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List of abbreviations and symbols
Abbreviations
NMR           Nuclear Magnetic Resonance

MRI             Magnetic Resonance Imaging

NMRR Nuclear Magnetic Resonance relaxometry
1H NMR       hydrogen proton NMR

MSO             multi-step-outflow

pF                 water retention curve

RF               radio frequency

CPMG          Carr-Purcell-Meiboom-Gill

PSD              pore size distribution

Physical symbols
(mm, cm)           reciprocal value of the air entry value(bubble point)

B0 (Tesla)            magnetic flux density

C (cm )       soil water capacity                

D (m2/s) diffusion coefficient of water 

D (μm) pore diameter 

F (N)                        force

(-)                       soil porosity 

(degrees)          liquid-solid contact angle 

G (Tesla/m)              magnetic field gradient strength 

g (m/s2) gravitational acceleration (9.80665m/s2)

(MHz/Tesla)         gyromagnetic ratio 

H (cm)            hydraulic head

h (cm)      pressure head

hm (cm)                matric head 

(J·s) (1.054·10-34 J·s)

K (mm/min; cm/h) soil hydraulic conductivity 

Kr (mm/min; cm/h) unsaturated (relative) hydraulic conductivity 

KS (mm/min; cm/h) saturated hydraulic conductivity

kB (J/K)                 Boltzmann constant (1.38 · 10-23 J/K)

List of abbreviations and symbols                                                                    
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m (-)                     vanGenuchten parameter

μ (m2/A or J/Tesla) magnetic dipole moment

n (-)                    vanGenuchten parameter

0 (MHz)                  Larmor frequency

p (N/m2; bar; Pa) pressure  

pa (N/m2)           air pressure

pw             (N/m2)                             water pressure

r (μm) pore radius

(g/cm3) bulk density

1 (μm/ms)                 longitudinal surface relaxivity 

2 (μm/ms)                 transversal surface relaxivity

q (mm/min) flux density

S/V cm-1 surface to volume ratio 

wa (J/m2; N/m) surface tension of water-air interface (0.0725 J/m2)

T (ºC)                      temperature

T1                (ms)                            spin-lattice relaxation time (longitudinal relaxation time)

T2                (ms)                                   spin-spin relaxation time (transversal relaxation time)

TE (μs) echo time

TR (s)       repetition time

(cm3/cm3) volumetric water content

a (cm3/cm3)            volumetric air content

r        (cm3/cm3)           residual volumetric water

s (cm3/cm3) saturated volumetric water content 

w (Kg·m2/s2)             soil water potential 

g (Kg·m2/s2)          gravitation potential

s         (Kg·m2/s2) osmotic potential 

tp (Kg·m2/s2) tensiometer pressure potential

m (Kg·m2/s2)            matric potential

Va (cm3) volume of air phase

V0 (cm3) total volume 

Vw (cm3) volume of water phase

List of abbreviations and symbols                                                                    
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1. Introduction
Soil is the natural material that covers most of the dry surface of the earth. It is the 

product of mechanical, chemical and biological interactions of different types of elements.

Soils have a very complex composition and high variability in their occurrence and properties. 

The non-homogeneous mixture and interaction of their components and the changes induced

upon usage ensures the complexity of their structure and a comfortable variable spatial 

distribution over the surface of the planet. The soils components can be found in nature in all 

the three aggregation states of matter: the solid state, the liquid state and the gas state. In spite 

of their complex structure and composition, soils can be easily handled and studied by a

variety of methods. [Koorevaar, 1983]

Prediction of water movement in soils is a controlling factor in various processes of 

interest in water resources management such as: the runoff generation, the water and nutrients 

supply to vegetation, the groundwater recharge and contamination. From the physics point of 

view water distribution and transport in unsaturated soil represents a rather complex problem 

of porous media hydraulics. Among various techniques developed for investigating hydraulic 

phenomena in soils, Nuclear Magnetic Resonance (NMR) can be used successfully for the 

characterization of natural porous media.

1.1 Current state of NMR in soil
Nuclear Magnetic Resonance is a non-invasive and non-destructive method that

allows various types of measurements in soils. One may differentiate between four ways of

application: 1) NMR imaging (magnetic resonance imaging, MRI) allows for spatial detection 

of water contents and tracer transport [e.g., Amin et al., 1996; Hermann et al., 2002; 

Pohlmeier et al., 2008]; 2) NMR diffusometry determines the self-diffusion of the water 

molecules [Callaghan et al., 1991; Farrher et al., 2007]; 3) NMR relaxometry (NMRR) 

determines magnetic properties of water such as longitudinal and transverse relaxation times 

in natural porous media [Hinedi et al., 1993; Kleinberg, 1996; Hall et al., 1997; Votrubova et 

al., 2000; Stingaciu et al., 2009; Pohlmeier et al., 2009] and 4) NMR spectroscopy allows for

analyzing and quantification of soil organic matter compounds [Randall et al., 1997; Kögel-

Knabner, 1997; Lundberg et al., 2001]. NMR relaxometry forms the basis of understanding 

signal intensities and contrast since MRI-signal intensities depend on local water content and 

relaxation times in the respective samples. In order to measure spatial water distributions one 

should first investigate the relaxometric properties of the porous media of interest.
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The first use of the NMR technique for soil water monitoring was reported by 

Matzkanin and Paetzold in 1982. They tested the ability of MR technique to measure water 

content in packed soil samples. The same authors [Paetzold and Matzkanin, 1984; Paetzold et 

al., 1985] reported the use of MR techniques for soil water monitoring in field. Tollner and

Rollwitz, [1988], published results of a study of the relationship between the NMR signal 

intensity and the water content of two packed soil samples at three different moisture 

contents. Hinedi et al., [1993], was the first to apply the concept of the pore size distribution 

assessment using the NMR relaxation measurements. Hall et al., [1997] reported the result of 

basic NMR measurements conducted for packed samples of 23 different soil materials using 

four different MR protocols. These results showed that many soils were characterized by quite 

fast relaxation times due to relaxation in local magnetic field gradients and they 

recommended the usage of low field NMR for the characterization of natural soils.

Over the last years new NMR methodologies and applications were developed and 

tested to quantify the total amounts of fluid phase, fluid saturation and porosity distributions 

[Kleinberg and Horsfield, 1990; Latour et al., 1995; Hinedi et al., 1997; Schaumann et al.,

2005; Ioannidis et al., 2006, Gladkikh et al., 2007; Stingaciu et al., 2009]. However, the 

majority of works on NMR relaxometry in natural porous media have been performed on 

consolidated porous materials such as rocks [Hedberg et al., 1993; Kleinberg, 1994; Straley et 

al., 1997] due to their importance for oil well logging applications. 

In general, the amplitude of the 1H NMR relaxation curve provides information about 

the fluid content of the rocks, while the transversal relaxation times are used for the 

characterization of the pore size distribution [Dunn, 2002]. On the other hand, echo intensities 

depend not only on the water content but also on relaxation times and experimental 

parameters such as echo time and repetition times. Therefore, Edzes and van Dusschoten

[1998] proposed to use multi-echo MRI sequences for more reliable water content 

determination. Here, several echoes are recorded for each point in space, and convenient 

relaxation functions are fitted to the data yielding amplitude and relaxation time maps of the 

sample. The amplitude maps contain only information about the water content, and the 

influence of the samples texture is contained in the relaxation time maps. Most conventional 

NMR scanners operate at high magnetic field but prior knowledge [Hall et al., 1997; Keating 

and Knight, 2007] suggests the usage of low field scanners, which are currently under 

development for soil science, purposes [Raich and Blümler, 2004].
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1.2 Aims 
The aim of this thesis is to apply different NMR techniques for: i) understanding the 

relaxometric properties of unsaturated natural porous media and ii) for a reliable 

quantification of water content and its spatial and temporal change in model porous media and 

soil cores. For that purpose, porous media with increasing complexity and heterogeneity were 

used (coarse and fine sand and different mixture of sand/clay) to determine the relaxation 

parameters in order to adapt optimal sequence and parameters for water imaging.

Conventional imaging is mostly performed with superconducting high field scanners but low 

field scanners promise longer relaxation times and therefore smaller loss of signal from water 

in small and partially filled pores. By this reason high and low field NMR experiments were 

conducted on these porous media to characterize the dependence on the magnetic field 

strength. Correlations of the NMR experiments with classical soil physics method like 

mercury intrusion porosimetry; water retention curves (pF) and multi-step-outflow (MSO)

were performed for the characterization of the hydraulic properties of the materials. 

Due to the extensive research the experiments have been structured in three major 

parts as follows. In the first part a comparison study between relaxation experiments in high 

and low magnetic field was performed in order to observe the influence of the magnetic field

on the relaxation properties. Due to these results, in the second part of the study only low field 

relaxation experiments were used in the attempt of correlations with classical soil physics 

methods (mercury intrusion porosimetry and water retention curves) for characterizing the 

hydraulic behavior of the samples. Further, the aim was to combine also MRI experiments 

(2D and 3D NMR) with classical soil physics methods (multi-step-outflow, MSO) for the 

same purpose of investigating the hydraulic properties. Because low field MRI systems are 

still under developing for the moment [Blümich et al., 2009], the MRI experiments were 

performed in high magnetic field and combined with MSO experiments in order to asses the 

changes in water content over the depth of the samples during pressure application, changes 

that are governed by the hydraulic properties of the material.
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1.3 Short navigator 
The thesis is structured into 7 major chapters. First chapter is an introduction to actual 

state of NMR research in soil science. The second and the third chapters are theoretical 

consideration over the NMR and soil physics methods that have been used for investigations.

Nevertheless, only the basic theoretical aspects are covered here since due to extensive 

research we find it more appropriate to introduce each method used, separately, further on, 

into the content of the thesis. The materials and methods used for investigation differ from 

one part of the research to another; therefore they will be discussed in detail for each chapter 

separately. Chapter 4 is the comparison study between high and low field NMR; in chapter 5 

is described the combination of low field NMR relaxometry with soil physics methods; 

chapter 6 presents the MRI studies on a coaxial sample and the parameterization of the water 

retention functions using a combination of MRI and MSO experiments. In chapter 7 a 

summary of the entire research is performed and the main conclusions are presented together 

with an outlook for further researches based on the obtained results.
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2. NMR theoretical aspects
2.1 Spin & Precession
Spin, as the name suggests, was originally conceived as the rotation of a particle 

around some axis. In particle physics and quantum mechanics spin is a fundamental 

characteristic property of elementary particles, composite particles, and atomic nuclei. Spin 

can be positive or negative with value ½ or multiple of ½. Individual unpaired electrons, 

protons, and neutrons each possess a spin of ½. Two or more particles with spins having 

opposite signs can pair up to eliminate the observable manifestations of spin.

When there is an odd number of nucleons, then there always exists one proton that is unpaired 

giving a magnetic dipole moment. In nuclear magnetic resonance, it is the unpaired nuclear 

spins that have importance ( 1H, 23Na, 13C, 19F).

In the absence of an external magnetic field, the spin polarizations (e.g. magnetic 

moments) are uniformly distributed, pointing in all possible directions in space (the 

distribution of the magnetic moments is completely isotropic). The total magnetic moment of 

the sample is very close to 0, since approximately the same number of spins point toward a

given direction and opposite to it. When an external magnetic field, B0, is applied the 

magnetic moment associated with the spin, μ, starts to precess around the magnetic field lines

with an angular frequency, 0, (Fig.2.1.) described by the Larmor equation:

0 · B0 (2.1)

where is the gyromagnetic ratio (MHz/T) (see also Annex 1) and 0 is called the Larmor 

frequency. Therefore, the stronger the magnetic field is, the faster the spins will precess about 

it. During precession some of the spins are lined up (parallel) with the magnetic field B0

lower energy state and some are aligned in the opposite direction of the magnetic field 

(antiparallel) higher energy state. This orientation of the spins leads to a stable anisotropic 

Fig.2.1.Particle with spin
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distribution of nuclear spin polarization, called thermal equilibrium. The spin populations of 

these two energy states are described by Maxwell–Boltzmann distribution:

Tk
B

n
n

B

0exp (2.2)

Where: n spin population from the lower energy state; n spin population from the 

higher energy state; = Plank constant ; kB = Boltzmann constant; T = temperature. The 

difference between the amount of spin that precess parallel to the magnetic field and those 

which precess anti-parallel is the net magnetization, M0, the vector sum of all the individual

spins polarizations. Since the individual spins precess out of phase with each other the net 

magnetization vector points along the direction of the B0 field and does not precess. 

        2.2 Excitation

Resonant absorption by nuclear spins will occur only when electromagnetic radiation 

of the correct frequency is being applied to match the energy difference between the nuclear 

spin levels, in a constant magnetic field of the appropriate strength (Fig.2.2.). The energy of 

an absorbed photon is then E = 0, where 0 is the resonance radiofrequency that has to 

match, the Larmor precession frequency of the nuclear magnetization in the constant magnetic 

field B0.

B0 = 0. Such magnetic 

resonance frequencies typically correspond to the radio frequency (RF) range of the 

electromagnetic spectrum for magnetic fields up to ~20 T. When a radio frequency pulse, e.g. 

Fig.2.2.Energy difference between the nuclear spin levels
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the magnetic component of the RF pulse, B1, with the characteristics described above is 

introduced into the system orthogonal to the main magnetic field, the protons that were 

previously aligned with the external magnetic field B0 (z axis) will begin to simultaneously

precess about the axis of the new magnetic field B1 (x axis). This results in a spiral motion of 

the net magnetization vector, M0, from the z axis into the x-y plane, which is called nutation. 

As energy is added to the system by the RF pulse, the number of protons in both states can be 

equalized. When this occurs, a measurable longitudinal magnetization M0 no longer exists. In 

addition the RF pulse causes the spins to precess in phase with each other, a phase coherence 

effect, creating a transverse magnetization in the x-y plane, Mxy, which precesses at the 

Larmor frequency. In conclusion, the flip of the magnetization vector in the transverse plane

is done both by in-phase precession of the spins as well as the nutation effect. When the entire 

vector flips into the x-y plane, the pulse that causes this flip is called a 90 RF pulse. The time 

it will take for an RF pulse to ‘’flip’’ the spins in the transverse plane at the given RF 

strenght, B1, is given by equation: 

2/12/90 B (2.3)

where is the flip angle and is the duration of the pulse. Consequently, an 180

twice the power or twice the duration of a 90 After 180 the longitudinal 

magnetization vector M0 is inverted, and the spins begin to recover from -M0. An 180

pulse exactly reverses the equilibrium without inducing phase coherence, e.g. without creating 

transverse magnetization. 

2.3 Relaxation
The process called relaxation refers to system nuclei that return to the thermodynamic 

equilibrium (the spins are relaxing back into their lowest energy state) in the magnet and the 

longitudinal magnetization before the 90 excitation pulse is recovered. Once the excitation 

RF pulse is turned off two types of relaxation processes will occur:

1) The spins will have to realign with the axis of the B0 magnetic field (lowest energy 

state) and give up all their excess energy toration of thermal equilibrium. This 

process is called longitudinal relaxation and the time constant which characterizes the 

rate at which the z component of the net magnetization, Mz, recovers its initial value 

M0 is called longitudinal relaxation time, T1 (spin-lattice relaxation time): 

)1()( 1/
0

Tt
z eMtM (2.4)
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After an inversion pulse, the time constant which characterizes the rate at which the 

Mz component of the net magnetization recovers its initial value M0, is also the longitudinal 

relaxation time T1 but the process is described by: 

)21()( 1/
0

Tt
z eMtM (2.5) 

2) The spins will get out of phase with respect to each other because they are 

experiencing slightly different precession frequencies. This process is called 

transversal relaxation and the time constant that describes the rate at which the 

transversal magnetization, Mxy, decays is called transversal relaxation time, T2 (spin-

spin relaxation time) relaxation time: 
2/

0)( Tt
xy eMtM (2.6)

The result of the two relaxation processes is that the transverse component, Mxy, of the net 

magnetization vector decreases and M0 slowly recovers along the z axis.      

2.3.1 Distribution of relaxation times
In a heterogeneous medium a multi-exponential decay of the signal is expected, and 

eq.2.6 is replaced by Laplace transformation of the distribution function which is represented 

by a semi-logarithmic plot of F(T2) as a function of m logarithmically spaced T2 relaxation 

times values [Song et al., 2002]:

)()/exp()()(
max

min
222

2

2

tEdTTTnTtM
T

T
Exy F (2.7)

The distribution function in eq.2.7 can be represented in a discretized matrix form:

Y = KX + E (2.8)

where X is the distribution function to be determined, Y is the measured signal, K is the 

known matrix of the kernel (exp(-n·TE/Tk)) with Tk as the fixed relaxation times, and E is the 

experimental noise. However, the determination of the distribution function by a simple non-

negative least square fit is a mathematically ill-posed problem. 

To overcome this problem, a so-called regularization function is added to the system 

of equations. Several regularization procedures have been proposed, whereby the most 

commonly used one is the second derivative of the distribution function X” which defines the 

smoothing amount, controlled by the regularization parameter . Finally, the regularized 

variance can be written as:

222 ''XEKX (2.9)
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The first right hand term in eq.2.9 is the classical least-square fit; the second term is 

from representation of 2 as a function of 2.3.

2.3.2. Relaxation in porous media
It has long been known that the NMR relaxation times as described above are only the 

apparent relaxations which for a fluid confined in porous media are constructed from three 

major relaxation times influenced by processes that can take place in a porous system as 

follow:

surfbulkapp TTT ,1,1,1

111 (2.10a)

surf
E

bulksurfdiffbulkapp T
T

TTTTT ,2

2

,2,2,2,2,2

111111 (2.10b)

where T1,2app is the apparent relaxation time (s), T2, diff   comprises the diffusion effect and T1,2, 

surf is the surface enhanced relaxation time. The factor (s-3) describes diffusion in local 

internal magnetic field gradients [Barrie, 2000]:

ce
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2

12
D G (2.11)

where D (m2/s) is the diffusion coefficient of water and G (T/m) is the strength of the 

magnetic field gradient. For a porous media the dimensions of the pores are related to 

relaxation times by the Brownstein - Tarr equation [Brownstein, 1977; 1979]:  

V
S

TT bulkapp
1

,1,1

11 (2.12a)

V
ST

TT E
bulkapp

2
2

,2,2

11 (2.12b)

where 1 and 2 are the surface relaxivity parameters for longitudinal  and transversal 

relaxation (μm/ms) and S/V is the pore surface to pore volume ratio (m-1). From eq.2.12 T1

and T2 measurements can be used to determine surface relaxivity when information about the 

average surface to volume ratio is known from additional Brunauer-Emmett-Teller (BET) 

independent measurements [Brunauer et al., 1938]. The surface relaxivity parameter is 

assumed to be constant for a given sample and is controlled by the surface properties of the 

pore walls. A recent study [Jaeger et al., 2009] has shown that the assumption of constant and 

homogeneously distributed surface relaxivity values is inconvenient for natural porous media 

at low water saturation. In macro-porous systems, there is normally fast exchange of the water 

molecules between the surface and bulk environments owing to rapid diffusion. In this case 

the diffusion term is usually neglected and eq.2.12 becomes:

V
S

TT bulkapp
2,1

,2,1,2,1

11 (2.13)                        

with S/V = /r where r is the pore radius and = 1, 2 or 3 is the shape factor for planar, 

cylindrical and spherical pore geometry, respectively [Godefroy et al., 2001; Hinedi et al.

1997].

2.4 MRI basics 
Magnetic resonance imaging is the modality to construct images of the NMR signal 

from the hydrogen atoms in an object. However, if we transmit a radio frequency pulse, the 

received signal would be from the entire sample and there is no spatial discrimination. To 

encode the position of spins a spatially varied magnetic field (field gradient) is applied and 

each spin will experience a different magnetic field strength. The result is an NMR spectrum 

with more than one signal. This procedure is called position encoding and causes the 

resonance frequency to be proportional to the position r(x, y, z) of the spins. 
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                                                     rr GrGrB 00 )( (2.14)

If we transmit RF pulse with a desired frequency range (bandwidth) and turn on a field 

gradient in z direction (direction of the main magnetic field, B0) in the same time, only the 

protons from a certain section of the sample that matches the precession frequency will 

resonate. As a result we will receive signal only from those particular protons. This procedure 

is called slice selection and the gradient is the slice-select gradient, Gz, because it is used to 

gain signal only from a specific part (slice) of the sample. To select many slices from a 

sample the same gradient is used but the RF pulse’s center frequency is modified. To avoid 

overlap of the signal from different slices, ‘’cross-talk’’ as it is called in MRI, a gap must be 

introduced between the slices. Once the desired slice is selected the remaining problem is to 

differentiate between the protons within that slice. To solve this problem another two 

gradients are introduced: the phase-encoding gradient in y direction (Gy) and the readout or 

frequency-encoding gradient in x direction (Gx). 

The phase encoding gradient is usually applied between the 90

pulses or between the 180 (see Fig.2.6.). After the 90

proton in the selected slice precess at the same frequency ( 0). When the gradient is applied 

in the y direction, spins from different levels of the slice will experience a different magnetic 

field so they will have different precession frequencies. Spins from the same level will remain 

in phase with one another but spins from different levels will experience different phase shift. 

When the gradient is stopped the spins will precess again at the same precession frequency 

but they will have a permanent phase shift (see Fig.2.4.). Differences in spatial position up 

and down are now reflected in that phase value. Hence, the gradient is called the phase 

encoding gradient.  

Fig.2.4.Phase encoding gradient
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To be able to differentiate between spins from the same level that are still in phase with one

another an additional gradient, Gx called the frequency encoding gradient, is introduced. 

This gradient is applied during the reception of the echo (readout) and will encode the 

position in the x direction by altering the Larmor frequency along the x axis. During the 

application of the readout gradient each spin will be characterized by a unique frequency and 

a unique phase (see Fig.2.5.). 

A pulse sequence is a preselected set of defined RF and gradient pulses, usually 

repeated many times during a scan, wherein the time interval between pulses and the

amplitude and shape of the gradient waveforms will control NMR signal reception and affect 

the characteristics of the MR images. Usual to describe pulse sequences, is to list parameters 

used in the sequence like: the repetition time, TR, the echo time, TE, if using inversion 

recovery, the inversion time, TI, and in case of a gradient echo sequence, the flip angle.

One of the first and among the simplest pulse sequence used in MR imaging is the 

spin-echo SE sequence. It uses 90° radio frequency pulses to excite the magnetization and one 

or more 180° pulses to refocus the spins to generate signal echoes named spin echoes. The 

90° excitation pulse rotates the longitudinal magnetization, Mz, into the xy-plane and the 

dephasing of the transverse magnetization, Mxy starts. The following application of a 180° 

refocusing pulse (rotates the magnetization in the x-plane) generates signal echoes. The 

purpose of the 180° pulse is to rephase the spins, causing them to regain coherence and 

thereby to recover transverse magnetization, producing a spin echo. The SE pulse sequence

was devised in the early NMR days based on the detection of Hahn echo and later upgraded in 

the multi-echo sequence based on CPMG sequence of Carr and Purcell [Carr and Purcell,

1954; Meiboom and Gill, 1958]. More detailed information about this process will follow as 

the sequence is used in the experimental measurements (see 4.1.2).

Fig.2.5.Frequency encoding gradient
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In Fig.2.6 the simplest form of a spin echo imaging sequence is illustrated. The SE sequence 

exists now in many forms: the multi echo pulse sequence using single or multi-slice 

acquisition; the fast spin echo imaging (FSE/TSE) pulse sequence; the gradient and spin echo

(GRASE) imaging pulse sequences, etc. Nevertheless, due to some particular problems that 

SE sequences present when unsaturated porous media are investigated (see further in the 

thesis, chapter 6.1.7), in this work mainly single point imaging sequences have been used, in 

which a single data point per excitation is acquired, probing directly the FID with no echo 

involved. 

2.5 k-space 

k-space is the virtual reciprocal space which contains data from digitized MR signals 

recorded during data acquisition. The NMR signal is measured in the time domain, encoded 

and stored into k-space defined by: 

tmGk xx 2
(2.15)

and

yy Gnk
2

(2.16)

where x refers to frequency encoding, y to phase encoding, t is the sampling time (the 

reciprocal of sampling frequency), is the duration of Gy (phase encoding gradient), is the 

gyromagnetic ratio, m is the sample number in the frequency direction and n is the sample 

number in the phase direction (also known as partition number). From this data set, (kx, ky), in

Fig.2.6.Spin-echo pulse sequence timing diagram
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reciprocal space (m-1) the encoded signal p(kx,ky) is transformed in signal intensity 

distribution in real space, (x,y), by the meaning of 2D-Fourier Transformation:

yxyxyx dkdkyikxikkkpyxM expexp),()2(, 2
0 (2.17)

Thus, spatial frequency and position constitute a Fourier transform pair (pair of Fourier-

conjugated variables).

Different imaging experiments are distinguished in the way how k-space is being 

sampled. For a simple spin echo sequence the x direction contains the frequency domain 

information and the y direction contains the locations of spins in the phase encoding gradient 

direction. The center of the k-space contain the phase encoding step with weakest gradient 

and thus with the highest signal. The periphery of the k-space will contain those phase-

encoding steps with the largest gradients and thus with the least signal (Fig.2.7.). Because of 

the oscillating nature of the signal the image of the k-space will appear as a series of 

concentric rings with alternating high and low intensity and an overall decrease in intensity as 

one goes from the center to periphery. The Fourier transformed data are displayed as an image 

by converting the intensities of the peaks to intensities of pixels representing the tomographic 

image. Detailed explanations on the NMR-MRI principles can be found in several text books

from which the content of this chapter was inspired: Callahan, [1991]; Blümich, [2000];

Hashemi et al., [2004]; Blümich, [2004]; Hornak, [2006]; Levitt, [2007].

Fig.2.7.The relationship between frequency and position along the x axis and between
phase-encode gradient increment and position along the y axis
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3. Soil physics: basic considerations
Soil physics deals with physical processes in the pedosphere. In the three phase model 

the soil is described on the macroscopic scale by continuous fields, in particular by the phase 

densities of the soil matrix, soil water and soil air and by the respective energy densities. The 

distribution of energy is of fundamental importance for the behavior of the system because 

energy gradients are the driving forces for fluxes of matter and energy. Of particular interest 

are structure and dynamics of the soil matrix and the multitude of mass and energy fluxes 

through soil and along its surface.

3.1 Potential theory
In the simplest assumption, the solid soil matrix (solid phase) is a rigid porous 

structure that is made up of crystalline and quasi - crystalline particles. The structure of the 

matrix is presumed to be invariant in time and its energy density is constant. The soil water 

(liquid phase) consist of water with some dissolved chemicals for which we assume that they 

do not influence the physical properties of the fluid. The volumetric phase densities of the two 

fluid phases (water and air) in soil matrix are described by:

0V
Vw

w and 
0V

Va
a (3.1)

Where w and a are the volumetric water and air content; Vw and Va are the corresponding 

volumes of water and air phases and V0 is the total volume of the soil matrix considered. The 

sum w + a is the porosity of the soil. In a porous medium, numerous forces act on soil 

water, the force field is composed of a variety of divergent partial forces. By virtue of its 

position in this force field, a unit quantity of soil water possesses potential energy.

The potential energy of the soil water may be defined by the work that is required for moving 

an infinitesimal volume of water from a reference state into the desired state within the soil 

matrix. The density of the soil’s water potentials energy is called the soil water potential w.

In accordance with the recommendations of the International Soil Science Society [Bolt,

1976] we distinguish three partial potentials:

Gravitation Potential g: The energy density (energy per volume of water) required to 

move an infinitesimal volume of pure, free water from the reference depth z0 to a depth z.

Notice the sign convention which makes z-z0 negative if z is above z0, hence the gravitational 

energy higher than at the reference point. 
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Osmotic Potential s: The energy density required to add to the infinitesimal volume of wa-

ter at depth z the dissolved chemicals from a reservoir also at depth z .

Tensiometer Pressure Potential tp: The energy density required to bring the infinitesimal 

volume of soil solution (pure water with dissolved chemicals added) from the reservoir at 

depth z with pressure p0 isothermally and reversibly into the soil. This potential encompasses 

the effects of surface adsorption, surface tension, air pressure and hydrostatic pressure, 

pressure from a non-rigid soil, matrix and overburden pressure. An important special case is a 

rigid, unsaturated soil where the air pressure is constant everywhere and equal to p0. The only 

component of the tensiometer pressure potential then comes from the energy required to move 

water into the porous matrix. It is negative for unsaturated soil because water is transferred 

into a state of lower energy. Since the potential is determined by the soil matrix it is called the 

matric potential and denoted by m. Recognizing the three potentials g, s and tp, we write 

the total soil water potential as

tpsgw (3.2)

This reflects the three steps required to move pure, free water from the reference state to the 

required state in the soil: (i) moving it from z0 to z in the gravitational field, (ii) adding the 

required dissolved chemicals from a reservoir at depth z , and (iii) transferring the solution 

into the soil environment at depth z . The potential on weight basis has the dimension of 

height and is called head. The head equivalent of the pressure potential is called pressure 

head, h,

                                        gh tp /                                           ( 3 . 3 )

where g is the gravitational acceleration (m/s2). The head equivalent of the soil water potential 

(hydraulic potential) is the hydraulic head, H. Referring to the special case described above;

hm, the matric head is the equivalent head of the matric potential. 

3.2 Soil water characteristic
The relation between the matric potential, m(or matric head hm) and the volumetric 

water content which is essentially determined by the geometry of the pore space is called 

the soil water characteristic. It is of fundamental importance for the hydraulic characterization 

of a soil because it relates an energy density (potential of driving force) to a capacity quantity 

(water content). The region which encompasses all possible m) curves is limited by the 

desorption d m) and the adsorption curves a m) see Fig.3.1. The desorption curve results 

when water is slowly and monotonically removed from an initially water saturated soil until 
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the soil is air saturated. The adsorption curve describes the reverse process. The air can only 

enter the porous medium after the matric potential has dropped below a certain value the so-

called air-entry value. It is determined by the largest opening of the porous medium to the 

outside. After air has entered the porous medium, the water content, , decreases 

monotonically with increasingly negative matric potential m. This decrease consists of 

continuous stretches and of discontinuous jumps. The jumps are caused by cavities that are 

connected to the outside through small channels. In these channels, a process occurs which is 

similar to the air entry into the entire medium. The potential m must drop below a certain 

value before the cavity behind it can be emptied. These jumps therefore define local air entry 

values of narrows. The value of for such a jump at m indicates the volume fraction which

is blocked by a narrow of radius r = -2 wa/ m where wa is called the surface tension of water-

air interface and at 20 2.

A common interpretation of the desorption curve is that the pore volume which is 

water filled at a certain potential m consist of structure with radii smaller then -2 wa/ m.

Nevertheless this interpretation is only correct for a non-hysteretic medium. Despite the 

difficulties associated with measuring the soil water characteristic it is one of the traditional 

soil physical laboratory methods. For these measurements a pressure difference = pw - pa is

created across the water – air interface of a soil sample and the volumetric water content is 

measured as a function of p. To establish the pressure difference, the air phase is 

Fig.3.1.Adsorption and desorption characteristics with primary scanning curves
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connected to an air reservoir at pressure pa and the water phase to a water reservoir at pressure 

pw (Fig.3.2.).

The latter connection is done with a water saturated porous membrane which prevents the air 

phase from entering into the water reservoir. To prevent water evaporation into the air 

reservoir, the relative humidity is controlled such that the soil water potentials in the water 

and in the air phase are identical. The same methods may be used for measurements in 

multiphase systems. There, each phase is connected to a reservoir at pressure p by a 

membrane that is only permeable for phase . We only consider the case of two fluid phases, 

water and air, and note that the method may be used in two alternative variants:

Suction Method: Pressure pa in the air phase is equal to atmospheric pressure p0 and 

pw < p0 is varied [Haines, 1930]. The method has the major limitation that pw cannot 

become smaller than the vapor pressure [Klute, 1986b]. The method is well suited for 

measuring the relation between the volumetric water content and the matric potential m as 

it exists in soils under natural conditions. 

Pressure Method: The pressure pw in the water phase is equal to the atmospheric 

pressure and pa > p0 is varied [Richards and Fireman, 1943]. It is generally used to 

roughly determine the texture of the pore space. Discrepancies between the methods can be 

expected for m -p0. The soil water characteristic has two main fields of application. First it

is required for modeling the movement of water in soils and the second application is in the 

rough ecological assessment of a site. Here, typical quantities of interest are the storage 

capacity of the soil and the availability of the stored water for plants. The required precision is 

generally rather small because (i) large differences occur between different soil types and (ii) 

other important system parameters, like the water stress function of various plants, are not 

known sufficiently well.

Fig.3.2.Idealized instrument for measuring soil water characteristic



Soil physics: basic considerations                                                                    

- 23 -

3.3 Flow of water in soil
Water is present in every soil profile, but the amount varies with time and place as a

result of a supply and demand by its environment. In a state of equilibrium the total soil water 

potential is constant at any given point of the system. However, in an open system it is 

unlikely to have this state of equilibrium, since processes like the infiltration of rain or the 

evapo – transpiration of soil water cause permanent disturbances. For example, the total soil 

water potential is raised by infiltrating rain and decreased by the extraction of soil water by 

plant roots, processes that lead to a gradient in the total soil water potential. This gradient is 

the driving force for water movement in soils. In case of existing potential gradients, soil 

water will flow from regions of higher potential to regions of lower potential [Jury et al.,

1991]. The relationship between the driving force and the ensuing flux density is called the 

flux density equation or Darcy law which describes the laminar water movement in saturated, 

rigid soils:

z
HKq (3.4)

where q is the flux density (the volume of water passing the area unit per time unit); H is the 

hydraulic head (m); K is the hydraulic conductivity (m/s) (the coefficient that measures the 

ability of the soil to conduct a flow of water) and z is the vertical coordinate (m). The law of 

conservation of matter is expressed in the so called continuity equation. For one dimensional 

flow of water in soil the continuity equation can be written as follows, where is the volume 

fraction of water:

z
q

t
(3.5)

Due to this, many types of flow can be considered:

steady flow in saturated soil:

0
t

and =

q, K and are constant in time and position.

steady flow in unsaturated soil:

0
t

and <

q is constant in time and position but K and are constant only in time.

nonsteady flow in unsaturated soil

0
t

and <
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q, K and vary with time and position.

nonsteady flow in saturated soil

0
t

and =

constant but q and K vary in time.

If a saturated soil begins to drain, part of the pore volume fills with air. As a consequence, the 

water conductive-part of the cross sectional area decreases, the tortuosity of the flow path 

increases, and the remaining soil water moves in relatively small pores where the flow 

resistance is increased.  As a result, the hydraulic conductivity K decreases rapidly with 

decreasing water content. For this reason any description of water movement in variably 

saturated media has to consider K as a function of . According to Buckingham - Darcy law 

[Buckingham, 1907], the one-dimensional, vertical water movement in unsaturated soils can 

be written as [Jury et al., 1991]:

)()(1)()( K
z

h
K

z
h

K
z
HKq mm (3.6)

where K( )(m/s) is the hydraulic conductivity function and hm is the matric head (m).

Richards, [1931], linked the Buckingham-Darcy law with the water conservation equation.

Accordingly, the governing equation for the one-dimensional, vertical and variably saturated

water flow without sinks and sources is given by:

)()( K
z

h
K

zt
m (3.7)

Equation 3.7 is called the mixed form of the Richards equation. This equation contains 

two unknown variables ( and hm) and it can’t be solved. This difficulty may be overcome by 

using the water retention characteristic (hm), which relates the volumetric water content to 

the energy state of soil water, the matric head hm. Due to the fact that for unsaturated soils hm

covers a wide range of negative values, it is conveniently plotted as the decaying logarithm of 

the absolute value of hm given in centimeters (log | hm|). This expression is referred to as the 

pF-value. To eliminate from the left side of eq.3.7, the partial derivative may be reorganized 

using the chain rule [Jury et al., 1991]:

t
h

hC
t

h
dh
d

t
m

m
m

m

)( (3.8)

with
m

m dh
dhC )( (3.9) 
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where C(hm) is the soil water capacity function, which is equal to the slope of (hm). Note 

that C(hm) is defined only for a uniform wetting or drying process in which (hm) is described 

uniquely by a single curve. Eliminating from the hydraulic conductivity function on the 

right side of eq.3.7 is straightforward. Since K( ) is a function of and (hm) is a function of 

hm, K may be written directly as a function of hm:

)()()( mm hKhKK (3.10)

Inserting C(hm) into the mixed form of the Richards equation and substituting K( ) by K(hm)

finally yields:

)()()( m
m

m
m

m hK
z

h
hK

zt
h

hC (3.11)

Equation 3.11 is called the matric head form of the Richards equation. It may be solved if 

boundary and initial conditions are specified and C(hm) and K(hm) are known.

3.4 Parametrization of the water retention curve
To solve the Richards equation, the water retention characteristic (hm) and the 

hydraulic conductivity function K(hm) must be known. While (hm) is an expression of the 

ability of a soil to store water, K(hm) is a measure of the ability to transmit water. Both are 

nonlinear functions, with hm and K varying over many orders of magnitude. A very 

unfortunate characteristic of the water retention function is its hysteretic nature. Hysteresis 

implies, that the water content one is measuring for a given matric head value is not 

unambiguously defined. Rather it is depending on the history of drainage and wetting 

processes antecedent to the water content measurement.

In general, during drainage will be greater than during wetting for a given value of 

hm (see also Fig.3.1.). Even though empirical hysteresis models exist, that can be implemented 

in numerical simulation schemes [Kool and Parker, 1987]; hysteresis is simply ignored in 

most applications. In those cases, the (hm) relationship is given uniquely by the main 

drainage curve that is obtained by draining a soil sample from saturation. Most of the methods 

used to estimate the K( ) [Mualem, 1976; van Genuchten 1980; Kool at all, 1985; Parker et 

all, 1985] require a parametric model for the hydraulic functions and they merely yield the 

values of the parameters which lead to an optimal agreement with the data. These methods are

referred to us as ‘’parameters estimation’’. 

In 1980, van Genuchten presented a now widely used class of functions for 

parametrizing measured soil water characteristics. To formulate the functions, he introduces 

the water saturation :
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rs

r                                                    (3.12)

where s is the volumetric water content at saturation and r is the residual volumetric water 

content. From previous discussion one would expect that s = and r = 0. However, it is 

experimentally often found that the maximal water content is smaller than the porosity .

This is in particular the case in field studies and is caused by: (i) entrapped air and (ii) very 

large pores which drain so rapidly that they cannot be saturated. The residual water content on 

the other hand is usually attributed to adsorbed water. Often however, r is simply required to 

gain additional flexibility in the class of functions. The van Genuchten parametrization is 

traditionally written in terms of the matric head instead of the matric potential:
mnhh 1)( (3.13)

where a , n and m are positive parameters Given a set of N measured points from the soil 

water characteristic, these parameters are chosen such that the deviation between (h) given 

by eq.3.13 above and the set of measured points is minimal. If the agreement between the 

function and the data is deemed acceptable, the set of N numbers is described by the five 

parameters s, r, , n and m, thence the name parametrization. One often encounters a 

parametrization which is based on the subset of functions obtained by choosing m = l - l / n in

eq.3.13. The aim of parametrizing the soil water characteristic is to obtain a simple 

description of a comprehensive set of measurements. In contrast, the aim of parametrizing the 

unsaturated (relative) hydraulic conductivity Kr( ) is generally to interpolate and often also to 

extrapolate a small number of measurements. This is only feasible if the parametrization is 

based on a correct representation of the physical structure of the water filled pore space. The 

most common models assume that the pore space basically consists of a set of capillaries and 

that the soil water characteristic describes the distribution of their radii. From this distribution 

and presuming laminar flow in each capillary, the unsaturated hydraulic conductivity is then 

calculated. Between various models proposed [Burdine, 1953; Mualem, 1976; Mualem and 

Dagan, 1978] the most widely used parametrization of the unsaturated hydraulic conductivity 

is the Mualem-van Genuchten model [van Genuchten, 1980]:

2

2
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)(1)(1
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n

mnmn

sr

h

hh
KK (3.14)

where Ks is the saturated hydraulic conductivity. The theoretical information contained in this 

chapter is based on citations from several text books: Koorevaar et al., [1983]; Jury et al.,

[1991]; Roth, [1996]; Jury and Horton, [2004].



Characterization of porous media by high and low-field NMR relaxometry                                                        

- 27 -

4. Characterization of porous media by 

high and low-field NMR relaxometry
In this first step a comparison study of NMR relaxometric behavior of model porous 

media at high and low magnetic field was performed to assess the effect of magnetic field 

strength on transversal relaxation time and signal amplitude at different degrees of saturation 

in order to determine how the magnetic field strength will influence the estimation of water 

content within the samples. As model systems four mixtures of medium sand and variable 

fraction of kaolin clay were used, whose relaxometric properties are investigated at a 300

MHz (7T) high field and a 4.2 MHz (0.1T) low field scanner. T2 relaxation curves were 

monitored by the Carr-Purcell-Meiboom-Gill sequence (CPMG) and further analyzed by 

inverse Laplace transformation yielding T2 distribution functions. Signal behavior with 

variation of saturation degree and clay composition was monitored to assess the influence of 

water and clay content.

4.1 Materials and Methods
4.1.1 Porous media

Four samples were prepared from pure sand (FH31, Quarzwerke Frechen, Germany) 

with a grain size distribution of: 2% (>0.72mm), 8%(0.71-0.5mm), 30%(0.5-0.355mm), 

41%(0.36-0.25mm), 16%(0.25-0.18mm), 3%(<0.18mm) mixed with kaolin clay (Sigma-

Aldrich, Germany) in a range of 0, 5, 10, and 15 mass percentages. In the following, these 

samples will be named as FH31, Mix5, Mix10, and Mix15, respectively. For more 

information about the structure of materials used in the experiments see Annex 2.

FH31 Mix5 Mix10 Mix15

Fig.4.1.MRI images for the saturated samples recorded at TE = 2ms 
and a resolution of 0.24mm2 per pixel (FOV: 70 x 28 mm)
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The sand/clay mixtures were carefully homogenized (MRI images of thin slices of the 

samples are presented in Fig.4.1 and they show homogeneous distribution of the water 

content in the saturated samples) and filled into glass tubes with an inner diameter of 24mm 

and a height of 46mm. The bottom of the tubes consists of a porous glass plate with a pore 

size between 40-90 m (RoBu, Germany). This allows saturating the system from the bottom 

which was carried out for all samples with degassed water for one day, after which the 

samples were sealed on both ends. Unsaturated conditions were obtained by removing the seal 

on the top of the samples to allow evaporation for a certain time and then the seal was 

replaced. Before measurement, each sealed sample was allowed to equilibrate at room 

temperature for one day. The characteristics for all samples: bulk density (g/cm3); saturated 

water content s (cm3/cm3) and the bulk water content after each evaporation step are 

summarized in Table 4.1.

Table 4.1.Characteristic data of the samples for each evaporation step. Note that the 

water contents were determined gravimetrically

Sample

Bulk

density

g/cm3

s

cm3/cm3

Water content – evaporation steps

a, cm3/cm3

1 2 3 4 5

FH31 1,69 0.36 0.28 0.26 0.20 0.10 0.05

Mix5 1,57 0.39 0.30 0.26 0.17 0.11 0.06

Mix10 1,59 0.40 0.36 0.26 0.20 0.12 0.09

Mix15 1,60 0.39 0.27 0.19 0.15 0.08 0.05

4.1.2 NMR setup

For high field experiments a 7T (300MHz 1H resonance frequency) vertical wide bore 

superconducting magnet (Oxford Instruments, UK) connected to a Varian console was used. 

The NMR RF-resonator is a ’birdcage - type’ resonator with an internal diameter of 3.8cm

and 7cm length. The low field experiments were conducted on a 0.1T (4.2MHz 1H resonance 

frequency) Halbach magnet (ACT, Aachen-Germany) as described in Raich et al. [2004], 

connected to a KEA spectrometer (Magritek, New Zeeland). The resonator was a solenoid 

RF-coil of 3.5cm inner diameter and 5cm length. The temperature in the laboratories was 

regulated to 21
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For the determination of signal amplitude and T2 relaxation time the CPMG (Carr-

Purcell-Meiboom-Gill) pulse sequence was employed [Carr and Purcell, 1954; Meiboom and 

Gill, 1958]. This multiple pulse sequence consists of the application of a 90

pulse followed after duration of TE/2 by a series of 180 TE in order to 

refocus the net magnetization. After the ith 180 -echo is formed of which only the 

central point is acquired with a delay of i· TE (i = 1…n) referred to the initial 90

(Fig.4.3.).

a) b)

Fig.4.2.NMR setup: a) 7T superconducting magnet; b) Halbach 0.1T magnet. 
Pictures not to scale

Fig.4.3.CPMG pulse sequence: after application of the 90 M0
(black arrow) is inverted in transversal magnetization (blue arrow) and slowly recovered after 

relaxation as explained in chapter 2.3.
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Parameters used for the high field measurements are: TE = 0.4ms (the minimum possible with

this setup), number of echoes n = 10000, repetition time, TR = 6s for a number of 2 signal 

accumulations. For low field experiments the parameters were: TE = 0.2ms (the smallest echo 

times which do not produce truncated information), n = 12000 and TR = 6s for a number of 64 

accumulations. The number of acquisition points was in all cases sufficiently high so that the 

CPMG curves decreased completely into the noise. High field images of the saturated samples 

have been recorded with TE = 2ms and a resolution of 0.24mm2 per pixel (128 x 64 pixels for 

a field of view of 70 x 28mm). 

4.1.3 Numerical simulations
In general, evaporation will change the water content distribution within the sample, 

with lower values at the top end and increasing water contents towards the bottom end. This 

water content distribution may potentially influence the NMR results. To evaluate the 

uncertainty in the assumed homogeneity of the sample the water content distribution within 

the different samples after each evaporation step was analyzed using numerical simulations. 

Therefore, the software package HYDRUS-1D [ ., 1998] was used which solves 

numerically Richards’s equation (eq.3.7). The hydraulic properties for the sand/clay mixture 

were estimated using the program Rosetta [Schaap et al., 2001] and are listed in Table 4.2.

The effect of evaporation on the soil water content distribution was simulated for a soil 

profile of 46 mm non-equidistantly discretised with 300 nodes. The system was initialized in 

pressure head h = 0 (full saturation). The upper boundary was set to variable flux which 

represents the actual evaporation rate over time calculated from mass (water) loss of each 

substrate between two consecutive evaporation steps. The evaporation steps and the bulk 

water loss of the laboratory experiment are listed above in Table 4.1.

Table 4.2.Soil hydraulic parameters used for the numerical simulations

Sample r
cm3/cm3

s
cm3/cm3 cm-1

n
-

KS
cm /h

I
-

FH31 0.0507 0.36 0.0308 4.2464 46.43 0.5
Mix5 0.0565 0.39 0.029 3.2157 24.53 0.5
Mix10 0.0594 0.40 0.029 2.2707 8.83 0.5
Mix15 0.0627 0.39 0.0256 1.7511 3.46 0.5
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4.2 Results and Discussions
4.2.1 Relaxation behavior of saturated systems

Figure 4.1. shows MRI images of the investigated samples. Displayed is the central 

part (50 x 28mm) of the columns; the concave curvatures of the upper and lower boundaries 

are due to the limit of the RF field. However, the following relaxometric investigations are 

also performed within these boundaries, so the images represent the investigated volume of 

the samples. From Fig.4.1. it is clear that the heterogeneity is in all cases quite similar, the 

medium sand and the mixtures look identical, no large scale separation of clay and sand is 

observed. However, some microscopic heterogeneity remains, especially some air inclusions 

appear, and the signal intensity varies by about ±3%. So we can conclude that the following 

relaxometric investigations average over these mm-scale inhomogeneities.

In order to check if the decay of the curves might be additionally affected by diffusion 

in magnetic field gradients according to eq.2.10, the influence of TE on the apparent average 

T2 was tested at high and low field. 

Fig.4.4.Estimation of diffusion influence: 1/T2, average as a function of TE
2 at a) 7T and b) 0.1T 

for two samples: FH31 saturated and Mix5 saturated. The field gradients were estimated using 
eq.2.11 to be 1.28 T/m for FH31 and 1.78 T/m for Mix5 in low magnetic field (right) and 1.089 

T/m for FH31 and 1.13 T/m for Mix5 in high magnetic field (left)
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Figure 4.4. shows that for saturated FH31 as well as for Mix5 the expected behavior 

described with eq.2.10 is observed, indicating that diffusion in internal magnetic field 

gradients accelerates T2 relaxation at higher values of TE. Nevertheless for lower values of TE

(0.15ms and 0.2ms in low field and 0.4ms in high field) the variations in T2 are insignificant. 

Therefore, TE was set to 0.2ms (the smallest echo times which do not produce truncated 

information) for low field measurements and 0.4ms in high field measurements, assuming that 

1/T2 data obtained with this setting are very close to those obtained with TE = 0 so that the 

influence of diffusion in residual field gradients is minimal and can be neglected for further 

evaluation. This is in agreement with those of Keating and Knight [2007], who found no 

significant contribution of diffusional relaxation rates for several fine sands. It should be 

noted that with decreasing water content larger deviations occur.

Figure 4.5. shows four exemplary CPMG relaxation curves of saturated samples 

FH31, Mix5, Mix10 and  Mix15, measured in high and low field (with TE = 0.4ms for B0 = 7T

and TE = 0.2ms for B0 = 0.1T). Generally, the relaxation curves decay faster with increasing 

clay content at both field strengths. The most obvious difference is that at low field the 

relaxation decays are slower compared to high field. 

Fig.4.5.CPMG relaxation curves for all saturated samples at a) high field: B0 = 7 T (300MHz),
TE = 0.4ms and b) low field: B0 = 0.1T (4.2MHz), TE = 0.2ms. For better inspection the curves 

are offset along the ordinate
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All curves were analyzed using inverse Laplace transformation according to eq.2.7.

Figure 4.6. shows the relaxation time distribution functions as obtained by inverse Laplace 

transformation of the curves in Fig.4.5. using the program of Song et al., [2002]. At both 

fields strengths bimodal distributions are observed for FH31 and all sand/clay mixtures 

although the fast mode is hardly resolved for FH31 and Mix5. Nevertheless, these patterns 

allow one to distinguish between a slow mode at about 300ms and a fast mode at about 20ms

for FH31 at 7T (300MHz, Fig.4.6.a). With increasing clay content the fast mode becomes 

more pronounced and both modes are shifted toward smaller T2 values. The explanation for 

this pattern is the reduction of the pore sizes as a consequence of adding clay to the sand. The 

bimodality at higher clay contents reflects most probably the existence of clay aggregates 

(relaxation time around 30ms) beneath larger pores like in pure sand, i.e. the clay tends to 

aggregate around the sand grains resulting in the redistribution of pore size classes. A 

complete filling of the pores has not been observed, since the slow mode principally persists. 

The fact that the overall maximum water content ( max, Table 4.2) does not decrease with 

increasing clay content, but in contrary slightly increases supports this interpretation, that the 

clay particles do not fill completely the present pores. 

Fig.4.6.Distribution function F (T2) for saturated samples at a) B0 = 7T and b) B0 = 0.1T Data 
fitted according to eq.2.7 using 100 exponentially spaced T2 values
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At 0.1T (4.2MHz, Fig.4.6.b), FH31 is characterized by a dominant slow mode at 550ms and a 

small, fast mode at 15ms, which contributes less then 2% to the total area. Bimodal behavior 

is observed for all clay mixtures; however, both modes overlap significantly and are not as 

well resolved as for high field. This can be due to the regularization procedure as well as to 

the detection of water from pore throats (connections between pores), water that in high field 

relaxes to fast to be detected. Again the relaxation times are shifted, for instance for Mix15 

the peaks are shifted to 200ms (slow mode) and 30ms (fast mode). The same trend is 

observed as at high field, with an increase of the fast modes on the expense of the slow ones

due to the reduction of the pore sizes by adding clay to the sand.

4.2.2 Relaxivity as a function of water content

One of the main motivations of this research is the detection of the dependence of the 

relaxation parameters on the water content in different magnetic field strengths. Therefore, the 

measurements were repeated for all samples at different degrees of water saturation. Figure 

4.7. shows the obtained distribution functions at 7T and 0.1T for FH31 at different water 

contents, .

Fig.4.7.Distribution function F (T2) for sample FH31 at different water contents. a) B0 = 7T and 
b) B0 = 0.1T. Data fitted according to eq.2.7 using 100 exponentially spaced T2 values
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For high field (Fig.4.7.a), the distribution is relatively broad and has a bimodal trend 

with unresolved peaks (shoulder) for higher water contents which broadens with decreasing 

saturation. It should be noted that the broadening of the distribution with decreasing saturation 

can also be an effect of the regularization procedure since the first term of the regularization 

condition (eq.2.9) is increased by the noise level and the loss of signal amplitude due to the 

loss of water leads to a smaller signal-to-noise-ratio. The total area of the distribution function 

is also decreasing due to the increasing of desaturation.

The mean relaxation time shifts from 300ms at highest water contents to 30ms for the

lowest. For low field (Fig.4.7.b), the distribution functions of FH31 are monomodal with a 

negligible contribution of a fast mode. This trend is observed only for higher saturations. The 

relaxation accelerates from T2, average = 550ms to 250ms with decreasing water contents 

ranging from 0.36 to 0.05 cm3/cm3. The distribution functions for Mix5 are bimodal (Fig. 

4.8.) in both magnetic fields. With decreasing water saturation the slow and fast mode 

decreases by a factor of 2 at both field strengths. It is obvious that the relative contribution of 

the fast mode increases at the expense of the slow mode. This pattern can be explained by the 

water retention of the porous material where the water loss will begin in the largest pores and 

successively smaller pores will be desaturated. 

Fig.4.8.Distribution function F (T2) for sample Mix5 at different water contents. a) B0 = 7T and b) 
B0 = 0.1T. Data fitted according to eq.2.7 using 100 exponentially spaced T2 values
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Finally, water will remain in the finest pores only. This results in more frequent wall 

collisions and therefore shorter relaxation times. As a consequence, at very low water content 

only the fast mode remains. Bird et al. [2005] attribute those effects also to a redistribution of 

water within the soil due to entrapped air within smaller intra-aggregate pores. However, this 

effect should be taken into account only for very low saturations since at higher saturation the 

evaporation model (Fig.4.10) shows an even distribution of the water within the sample. This 

trend is reproducible for all clay mixtures (see Annex 3).

The remaining question is to what extent the extrapolated signal amplitude is 

proportional to the water content as suggested by eq.2.5. The total signal amplitudes for all 

samples in high and low field are displayed in Fig.4.9. as function of the water content. In

general, at high field (Fig.4.9.a) the relation shows a stronger scattering and clear dependence 

on the clay content for all samples. With increasing clay content the deviation from linear 

proportionality is more pronounced. 

One possible explanation for this non-linearity between signal amplitude and integral 

water content, which was determined gravimetrically, can be the non-uniformity of the water 

content within the sample due to evaporation at the surface. 

Fig.4.9.Extrapolated signal amplitudes at different mean volumetric water contents for all 
samples. a) B0 = 7T and b) B0 = 0.1T
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To check this hypothesis numerical simulations have been performed to check whether large 

water content gradients will occur during evaporation. Therefore, the simulations were carried 

out analogously to the sample preparation. The corresponding actual water contents for the 

four samples over depth are plotted in Fig.4.10. From these results one may conclude that the 

water content does not change much with depth for each evaporation step. Only the final step, 

with smallest water content indicates a steep decline close to the soil surface which is most 

intense for the mixture with the largest clay fraction (Mix15).

A further reason for the observed non-linearity between signal amplitude and the water 

content (Fig.4.9.a) might be the loss of signal during the first TE period, which is 0.4ms at 

high field, i.e. fast relaxing components are present. Shorter echo times were technically not 

possible, so this effect could not be corrected for with the fitting procedure. The consequence 

is a CPMG echo train amplitude close to zero at non-zero water content, in other words, a part 

of the water present in the Mix15 sample at = 0.05 relaxes faster than about 1ms. 

In contrast to the results at high field, the measurements at low field show a clear 

linear relation between the extrapolated signal amplitude and the water contents for all 

samples (Fig. 4.9.b). The observed relation has been quantified for all sampled values using

linear regression with · with c as the slope and M as signal amplitude resulting in a 

coefficient of determination of R2 = 0.91. Because these values were determined by 

extrapolation to time = 0 it is difficult to obtain a realistic error for them. Therefore, the 

quality of the experiment was estimated using a 10% confidence interval as displayed in Fig. 

4.9.b which contain more then 95% of the measured values. Hence, an error of 10% seems to 

be a realistic estimate for the determination of water content from low field NMR 

measurements.  With respect to magnetic resonance imaging (MRI) these results suggest that 

in principle a single point calibration will be sufficient to determine water content of soil; 

however the underlying linear relation must first be confirmed for more realistic samples. 
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4.3 Conclusions 

We have investigated the transversal relaxivity of water in medium sand and different 

sand/kaolin mixtures at high (7T) and low (0.1T) magnetic fields, by means of the CPMG 

pulse sequence as a function of water contents and composition. The data were analyzed by 

inverse Laplace transformation. Before starting the conclusions, the major trends observed at 

both field strengths are summarized: 

i) The dispersion of the relaxation times, i.e. their dependence on the main magnetic 

field is similarly weak, e.g. for medium sand a factor of about 2 is found while the 

field strength increases by a factor of 70; for Mix5 the slow and fast modes are 

accelerated by factors of 2 and 5, respectively, while the magnetic field strength 

increases from 0.l to 7T. The acceleration due to internal magnetic field gradients is 

most probably not the reason for this dispersion since the gradient strengths are 

comparable (values are presented in the caption of Fig.4.4.).

ii) Pure sand:  At 7T a broad bimodal distribution function was observed. The main mode 

( T2. Both 

modes shift to faster relaxation with decreasing water content. 

iii) Pure sand: At 0.1T a medium broad (one order of magnitude) bimodal distribution 

function was observed. At saturated state a fast mode which contributes less then 2 % 

to the total area is present. With decreasing water content the main mode shifts 

slightly to faster relaxation while the fast mode remains approximately at constant 

relaxation time. 

iv) Mixtures: At 7T bimodal broad distribution functions ranging over three orders of 

magnitude have been observed, which shift to shorter relaxation times with increasing 

content of kaolin by one order of magnitude between 5% and 15% kaolin.

v) Mixtures: At 0.1T also bimodal distributions functions occur, with a smaller width 

than at high field. The shift to shorter relaxation times is much less pronounced: a 

factor of three for the slow mode and no shift of the fast mode.

vi) Absolute amplitudes: At low field all measured amplitudes of the relaxation curve are 

proportional to the absolute water content. At high field the relation shows a stronger 

scattering of the extrapolated amplitudes with water contents and their slopes decrease 

with increasing kaolin content in the sample.

Characterization of porous media by high and low-field NMR relaxometry                                   
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These measurements show conclusively that the transverse relaxation time, T2, is affected by 

both the variation of clay content and the variation of water content in the samples. 

At low magnetic field, by increasing the clay content the dominant effect is an 

increase of the total signal amplitude and relaxation rate. This phenomenon is strongly related 

to the porosity of the samples and the pore size distribution. By increasing the clay content in 

the sample the relaxation time distribution functions are shifted towards smaller values due to 

redistribution of pore size classes. Since the bulk relaxation rate is not significantly enhanced, 

the apparent relaxation recorded at sufficiently short echo time so that the diffusion influence 

can be neglected, is best discussed in terms of the surface relaxation according to eq.2.10. 2

is a factor that comprises several properties of the surface: surface concentration of 

paramagnetic centers, diffusivity at the surface, local magnetic field gradients around these 

centers, local topology of the surface etc. For natural systems these factors are hard to control, 

so the most convenient (and most taken) way is to define an average value of 2 in order to

derive the pore size distribution (see further research presented in chapter 5). Overlapping and 

unresolved distribution functions are mainly due to the detection of water from pore throats 

water that in high field relaxes to fast to be detected. 

At high field, some fractions of water located in very fine pores might have relaxed 

during the first echo period and this information is lost resulting in a decrease of the signal 

amplitude with increasing clay content,. The same pattern observed as at low field, e.g. 

shifting of the relaxation time distribution functions toward smaller T2 values with increasing 

clay content, strengthen the assumption of the reduction in pore sizes as a consequence of 

adding clay to the sand when the diffusion in internal magnetic field gradients is neglected.

With increasing clay content we find higher percentage of water into narrow confinements.

With decreasing water content, in both magnetic fields, a shift of the apparent 

relaxation time to smaller values is observed; this is expected, if again the surface term in 

eq.2.10 dominates transversal relaxivity: 1/T2 scales approximately with S/V which is inverse 

proportional to the degree of saturation .

Characterization of porous media by high and low-field NMR relaxometry                                   
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5. Determination of the pore size  

distribution and hydraulic properties

using NMR relaxometry
Known pore size distributions can be directly linked to the water retention 

characteristic which is essential for the prognosis of water and solute movement through the 

material. In the second part of this study, it was evaluated the feasibility to use Nuclear 

Magnetic Resonance (NMR) relaxometry measurements for the characterization of pore size 

distribution in four porous samples with different texture and composition. Therefore, NMR 

T2 and T1 relaxation measurements at 6.47MHz were carried out for three model samples 

(medium sand; fine sand; and a homogenous sand / kaolin clay mixture) and a natural soil. To 

quantify the goodness of the approach, the NMR measurements were compared in terms of 

cumulated pore size distribution functions and mean pore diameter with the two classical 

techniques based on water retention and mercury porosimetry measurements. Based on these 

comparison further study was performed to evaluate the influence of the variations observed 

in the pore diameter distributions on the hydraulic properties of the samples: s, , and n.

5.1 Materials and methods
5.1.1 Soil Samples
Four different soil samples where used in the study, whereby three samples are 

artificial substrates: medium sand (FH31) with a grain size distribution between 0.72 mm and 

0.18 mm, Milisil fine sand (W3), and a mixture (Mix8) of FH31 and 8% mass percentage of 

kaolin clay (FH31 and W3 were provided by Quarzwerke Frechen, Germany, kaolin clay 

from Sigma-Aldrich, Germany). Additionally, a natural soil from Merzenhausen, Germany

(MZ) (50°54´N, 6°24´E) was used. The Merzenhausen soil is characterized as an Orthic 

Luvisol, with 80%, mass percent silt and 18%, mass percent, clay [Kasteel et al., 2007]. More 

information upon the materials used can be found in Annex 2. For NMR measurements and 

the determination of the water retention curve (except the MZ sample for which the retention 

curve was determined for undisturbed soil column), the samples were homogenized, sieved, 

and packed at the same packing density. For mercury intrusion porosimetry, both sieved and 

conglomerate structures have been used.
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5.1.2 NMR setup

In our study, H-NMR- relaxometry measurements were performed on saturated 

samples in order to determine the transversal and longitudinal relaxation times and on the soil 

solutions extracted by centrifugation for the characterization of the bulk relaxation. The 

substrates were filled into glass tubes with an inner diameter of 24 mm and a height of 46 

mm. The experiments were conducted on a Halbach magnet (Fig.5.1.) of 0.15T magnetic field 

strength [Raich and Blümler, 2004] connected to a STELAR spectrometer (Stelar, Mede, 

Italy).

The resonator was a solenoid RF-coil of 4cm inner diameter and 6cm length. For the 

determination of T2 relaxation time the CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence

described in 4.1.2 was employed [Carr and Purcell, 1954; Meiboom and Gill, 1958]:

90 – ( TE/2 - 180 – TE/2 – echo acquisition)n

with n = 15000 echoes and TE = 150 s. For the determination of T1 relaxation time a standard 

inversion recovery pulse sequence was used:

180 - - 90 – FID acquisition

were 0.01· T1max and 4· T1max ms. 

As stated in 2.3.2 for a porous media the dimensions of the pores are related to relaxation 

times by the Brownstein - Tarr equation [Brownstein, 1977; 1979] in which the diffusion term 

was neglected and only relaxation due to the surface interaction was considered. Assuming 

cylindrical pores with diameter D the pore size can then be calculated according to eq.2.13 by:

DTT bulkapp

411
2,1

2,1,2,1

(5.1)

In our study homogeneous distributions of the pore centres (e.g. of the surface relaxivity) and 

cylindrical pore geometry were assumed to provide a consistency of the assumptions when 

Fig.5.1.Halbach magnet of 0.15T together with RF coil and STELAR 
spectrometer
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pore diameters calculated from all methods were compared (Washburn equation applied for 

mercury intrusion measurements and Young-Laplace equation applied to retention function 

data also assume a cylindrical capillary geometry of the pores).

5.1.3 Mercury intrusion porosimetry
The mercury porosimetry method characterizes the porosity of the observed material 

by applying various levels of pressure to a sample immersed in mercury. Mercury intrusion 

porosimetry is one of only a few analytical techniques that permit an analyst to acquire data 

over a broad dynamic range using a single theoretical model. It is routinely applied over a 

capillary diameter range from 0.003μm to 360μm. Mercury porosimetry is applicable over a 

wide range of pore sizes, and the fundamental data it produces (the volume of mercury 

intruded into the sample as a function of applied pressure) is an indicative of various 

characteristics like pore size distribution, pore geometry, wettability, connectivity of the pore 

spaces, etc., and is used to reveal a variety of physical properties of the solid material itself.

Detailed explanation on the characterization of materials by mercury intrusion is given by 

Paul Webb [Micromeritics, 2001].

In 1921 Washburn [Washburn, 1921] derived an equation that describes the 

equilibrium of the internal and external forces on the liquid-solid-vapour system in terms of 

surface tension, contact angle, and the geometry of the line of contact at the solid-liquid-

vapour boundary. It states concisely that the pressure required to force a non-wetting liquid to 

enter a capillary of circular cross-section is inversely proportional to the diameter of the 

capillary and directly proportional to the surface tension of the liquid and the angle of contact 

with the solid surface.

i

HgHg
i P

D
cos4

(5.2)

For a given liquid-solid system, the numerator of eq.5.2 is constant, providing a simple 

relationship of inverse proportionality between the size of the pore into which mercury can 

intrude and the applied intrusion pressure. In other words, mercury under external pressure P

can resist entry into pores smaller than D, but cannot resist entry into pores of sizes larger 

than D. So, for any pressure, it can be determined which pore sizes have been invaded with 

mercury and which sizes have not. These values and the associated pressure (pore size) values 

yield a table of pore size intervals and incremental volumes associated with each interval 

presented as the Annex 4.



Determination of the pore size distribution and hydraulic properties                                             

- 44 -

In the case been we are interested in the pore volume distribution and characterization 

of the pore size distribution. This is normally determined by achieving maximum pressure by 

a series of small pressure steps. The pressure and volume are measured after the intrusion 

equilibration is achieved. In the great majority of cases and in the form of Washburn’s 

equation presented as eq.5.2, the pore is considered to be a right circular cylinder. The 

cumulative intrusion volume of mercury at each measured pressure is determined by 

subtracting the volume of mercury remaining in the stem from the original volume. For a 

continuous curve plot of pore volume versus size class, only a single size value is required to 

represent the size class. This value may be the upper or lower size boundary or some 

representative size between the two boundaries (the average size, for example).

The system used in our measurements is a standard porosimeter (Fig.5.2) in which the 

sample is placed into a container, evacuating the container to remove contaminant gases and 

vapours (usually water) and, while still evacuated, mercury is allowed to fill the container. 

This creates an environment consisting of a solid, a non-wetting liquid (mercury), and 

mercury vapours. Next, pressure is increased toward ambient while the volume of mercury 

entering larger openings in the sample bulk is monitored. A pressure between 48.26hPa and 

31.7MPa was applied and this pressure will force mercury into pores between 400 and 0.05

micrometers in diameter according to Annex 4 and technical description of the instrument.

The volume of mercury that intrudes into the sample due to an increase in pressure from Pi to 

Pi+1 is equal to the volume of the pores in the associated size range Di to Di+1, sizes being 

determined by substituting pressure values into Washburn’s equation (eq.5.2).

Fig.5.2. Porosimeter unit used for mercury intrusion measurements. 
a) Pressure station and b) Penetrometer

a) b)
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5.1.4 Water retention measurements
The water retention curves were determined using standard sand bed / pressure cell or 

multi-step-outflow, methods based on suction and pressure application as previously 

described in 3.2. Only for the Mix8 sample no measured retention curve data were available, 

and therefore, a pedotransfer function, ROSETTA [Schaap et al., 2001] was used to predict 

the hydraulic properties. For the parameterization of the water retention curves the Mualem-

van Genuchten approach [Mualem, 1976; van Genuchten, 1980] was used, whereby the 

effective volumetric water content Se is defined as:

10,,0
0

)1(
1

nmh
h

h
S mn

rs

r
e (5.3)

where r and s (cm3/cm3) are the residual and saturated volumetric water contents, and (cm-

1), n (-), and m (-) (m = 1-1/n) are shape parameters. The hydraulic properties of the reference 

materials as well as the measurement source are summarized in Table 5.1. In general, 

retention curves are usually interpreted as cumulative distribution functions in comparison to 

pore size distribution functions which are mostly plotted as a function of frequency. 

Table 5.1.Hydraulic properties for the four substrates FH31, W3, Mix8, and Merzenhausen 

soil (MZ). Parameters of FH31 and MZ are based on pressure plate measurements. W3 was 

determined using multi-step outflow (MSO) and Mix8 using ROSETTA software [Schaap et 

al., 2001].

* for a better correlation between the measurements in the further calculations r was set to 0

Using retention characteristics the pore size distribution can be extracted for a given 

porous medium based on an empirical law that relates the pore suction with the effective pore 

radius [D’Hollander, 1979; Kosugi, 1994; 1996; Jury and Horton, 2004]. Assuming the pore 

system as a model consisting of cylindrical capillary tubes with a random distribution of radii, 

the capillary pressure can be related to the pore dimension according to the Young-Laplace 

equation:

Sample Method Bulk density
g/cm3

r
*

cm3/cm3
s

cm3/cm3 cm-1
n
-

FH31 pressure plates 1.58 0.020 0.384 0.0133 12.72
W3 MSO 1.42 0.058 0.333 0.0089 2.78

Mix8 Rosetta 1.45 0.061 0.410 0.0283 2.66
MZ pressure plates 1.60 0 0.438 0.0195 1.21
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rg
h cos2 (5.4)

where h is the pressure head or capillary rise (m), is the surface tension (N/m), is the 

contact angle between liquid and solid phase, r is the pore radius (m), g is the standard 

gravitational acceleration (9.80665m/s2), and is the fluid density (kg/m3).

5.2 Results and Discussions
5.2.1 NMR results
The transversal relaxation time distribution functions obtained using inverse Laplace 

transformation [Song et al., 2002] for each of the four samples is plotted in Fig. 5.3.a). The 

distribution functions are mono-modal for sandy samples FH31 and W3 with an average 

relaxation time of 560ms for FH31 and 175ms for W3. The Mix8 and MZ samples present 

wide (over three orders of magnitude) bimodal T2 relaxation distribution functions with 

average values of 30ms for Mix8 and 0.60ms for MZ sample. The natural soil sample MZ has 

a very fast relaxation in comparison to all others, where the relaxation might be enhanced by 

the magnetic susceptibility of some of the soil components. Fig.5.3.b) shows the longitudinal 

relaxation time, T1, distribution functions for each sample. 

Fig.5.3. a) T2 and b) T1 relaxation time distribution functions for the four substrates.
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The distributions can be described as mono-modal for all samples with average relaxation 

times of 1300ms for FH31, 200ms for W3, 400ms for Mix8, and 30ms for the MZ sample,

whereas the MZ sample present a wide distribution in which the unresolved shoulder that 

appear in the slow relaxation time regime (150ms) may be considered as the relaxation in 

large pore structures.

Instead of analyzing only the classical T1 and T2 relaxation distribution functions as 

plotted in Fig.5.3., cumulative pore size distributions functions were calculated according to 

eq.5.1. The normalized cumulated functions are displayed in Fig.5.4. where 1 is the sum of all 

pore sizes equivalent to 100%. The surface relaxivity parameters 1,2 were estimated as a 

mean value for each sample according to eq.2.13:

1

,2,1,2,1

,2,1,2,1
2,1 )(

V
S

TT
TT

appbulk

appbulk (5.5)

in which the surface to volume ratio (S/V) value was supplied from BET measurements and 

the bulk relaxation times were measured for each soil solution extracted from the samples by 

centrifugation. The average surface relaxivity parameters 1 and 2, bulk relaxation times, S/V 

ratio, and the obtained average pore diameters for all samples are listed in Table 5.2.

Fig.5.4.Cumulative pore size distribution calculated according to eq.5.1. a) PSD-T2
and b) PSD- T1 for the four substrates
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Table 5.2.Calculated surface relaxivity parameters and average pore diameters from NMR 

relaxation measurements.

In general, the pore size distributions obtained from T2 measurements (PSD-T2), 

Fig.5.4.a, indicate a narrow distribution of pores for the sandy samples FH31 and W3 with 

values ranging between 250 - 500 m for FH31 and between 1.5 - 30 m for W3. A larger 

spectrum of pore sizes was obtained for Mix8 and MZ samples with values ranging from 

0.002 m to 2 m for Mix8 and 0.002 to 0.5 m for MZ, which are a result of the mix of finer 

and coarser grains within the samples. For rocks and soils the 2/ 1 ratio, which generally is 

equal with T1/ T2, has values between 1 and 4 (1< T1/ T2 <3) [Kleinberg, 1999 in PO-Z. 

Wong]. In our case 2/ 1 ratio has been found: 3.2 for FH31; 1.5 for W3; 10 for Mix8 and 10

for MZ sample. For the sample FH31 even if the 2/ 1 ratio has a reasonable value, 3.2, the 

surface relaxivity parameter, 2, is quite large. This could point to an error in estimating the 

S/V ratio. Since for this medium sand was impossible to determine the specific surface using 

BET (the specific area is to small for the possibilities of the BET technique) its value used in 

the calculation of S/V was provided by the producer with no other specifications. The odd 2/

1 value for Mix8 and MZ sample might be due to the diffusion in internal magnetic field 

gradients been well known that the diffusion will affect the T2 distribution and diffusion 

effects are enhanced in fine grain materials, [Kleinberg, 1999 in PO-Z. Wong]. Therefore, the 

influence of diffusion was checked for the two fine samples Mix8 and MZ by varying the 

echo spacing in the CPMG train and observing the shift of the distribution functions. For the 

Mix8 sample weak acceleration due to diffusion in internal gradients was observed for low TE

values (80, 100, 150 and 250 s). This is sustained also by a previous study [Stingaciu et al., 

2009] presented in chapter 4 who showed that for 0.1T magnetic field strength the choice of 

TE = 150 s for a similar clay sample will produce no truncated information and will minimize 

the diffusion effects allowing us to further neglect the diffusion in eq.2.12.b. For the MZ 

sample a steeper gradient was observed; nevertheless for lower TE values (80, 150 and 200 s) 

the 1/T2 data obtained with these settings are very close to those extrapolated to TE = 0 so that 

Sample 2, surface 
relaxivity

1, surface 
relaxivity

T2,bulk
ms

T1,bulk
ms

Specific
area

cm2/g

S/V
cm-1

D2av D1av

FH31 96·10-3 30·10-3 2280 2786 68 108 260 260
W3 12·10-3 8·10-3 1683 2279 3600 5112 8 7

Mix8 2·10-3 0.2·10-3 1012 1469 15950 23128 0.2 0.3
MZ 7·10-3 0.7·10-3 578 787 96400 154304 0.05 0.1
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the influence of diffusion in residual field gradients is minimal and can not be the cause of the 

observed variations. As a result diffusion can be again neglected in further evaluation of the 

pore diameters. More on this matter is yet to be published in Stingaciu et al., [2010] accepted 

by Water Resources Research journal.

Figure 5.4.b shows the pore size distributions obtained from T1 measurements (PSD-

T1). Also here it is seen the well sorted sandy materials W3 and FH31 are characterized by a

narrow pore size distribution. For fine samples with medium clay content, like our Mix8 and 

MZ samples, it is well known the fact that BET method measures a huge surface that is rather 

controlled by the surface area of the clay then by the pore size. Those relaxivity parameters 

calculated this way will have very low values (few micrometers per second) and represent in 

most of the cases the relaxivity of clay-trapped water (water in the interlayer spaces of clay 

packets), [Kleinberg, 1999 in PO-Z. Wong], which according to published neutron diffraction 

measurements exchanges to surrounding bulk water in thousands of seconds [Cebula et al., 

1980; Adams et al., 1979]; therefore will give no information about the pore water. On the 

other hand, if the clay particles disperse, the water on the surface of clay, even if exchanges 

efficiently with pore water, it relaxes very fast. Therefore the PSD-T1 of such materials can be 

a poor estimator of the real pore size distribution.

5.2.2 Retention functions results
As already mentioned above the water retention curves and corresponding hydraulic 

parameters for the four samples are based on different sources such as multistep outflow 

(MSO) (W3), pressure cells (FH31 and MZ), and the use of a pedotransfer function (Mix8). 

The measured hydraulic properties of the samples are listed in Table 5.1 and the retention 

curves are plotted in Fig.5.5.a). Since the retention curves are also plotted as cumulative 

functions, a direct comparison of the NMR measurements with water retention functions is 

possible. Nevertheless, pressure head as plotted in the abscissa has to be transformed also into 

pore size diameter using the Young-Laplace equation (eq.5.4). Additionally, the ordinate has 

to be normalized to 1 (100 %) which equals full saturation s. The pore size distributions 

obtained (PSD-pF) are displayed in Fig.5.5.b). It can be easily seen that the pore sizes are 

narrowly distributed for the well sorted sandy samples FH31 and W3. In contrast Mix8 and 

MZ indicate a wider pore spectrum. From these curves the mean pore size diameter can be 

easily estimated. One obtains for the FH31, W3, Mix8, and MZ mean pore size diameters of

38.90, 20.41, 0.64, and 0.25 m, respectively. 
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Fig.5.5.a) Water retention curves b) Normalized pore size diameter functions

Fig.5.6.Cumulative pore size distribution based on mercury intrusion (PSD-Hg)
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5.2.3 Mercury intrusion results
The pore size distribution from mercury intrusion measurements (PSD-Hg) were also 

obtained as cumulative functions in which the equivalent pore diameter was calculated 

according to eq.5.2 from experimental data collected for various numbers of mercury pressure 

steps. The cumulative pore size distribution functions presented in Fig.5.6 show a mono-

modal distribution of pores for samples FH31 and W3 with average values of the pore 

diameter of 178 m for FH31 and 10 m for W3. These distributions indicate that more than 

80% of the total volume corresponds to pores with a diameter smaller than 180μm in the case 

of FH31 sample and less than 18 m in the case of W3. The pore diameter distributions for 

MZ and Mix8 samples show wide multimodal distributions with average values of 0.20 m for 

MZ and 0.1 m for Mix8, respectively. Nevertheless, 80% of the pore volume of Mix8 is 

below 0.40 m and 80% of MZ are below 3 m. 

5.2.4 Comparison of the different measurements
For a better comparison of all three methods used for PSD determination, the 

calculated average pore diameters are presented in Table 5.3. together with some assumed 

uncertainty estimated from various sources as follows: i) for the NMR derived average 

diameter errors in the estimation were assumed to be in a 10% interval as previously shown in 

Fig.4.9. chapter 4.2.2; ii) for the retention function derived diameter estimation errors were 

assumed to be in a 2.5% interval as Scharnagl, [2006] showed in his diploma thesis (the 

estimated hydraulic properties for three W3 sand samples were deviating from each other in 

this interval range); iii) lacking a realistic experimental estimation of the errors that can occur 

from Hg intrusion measurements, the errors were assumed to be maximal, e.g. 50%, as a 

technical note from Micromeritics company [Micromeritics, 2010] suggests (see later in the 

chapter). The average pore diameters obtained from all measurements are the same order of 

magnitude for each of the four samples used for investigation. Nevertheless, large differences 

can be observed for mean pore diameter obtained from pF function in comparison with the 

other measurement for the well sorted sandy samples FH31 and W3. On the other hand, the 

MZ and Mix8 average diameters obtained from NMR relaxation measurements and mercury 

intrusion are slightly smaller compared to the retention curve (pF) derived diameters. An 

attempt to explain possible reasons for this difference will be given below. To gain a better 

understanding of the mismatch observed in the mean pore size diameter we displayed the 

cumulative PSD functions from all measurements in Fig.5.7.
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In the following, the discussion of the obtained results is made as a comparison between 

methods with respect to the type of sample used for investigation.

Table 5.3.Average pore diameter for all samples calculated according to eq.5.1 for T1 and T2 -

NMR relaxation measurements; eq.5.2 for Hg intrusion and eq.5.4 for water retention 

function. 

The NMR T1 and T2 relaxation measurements provide nearly identical distribution of 

the pore diameters for all samples. In all cases PSD-T2 measures slightly smaller pore values 

compared to PSD-T1, whereby the larger difference were observed for Mix8 and MZ samples.

On the other hand, it is observable that the pore size distribution functions from T1 and T2

measurements cross each other at a certain point so their centroids coincide systematically 

due to the 2 and 1 constants. The less steep function of T2 indicates not only a systematical 

overestimation of smaller pores by T2 but also an overestimation of larger pores. These 

differences can be, on one side, due to the fact that relaxation in inhomogeneous fields leads 

to a signal decay that is in general non-exponential with an initial decay rate that is a weighted 

sum of T1 and T2 relaxation times as Hürlimann and Griffin, [1999] and Chelcea et al., [2009]

suggested. Nevertheless, since macroscopic (centimeter scale) magnetic field gradients are 

unlikely to be present in a Halbach magnet and the magnetic field gradients are more likely on 

the grain scale, the overall variation of B0 and B1 field are not large enough to produce the 

effect described by those authors. On the other side, the large T1 / T2 ratio observed for the 

fine samples Mix8 and MZ can be due to diffusion in internal magnetic field gradients. It is 

well known that the presence of diffusion influence the T2 relaxation and according to 

eq.2.12b will shift the pore size distribution function to smaller, unrealistic values of the pore

diameter. Checking the diffusion induced by internal field gradients for the two fine samples 

that are more susceptible to be influenced by diffusion shows that for both, the Mix8 and MZ 

samples minimum diffusion influence was observed for our specific echo time [Stingaciu et 

Sample Dav- Hg
m

Dav-T2
m

Dav- T1
m

Dav-pF
m

FH31 170 ± 85 260 ± 26 260 ± 26 39 ± 0.9
W3 10 ± 5 8 ± 0.8 7 ± 0.7 20 ± 0.5

Mix8 0.2 ± 0.1 0.2 ± 0.02 0.3 ± 0.03 0.6 ± 0.01
MZ 0.2 ± 0.1 0.05 ± 0.005 0.10 ± 0.01 0.2 ± 0.005
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al., 2010]. Therefore, we can conclude that the small observed deviations come from 

inevitable small errors in the transformation of relaxation distribution functions in PSD 

cumulative functions. Moreover these samples present medium clay content and, as stated 

above, BET method measures a huge surface that is rather controlled by the surface area of 

the clay then by the pore size; therefore T1 measurements for these types of samples give 

almost no information about the pore water (see chapter 5.2.1).

Comparison of the NMR pore size distribution with the pore size distribution function 

obtained from mercury intrusion (PSD-Hg) shows a similar shape for FH31, W3, and Mix8. 

Only for the natural soil of Merzenhausen (MZ sample) larger differences are observable, 

whereby the NMR based pore size distributions are shifted to smaller pore sizes. The Hg-

intrusion measurements provide values of the pore diameters very close to the NMR 

measurements for sandy samples FH31 and W3 most probably due to the fact that these 

samples have been used as sieved material packed at the same packing density for both 

methods. Nevertheless, for loose materials like sand, the mercury intrusion method is quite 

limited by the pressure application. Micromeritics company [Micromeritics, 2010] gives an 

example about the errors that can be made in estimation of pore diameter by Hg intrusion: 

’’In the assumption that pores of 360 m or larger can be filled with mercury intrusion 

at a contact angle of 135o, this claim implies that the sample is located in a volume of the 

sample cup (penetrometer) that is less than 3mm below the top of the sample cup (the top

surface of the mercury, see Fig.5.8.). Otherwise some quantity of the 360 m pores will 

already be filled and their volumes accounted for during the next pressure step when the 

m are filled. The result will be an underestimation of pore volume for 

the given size class. As an example of the error this potentially causes, assume that 50% of 

the sample mass is located greater than 3mm below the top of the sample cup.

Fig.5.8.The effect of head pressure on pore filling; the pores of same size are not filled 
toward the top of the sample cup (penetrometer), but are filled when at deeper position 

(picture not to scale)
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This means that 5 m have been filled. During the next pressure

step when m are assumed to have been filled; the intrusion 

volume will be in error by about 50%. ‘’

For the sieved materials the mercury pressure cannot be extensively increased since 

high pressure will push the material on the sides of the sample cup, overestimating the small 

pores. Mix8 and MZ samples have been used as a conglomerate for determination of the PSD-

Hg which allows us to apply higher mercury pressure leading to a better estimation of the fine 

pore contribution. Therefore, for the Mix8 sample this contribution is similar to PSD-T2 as 

expected in the case of no diffusion in internal magnetic field gradients. Nevertheless, for the 

MZ sample differences between PSD-NMR and PSD-Hg can be observed and those 

differences are twofold. First, the samples for NMR measurements were sieved and packed, 

whereby the samples for mercury intrusion were still in natural state with smaller aggregates. 

Therefore, large pore structures within the aggregates can be still detectable with mercury 

intrusion. Secondly, it can be due to the fact that the chemical composition of the sample (e.g. 

the paramagnetic ions present in the natural MZ soil) might enhance the relaxation, thus 

preventing a reliable estimation of the NMR pore size distribution. 

Comparison of NMR pore size distributions with the pore size distribution from 

retention curves (PSD-pF) shows a large difference for the sand sample FH31. We assume 

that the differences may occur from measurement errors using pressure plate method for the 

determination of water retention curve. It has been previously reported that pressure plates are 

susceptible to substantial errors at low water potential [Campbell, 1988; Gee et al., 2002; 

Cresswell et al., 2008]. Bittelli and Flury [2009] suggested that for potentials less than -10 m 

H2O, pressure plates provide considerable errors that can seriously affect the fitted hydraulic 

functions and their parameters. 

Additionally, maintaining exact pressure at low steps is crucial for probes with a steep

water release curve such as our coarse sand FH31. Therefore, we tend to conclude that the pF 

function of this material is not reliable. The difference in the Mix8 sample is due to the fact 

that the retention curve was estimated based on a pedotransfer function with its known 

uncertainties, especially for artificial fine grained soils. Due to the fact that for the 

determination of the pF curve, the MZ sample has been used as an undisturbed column and 

due also to the similarity between the PSD-pF and PSD-Hg for this sample, (these 

measurements provide similar pore size distributions and the errors in pressure plates 

determination of the MZ pF curve can be then considered minimal), on can only speculate 

which of the two reasons described above influence more the observed differences between 
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the PSD-NMR and PSD-pF for MZ soil: the presence of the paramagnetic ions that enhanced 

the relaxation and shift the NMR pore size distributions to smaller values or the large pore

structures within the natural aggregates that shift the PSD-pF to larger pore diameters.

Assuming a homogenous distribution of the paramagnetic centers, the surface 

relaxivity parameter for both T1 and T2 measurements will be increased, and one may obtain 

approximately correct pore sizes. In conclusion, the observed differences are mainly due to 

the large pore structures that may exist in the undisturbed soil sample. Nevertheless, a recent 

study [Jaeger et al., 2009] suggested that for natural soils the assumption of a homogeneous 

distribution of a mean value of the surface relaxivity parameter is somehow an ideal case,

since the shape of T2 distribution function is strongly affected by the soil texture and two 

surface relaxivity parameters (one for micro-pores and one for meso-pores) obtained from

NMR data after calibration at different matric potentials are more convenient when 

transforming the relaxation time distribution in pore size distribution. 

5.2.5 Hydraulic properties estimation
Finally, we analyzed the differences in the calculated retention curves for the four 

samples and the various measurement techniques because retention characteristics are the 

main input parameter for numerical simulations for the prognosis of water and solute 

transport. To do so, the PSD curves were transformed in pF curves based on eq.5.4.

Additionally, we fitted the hydraulic parameters of the Mulaem van Genuchten 

parameterization [van Genuchten, 1980] using RETC software. Due to the fact that the 

residual water content, r, will often be fixed to 0, only the saturated water content s, and the 

shape parameters and n were fitted. 

The calculated retention curves are plotted in Fig.5.9. and the fitted hydraulic 

parameters are listed in Table 5.4. Again, we can clearly identify the large difference for 

retention curve of the sand sample FH31, whereby only the point of first drainage (air 

entrance) is delayed but the overall shape of the curve is not affected. As stated above, 

retention curve measurements are often biased and imprecise, especially at low pressures 

applied. More or less the same feature, but less pronounced, is visible for the Mix 8 sample.

The curvature itself is only slightly steeper as the Hg and T2 curve but first drainage occurs 

now earlier. This might be an artifact of the pedotransfer function which assumes that natural 

soils exhibit macro-aggregates when a certain percentage of small fractions (silt or clay) are 

available. The influence of soil structure can be additionally seen in the MZ sample.
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Table 5.4.Soil hydraulic properties extracted using RETC software in a 95% confidence 

interval

Largest divergence between T2, Hg and pF curves occurs in the wet range, where the pores 

between macro- and micro-aggregates were drained. At larger pressures, where only soil 

texture is the dominant factor in water retention, less divergence is detectable. 

Looking at the hydraulic parameters we see that the saturated water content, s, has 

been estimated with less than 7 % relative error for all measurements. The parameter shows 

consistent variations between different methods. Nevertheless the values are in the range of 

values reported in literature for similar types of samples [Schaap et al., 2001]. The most 

pronounced differences can be observed in the n parameter which describes the slope of the 

water retention curve. From Table 5.4 and Fig.5.9 it is easily observable that even for large 

variation of n (n ranges from 3.19 to 12.72 within FH31 sample) the slope of the calculated 

pF curves is nearly identical within the same sample most probably due to the insensitivity of 

the water retention function to high values of n. This leads to the conclusion that slight errors 

in estimation of the slope by the measurements will lead to extremely large changes in the 

resulting n parameter.

Sample Method s
cm3/cm3 cm-1

n
-

FH31

pressure plates 0.384 0.0133 12.72
T1 0.370 0.4985 3.19
T2 0.385 0.1582 7.28

Hg intrusion 0.372 0.0661 12.14

W3

MSO 0.333 0.0089 2.78
T1 0.310 0.0016 2.73
T2 0.340 0.0027 2.93

Hg intrusion 0.320 0.0030 4.79

Mix8

Rosetta 0.410 0.0283 2.66
T1 0.410 0.0113 6.59
T2 0.397 0.0266 1.56

Hg intrusion 0.43 0.0201 1.53

MZ

pressure plates 0.438 0.0195 1.21
T1 0.434 0.0045 2.95
T2 0.412 0.0031 1.75

Hg intrusion 0.430 0.0218 2.58
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5.3 Conclusions
Summarizing the findings reported above we see that each measurement technique 

agrees to the others satisfactorily, within one order of magnitude. We also observed smaller or 

larger differences between the techniques irrespectively if we will look at the mean pore 

diameter, pore size distribution, retention curve, or hydraulic parameters. The most interesting 

finding is that the result from each method itself does not consequently over- or 

underestimates the results from the other methods. Therefore, it seems that each method 

within its own limitation is appropriate for determination of pore size distribution with a 

strong dependence on the sample characteristics. 

If mercury intrusion is applied to loose materials then the mercury pressure has to be 

carefully limited so that the material is not pushed aside the sample walls giving unrealistic 

small values of the pore diameters. Hysteresis effects are always present and might have a 

major influence when retention data (which basically are drainage curves) are compared with 

mercury-intrusion data (which are mostly imbibitions curves). Even the repetition of a 

measurement on the same sample will not lead to the same result in retention curve (pressure 

plate or multistep outflow data) as Mous, [1993]; Hollenbeck and Jensen, [1998]; and 

Weihermüller et al., [2009] have shown in their work. Additionally, for both mercury 

intrusion and retention function measurements, the sample preparation (sieving and packing) 

and the maintaining of intrusion/extrusion equilibration after each pressure application are 

crucial factors. 

The determination of pore size distribution by NMR relaxometry has its own 

drawbacks. Firstly, the diffusion in induced magnetic field gradients can shorten transverse 

relaxation times (T2). This must be checked and can be minimized by the choice of sufficient 

small echo time or by measuring longitudinal relaxation (T1). Secondly, diffusion in internal 

gradients may affect different modes of a multimodal relaxation times distribution function in 

a different way. The detailed investigation of such phenomena exceeds the frame of this work 

but is an important topic in future. Thirdly, one must be aware that the derivation of PSD is 

always a scaling procedure which requires independent determination of the average specific 

surface area. This is in most cases done by the BET method. Here, large clay contents of a 

sample can lead to huge S/V ratios and the derived surface relaxivity parameters when 

combined with the average relaxation rates will have very low values. The reason is that the 

relaxation times are controlled by the pore sizes and the surface relaxivity, but the average 

S/V is controlled by the internal surface area of the clay. Fourthly, the assumption over 

homogeneous distribution of the pores and paramagnetic centers and calculation of an average 
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surface relaxivity parameter, especially for a multi-modal relaxation time distribution 

function, leads to an overestimation of the large pores. All these issues together with the 

necessary simplification over the pore shape and geometry can deviate the calculated pore 

size distribution from the real one. 

Nevertheless, our study showed that NMR relaxometry is a quick alternative for the 

estimation of pore size distribution, retention curve and also hydraulic properties. The major 

advantage of NMR in comparison with classical methods is the short measurement time 

which allows the analysis of large quantities of samples necessary to characterize field – or 

catchment scale hydraulic properties necessary for risk assessment (e.g. flood forecasting) or 

management (e.g. fertilization and pest control).
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6. Determination of hydraulic properties 

using combined magnetic resonance 

imaging and multi-step-outflow 

experiments
In this part of the study it was aimed to an accurate and reliable determination of soil 

hydraulic properties from a procedure that involves multi-step-outflow (MSO) experiments 

and MRI based soil water content measurements on the laboratory scale using a 

heterogeneous model soil sample. First, a synthetic case study (virtual experiment) was 

performed in order to check the feasibility of combining MRI with MSO data. Due to the 

encouraging results obtained from the virtual experiment, MSO experiments were performed 

on a model coaxial sample filled with sand and a sandy-clay material. MRI images at 4.7T 

(200 MHz) were recorded during each pressure step in order to provide additional information 

about soil water distribution at specific locations within the soil sample. Finally, recorded

cumulative outflow and water content data were used as input parameters in the inversion. For 

the inversion the hydrological model HYDRUS-2D was coupled with a global-optimization 

algorithm, namely the shuffled complex evolution (SCE-UA) algorithm of Duan et al., [1992] 

was used to overcome the problem of multiple local minima of the solution and improve the 

estimation of the parameters.

6.1 Materials and methods
6.1.1 Inverse simulation
By definition, inverse modeling is a general mathematical method to determine 

unknown parameters or state variables on the basis of observation of the system. Hence, the 

solution of the inverse problem is in contrast to direct or forward modeling that involves the 

analysis of the system response based on predefined parameters or state variable [Hopmans 

and , 1999; Hopmans et al., 2002]. In soil physics, Zachmann et al., [1981; 1982]

were among the first who applied the inverse method to simultaneously determine the 

retention, (h), and hydraulic conductivity K(h) functions from a hypothetical outflow 

experiment, in which an initially saturated soil column was allowed to drain by gravity. They 

showed that the cumulative discharge or other auxiliary data such as volumetric water content 



Determination of hydraulic properties using MRI and MSO

- 62 -

or matric head at a fixed location can be used to generate reasonable estimates of the soil 

hydraulic parameters. Later, the application of the inverse modeling to one-step-outflow was 

introduced by Kool et al., [1985a and b] and Kool and Parker [1987], whereby a simultaneous 

determination of (h) and K( ) was obtained by minimizing the deviation between predicted 

and measured outflow. 

Van Dam et al., [1990] proposed the multi-step-outflow as a valid replacement for 

one-step-outflow experiments. Nevertheless, problem with the uniqueness of the estimated 

parameters have been often encountered. Van Dam et al., [1990] and [1992] came up with the 

solution to this problem by supplementing the outflow data with the soil water retention (h)

data. Further investigation showed that the outflow data recorded from a MSO experiment can 

contain sufficient information for a unique estimation of the hydraulic properties [Mous,

1993; Van Dam et al., 1994]. Despite these investigations, Eching and Hopmans, [1993]

suggested the need for additional measurements when MSO experiments are performed for a 

more accurate prediction. Similar to the one-step-outflow experiment these additional 

measurements can be tensiometric data recorded at different depth inside the sample 

[Toorman et al., 1992; Eching and Hopmans, 1993] or information about water content from 

different regions of the sample during the MSO experiment [Weihermüller et al., 2009].

Fig.6.1. Flow chart of the inverse modeling procedure of a combined MSO – MRI experiment
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Therefore, inverse modeling of MSO experiments has evolved to be a powerful tool 

for determining both (h) and K(h) from one single experiment. An illustration of the inverse 

method procedure adapted to our MRI experiments is shown in Fig.6.1. Following Hopmans 

et al., [2002], the method integrates three functional parts: 

the realization of an MSO experiment for which the initial and boundary conditions 

are known and the cumulative outflow together with MRI derived water content data 

are measured;

the numerical solution of the direct problem of variably saturated flow, given a model 

for the soil hydraulic properties and an initial estimate of its parameters;

nonlinear parameter optimization.

6.1.2 Parameter estimation 
The soil hydraulic parameters can be estimated by numerically solving the Richards 

equation (eq.3.7) and iteratively minimizing the deviations between simulated and measured 

data. A commonly used expression for the objective function to be minimized is the approach 

of weighted least squares [van Dam, 1994]:
N

i
isimimi ,tQtQwO

1

2)( bb (6.1)                        

where b is the estimation of the parameter vector, wi is the weighting factor (eq.6.2); N is the 

number of observed data in time ti, and Qm and Qsim are the measured and simulated response 

data. Hereby, the weighting factor will be expressed by:

2

1

i
iw (6.2)

where i is the standard deviation (and thus i
2 is the variance) of the measurement of the ith

data type. By adding water content data to the outflow data, the objective function to optimize 

from eq.6.1 can then be rewritten as: 
N

i

N

i
isimimiisimimi ,hhv,tQtQwO

1 1

22)( bbb (6.3)

where m and sim are the measured and simulated volumetric water content during the 

pressure steps hi and vi is the weighting factor. In general, there are different ways to 

minimize the objective function, whereby one of the most known and widely used algorithm 

is the Levenberg-Marquardt algorithm [Marquardt, 1963], which is already implemented 

within the HYDRUS software package.
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6.1.3 SCE optimization algorithm 
The Levenberg-Marquardt algorithm is only a locally convergent algorithm which is 

not always suitable for complex parameter estimation, especially if more than one minimum 

exists in the multi-parameter-space. To overcome the limitations of being trapped into local 

minima without finding the global solution global optimization methods are required. 

Therefore, the Hydrus 2D code was coupled with the global optimization algorithm SCE-UA

(shuffled complex evolution–University of Arizona) introduced by Duan et al., [1992] within 

a Matlab environment. In the following, a short description of the SCE algorithm is given. For 

more details see Duan et al., [1992] or Mertens et al., [2005].

In general, the SCE algorithm comprises four steps:

(1) Initialization: an initial sample of parameter sets is randomly generated from the feasible 

parameter space. For each parameter set, the objective function, O, presented in eq.6.1 or 6.3 

is calculated. The initial sample size x m, where p is the number of complexes and m is 

the number of points in each complex.

(2) Partitioning into complexes: the s points are ranked in order of increasing objective 

function value. The s points are then partitioned into p complexes each containing m points,

such that points corresponding to function values {O1,Op+1, . . . , Os-p+1} form the first 

complex, points corresponding to function {O2,Op+2, . . . , Os-p+2} values form the second 

complex, etc.

(3) Evolution: a subcomplex of size q is formed from the complex by randomly choosing q

points from the m points in the complex. A triangular probability distribution is used for 

assigning the probability of a point to be included in the subcomplex (i.e. larger probability 

for points with smaller objective function value). The subcomplex is evolved (offspring 

generation) according to the Simplex algorithm [Nelder and Mead, 1965] and evolution steps 

are taken by each complex.

(4) Complex shuffling: the new sample of s points is shuffled and new complexes are formed, 

conform to step 2. Steps 2 – 4 are repeated until a stopping criterion is met. Duan et al., 

[1994] recommendations were followed in choosing the algorithmic parameters.

The most important algorithmic parameter is the number of complexes p. Kuczera,

[1997] suggested that the number of complexes should be larger then 3 and equal to the 

number of model parameters that needs to be estimated in the optimization routine, on the 

expense, of course, of the computing time. In our study the number of complexes was set to 5, 

which we found to be a good compromise between search efficiency and computation time.
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The algorithm was considered to converge when the objective function changed less then 

0.01% in 10 consecutive loops of the algorithm.

6.1.4 Numerical feasibility study
To test the feasibility of combining conventional outflow data from MSO experiments 

with water content data derived from MRI for a two domain system, here a coaxial phantom, 

a synthetic case study was performed. The HYDRUS-2D [ et al., 2006] model was 

used to predict and optimize the MSO experiment of a coaxial sample using the Mualem –

van Genuchten parameterization of the retention function [van Genuchten, 1980] (see also 

3.4. and 4.1.3.). The initial guess of the soil hydraulic parameters required for the hydraulic 

model was derived from the Rosetta database [Schaap et al., 2001] for each material (Table 

6.1). The MSO was simulated for a 2D axis-symmetrical soil profile of 38mm width and 

145mm length non-equidistantly discretised with 4014 nodes. The material of the soil profile 

was separated in two domains: fine domain from 0 to 17.5mm and coarse domain to 17.5 to 

38mm from the rotation axis. The model was initialized in pressure head by setting h to 0 

which corresponds to full saturation. The lower boundary was set to variable head

representing measured pressure applied during the experiment. All remaining boundaries 

were set to zero flux. Ten observation nodes were inserted in the model domain at predefined

position, whereby 5 were located in the fine and 5 in the coarse material in order to gain 

information about water content changes inside the sample during each pressure application. 

In the first step, the cumulative outflow with respect to the applied suction and the 

water content measurements from the ten observation nodes inserted into the model were used 

as input data in the inversion routine for minimization of eq. 6.3 and estimation the hydraulic 

properties of both materials. 

In the second step, Gaussian noise was added to the input data and the inversion was 

performed again. The reason of adding noise to input data was to simulate a case close to 

reality in which the MRI amplitude data are collected within 10% deviation from linearity, 

especially for low saturations and high clay content, [Stingaciu et al., 2009]. In general, we 

tested the fitting of 8 hydraulic parameters, namely s, , n, and KS while r was set fixed to 0

for each material domain. Constraining r to zero is a well established procedure in MSO 

experiments because no information about the residual water content will be archived by the 

measurement itself, and therefore, estimating r will be associated with a high uncertainty for 

the parameter.
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6.1.5 Sample preparation
For the experimental study a coaxial sample based on the geometry shown in Fig.6.2. 

was constructed from sand and a sand clay mixture to ensure variability of the hydraulic 

properties between the inner and the outer core of the sample. The sample, further referred as 

S2fine, was constructed from fine sand FH32 for the outer core and kaolin-FH32 

homogeneous mixture, 15% mass percents of kaolin, for the inner core. The quartz sand FH32 

(Quarzwerke Frechen, Germany) has a particle size distribution between 0.1 – 0.4mm and an 

iron content <0.05%. The kaolin used in the clay mixture was pure hydrated aluminum 

silicate powder (Sigma-Aldrich, Germany) with particle size distribution between 0.1 and 4 

m and an iron content <0.58%. Detailed information about the two materials can be looked 

up in Annex 2.

The sample was filled into a teflon tube with an inner diameter of 76mm and a height 

of 145mm. The inner core diameter was 35mm. The bottom of the tube consists of a porous 

glass plate with a pore size between 40-90 m (RoBu, Germany) to allow saturation of the 

system from the bottom. In order to maintain a constant pressure inside the sample during the 

MSO experiment and to avoid air to leave the sample a porous nylon tissue (Whatman filters, 

USA) with high conductivity and a bubble point of 2bar was placed above the lower glass 

plate.

6.1.6 MSO experiment
In our study MSO experiments were performed by applying an overpressure by 

compressed air to the soil column from the top end of the setup shown in Fig.6.2. Using 

overpressure greatly facilitates the experimental setup compared to the classical approach of 

applying an under pressure at the lower end of the soil column. Various MSO experiments 

starting from complete saturation were repeated several times followed by re-saturation and 

subsequent equilibration to settle down the material within the column. The last drainage 

curve was performed for pressure steps: 20, 35, 50, 70, 350, and 850mbar. In the following, 

only the last drainage curve, which was used in the inverse modeling procedure, will be 

discussed. During the last drainage cycle MRI images were recorded. The pressure applied to 

the soil column was monitored on top of the sample using a digital pressure sensor and the 

cumulative outflow at the lower end of the column was collected on a balance and weighted 

automatically at constant time intervals of one minute. 



Determination of hydraulic properties using MRI and MSO

- 67 -

6.1.7 MRI experiments
The water content in different regions inside a sample can be estimated with a variety 

of methods. Among these methods, 1H magnetic resonance imaging (MRI) has proved to be a 

reliable method to predict accurately the water content within a soil sample because the 

recorded MRI signal amplitude can be directly and linearly related to the water content of the 

sample [Hall et al., 1997; Stingaciu et al., 2009]. Prior studies [Amin et al., 1996; Hall et al.,

1997; Stingaciu et al., 2009; Pohlmeier et al., 2009] recommended that low field MRI is 

preferable for investigating soils. Due to the fact that low field MRI scanners are still under 

development, in this study high field MRI (4.7T) was used. Nevertheless, there are several 

limitations in using high field MRI for determination of the water content in natural porous 

media. First, paramagnetic impurities such as Fe3+ and Mn2+ ions can seriously reduce the 

signal by acceleration of the relaxation processes [Hall et al., 1997; Keating and Knight,

2007]. This problem was overcome in our study by using pure samples based on sand and 

pure kaolin clay for which the paramagnetic content is less then 0.5%. 

Fig.6.2.Sketch of the MSO experimental setup
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Another problem encountered in high magnetic field measurements is the fast decay of 

the MRI signal due to the diffusion in internal magnetic field gradients. By a comparison 

study between high and low magnetic field measurements, Stingaciu et al., [2009] showed 

that for sufficiently short echo time the high magnetic field measurements of natural porous 

media are not influenced by the diffusion in internal gradients. Nevertheless, the classical  

multi-echo MRI sequences proposed by Edzes and van Dusschoten [1998] do not always 

allow the use of a very short echo time and only a truncated signal is recorded due to the very

fast relaxation in small pores or to very low water content (dry sample). This was regarded as 

a serious problem in our study because water content drops dramatically inside the sample at 

high pressure steps. 

Therefore, a phase-encoding 3D-MRI sequence named ‘’ct3D’’ was employed

(Fig.6.3.), for the determination of signal amplitude, e.g., of the water content inside the 

sample. This pulse sequence is basically a single-point-imaging sequence and consists of a 

nonselective excitation pulse, followed by phase encoding in all three directions and 

acquisition of only a single data point. The ct term refers to the constant time between the 

excitation and acquisition. In this sequence k-space is addressed point by point and filled 

rectangulary. This sequence ensures the linearity between the measured signal and the water 

content even at very low saturation as a consequence of a very short time lap between 

excitation and acquisition.

Fig.6.3. ct3D pulse sequence
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The MRI experiments were performed on a 4.7T (200MHz 1H resonance frequency) 

vertical wide bore superconducting magnet (Magnex Scientific, UK) connected to a Varian 

console The NMR RF-resonator is a ’birdcage’- type resonator with an internal diameter of 

170mm and 180mm length. Images were recorded using the following parameters: constant 

time, ct = 0.050ms, repetition time, TR = 65ms, flip angle of 6 degrees with a resolution of 

5.31mm per pixel (matrix size 32 x 32 x 32 pixels for 170 x 170 x 170 mm). This resolution 

was set with respect to the experimental setup of the MSO with relatively short times between 

pressure steps and fast outflow at the lower end of the soil column, especially at low pressure 

applied, and the required data points measured with MRI.

6.2 Results and Discussions
6.2.1 Numerical study 
In general, the feasibility study was performed in three steps. First, we estimated 

hydraulic properties from outflow and water content data taken from a forward model with 

known hydraulic properties for each material domain. The hydraulic properties for this 

forward run are listed in Table 6.1. In a second step, Gaussian noise was added to the input 

data for a second optimization. The estimated parameters from the inversion using no noisy 

data are listed in Table 6.1. The total SSR (sum of square residuals) was 0.0159 and was 

achieved after 1859 model runs. Convergence was achieved after 3285 model runs. The 

estimated parameters from the inversion using noisy data are also listed in Table 6.1. The total 

SSR was 0.02 and was achieved after 1719 model runs. Convergence was achieved after 3115 

model runs. 

Table 6.1.Hydraulic parameters used in the forward simulation of the feasibility study and 

estimated ones for the inversion based on no noise and noisy data from outflow and water 

content at predefined observation nodes.

Material domain r
mm3/mm3

s
mm3/mm3 mm-1

n
-

KS
mm /min

forward
model

coarse 0 0.43 0.015 2.7 4.95
fine 0 0.36 0.003 2.6 2.29

no noise coarse 0 0.4338 0.0156 2.7387 4.3228
fine 0 0.3603 0.003 2.5943 2.3132

with noise coarse 0 0.4238 0.0154 2.7251 4.3422
fine 0 0.3711 0.003 2.6325 2.3826
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Comparing the fitted hydraulic parameters with the initial values with respect also to the total 

SSR values, we can conclude that all 8 parameters have been successfully estimated. 

In a final step, it was analyzed whether the parameters were uniquely determined and 

investigated potential trade-offs between the optimized parameters using a grid search 

algorithm. Therefore, the parameters were stepwise changed within given intervals. An 

overview of all parameter combinations and corresponding ranges for the grid search is listed 

in Table 6.2.

Table 6.2.Combinations and parameter ranges for the grid search algorithm and calculation of 

parameters spaces

Parameters 
combinations

variable 1
(min – max)

variable 2
(min – max)

- KS 0.005 – 0.025 1.95 – 7.95
- n 0.005 – 0.025 1.70 – 3.70

n - KS 1.70 – 3.70 1.95 – 7.95
s - n 0.33 – 0.53 1.70 – 3.70

s - 0.33 – 0.53 0.005 – 0.025
s - KS 0.33 – 0.53 1.95 – 7.95

- KS 0.001 – 0.005 0.29 - 4.29
- n 0.001 – 0.005 1.70 – 3.70

n - KS 1.70 – 3.70 0.29 - 4.29
s - n 0.26 – 0.46 1.70 – 3.70

s - 0.26 – 0.46 0.001 – 0.005
s - KS 0.26 – 0.46 0.29 - 4.29
1 - 2 0.005 – 0.025 0.001 – 0.005
1 – n2 0.005 – 0.025 1.70 – 3.70

1 - KS2 0.005 – 0.025 0.29 - 4.29
1 - s2 0.005 – 0.025 0.26 – 0.46

n1 - 2 1.70 – 3.70 0.001 – 0.005
n1 - n2 1.70 – 3.70 1.70 – 3.70

n1 - KS2 1.70 – 3.70 0.29 - 4.29
n1 - s2 1.70 – 3.70 0.26 – 0.46

s1 - 2 0.33 – 0.53 0.001 – 0.005
s1 - n2 0.33 – 0.53 1.70 – 3.70

s1 - KS2 0.33 – 0.53 0.29 - 4.29
s1 - s2 0.33 – 0.53 0.26 – 0.46

KS1 - 2 1.95 – 7.95 0.001 – 0.005
KS1 - n2 1.95 – 7.95 1.70 – 3.70

KS1 - KS2 1.95 – 7.95 0.29 - 4.29
KS1 - s2 1.95 – 7.95 0.26 – 0.46
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Overall 40 steps were performed for each parameter resulting in 1600 model runs. 

Within each model run, the same weighting as stated above was chosen. The calculated 

response functions or parameter spaces from the inversion of the noisy data for selected 

parameter combinations are plotted in Fig.6.4. All remaining combinations are appended as 

Annex 5. Note that the scale of the SSR is expressed in log10 to facilitate interpretation of the 

parameter spaces. 

In general, all parameter spaces indicate a clear single optimum. For the coarse 

domain (upper row Fig.6.4.) the parameter space shows a weak correlation for all parameters 

while and n parameters are slightly correlated. Additionally, some numerical instability 

caused discontinuities in the parameters space ‘’n versus ‘’. It can also be seen that KS can 

be varied within a certain range without affecting the SSR too much (right plot upper row). 

For the fine domain the parameter space ‘’KS versus ‘’ and ‘’n versus ‘’ show no 

correlation between parameters at all. Again KS and n are slightly correlated. Nevertheless, 

the indication that only one minimum is detectable in all parameter spaces and that the 

correlation is weak between parameters leads to the conclusion that a combination of classical 

outflow data and MRI derived water contents is sufficient information for the estimation of 

hydraulic properties in a two domain setup as analyzed here.

6.2.2 Real – case study results
Encouraged by the results of the feasibility study shown above a real-case 

experimental MSO was performed on the coaxial sample S2fine described in chapter 6.1.5,

sample preparation. A full description of the experimental setup of the MSO experiment is 

given in chapter 6.1.6. The observed cumulative outflow at the lower end of the soil column

versus time as well as the applied pressure steps are plotted in Fig.6.5. The experimental 

drainage curve for the S2fine sample shows that approximately 95% of the total outflow was 

extracted by the 20-70mbar pressure steps, and therefore, only 5% at larger ones (350 and 

850mbar). With respect to the sample setup with two material domains, this leads to the 

assumption that the sand (coarse domain) was drained during the low pressure range; higher 

pressures steps are necessary to drain the water from the inner core with high clay content, 

and therefore, smaller pores. This observation is also supported by the MRI images of the 

sample (see Fig.6.6.). The 4.7T MRI system was used to record images of the S2fine sample 

during each pressure step application.
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Overall 42 MRI snapshots were taken during the experiment as follows: 3 experiments 

during the 20mbar pressure step; 6 during 35 mbar; 7 during 50mbar; 10 during 70mbar; 11 

during 350mbar and 5 experiments during the 850mbar pressure steps. The idea was to record 

as many as possible MRI images for each pressure step whereby the unequal distribution of 

the MRI data could not be avoided due to different time windows of each pressure step and 

according drainage. Nevertheless, being time restricted by the length of the MRI sequence 

this distribution was set to best describe the shape of the outflow curve. The time points at 

which the MRI images were recorded were used as printing times in the simulation and 

further in the inversion of the MSO experiment. Figure 6.6. shows the MRI images of the 

S2fine sample for different pressure steps. 

Qualitatively speaking, the images for each pressure step clearly show the changes in 

the water content as observed from analyzing the cumulative outflow curve. For the first 

pressure steps the signal intensity variations (which are proportional to water content changes 

within the sample) are larger in the sand core that is nearly dry (the signal intensity becomes 

close to zero) after the 70mbar pressure. The inner core is slowly drained during each pressure 

Fig.6.5.Cumulative outflow as a function of time with indication over pressure steps. Note 
that for the Hydrus2D3D outflow simulation Rosetta hydraulic properties were used
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application and even after the largest pressure step (850mbar) a significant amount of water is 

still present in the sample core sustaining the idea that higher pressure values are required, 

values that could not be achieved with our setup.

Quantitatively, the water content and the variations in water content within the sample 

were observed for 10 regions of interest (ROI) in a middle slice of the sample: namely 5 in the 

inner and 5 in the outer core. The coordinates of the observation regions correspond to the 

position of the observation nodes used later in the numerical simulation. The water content 

over a ROI was interpolated between calibration values based on the assumption of linearity 

between MRI signal amplitude and water saturation. The validity of this concept was already 

proven by Stingaciu et al., [2009] (see chapter 4.2). Therefore 4 calibration samples from 

sand FH32 with similar packing density and known volumetric water content (0.36; 0.21; 0.12 

and 0.07) were constructed and measured with the same MRI protocol (Fig.6.7.a) and the 

signal amplitudes obtained were used as reference amplitudes in the interpolation of the ROI 

signal (Fig.6.7.b). The water content from the investigated ROI-s and its variation in time 

with respect to pressure application is shown in Fig.6.8.b. The ROI-s situated in coarse 

domain(outer core) show a steep decrease in water content from 0.38 to 0.05volumetric water 

content within the low pressure range (first 400min.). Later, during the high pressure steps no 

significant changes are visible in the sand which is nearly dry (the volumetric water content 

changes from 0.05 - 0.02).

Fig.6.7.a) Reference image for the interpolation of the signal amplitude; axial central slice of 
the coaxial sample S2fine and calibration samples and b) Linear interpolation of the maximum 

MRI signal

21

3 4
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The ROI-s situated in fine domain(inner core) which is clay based material show a very slow 

decrease of water content and at the end of the experiment there is an important amount of 

water remained within the core (0.19 - 0.20 volumetric water content). The level of noise 

increases for high pressure steps (350 and 850mbar) most probably due to the increasing noise 

level in the MRI signal amplitude recorded at very low saturations. 

Further, the cumulative outflow and the water content from ROI-s were used as input 

data in Hydrus2D3D code coupled with the global optimization algorithm SCE-UA to 

simultaneously estimate the hydraulic parameters for both materials of the coaxial sample 

S2fine. In the first steps a forward MSO model with known hydraulic properties for each 

material domain (Table 6.3) was simulated to describe the experimental MSO presented 

above. The simulated cumulative outflow at the lower end of the soil column versus time as 

well as the applied pressure steps is plotted also in Fig.6.5. In comparison with the 

experimental results, the numerical simulation of the MSO experiment for S2fine sample 

shows slightly higher value for the cumulative outflow with no visible distinction between the 

high pressure (350 and 850mbar) steps. Nevertheless, the outflow trend is identical, e.g. 95% 

of the total outflow was collected during the low-pressure steps (0 to 70mbar). The 

differences observed can be due to differences in saturated conductivity values as well as due 

to sample heterogeneity that is not taken into account in simulation of the MSO experiment. 

The simulated changes in water content within the sample for the entire simulation 

time were picked at 10 observation nodes and are shown in Fig.6.8.a. It can be clearly seen 

that the drainage started from saturation for each of the two materials immediately after 

pressure was applied. Water content dropped from saturation, s = 0.36cm3 cm-3 to a water 

content of 0.05cm3 cm-3 in the sandy outer core at 70mbar pressure applied. With higher 

pressure steps (350 and 850mbar) no significant water volume could further be extracted from 

the sand. In contrast, the inner core (clay based material) shows a slow decrease in the water 

content from s = 0.38cm3 cm-3 to a water content of 0.12cm3 cm-3 over the entire pressure 

range. Therefore, much higher values of pressure are necessary for full drainage of this fine 

material.

By comparing the simulated water content from observation nodes with the 

experimental one from ROI-s (Fig.6.8. a and b) it is interesting to note that the MRI data show 

scatter while the simulated do not – a natural consequence of the heterogeneities in the sample 

that have not been taken into account in the simulations. Nevertheless, the average values of 

the water content for the coarse and fine regions are comparable. Due to the sequence used for 

investigation (single point imaging sequence in which the signal is acquired directly after 
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excitation with no relaxation time) the possibly of underestimating the water content within 

the sample by MRI was eliminated, fact proved also by Fig.6.8.b in which for the inner core 

the water content from ROI is higher then the simulated one.  In comparison, the ROI-s from 

outer core show stronger drainage then the simulated observation nodes from the same side of 

the sample. These differences can be due to the hydraulic properties, especially wrong value

of the hydraulic conductivity assumed by the Rosetta software in the simulation of the MSO 

experiment. 

Therefore, in the second step the hydraulic parameters have been estimated from the 

inversion using the cumulative outflow and the water content as input data. For the inversion

the numerical model was set up in terms of boundary conditions in the same way as the real 

experiment (full saturation, h = 0 as initial condition; variable head as the lower boundary 

representing measured pressure applied during the experiment and no flux for all remaining 

boundaries). The printing times in the simulation and further in the inversion of the MSO 

experiment, were chosen the time points at which the MRI images were recorded. For the 

inversion, the data were weighted by standard deviation (SD = 0 for both data set) for a 

number of 5000 iterations. 6 parameters have been fitted: , n and KS while r parameter was 

set to 0 for each material domain and s parameter was fixed to the value determined 

experimentally by MRI. The number of complexes was set to 5. The estimated parameters 

from the inversion using real case experimental data are listed in Table 6.3.

Table 6.3.Hydraulic parameters used in the forward simulation of the MSO experiment and 

estimated ones for the inversion using outflow and water content data

The total SSR was 0.018 and was achieved after 2017 model runs. Convergence was achieved 

after 4002 model runs. The parameters were slightly correlated (the highest value is the 

correlation matrix shows negative correlation, - 0.53, between and KS for sand FH32). 

Comparing with the initial input it can be seen that for the coarse domain (FH32) the point of 

first drainage (air entrance) comes earlier. Some differences are visible in the n parameter,

Material domain r
mm3/mm3

s
mm3/mm3 mm-1

n
-

KS
mm /min

forward
simulation

coarse(FH32) 0.0534 0.3656 0.00301 4.6323 10.097
fine(clay mix) 0.0638 0.3797 0.00254 1.7797 0.6469

inversion coarse(FH32) 0 0.38 0.0024 7.1 1.1357
fine(clay mix) 0 0.38 0.0029 1.82 0.0390
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which describes the slope of the water retention curve. However it is well known the 

insensitivity of the water retention function to high values of n. The most pronounced 

differences can be observed in the KS parameter with values one order of magnitude lower for 

the experimental data. A decreasing of KS indicates lower values of the unsaturated hydraulic 

conductivity, Kr, as eq.3.14 shown (parameterization of the hydraulic conductivity function, 

chapter 3.4). This will lead to the conclusion that for real-case experiment less water can be 

extracted by drainage in comparison with simulation. This is consistent with the Fig.6.5. The

difference was expected and is also consistent with MRI measurements from ROI-s (Fig.6.8.)

for the inner core material (clay mixture). 

Nevertheless, the hydraulic conductivity of sand is not consistent with MRI 

measurements from ROI-s in the outer core material at low water content, which overestimate 

the drainage showing higher KS values. These differences, as stated before, are most probably 

small errors in the estimation of the water content by interpolation due to the increasing noise 

level in the MRI signal amplitude recorded at very low saturations.

6.3 Conclusions
Summarizing the findings reported above we see that the feasibility experiment proved 

that magnetic resonance imaging can be efficiently combined with classical soil physics 

method like multi-step-outflow for supplementing cumulative outflow data with water 

content, at different depth inside a sample, in the objective function use to optimize the 

estimation by inversion of hydraulic properties of two different materials simultaneously.

Consequently, MSO experiments can be performed on a real-case sample and during 

each pressure application MRI images can be recorded with an appropriate pulse sequence, 

that will overcome or minimize the problems encountered when natural porous media are 

investigated with magnetic resonance methods (fast relaxation due to paramagnetic ions or 

diffusion processes, that will underestimate the water content), and will ensure a side to side 

correlation of the MRI water content with weighted outflow. From the combination of the two 

experiments it was shown that the convergence of the objective function occurred quite fast

and the hydraulic parameters can be successfully estimated with no strong correlation 

between the parameters. 

This is an important finding considering the well-known problems of estimating the 

hydraulic properties of a natural porous system based on two different materials (sand with 

clay inclusions, imbedded lignite in sand, etc.) which normally are treated as single materials 
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or separated in two materials for the estimation of the retention function. Additionally, MRI 

can be used for the delineation of the two materials within the bulk sample (e.g. Kopecky-

ring). Nevertheless, it should be tested in future studies if natural heterogeneous structures 

such as clay inclusions imbedded in coarser material or imbedded lignite in sand originated 

from mining pits can be also analyzed in the same way as presented here.
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7. General conclusions and Outlook

Summarizing, the water content of natural porous media can be successfully 

determined by multi-echo sampling and extrapolation to amplitudes at t When 

characterizing the water content in mixed systems with varying texture and saturation, the 

employment of low magnetic field strength gives more reliable results. It can be stated that 

relaxation in unsaturated clay based porous media is major surface influenced. The apparent 

relaxation, recorded at sufficiently short echo time so that the diffusion influence can be 

neglected, is best discussed in terms of the surface relaxation that further can be transformed 

to characterize the pore size distribution of the soil matrix.

The NMR T1 and T2 relaxometry measurements can be a quick alternative to classical 

methods (pressure plates, mercury intrusion, and multi-step-outflow) for the estimation of 

pore size distribution, retention curve and the hydraulic properties of a porous media. The 

NMR does not exclude the other classical methods; each method, within its one limitation, is 

appropriate for determination of pore size distribution with a strong dependence on the 

sample characteristics, sample preparation and experimental conditions. The major advantage 

of NMR is the short measurement time which allows the analysis of large quantities of 

samples necessary to characterize field – or catchments scale hydraulic properties.

Due to the fact that water content can be reliable estimated from magnetic resonance 

imaging measurements, MRI experiments over a heterogeneous sample can be efficiently 

combined with classical soil physics method like multi-step-outflow for estimation, by 

inversion, of hydraulic properties of two or more different materials simultaneously, 

supplementing cumulative outflow data with water content inside the sample in the objective 

function. Local and global optimization procedure can be used further to optimize this kind of 

objective function and uniquely determine the hydraulic parameters. 

The results presented in this thesis showed that MRI is capable of providing 

quantitative, isotope-specific, volumetrically averaged information about fluids imbibed in 

natural porous media and implicitly about pore size distribution and hydraulic properties.

Nevertheless, further detailed investigations upon diffusion process, pore geometry, pore

connectivity, interactions at the fluid-solid interface with the use of low-field-MRI will 

greatly contribute to understand the hydraulic properties of soils and improve their 

management.
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Annex 1 
Gyromagnetic ratio of the most important spins and their natural abundance

Isotope Spin (106 s-1T-1)
Frequency at 4.7T

(MHz)
Natural

abundance

1H 1/2 42.57 200.05 99.98
2H 1 6.53 30.71 0.01
13C 1/2 10.70 50.30 1.10
14N 1 3.07 14.45 99.63
15N -1/2 -4.31 20.27 0.37
17O -5/2 -5.77 27.12 0.037
19F 1/2 40.05 188.24 100
23Na 3/2 11.26 52.91 100
31P 1/2 17.23 80.98 100
35Cl 3/2 4.17 19.60 75.5
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Annex 3

Distribution function F (T2) for sample Mix10 at different water contents. a) B0 = 7 T and b) 
B0 = 0.1 T. Data fitted according to eq.2.7 using 100 exponentially spaced T2 values

Distribution function F (T2) for sample Mix15 at different water contents. a) B0 = 7 T and b) 
B0 = 0.1 T. Data fitted according to eq.2.7 using 100 exponentially spaced T2 values
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Annex 4

When one is using mercury intrusion measurements for the characterization of pore size 

distribution this table, (normally provided together with the technical note of the instrument),

shows the pore diameters that can be filled at a certain mercury pressure. Note that the 

calculation of pore diameters is based on Washburn equation (eq.5.2).
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