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Preface

In the last forty years Graph Theory has undergone an extensive and rapid
development. One branch of Graph Theory, which is important for solving dis-
crete organization and optimization problems, is the theory of directed graphs,
or digraphs. The best studied class of directed graphs are the tournaments.
Already in 1934 Rédei [21] proved that every tournament contains a Hamil-
tonian path. Other classical results can be found in the works of Camion [7],
Moon [20], Harary and Moser [17] or Alspach [1].

Tournaments can be generalized to the class of semicomplete multipartite
digraphs or to multipartite tournaments. A c-partite tournament is an ori-
entation of a complete mutlipartite graph and a semicomplete multipartite
digraph is obtained by replacing each edge of a complete multipartite graph
by an arc or by a pair of mutually opposite arcs. These domains have only
recently received attention in fundamental research. A very profound work,
whose results will often be used throughout this thesis, is the Ph. D. thesis of
Yeo [49]. Further results and surveys on the subject are the Habilitation thesis
of Guo [9], the Ph. D. thesis of Tewes [23] and the articles [15] of Gutin and
[31] of Volkmann.

In this thesis we will mainly examine the existence of directed cycles and
directed paths (or short cycles and paths, respectively) with certain properties
in multipartite tournaments. The example of an extended transitive tourna-
ment demonstrates that there are multipartite tournaments without any cycle
and only with short paths. Since extended transitive tournaments are not
strongly connected one approach is to analyze only strongly connected mul-
tipartite tournaments as done in [11] by Guo, Pinkernell and Volkmann. In
this thesis the statements on the existence of cycles and paths depend on how
much a multipartite tournament differs from being regular. Hence, we use a
parameter introduced by Yeo [51], the global irregularity ig(D) of a digraph D,
which is defined to be the difference between the maximum and the minimum
occuring vertex-degree in D (out- or indegree). If ig(D) = 0, then D is regular,
and if ig(D) ≤ 1, then D is called almost regular.

This thesis is divided into three parts and eight chapters. In the first
part, we study the existence of certain cycles in close-to-regular multipartite
tournaments. The short second part, only consisting of Chapter 5, presents
an analysis and an improvement of a result of Yeo [49] on the connectivity
of close-to-regular multipartite tournaments. These results are useful for the
third part of this thesis, in which we will mainly search for long paths in
multipartite tournaments.
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Chapter 1 contains an introduction to the terminology and notation used
throughout this text. Furthermore, we present some results on the possible
degrees of vertices in multipartite tournaments of a given global irregularity
ig(D).

In Chapter 2, at the beginning of Part I, we take a look at the existence
of cycles in almost regular multipartite tournaments whose length does not
exceed the number of partite sets and which contain a given arc. Extending
results of Alspach [1], Guo [9] and Volkmann [30, 32], we find an optimal
integer c of partite sets of an almost regular c-partite tournament to ensure
the existence of cycles of all lengths p with p ∈ {4, 5, . . . , c} through a given
arc. In detail, we distinguish the cases that there are at least two vertices in
each partite set and that there is only one vertex in at least one partite set.

Chapter 3 also deals with cycles containing a given arc. But in contrast to
Chapter 2, here the length of the cycles does not matter. Instead the number
of partite sets the cycles include is considered. Inspired by a result of Goddard
and Oellermann [8], Guo and Kwak [10] proved that every arc of a regular
c-partite tournament D with c ≥ 4 is contained in a cycle with vertices from
exactly m partite sets for all 4 ≤ m ≤ c. We extend this theorem to almost
regular multipartite tournaments, and we show that the bounds we give are
optimal in some sense.

In Chapter 4 we try to combine the themes of the last two chapters by
searching for cycles of a given length and a given number of partite sets. The
problem is to find sufficient conditions for a multipartite tournament to con-
tain a cycle consisting of a given number of vertices from each partite set. At
first, solving a problem of Volkmann [29], we show that every almost regular
multipartite tournament with at least 5 partite sets contains a strongly con-
nected subtournament of maximal order and thus, according to a well-known
result of Moon [20], a cycle consisting of exactly one vertex from each partite
set. Furthermore, we find cycles with exactly zero or one vertex from each
partite set of a multipartite tournament with a given fixed global irregularity
ig(D) ≥ 2. The number of partite sets that contribute exactly one vertex
to the cycle depends on the global irregularity and on the number of partite
sets. In the last section of the fourth chapter, we look for long cycles. Since,
according to a result of Yeo [48], every regular multipartite tournament D
is Hamiltonian, the next question is that of which multipartite tournaments
contain a cycle with all but one vertex from each partite set. We prove that
a regular c-partite tournament D with c ≥ 3 and at least two vertices in each
partite set contains a cycle with all but one vertex from each partite set with
the exception of when c = 4 and there are two vertices in every partite set of
D.

The second part of this thesis only consists of Chapter 5, which deals with
connectivity in multipartite tournaments. In particular we study a bound for
the (vertex-) connectivity developed by Yeo [51]. Since this bound is very
useful for many applications, an interesting problem is to characterize the
multipartite tournaments that realize this bound. Analyzing the proof of Yeo,
we first find necessery conditions for a multipartite tournament to realize Yeo’s
bound. We obtain the structure of these multipartite tournaments. Second,
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using the conditions and certain classes of examples, we characterize all almost
regular multipartite tournaments, which realize the bound.

In Chapter 6, at the beginning of Part III, we return to the problem of
Chapter 4, but in a weaker form applied to paths. We look for sufficient
conditions for a path to consist of a given number of vertices from each partite
set. To get solutions for this problem, in the first section we improve and
analyze a result of Yeo [51] (respectivly, of Gutin and Yeo [16]) on the path
covering number of semicomplete multipartite digraphs. In the second section
we consider “short” paths. The main result is that every regular multipartite
tournament with at least two partite sets and two vertices in each partite set
contains a path with exactly two vertices from each partite set. The third
and last section of Chapter 6 deals with long paths. We show that almost all
regular c-partite tournaments with c ≥ 4 contain a path with all but s vertices
from each partite set for a given integer s ≥ 1.

The case s = 0, and thus the existence of Hamiltonian paths in multipartite
tournaments, is the subject of Chapter 7. There the problem is to find, for each
fixed irregularity ig(D) =: i, an optimal value g(i) such that every c-partite
tournament, with the irregularity i and c ≥ g(i), contains a Hamiltonian path.
Distinguishing the cases i ≤ 2 and i ≥ 3 we solve this problem completely.

In the last chapter of this thesis we also consider Hamiltonian paths. In
contrast to Chapter 7 we consider Hamiltonian paths through a given arc.
Analogous to Chapter 7, for a given irregularity i we can ask for the minimal
number h(i) of partite sets that ensures the property that for each arc of
a multipartite tournament D with irregularity i there exists a Hamiltonian
path containing this arc. Applying a result of Volkmann and Yeo [46] about
Hamiltonian paths starting with a given arc in the first section, we show that
almost all c-partite tournaments of a given irregularity i with c ≥ 4 have the
desired property. The main result of the second section is that h(1) = 5. In
the last section we find a sufficient condition for an arc of an almost regular
3-partite tournament D to be contained in a Hamiltonian path of D.

Aachen, July 2004 Stefan Winzen
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Chapter 1

Introduction

In this first section we present most of the terminology and the basic notation
used throughout this thesis. As we assume a basic knowledge of graph theory
and digraphs, we refer the reader that is unfamiliar with it to consult the books
of Volkmann [28] or Bang-Jensen and Gutin [2]. Some special definitions that
are only relevant in certain chapters will be defined in place where they are
needed. If not stated otherwise, all graphs or digraphs of this thesis are simple
and finite.

1.1 Terminology and notations

Definition 1.1 [Digraphs] A digraph D is an orientation of a graph. Every
digraph D consists of vertices and arcs. The vertex set and arc set of a digraph
D are denoted by V (D) and E(D), respectively. If V (D) is finite, then we
call the digraph D a finite digraph, and we define the order n(D) of D by
n(D) = |V (D)| and the size m(D) of D by m(D) = |E(D)|.

If xy is an arc of a digraph D, then we write x → y and say x dominates
y. Furthermore, if we say x and y are adjacent, then we mean that there is an
arc between these two vertices. We call a digraph simple, if firstly there are no
two different parallel arcs and secondly there is no vertex, which is dominated
by itself.

Definition 1.2 [Neighborhood and degree] If D is a digraph, then the out-
neighborhood N+

D (x) = N+(x) of a vertex x is the set of vertices dominated by
x and the in-neighborhood N−

D (x) = N−(x) is the set of vertices dominating
x. Therefore, if there is the arc xy ∈ E(D), then y is an outer neighbor of x
and x is an inner neighbor of y.

If X and Y are two disjoint vertex sets or subdigraphs of D such that every
vertex of X dominates every vertex of Y , then we say that X dominates Y ,
denoted by X → Y . Furthermore, X Ã Y denotes the fact that there is no
arc leading from Y to X. By d(X,Y ) we denote the number of arcs from the
set X to the set Y , i.e., d(X,Y ) = |{xy ∈ E(D) | x ∈ X, y ∈ Y }|.

The numbers d+
D(x) = d+(x) = |N+(x)| and d−

D(x) = d−(x) = |N−(x)| are
called the outdegree and indegree of x, respectively. Furthermore, the numbers
δ+
D = δ+ = min{d+(x) | x ∈ V (D)} and δ−D = δ− = min{d−(x) | x ∈ V (D)}

1



2 CHAPTER 1. INTRODUCTION

are the minimum outdegree and minimum indegree, respectively. Analogously,
we define the numbers ∆+

D = ∆+ = max{d+(x) | x ∈ V (D)} and ∆−
D = ∆− =

max{d−(x) | x ∈ V (D)}, which are the maximum outdegree and maximum
indegree, respectively.

Definition 1.3 [Cycles and paths] Let D be a digraph. A directed path or
short a path of length l with l ∈ N is a sequence of l + 1 pairwise disjoint
vertices v0, v1, . . . , vl ∈ V (D) such that vivi+1 ∈ E(D) for all 0 ≤ i < l. We
use the notation

P = v0v1 . . . vl.

A directed cycle or short a cycle of length l with l ∈ N is a sequence of l
pairwise disjoint vertices v1, v2, . . . , vl ∈ V (D) such that vivi+1 ∈ E(D) for all
1 ≤ i < l and vlv1 ∈ E(D). If a cycle C is of the length l, then we say that C
is an l-cycle. We use the notation

C = v1v2 . . . vlv1.

A cycle or path of a digraph D is Hamiltonian, if it includes all the vertices of
D. If D contains a Hamiltonian cycle, then we also say that D is Hamiltonian.
A digraph D is called pancyclic, if it contains cycles of length n for all n ∈
{3, 4, . . . , |V (D)|}, and even pancyclic, if it contains cycles of all even lengths.
If x ∈ V (C) (x ∈ V (P ), respectively) for a cycle C (a path P , respectively),
then we denote the successor of x in the given cycle (path) by x+ and the
predecessor by x−. A digraph D is cycle complementary, if there exist two
vertex-disjoint cycles C and C ′ such that V (D) = V (C) ∪ V (C ′). The path
covering number of a digraph D (pc(D)) is the minimum number of paths in
D that are pairwise vertex disjoint and cover the vertices of D.

Definition 1.4 [Subdigraphs] Let D be a digraph. A digraph H is called a
subdigraph of D, if V (H) ⊆ V (D) and E(H) ⊆ E(D), and we write H ⊆ D. A
factor is a subdigraph H of D with V (H) = V (D). A factor is called a cycle-
factor, if it consists of a set of vertex disjoint cycles, and it is a k-path-cycle, if
it consists of a set of vertex disjoint paths and cycles, where k stands for the
number of paths in the set. If X is an arbitrary vertex set of D, then we define
D[X] as the subdigraph induced by X. For any vertex set X ⊆ V (D) and any
vertex x ∈ V (D) we define D − X = D[V (D) − X] and G − x = G − {x},
respectively.

Definition 1.5 [Converse] If we replace in a digraph D every arc xy by yx,
then we call the resulting digraph the converse of D, denoted by D−1.

Definition 1.6 [Connectivity] A digraph D is strongly connected or strong,
if, for each pair of vertices u and v, there is a path in D from u to v. A
digraph D with at least k + 1 vertices is k-connected, if for any set A of at
most k−1 vertices the subdigraph D−A obtained by deleting A is strong. The
connectivity of D, denoted by κ(D), is then defined to be the largest value of k
such that D is k-connected. If κ(D) = 1, then the vertex x with the property
that D − x is not strong is called a cut-vertex of D, and if κ(D) > 1, then
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the vertex set S with the property that |S| = κ(D) and D − S is not strong is
called a separating set. A strong subdigraph H of D is called a component, if
there is no strong subdigraph H ′ ⊆ D such that H ⊂ H ′.

Definition 1.7 [Irregularity] There are several measures of how much a di-
graph differs from being regular. In [31] Volkmann defines the irregularity of
a digraph D as I(D) = max |d+(x) − d−(y)| over all vertices x and y of D
(including x = y). Other measures were given by Yeo [51] in 1999. He defines
the local irregularity as

il(D) = max
x∈V (D)

|d+(x) − d−(x)|

and the global irregularity

ig(D) = max
x∈V (D)

{d+(x), d−(x)} − min
y∈V (D)

{d+(y), d−(y)}.

Clearly, il(D) ≤ I(D) ≤ ig(D). If ig(D) = 0, then D is regular ; if ig(D) ≤ 1,
then D is almost regular.

Definition 1.8 [Multipartite tournaments and semicomplete multipartite di-
graphs] A c-partite or multipartite tournament is an orientation of a complete
c-partite graph. A tournament is a c-partite tournament with exactly c ver-
tices. A semicomplete multipartite digraph is obtained by replacing each edge
of a complete multipartite graph by an arc or by a pair of two mutually oppo-
site arcs with the same end vertices. If V1, V2, . . . , Vc are the partite sets of a
c-partite tournament or semicomplete c-partite digraph D and the vertex x of
D belongs to the partite set Vi, then we define V (x) = Vi.

Definition 1.9 [Independence and size of partite sets] Let D be a digraph. A
set I ⊆ V (D) is called independent, if the subdigraph induced by I containes
no arc. We call an independent set I maximum, if there is no independent
set I ′ ⊆ V (D) with |I ′| > |I|. The cardinality of a maximum independent set
is called the independence number denoted by α(D). Now, let V1, V2, . . . , Vc

be the partite sets of a multipartite tournament D such that |V1| ≤ |V2| ≤
. . . ≤ |Vc|. In this case, it follows that α(D) = |Vc|. Analogously, we define
γ(D) = |V1|. If |Vi| = ni for i = 1, 2, . . . , c, then we speak of the partition-
sequence (ni) = n1, n2, . . . , nc.

1.2 Degrees in multipartite tournaments

The possible vertex-degrees in a multipartite tournament D depend on the
global irregularity of D and the cardinality of the partite sets of D. The fol-
lowing important result of Tewes, Volkmann and Yeo [24] shows the connection
between these two sizes.

Lemma 1.10 (Tewes, Volkmann, Yeo [24]) Let D be a c-partite tourna-
ment with the partite sets V1, V2, . . . , Vc. Then ||Vi| − |Vj|| ≤ 2ig(D) for
1 ≤ i, j ≤ c.
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In [24], there are also first bounds for vertex-degrees in close to regular
multipartite tournaments.

Lemma 1.11 (Tewes, Volkmann, Yeo [24]) Let D be a multipartite tour-
nament. Then for every vertex x of D we have

|V (D)| − α(D) − ig(D)

2
≤

|V (D)| − α(D) − il(D)

2
≤ d+(x), d−(x) and

d+(x), d−(x) ≤
|V (D)| − γ(D) + il(D)

2
≤

|V (D)| − γ(D) + ig(D)

2
.

If we know the cardinality of the partite set V (x), which contains the vertex
x ∈ V (D), then Lemma 1.11 can be improved as we can see in the following
result, which can be found in [37] for the case that ig(D) ≤ 1 and in [44] for
the general case that ig(D) ≤ l.

Lemma 1.12 Let D be a multipartite tournament. If x ∈ V (D) such that
|V (x)| = p, then

|V (D)| − p − ig(D)

2
≤

|V (D)| − p − il(D)

2
≤ d+(x), d−(x) and

d+(x), d−(x) ≤
|V (D)| − p + il(D)

2
≤

|V (D)| − p + ig(D)

2
.

Proof. Let il(D) ≤ l and suppose that d+(x) ≤ |V (D)|−p−l−1
2

. Because of
d+(x) + d−(x) = |V (D)| − |V (x)| = |V (D)| − p, we conclude that d−(x) =

|V (D)| − p − d+(x) ≥ |V (D)|−p+l+1
2

, which leads to d−(x) − d+(x) ≥ l + 1, a
contradiction to il(D) ≤ l.

The rest of the proof follows analogously. ¤

This result is not always optimal as the following to lemmas show.

Lemma 1.13 (Volkmann, Winzen [44]) If D is a multipartite tournament
with ig(D) ≤ l and γ(D) = r, then we have

|V (D)| − γ(D) − 2l

2
≤ d+(x), d−(x)

for all x ∈ V (D). If furthermore |V (x)| = r + 2l, then it follows that

d+(x), d−(x) =
|V (D)| − r − 2l

2
.

Proof. Let x ∈ V (D) be arbitrary. If |V (x)| ≤ r + l, then the first assertion
holds by Lemma 1.12. Hence, let |V (x1)| ≥ r + l + 1. Suppose that d+(x1) ≤
|V (D)|−r−2l−1

2
. Because of ig(D) ≤ l, we conclude that d+(y), d−(y) ≤ |V (D)|−r−1

2

for all y ∈ V (D). If we take a vertex x2 ∈ V (D) with |V (x2)| = r, then we
arrive at the contradiction

|V (D)| = d+(x2) + d−(x2) + r ≤ |V (D)| − r − 1 + r = |V (D)| − 1.
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Hence, it has to be d+(x) ≥ |V (D)|−γ(D)−2l

2
for all vertices x ∈ V (D). Since

the proof for d−(x) follows the same lines, the first assertion of this lemma is
completed.

Let x ∈ V (D) with |V (x)| = r + 2l. Suppose that d+(x) ≥ |V (D)|−r−2l+1
2

.

The fact that |V (D)| = d+(x)+d−(x)+r+2l yields that d−(x) ≤ |V (D)|−r−2l−1
2

,
a contradiction to the first assertion of this lemma. This completes the proof
of the lemma. ¤

Lemma 1.14 Let D be a multipartite tournament with ig(D) ≤ l and γ(D) =
r. Then we have

d+(x), d−(x) ≤
|V (D)| + 2l − α(D)

2
,

for all x ∈ V (D). If especially α(D) = r + 2l and x ∈ V (D) such that
|V (x)| = r, then it follows that

d+(x), d−(x) =
|V (D)| − r

2
.

Proof. Let x ∈ V (D) be arbitrary. If |V (x)| ≥ r + l, then the first assertion
holds by Lemma 1.12 and Lemma 1.10. Hence, let |V (x)| ≤ r + l − 1. Sup-

pose that d+(x) ≥ |V (D)|+2l−α(D)+1
2

. Because of ig(D) ≤ l, we conclude that

d+(y), d−(y) ≥ |V (D)|−α(D)+1
2

for all y ∈ V (D). If we take a vertex x1 ∈ V (D)
with |V (x1)| = α(D), then we arrive at the contradiction

|V (D)| = d+(x1) + d−(x1) + α(D) ≥ |V (D)| −α(D) + 1 + α(D) = |V (D)|+ 1.

Hence, it has to be d+(x) ≤ |V (D)|+2l−α(D)
2

for all vertices x ∈ V (D). Since
the proof for d−(x) follows the same lines , the first assertion of this lemma is
completed.

Now, let x ∈ V (D) with |V (x)| = r and let α(D) = r + 2l. Suppose that

d+(x) ≤ |V (D)|−r−1
2

. The fact that |V (D)| = d+(x) + d−(x) + r yields that

d−(x) ≥ |V (D)|−r+1
2

, a contradiction to the first assertion of this lemma. This
completes the proof of this lemma. ¤

For vertices that are contained in large partite sets the following upper
bound presents an improvement of Lemma 1.12.

Lemma 1.15 (Winzen [47]) Let D be a c-partite tournament with ig(D) ≤ l
and γ(D) = r. If x ∈ V (D) such that |V (x)| = r + 2l − k (0 ≤ k ≤ 2l), then
it follows that

d+(x), d−(x) ≤
|V (D)| − r − 2l + 2k

2
=

|V (D)| − |V (x)| + k

2
.

Proof. Suppose that d+(x) ≥ |V (D)|−r−2l+2k+1
2

. Then we conclude that d−(x) ≤

|V (D)| − r − 2l + k − |V (D)−r−2l+2k+1
2

= |V (D)|−r−2l−1
2

. Let y ∈ V (D) such that
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|V (y)| = r. Because of ig(D) ≤ l, it follows that d+(y), d−(y) ≤ d−(x) + l ≤
|V (D)|−r−1

2
, and we arrive at the contradiction

|V (D)| = d+(y) + d−(y) + r ≤ |V (D)| − 1.

Hence, the assertion for d+(x) holds. The assertion for d−(x) follows analo-
gously. This completes the proof of the lemma. ¤

In the meantime, we will treat regular or almost regular tournaments. So,
the lemmas above yield the following remarks, which can be found in [37, 38]
and [43].

Remark 1.16 Let V1, V2, . . . , Vc be the partite sets of a regular c-partite tour-
nament. Then Lemma 1.10 implies that r = |V1| = |V2| = . . . = |Vc| and

d+(x), d−(x) =
(c − 1)r

2

for all x ∈ V (D). That means especially that c is odd, if r is odd.

Remark 1.17 Let D be an almost regular c-partite tournament with γ(D) =
α(D) = r. In this case, Lemma 1.11 yields for all x ∈ V (D) that

(c − 1)r − 1

2
≤ d+(x), d−(x) ≤

(c − 1)r + 1

2
.

Hence, if r is even or if c is odd, then we see that d+(x) = d−(x) = (c−1)r
2

and
that D is regular.

Remark 1.18 Let D be an almost regular c-partite tournament with α(D) =
r + 2 and γ(D) = r. Then |V (D)| − r is even. So the bounds in Lemma 1.12
can be improved by

d+(x), d−(x) =
|V (D)| − r − 2

2
if |V (x)| = r + 2

or

d+(x), d−(x) =
|V (D)| − r

2
if |V (x)| = r.

Consequently, for the case that α(D) = r + 2, instead of Lemma 1.11, we can
use the following result:

|V (D)| − r − 2

2
≤ d+(x), d−(x) ≤

|V (D)| − r

2
.

Now let us summarize some results of Lemma 1.12 and Remark 1.18.

Corollary 1.19 If D is an almost regular c-partite tournament with the par-
tite sets V1, V2, . . . , Vc such that r = |V1| ≤ |V2| ≤ . . . ≤ |Vc| ≤ r + 2, then for
every vertex x of D we have

|V (D)| − r − 2

2
≤ d+(x), d−(x).



Part I

Cycles in multipartite
tournaments

7





Chapter 2

Cycles of a given length through
an arc

In this chapter we study almost regular multipartite tournaments of a given
(short) length through a given arc. It is very easy to see that every arc of a
regular tournament belongs to a 3-cycle. The next example shows that this is
not valid for regular multipartite tournaments in general.

Example 2.1 (Volkmann [32]) Let C,C ′, and C ′′ be three induced cycles of
length 4 such that C → C ′ → C ′′ → C. The resulting 6-partite tournament D1

is 5-regular, but no arc of the three cycles C,C ′, C ′′ is contained in a 3-cycle.
Let H,H1, and H2 be three copies of D1 such that H → H1 → H2 → H.

The resulting 18-partite tournament is 17-regular, but no arc of the cycles
corresponding to the cycles C,C ′, and C ′′ is contained in a 3-cycle.

If we continue this process, we arrive at regular c-partite tournaments with
arbitrary large c, which contain arcs that do not belong to any 3-cycle.

In 1998, Guo [9] proved the following generalization of Alspach’s classical
result [1] that every regular tournament is arc pancyclic.

Theorem 2.2 (Guo [9]) Let D be a regular c-partite tournament with c ≥ 3.
If every arc of D is contained in a 3-cycle, then every arc of D is contained
in an n-cycle for each n ∈ {4, 5, . . . , c}.

Now, the aim was to carry this result forward to almost regular multipartite
tournaments. To reach this, Volkmann [30], [32] started with the following
theorems.

Theorem 2.3 (Volkmann [32]) Let D be an almost regular c-partite tour-
nament.

If c ≥ 8, then every arc of D is contained in a 4-cycle.
If c = 7 and there are at least two vertices in every partite set, then every

arc of D is contained in a 4-cycle.

Theorem 2.4 (Volkmann [30]) Let D be an almost regular c-partite tour-
nament with the partite sets V1, V2, . . . , Vc such that |V1| = |V2| = . . . = |Vc| =
r ≥ 2. If c ≥ 6, then every arc of D is contained in an n-cycle for each
n ∈ {4, 5, . . . , c}.

9
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The main theorem of this chapter is the following extension and supplement
of the Theorems 2.3 and 2.4

Theorem 2.5 (Volkmann, Winzen [42]) Let D be an almost regular c-
partite tournament and e ∈ E(D) is an arbitrary arc of D. Then the following
holds.

a) If c ≥ 8, then e is contained in an n-cycle for each n ∈ {4, 5, . . . , c}.

b) If c = 7 and there are at least two vertices in every partite set, then e is
contained in an n-cycle for each n ∈ {4, 5, . . . , c}.

This result is also a supplement to the following theorem of Jakobsen.

Theorem 2.6 (Jakobsen [19]) If T is an almost regular tournament of or-
der n ≥ 8, then every arc of T is contained in an m-cycle for each m ∈
{4, 5, . . . , n}.

The following two examples, which can also be found in [32], show that the
condition c = 7 in Theorem 2.5 b) and the condition c ≥ 8 in Theorem 2.5 a)
are best possible.

Example 2.7 Let V1 = {u} ∪ V ′
1 with |V ′

1 | = 2, V2 = {v} ∪ V ′
2 with |V ′

2 | = 2,
V3 = V ′

3 ∪ V ′′
3 with |V ′

3 | = |V ′′
3 | = 2, and V4, V5, V6 with |V4| = |V5| = |V6| = 2

and V4 = {x, y} be the partite sets of a 6-partite tournament such that u →
v → V ′

1 → (V4 ∪ V5 ∪ V6) → V ′
2 → u → (V4 ∪ V5 ∪ V6) → v, V ′

2 → V3 → u,
v → V3 → V ′

1 , V ′
2 → V ′

1 , V4 → V5 → V6 → V4, and V ′
3 → (V6 ∪ {x}) → V ′′

3 →
(V5∪{y}) → V ′

3 (see Figure 2.1). The resulting 6-partite tournament is almost
regular with at least two vertices in every partite set; however, the arc uv is
not contained in a 4-cycle.

V ′
2

V ′
3 V ′′

3

V ′
1

V6 V5

x y

u v

?

6
-

K ®

w

7

-

o

-

/

-

? ?

I µ

6 ?
¾

Figure 2.1: An almost regular 6-partite tournament with the property
that the arc uv is not contained in a 4-cycle
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Example 2.8 Let V1 = {u, u2}, V2 = {v, v2}, V3 = {w1, w2, w3}, V4 = {x},
V5 = {y}, V6 = {z}, and V7 = {a} be the partite sets of a 7-partite tournament
such that u → v → u2 → {a, x, y, z} → v2 → u → {a, x, y, z} → v → V3 → u,
v2 → u2, v2 → V3 → u2, w1 → a → x → y → z → a → y → w1 → z →
x → w1, w2 → z → w3 → a → w2 → x → w3 → y → w2 (see Figure 2.2).
The resulting 7-partite tournament is almost regular; however, the arc uv is
not contained in a 4-cycle. Consequently, the condition c ≥ 8 in Theorem 2.5
is necessary.

u v
-

w1 w2 w3

v2 u2

z y

a x

?

6K
®

1
q-

]

À
-

?¾

6

R

µ

W

U

o
k

²

U

¸ O

+

²

7
¸

±

N

Figure 2.2: An almost regular 7-partite tournament with the property
that the arc uv is not contained in a 4-cycle

Since the proof of Theorem 2.5 is very long and complicated, we will split
it into two parts. In the first section, we will study the case that c ≥ 7 and
that there are at least two vertices in each partite set, whereas in the second
section we will treat the case that c ≥ 8 and γ(D) = 1.

2.1 The case γ(D) ≥ 2

In this section we treat the case that there are at least two vertices in each
partite set. The next well-known theoreom of Turán [27] (see also [28], p.
212) will be helpful in the main theorems of this and of the following section.
To understand the terminology of this theorem, we first present two short
definitions.

Definition 2.9 [Underlying graph, Clique]
a) Let D be a simple digraph. The unique graph G we obtain, if we

replace each arc of D by an edge, is the underlying graph of D.
b) A complete subgraph H of a graph G is called a clique.
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Theorem 2.10 (Turán 1941) Let D be a digraph without 2-cycles. If the
underlying graph D has no clique of order p + 1, then

|E(D)| ≤
p − 1

2p
|V (D)|2.

Let D be an almost regular c-partite tournament with the partite sets
V1, V2, . . . , Vc such that r = |V1| ≤ |V2| ≤ . . . ≤ |Vc|. According to Lemma 1.10
and Theorem 2.4 it remains to consider the case that r + 1 ≤ |Vc| ≤ r + 2.

Theorem 2.11 (Volkmann, Winzen [37]) Let D be an almost regular c-
partite tournament with the partite sets V1, V2, . . . , Vc such that 2 ≤ r = |V1| ≤
|V2| ≤ . . . ≤ |Vc| ≤ r + 2 and |Vc| ≥ r + 1. If c ≥ 7, then every arc of D is
contained in an n-cycle for each n ∈ {4, 5, . . . , c}.

Proof. We prove the theorem by induction on n. For n = 4 the result
follows from Theorem 2.3. Now let e be an arc of D and assume that e is
contained in an n-cycle C = ana1a2 . . . an−1an with e = ana1 and 4 ≤ n < c.
Suppose that e = ana1 is not contained in any (n + 1)-cycle.

Obviously, |V (D)| = cr + k with 1 ≤ k ≤ c − 1, if |Vc| = r + 1 and
2 ≤ k ≤ 2c− 2, if |Vc| = r + 2. Firstly, we observe that N+(v)− V (C) 6= ∅ for
each v ∈ V (C) = {a1, a2, . . . , an}, because otherwise Corollary 1.19, the fact
that r ≥ 2 and k ≥ 1 yield the contradiction

n = |V (C)| ≥ d+(v) + 2 ≥
cr + k − r − 2

2
+ 2 =

(c − 1)r + k + 2

2
> c.

Analogously, one can show that N−(v) − V (C) 6= ∅ for each v ∈ V (C).
Next let S be the set of vertices that belong to partite sets not represented

on C and define

X = {x ∈ S |C → x}, Y = {y ∈ S | y → C}.

Assume that X 6= ∅ and let x ∈ X. If there is a vertex w ∈ N−(an) − V (C)
such that x → w, then ana1a2 . . . an−2xwan is an (n+ 1)-cycle through ana1, a
contradiction. If (N−(an) − V (C)) → x, then |N−(x)| ≥ |N−(an) − V (C)| +
|V (C)| ≥ |N−(an)| + 2, a contradiction to the hypothesis that ig(D) ≤ 1.
If there exists a vertex b ∈ (N−(an) − V (C)) such that V (b) = V (x), then
b is adjacent with all vertices of C. In the case that N−(b) ∩ V (C) 6= ∅,
let l = max1≤i≤n−1{i | ai → b}. Then ana1 . . . albal+1 . . . an is an (n + 1)-
cycle through ana1, a contradiction. It remains to consider the case that
N−(b) ∩ V (C) = ∅. If there is a vertex u ∈ (N−(b) − V (C)) = N−(b) such
that x → u, then ana1a2 . . . an−3xuban is an (n + 1)-cycle through ana1, a
contradiction. Otherwise, N−(b) → x, and we arrive at the contradiction
d−(x) ≥ d−(b) + |V (C)|. Altogether, we have seen that X 6= ∅ is not possible,
and analogously we find that Y 6= ∅ is impossible. Consequently, from now on
we shall assume that X = Y = ∅.

By the definition of S, every vertex of V (C) is adjacent to every vertex of
S, and from our assumption n < c, we deduce that S 6= ∅. Now we distinguish
different cases.
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Case 1. There exists a vertex v ∈ S with v → an. Since Y = ∅, there is
a vertex ai ∈ V (C) such that ai → v. If l = max1≤i≤n−1{i | ai → v}, then
ana1 . . . alval+1 . . . an is an (n + 1)-cycle through ana1, a contradiction. This
implies an → S.

Case 2. There exists a vertex v ∈ S with a1 → v. Since X = ∅, there
is a vertex ai ∈ V (C) such that v → ai. If l = min2≤i≤n−1{i | v → ai}, then
ana1 . . . al−1val . . . an is an (n + 1)-cycle through ana1, a contradiction. This
implies S → a1.

If C = ana1a2 . . . an and v ∈ S, then the following three sets play an
important role in our investigations

H = N+(a1) − V (C), F = N−(an) − V (C), Q = N−(v) − V (C).

Case 3. There exists a vertex v ∈ S such that v → an−1. If there is a
vertex ai ∈ V (C) with 2 ≤ i ≤ n − 2 such that ai → v, then we obtain as
above an (n + 1)-cycle through ana1, a contradiction. Thus, we investigate
now the case that v → {a1, a2, . . . , an−1}. Because of S → a1, we note that
every vertex of N+(a1) is adjacent to v. If there is a vertex x ∈ H such that
x → v, then ana1xva3a4 . . . an is an (n+1)-cycle through ana1, a contradiction.
Therefore we assume now that v → H. This leads to d+(v) ≥ d+(a1) + 1,
and thus, because of ig(D) ≤ 1, it follows that N+(v) = N+(a1) ∪ {a1} and
a1 → {a2, a3, . . . , an−1}.

It is a simple matter to verify that H ∩ Q = ∅, S ∩ H = ∅ and R =
V (D) − (H ∪ Q ∪ V (v) ∪ V (C)) = ∅.

If there is an arc xa2 with x ∈ H, then ana1xa2a3 . . . an is an (n + 1)-cycle
through ana1, a contradiction.

Subcase 3.1. Firstly, let H consist of vertices of only one partite set Vz. At
least one vertex of Vz belongs to V (C), that means |H| ≤ r +1, if |Vz| = r +2,
|H| ≤ r, if |Vz| = r + 1 and |H| ≤ r − 1, if |Vz| = r.

Because of Corollary 1.19 and n ≤ c − 1, we have

cr + k − r − 2

2
− (c − 3) ≤ d+(a1) − (n − 2) = |H|. (2.1)

If |Vz| = r, then because of |H| ≤ r − 1, (2.1) yields (c − 3)r + k + 6 ≤ 2c.
Since r ≥ 2 and k ≥ 1, this leads to the contradiction 2c + 1 ≤ 2c.

If n = 4, then we observe that n ≤ c − 3, and this implies

cr + k − r − 2

2
− (c − 5) ≤ d+(a1) − (n − 2) = |H| ≤ r + 1.

This leads again to (c − 3)r + k + 6 ≤ 2c, a contradiction. Consequently, it
remains to treat the cases with |Vz| ≥ r + 1 and n ≥ 5.

Subcase 3.1.1. Assume that |Vc| = r+1 and |Vz| = r+1. If |V (a1)| = r+1
(and therefore k ≥ 2), then (2.1) leads to r = 2, |H| = r = 2 and k = 2.

If |V (a1)| = r, then together with Lemma 1.12 and n ≤ c− 1, we arrive at

cr + k − r − 1

2
− (c − 3) ≤ d+(a1) − (n − 2) = |H| ≤ r,
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and hence (c − 3)r + k + 5 ≤ 2c. This leads to no contradiction, only if
r = 2, |H| = r = 2 and k = 1.

Consequently, it remains to consider the case that |H| = r = 2 and k = 1
or k = 2 and |V (a1)| = r + 1. Therefore, we observe that |V (v)| = r.

Since n ≥ 5, we have Q Ã H, because otherwise, if there are vertices
q ∈ Q and h ∈ H such that h → q, then ana1hqva4 . . . an is an (n + 1)-cycle,
a contradiction. Thus, for every vertex h ∈ H, we conclude that d+(h) ≤
r − 1 + n− 2 = n− 1. Since d+(v) = d+(a1) + 1 = r + n− 1 = n + 1, this is a
contradiction to ig(D) ≤ 1.

Subcase 3.1.2. Now let |Vc| = r + 2. If |Vz| = r + 1, then, because of
|H| ≤ r, (2.1) leads to (c − 3)r + k + 4 ≤ 2c. Since in this case k ≥ 3 and
r ≥ 2, this yields the contradiction 2c + 1 ≤ 2c.

Finally, let |Vz| = r + 2. Then (2.1) leads to the contradiction c ≤ 5, if
r ≥ 3, and to the contradiction 1 ≤ 0, if r = 2 and k ≥ 5. Therefore, let r = 2
and k ∈ {2, 3, 4}. Since cr + k − r is even, the case k = 3 is not possible.

Furthermore, we have a contradiction in (2.1), if |H| ≤ r. Therefore, let
|H| = r+1. Since d+(v) = d+(a1)+1, we conclude that |V (v)| ≤ r+1. Because
of n ≥ 5, analogously as in Subcase 3.1.1, we see that (Q ∪ {a1, a2, v}) Ã H,
and thus d+(h) ≤ r + n − 2 = n, if h ∈ H. On the other hand, we have seen
that d+(v) = d+(a1) + 1 = r + 1 + n− 1 = n + 2, a contradiction to ig(D) ≤ 1.

Subcase 3.2. Let n ≥ 5 and let H consist of vertices of more than one
partite set. Then there is at least one arc pq ∈ E(D[H]). Let L be the set of
all vertices in H with an inner neighbor in H, and M = H −L. Then we note
that L 6= ∅. M consists of vertices of at most one partite set and M Ã L.
If we take a vertex q ∈ L with an inner neighbor p ∈ H, then it cannot
be that qa3 ∈ E(D), because otherwise ana1pqa3 . . . an is an (n + 1)-cycle, a
contradiction. Therefore let a3 Ã L. If there is an arc xy with x ∈ H and
y ∈ Q, then ana1xyva4a5 . . . an is an (n+1)-cycle, a contradiction. Altogether,
we have seen that (Q ∪ M ∪ {a1, a2, a3})Ã L.

First, let |V (v)| = r + 2. Then, because of d+(v) ≥ d+(a1) + 1, Remark
1.18 yields the contradiction

cr + k − r − 2

2
+ 1 ≤ d+(a1) + 1 ≤ d+(v) =

cr + k − r − 2

2
.

Now let |V (v)| ≤ r + 1. Since |R| = 0, for every vertex q ∈ L, we conclude
that d(q, V (D)− L) ≤ n + r − 3, and thus, it follows with Corollary 1.19 that
d+

D[L](q) = d+(q) − d(q, V (D) − L) ≥ cr+k−r−2
2

− r − n + 3. This implies

|L|(|L| − 1)

2
≥ |E(D[L])| =

∑

q∈L

d+
D[L](q) ≥ |L|

{

cr + k − r − 2

2
− r − n + 3

}

.
(2.2)

The conditions d+(v) ≥ d+(a1) + 1, a1 → {a2, a3, . . . , an−1}, and Lemma 1.11
(respectively, Remark 1.18, if |Vc| = r + 2) yield |L| = |H| − |M | = d+(a1) −
n + 2− |M | ≤ d+(v)− 1− n + 2− |M | ≤ cr+k−r+1

2
− n + 1− |M | (respectively,
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|L| ≤ cr+k−r
2

− n + 1 − |M |, if |Vc| = r + 2). Combining this with inequality
(2.2), we obtain

cr + k − r + 1

2
− n − |M | ≥ |L| − 1 ≥ 2

{

cr + k − r − 2

2
− r − n + 3

}

,

if |Vc| = r + 1 and

cr + k − r

2
− n − |M | ≥ |L| − 1 ≥ 2

{

cr + k − r − 2

2
− r − n + 3

}

,

if |Vc| = r + 2. This leads to 2n ≥ (c − 5)r + k + 7 + 2|M | (respectively,
2n ≥ (c − 5)r + k + 8 + 2|M |, if |Vc| = r + 2). Because of k ≥ 1, r ≥ 2 and
n ≤ c − 1, this is a contradiction, if |M | ≥ 1 (a contradiction, if |Vc| = r + 2).

Consequently, it remains to consider the case that |M | = 0. This means
that every vertex in H = L has an inner neighbor in H. Therefore, |L| = |H| ≥
3, and every vertex in H is the last point of a path of length 2. If a4 Ã H,
then, because of d(q, V (D) − L) ≤ r + n − 4, we obtain a contradiction as
above. Thus, let q3a4 ∈ E(D) with q3 ∈ H, and let q3 be the last point of the
path q1q2q3 in H, then ana1q1q2q3a4 . . . an is an (n + 1)-cycle through ana1, a
contradiction.

Subcase 3.3. Finally, let n = 4 and let H consist of vertices of more than
one partite set. Let us define the set G by G = N+(a3) − V (C). If there is a
vertex w ∈ F ∩G, then a4a1a2a3wa4 is a 5-cycle through a4a1, a contradiction.
If there is an arc xy with x ∈ G and y ∈ F , then a4a1a3xya4 is a 5-cycle, a
contradiction. Consequently, it remains to consider the case that F ∩ G = ∅
and F Ã (G ∪ {a3, a4}).

According to Corollary 1.19, we have

|G| = |N+(a3)| − 1 ≥
cr + k − r − 2

2
− 1 =

cr + k − r − 4

2
,

and thus, it follows for every vertex x ∈ F that

d(V (D) − F, x) ≤ cr + k − |F | − |G| − 2

≤
cr + k + r + 4

2
− |F | − 2 =

cr + k + r

2
− |F |.

This leads to

d−
D[F ](x) ≥

cr + k − r − 2

2
−

cr + k + r

2
+ |F | = |F | − r − 1

for every x ∈ F . Hence, we conclude on the one hand that

|E(D[F ])| =
∑

x∈F

d−
D[F ](x) ≥ |F |(|F | − r − 1).

On the other hand, since S ∩ F = ∅, the subdigraph D[F ] is 3-partite, and
thus, Theorem 2.10 yields

|E(D[F ])| ≤
1

3
|F |2.
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The last two inequalities imply r ≥ 2
3
|F | − 1. Since |F | = |N−(a4) − V (C)| ≥

d−(a4) − 2, we deduce from Corollary 1.19 that

r ≥
2|F |

3
− 1 ≥

cr + k − r − 6

3
− 1 =

cr + k − r − 9

3
⇔ 3r ≥ (c − 1)r + k − 9.

(2.3)

Subcase 3.3.1. Let |Vc| = r + 1. Then, (2.3) leads to no contradiction, only
if c = 8, r = 2 and k = 1 or if c = 7, r = 2 and k ≤ 3.

Firstly, let c = 8, r = 2 and k = 1. Then we note that |H| ≤ 4, and thus,
it follows that

9 ≤ |S| + 1 ≤ d+(a4) ≤ d+(a1) + 1 = |H| + 3 ≤ 7,

a contradiction.
Therefore, it remains to consider the case that c = 7, r = 2 and k ≤ 3.

If D[V (C)] is no tournament (that means that V (a2) = V (a4)), then we have
|S| ≥ 4r = 8 and |H| ≤ 3, and therefore we arrive at the contradiction

9 ≤ |S| + 1 ≤ d+(a4) ≤ d+(a1) + 1 = |H| + 3 ≤ 6.

Consequently, we investigate the case that D[V (C)] is a tournament. Then we
see that

7 ≤ |S| + 1 ≤ d+(a4) ≤ d+(a1) + 1 = |H| + 3,

and this yields |H| ≥ 4. If |H| = 4, then we have equality in the last inequality
chain, which implies H Ã a4 and a2 → a4. Let x ∈ N+(h)−V (C) with h ∈ H
such that x → a2, then a4a1hxa2a4 is a 5-cycle, a contradiction. Consequently,
a2 Ã N+(h) − V (C) for every vertex h ∈ H. If every element of H has an
outer neighbor in H, then there exists a 3-cycle or a 4-cycle in H. Now, we
take a vertex h3 ∈ H − V (a4) such that h3 is contained in a cycle h3h1h2h3

or h4h1h2h3h4 in H. This leads to the 5-cycle a4a1h1h2h3a4, a contradiction.
Hence, there exists a vertex h0 ∈ H such that N+

D[H](h0) = ∅. Since a2 Ã

H, a2 → {a3, a4} and N+(h0) ∩ V (C) ⊆ {a3, a4}, it follows that

d+(a2) ≥ |H| + 2 + |N+(h0) − V (C)| − |V (a2) − {a2}|

≥ 4 + |N+(h0) − V (C)| ≥ d+(h0) + 2,

a contradiction to ig(D) ≤ 1.
Therefore, let 5 ≤ |H| ≤ 6. Then H contains vertices of exactly three

partite sets and k ≥ 2. In the case that |H| = 5 (respectively, |H| = 6), the
vertex a4 has at most one (respectively two, if |H| = 6) further outer neighbors
except S and a1. If a2 → a4, then H1 = H − N+(a4) consists of at least four
elements and H1 Ã a4. Then, analogously to the case |H| = 4, we arrive at a
contradiction.

Consequently, let a4 → a2. Then, because of |F | = |N−(a4) − V (C)| ≥
d−(a4)−1, we get instead of (2.3) the better bound r ≥ cr+k−r−7

3
. Since c = 7,

this yields 7 ≥ 3r + k, a contradiction to k ≥ 2.
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Subcase 3.3.2. Now let |Vc| = r + 2. Then (2.3) leads to no contradiction,
only if c = 7, r = 2 and 2 ≤ k ≤ 3. Since, with respect to Remark 1.18, k = 3
is impossible, it remains to treat the cases when |V (a3)| = r or |V (a4)| = r.

If |V (a3)| = r, then we obtain with Remark 1.18 that

|G| = |N+(a3)| − 1 =
cr + k − r

2
− 1 =

cr + k − r − 2

2
.

Following the same lines as above, we arrive at the inequality (c− 4)r + k ≤ 6
which leads to the contradiction c ≤ 6.

If |V (a4)| = r, then, according to Remark 1.18, we obtain the estimation

|F | = |N−(a4) − V (C)| ≥ d−(a4) − 2 ≥
cr + k − r

2
− 2 =

cr + k − r − 4

2
.

In this case, following the same way as above, we get the inequality (c− 4)r +
k ≤ 7, which leads to the contradiction c ≤ 13/2.

Summarizing the investigations of Case 3, we see that it remains to consider
the case that an−1 → S.

Case 4. There exists a vertex v ∈ S such that a2 → v. If we consider the
converse of D, then, analogously to Case 3, it remains to treat the case that
S → a2.

Summarizing the investigations in the Cases 1 - 4, we can assume in the
following, usually without saying so, that

{an−1, an} → S → {a1, a2}Ã H. (2.4)

Case 5. Let n = 4. Because of (2.4), we have a4 → S and thus S ∪{a1} ⊆
N+(a4). If D[V (C)] is 3-partite or 2-partite, then, in the case that |Vc| = r+1,
we see that

1 + (c − 3)r ≤ |S| + 1 ≤ d+(a4) ≤ d+(a1) + 1 ≤ |H| + 3 ≤ 2r + 3,

and in the case that |Vc| = r + 2, we obtain

1 + (c − 3)r ≤ |S| + 1 ≤ d+(a4) ≤ d+(a1) + 1 ≤ |H| + 2 ≤ 2r + 4

if V (a1) = V (a3) and

1 + (c − 3)r ≤ |S| + 1 ≤ d+(a4) ≤ d+(a1) + 1 ≤ |H| + 3 ≤ 2r + 4

if V (a2) = V (a4).

All these cases yield a contradiction to c ≥ 7. Consequently, it remains to
consider the case that D[V (C)] is a tournament.

Firstly, let a2 → a4. If a1 → a3 and v ∈ S, then a4a1a3va2a4 is a 5-cycle, a
contradiction. Let now a3 → a1. If there are vertices v ∈ S and x ∈ H such
that x → v, then a4a1xva2a4 is a 5-cycle, a contradiction. Otherwise, we have
S → H. If we choose v, w ∈ S such that v → w, then N+(a1) = H ∪ {a2} and
N+(v) ⊇ H ∪ {a1, a2, w}, a contradiction to ig(D) ≤ 1.

Now assume that a4 → a2. Firstly, let a1 → a3. If there are vertices v ∈ S
and x ∈ F = N−(a4) − V (C) such that v → x, then a4a1a3vxa4 is a 5-cycle,
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a contradiction. Otherwise, we have F → S. If we choose v, w ∈ S such that
v → w, then we see that N−(a4) = F ∪ {a3} and N−(w) ⊇ F ∪ {a3, a4, v},
a contradiction to ig(D) ≤ 1. In the remaining case that a3 → a1, it follows
from Corollary 1.19 that

cr + k = |V (D)| ≥ |H| + |F | + |S| + |V (C)| − |H ∩ F |

≥
cr + k − r − 2

2
− 1 +

cr + k − r − 2

2
− 1

+(c − 4)r + 4 − |H ∩ F |

= 2cr + k − 5r − |H ∩ F |.

Consequently, |H ∩ F | ≥ (c − 5)r ≥ 2r and thus, H ∩ F consists of at least
two partite sets. If we choose u2, u3 ∈ H ∩ F such that u2 → u3, then C ′ =
a4a1u2u3a4 is also a 4-cycle through a4a1. Since u2 → a4, we arrive, analogously
to above, at a contradiction.

Altogether, we have shown in the meantime that every arc of D belongs to
a 5-cycle.

Case 6. Let n ≥ 5 and assume that there exists a vertex v ∈ S such
that v → an−2. If there is a vertex ai ∈ V (C) with 3 ≤ i ≤ n − 3 such
that ai → v, then we obtain, as in Case 1, an (n + 1)-cycle through ana1, a
contradiction. Thus, we investigate now the case that v → {a1, a2, . . . , an−2}.
If there is a vertex h ∈ H such that h → v, then ana1hva3a4 . . . an is an
(n + 1)-cycle through ana1, a contradiction. Therefore, we assume now that
v → H. This leads to d+(v) ≥ d+(a1), and thus, because of ig(D) ≤ 1, it
follows that a1 → {a2, a3, . . . , an−1} or a1 → {a2, a3, . . . , an−1}−{aj} for some
j ∈ {3, 4, . . . , n − 1} and aj → a1 or V (a1) = V (aj).

Subcase 6.1. Assume that a1 → {a2, a3, . . . , an−1}. If there is a vertex
h ∈ H such that h → an, then ana1a3a4 . . . an−1vhan is an (n + 1)-cycle,
a contradiction. Therefore, we may assume now that an → (H − V (an)).
If ai−1 → an for 3 ≤ i ≤ n − 1, then ana1aiai+1 . . . an−1va2a3 . . . ai−1an is
an (n + 1)-cycle, a contradiction. Hence, it remains to treat the case that
an → ai−1 or ai−1 ∈ V (an) for 2 ≤ i ≤ n − 1. Let {a1, a2, . . . , an−2} = A ∪ B
such that an → A and B ⊆ V (an). Then N+(a1) = H ∪{a2, a3, . . . , an−1} and
N+(an) ⊇ A ∪ S ∪ (H − (V (an) − (B ∪ {an}))). This leads to

d+(an) ≥ |A| + |S| + |H| − (r + 1 − (|B| + 1)) = d+(a1) + |S| − r,

if |Vc| = r + 1 (and d+(an) ≥ d+(a1) + |S| − (r + 1), if |Vc| = r + 2). To get no
contradiction, S has to consist of only one partite set, that means n = c − 1,
D[V (C)] is a tournament, B = ∅ and an → {a1, a2, . . . , an−2} (respectively,
n = c−1, D[V (C)] is a tournament or n = c−2, r = 2, |S| = 2r = 4, |V (an)| =
r +2 = 4, d+(an) = d+(a1)+1). Now define R = V (D)− (H ∪F ∪S ∪V (C)).
Since H ∩ F = ∅, we obtain by Corollary 1.19

|R| ≤ cr + k −

{

cr + k − r − 2

2
− (n − 2) +

cr + k − r − 2

2
− 1 + |S| + n

}

.

This yields |R| ≤ 1, if |S| = r, |R| = 0, if |S| = r+1, and |R| ≤ −1, if |S| = 2r
or |S| = r + 2. Thus, it follows that n = c − 1 and |S| ≤ r + 1 in all cases.
Furthermore, we see that |S| + |R| ≤ r + 1.
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If there is an arc h → y with h ∈ H and y ∈ F , then we observe that
ana1a4 . . . an−1vhyan is an (n + 1)-cycle, a contradiction. Hence let (F ∪
{a1, a2, an, v}) Ã H. Now let L be the set of vertices in H having an in-
ner neighbor in H, and let M = H − L. In the case that L 6= ∅ and b ∈ L, it
cannot be that ba3 ∈ E(D), because otherwise ana1aba3a4 . . . an is an (n + 1)-
cycle, if a ∈ H is an inner neighbor of b, a contradiction. Furthermore, we
denote that M Ã L and that M consists of vertices of at most one partite set.

Hence, for every vertex b ∈ L, we conclude that d(b, V (D) − L) ≤ n − 4 +
|S| − 1 + |R| ≤ r + n− 4 = r + c− 5. Now it follows from Corollary 1.19 that

d+
D[L](b) = d+(b) − d(b, V (D) − L) ≥

cr + k − r − 2

2
− r − c + 5.

This implies

|L|(|L| − 1)

2
≥ |E(D[L])| =

∑

b∈L

d+
D[L](b)

≥ |L|

{

cr + k − r − 2

2
− r − c + 5

}

.

Furthermore, because of Lemma 1.11, we observe that |L| = |H| − |M | =
d+(a1)− (n− 2)− |M | ≤ cr+k−r+1

2
− |M | − c + 3. Combining these results, we

arrive at

cr + k − r + 1

2
− |M | − c + 2 ≥ |L| − 1 ≥ 2

{

cr + k − r − 2

2
− r − c + 5

}

.

The last inequality is equivalent to (c− 5)r ≤ −k− 2|M |+2c− 11 ≤ −2|M |+
2c − 12. Since r ≥ 2, this leads to the contradiction |M | ≤ −1.

Consequently, it remains to consider the case that L = ∅, that means
that H consists of vertices of only one partite set. This partite set has to be
V (an), because otherwise, we observe that N+(an) ⊇ {a1, . . . , an−2} ∪ H ∪
S and N+(a1) = H ∪ {a2, . . . , an−1}, a contradiction to ig(D) ≤ 1. This
implies that a2 → H and {a3, . . . , an−1} → H, because otherwise, let i =
min3≤l≤n−1{l | h → al} with h ∈ H, then ana1 . . . ai−1hai . . . an is an (n + 1)-
cycle, a contradiction. Therefore, we have ({a1, a2, . . . , an−1, an, v} ∪ F )Ã H.
Then we conclude for every vertex h ∈ H that cr+k−r−2

2
≤ d+(h) = d(h, V (D)−

H) ≤ |S| − 1 + |R| ≤ r, a contradiction to c ≥ 7.
Subcase 6.2. Assume that there exists exactly one j ∈ {3, 4, . . . , n − 1}

such that a1 → ({a2, a3, . . . , an−1} − {aj}) and aj → a1 or V (aj) = V (a1) and
that n ≥ 6. This condition implies d+(v) ≥ d+(a1) + 1 and thus, because of
ig(D) ≤ 1, d+(v) = d+(a1) + 1. Furthermore, we note that H ∩ Q = ∅ and
R = V (D) − (H ∪ Q ∪ V (v) ∪ V (C)) = ∅.

If there are vertices x ∈ H and y ∈ Q such that x → y, then, because
of n ≥ 6, ana1xyva4a5 . . . an is an (n + 1)-cycle, a contradiction. Hence, we
assume that (Q ∪ {a1, a2, v})Ã H. Let L be the set of vertices q in H, which
have an inner neighbor p in H. Furthermore, let M = H − L and |L| 6= 0.
Then we have (Q ∪ M ∪ {a1, a2, a3, v})Ã L.
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Firstly, let |V (v)| = r + 2. Then Remark 1.18 yields the contradiction

cr + k − r − 2

2
+ 1 ≤ d+(a1) + 1 = d+(v) =

cr + k − r − 2

2
.

Secondly, let |V (v)| = r + 1. Then, for every vertex q ∈ L, we conclude
that d(q, V (D) − L) ≤ |V (v)| + |V (C)| − 4 = r + n − 3, and thus, it follows
from Lemma 1.12 and Corollary 1.19 that

d+
D[L](q) = d+(q) − d(q, V (D) − L)

≥
cr + k − r − 2

2
− r − n + 3, if k ≥ 2

and d+
D[L](q) ≥

cr + k − r − 1

2
− r − n + 3, if k = 1.

This implies

|L|(|L| − 1)

2
≥ |E(D[L])| =

∑

q∈L

d+
D[L](q)

≥ |L|

{

cr + k − r − 2

2
− r − n + 3

}

and
|L|(|L| − 1)

2
≥ |L|

{

cr + k − r − 1

2
− r − n + 3

}

,

respectively. The conditions d+(v) = d+(a1) + 1, a1 → ({a2, a3, . . . , an−1} −
{aj}) and Lemma 1.12 yield |L| = |H| − |M | = d+(a1) − n + 3 − |M | =
d+(v)−n+2−|M | ≤ cr+k−r

2
−|M |−n+2. Combining these results, we arrive

at the inequalities

cr + k − r

2
− |M | − n + 1 ≥ |L| − 1 ≥ 2

{

cr + k − r − 2

2
− r − n + 3

}

and
cr + k − r

2
− |M | − n + 1 ≥ 2

{

cr + k − r − 1

2
− r − n + 3

}

,

respectively. A transformation leads to 2n ≥ (c − 5)r + k + 2|M | + 6 and
2n ≥ (c−5)r+k +2|M |+8, respectively. Since n ≤ c−1, k ≥ 2 (respectively,
k = 1) and r ≥ 2, this yields a contradiction, if |M | ≥ 1.

Thirdly, let |V (v)| = r. Then, for every vertex q ∈ L, we conclude (|R| =
0) that d(q, V (D) − L) ≤ r + n − 4, and analogously to above, we get the
contradiction |M | ≤ −1.

The case that |M | = 0 yields a contradiction, analogously as in Subcase
3.2.

Consequently it remains to consider the possibility that |L| = 0, which
means that H consists of vertices of only one partite set Vz. Firstly, let |Vz| =
r + 2 and |V (a1)| ≥ r + 1 (this means k ≥ 3). Because of |N+(a1) ∩ V (C)| =
n − 3, n ≤ c − 1 and Corollary 1.19, this leads to

cr + k − r − 2

2
− (c − 4) ≤ d+(a1) − (n − 3) = |H| ≤ r + 1,
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which is equivalent to 2c ≥ (c− 3)r + k + 4, a contradiction, because of r ≥ 2
and k ≥ 3. Now let |Vz| = r + 2 and |V (a1)| = r. Then Remark 1.18 yields

cr + k − r

2
− (c − 4) ≤ d+(a1) − (n − 3) = |H| ≤ r + 1,

hence 2c ≥ (c− 3)r + k + 6, a contradiction. Finally, let |Vz| ≤ r + 1; then we
arrive at

cr + k − r − 2

2
− (c − 4) ≤ d+(a1) − (n − 3) = |H| ≤ r,

hence 2c ≥ (c − 3)r + k + 6, a contradiction.
Subcase 6.3. Assume that n = 5 and there is exactly one j ∈ {3, 4} such

that a1 → ({a2, a3, a4} − {aj}) and aj → a1 or V (aj) = V (a1).
Subcase 6.3.1. Let a1 → {a2, a3} and a4 → a1 or V (a4) = V (a1). If

there is a vertex h ∈ H such that h → a5, then a5a1a3a4vha5 is a 6-cycle, a
contradiction. Therefore, we may assume that a5 → (H − V (a5)). If a2 → a5,
then a5a1a3a4va2a5 is a 6-cycle, a contradiction. Hence, it remains to treat the
case that a5 → a2 or V (a5) = V (a2). Let {a1, a2} = A ∪ B such that a5 → A
and B ⊆ V (a5). Then N+(a1) = H ∪ {a2, a3} and N+(a5) ⊇ A ∪ S ∪ (H −
(V (a5) − (B ∪ {a5}))). This leads to

d+(a5) ≥ |A| + |S| + |H| − (r + 1 − (|B| + 1)) = d+(a1) + |S| − r,

if |V (a5)| = r + 1 and

d+(a5) ≥ |A|+ |S|+ |H| − (r + 2− (|B|+ 1)) = d+(a1) + |S| − (r + 1), (2.5)

if |V (a5)| = r + 2. Since ig(D) ≤ 1, the set S consists of one (n = c − 1,
if |V (a5)| = r + 1) or of at most two (n = c − 2, if |V (a5)| = r + 2) partite
sets. Firstly, let n = c − 1. Then, since n = 5, this leads to a contradiction
to c ≥ 7. In the remaining case that n = c − 2 and |V (a5)| = r + 2, we have
|Vc| = r+2, r = 2 and |S| = 2r = 4. In this case, because of (2.5) and Remark
1.18, we arrive at the contradiction

cr + k − r − 2

2
+ 1 ≤ d+(a1) + 1 = d+(a5) =

cr + k − r − 2

2
.

Subcase 6.3.2. Let n = 5 and assume that a1 → {a2, a4} and a3 → a1

or V (a3) = V (a1). Analogously to Subcase 6.2, H consists of at least two
partite sets. Hence, there exist vertices x, y ∈ H such that x → y. If y → a5,
then a5a1a4vxya5 is a 6-cycle, a contradiction. Now let W = H − V (a5) and
U = {x ∈ W |d−

D[H](x) = 0}. It follows that U is a subset of one partite

set, which means |U | ≤ r (respectively, |U | ≤ r + 1, if |Vc| = r + 2), and
a5 → (W − U). If a3 → a5, then a5a1a4va2a3a5 is a 6-cycle, a contradiction.
Hence, it remains to consider the case that a5 → a3 or V (a5) = V (a3). Let
{a1, a3} = A ∪ B such that a5 → A and B ⊆ V (a5). Then N+(a1) = H ∪
{a2, a4} and N+(a5) ⊇ A∪S ∪ (H − ((V (a5)− (B ∪{a5}))∪U)) and therefore

d+(a5) ≥ |A| + |S| + |H| − (r + 1 − (|B| + 1)) − |U | ≥ d+(a1) + |S| − 2r,
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if |Vc| ≤ r + 1 and

d+(a5) ≥ |A|+ |S|+ |H| − (r + 2− (|B|+ 1))− |U | ≥ d+(a1) + |S| − 2(r + 1),

if |Vc| = r+2. Because of ig(D) ≤ 1, this yields a contradiction, if S consists of
more than two (respectively, three, if |Vc| = r+2) partite sets. Let |Vc| = r+2
and let S consist of three partite sets; then we get a contradiction, if r ≥ 4.
If r = 3 and |V (a5)| = r + 2, then, because of Remark 1.18, we arrive at the
contradiction

cr + k − r − 2

2
+ 1 ≤ d+(a1) + 1 = d+(a5) =

cr + k − r − 2

2
.

If r = 3 and |V (a5)| ≤ r + 1, then we have the contradiction

d+(a5) ≥ |A|+ |S|+ |H|−(r+1−(|B|+1))−|U | ≥ d+(a1)+r−1 = d+(a1)+2.

Consequently, it remains to treat the cases n = c − 2, |B| = 0, D[V (C)] is a
tournament or |Vc| = r + 2, n = c − 3 and r = 2. If we define U ′ = (N+(a1) ∩
N−(a5))−V (C), then U ′ ⊆ U and U ′ consists of vertices of only one partite set
Vy. Now let J = N−(a5) − (U ′ ∪ V (C)) and G = N+(a1) − (Vy ∪ {a2, a4}). In
this case, we note that G 6= ∅, because otherwise H = N+(a1)−{a2, a4} ⊆ Vy,
hence, it follows from Corollary 1.19

cr + k − r − 2

2
− 2 ≤ d+(a1) − 2 = |H| ≤ r + 1,

a contradiction to c ≥ 7. Therefore, assume that G 6= ∅. If there are vertices
x ∈ G and y ∈ J ∪ U ′ such that x → y, then a5a1a4vxya5 is a 6-cycle, a
contradiction.

Suppose next that there exist vertices b ∈ G and w ∈ S such that b → w.
If w → a3, then a5a1bwa3a4a5 is a 6-cycle, a contradiction. So, we can assume
that a3 → w. If there is a vertex x ∈ (N−(a5) − V (C)) such that w → x,
then a5a1a2a3wxa5 is a 6-cycle, a contradiction. Thus, we can assume that
(N−(a5)−V (C)) → w. Altogether, we see that N−(a5) ⊆ (N−(a5)−V (C))∪
{a2, a4} and N−(w) ⊇ (N−(a5) − V (C)) ∪ {a3, a4, a5, b} and this yields the
contradiction d−(w) ≥ d−(a5) + 2. Consequently, it remains to treat the case
that S → G. If we define R = V (D) − (H ∪ J ∪ S ∪ V (C)), then, because of

|J | ≥ |N−(a5)| − |U ′| − 2 ≥
cr + k − r − 2

2
− |U ′| − 2

=

{

6r+k−2
2

− |U ′| − 2 , if n = c − 2 = 5
7r+k−2

2
− |U ′| − 2 , if n = c − 3 = 5

,

we obtain |R| ≤

{

7r + k −
{

6r+k−2
2

− |U ′| − 2 + 6r+k−2
2

− 2 + 2r + 5
}

, if n = c − 2
16 + k −

{

12+k
2

− |U ′| − 2 + 12+k
2

− 2 + 6 + 5
}

, if n = c − 3

=

{

|U ′| − r + 1 , if n = c − 2
|U ′| − 3 , if n = c − 3

.
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Thus, we also see that U ′ 6= ∅. Let there be a vertex y ∈ G such that y → a3.
Because of U ′ ⊆ U and Vy ⊆ V (D) − G, there exists a vertex x ∈ U ′ such
that x → y. This leads to the 6-cycle a5a1xya3a4a5, a contradiction. Hence,
it remains that (S ∪ J ∪ U ′ ∪ {a1, a2, a3, a5})Ã G.

Firstly, let us observe the case that n = c−2. Then, for every vertex x ∈ G,
we get d(x, V (D)−G) ≤ |R|+1+ |Vy ∩H|− |U ′| ≤ 2−r+ |Vy|− |Vy ∩V (C)| ≤
1 − r + |Vy| ≤ 3 and thus, it follows that

d+
D[G](x) = d+(x) − d(x, V (D) − G) ≥

6r + k − 2

2
− 3 =

6r + k − 8

2
.

This implies

|G|(|G| − 1)

2
≥ |E(D[G])| =

∑

x∈G

d+
D[G](x) ≥ |G|

6r + k − 8

2
.

In view of Lemma 1.11, we have |G| = d+(a1) − |Vy ∩ H| − 2 ≤ d+(a1) − 2 ≤
6r+k−3

2
. Altogether, this leads to 6r+k−5

2
≥ |G| − 1 ≥ 6r + k − 8, and thus, we

obtain the inequality 6r + k ≤ 11, a contradiction.

Now let n = c − 3. Then, for every vertex x ∈ G, we conclude that
d(x, V (D)−G) ≤ |R|+1+|Vy∩H|−|U ′| ≤ −2+|Vy|−|Vy∩V (C)| ≤ −3+|Vy| ≤
1 and thus, it follows that d+(x) ≤ |G| = d+(a1) − |Vy ∩ H| − 2 ≤ d+(a1) − 2,
a contradiction to ig(D) ≤ 1.

Summarizing the investigations of Case 6, we see that it remains to treat
the case when an−2 → S.

Case 7. Let n = 5. If we consider the cycle C−1 = a1a5a4a3a2a1 =
b5b1b2b3b4b5 in the converse D−1 of D, then {b4, b5} → S → {b1, b2, b3}. Since
this is exactly the situation of Case 6, there exists in D−1 a 6-cycle, containing
the arc b5b1 = a1a5, and hence there exists in D a 6-cycle through a5a1.

Case 8. Let n ≥ 6. Assume that there exists a vertex v ∈ S such that
a3 → v. If we consider the converse of D, then in view of Case 6, it remains
to consider the case that S → a3.

Case 9. Let c > n ≥ 6. If there exist vertices y ∈ S and x ∈ H
such that x → y, then ana1xya3a4 . . . an is an (n + 1)-cycle, a contradiction.
Consequently, we assume now that S → H. Let y ∈ S. If there exists a
vertex x ∈ H such that x → an, then ana1a2 . . . an−2yxan is an (n+1)-cycle, a
contradiction. Hence, it remains to treat the case that (S ∪{a1, a2, an})Ã H.

If a1 → ai and ai−1 → an for i ∈ {3, 4, . . . , n − 1}, then the (n + 1)-cycle
ana1ai . . . an−1ya2 . . . ai−1an yields a contradiction. Thus, if a1 → ai for some
i ∈ {3, 4, . . . , n− 1}, then we may assume that an → ai−1 or V (ai−1) = V (an).
Let N = {ai1 , ai2 , . . . , aik} be exactly the subset of V (C) − {a2} with the
property that a1 → N . Then we define A ∪ B = {ai1−1, ai2−1, . . . , aik−1}
such that an → A and B ⊆ V (an). This definition and the fact that an →
(H − V (an)) lead to N+(a1) = {a2} ∪ N ∪ H and N+(an) ⊇ {a1} ∪ A ∪ S ∪
(H − (V (an) − (B ∪ {an}))). This implies
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d+(an) ≥ |A| + |S| + 1 + |H| − (r + 1 − (|B| + 1))

= |A| + |B| + |H| + |S| − r + 1

= d+(a1) + |S| − r,

(2.6)

if |V (an)| ≤ r + 1 and

d+(an) ≥ d+(a1) + |S| − (r + 1), (2.7)

if |V (an)| = r + 2. If |V (an)| = r + 2 and S consists of two partite sets, then
by (2.7), we conclude that r = 2 and |S| = 2r = 4, and thus, Remark 1.18
leads to the contradiction

cr + k − r − 2

2
+ 1 ≤ d+(a1) + 1 ≤ d+(an) =

cr + k − r − 2

2
.

Hence, because of the bounds (2.6) and (2.7), we conclude that the case n =
c − 1, |B| = 0 and D[V (C)] is a tournament, remains to be considered.

Subcase 9.1. There exists a vertex v ∈ S such that v → an−3. If there is a
vertex ai ∈ V (C) with 4 ≤ i ≤ n − 4 such that ai → v, then we obtain, as in
Case 1, an (n + 1)-cycle through ana1, a contradiction. Thus, we investigate
now the case that v → {a1, a2, . . . , an−3}. If R1 = V (D)−(H∪Q∪V (v)∪V (C)),
then because of |H| = |N+(a1)−V (C)| ≥ d+(a1)−(n−2) and |Q| = |N−(v)−
V (C)| = d−(v)−3, we see with respect to Lemma 1.12 and Corollary 1.19 that

|R1| ≤ cr + k

−

{

cr + k − r − 2

2
− (n − 2) +

cr + k − r − 1

2
− 3 + r + n

}

=
5

2
,

if |V (v)| = r,

|R1| ≤ cr + k

−

{

cr + k − r − 2

2
− (n − 2) +

cr + k − r − 2

2
− 3 + r + 1 + n

}

= 2,

if |V (v)| = r + 1, and

|R1| ≤ cr + k

−

{

cr + k − r − 2

2
− (n − 2) +

cr + k − r − 2

2
− 3 + r + 2 + n

}

= 1,

if |V (v)| = r + 2. Altogether, we see that |R1| ≤ 2, if |V (v)| ≤ r + 1 and
|R1| ≤ 1, if |V (v)| = r + 2.

Subcase 9.1.1. Firstly, let H consist of vertices of only one partite set.
Because of |B| = 0, according to (2.6) (respectively, (2.7)), this partite set
has to be V (an). Since H ⊆ V (an) − {an}, we have a2 → H and thus
{a3, a4, . . . , an−1} → H. If there are vertices h ∈ H and y ∈ F such that
h → y, then ana1a2 . . . an−2hyan is an (n + 1)-cycle, a contradiction. Hence,
F → H. Consequently, (N−(an) ∪ S) → H. Therefore, for x ∈ H, it follows
that d−(x) ≥ d−(an) + |S| ≥ d−(an) + 2, a contradiction to ig(D) ≤ 1.
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Subcase 9.1.2. Now we assume that H consists of vertices of more than one
partite set. Let L be the set of vertices in H, which have an inner neighbor in H
and M = H −L. If there are vertices q ∈ L and p ∈ H such that p → q → a3,
then ana1pqa3 . . . an is an (n+1)-cycle, a contradiction. Consequently, a3 Ã L.

Firstly, let n ≥ 7. Then, we have Q Ã L, because otherwise, if there are
vertices x ∈ Q and q ∈ L such that q → x, then ana1qxva4a5 . . . an is an
(n + 1)-cycle, a contradiction. Altogether, we observe that (Q ∪ V (v) ∪ M ∪
{a1, a2, a3, an}) Ã L. Because of |R1| ≤ 2, for every vertex q ∈ L, it follows
that d(q, V (D) − L) ≤ n − 2 = c − 3 and thus, Corollary 1.19 leads to

d+
D[L](q) = d+(q) − d(q, V (D) − L) ≥

cr + k − r − 2

2
− c + 3.

This implies

|L|(|L| − 1)

2
≥ |E(D[L])| =

∑

q∈L

d+
D[L](q) ≥ |L|

{

cr + k − r − 2

2
− c + 3

}

.

Since d+(v) ≥ |H| + (n − 3) = |H| + (c − 4), we conclude together with
Lemma 1.11 that |L| ≤ d+(v) − (n − 3) − |M | = d+(v) − c + 4 − |M | ≤
cr+k−r+1

2
− c + 4 − |M |. Combining these results, we arrive at

cr + k − r + 1

2
− c + 3 − |M | ≥ |L| − 1 ≥ 2

{

cr + k − r − 2

2
− c + 3

}

.

This results in (c − 1)r + k + 2|M | + 1 ≤ 2c, a contradiction, if |M | ≥ 1.
The case |M | = 0 leads to a contradiction, analogously to Subcase 3.2.
It remains to treat the case that n = 6 and c = n + 1 = 7. We remember

that {a4, a5, a6} → S → {a1, a2, a3}. We note that H ∩ F = ∅, since F →
a6 Ã H. If there are vertices f ∈ F and w ∈ S such that w → f , then
a6a1a2a3a4wfa6 is a 7-cycle, a contradiction. Therefore, we have F → S.
Because of H∩F = ∅, we see that F Ã a1. Let R2 = V (D)−(H∪F∪S∪V (C)).
Since |B| = 0 and a6 → ai−1, if a1 → ai for 2 ≤ i ≤ n − 1, we observe that
|N+(a1) ∩ V (C)| + |N−(a6) ∩ V (C)| ≤ l + 5 − l = 5, if |N+(a1) ∩ V (C)| = l.
Hence, Corollary 1.19 yields

|R2| ≤ cr + k −

{

cr + k − r − 2

2
+

cr + k − r − 2

2
− 5 + |S| + n

}

≤ 1.

From the fact that v → H and N+(v) ∩ V (C) = {a1, a2, a3}, we deduce
that |N+(a1)∩ V (C)| ≥ 2. If {a3} ⊆ N+(a1) or {a4} ⊆ N+(a1), then F Ã H,
because otherwise, if there are vertices h ∈ H and f ∈ F such that h → f ,
then either a6a1a3a4vhfa6 or a6a1a4a5vhfa6 is a 7-cycle, a contradiction. Let
L be the set of vertices in H, which have an inner neighbor in H and let
M = H −L. Then it follows that (M ∪F ∪S ∪{a1, a2, a3, a6})Ã L, and thus,
since |R2| ≤ 1, for every vertex q ∈ L, we observe that d(q, V (D) − L) ≤ 3 =
n−3 = c−4 and, analogously as above, we get a contradiction. Consequently,
let N+(a1) ∩ V (C) = {a2, a5}, and thus a6 → a4 and d+(a1) = d+(v) − 1.

Assume that F consists of vertices of only one partite set Vb. In this case,
we observe that N−(a6) ⊆ F ∪ (N−(a6) ∩ V (C)). Since |N+(a6) ∩ V (C)| ≥
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|N+(a1) ∩ V (C)| = 2, it follows that |N−(a6) ∩ V (C)| ≤ 3 and thus 6r+k−2
2

≤
d−(a6) ≤ r + 3, if |Vc| = r + 1. This yields the contradiction 4r + k ≤ 8.
Hence, let us investigate the case that |Vc| = r + 2. If |Vb| = r + 2 and
|V (a6)| ≥ r + 1 (that means k ≥ 3), then we arrive at the contradiction
6r+k−2

2
≤ d−(a6) ≤ r + 4. On the other hand, if |Vb| ≤ r + 1 or |V (a6)| = r,

we see that 6r+k−2
2

≤ d−(a6) ≤ r + 3 or 6r+k
2

≤ d−(a6) ≤ r + 4, in both cases a
contradiction.

Consequently, it remains to consider the case that F consists of more than
one partite set. Hence, there exists an arc f1f2 ∈ E(D[F ]), and the set F1 of
vertices in F having an outer neighbor in F is non-empty. Let F2 = F − F1.
If there are vertices f1 ∈ F1, h ∈ H and f2 ∈ F such that h → f1 → f2,
then a6a1a5vhf1f2a6 is a 7-cycle, a contradiction. Therefore, we may as-
sume that F1 Ã H. Furthermore, we see that F1 Ã a4, because otherwise
a6a1a2a3a4f1f2a6 is a 7-cycle, a contradiction. Because of H ∩ F = ∅, we
conclude that F Ã a1. It is also easy to see that F Ã a5 and F → S, since
otherwise we are able to construct a 7-cycle, a contradiction. Summarizing, we
see that F1 Ã (H ∪ S ∪ F2 ∪ {a1, a4, a5, a6}). Hence, since |R2| ≤ 1, for every
vertex f1 ∈ F1, we conclude that d(V (D) − F1, f1) ≤ 3, and thus, it follows
from Corollary 1.19 that

d−
D[F1](f1) = d−(f1) − d(V (D) − F1, f1) ≥

6r + k − 2

2
− 3.

This implies

|F1|(|F1| − 1)

2
≥ |E(D[F1])| =

∑

f1∈F1

d−
D[F1](f1) ≥ |F1|

{

6r + k − 2

2
− 3

}

.

We see that d−(a6) ≥ |F |+2, because otherwise, we arrive at the contradiction
d+(a6) ≥ 4 + |H| − |V (a6) − {a6}| + |S| ≥ d+(a1) + 2 + |S| − r ≥ d+(a1) + 2,
if |V (a6)| ≤ r + 1. If |V (a6)| = r + 2, then we obtain d+(a6) ≥ d+(a1) + 1, a
contradiction to Remark 1.18. Thus, it follows that |F1| ≤ d−(a6)− 2− |F2| ≤
6r+k+1

2
− 2 − |F2|. Combining these results, we obtain

6r + k + 1

2
− 3 − |F2| ≥ |F1| − 1 ≥ 2

{

6r + k − 2

2
− 3

}

,

which can be transformed to 6r + k + 2|F2| ≤ 11, a contradiction.
Subcase 9.2. Finally, we assume that an−3 → S. Then we see that n =

c − 1 ≥ 7. Let R = V (D) − (H ∪ F ∪ S ∪ V (C)). If there is a vertex
w ∈ H ∩ F , then ana1a2 . . . an−2vwan is an (n + 1)-cycle, a contradiction.
Consequently, let H ∩F = ∅. We have seen above that |H| = d+(a1)−|N |− 1
and |N+(an) ∩ V (C)| ≥ |N | + 1. Hence |N−(an) ∩ V (C)| ≤ n − |N | − 2, and
thus |F | = |N−(an)−V (C)| ≥ d−(an)−(n−2−|N |). It follows from Corollary
1.19 that

|R| ≤ cr + k

−

{

cr + k − r − 2

2
− |N | − 1 +

cr + k − r − 2

2
− n + 2 + |N | + |S| + n

}

,
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and thus |R| ≤ 1, if |S| = r; |R| = 0, if |S| = r+1; and |R| ≤ −1, if |S| = r+2.
If there is an arc xy with x ∈ H and y ∈ F , then ana1a2 . . . an−3vxyan is an
(n + 1)-cycle, a contradiction. If there is an arc uy with u ∈ S and y ∈ F ,
then ana1a2 . . . an−2uyan is an (n + 1)-cycle, a contradiction. Furthermore, if
there is an arc xan−1 with x ∈ H, then ana1a2 . . . an−3vxan−1an is an (n + 1)-
cycle, a contradiction. Consequently, it remains to treat the case that (F ∪
S ∪ {a1, a2, an−1, an})Ã H and F Ã ({a1, an−1, an} ∪ S ∪ H).

Subcase 9.2.1. Firstly, we investigate the case that r = 2. As seen above,
for every vertex h ∈ H, we conclude that d(h, V (D)−H) ≤ n− 3 = c− 4 and
thus d+

D[H](h) ≥ cr+k−r−2
2

−c+4 = k+4
2

≥ 5
2

and therefore d+
D[H](h) ≥ 3. Hence,

H contains at least 7 vertices. Furthermore, there is at least one vertex h1 in H
such that d+

D[H](h1) ≤
|H|−1

2
. Since N+(a1) = H ∪N ∪ {a2} and ig(D) ≤ 1, we

conclude that d+(h1) ≥ |H|+|N |. In addition, (F∪S∪{a1, a2, an−1, an})Ã H,
and thus N+(h1) ⊆ V (C) ∪ R ∪ H, which leads to

|N+(h1) ∩ V (C)| + |R| +
|H| − 1

2
≥ d+(h1) ≥ |H| + |N |.

This implies

|N+(h1) ∩ V (C)| ≥
|H| + 1

2
+ |N | − |R| ≥ |N | + 3.

Let ai ∈ N+(h1) ∩ V (C) (3 ≤ i ≤ n − 2). If ai−1 → an, then we observe that
ana1h1ai . . . an−2va2 . . . ai−1an is an (n + 1)-cycle, a contradiction. Therefore,
in V (C), an has at least |N |+ 3 further outer neighbors except a1. According
to (2.6) and (2.7), this yields

d+(an) ≥ |N | + 4 + |H| + |S| − (r + 1) = d+(a1) + 2 + |S| − r ≥ d+(a1) + 2,

a contradiction to ig(D) ≤ 1.
Subcase 9.2.2. Assume that |N | ≥ c−6

2
and r ≥ 3. Since |R| ≤ 1, for every

vertex h ∈ H, we conclude that d(h, V (D) − H) ≤ n − 3 = c − 4 and thus, it
follows from Corollary 1.19 that

d+
D[H](h) = d+(h) − d(h, V (D) − H) ≥

cr + k − r − 2

2
− c + 4.

This implies

|H|(|H| − 1)

2
≥ |E(D[H])| =

∑

h∈H

d+
D[H](h)

≥ |H|

{

cr + k − r − 2

2
− c + 4

}

.

Since |H| = d+(a1) − |N | − 1 ≤ cr+k−r+1
2

− |N | − 1 ≤ cr+k−r+1
2

− c
2

+ 2 =
cr+k−r−c+5

2
, we obtain

cr + k − r − c + 3

2
≥ |H| − 1 ≥ cr + k − r − 2 − 2c + 8.
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This inequality is equivalent to (c− 1)r + k ≤ 3c− 9, a contradiction to r ≥ 3.
Subcase 9.2.3. Now assume that |N | ≤ c−7

2
and r ≥ 3. Since |R| ≤ 1, for

every vertex y ∈ F , we conclude that d(V (D) − F, y) ≤ n − 2 = c − 3 and
thus, it follows from Corollary 1.19 that

d−
D[F ](y) = d−(y) − d(V (D) − F, y) ≥

(c − 1)r + k + 4

2
− c.

This implies

|F |(|F | − 1)

2
≥ |E(D[F ])| =

∑

y∈F

d−
D[F ](y) ≥ |F |

{

(c − 1)r + k + 4

2
− c

}

.

Since ig(D) ≤ 1, we conclude from (2.6) and (2.7) that |N+(an) ∩ V (C)| ≤
|N | + 3, and thus |N−(an) ∩ V (C)| ≥ n − |N | − 4. Hence, it follows that
|F | = |N−(an)−V (C)| ≤ d−(an)−(n−|N |−4) ≤ cr+k−r+1

2
−(c−1)+4+ c−7

2
=

(c−1)r+k+4−c

2
. Combining these results, we observe that

(c − 1)r + k + 2 − c

2
≥ |F | − 1 ≥ (c − 1)r + k + 4 − 2c.

A transformation of this inequality leads to 3c ≥ (c−1)r+k+6 ≥ (c−1)r+7,
a contradiction to r ≥ 3. This completes the proof of the theorem. ¤

2.2 The case γ(D) = 1

Now, it remains to consider the case that there is only one vertex in at least
one partite set. Again, let D be an almost regular c partite tournament with
the partite sets V1, V2, . . . , Vc such that 1 = |V1| ≤ |V2| ≤ . . . ≤ |Vc|. According
to Theorem 2.6 and Lemma 1.10 we may assume that 2 ≤ |Vc| ≤ 3.

Theorem 2.12 (Volkmann, Winzen [42]) Let D be an almost regular c-
partite tournament with the partite sets V1, V2, . . . , Vc such that 1 = |V1| ≤
|V2| ≤ . . . ≤ |Vc| ≤ 3 and |Vc| ≥ 2. If c ≥ 8, then every arc of D is contained
in an n-cycle for each n ∈ {4, . . . , c}.

Proof. We prove the theorem by induction on n. For n = 4, the result
follows from Theorem 2.3. Now let e be an arc of D and assume that e is
contained in an n-cycle C = ana1a2 . . . an with e = ana1 and 4 ≤ n ≤ c − 1.
Suppose that e = ana1 is not contained in any (n + 1)-cycle.

Obviously, |V (D)| = c+k with 1 ≤ k ≤ c−1, if |Vc| = 2 and 2 ≤ k ≤ 2c−2,
if |Vc| = 3. Firstly, we observe that, if n = 4 and |Vc| = 2 or n ≤ 5 and |Vc| = 3,
then N+(v)− V (C) 6= ∅ for each v ∈ V (C), because otherwise Corollary 1.19,
the fact that k ≥ 1 (respectively, k ≥ 2) and c ≥ 8 yield the contradiction

4 = |V (C)| ≥ d+(v) + 2 ≥
c + k − 3

2
+ 2 ≥ 5

or

5 ≥ |V (C)| ≥ d+(v) + 2 ≥
c + k − 3

2
+ 2 > 5.
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Analogously, one can show that N−(v)−V (C) 6= ∅ for each v ∈ V (C), in these
cases.

Next, let S be the set of vertices that belong to partite sets not represented
on C and define

X = {x ∈ S | C → x}, Y = {y ∈ S | y → C}.

Assume that X 6= ∅ and let x ∈ X. It follows that N−(v) − V (C), N+(v) −
V (C) 6= ∅ for each v ∈ V (C), because otherwise, we have d−(v), d+(v) ≤
n − 2 and d−(x) ≥ n, a contradiction to ig(D) ≤ 1. If there is a vertex
w ∈ N−(an)− V (C) such that x → w, then ana1a2 . . . an−2xwan is an (n + 1)-
cycle through ana1, a contradiction. If (N−(an)−V (C)) → x, then |N−(x)| ≥
|N−(an) − V (C)| + |V (C)| ≥ |N−(an)| + 2, a contradiction to the hypothesis
that ig(D) ≤ 1. If there exists a vertex b ∈ (N−(an) − V (C)) such that
V (b) = V (x), then b is adjacent with all vertices of C. In the case that
N−(b)∩ V (C) 6= ∅, let l = max1≤i≤n−1{i | ai → b}. Then ana1 . . . albal+1 . . . an

is an (n + 1)-cycle through ana1, a contradiction. It remains to consider the
case that N−(b)∩V (C) = ∅. If there is a vertex u ∈ (N−(b)−V (C)) = N−(b)
such that x → u, then ana1a2 . . . an−3xuban is an (n + 1)-cycle through ana1,
a contradiction. Otherwise, N−(b) → x, and we arrive at the contradiction
d−(x) ≥ d−(b) + |V (C)|. Altogether, we have seen that X 6= ∅ is not possible,
and analogously we find that Y 6= ∅ is impossible. Consequently, from now on
we shall assume that X = Y = ∅.

By the definition of S, every vertex of V (C) is adjacent to every vertex of
S, and since n ≤ c − 1, we deduce that S 6= ∅. Now we distinguish different
cases.

Case 1. There exists a vertex v ∈ S with v → an. Since Y = ∅, there is
a vertex ai ∈ V (C) such that ai → v. If l = max1≤i≤n−1{i | ai → v}, then
ana1 . . . alval+1 . . . an is an (n + 1)-cycle through ana1, a contradiction. This
implies an → S.

Case 2. There exists a vertex v ∈ S with a1 → v. Since X = ∅, there
is a vertex ai ∈ V (C) such that v → ai. If l = min2≤i≤n−1{i | v → ai}, then
ana1 . . . al−1val . . . an is an (n + 1)-cycle through ana1, a contradiction. This
implies S → a1.

Case 3. There exists a vertex v ∈ S such that v → an−1. If there is a
vertex ai ∈ V (C) with 2 ≤ i ≤ n − 2 such that ai → v, then we obtain as
above an (n+1)-cycle through ana1, a contradiction. Thus, we investigate now
the case that v → {a1, a2, . . . , an−1}. Because of S → a1, we note that every
vertex of N+(a1) is adjacent to v. If there is a vertex x ∈ (N+(a1) − V (C))
such that x → v, then ana1xva3a4 . . . an is an (n + 1)-cycle through ana1, a
contradiction. Therefore we assume now that v → (N+(a1) − V (C)). This
leads to d+(v) ≥ d+(a1) + 1, and thus, because of ig(D) ≤ 1, it follows that
N+(v) = N+(a1) ∪ {a1} and a1 → {a2, a3, . . . , an−1}.

If we define H = N+(a1)− V (C) and Q = N−(v)−{an}, then H ∩Q = ∅,
S ∩ H = ∅, and R = V (D) − (H ∪ Q ∪ V (v) ∪ V (C)) = ∅.

If there is an arc xa2 with x ∈ H, then ana1xa2a3 . . . an is an (n + 1)-cycle
through ana1, a contradiction. Thus, we assume in the following that a2 Ã H.



30 CHAPTER 2. CYCLES OF A GIVEN LENGTH THROUGH AN ARC

Subcase 3.1. Let n = 4. At first, let |Vc| = 2. If C consists of at most 3
partite sets, then it has to be |S| ≥ 5 and thus, it follows that d+(a4) ≥ 6. On
the other hand, we see that d−(a4) ≤ |V (D)| − |S| − |V (a4)| − |{a1}| ≤ 3, a
contradiction to ig(D) ≤ 1. Therefore, D[V (C)] has to be a tournament.

Now, let |Vc| = 3. If V (C) is 2-partite, then we observe that d+(a4) ≥ |S|+
1 ≥ 7 and d−(a4) ≤ |V (a3)−{a1}| ≤ 2, a contradiction to ig(D) ≤ 1. So, let C
contain vertices of only 3 partite sets. If |S| ≥ 6, then we see that d+(a4) ≥ 7
and d−(a4) ≤ 5, a contradiction. Consequently, it remains to investigate the
case that |S| = 5, c = 8, 2 ≤ k ≤ 6 and 10 ≤ |V (D)| ≤ 14. Since d+(a4) ≥ 6,
it follows that 12 ≤ |V (D)| ≤ 14. In view of Remark 1.18, it remains to
treat the case that |V (D)| = 13. If |V (a4)| = 3, then d+(a4) = d−(a4) = 5,
a contradiction to d+(a4) ≥ 6. If |V (a1)| = 3, then d+(a1) = d−(a1) = 5,
a contradiction to d−(a1) ≥ 6. This implies |V (a1)|, |V (a4)| ≤ 2 and thus
|V (D)| ≤ 12, a contradiction.

Consequently, if n = 4, then it is sufficient to investigate the case that
D[V (C)] is a tournament. We remind that we have shown above that H 6= ∅.

Subcase 3.1.1. Suppose that |H| = 1. This implies d+(v) = d+(a1)+1 = 4.
On the other hand, we see that d+(a4) ≥ |S| + 1 ≥ 5, a contradiction to
ig(D) ≤ 1.

Subcase 3.1.2. Let |H| ≥ 2.
Subcase 3.1.2.1. Assume that |H| = 2 and E(D[H]) = ∅, which means that

|Vc| = |V (h)| = 3 for h ∈ H. Then, it follows that d+(v) = d+(a1) + 1 = 5,
which yields

4 = d+(a1) ≤ d−(v) = |Q| + 1 ≤ d+(v) = 5,

and hence 3 ≤ |Q| ≤ 4. Because of d+(a4) ≥ |S|+1 ≥ 5, it remains to consider
the case that |S| = 4, d+(a4) = 5, c = 8 and a2 → a4. Since |S| = 4 and
S = V (v) ∪ (Q ∩ S), we see that we have to investigate the case |Q − S| ≤ 1.
If H ⊆ V (a4), then d−(a4) ≤ |{a2, a3}| + |Q − S| ≤ 3, a contradiction to
ig(D) ≤ 1. Consequently, it has to be H → a4 and therefore also H Ã a3,
since otherwise a4a1a2a3ha4 is a 5-cycle, if h ∈ H, a contradiction. Since
|V (v)| = 1, at least three vertices of Q have to belong to N+(a3), because
otherwise, we arrive at the contradiction d+(a3) ≤ 3. If there are vertices
q ∈ N+(a3) ∩ Q and h ∈ H such that q → h, then a4a1a3qha4 is a 5-cycle,
a contradiction. It remains to consider the case that H → (N+(a3) ∩ Q). If
q ∈ Q∩N+(a3) such that q → a2, then a4a1hqa2a4 is a 5-cycle, a contradiction.
Let q1 ∈ N+(a3)∩Q∩S 6= ∅ be a vertex such that |N−(q1)∩Q∩S| ≥ 1. Then
we arrive at d−(q1) ≥ |H|+1+ |{a2, a3, a4}| = 6, a contradiction to ig(D) ≤ 1.

Subcase 3.1.2.2. Suppose now that |H| ≥ 2 and E(D[H]) 6= ∅. Hence,
there is an arc p → q in E(D[H]). If q → a3, then a4a1pqa3a4 is a 5-cycle, a
contradiction. Hence, let a3 Ã q. If x ∈ N+(q) − V (h), then a4 Ã x, because
otherwise, a4a1pqxa4 is a 5-cycle, a contradiction.

Firstly, let a4 → a2. Then, we have

N+(a4) ⊇ (N+(q) − (V (C) ∪ (V (a4) − {a4}))) ∪ (N−(q) ∩ S) ∪ {a1, a2}

and

N+(q) ⊆ (N+(q) − V (C)) ∪ {a4}.
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If there is a vertex x ∈ Q ∩ S such that x → q, then |N−(q) ∩ S| ≥ 2 and we
deduce that

d+(a4) ≥

{

d+(q) + 1, if |V (a4)| = 3
d+(q) + 2, if |V (a4)| ≤ 2

,

in both cases a contradiction either to Remark 1.18 or to ig(D) ≤ 1. Therefore,
let q → Q ∩ S. If a4 → q or q ∈ V (a4), then similarly, we arrive at a
contradiction. Hence, let q → a4. Furthermore, p ∈ V (a2), since otherwise,
a4a1a2pqa4 is a 5-cycle, a contradiction. If there is a vertex x ∈ Q ∩ S such
that x → a3, then a4a1qxa3a4 is a 5-cycle, a contradiction. Hence Q ∩ S ⊆
N+(a3). If there are vertices x ∈ N+(a3) − {a4} and y ∈ N−(a4) − {a3} such
that x → y, then a4a1a3xya4 is a 5-cycle, a contradiction. Consequently, we
conclude that N−(a4) − {a3} Ã N+(a3) − {a4}. Let v1 → v2 be an arc in
E(D[Q∩S]). Then, we observe that d+(v2) ≤ d+(a4)−2+ |V (a4)−{a4}|, and
thus |V (a4)| ≥ 2. If (V (a4)−{a4}) → v2, then we see that d+(a4) ≥ d+(v2)+2,
a contradiction. If |V (a4)| = 3 and |N+(v2) ∩ (V (a4) − {a4})| = 1, then it
follows that d+(a4) ≥ d+(v2) + 1, a contradiction to Remark 1.18. Hence,
let v2 → (V (a4) − {a4}). Analogously, we conclude that there is no vertex
w ∈ Q∩S such that |N−(w)∩Q∩S| ≥ 2. Let x1, x2, x3 be three vertices of Q∩S
belonging to three different partite sets, then they have to form a 3-cycle and
{x1, x2, x3} → (V (a4)−{a4}). Furthermore, we see that a3 → (V (a4)−{a4}),
because otherwise, if d ∈ V (a4) − {a4} such that d → a3, then

N+(a4) ⊇ (N+(a3) − (V (C) ∪ (V (a4) − {a4, d}))) ∪ {v, a1, a2} and

N+(a3) ⊆ (N+(a3) − V (C)) ∪ {a4}.

If |V (a4)| = 3, then this implies d+(a4) ≥ d+(a3) + 1, a contradiction to
Remark 1.18. If |V (a4)| = 2, then d+(a4) ≥ d+(a3) + 2, also a contradiction.
Let f ∈ V (a4) − {a4}. Since N−(a4)Ã N+(a3) and f ∈ N+(a3), f has outer
neighbors only in N+(a4) − {x1, x2, x3}, a contradiction to ig(D) ≤ 1.

Secondly, let a2 → a4. As above, we observe that a4 Ã (N+(q) − V (C)).
If V (q) 6= V (a3), then because of N+(a3) ∩ N−(a4) = ∅ we have a4 Ã q and
thus

N+(a4) ⊇ (N+(q) ∪ {q} − (V (C) ∪ (V (a4) − {a4}))) ∪ {v, a1} and

N+(q) = N+(q) − V (C).

This implies

d+(a4) ≥

{

d+(q) + 1, if |V (a4)| = 3
d+(q) + 2, if |V (a4)| ≤ 2

.

The first case is a contradiction to Remark 1.18, and the second case is a
contradiction to ig(D) ≤ 1. Analogously, we arrive at a contradiction, if
V (q) = V (a3) and a4 → q.

Let A ⊆ H be the set of vertices having an inner neighbor in H. Then,
it remains to treat the case that V (q) = V (a3) for all q ∈ A, A → a4 (|A| ≤
2) and 2 ≤ |H| ≤ 4. If B = H − A, then we conclude that B ⊆ V (a2),
because otherwise, if p ∈ B − V (a2) and q ∈ A, then a4a1a2pqa4 is a 5-cycle,
a contradiction.
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If |H| = 2, then d+(v) = d+(a1)+1 = 5. Since a4 → (V (v)∪(Q∩S)∪{a1})
and thus d+(a4) ≥ 5, this implies that d+(a4) = 5, |V (v)| = 1, |Q ∩ S| = 3
and H → a4. If there is a vertex v1 ∈ Q ∩ S such that v1 → a3, then,
as for the vertex v, it follows that v1 → H ∪ {a2}. Hence, we deduce that
d+(v1) ≥ |H| + |{v, a1, a2, a3}| = 6, a contradiction. Thus, let a3 → Q ∩ S.
If there is a vertex v1 ∈ Q ∩ S such that v1 → x with x ∈ {p, q}, then
a4a1a3v1xa4 is a 5-cycle through e, a contradiction. If there is a vertex v1 ∈
Q ∩ S such that v1 → a2, then a4a1a3v1a2a4 is a 5-cycle, also a contradiction.
Let v1, v2 ∈ Q ∩ S such that v1 → v2. Summarizing our results, we observe
that d−(v2) ≥ |H| + |{a2, a3, a4, v1}| = 6, a contradiction.

Let |H| = 4, H = {p1, p2, q1, q2} such that pi → qj with i, j ∈ {1, 2}. Then
d+(v) = d+(a1) + 1 = 7, |V (a2)| = |V (a3)| = 3 and because of Remark 1.18
d+(a2) = d−(q1) = 6. Since d−(v) = |Q| + 1 ≥ 6, we arrive at |Q| ≥ 5.
Furthermore, we see that N−(q1) ⊇ {p1, p2, v, a1, a2} . This implies |N−(q1) ∩
Q| ≤ 1, which means that |N+(q1) ∩ Q| ≥ |Q| − 1 ≥ 4. If there exists a
vertex w ∈ N+(q1) ∩ Q such that w → a2, then a4a1q1wa2a4 is a 5-cycle, a
contradiction. Therefore, we have

d+(a2) ≥ |N+(q1) ∩ Q| + |{a3, a4, q1, q2}| ≥ 8,

a contradiction.
Assume now that |H| = 3, H = {p1, p2, q} such that pi → q for i =

1, 2. Then d+(v) = d+(a1) + 1 = 6, |V (a2)| = 3 and d+(a2) = 5. Since
d−(v) = |Q| + 1 ≥ 5, we arrive at |Q| ≥ 4. Furthermore, we see that N−(q) ⊇
{p1, p2, v, a1, a2}. Since d−(q) = 5, if |V (q)| = 3, and d−(q) ≤ 6, if |V (q)| = 2,
we conclude that |N+(q) ∩ Q| ≥ |Q| − 1 ≥ 3. As above, we see that a2 →
N+(q) ∩ Q. Therefore, we have

d+(a2) ≥ |N+(q) ∩ Q| + |{a3, a4, q}| ≥ 6,

a contradiction.
Consequently, it remains to treat the case that |H| = 3 and H = {p, q1, q2}

such that p → qi for i = 1, 2. Then d+(v) = d+(a1) + 1 = 6 and because of
Lemma 1.12 and Remark 1.18 we observe that |V (v)| ≤ 2 and |V (D)| = 13.
Suppose that there is a vertex x ∈ {q1, q2} such that a4 → x. This implies
that N−(x) ⊇ {a1, a2, a4, p, v}. Since |V (x)| = 3, Remark 1.18 yields that
d−(x) = 5 and x → Q. If |V (v)| ≥ 2, then we conclude that |S| ≥ 5 and
thus d+(a4) ≥ 7, a contradiction. Hence, let |V (v)| = 1 and therefore |Q| =
|V (D)| − |V (C)| − |H| − |V (v)| = 5. If there is a vertex y ∈ Q such that
y → a2, then a4a1xya2a4 is a 5-cycle containing the arc e, a contradiction.
Summarizing our results, we observe that a2 → (Q ∪ {a3, a4, q1, q2}) and thus
d+(a2) ≥ 9, a contradiction. Hence, let {q1, q2} → a4. If a4 → p, then we define
the cycle C ′ = b4b1b2b3b4 := a4a1pq1a4. We observe that v → ({b1, b2, b3} ∪
(N+(b1) − V (C))), |N+(b1) − V (C)| = 3, b1 → b3 and b4 → b2 and as above
we find a 5-cycle containing the arc b4b1 = a4a1, a contradiction. Hence, let
p → a4. Let us take three vertices of Q∩S belonging to three different partite
sets. Then, since a4 Ã N+(a3) − V (C), at least two of them have to be outer
neighbors of a3, because otherwise, there are vertices v1, v2 ∈ Q ∩ S such that
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a4 → {v1, v2} → a3, and thus, it follows that

N+(a4) ⊇ (N+(a3) − (V (C) ∪ (V (a4) − {a4}))) ∪ {v, v1, v2, a1} and

N+(a3) = (N+(a3) − V (C)) ∪ {a4}.

This implies that

d+(a4) ≥

{

d+(a3) + 1, if |V (a4)| = 3
d+(a3) + 2, if |V (a4)| ≤ 2

,

in both cases a contradiction.
Consequently, let N+(a3)∩Q∩S ⊇ {x, y} such that x → y. If y → a2, then

a4a1a3ya2a4 is a 5-cycle, a contradiction. Hence, we have a2 → y. If y → u
with u ∈ {p, q1, q2}, then a4a1a3yua4 is a 5-cycle, a contradiction. Hence, let
{p, q1, q2} → y. Altogether, we have that N−(y) ⊇ {p, q1, q2, x, a2, a3, a4}, a
contradiction to ig(D) ≤ 1.

Subcase 3.2. Let n ≥ 5. If there are vertices x ∈ H and y ∈ Q such that
x → y, then ana1xyva4 . . . an is an (n + 1)-cycle, a contradiction. Hence, let
QÃ H.

Subcase 3.2.1. Assume that |H| ≥ 2. At first, let there be an arc p → q in
E(D[H]). If q → a3, then ana1pqa3 . . . an is an (n + 1)-cycle through the arc
ana1, a contradiction. Altogether, we observe that d−(q) ≥ |{p, v, a1, a2, a3}|+
|Q| − |V (q) − {q}| ≥ |Q| + 3 = d−(v) + 2, a contradiction to ig(D) ≤ 1.

Consequently it remains to consider the case that E(D[H]) = ∅, which
means that |H| = 2 and thus d+(v) = d+(a1) + 1 = n + 1. According to
Lemma 1.12 and Remark 1.18, we have |V (v)| ≤ 2. If h ∈ H, then we see that
d+(h) ≤ |V (v) − {v}| + |{a3, . . . , an}| ≤ n − 1, a contradiction to ig(D) ≤ 1.

Subcase 3.2.2. Suppose that |H| = 1 and h ∈ H. In this case, we observe
that d+(v) = d+(a1) + 1 = n. According to Lemma 1.12 and Remark 1.18, we
have |V (v)| ≤ 2. Since d+(h) ≤ |V (v)−{v}|+ |{a3, . . . , an}| ≤ n−1, it follows
that d+(h) = n−1, h ∈ V (a2) and |V (v)| = 2. Let q ∈ Q−V (h) 6= ∅. Because
of H ∩ Q = ∅, we conclude that Q Ã a1. If a2 → q, then ana1a2qha4a5 . . . an

is an (n + 1)-cycle, a contradiction. If ai → q with 3 ≤ i ≤ n − 1, then
ana1a3 . . . aiqhai+1 . . . an is an (n + 1)-cycle, also a contradiction. This implies
that Q ∩ S → {v, h, a1, a2, . . . , an−1}, which means that d+(p) ≥ n + 1, if
p ∈ Q ∩ S, a contradiction. Hence, we have Q ∩ S = ∅ and thus S = V (v),
n = c − 1 and D[V (C)] is a tournament. Let x be a vertex with V (x) = {x}.
Obviously, we have x ∈ V (C). If x = ai with i ∈ {3, . . . , n − 1}, then it
follows that d−(ai) ≥ |Q − V (h)| + |{ai−1, a1, v, h}| = |Q| + 3 = d−(v) + 2, a
contradiction to ig(D) ≤ 1. If |V (a1)| = 1, then we conclude that d−(a1) ≥
|Q| + |V (v)| + |{an}| = d−(v) + 2, a contradiction. Because of h ∈ V (a2),
we observe that |V (an)| = 1 and at least n − 1 of the n vertices of V (C)
belong to partite sets with at least two vertices. If |Vc| = 3, then we have
|Q| ≥ |V (a1) ∪ V (a2) ∪ . . . V (an−1)| − |{a1, a2, . . . , an−1}| − |H| ≥ n − 1 and
d−(v) ≥ n. Together with Remark 1.18, this implies the contradiction

2n + 1 = |V (D)| = d+(v) + d−(v) + 2 ≥ 2n + 2.

Hence, let |Vc| = 2. But now, for every q ∈ Q we have that q /∈ V (h).
Let there be a vertex q ∈ Q such that d+

D[Q](q) ≥ 1, then we see that d+(q) ≥
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d+
D[Q](q) + |{v, h, a1, . . . , an−1}| − |V (q) − {q}| ≥ n + 1, a contradiction to

ig(D) ≤ 1.
Subcase 3.2.3. Assume that |H| = 0. This yields d+(v) = d+(a1)+1 = n−1.

Because of ig(D) ≤ 1, it follows that n − 1 ≥ d−(v) = |Q| + 1 ≥ n − 2, which
means that n − 3 ≤ |Q| ≤ n − 2. As above we see that Q Ã a1. If there
is a vertex q ∈ Q such that a2 → q, then ana1a2qva4 . . . an is an (n + 1)-
cycle containing the arc e, a contradiction. If there are vertices q ∈ Q and
ai ∈ V (C) with ai → q for 3 ≤ i ≤ n − 2, then ana1a3 . . . aiqvai+1 . . . an is an
(n + 1)-cycle, also a contradiction. Summarizing our results, we observe that
Q Ã {a1, a2, . . . , an−2, v}. Let L1 be the set of vertices of Q ∩ S having an
outer neighbor in Q. If L1 6= ∅ and q1 ∈ L1, then it follows that d+(q1) ≥ n, a
contradiction to ig(D) ≤ 1. Hence, let L1 = ∅. Let L2 be the set of vertices of
Q having an outer neighbor in Q. Since |Q| ≥ n − 3 and |H| 6= 0, if |Vc| = 3
and n = 5 (cf. the beginning of the proof of this theorem), we conclude that
either L2 6= ∅ or Q − S = ∅ and Q ∩ S consists of vertices of only one partite
set. At first let Q − S = ∅ and let Q ∩ S = S − V (v) be one partite set. If
q ∈ Q ∩ S, then we conclude that d+(q) ≥ n − 1, and thus d+(q) = n − 1
and |Q| = |V (q)| ≤ 2. Since S consists of only two partite sets, we see that
n = c − 2 ≥ 6 and thus |Q| ≥ n − 3 ≥ 3, a contradiction. Hence, let L2 6= ∅.
If q2 ∈ Q2 and q2 → q1 with q1 ∈ Q, then we arrive at

d+(q2) ≥ |{a1, a2, . . . , an−2, v, q1}| − |V (q2) − {q2}|

≥

{

n − 2, if |V (q2)| = 3
n − 1, if |V (q2)| = 2

.
(2.8)

To get no contradiction to ig(D) ≤ 1 or to Remark 1.18, it follows that
we have equality in (2.8), d+

D[Q](q2) = 1 and |V (q2) ∩ Q| = 1 for all q2 ∈ L2,

since otherwise, if there is a vertex q3 ∈ Q − {q1, q2} such that q2 Ã q3, then
we observe that N+(q2) ⊇ ({a1, a2, . . . , an−2, v, q1, q3} − (V (q2) − {q2}) and
the right-hand side of (2.8) enlarges by one, a contradiction. If S consists
of vertices of at least three partite sets, then, because of R = ∅ and thus
S −V (v) ⊆ Q, we conclude that Q∩S contains vertices of at least two partite
sets, a contradiction to L1 = ∅. Consequently, it remains to treat the case that
S consists of vertices of at most two partite sets.

Firstly, let S consist of vertices of one partite set. This yields n = c − 1,
Q ∩ S = ∅ and Q is a tournament with |Q| ≤ 3. But now, we see that
n − 3 ≤ |Q| ≤ 3, which means that n = c − 1 ≤ 6, a contradiction to c ≥ 8.

Secondly, let S consist of vertices of two partite sets. This implies that
n ≥ c − 2. To get no contradiction in (2.8), we deduce that |Q ∩ S| = 1 and
q2 → Q ∩ S for all q2 ∈ L2. Since |V (q2) ∩Q| = 1, it follows that |Q| ≤ 2, and
thus n − 3 ≤ |Q| ≤ 2, which means that c − 2 ≤ n ≤ 5, a contradiction to
c ≥ 8.

Summarizing the investigations of Case 3, we see that there remains to
consider the case that an−1 → S.

Case 4. There exists a vertex v ∈ S such that a2 → v. If we consider the
converse of D, then, analogously to Case 3, it remains to treat the case that
S → a2.
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If C = ana1a2 . . . an and v ∈ S, then the following three sets play an
important role in our investigations

H = N+(a1) − V (C), F = N−(an) − V (C), Q = N−(v) − V (C).

Summarizing the investigations in the Cases 1 - 4, we can assume in the fol-
lowing, usually without saying so, that

{an−1, an} → S → {a1, a2}Ã H (2.9)

Case 5. Let n = 4. Because of (2.9), we see that {a3, a4} → S → {a1, a2}.
Hence, we conclude that N+(a4) ⊇ S ∪ {a1}. Analogously as in Subcase 3.1,
we observe that D[V (C)] is a tournament.

Subcase 5.1. Let a1 → a3. If a2 → a4 and v ∈ S, then a4a1a3va2a4 is a
5-cycle, a contradiction. Consequently, let a4 → a2. If there are vertices v ∈ S
and x ∈ F such that v → x, then a4a1a3vxa4 is a 5-cycle, a contradiction.
Hence, let F → S. If we take vertices v, w ∈ S such that v → w, then we have
N−(a4) = F ∪{a3} and N−(w) ⊇ F ∪{a3, a4, v}, a contradiction to ig(D) ≤ 1.

Subcase 5.2. Let a3 → a1 and assume that a2 → a4. If there are vertices
v ∈ S and x ∈ H such that x → v, then a4a1xva2a4 is a 5-cycle, a contradiction.
Otherwise, we have S → H. If we take two vertices v, w ∈ S such that v → w,
then we observe that N+(a1) = H ∪ {a2} and N+(v) ⊇ {a1, a2, w} ∪ H, a
contradiction to ig(D) ≤ 1.

Finally, let a4 → a2. Because of Corollary 1.19, it follows that

c + k = |V (D)| ≥ |H| + |F | + |S| + |V (C)| − |H ∩ F |

≥
c + k − 3

2
− 1 +

c + k − 3

2
− 1 + 4 + 4 − |H ∩ F |

= c + k + 3 − |H ∩ F |,

which leads to |H ∩ F | ≥ 3. Thus, H ∩ F contains vertices of at least two
partite sets. Now, we take two vertices u2, u3 ∈ H ∩ F such that u2 → u3.
Then, C ′ = a4a1u2u3a4 is a cycle through a4a1 such that a1 → u3 and u2 → a4.
Analogously to Subcase 5.1 with a2 → a4, this yields a contradiction.

Therefore, we have seen that every arc of D is contained in a 5-cycle. From
now on, let us suppose that n ≥ 5.

Case 6. Let n ≥ 5 and assume that there exists a vertex v ∈ S such
that v → an−2. If there is a vertex ai ∈ V (C) with 3 ≤ i ≤ n − 3 such
that ai → v, then we obtain, as in Case 1, an (n + 1)-cycle through ana1, a
contradiction. Thus, we investigate now the case that v → {a1, a2, . . . , an−2}.
If there is a vertex h ∈ H such that h → v, then ana1hva3a4 . . . an is an
(n + 1)-cycle through ana1, a contradiction. Therefore, we assume now that
v → H. This leads to d+(v) ≥ d+(a1), and thus, because of ig(D) ≤ 1, it
follows that a1 → {a2, a3, . . . , an−1} or a1 → {a2, a3, . . . , an−1}−{aj} for some
j ∈ {3, 4, . . . , n − 1} and aj → a1 or V (a1) = V (aj).

Subcase 6.1. Assume that a1 → {a2, a3, . . . , an−1}. If there is a vertex
h ∈ H such that h → an, then ana1a3a4 . . . an−1vhan is an (n + 1)-cycle,
a contradiction. Therefore, we may assume now that an → (H − V (an)).
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If ai−1 → an for 3 ≤ i ≤ n − 1, then ana1aiai+1 . . . an−1va2a3 . . . ai−1an is
an (n + 1)-cycle, a contradiction. Hence, it remains to treat the case that
an → ai−1 or ai−1 ∈ V (an) for 2 ≤ i ≤ n − 1. If there is a vertex x ∈
H ∩ F , then ana1a3 . . . an−1vxan is an (n + 1)-cycle, a contradiction. Let
R = V (D) − (H ∪ F ∪ S ∪ V (C)). Since an Ã {a1, . . . , an−2}, Corollary 1.19
leads to

|R| ≤ c + k −

{

c + k − 3

2
− (n − 2) +

c + k − 3

2
− 1 + 1 + n

}

= 1,

if |S| = 1, |R| ≤ 0, if |S| = 2 and the contradiction |R| ≤ −1, if |S| ≥ 3.
Hence, it follows that |S| ≤ 2, and thus n ≥ 6. If there are vertices h ∈ H
and y ∈ F such that h → y, then ana1a4 . . . an−1vhyan is an (n + 1)-cycle
containing the arc e, a contradiction. Consequently, let F Ã H.

Subcase 6.1.1. Suppose that |H| ≥ 2. This implies that there are vertices
h1, h2 ∈ H such that h1 Ã h2. On the one hand, we have d+(v) ≥ n− 2 + |H|
and on the other hand, since |S| + |R| ≤ 2, we conclude that d+(h2) ≤ |H −
{h1, h2}|+ |{a3, . . . , an−1}|+ |S−{v}|+ |R| ≤ |H|−2+n−3+1 = |H|+n−4.
Combining these results we arrive at d+(v) − d+(h2) ≥ 2, a contradiction to
ig(D) ≤ 1.

Subcase 6.1.2. Let |H| = 1 and h ∈ H. In this case, we have

d−(h) ≥ |F | + |{v, an, a1, a2}| − |V (h) − {h}| ≥

{

|F | + 2, if |V (h)| = 3
|F | + 3, if |V (h)| = 2

,

whereas d−(an) ≤ |F |+ |{an−1}| = |F |+1, which means that d−(h)−d−(an) ≥
1, if |V (h)| = 3 and d−(h) − d−(an) ≥ 2, if |V (h)| = 2, in both cases a
contradiction.

Subcase 6.1.3. Assume that H = ∅. This implies that d+(a1) = n − 2 and
d+(v) ≥ n − 2. If there are vertices w ∈ S and f ∈ F such that w → f ,
then ana1a3 . . . an−1wfan is an (n + 1)-cycle, a contradiction. Hence, we have
F → S. Since n − 3 ≤ d−(an) ≤ |F | + 1, we conclude that |F | ≥ n − 4 ≥ 2,
and thus F 6= ∅. Furthermore, we observe that

n − 1 ≥ d−(v) ≥ |F | + 2 ⇒ |F | ≤ n − 3. (2.10)

Since H = ∅, we see that F Ã a1. If there is a vertex f ∈ F such that an−1 →
f , then ana1 . . . an−1fan is an (n+1)-cycle containing the arc e, a contradiction.
If there is a vertex f ∈ F such that ai → f with 3 ≤ i ≤ n − 3, then
ana1a3 . . . aifvai+1 . . . an is an (n+1)-cycle, also a contradiction. Summarizing
our results we observe that F Ã (S∪{a1, a3, a4, . . . , an−3, an−1, an}). Let f ∈ F

with d−
D[F ](f) ≤ |F |−1

2
. This yields

d−(f) ≤ d−
D[F ](f) + |{a2, an−2}| + |R| ≤

|F | − 1

2
+ 2 + |R|. (2.11)

Subcase 6.1.3.1. Suppose that d−(f) = n − 3. In this case, the bound
in (2.10) can be improved by |F | + 2 ≤ d−(v) ≤ n − 2, which means that
|F | ≤ n − 4 and thus |F | = n − 4. Combining this with (2.11) we arrive at
n − 3 ≤ n−5

2
+ 2 + |R| ≤ n+1

2
⇒ n ≤ 7.
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Firstly let n = 6. Because of |S| ≤ 2, it follows that n ≥ c − 2, and thus
c = 8, |S| = 2 and |R| = 0. But now, with (2.11) yields n − 3 ≤ n−5

2
+ 2 =

n−1
2

⇒ n ≤ 5, a contradiction.
Secondly let n = 7. If |R| = 0, then we arrive at a contradiction as above.

Hence, let |R| = 1. Since d−(f) = n − 3 we conclude that d+(v) = n − 2 and
d−(v) ≥ |F | + 2 = n − 2 and thus d−(v) = n − 2. If x ∈ R, then x is adjacent
to v, a contradiction to d−(v) = d+(v) = n − 2.

Subcase 6.1.3.2. Assume that d−(f) ≥ n− 2. Combining (2.10) and (2.11)
we see that

n − 2 ≤
n − 4

2
+ 2 + |R| ≤

n + 2

2
⇒ n ≤ 6.

This implies that n = 6 and the inequalities in the last inequality-chain have
to be equalities, which especially means that |R| = 1 and thus |S| = 1. This
yields the contradiction 6 = n = c − 1 ≥ 7.

Subcase 6.2. Assume that n = 5 and there is exactly one j ∈ {3, 4} such
that a1 → ({a2, a3, a4} − {aj}) and aj → a1 or V (aj) = V (a1). In this case,
we observe that d+(v) ≥ d+(a1) + 1.

Subcase 6.2.1. Let a1 → {a2, a3} and a4 → a1 or V (a4) = V (a1). If
there is a vertex h ∈ H such that h → a5, then a5a1a3a4vha5 is a 6-cycle, a
contradiction. Therefore, we may assume that a5 → (H − V (a5)). If a2 → a5,
then a5a1a3a4va2a5 is a 6-cycle, a contradiction. Hence, it remains to consider
the case that a5 → a2 or V (a5) = V (a2). Let {a1, a2} = A ∪ B such that
a5 → A and B ⊆ V (a5). Then N+(a1) = H ∪ {a2, a3} and N+(a5) ⊇ A ∪ S ∪
(H − (V (a5) − (B ∪ {a5}))). This leads to

d+(a5) ≥ |A| + |S| + |H| − (3 − (|B| + 1)) = d+(a1) + |S| − 2.

This implies |S| ≤ 3 and thus c = 8 and |S| = 3. Then we see that d+(a5) ≥
d+(a1) + 1 such that we have equality in the last inequality chain. Especially,
we observe that |V (a5)| = 3, a contradiction to Lemma 1.12 and Remark 1.18.

Subcase 6.2.2. Let a1 → {a2, a4} and a3 → a1 or V (a3) = V (a1). Since
N+(v) = H ∪ {a1, a2, a3}, we observe that R = V (D) − (H ∪ Q ∪ V (v) ∪
V (C)) = ∅. If a3 → a5, then a5a1a4va2a3a5 is a 6-cycle, a contradiction. If
there exists a vertex h ∈ H such that h → a5 and if q ∈ Q ∩ S 6= ∅, then
a5a1a4qvha5 is a 6-cycle, a contradiction. Let A ∪ B = {a1, a3} such that
a5 → A and B ⊆ V (a5), then it follows that N+(a1) = H ∪ {a2, a4} and
N+(a5) ⊇ S ∪ A ∪ (H − (V (a5) − (B ∪ {a5}))), and thus, we have

d+(a5) ≥ |A| + |H| + |S| − (3 − (|B| + 1)) = d+(a1) + |S| − 2.

This implies |S| ≤ 3 and thus c = 8 and |S| = 3. Then we see that d+(a5) ≥
d+(a1) + 1 such that we have equality in the last inequality chain. Especially,
we observe that |V (a5)| = 3, because of Lemma 1.12 and Remark 1.18 a
contradiction.

Subcase 6.3. Suppose that n ≥ 6 and there is exactly one j ∈ {3, . . . , n−1}
such that a1 → ({a2, a3, . . . , an−1} − {aj}) and aj → a1 or V (a1) = V (aj). In
this case, we observe that d+(v) ≥ d+(a1)+1 and thus d+(v) = d+(a1)+1. Since
Q → v → H, it follows that Q∩H = ∅. If R = V (D)−(H∪Q∪V (v)∪V (C)),
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then obviously R = ∅. If there are vertices x ∈ H and y ∈ Q such that
x → y, then ana1xyva4 . . . an is an (n + 1)-cycle through e, a contradiction.
Summarizing our results, we see that

(Q ∪ {a1, a2, v})Ã H.

Subcase 6.3.1. Let |H| ≥ 2. If there are vertices h1, h2 ∈ H such that
h1 → h2, then it follows that a3 Ã h2, since otherwise ana1h1h2a3 . . . an is an
(n + 1)-cycle, a contradiction. Hence we have

d−(h2) ≥ |Q| + |{v, h1, a1, a2, a3}| − |V (h2) − {h2}|

≥

{

|Q| + 3 = d−(v) + 1, if |V (h2)| = 3
|Q| + 4 = d−(v) + 2, if |V (h2)| = 2

,

in both cases a contradiction, either to ig(D) ≤ 1 or to Remark 1.18.
Consequently it remains to consider the case that E(D[H]) = ∅, which

means that H = {h1, h2} such that h1 ∈ V (h2). If there are vertices ai ∈ V (C)
with i ∈ {3, 4, . . . , n} and h ∈ H such that ai Ã h, then analogously as above
we arrive at a contradiction. Hence let H → {a3, a4, . . . , an}. This yields that
ana1h1a4 . . . an−1vh2an is an (n+1)-cycle containing the arc e, a contradiction.

Subcase 6.3.2. Assume that |H| = 1 and h ∈ H. If there is a vertex
ai ∈ N+(h) with 3 ≤ i ≤ n, then we conclude that (Q − V (h)) Ã ai−2, since
otherwise, if q ∈ Q − V (h) such that ai−2 → q, then ana1 . . . ai−2qhai . . . an

is an (n + 1)-cycle, a contradiction. If N+(h) ∩ V (C) = {ai1 , ai2 , . . . , aig},
then we define M = {ai1−2, ai2−2, . . . , aig−2}. Furthermore we observe that
d+(v) = n − 1 = d+(a1) + 1. According to Remark 1.18, we have |V (v)| ≤ 2.
Because of |Q| = d−(v)−2 ≥ n−4 ≥ 2, we see that there are vertices q1, q2 ∈ Q
such that q1 Ã q2.

Firstly, let q1 /∈ V (h). This implies that

|N+(h)| ≤ |M | + |V (v) − {v}| ≤ |M | + 1 (2.12)

and

|N+(q1)| ≥ |M | + |{q2, v, h}| − |V (q1) − {q1}|

≥

{

d+(h), if |V (q1)| = 3
d+(h) + 1, if |V (q1)| = 2

.
(2.13)

To get no contradiction, all inequalities in the inequality-chain of (2.12) and
(2.13) have to be equalities, which especially means that |V (v)| = 2. If a3 /∈
N+(h), then, noticing that q1 Ã a1, we conclude that a1 /∈ M and thus
N+(q1) ⊇ ((M ∪ {q2, v, h, a1}) − (V (q1) − {q1})). Then similarly to (2.13),
we arrive at a contradiction. Therefore, let h → a3. If V (h) 6= V (a2), then
ana1a2ha3 . . . an is an (n + 1)-cycle, a contradiction. Consequently, let V (h) =
V (a2). Let v′ ∈ V (v)−{v}. Because of (2.12) and (2.13), it follows that h → v ′

and thus a3 → v′ since otherwise ana1hv′a3 . . . an is an (n + 1)-cycle through
e, a contradiction. This implies {a3, . . . , an, h} → v′ and thus d−(v′) ≥ n − 1.
Since ig(D) ≤ 1 we conclude that d−(v′) = n − 1 and v′ → Q. If n ≥ 7,
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then ana1hv′qva5 . . . an is an (n + 1)-cycle for any q ∈ Q, a contradiction.
Hence, let n = 6, and thus |S| ≥ 3 and Q ∩ S 6= ∅. If there are vertices
s1 ∈ Q ∩ S and q̂2 ∈ Q such that s1 → q̂2, then similarly as in (2.13), we
arrive at the contradiction d+(s1) ≥ d+(h) + 2. This implies Q ∩ S consists of
vertices of only one partite set, and thus we conclude that c = 8 and D[V (C)]
is a tournament. If there is a vertex ai with 2 ≤ i ≤ 4 such that ai → a6,
then a6a1hv′qvaia6 is a 7-cycle for every q ∈ Q, a contradiction. This yields
d+(a6) ≥ |{a1, a2, a3, a4}|+ |S| ≥ 7 = d+(a1)+3, a contradiction to ig(D) ≤ 1.

Secondly, let q1 ∈ V (h). If |Q| ≥ 3, then there are vertices q′1, q
′
2 ∈ Q such

that q′1 Ã q′2 and q′1 /∈ V (h) and as above this leads to a contradiction. Hence,
let |Q| = 2 and thus, because of |Q| ≥ n − 4 ≥ 2, let n = 6. Since c ≥ 8, we
conclude that Q∩S 6= ∅, {q2} = Q∩S, which implies that c = 8 and D[V (C)]
is a tournament. Furthermore we observe that

d+(q2) ≥ |N+(h) ∩ V (C)| + |{v, h}| ≥ d+(h) + 1.

To get no contradiction to ig(D) ≤ 1, the equalities in the last inequality-
chain and in (2.12) have to be equalities, which means that |V (v)| = 2, h →
(V (v) − {v}), and because of q2 → {a1, a2}, similarly as above it follows that
h → {a3, a4}, and thus V (h) = {h, a2, q1}. Let v′ ∈ V (v) − {v}. If v′ → a3,
then a6a1hv′a3a4a5a6 is a 7-cycle, a contradiction. Consequently, we have
a3 → v′ and analogously as in Case 2, we arrive at {a3, a4, a5, a6, h} → v′.
Since d+(a1) = 4, this implies that d−(v′) = 5 and v′ → Q. If h → a6,
then either a6a1a3a4a5q2ha6 or a6a1a4a5q2vha6 is a 7-cycle, a contradiction. It
follows that a6 → {h, a1, v, v′, q2} and thus a3 → a6. But now a6a1hv′q2a2a3a6

is a 7-cycle, a contradiction.
Subcase 6.3.3. Suppose that |H| = 0. If a1 → ai for some i ∈ {3, . . . , n−1}

and ai−1 → an, then ana1aiai+1 . . . an−1va2a3 . . . ai−1an is an (n + 1)-cycle, a
contradiction. Let N+(a1) = {ai1 , . . . , ain−3} and A ∪B = {ai1−1, . . . , ain−3−1}
such that an → A and B ⊆ V (an). Then |B| ≤ 2, |S| ≥ |B|+1, N+(an) ⊇ A∪S
and thus

d+(an) ≥ |A| + |S| = d+(a1) − |B| + |S| ≥ d+(a1) + 1, (2.14)

which means that |S| = 1, if |B| = 0, |S| = 2, if |B| = 1, and |S| = 3, if |B| = 2.
According to Remark 1.18, the combination |B| = 2 and d+(an) ≥ d+(a1) + 1
is impossible. Hence let |B| ≤ 1 and |S| = |B| + 1 ≤ 2.

Since |H| = 0, we conclude that d+(a1) = n − 3, d+(v) = n − 2 and
1 ≤ n − 5 ≤ |Q| = d−(v) − 2 ≤ n − 4.

Firstly, let |Q| = 1. In this case we have d+(v) = n− 2 ≥ 4 and d−(v) = 3,
which implies that n = 6 ≤ c − 2. Hence, we see that |S| ≥ 2 and (2.14)
yields |S| = 2, Q = S − {v} and D[V (C)] is a tournament, which means that
|B| = 0, a contradiction to |S| = 2.

Secondly, let |Q| = 2 and |Vc| = 3. Then d+(v) = n− 2 and d−(v) = 4 and
thus n = 6 or n = 7. If n = 6 ≤ c − 2, then we conclude that |S| ≥ 2 and
(2.14) yields that |S| = 2 and D[V (C)] is a tournament, which means that
|B| = 0, a contradiction to |S| = 2. Consequently, let n = 7. In this case we
have d+(v) = 5 and d−(v) = 4 and Remark 1.18 yields that |V (v)| = 2. Since
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|S| ≤ 2 and c ≥ 8 we obtain that |S| = 2, c = 8 = n + 1 and D[V (C)] is a
tournament and thus |B| = 0, also a contradiction to |S| = 2.

Thirdly, let |Q| ≥ 3 or |Q| = 2 and |Vc| = 2. This implies that there are
vertices q1, q2 ∈ Q such that q1 → q2. Because of (2.14), we have N+(an) ∩
(Q − S) = ∅. Let q ∈ Q be arbitrary. Since H = ∅ we conclude that q Ã a1.
If a2 → q, then ana1a2qva4 . . . an is an (n + 1)-cycle containing the arc e, a
contradiction.

Assume that a1 → a3. If ai → q for an index i with 3 ≤ i ≤ n − 3, then
ana1a3 . . . aiqvai+1 . . . an is an (n+1)-cycle, a contradiction. Altogether, we see
that q1 Ã {v, a1, . . . , an−3, an, q2}, if q1 ∈ Q−S and q1 → {v, a1, . . . , an−3, q2},
if q1 ∈ Q ∩ S. It follows that

d+(q1) ≥

{

n − 1 = d+(a1) + 2, if |V (q1)| = 2
n − 2 = d+(a1) + 1, if |V (q1)| = 3

,

if q1 ∈ Q − S and d+(q1) ≥ n − 1, if q1 ∈ Q ∩ S, in all cases a contradiction
either to ig(D) ≤ 1 or to Remark 1.18.

Consequently, it remains to consider the case that a3 → a1 or V (a3) =
V (a1) and a1 → {a2, a4, . . . , an−1}. If n = 6, then we deduce that |S| = 2
and |B| = 0, a contradiction to (2.14). Consequently, let n ≥ 7. If ai → q1

for i ∈ {4, . . . , n − 3}, then ana1a4 . . . aiq1q2vai+1 . . . an is an (n + 1)-cycle
containing the arc ana1, a contradiction. At first let q1 ∈ Q ∩ S. This implies
that q1 → {v, a1, a2, a3, . . . , an−3, q2} and thus d+(q1) ≥ n − 1 = d+(a1) +
2, a contradiction to ig(D) ≤ 1. Hence, we have q1 ∈ Q − S and q1 Ã

{v, a1, a2, a4, . . . , an−3, an, q2}, which means that

d+(q1) ≥

{

n − 2, if |V (q1)| = 2
n − 3, if |V (q1)| = 3

.

To get no contradiction to ig(D) ≤ 1, it has to be equality. This implies
that V (q1) 6= V (an−2) and V (q1) 6= V (an−1) and V (q1) 6= V (a3) and thus
{a3, an−2, an−1} → q1. The inequality-chain (2.14) yields that |V (an)| ≤ 2.
If V (q1) 6= V (an), then ana1 . . . an−1q1an is an (n + 1)-cycle, a contradiction.
Consequently, let V (q1) = V (an) and thus a4 /∈ V (q1). This implies that
ana1a2a3q1a4 . . . an is an (n + 1)-cycle through e, a contradiction.

Summarizing the investigations of Case 6, we see that there remains to
treat the case that an−2 → S.

Case 7. Let n = 5. If we consider the cycle C−1 = a1a5a4a3a2a1 =
b5b1b2b3b4b5 in the converse D−1 of D, then {b4, b5} → S → {b1, b2, b3}. Since
this is exactly the situation of Case 6, there exists in D−1 a 6-cycle, containing
the arc b5b1 = a1a5, and hence there exists in D a 6-cycle through a5a1.

Case 8. Let n ≥ 6. Assume that there exists a vertex v ∈ S such that
a3 → v. If we consider the converse of D, then in view of Case 6, it remains
to consider the case that S → a3.

Case 9. Let c > n ≥ 6. If there are vertices v ∈ S and x ∈ H such that
x → v, then ana1xva3a4 . . . an is an (n + 1)-cycle through e, a contradiction.
Consequently, we have S → H. If there is a vertex x ∈ H such that x → an,
then ana1a2 . . . an−2vxan is an (n+1)-cycle, also a contradiction. Summarizing
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our results, we see that (S ∪ {a1, a2, an}) Ã H. If a1 → ai with 3 ≤ i ≤
n − 1 and ai−1 → an, then ana1ai . . . an−1va2 . . . ai−1an is an (n + 1)-cycle
containing the arc e, a contradiction. Let N = {ai1 , ai2 , . . . , aik} be exactly
the subset of V (C) − {a2} such that a1 → N . Then we define A ∪ B =
{ai1−1, ai2−1, . . . , aik−1} such that an → A and B ⊆ V (an). Obviously |B| ≤
2. Since an → (H − V (an)), we deduce that N+(a1) = {a2} ∪ N ∪ H and
N+(an) ⊇ {a1} ∪ A ∪ S ∪ (H − (V (an) − (B ∪ {an}))), and thus

d+(an) ≥
{

|A| + |S| + 1 + |H| − (3 − (|B| + 1)), if |V (an)| = 3
|A| + |S| + 1 + |H| − (2 − (|B| + 1)), if |V (an)| ≤ 2

=

{

d+(a1) + |S| − 2, if |V (an)| = 3
d+(a1) + |S| − 1, if |V (an)| ≤ 2

.

(2.15)

This implies that |S| = 1 or |S| = 2 and thus |B| ≤ 1. Let R2 = V (D) −
(H ∪ F ∪ S ∪ V (C)). Since F → an Ã H, it follows that H ∩ F = ∅. If there
are vertices ṽ ∈ S and f ∈ F such that ṽ → f , then ana1 . . . an−2ṽfan is an
(n + 1)-cycle, a contradiction. Hence, let F → S. Because of F ∩ H = ∅, we
observe that F Ã a1. If there is a vertex f ∈ F such that an−1 → f , then
ana1 . . . an−1fan is an (n + 1)-cycle through e, a contradiction. Let f ∈ F be
arbitrary. If there is an index i ∈ {3, 4, . . . , n−2} such that a1 → ai and ai−1 →
f , then ana1ai . . . an−2va2 . . . ai−1fan is an (n+1)-cycle containing the arc e, a
contradiction. If a1 → an−1 and an−2 → f , then ana1an−1va3 . . . an−2fan is an
(n + 1)-cycle, also a contradiction. Summarizing our results, we observe that

F Ã (S ∪ A ∪ B ∪ {a1, an, an−1}). (2.16)

Subcase 9.1. Assume that there is a vertex v ∈ S such that v → an−3. As
in Case 1, we see that v → {a1, a2, . . . , an−3}.

Subcase 9.1.1. Let H = ∅. If there is a vertex f ∈ F , then (2.16) implies

d+(f) ≥ |N | + |{a1, an, an−1}| + |S| − |V (f) − {f}|

≥

{

|N | + 1 + |S| = d+(a1) + |S|, if |V (f)| = 3
|N | + 2 + |S| = d+(a1) + 1 + |S|, if |V (f)| = 2

≥

{

d+(a1) + 1, if |V (f)| = 3
d+(a1) + 2, if |V (f)| = 2

,

in both cases a contradiction either to Remark 1.18 or to ig(D) ≤ 1. Hence, it
remains to consider the case that F = ∅. According to (2.15), we have

d+(an) ≥ |A| + |S| + 1 ≥ |A| + |S| + |B| = d+(a1) − 1 + |S|,

which means that there remain to treat the two following cases:

i) |S| = 2, d+(an) = d+(a1) + 1, |B| = 1, n = c − 1, |V (v)| = 1 and
|V (an)| ≤ 2. If |Vc| = 3, then we have |V (a1)| ≥ 2.

ii) |S| = 1 and thus |B| = 0, n = c− 1, D[V (C)] is a tournament, d+(an) =
d+(a1) + 1 and |V (an)| ≤ 2. If |Vc| = 3, then we have |V (a1)| ≥ 2.
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Let a′
1 ∈ V (a1) − {a1}. If a′

1 ∈ V (C), then, because of n = c − 1, we conclude
that |S| ≥ 2 and |B| = 0 or |B| ≥ 1 and |S| ≥ 3, in both cases a contradiction
to i) and ii). Since F = ∅, it follows that an → a′

1, and similarly as in i) and
ii) we deduce that d+(an) ≥ d+(a1) + 2, a contradiction to ig(D) ≤ 1.

Hence, let V (a1) = {a1} and thus |Vc| = 2. We observe that

|V (D)| = d+(an) + d−(an) + |V (an)| = d+(a1) + 1 + d−(an) + |V (an)|

≥ d+(a1) + d−(a1) + |V (an)| = d+(a1) + d−(a1) + 1 + |V (an)| − 1

= |V (D)| + |V (an)| − 1.

It follows that |V (an)| = 1 and thus |B| = 0, which means that it remains to
treat the Case ii). If R2 6= ∅ and x ∈ R2, then, because of |V (an)| = 1 we have
x /∈ V (an). If x → an, then x ∈ F , a contradiction to F = ∅. If an → x, then
as in ii) we conclude that d+(an) ≥ d+(a1) + 2, a contradiction to ig(D) ≤ 1.
Consequently, it remains to investigate the case that R2 = ∅. Since the Case
ii) yields that D[V (C)] is a tournament and |S| = 1, we conclude that k = 0,
a contradiction to the hypothesis of this theorem.

Subcase 9.1.2. Suppose that H consists of vertices of only one partite set,
which means that |H| ≤ 2.

Subcase 9.1.2.1. Let H ⊆ V (an) − {an}.
Firstly, let |B| = 0. This yields that {a2, a3, . . . , an−1} → H, since oth-

erwise for l = min{2 ≤ i ≤ n − 1 | ∃h ∈ H with h → ai}, we have the
(n+1)-cycle ana1 . . . al−1hal . . . an, a contradiction. If there are vertices h ∈ H
and f ∈ F such that h → f , then ana1a2 . . . an−2hfan is an (n + 1)-cycle con-
taining the arc e, a contradiction. Summarizing our results, we observe that
(S ∪ F ∪ {a1, a2, . . . an−1})Ã H. If h ∈ H, then, because of |N | ≥ 1, we have
d−(an) ≤ |F | + n − 3 and thus

d−(h) ≥

{

|S| + d−(an) ≥ d−(an) + 1, if |V (h)| = 3
|S| + d−(an) + 1 ≥ d−(an) + 2, if |V (h)| = 2

,

in both cases a contradiction either to Remark 1.18 or to ig(D) ≤ 1.
Secondly, let |B| = 1 and thus |H| = 1, |V (an)| = 3, |S| = 2 and n =

c − 1. To get no contradiction using (2.15), we have (Q − S) → an. If
n = 6 ≤ c − 2, then it follows that |S| = 2 and D[V (C)] is a tournament,
a contradiction to |B| = 1. Hence let n ≥ 7. If there are vertices q ∈ Q
and h ∈ H such that h → q, then ana1hqva4 . . . an is an (n + 1)-cycle, a
contradiction. This yields Q → H. If B 6= {a2}, then it follows that d−(h) ≥
|Q| + |S| + |{a1, a2}| = |Q| + 4 ≥ d−(v) + 1, a contradiction to Remark 1.18,
since |V (h)| = 3. Consequently, it remains to consider the case that B = {a2},
which means that V (h) = {an, a2, h}, if h ∈ H, and a1 → a3. Analogously
we see that h → {a3, a4, . . . , an−1}. But now ana1a3 . . . an−2vhan−1an is an
(n + 1)-cycle containing the arc e, a contradiction.

Subcase 9.1.2.2. Assume that H ∩ V (an) = ∅. It follows that

d+(an) ≥ |A| + |S| + 1 + |H| ≥ |A| + |B| + |S| + |H| = d+(a1) − 1 + |S|,

and there remain to treat the same two Cases i) and ii) as in Subcase 9.1.1.
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Firstly, let F = ∅. If |Vc| = 3, then we arrive at a contradiction following
the same lines as in Subcase 9.1.1. Hence let |Vc| = 2. Similarly as in Subcase
9.1.1 we conclude that it is sufficient to treat the Case ii) with |V (an)| = 1,
|B| = 0 and |R2| = 0 and thus N−(v) = {an−2, an−1, an}. The fact that
4 = d−(v) + 1 ≥ d+(v) ≥ |{a1, a2, . . . , an−3, h}| = n − 2 yields n ≤ 6 ≤ c − 2
and thus |S| ≥ 2, a contradiction to the Case ii).

Secondly, let F 6= ∅. If there is a vertex f ∈ F such that d−
D[F ](f) ≥ 3, then

there is a vertex f̃ ∈ F with d+
D[F ](f̃) ≥ 2 and (2.16) implies that

d+(f̃) ≥ |N | + |{a1, an, an−1}| + 2 + |S| − |V (f̃) − {f̃}|

≥

{

|N | + 4 ≥ d+(a1) + 1, if |V (f̃)| = 3

|N | + 5 ≥ d+(a1) + 2, if |V (f̃)| = 2
,

in both cases a contradiction either to Remark 1.18 or to ig(D) ≤ 1. Hence,
let d−

D[F ](f) ≤ 2 for all f ∈ F .

Suppose that there is a vertex a′
1 ∈ V (a1) − {a1}. If a′

1 ∈ V (C), then the
fact that n ≤ c − 1 leads to |S| ≥ 2 and |B| = 0 or |S| ≥ 3 and |B| ≥ 1, in
both cases a contradiction to the Cases i) and ii). If an → a′

1, then as in i)
and ii) we see that d+(an) ≥ d+(a1) + 2, a contradiction. Hence, let a′

1 → an

and thus a′
1 ∈ F . It follows that a′

1 → {a2, a3, . . . , an} and since F → S, we
observe that d+(a′

1) ≥ n − 1 + |S|. If there is a vertex x ∈ R2 − V (an), then
x /∈ (F ∪V (C)∪H) and thus an → x → a1 and we arrive at the contradiction
d+(an) ≥ d+(a1) + 2. Consequently, let R2 ⊆ V (an) − {an}, and |V (an)| ≤ 2
implies that |R2| ≤ 1. Altogether, it follows that

6 ≥ |H| + |R2| + d−
D[F ](a

′
1) + 1 ≥ d−(a′

1) + 1 ≥ d+(a′
1) ≥ n − 1 + |S|,

which means that either |S| = 1 and n ≤ 6 or |S| = 2 and n ≤ 5, in both cases
a contradiction.

Consequently, it remains to consider the case that V (a1) = {a1} and thus,
because of i) and ii), |Vc| = 2. Let f ∈ F be an arbitrary vertex. If |S| = 2
(Case i)), then (2.16) implies that

d+(f) ≥ |N | + |{a1, an, an−1}| + |S| − |V (f) − {f}| ≥ |N | + 4 = d+(a1) + 2,

a contradiction to ig(D) ≤ 1. Hence, let |S| = 1 (Case ii)). To get no
contradiction as in the case |S| = 2, we deduce that |F | = 1 and d+(f) =
d+(a1) + 1. This leads to

|V (D)| ≥ d+(f) + d−(f) + 2 = d+(a1) + d−(f) + 3 ≥ d+(a1) + d−(a1) + 2

= |V (D)| + 1,

a contradiction.
Subcase 9.1.3. Assume that H contains vertices of at least two partite sets,

which means that there exist two vertices p, q ∈ H such that p → q. If q → a3,
then ana1pqa3 . . . an is an (n+1)-cycle containing the arc ana1, a contradiction.
Hence, let a3 Ã q.
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Subcase 9.1.3.1. Suppose that n ≥ 7. If there are vertices x ∈ Q and h ∈ H
such that h → x, then ana1hxva4 . . . an is an (n + 1)-cycle, a contradiction.

Consequently, let Q Ã H. Let q ∈ H with d−
D[H](q) ≥ max{1,

⌈

|H|−2
2

⌉

}. It

follows that

d−(q) ≥ |Q| + |S| + d−
D[H](q) + |{a1, a2, a3}| − |V (q) − {q}|

≥

{

|Q| + |S| + 1 + d−
D[H](q), if |V (q)| = 3

|Q| + |S| + 2 + d−
D[H](q), if |V (q)| = 2

and d−(v) ≤ |Q| + 3. Summarizing these results, we arrive at

d−(q) − d−(v) ≥

{

|S| − 2 + d−
D[H](q), if |V (q)| = 3

|S| − 1 + d−
D[H](q), if |V (q)| = 2

. (2.17)

If |H| ≥ 5, then (2.17) yields

d−(q) − d−(v) ≥

{

1, if |V (q)| = 3
2, if |V (q)| = 2

,

in both cases a contradiction either to Remark 1.18 or to ig(D) ≤ 1. Hence,
let |H| ≤ 4.

Firstly, let |H| = 4. If H consists of vertices of 3 or 4 partite sets, then there
is a vertex q̃ ∈ H such that d−

D[H](q̃) ≥ 2 and (2.17) yields a contradiction, if
we replace q by q̃. If H consists of vertices of only two partite sets, then it
follows that D[H] is a 4-cycle h1h2h3h4h1 without any chord since otherwise
(2.17) leads to a contradiction. This implies that

d−(h1) ≥ |Q| + |S| + 1 + |{a1, a2, a3}| − 1 = |Q| + |S| + 3 and |V (h1)| = 3

and d−(v) ≤ |Q| + 3. Combining these results we arrive at d−(h1) − d−(v) ≥
|S| ≥ 1 and |V (h1)| = 3, a contradiction to Remark 1.18.

Secondly, let |H| = 3. If H contains vertices of 3 partite sets, then, to
get no contradiction with (2.17), we deduce that D[H] is a 3-cycle h1h2h3h1.
If without loss of generality h1 /∈ V (a4), then we observe that a4 → h1, since
otherwise ana1h2h3h1a4 . . . an is an (n+1)-cycle, a contradiction. But together
with (2.17), this leads to a contradiction to ig(D) ≤ 1 or to Remark 1.18. If
H contains vertices of only 2 partite sets, then either there is a vertex q ∈ H
with d−

D[H](q) ≥ 2 or there are two vertices h1, h2 ∈ H such that h1 ∈ V (h2)

and d−
D[H](h1) ≥ 1. Using (2.17), we arrive at a contradiction in both cases.

Finally, let |H| = 2 with the vertices p, q ∈ H such that p → q. This
implies

d−(q) ≥

{

|Q| + |S| + 2, if |V (q)| = 3
|Q| + |S| + 3, if |V (q)| = 2

,

and thus

d−(q) − d−(v) ≥

{

|S| − 1, if |V (q)| = 3
|S|, if |V (q)| = 2

.

This leads to |S| = 1, n = c − 1, D[V (C)] is a tournament, |B| = 0 and
Q ∩ S = ∅. If q /∈ V (a3), then it follows that a3 → q, and thus a4 Ã q, and
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as above this yields a contradiction either to ig(D) ≤ 1 or to Remark 1.18.
Hence, let q ∈ V (a3) and q → a4. If p /∈ V (a2), then ana1a2pqa4 . . . an is an
(n + 1)-cycle containing the arc e, a contradiction. Consequently, we deduce
that p ∈ V (a2) and V (an) ∩ H = ∅. Analogously as in (2.15), reminding that
|B| = 0, we arrive at

d+(an) ≥ |A| + |S| + 1 + |H| + |B| = d+(a1) + 1, (2.18)

which implies that d+(an) = d+(a1) + 1 and |V (an)| ≤ 2. Since F → S, it
follows that F ⊆ Q and thus F Ã H. If f ∈ F , then with (2.16), we conclude
that

d+(f) ≥ |N | + |{a1, an, an−1}| + |S| + |H| − |V (f) − {f}|

≥

{

|N | + 2 + |H| = d+(a1) + 1, if |V (f)| = 3
|N | + 3 + |H| = d+(a1) + 2, if |V (f)| = 2

,

in both cases a contradiction. Consequently, it remains to consider the case
that F = ∅. Since |S| = 1, this implies that an Ã Q Ã a1 and, because
of (2.18), we have Q ⊆ V (an) − {an}, which means that |Q| ≤ 1, and thus
d−(v) ≤ 4. Summarizing our results, we arrive at

5 ≥ d+(v) ≥ |{p, q, a1, . . . , an−3}| = n − 1 ⇒ n ≤ 6,

a contradiction to the assumption of this subcase.
Subcase 9.1.3.2. Suppose that n = 6 ≤ c− 2. In this case, we observe that

|S| ≥ 2. To get no contradiction to (2.15), it follows that |S| = 2, |V (v)| = 1,
|B| = 0, D[V (C)] is a tournament and V (an)−{an} ⊆ H. Since F → a6 Ã H,
it follows that H ∩ F = ∅. Since |B| = 0 and a6 → ai−1, if a1 → ai with
2 ≤ i ≤ n−1 we conclude that |N+(a1)∩V (C)|+|N−(a6)∩V (C)| ≤ l+5−l = 5,
if |N+(a1) ∩ V (C)| = l, and thus

|R2| ≤ c + k −

{

c + k − 3

2
+

c + k − 3

2
− 5 + |S| + n

}

= 0.

Summarizing the results of the Cases 1-8, we observe that {a4, a5, a6} → S →
{a1, a2, a3}. Without loss of generality let S = {v, w} such that v → w. Since
v → (H ∪ {w, a1, a2, a3}) and a1 → (H ∪ (N+(a1) ∩ V (C))), the fact that
ig(D) ≤ 1 implies that |N+(a1) ∩ V (C)| ≥ 3 and thus |N−(a6) ∩ V (C)| ≤ 2
and a1 → a3 or a1 → a4. If there are vertices h ∈ H and f ∈ F such that
h → f , then a6a1a3a4vhfa6 or a6a1a4a5vhfa6 is a 7-cycle, a contradiction.
Hence, let F Ã H. Let p, q ∈ H such that p → q. Then we see that

d−(q) ≥ |F | + |S| + |{p, a1, a2, a3}| − |V (q) − {q}| ≥ |F | + |S| + 2 = |F | + 4,

whereas d−(a6) ≤ |F |+2. This implies that d−(q)−d−(a6) ≥ 2, a contradiction
to ig(D) ≤ 1.

Subcase 9.2. Assume that an−3 → S. Since S → a3, we conclude that
n ≥ 7. Let v ∈ S. If there is a vertex w ∈ H ∩ F , then ana1a2 . . . an−2vwan is
an (n+1)-cycle containing the arc e, a contradiction. Hence, let H ∩F = ∅. If
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there are vertices x ∈ H and y ∈ F such that x → y, then ana1a2 . . . an−3vxyan

is an (n + 1)-cycle through e, a contradiction. Consequently, let F Ã H. If
f ∈ F , then together with (2.16), we arrive at

d+(f) ≥ |N | + |{a1, an, an−1}| + |S| + |H| − |V (f) − {f}|

≥

{

|N | + |H| + 2 = d+(a1) + 1, if |V (f)| = 3
|N | + |H| + 3 = d+(a1) + 2, if |V (f)| = 2

,

in both cases a contradiction either to Remark 1.18 or to ig(D) ≤ 1. Conse-
quently it remains to treat the case that F = ∅. If there is a vertex x ∈ H
such that x → an−1, then ana1a2 . . . an−3vxan−1an is an (n + 1)-cycle, a con-
tradiction. Hence, let an−1 Ã H. Let h ∈ H. If ai → an and h → ai+1 for
some i ∈ {3, 4, . . . , n − 2}, then ana1hai+1 . . . an−1va3 . . . aian is an (n + 1)-
cycle containing the arc e, a contradiction. If a2 → an and h → a3, then
ana1ha3 . . . an−2va2an is an (n + 1)-cycle, also a contradiction. Let N−(an) ∩
V (C) = N−(an) = {aj1 , aj2 , . . . , ajl

} and Ñ = {aj1+1, aj2+1, . . . , ajl+1}. Sum-
marzing our results, we observe that (S ∪ {a1, a2} ∪ Ñ)Ã H and thus

d−(h) ≥ |Ñ | + |S| + 2 − |V (h) − {h}|

≥

{

|Ñ | + |S| ≥ d−(an) + 1, if |V (h)| = 3

|Ñ | + |S| + 1 ≥ d−(an) + 2, if |V (h)| = 2
,

in both cases a contradiction either to Remark 1.18 or to ig(D) ≤ 1. Hence,
let H = ∅. This leads to a contradiction analogously as in Subcase 9.1.1.

This completes the proof of this theorem. ¤

Combining the Theorems 2.11 and 2.12 with the Theorems 2.4 and 2.6, we
arrive at Theorem 2.5, the main result of this chapter.



Chapter 3

Cycles through exactly m
partite sets

In contrast to Chapter 2, the length of the cycles are not important here, but
the number of partite sets, which are contained in the cycle. In 1991, Goddard
and Oellermann [8] proved the following generalization of Moon’s [20] theorem
that every strong tournament is vertex pancyclic.

Theorem 3.1 (Goddard, Oellermann [8]) Every vertex of a strongly con-
nected c-partite tournament D belongs to a cycle that contains vertices from
exactly m partite sets for each m ∈ {3, 4, . . . , c}.

Inspired by this theorem, in 1998 Guo and Kwak [10] (see also Guo [9])
studied cycles containing a given arc and vertices from exactly m ≤ c partite
sets in regular c-partite tournaments. In a first step they proved the following
theorem.

Theorem 3.2 (Guo, Kwak [10]) Let D be a regular c-partite tournament
with c ≥ 3. Then the following holds:

i) Every arc of D is in a cycle, which contains vertices from exactly 3 or
exactly 4 partite sets.

ii) If c ≤ 5 or the cardinality common to the partite sets of D is odd, then
every arc of D is in a cycle, which contains vertices from exactly 3 partite
sets.

Using this theorem as basis of induction, they showed that the following
three theorems are valid.

Theorem 3.3 (Guo, Kwak [10]) Let D be a regular c-partite tournament
with 3 ≤ c ≤ 5. Then every arc of D is in a cycle that contains vertices from
exactly m partite sets for all m with 3 ≤ m ≤ c.

Theorem 3.4 (Guo, Kwak [10]) Let D be a regular c-partite tournament
with c ≥ 4. Then every arc of D is in a cycle that contains vertices from
exactly m partite sets for all m with 4 ≤ m ≤ c.

47
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Theorem 3.5 (Guo, Kwak [10]) Let D be a regular c-partite tournament
with c ≥ 3. If the cardinality common to all partite sets of D is odd, then
every arc of D is in a cycle that contains vertices from exactly m partite sets
for all m with 3 ≤ m ≤ c.

Note that Theorem 3.5 implies Alspach’s [1] theorem that every regular
tournament is arc pancyclic, since every partite set of a tournament has the
cardinality exactly 1.

The aim is now to carry these results of Guo and Kwak over to almost
regular multipartite tournaments. In the first section, we will extend Theorem
3.2 by showing that every arc of an almost regular c-partite tournament is in
a cycle containing vertices from exactly 3 or exactly 4 partite sets, if c ≥ 4 or
if c ≥ 3 and there are at least two vertices in each partite set. Examples will
show that there are multipartite tournaments with an arbitrary large number
of partite sets that have arcs, which are not in cycles through exactly 3 partite
sets. A further example will demonstrate that the condition c ≥ 4 is important,
if there is only one vertex in at least one partite set. Using these results as
basis of induction, in the second section, we will implement the induction step,
which leads to the main result of this chapter.

Theorem 3.6 (Volkmann, Winzen [38]) Let D be an almost regular c-
partite tournament with c ≥ 4. If there are at least two vertices in each partite
set, then every arc of D is in a cycle that contains vertices from exactly m
partite sets for all m with 4 ≤ m ≤ c.

An example will show that the condition that there are at least two vertices
in each partite set is necessary, at least for c = 4.

In the last section of this chapter, we will pose some open problems on
multipartite tournaments containing vertices of a given number of partite sets.

3.1 The basis of induction

Let V1, V2, . . . , Vc be the partite sets of an almost regular c-partite tournament
D such that r = |V1| ≤ |V2| ≤ . . . ≤ |Vc|. If ab is an arbitrary arc of D such
that a ∈ Vi and b ∈ Vj with 1 ≤ i, j ≤ c, then the following partition of V (D)
is useful in the proofs of the next theorems.

A1 = N−(b) ∩ Vi, A2 = N+(b) ∩ Vi,

B1 = N+(a) ∩ Vj, B2 = N−(a) ∩ Vj,

X = N−(a) ∩

(

c
⋃

l=1

Vl − (Vi ∪ Vj)

)

,

Y = N+(a) ∩ N−(b) ∩

(

c
⋃

l=1

Vl − (Vi ∪ Vj)

)

Z = N+(a) ∩ N+(b) ∩

(

c
⋃

l=1

Vl − (Vi ∪ Vj)

)

.
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Note that some of the defined sets (clearly except A1 and B1) might be empty.
Suppose that X = ∅. Then it follows that N−(a) = B2 and hence N+(a) =

V (D) − (B2 ∪ Vi). If we set d+(a) = d−(a) + ∆a with ∆a ∈ {−1, 0, 1} and
∑

k 6=i,j |Vk| = (c − 2)r + h with 0 ≤ h ≤ 2(c − 2), then we observe that
∆a = |V (D)−(B2∪Vi)|−|B2| = |Vj|+(c−2)r+h−2|B2|. As |B2| = |Vj|−|B1|
we obtain

|Vj| + ∆a = 2|B1| + (c − 2)r + h. (3.1)

Theorem 3.7 (Volkmann, Winzen [38]) Let D be an almost regular mul-
tipartite tournament with the partite sets V1, V2, . . . , Vc. If c ≥ 4, then every
arc of D is in a cycle containing vertices from exactly 3 or exactly 4 partite
sets. If |V1| = |V2| = . . . = |Vc| = r, then this result also holds for c = 3

Proof. According to Lemma 1.10 we can distinguish the three cases that
1 ≤ r = |V1| ≤ |V2| ≤ . . . ≤ |Vc| = r + m with m = 0, 1, 2. Thus, we see
that |V (D)| = cr + k with k = 0, if m = 0, 1 ≤ k ≤ c − 1, if m = 1, and
2 ≤ k ≤ 2c− 2, if m = 2. If m = 0 and c = 3, then, according to Remark 1.17,
D is regular, and Theorem 3.2 of Guo and Kwak yields the desired result. So,
if m = 0, we can investigate the case that c ≥ 4.

Let ab be an arbitrary arc of D such that a ∈ Vi and b ∈ Vj with 1 ≤ i, j ≤ c,
and let A1, A2, B1, B2, X, Y, Z, ∆a and h be defined as in the beginning of this
section.

Suppose that ab is not in a cycle, which contains vertices from exactly 3
partite sets. In particular, ab is not in a 3-cycle. Under this assumption, we
firstly study the domination relationships among the partition sets of V (D)
listed above.

Firstly, we observe that

X → b, i.e., N−(a) ∩ N+(b) ∩

(

c
⋃

l=1

Vl − (Vi ∪ Vj)

)

= ∅,

since otherwise, if there is a vertex x ∈ X such that b → x, then abxa is a
3-cycle, a contradiction.

Now, we suppose that X = ∅. Since c ≥ 4, (3.1) yields that r + 3 ≥ |Vj| +
∆a ≥ 2+2r, from which we obtain r = 1, |B1| = 1, h = 0, ∆a = 1 and |Vj| = 3.
By Remark 1.18, the fact that ∆a 6= 0 implies that |V (a)| = |Vi| = r + 1 = 2.
Furthermore, we observe that d−(a) = |B2| = |Vj| − |B1| = 2. Since h = 0, it
remains to consider the partition-sequence 1, 1, 2, 3. If Z = ∅, then we conclude
that |Y | = |V (D)−(Vi∪Vj)| = 2, and thus, it follows that d−(b) ≥ 3, because of
Remark 1.18 and |Vj| = 3 = r+2 a contradiction. Hence, we observe that there
is a vertex z ∈ Z and |V (z)| = 1. Remark 1.18 yields that d+(z) = d−(z) = 3.
Since {a, b} → z, there is a vertex b2 ∈ B2 such that z → b2 and abzb2a is a
cycle with vertices from exactly 3 partite sets, a contradiction.

These considerations lead to X 6= ∅. Analogously, we see that the case
Z = ∅ is impossible.

If there is an arc a2 → x (respectively, z → b2) from A2 to X (respectively,
Z to B2), then aba2xa (respectively, abzb2a) is a cycle containing vertices from
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exactly 3 partite sets, a contradiction. Hence,

X → A2 and B2 → Z. (3.2)

If there is an arc z → a2 (respectively, b2 → x) from Z to A2 (respectively,
B2 to X), then we also have B2 → a2 (respectively, b2 → A2), because oth-
erwise, if there is a vertex b2 ∈ B2 (respectively, a2 ∈ A2) such that a2 → b2,
then abza2b2a (respectively, aba2b2xa) is a cycle through exactly 3 partite sets,
a contradiction. But this yields

d−(a2) ≥ |X| + |B2| + |{b, z}| = d−(a) + 2

(respectively, d+(b2) ≥ |Z| + |A2| + |{a, x}| = d+(b) + 2),

a contradiction to ig(D) ≤ 1. Hence,

A2 → Z and X → B2. (3.3)

Suppose now that the arc ab also does not belong to any cycle with vertices of
exactly 4 partite sets. As a first consequence we observe that X Ã Z, since
otherwise, if there are vertices z ∈ Z and x ∈ X such that z → x, then abzxa
is a cycle with vertices from exactly 4 partite sets, a contradiction.

Assume that there exist vertices b1 ∈ B1−{b} and x ∈ X such that b1 → x.
If there is a vertex a2 ∈ A2 such that a2 → b1, then aba2b1xa is a cycle through
exactly 3 partite sets, a contradiction. If there is a vertex z ∈ Z such that
z → b1, then abzb1xa is a cycle containing vertices from exactly 3 or exactly
4 partite sets, a contradiction. Altogether, we see that b1 → Z ∪ A2 ∪ {x},
which implies d+(b1) ≥ d+(b) + 1. Because of ig(D) ≤ 1, we conclude that
d+(b1) = d+(b) + 1 and A1 − {a} → b1. If there are vertices z ∈ Z and
a1 ∈ A1 − {a} such that z → a1, then abza1b1xa is a cycle with vertices from
exactly 3 or exactly 4 partite sets, a contradiction. Together with (3.2) and
(3.3), for every vertex z ∈ Z, this yields

d−(z) ≥ |X| + |Vi| + |B2| + |{b1, b}| − |V (z) − {z}|

≥

{

d−(a) + 2, if |V (z)| ≤ r + 1
d−(a) + 1, if |V (z)| = r + 2

,

in both cases a contradiction either to ig(D) ≤ 1 or to Remark 1.18. Hence,
we see that X → B1.

Now, assume that there are vertices a1 ∈ A1 − {a} and z ∈ Z such that
z → a1. If there is a vertex x ∈ X such that a1 → x, then abza1xa is a cycle
containing vertices from exactly 3 or exactly 4 partite sets, a contradiction.
Together with (3.2) and (3.3), for every vertex x ∈ X, this yields

d+(x) ≥ |Vj| + |A2| + |Z| + |{a, a1}| − |V (x) − {x}|

≥

{

d+(b) + 2, if |V (x)| ≤ r + 1
d+(b) + 1, if |V (x)| = r + 2

,

in both cases a contradiction either to ig(D) ≤ 1 or to Remark 1.18. Summa-
rizing our results, we see that

X Ã Z ∪ Vj ∪ A2 ∪ {a} and Vi ∪ X ∪ B2 ∪ {b}Ã Z. (3.4)
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This leads to the following lower bounds for all x ∈ X (respecively, all z ∈ Z)

d+(x) ≥ |Vj| + |Z| + |A2| + |{a}| − |V (x) − {x}|

≥







d+(b) + 2, if |V (x)| = r
d+(b) + 1, if |V (x)| = r + 1
d+(b) , if |V (x)| = r + 2

,

d−(z) ≥ |Vi| + |B2| + |X| + |{b}| − |V (z) − {z}|

≥







d−(a) + 2, if |V (z)| = r
d−(a) + 1, if |V (z)| = r + 1
d−(a) , if |V (z)| = r + 2

.

To get no contradiction, it has to be |V (x)|, |V (z)| ≥ r + 1 for all x ∈ X and
z ∈ Z. Furthermore, we conclude that the lower bounds of d+(x) and d−(z)
must not increase by one, which means |Vi| = |Vj| = r, V (x) − {x} ⊆ Z for
all x ∈ X and V (z) − {z} ⊆ X for all z ∈ Z. If r ≥ 2, then, because of
|V (x)| ≥ r + 1 and V (x) − {x} ⊆ Z for all x ∈ X, there are at least two
vertices z1, z2 ∈ Z with V (z1) = V (z2), a contradiction to V (z) − {z} ⊆ X
for all z ∈ Z. Hence, we examine the case that r = 1. This implies Vi =
{a}, Vj = {b} and B2 = A2 = B1 − {b} = A1 − {a} = ∅. Furthermore, we
conclude that d+(b) = |Z| and d+(a) = |Z|+ |Y |+ |{b}|, which yields |Y | = 0,
d+(a) = d+(b) + 1 and, since |Vj| = |Vi| = r, Remark 1.18 yields |Vc| = r + 1.
Because of V (D)− (Vi ∪ Vj) ⊆ X ∪Z and c ≥ 4, there are at least two partite
sets Vx1 and Vx2 in V (D)−(Vi∪Vj) such that Vx1 = {x1, z1} and Vx2 = {x2, z2}.
Furthermore, the fact that V (x)−{x} ⊆ Z for all x ∈ X and V (z)−{z} ⊆ X
for all z ∈ Z implies that one vertex of Vx1 (respectively, Vx2) is in X and the
other one in Z. So, without loss of generality, let x1, x2 ∈ X and z1, z2 ∈ Z
and x1 → x2. But now we observe that

d+(x1) ≥ |Vj| + |Z| − |V (x1) − {x1}| + |A2| + |{a, x2}| = d+(b) + 2,

a contradiction to ig(D) ≤ 1. This completes the proof of the theorem. ¤

The following example shows that the supplement that every arc is in a
cycle, which consists of vertices of exactly three or four partite sets is essential,
since not every arc of an almost regular multipartite tournament is in a cycle
containing vertices from exactly three partite sets.

Example 3.8 (Volkmann, Winzen [38]) Let V1 = {a, x2, x3} and V2 =
{b, y2, y3} be the two partite sets of a digraph D such that a → b → x2 →
y2 → x3 → y3 → a, b → x3, y2 → a and y3 → x2. Furthermore, let D′ and
D′′ be copies of D such that D → D′ → D′′ → D. The resulting 6-partite
tournament H (see also Figure 3.1) is almost regular, but the arc ab is not in
any cycle containing vertices from exactly three partite sets.

Let G, G′, G′′ be three copies of H such that G → G′ → G′′ → G. The
resulting 18-partite tournament is almost regular, but no copy of the arc ab is
in a cycle containing vertices from exactly three partite sets.

If we continue this process, we arrive at almost regular c-partite tourna-
ments with arbitrary large c, which contain arcs that do not belong to any
cycle through exactly three partite sets.
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Figure 3.1: An almost regular 6-partite tournament with the property
that the arc ab is in no cycle through exactly 3 partite sets

In the case that the maximal difference of the cardinality of the partite sets
is exactly 2, Theorem 3.7 also holds, if the multipartite tournament consists
of only three partite sets.

Theorem 3.9 (Volkmann, Winzen [38]) Let D be an almost regular 3-
partite tournament with the partite sets V1, V2, V3 such that 1 ≤ r = |V1| ≤
|V2| ≤ |V3| = r + 2. Then every arc of D is in a cycle containing vertices of
all partite sets.

Proof. Let ab be an arbitrary arc of D. Suppose that ab is not in any
cycle, containing vertices of all partite sets. Obviously, we have |V (D)| =
3r + k with 2 ≤ k ≤ 4. Let a ∈ Vi and b ∈ Vj with 1 ≤ i, j ≤ 3. If
we define A1, A2, B1, B2, X, Y, Z, h and ∆a as in the beginning of this section,
then, following the same lines as in Theorem 3.7, we observe that

X → A2 ∪ B2 ∪ {a, b} → Z. (3.5)

Suppose that X = ∅. Let Vl = V (D) − (Vi ∪ Vj). Since, c = 3, from (3.1) we
get |Vj| + ∆a = 2|B1| + r + h. This equality implies B1 = {b}, B2 = Vj − {b}
and 0 ≤ h ≤ 1. If h = 1, then it follows that ∆a = 1, |Vj| = r + 2 and
|Vl| = r + 1. By Remark 1.18 we have |V (a)| = |Vi| = r + 1. This is a
contradiction since there is no partite set with r vertices. Hence, let h = 0
and thus |Vl| = r and 0 ≤ ∆a ≤ 1. First, we assume that ∆a = 0 and thus,
according to (3.1), |Vj| = r + 2. If there is a vertex z ∈ Z, then (3.5) implies
that d−(z) ≥ |Vj| + 1 = r + 3 and d+(z) ≤ |Vi| − 1 ≤ r + 1, a contradiction.
Consequently, we can consider the case that Y = Vl. If |Vi| = r, then we
arrive at the contradiction r + 1 = |Y | + 1 ≤ d−(b) ≤ d+(b) + 1 ≤ |Vi| = r.
Since the partition-sequence r, r +1, r +2 is impossible, it remains to treat the
case that |Vi| = r + 2. To get no contradiction to ig(D) ≤ 1, it follows that
A2 = Vi − {a}. If there are vertices a2 ∈ A2 and y ∈ Y such that a2 → y,
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then we conclude that B2 → y, since otherwise, if there is a vertex b2 ∈ B2

such that y → b2, then aba2yb2a is a cycle through all 3 partite sets. But now
we arrive at the contradiction d−(y) ≥ r + 3 and d+(y) ≤ r + 1. Hence, let
Y → A2, which implies that A2 → B2 → Y . If a2, a

′
2 ∈ A2, b2, b

′
2 ∈ B2 and

y ∈ Y , then aba2b2ya′
2b

′
2a is a cycle through all partite sets, a contradiction.

Second, let ∆a = 1. Since |Vc| = r + 2, Remark 1.18 yields |Vi| = r + 1, and
thus |Vj| = r + 2, a contradiction to ig(D) ≤ 1.

Analogously, we see that the case Z = ∅ is impossible. Consequently, it
remains to consider the case that X,Z 6= ∅. Now, analogously to Theorem
3.7, we get the relationships (3.4) and the conditions |Vi| = |Vj| = r = 1 and
|Vc| = r + 1, a contradiction. ¤

Nevertheless Theorem 3.7 cannot be improved in the sense that in all almost
regular c-partite tournaments with c ≥ 3, every arc is in a cycle containing
vertices from exactly three or exactly four partite sets. This can be seen in the
following simple example, which shows a 3-partite tournament with an arc ab
that is not contained in any cycle through all partite sets.

Example 3.10 (Volkmann, Winzen [38]) Let V1 = {a, x2}, V2 = {b, y2}
and V3 = {z} be the three partite sets of the multipartite tournament D such
that a → b → x2 → y2 → z → x2 and y2 → a → z → b (see Figure 3.2).
Then the arc ab is not contained in any cycle with vertices of exactly three
(and clearly also not four) partite sets.

a b

y2 x2

z

-

?¾

6

µ

µ

R

R

Figure 3.2: An almost regular 3-partite tournament with the property
that the arc ab is in no cycle through exactly 3 partite sets

In the last example, there is one partite set containing only one vertex. If
we add the condition that there are at least two vertices in every partite set,
then we can improve Theorem 3.7.

Theorem 3.11 (Volkmann, Winzen [38]) Let D be an almost regular mul-
tipartite tournament with the partite sets V1, V2, . . . , Vc. If c ≥ 3 and there are
at least two vertices in each partite set, then every arc of D is in a cycle
containing vertices from exactly 3 or exactly 4 partite sets.
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Proof. If c ≥ 4 or |V1| = |V2| = |V3|, then the assertion holds with Theorem
3.7. If r = |V1| ≤ |V2| ≤ |V3| = r + 2, then the assertion follows from Theorem
3.9. Therefore, it remains to consider the case that c = 3 and 2 ≤ r = |V1| ≤
|V2| ≤ |V3| = r + 1.

Let ab be an arbitrary arc of D. Suppose that ab is not in any cycle,
containing vertices of all partite sets. Obviously, we have |V (D)| = 3r + k
with 1 ≤ k ≤ 2. Let a ∈ Vi and b ∈ Vj with 1 ≤ i, j ≤ 3. If we de-
fine A1, A2, B1, B2, X, Y, Z, h and ∆a as in the beginning of this section, then,
following the same lines as in Theorem 3.7, we observe that

X → A2 ∪ B2 ∪ {a, b} → Z. (3.6)

Suppose that X = ∅. Let Vl = V (D) − (Vi ∪ Vj). With c = 3 and the
fact that |Vj| ≤ r + 1, (3.1) implies B1 = {b}, h = 0, ∆a = 1, |Vl| = r,
|Vj| = r + 1 and |B2| = r. If there is a vertex z ∈ Z, then (3.6) yields that
d−(z) ≥ |Vj| + 1 = r + 2 and d+(z) ≤ |Vi| − 1 ≤ r, a contradiction. Hence,
let Y = Vl. If |Vi| = r, then we arrive at the contradiction r + 1 = |Vl| + 1 ≤
d−(b) ≤ d+(b) + 1 ≤ |A2| + 1 ≤ r. Hence, let us suppose that |Vi| = r + 1.
To get no contradiction to ig(D) ≤ 1, it follows that |A2| = r. If there are
vertices a2 ∈ A2 and y ∈ Y such that a2 → y, then we deduce that B2 → y,
since otherwise, if there is a vertex b2 ∈ B2 such that y → b2, then aba2yb2a
is a cycle with vertices from all partite sets, a contradiction. But this yields
the contradiction d−(y) ≥ r + 2 and d+(y) ≤ r. Consequently, it follows that
Y → A2, and thus A2 → B2 → Y . If a2, a

′
2 ∈ A2, b2, b

′
2 ∈ B2 and y ∈ Y , then

aba2b2ya′
2b

′
2a is a cycle through all 3 partite sets, a contradiction.

Analogously, we observe that the case Z = ∅ is impossible. Consequently,
it remains to treat the case that X,Z 6= ∅. Now, analogously to Theorem
3.7, we get the relationships (3.4) and the condition |Vi| = |Vj| = r = 1, a
contradiction to r ≥ 2. This completes the proof of the theorem. ¤

3.2 The induction-step

We take Theorem 3.11 as basis of induction to show Theorem 3.6. Next, we
will present the induction-step.

Theorem 3.12 (Volkmann, Winzen [38]) Let D be an almost regular c-
partite tournament with c ≥ 4 and at least two vertices in each partite set. If
an arc of D is in a cycle that contains vertices from exactly m partite sets for
some m with 3 ≤ m < c, then it is also in a cycle that contains vertices from
exactly m + 1 partite sets.

Proof. Let V1, V2, . . . , Vc be the partite sets of D such that 2 ≤ r = |V1| ≤
|V2| ≤ . . . ≤ |Vc| = r + o with o = 0, o = 1 or o = 2. Obviously, we have
|V (D)| = cr+k with k = 0, if o = 0, 1 ≤ k ≤ c−1, if o = 1, and 2 ≤ k ≤ 2c−2,
if o = 2. Let v1v2 be an arc that is in a cycle, say C = v1v2 . . . vtv1, which
contains vertices from exactly m partite sets for some 3 ≤ m < c. Suppose
that v1v2 is not part of a cycle containing vertices from exactly m + 1 partite
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sets. Assume without loss of generality that v1 ∈ Vi and v2 ∈ Vj for some
1 ≤ i, j ≤ c. If I = {im+1, . . . , ic} is the maximal set of indices such that
V (C) ∩ Vl = ∅ for all l ∈ I, then we define the sets X and Y by

X = N−(v1) ∩

(

⋃

l∈I

Vl

)

, Y = N+(v1) ∩

(

⋃

l∈I

Vl

)

.

It is clear that X ∪ Y =
⋃

l∈I Vl and every vertex of X ∪ Y is adjacent with all
vertices in C.

Firstly, let us suppose that X 6= ∅. If there is a vertex x ∈ X such that
vt → x, then v1v2 . . . vtxv1 is a cycle through exactly m + 1 partite sets, a
contradiction. If such a vertex does not exist, then X → vt. Since X →
{v1, vt}, we observe that, if some vi ∈ V (C) dominates a vertex x ∈ X, then
let n = max{l | vl → x} and v1v2 . . . vnxvn+1 . . . vtv1 is a cycle through exactly
m + 1 partite sets. Now, we assume that X → V (C).

Now, let H = N+(v2) − V (C). If there is an arc h → x with h ∈ H and
x ∈ X, then let firstly be h ∈ Vl with l /∈ I. In this case v1v2hxv3 . . . vtv1 is
a cycle through exactly m + 1 partite sets, a contradiction. Consequently, let
h ∈ Vl with l ∈ I. If m = 3, then v1v2hxv1 is a cycle through exactly 4 partite
sets, a contradiction. Otherwise, if m ≥ 4, then let p be the index such that
{vp, vp+1, . . . , vt, v1}−V (v2) consists of vertices from exactly m−2 partite sets.
In this case, v1v2hxvp . . . vtv1 is a cycle containing vertices of exactly m + 1
partite sets, a contradiction. For all x ∈ X, this leads to

d+(x) ≥ |H − (V (x) − {x})| + |V (C)|

whereas
d+(v2) ≤ |H| + |V (C))| − 2.

If H ∩ V (x) = ∅, then we arrive at a contradiction to ig(D) ≤ 1. Hence, let
y ∈ H ∩ V (x). Since H ∩X = ∅, we conclude that y ∈ Y . Now let z ∈ N−(x)
and assume that y → z. If z ∈ Vl with l /∈ I, then v1v2yzxv3 . . . vtv1 is a cycle
through exactly m+1 partite sets, a contradiction. Thus, let z ∈ Vl with l ∈ I.
If m = 3, then v1v2yzxv1 is a cycle through exactly 4 partite sets, and if m ≥ 4,
then we choose the index p as above and v1v2yzxvp . . . vtv1 is a cycle through
exactly m+1 partite sets, in both cases a contradiction. Hence, let N−(x) → y.
If y → vi for some 3 ≤ i ≤ t, then let n = min{q | 2 ≤ q ≤ i − 1, vq → y}.
Now, v1v2 . . . vnyvn+1 . . . vtv1 is a cycle through exactly m + 1 partite sets, a
contradiction. Altogether, we see that {v1, v2, . . . , vt} ∪ N−(x) → y, and thus
it follows that

d−(y) ≥ d−(x) + t ≥ d−(x) + 3,

a contradiction to ig(D) ≤ 1.
Consequently, there remains to consider the case that X = ∅. This implies

that v1 → Y and Y =
⋃

l∈I Vl. Now, we distinguish different cases.
Case 1. Let there be a vertex y ∈ Y such that v2 → y. Then we have

V (C) → y, since otherwise, if we choose let n = min{z | y → vz}, then
v1v2 . . . vn−1yvn . . . vtv1 is a cycle through exactly m + 1 partite sets, a contra-
diction. If v1 Ã N+(y), then it follows that d−(y) = |V (C)|+ |N−(y)−V (C)|
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and d−(v1) ≤ |V (C)| − 2 + |N−(y) − V (C)|, a contradiction to ig(D) ≤ 1.
Therefore, there is a 3-cycle v1yzv1. Obviously, the case z ∈ Y ∪ V (C) is
impossible, and thus v1v2 . . . vtyzv1 is a cycle through exactly m + 1 partite
sets, a contradiction.

Altogether we see that there remains the case Y → v2.
Case 2. Suppose that there exists a vertex y ∈ Y such that v3 → y. As

in Case 1 we observe that in this case V (C) − {v2} → y. In the following we
will denote the sets F and H by F = N−(y)− V (C) and H = N+(y)− V (C),
respectively. If there is a 3-cycle v1yzv1, then, analogously as in Case 1, we
arrive at a contradiction. Hence, let v1 Ã N+(y). It follows that d−(y) =
|V (C)|−1+|F | and d−(v1) ≤ |V (C)|−2+|F |. Because of ig(D) ≤ 1, this leads
to N−(v1) = (V (C)−{v1, v2})∪F, d−(y) = d−(v1)+1, V (v1)−{v1} ⊆ N+(y)
and Y − V (y) ⊆ N+(y). Since r ≥ 2, we conclude that V (v1) − {v1} 6= ∅.
Let H ′ = H − Y . Then we have {v4, v5, . . . , vt} Ã H ′, because otherwise,
if there are vertices h′ ∈ H ′ and vl such that h′ → vl for some 4 ≤ l ≤ t,
then v1v2 . . . vl−1yh′vl . . . vtv1 is a cycle containing vertices from exactly m + 1
partite sets, a contradiction. Furthermore, if there are vertices f ∈ F and
h′ ∈ H ′ such that h′ → f , then v1v2 . . . vtyh′fv1 is a cycle through exactly
m + 1 partite sets, a contradiction. Summarizing our results, we see that
(F ∪ {y, v1, v4, v5, . . . , vt})Ã H ′.

Subcase 2.1. Assume that there are vertices h′ ∈ H ′ and y′ ∈ V (y) − {y}
such that h′ → y′. It follows that F → y′, since otherwise, if there is a
vertex f ∈ F such that y′ → f , then v1v2 . . . vtyh′y′fv1 is a cycle through
exactly m + 1 partite sets, a contradiction. If there exists a vertex vl ∈ V (C)
with 4 ≤ l ≤ t such that y′ → vl, then v1v2 . . . vl−1yh′y′vl . . . v1 is a cycle
containing vertices from exactly m+1 partite sets, a contradiction. Hence, let
({v1, v4, . . . , vt, h

′} ∪ F ) → y′. We arrive at

d−(y′) ≥ |F | + |V (C)| − 1 = d−(y) = d−(v1) + 1.

To get no contradiction to ig(D) ≤ 1, it follows that y′ → (H − {h′}) ∪
{v3}. If there is a vertex vl (4 ≤ l ≤ t) such that v2 → vl, then we ob-
serve that v1v2vl . . . vtyh′y′v3 . . . vl−1v1 is a cycle through exactly m+1 partite
sets, a contradiction. If there is a vertex f ∈ F such that v2 → f , then
v1v2fyh′y′v3 . . . vtv1 is a cycle containing vertices from exactly m + 1 partite
sets, a contradiction. If v2 → h′, then v1v2h

′y′v3 . . . vtv1 is a cycle through ex-
actly m+1 sets, also a contradiction. Hence, we have (F ∪{h′, v1, v4, . . . , vt}∪
Y )Ã v2, and thus

d+(v2) ≤ |H| − 1 − |Y − V (y)| − |V (v2) ∩ H| + |{v3}| ≤ |H|,

whereas d+(y) = |H| + 1. This implies that v2 → H − {h′} and H ′′ :=
H ′ − {h′} = H − {h′}. If there exist vertices h′′ ∈ H ′′ and y′′ ∈ Y − {y}
such that h′′ → y′′, then analogously as above, we observe that h′′ → v2, a
contradiction. Hence, let Y = V (y) → H ′′. According to Corollary 1.19, we
have d+(y) ≥ 3, and thus |H| ≥ 2, which means that H ′′ 6= ∅. Consequently,

there is a vertex h′′ ∈ H ′′ such that d+
D[H′′](h

′′) ≤ |H|−2
2

. Summarizing our
results, we arrive at

|H| ≤ d+(h′′) ≤
|H| − 2

2
+ 2.
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Since |H| ≥ 2, this yields |H| = 2 and h′′ → h′. Now, v1v2h
′′h′y′v3 . . . vtv1 is a

cycle through all m + 1 partite sets, a contradiction.
Subcase 2.2. Suppose that V (y) → H ′. Since V (v1) − {v1} ⊆ H ′, the

observations above yield that ({v4, v5, . . . , vt} ∪ F ) → (V (v1) − {v1})(⊆ H ′).
This implies that

d−(v′
1) ≥ |F | + |V (C)| − 3 + |V (y)| ≥ |F | + |V (C)| − 1

= d−(v1) + 1

for all vertices v′
1 ∈ V (v1) − {v1}. To get no contradiction to ig(D) ≤ 1,

it follows that |V (y)| = 2 and (V (v1) − {v1}) → {v2, v3} ∪ (H − V (v1)).
Analogously as in Subcase 2.1, replacing the path yh′y′v3 by yv′

1v3, we see
that (F ∪ {v4, v5, . . . , vt})Ã v2. Hence, we arrive at

d+(v2) ≤ |H|− |Y −V (y)|− |V (v2)∩H|− |V (v1)∩H|+1 ≤ |H|− r +2 ≤ |H|,

whereas d+(y) = |H| + 1. This implies that v2 → H − V (v1) =: H ′′, |H ∩
V (v1)| = 1 and Y − V (y) = ∅, which means H ′ = H. Following the same lines
as in Subcase 2.1, replacing there h′ by v′

1, we arrive at H ′′ = {h′′} such that
h′′ → v′

1, a contradiction to (V (v1) − {v1}) → (H − V (v1)).
Summarizing the investigations of Case 2, we see that Y → v3. Observing

the converse D−1 of D, we conclude that vt → Y and therefore t ≥ 4.
Case 3. Finally, let {vt, v1} → Y → {v2, v3}. Let us define the sets U

and W by W = N+(v2) − V (C) and U = N−(v1) − V (C), respectively. It is
not difficult to show that, if there is an arc leading from W to Y (respectively,
from Y to U), or if Y → W (respectively, U → Y ) and there is an arc from W
to v1 (respectively, from v2 to U), then the multipartite tournament contains
a cycle through v1v2 and exactly m + 1 partite sets, a contradiction. Hence,
we may assume that Y ∪ {v1, v2}Ã W and U Ã Y ∪ {v1, v2} and U ∩W = ∅.

If there exists a vertex vl ∈ V (C) such that v2 → vl and vl−1 → v1, then
obviously l ≥ 4 and v1v2vl . . . vtyv3 . . . vl−1v1 is a cycle through exactly m + 1
partite sets for some y ∈ Y , a contradiction. Therefore, from now on, we
investigate the case that v1 → vl−1 or V (v1) = V (vl−1), if v2 → vl.

If there are vertices u ∈ U and vl ∈ V (C) with l ≥ 4 such that v2 → vl

and vl−1 → u, then v1v2vl . . . vtyv3 . . . vl−1uv1 is a cycle through exactly m + 1
partite sets, a contradiction. Hence, we may assume that u → vl−1 or V (u) =
V (vl−1), if v2 → vl. Analogously, we see that vl+1 → w or V (w) = V (vl+1), if
w ∈ W and vl → v1 with l < t.

If there is an arc w → u from W to U , then v1v2wuyv3 . . . vtv1 is a cycle
containing vertices from exactly m+1 partite sets, a contradiction. Therefore,
we have U Ã W .

If y ∈ Y is an arbitrary vertex, then these results yield the following three
lower bounds

|N+(v1)| ≥ |Y | + |W | + |N+(v2) ∩ V (C)| − |V (v1) − {v1}|

≥ |V (y)| + |N+(v2)| − |V (v1) − {v1}|

≥

{

|N+(v2)| if |V (v1)| ≤ r + 1
|N+(v2)| − 1 if |V (v1)| = r + 2

(3.7)
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|N+(u)| ≥ |Y | + |W | + |N+(v2) ∩ V (C)| − 1

+|{v1, v2}| − |V (u) − {u}|

≥ |V (y)| + |N+(v2)| + 1 − |V (u) − {u}|

≥

{

|N+(v2)| + 1 if |V (u)| ≤ r + 1
|N+(v2)| if |V (u)| = r + 2

,

(3.8)

for every u ∈ U and

|N−(w)| ≥ |Y | + |U | + |N−(v1) ∩ V (C)| − 1

+|{v1, v2}| − |V (w) − {w}|

≥ |V (y)| + |N−(v1)| + 1 − |V (w) − {w}|

≥

{

|N−(v1)| + 1 if |V (w)| ≤ r + 1
|N−(v1)| if |V (w)| = r + 2

,

(3.9)

for every w ∈ W . If the right-hand side of (3.7) increases by at least two
or the right-hand side of (3.8) or (3.9) increases by at least one, then we
arrive at a contradiction either to ig(D) ≤ 1 or to Remark 1.18. This leads
to |V (u)|, |V (w)| ≥ r + 1 for u ∈ U and w ∈ W . Another consequence is
that |Y | = r, if U ∪ W 6= ∅, and |Y | ≤ r + 1, if U ∪ W = ∅. Anyway, Y
consists of exactly one partite set. Furthermore, the bounds (3.7)-(3.9) yield
|U |, |W | ≤ 1, since otherwise, the right-hand side of (3.8) or (3.9) increases by
one, a contradiction. Let U 6= ∅ and u ∈ U . Because of v1 → v2, we conclude
that vt → u, since otherwise the right-hand side of (3.8) increases by one, a
contradiction. If we observe the cycle C ′ = b1b2 . . . bt+1b1 := v1v2 . . . vtuv1 such
that b1 = v1, then we see that C ′ fulfills {bt+1, b1} → Y → {b2, b3}. Hence, we
can replace C by C ′, which means that, without of generality, we may suppose
that U = ∅. Analogously, it remains to treat the case that W = ∅.

Let y ∈ Y . If we define U ′ = N−(y) − V (C) and W ′ = N+(y) − V (C),
then we conclude that V (D) = V (y) ∪ V (C) ∪ U ′ ∪ W ′. Let w′ ∈ W ′. If
w′ → v1, then it follows that w′ ∈ U , and thus we have w′ ∈ N−(y)− V (C), a
contradiction to the definition of W ′. Since W = ∅, this yields v1 Ã w′

Ã v2

and the right-hand side of (3.7) increases by one. Analogously, we observe that
v1 Ã u′

Ã v2 for each u′ ∈ U ′. To get no contradiction in (3.7), it has to be
|U ′ ∪ W ′| ≤ 1.

Subcase 3.1. Suppose that m = 3, and thus c = 4. Let Vb = V (D) − (Y ∪
V (v1) ∪ V (v2)). We observe that N−(v1) ∩ Vb 6= ∅, since otherwise, we arrive
at

3r + k − 2

2
≤ d−(v1) ≤ |V (v2) − {v2}| ≤ r,

if |V (v2)| ≤ r + 1,

3r + k − 2

2
≤ d−(v1) ≤ |V (v2) − {v2}| = r + 1,

if |V (v2)| = r + 2, |V (v1)| ≥ r + 1 and thus k ≥ 3 and

3r + k

2
= d−(v1) ≤ |V (v2) − {v2}| = r + 1,
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if |V (v2)| = r + 2 and |V (v1)| = r,

in all cases a contradiction. If N+(v2) ∩ (V (C) − {v3}) = ∅, then Corollary
1.19 yields 3r+k−2

2
≤ d+(v2) ≤ 2, a contradiction.

Suppose that there exists an index q ≥ 4 as small as possible such that
v2 → vq and that there is an index l < q with vl → v1. This index l let be chosen
as large as possible. Now, let us observe the cycle C ′ = v1v2vq . . . vtyv3 . . . vlv1.
If C ′ does not contain vertices from all the 4 partite sets, then we conclude
that Vb ⊆ V (D)−V (C ′) ⊆ [{vl+1, . . . , vq−1} ∪ U ′ ∪ W ′]. Since v1 Ã U ′ ∪W ′ ∪
{vl+1, . . . , vq−1}, we arrive at N−(v1) ∩ Vb = ∅, a contradiction.

Altogether, we see that an index q chosen as above does not exist. Let y1 be
the largest index such that v2 → vy1 . This implies that v1 Ã {v2, v3, . . . , vy1−1}.
If vy1 → v1, then we have the 3-cycle v1v2vy1v1, a contradiction to t ≥ 4. Hence,
we deduce that N−(v1) ⊆ {vy1+1, vy1+2, . . . , vt}. If there is no arc leading from
v3 to {vy1+1, vy1+2, . . . , vt}, then we arrive at

d−(v3) ≥ d−(v1) + |Y | + |{v1, v2}| − |V (v3) − {v3}|

≥

{

d+(v1) + 2, if |V (v3)| ≤ r + 1
d+(v1) + 1, if |V (v3)| = r + 2

,

in both cases a contradiction. Therefore, let y2 > y1 be the largest index
such that v3 → vy2 . Firstly, let vl → y for some y ∈ Y and 4 ≤ l ≤ y2 − 1
(notice that, because of y1 ≥ 4, it has to be y2 ≥ 5). This yields va → y
for all l ≤ a ≤ t, since otherwise, we can find a cycle through all 4 partite
sets, a contradiction. Let x1 be the smallest index in {4, 5, . . . , y1} such that
v2 → vx1 . Now, let us observe the cycle C ′ := v1v2vx1 . . . vy2−1yv3vy2 . . . vtv1.
If C ′ does not contain vertices from all 4 partite sets, then we conclude that
Vb ⊆ {v4, v5, . . . , vx1−1} ∪ U ′ ∪ W ′, and thus N−(v1) ∩ Vb = ∅, a contradiction.
Hence, we arrive at Y → {v2, v3, v4, v5, . . . , vy2−1}, and thus d+(y) ≥ d+(v2)+1
for all y ∈ Y , y2 = y1 + 1 and v2 → {v3, . . . , vy1}, which means {v3, . . . , vy1} ∩
V (v2) = ∅. Let x2 be the first index such that vx2 → v1 (x2 ≥ y2). If
{vx2+1, . . . , vt}Ã v4, then we conclude that

d−(v4) ≥ d−(v1) − 1 + |Y | + |{v1, v2, v3}| − |V (v4) − {v4}|

≥

{

d−(v1) + 2, if |V (v4)| ≤ r + 1
d−(v1) + 1, if |V (v4)| = r + 2

,

in both cases a contradiction. Therefore, let v4 → vy3 with y3 > y2. If we notice
that either v3 ∈ Vb or v4 ∈ Vb, then we observe that v1v2v3vy2yv4vy3 . . . vtv1 is
a cycle through all 4 partite sets, a contradiction.

Subcase 3.2. Let m ≥ 4 and thus c ≥ 5. Using Corollary 1.19, we arrive
at d+(v2) ≥

(c−1)r+k−2
2

≥ 7
2
, which means d+(v2) ≥ 4 and v2 has at least four

outer neighbors in V (C).
Suppose that there is an index q ≥ 4 as small as possible such that there

is an index l < q with vl → v1. This index l let be chosen as large as
possible. If the cycle C ′ = v1v2vq . . . vtyv3 . . . vlv1 does not contain vertices
from all m + 1 partite sets, then the remaining partite sets have to be in
{vl+1, . . . , vq−1} ∪ U ′ ∪ W ′. Furthermore, the choice of the indices l and q im-
plies v1 Ã {vl+1, . . . , vq−1}Ã v2. If the partite sets, which do not appear in C ′



60 CHAPTER 3. CYCLES THROUGH EXACTLY M PARTITE SETS

are only part of {vl+1, . . . , vq−1}, then there are at least two vertices vx1 and
vx2 such that v1 Ã {vx1 , vx2} and {vx1+1, vx2+1}Ã v2, which leads to a contra-
diction to (3.7). Let w′ ∈ W ′ be part of a partite set that does not appear in
C ′. Hence, we have U ′ = ∅, l+1 = q−1 and vl+1 ∈ V (w′), since otherwise, the
right-hand side of (3.7) increases by at least two, a contradiction. Therefore,
there are vertices from exactly m partite sets in C ′. Now, we see that r = 2
and |V (w′)| = r = 2. This and the fact that v1 → v2 yield q ≥ 5. If w′ → v3,
then v1v2vq . . . vtyw′v3 . . . vlv1 is a cycle with vertices from exactly m+1 partite
sets, a contradiction. If q ≥ 6 and w′ → vb with 4 ≤ b ≤ l, then we observe
inductively that v1v2vq . . . vtyv3 . . . vb−1w

′vb . . . vlv1 is a cycle with vertices from
m+1 partite sets, a contradiction. Hence, let {v3, . . . , vl} → w′. If there is a
vertex y′ ∈ V (y)− {y} such that w′ → y′, then v1v2vq . . . vtyw′y′v3 . . . vlv1 is a
cycle with vertices from exactly m + 1 partite sets, a contradiction. If there is
a vertex vb in V (C) with 4 ≤ b ≤ t such that vb → y and w′ → vb+1 (t+1 ≡ 1),
then v1v2 . . . vbyw′vb+1 . . . v1 is a cycle containing vertices from exactly m + 1
partite sets, a contradiction.

Firstly, let vl → y. This implies {vl, vl+1, . . . , vt, v1} → y, and thus N+(y) ⊆
{w′, v2, . . . , vl−1}, which means d+(y) ≤ l−1. Because of Corollary 1.19, on the

other hand, we have d+(y) ≥ (c−1)r+k−1
2

≥ 7
2
, which implies l ≥ 5. Altogether,

it follows that

d−(w′) ≥ d−(y) − 2 + |Y | + l − 2 ≥ d−(y) + 3,

a contradiction to ig(D) ≤ 1. Otherwise, if y → vl, then it follows that

d−(w′) ≥ d−(y) − 1 + |Y | + 1 ≥ d−(y) + 2,

again a contradiction to ig(D) ≤ 1.
Altogether, we see that an index q chosen as above does not exist. Let z ′

be the largest index such that v2 → vz′ (notice that z′ ≥ 6). This implies that
v1 Ã {v2, v3, . . . , vz′−1}, and thus N−(v1) ⊆ {vz′ , vz′+1, . . . , vt}. If there is a
vertex y ∈ Y such that vz′−1 → y, then it follows that {vz′−1, . . . , vt, v1} → y,
and thus, we have d−(y) ≥ d−(v1)+2, a contradiction to ig(D) ≤ 1. Therefore,
we may assume that Y → {v2, v3, . . . , vz′−1}. Let z′′ be the smallest index such
that vz′′ → v1.

Firstly, let v2 Ã vz′−2. Then there is an arc from vz′−2 to {vz′′+1, . . . , vt},
since otherwise, we observe that

d−(vz′−2) ≥ d−(v1) − 1 + |{vz′−3, v1, v2}| + |Y | − |V (vz′−2) − {vz′−2}|

≥

{

d−(v1) + 2 if |V (vz′−2)| ≤ r + 1
d−(v1) + 1 if |V (vz′−2)| = r + 2

.

Both cases yield a contradiction, either to ig(D) ≤ 1 or to Remark 1.18.
Consequently, let vz′−2 → vy1 with y1 ∈ {z′′ + 1, . . . , t}. Let y ∈ Y and
let y2 < y1 be the largest index such that vy2 → v1. Let us suppose that
the cycle C ′ := v1v2 . . . vz′−2vy1 . . . vtyvz′−1 . . . vy2v1 does not contain vertices
of exactly m + 1 partite sets. Then there is a partite set Vb such that Vb ⊆
{vy2+1, vy2+2, . . . , vy1−1}∪U ′∪W ′. Since v1 Ã {vy2+1, vy2+2, . . . , vy1−1}∪U ′∪W ′
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and {vy2+2, vy2+3, . . . , vy1} ∪ U ′ ∪ W ′
Ã v2, (3.7) implies that |Vb| ≤ 1, a

contradiction to r ≥ 2.
Secondly, let vz′−2 → v2. Since v1 Ã vz′−3, this yields that the right-hand

side of (3.7) increases by 1. To get no contradiction, it follows that v2 Ã vz′−1

and {vz′ , vz′+1, . . . , vt} → v1, which means that z′ = z′′. This implies that
there is an arc from vz′−1 to {vz′+1, vz′+2, . . . , vt}, since otherwise, we observe
that

d−(vz′−1) ≥ d−(v1) − 1 + |{vz′−2, v1, v2}| + |Y | − |V (vz′−1) − {vz′−1}|

≥

{

d−(v1) + 2 if |V (vz′−1)| ≤ r + 1
d−(v1) + 1 if |V (vz′−1)| = r + 2

.

Both cases yield a contradiction, either to ig(D) ≤ 1 or to Remark 1.18.
Consequently, let vz′−1 → vz1 with z1 ∈ {z′+1, z′+2, . . . , t}. If there is a vertex
y ∈ Y such that vz′ → y, then we conclude that {vz′ , vz′+1, . . . , vt, v1} → y and
v1v2vz′ . . . vz1−1yv3 . . . vz′−1vz1 . . . vtv1 is a cycle with vertices from exactly m+1
partite sets, a contradiction. Hence, let Y → vz′ . For an arbitrary vertex
y ∈ Y , it follows that v1v2 . . . vz′−1vz1 . . . vtyvz′ . . . vz1−1v1 is a cycle through
m + 1 partite sets, a contradiction.

This completes the proof of the theorem. ¤

Combining the results of the Theorems 3.11 and 3.12, we arrive at Theorem
3.6.

The next example shows that the condition that there are at least two
vertices in each partite set is necessary, at least for c = 4.

Example 3.13 Let V1 = {a}, V2 = {b, b2}, V3 = {c}, and V4 = {y} be the
partite sets of a 4-partite tournament such that a → b → c → b2 → y → c →
a → y → b and b2 → a (see Figure 3.3). The resulting 4-partite tournament
is almost regular, however, the arc ab is on a cycle with vertices from exactly
3 partite sets, but not from all 4 partite sets.

6
-

?¾

I

µ
R

y

a b

cb2

Figure 3.3: An almost regular 4-partite tournament with the property
that the arc ab is in no cycle through exactly 4 partite sets
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3.3 Open problems

The results in the last two sections lead us to the following problems.

Problem 3.14 (Volkmann, Winzen [38]) Let D be a c-partite tournament
with ig(D) ≤ i and at least r vertices in each partite set. For all i, find the
smallest values g(i) and f(i, g(i)) with the property that every arc of D is
contained in a cycle through m partite sets for all m ∈ {4, 5, . . . c}, if r ≥ g(i)
and c ≥ f(i, g(i)).

According to the Theorems 3.4 and 3.6, we have g(0) = 1, f(0, 1) = 4,
g(1) = 2 and f(1, 2) = 4.

Problem 3.15 (Volkmann, Winzen [38]) Let D be a c-partite tournament
with ig(D) ≤ i and r vertices in each partite set. For all i, c and r find optimal
values g1(i, c, r) and g2(i, c, r) such that every arc of D is contained in a cycle
through exactly m partite sets for all g1(i, c, r) ≤ m ≤ g2(i, c, r).



Chapter 4

Combining Chapters 2 and 3

There is an extensive literature on cycles in multipartite tournaments, see e.g.,
Bang-Jensen and Gutin [2], Guo [9], Gutin [15], Volkmann [31] and Yeo [49].
Many results are about the existence of cycles of a given length as Theorem
2.5, the main result of Chapter 2, and the following result of Bondy [6].

Theorem 4.1 (Bondy [6]) Each strongly connected c-partite tournament T
contains a cycle of order m for each m ∈ {3, 4, . . . , c}.

Other articles treat the existence of cycles containing vertices of a given
number of partite sets. Good examples are Theorem 3.1 of Goddard and
Oellermann [8] and Theorem 3.6, the main theorem of Chapter 3. An interest-
ing question is now to find sufficient conditions for a multipartite tournament
such that we are able to combine these two categories of results, which means
to solve the following problem.

Problem 4.2 (Volkmann, Winzen [43]) Which conditions have to be ful-
filled such that a c-partite tournament with the partite sets V1, V2, . . . , Vc con-
tains a cycle with exactly ri vertices of Vi for all 1 ≤ i ≤ c and given integers
0 ≤ ri ≤ |Vi|?

In the first section, we will search for strong subtournaments in almost
regular multipartite tournaments. The following theorem of Moon [20] shows
that every strongly connected tournament is Hamiltonian, which implies the
connection between strong subtournaments and Problem 4.2.

Theorem 4.3 (Moon [20]) Every vertex of a strongly connected tournament
T is contained in a cycle of order m for all 3 ≤ m ≤ |V (T )|.

Solving a Problem posed by L. Volkmann [29], in the second section, we
will study the existence of strong subtournaments in multipartite tournaments
of higher irregularity. Obviously, the order of strong subtournaments that can
be guaranteed will be smaller the higher the irregularity of the multipartite
tournament is.

In the third section, we will search for long cycles. In 1997, A. Yeo [48]
gave a solution of Problem 4.2 for regular c-partite tournaments in the case
that ri = |Vi| for all 1 ≤ i ≤ c.

63
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Theorem 4.4 (Yeo [48]) Every regular multipartite tournament D is Hamil-
tonian.

Here, we will study the next step, which means that we will solve Problem
4.2 for regular c-partite tournaments in the case that ri = |Vi| − 1 for all
1 ≤ i ≤ c.

4.1 Strong subtournaments when ig(D) ≤ 1

In 1999, L. Volkmann [29] proved the following theorem about strong subtour-
naments in multipartite tournaments.

Theorem 4.5 (Volkmann [29]) Let D be an almost regular c-partite tour-
nament with c ≥ 4. Then D contains a strongly connected subtournament of
order p for every p ∈ {3, 4, . . . , c − 1}.

The next example of Volkmann [29] shows that Theorem 4.5 is best possible
for c = 4, even for regular multipartite tournaments.

Example 4.6 (Volkmann [29]) Let Vi = V ′
i ∪ V ′′

i with |V ′
i | = |V ′′

i | = t for
i = 1, 2, 3, 4 be the partite sets of a 4-partite tournament such that V ′

1 → V ′
2 →

V ′
3 → V ′

1 , V ′′
1 → V ′′

2 → V ′′
3 → V ′′

1 ,

(V ′
1 ∪ V ′

2 ∪ V ′
3) → V ′

4 → (V ′′
1 ∪ V ′′

2 ∪ V ′′
3 ) → V ′′

4 → (V ′
1 ∪ V ′

2 ∪ V ′
3),

V ′
1 → V ′′

3 → V ′
2 → V ′′

1 → V ′
3 → V ′′

2 → V ′
1 .

Now it is a simple matter to check that the resulting 4-partite tournament is
3t-regular without a strongly connected subtournament of order 4.

However, for c ≥ 5, Volkmann [29] presented the following conjecture.

Conjecture 4.7 (Volkmann [29]) If D is an almost regular c-partite tour-
nament with c ≥ 5, then D contains a strongly connected subtournament of
order c.

In the following, we will settle Conjecture 4.7 in affirmative. To reach this,
we need some results about tournaments.

Definition 4.8 [Tournament Qn] By Qn we define the tournament of order n
consisting of a path x1x2 . . . xn and all arcs xixj where i > j + 1.

Lemma 4.9 (Thomassen [26]) A strong tournament T on n vertices has
three vertices y1, y2, y3 such that T − yi is strong for i = 1, 2, 3, unless T is
isomorphic to Qn.
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Lemma 4.10 (Yeo [49]) If X is a non-empty vertex set of a digraph D, then

il(D) ≥
|d(X,V (D) − X) − d(V (D) − X,X)|

|X|
,

which means, if D is almost regular, then it follows that

|X| ≥ |d(X,V (D) − X) − d(V (D) − X,X)|.

Lemma 4.11 (Volkmann [29]) Let T be a strongly connected tournament of
order |V (T )| ≥ 4. Then there exists a vertex u ∈ V (T ) of maximum outdegree
such that for all x ∈ V (T )−{u}, the subtournament T −x has a Hamiltonian
path with the initial vertex u.

Now we are able to prove the main result of this section.

Theorem 4.12 (Volkmann, Winzen [39]) Let D be an almost regular c-
partite tournament with c ≥ 5. Then D contains a strongly connected subtour-
nament of order c.

Proof. Let V1, V2, . . . , Vc be the partite sets of D with r = |V1| ≤ |V2| ≤
. . . ≤ |Vc| ≤ r + 2. Obviously, |V (D)| = cr + k with k = 0, if |Vc| = r,
1 ≤ k ≤ c − 1, if |Vc| = r + 1, and 2 ≤ k ≤ 2c − 2, if |Vc| = r + 2.
According to Theorem 4.5, there exists a strongly connected subtournament
Tc−1 = D[{v1, v2, . . . , vc−1}] of order c − 1 in D. Let Vp be the partite set
without any vertex in Tc−1. Assume now that D does not contain any strong
subtournament of order c.

If there is a vertex z ∈ Vp with an inner and an outer neighbor in Tc−1, then
D[{z, v1, v2, . . . , vc−1}] is a strong subtournament of order c, a contradiction.
Hence, let V ′ ⊆ Vp and V ′′ = Vp − V ′ such that V (Tc−1) → V ′, if V ′ 6= ∅, and
V ′′ → V (Tc−1), if V ′′ 6= ∅. Let U be the set of vertices of V (D)−(Vp∪V (Tc−1))
being dominated by at least one vertex of V ′, and let W be the set of vertices
of V (D) − (Vp ∪ V (Tc−1)) that are not dominated by any vertex of V ′, that
means W → V ′. These definitions lead us to the following claim.

Claim 1. If there is a vertex v ∈ V (Tc−1) that is the initial vertex of a
Hamiltonian path in Tc−1−{y} for all y ∈ Tc−1−{v}, then v Ã U . Otherwise,
if there is a vertex u ∈ U ∩ V (vj) with vj ∈ V (Tc−1) such that u → v, then let
v′ ∈ V ′ with v′ → u. In this case D[(V (Tc−1) − {vj}) ∪ {v′, u}] is a strongly
connected tournament, a contradiction.

Now, we distinguish different cases.
Case 1. Let |V ′| ≤ 1 or |V ′′| ≤ 1. Without loss of generality, we suppose

that |V ′′| ≤ 1. Then, let V := V ′. The definitions of the sets U and W yield
d(V, V (D) − V ) ≤ |V ||U | and d(V (D) − V, V ) ≥ |V |(|V (D) − (U ∪ V )| − 1).
According to Lemma 4.10, we have |V | ≥ d(V (D)−V, V )− d(V, V (D)−V ) ≥
|V |(|V (D)| − 2|U | − |V | − 1), which is equivalent with

|U | ≥
|V (D)| − |V | − 2

2
. (4.1)
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Because of c − 1 ≥ 4 and Lemma 4.11 there is a vertex v ∈ V (Tc−1) such
that for all vertices y ∈ V (Tc−1)−{v}, the subtournament Tc−1 −{y} contains
a Hamiltonian path with the initial vertex v. With Claim 1, we obtain that
v Ã U . According to Lemma 4.11, the vertex v has maximum outdegree in
Tc−1, and thus d+

D[V (Tc−1)](v) ≥ 2. Because of (4.1), it follows that

d+(v) ≥ |V | + |U − (V (v) − {v})| + d+
D[V (Tc−1)](v)

≥ |V | +
|V (D)| − |V | − 2

2
− |V (v)| + 3

=
|V (D)| + |V | − 2

2
− |V (v)| + 3

≥















|V (D)|+r−3
2

− (r + 2) + 3, if |V (v)| = r + 2

|V (D)|+r−3
2

− (r + 1) + 3, if |V (v)| = r + 1

|V (D)|+r−3
2

− r + 3 , if |V (v)| = r

=















|V (D)|−r−1
2

, if |V (v)| = r + 2

|V (D)|−r+1
2

, if |V (v)| = r + 1

|V (D)|−r+3
2

, if |V (v)| = r

,

in all cases a contradiction, either to Remark 1.18 or to Lemma 1.12.
Case 2. Let |V ′| ≥ 2 and |V ′′| ≥ 2. This implies that r ≥ 2, since

otherwise we arrive at |Vp| ≥ 4 = r + 3, a contradiction to Lemma 1.10.
If H is the set of partite sets containing a vertex v ∈ V (Tc−1) such that the

subdigraph Tc−1 − {v} is still strongly connected, then let us define the sets
Ŵ and Û by Û = U ∩ H and analogously Ŵ = W ∩ H.

Now, it follows that V (Tc−1)Ã Û , since otherwise let vi ∈ V (Tc−1), û ∈ Û∩
V (vj) with vj ∈ V (Tc−1) and v′ ∈ V ′ such that v′ → û → vi, then D[(V (Tc−1)−
{vj}) ∪ {û, v′}] is a strongly connected tournament, a contradiction. This

implies V ′′ → Û , because otherwise let û ∈ Û ∩ V (vj) with vj ∈ V (Tc−1) and
v′′ ∈ V ′′ such that û → v′′, then D[(V (Tc−1) − {vj}) ∪ {û, v′′}] is a strongly
connected tournament of order c, a contradiction. If there are vertices û ∈
Û ∩ V (vj) with vj ∈ V (Tc−1) and v ∈ N−(v′′) ∩ V (vi) with vi ∈ V (Tc−1) such
that û → v, then D[(V (Tc−1)−{vi, vj})∪ {û, v′′, v}] is a strong tournament, a

contradiction. Consequently, let us assume that N−(v′′)Ã Û for all v′′ ∈ V ′′.
Altogether, we see that

(V (Tc−1) ∪ V ′′ ∪ N−(v′′))Ã Û , (4.2)

if v′′ ∈ V ′′. Let ŵ ∈ Ŵ ∩ N−(v′′) with v′′ ∈ V ′′. Assume that there exists a
vertex vi ∈ V (Tc−1) such that vi → ŵ. If ŵ ∈ V (vj) with vj ∈ V (Tc−1), then
D[(V (Tc−1) − {vj}) ∪ {ŵ, v′′}] is a strongly connected tournament of order
c, a contradiction. Therefore, let ŵ Ã V (Tc−1). This yields ŵ Ã U , since
otherwise let u ∈ U and v′ ∈ V ′ such that v′ → u → ŵ. If u ∈ V (vi) and
ŵ ∈ V (vj) with vi, vj ∈ V (Tc−1), then D[(V (Tc−1) − {vi, vj}) ∪ {u, ŵ, v′}] is a
strongly connected tournament, a contradiction. Altogether, this leads to

N−(v′′) ∩ Ŵ Ã (V (Tc−1) ∪ U ∪ V ′). (4.3)
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Subcase 2.1. Suppose that Û 6= ∅. Because of (4.2) this yields N−(v′′) ⊆
W ∪ (U − Û). If there is a vertex v′′ ∈ V ′′ such that v′′ → Ŵ or if Ŵ = ∅,
then N−(v′′) ∩ V (û) = ∅ for all û ∈ Û , which yields that N−(v′′) → Û , and
thus, according to (4.2), we have

d−(û) ≥ d−(v′′) + |V (Tc−1) − V (û)| + |N−(û) ∩ V ′| + |N−(û) ∩ V ′′|

≥ d−(v′′) + c − 2 + 3,

if û ∈ Û , a contradiction to ig(D) ≤ 1. Hence, let ŵ ∈ Ŵ ∩ N−(v′′) with
v′′ ∈ V ′′. If we define ĉ by ĉ = |V (ŵ) ∩ U |, then, because of (4.3), for all
v′ ∈ V ′ we see that

d+(v′) + 1 ≥ d+(ŵ) ≥ |U | − ĉ + |V ′| + |N+(ŵ) ∩ V ′′| + |V (Tc−1) − V (ŵ)|

≥ d+(v′) − ĉ + |V ′| + 1 + c − 2,

and thus, we conclude that ĉ ≥ |V ′|+c−2. Let û ∈ V (ŵ)∩Û . If c̃ = |V (û)∩Ŵ |,
then for v′′ ∈ V ′′ it follows that

d−(v′′) + 1 ≥ d−(û)

≥ d−(v′′) + |V (Tc−1) − V (û)| + |V ′′| + |N−(û) ∩ V ′| − c̃

≥ d−(v′′) + c − 2 + |V ′′| + 1 − c̃.

This implies c̃ ≥ |V ′′| + c − 2, and we arrive at the contradiction

|V (û)| ≥ c̃ + ĉ + 1 ≥ |Vp| + 2c − 3 ≥ |Vp| + 7.

Subcase 2.2. Let Û = ∅. This leads us to a further claim.

Claim 2. If v ∈ V (Tc−1) is the initial vertex of a Hamiltonian path in Tc−1 −
{y} for all y ∈ Tc−1 − {v}, then v is a cut-vertex of D, since otherwise V (v)−
{v} ⊆ Ŵ . Using Claim 1 this yields v → U and thus d+(v) ≥ |U | + |V ′| ≥
d+(v′) + 2 for all v′ ∈ V ′, a contradiction to ig(D) ≤ 1.

If Tc−1 is 2-strong, then it follows that U = ∅, and thus d+(v′) = 0 with
v′ ∈ V ′, a contradiction.

Consequently, there remains the case that Tc−1 contains a cut-vertex x,
which means Tc−1 − {x} is not strongly connected and consists of strongly
connected components T ′

1, T
′
2, . . . , T

′
l such that V (T ′

i ) → V (T ′
j), if 1 ≤ i <

j ≤ l. Furthermore, there exist vertices v′
1 ∈ V (T ′

1) and v′
l ∈ V (T ′

l ) such that
v′

l → x → v′
1.

If there are two vertices ŵ ∈ Ŵ and v′′ ∈ V ′′ such that ŵ → v′′, then,
analogously as in the last subcase, we see that |V (ŵ) ∩ U | ≥ |V ′| + c − 2 > 0,
a contradiction to Û = ∅. Consequently, let V ′′ → Ŵ .

Let z1 → z2 → . . . → zm be a Hamiltonian path in Tc−1 − {x} such that
zm → x → z1.

Firstly, let x → z2. In this case, Tc−1 − {z1} is strongly connected. Hence,
V (z1) belongs to H. Subcase 2.1 implies that V (z1) ∩ U = ∅, and since
V ′′ → Ŵ , we see that V ′′ → V (z1). If z1 is the initial vertex of a Hamiltonian
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path in Tc−1 − {y} for all y ∈ V (Tc−1) − {z1}, then, according to Claim 1, we
arrive at z1 Ã U , a contradiction to Claim 2.

Secondly, we investigate the case that zm−1 → x. Then Tc−1 − {zm} is
strongly connected. Hence, V (zm) ⊆ H, V (zm) ∩ U = ∅ and V ′′ → V (zm).
If zm is the terminal vertex of a Hamiltonian path in Tc−1 − {y} for all y ∈
V (Tc−1) − {zm}, then we observe that N−(v′′)Ã zm, since otherwise, if there
are vertices v′′ ∈ V ′′ and v ∈ V (vj) with vj ∈ V (Tc−1) such that zm → v →
v′′, then D[(V (Tc−1) − {vj}) ∪ {v, v′′}] is a strong tournament of order c, a

contradiction. Because of V ′′ → Ŵ we even have N−(v′′) → zm, which means

d−(zm) ≥ d−(v′′) + 1 + |V ′′| > d−(v′′) + 1,

if v′′ ∈ V ′′, a contradiction.
Subcase 2.2.1. Let V (T ′

1) = {v′
1, v̂1, ṽ1} such that x → v′

1 → ṽ1 → v̂1 → v′
1.

Firstly, we investigate the case that x → {v′
1, v̂1, ṽ1}. In this case we observe

that V (v′
1) ∪ V (v̂1) ∪ V (ṽ1) ⊆ H. If y is an arbitrary vertex in V (Tc−1)− {x},

then it is straightforward to see that x is the initial vertex of a Hamiltonian
path in Tc−1 −{y}. Claim 1 yields that xÃ U . If c̃ = |V (x)∩U | and v ′ ∈ V ′,
then we arrive at

d+(v′) + 1 ≥ d+(x) = |U | − c̃ + |N+(x) ∩ W | + d+
D[V (Tc−1)](x) + |V ′|

≥ d+(v′) − r + d+
D[V (Tc−1)](x) + |N+(x) ∩ W | + 2,

if c̃ ≤ r and by Remark 1.18

d+(v′) ≥ d+(x) = |U | − c̃ + |N+(x) ∩ W | + d+
D[V (Tc−1)](x) + |V ′|

≥ d+(v′) − (r + 1) + d+
D[V (Tc−1)](x) + |N+(x) ∩ W | + 2,

if c̃ = r + 1.

(4.4)

In both cases, we obtain

|N+(x) ∩ W | ≤ r − 1 − d+
D[V (Tc−1)]

(x). (4.5)

If l = 2 and T ′
2 = {v′

2}, then c = 6 and for v′ ∈ V ′ we have

3r + 2 ≤ |V (Tc−1)| + |Ŵ | ≤ d−(v′) ≤ d+(v′) + 1 ≤ |U | + 1 ≤ 2r + 3,

a contradiction to r ≥ 2. Otherwise we observe that there is a vertex a ∈ V (T ′
2)

such that Tc−1 − {a} is strong.
Hence, we may assume now that |Ŵ | ≥ 4r− 4. By (4.5), we conclude that

for all ŵ ∈ Ŵ except at most r − 1 − d+
D[V (Tc−1)](x) vertices we have ŵ → x.

Using (4.5), we will show next that there exists at least one vertex w̃ ∈
Ŵ ∩ N−(x) such that

|N+(w̃) ∩ W | ≥
3r − 3 − (r − 1 − d+

D[V (Tc−1)]
(x))

2

= r +
d+

D[V (Tc−1)](x) − 2

2
.

(4.6)
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Let F be the set Ŵ without the at most r − 1 − d+
D[V (Tc−1)]

(x) vertices, which
are dominated by x. For every vertex f ∈ F we conclude that

d+
D[F ](f) + d−

D[F ](f) ≥ 3r − 3 − (r − 1 − d+
D[V (Tc−1)](x)).

This implies

2
∑

f∈F

d+
D[F ](f) =

∑

f∈F

(d+
D[F ](f) + d−

D[F ](f))

≥ |F |(3r − 3 − (r − 1 − d+
D[V (Tc−1)]

(x))),

which immediately yields (4.6).
If we remove one of the vertices that are no cut-vertices of Tc−1 and a cut-

vertex x̃ 6= x (obviously x̃ ∈ V (T ′
l )) from Tc−1, then it is easy to see that x

is still an initial vertex of a Hamiltonian path in the remaining tournament.
This implies that w̃ → U −V (x), since otherwise let v ′ ∈ V ′, u ∈ (U −V (x))∩
V (vi) and w̃ ∈ V (vj) with vi, vj ∈ V (Tc−1) such that v′ → u → w̃. In this
case D[(V (Tc−1)− {vi, vj})∪ {v′, u, w̃}] is a strongly connected tournament, a
contradiction. Therefore and because of (4.6), we arrive at

|U | − c̃ + |N+(x) ∩ W | + d+
D[V (Tc−1)](x) + |V ′|

(4.4)
= d+(x)

≥ d+(w̃) − 1
(4.6)

≥ |U | − c̃ + |V ′| + r +
d+

D[V (Tc−1)](x) − 4

2
,

which leads to

r ≤ |N+(x) ∩ W | +
d+

D[V (Tc−1)](x)

2
+ 2

(4.5)

≤ r + 1 −
d+

D[V (Tc−1)]
(x)

2
,

a contradiction to d+
D[V (Tc−1)](x) ≥ 3.

Hence, it remains the case that v̂1 → x or ṽ1 → x. At first, we investigate
the case that x → {v′

1, ṽ1} (that means v̂1 → x). Now, it is straightforward to
see that v̂1 is the initial vertex of a Hamiltonian path in Tc−1 − {y}, if y is an
arbitrary vertex in V (Tc−1)−{v̂1}. According to Claim 2, this contradicts the
fact that Tc−1 − {v̂1} is strongly connected.

Consequently, we have to investigate the case that ṽ1 → x. It is easy to
check that in this case ṽ1 is the initial vertex of a Hamiltonian path in Tc−1−{y}
for an arbitrary y ∈ V (Tc−1) − {ṽ1}. Analogously as in Claim 2, we observe
that V (ṽ1) ∩ U 6= ∅, since otherwise we arrive at ṽ1 → U , a contradiction to
ig(D) ≤ 1. If V (v̂1) ∩ W ∩ N−(ṽ1) = ∅, then for all v′ ∈ V ′ we arrive at the
contradiction

d+(ṽ1) ≥ |U | − |V (ṽ1) ∩ U | + |V ′| + |V (v̂1) ∩ W | + d+
D[V (Tc−1)](ṽ1)

≥ d+(v′) − (r + 1) + 2 + r − 1 + 3 = d+(v′) + 3.

Hence, let ŵ ∈ V (v̂1) ∩ W ∩ N−(ṽ1). If there are vertices v′ ∈ V ′ and u ∈
(U − (V (ṽ1) ∪ V (x))) ∩ V (vj) with vj ∈ V (Tc−1) such that v′ → u → ŵ, then
ṽ1 is still the initial vertex of a Hamiltonian path in V (Tc−1) − {vj, v̂1} and
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D[(V (Tc−1) − {vj, v̂1}) ∪ {u, v′, ŵ}] is a strong tournament, a contradiction.
Hence, we conclude that ŵ → U − (V (ṽ1) ∪ V (x)). If there is a vertex x̃ ∈
V (x)∩U such that x̃ → ŵ, then v′

1 → ŵ, since otherwise let v′ ∈ V ′ such that
v′ → x̃. Now, D[(V (Tc−1) − {x, v̂1}) ∪ {x̃, v′, ŵ}] is a strong tournament of
order c, a contradiction. If there is a vertex ṽ ∈ V (ṽ1) ∩ U such that ṽ → ŵ,
then we also conclude that v′

1 → ŵ, since otherwise let v′ ∈ V ′ with v′ → ṽ.
Then D[(V (Tc−1) − {ṽ1, v̂1}) ∪ {ṽ, v′, ŵ}] is a strongly connected tournament,
a contradiction. If ŵ → U , then it follows that d+(ŵ) ≥ d+(v′) + |V ′| ≥
d+(v′) + 2, if v′ ∈ V ′, a contradiction. Consequently, there exists a vertex
v ∈ (V (ṽ1) ∪ V (x)) ∩ U such that v → ŵ. As seen above, this yields v ′

1 → ŵ.
Now, let us examine the tournament T̃c−1 := (Tc−1 − {v̂1})∪ {ŵ}. Since there
is no arc leading from T̃c−1 −{x, v′

1} to v′
1, the vertex x is a cut-vertex of T̃c−1,

that means that T̃c−1 − {x} consists of the strong components T̂1, T̂2, . . . , T̂o

with V (T̂i) → V (T̂j), if i < j. Now, it is easy to see that v′
1 ∈ V (T̂1).

Furthermore, we observe that ŵ ∈ V (T̂2). This can be seen by taking the last
vertex zi of a Hamiltonian path in Tc−1 − {x} that dominates ŵ. If such a
vertex does not exist, then clearly V (T̂2) = {ŵ}. If otherwise zi ∈ V (T ′

s), then
V (T̂2) = {ŵ, ṽ1}∪V (T ′

2)∪ . . .∪V (T ′
s). Now, it is straightforward to verify that

v′
1 is the initial vertex of a Hamiltonian path in T̃c−1 − {y} for an arbitrary

vertex y ∈ V (T̃c−1)−{v′
1}. According to the results in the beginning of Subcase

2.2, this yields ŵ → x, which implies that T̃c−1 − {ṽ1} is strongly connected.
Following the same lines as in Subcase 2.1, we arrive at V (ṽ1) − {ṽ1} ⊆ Ŵ ,
which means V (ṽ1) ∩ U = ∅, a contradiction.

Subcase 2.2.2. Let |T ′
l | = 3. If we consider the converse D−1 of D, then, in

view of Subcase 2.2.1, it remains the case that |T ′
l | 6= 3.

Subcase 2.2.3. Let T ′
1 = {v′

1} and T ′
l = {v′

l}. In this case, the only possible
cut-vertices of Tc−1 are x, v′

1 and v′
l, which means Ŵ ⊇ V (D)−(V (x)∪V (v′

1)∪
V (v′

l) ∪ V (Tc−1) ∪ Vp), and thus |Ŵ | ≥ (c − 4)(r − 1).
Obviously, we have 5 ≤ c ≤ 7, since otherwise, if c ≥ 8, then it follows that

|Ŵ | ≥ 4r − 4 and |U | ≤ 3r + 3, and thus for v′ ∈ V ′

4r + 3 ≤ |V (Tc−1)| + |Ŵ | ≤ d−(v′) ≤ d+(v′) + 1 ≤ |U | + 1 ≤ 3r + 4,

a contradiction to r ≥ 2.
Firstly, let c = 7. Let z1z2 . . . z5 be a Hamiltonian path in Tc−1 − {x} such

that z1 = v′
1 and z5 = v′

l. If x → z2, then Tc−1 − {v′
1} is strongly connected

and it follows that

4r + 2 ≤ d−(v′) ≤ d+(v′) + 1 ≤ 2r + 3,

if v′ ∈ V ′, a contradiction. Hence, let z2 → x. Analogously, we see that
x → z4. This implies that l = 5 and V (T ′

i ) = {zi} with i = 1, 2, . . . , 5 and
z2 → x → z4. Without loss of generality let z3 → x. Now, z1 is a cut-vertex
of Tc−1 such that Tc−1 − {z1} consists of the strong components T̂1, T̂2, T̂3

with V (T̂1) → (V (T̂2) ∪ V (T̂3)), V (T̂2) → V (T̂3) and V (T̂3) = {z4, z5, x}, a
contradiction to Subcase 2.2.2.

Secondly, let c = 6. In this case, we have l = 4 and V (T ′
i ) = {zi} for

1 ≤ i ≤ 4. Furthermore, we observe that z2 → x → z3, since otherwise,



4.1. STRONG SUBTOURNAMENTS WHEN IG(D) ≤ 1 71

because of |U | ≤ 2r + 2 and |W | ≥ 3r − 3, it follows that

3r + 2 ≤ d−(v′) ≤ d+(v′) + 1 ≤ 2r + 3,

a contradiction to r ≥ 2. Now, v′
4 is a cut-vertex of Tc−1 such that Tc−1 −{z4}

consists of the strong components T̂1, T̂2 with V (T̂1) → V (T̂2) and V (T̂1) =
{x, z1, z2}, a contradiction to Subcase 2.2.1.

Thirdly, let c = 5 and V (T ′
i ) = {zi} for i = 1, 2, 3. Without loss of

generality, we may suppose that x → z2. In this case, Tc−1 − {z1} is strongly
connected and we arrive at |U |+ |W − Ŵ | ≤ 2r+2 and |Ŵ | ≥ 2r−2. Because
of N+(v′′), N−(v′) ⊇ V (Tc−1) ∪ Ŵ , N+(v′) ⊆ U and N−(v′′) ⊆ U ∪ (W − Ŵ )
for all v′ ∈ V ′ and v′′ ∈ V ′′, this yields that

2r + 2 ≤ d−(v′) ≤ d+(v′) + 1 ≤ 2r + 3 and

2r + 2 ≤ d+(v′′) ≤ d−(v′′) + 1 ≤ 2r + 3

if v′ ∈ V ′ and v′′ ∈ V ′′. If W 6= Ŵ or if there exist vertices u ∈ U and v′ ∈ V ′

such that u → v′, then we observe that

2r + 3 ≤ |Ŵ | + 1 + |V (Tc−1)| ≤ d−(v′) ≤ d+(v′) + 1 ≤ |U | ≤ 2r + 2,

a contradiction. Hence, we conclude that N+(v′) = U for all v′ ∈ V ′ and
W − Ŵ = ∅. Furthermore, we observe that

U = (V (z3) ∪ V (x)) − {z3, x} and W = Ŵ = (V (z1) ∪ V (z2)) − {z1, z2}.

Analogously, we see that N−(v′′) = U for all v′′ ∈ V ′′. Now, it is straightfor-
ward to see that there remain the cases that either |U | = 2r+2 and |W | = 2r−2
(d+(v′) = d−(v′) = 2r+2) or |U | = 2r+1 and |W | = 2r−2 (d−(v′) = 2r+2 =
d+(v′) + 1) or |U | = 2r + 2 and |W | = 2r − 1 (d−(v′) = 2r + 3 = d+(v′) + 1).

Clearly, x is the initial vertex and z2 is the terminal vertex of a Hamiltonian
path in Tc−1 − {z3} and z1 is the initial vertex and z3 is the terminal vertex
of a Hamiltonian path in Tc−1 − {x}. This implies x → V (z3) ∩ U → z2 and
z1 → V (x)∩U → z3, and since U = (V (x)∪V (z3))−{z3, x}, we conclude that
N+(z3) ∩ U = N−(x) ∩ U = ∅. If there is a vertex y1 ∈ N−(x) ∩ V (z1) ∩ W ,
then it follows that y1 → V (z3) ∩ U since otherwise let y3 ∈ V (z3) ∩ U and
v′ ∈ V ′ such that v′ → y3 → y1. In this case v′ → y3 → y1 → x → z2 → v′,
a contradiction. Analogously, we conclude that y2 → (V (z3) ∩ U), if y2 ∈
N−(x) ∩ V (z2) ∩ W .

Using U → V ′′, analogously as above, we arrive at V (x) ∩ U → v̂2, if
v̂2 ∈ N+(z3) ∩ V (z2) ∩ W , and V (x) ∩ U → v̂1, if v̂1 ∈ N+(z3) ∩ W ∩ V (z1).

Let v̂3 ∈ V (z3) ∩ U and x̂ ∈ V (x) ∩ U . If there is a vertex ṽ2 ∈ N−(x) ∩
N+(z3) ∩ V (z2), then the cycle z1x̂ṽ2v̂3v

′′z1 is c-cycle through all c partite
sets, a contradiction. If there is a vertex ṽ1 ∈ N−(x) ∩ N+(z3) ∩ V (z1), then
z2v

′x̂ṽ1v̂3z2 is a c-cycle through all c partite sets, a contradiction.
Hence, it remains the case that N−(x) ∩ N+(z3) ∩ W = ∅. Because of

2r−2 ≤ |W | ≤ 2r−1, we conclude that |N−(x)∩W | ≤ r−1 or |N+(z3)∩W | ≤
r − 1, and thus |N+(x) ∩ W | ≥ r − 1 or |N−(z3) ∩ W | ≥ r − 1. Since
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x → (V (z3) ∩ U) ∪ V ′ ∪ {z1, z2} and V ′′ ∪ {z1, z2} ∪ (V (x) ∩ U) → z3, in the
case that |N+(x) ∩ W | ≥ r − 1 we obtain

d+(x) ≥ |V ′| + |V (z3) ∩ U | + 2 + |N+(x) ∩ W |

≥

{

2r + 3, if |V (z3) ∩ U | = r (that means |U | = 2r + 1)
2r + 4, if |V (z3) ∩ U | = r + 1

and in the case that |N−(z3) ∩ W | ≥ r − 1

d−(z3) ≥ |V ′′| + |V (x) ∩ U | + 2 + |N−(z3) ∩ W |

≥

{

2r + 3, if |V (x) ∩ U | = r (that means |U | = 2r + 1)
2r + 4, if |V (x) ∩ U | = r + 1

.

Since, as seen above, for all v′ ∈ V ′ we have d+(v′) = 2r + 2, if |U | = 2r + 2,
and d+(v′) = 2r + 1, if |U | = 2r + 1, in all cases we arrive at a contradiction
to ig(D) ≤ 1.

Subcase 2.2.4. For all cut-vertices let |T ′
1| > 3 or |T ′

l | > 3.
Firstly, we want to show that

|Ŵ | ≥ 3r − 3. (4.7)

To reach this, we start with the case that l = 2, |T ′
1| > 3 and T ′

2 = {v′
2}. Let

z1z2 . . . ztz1 be a Hamiltonian cycle in T ′
1 such that x → z1. If v′

2 is the terminal
vertex of a Hamiltonian path in Tc−1 − {y} for all y ∈ Tc−1 − {v′

2}, then, as
at the beginning of Subcase 2.2, we conclude that x → zt. Analogously, it
follows that x → zt−1 and inductively that x → T ′

1. This yields that x and v′
2

are the only cut-vertices of Tc−1. Since c ≥ 7, it follows that |U | ≤ 2r + 2 and
|W | ≥ 4r − 4. Therefore we obtain for v′ ∈ V ′ the contradiction

4r + 2 ≤ d−(v′) ≤ d+(v′) + 1 ≤ 2r + 3.

Consequently, it remains the case that there exists a vertex y ∈ Tc−1−{v′
2}

such that in Tc−1 − {y}, there exists no Hamiltonian path with v′
2 as terminal

vertex. This implies (T ′
1−{v′

1}) → x, since otherwise let x → zs with s 6= 1. If
we remove an arbitrary vertex zq from T ′

1, then it can easily be seen that either
x → zq+1 or there exists a vertex ze in the Hamiltonian path of T ′

1 −{zq} such
that ze → x → ze+1. In all cases, there is a Hamiltonian path in Tc−1 − {zq}
with the terminal vertex v′

2, a contradiction. Now, we conclude that Tc−1−{v′
2}

is strongly connected, that means V (v′
2) ⊆ H and V (v′

2) − {v′
2} ⊆ Ŵ .

If l ≥ 3 or |T ′
2| ≥ 3, then there is at least one vertex vj ∈ V (Tc−1)−(V (T ′

1)∪
{x}) such that Tc−1 − {vj} is strongly connected.

Summarizing our results, we see that there always exists a vertex y ∈
(V (T ′

2) ∪ V (T ′
3) ∪ . . . V (T ′

l )) such that V (y) − {y} ⊆ W . Now we will show
that there are at least two further vertices with this property in V (T ′

1). Let Qn

be the tournament consisting of the path x1x2 . . . xn and all arcs xixj where
i > j + 1. If T ′

1 6= Qn, then Lemma 4.9 yields that there are three vertices
y1, y2, y3 ∈ V (T ′

1) such that T ′
1−{yi} is strongly connected. Two of them surely

are different from v′
1. In this case, we get (4.7). Hence, let T ′

1 = Qn. Firstly



4.1. STRONG SUBTOURNAMENTS WHEN IG(D) ≤ 1 73

let us suppose that x → xn−1. In this case, xn surely is the initial vertex of a
Hamiltonian path in Tc−1 −{x}. Furthermore, xnx1 . . . xn−3T

′
2 . . . T ′

l xxn−1 is a
Hamiltonian path in Tc−1−{xn−2} with initial vertex xn. Now, it is easy to see
that xn is the initial vertex of a Hamiltonian path z1z2 . . . zc−3 of Tc−1 −{x, y}
for all y ∈ Tc−1−{x, xn, xn−2}. If zc−3 → x, then clearly xn is the initial vertex
of the Hamiltonian path z1z2 . . . zc−3x in Tc−1 − {y}. Otherwise, if x → zc−3,
then let q = max{i|zi → x}. If there is a vertex zj 6= v′

l such that zj → x, then
the index q exists and z1z2 . . . zixzi+1 . . . zc−3 is a Hamiltonian path of Tc−1−{y}
with the initial vertex xn. Altogether, we have seen, that xn is the initial vertex
of a Hamiltonian path in Tc−1−{y} with y ∈ V (Tc−1)−{xn} arbitrary (except
the case that x → Tc−1 − {x, v′

l}, but in this case we immediately arrive at
(4.7)). Furthermore, Tc−1 − {xn} is strongly connected, a contradiction to
Claim 2. Hence, let xn−1 → x. In this case similarly as above we obtain
that xn−1 is the initial vertex of a Hamiltonian path in Tc−1 − {y}, if y is an
arbitrary vertex in V (Tc−1) − {xn−1}. If Tc−1 − {xn−1} is strongly connected,
then, as above, we arrive at a contradiction. Therefore, let xn → x. Notice
that Tc−1 −{xn} is strongly connected and thus V (xn)−{xn} ⊆ Ŵ . If x → xi

with i ≥ 2, then Tc−1 − {x1} is also strongly connected and we arrive at
(4.7). Thus, it remains the case that T ′

1 − {x1} → x and x → x1. Now, it is
straightforward to see that xn−3 is a cut-vertex of Tc−1 such that Tc−1−{xn−3}
consists of the strong components T̂1, T̂2, . . . , T̂s with V (T̂i) → V (T̂j), if i < j,

and V (T̂1) = {xn−2, xn−1, xn}, a contradiction as in Subcase 2.2.1.

Altogether, we have shown that (4.7) is valid, if |T ′
1| > 3. Caused by

symmetry, we arrive at the same result, if |T ′
l | > 3.

By Lemma 4.11, it follows that there exists a vertex v of maximum outde-
gree in Tc−1 such that v is the initial vertex of a Hamiltonian path in Tc−1−{y},
if y ∈ V (Tc−1)− {v} is an arbitrary cut-vertex of Tc−1. If we remove a further
vertex y′ ∈ V (Tc−1) − {y, v}, which is not a cut-vertex of Tc−1, then we will
show that v is still an initial vertex of a Hamiltonian path in Tc−1 − {y, y′}.

Let us consider the digraph Tc−1 − {y}, for an arbitrary cut-vertex y 6= v
of Tc−1. According to Lemma 4.11, it follows that v is the initial vertex of a
Hamiltonian path in Tc−1 − {y}. If T̃1, T̃2, . . . , T̃t are the strong components
of Tc−1 − {y} such that V (T̃i) → V (T̃j), if i < j, then we conclude that
v ∈ V (T̃1). Now, let y′ ∈ V (Tc−1) − {v, y} be a vertex such that Tc−1 − {y′}
is strongly connected. If y′ ∈ V (T̃i) for i ≥ 2, then it is easy to see that v
is still the initial vertex of a Hamiltonian path in Tc−1 − {y, y′}. Thus, let
y′ ∈ V (T̃1). If y′ is not a cut-vertex of T̃1, then v is also an initial vertex
of a Hamiltonian path in Tc−1 − {y, y′}. Consequently, let y′ be a cut-vertex
of T̃1 with |T̃1| ≥ 3 (because of Subcase 2.2.1, we may even suppose that
|T̃1| ≥ 4) such that T̃1 − {y′} consists of the strong components T̂1, T̂2, . . . , T̂q

with V (T̂i) → V (T̂j), if i < j. In this case, there exist vertices ẑ1 ∈ V (T̂1)

and ẑq ∈ V (T̂q) such that ẑq → y′ → ẑ1. Since y′ is not a cut-vertex of Tc−1,

there exists a vertex ẑ′
1 ∈ V (T̂1) such that y → ẑ′

1. If v ∈ V (T̂1), then it is
obvious that v is the initial vertex of a Hamiltonian path in Tc−1 − {y, y′}.
If v ∈ V (T̂i) with i 6= q, then it is easy to see that Tc−1 − {v} is strongly
connected and we arrive at a contradiction to Claim 2. If v ∈ V (T̂i) with i ≥ 4
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or if v ∈ V (T̂3) and |V (T̂i)| ≥ 3 for at least one i with 1 ≤ i ≤ 3 or if v ∈ V (T̂2)
with |V (T̂1)| ≥ 4 or |V (T̂1)|, |V (T̂2)| ≥ 3, then we arrive at a contradiction to
the fact that the vertex v is of maximum outdegree in Tc−1. If {v} = V (T̂3)
(q = 3) and |V (T̂1)| = |V (T̂2)| = 1 or if {v} = V (T̂2) (q = 2) and |V (T̂1)| = 3
or if v ∈ V (T̂2) with |V (T̂2)| ≥ 3 and |V (T̂1)| = 1, then the condition that
v is of maximum outdegree in Tc−1 implies that v → {y, y′} and there are at
least two vertices that dominate y′. One of these vertices is v and the other
one is in {y} ∪ (V (T̃1) − {y′, v, ẑ1}). In all cases, it is straightforward to show
that Tc−1 − {v} is strongly connected, a contradiction to Claim 2. Finally, it
remains the case that {v} = V (T̂2) and |V (T̂1)| = 1. But now, we observe that
|V (T̃1)| = 3 and Subcase 2.2.1 yields a contradiction.

Summarizing our results, we see that there exists a vertex v that is the
initial vertex of a Hamiltonian path in Tc−1 − {ỹ} and in Tc−1 − {y, y′} with
y, y′, ỹ ∈ V (Tc−1) − {v} arbitrary such that y is a cut-vertex of Tc−1 and y′ is
not a cut-vertex of Tc−1.

If Ŵ consists of vertices of at least four partite sets, that means |Ŵ | ≥
4r − 4, then analogously as in Subcase 2.2.1 with x → {v′

1, ṽ1, v̂1}, we arrive
at a contradiction, since d+

D[V (Tc−1)](v) ≥ 3. Hence, let Ŵ consist of vertices of
exactly three partite sets, that means

3r − 3 ≤ |Ŵ | ≤ 3r + 3. (4.8)

According to Claim 1, it follows that v Ã U . If c̃ = |U ∩V (v)| and v ′ ∈ V ′,
then, using Remark 1.18, we observe that

d+(v′) + 1 ≥ d+(v) = |U | − c̃ + |V ′| + d+
D[V (Tc−1)](v) + |N+(v) ∩ W |

≥ d+(v′) − r + 2 + d+
D[V (Tc−1)](v) + |N+(v) ∩ W |,

if |V (v)| ≤ r + 1 and

d+(v′) ≥ d+(v) = |U | − c̃ + |V ′| + d+
D[V (Tc−1)](v) + |N+(v) ∩ W |

≥ d+(v′) − (r + 1) + 2 + d+
D[V (Tc−1)](v) + |N+(v) ∩ W |,

if |V (v)| = r + 2. Both cases lead to

|N+(v) ∩ W | ≤ r − 1 − d+
D[V (Tc−1)]

(v).

This implies that for all ŵ ∈ Ŵ except at most r − 1 − d+
D[V (Tc−1)]

(v) vertices,
it has to be ŵ → v.

If w̃ ∈ V (vi) ∩ Ŵ ∩ N−(v) with vi ∈ V (Tc−1) and if there are vertices
u ∈ (U − V (v))∩ V (vj) with vj ∈ V (Tc−1) and v′ ∈ V ′ such that v′ → u → w̃,
then our considerations above imply that D[(V (Tc−1)−{vi, vj})∪{u, w̃, v′}] is

a strong tournament of order c, a contradiction. Thus, we have (Ŵ∩N−(v)) →
(U − V (v)).

Using (4.8), we will show next that there is at least one vertex w̃ ∈
Ŵ ∩ N−(v) such that
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|N+(w̃) ∩ W | ≥
2r − 2 − (r − 1 − d+

D[V (Tc−1)](v))

2

=
r

2
+

d+
D[V (Tc−1)](v) − 1

2
.

(4.9)

Let F be the set Ŵ without the at most r − 1 − d+
D[V (Tc−1)](x) vertices,

which are dominated by v. For every vertex f ∈ F we conclude that

d+
D[F ](f) + d−

D[F ](f) ≥ 2r − 2 − (r − 1 − d+
D[V (Tc−1)](v)).

This implies

2
∑

f∈F

d+
D[F ](f) =

∑

f∈F

(d+
D[F ](f) + d−

D[F ](f))

≥ |F |(2r − 2 − (r − 1 − d+
D[V (Tc−1)](v))).

This leads to (4.9). Firstly, let there be at least one vertex f0 ∈ F such that
d+

D[F ](f0) + d−
D[F ](f0) > 2r − 2 − (r − 1 − d+

D[V (Tc−1)](v)). Then we even have

2
∑

f∈F d+
D[F ](f) > |F |(2r − 2 − (r − 1 − d+

D[V (Tc−1)](v))), which immediately

yields that there is at least one vertex w̃ ∈ Ŵ ∩ N−(v) such that

|N+(w̃) ∩ W | >
r

2
+

d+
D[V (Tc−1)](v) − 1

2
. (4.10)

Because of (4.10), we obtain

|U | − c̃ + |V ′| +
r

2
+

d+
D[V (Tc−1)](v) − 1

2
< d+(w̃) ≤ d+(v′) + 1 ≤ |U | + 1,

which leads to

|V ′| +
r

2
+

d+
D[V (Tc−1)](v) − 3

2
< c̃ ≤ r + 1,

and this yields

|V ′| ≤
r + 4 − d+

D[V (Tc−1)]
(v)

2
. (4.11)

Let w be a vertex of maximum indegree such that w is the terminal vertex
of a Hamiltonian path in Tc−1−{y}, if y is an arbitrary vertex in V (Tc−1)−{w}.

Considering the converse D−1 of D, we conclude that |V ′′| ≤
r+4−d−

D[V (Tc−1)]
(w)

2
.

Combining this with (4.11), we arrive at

d+
D[V (Tc−1)](v) + d−

D[V (Tc−1)](w) ≤ 8, (4.12)

since otherwise by (4.11) we obtain the contradiction

|Vp| = |V ′| + |V ′′| ≤
r + 4 − d+

D[V (Tc−1)](v)

2
+

r + 4 − d−
D[V (Tc−1)](w)

2
< r.
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Let x /∈ {v, w} be a cut-vertex of Tc−1. If Tc−1 − {x} consists of the strong
components T ′

1, T
′
2, . . . , T

′
l with V (T ′

i ) → V (T ′
j) for i < j such that |T ′

1| > 3
or |T ′

l | > 3 and l ≥ 3 or c ≥ 9, then it is easy to see that v ∈ V (T ′
1) and

w ∈ V (T ′
l ) with d+

D[V (Tc−1)](v) + d−
D[V (Tc−1)]

(w) ≥ 9, a contradiction to (4.12).

Because of this, there remains the case l = 2 and T ′
2 = {v′

2} to discuss, if
|T ′

1| > 3. The case that |T ′
l | > 3 follows analogously. Since, according to our

assumptions, v′
2 is the terminal vertex of a Hamiltonian path in Tc−1 − {y}, if

y ∈ V (Tc−1)− {v′
2} is an arbitrary vertex, as in the beginning of this subcase,

we arrive at a contradiction.
Hence, according to the proof of (4.9), there remains to treat the case that

(4.9) is fulfilled with equality for all w̃ ∈ Ŵ ∩ N−(v). This is possible, only if
|Ŵ | = 3r−3, d+

D[V (Tc−1)](v) = r−1, which means that |N+(v)∩W | = 0, and if

D[Ŵ ] is an (r − 1)-regular 3-partite tournament. Let ŵ ∈ Ŵ be an arbitrary
vertex. Then we obtain

r + 2 + |U | − c̃ ≤ |U | − c̃ + |{v}|+ |V ′|+ r− 1 ≤ d+(ŵ) ≤ d+(v′) + 1 ≤ |U |+ 1.

This implies that c̃ = r +1, |V ′| = 2, Tc−1 −{v}Ã Ŵ and d+(ŵ) = d+(v′)+1
for all ŵ ∈ Ŵ and v′ ∈ V ′. According to Remark 1.18 it follows that |V (v ′)| ≥
r + 1. Observing the converse D−1 of D we conclude that |V ′′| = 2, and thus
|V (v′)| = |V ′| + |V ′′| = 4 ≥ r + 1 ⇔ r ≤ 3. Since in this subcase obviously
|Tc−1| ≥ 6, and thus c ≥ 7, we arrive at the contradiction

5

2
≤

c − 2

2
≤ d+

D[V (Tc−1)](v) = r − 1 ≤ 2.

This completes the proof of the theorem. ¤

Combining this result with Theorem 4.3 or Theorem 4.5 we arrive at the
following corollary.

Corollary 4.13 (Volkmann, Winzen [39]) Let D be an almost regular c-
partite tournament with c ≥ 5. Then D contains a strongly connected subtour-
nament of order p for every p ∈ {3, 4, . . . , c}.

4.2 Strong subtournaments when ig(D) ≥ 2

In this section we want to deal with the following problem, which was posed
by L. Volkmann [29] in 1999 (see also [31], Problem 2.32).

Problem 4.14 (Volkmann [29]) Determine other sufficient conditions for
(strongly connected) c-partite tournaments to contain strong subtournaments
of order p for some 4 ≤ p ≤ c.

The complexity of the proof of Theorem 4.12 makes it clear that the state-
ment of this theorem becomes false, if we enlarge ig(D) without changing the
rest of the parameters. This also demonstrates the following example.
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Example 4.15 (Winzen [47]) Let the partite sets of a multipartite touna-
ment D be defined as V1 = {z1}, V2 = {z2}, V3 = {z3, ẑ3}, V4 = {x, x̂} and
V5 = {v′, v′′} such that x → z1 → z2 → z3 → x → z2, z1 → z3, x → ẑ3 →
{z1, z2} → x̂ → z3, {x, z1, z2, z3} → v′ → {ẑ3, x̂} → v′′ → {x, z1, z2, z3} and
ẑ3 → x̂ (see also Figure 4.1). The resulting 5-partite tournament D with
ig(D) ≤ 2 does not contain a strong subtournament of order 5.

+
k

6

?

-

K

®

R

µ

6
-

?¾

µ

R

v′ v′′

z1 z2

x z3

ẑ3 x̂

Figure 4.1: A 5-partite tournament with ig(D) = 2 and without a
strong subtournament of order 5.

It is very probably that the size of strong subtournaments decreases, if
the global irregularity increases. In this section we will present a result that
guarantees strong subtournaments of a size depending on the global irregularity
ig(D). Besides the results of the previous section, we need the following two
lemmas.

Theorem 4.16 (Yeo [49]) If D is a multipartite tournament, then

κ(D) ≥
|V (D)| − α(D) − 2il(D)

3
.

Lemma 4.17 (Winzen [47]) If D is a c-partite tournament with r ≥ 2
vertices in each partite set, then there are vertices x, y ∈ V (D) such that
d−(x), d+(y) ≥ c − 1.

Proof. For every vertex x ∈ V (D) we observe that

d−(x) + d+(x) = |V (D)| − |V (x)| ≥ (c − 1)r ≥ 2(c − 1).

Counting all outdegrees and indegrees in D we obtain that

2
∑

x∈V (D)

d+(x) = 2
∑

x∈V (D)

d−(x) =
∑

x∈V (D)

(d+(x) + d−(x)) ≥ |V (D)|2(c − 1),

which immediately implies the statement of this lemma. ¤

Following the same lines as in the proof of Theorem 4.5 we will show the
following main theorem of this section.
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Theorem 4.18 (Winzen [47]) Let D be a c-partite tournament with at least
3 vertices in each partite set, ig(D) ≤ l, c ≥ l+2 and l ≥ 2. Then D contains a
strongly connected subtournament of order p for every p ∈ {3, 4, . . . , c− l +1}.

Proof. Let V1, V2, . . . , Vc be the partite sets of D and let r = γ(D). Because
of Lemma 1.10 we obtain 3 ≤ r ≤ |Vi| ≤ r + 2l for all i ∈ {1, 2, . . . , c}, and
thus we have |V (D)| = cr + k with 0 ≤ k ≤ 2l(c − 1). We proceed the proof
by induction on the order p of strongly connected subtournaments. Theorem
4.16 yields that

κ(D) ≥
cr + k − α(D) − 2il(D)

3
≥

(c − 1)r − 2ig(D)

3

≥
(l + 1)r − 2l

3
≥

3l + 3 − 2l

3
= 1 +

l

3
> 1.

This implies that D is strongly connected. Hence, according to Theorem 4.1,
there exists a 3-cycle in D, which is a strong subtournament of order 3.

Now, let c ≥ l + 3 and Tp be a strong subtournament of order p with
3 ≤ p ≤ c − l. Suppose that D does not contain a strong subtournament of
order p+1. Without loss of generality, we assume that Tp = D[{v1, v2, . . . , vp}]
with vi ∈ Vi for i = 1, 2, . . . , p. If there is a vertex z ∈ Vp+1, Vp+2, . . . , Vc such
that z has an inner and an outer neighbor in Tp, then D[{z, v1, v2, . . . , vp}] is
a strong subtournament of order p + 1, a contradiction. If such a vertex does
not exist, then let V ′

i ⊆ Vi and V ′′
i = Vi − V ′

i such that V (Tp) → V ′
i when

V ′
i 6= ∅, and V ′′

i → V (Tp) when V ′′
i 6= ∅, for i = p + 1, p + 2, . . . , c. In addition,

we define V ′ = V ′
p+1 ∪ V ′

p+2 ∪ . . . ∪ V ′
c and V ′′ = V ′′

p+1 ∪ V ′′
p+2 ∪ . . . ∪ V ′′

c . Now
we distinguish two cases.

Case 1. Let V ′ 6= ∅ and V ′′ 6= ∅. If there is an arc xy with x ∈ V ′

and y ∈ V ′′, then D[{x, y, v1, v2, . . . , vp}] is a strong subtournament of order
p + 2. As a consequence of Theorem 4.3, we see immediately that there also
exists a strong subtournament of order p + 1, a contradiction. Hence, we
conclude that V ′′

Ã V ′. Furthermore, let R = V (D)− (V ′ ∪ V ′′ ∪ V (Tp)) and
|V ′

i | = ti for p + 1 ≤ i ≤ c, and without loss of generality, we assume that
tp+1 ≥ tp+2 ≥ . . . ≥ tc.

Subcase 1.1. Let V ′′
c 6= ∅. In this case, we choose the index s such that







ts ≥ 2 ∧ ts+1 ≤ 1, if tp+1 ≥ 2 ∧ tc ≤ 1
s = c − 1 , if tc ≥ 2
s = p + 1 , if tp+1 ≤ 1

.

Let v ∈ V (D′) with D′ = D[V ′
p+1 ∪ V ′

p+2 ∪ . . .∪ V ′
s ] such that v is of maximum

indegree in D′. Furthermore let w ∈ V (D′′) with D′′ = D[V ′′
s+1 ∪ V ′′

s+2 ∪
. . . ∪ V ′′

c ] a vertex of maximum outdegree in D′′. Since each of the vertex-sets
V ′

s+1, V
′
s+2, . . . , V

′
c consists of at most one vertex (for the case that s 6= c − 1),

and because of r ≥ 3, each of the vertex-sets V ′′
s+1, V

′′
s+2, . . . , V

′′
c (for s 6= c− 1)

has to consist of at least two vertices. Hence, according to the choice of the
parameter s, Lemma 4.17 yields that d−

D′(v) ≥ s−p−1 and d+
D′′(w) ≥ c−s−1

(even if s = c − 1). Let v ∈ Vi and w ∈ Vj. If |Vj| = r + b and d−(w) =
|V (D)|−r−a

2
, then it follows that d+(w) = |V (D)|− r− b−d−(w) = |V (D)|−r+a−2b

2
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and because of ig(D) ≤ l we arrive at d+(v) ≥ |V (D)|−r+a−2(b+l)
2

. Summarizing
our results we observe that

|N+(v) ∩ R| ≥

max











0,
|V (D)| − r + a − 2(b + l)

2
−

c
∑

m=p+1
m6=i

(tm) + s − p − 1











(4.13)

and

|N−(w) ∩ R| ≥

max











0,
|V (D)| − r − a

2
−

c
∑

m=p+1
m6=j

(r − tm) − s1 + c − s − 1











(4.14)

with 0 ≤ s1 ≤ min{k−b, 2l(c−p−1)} such that |(V ′∪V ′′)−Vj| = (c−p−1)r+s1.
If |R| = pr − p + s2, then we observe that 0 ≤ s2 ≤ min{k − b, 2lp} and
s1 + s2 ≤ k − b. Because of ti ≥ tj, s1 + s2 ≤ k − b, p ≥ 3 and c− p ≥ l, (4.13)
and (4.14) imply that

|N+(v) ∩ R| + |N−(w) ∩ R| ≥ (c − 1)r + k − b − l + ti − tj − s1

−(c − p − 1)r + c − s − 1 + s − p − 1

≥ pr + k − b − s1 − 2 ≥ pr + s2 − 2

≥ pr − p + s2 + 1 = |R| + 1.

Hence, there exists a vertex x ∈ ((N+(v) ∩ R) ∩ (N−(w) ∩ R)). Without loss
of generality, let x ∈ V1. Since V (Tp) → v and w → V (Tp), and since v and
w are in different partite sets, we conclude that D[{v, x, w, v3, v4, . . . , vp}] is a
strongly connected tournament of order p + 1, a contradiction.

Subcase 1.2. Let V ′′
c = ∅. This implies V ′

c = Vc and tp+1 ≥ tp+2 ≥ . . . ≥
tc = |Vc| ≥ r. If |V ′| = (c − p)r + l1 and |V ′′| = l2, then it follows that
1 ≤ l1 + l2 ≤ min{k, 2l(c− p)}. Let w ∈ V ′′

jmax
with jmax ∈ {p + 1, p + 2, . . . , c}

such that |V ′′
jmax

| =: t′′max is maximal. According to Lemma 4.17, there is a
vertex v ∈ V ′ − V ′

jmax
such that d+

D[V ′](v) ≥ c− p− 2 ≥ l − 2. If |V (v)| = r + b

and d+(v) = |V (D)|−r−a

2
, then, analogously as in Subcase 1.1, we see that

d−(w) ≥ |V (D)|−r+a−2(b+l)
2

, and we conclude that

|N+(v) ∩ R| ≥

max

{

0,
|V (D)| − r − a

2
− (c − p − 1)r − l1 + b − t′′max + l − 2

}

(4.15)

and

|N−(w) ∩ R| ≥ max

{

0,
|V (D)| − r + a − 2(b + l)

2
− l2 + t′′max

}

. (4.16)

If |R| = pr − p + s2, then it follows that 0 ≤ s2 ≤ min{k, 2lp} and s2 +
l1 + l2 ≤ k. Analogously as in Subcase 1.1, we obtain by (4.15) and (4.16)
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that |N+(v) ∩ R| + |N−(w) ∩ R| > |R|. Hence, again there exists a vertex
x ∈ ((N+(v)∩R)∩ (N−(w)∩R)). If, without loss of generality, x ∈ V1, then,
since v and w are in different partite sets, D[{v, x, w, v3, v4, . . . , vp}] is a strong
subtournament of order p + 1, a contradiction.

Case 2. Let V ′ = ∅ or V ′′ = ∅. Without loss of generality, we discuss
the case that V ′′ = ∅. This implies that V ′

i = Vi for p + 1 ≤ i ≤ c, and
we write V instead of V ′. Let U contain all vertices of V (D) − (V ∪ V (Tp))
that are dominated by at least one vertex of V , and let W be the set of
vertices from V (D) − (V ∪ V (Tp)), which are not dominated by any vertex
from V . Thus, W → V and hence it follows that d(V, V (D) − V ) ≤ |V ||U |
and d(V (D) − V, V ) ≥ |V ||V (D) − (U ∪ V )|. Now Lemma 4.10 yields that
l|V | ≥ d(V (D)−V, V )− d(V, V (D)−V ) ≥ |V |(|V (D)| − |V | − 2|U |), and this
implies that

|U | ≥
|V (D)| − |V | − l

2
. (4.17)

We now consider the following two subcases.

Subcase 2.1. Let p = 3. Consider that V consists of c − p ≥ l partite sets.

Suppose firstly that there is a vertex w ∈ W that dominates two vertices
of V (Tp). This implies w Ã U , since otherwise let v′ ∈ V and u ∈ U such that
v′ → u → w. In this case v′, u, w and the vertex of V (Tp), which is dominated
by w and is in another partite set than u induce a strong tournament of order 4,
a contradiction. According to Lemma 4.17, there is a vertex v ′ ∈ V such that
d−

D[V ](v
′) ≥ l−1. Hence, we arrive at d−(v′) ≥ l−1+|W |+|V (Tp)| = |W |+l+2

and d−(w) ≤ |W − {w}| = |W | − 1, a contradiction to ig(D) ≤ l. Since
each vertex w ∈ W has exactly two neighbors in V (Tp), we conclude that
d(W,V (Tp)) ≤ d(V (Tp),W ).

Now let there be a vertex u ∈ U that dominates two vertices in V (Tp).
This yields that u, a vertex of V , which dominates u and the two vertices of
V (Tp) not belonging to the same partite set as u induce a strongly connected
subtournament of order 4, a contradiction. Analogously as for the set W , we
conclude that d(U, V (Tp)) ≤ d(V (Tp), U).

Together with Lemma 4.10 we obtain

3l = l|V (Tp)| ≥ d(V (Tp), V (D) − V (Tp)) − d(V (D) − V (Tp), V (Tp))

= d(V (Tp), V ) + d(V (Tp), U) + d(V (Tp),W )

−d(V, V (Tp)) − d(U, V (Tp)) − d(W,V (Tp))

≥ d(V (Tp), V ) = |V (Tp)||V | ≥ 9l,

a contradiction.

Subcase 2.2 Let p ≥ 4. According to Lemma 4.11, there is a vertex v ∈
V (Tp) such that for all y ∈ V (Tp)− {v} the subtournament Tp − {y} contains
a Hamiltonian path with the initial vertex v. If there is a vertex u ∈ U such
that u → v, then let w ∈ V with w → u. If u ∈ Vt, then w, u and vj with
1 ≤ j ≤ p and j 6= t induce a strongly connected subtournament of order
p + 1, a contradiction. If otherwise, there is no such vertex u, then clearly
v Ã U . By Lemma 4.11, the vertex v is of maximum outdegree in Tp and thus
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d+
D[V (Tp)](v) ≥ 2. If v ∈ Vi with |Vi| = r + 2l − m (0 ≤ m ≤ 2l), then, because

of |V | ≥ lr, r ≥ 3, (4.17) and Lemma 1.15, we arrive at the contradiction

|V (D)| − |Vi| + m

2
≥ d+(v) ≥ |V | + |U − (Vi − {v})| + d+

D[V (Tp)](v)

≥ |V | +
|V (D)| − |V | − l

2
− |Vi| + 3

=
|V (D)| − |Vi| + m + 1

2
+

|V | − |Vi| − m − l + 5

2

≥
|V (D)| − |Vi| + m + 1

2
+

(l − 1)r − 3l + 5

2

>
|V (D)| − |Vi| + m + 1

2
+

(l − 1)(r − 3)

2

≥
|V (D)| − |Vi| + m + 1

2
.

This completes the proof of the theorem. ¤

Neglecting a finite family of multipartite tournaments, Theorem 4.18 en-
larges Theorem 4.5 to classes of multipartite tournaments with ig(D) ≤ l for
l ≥ 2. If we omit the condition of Theorem 4.18 that there are at least three
vertices in each partite set, then the proof becomes much more complicated.
Nevertheless, we believe that also in this case the theorem remains valid, if D
is strongly connected and the number of partite sets is sufficiently large.

Conjecture 4.19 (Winzen [47]) If D is a strongly connected c-partite tour-
nament with c sufficiently large and ig(D) ≤ l. Then D contains a strongly
connected subtournament of order p for every p ∈ {3, 4, . . . , c − l + 1}.

If Conjecture 4.19 is valid, then the bounds for c and p as in Theorem 4.18
would be best possible as the following example demonstrates.

Example 4.20 Let V1 = {v1}, V2 = {v2}, V3 = {v3} and V4 = {v4, v
′
4} be the

partite sets of the multipartite tournament D such that v1 → v2 → v3 → v′
4 →

v2 → v4 → v1 → v3, v1 → v′
4 and v4 → v3 (see also Figure 4.2). Then we

observe that D is a strongly connected c-partite tournament with ig(D) = l = 2,
c = 4 = l + 2 and without any strong subtournament of order 4 = c − l + 2.

j

*

°

K

®

M
-

R

µ

v4 v′
4

v1 v3

v2

Figure 4.2: A 4-partite tournament with ig(D) = 2 and without a
strong subtournament of order 4.
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Even if we enlarge the number c of partite sets of a multipartite tournament
D, then there is not always a strong subtournament of order c − ig(D) + 2,
which can be seen in Example 4.15.

4.3 Long cycles

In this section, we will treat the case that D is a regular c-partite tournament.
For this class of digraphs, we will give a solution of Problem 4.2 with ri =
|Vi| − 1 for all 1 ≤ i ≤ c. According to Corollary 4.13, we may suppose that
D has at least 3 vertices in each partite set, if c ≥ 5. For the bipartite case let
us define a special family of graphs.

Definition 4.21 [Bipartite tournament B(r1, r2, r3, r4)] Let R1, R2, R3, R4 be
pairwise disjoint independent sets of vertices with |Ri| = ri for 1 ≤ i ≤ 4.
Then the bipartite tournament B = B(r1, r2, r3, r4) is defined by V (B) =
R1 ∪ R2 ∪ R3 ∪ R4 such that Ri → Ri+1 for i = 1, 2, 3 and R4 → R1.

Since the vertices of a cycle in a bipartite tournament D alternate between
the two partite sets of D, Beineke and Little [5] (for a stronger form, see also
Zhang [53]) gave a solution to our problem, if c = 2.

Theorem 4.22 (Beineke, Little [5]) A bipartite tournament is even pan-
cyclic, if it is Hamiltonian and is not isomorphic to the bipartite tournament
B(r, r, r, r) with r ≥ 2.

If we remove one vertex of each partite set in the bipartite tournament
B(r, r, r, r), then obviously the remaining bipartite tournament is not Hamil-
tonian. The case that c = 3 is also solved, if we pay attention to the next
result.

Theorem 4.23 (Volkmann [35]) Let D be a regular 3-partite tournament
with |V (D)| ≥ 6. Then D contains two complementary cycles of length 3 and
|V (D)| − 3, unless D is isomorphic to the digraph D3,2 of Figure 4.3.

¼ z

:

q

Á

-

} ]

)

¾

=

j

x1 x2

y2 u2

u1y1

Figure 4.3: The 2-regular 3-partite tournament D3,2

Since a 3-cycle contains vertices of exactly 3 partite sets and the digraph
D3,2 contains the cycle x2y2u2x2, we see that a regular 3-partite tournament
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with r vertices of each partite set always contains a cycle with exactly r − 1
vertices of every partite set.

In the following, we will show that all regular c-partite tournaments with r
vertices in every partite set contain a cycle with exactly r − 1 vertices of each
partite set, if c ≥ 5 or c = 4 and r ≥ 3. To reach this, we need the following
results about Hamiltonicity. We start with the following well-known result of
Rédei.

Theorem 4.24 (Rédei [21]) Every tournament has a Hamiltonian path.

Theorem 4.25 (Yeo [48]) If D is a multipartite tournament with κ(D) ≥
α(D), then D is Hamiltonian.

Theorem 4.26 (Camion [7]) A tournament is strongly connected, if and
only if it is Hamiltonian.

Theorem 4.27 (Yeo [48]) Let D be a (bq/2c + 1)-connected c-partite tour-
nament such that α(D) ≤ q. If D has a cycle-factor, then D is Hamiltonian.

Theorem 4.28 (Yeo [51]) Let V1, V2, . . . , Vc be the partite sets of a c-partite
tournament D such that |V1| ≤ |V2| ≤ . . . ≤ |Vc|. If

il(D) ≤ min

{

|V (D)| − 3|Vc| + 1,
|V (D)| − |Vc−1| − 2|Vc| + 2

2

}

or

ig(D) ≤
|V (D)| − |Vc−1| − 2|Vc| + 2

2
,

then D is Hamiltonian.

Lemma 4.29 (Yeo [49]; Gutin, Yeo [16]) A digraph D has no cycle-factor
(respectively, with pc(D) > k ≥ 1) if and only if its vertex set V (D) can be
partitioned into four subsets Y, Z,R1, and R2 such that

R1 Ã Y and (R1 ∪ Y )Ã R2, (4.18)

where Y is an independent set and |Y | > |Z| (respectively, |Y | > |Z| + k).

First, let us investigate the case that we can choose the vertices the desired
cycle consists of.

Theorem 4.30 (Volkmann, Winzen [43]) Let V1, V2, . . . , Vc be the partite
sets of a regular c-partite tournament D with c ≥ 4 and |V1| = |V2| = . . . =
|Vc| = r ≥ 2. Furthermore, let X be an arbitrary subset of V (D) consisting of
m partite sets with exactly k vertices and c−m partite sets with exactly k − 1
vertices for 0 < m ≤ c and 1 ≤ k ≤ r − 1. If

r ≥



















⌈

2k(c−1)−2
c−3

⌉

+ k and m = c
⌈

2k(c−1)−1
c−3

⌉

+ k and m = c − 1
⌈

(2k−3)c+3m−2k+3
c−3

⌉

+ k and m ≤ c − 2

,

then D contains a cycle C such that V (C) = V (D) − X.
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Proof. Let D′ = D − X with the partite sets V ′
1 , V

′
2 , . . . , V

′
c such that

|V ′
1 | ≤ |V ′

2 | ≤ . . . ≤ |V ′
c | ≤ |V ′

1 | + 1. Since D is regular, it follows that

ig(D
′) ≤

{

k(c − 1), if c − 1 ≤ m ≤ c
(k − 1)(c − 1) + m, if m ≤ c − 2

.

If

{

k(c − 1)
(k − 1)(c − 1) + m

≤
|V (D′)| − |V ′

c−1| − 2|V ′
c | + 2

2

, if c − 1 ≤ m ≤ c
, if m ≤ c − 2

,

then Theorem 4.28 implies that D′ is Hamiltonian, and hence the desired
result. To show this, let us note that

|V (D′)| − |V ′
c−1| − 2|V ′

c | + 2

2
=















(c−3)(r−k)+2
2

, if m = c

(c−3)(r−k)+1
2

, if m = c − 1

(c−3)(r−k)+c−m−1
2

, if m ≤ c − 2

.

If we distinguish the cases m = c, m = c−1 and m ≤ c−2, then, noticing that
r ∈ N, equivalent transformations yield the bounds for r as in the assumptions
of this theorem. This completes the proof of the theorem. ¤

In the following, we will only treat the case that m = c and k = 1. In this
case Theorem 4.30 leads to the next corollary.

Corollary 4.31 (Volkmann, Winzen [43]) Let V1, V2, . . . , Vc be the partite
sets of a regular c-partite tournament D such that |V1| = |V2| = . . . = |Vc| = r.
Furthermore, let xi ∈ Vi be arbitrary for all 1 ≤ i ≤ c. If c ≥ 5 and r ≥ 4
or c = 4 and r ≥ 6, then there exists a cycle C in D such that V (C) =
⋃c

i=1(Vi − xi).

The following example shows that the condition of Corollary 4.31 that
r ≥ 4, if c ≥ 5, is best possible.

Example 4.32 (Volkmann, Winzen [43]) Let p ∈ N and let D be a regular
(2p+1)-partite tournament with r = 3 vertices in each partite set. If D consists
of three regular disjoint subtournaments H1, H2, H3 of order 2p + 1 such that
H1 Ã H2 Ã H3 Ã H1, then D′ = D − V (H1) contains no Hamiltonian cycle.

Nevertheless, if r = 3, and thus, according to Remark 1.16, c = 2p+1, then
there exist vertices x1, x2, . . . , xc with xi ∈ Vi such that D contains a cycle C
with V (C) =

⋃c

i=1(Vi − xi), as the following theorem demonstrates.

Theorem 4.33 Let V1, V2, . . . , V2p+1 be the partite sets of a regular (2p + 1)-
partite tournament with p ≥ 2 such that |V1| = |V2| = . . . = |V2p+1| = 3. Then
D contains a cycle with exactly 2 vertices of each partite set.
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Proof. Suppose that D does not contain a cycle with exactly 2 vertices of
each partite set. Let T1 be a subtournament of D with |V (T1)| = 2p+1. Then
we define D′ = D−V (T1). Since D is regular, Remark 1.16 with r = 3 implies
d+(x), d−(x) = 3p and thus d+

D′(x), d−
D′(x) ≥ p.

Firstly, let D′ be 2-connected. Because of α(D′) = 2, Theorem 4.25 yields
that D′ is Hamiltonian, a contradiction.

Secondly, let D′ be not strong. Then D′ can be partitioned into the strong
components D1, D2, . . . , Dt such that Di Ã Dj for i < j. The fact that
d−

D1
(x) ≥ p for all x ∈ V (D1) implies |V (D1)| ≥ 2δ−D1

+1 ≥ 2p+1. Analogously,
we observe that |V (Dt)| ≥ 2p + 1. Since |V (D1)| + |V (D2)| + . . . + |V (Dt)| =
4p + 2, we deduce that t = 2 and |D1| = |D2| = 2p + 1. This is possible, only
if D2 Ã T1 Ã D1 and D1, D2, T1 are regular tournaments. Hence, D is the
multipartite tournament of Example 4.32. If a1a2 . . . a2p+1a1 is a Hamiltonian
cycle of T1, v1 ∈ V (D1) ∩ V (a1) and b1b2 . . . b2p+1b1 is a Hamiltonian cycle of
D2 such that b1 ∈ V (a1), then a1a2 . . . a2p+1v1b2b3 . . . b2p+1a1 is a cycle with
exactly 2 vertices of each partite set, a contradiction.

Thirdly, let D′ be exactly 1-connected. This yields that D′ contains a cut-
vertex u such that D′ − {u} consists of the strong components D1, D2, . . . , Dt

with the property that Di Ã Dj for i < j. Furthermore, there are vertices
v1 ∈ V (D1) and vt ∈ V (Dt) such that vt → u → v1. Since d−

D1
(x) ≥ p − 1 for

all x ∈ V (D1), we conclude that |V (D1)| ≥ 2δ−D1
+1 ≥ 2p−1. Analogously, we

see that |V (Dt)| ≥ 2p − 1. Without loss of generality, let |V (D1)| ≤ |V (Dt)|,
since otherwise we use the converse D−1 of D. Now we distinguish the two
possible cases |V (D1)| = 2p − 1 and |V (D1)| = 2p.

Case 1. Suppose that |V (D1)| = 2p − 1. This is possible, only if D1 is a
(p − 1)-regular tournament with u → V (D1), V (T1) Ã V (D1) and 2p − 1 ≤
|V (Dt)| ≤ 2p + 2. Let C = a1a2 . . . a2p−1a1 be a Hamiltonian cycle of D1.

Subcase 1.1. Let |V (Dt)| = 2p−1. As above, we deduce that Dt is a regular
tournament with a Hamiltonian cycle C̃ = b1b2 . . . b2p−1b1 such that V (Dt)Ã
V (T1) and V (Dt) → u. The fact that |V (D2)|+ |V (D3)|+ . . . + |V (Dt−1)| = 3
implies that t = 3 or t = 5.

Firstly, let t = 3. In this case, D2 is a 3-cycle c1c2c3c1. Without loss
of generality, we may suppose that a2p−1 /∈ V (c1) and b1 /∈ V (c3). Now,
a1a2 . . . a2p−1c1c2c3b1b2 . . . b2p−1ua1 is a cycle with exactly 2 vertices of each
partite set, a contradiction.

Secondly, let t = 5. This yields that |D2| = |D3| = |D4| = 1 such that D2 =
{v2}, D3 = {v3} and D4 = {v4}. If v2 /∈ V (v3) and v3 /∈ V (v4), then the vertices
of V (C) and V (C̃) can be chosen such that a2p−1 /∈ V (v2) and b1 /∈ V (v4).
Now, a1a2 . . . a2p−1v2v3v4b1b2 . . . b2p−1ua1 is a cycle with exactly 2 vertices of
each partite set, a contradiction. If v2 ∈ V (v3) and v′

2 ∈ V (T1) ∩ V (v3),
then, without loss of generality, the numbering of the cycles C and C̃ can
be chosen such that v4 /∈ V (b2) and a2p−1 /∈ V (b1). In this case, we see
that b1ua1v3v4b2b3 . . . b2p−1v

′
2a2a3 . . . a2p−1b1 is a cycle with exactly 2 vertices

of each partite set, a contradiction. Analogously, we arrive at a contradiction,
if v3 ∈ V (v4).

Subcase 1.2. Assume that |V (Dt)| = 2p and thus t = 4 and |V (D2)| =
|V (D3)| = 1. Let D2 = {v2} and D3 = {v3}.
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Subcase 1.2.1. Suppose that D4 is Hamiltonian with the Hamiltonian cycle
C ′ = b1b2 . . . b2pb1.

Firstly, let v2 /∈ V (v3). Because of

2p2 ≤
∑

x∈V (D4)

d+
D′(x) ≤

2p(2p − 1)

2
+ d(D4, u) = 2p2 − p + d(D4, u),

we deduce that d(D4, u) ≥ p ≥ 2. Hence, there exists a vertex bi ∈ V (C ′) such
that bi → u and b+

i /∈ V (v3). Now the vertices of C can be numerated such
that a2p−1 /∈ V (v2) and a1a2 . . . a2p−1v2v3b

+
i . . . b−i biua1 is a Hamiltonian cycle

of D′, a contradiction.
Secondly, let v2 ∈ V (v3). This implies that D4 is a tournament. Let

v′
2 ∈ V (T1)∩V (v3). If v′

2 → D4, then we observe that d+
D4

(y) ≥ 3p−(|V (T1)|−
2) − |{u}| = p for all y ∈ V (D4), and thus

2p2 − p = |E(D4)| ≥ 2p2,

a contradiction. Let {v′
2, u} = {x, y} and x → y. If y′ ∈ N−(x) ∩ V (D4), then

let y′b2b3 . . . b2py
′ be the Hamiltonian cycle of D4. Summarizing our results,

we see that a1a2 . . . a2p−1v2b2b3 . . . b2py
′xya1 is a cycle with exactly 2 vertices

of each partite set, a contradiction.
Subcase 1.2.2. Let D4 be not Hamiltonian. Since D4 is strongly connected,

Theorem 4.26 implies that D4 is no tournament. The fact that D1 is a tourna-
ment and u → D1 yields that D4 consists of vertices of exactly 2p − 1 partite
sets, and thus v2 /∈ V (v3).

Let x ∈ V (T1) be arbitrary. Then we observe that

6p2 =
∑

y∈V (D4)

d+(y) ≤
∑

y∈V (D4)

d+
D4

(y) + d(D4, u) + d(D4, T1)

≤ 2p2 − p − 1 + 2p − |V (u) ∩ V (D4)| − |N+(u) ∩ V (D4)|

+4p2 − |N+(x) ∩ V (D4)|,

and it follows that

|V (u) ∩ V (D4)| + |N+(x) ∩ V (D4)| + |N+(u) ∩ V (D4)| ≤ p − 1. (4.19)

Theorem 3.1 implies that D4 contains a cycle C ′ with vertices of all the 2p− 1
partite sets of D4, and thus L(C ′) = 2p − 1. Let {v4} = V (D4) − V (C ′)
and v′

4 ∈ V (T1) ∩ V (v4). If C ′ = b1b2 . . . b2p−1b1, then, according to (4.19),
there are at least |V (C ′)| − (p − 1) = p ≥ 2 vertices bi, bj ∈ V (C ′) − (V (u) ∪
N+(v′

4)∪N+(u)) such that {bi, bj} → u and {bi, bj}Ã v′
4. Let bj → v′

4. If v3 /∈
V (b+

i ), then the vertices of C can be numerated such that a2p−1 /∈ V (b+
j ) and

a2p−2 /∈ V (v2), and we see that a1a2 . . . a2p−2v2v3b
+
i . . . bjv

′
4a2p−1b

+
j . . . b−i biua1

is a cycle with exactly 2 vertices of each partite set, a contradiction. If
v3 ∈ V (b+

i ) and thus v2 /∈ V (b+
i ), v3 /∈ V (b+

j ) and V (C) → v3, then the
vertices of C can be numerated such that a2p−2 /∈ V (v2). This implies that
a1a2 . . . a2p−2v2b

+
i . . . bjv

′
4a2p−1v3b

+
j . . . b−i biua1 is a cycle with exactly two ver-

tices from every partite set, also a contradiction.
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Subcase 1.3. Assume that |V (Dt)| = 2p + 1. This implies t = 3 and
|V (D2)| = 1. Let V (D2) = {v2}.

Subcase 1.3.1. Suppose that D3 is Hamiltonian with the Hamiltonian cycle
C ′ = b1b2 . . . b2p+1b1. Let u′ ∈ V (T1) ∩ V (u). If |N−(u) ∩ V (D3)| = 1 and
|N−(u′) ∩ V (D3)| ≤ 1, then we conclude that d(D3, u) ≤ 1 and |N+(u′) ∩
V (D3)| ≥ 2p − 1, and thus

(2p + 1)3p =
∑

y∈V (D3)

d+(y) =
∑

y∈V (D3)

d+
D3

(y) + d(D3, u) + d(D3, T1)

≤ 2p2 + p + 1 + (2p + 1)2p − (2p − 1) = 6p2 + p + 2,

a contradiction to p ≥ 2. Hence, it follows that |N−(u) ∩ V (D3)| ≥ 2 or
|N−(u′) ∩ V (D3)| ≥ 2. If |N−(u) ∩ V (D3)| ≥ 2, then the vertices of C ′ can
be numerated such that b2p+1 → u and b1 /∈ V (v2). Let a2p−1 /∈ V (v2). Then
a1a2 . . . a2p−1v2b1b2 . . . b2p+1ua1 is a cycle with exactly 2 vertices of every partite
set, a contradiction. Analogously, the case that |N−(u′)∩V (D3)| ≥ 2 leads to
a contradiction.

Subcase 1.3.2. Let D3 be not Hamiltonian. Since D3 is strongly connected,
Theorem 4.26 implies that D3 is not a tournament. Since {u}∪V (D1) consists
of 2p partite sets, it follows that D3 consists of vertices of exactly 2p partite
sets and v2 → D3. Analogously as in Subcase 1.2.2, we see that

|V (u) ∩ V (D3)| + |N+(x) ∩ V (D3)| + |N+(u) ∩ V (D3)| ≤ 2p (4.20)

for an arbitrary vertex x ∈ V (T1). Theorem 3.1 implies that D3 contains a
cycle C ′ with vertices of all the 2p partite sets of D3.

Hence, let L(C ′) = 2p such that C ′ = b1b2 . . . b2pb1. Let us define {v3} =
V (D3) − V (C ′) and {v′

3} = V (T1) ∩ V (v3).
Assume that u Ã C ′. Since N−(u) ∩ V (D3) 6= ∅, it follows that v3 → u.

Furthermore (4.20) yields that C ′
Ã v′

3. If {ṽ3} = V (C ′) ∩ V (v3), then
let the vertices of C be numerated such that a2p−1 /∈ V (v2). In this case
a1v3ua2a3 . . . a2p−1v2ṽ

+
3 . . . ṽ−

3 v′
3a1 is a cycle with exactly 2 vertices of each par-

tite set, a contradiction. Hence, let N−(u) ∩ V (C ′) 6= ∅ and bi → u.
Suppose now that v′

3 Ã C ′. This yields that v2 → v′
3, since otherwise we

observe that

3p = d+(v′
3) ≥ |V (D1)| + |V (C ′)| − 1 + |{v2}| = 4p − 1,

a contradiction to p ≥ 2. If the vertices of C are numerated such that a2p−2 /∈
V (v2) and a2p−1 /∈ V (b+

i ), then a1a2 . . . a2p−2v2v
′
3a2p−1b

+
i . . . b−i biua1 is a cycle

with exactly 2 vertices of each partite set, a contradiction. Consequently, let
N−(v′

3) ∩ V (C ′) 6= ∅.
Let {x, y} = {u, v′

3} such that x → y and b ∈ V (C ′) with b → x. If
a2p−1 /∈ V (v2), then we see that a1a2 . . . a2p−1v2b

+ . . . b−bxya1 is a cycle with
exactly 2 vertices of each partite set, a contradiction.

Subcase 1.4. Assume that |V (Dt)| = 2p + 2. This implies that t = 2.
Subcase 1.4.1. Suppose that D2 is Hamiltonian with the Hamiltonian cycle

C ′ = b1b2 . . . b2p+2b1. It is easy to see that the vertices of C and C ′ can be
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numerated such that b2p+2 → u and a2p−1 /∈ V (b1). Now, we observe that
a1a2 . . . a2p−1b1b2 . . . b2p+2ua1 is a Hamiltonian cycle of D′, a contradiction.

Subcase 1.4.2. Let D2 be not Hamiltonian. Since D1 is a tournament and
u /∈ V (x) for all x ∈ V (D1), we conclude that D2 contains vertices of exactly
2p + 1 partite sets. Theorem 3.1 implies that D2 contains a cycle C ′ with
vertices of all the 2p + 1 partite sets of D2. If L(C ′) = 2p + 2, then D2 is
Hamiltonian and Subcase 1.4.1 yields a contradiction.

Consequently, it remains to consider the case that L(C ′) = 2p + 1 such
that C ′ = b1b2 . . . b2p+1b1. Let us define {v2} = V (D2) − V (C ′) and {v′

2} =
V (T1) ∩ V (v2). If N−(u) ∩ V (C ′) = ∅, then we observe that

3p = d+(u) ≥ |V (D1)| + |V (C ′)| − 1 = 2p − 1 + 2p = 4p − 1,

a contradiction to p ≥ 2. Hence, there exists a vertex bi ∈ V (C ′) such that
bi → u. Analogously, we see that there exists a vertex bj ∈ V (C ′) such that
bj → v′

2.
Taking into acount that either u → v′

2 or v′
2 → u and that the vertices

of C can be numerated such that a2p−1 /∈ V (b+
i ) ∪ V (b+

j ), we observe that
either a1a2 . . . a2p−1b

+
i . . . b−i biuv′

2a1 or a1a2 . . . a2p−1b
+
j . . . b−j bjv

′
2ua1 is a cycle

of D with exactly 2 vertices of every partite set, a contradiction.
Case 2. Assume that |V (D1)| = 2p. This implies that |V (Dt)| = 2p and

t = 3 or |V (Dt)| = 2p + 1 and t = 2. Let D1 consist of vertices of exactly k
partite sets with p ≤ k ≤ 2p. It follows that

6p2 =
∑

y∈V (D1)

d−(y) =
∑

y∈V (D1)

d−
D1

(y) + d(u,D1) + d(T1, D1)

≤
2(2p − k)(2p − 2) + (2k − 2p)(2p − 1)

2
+ 2p − |V (u) ∩ V (D1)|

−|N−(u) ∩ V (D1)| + 4p2 −
∑

x∈V (T1)

|N−(x) ∩ V (D1)|

= 6p2 + k − p − |V (u) ∩ V (D1)| − |N−(u) ∩ V (D1)|

−
∑

x∈V (T1)

|N−(x) ∩ V (D1)|,

and thus

|N−(u)∩ V (D1)|+
∑

x∈V (T1)

|N−(x)∩ V (D1)| ≤ k − p− |V (u)∩ V (D1)|. (4.21)

Let y1 ∈ V (D2)∪ . . .∪ V (Dt) be an arbitrary vertex. We will show that there
exists a Hamiltonian path in D1 ∪ {u, y1} with the initial vertex u and the
terminal vertex y1. Suppose that this is not true.

Firstly, assume that D1 is Hamiltonian with the Hamiltonian cycle C =
a1a2 . . . a2pa1. If |N+(u) ∩ V (D1)| ≥ 2, then, without loss of generality, let
u → a1 and a2p /∈ V (y1). But now ua1a2 . . . a2py1 is a Hamiltonian path in
D1 ∪ {u, y1}, a contradiction. Hence, let |N+(u) ∩ V (D1)| = 1. Together with
(4.21), this implies

p − |V (u) ∩ V (D1)| ≥ k − p − |V (u) ∩ V (D1)|

≥ |N−(u) ∩ V (D1)| ≥ 2p − 1 − |V (u) ∩ V (D1)|,
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a contradiction to p ≥ 2.
Secondly, let D1 be not Hamiltonian, and thus, according to Theorem 4.26,

k 6= 2p. Theorem 3.1 implies that D1 contains a cycle with vertices of all the k
partite sets. Let C = a1a2 . . . ala1 be a cycle, which fulfills this condition and
which has the maximal cardinality of all these cycles that contain vertices of all
the k partite sets of D1. If L(C) = 2p, then D1 is Hamiltonian and as above,
we arrive at a contradiction. Hence, let L(C) < 2p and T ′

1 = D1 − V (C). It is
obvious that T ′

1 is a tournament and, according to Theorem 4.24, T ′
1 contains

a Hamiltonian path P = b1b2 . . . b2p−l.
If |N+(u) ∩ V (C)| ≤ p − 1, then it follows that |N−(u) ∩ V (C)| ≥ k − p +

1 − |V (u) ∩ V (C)|, a contradiction to (4.21). Hence, we conclude that

|N+(u) ∩ V (C)| ≥ p (≥ 2). (4.22)

Let u → ai. If a−
i → b1, then, noticing that P → y1, uaia

+
i . . . a−

i b1b2 . . . b2p−ly1

is a Hamiltonian path in D1 ∪ {u, y1}, a contradiction. Consequently let b1 Ã

a−
i . Suppose that bj → b1 for some j ≥ 3. Let jmax = max{j ≥ 3 | bj → b1}.

At first let a−
i ∈ V (b1). If b1 → ai−2, then, because of the maximality of C,

we deduce that b1 Ã C, and thus

p − 1 ≤ d−
D1

(b1) ≤ |V (T ′
1)| − 2 ⇒ |V (T ′

1)| ≥ p + 1,

a contradiction. Hence, let ai−2 → b1. Now, the maximality of C implies
that a−

i → {b2, b3, . . . , b2p−l}. If jmax 6= 2p − l, then D1 ∪ {u, y1} contains the
Hamiltonian path uaia

+
i . . . a−

i b2b3 . . . bjmax
b1bjmax+1 . . . b2p−ly1 and if jmax =

2p− l, then uaia
+
i . . . a−

i b2b3 . . . b2p−lb1y1 is a Hamiltonian path of D1 ∪{u, y1},
in both cases a contradiction.

Consequently, it remains to consider the case that b1 → a−
i . If ap ∈ V (b1)∩

V (C), then the maximality of C implies that b1 → {ap+1, ap+2, . . . , a
−
i }, and

thus p 6= i. If b1 → ap−1, then analogously as above, we see that b1 Ã C, a
contradiction. Again the maximality of C yields that ap → {b2, b3, . . . b2p−l}.
If jmax 6= 2p − l, then b2b3 . . . bjmax

b1bjmax+1 . . . b2p−l is a Hamiltonian path
of T ′

1 and if jmax = 2p − l, then b2b3 . . . b2p−lb1 is a Hamiltonian path of T ′
1.

Both Hamiltonian paths have the initial vertex b2. Analogously as above, we
see that b2 → a−

i , b2 → {aq+1, aq+2, . . . , a
−
i } and aq → {b1, b3, b4, . . . , b2p−l},

if aq ∈ V (b2) ∩ V (C) (q 6= i). Without loss of generality, we may suppose
that i > q > p (modulo l). But now, the fact that aq → b1 and b1 →
{ap+1, ap+2, . . . , ai−1} yields a contradiction.

Summarizing our results, we see that b1 → {b2, b3, . . . , b2p−l}. Now, sup-
pose that u → b1. Let aw ∈ V (y1) ∩ V (C) (or aw ∈ V (C) − V (b2p−l) be
arbitrary, if V (C) ∩ V (y1) = ∅). Then it follows that aw → b2p−l, since
otherwise ub1b2 . . . b2p−lawa+

w . . . a−
wy1 is a Hamiltonian path in D1 ∪ {u, y1},

a contradiction. The maximality of C implies that aw+1 Ã b2p−l. If m /∈
{1, 2, . . . , l} − {w,w + 1} and b2p−l → am, then ub1b2 . . . b2p−lama+

m . . . a−
my1

is a Hamiltonian path of D1 ∪ {u, y1}, a contradiction. Altogether, we have
C Ã b2p−l. If an ∈ V (b2p−l), then we conclude that an → b2p−l−1, since
otherwise

ub1b2 . . . b2p−l−1ana
+
n . . . a−

n b2p−ly1 (4.23)
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is a Hamiltonian path in D1 ∪ {u, y1}. The maximality of D1 yields that
an+1 Ã b2p−l−1. To get no contradiction as in (4.23), we deduce that C Ã
b2p−l−1. Successively, it follows that C Ã {b1, b2, . . . , b2p−l}, a contradiction to
the strong connectivity of D1.

Consequently, let b1 → u and thus d−
D1

(b1) ≥ p. Furthermore, using (4.22)
and the results above, we conclude that

|N+
D1

(b1)| ≥ |N+(u) ∩ V (C)| − |V (b1) ∩ V (C)| + |V (T ′
1) − {b1}|

≥ |N+(u) ∩ V (C)| − 1 ≥ p − 1.

Altogether, we arrive at the contradiction

2p = |V (D1)| = d+
D1

(b1) + d−
D1

(b1) + 2 ≥ 2p + 1.

Hence, for an arbitrary vertex y1 ∈ V (D1) ∪ . . . ∪ V (Dt) there exists a Hamil-
tonian path of D1 ∪ {u, y1} with the initial vertex u and the terminal vertex
y1.

Subcase 2.1. Assume that |V (Dt)| = 2p, and thus t = 3 and D2 = {v2}.
Observing the converse D−1 of D, we see that for an arbitrary vertex y2 ∈
V (D1) ∪ V (D2), there exists a Hamiltonian path of D2 ∪ {u, y2} with the
initial vertex y2 and the terminal vertex u. Choosing y1 = y2 = v2, we get a
Hamiltonian cycle of D′, a contradiction.

Subcase 2.2. Suppose that |V (Dt)| = 2p + 1, and thus t = 2. According to
(4.21), we have

∑

x∈V (T1)

|N−(x) ∩ V (D1)| ≤ k − p.

We conclude that there are at least k − (k − p) = p ≥ 2 vertices in V (T1)
belonging to partite sets represented in V (D1) such that they (weakly) dom-
inate D1. Hence, let w1 ∈ V (T1) with w1 Ã D1 and x1 ∈ V (D1) ∩ V (w1).
Let D′′ = [D′ ∪ {w1}] − {x1}. Assume that there is a vertex x ∈ V (D′′) such
that d+

D′′(x) ≤ p − 1 or d−
D′′(x) ≤ p − 1. This yields the contradiction 3p =

d+
D(x), d−

D(x) ≤ p−1+ |V (T1)|−1 = 3p−1. Hence, let d+
D′′(x), d−

D′′(x) ≥ p ≥ 2
for all x ∈ V (D′′), and thus

d(D2, w1) ≥ p − 1 ≥ 1. (4.24)

If D1 − {x1} is not strongly connected, then let D′
1, D

′
2, . . . , D

′
t′ be the strong

components of D1 − {x1} such that D′
i Ã D′

j for i < j. If D′
1 Ã u, then it

follows that d−
D′

1
(y) ≥ p − 1 for all y ∈ V (D′

1), and thus |V (D′
1)| ≥ 2p − 1,

a contradiction to |V (D1)| = 2p. Consequently, we may assume that there is
a vertex y ∈ D′

1 such that u → y, if D1 − {x1} is not strongly connected. If
D1 − {x1} is strongly connected and D1 − {x1}Ã u, then we see that

2p − 1 ≤ |V (u) ∩ V (D1)| + |N−(u) ∩ V (D1)| ≤ k − p ⇒ 3p − 1 ≤ k ≤ 2p,

a contradiction to p ≥ 2. Consequently, we observe that there is a vertex
y ∈ V (D1) − {x1} such that u → y, if D1 − {x1} is strong.

The results above guarantee that D′′ is strong. If D′′ is 2-connected, then
Theorem 4.25 yields that D′′ is Hamiltonian, a contradiction. Hence, D′′ is
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exactly 1-connected. Obviously, the vertices u and w1 are no cut-vertices of D′′.
Since D1−{x1}Ã D2, x1 ∈ V (w1), N−(w1)∩V (D2) 6= ∅, N−(u)∩V (D2) 6= ∅,
w1 Ã D1 − {x1} and d+

D′′(x), d−
D′′(x) ≥ 2 for all x ∈ V (D′′), in D1 − {x1},

there is also no cut-vertex of D′′. Hence, let x′ ∈ V (D2) be a cut-vertex of D′′.
Because of (4.24), N+(u)∩V (D′

1) 6= ∅, w1 Ã D1, d−
D′′(u) ≥ 2 and d−

D′′(w1) ≥ 2,

the vertex x′ is no cut-vertex of D2, only if x′ → {w1, u} Ã D2 − {x′} =: D̂
and u → w1. Since d−

D′′(w1) ≥ p, this implies that p = 2, and thus |D̂| = 4.

Let y ∈ D̂ − V (w1) such that d+

D̂
(y) = 1. Then we observe that d+(y) ≤

1 + |{x′}| + |V (T1)| − 2 = 5, a contradiction. Hence, x′ is a cut-vertex of
D2. Let D′′

1 , D
′′
2 , . . . , D

′′
t′′ be the strong components of D2 − {x′} such that

D′′
i Ã D′′

j , if i < j.
Suppose that there is a vertex y ∈ V (D′′

t′′) with y → u. Since N+(u) ∩
V (D′

1) 6= ∅, w1 Ã D1 and d−
D′′(w1) ≥ 2, we conclude that D′′−{x′} is strongly

connected, a contradiction. Consequently, let u Ã D′′
t′′ . This yields that

d+
D′′

t′′
(x) ≥ 3p − (|V (T1)| − 1) − |{x′}| = p − 1 for all x ∈ V (D′′

t′′), and thus

|V (D′′
t′′)| ≥ 2δ+

D′′
t′′

+ 1 ≥ 2p− 1. To get no contradiction, it follows that t′′ = 2,

|V (D′′
2)| = 2p − 1 and D′′

2 Ã T1 ∪ {x′}. Since D1 − {x1} Ã D2, d−
D′′(u) ≥ 2

and w1 Ã D1 − {x1}, we deduce that D′′ − {x′} is strongly connected, a
contradiction.

This completes the proof of the theorem. ¤

Combining Corollary 4.31 with Corollary 4.13 and Theorem 4.33, it can
be seen that we have found a solution of Problem 4.2 for regular multipartite
tournaments and ri = |Vi| − 1 for all 1 ≤ i ≤ c.

Corollary 4.34 (Volkmann, Winzen [43]) Let V1, V2, . . . , Vc be the partite
sets of a regular c-partite tournament D with c ≥ 5 such that |V1| = |V2| =
. . . = |Vc| = r ≥ 2. Then D contains a cycle with exactly r− 1 vertices of each
partite set.

Now, we shall prove the main theorem of this section.

Theorem 4.35 (Volkmann, Winzen [43]) Let V1, V2, . . . , Vc be the partite
sets of a regular c-partite tournament D with |V1| = |V2| = . . . = |Vc| = r ≥ 2.
If c ≥ 5 or c = 4 and r ≥ 4 or c = 3 or c = 2 and D is not isomorphic
to B(s, s, s, s), then D contains a cycle with exactly r − 1 vertices from each
partite set.

Proof. If c ≥ 5, then Corollary 4.34 yields the desired result. Since, ac-
cording to Theorem 4.4, D is Hamiltonian the result for c = 2 follows directly
from Theorem 4.22 and for the case c = 3 we use the Theorems 4.1 and 4.23.
Hence, let c = 4. According to Remark 1.16, r has to be even. If r ≥ 6, then
Corollary 4.31 leads to the desired result.

Consequently, it remains to consider the case that c = r = 4. Suppose that
D does not contain any cycle with exactly 3 vertices of every partite set. Let
T1 be a subtournament of D of order 4 and D′ = D−V (T1). This implies that
α(D′) = 3. With respect to Remark 1.16, we observe that d+(x), d−(x) = 6
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for all x ∈ V (D) and d+
D′(x), d−

D′(x) ≥ 3 for all x ∈ V (D′). Now we distinguish
different cases.

Case 1. Let κ(D′) ≥ 3. In this case, Theorem 4.25 yields that D′ is
Hamiltonian, a contradiction.

Case 2. Assume that κ(D′) = 0. Let D1, D2, . . . , Dt be the strong compo-
nents of D such that Di Ã Dj for i < j. Since d−

D1
(x) ≥ 3 for all x ∈ V (D1),

we deduce that |V (D1)| ≥ 7. Analogously, we conclude that |V (Dt)| ≥ 7.
Hence, we arrive at the contradiction 12 = |V (D′)| ≥ |V (D1)|+ |V (Dt)| ≥ 14.

Case 3. Suppose that κ(D′) = 1. Let u be a cut-vertex of D′ such that
D′ − u consists of the strong components D1, D2, . . . , Dt with Di Ã Dj for
i < j. This implies that d−

D1
(x) ≥ 2 for all x ∈ V (D1) and thus, since c = 4,

we conclude that |V (D1)| ≥ 6. Analogously, we observe that |V (Dt)| ≥ 6, a
contradiction to |V (D′)| = 12.

Case 4. Assume that κ(D′) = 2.

Firstly, let D′ contain a cycle-factor. In this case, because of α(D′) = 3,
Theorem 4.27 yields that D′ is Hamiltonian, a contradiction.

Secondly, let D′ contain no cycle-factor. Now, Lemma 4.29 implies that
V (D′) can be partitioned into four subsets Y , Z, R1 and R2 such that R1 Ã Y
and (R1 ∪ Y )Ã R2, where Y is an independent set and |Y | > |Z|.

If |Z| ≤ 1, then we deduce that κ(D′) ≤ 1, a contradiction to κ(D′) = 2.
If |Z| ≥ 3, then Y has to be an independent set with |Y | ≥ 4, a contradiction
to α(D′) = 3. Hence, let |Z| = 2 and |Y | = 3, which means that Y is a partite
set of D′. Without loss of generality, let |R1| ≤ |R2|.

Assume that |R1| = 0. This yields that |R2| = 7 and thus d+
D′(y) ≥ 7 for

all y ∈ Y , a contradiction to d+(x), d−(x) = 6 for all x ∈ V (D).

Now, let 1 ≤ |R1| ≤ 2. In this case, we see that there is a vertex x ∈ R1

with d−
D[R1](x) = 0 and thus d−

D′(x) ≤ |Z| = 2, a contradiction.

Finally, let |R1| = 3. Because of d−
D′(x) ≥ 3 for all x ∈ R1, we conclude

that D[R1] is a 3-cycle and Z → R1. Since D′ − Y and R1 consist of vertices
of 3 partite sets, this is impossible. This completes the proof of the theorem.
¤

For the case that c = 4 and r = 2, Theorem 4.35 is not true in general as
Example 4.6 with t = 1 demonstrates (see also Figure 4.4).
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Figure 4.4: A regular 4-partite tournament without a strong
subtournament of order 4
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The results of Theorems 4.4 and the Corollaries 4.13 and 4.34 lead us to
the following conjecture.

Conjecture 4.36 (Volkmann, Winzen [43]) Let V1, V2, . . . , Vc be the par-
tite sets of a regular c-partite tournament D with c ≥ 5 such that |V1| = |V2| =
. . . = |Vc| = r ≥ 2. Then D contains a cycle with exactly m vertices of each
partite set for every m ∈ {1, 2, . . . , r}.

Note that, according to Theorem 4.30, for a given m, Conjecture 4.36 is
valid, if c and r are sufficiently large.



94 CHAPTER 4. COMBINING CHAPTERS 2 AND 3



Part II

Connectivity
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Chapter 5

An improvement of Yeo’s result

Let D be a c-partite tournament with the partite sets V1, V2, . . . , Vc such that
|V1| ≤ |V2| ≤ . . . ≤ |Vc|. In 1998, Yeo [49] proved the useful bound

κ(D) ≥

⌈

|V (D)| − α(D) − 2il(D)

3

⌉

(5.1)

for each c-partite tournament D (see also Theorem 4.16).
In general, this bound cannot be improved as the following example demon-

strates (see also [36]).

Example 5.1 (Volkmann [36]) Let q ≥ 1 be an integer, and let c = 3q +
1. We define the families Fq of c-partite tournaments with the partite sets
W1,W2, . . . ,Wq and

Wq+1 = Aq+1 ∪ Bq+1,Wq+2 = Aq+2 ∪ Bq+2, . . . ,Wc = Ac ∪ Bc

with 2|Ai| = 2|Bi| = |Wj| = 2t for i = q + 1, q + 2, . . . , c and j = 1, 2, . . . , q
as follows. The partite sets W1,W2, . . . ,Wq induce a t(q − 1)-regular q-partite
tournament H, the sets Aq+1, Aq+2, . . . , Ac induce a tq-regular (2q + 1)-partite
tournament A, and the sets Bq+1, Bq+2, . . . , Bc induce a tq-regular (2q + 1)-
partite tournament B. In addition, let H → A Ã B → H. Obviously, if
D ∈ Fq, then D is a 3qt-regular c-partite tournament with the separating set
V (H) and thus κ(D) = 2qt = qα(D).

Since Yeo’s result is often used to solve problems depending on the global
irregularity, it would be interesting to solve the following general problem.

Problem 5.2 For each integer i ≥ 0 find all multipartite tournaments D with
ig(D) = i and the property that

κ(D) =

⌈

|V (D)| − |Vc| − 2i

3

⌉

.

In Section 5.1, we will analyze the proof of Theorem 4.16. With this method
we will extend this result by working out – for each given integer j ≥ 0 – the
structure of those multipartite tournaments D with il(D) = j the bound (5.1)

97
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is tight for. This structure implies a well known bound of Thomassen [25] on
the connectivity of tournaments of given irregularity.

In Section 5.2, we will study Problem 5.2 for i = 0 and i = 1. For the case
that D is a regular tournament, Volkmann [36] (for the case that c = 4 see
also [34]) proved the following bound, which solves Problem 5.2 for i = 0.

Theorem 5.3 (Volkmann [36]) If D is a regular c-partite tournament with
c ≥ 2, then

κ(D) ≥

⌈

|V (D)| − α(D) + 1

3

⌉

,

with exception of the case that D is a member of the families Fq.

Using this structure of the multipartite tournaments, which realize (5.1),
in the beginning of Section 5.2, we will present a shorter proof of Theorem
5.3. Furthermore, we will extend this result to almost regular multipartite
tournaments, which means that we will present a solution of Problem 5.2 for
i = 1.

5.1 An analysis of Yeo’s result

The following four results (for Lemma 5.5 see also Lemma 4.10 and for Theorem
5.7 see also Theorem 4.16) were given in [49] and [51]. The informations about
the cases of equality can implicitly be found in the proofs of the theorems.

Lemma 5.4 (Yeo [51]) Let D be a semicomplete multipartite digraph with
the partite sets V1, V2, . . . , Vc. Let X ⊂ Y ⊆ V (D) and let yi = |Y ∩ Vi| and
xi = |X ∩ Vi| for all i = 1, 2, . . . , c. Then

d(X,Y − X) + d(Y − X,X)

|X|
+

d(X,Y − X) + d(Y − X,X)

|Y − X|

≥ |Y | − max{yi | i = 1, 2, . . . , c}.

Furthermore, if equality holds above, then yi−2xi = yj−2xj and yj−xj = yi−xi

for all 1 ≤ i, j ≤ c.

Lemma 5.5 (Yeo [51]) If D is a semicomplete c-partite digraph, then the
following holds.

il(D) ≥ max
∅6=X⊆V (D)

{

|d(X,V (D) − X) − d(V (D) − X,X)|

|X|

}

In the case of equality, we observe that d+(x) = d−(x)+ il(D) for all x ∈ X, if
d(X,V (D)−X) ≥ d(V (D)−X,X) and d−(x) = d+(x) + il(D) for all x ∈ X,
if d(V (D) − X,X) ≥ d(X,V (D) − X).

Theorem 5.6 (Yeo [49]) Let D be a semicomplete multipartite digraph with
the partite sets V1, V2, . . . , Vc, and let S be a separating set in D. Let Q1 and
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Q2 be a partition of V (D) − S, such that Q1 Ã Q2, and let v′ = max{|Vi ∩
(V (D) − S)| | i = 1, 2, . . . , c}. Then the following holds.

il(D) ≥
|V (D)| − 3|S| − v′

2
(5.2)

In the case of equality in (5.2) we have also equality in Lemma 5.4 with X = Q1

and Y = V (D) − S. Furthermore, it follows that |Q1| = |Q2|, S → Q1 and
d(Q1, V (D)−Q1) ≥ |Q1||S|, and we have equality in Lemma 5.5 with X = Q1.

This immediately leads to Yeo’s main result.

Theorem 5.7 (Yeo [49]) If D is a semicomplete multipartite digraph, then
(5.1) holds.

Furthermore, if equality holds in (5.1), then we observe equality in (5.2)
and there is a partite set Vi such that |Vi| = α(D) and Vi ⊆ V (D) − S.

These results yield the following corollary, which structures the multipartite
tournaments that realize (5.1).

Corollary 5.8 (Volkmann, Winzen [44]) Let D be a multipartite tourna-

ment with κ(D) = |V (D)|−2il(D)−α(D)
3

and let S be a separating set with |S| =
κ(D). Then the following holds.

i) |V (D)|−2il(D)−α(D)
3

∈ N0.

ii) There is no partite set Vi of D such that Vi ∩ (V (D) − S) 6= ∅ and
Vi ∩ S 6= ∅.

iii) For all partite sets Vi of D with Vi ⊆ V (D)−S it follows that |Vi| = α(D).

iv) V (D) − S can be partitioned in the sets Q1 and Q2 with Q1 Ã Q2 such
that |Q1| = |Q2|, Q2 → S → Q1 and D[Q1] and D[Q2] are strong.

v) d+(q1) = d−(q1) + il(D) = |V (D)|−α(D)+il(D)
2

for all q1 ∈ Q1 and d−(q2) =

d+(q2) + il(D) = |V (D)|−α(D)+il(D)
2

for all q2 ∈ Q2.

vi) α(D) is even.

vii) Every partite set Vi of D with Vi ⊆ V (D) − S can be partitioned in two
disjoined sets of vertices V ′

i and V ′′
i such that |V ′

i | = |V ′′
i |, V ′

i ⊆ Q1 and
V ′′

i ⊆ Q2.

viii) D[Q1] and D[Q2] are regular multipartite tournaments.

Proof. Since κ(D) is a non-negative integer, i) follows immediately. Let
Q1 and Q2 be a partition of V (D) − S such that Q1 Ã Q2. According to
Theorem 5.7, there is a partite set Vi of D such that Vi ⊆ V (D) − S and
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|Vi| = α(D). Now Lemma 5.4 with xi = |Q1 ∩ Vi| and yi = |Vi ∩ (V (D) − S)|
yields that

|Vi ∩ (V (D) − S)| − 2|Vi ∩ Q1| = |Vj ∩ (V (D) − S)| − 2|Vj ∩ Q1| and

|Vi ∩ (V (D) − S)| − |Vi ∩ Q1| = |Vj ∩ (V (D) − S)| − |Vj ∩ Q1|

for all indices j with Vj ∩ (V (D)− S) 6= ∅. This is possible only if |Vi ∩Q1| =
|Vj ∩Q1| and |Vi ∩ (V (D)−S)| = |Vi| = α(D) = |Vj ∩ (V (D)−S)| for all these
indices j. This implies ii) and iii).

According to Theorem 5.6, we have |Q1| = |Q2|. If D−S does not consist of
two strong components of the same cardinality, then we can choose a partition
Q1 and Q2 of V (D) − S such that Q1 Ã Q2 and |Q1| 6= |Q2|, a contradiction.
Furthermore Theorem 5.6 leads to S → Q1. Observing the converse D−1 of
D, we arrive at Q2 → S. Altogether we have shown iv).

Since, according to Theorem 5.6, d(Q1, V (D)−Q1) ≥ |Q1||S| = d(V (D)−
Q1, Q1), Lemma 5.5 yields d+(q1) = d−(q1) + il(D) for all q1 ∈ Q1 and, caused
by symmetry, d−(q2) = d+(q2)+ il(D) for all q2 ∈ Q2. Using Lemma 1.12 with
p = α(D), we arrive at v).

As seen above, Lemma 5.4 implies |Vi ∩Q1| = |Vj ∩Q1| for all indices i and
j with Vi, Vj ⊆ V (D)− S. Because of |Q1| = |Q2|, this exactly means vii) and
thus with iii) we deduce that vi) is valid.

According to vii), we have d(x,Q2) = d(y,Q2) for all x, y ∈ Q1. Because of
v), D[Q1] has to be a regular multipartite tournament. Caused by symmetry,
D[Q2] is also a regular multipartite tournament, which means that viii) is valid.

This completes the proof of this corollary. ¤

This result yields a simple method to check, whether the inequality (5.1)
can be improved.

Corollary 5.9 (Volkmann, Winzen [44]) Let D be a multipartite tourna-
ment. If α(D) is odd, then it follows that

κ(D) ≥

⌈

|V (D)| − 2il(D) − α(D) + 1

3

⌉

.

In the case of a tournament T we observe that α(T ) = 1 is odd and ig(T ) =
il(T ) =: i(T ). Hence, Corollary 5.9 implies the following result of Thomassen
[25].

Theorem 5.10 (Thomassen [25]) If T is a tournament with i(T ) ≤ k, then

κ(D) ≥

⌈

|V (T )| − 2k

3

⌉

.

Another consequence of Corollary 5.9 is the following result.

Corollary 5.11 (Volkmann, Winzen [44]) If D is a c-partite tournament
with c ≥ 2, ig(D) = 2k + 1 for an integer k ≥ 0 and α(D) = γ(D), then the
following holds.

κ(D) ≥

⌈

|V (D)| − α(D) − 2il(D) + 1

3

⌉

=

⌈

|V (D)| − α(D) − 4k − 1

3

⌉
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5.2 Almost regular multipartite tournaments

Using the results of the last section we are able to present a shorter proof of
Theorem 5.3.

Theorem 5.12 (Volkmann [36]) Let D be a regular c-partite tournament
with c ≥ 2. Then

κ(D) ≥

⌈

|V (D)| − α(D) + 1

3

⌉

,

with exception of the case that D is a member of the families Fq.

Proof. If V1, V2, . . . , Vc are the partite sets of D, then |V1| = |V2| = . . . =

|Vc| = r, α(D) = r, and il(D) = 0. Suppose that κ(D) = |V (D)|−α(D)
3

= (c−1)r
3

.
It follows that i)-viii) of Corollary 5.8 holds. Especially ii) yields that |S| = sr
for an integer s. On the other hand, we see that |S| = κ(D) = c−1

3
r and

thus s = c−1
3

∈ N, which means that c = 3q + 1 for an integer q and |S| =
qr = qα(D). Since, according to iv), Q2 → S → Q1 with |Q1| = |Q2| and D
is regular, D[S] has also to be regular. With Corollary 5.8 vii) and viii) we
conclude that D belongs to the families Fq. ¤

Now we will examine almost regular multipartite tournaments. Using
Corollary 5.8, we arrive at the following result.

Corollary 5.13 (Volkmann, Winzen [44]) Let D be a multipartite tour-

nament such that κ(D) = |V (D)|−2il(D)−α(D)
3

and ig(D) = il(D) ≥ 1. Then it
follows that α(D) < γ(D) + 2ig(D).

Proof. According to iii) and v) in Corollary 5.8, we observe that

d+(q1) = d−(q1) + ig(D) =
|V (D)| − α(D) + ig(D)

2

and |V (q1)| = α(D) for all q1 ∈ Q1. Assume that α(D) ≥ γ(D) + 2ig(D).
Lemma 1.10 yields that α(D) = γ(D)+2ig(D). Now Lemma 1.13 leads to the
contradiction

d+(q1) =
|V (D)| − γ(D) − 2ig(D)

2
=

|V (D)| − α(D)

2
.

¤

The following examples will present the families of the multipartite tour-
naments with ig(D) = 1, which realize (5.1).

Example 5.14 (Volkmann, Winzen [44]) Let k,m, r, p, l, v, q, c and k1 be
integers, which fulfill one of the following properties:

1) r = 2p+1 ≥ 1, k = 3m ≥ 3, l = 2v, 0 ≤ v ≤ m−1
4p+2

, k1 = m−1−2v(2p+1),
q = 2v + 2vp + m and c = 3q + 1.
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2) r = 4p + 3 ≥ 3, k = 3m ≥ 3, 0 ≤ l ≤ m−1
4p+3

, k1 = m − 1 − l(4p + 3),
q = 2l + 2lp + m and c = 3q + 1.

3) r = 12p + 3 ≥ 3, k = 3m, m ≥ 8p + 3, 1 ≤ l ≤ 4p+m

12p+3
, k1 = 4p + m −

l(12p + 3), q = m − 2p − 1 + l(6p + 2) and c = 3q + 2.

4) r = 6p + 3 ≥ 3, k = 3m, m ≥ 4p + 3, l = 2v + 1 ≥ 1, 0 ≤ v ≤ m−4p−3
12p+6

,

k1 = 2p + m − (2v + 1)(6p + 3), q = m − p − 1 + (2v + 1)(3p + 2) and
c = 3q + 2.

5) r = 12p + 11 ≥ 11, k = 3m + 1, m ≥ 8p + 8, 1 ≤ l ≤ m+4p+3
12p+11

,

k1 = 4p+3+m− l(12p+11), q = m− 2p− 2+ l(6p+6) and c = 3q +2.

6) r = 6p + 5 ≥ 5, k = 3m + 1, m ≥ 4p + 4, l = 2v + 1, 0 ≤ v ≤ m−4p−4
12p+10

,

k1 = 2p + 1 + m− (2v + 1)(6p + 5), q = m− p− 1 + (2v + 1)(3p + 3) and
c = 3q + 2.

7) r = 12p + 7 ≥ 7, k = 3m + 2, m ≥ 8p + 5, 1 ≤ l ≤ m+4p+2
12p+7

, k1 =

4p + 2 + m − l(12p + 7), q = m − 2p − 1 + l(6p + 4) and c = 3q + 2.

8) r = 6p + 1 ≥ 1, k = 3m + 2, m ≥ 4p + 1, l = 2v + 1, 0 ≤ v ≤ m−4p−1
12p+2

,

k1 = 2p+m−(2v+1)(6p+1), q = m−p+(2v+1)(3p+1) and c = 3q+2.

9) r = 12p + 3 ≥ 3, k = 3m, m ≥ 4p + 2, 0 ≤ l ≤ m−4p−2
12p+3

, k1 = m − 4p −

2 − l(12p + 3), q = m + 2p + 1 + l(6p + 2) and c = 3q.

10) r = 6p + 3 ≥ 3, k = 3m, m ≥ 8p + 5, l = 2v + 1, 0 ≤ v ≤ m−8p−5
12p+6

,

k1 = m− 2p− 2− (2v + 1)(6p + 3), q = m + p + 1 + (2v + 1)(3p + 2) and
c = 3q.

11) r = 6p + 1 ≥ 1, k = 3m + 1, m ≥ 8p + 2, l = 2v + 1, 0 ≤ v ≤ m−8p−2
12p+2

,

k1 = m− 2p− 1− (2v + 1)(6p + 1), q = m + p + 1 + (2v + 1)(3p + 1) and
c = 3q.

12) r = 12p + 7 ≥ 7, k = 3m + 1, m ≥ 4p + 3, 0 ≤ l ≤ m−4p−3
12p+7

, k1 =

m − 4p − 3 − l(12p + 7), q = m + 2p + 2 + l(6p + 4) and c = 3q.

13) r = 6p + 5 ≥ 5, k = 3m + 2, m ≥ 8p + 7, l = 2v + 1, 0 ≤ v ≤ m−8p−7
12p+10

,

k1 = m− 2p− 2− (2v + 1)(6p + 5), q = m + 2 + p + (2v + 1)(3p + 3) and
c = 3q.

14) r = 12p + 11 ≥ 11, k = 3m + 2, m ≥ 4p + 4, 0 ≤ l ≤ m−4p−4
12p+11

,

k1 = m − 4p − 4 − l(12p + 11), q = m + 3 + 2p + l(6p + 6) and c = 3q.

If the properties in i) are valid (i = 1, 2, . . . , 14) for the indices k,m, r, p, l, v, q, c
and k1, then we define the families Gi

q of c-partite tournaments with the partite
sets

W1 = A1 ∪ B1,W2 = A2 ∪ B2, . . . ,Wk−k1 = Ak−k1 ∪ Bk−k1 and
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Wk−k1+1,Wk−k1+2, . . . ,Wc with 2|Ai| = 2|Bi| = |Wj| = r+1 for i = 1, 2, . . . , k−
k1 and j = k − k1 + 1, k − k1 + 2, . . . , k and |Wk+1| = |Wk+2| = . . . = |Wc| = r
as follows.

The partite sets Wk−k1+1,Wk−k1+2, . . . ,Wc induce a (q + l)-partite tourna-
ment H such that d+

H(x) = d−
H(x) for all x ∈ Wk+1 ∪ Wk+2 ∪ . . . ∪ Wc and

|d+
H(x) − d−

H(x)| = 1 for all x ∈ Wk−k1+1 ∪ Wk−k1+2 ∪ . . . ∪ Wk; the sets
A1, A2, . . . , Ak−k1 induce a

[

(c − q − l − 1) r+1
4

]

-regular (c− q− l)-partite tour-
nament A; and analogously we see that the sets B1, B2, . . . , Bk−k1 induce a
[

(c − q − l − 1) r+1
4

]

-regular (c − q − l)-partite tournament B. In addition, let
H → A Ã B → H. If D ∈ Gi

q for i = 1, 2, . . . , 14, then it is straightforward
to show that D is a c-partite tournament with ig(D) = il(D) = 1 containing
the separating set V (H) such that |V (H)| = κ(D) = (c − k + k1)r + k1 =
|V (D)|−α(D)−2

3
.

Example 5.15 (Volkmann, Winzen [44]) Let k,m, r, p, l, v, q, c and k1 be
integers, which fulfill one of the following properties:

1) r = 2+4p ≥ 2, k = 3m+1, m ≥ 1+2p, 1 ≤ l ≤ m
1+2p

, k1 = m− l(1+2p),

q = m + l(1 + p) and c = 3q + 1.

2) r = 4 + 4p ≥ 4, k = 3m + 1, m ≥ 4 + 4p, l = 2v + 2, 0 ≤ v ≤ m−4−4p

4+4p
,

k1 = m − (2v + 2)(2p + 2), q = m + (v + 1)(2p + 3) and c = 3q + 1.

3) r = 6 + 12p ≥ 6, k = 3m + 1, m ≥ 5 + 10p, l = 2v, 1 ≤ v ≤ 1
6
(1 + m

1+2p
),

k1 = 1 + 2p + m − 6v − 12pv, q = 4v + 6pv + m − p − 1 and c = 3q + 2.

4) r = 10 + 12p ≥ 10, k = 3m + 2, m ≥ 10p + 8, l = 2v, 1 ≤ v ≤ m+2p+2
12p+10

,
k1 = 2p + 2 + m− 12pv − 10v, q = 6v + 6pv + m− p− 1 and c = 3q + 2.

5) r = 2 + 12p ≥ 2, k = 3m, m ≥ 10p + 2, l = 2v, 1 ≤ v ≤ m+2p

12p+2
,

k1 = 2p + m − 2v − 12pv, q = 2v + 6pv + m − p − 1 and c = 3q + 2.

6) r = 6p + 2 ≥ 2, k = 3m, m ≥ 2p + 1, l = 2v + 1, 0 ≤ v ≤ m−2p−1
6p+2

,
k1 = m − 2p − 2v − 6pv − 1, q = 2v + 3pv + m + p and c = 3q + 2.

7) r = 6+6p ≥ 6, k = 3m+1, m ≥ 2p+2, l = 2v +1, 0 ≤ v ≤ 1
6
( m

p+1
− 2),

k1 = m − 2p − 6pv − 6v − 2, q = 4v + 3vp + m + p + 1 and c = 3q + 2.

8) r = 4 + 6p ≥ 4, k = 3m + 2, m ≥ 2p + 1, l = 2v + 1, 0 ≤ v ≤ m−2p−1
4+6p

,
k1 = m − 2p − 1 − 6pv − 4v, q = 3v + 3pv + m + p + 1 and c = 3q + 2.

9) r = 10 + 12p ≥ 10, k = 3m, m ≥ 2p + 2, l = 2v, 0 ≤ v ≤ m−2p−2
10+12p

,
k1 = m − 2 − 2p − 10v − 12pv, q = 6v + 6pv + m + 1 + p and c = 3q.

10) r = 6 + 12p ≥ 6, k = 3m + 1, m ≥ 2p + 1, l = 2v, 0 ≤ v ≤ m−2p−1
6+12p

,
k1 = m − 2p − 1 − 12pv − 6v, q = 4v + 6pv + m + p + 1 and c = 3q.

11) r = 2 + 12p ≥ 2, k = 3m + 2, m ≥ 2p, l = 2v, 0 ≤ v ≤ m−2p

2+12p
,

k1 = m − 2p − 2v − 12pv, q = 2v + 6pv + m + 1 + p and c = 3q.
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12) r = 6p + 4 ≥ 4, k = 3m, m ≥ 3 + 4p, l = 2v + 1, 0 ≤ v ≤ m−3−4p

4+6p
,

k1 = m − 3 − 4p − 4v − 6pv, q = 3v + 2 + 3pv + m + 2p and c = 3q.

13) r = 6 + 6p ≥ 6, k = 3m + 1, m ≥ 4 + 4p, l = 2v + 1, 0 ≤ v ≤ m−4−4p

6+6p
,

k1 = m − 4 − 4p − 6v − 6pv, q = 4v + 3pv + 2p + m + 3 and c = 3q.

14) r = 2 + 6p ≥ 2, k = 3m + 2, m ≥ 4p + 1, l = 2v + 1, 0 ≤ v ≤ m−4p−1
2+6p

,
k1 = m − 4p − 2v − 6pv − 1, q = 2v + 2 + 3pv + m + 2p and c = 3q.

If the properties in i) are valid (i = 1, 2, . . . , 14) for the indices k,m, r, p, l, v, q, c
and k1, then we define the families Hi

q of c-partite tournaments with the partite
sets

W1 = A1 ∪ B1,W2 = A2 ∪ B2, . . . ,Wk−k1 = Ak−k1 ∪ Bk−k1 and

Wk−k1+1,Wk−k1+2, . . . ,Wc with 2|Ai| = 2|Bi| = |Wj| = r+2 for i = 1, 2, . . . , k−
k1 and j = k − k1 + 1, k − k1 + 2, . . . , k and |Wk+1| = |Wk+2| = . . . = |Wc| = r
as follows.

The partite sets Wk−k1+1,Wk−k1+2, . . . ,Wc induce a local regular (q + l)-
partite tournament H; the sets A1, A2, . . . , Ak−k1 induce a

[

(c − q − l − 1) r+2
4

]

-
regular (c− q− l)-partite tournament A; and the sets B1, B2, . . . , Bk−k1 induce
a
[

(c − q − l − 1) r+2
4

]

-regular (c − q − l)-partite tournament B. In addition,
let H → A Ã B → H. If D ∈ Hi

q for i = 1, 2, . . . , 14, then it is left
to the reader to show that D is a c-partite tournament with ig(D) = 1 and
il(D) = 0 containing the separating set V (H) such that |V (H)| = κ(D) =

(c − k + k1)r + 2k1 = |V (D)|−α(D)
3

.

There are no other c-partite tournaments with ig(D) = 1 and κ(D) =
|V (D)|−α(D)−2il(D)

3
as we can see in the following theorem.

Theorem 5.16 (Volkmann, Winzen [44]) Let D be an almost regular c-
partite tournament with c ≥ 2. Then,

κ(D) ≥

⌈

|V (D)| − α(D) − 2il(D) + 1

3

⌉

,

with exception of the case that D is a member of one of the families Fq, G
i
q or

Hi
q with i ∈ {1, 2, . . . , 14}.

Proof. If ig(D) = 0, then the assertion follows from Theorem 5.12. Hence,
we may assume that D is a c-partite tournament with ig(D) = 1 and the
partite sets V1, V2, . . . , Vc such that r = |V1| ≤ |V2| ≤ . . . ≤ |Vc| = α(D).
According to Lemma 1.10, we have r ≤ α(D) ≤ r + 2. Suppose that κ(D) =
|V (D)|−2il(D)−α(D)

3
. Let S,Q1 and Q2 be defined as in Corollary 5.8 and observe

that i)-viii) of this corollary holds. Now we distinguish different cases.
Case 1. Let α(D) = r. In this case, Corollary 5.11 yields a contradiction.
Case 2. Assume that α(D) = r + 1. This implies that il(D) = ig(D) = 1

and according to Corollary 5.8 vi), r is odd. Hence, we may suppose that
r = 2p+1 for an integer p ≥ 0. Let |V (D)| = cr+k with 0 < k < c. Because of
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Corollary 5.8 v), we deduce that the number of partite sets with the cardinality
r has to be odd, which means that c − k is odd. Again with Corollary 5.8 we
see that S consists of all the c − k partite sets of cardinality r and of k1 ≥ 0
partite sets of cardinality r + 1. This yields that |S| = (c − k + k1)r + k1.
Since |Q1| = |Q2| and Q2 → S → Q1, it follows that d+

D[S](x) = d−
D[S](x) for all

vertices x belonging to a partite set of cardinality r and |d+
D[S](x) − d−

D[S]| = 1
for all vertices x ∈ S belonging to a partite set of cardinality r + 1.

Subcase 2.1. Let c = 3q + 1. If D[S] is (q + l)-partite, then we arrive at

|S| = (c − k + k1)r + k1 = (q + l)r + k1 =
cr + k − 2 − (r + 1)

3

= qr +
k

3
− 1 = (q + l)r +

k

3
− 1 − lr.

This implies that k = 3m for an integer m ≥ 1, c − k + k1 = q + l and
k1 = m − 1 − l(2p + 1) ≥ 0. It follows that l ≤ m−1

2p+1
and

c − k + k1 = 3q + 1 − 3m + m − 1 − l(2p + 1) = q + l

⇔ 2q = 2l + 2lp + 2m ⇒ q = l + lp + m.

This leads to

c = 3q + 1 = 3l + 3lp + 3m + 1 = k + 1 + 3l + 3lp < c + 1 + 3l + 3lp

⇒ 1 + 3l + 3lp > 0 ⇒ l > −
1

3 + 3p
⇒ l ≥ 0.

Since c − k = 1 + 3l + 3lp = 1 + 3l(p + 1) has to be odd, it follows that l is
even or p is odd.

If l = 2v, then we deduce that 0 ≤ v ≤ m−1
4p+2

, m ≥ 1, k1 = m−1−2v(2p+1)

and q = 2v + 2vp + m. Corollary 5.8 yields that D belongs to the families G1
q .

If p = 2s + 1 ≥ 1, then it follows that r = 4s + 3 ≥ 3, m ≥ 1, 0 ≤ l ≤ m−1
4s+3

and q = 2l+2ls+m. Corollary 5.8 implies that D is an element of the families
G2

q .
Subcase 2.2. Suppose that c = 3q + 2 for an integer q ≥ 0. If D[S] is

(q + l)-partite, then we observe that

|S| = (c − k + k1)r + k1 = (q + l)r + k1 =
cr + k − r − 3

3

= qr +
r + k

3
− 1 = (q + l)r +

r + k

3
− 1 − lr,

and thus c − k + k1 = q + l and k1 = r+k
3

− 1 − lr. This leads to

3q + 2 − k +
r + k

3
− 1 − lr = 3q + 1 +

r − 2k

3
− lr = q + l

⇒ 2q =
2k − r

3
− 1 + l(r + 1) ⇒ q =

2k − r − 3

6
+ l

r + 1

2
.

Since r = 2p + 1, we have

q =
2k − 2p − 4

6
+ l(p + 1) =

k − p − 2

3
+ l(p + 1). (5.3)
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Subcase 2.2.1. Let k = 3m for an integer m ≥ 1. With (5.3) we arrive at
q = m− p+2

3
+l(p+1) and thus p = 3s+1, r = 6s+3 and q = m−s−1+l(3s+2)

for an s ∈ N0. Furthermore we see that

c = 3q + 2 = 3m − 3s − 3 + 3l(3s + 2) + 2 = k − 3s − 1 + 3l(3s + 2)

< c − 3s − 1 + 3l(3s + 2)

⇒ −3s − 1 + 3l(3s + 2) > 0 ⇒ l >
3s + 1

9s + 6
⇒ l ≥ 1

and

k1 =
r + k

3
− 1 − lr = 2s + m − l(6s + 3) ≥ 0 ⇒ l ≤

2s + m

6s + 3
.

Since c − k = −3s − 1 + 3l(3s + 2) = 3(3ls + 2l − s) − 1 is odd, we conclude
that 3ls − s = s(3l − 1) is even and thus s is even or l is odd.

If s = 2n with n ∈ N0, then we arrive at r = 12n + 3, q = m − 2n − 1 +
l(6n + 2), k1 = 4n + m − l(12n + 3), 1 ≤ l ≤ 4n+m

12n+3
and thus m ≥ 8n + 3.

According to Corollary 5.8, D is a member of the families G3
q .

If l = 2v+1 for an integer v, then it follows that 0 ≤ v ≤ m−4s−3
12s+6

, m ≥ 4s+3,
q = m − s − 1 + (2v + 1)(3s + 2) and k1 = 2s + m − (2v + 1)(6s + 3). Again
with Corollary 5.8 we deduce that D is an element of the families G4

q .
Subcase 2.2.2. Assume that k = 3m + 1 with m ∈ N0. According to (5.3),

we have q = m − p+1
3

+ l(p + 1) and thus p = 3s + 2 for an integer s ≥ 0,
r = 6s + 5 and q = m − s − 1 + l(3s + 3). Furthermore we conclude that

c = 3q + 2 = 3m − 3s − 3 + 3l(3s + 3) + 2 = k − 2 − 3s + 3l(3s + 3)

⇒ −2 − 3s + 3l(3s + 3) > 0 ⇒ l >
3s + 2

3(3s + 3)
⇒ l ≥ 1

and

k1 =
r + k

3
− 1 − lr = 2s + 1 + m − l(6s + 5) ≥ 0 ⇒ l ≤

m + 2s + 1

6s + 5
.

Since c − k = −2 − 3s + 3l(3s + 3) = −2 + 3(3ls + 3l − s) is odd, we observe
that 3ls + 3l − s is odd. This is possible only if s is odd or l is odd.

If s = 2n+1 for an integer n ≥ 0, then it follows that r = 12n+11, 1 ≤ l ≤
m+4n+3
12n+11

, m ≥ 8n+8, k1 = 4n+3+m−l(12n+11) and q = m−2n−2+l(6n+6).
According to Corollary 5.8, we deduce that D belongs to the families G5

q .
If l = 2v+1 for an integer v, then it follows that 0 ≤ v ≤ m−4s−4

12s+10
, m ≥ 4s+4,

k1 = 2s+1+m− (2v +1)(6s+5) and q = m− s−1+(2v +1)(3s+3). Hence,
using Corollary 5.8 we conclude that D is a member of the families G6

q .
Subcase 2.2.3. Suppose that k = 3m + 2 with m ∈ N0. According to (5.3),

we observe that q = m − p

3
+ l(p + 1), and thus p = 3s, r = 6s + 1 and

q = m − s + l(3s + 1) with s ≥ 0. Furthermore we see that

c = 3q + 2 = 3m − 3s + 3l(3s + 1) + 2 = k − 3s + 3l(3s + 1)

⇒ −3s + 3l(3s + 1) > 0 ⇒ l >
3s

9s + 3
⇒ l ≥ 1
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and

k1 =
r + k

3
− 1 − lr = 2s + m − l(6s + 1) ≥ 0 ⇒ l ≤

m + 2s

6s + 1
.

Since c − k = −3s + 3l(3s + 1) = 3(3ls + l − s) is odd, we see that 3ls + l − s
is odd. This is possible only if s is odd or l is odd.

If s = 2n+1 with n ∈ N0, then it follows that r = 12n+7, 1 ≤ l ≤ m+4n+2
12n+7

,
m ≥ 8n + 5, q = m − 2n − 1 + l(6n + 4) and k1 = 4n + 2 + m − l(12n + 7).
Using Corollary 5.8 we deduce that D is an element of the families G7

q .
If l = 2v + 1 for an integer v, then we have 0 ≤ v ≤ m−4s−1

12s+2
, m ≥ 4s + 1,

q = m − s + (2v + 1)(3s + 1) and k1 = 2s + m − (2v + 1)(6s + 1). Again with
Corollary 5.8 we conclude that D is a member of the families G8

q .
Subcase 2.3. Let c = 3q for an integer q ≥ 1. If S is (q + l)-partite, then it

follows that

|S| = (c − k + k1)r + k1 = (q + l)r + k1 =
cr + k − r − 3

3

= qr +
k − r

3
− 1 = (q + l)r +

k − r

3
− 1 − lr,

and thus c − k + k1 = q + l and k1 = k−r
3

− 1 − lr. This implies that

3q − k +
k − r

3
− 1 − lr = q + l ⇒ 2q =

r + 2k

3
+ 1 + l(r + 1)

⇒ q =
r + 2k + 3

6
+ l

r + 1

2
.

Because of r = 2p + 1 this means that

q =
2k + 2p + 4

6
+ l(p + 1) =

k + p + 2

3
+ l(p + 1). (5.4)

Subcase 2.3.1. Assume that k = 3m with m ∈ N. According to (5.4),
this leads to q = m + p+2

3
+ l(p + 1), and thus p = 3s + 1, r = 6s + 3 and

q = m + s + 1 + l(3s + 2) for an integer s ≥ 0. Furthermore we observe that

c = 3q = 3m + 3s + 3 + 3l(3s + 2) = k + 3s + 3 + 3l(3s + 2)

⇒ 3s + 3 + 3l(3s + 2) > 0 ⇒ l >
−s − 1

3s + 2
⇒ l ≥ 0

and

k1 =
k − r

3
− 1 − lr = m − 2s − 2 − l(6s + 3) ≥ 0 ⇒ l ≤

m − 2s − 2

6s + 3
.

Since c − k = 3s + 3 + 3l(3s + 2) = 3 + 3(s + 3ls + 2l) is odd, we deduce that
s + 3ls = s(1 + 3l) is even, which means that s is even or l is odd.

If s = 2n with s ∈ N0, then it follows that r = 12n + 3, q = m + 2n + 1 +
l(6n + 2), 0 ≤ l ≤ m−4n−2

12n+3
, m ≥ 4n + 2 and k1 = m − 4n − 2 − l(12n + 3).

According to Corollary 5.8, we see that D is member of the families G9
q .
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If l = 2v+1 for an integer v, then we arrive at 0 ≤ v ≤ m−8s−5
12s+6

, m ≥ 8s+5,
q = m+ s+1+(2v +1)(3s+2) and k1 = m− 2s− 2− (2v +1)(6s+3). Again
with Corollary 5.8 we observe that D belongs to the families G10

q .
Subcase 2.3.2. Suppose that k = 3m + 1 for an integer m ≥ 0. With

(5.4) this yields q = m + p

3
+ 1 + l(p + 1) and thus p = 3s, r = 6s + 1 and

q = m + s + 1 + l(3s + 1) with s ∈ N0. Furthermore, we conclude that

c = 3q = 3m + 3s + 3 + 3l(3s + 1) = k + 3s + 2 + 3l(3s + 1)

⇒ 3s + 2 + 3l(3s + 1) > 0 ⇒ l > −
3s + 2

9s + 3
⇒ l ≥ 0

and

k1 =
k − r

3
− 1 − lr = m − 2s − 1 − l(6s + 1) ≥ 0 ⇒ l ≤

m − 2s − 1

6s + 1
.

Since c − k = 3s + 2 + 3l(3s + 1) = 2 + 3(3ls + l + s) is odd, it follows that
3ls + l + s is odd. This is possible only if s is odd or l is odd.

If l = 2v+1 for an integer v, then we arrive at 0 ≤ v ≤ m−8s−2
12s+2

, m ≥ 8s+2,
q = m + s + 1 + (2v + 1)(3s + 1) and k1 = m − 2s − 1 − (2v + 1)(6s + 1).
According to Corollary 5.8, D is an element of the families G11

q .
If s = 2n+1 for an integer n ≥ 0, then it follows that r = 12n+7, 0 ≤ l ≤

m−4n−3
12n+7

, m ≥ 4n+3, q = m+2n+2+l(6n+4) and k1 = m−4n−3−l(12n+7).
Again with Corollary 5.8 we see that D belongs to the families G12

q .
Subcase 2.3.3. Let k = 3m + 2 with m ∈ N0. Using (5.4), we observe

that q = m + 1 + p+1
3

+ l(p + 1), and thus p = 3s + 2, r = 6s + 5 and
q = m + 2 + s + l(3s + 3). Furthermore we have

c = 3q = 3m + 6 + 3s + 3l(3s + 3) = k + 4 + 3s + 3l(3s + 3)

⇒ 4 + 3s + 3l(3s + 3) > 0 ⇒ l > −
4 + 3s

9s + 9
⇒ l ≥ 0

and

k1 =
k − r

3
− 1 − lr = m − 2s − 2 − l(6s + 5) ≥ 0 ⇒ l ≤

m − 2s − 2

6s + 5
.

The fact that c − k = 4 + 3(3ls + 3l + s) is odd implies that 3ls + 3l + s =
s(3l + 1) + 3l is odd. This is possible only if l is odd or if s is odd.

If l = 2v + 1 for an integer v, then we deduce that 0 ≤ v ≤ m−8s−7
12s+10

,
m ≥ 8s+7, q = m+2+s+(2v+1)(3s+3) and k1 = m−2s−2−(2v+1)(6s+5).
According to Corollary 5.8, we have that D is a member of the families G13

q .
If s = 2n+1 for an integer n ≥ 0, then we observe that r = 12n+11, 0 ≤ l ≤

m−4n−4
12n+11

, m ≥ 4n+4, q = m+3+2n+l(6n+6) and k1 = m−4n−4−l(12n+11).
Using Corollary 5.8 it follows that D belongs to the families G14

q .
Case 3. Let α(D) = r + 2. According to Corollary 5.13 we have il(D) <

ig(D) and hence il(D) = 0. Because of Q2 → S → Q1, D[S] has to be local
regular. Since Vi ⊆ S for all partite sets Vi with |Vi| ≤ r + 1, this implies that
D does not contain any partite set of order r + 1. Hence, let |V (D)| = cr + 2k
such that 0 < k < c. Using Corollary 5.8 we observe that S contains all the
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c− k partite sets of order r. If S contains additionally k1 partite sets of order
r + 2, then it follows that |S| = (c − k + k1)r + 2k1.

Subcase 3.1. Suppose that c = 3q + 1 with q ∈ N. If S is (q + l)-partite,
then it follows that

|S| = (c − k + k1)r + 2k1 = (q + l)r + 2k1 =
cr + 2k − (r + 2)

3

= qr +
2k − 2

3
= (q + l)r +

2k − 2

3
− lr.

Since |S| ∈ N0, we observe that k = 3m + 1 for an integer m ≥ 0, and thus
c − k + k1 = q + l and k1 = m − l r

2
. This yields that

3q + 1 − (3m + 1) + m − l
r

2
= 3q − 2m − l

r

2
= q + l

⇒ 2q = 2m + l(1 +
r

2
) ⇒ q = m + l

r + 2

4
.

If l ≤ 0, then we arrive at q ≤ m and thus c ≤ k, a contradiction. Hence,
let l ≥ 1. Because of q ∈ N, we conclude that l r+2

4
∈ N. Since r is even this

implies that r = 2 + 4p or r = 4 + 4p and l = 2v + 2 for integers p, v ≥ 0.
If r = 2 + 4p, then we see that q = m + l(1 + p) and k1 = m − l(1 + 2p).

The fact that k1 ≥ 0 yields that 1 ≤ l ≤ m
1+2p

and thus m ≥ 1 + 2p. Using

Corollary 5.8, it is obvious that D belongs to the families H1
q .

If r = 4 + 4p and l = 2v + 2, then it follows that q = m + (v + 1)(2p + 3)
and k1 = m− (2v +2)(2p+2). Because of k1 ≥ 0 we have 0 ≤ v ≤ m−4−4p

4+4p
and

thus m ≥ 4 + 4p. Again with Corollary 5.8 we deduce that D is a member of
the families H2

q .
Subcase 3.2. Assume that c = 3q + 2 for an integer q ≥ 0. Let r = 2 + 2p

with p ∈ N0. If S is (q + l)-partite, then we observe that

|S| = (c − k + k1)r + 2k1 = (q + l)r + 2k1 =
cr + 2k − r − 2

3

= qr +
r + 2k − 2

3
= (q + l)r +

r + 2k − 2

3
− lr,

and thus c − k + k1 = q + l and k1 = r+2k−2
6

− l r
2
. This implies

3q + 2 − k +
r + 2k − 2

6
− l

r

2
= 3q + 2 +

r − 4k − 2

6
− l

r

2
= q + l

⇒ 2q = l(1 +
r

2
) − 2 +

4k + 2 − r

6

⇒ q =
r + 2

4
l +

4k − r + 2

12
− 1 =

3lr + 6l + 4k − r + 2

12
− 1.

This leads to

c = 3q + 2 = k +
3lr + 6l − r + 2

4
− 1 < c +

3lr + 6l − r + 2

4
− 1

⇒
3lr + 6l − r + 2

4
− 1 > 0 ⇒ 3lr + 6l − r + 2 > 4

⇒ 3l(r + 2) > r + 2 ⇒ l >
1

3
⇒ l ≥ 1,
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which means that v ≥ 1, if l = 2v, and v ≥ 0, if l = 2v + 1. Since r = 2 + 2p,
we observe that

q = l − 1 +
3lp + 2k − p

6
. (5.5)

Subcase 3.2.1. Let l = 2v for an integer v. Then (5.5) leads to

q = 2v + vp +
2k − p

6
− 1. (5.6)

Subcase 3.2.1.1. Assume that k = 3m + 1 with m ∈ N0. Now (5.6) yields

q = 2v + vp + m +
2 − p

6
− 1,

and thus p = 6s + 2, r = 6 + 12s and q = 4v + 6vs + m − s − 1 for an integer
s ≥ 0. Furthermore, we conclude that

k1 =
r + 2k − 2

6
− l

r

2
= 1 + 2s + m − 6v − 12vs ≥ 0

⇒ 1 ≤ v ≤
1 + 2s + m

6 + 12s
=

1

6

(

1 +
m

1 + 2s

)

,

and thus m ≥ 5 + 10s. Using Corollary 5.8 we see that D is an element of the
families H3

q .
Subcase 3.2.1.2. Let k = 3m + 2 with m ∈ N0. Using (5.6) we arrive at

q = 2v + vp + m +
4 − p

6
− 1,

and thus p = 6s + 4, r = 12s + 10 and q = 6v + 6vs + m− s− 1 for an integer
s ≥ 0. Furthermore we observe that

k1 =
r + 2k − 2

6
− l

r

2
= 2s + 2 + m− 12vs− 10v ≥ 0 ⇒ 1 ≤ v ≤

2s + 2 + m

10 + 12s
,

which implies that m ≥ 10s + 8. According to Corollary 5.8, D belongs to the
families H4

q .
Subcase 3.2.1.3. Suppose that k = 3m with m ∈ N. Then (5.6) leads to

q = 2v + vp + m −
p

6
− 1,

and thus p = 6s, r = 2+12s and q = 2v +6vs+m−s−1 for an integer s ≥ 0.
Furthermore we see that

k1 =
r + 2k − 2

6
− l

r

2
= 2s + m − 2v − 12vs ≥ 0 ⇒ 1 ≤ v ≤

2s + m

12s + 2
,

which yields that m ≥ 10s + 2. Using Corollary 5.8 it follows that D is a
member of the families H5

q .
Subcase 3.2.2. Assume that l = 2v + 1 for an integer v. In this case (5.5)

yields that

q = 2v + vp +
p + k

3
. (5.7)
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Subcase 3.2.2.1. Let k = 3m with m ∈ N. Using (5.7) we deduce that

q = 2v + vp + m +
p

3
,

which leads to p = 3s, r = 2 + 6s and q = 2v + 3vs + m + s for an integer
s ≥ 0. Furthermore it follows that

k1 =
r + 2k − 2

6
− l

r

2
= m − 2s − 2v − 6vs − 1 ≥ 0 ⇒ 0 ≤ v ≤

m − 2s − 1

2 + 6s
,

and thus m ≥ 2s + 1. According to Corollary 5.8, D is an element of the
families H6

q .
Subcase 3.2.2.2. Suppose that k = 3m + 1 with m ∈ N0. With (5.7) we

arrive at

q = 2v + vp + m +
p + 1

3
,

and thus p = 3s + 2, r = 6s + 6 and q = 4v + 3vs + m + s + 1 for an integer
s ≥ 0. Furthermore we see that

k1 =
r + 2k − 2

6
− l

r

2
= m−2s−6vs−6v−2 ≥ 0 ⇒ 0 ≤ v ≤

1

6

(

m

s + 1
− 2

)

,

which implies that m ≥ 2s + 2. Hence, again with Corollary 5.8 we observe
that D belongs to the families H7

q .
Subcase 3.2.2.3. Let k = 3m+2 with m ∈ N0. According to (5.7), we have

q = 2v + vp + m +
p + 2

3
,

and thus p = 3s + 1, r = 6s + 4 and q = 3v + 3vs + m + s + 1 for an integer
s ≥ 0. Furthermore, we observe that

k1 =
r + 2k − 2

6
− l

r

2
= m − 2s − 1 − 6vs − 4v ≥ 0 ⇒ 0 ≤ v ≤

m − 2s − 1

4 + 6s
,

which means that m ≥ 2s + 1. Using Corollary 5.8 we conclude that D is a
member of the families H8

q .
Subcase 3.3. Assume that c = 3q with q ∈ N. Let r = 2 + 2p for an integer

p ≥ 0. If S is (q + l)-partite, then we conclude that

|S| = (c − k + k1)r + 2k1 = (q + l)r + 2k1 =
cr + 2k − (r + 2)

3

= qr +
2k − 2 − r

3
= (q + l)r +

2k − 2 − r

3
− lr.

This implies that c − k + k1 = q + l and k1 = 2k−2−r
6

− l r
2
, and thus

3q − k +
2k − 2 − r

6
− l

r

2
= 3q −

4k + 2 + r

6
− l

r

2
= q + l

⇒ 2q =
r + 2 + 4k

6
+ l

r + 2

2
⇒ q =

r + 2 + 4k + 3lr + 6l

12
.
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This leads to

c = 3q = k +
r + 2 + 3lr + 6l

4
< c +

r + 2 + 3lr + 6l

4

⇒
r + 2 + 3lr + 6l

4
> 0 ⇒ l > −

1

3
⇒ l ≥ 0,

which means that v ≥ 0, if l = 2v or l = 2v + 1 for an integer v. Furthermore,
since r = 2 + 2p, we deduce that

q = l +
2 + p + 2k + 3lp

6
. (5.8)

Subcase 3.3.1. Let l = 2v for an integer v. Using (5.8) we see that

q = 2v + vp +
2 + p + 2k

6
. (5.9)

Subcase 3.3.1.1. Assume that k = 3m with m ∈ N. According to (5.9), we
have

q = 2v + vp + m +
2 + p

6
,

and thus p = 6s + 4, r = 10 + 12s and q = 6v + 6vs + m + 1 + s for an integer
s ≥ 0. Furthermore it follows that

k1 =
2k − 2 − r

6
− l

r

2
= m− 2− 2s− 10v − 12vs ≥ 0 ⇒ 0 ≤ v ≤

m − 2 − 2s

10 + 12s
,

which yields that m ≥ 2s+2. Using Corollary 5.8 we conclude that D belongs
to the families H9

q .
Subcase 3.3.1.2. Suppose that k = 3m + 1 with m ∈ N0. Using (5.9) we

see that

q = 2v + vp + m +
p + 4

6
,

and thus p = 6s + 2, r = 12s + 6 and q = 4v + 6vs + m + s + 1 for an integer
s ≥ 0. Furthermore we observe that

k1 =
2k − 2 − r

6
− l

r

2
= m − 2s − 1 − 12vs − 6v ≥ 0 ⇒ 0 ≤ v ≤

m − 2s − 1

6 + 12s
,

which means that m ≥ 2s + 1. According to Corollary 5.8, we deduce that D
is an element of the families H10

q .
Subcase 3.3.1.3. Let k = 3m + 2 with m ∈ N0. According to (5.9), we

arrive at
q = 2v + vp + m + 1 +

p

6
,

and thus p = 6s, r = 2+12s and q = 2v +6vs+m+1+s for an integer s ≥ 0.
Furthermore we conclude that

k1 =
2k − 2 − r

6
− l

r

2
= m − 2s − 2v − 12vs ≥ 0 ⇒ 0 ≤ v ≤

m − 2s

2 + 12s
,

which leads to m ≥ 2s. Using Corollary 5.8 we observe that D is a member of
the families H11

q .



5.2. ALMOST REGULAR MULTIPARTITE TOURNAMENTS 113

Subcase 3.3.2. Assume that l = 2v +1 for an integer v. According to (5.8),
this yields

q = 2v + 1 + vp +
1 + 2p + k

3
. (5.10)

Subcase 3.3.2.1. Suppose that k = 3m with m ∈ N. Using (5.10) we
observe that

q = 2v + 1 + vp + m +
1 + 2p

3
,

and thus p = 3s + 1, r = 4 + 6s and q = 3v + 2 + 3vs + m + 2s. Furthermore
we see that

k1 =
2k − 2 − r

6
− l

r

2
= m − 3 − 4s − 4v − 6vs ≥ 0 ⇒ 0 ≤ v ≤

m − 3 − 4s

4 + 6s
,

which leads to m ≥ 3 + 4s. According to Corollary 5.8, D belongs to the
families H12

q .
Subcase 3.3.2.2. Let k = 3m + 1 with m ∈ N0. Using (5.10) we have

q = 2v + 1 + vp + m +
2p + 2

3
,

and thus p = 3s + 2, r = 6s + 6 and q = 4v + 3vs + 2s + m + 3 for an integer
s ≥ 0. Furthermore we see that

k1 =
2k − 2 − r

6
− l

r

2
= m − 4 − 4s − 6v − 6vs ≥ 0 ⇒ 0 ≤ v ≤

m − 4 − 4s

6 + 6s
,

which yields that m ≥ 4 + 4s, According to Corollary 5.8, it follows that D is
an element of the families H13

q .
Subcase 3.3.2.3. Assume that k = 3m + 2 with m ∈ N0. Using (5.10) we

observe that

q = 2v + 2 + vp + m +
2p

3
,

and thus p = 3s, r = 6s + 2 and q = 2v + 2 + 3vs + m + 2s. Furthermore it
follows that

k1 =
2k − 2 − r

6
− l

r

2
= m − 4s − 2v − 6vs − 1 ≥ 0 ⇒ 0 ≤ v ≤

m − 4s − 1

2 + 6s
,

which means that m ≥ 4s + 1. According to Corollary 5.8, we conclude that
D belongs to the families H14

q . This completes the proof of the theorem. ¤
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Part III

Paths in multipartite
tornaments
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Chapter 6

Paths of a given
vertex-structure

In Chapter 4, we searched for cycles in (almost) regular multipartite tourna-
ments with a given number s of vertices from each partite set. Since the proofs
of these theorems become the complex, the more s differs from 1 and α(D), it
is an interesting question to solve the following weaker form of Problem 4.2.

Problem 6.1 (Volkmann, Winzen [45]) Which conditions have to be ful-
filled such that a c-partite tournament with the partite sets V1, V2, . . . , Vc con-
tains a path with exactly si vertices of Vi for all 1 ≤ i ≤ c and given integers
0 ≤ si ≤ |Vi|?

In this chapter we will consider Problem 6.1 for some given small (Section
6.2) and large (Section 6.3) values si.

According to the Theorems 4.4, 4.12 and 4.35, we have solutions for Prob-
lem 6.1 for the cases that D is an almost regular c-partite tournament and
si = 1 for all 1 ≤ i ≤ c, D is a regular c-partite tournament and si = α(D) for
all 1 ≤ i ≤ c or si = α(D) − 1 for all 1 ≤ i ≤ c. Furthermore Theorem 4.24
solves Problem 6.1 for the case that si = 1 for all 1 ≤ i ≤ c.

To get more solutions for special choices of si in Problem 6.1, we need some
results about the existence of Hamiltonian paths. In 1988, Gutin [14] gave a
characterization of semicomplete multipartite digraphs having a Hamiltonian
path.

Theorem 6.2 (Gutin [14]) A semicomplete multipartite digraph D has a
Hamiltonian path if and only if it contains a 1-path-cycle factor.

This result was used to prove another result of Gutin and Yeo [16].

Theorem 6.3 (Gutin, Yeo [16]) Let D be a semicomplete multipartite di-
graph with the partite sets V1, V2, . . . , Vc such that |V1| ≤ |V2| ≤ . . . ≤ |Vc|. If
there exists a positive integer k such that

il(D) ≤ min

{

|V (D)| − 3|Vc| + 2k + 1,
|V (D)| − |Vc−1| − 2|Vc| + 3k + 2

2

}

,

then pc(D) ≤ k.

117
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In Section 6.1, we will give a supplement to Theorem 6.3 and some related
results, which will be usefull afterwards.

In Section 6.2, we will give a solution of Problem 6.1 with si = 2 for all
1 ≤ i ≤ c by showing that every regular c-partite tournament with at least
r ≥ 2 vertices in each partite set contains a path with exactly two vertices
from each partite set. Furthermore, we will give some results for the case that
D is a regular multipartite tournament and 2 ≤ si ≤ 3 for all 1 ≤ i ≤ c in
Problem 6.1.

In Section 6.3, we will treat the case that D is a regular c-partite tourna-
ment with exactly r vertices in each partite set and si = α(D)−s for 1 ≤ i ≤ c
and a given integer 2 ≤ s ≤ r − 1. We will show that almost all regular c-
partite tournaments D with c ≥ 4 contain a path with exactly r − s vertices
from each partite set, if s ∈ N is an arbitrary integer and r is the cardinality
of every partite set of D. Especially we will prove that each regular c-partite
tournament D with c ≥ 5 and at least r ≥ 5s−3 vertices in each partite set or
with c = 4 and at least r ≥ 7s − 5 vertices of each partite set contains a path
with exactly r−s vertices of each partite set. Nevertheless, we conjecture that
this result also holds for all r ≥ s + 1.

6.1 Path covering number and irregularity

In this section, we will show the connection between the path covering number
and the irregularity of a semicomplete multipartite digraph by presenting a
slight improvement of a result of Yeo [51] and Gutin and Yeo [16]. Furthermore,
we will analyze those semicomplete multipartite digraphs, which realize the
developed result.

The following theorem is a useful supplement to Theorem 6.3. The proof
is similar to the proof of Lemma 4.3 in [51] and Theorem 3.2 in [16].

Theorem 6.4 ((Stella,) Volkmann, Winzen [40, 22]) Let D be a semi-
complete c-partite digraph with the partite sets V1, V2, . . . , Vc such that |V1| ≤
|V2| ≤ . . . ≤ |Vc|. Assume that pc(D) > k for an integer k ≥ 1 (respec-
tively, let k = 0, if D has no cycle-factor). According to Theorem 4.29,
V (D) can be partitioned into subsets Y, Z,R1, R2 satisfying (4.18) such that
|Z| + k + 1 ≤ |Y | ≤ |Vc| − t with an integer t ≥ 0. Let Vi be the par-
tite set with the property that Y ⊆ Vi. If Y1 = R1 ∩ Vi, Y2 = R2 ∩ Vi,
Q = V (D) − Z − Vi, Q1 = Q ∩ R1 and Q2 = Q ∩ R2, then

il(D) ≥ |V (D)| − 3|Vc| + 2t + 2k + 2,

if Q1 = ∅ or Q2 = ∅,

ig(D) ≥
|V (D)| − |Vc−1| − 2|Vc| + 3k + 3 + |Y2|

2
,

if Q1 = ∅,

ig(D) ≥
|V (D)| − |Vc−1| − 2|Vc| + 3k + 3 + |Y1|

2
,
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if Q2 = ∅, and

ig(D) ≥ il(D) ≥
|V (D)| − |Vc−1| − 2|Vc| + 3k + 3 + t

2
,

if Q1 6= ∅ and Q2 6= ∅.

Proof. Let V (D) be partitioned into the subsets Y, Z,R1, R2 satisfying
(4.18) such that |Z|+k +1 ≤ |Y | ≤ |Vc|− t for integers k ≥ 1 and t ≥ 0. If Y1,
Y2, Q1 and Q2 are defined as above, then we observe that |Z| ≤ |Y | − 1− k ≤
|Vc| − 1 − k − t, Q1 → Y → Q2, (Q1 ∪ Y1)Ã (Q2 ∪ Y2) and Y1 ∪ Y2 ∪ Y ⊆ Vi.
If i = c, then let j = c − 1 and if i < c, then let j = c. We now consider the
following three cases.

Case 1. Let Q1 = ∅. Then Q2 = Q and we obtain

d(Y, V (D) − Y ) − d(V (D) − Y, Y )

≥ |Y ||Q2| − |Y ||Z| ≥ |Y |(|V (D)| − |Vi| − 2|Z|)

≥ |Y |(|V (D)| − |Vc| − 2(|Vc| − 1 − k − t))

= |Y |(|V (D)| − 3|Vc| + 2 + 2k + 2t).

According to Lemma 5.5, this implies that il(D) ≥ |V (D)|−3|Vc|+2+2k+2t,
and hence, we have one part of the desired result. We will now show the second
part.

Let δ∗ = min{d−(w) | w ∈ Vi}. Since Y ⊆ Vi and thus d−(y) ≤ |Z| for all
y ∈ Y we observe that δ∗ ≤ |Z| ≤ |Y | − k − 1 ≤ |Vi| − |Y2| − 1 − k. Let ∆∗ =
max{d+(w), d−(w) | w ∈ V (D)−Vi} and note that d+(w)+d−(w) ≥ |V (D)|−
|Vj| for all w ∈ V (D)− Vi. The fact that

∑

x∈Q2
(d−(x)− d+(x)) ≥ |Q2|(|Y | −

|Z| − |Y2|) ≥ |Q2|(1 + k − |Y2|) implies that there is a vertex q ∈ Q2 such that
d−(q) ≥ d+(q)+k−|Y2|+1. This leads to 2d−(q)−k+|Y2|−1 ≥ d+(q)+d−(q) ≥

|V (D)|−|Vj|, and thus we conclude that ∆∗ ≥ |V (D)|−|Vj |+k−|Y2|+1

2
. This implies

ig(D) ≥ ∆∗ − δ∗ ≥
|V (D)| − |Vj| + k − |Y2| + 1

2
− |Vi| + |Y2| + k + 1

=
|V (D)| − |Vj| − 2|Vi| + 3k + 3 + |Y2|

2

≥
|V (D)| − |Vc−1| − 2|Vc| + 3k + 3 + |Y2|

2
,

and the second part is proved.
Case 2. Let Q2 = ∅. This is analogously to Case 1 (change the orientation

of all the arcs in D).
Case 3. Let Q1 6= ∅ and Q2 6= ∅. Since |Vi|+ |Vj| ≤ |Vc−1|+ |Vc|, we deduce

that |Q|−|Vj| ≥ |V (D)|−|Vi|−|Z|−|Vj| ≥ |V (D)|−|Vc−1|−|Vc|−(|Vc|−1−k−t).
By Lemma 5.4 with X = Q1 and Y = Q1 ∪Q2 = Q and because of Q∩Vi = ∅,
it follows that

d(Q1, Q2) + d(Q2, Q1)

|Q1|
+

d(Q1, Q2) + d(Q2, Q1)

|Q2|

=
d(Q1, Q2)

|Q1|
+

d(Q1, Q2)

|Q2|
≥ |Q| − |Vj|

≥ |V (D)| − |Vc−1| − 2|Vc| + 1 + k + t.
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Thus,

(i)
d(Q1, Q2)

|Q1|
≥

|V (D)| − |Vc−1| − 2|Vc| + 1 + k + t

2
− |Y2| + |Y1| or

(ii)
d(Q1, Q2)

|Q2|
≥

|V (D)| − |Vc−1| − 2|Vc| + 1 + k + t

2
+ |Y2| − |Y1|.

Assume that (i) holds as the case when (ii) holds can be treated similarly.
Because of R1 = Q1 ∪ Y1 and R2 = Q2 ∪ Y2, Lemma 5.5 yields

ig(D) ≥ il(D) ≥
d(Q1, V (D) − Q1) − d(V (D) − Q1, Q1)

|Q1|

=
d(Q1, Q2)

|Q1|
+

d(Q1, Y ∪ Y2) − d(Y ∪ Y2, Q1)

|Q1|

+
d(Q1, Z ∪ Y1) − d(Z ∪ Y1, Q1)

|Q1|
−

d(Q2, Q1)

|Q1|

≥

(

|V (D)| − |Vc−1| − 2|Vc| + 1 + k + t

2
− |Y2| + |Y1|

)

+ (|Y | + |Y2|) − (|Z| + |Y1|)

=
|V (D)| − |Vc−1| − 2|Vc| + 1 + k + t

2
+ |Y | − |Z|

≥
|V (D)| − |Vc−1| − 2|Vc| + 3 + 3k + t

2
.

This completes the proof of the theorem. ¤

Theorem 6.4 with t = 0 leads immediately to the following result on the
path covering number.

Corollary 6.5 (Volkmann, Winzen [40]) Let V1, V2, . . . , Vc be the partite
sets of a semicomplete multipartite digraph D such that |V1| ≤ |V2| ≤ . . . ≤ |Vc|.

If there exists a positive integer k such that ig(D) ≤ |V (D)|−|Vc−1|−2|Vc|+3k+2
2

, then
pc(D) ≤ k.

An analysis of the proof of the Theorem 6.4 yields the following result.

Corollary 6.6 (Stella, Volkmann, Winzen [22]) Let V1, V2, . . . , Vc be the
partite sets of a semicomplete c-partite digraph D such that |V1| ≤ |V2| ≤ . . . ≤
|Vc|. Let pc(D) > k for an integer k ≥ 1 and let Y, Z,R1, R2, Q,Q1, Q2, Vi, Y1

and Y2 be defined as in Theorem 6.4.
If Q1 = ∅ and ig(D) = |V (D)|−|Vc−1|−2|Vc|+3k+3+|Y2|

2
, then the following holds.

i) min{d−(w) | w ∈ Vi} = |Z| = |Y | − k − 1.

ii) |Y | = |Vi| − |Y2|, which means that |Y1| = 0 and |Vi ∩ Z| = 0.

iii) Y → Q2 → (Y2 ∪ Z).

iv) d−(q2) = d+(q2) + k − |Y2| + 1 for all q2 ∈ Q2.
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v) max{d+(w), d−(w) | w ∈ V (D) − Vi} = d−(q) for a vertex q ∈ Q2 such
that |V (q)| = |Vc−1|

vi) ig(D) = max{d−(q) | q ∈ Q2} − min{d−(w)|w ∈ Vi}.

vii) |Vi| = |Vc|.

viii) |V (D)| − |Vc−1| − 2|Vc| + 3k + 3 + |Y2| is even.

Let j = c − 1, if i = c and j = c, if i < c. If Q1 6= ∅ and Q2 6= ∅ and
ig(D) = |V (D)|−|Vc−1|−2|Vc|+3k+3+t

2
, then we conclude that

a) ig(D) = il(D).

b) {|Vi|, |Vj|} = {|Vc|, |Vc−1|}.

c) Vi ∩ Z = ∅, |Z| = |Y | − 1 − k, |Y | = |Vc| − t.

d) there is equality in Lemma 5.4 with X = Q1 and Y = Q = Q1 ∪ Q2,
which means that |Vm ∩ Q1| = |Vl ∩ Q1| and |Vm ∩ Q| = |Vl ∩ Q| for all
1 ≤ l,m ≤ c such that Vm ∩ Q 6= ∅ and Vl ∩ Q 6= ∅.

e) Vj ⊆ Q.

f) d(Q1,Q2)
|Q1|

= |V (D)|−|Vc−1|−2|Vc|+1+k+t

2
− |Y2| + |Y1| and

d(Q1,Q2)
|Q2|

= |V (D)|−|Vc−1|−2|Vc|+1+k+t

2
+ |Y2| − |Y1|.

g) d+(q1) = d−(q1) + ig(D) for all q1 ∈ Q1 and d−(q2) = d+(q2) + ig(D) for
all q2 ∈ Q2.

h) Q2 → (Z ∪ Y2), (Z ∪ Y1) → Q1.

j) |V (D)| − |Vc−1| − 2|Vc| + 3k + 3 + t is even.

If we especially observe the case k = 1, then we arrive at the following
result.

Theorem 6.7 (Volkmann, Winzen [40]) Let V1, V2, . . . , Vc be the partite
sets of the semicomplete c-partite digraph D such that 1 ≤ r = |V1| ≤ |V2| ≤

. . . ≤ |Vc| ≤ r + p for an integer p ≥ 0. If c ≥ max{2, 3 + 2ig(D)−5+p

r
}, then D

contains a Hamiltonian path.

Proof. Clearly, D contains a Hamiltonian path if and only if pc(D) = 1.
Hence, according to Corollary 6.5 with k = 1, it is sufficient to show that
ig(D) ≤ |V (D)|−|Vc−1|−2|Vc|+5

2
. Because of c ≥ 3 + 2ig(D)−5+p

r
, we conclude that

ig(D) ≤ (c−3)r+5−p

2
, and together with |V1|, |V2|, . . . , |Vc−2| ≥ r, |Vc| ≤ r+p and

c ≥ 2 this implies

|V (D)| − |Vc−1| − 2|Vc| + 5

2
=

|V1| + |V2| + . . . + |Vc−2| − |Vc| + 5

2

≥
(c − 3)r − p + 5

2
≥ ig(D),
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the desired result. ¤

If D is a multipartite tournament, then, according to Lemma 1.10, we can
choose p = 2ig(D) in the previous theorem.

Corollary 6.8 (Volkmann, Winzen [40]) Let V1, V2, . . . , Vc be the partite
sets of a c-partite tournament D such that 1 ≤ r = |V1| ≤ |V2| ≤ . . . ≤ |Vc|. If

c ≥ max{2, 4ig(D)−5

r
+ 3}, then D contains a Hamiltonian path.

6.2 Two or three vertices of each partite set

To treat Problem 6.1 with si = 2 or 2 ≤ si ≤ 3 for all 1 ≤ i ≤ c we still need
the following two results.

Theorem 6.9 (Guo, Volkmann [13]) Every partite set of a strongly con-
nected c-partite tournament has at least one vertex that lies on cycles of each
length m for m ∈ {3, 4, . . . , c}.

Theorem 6.10 (Yeo [50]) Let D be a regular c-partite tournament with c ≥
4 and the partite sets V1, V2, . . . , Vc such that |V1| = |V2| = . . . = |Vc| = r. If w
is an arbitrary vertex in D, then for all integers p with 3 ≤ p ≤ (c − 2)r + 2,
there exists a p-cycle C in D such that w ∈ V (C).

Theorem 6.11 (Volkmann, Winzen [45]) Let V1, V2, . . . , Vc be the partite
sets of a regular c-partite tournament D with c ≥ 2 such that |V1| = |V2| =
. . . = |Vc| = r ≥ 2. Then D contains a path with exactly two vertices from
each partite set.

Proof. If r = 2, then, according to Theorem 4.4, D is Hamiltonian and
we are done. In the following let r ≥ 3.

Case 1. Let c ≥ 5. In view of Theorem 4.12, there exists a strongly
connected subtournament T1 of order c, which contains, by Theorem 4.26, a
Hamiltonian cycle C. If T2 is an arbitrary subtournament in D − V (T1) of
order c, then, by Theorem 4.24, T2 has a Hamiltonian path P ′. Now C ∪P ′ is
a 1-path-cycle factor of D[V (C)∪ V (P ′)]. Applying Theorem 6.2, we see that
the Hamiltonian path P of D[V (C) ∪ V (P ′)] has the desired properties.

Case 2. Let c = 2. In view of Theorem 4.4, D has a Hamiltonian path.
Every part P of the Hamiltonian path with |V (P )| = 4 has the desired prop-
erties.

Case 3. Let c = 3. In view of Theorem 4.1, there exists a 3-cycle C3.
Analogously to Case 1, we arrive at the desired path.

Case 4. Let c = 4. This yields that r = 2s ≥ 4 is even, and d+(x) =
d−(x) = 3s for each x ∈ V (D). Let V1 = {x1, x2, . . . , xr}, V2 = {y1, y2, . . . , yr},
V3 = {u1, u2, . . . , ur}, and V4 = {v1, v2, . . . , vr}. With respect to Theorem 6.10,
there exists a 5-cycle C5 in D. If C5 contains vertices from four partite sets,
then we obtain the desired path as above.

If C5 contains vertices from three partite sets, then let, without loss of
generality, C5 = x1y1u1x2y2x1. If there exists a path viutvj with t ≥ 2 and
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i 6= j, then Theorem 6.2 leads to the desired path. If not, then we can assume,
without loss of generality, that there is a vertex ut ∈ V3 − {u1} such that
ut → V4.

Case 4.1. There exists one of the arcs x1ut or y1ut or x2ut or y2ut. In a first
step, we will show that (V (C5)−{w}) → V4, if w → ut with w ∈ {x1, y1, x2, y2}.

Firstly, let w = y2. If vi → x1 or vi → y1 or vi → u1 or vi → x2 for an i
with 1 ≤ i ≤ r, then we arrive at the cycle utvix1y1u1x2y2ut or utviy1u1x2y2ut

or utviu1x2y2ut or utvix2y2ut through four partite sets and we are done. Hence
we investigate now the case that {x1, y1, u1, x2} → V4.

If w ∈ {x1, y2}, then analogously as above we arrive at the desired result
(V (C5)−{w}) → V4. Hence, let x2ut ∈ E(D). If vi → y2 or vi → x1 or vi → y1

with 1 ≤ i ≤ r, then we arrive at the cycle utviy2x1y1u1x2ut or utvix1y1u1x2ut

or utviy1u1x2ut through four partite sets and we are done. If vi → u1, then
let us observe an arbitrary vertex vj with 1 ≤ j ≤ r and i 6= j. If vj → y1,
then as above we arrive at a cycle of length 5 through 4 partite sets and we
are done. If y1 → vj, then utviu1x2ut and y2x1y1vj is an 1-path-cycle factor
and Theorem 6.2 yields the desired result.

So from now on, we may suppose that (V (C5) − {w}) → V4, if w → ut

with w ∈ {x1, y1, x2, y2}. Without loss of generality, let w = y2. Because of
d+(ut) = d−(ut) = 3s ≥ 6, there exist vertices xp and vj or yp and vj with
p ≥ 3 such that vj → xp → ut or vj → yp → ut, say vj → yp → ut. Applying
Theorem 6.2 on the 1-path-cycle factor x1y1u1x2vk and vjyputvj with j 6= k,
we obtain the desired path of order 8.

Case 4.2. Let ut → {x1, x2, y1, y2}. If there is no arc leading from vj with
1 ≤ j ≤ r to N−(ut) − V (C5) = N−(ut) ⊆ V1 ∪ V2, then we observe that
|N−(vj)| ≥ |N−(ut)| + |{ut}|, a contradiction to the regularity of D. Hence,
let vjxputvj or vjyputvj be a 3-cycle with 1 ≤ j ≤ r and p ≥ 3. Since the
other case follows similarly, we will treat the case that there exists the 3-cycle
C = vjyputvj. Let vi ∈ V4 − {vj}. If y2 → vi, then we define the path
P ′ = y1u1x2y2vi, and if vi → y2, then let P ′ = viy2x1y1u2. Applying Theorem
6.2, we see that the Hamiltonian path P of D[V (C5) ∪ V (P ′)] has the desired
properties. ¤

Theorem 6.12 (Volkmann, Winzen [45]) Let V1, V2, V3 be the partite sets
of a regular 3-partite tournament D such that |V1| = |V2| = |V3| = r ≥ 3. Then
D contains a path P with at exactly three vertices from each partite set.

Proof. If r = 3, then, according to Theorem 4.4, D is Hamiltonian and
we are done. Let now r ≥ 4. According to Theorem 4.1, there exists a 3-cycle
C3 in D. Theorem 4.16 shows that

κ(D − V (C3)) ≥
3r − 3 − (r − 1) − 4

3
=

2r − 6

3
> 0.

Therefore, Theorem 4.1 yields a further 3-cycle C∗
3 in D − V (C3). Let P =

a1a2a3 be a path in D − (V (C3) ∪ V (C∗
3)) with exactly one vertex from each

partite set. Then C3 ∪C∗
3 ∪ P is a 1-path-cycle factor, and Theorem 6.2 leads

to the desired result. ¤
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Theorem 6.13 (Volkmann, Winzen [45]) Let V1, V2, . . . , Vc be the partite
sets of a regular c-partite tournament D with c ≥ 2 such that |V1| = |V2| =
. . . = |Vc| = r ≥ 3. Then D contains a path P with at least two and at most
three vertices from each partite set such that

|V (P )| ≥ 2c +
c

2
+

r − c

2(r − 1)
.

Proof. Case 1. Let 2 ≤ c ≤ 3. If c = 2 or c = 3, then the desired result
follows from Theorem 4.4 or Theorem 6.12, respectively.

Case 2. Let c = 4. It follows that r ≥ 4 is even. In view of Theorem
4.1, there exists a 3-cycle C3 = x1x2x3x1 such that, without loss of generality,
xi ∈ Vi for 1 ≤ i ≤ 3.

Subcase 2.1. Let r = 4. According to Theorem 4.16, we deduce that
κ(D) ≥ 4 and thus we conclude that the subdigraph D − V (C3) is strongly
connected. By Theorem 6.9, there exists a vertex w ∈ V4, which is contained
in a 3-cycle C ′

3 = wy1y2w of D−V (C3). Let, without loss of generality, yi ∈ Vi

for i = 1, 2. According to Theorem 4.24, there exist a path P ′ of length three in
D−(V (C3)∪V (C ′

3)) such that all vertices of P ′ belong to different partite sets,
and C3∪C ′

3∪P ′ is a 1-path-cycle factor of D[V (C3)∪V (C ′
3)∪V (P ′)]. Applying

Theorem 6.2, we see that the Hamiltonian path P of D[V (C3)∪V (C ′
3)∪V (P ′)]

has at least two and at most three vertices from each partite set such that

|V (P )| = 10 = 2c +
c

2
+

r − c

2(r − 1)
.

Subcase 2.2. Let r ≥ 6. According to Theorem 5.3, we deduce that κ(D) ≥
7 or D is a member of the family F1 of Example 5.1. If D ∈ F1, then it is easy
to verify that there exists a path P with the desired properties. Otherwise, in
view of Theorem 6.9, we can choose two vertex disjoint 3-cycles C ′

3 and C ′′
3 in

D−V (C3) such that both of these cycles contain vertices v and w of the partite
set V4. If C ′

3 = vy1y2v and C ′′
3 = wu1u2w such that, for example, yi, ui ∈ Vi for

i = 1, 2, then we choose in D − (V (C3)∪ V (C ′
3)∪ V (C ′′

3 )) a path P ′ = ab with
a ∈ V3 and b ∈ V4. Now the 1-path-cycle factor V (C3)∪V (C ′

3)∪V (C ′′
3 )∪V (P ′)

of D[V (C3) ∪ V (C ′
3) ∪ V (C ′′

3 ) ∪ V (P ′)] yields togehter with Theorem 6.2 the
desired path P with

|V (P )| = 11 ≥ 2c +
c

2
+

r − c

2(r − 1)
.

Case 3. Let c ≥ 5. In view of Theorem 4.12, there exists a strongly
connected subtournament Tc of order c, which contains, by Theorem 4.26, a
Hamiltonian cycle C. Now let P ∗ be a longest path in D′ = D − V (Tc) with
at least one and at most two vertices from each partite set in D′ such that the
first c vertices of P ∗ belong to different partite sets. Let

P ∗ = x1x2 . . . xcy1y2 . . . yt.

If t ≥ c
2

+ r−c
2(r−1)

, then C ∪ P ∗ is a 1-path-cycle factor of D[V (C) ∪ V (P ∗)].

Applying Theorem 6.2, we see that the Hamiltonian path P of D[V (C)∪V (P ∗)]
has the desired properties.
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Suppose now that t < c
2
+ r−c

2(r−1)
, and let V ′

1 , V
′
2 , . . . , V

′
c−t be the partite sets

in D′ − V (P ∗) with the property that V ′
i ∩ V (yj) = ∅ for all 1 ≤ i ≤ c− t and

1 ≤ j ≤ t. It follows that |V ′
i | = r − 2 for 1 ≤ i ≤ c − t. Furthermore, it is

straightforward to verify that

(V ′
1 ∪ V ′

2 ∪ . . . ∪ V ′
c−t) → {y1, y2, . . . , yt}.

Subcase 3.1. There exists an arc ytxi for any i with 1 ≤ i ≤ c−t. This leads
to the cycle C1 = xixi+1 . . . xcy1y2 . . . ytxi in D′ with |V (C1)| = c + t − i + 1.
According to Theorem 4.24, there is a path P ′ = a1a2 . . . ac−t in D′[V ′

1 ∪ V ′
2 ∪

. . . ∪ V ′
c−t] with exactly one vertex from each partite set. Now the path

W = a1a2 . . . ac−ty1y2 . . . ytxixi+1 . . . xc

is also a path with at least one and at most two vertices from each partite set
in D′ such that the first c vertices belong to different partite sets. Because
of |V (W )| = 2c + 1 − i ≥ c + t + 1, we arrive at the contradiction to our
assumption that P ∗ is the longest path with these properties.

Subcase 3.2. Assume that {x1, x2, . . . , xc−t} Ã yt. Since D is regular,
t < c

2
+ r−c

2(r−1)
, and (V ′

1∪V ′
2∪. . .∪V ′

c−t) → yt, we finally obtain the contradiction

r(c − 1)

2
= d−

D(yt) ≥ c − t + (c − t)(r − 2) = c(r − 1) − t(r − 1)

> c(r − 1) −
( c

2
+

r − c

2(r − 1)

)

(r − 1)

= c(r − 1) −
c(r − 1)

2
−

r − c

2
=

r(c − 1)

2
.

¤

6.3 α(D) − s vertices of each partite set

In this section, we will look for paths in regular c-partite tournaments with
exactly α(D) − s vertices from each partite set. For the case that s = 1,
Theorem 4.35 yields a solution, if c ≥ 5 or c = 4 and r ≥ 4 or c = 3 or if c = 2
and D is not isomorphic to the bipartite digraph B(t, t, t, t) of Definition 4.21.
If c = 4, then the fact that D is regular implies that r is even. According to
Theorem 4.24, it follows that a regular 4-partite tournament always contains
a path with exactly 1 = 2 − 1 vertices of each partite set. Since the bipartite
tournament B(t − 1, t − 1, t, t) also contains a Hamiltonian path, we arrive at
the following corollary.

Corollary 6.14 (Volkmann, Winzen [45]) Every regular c-partite tourna-
ment with at least r ≥ 2 vertices in each partite set contains a path with exactly
r − 1 vertices of each partite set.

So, from now on, we may suppose that s ≥ 2.
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Theorem 6.15 (Volkmann, Winzen [45]) Let V1, V2, . . . , Vc be the partite
sets of a regular c-partite tournament D with c ≥ 4 and |V1| = |V2| = . . . =
|Vc| = r ≥ 2. Furthermore, let X be an arbitrary subset of V (D) consisting of
m partite sets with exactly s vertices and c − m partite sets with exactly s − 1
vertices for 0 < m ≤ c and 1 ≤ s ≤ r − 1. If

r ≥















3s +
⌈

4s−5
c−3

⌉

and m = c

3s +
⌈

4s−4
c−3

⌉

and m = c − 1

3s − 2 +
⌈

4s+2m−8
c−3

⌉

and m ≤ c − 2

,

then D contains a path P such that V (P ) = V (D) − X.

Proof. Let D′ = D − X with the partite sets V ′
1 , V

′
2 , . . . , V

′
c such that

|V ′
1 | ≤ |V ′

2 | ≤ . . . ≤ |V ′
c | ≤ |V ′

1 | + 1. Since D is regular, it follows that

ig(D
′) ≤

{

s(c − 1), if c − 1 ≤ m ≤ c
(s − 1)(c − 1) + m, if m ≤ c − 2

.

If D′ contains a Hamiltonian path P , then this path P has the desired prop-
erties. Using Theorem 6.7 with p = 0, if m = c, and p = 1, if m ≤ c − 1, we
see that it is sufficient to show that

3 +
2ig(D

′) − 5 + p

r − s
≤















3 + 2s(c−1)−5
r−s

, if m = c

3 + 2s(c−1)−4
r−s

, if m = c − 1

3 + 2(s−1)(c−1)+2m−4
r−s

, if m ≤ c − 2















≤ c.

If we distinguish the cases m = c, m = c−1 and m ≤ c−2, then, noticing that
r ∈ N, equivalent transformations yield the bounds for r as in the assumptions
of this theorem. This completes the proof of the theorem. ¤

This result immediately yields the following two corollaries.

Corollary 6.16 (Volkmann, Winzen [45]) Every regular c-partite tourna-
ment with c ≥ 4 and at least r ≥ 7s−5 in each partite set contains a path with
exactly r − s vertices from each partite set for a given integer s ∈ N.

Corollary 6.17 (Volkmann, Winzen [45]) Almost all regular multipartite
tournaments D with at least four partite sets contain a path with exactly r − s
vertices from each partite set for a given integer s ∈ N, if r is the cardinality
of each partite set of D.

Theorem 6.18 (Volkmann, Winzen [45]) Let V1, V2, . . . , Vc be the partite
sets of a regular c-partite tournament D with c ≥ 5 such that |V1| = |V2| =
. . . = |Vc| = r. If r ≥ 5s− 3 for an integer s ≥ 2, then D contains a path with
exactly r − s vertices of each partite set.
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Proof. Let X be an arbitrary subset of V (D) with exactly s vertices of
each partite set (2 ≤ s ≤ r − 1). Theorem 6.15 with m = c guarantees
the existence of a Hamiltonian path P of D′ := D − X that has the desired
properties, if r ≥ 3s +

⌈

4s−5
c−3

⌉

. Since c ≥ 5, the proof is complete for the case
that r ≥ 5s − 2.

Hence, let r = 5s − 3 and let D′ be defined as above. If D′ contains a
Hamiltonian path, then we arrive at the desired result. Hence, assume that
D′ does not contain any Hamiltonian path. If

c ≥ 3 +
2s(c − 1) − 5

4s − 3
⇔ c ≥ 5 +

⌈

1

2s − 3

⌉

= 6,

then Theorem 6.7 leads to a contradiction. Hence, let c = 5 and thus d+
D(x) =

d−
D(x) = 2r = 10s− 6 for all x ∈ V (D). If ig(D

′) ≤ s(c− 1)− 1, then because
of

5 ≥ 5 −
1

4s − 3
= 3 +

2s(c − 1) − 7

4s − 3
≥ 3 +

2ig(D
′) − 5

r − s

Theorem 6.7 yields a contradiction. Thus we may suppose that ig(D
′) =

s(c − 1) = 4s. Let V ′
1 , V

′
2 , . . . , V

′
c be the partite sets of D′ and let us define

Y, Z,R1, R2, Q,Q1, Q2, t, V
′
i , Y1 and Y2 as in Theorem 6.4.

Firstly, we suppose that |Q1| = 0. If |Y2| > 0, then Theorem 6.4 with k = 1
implies that

ig(D
′) ≥

|V (D′)| − |V ′
c−1| − 2|V ′

c | + 6 + |Y2|

2
=

(c − 3)(r − s) + 6 + |Y2|

2

= r − s + 3 +
|Y2|

2
= 4s +

|Y2|

2
> 4s,

a contradiction. Hence let |Y2| = 0 and ig(D
′) =

|V (D′)|−|V ′
c−1|−2|V ′

c |+6

2
= 4s.

Applying Corollary 6.6 we see that |Y | = |V ′
i | = r − s = 4s − 3 (ii)) and

|Z| = 4s−5 (i)). This yields that |Q2| = |V (D′)|− |Y |− |Z| = 5(r−s)− (4s−
3)−(4s−5) = 12s−7. Since Y → Q2 (iii)), we arrive at d+(y) ≥ 12s−7 for all
y ∈ Y 6= ∅, because of s ≥ 2 a contradiction to d+(y) = 10s − 6. Analogously,
we see that the case that |Q2| = 0 is impossible.

Secondly, we assume that Q1 6= ∅ and Q2 6= ∅. If t > 0, then Theorem 6.4
with k = 1 implies that

ig(D
′) ≥

|V (D′)| − |V ′
c−1| − 2|V ′

c | + 6 + t

2
> 4s,

a contradiction. Hence let t = 0 and ig(D
′) =

|V (D′)|−|V ′
c−1|−2|V ′

c |+6

2
= 4s.

Applying Corollary 6.6 we see that |Y | = |V ′
c | = 4s− 3 = |Z|+2 (c)) and thus

|Y1| = |Y2| = 0. Now Corollary 6.6 f) implies that |Q1| = |Q2|, and we arrive
at the contradiction

2|Q1| = |Q1| + |Q2| = |Q| = |V (D′)| − |Y | − |Z| = 12s − 7.

This completes the proof of this theorem. ¤

The results above lead us to the following conjecture.
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Conjecture 6.19 (Volkmann, Winzen [45]) Let V1, V2, . . . , Vc be the par-
tite sets of a regular c-partite tournament D with c ≥ 2 such that |V1| = |V2| =
. . . = |Vc| = r ≥ 2. Then D contains a path with exactly m vertices of each
partite set for every m ∈ {1, 2, . . . , r}.

Notice that, according to the Theorems 4.4, 4.22, 4.24, 6.11 and Corollary
6.14, the conjecture holds for c = 2 or m ∈ {1, 2, r − 1, r}.



Chapter 7

The existence of a Hamiltonian
path

Hamiltonian cycles in multipartite tournaments are well studied (see e.g. [3, 4,
12, 18, 48, 51]). A good example for this is Yeo’s [51] result that every regular
multipartite tournament is Hamiltonian (Theorem 4.4).

On the other hand, it is not paid much attention on the existence of Hamil-
tonian paths in such digraphs. Apart from Theorem 6.2 of Gutin [14], there
are not many results concerning this theme.

The aim of this chapter is to solve the following problem.

Problem 7.1 (Volkmann, Winzen [40]) For all i find the smallest value,
g(i), with the property that all c-partite tournaments with ig ≤ i and c ≥ g(i)
have a Hamiltonian path.

This means that we give a solution of Problem 6.1 with sj = α(D) for all
1 ≤ j ≤ c, if D is a c-partite tournament of a given global irregularity i.

In the first section of this chapter, we will examine the case that i ≤ 2. If D
is regular, then Theorem 4.4 clearly guarantees the existence of a Hamiltonian
path, which is already shown by Zhang [52] in 1989. Using a sufficient condition
for multipartite tournaments with an arbitrary large irregularity number to
contain a Hamiltonian path, we will show that every almost regular c-partite
tournament D contains a Hamiltonian path with the exception that c = 2
and one partite set consists of two vertices more than the other partite set.
Furthermore, we will precisely examine the case that ig(D) = 2. In this case
D contains a Hamiltonian path, if c ≥ 5. If c = 4, then there is only a
finite family of graphs that do not contain any Hamiltonian path. Finally,
we will show that almost all c-partite tournaments with c ≥ 4 and ig ≤ i for
i ≥ 2 contain a Hamiltonian path. Since there are infinitely many 2-partite
and 3-partite tournaments with given irregularity ig(D) ≥ 2 that have no
Hamiltonian path at all, the bound c ≥ 4 is best possible.

In the last section, we will solve Problem 7.1 completely by proving that
g(i) = 4i − 4, if i ≥ 3.

129
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7.1 The case ig(D) ≤ 2

First, we want to treat the case of an almost regular c-partite tournament D.
For the case c = 2 we can use the following theorem to examine the existence
of a Hamiltonian path.

Theorem 7.2 (Volkmann [33]) If D is an almost regular bipartite tourna-
ment with the partite sets X,Y such that 1 ≤ |X| ≤ |Y |, then every arc of D
is contained in a Hamiltonian path if and only if |Y | ≤ |X| + 1 and D is not
isomorphic to T3,3, where T3,3 is the bipartite tournament presented in Figure
7.1.

? ?

6µ

¼

I µI

j

Figure 7.1: The almost regular bipartite tournament T3,3

Using this result together with Corollary 6.8 we arrive at the following
theorem.

Theorem 7.3 (Volkmann, Winzen [40]) Let D be an almost regular c-
partite tournament with the partite sets V1, V2, . . . , Vc such that |V1| ≤ |V2| ≤
. . . ≤ |Vc|. Then D contains a Hamiltonian path if and only if c ≥ 3 or c = 2
and |V2| ≤ |V1| + 1.

Proof. Firstly, let c = 2. Suppose that |V2| = |V1| + 2. Then it is obvious
that D does not contain any Hamiltonian path, because the vertices of this path
would alternately be part of the partite sets V1 and V2. Hence let |V2| ≤ |V1|+1.
In this case Theorem 7.2 shows that D contains a Hamiltonian path, since T3,3

is Hamiltonian.
Secondly, let c ≥ 3 ≥ max{2, 3 − 1

r
} for all r ∈ N. In this case, Corollary

6.8 yields the desired result. ¤

The case that ig(D) = 2 is more complicated as the following considerations
demonstrate.

Theorem 7.4 (Volkmann, Winzen [40]) Let V1, V2, . . . , Vc be the partite
sets of a c-partite tournament D such that 1 ≤ r = |V1| ≤ |V2| ≤ . . . ≤ |Vc|. If
ig(D) = 2, c ≥ 4 and D doesn’t have one of the partition-sequences 1, 1, 2, 4;
1, 2, 3, 5; 1, 1, 3, 4 and 2, 2, 4, 6, then D contains a Hamiltonian path.

Proof. Since max{ 8−5
r

+3 | r ∈ N} = 6 > 3, Corollary 6.8 yields the desired
result, if c ≥ 6.

Hence, let c = 4 or c = 5 and assume that D does not contain any Hamilto-
nian path. Let the sets Y, Z,R1, R2, Q,Q1, Q2, Y1, Y2 be defined as in the proof
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of Theorem 6.4. Since the case that Q2 = ∅ follows analogously as the case
that Q1 = ∅, in the following we will always distinguish the two cases that
Q1 = ∅ or Q1, Q2 6= ∅.

Case 1. Let c = 5. If r ≥ 2, then because of c > max{ 8−5
r

+ 3 | r ≥
2} = 9

2
> 3 and Corollary 6.8 D contains a Hamiltonian path and the proof

is finished. If |V5| ≤ 4, then |V1|+|V2|+|V3|−|V5|+5
2

≥ 2 = ig(D), a contradiction
to Corollary 6.5. If |V5| = 5 and |V1| + |V2| + |V3| ≥ 4, then we analogously
arrive at a contradiction. Altogether, we see that there remain to consider the
following five partition-sequences.

Subcase 1.1. Let (ni) = 1, 1, 1, 1, 5. In this case, we see that d+(x) = d−(x) = 4,
if x ∈ V1∪V2∪V3∪V4 and d+(x) = d−(x) = 2, if x ∈ V5, which means il(D) = 0.

Since |V (D)|−|V4|−2|V5|+6
2

= 2 > il(D), it remains to consider the case that Q1 = ∅
in Theorem 6.4. If Y = V5, then it follows that |Z| ≤ 3 and thus |Q2| ≥ 1.
This yields d−(x) ≥ 5 for all x ∈ Q2, a contradiction to d−(x) ≤ 4 for all
x ∈ V (D). If |Y | = 4, then it follows that |Z| ≤ 2 and thus |Q2| ≥ 2. This
implies that there is an arc pq ∈ E(D[Q2]). Since d−(q) ≥ 5, we arrive at a
contradiction. If |Y | ≤ |V5|−2, then |V (D)|−3|V5|+8 = 2 > il(D) contradicts
Theorem 6.4 with t = 2.

Subcase 1.2. Let (ni) = 1, 1, 1, 2, 5. Since ig(D) = 2, this is impossible.

Subcase 1.3. Let (ni) = 1, 1, 1, 3, 5. This yields d+(x) = d−(x) = 5, if x ∈
V1 ∪ V2 ∪ V3, d+(x) = d−(x) = 4 or {d+(x), d−(x)} = {3, 5}, if x ∈ V4 and
d+(x) = d−(x) = 3, if x ∈ V5.

Firstly, we assume that Q1 = ∅. If Y = V5, then we conclude that |Z| ≤ 3
and thus |Q2| ≥ 3. Since d+(x) = d−(x) = 3 for all x ∈ V5, it follows that
|Z| = |Q2| = 3 and Z → Y . It is obvious that there are either in Q2 or in
Z two vertices of different partite sets. Hence, there is an arc p → q that is
either in E(D[Q2]) or in E(D[Z]). If pq ∈ E(D[Q2]), then d−(q) ≥ 6, and if
pq ∈ E(D[Z]), then d+(p) ≥ 6, in both cases a contradiction. If |Y | = 4, then
we see that |Z| ≤ 2 and thus |Q2| ≥ 4, a contradiction to d+(x) = 3 for all
x ∈ V5. Hence, let |Y | ≤ |V5| − 2. But now, |V (D)| − 3|V5| + 8 = 4 > il(D)
contradicts Theorem 6.4.

Consequently, it remains to consider the case that Q1 6= ∅ and Q2 6= ∅. Note
that |V (D)|−|V4|−2|V5|+6

2
= 2 = ig(D). According to Theorem 6.4 and Corollary

6.6 we have t = 0 and |Y | = |Z|+2. This implies Y = V5 and |Z| = |Y |−2 = 3.
Hence, we conclude that |Q| = 3 and, without loss of generality, let |Q1| = 1
and |Q2| = 2. If there is an arc leading from Q1 to Q2 and q1 ∈ Q1, then it
follows that d+(q1) ≥ |Y | + 1 = 6, a contradiction. Since Q1 Ã Q2, we obtain
Q = V4 and thus Z = V1 ∪ V2 ∪ V3. Let D′ = D[V1 ∪ V2 ∪ V3]. Because of
Q2 → Z → Q1, we have on the one hand that

15 =
∑

x∈V (D′)

d+(x) = d(V (D′), Q1) +
∑

x∈V (D′)

d+
D′(x) + d(V (D′), Y )

= 3 + 3 + d(V (D′), Y ),



132 CHAPTER 7. THE EXISTENCE OF A HAMILTONIAN PATH

which means d(V (D′), Y ) = 9. Since Q1 → Y → Q2, we observe on the other
hand that

15 =
∑

y∈Y

d−(y) = d(Q1, Y ) + d(V (D′), Y ) = 5 + d(V (D′), Y ),

which means d(V (D′), Y ) = 10, a contradiction.
Subcase 1.4. Let (ni) = 1, 1, 1, 4, 5. Since ig(D) = 2, this is impossible.
Subcase 1.5. Let (ni) = 1, 1, 1, 5, 5. This yields that d+(x) = d−(x) = 6, if
x ∈ V1∪V2∪V3 and d+(x) = d−(x) = 4, if x ∈ V4∪V5, which means il(D) = 0.

Since |V (D)| − 3|V5| + 3 = 1 > il(D) and |V (D)|−|V4|−2|V5|+5
2

= 3
2

> il(D), this
contradicts Theorem 6.3.

Case 2. Let c = 4. If r ≥ 3, then 4 ≥ max{2, 3
r

+ 3} and Corollary
6.8 yields that D contains a Hamiltonian path, a contradiction. If r = 2 and
|V4| ≤ 5 or r = 2, |V4| = 6 and |V1| + |V2| ≥ 5, then |V (D)|−|V3|−2|V4|+5

2
≥ 2 =

ig(D) leads to a contradiction to Corollary 6.5. If r = 1 and |V4| ≤ 3 or
r = 1, |V4| = 4 and |V1| + |V2| ≥ 3 or r = 1, |V4| = 5 and |V1| + |V2| ≥ 4, then
|V1|+|V2|−|V4|+5

2
≥ 2 = ig(D), a contradiction to Corollary 6.5.

Summarizing our results, we see that, according to the assertion of this
theorem, there remain to treat 14 partition-sequences.
Subcase 2.1. Because of ig(D) = 2, the partition-sequences 1, 1, 1, 5; 1, 1, 3, 5;
1, 1, 5, 5; 1, 2, 2, 5; 1, 2, 4, 5; 2, 2, 3, 6 and 2, 2, 5, 6 are impossible.
Subcase 2.2. Let (ni) = 1, 1, 2, 5. In this case, we obtain that d+(x) = d−(x) =
4, if x ∈ V1 ∪ V2, {d

+(x), d−(x)} = {3, 4}, if x ∈ V3, and d+(x) = d−(x) = 2, if

x ∈ V5, which means il(D) = 1. Since |V1|+|V2|−|V4|+6
2

= 3
2

> il(D), it remains
to consider the case that Q1 = ∅ in Theorem 6.4. If Y = V4, then we conclude
that |Z| ≤ 3 and thus |Q2| ≥ 1, a contradiction to d−(x) ≤ 4 for all x ∈ V (D).
If |Y | = 4, then it follows that |Z| ≤ 2 and |Q2| ≥ 2. This implies that there
is an arc p → q that is either in E(D[Q2]) or in E(D[Z]). Since d−(x) = 2
for all x ∈ Y , we conclude that |Z| = 2 and Z → Y . If pq ∈ E(D[Q2]), then
d−(q) ≥ 5 and if pq ∈ E(D[Z]), then d+(p) ≥ 5, in both cases a contradiction.
Hence, let |Y | ≤ 3 = |V4| − 2. Then because of |V (D)| − 3|V4|+ 8 = 2 > il(D)
we arrive at a contradiction to Theorem 6.4.
Subcase 2.3. Let (ni) = 1, 1, 4, 5. This yields that d+(x) = d−(x) = 5, if
x ∈ V1 ∪ V2, {d

+(x), d−(x)} = {3, 4}, if x ∈ V3, and d+(x) = d−(x) = 3, if

x ∈ V5, which means il(D) = 1. Since |V1|+|V2|−|V4|+6
2

= 3
2

> il(D), it remains to
consider the case that Q1 = ∅ in Theorem 6.4. If Y = V4, then it follows that
|Z| ≤ 3 and thus |Q2| ≥ 3. This implies that there is a vertex q2 ∈ Q2 ∩ V3,
since Y → Q2 a contradiction to d−(x) ≤ 4 for all x ∈ V3. Consequently, let
|Y | ≤ 4. In this case, the fact that |V (D)| − 3|V4|+ 6 = 2 > il(D) contradicts
Theorem 6.4.
Subcase 2.4. Let (ni) = 1, 2, 5, 5. This yields that d+(x) = d−(x) = 6, if x ∈ V1,
{d+(x), d−(x)} = {5, 6}, if x ∈ V2, and d+(x) = d−(x) = 4, if x ∈ V3∪V4, which

means il(D) = 1. Since |V1|+|V2|−|V4|+5
2

= 3
2

> il(D) and |V (D)| − 3|V4| + 3 =
1 = il(D), we have a contradiction to Theorem 6.3.
Subcase 2.5. Let (ni) = 1, 1, 1, 4. In this case, we observe that d+(x) = d−(x) =
3, if x ∈ V1 ∪ V2 ∪ V3, and {d+(x), d−(x)} = {1, 2}, if x ∈ V4, which means
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il(D) = 1. Because of |V1|+|V2|−|V4|+6
2

= 2 > il(D), it remains to consider the
case that Q1 = ∅ in Theorem 6.4. If Y = V4, then we conclude that |Z| ≤ 2
and thus |Q2| ≥ 1, a contradiction to d−(x) ≤ 3 for all x ∈ V (D). If |Y | = 3,
then |Z| ≤ 1 and |Q2| ≥ 2. Hence, there exists an arc p → q with p, q ∈ Q2.
Since d−(q) ≥ 4, we arrive at a contradiction. Consequently, let |Y | ≤ 2. In
this case, |V (D)| − 3|V4| + 8 = 3 > il(D) contradicts Theorem 6.4.
Subcase 2.6. Let (ni) = 1, 1, 4, 4. This yields {d+(x), d−(x)} = {4, 5}, if
x ∈ V1 ∪ V2 and d+(x) = d−(x) = 3, if x ∈ V3 ∪ V4, which means il(D) = 1.

Since |V1|+|V2|−|V4|+5
2

= 3
2

> il(D) and |V (D)| − 3|V4|+ 3 = 1 = il(D), we arrive
at a contradiction to Theorem 6.3.
Subcase 2.7. Let (ni) = 2, 2, 2, 6. In this case, we observe that d+(x) =
d−(x) = 5, if x ∈ V1 ∪ V2 ∪ V3, and d+(x) = d−(x) = 3, if x ∈ V4, which means

il(D) = 0. Because of |V1|+|V2|−|V4|+6
2

= 2 > il(D), it remains to consider the
case that Q1 = ∅ in Theorem 6.4. If Y = V4, then we conclude that |Z| ≤ 4
and thus |Q2| ≥ 2. Since Y → Q2, we have a contradiction to d−(x) ≤ 5 for
all x ∈ V (D). If |Y | = 5, then it follows |Z| ≤ 3 and |Q2| ≥ 3. This yields the
existence of an arc p → q with p, q ∈ Q2. Hence, d−(q) ≥ 6, a contradiction.
Consequently, let |Y | ≤ 4. But now |V (D)|−3|V4|+8 = 2 > il(D) contradicts
Theorem 6.4.
Subcase 2.8. Let (ni) = 2, 2, 6, 6. This implies that d+(x) = d−(x) = 7 for all
x ∈ V1 ∪V2 and d+(x) = d−(x) = 5 for all x ∈ V3 ∪V4, which means il(D) = 0.

Since |V1|+|V2|−|V4|+5
2

= 3
2

> il(D) and |V (D)| − 3|V4| + 3 = 1 > il(D), this is a
contradiction to Theorem 6.3. ¤

For the partition-sequences 1, 1, 2, 4; 2, 2, 4, 6; 1, 2, 3, 5 and 1, 1, 3, 4 there
are multipartite tournaments that do not have any Hamiltonian path as the
following four examples demonstrate.

Example 7.5 (Volkmann, Winzen [40]) Let V1 = {u}, V2 = {v}, V3 =
{x1, x2} and V4 = {y1, y2, y3, y4} be the partite sets of a 4-partite tournament
D such that (V1 ∪ V2) → x1 → V4 → x2 → (V1 ∪ V2) and u → v → y4 → u →
y1 → v → y3 → u → y2 → v (see Figure 7.2). Then ig(D) = 2 and D has the
partition-sequence 1, 1, 2, 4 but no Hamiltonian path.
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Figure 7.2: A 4-partite tournament D with ig(D) = 2 and the partition-
sequence 1, 1, 2, 4 that does not contain a Hamiltonian path

Example 7.6 (Volkmann, Winzen [40]) Let D be a multipartite tourna-
ment with the partite sets V1 = {u1, u2}, V2 = {v1, v2}, V3 = {x1, x2, x3, x4}
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and V4 = {y1, y2, y3, y4, y5, y6}. If V4 → {x3, x4} → (V1 ∪ V2) → {x1, x2} →
V4, u1 → v1 → u2 → v2 → u1 and {y1, y2, y3} → {u2, v2} → {y4, y5, y6} →
{u1, v1} → {y1, y2, y3} (see Figure 7.3), then D is a 4-partite tournament with
ig(D) = 2 and the partition-sequence 2, 2, 4, 6 that does not contain any Hamil-
tonian path.
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Figure 7.3: A 4-partite tournament D with ig(D) = 2 and the partition-
sequence 2, 2, 4, 6 that does not contain a Hamiltonian path

Example 7.7 (Volkmann, Winzen [40]) Let D be a 4-partite tournament
with the partite sets V1 = {u}, V2 = {v1, v2}, V3 = {x1, x2, x3} and V4 =
{y1, y2, y3, y4, y5} such that V4 → {x1, x2} → (V1 ∪ V2) → x3 → V4, V2 →
V1, {v2, u} → {y1, y2} → v1, {v1, u} → {y3, y4} → v2 and V2 → y5 → V1

(see Figure 7.4). Then D is a 4-partite tournament with ig(D) = 2 and the
partition-sequence 1, 2, 3, 5 that does not contain a Hamiltonian path.
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Figure 7.4: A 4-partite tournament D with ig(D) = 2 and the
partition-sequence 1, 2, 3, 5 that does not contain a
Hamiltonian path

Example 7.8 (Volkmann, Winzen [40]) Let V1 = {u}, V2 = {v}, V3 =
{x1, x2, x3} and V4 = {y1, y2, y3, y4} be the partite sets of a 4-partite tournament
D such that V4 → {x1, x2} → (V1 ∪ V2) → x3 → V4, u → v → {y3, y4} →
u, u → {y1, y2} and y1 → v → y2 (see Figure 7.5). Then D is a 4-partite
tournament with ig(D) = 2 and the partition-sequence 1, 1, 3, 4 that does not
contain any Hamiltonian path.
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Figure 7.5: A 4-partite tournament D with ig(D) = 2 and the
partition-sequence 1, 1, 3, 4 that does not contain a
Hamiltonian path

In the case that c = 2 or c = 3 and ig(D) ≥ 2, there are infinitely many
digraphs D that do not contain any Hamiltonian path as we can see in the
following example.

Example 7.9 (Volkmann, Winzen [40]) Let D be a bipartite tournament
with ig(D) ≥ 2. If V1, V2 are the partite sets of D such that |V1| + 2 ≤ |V2| ≤
|V1| + 2ig(D), then clearly, D does not contain a Hamiltonian path.

Now, let D be a 3-partite tournament with the partite sets V1, V2, V3. If
|V1| = |V2| = r and |V3| = r + ig(D) with ig(D) ≥ 2 such that V1 → V2 →
V3 → V1, then D does not contain a Hamiltonian path.

All the presented examples show that Theorem 7.4 is best possible. Com-
bining Corollary 6.8 with Example 7.9, we observe the following.

Corollary 7.10 (Volkmann, Winzen [40]) Let i ≥ 2 be an arbitrary inte-
ger. Then all, except a finite number, of c-partite tournaments with ig ≤ i and
c ≥ 4 have a Hamiltonian path. Furthermore the bound c ≥ 4 is best possible.

Proof. If r ≥ 4i − 5, then Corollary 6.8 yields that a c-partite tournament
D with c ≥ 4 and at least r vertices in each partite set contains a Hamiltonian
path. Because of Lemma 1.10 there are only finitely many c-partite tourna-
ments with ig ≤ i and at most 4i−6 vertices in the smallest partite set. Thus,
the first part of this corollary is proved.

Example 7.9 demonstrates that there are infinitely many 3-partite tourna-
ments with ig ≥ 2 that do not contain any Hamiltonian path and the proof of
this corollary is complete. ¤

7.2 The case ig(D) ≥ 3

Let g(i) be defined as in Problem 7.1. According to Theorem 4.4 we have
g(0) = 2. Moreover, in the previous section we have seen that g(1) = 3
(Theorem 7.3) and g(2) = 5 (Theorem 7.4). In this section, we will solve
Problem 7.1 completely by proving that g(i) = 4i − 4, if i ≥ 3.

The following two families of examples show that g(i) ≥ 4i − 4, if i ≥ 3.
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Example 7.11 (Stella, Volkmann, Winzen [22]) If i ≥ 3 is an integer
and c = 4i − 5, then we define the c-partite tournament Di with the partite
sets Vj = {vj} for 1 ≤ j ≤ 4i − 6 and V4i−5 = {y1, y2, . . . , y2i} as follows.

The partite sets V1, V2, . . . , V2i−3 induce an (i − 2)-regular tournament A
and the partite sets V2i−2, V2i−1, . . . , V4i−6 induce an (i−2)-regular tournament
B. In addition, let A → B → (V4i−5 − {y2i}) → A → y2i → B (see Figure 7.6
for D3). It is straightforward to see that Di is a (4i − 5)-partite tournament
with ig(Di) = i that does not contain any Hamiltonian path.

-
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-
]

À

? ?

*}
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Figure 7.6: The 7-partite tournament D3 without
any Hamiltonian path

Example 7.12 (Stella, Volkmann, Winzen [22]) If i ≥ 3 is an integer
and c = 4i−5, then we define the c-partite tournament Gi with the partite sets
Vj = {vj} for 1 ≤ j ≤ 4i − 6 and V4i−5 = {y1, y2, . . . , y2i+1} as follows.

The partite sets V1, V2, . . . , V2i−3 induce an (i−2)-regular tournament A and
the partite sets V2i−2, V2i−1, . . . , V4i−6 induce an (i − 2)-regular tournament B.
In addition, let A → B → (V4i−5 −{y2i, y2i+1}) → A → {y2i, y2i+1} → B. It is
straightforward to see that Gi is a (4i − 5)-partite tournament with ig(Gi) = i
that does not contain any Hamiltonian path.

Note that for all multipartite tournaments Gi with i ≥ 3 it follows that
il(Gi) = 0. This demonstrates that the existence of a Hamiltonian path does
not depend on the local irregularity. There are local regular c-partite tourna-
ments with c arbitrary large that do not contain any Hamiltonian path.

If ig(D) ≥ 3, then Corollary 6.8 is not best possible as we can see in the
following theorem.

Theorem 7.13 (Stella, Volkmann, Winzen [22]) Let V1, V2, . . . , Vc be the
partite sets of a c-partite tournament D with ig(D) ≥ 3 such that 1 ≤ r =

|V1| ≤ |V2| ≤ . . . ≤ |Vc|. If c ≥ 4ig(D)−6

r
+ 3, then D contains a Hamiltonian

path.

Proof. Suppose that D does not have a Hamiltonian path, which implies
pc(D) > 1. According to Corollary 6.8, this leads to c = 4ig(D)−6

r
+3. Regarding



7.2. THE CASE IG(D) ≥ 3 137

Theorem 6.7, we observe that p = 2ig(D) and D has the partition-sequence
r, r, . . . , r, |Vc−1|, r + 2ig(D). To get no contradiction, it follows that d+(x) =

d−(x) = (c−2)r+|Vc−1|
2

for all x ∈ Vc and d+(y) = d−(y) = (c−2)r+|Vc−1|
2

+ ig(D)
for all y ∈ V1 ∪ V2 ∪ . . . ∪ Vc−2. In other words,

(

|d+(x) − d−(x)| > 0 for a vertex x ∈ V (D)
)

⇒ x ∈ Vc−1. (7.1)

Note that because of c = 4ig(D)−6

r
+ 3 it follows that ig(D) = (c−3)r−2ig(D)+6

2
=

|V (D)|−|Vc−1|−2|Vc|+6
2

.
Let the sets Y,R1, R2, Z,Q,Q1, Q2, Vi, Y1, Y2 and t be defined as in Theorem

6.4.
Case 1. Let Q1 = ∅, and thus Q = Q2. This yields that i)-viii) of Corollary

6.6 with |Y2| = 0 and k = 1 are valid. In particular we deduce from ii), iv)
and vii) that |Y | = |Vi| = |Vc| = r + 2ig(D) and d−(q2) = d+(q2) + 2 for all
q2 ∈ Q2 = Q. Now, (7.1) leads to Q ⊆ Vc−1, and thus V1 ∪V2 ∪ . . .∪Vc−2 ⊆ Z.
Using i), this yields

r + 2ig(D) = |Y | = |Z| + 2 ≥ (c − 2)r + 2

=

(

4ig(D) − 6

r
+ 1

)

r + 2 = 4ig(D) − 4 + r,
(7.2)

a contradiction to ig(D) ≥ 3.
Case 2. Assume that Q2 = ∅. By symmetry, we arrive at a contradiction

similarly to Case 1.
Case 3. Suppose that Q1 6= ∅ and Q2 6= ∅. Hence a)-j) of Corollary

6.6 with t = 0 and k = 1 hold. With c) we see that |Y | = |Vc| and thus
|Y1| = |Y2| = 0. Using g), it follows that d+(q1) = d−(q1) + ig(D) for all
q1 ∈ Q1, and d−(q2) = d+(q2) + ig(D) for all q2 ∈ Q2. According to (7.1), we
have Q ⊆ Vc−1 and thus V1 ∪ V2 ∪ . . . ∪ Vc−2 ⊆ Z. Hence, we arrive at the
contradiction (7.2). This completes the proof of this theorem. ¤

Since max
{

4ig−6

r
+ 3 | r ∈ N

}

= 4ig(D)−3, we conclude that g(i) ≤ 4i−3,

if i ≥ 3. In the next step, we even will show that g(i) ≤ 4i − 4, and thus
g(i) = 4i − 4, if i ≥ 3.

Theorem 7.14 (Stella, Volkmann, Winzen [22]) Let V1, V2, . . . , Vc be the
partite sets of a c-partite tournament such that 1 ≤ r = |V1| ≤ |V2| ≤ . . . ≤
|Vc|. If c = 4ig(D) − 4 and ig(D) ≥ 3, then D contains a Hamiltonian path.

Proof. If r ≥ 2, then Theorem 7.13 yields the desired result. Let r = 1,
c = 4ig(D) − 4 and suppose that D does not contain a Hamiltonian path,

which means that pc(D) > 1. If |Vc| ≤ 2ig(D) − 1, then |V (D)|−|Vc−1|−2|Vc|+5
2

≥
c+4−2ig(D)

2
= ig(D). Corollary 6.5 with k = 1 yields pc(D) ≤ 1, a contradiction.

If |Vc| = 2ig(D) and |V1| + |V2| + . . . + |Vc−2| ≥ c − 1, then, similarly as in
the proof of Theorem 6.7 with p = 2ig(D) − 1, we see that D contains a
Hamiltonian path, a contradiction. Analogously, if |Vc| = 2ig(D) + 1 and
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|V1| + |V2| + . . . + |Vc−2| ≥ c, then we arrive at a contradiction. The following
three cases remain to be considered.

Case 1. Assume that |Vc| = 2ig(D). As seen above this implies that D
has the partition-sequence 1, 1, . . . , 1, |Vc−1|, 2ig(D).

If |Vc−1| = 2p + 1 with p ∈ N0, then we conclude that d+(x) = d−(x) =
3ig(D) + p− 3, if x ∈ V1 ∪ V2 ∪ . . . ∪ Vc−2 and {d+(y), d−(y)} = {2ig(D) + p−
3, 2ig(D) + p − 2} for all y ∈ Vc.

If |Vc−1| = 2m with m ∈ N, then it follows that {d+(x), d−(x)} = {3ig(D)+
m − 4, 3ig(D) + m − 3} for all x ∈ V1 ∪ V2 ∪ . . . ∪ Vc−2 and d+(y) = d−(y) =
2ig(D) − 3 + m for all y ∈ Vc.

In both cases we deduce that

(

|d+(x) − d−(x)| > 1 for a vertex x ∈ V (D)
)

⇒ x ∈ Vc−1. (7.3)

Furthermore, we observe that ig(D) = 4ig(D)−6−2ig(D)+6

2
= |V (D)|−|Vc−1|−2|Vc|+6

2
.

Let Y,R1, R2, Z,Q,Q1, Q2, Vi, t, Y1 and Y2 be defined as in Theorem 6.4.
Subcase 1.1. Let Q1 = ∅, and thus Q = Q2. This yields that i)-viii) of

Corollary 6.6 with |Y2| = 0 and k = 1 are valid. If we consider ii), iv) and vii),
then we see that |Y | = |Vi| = |Vc| = 2ig(D) and d−(q2) = d+(q2) + 2 for all
q2 ∈ Q2 = Q. Now (7.3) leads to Q ⊆ Vc−1, and thus V1 ∪ V2 ∪ . . .∪ Vc−2 ⊆ Z.
Using i), this yields

2ig(D) = |Y | = |Z| + 2 ≥ (c − 2) + 2 = 4ig(D) − 4,

a contradiction to ig(D) ≥ 3.
Subcase 1.2. Assume that Q2 = ∅. By symmetry, we arrive at a contradic-

tion similar to Subcase 1.1.
Subcase 1.3. Suppose that Q1 6= ∅ and Q2 6= ∅. Hence a)-j) of Corollary

6.6 with t = 0 and k = 1 hold. With c), we see that |Y | = |Vc|, and thus
|Y1| = |Y2| = 0. Using g), it follows that d+(q1) = d−(q1) + ig(D) for all
q1 ∈ Q1 and d−(q2) = d+(q2) + ig(D) for all q2 ∈ Q2. According to (7.3), we
have Q ⊆ Vc−1 and thus V1 ∪ V2 ∪ . . .∪ Vc−2 ⊆ Z. Hence, as in Subcase 1.1 we
arrive at a contradiction.

Case 2. Let D have the partition-sequence 1, 1, . . . , 1, 2, |Vc−1|, 2ig(D)+1.
If |Vc−1| = 2m for an integer m ≥ 1, then there is a vertex x ∈ V1 such that
d+(x) ≥ 3ig(D) + m − 2 or d−(x) ≥ 3ig(D) + m − 2 and a vertex y ∈ Vc such
that d+(y) ≤ 2ig(D)+m−3 or d−(y) ≤ 2ig(D)+m−3, a contradiction to the
definition of ig(D). Hence, in the following we can assume that |Vc−1| = 2p+1
for an integer p ≥ 1. This implies that d+(x) = d−(x) = 3ig(D)− 2 + p for all
x ∈ V1 ∪ V2 ∪ . . . ∪ Vc−3, {d

+(y), d−(y)} = {3ig(D) + p− 3, 3ig(D) + p− 2} for
all y ∈ Vc−2 and d+(z) = d−(z) = 2ig(D) + p− 2 for all z ∈ Vc. In other words
this means that

(

|d+(x) − d−(x)| > 1 for a vertex x ∈ V (D)
)

⇒ x ∈ Vc−1. (7.4)

Note that according to the given partition-sequence it follows that ig(D) =
4ig(D)+1−(2ig(D)+1)

2
= |V (D)|−|Vc−1|−2|Vc|+6

2
. Let Y,R1, R2, Z,Q,Q1, Q2, Vi, Y1, Y2

and t be defined as in Theorem 6.4.
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Subcase 2.1. Let Q1 = ∅, and thus Q = Q2. This yields that i)-viii) of
Corollary 6.6 with |Y2| = 0 and k = 1 are valid. If we consider ii), iv) and
vii), we see that |Y | = |Vi| = |Vc| = 1 + 2ig(D) and d−(q2) = d+(q2) + 2 for all
q2 ∈ Q2 = Q. Now, (7.4) leads to Q ⊆ Vc−1, and thus V1 ∪V2 ∪ . . .∪Vc−2 ⊆ Z.
Using i) this yields

2ig(D) + 1 = |Y | = |Z| + 2 ≥ c + 1 = 4ig(D) − 3,

a contradiction to ig(D) ≥ 3.
Subcase 2.2. Assume that Q2 = ∅. By symmetry, we arrive at the same

contradiction as in Subcase 2.1.
Subcase 2.3. Suppose that Q1 6= ∅ and Q2 6= ∅. Hence a)-j) of Corollary

6.6 with t = 0 and k = 1 hold. With c) we see that |Y | = |Vc| and thus
|Y1| = |Y2| = 0. Using g), we see that d+(q1) = d−(q1) + ig(D) for all q1 ∈ Q1

and d−(q2) = d+(q2) + ig(D) for all q2 ∈ Q2. According to (7.4), we have
Q ⊆ Vc−1 and thus V1 ∪ V2 ∪ . . .∪ Vc−2 ⊆ Z. Analogously as in Subcase 2.1 we
obtain a contradiction.

Case 3. Let D have the partition-sequence 1, 1, . . . , 1, |Vc−1|, 2ig(D) + 1.
If |Vc−1| = 2m+1 for an integer m ≥ 0, then we deduce that there are vertices
x ∈ V1 and y ∈ Vc such that d+(x) ≥ 3ig(D)+m−2 or d−(x) ≥ 3ig(D)+m−2
and d+(y) ≤ 2ig(D)+m−3 or d−(y) ≤ 2ig(D)+m−3, a contradiction. Hence,
we may assume that |Vc−1| = 2p with p ∈ N, d+(x) = d−(x) = 3ig(D) − 3 + p
for all x ∈ V1 ∪ V2 ∪ . . . ∪ Vc−2 and d+(y) = d−(y) = 2ig(D) + p − 3 for all
y ∈ Vc. This leads to

(

|d+(x) − d−(x)| > 0 for a vertex x ∈ V (D)
)

⇒ x ∈ Vc−1. (7.5)

Note that according to the given partition-sequence it follows that ig(D) =
|V (D)|−|Vc−1|−2|Vc|+7

2
. Let the sets Y, Z,R1, R2, Q,Q1, Q2, Vi, Vj, Y1, Y2 and t be

defined as in Theorem 6.4.
Subcase 3.1. Let t ≥ 1.
Subcase 3.1.1. Suppose that Q1 = ∅.
First, let i 6= c, and thus j = c. Since |Y | ≥ |Z| + 2, we conclude that

i = c − 1. The fact that |Vc| is odd whereas |Vc−1| is even implies that |Vj| =
|Vc| = |Vc−1| + s = |Vi| + s for an integer s ≥ 1. As in Case 1 of the proof of
Theorem 6.4 with k = 1, we see that

ig(D) ≥
|V (D)| − |Vj| − 2|Vi| + 6

2
=

|V (D)| − |Vc−1| − 2|Vc| + s + 6

2
.

To present no contradiction it follows that s = 1, and thus |Vi| = |Vc−1| =
2ig(D). Furthermore, equality holds in the last inequality. This is possible,
only if |Y2| = 0 and ii) and iv) of Corollary 6.6 hold. Using ii), we see that
Y = Vc−1, and iv) means that d−(q2) = d+(q2) + 2 for all q2 ∈ Q2. According
to (7.5), this yields Q ⊆ Vc−1, a contradiction to Y = Vc−1.

Second, let Vi = Vc. If |Y2| ≥ 2, then Theorem 6.4 yields a contradiction. If
|Y2| = 1, then Theorem 6.4 and Corollary 6.6 iv) imply that d−(q2) = d+(q2)+1
for all q2 ∈ Q2, and thus Q ⊆ Vc−1 and V1 ∪ V2 ∪ . . .∪ Vc−2 ⊆ Z. This leads to
the contradiction

2ig(D) = |Y | ≥ |Z| + 2 ≥ c = 4ig(D) − 4.
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If |Y2| = 0, then we conclude that |Z| ≤ |Y | − 2 ≤ |Vi| − 3. If δ∗ and ∆∗ are
defined as in Case 1 of the proof of Theorem 6.4, then, as there, we observe
that

ig(D) ≥ ∆∗ − δ∗ ≥
|V (D)| − |Vj| + 2

2
− |Vi|+ 3 ≥

|V (D)| − |Vc−1| − 2|Vc| + 8

2
,

a contradiction.
Subcase 3.1.2. Let Q2 = ∅. If we reverse each arc of D, we arrive at a

contradiction by using Subcase 3.1.1.
Subcase 3.1.3. Assume that Q1 6= ∅ and Q2 6= ∅. To get no contradiction

it follows that t = 1 and a)-g) of Corollary 6.6 hold, and thus especially
d+(q1) = d−(q1) + ig(D) for all q1 ∈ Q1 and d−(q2) = d+(q2) + ig(D) for all
q2 ∈ Q2. As above, this yields a contradiction.

Subcase 3.2. Let t = 0 and thus |Y | = |Vc| and |Y1| = |Y2| = 0.
Subcase 3.2.1. Suppose that Q1 = ∅. If d−(q2) ≥ d+(q2)+2 for all q2 ∈ Q2,

then analogously as above we arrive at the contradiction

2ig(D) + 1 = |Y | ≥ |Z| + 2 ≥ c = 4ig(D) − 4.

Hence, observing Case 1 of the proof of Theorem 6.4, we conclude that there is
a vertex q ∈ Q∩Vc−1 such that d−(q) ≥ d+(q)+3. Let δ∗ and ∆∗ be defined as in

the proof of Theorem 6.4. Similarly as there, we deduce that ∆∗ ≥ |V (D)|−|Vj |+3

2

and thus ig(D) ≥ |V (D)|−|Vc−1|−2|Vc|+7
2

. To present no contradiction, it must be
the case that |Z| = |Y | − 2 = 2ig(D) − 1 and

|Z| = 2ig(D) − 1 = δ∗ = δ(G) = min{d+(x), d−(x) | x ∈ V (D)}

= 2ig(D) + p − 3,

and thus p = 2 and |Vc−1| = 4. It follows that D has the partition-sequence
1, 1, . . . , 1, 4, 2ig(D) + 1 and {d+(x), d−(x)} = {3ig(D) − 2, 3ig(D) − 3} or
{d+(x), d−(x)} = {3ig(D) − 1, 3ig(D) − 4} for all x ∈ Vc−1. Since |Y | =
2ig(D) + 1 = |Z| + 2, it follows that |Q2| = |V (D)| − |Y | − |Z| = 2ig(D) − 1.
The facts that Y → Q2 and d+(y) = 2ig(D) − 1 for all y ∈ Y = Vc yield that
Z → Y . If |Vc−1 ∩ Q2| ≤ 1, then D[Q2] is a tournament and there is a vertex
q2 ∈ Q2 such that d−

D[Q2](q2) ≥ ig(D) − 1. This leads to the contradiction

d−(q2) ≥ |Y | + d−
D[Q2](q2) ≥ 3ig(D).

Analogously, we arrive at a contradiction, if |Vc−1∩Z| ≤ 1. Now the remaining
case is that |Vc−1 ∩Q2| = |Vc−1 ∩ Z| = 2. As seen above, we have d−

D[Q2](q2) ≤

ig(D) − 2 for all q2 ∈ Q2, and thus we arrive at

|E(Q2)| =
∑

q2∈Q2

d−
D[Q2](q2) ≤ (2ig(D) − 1)(ig(D) − 2) = 2i2g(D) − 5ig(D) + 2.

On the other hand we observe that

|E(Q2)| =
(2ig(D) − 3)(2ig(D) − 2) + 2(2ig(D) − 3)

2
= 2i2g(D) − 3ig(D).
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This yields the contradiction ig(D) ≤ 1.
Subcase 3.2.2. Assume that Q2 = ∅. Caused by symmetry this leads to a

contradiction analogously as in Subcase 3.2.1.
Subcase 3.2.3. Finally, let Q1 6= ∅ and Q2 6= ∅. If ig(D) ≥ il(D) + 1, then

Theorem 6.4 yields that ig(D) ≥ |V (D)|−|Vc−1|−2|Vc|+8
2

, a contradiction. Hence
let ig(D) = il(D). This implies that there is a vertex x ∈ Vc−1 such that

{d+(x), d−(x)} = {7ig(D)−5

2
, 5ig(D)−5

2
} and thus

7ig(D) − 5

2
= 3ig(D) − 3 + p ⇒ |Vc−1| = 2p = ig(D) + 1.

Hence, we may assume that D has the partition-sequence 1, 1, . . . , 1, ig(D) +
1, 2ig(D) + 1 and ig(D) is odd. Observing the proof of Theorem 6.4, we rec-
ognize that the case |Y | > |Z| + 2 also yields a contradiction. Consequently
it remains to consider the case that |Z| = |Y | − 2 = 2ig(D) − 1. This implies
that

|Q| = |V (D)| − |Y | − |Z| = 3ig(D) − 4.

Since ig(D) is odd we may assume, without loss of generality, that |Q1| ≥

|Q2| + 1 and thus |Q1| ≥
3ig(D)−3

2
. If there is a vertex x ∈ Q2 − Vc−1, then we

arrive at the contradiction

d−(x) ≥ |Q1| + |Y | ≥ 3ig(D) − 1 +
ig(D) + 1

2
.

Hence, let Q2 ⊆ Vc−1 and |Q1| = 3ig(D)−3

2
+ l for an integer l ≥ 0, and thus

|Q2| = 3ig(D)−5

2
− l. Now we conclude for an arbitrary vertex x ∈ Q2 that

d−(x) ≥ |Y | + |Q1 − Vc−1| ≥ |Y | + |Q1| − |Vc−1| + |Q2| = 4ig(D) − 4.

Since 4ig(D)− 4 > 3ig(D)− 3 + ig(D)+1

2
= d+(y) + ig(D) with y ∈ Y arbitrary

if and only if ig(D) ≥ 4, it remains to treat the case that ig(D) = 3, D has
the partition-sequence 1, 1, 1, 1, 1, 1, 4, 7, |Y | = 7 = |Z| + 2 = |Q| + 2, d+(x) =
d−(x) = 8 for all x ∈ V1 ∪ V2 ∪ . . . ∪ V6 and d+(z) = d−(z) = 5 for all z ∈ V8.
Because of |Q| = 5, there is a vertex v ∈ Q∩(V1∪V2∪ . . .∪V6). Without loss of
generality, let v ∈ Q1. If |Q2| ≥ 2, then we see that d+(v) ≥ 9, a contradiction.
Hence, let |Q1| = 4 and |Q2| = 1. It follows that Q2 ∪ (Q1 − {v}) = V7,
(Q1 − {v}) → v, Q2 → Z → Q1 and D[Z] is a tournament. Since

40 =
∑

z∈Z

d+(z) = |Z||Q1| + d(Z, Y ) +
∑

z∈Z

d+
D[Z](z) = 30 + d(Z, Y ),

we deduce that d(Z, Y ) = 10. On the other hand, we observe that

35 =
∑

y∈Y

d−(y) = |Y ||Q1| + d(Z, Y ) = 28 + d(Z, Y ),

and thus d(Z, Y ) = 7, a contradiction.
This completes the proof of this theorem. ¤

Combining the Examples 7.11 and 7.12 together with the Theorems 7.13
and 7.14, we arrive at the following main result of this chapter.
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Corollary 7.15 (Stella, Volkmann, Winzen [22]) If D is a multipartite
tournament with c partite sets and

3 ≤ ig(D) ≤
c + 4

4
,

then D contains a Hamiltonian path. Moreover, for ig(D) ≥ 3 the upper bound
of ig(D) is optimal.



Chapter 8

Hamiltonian paths containing a
given arc

After the examination of the existence of Hamiltonian paths in close to regular
multipartite tournaments, in this chapter, we search for Hamiltonian paths
containing a given arc. If D is regular, then the following result holds.

Theorem 8.1 (Volkmann, Yeo [46]) Every arc of a regular c-partite tour-
nament D is contained in a Hamiltonian path of D.

Now, it is an interesting extension of Theorem 8.1 to solve the following
problem, which is similar to Problem 7.1.

Problem 8.2 (Volkmann, Winzen [41]) For all i find the smallest value,
h(i), with the property that each arc of all c-partite tournaments with ig ≤ i
and c ≥ h(i) is contained in a Hamiltonian path.

In Section 8.1, we will show that h(i) ≤ 4i+4 and that almost all c-partite
tournaments of a given irregularity i with c ≥ 4 have the property that each
arc is contained in a Hamiltonian path. In the Sections 8.2 and 8.3, we will
examine almost regular c-partite tournaments. In particular, we have shown
that h(1) = 5. For the cases that c = 2 we have Theorem 7.2 and if all partite
sets have the same size, then we can use the following theorem of Volkmann
[33].

Theorem 8.3 (Volkmann [33]) Let D be an almost regular c-partite tour-
nament with the partite sets V1, V2, . . . , Vc such that |V1| = |V2| = . . . = |Vc|.
Then each arc of D is contained in a Hamiltonian path if and only if D is not
isomorphic to T3,3 with T3,3 as in Figure 7.1.

In Section 8.2, we will prove that h(1) ≤ 5. In the case that c = 4 and
D does not have the partition-sequence 1, 1, 2, 3 we still can prove that each
arc is contained in a Hamiltonian path of D (which means that h(1) = 5),
but the improvement may not be worth the additional effort. In the case that
c = 3 there are infinite families of such digraphs with the property that not
every arc is contained in a Hamiltonian path of D. Nevertheless, in the last
section, we will present an interesting sufficient condition for an almost regular
3-partite tournament D with the property that a given arc is contained in a
Hamiltonian path of D.

143
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8.1 Hamiltonian paths starting with a given

arc

Recently, Volkmann and Yeo [46] found the following sufficient condition for a
c-partite tournament to contain a Hamiltonian path starting with a given arc.

Theorem 8.4 (Volkmann, Yeo [46]) Let D be a c-partite tournament with
the partite sets V1, V2, . . . , Vc such that |V1| ≤ |V2| ≤ . . . ≤ |Vc|, and let e be an
arc in D. If

|V (D)| ≥ 2ig(D) + 2|Vc| + |Vc−1| + 1,

then there exists a Hamiltonian path in D, starting with the arc e.

This leads to the following result.

Corollary 8.5 (Volkmann, Winzen [41]) Let V1, V2, . . . , Vc be the partite
sets of a c-partite tournament D such that r = |V1| ≤ |V2| ≤ . . . ≤ |Vc| and let
e be an arc of D. If

c ≥ 3 +
4ig(D) + 1

r
,

then there is a Hamiltonian path with the initial arc e.

Proof. According to Theorem 8.4, D has a Hamiltonian path starting with e,
if

|V1| + |V2| + . . . + |Vc−2| ≥ |Vc| + 2ig(D) + 1. (8.1)

Since Lemma 1.10 yields that r ≤ |Vi| ≤ r + 2ig(D) we arrive at (8.1), if

(c − 2)r − 2ig(D) − 1 − (r + 2ig(D)) ≥ 0

⇔ c ≥
4ig(D) + 3r + 1

r
= 3 +

4ig(D) + 1

r
,

which is the desired result. ¤

This immediately implies the following corollary.

Corollary 8.6 (Volkmann, Winzen [41]) Let V1, V2, . . . , Vc be the partite
sets of a c-partite tournament D such that r = |V1| ≤ |V2| ≤ . . . ≤ |Vc| and let

e be an arc of D. If c ≥ 4ig(D) + 4 or if c ≥ 3 + p and r ≥ 4ig(D)+1

p
for an

integer p ∈ N, then there exists a Hamiltonian path in D starting with the arc
e.

Since every Hamiltonian path starting with a given arc e obviously contains
the arc e, Corollary 8.6 yields that h(i) ≤ 4ig(D) + 4 with h(i) defined as in
Problem 8.2. Another consequence of Corollary 8.6 is the following interesting
result.

Corollary 8.7 (Volkmann, Winzen [41]) Almost all multipartite tourna-
ments D with at least four partite sets and a given constant irregularity ig(D)
have the property that every arc of D is the first arc of a Hamiltonian path of
D.



8.2. ALMOST REGULAR C-PARTITE TOURNAMENTS (C ≥ 4) 145

In the case c = 3 the assertion of Corollary 8.7 becomes false. As we will
see in the last section, there are infinitely many almost regular 3-partite tour-
naments D with the property that not every arc is contained in a Hamiltonian
path of D.

If we know more about the sizes of the partite sets, then, using Theorem
8.4, we arrive at the following corollary.

Corollary 8.8 (Volkmann, Winzen [41]) Let V1, V2, . . . , Vc be the partite
sets of a c-partite tournament D such that r = |V1| ≤ |V2| ≤ . . . ≤ |Vc|
and let e be an arbitrary arc of D. Furthermore, let p, q, b be integers with
2 ≤ p ≤ c − 2, 0 ≤ q ≤ 2ig(D) and 0 ≤ b ≤ 2ig(D) − q such that |Vp| ≥ q + r
and |Vc| ≤ r + 2ig(D) − b.

a) If c ≥ 3 + 4ig(D)+1−b+(p−2)q

r+q
, then there is a Hamiltonian path

in D with the initial arc e.

b) If c ≥ 3 + s and r ≥ 4ig(D)+1−b+(p−s−2)q

s
for an integer s ∈ N,

then there exists a Hamiltonian path, starting with the arc e.

Proof. a) Since |V1| ≤ |V2| ≤ . . . ≤ |Vc|, the conditions of this corollary yield

|V1| + |V2| + . . . + |Vc−2| − |Vc| − 2ig(D) − 1

≥ (p − 1)r + (c − 2 − (p − 1))(r + q) − (r + 2ig(D) − b) − 2ig(D) − 1

= −(p − 1)q + c(r + q) − 3r − 2q − 4ig(D) + b − 1.

According to Theorem 8.4, it is sufficient to show that the last expression is
≥ 0. This is fulfilled, if

c ≥
3r + 4ig(D) + 1 − b + 3q + (p − 2)q

r + q

= 3 +
4ig(D) + 1 − b + (p − 2)q

r + q
,

the desired result.
b) follows immediately from a). ¤

8.2 Almost regular c-partite tournaments (c ≥
4)

In this section we search for almost regular c-partite tournaments with c ≥ 4
that contain a Hamiltonian path through a given arc. To do this we need an
analysis of multipartite tournaments having a cycle-factor but no Hamiltonian
cycle. But firstly, we give a definition.

Definition 8.9 [C1 '> C2] Let D be a digraph, with two disjoint cycles C1

and C2. We shall write C1 '> C2 when the following is true. There is a
vertex x1 ∈ V (C1) such that x1 Ã V (C2), and there is no vertex y1 ∈ V (C1),
such that V (C2) Ã y1. Furthermore, there is a vertex x2 ∈ V (C2), such that
V (C1)Ã x2, and there is no vertex y2 ∈ V (C2), such that y2 Ã V (C1).
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Theorem 8.10 (Yeo [48]) Let D be a multipartite tournament with a cycle-
factor F of t cycles such that t is minimum. Then the cycles in F can be
labeled in a unique way C1, C2, . . . , Ct such that Ci '> Cj for all i, j satisfying
1 ≤ i < j ≤ t.

The next theorem of Yeo is a slight reformulation of a result in his paper
mentioned above.

Theorem 8.11 (Yeo [48]) If D is a multipartite tournament having a cycle-
factor but no Hamiltonian cycle, then for some minimal cycle-factor F with
the unique numbering C1, C2, . . . , Ct as in Theorem 8.10 and for all pairs of
indices i and j with 1 ≤ i < j ≤ t, there exists a partite set V ∗(i, j) such that
{x+, y−} ⊆ V ∗(i, j) when xy is an arc from Cj to Ci. Furthermore y− → x
and y → x+.

Corollary 8.12 (Volkmann, Yeo [46]) Let D and F be as in the last the-
orem. Then either d(C1, F − V (C1)) ≥ 2d(F − V (C1), C1) or t = 1.

Lemma 8.13 (Yeo [51]) If there is a cycle-factor in a semicomplete multi-
partite digraph D, but no Hamiltonian cycle and if V1, V2, . . . , Vc are the partite
sets of D such that |V1| ≤ |V2| ≤ . . . ≤ |Vc|, then il(D) ≥ |V (D)|−|Vc−1|−2|Vc|+3

2
.

Using these very helpful results, we arrive at the following theorem.

Theorem 8.14 (Volkmann, Winzen [41]) Let D be an almost regular c-
partite tournament with at least r vertices in each partite set. If one of the
following conditions is fulfilled then every arc of D is contained in a Hamilto-
nian path of D.
(i) c ≥ 7
(ii) c = 6 and r ≥ 2
(iii) c = 5 and r ≥ 3
(iv) c = 4 and r ≥ 4

Proof. Let V1, V2, . . . , Vc be the partite sets of D. According to Lemma 1.10,
we observe that r = |V1| ≤ |V2| ≤ . . . ≤ |Vc| ≤ r + 2. Because of the Theorems
8.1 and 8.3, it remains to consider the cases ig(D) = 1 and |Vc| ≥ r + 1. Let
e = uv be an arbitrary arc of D.

According to Corollary 8.6, D has a Hamiltonian path starting with e, if
c ≥ 8, c = 6, 7 and r ≥ 2, c = 5 and r ≥ 3 or c = 4 and r ≥ 5. Hence, there
remain to consider the cases c = 7 and r = 1 and c = 4 and r = 4.

Suppose that e is not contained in any Hamiltonian path of D. If we assume
that a digraph D′ has no cycle-factor, then we define the sets Q1, Q2, Vi, Y, Z,R1

and R2 as in Theorem 6.4. In the following we will often use the subdigraph
D′ = D − v with the partite sets V ′

1 , V
′
2 , . . . , V

′
p such that |V ′

1 | ≤ |V ′
2 | ≤ . . . ≤

|V ′
p |. It is obvious that c − 1 ≤ p ≤ c.
Case 1. Let c = 4 and r = 4. If |V2| ≥ 5 or |V4| ≤ 5, then Corollary 8.8

b) with p = 2, q = 1 and b = 0 or with b = 1 and q = 0 implies that D has a
Hamiltonian path with the initial arc e, a contradiction. Since ig(D) = 1, the
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partition-sequence 4, 4, 5, 6 is impossible. Consequently, there remain to treat
the partition-sequences 4, 4, 4, 6 and 4, 4, 6, 6.

Subcase 1.1. Let (ni) = 4, 4, 4, 6. It follows that d+(x) = d−(x) = 7 for
x ∈ V1 ∪ V2 ∪ V3 and d+(x) = d−(x) = 6 for x ∈ V4.

Subcase 1.1.1. Suppose that one of the vertices u and v is in V4, say v ∈ V4.
We conclude that D′ = D − v has the partition-sequence 4, 4, 4, 5 such that
{d+(x), d−(x)} = {6, 7} for x ∈ V ′

1 ∪ V ′
2 ∪ V ′

3 and d+(x) = d−(x) = 6 for

x ∈ V ′
4 . Since

|V (D′)|−|V ′
3 |−2|V ′

4 |+2

2
= 5

2
> 1 = ig(D

′) Theorem 4.28 implies that
D′ is Hamiltonian, and thus D contains a Hamiltonian path with the terminal
arc e, a contradiction.

Subcase 1.1.2. Assume that {u, v} ⊆ V1 ∪ V2 ∪ V3. Again, we define
D′ = D − v. This implies that D′ has the partition-sequence 3, 4, 4, 6 and
il(D

′) = 1.

Subcase 1.1.2.1. Let D′ have a cycle factor. Since
|V (D′)|−|V ′

3 |−2|V ′
4 |+3

2
= 2 >

il(D
′), Lemma 8.13 implies that D′ is Hamiltonian, and thus D contains a

Hamiltonian path with the terminal arc e, a contradiction.

Subcase 1.1.2.2. Let D′ have no cycle-factor. Since
|V (D′)|−|V ′

3 |−2|V ′
4 |+3

2
=

2 > il(D
′), Theorem 6.4 with k = 0 yields Q1 = ∅ or Q2 = ∅. If |Y | ≤ 5 or

|Z| ≤ |Y | − 2, then we arrive at a contradiction to Theorem 6.4 with t ≥ 1 or
k ≥ 1. Hence, let |Y | = 6 and |Z| = 5, and thus |Q| = 6.

Firstly, let Q1 = ∅. This implies Q = Q2. Since |Q| = 6, it is a simple
matter to verify that there is a vertex q2 ∈ Q2 such that d−

D[Q2](q2) ≥ 2, and

because of Y → Q2, we obtain the contradiction d−(q2) ≥ 8.

Analogously, we arrive at a contradiction, if Q2 = ∅.
Subcase 1.2. Let (ni) = 4, 4, 6, 6. It follows that d+(x) = d−(x) = 8 for

x ∈ V1 ∪ V2 and d+(x) = d−(x) = 7 for x ∈ V3 ∪ V4.

Subcase 1.2.1. Suppose that one of the vertices u and v is in V3 ∪ V4, say
v ∈ V3 ∪ V4. This implies that D′ = D− v has the partition-sequence 4, 4, 5, 6.

Because of
|V (D′)|−|V ′

3 |−2|V ′
4 |+2

2
= 2 ≥ ig(D

′), Theorem 4.28 yields that D′ is
Hamiltonian and thus D contains a Hamiltonian path with the terminal arc e,
a contradiction.

Subcase 1.2.2. Let {u, v} ⊆ V1 ∪ V2. If we define D′ = D − v, then D′

has the partition-sequence 3, 4, 6, 6 such that d+(x) = d−(x) = 8 for x ∈ V ′
1 ,

{d+(x), d−(x)} = {7, 8} for x ∈ V ′
2 and {d+(x), d−(x)} = {6, 7} for x ∈ V ′

3∪V ′
4 .

Since
|V (D′)|−|V ′

3 |−2|V ′
4 |+2

2
= 3

2
> 1 = il(D

′) and |V (D′)| − 3|V ′
4 |+ 1 = 2 > il(D

′),
Theorem 4.28 implies that D′ has a Hamiltonian cycle, and thus D has a
Hamiltonian path with the terminal arc e = uv, a contradiction.

Case 2. Let c = 7 and r = 1. If |V5| ≥ 2 or |V7| ≤ 2, then Corollary
8.8 b) implies that D has a Hamiltonian path with the initial arc e, a contra-
diction. Since ig(D) = 1, the partition-sequence 1, 1, 1, 1, 1, 2, 3 is impossible.
Hence, there remain to consider the partition-sequences 1, 1, 1, 1, 1, 1, 3 and
1, 1, 1, 1, 1, 3, 3.

Subcase 2.1. Let (ni) = 1, 1, 1, 1, 1, 1, 3. This implies d+(x) = d−(x) = 4
for x ∈ V1 ∪ V2 ∪ . . . ∪ V6 and d+(x) = d−(x) = 3 for x ∈ V7.

Subcase 2.1.1. Suppose that one of the vertices u and v is part of V7, say
v ∈ V7. Then let D′ = D−v. This implies ig(D

′) ≤ 2 and D′ has the partition-
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sequence 1, 1, 1, 1, 1, 1, 2. Since
|V (D′)|−|V ′

6 |−2|V ′
7 |+2

2
= 5

2
> ig(D

′), Theorem 4.28
yields that D′ contains a Hamiltonian cycle, and hence, D has a Hamiltonian
path with e as the terminal arc, a contradiction.

Subcase 2.1.2. Assume that {u, v} ⊆ V1 ∪ V2 ∪ . . . ∪ V6. It follows that
D′ = D− v has the partition-sequence 1, 1, 1, 1, 1, 3. Furthermore, we see that
{d+(x), d−(x)} = {3, 4} for x ∈ V ′

1 ∪ V ′
2 ∪ . . .∪ V ′

5 and {d+(x), d−(x)} = {2, 3}
for x ∈ V ′

6 . This shows that il(D
′) = 1.

Subcase 2.1.2.1. Let D′ have a cycle-factor. Since
|V (D′)|−|V ′

5 |−2|V ′
6 |+3

2
= 2 >

il(D
′), Lemma 8.13 implies that D′ is Hamiltonian, and hence D contains a

Hamiltonian path with the terminal arc e, a contradiction.

Subcase 2.1.2.2. Let D′ have no cycle-factor. Since
|V (D′)|−|V ′

5 |−2|V ′
6 |+3

2
=

2 > il(D
′), Theorem 6.4 with k = 0 yields Q1 = ∅ or Q2 = ∅. If |Y | ≤ 2 or

|Z| ≤ |Y | − 2, then |V (D′)| − 3|V ′
6 | + 4 = 3 > il(D

′) contradicts Theorem 6.4
with t ≥ 1 or k ≥ 1. Hence, let |Y | = 3 and |Z| = 2.

Firstly, let Q1 = ∅, which means Q = Q2 = {q1, q2, q3}. According to
(4.18) and noticing that Q2 ⊆ R2, it follows that Y → Q → Z = {z1, z2} → Y ,
q1 → q2 → q3 → q1. If, without loss of generality, z1 → z2, then we deduce that
z2 → v → z1 and Q → v → Y = {y1, y2, y3}. If z2 = u, then y1q1z2vy2q2z1y3q3

is a Hamiltonian path through e, and if, without loss of generality, q1 = u, then
y1q1vy2q2z1y3q3z2 is a Hamiltonian path containing e = uv, a contradiction in
both cases.

Secondly, let Q2 = ∅, which means Q = Q1 = {q1, q2, q3}. According
to (4.18) and noticing that Q1 ⊆ R1, it follows that Y → Z = {z1, z2} →
Q → Y , q1 → q2 → q3 → q1, z1 → z2 → v → z1 and Y → v → Q. Since
u, v ∈ V1 ∪ V2 ∪ . . . ∪ V6, we deduce that u = z2. But now q3y1z2vq1y2z1q2y3 is
a Hamiltonian path containing e, a contradiction.

Subcase 2.2. Let (ni) = 1, 1, 1, 1, 1, 3, 3. The fact that ig(D) = 1 implies
that d+(x) = d−(x) = 5 for x ∈ V1 ∪ V2 ∪ . . . ∪ V5 and d+(x) = d−(x) = 4 for
x ∈ V6 ∪ V7.

Subcase 2.2.1. Suppose that one of the vertices u and v is in V6 ∪ V7,
say v ∈ V6 ∪ V7. It follows that D′ = D − v has the partition-sequence

1, 1, 1, 1, 1, 2, 3. Because of
|V (D′)|−|V ′

6 |−2|V ′
7 |+2

2
= 2 ≥ ig(D

′), Theorem 4.28
yields that D′ has a Hamiltonian cycle and thus D contains a Hamiltonian
path with the terminal arc e = uv, a contradiction.

Subcase 2.2.2. Let {u, v} ⊆ V1 ∪V2 ∪ . . .∪V5. We observe that D′ = D− v
has the partition-sequence 1, 1, 1, 1, 3, 3 such that {d+(x), d−(x)} = {4, 5} for
x ∈ V ′

1 ∪ V ′
2 ∪ V ′

3 ∪ V ′
4 and {d+(x), d−(x)} = {3, 4} for x ∈ V ′

5 ∪ V ′
6 . Since

|V (D′)|−|V ′
5 |−2|V ′

6 |+2

2
= 3

2
> 1 = il(D

′) and |V (D′)| − 3|V ′
6 | + 1 = 2 > il(D

′),
Theorem 4.28 yields that D′ is Hamiltonian and thus D contains a Hamiltonian
path with the terminal arc e, a contradiction.

This completes the proof of the theorem. ¤

Next we will prove that we can omit the assumption r ≥ 2 in Condition
(ii) of Theorem 8.14 and r ≥ 3 in Condition (iii) of the same theorem.

Theorem 8.15 If D is an almost regular c-partite tournament with c ≥ 5,
then every arc of D is contained in a Hamiltonian path.
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Proof. Let V1, V2, . . . , Vc be the partite sets of D. According to Lemma
1.10, we observe that 1 ≤ r = |V1| ≤ |V2| ≤ . . . ≤ |Vc| ≤ r + 2. Because of the
Theorems 8.1, 8.3 and 8.14, it remains to consider the cases that ig(D) = 1,
|Vc| ≥ r + 1 and 5 ≤ c ≤ 6. Let e = uv be an arbitrary arc of D and suppose
that e is not contained in any Hamiltonian path of D. If we assume that a
digraph D′ has no cycle-factor, then we define the sets Q1, Q2, Vi, Y, Z,R1 and
R2 as in Theorem 6.4. Furthermore, let Y1 = R1 ∩ Vi and Y2 = R2 ∩ Vi. In
the following we will often use the subdigraph D′ = D − v with the partite
sets V ′

1 , V
′
2 , . . . , V

′
p such that |V ′

1 | ≤ |V ′
2 | ≤ . . . ≤ |V ′

p |. It is obvious that
c − 1 ≤ p ≤ c.

Case 1. Let c = 6. If |V3| ≥ 2 or |V4| ≥ 3 or |V4| = 2 and |V6| = 2,
then Corollary 8.8 implies that D has a Hamiltonian path with the initial
arc e, a contradiction. Since ig(D) = 1, the partition sequences 1, 1, 1, 1, 1, 3;
1, 1, 1, 1, 3, 3 and 1, 1, 1, 2, 2, 3 are impossible. Consequently, there remain to
consider the following four partition-sequences.

Case 1.1. Let (ni) = 1, 1, 1, 2, 3, 3. This yields that d+(x) = d−(x) = 5 for
x ∈ V1 ∪ V2 ∪ V3, {d

+(x), d−(x)} = {4, 5} for x ∈ V4 and d+(x) = d−(x) = 4
for x ∈ V5 ∪ V6.

Subcase 1.1.1. Assume that one of the vertices u and v is in V5 ∪ V6, say
v ∈ V5 ∪ V6. This yields D′ = D − v has the partition-sequence 1, 1, 1, 2, 2, 3.

Because of
|V (D′)|−|V ′

5 |−2|V ′
6 |+2

2
= 2 = ig(D

′), Theorem 4.28 implies that D′

contains a Hamiltonian cycle, a contradiction.

Subcase 1.1.2. Suppose that one of the vertices u and v is in V4, say
v ∈ V4. In this case we observe that D′ = D − v has the partition-sequence
1, 1, 1, 1, 3, 3. It follows that {d+(x), d−(x)} = {4, 5} for x ∈ V ′

1 ∪ V ′
2 ∪ . . . ∪ V ′

4

and {d+(x), d−(x)} = {3, 4} for x ∈ V ′
5 ∪ V ′

6 . Since
|V (D′)|−|V ′

5 |−2|V ′
6 |+2

2
= 3

2
>

1 = il(D
′) and |V (D′)| − 3|V ′

6 |+ 1 = 2 > il(D
′), Theorem 4.28 implies that D′

is Hamiltonian, a contradiction.

Subcase 1.1.3. Let {u, v} ⊆ V1 ∪ V2 ∪ V3. This yields that D′ = D − v
has the partition-sequence 1, 1, 2, 3, 3 such that {d+(x), d−(x)} = {4, 5} for
x ∈ V ′

1 ∪ V ′
2 , d+(x) = d−(x) = 4 or {d+(x), d−(x)} = {3, 5} for x ∈ V ′

3 and
{d+(x), d−(x)} = {3, 4} for x ∈ V ′

4 ∪ V ′
5 .

Subcase 1.1.3.1. Assume that D′ has no cycle-factor. Since |V (D′)| −
3|V ′

6 | + 2 = 3 > il(D
′), Theorem 6.4 with k = 0 leads to Q1 6= ∅ and Q2 6= ∅.

If |Y | ≤ 2 or |Z| ≤ |Y | − 2, then Theorem 6.4 with t ≥ 1 or k ≥ 1 yields a
contradiction. Hence, let |Y | = 3 and |Z| = 2.

If |Q1| = 2 and |Q2| = 3, then let q1, q
′
1 ∈ Q1. Since Q1 Ã Y ∪ Q2 and

d+(q1) ≤ 5, there exists a vertex q2 ∈ V (q1) ∩ Q2. If q′1 ∈ V (q1), then it
follows that |V (q1)| = 3 and d+(q1) ≥ 5, a contradiction. If q′1 /∈ V (q1), then
because of d+(q1) ≤ 5 (respectively, d+(q1) ≤ 4, if |V (q1)| = 3), we deduce
that q′1 → q1 and thus d+(q′1) ≥ 6 or d+(q′1) ≥ 5 and q′1 ∈ V ′

4 ∪V ′
5 , in both cases

a contradiction.

The case that |Q1| = 3 and |Q2| = 2 follows analogously.

If |Q1| = 1 and |Q2| = 4, then either d+(q1) ≥ 6 or d+(q1) ≥ 5 and
|V (q1)| = 3, if q1 ∈ Q1, in both cases a contradiction. The case that |Q1| = 4
and |Q2| = 1 follows analogously.
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Subcase 1.1.3.2. Let D′ have a cycle-factor. According to Corollary 5.9 we
have κ(D′) ≥ 2. Because of bα(D′)

2
c + 1 = b3

2
c + 1 = 2 Theorem 4.27 yields

that D′ is Hamiltonian, a contradiction.
Subcase 1.2. Let (ni) = 1, 1, 1, 1, 2, 3. This yields d+(x) = d−(x) = 4 for

x ∈ V1∪V2∪V3∪V4, {d
+(x), d−(x)} = {3, 4} for x ∈ V5 and d+(x) = d−(x) = 3

for x ∈ V6.
Subcase 1.2.1. Suppose that one of the vertices u and v is in V6, say

v ∈ V6. In this case, we deduce that D′ = D − v has the partition-sequence

1, 1, 1, 1, 2, 2. Since
|V (D′)|−|V ′

5 |−2|V ′
6 |+2

2
= 2 ≥ ig(D

′), Theorem 4.28 implies that
D′ has a Hamiltonian cycle, a contradiction.

Subcase 1.2.2. Assume that one of the vertices u and v is in V5, say v ∈ V5.
It follows that D′ = D − v has the partition-sequence 1, 1, 1, 1, 1, 3. Further-
more, we conclude that {d+(x), d−(x)} = {3, 4} for x ∈ V ′

1 ∪ V ′
2 ∪ . . . ∪ V ′

5

and {d+(x), d−(x)} = {2, 3} for x ∈ V ′
6 . Because of

|V (D′)|−|V ′
5 |−2|V ′

6 |+3

2
= 2 >

1 = il(D
′) and Theorem 8.13, it remains to consider the case that D′ has

no cycle-factor and Q1 = ∅ or Q2 = ∅. If |Y | ≤ 2 or |Z| ≤ |Y | − 2, then
|V (D′)| − 3|V ′

6 |+ 4 = 3 > il(D
′) contradicts Theorem 6.4 with t ≥ 1 or k ≥ 1.

Hence, let |Y | = 3 and |Z| = 2.
Firstly, let Q1 = ∅. We observe that Y = {y1, y2, y3} → Q2 = {q1, q2, q3} →

Z = {z1, z2} → Y , v → Y , q1 → q2 → q3 → q1, z1 → z2 Ã v Ã z1 and Q2 Ã v,
since otherwise we arrive at a contradiction to the degree-conditions or to
(4.18). If u ∈ Q2 (without loss of generality let u = q1), then q1vy1q2z1y2q3z2y3

is a Hamiltonian path, and if u = z2, then y1q1z2vy2q2z1y3q3 is a Hamiltonian
path containing the arc e, in both cases a contradiction.

Secondly, let Q2 = ∅. Analogously as above, we see that Y = {y1, y2, y3} →
v, Z = {z1, z2} → Q1 = {q1, q2, q3} → Y → Z, z1 → z2 Ã v Ã z1, q1 → q2 →
q3 → q1 and v Ã Q1. Since u ∈ V1 ∪ V2 ∪ . . . ∪ V4, we obtain that u = z2.
The vertex v has at least two outer neighbors in Q1. Hence, without loss of
generality, let v → q1. Now, q3y1z2vq1y2z1q2y3 is a Hamiltonian path through
e, a contradiction.

Subcase 1.2.3. Let {u, v} ⊆ V1 ∪ V2 ∪ V3 ∪ V4. It follows that D′ = D − v
has the partition-sequence 1, 1, 1, 2, 3 such that {d+(x), d−(x)} = {3, 4} for
x ∈ V ′

1 ∪V ′
2 ∪V ′

3 , d+(x) = d−(x) = 3 or {d+(x), d−(x)} = {2, 4} for x ∈ V ′
4 and

{d+(x), d−(x)} = {2, 3} for x ∈ V ′
5 .

Subcase 1.2.3.1. Suppose that D′ has a cycle-factor. In this case, let F
be a minimum cycle-factor with the properties of the Theorems 8.10 and 8.11.
Since |V (D′)| = 8, F consists of at most two cycles. If F consists of one cycle,
then D contains a Hamiltonian path with the terminal arc e, a contradiction.
Hence, let F consist of the two cycles C1 and C2 such that C1 '> C2. If
u ∈ V (C2), then C1u

+ . . . u−uv is a Hamiltonian path of D. Consequently, let
u ∈ V (C1). If v → u+, then uvu+ . . . u−C2 is a Hamiltonian path of D and if
there is a vertex v2 ∈ V (C2) such that v → v2, then u+ . . . u−uvv2v

+
2 . . . v−

2 is
a Hamiltonian path of D, in both cases a contradiction. Hence, let {u, u+} ∪
V (C2) → v, which means d−(v) ≥ 5, also a contradiction.

Subcase 1.2.3.2. Assume that D′ has no cycle-factor. If Q1 = ∅ or Q2 = ∅
and |Y | ≤ 2 or |Z| ≤ |Y | − 2, then we arrive at a contradiction to Theorem
6.4 with k ≥ 1 or t ≥ 1. Hence, let |Y | = 3 and |Z| = 2 in these cases.
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Firstly, let Q1 = ∅. We observe that |Q2| = |Q| = 3. Because of Y → Q2

and d−(q) ≤ 4 for all q ∈ Q2, it follows that Q2 Ã Z, since otherwise, if
z2 → q2 with z2 ∈ Z and q2 ∈ Q2, then V ′

4 ⊆ Q2, d−(q) = 4 for all q ∈ Q2 and
z1 → z2 with z1 ∈ Z. This implies that v → (Y ∪Z), which means d+(v) ≥ 5,
a contradiction. Hence, let Y = {y1, y2, y3} → Q2 = {q1, q2, q3} Ã Z → Y
and v → Y . If u ∈ Z = {z1, z2} (without loss of generality let u = z2), then
y1q3z2vy2q2z1y3q1 is a Hamiltonian path containing e, and if u ∈ Q2 (without
loss of generality let u = q1), then y1q1vy2q2z1y3q3z2 is a Hamiltonian path
through e, if we enumerate the vertices of Z and Q2 such that q2 → z1 and
q3 → z2, in both cases a contradiction.

Secondly, let Q2 = ∅. Since |Q1| = 3, (4.18) and the degree-conditions
imply that Q1 → Y → (Z ∪ {v}). Analogously as we have Q2 Ã Z in the
case Q1 = ∅, we conclude that the case Q2 = ∅ yields Z Ã Q1. If there is
an arc q1 → v with q1 ∈ Q1, then we arrive at V ′

4 ⊆ Q1, d+(q) ≥ 4 for all
q ∈ Q1, z1 → z2 for the vertices z1, z2 ∈ Z and v → Z. Summarizing our
results, we see that d−(z2) ≥ |Y | + 2 = 5, a contradiction. Hence, let v → Q1.
Since u ∈ V1 ∪ V2 ∪ . . . ∪ V4, it remains the case that u = z2 with z2 ∈ Z. If
Y = {y1, y2, y3}, Z = {z1, z2} and Q1 = {q1, q2, q3} and if we enumerate the
vertices of Z and Q1 such that z1 → q3, then q1y1z2vq2y2z1q3y3 is a Hamiltonian
path containing the arc e, a contradiction.

Thirdly, let Q1 6= ∅ and Q2 6= ∅. If |Z| ≤ |Y | − 2, then Theorem 6.4 with
k ≥ 1 yields a contradiction. Hence let |Z| = |Y | − 1.

If |Y | = 3 and thus |Z| = 2, then firstly let |Q1| = 1 and |Q2| = 2.
Because of (4.18) and the degree-conditions, we observe that V ′

4 = {q1, q2}
with Q1 = {q1} and Q2 = {q2, q

′
2} such that q′2 → q2, Q1 → Y , q1 → q′2, Q2 →

Z = {z1, z2} → Q1 and Q2 → v → Q1. Notice that v has at least one outer
neighbor in Y . Hence, let v → y2 with y2 ∈ Y . Let Y = {y1, y2, y3}. If u = q′2,
then y3q

′
2vy2q2z1z2q1y1 is a Hamiltonian path, and if u ∈ Z (without loss of

generality let u = z1), then y1q2z1vy2q
′
2z2q1y3 is a Hamiltonian path through e,

in both cases a contradiction. If |Q1| = 2 and |Q2| = 1, then analogously, we see
that V ′

4 = {q1, q2} with Q1 = {q1, q
′
1} and Q2 = {q2}, Q2 → v → Q1 and Q2 →

Z = {z1, z2} → Q1. If we have z ∈ Z arbitrary, then it follows that there is a
vertex y ∈ Y such that y → z. Let Y = {y1, y2, y3}. If u ∈ Z (without loss of
generality let u = z2), then let y1 → z2 and y1z2vq1y2q2z1q

′
1y3 is a Hamiltonian

path containing the arc e, a contradiction. Since u ∈ V1 ∪ V2 ∪ V3 ∪ V4, z2 and
z1 are the only possible candidates for u.

Now, let |Y | = 2 and thus |Z| = 1. If Y = V ′
4 , then we deduce that

|Q1| + |Q2| = 5 and there remain the cases that |Q1| = 2 and |Q2| = 3 or
|Q1| = 3 and |Q2| = 2 or |Q1| = 1 and |Q2| = 4 or |Q1| = 4 and |Q2| = 1.
Because of Q1 → Y → Q2 and Q1 Ã Q2 in all cases, it is a simple matter to
verify that either there is a vertex q1 ∈ Q1 such that d+(q1) ≥ 5 or d+(q1) ≥ 4
and q1 ∈ V ′

5 or a vertex q2 ∈ Q2 such that d−(q2) ≥ 5 or d−(q2) ≥ 4 and
q2 ∈ V ′

5 , in all cases a contradiction. Hence, let Y ⊆ V ′
5 . If Z ⊆ V ′

5 , then we
obtain |Q1|+ |Q2| = 5 and analogously as above, we arrive at a contradiction.
If Z 6⊆ V ′

5 , then there exists a vertex y ∈ V ′
5 −(Y ∪Z) and thus |Q1|+ |Q2| = 4.

If |Q1| = |Q2| = 2, then, without loss of generality, let y ∈ R1 ∩ V ′
5 . Since

y → Q2, there is a vertex q2 ∈ Q2 such that d−(q2) ≥ 5, a contradiction.
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If |Q1| = 3 and |Q2| = 1, then it follows that q2 ∈ V ′
4 , y ∈ R2 ∩ V ′

5 and
Q1 ∪ {q2} → y. Now, we see that d−(y) ≥ 4, a contradiction. Analogously the
case that |Q1| = 1 and |Q2| = 3 yields a contradiction.

If |Y | ≤ 1, then because of
|V (D′)|−|V ′

4 |−2|V ′
5 |+5

2
= 5

2
> il(D

′) we arrive at a
contradiction to Theorem 6.4 with t ≥ 2.

Subcase 1.3. Let (ni) = 1, 1, 1, 1, 1, 2. This implies that d+(x) = d−(x) = 3
for x ∈ V1 ∪ V2 ∪ . . . ∪ V5 and {d+(x), d−(x)} = {2, 3} for x ∈ V6.

Subcase 1.3.1. Assume that one of the vertices u and v is in V6, say v ∈ V6.
It follows that D′ = D − v has the partition-sequence 1, 1, 1, 1, 1, 1. Since
|V (D′)|−|V ′

5 |−2|V ′
6 |+2

2
= 5

2
> ig(D

′), Theorem 4.28 guarantees the existence of a
Hamiltonian cycle in D′, a contradiction.

Subcase 1.3.2. Let {u, v} ⊆ V1∪V2∪ . . .∪V5. This implies that D′ = D−v
has the partition-sequence 1, 1, 1, 1, 2 such that {d+(x), d−(x)} = {2, 3} for
x ∈ V ′

1 ∪ V ′
2 ∪ . . . ∪ V ′

4 and d+(x) = d−(x) = 2 or {d+(x), d−(x)} = {1, 3} for
x ∈ V ′

5 .

Subcase 1.3.2.1. Suppose that D′ has a cycle-factor. In this case, analo-
gously to Subcase 1.2.3.1, we arrive at a contradiction.

Subcase 1.3.2.2. Assume that D′ has no cycle-factor. If |Y | ≤ 1 or |Z| ≤
|Y | − 2, then we obtain a contradiction to Theorem 6.4 with t ≥ 1 or k ≥ 1.
Hence, let |Y | = 2 and |Z| = 1. If Q1 = ∅, then it follows that |Q2| = 3.
According to (4.18), we observe that Y → Q2 and the degree-conditions imply
that Z → Y . Since d−(q) ≤ 3 for all q ∈ Q2, we obtain that q1 → q2 →
q3 → q1, if Q2 = {q1, q2, q3}. Now, we observe that (Q2 ∪ Z) → v, which
means d−(v) ≥ 4, a contradiction. Analogously, we arrive at a contradiction,
if Q2 = ∅.

Consequently, it remains to consider the case that Q1 6= ∅ and Q2 6= ∅.
If |Q1| = 1 and |Q2| = 2, then because of Q1 → (Y ∪ Q2) we observe that
d+(q1) ≥ 4, a contradiction to d+(x) ≤ 3 for all x ∈ V (D). Analogously, we
arrive at a contradiction, if |Q1| = 2 and |Q2| = 1.

Subcase 1.4. Assume that (ni) = 1, 1, 1, 1, 2, 2. In this case, it follows that
{d+(x), d−(x)} = {3, 4} for x ∈ V1 ∪ V2 ∪ V3 ∪ V4 and d+(x), d−(x) = 3 for
x ∈ V5 ∪ V6.

Subcase 1.4.1. Assume that one of the vertices u and v is in V5 ∪ V6,
say v ∈ V5 ∪ V6. This yields that D′ = D − v has the partition-sequence

1, 1, 1, 1, 1, 2. Because of
|V (D′)|−|V ′

5 |−2|V ′
6 |+2

2
= 2 ≥ ig(D

′) Theorem 4.28 implies
the existence of a Hamiltonian cycle of D′, a contradiction.

Subcase 1.4.2. Let {u, v} ⊆ V1 ∪ V2 ∪ V3 ∪ V4. It follows that D′ =
D − v has the partition-sequence 1, 1, 1, 2, 2 such that d+(x) = d−(x) = 3
or {d+(x), d−(x)} = {2, 4} for x ∈ V ′

1 ∪ V ′
2 ∪ V ′

3 and {d+(x), d−(x)} = {2, 3}
for x ∈ V ′

4 ∪ V ′
5 .

Subcase 1.4.2.1. Suppose that D′ has a cycle factor. In this case, analo-
gously to Subcase 1.2.3.1, we arrive at a contradiction.

Subcase 1.4.2.2. Let D′ have no cycle-factor. Since |V (D′)|−3|V ′
5 |+2 = 3 >

il(D
′) Theorem 6.4 yields that Q1 6= ∅ and Q2 6= ∅. If |Y | ≤ 1 or |Z| ≤ |Y |−2,

then we obtain a contradiction to Theorem 4.28 with t ≥ 1 or k ≥ 1. Hence,
let |Y | = 2 and |Z| = 1. Without loss of generatity, let Y = V ′

5 .
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Firstly, let |Q1| = |Q2| = 2. If Q1 ∩ V ′
4 = ∅, then there is an arc q1 → q′1 in

E(D′[Q1]) and we conclude that d+(q1) ≥ |Y | + |Q2| + 1 = 5, a contradiction.
Analogously, we arrive at a contradiction, if Q2∩V ′

4 = ∅. Let q1q
′
1 ∈ E(D′[Q1]).

Then either d+(q1) ≥ 4 and q1 ∈ V ′
4 or d+(q1) ≥ 5, in both cases a contradic-

tion.

Secondly, let |Q1| = 1 and |Q2| = 3. If q1 ∈ Q1, then we observe that
either d+(q1) ≥ 4 and q1 ∈ V ′

4 or d+(q1) ≥ 5, in both cases a contradiction.
Analogously, we obtain a contradiction, if |Q1| = 3 and |Q2| = 1.

Case 2. Let c = 5. If |V3| ≥ 4 or |V2| ≥ 3 or |V3| = 3 and |V2| ≥ 2
or |V5| ≤ 3 and |V1| ≥ 2 or |V5| = |V2| = 2, then, using Corollary 8.8 or
similar methods, it follows that D contains a Hamiltonian path starting with
the arc e = uv, a contradiction. Since ig(D) = 1, the partition-sequences
1, 1, 1, 2, 3; 1, 1, 2, 3, 3; 1, 2, 2, 2, 3 and 2, 2, 2, 3, 4 are impossible. Consequently,
there remain to consider the following 10 partition-sequences.

Subcase 2.1. Let (ni) = 2, 2, 2, 4, 4. It follows that d+(x) = d−(x) = 6 for
x ∈ V1 ∪ V2 ∪ V3 and d+(x) = d−(x) = 5 for x ∈ V4 ∪ V5.

Subcase 2.1.1. Assume that one of the vertices u and v is part of V4 ∪ V5,
say v ∈ V4 ∪V5. In this case D′ = D− v has the partition-sequence 2, 2, 2, 3, 4,

and according to Theorem 4.28,
|V (D′)|−|V ′

4 |−2|V ′
5 |+2

2
= 2 ≥ ig(D

′) implies that
D′ is Hamiltonian, a contradiction.

Subcase 2.1.2. Let {u, v} ⊆ V1∪V2∪V3. Then D′ = D−v has the partition-
sequence 1, 2, 2, 4, 4 such that d+(x) = d−(x) = 6 for x ∈ V ′

1 , {d
+(x), d−(x)} =

{5, 6} for x ∈ V ′
2 ∪ V ′

3 and {d+(x), d−(x)} = {4, 5} for x ∈ V ′
4 ∪ V ′

5 . Because of
|V (D′)|−|V ′

4 |−2|V ′
5 |+2

2
= 3

2
> il(D

′) and |V (D′)| − 3|V ′
5 | + 1 = 2 > il(D

′), Theorem
4.28 yields that D′ is Hamiltonian, a contradiction.

Subcase 2.2. Let (ni) = 2, 2, 2, 2, 4. It follows that d+(x) = d−(x) = 5 for
x ∈ V1 ∪ V2 ∪ V3 ∪ V4 and d+(x) = d−(x) = 4 for x ∈ V5.

Subcase 2.2.1. Suppose that one of the vertices u and v is in V5, say v ∈ V5.
We observe that D′ = D − v has the partition-sequence 2, 2, 2, 2, 3. According

to Theorem 4.28, the fact that
|V (D′)|−|V ′

4 |−2|V ′
5 |+2

2
= 5

2
> ig(D

′) implies that D′

is Hamiltonian, a contradiction.

Subcase 2.2.2. Assume that {u, v} ⊆ V1 ∪ V2 ∪ V3 ∪ V4. We conclude that
D′ = D−v has the partition-sequence 1, 2, 2, 2, 4 such that d+(x) = d−(x) = 5
for x ∈ V ′

1 , {d
+(x), d−(x)} = {4, 5} for x ∈ V ′

2 ∪ V ′
3 ∪ V ′

4 and {d+(x), d−(x)} =
{3, 4} for x ∈ V ′

5 . This shows that il(D
′) = 1.

Subcase 2.2.2.1. Let D′ have a cycle-factor. Since
|V (D′)|−|V ′

4 |−2|V ′
5 |+3

2
= 2 >

il(D
′), Lemma 8.13 implies that D′ is Hamiltonian, a contradiction.

Subcase 2.2.2.2. Let D′ have no cycle-factor. Since
|V (D′)|−|V ′

4 |−2|V ′
5 |+3

2
=

2 > il(D
′) and Theorem 6.4, we conclude that Q1 = ∅ or Q2 = ∅. If |Y | ≤ 3

or |Z| ≤ |Y | − 2, then we arrive at a contradiction to Theorem 6.4. Hence, let
|Y | = 4 and |Z| = 3.

Firstly, let Q1 = ∅. It follows that |Q| = |Q2| = 4. Using Lemma 4.29
and d−(x) ≤ 5 for all x ∈ V (D) we see that Y = {y1, y2, y3, y4} → Q2 =
{q1, q2, q3, q4} → Z = {z1, z2, z3}, q1 → q2 → q3 → q4 → q1 such that V (q1) =
{q1, q3} and V (q2) = {q2, q4}, z1 → z2 → z3 such that V (z1) = {z1, z3} and
V (v) = {v, z2}, Q2 → v → Y and z3 → v → z1. If u ∈ Q2, without loss of
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generality u = q1, then y1q1vy2q2z1y3q3z2y4q4z3 is a Hamiltonian path through
e, and if u = z3, then y1q1z3vy2q2z1y3q3z2y4q4 is a Hamiltonian path through
e, in both cases a contradiction.

Secondly, let Q2 = ∅. Analogously as above it follows Y = {y1, y2, y3, y4} →
Z = {z1, z2, z3} → Q1 = {q1, q2, q3, q4} → Y , q1 → q2 → q3 → q4 → q1

such that V (q1) = {q1, q3} and V (q2) = {q2, q4}, z1 → z2 → z3 such that
V (z1) = {z1, z3} and V (v) = {v, z2}, Y → v → Q1 and z3 → v → z1. Since
u ∈ V1 ∪ V2 ∪ V3 ∪ V4, it follows that u = z3. But now q4y1z3vq1y2z1q2y3z2q3y4

is a Hamiltonian path containing e, a contradiction.
Subcase 2.3. Suppose that (ni) = 1, 1, 2, 2, 2. In this case, we deduce

that {d+(x), d−(x)} = {3, 4} for x ∈ V1 ∪ V2 and d+(x) = d−(x) = 3 for
x ∈ V3 ∪ V4 ∪ V5.

Subcase 2.3.1. Assume that one of the vertices u and v is part of V3∪V4∪V5,
say v ∈ V3 ∪ V4 ∪ V5. It follows that D′ = D − v has the partition-sequence
1, 1, 1, 2, 2 such that d+(x) = d−(x) = 3 or {d+(x), d−(x)} = {2, 4} for x ∈
V ′

1 ∪ V ′
2 , d+(x) = d−(x) = 3 for x ∈ V ′

3 and {d+(x), d−(x)} = {2, 3} for
x ∈ V ′

4 ∪ V ′
5 .

Subcase 2.3.1.1. Suppose that D′ has a cycle-factor. Then let F be a
minimal cycle-factor of D′ with the properties of the Theorems 8.10 and 8.11.
If F consists of one cycle, then D has a Hamiltonian path with the terminal
arc e, a contradiction. Since |V (D′)| = 7, it is impossible that F consists
of more then two cycles. Hence, let F consist of the cycles C1 and C2 such
that C1 '> C2. As in Subcase 1.2.3.1, we conclude that u ∈ V (C1) and
({u, u+}∪V (C2))Ã v, and thus d−(v) ≥ 4, a contradiction to v ∈ V3∪V4∪V5.

Subcase 2.3.1.2. Let D′ have no cycle-factor. Because of |V (D′)| − 3|V ′
5 |+

2 = 3 > il(D
′) and Theorem 6.4, it remains to consider the case that Q1 6= ∅

and Q2 6= ∅. If |Y | ≤ 1 or |Z| ≤ |Y | − 2, then we arrive at a contradiction to
Theorem 6.4. Hence, let |Y | = 2 and |Z| = 1, and thus |Q| = 4.

Firstly, let |Q1| = |Q2| = 2. Since Q1 → Y → Q2 and Q1 Ã Q2, it is
easy to see that there exists a vertex q1 ∈ Q1 such that either d+(q1) ≥ 5 or
d+(q1) ≥ 4 and |V (q1)| = 2, in both cases a contradiction.

Secondly, let |Q1| = 1 and |Q2| = 3. Analogously as above we conclude
that either d+(q1) ≥ 5 or d+(q1) ≥ 4 and |V (q1)| = 2, if Q1 = {q1}, in all cases
a contradiction.

Analogously, the case that |Q1| = 3 and |Q2| = 1 leads to a contradiction.
Subcase 2.3.2. Let {u, v} ⊆ V1 ∪ V2. It follows that D′ = D − v has the

partition-sequence 1, 2, 2, 2 such that d+(x) = d−(x) = 3 or {d+(x), d−(x)} =
{2, 4} for x ∈ V ′

1 and {d+(x), d−(x)} = {2, 3} for x ∈ V ′
2 ∪ V ′

3 ∪ V ′
4 .

Subcase 2.3.2.1. Assume that D′ has a cycle-factor. In this case, analo-
gously as in Subcase 1.2.3.1, we arrive at a contradiction.

Subcase 2.3.2.2. Suppose that D′ has no cycle-factor. Because of |V (D′)|−
3|V ′

4 | + 2 = 3 > il(D
′) and Theorem 6.4, it remains to consider the case that

Q1 6= ∅ and Q2 6= ∅. If |Y | ≤ 1 or |Z| ≤ |Y | − 2, then we arrive at a
contradiction to Theorem 6.4 with t ≥ 1 or k ≥ 1. Hence, let |Y | = 2 and
|Z| = 1 and thus |Q| = 4. If |Q1| = |Q2| = 2, then it is a simple matter to
verify that there is a vertex q1 ∈ Q1 such that either d+(q1) ≥ 5 or d+(q1) ≥ 4
and |V ′(q1)| = 2, in both cases a contradiction. If |Q1| = 1 and |Q2| = 3 or
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|Q1| = 3 and |Q2| = 1, then analogously we arrive at a contradiction.
Subcase 2.4. Let (ni) = 1, 1, 1, 2, 2. It follows that d+(x) = d−(x) = 3 for

x ∈ V1 ∪ V2 ∪ V3 and {d+(x), d−(x)} = {2, 3} for x ∈ V4 ∪ V5.
Subcase 2.4.1. Assume that one of the vertices u and v is part of V4 ∪ V5,

say v ∈ V4 ∪ V5. In this case we conclude that D′ = D − v has the partition-
sequence 1, 1, 1, 1, 2 such that {d+(x), d−(x)} = {2, 3} for x ∈ V ′

1 ∪V ′
2 ∪V ′

3 ∪V ′
4

and d+(x) = d−(x) = 2 or {d+(x), d−(x)} = {1, 3} for x ∈ V ′
5 .

Subcase 2.4.1.1. Let D′ have a cycle-factor. Analogously as in Subcase
2.3.1.1 we arrive at a contradiction.

Subcase 2.4.1.2. Suppose that D′ has no cycle-factor. If |Y | ≤ 1 or |Z| ≤
|Y |−2, then using Theorem 6.4 with t ≥ 1 or k ≥ 1 we obtain a contradiction.
Hence, let |Y | = 2 and |Z| = 1 and thus |Q| = 3.

Firstly, let Q1 = ∅. Because of Y → Q2 and the degree-conditions we
observe that Q2 = {q1, q2, q3} → Z = {z} → Y , q1 → q2 → q3 → q1 and
(Q2 ∪ Z) Ã v → Y . If u ∈ Q2, without loss of generality u = q1, then
q1vy1q2zy2q3 is a Hamiltonian path through e and if u = z, then y1q1zvy2q2q3

is a Hamiltonian path through e, in both cases a contradiction.
Secondly, let Q2 = ∅. Analogously as above we see that Q1 = {q1, q2, q3} →

Y = {y1, y2} → Z = {z}, q1 → q2 → q3 → q1 and Y → v Ã (Q1 ∪ Z).
Let v → q1. It follows that u ∈ Y , without loss of generality u = y1, and
y1vq1q2q3y2z is a Hamiltonian path of D containing the arc e, if the vertices of
Q1 are numerated such that v → q1, a contradiction.

Thirdly, let |Q1| = 1 and |Q2| = 2. Since Q1 = {q1} → (Y ∪ Q2) we
conclude that d+(q1) ≥ 4, a contradiction.

If |Q1| = 2 and |Q2| = 1, then analogously, we arrive at a contradiction.
Subcase 2.4.2. Let {u, v} ⊆ V1 ∪ V2 ∪ V3. This implies that D′ = D − v

has the partition-sequence 1, 1, 2, 2 such that {d+(x), d−(x)} = {2, 3} for x ∈
V ′

1 ∪ V ′
2 and d+(x) = d−(x) = 2 or {d+(x), d−(x)} = {1, 3} for x ∈ V ′

3 ∪ V ′
4 .

Subcase 2.4.2.1. Assume that D′ has a cycle-factor. In this case, analo-
gously as in Subcase 1.2.3.1 we arrive at a contradiction.

Subcase 2.4.2.2. Let D′ have no cycle-factor. If Q1 = ∅ or Q2 = ∅ and
|Y | ≤ 1 or |Z| ≤ |Y | − 2, then this contradicts Theorem 6.4 with t ≥ 1 or
k ≥ 1. Hence, let |Y | = 2 (without loss of generality let Y = V ′

4) and |Z| = 1
and thus |Q| = 3 in these cases.

Firstly, let Q1 = ∅. According to (4.18) and the degree-conditions, we have
(v ∪ (Z = {z})) → Y = {y1, y2} → Q2 = {q1, q2, q3}. Furthermore, only one of
the following three conditions can be fulfilled at the same time: 1. V ′

3 ∩Q2 6= ∅
and V ′

3 ∩ Z 6= ∅, 2. There is an arc leading from v → Q2 , 3. There is an arc
leading from Z to Q2. Furthermore, there exists an arc q1q2 ∈ E(D[Q2]) such
that q3 → z. If u ∈ Q2, without loss of generality u = q1, then the vertices of
Q2 can be numerated such that q1vy1q3zy2q2 is a Hamiltonian path through
e, and if u = z, then y1q3zvy2q1q2 is a Hamiltonian path containing the arc
e = uv, in all cases a contradiction.

Secondly, let Q2 = ∅. Analogously as above, we see that Q1 = {q1, q2, q3} →
Y = {y1, y2} → (v ∪ (Z = {z})). Since d−(v) ≤ 3, there is only one further
inner neighbor of v except the two vertices of Y . This vertex has to be u. If
u = z, then, with a suitable numbering of the vertices of Q1, q1y1zvq2q3y2 is
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a Hamiltonian path of D, and if u ∈ Q1, without loss of generality u = q3,
then z → Q1 and q1 ∈ V (q2) and q1y1zq3vq2y2 is a Hamiltonian path of D
containing the arc e, in all cases a contradiction.

Thirdly, let Q1 6= ∅ and Q2 6= ∅. According to Theorem 6.4 we have
|Y | = |Z|+1. At first, let |Y | = 2 and thus |Z| = 1. Without loss of generality,
let Y = V ′

4 . If |Q1| = 1 and |Q2| = 2, then the degree-conditions and (4.18)
imply that Q1 = {q1} → Y = {y1, y2} → Q2 = {q2, q

′
2} → Z = {z} → Q1,

q2 → q′2, Q2 → v → Q1, q1 Ã Q2 and V ′
3 = {q1, q

′
2}. Observing that v has at

least one outer neighbor in Y , say v → y2, we deduce that y1q2vy2q
′
2zq1 is a

Hamiltonian path through e, if u = q2 and y1q2q
′
2zvq1y2 is a Hamiltonian path

containing e, if u = z, in all cases a contradiction. If |Q1| = 2 and |Q2| = 1,
then analogously, we obtain that Y = {y1, y2} → Q2 = {q2} → Z = {z} →
Q1 = {q1, q

′
1}, Q1 Ã Q2 → v → Q1, q1 → q′1 and V ′

3 = {q1, q2}. This yields
u = z, Y → Z and y1zvq1q

′
1y2q2 is a Hamiltonian path containing e = uv, a

contradiction. If finally |Y | = 1 and |Z| = 0, then we arrive at a contradiction
to the degree-conditions.

Subcase 2.5. Let (ni) = 1, 1, 1, 1, 2. This implies that {d+(x), d−(x)} =
{2, 3} for x ∈ V1 ∪ V2 ∪ V3 ∪ V4 and d+(x) = d−(x) = 2 for x ∈ V5.

Subcase 2.5.1. Let one of the vertices u and v be in V5, say v ∈ V5.
It follows that D′ = D − v has the partition-sequence 1, 1, 1, 1, 1. Since
|V (D′)|−|V ′

4 |−2|V ′
5 |+2

2
= 2 ≥ ig(D

′), Theorem 4.28 yields that D′ is Hamiltonian,
a contradiction.

Subcase 2.5.2. Assume that {u, v} ⊆ V1 ∪ V2 ∪ V3 ∪ V4. This yields
that D′ has the partition-sequence 1, 1, 1, 2 such that d+(x) = d−(x) = 2
or {d+(x), d−(x)} = {1, 3} for x ∈ V ′

1 ∪ V ′
2 ∪ V ′

3 and {d+(x), d−(x)} = {1, 2}
for x ∈ V ′

4 .
Subcase 2.5.2.1. Suppose that D′ has a cycle-factor. In this case D′ is

Hamiltonian, a contradiction.
Subcase 2.5.2.2. Let D′ have no cycle-factor. If Q1 = ∅ or Q2 = ∅, then this

implies that |Y | = 2 and |Z| = 1, since otherwise we arrive at a contradiction
to Theorem 6.4. Analogously, we see that |Z| = |Y |−1, if Q1 6= ∅ and Q2 6= ∅.

Firstly, let Q1 = ∅. It follows that ({v} ∪ (Z = {z})) → Y = {y1, y2} →
Q2 = {q1, q2}. If u ∈ Q2, say u = q1, then, using the degree-conditions, it is
a simple matter to show that either y1q1vy2q2z or y1q1vzy2q1 is a Hamiltonian
path containing the arc e, a contradiction. If u = z, then Q2 → z and
y1q1zvy2q2 is a Hamiltonian path, a contradiction.

Secondly, let Q2 = ∅. Analogously, we observe that Q1 = {q1, q2} →
Y → {v} ∪ (Z = {z}). Without loss of generality, let q1 → q2. If u = q2,
then v → q1 and z → Q1 and y1zq2vq1y2 is a Hamiltonian path through e, a
contradiction. If u = z, then v → Q1 and y1zvq1q2y2 is a Hamiltonian path,
again a contradiction.

Thirdly, let Q1 6= ∅ and Q2 6= ∅. At first, let |Y | = 2, and thus |Z| = 1.
In this case (4.18) and the degree-conditions imply that Q1 = {q1} → Y =
{y1, y2} → Q2 = {q2} → ({v} ∪ (Z = {z})) → Q1. If u = q2, then either
zy1q2vq1y2 or y2q2vq1y1z is a Hamiltonian path through e, and if u = z, then
y1q2zvq1y2 is a Hamiltonian path containing e, in all cases a contradiction.
If finally |Y | = 1, and thus |Z| = 0, then it is straightforward to show that
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there is a vertex q1 ∈ R1 such that d−(q1) = 0 or a vertex q2 ∈ R2 such that
d+(q2) = 0, which contradicts the degree-conditions.

Subcase 2.6. Let (ni) = 1, 1, 3, 3, 3. This implies that d+(x) = d−(x) = 5
for x ∈ V1 ∪ V2 and d+(x) = d−(x) = 4 for x ∈ V3 ∪ V4 ∪ V5.

Subcase 2.6.1. Assume that one of the vertices u and v is in V3 ∪ V4 ∪ V5,
say v ∈ V3∪V4∪V5. In this case, we deduce that D′ = D−v has the partition-

sequence 1, 1, 2, 3, 3 such that il(D
′) = 1. Because of

|V (D′)|−|V ′
4 |−2|V ′

5 |+2

2
= 3

2
>

il(D
′) = 1 and |V (D′)| − 3|V ′

5 | + 1 = 2 > il(D
′), Theorem 4.28 yields that D′

is Hamiltonian, a contradiction.

Subcase 2.6.2. Suppose that {u, v} ⊆ V1∪V2. This implies that D′ = D−v

has the partition-sequence 1, 3, 3, 3 with il(D
′) = 1. Since

|V (D′)|−|V ′
3 |−2|V ′

4 |+2

2
=

3
2

> il(D
′) = 1 and |V (D′)|−3|V ′

4 |+1 = 2 > il(D
′), we arrive at a contradiction

to Theorem 4.28.

Subcase 2.7. Let (ni) = 1, 1, 2, 2, 3. This implies that d+(x) = d−(x) = 4
for x ∈ V1∪V2, {d

+(x), d−(x)} = {3, 4} for x ∈ V3∪V4 and d+(x) = d−(x) = 3
for x ∈ V5.

Subcase 2.7.1. Assume that one of the vertices u and v is in V5, say v ∈ V5.
It follows that D′ = D − v has the partition-sequence 1, 1, 2, 2, 2, and because

of
|V (D′)|−|V ′

4 |−2|V ′
5 |+2

2
= 2 ≥ ig(D

′), Theorem 4.28 yields that D′ is Hamiltonian,
a contradiction.

Subcase 2.7.2. Suppose that one of the vertices u and v is in V3 ∪ V4, say
v ∈ V3 ∪ V4. In this case, D′ = D − v has the partition-sequence 1, 1, 1, 2, 3
such that {d+(x), d−(x)} = {3, 4} for x ∈ V ′

1 ∪ V ′
2 ∪ V ′

3 , d+(x), d−(x) = 3 or
{d+(x), d−(x)} = {2, 4} for x ∈ V ′

4 and {d+(x), d−(x)} = {2, 3} for x ∈ V ′
5 .

Subcase 2.7.2.1. Let D′ have a cycle-factor. Theorem 4.16 implies that
κ(D′) ≥ |V (D′)|−α(D′)−2il(D

′)
3

= 1
3
, which means κ(D′) ≥ 1. If even κ(D′) ≥ 2 =

bα(D′)
2

c+ 1, then Theorem 4.27 yields that D′ is Hamiltonian, a contradiction.
Hence let κ(D′) = 1 and let v̂ be a cut-vertex of D′. Now D′′ = D′− v̂ consists
of the strong components P1, P2, . . . , Pt with t ≥ 2 and Pi Ã Pj, if i < j. If
|V (P1)| = 1 and v1 ∈ V (P1), then d−

D′(v1) ≤ 1, a contradiction. Consequently,
let |V (P1)| ≥ 3 and analogously, it follows that |V (Pt)| ≥ 3. Because of
|V (D′′)| = 7, we obtain that |V (P1)| = 3 or |V (Pt)| = 3, say |V (P1)| = 3. This
implies that d−

D′(v1) ≤ 2 for all v1 ∈ V (P1). Since all the three vertices of P1

are in different partite sets, this is a contradiction.

Subcase 2.7.2.2. Let D′ have no cycle-factor. To get no contradiction to
Theorem 6.4, we conclude that |Y | = 3 and |Z| = 2, if Q1 = ∅ or Q2 = ∅ and
|Y | = |Z| + 1 with |Y | ≥ 2, if Q1 6= ∅ and Q2 6= ∅.

Firstly, let Q1 = ∅, and thus |Q2| = 3. The degree-conditions and (4.18)
imply that ({v}∪(Z = {z1, z2})) → Y = {y1, y2, y3} → Q2 = {q1, q2, q3}, every
vertex of Z has at most one outer neighbor in Q2 and every vertex of Q2 has at
most one inner neighbor in Z. If there are vertices z1 ∈ Z and q1, q2 ∈ Q2 such
that z1 → q1 and q2 ∈ V (z1), then it is straightforward to show that we arrive
at a contradiction. Summarizing our results, we see that each vertex of Z has
at least two inner neighbors in Q2. If u ∈ Q2, without loss of generality u = q1,
then the vertices of Q2 and Z can be numerated such that y1q1vy2q2z1y3q3z2

is a Hamiltonian path containing the arc e, a contradiction. If u ∈ Z, say
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u = z2, then the vertices can be numerated such that y1q1z2vy2q2z1y3q3 is a
Hamiltonian path through e, again a contradiction.

Secondly, let Q2 = ∅, and thus |Q1| = 3. Analogously as in the case Q1 = ∅,
we observe that Q1 = {q1, q2, q3} → Y = {y1, y2, y3} → ({v} ∪ (Z = {z1, z2}))
and each vertex of Z has at least one outer neighbor in Q1. If u ∈ Q1, say
u = q1, then it is straightforward to prove that v → Q1 − {q1}, z1 → z2

with z2 ∈ V (v), z2 → Q1 and z1 Ã Q1. Therefore, the vertices in Q1 can be
numerated such that y1z2q1vq2y2z1q3y3 is a Hamiltonian path containing e, a
contradiction. If u ∈ Z, say u = z2, then the vertices of Q1 can be numerated
such that q1y1z2vq2y2z1q3y3 is a Hamiltonian path of D, a contradiction.

Thirdly, let Q1 6= ∅ and Q2 6= ∅. At first, let |Y | = 3 and thus |Z| = 2
and |Q1| + |Q2| = 3. If |Q1| = 1 and |Q2| = 2, then it is easy to see that
Q1 = {q1} → Y = {y1, y2, y3} → Q2 = {q2, q

′
2} → Z = {z1, z2} → Q1, q1 → q2,

V ′
4 = {q1, q

′
2}, q2 → q′2, without loss of generality z1 → z2 and Q2 Ã v →

Q1. Furthermore, we deduce that each vertex of Z has at least one outer
neighbor in Y . If u = q2, then the vertices of Y can be numerated such that
y1q2vq1y2q

′
2z1z2y3 is a Hamiltonian path containing the arc e, a contradiction.

If u = z1, then the vertices of Y can be numerated such that y1q2z1vq1y2q
′
2z2y3

is a Hamiltonian path, again a contradiction. If u = z2, then analogously, we
arrive at a contradiction. Now, let |Q1| = 2 and |Q2| = 1. Following the same
lines as above, we observe that Q1 = {q1, q

′
1} → Y = {y1, y2, y3} → Q2 =

{q2} → Z = {z1, z2} → Q1, q1 → q′1 → q2, V ′
4 = {q1, q2} and Q2 → v Ã Q1.

Moreover, there are two different vertices , say y2, y3 ∈ Y such that y2 → z1

and y3 → z2. If u = q2, then y1q2vq1y2z1q
′
1y3z2 is a Hamiltonian path through

e, and if u ∈ Z, say u = z1, then y2z1vq1y1q2z2q
′
1y3 is a Hamiltonian path

containing the arc e = uv, in both cases a contradiction.

Suppose that |Y | = 2 and thus |Z| = 1. Since |V (D′)| − |Y | − |Z| = 5, we
either have |R1| ≤ 2 or |R2| ≤ 2. If |R1| ≤ 2, then there is a vertex r1 ∈ R1

such that d−
D′(r1) ≤ 1 and if |R2| ≤ 2, then there is a vertex r2 ∈ R2 such that

d+
D′(r2) ≤ 1, in both cases a contradiction.

Subcase 2.7.3. Assume that {u, v} ⊆ V1 ∪ V2. This implies that D′ =
D − v has the partition-sequence 1, 2, 2, 3 such that {d+(x), d−(x)} = {3, 4}
for x ∈ V ′

1 , d+(x) = d−(x) = 3 or {d+(x), d−(x)} = {2, 4} for x ∈ V ′
2 ∪ V ′

3 and
{d+(x), d−(x)} = {2, 3} for x ∈ V ′

4 .

Subcase 2.7.3.1. Let D′ have a cycle-factor. Analogously as in Subcase
1.2.3.1, we arrive at a contradiction.

Subcase 2.7.3.2. Suppose that D′ has no cycle-factor. According to The-
orem 6.4, we conclude that |Y | = 3 and |Z| = 2, if Q1 = ∅ or Q2 = ∅, and
|Z| + 1 = |Y | ≥ 2, if Q1 6= ∅ and Q2 6= ∅.

Firstly, let Q1 = ∅ and thus |Q2| = |Q| = 3. This yields ({v} ∪ (Z =
{z1, z2})) → Y = {y1, y2, y3} → Q2 = {q1, q2, q3}. If there are vertices z2 ∈ Z
and q1 ∈ Q2 such that z2 → q1, then it follows that z1 → z2 or z1 ∈ V (z2). If
z1 → z2, then we have v → Z, a contradiction to d+(v) ≤ 4. If z1 ∈ V (z2),
then we conclude that z1 → v → Q2 → z1 and Q2 − {q1} → z2. The case
that u = z1 yields the Hamiltonian path y1q1z1vy2q2z2y3q3, and if u = q1,
then y1q2vy2q1z1y3q3z2 is a Hamiltonian path containing e, in both cases a
contradiction. Hence, Q2 Ã Z and for each fixed q1 ∈ Q2, the other two
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vertices q2, q3 of Q2 can be numerated such that q2 → z1 and q3 → z2. If
u ∈ Q2, say u = q1, then y1q1vy2q2z1y3q3z2 is a Hamiltonian path and if u ∈ Z,
say u = z1, then y1q2z1vy2q3z2y3q1 is a Hamiltonian path containing the arc
e = uv, in all cases a contradiction.

Secondly, let Q2 = ∅ and thus |Q1| = 3. Following the same lines as above,
we see that Q1 = {q1, q2, q3} → Y = {y1, y2, y3} → ({v} ∪ (Z = {z1, z2})).
Furthermore, for each fixed vertex q1 ∈ Q1, it is straightforward to show
that the vertices of Z can be numerated such that z1 → q2 and z2 → q3.
Since u ∈ V ′

1 , it is impossible that u ∈ Y . If u ∈ Q1, say u = q3, then
y1z2q3vq1y2z1q2y3 is a Hamiltonian path containing e, and if u ∈ Z, say u = z1,
then q1y1z1vq2y2z2q3y3 is a Hamiltonian path, in all cases a contradiction.

Thirdly, let Q1 6= ∅ and Q2 6= ∅. At first, we assume that |Y | = 3 and
thus |Z| = 2 and |Q1| + |Q2| = 3. If |Q1| = 1 and |Q2| = 2, then it follows
that Q1 = {q1} → Y = {y1, y2, y3} → Q2 = {q2, q

′
2} Ã Z = {z1, z2} →

Q1, q1 → q2 → q′2, q′2 ∈ V (q1) and Q2 → v → Q1. Furthermore, v has
an outer neighbor in Y , say v → y2. If u = q2, then z1y1q2vy2q

′
2z2q1y3 or

y3q2vy2q
′
2z2q1y1z1 is a Hamiltonian path and if u ∈ Z, say u = z1, then either

y1q2z1vy2q
′
2z2q1y3 or y1q

′
2z1vy2q2z2q1y3 is a Hamiltonian path containing e, in

all cases a contradiction. If |Q1| = 2 and |Q2| = 1, then analogously, we observe
that Q1 = {q1, q

′
1} → Y = {y1, y2, y3} → Q2 = {q2} → Z = {z1, z2} Ã Q1,

q1 → q′1 → q2, q1 ∈ V (q2) and Q2 → v → Q1. Since u ∈ V ′
1 , it follows that

u ∈ Z. If u = z1, then it is straightforward to show that z2 has an inner
neighbor in Y, say y2 → z2. But now, y1q2z1vq′1y2z2q1y3 is a Hamiltonian
path containing e, a contradiction. If u = z2, then analogously, we arrive at a
contradiction.

Now, let |Y | = 2 and thus |Z| = 1. Since |V (D′)| − |Y | − |Z| = 5, we
either have |R1| ≤ 2 or |R2| ≤ 2. If |R1| ≤ 2, then there is a vertex r1 ∈ R1

such that d−
D′(r1) ≤ 1 and if |R2| ≤ 2, then there is a vertex r2 ∈ R2 such that

d+
D′(r2) ≤ 1, in both cases a contradiction.

Subcase 2.8. Let (ni) = 1, 1, 1, 3, 3. This implies that d+(x) = d−(x) = 4
for x ∈ V1 ∪ V2 ∪ V3 and d+(x) = d−(x) = 3 for x ∈ V4 ∪ V5.

Subcase 2.8.1. Suppose that one of the vertices u and v is in V4 ∪ V5, say
v ∈ V4 ∪V5. This yields that D′ = D− v has the partition-sequence 1, 1, 1, 2, 3
such that {d+(x), d−(x)} = {3, 4} for x ∈ V ′

1 ∪ V ′
2 ∪ V ′

3 , d+(x) = d−(x) = 3 for
x ∈ V ′

4 and {d+(x), d−(x)} = {2, 3} for x ∈ V ′
5 .

Subcase 2.8.1.1. Let D′ have a cycle-factor. Since
|V (D′)|−2|V ′

5 |−|V ′
4 |+3

2
= 3

2
>

1 = il(D
′), Theorem 8.13 implies that D′ is Hamiltonian, a contradiction.

Subcase 2.8.1.2. Let D′ have no cycle-factor. Since
|V (D′)|−2|V ′

5 |−|V ′
4 |+3

2
=

3
2

> 1 = il(D
′), Theorem 6.4 yields that Q1 = ∅ or Q2 = ∅. Furthermore,

Theorem 6.4 implies that |Y | = 3 and |Z| = 2.
Firstly, let Q1 = ∅. It follows that Y = {y1, y2, y3} → Q2 = {q1, q2, q3} →

Z = {z1, z2} → Y q1 → q2 → q3 → q1, Q2 → v → Y and Z ⊆ V (v). Hence,
u ∈ Q2, say u = q1 and y1q1vy2q2z1y3q3z2 is a Hamiltonian path through e, a
contradiction.

Secondly, let Q2 = ∅. Analogously, we observe that Y = {y1, y2, y3} →
Z = {z1, z2} → Q1 = {q1.q2, q3} → Y → v → Q1, q1 → q2 → q3 → q1

and Z ⊆ V (v). This yields u ∈ Y , say u = y1 and y1vq1y2z1q2y3z2q3 is a
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Hamiltonian path containing e, a contradiction.
Subcase 2.8.2. Suppose that {u, v} ⊆ V1∪V2∪V3. In this case, D′ = D−v

has the partition-sequence 1, 1, 3, 3 such that {d+(x), d−(x)} = {3, 4} for x ∈
V ′

1 ∪ V ′
2 and {d+(x), d−(x)} = {2, 3} for x ∈ {2, 3} for x ∈ V ′

3 ∪ V ′
4 .

Subcase 2.8.2.1. Let D′ have a cycle-factor. Then analogously as in Subcase
1.2.3.1, we arrive at a contradiction.

Subcase 2.8.2.2. Assume that D′ has no cycle-factor. According to Theo-
rem 6.4, we have |Y | = 3 and |Z| = 2.

Firstly, suppose that Q1 = ∅. This implies that Y = {y1, y2, y3} → Q2 =
{q1, q2, q3} → Z = {z1, z2} → Y , z1 → z2, Q2 = V (q1) and Q2 ∪ {z2} → v →
Y ∪ {z1}. Since u ∈ V ′

1 ∪ V ′
2 , it follows that u = z2 and y1q1z2vy2q2z1y3q3 is a

Hamiltonian path containing the arc e, a contradiction.
Secondly, let Q2 = ∅. Analogously, we observe that Y = {y1, y2, y3} →

Z = {z1, z2} → Q1 = {q1, q2, q3} → Y , z1 → z2, Q1 = V (q1) and Y ∪ {z2} →
v → Q1 ∪ {z1}. Hence, u = z2 and q1y1z2vq2y2z1q3y3 is a Hamiltonian path
through e, a contradiction.

Thirdly, let Q1 6= ∅ and Q2 6= ∅, and thus |Q1| + |Q2| = 3. If |Q1| = 1
and |Q2| = 2, then it follows that Q1 = {q1} → Y = {y1, y2, y3} → Q2 =
{q2, q

′
2} → Z = {z1, z2} → Q1, z1 → z2, V (q1) = {q1, q2, q

′
2} and Q2 → v → Q1.

Furthermore, each vertex of Z has an outer neighbor in Y. Since u ∈ V ′
1 ∪ V ′

2 ,
we deduce that u ∈ Z, say u = z2. But now, the vertices of Y can be
numerated such that y1q2z2vq1y2q

′
2z1y3 is a Hamiltonian path containing the

arc e, a contradiction. If |Q1| = 2 and |Q2| = 1, then analogously, we see that
Y = {y1, y2, y3} → Q2 = {q2} → Z = {z1, z2} → Q1 = {q1, q

′
1} → Y , z1 → z2,

{q1, q
′
1, q2} = V (q1) and Q2 → v → Q1. Moreover, each vertex of Z has an

inner neighbor in Y . Since u ∈ V ′
1 ∪ V ′

2 , we conclude that u ∈ Z, say u = z2.
But now, the vertices of Y can be numerated such that y1z2vq1y2q2z1q

′
1y3 is a

Hamiltonian path, again a contradiction.
Subcase 2.9. Let (ni) = 1, 1, 1, 1, 3. This implies that d+(x) = d−(x) = 3

for x ∈ V1 ∪ V2 ∪ V3 ∪ V4 and d+(x) = d−(x) = 2 for x ∈ V5.
Subcase 2.9.1. Suppose that one of the vertices u and v is in V5, say v ∈ V5.

It follows that D′ = D − v has the partition-sequence 1, 1, 1, 1, 2 such that
{d+(x), d−(x)} = {2, 3} for x ∈ V ′

1 ∪ V ′
2 ∪ V ′

3 ∪ V ′
4 and d+(x) = d−(x) = 2 for

x ∈ V ′
5 . Because of

|V (D′)|−|V ′
4 |−2|V ′

5 |+2

2
= 3

2
> 1 = il(D

′) and |V (D′)|−3|V ′
5 |+1 =

1 = il(D
′), Theorem 4.28 yields that D′ is Hamiltonian, a contradiction.

Subcase 2.9.2. Assume that {u, v} ⊆ V1 ∪ V2 ∪ V3 ∪ V4. In this case, D′ =
D − v has the partition-sequence 1, 1, 1, 3 such that {d+(x), d−(x)} = {2, 3}
for x ∈ V ′

1 ∪ V ′
2 ∪ V ′

3 and {d+(x), d−(x)} = {1, 2} for x ∈ V ′
4 .

Subcase 2.9.2.1. Let D′ have a cycle-factor. This implies that D′ is Hamil-
tonian, a contradiction.

Subcase 2.9.2.2. Suppose that D′ has no cycle-factor. It follows that |Y | =
|Z| + 1 ≥ 2, if Q1 = ∅ or Q2 = ∅, since otherwise we arrive at a contradiction
to Theorem 6.4 with t ≥ 2 or k ≥ 1. If Q1 6= ∅ and Q2 6= ∅, then we deduce
from Theorem 6.4 that |Y | = 3 and |Z| = 2. But this yields that either Q1 = ∅
or Q2 = ∅, in both cases a contradiction.

Firstly, let Q1 = ∅. Let |Y | = 3 and |Z| = 2. In this case, it follows
that Y = {y1, y2, y3} → Q2 = {q2} → ({v} ∪ (Z = {z1, z2})) and z1 → z2.
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Suppose that v → Y . Then, we conclude that Z → v and the vertices of
Y can be numerated such that z2 → {y1, y2} → z1 → y3 → z2. If u = q2,
then y3q2vy2z1z2y1 is a Hamiltonian path, if u = z1, then y1z1vy3q2z2y2 is a
Hamiltonian path and if u = z2, then y1q2z2vy2z1y3 is a Hamiltonian path
containing e, in all cases a contradiction. Now, let v have two outer neighbors
in Y , say y3 → v → {y1, y2}. If z2 → v → z1, then we deduce that Z → y3

and without loss of generality z1 → y1 → z2 → y2 → z1. If u = q2, then
y1q2vy2z1z2y3 is a Hamiltonian path and if u = z2, then y1z2vy2q2z1y3 is a
Hamiltonian path, in both cases a contradiction. Hence, let z1 → v → z2. Now,
we see that Z → y3 and z2 → {y1, y2} → z1. If u = q2, then y1q2vy2z1z2y3

is a Hamiltonian path and if u = z1, then y2z1vy1q2z2y3 is a Hamiltonian
path through e, in both cases a contradiction. Hence, let v have only one
outer neighbor in Y , say {y2, y3} → v → y1. This implies that z2 → Y and
y1 → z1 → {y2, y3}. If u = q2, then y2q2vy1z1z2y3 is a Hamiltonian path
containing e, also a contradiction.

Consequently, let |Y | = 2, |Z| = 1 and |Q2| = 2. The degree-conditions and
(4.18) imply that V ′

4 − Y = {y3} ⊆ R2, ({v} ∪ (Z = {z})) → Y = {y1, y2} →
Q2 = {q1, q2}, q1 → q2 → y3 and q2 → {z, v}. Since d+(v) ≤ 3, we conclude
that v has only one further outer neighbor except the two vertices of Y . If
this vertex is q1, then it follows that q1 → y3 and {q1, y3} → z. If u = q2,
then y1q2vq1y3zy2 is a Hamiltonian path, and if u = z, then y1q1y3zvy2q2 is
a Hamiltonian path containing the arc e, in both cases a contradiction. If
the third outer neighbor is z, then we deduce that either z → q1 or z → y3.
If z → q1, then we have q1 → y3 → z. If u = q1, then q1vy1q2y3zy2 is a
Hamiltonian path, and if u = q2, then q2vy1q1y3zy2 is a Hamiltonian path
through e, in both cases a contradiction. Hence, let z → y3. This yields that
y3 → q1 → z. If u = q1, then y1q1vzy2q2y3 is a Hamiltonian path and if
u = q2, then y1q2vy2q1zy3 is a Hamiltonian path containing the arc e, in both
cases a contradiction. Finally, let v → y3, which implies that y3 → q1 and
{y3, q1} → z. If u = q1, then q1vy1q2y3zy2 is a Hamiltonian path, if u = q2,
then y1q2vy3zy2q1 is a Hamiltonian path, and if u = z, then y1q2y3zvy2q1 is a
Hamiltonian path containing the arc e, in all cases a contradiction.

Secondly, let Q2 = ∅. Let |Y | = 3 and |Z| = 2. It follows that Z =
{z1, z2} → Q1 = {q1} → Y = {y1, y2, y3}, v → q1 and z1 → z2. If Y → v,
then we arrive at a contradiction to u ∈ V ′

1 ∪ V ′
2 ∪ V ′

3 . If v has only one
inner neighbor in Y , say y1 → v → {y2, y3}, then we deduce that Z → v,
{y2, y3} → Z and z2 → y1 → z1. If u = z1, then y2z1vq1y3z2y1 is a Hamiltonian
path and if u = z2, then y2z2vy3z1q1y1 is a Hamiltonian path through e, in
both cases a contradiction. Hence, let v have two inner neighbors in Y , say
{y1, y2} → v → y3. If z2 → v → z1, then it follows that y3 → Z and without
loss of generality z2 → y1 → z1 → y2 → z2. This implies that u = z2 and
y2z2vy3z1q1y1 is a Hamiltonian path containing e, a contradiction. On the
other hand, if z1 → v → z2, then this implies that z2 → {y1, y2} → z1 and
y3 → Z. This yields u = z1 and y1z1vq1y3z2y2 is a Hamiltonian path containing
the arc e, a contradiction.

Consequently, it remains to consider the case that |Y | = 2, |Z| = 1 and
|Q1| = 2. As in the case that Q1 = ∅, we see that V ′

4 − Y = {y3} ⊆ R1. The
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degree-conditions and (4.18) yield Q1 = {q1, q2} → Y = {y1, y2} → ({v}∪(Z =
{z})), y3 → q1 → q2 and {v, z} → q1. Since d−(v) = 3, we conclude that v
has one further inner neighbor except the two vertices of Y . This neighbor
has to be u. If u = q2, then it follows that y3 → q2 and z → {y3, q2} and
y1zq2vy3q1y2 is a Hamiltonian path containing e, a contradiction. If u = z,
then y1zvy3q1q2y2 is a Hamiltonian path through e, again a contradiction.

Subcase 2.10. Let (ni) = 1, 2, 2, 3, 3. It follows that d+(x) = d−(x) = 5 for
x ∈ V1, {d

+(x), d−(x)} = {4, 5} for x ∈ V2 ∪ V3 and d+(x) = d−(x) = 4 for
x ∈ V4 ∪ V5.

Subcase 2.10.1. Assume that one of the vertices u and v is in V4 ∪ V5, say
v ∈ V4 ∪ V5. In this case, D′ = D − v has the partition-sequence 1, 2, 2, 2, 3.

Because of
|V (D′)|−2|V ′

5 |−|V ′
4 |+2

2
= 2 ≥ ig(D

′), Theorem 4.28 yields that D′ is
Hamiltonian, a contradiction.

Subcase 2.10.2. Suppose that one of the vertices u and v is in V2 ∪ V3, say
v ∈ V2∪V3. This implies that D′ = D−v has the partition-sequence 1, 1, 2, 3, 3
such that {d+(x), d−(x)} = {4, 5} for x ∈ V ′

1 ∪ V ′
2 , d+(x) = d−(x) = 4 or

{d+(x), d−(x)} = {3, 5} for x ∈ V ′
3 and {d+(x), d−(x)} = {3, 4} for x ∈ V ′

4∪V ′
5 .

Subcase 2.10.2.1. Let D′ have a cycle-factor. According to Corollary 5.9,
we have κ(D′) ≥ 2 = bα(D′)

2
c + 1. Now Theorem 4.27 yields a contradiction.

Subcase 2.10.2.2. Let D′ have no cycle-factor. Since |V (D′)| − 3|V ′
5 |+ 2 =

3 > il(D
′), with Theorem 6.4, it follows that Q1 6= ∅ and Q2 6= ∅. To get

no contradiction to Theorem 6.4, we also conclude that |Y | = 3 and |Z| = 2
and thus |Q1| + |Q2| = 5. If |Q1| = 2 and |Q2| = 3, then there is a vertex
q1 ∈ Q1 such that either d+(q1) ≥ 6 or d+(q1) ≥ 5 and |V (q1)| ≥ 3, in both
cases a contradiction. Analogously, we arrive at a contradiction, if |Q1| = 3
and |Q2| = 2 or |Q1| = 1 and |Q2| = 4 or |Q1| = 4 and |Q2| = 1.

This completes the proof of the theorem. ¤

In the case that c = 4, the statement of the last theorem becomes false as
the following example demonstrates.

Example 8.16 (Volkmann, Winzen [41]) Let V1 = {u}, V2 = {v}, V3 =
{q1, q2} and V4 = {y1, y2, y3} be the partite sets of a multipartite tournament
D such that V4 → q2 → (V1 ∪ V2) → q1 → V4 and u → v → {y1, y2} → u →
y3 → v (see Figure 8.1). Then D is an almost regular 4-partite tournament
with the property that the arc uv is not contained in a Hamiltonian path of D.

Remark 8.17 (Volkmann, Winzen [41]) With similar methods as in the
proof of Theorem 8.15 we have shown that the assertion of this theorem also
holds, if c = 4 and D does not have the partition-sequence 1, 1, 2, 3, but the
improvement may not be worth the additional effort.

Theorem 8.14, Theorem 8.15, Example 8.16 and Remark 8.17 lead imme-
diately to our main result, which contains the statement that h(1) = 5 with h
defined as in Problem 8.2.
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Figure 8.1: An almost regular 4-partite tournament D with the property
that the arc uv is not contained in a Hamiltonian path of D

Theorem 8.18 (Volkmann, Winzen [41]) Let D be an almost regular c-
partite tournament. If c ≥ 5 or if c = 4 and D does not have the partition-
sequence 1, 1, 2, 3, then every arc of D is contained in a Hamiltonian path of
D.

8.3 Almost regular 3-partite tournaments

As seen in Corollary 8.7 and in Remark 8.17, there are only finitely many
almost regular 4-partite tournaments with the property that not all arcs are
contained in a Hamiltonian path. In the class of almost regular 3-partite
tournaments, there are infinitely many digraphs with this property as the
following two examples demonstrate.

Example 8.19 (Volkmann, Winzen [41]) Let V1 = {x1, x2, . . . , xr}, V2 =
{y1, y2, . . . , yr} and V3 = {z1, z2, . . . , zr+1} be the partite sets of a 3-partite
tournament D′ such that V1 → V2 → V3 → V1. If we reverse the cycle x1y1z1x1

of D′, then the resulting 3-partite tournament D is almost regular with the
property that the arc y1 → x1 is not contained in a Hamiltonian path of D.

Example 8.20 (Volkmann, Winzen [41]) Let V1 = {x1, x2, . . . , xr}, V2 =
{y1, y2, . . . , yr} and V3 = {z1, z2, . . . , zr+2} be the partite sets of a 3-partite
tournament D′ such that V1 → V2 → {z1, z2, . . . , zr} → V1, V1 → zr+1 → V2

and V2 → zr+2 → V1. If we reverse the cycle x1y1zr+2x1 of D′, then the
resulting 3-partite tournament D is almost regular with the property that the
arc y1 → x1 is not contained in a Hamiltonian path of D.

Nevertheless, we will present a sufficient condition for an arc of an almost
regular 3-partite tournament D to be part of a Hamiltonian path of D.

Theorem 8.21 (Volkmann, Winzen [41]) Let D be an almost regular 3-
partite tournament. Then every arc that is contained in a cycle-factor of D
belongs to a Hamiltonian path of D.



164 CHAPTER 8. HAMILTONIAN PATHS CONTAINING A GIVEN ARC

Proof. Let e = uv be an arbitrary arc that is contained in a cycle-factor F .
Suppose that there is no Hamiltonian path in D including e. If F consists of
only one cycle, then D is Hamiltonian, a contradiction. Hence, let F consist of
at least two cycles. Now let C be the cycle containing the arc e and F ′ = F −
V (C). According to Theorem 8.10, we may assume that F ′ = C1∪C2∪ . . .∪Cp

with the properties given in Theorem 8.10. Since D is almost regular, Lemma
4.10 implies that

d(C1, F
′ − V (C1)) + d(C1, C) ≤ |C1| + d(F ′ − V (C1), C1) + d(C,C1). (8.2)

If there is a vertex in C except u with an outer neighbor in C1, then, according
to Theorem 8.10, it is a simple matter to find a Hamiltonian path containing
the arc e = uv, by using this arc, and first picking up all vertices in C, then
all vertices in C1, then all in C2, etc.

Thus, it remains the case that V (C1)Ã (V (C) − {u}). Since |V (C)| ≥ 3,
we conclude that d(C1, C) ≥ d(C,C1).

Firstly, we assume that F ′ consists of only one cycle. As seen above,
we have V (C1) Ã v+. If w ∈ V (C1) is a vertex such that w → v+, then
w+ . . . w−wv+ . . . uv is a Hamiltonian path with e = uv as the last arc, a
contradiction.

Secondly, let F ′ consist of p ≥ 2 cycles. If V (C1) Ã V (Cj) for some
j ∈ {2, 3, . . . , n}, then with Theorem 8.11, we conclude that d(C1, F

′−(V (C1)∪
V (Cj))) ≥ 2d(F ′ − (V (C1) ∪ V (Cj)), C1). Because of d(C1, Cj) ≥ 2|C1| >
|C1|, d(Cj, C1) = 0 and d(C1, C) ≥ d(C,C1), we obtain

d(C1, F
′ − V (C1)) + d(C1, C)

= d(C1, Cj) + d(C1, F
′ − (V (C1) ∪ V (Cj))) + d(C1, C)

> |C1| + d(Cj, C1) + d(F ′ − (V (C1) ∪ V (Cj)), C1) + d(C,C1)

= |C1| + d(C,C1) + d(F ′ − V (C1), C1),

a contradiction to (8.2). Hence, for all 2 ≤ j ≤ p, there exist vertices vj ∈
V (Cj) and v1,j ∈ V (C1) such that vj → v1,j. According to Theorem 8.11, we
have v1,j → v+

j and v−
1,j → vj and there is a partite set V ∗(1, j) such that

{v−
1,j, v

+
j } ⊆ V ∗(1, j). Theorem 8.10 implies that every vertex of Ci+1 has an

inner neighbor in V (Ci). Using the arc vpv1,p, we conclude that |V (C)| = 3,
which means C = uvwu, and V ∗(1, p) = V (w), since otherwise

C2C3 . . . Cp−1v
+
p . . . v−

p vpv1,pv
+
1,p . . . v−

1,pv
+ . . . uv or

C2C3 . . . Cp−1v
+
p . . . v−

p vpv1,pv
+
1,p . . . v−

1,p(v
+)+ . . . uvv+ (8.3)

is a Hamiltonian path through e = uv, if p ≥ 3, a contradiction. In the case
that p = 2 omiting the terms C2C3 . . . Cp−1 in (8.3), we analogously arrive at
a contradiction.

Altogether we observe that for all vertices v1 ∈ V (C1) having an inner
neighbor in V (Cj) it has to be v−

1 Ã V (Cj), since otherwise (v−
1 )− ∈ V ∗(1, j),

a contradiction to the existence of the arc (v−
1 )− → v−

1 . According to Theorem
8.10, every vertex of V (C1) has an outer neighbor in V (C2). By the results
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above, we conclude that for the predecessor v−
1 of each vertex v1 ∈ V (C1) with

|N−(v1) ∩ V (Cj)| = i (2 ≤ j ≤ p, 1 ≤ i) we have the estimation

|N+(v−
1 ) ∩ V (Cj)| ≥

{

2 , if i = 1
i , if i ≥ 2

.

Furthermore, we observe that |N+(v1) ∩ V (C2)| ≥ 2, if |N−(v1) ∩ V (C2)| ≥ 2.
Altogether, we observe the following: Every vertex of V (C1) has an outer
neighbor in V (C2). Since v−

1 Ã V (C2), if there is an arc v2 → v1 with v1 ∈
V (C1) and v2 ∈ V (C2), the observations above imply that for each arc leading
from V (C2) to V (C1), there is an additional arc leading from V (C1) to V (C2).
This means d(C1, C2) ≥ |C1| + d(C2, C1). Using this and Theorem 8.10, we
arrive at a contradiction to (8.2) by

d(C1, F
′ − V (C1)) + d(C1, C)

= d(C1, F
′ − (V (C1) ∪ V (C2))) + d(C1, C2) + d(C1, C)

≥ 2d(F ′ − (V (C1) ∪ V (C2)), C1) + |C1| + d(C2, C1) + d(C,C1)

> d(F ′ − V (C1), C1) + |C1| + d(C,C1),

if p ≥ 3.
Hence, let p = 2. In this case, it is easy to see that (V (C)−{v})Ã V (C2),

since otherwise there can be found a Hamiltonian path containing the arc e,
a contradiction. Especially, it has to be u Ã C2. If additionally there is at
most one vertex v̂1 ∈ V (C1) such that v̂1 → u, then because of |V (C)| = 3, it
follows that d−(u) ≤ 2 and d+(u) ≥ 4, a contradiction to ig(D) ≤ 1. Hence,
there exist vertices v̂1, ṽ1 ∈ V (C1) such that {v̂1, ṽ1} → u, and thus we have
d(C1, C) ≥ d(C,C1) + 4. Summarizing our results, we arrive at

d(C1, F
′ − V (C1)) + d(C1, C) ≥ |C1| + d(F ′ − V (C1), C1) + d(C,C1) + 4,

a contradiction to (8.2). This completes the proof of the theorem. ¤
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