
Automatic Presentations of Infinite Structures

Vince Bárány

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36429063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Automatic Presentations of Infinite Structures

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des

akademischen Grades eines Doktors der Naturwissenschaften genehmigte
Dissertation

vorgelegt von

Vince Bárány, M.Sc.

aus Budapest, Ungarn

Berichter: Universitätsprofessor Dr. Erich Grädel

Universitätsprofessor Dr. Jean-Éric Pin

Tag der mündlichen Prüfung: 5. September 2007

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online
verfügbar.

Abstract

The work at hand studies the possibilities and limitations of the use of finite
automata in the description of infinite structures. An automatic presentation of a
countable structure consists of a labelling of the elements of the structure by finite
words over a finite alphabet in a consistent way so as to allow each of the relations
of the structure to be recognised, given the labelling, by a synchronous multi-tape
automaton. The collection of automata involved constitutes a finite presentation of
the structure up to isomorphism. More generally, one can consider presentations
over finite trees or over infinite words or trees, based on the appropriate model of
automata. In the latter models, uncountable structures are also representable.

Automatic presentations allow for effective evaluation of first-order formulas over
the represented structure in line with the strong correspondence between automata
and logics. Accordingly, automatic presentations can be recast in logical terms
using various notions of interpretations. The simplicity and robustness of the model
coupled with the diversity of automatic structures makes automatic presentations
interesting subject of investigation within the scope of algorithmic model theory.

Although automata have been in use in representations of infinite structures in
computational group theory, in the analysis of numeration systems and finitely gen-
erated infinite sequences as well as in the theory of term rewriting systems, a sys-
tematic investigation of automatic structures using model theoretic methods has
only just begun in the last twelve years.

There are two main lines of research in this field. One would like to have a classi-
fication of automatic models of certain first-order theories of common interest, such
as linear orderings, trees, boolean algebras, groups, etc. Though efforts aimed at ob-
taining structure theorems have produced considerable advancement in recent years,
this programme is still in an early stage. Even further lacking is our understanding
of the richness of automatic presentations of key individual structures. A prominent
result in this area is the deep theorem of Cobham and Semenov concerning numera-
tion systems. In this style, one would like to know the degree of freedom in choosing
automatic presentations of a particular structure.

In this thesis we present contributions to both of these problem areas. We also
study restricted notions of presentations and clarify the relationship of automatic
presentations over finite and infinite words. The peculiarities of using automata
to represent structures up to isomorphism introduce problems out of the range of
classical automata theory. We present some new techniques developed to tackle
these difficulties.

i

Zusammenfassung

In dieser Arbeit werden die Möglichkeiten zur Darstellung unendlicher Struk-
turen mithilfe von endlichen Automaten sowie die Grenzen dieser Methode unter-
sucht. Eine automatische Darstellung einer abzählbaren Struktur besteht aus einer
Beschriftung der Elemente der Struktur mit endlichen Wörtern über einem endlichen
Alphabet in einer konsistenten Art und Weise, so dass jede Relation der Struktur, in
der gewählten Beschriftung, sich durch einen synchronen vielbändigen Automaten
erkennen lässt. Ein Tupel geeigneter Automaten, einer für jede Relation, liefert eine
endliche, bis auf Isomorphie eindeutige Beschreibung der Struktur. Allgemeiner
kann man Darstellungen über endlichen Bäumen oder über unendlichen Wörtern
oder Bäumen betrachten. Letztere sind auch geeignet überabzählbare Strukture zu
beschreiben.

Infolge klassischer Korrespondenzen zwischen Logiken und Automaten wird eine
algorithmische Auswertung logischer Formeln erster Stufe über jeder einzelnen durch
Automaten dargestellten Struktur möglich. Ferner kann man automatische Präsen-
tationen in logische Interpretationen übersezten bzw. als solche wahrnehmen. Die
Einfachheit und Robustheit dieses Modells und die Vielfalt automatischer Struk-
turen motivieren eine ausführlichere Untersuchung automatischer Präsentationen in
Rahmen der algorithmischen Modelltheorie.

Obwohl Automaten längst zur Darstellung unendlicher Strukturen in diversen
Bereichen, u.a. in der algorithmischen Gruppentheorie, Zahlensysteme, endlich gener-
ierten undendlichen Folgen und Termersetzungssysteme in Gebrauch gewesen sind,
wurde erst vor etwa zwölf Jahren eine systematische Untersuchung automatischer
Strukturen mithilfe modelltheoretischer Methoden veranlasst.

Zwei wichtige Forschungsrichtungen werden in diesem Bereich sichtbar. Einer-
seits wird eine Klassifizierung automatischer Modelle bestimmter Theorien erster
Stufe von allgemeinerer Bedeutung, wie z.B. lineare Ordnungen, Bäume, Boolsche
Algebren, Gruppen usw. angestrebt. Trotz anhaltender Bemühungen struktursche
Sätze zu finden und früher Erfolge befindet sich dieses Programm noch in der An-
fangsphase. Noch mangelhafter ist unser Verständnis der reichen Möglichkeiten ver-
schiedener automatischer Darstellungen einzelner Strukturen von zentraler Bedeu-
tung. Ein prominentes Ergebnis in diesem zweiten Bereich ist der tiefgehende Satz
von Cobham und Semenov über wohl bekannte Zahlensysteme. In dieser Tradition
wollen wir den Freiheitsgrad der Wahl einer automatischen Präsentation gewisser
Strukturen genauer verstehen.

In dieser Dissertation werden Beiträge zu den beiden erwähnten Problembere-
ichen vorgelegt, mit Schwerpunkt auf dem letzteren. Ferner werden eingeschränkte
Präsentationen untersucht und das Verhältnis automatischer Darstellungen über
endlichen Wörtern im Vergleich zur Präsentationen mit unendlichen Wörtern geklärt.
Die Eigentümlichkeiten des Gebrauchs von Automaten zur Darstellung von Struk-
turen bis auf Isomorphie erzeugen Probleme ausserhalb der Reichweite klassischer
Automatentheorie. Es werden einige neue Techniken zur Bewältigung dieser Schw-
erigkeiten präsentiert.

ii

Acknowledgement I am most grateful to Erich Grädel for giving me the oppor-
tunity to pursue my interests, for introducing me into an inspiring international
community of researchers, and for his continued support throughout my work. For
the excellent working and learning environment I am equally grateful to Wolfgang
Thomas, and also to Renate Eschenbach-Thomas and her team for creating a won-
derful atmosphere at the Informatik Bibliothek and for acquiring even the rarest of
references.

I have gained much from collaboration with Lukasz Kaiser, Christof Löding, Sasha
Rubin, and Olivier Serre. In addition I thank Arnaud Carayol, Didier Caucal,
Thomas Colcombet, and Luc Segoufin for their illuminating thoughts which have
contributed to this thesis in many ways.

Very special thanks to my brother-in-arms Lukasz once more for his insightful
remarks at every stage of my work and for his companionship during the last forty
some months. Similarly, to Sasha, for always being ready to discuss whatever i had
on my mind. Additionally, I am particularly grateful to Arnaud Carayol, Tobias
Ganzow, Christof Löding and Michael Ummels for careful corrections to this text.

I thank my friends and colleagues Alex, Dietmar, Jan, Kari, Michael, Nico,
Philipp, Stefan, also Bernd, Diana, Frédéric, Henrik, Roman, Wenyun, the respected
members of the hungarian football team: Dénes, Feri, Gergő, Norbert, Roland,
Tamás, as well as my dear friends Balázs, Kata, Mathis, Jutka, Petra, and the
Breuer family heartily for making me feel at home in Aachen. My heart goes to
those at home or abroad Ákos, András, Misi, Orsi, Tamás, and to my loved ones for
spoiling me with their love, trust and constant encouragement and to Panni for all
that we share.

iii

iv

Contents

1 Introduction 1
1.1 From finite to algorithmic model theory 1

1.1.1 Automatic structures . 2
1.1.2 Transition graphs of infinite state processes 5

1.2 Outline of the thesis . 6

2 Preliminaries 11
2.1 Words and trees . 11
2.2 Finite automata on finite words . 12

2.2.1 Multi-tape automata . 12
2.2.2 Semi-synchronous Rational Relations 13
2.2.3 Rational Transductions . 16

2.3 Finite Automata on infinite words . 16
2.4 Finite automata on trees . 18
2.5 Semigroups . 20

2.5.1 Omega-semigroups . 20
2.6 Logics . 21

2.6.1 Interpretations . 24

3 Finite Presentations of Structures 27
3.1 Automatic Presentations . 27

3.1.1 Injective presentations . 31
3.1.2 Decidable and Undecidable Problems 37

3.2 Logical Interpretations as Presentations 38
3.2.1 First-Order Interpretations . 38
3.2.2 Subset Interpretations . 39

3.3 Restrictions . 42
3.3.1 Unary Presentations . 42
3.3.2 p-Automatic Presentations . 43
3.3.3 Prefix-Recognisable Presentations 47
3.3.4 (Regular) Ground Term Rewriting 48

3.4 Equational Presentations . 50
3.4.1 HR-equational graphs . 51
3.4.2 VR-equational graphs . 53
3.4.3 VRA-equational graphs . 54
3.4.4 VRS-equational graphs . 55

v

3.5 Other means of Presentations . 56
3.5.1 Rational graphs . 56
3.5.2 Caucal’s pushdown hierarchy 57
3.5.3 Simply-typed recursion schemes 58
3.5.4 Generalised automatic structures 59

3.6 Landscape and Summary . 60

4 Analysis of Presentations 63
4.1 General Tools: Pumping and Growth Arguments 63
4.2 Equivalent Presentations . 66

4.2.1 Semi-synchronous transductions 71
4.3 Case Studies . 73

4.3.1 Complete Structures . 73
4.3.2 Subset Envelopings . 74
4.3.3 Presburger Arithmetic . 76

5 Automatic Words – a hierarchy of higher-order morphic words 81
5.1 Morphic words and regular numeration systems 81
5.2 MSO-friendly presentations . 85
5.3 k-lexicographic presentations . 87
5.4 MSO-friendliness, Closure and Decidability 89

5.4.1 Technical tools: automata transformations 89
5.4.2 k-lexicographic presentations are MSO-friendly 91

5.5 Hierarchy Theorem . 95
5.6 k-morphic words . 97
5.7 Equivalent characterisations . 99
5.8 Connection to the pushdown hierarchy 100
5.9 Remarks and questions . 104

6 Regularity Preserving Transductions 109
6.1 MSO-definable string transductions 110
6.2 Translations mapping prefix-recognisable relations to regular ones . . 110

6.2.1 Alternative proof of MSO-friendliness of k-lex presentations . . 112
6.3 Representable transductions . 117
6.4 Run-length encodings . 118

7 Definability and Intrinsic Regularity 121
7.1 Logical Extensions . 122

7.1.1 Generalised Quantifiers . 123
7.1.2 Order-Invariant Formulas . 126
7.1.3 Separating Example . 126
7.1.4 The hierarchy of regularity preserving quantifiers 128

7.2 More examples, remarks and questions 129
7.2.1 Structures of Bounded Degree 129

vi

7.2.2 Prefix-ordered trees . 129

Bibliography 142

Index 146

vii

viii

List of Figures

3.1 An automaton for the equal-ends relation. 32
3.2 Landscape of classes of finitely presentable graphs (structures) 61

4.1 Factoring f(x) along Gf with block sizes shown. 70

5.1 k-Stacks as depth k trees of unbounded branching. 97
5.2 Iteratively applying ϕ = [τσ] of Example 5.6.3 to γ = [[#]]. 98
5.3 The tree T<2-llex

facilitating 2-lex words. 102
5.4 Constructing T<2-llex

from T<1-llex
: illustration on a finite subtree. . . 103

6.1 Tree transducer for type checking . 116

7.1 B, a separating example. 127

ix

x

1 Introduction

1.1 From finite to algorithmic model theory

The 1980s and early 1990s have seen the emergence and rapid development of finite
model theory as a branch of mathematical logic with deep connections to theoret-
ical computer science. Relational databases have provided an important source of
motivation and field of application. In this setting, the correspondence between
models and databases, respectively logics and query languages is a very natural
one. Descriptive complexity theory was born out of definability questions in fi-
nite model theory. In this area, a number of deep connections to computational
complexity theory have been unearthed [Imm99, GKL+07]. Finite model theory
has thus established itself as an important research field within the widely gen-
eral scopes of mathematical foundations of computer science and logic in computer
science [EF95, Lib04, GKL+07].

There is, however, no reason to stop here. Design and verification of infinite
state reactive systems, as well as constraint databases [KLP00] and knowledge bases
are important application areas for a model theory of finitely presentable infinite
structures. Of course, the domain of infinite structures considered has to be chosen
with care for logical problems to be amenable to algorithmic solutions. Accordingly,
differences in motivation have lead to the introduction of a multitude of classes
of finitely presentable structures as suitable domains of applications in computer
science.

Classes of finitely presentable structures of special interest in mathematics and
computer science include groups and semigroups [CEH+92, CRRT01], numeration
systems [Fro02] and infinite sequences [AS03], databases [KLP00, BLSS03] and tran-
sition graphs of infinite state processes [May00, Cau03].

Finitely presentable infinite structures

The programme of algorithmic model theory is to extend the range of applications of
model theory in computer science from finite structures to various classes of finitely
presentable infinite structures enjoying basic decidability- and closure properties
depending on the intended applications. In particular,

• the structures should have decidable first-order or monadic second-order the-
ories, or something in between, e.g. first-order with reachability;

• the class of structures should be closed under basic operations and/or logical
interpretations, e.g. definable extensions.

1

1 Introduction

The notion of recursive structures, though well established, is far too general
yielding undecidability of small fragments of first-order logic. To meet the above
aims one must severely restrict the notion of computation allowed in the definition
of structures. Typically, this means using some model of finite automata or very
restricted forms of rewriting. Although there are a few purely model-theoretic tech-
niques yielding decidability, such as the Feferman-Vaught technique, the composi-
tion method, and quantifier elimination, the most successful and broadly applicable
methods are based on finite automata theory [Tho97, GTW02].

Finite presentations may involve logical interpretations, finite axiomatisations,
rewriting of terms, trees, or graphs, equational specifications, the use of synchronous
or asynchronous automata, etc. The various approaches can be classified according
to the following disciplines:

internal: a structure is represented by explicitly describing an isomorphic copy over
a universe of finite or infinite words, trees or terms and by rewriting rules or
by finite automata on these objects which compute the individual relations;

algebraic: a structure is represented as the least solution of a finite set of recursive
equations in an appropriately chosen algebra of finite and countable structures;

logical: structures are described by interpreting them, using a finite tuple of for-
mulas, in a fixed structure. A different approach consists in (recursively)
axiomatising the isomorphism class of the structure to be represented.

transformational: structures are defined by sequences of prescribed transformations
applied to a finite structure. Transformations can be transductions, unfolding
or some kind of iteration, logical interpretations, etc.

The latter two approaches thus overlap somewhat. Also, alternative to the algebraic
approach one can take a generative view of the solution process of an equational
system. This method consists in converting the equational system into an appropri-
ate deterministic grammar generating the solution graph. The grammar can thus
be seen as a finite presentation of the graph.

1.1.1 Automatic structures

The most general forms of internal presentations meeting the requirements stated
above are based on finite automata. Here one has a choice among models of au-
tomata on finite or infinite words or trees. The principle idea of providing an au-
tomatic presentation of a given structure is to identify its elements with words or
trees, according to the automaton model chosen, in a consistent way as to allow the
recognition of both the set of representants of the structure’s universe as well as its
functions and relations by appropriate automata. Assuming a structure comprising
only a finite number of functions and relations, every such collection of finite au-
tomata thus constitutes a finite presentation of the structure, which is henceforth
said to be automatic.

2

1.1 From finite to algorithmic model theory

The advantage of having an automatic presentation of a structure lies in the fact
that first-order formulas can be effectively evaluated using basic automata construc-
tions. The first-order theory of every automatic structure is thus decidable. More-
over, using the same construction, one can effectively transform every first-order
interpretation over a given automatic structure into an automatic presentation of
the interpreted structure. Thus meeting our requirements, automatic presentations
provide a robust framework eligible for investigation in algorithmic model theory.

Although the notion of automatic presentation on infinite trees subsumes the
other models, presentations on finite trees (term trees) suffice for most purposes, as
far as countable structures are considered. The class of tree automatic structures is
slightly more robust than that of word-automatic structures, being closed e. g. under
weak direct products. However, word automatic structures form a class already too
rich in some sense. For instance, configuration graphs of Turing machines are easily
seen to be automatically presentable on finite words. This implies that extensions of
first-order logic with reachability or transitive closure operators or any other means
of iteration are generally undecidable on automatic structures. Therefore, automatic
presentations are unsuitable for modelling infinite state systems for verification pur-
poses. For this reason it is meaningful to consider subclasses obtained by restricting
presentations in one way or another.

A bit of history

The notion of automatic presentations on finite words and on ω-words first appeared
in [Hod82, Hod83]. Hodgson identified basic properties of structures presentable
in this way, namely, the decidability of their first-order theories and their closure
under taking direct products. The first-order decidability result is a straightforward
consequence of the closure and decidability properties of the automaton model.
The notion of automatic presentations on finite trees and the same approach to
decidability is manifest in the work of Dauchet and Tison [DT90].

In their seminal paper [KN95], Khoussainov and Nerode reintroduced automatic
structures as a robust subclass of recursive structures and initiated their systematic
investigation in the style of model theory. A further boost to the establishment of
this theory was provided by the thorough work of Blumensath [Blu99] and Gräedel
[BG00, BG04] who characterised automatic structures in terms of interpretations,
studied automaticity of certain algebraic structures, and the complexity of model
checking fragments of first-order logic on automatic structures. Since then Col-
combet has given an alternative logical as well as an equational characterisation of
automatic structures [Col04b, Col04a]. Diverse contributions to this field are to be
found in the work of Kuske and Lohrey [Kus03, Loh03, KL06]. The programme of
proving structure theorems characterising automaticity of various algebraic struc-
tures was carried on by Khoussainov, Nies, Rubin and Stephan in a series of papers
[KR01, KRS03c, KR03, KNRS04, KRS05]. Other key results have been obtained by
Delhommé, Goranko and Knapik [DGK], and by Oliver and Thomas [OT05]. For
a concise reference on structural theorems we recommend the PhD thesis of Rubin

3

1 Introduction

[Rub04] and the forthcoming survey [Rub07].

Prior to and independently of the above line of work, specialised notions of auto-
matic presentations have been employed in the mathematical fields of computational
group theory, symbolic dynamics [BP97], numeration systems [Fro02], and infinite
sequences [AS03]. The latter are tightly related, and are concerned with “natu-
ral” automatic presentations of the ordered sets of the reals or the naturals with
or without addition [BHMV94, Fro02]. The theory of automatic groups was de-
veloped in the 1980’s by Cannon, Epstein, Thurston et al. based on a geometric
approach. Tailored for the application, they consider naturally restricted automatic
presentations of the Cayley graph of a group associated to a finite set of generators.
However, the choice of generators is irrelevant, making this a robust notion. Vir-
tually abelian groups and Gromov’s word hyperbolic groups constitute important
examples of automatic groups in this sense. Major results of this programme are
presented in [CEH+92], cf. also the introductions by Farb [Far92] and by Choffrut
[Cho02]. More recently, this notion has been extended to monoids and semigroups
[CRRT01] and has caught on considerable attention [HKOT02, SS04].

In light of the above we dare to say that automatic structures occupy a central
place in algorithmic model theory.

Challenges

The work presented in this thesis has been chiefly motivated by the problems of
proving non-automaticity of structures, classifying automatic presentations of some
well-known structures, and of identifying properties invariant under the choice of a
particular automatic presentation of individual structures. Let us point out once
again, that many of the mentioned works concern only specialised or naturally re-
stricted automatic presentations of the structures involved. In contrast to this, we
pursue a description of all automatic presentations of particular structures. There
are two major sources of difficulty.

Automata theory delivers elegant solution of key problems in logic [Gur85, Tho97,
GTW02]. However, automata theory has been traditionally concerned with lan-
guages, that is, unary relations. In automatic presentations we make use of au-
tomata working on tuples of words or trees. Technically, this can be reduced to the
unary case by forming a convolution of the components to produce a combined word
or tree. Alternatively, automata on tuples of words can be intuitively thought of
as automata with multiple tapes. The study of this model was initiated by Elgot
and Mezei in [EM65]. Despite of this early start, insightful results on multi-tape
automata are extremely scarce.

The true difficulty of our tasks is, however, due to the extraordinary circum-
stance that we are engaging in an investigation of automaton-recognisable relations
(structures) modulo isomorphism. In [KNRS04] Khoussainov et al. write

. . .the Σ1
1-completeness of the isomorphism problem of the class of all au-

tomatic structures tells us that the language of first-order arithmetic is

4

1.1 From finite to algorithmic model theory

not powerful enough to give a structure theorem for the class of all auto-
matic structures. In other words we should not expect a ‘nice’ structure
theorem for the class of all automatic structures.

Nonetheless, for many common algebraic classes there are simple conditions, in some
cases full structural characterisations of automaticity [Rub07].

The analysis of automatic presentations thus provides entirely new challenges
for automata theory. In [Bár06b] and in [BKR07], the latter in joint work with
 Lukasz Kaiser and Sasha Rubin, we have developed new techniques for meeting
these challenges. These results are also presented in this thesis.

1.1.2 Transition graphs of infinite state processes

A key application area as well as a source of motivation for algorithmic model
theory is that of verification of infinite state processes. Although this discipline
is fundamentally different from that of representation of infinite algebraic or data
structures and does not constitute the topic of this thesis, we feel compelled to
mention some of the aspects in algorithmic model theory pertaining to modelling
and verification of infinite state processes.

In the context of verification one is naturally interested in the dynamic behaviour
of processes. Therefore, one considers structures (processes) equivalent not only
when they are isomorphic, but when they share the same behaviour, or when they
are observationally equivalent. This is most appropriately modelled by some notion
of bisimulation equivalence, which is strongly related to indistinguishability in modal
logics. To capture dynamic behaviour one has to employ logics powerful enough to
express some form of recursion, e.g. reachability, transitive closure, fixed points etc.
To retain decidability the types of processes are necessarily constrained. Best fitting
this description is the theory of process rewriting [May98, May00] encompassing the
well-known frameworks of Petri nets, process algebra and pushdown processes, that
are internal or algebraic in manner according to the above classification. Ramifica-
tions of this approach constitute the theme of Otto’s programme of “domain specific
algorithmic model theory” [Ott01].

In the domain of sequential processes the most general frameworks known are
the hierarchies of configuration graphs of higher-order pushdown automata, as well
as of functions defined by higher-order recursion schemes [Cau02, KNU02, Ong06,
HMOS]. While higher-order pushdown automata provide an internal presentation of
the former graphs, an alternative transformational approach consists in applying a
sequence of MSO-compatible transformations (interpretations or transductions, sub-
stitutions, unfolding [CK02]) to a finite graph. In this case the sequence of particular
transformations together with the initial graph constitute a finite presentation. By
one of the strongest decidability results in logic, Muchnik’s generalisation of Rabin’s
tree theorem based on automata and infinite games, the configuration graphs of
higher-order pushdown automata are known to have a decidable monadic second-
order theory [Wal02, GTW02]. Processes defined by simply-typed recursion schemes

5

1 Introduction

have recently received a revived attention. Trees obtained by unfolding higher-order
recursion schemes form a hierarchy extending corresponding levels of the pushdown
hierarchy [KNU02, Ong06]. Verification of these processes involve such diverse tools
as game semantics, collapsible pushdown automata, parity games, and tree automata
techniques [HMOS]. Only the first few levels of these hierarchies are well understood
and little is known regarding their relationship to other classes of graphs.

In addition to the above, we will briefly encounter graphs defined by ground
rewriting on trees, respectively, on terms. These graphs are of course tree automatic,
and the latter also allow equational presentations in a suitable algebra of finite and
countable graphs.

The exact relationship of most of the above mentioned classes to that of automatic
structures is not yet known. Also, in the cases understood, we have no “natural”
characterisation of the intersections. We will present some results and ideas con-
tributing to a clearer understanding of this issue.

1.2 Outline of the thesis

The dissertation is organised into seven chapters briefly summarised below.

In Chapter 2 we review basic notions of the theory of automata, semigroups, and
logic, fixing notation and recalling some of the most essential and well-known facts
that will be used throughout the text. An exception is Section 2.2.2 introducing
semi-synchronous rational relations and presenting some of their basic properties,
among them a solution to [Sak03, Probléme 6.3], based on the work of the author
[Bár06b].

In Chapter 3 we survey various classes of finitely presentable infinite struc-
tures with emphasis on automatic presentations. We have classified the different
approaches to finite presentations of structures as being internal (e.g. in the case
of automatic, prefix-recognisable, GTR, and rational graphs), logical (i.e. defined
in terms of interpretations), algebraic (such as HR- and VR-equational graphs and
their extensions, solutions of recursion schemes) or transformational (prominently
Caucal’s pushdown hierarchy). The presentation loosely follows this structure.

Section 3.1 begins with the definition of the four basic classes of automatic struc-
tures, followed by numerous examples, and a presentation of their fundamental
properties, most notably decidability of the first-order theory of every automatic
structure and closure of the classes under first-order interpretations. We briefly
mention some decidable and undecidable problems on automatic structures, and
continue with a discussion of the role of injectivity.

In Section 3.1.1 we present a result recently obtained in joint work with Lukasz
Kaiser and Sasha Rubin [BKR07] establishing that all countable ω-automatic struc-
tures are automatic. More precisely, using the formalism of ω-semigroups, we show
that every ω-automatic presentation of a countable structure (i.e. one in which

6

1.2 Outline of the thesis

elements of the structure are represented by ω-words) can be filtered in a regular
fashion to yield an injective presentation, therefore also an automatic presentation
(i.e. one over finite words). This complements the work of Kuske and Lohrey [KL06]
and answers a question of Blumensath [Blu99].

In subsequent sections 3.2 – 3.4 we review both logical and equational charac-
terisations of the classes of automatic structures, and discuss classes obtained by
restricting, respectively, by generalising the notion of automatic presentations. Sec-
tion 3.5 provides a very brief overview of rational graphs, Caucal’s hierarchy of
higher-order pushdown graphs, and solutions of higher-order recursive schemes.

We close Chapter 3 by giving a summary and landscape illustrating how the var-
ious notions of finite presentations compare to one another.

Chapter 4 is devoted to portrayal of techniques in the analysis of automatic
presentations. There are two main issues that need to be investigated. One concerns
the restrictions on the local structure imposed by the combinatorics of automaton
recognisable relations, with the aim of proving that certain structures cannot be
presented by finite automata. The other revolves around the problem of identifying
characteristic features of all automatic presentations of a given structure aiming
towards their complete classification.

In Section 4.1 we review the basic combinatorial arguments used to prove that
certain structures are not automatically presentable. These methods are based on
bounds on the growth of the number of definable elements or sets as certain parame-
ters are varied. The applicability of these techniques is, however, very limited. New
or refined tools are needed to prove non-automaticity of some of the more notorious
and stubborn examples, such as (Q,+) or the GTR structure generated by the rule
c 7→ f(c, c) [Löd03].

In Section 4.2 the notion of equivalence of automatic presentations is introduced
as a basic tool in the classification of automatic presentations of individual struc-
tures. As our main technical result we prove that two presentations are equivalent
if and only if the mapping translating names of elements from one presentation into
the other is computable by a semi-synchronous transducer. The latter is a ratio-
nal transducer operating in a synchronous fashion on blocks of symbols, with fixed
block sizes on the input- and output tapes. The notion of semi-synchronous trans-
ducer appears in [Sak03], but has been first studied by the author [Bár06b] in this
connection. As a consequence of this characterisation we obtain that the complete
structures of Blumensath and Grädel (those studied by Elgot and Rabin), those of
Büchi-Boffa-Bruyére, as well as that of Colcombet are rigidly automatic meaning
that all of their automatic presentations are equivalent.

Chapter 5 is to a large extent based on the paper [Bár06a] with some exten-
sions and minor modifications. It is devoted to the investigation of automatically
presentable infinite words over a finite alphabet. More precisely, we study auto-
matic presentations of expansions of the ordered set of naturals (N, <) by unary
predicates. Motivation for this investigation is the structural simplicity poten-

7

1 Introduction

tially enabling a complete characterisation of automatic presentations, which, on
the other hand, is matched by the richness and robustness of the class of words
presentable by finite automata. We study properties of presentations involving a
k-fold nested length-lexicographic ordering. Starting point is the observation that
length-lexicographically presentable words are precisely those morphic, moreover,
that many of the key features of morphic words (decidability of monadic second-
order theory, closure properties) are derivable from their canonical automatic pre-
sentations. Indeed, there is a canonical way of transforming the morphisms defining
a morphic word into an automatic presentation involving the length-lexicographic
ordering.

The notion of morphic words is a classical one going back to Thue. Morphic words
have been thoroughly studied in the context of combinatorics on words, have appli-
cations in formal language theory, numeration systems, number theory and appear
in various disguises in different branches of mathematics. The length-lexicographic
ordering is immanent in the presentation of generalised numeration systems.

We introduce a generalisation of morphic words to higher orders using a notion
of morphism of level k stacks, and show, that for every k, the level k morphic words
coincide with those representable using the k-fold nested length-lexicographic order-
ing. Underlining the robustness of these notions we show that for each k the class of
level k morphic words is closed under transformations by deterministic generalised
sequential machines. We prove that each of these word structures have a decidable
monadic second-order theory and that the hierarchy of higher-order morphic words
is strictly increasing with each level and is thus infinite. Finally we show that for
every k all level k morphic words are constructible on the 2k-th level of pushdown
hierarchy.

Our results thus generalise those of Pansiot [Pan84], Carton and Thomas [CT02],
Caucal [Cau02], and of Rigo and Maes [RM02] related to morphic words. We close
the chapter with a discussion of further generalisations and key open questions.

In Chapter 6 we explore the use of transductions as devices transforming one
automatic presentation into another. Transductions constitute an important tool in
the theory of formal languages, and have been thoroughly studied also for their own
right. There are numerous classes of transductions, key properties of which are well
understood. Accordingly, there is a great volume of literature on various problems
related to transductions, providing valuable asset in our effort.

Our interest in transduction is motivated by the fact, that, given a natural au-
tomatic presentation of a structure, questions concerning the existence of another
presentation having certain properties can be rephrased as such concerning the ex-
istence of transductions satisfying some regularity constraints. Note that we are
primarily interested in bijective transductions.

Of utmost utility in formal language theory are continuous transductions satisfy-
ing the constraint that the inverse image of every regular language must again be
regular. Constraints naturally arising in the context of automatic presentations con-
cern regularity of multi-ary relations. In Section 4.2 we have encountered regularity

8

1.2 Outline of the thesis

constraints capturing the notion of equivalence of presentations. These constraints
are in some sense maximal.

In Section 6.2 we show how a result of Colcombet yields a characterisation of
transductions inversely mapping all prefix-recognisable relations to regular ones.
In addition to continuity the single constraint that the inverse image of the prefix
relation be regular is sufficient. We call these mappings PR-transductions. It is then
observed that with some adjustments the embeddings of k-morphic words into the
pushdown hierarchy are particular PR-transductions, yielding an almost effortless,
though less in-depth proof of the results of Section 5.4.

In Section 6.4 we introduce generalised run-length encodings based on automatic
presentations of infinite words. These are transductions, which can be considered as
compression schemes and can be computed sequentially, however, using unbounded
memory. Results of Chapter 5 imply that each such compression scheme associated
to a k-morphic word is a PR-transduction. Consequently, we can provide automatic
presentations of arbitrary prefix-recognisable structures based on any of these com-
pression schemes. We conclude that prefix-recognisable structures have more than
one automatic presentation up to equivalence.

In Chapter 7 we consider the problem of understanding what different automatic
presentations of individual structures have in common. More precisely, which rela-
tions over a given structure are intrinsically regular, meaning, invariantly regular in
all automatic presentations of the structure.

Intrinsic regularity was introduced in [KRS04], where natural as well as “unnat-
ural” automatic presentations of simple fragments of Presburger arithmetic were
analysed, respectively, forged in an attempt to isolate the intrinsically regular re-
lations over these structures. The difficulty of this task cannot be overestimated,
as prompted by the pathological presentations of the innocent looking successor
structure (N, succ).

A natural and fundamental question asked by Khoussainov et al. is whether there
is a logical characterisation of intrinsically regular relations over arbitrary automatic
structures. In his dissertation, Rubin asked whether first-order logic enhanced with
modulo counting quantifiers and with the infinity quantifier is expressive enough.
Our contribution to this problem is the observation that, on the one hand, relations
defined by order-invariant formulas are intrinsically regular, while on the other hand,
there are order-invariantly definable relations that are not definable using generalised
counting quantifiers. These results were published in [Bár06b] and prompted an
investigation of what we now call regularity preserving generalised quantifiers.

9

1 Introduction

10

2 Preliminaries

2.1 Words and trees

Let Σ be a finite alphabet. Σ∗ and Σω denote the set of finite words, respectively,
the set of words of length ω over Σ. The length of a word w ∈ Σ∗ is written |w|,
the empty word is ε, for every 0 ≤ i < |w| the ith symbol of w is written as w[i],
and when I denotes some interval of positions then wI (e.g. w[n,m)) is the factor
of w on these positions. Note that we start indexing with 0. Accordingly, for every
n ∈ N, we let [n] = {0, . . . , n− 1}.

Subsets of Σ∗ and of Σω are languages of finite, respectively, ω-words. The class of
regular languages is a fundamental, robust, most thoroughly studied family of lan-
guages. As it is well known these are the languages recognised by finite automata
and by finite semigroups, described by regular expressions, and defined by monadic
second-order formulas in the signature of words (see below). We will also be inter-
ested in relations on words accepted by finite automata. Next we will briefly recall
these and related notions while fixing notation.

For a language L ⊆ Σ∗ let L=n = L ∩ Σn and L≤n = L ∩ Σ≤n denote the set of
members of L of length precisely n and at most n, respectively. Further, let Pref(L)
be the set of prefixes of words in L. Note that Pref(L) is regular for every regular L.
The growth of a language L ⊆ Σ∗ is the function gL : N → N mapping each n ∈ N
to the number of words in L of length n, that is gL(n) = |L=n|.

Trees

We consider finite and infinite trees with bounded branching. For our purposes the
following definition suffices. A Σ-labelled tree is a function t : dom(t) → Σ, such
that dom(t) ⊆ [r]≤ω is 1) non-empty, 2) prefix-closed, and 3) if xl ∈ dom(t) for some
x ∈ [r]∗ and l < r then xj ∈ dom(t) for every 0 ≤ j < l. A tree t is finite if dom(t)
is finite.

Nodes of a tree t are elements of dom(t). The nodes are partially ordered by the
prefix (ancestor) relation �. The root of a tree is the single minimal element, ε, of
its nodes. A node is a leaf if it is maximal with respect to the prefix relation. A
prefix of a tree t is a restriction t|P to a non-empty prefix-closed subset P ⊆ dom(t).
An antichain is a set of nodes pairwise incomparable by �.

There is a natural way to represent a subset L ⊆ [r]∗ as a {0, 1}-labelled tree tL,
the characteristic tree of L, with dom(tL) = [r]∗ and tL(x) = 1 iff x ∈ L. A tuple
(Li)i<n of subsets Li ⊆ [r]∗ can similarly be identified with a {0, 1}n-labelled tree
obtained by overlapping the tLi

.

11

2 Preliminaries

This representation of subsets of trees facilitates the well-known correspondence
between tree automata and monadic second-order logic [Tho97]. Next we will recall
key notions and results of automata theory, semigroups, and related logics.

2.2 Finite automata on finite words

A finite labelled transition system (TS) is a tuple T = (Q,Σ,∆), where Q is a finite,
nonempty set of states, Σ is a finite set of labels, and ∆ ⊆ Q×Σ×Q is the transition
relation. T is called deterministic (DTS) if ∆ is a function of type Q× Σ → Q, in
this case we write δ instead of ∆, and δ∗ for the unique homomorphic extension of
δ to all words over Σ.

A finite automaton (FA) is a finite transition system together with sets of initial
and final states A = (T , I, F) = (Q,Σ,∆, I, F). A is deterministic (DFA) if T is
determinitic and I contains a single initial state q0.

The language L(A) recognised by an FA A as above is the set of words w that
label an accepting path in its graph, i.e. a path leading from an initial to a final
state.

The completion of a DFA A is the DFA A obtained by introducing a new state ⊥
and setting it the target of all yet undefined transitions. Thus, the transition function
δ of A is defined for all pairs (q, a) with q ∈ Q ∪ {⊥}. Note that L(A) = L(A).

2.2.1 Multi-tape automata

One can consider a finite automaton recognising a regular set of words as a finite
presentation of this set. A natural extension of this concept is to consider multi-tape
finite automata to represent relations on words in a similar manner. This raises the
issue of how the automata should be allowed to access their individual tapes, e.g.
in a synchronous or asynchronous fashion. Different operation modes give rise to
different classes of relations, most notably to the classes of recognisable, synchronised
rational and rational relations. These automata classes and their algebraic analogues
have been studied in [EM65, Ber79, FS93].

Synchronised multi-tape automata constitute the fundament of the notion of au-
tomatic presentations, while rational transductions recognised by two-tape finite
automata will be one of our main tools in their investigation. Let us therefore recall
these basic definitions.

We consider relations on words, i.e. subsets R of (Σ∗)n for a finite alphabet
Σ and some n > 0. Asynchronous n-tape automata accept precisely the rational
relations, i.e., rational subsets of the product monoid (Σ∗)n. A relation R ⊆ (Σ∗)n

is synchronised rational [FS93] if it is accepted by a synchronous n-tape automaton.
Synchronised rational relations are also called regular relations (cf. [KR03]), an
alternative we shall frequently use as well. Finally, R ⊆ (Σ∗)n is semi-synchronous
rational if it is accepted by an n-tape automaton reading each of its tapes at a fixed
speed. This is made more precise below.

12

2.2 Finite automata on finite words

2.2.2 Semi-synchronous Rational Relations

The class of semi-synchronous rational relations has been introduced by Sakarovich
in [Sak03] and independently by the author in [Bár06b], where the importance of
semi-synchronous transductions in the study of automatic presentations was shown.
Those results are presented in Section 4.2. Here we give a formal definition of
semi-synchronous rational relations as well as their most rudimentary properties,
essentially identical to those of regular relations, with the notable exception of The-
orem 2.2.4 below.

Definition 2.2.1 (Semi-synchronous rational relations, cf. [Sak03, p. 660], [Bár06b]).
Let � be a special end-marker symbol, � 6∈ Σ, and Σ� = Σ ∪ {�}. Let α =
(a1, . . . , an) be a vector of positive integers and consider a relation R ⊆ (Σ∗)n. Its
α-convolution is ⊠αR = {(w1�

m1 , . . . , wn�
mn) | (w1, . . . , wn) ∈ R and the mi are

minimal, such that there is a k, with kai = |wi| + mi for every i}. This allows us
to identify ⊠αR with a subset of the monoid ((Σ�)a1 × · · · × (Σ�)an)∗. If ⊠αR thus
corresponds to a regular set, then we say that R is α-synchronous (rational). R is
semi-synchronous if it is α-synchronous for some α.

Intuitively, our definition expresses that although R requires an asynchronous
automaton to accept it, synchronicity can be regained when processing words in
blocks, the size of which are component-wise fixed by α. As a special case, for α = ~1,
we obtain the regular relations. Recall that a relation R ⊆ (Σ∗)n is recognisable
if it is saturated by a congruence (of the product monoid (Σ∗)n) of finite index,
equivalently, if it is a finite union of direct products of regular languages [FS93].
We denote by Rat, SRat, SαRat, Reg, Rec the classes of rational, semi-synchronous,
α-synchronous, regular, and recognisable relations, respectively. Sometimes we will
give the underlying alphabet explicitly in brackets.

Evidently, Reg ⊂ SRat ⊂ Rat and both containments are strict as illustrated
by the examples {(an, a2n) | n ∈ N} and {(an, a2n), (bn, b3n) | n ∈ N}. In fact,
the latter example witnesses the fact that semi-synchronous rational relations are
strictly included in the class of deterministic rational relations. SRat is closed under
complement but not under union, as also shown by the latter example. Obviously,
for any fixed α the class of α-synchronous rational relations has all the nice properties
of synchronised rational relations.

Proposition 2.2.2. SαRat is an effective boolean algebra for each α. The pro-
jection of every αβ-synchronous relation onto the first |α| many components, is
α-synchronous.

Proposition 2.2.3. For every vector α of non-negative integers SαRat is closed
under taking images (hence also inverse images) via semi-synchronous transductions.

Proof. Let T be a (p, q)-synchronous transduction, R an α-synchronous n-ary rela-
tion with α = (a1, . . . , an). T (R) = {~v | ∃~u ∈ R ∀i ≤ n (ui, vi) ∈ T} is the pro-
jection of the (pa1, . . . , pan, qa1, . . . , qan)-synchronous relation {(~u,~v) | ~u ∈ R, ∀i ≤

13

2 Preliminaries

n (ui, vi) ∈ T}. Hence, by Proposition 2.2.2 and Theorem 2.2.4.i) below, T (R) is
α-synchronous. Closure under taking inverse images follows from the fact, that the
inverse of a (p, q)-synchronous transduction is (q, p)-synchronous.

Observe that the composition of a (p, q)-synchronous and an (r, s)-synchronous
transduction is (pr, qs)-synchronous, thus, the class of semi-synchronous transduc-
tions is closed under composition. We will next show that for (p, q)-synchronous
rational transductions, with the exception of recognisable transductions, the ratio
p/q is uniquely determined. To this end let us say that α and β are dependent if
k ·α = l ·β for some k, l ∈ N, where multiplication is meant component-wise. Then,
comparing classes SαRat and SβRat we observe the following “Cobham-Semenov-
like” (cf. Theorem 4.3.4) relationship.

Theorem 2.2.4 (Cobham-Semenov-like relationship, [Bár06b, Car06]).
Let n, p, q ∈ N and α,β ∈ Nn.

i) If α and β are dependent, then SαRat = SβRat.

ii) If (p, q) and (r, s) are independent, then S(p,q)Rat ∩ S(r,s)Rat = Rec.

Proof. i) Clearly, a relation R is α-synchronous if and only if it is kα-synchronous
for any k ≥ 1. The claim follows.
ii) Recognisable relations are trivially α-synchronous for any α, therefore we only
care for the other inclusion.

Let R ∈ S(p,q)Rat∩S(r,s)Rat. We need to show, that R is a finite union of Cartesian
products Ai×Bi of regular languages, in other terms that the following equivalence
is of finite index.

x ∼ x′
def
⇐⇒ ∀y : R(x, y) ↔ R(x′, y)

According to (1) R is both (pr, qr)- and (pr, ps)-synchronous, and by assumption
ps 6= qr, w.l.o.g. ps < qr. Let us further assume for simplicity and w.l.o.g. that pr =
1 and let k = ps and l = qr. Consider some (1, k)- respectively (1, l)-synchronous
deterministic automata A and A′ accepting R. Thus A is “slower” then A′ in
reading the second tape. Our first observation is confirmed by a straightforward
pumping argument.

x 6∼ x′ ⇒ ∃y : |y| < k(max(|x|, |x′|) + C) ∧R(x, y) ↔ ¬R(x′, y) (∗)

where C = |A|2 + 1.
The syntactic congruence of A′ induces an equivalence of finite index on pairs of

words (u, z) ∈
(
(Σ ∪ {�}) × (Γ ∪ {�})l

)∗
. ((u, z) ≈A′ (u′, z′) iff their actions on

the states of A′ are identical). Let K be the length of the longest word v such that
(v,�l|v|) is the shortest such representant of its ≈A′ -class.

Consider now any x long enough such that ⌈(|x| + C)k
l
⌉ + K < |x|. During the

run of A′ on input (x, y) for any y shorter than k(|x|+C), y will be completely read
leaving a suffix v of x, v longer than K, unread. By replacing v with a shorter v′

such that (v,�l|v|) ≈A′ (v′,�l|v
′|) in x we obtain an x′ shorter than x, which is by

14

2.2 Finite automata on finite words

(∗) ∼-equivalent to x. Thus we have shown that each ∼-class has a representant of
bounded size, i.e. that there are finitely many such classes as required.

Adapting techniques from [Ber79, FS93], used to prove undecidability of whether
a given rational relation is synchronised rational, we obtain the following undecid-
ability results.

Theorem 2.2.5. For any given p, q ∈ N the following problems are undecidable.
i) Given a rational transduction R ∈ Rat is R ∈ S(p,q)Rat?

ii) Given a rational transduction R ∈ Rat is R ∈ SRat?

Proof. For i) the proof is essentially the same as for regularity, ii) requires, in ad-
dition, a slight adaptation of the technique. Let us therefore give a quick review.
Given an instance I = {(ui, vi) | i < n} of PCP consisting of pairs of words over
some finite alphabet Γ we define U = {(abi, ui) | i < n} and V = {(abi, vi) | i < n}.
So it is clear that I has a solution iff W = U+ ∩ V + 6= ∅, where U+ and V +

are evidently rational. Although the class of rational relations is not closed under
complementation, one can show that the complements U+ and V + of U+ and V +,
respectively, are in fact rational, hence is their union W = U+ ∪ V +. A number of
undecidability results follow from these observations (cf. [Ber79],[FS93]).

Note that in each pair of U and V the first component abi is used only to identify
the index of the corresponding second component, their choice is irrelevant as long
as they are distinct. Therefore, all of the previous remarks hold, in particular, for
U = U~k = {(abki , ui) | i < n} and V = V~k = {(abki , vi) | i < n} for any sequence of

naturals ~k = (k1, . . . , kn). In [FS93] Frougny and Sakarovitch use this fact to show

that for an appropriate choice of ~k, W is regular iff W = ∅ iff I has no solution,
which is undecidable.

A direct adaptation of their technique proves i). Indeed, for given p, q and instance
I of PCP we chose distinct ki such that ki ≥ 2p

q
max(|ui|, |vi|) for all i < n. Assume

W = W~k 6= ∅. Let (x, y) ∈W . Then (xm, ym) ∈W and |xm| ≥ 2p
q
|ym| for any m. It

follows from a direct adaptation of Proposition 4.1.1 that for any (p, q)-synchronous
function f there exists a constant K such that

∣∣q|x| − p|y|
∣∣ ≤ K for all f(x) = y.

Therefore, since W is functional, it is not (p, q)-synchronous, hence, neither is W .
Thus, we see that W is (p, q)-synchronous iff I has no solution. This concludes the
proof of undecidability of i).

To prove undecidability of ii) we give another variant of the previous reduction.
Again, let I be a PCP instance over Γ. Let I ′ be a copy of I over an alphabet
Γ′ disjoint from Γ. Consider the PCP instance I ∪ I ′ = {(ui, vi), (u

′
i, v

′
i) | i < n}

over Γ ∪ Γ′. Let U = {(abi, ui) | i < n} ∪ {(a′b′2i+1, u′i)}, V = {(abi, vi) | i <
n} ∪ {(a′b′2i+1, v′i)}, and W = U+ ∩ V + as above. If I has no solution then W = ∅,
and if (i1, . . . , it) is a solution of I with y = ui1 · · ·uit = vi1 · · · vit then there are
(x, y) ∈ W and (x′, y′) ∈ W such that |x′| = 2|x| and |y| = |y′|. Since W is
functional, for the same reason as above, it can not be (p, q)-synchronous for any
p and q. In other words it is not semi-synchronous, and hence neither is W . Thus

15

2 Preliminaries

we have shown that the rational W is semi-synchronous iff I has no solution, which
proves undecidability of ii).

Theorem 2.2.4 provides solution to [Sak03, Probléme 6.3] and has independently
been proved by the author [Bár06b] and by Carton [Car06].

2.2.3 Rational Transductions

A transduction is a binary relation T ⊆ Σ∗ × M between a free monoid Σ∗ and
a monoid M , also considered as a mapping T : Σ∗ → P(M). We will mostly be
concerned with transductions from words to (sets of) words, possibly over different
alphabets, i.e. M = Γ∗. Rational transductions are those recognised by finite
asynchronous 2-tape automata. They have been extensively studied in the context
of formal language theory. For classical results we refer the reader to [Ber79] or to
[Sak03].

Functional transductions T : Σ∗ → Γ∗, especially those semi-synchronous rational,
will be of special interest to us as devices transforming one automatic presentation
into another. Each of the families of rational transductions, functional transductions,
respectively, semi-synchronous rational transductions is closed under composition.
Whereas rational transductions preserve regularity as well as non-regularity of lan-
guages, but not of relations in general, it is easy to check that semi-synchronous
rational transductions do preserve (non-)regularity of all relations of whatever arity.
We will show (cf. Theorem 4.2.6) that semi-synchronous functional transductions
are characterised by the key property of transforming regular relations to regular
ones and non-regular relations to non-regular ones.

Generalised sequential machines, GSM’s, are a restricted form of transducers hav-
ing the distinctive feature of being input-driven and output-producing as opposed
to being acceptors of input-output pairs. Of considerable interest computing func-
tional transductions are deterministic generalised sequential machines (DGSM). A
DGSM S = (T , q0,O) consists of a DTS T , an initial state q0 and an output func-
tion O : Q × Σ → Γ∗. The function computed by a DGSM maps a word, input to
the machine, to the concatenation of the outputs produced in each state of the run
while reading the input word. This mapping can, in a natural way, be extended to
ω-words as well.

2.3 Finite Automata on infinite words

Finite automata on infinite words 1 are defined in the very same way as FA on finite
words, only the notion of acceptance requires some thought. As a well-known matter
of fact there are a number of reasonable acceptance criteria, defined in terms of the
set of states Inf(ρ) occurring infinitely often in a run ρ, the prominent ones being

Büchi: given by a subset F of states, one of which must occur infinitely often;

1When we say infinite words we mean words of length ω.

16

2.3 Finite Automata on infinite words

co-Büchi: given by a subset C of states, none of which may occur infinitely often;

Rabin: given by pairs {(Ci, Fi)}i<r of co-Büchi and Büchi conditions; accepting runs
must satisfy for some i both the ith co-Büchi and the ith Büchi condition.

Streett: dual to the Rabin condition;

parity: a special case of the Rabin condition, also called Rabin-chain condition, with
E0 ⊂ F0 ⊂ E1 ⊂ F1 ⊂ · · · ⊂ Er−1 ⊂ Fr−1

Muller: a run ρ is accepting if Inf(ρ) ∈ F , where F is a given family of subsets of
states.

It is a simple fact that non-deterministic Büchi automata are more powerful than
deterministic ones when it comes to accepting languages of ω-words. Determinis-
tic Büchi automata are not closed under complementation, but rather necessitate
the dual co-Büchi acceptance. Similarly, straightforward dualisation of a Rabin
condition is Streett and vice versa. Deterministic parity and Muller automata are
easy to complement by dualising the acceptance condition. Based on (2.1) and
using Ramsey’s theorem, Büchi provided a non-constructive proof of complementa-
tion of non-deterministic Büchi automata. A fundamental theorem of McNaughton
states that non-deterministic Büchi automata and deterministic Muller automata
accept the same class of ω-regular languages. Safra gave an optimal construction of
transforming non-deterministic Büchi automata into equivalent deterministic Rabin
automata.

We will be using the fact that ω-regular languages are also defined by ω-regular
expressions of the form r1s

ω
1 + · · · + rks

ω
k , where ri, si are regular expressions. In

other words, every ω-regular language L can be written as a finite union

L =
⋃

i

UiV
ω
i (2.1)

where Ui and Vi are regular languages of finite words. ω-Regular languages have
all the favourable properties of their junior fellows on finite words: they form an
(effective) boolean algebra, are closed under (inverse) homomorphic mappings, etc.;
emptiness is trivially decidable in any of the mentioned formalisms, in fact, by (2.1)
every non-empty ω-regular language contains an ultimately periodic word uvω with
bounded |u| and |v|. For a comprehensive treatment of automata on infinite words
we refer to [PP04].

In much the same way as over finite words, finite automata can be used to define
relations on infinite words. We are interested here in the synchronised rational
relations defined either by synchronised multi-tape FA or by single-tape FA reading
the convolution of ω-words. The convolution ⊗k~u of ui ∈ Σω, i < k is defined as the
letter-by-letter shuffle: ⊗k~u[nk + i] = ui[n] for every n and i < k.2 We refer to the

2Notice that we spare ourselves the awkward padding with blanks needed for finite words.

17

2 Preliminaries

relations accepted this way as ω-regular relations, or just as regular relations, when
the context is clear.

2.4 Finite automata on trees

Classical notions and results of formal language theory and automata theory have
been generalised very early to labelled trees of bounded rank (branching degree).
We refrain from giving a thorough introduction to automata on trees as we will
mostly be using automata on finite and infinite words. Below, we only recall some
of the most basic notions and results concerning tree automata. For a comprehensive
introduction we refer to the books [GS84] and [CDG+] and to the surveys [GS97,
Tho97].

The algebraic approach of Mezei-Wright

From an algebraic point of view, Σ-labelled trees are terms, i.e. elements of the
free algebra of function symbols Σ × [r] where r is the maximal rank of a node
and (a, n) is an n-ary function symbol corresponding to a-labelled nodes of rank n.
Words are simply unary terms in this context, and finite semigroups, the algebraic
equivalents of finite automata, are finite algebras of unary functions generated by
those associated to symbols of the alphabet. Using this analogy, automata on terms
can be defined as finite algebras of the same signature. A set L of terms is then
said to be recognisable if there is a finite algebra A of the same signature and a
homomorphism ϕ from the free algebra of terms to A such that L = ϕ−1(ϕ(L)).

This framework necessitates the use of constant(s) at the leaves of terms. Given
a finite algebra A and a homomorphism ϕ as above, the image(s) of the constant(s)
can be seen as “initial elements” of A in analogy to initial states of finite automata.
Similarly, if ϕ accepts L as above, then the subset ϕ(L) of A can be seen as a set of
“final elements”.

Observe, that this algebraic framework is in direct correspondence with finite
automata working from right to left. These are of course equivalent to left-to-right
automata as it is well known. On finite trees this analogy leads to the definition of
bottom-up tree automata.

Bottom-up tree automata

Bottom-up tree automata are given by a finite set Q of states of which q0 is initial and
some F ⊆ Q are final. The transition relation ∆ comprises tuples (q1, . . . , qk, a, q)
with the intended meaning that having arrived at states q1, . . . , qk on respective
subtrees t1, . . . , tk of a tree t = a(t1, . . . , tk) the automaton can proceed to the root
of t after entering state q. A bottom-up tree automaton is deterministic if q is
uniquely determined by a and q1, . . . , qk.

Bottom-up tree automata thus generalise right-to-left automata on words. The
notions of run and acceptance are defined as expected. A language of labelled trees

18

2.4 Finite automata on trees

is defined to be tree-regular if it is accepted by some bottom-up tree automaton.
Bottom-up tree automata can be determinised using the subset construction and, as
hinted above, a set of term-trees is tree-regular iff it is recognised by a finite algebra
under a homomorphism from the free algebra of terms.

Top-down tree automata

Bottom-up evaluation naturally only makes sense for finite trees. Top-down tree
automata are defined as their bottom-up cousins with the difference that transitions
(q1, . . . , qk, a, q) are interpreted from right to left: mapping the state q and label
a to tuple(s) (q1, . . . , qk) of states in which the automaton is to proceed with the
processing of corresponding subtrees. The conversion from non-deterministic top-
down to and from non-deterministic bottom-up tree automata is thus a trivial act.
The difference of the two approaches manifests itself in the fact that top-down tree
automata cannot be determinised in general.

On the top side, top-down automata can be used as accepting devices for infinite
trees. To this end, the acceptance condition has to be defined similarly to acceptance
of infinite words. Given a (non-deterministic) top-down tree automaton A and
an acceptance condition of Büchi-, Rabin-, parity-, or Muller style we say that
the automaton accepts an infinite tree t if there is a run of A on t every path of
which, seen as a word, satisfies the given acceptance condition. Regular languages of
infinite trees are those accepted by (non-deterministic) tree automata with a Muller
(equivalently with Rabin or parity) acceptance condition. Tree automata with Büchi
condition are strictly weaker than Muller, Rabin, or parity tree automata on infinite
trees.

Tree-regular relations

The concept of convolution of a tuple of words, defined as a kind of overlapping of
its suitably padded components, can well in turn be extended to trees. This allows
us to define tree-regular and ω-tree-regular relations.

The infinite r-padding of a finite or infinite tree of branching degree bounded by
r is defined by hanging a copy of the uniformly � labelled infinite r-ary tree as the
ith subtree of every node missing an ith child node. The symbol � is of course
assumed to be distinct from all other labels. Thus, all r-padded trees have the same
shape of a complete infinite r-ary tree, and are labelled with Σ� = Σ ∪ {�}. The
convolution ⊗~t of a tuple ~t = (t1, . . . , tn) of Σ-labelled trees, each of which is of
branching degree bounded by r, is the Σn

�
-labelled complete r-ary tree t obtained

by overlapping the infinite r-paddings of t1, . . . , tn. More precisely, the label of t at
node x ∈ [r]∗ is the tuple (a1, . . . , an) such that for every i either ai = ti(x) or �
when t(x) is undefined. When the ti are finite, we define ⊗~t to be finite by chopping
off all uniformly �n-labelled subtrees of the convolution of their infinite paddings.

A relation R of Σ-labelled ≤ r-branching (infinite) trees is (ω-)tree-regular if the
set ⊗R = {⊗~t | ~t ∈ R} is (ω-)tree-regular.

19

2 Preliminaries

2.5 Semigroups

A semigroup (S, ·) is a set S equipped with an associative operation · usually de-
noted by juxtaposition. A monoid is a semigroup with a neutral element 1. Every
semigroup S can be extended to a monoid S1 by the addition of a neutral element,
if needed. The set of finite nonempty words Σ+ with concatenation is the free semi-
group generated by Σ. With the addition of the empty word ε we obtain the free
monoid Σ∗ generated by Σ.

Morphisms of semigroups and monoids preserve the product as well as the identity.
We denote by Hom(M,N) the set of homomorphisms from the monoidM toN . Each
ϕ ∈ Hom(Σ∗,Σ∗) can be specified by the images ϕ(a) of individual symbols a ∈ Σ.
The length of ϕ, denoted |ϕ|, is the maximum of all the |ϕ(a)|, and ϕ is uniform,
when |ϕ(a)| = |ϕ| for every a ∈ Σ.

Monoid homomorphisms into a finite monoid can be seen as accepting devices.
A monoid M recognises with its subset F ⊆ M under the homomorphism ϕ :
Σ∗ → M the language ϕ−1(F). It is well-known that finite monoids recognise
precisely the regular languages. At the core of this lies the following straightforward
correspondence.

Each transition system can be represented as a pair (ϕ,M) where M = (P(Q ×
Q), ◦, id) is the monoid of binary relations over Q with composition as product and
ϕ : Σ∗ → M is the unique monoid homomorphism such that ϕ(a) = {(q, q′) |
∆(q, a, q′)} for every a ∈ Σ. From (ϕ,M) one can again obtain the presentation
(Q,Σ,∆). In case of deterministic transition systems each of the ϕ(a) is functional.
One can then work with the monoid (Q → Q, ◦, id) of partial unary functions over
Q.

Elements of a semigroup capture global information about the words they rep-
resent under a given morphism, whereas only local behaviour can be immediately
deduced from an automaton. For this reason, semigroups are better suited for cer-
tain tasks. Most notably, they allow an algebraic study and classification of certain
sub-families of regular languages via corresponding varieties of semigroups.

2.5.1 Omega-semigroups

The well known fundamental correspondence between recognisability by finite au-
tomata and by finite semigroups has been extended to ω-regular sets. This is based
on the notion of ω-semigroups. Rudimentary facts on ω-semigroups are well pre-
sented in [PP95]. We only mention what is most necessary.

An ω-semigroup S = (Sf , Sω, ·, ∗, π) is a two-sorted algebra, where (Sf , ·) is a
semigroup, ∗ : Sf × Sω 7→ Sω is the mixed product satisfying for every s, t ∈ Sf and
every α ∈ Sω the equality

s ∗ (t ∗ α) = (s · t) ∗ α

and where π : Sωf 7→ Sω is the infinite product satisfying

s0 · π(s1, s2, . . .) = π(s0, s1, s2, . . .)

20

2.6 Logics

as well as the associativity rule

π(s0, s1, s2, . . .) = π(s0s1 · · · sk1 , sk1+1sk1+2 · · · sk2 , . . .)

for every sequence (si)i≥0 of elements of Sf and every strictly increasing sequence
(ki)i≥0 of indices. Again, for e ∈ Sf we denote eω = π(e, e, . . .).

Morphisms of ω-semigroups are defined to preserve all three products as ex-
pected. There is a natural way to extend finite semigroups and their morphisms
to ω-semigroups. As in semigroup theory, idempotents play a central role in this
extension. An idempotent is a semigroup element e ∈ S satisfying ee = e. Every
finite semigroup S has an exponent π ∈ N such that for every s ∈ S its power sπ

is the sole idempotent of the subsemigroup generated by s. A pair of semigroup
elements (s, e) is called a linked pair if e is idempotent and se = s. A way to think
of a linked pair is as of an initial path labelled s leading into a loop labelled e in a
finite graph, only “on a global scale”, that is starting in any state.

There is also a natural extension of the free semigroup Σ+ to the ω-semigroup
Σ≤ω = (Σ+,Σω) with ∗ and π defined by concatenation. An ω-semigroup S =
(Sf , Sω) recognises a language L ⊆ Σω via a morphism φ : (Σ+,Σω) → (Sf , Sω) if
φ−1(φ(L)) = L. This notion of recognisability coincides, as for finite words, with
that by non-deterministic Büchi automata. In [PP95] constructions from Büchi
automata to ω-semigroups and back are also presented.

Theorem 2.5.1 (cf. [PP95]).
A language L ⊆ Σω is ω-regular iff it is recognised by a finite ω-semigroup.

We note that this correspondence not only allows one to engage in an algebraic
study of varieties of ω-regular languages, but also has the advantage of hiding com-
plications of cutting apart and stitching together runs of Büchi automata as we shall
do. This is precisely our reason for utilising this algebraic framework.

2.6 Logics

Structures

First-order structures A =
(
A, {Ri}i, {fj}j

)
, simply structures from now on, are

given by a set A, the universe or domain of A, by a (not necessarily finite) number
of relations Ri and functions fj over A of respective arities 0 < ri ∈ N and nj ∈ N.
That is, Ri ⊆ Ari and fj : Anj → A. Note that all functions fj are required to be
total, i.e. defined everywhere on Anj . Functions of arity zero are constants and can
be noted separately as cl.

A relational structure is one having only relations, but no functions or con-
stants. We will mostly be working with relational structures, sometimes also al-
lowing constants. Every structure can naturally be coded as a relational structure
simply by replacing each function fj by its graph Gfj

of arity nj + 1 defined as
Gfj

(~x, y) ⇐⇒ fj(~x) = y.

21

2 Preliminaries

The signature of a structure A as above is σ(A) = {R(ri)
i | i} ∪ {f

(nj)
j | j}

where the Ri and fj are now simply treated as symbols, not relations, with their
respective arities noted in superscript. We say that the relation Ri, also denoted RA

i

for unambiguity, is the interpretation of the relation symbol R
(ri)
i in A. Similarly,

functions are interpretations of function symbols. For convenience we will often not
distinguish relation- and function symbols in notation from their interpretations as
long as no confusion arises.

Word and tree structures

We have already encountered some structures in the introduction. A tree t : [r]≤ω →
Σ can be naturally seen as a structure with universe dom(t) ⊆ [r]∗ and equipped
with the prefix relation � and/or the successor functions succi for i < r defined
as succi(x) = xi as well as the labelling predicates Pa = {x | t(x) = a} for each
a ∈ Σ. In the special case of r = 0 the tree degenerates to a finite or infinite word,
� reduces to the standard ordering ≤ and succ = succ0 to the successor function on
positions within the word.

We will often refer to the structure ∆2 = ([2]∗, succ0, succ1) of the complete un-
labelled binary tree as “the tree” and to ∆1 = (N, succ) as “the line”. Sometimes,
however, we will use their expansions with the prefix ordering.

Logics

Basic notions of first-order logic, FO, are standard. First-order formulas of signature
σ are built from atomic formulas (t1 = t2 and Rt1 . . . tn, where the ti are σ-terms over
functions and constants of σ and variables) using boolean connectives (e.g. ∧,∨,¬,
etc.) and quantification over first-order variables (∃x . . . and ∀x . . .).

The semantics of first-order formulas is given in terms of interpretations in struc-
tures of an appropriate signature. Given a structure A of signature σ, every σ-term
t(~x) and every FO(σ)-formula ϕ(~x) with free variables ~x = x1, . . . , xn determines
an n-ary function tA, respectively, an n-ary relation ϕA. In particular, when ϕ is a
sentence, its interpretation ϕA is the truth value of its satisfaction in A. When a
sentence ϕ is satisfied in A we also say that A is a model of ϕ and use the shorthand
A |= ϕ. Similarly, we write A |= ϕ[~a] or ~a ∈ ϕA when the tuple ~a of elements of
A satisfies the formula ϕ(~x). Given a structure A, its first-order theory, denoted
ThFO(A), is the set of FO-sentences of signature σ(A) holding true in A.

First-order sentences of signature {<, (Pa)a∈Σ} can express properties of words,
thereby defining languages. More precisely, a sentence ϕ defines the language Lϕ
of words w whose associated word structure Ww = ([|w|], <, (Pa = w−1(a))a∈Σ) is a
model of ϕ. Similarly, one can define tree languages. To give an example, consider
the following.

Example 2.6.1. Let Σ = {a, b, c}. The language a∗b∗c∗ is defined, say, by the

22

2.6 Logics

following formula.

ϕ = ∃x∃y(x ≤ y ∧ (∀z < x)Paz ∧ (∀x ≤ z ≤ y)Pbz ∧ (∀z > y)Pcz) .

Note that we have allowed ourselves a more liberal syntax, as customary, to ab-
breviate x < y ∨ x = y as x ≤ y and to write e.g. (∀z < x)Paz instead of
∀z(z < x → Paz). Throughout this thesis we will regularly take advantage of such
practices.

It is well-known that, intuitively speaking, first-order logic cannot count. For
instance, there is no first-order sentence holding true in precisely those finite struc-
tures of even cardinality, and no first-order sentence can define the language of words
containing, say, an even number of a’s. In fact, the first-order definable languages
of finite words (with <) are precisely the star-free languages (McNaughton-Papert),
equivalently, those recognised by an aperiodic monoid (Schützenberger). When,
on the other hand, only the successor relation, but no ordering is available, the
first-order definable languages of words are the so called locally threshold testable
languages. For these results and refinements as well as extensions consult [Str94].

To remedy this deficiency of first-order logic one can enhance its expressiveness
by the introduction of modulo-counting quantifiers ∃(r,m) with the intended meaning
of formulas ∃(r,m)xϕ being that the number n of distinct x satisfying ϕ is finite and
n has remainder r modulo m. Additionally, the infinity quantifier ∃∞xϕ meaning
that there are infinitely many x satisfying ϕ will also be of interest to us. Various
other extensions of first-order logic will be considered in Section 7.1.

Monadic second-order logic, MSO, extends first-order logic with quantification
over sets of elements. Set variables are conventionally written as capital letters
X, Y, Z, . . . to distinguish them from first-order variables. In addition to the atomic
formulas of first-order logic, Xx is an atomic formula of MSO for every set variable
X and first-order variable x. The monadic theory, ThMSO(A) of a structure A is the
set of MSO-sentences of which A is a model.

Quantification over sets results in considerable increase in expressive power. MSO

is able to express reachability in graphs, transitive closure and fixpoint construc-
tions of definable binary relations, as well as some NP-complete problems (e.g.
3-colorability). For example, the following formula defines the prefix relation in
{0, 1}-branching trees.

ϕ�(x, y) = ∀X(Xx ∧ ∀z, z′(Xz ∧ (succ0zz
′ ∨ succ1zz

′) → Xz′) → Xy)

There is therefore no loss in expressive power, as far as MSO is considered, over
word- and tree structures if we omit the (prefix) ordering from the signature. The
fundamental results of Büchi and Elgot (for finite and infinite words), Thatcher and
Wright, and Doner (for finite trees) and of Rabin (for infinite trees) establish the
close correspondence of finite automata and monadic second-order logic.

Theorem 2.6.2 (Büchi, Elgot, Thatcher-Wright, Doner, Rabin – cf. [Tho97]). A
language of finite or infinite words or trees is finite automaton recognisable iff it is
monadic second-order definable.

23

2 Preliminaries

In all cases, the direction from automata to logic is rather straightforward. It
consists of existentially guessing a run of the automaton, coded by a tuple of sets,
and checking its compliance with the transition relation as well as it satisfying the
acceptance condition. Thus, as a byproduct, together with the converse direction,
we obtain that every MSO formula is equivalent to one in “automaton normal form”,
in particular, to a Σ1

1-formula on words (McNaughton provided a tighter normal-
form) and to a Σ1

2 (also to a Π1
2) formula on trees [TL94]. The other direction,

establishing translation from logic to automata proceeds via induction on formulas,
taking advantage of closure properties of the automata involved, the most critical
of which is complementation. Indeed, existentially quantified formulas naturally
translate to non-deterministic automata, the complementation of which is far from
trivial as soon as the automaton model does not allow determinisation in general.
That is the case for Büchi automata on infinite words, for top-down automata on
finite trees, and for Muller, Rabin, or parity automata on infinite trees as we have
already remarked. The actual aim and the main achievement of the automaton
method pioneered by Büchi, Elgot, McNaughton, Rabin, and others is the estab-
lishment, based on decidability of the emptiness problem of the automata involved,
of the decidability of the monadic theories of one successor, S1S, respectively of two
successors, S2S. In our terminology, we have the following.

Theorem 2.6.3 (Büchi, Rabin, cf. [Tho97],[GTW02]). The monadic second-order
theories of ∆1 and of ∆2 are decidable.

2.6.1 Interpretations

Logical interpretations provide a means of transforming a structure, the host, into
another one, the interpreted structure, in a way that an associated transformation
allows us to reduce, in an effective way, the logical theory of the interpreted structure
onto the theory of the host. Decidability of the theory of the host thus yields a
decision procedure for that of the interpreted structure. Let us first formally define
first-order interpretations.

Let σ and τ be relational signatures. A first-order interpretation I transforming
σ-structures into τ -structures is a collection of FO(σ)-formulas

I = (δ(~x), {ψR(~x1, . . . , ~xr) | R
(r) ∈ τ})

where each vector ~x, respectively, ~xi of free variables is of the same length n, which
we call the dimension of the interpretation.

An interpretation I as above transforms a σ-structure A into the τ -structure
B = I(A) defined as follows. The universe of B is the set δA of n-tuples of elements
of A satisfying δ. Similarly, for each relation symbol R(r) ∈ τ , RB is the set of
r-tuples of n-tuples ~a1, . . . ,~ar from A such that A |= ϕR(~a1, . . . ,~ar).

If I is a one-dimensional interpretation, we also say that B is definable in A.
Clearly, B is interpretable in A iff it is definable in the n-fold direct product An for
some n.

24

2.6 Logics

To an interpretation I as above is naturally associated a transformation ·I of
τ -formulas into σ-formulas defined inductively by stipulating

(R(x1, . . . , xr))
I = ϕR(x1,1, . . . , x1,n, · · · , xr,1, . . . , xr,n)

(∃xψ)I = ∃~x(δ(~x) ∧ ψI)
(∀xψ)I = ∀~x(δ(~x) → ψI)

and that ·I distributes over boolean combinations. Intuitively speaking, ψI is ob-
tained from ψ by substituting each atomic formula by its definition in I and by
restricting quantification to tuples satisfying δ. This transformation provides an
effective uniform reduction of ThFO(I(A)) to ThFO(A) for all prospective A’s.

Regarding the complexity of the reduction we note that the transformation
ψ 7→ ψI is logspace-lineartime computable (even DGSM computable if τ does not
contain function symbols) and only increases the length of formulas by at most a
linear factor.

Consequently, if ThFO(A) is in PSPACE (the first-order theory of every structure
with two elements is at least PSPACE-hard) or is elementary recursive (i.e. in
time/space bounded by some tower of exponentials), then the first-order theory
of every B ≤FO A is in PSPACE, respectively, is elementary recursive (and is in
time/space bounded by the same tower of exponentials).

For more intricate theories (like most of the theories we will encounter), the com-
plexity is usually measured in terms of the number of quantifier alternations in the
prenex normal form of formulas, which can also be linearly increased by the reduc-
tion associated to an interpretation. However, in case of interpretations involving
only quantifier-free formulas (more generally, in case of so called simple interpreta-
tions [Grä90]), the quantifier prefix of formulas is preserved by the transformation,
hence this complexity blow-up is avoided.

Monadic second-order interpretations I and their associated contravariant
transformations of formulas ·I are defined analogously to the above, mutatis mu-
tandis. Note, however, that in order for ·I to transform MSO-formulas into MSO-
formulas, i.e. avoiding quantification over sets of tuples, I must be one-dimensional.
This restriction is necessary, as prompted by the example of the infinite grid (N ×
N, (succ,), (, succ)) which can be interpreted in (N, succ) via a trivial two-dimensional
first-order interpretation, and is a prominent example of a structure with an unde-
cidable MSO-theory [See91].

As an example let us show that the monadic theory SωS of the complete ω-
branching tree of infinite depth is decidable. Our aim is to give an MSO-interpretation
of the tree Tω = (N∗, {succn | n ∈ N}) in ∆2 = ([2]∗, succ0, succ1). The idea is to code
a finite initial branch segment n1, n2, . . . , nl of Tω by the branch 0n110n21 . . . 0nl1 in
∆2. It is then straightforward to write, for each n, a formula ϕsuccn

(x, y) defining
succn. Alternatively, one can consider Tω to be of the finite signature (N∗,�, <lex)
equipped with the prefix and the lexicographic orders. To give an interpretation

25

2 Preliminaries

of this structure, in which each succn is definable, using the same coding as above,
prefix is simply interpreted by prefix itself (restricted to nodes with an incoming
1-edge) and the lexicographic order on N∗ is defined by the lexicographic order on
{0, 1}∗ · 1 stressing that 1 < 0.

MSO-transductions [Cou94] were introduced as a generalisation of monadic inter-
pretations. We have noted that every first-order interpretation can equivalently be
thought of as a one-dimensional interpretation (i.e. definition) in a k-fold direct
product of the host structure with itself, and that taking direct products is not an
MSO-compatible operation, e.g. in that it easily produces structures with an unde-
cidable MSO-theory. MSO-interpretations have the drawback that they do not allow
one to interpret a larger finite structure in a smaller one. This can be remedied by an
initial k-copying operation transforming a structure A into the union

⋃
0≤i<k A×{i}

of k disjoint copies of A endowed with auxiliary edges Ei,j = {((a, i), (a, j)) | a ∈ A}
pointwise connecting the copies in parallel. Using Ehrenfeucht-Fräıssé games it is
easy to check that k-copying is MSO-compatible in the sense that it induces a simi-
lar k-copying operation on (bounded) MSO-theories as well. Furthermore, k-copying
preserves decidability of MSO-theories. An MSO-transduction is composed of a k-
copying for some k > 1 followed by an MSO-interpretation.

26

3 Finite Presentations of Structures

The central topic of this thesis being automatic presentations, we shall begin by
introducing this notion mentioning some restrictions followed by some of its closer
and more distant relatives and generalisations.

Unless otherwise stated, we will always think of structures as being relational, that
is, with n-place functions given by their graphs as relations of arity (n + 1). This
makes perfect sense as far as presentations are concerned and it comes at no sacrifice
for our purposes. Nonetheless, for the sake of readability, we will occasionally, when
appropriate, allow ourselves to use a functional signature.

3.1 Automatic Presentations

It is time to formally define what we mean by an automatic presentation of a struc-
ture. The following definition covers both finite and infinite word-automatic presen-
tations as well as finite and infinite tree-automatic presentations, the sole difference
lying with the kind of finite automata being used.

Definition 3.1.1 (Automatic structures).
Consider a relational structure A = (A, {Ri}) comprising relations Ri over the uni-
verse dom(A) = A. An (omega-)(word-/tree-)automatic presentation of A is a tuple
d = (A,A≈, {Ai}) of finite synchronised (omega-)(word-/tree-)automata, such that

• A recognises an (omega-)(word-/tree-)regular set D called the domain of the
presentation,

• each Ai recognises an (omega-)(word-/tree-)regular relation Si of the same
arity as Ri, and

• there exists a surjective function f : D → dom(A) referred to as the naming
function or co-ordinate mapping of the presentation, such that

• ≈ = {(u, w) ∈ D2 | f(u) = f(w)} (the kernel of f) is a congruence relation on
(D, {Si}) and is recognised by A≈, and

• f/≈ is an isomorphism from (D, {Si})/≈ to A.

We say that the presentation is injective whenever f is, in which case A≈ can be
omitted.

A structure A is (omega-)(word-/tree-)automatic if it allows an (omega-)(word-
/tree-)automatic presentation. The classes of (omega-)(word-/tree-)automatic struc-
tures are denoted by AutStr, ωAutStr, TAutStr and ωTAutStr, respectively.

27

3 Finite Presentations of Structures

This is more or less the standard definition used throughout the literature. A
tuple d of finite automata as specified above does indeed provide a finite descrip-
tion of the represented structure up to isomorphism. This is of course the most one
can expect, and just means, perfectly reasonably, that the classes (ω)(T)AutStr
are closed under isomorphisms. Although we do not distinguish between isomor-
phic structures, we very much intend to distinguish between “essentially different”
automatic presentations of individual structures. In doing so, we are not so much
interested in the actual automata of a presentation, i.e in d, but rather in which
relations are regularly represented under a certain naming function. This will be
formalised and elaborated in Section 4.2. It is worth noting that given a structure
A and an appropriate naming function f – one under which the inverse images of
the universe and the relations of A are regular – an automatic presentation d of A

can be defined in a canonical way, e.g. as the tuple of automata determined by the
syntactic congruence classes of the regular inverse images of the respective relations
of A.

As a first observation on the class AutStr we note that all finite structures are
trivially (though not necessarily efficiently) automatically presentable. Indeed, as
all finite relations on words are regular, a naming function can be chosen arbitrarily.
Our intention is, of course, to represent infinite structures. This raises the question
whether finiteness of (omega-)(tree-)automatic structures is decidable. We will ad-
dress this question in Section 3.1.2. Aside of that we shall not be concerned with
presentations of finite structures.

From Definition 3.1.1 it is immediate that AutStr is included in TAutStr, that
they contain only finite and countable structures and are thus strictly contained in
ωAutStr, respectively in ωTAutStr, the latter also subsuming the former. In
fact, AutStr is a proper subclass of TAutStr as shown by Blumensath [Blu99,
BG04] (see Example 3.1.2(v) and Section 4.1). In Section 3.1.1 we will prove the
non-trivial fact that AutStr is the restriction of ωAutStr to finite and countable
structures.

We will, for the most part, be concerned with automatic presentations on finite
words. Therefore, when the type of underlying objects is left unspecified, an auto-
matic presentation will from now on mean one over finite words. When confusion
could arise the kind of presentation meant will always be specified. The term auto-
matic presentation will often be abbreviated as aut. pres. or simply as a. p.

In general, neither the naming function nor the tuple of automata comprising a
particular presentation determines the other. Nonetheless, depending on the context
of our investigation we might just be interested in either one of these constituents
while tacitly omitting the other. Frequently, we shall allow ourselves to refer to the
regular relations comprising a presentation in place of actual automata recognising
them or to use other means, such as regular expressions, of describing the relations.
Let us illustrate this practice on the examples below.

Example 3.1.2.
(i) The ordinal ω is automatic. Indeed, the simplest presentation thinkable is the

unary one: (0∗, {(0k, 0l) | k < l}).

28

3.1 Automatic Presentations

(ii) In fact, every ordinal below ωω is automatic. A presentation of ωk generalising
the above one, is ((0∗1)k, <lex) where <lex denotes the lexicographic order (now
on the binary alphabet) which is clearly regular. In this presentation the co-
ordinate map is

0nk−11 . . . 0n01 7→ nk−1ω
k−1 + . . .+ n1ω

1 + n0 .

(iii) The ordering of the rationals (Q, <) is automatic. The lexicographic ordering1

on binary words ending with a 1 is of order type (Q, <) as can easily be checked.
Thus, ({0, 1}∗1, <lex) constitutes an a. p. of (Q, <) as claimed.

(iv) Presburger arithmetic N = (N,+) is automatic. Indeed, for every natural
k > 1, the base k least significant bit first presentation of naturals (with or
without leading zeros) constitutes a naming function of an a. p. A finite
automaton can easily perform the schoolbook addition method while keeping
track of the carry in its state. Such a presentation is injective when leading
zeros are suppressed.

(v) Skolem arithmetic, (N, ·), the structure of the naturals with multiplication is
tree automatic. The presentation is based on the unique factorisation of nat-
urals into prime powers. Each number n is represented by a tree coding the
finite sequence of powers 2n23n3 · · · pnp · · · in the factorisation of n representing
each np by a single branch, i.e. as a word, say in binary notation. Multiplica-
tion is thus reduced to the addition of corresponding exponents, carried out in
parallel on corresponding branches as in the word-automatic presentation of
Presburger arithmetic.
This construction can naturally be generalised to give tree-automatic presen-
tations of weak direct products of word-automatic structures [Blu99, BG04].

(vi) The infinite grid (N×N, right, up) with the functions right : (n,m) 7→ (n+1, m)
and similarly up : (n,m) 7→ (n,m + 1) can be automatically presented on the
domain a∗b∗ with relations

R =

(
a

a

)∗(
b

a

)(
b

b

)∗(
�

b

)

and U defined by a similar regular expression.

(vii) The complete infinite binary tree ({0, 1}∗, succ0, succ1,�) equipped with the
left and right successor relations as well as the prefix relation � is trivially
automatic with the identity naming function. By adding to this tree struc-
ture the equal-length relation we obtain a maximal automatic expansion (cf.
Theorems 3.2.4, 4.3.1 and Corollary 7.0.5).

1Given an ordering on the symbols of the alphabet a word u is lexicographically smaller than w

if either u is a proper prefix of w or if in the first position where u and w differ one finds a
smaller symbol in u than in w.

29

3 Finite Presentations of Structures

(viii) The transition graphs of pushdown automata are automatic. Given a push-
down automaton A with states Q, stack alphabet Γ, input alphabet Σ and
transition relation ∆ we can construct an automatic presentation of the tran-
sition graph of its configurations 2 as follows. We take QΓ∗ to be the domain of
the presentation in which qγ represents the configuration of state q and stack
γ ∈ Γ∗. For each a ∈ Σ there is an a-transition from qγ to q′γ′ iff γ = zα,
γ′ = wα and (q, z, q′, w) ∈ ∆ for some z ∈ Γ and w ∈ Γ∗. ∆ being finite, this
relation is obviously regular for each a. Notice that in these presentations the
transition relations are not only regular but in fact defined by prefix-rewriting
rules (cf. Sections 3.3.3 and 3.4 below).

(ix) The transition graphs of Turing machines are automatic [KN95]. We can give
an automatic presentation of each TM M similarly to those of pushdown
automata. Configurations are encoded as strings αqβ ∈ Γ∗QΓ∗ where α and β
are the tape contents to the left, respectively, to the right of the head of M, and
q is the current state. Observe that, as opposed to presentations of pushdown
graphs, the state is now positioned not at the left of the string but at the
location of the head. Consequently, rewriting is not confined to prefixes, but
rather occurs around the state symbol: transitions are of the form αaqbβ 7→
αuq′wβ for adequate a, b, u, w and q, q′ as determined by the transition function
of M. The fact that TM graphs are presentable using infix-rewriting has the
profound consequence that reachability questions in infix-rewriting systems are
generally undecidable, as opposed to graphs of prefix-rewriting systems, whose
monadic second-order theory is decidable (cf. Section 3.3.3).

The advantage of having an automatic presentation of either kind of a structure
lies in the fact that first-order formulas can be effectively evaluated over it using
classical automata constructions. Closure properties of the underlying class of au-
tomata allow one to translate formulas into equivalent automata. Together with
decidability of emptiness for the automaton model this yields a decision procedure
for the first-order theory of the structure. This “automaton method” towards logic
is the very essence of the tight correspondence between automata and logics as pi-
oneered by Büchi, Elgot and Trahtenbrot in the early 1960’s. Hodgson calls such
theories “automaton decidable” [Hod83]. These well-known facts are gathered in
the following fundamental theorem (cf. [Hod83],[KN95],[Blu99, BG04],[Rub04]).

Theorem 3.1.3 (Fundamental Theorem of Automatic Presentations).

(i) Let A be (ω-)(tree-)automatic with presentation d and naming function f .
Then one can effectively construct, for each FO-formula ϕ(~a, ~x) with param-
eters ~a from A defining a k-ary relation R over A, a synchronous (ω-)(tree-
)automaton recognising f−1(R).

2 For visibly pushdown automata the same representation of configurations also allows for the
trace equivalence relation to be recognised by a finite automaton. In [BLS06] this presentation
was utilised to obtain a decidability result.

30

3.1 Automatic Presentations

(ii) The FO-theory of every (ω-)(tree-)automatic structure is decidable.

(iii) The classes (ω)(T)AutStr are closed under FO-interpretations.

Let us point out now that by (i) above every set and relation first-order definable
from (ω-)(tree-)regular sets and relations is itself (ω-)(tree-)regular. We shall use
this fact frequently without explicit reference.

The Fundamental Theorem provides a very efficient tool for constructing auto-
matic presentations of structures by defining them in other ones for which a presen-
tation is at hand. Let us illustrate this on the following example.

Example 3.1.4 (Finitely generated abelian groups are automatic [KN95]). Every
finitely generated abelian group G is a product of cyclic groups, that is a direct
product of (Z,+)r with a finite commutative group G0 (which is a product of cyclic
groups of finite order). In Example 3.1.2 (iv) we gave several automatic presentations
of N = (N,+). A straightforward interpretation of (Z,+), and hence of (Z,+)r, in
N shows, by the Fundamental Theorem, that (Z,+)r is automatic for each r > 0. We
have already noted that all finite structures are automatic. In fact, they can also be
trivially interpreted in N . Finally observe that the (2r-dimensional) interpretation
of (Z,+)r and the (one-dimensional) interpretation of G0 in N can be effortlessly
combined into a ((2r + 1)-dimensional) interpretation of their direct product in N ,
providing, via the Fundamental Theorem, an automatic presentation of G. We add
that finitely generated abelian groups are also automatic in the more restrictive
sense of [CEH+92].

Note that taking direct products of automatic structures always yields an auto-
matic structure [Hod82]. This can either be verified by a direct construction or be
inferred from the existence of complete structures (cf. Theorem 3.2.4) [Blu99, BG04].
The idea of the direct construction of Hodgson [Hod82] is to encode pairs of elements
by the convolution of their representations and simulate corresponding automata
of both presentations synchronously on their respective components of convoluted
pairs. Observe that this is precisely what happens when we combine interpretations
as in Example 3.1.4 above.

It is also an immediate consequence of the Fundamental Theorem that each of the
classes (ω)(T)AutStr is closed under factorisation by FO-definable congruences.

3.1.1 Injective presentations

A very natural question to ask is whether every (ω-)(tree-)automatic structure can
actually be automatically presented with unique representants. In other words,
whether injectivity of (ω-)(tree-)automatic presentations can always be assumed.
This issue has a relevance for instance for the decidability of extensions of first-
order logic, e.g. with infinity (FO∞) and/or modulo counting quantifiers (FO∞,mod).
Indeed, the Fundamental Theorem has been extended to FO∞ in [Blu99, BG04] over
(ω)AutStr and further to FO∞,mod over AutStr in [KRS03b, KRS04] and over

31

3 Finite Presentations of Structures

injectively presentable ω-automatic structures in [KL06], finally, to FO∞,mod over
(injective) tree-automatic presentations in [Col04a].

Theorem 3.1.5 ([Blu99, BG04],[KRS04],[KL06],[Col04a]). The statements of the
Fundamental Theorem (definability, decidability and closure under interpretation)
hold true for FO∞,mod over all injectively presentable (ω-)(tree-)automatic struc-
tures.

It is a simple observation that words can be well ordered using a regular ordering,
e.g. the length-lexicographic one, implying, by the Fundamental Theorem, that fi-
nite word automatic presentations can be made injective by restricting their universe
to a regular set of unique representants. However, this approach extends neither to
trees nor to ω-words, as these cannot be well ordered in a regular fashion. Therefore,
it is natural to ask in which cases is injective presentability an actual restriction.

Tree-automatic presentations

Since there is no regular well-ordering of finite, let alone infinite, labelled trees
[CL07], the approach of selecting a regular set of unique representants of each equiv-
alence class of an arbitrary tree-automatic presentations seems problematic.

Nonetheless, in [CL06, Theorem 8] it is shown that every tree-automatic struc-
ture admits an injective tree-automatic presentation. Instead of trying to find a
tree-regular cross-section of a tree-regular equivalence, the construction of [CL06]
associates, in a wMSO-definable, hence tree-regular manner, a finite number of trees
to every equivalence class, the lexicographically least of which can then be taken to
represent the class. Thus, injectivity poses no restriction on TAutStr either.

ω-Automatic presentations of countable structures

The case of ω-automatic presentations is more obscure. An example witnessing that
not all ω-regular equivalence relations have an ω-regular set of unique representants
is the equal-ends relation of Kuske and Lohrey [KL06]. Two ω-words are of equal
end if they agree on all but finitely many positions. This equivalence relation is
accepted by the following non-deterministic Büchi automaton.

1

(0
0),(

0
1),(

1
0),(

1
1)

�� (0
0),(

1
1)

// 2

(0
0),(

1
1)

��
F = {2}

Figure 3.1: An automaton for the equal-ends relation.

Note that equal-ends has uncountably many equivalence classes each of countable
cardinality. While it is not yet known whether every ω-automatic structure has
an injective ω-automatic presentation, and although the example of the equal-ends
equivalence shows that not all ω-regular equivalence relations have an ω-regular set

32

3.1 Automatic Presentations

of unique representants, we are able to show that for every ω-regular equivalence
relation having only countably many classes an ω-regular set of unique representants
can effectively be found. This is joint work with Lukasz Kaiser and Sasha Rubin
[BKR07].

A question raised in [Blu99] is whether every countable ω-automatic structure
is also automatic. It is easy to see that every injective ω-automatic presentation
of a countable structure can be “packed” into an automatic presentation. For the
reader’s convenience we sketch a proof of this fact.

Proposition 3.1.6. ([Blu99, Theorem 5.32]) Let d be an injective ω-automatic
presentation of a countable structure A. Then, an (injective) automatic presentation
d′ of A can effectively be constructed.

Proof. By injectivity of the presentation, its domain D is a countable ω-regular set
and therefore of the form

⋃n

k=1 Ukw
ω
k for some finite periods wk and regular sets

Uk ⊆ Σ∗. Wlog. {1, . . . , n} ∩ Σ = ∅. To obtain a presentation using finite words
simply take as domain D′ =

⋃
k k · Uk. To represent the relations, construct for each

Ai an automaton A′
i simulating it as follows. On reading, as the first symbols of

its input, a tuple (k1, . . . , kni
) of indices, each A′

i enters a state (q0, wk1, . . . , wkni
)

where q0 is the initial state of Ai and the wkj
’s are the periods corresponding to

the indices kj. A′
i simulates Ai and, on reaching the end of certain input words,

A′
i proceeds by treating the corresponding period wkj

stored in its state as part
of the input, and rotating it in each step by one letter. Upon termination, the
state of A′

i, some (q, w̃k1, . . . , w̃kni
), is accepting precisely if Ai accepts the tuple

(w̃k1
ω, . . . , w̃kni

ω) from state q.

Note that in the proof above we have only relied on the countability of the domain
of the ω-automatic presentation, not on it actually being injective. The crux of our
construction answering the question of Blumensath is encompassed in the following
lemma.

Lemma 3.1.7. Let E be an ω-automatic equivalence relation over (Σ2)ω and let
S = (Sf , Sω) be the finite ω-semigroup that recognises E via φ. If E has countably
many equivalence classes, then for every w, u, v ∈ Σ∗ there is a natural k such that

φ

(
u

u

)
= φ

(
v

v

)
=⇒ (wvkuω, wvω) ∈ E.

Let us postpone the proof of this lemma for now and derive first our injectivity
results. To this end we will need the following simple facts guaranteeing the existence
of short witnesses and idempotents.

Proposition 3.1.8. For a regular language L recognised by a Büchi automaton and
the corresponding semigroup morphism φ : (Σ+,Σω) → (Sf , Sω) there exist

33

3 Finite Presentations of Structures

(i) a number M so that for every u ∈ Σ+ there is a word v with |v| ≤ M so that
φ(u) = φ(v),

(ii) a number K, the exponent of Sf , so that for every word u the element φ(uK)
is an idempotent.

Theorem 3.1.9 ([BKR07]). For every ω-automatic presentation (A,A≈, {Ai}i) of
a countable structure there exists an ω-regular set D of unique representants of each
≈-class, thus yielding an injective ω-automatic presentation (D, {Ai}i).

Proof. Let us consider the ω-regular equivalence relation ≈, the corresponding semi-
group (Sf , Sω) and morphism φ recognising ≈, and let M be the constant from
Proposition 3.1.8(i) adequate for the morphism (x 7→ φ

(
x

x

)
). Let B be the set of

ω-words of the form suω for some s and u with |u| ≤ M . In other words, B is the
finite union

⋃
|u|≤M Σ∗uω and is thus regular.

Let us now show that every equivalence class of ≈ has a representant in B. Assume
to the contrary that there is a word x that is not equivalent to any element of B.
Such words can be recognised by an automaton since they are defined by the formula
∀y (By → ¬x ≈ y) where both B and ≈ are regular relations. Therefore, there is an
ultimately periodic word with this property, let us denote it by wvω. By the choice
of M there is a word u with |u| ≤ M such that φ

(
u

u

)
= φ

(
v

v

)
. By definition of B we

have that wvkuω ∈ B for every k and therefore wvω and wvkuω are not equivalent,
which contradicts Lemma 3.1.7 since, by assumption, ≈ has only countably many
equivalence classes.

It remains to prune B to select unique representants of each ≈-class. Given the
structure

⋃
|u|≤M Σ∗uω of B it is easy to give an ω-regular well-founded linear order

on its elements. Define xuω < yvω iff u is lexicographically smaller than v or |u| = |v|
and x is length-lexicographically smaller than y. Note that this definition involves
only finitely many case distinctions, ensuring ω-regularity. Finally, define D as the
set of minimal elements of every class.

From the above theorem using Proposition 3.1.6 we immediately obtain as a corol-
lary the following result.

Corollary 3.1.10. A countable structure is ω-automatic iff it is automatic. Trans-
forming a presentation of one type into the other can be done effectively.

Further note that the proof of Theorem 3.1.9 yields a decidable criterion for
countability of an ω-automatic structure. Indeed, given an ω-automatic presentation
one simply has to construct the set B as above and check whether every equivalence
class is represented by an element of B.

Corollary 3.1.11. It is decidable whether a given ω-automatic presentation repre-
sents a countable structure.

34

3.1 Automatic Presentations

To prove Lemma 3.1.7 we need to find elements of the ω-semigroup corresponding
to the equivalence relations that satisfy certain algebraic properties. In order to
enhance readability, we will use the shorthand

(
x

y

)
in place of φ

(
x

y

)
throughout the

rest of this section.

Lemma 3.1.12. Let T be an ω-automatic relation over (Σ2)ω and let S = (Sf , Sω)
be the finite ω-semigroup that recognises T via φ. If there exist words u, v ∈ Σ∗ for
which (

u

u

)
=

(
v

v

)
and uω 6= vω

then for any w ∈ Σ∗ we can find words w′, a, b ∈ Σ∗, a 6= b, satisfying the following
properties:

(i)
(
a

a

)
and

(
b

b

)
are idempotent,

(ii)
(
a

a

)
=
(
b

b

)
,

(iii) |a| = |b|,

(iv)
(
a

b

)(
a

a

)
=
(
a

b

)(
b

b

)
=
(
a

b

)
,

(v)
(
b

a

)(
a

a

)
=
(
b

a

)(
b

b

)
=
(
b

a

)
,

(vi)
(
w′

w′

)(
a

a

)
=
(
w′

w′

)(
b

b

)
=
(
w′

w′

)
.

Moreover, if T is transitive and (wvkuω, wvω) 6∈ T for every natural k, then

(vii) (w′aω, w′bω) 6∈ T .

Proof.
Let K be the exponent of Sf , i.e. the least positive natural such that sK is idempo-
tent for every s ∈ Sf . Set û = (uK)|v| and v̂ = (vK)|u|.

The assumption
(
u

u

)
=
(
v

v

)
implies

(
û

û

)
=
(
v̂

v̂

)
, by definition we have |û| = |v̂|, and

by the choice of K,
(
û

û

)
=
(
u|v|

u|v|

)K
is idempotent. This shows that û and v̂ satisfy

properties (i)-(iii).
Let us now put a = ûû, b = v̂û and w′ = wv̂. Then property (i) follows directly

from idempotency of
(
û

û

)
and

(
v̂

v̂

)
, property (ii) is checked by the identities

(
a

a

)
=

(
û

û

)(
û

û

)
=

(
v̂

v̂

)(
û

û

)
=

(
b

b

)
.

Properties (iv) and (v) can be proved using idempotency in a similar way, e.g.

(
a

b

)(
a

a

)
=

(
ûû

v̂û

)(
ûû

ûû

)
=

(
û

v̂

)(
û

û

)3

=

(
û

v̂

)(
û

û

)
=

(
a

b

)
.

35

3 Finite Presentations of Structures

Since (iii) is obviously satisfied and (vi) follows from the idempotency of
(
v̂

v̂

)
=
(
û

û

)
,

we only need to prove (vii), i.e. that (w′aω, w′bω) 6∈ T provided that (wvkuω, wvω) 6∈
T for every k and that T is transitive.

Let us assume to the contrary that (w′aω, w′bω) = (w′(ûû)ω, w′(v̂û)ω) ∈ T . Using
the fact that φ composes with the infinite product π of the ω-semigroup and taking
advantage of properties (i)-(iii) for û and v̂, we calculate that

(
w′(ûû)ω

w′(v̂û)ω

)
= π(

(
w

w

)(
v̂

v̂

)
,
(
û

v̂

)(
û

û

)
,
(
û

v̂

)(
û

û

)
, . . .)

= π(
(
w

w

)(
v̂

v̂

)
,
(
û

v̂

)(
v̂

v̂

)
,
(
û

v̂

)(
v̂

v̂

)
, . . .)

= π(
(
w

w

)(
v̂

v̂

)(
v̂

v̂

)
,
(
û

v̂

)(
v̂

v̂

)
,
(
û

v̂

)(
v̂

v̂

)
, . . .)

= π(
(
w

w

)(
v̂

v̂

)
,
(
v̂

v̂

)(
û

v̂

)
,
(
v̂

v̂

)(
û

v̂

)
, . . .)

=
(
w′(v̂û)ω

w′(v̂v̂)ω

)
.

Therefore (w′(v̂û)ω, w′(v̂v̂)ω) ∈ T , and by transitivity also (w′(ûû)ω, w′(v̂v̂)ω) ∈ T
i.e. (w′ûω, w′v̂ω) ∈ T . But this means that (wv̂ûω, wv̂ω) ∈ T contradicting the
assumption that (wvkuω, wvω) 6∈ T for any k.

Remark 3.1.13. Below we will make use of the observation that whenever a, b, w′

satisfy the conditions of Lemma 3.1.12 then â = aK ,̂b = bK do as well with the same

w′ and for K the exponent of Sf . It then holds additionally that both
(
â

b̂

)
and

(
b̂

â

)

are idempotent.

Proof of Lemma 3.1.7. Towards a contradiction let us take an equivalence relation
E with the corresponding finite ω-semigroup S = (Sf , Sω) and morphism φ that
recognises E and the words w, u, v so that φ

(
u

u

)
= φ

(
v

v

)
and (wuω, wvω) 6∈ E for all

k ∈ N.
Since E is transitive, let us take the words w′, a, b given by Lemma 3.1.12 ad-

ditionally assuming, by way of Remark 3.1.13, that
(
â

b̂

)
and

(
b̂

â

)
are idempotent as

well. We are going to show that no two words in w ·{ab, ba}ω that differ on infinitely
many positions are in E and thus we find uncountably many words that are not
equivalent.

We first show that the words w′(ab)ω and w′(ba)ω are not equivalent. Let us
assume to the contrary that (w′(ab)ω, w′(ba)ω) ∈ E and consider the pair of words
(w′(ba)ω, w′(abaa)ω).

(
w′(baba)ω

w′(abaa)ω

)
= π(

(
w′

w′

)
,
(
b

a

)
,
(
a

b

)
,
(
b

a

)
,
(
a

a

)
,
(
b

a

)
,
(
a

b

)
,
(
b

a

)
,
(
a

a

)
, . . .)

= π(
(
w′

w′

)
,
(
b

a

)
,
(
a

b

)
,
(
b

a

)
,
(
a

b

)
, . . .)

=
(
w′(ba)ω

w′(ab)ω

)

So (w′(ba)ω, w′(ab)ω) ∈ E implies that (w′(ba)ω, w′(abaa)ω) ∈ E, and as E is an
equivalence relation we have that (w′(ab)ω, w′(abaa)ω) ∈ E. However

(
w′(abab)ω

w′(abaa)ω

)
= π(

(
w′

w′

)
,
(
a

a

)
,
(
b

b

)
,
(
a

a

)
,
(
b

a

)
, . . .)

= π(
(
w′

w′

)
,
(
b

a

)
,
(
b

a

)
, . . .)

=
(
w′bω

w′aω

)

36

3.1 Automatic Presentations

and thus (w′bω, w′aω) ∈ E which contradicts Lemma 3.1.12.
Now, knowing that (w′(ab)ω, w′(ba)ω) 6∈ E, let us take two words x1, x2 of the form

w′(ab, ba)ω that differ on infinitely many positions. Using idempotency (i) and the
right-identity property (v) we can show that either

(
x1

x2

)
=
(
w′(ab)ω

w′(ba)ω

)
or
(
x1

x2

)
=
(
w′(ab)ω

w′(ba)ω

)
,

depending on the first pair of letters that differ. Let us assume wlog. that the first
pair of letters that differ is

(
a

b

)
, then group all positions where the letters in the pair

are equal to p0, p1, . . ., use idempotency and finally collect the other elements in the
following way:

(
x1

x2

)
= π(

(
w′

w′

)
,
(
p0
p0

)
,
(
a

b

)(
b

a

)
,
(
p1
p1

)
,
(
a

b

)(
b

a

)
,
(
p2
p2

)
,
(
a

b

)(
b

a

)
, . . . ,

(
p3
p3

)
,
(
b

a

)(
a

b

)
, . . .) =

= π(
(
w′

w′

)(
a

a

)
,
(
a

b

)
,
(
b

a

)(
a

a

)
,
(
a

b

)
,
(
b

a

)(
a

a

)
, . . .

(
a

b

)
,
(
b

a

)(
a

a

)
,
(
b

a

)
,
(
a

b

)(
a

a

)
, . . .) =

= π(
(
w′

w′

)
,
(
a

b

)(
b

a

)
,
(
a

b

)(
b

a

)
, . . .

(
a

b

)(
b

a

)
,
(
b

a

)(
a

b

)
,
(
b

a

)(
a

b

)
, . . . ,

(
b

a

)(
a

b

)
,
(
a

b

)(
b

a

)
, . . .) =

= π(
(
w′

w′

)
,
(
a

b

)(
b

a

)
,
(
a

b

)(
b

a

)
,
(
a

b

)(
b

a

)
, . . .) =

=
(
w′(ab)ω

w′(ba)ω

)
.

By this calculation, any pair of words of the form w′(ab, ba)ω that differ on in-
finitely many positions is inE exactly if (w′(ab)ω, w′(ba)ω) ∈ E or (w′(ba)ω, w′(ab)ω) ∈
E, so by the previous argument these are not in E and thus represent different ele-
ments.

This concludes the proof of Lemma 3.1.7.

3.1.2 Decidable and Undecidable Problems

The Fundamental Theorem tells us that first-order properties of (omega-)(tree-
)automatic structures are decidable. Given an injective presentation, decidability
can be extended to FO∞,mod, the extension of first-order logic with infinity and mod-
ulo counting quantifiers (Theorem 3.1.5). We have seen that for finite word- and
tree-automatic presentations injectivity does not constitute a restriction, but the
case of infinite word- and tree-automatic presentations is still unsettled.

In Section 3.3.1 and Chapter 5 we will see, using interpretations or automata
techniques, that in some cases the monadic theory of certain automatic structures
is decidable. However, the example of the infinite grid (cf. Example 3.1.2 (vi))
shows that monadic-second order theories of automatic structures are in general
undecidable.

Moreover, as seen in Example 3.1.2 (ix), configuration graphs of Turing machines
are automatic, it is thus not hard to show that e. g. reachability, connectivity, iso-
morphisms or bisimulation of automatic graphs are undecidable by a reduction from
the halting problem [BG04, Rub04, Rub07]. In [Rub04, Rub07] it is observed that
isomorphism of automatic graphs is in fact much harder than that: it is complete
for the Σ1

1 level of the analytic hierarchy.
A strengthening of the fundamental decidability result can therefore only be hoped

for very modest extensions of first-order logic (see Section 7.1), or for appropriate
subclasses of automatic structures (see below).

37

3 Finite Presentations of Structures

Finiteness

As remarked after Definition 3.1.1 all finite structures are automatic. It is natural
to ask whether given an automatic presentation of either kind finiteness of the
represented structure is decidable. In general this amounts to deciding whether
an (ω-)(word-/tree-) automatic equivalence relation is of finite index. Given an
injective presentation, however, the problem is not new, it asks finiteness of the
domain. This is well-known to be decidable for regular languages as well as for tree-
regular languages. Since both word-automatic and tree-automatic presentations
can be effectively converted to injective ones, we have a decision procedure for these
two models. Finiteness of ω-regular languages is also easily seen to be decidable, for
instance by appealing to Eq. (2.1) on page 17. A decision procedure for non-injective
ω-automatic presentations is obtained from Theorem 3.1.9 and Corollary 3.1.11 of
the previous section. In the case of automatic presentations over infinite trees a
similar result is conjectured, however, at this point we cannot provide a proof.

3.2 Logical Interpretations as Presentations

Logical interpretations transform structures into structures in a way that an asso-
ciated transformation reduces the logical theory of the interpreted structure to the
theory of the host structure.

3.2.1 First-Order Interpretations

We have seen in the Fundamental Theorem that each of the classes (ω)(T)AutStr
is closed under first-order interpretations. It is natural to ask whether there are
maximal objects in each of these classes with respect to the partial order of FO-
interpretability.

Definition 3.2.1 (Complete structures). Following [BG04] we say that a structure
A is complete for a class K wrt. a class L of interpretations if A ∈ K and every
B ∈ K is L-interpretable in A.

The approach of Büchi to decidability of Presburger arithmetic N = (N,+) is
based on finite subset interpretations reducing the FO theory of N to the wMSO

theory of (N, succ). The well-known correspondence of automata on finite words
and (w)MSO on (N, succ) can be reformulated as (N, succ) is complete for AutStr
wrt. subset interpretations, to be introduced in Section 3.2.2 below. Presburger
arithmetic is, however, not complete for AutStr wrt. first-order interpretations.
Büchi suggested the expansion (N,+, {2n | n ∈ N}), which is still not complete.
Expansions of N by relations of the form x |k y defined to hold precisely when x is a
power of k dividing y were considered by Boffa and Bruyére, whence the following
theorem.

38

3.2 Logical Interpretations as Presentations

Theorem 3.2.2 (Büchi-Bruyére, cf. [BHMV94]).
A relation R ⊆ Nr is regular in the (least-significant digit first) base k presentation
of N iff R is first-order definable in the expanded structure Nk = (N,+, |k).

The above theorem implies that each Nk with k > 1 is complete with respect to
FO-interpretations. This can be seen by appealing to the fact that every automatic
presentation over an alphabet Σ can be trivially encoded as a presentation over [k],
provided k > 1, by encoding symbols of Σ on blocks of [k]-digits of uniform length
[Blu99].

There are somewhat more natural structures complete for the classes AutStr
and ωAutStr with respect to first-order interpretations.

Example 3.2.3 (Complete structures of [Blu99, BG04], cf. [ER66][Nab77]). Con-
sider a finite alphabet Σ and let

SΣ = (Σ∗, {succa}a∈Σ,�, el)

and
SωΣ = (Σ≤ω, {succa}a∈Σ,�, el)

be structures defined on finite, respectively on finite and ω-words, comprising the
successor relations succa = {(w,wa) | w ∈ Σ∗}, the prefix relation u � w (where u is
finite and w is finite or infinite) and with the equal-length relation: u elw iff |u| = |w|.
These relations are clearly regular, respectively, ω-regular, thus SΣ ∈ AutStr and
SωΣ ∈ ωAutStr. Note that if Σ is unary, then SΣ reduces to (N,≤).

The structures of Example 3.2.3 are powerful enough to allow us to express, using
first-order formulas, the existence of an accepting run of any given finite automa-
ton, hence to define all regular relations. Therefore, they are indeed complete for
AutStr wrt. FO-interpretations.

Theorem 3.2.4 (Complete automatic structures [Blu99, BG04]). Let Σ be a finite,
non-unary alphabet.

(i) A relation R over Σ∗ is regular if and only if it is definable in SΣ.

(ii) A structure A is automatic if and only if it is first-order interpretable in SΣ.

Natural complete structures for the classes TAutStr and ωTAutStr will be
derived from their characterisations via subset interpretations.

3.2.2 Subset Interpretations

Subset interpretations allow one to reduce the first-order theory of one structure to
the monadic second-order theory of another. This is feasible when elements of the
former structure can be interpreted as subsets of the latter. Büchi used this idea to
show decidability of (N,+) by reducing it via a finite subset interpretation to the

39

3 Finite Presentations of Structures

monadic theory of one successor (see Example 3.2.7 below), thus yielding an alter-
native proof of Presburger’s decidability theorem using the “automaton method”.
Later, Elgot and Rabin [ER66] investigated decidability of extensions of both of
these theories using automata techniques. Subset interpretations are defined as
follows.

Definition 3.2.5. A subset interpretation I is given by a collection of monadic
second-order formulas (ϕ(X), ϕi(~X)) each ϕi having only set variables free.
Given a structure A of the appropriate signature the structure B (finite) subset
interpreted by I in A has as its elements the (finite) subsets of A satisfying ϕ and
as its relations those defined by each of the ϕi.
We use the notation B ≤I

P A respectively B ≤I
Pf

A to specify which interpretation
is meant.

To every (finite) subset interpretation I we associate, as usual, a transformation of
formulas ψ 7→ ψI , in this case mapping first-order formulas to monadic second-order
formulas as done in Section 2.6.1, mutatis mutandis. In the case of subset inter-
pretations this transformation reduces the FO-theory of the interpreted structure to
the MSO-theory of the host. The case of finite subset interpretations is a bit more
subtle for formulas ψI yielded by the transformation use the auxiliary predicate of
finiteness. Of course, whenever finiteness of subsets is MSO-definable in the host
structure, fortunately for us we will only deal with this case, the reduction is sound.
Another option is to use wMSO-formulas in the finite subset interpretation thereby
reducing the first-order theory of the interpreted structure to the wMSO-theory of
the host.

The next result relating the first-order theory of the interpreted structure to the
monadic theory of the “host” and thus justifying the definition is, with the added
remarks, commonplace.

Proposition 3.2.6. Let A be a structure in which finiteness is MSO-definable, e.g.
a finitely branching tree or a linear ordering, and let B ≤I

P(f)
A be a (finite) subset

interpretation. Then to every first-order formula ψ(~x) in the signature of B one can

effectively associate a monadic formula ψI(~X) in the signature of A such that for

every matching tuple ~A of elements of B, also seen as (finite) subsets of A, it holds
that

B |= ψ(~A) ⇐⇒ A |= ψI(~A) .

Consequently, if the monadic-second order theory of A is decidable then so is the
first-order theory of B.

Of course, the restriction of the definability of finiteness is only needed for finite
subset interpretations. As a canonical example let us give here the natural finite
subset interpretation of (N,+) in (N, succ).

Example 3.2.7. An interpretation (N,+) ≤I
Pf

(N, 0, succ) based on the binary rep-
resentation is given by I = (ϕ(X), ϕ+(X, Y, Z)) with ϕ(X) always true and

ϕ+(X, Y, Z) = ∃C∀n ((Zn↔ Xn⊕ Y n⊕ Cn) ∧ (Csuccn↔M(Xn, Y n, Cn)) ∧ ¬C0)

40

3.2 Logical Interpretations as Presentations

where C is of course for carry, ⊕ is exclusive or, and M(x0, x1, x2) is the majority
function, in this case definable as

∨
i6=j xi ∧ xj .

Next we give a finite subset interpretation of the complete structure S2 of Exam-
ple 3.2.3 in (N, succ).

Example 3.2.8. The complete structure S2 = ({0, 1}∗, succ0, succ1,�, el) is finite
subset interpretable in (N, succ) in a straightforward way representing each finite
word u ∈ {0, 1}∗ by U = {n | un = 1} ∪ {|u|}. The maximal element of each non-
empty set is used to mark the length of the word, the correspondence is otherwise
the standard one. The relations of S2 are easy to define, succ0 for instance by

ϕ0(X, Y) = ∃m(Xm∧ ∀n(Xn→ n ≤ m) ∧ ∀n(Y n↔ Xn∧ n < m∨ n = succm) .

Given the Büchi-Rabin equivalence of word, respectively tree automata and monadic
second-order logic on “the line” ∆1 = (N, succ), respectively on “the tree” ∆2 =
({0, 1}∗, succ0, succ1) all four notions of automatic presentations introduced in Defi-
nition 3.1.1 allow a straightforward yet fundamental reformulation in terms of subset
interpretations. In the finite word case this was first discovered by Büchi [Büc60]
and Elgot [Elg61], cf. also [ER66], [Blu99, BG04], [Rub04] and [Col04a] for gener-
alisations.

Theorem 3.2.9 (Automatic presentations as subset interpretations).
Each of the four notions of presentation can be characterised in terms of subset
interpretations in the line ∆1 or in the tree ∆2 as follows.

(i) A ∈ AutStr iff A ≤Pf
∆1

(ii) A ∈ ωAutStr iff A ≤P ∆1

(iii) A ∈ TAutStr iff A ≤Pf
∆2

(iv) A ∈ ωTAutStr iff A ≤P ∆2

And the transitions from automatic presentations to subset interpretations and back
are effective.

Let us define the (finite) subset enveloping P(f)(A) of a structure A by adjoining
its (finite) subsets as new elements endowed with the subset relation and identi-
fying singleton subsets with the original elements they contain. Formally, given
A = (A, {Ri}) we define P(f)(A) as the set of all (finite) subsets of A and let
P(f)(A) = (P(f)(A), {R′

i},⊆) with ⊆ defined on P(f)(A) and R′
i = {({a1}, . . . , {an}) |

(a1, . . . , an) ∈ Ri} for every n-ary Ri. It is now clear that

B ≤P(f)
A ⇐⇒ B ≤FO P(f)(A) .

In particular, this yields natural complete structures with respect to first-order in-
terpretations within each of the four classes.

41

3 Finite Presentations of Structures

Corollary 3.2.10.

Pf (∆1) is complete for AutStr,
P(∆1) is complete for ωAutStr,
Pf (∆2) is complete for TAutStr and
P(∆2) is complete for ωTAutStr.

3.3 Restrictions

Since their introduction there have been some attempts to find interesting subclasses
of automatic structures via restricting presentations in certain aspects. Mainly there
are three ways to go about defining subclasses: 1) by restricting the domain of pre-
sentations; 2) by restraining presentations of relations to having simpler than regu-
lar form; or 3) by considering the class of structures definable in a fixed automatic
structure.

While the third option is unproblematic but rarely justified, the first two ap-
proaches are, despite some attempts (see the quite thorough [Blu99, Chapter 8.] on
this matter), hard to apply. The difficulty seems to have been related to finding ro-
bust subclasses of synchronised rational relations as the usual restrictions on regular
languages fail to extend to relations in a suitable way.

In this section we present some of the more reasonable, robust, and well studied
restrictions of the notion of automaticity. The only new class introduced here is that
of p-automatic structures which extends unary automatic structures in a natural way
and can be characterised both in the spirit of 1) and 3) above.

3.3.1 Unary Presentations

A natural and strong restriction of the notion of automaticity is obtained when we
confine ourselves to words over a unary alphabet. Unary automatic structures were
introduced in [Blu99] and have since been repeatedly studied serving as a test-bed
for analysing automaton presentable algebraic structures.

Definition 3.3.1 (Unary automatic structures). 1AutStr is the subclass of AutStr
containing those structures, which allow for an automatic presentation over a unary
alphabet.

The class of unary automatic structures can easily be characterised both from
a logical [Nab77, Blu99] as well as from a structural point of view (cf. notion of
unwinding in [Rub04]). It is clear at a glance that the power of finite automata
on unary words is extremely limited as unary words carry only the information of
their length, which when sufficiently large can only be tested modulo some constant
by any given finite automaton. Owing to this simplicity linear orderings, equiva-
lence structures, permutation structures and the like having unary a.p. have been
completely characterised. These results are concisely presented in [Blu99, Rub04].

42

3.3 Restrictions

We merely recite here the logical characterisations, which can already be found in
[Nab77]. To this end, let M be the structure (N, <, {≡(modm)}m>1) and recall that
∆1 denotes (N, succ).

Theorem 3.3.2. For any structure A the following are equivalent:

1) A ∈ 1AutStr

2) A ≤one−dim−FO M, i.e. A is FO-definable in M

3) A ≤MSO ∆1

It follows from the last item that the MSO theory of every unary automatic struc-
ture A is decidable. We can even be more specific by observing that the extension
of A obtained by adjoining the partial order of its finite subsets, its finite subset
envelope (cf. Section 3.2.2), is trivially automatic. Indeed, finite subsets can be
represented by their characteristic sequences (see Figure 7.1 in Section 7.1.3 for an
example). Conversely, if the finite subset envelope of A is automatic then A has to
be unary automatic. This follows from a far more general result of [CL06], a simple
and direct proof will be given in Section 4.3.2.

3.3.2 p-Automatic Presentations

Growth arguments have proved to be a successful means of analysing different auto-
matic presentations of certain structures, as well as for proving the impossibility of
automatically presenting others. These methods are surveyed in Section 4.1 below.
Here we look at presentations restricted in the growth of their underlying domain.

Our first observation is straightforward, therefore we omit the proof.

Proposition 3.3.3. A structure is unary automatic iff it has an automatic presen-
tation over a universe with a growth rate bounded by a constant.

Thus the restriction to constant growth yields a fairly robust subclass, though
a very confined one. One deficiency of unary presentations is that they are not
preserved by multi-dimensional interpretations. Consider e.g. the grid as a di-
rect product of two copies of (N, succ) having a two-dimensional interpretation in
(N, succ). The latter is unary automatic, but the grid is clearly not as its monadic
theory is undecidable. To overcome this we introduce the subclass of p-automatic
structures.

Definition 3.3.4. A relational structure A is p-automatic (A ∈ PAutStr) if it has
an injective automatic presentation over a domain of polynomial growth.

To underline the robustness of this class we first observe the following.

Proposition 3.3.5. The class PAutStr is closed under disjoint union, direct prod-
uct, and first-order interpretations.

43

3 Finite Presentations of Structures

Proof. The claim follows from the fact that the class of regular languages of poly-
nomial growth are closed under union, convolution product and under taking sub-
sets. To quickly check the growth of the convolution we note that |(D ⊗D′)=2n| ≤
|D=n| · |D′

≤n| + |D′
=n| · |D≤n|.

Using pumping arguments, e.g. based on Proposition 4.1.1, it has already been
shown in [Blu99] and [Rig01] that Presburger arithmetic (N,+) has no p-automatic
presentation. On the other hand, the grid is p-automatic as shown in Exam-
ple 3.1.2 (vi). Hence

1AutStr (PAutStr (AutStr .

Are there complete structures, with respect to first-order interpretations, within
the classes of unary automatic or p-automatic structures?

As mentioned above, M = (N, <, {≡(modm)}m>1) is complete for unary automatic
structures under one-dimensional FO-interpretations (see Theorem 3.3.2). Obvi-
ously, (N, <) suffices if we allow modulo counting quantifiers (cf. Sec. 7.1) in in-
terpretations. By the above, every structure FO-interpretable in M is p-automatic
irrespective of the dimension of the interpretation. We are able to show the converse
as well allowing for a number of reformulations.

Theorem 3.3.6 (Logical characterisation of PAutStr). A structure is p-automatic
iff it is first-order interpretable in M. In fact, for every structure A the following
are equivalent3:

(1) A ∈ PAutStr

(2) A ≤FO M

(3) A ≤
FOmod (N, <)

(4) A ≤multi−dim−MSO ∆1

(5) A ≤Pb
∆1

Proof. (2) ⇒ (1) : Clearly, M is p-automatic and we have already seen that
PAutStr is closed under first-order interpretations.

(1) ⇒ (2) : Let us start by noting that if D is regular of polynomial growth, then
so is the set Pref(D) of all prefixes of all words of D [SYZS92]. An automaton for
Pref(D) can be obtained by setting all states final in an automaton for D. Regular
sets of polynomial growth have been characterised by Szilard et al. [SYZS92] as
those being a finite union of the form

D =
⋃

i<N

ui,1v
∗
i,1ui,2 . . . ui,ni

v∗i,ni
ui,ni+1 (3.1)

3Here ≤
Pb

stands for bounded subset interpretation, that is subset interpretation (Defini-
tion 3.2.5) over finite subsets of bounded size. Cf. Theorem 3.2.9

44

3.3 Restrictions

In terms of a minimal deterministic automaton this amounts to it not having two
cycles reachable from one another. Such an automaton can thus be represented as
a DAG of simple cycles labelled by the vi,j and intermediate edges labelled by the
ui,j as above. Consider w ∈ Pref(D) with

w = ui,1v
r1
i,1ui,2 . . . ui,jv

rj
i,jw

′

for some i, j ≤ ni − 1, and w′ a prefix of either vi,j or ui,j+1. Let w′ for the sake of
illustration be a prefix of vi,j. The idea is to represent w by the tuple

t(w) =
(
i, |ui,1v

r1
i,1|, |ui,1v

r1
i,1ui,2v

r2
i,2|, . . . , |ui,1v

r1
i,1 . . . ui,jv

rj
i,jw

′|, |w|, . . . , |w|
)

where the number of components k is the maximum of all the ni + 2. Every such
tuple t = t(w) = (i,m1, m2, . . . , mk) can be identified with the convolution of its
unary presentation u = ⊗k+1(1i, 1m1, . . . , 1mk), which in turn can be represented
as v = f(w) = i am1

1 am2−m1
2 · · ·a

mk−mk−1

k , noting that the mj do indeed form an
increasing sequence.

Claim 3.3.7. f is a (1, 1)-synchronous, and t is a (1, k)-synchronous translation

The translation from f(w) to t(w) is clearly (1, k)-synchronous, with the stretching
by k needed to compensate for the convolution. More precisely it works by mapping
each aj to the sequence �j−11k−j+1. Moreover f is easily seen to be computable by
a letter-to-letter transducer that counts the number of consecutive aj ’s seen first up
to |ui,j| then modulo |vi,j| while checking that the corresponding subsequence on the
first tape matches ui,jv

∗
i,j . This proves the above claim.

Thus, by Corollary 4.2.14, the original presentation is equivalent to both the one
obtained via the coding f and that via t. Our aim is now to characterise the relations
regular under the coding t, or those regular under the coding f for that, as those
being first-order definable in M. It is convenient to deal with relations under the
coding f , i.e. with regular relations over the domain U = a∗1a

∗
2 · · ·a

∗
k+1.

For unary relations, that is subsets of U it is obvious that the corresponding sets of
tuples of exponents are FOmod-definable as on each subword a

rj
j the behaviour of any

automaton is eventually periodic. Finally we note that the case of relations of higher
arity simply reduces to the one just handled, as e.g. U⊗2 is the finite union of all sets
of the form [aj1al1]∗[aj2al2]∗ · · · [ajk+1

alk+1
]∗ with 1 ≤ j1 ≤ j2 ≤ . . . ≤ jk+1 ≤ k + 1

and 1 ≤ l1 ≤ l2 ≤ . . . ≤ lk+1 ≤ k + 1. There is therefore technically hardly any
difference between the unary and the higher arity cases.

(2) ⇒ (3) : is obvious as for each m being divisible by m is definable using modulo
counting quantifiers and only finitely many of these predicates can be used in an
interpretation.

(3) ⇒ (4) : is again trivial, since < as well as the modulo counting quantifiers are
definable in weak monadic second-order logic.

45

3 Finite Presentations of Structures

(2) ⇒ (5) : holds for much the same reason as in (2) ⇒ (3) ⇒ (4) above, noting
that the tuples we are actually using are all ordered according to length and thus
can be identified with the set of their components.

(5) ⇒ (4) : Once identifies each subset {n1, . . . , nl} of N of size l ≤ k, wlog.
n1 < . . . < nl, with the extended k-tuple (n1, . . . , nl, nl, . . . , nl) and adjusts the for-
mulas of the interpretation accordingly.

(4) ⇒ (1) : Appealing to the well-known correspondence between automata and
monadic-second order logic, every multi-dimensional MSO interpretation in (N, succ)
is easily seen to produce an automatic structure having a presentation in which each
element, i.e. k-tuple {n1, . . . , nk}, is represented by the convolution ⊗k(1

n1, . . . , 1nk).
The set of all such convolutions is of polynomial growth.

Note that in the proof of Theorem 3.3.6 we made use of the fact that every p-
automatic presentation over an O(nk)-growing domain is equivalent (see Section 4.2)
to one over a subset of a∗0a

∗
1 · · ·a

∗
k. The latter presentations constitute therefore a

kind of normal form of p-automatic presentations and can be used e.g. to show that
a structure is not p-automatic.

A dichotomy

Recall the complete structures SΣ = (Σ∗,�, {succa}a∈Σ, el) and consider their re-
striction to Pref(D) for some regular D. We observe the following dichotomy (see
[SYZS92] for gap theorems on growths of regular languages).

Proposition 3.3.8. Let D be a regular set over some alphabet Σ and consider the
structure SD = (Pref(D),�, {succa}a∈Σ, el).

(1) If D is of polynomial growth, then SD is p-automatic, i.e. SD ≤FO M.

(2) If D is of exponential growth, then SD is complete for AutStr wrt. FOmod-
interpretations, i.e. S[2] ≤FOmod SD.

Proof. If D is polynomially growing then so is Pref(D), which proves (1). To prove
(2) we need to find a regular subset of Pref(D) that is binary branching. Consider
a trim deterministic automaton A for D. Then A has a state q with two outgoing

edges q
a
→q1 and q

b
→q2 for some a 6= b ∈ Σ and states q1 and q2 from both of which q

can be reached. For otherwise A would have the structure of a DAG of simple loops
(each state would have at most one outgoing transition contributing to a simple loop
all other edges contributing to the DAG structure) yielding a description of D as in
(3.1) contradicting exponential growth.

Let v′ and w′ be words leading from q1, respectively from q2 back to q. Take
v = (av′)|bw

′| and w = (bw′)|av
′|, thus v and w are distinct labels of two loops of

46

3.3 Restrictions

length |v| = |w| from q to q. Let uΣ∗ be the label of a path leading to q from the
initial state of A.

The language L = u{v, w}∗ is an FOmod-definable subset of Pref(D) containing
exactly 2n words of length |u|+n|v|. 4 To interpret S[2] take the formula defining L
and formulas defining succ0 and succ1 on L by appending v, respectively, w to each
word. Prefix and equal length need only be restricted to L.

Complexity

The expansion of M with the successor function succ and a constant for 0 admits
quantifier elimination, meaning that every first-order formula of this expanded struc-
ture M′ is equivalent to quantifier-free formula. Hence, every p-automatic structure
can be interpreted in M′ using quantifier-free formulas. Concerning the compu-
tational complexity of theories of p-automatic graphs we note that the PSPACE
complexity bound of Blumensath for unary automatic structures [Blu99] extends to
p-automatic structures as well, since it is preserved by first-order interpretations of
arbitrary dimension. Although first-order model checking is as low of complexity as
can be, adding even the most confined form of iteration to FO leads to undecidability.

The following example was pointed out to the author by Th. Colcombet.

Example 3.3.9 (Configuration graphs of Minsky-machines). Minsky-machines are
two-counter machines with finite control, they are Turing-complete and hence have
an undecidable halting problem. To every k-counter machine with n states (wlog.
0 ≤ q < n) it is straightforward to construct a p-automatic presentation of its config-
uration graph representing each configuration (q, n1, . . . , nk) by the word aqcn1

1 · · · cnk

k .

It follows that the first-order theory with reachability, FO[R], of a p-automatic
structure is in general undecidable.

3.3.3 Prefix-Recognisable Presentations

Prefix-recognisable graphs were introduced by Caucal in [Cau96] as a generalisa-
tion of context-free graphs, they have many equivalent characterisations, see The-
orem 3.4.3 below, e.g. as those graphs monadic second-order interpretable in the
infinite binary tree. The notion of prefix-recognisability was extended to relational
structures by Blumensath in [Blu02].

In the context of automatic presentations we may say that a structure is prefix-
recognisable if it has an automatic presentation in which every relation is prefix-
recognisable.

Definition 3.3.10 (Prefix-recognisable relations). A unary relation is prefix recog-
nisable iff it is regular. For every k > 0 a (k + 1)-ary relation R(~x) is PR if

4We could define L without counting quantifiers provided every bi-infinite word {v, w}Z had a
unique factorisation into v and w segments. This could possibly be ensured by a more clever
choice of v and w yielding a sharper result.

47

3 Finite Presentations of Structures

R =
⋃
π∈Perm([k+1])Rπ(xπ(0), . . . , xπ(k)) where each Rπ is a finite union of relations of

the form idU(V ×W) where idU is the (k + 1)-ary identity restricted to the regular
set U and both V and W are PR of arity n ≤ k, respectively, m ≤ k such that
n +m = k + 1.
The class of prefix-recognisable relations is denoted as PR, or as PR(Σ) when we
wish to specify the alphabet.

As a simple example let us show that the lexicographic ordering, <lex, on an
ordered alphabet Σ is prefix-recognisable. It is defined as the union of

idΣ∗(ε× Σ∗) and idΣ∗(aΣ∗ × bΣ∗) for each a < b ∈ Σ .

Caucal has shown that PR graphs are MSO-interpretable in the infinite binary
tree and hence have a decidable MSO-theory. Actually, in [LS87] Läuchli and
Savioz proved that MSO-definable relations on the binary tree coincide with prefix-
recognisable relations over the binary alphabet (see also Proposition 6.2.1). Since
then a number of equivalent characterisations of PR have been found, see Theo-
rem 3.4.3 below, the strongest and most recent one of which is due to Colcombet
[Col07b], as those structures having a one-dimensional first-order interpretation in
the binary tree using the successors and the prefix relation, cf. Theorem 3.4.3 (7).

In our notation prefix-recognisable relations are in fact defined by suffix rewriting
via rules of the form s → t for s ∈ V, t ∈ W with the above notation. On words
there is clearly no difference between the two ends as long as rewriting takes place
consistently on one end only. On trees, however, this issue is much more subtle, see
e.g. [Cau92a, Mey05].

The naming is due to Caucal owing to the representation of configurations of
pushdown automata (PDA) as words qw ∈ QΓ∗ where q is the current state and w
represents the stack with its top symbol on the left. Transitions of a PDA corre-
spond to prefix-rewriting steps. Conversely, Caucal [Cau92a] has shown that prefix-
rewriting with rules of the form v → w where both v and w are words produce
graphs effectively isomorphic to pushdown graphs. Thus, pushdown graphs are
prefix-recognisable. See Section 3.4 below for more.

3.3.4 (Regular) Ground Term Rewriting

In the theory of term rewriting systems it is a natural restriction to consider systems
defined by ground rules only. Ground terms are terms without variables, the leaves
of the term tree of a ground term are labelled with constants. Ground rewrite
rules t → t′ consist of ground terms both on their left and right sides. A ground
term rewriting (GTR) system is given by a finite set of rules t → t′. Since the left
hand sides of such rules are terms without free variables they can only be matched
identically without substitution. Hence, ground rewriting always occurs around the
leaves of term trees.

In the special case of trees consisting of a single branch, that is on words, these
rules act as prefix-rewriting, i.e. pushdown transitions (see above). In this sense,

48

3.3 Restrictions

ground rewriting of terms generalises prefix rewriting of words. Also observe how au-
tomata on words and bottom-up tree automata can be perceived as prefix-rewriting-
, respectively, as ground term rewriting systems. E.g. a bottom-up transition
a(q1, . . . , qk) 7→ q can be interpreted as a ground rule. The rules are thus mono-
tone decremental and a tree is accepted by an automaton iff it reduces, after having
attached initial states on its leaves, to a final state under the transition rules.

Prefix-recognisable relations extend prefix rewriting by being defined (in the bi-
nary case) by rules of the form V → W , where V and W are arbitrary regular sets
instead of individual words. Ground term rewriting can analogously be extended.
A regular ground term rewriting (RGTR) system is given by a finite number of rules
T → T ′ with T and T ′ regular sets of ground terms.

Every RGTR (GTR) system determines a graph. The vertices are the ground
terms of a fixed signature (that are reachable from a given initial term5). Vertices
are connected by i-labelled edges corresponding to one-step derivations according
to the i’th rule. It follows immediately from the definition that GTR graphs are
finite degree RGTR graphs (in fact, the converse is also true), which are in turn
tree-automatic.

Regular ground term rewriting systems have been studied by Löding [Löd03] from
the internal point of view of rewriting rules; and by Colcombet [Col02] form the ex-
ternal point of view of logical interpretations and equational definitions (see below).
They have shown that every RGTR graph has a decidable first-order theory with
reachability, gave different characterisations of these graphs and compared them to
other classes of finitely presentable graphs. Some of these key results are postponed
to sections to follow.

As noted, GTR systems generalise prefix-rewriting systems from words to trees,
and similarly, RGTR systems generalise regular prefix-rewriting systems. In terms
of their graphs this gives the following inclusion diagram:

RGTR

PR

iiSSSSSSSSSSSSSSSS

GTR

OO

pushdown

OO

iiSSSSSSSSSSSSSS

One can in fact be more precise. Pushdown graphs are the prefix-recognisable
graphs of finite degree, and analogously, GTR graphs are precisely the finite degree

5Löding [Löd03] considers terms reachable from a fixed “axiom” via rewriting steps, whereas
Colcombet [Col02] works with the graph of all well-formed typed term trees, a condition recog-
nisable by a deterministic top-down tree automaton.

49

3 Finite Presentations of Structures

RGTR graphs. Moreover, Löding proved that the pushdown graphs are precisely
those GTR graphs of bounded tree-width. On the other hand, RGTR graphs of
bounded tree-width are the HR-equational graphs forming a proper subclass of PR

graphs (cf. Section 3.4 below). A structural characterisation of PR graphs relative
to RGTR graphs is not known. 6 In [Löd03] it is also shown that a GTR graph is of
bounded clique-width iff it is of bounded tree-width.)

We have observed that PR graphs are automatic, and similarly, that RGTR graphs
are tree-automatic. Another result of [Löd03] that needs to be mentioned here states
that GTR graphs of bounded out-degree are in fact automatic. This result relies on
the observation that terms having only a bounded number of ground rewrites are
“thin” in a certain sense which allows one to actually encode them as words over an
appropriate alphabet of subtrees. Let us point out that for this construction it is
crucial that one considers the rewriting graph restricted to the set of terms reachable
from a given initial term.

3.4 Equational Presentations

In this section we briefly outline the general and novel algebraic approach of de-
scribing (hyper)graphs as (minimal) solutions of characteristic equations. This ne-
cessitates the introduction of a suitable algebraic structure over the universe of, say,
countable vertex- and edge labelled (hyper)graphs. Note that hypergraphs with dis-
tinguished source nodes are just a synonym for relational structures with constants.

Historically, this approach is rooted in (hyper)graph rewriting and semantics of
process calculi, originally conceived as a means of defining sets of finite (hyper)graphs
akin to the use of grammars in formal language theory. Graph grammars operate
much the same way as word grammars do by rewriting nonterminal vertices and
(hyper)edges. Depending on the restrictions on the replacement rules one obtains
different classes of “languages” of finite graphs closed under various algebraic oper-
ations. Alternatively, one may wish to start with trivial languages and proceed by
defining complexer ones using a set of algebraic operations. Each term thus defines
a set of (hyper)graphs much the same way as rational expressions define rational
languages. For a comprehensive survey of graph rewriting see [Eng97].

Another use of grammars at the centre of our attention is to generate countable,
typically infinite, graphs via complete rewriting. This can be formalised as a limit
construction by way of iterative rewriting. On the algebraic side one describes such
a limit as a least fixed-point solution of a system of equations in the appropriate
algebraic setting. The equivalence of these two approaches is thus quite natural.
What is more interesting for us now is how they compare to conceptually different
means of finite presentations, primarily, as far as this work is concerned, to various
automatic presentations.

6Löding conjectured that the right condition might be that of bounded clique-width, disproved
by Colcombet [Col04b].

50

3.4 Equational Presentations

There is a great body of literature on various (hyper)graph rewriting frameworks,
numerous variations on (hyper)graph algebras built on standard operations such as
disjoint union, vertex recoloring, introduction of edges, series- and parallel composi-
tion, asynchronous product, synchronised product, fusion, quantifier-free definable
operations. Whatever the set of operations of choice, finite terms represent finite
(hyper)graphs via the evaluation mapping, which is a homomorphism from the free
algebra of terms into the algebra of graphs under the chosen operations. Further-
more this homomorphism extends by continuity to infinite terms, which thus rep-
resent countable graphs [Cou90a]. Having established this correspondence places
the powerful artillery of model-theoretic as well as tree-automata techniques at our
disposal in the definition, analysis, algorithmics of classes of finite (hyper)graphs,
respectively of countable (hyper)graphs. Moreover, it has been observed that for
suitable choices of operations, most notably avoiding products, evaluation turns out
to be a monadic second-order interpretation or transduction, thus strengthening the
above tree-automata bond [CM02]. If one includes either the synchronous- or the
asynchronous product among the operations then (appropriately restricted) subset
interpretations provide a natural means of evaluating term-trees. Moreover, each of
the mentioned evaluating interpretations extend, by continuity, to infinite term-trees
[CC03, Col04a].

3.4.1 HR-equational graphs

Hyperedge replacement (HR) grammars are a very natural generalisation of gram-
mars known in formal language theory going back to the 1980’s. We shall not define
(context-free) hyperedge replacement grammars formally here, but rather illustrate
their working on an example. We only note that as the name tells they are given
as a finite collection of rules that allow the replacement of a non-terminal hyper-
edge in a hypergraph by the right hand side of a matching rule, which is a given
finite hypergraph with a number of distinguished vertices equal to the arity of the
hyperedge to be replaced.

The class of HR-equational graphs properly extends that of pushdown graphs.
Context-free graphs, that is configuration graphs of pushdown automata can be
characterised as rooted HR-equational graphs of finite degree, which are also iso-
morphic to derivation graphs of prefix-rewriting systems on strings, a special case
of prefix-recognisable graphs idUi

(Vi ×Wi) with every Vi and Wi finite [Cau92b].
It is indeed quite easy to visualise the generation of a pushdown graph by a

grammar. We illustrate this on the following example.

Example 3.4.1. Consider the pushdown automaton, depicted below, accepting the
language {anbn | n > 0}.

q[⊥]
a // q[a⊥]

a //

b{{xxxxxxxx

q[aa⊥]
a //

bzzuuuuuu
uuu

q[aaa⊥]
a //

byysss
ss

ss
ss

s

. . .

bzzuuuuuuuuuuu

p[⊥] p[a⊥]
b

oo p[aa⊥]
b

oo p[aaa⊥]
b

oo . . .
b

oo

51

3 Finite Presentations of Structures

It is generated by the deterministic hyperedge replacement grammar with initial
graph and replacement rule given as follows.

• a // •

Xvv

�

~
r

•

•1

X =⇒

ww

	

}
r

•2

1•
a //

b
~~}}

}
}
}
}
}

•

X

ww

�

�

s

2• •
b

oo

Notice how the linearity of the pushdown graph is reflected in the linearity of the
replacement rule having a single occurrence of the non-terminal X-labelled hyper-
edge on the right. To generate e.g. the infinite binary tree, which is of course a
pushdown graph, a rule having at least two non-terminals on its right is needed.

The HR-algebra of graphs is many-sorted, having a separate sort n for graphs
with n sources (i.e. constants). There are constants of each sort n: hypergraphs
on n vertices, each a source, and with at most one hyperedge; and the following
(overloaded) operations: disjoint union ⊕ (mapping sort n and m to sort n + m,
involves shifting of source names), renaming of sources ρc 7→c′, and fusion of sources θε
according to an equivalence on sources. It should be clear how a vertex replacement
step can be expressed using disjoint union with the right-hand side of the rule
followed by a fusion and renaming of sources. For a detailed presentation of the
HR framework the reader should consult [Cou90a, Bar98]. Notice that edges can
only be “created” by fusion of sources. Since in a finite HR-equational system only
a bounded number of source names are used, this considerably limits the pattern
in which edges can be created connecting parts of the (hyper)graph defined by the
system built in different stages of the iterative solution process. In particular, there
is a bound on the size of complete bipartite subgraphs Kn,n which can be created this
way [Bar98], a feature which distinguishes HR-equational graphs from VR-equational
ones, to be introduced right after the following characterisation theorem.

Theorem 3.4.2 (Barthelmann,Courcelle – cf. [Cou90a, Bar98, Blu01]).
For every countable infinite graph G the following are equivalent.

(1) G is generated by a deterministic HR grammar;

(2) G is HR-equational, i.e. the interpretation of a regular HR-term, i.e. the least
solution of a finite systems of HR-equations;

(3) Ĝ ≤MSO ∆2, the two-sorted adjacency graph Ĝ of G is monadic second-order
interpretable in the infinite binary tree;

(4) G is VR-equational and has bounded tree-width;

(5) G is VR-equational and, undirected, it does not contain Kn,n for large enough
n.

52

3.4 Equational Presentations

3.4.2 VR-equational graphs

Vertex replacement systems are a finite collection of graph rewriting rules that allow
one to substitute given finite graphs in place of single vertices. The corresponding
VR-algebra of graphs is built on the following operations: constant graphs of a single
c-coloured vertex c, disjoint union ⊕, recolorings of vertices ρc 7→c′, and introduction
of a-coloured edges from every c-coloured vertex to every d-coloured vertex.

The evaluation of VR-terms, whether finite or infinite, is realisable as a monadic
second-order interpretation. As VR-equational graphs are interpretations of regu-
lar terms obtained by unfolding the finite system of equations, they can be MSO-
interpreted in a regular tree, hence also in ∆2. As a matter of fact, the converse
also holds, together with a host of other equivalent characterisation.

Theorem 3.4.3 (Barthelmann,Caucal,Courcelle,Stirling – cf. [Blu01]).
For every countable infinite graph G the following are equivalent.

(1) G is generated by a deterministic VR grammar;

(2) G is VR-equational, i.e. the interpretation of a regular VR-term, i.e. the least

solution of a finite system of equations of the form Xi = ti(~X) with finite VR-

terms ti(~X);

(3) G ≤MSO ∆2;

(4) G is prefix-recognisable;

(5) G = h−1(∆2)|C, i.e. the vertices of G are obtained by restricting the nodes of
∆2 to a regular set C, and its edges by applying an inverse rational substitution
h to ∆2;

(6) G is the configuration graph of a pushdown automaton modulo ε-transitions.

Recently, Colcombet has proved that over trees every MSO-interpretation can be
decomposed into a preparatory MSO-definable “marking” and a FO-interpretation
using the prefix relation.

Theorem 3.4.4 (Colcombet [Col07b, Col07a]). Every MSO-interpretation I can be
effectively decomposed into an appropriate MSO-definable marking M (i.e. an in-
terpretation keeping the original structure and enhancing it with additional labellings
of vertices) and a suitable FO-interpretation J , such that on all prefix-ordered trees
I and the composition J ◦M produce identical structures.

The ingenious technique uses a deterministic, i.e. simultaneous, factorisation of
the branches in the style of Simon’s factorisation according to the finite semigroup
recognising all word languages involved in the MSO-interpretation. (Provided that
labels of nodes in a tree are augmented by sufficient type information on respec-
tive subtrees, every MSO formula has an equivalent normal form whose relevant

53

3 Finite Presentations of Structures

constituents define regular path segments – this is precisely the idea behind the
equivalence of (3) and (4) above). In the above decomposition the MSO marking
is used to produce a labelling of the tree with information coding the “jumps” in
the factorisation tree of the finite type-augmented path leading to each node (this
is where the existence of a deterministic factorisation is vital) from which the first-
order interpretation can recover the semigroup element corresponding to the path
segment between any given pair of nodes x � y. We note that the first-order inter-
pretation only depends on the set of labels to be produced by the marking M.

Since MSO-definable markings over ∆2 are regular, and regular markings are
themselves FO-interpretable in (∆2,�) Colcombet obtains as a corollary the follow-
ing characterisation.

Theorem 3.4.3 (... continued – cf. [Col07b, Col07a]).

(7) G ≤FO (∆2,�), i.e. G is first-order interpretable in the infinite binary tree using
the prefix relation;

Please note that this last characterisation is only valid when considering graphs
up to isomorphism. The characterisation in terms of MSO-interpretability (3) is
actually stronger in this sense. Indeed each prefix-recognisable relation over {0, 1}
is actually MSO-definable in ∆2 as is (when one identifies words with nodes of the
tree) in a very natural way. PR relations over a different alphabet can only be
defined in ∆2 modulo a coding of the alphabet, but can naturally be defined in the
Σ-branching tree (Σ∗, {succa}a∈Σ) without any coding.

3.4.3 VRA-equational graphs

In the presence of some restricted product operations evaluation is no longer an MSO

interpretation, however, it can be captured by subset interpretations. Though subset
interpretations are not MSO-compatible, in the sense of Courcelle, they reduce the
first-order theory of the interpreted structure to the monadic second-order theory of
the host, but retain decidability of the FO theory. So those structures that are thus
obtained by evaluating a regular term tree, or any term tree with a decidable MSO

theory for that, do have a decidable first order theory, or even a FO[R], first-order
with reachability in a certain case. These results of Colcombet [Col02, Col04b] are
summed up below.

The system VRA (in [Col02] VRP with P for product) extends the VR operations
with asynchronous product. Although the evaluation of VRA-terms is no longer
MSO-definable, it can be coded as a finite subset interpretation of a restricted kind,
namely, in which, only antichains (equivalently prefix-closed subsets) of nodes of the
term-tree represent elements of the encoded structure. In the following characterisa-
tion theorem RGTRS refers to Colcombet’s model of regular ground term rewriting
systems on well-typed term-trees. 7

7This model differs from that of Löding, presented in Section 3.3.4, in that the trees represent-
ing nodes of a graph are not confined to those reachable from a chosen initial tree, but are

54

3.4 Equational Presentations

Theorem 3.4.5 ([Col02],[CC03]).
(1) The class of RGTRS-graphs coincides with that of VRA-equational graphs, which

are further characterised by being finite subset interpretable in regular trees using
only antichains (alternatively, prefix-closed sets) of nodes.

(2) Prefixset-, i.e. antichain-interpretations transform trees with a decidable MSO

theory into graphs with a decidable FO[R] theory.

In [CC03] the second statement of the above theorem was extended to arbitrary
term-trees corresponding to solutions of infinite systems of VRA-equations. Applying
antichain interpretations to e.g. tree-unfoldings of deterministic higher-order push-
down graphs thus yields richer classes of graphs having many of the advantageous
features of RGTRS graphs.

3.4.4 VRS-equational graphs

The system VRS (in [Col04a] VRC with C for Cartesian product) is obtained by
adding the synchronised product operation to VR, whereas VRSfin is the extension
by the unary operations of taking synchronised product of the argument with fixed
finite graphs. Colcombet has shown that finite equational systems built with these
operators define (after forgetting some auxiliary (hyper)edges) precisely the classes
of tree-automatic, respectively, automatic (hyper)graphs.

To be precise, let d = (A, {Ai}) be an automatic presentation of A = (A, {Ri}),
wlog. A = L(A) and ⊗Ri = L(Ai) are regular relations over an alphabet Σ. Note
that for now we do not have to distinguish between injective and non-injective
presentations, the congruence of a presentation is now treated simply as one of the
relations Ri. Consider the structure Ad = (Σ∗, {Ap,q}, {Rp,q

i }) with

Rp,q
i = {~u ∈ (Σ∗)ri | δ∗i (p,⊗~u) = q}

for every i and every pair of states p, q of Ai, and with the Ap,q similarly defined.
The structure Ad is by definition automatic, in fact it encodes the presentation d

started with.
We are now in a position to state Colcombet’s theorem: a relational structure A is

automatic iff it has an augmentation Ad as above that is VRSfin-equational. Clearly,
A can be obtained from Ad by restricting the domain to Aq0,F and dispensing with
those relations Rp,q

i encoding partial computations. Thus, if we allow a quantifier-
free interpretation to be applied as a final step after having obtained a least fixpoint
solution of VRSfin-equational systems then we can obtain all automatic relations and
only these.

Moreover, combining Theorem 3.2.9 with the fact that the evaluation of VRS-
and VRSfin-terms can be realised as a subset interpretations we obtain the following
threefold characterisation.

rather restricted to well-typed term-trees, a property recognisable by a deterministic top-down
automaton

55

3 Finite Presentations of Structures

Theorem 3.4.6 (VRSfin-equational structures are automatic [Col04b, Col04a]).

AutStr = ≤Pf
(∆1) = VRSfin−equational

TAutStr = ≤Pf
(∆2) = VRS−equational

Finite subset interpretations transform trees with a decidable MSO theory into graphs
with a decidable FO∞,mod theory.

We conclude that the decidability result for each of the classes of (hyper)graphs
defined in Sections 3.1 – 3.4.4 and the respective logics derive, via the appropri-
ate notion of interpretation, from Rabin’s MSO-decidability result for the infinite
binary tree. For finite equational systems, that is. As already noted, the results
via interpretations extend to arbitrary trees having a decidable MSO theory, e.g. to
those obtained via repeated applications of the Shelah-Muchnik-Walukiewicz itera-
tion (see Section 3.5.2 below). All in all, these results and techniques are grounded
in the theory of tree automata and infinite games [GTW02].

3.5 Other means of Presentations

3.5.1 Rational graphs

Rational graphs are defined similarly to automatically presentable graphs. In a ra-
tional presentation vertices are labelled with finite words of a rational (i.e. regular)
language over some finite alphabet Σ, and the edge relation(s) are require to be
rational subsets of Σ∗ × Σ∗. Hence, this definition is more liberal in that it allows
asynchronous automata in presentations of relations. The price to pay is the loss
of tractability: rational graphs do not have a decidable first-order theory in gen-
eral. The class of rational graphs strictly includes that of automatic graphs. With
no appeal to completeness we list below some results on (asynchronous) rational
graphs relevant in comparison to automatic (synchronised) ones. For a compre-
hensive treatment of rational graphs the reader is referred to the PhD thesis of C.
Morvan [Mor01].

As noted, the undecidability of FO over rational graphs renders them useless for
representing data, let alone programs for any practical means. In the context of
formal language theory, however, rational graphs seem to fill a gap. Considering
rational graphs as infinite automata, i.e. as acceptors of languages, Morvan and
Stirling have shown that they trace all context-sensitive languages and only those
[MS01, MR05], see also [CM05] for a simplified approach. In fact, this holds true for
synchronised rational, i.e. for automatic graphs as well as first observed by Rispal
[Ris02, MR05, CM05].

Although first-order queries on rational graphs are in general intractable, it has
recently been shown by Carayol and Morvan that on rational graphs, which happen

56

3.5 Other means of Presentations

to be trees (an undecidable property) first-order logic is decidable [CM06, Mor06].
The decision method is based on locality of FO as formulated by Gaifman and uses
a compositional technique. The authors also exhibit a finitely branching tree whose
graph is rational but not automatic.

Another subclass of rational graph having a decidable first-order theory is that
of rational graphs over a free commutative monoid [Mor01, Mor06]. These are
the analogues of p-automatic graphs in the asynchronous model. Over the unary
alphabet the monoid structure is isomorphic to (N,+) whence the unary rational
graphs are those first-order definable in (N,+) [Mor01].

In their seminal paper [KN95] Khoussainov and Nerode also introduced asyn-
chronous automatic structures. As examples they give an asynchronous automatic
presentation of ωω, known to be non-automatic [KRS05, DGK].

Asynchronous automatic presentations of Cayley-graphs of finitely generated groups
have also been considered as generalisations of “automatic groups” [CEH+92].

3.5.2 Caucal’s pushdown hierarchy

As a generalisation of Rabin’s tree theorem (Theorem 2.6.3), which also crucially
relies on Rabin’s tree automata technique is a fundamental result of Muchnik [Wal02,
GTW02] establishing that the MSO-theory of a certain iteration A# of a structure
A can be reduced to the MSO-theory of the original structure A. Thus, ThMSO(A#)
is decidable whenever ThMSO(A) is decidable.

The universe of A
is the set A+ of non-empty finite sequences of elements of A.

For each relation R of A, A# has a relation R# defined as

R# = {(αa1, . . . , αan) | α ∈ A+, (a1, . . . , an) ∈ R} .

In addition to the above, the iteration is also equipped with relations

son = {(α, αa) | α ∈ A+, a ∈ A} and clone = {(αa, αaa) | α ∈ A+} .

Observe that if A is the set of level k stacks then A+ is the set of level k+1 stacks
and how the son and clone relations facilitate the definition of higher level push and
pop operations.

Also observe that the tree unfolding TG,v of a graph G from a (definable, e.g.
constant) vertex v is definable in G#. Thus, by the theorem of Muchnik, the de-
cidability of the monadic theory of a graph is inherited by its tree unfolding. This
result is considerably simpler to prove if the graph is assumed to be deterministic,
i.e. if the neighbours of each node are unambiguously determined by the label of
the edge leading there [CW98].

Together with the easy fact that MSO-interpretations preserve decidability of
monadic theories of structures, these two MSO-compatible operations allow us to
define a rich class of structures starting with finite graphs and alternatingly applying
unfoldings and MSO-interpretations:

57

3 Finite Presentations of Structures

Graphs0 = {finite edge- and vertex-labelled graphs}
T reesn+1 = {TG,v | (G, v) ∈ Graphsn}

Graphsn+1 = {I(T) | T ∈ T reesn+1, I is an MSO interpretation}

This hierarchy of trees and graphs was proposed by Caucal in [Cau02] using inverse
rational mappings instead of the syntactically more general MSO-interpretations. In
[Cau02] it was also shown that the hierarchy of term-trees within T reesn coincides
with that of term-trees generated by safe higher-order recursion schemes of level at
most n of [KNU02]. In [CW03] Carayol and Wöhrle proved that graphs of Graphsn
are precisely the ǫ-closures of configuration graphs of higher-order pushdown au-
tomata of level n. Hence the name: pushdown hierarchy.

In [CW03] Carayol and Wöhrle show that all graphs of Graphsn can be obtained
via inverse rational mappings from deterministic trees of T reesn, implying that
the assumption of unfoldings from definable vertices is not necessary. Moreover,
the characterisation in terms of higher-order pushdown automata also yields that
the same classes of trees and graphs are obtained if we use iteration instead of
unfolding and MSO-transductions instead of interpretations. All of these various
characterisations underline the robustness of these classes and the key role of the
hierarchy in the study of transition systems.

A further strengthening was recently delivered by Colcombet. Recall Theorem 3.4.4
stating that MSO-interpretations can be written as a composition of an MSO-
definable marking and a FO-interpretation. Thus, since T reesn is closed under
MSO-definable markings for every n [CW03], we could have defined Graphsn as the
set of graphs obtainable via FO-interpretations from trees of T reesn.

The level-zero graphs are the finite graphs, trees of level one are the regular trees,
and as we have seen in Theorem 3.4.3 the level-one graphs are prefix-recognisable
ones. Level-two trees are algebraic trees. From the second level onward we have no
clear structural understanding of what kind of graphs inhabit the individual levels.
While with considerable experience and effort one can construct individual graphs
or families of graphs inside the hierarchy, on the other hand, it can be extremely
challenging to prove that a given graph is not to be found on any level.

3.5.3 Simply-typed recursion schemes

In the previous subsection we have already mentioned higher-order recursion schemes.
Safe schemes, to be precise. The general notion of higher-order schemes is a classical
one [Dam82, Cou90b]. Schemes are a kind of deterministic grammars, a generali-
sation of context-free grammars, on simply-typed terms. The left- and right hand
side of each rule can be understood as a name and a definition of a higher-order
functional (combinator). The definitions may refer recursively to any of the func-
tionals being defined. Thus, the solution is obtained by taking the simultaneous
fixed points of the right hand side of each rule. The (typically infinite) term defined
by a scheme is the fixed-point of a designated rule.

58

3.5 Other means of Presentations

Safety is a technical restriction (implicit in [Dam82]) ensuring that no renaming
of variables (α-conversion) is needed during the generative substitutive reduction
(β-reduction) process constructing the solution term [AdMO05, Ong06]. We have
mentioned that safe schemes are intimately related to the pushdown hierarchy. This
connection is well explained in [AdMO05] showing that while on the one hand order-
n schemes can define the behaviour and hence (the unfolding of) the configuration
graphs of level-n deterministic pushdown automata, on the other hand, deterministic
pushdown automata of level n can evaluate order-n schemes. For the latter, however,
safety is essential.

In order to evaluate arbitrary schemes Ong et al. introduce higher-order collapsi-
ble pushdown automata, a kind of generalisation of panic automata. In [HMOS]
a characterisation of term-trees of solutions of arbitrary higher-order schemes and
graphs interpretable in them is given in terms of collapsible pushdown automata in
the spirit of [CW03].

While convenient [KNU02] it is not necessary to assume safety for establishing
decidability of the MSO-theory of the term-tree of the solutions of higher-order
schemes. Indeed, Ong et al. [Ong06, HMOS] show that the term-trees of solutions
of arbitrary higher-order recursion schemes have a decidable MSO-theory. We have
to point out that their solution method, although, naturally involves tree automata,
is radically different from that of the previous section based on unfoldings and
interpretations. So for a good reason: there exists a collapsible pushdown automaton
of level 2, the configuration graph of which has an undecidable MSO-theory [HMOS],
and therefore cannot be constructed using MSO-compatible transformations from
finite structures. Note, however, that µ-calculus remains decidable for higher-order
collapsible pushdown graphs [Ong06, HMOS].

3.5.4 Generalised automatic structures

Finite subset interpretations transform trees with a decidable MSO theory into
structures having a decidable FO∞,mod theory. This facilitates a broad and novel
generalisation of the notion of automaticity by classes of structures (finite) subset
interpretable in given trees whose MSO theory is decidable [CL06]. The underlying
idea is very simple. Fix a tree T, which is finitely presentable and which has a
decidable MSO theory. Define the class of T-automatic structures as those finite
subset interpretable in T. The interpretation together with the finite presentation
of T thus constitute a finite presentation of the interpreted structure. Moreover,
every such structure has a decidable FO∞,mod theory, and is first-order interpretable
in Pf(∆1)

Recently Colcombet and Löding [CL06] investigated the power of finite subset
interpretations. As their main combinatorial tool they proved the following theorem.

Theorem 3.5.1 ([CL06]). Assume that for some A its finite subset envelope, Pf (A),
is finite subset interpretable in some tree t : [r]∗ → Σ seen as a structure T =
(dom(t), {Pa}a∈Σ, {succi}i<r). Then A is wMSO-interpretable in T.

59

3 Finite Presentations of Structures

In fact, the following stronger statement is also valid. To each finite subset inter-
pretation I there exists an wMSO-interpretation J such that for every tree T and
structure A if Pf (A) ≤I

Pf
T, then A ≤J

wMSO T.

Observe that in the special cases of ∆2 and ∆1, the above theorem tells us that
Pf (A) is tree-automatic, respectively, automatic, iff A is prefix-recognisable, respec-
tively, unary automatic. In Section 4.3.2 we give a rather straightforward combina-
torial proof the latter also extended to subset interpretations.

Using the above theorem it is easy to transfer strictness of the Caucal hierarchy
to obtain an infinite hierarchy of generalised automatic structures [CL06]. Indeed,
each level of the pushdown hierarchy contains a tree Tn ∈ T reesn in which all of
Graphsn is wMSO-interpretable.8 To show that Tn+1-automatic structures are all
Tn-automatic, it is sufficient to check that Pf (Tn+1) is not finite subset interpretable
in Tn. If it were, then by Theorem 3.5.1 we had Tn+1 ≤wMSO T contradicting strict-
ness of the pushdown hierarchy.

Another application of the above theorem is presented in Theorem 4.1.5.

3.6 Landscape and Summary

In this chapter we have surveyed numerous classes of finitely presentable infinite
structures. The literature on these notions is vast and diverse, we have but high-
lighted a few of the key results, especially concerning equivalence of different ap-
proaches and comparison of the corresponding classes of graphs and structures. Au-
tomatic presentations being the central topic of this thesis, most attention has been
given to the variants, restrictions, logical and equational characterisations of this
notion. We have stated the most fundamental properties of automatic structures
and provided a dozen or so examples. Below we will proceed with a more in-depth
investigation of the potentials and the limitations of automatic presentations.

To close this chapter we present the inclusion graph of the various classes intro-
duced illustrating the relationships among the notions given throughout this chapter.
The diagram is an extension of that given in Löding’s thesis [Löd03] and represents
the work of the many researchers cited above. Our contribution is the introduction
and characterisation of p-automatic graphs and the establishment of the fact that
countable ω-automatic structures are automatic. The picture is still far from be-
ing entirely clear, some challenging problems remain, including: separating RGTR

(VRA) from AutStr (see [Löd03] for a candidate graph); extending the results of
Section 3.1.1 to (ω)TAutStr.

8T1 = ∆2 and Tn+1 is the infinitely branching tree T#
n

, i.e. for each n, Tn is the tree of
all level n pushdown stores over two stack symbols with edges marked with push opera-
tions of the appropriate level, in other words the free algebra over the unary operations
push1(0), push1(1), push2, . . . , pushn with a constant for the empty stack of level n.

60

3.6 Landscape and Summary

1∆()P()FOω AutStr =

Pw 1∆()FO()VRS = AutStr =

TAutStr = ω ∆2()P()FO

∆2()Pw()FOTAutStr =

1∆()(w)MSO1AutStr =

FO N,+()1RatStr =

FO
mod
N,<()PAutStr =

1GraphsVR = =
()∆2(w)MSOPR =

Trees1

Context−Free

RatStr

Finite

GTR

RGTR VRA = RGTRS

HR

countable

bnd. TW

finite deg.

finite deg.

Rat. Trees

countable??

bnd. out−deg.

bnd. TW

Pushdown

rooted

F
O

[R
]

bnd. deg.

e
le

m
e

n
ta

ry

M
S

O

F
O

Figure 3.2: Landscape of classes of finitely presentable graphs (structures)

61

3 Finite Presentations of Structures

62

4 Analysis of Presentations

Growth functions of regular sets have been thoroughly studied in the context of
formal language theory. We have already cited Szilard et al. [SYZS92] on the
characterisation of regular sets of polynomial growth (polynomial density, in their
terminology). In [PS95] Păun and Salomaa studied regular languages of bounded
growth.

The classification of regular languages according to asymptotic growth is further
underlined by the result of Maurer and Nivat [MN80] showing that there is a rational
bijection between two infinite regular languages if and only if they are both of
polynomial growth of the same degree or if they are both of exponential growth.
Recently, Béal, Lombardy and Sakarovitch have proved the existence of a letter-to-
letter bijection between any two regular languages of identical growth. In Section
4.2 below we will introduce the notion of equivalence of automatic presentations of a
given structure and characterise it in a similar fashion in terms of semi-synchronous
rational bijections between their domains.

4.1 General Tools: Pumping and Growth Arguments

This section is devoted to the investigation of how growth arguments can be used to
obtain information about potential automatic presentations of particular structures.
We have already provided an example of growth analysis applied to the domain
of presentations in Section 3.3.2 where this simple approach has proved fruitful
establishing the structural, expressive and computational complexity gap between
automatic structures allowing a presentation over a polynomially growing domain
and those which do not. The analysis of the latter call for more sophisticated
techniques, e.g. measuring growth in reference to the structure.

Pumping and counting

To begin with we gather the most basic combinatorial facts on regular relations.
The first of these is a straightforward consequence of the well-known “pumping
lemma” of automata theory. A relation R of arity n + m is locally finite if for
every (x1, . . . , xn) there are only finitely many (y1, . . . , ym) such that R(~x, ~y) holds.
Obviously, every functional relation f(~x) = y is locally finite. Other examples of
locally finite relations are equal-length el, |x| > |y| and the prefix relation y � x.
Note that local finiteness depends on the partitioning of the variables, e.g. x � y is
not locally finite.

63

4 Analysis of Presentations

Proposition 4.1.1. (Elgot and Mezei [EM65]) Let R ⊆ (Σ∗)n+m be a regular and
locally finite relation. Then there is a constant k such that maxj |yj| ≤ maxi|xi|+ k
holds for every R(~x, ~y). In particular, if f is a regular function then there is a
constant k such that for every ~x in its domain we have |f(~x)| ≤ maxi|xi| + k.

The following helpful lemma on growth of regular sets appeared in [KNRS04]. To
fix notation, for any regular set D ⊆ Σ∗ let D=n = D ∩ Σn and D≤n = D ∩ Σ≤n

denote the set of members of D of length precisely n and at most n respectively.
Further let Pref(D) be the (regular) set of prefixes of words in D.

Proposition 4.1.2. [KNRS04, Lemma 3.12] Let D ⊆ Σ∗ be a regular set. Then

(i) |Pref(D)=n| = O(|D≤n|) and

(ii) for every fixed c ∈ N : |D≤(n+c)| = Θ(|D≤n|)

Growth of generations

From Proposition 4.1.1 one directly obtains a bound on the number of elements that
can be generated by iterated applications of some automatic functions. Consider
for instance a binary function f(x, y) and assume it is automaton computable. The
number n(h) of f -terms of depth ≤ h satisfies the recurrence n(h+1) = n(h)(n(h)+
1) and is thus in the doubly exponential 2O(2h) range. A word resulting from applying
an f -term of depth ≤ h to words of length at most l is bounded in length by kh+ l
for some constant k as in Proposition 4.1.1. As there are only 2O(h)-many words of
length at most kh+ l we see that no pairing function (one mapping pairs of elements
to elements injectively, hence for which distinct terms yield distinct elements) can

be automatic [BG04]. Even assuming associativity of f there are 22O(h)
inequivalent

f -terms in r > 1 variables, implying that no function acting freely on a subalgebra
generated by more than one element is automatically presentable. In other words,
the free monoid ({a, b}∗, ·) of concatenation is not automatic [BG04].

In [KN95] and in [Blu99] the general approach illustrated on the previous examples
is captured by the notion of generations. Consider a structure A with functions F =
{f1, . . . , fs} and a sequence E = {e0, e1, e2, . . .} of elements of A. The generations
of E with respect to F are defined recursively as follows.

G0
F(E) = {e0}

Gn+1
F (E) = Gn

F(E)
⋃
{en+1}

⋃
{f(~a) | f ∈ F , ~a~∈Gn

F(E)}

From Proposition 4.1.1 one obtains.

Proposition 4.1.3 ([KN95],[Blu99, BG04]). Let A be automatic and consider an
injective presentation d with naming function ν. Let F be a finite set of functions
FO-definable in A and E = {e0, e1, . . .} a definable set of elements ordered according
to length in d, i.e. |f−1(e0)| ≤ |f−1(e1)| ≤ · · · . Then there is a constant k such that
for every n and for every a ∈ Gn

F |f−1(a)| ≤ kn. Therefore, |Gn
F | = 2O(n).

64

4.1 General Tools: Pumping and Growth Arguments

In other words, the number of elements that can be generated using functions in
any automatic structure is at most a single exponential in the number of iterations.
In [Blu99, BG04] this observation is cleverly used to show that Skolem arithmetic
(N, ·) is not automatic (cf. Example 3.1.2(v) where a tree-automatic presentation of
Skolem arithmetic is given.)

Using either of the above propositions it is straightforward to derive that if a
group structure (G, ·) is automatic, then every finitely generated subgroup of G has
polynomial growth, meaning that for any chosen finite set A = {a1, . . . , ak} the
function γ(n) = |{

∏
i<n c

σi

i | ∀i < n : ci ∈ A, σi ∈ {1,−1}}| is bounded by a
polynomial. Note that the presentation of G is not p-automatic unless G is finite.
Using this easy fact, and powerful theorems of Gromov and Ersov, Nies, Oliver and
Thomas concluded that if a group structure (G, ·) is automatic then every finitely
generated subgroup ofG is virtually abelian. In particular, a finitely generated group
has an automatic group structure iff it is virtually abelian [OT05]. Example 3.1.4
thus exhausts all automatic finitely generated group structures.

In [KNRS04] the applicability of Propositions 4.1.1 and 4.1.2 are pushed to their
limits in showing, among a host of similar non-automaticity results, that no monoid
having (N, ·) as submonoid is automatic, that no infinite integral domain is auto-
matic, and that the countable atomless boolean algebra is not automatic.

Number of definable subsets

With the aim of proving non-automaticity of various structures obtainable as the
Fräıssé limit of a suitable class of finite structures Khoussainov et al. develop in
[KNRS04] a different approach more model theoretic in nature. Their technique
involves counting the number of definable subsets of elements represented, in a
tentative automatic presentation, on words of bounded length.

Consider A ∈ AutStr with automatic presentation d on domain D ⊆ Σ∗. Recall
that D≤n = D ∩ Σ≤n. To each first-order formula ϕ(x, y,~a) in the language of A

with parameters ~a from A and to every n ∈ N we associate the function

Cd,n,ϕ(b) = {u ∈ D≤n | A |= ϕ(f−1(u), b,~a)} .

The functions Cd,n,ϕ thus measure the extent to which definable families of subsets
of the domain shatter the finite sets D≤n. As it happens, in an automatic structure
for every ϕ however the parameter b is varied only linearly many subsets Cd,n,ϕ(b)
of each D≤n can occur.

Proposition 4.1.4 ([KNRS04]). In every automatic presentation d of a structure
A and for every formula ϕ it holds that

|{Cd,n,ϕ(b) midb ∈ A}| = O(|D≤n|)

Khoussainov et al. conclude that the random graph R together with various
other random structures, equivalently, Fräıssé limits are not automatic. Indeed, the

65

4 Analysis of Presentations

random graph, being the Fräıssé limit of all finite graphs, is characterised by the
property that for every two disjoint finite sets of vertices U ,V there is a vertex w
connected to all elements of U and to no element of V . In other words, every finite
set X of vertices is fully shattered (all 2|X| subsets of X are isolated) by the edge
relation as the parameter w is varied, contradicting Proposition 4.1.4.

Using subset interpretations Colcombet and the author have established non-
automaticity of the random graph in a far more general sense: there is no finite
subset interpretation of the random graph in any tree [CL06, Theorem 16], e.g.
R is also not tree-automatic. The result of [KNRS04] corresponds, in line with
Theorem 3.2.9, to the case of the degenerate tree ∆1.

Theorem 4.1.5 (The random graph is not automatic [CL06, Theorem 16]). There
is no tree t and no finite subset interpretation I such that R ≤I

Pf
t.

Proof idea. Intuitively speaking, the random graph contains its own finite subset
envelope, respectively, the subset envelope of every finite graph as a subgraph. This
can be exploited to devise, assuming a finite subset interpretation I of R in a tree
t, a finite subset interpretation J , such that for every finite graph G there is an
appropriate additional labelling t′ of t such that Pf(G) = J (t′). Applying the main
combinatorial theorem of [CL06] yields an MSO-interpretation K mapping each t′ to
the corresponding graphG, contradicting the fact that a class of graphs interpretable
in a class of trees using a fixed MSO-interpretation is of bounded clique-width.

Consider the more usual definition of a family of sets defined by ϕ with parameter
b:

Cϕ(b) = {c ∈ A | A |= ϕ(c, b,~a)} .

In model theory, the VC-dimension of such a family is defined as the supremum of
the sizes of finite subsets fully shattered by the family, i.e.

sup{|X| such that |{Cϕ(b) ∩X}| = 2|X|} .

Proposition 4.1.4 tells us that the sets D≤n can only be shattered to a minimal
extent by definable families. This is in contrast with the observation of Benedikt et
al. [BLSS03] that in S[2] each of the sets {0, 00, . . . , 0n} can be fully shattered by
the formula ϕ(x, y) = ∃z(≻1 z � y ∧ el(z, x)∧) as y is varied.

4.2 Equivalent Presentations

In this section we develop a concise theory of simple transformations of automatic
presentations in order to be able to distinguish between essentially different presen-
tations as opposed to presentations identical modulo some trivial coding. Indeed,
we should not consider a presentation different from an other one obtained from the
former, say, by a permutation of the alphabet. In fact, we propose the following no-
tion of equivalence, while arguing that results of this section will support our claim
that this is indeed the right notion of equivalence.

66

4.2 Equivalent Presentations

Definition 4.2.1 (Equivalence of automatic presentations).
Two presentations (d1, ν1) and (d2, ν2) of some A ∈ AutStr are equivalent if for
every relation R over A, ν−1

1 (R) is regular iff ν−1
2 (R) is regular.

In the following we shall consider bijective transformations, referred to as trans-
lations, of injective automatic presentations in connection with the notion of equiv-
alence.

Definition 4.2.2 (Translations). A translation is a bijection t : D → C between
regular sets of words D ⊆ Σ∗ and C ⊆ Γ∗. If D = Σ∗ then t is a total- otherwise a
partial translation. A translation t preserves regularity (non-regularity) if the image
of every regular relation under t (respectively under t−1) is again regular. Finally, t
is weakly regular if it preserves both regularity and non-regularity.

Clearly, every bijective rational transduction qualifies as a translation, however,
not necessarily weakly regular. It is easy to check that bijective semi-synchronous
rational transductions are weakly regular. The aim of this section is to establish the
exact converse of this.

We associate to each translation f its growth function Gf defined as Gf (n) =
max{|f(u)| : u ∈ Σ∗, |u| ≤ n} for each n and say that f is length-preserving if
|f(x)| = |x| for every word x, further, f is monotonic if |x| ≤ |y| implies |f(x)| ≤
|f(y)| for every x and y, finally, f has bounded delay if there exists a constant δ such
that |x| + δ < |y| implies |f(x)| < |f(y)| for every x and y.

Let us look at the special case of length-preserving translations. Now it is known
that every length-preserving rational transduction is in fact synchronised rational, cf.
[FS93]. We show that this is true of all length-preserving and regularity-preserving
translations. Note, however, that we do not assume a priori that translations are
rational transductions. This result is interesting in its own right, and will also be
key to our general characterisation.

Proposition 4.2.3. Let f : D → C be a length-preserving translation. If f pre-
serves regularity of all relations on D then (the graph of) f is regular.

Proof. Consider Sz = {(u, v) ∈ D2 | ∃v′ : |v′| = |u| ∧ v′z � v}, which is clearly
regular for every z ∈ Σ∗. Their images under f are by assumption regular relations
over C and in fact, since only the length of the first component plays a role in these
relations, and it is preserved by f , the following “variants” over D × C are also
regular.

Rz = {(u, f(v)) ∈ D × C | ∃v′ : |v′| = |u| ∧ v′z � v} (z ∈ Σ∗)

Let K be such that for every n ∈ N there is a word w in D of length nK ≤ w <
(n + 1)K. Observe, that then every u ∈ D is completely determined by the set of
pairs (v, z) with |z| ≤ K and such that Sz(v, u) holds. We can therefore define f
using relations Rz with |z| ≤ K as

graph(f) = {(u, x) ∈ D × C | |u| = |x| ∧ ∀v ∈ D
∧

z∈Σ≤K

Sz(v, u) → Rz(v, x)}

67

4 Analysis of Presentations

This shows that the graph of f is indeed regular, i.e. that f is synchronised rational.

Let it be mentioned that by a clever construction of [BLS06, Theorem 6] there
is always a letter-to-letter automatic bijection between any two regular languages
having exactly the same number of elements of every length.

Theorem 4.2.4 ([BLS06]).
Let D ∈ Rat(Σ∗) and C ∈ Rat(Γ∗) be two regular languages of identical growth, i.e.
gD = gC. Then there is a length-preserving translation t : D → C computed by a
letter-to-letter automaton.

Back to our task, we treat the general case via a series of equivalent transforma-
tions. Whereby we mean that two translations f : D → C and g : D → E over
the same domain are equivalent (f ∼ g) if for every n ≥ 1 and for every relation
R ⊆ Dn either both f(R) and g(R) are regular or neither of them is. Obviously,
composing a translation f with a weakly regular translation t we obtain t ◦ f ∼ f .
In fact, keeping in mind that translations are by definition bijective, we have f ∼ g
iff f ◦g−1 is weakly regular. The next lemma gives a handy example of an equivalent
transformation.

Lemma 4.2.5 (Padding).
To every translation f : D → C preserving the regularity of the relation L(x, y) =
|y| ≤ |x| one can construct an equivalent monotonic translation g : D → C ′.

Proof. The relation L(x, y) = |y| ≤ |x| is locally finite and regular, so is its image
f(L). Therefore, by Proposition 4.1.1, there is a constant K such that |y| ≤ |x| →
|f(y)| ≤ |f(x)| + K for every x, y ∈ Σ∗. The idea is to pad each image word f(x)
by an appropriate (≤ K) number of @’s, where @ does not occur in any of the
alphabets involved.

By the choice of K above, we have Gf(|x|) ≤ |f(x)| + K, and for each s = 0..K
the set Ds = {x : Gf(|x|)− |f(x)| = s} is regular, being definable. This observation
allows us to pad each codeword accordingly:

g(x) = f(x)@Gf (|x|)−|f(x)| (∀x ∈ D)

Note that C ′ = g(D) =
⋃k
s=1 f(Ds) · @s is regular.

To confirm that f and g are indeed equivalent one merely has to check that the
translation f(x) 7→ g(x) is weakly regular, which is obviously true, it being definable,
hence regular.

Finally, it is clear that g is monotonic, because |g(x)| = Gf(|x|) = Gg(|x|) holds
for every word x, and the growth function Gf is by definition always monotonic.

Our next result shows that every regularity-preserving translation of bounded
delay also preserves non-regularity of all relations, is thus weakly regular. This is
achieved by showing that f is equivalent to a length-preserving translation satisfying
the conditions of Proposition 4.2.3.

68

4.2 Equivalent Presentations

Theorem 4.2.6.

A translation is weakly regular iff it is regularity-preserving and has bounded delay.

Proof. The “only if” direction is easy to prove. We only need to show that every
weakly regular f has bounded delay. Consider the equivalent presentation g obtained
from f by padding each codeword with at most K new symbols as in Lemma 4.2.5.
If g has bounded delay with bound δ then f has bounded delay with bound ≤ Kδ.
Assume therefore that f is monotonic. Then it suffices to consider the inverse image
of the locally finite relation L(x, y) = |x| ≤ |y|. Since f−1(L) is regular, the usual
pumping argument by way of Proposition 4.1.1 shows that there is a constant d such
that |f−1(x)| ≤ |f−1(y)|+ d whenever |x| ≤ |y|. In other words |u| > |v|+ d implies
that |f(u)| > |f(v)|, which is to say, that f has bounded delay.

The converse “if” implication is proved by constructing in two steps of transfor-
mations a length-preserving and regularity-preserving translation h equivalent to f .
The claim then follows by Proposition 4.2.3.

Again, as a first step we transform f using Lemma 4.2.5 into an equivalent mono-
tonic translation. Henceforth we assume that f is monotonic. Next we establish that
the growth function of f is in fact of a very restricted kind. This is key to showing
that the second and decisive transformation performed in Lemma 4.2.8 does indeed
produce an equivalent translation.

Lemma 4.2.7. Let f : D → C be a monotonic regularity-preserving translation of
bounded delay. Then the infinite sequence of increments of the growth function of
f , ∂Gf = 〈Gf(1) −Gf (0), Gf(2) −Gf(1), . . .〉, is ultimately periodic.

Proof. Consider the language

L = {x = f(u) | ∀y = f(v)(|u| = |v| → x ≤llex y)}

collecting the length-lexicographically least element of f(D=n) for each n ∈ N. Be-
cause f preserves regularity of the equal-length relation the above definition yields
that L is regular. Furthermore, since f has bounded delay, say with bound δ, it is δ-
thin, meaning that there are at most δ many words in L of each length. We can thus
write L as disjoint union of the regular languages Lk = {x ∈ L | ∃=ky ∈ L |x| = |y|}
for k = 1, . . . , δ. Let us project L as well as Lk’s onto 1∗ in a length-preserving
manner. Gf is a non-decreasing sequence of naturals in which each number can
occur at most δ times. Due to monotonicity of f this projection of L corresponds,
in the unary encoding, to the pruned sequence obtained from Gf by omitting the
repetitions, whereas Lk is mapped onto those 1n for which n is repeated exactly k
times in Gf . All these projections are regular unary languages, which is the same
as saying that the corresponding sets of naturals are ultimately periodic. The claim
follows.

We are now prepared to make the final transformation step. Lemma 4.2.7 below
allows us to construct an equivalent length-preserving translation h by “factoring”
each word f(u) of length Gf (|u|) into “blocks” according to ∂Gf .

69

4 Analysis of Presentations

a b c b a a d c c d b c c a b a

c
d
b a

a
b

c
b
a a c

c
c
d b

a

11 0 1 0 0 0 1 1 0 10

02 3 1 2 0 1 2 2 0 1 2

h(x)=

f(x)=

x =

Figure 4.1: Factoring f(x) along Gf with block sizes shown.

Lemma 4.2.8. Let D ⊆ Σ∗, C ⊆ Γ∗ be regular languages and let f : D → C
be a monotonic regularity-preserving translation of bounded delay. Then one can
construct an equivalent length-preserving translation h : D → C ′.

Proof. The fact that ∂Gf is ultimately periodic allows us to construct an equiv-
alent length-preserving presentation h by subdividing codewords produced by f
into blocks according to ∂Gf . (For this we need to assume that Gf(0) = 0, i.e. the
empty word is represented by itself. Clearly, this is no serious restriction as changing
a translation on a finite number of words always yields an equivalent translation.)

Consider some word u ∈ D of size n and its image v = f(u) ∈ C. Since f is
monotonic |v| = Gf(|u|) = Gf(n) and we can factorise v as v1v2 · · · vn where |vi| =
∂Gf [i] for each i ≤ n. Let c = maxn∂Gf [n]. Since ∂Gf [i] ≤ c for every i, we can
consider each vi as a single symbol of the alphabet Θ = Γ≤c = {w ∈ Γ∗ : |w| ≤ c}.
Let β be the natural projection mapping elements of Θ to the corresponding words
over Γ, and let λ(w) = |β(w)| for each w ∈ Θ.

We define the mapping h : D → Θ∗ by setting for each u ∈ D, with factorisation
as above, h(u) = v1 · v2 · . . . · vn when considered as a word of length n over Θ. This
construction is illustrated in Figure 4.1.

Thus, h is by definition length-preserving and maps D injectively onto the set
C ′ = {x ∈ Θ∗ | β(x) ∈ C ∧ (∀i = 1..|x|) λ(x[i]) = ∂Gf (i)}. Because β is a homo-
morphism, C regular and ∂Gf ultimately periodic, C ′ can clearly be accepted by
a finite automaton. Moreover, the fact that any two words w,w′ belonging to C ′

are synchronously blocked (in the sense that x[i] and x′[i] have the same length for
all i ≤ |x|, |x′|) enables us to easily simulate any n-tape automaton A accepting a
relation over C by an automaton A′ accepting the “same” relation over C ′ and vice
versa.

This concludes the proof of Theorem 4.2.6.

Observe that to establish Theorem 4.2.6 we have only made use of the fact that
f preserved regularity of a handful of relations having to do with length comparison
as well as those Sz of Proposition 4.2.3 matching a constant word z in one word at
a position given by another. This does not come as a great surprise, as alone the

70

4.2 Equivalent Presentations

relations Sz with |z| ≤ 1 can define prefix, equal length, and the successor relations,
and thus constitute a complete automatic structure. The following consequence of
Theorem 4.2.6 is probably more surprising.

Corollary 4.2.9. Consider a non-unary alphabet Σ and a total translation f : Σ∗ →
C. If f preserves regularity of all relations over Σ∗ then f is weakly regular.

Proof. To apply the above theorem we only need to show that f has bounded delay.
This is done in the lemma to follow, noting that monotonicity of f can be assumed
using Lemma 4.2.5 as in Theorem 4.2.6.

Lemma 4.2.10. Let s = |Σ| ≥ 2 and let f : Σ∗ → C be a monotonic regularity-
preserving total translation. Then f has bounded delay.

Proof. Let C≤n = {x ∈ C | |x| ≤ n} for each n ∈ N. Assume, that for some n and t
we find the following situation.

Gf(n− 1) < Gf(n) = Gf(n+ 1) = . . . = Gf(n + t− 1) < Gf(n+ t)

Because f is total and monotonic we have |C≤Gf (n−1)| = (sn − 1)/(s − 1) and
|C≤Gf (n)| = |C≤Gf (n+t−1)| = (sn+t − 1)/(s− 1) since these sets contain precisely the
images of words of length at most n− 1 and n + t− 1 respectively.

Let K, by way of Proposition 4.1.1, be chosen such that Gf (n) ≤ Gf (n− 1) +K,
hence C≤Gf (n) ⊆ C≤Gf (n−1)+K for every n ∈ N. From Proposition 4.1.2 we know
that |C≤n+K| ∈ Θ(|C≤n|). Thus, there is a constant β (certainly, β ≥ 1) such that
|C≤Gf (n)| ≤ |C≤Gf (n−1)+K | ≤ β · |C≤Gf (n−1)|. By simple arithmetic, t ≤ logs(β),
which proves that f has bounded delay, namely, bounded by δ = logs(β) + 1.

Observe that Corollary 4.2.9 implies that the complete automatic structures SΣ =
(Σ∗, {succa}a∈Σ,�, el) of Section 3.2.1 have only a single automatic presentation up
to equivalence (see Theorem 4.3.1 below). Indeed, by completeness, the inverse of
the naming function of every injective automatic presentation of SΣ is a regularity-
preserving translation that is also total by the definition of SΣ. Hence, by Corol-
lary 4.2.9 the naming function itself is weakly regular and hence equivalent to the
identity presentation.

Remark 4.2.11. We have to point out, that the assumption of Σ being non-unary
is indeed essential. Corollary 4.2.9 fails for unary alphabets, because, as can easily
be checked, the mapping from unary to binary presentation of the naturals does
preserve regularity, but also maps some non-regular relations to regular ones. The
same argument shows that the condition of f being total can not be dropped either:
simply take a variant of the unary presentation e.g. over the partial domain ab∗.

4.2.1 Semi-synchronous transductions

Observe that we have actually proved more than what is claimed in Theorem 4.2.6.
The above proof shows indeed that every regularity-preserving translation f of

71

4 Analysis of Presentations

bounded delay (or every weakly regular translation for that) can be decomposed
as

f = π−1 ◦ β−1 ◦ h

where π applies the padding, β the cutting of words into blocks, and where h is
length-preserving and regular. Since both π−1 and β−1 are projections the compo-
sition is in fact a rational transduction.1 But we can be a great deal more specific.
We have also shown that ∂Gf is ultimately periodic, say from threshold N with
period p. Let q = Gf(N + p) − Gf(N) be the total length of any p consecutive
blocks with sufficiently high indices. This means that after reading the first N input
symbols and the first Gf (N) output symbols a transducer accepting f can proceed
by reading blocks of p input- and q output symbols in each step, which implies that
f is in fact a (p, q)-synchronous transduction.

Theorem 4.2.12.

A translation is weakly regular iff it is a semi-synchronous transduction.

Proof. The “if” part is a special case of Lemma 2.2.3. To prove the “only if” part
we repeat the same steps of transformations in the proof of Theorem 4.2.6. Thus,
we obtain the same decomposition f = π−1 ◦β−1 ◦h, which shows, as argued above,
that f is a semi-synchronous transduction.

Corollary 4.2.13. Two translations f : D → C and g : D → E are equivalent
if and only if the translation g ◦ f−1 (hence also f ◦ g−1) is a semi-synchronous
transduction.

We have defined two automatic presentations of the same structure as equivalent
if there is no difference between them in terms of representability of relations via
automata, in other words, if they are expressively equivalent. In this section we have
established that two injective automatic presentations are precisely then equivalent
when the transduction

T = {(x, y) ∈ D ×D′ | ν1(x) = ν2(y)}

translating names of elements from one presentation to the other, is semi-synchronous
rational. Equivalent injective presentations are therefore truly identical modulo such
a simple coding, i.e. expressive equivalence coincides with computational equiva-
lence. This can in fact easily be extended to not necessarily injective presentations
as well.

Corollary 4.2.14. Two presentations (d1, ν1) and (d2, ν2) of the same structure are
equivalent if and only if the transduction T , defined as above, translating names of
elements from one presentation to the other, is semi-synchronous rational.

1 Knowing this, the claim of Proposition 4.2.3 already follows from [EM65, Corollary 6.6] (see
also [FS93]) stating that length-preserving rational transductions are synchronised rational.

72

4.3 Case Studies

Proof. Assuming that T is semi-synchronous, one can transform any automaton
recognising a relation in one presentation into another one recognising the same
relation in the other presentation as done in Proposition 2.2.3.

Conversely, we can select a regular subdomain D′
i for both i = 1, 2 such that the

thus restricted presentations are injective. These injective presentations are of course
still equivalent. Thus, by Theorem 4.2.12, T ′ = T∩(D′

1×D
′
2), being a weakly regular

translation from D′
1 to D′

2, is semi-synchronous, say (p, q)-synchronous. Noting that
T = ε2 ◦ T ′ ◦ ε1 where each εi is the congruence of the respective presentation it
is easy to construct a non-deterministic (p, q)-synchronous transducer computing T
by guessing a pair of words accepted by T ′ and checking their equivalence to the
respective input words. This transducer can finally be determinised.

Mauer and Nivat have shown in [MN80] that there exists a rational bijection,
i.e. a bijective rational transduction, between two infinite regular sets D and C if
and only if their accumulated growth functions, GD(n) = |D≤n| and GC defined
analogously, are asymptotically equal, meaning that there are real numbers c, d > 0
such that GD(n) ≤ GC(cn) and GC(n) ≤ GD(dn) hold for all sufficiently large
n. This holds precisely if both D and C are polynomially growing and with the
same polynomial degree or if both are exponentially growing. As semi-synchronous
transductions are by definition rational, this asymptotic equality must also hold
for domains of equivalent presentations. More precisely, if t : D → C is a (p, q)-
synchronous translation then there are constants k, l such that GD(n) ≤ GC(q

p
n+k)

and GC(n) ≤ GD(p
q
n+ l) holds for all n.

Finally, we note another use of the semi-synchronous transduction translating
between equivalent presentations.

Corollary 4.2.15. Let ν1 and ν2 be equivalent automatic presentations of A. Then
there is a constant C such that for every n-ary relation R over dom(A) and for every
automaton A1 recognising ν−1

1 (R) there is an automaton A2 of size |A2| ≤ Cn · |A1|
recognising ν−1

2 (R), and vice versa.

Proof. The automaton A2 is obtained from A1 by composing it with n copies of the
transducer for T , one for each component.

4.3 Case Studies

4.3.1 Complete Structures

Recall the structures SΣ = (Σ∗, {succa}a∈Σ,�, el) and Nk = (N,+, |k) from Sec-
tion 3.2.1 where it was shown that for |Σ|, k > 1 they are each complete for AutStr
with respect to first-order interpretations. Using results of Section 4.2 we can show
that all of their presentations are equivalent.

Theorem 4.3.1. Let Σ be a non-unary finite alphabet and k > 1. The complete
structure SΣ has, up to equivalence, only a single automatic presentation. The same
result carries over to the structures Pf(∆1), and Nk = (N,+, |k) for each k.

73

4 Analysis of Presentations

Proof. Observe that for every injective presentation (d, ν) of SΣ the naming func-
tion ν−1 is (by completeness) a regularity preserving and (having domain Σ∗) total
translation. It follows from Corollary 4.2.9 that ν−1 is weakly regular. Therefore all
injective presentations of SΣ are equivalent.

Every automatic presentation is equivalent to an injective one obtained from it by
restriction to a regular set of unique representants. Indeed, if R is the representation
of an n-ary relation then R′ = R ∩ Ln is the representation of the same relation in
the injective presentation and R =∼ ◦R′◦ ∼. We see that R is regular iff R′ is. This
proves the claim for SΣ.

Towards establishing the claim for Pf (∆1) consider an interpretation of S[2] in
Pf (∆1) based on the following bijective representation. For each non-empty word
x let x− denote its immediate predecessor in the length-lexicographic order, and let
x be represented by the set {|x−|} ∪ {n | x−[n] = 1}; finally, let ε be represented
by the empty set. Clearly, there is such an interpretation. Thanks to the bijective
encoding, we can consider every presentation of Pf(∆1) as one of S[2]. In fact,
inequivalent presentations of the former would result in inequivalent presentations
of the latter, which cannot happen.

Similarly, S[k] can be bijectively interpreted in Nk for each k, so the same argument
applies.

Not all complete structures have this property. Let C = A
⊎

B be the disjoint
union of A and B having an additional unary predicate A identifying elements
belonging to A. Thus, A and B are trivially FO-interpretable in C, and C ∈ AutStr
iff A,B ∈ AutStr. It follows from Theorem 2.2.4 above, that A

⊎
B has infinitely

many pairwise inequivalent automatic presentations, provided both A and B are
infinite. In particular, this holds for the complete structure SΣ

⊎
SΣ. Let us therefore

say that a structure is rigidly automatic if it has but one automatic presentation up
to equivalence. Finite structures are trivially rigidly automatic.

Conjecture 4.3.2. Every infinite rigidly automatic structure is complete.

Let us remark that by the theorem of Cobham-Semenov (Theorem 4.3.4 be-
low) Presburger arithmetic has infinitely many pairwise inequivalent presentations,
whence no structure interpretable in (N,+) is rigidly automatic. In particular, (cf.
Theorem 3.3.6), p-automatic structures are not rigidly automatic.

Furthermore, we are able to show that infinite prefix-recognisable structures are
not rigidly automatic either. See Section 6.4 and Theorem 6.4.3 below.

4.3.2 Subset Envelopings

What does Theorem 3.5.1 spell out in the special cases corresponding to the tree
∆2 or to the line ∆1?

Recall that the (finite) subset envelope P(w)(A) of a structure A is obtained by
adjoining to A the ⊆-ordered structure of its (finite) subsets and by identifying
elements of A with the corresponding singleton sets.

74

4.3 Case Studies

A structure is MSO interpretable in the tree or in the line iff it is prefix-recognisable,
hence automatic (cf. Sections 3.3.3 and 3.4.2), respectively, if it is unary automatic
(cf. Section 3.3.1). Thus, the result tells us that the finite subset envelope Pf (A)
of a structure A is tree-automatic iff the structure is prefix-recognisable, and that
Pf (A) is word-automatic iff A is unary automatic. Inspecting the proof of The-
orem 3.5.1 [CL06] we can even conclude, by a remark of Colcombet, that on the
line the restriction to finite subsets can be lifted. That is, a subset envelop P(A) is
ω-automatic iff A is unary automatic.

We would like to note that the technique of [CL06] is far more general than
what we are using in the context of automatic presentations. Indeed, they con-
sider interpretations in arbitrarily coloured trees, which makes the combinatorics
substantially more involved. It is therefore perhaps instructive to present simple
combinatorial proofs of the mentioned facts concerning automatic presentations of
subset envelopes.

Proposition 4.3.3. [CL06] For every countable structure A the following implica-
tions hold.

(i) Pf (A) ∈ AutStr ⇒ A ∈ 1AutStr
In fact, an equivalent unary presentation of A can be extracted from the pre-
sentation of its envelope.

(ii) P(A) ∈ ωAutStr ⇒ A ∈ 1AutStr
Again, a unary presentation of A can be extracted from the presentation of its
envelope.

Proof.
The “if” direction is straightforward in both cases: every unary-automatic presen-
tation can be seen as a monadic second-order interpretation in “the line”. Each
such interpretation can be extended to a (finite) subset-interpretation of the (finite)
subset enveloping in the obvious way. Therefore, in each case only the “only if”
direction requires some consideration.

(i) A quick proof: Given an a.p. d = (D0⊎DP , {Ri}, R⊆, R∈) of Pf (A) we can give
an a.p. d′ = (D0 ⊎DP , succ, R⊆, R∈) of Pf(∆1) just by defining the successor
function on D0 according to the lexicographic ordering. By Theorem 4.3.1
all automatic presentations of Pf (∆1) are equivalent. Thus, d incorporates a
presentation of A equivalent to a unary one and a presentation of the subset
structure equivalent to the natural binary one.

(i) A direct proof: Consider a (wlog. injective) a.p. d = (D, {Ri}, R⊆, R∈) of
some Pf (A). By definition D is partitioned into two regular subsets D0 and
DP of words representing elements, respectively finite subsets of domA. An
a.p. d0 = (D0, {Ri} of A can therefore be extracted from that of Pf (A). Our
aim is to prove that d0 is in fact essentially unary. By this we mean that D0

75

4 Analysis of Presentations

is thin, i.e. there is a constant k such that D0 contains at most k words of any
given length n. This can be verified by a quick counting argument.

By Proposition 4.1.1 there is a constant K such that each subset every element
of which is represented by a word of length n is itself represented on length
at most n + K. (To see this consider the locally finite relation defined as
∀z(zRiny → |z| ≤ |x|).)

Let tn respectively sn be the number of words of D0 of length n, respectively
of length ≤ n. By the above all 2sn subsets of these elements are represented
by words not longer than n + K. Assuming, wlog., a binary presentation,
there are less then 2n+K+1 such words available. This gives sn ≤ n+K + 1 for
every n, therefore, by a gap theorem of growth functions of regular languages
[SYZS92], (tn) must be bounded by a constant L.

Finally, a unary presentation of A equivalent to d0 is constructed by “stretch-
ing” by a factor of L: the k-th word (e.g. in the lexicographic ordering)
of length n is mapped to 0Ln+k. This transformation is obviously semi-
synchronous, hence the equivalence (cf. Corollary 4.2.14).

(ii) By Theorem 3.1.9 we can assume that A, as a definable substructure of P(A),
is injectively represented even if the whole subset extension is not. Thus, by
Proposition 3.1.6, A is automatic.

In [KL06] Kuske and Lohrey proved that over injective ω−automatic presen-
tations FO∞,mod-definable relations are ω-regular. We apply their result to the
injectively presented subdomain of singletons. The set of ω-words representing
a finite subset of A is thus ω-regular, since it is definable in P(A) with the
∃∞ quantifier applied only to singletons. Therefore, the given ω-automatic
presentation of P(A) includes one of Pf (A). This, being countable, can, by
results of Section 3.1.1, be filtered to be injective and effectively transformed
into an essentially equivalent automatic presentation on finite words showing
that Pf(A) is automatic. The claim now follows from (i).

In the terminology of [CL06] item (ii) above would be formulated as for every
subset-interpretation I we can construct an MSO-Interpretation I ′ such that when-
ever P(A) ≤I

P ∆1 then A ≤I′

MSO ∆1.

4.3.3 Presburger Arithmetic

By Presburger arithmetic we mean both the structure N = (N,+) and its first-order
theory. It should always be clear which is meant. Presburger proved decidability of
the first-order theory of N (actually that of (Z,+)) using the technique of quantifier
elimination. Büchi applied his automaton method to show decidability of Presburger
arithmetic. His approach consisted in interpreting ThFO(N) in ThMSO(N, succ) by
a finite subset interpretation.

76

4.3 Case Studies

The straightforward interpretation uses of course the binary presentation (as in
Example 3.2.7). The automaton method easily extends to representations in any
natural base k. It was observed early that these representations are inequivalent,
i.e. that a set of naturals may or may not be regular in different bases. This lead to
the investigation of regularity in different number bases. A concise and accessible
survey of results in this area is given in [BHMV94].

We have already seen an interpretation of the Büchi-Bruyére Theorem 3.2.2 in
proving completeness of certain expansions of Presburger arithmetic. In order to
state the celebrated Cobham-Semenov theorem we need the following definition. We
say that p and q are multiplicatively independent if they have no common power, in
other words if pk 6= ql for all k, l ≥ 1. Otherwise they are multiplicatively dependent.

Theorem 4.3.4 (Cobham-Semenov 2, cf. [BHMV94, Bés00, Muc03]).
Consider p, q ≥ 2. The following dichotomy holds.

(i) If p and q are multiplicatively dependent then every relation R ⊆ Nr is regularly
presented in base p iff it is regularly presented in base q.

(ii) If p and q are multiplicatively independent then a relation R ⊆ Nr is regularly
presented in both base p and base q iff R is FO-definable in N .

In our terminology the first case can be stated as for multiplicatively dependent p
and q the two presentations basep and baseq are equivalent. More precisely, if pk = ql

then there is a (k, l)-synchronous translation from base p to base q. On the other
hand, for independent bases p and q the theorem tells us that the base p and base
q presentations are as far apart as they can be. Indeed, by the Fundamental The-
orem 3.1.3 every relation first-order definable in N is regular in every presentation
of N .

Generalised numeration systems

In [Bés00] Bés has extended Theorem 4.3.4 to generalised numeration systems. The
theory of generalised numeration systems [Fro02] is concerned with representations
of the naturals as well as the reals in various bases and using different, possibly
negative digits. In general, the basis U0 < U1 < U2 < . . . of the system does
not have to be the sequence of powers of a natural, one considers bases satisfying
appropriate linear recursions, alternatively, powers of a base β, which is the greatest
root of a polynomial of a certain type.

The study of generalised numeration systems goes back to Rényi who in 1957
introduced β-expansions, but can be traced back much further to the work of Cauchy
(cf. [Fro02]). Naturally associated to the representation based on β-expansions is
the β-shift defining a symbolic dynamical system. Thus, the theory of generalised
numeration systems is closely connected to symbolic dynamics, Cantor sets, notion

2Cobham proved it for sets, later Semenov extended it to arbitrary relations.

77

4 Analysis of Presentations

of topological entropy, descriptive set theory, and of course to number theory [BP97,
AS03].

Without going into the particulars of this very rich field we need to point out
the fact that from a practical perspective one is interested in normalised numerals
obtained via the greedy algorithm suggested by Rényi. Normalised numerals are thus
naturally ordered according to length and then lexicographically. This ordering
being automatic and given a regular set of (normalised) numerals N ⊆ [d]∗ over
the set of digits 0, . . . , d − 1 one is left with an automatic presentation of (N, <)
of the form (N,<llex). A fundamental question in this context asks under which
circumstances can addition be computed by an automaton?

It is easy to see that addition is regular in a generalised numeration system if
normalisation of numerals over the extended digit set 0, . . . , 2d − 1 is automaton
computable. Indeed, digit-wise addition followed by normalisation of the result
provides an automatic procedure for addition. Usually one considers numeration
systems associated to a sequence of basis elements satisfying a linear recurrence. It
is known that if the characteristic polynomial of the linear recurrence is the minimal
polynomial of a Pisot number then normalisation, hence also addition, is automaton
computable [Fro02].

A prominent example of a generalised numeration system with regular addition
is the so-called Fibonacci numeration system.

Example 4.3.5. The Fibonacci numeration system has the Fibonacci numbers
1, 2, 3, 5, 8, . . . as its basis and the binary digit set. The normalised numerals de-
livered by the greedy algorithm are ε, 1, 10, 100, 101, 1000, 1001, 1010, 10000, 10001,
. . . in the length-lexicographic ordering. They are the binary strings avoiding 11 as
a factor, since, by the recursive identity F (n + 2) = F (n + 1) + F (n) and greedy
normalisation prefers 100 to 11. Naturally, 10n represents the nth Fibonacci number.

Automatic presentations

We have mentioned that certain generalised numeration systems considered in the
field can be conceived as automatic presentations of Presburger arithmetic. But are
there any essentially different automatic presentations?

There are two aspects that have to be taken into account in order to classify all
automatic presentations of N up to equivalence. One concerns the growth of the
domain of numerals, the other their ordering.

It has been observed by Blumensath [Blu99, Lemma 5.3] and by Rigo [Rig01]
that N is not p-automatic. (In N we can define ∆2, which is not p-automatic
simply because the number of nodes of depth n is exponential in n necessitating
exponential growth of the domain by Proposition 4.1.1.) As we have hinted, in
the context of generalised numeration systems addition is strongly connected to
normalisation, and that the regularity of normalisation delicately linked with the
alignment of roots of the characteristic polynomial of the linear recurrence satisfied
by the growth function.

78

4.3 Case Studies

Regarding the representation of the ordering we can say that all automatic pre-
sentations of (N,+) known to us are based on numeration systems and are thus
either comprised of normalised numerals obtained by the greedy enumeration, or
equivalent to one such presentation. Let us quickly remark that for addition to be
automaton computable the numerals have to be supplied in a least-significant-digit-
first manner. This means of course that the ordering of the numerals is then also
reversed, i.e. defined by comparison of length followed by the reverse lexicographic
comparison.

We conjecture that the greedy enumeration is in fact an essential feature.

Conjecture 4.3.6. Every automatic presentation of Presburger arithmetic is equiv-
alent to one in which numerals are ordered in the reverse length-lexicographic man-
ner.

79

4 Analysis of Presentations

80

5 Automatic Words – a hierarchy of
higher-order morphic words

This chapter is devoted to the investigation of automatically presentable infinite
sequences (ω-words) over a finite alphabet and is based on the paper [Bár06a]. Note
that we consider word structures utilising the ordering predicate on positions, hence
we are also engaging in an investigation of automatic presentations of (N, <).

Word structures

To every omega-word w ∈ Σω we associate in a standard way its word structure
Ww = (N, <, {Pa}a∈Σ) having unary relations Pa = {n | w[n] = a} for each a ∈ Σ
partitioning N according to the symbol occurring in each position. Note that we
consider the ordering, as opposed to the successor relation, as given in our word
structures. When one is working with monadic second-order logic, there is of course
no difference in terms of expressiveness. However, as we are engaging in an inves-
tigation of automatically presentable word structures, the presence of the ordering,
as opposed to just having the successor relation, is not without significance.

Automatic presentations

In accordance with Definition 3.1.1 an automatic presentation (D,R, {Pa}a∈Σ) of
Ww as above comprises a regular set D partitioned by the regular sets Pa for each
a ∈ Σ over some alphabet Γ, together with a regular relation R, which is a linear
ordering of type ω over D and such that the i-th word in this ordering belongs to
Pa iff the i-th symbol of w is a. Elements of D can be seen as numerals, each x ∈ D
representing the number ν(x) where ν is the coordinate map of the presentation.
For readability we identify x with ν(x) and write e.g. w[x] in place of w[ν(x)] when
indexing symbols or factors of w.

5.1 Morphic words and regular numeration systems

In the literature the most frequently, if not exclusively, used regular ordering of
type ω is the length-lexicographic ordering, also called military-, radix-, or genealog-
ical ordering by some and shortlex by others. Starting point of our investigation
is the observation that those words possessing an automatic presentation using the

81

5 Automatic Words – a hierarchy of higher-order morphic words

length-lexicographic ordering are precisely those morphic, as demonstrated in Propo-
sition 5.1.4 below.

Morphic words

A particularly well understood class of ω-words is that of the so called morphic words.
The basic idea, invented and cleverly applied by Thue, is to obtain an infinite word
via iteration of a suitable morphism τ : Σ∗ → Σ∗. Suitability is expressed by the
condition that τ(a)[0] = a for some a ∈ Σ. In this case τ is said to be prolongable on
a. This ensures that the sequence (τn(a))n∈N converges to either a finite or infinite
word, which is a fixed point of τ , denoted τω(a). An ω-word w ∈ Γω is morphic, if
w = σ(τω(a)) for some τ prolongable on a and some σ ∈ Hom(Σ∗,Γ∗) extended in
the obvious way to ω-words.

Example 5.1.1. Consider τ : a 7→ ab, b 7→ ccb, c 7→ c and σ : a, b 7→ 1, c 7→ 0
both homomorphically extended to {a, b, c}∗. The fixed point of τ starting with
a is the word abccbccccbc6b . . ., and its image under σ, 1100100001061 . . ., is the
characteristic sequence of the set of squares.
In general, as was shown in [CT02], the characteristic sequence of every set of the
form {

∑n

k=0 sk | n ∈ N}, where 0 < (sk) is an N-rational sequence is morphic. This
result follows trivially from the characterisation of [RM02], cf. Proposition 5.1.4.

Morphic words and their relatives have been extensively studied in the context
of formal language theory, Lindenmayer systems and combinatorics on words. For
once an ordering is fixed (in this case to be length-lexicographic) the emphasis is
on combinatorial aspects, such as number of finite factors of given length, and the
growth of their re-occurrences, etc.

We will first show that morphic words can be naturally characterised as a subclass
of automatic words representable using the length-lexicographic ordering. Then we
will go on to generalise both notions to obtain an infinite hierarchy of “higher-order”
morphic words inside the class of automatically presentable infinite words.

Automatic sequences

The theory of the so called automatic sequences [AS03] studies ω-words representable
in more-or-less standard numeration systems. Presentations of primary concern are
of a natural base k, or of base −k and possibly involving negative digits.

Sequences representable in a natural number base k using the standard digits
[k] = {0, . . . , k − 1} are very well understood. These k-automatic sequences have
been characterised both in algebraic, and in logical terms as being definable in
(N,+, |k) – one of our complete structures for AutStr – and also as morphic words
that are fixed points of uniform morphisms on k symbols [BHMV94].

The prominent example of a 2-automatic word is the “ubiquitous Prouhet-Thue-
Morse Sequence” [AS99].

82

5.1 Morphic words and regular numeration systems

Example 5.1.2. Consider the morphism τ : 0 7→ 01, 1 7→ 10. Its fixed point τω(0) is
the Thue-Morse sequence t = 01101001100101101001 This is a truly remarkable
sequence bearing a number of characterisations [AS99]. For instance, its nth digit is
a 1 iff the binary numeral of n contains an odd number of 1’s. A key property of t is
that it is uniformly recurrent without being ultimately periodic [AS99]. Moreover,
t is overlap-free in the sense that it does not contain a factor of the form awawa
for any a ∈ {0, 1} and w ∈ {0, 1}∗ which was used by Thue to produce a square
free infinite sequence on three letters, i.e. one not having any ww as factor. Such
are the roots of the field of combinatorics on words [Lot83, Lot02]. The existence
of square-free sequences has some other notable consequences, such as existence of
infinite parties of chess, etc.[AS99].

Much the same way as uniform morphisms are related to standard base numer-
ation systems, fixed points of non-uniform morphisms are naturally presented in
generalised numeration systems. We have already mentioned generalised numera-
tion systems in Section 4.3.3 on Presburger arithmetic, where we also conjectured
that every a.p. of N is equivalent to a generalised numeration system. In Exam-
ple 4.3.5 we presented the Fibonacci numeration system as a prominent example.
Let us now consider an associated morphic word, which is generated by an appro-
priately non-uniform morphism.

Example 5.1.3. Let φ : a 7→ ab, b 7→ a. Its fixed point φω(a) is the Fibonacci word
f = abaababaabaababaababa . . ., so called for the recursive dependence φn+2(a) =
φn+1(a) · φn(a) implying that |φn(a)| is the nth Fibonacci number.

Recently Rigo has introduced abstract numeration systems [Rig01] as a further
generalisation in which an arbitrary regular language is taken as a set of numerals,
however, the ordering still represented length-lexicographically.

It is not hard to see, that an ω-word is length-lexicographically presentable iff
it is morphic. There is a perfectly natural correspondence between the morphisms
generating a word and the automaton recognising the set of “numerals”, which, when
length-lexicographically ordered, allow an automatic presentation of the morphic
word. For the sake of completeness and to illustrate the techniques of Section 5.4
in this simple case we present a compact proof of this fact, which has appeared in
[RM02].

Automata and morphisms

To each morphism ϕ ∈ Hom(Σ∗,Σ∗) with |ϕ| = l we associate its index transition
system Iϕ = (Σ, [l], δ) where δ(a, i) = ϕ(a)[i] for every i < |ϕ(a)| and undefined
otherwise. For each a ∈ Σ considered as the initial state, the DFA (Iϕ, a,Σ) accepts
the set I(a) = Iϕ(a) of valid sequences of indices starting from a. Applying ϕ n

83

5 Automatic Words – a hierarchy of higher-order morphic words

times to a gives the word

ϕn(a) =
lex∏

x∈I(a)∩[l]n

δ∗(a, x) (5.1)

where x is meant to run through all valid sequences of indices of length n in lex-
icographic order. Thus ϕn(a) is the sequence of labels of the nth level of the tree
unfolding of Iϕ from a.

Conversely, given a linear ordering a0 < a1 < . . . < as of Σ we associate to
each DTS T = (Q,Σ, δ) its transition morphism τ = τT ∈ Hom(Q∗, Q∗) defined as
τ(q) = δ(q, ai1)δ(q, ai2) . . . δ(q, aik) where ai1 < ai2 < . . . < aik are precisely those
symbols for which a transition from q is defined. Just as in (5.1) applying τ n times
to some q results in τn(q) =

∏lex
w∈L(T ,q,Q)∩Σn δ∗(q, w), where w runs through, in lexi-

cographic order, all words of length n, which are labels of some path in T starting
from q. Thus τnT (q) is the sequence of labels of the nth level of the tree unfolding of
T from q.

Proposition 5.1.4 ([RM02]). The word structure Ww of an ω-word w is length-
lexicographically presentable iff w is morphic. The transformation from one formal-
ism to the other is straightforward.

Proof. Let τ ∈ Hom(Γ∗,Γ∗) be prolongable on a and consider its index transi-
tion system I = Iτ . It is clear from our previous observations that the language
L(I, a,Γ) recognised by I with all states final and a as its initial state provides,
equipped with the prefix-ordering, an automatic presentation of the tree unfolding
T = TI,a of I from the initial state a. As also remarked, τn(a) is precisely the
word one obtains by reading the nth level of T from “left to right”, i.e. in lexico-
graphic order. Also note that τ being prolongable on a, Iτ contains a transition
a 07→a, therefore the subtree of T rooted at 0 is isomorphic to the whole tree. Let
τ(a) = au for some u = u1 . . . ut ∈ Γ∗ and let Ui be the subtree rooted at 0 < i ≤ t.
Then τn+1(a) = auτ(u) · · · τn(u) = τn(a) · τn(u) and T ∼= a(T ,U1, . . . ,Ut). To
obtain a length-lexicographic presentation of τω(a) we dispense with the subtree
rooted at 0 so that the levels of the remaining regular tree a(U1, . . . ,Ut) corre-
spond to the increments τn(u) between iterations of τ . We have thus shown that
D = L(Iτ , a,Γ)\0[|τ |]∗ and Pc = L(Iτ , a, c)\0[|τ |]∗ for each c ∈ Γ together with the
natural length-lexicographic ordering provide an automatic presentation of τω(a).
To give a lexicographic presentation of w = σ(τω(a)) where σ ∈ Hom(Γ∗,Σ∗) we set
D′ = {xi | c ∈ Γ, x ∈ Pc, i < |σ(c)|} and Pb = {xi | c ∈ Γ, x ∈ Pc, σ(c)[i] = b} for
each b ∈ Σ.

Conversely, given a lexicographic presentation (AD, <lex, {APa
}a∈Σ) of some w

consider the product automaton A =
∏

a∈Σ APa
. Let τ = τA be its transition

morphism, and let us define σ ∈ Hom(Q(A)∗,Σ∗) by stipulating that σ(~q) = a

84

5.2 MSO-friendly presentations

whenever the ath component of ~q is an accepting state of APa
(clearly, a is then

uniquely determined) and σ(~q) = ε when no such a exists. To ensure that τ is
prolongable, we introduce a new symbol ~q′0 6∈ Q(A) and set τ(~q′0) = ~q′0τ(~q0) and
σ(~q′0) = σ(~q0), where ~q0 is the initial state of A. We leave it to the reader to check
that w = σ(τω(~q′0)).

Example 5.1.5. Recall the Fibonacci word generated by the morphism φ : a 7→
ab, b 7→ a of Example 5.1.3. The index transition system of φ,

I : a

0

�� 1
((
b

0

hh

accepts, with a being initial and both states being final, the language {0, 1}∗ \
{0, 1}∗11{0, 1}∗ of Fibonacci numerals from Example 4.3.5 only with leading zeros.
The construction of the proof of Proposition 5.1.4 dispenses precisely with those
numerals starting with a zero, thus producing an injective presentation.

5.2 MSO-friendly presentations

Let us now turn our attention to more sophisticated automatic orderings of type ω.
How does the choice of the ordering affects the class and the properties of words thus
presentable? Note that in order to give a complete answer we need to characterise all
automatic presentations of (N, <) up to equivalence in some manageable way. Short
of achieving this ambitious task, we will introduce a generalisation of the length-
lexicographic ordering and a corresponding notion of higher-order morphic words.
We shall see that increasing the complexity of the ordering relation this way gives
rise to a hierarchy of higher-order morphic words enjoying all the nice properties of
morphic words.

In preparation we define the key concept of MSO-friendly presentations and derive
extensions of the Fundamental Theorem 3.1.3 to MSO over word structures having
an MSO-friendly presentation.

Definition 5.2.1 (MSO-friendly presentations).
An automatic presentation d = (D,<, {Pa}a∈Σ) of some infinite word w ∈ Σω is
MSO-friendly if there is an algorithm, which constructs for every homomorphism
ψ ∈ Hom(Σ∗,M) into a finite monoid M and for every monoid element m ∈ M a
synchronous two-tape automaton recognising the relation

Bm = {(x, y) ∈ D2 | x < y ∧ ψ(w[x, y]) = m} .

Thus, being MSO-friendly means that membership of finite factors of w in a reg-
ular language can be decided by an effectively constructible automaton reading the
representations of the two endpoints of the factor. It is very easy to derive decidabil-
ity of the monadic second-order theory of words having MSO-friendly presentations.

85

5 Automatic Words – a hierarchy of higher-order morphic words

Lemma 5.2.2. Let d = (D,<, {Pa}a∈Σ) and ν constitute an MSO-friendly presen-
tation of w ∈ Σω. Then for every deterministic Muller automaton A an automaton
recognising the following set can be effectively constructed.

EA = {x ∈ D | w[x,∞) ∈ L(A)}

Proof. Consider A as a pair (ψ,M) with M = (Q → Q, ◦) and ψ ∈ Hom(Σ∗,M).
By MSO-friendliness of d we find automata recognising Xq = {(x, y) ∈ D2 | x <
y ∧ ψ(w[x, y])(q0) = q} for each q ∈ Q. Using Theorem 3.1.3 we can construct
automata recognising YF = {x ∈ D |

∧
q∈F ∃∞y Xq(x, y) ∧

∧
q 6∈F ¬∃∞y Xq(x, y)} for

all F ⊆ Q. Finally, EA is the union of those YF such that a run of A is accepting
with F being the set of infinitely often occurring states. The claim follows.

Corollary 5.2.3. Let w be an ω-word having an MSO-friendly automatic presenta-
tion. Then the MSO-theory of Ww is decidable.

Proof. In line with the well known correspondence between automata and MSO on ω-
words deciding the MSO-theory of a word structure amounts to deciding acceptance
of the word by any given deterministic Muller automaton A. Given an MSO-friendly
presentation this can be done by checking membership of a representation of 0 in
EA constructed as in the above lemma.

MSO-friendliness yields more than just decidability as we shall see next. Let ϕ be
an MSO sentence in a language of word structures and let x, y be first-order variables
not occurring in any subformula of ϕ. We define three kinds of relativisations of ϕ:
ϕ[0,x], ϕ[x,y], and ϕ[x,∞) obtained by relativising all first- and second-order quantifi-
cations to the noted intervals. For instance (∃zϑ)[x,y] = ∃z(x ≤ z ∧ z ≤ y ∧ ϑ[x,y]),
and (∀Zϑ)[x,∞) = ∀Z(∀z(z ∈ Z → x ≤ z) → ϑ[x,∞)). The relevance of relativisation
is expressed by the equivalence Ww |= ϕI ⇐⇒ WwI |= ϕ , where I is an interval
of any of the three kinds.

Lemma 5.2.4 (Normal Form of MSO formulae over word structures). Every MSO

formula ϕ(~x) having free first-order variables x0, . . . , xn−1 and no free second-order
variables is equivalent to a boolean combination of formulae xi < xj and relativised
MSO sentences ϑ[0,xi], ϑ[xi,xj], and ϑ[xi,∞) with i, j ∈ [n].

Proof. We present a proof through automata. Via standard construction, there is a
deterministic Muller automaton A over the alphabet Σ × {0, 1}n such that Ww |=

ϕ(~k) iff w ⊗ ξ~k ∈ L(A) for all ~k ∈ Nn, where ξ~k ∈ ({0, 1}n)ω is the characteristic

word of the tuple ~k, i.e. ξ~k[i]j = 1 iff kj = i. We collect for each pair of states (p, q)
of A the regular language Lp,q = {u ∈ Σ∗ | δ∗(p, u ⊗ (0n)|u|) = q}. Additionally,
we let Lq = {u ∈ Σω | A accepts u ⊗ (0n)ω from state q}. Again, by standard
constructions, we find MSO sentences ϑp,q respectively ϑq defining these languages.

Each infinite word w⊗ξ~k is naturally factored into segments in between consecutive
ki’s, some of which can be equal. Accordingly, each run of A can be factored into

86

5.3 k-lexicographic presentations

finite number of finite segments and an infinite segment by those positions where in
at least one of the last n components of the symbol read a 1 is encountered. The
intermediate segments and the last infinite segment are models of the appropriate
sentences ϑp,q and of ϑq respectively.

By summing up all possible factorisations of accepting runs we obtain in a first
attempt a boolean combination of formulae of type xi < xj , xi = xj , Paxi and of

relativised sentences of the form ϑ
[0,xi)
q0,q , ϑ

(xi,xj)
p,q and ϑ

(xi,∞)
q . Equality can be expressed

using <, and integrating the Paxi into the neighbouring openly relativised segment
formulae we finally arrive at a normal form as promised.

Theorem 5.2.5 (MSO-definability). Let w be an ω-word having an MSO-friendly
presentation d with domain D and bijective naming function ν : D → N. Then
there is an algorithm transforming every MSO formula ϕ(~x) having n free first-
order variables (and no free set variables) into an n-tape synchronous automaton A
such that for every u1, . . . , un ∈ D

Ww |= ϕ[ν(~u)] ⇐⇒ ~u ∈ L(A)

Proof. Using Lemma 5.2.4, we transform ϕ into a boolean combination of relativised
sentences and comparison formulae xi < xj . MSO-friendliness and Lemma 5.2.2
yield automata recognising the relations defined by relativised sentences ϑ[0,xi],
ϑ[xi,xj], respectively ϑ[xi,∞). Thus, by the appropriate combination of the automaton
recognising < and of the automata recognising the relativised subformulae of the
normal form we obtain A as required.

Note that a set X ⊆ N is definable by an MSO formula ψ(X) in Ww iff it is
pointwise definable by one of the form ϕ(x). Thus, (Ww, X) is automatic for every
Ww presentable in an MSO-friendly way and for every X, MSO-definable in Ww.

5.3 k-lexicographic presentations

Let Σ be a finite non-empty alphabet. To each word u = a0a1 . . . an−1 ∈ Σ∗ of
length n and to each 0 < k we associate its k-split (u(1), u(2), . . . , u(k)) defined as
follows. Let t be such that tk ≤ n < (t + 1)k. Then the ith word of the k-
split is u(i+1) = aiak+ia2k+i . . . atk+i for each i < k. Conversely, the k-merge of
the components produces the original word u = ⊗k(u

(1), . . . , u(k)). Additionally, we
define u(0) = |u| ∈ N or in unary presentation as 1|u|, whichever is more convenient.
For 0 ≤ i < k we define the equivalence

u =i v
def
⇐⇒ ∀j ≤ i u(j) = v(j) .

This implies, in particular, |u| = |v|. Let now < be a linear ordering of Σ, and
let <lex denote the induced lexicographic ordering. For each 0 ≤ k we define the
k-length-lexicographic ordering (<k-llex) of Σ∗ as

u<k-llex v
def
⇐⇒ |u| < |v| ∨ ∃i < k : u =i v ∧ u

(i+1) <lex v
(i+1) .

87

5 Automatic Words – a hierarchy of higher-order morphic words

Definition 5.3.1 (k-lexicographic words). An ω-word w ∈ Σω is k-lexicographic
(short: k-lex) if there is an automatic presentation (D, <k-llex , {Pa}a∈Σ) of the asso-
ciated word structure Ww. For each k, the class of k-lexicographic words is denoted
Wk, and we also let W =

⋃
kWk.

Observe that the 0-lexicographic ordering is just the ordering of words according
to their length. Therefore, by definition, the domain of a 0-lex presentation has to
be thin, i.e. containing at most one word of each length. All such presentations are
easily seen to be equivalent to one over a unary alphabet. Thus, W0 is precisely
the class of ultimately periodic words. Together with Proposition 5.1.4 we have a
characterisation of the

Proposition 5.3.2. W0 is the class of ultimately periodic words.

We have already seen that 1-lex words are precisely the morphic ones. Let us now
give an example of a 2-lexicographic word, which is not morphic.

Example 5.3.3. Consider the Champernowne word s = 12345678910111213 . . .
(also called Smarandache sequence) obtained by concatenating all decimal numerals
(without leading zeros) in ascending, i.e. length-lexicographic order. To give a
natural 2-lex presentation of Ws we use words ⊗2(x(1), x(2)) such that x(1) is a
decimal numeral (not starting with a zero) and x(2) ∈ 1∗01∗. We use the single 0 in
x(2) to mark a position within x(1). For each digit d ∈ [10] we can thus define the
unary predicate Pd as ([10]1)∗d0([10]1)∗ \ 0[10]∗.

We close this section with two simple but useful observations.

Proposition 5.3.4 (Closure under homomorphic mappings). The class of automat-
ically presentable ω-words is closed under homomorphic mappings. In particular, if
w is k-lexicographic, then so is h(w) for every homomorphism h.

Proof. The idea is to append each word x ∈ Pa of a given presentation of w indexing
a symbol a by |h(a)| many appropriately chosen suffixes ua,i with i < |h(a)|. For
k-lexicographic presentations we choose |ua,i| = k and take care that differences fall
within the kth component of the k-split of xua,i.

Lemma 5.3.5 (Normal Form Lemma). Let 1 < k ∈ N. Each k-lexicographic
presentation d = (D, <k-llex) of (N, <) over an alphabet Σ is equivalent to one
d′ = (D′, <k-llex) over some Γ such that D′ ⊆ (Γk)∗. In fact, one can choose
Γ = {0, 1} in the above.

Proof. Let first Γ = Σ ⊎ {0̂, . . . , k̂ − 1, ⋄} endowed with the ordering ⋄ < 0̂ < . . . <

k̂ − 1 < a1 < . . . < as where a1 < . . . < as is the ordering of Σ used in the
presentation d. We define the translation t : Σ∗ → (Γk)∗ padding each word x to

88

5.4 MSO-friendliness, Closure and Decidability

t(x) = l̂ ⋄k−1 x⋄k−l where l = |x| mod k. Observe that the moduli of the positions
of symbols of x are preserved in the process of this coding, i.e. t(x)(i) = αx(i)⋄ with

α being l̂ for i = 0 and ⋄ otherwise. Consequently x<k-llex y iff t(x)<k-llex t(y) in
the orderings induced by that of the symbols. Since t is a synchronised rational
bijection d′ = (t(D), <k-llex) is equivalent to d.

Finally, to obtain an equivalent presentation over {0, 1} take any binary coding
a 7→ b0 . . . bl−1 of the symbols a ∈ Γ uniformly of length l and such that a < a′

iff b0 . . . bl−1 <1-llex b
′
0 . . . b

′
l−1. Extend this into a coding of blocks of k consecutive

symbols as a0 . . . ak−1 7→ b00 . . . b
k−1
0 . . . b0l−1 . . . b

k−1
l−1 , and extend this homomorphically

to (Γk)∗. Due to the uniformity requirement, this translation is semi-synchronous,
further it respects the k-lexicographic ordering, thus providing an equivalent k-
lexicographic presentation.

5.4 MSO-friendliness, Closure and Decidability

5.4.1 Technical tools: automata transformations

Consider a finite deterministic transition system T = (Q,Σ, δ) and the associated
pair (M,ϕ) consisting of the finite monoid M = (Q→ Q, ◦) and the homomorphism
ϕ ∈ Hom(Σ∗,M) induced by δ. We call Hom(Σ∗,M) the derived state space and
denote it byQ(Σ). Furthermore, we callM (Σ) = Q(Σ) → Q(Σ) the monoid of automata
transformations. Note that both Q(Σ) and M (Σ) are finite. This terminology is
justified by the fact that Q(Σ) = Hom(Σ∗,M) is in essence the set of all Σ-labelled
DTS’s over the state space Q, hence M (Σ) is indeed the monoid of all transformations
of such transition systems.

A particular submonoid of M (Σ) that interests us is that of inverse homomor-
phic transformations H(Σ) defined as follows. Consider a homomorphism h ∈
Hom(Σ∗,Σ∗). We can associate to h the element Φ(h) of M (Σ) defined as (Q(Σ) ∋
χ 7→ χ ◦ h). It can be readily seen that Φ is a monoid homomorphism from

Hom(Σ∗,Σ∗) to M (Σ), therefore H(Σ)def
=Φ(Hom(Σ∗,Σ∗)) is a submonoid of M (Σ).

In terms of automata transformations this amounts to mapping a transition func-
tion δ to δ′ such that δ′(q, a) = q′ whenever δ∗(q, h(a)), where δ∗ denotes as usual
the extension of δ to all words over Σ. We let h−1(T) denote the transition system
(Q,Σ, δ′). Thus, for every q, q′ ∈ Q and w ∈ Σ∗ there is a path in h−1(T) labelled
w from q to q′ iff there is a path in T labelled h(w) from q to q′.

Consider a finite alphabet Θ and a mapping ϑ : Θ → Hom(Σ∗,Σ∗). We extend ϑ
to Θ∗ according to the rule

ϑ(x · x′) = ϑ(x′) ◦ ϑ(x) (5.2)

89

5 Automatic Words – a hierarchy of higher-order morphic words

which ensures that Φϑ = Φ ◦ ϑ is a homomorphism from Θ∗ to H(Σ).

Φ(ϑ(x · x′))(χ) = Φ(ϑ(x′) ◦ ϑ(x))(χ) = χ ◦ ϑ(x′) ◦ ϑ(x)
= Φ(ϑ(x′))(χ) ◦ ϑ(x) = Φ(ϑ(x))(Φ(ϑ(x′))(χ))
= (Φ(ϑ(x)) ◦ Φ(ϑ(x′)))(χ) .

Therefore, the pair (H(Σ),Φϑ) represents, in accordance with our initial correspon-
dence, a Θ-labelled finite transition system with state space Q(Σ). Elements of Θ∗

can thus be seen as words over Θ, or, via ϑ as homomorphisms from Σ∗ to Σ∗, or,
via Φϑ, as transformations of Σ-labelled transition systems. Given a word w ∈ Σ∗

and a monoid element m ∈M , we are interested in the following subset of Θ∗.

LT ,w,m,ϑ = {x ∈ Θ∗ | the state transformation induced by w in ϑ(x)−1(T) is m}

Let n = |Q|. Since Q(Σ) is finite, and the kernel Ker(ϕ) of every homomorphism
ϕ ∈ Q(Σ) is a congruence (wrt. concatenation) of finite index, their intersection

∼n
def
=

⋂

ϕ∈Q(Σ)

Ker(ϕ) = {(u, u′) | ∀ϕ ∈ Hom(Σ∗,M) ϕ(u) = ϕ(u′)}

is again a congruence of finite index, i.e. the factor monoid Q̃ = Σ∗/ ∼n is fi-
nite. Note that this equivalence depends only on the size of Q, hence the notation.
Intuitively, u ∼n u

′ iff there is no automaton having at most n states that could
distinguish u from u′. This equivalence can be used to define the Hall metric on
Σ∗ giving rise to a compact Hausdorff topology (cf. [PS05]), which is essentially
what one obtains from the analogous equivalences wrt. MSO formulae of restricted
quantifier ranks (cf. [Rab05],[RT06]).

Clearly, every homomorphism h ∈ Hom(Σ∗,Σ∗) preserves ∼n-classes, and thus

determines a function h̃ : Q̃ → Q̃. It is again routine to check that Ψ : h 7→ h̃ thus
defined is a homomorphism from (Hom(Σ∗,Σ∗), ◦) into M̃ = (Q̃ → Q̃, ◦). Further-
more, each ∼n determines an equivalence of homomorphisms h, h′ ∈ Hom(Σ∗,Σ∗)
defined as follows.

h ∼n h
′ def

⇐⇒ ∀w ∈ Σ∗ h(w) ∼n h
′(w)

⇐⇒ ∀a ∈ Σ h(a) ∼n h
′(a)

(5.3)

The Hall metric on Σ∗ thus induces a similar metric, thereby determining a com-
pact Hausdorff topology, on Hom(Σ∗,Σ∗). Moreover, the following equivalence

Φ(h1) = Φ(h2) ⇐⇒ h1 ∼n h2 ⇐⇒ h̃1 = h̃2 (5.4)

can easily be checked to hold:

Φ(h1) = Φ(h2)
⇐⇒ ∀χ ∈ Hom(Σ∗,M) : χ ◦ h1 = χ ◦ h2

⇐⇒ ∀w ∈ Σ∗ ∀χ ∈ Hom(Σ∗,M) : χ(h1(w)) = χ(h2(w))
⇐⇒ ∀w ∈ Σ∗ : h1(w) ∼n h2(w)
⇐⇒ h1 ∼n h2 .

90

5.4 MSO-friendliness, Closure and Decidability

Lemma 5.4.1 (Higher-Order Regularity (HOR) Lemma).
For every T = (Q,Σ, δ) with associated (M,ϕ) and for every w ∈ Σ∗, m ∈ M , and
every Θ and ϑ as above we can construct an automaton recognising LT ,w,m,ϑ.

Proof. Observe that we can write LT ,w,m,ϑ equivalently as

LT ,w,m,ϑ
def
={x ∈ Θ∗ | the state transformation induced by w in ϑ(x)−1(T) is m}
= {x ∈ Θ∗ | the state transformation induced by ϑ(x)(w) in T is m}
= {x ∈ Θ∗ | ϕ(ϑ(x)(w)) = m}
= {x ∈ Θ∗ | Φ(ϑ(x))(ϕ)(w) = m}
= {x ∈ Θ∗ | Φ(ϑ(x)) ∈ Hm,ϕ,w}
= Φ−1

ϑ (Hm,ϕ,w)

where Hm,ϕ,w = {ξ = Φ(h) ∈ H(Σ) | ξ(ϕ)(w) = ϕ(h(w)) = m}. Hence, LT ,w,m,ϑ

is recognised by the subset Hm,ϕ,w of the finite monoid H(Σ) under the morphism
Φϑ. Moreover, Hm,ϕ,w can be determined, according to (5.4), by enumerating all
∼n-classes of homomorphisms. Using the correspondence (5.3) this can be reduced
to enumerating ∼n-classes of words over Σ.

5.4.2 k-lexicographic presentations are MSO-friendly

Let a (k+1)-lex presentation d = (D, <(k+1)-llex , {Aa}a∈Σ) of w ∈ Σω in normal form
over the alphabet Γ together with the bijective coordinate function ν : D → N as well
as a homomorphism ψ ∈ Hom(Σ∗,M) into a finite monoid M be given. We associate
to d the DFA Ad =

∏
a∈Σ Aa consisting of the DTS Td = (Qd,Γ, δd) and having

initial state ~q0. Further let σd ∈ Hom(Q∗
d,Σ

∗) be such that σd(~q) = a whenever
the ath component of ~q is in a final state (in which case a is uniquely determined)

and σd(~q) = ε otherwise. Finally, we set wd =
∏<(k+1)-llex

x∈Γ∗ δ∗
d
(~q0, x) ∈ Qω

d
. Clearly,

w = σd(wd)
For every x = ⊗k+1(x

(1), . . . , x(k+1)) let x′ = ⊗k(x
(1), . . . , x(k)) be the projection

of x onto its first k splitting components, when k > 0 and let x′ = x(0) = 1|x|

when k = 0. We define D′ = {x′ | x ∈ D} as the point-wise projection of D. The
equivalence =k partitions the set D of indices into consecutive intervals. Let c(x′)
denote the interval containing x, i.e. c(x′) = {y ∈ D | y′ = x′}, and consider the
factorisation of w according to such intervals.

w =

<k-llex∏

x′∈D′

w[c(x′)]

The contraction (compare with that of [ER66]) of w wrt. d and ψ is the ω-word

cψd (w) =

<k-llex∏

x′∈D′

ψ(w[c(x′)]) ∈Mω

indexed by elements of D′ ordered according to <k-llex . We can prove that cψd (w) is
in fact automatically presentable over (D′, <k-llex).

91

5 Automatic Words – a hierarchy of higher-order morphic words

Lemma 5.4.2 (Contraction Lemma).
Let d = (D, <k+1-llex , {Aa}a∈Σ) be a (k + 1)-lex presentation with coordinate func-
tion ν of the word structure of an ω-word w ∈ Σω. Then for every finite monoid M ,
every ψ ∈ Hom(Σ∗,M) and for each m ∈M the following relations are regular.

B′
m = {(x, y) ∈ D2 | x≤k+1-llex y ∧ x =k y ∧ ψ(w[x, y]) = m}

P ′
m = {x′ ∈ D′ | ψ(w[c(x′)]) = m}

Whence, (D′, <k-llex , {P ′
m}m∈M) is a k-lexicographic presentation of cψd (w).

Proof. We are going to employ the machinery introduced in Section 5.4.1. In order
to apply the HOR Lemma first we generalise the notion of transition morphisms.
Wlog. the ordered alphabet Γ of the presentation d is [t] = 0 < 1 < . . . < t − 1.
Let Q = Qd × {l, r, b, n} (standing for left, right, both and none respectively) and
π : ((q, x) 7→ q) be the projection onto the first component. We define the mapping
β : ([t]k([t] × [t]))∗ → Hom(Q∗, Q∗) via homomorphic extension as in (5.2) while
stipulating that

βu(i,j)(q, n) = (δ∗d(q, u0), n)(δ∗d(q, u1), n) . . . (δ∗d(q, u(t− 1)), n)
βu(i,j)(q, l) = (δ∗

d
(q, ui), l)(δ∗

d
(q, u(i+ 1)), n) . . . (δ∗

d
(q, u(t− 1)), n)

βu(i,j)(q, r) = (δ∗
d
(q, u0), n) . . . (δ∗

d
(q, u(j − 1)), n)(δ∗

d
(q, uj), r)

βu(i,j)(q, b) =

ε for i > j
(δ∗

d
(q, ui), b) for i = j

(δ∗d(q, ui), l)(δ∗d(q, u(i+ 1)), n) . . . (δ∗d(q, u(j − 1)), n)(δ∗d(q, uj), r)

where u ranges over Γk and i, j < t. We regard β as a mapping from pairs of
=k-equivalent words x, y ∈ D. Indeed, each pair (x, y) of words with x′ = y′ deter-
mines a sequence u1(i1, j1) . . . un(in, jn), and vice versa, such that x(k+1) = i1 . . . in,
y(k+1) = j1 . . . jn and x′ = y′ = u1 . . . un. In accordance with (5.2) we can thus
define βx,y as the composition βun(in,jn) ◦ · · · ◦ βu1(i1,j1). We further let τu = βu(0,t−1).
Note that, for k = 0, τε is essentially the transition morphism τ associated to Td as
defined above. To allow for uniform treatment we set τ1n = τε

n when k = 0.

Claim For all k ∈ N and x, y ∈ (Γk+1)∗ such that x′ = y′ and x≤k+1-llex y:

π(βx,y(~q, b)) =
∏y

z=x δ
∗
d(~q, z)

where the concatenation product is taken over the values of z in the (k+1)-lexicographic
ordering. Consequently, when in addition x, y ∈ D then we have

σd(π(βx,y(~q0, b))) = w[x, y]
σd(π(τx′(~q0, b))) = w[c(x′)]

By the above claim we know that ψ(w[x, y]) = ψ(σd(π(βx,y(~q0, b)))) and that
ψ(w[c(x′)]) = ψ(σd(π(τx′(~q0, b)))). Recall that βx,y was defined as βun(in,jn) ◦ · · · ◦

92

5.4 MSO-friendliness, Closure and Decidability

βu1(i1,j1) for all x′ = y′ = u1 . . . un with ui ∈ [t]k and x(k+1) = i1 . . . in, y(k+1) =
j1 . . . jn. Similarly, τx′ = τun

◦ · · · ◦ τu1 . The results are established by applying the
HOR Lemma with ϕ = ψ ◦σd◦π and Θ = [t]k([t]× [t]), ϑx⊗y = βx,y in the first case,
respectively with Θ = [t]k, ϑx′ = τx′ in the second case.

In particular, the contraction of a morphic word wrt. any given lexicographic
presentation and any given morphism into a finite monoid is an ultimately periodic
sequence. This is already sufficient to yield MSO decidability of morphic words,
and is essentially the proof given in [CT02]. Obviously, by iterating this contraction
process starting from any given k-lex presentation of an ω-word we arrive after (at
most) k contractions, at an ultimately periodic sequence. It is now easy to use this
fact to prove MSO decidability of k-lexicographic words. However, we aim for the
stronger result of MSO-friendliness.

Theorem 5.4.3 (MSO-friendliness of k-lex presentations).
All k-lexicographic presentations are MSO-friendly.

Proof. The proof is by induction on k, the base case being clear. For the induction
step, we consider a k+1-lex presentation. Observe that if two k+1-lex presentations
of the same ω-word are equivalent, then one is MSO-friendly iff the other one is.
Therefore, by the Normal Form Lemma 5.3.5, it is sufficient to provide a proof for k+
1-lex presentations in normal form. So let d = (D, <k+1-llex , {Pa}a∈Σ) be a k+ 1-lex
presentation in normal form of an ω-word w ∈ Σω. Let a morphism ψ ∈ Hom(Σ∗,M)
into a finite monoid M be given. We need to construct automata deciding, given
words x, y ∈ D with x≤k+1-llex y, whether ψ(w[x, y]) = m. There are two cases. If
x′ = y′ then we simply verify (x, y) ∈ B′

m as in the Contraction Lemma. When
on the other hand x′<k-llex y

′ then we partition the interval x≤k+1-llex z≤k+1-llex y
into three segments according to whether x′ = z′, x′<k-llex z

′<k-llex y
′ or z′ = y′, i.e.

consider the factors w[x, x̂], w[{z ∈ D | x′<k-llex z
′<k-llex y

′}] and w[ŷ, y], where x̂
is the greatest element of c(x′) with respect to <k+1-llex and similarly ŷ is the least
element of c(y′). Note that both x̂ and ŷ are first-order definable, hence automaton
computable from x, respectively from y. We can therefore compute ψ(w[x, x̂]) as
well as ψ(w[ŷ, y]) by an automaton simultaneously verifying B′

m for both pairs (x, x̂)
and (ŷ, y) for all m ∈ M .

It remains to show that the value of the central segment is also automaton com-
putable. By the Contraction Lemma we know that d′ = (D′, <k-llex , {P ′

m}m∈M)
is a k-lex presentation of cψd (w). Thus, by the induction hypothesis, d′ is MSO-
friendly. We use this fact to compute the value of the central segment. To this
end, we employ the multiplier morphism µM ∈ Hom(M∗,M) defined by stipulating
that µM(m) = m for all m ∈ M . Let ν ′ denote the co-ordinate mapping associated
to d′. By definition of a contraction ψ(w[ν(c(z′))]) = cψd (w)[ν ′(z′)], therefore the
value of the central segment ψ(w[{z ∈ D | x′<k-llex z

′<k-llex y
′}]) can be written as

µM(cψd (w)(x′, y′)), which is by MSO-friendliness of d′ automaton computable.

93

5 Automatic Words – a hierarchy of higher-order morphic words

Corollary 5.4.4 (MSO decidability).
The MSO-theory of the word structure Ww associated to a k-lex word w ∈ W is
decidable.

MSO interpretations are usually understood to be one-dimensional. We use the
notation ≤I

mdMSO to stress that I might be multi-dimensional. Further, we say that
a tuple (ϕ(x), {ϕb(x)}b∈Γ) of MSO formulae, together with the formula ϕ<(x, y) =
x < y, form a restricted MSO interpretation I (the restriction being that I can only
redefine the colouring, but not <) of a finite or infinite word structure Ww′ ≤I

rMSO

Ww. From Theorem 5.4.3 and Theorem 3.1.3 we conclude the next corollaries.

Corollary 5.4.5 (Closure under MSO-interpretations).
Let w be a k-lexicographic word. For every structure A and word w′ we have

1. A ≤mdMSO Ww =⇒ A is automatic,

2. Ww′ ≤rMSO Ww =⇒ Ww′ is k-lexicographic.

Corollary 5.4.6 (Closure under DGSM mappings).
For each k ∈ N the class Wk is closed under deterministic generalised sequential
mappings.

Proof. Every deterministic sequential transduction S(w) of a word w can be obtained
by a homomorphic mapping of the run of S × B1

Σ over w, where B1
Σ is the De

Bruin transition system with memory of the single last symbol of Σ read. The
homomorphism is just the output function of the sequential transducer S. The run
of S on w is of course rMSO interpretable in Ww, is thus in Wk, and closure under
homomorphic mappings holds by Proposition 5.3.4.

As an example of what can be interpreted in a word consider the following.

Theorem 5.4.7 (Automatic equivalence structures). Consider A = (A,E) with E
an equivalence relation on a countably infinite set A having only finite equivalence
classes. Assume further that for each n there are f(n) ∈ N many equivalence classes
of size n.
Then A ∈ AutStr if and only if there is a 2-lex word w = 0m010m110m21 . . . such
that f(n) = |{i | mi = n}|, in which case A ≤I

FO Ww for a fixed one-dimensional
FO-interpretation I, also implying that ThMSO(A) is decidable.

Proof. For the “if” direction, the interpretation in question is I = (ϕA(x), ϕE(x, y))
with ϕA(x) = P0(x) and ϕE(x, y) = ϕA(x) ∧ ϕA(y) ∧ ∀z(x < z < y ∨ y < z < x →
P0(z)). It is now easy to check that I(Ww) is indeed isomorphic to A and is thus,
by Theorem 3.1.3 or by Corollary 5.4.5, automatic.

94

5.5 Hierarchy Theorem

For the “only if” direction we construct, given an a.p. (LA, LE) of A, an a.p. of
a binary word with the claimed property. First observe that since all equivalence
classes of A are finite, there is a constant C such that for all x, y ∈ LA with (x, y) ∈
LE ||x| − |y|| < C. We can therefore easily construct by padding an equivalent
presentation of A in which |x| = |y| holds for all x,y representing equivalent elements.
We shall now assume this holds. Let Γ be the alphabet of the presentation of A.
Wlog. Γ = {0, . . . , s − 1}. The alphabet of the presentation of w will be Γ′ =
{0, . . . , s − 1, s} ordered naturally. We set P0 = {⊗2(x, y) | (x, y) ∈ LE ∧ ∀(x, z) ∈
LE x ≤lex z}, P1 = {⊗2(x, s|x|) | ∀(x, z) ∈ LE x <lex z}, and D = P0 ∪ P1. It is now
clear that (D, <2-llex , P0, P1) is an a.p. as promised.

5.5 Hierarchy Theorem

It is readily seen, that Wk is included in Wk+1 for each k. Next we show that each
Wk is properly included in the next one by exhibiting ω-words sk+1 ∈ Wk+1 \ Wk.
We call the sk stuttering words. Each sk is a word over the (k + 1)-letter alphabet
{a0, . . . , ak} and is defined as the infinite concatenation product sk =

∏∞
n=0 sk,n,

where s0,n = a0 and sk+1,n = (sk,n)2n

ak+1 for every k and n. That is

sk =

∞∏

n=0

(· · · (((a2n

0)a1)
2n

) · · ·)2n

ak .

To give an illustration, we write for convenience a, b, c, d . . . instead of a0, a1, a2, a3 . . .
for small k. The first few stuttering words are

s0 = aω

s1 = abaabaaaaba8ba16b . . .
s2 = abcaabaabc(aaaab)4c(a8b)8c . . .
s3 = abcd(aabaabc)2d((aaaab)4c)4d((a8b)8c)8d . . .

...

We remark, that s2 is not a fixed point of any iterated DGSM mapping [AG89].

Theorem 5.5.1 (Hierarchy Theorem).
For each k ∈ N we have sk+1 ∈ Wk+1 \Wk.

Proof. We leave it to the reader to give a k-lex presentation of sk for every k.
To show that sk+1 6∈ Wk we argue indirectly as follows. Assume that there is a k-lex
presentation (D, <k-llex , {Pai

}i≤k+1) of sk+1, and assume it to be in normal form, i.e.
D ⊆ ({0, 1}k)∗. Consider for each i ≤ k+1 the (regular) relations Si(x, y) consisting
of pairs of consecutive words x, y ∈ Pai

, i.e. such that there are no occurrences of
ai on intermediate positions. Let automata be given for D,Pai

, and Si for every
i ≤ k+ 1 and let C be greater than the maximum of the number of states of any of

95

5 Automatic Words – a hierarchy of higher-order morphic words

these automata.

Claim 1. Let x represent the position of the nth occurrence of ak+1 in sk+1. Then
(k + 1)n < |x| ≤ Cn, i.e. |x| = Θ(n), and hence n = Θ(|x|).
The upper bound |x| ≤ Cn is clear, and (k + 1)n ≤ |x| follows from that there are
more than 2(k+1)n symbols preceding the nth ak+1 in sk+1.

Claim 2. For every i = 1, . . . , k there is a ti such that for all N ∈ N there are
x = ⊗k(x

(1), . . . , x(k)), and y = ⊗k(y
(1), . . . , y(k)) with |x| = |y| > N and such that

Si(x, y) and x ∼k−i y (i.e. x(j) = y(j) for all j ≤ k− i) and that x(k−i+1) and y(k−i+1)

differ only on their last ti bits.
For i = 1 we immediately get a contradiction since between consecutive a1’s repre-
sented by words x and y of length > N there are 2Ω(N) many a0’s but by Claim 2
there are only 2t1 words between x and y in the k-lexicographic ordering.
Proof of Claim 2. We start with i = k and proceed inductively in descending order.
Values of the ti will be implicitly given during the proof.

From Claim 1 we know that |v| < |u| + C for every Sk+1(u, v), and that if u
represents the position of the nth ak+1 then n = Θ(|u|). Then there are 2n many
ak’s distributed evenly between u and v, therefore there must be some |u| ≤ l ≤ |v|
such that there are still at least 2n/C many u<k-llex x<k-llex v, |x| = l, and x ∈ Pak

.
When n > ClogC then 2n/C > 2C , so we have more than 2C many |x| = l, and
x ∈ Pak

.

We claim that there are x = ⊗k(x
(1), . . . , x(k)) and y = ⊗k(y

(1), . . . , y(k)) such that
Sk(x, y) and x(1) and y(1) agree on their first C symbols. In deed, the first C symbols
of the 1st component can be incremented at most 2C times and by the choice of n
and l there are more than 2C occurrences of ak on length l.

Let now tk = l − C. By pumping into the initial segment of length kC of the
pair (x, y) (note that this involves the first C symbols of each component) we obtain
arbitrary long x′, y′ with Sk(x

′, y′) whose 1st components only differ on their last ti
bits. Thus we have established the case i = k.

To advance from i+1 to i we do the same as above. By the induction hypothesis we
have for arbitrary large n two words u = ⊗k(u

(1), . . . , u(k)) and v = ⊗k(v
(1), . . . , v(k))

both of length n such that Si+1(u, v) and having u(j) = v(j) for all j < k − i and
u(k−i) and v(k−i) differing only on their last ti+1 bits. By Claim 1 there are 2Θ(n)

occurrences of ai in between these two positions. On the other hand the remaining
last ti bits of the (k−i)th components together with the first C bits of the (k−i+1)th

components only allow for 2C+ti possibilities. Hence for large enough n we must
have two consecutive ai’s on positions represented by x and y agreeing on their first
(k−i) components and on the first C bits of their (k−i+1)th components. Thus, by
pumping into the initial segment of length kC of the pair (x, y) we obtain arbitrary
long x′, y′ fulfilling the conditions of Claim 2 for i.

96

5.6 k-morphic words

a b b a b a

Figure 5.1: k-Stacks as depth k trees of unbounded branching.

5.6 k-morphic words

Let Γ be a finite, non-empty stack alphabet. A (level 1) stack is a finite sequence
of symbols of Γ, and level k+ 1 stacks are sequences of level k stacks. Additionally,
we shall call individual symbols of Γ level 0 stacks. Formally

Stack
(0)
Γ = Γ

Stack
(k+1)
Γ = [(Stack

(k)
Γ)∗]

where ‘[’ and ‘]’ are used to identify the boundaries of lower-level stacks within
higher-level ones. Outer most brackets will most often be omitted.

Level k stacks can be viewed as trees of height k having an unbounded number
of ordered branches and leaves labelled by elements of Γ. See Figure 5.1 for an
illustration. Each leaf, i.e. each level 0 element stored in a k-stack γ can be accessed
by a vector of k indices (i0, . . . , ik−1) leading to it. We denote the sequence of
“leaves” of a k + 1-stack γ, taken in the natural ordering, by leaves(γ). In other
words, leaves(γ) is obtained from γ by forgetting the brackets.

The concatenation of two (k + 1)-stacks γ(k+1) = [γ
(k)
1 . . . γ

(k)
s] and ξ(k+1) =

[ξ
(k)
1 . . . ξ

(k)
t] is the (k + 1)-stack γ(k+1) · ξ(k+1) = [γ

(k)
1 . . . γ

(k)
s ξ

(k)
1 . . . ξ

(k)
t]. Con-

catenation can also be regarded as operations on trees. For k > 0 every k-stack
γ(k) = [γ

(k−1)
0 . . . γ

(k−1)
s−1] can be written as the concatenation product

∏s−1
i=0 [γ

(k−1)
i]

and by propagating through all dimensions as

γ(k) =
∏

i0

[∏

i1

[
· · ·
∏

ik−1

[
γ

(0)
(i0,...,ik−1)

]
· · ·
]]

(5.5)

where the index vector (i0, . . . , ik−1) runs through all allowed tuples (all branches of
length k) in a k-lexicographic fashion.

Definition 5.6.1 (Morphisms of k-stacks). Morphisms of k-stacks over Γ are just

k-stacks of actions of Γ. That is, Hom
(k)
Γ = Stack

(k)
Γ→Γ, i.e. Hom

(0)
Γ = Γ → Γ and

Hom
(k+1)
Γ = [(Hom

(k)
Γ)∗]. Application is defined inductively as follows.

• ϕ(0)(γ(0)) is as given

• for ϕ(k+1) = [ϕ
(k)
1 . . . ϕ

(k)
s] ∈ Hom

(k+1)
Γ and γ(k+1) = [γ

(k)
1 . . . γ

(k)
t] ∈ Stack

(k+1)
Γ

ϕ(k+1)(γ(k+1)) = [ϕ
(k)
1 (γ

(k)
1) . . . ϕ

(k)
s (γ

(k)
1) · · ·ϕ(k)

1 (γ
(k)
t) . . . ϕ

(k)
s (γ

(k)
t)] ∈ Stack

(k+1)
Γ

Having defined morphisms of k stacks we can make use of them to generate infinite
k-stacks, and by collecting leaves, infinite words in the very same way as morphisms
are used to generate morphic words. We baptise the infinite words thus obtained as
k-morphic.

97

5 Automatic Words – a hierarchy of higher-order morphic words

ϕ
7→ 0 # 1 # ϕ

7→ 0 � 0 # 0 � 1 # 1 � 0 # 1 � 1 # ϕ
7→ · · ·

Figure 5.2: Iteratively applying ϕ = [τσ] of Example 5.6.3 to γ = [[#]].

Definition 5.6.2 (k-morphic words).
Let k ∈ N. An infinite word w ∈ Σω is k-morphic if there is a finite alphabet Γ,
an initial k-stack γ(k) = [· · · [γ(0)

0] · · ·] ∈ Stack
(k)
Γ , a k-morphism ϕ(k) ∈ Hom

(k)
Γ and a

terminal homomorphism h : Γ∗ → Σ∗ such that

w = h

(
∞∏

n=0

leaves(ϕn(γ))

)
.

Note that our morphisms are uniform, e.g. Hom
(1)
Γ consists of the uniform homo-

morphisms of Γ∗. Please note that our definition is admittedly not streamlined for
hands-on manipulation but much rather to be amenable to compact proofs. For a
more “user-friendly” notation see the remarks at the end of this section. To illus-
trate the workings of morphisms of higher-level stacks consider the following level 2
example generating the binary Champernowne (cf. Example 5.3.3) word.

Example 5.6.3. Consider the initial 2-stack γ = [[#]] and the level 2 morphism
ϕ = [τσ] containing τ = [τ0τ1] and σ = [σ0σ1] with

τ :

∣∣∣∣∣∣

τ0 τ1
0 7→ 0 �

1 7→ 1 �

7→ 0
� 7→ � �

σ :

∣∣∣∣∣∣

σ0 σ1

0 7→ 0 �

1 7→ 1 �

7→ 1
� 7→ � �

.

Note that τ is just a complicated way of writing the morphism (0 7→ 0, 1 7→ 1,# 7→
0#) in our framework as a sequence of 0-morphisms. Padding is needed to compen-
sate for the inherent uniformity in our definition.

The stacks obtained in the first few iterations of ϕ on γ are depicted as trees in
Figure 5.2. Let further h be the morphism erasing �’s and #’s. Then the 2-morphic
word generated by ϕ on γ and filtered by h, is indeed the binary Champernowne
word

0 1 00 01 10 11 000 001 010 011 100 101 110 111 . . .

Clearly, an infinite word is 0-morphic iff it is ultimately periodic, and 1-morphic iff
it is morphic in the customary sense despite the uniformity restriction on ϕ, which
can be made up for by the choice of h. The next Lemma generalises (5.1).

Lemma 5.6.4 (Iteration Lemma). Consider a k-stack γ = [· · · [γ0] · · ·] ∈ Stack
(k)
Γ

and a morphism ϕ = ϕ(k) =
∏

j0

[∏
j1

[
· · ·
∏

jk−1

[
ϕ

(0)
j0...jk−1

]
· · ·
]]

∈ Hom
(k)
Γ . Let B

98

5.7 Equivalent characterisations

be the set of those words w = j0 . . . jk−1 of length k corresponding to branches of the

tree associated to ϕ, and let ϕ
(0)
u = ϕ

(0)
wn◦· · ·◦ϕ

(0)
w1 for all words u = w1w2 · · ·wn ∈ B∗.

Then, applying ϕ n times to γ yields

ϕn(γ) =
∏

u(1)

[∏

u(2)

[
· · ·
∏

u(k)

[

︸ ︷︷ ︸
ϕ

(0)
u (γ0)

]
· · ·
]]

.

u=⊗k(u(1),...,u(k))∈Bn

5.7 Equivalent characterisations

Consider a regular well-ordering ≺ of finite binary words and let u0 ≺ u1 ≺ u2 ≺ . . .
be the sequence of words in this ordering. We define the infinite word w≺ ∈
{0, 1,#}ω as the concatenation of the ui in ascending order separated by # symbols:
w≺ = u0#u1#u2# · · · . Let wk−llex be the word thus associated to <k-llex (restricted
to words of length divisible by k). For instance,

w1−llex = #0#1#00#01#10#11#000#001#010#011#100# . . .
w2−llex = #00#01#10#11#0000#0001#0100#0101#0010#0011#0110#0111 . . .

Further, let w0−llex = #0#00#000# It is easy to see that wk−llex ∈ Wk+1 for
all k ∈ N. We say that a sequential transducer S with input alphabet {0, 1,#}
and output alphabet Σ is #-driven if it is deterministic and in each transition S
produces either no output (i.e. the empty string ε) or a single letter output a ∈ Σ,
but this only on reading a # on the input tape.

Theorem 5.7.1 (Equivalent Characterisations). Let Σ be a finite alphabet. For
every k ∈ N and every ω-word w ∈ Σω the following are equivalent.

(1) w is k-morphic

(2) w is k-lexicographic

(3) w = S(wk−llex) for some #-driven sequential transduction S

(4) Ww ≤I
rMSO Wwk-llex

for an I = (ϕD, <, {ϕa}a∈Σ) s.t. |= ∀x(ϕD(x) → P#(x))

Moreover, there are effective translations among these representations.

Proof.

(1)⇒(2):(For k > 0.) Let w = h (
∏∞

n=0 leaves(ϕn(γ))) with γ = [· · · [γ0] · · ·], ϕ and
h as in the definition of k-morphic words. Consider the tree structure of ϕ, let l
be the maximum of the number of children of any of the nodes, and let B ⊆ [l]k

be the set of labels of ordered branches from the root to a leaf, using the natural
ordering on [l]. We define the index transition system of ϕ as Iϕ = (Γ, [l]k, δ) with

δ(g, w) = ϕ
(0)
w (g) for each g ∈ Γ and w ∈ B and δ(g, w) undefined otherwise. Note

99

5 Automatic Words – a hierarchy of higher-order morphic words

that for uniform morphism of words this definition is identical to that used in the
proof of Proposition 5.1.4. By the Iteration Lemma

leaves(ϕn(γ)) =

<k-llex∏

u∈Bn

ϕ(0)
u (γ0)

and, since for each g ∈ Γ the set Pg = {u ∈ B∗ | ϕ(0)
u (γ0) = g} is obviously

accepted by Iϕ with initial state γ0 and single final state g, we can conclude that
(B∗, <k-llex , {Pg}g∈Γ) is a k-lex presentation (in normal form) of ŵ =

∏∞
n=0 leaves(ϕn(γ)) ∈

Γω. By Proposition 5.3.4, w = h(ŵ) is also k-lex.

(2)⇒(1): (For k > 0.) By the Normal Form Lemma w has a k-lex presentation
(D, <k-llex , {Pa}a∈Σ) in normal form over {0, 1}, i.e. with D and each Pa being a
regular subset of ({0, 1}k)∗. Recall Ad, T d, σd, etc. from Section 5.4. To provide a
proof, we only need to adapt the notion of transition morphism to one over k-stacks.
The stack alphabet will, of course, be Γ = Qd. We define for each l ≤ k and for
every u ∈ {0, 1}k−l a morphism τ

(l)
u ∈ Hom

(l)
Γ recursively by setting τ

(l+1)
u = [τ

(l)
u0 τ

(l)
u1]

for each u of length k − l − 1, l < k, and by setting τ
(0)
u (~q) = δ∗

d
(~q, u) for every

u ∈ {0, 1}k. Finally, let ϕ = τ
(k)
ε =

∏1
j0=0

[∏1
j1=0

[
· · ·
∏1

jk−1=0

[
τ

(0)
j0...jk−1

]
· · ·
]]

and

γ = [..[~q0]..] ∈ Stack
(k)
Γ . Observe that the structure of ϕ is the complete binary tree

of depth k. Noting that τ
(0)
wn (. . . τ

(0)
w2 (τ

(0)
w1 (~q)) . . .) = δ∗(~q, w1w2 . . . wn) the Iteration

Lemma yields

ϕn(γ) =

1n∏

u(1)=0n

[1n∏

u(2)=0n

[
· · ·

1n∏

u(k)=0n

[
δ∗(~q0,⊗k(u

(1), . . . , u(k)))
]
· · ·
]]

and we can conclude that w = σd(
∏∞

n=0 leaves(ϕn(γ))).

(2)⇒(3): (Hint) S simulates Ad, restarting on every #.
(3)⇒(4): (Hint) The run of S is obviously restricted MSO-interpretable.
(4)⇒(2): There is a k + 1-lex presentation (d, ν) of wk-llex, similar to that given in
Example 5.3.3, such that each maximal factor u# with u ∈ {0, 1}∗ is represented on
words x ∈ D satisfying x′ = u and with the k + 1st component telling the position
within u#. Let I = (ϕD, <, {ϕa}a∈Σ) be a restricted MSO- interpretation as in
(4). By Theorem 5.2.5 each Colo-formula ϕa can be transformed into an equivalent
automaton Aa. Finally, to obtain a a k-lex presentation of I(Wwk-llex

), we construct
automata A′

a accepting those x′ such that x ∈ L(Aa).

5.8 Connection to the pushdown hierarchy

Given the fact that we have used morphisms of level k stacks to generate k-lex
words and considering the nature of our decidability proof involving “higher-order”

100

5.8 Connection to the pushdown hierarchy

automata constructions a natural question to be asked is whether there is a con-
nection to the hierarchy of graphs of higher-order pushdown automata (cf. Sec-
tion 3.5.2). In this section we demonstrate that k-morphic words are on the 2k-th
level of the pushdown hierarchy of graphs. At this point we are not able to give
lower bounds on their levels.

Note that it only makes sense to try to locate infinite words in the hierarchy of
graphs, for unless a word is ultimately periodic it is not the unfolding of anything
simpler than itself. Therefore we wish to view infinite words as graphs. To this end
we identify each infinite word a1a2a3 . . . with the edge-labelled successor graph

•
a1→•

a2→•
a3→· · · .

Without doubt, the ω-words inhabiting the first level of the pushdown hierarchy
are precisely the ultimately periodic ones. Indeed, by definition (cf. Section 3.5.2),
the first level graphs are prefix-recognisable and those among them of finite degree
are context-free (cf. Section 3.4.1) and as such, by a classical result of Muller and
Schupp [MS83, MS85], have only finitely many ends up to isomorphism. For our
word graphs this means precisely that they are ultimately periodic. The converse
containment is obvious.

On the next level, Caucal [Cau02] has shown that morphic words, in the classical
sense, are on the second level of the pushdown hierarchy. Whether they also exhaust
the second level word graphs is, to the authors knowledge, not settled, though very
plausible.

Starting with the third level, the pushdown hierarchy contains graphs of binary
words of faster than exponential growth, which can hence not be automatic as can be
verified by a standard pumping argument. An example of a fast growing sequence
that is on the third level of the pushdown hierarchy [Bra06] is the characteristic
sequence of the set of factorials, 0110001017109510 . . ., also known as the Liouville
word.

In order to place k-morphic words in the pushdown hierarchy, for each k we only
need to locate a single tree T<k-llex

, defined as follows. Let

T<k-llex
= {1n#w1#⊗2(w1, w2)# . . .#⊗k(w1, w2, . . . , wk) | ∀i = 1, .., k wi ∈ {0, 1}n}

and T<k-llex
be the tree (Pref(T<k-llex

), succ0, succ1, succ#) illustrated on Figure 5.3.
It has a single infinite branch 1ω off of which at every position 1n a finite subtree of
depth (n + 1)k is hanging, the maximal paths of which are labelled by elements of
T<k-llex

. This set was designed so that the lexicographic ordering (for # < 0 < 1) of
these paths will correspond to the <k-llex ordering of their final segment below the
last #-edge.

We claim that an infinite word is k-lex iff its word graph is MSO-interpretable as
a lexicographically ordered subset of the leaves of T<k-llex

. Relying on the Normal
Form Lemma 5.3.5 it is straightforward to give such an interpretation of a k-lex
word. We defer the proof of the converse implication to Claim 6.2.4 of the next

101

5 Automatic Words – a hierarchy of higher-order morphic words

#
#

0 1

0

#

0

0 1

1

#

1

#

0 1

0

0

0 1

0

1

0

#

0

0 1

1

0

0 1

1

1

0

#

1

0

0 1

0

0

0 1

0

1

1

#

0

0 1

1

0

0 1

1

1

1

#

1

1

#
. . .

1

1

1

Figure 5.3: The tree T<2-llex
facilitating 2-lex words.

chapter. In the special case of unary relations the claim tells us that every such
interpretation can be seen as a colouring of the leaves based on a regular condition
on the path leading to each. It is then clear that the same colouring can be achieved
by a regular condition on the path leading from the closest # to each leaf, since the
path from the root to the leaf does not contain any information that could not be
gathered from just the final segment.

Next, we show by induction that T<k-llex
∈ Graphs2k for each k > 0 implying by

our previous observation that k-morphic words are level 2k pushdown graphs.
Surely, T<1-llex

is an algebraic (level 2) tree as it is the unfolding of the graph of a
one-counter automaton. This is essentially Caucal’s argument [Cau02] showing that
morphic words are on the second level of the pushdown hierarchy.

To proceed with the induction we give MSO-interpretations I,J ,K, such that
T<k+1-llex

= K(Unfold(J (Unfold(I(T<k-llex
))))) for each k > 0. This approach

was first suggested to the author by Thomas Colcombet, the construction presented
below was conceived during discussions with Arnaud Carayol and owes a lot to his
assistance.

The first interpretation, I, preserves the original structure while also introducing
two kinds of new edges: 1) reflexive #-edges on all leaves; 2) σ̄-labelled reversals
of σ-edges, for σ = 0, 1, but only in “final segments”: between nodes which do not
have a #-edge in the subtree below them. Obviously, these definitions are MSO

expressible.
It should be clear that the unfolding of I(T<k-llex

), let us denote this tree by T ′

for now, contains all branches of the form

1n#w1# ⊗2 (w1, w2)# . . .# ⊗k (w1, w2, . . . , wk)#⊗k(w1, w2, . . . , wk)
rev

(5.6)

where w1, . . . , wk ∈ {0, 1}n, and the last segment ⊗k(. . .)
rev

denotes the reversal of
⊗k(. . .) with barred symbols. This is precisely what we have intended. However,

102

5.8 Connection to the pushdown hierarchy

.

0 1

0

0 1

1

I

unfold

J ′

.

0

0

#

0

0

1

#

1

0

1

0

#

0

1

1

#

1

1

J ′′

unfold

K

.

0 1

0

0

0 1

0

1

0

#

0

0 1

1

0

0 1

1

1

0

#

1

0

0 1

0

0

0 1

0

1

1

#

0

0 1

1

0

0 1

1

1

1

#

1

1

#

Figure 5.4: Constructing T<2-llex
from T<1-llex

: illustration on a finite subtree.

aside of these, the unfolding produces an abundance of unwanted “junk” paths
obtained by alternatingly traversing forward and backward edges and/or by passing
through a reflexive edge more than once. The interpretation J is defined in order
to achieve the following tasks.

- Restrict T ′ to nodes appearing on branches of type (5.6) above.
This is done by forbidding unintended patterns, e.g. repeated reflexive edges, etc,
as implicated above, on branches leading to a node from the root.

- Reversing the final ⊗k(w1, w2, . . . , wk)
rev

segments of branches of type (5.6).
This is a very simple operation, which can be done without producing any “junk”:
σ-labelled reversals of σ-edges are added, while σ-edges will be deleted, and those
#-edges closest to a leaf are redirected to that leaf below them.

- Making room for wk+1 on every final segment: by introducing reflexive a- and b-
labelled edges on nodes z from which the leaf below them is reachable on a #-free
path of length divisible by k.

After the second unfolding we obtain a tree T ′′ = Unfold(J (Unfold(I(T<k-llex
))))

which includes essentially T<k+1-llex
as an induced subtree (once a- and b-edges are

renamed to 0 and 1 respectively), again, together with some unwanted branches
arising from repeated traversals of reflexive a- or b-edges around the same node.
The final clean-up needed is performed by the interpretation K by first restricting
the domain to nodes reached from the root on a path avoiding immediate repetitions
of a- or b-edges and finally renaming e.g. a-labels to 0 and b’s to 1. The two-step
construction is illustrated on Figure 5.4. 1 Thus we have established

Theorem 5.8.1. For every k the word structure of every k-morphic word is on the
2k-th level of the pushdown hierarchy: Wk ⊂ Graphs2k.

1Note that for the sake of a simpler illustration we decomposed J into two interpretations: J ′

purging unwanted branches produced by the previous unfolding and J ′′ preparing ground for
the second unfolding by the introduction of reverse edges and loops.

103

5 Automatic Words – a hierarchy of higher-order morphic words

5.9 Remarks and questions

In this section we hint at some possible further generalisations of the results achieved
in this chapter and raise a handful of related questions.

Variations on k-lex

Although it is unclear whether and how the results concerning MSO-friendliness,
MSO-decidability, and -definability, as well as the embedding into the pushdown
hierarchy of k-lex words carry over to all automatic presentations of ω-words, the
stage is set for a simple generalisation.

To every finite word α over {l, r} we associate a family of orderings, commonly
denoted <α, over all ordered alphabets Σ = {a0 < a1 < . . . < an}. In order to
define <α we introduce the notation ul and ur for every finite word u to stand for u,
respectively, for the reversal of u, urev. Given an ordered alphabet Σ, and α ∈ {l, r}k

let

u <α v
def
⇐⇒ |u| < |v| ∨ ∃i < k : u =i v ∧ u

αi+1 <lex v
αi+1 .

Thus, <α generalises <k-llex in that those components with an r in the respective
position in α are compared not lexicographically but rather in reverse lexicographic
order. The length comparison still remains prevailing to yield order type ω. Based
on the given definition of α-lexicographic ordering we can introduce the following
generalisation of k-lex presentations.

Definition 5.9.1 (α-lexicographic words).
Let α ∈ {l, r}k be given. An ω-word w ∈ Σω is α-lexicographic (short: α-lex) if
there is an automatic presentation (D,<α, {Pa}a∈Σ) of the associated word structure
Ww. For each α, the class of α-lexicographic words is denoted Wα, and we also let
W∗ =

⋃
αWα.

The classes Wα form an infinite and possibly richer hierarchy as the classes of
k-lex words. Let l = r and r = l and further extended to {l, r}-sequences. Clearly,
Wα = Wα for each α since reversal of numerals assigned by the naming function in
an α-lex presentation results in an α-lex presentation. Notice that the proof of the
Hierarchy Theorem can be adapted to show that the (k+ 1)-st stuttering word sk+1

is not α-lex presentable for any α ∈ {l, r}≤k. Also, if α is a proper subword (not
necessarily a factor) of α′ then Wα (W ′

α, where proper inclusion follows from the
previous remark. But this is as far as such simple observations will lead us. A full
comparison of the Wα classes and a clear picture of the hierarchy remains open. It
is for instance unclear how Wlr and Wll are related.

We claim without giving a thorough proof that all α-lex presentations are MSO-
friendly. This can be checked by adapting the proof of the Contraction Lemma
heavily used in the inductive step in the proof of Theorem 5.4.3. One can argue that
if the last symbol of α is l, i.e. if the last components are lexicographically ordered,
then the proof goes through without any necessary adjustments. Furthermore, the

104

5.9 Remarks and questions

Contraction Lemma is invariant under reversal of all numerals of a presentation.
Therefore, the Lemma holds for α iff it also holds for α, and obviously one of them
ends with l. Thus, the MSO-decidability and -definability results extend to all α-lex
words.

The embedding into the pushdown hierarchy is equally simple to adapt to α-lex
words. Assuming the Normal Form Lemma, we can associate to each α the tree Tα

to be constructed inside the pushdown hierarchy. Note, however, that we know of
no better way of defining Tαr then via a construction from Tαl involving unfolding.
Also note that a single unfolding and MSO-interpretations suffice to build Tαl from
Tα. For instance, Trl ∈ T rees3.

Instead of dwelling on the technicalities of these constructions we would be eager
to find the answer to the following more pressing questions. We conjecture that the
answer to each of them is affirmative.

Question 5.9.2.

(1) Is every automatic presentation of an ω-word MSO-friendly?

(2) Is every automatic ω-word constructible in the pushdown hierarchy?

(3) Is every aut. pres. of an ω-word equivalent to an α-lex presentation?

Also note that we have thus far not found an equivalent way of generating those
α-lex words with entangled l and r components as we have done with k-lex words.
An effort would be worthwhile with the aim of finding a system of morphisms or the
like generating all automatic words.

On uniformity of level k morphisms

Let us point out, that in the proof of (2)⇒(1) of Theorem 5.7.1 we made use of
the Normal Form Lemma 5.3.5 to first uniformise the k-lexicographic presentation
in preparation for turning it into a k-morphism generating the same word. This
step was necessary due to the above hinted uniformity of our morphisms. Thus,
Lemma 5.3.5 shows that this uniformity is really no restriction in terms of generating
power as long as we allow ourselves to apply an arbitrary homomorphism h in the
final step.

Nevertheless a formalism allowing description of non-uniform morphisms of higher
levels would be of interest. To facilitate non-uniformity one can consider, for in-
stance, tagged k-stacks instead of k-stacks and a kind of deterministic k-level in-
dexed grammars... We shall not pursue formally defining these systems here but we
give an illustrative example of what is meant.

Consider the level two rules

S 7→ SA0

Aα 7→ Aτ(α)Bσ(α)

Bβ 7→ Aγ(β)

105

5 Automatic Words – a hierarchy of higher-order morphic words

where τ, σ, γ are level one rules, i.e. morphisms on words, e.g. τ : 0 7→ 00, 1 7→ 11,
σ : 0 7→ 1, 1 7→ 0, and γ : 0 7→ 0, 1 7→ 10. Then the first few derivations of S are

S 7→ SA0 7→ SA0A00B1 7→ SA0A00B1A0000B11A10 7→ · · ·

producing the word 000100001110
It should be clear that the transformation from Theorem 5.7.1 of morphisms of

k-stacks into k-lex presentations applies, with minor adjustments to these kinds of
rules as well. In the above example, the first component in the 2-lex presentation
would be a Fibonacci numeral corresponding to the derivation in the 2nd level rule
A 7→ AB,B 7→ A while the second component of the presentation would follow the
derivation in the lower level rules.

Our definition of morphisms of k-stacks not only resembles that of morphisms of
k-dimensional “pictures” (cf. [Mae99]), but is essentially identical with that up to
a natural coding. Indeed, k-dimensional pictures are k-stacks satisfying the unifor-
mity condition that every level l + 1 sub-stack consists of exactly the same number
nl+1 of l-stacks, where (n1, . . . , nk) are the dimensions of the picture. Due to their
above mentioned uniformity our morphisms preserve uniformity of stacks. Hence,
morphisms of k-stacks and morphisms of k-dimensional pictures are easily seen to
be one and the same, up to this coding. However, while in [Mae99] morphisms
of pictures were used to define relations of higher arity, we keep a linear structure
that is not definable using the relations generated by associated morphisms using
component-wise ordering.

Finite factors and combinatorics

Note that by Theorem 5.4.7 the (multi)sets of factors al of maximum sequences of
consecutive a’s of k-morphic words (or even automatic words for that) are already
realised by 2-morphic words. Is this also true for sets of arbitrary finite factors?

We have seen that the Champernowne word having all finite words as factors,
hence an exponential subword complexity, is 2-morphic. This is in contrast to the
O(n2) bound on the subword complexity of morphic words [AS03]. Analysing ω-
regular sets using methods from descriptive set theory Staiger points out a key
property of ω-words having maximal subword complexity, called rich in [Sta97]. We
also note that the first-order theory of every rich ω-word is non-elementary, for it
can interpret the finite satisfiability problem of FO on word structures.

We have mentioned that the Thue-Morse sequence of Example 5.1.2 has the uni-
form recurrence property. This means that every finite factor occurs infinitely of-
ten and that distances between consecutive occurrences of a factor of length n are
bounded by some c(n). In general we can only say, that in every automatic word
the distances between consecutive occurrences of a given factor can not grow faster
than exponentially.

106

5.9 Remarks and questions

We believe that these observations motivate a more thorough combinatorial anal-
ysis of higher-order morphic words.

Further questions

Interesting and difficult questions not considered here concern deciding the exact
level of a given infinite word in our hierarchy, and deciding isomorphism of words
on each level. Both of these problems have long been open for morphic words, that
is for level one, having known solutions in very special cases only (see for instance
[HR04] and the references therein).

Question 5.9.3.

(1) Is isomorphism of k-lexicographic words decidable?
(2) Let k > k′. Is it decidable whether a k-lex word is k′-lexicographic?

In particular, is eventual periodicity of k-lex words decidable?

107

5 Automatic Words – a hierarchy of higher-order morphic words

108

6 Regularity Preserving
Transductions

When we think of an automatic structure, we frequently have a particular natural
or canonical presentation in mind (for instance when the structure is defined over
words to start with) or a typical presentation (e.g. the base k numeration system
for Presburger arithmetic) if there is no apparent canonical one. That is to say we
fix a, wlog. injective, presentation associated to a naming function f for each A ∈
AutStr. Every other (injective) presentation of A can then be seen as a (functional)
transduction from the domain of the fixed presentation into a free monoid over a
finite alphabet satisfying the constraint that the relations of A have to remain regular
after the transformation.

Often we have some additional constraints such as that some regular relations
should be mapped to non-regular ones, while other non-regular relations should be
transformed into regular ones. This is the case for instance when we wish to show
that a certain relation is not intrinsically regular (cf. Chapter 7) with respect to a
structure, or when we seek an automatic presentation of an expansion of A.

Working with injective presentations means that the transductions we are pri-
marily interested in are bijective. Hence the notion of a translation as a bijection
between regular sets (cf. Definition 4.2.2). Note that if f and g are injective naming
functions corresponding to two automatic presentations of A then t = g−1 ◦ f is
a translation of names of elements of A from one presentation into the other. A
translation obtained this way preserves, by virtue of the presentations, regularity of
(presentations of) all those sets and relations FO-definable in A. This motivates our
interest in regularity preserving transductions.

Starting simple, in Section 4.2 we have shown that a translation preserves reg-
ularity and non-regularity of all relations iff it is computed by a semi-synchronous
rational transducer. This provided us a particularly useful characterisation of equiv-
alence of automatic presentations of arbitrary structures equally suited for the anal-
ysis of presentations of certain complete automatic structures. However, in every
other case we are interested in more liberal transformations of presentations.

Following [PS05] we say that a transduction τ : M → N between monoids M and
N is continuous if τ−1 preserves recognisability of sets, i.e. if for every recognisable
R ⊆ N , τ−1(R) is recognisable. Note that both τ and τ−1 being continuous does not
imply that they are semi-synchronous. For instance, τ mapping 0n to 02n for all n
while acting identically on all other words is continuous in both directions, however,
not semi-synchronous.

109

6 Regularity Preserving Transductions

6.1 MSO-definable string transductions

A transduction T : Σ∗ → P(Γ∗) is said to be MSO-definable if it is determined by
an MSO-transduction T transforming word structures into word structures. We will
only consider deterministic (i.e. parameterless) transductions, denoted DMSO, as
we have defined them in Section 2.6.1.

Every DGSM mapping is MSO-definable, but the converse does not hold. The
transduction w 7→ ww is an MSO-transduction, however, not computable by any
DGSM. This example is obviously computable by a 2DGSM: a DGSM with a two-
way read-only input tape and a one-way output tape. It is easy to see that 2DGSM
mappings are MSO-definable string transductions. In [EH99, EH01] it is shown that
DMSO string transductions are precisely those computable by 2DGSM’s.

MSO-definable string transductions are closed under composition, they are contin-
uous, though their inverses are generally not as witnessed by the mapping w 7→ ww.
Interestingly, it is decidable whether two 2DGSM’s realise the same mapping (cf.
[EH01].)

Recall our construction of Section 5.8 showing that k-lex words are on the 2k-
th level of the pushdown hierarchy. There we argued that k-lex words are MSO-
definable in the tree T<k-llex

∈ T rees2k (see Figure 5.3) whose set of leaves is

T<k-llex
= {1n#w1# ⊗2 (w1, w2)# . . .# ⊗k (w1, w2, . . . , wk) | ∀i ≤ k wi ∈ {0, 1}n}

To look at this embedding from a different perspective consider the transduction
τ<k-llex

mapping

w 7→ 1|w(1)|#w(1)# ⊗2 (w(1), w(2))# . . .# ⊗k (w(1), w(2), . . . , w(k)) (6.1)

where (w(1), w(2), . . . , w(k)) is the k-split of w as defined in Section 5.3. τ<k-llex
is

the mapping that embeds k-lexicographic presentations into the tree T<k-llex
by

associating to every numeral the corresponding leaf of the tree.
It is a simple observation that τ<k-llex

is realised by a 2DGSM. As such it is
continuous, i.e. τ−1

<k-llex
(L) = {w | τ<k-llex

(w) ∈ L} is regular whenever L is.
Most importantly, τ<k-llex

transforms the k-length-lexicographic ordering into the
lexicographic ordering, which is prefix-recognisable. It does this at the expense of
appending redundant information to numerals of the presentation, thereby making
the domain non-regular (but recognisable by a deterministic higher-order pushdown
automaton (DHOPA) of level 2k).

6.2 Translations mapping prefix-recognisable relations

to regular ones

Let us fix a finite alphabet Σ for the rest of this section. Investigating possi-
ble enhancements of database query languages with string manipulating capability

110

6.2 Translations mapping prefix-recognisable relations to regular ones

Benedikt et al. have analysed subsystems of SΣ from a model theoretic perspective
[BLSS01, BLSS03]. One structure considered by Benedikt et al. is

SReg(Σ) = (Σ∗, {succa}a∈Σ,�, {PL}L∈Reg)

where the relations PL are defined as {(x, y) | ∃z(y = xz∧z ∈ L)}. The expansion of
SReg(Σ) with the greatest common prefix relation ⊓ and the constant ε for the empty
word allows quantifier elimination. This follows for instance from the following
characterisation.

Proposition 6.2.1 (Läuchli and Savioz [LS87], see also [BLSS03]). The prefix-
recognisable relations over the alphabet Σ are precisely those FO-definable in SReg(Σ).

The strongest characterisation of prefix-recognisable relations in terms of logic is
Theorem 3.4.3 (7) stating that prefix-recognisable relations are, up to isomorphism,
FO-interpretable (in one-dimension) in ∆2. However, ∆2 does not allow a direct FO-
definition of all PR relations, but typically some coding is necessary (cf. [Col07a,
Lemma 5]). To overcome this we consider the structures

S0
Reg(Σ) = (Σ∗, {succa}a∈Σ,�, {L}L∈Reg)

where each regular language L is identified with the unary predicate for membership
in L. As a direct consequence of Theorem 3.4.4 we obtain the following strengthening
of Proposition 6.2.1

Lemma 6.2.2. The prefix-recognisable relations over the alphabet Σ are precisely
those FO-definable over S0

Reg(Σ)

Proof.
From Theorem 3.4.3 and a successive remark concerning item (3) we know that every
prefix-recognisable relation R over Σ is directly MSO-definable in (Σ∗, {succa}a∈Σ).

LetR be a relation defined by an MSO-formula φ(~x) in the tree (Σ∗,�, {succa}a∈Γ).
According to Theorem 3.4.4 this definition decomposes into an MSO-marking M
and an FO-interpretation J (which uses the prefix order � on the tree structure).
Inspecting the proof of Theorem 3.4.4 in [Col07b] we see that J is (in this case)
actually a single FO-formula ψ. (Subformulas of ψ compute, by aggregating rele-
vant markings, predicates PL for those L ∈ Reg involved in the prefix-recognisable
expression for R, a’ la Definition 3.3.10.) Since the markings produced by M are
now regular, we can modify ψ by substituting its atomic relations referring to mark-
ings by corresponding predicates L of the signature, thus obtaining the required
FO-definition of R in the tree S0

Reg(Σ).

Using the above lemma we can given give easy-to-check necessary and sufficient
conditions for a translation to map all prefix-recognisable realtions to regular ones.

Theorem 6.2.3 (Transductions preserving regularity of all PR relations).
Consider a bijection t : D → C between a regular D ⊆ Γ∗ and a prefix-closed
C ⊆ Σ∗. Then, the following are equivalent

111

6 Regularity Preserving Transductions

(i) t is continuous and the inverse image of the prefix-relation under t is a regular
relation, for short: t−1(�) ∈ Reg;

(ii) t is the (injective) naming function of an automatic presentation of S0
Reg(Σ)

∣∣
C
;

(iii) the inverse image of every prefix-recognisable relation under t is regular, for
short: t−1(PR) ⊆ Reg.

Proof. Statements (i) and (ii) are equivalent by definition, and (i) trivially follows
from (iii). To check (ii) ⇒ (iii) let R ⊆ (Σ∗)n be an arbitrary prefix-recognisable
relation. By Lemma 6.2.2 R is FO-definable in S0

Reg(Σ), hence R∩Cn is FO-definable

in (S0
Reg(Σ), C), therefore also in S0

Reg(Σ)

∣∣
C

since C is prefix-closed and since all sub-

trees of S0
Reg(Σ) disjoint from C are regular, hence there is no loss of information

when disposing of them in S0
Reg(Σ)

∣∣
C

. Thus, by the Fundamental Theorem 3.1.3, R

is regularly presented under t−1.

We shall henceforth refer to transductions satisfying Theorem 6.2.3 as PR-transductions.

6.2.1 Alternative proof of MSO-friendliness of k-lex presentations

In Section 5.8 of the previous chapter we have shown that all k-lex words are con-
structible in the pushdown hierarchy by defining them on the leaves of the respective
tree T<k-llex

. Previously in this section we have argued that the embedding τ<k-llex

from k-lex presentations in normal form to leaves of T<k-llex
was in fact continuous,

being 2DGSM-computable. Although we have defined τ<k-llex
to take on values only

among the leaves of T<k-llex
, this mapping can be easily modified to include all nodes

of T<k-llex
.

Every node of T<k-llex
below 1n# (i.e. belonging to the n-th finite subtree) is led

to on a path marked out by some number of components x1 . . . , xi, i ≤ k, of which
all but perhaps xi is “complete”, that is of length n. Therefore, a natural idea is to
extend (6.1) to convolutions of such incomplete tuples. However, while every node
of T<k-llex

uniquely determines an incomplete tuple x1 . . . , xi, to each such tuple up
to i + 1 nodes may be associated. This can be made up for, say, by an additional
component containing the finite bit of information necessary to uniquely determine
a node. With this in mind we let ϑ<k-llex

map ⊗k+1(j
n, x1, . . . , xk) to

1n
(i−1∏

t=1

⊗t (x1, . . . , xt)
) (

(# ⊗i (x1, . . . , xi)#x1[0] · · ·xi−1[0])[0..i|xi| + j)
)

(6.2)

for all words ⊗k+1(jn, x1, . . . , xk) such that n = |x1| = · · · = |xi−1| ≥ |xi| > 0 =
|xi+1| = · · · = |xk| for some 0 ≤ i ≤ k and either i = 0 and j ∈ {0, 1} or 0 < i and
|xi| < n and 1 ≤ j ≤ i or i = k and |xi| = n and 1 ≤ j ≤ i + 1. In particular, for
j = i = 0 the mapping is (0�k)n 7→ 1n, for i = 0, j = 1 it is (1�k)n 7→ 1n#, and for
i > 0, j = 1 and |xi| = n it essentially coincides with τ<i-llex

, except for the presence

112

6.2 Translations mapping prefix-recognisable relations to regular ones

of the superfluous 1n and empty input components. In accordance with our initial
remarks, the refinements as to (6.1) are meant to ensure that the image of ϑ<k-llex

is precisely the set of nodes of T<k-llex
.

When restricted to words representing leaves, ϑ<k-llex
is equivalent to τ<k-llex

in
the sense of Section 4.2. Indeed, t = ϑ−1

<k-llex
τ<k-llex

is the (k, k + 1)-synchronous

translation t : ⊗k(x
(1), . . . , x(k)) 7→ ⊗k+1(1|x(1)|, x(1), . . . , x(k)).

Despite the awkwardness of its definition it should be clear that ϑ<k-llex
is 2DGSM

computable, indeed, in at most k + 1 sweeps, hence it is continuous. The addi-
tional conditions on the input regarding n, |xi|, i, and j are obviously regular.
Furthermore, it poses no difficulty to check that ϑ−1

<k-llex
(�) is regular. Indeed,

ϑ<k-llex
(⊗k+1(0

n, ε, . . . , ε)) � ϑ<k-llex
(⊗k+1(l

m, y1, . . . , yk)) iff n ≤ m, in every other
case ϑ<k-llex

(⊗k+1(j
n, x1, . . . , xk)) � ϑ<k-llex

(⊗k+1(l
m, y1, . . . , yk)) implies that n = m

and xl = yl for all l such that |xl| = n and xi � yi for i such that 0 < |xi| < n, if it
exists, and finally that |xi| + j ≤ |yi| + l. Thus, we can conclude that ϑ<k-llex

is a
PR-transduction. In particular, it constitutes the naming function of an automatic
presentation of (T<k-llex

,�).

Let us now consider an arbitrary k-lex word w ∈ Wk with associated word struc-
ture Ww and a k-lexicographic presentation d = (D, <k-llex , {Pa}a). Wlog. d

is in normal form (cf. Lemma 5.2.4), therefore, it can be realised as an MSO-
interpretation I in T<k-llex

such that

Ww
∼=f−1

(D, <k-llex , {Pa}) ∼=t (D′, <k+1-llex , {P
′
a}) ∼=ϑ<k-llex I(T<k-llex

) (6.3)

where f is the naming function of the presentation d.
By virtue of interpretations, to every MSO-formula ϕ(~x) defining some relation R

in Ww we can associate the formula ϕI defining ϑ<k-llex
(t(f−1(R))) in T<k-llex

.

Claim 6.2.4. For every ψ(~x) there is a prefix-recognisable relation P such that
restricted to leaves of T<k-llex

they coincide: ψT<k-llex ∩ T<k-llex
= P ∩ T<k-llex

.

Assuming this, ϑ<k-llex
(t(f−1(R))) is the restriction of a prefix-recognisable rela-

tion P to the leaves of T<k-llex
. Thus, t(f−1(R)) is the restriction of ϑ−1

<k-llex
(P)

to tuples of words of the form ⊗k+1(1
|x(1)|, x(1), . . . , x(k)). Since ϑ<k-llex

is a PR-
transduction this yields that t(f−1(R)) is regular. Finally, by semi-synchronicity of
t, f−1(R) is also regular. Since ϕ(~x) was arbitrary this proves that d is MSO-friendly.

To prove Claim 6.2.4 we employ some very simple tree transducers, which are,
analogously with rational transductions of words, known to be continuous. For the
purposes of this proof an intuitive understanding of tree transducers suffices. As
an exposition to the subject we recommend [FV98]. We shall not introduce tree
transducers here formally, for only variants of the following transduction will be
used.

Tblow

∣∣∣∣
q(a(x)) → n(q(x), q(x))
q(#) → #

113

6 Regularity Preserving Transductions

In plain words, Tblow maps each word an#, seen as a monadic tree of a single branch,
to the full binary tree of height n with its leaves labelled by #. It does this with
a single state, hence the transduction realised is called a tree homomorphism. We
will use extensions and variants of this simple scheme which

- on a binary input word x produce the full binary tree of height |x| with its
branch labelled x specially marked;

- apply a copying rule only on every k-th position along every path;

- simultaneously simulate the run of a given DFA A along every path of the
output tree, and labelling its leaves with the final state of the run of A along
corresponding branches.

These aims can be achieved in general by rules of the form

TA,k

∣∣∣∣∣∣

[q, j](σ(x)) → σ([q′, j + 1modk]) δ(q, σ) = q′

[q, 0](σ(x)) → nσ([q0, 1](x), [q1, 1](x)) i, σ ∈ {0, 1} δ(q, i) = qi
[q, j](#) → #q

with states [q, j] composed of a state q of the DFA A and 0 ≤ j < k and with δ
being the transition function of A.

Fact 6.2.5. Each transduction TA,k is continuous, meaning that the inverse image
of every regular set of trees is regular.

I thank Lukasz Kaiser for pointing out, that in this special case of word to tree
transductions this can be shown e.g. by directly constructing for any given non-
deterministic top-down tree automaton A on output trees an alternating automaton
A′ on input words accepting T−1

A,k(L(A)). Intuitively, universal choices of A′ on
an input word simulate choices among branches of the output tree produced in a
copying transition, while existential choices of A′ correspond to non-deterministic
transitions of A.

Fact 6.2.5 can be seen as the analogue of the Contraction Lemma 5.4.2. Moreover,
in the proof of the latter we have used the morphism β to which the above TA,k bear
great resemblance.

We shall also make use of the following well-known fact, which can be deduced
either with the composition technique or with the aid of tree automata. The next
claim constitutes an analogue of Lemma 5.3.5 for trees.

Fact 6.2.6. For every MSO-formula ψ(~x) on Σ-branching unlabelled trees there
are MSO-definable markings {ϕc(x) | c ∈ Γ} and a prefix-recognisable relation
P ∈ PR((Σ×Γ)∗) such that in each of the formulae ϕc(x) quantification is relativised
to the subtree below x and such that over every tree T and every tuple of nodes
x1, . . . , xn of T

T |= ψ(~x) ⇐⇒ π(~x) ∈ P

where π(x) denotes for every node x the finite sequence of directions and labels
along the path leading to x from the root as a word in (Σ × Γ)∗.

114

6.2 Translations mapping prefix-recognisable relations to regular ones

We now have the essential ingredients to prove Claim 6.2.4.

Proof. of Claim 6.2.4
Towards a conclusion we take the markings {ϕc(x) | c ∈ Γ} and the prefix-recognisable
relation P̂ associated to ψ(~x) by Fact 6.2.6, and prove, that restricted to leaves of
T<k-llex

, the mapping x 7→ π(x) as described there is in fact synchronised rational.
Although π fails to be regular over all internal nodes of T<k-llex

, this observation
is already sufficient to establish our claim for we consider only relations on leaves.
Indeed, as π(x ⊓ y) = π(x) ⊓ π(y) and given a DFA P recognising pairs (x, π(x))
we can convert every relation PL(π(x), π(y)) into an equivalent prefix-recognisable
form
∨

q

(∃w P accepts (x, w) in final state q) ∧ (∃w ∈ L P accepts (x−1y, w) from q)

we can thus convert every prefix-recognisable relation P̂ on π-values into an equiv-
alent prefix-recognisable relation P on paths leading to leaves of T<k-llex

. By con-
struction P coincides with ψ(~x) on leaves as required.

It remains to be proved that π obtained from arbitrary MSO-definable markings
{ϕc(x) | c ∈ Γ}, where each ϕc(x) is relativised to the subtree rooted at x, is indeed
synchronised rational when restricted to leaves. As a first step we show, using
Fact 6.2.5, that

Lemma 6.2.7. Let ϕ(x) be an MSO-formula in which all quantifiers are relativised
to the subtree below the node represented by the single free variable x. Then a
regular language Lϕ can be constructed such that for every branch from the root of
T<k-llex

labelled by a word

z = 1n#x1# ⊗2 (x1, x2)# . . .# ⊗i (x1, . . . , xi)#

the subtree rooted at the node z satisfies ϕ iff z ∈ Lϕ.

Proof. Clearly, it is sufficient to consider only Hintikka formulas ϕ(x) completely
describing some r-theory of trees for a fixed quantifier rank r.

In comparison with our approach of Section 5.3 we note that each z as above
represents a =i class of numerals sharing their first i components.

In much the same way as in Section 5.4.2 the construction of the Lϕ’s is achieved
by iterated contractions, i.e. by inductively applying Fact 6.2.5 in each step. The
induction base is the superfluous case of i = k, i.e. of leaves z. To proceed we apply
a variant of the tree transductions TA,i to z to produce the incomplete subtree with
leaves

z = 1n#x1# ⊗2 (x1, x2)# . . .# ⊗i (x1, . . . , xi)# ⊗i+1 (x1, . . . , xi, y)

with y ranging over all words of length n. If A is chosen to be a DFA recognising,
with different final states, Lϕ for every Hintikka formula ϕ of some r-theory, then

115

6 Regularity Preserving Transductions

each leaf of the output tree TA,i(z), which is also an internal node of T<k-llex
, is

labelled with a state encoding the r-type of the subtree of T<k-llex
rooted in that

node.
Hence, the r-type of the subtree rooted at z can computed by a bottom-up tree

automaton working on TA,i(z). Because TA,i is continuous, the same r-type can be
computed by a word automaton reading z.

To finish the proof of the regularity of π we consider yet another variant of the
tree transductions, T̃A,i, applied this time to convolutions of pairs x⊗ w with

x = 1n#x1# ⊗2 (x1, x2)# . . .# ⊗k (x1, . . . , xk)

a leaf of T<k-llex
and w a candidate for π(x). Intuitively, T̃A,i acts much like TA,k on

each segment of the input word between consecutive #’s by blowing up these word
segments into completely branching trees at every k-th position and simultaneously
simulating runs of A on each of the thus created branches. However, when a # is
encountered in the input word, both the branching and the simulations terminate
and a next cycle is started below the branch identical with the prefix of the input
word. We illustrate this transduction in Figure 6.1.

x1

(x ,x)1 22

k
(x ,...,x)1 k

n1

2
Σn

1(x ,)

Σn

k
Σn(x ,...,x ,)1 k−1

x1

(x ,x)1 22

k
(x ,...,x)1 k

n1

τ τ´ ´´τ τ´´́TA,k

#

#

#

#

#

#

#

#

#

#

´´ ´´ ´´σ σ σ σ

~

w w

x x

Figure 6.1: Tree transducer for type checking

Let now r be the quantifier rank of ψ (thereby also an upper bound on the
quantifier rank of any of the markings ϕc(x)). If A is chosen so that it is able
to recognise each of the Lϕ’s obtained in each of the contraction steps for each
Hintikka formula describing an r-theory as described in Lemma 6.2.7 then the states

116

6.3 Representable transductions

of A assigned to the leaves of the output tree by T̃A,i directly determine the r-
theories of the subtrees rooted in the corresponding nodes of T<k-llex

(and denoted
as τ, τ ′, . . . σ, σ′, . . . in Figure 6.1).

Again, as in Lemma 6.2.7 we conclude that since checking that the types as given
in the input by the w component are consistent with those assigned to the leaves by
the transduction can be performed by, say, a bottom-up tree automaton, the set of
correctly labelled pairs (x, π(x)) of inputs is regular as well. In other words, that π
is synchronised rational on maximal paths x of T<k-llex

.

This concludes the proof of Claim 6.2.4

We have thus provided an alternative proof of Theorem 5.4.3 and its corollaries
stated in Section 5.4.2. Roughly speaking, we have traded the framework of chains of
homomorphisms for compositions of tree transducers, however, the two proofs bear
some resemblance. The hope would be that the latter approach involving tree trans-
ducers might lend itself more easily to generalisations for automatic presentations
of ω-words based on arbitrary implementation of the ordering relation. However,
while we can do this by hand for particular automatic presentations, we still have not
found a general construction achieving the same for arbitrary automatic orderings
of type ω.

6.3 Representable transductions

It is well known that every rational transduction τ : Σ∗ → M admits a linear
representation of the form (I, µ, T), where µ : Σ∗ → Rat(M)n×n is a homomorphism
and I, T ∈ Rat(M)n for some n > 0 such that τ(x) = I tµ(x)T for every x ∈ Σ∗.
Conversely, every such triple (I, µ, T) determines a rational transduction [Ber79].

In [PS85] Pin and Sakarovitch have proposed a very general framework for con-
structing continuous transductions by allowing far more liberal matrix presenta-
tions. Representable transductions are composed of a homomorphism µ : Σ∗ →
P(M)n×n and a mapping νU : P(M)n×n → P(M) defined by substituting the
matrix entries Li,j in place of corresponding Xi,j for 1 ≤ i, j ≤ n into a fixed
U ⊆ (M ∪ {Xi,j}1≤i,j≤n)

∗. Representable transductions are easily seen to be contin-
uous by diagram chasing [PS85].

Clearly, for every I and T as in a linear representation one can take U =
⋃
i

⋃
j IiXi,jTj

yielding τ(x) = I tµ(x)T = νU(µ(x)). Thus, representable transductions do subsume
rational transductions, but are not only more general due to the relaxation that µ
may take non-rational entries in P(M). A more substantial increase in expressive
power is achieved by specifying non-linear combinations of matrix entries using U .

We are of course interested in functional transductions. Note that if µ : Σ∗ →
Mn×n and u ∈ (M ∪ {Xi,j}1≤i,j≤n)∗ then νu : Mn×n → M and τ = νu ◦ µ are
functional. This is already sufficient to see that e.g. the mapping w 7→ ww is
representable. Also the mappings τ<k-llex

and ϑ<k-llex
from the previous subsections

are representable for each k.

117

6 Regularity Preserving Transductions

Despite the richness and robustness of the class of representable transductions, we
suspect that they do not capture all continuous transductions. In particular, that
inverses of run-length encodings of the next subsection are not representable.

6.4 Run-length encodings

Run-length encoding (RLE) is an extremely simple compression scheme that has
actually found application in compressing bitmaps in the early days of a popular
operating system. Run-length encoding works by removing “long” sequences of
consecutive occurrences of a symbol in a data stream and replacing it with the
length of the sequence as a binary numeral and a hint at the symbol repeated. It is
perhaps best explained on an example, such as the following.

bbbbbaaabbbbaaaaaaaabbbbbb
RLE
7→ b101a11b100a1000b1010 .

We may observe, that thanks to the simplicity of this scheme, RLE has the notable
feature that compressed words can be checked against a regular expression without
decompression. In other words, the image of every regular set under the RLE
encoding is again regular: RLE is regularity preserving. This is indeed very easy to
see appealing to the fact that the behaviour of finite automata on a sequence of a’s
is periodic and modulo counting is automaton computable on binary numerals as
well. We may also add that RLE preserves regularity of the prefix relation as well.

These observations call for the following generalisation. Every automatic presen-
tation of an omega-word gives rise to a similar compression method, which preserves
regularity of sets as well as of the prefix relation.

Let d = (D,<, {Pa}a∈Σ) be an automatic presentation of an ω-word w ∈ Σω with
injective naming function f : D → N. Let Γ be the alphabet of this presentation
and assume that it is disjoint from Σ. Associated to d we define a mapping ρ : Σ∗ →
(Σ ∪ Γ ∪ {[,]})∗ as follows. Every word u ∈ Σ∗ has a unique factorisation u = xyz
such that y is the left-most maximal factor of u that is a prefix of w. Given this
factorisation of u its image is ρ(u) = x[f−1(|y|)]ρ(y). ρ is thus well defined.

Consider for example w = aω represented in the standard binary numeration
system. In this case ρ behaves much like the by now well-known run-length encoding
e.g.

bbbbbaaabbbbaaaaaaaabbbbbb
ρaω

7→ bbbbb[11]bbbb[1000]bbbbbb .

Actually, a composition of ρaω and ρbω is almost identical to RLE as introduced
above. But let’s take as a second example the compression according to the binary
presentation of the Thue-Morse sequence t = abbabaabbaababba . . . illustrated on the
following word (with the appropriate factorisation hinted):

bb abba abb b abbabaabb b ab a
ρt
7→ bb[100][11]b[1001]b[10][1] .

So, in general, ρw – we write ρw when the underlying presentation of w is un-
derstood – compresses maximal prefixes of w occurring in the input word into the
representations of their respective lengths.

118

6.4 Run-length encodings

The fact that ρw originated from an automatic presentation d of w ensures that ρw
preserves regularity of the prefix relation: if v = uz then either ρw(v) = ρw(u)ρw(z)
or it is the case that u ends with a prefix of w continued in z and hence ρw(v) =
ρw(x)[f−1(m)]ρw(y) and ρw(u) = ρw(x)[f−1(n)] for some x, y and n < m. These
conditions can be checked by an automaton reading the compressed words ρw(u) and
ρw(v) by invoking the automaton representing the ordering in d. Further, observing
that a compressed word ρw(u) either ends with a symbol a ∈ Σ or with some
f−1(n) ∈ D we see that the last symbol of u can in either case be recovered from
ρw(u) by an automaton using the automata of the presentation d. We may thus
conclude that ρw preserves regularity of all star-free sets, for these are first-order
definable from prefix-order and predicates for the terminal symbol.

How about preserving regularity of all sets? We have seen that ρaω associated to
the simplest infinite word thinkable, aω, is regularity preserving. This remains true
assuming an underlying presentation d that is MSO-friendly. In fact, we have the
following.

Proposition 6.4.1. Let w ∈ Σω and an automatic presentation d of its word struc-
ture Ww be given. The associated compression scheme ρw is regularity preserving
iff every MSO-definable subset of Ww is regularly presented in d.

Indeed, both conditions require for every regular language L that the set {f−1(n) |
w[0, n] ∈ L} be regular. By Theorem 3.4.4 this is already sufficient to conclude that
every MSO-definable relation of Ww is regularly presented in d, in other words that
d is MSO-friendly.

Corollary 6.4.2. Let d be an automatic presentation of w as above. Then the
associated compression scheme ρw is regularity preserving iff d is MSO-friendly.

In particular, if ρw is based on a k-lexicographic presentation of some w, then it
is regularity preserving. Another conclusion to be drawn from these considerations
is, as we have promised, that infinite prefix-recognisable structures are not rigidly
automatic.

Theorem 6.4.3. Infinite prefix-recognisable structures are not rigidly automatic.

Proof. Let A = (D, {Ri}) be a prefix-recognisable structure over an alphabet Σ.
That is, D ∈ Reg(Σ∗) and each Ri ∈ PR(Σ∗). If D is infinite, then there are words
u, v, z ∈ Σ∗, such that uv∗z ∈ D for every n. Consider the run-length encoding
scheme ρw associated to the binary presentation of the ultimately periodic word
w = uvω ∈ Σω.

By Corollary 6.4.2 ρ−1
w is continuous, and we have already noted that ρw(�) is

a regular relation for every automatic w. Therefore, by Theorem 6.2.3, ρ−1
w maps

every prefix-recognisable relation to a regular one. In other words, appropriately
restricted, ρ−1

w is the naming function of an automatic presentation of any prefix-
recognisable structure over Σ, in particular of A.

119

6 Regularity Preserving Transductions

Since ρw maps the non-regular subset {uv2n

z | n ∈ N} of D onto a regular set,
the automatic presentation of A having ρ−1

w as naming function is not equivalent to
the natural presentation with the identity as naming function.

120

7 Definability and Intrinsic Regularity

Let A = (A, {Ri}i) ∈ AutStr and d an injective automatic presentation of A with
naming function f . By definition f−1 maps every relation Ri of A to a regular
one. By the extension of the Fundamental Theorem to FO∞,mod (Theorem 3.1.5 of
Section 3.1.1) we know that f also maps all those relations to regular ones, which
are FO∞,mod-definable in A. In other words, since in the case of automatic presenta-
tions injectivity can be assumed, FO∞,mod-definable relations are guaranteed to be
regular in every automatic presentation. This property is captured by the notion of
intrinsic regularity. Intrinsically regular relations of structures were introduced by
Khoussainov, Rubin, and Stephan in [KRS03b, KRS04]. We shall also be concerned
with the dual notion of intrinsic non-regularity.

Definition 7.0.4 (Intrinsic regularity).
Let A be automatic. The intrinsically (non-)regular relations of A are those, which
are (non-)regular in every automatic presentation of A. Formally,

IR(A) = {R ⊆ Ar | r ∈ N, for every a.p. (d, f) of A : f−1(R)is regular}

and dually

INR(A) = {R ⊆ Ar | r ∈ N, for every a.p. (d, f) of A : f−1(R)is not regular}

Thus, by Theorem 3.1.5, we know that FO∞,mod-definable relations are intrinsically
regular with respect to every automatic structure. One may ask how far can this
extension be generalised.

Examples

Let Σ be a finite, non-unary alphabet. In Theorem 4.3.1 we have seen that all
automatic presentations of the complete structure SΣ are equivalent. This means
that a relation is intrinsically (non-)regular with respect to SSigma if and only if it
is (non-)regular.

Corollary 7.0.5 (of Theorem 4.3.1). Let Σ be a non-unary finite alphabet. Then
IR(SΣ) is the set of regular relations over Σ, in particular, IR(SΣ) = FO(SΣ). More-
over, INR(SΣ) is the set of non-regular relations over Σ.

The circumstance that intrinsically non-regular relations complement those in-
trinsically regular over SΣ is equivalent to saying that SΣ is rigidly automatic.

Recall the theorem of Cobham and Semenov from Section 4.3.3. It states that if
a relation R ⊆ Nr regular in, say, both the binary and the ternary representation of
naturals then it is already Presburger definable.

121

7 Definability and Intrinsic Regularity

Corollary 7.0.6 (of Cobham-Semenov theorem). IR(N,+) = FO(N,+).

Clearly, FO∞,mod collapses to FO over both (N,+) and, by completeness, over
SΣ provided Σ is not unary. In the unary case S[1] degenerates to (N, succ, <) and
is naturally represented over the unary alphabet [1]. As noted in Section 3.3.1
regular relations over a unary alphabet are precisely those first-order definable in
M = (N, <, {≡(modm)}m>1), or equivalently, those FOmod-definable in (N, <). Hence
the following.

Corollary 7.0.7 (of 3.3.2). IR(N, <) = FOmod(N, <).

Note that establishing a result of the above type concerning definability of intrin-
sically regular relations is still a far cry from understanding the automatic presenta-
tions of a structure. While Corollary 7.0.7 can be proved based solely on the unary
presentation of (N, <) we have devoted the whole of Chapter 5 to the investigation
of the multitude of presentations of (N, <), which is far from being complete.

In [KRS03b, KRS04] Khoussainov et al. also consider the successor structure
(N, succ), which is even more elusive when it comes to understanding its presenta-
tions up to equivalence. With regard to intrinsic regularity, however, Khoussainov
et al. have been able to show that the modulo counting predicates Mk = {kn |
n ∈ Nat} are not in IR(N, succ) and furthermore that the natural order < is not IR

even in the structure (N, succ, {Mk}k). On the positive side, they show that with
respect to (N, succ) all intrinsically regular unary predicates are FO-definable, for
short: IR1(N, succ) = FO1(N, succ).

7.1 Logical Extensions

For any given logic L extending FO let L(A) denote the set of relations over dom(A)
definable by an L-formula using a finite number of parameters. Khoussainov et
al. asked whether there is a logic L capturing intrinsic regularity, i.e., such that
L(A) = IR(A) for all A ∈ AutStr. We address this question in the current section.
We enumerate partial results known to us, both positive and negative, however, the
list is non conclusive.

The extension of the Fundamental Theorem to FO∞,mod (Theorem 3.1.5) essen-
tially states that given a regular relation R(~x, y) of arity n + 1 the n-ary relations
defined by the quantifiers ∃∞y R and ∃(r,m)y R, with y ranging over all words,
are again regular. 1 In particular, it holds over every automatic structure A, that
FO∞,mod(A) ⊆ IR(A). For this reason we shall call ∃∞ and the ∃(r,m) regularity pre-
serving quantifiers. Of course, key to the extension of the Fundamental Theorem to
FO∞,mod is the fact that the additional quantifiers preserve regularity effectively.

1 Note that injectivity is implicit in the current formulation considering distinct words as distinct
elements. Also, in injective automatic presentations quantification ranges over a subset D of
words, which can be assumed to be enforced by the relation R.

122

7.1 Logical Extensions

Over possibly uncountable ω-(tree-)automatic structures it makes sense to con-
sider cardinality quantifiers refining ∃∞. In [KL06] Kuske and Lohrey have shown
that the cardinality quantifiers ∃ωx.ϕ and ∃ω1x.ϕ meaning that there are countably,
respectively, uncountably many ω-words satisfying ϕ preserve ω-regularity. Note
that injectivity is again implicitly understood.

Throughout this chapter when speaking of logical constructs preserving regularity
we will always consider an interpretation over the set of all (ω-)words with distinct
words seen as distinct elements and with (ω-)regular atomic relations given.

Consider a logic L extending FO and such that L(A) ⊆ IR(A) holds for all A ∈
AutStr. Then all L-formulas are by assumption regularity preserving. A priori this
is no longer clear if we only assume that AutStr is closed under L-interpretations,
for it is conceivable that while a relation R L-definable in A ∈ AutStr is not
intrinsically regular wrt. A the combined structure (A, R) does have some automatic
presentation. Nonetheless, using Theorem 4.3.1 we can prove that L-formulas have
to be regularity preserving even under this weaker assumption.

Theorem 7.1.1. For every logic L extending FO and such that AutStr is closed
under L-interpretations it holds that all L-formulas are regularity preserving.

Proof. Let R be a relation L-definable from regular relations {Ri} over the alphabet
Σ. Since L is an extension of FO each Ri is L-definable in SΣ. The combined struc-
ture (SΣ, R) is thus L-interpretable in SΣ and therefore, by assumption, automatic.
By Corollary 7.0.5 we conclude that R is indeed a regular relation over Σ.

Note that completeness alone was not sufficient above, the argument crucially
relies on the fact that all automatic presentations of S{0,1} are equivalent as estab-
lished in Theorem 4.3.1.

Motivated by the above we turn our attention to regularity-preserving extensions
of first-order logic. Just how far can we push these extension results? Is there
a maximal regularity preserving extension of first-order logic? Is there an exten-
sion capturing intrinsic regularity? In the following subsections we address these
questions discussing regularity-preserving generalised quantifiers as well as an “or-
thogonal” extension of the logic based on the notion of order-invariance for which
we give a separation result.

7.1.1 Generalised Quantifiers

Consider the syntactic extension FO[Q] of first-order logic by allowing generalised
quantifiers in the construction of formulas. This extension is thoroughly explained
in [Lib04, Chapter 8] in the context of finite model theory. Here we merely give the
definitions of basic concepts.

A generalised quantifier is defined in terms of an isomorphism-closed class K
of structures of a fixed (possibly infinite) relational signature τ . We associate a

123

7 Definability and Intrinsic Regularity

quantifier QK to this class. The arity of the quantifier QK is the supremum of the
arities of relations in the signature of K. Formulae of the logic FO[Q] are built using,
in addition to classical first-order constructs, also quantifications of the following
from.

ψ(~z) = QK

[
{~xR}R∈τ .{φR(~xR, ~z)}R∈τ

]

Naturally, ~xR is required to have the same dimension as R for each R ∈ τ . The
formula ψ(~z) is true in a structure A with universe A for given elements ~a as values
for ~z if the interpreted structure

(
A, {φA

R(~xR,~a)}R∈τ
)

belongs to the class K, where

φA

R(~xR,~a) = {~b~∈A | A |= φR(~b,~a)}

for each R ∈ τ .
Let Q denote the class of all generalised quantifiers and Qn the class of those of

arity n for each n. We say that a generalised quantifier Q is regularity preserving
if all FO[Q]-formulas are regularity preserving. We denote the class of regularity
preserving quantifiers by Qreg and respectively by Qreg

n to stress that the arity is
restricted to n.

Observe that the first-order quantifiers ∃, ∀ as well as the modulo counting quan-
tifiers ∃r,m and also ∃∞ are particular unary generalised quantifiers.

Unary or counting quantifiers

A unary generalised quantifier QK is one defined in terms of an isomorphism-closed
class K of structures comprising a fixed (possibly infinite) number of unary relations.
Let FO[Q1] (FO[Qreg

1]) stand for the syntactic extensions of FO via (regularity pre-
serving) unary generalised quantifiers. For an exposé to FO[Q1] and its involvement
in finite model theory we refer to [Lib04, Chapter 8]. Next we characterise FO[Qreg

1]
following [Rub07].

As an alternative to the above definition we can consider counting quantifiers QK

each associated to a class K ⊆ Cardα of α-tuples of cardinals, for a fixed ordinal
α. The intended meaning of a formula

QK [{xβ}β<α.{φβ(xβ , ~z)}β<α]

over a structure A with universe A is that for a given value ~a of the variables ~z the
α-sequence

(|φ(A,~a)
β |)β<α

belongs to the class K where φ
(A,~a)
β = {c ∈ A | A |= φβ(c,~a)} for each β < α.

Clearly, every unary generalised quantifier of arity α is equivalent to a counting
quantifier of arity 2α for as far as an isomorphism-closed class K of unary structures

124

7.1 Logical Extensions

is concerned, only the cardinalities of boolean combinations of the unary predicates
are relevant.

Over automatic structures, being countable, only those counting quantifiers asso-
ciated to some K ⊆ (ω+1)α have to be dealt with. In the following we only consider
counting quantifiers of finite arity α = n ∈ N.

Appealing to unary automatic presentations it is easy to show that if QK is regu-
larity preserving, then K is FOmod-definable in (N, <). Indeed, [QK~x.(ψ(xi, yi))xi∈~x]
with ψ(x, y) = x < y defines K itself in the unary presentation. However, not all
these quantifiers are regularity preserving. For instance, the unary Härtig quantifier
associated to H = {(n, n)} tests whether two formulas (with parameters) have the
same number of satisfying elements. Using QH one can thus define the non-regular
language {x | |x|0 = |x|1} in S[2]. A similar argument shows that assuming QK is
regularity preserving, the unary coding of K is in fact recognisable. This establishes
the following characterisation.

Proposition 7.1.2 ([Rub07]). The only regularity preserving unary generalised
quantifiers are those definable in terms of ∃(r,m). In other words, FO[Qreg

1] = FOmod.

Bijective Ehrenfeucht-Fräıssé games

We briefly recall some of the notions and results of [Hel89], which we will be using.
Chapter 8 of [Lib04] is a handy reference on this subject as well.

Let A and B be structures sharing a common signature. The r-round bijective
Ehrenfeucht-Fräıssé game BEFr(A,B) is defined as follows. There are two players:
I and II. The positions of the game are partial isomorphisms between the two struc-
tures, provided there are any, the initial position being the empty isomorphism. In
case ∅ is not a partial isomorphism, the game is won by I up front without any moves
having been made. In each round of the game, in position p, player II proposes a
bijection f : A→ B such that p ∪ (a, f(a)) is again a partial isomorphism for every
a ∈ dom(A), or loses. Player I replies by choosing an element a ∈ dom(A), thus
determining the new position as p ∪ (a, f(a)) (that is to say II fixed her reply f(a)
in advance). The game ends after at most r rounds. Player II wins if she does not
lose in the mean time.

A strategy of player II in this game is captured by an r-bijective back-and-forth
system consisting of a sequence (Ii)i≤r of sets of partial isomorphisms between A and
B, such that ∅ ∈ Ir and for every k < r and p ∈ Ik+1 there is a bijection fp : A→ B
for which p ∪ {(a, f(a))} ∈ Ik for every a ∈ A.

Theorem 7.1.3 ([Hel89],[Lib04, Chapter 8]). Two structures A and B satisfy the
same sentences of FO[Q1] of quantifier rank at most r iff player II has a winning
strategy in the game BEFr(A,B) iff there is an r-bijective back-and-forth system
(Ii)i≤r : A ∼r

B.

125

7 Definability and Intrinsic Regularity

7.1.2 Order-Invariant Formulas

Let A be a structure of signature τ . Assume that < is a binary relation symbol not
occurring in τ . A formula φ(~x) ∈ FO[τ, <] is order-invariant over A if for any linear
ordering <A of the elements of A, when < is interpreted as <A, φ(~x) defines the
same relation R over A. The relation R is in this case order-invariantly definable.
We denote the set of order-invariantly definable relations over A by FO<−inv(A).
Although it is only appropriate to speak of order-invariantly definable relations,
rather than of relations definable in “order-invariant logic”, we will tacitly use the
latter term as well.

Order-invariant first-order logic has played an important role in finite model the-
ory. It is well known that FO<−inv is strictly more expressive than FO on finite
structures. Gurevich was the first to exhibit an order-invariantly definable class of
finite structures, which is not first-order definable [Lib04, Sect. 5.2]. However, his
class is FO∞,mod-definable. In [Ott00] Otto showed how to use order-invariance to
express connectivity, which is not definable even in infinitary counting logic, in a
particular class of finite graphs. Both constructions use order-invariance and some
auxiliary structure to exploit the power of monadic second-order logic. We adopt
Otto’s technique to show that FO<−inv can be strictly more expressive than infinitary
counting logic on automatic structures.

The fact that over any (ω-)(tree-)automatic A order-invariantly definable relations
are intrinsically regular is obvious. Indeed, given a particular automatic presentation
of A one just has to “plug in” any regular ordering (e.g. the lexicographic ordering,
which does of course depend on the automatic presentation chosen) into the order-
invariant formula defining a particular relation, thereby yielding a regular relation,
which, by order-invariance, will always represent the same relation.

Observation 7.1.4. FO
∞,mod
<−inv (A) ⊆ IR(A)

7.1.3 Separating Example

In this subsection we present an automatic structure in which a certain relation
is order-invariantly definable, but not by using only unary generalised quantifiers.
The example is based on that of Otto [Ott00] and uses Hella’s characterisation of
expressibility of unary generalised quantifiers as summarised above in Theorem 7.1.3.

Consider the structure

B = (N ⊎ Pfin(4N + {2, 3}), S, ε, ι,⊆)

illustrated in Figure 7.1, where Pfin(H) consists of the finite subsets of H , S is the
relation {(4n, 4n+4), (4n+1, 4n+5) |n ∈ N}, ε is the equivalence relation consisting
of classes {4n, 4n + 1, 4n + 2, 4n + 3} for each n ∈ N, ι is the set of pairs (n, {n})
with n ∈ 4N + {2, 3}, and ⊆ is the usual subset inclusion.

126

7.1 Logical Extensions

1

2

3

4

5

6

7

8

9

0

10

0

{2} {6} {7}{3}

{2,3,6}

{10} ...

{2,3} {2,6} {3,6} {7,10}... ...

...

Figure 7.1: B, a separating example.

To give an automatic presentation of B over the alphabet {b, 0, 1} we represent
(N, S, ε) in the unary encoding using the symbol b, and the finite sets by their
(shortest) characteristic words over {0, 1}. Regularity of ι and ⊆ is obvious.

Proposition 7.1.5 ([Bár06b]). The transitive closure S⋆ of S is order-invariantly
definable, hence intrinsically regular, but not FO[Q1]-definable in B.

Proof. The proof is an adaptation of the one presented in [Ott00].
S⋆ ∈ FO<−inv(B): Given any ordering ≺ of the universe of B we can first-order
define a bijection ν = ν≺ : 4N ∪ 4N + 1 → 4N + 2 ∪ 4N + 3 as follows. Each ε-class
contains two isolated points 4n+ 2 and 4n+ 3 and two points 4n and 4n+ 1 having
an S-successor for some n. Using ≺ we can map e.g. the smaller (larger) of the
latter to the smaller (larger) of the former. This bijection, regardless of the actual
mapping, provides access to the subset structure. Take any wMSO formula defining
transitive closure and translate it using ν and the built-in subset structure to express
S⋆.
S⋆ 6∈ FO[Q1](B) : Let Bn = (B, 0, 4n) and B′

n = (B, 0, 4n + 1). It is sufficient to
show that for large enough n player II wins BEFr(Bn,B

′
n).

Let B = dom(B) and D = dom(S). Considering the reducts Sn = Bn|D and
S′
n = B′

n|D it should be clear that player II has a winning strategy in the r-round
bijective game BEFr(Sn,S

′
n) for some n ∈ 2O(r). Moreover, there is an r-bijective

back-and-forth system (Ii)i≤r : Sn ∼r S′
n, such that for every k ≤ r each p ∈ Ik

maps {4m, 4m+1} into itself for every m (*), i.e. ε-classes are preserved throughout
any play consistent with this strategy.

We extend this strategy to one in BEFr(Bn,B
′
n) by extending the bijections

given by the former strategy identically onto all elements outside of the domain
of S. Equivalently, we claim that (Ji)i≤r : Bn ∼r B′

n, where Jk = {p ∪ q | p ∈
Ik, q ⊂ id|B\D} for each k ≤ r. Each such p ∪ q is indeed a partial isomorphism,
because both p and q are on the respective “halves” of the structures and p also
satisfies (*). Further, for any p ∪ q ∈ Jk+1, thus p ∈ Ik+1, there is by definition a
bijection fp : D → D such that p ∪ (a, fp(a)) is in Ik for any a ∈ D. Hence, with

127

7 Definability and Intrinsic Regularity

gp = fp ∪ id|B\D it holds that p ∪ q ∪ (a, gp(a)) ∈ Jk for any a ∈ B. This concludes
the proof.

Corollary 7.1.6. No extension of FO with unary generalised quantifiers is capable
of capturing intrinsic regularity over all automatic structures.

7.1.4 The hierarchy of regularity preserving quantifiers

Motivated by the examples of modulo counting quantifiers we have introduced reg-
ularity preserving generalised quantifiers. We have seen that the modulo counting
quantifiers suffice to define the every regularity preserving unary quantifier. We
have also introduced order-invariant extension of first-order logic, argued that it is
regularity preserving and showed that there are order-invariantly definable relations
that are not definable by unary quantifiers.

In [Rub07] Rubin gives the following (effectively) regularity-preserving quantifiers
of arity two.

- The Ramsey quantifier ∃Rxy.ϕ(x, y, ~z) expresses that the (undirected) graph de-
fined by ϕ parameterised by ~z contains an infinite clique.

- The quantifier ∃ρxy.ϕ(x, y, ~z) expressing that with parameters ~z the graph defined
by ϕ is an equivalence relation having infinitely many infinite equivalence classes
(cliques).

Observe that the latter quantifier is definable in FO∞
<−inv, and is thus effectively

regularity preserving. However, it is not definable in FO∞,mod as can be checked by
an argument involving bijective Ehrenfeucht-Fräıssé games as in Proposition 7.1.5.
To show that the Ramsey quantifier is regularity preserving requires a bit more
effort, in [Rub07] Rubin makes a detour through an ω-regular representation to
conclude.

As it turns out a generalisation of the bijective Ehrenfeucht-Fräıssé games along
the lines of [Hel89, Hel96] can be used to prove separation results of the FO[Qreg

n]-
definability classes analogous to our argument that ∃ρ is not FO[Qreg

1]-definable.
Thus establishing that the logics FO[Qreg

n] form an infinite hierarchy in terms of
expressiveness [Rub07].

Proposition 7.1.7 (In [Rub07] contributed to Hella, cf. also [Hel96]). For every n
there is a quantifier Q ∈ Qreg

n+1, which is definable in the ω-order-invariant fragment
of FO[∃(0,2)] but not definable in FO[Qreg

n].

In light of these results it is natural to ask whether FO<−inv[Qreg] captures intrinsic
regularity. We have to note that even a positive answer would not be satisfactory
as order-invariance is a semantic property that is undecidable even over finite struc-
tures. FO<−inv[Qreg] is therefore not a logic in the sense that it does not come with
a recursive syntax. On the other hand, if it is not even semi-decidable whether a
given regular relation is intrinsically regular with respect to a structure given by
an automatic presentation then there is no logic of recursive syntax and capturing
intrinsic regularity. These questions are left open.

128

7.2 More examples, remarks and questions

7.2 More examples, remarks and questions

7.2.1 Structures of Bounded Degree

A relational structure is said to be of bounded degree if its Gaifman graph is of
bounded degree. The Gaifman graph G(A) of a structure A consists of the elements
of the universe of A as its vertices, and with an (undirected) edge defined between
any two elements a, b ∈ A iff there is a tuple (a1, . . . , an) of elements in some relation
RA of A such that a = ai and b = bj for some 1 ≤ i, j ≤ n. Observe that G(A) is
first-order definable in A. The distance d(x, y) of two elements x, y of a structure is
defined as their distance in the Gaifman graph, i.e. as the length of the shortest path
leading from x to y, or infinite if they are not connected. The d-neighbourhood of an
element x is the substructure induced by those elements having a distance at most d
from x. Note that k quantifiers suffice to express in first-order logic that d(x, y) ≤ 2k.
Conversely, the locality theorems of Hanf and Gaifman tell us, intuitively, that first-
order logic can only express a boolean combination of statements depending on the
existence of neighbourhoods of a certain type. For a precise formulation the reader
should consult either one of the books [EF95, Lib04].

Locality is a particularly useful concept when studying structures of bounded de-
gree. In [Loh03], using locality as a key ingredient, Lohrey gave an elementary bound
on the complexity of first-order theories of automatic structures of bounded degree.
Locality also plays a vital role in the result of Carayol and Morvan establishing
decidability of first-order theories of rational trees [CM06].

Let us note that both FO∞,mod and FO<−inv have this locality property (cf. [Lib04]),
but FO

∞,mod
<−inv does not. On inquiry of the author Hannu Niemistö gave a simple ex-

ample of a non-local property over a class of finite structures of bounded degree
expressible in order-invariant FO + ∃(0,2) [Nie]. However, to adapt Niemistö’s ex-
ample to infinite automatic structures would require the introduction of additional
predicates causing the Gaifman graph to be of unbounded degree. Therefore we
pose the following question.

Question 7.2.1. Consider an arbitrary A ∈ AutStr of bounded degree. Is every
intrinsically regular relation over A Gaifman local?

Note that over structures of bounded degree, Gaifman locality means that there
is a constant d such that membership of a tuple ~a in R solely depends on the
isomorphism type of the d-neighbourhood of ~a. Gaifman local relations are thus
first-order definable over structures of bounded degree. So the above question asks
whether FO suffices to capture IR on automatic structures of bounded degree.

7.2.2 Prefix-ordered trees

Consider an automatic presentation of TΣ = (Σ∗, {succa}a∈Σ,�), that is of the prefix-
ordered infinite Σ-branching tree. If the presentation preserves regularity of the
equal-length relation, e.g. if it preserves length, then we are talking a presentation

129

7 Definability and Intrinsic Regularity

of SΣ, which is, by Theorem 4.3.1, equivalent to the natural one having the identity
naming function. Therefore, we need to consider presentations which “compress”
some words while “stretching” others in a non-trivial manner so as not to let equal-
length be regular. How can this be achieved?

Recall the generalised run-length encoding ρw associated to an automatic presen-
tation of an ω-word w ∈ Σω. In Section 6.4 we have shown how automaticity of w
implies that ρw preserves regularity of the prefix relation and of the successors succa
for every a ∈ Σ. In other words, that ρw determines (is the naming function of) an
automatic presentation of TΣ.

Unless the underlying presentation d of w is unary, ρw does have the desired
property of compressing some branches of TΣ while stretching others in a non-
regular fashion. For instance, when as underlying presentation of aω the binary
numeration system is chosen, then ρaω (a2n

) = 10n while ρaω (b2
n

) = b2
n

, whence it is
routine to prove that ρaω (el) is not regular.

According to Corollary 6.4.2 if d is an MSO-friendly presentation of some word w,
e.g. a k-lexicographic one, then the associated run-length compression scheme ρw is
regularity preserving. In other words, ρ−1

w is continuous, hence, by Theorem 6.2.3,
ρw maps every prefix-recognisable relation over Σ to a regular relation. We used this
fact in Theorem 6.4.3 to show that ρ−1

w can be used to give an automatic presentation
of any prefix-recognisable structure.

These considerations prompt us to generalise the notion of MSO-friendly presen-
tations from word structures to prefix-ordered trees. Note that by Theorem 6.2.3
it is sufficient to require MSO-definable sets to be regularly represented. Hence the
following definition (cf. Definition 5.2.1).

Definition 7.2.2. An automatic presentation d of a tree T = (T, {succi}i<r,�) is
MSO-friendly if for every MSO formula ϕ(x) (equivalently regular language L) the
set of nodes of T satisfying ϕ (equivalently, which are lead to from the root on a
path labelled by a word belonging to L) is represented on a regular set. In short, if
all MSO-definable sets of nodes are regularly represented.

Question 7.2.3. Is every MSO-definable relation in TΣ intrinsically regular with
respect to TΣ?

Note that by Theorem 6.2.3 it is sufficient to confirm this for MSO-definable, i.e.
regular, sets. We remark that those sets FO∞,mod-definable, equivalently, recognised
by a solvable monoid [Str94], are bound to be intrinsically regular. A counterexam-
ple would therefore have to be based on a non-solvable monoid. A positive answer to
Question 7.2.3, on the other hand, would also answer Question 5.9.2(1) in the affir-
mative, and would drive the quest for a logical characterisation of intrinsic regularity
over all automatic structures in a new direction.

From trees to branches

Automatically presentable prefix-ordered trees were first studied by Khoussainov,
Rubin and Stephan in [KRS03a, KRS05] from a structural point of view using model-

130

7.2 More examples, remarks and questions

theoretic notions of condensation rank and Cantor-Bendixon rank. They have shown
that automatic linear orderings have a finite condensation rank, and similarly, that
the Cantor-Bendixon rank of every automatic prefix-ordered tree is finite. Concern-
ing regularly represented paths, Khoussainov et al. show the following, among them
an automatic version of Kőnig’s Lemma.

Theorem 7.2.4 ([KRS05]).
In every automatic presentation of a prefix-ordered tree T having at least one infinite
branch there exists an infinite branch, which is regularly represented.
Moreover, if T has only countably many infinite paths, then every infinite path is
regularly presented in every automatic presentation of T.

These results are obtained by showing that under the stated assumptions an infi-
nite branch, respectively, every infinite branch is FO∞-definable. For the latter, one
makes use of the finiteness of the Cantor-Bendixon rank of the tree.

Given an automatic presentation of some word w ∈ Σω, in the presentation of
TΣ having the associated ρw as naming function the infinite branch corresponding
to w is regularly represented. And if the presentation of w is MSO-friendly, then
so is the associated presentation of TΣ. Conversely, automatic presentations of TΣ

induce automatic presentations of regularly presented branches. That is, if the
set of nodes of a branch π of TΣ is represented by a regular language P in some
automatic presentation of TΣ then (P,�, {Sa}a∈Σ) is an automatic presentation of
π ∈ Σω where Sa is defined as the set of nodes on π with an incoming a-edge. If a
presentation of TΣ is MSO-friendly, then so are the presentations of its regular paths
thus obtained.

131

7 Definability and Intrinsic Regularity

132

Bibliography

[AdMO05] K. Aehlig, J. G. de Miranda, and C.-H. L. Ong. Safety is not a restriction
at level 2 for string languages. In FoSSaCS, pages 490–504, 2005.

[AG89] J.-M. Autebert and J. Gabarró. Iterated GSMs and Co-CFL. Acta
Informatica, 26:749–769, 1989.

[AS99] J.-P. Allouche and J. O. Shallit. The Ubiquitous Prouhet-Thue-Morse
Sequence. In C. Ding, T. Helleseth, and H. Niederreiter, editors, Se-
quences and Their Applications: Proceedings of SETA ’98, pages 1–16.
Springer-Verlag, 1999.

[AS03] J.-P. Allouche and J. Shallit. Automatic Sequences, Theory, Applica-
tions, Generalizations. Cambridge University Press, 2003.

[Bar98] K. Barthelmann. When Can an Equational Simple Graph Be Generated
by Hyperedge Replacement? In MFCS, pages 543–552, 1998.

[Bár06a] V. Bárány. A hierarchy of automatic ω-words having a decidable MSO
theory. Journées Montoises ’06, Rennes, 2006.

[Bár06b] V. Bárány. Invariants of automatic presentations and semi-synchronous
transductions. In STACS ’06, volume 3884 of LNCS, pages 289–300,
2006.

[Ber79] J. Berstel. Transductions and Context-Free Languages. Teubner,
Stuttgart, 1979.

[Bés00] A. Bés. An Extension of the Cobham-Semënov Theorem. J. of Symb.
Logic, 65(1):201–211, 2000.

[BG00] A. Blumensath and E. Grädel. Automatic structures. In Proceedings of
15th IEEE Symposium on Logic in Computer Science LICS 2000, pages
51–62, 2000.

[BG04] A. Blumensath and E. Grädel. Finite presentations of infinite structures:
Automata and interpretations. Theory of Comp. Sys., 37:641 – 674,
2004.

[BHMV94] V. Bruyère, G. Hansel, Ch. Michaux, and R. Villemaire. Logic and p-
recognizable sets of integers. Bull. Belg. Math. Soc., 1:191 – 238, 1994.

133

Bibliography

[BKR07] V. Bárány, L. Kaiser, and S. Rubin. Cardinality and counting quantifiers
on ω-automatic structures. Manuscript, 2007.

[BLS06] V. Bárány, Ch. Löding, and O. Serre. Regularity problems for visibly
pushdown languages. In STACS ’06, volume 3884 of LNCS, pages 420–
431, 2006.

[BLSS01] M. Benedikt, L. Libkin, Th. Schwentick, and L. Segoufin. A model-
theoretic approach to regular string relations. In Joseph Halpern, editor,
Proceedings of the Sixteenth Annual IEEE Symp. on Logic in Computer
Science, LICS 2001, pages 431–440. IEEE Computer Society Press, June
2001.

[BLSS03] M. Benedikt, L. Libkin, Th. Schwentick, and L. Segoufin. Definable re-
lations and first-order query languages over strings. J. ACM, 50(5):694–
751, 2003.

[Blu99] A. Blumensath. Automatic Structures. Diploma thesis, RWTH-Aachen,
1999.

[Blu01] A. Blumensath. Prefix-Recognisable Graphs and Monadic Second-Order
Logic. Technical report AIB-2001-06, RWTH Aachen, 2001.

[Blu02] A. Blumensath. Axiomatising Tree-interpretable Structures. In STACS,
volume 2285 of LNCS, pages 596–607. Springer-Verlag, 2002.

[BP97] M.-P. Béal and D. Perrin. Symbolic Dynamics and Finite Automata. In
A. Salomaa and G. Rosenberg, editors, Handbook of Formal Languages,
Vol. 2, pages 463–503. Springer Verlag, 1997.

[Bra06] L. Braud. Higher-order schemes and morphic words. Journées Mon-
toises, Rennes, 2006.

[Büc60] J. R. Büchi. Weak second-order arithmetic and finite automata. Zeit.
Math. Logih Grund. Math., 6:66–92, 1960.

[Car06] O. Carton. The growth ratio of synchronous rational relations is unique.
In Developments in Language Theory, volume 4036 of LNCS, pages 270–
279, 2006.

[Cau92a] D. Caucal. Monadic theory of term rewritings. In LICS, pages 266–273.
IEEE Computer Society, 1992.

[Cau92b] D. Caucal. On the regular structure of prefix rewriting. Theor. Comput.
Sci., 106(1):61–86, 1992.

[Cau96] D. Caucal. On infinite transition graphs having a decidable monadic
theory. In ICALP’96, volume 1099 of LNCS, pages 194–205, 1996.

134

Bibliography

[Cau02] D. Caucal. On infinite terms having a decidable monadic theory. In
MFCS, pages 165–176, 2002.

[Cau03] D. Caucal. On infinite transition graphs having a decidable monadic
theory. Theor. Comput. Sci., 290(1):79–115, 2003.

[CC03] A. Carayol and Th. Colcombet. On equivalent representations of infinite
structures. In ICALP, volume 2719 of LNCS, pages 599–610. Springer,
2003.

[CDG+] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree Automata Techniques and Applica-
tions. In preparation, draft available online at http://www.grappa.univ-
lille3.fr/tata/.

[CEH+92] J.W. Cannon, D.B.A. Epstein, D.F. Holt, S.V.F. Levy, M.S. Paterson,
and W.P. Thurston. Word processing in groups. Jones and Barlett Publ.,
Boston, MA, 1992.

[Cho02] Ch. Choffrut. A short introduction to automatic group theory, 2002.

[CK02] B. Courcelle and T. Knapik. The evaluation of first-order substitution
is monadic second-order compatible. TCS, 281:177–206, 2002. Special
issue offered to Maurice Nivat.

[CL06] Th. Colcombet and Ch. Löding. Transforming structures by set inter-
pretations. Technical Report AIB-2006-07, RWTH Aachen, 2006.

[CL07] A. Caryol and Ch. Löding. MSO on the Infinite Binary Tree: Choice
and Order. Submitted to CSL’07., 2007.

[CM02] B. Courcelle and J. A. Makowsky. Fusion in Relational Structures and
the Verification of Monadic Second-Order Properties. Mathematical
Structures in Computer Science, 12(2):203–235, 2002.

[CM05] A. Carayol and A. Meyer. Context-sensitive languages, rational graphs
and determinism, 2005.

[CM06] A. Carayol and C. Morvan. On rational trees. In Z. Ésik, editor, CSL 06,
volume 4207 of LNCS, pages 225–239, 2006.

[Col02] Th. Colcombet. On families of graphs having a decidable first order
theory with reachability. In ICALP, volume 2380 of LNCS, pages 98–
109. Springer, 2002.

[Col04a] Th. Colcombet. Equational presentations of tree-automatic structures.
In Workshop on Automata, Structures and Logic, Auckland, NZ, 2004.

135

Bibliography

[Col04b] Th. Colcombet. Propriétés et représentation de structures infinies.
Thèse de doctorat, PhD Thesis, Université Rennes I, 2004.

[Col07a] Th. Colcombet. A combinatorial theorem for trees. In ICALP, 2007.

[Col07b] Th. Colcombet. On factorisation forests and some applications.
manuscript, arXiv:cs.LO/0701113v1, Jan. 2007.

[Cou90a] B. Courcelle. Graph rewriting: An algebraic and logic approach. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Vol-
ume B: Formal Models and Sematics, pages 193–242. Elsevier and MIT
Press, 1990.

[Cou90b] B. Courcelle. Recursive applicative program schemes. In J. v.d. Leeuwen,
editor, Handbook of Theoretical Computer Science, Vol. B, pages 459–
492. Elsevier, 1990.

[Cou94] B. Courcelle. Monadic secon-order definable graph transduction: a sur-
vey. Theoretical Computer Science, 126:53–75, 1994.

[CRRT01] C. M. Campbell, E. F. Robertson, N. Ruskuc, and R. M. Thomas. Au-
tomatic semigroups. Theor. Comput. Sci., 250(1-2):365–391, (2001).

[CT02] O. Carton and W. Thomas. The monadic theory of morphic infinite
words and generalizations. Information and Computation, 176(1):51–
65, 2002.

[CW98] B. Courcelle and I. Walukiewicz. Monadic second-order logic, graph
coverings and unfoldings of transition systems. Annals of Pure and
Applied Logic, 92:35–62, 1998.

[CW03] A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs
in terms of logic and higher-order pushdown automata. In FSTTCS,
volume 2914 of LNCS, pages 112–123. Springer, 2003.

[Dam82] W. Damm. The IO- and OI hierarchies. Theoretical Computer Science,
20(2):95–208, 1982.

[DGK] Ch. Delhomme, V. Goranko, and T. Knapik. Automatic linear orderings.
Unpublished.

[DT90] M. Dauchet and S. Tison. The theory of ground rewrite systems is
decidable. In LICS’90, pages 242–248. IEEE, 1990.

[EF95] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Perspectives in
Mathematical Logic. Springer, 1995.

[EH99] J. Engelfriet and H. J. Hoogeboom. Two-way finite-state transducers
and monadic second-order logic. In ICALP, pages 311–320, 1999.

136

Bibliography

[EH01] J. Engelfriet and H. J. Hoogeboom. MSO definable string transductions
and two-way finite-state transducers. ACM Transactions on Computa-
tional Logic, 2(2):216–254, 2001.

[Elg61] C.C. Elgot. Decision problems of finite automata design and related
arithmetics. Trans. Amer. Math. Soc., 98:21–51, 1961.

[EM65] C. C. Elgot and J. E. Mezei. On relations defined by generalized finite
automata. IBM J. Research and Development, 9:47 – 68, 1965.

[Eng97] J. Engelfriet. Context-free graph grammars. In Handbook of formal
languages, vol. III, pages 125–213. Springer-Verlag New York, Inc., New
York, NY, USA, 1997.

[ER66] C. C. Elgot and M. O. Rabin. Decidability and undecidability of exten-
sions of second (first) order theory of (generalized) successor. Journal
of Symbolic Logic, 31(2):169–181, 1966.

[Far92] B. Farb. Automatic Groups: A Guided Tour. L’Enseignment Math.,
38:291–313, 1992.

[Fro02] Ch. Frougny. Numeration systems. In M. Lothaire, editor, Algebraic
Combinatorics on Words. Cambridge University Press, 2002.

[FS93] Ch. Frougny and J. Sakarovitch. Synchronized rational relations of finite
and infinite words. Theoretical Computer Science, 108:45–82, 1993.

[FV98] Z. Fülöp and H. Vogler. Syntax-Directed Semantics: Formal Models
Based on Tree Transducers. Springer-Verlag Berlin Heidelberg, 1998.

[GKL+07] E. Grädel, P.G. Kolaitis, L. Libkin, M. Marx, Spencer J.H, M.Y. Vardi,
Y. Venema, and S. Weinstein. Finite Model Theory and Its Applications.
Number XIII in Texts in Theoretical Computer Science. An EATCS
Series. Springer-Verlag, 2007.

[Grä90] E. Grädel. Simple interpretations among complicated theories. Infor-
mation Processing Letters, 35:235–238, 1990.

[GS84] F. Gécseg and M. Steinby. Tree Automata. Akadémiai kiadó, Budapest,
1984.

[GS97] F. Gécseg and M. Steinby. Tree languages. In Handbook of formal
languages, volume III, pages 1–68. Springer-Verlag New York, Inc., New
York, NY, USA, 1997.

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and
Infinite Games, volume 2500 of LNCS. Springer-Verlag, 2002.

137

Bibliography

[Gur85] Y. Gurevich. Monadic Second-Order Theories. In J. Barwise and S. Fe-
ferman, editors, Model-Theoretic Logics, Perspectives in Mathematical
Logic, pages 479–506. Springer-Verlag, 1985.

[Hel89] L. Hella. Definability hierarchies of generalized quantifiers. Ann. Pure
Appl. Logic, 43:235 – 271, 1989.

[Hel96] L. Hella. Logical hierarchies in PTIME. Information and Computation,
129(1):1–19, 1996.

[HKOT02] M. Hoffmann, D. Kuske, F. Otto, and R. M. Thomas. Some relatives of
automatic and hyperbolic groups, 2002.

[HMOS] M. Hague, A.S. Murawski, C.-H. L. Ong, and O. Serre. Collapsible
pushdown automata and recursion schemes. (extended abstract), Nov.
2006.

[Hod82] B.R. Hodgson. On direct products of automaton decidable theories.
Theoretical Computer Science, 19:331–335, 1982.

[Hod83] B.R. Hodgson. Décidabilité par automate fini. Ann. sc. math. Québec,
7(1):39–57, 1983.

[HR04] J. Honkala and M. Rigo. A note on decidability questions related to
abstract numeration systems. Discrete Math., 285:329–333, 2004.

[Imm99] N. Immerman. Descriptive Complexity. Graduate Texts in Computer
Science. Springer, 1999.

[KL06] D. Kuske and M. Lohrey. First-order and counting theories of ω-
automatic structures. In FoSSaCS, pages 322–336, 2006.

[KLP00] G. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases.
Springer-Verlag, 2000.

[KN95] B. Khoussainov and A. Nerode. Automatic presentations of structures.
In LCC ’94, volume 960 of LNCS, pages 367–392. Springer-Verlag, 1995.

[KNRS04] B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic struc-
tures: Richness and limitations. In LICS, pages 44–53, 2004.

[KNU02] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees
are easy. In FoSSaCS’02, volume 2303 of LNCS, pages 205–222, 2002.

[KR01] B. Khoussainov and S. Rubin. Graphs with automatic presentations over
a unary alphabet. Journal of Automata, Languages and Combinatorics,
6(4):467–480, 2001.

138

Bibliography

[KR03] B. Khoussainov and S. Rubin. Automatic structures: Overview and
future directions. J. Aut., Lang. and Comb., 8(2):287–301, 2003.

[KRS03a] B. Khoussainov, S. Rubin, and F. Stephan. Automatic linear orders and
trees (revised). Technical Report CDMTCS-208, Univ. Auckland, NZ,
2003.

[KRS03b] B. Khoussainov, S. Rubin, and F. Stephan. Definability and regularity in
automatic presentations of subsystems of arithmetic. Technical Report
CDMTCS-209, Univ. Auckland, NZ, 2003.

[KRS03c] B. Khoussainov, S. Rubin, and F. Stephan. On automatic partial orders.
In LICS, pages 168–177, 2003.

[KRS04] B. Khoussainov, S. Rubin, and F. Stephan. Definability and regularity
in automatic structures. In STACS ’04, volume 2996 of LNCS, pages
440–451, 2004.

[KRS05] B. Khoussainov, S. Rubin, and F. Stephan. Automatic linear orders and
trees. ACM Transactions on Computational Logic, 6(4):675–700, 2005.

[Kus03] D. Kuske. Is cantor’s theorem automatic? In LPAR, volume 2850 of
LNCS, pages 332–345. Springer, 2003.

[Lib04] L. Libkin. Elements of Finite Model Theory. Texts in Theoretical Com-
puter Science. Springer, 2004.

[Löd03] Ch. Löding. Infinite Graphs Generated by Tree Rewriting. Doctoral
thesis, RWTH Aachen, 2003.

[Loh03] M. Lohrey. Automatic structures of bounded degree. In LPAR, volume
2850 of LNCS, pages 346–360. Springer, 2003.

[Lot83] M. Lothaire. Combinatorics on Words. Vol. 17 of Encyclopedia of Math-
ematics, Addison-Wesley. Reprinted in the Cambridge Mathematical Li-
brary, Cambridge University Press, 1997., 1983.

[Lot02] M. Lothaire. Algebraic Combinatorics on Words. Cambridge University
Press, 2002.

[LS87] H. Lauchli and Ch. Savioz. Monadic Second Order Definable Relations
on the Binary Tree. J. of Symbolic Logic, 52(1):219–226, 1987.

[Mae99] A. Maes. An automata theoretic decidability proof for first-order theory
of 〈N, <, P 〉 with morphic predicate P . J. Automata, Languages and
Comb., 4:229–245, 1999.

[May98] R. Mayr. Decidability and Complexity of Model Checking Problems for
Infinite-State Systems. Doctoral thesis, TU Mn̈chen, 1998.

139

Bibliography

[May00] R. Mayr. Process rewrite systems. Information and Computation, 156(1-
2):264–286, 2000.

[Mey05] A. Meyer. Finitely presented infinite graphs. Thèse de doctorat, Univer-
sité Rennes I, 2005.

[MN80] H. A. Mauer and M. Nivat. Rational bijection of rational sets. Acta
Informatica, 13:365–378, 1980.

[Mor01] Ch. Morvan. Les graphes rationnels. Thèse de doctorat, Université de
Rennes 1, Novembre 2001.

[Mor06] Ch. Morvan. Classes of rational graphs. Journées Montoises ’06, Rennes,
2006.

[MR05] Ch. Morvan and Ch. Rispal. Families of automata characterizing
context-sensitive languages. Acta Informatica, 41(4-5):293–314, 2005.

[MS83] D. E. Muller and P. E. Schupp. Groups, the theory of ends, and context-
free languages. J. Comput. Syst. Sci., 26(3):295–310, 1983.

[MS85] D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata,
and second-order logic. Theor. Comput. Sci., 37:51–75, 1985.

[MS01] Ch. Morvan and C. Stirling. Rational graphs trace context-sensitive
languages. In A. Pultr and J. Sgall, editors, MFCS 01, volume 2136 of
LNCS, pages 548–559, 2001.

[Muc03] A. A. Muchnik. The definable criterion for definability in Presburger
arithmetic and its applications. Theor. Comput. Sci., 290(3):1433–1444,
2003.

[Nab77] A. A. Nabebin. Expressibility in a restricted second-order arithmetic.
Siberian Mathematical Journal, 18(4):588–593, 1977.

[Nie] H. Niemistö. Private communication.

[Ong06] C.-H. L. Ong. On model-checking trees generated by higher-order re-
cursion schemes. In LICS, pages 81–90. IEEE Computer Society, 2006.

[OT05] G. P. Oliver and R. M. Thomas. Finitely generated groups with au-
tomatic presentations. In STACS 2005, volume 3404 of LNCS, pages
693–704. Springer, 2005.

[Ott00] M. Otto. Epsilon-logic is more expressive than first-order logic over finite
structures. J. Symb. Logic, 65:1749 – 1757, 2000.

[Ott01] M. Otto. Logics - Invariances - Games : domain specific algorithmic
model theory. Survey Talk, held at the University of Edinburgh, 2001.

140

Bibliography

[Pan84] J.-J. Pansiot. On various classes of infinite words obtained by iterated
mappings. In Automata on Infinite Words, pages 188–197, 1984.

[PP95] D. Perrin and J.-E. Pin. Semigroups and automata on infinite words. In
J. Fountain, editor, Semigroups, Formal Languages and Groups, NATO
Advanced Study Institute, pages 49–72. Kluwer academic publishers,
1995.

[PP04] D. Perrin and J.-E. Pin. Infinite Words – Automata, Semigroups, Logic
and Games, volume 141 of Pure and Applied Mathematics. Elsevier,
2004.

[PS85] J.-E. Pin and J. Sakarovitch. Une application de la representation ma-
tricielle des transductions. Theor. Comput. Sci., 35:271–293, 1985.

[PS95] G. Păun and A. Salomaa. Thin and slender languages. Discrete Applied
Mathematics, 61(3):257–270, 1995.

[PS05] J.-E. Pin and P. V. Silva. A topological approach to transductions.
Theoretical Computer Science, 340(1):443–456, 2005.

[Rab05] A. Rabinovich. On decidability of monadic logic of order over the nat-
urals extended by monadic predicates. Unpublished note, 2005.

[Rig01] M. Rigo. Numeration systems on a regular language: Arithmetic oper-
ations, recognizability and formal power series. Theoretical Computer
Science, 269:469, 2001.

[Ris02] Ch. Rispal. The synchronized graphs trace the context-sensistive lan-
guages. Electronic Notes in Theor. Comp. Sci., 68(6), 2002.

[RM02] M. Rigo and A. Maes. More on generalized automatic sequences. J. of
Automata, Languages and Combinatorics, 7(3):351–376, 2002.

[RT06] A. Rabinovich and W. Thomas. Decidable theories of the ordering of
natural numbers with unary predicates. Submitted, 2006.

[Rub04] S. Rubin. Automatic Structures. Ph.d. thesis, University of Auckland,
NZ, 2004.

[Rub07] S. Rubin. Automata presenting structures: A survey of the finite-string
case. Manuscript, to appear in Bulletin of Symbolic Logic, 2007.

[Sak03] J. Sakarovitch. Éléments de théorie des automates. Vuibert, 2003.

[See91] D. Seese. The structure of the models of decidable monadic theories of
graphs. Annals of Pure and Applied Logic, 53:169–195, 1991.

141

Bibliography

[SS04] P. V. Silva and B. Steinberg. A geometric characterization of automatic
monoids. The Quarterly Journal of Mathematics, 55:333–356, 2004.

[Sta97] L. Staiger. Rich omega-words and monadic second-order arithmetic. In
CSL, pages 478–490, 1997.

[Str94] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Boston, 1994.

[SYZS92] A. Szilard, Sh. Yu, K. Zhang, and J. Shallit. Characterizing regular
languages with polynomial densities. In MFCS, pages 494–503, 1992.

[Tho97] W. Thomas. Languages, automata, and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Languages, volume III, pages
389–455. Springer, New York, 1997.

[TL94] Wolfgang Thomas and Helmut Lescow. Logical specifications of infinite
computations. In A Decade of Concurrency, Reflections and Perspec-
tives, REX School/Symposium, volume 803 of LNCS, pages 583–621.
Springer-Verlag, 1994.

[Wal02] I. Walukiewicz. Monadic second-order logic on tree-like structures. The-
oretical Computer Science, 275:311–346, 2002.

142

Index

(p, q)-synchronous
transduction, 13

<α, 104
D=n, 64
D≤n, 64
T<k-llex

, 101
AutStr, 28
∆1, 22
∆2, 22
FO, 22
HR, 51
HR-equational graph, 51
INR, 121
IR, 121
MSO, 23
MSO-friendly presentation, 85, 93, 104,

113, 119, 130
MSO-marking, 53, 58
MSO-theory, 37, 86
MSO-transduction, 26
PR, 47
Pref(L), 11
Rat, 13
Rec, 13
Reg, 13
SαRat, 13
SRat, 13
VR, 53
VR-equational graph, 53
VRA, 54
VRS, 55
α-convolution, 13
α-lexicographic word, 104
α-synchronous, 13
SΣ, 39

W, 88
Wα, 104
Wk, 88
∃∞, 23
∃(r,m), 23
T<k-llex

, 101
Qreg
n , 124

Qreg, 124
<k-llex , 88
⊗k, 88
⊗k(u

(1), . . . , u(k)), 88
Pref(D), 64
ωAutStr, 28
ω-automatic presentation

injective, 34
ω-word, 81
ωTAutStr, 28
PAutStr, 43
ρw, 118
TAutStr, 28
1AutStr, 42
ϑ<k-llex

, 112
cψd (w), 91
gL, 11
k-lex word, 88
k-merge, 88
k-morphic word, 98
k-split, 88
u(i), 88
wk−llex, 99
2DGSM, 110

asynchronous
automatic group, 57
automatic structure, 57
automaton, 12, 56

143

Index

product, 54
automatic presentation, 28

injective, 28, 32
automatic structure, 28

bounded degree, 129
bounded delay, 67
Büchi-Bruyére Theorem, 39, 77

Champernowne word, 88, 98, 106
closure

of (ω)(T)AutStr under
direct products, 31
factoring, 31
interpretations, 31

of k-lex words under
MSO-interpretations, 94
DGSM mappings, 94
homomorphic mappings, 88

of automatic words under
homomorphic mappings, 88

Cobham-Semenov theorem, 74, 77, 122
Cobham-Semenov-like relationship, 14
complete structure, 31, 38, 39, 42, 46,

74, 121
contraction, 91
Contraction Lemma, 92, 114

derived state space, 89
DGSM, 16, 94

equivalent presentations, 46
extensions

of first-order logic, 37

Fibonacci numeration system, 78
Fibonacci word, 83
Fundamental Theorem, 31

generalised automatic structures, 59

HOR Lemma, 91

index transition system, 84
interpretation

FO, 24

MSO-, 25
first-order, 24, 38, 44, 53, 58, 94

one-dimensional, 43
monadic, 43, 53, 57

multi-dimensional, 44
restricted, 94, 99

subset, 41, 55, 56
antichain, 55
bounded, 44
finite, 40

intrinsic regularity, 121, 127
inverse homomorphic transformations,

89
inverse rational substitution, 53
isomorphism

of k-lex words, 107
of automatic structures, 37

length-lexicographic order, 78
locality, 129
locally finite relation, 63

Minsky-machines, 47
morphic word, 82, 84
morphism

of k-stacks, 97

naming function, 28
normal form

of MSO formulae, 86, 114
of k-lex presentation, 88

numeration system
abstract, 83

order-invariant formula, 126, 128
ordering

α-lexicographic, 104
k-lexicographic, 88
length-lexicographic, 84

p-automatic structures, 43
PR-transductions, 112
prefix-recognisable

graph, 53, 58
relation, 47, 111

144

Index

structure, 119
prefix-rewriting, 48
pumping, 63
pushdown automaton, 30, 51, 53

higher-order, 58
collapsible, 59

pushdown hierarchy, 58, 101, 103

quantifier
∃∞, 23
∃(r,m), 23
generalised, 123
modulo counting, 32, 122, 125
Ramsey, 128
regularity preserving, 122, 124, 128
unary, 124, 127

random graph, 66
rational

graph, 56
relation, 12
transduction, 16
tree, 57

reachability, 37
recognisable relation, 13
recursion scheme, 58

higher-order, 59
safe,higher-order, 58

regular language
growth of, 63

regular relation, 12
relation

locally finite, 63
rigidly automatic, 74, 119, 121
run-length encoding, 118

semi-synchronous, 13
rational relation, 12
transduction, 13
translation, 45

semigroup, 20
ω-semigroup, 20, 33

Skolem arithmetic, 29, 65
Smarandache sequence, 88
stuttering word, 95

synchronised product, 55
synchronised rational, 12

Thue-Morse sequence, 83
transducer

#-driven sequential, 99
transduction, 109

(p, q)-synchronous, 13
MSO-, 26
2DGSM, 110
continuous, 109, 113
PR-, 112
rational, 16
representable, 117
semi-synchronous, 13, 72

transition morphism, 84
translation, 67, 109

length-preserving, 67
semi-synchronous, 45
weakly regular, 67

tree transducer, 113
Turing machines, 30, 37

ultimately periodic word, 88, 98
unary automatic structures, 42, 43
unfolding, 57

weakly regular translation, 67
word

α-lex, 104
ω-word, 81
k-lex, 88
k-morphic, 98, 103
Champernowne, 88, 98, 106
Fibonacci, 83
morphic, 82, 84
rich, 106
stuttering, 95
Thue-Morse, 83
ultimately periodic, 88, 98

145

Index

146

Lebenslauf

Zur Person

Name: Vince Bárány

Geboren: 8. Dezember 1976, Budapest, Ungarn

Staatsangehörigkeit: ungarisch

Bildungsgang

1982 - 1990 Grundschule in Budapest

1991 - 1993 Gymnasium in Los Angeles

1993 - 1995 Gymnasium in Budapest

1995 Abitur

1997 - 2003 Studium der Informatik an der
Eötvös Loránd Universität (ELTE), Budapest

07/2001 B.Sc. in Informatik (ELTE)

2001 - 2002 ’Master’s Programme’ an der Vrije Universiteit Amsterdam
(VU)

08/2002 M.Sc. in Informatik (VU)

SS 2003 Teilnahme an der ’Master Class’ des Mathematical Research
Institutes der Niederlande.

07/2003 M.Sc. in Informatik (ELTE)

seit 10/2003 Wissenschaftlicher Mitarbeiter an der Rheinisch-Westfälis-
chen Technischen Hochschule Aachen, wo unter der Leitung
von Prof. Dr. Erich Grädel die vorliegende Dissertation
entstand.

September 26, 2007

	Introduction
	From finite to algorithmic model theory
	Automatic structures
	Transition graphs of infinite state processes

	Outline of the thesis

	Preliminaries
	Words and trees
	Finite automata on finite words
	Multi-tape automata
	Semi-synchronous Rational Relations
	Rational Transductions

	Finite Automata on infinite words
	Finite automata on trees
	Semigroups
	Omega-semigroups

	Logics
	Interpretations

	Finite Presentations of Structures
	Automatic Presentations
	Injective presentations
	Decidable and Undecidable Problems

	Logical Interpretations as Presentations
	First-Order Interpretations
	Subset Interpretations

	Restrictions
	Unary Presentations
	p-Automatic Presentations
	Prefix-Recognisable Presentations
	(Regular) Ground Term Rewriting

	Equational Presentations
	HR-equational graphs
	VR-equational graphs
	VRA-equational graphs
	VRS-equational graphs

	Other means of Presentations
	Rational graphs
	Caucal's pushdown hierarchy
	Simply-typed recursion schemes
	Generalised automatic structures

	Landscape and Summary

	Analysis of Presentations
	General Tools: Pumping and Growth Arguments
	Equivalent Presentations
	Semi-synchronous transductions

	Case Studies
	Complete Structures
	Subset Envelopings
	Presburger Arithmetic

	Automatic Words -- a hierarchy of higher-order morphic words
	Morphic words and regular numeration systems
	MSO-friendly presentations
	k-lexicographic presentations
	MSO-friendliness, Closure and Decidability
	Technical tools: automata transformations
	k-lexicographic presentations are MSO-friendly

	Hierarchy Theorem
	k-morphic words
	Equivalent characterisations
	Connection to the pushdown hierarchy
	Remarks and questions

	Regularity Preserving Transductions
	MSO-definable string transductions
	Translations mapping prefix-recognisable relations to regular ones
	Alternative proof of MSO-friendliness of k-lex presentations

	Representable transductions
	Run-length encodings

	Definability and Intrinsic Regularity
	Logical Extensions
	Generalised Quantifiers
	Order-Invariant Formulas
	Separating Example
	The hierarchy of regularity preserving quantifiers

	More examples, remarks and questions
	Structures of Bounded Degree
	Prefix-ordered trees

	Bibliography
	Index

