Na2EDTA 

(Titriplex III). The pH was adjusted to 7.5 with NaOH. The typical MOPS buffer 

concentration of 0.2 M was used for precultures and for reference cultivations with glucose 

and glycerol, respectively. For other experiments different MOPS buffer concentrations and 

different initial pH-values were used and are mentioned in the respective experiment 

description.   

 

Cultivation 

For online monitoring of oxygen transfer rates (OTR) of all cultures a Respiration Activity 

Monitoring System (RAMOS) device, fabricated in-house and previously described by 

Anderlei et al. (Anderlei and Büchs 2001; Anderlei et al. 2004), was used. A commercial 

version of this device is available from HiTec Zang GmbH (Herzogenrath, Germany) or 

Kühner AG (Birsfelden, Switzerland). The following cultivation parameters were applied: 

350 rpm shaking frequency, 50 mm shaking diameter, 10 mL filling volume in 250 mL 

RAMOS flasks. Precultures and main cultures were cultivated in Wilms-MOPS synthetic 

medium. For inoculating main cultures, fresh precultures (grown to an OTR of ca. 0.05 

mol/L/h) were centrifuged, washed in 5 mL fresh medium, centrifuged again and the pellet 

was finally resuspended in 5 mL medium. Then optical densities (OD) were measured and 

used for calculating the required inoculation volume for each experiment. The initial pH-

values of the main cultures were set to 7 or 7.5 as indicated in the respective experiment 

descriptions.  

 

The polymer-based controlled-release system containing Na2CO3 

To keep the pH-value of a cultivation in a narrow range without using high buffer 

concentrations, a polymer-based controlled-release system with embedded Na2CO3 was 

developed. In this work disc-shaped controlled-release systems were used. The release system 

was composed of solvent-free two-component (called component A and B by the 

manufacturer) silicone Sylgard™184 as well as the catalyst Syl-off™ 4000 (Dow Corning, 

Wiesbaden, Germany) in a concentration of 0.1 % (w/w). The ratio between the two 

components A and B was 10:1 as recommended by the manufacturer. Analytical grade 
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Na2CO3 was supplied by Sigma Aldrich (Crailsheim, Germany). The Na2CO3 was milled with 

a vibration micromill (Spartan™, Fritsch, Idar-Oberstein, Germany) in a high-grade steel 

mortar and then sieved through test sieves (Fritsch, Idar-Oberstein, Germany). The fraction 

with particle sizes ranging from 20 to 50 µm was used. First, a mixture consisting of 

component A of Sylgard™184, Na2CO3 (30 % (w/w)) and catalyst was weighed and degassed 

in a desiccator in a 30 mbar vacuum for 0.5 h. Then, component B was added. The finished 

mixture was subsequently casted as a thin foil onto a glass plate with a casting knife (gap 1.1 

mm) and then cross-linked at 50°C in a convection oven for 3 h. Then discs having a diameter 

of 15 mm were stamped out (surface area 405.26 mm2) and applied for the experiments. The 

disc-shaped controlled-release systems then gradually release the embedded Na2CO3 in an 

aqueous system at a pre-determined rate, so that the medium was alkalized during cultivation, 

thus counteracting any biological acidification.  

 

Measurement of Na2CO3-release kinetics from the polymer-based controlled-release 

system 

For measuring the release kinetics of Na2CO3 from the controlled-release system, an Na+-ion 

selective electrode was used. With this electrode it is generally possible to determine the 

concentration of Na+-ions within the range from 10-6 mol/L to 1 mol/L. The electrode consists 

of two half cells, a reference electrode (inLab Reference Pro) and the electrode for the Na+-

ions. The measuring instrument (SevenMulti) and the electrodes were purchased from 

MettlerToledo (Gießen, Germany). All salts used were purchased in the highest purity from 

Sigma Aldrich (Munich, Germany). Destilled water was prepared in a Millipore unit 

(Millipore, Schwalbach, Gemany). It was used for the preparation of the solutions and kept at 

a temperature of 20°C. As bridge electrolyte inside the Na+-ion selective electrode a 0.1 

mol/L NH4Cl-solution was applied. As ion adjustment buffer (ISA) an NH4Cl/NH3-solution 

was prepared by adding 200 g NH4Cl to 50 ml concentrated NH3-solution and the volume was 

filled up with water to a final value of 1 L. For the measurement, the destilled water with ISA-

Buffer was adjusted to a pH-value of 7 with 1 M KOH. As master solution for the calibration 

and to store the Na+-ion selective half cell, a 0.1 M NaCl solution was prepared. For the 

calibration sodium chloride was dried 2 h with 120 °C and 5.845 g were weighed and filled up 

with water to 1L. 

 

For the calibration the comparable conditions such as in the biological experiments were 

applied (T = 37 °C; agitated with a magnet stirrer). The calibration was done at pH values 
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from 3 to 8 and with sodium carbonate concentrations in the applied concentration range in 

the experiments of 1*10-4; 0.5*10-4; 1*10-3; 0.5*10-3; 1*10-2; 0.5*10-2 and 1*10-1 mol/L. The 

measurement was accomplished with normal sensitivity and in the automatic measuring 

mode. For measuring the release from the controlled-release system, 70 ml ISA were 

employed for each system. After the experiment the measured controlled-release system was 

dried and reweighed. In this work disc-shaped controlled-release systems with a diameter (D) 

of 15 mm a height (H) of 1.1 mm with a sodium carbonate content of 30% (w/w) were tested. 

 

Analytical methods 

To measure off-line data of the experiments, additional Erlenmeyer flasks were used for 

sampling. The investigated E. coli strains were cultivated in parallel in these flasks under the 

same conditions as the cultivations in the RAMOS device. For the first sample, depending on 

the particular experiment, 1 mL or 2 mL of the cultivation broth was withdrawn from the 

respective flask and the flask was refilled with sterile, purified water. Then, the same 

respective flask was used for one additional second sample. Each flask was only applied for 

two samples.  

Optical densities were measured at 600 nm (OD600) with an Uvikon 922 spectrophotometer 

(Kontron, Milano, Italy) except for the experiment depicted in Fig. 4-3 a Thermo Scientific 

Genesys 20 spectrophotometer (Waltham, MA, USA) was used. The samples were diluted 

with fresh medium to measure the OD in the linear range of the photometer and were at least 

determined twice. 

 

Off-line pH-values were measured with a CyberScan pH 510 (Eutech, Nijkerk, The 

Netherlands) and with a Titroline alpha (Schott Instruments, Mainz, Germany). For online 

measurement of the pH during cultivations, a combination of a RAMOS device and a 

(Presens, Regensburg, Germany), as described in chapter 3, was used. With the fiber optical 

pH-measuring technique the pH-value was measured every 5 min.    

 

Glycerol, glucose and acetate concentrations were measured with a Dionex HPLC (Dionex, 

Sunnyvale, USA) with an Organic Acid-Resin 250 x 8mm (CS-Chromatographie, 

Langerwehe, Germany) and a Skodex RI-71 detector. Sulphuric acid in a concentration of 5 

mM was used as solvent at a flow rate of 0.6 ml/min and a temperature of 60°C. 
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4.3 Results and Discussion 

 

In Fig. 4-1 the sodium carbonate release kinetics of the controlled-release system with 30% 

(w/w) sodium carbonate content used in this work and, additionally, the pH-course in the 

applied buffer are illustrated. During the first 2 h a rapid release of the salt occurred and 

caused a fast increase in the pH-values. Then, the sodium carbonate is nearly linearly 

released. In this time the pH-values also increase to a value of about 8.4 after 24 h, due to the 

released sodium carbonate. After 24 h about 0.14 mg sodium carbonate were released per mg 

of used controlled-release system. The rapid release and pH increase at the beginning of the 

experiment had to be considered in all biological experiments, because of lag phases and 

initially slow growing microorganisms where only few protons are produced.  

 

 
Fig. 4-1: Release kinetics and pH-course of one sodium carbonate containing (30% (w/w)) disc-
shaped controlled release system. Released sodium carbonate (—); pH (—); doubly distilled water 
with ISA buffer; T = 37°C; pH0 = 7; controlled-release system: D = 15 mm; H = 1.1 mm; 
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To investigate the influence of the buffer concentration and, therefore, of the osmotic pressure 

on the metabolic activity of E coli BL21 pRSET eYFP-IL6, cultivations with different MOPS 

buffer concentrations were conducted (Fig. 4-2). 

 

 
Fig. 4-2: Oxygen transfer rate (OTR) of E. coli BL21 pRSET eYFP-IL6 during growth in Wilms-
MOPS medium with different buffer concentrations. With 0.2 M MOPS buffer ( ), with 0.1 M 
MOPS buffer (▲), with 0.05 M MOPS buffer (●), without MOPS buffer (■); experimental conditions: 
Wilms-MOPS medium with 20 g/L glucose, 37°C; 10 mL filling volume; shaking diameter 
(d0) 50 mm; 350 rpm; OD600,α = 0.5; pH0 = 7.5 
 

The reference cultivation with 0.2 M MOPS buffer depicted in Fig. 4-2, showed the typical 

metabolic activity of the microorganisms with the aforementioned cultivation parameters as 

described in Fig.  3. After about  5.5 h the OTR peaked at a value of ca. 0.06 mol/L/h and then 

formed a plateau, which indicates oxygen limitation (Anderlei and Büchs 2001). When the 

OTR plummeted after ca. 7 h the carbon source glucose was completely consumed. The 

second peak, with approximately 0.3 mol/L/h, indicates diauxic growth. Here, acetate is 

consumed, that was produced during the oxygen limitation.  

 

The cultivation with 0.1 M MOPS buffer peaked about one hour earlier, than the culture with 

0.2 M MOPS buffer concentration, after ca. 4.5 h. A short oxygen limitation can than be 

recognized before the OTR decreased slowly in a triangle-shaped form. This triangle-shaped 

form indicates acidic pH-values that impair the metabolic activity of the microorganisms 

(Anderlei and Büchs 2001).  

 

The maximum specific growth rate (µmax) increased between the cultivations with 0.2 M and 

0.1 M MOPS buffer by ca. 20%, from 0.44 1/h to 0.53 1/h. This increased growth rate can be 
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attributed to the higher osmolarity in the medium with 0.2 M MOPS buffer. The Wilms-

MOPS media with 0.2 M and 0.1 M MOPS buffer concentration have an osmolarity of ca. 

0.65 Osmol/L and ca. 0.48 Osmol/L, respectively. Record et al. described a linear decrease of 

the specific growth with increasing osmolarities of the medium above 0.3 Osmol/L (Record et 

al. 1998), whereas the specific growth rate decreases in minimal medium by half from ca. 0.3 

Osmol/L to 1 Osmol/L.   

 

Application of 0.05 M MOPS demonstrates the same OTR curve and µmax as the cultivation 

with 0.1 M MOPS buffer until 4.5 h. Here, the OTR decreased earlier in a triangle-shaped 

form. The low buffer concentration leads to a fast acidification of the medium and, therefore, 

to impaired metabolic activity.  

 

The cultivation without any buffer shows the same metabolic activity and µmax as the culture 

with 0.1 M MOPS buffer until after 3.5 h the OTR peaks at ca. 0.03 mol/L/h. After this peak 

the OTR slightly decreases. Without buffer, the culture acidifies even earlier and the growth is 

hampered due to suboptimal pH-values.   

 

To demonstrate the application and the feasibility of the sodium carbonate containing 

controlled-release systems for controlling the pH in shake flasks, cultivations with E coli 

BL21 pRSET eYFP-IL6 in media with different MOPS buffer concentrations and, in addition, 

controlled-release systems were performed (Fig. 4-3).   

 

 



4. Controlling pH using controlled-release systems with pre-determined release kinetics 26 

 
Fig. 4-3: Comparison of the oxygen transfer rate (OTR), pH and glucose concentration during the 
cultivation of E. coli BL21 pRSET eYFP-IL6 with different buffer concentrations and controlled-
release systems. a: with 0.2 M MOPS buffer, b: with 0.1 M MOPS buffer, c: with 0.1 M MOPS buffer 
and additional 3 controlled release systems. OTR (■); pH (▲); glucose concentration (●); OD600 ( ); 
acetate concentration ( ); experimental conditions: Wilms-MOPS medium with 20 g/L glucose, 
37°C; 10 mL filling volume; shaking diameter (d0) 50 mm; 350 rpm; OD600,α = 0.5; pH0 = 7.5; 
controlled-release systems: D = 15 mm; H = 1.1 mm; 30% (w/w) Na2CO3 
 

In the reference cultivation with E. coli, depicted in Fig. 4-3a, a MOPS buffer in a 

concentration of 0.2 M was applied. This cultivation showed the same shape depicted in Fig. 

4-2. During the oxygen limitation between 4.5 h and 6 h about 1.9 g/L acetate were produced. 

After 6 h cultivation time the glucose was depleted and the OTR plummeted. Then a second 

OTR maximum at ca. 0.03 mol/L/h is observed at about 9 h. From 7 to 11 hours of 

cultivation, the previously produced acetate was consumed as carbon source. During this time 

no biomass was produced. The pH-curve decreased during the exponential growth of the 

microorganisms, through the consumption of ammonium as nitrogen source. During the time 
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when the growth of E. coli was oxygen-limited, acetate was produced, thus, reduced the pH-

level down to 6.5. Once the acetate was consumed, the pH increased again to a value of 6.8. 

 

In the cultivation presented in Fig. 4-3b, 0.1 M MOPS buffer was used to demonstrate the 

growth of E coli BL21 pRSET eYFP-IL6 with a buffer concentration that was 50% less than 

that in the previous experiment (Fig. 4-3a). The OTR indicated an exponential growth phase 

until ca. 4 h with an OTR maximum of 0.066 mol/L/h. Then a short plateau was apparent, 

which indicates oxygen-limited growth. Thereafter, the OTR decreased slowly, until the 

microorganisms stop to grow after 6 h. This slow decrease of the OTR curve indicated a pH-

range suboptimal for growth (Anderlei and Büchs 2001). The pH dropped very fast during the 

cultivation until it reached its final value of ca. 4.66 after 8 h, when the pH was too low for 

microbial growth. On the basis of the slow decreasing OTR after 5h, the pH-curve and the 

reduced increase in the OD-values, it could be concluded that the metabolism of E. coli 

pRSET eYFP-IL6, with the applied conditions, is reduced at pH-values below 5.8. Here, the 

pH-value dropped below 5.8 at 5 h, while the OTR decreased and the growth was reduced and 

finally stopped, although the glucose was not yet depleted. During the oxygen limitation, the 

microorganisms started to produce acetate up to a concentration of 2.3 g/L. Even though the 

carbon source glucose was completely exhausted at ca. 7 h, the produced acetate was not 

consumed and no metabolic activity and no growth could be observed; this means that the 

very low pH in the medium completely hampered the growth of the microorganisms.  

 

To demonstrate the applicability of the controlled-release of sodium carbonate for controlling 

the pH, an experiment with buffer in a concentration of 0.1 M MOPS and three controlled-

release systems (30% (w/w) sodium carbonate content) was performed (Fig. 4-3c). Here, the 

OTR curve followed the same shape as in the reference cultivation with 0.2 M MOPS buffer 

depicted in Fig. 4-3a. In the beginning, the OTR exhibited exponential growth of the 

microorganisms until ca. 4 h, followed by a period of ca. 1 h of oxygen-limited growth with a 

maximum OTR value of 0.063 mol/L/h. While the culture was oxygen-limited, 1.79 g/L 

acetate was produced. The glucose concentration decreased continuously until it was 

completely consumed after about 5.8 h. Once the glucose was depleted, the OTR first 

decreased sharply and then peaked again to 0.034 mol/l/h after ca. 7.5 h. In this case, the 

microorganisms completely consumed the previously produced acetate in the diauxic growth 

phase. After about 9.5 h, acetate was also exhausted. Due to the continuously released sodium 

carbonate (see Fig. 4-1) and the low biomass concentration, the pH increased in the beginning 
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of the cultivation up to a value of 7.66 after ca. 3 h. Thereafter, the pH curve decreased to a 

value of 6.33 until ca. 6 h cultivation time. This corresponds to the peak of acetate 

concentration. During this interval, the biomass concentration rose and more protons were 

produced by the microorganisms than sodium carbonate was released from the controlled-

release systems. Once the glucose was depleted and replaced by acetate as carbon source the 

pH increased. This increase showed a steeper slope than in the cultivation with 0.2 M MOPS 

buffer, because sodium carbonate is still additionally released continuously from the 

controlled-release systems and the medium contains less buffer to prevent excessive pH-

drifts.      

 

These experiments proved that the pH-control in shake flasks with controlled-release of 

sodium carbonate works. With this technique it was possible to halve the buffer concentration 

in the Wilms-MOPS medium with 20 g/L glucose and to establish the same growth behavior 

such as that with the higher reference buffer concentration (0.2 M MOPS buffer).   

 

 
Fig. 4-4: Comparison of oxygen transfer rate (OTR) and online pH of E. coli BL21 pRSET eYFP-IL6 
during growth in Wilms-MOPS medium with different buffer concentrations and controlled-release 
systems. With 0.2 M MOPS buffer OTR (●) and pH (—), with 0.1 M MOPS buffer and 3 controlled-
releases systems, OTR (▲) and pH (—). Experimental conditions: Wilms-MOPS medium with 20 g/L 
glucose, 37°C; 10 mL filling volume; shaking diameter (d0) 50 mm; 350 rpm; OD600,α = 0.5; pH0 = 7.5; 
controlled-release systems: D = 15 mm; H = 1.1 mm; 30% (w/w) Na2CO3. 
 

For validating this successful application of the controlled-release system and to measure the 

whole pH-course, E coli BL21 pRSET eYFP-IL6 was cultivated in a RAMOS device with 

integrated online pH measurement (see chapter 3). One fermentation with 0.2 M MOPS buffer 
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concentration and one with 0.1 M MOPS and three additional controlled-release systems were 

conducted (Fig. 4-4). The OTR curves of both cultivations followed nearly the same course. 

Both curves showed the first peak while glucose was being consumed as carbon source. Then, 

after ca. 6 h both curves plummeted, due to the depletion of glucose, before the 

microorganisms switched to acetate as carbon source and a second peak was formed. In the 

beginning of the cultivation with a MOPS buffer concentration of 0.2 M, the pH did not 

change because of the high buffer capacity of the medium and the relatively low metabolic 

activity of the microorganisms. During the exponential growth phase of the microorganisms 

the pH decreased. Subsequently, the pH increased during the time when the acetate was 

consumed in the diauxic growth phase.  

 

The pH of the culture with 0.1 M MOPS buffer and three controlled-release systems rose in 

the beginning of the experiment to a maximum value of ca. 7.7 due to the constant release of 

sodium carbonate (refer to Fig. 4-1). After ca. 2.5 h, the increased microbial activity yielded 

more protons compared to the amount of sodium carbonate released. Thus, the pH decreased 

to a minimal value of ca. 6.3 until the glucose was depleted from the medium. In the diauxic 

growth phase the pH increased rapidly because of the consumption of acetate and the 

continuing release of sodium carbonate. This sodium carbonate release also resulted in still 

slightly increasing pH-values during the stationary growth phase of the culture. These results 

clearly demonstrated that the application of the controlled-release systems was successful for 

controlling the pH in E. coli BL21 pRSET eYFP-IL6 cultures with 20 g/L glucose in Wilms-

MOPS medium. Furthermore, the buffer concentrations in the medium could be substantially 

reduced, thus, improving the comparability of small-scale shake flask cultures with large-

scale fermentations.      
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Fig. 4-5: Oxygen transfer rate (OTR) of E. coli K12 during growth in Wilms-MOPS medium with 
different buffer concentrations, initial pH-values and controlled-release systems. With 0.2 M MOPS 
buffer, initial pH 7 (■), 0.2 M MOPS buffer, initial pH 7.5 ( ), with 0.1 M MOPS buffer, initial pH 7 
and 3 controlled-releases systems (●), with 0.1 M MOPS buffer; initial pH 7.5 and 3 controlled-
releases systems (▲). Experimental conditions: Wilms-MOPS medium with 20 g/L glycerol, 37°C; 
10 mL filling volume; shaking diameter (d0) 50 mm; 350 rpm; OD600,α = 0.5; controlled-release 
systems: D = 15 mm; H = 1.1 mm; 30% (w/w) Na2CO3, washed for 30 min in H2O. 
 

To demonstrate the application of the sodium carbonate containing controlled-release system 

with another strain and carbon source, Escherichia coli K12 with Wilms-MOPS medium with 

20 g/L glycerol was cultivated in varying buffer concentrations and initial pH values (Fig. 4-

5). In this experiment, four cultures were compared – two of which were cultivated at initial 

pH values of 7, whereby one of these was grown with and the other one without controlled-

release systems. The remaining two cultures, in contrast, were cultivated at an initial pH-value 

of 7.5 and, analogously, one of each grown with and without the controlled-release systems.  

 

Previous experiments with glycerol as carbon source revealed that the growth rate of E. coli 

was lower than with glucose as carbon source. For that reason the sodium carbonate release 

from untreated controlled-release systems was too fast in the beginning. Consequently, the pH 

increased rapidly to suboptimal high values (data not shown). Therefore, all experiments with 

glycerol as carbon source used controlled-release systems, which were washed in water for 30 

min. During these 30 min, the very fast release of the Na2CO3 in the beginning of the release 

kinetics, as described in Fig. 4-1, can be intercepted.    
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The culture with an initial pH 7 and in the absence of a controlled-release system (squares) 

showed the triangular OTR-curve indicating that the pH-value became too acidic for normal 

metabolic activity (see Fig. 4-2). On the contrary, the culture with the higher initial pH-value 

of 7.5 (diamonds) reached a higher OTR and entered a plateau after about 6 h. At the end of 

the plateau, the OTR decreased slowly until ca. 9 h and then dropped sharply. The first slight 

decrease indicated a suboptimal pH-value, before the glycerol was exhausted. The differences 

in the two cultures with initial pH-values of 7 and 7.5, respectively is dependent on the buffer 

capacity of the used MOPS buffer. The pKa-value of MOPS buffer at 37°C is 6.98 and the pH 

buffer capacity lies in the range of about +-1 of this pKa-value. Therefore, the experiment 

with initial pH-value of 7.5 can utilize more of the buffer capacity during the cultivation, than 

the culture with an initial pH-value of 7.  

 

Using the controlled-release systems, the culture at an initial pH 7 (circles) depicted a much 

less impaired metabolic activity compared to the respective culture without sodium carbonate 

release (squares). Only between ca. 7.5 and 9 h a slightly reduced metabolic activity can be 

seen in the OTR. The usage of an initial pH of 7.5 and addition of controlled-release systems 

(triangles) resulted in a preferred OTR curve in this experiment. No impact of suboptimal pH 

was recognizable and only a short oxygen limitation was obvious in the short plateau between 

7.5-9 h.  

 

Therefore, an initial pH value of 7.5 is more suitable for E. coli K12 under the applied 

conditions, because the culture can take advantage of the better utilized buffer capacity of the 

applied medium than the culture with initial pH-value of 7. Furthermore, it is evident that the 

culture parameters (e.g. the initial pH-value and buffer concentration) have to be chosen very 

carefully to benefit from the pH-control with the polymer-based controlled-release systems. 

Without the optimal parameters, for example, the pH could drift very fast into too high or too 

low values for metabolic activity of the microorganisms. 
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Fig. 4-6: Comparison of the oxygen transfer rate (OTR), pH and glycerol concentration during the 
cultivation of E. coli K12 in buffered or pH-controlled media using controlled-release systems in 
shaking flasks. a: without buffer, b: with 0.2 M MOPS buffer, c: without buffer and additional 3 
controlled release systems, d: without buffer and additional 4 controlled-release systems. OTR (■); pH 
(▲); glycerol concentration (●); OD600 ( ); Experimental conditions: Wilms-MOPS medium with 20 
g/L glycerol, 37°C; 10 mL filling volume; shaking diameter (d0) 50 mm; 350 rpm; OD600,α = 0.5; 
pH0 = 7; controlled-release systems: D = 15 mm; H = 1.1 mm; 30% (w/w) Na2CO3, washed for 30 min 
in H2O.  
 

To prove the applicability of the controlled-release system without any addition of buffer in 

the medium, experiments were performed in Wilms-MOPS medium with 20 g/L glycerol with 

and without MOPS buffer and controlled-release systems, respectively. A suboptimal initial 

pH-value of 7 (see Fig. 4-5) was chosen for these cultivations to demonstrate the functionality 

of the pH-control using controlled-release systems even under suboptimal conditions. One 

cultivation was performed without MOPS buffer (Fig. 4-6a). In this experiment the pH 

decreased rapidly. The pH-value of the medium below 4 hampered the growth of the 

microorganisms completely. In the second experiment the same conditions were chosen, 

except for an increased MOPS buffer concentration of 0.2 M (Fig. 4-6b). Applying this 
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standard buffer concentration, the OTR rose to a value of 0.06 mol/L/h in the beginning, 

followed by a short plateau indicating oxygen limitation and demonstrating a maximum 

oxygen transfer capacity for this cultivation conditions. Than the OTR decreased in a 

triangular shape, indicating that the metabolism of the microorganisms is impaired by too low 

pH (Anderlei and Büchs 2001). The pH curve decreased during the exponential growth phase 

and reached a suboptimal value of ca. 3.5 after 8 hours. At the end of the cultivation the 

carbon source glycerol was not depleted which indicates that the metabolism of E. coli K12 

was indeed hindered by too acidic conditions. 

  

To investigate the influence of the new controlled-release system, in the third experiment no 

buffer was used, but three controlled-release systems (Fig. 4-6c). The OTR in this experiment 

displayed a normal growth of the microorganisms until a maximum was reached at 5 h. 

Thereafter, the OTR decreased slowly until 11 h when the glycerol was depleted. During this 

time the culture was not oxygen-limited, because the maximum oxygen transfer capacity of 

0.06 mol/l/h, as described in Fig. 4-6b, was not reached in this experiment. This gradual 

decrease in the OTR curve is attributed to the pH-values between 4.2 and 5 which were 

partially, however, not sufficiently counterbalanced by the Na2CO3 release from the 

controlled release systems.  

 

In the fourth experiment no buffer and 4 controlled-release systems were investigated (Fig. 4-

6d). In this final experiment, an even better metabolic activity could be observed than with 

three controlled-release systems (Fig. 4-6c). The OTR peaked at a value around 0.06 mol/L/h 

and formed a plateau for 3 h. This plateau indicates oxygen-limited growth of E. coli and no 

negative influence of too low pH-values could be observed in the growth and the metabolic 

activity. The complete carbon source glycerol was consumed by the microorganisms. 

Although the pH-value reached a very low value at 4.5, the metabolic activity is sustained, 

due to the continuous release of the Na2CO3. The pH-curve depicts the most suited pH range 

for growth of the microorganisms of these four experiments in a range of ca. 4.5 and 7.4. 

Therefore, the controlled-release systems enable the user to control the pH without any 

additional buffer. Furthermore, the osmolarity of the medium was dramatically reduced with 

the abdication of the buffer. 

 

These experiments showed that the controlled-release systems could indeed control the pH-

values of the medium, thereby ensuring good microbial growth.   

 



4. Controlling pH using controlled-release systems with pre-determined release kinetics 34 

4.4 Conclusion and Outlook 

 

Conclusion 

The presented polymer-based controlled-release system embedding sodium carbonate crystals 

for controlling the pH in shake flasks enabled the successful cultivation of E. coli K12 and E. 

coli BL21 pRSET eYFP-IL6 in mineral media with glycerol and glucose as carbon sources, 

respectively. With the controlled-release system it is possible to substantially reduce the 

buffer concentrations in media for shake flasks cultures, while the pH-values remain in the 

physiological range for sustained microbial activity during the whole cultivation. This 

reduction in buffer concentration leads to reduced osmolarities in the medium. These reduced 

osmolarities may significantly enhance the growth rates of E. coli, as demonstrated in Fig. 4-2 

and described by Record et al. (Record et al. 1998).  

 

Large-scale fermentation processes are applied with an active pH-control. In these processes 

no buffers are used. The here presented polymer-based controlled-release systems enable 

comparable cultivation parameters in shake flasks such as in large-scale, while the buffer 

concentrations are dramatically reduced and the pH is controlled in a narrow range. These 

advantages are very suitable for high-throughput screening experiments, where the reduced 

osmolarities in the medium enhance the optimal strain selection.    

 

The polymer-based controlled-release system for fed-batch cultivation in shaken bioreactors 

developed by Jeude et al. (Jeude et al. 2006) is a self-regulating system. During the lag phase 

of the microorganisms the released glucose accumulates in the medium (see chapter 6). When 

the biomass concentration increases during the cultivation the accumulated glucose is 

consumed until the substrate-limited fed-batch phase. In the fed-batch phase, the 

microorganisms directly consume the released glucose. When different cultivation parameters 

such as various starting biomass concentrations or lag phases occur in parallel cultures (e.g. 

precultures for screening experiments), then all cultures enter the fed-batch phase at different 

points in time. When all cultures are in the fed-batch mode, they have consumed the same 

amount of glucose and, therefore, their biomass concentrations and their growth rates are 

equalized dependent on the glucose release kinetics (see chapter 6). In contrast, the in this 

chapter presented Na2CO3 containing polymer-based controlled-release system is not self-

regulating. Here, the Na2CO3 salt is released and influences the pH-value of the medium, no 

matter if the microorganisms are growing or not. Additionally, the sodium carbonate is then 
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not consumed by the microorganisms such as the glucose in the fed-batch system. Therefore, 

it is very important to ensure optimal growth parameters such as initial pH-values and 

biomass concentrations while using the newly developed controlled-release system with pre-

defined release kinetics. Especially, the lag phase of a culture has a tremendous effect on the 

performance of the system. For example, when the lag phase is too long, the pH increases 

very fast to suboptimal high values due to the high initial release of the Na2CO3.  

 

Outlook 

In our Laboratories controlled-release systems which enhance the release of alkaline 

compounds, such as Na2CO3, in response to reducing pH-values are currently under 

development. This will lead to complete pH-regulation in small-scale cultures in the future. 

With such a pH-sensitive controlled release system, it will be possible to cultivate 

microorganisms in small-scale shaken bioreactors without any additional buffer, thereby 

ensuring culture conditions in the optimal pH-range.  
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5. Influence of initial pH-values on the lag phase of E. coli batch 

cultures 

5.1 Introduction 

 
The duration of the lag phase of microorganisms is an interesting topic to the food industry; 

since a longer lag phase of microorganisms in food implies that the shelf-life of food products 

increases, thereby bolstering profits. Thus, food microbiology, in particular the area of 

predictive microbiology, is engaged in modelling microbial growth. Several models for the 

growth of the pathogenic Escherichia coli O157:H7 (Buchanan et al. 1993; Li et al. 2006), 

Salmonella typhimurium (Dufrenne et al. 1997) or Listeria monocytogenes (Hudson 1994) 

have been developed.  Moreover, the lag phase is also relevant for multiple applications in the 

field of biotechnology. The factors which influence the lag phase are important for screening 

processes to ensure a parallel and equal initiation of growth. A shorter lag phase and a faster 

growth may reduce the duration of cultivation, thus saving time and money. The control of the 

lag phase is also important to obtain absolutely reproducible and robust production processes 

in a GMP (Good Manufacturing Practice) environment.  

 

One important factor influencing the growth of E. coli is the pH-value of the culture medium; 

an excessively acidic or alkaline medium inhibits or even terminates growth. The best pH-

value for optimal growth of E. coli lies in the range of 6.5-7.5. It increases with increasing 

temperature (Davey 1994; Munro 1970). Presser et al. (1997) stated that the fastest growth 

rate of E. coli M23 ranges from pH 6 to 7.5, whereas later studies indicate a minimum pH-

value for uninhibited growth of 5.8 (see chapter 4). E. coli itself may affect the pH of the 

medium, for example, by producing acids and consuming ammonium as a nitrogen source 

(Christensen and Eriksen 2002). Minimal media, which are typically used in screening 

experiments because of their defined composition, generally contain ammonium as nitrogen 

source. Therefore, upon consumption of this nitrogen source, the pH-value inevitably drops 

during cultivation. 
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E. coli can tolerate low pH-values for some time. As Benjamin and Datta (1995) showed, the 

pH-value of the growth medium influences the ability of E. coli to survive subsequently in 

acidic medium. In Benjamin and Datta´s study, E. coli was first grown in cultures at pH-

values of 5-8. Thereafter, upon being transferred to acidic medium, the E. coli from the 

originally acidic cultures tolerated the new acidic medium better. This acid tolerance of the E. 

coli varied depending on the strain investigated. This effect, however, was observed in all 

investigated E. coli strains; i.e., those grown in acidic medium always tolerated a new acidic 

medium. Different mechanisms cause this acid tolerance. For example, Brown et al. (1997) 

reported that the acid tolerance of E. coli appears to be correlated to the cyclopropane fatty 

acid content of the cellular membrane. Acid adapted E. coli had cell membranes that differed 

from those of non-adapted E. coli. Furthermore, Jordan et al. (1999) assumed that the acid 

tolerance of E. coli is correlated to the proton-permeability of the bacterial cellular membrane. 

When the cellular membrane is less permeable to protons, the cytoplasm obviously becomes 

less acidic. This reduced permeability appeared to be related to a change in protein 

composition of the membrane. Another mechanism to prevent the acidification of the 

cytoplasm has been suggested by Hersh et al. (1996). They state that E. coli alkalizes the 

cytoplasm itself by a glutamate decarboxylase alkalinisation cycle. Thus, several different 

mechanisms allow E. coli to grow or survive even in media having suboptimal pH-values and 

recover later in media with a more suitable pH-value. 

 

In small scale cultivations, which are typically used for screening purposes, buffers are used 

to maintain an optimal pH-range. There are many different buffers, which can be used to 

minimize a shift of the pH-value during bacterial cultivation. A buffer can only tolerate a 

given quantity of acid or base, before its capacity is exhausted, causing the pH-value of the 

medium to rapidly sink or rise. The higher the buffer concentration, the more acid can be 

neutralized. However, at higher buffer concentrations, the osmolarity of the medium rises. 

Record et al. (1998) reported that an osmolarity of more or less than 0.3 Osmol/L reduces the 

growth rate of E. coli in minimal medium (see chapter 1.2 and 4). Consequently, both 

excessive and insufficient concentrations of buffer can adversely affect E. coli growth. 

Besides affecting the growth rate of E. coli, the pH-value may also influence the actual lag 

phase before growth starts. Consequently, the aim of this chapter is to determine the influence 

of the initial pH-value on the lag phases of four different E. coli strains. 
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5.2 Material and Methods 

 

Microorganisms 

For this study, the strains E. coli K12 (ATCC 23716, DSMZ, Braunschweig, Germany), E. 

coli BL21 pRSET eYFP-IL6 (referred to in this chapter as E. coli eYFP) (Samorski et al. 

2005), E. coli SCS1 pQE-30 pSE111 (referred to in this work as E. coli PR02) (Büssow et al. 

1998) and E. coli BL21(DE3) pRhotHi-2-EcFbFP (referred to in this chapter as E. coli 

EcFbFP) were used. The clone PR02 was kindly provided by Protagen AG, Dortmund, 

Germany. Moreover, the clone pRhotHI-2-EcFbFP was kindly provided by T. Drepper, 

Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany. 

Stock cultures were prepared in a Wilms-MOPS medium (Wilms et al. 2001b) with additional 

150 g/L glycerol and were stored in 1 mL aliquots at -80°C. 

 

Media 

A modified Wilms and Reuss medium (henceforth referred to as Wilms-MOPS medium) was 

used for the various cultivations (Jeude 2007; Wilms et al. 2001). It consists of 5 g/L 

(NH4)2SO4, 0.5 g/L NH4Cl, 3.0 g/L K2HPO4, 2 g/L Na2SO4, 0.5 g/L MgSO4*7H2O, 0.01 g/L 

Thiamine hydrochloride, 20.9 g/L 3-(N-morpholino)propanesulfonic acid (MOPS) (0.1 M), 

10 g/L glucose and 1 mL/L trace element solution. This trace element solution consists of 

1.98 g/L CaCl2*2H2O, 0.54 g/L CoCl2*6H2O, 0.48 g/L CuSO4*5H2O, 41.76 g/L 

FeCl3*6H2O, 0.3 g/L MnSO4*H2O, 33.39 g/L Na2EDTA (Titriplex III), 0.54 g/L 

ZnSO4*7H2O. The pH was adjusted with NaOH (5M) to 6.5, 6.75, 7, 7.25 and 7.5, 

respectively. Furthermore, the osmotic pressure of the main culture medium was balanced. 

NaCl was added to equalize the osmolarity of the media with its different pH-values. The 

osmolarity was measured with an osmometer (Gonotec, Berlin, Germany). A concentration of 

0.1 g/L ampicillin was added for the cultivation of E. coli BL21 eYFP and E. coli PR02. All 

reagents were purchased from Fluka Chemie GmbH (Buchs, Switzerland), Merck (Darmstadt, 

Germany), Carl Roth GmbH & Co. KG (Karlsruhe, Germany) or Sigma Aldrich Chemie 

GmbH (Crailsheim, Germany). 
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BioLector experiments 

The BioLector system, which detects the biomass concentration of a given solution online and 

quasi-continuously through measurement of scattered light intensity in shaken microtiter 

plates, was used (Samorski et al. 2005) (see chapter 1.3). A 620 nm filter was used to measure 

the scattered light, and black 96-well microtiter plates with a clear bottom (Greiner Bio-one, 

Frickenhausen, Germany) were applied for the cultivations. For precultivation, 250 mL 

Erlenmeyer flasks containing 10 mL Wilms-MOPS medium were inoculated with stock 

cultures. The precultures were cultivated overnight at 37 °C, a shaking frequency of 350 rpm 

and a shaking diameter of 3 mm.  

 

To determine the influence of the initial pH-value on the lag phase of E. coli, parallel 

experiments with varying pH-values in microtiter plates were carried out. In a first 

experiment, E. coli eYFP was cultivated in Wilms-MOPS medium with five different initial 

pH-values (6.5, 6.75, 7, 7.25 and 7.5). Main cultures were inoculated with overnight Wilms-

MOPS precultures and three different initial OD (0.05, 0.1 and 0.15). They were cultivated at 

37 °C, a shaking frequency of 950 rpm, a shaking diameter of 3 mm and a filling volume of 

200 µL per well. Their growth was observed with the BioLector system. For every different 

initial pH-value, every different initial OD was applied in six parallel wells. For another 

experiment, E. coli eYFP, E. coli K12 and E. coli PR02 were cultivated under the same 

conditions, but the main cultures were inoculated with an initial OD of 0.1 and every different 

initial pH-value was applied in five parallel wells.  

 

RAMOS experiments 

As described by Anderlei et al. (2004), a self-made RAMOS device was used to perform 

online measurements of the Oxygen Transfer Rate (OTR) in shake flasks. A commercial 

version can be purchased from Kühner AG, Birsfelden, Switzerland and HiTec Zang GmbH, 

Herzogenrath, Germany. The RAMOS cultivations were performed in modified 250 mL 

Erlenmeyer flasks as described by Anderlei and Büchs (2001). A Wilms-MOPS preculture 

was inoculated with a stock culture of E. coli K12. It was grown for 7.5 h in a modified 250 

mL Erlenmeyer flask at 37 °C, a shaking frequency of 350 rpm, a shaking diameter of 50 mm 

and a filling volume of 10 mL. Wilms-MOPS main cultures were inoculated with this 

preculture, resulting in an initial OD of 0.1 of the main cultures. They were then grown at 37 

°C, a shaking frequency of 350 rpm, a shaking diameter of 50 mm and a filling volume of 10 

mL per flask. 
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Na2CO3 controlled release system 

To keep the pH-value of a cultivation in a narrow range without using high amounts of 

buffers, a controlled release system, consisting of polymer-based discs (Jeude et al. 2006) 

with integrated Na2CO3, was applied (see chapter 4). To manufacture the release system, 

solvent-free two components (called component A and B by the manufacturer) silicone 

Sylgard™184 as well as the catalyst Syl-off™ 4000 (Dow Corning, Wiesbaden, Germany) in 

a concentration of 0.1 % (w/w) were used. The ratio between the two components A and B 

was 10:1 as recommended by the manufacturer. Na2CO3 with the highest degree of purity was 

supplied by Sigma Aldrich (Crailsheim, Germany). The Na2CO3 was milled with a vibration 

micromill (Spartan™, Fritsch, Idar-Oberstein, Germany) in a high-grade steel mortar and then 

sieved through test sieves (Fritsch, Idar-Oberstein, Germany). The fraction with particle sizes 

ranging from 20 to 50 µm was used. First, a mixture consisting of component A of 

Sylgard™184, Na2CO3 (30 % (w/w)) and catalyst was weighed and degassed in a desiccator 

in a 30 mbar vacuum for 0.5 h. Then, component B was added. The finished mixture was 

casted on a glass plate with a casting knife (gap 1.1 mm) and then cross-linked at 50 °C in a 

convection oven for 3 h. The applied discs had a diameter of 15 mm (Further details will be 

published elsewhere). The discs released Na2CO3 at a certain rate, so that the medium was 

alkalized during cultivation, thus counteracting any biological acidification effects. The 

controlled-release systems were provided by the ITMC of the RWTH Aachen University and 

the release kinetics are described in chapter 4.  

 

The release system was used for one set of precultures. Three different precultures of E. coli 

eYFP in Wilms-MOPS medium with 0.2 M MOPS buffer were made. One batch was 

cultivated with one Na2CO3 disc, one with two Na2CO3 discs and another one without a 

Na2CO3 disc. These overnight precultures were cultivated in 250 mL Erlenmeyer shake flasks 

at 37 °C, a shaking frequency of 350 rpm, a shaking diameter of 50 mm and a filling volume 

of 10 mL per flask. Main cultures were inoculated with an initial OD of 0.2 and their growth 

was observed with the BioLector system. For every different final pH-value of the preculture, 

every different initial pH-value was applied in five parallel wells.  
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Determination of the lag phase 

The lag phase was estimated as described by Zwietering et al. (1990). Hereby, the logarithm 

of the biomass divided by the initial biomass was plotted against time. To obtain the lag 

phase, the intersection point between the x-axis and the partial regression line of the linear 

span of the growth curve was determined. 

 

Calculation of titration curves 

The pH-value of a buffer depends on its pKA and its proportion of acid and conjugate base. 

Addition of acid or base to the buffer changes the proportion and thus lowers or increases its 

pH-value. Whereas small amounts of added acid or base result in a small change in pH, the 

buffer capacity can be exhausted by adding a larger amount of acid or base. In that case, the 

pH-value declines or increases rapidly. For a given buffer at a known concentration, its pH-

value - dependent on the amount of added acid or base - can be calculated by the Henderson-

Hasselbalch equation. 
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Calculation of produced acid 

The course of pH during cultivation can be calculated by Equation 5-2 (Stöckmann et al. 

2003b). 
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With known total buffer concentration cHA+A-, the initial acid and base concentration are 
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respectively. Insertion of Equation 5-3 and 5-4 into Equation 5-2 yields Equation 5-5. 
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Equation 5-5 was applied, to calculate the amount of acid produced during cultivation. 

Solving Equation 5-5 for  results in a rough estimate of the amount of acid generated at a 

given pH-value. 

+H
c

 

5.3 Results and Discussion 

 

Influence of the initial pH-value on the lag phase of E. coli BL21 eYFP 

Figures 5-1 A and 5-1 B show the scattered light intensity measured for the wells inoculated 

with an initial OD of 0.05 and 0.15, respectively. Due to a higher initial OD, the curves of 

Figure 5-1 B peak earlier, than those in Figure 5-1 A. In Figure 5-1 A and 5-1 B, the 

respective plateaus were reached sooner at an initial pH of 6.5 than at an initial pH of 7.5. The 

curves of the cultures with an initial pH-value of 7 are located between the curves of pH 6.5 

and 7.5 at an initial OD of 0.05 as well as 0.15.  

 

Based on the scattered light intensity curves, the lag phases of the different cultures were 

determined. The shortest lag phase for each OD appeared at an initial pH-value of 6.5, the 

longest lag phase at pH 7.5 (Fig. 5-1 C). For cultures with an initial OD of 0.05, the lag phase 

of cultures grown at an initial pH-value of 6.5 was 1.9 h shorter than that of cultures grown at 

an initial pH-value of 7.5. These lag phases were 1.7 h and 1.6 h shorter for cultures with an 

initial OD of 0.1 and 0.15, respectively. To summarize: a higher initial pH-value resulted in a 

longer lag phase; a lower initial pH-value resulted in a shorter lag phase. 

 

The final pH-value is also depicted in Figure 5-1 C. During cultivation, the media acidified 

because of ammonium consumption and production of acid. Whereas the final pH-values of 

the cultures with an initial pH-value of 6.75 are about 5.8, the cultures with higher initial pH-

values have final pH-values in a range of 6.2-6.8. The lowest final pH-values appear at the 

cultures with an initial pH-value of 6.5: They are 3.6, 4.5 and 4.8 for the cultures with an 
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initial OD of 0.05, 0.1 and 0.15, respectively. An initial pH-value of 6.5 leads, therefore, not 

only to a shorter lag phase, but also to pH-values below the pH-limit for uninhibited growth 

during cultivation (pH 5.8). 

 
Fig. 5-1: Scattered light intensity [a. u.] (mean of six parallel wells each) of E. coli eYFP in microtiter 
plate with different initial OD and pH-values. A) Initial OD 0.05, B) Initial OD 0.15. Initial pH: ( ) 
6.5; ( ) 7; ( ) 7.5. C) Lag phase (filled symbols; mean of six parallel wells each) and final pH-values 
(open symbols; mean of six parallel wells each) of E. coli eYFP in microtiter plate with different 
initial pH-values and different initial OD of the main cultures of: ( , ) 0.05; ( , ) 0.1; ( , ) 0.15. 
Experimental conditions: Wilms-MOPS medium with 0.1 M MOPS-buffer and 10 g/L glucose, filling 
volume per well: 200 µL, shaking frequency (n): 950 rpm, shaking diameter (d0): 3 mm, temperature: 
37 °C, 96-well microtiter plate with gas-permeable seal. 
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Influence of the final pH-value of the preculture 

The aforementioned shorter lag phases at lower initial pH-values might have been caused by 

E. coli adapting to mildly acidic pH-values (Benjamin and Datta 1995). This adaptation to 

lower pH-values could have occurred during precultivation, which was also carried out in 

Wilms-MOPS medium with mildly acidic final pH-values. The E. coli in the main culture 

could have had a shorter lag phase, if the initial pH-value of the main culture was in the same 

pH-range as the final pH-value range of the precultures. To test the influence of the final pH-

value of the preculture, three different precultures with differing final pH-values were applied. 

The pH-values of two special precultures were affected by using a Na2CO3 release system, 

whereas the pH of another standard preculture was not affected. The final pH-values of the 

two affected cultures were 7.89 (two Na2CO3 discs) and 7.55 (one Na2CO3 disc), the final pH-

value of the non-affected culture was 7.01. 

 

Figure 5-2 A depicts the growth of the E. coli cultures inoculated with the preculture having a 

final pH-value of 7.55. Although the preculture had a mildly alkaline final pH-value, the main 

culture, with an equally alkaline initial pH-value of 7.5, showed its maximum scattered light 

intensity at ca. 9 h, whereas the culture having an initial pH-value of 6.5 showed its maximum 

the earliest, i.e. at ca. 7.5 h. Regardless of the final pH-value of the preculture, the shortest lag 

phase can be observed at an initial pH-value of 6.5 and the longest at an initial pH-value of 

7.5 (Fig. 5-2 B). Even though the precultures with Na2CO3 release systems had final pH-

values in the mildly alkaline range, the main cultures with mildly acidic initial pH-values (6.5 

and 6.75) had the shortest lag phases. Therefore, it is unlikely that an adaptation of E. coli to 

the pH-value during precultivation would be the reason for the shorter lag phase at lower pH-

values.  
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Fig. 5-2: Influence of different initial pH-values on growth and lag phase of E. coli eYFP. A) 
Scattered light intensity [a. u.] (mean of five parallel wells each) of E. coli eYFP in microtiter plate 
with different initial pH-values: ( ) 6.5; ( ) 7; ( ) 7.5. Final pH-value of the preculture applying 
controlled release systems with Na2CO3 was 7.55. ODt0: 0.2. B) Lag phase [h] of E. coli eYFP in 
microtiter plate with different initial pH-values of the main culture and different final pH-values of the 
precultures of: ( ) 7.89, ( ) 7.55, ( ) 7.01. Experimental conditions: Wilms-MOPS medium with 
0.1 M MOPS-buffer and 10 g/L glucose, filling volume per well: 200 µL, shaking frequency (n): 950 
rpm, shaking diameter (d0): 3 mm, temperature: 37 °C, 96-well microtiter plate with gas-permeable 
seal. 
 

As stated by Slonczewski et al. (1981), the intracellular pH-value of E. coli is 7.6 +/- 0.2 on a 

range of external pH-values of about 5.5 to 9. A lower external pH-value leads to a higher 

ΔpH, which they define as the difference between the external pH-value of the medium and 

the internal pH-value of the cytoplasm. As this difference in pH is involved in the formation 

of the proton electrochemical gradient (Zilberstein et al. 1984), a lower external pH-value 

and, hence, a higher ΔpH might positively affect the growth of E. coli (Stancik et al. 2002). 

Calik et al. (2006) also assumed that the E. coli growth is inhibited by an extracellular pH 

greater than or equal to the internal pH-value. Thus, the higher ΔpH might influence the 
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energy generation, the initiation of metabolic activity, and, therefore, the duration of the lag 

phase. 

 

Influence of pH on lag phases of different E. coli strains 

Besides E. coli eYFP, two other E. coli strains were cultivated to study the influence of the 

initial pH on the lag phase: i.e. E. coli K12 as a laboratory strain and E. coli PR02 as another 

production strain. Whereas E. coli K12 and E. coli eYFP showed similar behavior, E. coli 

PR02 varied in its response to initial pH-value. 

 

 

Fig. 5-3: Scattered light intensity [a. u.] (mean of five parallel wells each) of E. coli PR02 in microtiter 
plate with different initial pH-values. ( ) 6.5; ( ) 6.75; ( ) 7; ( ) 7.25; ( ) 7.5.ODt0: 0.1. 
Experimental conditions: Wilms-MOPS medium with 0.1 M MOPS-buffer and 10 g/L glucose, filling 
volume per well: 200 µL, shaking frequency (n): 950 rpm, shaking diameter (d0): 3 mm, temperature: 
37 °C, 96-well microtiter plate with gas-permeable seal. 
 

As shown in Figure 5-3, at an initial pH-value of 6.5, the E. coli PR02 cultures exhibited 

restricted growth whereas those with an initial pH-value of 7.5 reached its maximum scattered 

light intensity the earliest. At an initial pH-value of 7, 7.25 and 7.5 the curves of the E. coli 

PR02 cultures decrease sharply after reaching the maximum scattered light intensity. This 

decline may be caused by morphological changes of the bacteria. Whereas the maximum 

scattered light intensity is almost the same for the cultures at an initial pH-value of 7-7.5, the 

subsequent decline of the various curves differ in magnitude. The lowest decrease in scattered 

light intensity can be observed at pH 7.5 and the highest decrease at pH 7. Up to about 15 h, 

the curve of the cultures having an initial pH-value of 6.75 shows a smaller decrease in 
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scattered light intensity after reaching a first maximum than the aforementioned three 

cultures. This decrease is followed by a further increase in scattered light intensity. A 

disadvantageous pH-value accompanied by morphological changes of E. coli might explain 

the curve progression of the cultures with an initial pH-value of 6.75. For the cultures having 

an initial pH-value of 6.5, the curve progression differs from those of the other cultures: 

generally, the growth is slower and an exponential phase is hardly detectable. Consequently, 

the low pH-value adversely affected the growth of this culture initially grown at pH 6.5. 

 

 
Fig. 5-4: Lag phase [h] (mean of five parallel wells each) of different E. coli strains in microtiter plate 
with different initial pH-values. ODt0: 0.1; ( ) E. coli PR02; ( ) E. coli eYFP; ( ) E. coli K12. 
Experimental conditions: Wilms-MOPS medium with 0.1 M MOPS-buffer and 10 g/L glucose, filling 
volume per well: 200 µL, shaking frequency (n): 950 rpm, shaking diameter (d0): 3 mm, temperature: 
37 °C, 96-well microtiter plate with gas-permeable seal. 
 

The lag phases of E. coli K12, E. coli eYFP and E. coli PR02 are depicted in Figure 5-4. 

Unlike E. coli K12 and E. coli BL21 eYFP, E. coli PR02 - cultivated in Wilms-MOPS 

medium having an initial pH-value of 7.5 - demonstrates the shortest lag phase, whereas 

growth of the culture having an initial pH-value of 6.5 is impaired. Since the exponential 

phase of the latter is hard to determine, it was impossible to estimate the lag phase of this 

culture. The lag phase lasts about 9.2 h at an initial pH of 6.75 and ca. 6.4 h at an initial pH of 

7.5.  The lag phase of E. coli PR02 is generally longer than the lag phases of the other strains. 

On the contrary, for E. coli eYFP and E. coli K12, the lag phase increases from about 4.6 h to 

5.7 h and 5.5 h, respectively. The varying effects of the initial pH-value on the different 

strains indicate a strain-specific influence of the initial pH-value on the duration of the lag 

phase. Therefore, in each case the pH-value should be taken into account with regard to the 
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applied strain. Furthermore, another E. coli strain with a different vector, E. coli EcFbFP, 

showed similar results as the strains E. coli K12 and E. coli eYFP under different cultivation 

conditions. The lag phase rose from initial pH-values of 7.2-7.8 (data not shown). 

 

RAMOS cultivation of E. coli K12 

To further study the behavior of E. coli in media having different initial pH-values, E. coli 

K12 was cultivated in shake flasks. The oxygen transfer rate (OTR) of E. coli K12 was 

measured using a RAMOS device (Fig. 5-5).  

 

 
Fig. 5-5: Oxygen transfer rate [mol/L/h] of E. coli K12 during growth in 250 mL RAMOS flasks with 
different initial pH-values. ( ) 6.5; ( ) 7; ( ) 7.25; ( ) 7.5. ODt0: 0.1. Experimental conditions: 
Wilms-MOPS medium with 0.1 M MOPS-buffer and 10 g/L glucose, filling volume per flask: 10 mL, 
shaking frequency (n): 350 rpm, shaking diameter (d0): 50 mm, temperature: 37 °C. 
 

The cultivations having initial pH-values of 7, 7.25 and 7.5 reached maximum oxygen 

transfer rates of about 0.07 mol/L/h and declined rapidly in the stationary growth phase. The 

culture having an initial pH of 6.5 depicts a different behavior, whereby this culture is the first 

to reach its maximum OTR of approx. 0.045 mol/L/h. Subsequently, this curve declines 

rapidly to 0.03 mol/L/h and then drops steadily. Unlike the other cultures, this curve 

progression of the culture at initial pH 6.5 can be explained by the decreasing pH-value of the 

medium. The medium acidified during cultivation until pH-values that were suboptimal for E. 

coli growth were reached, thus, leading to diminished respiratory activity of E. coli. As the 

medium became more and more acidic, the OTR dropped further until it reached the same 

level as the other cultures after about 12 h. The final pH-value of the medium was about 3.8. 
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The other cultures also became increasingly acidic, but to a lesser degree. In these cases, the 

final pH-values were 6.1, 6.5 and 6.7 for the cultures with an initial pH-value of 7, 7.25 and 

7.5, respectively. The OTR curves, displayed in Fig. 5-5 affirm the results of the previous 

experiments. The higher the initial pH-value is, the later the curves reach their maximum 

OTR.  

 

Buffer capacity at different initial pH-values 

Although the applied medium was buffered with 0.1 M MOPS buffer, the final pH-values of 

the E. coli eYFP cultures having an initial pH-value of 6.5 were about 4 and that for the 

cultures with an initial pH-value of 7.5 were about 6.7. Ultimately, the production of acetic 

acid and the consumption of NH4
+ led to acidification of the medium during the cultivation of 

E. coli. 

 

Figure 5-6 shows the calculated titration curve of the applied 0.1 M MOPS buffer at different 

initial pH-values. The horizontal dashed line represents the pH-limit (5.8) for uninhibited 

growth of E. coli. At pH-values below 5.8, the growth of E. coli is strongly hampered 

(unpublished data). The vertical dashed line marks the total amount of H+ produced during 

cultivation of E. coli eYFP in Wilms-MOPS medium with a pH-value of 7.5 under the 

aforementioned experimental conditions. This amount was calculated with Equation 5-5 and 

accounted for about 0.043 M H+. Depending on the initial pH-value of the buffer the 

theoretically added acid might exceed the buffer capacity, thus leading to pH-values below 

the limit for uninhibited growth of E. coli. This is the case at an initial pH of 6.75 and, in 

particular, at an initial pH-value of 6.5. Both initial pH-values are below the pKA= 6.98 of 

MOPS buffer at 37°C. Thus, at these initial pH-values only a small part of the buffer capacity 

can be utilized, meaning that a relatively small amount of theoretically added acid exhausts 

the buffer capacity. 
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Fig. 5-6:  Titration curve of 0.1 M MOPS buffer, calculated with the Henderson-Hasselbalch equation 
(Eq. 5-1), at different initial pH-values. ( ) 6.5; ( ) 6.75; ( ) 7; ( ) 7.25; ( ) 7.5. Horizontal 
dashed line: lowest pH-value (5.8) for uninhibited growth of E. coli (unpublished data); vertical 
dashed line: estimated amount of H+ produced (0.043 M) under the following experimental conditions: 
Wilms-MOPS medium with 0.1 M MOPS-buffer (pH 7.5) and 10 g/L glucose, filling volume per well: 
200 µL, shaking frequency (n): 950 rpm, shaking diameter (d0): 3 mm, temperature: 37 °C, calculated 
with Eq. 6-5. 
 

By considering the duration of the lag phase of E. coli K12 and E. coli eYFP and the titration 

curve shown in Figure 5-6, two conflicting aims become apparent. The seemingly beneficial 

effect of a shorter lag phase at lower initial pH-values is offset by minimal pH-values reached 

during cultivation on the applied media that ultimately hinder the growth of E. coli. The 

amount of acid produced under the applied experimental conditions is high enough to exhaust 

the capacity of the applied 0.1 M MOPS buffer, resulting in final pH-values of about 4 for E. 

coli eYFP (initial pH-value 6.5). 

 

5.4 Conclusion 
 
In this chapter, the effect of the initial pH-value on the lag phase of four E. coli strains in a 

buffered minimal medium was investigated. For E. coli K12 and E. coli eYFP as well as E. 

coli EcFbFP, a lower initial pH-value (ranging from 6.5-7.5 for the first two strains and 7.2-

7.8 for the third strain) resulted in a shorter lag phase, whereas E. coli PR02 showed the 

opposite behavior. Therefore, the influence of the initial pH-value seems to be strain-

dependent. In contrast to the beneficial shorter lag phase of E. coli K12, E. coli eYFP and E. 

coli EcFbFP, the increasing acidification of the respective media during the cultivation 

eventually hampered E. coli growth. This effect could be avoided by cultivating at a higher 
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initial pH-value which, in turn, would lengthen the lag phase. Increasing the buffer 

concentration could be one solution to this dilemma, although a higher buffer concentration 

would cause a higher osmotic pressure with a potentially adverse impact on the growth of E. 

coli.  

 

Another option would be to use a buffer with a lower pKA-value (pKA = 6.25-6.5) than the 

pKA-value of MOPS buffer (pKA = 6.98, 37 °C). As the applied mildly acidic initial pH-

values would then lie in the range of the highest buffer capacity, its effectiveness would be 

increased. Further studies should, therefore, focus on optimizing the applied media and 

determining the biological causes for the effect of the initial pH-value on the lag phase in 

various E. coli strains.  

 

Furthermore, for process development, the potential benefits from shorter lag phases could be 

exploited, if the reaction of the applied E. coli strain on initial pH-values is taken into account. 

A future protocol for large-scale cultivation could include, for example, a low initial pH-value 

and, therefore, a shorter lag phase. At the onset of exponential growth, the pH-value of the 

medium could be increased by adding alkalizing reagents, thus controlling the pH at optimal 

values for growth and product formation. The presented controlled-release system (see 

chapter 4) for controlling the pH could be used for optimizing the initial conditions of small-

scale screenings. Here, the initial pH-value of the medium could be set to a low value, 

resulting in a short lag phase and with the continuous release of the sodium carbonate the pH-

value increases during the cultivation to optimal values for growth of the microorganisms.   
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6. Equalizing growth in high-throughput small-scale cultivations 

via precultures operated in fed-batch mode 

 

6.1 Introduction 

 

In the post-genomic era, clone libraries are used for many important applications such as 

screening for drug candidates, efficient new biocatalysts or secondary metabolites as well as 

media and strain selection (Kumar et al. 2004). The screening of these clone libraries is 

mainly conducted in shake flasks and microtiter plates in batch mode. In particular, projects in 

structural genomics, structural proteomics and directed evolution applications are using 

microtiter plates for high-throughput cultivation of clones for expression studies (Berrow et 

al. 2006; Graslund et al. 2008; Heddle and Mazaleyrat 2007)).  

 

As described in chapter 1.2 an often underestimated problem when working with different 

clones in microtiter plates is the non parallel and non equal growth of batch cultures. These 

growth differences are caused by variances of individual clones regarding, for example, initial 

biomass concentrations, lag phases or specific growth rates. The non parallel growth in 

precultures can have a tremendous effect on the performance of bioprocesses. As an example, 

the process of inducible protein expression will be discussed in more detail with respect to 

unequal growth kinetics in precultures. In such processes, the addition of an inducer at a 

predefined time point is the most common way to initiate recombinant protein production. It 

is well known that inducing at different metabolic states or phases of a culture is a critical 

factor regarding protein yield (Donovan et al. 1996; Jenzsch et al. 2006). Studier extensively 

described the problem of simultaneously inducing protein expression of different clones and 

developed thus an autoinduction medium (Studier 2005). This medium is a highly 

sophisticated way to cope with the problem of different induction points; however, it cannot 

be applied to all microorganisms and host/vector combinations. Furthermore, Studier 

emphasizes that it is very difficult in high-throughput screening to obtain all of the cultures in 
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a comparable state of growth. One strategy for achieving uniform conditions is to cultivate the 

organisms until the stationary growth phase (saturation) (Studier 2005). In chapter 1.2 it also 

was discussed that the growth of precultures to the stationary phase in batch mode may have 

negative effects on the following main cultivation and therefore, product formation. 

Additionally, in stationary phase the possible proteolytic degradation of target proteins 

expressed via IPTG induction or autoinduction may adversely affect product yield (Graslund 

et al. 2008). It is also known that the inoculum history is very important for the whole main 

cultivation process regarding reproducibility of growth kinetics (Ferenci 1999; Neves et al. 

2001; Webb and Kamat 1993). Therefore the precultivation strategy is very important for a 

successful screening and it is questionable if the conventional precultivation approaches are 

the optimal methods for screening for the best producing clones.    

 

Batch cultivations are predominately applied for small-scale cultures because of their easy 

use, flexibility, low cost and lack of alternative methods. However, fed-batch mode would 

often be superior for producing biomass and product in main cultures. Furthermore, the fed-

batch mode provides more defined physiological conditions and is more often applied in 

industrial scale than the batch mode. Jenzsch et al. (2006) presented the concept of greatly 

improving the reproducibility of main cultivations in stirred tank reactors via initiating a fed-

batch mode already very early in the fermentation. Reproducibility is of utmost importance 

especially for good manufacturing practice (GMP), as recommended in the PAT initiative 

from the FDA (Jenzsch et al. 2006). The authors showed that using fed-batch mode starting in 

the early biomass formation phase can lead to identical growth profiles of differently 

inoculated main cultures because of the fixed feed profile (Jenzsch et al. 2007). This concept 

which Jenzsch et al. proposed for the early phase of a main cultivation served as a basis for 

equalizing growth in small-scale precultivations with fed-batch mode. The fed-batch mode 

can be used for different precultures with diverse growth parameters. Therefore, a fed-batch 

preculture could improve the comparability and the selection of clones in screening 

applications.     

 

Fed-batch systems on a microliter-scale for screening and bioprocess development are 

increasingly being developed. These techniques comprise automated stirrer-driven 

microbioreactors (Puskeiler et al. 2005), microfluidic chips (Leeuwen van 2008) or fed-batch 

in shake flasks (Ruottinen et al. 2008; Weuster-Botz et al. 2001). As these kinds of devices 
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require pumps and additional equipment, they are somewhat impractical for fed-batch in real 

high-throughput.  

 

In this chapter a novel method for equalizing growth kinetics in high-throughput precultures 

in shake flasks and microtiter plates applying fed-batch mode is presented. For the fed-batch 

cultivations the polymer-based controlled-release systems for glucose feeding in shake flasks 

described in chapter 1.4 are used. For fed-batch cultivation in MTPs a newly developed 

controlled-release system wit hat the bottom of each well immobilized controlled-release 

system is presented. The focus of this chapter is not the expression of any product directly, 

but on the growth equalization of precultures. Escherichia coli and Hansenula polymorpha 

are used as model organisms.   

 

6.2 Material and Methods 

 
Organisms 

E. coli BL21 pRset eYFP-IL6 was maintained in glycerol stocks at -80°C in LB medium with 

100 μg/mL ampicillin. This strain was described by Samorski et al. (2005) with an additional 

plasmid pLysS. Hansenula polymorpha RB11 pC10-FMD (PFMD-GFP) (Amuel et al. 2000; 

Gellissen 2000) was maintained in glycerol stocks at -80°C in YNB medium and was kindly 

provided by Dr. C. Amuel (Heinrich-Heine University, Department of Microbiology, 

Düsseldorf, Germany). 

 

Media and Solutions 

Modified Wilms & Reuss synthetic medium (henceforth referred to as Wilms-MOPS 

medium) was used for the E. coli cultivations (Jeude 2007; Wilms et al. 2001). The medium 

consists of 20 g/L glucose; 5 g/L (NH4)2SO4; 0.5 g/L NH4Cl; 3 g/L K2HPO4; 2 g/L Na2SO4; 

0.5 g/L MgSO4•7H2O; 41.85 g/L 3-(N-Morpholino)-propanesulfonic acid (MOPS); 0.1 g/L 

ampicillin; 0.01 g/L thiamine hydrochloride; 1 mL/L trace element solution [0.54 g/L 

ZnSO4•7H2O; 0.48 g/L CuSO4•5H2O; 0.3 g/L MnSO4•H2O; 0.54 g/L CoCl2•6H2O; 41.76 g/L 

FeCl3•6H2O; 1.98 g/L CaCl2•2H2O; 33.39 g/L Na2EDTA (Titriplex III)]. The pH was 

adjusted to 7.5 with NaOH.  

 

Hansenula polymorpha was cultivated in Syn6-MES medium. The Syn6-MES mineral 

medium consisted of 1.0 g/L KH2PO4, 7.66 g/L (NH4)2SO4, 3.3 g/L KCl, 3.0 g/L 
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MgSO4•7H2O, 0.3 g/L NaCl, 27.3 g/L 2-morpholinoethanesulfonic acid (MES). This aqueous 

basic solution was adjusted to pH 6.4. Then the following substances were added (per L basic 

solution): 6.67 mL calcium chloride solution (150 g/L CaCl2•2H2O), 6.67 mL microelement 

solution (10.0 g/L (NH4)2Fe(SO4)2•6H2O, 0.8 g/L CuSO4•5H2O, 3.0 g/L ZnSO4•7H2O, 4.0 

g/L MnSO4•H2O, 10.0 g/L EDTA (Titriplex III)), 6.67 mL of vitamin solution (0.06 g/L D-

biotin, 20.0 g/L thiamine hydrochloride), 3.33 ml of trace element solution (0.2 g/L NiSO4•6 

H2O, 0.2 g/L CoCl2•6H2O, 0.2 g/L boric acid, 0.2 g/L KI and 0.2 g/L Na2MoO4•2H2O). The 

medium resulted in a final volume of 1023.33 mL and no final pH adjustment was necessary 

(Gellissen 2004; Jeude et al. 2006).  

 

The medium used for the fed-batch precultivations had no initial glucose because the 

immediate release of glucose from the controlled-release system renders it unnecessary (Jeude 

et al. 2006). All reagents were of analytical grade and purchased from Carl Roth GmbH & Co. 

KG (Karlsruhe, Germany). 

 

Manufacture of microtiter plates with controlled-release system  

To manufacture microtiter plates with the controlled-release system, denominated as 

“FeedPlates”, solvent-free two-component silicone Sylgard™184 was used. The ratio 

between the two components was 10:1 as recommended by the manufacturer. Anhydrous 

glucose was supplied by Sigma Aldrich (Crailsheim, Germany) with the highest degree of 

purity. The glucose was milled with a vibration micromill (Spartan™, Fritsch, Idar-Oberstein, 

Germany) in a high-grade steel mortar and then sieved with test sieves (Fritsch, Idar-

Oberstein, Germany). The fraction with particle sizes ranging from 20 to 50 µm was used. 

First, the two silicone components of the Sylgard™184 and glucose were mixed. Second 

chloroform (1-5 mL chloroform per 10 g silicone-glucose mixture) was added to decrease the 

viscosity of the mixture allowing it to flow more easily. Thereafter, 100 µL of the compounds 

were filled at the bottom of each cavity of a 2.2 mL polypropylene microtiter plate (HJ 

Bioanalytik, Mönchengladbach, Germany) using a multipette (Eppendorf, Wesseling-

Berzdorf, Germany). The plate was stored at 50°C for 12 h to aid cross-linking. The final 

plate was then gamma-sterilized. The controlled-release fed-batch microtiter plates were 

produced at the Institute for Textile Chemistry and Macromolecular Chemistry (ITMC) of the 

RWTH Aachen University (Aachen, Germany).  
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Cultivation  

For reproducible inoculation of the example precultures in this work, additional first cultures 

were performed to provide biomass. The first cultivations were conducted in Wilms-MOPS 

synthetic medium and Syn6-MES medium with 20 g/L glucose for E. coli and H. 

polymorpha, respectively. The following cultivation parameters were applied: 350 rpm 

shaking frequency (n), 50 mm shaking diameter (d0), 10 mL filling volume (VL) in 250 mL 

shake flasks. These first cultures were centrifuged and washed two times in 5 mL fresh 

medium and optical densities (OD) were measured. The OD values were used for the 

calculation of the required inoculation volume for each described experiment. All cultures in 

shake flasks were conducted in an in-house made Respiration Activity Monitoring System 

(RAMOS) for online-monitoring of oxygen transfer rates (OTR), as previously described by 

Anderlei et al. (Anderlei and Büchs 2001a; Anderlei et al. 2004a). A commercial version of 

this device is available from HiTec Zang GmbH (Herzogenrath, Germany) or Kühner AG 

(Birsfelden, Switzerland). The following cultivation parameters were applied: 350 rpm 

shaking frequency, 50 mm shaking diameter, 10 mL filling volume in 250 mL RAMOS 

flasks. The applied fed-batch mode in shake flasks was realized by using three controlled-

release discs per flask. These controlled-release discs (denominated as 'FeedBeads') contain a 

silicone elastomer matrix in which glucose is embedded. They are available from Adolf 

Kühner AG, Birsfelden, Switzerland. In general, the discs with silicon elastomer did not 

adversely affect microbial growth (Jeude et al. 2006b). 

 

For fed-batch precultivations, deepwell plates with immobilized silicon elastomer depots at 

the bottom of each well (FeedPlates) were used under the following conditions: 700 µL filling 

volume, 25 mm shaking diameter and 400 rpm shaking frequency. The microtiter plates were 

sealed with an airpore-sheet (nonwoven sealing foil, HJ Bioanalytik, Mönchengladbach, 

Germany) and cultivated under a humified aerated hood to minimize evaporation. The 

substrate released up to the time t can be described as follows:  

 

0.69t2releaseglucose ⋅=−   [mg/disc]   for Feed Beads and   (6-1) 

0.72t0.8releaseglucose ⋅=−     [mg/well] for FeedPlates.  (6-2) 

 

The glucose release kinetic of Equation 6-2 is shown in Fig. 6-1D. For subsequent fed-batch 

precultivations, the first cultures were centrifuged and resuspended in glucose-free medium to 
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prevent possible residues of glucose from the first cultures. All cultures were incubated at 

37°C in shakers of type LS-W or ISF-4-W from Adolf Kühner AG (Birsfelden, Switzerland). 

 

Analytical methods 

Optical density of microtiter plate experiments was measured at 600 nm (OD600) with the 

microtiter plate reader Powerwave X340 (Bio-Tek Instruments GmbH, Bad Friedrichstal, 

Germany) and for shake flask experiments a Uvikon 922 spectrophotometer (Kontron, 

Milano, Italy) was used. Samples were measured in the linear range of OD measurements 

after dilution in fresh medium. Sampling and OD measurement were each conducted twice or 

thrice. Samples from the fed-batch microtiter plates were withdrawn from different wells. 

Otherwise, the lower volume and the continuous release of substrate would have led to 

glucose concentrations that are higher than those in the unsampled wells.  

 

6.3 Theoretical Background 

 

A simple model for batch and fed-batch cultivations in microtiter plates was applied to 

demonstrate the concept of equalizing the growth in precultures. The variation of initial 

biomass concentrations (inocula), lag phase and specific growth rates was chosen to visualize 

growth and substrate kinetics of different precultures. These cultures may represent various 

clones of a clone library. 

 

Modeling 

A simple model for fed-batch cultivations in microtiter plates with standard bioreaction 

equations based on Monod kinetics was applied (Eq. 6-3 to 6-7).  
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Eq. (6-6) was obtained by differentiating Eq. (6-2) and referring it to the utilized filling 

volume in a well. Eq. 6-7 is an equation developed by us to represent the lag and acceleration 

phase of a culture. The term relact (relative activity) in equation 6-5 and 6-7 accounts for the 

lag phase and acceleration phase and varies from 0 (start of cultivation) to 1 (cells adapted to 

the new medium). The advantage over existing equations is that the two parameters tlag and 

tacc can directly be interpreted as the time constant for the lag and acceleration phase, 

respectively. A decay term was introduced to simulate the decrease in biomass due to the lack 

of a carbon source and the accumulation of end products in the stationary phase of batch 

cultivations. As there is no general consensus for mathematical modeling of a decay term or 

death rate (Toal et al. 2000), a constant decay term was assumed in the model (Moser and 

Steiner 1975). Simulations were conducted with Modelmaker (Cherwell Scientific, Oxford, 

UK).  

 

Typical values for precultivation parameters of E. coli were introduced into the model (KS = 

0.2 g/L, tacc = 0.5 h, Kd = 0.01 1/h, YXS = 0.5 g/g, S0 = 15 g/L for batch, S0 = 0 g/L for fed-

batch). All the other model parameters were selected according to the caption of Fig. 6-1. The 

volume of the precultivation was set at 700 µL as a typical value for small-scale cultivations 

in deepwell microtiter plates. Within the simulation time of 34 h, the initial glucose 

concentration (substrate S0) in the batch model was comparable to the total amount of glucose 

fed in the fed-batch mode. The term Feedrate in equation 6-4 was omitted for the batch 

simulations. 

 

Batch cultivation 

After the lag phase, the different batch precultivations grow exponentially (Fig. 6-1A) until 

the substrate is exhausted (Fig. 6-1B). Then, the stationary phase begins and the decay of 

viable biomass becomes apparent. This applies for all four simulations which results in 

different growth kinetics and physiological states at any time in batch mode. Moreover, non-

optimal conditions for inoculation of the main culture are realized in the stationary phase (see 

arrow in Fig. 6-1A), because the clones are nutrient depleted in the stationary phase for 

different times. When these cells are used as a preculture for screening experiments, 

differences in growth kinetics in the main cultivation are most probable (see chapter 1.2).  
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Fig. 6-1:  Comparison of batch and fed-batch modes for cultivating precultures. Variations in lag 
phase, maximum specific growth rate or initial biomass concentration were simulated. (A) growth 
kinetics in batch mode; (B) substrate kinetics in batch mode; (C) growth kinetics in fed-batch mode; 
(D) substrate kinetics in fed-batch mode. (—) reference growth parameters (X0 = 0.1 g/L; tlag = 0.5 h; 
µmax = 0.5 1/h); (---) decreased initial biomass concentration (X0 = 0.02 g/L; tlag = 0.5 h; µmax = 0.5 
1/h); (•••)  increased lag time (X0 = 0.1 g/L; tlag = 2.0 h; µmax = 0.5 1/h); (–••–) decreased µmax (X0 = 0.1 
g/L; tlag = 0.5 h; µmax = 0.3 1/h); (–•–) total release of substrate from controlled-release system in fed-
batch mode (calculated using Eq. 6-2). The arrow and the bracket indicate the time for inoculation of 
the main culture from batch and fed-batch preculture, respectively. 
 

Fed-batch cultivation 

The fed-batch mode allows predefined growth behavior of the preculture via feeding and, 

thus, offers the advantage of a more controlled process than the batch mode. In fed-batch 

simulations, shown in Fig. 6-1C and D, the addition of glucose to the applied medium was 

unnecessary, because of the immediate release of glucose from the release system. This is also 

apparent in Fig. 6-1D, which shows the total release of glucose throughout the cultivation. 

The substrate accumulates at the beginning of the fermentation when the cell concentration is 

still too low to consume the released glucose. After 5 to 10 h the biomass of the simulated 

precultures consume more glucose than provided by the controlled-release system and, 

consequently, the substrate concentration decreases (Fig. 6-1D). The preculture turns from a 

batch to a fed-batch phase after 8 to 15 h (Fig. 6-1C). In this phase the organisms are growing 

in a substrate-limited fashion and show a growth rate predefined by the feed rate of the 
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controlled-release system (Eq. 6-6). It is obvious that the fed-batch mode equalizes the 

different growth behavior of all precultures. The cells are constantly supplied with substrate, 

thereby resulting in constant growth and a defined metabolic state from 15 h onwards (Fig. 6-

1C). In this way, the adverse effects of nutrient starvation or accumulation of overflow 

metabolites are minimized. 

 

This system is self regulating concerning the consumption of glucose of each preculture. After 

the different bacterial clones switched over to glucose-limited growth, they all consume equal 

amounts of glucose and, hence, produce equal cell densities. The simulation demonstrates that 

fed-batch fermentations with defined feeding rates can equalize precultures that have different 

inocula, specific growth rates and lag phases. Moreover, the time for inoculation of main 

cultures is, in contrast to batch-precultures, no longer important. Even if the transfer of 

inocula is postponed relative to a fixed schedule, e.g. due to some practical reasons, the 

precultures do not suffer from carbon source depletion (see bracket in Fig. 6-1C) and preserve 

their metabolic activity.   

 

6.4 Results and Discussion 

 
RAMOS cultivations 

 

Batch Mode 

Batch precultures of the recombinant strain E. coli BL21 pRset eYFP-IL6 were cultivated as 

reference at three different initial optical densities (ODto) from 0.1 to 0.5. They were 

inoculated from the same first culture in order to provide defined starting conditions. These 

represent a range commonly applied when inoculating precultures. The oxygen transfer rates 

are depicted in Fig. 6-2 against the fermentation time. The oxygen transfer rate (OTR) signal 

shows typically exponential growth and oxygen is limited only for a short period (plateau) 

upon attaining an OTR of approximately 60 mmol/L/h. When glucose is exhausted, the OTR 

decreases sharply (e.g. at 12 h for the culture with ODto = 0.1). Due to overflow metabolism, 

acetate is formed during the exponential growth phase; its assimilation marks the second peak 

in the OTR curve of each culture. These phenomena have been described for this strain in 

chapter 3. The different inocula resulted in a time variation of approximately 4 h in growth. 
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The results demonstrate clearly the significant difference in growth kinetics of the 

microorganisms caused only by different initial biomass concentrations.  

 

 

Fig. 6-2:  Batch cultivation of E. coli BL21 pRset eYFP-IL6 in RAMOS flasks with various initial 
biomass concentrations: ODto = 0.5 (■), ODto = 0.3 (●), ODto = 0.1 (▲). Wilms-MOPS medium with 
15 g/L glucose, T = 37 °C, VL = 10 mL, n = 350 rpm, d0 = 50 mm. 
 

Fed-batch mode 

For fed-batch precultures in shake flasks, FeedBeads were applied, and the fermentation was 

monitored online with the RAMOS device (Fig. 6-3A).  

 

The exponential growth of the batch phase in the beginning is followed by substrate limitation 

and a sharp OTR decrease. It is noteworthy that this decrease does not fall to zero but rather to 

a defined value of approximately 3 mmol/L/h. This value reflects the constant release of the 

substrate from the FeedBeads during the fed-batch phase. This growth pattern is obvious for 

all of the three differently inoculated precultures. The OTR peak of the batch phase increases 

for precultures with less inoculum (from 10 mmol/L/h for ODto = 0.5 to 17 mmol/L/h for ODto 

= 0.1; Fig. 6-3A). This increase is caused by the fact that more glucose accumulates in the 

flasks with lower inoculum before the fed-phase starts (see also Fig. 6-1D). Nevertheless, as 

soon as all precultures have reached the fed-batch mode (11 h), they all have consumed the 

same total amount of glucose. In fed-batch mode neither acetate formation nor oxygen 

limitation can be observed due to the lower initial glucose concentration and subsequent 

glucose-limited growth as compared with the batch mode (compare Fig. 6-3A and Fig. 6-2). 
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Fig. 6-3: Fed-batch precultivation of E. coli BL21 pRset eYFP-IL6 in RAMOS flasks with various 
initial biomass concentrations: ODto = 0.5 (▲), ODto = 0.3 (●), ODto = 0.1 (■). (A) Oxygen transfer 
rate and (B) calculated total oxygen consumption. Wilms-MOPS medium with no additional glucose, 
3 FeedBeads per flask, T = 37 °C, VL = 10 mL, n = 350 rpm, d0 = 50 mm. 
 

All the precultures are found to be in a defined and similar metabolic state beginning at 11 h 

and are actively growing. At the end of the experiment, the OD of the precultures with an 

initial biomass of ODto of 0.1, 0.3 and 0.5 were 4.4, 4.5 and 4.2, respectively. This 

demonstrates equalized growth. 

 

Figure 6-3B shows the total oxygen consumed by the cells at any given time obtained by the 

integration of the OTR. By assuming a constant yield coefficient of biomass to oxygen during 

fermentation, the total oxygen consumption reflects the increase in biomass and is in good 

agreement with the simulated data (Fig. 6-1C). Variations in the total oxygen consumption 

during the fed-batch phase (Fig. 6-3B) result from errors in integrating curves with only few 

data points.  
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Fed-batch in microtiter plates 

The newly developed fed-batch system for microtiter plates was used. Two microorganisms 

were tested to equalize the various precultures. Initial optical densities of 0.05, 0.1 and 0.3 

were applied to simulate variable growth kinetics. The different precultures were inoculated 

from the same first culture. For E. coli, varying the inoculum from the highest to the lowest 

initial biomass concentration yielded a ca. 10 h delay in growth (Fig. 6-4). In fed-batch mode 

the precultures turned one after another from an exponential growth to a controlled nearly 

linear increase in biomass concentration. After approximately 15 h, all precultures were 

equalized and attained the same biomass concentration of OD 6.5 at the end of the 

experiment. As previously mentioned, this effect was caused by the same total amount of 

glucose being released per well. 

 

 

Fig. 6-4: Fed-batch precultivation of E. coli BL21 pRset eYFP-IL6 in a fed-batch deepwell plate with 
various initial biomass concentrations: ODto = 0.5 (▲), ODto = 0.3 (●), ODto = 0.1 (■). Wilms-MOPS 
medium with no additional glucose, T = 37 °C, VL = 700 µL, n = 400 rpm, d0 = 25 mm.  
 

The same behavior as for E. coli can be observed for Hansenula polymorpha precultures. 

Here, a 10 h delay in growth is observed for precultures with high and low inoculum 

concentration (Fig. 6-5). The applied fed-batch mode enables equalization of all precultures 

after 24 h. At 50 h the different cultures still have the same biomass concentration and are 

actively growing.  
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Fig. 6-5: Fed-batch precultivation of Hansenula polymorpha in a fed-batch deepwell plate with 
various initial biomass concentrations: ODto = 0.5 (▲), ODto = 0.3 (●), ODto = 0.1 (■). Wilms-MOPS 
medium with no additional glucose, T = 37 °C, VL = 700 µL, n = 400 rpm, d0 = 25 mm.  
 

6.5 Conclusions 

 

A new technique for growth equalization in high-throughput precultivations by applying fed-

batch mode was simulated and verified experimentally. Growth of differently inoculated 

precultures in shake flasks and microtiter plates could be equalized and, therefore, the 

feasibility of this concept could be demonstrated. The concept worked for prokaryotic and 

eukaryotic microorganisms. Consequently, this technique seems to be of general applicability.  

 

The inherent advantages of this method are that it is easy to use as it requires no additional 

equipment for fed-batch precultivations on a small-scale. Furthermore, there is no need for 

permanent and laborious offline-monitoring of precultures to determine the right time of 

transfer to a main cultivation. Moreover, the exact time for inoculation of main cultures is, in 

contrast to batch precultures, no longer important. The system is self-regulating; the cells are 

continuously supplied with substrate and are in a defined metabolic state. This represents the 

strategy for achieving uniform conditions in the growth of different clones as recommended 

by Studier (Studier 2005), with the exception that the microorganisms are not in the stationary 

growth phase. Possible oxygen limitations and adverse effects of the batch mode can also be 

avoided in the fed-batch mode.  
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This technique might be especially useful for microorganisms exhibiting decreasing viability 

in the stationary phase and in which synchronous growth of distinct precultures is very 

important. Furthermore, precultures in fed-batch mode microtiter plates can generate more 

relevant data in screening processes (Jeude et al. 2006), because the starting conditions for all 

strains under study are equal. A possible disadvantage of the introduced equalization 

technique may be the expression of toxic products in hosts which are de-repressed by low 

glucose concentrations during the fed-batch phase. Further investigations have to be 

performed to prove this method with different clone libraries and the impact of equalized 

precultures on product formation (e.g. recombinant proteins or amino acids) in subsequent 

main cultivations. 
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7. Conclusions and Outlook 

 

7.1 Conclusions 

Screening experiments are of utmost importance for developing biotechnological processes. 

As the cultivation parameters of the screening for a rational selection of production 

microorganisms should match the parameters in the production process, the scale-down of the 

cultivation parameters from the large-scale to the small-scale is absolutely necessary. The 

optimization of the screening conditions involves different challenges and problems as 

described in chapter 1.2. Therefore, different facets of screening processes were analyzed and 

solutions for their optimization were investigated within this thesis.       

 
To enhance the online information obtained during cultivation experiments in shake flasks, 

the RAMOS device for measuring respiration activities in shake flaks and a fiber optical, 

online pH-measurement technique were successfully combined as described in chapter 3. 

With this combination the pH-values during cultivations in RAMOS flasks and normal shake 

flasks can be compared more efficiently. Moreover, the pH effects on the OTR during growth 

of microorganisms, e.g. inhibited growth due to too low pH values, can easily be identified 

with this measuring setup. The combination of the online OTR and pH-measurement gives a 

lot of detailed information about the cultivation and, therefore, is a powerful tool for 

monitoring shake flask experiments for screening processes as well as for process 

development. Furthermore, this technique allows a more efficient development of controlled-

release systems for controlling pH-values in shake flaks (see chapter 4).   

 

One important difference between fermentations in various scales is the active pH-control in 

large-scale and in contrast, the high buffer concentrations used in shaken bioreactors for 

controlling the pH. A new polymer-based controlled-release system for controlling the pH-

value also in shake flasks was presented in chapter 4. This controlled-release system consists 

of a polymer matrix in which sodium carbonate as pH-control reagent is encased. The 
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successful application of the controlled-release of sodium carbonate with defined release 

kinetics in cultivations of two different E. coli strains in mineral media with either glycerol or 

glucose as carbon sources was demonstrated. It was possible to substantially reduce the buffer 

concentrations in media for shake flask cultures, while the pH-values remain in the 

physiological range of microbial growth during the whole cultivation. This reduction in buffer 

concentration leads to reduced osmolarities in the medium. Furthermore, the applied 

conditions with less buffer concentrations enhance the comparison of small-scale and large-

scale fermentation processes and thus enable a more reliable scale-up of experiments. 

 

For screening cultures the growth behavior of the microorganisms has a great impact, for 

example, on the induction time of protein expression (see chapter 6). Especially different lag 

times of the microorganisms considerably affect the screening process. Therefore, the effect 

of the initial pH-value on the lag phase of four E. coli strains in a buffered minimal medium 

was investigated in chapter 5. For three E. coli strains a lower initial pH-value resulted in a 

shorter lag phase, whereas one E. coli strain showed the opposite behavior. Therefore, the 

influence of the initial pH-value seems to be strain-dependent. In contrast to the beneficial 

shorter lag phase with decreasing initial pH-values of the three E. coli strains mentioned 

above, the increasing acidification of the respective media during the cultivation eventually 

hampered E. coli growth. This effect could be avoided by cultivating at a higher initial pH-

value which, in turn, would lengthen the lag phase. Increasing the buffer concentration could 

be one solution to this dilemma, although a higher buffer concentration would cause a higher 

osmotic pressure with a potentially adverse impact on the growth of E. coli. Furthermore, for 

process development, the potential benefits from shorter lag phases could be exploited, if the 

reaction of the applied E. coli strain on initial pH-values is taken into account. For future 

large-scale cultivation a low initial pH-value could, for example, be applied to shorten the lag 

phase of the fermentation. After the lag phase the pH-value could be increased by adding 

alkalizing reagents, thus controlling the pH at optimal values for growth and product 

formation. In screening experiments this effect on the lag phase should always be considered, 

because the different lag phases lead to unequal growth in both the screening main culture and 

also the respective preculture, which then substantially influences the subsequent screening 

main culture (see chapter 6). 

 

Besides the described differences in the initial pH-values, differences in the inoculation of 

precultures in shake flasks and microtiter plates have a tremendous effect on the microbial 
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growth and thus on rational design of screening processes. These effects may be caused, for 

example, by different initial biomass concentrations in the preculture or strains inoculated in 

different growth phases. Therefore, a new technique for growth equalization in high-

throughput precultivations by applying fed-batch mode was introduced in chapter 6. The 

presented concept worked for the bacterium E. coli and the yeast H. polymorpha. The inherent 

advantage of this method is the easy handling of the applied polymer-based controlled-release 

system as it requires no additional equipment for high-throughput fed-batch precultivations on 

a small-scale. Another advantage is that no permanent and laborious offline-monitoring is 

needed to determine the right time for inoculation of a main cultivation. Additionally, the 

exact time to inoculate the main cultivation, in contrast to batch precultures, is no longer 

important. This technique might be especially useful for microorganisms exhibiting 

decreasing viability in the stationary phase and in which synchronous growth of distinct 

precultures is very important. This newly developed method for precultivating 

microorganisms in fed-batch mode microtiter plates can generate more relevant data in 

screening processes (Jeude et al. 2006), because the starting conditions for all investigated 

strains are equal. Therefore, the optimal operational mode for performing screening processes 

for developing fed-batch production processes should be the fed-batch cultivation mode, as 

stated by Stöckmann et al. (2009) and Scheidle et al. (2010) with fed-batch precultures as 

demonstrated in this work. 

 

The polymer-based controlled-release fed-batch microtiter plate presented in chapter 6 is an 

ideal tool for high-throughput screenings. In contrast to other mini bioreactor systems, such as 

the BioLector, the cultivation in this fed-batch method does not contain the online 

measurement of different parameters. This system does not mandatory need these additional 

devices for a controlled growth of the microorganisms, because it is self regulating. 

Furthermore, the easy-to-use controlled-release microtiter plates can be handled like normal 

microtiter plates in high-throughput applications with dozens of parallel experiments. 

Especially the combination with an automatic liquid handling system, the usage of the plates 

would immensely increase the throughput of the controlled-release fed-batch system.         

 

To improve screenings, the developed and applied polymer-based controlled-release systems 

have been proven to be very useful. With these systems it is possible to scale-down essential 

cultivation parameters from large-scale to small-scale screening, such as fed-batch mode and 

low buffer concentrations established with the pH-control. The experiments described in this 
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work suggest, that it is preferable to transfer the complete screening - preculture and main 

culture - to fed-batch operational mode in order to select the most suitable microorganisms for 

a subsequent fed-batch production process. 

 

7.2 Outlook 

 

For further optimizing screening parameters it would be very interesting to use the methods 

demonstrated here, to perform an exemplary process development. In these experiments the 

whole process concerning further problems in scale-down can be analyzed and additional 

differences between the various scales can be identified. Thereby, controlled-release fed-batch 

precultures and fed-batch main cultures for the screening of a model clone library could be 

used. Then, a scale-up into laboratory-scale could be done to confirm the proposed better 

screening results, while comparing them with results from a conventional screening. Here, the 

influence of complex and mineral media and the osmotic pressure on the selection of 

microorganisms can be investigated. Furthermore, the results of chapter 5 demonstrated the 

strain dependent influence of the initial pH-value in the media on the lag phase of E. coli 

cultures. It would be very interesting to investigate this influence on the lag phases of 

different further microorganisms such as other bacteria and yeasts. Moreover, the combination 

of these methods with ‘omics-technologies’, such as transcriptomics, proteomics and 

metabolomics, would give further information about the influence of the cultivation 

parameters on the regulation and the metabolic flux of the microorganisms. With this 

information production microorganisms and process parameters can be adapted to an optimal 

screening and production process.  

 

In cooperation with the Institute for Textile Chemistry and Macromolecular Chemistry 

(ITMC) of the RWTH Aachen University, new controlled-release systems will be developed 

for different applications in microbial cultivations. For example, the polymer-based 

controlled-release system for controlling the pH-value in shaken bioreactors (presented in 

chapter 4) will be further developed to enable a self regulating system. This new system will 

use, for instance, pH-sensitive polymers to establish a release of pH-control reagents 

dependent on the actual pH-value in the surrounding medium. The pH-sensitive polymers 

will, for example, increase the release of the pH-control reagent with decreasing pH-values 

below 7 and will decrease the release at pH-values of 7 and above. It will then be possible to 
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use this system under a lot of different cultivation conditions, because the release kinetics is 

not predefined. Moreover, with such a pH-sensitive controlled-release system, it will be 

possible to cultivate microorganisms in small-scale shaken bioreactors without any additional 

buffer, thereby guaranteeing constant growth conditions. A transfer of this controlled-release 

system into microtiter plates will than give an easy-to-use pH-control in high-throughput 

cultivations. A future combination of the controlled-release systems for fed-batch cultivation 

and pH-control would, thus, enable the user to perform screenings under the same conditions 

as applied in large-scale processes. Furthermore, polymer-based controlled-release systems 

with different release kinetics and different release substrates will be developed. For example, 

a system for feeding ammonium chloride into plant cell cultures, with release kinetics over 7 

days is currently tested. Furthermore, the usage of an automatic liquid handling robot would 

increase the high-throughput potential of the controlled-release microtiter plates for the 

screening of hundreds or thousands of different clones under fed-batch and low osmolarity 

conditions.  
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