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1 Introduction 

 

Catalysis is the acceleration of a chemical reaction by means of a substance, called a catalyst, 

which is not consumed in the overall reaction. Also, catalysts can allow reactions to take place, 

which are conventionally unable to proceed, making innovative synthetic approaches possible. 

Therefore, metal-catalyzed reactions are used as key steps in organic synthesis especially for 

total syntheses of natural products.  

 

Catalysts are classified as either homogeneous or heterogeneous. In heterogeneous catalysis, 

the catalyst provides a surface on which the reaction takes place. Heterogeneous catalyst is 

widely used for industrial processes. On the other hand, homogeneous catalysts are in the 

same phase as the reactants. An important example of homogeneous catalysis is ruthenium-

BINAP-catalyzed asymmetric hydrogenation, which was developed by Noyori. This method 

was successfully applied on an industrial scale for the enantioselective synthesis of L-menthol 

by Takasago International Corporation in 1983. Nowadays, L-menthol is produced on a scale 

of more than 150 tons per year by Takasago. In 2001, Noyori, Knowles and Sharpless were 

jointly awarded the Nobel Prize for their contributions to the development of enantioselective 

hydrogenation and oxidation. Another award that emphasizes the value placed on catalysis by 

the scientific community was the 2005 Nobel Prize for chemistry, which was awarded to 

Chauvin, Grubbs and Schrock for the development of practical, catalytic olefin metathesis. 

 

In the field of homogeneous catalysis, transition metal-catalyzed reactions have been 

extensively investigated. For instance, palladium-catalyzed reactions including the Heck,1 

Stille,2 Hiyama3 and Suzuki4 reactions are often employed in organic synthesis. 

 

Organocatalysis5  has recently attracted attention as a means of applying small non-toxic 

organic molecules as catalysts as part of a more environmentally acceptable approach to 

synthesis. However, product purification can be problematic as high catalyst loadings are 

                                                 
1 a) R. F. Heck, J. P. Nolley Jr., J. Org. Chem.1972, 37, 2320. b) R. F. Heck, Org. React. 1982, 27, 345. 
2 D. Milstein, J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636. 
3 Y. Okude, S. Hirano, T. Hiyama, H. Nozaki, J. Am. Chem. Soc. 1977, 99, 3179. 
4 a) N. Miyaura, A. Suzuki, J. Chem. Soc., Chem. Commun. 1979, 866. b) N. Miyaura, K. Yamada, A. Suzuki, 
Tetrahedron Lett. 1979, 3437. c) A. Suzuki, Pure. Appl. Chem. 1985, 57, 1749. d) N. Miyaura, A. Suzuki, A. 
Chem. Rev. 1995, 95, 2457. 
5 P. I. Dalko, L. Moisan, Angew. Chem. 2004, 116, 5248, Angew. Chem. Int, Ed. 2004, 43 5138 and references 
therein. 
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required in many organocatalytic reactions. Thus, highly-active organocatalysts are desirable 

to make organocatalysis a more practical undertaking. 

 

In contrast, transition metal and lanthanide catalysts have been developed that allow for the 

use of extremely low catalyst loadings. However, from the point of view of industrial 

application, most of these catalysts involve prohibitively high costs and utilize toxic metals. In 

this scenario, cheap and non-toxic iron may become the element of choice for catalyst 

development. 

 

1.1 Iron-Catalyzed Reactions 

 

Iron is the 4th most abundant element in the earth’s crust. The common minerals, magnetite 

and hematite can be changed readily to metallic iron by reduction in a blast furnace. At last 

steel can be obtained by reducing the content of carbon. Thus, iron is available on a large 

scale as well as at low and stable cost. Conveniently, most iron salts and catalysts are 

commercially available. 

 

Classically, an iron salt such as iron (III) trichloride was used in Friedel-Crafts reactions as a 

Lewis acid.6 Additionally, iron-catalyzed cross-coupling has recently been reported.7 These 

days, iron catalysts can be applied for many reactions.8 In iron-oxidation chemistry, nitrogen 

containing ligands play a significant role to achieve efficient reactions. 

Most transition metals fall into the category of soft metals. On the other hand, iron is 

considered a hard metal. In general, hard metals interact preferentially with hard elements. 

Therefore, soft elements such as phosphorus interact poorly with iron, whereas a hard element 

such as nitrogen can be useful as a ligating atom of a ligand. In this scenario, the design and 

development of convenient methods for the preparation of effective nitrogen containing 

ligands are absolutely imperative to achieve high reactivities. 

 

1.2 Nitrogen Containing Ligands 

 

                                                 
6 D. D. Diaz, P. O. Miranda, J. I. Padron, V. S. Martin, Current Org.Chem. 2006, 10, 457. 
7 a) M. Nakamura, K. Matsuo, S. Ito, E. Nakamura, J. Am Chem. Soc. 2004, 126, 3686. b) A. Fürstner, A. 
Leitner, M. Méndez, H. Krause, J. Am. Chem. Soc. 2002, 124, 13856. 
8 C. Bolm, J. Legros, J. Le Paih, L. Zani, Chem. Rev. 2004, 104, 6217 and references therein. 
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In catalysis, ligands play very important roles. Phosphine ligands have been especially well 

studied in transition metal-catalyzed processes. A typical, efficient phosphine ligand is 

BINAP. This ligand is applicable not only in transition metal-catalyzed asymmetric reactions 

but also in cross coupling reactions such as N-arylations. Most phosphine ligands are air 

sensitive because the phosphine can be easily oxidized to the corresponding phosphine oxide. 

Besides, organophosphorous compounds are often highly toxic and foul smelling. In general, 

re-utilization of phosphine ligands is very difficult due to their sensitivity towards oxidation 

and deactivation after reaction. For the development of a new generation of ligands, the use of 

non-toxic nitrogen containing compounds has attracted great attention. Nitrogen containing 

ligands can be manipulated and synthesized more easily than phosphines due to their higher 

air stability. Also, the ligand recycling problem can be avoided. Nowadays, the design of 

nitrogen containing catalysts and their synthesis are studied by many chemists. 

 

1.2.1 1,4,7-Triazacyclononane (TACN) Derivatives 

 

One of the nitrogen containing ligands, 1,4,7-Triazacyclononane (TACN) (1), which is called 

“tack-en” is one of the most famous and popular new classes of cyclic tridentate ligand in 

coordination chemistry. TACN is a tri-oligomer of aziridine. Other macrocyclic 

azacycloalkane ligands derived from aziridine, such as  1,4-diazacyclohexane (piperazine), 

1,4,7,10-tetrazacyclodecane (cyclene) and ring expanded and contracted triazacycloalkanes 

like 1,5,9-triazacyclododecane 9  and 1,3,5-triazacyclohexane 10  have also been described 

(Figure 1). In addition, heterocyclononane, 1,4,7-triphosphacyclononane11 and  12-crown-4 

are included in this nitrogenated family of ligands. 

 

Figure 1. Analogues of azacycloalkanes. 

                                                 
9 a) R. W. Alder, R. W. Mowlam, D. J. Vachon, G. R. Weisman, J. Chem. Soc., Chem. Commun. 1987, 12, 886. 
b) N. G. Lukyanenko, S. S. Basok, L. K. Filonova, J. Chem. Soc., Perkin Trans 1 1998, 3141. c) T. W. Bell, H-J. 
Choi, W. Harte, M. G. B. Drew, J. Am. Chem. Soc. 2003, 125, 12196. d) R. C. Hoye, J. E. Richman, G. A. 
Dantas, M. F. Lightbourne, L. S. Shinneman, J. Org. Chem. 2001, 66, 2722. 
10 V. Mévellec, A. Roucux, Inorg. Chim. Acta 2004, 357, 3099. 
11 P. G. Edwards, R. Haigh, D. Li, P. D. Newman, J. Am.Chem. Soc. 2006, 128, 3819. 
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Due to its specific macrocyclic skeleton and strong basicity, 12  TACN can behave as a 

tridentate ligand and thus methods for the synthesis of this class of compound are of interest. 

Actually, the history of TACN is still very short. TACN ligands have been prepared by 

syntheses involving one of three of the retrosynthetic disconnections A-C (Scheme 1). The 

first synthesis of TACN was described in 1972. This synthesis followed disconnection route 

A, and in a forward sense, involved condensation of ditosylethylene glycol and 

tritosyldiethylene triamine 2
13 Afterwards, tritosyl-TACN 3 was synthesized by Watkinson 

using disconnection B. 14  In this case, the cyclization takes place between tetratosylated 

derivative 4 and TsNH2. Disconnection C was used for the synthesis of chiral 1,4,7-trimethyl-

2,3-cyclohexano-TACN ligand 23. This last approach consists of the cyclization of 1,2-

ditosylethylene-1,2-diamine with 2,2’-ditosyloxydiethyleneamine. In each route, the use of 

tosyl groups as leaving groups for cyclization is important. If ethylene dihalides are used the 

cyclization is less efficient.15 

 

Scheme 1. Synthetic routes to the TACN framework. 

                                                 
12 N. C. Meyer, C. Bolm, G. Raabe, U. Kölle, Tetrahedron 2005, 61, 12371. 
13 a) H. Koyama, T. Yoshino, Bull. Chem. Soc. Jap. 1972, 45, 481. b) J. E. Richman, T. J. Atkins, J. Am Chem. 

Soc. 1974, 96, 2268. 
14 S. Pulacchini, M. Watkinson, Eur. J. Org. Chem. 2001, 4233. 
15 R. C. Hoye, J. E. Richman, G. A. Dantas, W. J. Lightbourne, L. S. Shinneman, J. Org. Chem. Soc. 2001, 66, 
2722. 
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In these syntheses, the final detosylation requires harsh conditions. To overcome the 

deprotection difficulties, a synthesis of TACN with trimethylsilylethanesulfonyl (SES-) 

protecting groups was developed following disconnection route A (Scheme 2). 

 

Scheme 2. Synthesis of TACN 1 using SES protecting groups. 
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In this procedure, all of the SES protecting groups on TACN 6 can be readily removed by 

treatment with cesium fluoride in DMF at 90 ˚C, affording TACN 1 in 68% yield.16 The 

TACN skeleton has been modified on various positions such as the nitrogen atom and 

methylene groups to provide a diverse array of potential ligands. As a simple modification of 

the nitrogen atoms, trialkyl-TACN derivatives (Me and i-Pr) have been synthesized. 

Trimethyl-TACN 7 can be prepared by reductive alkylation of TACN with formaldehyde in 

formic acid. Also, 1,4,7-tri-(i-Pr)-TACN 8 can be prepared from TACN and isopropyl 

bromide (1:4) in toluene over KOH at 80-90 ˚C. 

 

Figure 1. Modification of TACN by N-alkylation. 

                                                 
16 S. M. Weinreb, D. M. Demko, T. A. Lessen, Tetrahedron Lett. 1986, 27, 2099. 
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Several applications of trialkyl-TACN were subsequently reported. For example, remarkably 

efficient copper catalyzed aziridination with tri(i-Pr)-TACN 8 has been demonstrated.17 Also, 

ruthenium-catalyzed dihydroxylation of alkenes with 1,4,7-tri(Me)-TACN (tmtacn) 9 has 

been reported.18 

Modifications of TACN are facile and can provide various multidentate ligands. For example, 

by modification at the nitrogen atoms, 2-pyridylmethyl-pendant TACNs 10, which can behave 

as tetradentate ligands, have been synthesized (Figure 2). 

 

Figure 2. 2-Pyridylmethyl pendant TACN derivatives. 
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In general, two routes provide access to mono 2-pyridylmethyl pendant mptacn. One route 

consists of the mono alkylation of di(Boc)-TACN (Scheme 3).19 Following Boc protection, 

mono alkylation can be achieved. In the last step, the Boc groups can be removed by 

treatment with TFA in chloroform. 

 
                                                 
17 J. A. Halfen, J. K. Hallman, J.A. Schulz, J. P. Emerson, Organometallics 1999, 18, 5435. 
18 W.-P. Yip, W.-Y, Yu, N. Zhu, C.-M. Che, J. Am. Chem. Soc. 2005, 127, 14239. 
19 a) G. L. Gillian, T. D. H. Bugg, J. Am. Chem. Soc. 2001, 123, 5030. b) A. J. Dickie, D. C. R. Hockless, A. C. 
Willis, J. A. Mckeon, W. G. Jackson, Inorg. Chem. 2003, 42, 3822. c) M. Tamura, Y. Urano, k. Kikuchi, T. 
Higuchi, M. hirobe, T. Nagano, J. Organomet. Chem. 2000, 611, 586. 
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Scheme 3. Synthesis of 2-pyridylmethyl pendant TACN 15 via Boc protected TACN. 
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The second route consists of elaboration of orthoamide 16 (Scheme 4). Orthoamide 16 can be 

prepared from TACN 1 by treatment with dimethylformamide dimethyl acetal or 

orthoformate. 20  Mono alkylation proceeds by reacting 2-chloromethylpyridine with the 

orthoamide in water at pH 9 for 7 days affording 15a in good yield (91%).21 

 

Scheme 4. Synthesis of 2-pyridylmethyl pendant TACN via orthoamide. 
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Dmptacn 10b, which can act as a tetradentate ligand was synthesized by reductive alkylation 

of TACN with formaldehyde in formic acid.22 Additionally, tmptacn 12, which can be a 

hexadentate ligand, was synthesized by global alkylation of TACN 1.19, 23 

As described before, coordinating groups can be attached to the TACN framework by 

modification of its nitrogen atoms. A hexadentate ligand, 1,4,7-tris-o-aminobenzyl TACN and 

its metal complexes have been synthesized (Scheme 5).24 However, its potential as a catalyst 

has not been investigated yet. 

 

Scheme 5. Synthesis of 1,4,7-tris-o-aminobenzyl TACN 18. 

                                                 
20 a) J. M. Erhardt, J. D. Wuest, J. Am. Chem. Soc. 1980, 102, 6364. b) T. J. Atkins, U. S. Patents 4085106 and 
4130715. 
21 P. C. McGowan, T. J. Podesta, M. Thornton-Pett, Inorg. Chem. 2001, 40, 1445. 
22 G. A. MacLachlan, G. D. Fallon, R. L. Martin, B. Moubaraki, K. S. Murray,  L. Spiccia, Inorg. Chem. 1994, 
33, 4663. 
23 H. Tsukube, K. Yamashita, T. Iwachido, M. Zenki, J. Chem. Soc., Perkin Trans 1991, 1661. 
24 a) O. Schlager, K. Wieghardt, H. Grondey, A. Rufińska,  B. Nuber, Inorg. Chem. 1995, 34, 6440. b) O. 
Schlager, K. Wieghardt, B. Nuber, Inorg. Chem. 1995, 34, 6449. c) O. Schlager, K. Wieghardt, B. Nuber, Inorg. 

Chem. 1995, 34, 6456. 
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For the use of the TACN skeleton in metal-catalyzed asymmetric reactions, several chiral 

ligands have been synthesized (Figure 3). 

 

Figure 3. Chiral TACN ligands. 
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Each chiral ligand, which has chiral moieties located either pendant to the nitrogen or in the 

macrocyclic backbone, was synthesized by a different procedure. In the case of chiral ligand 

19, which has an achiral backbone, the chiral part has to be introduced before formulation of 

the TACN framework. For example, the first chiral TACN derivative was successfully 

synthesized by disconnection route A, whereas disconnection route B failed.25 First, chiral 

aziridines were prepared from chiral amino alcohols in high yields, ring opening reactions 

with benzylamine then afforded acyclic triamines (Scheme 6). Unfortunately, the benzyl 

protected triamines could not be cyclized directly. Therefore, the benzyl group was removed 

by hydrogenolysis and replaced with a tosyl moiety. 

 

Scheme 6. Synthesis of intermediates for chiral TACN derivatives. 

                                                 
25 G. Argouarch, C.L. Gibson, G. Stones, D. C. Sherrington, Tetrahedron Lett. 2002, 43, 3795. 
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At last, desired products 19a-c were obtained in good yields by Richmann-Atkins cyclization 

of the corresponding tritosyl triamines followed by deprotection of the N-tosyl groups by Li-

NH3 in EtOH (Scheme 7).  

 

Scheme 7. Synthesis of chiral TACN derivatives. 
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These chiral ligands were examined in manganese-catalyzed epoxidation of styrene. 

Unfortunately however, the epoxide was obtained in low yields with only 16-23% ee (Scheme 

8). 

 

Scheme 8. Mn-catalyzed epoxidation of styrene with chiral TACN ligands 19. 
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A second type of chiral TACN ligand, which bears achiral side chains at the nitrogen atoms, 

can be easily prepared by using ring-opening reactions of chiral epoxides with TACN. 26 The 

application of this ligand class in manganese-catalyzed epoxidation of olefins was 

demonstrated by Bolm et al. (Scheme 9) 27. 

 

Scheme 9. Synthesis of pendant chiral TACN derivatives. 
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26 a) I. A. Fallis, L. J. Farrugia, N. M. Macdonald, R. D. Peacock, J. Chem. Soc., Dalton Trans 1993, 2759. b) J. 
M. Weeks, M. A. Buntine, S. F. Lincoln, E. R. T. Tiekink, K. P. Wainwright, J. Chem. Soc. Dalton Trans 2002, 
2157.  
27 C. Bolm, D. Kadereit, M. Valacchi, Synlett 1997, 687. 
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C3-symmetric chiral ligand trispyrroridine-TACN (TP-TACN) 21 was prepared from L-

proline derived cyclotripeptide 24 (Scheme 10).28 

 

Scheme 10. Synthesis of chiral TP-TACN ligand. 
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A monofunctionalized Chiral TACN ligand 22 was synthesized by a ring opening reaction of 

lactone 25 with di-(Boc) TACN 24 followed by deprotection (Scheme 11).29 

 

Scheme 11. Synthesis of chiral TACN ligand 22. 
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A synthesis of novel chiral ligand 23 was developed by Watkinson et al.30 In their study, 

disconnection route C successfully provided the desired product (Scheme 12). 

 

Scheme 12. Synthesis of chiral TACN ligand 23. 

                                                 
28 C. Bolm, N. Meyer, G. Raabe, T. Weyhermüller, E. Bothe, Chem. Commun. 2000, 2435. 
29P. Rossi, F. Felluga, P. Scrimin, Tetrahedron Lett. 1998, 39, 7159. 
30S. Pulacchini, K. F. Sibbons, K. Schastri, M. Motevalli, M. Watkinson, H. Wan, A. Whiting, A. P. Lightfoot, J. 

Chem. Soc., Dalton Trans 2003, 2043. 
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In 1997, the synthesis of chiral TACN ligand 23 and its manganese complex was patented by 

Beller et al. 31 Some applications of this chiral ligand in the oxidations of olefins, alkanes and 

alcohols were recently reported.32 

As mentioned previously, some TACN ligands have been successfully used in metal-

catalyzed oxidation reactions.33 , 34 Several metal complexes with TACN type ligands have 

been reported. 10, 13, 21, 22, 35,  36, 37, Also, catechol oxygenase reactivity of an iron(III) complex 

with TACN ligands was demonstrated. As an application for these chiral ligands, manganese-

catalyzed epoxidation of styrene has been described by Bolm28 and Argouarch.25 

To provide a means of separating the product and the catalyst to allow for catalyst recycling 

and easy product purification, the concepts of catalyst immobilization and perfluorination 

have been adopted. As an example of immobilization, polymer supported TACN was 

synthesized and its application in manganese-catalyzed oxidation was demonstrated (Scheme 

13).38 

 

Scheme 13. Synthesis of a polymer supported chiral TACN ligand. 

                                                 
31 M. Beller, T. Ahmed, F. R. Walter, S. Bernd, Patent DE 19523891. 
32 V. B. Romakh, B. Therrien, G. Süss-Fink, G. B. Shulpin, Inorg. Chem. 2007, 46, 1315. 
33 For Fe-catalyzed oxidations, see: a) E. Y. Tshuva, D. Lee, W. Bu, S. J. Lippard, J. Am. Chem. Soc. 2002, 124, 
2416. 
34 For Mn-catalyzed epoxidations, see: a) A. Murphy, A. Pace, T. D. P. Stack, Org. Lett. 2004, 6, 3119. For Mn-
catalyzed oxidation of sulfide, see: b) J. E. Barker, T. Ren, Tetrahedron Lett. 2004, 45, 4681. 
35 J. L. Sessler, J. W. Silbert, V. Lynch, J. Am. Chem. Soc. 1990, 29, 4143. 
36 For Fe-complexes, see: a) A. L. Gott, P. C. McGowan, T. J. Podesta, M. Thornton-Pett, J. Chem. Soc., Dalton 

Trans 2002, 3619. b) L. Siccia, G. D. Fallon, M. J. Grannas, P. J. Nichols, E. R. T. Tiekink, Inorg. Chim. Acta 
1998, 279, 192. 
37For Co-complexes, see: a) A. R. Siedle, L. H. Pignolet, Inorg. Chem. 1982, 21, 3090. b) P. S. Roy, K. 
Wieghardt, Inorg. Chem. 1987, 26, 1885. c) K. Wieghardt, P. Chaudhuri, B. Nuber, J. Weiss, Inorg. Chem. 1982, 
21, 3086. 
For Mn-complexes, see: f) S. J. Brudenell, L. Spiccia, A. M. Bond, G. D. Fallon, D. C. R. Hockeless, G. Lazarev, 
P. J. Mahon, E. R. T. Tiekink, Inorg. Chem. 2000, 39, 881. g) G. D. Fallon, G. A. McLachlan, B. Moubaraki, K. 
S. Murray, L. O’Brien, L. Spiccia, J. Chem. Soc., Dalton Trans 1997, 2765. 
38 a) A. Grenz, S. Ceccarelli, C. Bolm, Chem. Commun. 2001, 1726. b) V. V. Subba Rao, D. E. De Vos, T. Bein, 
P. A. Jacobs, Chem. Commun. 1997, 355. c) D. E. De Vos, S. de Wildeman, B. F. Sels, B. J. Grobet, P. A. 
Jacobsen, Angew. Chem. 1999, 38, 980, Angew. Chem. Int. Ed. 1999, 38, 937. 
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An example of fluorous biphasic catalysis (FBC), using a perfluoroponitailed TACN in a 

metal-catalyzed oxidation has been reported.39 

 

Unfortunately, due to industrial interest in the ligand class, many kinds of TACN derivatives 

have been patented. Consequently, TACN chemistry has not been developed very extensively 

because patent protection limits the development of new industrial applications. 

 

Although variations of the existing methods have been developed to overcome this problem, 

there are still only a few examples in which an aryl group is introduced at the nitrogen atoms 

of the TACN framework. In order to make a more rigid ligand and to increase the strength of 

metal-ligand interaction by reducing the chelate size from a 6 to a 5 membered ring, tris(o-

aminophenyl)-TACN has been synthesized. As an example, the first N-aryl-TACN was 

obtained by arylation of TACN with o-nitro-phenyl fluoride 24 under basic conditions 

(Scheme 14).40 

 

Scheme 14. Synthesis of a rigid hexadentate TACN ligand. 

                                                 
39 J -M. Vincent, R. Rabion, V. K. La Yachandra, R. H. Fish, Angew. Chem. 1997, 109, 2438, Angew. Chem.Int. 

Ed. 1997, 36, 2346. 
40 I. A. Fallis, R. D. Farley, K. M. Abdul Malik, D. M. Murphy, H. J. Smith, J. Chem. Soc., Dalton Trans 2000, 
3632 and references therein. 
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The nitro groups in the ortho positions were reduced by hydrogenation with Pd/C to give a 

hexadentate TACN ligand 25. Furthermore, complexation reactions with several metal(II) 

perchlorates such as zinc, nickel, copper and iron in degassed ethanol were successful and 

crystal structures were determined by X-ray analysis (Scheme 15). As expected, these 

complexes have extremely rigid structures. 

 

Scheme 15. Complexation with several kinds of metal(II) perchlorates. 
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Unfortunately, 5 years after the first report, arylation of TACN with p-nitro-aryl fluoride was 

patented because of great interest from industry.41 Another drawback is that the procedure 

probably proceeds by a SNAr mechanism and would thus be limited to aryl halides bearing 

strongly electron withdrawing groups. Moreover, the claim in the patent includes only 

specific substrates so that other aryl-TACN derivatives are patent-free. In fact, this field is 

still relatively unexplored. 

 

Another relatively new concept involves the synthesis of novel chiral, monoprotonated tmtacn 

26 by treatment of tmtacn with perchloric acid. The structure of the salt was determined X-ray 

                                                 
41 L. Vidal, S. Sabelle, T.-M. Ly-Carry, U.S. Patent 2005/0120494 A1. 
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crystallography.42 If these monoprotonated derivatives are applicable as chiral TACN ligands, 

a new type of chiral proton source can be developed (Figure 4). 

 

Figure 4. TACN derived chiral proton sources. 
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1.2.2 Dipyridylamine Type Ligands 

 

A number of nitrogen containing bidentate ligands such as bipyridine and phenanthroline, 

which form five membered-ring chelates, have been reported. 43, 44 Also, applicability of these 

ligands in asymmetric metal-catalyzed synthesis has been demonstrated. 45  Terpyridine 

derivatives46 can be used as tridentate ligands in metal-catalyzed reactions. 

However, dipyridylamine type ligands, which give six membered-ring chelates have not been 

intensively studied. As representative analogues, bis(pyridyl)silane,47 chiral dipyridylketone48 

and 2,2’-disubstituted dipyridylpropane49 were introduced. Recently, non-heme iron catalysts 

with tris(2-pyridylmethyl)amine (tpa) type ligands50 and their derivatives have been studied 

by Que, Jr. et al.51 

                                                 
42 K. Wieghardt, S. Brodka, E. M. Peters, K. Peters, A. Simon, Z. Naturforsch., Teil B 1987, 42, 279. 
43 a) C. Duboc-Toia, S. Ménage, C. Lambeaux, M. Fontecave, Tetrahedron Lett. 1997, 38, 3727. b) C. Duboc-
Toia, S. Ménage, R. Y. N. Ho, L. Que, Jr., C. Lambeaux, M. Fontecave, Eur. J. Inorg. Chem. 2002, 111. c) X. 
Liu, A. Qiu, D. T. Sawyer, J. Am. Chem. Soc. 1993, 115, 3239. 
44a) C. Bolm, In Advanced in Organic synthesis via Organometallics, R. W. Hofffmann, K. H. Dötz, Eds.; 
Vieweg: Wiesbaden, 1991; p 223. b) A. V. Malkov, P. Kocovsky, Curr. Org. Chem.  2003, 7, 1737. 
45 a) G. Cheluchi, R. P. Thummel, Chem. Rev. 2002, 102, 3129. b) N. C. Fletcher, J. Chem. Soc. Perkin Trans. 1 
2002, 1831. c) F. Fache, E. Schulz, M. L. Tommasino, M. Lemaire, Chem. Rev. 2000, 100, 2159. 
46 a) Y. Yamamoto, T. Tanaka, M. Yagi, M. Inamoto, Heterocycles 1996, 42, 189. b) S. Tu, T. Li, F. Shi, Q. 
Wang, J. Zhang, J. Xu, X. Zhu, X. Zhang, S. Zhu, D. Shi, Synthesis 2005, 3045. 
47 M. E. Wright, S. A. Svejda, M. J. Jin, M. A. Peterson, Organometallics 1990, 9, 136. 
48 H.-L. Kwong, , L.-S. Cheng, W.-L. Wong, W.-T, Wing, Eur. J. Inorg. Chem. 2000, 1997. 
49 G. Cheluchi, G. Loriga, G. Murineddu, G. A. Pinna, Tetrahedron Lett. 2002, 43, 8599. 
50 Z. Tyeklár, R. R. Jacobson, N. Wei, N. N. Murthy, J. Zubieta, K. D. Karlin, J. Am. Chem. Soc. 1993, 115, 
2677. 
51 M. Costas, A. K. Tipton, K. Chen, D.-H. Jo, L. Que, Jr, J. Am. Chem. Soc. 2001, 123, 6722. 
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Dipyridylbenzylamine 31 can be prepared by alkylation of dipyridylamine with benzyl 

chloride and sodium hydride in refluxing DMF (Scheme 16). 52 Additionally, an X-ray 

structure of its copper complex was reported. 

 

Scheme 16. Classical procedure for the synthesis of dipyridylbenzylamines. 
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As one application of chiral dipyridylamine ligands, the copper-catalyzed asymmetric allylic 

oxidation of cyclohexene based on the Kharasch-Sosnovski reaction has been reported by J. C. 

Frison (Scheme 17). 53 

 

Scheme 17. Copper-catalyzed allylic oxidation. 

O

O

O
OH

acetone, r.t., 3 h

Cu(OTf)2, L*, PhNHNH2
+ N

H
N

N
L*:

91%, 17%ee
32

 

 

First 2,2’-N,N-dipyridylamine ligand 34 was synthesized by Schindler et al. in 2002.54a In 

their paper, characterization of a copper(II) complex by X-ray analysis, UV/VIS spectroscopy 

and cyclic voltammetry was reported. Interestingly, the crystal structure of this copper 

complex indicates that one of the three pyridyl donors remains uncoordinated. 

A few years later, catechol oxygenase reactivity of an iron(III) complex with this ligand was 

demonstrated.53b However, in their study, a sufficient amount of [Fe(L)(dbc)]+ to characterize 

the catalytic species was not detectable by UV spectroscopy. 

                                                 
52 Y. Oh, J. Korean. Chem. Soc. 2000, 44, 507. 
53 C. Bolm, J.-C. Frison, J. Le Paih, C. Moessner, Tetrahedron Lett. 2004, 45, 5019. 
54 a) S. P. Foxon, O. Walter, S. Schindler, Eur. J. Inorg. Chem. 2002, 111. b) M.Merkel, M. Pascaly, B. Krebs, J. 
Astner, S. P. Foxon, S. Schindler, Inorg. Chem. 2005, 44, 7582. 
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As another example of metal complexation, molybdenum and ruthenium complexes of 31 

have been reported for spectroscopic and electroscopic studies.55 

In 2001, the synthesis of 2,2’-dipyridylbenzylamine type ligands and their complexes with 

palladium and nickel were reported by Kempe et al.56 Moreover, in our group, synthesis of 

dipyridylamine type ligands using palladium-catalyzed N-arylation based on Buchwald-

Hartwig amination57  was developed by J. C. Frison. This method can be applied in the 

synthesis of chiral N,N’-2,2’-dipyridylamine 34a (Scheme 18). 

 

Scheme 18. Palladium-catalyzed N-arylation of 2-picolylamine. 
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This ligand was considered to hold undiscovered potential for catalysis. Due to the simplicity 

of its synthesis and structure, this ligand attracted attention as a new type of structure of 

unknown and potentially exciting reactivity. 

 

1.3 General Metal-Catalyzed Benzylic Oxidation Chemistry 

 

Today, metal-catalyzed oxidation reactions are intensively studied in organic chemistry.58 

Among these reactions, metal-catalyzed oxidation of hydrocarbons is still a challenging 

transformation. Recently, metal-catalyzed benzylic oxidation reactions with tert-butyl 

hydroperoxide (TBHP) have been reported. Representative efficient benzylic oxidation 

                                                 
55 R. M. Ramadan, M. S. A. Hamza, H. M. Mohamed, S. M. El-Medani, Transit. Met. Chem. (Dordrecht, 

Netherlands) 2006, 31, 107. 
56 T. Schareina, G. Hillebrand, H. Fuhrmann, R. Kempe, Eur. J. Inorg. Chem. 2001, 2421. 
57 S. Wagaw, S. L. Buchwald, J. Org. Chem. 1996, 61, 7240. 
58 For epoxidation, see: B. S. Lane, K. Burgess, Chem. Rev. 2003, 103, 2457. 
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reactions of diphenylmethane with a metal catalyst such as Bi, Rh and Cr are shown in 

Scheme 19. 59 

 

Scheme 19. Metal-catalyzed benzylic oxidation with TBHP. 
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Hydrogen peroxide can be used in place of TBHP as a green oxidant. A representative 

copper-catalyzed benzylic oxidation reaction is shown in Scheme 20.60 In this system, the 

salan ligand has been found to be an efficient in promoting this transformation Thus, a 

reaction using Cu(OAc)2 without a ligand gave only 8% conversion. 

 

Scheme 20. Copper-catalyzed benzylic oxidation with H2O2. 

0.1 mol% Cu cat.

O

10 equivs. 30%.H2O2
MeCN, 80 °C,5 h

87%

Cu cat.: N
H

N
H

O O
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In the last decades, heme and non-heme iron-catalyzed oxidations such as Baeyer-Villiger 

type reactions, 61  epoxidation 62  and dihydroxylation of olefins, 63  and the oxidation of 

                                                 
59 Bi-catalyzed oxidation, see: a) Y. Bonvin, E. Callens, I. Larrosa. A. Henderson, J. Oldham, A. J. Burton, A. G. 
M. Barette, Org. Lett. 2005, 7, 4549. Rh-catalyzed oxidation, see: b) A. J. Catino, J. M. Nichols, H. Choi, S. 
Gottipamula, M. P. Doyle, Org. Lett. 2005, 7, 5167. Cr-catalyzed oxidation, see: c) B. M. Choudary, A. D. 
Prasad, v. Bhuma, V. Swapna, J. Org. Chem. 1992, 57, 5841. 
60 S. Velusamy, T. Punniyamurthy, Tetrahedron Lett. 2003, 44, 8955. 
61 S. Murahashi, Y. Oda, T. Naota, Tetrahedron Lett. 1992, 33, 7557. 
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sulfides,64 sulfoxides,42a alcohols65 and hydrocarbons66 have been studied by many chemists. 

On the other hand, iron-catalyzed C-H oxidation of hydrocarbons is one of the most difficult 

reactions in oxidation chemistry. Iron oxidation chemistry based on Gif chemistry, which was 

introduced by Sir Derek Barton in 1983, has been well studied. A summary of the Gif system 

is shown in Table 1.67 

 

Table 1. Summary of the Gif oxidation system. 

System Precatalyst Oxidant Reductant Solvent (r.t.)

GifI

GifII

GifIII

GifIV

GoAggI

GoAggII

GoAggIII

GoAggIV

GoAggV

O2

O2

O2

TBHP

H2O2

H2O2(under Ar or O2)

KO2(under Ar or N2)

X
X
X
FeII / III

FeII

FeIII

FeIII / PicH(1:3)
Fe(NO3)3
Fe(NO3)3 / PicH(1:3)

FeII / III / Na2S
Fe0 / H2S
Fe0

Zn

Py/ AcOH(10: 1)
Py/ AcOH/H2O(6.6 %)
Py/ AcOH/H2O(6.6 %)
Py/ AcOH/H2O(6.6 %)
Py/AcOH
Py/AcOH
Py/AcOH(or Py)
Py/AcOH(or Py)
Py/AcOH
Py/AcOH, 60 °C
Py/AcOH, 60 °CTBHP

O2

 

 

Untill now the best yields were obtained using the GoAggV system (Scheme 21).56b, 68 

 

Scheme 21. Iron-catalyzed benzylic oxidation based on GoAggV. 

O

43%

3 equivs. TBHP
pyridine/ AcOH

2 mol% FeCl3
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62 G. Dubois, A. Murphy, T. D. P. Stack, Org. Lett. 2003, 5, 2469. 
63 a) J. P. Collman, Z. Wang, A. Straumanis, M. Quelquejeu, E. Rose, J. Am. Chem. Soc. 1999, 121, 460. b) G. 
Dubois, A. Murphy, T. D. P. Stack, Org. Lett. 2003, 5, 2469. c) M. C. White, A. G. Doyle, E. N. Jacobsen, J. 

Chem. Soc. 2001, 123, 7194. d) M. B. Francis, E. N. Jacobsen, Angew. Chem. 1999, 111, 987, Angew. Chem. Int. 

Ed. 1999, 38, 937. e) P. D. Oldenburg, A. A. Shteinman, l. Que, Jr., J. Am. Chem. Soc. 2005, 127, 15672. f) Z. 
Gross, S. Ini, J. Org. Chem. 1997, 62, 5514. g) T. G. Trayler, S. Tsuchiya, Y. S. Byun, C. Kim, J. Am. Chem. 

Soc. 1993, 115, 2775. h) K. Chen, M. Costas, J. Kim, A. K. Tipton, L. Que. Jr., J. Am. Chem. Soc. 2002, 124, 
3026. i) K. Chen, L. Que. Jr., J. Am. Chem. Soc. 2001, 123, 6327. 
64 a) H. Egami, T. Katsuki, J. Am. Chem. Soc. 2007, 129, 8940. b) J. Legros, C. Bolm, Angew.Chem. 2003, 115, 
5645, Angew.Chem. Int. Ed. 2003, 42 5487. c) J. Legros, C. Bolm, Angew.Chem. 2004, 116, 4321, Angew.Chem. 

Int. Ed. 2004, 43, 4225. d) Y. Mekmouche, H. Hummel, R. Y. N. Ho, L. Que, Jr., V. Schünemann, F. Thomas, A. 
X. Trautwein, C. Lebrun, K. Gorgy, J.-C. Leprêtre, M-N. Collomb, A. Deronzier, M. Fontcave, S. Ménage, 
Chem. Eur. J. 2002, 8, 1196. 
65 S. E. Martin, D. F. Suárez, Tetrahedron Lett. 2002, 43, 4475. 
66 a) D. H. R. Barton, T. L. Wang, Tetrahedron 1994, 54, 1735. b) D. H. R. Barton, W. Chavasiri, Tetrahedron 

1994, 50, 19. c) S. Murahashi, Y. Oda, T. Naota, J. Am. Chem. Soc. 1992, 114, 7913. d) J. T. Groves, P. Viski, J. 

Am. Chem. Soc. 1989, 111, 8537. e) J. T. Groves, P. Viski, J. Org. Chem. Soc. 1990, 55, 3628. f) C. Sheu, S. A. 
Richert, P. Cofre, B. Ross, A. Sobkowiak, D. T. Sawyer, J. R. Konofsky, J. Am. Chem. Soc. 1990, 112, 1936. 
67 Modern Oxidation Methods (Ed.: J.-E. Bäckvall), Wiley-VCH, Weinheim, 2004. 
68 D. H. R. Barton, T. L. Wang, Tetrahedron 1994, 54, 1735. 
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Recently, an iron-catalyzed benzylic oxidation with hydrogen peroxide as oxidant was 

reported by Bolm et al. (Scheme 22).69 In this system, a slow addition of the oxidant is still 

necessary. 

Scheme 22. Iron-catalyzed benzylic oxidation with H2O2. 

O
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Also, ligand screening for non-heme iron-catalyzed benzylic oxidation with hydrogen 

peroxide has been conducted.70 However, for all of these types of ligands, benzylic oxidation 

did not work well. The ligands examined are shown in Figure 5. 

 

Figure 5. A variety of ligands used for benzylic oxidation. 
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69  C. Pavan, J. Legros, C. Bolm, Adv. Synth. Catal. 2005, 347, 703. 
70 M. Klopstra, R. Hage, R. M. Kellogg, B. L. Feringa, Tetrahedron Lett. 2003, 44, 4581. 
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Recently, an iron-catalyzed benzylic oxidation with TBHP, which falls into the category of 

Gif chemistry, was reported by a Korean group (Scheme 23).71 In their study, the best yield 

with most of the substrates was obtained using Gif type chemistry. However, changing the 

solvent system to pyridine/MeCN = 1/5 gave a dramatic improvement in yield. 

 

Scheme 23. Iron-catalyzed benzylic oxidation with TBHP. 

O

GC-Yield 90%

3 equivs. TBHP
pyridine/ MeCN (1 : 5)

2 mol% FeCl3
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Superficially, their results seem to be excellent. However, there are several disadvantages. In 

their system, slow addition of the oxidant with a syringe pump is necessary. Furthermore, 2-

picolinic acid was necessary as an additional ligand. 

 

1.4 Aziridination Chemistry 

 

Nitrogen transfer reactions are of great importance in organic synthesis. Among them, 

aziridination is studied intensively. Aziridines, which are the smallest saturated 

azaheterocyclic compounds, can be versatile synthetic intermediates. Also, the aziridine 

moiety itself is contained in the framework of drugs, natural products and ligands (Figure 

6).72  

 

Figure 6. Aziridine containing compounds. 
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As already mentioned in chapter 1.2, aziridines are also important intermediates in the 

synthesis of chiral TACN ligands 19. 

                                                 
71 S. S. Kim, K. S. Sar, P. Tamrakar, Bull. Korean Chem. Soc. 2002, 23, 937. 
72 G. S. Singh, M. D’hooghe, N. D. Kimpe, Chem. Rev. 2007, 107, 2080. 
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The first aziridines were synthesized by Gabriel in 1888.73 Classically, aziridines can be 

prepared from β-iodo azides, 74  haloamines, 75  amino alcohols (Wenker synthesis) 76  and 

epoxides.77 Aziridination chemistry became of great interest due to its high utility in synthesis. 

In the past decades, metal-catalyzed aziridinations have been developed. By the same token, 

non-metal catalyzed 78 and organocatalyzed aziridinations79 have been described. A summary 

of synthetic approaches to aziridines is shown in Scheme 24.80 

 

Scheme 24. Synthetic approaches to aziridines. 
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In these approaches, metal-catalyzed aziridination of olefins with a nitrene source (approach 

A) is one of the most challenging and potentially convenient methods. Typical nitrene sources 

                                                 
73 S. Gabriel, Ber. Dtsch. Chem. Ges. 1888, 21, 1049. 
74 A. Hassner, G. J. Matthew, F. W. Fowler, J. Am. Chem. Soc. 1969, 91, 5046. 
75 a) M. S. Kharasch, H. M. Priestley, J. Am. Chem. Soc. 1939, 61, 3435. b) A. Zwiezak, K. Osowka, Angew. 

Chem. 1976, 88, 302, Angew. Chem. Int. Ed. 1976, 15, 302, 
76 a) Y. Minoura, M. Takebayashi, C. C. Price, J. Am. Chem. Soc. 1959, 81, 4689. b) S. J. Brois, J. Org. Chem. 
1962, 27, 3532. c) H. Wenker, J. Am. Chem. Soc. 1935, 57, 2328. 
77 a) J. Legters, L. Thijs, B. Zwanenburg, Tetrahedron Lett. 1989, 30, 4881. b) Y. Ittah, Y. Sasson, I. Shahak, F. 
Tsaroom, J. Blum, J. Org. Chem. 1978, 43, 4271. 
78 a) Y.-M. Chen, M. -X. Zhao, J. Xu, Y. Shi, Angew. Chem. 2006, 118, 8173, Angew. Chem. Int. Ed. 2006, 45, 
8005. b) J. Vesely, I. Ibrahem, G.-L, Zhao, R. Rios, A. Córdova, Angew. Chem. 2007, 119, 792, Angew. Chem. 
Int. Ed. 2007, 46, 778. c) A. V. Gontcharov, H. Liu, B. Sharpless, Org. Lett. 1999, 1, 783. 
79 A. Armstrong, C. A. Baxter, S. G. Lamont, A. R. Pape, R. Wincewicz, Org. Lett. 2007, 9, 351. 
80 I. D. G. Watson, L. Yu, A. K. Yudin, Acc. Chem. Res. 2006, 39, 194 and references therein. 
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include chloramine-T (47a),81 bromamine-T (47b),82 p-tosyl-phenyliminoiodinane (48a)83 and 

p-tosyl-azide 49
84 (Figure 7). 

 

Figure 7. Variety of p-tosyl nitrene sources. 
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Especially in metal-catalyzed aziridinations of olefins, iminophenyliodinane derivatives, 

which may be pre-formed or generated in situ, can be used as non-hazardous nitrene sources. 

Representative Ag and Mn-catalyzed aziridinations with iminophenyliodinane are shown in 

Scheme 25.85 

 

Scheme 25. Metal-catalyzed aziridination of olefins with PhINTs 48a. 
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Copper-catalyzed aziridination of olefins has been thoroughly studied by Evans et al. 

(Scheme 26).86 

 

                                                 
81Fe-catalyzed aziridination, see: a) L. Simkhovich, Z. Gross, Tetrahedron Lett. 2001, 42, 8089. Cu-catalyzed 
aziridination, see: b) D. P. Albonne, P. S. Aujla, P. C. Taylor, S. Challenger, A. M. Derrick, J. Org. Chem. 1998, 
63, 9569. 
82 Pd-catalyzed aziridination, see: a) A. M. M. Atunes, S. J. L. Marto, P. S. Branco, S. Prabhaka, A. M. Lobo, 
Chem. Commun. 2001, 405. Cu-catalyzed aziridination, see: b) R. V. Bahnu, M. Chanda, A. V. Bedekar, 
Tetrahedron Lett. 1998, 39, 4715. Transition metal-catalyzed aziridination, see: c) B. M. Chanda, R. Vyas, A. V. 
Bedekar, J. Org. Chem. 2001, 66, 30. 
83 P. Dauban, R. Dodd, Synlett 2003, 157 and references therein. 
84Ru-catalyzed aziridination, see: a) H. Kawabata, K. Omura, T. Katsuki, Tetrahedron Lett. 2006, 47, 1571. b) K. 
Omura, T. Uchida, R. Irie, T. Katsuki, Chem. Commun. 2004, 2060. 
85 Ag-catalyzed aziridination, see: a) Y. Cui, C. He, J. Am. Chem. Soc 2003, 125, 16202. Mn-catalyzed 
aziridination, see: b) M. J. Zdilla, M. M. Abu-Omar, J. Am. Chem. Soc. 2006, 128, 16971. 
86 D. A. Evans, M. M. Faul, M. T. Bilodeau, J. Org. Chem. Soc. 1991, 56, 6744. 
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Scheme 26. Metal-catalyzed aziridination of styrene with PhINTs 48a. 
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Also, representative metal-catalyzed aziridinations in which the iminophenyliodinane is 

formed in situ are shown in Scheme 27. In general however, forming the iminophenyliodinane 

in situ, leads to diminished yields.87 

 

Scheme 27. Metal-catalyzed aziridination of olefins with a combination of PhI(OAc)2 and 

TsNH2 52a. 
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In situ iodinane synthesis is however advantageous for aziridination with sulfonamidamides, 

because iminophenyliodanes derived from sulfonamidamides could not be isolated. 

Representative metal-catalyzed reactions are shown in Scheme 28.88 

 

                                                 
87 Au-catalyzed aziridination, see: a) Z. Li, X. Ding, C. He, J. Org. Chem. 2006, 71, 5876. Ag-catalyzed 
aziridination, see: b) Z. Li, C. He, Eur. J. Org. Chem. 2006, 4313. 
88 Cu-catalyzed aziridination. See: a) P. H. Di Chenna, F. Robert-Peillard, P. Dauban, R. H. Dodd, Org. Lett. 
2004, 6, 4503. Rh-catalyzed aziridination. See: b) C. Fruit, F. Robert-Peillard, G. Bernardinelli, P. Müller, R. H. 
Dodd, P. Dauban, Tetrahedron: Asymmetry 2005, 16, 3484. 
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Scheme 28. Metal-catalyzed aziridination of styrene with PhI=O or PhI(OAc)2. 
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Additionally, tri(i-Pr)-TACN 8 was investigated for use in copper-catalyzed aziridination. 

Surprisingly, even 0.5 mol% of copper catalyst gave the aziridines in high yield (Scheme 29). 

 

Scheme 29. Copper-catalyzed aziridination of styrene with PhINTs. 
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Two other efficient ligand classes for copper-catalyzed aziridination were the pyridyl-

appended diazacycloalkanes and TACN derivatives (Scheme 30).89 

 

Scheme 30. Copper-catalyzed aziridination with pyridyl-appended diazacycloalkanes as 

ligands. 

                                                 
89 J. A. Halfen, J. M. Uhan, D. C. Fox, M. P. Mehn, L. Que, Jr., Inorg. Chem. 2000, 39, 4913. 



 Introduction 32 

PhINTs 48a,
MeCN, 8 h

NTs
5mol% Cu cat.

20 equivs.

Cu cat.:

N
N

NCu
N

N
C

Me
(PF6)2

-

CuN
N N

N

(PF6)2
-

(PF6)2
-

N
CuN

N
N

N
C

Me

85% 87% 80%

50a 51a

2+ 2+ 2+

 

Despite the fact that many metal-catalyzed aziridinations have been developed, an efficient 

iron-catalyzed aziridination of olefins has not been developed yet. Only a few examples of 

olefin aziridination have been reported in the course of screening different metal salts in the 

course of catalyst development (Scheme 31).90 

 

Scheme 31. Iron-catalyzed aziridination of styrene with PhINTs. 
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MeCN, r.t.
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Aziridination of styrene using a different iron catalyst as a Lewis acid has been reported by 

Hossein et al. (Scheme 32).91 

 

Scheme 32. Lewis acid iron-catalyzed aziridination of styrene with PhINTs. 
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As an example of ligand effects in iron-catalyzed aziridination reactions, catalytic 

aziridination using a non-heme diiron complex has been studied (Scheme 33).92  

                                                 
90 D. A. Evans, M. M. Faul, M. T. Bilodeau, J. Am. Chem. Soc. 1994, 116, 2742. 
91 B. D. Heuss, M. F. Mayer, S. Dennis, M. M. Hossain, Inog. Chim. Acta 2003, 342, 301. 
92 F. Avenier, J. M. Latour, Chem. Commun. 2004, 1544. 
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However in this system, a large excess of styrene is required. 

 

Scheme 33. Non-heme iron-catalyzed aziridination of styrene with PhINTs. 
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Chiral iron-porphyrin complex catalyzed asymmetric aziridination of styrene with PhINTs has 

been demonstrated (Scheme 34).93 Interestingly, iron and manganese derived catalysts gave 

the oppposite stereoisomers of the product. 

 

Scheme 34. Metal-catalyzed aziridination of styrene with PhINTs. 
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As another approach, aziridination of imines with diazoacetate94 and its asymmetric version95 

have been reported (Scheme 35). However in this reaction, two kinds of ring opened side 

products were observed. 

 

Scheme 35. Iron catalyzed aziridination of imine 53 with PhINTs. 
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93 J.-P. Simonato, J. Pécaut, W. R. Scheidt, J -C. Marchon, Chem. Commun. 1999, 989. 
94 M. F. Mayer, M. M. Hossein, J. Org. Chem. 1998, 63, 6839. 
95 M. Redlich, M. M. Hossein, Tetrahedron Lett. 2004, 45, 8987. 
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Recently, asymmetric, metal-catalyzed aziridinations have been developed. (salen)Mn(III) 

complexes-catalyzed asymmetric aziridination is shown in Scheme 36. 96  However, the 

reaction efficiency was quite low and only low enantiomeric excesses were observed. 

 

Scheme 36. Mn-catalyzed asymmetric aziridination of styrene with PhINTs. 

PhINTs 48a

2 mol% Mn(salen) cat.

CH3CN, r.t.
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Ph Ph
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H Ph H
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Mn

AcO-
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+

 

Copper-catalyzed asymmetric aziridination has been especially well studied. The first 

example used PhINTs (Scheme 37).97, 98 Even using a combination of iodosylbenzene or 

iodobenzene diacetate with sulfonamide gave the aziridination product in good yield with 

moderate enantiomeric excess. 

 

Scheme 37. Copper-catalyzed asymmetric aziridination with a Box type ligand. 

NR
Cu cat.
Ligand*

+ PhI+ RNH2

5 equivs.

50a

Cu(OTf)2 (5 mol%), Ligand* (6 mol%), PhINR(R= Ts), 0 °C, 2.5 h; 89%, 63% ee (R)
Cu(MeCN)ClO4 (5 mol% ), Ligand* (6 mol%), RNH2 (R= Ns), PhI(OAc)2, C6H6, 0 °C, 2.5 h; 94%, 75% ee (R)
Cu(OTf)2 (8 mol% ), Ligand* (12 mol%), RNH2 (R= Ts), PhI=O, MS 3Å, C6H6, 2.5 h; 86%, 59% ee (R)

O

N N

OLigand*:

5152

 

Not only Box type ligands but also other kinds of ligand have been demonstated to promote 

asymmetric aziridination (Scheme 38). 

 

Scheme 38. Copper-catalyzed asymmetric aziridination with a chiral phosphine ligand. 

                                                 
96 K. Noda, N. Hosoya, R. Irie, Y. Ito, T. Katsuki, Synlett 1993, 469. 
97a)  D. A. Evans, M. M. Faul, T. Bilodeau, B. A. Anderson, D. A. Barnes, J. Am. Chem. Soc. 1993, 115, 5328. 
b) H.-L. Kwong, D. Liu, K.-Y. Chan, C.-S. Lee, K.-H. Huang, C-M. Che, Tetrahedron Lett. 2004, 45, 3965. c) 
M. J. Södergren, D. A. Alonso, P. G. Andersson, Tetrahedorn: Asymmetry 1997, 8, 3563. 
98 P. Müller, P. Nurry, G. Benardinelli, Helv. Chim. Acta 2000, 83, 843. 
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NTs5 mol% Cu(OTf)2 cat.,
10 mol% Ligand*

PhINTs 48a,CH2Cl2, 2.5 h

96%, 11% ee (S)

+ PhI+ TsNH2

5 equivs.
P

O
O N

Ligand*:

50a 51a48a

 

Asymmetric induction by use of a chiral counterion has been demonstrated in the copper-

catalyzed aziridination of styrene (Scheme 39).99 

 

Scheme 39. Novel ion paring in copper-catalyzed asymmetric aziridination. 

NTs5 mol% Cu(MeCN)4 + L*- cat.
+ PhI+ PhINTs

C6H6

O

O
B O

O

L*:

48a50a 51a

 

 

Aziridine ring opening reactions are useful tools for forming various kinds of nitrogen 

containing compounds. Methods for ring opening of aziridines are shown in Scheme 40. 

 

Scheme 40. Methods for ring opening of aziridines. 

 

                                                 
99 D. B. Llewellyn, D. Adamson, B. A. Arndtsen, Org. Lett. 2000, 2, 4165. 
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A recent practical application of an aziridine ring opening reaction is in the synthesis of the 

drug Tamiflu.100 

 

For efficient exploitation in synthesis, the development of aziridine deprotection methods, 

which nevertheless preserve the three membered ring, is important. Not only the tosyl 

group101  but also several other protecting groups such as Cbz,102  SES,103  Ns,104  Bus,105 

diphenylphosphonyl,100 and 4-methyl-2-pyridinesulfonyl groups106 have been introduced at 

the nitrogen atom, each requiring different conditions for deprotection. 

 

1.4.1 Syntheisis of αααα-Aminoketones and -Esters 

 

                                                 
100 Y. Fukuta, T. Mita, N. Fukuda, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2006, 128, 6312. 
101T. W. Greene, P. G. M. Wuts, Protecting group in Organic Synthesis, Ind. Ed. ; John Wiely & Scns: New 
York, 1999, p 603.  
102 M. Pinesuchi, F. Bertolini, P. Crotti, F. Macchia, Org. Lett. 2006, 8, 2627. 
103 a) P. Dauban, R. H. Dodd, J. Org, Chem. 1999, 64, 5304. b) P. Ribière, V. Declerck, J. Martinez,F. Lamaty, 
Chem. Rev. 2006, 106, 2249. 
104 T. Fukuyama, C.-K. Jow, M. Cheung, Tetrahedron Lett. 1995, 36, 6373. 
105 P. Sun, S. M. Weinreb, J. Org. Chem. 1997, 62, 8604. 
106 H. Han, I. Bae, E. J. Yoo, J. Lee, Do, S. Chang, Org. Lett. 2004, 6, 4109. 
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Aziridines can be transformed into useful α-amino ketones.97a, 106, 107 In contrast, only a few 

examples of the direct synthesis of α-amino ketones from silyl enol ethers have been reported. 

The first example was the copper-catalyzed α-amination of silyl enol ethers, which was 

reported by Evans et al. in 1991 (Scheme 41).90 According to their report, the synthesis of α-

amino acid esters using copper-catalyzed nitrogen transfer is not reproducible. 

 

Scheme 41. Copper-catalyzed asymmetric α-amination with PhINTs. 

PhINTs 48a

5 mol% CuClO4 cat.

MeCN, N2, 2 h

56a: R= H, -20 °C, 75%
56b: R= Me, 0 °C, 58%

OSiMe3 O

NHTs

1.5 equivs.

R

R
+ PhI

Me3SiO
NTs

55a: R= H
55b: R= Me

R
 

 

Five years later, a non-metal catalyzed α-amination was reported by a Korean group (Scheme 

42).108 Most of the aryl silyl enol ethers were transformed into α-amino ketones in good 

yields. 

 

Scheme 42. Non-metal catalyzed aziridination of silyl enol ethers with PhINTs. 

+ PhINTs
MeCN, N2, 82 °C

95%

OSiMe3 O

NHTs + PhI

Without catalyst

O
I
Ph

NTs

55a 56a48a

 

 

They mentioned that no copper-catalyst was required for a-amination. However, it was 

necessary to heat the solution in boiling acetonitrile to achieve nitrogen transfer. In Evans’s 

system, α-amination occurred even at 0 °C. Thus, a metal-catalyst is still necessary to allow 
                                                 
107 a) M. S. Reddy, M. Narender, K. Rama Rao, Tetrahedron Lett. 2005, 46, 1299. c) K. Srenda, N. S. 
Krishnaveni, K. Rama Rao, Tetrahedron Lett. 2005, 46, 4111. d) K. Srendra, N. S. Krishanveni, M. A. Reddy, Y. 
V. D. Nageswar, K. R. Rao, J. Org. Chem. 2003, 68, 9119. 
108 B.-W. Lim, K.-H. Ahn, Synth. Comm. 1996, 26, 3407. 
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the reaction to proceed at or below room temperature. Thus, there is scope for the 

development of an asymmetric reaction. 

 

In 1998, the first iron-catalyzed α-amination of a ketene acetal was introduced using Boc-

azide as nitrogen source. The reaction is still not effective and the α-amino acid ester was 

obtained in only 10-20 % yield (Scheme 43).109 

 

Scheme 43. First approach to the synthesis of an α-amino acid ester from a ketene acetal 

catalyzed by iron(II) chloride. 
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OTMS
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49b 55g

 

 

Only two examples of asymmetric amination of enol silanes have been reported until now. 

The first example is the ruthenium complex catalyzed α-amination of silyl enol ethers with 

PhINTs using a Ru(salen) type as catalyst (Scheme 44).110  

 

Scheme 44. Ruthenium-catalyzed asymmetric α-amination with PhINTs. 
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5 mol%
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The second example involves copper-catalyzed α-amination (Scheme 45).111 In this system, 

the asymmetric induction was very low. 

 

Scheme 45. Copper-catalyzed asymmetric α-amination of silyl enol ether with PhINTs. 

                                                 
109 T. Bach, C. Körber, Tetrahedron Lett. 1998, 39, 5015. 
110 J.-L. Liang, X.-Q. Yu, C.-M. Che, Chem. Commun. 2002, 124. 
111 W. Adam, K. J. Roschmann, C. R. Saha-Möller, Eur. J. Org. Chem. 2000, 557. 
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In the future, further development of this great new approach for the synthesis of α-amino 

ketones and esters is highly desireable. 

 

2 Research Objectives 

 

The first objective of the present work was to synthesize novel TACN ligands. Although a 

number of functionalizations have been developed, there are only a few examples of aryl 

substituted TACN derivatives.40 As already mentioned in chapter 1.2.1, syntheses of aryl 

substituted TACNs are quite limited. Therefore, new, more efficient approaches to introduce 

aryl groups on nitrogen are desirable. One such approach, simple transition metal-catalyzed 

N-arylation, which has been extensively developed by Buchwald and Hartwig, was selected 

for N-arylation of TACN (Scheme 46). 

 

Scheme 46. Approach to triaryl-TACN by palladium-catalyzed N-arylation. 
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The development of nitrogen-based ligands such as dipyridylamines using Buchwald-Hartwig 

chemistry was also projected. More efficient synthetic methods for their preparation and the 

study of their ability as ligands were required (Scheme 47). Several complexes of these 

ligands with metals such as palladium and copper have been reported. In this work, iron and 



 Research Objectives 40 

silver were chosen for complexation with this type of ligand. Furthermore, several kinds of 

reactions were examined using these metal complexes as catalysts. 

 

Scheme 47. New methods for the synthesis of dipyridylamine ligands catalyzed by palladium 

complexes. 

 

 

As a second part of the work, investigations of the iron catalyzed benzylic oxidation of bis(4-

fluorophenyl)methane, which is of interest for the development of fragrances, were 

undertaken. Iron-catalyzed oxidation of diphenylmethane with hydrogen peroxide has been 

previously studied by Bolm et al. although their oxidation system gives very clean reactions, 

generating water as the side product from oxidation; a more efficient methodology was 

desireable. Therefore, the developement of a new iron-catalyzed oxidation system was 

required (Scheme 48). 

 

Scheme 48. New methods catalyzed by iron with green oxidants. 

O

green oxidant
under mild condition

Fe cat.

 

 

An iron-catalyzed aziridination reaction of olefins was also studied. As already mentioned in 

chapter 1.3, only a few example of iron-catalyzed aziridination have been reported until now. 

This is the most straightfoward strategy to access aziridines (Scheme 49). 

 

Scheme 49. Iron-catalyzed synthesis of aziridines. 
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As an extension of the aziridination study, the synthesis of α-amino ketone derivatives by 

aziridination of silyl enol ethers was undertaken (Scheme 50). 

 

Scheme 50. New methods for the iron-catalyzed synthesis of α-amino acid esters. 

 

R RPhINPG

NPGFe cat.OSiMe3 Me3SiO

R

O

NHPG

α-Amino ketone  

 

This strategy has great potential for convenient synthesis of various α-amino acid esters from 

simple ketones. 

In addition, the synthesis of α-silaamino acid esters 112  using this reaction system was 

considered (Scheme 51). 

 

Scheme 51. Novel strategy for synthesis of α-silaamino acid esters. 

 

Me3Si
OSiMe3

OEt
Me3Si
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As mentioned in chapter 1.4.1, a metal catalyst is necessary to afford amino ketones from enol 

silanes with PhINTs at ambient temperature or lower temperatures. Thus, if this innovative 

strategy could be realized, metal-catalyzed asymmetric α-amino acid synthesis could be 

applied in the furture. 

 

 

 

 

 

                                                 
112  C. Bolm, A. Kasyan, K. Drauz, K. Günther, G. Raabe, Angew. Chem. 2000, 39, 2288, Angew. Chem. Int. Ed. 
2000, 112, 2374. 
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3 Synthesis of Aryl-TACN Derivatives 

 

3.1 N-Arylation of TACN Derivatives 

 

3.1.1 Synthesis of Precursors 

 

TACN can be synthesized easily from 1,2-ditosylethylene glycol and diethylenetriamine 

which are commercially available (Scheme 52). Also, 1,2-ditosylethylene glycol can be 

prepared by ditosylation of ethylene glycol. At first, diethylene triamine was prepared by 

tosylation with tosyl chloride affording tritosyl diethylene triamine 2. Subsequently, tri(Ts)-

TACN 3 was prepared by cyclization of 2 with 1,2-ditosylethylene glycol in 90% yield. 

Finally, free TACN 1 was obtained by detosylation with conc. H2SO4 and neutralization with 

KOH. 

 

Scheme 52. Synthesis of TACN 1. 
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Notably ditosyl ethylene glycol is the best substrate for cyclization as alternatives such as 

dibromoethylene glycol do not cyclize as efficiently as mentioned by Richman et al. 

 

TACN 1 can be protected easily and selectively with Cbz or Boc groups (Scheme 53). Di-

protected TACN derivatives 56 and 16 were selectively synthesized using 2 equivs. of 2-

(benzyloxycarbonyloxyimino)-2-phenylacetonitrile (Cbz-ON) or 2-(t-

butoxycarbonyloxyimino)-2-phenylacetonitrile (Boc-ON) in chloroform under anhydrous 

conditions at ambient temperature. 113 Cbz-ON, which is not commercially available, was 

prepared without difficulty.13b Di-N-protection occurred smoothly when Boc-succinimide or 

Cbz-succinimide was used as electrophile. Mono-protected TACN derivatives 59 and 60 were 

obtained by standard double deprotection of di-Boc or di-Cbz protected TACN 57 or 58. 

 

Scheme 53. Selective protection of TACN by Cbz and Boc groups. 

                                                 
113 M. Itoh, D. Hagiwara, T. Kamiya, Tetrahedron Lett. 1975, 4393. 
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Also, monotosyl-TACN 61 was synthesized selectively by double deprotection of tri(Ts)-

TACN 3 (Scheme 54). Furthermore, di(Ts)-TACN 62 was prepared by selective mono-

tosylation of monotosyl-TACN 61.114  These simple transformations afforded a library of 

TACN ligands bearing free NH groups, which were now suitable for use in arylation studies. 

 

Scheme 54. Synthesis of mono- and di-tosyl protected TACN. 
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3.1.2 Palladium-catalyzed N-Arylations 

 

Although many kinds of TACN derivatives have been synthesized, there are only few 

examples of aryl-TACN derivatives (Chapter 1.2.2). Due to the limitation of existing 

synthetic approaches, these kinds of ligands have not been developed until now (Scheme 11). 

As a first trial, palladium catalyzed N-arylation of piperazine with rac-BINAP115 as ligand 

was tested. Encouragingly, diaryl-piperazine was obtained in 50% yield (Scheme 55). 

 

Scheme 55. Palladium-catalyzed N-arylation of piperazine with 2-bromopyridine. 

                                                 
114J. L. Sessler. J. W. Silbert, V. Lynch, Inorg. Chem. 1990, 29, 4143. 
115 J. P. Wolf, S. L. Buchwald, J. Org. Chem. 2000, 65, 1144. 
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Following this result, mono-N-arylation of diprotected TACN was tested using the same 

procedure as for the N-arylation of piperazine. Monoarylation of ditosylprotected TACN 

using 8 mol% of Pd(OAc)2 proceeded to give monoarylditosyl TACN in high yield (Scheme 

56). A higher amount of catalyst (16 mol%) was required for mono-N-arylation of di-Cbz or 

di- Boc protected TACN. 

Initial studies involved investigating the mono-arylation of ditosyl-protected TACN 63 with 

phenyl bromide. Following Buchwald’s original protocol using a catalyst comprised of a 

mixture of Pd(OAc)2 and racemic BINAP (8 mol%) in the presence of sodium tert-

butoxide,116 the arylation of 63 proceeded well leading to the quantitative formation of 64a 

after 1 day. Analogously, di(Boc)-TACN 16 and di(Cbz)-TACN 56 coupled with phenyl 

bromide to give mono-arylated 64b and 64c in 85 and 70% yield, respectively. 

 

Scheme 56. Arylation of di-protected TACN derivatives. 
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64a: PG = Ts
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Surprisingly, mono-tosylated TACN 62 did not couple to give 65 under these conditions.  

Possibly, the two unprotected nitrogen atoms in the heterocycle coordinate too tightly to the 

metal catalyst leading to its deactivation. The palladium source was changed from Pd(OAc)2 

                                                 
116 For recent reviews on Pd-catalyzed N-arylations, see: a) A. R. Muci, S. L.  Buchwald, Top. Curr. Chem. 2002, 
219, 131; b) J. F. Hartwig, in: Modern Amination Methods, (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2000, pp. 
195; c) J. F. Hartwig, in: Handbook of Organopalladium Chemistry for Organic Synthesis, (Ed.: E. Negishi), 
Wiley-Interscience, New York, 2002, pp. 1051. 
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to [Pd2(dba)3] and the effect of other phosphine ligands such as Ph3P, DPPF,117 and n-Bu3P 

was studied in an effort to promote coupling. Finally, the best result was achieved by uising a 

Pd(0) catalyst bearing phosphine 66
118 as ligand affording diaryl TACN 65 in 70% yield 

(Scheme 57).119 

 

Scheme 57. Arylation of mono-tosylprotected TACN. 

N

N

N
HH

t-BuONa (2.8 equivs.)
toluene, 100 °C, 2 h

62

N

N

N

65

Ts PhBr (2.0 equivs.)
Pd2(dba)3 (5 mol%)
phoshine 66 (7.5 mol%)

66

Ts

70%

PCy2

NMe2

 

 

Gratifyingly, triple N-arylations of TACN 1 were also possible and various aryl bromides 

were tested (Table 1, entries 1-4). When a catalyst comprised of 3 mol % of [Pd2(dba)3] and 7 

mol% of phosphine 66 was employed in the presence of 4.2 equivs. of sodium tert-butoxide in 

toluene at 100 °C, triarylated TACNs 67 were obtained in up to 73% yield. Use of 

iodobenzene in the synthesis of 67a gave a low yield (26%) of the triarylated product (Table 2, 

entry 2). 

 

Table 2. Palladium-catalyzed N-Arylation of TACN 1.a 

NH

H
N

HN N

N

N

Ar

1 67

Ar Ar
t-BuONa (4.2 equivs.)
toluene, 100 °C, 2 - 24 h

ArX (3.0 equivs.)
Pd2(dba)3 (3 mol%)
phoshine 66 (7 mol%)

 

 

                                                 
117 M. S. Driver, J. F. Hartwig, J. Am. Chem. Soc. 1996, 118, 7217. 
118 a) S. Kaye, J. M. Fox, F. A. Hicks, S. L. Buchwald, Adv. Synth. Catal. 2001, 343, 789. b) S. L. Buchwald, C. 
Mauger, G. Mignani, U. Sholz, Adv. Synth. Catal. 2006, 348, 23. 
119 a) For the early use of phosphine 66 in aryl aminations, see: D. W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. 

Chem. Soc. 1998, 120, 9722; b) for an advanced synthesis of the phosphine, see: H. Tomori, J. M. Fox, S. L. 
Buchwald, J. Org. Chem. 2000, 65, 5334. c) for recent examples, see: M. D. Charles, P. Schultz, S. L. Buchwald, 
Org. Lett. 2005, 7, 3965 and references therein. 
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Entry ArX Product Yield 

1 Br
 

67a 71% 

2 I
 

67a 26% 

3 
Brt-Bu

 
67b 73% 

4 BrMeO
 

67c 45% 

5 
N

Br
 

67d 52% 

 

3.1.3 Deprotection Methods 

 

Deprotection of mono- and diprotected N-aryl-TACN ligands has been examined. At first, 

detosylation of monophenyl-ditosyl-TACN was studied. Several conditions such as HBr 

(33%) in acetic acid or concentrated H2SO4 were tested. In each case, the desired deprotected 

product was not obtained (Scheme 58). 

As an alternative approach, the deprotection of carbamate protected TACNs was examined. 

As expected, Cbz could be removed by hydrogenation with Pd/C. Also, the Boc group could 

be easily removed by TFA in chloroform. 

 

Scheme 58. Deptotection reaction of Cbz and Boc groups. 
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Diphenyl-TACN derivatives could also be synthesized using the same deprodection method 

(Scheme 59). 

 

Scheme 59. Deprotection methods for Boc and Cbz groups. 
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3.1.4 Synthesis of Perfluoroponytailed N-Aryl-TACN 

 

Fluorous biphasic catalysis (FBC) has attracted attention as a new concept for facile catalyst 

separation. Recently, several perfluorinated TACN type ligands have been reported.39, 120 All 

of them are shown in Figure 6. 

 

Figure 6. A variety of perfluoroponitailed-TACNs. 

                                                 
120 a) I. T. Horváth, J. Rábai, Science 1994, 266, 72, and references therein. b) M. Contel, C. Izuel, M. Laguna, P. 
R. Villuendas, P. J. Alonso, R. H. Fish, Chem. Eur. J. 2003, 9, 4168. c) R. H. Fish, Chem. Eur. J. 1999, 5, 1677. 
d) Handbook of fluorous chemistry, (Ed.: J. A. Gradysz ), Wiley-VCH, Germany, 2004, 395. 
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The first perfluoroponitailed-TACN ligand 70, which was synthesized by J.-M. Vincent, was 

not soluble in cold perfluoropentane and the content of fluorine was less than 60%.39 

The second perfluoroponitailed-TACN ligand 71, which has a fluorine content of more than 

60%, has been reported in the literature. These perfluorinated TACN ligands have been 

applied in catalytic reactions. For example, various manganese and copper complexes of these 

ligands has been used in catalytic oxidations of olefins, alcohols and hydrocarbons. 

Wherein, as a further development for potential use in FBC, N-arylation of TACN 1 with a p-

perfluoroponytailed substituted bromobenzene was performed and led to the desired TACN 

ligand 72 in 55% (Scheme 60). 

 

Scheme 60. Synthesis of novel perfluorinated TACN ligand. 
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Finally, copper complexation with perfluoroponytailed-N-aryl-TACN 72 was examined. The 

value obtained from ESI-MS indicates the formation of a copper(I) chloride complex. 

(Scheme 61) 
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Scheme 61. Complexation of novel perfluorinated ligand 72 with copper(I) chloride. 
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4 Synthesis of N,N-Dipyridylamino-2-picolylamines 

 

4.1 Palladium-Catalyzed N-Arylation of Picolylamine Derivatives 

 

4.1.1 Synthesis of N-(Pyridin-2-yl)-N-(pyridin-2-ylmethyl)pyridin-2-amine 

 

The first N,N-dipyridylpicolylamine ligand 74a was synthesized by Schindler et al. in 2002. 
53a Complexation of this ligand with copper has also been described. The X-ray crystal 

structure of this complex indicates that only two of three nitrogen atoms coordinate to copper. 

Classically, this ligand can be prepared by alkylation of dipyridylamine and 

chloromethylpyridine under basic condition in DMSO (Scheme 62). However, the yield 

obtained was low (55%), limiting the synthesis of more diverse derivatives. 

 

Scheme 62. Classical alkylation of N,N-dipyridyl amine with 2-pyridyl methylchloride. 
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Palladium-catalyzed N-arylation is a useful method in organic synthesis.56, 121 Over the past 

dozen years or so, a large number of N-arylations have been developed. Palladium-catalyzed 

N-arylation of benzylamine derivatives and their applicability in the copper-catalyzed 

asymmetric allylic oxidation of cyclohexene has been demonstrated by Bolm et al. as 

mentioned in chapter 1.2.1.52 

A chiral menthol-substituted dipyridyl amine ligand has been synthesized under the same 

conditions. In the synthesis of menthol derivatives, rac-BINAP promotes much faster 

reactions than DPPP. 

A dipyridy picoline ligand has been previously synthesized by Bolm and coworkers. Due to 

structural similarities, these conditions were expected to be applicable for synthesis of N,N’-

dipyridyl picolylamine ligands like 74a. 

 

4.1.1.1 Palladium-Catalyzed N-Arylation of Picolylamine Derivatives 

 

Initially, the same conditions were examined for N-arylation of benzylamine. As mentioned in 

J. C. Frison’s thesis, N-arylation of benzylamine using 1,3-bis(diphenylphosphino)propane 

(DPPP) as phosphine ligand proceeded well affording the corresponding 

dipyridylbenzylamine 31 in good yield (Scheme 63). 

 

Scheme 63. N-Arylation of benzylamine 
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Attempted N-arylation of 2-picolylamine 33 using the same conditions gave dipyridyl picoline 

74b in low yield (Scheme 64). 

 

Scheme 64. Palladium-catalyzed N-arylation of benzylamine derivatives using DPPP as a 

phosphine ligand. 

                                                 
121 S. Wagaw, S. L. Buchwald, J. Org. Chem. 1996, 61, 40. 
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In J. C. Frison’s thesis, it is described that rac-BINAP as a phosphine ligand is efficient for 

mono N-arylation of benzylamine derivatives. Thus, the N-arylation of N-2-

(pyridyl)ethylamine using rac-BINAP as ligand looked promising. Although 2,2-

dipyridylaminopicoline works as bidentate ligand, the new dipyridine is expected to be a 

tridentate ligand. Consequently, various phospine ligands were screened for optimization of 

the synthesis. Unexpectedly BINAP (rac) was discovered to be the most efficient phosphine 

ligand for di N-arylation although it is used for mono N-arylation reaction in general (Scheme 

65).122 

 

Scheme 65. Palladium-catalyzed N-arylation of benzylamine derivatives. 
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Also, this system is applicable for the functionalization of pyrazine rings as well as pyridine 

ring systems (Scheme 66). Under these conditions, the corresponding dipirazine ligand 77 

was formed in an excellent 93% yield. 

 

Scheme 66. Palladium-catalyzed N-arylation of 2-picolylamine with 2-chloropyrazine. 
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122 C. Bolm, J.-C. Frison, J. L. Paih., C. Moessner, G. Raabe, J. Organomet. Chem. 2004, 44, 507. 
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As a final examination of the reactivity of various heteroaromatic halides, the arylation with 

chloropyrimidine was explored. Interestingly, only the mono coupling product was obtained 

in low yield when 2-chloropyrimidine was used as aryl source (Scheme 67). 

 

Scheme 67. Palladium-catalyzed N-arylation of 2-picolylamine with 2-chloropyrimidine. 
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4.1.1.2 Synthesis of tert-Butyl Substituted Dipyridylpicolylamine Derivatives in C-H 

Amidations 

 

Silver-catalyzed C-H amidation has been reported by He et al. in 2004.87b, 123  In this silver-

catalyzed reaction, terpyridine 81a was found to be an efficient ligand giving the desired 

product in 41% yield (Scheme 68). However, the use of 81b, in which tert-butyl groups were 

introduced at the para positions in all of the pyridine moieties of the ligand led to a 

dramatically increased yield (89%). 

 

Scheme 68. Silver-catalyzed benzylic C-H amidation. 
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In the same system, dipyridylaminopicoline ligand 74a was examined in place of terpyridine. 

By GC-MS analysis, a trace of C-H-amidated product was detected. In silver-catalyzed 

amidation with terpyridine ligand 81a, the yield was dramatically increased by introducing 

tert-butyl groups at the para positions. 

                                                 
123 a) Y. Cui, C. He, J. Am. Chem. Soc. 2006, 125, 16202. d) Y. Cui, C. He, Angew. Chem. 2004, 116, 4306, 
Angew. Chem Int. Ed. 2004, 43, 4210. 
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By following this scenario to improve the efficieny of this reaction, introduction of a tert-

butyl group at the para position of the pyridine rings was attempted. 

 

4.1.1.3 Synthesis of 4-tert-Butylpicolylamine and 2-Chloro-4-tert-butylpyridine 

 

4-tert-Butylpicolylamine can be prepared easily from tert-butylpyridine. At first the N-oxide 

was synthesized following a known procedure by oxidation with H2O2 in acetic acid. 

Following the formation of N-oxide 84, 2-chloride 85 was produced by refluxing with POCl3 

(Scheme 69). From N-oxide 84, 4- tert-butyl-2-cyanopyridine 86 was produced by treatment 

with TMSCN. Finally, 4- tert-butyl-2-picolylamine 87 was obtained by hydrogenation with 

Pd/C. 

 

Scheme 69. Synthesis of 4-tert-butyl substituted pyridine derivatives. 
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4.1.1.4 Synthesis of 4-tert-Butyl substituted 2,2’-Pyridylaminopicoline Derivatives 

 

As a first test, N-arylation of 2-picolylamine with 2-chloro-4-methyl pyridine was examined. 

The di-arylated product was obtained in 87% yield (Scheme 70). 

 

Scheme 70. N-Arylation of 2-picolylamine with 2-chloro-4-methyl-pyridine. 
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By the same token, starting from 2-picolylamine, two kinds of 4-tert-butyl substituted 2,2’-

pyridylaminopicoline derivatives 88 and 89 were synthesized using 2-chloropyridine 81 

(Scheme 71). 

 

Scheme 71. Palladium-catalyzed N-arylation of picolylamine with 4-tert-butyl-2-

chloropyridine. 
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Following this success, another two kinds of 4-tert-butyl substituted 2,2’-N,N-

pyridylaminopicoline derivatives 90 and 91 were synthesized from 4-tert-butyl-picolylamine 

87 (Scheme 72).  

 

Scheme 72. N-arylation of 4- tert-butyl-2-picolylamine with chloropyridine derivatives. 
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As part of studies toward the development of an asymmetric reaction, mono L-menthol 

substituted 2,2’-dimethyl-pyridyl-picolylamine ligand was prepared by using same procedure 

(Scheme 73). Complexation of this ligand 33b with silver(I) nitrate is described in chapter 

4.2.2. 
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Scheme 73. Synthesis of mono menthol-substituted 2,2’-dimethyl-pyridyl-pycolylamine 33b. 
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4.2 Complexation of N-(Pyridin-2-yl)-N-(pyridin-2-

ylmethyl)pyridin-2-amine with Silver(I) Nitrate 

 

A silver complex of tri-tert-butylterpyridine45a has been reported by He (Scheme 74).121b 

 

Scheme 74. Complexation of silver(I) nitrate with t-Bu3tpy 81b. 
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This silver complex can catalyze C-H amidation and aziridination reactions (Chapter 4.1.2). 

Thus, the synthesis of silver(I) complexes with dipyridylamine type ligands was examined, 

using the same condition described by He.123 

When 6,6’-dimethyl-2,2’dipyridyl-2-picolylamine ligand 74b was used, colorless, clear single 

crystals were obtained. The X-ray structure is shown in G. Y. Cho’s thesis (Scheme 75).124 

 

                                                 
124 G. Y. Cho, Ph.D Thesis, RWTH Aachen, 2006. 
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Scheme 75. Complexation of dipyridylamine ligand 74b. 
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The coodination pattern is similar to the silver complex with tert-butylterpyridine reported by 

He and coworkers. Two of the nitrogen atoms of a ligand coordinate to a silver atom and the 

other nitrogen atom coordinate to second silver atom. However, the structures are different. 

Interestingly, one of the pyridine rings from a different ligand is located inside of the dimetal 

complex and seems to be parallel. On the other hand, all of pyridine rings are located outside 

of the silver complex with terpyridine. 

Also, the complexation of 2,2’-dipyridyl-picolylamine was examined. Similary, a clear single 

crystal was obtained. However, the X-ray structure has not been determined yet. 

Also, mono menthol substituted 2,2’-dimethyl-pyridyl-picolylamine 34b was complexed with 

silver(I) nitrate (Scheme 76). 

 

Scheme 76. Complexation of silver(I) nitrate and menthol substituted 2,2’-dimethyl-pyridyl-

pycolylamine ligand 34b. 
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Contrary to expectations, a silver complex was obtained as a monomer (Chapter 8.1.4.). This 

ligand was not efficient for silver-catalyzed C-H amidation and no conversion was observed.
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4.3 Complexation with Iron(II) Triflate 

 

An iron complex with [di-(2-pyridyl)methyl]benzamide (Ph-DPAH) and its application for 

oxidation has been reported by Que, Jr.(Scheme 77).63e 

 

Scheme 77. Preparation of Ph-DPAH and its iron complex.  
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4.3.1 Complexation of Iron(II) Triflate with N-(Pyridin-2-yl)-N-(pyridin-2-

ylmethyl)pyridin-2-amine 

 

The first complexation was attempted by following the procedure developed by Schindler for 

copper complexation. Several iron salts such as iron(II) perchlorate and chloride have been 

tested. Unfortunately, complexation was not successful (Scheme 78). 

 

Scheme 78. Complexation of iron salt and dipyridylamine ligand 74a. 
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As a second trial, due to the similarity of the ligand structure, the complexation of iron(II) 

triflate and dipyridylpicoline ligand 74a was tried using same procedure reported by Que.112 

Finally, clear yellow single crystals of the iron (II) triflate complex with dipyridylpicoline 

ligand 74a were obtained from acetone (Scheme 79). 
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Scheme 79. Complexation of iron(II) triflate and dipyridylpicolylamine ligand 74a 
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The X-ray structure shows a similar coordination system to that described for copper 

complexes, in which two of three nitrogen atoms coordinate to metal. The X-ray structure of 

this iron complex is shown in chapter 8.1.5. 

In addition, complexation of dipyridylbenzylamine with iron(II) triflate was also carried out 

for comparison. As a result, a pale yellow solid precipitated. However, it was not possible to 

obtain single crystals. Moreover, this complex seems to be unstable under air at room 

temperature, undergoing decomposition in a few hours. 

 

4.3.2 Application in Iron-Catalyzed Oxidation Reactions 

 

As a first application, iron-catalyzed benzylic oxidation of diphenylmethane with this ligand 

was tested and benzophenone was obtained in high yield (97%). It was observed later that 

pyridine was necessary for the benzylic oxidation to take place. 

 

As another application, the iron-catalyzed aziridination of styrene has been examined 

(Scheme 80) 

 

Scheme 80. Iron-catalyzed aziridination with N,N-dipyridylpicolylamine ligand 74a. 
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The resulting aziridine product was obtained in only 29% yield. In a blank reaction, the 

aziridination without ligand gave only a trace of the product. Encouragingly, the yield was 

improved to 45% by using 6 equivs of ligand to iron(II) triflate. 

 

5 Iron-Catalyzed Oxidation Reaction and Nitrogen 

Transfer Reaction 

 

5.1 Iron-Catalyzed Benzylic Oxidation with TBHP 

 

Benzylic oxidation is frequently used in organic synthesis for the construction of complex 

molecules. Classical oxidation protocols typically involved the use of stoichiometric 

quantities of oxidants such as potassium permanganate or potassium dichromate.125 Recently, 

a number of oxidation catalysts have been reported.57 Unfortunately, most existing procedures 

for benzylic functionalization are limited as they involve toxic metals51 and the substrate 

scope is often narrow. Consequently, further developments in the metal-catalyzed oxidation 

area are desirable and the problem is especially acute on an industrial scale where 

environmentally benign oxidation catalysts and non-polluting stoichiometric oxidants are 

much sought after. Thus, low cost and non-toxic iron appears to be an optimal metal source 

for the construction of catalyst systems.8 In 1983, Barton introduced a particular type of iron-

catalyzed oxidation dubbed the “Gif” reaction, 126  a methodology which has evolved 

considerably in the meantime.55b, 127 An exciting development in iron-catalyzed oxidation was 

recently reported by Kim et al. who demonstrated the applicabilty of their catalyst for the 

oxidation of activated methylene groups.72 However, this system required the addition of an 

acid and slow addition of oxidants by using syringe pump. An alternative oxidation protocol, 

which allowed the oxidation of benzylic compounds efficiently under mild and convenient 

reaction conditions and which required no additional acid or ligand was desirable.  

 

An oxidation methodology involving the use of iron(III) chloride as an inexpensive catalyst, 

low catalyst loadings (2 mol%), TBHP in water as stoichiometric oxidant and pyridine as 
                                                 
125 M. Hudlicky, Oxidations in Organic Chemistry; ACS Monograph No. 186, American Chemical Society; 
Washington DC, 1990. 
126 a) P. Stavropoulos, R. Çelenligil-Çetin, A. E. Tapper, Acc. Chem. Res. 2001, 34, 745. b) For a summery of 
Gif reactions, see: P. Stavropoulos, R. Çelenligil-Çetin, S. Kiani, A. Tapper, D. Pinnapareddy, P. 
Paraskevopoulou: Handbook of C-H Transformations, (Ed.: G. Dyker), Wiley-VCH, Weinheim, 2005, pp. 497. 
c) D. H. R. Barton, D. Doller, Acc. Chem. Res. 1992, 25, 504. 
127 D. H. R. Barton, T. Li, Tetrahedron 1998, 54, 1735. 
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solvent and coordinating agent was developed. 128  This protocol presented the additional 

advantage that a solution of TBHP in water, instead of TBHP in hydrocarbons, can be applied 

as oxidant. 

 

For initial catalyst optimization, diphenylmethane (33a) was chosen as a starting material. In 

the presence of 2 mol% of iron(III) trichloride, several oxidants such as TBHP, H2O2,
129 

cumene peroxide, NaOCl and O2
130  were examined in pyridine at 82 °C. Only cumene 

hydroperoxide and TBHP gave desired benzopheneone 36a in 58% and 91% yield 

respectively whereas use of H2O2 led to substrate decomposition and the latter two gave no 

conversion at all. In the blank reaction, no reaction occurred without TBHP as an oxidant. 

Surprisingly, an aerobic atmosphere was beneficial, whereas under argon 36a was obtained in 

only 13% yield as determined by GC analysis. Other iron salts also proved applicable, 

independent of their oxidation state (Table 3)  

 

Table 3. Screening of iron salts. 

Entry Iron salt Yield (%) 

1 Fe(ClO4)3 94 

2 Fe(ClO4)2: 70 

3 FeCl3 91 

4 FeCl2 87 

5 Fe(OTf)2 70 

6 Fe(acac)3 40 

 

FeCl3, which is easy to deal with and much cheaper and safer than Fe(ClO4)3, was chosen in 

subsequent studies in order to avoid the presence of the potentially explosive perchlorate ion, 

although the yield of 35a was slightly higher by using Fe(ClO4)3 as catalyst,. After screening 

various solvents, pyridine appeared to be the optimal solvent when compared to MeCN, 

AcOH or N-methyl imidazole, which afforded 35a in 73, 48, and 42% yield respectively. In 

conclusion, the best result was obtained using 2 mol% of FeCl3•6H2O and 3 equivs. of TBHP 

aq. (70%) in pyridine at 82 °C under air for 24 hours affording the formation of 

                                                 
128 a) W, Kissiling, Z. Anorg. Allg. Chem. 1922, 120, 209, 217, 229. b) M. Januszczyk, J. Janicki, H. 
Wojakowska, R. Krzyminiewski, J. Pietrzak, Inorg. Chim. Acta 1991, 186, 27. c) S. A. Cotton, V. Franckevicius, 
J. Fawcett, Polyhedron 2002, 21, 2055. 
129 C. Pavan, J. Legros, C. Bolm, Adv. Synth. Catal. 2005, 347, 703. 
130 T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 2005, 105, 2329. 
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benzophenone 36a in 91% yield (Eq. 1). Lower catalyst loading (0.5 mol) of FeCl3 still gave 

benzophenone 36a in 69% yield. 

O
2 mol% FeCl3 cat.

3 equivs. TBHP aq. (70%),
pyridine, 82 °C, open air, 24 h

35a 36a

Eq. 1

 

These conditions refer to a scale of up to 2 mmol. Using 5 mmol of 35a under identical 

reaction conditions, benzophenone 36a was obtained in 94% yield. 

These optimized conditions were then applied for the oxidative conversion of other substrates 

(Table 4). Most diarylmethylene derivatives gave the corresponding products in excellent 

yields (up to >99%; Table 3, entries 1-6). Annulated compounds led to benzylic oxidation 

products in lower yields 30-74% yield (entries 7-13). Noncyclic compounds bearing one 

(hetero)aryl group could be oxidized in the benzylic position with moderate yields (entries 14-

17). In these cases, no by-products were observed. The surprising reactivity difference 

between ethylbenzene (entry 16) and p-methoxy ethylbenzene (entry 17) is attributed to the 

presence of electron-donating substituents. The corresponding carboxylic acid was obtained in 

53% yield by oxidation of p-methoxytoluene (entry 18). Benzylic alcohol such as 

diphenylmethanol gave diphenylketone (86% yield, entry 21). Interestingly, 1,4-

dihydroxynaphthaline underwent oxidation to give binaphthoquinone in high yield (82%) 

under mild conditions (entry 20).131 Interestingly, the oxidation of triphenylmethane 35v gave 

tert-butyl triphenylmethyl peroxide in 91% yield instead of the corresponding alcohol (entry 

21). 

 

Table 4. Benzylic oxidation of various hydrocarbon derivatives.a 

2 mol% FeCl3

3 equivs. TBHP aq. (70%)
pyridine, 82 °C

O

35 36  

Entry Substrate Product Yield (%)b 

1 FF  

35b FF

O

 

93 

                                                 
131 This process may have application in the preparation of Vitamin K analogues J. Kowalski, J. Plonszyńska, A. 
Sobkowiak, Catal. Commun. 2003, 4, 603. 
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a Reaction conditions for a 2 mmol scale: 2 mol% of FeCl3 •6H2O, 3 equivs. of TBHP aq. 

(70%), pyridine, 82 °C, 24 h. 
b Analytical data for all products were consistent with the literature or commercial materials. 
c The reaction was carried out at 110 °C. 
d 6 equivs. of aq. TBHP (70%) was used. 
e The reaction was carried out at room temperature for 10 min in MeCN. 

 

The dipyridylpicolylamine ligand 74a was also examined for oxidation of diphenylmethane, 

resulting in the formation of benzophenone 35a in 97% yield. But in the end it was found that 

only pyridine was necessary as ligand for this oxidation system. 

A plausible mechanism is shown in Scheme 81. In the first step iron (III) is oxidized to 

generate a high valent iron oxo species, which can activate a C-H bond. After insertion of 

dioxygen, the ketone is formed and an iron(III) species can be regenarated. 

 

Scheme 81. Plausible catalytic cycle for benzylic oxidation. 
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5.2 Synthesis of Vitamin K3 

 

The series of Vitamin K compounds, which consist of a 1,4-naphthoquinone framework, are 

included in the lipophilic Vitamin K family (Figure 7). Vitamin K3 (menadione) can be 

conveniently prepared synthetically. 

 

Figure 7. Analogues of Vitamin K. 
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Several procedures for the synthesis of Vitamin K3 have been reported. The synthesis of 

Vitamin K3 by applying this new iron-catalyzed oxidation methology can readily be 

envisaged. In principle, it can be accessed by several approaches from starting materials such 
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as 2-methylnaphthaline, 132  1-hydroxy-2-methyl-naphthaline 133  and 1,4-

dihydroxynaphthaline134 (Scheme 82). 

 

Scheme 82. Approaches to Vitamin K3. 
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For example, from methylnaphthaline (route A), Vitamin K3 can be synthesized by oxidation 

with PCC in 55% yield.131 From methylnaphthaline (route B), Vitamin K3 can be obtained in 

quantitative yield using hydrogen peroxide in acetic acid at 100 °C for 3 hours. 

As described in chapter 5.2, 1,4-dihydroxynaphthaline was oxidized by an iron catalyst with 

TBHP affording naphthoquinone in good yield (Scheme 83). 

 

Scheme 83. Transformation of 1,4-dihydroxynaphthaline by iron catalyisis. 
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Thus, by using the same oxidation conditions, Vitamin K3 should be readily synthesized from 

2-methyl-1,4-dihydroxynaphthaline (Vitamin K4) (route C). 

 

                                                 
132 a) S. Narayanan, K. V. V. S. B. S. R. Murthy, K. M. Reddy, N. Premchander, Appl. Catal. A: 2002, 228, 161. 
b) A. Bohle, A. Schubrert, Y. Sun, W. R. Thiel, Adv. Synth. Catal. 2006, 348, 1011. c) F. Shi, M. K. Tse, M. 
Beller, Adv. Synth. Catal. 2007, 349, 303. d) Patent, WO 02/079133 A1. 
133 E. Fillion, V. E. Trépanier, L. G. Mercier, A. A. Remorova, R. J. Carson, Tetrahedron Lett. 2005, 46, 1091. 
134a) S. Shi, T. J. Katz, B. V. Yang, L. Liu, J. Org. Chem. 1995, 60, 1285. b) D. Villemin, M. Hammadi, M. 
Hachemi, Synth. Commun. 2002, 32, 1501. c) F. Minisci, A. Citterio, E. Vismara, F. Fontana, S. D. Bernardinis, 
J. Org. Chem. 1989, 54, 728. 
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These reaction conditions were applied to synthesize Vitamin K3 from 2-methylnaphthaline. 

However, only traces of naphthaline-2-carboxylic acid were isolated and none of the desired 

product was observed (Scheme 84). 

 

Scheme 84. Trial of Vitamin K3 synthesis by iron-catalyzed oxidation with TBHP. 
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As a new approach, the synthesis of Vitamin K3 from 1,2,3,4-tetrahydronaphthaline (route D) 

was attempted. Such a route has never been reported. α-Tetralone can be synthesized easily 

and even by iron-catalyzed benzylic oxidation as mentioned in chapter 5.2. 

An interesting result was obtained when tetrahydronaphthaline was oxidized with TBHP in 

MeCN. Instead of α-tetralone and the related diketone, 1,4-naphthoquinone was obtained in 

low yield (Scheme 85). 

 

Scheme 85. Synthesis of 1,4-naphthoquinone from 1,2,3,4-tetrahydronaphthaline. 
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As a tentative reaction mechanism, α-tetralone can be considered to be formed first. Then, 

benzylic oxidation might occur to form the diketone, which can be coverted to 1,4-

dihydroxynaphthaline under basic conditions. Immediately afterwards, the hydroxyl groups 

would be oxidized further to afford 1,4-naphthoquinone. 
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If this mechanism were right, Vitamin K3 should be accessible from methyltetralone (Scheme 

86). 

 

Scheme 86. Synthesis of 1,4-naphtoquinone from 1,2,3,4-tetrahydronaphthaline. 
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As expected, Vitamin K3 could be obtained, although in low yield. Unfortunately, it was not 

possible to improve the yield with this catalytic system. 

 

5.3 Iron-Catalyzed Benzylic Oxidation with Hydrogen peroxide 

 

As described in chapter 1.3, the ligand plays an important role in benzylic oxidation reactions.  

N,N-dipyridylaminopicoline, which has been synthesized in this study, was examined as a 

new ligand for this transformation (Scheme 87). 

 

Scheme 87. Iron-catalyzed benzylic oxidation with H2O2. 
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After optimization, use of 5 mol% iron(III) trichloride, ligand and hydrogen peroxide (20 

equivs.) as oxidant in MeCN at 70 °C for 24 hours gave full conversion to diphenylketone. 

However, diarylketone 36b was obtained only in 20% yield, probably due to decomposition 

of product. To avoid decomposition, the reaction was diluted. However, the conversion was 

lower and the isolated yield was still 30%. 
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5.4 Developement of Iron-Catalyzed Iminations of Sulfides and 

Sulfoxides  

 

During recent years, iminations of sulfides and sulfoxides have generated great interest among 

chemists. Several metal-catalyzed iminations have been demonstrated. 135 . In our group, 

rhodium and silver-catalyzed iminations have been developed. 136  Even though they are 

efficient methods, most of them involve toxic metals. In 2006, an iron-catalyzed imination 

reaction of sulfides and sulfoxides was reported (Scheme 88).137 

 

Scheme 88. Iron-catalyzed imination of sulfide and sulfoxide. 

88%

S S
O NNs10 mol% Fe(acac)3

1.6 equivs. PhINNs,
MeCN, rt, 1 h

O

94 95

S S

NNs
5 mol% Fe(acac)3

NsNH2, PhI=O,
MeCN, rt

91%
92 93

 

In the published screening of iron salts, iron(II) triflate was not examined and Fe(acac)3 was 

found to be the optimal catalyst. Subsequent examination of Fe(OTf)2 in imination of 

sulfoxide 92 using PhINNs as nitrene source revealed a slight improvement in conversion 

(Scheme 89). 

 

Scheme 89. Imination of sulfide and sulfoxide with iron(II) triflate. 

98%
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As an example, even only 2.5 mol% of iron(II) triflate was able to catalyze efficiently 

imination of thioanisole and its suloxide, affording the corresponding iminated products in 

                                                 
135 Cu-catalyzed imination, see: a) J. F. K. Müller, P. Vogt, Tetrahedron Lett. 1998, 39, 4805. b) P. S. Aujla, C. P. 
Baird, P. C. Taylor, Tetrahedron Lett. 1997, 38, 7453. c) M. L. Kantam, B. Kavita, V. Neeraja, Y. Haritha, M. K. 
Chaudhuri, S. K. Dehury, Adv. Synth. Catal. 2005, 347, 641. d) H. Takada, Y. Nishibayashi, K. Ohe, S. Uemura, 
C. P. Baird, T. J. Sparey, P. C. Taylor, J. Org.Chem. 1997, 62, 6512. Ru-catalyzed imination, see: e) M. 
Murakami, T. Uchida, T. Katsuki, Tetrahedron Lett. 2001, 42, 7071. 
136 Rh-catalyzed imination, see: a) H. Okamura, C. Bolm, Org. Lett. 2004, 6, 1305. Ag-catalyzed imination, see: 
b) G. Y. Cho, C. Bolm, Org. Lett. 2005, 7, 4983. 
137 a) O. García Mancheño, C. Bolm, Org. Lett. 2006, 8, 2349. b) O. García Mancheño, C. Bolm, Chem. Eur. J. 
2007, 13, 6674. 
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high yields (91% and 98% respectively). This system was applied for asymmetric iminations 

of sulfides using a chiral ligand 97a. As a model reaction, the imination of thioanisole 92 with 

the combination of iron(II) triflate and chiral ligand 97a was studied. Although no 

enantiomeric excess was observed, the yield was still satisfactory (Scheme 90) 

 

Scheme 90. Iron-catalyzed asymmetric imination of sulfide. 
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A plausible mechanism for the imination of sulfoxides is depicted in Scheme 91 At the 

beginning iron(II) triflate reacts with PhINNs to generate an iron(IV)-nitrene intermediate. 

Afterwards, the iron-nitrene reacts with a sulfoxide to give a sulfoximine, regenerating the 

iron(II) catalyst. Molecular sieves play a very important role to eliminate undesired putative 

iron-oxo species, which can give sulfone as a side product. However, the iron-oxo species 

could not be detected by any analysis. 

 

Scheme 91. Plausible catalytic cycle for imination of sulfoxide. 
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5.5 Iron-Catalyzed Aziridination of Olefins 
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During the last decades a number of metal-catalyzed aziridination processes have been 

developed due to the great utility of aziridine derivatives.82c, 85, 138, 139, 140, 141, 142, , 143 However, 

most of them involve toxic metals as with sulfoxide iminations and benzylic oxidations. 

Consequently, further improvements in this area are still desirable. Paticulary, low cost and 

non-toxic iron would be of utility as a catalyst. Recently, several iron-catalyzed aziridinations 

have been developed. 81a, 91-93, 144 

Aziridination of styrene has been investigated using the same conditions as for the imination 

of sulfoxides (Scheme 75). Surprisingly, the use of 4Ǻ molecular sieves was beneficial, 

whereas without molecular sieves the yield of aziridine 47 was only 63%.90 Molecular sieves 

powder of 3 Ǻ, 4 Ǻ, 5 Ǻ were tested to determine the effect of the cavity size. The aziridines 

50a was obtained in 60, 66, 63% yields, respectively, indicating that 4 Ǻ sieves are optimal. 

The solvent effect is remarkable. When nitromethane was used, no aziridine product was 

obtained. Also, dichloromethane gave only traces of aziridine. Gratifying, several kinds of 

nitrene sources can be used affording aziridines in moderate yields (Table 5, entries 2-4).78c 

 

Table 5. Aziridinations of styrene with various sulfonyliminophenyliodinanes 51.a 

                                                 
138 For Cu-catalyzed aziridinations, see: a) A. Pearson, G. R. Han, J. Org. Chem. 1985, 50, 2791. b) J. Muzart, 
Tetrahedron Lett. 1986, 27, 3139. c) R. Rahore, N. Saxena, S. Chandrasekaran, Synth. Commun. 1986, 16, 1493. 
d) J. Muzart, Tetrahedron Lett. 1987, 28, 2131. e) J. Muzart, A. N. A. Ajjou, J. Mol. Catal. 1991, 66, 155. f) T. 
K. Das, K. Chaudhari, E. Nandanan, A. J. Chandwadkar, A. Sudalai, T. Ravindranathan, S. Sivasanker, 
Tetrahedron Lett. 1997, 38, 3631. g) G. Rothenberg, H. Wiener, Y. Sasson, J. Mol. Catal. A: Chem. 1998, 136, 
253. h) P. Dauban, R. H. Dodd, Org. Chem. 1999, 64, 5304. i) S. L. Jain, B. Sain, Tetrahedron Lett. 2003, 44, 
575. j) S. L. Jain, V. B. Sharma, B. Sain, Synth. Commun. 2005, 35, 9. k) P. Comba, M. Merz, H. Pritzkow, Eur. 

J. Inorg. Chem. 2003, 1711. l) P. Dauban, L. Sanière, L. Tarrade, R. H. Dodd, J. Am. Chem. Soc. 2001, 123, 
7707. m) H. L. Kwong, D. Liu, K.-Y. Chan, C.-S. Lee, K -H. Hung, C.-M. Che, Tetrahedorn Lett. 2004, 45, 
3965.  
139 For Ag-catalyzed aziridinations, see: a) E. Modica, G. Bombieri, D. Colombo, N. Marchini, F. Ronchetti, A. 
Scala, L. Toma, Eur. J. Org. Chem. 2003, 2964. b) M. Jurado-Gonzalez, A. C. Sullvian, J. R. H. Wilson, 
Tetrahedron Lett. 2003, 44, 4283. c) P. Lei, H. Alper, J. Mol. Catal. A: Chem. 1990, 61, 51.. 
140 For Au-catalyzed aziridinations, see: a) S. Murahashi, Y. Oda, T. Naota, T. Kuwabara, Tetrahedron Lett. 

1993, 34, 1299. b) M. D. Nikalje, A. Sudaldai, Tetrahedron 1999, 55, 5903. 
141 For Rh-catalyzed aziridinations, see: a) G. Blay, I. Fernández, T. Gimenez, J. R. Pedro, R. Ruiz, E. Pardo, F. 
Lloret, M. Muoz, Chem. Commun. 2001, 2102. b) J. F. Pan, K. M. Chen, J. Mol. Catal. A: Chem. 2001, 176, 19. 
c) N. H. Lee, C.-S. Lee, D. Jung, Tetrahedron 1998, 39, 1385. d) A. J. Catino, J. M. Nichols, R. E. Forslund, M. 
P. Doyle, Org. Lett. 2005, 7, 2787. e) M. P. Doyle, U.S. Pat. Appl. Publ., 2006211870. 
142 For Mn-catalyzed aziridinations, see: a) D. Mansuy, J.-P. Mahy, A. Dureault, G. Bedi, P. Battioni, J. Chem. 

Soc., Chem. Commun. 1984, 1161. b) T.-S. Lai, H.-L. Kwong, C.-M. Che, S.-M. Peng, J. Chem. Soc., Chem. 

Commun. 1997, 2373. c) M. Nishimura, S. Minakata, T. Takahashi, Y. Oderaotoshi, M. Komatsu, J. Org. Chem. 
2002, 67, 2101. d) H. Nishikori, T. Katsuki, Tetrahedron Lett. 1996, 37, 9245. 
143 For Co-catalyzed aziridinations, see: a) T. C. H. Lam, W.-L. Mak, W.-L. Wong, H.-L. Kwong, H. H. Y. Sung, 
S. M. F. Lo, I. D. Williams, W-H. Leung, Organometallics 2004, 23, 1247. b) G.-Y. Gao, J. E. Jones, J. D. 
Harden, X. P. Zhang, J. Org. Chem. 2006, 71, 6655. 
144 a) R. Vyas, G.-Yao. Gao, J. D. harden, X. P. Zhang, Org. Lett. 2004, 6, 1907.  b) B. D. Heuss, M. F. Mayer, S. 
Dennis, M. M. Hossain, Inog. Chem. Acta 2003, 342, 301. 
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a Reaction conditions for a 0.25 mmol scale: Fe(OTf)2 (2.5 mol%), styrene (20 equivs.), 

MeCN, rt, 1 – 24 h. 
b All products were identified by comparison of their analytical data with those of previous 

reports. 

c Fe(OTf)2 (5 mol%) was used. 

 

As alternative nitrene sources, chloramine-T 47a, bromamine-T 47b and tosylazide 49a were 

tested for aziridination. However, no aziridine product was detected by GC-MS. 

Next, using the best condition, the substrate scope of this reaction was explored. In the 

substrate screening, poorly reactive olefins such as α- or β-substituted styrene were 
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aziridinated (Table 6, entries 2-3). Cyclic olefins such as cis-cyclooctene can be aziridinated 

efficiently by increasing the amount of catalyst to 20 mol% (entry 4). 

 

Table 6. Aziridinations of various olefins with PhINTs or PhINNs.a 

 

R RPhINNs, MS 4Å, MeCN
r.t., 0.5 -24 h

NNs20 mol% Fe(OTf)2
R

R

R

R

R

R

 

 

Entry a Substrate Product Yield (%) b 
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  31 d 
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67 

a Reaction conditions for a 0.25 mmol scale: Fe(OTf)2 (20 mol%), olefins (20 equivs.), 

PhINNs (0.25 mmol), MeCN, r.t., 1–24 h. 
b Analytical data for all products were consistent with the literature. 

c Fe(OTf)2 (10 mol%) was used. 
d Only trans product was obtained. 

 

Aziridination using an in situ generated phenyliodinane was studied next. Thus, the reaction 

using 10-20 mol% of iron(II) triflate and a combination of the corresponding sulfonamide and 

iodobenzene diacetate with MgO as a base or iodosylbenzene proceeded well affording 

aziridines in high yields (Table 7, entries 1-4)136l-m, Significantly, N-(p-toluenesulfonyl)-p-

toluenesulfonimidophenylaziridine was obtained in good yield (58%, entry 5) even when it 
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was not possible to isolate the corresponding preformed iminoiodinane after reaction of 

sulfonimidamide 52e with iodobenzene diacetate96a. 

 

Table 7. Aziridination of styrene 50a.a 
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a Reaction conditions for a 0.25 mmol scale: Fe(OTf)2 (20 mol%), styrene (10-20 equivs.), 

amide (0.25 mmol), PhI(OAc)2 (0.5 mmol), MgO (1.5 mmol), MeCN, r.t., 24 h. 
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b Analytical data for all products were consistent with the literature.. 
c Fe(OTf)2 (10 mol%) was used. 
 

In addition, a screening of chiral ligands for asymmetric aziridination was carried out. 

Inefficient ligands which gave less than 5% ee are shown in Figure 8. 

 

Figure 8. Variety of tested chiral ligands. 
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In copper-catalyzed asymmetric aziridination, bisoxazolines (Box)145 are efficient ligands.97a-b, 

146 However, iron-catalyzed aziridination with a Box ligand gave a racemate. Also, salen type 

ligands which are efficient for Ru-catalyzed asymmetric reactions were examined, but yields 

and enantiomeric exesses were low. Probably, the imine part of the salen ligand reacted with 

the formed nitrene and the ligand itself decomposed. 

During the optimizations, it was observed that the ratio of ligand to iron(II) triflate and the 

amount of catalyst were very important. When 2 equivs of ligand were used, higher 

enantiomeric excess were observed (30% ee). Also, 2.5 mol% of iron(II) triflate with 5 mol% 

of ligand gave lower enantiomeric excess (15% ee). 

Finally, the best result was obtained with 5 mol% of iron(II) triflate and 30 mol% of (S, S)-i-

Pr-pybox ligand giving the aziridine in 63% yield and 40% ee (Table 8, entry 1). Similar 

enantiomeric excess was observed using other pybox ligands (entries 2-4). Interestingly, 

chiral 2,6-bis(N-pyrazolyl)pyridines, 147  were efficient for this asymmetric reaction, even 

though the reaction took longer (entries 5-6). 

Noteworthy results are that the (S, S)-Ph-pybox ligand and the pincer type disulfoximine 

ligand had similar efficiencies for this asymmetric reaction (entries 3 and 7). 
                                                 
145 G. Desimoni, G. Faita, K. A. Jørgensen, Chem Rev. 2006, 106, 3561. 
146 a) S. Tylor, J. Gullick, P. McMorn, D. Bethell, P. C. Bullmann Page, F. E. Hancock, F. King, G. J. Hutchings, 
J. Chem. Soc. Perkin Trans 2 2001, 1714. b) D. Ryan, P. McMorn, D. Bethell, G. J. Hutchings, Org. Biomol. 

Chem. 2004, 2, 3566. c) J. Gullick, S. Taylor, D. Ryan, P. McMorn, M. Coogan, D. Bethell, B. C. Bullmann 
Page, F. E. Hancock, F. King, G. J. Hutchings, Chem. Commun. 2003, 2808. d) M. J. Södergren, D. A. Alonso, P. 
G. Andersson, Tetrahedron: Asymmetry 1997, 8, 3563. 
147 a) M. Bovens, A. Togni, L. M. Venanzi, J. Organomet. Chem. 1993, 451, C28. b) A. A. Watson, D. A. House, 
P. J. Steel, J. Org. Chem. 1991, 56, 4072. c) D. D. LeCloux, W. B. Tolman, J. Am. Chem. Soc. 1993, 115, 1153. 
d) D. L. Christenson, C. J. Tokar, W. B. Tolman, Organometallics 1995, 14, 2148. 
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Table 8. Asymmetric aziridination of styrene. 
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N N

 

97b 

40 6 
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S N N S
O O

 

98 

67 15 

a Reaction conditions for a 0.25 mmol scale: Fe(OTf)2 (2.5 mol%), chiral ligand (5-10 mol%), 

styrene (20 equivs.), MeCN, r.t., 1–24 h. 
b Fe(OTf)2 (5 mol%), chiral ligand (30 mol%) was used. 

 

The effect of substitution at the sulfonamides employed as nitrogen sources was studied. 

Surprisingly, when nosyl amide was used, the aziridine was obtained as a racemate. Also, the 

Ses group was not efficient for asymmetric aziridination, giving 51a in a low 20% ee. To 

improve the enantiomeric excess, some additives were examined. Addition of a radical 

scavenger such as 2,6-di-tert-butyl-4-methylphenol148 gave lower enantomeric excess. Also, 

addition of a donor ligand such as pyridine-N-oxide142c, 149 gave the product with lower yield 

and enantiomeric excess (20%, 10% ee). 

Interestingly, aziridination of styrene works efficiently using i-Pr-Pybox ligand in 

dichloromethane giving the desired product in 92% yield, although only 3% enantiomeric 

excess was observed. Thus, 2,6-bis(N-pyrazolyl)pyridine (99),150 which is a simple tridentate 

ligand and easy to prepare, was tested for aziridination reaction (Scheme 92).151 

 

Scheme 92. Preparation of 2,6-bis(N-pyrazolyl)pyridine (99) catalyzed by copper(I) iodide. 

                                                 
148 I. W. C. E. Arends, K. U. Ingold, D. D. M. Wayner, J. Am. Chem. Soc. 1995, 117, 4710. 
149 R. Irie, Y. Ito, T. Katsuki, Synlett 1991, 265.  
150 a) D. L. Jameson, K. A. Goldsby, J. Org. Chem. 1990, 55, 4992. b) X. Sun, Z. Yu, S. Wu, W.-J. Xiao, 
Organometallics 2005, 24, 2959. c) G. Zoppellaro, M. Baumgarten, Eur. J. Org. Chem. 2005, 2888. 
151  S. Özçubkuçu, E. Schmitt, A. Leifert, C. Bolm, Synthesis 2007, 389. 
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NN N
N N

NH

N NBr Br
+

CuI, K2CO3

DMSO, 90 °C

2.2 equivs. 99  

 

As a result, the use of only 5 mol% of iron(II) triflate with 10 mol% of this ligand gave the 

aziridine product in 94% yield (Table 9, entry 1). 

 

Table 9. Efficient aziridination catalyzed by iron(II) triflate with 2,6-bis(N-pyrazolyl)pyridine 

ligand 99. 

NN N
N N

Ligand:NTsFe(OTf)2 cat.,
Ligand

CH2Cl2, MS 4Å,
r.t., 1 h50a 51a 99  

Entry a Fe(OTf)2 (mol%) Ligand (mol%) Yield (%) 

1 5 10 94 

2 2 4 78 

3 1 2   50 b 

4 5 0 trace 
a Reaction conditions for a 0.25 mmol scale: Fe(OTf)2 (1-5 mol%), ligand (0-10 mol%), 

styrene (20 equivs.), CH2Cl2, r.t., 1–24 h. 
b Styrene (10 equivs.) was used. 

 

This combination of iron(II) triflate and 2,6-bis(N-pyrazolyl)pyridine 99 probably formed a 

mononuclear complex in situ.152 Compared to the results obtained when the reaction was 

carried out in MeCN, this system is apparently more efficient in dichloromethane. By 

decreasing the amount of catalyst, the yields also tend to decrease. In a blank test without 

ligand, only traces of aziridine were detected by GC-MS and TLC, although PhINTs was 

consumed completely after 24 hours. 

The proposed mechanism is shown in Scheme 93. As in the case of the imination reaction, 

iron(II) triflate forms an iron(IV)-nitrene intermediate with PhINTs. Then, the iron-nitrene 

reacts with styrene to give an aziridines product. At the same time, the iron(II) catalyst can be 

                                                 
152 a) J. M. Holland, J. A. McAllister, C. A. Kilner, M. Thornton-Pett, A. J. Bridgeman, M. A. Halcrow, J. Chem. 

Soc., Dalton Trans 2002, 548. b) J. Elhalïk, D. J. Evans, C. A. Kilner, M. L. Halcrow, J. Chem. Soc. Dalton 

Trans 2005, 1693. c) J. Elhalïk, C. A. Kilner, M. L. Halcrow, J. Chem. Soc., Dalton Trans 2006, 823. d) T. Ayer, 
S. Scott, J. Goins, N. Caylor, D. Hathcock, S. J. Slattery, D. J. Jameson, Inorg. Chim. Acta 2000, 307, 7. 
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regenerated. Molecular sieves play a very important role to prevent the formation of an 

undesired iron-oxo species, which can give epoxide or aldehyde side products from styrene. 

Plausible side product such as epoxide were not detected by TLC, However, it was not able to 

isolated because of their trace amount and high volatility.153 

 

Scheme 93. Plausible catalytic cycle for iron-catalyzed aziridinations of styrene. 
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TsNH2

H2O

 

 

As a mechanistic study, epoxidation with iodosylbenzene without sulfonamide, in which iron-

oxo species will be formed, was examined. As expected, epoxidation product 100 was 

detected by TLC and characterized by NMR (Scheme 94). 

 

Scheme 94. Iron-catalyzed epoxidation of styrene. 

O
5 mol% Fe(OTf)2

PhI=O, MeCN, r.t.

50a 100  

 

As another application, C-H insertion of 1,2,3,4-tetrahydronaphthaline was examined. In this 

reaction, PhINNs was consumed completely. However, no amidation product was observed at 

all and ony NsNH2 (99%) was recovered from PhINNs (Scheme 95). 

 

Scheme 95. Iron-catalyzed benzylic C-H insertion of 1,2,3,4-tetrahydronaphthaline. 

                                                 
153 a) W. Nam, S. K. Choi, M. H. Lim, J-U. Rohde, I. Kim, J. Kim, C. Kim, L. Que, Jr. Angew. Chem. 2003, 115, 
113. b) R. M. Moriarty, R. Penmasta, I. Prakash, Tetrahedron Lett. 1985, 26, 4699. 
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20 mol% Fe(OTf)2

PhINNs, MeCN
r.t., 0.5 h

NHNs

0%

+ NsNH2

99%  

 

5.6 Iron-Catalyzed αααα-Amination of Silyl Enol Ethers Derivatives 

 

Metal-catalyzed α-amination of silyl enol ethers has been performed using several kinds of 

metal catalysts. For example, copper and ruthenium can be used (chapter 1.4).88, 106 Also 

asymmetric α-aminations have been demonstrated.110, 111 Actually, α-amination of silyl enol 

ethers proceeded by heating in boiling MeCN (82 °C) without metal catalysis as mentioned in 

chapter 1.4. However, the reaction works even at room temperature or lower temperature by 

using a metal catalyst. Further investigation of the iron(II) triflate catalyzed aziridination of 

styrene mentioned in chapter 5.5, has led to the discovery that attempted Fe(OTf)2 catalyzed 

α-amination of silyl enol ethers using this system gave α-amino ketones (eq. 2). A typical α-

amination (of enol silane (55a) to give α-amino ketone (56a)) is shown in equation 2. 

 

PhINTs, MS 4A, MeCN
r.t., 0.5 h

2.5 mol% Fe(OTf)2

55a 56a

Eq. 2

OSiMe3 O

NHTs

73%
 

 

In the initial phase of the project, β-styryloxy trimethylsilane (55a) was chosen as substrate 

for the optimization of the catalysis protocol. The best result was achieved by using 2.5 mol% 

of Fe(OTf)2•2MeCN, 20 mg of MS 4Ǻ and 2 equivs. of silyl enol ether in acetonitrile at room 

temperature under argon, affording the formation of (56a) in 73% yield (eq. 2). 

These optimized conditions were then applied to the conversion of several kinds of silyl enol 

ethers. Methyl substituted β-styryloxy trimethylsilane gave the corresponding α-amino ketone 

product in high yields(Table 10, entry 1). Use of a non-aromatic alkyl cyclic silyl enol ether 

led to the α-aminated product in 63% yield (entry 3). A linear aliphatic silyl enol ether was 

also able to be α-aminated with good yield (46%) (entry 4). Interestingly, reaction of a TMS 

protected ester enolate with PhINTs gave the α-amino acid ester in moderate yield (50%) 

(entry 5). 
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Table 10. α-Amination of various silyl enol ethers.a 

R PhINTs, MS 4A, MeCN
r.t., 1 h

2.5 mol% Fe(OTf)2
R

OSiMe3

R
NHTs

R

O

 

Entrya Substrate Product Yield (%)b 

1 

OSiMe3

 

55a 

O
NHTs

 

56a 

72 

2 

OSiMe3

Me

 

55b 

O
NHTs

Me  

56b 

63 

3 

OSiMe3

 

55c 

O

NHTs

 

56c 

63 

4 

OSiMe3

 

55d 

O
NHTs  

56d 

46 

5 OMe

OSiMe3

 

55e 

OMe

O
TsHN

Ph  

56e 

50 

a Reaction conditions for a 0.25 mmol scale: Fe(OTf)2 (2.5 mol%), silyl enol ethers (1-2 

equivs.), MeCN, r.t., 1 h. 
b Analytical data for all products were consistent with the literature. 

 

To improve the yield a higher loading of catalyst was used. Conversely, 20 mol% of catalyst 

gave a lower yield (13%) in aziridination of cyclohexenyloxytrimethylsilane. 

A proposed mechanism is given in Scheme 96. As in the case of imination reactions, iron(II) 

triflate generates an iron(IV)-nitrene intermediate with PhINTs. Then, the iron-nitrene reacts 

with silyl enol ethers to give α-amino ketones via aziridine intermediates and iron(II) is 

regenerated. Again molecular sieves are important to prevent side reaction due to iron-oxo 
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intervention. However, plausible side products from oxo intermediates such as α-hydroxy 

ketones were not observed by any analysis. 

 

Scheme 96. Plausible catalytic cycle for iron-catalyzed α-amino ketonization of enol silane. 
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5.6.1 Synthesis of αααα-Silaamino Acid Derivatives 

 

Application of the iron-catalyzed amination of silyl enol ethers to the synthesis of α-sila 

amino acid esters was studied next. 

During recent years, α-silaamino acids have attracted biological interest. Characteristic 

differences in the chemical behavior of the compounds can be expected by displacement of 

tert-leucine by an α-silaamino acid. Especially, chemical properties such as biological activity 

and absorbability in to the human tumor cell lines can be modified by incorporation of α-

silaamino acid into the peptide framework in the place of tert-leucine. For example, (-)-

hemiasterin includes a tert-leucine residue. 154  The replacement of tert-leucine by α-sila 

amino acid in such a compound could be of great interest for the pharmaceutical industry 

(Figure 8). 

 

Figure 8. Displacement of tert-leucine by α-silaamino acid. 

                                                 
154R. Talpir, Y. Benayahu, Y. Kashman, L. Pannell, M. Schleyer, Tetrahedron Lett. 1994, 35, 4453. 
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HO

O

NH2

Si

HO

O

NH2

ter t-Leucine α-Silaamino acid  

 

Conventionally, α-sila amino acid esters can be prepared by three approaches (Scheme 97). 

 

Scheme 97. Synthetical approaches for α-silaamino acid. 

HO
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In our research group, rhodium-catalyzed C-H amination has suceeded using approach c 

(Scheme 98). 

 

Scheme 98. Rhodium-catalyzed α-amination with diazocompounds. 

BnO

O

NHR

Si

BnO

O

N2

Si
RNH2

+
2 mol% Rh(II) cat.

toluene, 40 - 70 °C

 

 

Finally, the applicability of this new strategy for the preparation of α-silaamino acid esters 

has been tested. As mentioned in chapter 5.7, silyl enol ethers could be converted to α-amino 

acid esters via iron-catalyzed α-amination. Thus, the synthesis of an α-silaamino acid ester 

may be achieved via amination of silyl ketene acetal 55g (eq. 3). 

Me3Si
O

OEt

NHR
PhINR

Fe(OTf)2

Me3Si
OSiMe3

OEt

Eq. 3

55g  
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Actually, α-silylacetate, which is commercially available, can be easily synthesized from α-

bromoacetate with TMSCl (Scheme 99).155  

 

Scheme 99. Synthesis of trimethylsilyl acetic acid ethyl ester. 

Br
O Me3Si

O

OEt
Me3SiCl +

OEt

Zn

CuCl2
 

 

Furthermore, the silyl enol ether of α-silylacetate could be easily prepared in good yield (E : Z 

= 4 : 1) (Scheme 100).156 

 

Scheme 100. Synthesis of trimethylsilyl acetic acid ethyl ester. 

Me3Si
OSiMe3

OEtLDA, THF

Me3Si
O

OEt

Me3SiCl

E : Z = 4 : 1  

 

As a first trial, the synthesis of α-silaamino acid ester was examined by using the same 

reaction conditions as for the iron-catalyzed aziridination of silyl enol ethers. Unfortunately, 

instead of the α-sila amino acid ester, an α-amino acid ester was obtained in 13% yield. To 

explain this result, an elimination mechanism is proposed (Scheme 101). 

 

Scheme 101. Plausible decomposition mechanism. 
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155 G. Picotin, P. Miginiac, J. Org. Chem. 1987, 52, 4797. 
156 a) D. Hazelard, J. Ollivier, R. Paugam, J. Salaün, Synlett 2003, 1155. b) I. Masuda, J. Organomet. Chem. 
1987, 321, 307. 
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In another trial, a metal free reaction was tested at reflux in acetonitrile. However, α-amino 

acid ester 98 was obtained instead of an α-silaamino acid ester in this system as well. 

Probably, the desired α-trimethylsilyl amino acid ester is not stable. Only α-TBS substituted 

α-tosylamino acid esters have previously been prepared (Eq. 4). 

TBS
O

OEt

NHTs
PhINTs

Metal cat.

TBS
OSiMe3

OEt

Eq. 4

 

Thus, the introduction of the more stable TBS group into the ketene acetal could be of interest 

for increasing the stability of the product. 

 

6 Summary and Outlook 

 

In TACN chemistry, new modifications at the nitrogen atoms by palladium-catalyzed N-

arylation have been developed. Also, deprotection of Cbz and Boc was succeefuly achieved. 

Thus a variety of aryl TACN derivatives can be synthesized by the developed procedure 

(Scheme 102). 

 

Scheme 102. Summary of N-arylation of TACN 1. 
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Furthermore, new chiral TACN ligands can be expected to be accessible using this protocol. 

Also, complexation of perfluorinated TACN ligand with copper(I) chloride was demonstrated 

and application of this complex in catalysis should be examined in the future. 

(RfCH2CH2CO2)M

M= Cu, Mn, Fe
N

N

N

RfRf

Rf

N

NN
M

Rf Rf

Rf

O O
OO

Rf Rf

Rf = C8F17

72

 

 

A synthesis of 2,2’-dipyridylamine type ligands has also been developed by using palladium 

catalysis (Scheme 103). 

 

Scheme 103. Developed synthesis of dipyridylamine type ligands by palladium catalysis. 
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Also, the routes to access tertiary butyl substituted dipyridylamine type ligands are shown in 

Scheme 104. By using same conditions, dipyridylpicolylamines were obtained in high yield 

(up to 99% yield) 

 

Scheme 104. Summary of synthetic approaches to dipyridylamine ligands. 
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In this thesis, the ability to coordinate dipyridylamines to iron and silver has been 

demonstrated. In the future applications for these ligands should be developed. 

In this study, an iron-catalyzed benzylic oxidation was successfully developed (Scheme 105). 

 

Scheme 105. Iron-catalyzed benzylic oxidation with TBHP. 

2 mol% FeCl3

3 equivs. TBHP aq. (70%)
pyridine, 82 °C

O

35 36up to >99%  

 

Most diarylmethylene derivatives gave the corresponding products in excellent yields (up to 

>99%). Also, one annelated aryl group in a cyclic system led to benzylic oxidation products 

in moderate to good yield. Noncyclic compounds bearing one (hetero)aryl group were 

oxidized in the benzylic position with moderate yields. Electron-donating substituents such as 

p-methoxy group on ethylbenzene and toluene are attributed to afford the corresponding 

ketone and carboxylic acid in 84% and 53% respectively. Even diphenylmethanol was 

oxidized to give benzophenone in 86% yield. 1,4-dihydroxynaphthaline underwent oxidation 

to give binaphthoquinone in high yield (82%) under mild conditions, which can be probably 
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applicable for the synthesis of Vitamin K analogues.129 In this oxidation, triphenylmethane 

gave tert-butyl triphenyl peroxide in 91% yield instead of the corresponding alcohol. 

Even though a cheap and low toxicity iron salt such as iron (III) trichloride was reactive 

enough to promote this benzylic oxidation, a better oxidant such a hydrogen peroxide is still 

required in place of TBHP. As a challenge that lies ahead, a much cleaner reaction which 

generates only water, for example, would be required for truly efficient iron-catalyzed 

oxidation chemistry. 

 

In iron-catalyzed aziridination, the best result was obtained by using styrene as an olefin (up 

to 88% yield). However, the substrate scope is still limited. For example β-mono substituted 

styrene and cyclic aliphatic olefins gave aziridines in low yields, although yields were 

improved by increasing the amount of catalyst from 2.5 mol% to 10 mol% (31-67%) (Scheme 

106. 

 

Scheme 106. Iron-catalyzed aziridination of olefins 
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Furthermore, in this system, an efficient ligand 99 was found which gave phenylaziridine 51a 

in up to 94% yield. 

After testing a range of pybox type ligands, a chiral aziridine was obtained in low 

enantiomeric excess (up to 40% ee) although the yield was satisfactory (83%) (Scheme 107). 

 

Scheme 107. Iron-catalyzed asymmetric aziridination of styrene. 
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In asymmetric aziridination, a further screening of ligands should be carried out in the furture. 

Also, to study the mechanism, the catalyst should be isolated and used in the reaction. The 

effect of substitution at the benzene ring has not been tested yet. Furthermore, the effect of 

counterions such as PF6
-, BF4

-, SbF6
- and ClO4

- should be studied in the future as they 

probably play a very important in the asymmetric induction.In general in iron chemistry, 

radical reactions are involved, therefore to obtain high chiral inductions in iron-catalyzed 

asymmetric reactions is challenging. However, the high potential and possibility of 

developing a selective process has been demonstrated in this thesis. 

During the ligand screening, one tridentate pyridine sulfoximine pincer type ligand, which 

was synthesized by A. Correa, gave a chiral aziridine in 15% ee (Eq. 4).157 

N

S N N S
O O

NR1

S N N S
R1R2

R2

O O

Eq. 4

 

As one candidate for an effective ligand, this type of ligand should be further studied. By 

modification of the functional groups on the sulfoximines, higher enantioselectivities can be 

expected. In conclusion, a more efficient iron-catalyzed aziridination of olefins has been 

developed in this study. Also, the most efficient iron-catalyzed asymmetric aziridination has 

been demonstrated. Firstly iron-catalyzed aziridination of styrene using iminophenyliodane, 

which was formed in situ, was successful. Additionally, using this system, aziridination of 

styrene with a sulfonimidamide gave the corresponding aziridine product. Finally, the 

application of these conditions for α-amination of silyl enol ethers was succesfull. 

 

                                                 
157 Unpublished result. 
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7 Experimental Section 

 

7.1 General Remarks 

 

7.1.1 General Techniques 

 

Air and moisture sensitive reactions were conducted under an inert atomosphere of argon 

using Schlenk techniques. All glass was flamed dried prior to use, then filled with argon. 

The addition of liquid (reagents and solvents) was perfomed with a syringe through a septum 

or dropping funnel. Solids were added under gentle stream of argon. Solvents were removed 

under high vacuum for highly air sensitive compounds and on a rotary evaporator for air 

stable compounds at 30-40 ºC. 

 

7.1.2 Solvents 

 

Solvents for anhydrous reactions were dried and purified according to standard tequniques: 

 

Chloroform: Disstilled after reflux over phosphorus pentoxide under nitrogen 

Dichlormethane: Simple distillation, followed by reflux over calcium hydride under 

argon. 

Diethylether: Distilled after reflux over sodium under argon 

Tetrahydrofuran:  Pre-drying over potassium hydroxide, passed through aluminium 

oxide, followed distillation after reflux over sodium under argon 

Acetonitril Purchased from Fluka or Acros (H2O ≤0.001%) 

Toluene: Distilled after reflux over sodium under argon 

 

7.1.3 Determination of the Physical Data 

 
1
H-NMR-Spectroscopy: 

 

Varian Gemini 300 (300 MHz), Varian Inova 400 (400 MHz), Varian Unity 500 (500 MHz) 

NMR Instruments were used. The chemical shift is given in ppm (parts per million) and is 

determined using tetramethylsilane (0.00 ppm) or the residual non-deutetrated solvent peaks 
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(chloroform 7.25 ppm; dimethylsulfoxide 2.50 ppm) as internal standard. The coupling 

constants are depicited in Hz and the multiplicity: s = singlet, d = doublet, t = triplet, q = 

quintet, m = multiplet. 

 
13

C-NMR-spectroscopy:  

Varian Gemini 300 (75 MHz), Varian Inova 400 (100 MHz), Varian Unity 500 (125 MHz). 

The chemical shift is given in ppm (parts per million) and is determined using solvent (CDCl3 

77.0 ppm; D6-DMSO 39.5 ppm) as internal standard. 

 

Melting Point 

 

Melting points were measured in open glass cappilliaries with a Buechi B-540 apparatus and 

are uncorrected. 

 

Infrared-Spectroscopy 

 

IR spectra were measured on a Perkin-Elmer FT/IR 1760 FT spectrometer as KBr pellets or 

neat. Only characteristic absorption bands are reported. Absorptions are given in wave 

number (cm-1).  

 

Mass Spectroscopy: 

 

Mass spectra were recorded on a Varian MAT 212 S and Finnigan MAT 95 Spectrometer 

with EI inonization at a 70eV ionization potential. Peaks are listed according to their 

elemental charge (m/z) value. 

 

High Resolution Mass Spectroscopy (HRMS): 

 

High resolution mass spectra were recorded on a Finnigan MAT 95 spectrometer 

 

Elemental Analysis: 

 

Elementat analyses were perfomed using a Heraeus CHNO-Rapid instrument. 
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7.1.4 Chromatographic Methods 

 

Thin Layer Chromatography: 

 

TLC-Plates Silica gel 60 F254 (Merck). 

 

Detection: 

1) UV-light (λ = 254nm). 

2) color-producing reagent:  

a) treatment with acidic solution of molybdatophosphonic acid (6.25 g), cerium(IV)-

sulfate tetrahydrate (2.50 g) and concentrated sulfric acid (15mL) in water (230 mL) 

followed by heating for  a short time at ca. 200 °C. 

b) treatment with a basic solution of KMnO4 (2  g) and K2CO3 (5  g) in Water (100 mL). 

c) treatment with a solution of ninhydrin in EtOH. 

d) I2-SiO2 

 

Colum Chromatography: 

 

Stationary Phase: Silica gel 60 (Merck), 43-60 µm diameter. 

All column chromatography was performed under presure, using pentane / ethyl acetate or 

pentane / diethyl ether unless otherwise stated. 

 

High Perfomance Liquid Chromatography (HPLC): 

 

HPLC analysis was conducted using an Agilent 1100-series system (Degasser G13179A, UV-

Detektor G1315B, Automatic sampler G1313A, Quanternary Pump G1311A, Column oven 

G1316A) with UV-Detecter, using chiral stationary phase columns  from Chiral Technologies 

Ltd. (formerly Daicel Chemical Industries Ltd). (Length: 25 cm, φ: 0.46 cm). 

All measurements were conducted at room temperature. 

 

Gas Chromatography (GC): 

 

Hewlett Packard 5890 Series II-Gerät with Flame ionisation detector and HP-3396 integrator. 
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7.1.5 References for the Preparation of Known Compounds 

 

terpyridine (81a),46a 4-tert-butypyridine-N-oxide, 158  (83), 2,6-bis(N-pyrazolyl)pyridine 

(99), 159  (S,S)-i-Pr-pybox (96a), 160  (S,S)-Ph-pybox (96c), 161  (S,S)-t-Bu-pybox (96b),143 2,3-

dihydro-1H-inden-2-yl carbamate, 162  N-(p-toluenesulfonyl)-p-toluenesulfonimidamide 

(52e),88a N-(pyridin-2-ylmethyl)pyridine-2-amine, 43b 

 

7.2 Synthesis of Aryl-TACN Derivatives by Palladium catalysis 

 

7.2.1 N-Arylation of Piperazine: 

 

N N
N N  

 

In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (18 mg, 0.02 

mmol), rac-BINAP (26 mg, 0.04 mmol), 2-bromopyridine (4.2 mmol, 660 mg, 400 µL), 

piperazine (172.2 mg, 2 mmol) and sodium tert-butylate (424 mg, 4.4 mmol). After the 

addition of toluene (4 mL) the reaction mixture was heated at 70 ºC for 1 day. The mixture 

was then allowed to cool to room temperature and diluted with ethyl acetate (10 mL). After 

filtration through celite, the solvents of the filtrate were evaporated (rotary evaporator). The 

remaining mixture was separated by column chromatography (silica gel; eluent = ethyl 

acetate : hexane = 1 : 1) affording 1,4-di(pyridin-2-yl)piperazine as a yellow solid in 50% 

yield (240 mg).  

Analytical data for 1,4-di(pyridin-2-yl)piperazine: 1H NMR (400 MHz): δ = 3.74 (s, 8H), 

6.67-6.77 (m, 4H), 7.52-7.59 (m, 2H), 8.25-8.28 (m, 2H). 13C NMR (75 MHz): δ = 159.5, 

148.0, 137.6, 113.5, 107.2, 45.0. 

 

Analytical data of 1,4-di(pyridin-2-yl)piperazine were consistent with that in the literature.163 

 

                                                 
158 Z. R. Bell, G. R. Motson, J. C. Jeffery, J. A. McCleverty, M. D. Ward, 2001, 20, 2045. 
159 J. Houben, E. Schmidt, Chem. Ber. 1913, 46, 3616. 
160 J. H. Youn, R. Herrmann, Tetrahedron Lett. 1986, 27, 1493. 
161 Y. Tamura, K. Sumoto, J. Minamikawa, S. Fuji, M. Ikeda, Tetrahedron Lett. 1973, 38, 1239. 
162 A. R. A. S. Deshmukh, V. K. Gumaste, US Patent, 20050065361 A1. 
163 E. Brenner, R. Schneider, Y. Fort, Tetrahedron 2002, 58, 6913. 
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7.2.2 Representative Procedure (RP 1) for Synthesis of 1,4,7-Triphenyl 

TACN 58a: 

 

N

N

N

 

 

In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (46 mg, 0.05 

mmol), 2-dicyclohexylphosphino-2’-(N,N-dimethylamino)biphenyl (66, 60 mg, 0.15 mmol), 

bromobenzene (1.5 mmol, 239 mg, 150 µL), TACN 1 (65 mg, 0.5 mmol) and sodium tert-

butylate (202 mg, 2.1 mmol). After the addition of toluene (4 mL) the reaction mixture was 

heated at 100 ºC for 1 day. The mixture was then allowed to cool to room temperature and 

diluted with ethyl acetate (10 mL). After filtration through Celite, the solvents of the filtrate 

were evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = ethyl acetate : pentane = 1 : 10) affording triarylated 

TACN 63a as a white solid in 71% yield (127 mg). 

 

Analytical data for 63a: m.p 199-201 ºC, 1H NMR (400 MHz): δ = 3.59 (s, 12H), 6.57 (d, J = 

8.4 Hz, 6H), 6.69 (t, J = 7.2 Hz, 3H), 7.20 (dd, J = 8.4, 7.2 Hz, 6H). 13C NMR (75 MHz): δ = 

147.8, 129.3, 116.4, 112.5, 51.2. MS (EI, 70 eV): m/z (%) = 425 (M+); IR (KBr): υ = 2956, 

2852, 1594, 1499, 1357, 1185, 745, 693 cm-1; anal. calcd. for C24H27N3 (357.49): C 80.63, H 

7.61, N 11.75; found: C 80.33, H 7.47, N 11.57. 

 

7.2.3 Synthesis of Triarylated TACN 63b: 
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N

N

N

 

 

Following RP1 using 4-tert-butyl-bromobenzene (1.5 mmol, 320 mg, 262 µL) instead of 

bromobenzene afforded [after 2 h at 100 °C; column chromatography (silica gel; eluent = 

ethyl acetate : pentane = 1 : 10)] triarylated TACN 63b as a white solid in 73% yield (191 

mg).  

 

Analytical data for 63b: m.p 185-186 ºC, 1H NMR (400 MHz): δ = 1.29 (s, 27H), 3.57 (s, 

12H), 6.49 (d, J = 8.5 Hz, 6H), 7.16 (d, J = 8.5 Hz, 6H). 13C NMR (75 MHz): δ = 145.4, 

138.6, 125.7, 112.0, 51.4, 33.6, 31.5. MS (EI, 70 eV): m/z (%) = 525 (M+); IR (KBr): υ = 

2959, 2862, 1613, 1519, 814 cm-1; anal. calcd. for C36H51N3 (525.81): C 82.23, H 9.78, N 

7.99; found: C 82.05, H 9.53, N 8.12. 

 

7.2.4  Synthesis of Triarylated TACN 63d: 

 

N

N

N

N

N

N

 

 

Following RP1 using 2-bromopyridine (1.5 mmol, 237 mg, 150 µL) instead of bromobenzene 

afforded [after 1 day at 100 °C; column chromatography (silica gel; eluent = ethyl acetate : 

pentane = 2 : 3)] triarylated TACN 63d as a white solid in 52% yield (94 mg). 

 

Analytical data for 63d: m.p 144-145 ºC, 1H NMR (400 MHz): δ = 3.77 (s, 12H), 6.32 (d, J = 

8.8 Hz, 3H), 6.53 (dd, J = 6.9, 4.9 Hz, 3H), 7.32 (ddd, J = 8.8, 6.9, 2.2 Hz, 3H), 8.15 (ddd, J = 
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6.9, 4.9, 2.2 Hz, 3H). 13C NMR (75 MHz): δ = 158.0, 147.4, 136.9, 111.6, 106.6, 50.4. MS 

(EI, 70 eV): m/z (%) = 361 (M+); IR (KBr): υ = 2899, 2853, 1597, 1493, 1362, 766, 733 cm-1; 

HRMS calcd. for C21H24N6 360.2063, found 360.2062. 

 

7.2.5 Synthesis of Triarylated TACN 63c: 

 

N

N

N

OMe

OMeMeO  

 

Following RP1 using 4-bromoanisol (1.5 mmol, 280 mg, 192 µL) instead of bromobenzene 

afforded [after 1 day at 90 °C; column chromatography (silica gel; eluent = ethyl acetate : 

pentane = 1 : 20)] triarylated TACN 63c as a white solid in 45% yield (100 mg). 

 

Analytical data for 63c: m.p 180 ºC, 1H NMR (400 MHz): δ = 3.52 (s, 12H), 3.76 (s, 9H), 

6.53 (brd, 6H), 6.78 (d, J = 8.5 Hz, 6H). 13C NMR (75 MHz): δ = 150.4, 142.4, 114.8, 113.3, 

55.7, 51.6. MS (EI, 70 eV): m/z (%) = 447 (M+); IR (KBr): υ = 2955, 2832, 1599, 1458, 1243, 

1039, 813, 662 cm-1; anal. calcd. for C27H33N3O3 (447.57): C 72.46, H 7.43, N 9.39; found: C 

72.57, H 7.26, N 9.06. 

 

7.2.6 Synthesis of mono-arylated di(Boc) TACN 60b: 

 

NBoc

N

BocN  

 

Following RP1 using Pd(OAc)2 (9 mg, 0.04 mmol), rac-BINAP (25 mg, 0.04 mmol), 

bromobenzene (0.7 mmol, 110 mg, 74 µL), di(Boc) TACN 16 (82.5 mg, 0.25 mmol), sodium 
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tert-butylate (67 mg, 0.7 mmol) and toluene (5 mL). For the work-up the reaction mixture was 

diluted with ethyl acetate (5 mL), filtered through Celite, and the solvents of the filtrate were 

evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = ethyl acetate : pentane = 2 : 3) affording monoarylated 

di(Boc) TACN 60b as an oil in 85% yield (86 mg). 

 

Analytical data for 60b (as a mixture of rotamers): Oil, 1H NMR (400 MHz): δ = 1.34 (s, 

4.5H), 1.38 (s, 4.5H), 1.48 (s, 4.5H), 1.49 (s, 4.5H), 3.42-3.69 (m, 12H), 6.64-6.76 (m, 3H), 

7.15-7.24 (m, 2H). 13C NMR (75 MHz): δ = 155.8, 155.7, 155.5, 148.4, 148.1, 147.9, 129.2, 

116.6, 112.9, 112.5, 80.1, 80.0, 79.9, 79.8, 53.0, 52.7, 52.4, 51.5, 50.6, 49.8, 49.7, 49.6, 49.4, 

48.5, 47.8, 28.6, 28.5, 28.4. MS (EI, 70 eV): m/z (%) = 405 (M+); IR (CHCl3): υ = 2976, 2927, 

2358, 1687, 1599, 1503, 1467, 1409, 1364, 1243, 1169, 757 cm-1; HRMS calcd. for 

C22H35N3O4 405.2629, found 405.2628. 

 

7.2.7 Synthesis of monoarylated di(Cbz) TACN 60c: 

 

NCbz

N

CbzN  

 

Following RP1 using Pd(OAc)2 (9 mg, 0.04 mmol), rac-BINAP (25 mg, 0.04 mmol), 

bromobenzene (0.7 mmol, 110 mg, 74 µL), di(Cbz)TACN 56 (99.6 mg, 0.25 mmol), sodium 

tert-butylate (67 mg, 0.7 mmol) and toluene (5 mL). For the work-up the reaction mixture was 

diluted with ethyl acetate (5 mL), filtered through celite, and the solvents of the filtrate were 

evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = ethyl acetete : pentane = 3 : 2) affording monoarylated 

di(Cbz) TACN 60c in 70% yield (83 mg). 

 

Analytical data for 60c (as a mixture of rotamers): Oil, 1H NMR (400 MHz): δ = 3.32-3.41 (m, 

4H), 3.41-3.57 (m, 8H), 4.92 (s, 1H), 4.95 (s, 1H), 4.98 (s, 1H), 5.08 (s, 1H), 6.50-6.72 (m, 

3H), 7.02-7.36 (m, 12H). 13C NMR (75 MHz): δ = 156.9, 156.3, 136.6, 129.5, 129.4, 128.5, 

128.1, 128.0, 117.3, 112.9, 112.6, 80.0, 67.4, 67.2, 53.4, 53.2, 52.9, 50.0, 49.5, 48.9, 48.5, 
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47.6; MS (EI, 70 eV): m/z (%) = 473 (M+); IR (CHCl3): υ = 2930, 2335, 1699, 1599, 1503, 

1469, 1419, 1362, 1230, 1124, 991, 750, 697 cm-1; HRMS calcd. for C28H31N3O4 473.2316, 

found 473.2315. 

 

7.2.8 Synthesis of diarylated monotosyl TACN 61: 

 

N

Ts
N

N

 

 

Following RP1 using bromobenzene (2.0 mmol, 313 mg, 210 µL), monotosyl TACN 56 (283 

mg, 1.0 mmol) and sodium tert-butylate (269 mg, 2.8 mmol) afforded [after 2 h at 100 °C; 

column chromatography (silica gel; eluent = ethyl acetate : pentane = 1 : 5)] diarylated TACN 

6 in 70% yield (305 mg). 

 

Analytical data for 6: m.p 176-177 ºC, 1H NMR (400 MHz): δ = 2.40 (s, 3H), 3.20-3.26 (m, 

4H), 3.62-3.68 (m, 4H), 3.63 (s, 4H), 6.74 (t, J = 7.2 Hz, 2H), 6.78 (d, J = 8.2 Hz, 2H), 7.24 

(dd, J = 8.7, 7.2 Hz, 4H), 7.28 (d, J = 8.7 Hz, 4H), 7.65 (d, J = 8.2 Hz, 2H). 13C NMR (75 

MHz): δ = 147.5, 143.5, 134.9, 129.8, 129.4, 127.4, 117.0, 112.6, 53.5, 51.7, 49.1, 21.5. MS 

(EI, 70 eV): m/z (%) = 435 (M+); IR (KBr): υ = 2963, 2873, 1595, 1502, 1332, 1157, 745, 697 

cm-1; anal. calcd. for C25H29N3O2S (438.58): C 68.93, H 6.71, N 9.65; found: C 69.09, H 6.76, 

N 9.66. 

 

7.2.9 Synthesis of monoarylated di(Ts) TACN 61: 

 

N

Ts
N

TsN

 

 

Following RP1 using Pd(OAc)2 (1.8 mg, 0.008 mmol), rac-BINAP (5 mg, 0.008 mmol), 

bromobenzene (0.21 mmol, 33 mg, 20 µL), di(Ts) TACN 57 (44 mg, 0.1 mmol) and sodium 

tert-butylate (155 mg, 2.1 mmol). After the addition of toluene (2 mL) the reaction mixture 
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was heated at 90 ºC for 1 day. The mixture was then allowed to cool to room temperature and 

diluted with ethyl acetate (4 mL). After filtration through Celite, the solvents of the filtrate 

were evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = ethyl acetate : pentane = 2 : 1) affording monoarylated 

ditosyl TACN 61 in quantitative yield (52 mg). 

 

Analytical data for 61: M.p 155-156 ºC, 1H NMR (400 MHz): δ = 2.52 (s, 6H), 3.25 (s, 4H), 

3.27 (t, J = 4.4 Hz, 4H), 3.63 (t, J = 4.4 Hz, 4H), 6.64 (t, J = 7.4 Hz, 1H), 6.72 (d, J = 8.0 Hz, 

2H), 7.14 (dd, J = 8.0, 7.4 Hz 2H), 7.25 (d, J = 8.2 HZ, 4H), 7.63 (d, J = 8.2 Hz, 4H). 13C 

NMR (75 MHz): δ = 147.2, 143.7, 134.7, 129.8, 129.4, 127.4, 117.3, 112.8, 53.8, 52.3, 49.3, 

21.7. MS (EI, 70 eV): m/z (%) = 435 (M+); IR (KBr): υ = 2925, 2868, 1599, 1507, 1337, 

1157, 747, 692 cm-1; HRMS calcd. for C26H31N3O4S2 513.1756, found 513.1756. 

 

7.2.10 Synthesis of di(Ts) TACN 57: 

 

NTs

H
N

TsN  

 

A solution of tosyl chloride (167 mg, 0.85 mmol) in diethyl ether (10 mL) was added into a 

suspension solution of 7.5 N-NaOH aq. (10 mL) and mono(Ts) TACN 56 (0.25 g, 0.85 mmol). 

After stirred at ambient temperature for 3 hours, the solvent was evaporated (rotary 

evaporator). The resulting white solid was taken up in chloroform and the organic phase was 

washed with water and dried over Na2SO4. After filtration, the solvents of the filtrate were 

evaporated (rotary evaporator). The remaining mixture was recrystallized from ethanol (c.a. 

20 mL) affording di(Ts) TACN 57 in 96% yield (360 mg). 

 

Analytical data for 57: 1H NMR (400 MHz): δ = 2.44 (s, 6H), 3.20 (s, 8H), 3.27 (s, 4H), 7.33 

(d, J = 8.5 HZ, 4H), 7.68 (d, J = 8.5 Hz, 4H). 13C NMR (75 MHz): δ = 143.9, 135.1, 129.9, 

127.2, 53.9, 53.1, 49.0, 21.5. 

 

Analytical data of di(Ts) TACN 57 were consistent with that reported in the literature.114 
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7.2.11 Synthesis of di(Cbz) TACN 52: 

 

NCbz

H
N

CbzN  

 

Cbz-ON (1.121 g, 4 mmol) was added to a solution of TACN 1 (258 mg, 2 mmol) in 

chloroform (20 mL). After stirring at ambient temperature overnight, the solvent was 

evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = ethyl acetate then CHCl3 : MeOH = 10 : 1) affording 

di(Cbz) TACN 52 in 78% yield (617 mg). 

 

Analytical data for 52 (as a mixture of rotamers): 1H NMR (400 MHz): δ = 2.80-2.94 (m, 4H), 

3.24-3.31 (m, 4H), 3.51-3.60 (m, 4H), 5.10-5.17 (s, 1H), 7.28-7.37 (m, 10H). 13C NMR (75 

MHz): δ = 156.2, 136.7, 136.7, 128.4, 128.2, 67.0, 52.7, 52.4, 52.0, 51.0, 50.1, 49.8, 49.0, 

48.2, 48.1, 47.6, 47.5. 

 

Analytical data of di(Cbz) TACN 52 were consistent with that reported in the literature.113 

 

7.2.12 Synthesis of di(Boc) TACN 16: 

 

NBoc

H
N

BocN  

 

Boc-ON (986 mg, 4 mmol) was added to a solution of TACN 1 (334 mg, 1.7 mmol) in 

chloroform (20 mL). After stirring at ambient temperature for 3 hours, the solvent was 

evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = diethyl ether : pentane = 1 : 10 then CHCl3 : MeOH = 9 : 

1) affording di(Boc) TACN 16 in 76% yield (605 mg). 

 

Analytical data for 16 (as a mixture of rotamers): 1H NMR (400 MHz): δ = 1.34 (s, 4.5H), 

1.38 (s, 4.5H), 1.48 (s, 4.5H), 1.49 (s, 4.5H), 3.42-3.69 (m, 12H), 6.64-6.76 (m, 3H), 7.15-

7.24 (m, 2H). 13C NMR (75 MHz): δ = 155.8, 155.7, 155.5, 148.4, 148.1, 147.9, 129.2, 116.6, 
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112.9, 112.5, 80.1, 80.0, 79.9, 79.8, 53.0, 52.7, 52.4, 51.5, 50.6, 49.8, 49.7, 49.6, 49.4, 48.5, 

47.8, 28.6, 28.5, 28.4.  

 

Analytical data of di(Boc) TACN 16 were consistent with that reported in the literature.36 

 

7.2.13 Synthesis of TACN 1: 

 

NH

H
N

HN

 

 

Tritosyl-TACN 3 (5.60 g, 9.8 mmol) was disolved in conc. H2SO4 (30 mL) at 90 ˚C and 

stirred for 3 days. The reaction mixture was cooled with an ice bath and EtOH/Et2O (100 

mL/100 mL) was added. A precipitate was collected by decantation and washed with 

EtOH/Et2O (1 : 1). The resulting gray solid was dissolved in 5 N-NaOH aq. (20 mL) and 

stirred for 1 day. The reaction mixture was extracted with chloroform and dried over Na2SO4. 

The filtrate was evaporated and dried in vacuo affording TACN 1 in 90% yield (1.14 g). 

 

Analytical data for TACN 1: 1H NMR (400 MHz): δ = 2.08 (brd, 3H), 2.84 (s, 12H). 13C 

NMR (75 MHz): δ = 47.4. 

 

Analytical data of TACN 1 were consistent with that reported in the literature.12 

 

7.2.14 Synthesis of mono(Boc) TACN 55: 

 

NH

Boc
N

HN  

 

Prepared by analogy to 55. Pd/C (300 mg) in EtOH (20 mL) was added to the di(Cbz)-

mono(Boc)- TACN (0.5 g, 1.7 mmol) in EtOH. After stirring at ambient temperature under H2 
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for 3 hours, the solvent was filtered and the filtrate was evaporated (rotary evaporator) 

affording mono(Boc) TACN 55 in 90% yield (680 mg). 

 

Analytical data for mono(Boc) TACN 55: 1H NMR (400 MHz): δ = 1.49-1.51 (m, 9H), 2.70-

3.81 (m, 12H). 13C NMR (75 MHz): δ = 155.5, 79.2, 54.6, 54.3, 49.2, 48.2, 47.7, 47.3, 28.4. 

 

Analytical data of mono(Boc) TACN 55 were consistent with that reported in the literature.113 

 

7.2.15 Synthesis of mono(Ts) TACN 56: 

 

NH

Ts
N

HN  

 

Phenol (23.16 g, 1.7 mmol) was added to a solution of HBr (33% in acetic acid) (300 mL) and 

tritosyl-TACN 3 (19.57 g, 3.28 mmol). After stirring at 90˚C for 36 hours a white solid 

precipitated. The White solid was isolated by filtration and washed with diethyl ether. The 

solid was dissolved in 1N-NaOH aq. to adjust pH to be >12. The mixture was extracted with 

chloroform and dried over MgSO4 and the filtrate was evaporated affording mono(Ts) TACN 

56 in 84% yield (7.9 g). 
 

Analytical data for 56: 1H NMR (400 MHz): δ = 2.43 (s, 3H), 2.93 (s, 4H), 3.09-3.14 (m, 4H), 

3.18-3.24 (m, 4H), 7.28-7.34 (m, 2H), 7.66-7.71 (m, 2H). 13C NMR (75 MHz): δ = 143.4, 

135.5, 129.7, 127.3, 54.0, 49.5, 49.4, 21.5,  

 

Analytical data of mono(Ts) TACN 56 were consistent with that reported in the literature.112 

 

7.2.16 Synthesis of mono(Cbz) TACN 54: 

 

NH

Cbz
N

HN  
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Prepared by analogy to 54 using a solution of TFA (112 µL, 1.7 mmol) which was added to a 

solution of mono(Cbz)-di(Boc)-TACN (315 mg, 0.68 mmol) in chloroform (10 mL). After 

stirring at ambient temperature for 3 hours, the solvent was evaporated (rotary evaporator) 

affording mono(Cbz) TACN 54 in 34% yield (60 mg). 

 

Analytical data for 54: 1H NMR (400 MHz): δ = 2.52 (s, 6H), 3.25 (s, 4H), 3.27 (t, J = 4.4 Hz, 

4H), 3.63 (t, J = 4.4 Hz, 4H), 6.64 (t, J = 7.4 Hz, 1H), 6.72 (d, J = 8.0 Hz, 2H), 7.14 (dd, J = 

8.0, 7.4 Hz 2H), 7.25 (d, J = 8.2 HZ, 4H), 7.63 (d, J = 8.2 Hz, 4H). 13C NMR (75 MHz): δ = 

156.1, 136.84, 128.3, 127.8, 66.8, 54.9, 53.9, 49.3, 49.2, 48.3, 47.3. 

 

Analytical data of mono(Cbz) TACN 54 were consistent with that reported in the literature.122 

 

7.2.17 Synthesis of tri(Ts)-TACN 3: 

 

NTs

Ts
N

TsN  

 

N,N,N-Tritosyldiethylene triamine 2 (6.5 g, 27.8 mmol) was dissolved in dry DMF and NaH 

(60%) (2.34 g, 58.4 mol). After stirring at 90 ˚C for 2 hours, 1,2-ditosylethyleneglycol (10.3 g, 

27.8 mmol) was added at room temperature. After stirring at 100 ˚C for 2 hours, the reaction 

mixture was cooled down to room temperature and poured into the water (500 mL). The 

precipitate was collected and washed with water then diethyl ether affording tri(Ts) TACN 3 

in 90% yield (15 g) 

 

Analytical data for 3: 1H NMR (400 MHz): δ = 2.37 (s, 9H), 3.35 (s, 12H), 7.23 (d, J = 8.1 Hz, 

6H), 7.63 (d, J = 8.1 Hz, 6H). 13C NMR (75 MHz): δ = 143.9, 134.6, 130.0, 127.5, 117.3, 

112.8, 52.0, 21.7. 

 

Analytical data of tri-tosyl-TACN 3 were consistent with that reported in the literature.12 

 

7.2.18 Synthesis of N, N, N-Tritosyl-diethylene triamine 2: 
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HN

Ts
N

NH
Ts Ts  

 

Diethylene triamine (5 mL, 46.5 mmol) was disolved in 300 mL of dichloromethane. After 

addition of triethylamine (40 mL, 213 mmol), p-toluenesulfonyl chloride was added slowly to 

the reaction mixture at room temperature over night. For the work-up the reaction mixture 

was poured into the water and extracted with dichloromethane. The organic layer was dried 

over Na2SO4 and the filtrate was evaporated (rotary evaporator). The remaining mixture was 

triturated with diethyl ether affording N,N,N-tritosyldiethylene triamine 2 in 83% yield (22 g) 

as a white solid. 

 

Analytical data for 2: 1H NMR (400 MHz): δ = 2.43 (s, 9H), 3.25 (s, 4H), 3.27 (t, J = 4.4 Hz, 

4H), 3.63 (t, J = 4.4 Hz, 4H), 6.64 (t, J = 7.4 Hz, 1H), 6.72 (d, J = 8.0 Hz, 2H), 7.14 (dd, J = 

8.0, 7.4 Hz 2H), 7.25 (d, J = 8.2 HZ, 4H), 7.63 (d, J = 8.2 Hz, 4H). 13C NMR (75 MHz): δ = 

147.2, 143.7, 134.7, 129.8, 129.4, 127.4, 117.3, 112.8, 53.8, 52.3, 49.3, 21.7. 

 

Analytical data of N,N,N-tritosyldiethylene triamine 2 were consistent with that reported in 

the literature.164 

 

7.2.19 Synthesis of Perfluoroponytailed-triaryl-TACN 68: 

 

N

N

N

RfRf

Rf

Rf= C8F17  

 

Prepared in analogy to 68 using [Pd2(dba)3] (23 mg, 0.04 mmol), 2-dicyclohexylphosphino-

2’-(N,N-dimethylamino)biphenyl (66, 30 mg, 0.76 mmol), p-perfluoroalkyl-bromobenzene 

                                                 
164 G. R. Newkome, S. Pappalardo, V. K. Gupta, F. R. Fronczek, J. Org. Chem. 1983, 48, 4848. 
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(0.75 mmol, 431.3 mg), TACN 1 (32.5 mg, 0.25 mmol), sodium tert-butylate (101 mg, 1.05 

mmol) and trifluoromethybenzene (10 mL). For the work-up the reaction mixture was diluted 

with ethyl acetate (10 mL), filtered through celite, and the solvents of the filtrate were 

evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = diethyl ether : pentane = 10 : 1) affording 

perfluoroponytailed-triaryl-TACN 68 in 56% yield (227 mg) as a white solid. 

 

Analytical data for 68: m.p 80- 83 ºC, 1H NMR (400 MHz): δ = 3.64 (s, 12H), 6.71-6.78 (m, 

6H), 6.93 (d, J = 7.8 Hz, 3H), 7.29 (d, J = 7.8 Hz, 3H). FAB-MS (EI, 70 eV): m/z (%) = 1609 

(M-2H+). IR (KBr): υ = 2860, 2360, 1696, 1650, 1509, 1458, 1417, 1366, 1212, 1148, 667 

cm-1. 

 

7.3 Synthesis of N-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)pyridin-

2-amine derivatives 

 

7.3.1 Representative Procedure 2 for Synthesis of N-[(4-tert-Butylpyridin-

2-yl)methyl]-N-(pyridin-2-yl)pyridin-2-amine (91): 

 

N

N

N

N

 

 

In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (9 mg, 0.01 mmol), 

rac-BINAP (13 mg, 0.02 mmol), 2-bromopyridine (2.2 mmol, 1.32 g, 215 µL), N-2-pyridyl-2-

picolylamine (1 mmol, 224.3 mg) and sodium tert-butylate (318 mg, 3.3 mmol), 

tetrabutylammmonium bromide (644 mg, 2 mmol). After the addition of toluene (10 mL) the 

reaction mixture was heated at 100 ºC for 1 d. The mixture was then allowed to cool to room 

temperature and diluted with ethyl acetate (10 mL). After filtration through celite, the solvents 

of the filtrate were evaporated (rotary evaporator). The remaining mixture was separated by 

column chromatography (silica gel; eluent = ethyl acetate) affording N,N-
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dipyridylaminopicoline 91 in 97% yield (310 mg). A single crystal for X-ray analysis was 

obtained from diethyl ether / pentane (chapter 8.1.2). 

 

Analytical data for 91: m.p 101-102 ºC, 1H NMR (400 MHz): δ = 1.15 (s, 9H), 5.57 (s, 9H), 

6.82-6.89 (m, 2H), 7.06-7.10 (m, 1H), 7.23-7.25 (m, 1H), 7.25-7.27 (m, 1H), 7.28-7.30 (m, 

1H), 7.50-7.57 (m, 3H), 8.28-8.33 (m, 1H), 8.41-8.44 (m, 1H). 13C NMR (75 MHz): δ = 160.1, 

156.7, 156.9, 148.7, 148.0, 137.0, 118.6, 118.3, 117.0, 114.4, 53.6, 34.5, 30.4. MS (EI, 70 

eV): m/z (%) = 318 (M+); IR (KBr): υ = 2959, 1159, 1468, 1417, 976, 772 cm-1. 

 

7.3.2 Synthesis of 4-tert-Butyl-N-(pyridin-2-yl)-N-(pyridin-2-

ylmethyl)pyridin-2-amine (88): 

 

N

N

N

N

 

 

In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (9.2 mg, 0.01 

mmol), rac-BINAP (12.4 mg, 0.02 mmol), 4-tert-butyl-2-chloropyridine (1.1 mmol, 1.32 g, 

800 µL), N-pyridyl-2-picolylamine (1 mmol, 185 mg) and sodium tert-butylate (144 mg, 1.5 

mmol), tetrabutylammmonium bromide (322 mg, 1 mmol). After the addition of toluene (10 

mL) the reaction mixture was heated at 100 ºC for 1 d. The mixture was then allowed to cool 

to room temperature and diluted with ethyl acetate (10 mL). After filtration through Celite, 

the solvents of the filtrate were evaporated (rotary evaporator). The remaining mixture was 

separated by column chromatography (silica gel; eluent = ethyl acetate : pentane = 1 : 1) 

affording N,N-dipyridylaminopicoline 88 in 28% yield (89 mg). A single crystal for X-ray 

analysis was obtained from diethylether / pentane (chapter 8.1.3). 

 

Analytical data for 88: m.p 80 ºC, 1H NMR (400 MHz): δ = 1.24 (s, 9H), 5.59 (s, 2H), 6.80-

6.90 (m, 1H), 6.88-6.92 (m, 1H), 7.06-7.12 (m, 1H), 7.20-7.25 (m, 1H), 7.31-7.37 (m, 1H), 

7.47-7.57 (m, 2H), 8.21-8.25 (m, 1H), 8.27-8.31 (m, 1H), 8.51-8.56 (m, 1H). 13C NMR (75 

MHz): δ = 161.5, 159.8, 157.2, 157.1, 156.5, 149.0, 148.2, 148.0, 137.1, 136.5, 121.6, 121.4, 

116.8, 115.4, 114.0, 112.1, 53.8, 34.8, 30.5. MS (EI, 70 eV): m/z (%) = 318 (M+); IR (KBr): υ 

= 2956, 2852, 1594, 1499, 1357, 1185, 745, 693 cm-1. 
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7.3.3 Synthesis of 4-tert-Butyl-2-chloropyridine 81: 

 

N Cl  

 

4-tert-Butylpyridine-1-oxide (80) (4.9 g, 32 mmol) was dissolved in POCl3 (60 mL, 64 mmol) 

and refluxed under argon for 3 hours. The reaction mixture was allowed to cool down to room 

temperature and evaporated. The residure was then neutralized by 10% NaOH (aq). The 

mixture was then extracted with dichloromethane and dried over MgSO4. After filtration, the 

remaining mixture was separated by column chromatography (silica gel; eluent = diethyl 

ether : pentane = 1 : 4) affording 4-tert-butyl-2-chloropyridine (81) in 78% yield (4.22 g).  

 

Analytical data for 81: 1H NMR (400 MHz): δ = 1.31 (s, 9H), 7.29-7.31 (m, 1H), 7.21 (d, J = 

5.3 Hz 1H), 8.28 (d, J = 5.3 Hz 1H). 13C NMR (75 MHz): δ = 163.5, 151.7, 149.3, 121.3, 

119.7, 34.8, 30.5. 

 

Analytical data for 4-tert-butyl-2-chloropyridine (81) were consistent with that reported in the 

literature.165 

 

7.3.4 Synthesis of 4-tert-butylpicolinonitrile 86: 

 

N CN  

 

4-tert-butylpyridine-1-oxide (84) (6.128 g, 40 mmol) was dissolved in dichloromethane (50 

mL) and added to trimethylsilyl cyanide (6.23 g, 63 mmol) at room temperature. 

Dimethylcarbamoyl chloride (5.8 mL, 63 mmol) in dichloromethane (13 mL) was added 

dropwise with stirring to the reaction mixture over 30 minutes period.  The reaction mixture 
                                                 
165a) C. Barolo, M. K. Nazeerruddin, S. Fantacci, D. D. Censo, P. Comte, P. Liska, G. Viscardi, P. Quagliotto, F. 
D. Angelis, S. Ito, M. Gräzel, Inorg. Chem. 2006, 45, 4642. b) C. X. Zhang, S. Kaderli, M. Costas, E.-I. Kim, Y.-
M. Neuhold, K. D. Karlin, A. D. Zuberbuhler, Inorg. Chem. 2003, 42, 1807. 
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was stirred for 24 hours. A solution of 10% K2CO3 aq. (50 mL) was added dropwise, and 

stirred for 10 minutes.  The organic layer was separated and aqueous layer was extracted two 

times with dichloromethane. The organic layer was dried over MgSO4. After filtration, the 

remaining mixture evaporated in vacuo affording 4-tert-butylpicolino-2-nitrile (86) in 91% 

yield (5.83 g). 

 

Analytical data for 86: 1H NMR (400 MHz): δ = 1.35 (s, 9H), 7.46-7.51 (m, 1H), 7.69-7.70 

(m, 1H), 8.61-8.62 (m, 1H). 13C NMR (75 MHz): δ = 161.5, 150.7 133.7, 125.8, 123.8, 117.4, 

35.0, 30.2. 

 

Analytical data for 4-tert-butylpicolino-2-nitrile (86) were consistent with that reported in the 

literature.166 

 

7.3.5 Synthesis of (4-tert-Butylpyridin-2-yl)methanamine 87: 

 

N
NH3·AcO-

 

 

4-tert-butylpicolinonitrile (5.83 g, 26 mmol) was dissolved in acetic acid (300 mL) and stirred 

with Pd/C (1 g) under hydrogene at room temperature. The reaction mixture was filtrated and 

evaporated. After filtration, the remaining mixture was separated by column chromatography 

(almina (basic); eluent = ethyl acetate : pentane = 1 : 1) affording (4-tert-butylpyridin-2-

yl)methanamine 87 acetic acid salt in quantitative yield. 

 

Analytical data for 87: 1H NMR (400 MHz): δ =1.31 (s, 9H), 1.97 (s, 3H), 4.07 (s, 2H), 6.65 

(s, 3H) 7.18-7.22 (m, 1H), 7.26 (s, 1H), 8.44-8.47 (m, 1H). 13C NMR (75 MHz): δ = 176.1, 

148.8, 115.4, 119.7, 118.8, 45.8, 34.9, 30.6, 22.3. 

 

Analytical data of N-(pyridine-2-yl)-N-(pyridine-2-ylmethyl)pyridine-2-amine (87) were 

refered with that reported in the literature.165b 

 

                                                 
166 R. T. Shuman, P. L. Ornstein, J. W. Paschal, P. D. Gesellchen, J. Org. Chem. 1990, 55, 738. 
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7.3.6 Synthesis of N-(Pyridin-2-yl)-N-(pyridine-2-ylmethyl)pyridin-2-

amine (74a): 

 

N

N

N

N

 

 

In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (36 mg, 0.04 

mmol), rac-BINAP (52 mg, 0.08 mmol), 2-bromopyridine (8.2 mmol, 1.32 g, 800 µL), 2-

picolylamine (4 mmol, 438.7 mg, 415 µL) and sodium tert-butylate (848 mg, 8.8 mmol). 

After the addition of toluene (20 mL) the reaction mixture was heated at 70 ºC for 20 h. The 

mixture was then allowed to cool to room temperature and diluted with ethyl acetate (20 mL). 

After filtration through Celite, the solvents of the filtrate were evaporated (rotary evaporator). 

The remaining mixture was separated by column chromatography (silica gel; eluent = ethyl 

acetate) affording N,N-dipyridylaminopicoline 74a in 80% yield (847 mg).  

 

Analytical data for 74a: m.p 102-103 ºC, 1H NMR (400 MHz): δ = 5.59 (d, J = 8.4 Hz, 6H), 

6.83-6.87 (m, 2H), 7.08-7.14 (m, 1H), 7.23-7.28 (m, 2H), 7.30-7.35 (m, 1H), 7.52-7.57 (m, 

3H), 8.28-8.31 (m, 2H), 8.53-8.55 (m, 1H). 13C NMR (75 MHz): δ = 159.4, 156.8, 148.8, 

148.2, 137.3, 136.7, 121.7, 121.3, 117.3, 114.5, 53.6. MS (EI, 70 eV): m/z (%) = 262 (M+); IR 

(KBr): υ = 2956, 2852, 1594, 1499, 1357, 1185, 745, 693 cm-1. 

 

Analytical data of N-(pyridin-2-yl)-N-(pyridin-2-ylmethyl)pyridin-2-amine (74a) were 

consistent with that reported in the  literature.54 

 

7.3.7 Synthesis of N-(Pyrazin-2-yl)-N-(pyridin-2-ylmethyl)pyrazin-2-amine 

(77): 

 

N
N

N

N
N

N
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In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (18 mg, 0.02 

mmol), rac-BINAP (26 mg, 0.04 mmol), 2-chloropyrazine (4.2 mmol, 1.32 g, 800 µL), 2-

picolylamine (2 mmol, 220 mg, 208 µL) and sodium tert-butylate (424 mg, 4.4 mmol). After 

the addition of toluene (10 mL) the reaction mixture was heated at 90 ºC for 18 h. The 

mixture was then allowed to cool to room temperature and diluted with ethyl acetate (10 mL). 

After filtration through celite, the solvents of the filtrate were evaporated (rotary evaporator). 

The remaining mixture was separated by column chromatography (silica gel; eluent = 

chlorform : methaol = 15 : 1) affording N-(pyrazin-2-yl)-N-(pyridin-2-ylmethyl)pyrazin-2-

amine 77 in 93% yield (491 mg). 

 

Analytical data for 77: M.p 97-98 ºC, 1H NMR (400 MHz): δ = 5.59 (s, 2H), 6.83-6.88 (m, 

2H), 7.08-7.13 (m, 1H), 7.23-7.25 (m, 1H), 7.25-7.27 (m, 1H), 7.30-7.34 (m, 1H), 7.50-7.57 

(m, 3H), 8.28-8.30 (m, 2H), 8.52-8.54 (m, 1H). 13C NMR (75 MHz): δ = 149.7, 149.6, 141.9, 

141.8, 137.9, 137.5, 137.4, 136.8, 135.2, 130.8, 128.8, 122.4, 121.3, 52.8. MS (EI, 70 eV): 

m/z (%) = 264 (M+). 

 

7.3.8 Synthesis of N-(Pyridin-2-yl)-N-(2-(pyridin-2-yl)ethyl)pyridin-2-

amine (76): 

 

N

N

N

N

 

 

In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (18 mg, 0.02 

mmol), rac-BINAP (26 mg, 0.04 mmol), 2-bromopyridine (4.2 mmol, 660 mg, 400 µL), 2-(2-

pyridyl)ethylamine (2 mmol, 246 mg, 240 µL) and sodium tert-butylate (424 mg, 4.4 mmol). 

After the addition of toluene (10 mL) the reaction mixture was heated at 70 ºC for 1d. The 

mixture was then allowed to cool to room temperature and diluted with ethylacetate (10 mL). 

After filtration through celite, the solvents of the filtrate were evaporated (rotary evaporator). 

The remaining mixture was separated by column chromatography (silica gel; eluent = ethyl 

acetate) affording N,N dipyridylaminoethylpyridine 76 in 99% yield (546 mg). 
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Analytical data for 76: Oil, 1H NMR (400 MHz): δ = 3.28 (dd, J= 7.7. 7.4 Hz, 2H), 4.60 (dd, 

J= 7.7. 7.4 Hz, 2H), 6.84-6.89 (m, 2H), 7.07-7.12 (m, 3H), 7.20-7.24 (m, 1H), 7.49-7.59 (m, 

3H), 8.35-8.37 (m, 2H), 8.52-8.54 (m, 1H). 13C NMR (75 MHz): δ = 159.9, 157.2, 149.1, 

148.3, 136.2, 123.7, 121.2, 117.0, 114.8, 48.7, 37.2. IR (KBr): υ = 3058, 3008, 2955, 1587, 

1499, 1471, 1428, 1322, 1273, 1184, 1152, 1078, 986, 773 cm-1. MS (EI, 70 eV): m/z (%) = 

276 (M+). 

 

7.3.9 Synthesis of 4-Methyl-N-(4-methylpyridin-2-yl)-N-(pyridin-2-

ylmethyl)pyridin-2-amine (74c): 

 

N

N

N

N

 

 

In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (36 mg, 0.04 

mmol), rac-BINAP (52 mg, 0.08 mmol), 2-chloro-4-methylpyridine (4.2 mmol, 515.8mg, 751 

µL), 2-picolylamine (4 mmol, 438.7 mg, 415 µL) and sodium tert-butylate (848 mg, 8.8 

mmol). After the addition of toluene (20 mL) the reaction mixture was heated at 100 ºC for 22 

h. The mixture was then allowed to cool to room temperature and diluted with ethyl acetate 

(20 mL). After filtration through celite, the solvents of the filtrate were evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = ethyl acetate) affording N,N dipyridylaminopicoline 74c in 87% yield (1.015 g). 

 

Analytical data for 74c: m.p 84-85 ºC, 1H NMR (400 MHz): δ = 2.26 (s, 6H), 5.54 (s, 2H), 

6.68-6.72 (m, 2H), 7.01-7.06 (m, 2H), 7.06-7.14 (m, 1H), 7.30-7.36 (m, 1H), 7.50-7.58 (m, 

1H), 8.16-8.18 (m, 2H), 8.53-8.57 (m, 1H). 13C NMR (75 MHz): δ = 159.8, 157.3, 149.0, 

148.5, 147.8, 136.6, 121.6, 121.3, 118.7, 115.0, 53.9, 21.3. 

 

7.3.10 Synthesis of 4-tert-Butyl-N-(4-tert-butylpyridin-2-yl)-N-(pyridin-2-

ylmethyl)pyridin-2-amine (89): 
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N

N

N

N

 

 

In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (18 mg, 0.02 

mmol), rac-BINAP (26 mg, 0.04 mmol), 2-chloro-4-tert-butylpyridine (4.2 mmol, 712.5 mg), 

2-(2-pyridyl)ethylamine 89 (2 mmol, 246 mg, 207 µL) and sodium tert-butylate (424 mg, 4.4 

mmol). After the addition of toluene (10 mL) the reaction mixture was heated at 100 ºC for 1 

day. The mixture was then allowed to cool to room temperature and diluted with ethyl acetate 

(10 mL). After filtration through celite, the solvents of the filtrate were evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = ethyl acetate : pentane = 1 : 1) affording N,N-dipyridylaminopicoline 89 in 84% yield 

(626 mg). 

 

Analytical data for 89: m.p 127-129 ºC, 1H NMR (400 MHz): δ = 1.24 (s, 9H), 5.62 (s, 2H), 

6.85-6.88 (m, 2H), 7.05-7.10 (m, 1H), 7.22-7.24 (m, 2H), 7.33-7.77 (m, 1H), 7.50-7.56 (m, 

1H), 8.21-8.24 (m, 2H), 8.51-8.54 (m, 1H). 13C NMR (75 MHz): δ = 160.9, 159.8, 157.2, 

148.6, 147.9, 136.3, 121.3, 121.2, 114.7, 111.2, 53.6, 34.7, 30.4. 

 

7.3.11 Synthesis of 4-tert-Butyl-N-(4-tert-butylpyridin-2-yl)-N-[(4-tert-

butylpyridin-2-yl)methyl]pyridin-2-amine (90): 

 

N

N

N

N

 

 

In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (9 mg, 0.01 mmol), 

rac-BINAP (13 mg, 0.02 mmol), 4-tert-butyl-2-chloropyridine (2.2 mmol, 373 mg, 800 µL), 

4-tert-butyl-picolylamine (1 mmol, 224 mg) and sodium tert-butylate (318 mg, 3.3 mmol). 

After the addition of toluene (10 mL) the reaction mixture was heated at 100 ºC for 1 day. The 
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mixture was then allowed to cool to room temperature and diluted with ethyl acetate (10 mL). 

After filtration through celite, the solvents of the filtrate were evaporated (rotary evaporator). 

The remaining mixture was separated by column chromatography (silica gel; eluent = 

MeOH : chloroform = 1 : 10) affording N,N dipyridylaminopicoline 90 in 66% yield (284 mg). 

 

Analytical data for 90: m.p 112 ºC, 1H NMR (300 MHz): δ = 1.15 (s, 9H), 1.24 (s, 18H), 5.63 

(s, 2H), 6.85-6.88 (m, 2H), 7.19-7.22 (m, 2H), 7.25-7.29 (m, 2H), 8.21-8.33 (m, 2H), 8.44 (m, 

1H). 13C NMR (75 MHz): δ = 161.1, 159.2, 157.6, 148.5, 148.1, 118.7, 114.8, 111.5, 53.5, 

34.8, 30.5, 30.4. IR (KBr): υ = 2962, 2868, 1599, 1538, 1392, 1291, 1213, 984, 924, 829 cm-1. 

 

7.3.12 Synthesis of 6-[(1R,2R,5S)-2-Isopropyl-5-methylcyclohexyloxy[-N-{6-

[(1S,2R,5S)-2-isopropyl-5-methylcyclohexyloxy]pyridin-2-yl}-N-

(pyridin-2-ylmethyl)pyridin-2-amine (34a): 

 

N

N

N

N

O O

 

 

In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (11.5 mg, 0.02 

mmol), DPPP (10.3 mg, 0.025 mmol), bromopyridine (1.1 mmol, 343 mg), picolylamine (0.5 

mmol, 224 mg), TBAB (322 mg, 1 mmol) and sodium tert-butylate (318 mg, 3.3 mmol). 

After the addition of toluene (10 mL) the reaction mixture was heated at 100 ºC over night. 

The mixture was then allowed to cool to room temperature and diluted with ethyl acetate (10 

mL). After filtration through celite, the solvents of the filtrate were evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = diethyl ether : pentane = 1 : 10) affording N,N-dipyridylaminopicoline 34a in 65% 

yield (186 mg) as oil. 

 

Analytical data for 34a: Oil, 1H NMR (400 MHz): δ = 0.52 (td, J = 6.9 Hz, 6H), 0.98 (m, 

18H), 1.00-1.19 (m, 2H), 1.59-1.49 (m, 6H), 1.78-1.98 (m, 4H), 4.60 (ddd, J = 10.7, 10.7, 4.4 
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Hz, 2H ), 5.33 (d, J = 17.3 Hz, 1H), 5.53 (d, J = 17.3 Hz, 1H), 6.16 (d, J = 7.7 Hz, 2H), 6.82 (t, 

J = 7.7 Hz, 2H), 6.99 (m, 1H), 7.15 (td, J = 7.9 Hz, 1H),  7.34 (t, J = 7.9 Hz, 2H), 7.41 (td, J = 

4.0, 1.0 Hz, 1H), 8.45 (dq, J = 4.0, 1.0 Hz, 1H). 13C NMR (75 MHz): δ = 162.8, 160.7, 154.7, 

148.8, 139.6, 136.1, 121.1, 120.7, 105.0, 103.3, 74.5, 53.7, 47.4, 40.9, 34.5, 31.2, 26.3, 23.8, 

22.2, 20.7, 16.6. 

 

Analytical data of N,N-dipyridylaminopicoline 34a were consistent with that reported in the 

literature.167 

 

 

7.3.13 Synthesis of 6-[(1R,2R,5S)-2-Isopropyl-5-methylcyclohexyloxy]-N-

(pyridin-2-yl)-N-(pyridin-2-ylmethyl)pyridin-2-amine (34b): 

 

N

N

N

N

O

 

 

In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (27.6 mg, 0.03 

mmol), rac-BINAP (37.2 mg, 0.02 mmol), bromopyridine (2.2 mmol, 373 mg, 800 µL), 

picolylamine (3 mmol, 555 mg), TBAB (322 mg, 1 mmol) and sodium tert-butylate (432 mg, 

4.5 mmol). After the addition of toluene (20 mL) the reaction mixture was heated at 100 ºC 

for 7 hours. The mixture was then allowed to cool to room temperature and diluted with ethyl 

acetate (10 mL). After filtration through Celite, the solvents of the filtrate were evaporated 

(rotary evaporator). The remaining mixture was separated by column chromatography (silica 

gel; eluent = ethyl acetate : pentane = 2 : 3) affording dipyridylaminopicoline 34b in 90% 

yield (1.121 g) as yellow oil. 

 

Analytical data for 34b: Oil, 1H NMR (400 MHz): δ = 0.63 (d, J = 7.2 Hz, 3H), 0.80 (d, J = 

6.6 Hz, 3H), 0.83 (d, J = 6.9 Hz, 3H), 1.08-1.35 (m, 1H), 1.57-1.65 (m, 2H), 1.86-1.92 (m, 

                                                 
167 J.-C. Frison, Ph.D Thesis, RWTH Aachen, 2004. 
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1H), 4.64 (td, J = 10.7, 4.4 Hz, 2H ), 5.55 (q, J = 7.2 Hz, 1H), 6.76 (d, J = 7.0 Hz, 1H), 6.88 

(ddd, J = 17.1, 5.0, 0.8 Hz, 1H), 6.99 (m, 1H), 7.11 (dd, J = 5.0 Hz, 1H),  7.34 (t, J = 8.0 Hz, 

1H), 7.36 (td, J = 8.5, 0.8 Hz, 1H), 8.34 (dq, J = 5.0, 0.8 Hz, 1H), 8.54 (dq, J = 5.0, 0.8 Hz, 

1H). 13C NMR (75 MHz): δ = 162.5, 159.8, 156.9, 154.4, 148.4, 148.1, 139.6, 136.7, 135.6, 

121.3, 120.8, 117.3, 115.2, 104.0, 103.1, 74.3, 53.5, 47.3, 40.8, 34.5, 31.2, 26.3, 22.2, 20.6, 

16.6. IR (KBr): υ = 3056, 3009, 2951, 1949, 1592, 1472, 1392, 1151, 1213, 1041, 945, 920, 

854, 780, 749, 612 cm-1, MS (EI, 70 eV): m/z (%) = 416 (M+), anal. calcd. for C26H32N4O 

(416.56): C 74.97, H 7.74, N 13.45; found: C 75.25, H 7.92, N 13.80. 

 

7.3.14 Synthesis of N-2-Pyrimidylpicolyllamine 78: 

 

N

N NH
N

 

 

In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (18 mg, 0.02 

mmol), DPPP (16 mg, 0.04 mmol), 2-chloropyrimidine (146 µL, 1.6 mmol), picolylamine (82 

µL, 0.8 mmol), and sodium tert-butylate (134 mg, 1.4 mmol). After the addition of toluene 

(10 mL) the reaction mixture was heated at 100 ºC overnight. The mixture was then allowed 

to cool to room temperature and diluted with ethyl acetate (10 mL). After filtration through 

celite, the solvents of the filtrate were evaporated (rotary evaporator). The remaining mixture 

was separated by column chromatography (silica gel; eluent = ethyl acetate) affording N-

pyrimidylpicolylamine 78 in 40% yield (60 mg) as a white solid. 

 

Analytical data for 78: 1H NMR (400 MHz): δ = 4.67 (d, J = 5.0, 2H) 5.93 (brd, 1H), 7.18-

7.22 (m, 1H), 7.63-7.69 (m, 1H), 7.79-7.80 (m, 1H), 7.98-8.00 (m, 2H), 8.55-8.58 (m, 1H). 

 

7.3.15 Synthesis of 2,2’-N,N’-Dipyridylbenzylamine 31: 

 

N

N

N  
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In a Schlenk tube flushed with argon were successively added [Pd2(dba)3] (9.2 mg, 0.01 

mmol), DPPP (8.2 mg, 0.02 mmol), 2-bromopyridine (346.5 mg, 210 µL, 2.2 mmol), 

benzylamine (555 mg, 3 mmol), TBAB (644 mg, 2 mmol) and sodium tert-butylate (288 mg, 

3 mmol). After the addition of toluene (10 mL) the reaction mixture was heated at 100 ºC 

overnight. The mixture was then allowed to cool to room temperature and diluted with ethyl 

acetate (10 mL). After filtration through Celite, the solvents of the filtrate were evaporated 

(rotary evaporator). The remaining mixture was separated by column chromatography (silica 

gel; eluent = ethyl acetate : pentane = 1 : 3) affording N,N-dipyridylbenzylamine 31 in 77% 

yield (202 mg) as a pale yellow solid. 

 

Analytical data for 31: 1H NMR (400 MHz): δ = 5.44 (s, 2H), 6.75-6.80 (m, 2H), 7.08-7.11 

(m, 3H), 7.15-7.21 (m, 2H), 7.25-7.29 (m, 2H), 7.41-7.47 (m, 2H), 8.24-8.26 (m, 2H). 13C 

NMR (75 MHz): δ = 157.0, 148.1 139.3, 137.2, 128.3, 127.0, 126.5, 117.2, 114.6, 51.4.  

 

Analytical data of N,N-dipyridylbenzylamine 31 were consistent with that reported in the 

literature.10 

 

7.4 Synthesis of Iminophenyliodinane Derivatives 

 

7.4.1 Materials 

 

Most starting materials were purchased from commercial suppliers and used without further 

purification. MeOH was used after distillation over KOH. Trimethylsilylethanesulfonamide 

was synthesized as described previously.168 

 

7.4.2 Synthesis of [N-(p-Toluenenesulfonyl)imino]phenyliodinane (48a): 

 

I
NTs

 

 

                                                 
168 V. Declerck, P. Ribière, J. Martinez, F. Lamaty, J. Org. Chem. 2004, 69, 8372. 
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KOH (1.4 g, 25 mmol) was added to a solution of p-toluenesulfonamide (1.71 g, 10 mmol) in 

40 mL of methanol and then iodobenzene diacetate (3.22 g, 10 mmol) was added at 0 °C. The 

reaction mixture was allowed to warm to room temperature and stirred for 3 hours. The 

reaction mixture was poured in to water and left over night. Crystals were collected and 

washed with water and dichloromethane to afford [N-(p-

toluenenesulfonyl)imino]phenyliodinane (48a) in 42% yield (1.56 g). 

 

Analytical data for 48a: 1H NMR (400 MHz, d6-DMSO): δ = 2.26 (s, 3H), 7.05-7.08 (m, 2H), 

7.26-7.33 (m, 2H), 7.43-7.47 (m, 3H), 7.67-7.72 (m, 2H). 

 

Analytical data of [N-(p-toluenenesulfonyl)imino]phenyliodinane (48a) were consistent with 

that reported in the literature.169 

 

7.4.3 Synthesis of [N-(p-Nitrobenzenesulfonyl)imino]phenyliodinane (48b): 

 

I
NNs

 

 

KOH (4.2 g, 8.3 mmol) was added to a solution of p-nitorobenzenesulfonamide (2.02 g, 10 

mmol) in methanol (10 mL). And then iodobenzene diacetate (3.22 g, 10 mmol) was added at 

0 °C. The reaction mixture was allowed to warm to room temperature and was stirred for 3 

hours. The reaction mixture was poured in to water and left over night. Crystals were 

collected and washed with water and dichloromethane to afford [N-(p-

nitrobenzenesulfonyl)imino]phenyliodinane 48b. 

 

Analytical data for 48b: 1H NMR (400 MHz, d6-DMSO): δ = 7.22 (m, 2H), 7.37-7.44 (m, 1H), 

7.68-7.76 (m, 4H), 8.01-8.06 (m, 2H). 

 

Analytical data of [N-(p-nitrobenzenesulfonyl)imino]phenyliodinane (48b) was consistent 

with the literature.146b,  170 

 

                                                 
169 Y. Yamada, T. Yamamoto, M. Okawara, Chem. Lett. 1975, 361. 
170 a) J. Gullick, D. Ryan, P. McMorn, D. Bethell, F. King, F. Hancock, G. J. Hutchings, New J. Chem. 2004, 28, 
1470. b) S. Taylor, J. Glullick, P. McMorn, D. Bethell, P. C. Bulman Page, F. E. Hancock, F. King, G. J. 
Hutchings, Topics in Catalysis 2003, 24, 43. 
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7.4.4 Synthesis of (5-methyl-2-pyridinesulfonyl)iminophenyliodinane 

(48d): 

 

 

I
N

S
O O

N
 

 

KOH (1.4 g, 25 mmol) was added to a solution of 5-methyl-2-pyridinesulfonamide (1.72 g, 10 

mmol) in methanol (50 mL). And then iodobenzene diacetate (3.22 g, 10 mmol) was added at 

0 °C. The reaction mixture was allowed to warm to room temperature and was stirred for 3 

hours. The reaction mixture was extracted with dichlromethane and the organic layers were 

dried over MgSO4. Filtrate was evaporated and crystal was collected and washed with hot 

MeOH affording (5-methyl-2-pyridinesulfonyl)iminophenyliodinane (48d) in 59% yield (2.2 

g) as a white solid. 

 

Analytical data for 48d: m.p 144 ºC (detonates), 1H NMR (400 MHz, d6-DMSO): δ = 2.28 (s, 

3H), (m, 2H), 7.43-7.51 (m, 2H), 7.39-7.45 (m, 2H), 7.48-7.54 (m, 1H), 7.59-7.62 (m, 1H), 

7.65-7.70 (m, 1H), 7.86-7.90 (m, 1H), 7.87-7.90 (m, 2H), 8.31-8.32 (m, 1H). 13C NMR (75 

MHz): δ = 159.6, 149.0, 138.7, 135.4, 133.1, 131.2, 131.0, 119.4, 119.3, 18.3. IR (KBr): υ = 

1567, 1465, 1444, 1271, 1132, 1099, 922, 898, 825, 736, 673, 629 cm-1. anal. calcd. for 

C12H11IN 2O2S (357.49): C 38.52, H 2.96, N 7.49; found: C 38.42, H 3.18, N 7.43. 

 

Analytical data for (5-methyl-2-pyridinesulfonyl)iminophenyliodinane (48d) were consistent 

with those in the literature.171 

 

7.4.5 Synthesis of [N-(Trimethylsilylethanesulfonyl)imino]phenyliodinane 

48e: 

 

I
NSes

 

 
                                                 
171 B. V. Meprathu, S. Diltz, P. J. Walsh, J. D. Protasiewicz, Tetrahedron Lett. 1999, 40, 5459. 
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KOH (460 mg, 8.2 mmol) was added to a solution of trimethylsilylethanesulfonamide (595 

mg, 3.28 mmol) in methanol (10 mL) and then iodobenzene diacetate (1.06 g, 3.28 mmol) 

was added at 0 °C. The reaction mixture was allowed to warm to room temperature and 

stirred for 3 hours. The reaction mixture was extracted with dichlromethane and the organic 

layer was dried over MgSO4. The filtrate was evaporated and the crystals were collected and 

washed to afford [N-(trimethylsilylethanesulfonyl)imino]phenyliodinane in 75% yield (940 

mg) as a white solid. 

 

Analytical data for 48e: 1H NMR (400 MHz, d6-DMSO): δ = 0.05 (s, 9H), 1.03-1.08 (m, 2H), 

2.99-3.07 (m, 2H), 7.43-7.51 (m, 2H), 7.43-7.51 (m, 1H), 8.14-8.20 (m, 2H). 

 

Analytical data of [N-(trimethylsilylethanesulfonyl)imino]phenyliodinane (48e) was 

consistent with that reported in the literature.102 

 

7.5 Synthesis of Silyl Enol Ethers 

 

7.5.1 Synthesis of Silyl Enol Ether 55a from Acetophenone: 

 

OSiMe3

 

 

A solution of n-butyl lithium (11.6 mL) (1.6 M in hexane) was added slowly to a solution of 

diisopropylamine in 10 mL of THF at -78 °C. And then acetophenone (2 g, 1.95 mL, 16.6 

mmol) in THF (10 mL) was added slowly at -78 °C. After stirring for 30 minutes, 

trimethylsilylchloride (2.4 mL, 18 8 mmol) was added slowly and the resulting solution was 

stirred for 3 hours. A solution of sat. NH4Cl (aq.) was added at -78 °C and mixture was 

extracted with diethyl ether. The combined organic layers were dried over MgSO4 and solvent 

was evaporated (rotary evaporator) after filtration. The remaining mixture was separated by 

column chromatography (silica gel; eluent = petroleum ether : diethyl ehter = 19 : 1) affording 

trimethyl(1-phenylvinyloxy)silane (55a) in 80% yield (2.56 g). 
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Analytical data for 55a: 1H NMR (400 MHz, CDCl3): δ = 0.25 (s, 9H), 4.17 (d, J = 1.7 Hz 

1H), 4.90 (d, J =1.7 Hz, 1H), 7.26-7.34 (m, 3H), 7.55-7.60 (m, 2H). 13C NMR (75 MHz): δ = 

155.5, 135.6, 128.1, 128.0, 125.1, 91.0, 0.2. 

 

Analytical data of the silyl enol ether 55a were consistent with that reported in the 

literature.172 

 

7.5.2 Synthesis of Silyl Enol Ether 55b from Propiophenone: 

 

OSiMe3

 

 

A solution of n-butyl lithium 11.6 mL (1.6 M in hexane) was added slowly into a solution of 

diisopropylamine in 10 mL of THF at -78 °C and then propiophenone (2.2 mL, 16.4 mmol) in 

THF (10 mL) was added slowly at -78 °C. After stirring for 30 minutes, trimethylsilylchloride 

(2.4 mL, 18 8 mmol) was added slowly and the resulting solution was stirred for 3 hours. A 

solution of sat. NH4Cl aq. was added at -78 °C and the mixture was extracted with diethyl 

ether. The combined organic layers were dried over MgSO4 and the solvent was evaporated 

(rotary evaporator) after filtration. The remaining mixture was separated by column 

chromatography (silica gel; eluent = petroleum ether : diethyl ehter = 19 : 1) affording (Z)-

trimethyl(1-phenylprop-1-enyloxy)silane (55b). 

 

Analytical data for 55b: 1H NMR (400 MHz, CDCl3): δ = 0.15 (s, 9H), 1.60 (d, J = 6.7 Hz, 

3H), 5.21 (q, J = 6.7 Hz, 1H), 7.78-7.86 (m, 2H). 13C NMR (75 MHz): δ = 149.0, 130.3, 127.9, 

127.2, 125.1, 105.3, 11.8, 0.7. 

 

Analytical data of silyl enol ether 55b were consistent with that reported in the literature.172 

 

7.5.3 Synthesis of Silyl Enol Ether 55c from a-Tetralone: 

 

                                                 
172 J. Eames, G. S. Coumbarides, M. J. Sugatte, N. Weerasooriya, Eur. J. Org. Chem. 2003, 4, 634. 
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OSiMe3

 

 

A solution of n-butyl lithium (11.6 mL) (1.6 M in hexane) was added slowly into a solution of 

diisopropylamine in 10 mL of THF at -78 °C and then α-tetralone (2.2 mL, 16.4 mmol) in 

THF (10 mL) was added slowly at -78 °C. After stirring for 30 minutes, trimethylsilylchloride 

(2.4 mL, 18 8 mmol) was added slowly and the resulting solution was stirred for 3 hours. The 

resulting slurry was allowed to warm to rom temperature and the volatiles were removed in 

vacuo. Pentane was added to the mixture which was filtered. The filtrate was evaporated and 

purified by distillation affording (3,4-dihydronaphthalen-1-yloxy)trimethylsilane (55c). 

 

Analytical data for 55c: 1H NMR (400 MHz, CDCl3): δ = 0.24 (s, 9H), 2.31 (td, J = 8.0, 4.7 

Hz, 2H), 2.75 (t, J = 8.0 Hz, 2H), 5.17 (t, J = 4.7 Hz, 1H), 7.06-7.21 (m, 3H), 7.15-7.17 (m, 

1H). 

 

Analytical data of (3,4-dihydronaphthalen-1-yloxy)trimethylsilane 55c were consistent with 

that reported in the literature.172 

 

7.5.4 Synthesis of Silyl Enol Ether 55d from Cyclohexanone: 

 

OSiMe3

 

 

A solution of n-butyl lithium (11.6 mL) (1.6 M in hexane) was added slowly into the solution 

of diisopropylamine in 10 mL of THF at -78 °C and then cyclohexanone (1.7 mL, 16.4 mmol) 

in THF (10 mL) was added slowly at -78 °C. After stirring for 30 minutes, 

trimethylsilylchloride (2.4 mL, 18 8 mmol) was added slowly the resulting solution was 

stirred for 3 hours. The resulting slurry was allowed to warm to room temperature and the 

volatiles were removed in vacuo. Pentane was added to the mixture which was filtered. The 

filtrate was evaporated and purified by distillation affording cyclohexenyloxytrimethylsilane 

(55d). 
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Analytical data for 55d: 1H NMR (400 MHz, CDCl3): δ = 0.16 (s, 9H), 1.44-1.53 (m, 4H), 

1.60-1.67 (m, 4H), 1.93-2.02 (m, 8H), 4.84-4.86 (m, 2H). 

 

Analytical data of cyclohexenyloxytrimethylsilane 55d were consistent with that reported in 

the literature.173 

 

7.5.5 Synthesis of Silyl Enol Ether 55e from 2-Nonanone: 

 

OSiMe3

 

 

A solution of n-butyl lithium (11.6 mL) (1.6 M in hexane) was added slowly into the solution 

of diisopropylamine in 10 mL of THF at -78 °C and then 1-nonanone (2.8 mL, 16.4 mmol) in 

THF (10 mL) was added slowly at -78 °C. After stirring for 30 minutes, trimethylsilylchloride 

(2.4 mL, 18.8 mmol) was added slowly and stirred for 3 hours. The resulting slurry was 

allowed to warm to room temperature and volatiles were removed in vacuo. Pentane was 

added to the reaction mixture which was filtered. The filtrate was evaporated and purified by 

distillation affording trimethyl(non-1-en-2-yloxy)silane (55e). 

 

Analytical data for 55e: 1H NMR (400 MHz, CDCl3): δ = 0.18 (s, 9H), 0.68-0.74 (m, 3H), 

1.07-1.16 (m, 8H), 1.23-1.1.32 (m, 2H), 1.80-1.86 (m, 2H), 1.55 (s, 2H).  

 

Analytical data of trimethyl(non-1-en-2-yloxy)silane 55e were consistent with the 

literature.174 

 

7.5.6 Synthesis of Synthesis of Silyl Enol Ether 55f from 

Methylphenylacetate: 

 

OMe

OSiMe3

 

 

                                                 
173 H. W. Lee, J.-G. An, H. K. Yoon, H. Jang, N. G. Kim, Y. Do, Bull. Korean Chem. Soc. 2005, 26, 1569. 
174 J. P. McCormic, W. Tomasik, M. W. Johnson, Tetrahedron Lett. 1981, 22, 607. 
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A solution of n-butyl lithium (11.6 mL) (1.6 M in hexane) was added slowly into the solution 

of diisopropylamine in 10 mL of THF at -78 °C and then methylphenylacetate (2.36 mL, 16.4 

mmol) in 10 mL of THF was added slowly at -78 °C. After stirring for 30 minutes, 

trimethylsilylchloride (2.4 mL, 18 8 mmol) was added slowly and the resulting solution was 

stirred for 3 hours. The resulting slurry was allowed to warm to room temperature and 

volatiles were removed in vacuo. Pentane was added to the mixture which was then filtered. 

The filtrate was evaporated and purified by distillation affording mixture of (E/Z)-(1-

methoxy-2-phenylvinyloxy)trimethylsilane (55f). 

 

Analytical data for 55f: 1H NMR (400 MHz, CDCl3): δ = 0.20 (s, 5.4H), 0.25 (s, 3.6H), 3.60 

(s, 1.8H), 3.61 (s, 1.2H), 6.92-6.98 (m, 1H), 7.15-7.25 (m, 2H), 7.30-7.37 (m, 2H). 

 

Analytical data for (E/Z)-(1-methoxy-2-phenylvinyloxy)trimethylsilane (55f) were consistent 

with the literature.175 

 

7.5.7 Synthesis of Silyl Enol Ether 50h from Trimethylsilyl Acetic Acid 

Ethyl Ester: 

 

Me3Si
OSiMe3

OEt  

 

A solution of n-butyl lithium (3.8 mL, 6.05 mmol) (1.6 M in hexane) was added slowly into 

the solution of diisopropylamine (0.85 mL, 6.05 mmol) in 10 mL of THF at -78 °C and then 

trimethylsilyl acetic acid ethyl ester (1 mL, 5.5 mmol) in THF (10 mL) was added slowly at -

78 °C. After stirring for 30 minutes, trimethylsilylchloride (773 µL, 6.05 mmol) was added 

slowly and stirred for 3 hours. The resulting slurry was allowed to warm to room temperature 

and volatiles were removed in vacuo. Pentane was added to the mixture which was filtered. 

The filtrate was evaporated and purified by distillation affording mixture of (E/Z)-(1-ethoxy-

2-(trimethylsilyl)vinyloxy)trimethylsilane (55g). 

 

                                                 
175 a) N. Slougui, G. Rousseau, J.-M. Conia, Synthesis 1982, 58. b) C. Ainworth, F. Chen, Y. N. Kuo, J. 

Organomet. Chem. 1972, 46, 59. 
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Analytical data for 55g: 1H NMR (400 MHz, CDCl3): δ = 0.01 (s, 3H), 0.11 (s, 6H), 0.19 (s, 

3H), 0.23 (s, 6H), 1.18 (t, J = 7.1 Hz, 1H), 1.126 (t, J = 7.1 Hz, 2H), 3.72 (q, J = 7.1 Hz, 

0.67H), 3.82 (q, J = 7.1 Hz, 0.33H). 

 

Analytical data of (E/Z)-(1-ethoxy-2-(trimethylsilyl)vinyloxy)trimethylsilane (55g) were 

consistent with that reported in the literature.155b, 176 

 

7.6 Catalytic Reaction with Iron catalyst 

 

7.6.1 Iron-Catalyzed Benzylic Oxidation 

 

7.6.1.1 Materials 

 

Most starting materials were purchased from commercial suppliers and used without further 

purification. TBHP (70% in water) was obtained from Fluka. Tosyl-, acetyl- and 

butoxycarbonyl-protected substrates (Table 1, entries 8 and 10) were prepared by standard 

procedures. Chroman (Table 1, entry 9) was prepared by the previously reported protocol.177 

Pyridine was used after drying over KOH. 

 

7.6.1.2 Representative Procedure (RP 3) for the Benzylic Oxidation: Conversion of 

Diphenylmethane 33a: 

 

O

 

 

Diphenylmethane 35a (84.1 mg, 83.3 µL, 0.5 mmol) was added to a solution of FeCl3•6H2O 

(2.7 mg, 0.01 mmol) in pyridine (0.5 mL). After the addition of TBHP (70% in H2O; 206 µL, 

1.5 mmol), the reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed 

to cool to room temperature and poured into a 1 N solution of aq. HCl (10 mL) in order to 

remove the pyridine. The organic phase was extracted with Et2O (40 mL), washed with brine 

and dried over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary 

                                                 
176 G. Picotin, P. Miginiac, J. Org. Chem.1987, 52, 4796. 
177 W. E. Parham, L. D. Jones, Y. A. Sayed, J. Org. Chem. 1976, 41, 1184. 
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evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = diethyl ether : pentane = 1 : 20) affording benzphenone 36a in 91% yield (83 mg). 

 

Analytical data for 36a: 1H NMR (400 MHz, CDCl3): δ = 7.47-7.53 (m, 4H), 7.56-7.64 (m, 

2H), 7.80-7.84 (m, 4H).  

 

Analytical data of benzophenone 36a were consistent with that reported in the literature.178 

 

7.6.1.3 Large scale for the benzylic oxidation: Conversion of Diphenylmethane 33a: 

 

Diphenylmethane 35a (841 mg, 833 µL, 5 mmol) was added to a solution of FeCl3•6H2O (27 

mg, 0.1 mmol) in pyridine (5 mL). After the addition of TBHP (70% in H2O; 2.06 mL, 15 

mmol), the reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to 

cool to room temperature and poured into a 1 N solution of aq. HCl (100 mL) in order to 

remove the pyridine. The organic phase was extracted with Et2O (100 mL), washed with brine 

and dried over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = diethyl ether: pentane = 1 : 20 )affording benzophenone 36a in 94% yield (853 mg). 

 

7.6.1.4 Representative Procedure (RP 3) for the Benzylic Oxidation: Conversion of 

4,4’-Difluorophenylmethane: 

 

F F  

 

Prepared according to RP 2, 4,4’-difluorophenylmethane (35b) (204 mg, 1 mmol) was added 

to the solution of FeCl3•6H2O (5.4 mg, 0.02 mmol) in pyridine (1 mL). After the addition of 

TBHP (70% in H2O; 412 µL, 3 mmol), the reaction mixture was heated at 80 ºC for 24 h. T 

The mixture was then allowed to cool to room temperature and poured into a 1 N solution of 

aq. HCl (10 mL) in order to remove the pyridine. The organic phase was extracted with Et2O 

(10 mL), washed with brine and dried over Na2SO4. After filtration, the solvents of the filtrate 

were evaporated (rotary evaporator). The remaining mixture was separated by column 

                                                 
178 A. J. Catino, J. M. Nichols, H. Choi, S. Gottipamula, M. P. Doyle, Org. Lett. 2005, 23, 5167. 
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chromatography (silica gel; eluent = diethyl ether : pentane = 1 : 10) affording 4,4’-

difluorobenzophenone 36b in 94% yield (204 mg). 

  

Analytical data for 36b: 1H NMR (400 MHz, CDCl3): δ = 7.13-7.22 (s, 2H), 7.78-7.86 (m, 

2H). 13C NMR (75 MHz): δ = 194.0, 165.4 (d, JC-F = 254 Hz), 132.5 (d, JC-F = 9.6 Hz), 115.6 

(d, JC-F = 22 Hz). 

 

Analytical data of 4,4’-difluorobenzophenone 36b were consistent with the literature.179 

 

7.6.1.5 Representative Procedure (RP 3) for the Benzylic Oxidation: Conversion of 2-

Benzylpyridine: 

 

N

O

 

 

Prepared according to RP 3, starting from benzylpyridine (35c) (338 mg, 321 µL, 2 mmol) 

was added to the solution of FeCl3•6H2O (10.8 mg, 0.04 mmol) in pyridine (2 mL). After the 

addition of TBHP (70% in H2O; 824 µL, 15 mmol), the reaction mixture was heated at 110 ºC 

for 24 h. The mixture was then allowed to cool to room temperature and poured into water in 

order to remove the pyridine and tert-BuOH. The organic phase was extracted with Et2O (100 

mL), washed with brine and dried over Na2SO4. After filtration, the solvents of the filtrate 

were evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = diethyl ether : pentane = 1 : 2 ) affording 2-

benzoylpyridine 36c in 75% yield (260 mg). 

  

Analytical data for 36c: 1H NMR (400 MHz, CDCl3): δ = 7.48-7.52, (m, 2H), 7.59-7.63 (m, 

2H), 7.98-8.08 (m, 4H), 8.78-8.80 (m, 1H). 13C NMR (75 MHz): δ = 153.7, 147.7, 138.3, 

135.8, 133.3, 130.9, 128.3, 126.5, 125.0. 

 

Analytical data of 2-benzoylpyridine 36c were consistent with that reported in the 

literature.180 

                                                 
179 P. Lucas, N. E. Mehdi, H. A. Ho, D. Bélanger, L. Breau, Synthesis 2000, 1253. 
180 E. Maerten, M. Sauthier, A. Mortreux, Y. Castanet, Tetrahedron 2007, 63, 682. 
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7.6.1.6 Iron-Catalyzed Benzylic Oxidation: Conversion of Xanthene: 

 

O

O  

 

Xanthene (35d) (364.4 mg, 2 mmol) was added to a solution of FeCl3•6H2O (10.8 mg, 0.04 

mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 6 mmol), the 

reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to cool to room 

temperature and poured into a 1 N solution of aq. HCl (100 mL) in order to remove the 

pyridine. The organic phase was extracted with ethyl acetate (100 mL), washed with brine and 

dried over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

diethyl acetate : pentane = 1 : 20 as eluent) affording xanthone 36d in quantitative yield (398 

mg). 

 

Analytical data for 36d: 1H NMR (400 MHz, CDCl3): δ = 7.32-7.43 (m, 2H), 7.47-7.52 (m, 

2H), 7.68-7.76 (m, 2H), 8.32-8.35 (m, 2H). 

 

Analytical data of xanthone 36d were consistent with that reported in the literature.59
 

 

7.6.1.7 Iron-Catalyzed the Benzylic Oxidation: Conversion of 9,10-Dihydroanthracene: 

 

O

O  

 

9,10-Dihydroanthracene (35e) (180.2 mg, 1 mmol) was added to a solution of FeCl3•6H2O 

(5.4 mg, 0.02 mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 6 

mmol), the reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to 

cool to room temperature and poured into a 1 N solution of aq. HCl (100 mL) in order to 

remove the pyridine. The organic phase was extracted with ethyl acetate (100 mL) and 
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chlorform, (100 mL) washed with brine and dried over MgSO4. After filtration, the solvents 

of the filtrate were evaporated (rotary evaporator). The remaining mixture was separated by 

column chromatography (silica gel; eluent = diethyl ether : pentane = 1 : 20) affording 

anthroquinone 36e in 93% yield (193 mg). 

 

Analytical data for 36e: 1H NMR (400 MHz, CDCl3): δ = 7.25-7.32 (m, 2H), 7.46-7.54 (m, 

4H), 7.65-7.67 (m, 2H). 13C NMR (75 MHz): δ = 143.6, 129.3, 127.3, 127.0. 

 

Analytical data of 9-fluorenone 36e were consistent with the literature.59 

 

7.6.1.8 Iron-Catalyzed Benzylic Oxidation: Conversion of Fluorene: 

 

O

 

 

Fluorene (35g) (332 mg, 2 mmol) was added to a solution of FeCl3•6H2O (10.8 mg, 0.04 

mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 15 mmol), the 

reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to cool to room 

temperature and poured into a 1 N solution of aq. HCl (50 mL) in order to remove the 

pyridine. The organic phase was extracted with Et2O (50 mL), washed with brine and dried 

over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary evaporator). 

The remaining mixture was separated by column chromatography (silica gel; eluent = diethyl 

ether : pentane = 1 : 20) affording 9-fluorenone 36f in quantitative yield (359 mg). 

 

Analytical data for 36f: 1H NMR (400 MHz, CDCl3): δ = 7.25-7.32 (m, 2H), 7.46-7.54 (m, 

4H), 7.65-7.67 (m, 2H). 13C NMR (75 MHz): δ = 144.2, 134.5, 134.0, 128.9, 124.1, 120.1.  

 

Analytical data of 9-fluorenone 36f were consistent with that reported in the literature.59 

 

7.6.1.9 Iron-Catalyzed Benzylic Oxidation: Conversion of Anthrone: 
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O

O  

 

Anthrone (35f) (388.4 mg, 2 mmol) was added to a solution of FeCl3•6H2O (10.8 mg, 0.04 

mmol) in pyridine (4 mL). After the addition of TBHP (70% in H2O; 824 µL, 6 mmol), the 

reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to cool to room 

temperature and poured into a 1 N solution of aq. HCl (100 mL) in order to remove the 

pyridine. The organic phase was extracted with ethyl acetate (100 mL), washed with brine and 

dried over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary 

evaporator). The remaining mixture was washed MeOH affording anthroquinone 36e in 62% 

yield (260 mg). 

 

Analytical data for 36e: 1H NMR (400 MHz, CDCl3): δ = 7.25-7.32 (m, 2H), 7.46-7.54 (m, 

4H), 7.65-7.67 (m, 2H). 13C NMR (75 MHz): δ = 143.6, 129.3, 127.3, 127.0. 

 

Analytical data of anthroquinone 36e were consistent with the literature.59 

 

7.6.1.10 Iron-Catalyzed Benzylic Oxidation: Conversion of Tetrahydronaphthalene: 

 

O

 

 

1,2,3,4-Tetrahydronaphthalene (35h) (265 mg, 271 µL, 2 mmol) was added to a solution of 

FeCl3•6H2O (10.8 mg, 0.04 mmol) in pyridine (2 mL). After the addition of TBHP (70% in 

H2O; 824 µL, 6 mmol), the reaction mixture was heated at 82 ºC for 24 h. The mixture was 

then allowed to cool to room temperature and poured into a 1N solution of aq. HCl (100 mL) 

in order to remove the pyridine. The organic phase was extracted with Et2O (100 mL), washed 

with brine and dried over MgSO4. After filtration, the solvents of the filtrate were evaporated 

(rotary evaporator). The remaining mixture was separated by column chromatography (silica 

gel; eluent = diethyl ether : pentane = 1 : 10) affording α-tetralone 36g in 41% yield (120 mg). 
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Analytical data for 36g: 1H NMR (400 MHz, CDCl3): δ = 2.67 (dd, J = 6.3, 6.0 Hz, 2H), 2.97 

(d, J = 6.0 Hz, 2H), 2.15 (t, J = 6.3 Hz, 2H), 7.24-7.27 (m, 1H), 7.28-7.33 (m, 1H), 7.44-7.50 

(m, 1H), 8.02-8.05 (m, 1H). 

 

Analytical data of α-tetralone 36g was consistent with that reported in the literature.59 

 

7.6.1.11 Iron-Catalyzed Benzylic Oxidation: Conversion of N-Tosyl-1,2,3,4-

tetrahydroquinoline: 

 

N
Ts

O

 

 

N-Tosyl-1,2,3,4-tetrahydroquinoline (35i) (306.8 mg, 1 mmol) was added to a solution of 

FeCl3•6H2O (5.4 mg, 0.02 mmol) in pyridine (1 mL). After the addition of TBHP (70% in 

H2O; 824 µL, 6 mmol), the reaction mixture was heated at 82 ºC for 24 h. The mixture was 

then allowed to cool to room temperature and poured into a 1 N solution of aq. HCl (100 mL) 

in order to remove the pyridine. The organic phase was extracted with Et2O (100 mL), washed 

with brine and dried over MgSO4. After filtration, the filtrate was evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = diethyl ether : pentane = 1 : 1) affording N-tosyl-2,3-dihydoro-1H-quinoline-4-one 

36h in 91% yield (60 mg). 

 

Analytical data for 36h: 1H NMR (400 MHz, CDCl3): δ = 2.37 (s, 3H), 2.37 (t, J = 6.3, 2H), 

4.24 (t, J = 6.3, 2H), 7.18-7.29 (m, 5H), 7.51-7.60 (m, 3H), 7.83-7.96 (m, 2H). 

  

Analytical data of N-tosyl-2,3-dihydoro-1H-quinoline-4-one 36h were consistent with that 

reported in the literature.59 

 

7.6.1.12 Iron-Catalyzed Benzylic Oxidation: Conversion of Chroman: 

 

O

O
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Chroman (35j) (268 mg, 2 mmol) was added to the solution of FeCl3•6H2O (10.8 mg, 0.04 

mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 6 mmol), the 

reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to cool to room 

temperature and poured into a 1 N solution of aq. HCl (100 mL) in order to remove the 

pyridine. The organic phase was extracted with Et2O (100 mL), washed with brine and dried 

over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary evaporator). 

The remaining mixture was separated by column chromatography (silica gel; eluent = diethyl 

ether : pentane = 1 : 10) affording chromanone 36i in 54% yield (160 mg). 

 

Analytical data for 36i: 1H NMR (400 MHz, CDCl3): δ = 2.81 (dd, J = 12.8, 6.4 Hz, 2H), 2.81 

(dd, J = 12.8, 6.4 Hz, 2H), 6.95-7.04 (m, 2H), 7.44-7.50 (m, 1H), 7.88-7.91 (m, 1H). 13C 

NMR (75 MHz): δ = 191.7, 161.8, 135.9, 127.1, 121.4, 117.9, 67.1, 37.9. 

 

Analytical data of chromanone 36i were consistent with that reported in the literature.59 

 

7.6.1.13 Iron-Catalyzed Benzylic Oxidation: Conversion of 1-Acetyloxy-1,2,3,4-1-

tetrahydro-1-naphthalene: 

 

O

OAc  

 

1-Acetyloxy-1,2,3,4-1-tetrahydro-1-naphthalene (35k) (380 mg, 2 mmol) was added to a 

solution of FeCl3•6H2O (10.8 mg, 0.04 mmol) in pyridine (2 mL). After the addition of 

TBHP (70% in H2O; 824 µL, 6 mmol), the reaction mixture was heated at 82 ºC for 24 h. The 

mixture was then allowed to cool to room temperature and poured into a 1 N solution of aq. 

HCl (100 mL) in order to remove the pyridine. The organic phase was extracted with Et2O 

(100 mL), washed with brine and dried over MgSO4. After filtration, the solvents of the 

filtrate were evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = diethyl ether : pentane = 1 : 20) affording 4-oxo-1,2,3,4-

tetrahydronaphthalen-1-yl acetate 36j in 66% yield (268 mg). 
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Analytical data for 36j: 1H NMR (400 MHz, CDCl3): δ = 2.12 (s, 3H), 2.26-2.35 (m, 1H), 

2.37-2.46 (m, 1H), 2.63-2.72 (m, 1H), 2.89-2.99 (m, 1H), 7.45-7.49 (m, 2H), 7.56-7.61 (m, 

1H), 8.04-8.07 (m, 1H). 13C NMR (75 MHz): δ = 196.7, 186.4, 140.6, 133.9, 133.9, 132.0, 

129.0, 128.3, 127.2, 69.1, 34.5, 28.6, 21.4. 

 

Analytical data of 4-oxo-1,2,3,4-tetrahydronaphthalen-1-yl acetate 36j were consistent with 

that reported in the literature.59 

 

7.6.1.14 Iron-Catalyzed Benzylic Oxidation: Conversion of Isochroman: 

 

O

O

 

 

Isochroman (35l) (268 mg, 253 µL, 2 mmol) was added to a solution of FeCl3•6H2O (10.8 

mg, 0.04 mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 6 

mmol), the reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to 

cool to room temperature and poured into a 1 N solution of aq. HCl (100 mL) in order to 

remove the pyridine. The organic phase was extracted with Et2O (100 mL), washed with brine 

and dried over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent: ethyl acetate : pentane = 1 : 5) affording 1-isochromanone 36k in 74% yield (220 mg). 

 

Analytical data for 36k: 1H NMR (400 MHz, CDCl3): δ = 3.07 (t, J = 6.0 Hz, 2H), 4.55 (t, J = 

6.0 Hz, 2H), 7.24-7.30 (m, 2H), 7.37-7.44 (m, 1H), 7.51-7.58 (m, 1H). 

 

Analytical data of 1-isochromanone 36k were consistent with that reported in the literature.58 

 

7.6.1.15 Iron-Catalyzed Benzylic Oxidation: Conversion of Indane: 

 

O
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Indane (35m) (236 mg, 259 µL, 2 mmol) was added to a solution of FeCl3•6H2O (10.8 mg, 

0.04 mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 6 mmol), 

the reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to cool to 

room temperature and poured into a 1 N solution of aq. HCl (50 mL) in order to remove the 

pyridine. The organic phase was extracted with Et2O (50 mL), washed with brine and dried 

over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary evaporator). 

The remaining mixture was separated by column chromatography (silica gel; eluent = diethyl 

ether : pentane = 1 : 5) affording 1-indanone 36l in 61% yield (160 mg). 

 

Analytical data for 36l: 1H NMR 400 MHz, CDCl3): δ = 2.70 (t, J = 6.0 Hz, 2H), 3.16 (t, J = 

6.0 Hz, 2H), 7.34-7.42 (m, 1H), 7.46-7.51 (m, 1H), 7.56-7.63 (m, 1H), 7.76-7.79 (m, 1H). 

 

Analytical data of 1-indanone 36l were consistent with that reported in the literature.59 

 

7.6.1.16 Iron-Catalyzed Benzylic Oxidation: Conversion of Phthalan: 

 

O

O

 

 

Phthalan (35n) (240 mg, 220 µL, 2 mmol) was added to a solution of FeCl3•6H2O (10.8 mg, 

0.04 mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 6 mmol), 

the reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to cool to 

room temperature and poured into a 1 N solution of aq. HCl (100 mL) in order to remove the 

pyridine. The organic phase was extracted with Et2O (100 mL), washed with brine and dried 

over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary evaporator) 

affording phthalide 36m in 45% yield (120 mg). 

 

Analytical data for 36m: 1H NMR (400 MHz, CDCl3): δ = 5.34 (s, 2H), 7.48-7.57 (m, 2H), 

7.67-7.72 (m, 1H), 7.93-7.95(m, 1H). 

 

Analytical data of phthalide 36m were consistent with that reported in the literature.59 
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7.6.1.17 Iron-Catalyzed Benzylic Oxidation: Conversion of Benzyl methyl ether: 

 

O

O

 

 

Benzyl methyl ether (35o) (247 mg, 263 µL, 5 mmol) was added to a solution of FeCl3•6H2O 

(10.8 mg, 0.04 mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 

6 mmol), the reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to 

cool to room temperature and poured into a 1 N solution of aq. HCl (100 mL) in order to 

remove the pyridine. The organic phase was extracted with Et2O (100 mL), washed with brine 

and dried over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = diethyl ether : pentane = 1 : 10) affording benzoic acid methyl ester 36n in 48% yield 

(131 mg). 

 

Analytical data for 36n: 1H NMR (400 MHz, CDCl3): δ = 3.91 (s, 3H), 7.39-7.49 (m, 2H), 

7.50-7.63 (m, 2H), 8.01-8.04 (m, 1H). 

 

Analytical data of benzoic acid methyl ester 36n were consistent with that reported in the 

literature.58
 

 

7.6.1.18 Iron-Catalyzed Benzylic Oxidation: Conversion of 2-Ethylthiophene: 

 

S O

 

 

2-Ethylthiophene (35p) (225 mg, 227 µL, 5 mmol) was added to the solution of FeCl3•6H2O 

(10.8 mg, 0.04 mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 

6 mmol), the reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to 

cool to room temperature and poured into a 1 N solution of aq. HCl (10 mL) in order to 

remove the pyridine. The organic phase was extracted with Et2O (10 mL), washed with brine 

and dried over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 
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eluent = diethyl ether : pentane = 1 : 10 as eluent) affording 2-acetylthiophene 36o in 25% 

yield (63 mg). 

 

Analytical data for 36o: 1H NMR (400 MHz, CDCl3): δ = 2.56 (s, 3H), 7.11 (dd, J = 5.0, 3.8 

Hz, 1H), 7.66 (dd, J = 5.0, 1.1 Hz, 1H), 7.69 (dd, J = 3.8, 1.1 Hz, 1H). 

 

Analytical data of 2-acetylthiophene 36o were consistent with that reported in the literature.59
 

 

7.6.1.19 Iron-Catalyzed Benzylic Oxidation: Conversion of Acetophenone: 

 

O

 

 

Ethylbenzene (35q) (212 mg, 247 µL, 5 mmol) was added to a solution of FeCl3•6H2O (10.8 

mg, 0.04 mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 6 

mmol), the reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to 

cool to room temperature and poured into a 1 N solution of aq. HCl (100 mL) in order to 

remove the pyridine. The organic phase was extracted with Et2O (100 mL), washed with brine 

and dried over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = diethyl ether : pentane = 1 : 20) affording acetophenone 36p in 17% yield (41 mg). 

 

Analytical data for 36p: 1H NMR (400 MHz, CDCl3): δ = 2.60 (s, 3H), 7.43 (m, 2H), 7.55(m, 

2H), 7.95 (m, 2H). 

 

Analytical data of acetophenone 36p were consistent with the literature.59
 

 

7.6.1.20 Iron-Catalyzed Benzylic Oxidation: Conversion of 4-Methoxy-acetophenone: 

 

O

O
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4-Ethylanisole (33r) (272 mg, 284 µL, 5 mmol) was added to a solution of FeCl3•6H2O (10.8 

mg, 0.04 mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 6 

mmol), the reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to 

cool to room temperature and poured into a 1 N solution of aq. HCl (100 mL) in order to 

remove the pyridine. The organic phase was extracted with diethyl ether (100 mL), washed 

with brine and dried over MgSO4. After filtration, the solvents of the filtrate were evaporated 

(rotary evaporator). The remaining mixture was separated by column chromatography (silica 

gel; eluent = diethyl ether : pentane = 1 : 5) affording 4-methoxyacetophenone 34q in 84% 

yield (252 mg). 

 

Analytical data for 34q: 1H NMR (400 MHz, CDCl3): δ = 2.56 (s, 3H), 3.87 (s, 3H), 6.90-6.97 

(m, 2H), 7.91-7.97 (m, 2H). 

 

Analytical data of 4-methoxyacetophenone 34q were consistent with that reported in the 

literature.58
 

 

 

7.6.1.21 Iron-Catalyzed Benzylic Oxidation: Conversion of 4-Methoxy-toluene: 

 

OH

O

O  

 

4-Methylanisole (35s) (244.3 mg, 2 mmol) was added to a solution of FeCl3•6H2O (10.8 mg, 

0.04 mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 6 mmol), 

the reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to cool to 

room temperature and poured into a 1 N solution of aq. HCl (100 mL) in order to remove the 

pyridine. The organic phase was extracted with Et2O (100 mL), washed with brine and dried 

over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary evaporator). 

The remaining mixture was separated by column chromatography (silica gel; eluent = ethyl 

acetate) affording 4-methoxybenzoic acid 36r in 53% yield (162 mg). 

 

Analytical data for 36r: 1H NMR (400 MHz, CDCl3): δ = 3.89 (s, 3H), 6.96 (d, J = 8.3 Hz, 

2H), 8.08 (d, J = 8.3 Hz, 2H). 
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Analytical data of 4-methoxybenzoic acid 36r was consistent with that reported in the 

literature.59
 

 

7.6.1.22 Iron-Catalyzed Benzylic Oxidation: Conversion of Diphenylcarbinol: 

 

OOH

 

 

Diphenylcarbinol 35t (368 mg, 2 mmol) was added to a solution of FeCl3•6H2O (10.8 mg, 

0.04 mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 6 mmol), 

the reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to cool to 

room temperature and poured into a 1 N solution of aq. HCl (50 mL) in order to remove the 

pyridine. The organic phase was extracted with Et2O (50 mL), washed with brine and dried 

over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary evaporator). 

The remaining mixture was separated by column chromatography (silica gel; eluent = diethyl 

ether : pentane = 1 : 10) affording benzophenone 36a in 86% yield (314 mg). 

 

Analytical data for 36a: 1H NMR (400 MHz, CDCl3): δ = 7.47-7.53 (m, 4H), 7.56-7.64 (m, 

2H), 7.80-7.84 (m, 4H).  

 

Analytical data of benzophenone 36a were consistent with that reported in the literature.177 

 

7.6.1.23 Iron-Catalyzed Benzylic Oxidation: Conversion of 1,4-Dihydroxynaphthalene 

(33w): 

 

O

O  

 

1,4-Dihydroxynaphthalene (35u) (160 mg, 1 mmol) was added to a solution of FeCl3•6H2O 

(10.5 mg, 0.02 mmol) in MeCN (1 mL). After the addition of TBHP (70% in H2O; 412 µL, 3 

mmol), the reaction mixture was heated at room temperature for 10 minutes. The mixture was 
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then allowed to cool to room temperature and poured into a 1 N solution of aq. HCl (100 mL) 

in order to remove the pyridine. Precipitate was collected and washed with water affording 

1,4-naphthoquinone 36s in 82% yield (130 mg). 

 

Analytical data for 36s: 1H NMR (400 MHz, CDCl3): δ = 7.01 (s, 2H), 7.77-7.80 (m, 2H), 

8.10-8.13 (m, 2H). 

 

Analytical data for 1,4-naphthoquinone 36s were consistent with that reported in the 

literature.181 

 

7.6.1.24 Iron-Catalyzed Benzylic Oxidation: Conversion of Triphenylmethane: 

 

OOt-Bu

 

 

Triphenylmethane (35v) (488.6 mg, 2 mmol) was added to the solution of FeCl3•6H2O (10.8 

mg, 0.1 mmol) in pyridine (2 mL). After the addition of TBHP (70% in H2O; 824 µL, 6 

mmol), the reaction mixture was heated at 82 ºC for 24 h. The mixture was then allowed to 

cool to room temperature and poured into a 1 N solution of aq. HCl (100 mL) in order to 

remove the pyridine. The organic phase was extracted with Et2O (100 mL), washed with brine 

and dried over MgSO4. After filtration, the solvents of the filtrate were evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = pentane) affording triphenylmethyl-tert-butylperoxide 36t in 91% yield (606 mg). 

 

Analytical data for 36t: 1H NMR (400 MHz, CDCl3): δ = 1.01 (s, 9H), 7.21-7.30 (m, 9H), 

7.36-7.41 (m, 6H). 13C NMR (75 MHz): δ = 143.6, 129.3, 127.3, 127.0, 79.7, 26.5. IR (KBr): 

υ = 2978, 2852, 1594, 1491, 1448, 1186, 1083, 745, 693 cm-1. 

 

Analytical data of triphenylmethyl-tert-butylperoxide 36t were consistent with that reported 

in the literature.182 

                                                 
181 M. H. Ali, M. Niedwalski, G. Bohnert, D. Bryant, Synth. Commun. 2006, 36, 1751. 
182  D. H. R. Barton, V. N. L. Gloahec, Tetrahedron Lett. 1998, 54, 15457. 
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7.6.2 Iron-Catalyzed Aziridination of Olefins: 

 

7.6.2.1 Materials 

 

Most starting materials were purchased from commercial suppliers and used without further 

purification. All of the silyl enol ethers were prepared according to the general procedure.167 

Fe(OTf)2 and Fe(OTf)2•2MeCN were prepared by the previously reported protocols 

respectively.183 Dry acetonitrile was purchased from Fluka and Acros. Molecular sieves 3Å, 

4Å, 5Å (powder) were purchased from Fluka and activated by the usual procedure. 

 

7.6.2.2 Representative Procedure for the Aziridination with PhINTs: Conversion of 

Styrene: 

 

NTs

 

 

Styrene (997 mg, 1.1 mL, 10 mmol) was added to a solution of Fe(OTf) 2•2MeCN (21 mg, 

0.01 mmol) and MS 4Å (10 mg) in MeCN (4 mL). After the addition of PhINTs (186.6 mg, 

0.5 mmol), the reaction mixture was stirred for 1 h. The mixture was evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = diethyl ethyl acetate : pentane = 4 : 1) affording N-tosylphenyllaziridine 51a in 90% 

yield (123 mg). 

 

Analytical data for 51a: 1H NMR (400 MHz, CDCl3): δ = 2.39 (d, J = 4.7 Hz, 1H), 2.43 (s, 

1H), 2.98 (d, J = 7.1 Hz, 1H), 3.78 (dd, J = 7.1, 4.7 Hz, 2H), 7.20-7.23 (m, 2H), 7.26-7.30 (m, 

3H), 7.31-7.35 (m, 2H), 7.85-7.89 (m, 2H). 13C NMR (75 MHz): δ = 144.6, 129.7, 128.5, 

128.3, 127.9, 126.5, 41.2, 36.1, 21.8. 

 

Analytical data of N-tosyl-phenylaziridine 51a were consistent with that reported in the 

literature.85 

 

                                                 
183 a) J. S. Haynes, J. R. Sams, R. C. Thomson, C. Can. J. Chem. 1981, 59, 669. b) K. S. Hagen, Inorg. Chem. 
2000, 39, 5867. 
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7.6.2.3 Iron-Catalyzed Aziridination with PhINNs: Conversion of αααα-Methylstyrene: 

 

NNs

 

 

α-Methylstyrene (591mg, 650 µL, 5 mmol) was added to a solution of Fe(OTf) 2•2MeCN 

(2.6 mg, 0.00625 mmol) and MS 4Å (20 mg) in MeCN (2 mL). After the addition of PhINNs 

(101 mg, 0.25 mmol), the reaction mixture was stirred for 3 h. The mixture was evaporated 

(rotary evaporator). The remaining mixture was separated by column chromatography (silica 

gel; ethyl acetate : eluent = pentane = 5 : 1) affording N-nosyl-α-methylphenylaziridine 51e in 

46% yield (35 mg). 

 

Analytical data for 51e: 1H NMR (400 MHz, CDCl3): δ = 1.88 (d, J = 6.0 Hz, 3H), 3.06 (qd, J 

= 6.0, 4.4, Hz, 1H), 3.87 (d, J = 4.4 Hz, 1H), 7.10-7.17 (m, 2H), 7.22-7.30 (m, 3H), 8.11 (d, J 

= 8.9 Hz, 2H), 8.29 (d, J = 8.9 Hz, 2H). 

 

Analytical data of N-nosyl-methylphenylaziridine 51e were consistent with that reported in 

the literature.97c  

 

7.6.2.4 Iron-Catalyzed Aziridination with PhINNs: Conversion of trans-ββββ-

Methylstyrene: 

 

NNs

 

trans-β-Methylstyrene (593 mg, 652 µL, 5 mmol) was added to a solution of Fe(OTf)2 (17.6 

mg, 0.05 mmol) and MS 4Å (20 mg) in MeCN (4 mL). After the addition of PhINNs (101 mg, 

0.25 mmol), the reaction mixture was stirred for 1 h. The mixture was evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = ethyl acetate : pentane = 1 : 5) affording N-nosyl-trans-methylphenylaziridine 51f in 

31% yield (25 mg). 
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Analytical data for 51f: 1H NMR (400 MHz, CDCl3): δ = 2.51 (d, J = 4.7 Hz, 1H), 3.11 (d, J = 

7.1 Hz, 1H), 3.90 (dd, J = 7.1, 4.7 Hz, 2H), 7.20-7.23 (m, 2H), 7.29-7.34 (m, 3H), 7.31-7.35 

(m, 2H), 8.16-8.21 (m, 2H), 8.35-8.40 (m, 2H). 

 

Analytical data of N-nosyl-methylphenylaziridine 51f were consistent with that reported in the 

literature.97 

 

7.6.2.5 Iron-Catalyzed Aziridination with PhINTs: Conversion of cis-Octene: 

 

NNs

 

 

cis-Octene (553 mg, 650 µL, 5 mmol) was added to the solution of Fe(OTf)2 (17.6 mg, 0.05 

mmol) and MS 4Å (10 mg) in MeCN (4 mL). After the addition of PhINNs (101 mg, 0.25 

mmol), the reaction mixture was stirred for 1 h. The mixture was evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = ethyl acetate : pentane = 1 : 6) affording N-nosylaziridine 51g in 67% yield (52 mg). 

 

Analytical data for 51g: 1H NMR (400 MHz, CDCl3): 
1H NMR (400 MHz, CDCl3): δ = 1.22-

1.67 (m, 10H), 1.98-2.07 (m, 2H), 2.87-2.94 (m, J = 4.7 Hz, 2H), 8.14 (d, J= 4.7 Hz, 2H), 

8.38 (d, J = 4.7 Hz, 2H). 

 

Analytical data of N-nosyl-aziridine 51g were consistent with that reported in the literature.97 

 

7.6.2.6 Iron-Catalyzed Aziridination of Styrene with PhINNs: 

 

NNs

 

 

Styrene (432 mg, 0.55 mL, 5 mmol) was added to a solution of Fe(OTf) 2•2MeCN (2.6 mg, 

0.01 mmol) and MS 4Å (10 mg) in MeCN (4 mL). After the addition of PhINNs (101 mg, 

0.25 mmol), the reaction mixture was stirred for 1 h. The mixture was evaporated (rotary 
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evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = ethyl acetate : pentane = 4 : 1) affording phenylaziridine 51b in 88% yield (67 mg). 

 

Analytical data for 51b: 1H NMR (400 MHz, CDCl3): δ = 2.51 (d, J = 4.7 Hz, 1H), 3.11 (d, J 

= 7.1 Hz, 1H), 3.90 (dd, J = 7.1, 4.7 Hz, 2H), 7.20-7.23 (m, 2H), 7.29-7.34 (m, 3H), 7.31-7.35 

(m, 2H), 8.16-8.21 (m, 2H), 8.35-8.40 (m, 2H). 

 

Analytical data of N-nosyl-phenylaziridine 51b were consistent with that reported in the 

literature.94 

 

7.6.2.7 Iron-Catalyzed Aziridination of Styrene with PhINSes: 

 

NSes

 

 

Styrene (432 mg, 0.55 mL, 2.5 mmol) was added to the solution of Fe(OTf) 2 (4.4 mg, 0.0125 

mmol) and MS 4Å (10 mg) in MeCN (4 mL). After the addition of PhINSes (95.8 mg, 0.25 

mmol), the reaction mixture was stirred for 1 h. The mixture was evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = ethyl acetate : pentane = 4 : 1) affording phenylaziridine 51c in 65% yield (46 mg). 

 

Analytical data for 51c: 1H NMR (400 MHz, CDCl3): δ = 0.00 (s, 9H), 1.07-1.14 (m, 2H), 

2.40 (d, J = 4.7 Hz, 1H), 2.96 (d, J = 7.2 Hz, 1H), 3.06 (m, 2H), 3.67 (dd, J = 7.2, 4.4 Hz, 1H), 

7.25-7.38 (m, 5H). 

 

Analytical data of N-trimethylethanesulfonyl-phenylaziridine 51c were consistent with that 

reported in the literature.84a 

 

7.6.2.8 Iron-Catalyzed Aziridination of Styrene with (5-Methyl-2-

pyridinesulfonyl)iminophenyliodinane: 
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N
S

O O

N

 

 

Styrene (432 mg, 0.55 mL, 5 mmol) was added to a solution of Fe(OTf) 2 (4.4 mg, 0.0125 

mmol) and MS 4Å (20 mg) in MeCN (1 mL). After the addition of (5-methyl-2-

pyridinesulfonyl)iminophenyliodinane (93.5 mg, 0.25 mmol), the reaction mixture was stirred 

for 0.5 h. The mixture was evaporated (rotary evaporator). The remaining mixture was 

separated by column chromatography (silica gel; eluent = ethyl acetate : pentane = 2 : 3) 

affording N-5-methyl-2-pyridinesulfonyl-phenylaziridine 51d in 87% yield (60 mg). 

 

Analytical data for 51d: 1H NMR (400 MHz, CDCl3): δ = 2.42 (s, 3H), 2.49 (d, J = 4.7 Hz, 

1H), 3.17 (d, J = 7.2 Hz, 1H), 3.24 (dd, J = 7.2, 4.7 Hz, 1H), 7.21-7.30 (m, 5H), 7.73-7.66 (m, 

1H), 7.99-8.01 (m, 1H), 8.53-8.54 (m, 1H). 

 

Analytical data for N-5-methyl-2-pyridinesulfonyl-phenylaziridine (51d) were consistent with 

the literature.106 

 

7.6.2.9 Iron-Catalyzed Aziridination of Styrene with Iodobenzene diacetate and 

TsNH2: 

 

NTs

 

 

Iodobenzene diacetate (161 mg, 0.5 mmol) was added to a solution of TsNH2 (43 mg, 0.25 

mmol), MgO (50 mg, 1.25 mmol) and MS 4Å (400 mg) in MeCN (2 mL) and styrene (216 

mg, 0.225 mL, 2.5 mmol). After the addition of Fe(OTf)2 (17.6 mg, 0.1mmol) , the reaction 

mixture was stirred for 24 h. After filtration, the mixture was evaporated (rotary evaporator). 

The remaining mixture was separated by column chromatography (silica gel; eluent = ethyl 

acetate : pentane = 1 : 5) affording N-tosylphenyaziridine 51a in 60% yield (41 mg). 

 

7.6.2.10 Iron-Catalyzed Aziridination of Styrene with Iodosylbenzene and NsNH2: 
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NNs

 

 

Iodosylbenzene (110 mg, 0.5 mmol) was added to the solution of NsNH2 (50.5 mg, 0.25 

mmol), MgO (50 mg, 1.25 mmol) and MS 4Å (300 mg) in MeCN (2 mL) and styrene (216 

mg, 275 µL, 2.5 mmol). After the addition of Fe(OTf)2 (17.6 mg, 0.05mmol) , the reaction 

mixture was stirred for 24 h. After filtration, the mixture was evaporated (rotary evaporator). 

The remaining mixture was separated by column chromatography (silica gel; eluent = ethyl 

acetate : pentane = 1 : 4) affording N-nosylphenyaziridine 51b in 60% yield (41 mg). 
 

7.6.2.11 Iron-Catalyzed Aziridination of Styrene with Iodobenzene diacetate and NsNH2: 

 

NNs

 

 

Iodobenzene diacetate (161 mg, 0.5 mmol) was added to the solution of NsNH2 (50.5 mg, 

0.25 mmol), MgO (50 mg, 1.25 mmol) and MS 4Å (300 mg) in MeCN (2 mL) and styrene 

(216 mg, 225 µL, 5 mmol). After the addition of Fe(OTf)2 (17.6 mg, 0.05 mmol) , the reaction 

mixture was stirred for 24 h. After filtration, the mixture was evaporated (rotary evaporator). 

The remaining mixture was separated by column chromatography (silica gel; eluent = ethyl 

acetate : pentane = 1 : 4) affording N-nosylphenyaziridine 51b in 80% yield (61 mg). 

 

7.6.2.12 Iron-Catalyzed Aziridination of Styrene with Iodobenzene diacetate and 5-

methyl-2-pyridinesulfonimide: 

 

N
S

O O

N

 

 

Iodobenzene diacetate (161 mg, 0.5 mmol) was added to a solution of 5-methyl-2-

pyridinesulfonimide (43 mg, 0.25 mmol), MgO (60 mg, 1.5 mmol) and MS 4Å (400 mg) in 

MeCN (2 mL) and styrene (216 mg, 225 µL, 5 mmol). After the addition of Fe(OTf)2 (8.8 mg, 

0.025 mmol) , the reaction mixture was stirred for 24 h. After filtration, the mixture was 
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evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = ethyl acetate : pentane = 2 : 3) affording N-5-methyl-2-

pyridinesulfonyl-phenylaziridine (51d) in 76% yield (52 mg). 

 

7.6.2.13 Iron-Catalyzed Aziridination of Styrene with Iodobenzene diacetate and 

sulfonimide 52e: 

N
S

O O

 

 

Iodobenzene diacetate (161 mg, 0.5 mmol) was added to a solution of t-butylsulfonamide 52e 

(81 mg, 0.25 mmol), MgO (60 mg, 1.25 mmol) and MS 4Å (400 mg) in MeCN (2 mL) and 

styrene (520 mg, 550 µL, 5 mmol). After the addition of Fe(OTf)2 (17.6 mg, 0.05 mmol) , the 

reaction mixture was stirred for 24 h. After filtration, the mixture was evaporated (rotary 

evaporator). The remaining mixture was separated by column chromatography (silica gel; 

eluent = ethyl acetate : pentane = 5 : 1) affording phenylaziridine 51h in 50% yield (30 mg) as 

oil. 
 

Analytical data for 51h: Oil, 1H NMR (400 MHz, CDCl3): δ = 1.41 (s, 9H), 2.90 (d, J = 4.5 

Hz, 1H), 2.18 (d, J = 4.5 Hz, 1H), 3.58 (dd, J = 7.2, 4.5 Hz, 1H), 7.18-7.38 (m, 5H). 13C NMR 

(75 MHz): δ = 135.4, 128.7, 128.4, 126.4, 59.5, 41.6, 34.8, 24.2. 

 

Analytical data of phenylaziridine 51h were consistent with the literature.184 

 

7.6.2.14 Iron-Catalyzed Aziridination of Styrene with Iodobenzene diacetate and 

sulfonimide 52f: 

 

N
S

O NTs

 

 

                                                 
184 A. V. Gontcharrov, H. Liu, K. B. Sharpless, Org. Lett. 1999, 1, 783. 
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Iodobenzene diacetate (161 mg, 0.5 mmol) was added to a solution of sulfonimide 52f (81 mg, 

0.25 mmol), MgO (60 mg, 1.25 mmol) and MS 4Å (400 mg) in MeCN (2 mL) and styrene 

(216 mg, 225 µL, 5 mmol). After the addition of Fe(OTf)2 (17.6 mg, 0.05 mmol) , the reaction 

mixture was stirred for 24 h. After filtration, the mixture was evaporated (rotary evaporator). 

The remaining mixture was separated by column chromatography (silica gel; eluent = ethyl 

acetate : pentane = 3 : 7) affording phenylaziridine 51i in 58% yield (62 mg) as mixture of 

diastereomers (7 : 3). 
 

Analytical data for 51i: 1H NMR (400 MHz, CDCl3): δ = 2.38 (s, 3H), 2.39 (s, 3H), 2.44 (s, 

6H), 2.58 (d, J = 4.8 Hz, 0.7H), 3.12 (d, J = 7.6 Hz, 0.3H), 3.24 (dd, J = 7.6 Hz, 0.3H), 3.84 

(dd, J = 7.6, 4.8 Hz, 0.7H), 3.98 (dd, J = 7.6, 4.8 Hz, 1H), 7.20 (m, 18H), 7.82 (m, 8H). 

 

Analytical data of phenylaziridine 51i were consistent with the literature.88 
 

7.6.2.15 Iron-Catalyzed Asymmetric Aziridination of Styrene with PhINTs: 

 

Styrene (528 mg, 550 µL, 5 mmol) was added to the solution of Fe(OTf) 2•2MeCN (21 mg, 

0.01 mmol), (S,S)-2,6-bis(4-isopropyl-2-oxazolin-2-yl)pyridine (22.5 mg, 0.075 mmol) and 

MS 4Å (10 mg) in MeCN (1 mL). After the addition of PhINTs (93.3 mg, 0.25 mmol), the 

reaction mixture was stirred for 1 h. The mixture was evaporated (rotary evaporator). The 

remaining mixture was separated by column chromatography (silica gel; eluent = ethyl 

acetate : pentane = 1 : 4) affording N-tosylphenylaziridine (51a) in 72% yield (49 mg). 

 

HPLC: (Chiralcel AS, heptane/i-propanol = 75:25, 0.55 mL/min, 254 nm): tR = 18 [minor] 

and 20 [major] min (40% ee). 

 

Analytical data of N-tosyl-phenyaziridine (51a) were consistent with the literature.84a 

 

7.6.2.16 Iron-Catalyzed Asymmetric Aziridination of Styrene with PhINNs: 

 

Styrene (498 mg, 0.5 mL, 5 mmol) was added to the solution of Fe(OTf)2•2MeCN (21 mg, 

0.01 mmol), (S,S)-2,6-bis(4-isopropyl-2-oxazolin-2-yl)pyridine (22.5 mg, 0.075 mmol) and 

MS 4Å (10 mg) in MeCN (4 mL). After the addition of PhINNs (101 mg, 0.25 mmol), the 

reaction mixture was stirred for 1 h. The mixture was evaporated (rotary evaporator). The 
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remaining mixture was separated by column chromatography (silica gel; diethyl ethyl 

acetate :  pentane = 1 : 4 as eluent) affording 51b in 74% yield (123 mg). 

 

HPLC: (Chiralcel OJ, heptane/i-propanol = 1 : 1, 0.7 mL/min, 254 nm): tR =53.5 [major] and 

78.2 [minor] min (2% ee). 

 

Analytical data of N-nosyl-phenyaziridine were consistent with the literature.84a 

 

7.6.2.17 Iron-Catalyzed Asymmetric Aziridination of Styrene with PhINSes: 

 

Stryrene (997 mg, 1.1 mL, 0.5 mmol) was added to a solution of Fe(OTf)•2MeCN (21 mg, 

0.01 mmol), (S,S)-2,6-bis(4-isopropyl-2-oxazolin-2-yl)pyridine (22.5 mg, 0.075 mmol) and 

MS 4Å (20 mg) in MeCN (4 mL). After the addition of PhINSes (95.8 mg, 0.25 mmol), the 

reaction mixture was stirred for 1 h. The mixture was evaporated (rotary evaporator). The 

remaining mixture was separated by column chromatography (silica gel; eluent = ethyl 

acetate : pentane = 1 : 4) affording N-trimethylethanesulfonyl-phenyaziridine (51c) in 73% 

yield (52 mg). 

 

HPLC: (Chiralcel OJ, heptane/i-propanol = 97:3, 1.0 mL/min, 254 nm): tR = 18 [major] and 

24 [minor] min (20% ee).213 

 

Analytical data for 51c were consistent with the literature.84a 

 

7.6.2.18 Iron-Catalyzed Epoxidation of Styrene with Iodosylbenzene: 

 

Iodosylbenzene (101 mg, 0.5 mmol) was added to a solution of MS 4Å (400 mg) and stryrene 

(498 mg, 0.55 mL, 5 mmol) in MeCN (2 mL). After the addition of Fe(OTf)2 (8.8 mg, 0.025 

mmol) , the reaction mixture was stirred for 24 h. After filtration, the mixture was evaporated 

(rotary evaporator). The remaining mixture was filtlated through silica gel affording crude 

phenyloxirane 97 (mixture with styrene). 

 

Analytical data for 97: 1H NMR (400 MHz, CDCl3): δ = 2.80 (dd, J = 5.4, 2.4 Hz, 1H), 3.06 

(d, J = 5.4, 4.1 Hz, 1H), 3.84 (dd, J = 4.1, 2.4 Hz, 1H), 7.25-7.27.37 (m, 5H). 13C NMR (75 

MHz): δ = 137.4, 128.5, 128.2, 125.5, 52.5, 51.3. 
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7.6.2.19 Iron-Catalyzed Imination of Sulfide with PhINTs: 

 

Thioanisole 92 (38.5 mg, 58.7 µL, 0.5 mmol) was added to the solution of Fe(OTf)•2MeCN 

(2.6 mg, 0.00625 mmol) and MS 4Å (20 mg) in MeCN (4 mL). After the addition of PhINTs 

(93.3 mg, 0.25 mmol), the reaction mixture was stirred for 1 h. The mixture was evaporated 

(rotary evaporator). The remaining mixture was separated by column chromatography (silica 

gel; eluent = ethyl acetate : pentane = 3 : 1 then ethyl acetate) affording N-tosyl-methyl-

phenyl-sulfilimine 93 in 98% yield (67 mg). 

 

Analytical data for 93: 1H NMR (400 MHz, CDCl3): δ = 2.33 (s, 3H), 2.81 (s, 3H), 7.14-7.24 

(m, 2H), 7.45-7.54 (m, 3H), 7.64-7.69 (m, 2H), 7.65-7.53 (m, 2H). 13C NMR (75 MHz): δ = 

141.7, 132.4, 123.0, 129.2, 126.2, 125.8, 39.2, 21.5. MS (EI, 70 eV): m/z (%) = 293 (M+). 

 

Analytical data of N-tosyl-methyl-phenyl-sulfilimine 93 were consistent with the 

literature.135d 

 

7.6.2.20 Iron-Catalyzed Asymmetric Imination of Sulfide with PhINTs: 

 

Thioanisole 92 (38.5 mg, 58.7 µL, 0.5 mmol) was added to the solution of Fe(OTf)•2MeCN 

(2.6 mg, 0.00625 mmol), chiral ligand (5.2 mg, 0.0125 mmol) and MS 4Å (20 mg) in MeCN 

(4 mL). After the addition of PhINTs (93.3 mg, 0.25 mmol), the reaction mixture was stirred 

for 1 h. The mixture was evaporated (rotary evaporator). The remaining mixture was 

separated by column chromatography (silica gel; eluent = ethyl acetate : pentane = 3 : 1 then 

ethyl acetate) affording N-tosyl-methyl-phenyl-sulfilimine 93 in 89% yield (65 mg). 

 

HPLC: (Chiralcel OJ, heptane/i-propanol = 80:20, 1.0 mL/min, 254 nm): tR = 37 and 56 min 

(0% ee).133d 

 

7.6.2.21 Iron-Catalyzed Imination of Sulfoxide with PhINNs: 

 

Methylphenylsulfoxide 94 (38.5 mg, 44.8 µL, 0.5 mmol) was added to the solution of 

Fe(OTf)•2MeCN (2.6 mg, 0.00625 mmol) and MS 4Å (20 mg) in MeCN (4 mL). After the 

addition of PhINNs (101 mg, 0.25 mmol), the reaction mixture was stirred for 1 h. The 
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mixture was evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = ethyl acetate : pentane = 1 : 1 then ethyl acetate) 

affording N-tosyl-methyl phenyl sulfoximine 95 in 98% yield (83 mg). 

 

Analytical data for 95: 1H NMR (400 MHz, CDCl3): δ = 3.45 (s, 3H), 7.60-7.66 (m, 2H), 

7.70-7.76 (m, 1H), 7.97-7.8.03 (m, 2H), 8.11-8.16 (m, 2H), 8.26-8.32 (m, 2H). 

 

Analytical data of N-tosyl-methylphenylsulfoximine 95 were consistent with the literature.137 

 

7.6.3 Iron-Catalyzed αααα-Amination of Silyl Enol Ethers: 

 

7.6.3.1 Materials 

 

Most starting materials were purchased from commercial suppliers and used without further 

purification. Enol silanes were prepared by general procedures (Chapter 7.5). Dry acetonitrile 

was purchased from Fluka or Acros. 

 

7.6.3.2 Iron-Catalyzed αααα-Amination of Trimethyl(1-phenylvinyloxy)silane: 

 

OSiMe3 O

NHTs

 

 

Silyl enol ether 55a (96 mg, 101 mL, 0.5 mmol) was added to the solution of 

Fe(OTf)•2MeCN (2,6 mg, 0.006 mmol) and MS 4Å (10 mg) in MeCN (1 mL). After the 

addition of PhINTs (93.3 mg, 0.25 mmol) at room temperature, the reaction mixture was 

stirred for 1 h. The mixture was evaporated (rotary evaporator). The remaining mixture was 

separated by column chromatography (silica gel; eluent = diethyl ether : pentane = 1 : 5) 

affording N-tosyl-α-amino ketone 56a in 72% yield (52 mg). 

 

Analytical data for 56a: 1H NMR (400 MHz, CDCl3): δ = 2.38 (s, 3H), 4.30 (d, J = 4.4, 2H), 

5.62 (brd, 1H), 7.25-7.32 (m, 2H), 7.42-7.48 (m, 2H), 7.56-7.62 (m, 1H), 7.74-7.85 (m, 4H). 

MS (EI, 70 eV): m/z (%) = 289 (M+). 
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Analytical data of α-amino ketone 56a were consistent with that reported in the literature.90 

 

7.6.3.3 Iron-Catalyzed αααα-Amination of (Z)-Trimethyl(1-phenylprop-1-enyloxy)silane: 

 

OSiMe3 O
NHTs

 

 

Silyl enol ether 55b (51.5 mg, 56.7 µL, 0.25 mmol) was added to the solution of 

Fe(OTf)2•2MeCN (2,6 mg, 0.006 mmol) and MS 4Å (10 mg) in MeCN (1 mL). After the 

addition of PhINTs (93.3 mg, 0.25 mmol) at room temperature, the reaction mixture was 

stirred for 1 h. The mixture was evaporated (rotary evaporator). The remaining mixture was 

separated by column chromatography (silica gel; eluent = ethyl acetate : pentane = 1 : 5) 

affording N-tosyl-α-amino ketone 56b in 65% yield (48 mg). 

 

Analytical data for 56b: 1H NMR (400 MHz, CDCl3): δ = 1.40 (d, J = 7.2 Hz, 3H), 2.32 (s, 

3H), 4.93 (dt, J = 8.2, 7.2 Hz, 1H), 5.80 (d, J = 8.2, 1H), 7.15-7.19 (m, 1H), 7.40-7.48 (m, 1H), 

7.57-7.62 (m, 1H), 7.66-7.71 (m, 1H), 7.74-7.79 (m, 1H). 13C NMR (75 MHz): δ = 198.1, 

143.5, 137.0, 134.1, 133.4, 129.7, 128.9, 128.5, 127.1, 53.3, 21.4, 21.1. 

 

Analytical data of N-tosyl-α-amino ketone 56b was refered to literature.90 

 

7.6.3.4 Iron-Catalyzed αααα-Amination of (3,4-Dihydronaphthalen-1-yloxy)trimethylsilane 

50c: 

 

OSiMe3 O

NHTs

 

 

Silyl enol ether 55c (60.9 mg, 0.275 mmol) was added to the solution of Fe(OTf) 2 (4.4 mg, 

0.0125 mmol) and MS 4Å (20 mg) in MeCN (1 mL). After the addition of PhINTs (93.3 mg, 

0.25 mmol) at room temperature, the reaction mixture was stirred for 1 h. The mixture was 

evaporated (rotary evaporator). The remaining mixture was separated by column 
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chromatography (silica gel; eluent = ethyl acetate : pentane = 1 : 5) affording N-tosyl-α-

amino ketone 56c in 65% yield (48 mg). 

 

Analytical data for 56c: 1H NMR (400 MHz, CDCl3): δ = 2.33 (s, 3H), 2.67 (dd, J = 6.3, 6.0 

Hz, 2H), 2.97 (d, J = 6.0 Hz, 2H), 2.15 (t, J = 6.3 Hz, 2H), 5.97 (s, 1H), 7.15-7.18 (m, 1H) 

7.20-7.27 (m, 3H), 7.40-7.46 (m, 1H), 7.71-7.76 (m, 2H), 7.85-7.88 (m, 1H). 

 

Analytical data for N-tosyl-α-amino ketone 56c were consistent with the literature.110 

 

7.6.3.5 Iron-Catalyzed αααα-Amination of Cyclohexenyloxytrimethylsilane: 

 

OSiMe3 O

NHTs

 

 

Silyl enol ether 55d (63.9 mg, 0.375 mmol) was added to a solution of Fe(OTf)2 (4.4 mg, 

0.025 mmol) and MS 4Å (10 mg) in MeCN (1 mL) at 0 °C. After the addition of PhINTs 

(93.3 mg, 0.25 mmol), the reaction mixture was allowed to warm to room temperature and 

stirred for 1 h. The mixture was evaporated (rotary evaporator). The remaining mixture was 

separated by column chromatography (silica gel; eluent = ethyl acetate : pentane = 1 : 5) 

affording N-tosyl-α-amino ketone 56d in 63% yield (48 mg). 

 

Analytical data for 56d: 1H NMR (400 MHz): δ = 1.30-2.70 (m, 8H), 2.42 (s, 3H), 3.65-3.73 

(m, 1H), 5.82 (d, J = 4.4 Hz, 1H), 7.10- 7.90(m, 4H). 

 

Analytical data of N-tosyl-α-amino ketone 56d were consistent with that reported in the 

literature.110 

 

7.6.3.6 Iron-Catalyzed αααα-Amination of Trimethyl(non-1-en-2-yloxy)silane: 

 

OSiMe3 O
NHTs  
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Silyl enol ether 55e (80.4 mg, 0.375 mmol) was added to a solution of Fe(OTf)2 (4.4 mg, 

0.0125 mmol) and MS 4Å (10 mg) in MeCN (1 mL). After the addition of PhINTs (93.3 mg, 

0.25 mmol) at room temperature, the reaction mixture was stirred for 1 h. The mixture was 

evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = ethyl acetate : pentane = 1 : 5) affording α-amino ketone 

56e in 46% yield (36 mg). 

 

Analytical data for 56e: m.p 104-107 ºC, 1H NMR (400 MHz): δ = 2.40 (t, J = 6.7 Hz 3H), 

1.09-1.25 (m, 8H), 1.43 (quint, J = 7.4 Hz, 2H), 3.63 (t, J = 7.4 Hz, 2H), 2.35 (s, 3H), 3.75 (d, 

J = 4.7 Hz, 2H), 5.25 (t, J = 4.7 Hz, 1H), 7.20-7.26 (d, 2H), 7.62-7.69 (m, 2H). 13C NMR (75 

MHz): δ = 203.8, 143.8, 136.0, 129.8, 127.2, 51.3, 40.1, 31.5, 28.9, 23.6, 22.6, 21.5, 14.0. MS 

(EI, 70 eV): m/z (%) = 309 (M2+); IR (KBr): υ = 3273, 2931, 2856, 1722, 1321, 1160, 691 

cm1; anal. calcd. for C16H25NO3S (311.44): C 61.70, H 8.09, N 4.50; found: C 61.94, H 8.19, 

N 4.44. 

 

7.6.3.7 Iron-Catalyzed αααα-Amination of (Z)-(1-Methoxy-2-phenylvinyloxy)trimethylsilane: 

 

OMe

OSiMe3

OMe

O

NHTs  

 

Silyl enol ether 55f (61 mg, 0.275 mmol) was added to the solution of Fe(OTf)2 (4.4 mg, 

0.0125 mmol) and MS 4Å (20 mg) in MeCN (1 mL). After the addition of PhINTs (93.3 mg, 

0.25 mmol) at room temperature, the reaction mixture was stirred for 1 h. The mixture was 

evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = ethyl acetate : pentane = 1 : 4) affording N-tosyl-α-

amino acid methyl ester 56f in 50% yield (40 mg). 

 

Analytical data for 56f: 1H NMR (400 MHz): δ = 2.35 (s, 3H), 3.54 (s, 3H), 5.03 (d, J = 7.8 

Hz, 1H), 5.64 (d, J = 7.8 Hz, 1H), 7.22 (m, 7H), 7.59 (d, J = 6.7Hz, 2H). 

 



 Experimental Section 153 

Analytical data of N-tosyl-α-amino acid methyl ester 56f were consistent with that reported in 

the literature.185 

 

7.6.3.8 Iron-Catalyzed Aziridination of (E/Z)-(1-ethoxy-2-

(trimethylsilyl)vinyloxy)trimethylsilane: 

 

Me3Si
OSiMe3

OEt

O

OEt

NsHN

O

OEt

NsHN

SiMe3

 

 

Silyl enol ether 55h (61 mg, 0.275 mmol) was added to a solution of Fe(OTf)2 (4.4 mg, 

0.0125 mmol) and MS 4Å (20 mg) in MeCN (1 mL). After the addition of PhINNs (101 mg, 

0.25 mmol) at room temperature, the reaction mixture was stirred for 1 h. The mixture was 

evaporated (rotary evaporator). The remaining mixture was separated by column 

chromatography (silica gel; eluent = chloroform : MeOH = 50 : 1) affording N-nosyl-α-amino 

acid ethyl ester 56h in 17% yield (40 mg) and nosylamide was recovered (83%). 

 

Analytical data for 56h: 1H NMR (400 MHz): δ = 1.14 (t, J= 7.1 Hz, 3H), 3.79 (d, J= 7.1 Hz, 

2H), 5.26 (t, J = 4.4 Hz, 1H) 7.78 (d, J = 8.8 Hz, 2H), 8.14 (d, J = 8.8 Hz, 2H). 

 

Analytical data of N-nosyl-α-amino acid ethyl ester 56h were consistent with that reported in 

the literature.186 

 

                                                 
185a) K. Kobayashi, T. Okamoto, T. Oida, S. Tanimoto, Chem. Lett. 1986, 12, 2031. b) D. J. Wallace, J. M. 
Goodman, D. J. Kennedy, A. J. Davies, C. J. Cowden, M. S. Ashwood, I. F. Cottrell, U.-H. Dolling, P. J. Reider, 
Org. Lett. 2001, 3, 671. 
186 T. Hoffmann, R. Waibel, P. Gmeiner, J. Org. Chem. 2003. 68, 62. 
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8 Additional Data 

 

8.1 X-ray Structure of Metal Complexes 

 

8.1.1 Definition
 187 

 
Ueq = 1/3ΣiΣjUijai*aj*ai aj 

The anisotropic displacement factor in the structure factor expression is: 

t = exp[-2π2(ΣiΣjUijhihjai*aj* )] 

 

8.1.2 X-ray Structure of N,N- Dipyridyl-4-tert-butylpicolylamine 87: 

 

 
 
Experimental Details 
 

Crystal data: 

Chemical formula  : C20H22N4 
                                                 
187 Larson, A.C. In Crystallographic Computing, Ahmed, F. R.; Hall, S. R.; Huber, C. P., Hrsg.; 
Munksgaard, Copenhagen 1970, S. 291-294. (b) Zachariasen, W. H. Acta Cryst. 1967, 23, 558. (c) 
Flack, H. D. Acta Cryst. 1983, A39, 876. (d) XTAL3.4 User’s Manual, Hall, S. R.; King, G. S. D.; 
Steward, J. M., Hrsg.; Lamb, Perth, 1995, Hall, S. R.; du Boulay, D. J. Olthof-Hazekamp, R., Hrsg.; 
XTAL3.7 System, University of Wesern Australia, Perth 2000. 
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formula weight   : 318.42 

Crystal system   : orthorhombic 

Space group (No.)  :  P212121 (19) 

Z     : 4 

a (Å)    : 8.2189(5) 

b (Å)    : 12.566(5) 

c (Å)    : 16.830(1) 

α  (°)    : 90.0 

β  (°)    : 90.0 

γ (°)    : 90.0 

cell volume   : 1738.2(7)Å3 

Density calc.   : 1.217g/cm3 

Radiation    : CuKα (1.54179Å) 

Range for lattice parameters : 15.23Ε<Θ <18.67Ε 

Absorption coefficient  : 0.576mm-1 

Temperature   : 298K 

Crystal source   : recrystallized from CH2Cl2 and Et2O 

Crystal colour   : colourless 

Crystal shape   : irregular 

Crystal size   : ca. 0.3x0.3.x0.3mm 

Data Collection 

Diffractometer type  : Enraf-Nonius CAD4 

collection method  : ω/2ϑ scans 

Absorption correction  : none 

No. of reflections measured : 3638 

No. of independent reflections: 3125 

No. of observed reflections : 2964 

 Θ max  (Ε)    : 67.87 

hmin 6 hmax   :   -   9    6   9 

kmin 6 kmax   :   - 13    6  15 

lmin 6  lmax    :   - 20    6  20
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Criterion for observed  : I > 2σ (I ) 

Rint     : 0.048(46) 

Standard reflections  : 2    1    5, -2   1   5, -2    -1    5 

Variation    : 2661(96) 2970(107) 2826(124) 

Refinement:  

On     : F 

Treatment of hydrogens : 21 located. 1 calculated. 15 refined  
      isotropically. 
 

R     : 0.051 

Rw     : 0.065 

Weighting scheme  : w=1/σ2(F) 

No. of parameters refined : 286 

No. of reflections in refmnt. : 2953 

Residual electron density : -0.23/0.28e/Å3  

r*[1]    : not refined 

XABS[2]a)    : -0.060(1.522) not significant! 

Goodness of fit   : 2.326 

Solution    : XTAL3.7[3] 

Remarks                                            a)From separate calculation 
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Atomic Positional and Isotropic Displacement Parameters                 
 -----------------------------------------------------                           
 Atom    x/a         y/b         z/c        Ueq/Å

2                           
 -----------------------------------------------------                           
 N1    0.3691(2)   0.4027(2)   0.5025(1)  * 0.048(1)                             
 N2    0.4240(3)   0.5030(2)   0.3909(1)  * 0.055(1)                             
 N3    0.7078(2)   0.5301(2)   0.6095(1)  * 0.054(1)                             
 N4    0.3225(3)   0.2687(2)   0.5945(1)  * 0.051(1)                             
 C1    0.3253(3)   0.4332(2)   0.4262(1)  * 0.044(1)                             
 C2    0.1884(3)   0.3909(2)   0.3870(2)  * 0.048(1)                             
 C3    0.1586(3)   0.4204(2)   0.3105(2)  * 0.056(2)                             
 C4    0.2610(4)   0.4934(3)   0.2727(2)  * 0.064(2)                             
 C5    0.3914(4)   0.5311(3)   0.3153(2)  * 0.063(2)                             
 C6    0.2620(3)   0.3501(2)   0.5545(1)  * 0.043(1)                             
 C7    0.1026(3)   0.3855(2)   0.5657(2)  * 0.050(1)                             
 C8    0.0039(3)   0.3344(2)   0.6176(2)  * 0.055(2)                             
 C9    0.0640(4)   0.2480(3)   0.6595(2)  * 0.058(2)                             
 C10   0.2234(4)   0.2180(3)   0.6459(2)  * 0.060(2)                             
 C11   0.5353(3)   0.4194(2)   0.5298(2)  * 0.048(1)                             
 C12   0.5612(3)   0.5234(2)   0.5747(1)  * 0.042(1)                             
 C13   0.4463(3)   0.6032(2)   0.5789(1)  * 0.042(1)                             
 C14   0.4797(3)   0.6967(2)   0.6182(1)  * 0.043(1)                             
 C15   0.6333(3)   0.7047(3)   0.6529(2)  * 0.054(2)                             
 C17   0.3613(3)   0.7916(2)   0.6215(2)  * 0.054(1)                             
 C16   0.7396(3)   0.6212(3)   0.6470(2)  * 0.059(2)                             
 C18   0.1912(4)   0.7588(3)   0.5947(3)  * 0.087(3)                             
 C19   0.4252(6)   0.8784(3)   0.5653(2)  * 0.079(2)                             
 C20   0.3512(5)   0.8384(3)   0.7050(2)  * 0.069(2)                             
 H4    0.239(4)    0.524(3)    0.214(2)     0.075(9)                             
 H11a  0.600(4)    0.417(3)    0.485(2)     0.066(9)                             
 H11b  0.578(3)    0.364(2)    0.567(2)     0.051(7)                             
 H13   0.344(3)    0.591(2)    0.558(1)     0.040(6)                             
 H16   0.852(4)    0.622(3)    0.669(2)     0.08(1)                              
 H20c  0.265(4)    0.895(3)    0.717(2)     0.062(8)                             
 H3    0.065(3)    0.381(2)    0.280(2)     0.059(8)                             
 H7    0.070(3)    0.434(2)    0.538(2)     0.047(8)                             
 H2    0.127(4)    0.354(3)    0.413(2)     0.062(9)                             
 H15   0.667(4)    0.752(3)    0.686(2)     0.09(1)                              
 H20b  0.459(5)    0.868(3)    0.734(2)     0.10(1)                              
 H10   0.261(5)    0.146(3)    0.670(2)     0.10(1)                              
 H19a  0.333(7)    0.913(5)    0.539(3)     0.17(2)                              
 H5    0.474(4)    0.582(3)    0.287(2)     0.09(1)                              
 H19b  0.527(5)    0.891(3)    0.585(2)     0.09(1)                              
 H8   -0.110(4)    0.372(3)    0.626(2)     0.074(9)                             
 H9    0.0000(-)   0.2097(-)   0.7106(-)    0.064(-)                             
 H18a  0.1285(-)   0.6918(-)   0.6333(-)    0.120(-)                             
 H18b  0.1214(-)   0.8203(-)   0.5954(-)    0.121(-)                             
 H18c  0.1968(-)   0.7339(-)   0.5408(-)    0.121(-)                             
 H19c  0.4066(-)   0.8440(-)   0.5133(-)    0.108(-)                             
 H20a  0.3194(-)   0.7732(-)   0.7313(-)    0.103(-)                             
 -----------------------------------------------------                           
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                          Atomic Displacement Parameters                                         
 --------------------------------------------------------------------
-------     
 Atom    U11          U22          U33         U12          U13         
U23         
 --------------------------------------------------------------------
-------     
 N1    0.045(1)    0.045(1)    0.054(1)   -0.0013(9)  -0.0058(9)  -
0.001(1)      
 N2    0.058(1)    0.049(1)    0.058(1)   -0.007(1)   -0.001(1)    
0.002(1)      
 N3    0.042(1)    0.066(2)    0.055(1)    0.005(1)   -0.009(1)   -
0.004(1)      
 N4    0.050(1)    0.052(1)    0.051(1)    0.006(1)   -0.0063(9)   
0.004(1)      
 C1    0.049(1)    0.036(1)    0.048(1)   -0.000(1)   -0.002(1)   -
0.006(1)      
 C2    0.048(1)    0.040(1)    0.056(1)   -0.005(1)   -0.000(1)   -
0.006(1)      
 C3    0.057(2)    0.055(2)    0.056(1)    0.000(1)   -0.007(1)   -
0.011(1)      
 C4    0.074(2)    0.066(2)    0.051(1)   -0.004(2)   -0.003(1)    
0.001(1)      
 C5    0.070(2)    0.060(2)    0.059(2)   -0.009(2)    0.003(2)    
0.005(1)      
 C6    0.050(1)    0.035(1)    0.042(1)   -0.001(1)   -0.007(1)   -
0.005(1)      
 C7    0.053(1)    0.044(1)    0.055(1)    0.011(1)   -0.006(1)   -
0.001(1)      
 C8    0.049(1)    0.058(2)    0.058(1)    0.003(1)   -0.003(1)   -
0.003(1)      
 C9    0.060(2)    0.067(2)    0.048(1)   -0.003(1)   -0.001(1)   -
0.003(1)      
 C10   0.068(2)    0.060(2)    0.054(1)    0.006(1)   -0.008(1)    
0.006(1)      
 C11   0.042(1)    0.043(1)    0.061(1)    0.005(1)   -0.005(1)   -
0.006(1)      
 C12   0.040(1)    0.045(1)    0.041(1)   -0.004(1)   -0.0020(9)   
0.004(1)      
 C13   0.039(1)    0.045(1)    0.043(1)   -0.001(1)   -0.0041(9)   
0.001(1)      
 C14   0.045(1)    0.047(1)    0.038(1)   -0.002(1)   -0.001(1)    
0.001(1)      
 C15   0.051(1)    0.058(2)    0.053(1)   -0.006(1)   -0.007(1)   -
0.011(1)      
 C16   0.045(1)    0.071(2)    0.061(1)   -0.000(1)   -0.014(1)   -
0.016(2)      
 C17   0.057(1)    0.050(2)    0.056(1)    0.003(1)   -0.002(1)   -
0.005(1)      
 C18   0.057(2)    0.069(2)    0.136(3)    0.016(2)   -0.020(2)   -
0.027(2)      
 C19   0.104(3)    0.060(2)    0.072(2)    0.017(2)    0.002(2)    
0.009(2)      
 C20   0.081(2)    0.056(2)    0.070(2)    0.012(2)    0.008(2)   -
0.012(2)      
 H4    0.075(9)                                                                  
 H11a  0.066(9)                                                                  
 H11b  0.051(7)                                                                  
 H13   0.040(6)                                                                  
 H16   0.08(1)                                                                   
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 H20c  0.062(8)                                                                  
 H3    0.059(8)                                                                  
 H7    0.047(8)                                                                  
 H2    0.062(9)                                                                  
 H15   0.09(1)                                                                   
 H20b  0.10(1)                                                                   
 H10   0.10(1)                                                                   
 H19a  0.17(2)                                                                   
 H5    0.09(1)                                                                   
 H19b  0.09(1)                                                                   
 H8    0.074(9)                                                                  
 H9    0.064(-)                                                                  
 H18a  0.120(-)                                                                  
 H18b  0.121(-)                                                                  
 H18c  0.121(-)                                                                  
 H19c  0.108(-)                                                                  
 H20a  0.103(-)                                                                  
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Bond Distances     (Angstroms)                                                  
                                                                                 
 N1-C1            1.388(3)                                                       
 N1-C6            1.406(3)                                                       
 N1-C11           1.457(3)                                                       
 N2-C1            1.334(3)                                                       
 N2-C5            1.347(4)                                                       
 C12-N3           1.342(3)                                                       
 C12-C13          1.379(3)                                                       
 C12-C11          1.526(4)                                                       
 N4-C6            1.321(3)                                                       
 N4-C10           1.349(4)                                                       
 N3-C16           1.333(4)                                                       
 C6-C7            1.396(4)                                                       
 C13-H13           .93(2)                                                        
 C13-C14          1.376(4)                                                       
 C1-C2            1.409(4)                                                       
 C14-C15          1.395(4)                                                       
 C14-C17          1.540(4)                                                       
 C11-H11a          .92(3)                                                        
 C11-H11b         1.00(3)                                                        
 C7-H7             .81(3)                                                        
 C7-C8            1.354(4)                                                       
 C2-H2             .81(3)                                                        
 C2-C3            1.361(4)                                                       
 C3-H3            1.05(3)                                                        
 C3-C4            1.398(4)                                                       
 C15-H15           .86(4)                                                        
 C15-C16          1.368(4)                                                       
 C8-H8            1.06(3)                                                        
 C8-C9            1.385(4)                                                       
 C9-H9            1.117(3)                                                       
 C9-C10           1.383(4)                                                       
 C10-H10          1.04(4)                                                        
 C5-H5            1.05(4)                                                        
 C5-C4            1.373(5)                                                       
 C17-C20          1.525(4)                                                       
 C17-C18          1.526(4)                                                       
 C17-C19          1.537(5)                                                       
 C16-H16          1.00(3)                                                        
 C20-H20a          .966(3)                                                       
 C20-H20c         1.02(3)                                                        
 C20-H20b         1.07(4)                                                        
 C4-H4            1.08(3)                                                        
 C18-H18c          .960(4)                                                       
 C18-H18b          .963(4)                                                       
 C18-H18a         1.182(4)                                                       
 C19-H19b          .91(4)                                                        
 C19-H19a          .97(6)                                                        
 C19-H19c          .987(4)                                                       
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Bond Angles        (degrees)                                                    
                                                                                 
 C1-N1-C6               122.9(2)                                                 
 C1-N1-C11              119.7(2)                                                 
 C6-N1-C11              117.2(2)                                                 
 C1-N2-C5               118.1(2)                                                 
 N3-C12-C13             123.2(2)                                                 
 N3-C12-C11             113.2(2)                                                 
 C13-C12-C11            123.6(2)                                                 
 C6-N4-C10              117.7(2)                                                 
 C16-N3-C12             115.8(2)                                                 
 N4-C6-C7               122.1(2)                                                 
 N4-C6-N1               116.5(2)                                                 
 C7-C6-N1               121.4(2)                                                 
 H13-C13-C14            120(2)                                                   
 H13-C13-C12            119(2)                                                   
 C14-C13-C12            120.6(2)                                                 
 N2-C1-N1               115.8(2)                                                 
 N2-C1-C2               121.7(2)                                                 
 N1-C1-C2               122.4(2)                                                 
 C13-C14-C15            116.3(2)                                                 
 C13-C14-C17            123.6(2)                                                 
 C15-C14-C17            120.1(2)                                                 
 H11a-C11-H11b          107(3)                                                   
 H11a-C11-N1            106(2)                                                   
 H11a-C11-C12           111(2)                                                   
 H11b-C11-N1            115(2)                                                   
 H11b-C11-C12           104(2)                                                   
 N1-C11-C12             114.2(2)                                                 
 H7-C7-C8               122(2)                                                   
 H7-C7-C6               118(2)                                                   
 C8-C7-C6               119.9(3)                                                 
 H2-C2-C3               123(2)                                                   
 H2-C2-C1               117(2)                                                   
 C3-C2-C1               118.9(2)                                                 
 H3-C3-C2               118(2)                                                   
 H3-C3-C4               122(2)                                                   
 C2-C3-C4               120.0(3)                                                 
 H15-C15-C16            112(2)                                                   
 H15-C15-C14            128(2)                                                   
 C16-C15-C14            119.5(3)                                                 
 H8-C8-C7               113(2)                                                   
 H8-C8-C9               127(2)                                                   
 C7-C8-C9               119.1(3)                                                 
 H9-C9-C10              117.1(3)                                                 
 H9-C9-C8               124.2(3)                                                 
 C10-C9-C8              117.9(3)                                                 
 H10-C10-N4             119(2)                                                   
 H10-C10-C9             117(2)                                                   
 N4-C10-C9              123.3(3)                                                 
 H5-C5-N2               117(2)                                                   
 H5-C5-C4               119(2)                                                   
 N2-C5-C4               123.9(3)                                                 
 C20-C17-C18            109.1(3)                                                 
 C20-C17-C19            108.2(3)                                                 
 C20-C17-C14            111.5(2)                                                 
 C18-C17-C19            108.8(3)                                                 
 C18-C17-C14            111.0(2)                                                 
 C19-C17-C14            108.1(3)                                                 
 H16-C16-N3             111(2)                                                   
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 H16-C16-C15            124(2)                                                   
 N3-C16-C15             124.6(3)                                                 
 H20a-C20-H20c          108(2)                                                   
 H20a-C20-H20b          108(2)                                                   
 H20a-C20-C17            96.3(3)                                                 
 H20c-C20-H20b          104(3)                                                   
 H20c-C20-C17           119(2)                                                   
 H20b-C20-C17           121(2)                                                   
 H4-C4-C5               119(2)                                                   
 H4-C4-C3               123(2)                                                   
 C5-C4-C3               117.3(3)                                                 
 H18c-C18-H18b          107.6(4)                                                 
 H18c-C18-H18a          108.0(3)                                                 
 H18c-C18-C17           108.9(3)                                                 
 H18b-C18-H18a          107.8(3)                                                 
 H18b-C18-C17           109.0(3)                                                 
 H18a-C18-C17           115.4(3)                                                 
 H19b-C19-H19a          143(4)                                                   
 H19b-C19-H19c          122(3)                                                   
 H19b-C19-C17           102(3)                                                   
 H19a-C19-H19c           71(3)                                                   
 H19a-C19-C17           109(3)                                                   
 H19c-C19-C17           100.5(3)                                                 
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 Dihedral Angles    (degrees)                                                    
                                                                                 
 C1-N1-C6-N4                    136.0(2)                                         
 C1-N1-C6-C7                    -46.9(3)                                         
 C11-N1-C6-N4                   -40.4(3)                                         
 C11-N1-C6-C7                   136.8(3)                                         
 C6-N1-C1-N2                    165.0(2)                                         
 C6-N1-C1-C2                    -17.0(4)                                         
 C11-N1-C1-N2                   -18.7(3)                                         
 C11-N1-C1-C2                   159.2(2)                                         
 C6-N1-C11-C12                  -89.6(3)                                         
 C6-N1-C11-H11a                 148(2)                                           
 C6-N1-C11-H11b                  30(2)                                           
 C1-N1-C11-C12                   94.0(3)                                         
 C1-N1-C11-H11a                 -28(2)                                           
 C1-N1-C11-H11b                -146(2)                                           
 C5-N2-C1-N1                    176.7(2)                                         
 C5-N2-C1-C2                     -1.2(4)                                         
 C1-N2-C5-C4                      1.0(5)                                         
 C1-N2-C5-H5                   -176(2)                                           
 C13-C12-N3-C16                  -2.2(4)                                         
 C11-C12-N3-C16                 177.4(2)                                         
 N3-C12-C13-C14                   1.8(4)                                         
 N3-C12-C13-H13                -174(2)                                           
 C11-C12-C13-C14               -177.7(2)                                         
 C11-C12-C13-H13                  7(2)                                           
 N3-C12-C11-N1                  170.6(2)                                         
 N3-C12-C11-H11a                -70(2)                                           
 N3-C12-C11-H11b                 44(2)                                           
 C13-C12-C11-N1                  -9.8(4)                                         
 C13-C12-C11-H11a               110(2)                                           
 C13-C12-C11-H11b              -136(2)                                           
 C10-N4-C6-N1                   178.8(2)                                         
 C10-N4-C6-C7                     1.7(4)                                         
 C6-N4-C10-C9                    -1.1(4)                                         
 C6-N4-C10-H10                  169(2)                                           
 C12-N3-C16-C15                   1.3(4)                                         
 C12-N3-C16-H16                -178(2)                                           
 N1-C6-C7-C8                   -178.5(2)                                         
 N1-C6-C7-H7                      6(2)                                           
 N4-C6-C7-C8                     -1.6(4)                                         
 N4-C6-C7-H7                   -177(2)                                           
 C12-C13-C14-C15                  -.3(4)                                         
 C12-C13-C14-C17                176.6(2)                                         
 H13-C13-C14-C15                175(2)                                           
 H13-C13-C14-C17                 -8(2)                                           
 N1-C1-C2-C3                   -176.4(2)                                         
 N1-C1-C2-H2                      9(3)                                           
 N2-C1-C2-C3                      1.4(4)                                         
 N2-C1-C2-H2                   -173(3)                                           
 C13-C14-C15-C16                  -.5(4)                                         
 C13-C14-C15-H15               -169(3)                                           
 C17-C14-C15-C16               -177.6(2)                                         
 C17-C14-C15-H15                 14(3)                                           
 C13-C14-C17-C20                136.1(3)                                         
 C13-C14-C17-C18                 14.2(4)                                         
 C13-C14-C17-C19               -105.1(3)                                         
 C15-C14-C17-C20                -47.1(3)                                         
 C15-C14-C17-C18               -169.0(3)                                         
 C15-C14-C17-C19                 71.7(3)                                         
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 C6-C7-C8-C9                       .8(4)                                         
 C6-C7-C8-H8                    174(2)                                           
 H7-C7-C8-C9                    176(2)                                           
 H7-C7-C8-H8                    -11(3)                                           
 C1-C2-C3-C4                     -1.4(4)                                         
 C1-C2-C3-H3                    173(2)                                           
 H2-C2-C3-C4                    173(3)                                           
 H2-C2-C3-H3                    -13(3)                                           
 C2-C3-C4-C5                      1.2(5)                                         
 C2-C3-C4-H4                   -176(2)                                           
 H3-C3-C4-C5                   -173(2)                                           
 H3-C3-C4-H4                     11(3)                                           
 C14-C15-C16-N3                    .1(4)                                         
 C14-C15-C16-H16                179(2)                                           
 H15-C15-C16-N3                 170(3)                                           
 H15-C15-C16-H16                -11(3)                                           
 C7-C8-C9-C10                     -.2(4)                                         
 C7-C8-C9-H9                    169.1(3)                                         
 H8-C8-C9-C10                  -173(2)                                           
 H8-C8-C9-H9                     -3(2)                                           
 C8-C9-C10-N4                      .4(4)                                         
 C8-C9-C10-H10                 -170(2)                                           
 H9-C9-C10-N4                  -169.7(3)                                         
 H9-C9-C10-H10                   20(2)                                           
 N2-C5-C4-C3                     -1.0(5)                                         
 N2-C5-C4-H4                    176(2)                                           
 H5-C5-C4-C3                    176(2)                                           
 H5-C5-C4-H4                     -7(3)                                           
 C14-C17-C20-H20c              -172(2)                                           
 C14-C17-C20-H20b                58(3)                                           
 C14-C17-C20-H20a               -56.6(3)                                         
 C18-C17-C20-H20c               -49(2)                                           
 C18-C17-C20-H20b              -179(3)                                           
 C18-C17-C20-H20a                66.3(3)                                         
 C19-C17-C20-H20c                70(2)                                           
 C19-C17-C20-H20b               -61(3)                                           
 C19-C17-C20-H20a              -175.4(3)                                         
 C14-C17-C18-H18a                60.9(4)                                         
 C14-C17-C18-H18b              -177.7(3)                                         
 C14-C17-C18-H18c               -60.7(4)                                         
 C20-C17-C18-H18a               -62.4(4)                                         
 C20-C17-C18-H18b                59.0(4)                                         
 C20-C17-C18-H18c               176.1(3)                                         
 C19-C17-C18-H18a               179.8(3)                                         
 C19-C17-C18-H18b               -58.8(4)                                         
 C19-C17-C18-H18c                58.2(4)                                         
 C14-C17-C19-H19a               143(3)                                           
 C14-C17-C19-H19b               -57(3)                                           
 C14-C17-C19-H19c                69.3(4)                                         
 C20-C17-C19-H19a               -96(3)                                           
 C20-C17-C19-H19b                64(3)                                           
 C20-C17-C19-H19c              -169.8(3)                                         
 C18-C17-C19-H19a                22(3)                                           
 C18-C17-C19-H19b              -178(3)                                           
 C18-C17-C19-H19c               -51.3(4)                                         
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8.1.3 X-ray Structure of N-4-tert-Butylpyridyl-N-pyridyl-

picolylamine 84: 

 

 
 
Experimental Details 
 

Crystal data: 

Chemical formula  : C40H44N8 (2⋅ C20H22N4) 

formula weight   : 636.85 

Crystal system   : orthorhombic 

Space group (No.)  :  P212121 (19) 

Z     : 4 

a (Å)    : 11.818(1) 

b (Å)    : 16.501(2) 

c (Å)    : 18.379(1) 

α  (°)    : 90.0 

β  (°)    : 90.0 

γ (°)    : 90.0 

cell volume   : 3584.1(6)Å3 

Density calc.   : 1.180g/cm3 

Radiation    : CuKα (1.54179Å) 
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Range for lattice parameters : 15.08Ε<Θ <16.90Ε 

Absorption coefficient  : 0.559mm-1 

Temperature   : 298K 

Crystal source   : recrystallized from CH2Cl2 and Et2O 

Crystal colour   : colourless 

Crystal shape   : irregular 

Crystal size   : ca. 0.3x0.3.x0.3mm 

Data Collection 

Diffractometer type  : Enraf-Nonius CAD4 

collection method  : ω/2ϑ scans 

Absorption correction  : none 

No. of reflections measured : 7336 

No. of independent reflections: 6507 

No. of observed reflections : 4756 

 Θ max  (Ε)    : 67.87 

hmin 6 hmax   :   -  14    6  14 

kmin 6 kmax   :   - 19    6  19 

lmin 6  lmax    :   - 22    6  22
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Criterion for observed  : I > 2σ (I ) 

Rint     : 0.038(46) 

Standard reflections  : -2    -5    2, -2   4   4, -2    4    -4 

Variation    : 4257(167) 2091(76) 2214(82) 

Refinement:  

On     : F 

Treatment of hydrogens : Calculated in idealized positions. Us  
      fixed at 1.5×U of the corresponding  
      heavy atom. No refinement of hydrogen  
      parameters    
 
R     : 0.075 

Rw     : 0.087 

Weighting scheme  : w=1/σ2(F) 

No. of parameters refined : 433 

No. of reflections in refmnt. : 4745 

Residual electron density : -0.64/0.39e/Å3  

r*[1]    : not refined 

XABS[2]a)    : -0.16(1.62) not significant! 

Goodness of fit   : 2.659 

Solution    : XTAL3.7[3] 

Remarks    : a)From separate calculation 
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Atomic Positional and Isotropic Displacement Parameters                 
 ------------------------------------------------------                          
 Atom     x/a         y/b         z/c        Ueq/Å

2                          
 ------------------------------------------------------                          
 N1a    0.4600(5)   0.7705(3)   0.0762(3)  * 0.048(4)                            
 N2a    0.3602(5)   0.8027(3)   0.1791(3)  * 0.050(4)                            
 N3a    0.5756(4)   0.7747(3)  -0.0258(3)  * 0.049(3)                            
 N4a    0.4427(6)   0.6033(3)   0.1268(3)  * 0.065(4)                            
 C1a    0.3747(6)   0.8171(4)   0.1098(4)  * 0.043(4)                            
 C2a    0.3151(5)   0.8777(4)   0.0712(4)  * 0.039(4)                            
 C3a    0.2327(6)   0.9200(3)   0.1062(3)  * 0.041(4)                            
 C4a    0.2085(6)   0.9022(3)   0.1801(4)  * 0.049(4)                            
 C5a    0.2772(7)   0.8457(4)   0.2113(4)  * 0.052(4)                            
 C6a    0.4772(6)   0.7674(4)   0.0016(4)  * 0.047(4)                            
 C7a    0.3801(6)   0.7527(5)  -0.0444(4)  * 0.052(5)                            
 C8a    0.3967(8)   0.7518(4)  -0.1190(4)  * 0.062(5)                            
 C9a    0.5026(7)   0.7610(5)  -0.1460(4)  * 0.063(5)                            
 C10a   0.5905(7)   0.7723(5)  -0.1003(4)  * 0.062(5)                            
 C11a   0.5483(6)   0.7339(4)   0.1223(4)  * 0.054(4)                            
 C12a   0.5293(6)   0.6504(4)   0.1490(4)  * 0.053(4)                            
 C13a   0.6109(7)   0.6239(4)   0.1928(4)  * 0.063(5)                            
 C14a   0.6053(9)   0.5533(7)   0.2152(5)  * 0.105(7)                            
 C15a   0.522(1)    0.4983(5)   0.1954(5)  * 0.091(7)                            
 C16a   0.4285(9)   0.5223(5)   0.1515(4)  * 0.083(7)                            
 C17a   0.1649(6)   0.9903(4)   0.0682(4)  * 0.049(4)                            
 C18a   0.1998(7)   1.0004(4)  -0.0091(4)  * 0.067(5)                            
 C19a   0.1790(7)   1.0681(4)   0.1097(4)  * 0.075(5)                            
 C20a   0.0432(8)   0.9633(5)   0.0695(6)  * 0.099(7)                            
 N1b    0.0391(5)   0.7292(3)   0.4225(3)  * 0.046(4)                            
 N2b    0.1422(5)   0.6995(3)   0.3180(3)  * 0.045(3)                            
 N3b   -0.0771(5)   0.7235(3)   0.5253(3)  * 0.055(4)                            
 N4b   -0.1085(6)   0.8778(4)   0.3098(4)  * 0.072(5)                            
 C1b    0.1241(5)   0.6843(4)   0.3892(4)  * 0.040(4)                            
 C2b    0.1857(6)   0.6263(4)   0.4270(4)  * 0.045(4)                            
 C3b    0.2698(6)   0.5807(4)   0.3919(4)  * 0.048(4)                            
 C4b    0.2833(6)   0.5978(4)   0.3193(4)  * 0.051(4)                            
 C5b    0.2218(7)   0.6560(4)   0.2834(4)  * 0.049(4)                            
 C6b    0.0332(5)   0.7337(4)   0.5006(3)  * 0.038(3)                            
 C7b    0.1236(7)   0.7483(5)   0.5442(4)  * 0.057(5)                            
 C8b   -0.0878(6)   0.7290(4)   0.5952(4)  * 0.054(5)                            
 C9b   -0.0030(7)   0.7403(4)   0.6463(4)  * 0.061(5)                            
 C10b   0.1070(7)   0.7527(5)   0.6172(4)  * 0.063(5)                            
 C11b  -0.0498(6)   0.7620(4)   0.3772(4)  * 0.050(4)                            
 C12b  -0.0290(6)   0.8495(4)   0.3535(3)  * 0.051(4)                            
 C13b   0.0705(8)   0.8943(5)   0.3744(5)  * 0.089(6)                            
 C14b  -0.0976(8)   0.9568(4)   0.2857(4)  * 0.083(5)                            
 C15b  -0.0119(9)   1.0078(4)   0.3046(5)  * 0.083(6)                            
 C16b   0.0649(7)   0.9741(5)   0.3493(5)  * 0.074(6)                            
 C17b   0.3391(6)   0.5194(4)   0.4308(4)  * 0.052(4)                            
 C18b   0.4661(7)   0.5419(6)   0.4316(5)  * 0.084(6)                            
 C19b   0.325(1)    0.4378(5)   0.3919(6)  * 0.139(9)                            
 C20b   0.3050(9)   0.5072(6)   0.5124(6)  * 0.123(8)                            
 H11aa  0.6187(-)   0.7337(-)   0.0916(-)  * 0.081(-)                            
 H11ab  0.5646(-)   0.7687(-)   0.1617(-)  * 0.081(-)                            
 H11ba -0.0555(-)   0.7286(-)   0.3314(-)  * 0.075(-)                            
 H11bb -0.1231(-)   0.7580(-)   0.3988(-)  * 0.075(-)                            
 H2b    0.1683(-)   0.6153(-)   0.4777(-)  * 0.066(-)                            
 H2a    0.3296(-)   0.8865(-)   0.0193(-)  * 0.060(-)                            
 H8b   -0.1673(-)   0.7207(-)   0.6169(-)  * 0.083(-)                            
 H10a   0.6642(-)   0.7737(-)  -0.1165(-)  * 0.092(-)                            
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 H4a    0.1506(-)   0.9297(-)   0.2079(-)  * 0.075(-)                            
 H4b    0.3459(-)   0.5709(-)   0.2932(-)  * 0.075(-)                            
 H9b   -0.0188(-)   0.7360(-)   0.6968(-)  * 0.092(-)                            
 H5b    0.2333(-)   0.6633(-)   0.2337(-)  * 0.075(-)                            
 H5a    0.2644(-)   0.8352(-)   0.2657(-)  * 0.076(-)                            
 H13a   0.6755(-)   0.6601(-)   0.2038(-)  * 0.093(-)                            
 H10b   0.1625(-)   0.7694(-)   0.6509(-)  * 0.093(-)                            
 H18ba  0.5084(-)   0.5062(-)   0.4595(-)  * 0.120(-)                            
 H18bb  0.4933(-)   0.5541(-)   0.3876(-)  * 0.120(-)                            
 H18bc  0.4699(-)   0.5960(-)   0.4616(-)  * 0.120(-)                            
 H16b   0.1194(-)   1.0105(-)   0.3683(-)  * 0.110(-)                            
 H14b  -0.1607(-)   0.9800(-)   0.2577(-)  * 0.122(-)                            
 H19ba  0.3778(-)   0.3957(-)   0.4181(-)  * 0.210(-)                            
 H19bb  0.2581(-)   0.4158(-)   0.3885(-)  * 0.210(-)                            
 H19bc  0.3645(-)   0.4395(-)   0.3439(-)  * 0.210(-)                            
 H14a   0.6580(-)   0.5404(-)   0.2510(-)  * 0.162(-)                            
 H15b   0.0046(-)   1.0616(-)   0.2905(-)  * 0.126(-)                            
 H15a   0.5448(-)   0.4445(-)   0.2139(-)  * 0.135(-)                            
 H18aa  0.1699(-)   1.0436(-)  -0.0297(-)  * 0.105(-)                            
 H18ab  0.2884(-)   1.0172(-)  -0.0021(-)  * 0.105(-)                            
 H18ac  0.2048(-)   0.9530(-)  -0.0323(-)  * 0.105(-)                            
 H19aa  0.1406(-)   1.1098(-)   0.0912(-)  * 0.113(-)                            
 H19ab  0.1542(-)   1.0584(-)   0.1614(-)  * 0.113(-)                            
 H19ac  0.2594(-)   1.0794(-)   0.1145(-)  * 0.113(-)                            
 H20ba  0.3526(-)   0.4642(-)   0.5338(-)  * 0.183(-)                            
 H20bb  0.3192(-)   0.5548(-)   0.5399(-)  * 0.183(-)                            
 H20bc  0.2293(-)   0.4909(-)   0.5177(-)  * 0.183(-)                            
 H8a    0.3268(-)   0.7530(-)  -0.1532(-)  * 0.095(-)                            
 H9a    0.5209(-)   0.7584(-)  -0.2009(-)  * 0.095(-)                            
 H20aa -0.0064(-)   1.0019(-)   0.0466(-)  * 0.156(-)                            
 H20ab  0.0328(-)   0.9122(-)   0.0445(-)  * 0.156(-)                            
 H20ac  0.0145(-)   0.9552(-)   0.1186(-)  * 0.156(-)                            
 H7a    0.2911(-)   0.7436(-)  -0.0196(-)  * 0.075(-)                            
 H16a   0.3598(-)   0.4865(-)   0.1360(-)  * 0.125(-)                            
 H7b    0.1998(-)   0.7555(-)   0.5240(-)  * 0.087(-)                            
 H13b   0.1368(-)   0.8681(-)   0.4032(-)  * 0.126(-)                            
 ------------------------------------------------------                          
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                      Atomic Displacement Parameters                                         
 --------------------------------------------------------------------
--------    
 Atom     U11          U22         U33          U12          U13         
U23        
 --------------------------------------------------------------------
--------    
 N1a    0.048(4)    0.046(4)    0.050(4)    0.015(3)   -0.007(3)   -
0.003(3)     
 N2a    0.056(4)    0.046(3)    0.049(4)    0.000(3)   -0.002(3)    
0.001(3)     
 N3a    0.030(3)    0.050(4)    0.067(4)    0.009(3)    0.000(3)   -
0.004(3)     
 N4a    0.082(4)    0.059(3)    0.054(3)    0.027(3)   -0.009(3)    
0.017(3)     
 C1a    0.045(4)    0.044(4)    0.040(4)    0.001(3)    0.002(3)   -
0.001(3)     
 C2a    0.038(4)    0.037(3)    0.043(4)    0.002(3)    0.005(3)    
0.008(3)     
 C3a    0.053(4)    0.023(3)    0.045(4)   -0.002(3)   -0.010(3)   -
0.005(3)     
 C4a    0.050(4)    0.029(3)    0.068(5)   -0.002(3)    0.000(3)   -
0.007(3)     
 C5a    0.064(5)    0.056(4)    0.037(4)   -0.001(4)    0.004(3)    
0.005(3)     
 C6a    0.050(4)    0.040(4)    0.052(4)    0.009(3)   -0.000(3)   -
0.002(3)     
 C7a    0.035(3)    0.060(5)    0.062(5)   -0.003(3)   -0.008(3)    
0.002(4)     
 C8a    0.078(6)    0.054(4)    0.053(5)    0.005(4)   -0.017(4)   -
0.006(3)     
 C9a    0.067(5)    0.071(6)    0.053(5)    0.012(4)    0.014(4)    
0.007(4)     
 C10a   0.079(6)    0.061(5)    0.047(4)    0.013(4)    0.020(4)    
0.002(3)     
 C11a   0.049(4)    0.060(5)    0.054(4)    0.004(3)   -0.016(3)   -
0.007(3)     
 C12a   0.053(4)    0.046(4)    0.061(5)    0.014(3)   -0.006(4)   -
0.013(3)     
 C13a   0.063(5)    0.051(5)    0.076(6)    0.016(4)   -0.009(4)    
0.022(4)     
 C14a   0.105(7)    0.139(9)    0.071(6)    0.005(6)   -0.004(5)    
0.003(6)     
 C15a   0.15(1)     0.051(4)    0.077(6)    0.038(6)    0.008(6)    
0.023(4)     
 C16a   0.144(9)    0.050(5)    0.056(5)   -0.000(5)    0.011(5)    
0.001(4)     
 C17a   0.050(4)    0.031(3)    0.066(4)    0.012(3)   -0.001(3)    
0.004(3)     
 C18a   0.092(6)    0.052(3)    0.058(4)    0.013(3)    0.009(4)    
0.018(3)     
 C19a   0.093(5)    0.046(4)    0.088(5)    0.011(3)    0.001(4)   -
0.012(3)     
 C20a   0.069(6)    0.070(5)    0.158(9)    0.022(5)   -0.022(6)    
0.030(5)     
 N1b    0.042(3)    0.049(4)    0.047(4)    0.004(3)    0.007(3)    
0.014(3)     
 N2b    0.057(4)    0.037(3)    0.041(3)    0.004(3)    0.003(3)    
0.006(2)     
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 N3b    0.065(4)    0.050(4)    0.048(3)   -0.003(3)    0.014(3)    
0.004(3)     
 N4b    0.075(5)    0.069(5)    0.072(5)    0.016(4)   -0.026(4)    
0.018(4)     
 C1b    0.039(4)    0.029(3)    0.052(4)   -0.006(3)   -0.001(3)    
0.004(3)     
 C2b    0.052(4)    0.034(3)    0.048(4)   -0.002(3)   -0.003(3)    
0.002(3)     
 C3b    0.035(4)    0.045(4)    0.064(5)   -0.000(3)    0.009(3)    
0.006(3)     
 C4b    0.052(4)    0.058(4)    0.044(4)    0.008(3)    0.012(3)   -
0.007(3)     
 C5b    0.063(5)    0.037(3)    0.047(4)    0.001(3)    0.004(3)   -
0.006(3)     
 C6b    0.035(3)    0.030(3)    0.051(4)    0.001(2)    0.004(3)    
0.006(3)     
 C7b    0.064(5)    0.055(5)    0.051(5)    0.002(4)    0.009(4)   -
0.001(4)     
 C8b    0.044(4)    0.053(5)    0.067(5)    0.001(3)    0.009(3)    
0.003(4)     
 C9b    0.076(6)    0.053(5)    0.054(5)    0.006(4)   -0.001(4)   -
0.009(4)     
 C10b   0.056(5)    0.073(5)    0.059(5)   -0.001(4)    0.003(4)   -
0.001(4)     
 C11b   0.042(4)    0.050(4)    0.060(4)    0.010(3)    0.005(3)    
0.024(3)     
 C12b   0.058(5)    0.059(4)    0.037(4)    0.015(4)    0.008(3)    
0.012(3)     
 C13b   0.096(6)    0.068(5)    0.104(7)   -0.033(4)    0.032(5)   -
0.025(4)     
 C14b   0.107(6)    0.042(3)    0.101(6)    0.036(4)   -0.023(5)    
0.027(4)     
 C15b   0.119(8)    0.056(5)    0.075(6)    0.008(5)    0.015(5)   -
0.001(4)     
 C16b   0.082(6)    0.056(5)    0.083(6)   -0.005(4)    0.005(5)   -
0.001(4)     
 C17b   0.053(4)    0.038(3)    0.063(4)    0.005(3)   -0.006(3)    
0.000(3)     
 C18b   0.043(4)    0.101(7)    0.107(7)   -0.004(4)   -0.010(4)    
0.002(5)     
 C19b   0.23(1)     0.030(4)    0.162(9)    0.031(5)   -0.105(8)   -
0.010(4)     
 C20b   0.125(9)    0.135(8)    0.107(8)    0.084(7)   -0.008(6)    
0.037(6)     
 H11aa  0.081(-)    0.081(-)    0.081(-)    0.000(-)    0.000(-)    
0.000(-)     
 H11ab  0.081(-)    0.081(-)    0.081(-)    0.000(-)    0.000(-)    
0.000(-)     
 H11ba  0.075(-)    0.075(-)    0.075(-)    0.000(-)    0.000(-)    
0.000(-)     
 H11bb  0.075(-)    0.075(-)    0.075(-)    0.000(-)    0.000(-)    
0.000(-)     
 H2b    0.066(-)    0.066(-)    0.066(-)    0.000(-)    0.000(-)    
0.000(-)     
 H2a    0.060(-)    0.060(-)    0.060(-)    0.000(-)    0.000(-)    
0.000(-)     
 H8b    0.083(-)    0.083(-)    0.083(-)    0.000(-)    0.000(-)    
0.000(-)     
 H10a   0.092(-)    0.092(-)    0.092(-)    0.000(-)    0.000(-)    
0.000(-)     
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 H4a    0.075(-)    0.075(-)    0.075(-)    0.000(-)    0.000(-)    
0.000(-)     
 H4b    0.075(-)    0.075(-)    0.075(-)    0.000(-)    0.000(-)    
0.000(-)     
 H9b    0.092(-)    0.092(-)    0.092(-)    0.000(-)    0.000(-)    
0.000(-)     
 H5b    0.075(-)    0.075(-)    0.075(-)    0.000(-)    0.000(-)    
0.000(-)     
 H5a    0.076(-)    0.076(-)    0.076(-)    0.000(-)    0.000(-)    
0.000(-)     
 H13a   0.093(-)    0.093(-)    0.093(-)    0.000(-)    0.000(-)    
0.000(-)     
 H10b   0.093(-)    0.093(-)    0.093(-)    0.000(-)    0.000(-)    
0.000(-)     
 H18ba  0.120(-)    0.120(-)    0.120(-)    0.000(-)    0.000(-)    
0.000(-)     
 H18bb  0.120(-)    0.120(-)    0.120(-)    0.000(-)    0.000(-)    
0.000(-)     
 H18bc  0.120(-)    0.120(-)    0.120(-)    0.000(-)    0.000(-)    
0.000(-)     
 H16b   0.110(-)    0.110(-)    0.110(-)    0.000(-)    0.000(-)    
0.000(-)     
 H14b   0.122(-)    0.122(-)    0.122(-)    0.000(-)    0.000(-)    
0.000(-)     
 H19ba  0.210(-)    0.210(-)    0.210(-)    0.000(-)    0.000(-)    
0.000(-)     
 H19bb  0.210(-)    0.210(-)    0.210(-)    0.000(-)    0.000(-)    
0.000(-)     
 H19bc  0.210(-)    0.210(-)    0.210(-)    0.000(-)    0.000(-)    
0.000(-)     
 H14a   0.162(-)    0.162(-)    0.162(-)    0.000(-)    0.000(-)    
0.000(-)     
 H15b   0.126(-)    0.126(-)    0.126(-)    0.000(-)    0.000(-)    
0.000(-)     
 H15a   0.135(-)    0.135(-)    0.135(-)    0.000(-)    0.000(-)    
0.000(-)     
 H18aa  0.105(-)    0.105(-)    0.105(-)    0.000(-)    0.000(-)    
0.000(-)     
 H18ab  0.105(-)    0.105(-)    0.105(-)    0.000(-)    0.000(-)    
0.000(-)     
 H18ac  0.105(-)    0.105(-)    0.105(-)    0.000(-)    0.000(-)    
0.000(-)     
 H19aa  0.113(-)    0.113(-)    0.113(-)    0.000(-)    0.000(-)    
0.000(-)     
 H19ab  0.113(-)    0.113(-)    0.113(-)    0.000(-)    0.000(-)    
0.000(-)     
 H19ac  0.113(-)    0.113(-)    0.113(-)    0.000(-)    0.000(-)    
0.000(-)     
 H20ba  0.183(-)    0.183(-)    0.183(-)    0.000(-)    0.000(-)    
0.000(-)     
 H20bb  0.183(-)    0.183(-)    0.183(-)    0.000(-)    0.000(-)    
0.000(-)     
 H20bc  0.183(-)    0.183(-)    0.183(-)    0.000(-)    0.000(-)    
0.000(-)     
 H8a    0.095(-)    0.095(-)    0.095(-)    0.000(-)    0.000(-)    
0.000(-)     
 H9a    0.095(-)    0.095(-)    0.095(-)    0.000(-)    0.000(-)    
0.000(-)     
 H20aa  0.156(-)    0.156(-)    0.156(-)    0.000(-)    0.000(-)    
0.000(-)     



 Additional Data 173 
 H20ab  0.156(-)    0.156(-)    0.156(-)    0.000(-)    0.000(-)    
0.000(-)     
 H20ac  0.156(-)    0.156(-)    0.156(-)    0.000(-)    0.000(-)    
0.000(-)     
 H7a    0.075(-)    0.075(-)    0.075(-)    0.000(-)    0.000(-)    
0.000(-)     
 H16a   0.125(-)    0.125(-)    0.125(-)    0.000(-)    0.000(-)    
0.000(-)     
 H7b    0.087(-)    0.087(-)    0.087(-)    0.000(-)    0.000(-)    
0.000(-)     
 H13b   0.126(-)    0.126(-)    0.126(-)    0.000(-)    0.000(-)    
0.000(-)     
 --------------------------------------------------------------------  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 Additional Data 174 
Bond Distances     (Angstroms)                                                  
                                                                                 
 N1b-C1b            1.391(9)                                                     
 N1b-C6b            1.438(8)                                                     
 N1b-C11b           1.446(9)                                                     
 C6b-C7b            1.36(1)                                                      
 C6b-N3b            1.390(9)                                                     
 N2b-C5b            1.343(9)                                                     
 N2b-C1b            1.350(9)                                                     
 N3b-C8b            1.30(1)                                                      
 C17b-C3b           1.49(1)                                                      
 C17b-C19b          1.53(1)                                                      
 C17b-C18b          1.55(1)                                                      
 C17b-C20b          1.57(1)                                                      
 C11b-H11bb          .955(7)                                                     
 C11b-H11ba         1.007(7)                                                     
 C11b-C12b          1.53(1)                                                      
 C3b-C4b            1.37(1)                                                      
 C3b-C2b            1.40(1)                                                      
 C1b-C2b            1.388(9)                                                     
 C2b-H2b             .972(7)                                                     
 C8b-H8b            1.029(7)                                                     
 C8b-C9b            1.39(1)                                                      
 C4b-H4b             .987(7)                                                     
 C4b-C5b            1.37(1)                                                      
 C7b-H7b             .982(9)                                                     
 C7b-C10b           1.36(1)                                                      
 C9b-H9b             .948(8)                                                     
 C9b-C10b           1.42(1)                                                      
 C12b-N4b           1.32(1)                                                      
 C12b-C13b          1.44(1)                                                      
 C13b-H13b          1.040(9)                                                     
 C13b-C16b          1.40(1)                                                      
 C5b-H5b             .930(7)                                                     
 N4b-C14b           1.382(9)                                                     
 C10b-H10b           .943(8)                                                     
 C18b-H18bb          .895(9)                                                     
 C18b-H18ba          .927(9)                                                     
 C18b-H18bc         1.05(1)                                                      
 C16b-H16b           .946(9)                                                     
 C16b-C15b          1.34(1)                                                      
 C14b-H14b           .984(9)                                                     
 C14b-C15b          1.36(1)                                                      
 C19b-H19bb          .88(1)                                                      
 C19b-H19bc         1.00(1)                                                      
 C19b-H19ba         1.05(1)                                                      
 C15b-H15b           .946(8)                                                     
 C20b-H20bc          .94(1)                                                      
 C20b-H20bb          .95(1)                                                      
 C20b-H20ba          .99(1)                                                      
 N1a-C6a            1.387(9)                                                     
 N1a-C1a            1.409(9)                                                     
 N1a-C11a           1.474(9)                                                     
 N2a-C1a            1.306(9)                                                     
 N2a-C5a            1.348(9)                                                     
 C6a-N3a            1.273(9)                                                     
 C6a-C7a            1.45(1)                                                      
 N3a-C10a           1.38(1)                                                      
 C17a-C18a          1.49(1)                                                      
 C17a-C19a          1.50(1)                                                      



 Additional Data 175 
 C17a-C20a          1.51(1)                                                      
 C17a-C3a           1.574(9)                                                     
 C11a-H11ab          .944(7)                                                     
 C11a-H11aa         1.006(7)                                                     
 C11a-C12a          1.48(1)                                                      
 C3a-C2a            1.360(9)                                                     
 C3a-C4a            1.418(9)                                                     
 C1a-C2a            1.415(9)                                                     
 C2a-H2a             .980(7)                                                     
 C10a-H10a           .920(9)                                                     
 C10a-C9a           1.35(1)                                                      
 C4a-H4a             .967(7)                                                     
 C4a-C5a            1.36(1)                                                      
 C7a-H7a            1.156(7)                                                     
 C7a-C8a            1.39(1)                                                      
 C12a-C13a          1.33(1)                                                      
 C12a-N4a           1.349(9)                                                     
 C5a-H5a            1.027(7)                                                     
 C13a-H13a           .990(8)                                                     
 C13a-C14a          1.24(1)                                                      
 N4a-C16a           1.42(1)                                                      
 C14a-H14a           .93(1)                                                      
 C14a-C15a          1.38(1)                                                      
 C15a-H15a           .988(8)                                                     
 C15a-C16a          1.43(1)                                                      
 C18a-H18aa          .881(7)                                                     
 C18a-H18ac          .892(7)                                                     
 C18a-H18ab         1.091(9)                                                     
 C19a-H19aa          .891(7)                                                     
 C19a-H19ac          .972(8)                                                     
 C19a-H19ab         1.008(8)                                                     
 C16a-H16a          1.04(1)                                                      
 C8a-H8a            1.038(8)                                                     
 C8a-C9a            1.36(1)                                                      
 C9a-H9a            1.033(8)                                                     
 C20a-H20aa          .963(9)                                                     
 C20a-H20ab          .968(9)                                                     
 C20a-H20ac          .97(1)                                                      
                                                                                 



 Additional Data 176 
 Bond Angles        (degrees)                                                    
                                                                                 
 C1b-N1b-C6b               120.1(5)                                              
 C1b-N1b-C11b              118.2(5)                                              
 C6b-N1b-C11b              121.3(5)                                              
 C7b-C6b-N3b               124.4(6)                                              
 C7b-C6b-N1b               124.1(6)                                              
 N3b-C6b-N1b               111.4(5)                                              
 C5b-N2b-C1b               118.1(6)                                              
 C8b-N3b-C6b               114.1(6)                                              
 C3b-C17b-C19b             108.3(7)                                              
 C3b-C17b-C18b             112.1(6)                                              
 C3b-C17b-C20b             114.1(7)                                              
 C19b-C17b-C18b            108.5(7)                                              
 C19b-C17b-C20b            107.9(7)                                              
 C18b-C17b-C20b            105.8(7)                                              
 H11bb-C11b-H11ba          104.4(6)                                              
 H11bb-C11b-N1b            113.2(6)                                              
 H11bb-C11b-C12b           109.3(6)                                              
 H11ba-C11b-N1b            108.9(6)                                              
 H11ba-C11b-C12b           106.9(6)                                              
 N1b-C11b-C12b             113.6(5)                                              
 C4b-C3b-C2b               114.8(6)                                              
 C4b-C3b-C17b              123.0(6)                                              
 C2b-C3b-C17b              122.3(6)                                              
 N2b-C1b-C2b               122.0(6)                                              
 N2b-C1b-N1b               116.2(6)                                              
 C2b-C1b-N1b               121.8(6)                                              
 H2b-C2b-C1b               119.8(7)                                              
 H2b-C2b-C3b               119.4(6)                                              
 C1b-C2b-C3b               120.7(6)                                              
 H8b-C8b-N3b               117.6(7)                                              
 H8b-C8b-C9b               114.6(7)                                              
 N3b-C8b-C9b               127.6(7)                                              
 H4b-C4b-C3b               117.9(7)                                              
 H4b-C4b-C5b               118.5(7)                                              
 C3b-C4b-C5b               123.3(7)                                              
 H7b-C7b-C10b              120.0(8)                                              
 H7b-C7b-C6b               121.3(7)                                              
 C10b-C7b-C6b              118.7(8)                                              
 H9b-C9b-C8b               120.6(8)                                              
 H9b-C9b-C10b              124.1(8)                                              
 C8b-C9b-C10b              115.2(7)                                              
 N4b-C12b-C13b             124.1(7)                                              
 N4b-C12b-C11b             113.1(6)                                              
 C13b-C12b-C11b            122.7(6)                                              
 H13b-C13b-C16b            126.6(8)                                              
 H13b-C13b-C12b            122.5(7)                                              
 C16b-C13b-C12b            110.9(8)                                              
 H5b-C5b-N2b               119.9(7)                                              
 H5b-C5b-C4b               118.9(7)                                              
 N2b-C5b-C4b               121.1(6)                                              
 C12b-N4b-C14b             117.5(7)                                              
 H10b-C10b-C7b             124.4(8)                                              
 H10b-C10b-C9b             115.5(7)                                              
 C7b-C10b-C9b              119.8(7)                                              
 H18bb-C18b-H18ba          116.7(9)                                              
 H18bb-C18b-H18bc          105.5(9)                                              
 H18bb-C18b-C17b           113.2(8)                                              
 H18ba-C18b-H18bc          103.1(8)                                              



 Additional Data 177 
 H18ba-C18b-C17b           112.1(8)                                              
 H18bc-C18b-C17b           104.6(7)                                              
 H16b-C16b-C15b            115.0(8)                                              
 H16b-C16b-C13b            116.4(9)                                              
 C15b-C16b-C13b            128.6(8)                                              
 H14b-C14b-C15b            117.2(7)                                              
 H14b-C14b-N4b             117.6(8)                                              
 C15b-C14b-N4b             124.8(8)                                              
 H19bb-C19b-H19bc          112(1)                                                
 H19bb-C19b-H19ba          107.0(8)                                              
 H19bb-C19b-C17b           120(1)                                                
 H19bc-C19b-H19ba           99(1)                                                
 H19bc-C19b-C17b           109.9(8)                                              
 H19ba-C19b-C17b           107.8(9)                                              
 H15b-C15b-C16b            114.7(9)                                              
 H15b-C15b-C14b            131.5(9)                                              
 C16b-C15b-C14b            113.7(7)                                              
 H20bc-C20b-H20bb          110(1)                                                
 H20bc-C20b-H20ba          107.2(9)                                              
 H20bc-C20b-C17b           112.5(9)                                              
 H20bb-C20b-H20ba          106(1)                                                
 H20bb-C20b-C17b           110.9(9)                                              
 H20ba-C20b-C17b           109.1(9)                                              
 C6a-N1a-C1a               123.9(6)                                              
 C6a-N1a-C11a              116.7(6)                                              
 C1a-N1a-C11a              118.6(5)                                              
 C1a-N2a-C5a               115.3(6)                                              
 N3a-C6a-N1a               121.5(6)                                              
 N3a-C6a-C7a               120.6(6)                                              
 N1a-C6a-C7a               117.9(6)                                              
 C6a-N3a-C10a              120.4(6)                                              
 C18a-C17a-C19a            111.0(6)                                              
 C18a-C17a-C20a            108.3(7)                                              
 C18a-C17a-C3a             111.4(6)                                              
 C19a-C17a-C20a            110.5(7)                                              
 C19a-C17a-C3a             110.4(6)                                              
 C20a-C17a-C3a             105.1(6)                                              
 H11ab-C11a-H11aa          105.3(7)                                              
 H11ab-C11a-N1a            109.5(6)                                              
 H11ab-C11a-C12a           110.1(6)                                              
 H11aa-C11a-N1a            105.3(6)                                              
 H11aa-C11a-C12a           108.1(6)                                              
 N1a-C11a-C12a             117.7(6)                                              
 C2a-C3a-C4a               119.5(6)                                              
 C2a-C3a-C17a              122.2(6)                                              
 C4a-C3a-C17a              118.3(6)                                              
 N2a-C1a-N1a               114.9(6)                                              
 N2a-C1a-C2a               123.5(6)                                              
 N1a-C1a-C2a               121.5(6)                                              
 H2a-C2a-C3a               120.7(6)                                              
 H2a-C2a-C1a               120.4(6)                                              
 C3a-C2a-C1a               118.8(6)                                              
 H10a-C10a-C9a             122.0(8)                                              
 H10a-C10a-N3a             116.2(8)                                              
 C9a-C10a-N3a              121.5(8)                                              
 H4a-C4a-C5a               121.4(7)                                              
 H4a-C4a-C3a               123.5(6)                                              
 C5a-C4a-C3a               115.1(6)                                              
 H7a-C7a-C8a               121.1(7)                                              
 H7a-C7a-C6a               120.9(7)                                              



 Additional Data 178 
 C8a-C7a-C6a               118.0(7)                                              
 C13a-C12a-N4a             122.9(6)                                              
 C13a-C12a-C11a            113.5(6)                                              
 N4a-C12a-C11a             123.4(6)                                              
 H5a-C5a-N2a               116.5(7)                                              
 H5a-C5a-C4a               116.0(7)                                              
 N2a-C5a-C4a               127.5(7)                                              
 H13a-C13a-C14a            122.9(9)                                              
 H13a-C13a-C12a            118.8(7)                                              
 C14a-C13a-C12a            118.2(8)                                              
 C12a-N4a-C16a             122.3(7)                                              
 H14a-C14a-C13a            114(1)                                                
 H14a-C14a-C15a            121(1)                                                
 C13a-C14a-C15a            125(1)                                                
 H15a-C15a-C14a            108(1)                                                
 H15a-C15a-C16a            130.7(9)                                              
 C14a-C15a-C16a            121.1(8)                                              
 H18aa-C18a-H18ac          122.0(8)                                              
 H18aa-C18a-H18ab          103.2(7)                                              
 H18aa-C18a-C17a           112.9(7)                                              
 H18ac-C18a-H18ab          102.5(7)                                              
 H18ac-C18a-C17a           112.1(6)                                              
 H18ab-C18a-C17a           100.5(6)                                              
 H19aa-C19a-H19ac          112.7(8)                                              
 H19aa-C19a-H19ab          109.4(8)                                              
 H19aa-C19a-C17a           114.2(7)                                              
 H19ac-C19a-H19ab          103.2(7)                                              
 H19ac-C19a-C17a           108.6(7)                                              
 H19ab-C19a-C17a           108.1(6)                                              
 H16a-C16a-N4a             122.5(8)                                              
 H16a-C16a-C15a            127.0(7)                                              
 N4a-C16a-C15a             110.4(8)                                              
 H8a-C8a-C9a               120.8(7)                                              
 H8a-C8a-C7a               119.1(8)                                              
 C9a-C8a-C7a               119.4(7)                                              
 H9a-C9a-C10a              116.9(7)                                              
 H9a-C9a-C8a               123.1(7)                                              
 C10a-C9a-C8a              120.0(7)                                              
 H20aa-C20a-H20ab          107(1)                                                
 H20aa-C20a-H20ac          106.5(9)                                              
 H20aa-C20a-C17a           112.2(8)                                              
 H20ab-C20a-H20ac          106.1(9)                                              
 H20ab-C20a-C17a           111.8(8)                                              
 H20ac-C20a-C17a           112.9(9)                                              
                                                                                 
                                                                                 



 Additional Data 179 
 Dihedral Angles    (degrees)                                                    
                                                                                 
 C11b-N1b-C6b-N3b                    36.7(8)                                     
 C11b-N1b-C6b-C7b                  -141.6(7)                                     
 C1b-N1b-C6b-N3b                   -135.4(6)                                     
 C1b-N1b-C6b-C7b                     46.3(9)                                     
 C6b-N1b-C11b-C12b                   92.6(7)                                     
 C6b-N1b-C11b-H11ba                -148.5(6)                                     
 C6b-N1b-C11b-H11bb                 -32.8(9)                                     
 C1b-N1b-C11b-C12b                  -95.2(7)                                     
 C1b-N1b-C11b-H11ba                  23.8(8)                                     
 C1b-N1b-C11b-H11bb                 139.4(6)                                     
 C6b-N1b-C1b-N2b                   -163.4(6)                                     
 C6b-N1b-C1b-C2b                     17.4(9)                                     
 C11b-N1b-C1b-N2b                    24.3(8)                                     
 C11b-N1b-C1b-C2b                  -154.9(6)                                     
 N1b-C6b-N3b-C8b                   -178.4(6)                                     
 C7b-C6b-N3b-C8b                      0(1)                                       
 N1b-C6b-C7b-C10b                   178.7(7)                                     
 N1b-C6b-C7b-H7b                     -1(1)                                       
 N3b-C6b-C7b-C10b                     0(1)                                       
 N3b-C6b-C7b-H7b                   -179.4(7)                                     
 C5b-N2b-C1b-N1b                   -178.4(6)                                     
 C5b-N2b-C1b-C2b                       .7(9)                                     
 C1b-N2b-C5b-C4b                      0(1)                                       
 C1b-N2b-C5b-H5b                    176.7(6)                                     
 C6b-N3b-C8b-C9b                     -3(1)                                       
 C6b-N3b-C8b-H8b                   -178.6(6)                                     
 C18b-C17b-C3b-C2b                 -116.8(8)                                     
 C18b-C17b-C3b-C4b                   62.6(9)                                     
 C19b-C17b-C3b-C2b                  123.5(8)                                     
 C19b-C17b-C3b-C4b                  -57(1)                                       
 C20b-C17b-C3b-C2b                    3(1)                                       
 C20b-C17b-C3b-C4b                 -177.2(7)                                     
 C3b-C17b-C18b-H18ba                174.8(8)                                     
 C3b-C17b-C18b-H18bb                -51(1)                                       
 C3b-C17b-C18b-H18bc                 63.7(9)                                     
 C19b-C17b-C18b-H18ba               -66(1)                                       
 C19b-C17b-C18b-H18bb                69(1)                                       
 C19b-C17b-C18b-H18bc              -176.7(7)                                     
 C20b-C17b-C18b-H18ba                50(1)                                       
 C20b-C17b-C18b-H18bb              -175.5(9)                                     
 C20b-C17b-C18b-H18bc               -61.1(9)                                     
 C3b-C17b-C19b-H19ba                177.2(8)                                     
 C3b-C17b-C19b-H19bb                -61(1)                                       
 C3b-C17b-C19b-H19bc                 71(1)                                       
 C18b-C17b-C19b-H19ba                55(1)                                       
 C18b-C17b-C19b-H19bb               178(1)                                       
 C18b-C17b-C19b-H19bc               -51(1)                                       
 C20b-C17b-C19b-H19ba               -59(1)                                       
 C20b-C17b-C19b-H19bb                63(1)                                       
 C20b-C17b-C19b-H19bc              -165.5(9)                                     
 C3b-C17b-C20b-H20ba                177.7(7)                                     
 C3b-C17b-C20b-H20bb                -65(1)                                       
 C3b-C17b-C20b-H20bc                 59(1)                                       
 C18b-C17b-C20b-H20ba               -59(1)                                       
 C18b-C17b-C20b-H20bb                58(1)                                       
 C18b-C17b-C20b-H20bc              -177.5(8)                                     
 C19b-C17b-C20b-H20ba                57(1)                                       
 C19b-C17b-C20b-H20bb               174.3(9)                                     
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 C19b-C17b-C20b-H20bc               -62(1)                                       
 N1b-C11b-C12b-C13b                    .3(9)                                     
 N1b-C11b-C12b-N4b                  177.5(6)                                     
 H11ba-C11b-C12b-C13b              -119.8(7)                                     
 H11ba-C11b-C12b-N4b                 57.3(8)                                     
 H11bb-C11b-C12b-C13b               127.8(7)                                     
 H11bb-C11b-C12b-N4b                -55.1(8)                                     
 C17b-C3b-C2b-C1b                   178.7(6)                                     
 C17b-C3b-C2b-H2b                    -4(1)                                       
 C4b-C3b-C2b-C1b                      0(1)                                       
 C4b-C3b-C2b-H2b                    176.4(6)                                     
 C17b-C3b-C4b-C5b                  -178.1(7)                                     
 C17b-C3b-C4b-H4b                    -5(1)                                       
 C2b-C3b-C4b-C5b                      1(1)                                       
 C2b-C3b-C4b-H4b                    174.7(6)                                     
 N1b-C1b-C2b-C3b                    178.9(6)                                     
 N1b-C1b-C2b-H2b                      2(1)                                       
 N2b-C1b-C2b-C3b                      0(1)                                       
 N2b-C1b-C2b-H2b                   -177.5(6)                                     
 N3b-C8b-C9b-C10b                     5(1)                                       
 N3b-C8b-C9b-H9b                   -171.2(7)                                     
 H8b-C8b-C9b-C10b                  -179.4(6)                                     
 H8b-C8b-C9b-H9b                      5(1)                                       
 C3b-C4b-C5b-N2b                      0(1)                                       
 C3b-C4b-C5b-H5b                   -177.8(7)                                     
 H4b-C4b-C5b-N2b                   -174.2(6)                                     
 H4b-C4b-C5b-H5b                      9(1)                                       
 C6b-C7b-C10b-C9b                     1(1)                                       
 C6b-C7b-C10b-H10b                 -171.5(8)                                     
 H7b-C7b-C10b-C9b                  -178.5(7)                                     
 H7b-C7b-C10b-H10b                    9(1)                                       
 C8b-C9b-C10b-C7b                    -4(1)                                       
 C8b-C9b-C10b-H10b                  169.8(7)                                     
 H9b-C9b-C10b-C7b                   171.9(7)                                     
 H9b-C9b-C10b-H10b                  -14(1)                                       
 C11b-C12b-C13b-C16b               -176.3(7)                                     
 C11b-C12b-C13b-H13b                  5(1)                                       
 N4b-C12b-C13b-C16b                   7(1)                                       
 N4b-C12b-C13b-H13b                -171.6(8)                                     
 C11b-C12b-N4b-C14b                 179.6(6)                                     
 C13b-C12b-N4b-C14b                  -3(1)                                       
 C12b-C13b-C16b-C15b                 -7(1)                                       
 C12b-C13b-C16b-H16b                168.3(8)                                     
 H13b-C13b-C16b-C15b                171.0(9)                                     
 H13b-C13b-C16b-H16b                -13(2)                                       
 C12b-N4b-C14b-C15b                  -1(1)                                       
 C12b-N4b-C14b-H14b                -173.4(7)                                     
 C13b-C16b-C15b-C14b                  4(1)                                       
 C13b-C16b-C15b-H15b               -173.7(9)                                     
 H16b-C16b-C15b-C14b               -171.9(8)                                     
 H16b-C16b-C15b-H15b                 10(1)                                       
 N4b-C14b-C15b-C16b                   0(1)                                       
 N4b-C14b-C15b-H15b                 178.0(9)                                     
 H14b-C14b-C15b-C16b                173.2(8)                                     
 H14b-C14b-C15b-H15b                -10(2)                                       
 C11a-N1a-C6a-N3a                   -36.3(9)                                     
 C11a-N1a-C6a-C7a                   141.6(7)                                     
 C1a-N1a-C6a-N3a                    133.1(7)                                     
 C1a-N1a-C6a-C7a                    -49(1)                                       
 C6a-N1a-C11a-C12a                  -97.7(7)                                     
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 C6a-N1a-C11a-H11aa                  22.7(8)                                     
 C6a-N1a-C11a-H11ab                 135.5(7)                                     
 C1a-N1a-C11a-C12a                   92.2(8)                                     
 C1a-N1a-C11a-H11aa                -147.3(6)                                     
 C1a-N1a-C11a-H11ab                 -34.5(9)                                     
 C6a-N1a-C1a-N2a                    169.8(6)                                     
 C6a-N1a-C1a-C2a                    -14(1)                                       
 C11a-N1a-C1a-N2a                   -21.0(9)                                     
 C11a-N1a-C1a-C2a                   155.5(6)                                     
 C5a-N2a-C1a-N1a                   -178.6(6)                                     
 C5a-N2a-C1a-C2a                      5(1)                                       
 C1a-N2a-C5a-C4a                      0(1)                                       
 C1a-N2a-C5a-H5a                    179.9(6)                                     
 N1a-C6a-N3a-C10a                  -179.3(6)                                     
 C7a-C6a-N3a-C10a                     3(1)                                       
 N1a-C6a-C7a-C8a                    178.2(6)                                     
 N1a-C6a-C7a-H7a                      0(1)                                       
 N3a-C6a-C7a-C8a                     -4(1)                                       
 N3a-C6a-C7a-H7a                    177.8(6)                                     
 C6a-N3a-C10a-C9a                     0(1)                                       
 C6a-N3a-C10a-H10a                 -175.1(7)                                     
 C18a-C17a-C3a-C2a                    2.3(9)                                     
 C18a-C17a-C3a-C4a                 -179.4(6)                                     
 C19a-C17a-C3a-C2a                 -121.4(7)                                     
 C19a-C17a-C3a-C4a                   56.8(8)                                     
 C20a-C17a-C3a-C2a                  119.4(8)                                     
 C20a-C17a-C3a-C4a                  -62.4(8)                                     
 C3a-C17a-C18a-H18aa               -172.1(7)                                     
 C3a-C17a-C18a-H18ab                -62.7(7)                                     
 C3a-C17a-C18a-H18ac                 46(1)                                       
 C19a-C17a-C18a-H18aa               -49(1)                                       
 C19a-C17a-C18a-H18ab                60.7(7)                                     
 C19a-C17a-C18a-H18ac               168.9(7)                                     
 C20a-C17a-C18a-H18aa                72.8(9)                                     
 C20a-C17a-C18a-H18ab              -177.9(6)                                     
 C20a-C17a-C18a-H18ac               -69.6(9)                                     
 C3a-C17a-C19a-H19aa               -178.2(7)                                     
 C3a-C17a-C19a-H19ab                -56.2(8)                                     
 C3a-C17a-C19a-H19ac                 55.1(8)                                     
 C18a-C17a-C19a-H19aa                58(1)                                       
 C18a-C17a-C19a-H19ab               179.8(7)                                     
 C18a-C17a-C19a-H19ac               -68.9(8)                                     
 C20a-C17a-C19a-H19aa               -62(1)                                       
 C20a-C17a-C19a-H19ab                59.7(9)                                     
 C20a-C17a-C19a-H19ac               171.0(7)                                     
 C3a-C17a-C20a-H20aa               -179.0(8)                                     
 C3a-C17a-C20a-H20ab                -59(1)                                       
 C3a-C17a-C20a-H20ac                 60.6(9)                                     
 C18a-C17a-C20a-H20aa               -60(1)                                       
 C18a-C17a-C20a-H20ab                60(1)                                       
 C18a-C17a-C20a-H20ac               179.7(7)                                     
 C19a-C17a-C20a-H20aa                62(1)                                       
 C19a-C17a-C20a-H20ab              -178.0(8)                                     
 C19a-C17a-C20a-H20ac               -59(1)                                       
 N1a-C11a-C12a-C13a                -177.1(6)                                     
 N1a-C11a-C12a-N4a                    8(1)                                       
 H11aa-C11a-C12a-C13a                63.9(8)                                     
 H11aa-C11a-C12a-N4a               -111.0(8)                                     
 H11ab-C11a-C12a-C13a               -50.6(9)                                     
 H11ab-C11a-C12a-N4a                134.4(7)                                     
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 C17a-C3a-C2a-C1a                   178.0(6)                                     
 C17a-C3a-C2a-H2a                    -6(1)                                       
 C4a-C3a-C2a-C1a                      -.2(9)                                     
 C4a-C3a-C2a-H2a                    175.8(6)                                     
 C17a-C3a-C4a-C5a                  -174.4(6)                                     
 C17a-C3a-C4a-H4a                     2(1)                                       
 C2a-C3a-C4a-C5a                      3.9(9)                                     
 C2a-C3a-C4a-H4a                   -179.5(6)                                     
 N1a-C1a-C2a-C3a                    179.2(6)                                     
 N1a-C1a-C2a-H2a                      3(1)                                       
 N2a-C1a-C2a-C3a                     -5(1)                                       
 N2a-C1a-C2a-H2a                    179.3(6)                                     
 N3a-C10a-C9a-C8a                      .0(9)                                     
 N3a-C10a-C9a-H9a                  -178.4(7)                                     
 H10a-C10a-C9a-C8a                  173.8(8)                                     
 H10a-C10a-C9a-H9a                   -5(1)                                       
 C3a-C4a-C5a-N2a                     -4(1)                                       
 C3a-C4a-C5a-H5a                    175.7(6)                                     
 H4a-C4a-C5a-N2a                    179.7(7)                                     
 H4a-C4a-C5a-H5a                      0(1)                                       
 C6a-C7a-C8a-C9a                      3(1)                                       
 C6a-C7a-C8a-H8a                   -167.8(7)                                     
 H7a-C7a-C8a-C9a                   -178.7(7)                                     
 H7a-C7a-C8a-H8a                     11(1)                                       
 C11a-C12a-C13a-C14a               -176.6(8)                                     
 C11a-C12a-C13a-H13a                  0(1)                                       
 N4a-C12a-C13a-C14a                  -2(1)                                       
 N4a-C12a-C13a-H13a                 174.9(7)                                     
 C11a-C12a-N4a-C16a                 177.8(7)                                     
 C13a-C12a-N4a-C16a                   3(1)                                       
 C12a-C13a-C14a-C15a                  3(1)                                       
 C12a-C13a-C14a-H14a               -171.0(9)                                     
 H13a-C13a-C14a-C15a               -173.4(9)                                     
 H13a-C13a-C14a-H14a                 13(2)                                       
 C12a-N4a-C16a-C15a                  -6(1)                                       
 C12a-N4a-C16a-H16a                 177.4(7)                                     
 C13a-C14a-C15a-C16a                 -6(2)                                       
 C13a-C14a-C15a-H15a                170.3(9)                                     
 H14a-C14a-C15a-C16a                168(1)                                       
 H14a-C14a-C15a-H15a                -16(1)                                       
 C14a-C15a-C16a-N4a                   7(1)                                       
 C14a-C15a-C16a-H16a               -176.5(9)                                     
 H15a-C15a-C16a-N4a                -169(1)                                       
 H15a-C15a-C16a-H16a                  8(2)                                       
 C7a-C8a-C9a-C10a                    -1(1)                                       
 C7a-C8a-C9a-H9a                    177.2(7)                                     
 H8a-C8a-C9a-C10a                   169.4(7)                                     
 H8a-C8a-C9a-H9a                    -12(1)                                       
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8.1.4 X-ray Structure of Menthol Substituted N,N-

Dipyridylaminopicoline-silver(I) Nitrate: 

 
Measured by Herrn Dr. Ch. Lehmann, MPI für Kohlenforschung 

(coal research) Mülheim/Ruhr 

 

 

 

Experimental Details 

Crystal data: 

Chemical formula  : C26H32N5O4Ag 

formula weight   : 586.44 

Crystal system   : monoclinic 

Space group (No.)  :  P21 (4) 

Z     : 2 

a (Å)    : 10.9377(1) 

b (Å)    : 8.0289(1) 

c (Å)    : 15.1207(1) 

α  (°)    : 90.0 

β  (°)    : 106.529(1) 

γ (°)    : 90.0 
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cell volume   : 1272.99(2)Å3 

Density calc.   : 1.53g/cm3 

Radiation    : MoKα (0.71073Å) 

Range for lattice parameters :  

Absorption coefficient  : 0.834mm-1 

Temperature   : 120K 

Crystal source   : recrystallized from CH2Cl2 and MeCN 

Crystal colour   : colourless/grey 

Crystal shape   : irregular 

Crystal size   : ca. 0.20x0.53.x0.27mm 

Data Collection 

Diffractometer type  : Bruker AXS KappaCCD with FR591  

      rotating anode 

collection method  : φ and ω scans  

Absorption correction  : Scalepack 

No. of reflections measured : 135480 

No. of independent reflections: 12500 

No. of observed reflections : 12422 

 Θ max  (Ε)    : 37.01 

hmin 6 hmax   :   - 18    6   18 

kmin 6 kmax   :   - 13    6   13 

lmin 6  lmax    :   - 25    6   25 
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Criterion for observed  : I > 2σ (I ) 

Rint     : 0.017(13) 

Standard reflections  :   

Variation    :  

Refinement:  

On     : F 

Treatment of hydrogens : Hydrogen positions calculated in  
      idealized positions. All Us fixed at  

     1.5×U of the corresponding heavy atom 
     prior to final refinement. No refinement of  
     hydrogen parameters. 

    
R     : 0.018 

Rw     : 0.023 

Weighting scheme  : w=1/σ2(F) 

No. of parameters refined : 324 

No. of reflections in refmnt. : 12422 

Residual electron density : -0.42/0.38e/Å3  

r*[1]    : not refined 

XABS[2]a)    : 0.020(9) 

Goodness of fit   : 2.319 

Solution    : XTAL3.7[3] 

Remarks    : a)From separate calculation 
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 Atomic Positional and Isotropic Displacement Parameters                 
                                                                                 
 -----------------------------------------------------                           
 Atom    x/a         y/b         z/c        Ueq/Å

2                           
 -----------------------------------------------------                           
 Ag1   0.43322(-)  0.36541(-)  0.08582(-) * 0.01693(3)                           
 O1    0.09827(6)  0.56449(9)  0.42890(4) * 0.0172(3)                            
 O2   -0.24692(6)  0.64467(9)  0.05756(5) * 0.0218(3)                            
 O3   -0.34964(7)  0.44643(9)  0.10319(5) * 0.0220(3)                            
 O4   -0.45083(6)  0.66749(9)  0.03818(5) * 0.0214(3)                            
 N1    0.29218(6)  0.28999(9)  0.23215(4) * 0.0123(3)                            
 N2    0.26321(7)  0.53486(9)  0.07345(5) * 0.0138(3)                            
 N3    0.19563(6)  0.43324(9)  0.32954(4) * 0.0123(3)                            
 N4    0.42071(7)  0.12262(9)  0.16836(5) * 0.0149(3)                            
 N5   -0.34804(7)  0.58711(9)  0.06626(5) * 0.0148(3)                            
 C1    0.35223(7)  0.1336(1)   0.22880(5) * 0.0125(3)                            
 C2    0.33389(8) -0.0007(1)   0.28199(6) * 0.0155(3)                            
 C3    0.38786(8) -0.1538(1)   0.27139(5) * 0.0176(4)                            
 C4    0.45783(8) -0.1670(1)   0.20759(6) * 0.0173(4)                            
 C5    0.47145(8) -0.0266(1)   0.15797(6) * 0.0171(4)                            
 C6    0.17733(7)  0.32211(9)  0.15510(5) * 0.0121(3)                            
 C7    0.17114(7)  0.4938(1)   0.11283(5) * 0.0119(3)                            
 C8    0.06780(7)  0.5974(1)   0.10867(5) * 0.0139(3)                            
 C9    0.05766(8)  0.7478(1)   0.06109(6) * 0.0163(3)                            
 C10   0.15190(8)  0.7900(1)   0.02000(6) * 0.0174(4)                            
 C11   0.25297(8)  0.6805(1)   0.02831(6) * 0.0167(4)                            
 C12   0.29963(6)  0.3559(1)   0.31939(4) * 0.0118(3)                            
 C13   0.41356(7)  0.3407(1)   0.39044(5) * 0.0152(3)                            
 C14   0.41683(7)  0.4054(1)   0.47623(5) * 0.0167(3)                            
 C15   0.30979(8)  0.4820(1)   0.48940(5) * 0.0156(3)                            
 C16   0.20183(7)  0.4924(1)   0.41302(5) * 0.0130(3)                            
 C17  -0.00610(7)  0.6219(1)   0.35156(5) * 0.0136(3)                            
 C18   0.03446(8)  0.7851(1)   0.31688(6) * 0.0156(3)                            
 C19  -0.07471(7)  0.8762(1)   0.24822(5) * 0.0158(3)                            
 C20  -0.18434(8)  0.9003(1)   0.29109(6) * 0.0176(4)                            
 C21  -0.22820(7)  0.7329(1)   0.31872(6) * 0.0154(3)                            
 C22  -0.12028(7)  0.6429(1)   0.39009(5) * 0.0134(3)                            
 C24  -0.16342(9)  0.4774(1)   0.42335(6) * 0.0184(4)                            
 C25  -0.25289(9)  0.5084(1)   0.48309(6) * 0.0203(4)                            
 C26  -0.2280(1)   0.3572(2)   0.34433(8) * 0.0333(6)                            
 C27  -0.0285(1)   1.0415(1)   0.21980(7) * 0.0238(5)                            
 H13   0.4863(-)   0.2888(-)   0.3799(-)  * 0.017(-)                             
 H24  -0.0870(-)   0.4266(-)   0.4594(-)  * 0.014(-)                             
 H3    0.3762(-)  -0.2477(-)   0.3069(-)  * 0.015(-)                             
 H22  -0.0952(-)   0.7108(-)   0.4436(-)  * 0.007(-)                             
 H17  -0.0274(-)   0.5476(-)   0.3011(-)  * 0.007(-)                             
 H5    0.5187(-)  -0.0354(-)   0.1149(-)  * 0.019(-)                             
 H2    0.2857(-)   0.0119(-)   0.3248(-)  * 0.016(-)                             
 H26a -0.2528(-)   0.2589(-)   0.3690(-)  * 0.052(-)                             
 H26b -0.1712(-)   0.3316(-)   0.3095(-)  * 0.052(-)                             
 H26c -0.3025(-)   0.4100(-)   0.3049(-)  * 0.052(-)                             
 H8    0.0045(-)   0.5663(-)   0.1377(-)  * 0.021(-)                             
 H9   -0.0123(-)   0.8221(-)   0.0572(-)  * 0.017(-)                             
 H6a   0.1050(-)   0.3091(-)   0.1769(-)  * 0.007(-)                             
 H6b   0.1753(-)   0.2430(-)   0.1082(-)  * 0.007(-)                             
 H11   0.3172(-)   0.7107(-)   0.0002(-)  * 0.016(-)                             
 H15   0.3100(-)   0.5274(-)   0.5475(-)  * 0.007(-)                             
 H10   0.1474(-)   0.8919(-)  -0.0131(-)  * 0.007(-)                             
 H14   0.4919(-)   0.3962(-)   0.5263(-)  * 0.007(-)                             
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 H4    0.4968(-)  -0.2690(-)   0.1979(-)  * 0.007(-)                             
 H19  -0.1048(-)   0.8101(-)   0.1939(-)  * 0.007(-)                             
 H21a -0.2971(-)   0.7515(-)   0.3447(-)  * 0.007(-)                             
 H21b -0.2571(-)   0.6651(-)   0.2655(-)  * 0.007(-)                             
 H25a -0.2779(-)   0.4057(-)   0.5028(-)  * 0.024(-)                             
 H25b -0.3265(-)   0.5671(-)   0.4475(-)  * 0.024(-)                             
 H25c -0.2106(-)   0.5743(-)   0.5350(-)  * 0.024(-)                             
 H18a  0.0984(-)   0.7626(-)   0.2875(-)  * 0.007(-)                             
 H18b  0.0675(-)   0.8573(-)   0.3680(-)  * 0.007(-)                             
 H20a -0.2535(-)   0.9536(-)   0.2473(-)  * 0.007(-)                             
 H20b -0.1560(-)   0.9696(-)   0.3441(-)  * 0.007(-)                             
 H27a -0.0969(-)   1.0971(-)   0.1766(-)  * 0.007(-)                             
 H27b  0.0383(-)   1.0222(-)   0.1916(-)  * 0.007(-)                             
 H27c  0.0033(-)   1.1106(-)   0.2724(-)  * 0.007(-)                             
 -----------------------------------------------------                           
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                     Atomic Displacement Parameters                                         
                                                                                 
 --------------------------------------------------------------------
-------     
 Atom    U11          U22          U33          U12         U13          
U23         
 --------------------------------------------------------------------
-------     
 Ag1   0.01712(3)  0.01642(3)  0.02117(3)  0.00130(2)  0.01176(2)  
0.00178(2)    
 O1    0.0143(2)   0.0260(3)   0.0119(2)   0.0092(2)   0.0050(2)   
0.0009(2)     
 O2    0.0145(3)   0.0238(3)   0.0282(3)  -0.0059(2)   0.0080(2)  -
0.0032(3)     
 O3    0.0211(3)   0.0186(3)   0.0273(3)   0.0003(2)   0.0085(2)   
0.0044(2)     
 O4    0.0171(3)   0.0266(3)   0.0242(3)   0.0070(2)   0.0117(2)   
0.0052(3)     
 N1    0.0133(3)   0.0140(3)   0.0100(2)   0.0033(2)   0.0041(2)  -
0.0002(2)     
 N2    0.0130(3)   0.0146(3)   0.0148(3)  -0.0004(2)   0.0053(2)   
0.0012(2)     
 N3    0.0114(2)   0.0147(3)   0.0121(2)   0.0016(2)   0.0053(2)   
0.0001(2)     
 N4    0.0151(3)   0.0171(3)   0.0144(3)   0.0029(2)   0.0073(2)   
0.0001(2)     
 N5    0.0153(3)   0.0169(3)   0.0135(3)  -0.0008(2)   0.0060(2)  -
0.0039(2)     
 C1    0.0122(3)   0.0142(3)   0.0113(3)   0.0016(2)   0.0035(2)  -
0.0006(2)     
 C2    0.0164(3)   0.0162(3)   0.0153(3)   0.0023(3)   0.0069(3)   
0.0021(3)     
 C3    0.0209(3)   0.0147(4)   0.0165(3)   0.0036(3)   0.0040(2)   
0.0007(3)     
 C4    0.0169(3)   0.0164(4)   0.0171(3)   0.0050(2)   0.0023(3)  -
0.0008(2)     
 C5    0.0165(3)   0.0193(3)   0.0163(3)   0.0058(3)   0.0063(3)  -
0.0017(3)     
 C6    0.0115(3)   0.0122(3)   0.0123(3)  -0.0003(2)   0.0028(2)   
0.0008(2)     
 C7    0.0115(3)   0.0133(3)   0.0108(3)  -0.0006(2)   0.0030(2)  -
0.0005(2)     
 C8    0.0123(3)   0.0163(3)   0.0128(3)   0.0010(2)   0.0033(2)   
0.0014(2)     
 C9    0.0156(3)   0.0168(3)   0.0150(3)   0.0027(3)   0.0019(2)   
0.0027(3)     
 C10   0.0176(3)   0.0166(3)   0.0165(3)   0.0008(3)   0.0025(3)   
0.0046(3)     
 C11   0.0151(3)   0.0182(3)   0.0172(3)  -0.0011(3)   0.0050(3)   
0.0045(3)     
 C12   0.0111(2)   0.0134(3)   0.0116(2)   0.0009(3)   0.0046(2)  -
0.0005(3)     
 C13   0.0105(3)   0.0203(4)   0.0148(3)   0.0028(2)   0.0034(2)  -
0.0022(2)     
 C14   0.0112(3)   0.0240(4)   0.0138(3)   0.0020(2)   0.0016(2)  -
0.0031(2)     
 C15   0.0143(3)   0.0207(3)   0.0117(3)   0.0020(3)   0.0035(2)  -
0.0025(3)     
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 C16   0.0126(3)   0.0151(3)   0.0129(3)   0.0024(2)   0.0060(2)   
0.0006(2)     
 C17   0.0117(3)   0.0179(3)   0.0117(3)   0.0036(2)   0.0045(2)   
0.0010(2)     
 C18   0.0132(3)   0.0184(3)   0.0157(3)  -0.0012(3)   0.0051(2)  -
0.0004(3)     
 C19   0.0162(3)   0.0146(3)   0.0170(3)  -0.0014(3)   0.0053(2)   
0.0019(3)     
 C20   0.0158(3)   0.0140(4)   0.0234(3)   0.0025(2)   0.0061(3)   
0.0046(2)     
 C21   0.0120(3)   0.0156(3)   0.0188(3)   0.0018(2)   0.0049(2)   
0.0033(3)     
 C22   0.0131(3)   0.0150(3)   0.0136(3)   0.0036(2)   0.0061(2)   
0.0013(2)     
 C24   0.0210(4)   0.0178(3)   0.0207(3)   0.0059(3)   0.0128(3)   
0.0060(3)     
 C26   0.0572(6)   0.0152(4)   0.0378(5)  -0.0071(5)   0.0304(5)  -
0.0041(5)     
 C25   0.0185(3)   0.0253(4)   0.0207(3)   0.0034(3)   0.0113(3)   
0.0052(3)     
 C27   0.0262(4)   0.0184(4)   0.0284(4)  -0.0043(3)   0.0102(3)   
0.0048(3)     
 H13   0.017(-)    0.017(-)    0.017(-)    0.000(-)    0.005(-)    
0.000(-)      
 H24   0.014(-)    0.014(-)    0.014(-)    0.000(-)    0.004(-)    
0.000(-)      
 H3    0.015(-)    0.015(-)    0.015(-)    0.000(-)    0.004(-)    
0.000(-)      
 H22   0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H17   0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H5    0.019(-)    0.019(-)    0.019(-)    0.000(-)    0.005(-)    
0.000(-)      
 H2    0.016(-)    0.016(-)    0.016(-)    0.000(-)    0.005(-)    
0.000(-)      
 H26a  0.052(-)    0.052(-)    0.052(-)    0.000(-)    0.015(-)    
0.000(-)      
 H26b  0.052(-)    0.052(-)    0.052(-)    0.000(-)    0.015(-)    
0.000(-)      
 H26c  0.052(-)    0.052(-)    0.052(-)    0.000(-)    0.015(-)    
0.000(-)      
 H8    0.021(-)    0.021(-)    0.021(-)    0.000(-)    0.006(-)    
0.000(-)      
 H9    0.017(-)    0.017(-)    0.017(-)    0.000(-)    0.005(-)    
0.000(-)      
 H6a   0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H6b   0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H11   0.016(-)    0.016(-)    0.016(-)    0.000(-)    0.005(-)    
0.000(-)      
 H15   0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H10   0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H14   0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H4    0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
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 H19   0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H21a  0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H21b  0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H25a  0.024(-)    0.024(-)    0.024(-)    0.000(-)    0.007(-)    
0.000(-)      
 H25b  0.024(-)    0.024(-)    0.024(-)    0.000(-)    0.007(-)    
0.000(-)      
 H25c  0.024(-)    0.024(-)    0.024(-)    0.000(-)    0.007(-)    
0.000(-)      
 H18a  0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H18b  0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H20a  0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H20b  0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H27a  0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H27b  0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 H27c  0.007(-)    0.007(-)    0.007(-)    0.000(-)    0.002(-)    
0.000(-)      
 -------------------------------------------------------------------- 
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Bond Distances     (Angstroms)                                                  
                                                                                 
 Ag1-N2           2.2685(8)                                                      
 C16-N3           1.332(1)                                                       
 C16-O1           1.353(1)                                                       
 C16-C15          1.3998(9)                                                      
 C12-N3           1.342(1)                                                       
 C12-C13          1.4001(8)                                                      
 C12-N1           1.4021(9)                                                      
 C13-H13           .9509(8)                                                      
 C13-C14          1.388(1)                                                       
 C24-H24           .9500(9)                                                      
 C24-C25          1.529(2)                                                       
 C24-C22          1.542(1)                                                       
 C24-C26          1.542(1)                                                       
 C3-H3             .9548(9)                                                      
 C3-C2            1.392(1)                                                       
 C3-C4            1.396(1)                                                       
 C22-H22           .9483(7)                                                      
 C22-C17          1.530(1)                                                       
 C22-C21          1.535(1)                                                       
 C1-N4            1.339(1)                                                       
 C1-C2            1.393(1)                                                       
 C1-N1            1.425(1)                                                       
 N1-C6            1.4728(8)                                                      
 C17-H17           .9446(8)                                                      
 C17-O1           1.4573(9)                                                      
 C17-C18          1.523(1)                                                       
 C5-H5             .943(1)                                                       
 C5-N4            1.348(1)                                                       
 C5-C4            1.386(1)                                                       
 N2-C11           1.343(1)                                                       
 N2-C7            1.349(1)                                                       
 C7-C8            1.390(1)                                                       
 C7-C6            1.513(1)                                                       
 C2-H2             .950(1)                                                       
 C26-H26b          .945(1)                                                       
 C26-H26a          .945(1)                                                       
 C26-H26c          .960(1)                                                       
 C8-H8             .9521(9)                                                      
 C8-C9            1.394(1)                                                       
 C9-H9             .9583(9)                                                      
 C9-C10           1.388(1)                                                       
 C6-H6a            .9456(8)                                                      
 C6-H6b            .9477(8)                                                      
 C11-H11           .950(1)                                                       
 C11-C10          1.390(1)                                                       
 C15-H15           .9509(8)                                                      
 C15-C14          1.386(1)                                                       
 C10-H10           .9525(9)                                                      
 C14-H14           .9478(6)                                                      
 C4-H4             .9534(9)                                                      
 C19-H19           .9541(8)                                                      
 C19-C27          1.525(1)                                                       
 C19-C18          1.528(1)                                                       
 C19-C20          1.529(1)                                                       
 C21-H21b          .9481(8)                                                      
 C21-H21a          .9555(9)                                                      
 C21-C20          1.524(1)                                                       
 C25-H25a          .942(1)                                                       
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 C25-H25c          .9510(9)                                                      
 C25-H25b          .9561(9)                                                      
 C18-H18a          .946(1)                                                       
 C18-H18b          .9513(8)                                                      
 C20-H20b          .9524(8)                                                      
 C20-H20a          .9527(8)                                                      
 C27-H27c          .950(1)                                                       
 C27-H27a          .9528(9)                                                      
 C27-H27b          .957(1)                                                       
 N5-O2            1.240(1)                                                       
 N5-O4            1.261(1)                                                       
 N5-O3            1.262(1)                                                       
                                                                                 
                                                                                 



 Additional Data 193 
Bond Angles        (degrees)                                                    
                                                                                 
 N3-C16-O1              120.08(6)                                                
 N3-C16-C15             124.34(8)                                                
 O1-C16-C15             115.55(7)                                                
 N3-C12-C13             123.41(7)                                                
 N3-C12-N1              117.25(5)                                                
 C13-C12-N1             119.34(7)                                                
 H13-C13-C14            121.34(6)                                                
 H13-C13-C12            120.93(7)                                                
 C14-C13-C12            117.73(7)                                                
 H24-C24-C25            109.73(8)                                                
 H24-C24-C22            104.81(8)                                                
 H24-C24-C26            108.08(9)                                                
 C25-C24-C22            111.04(7)                                                
 C25-C24-C26            109.30(9)                                                
 C22-C24-C26            113.71(8)                                                
 H3-C3-C2               120.23(9)                                                
 H3-C3-C4               121.07(9)                                                
 C2-C3-C4               118.70(8)                                                
 H22-C22-C17            108.59(7)                                                
 H22-C22-C21            107.87(7)                                                
 H22-C22-C24            104.95(7)                                                
 C17-C22-C21            109.39(7)                                                
 C17-C22-C24            112.82(7)                                                
 C21-C22-C24            112.93(6)                                                
 N4-C1-C2               122.92(8)                                                
 N4-C1-N1               115.79(7)                                                
 C2-C1-N1               121.20(8)                                                
 C12-N1-C1              117.53(6)                                                
 C12-N1-C6              119.10(7)                                                
 C1-N1-C6               115.10(6)                                                
 H17-C17-O1             113.95(7)                                                
 H17-C17-C18            107.08(7)                                                
 H17-C17-C22            109.69(7)                                                
 O1-C17-C18             108.05(6)                                                
 O1-C17-C22             105.50(6)                                                
 C18-C17-C22            112.67(7)                                                
 H5-C5-N4               118.18(9)                                                
 H5-C5-C4               118.55(9)                                                
 N4-C5-C4               123.27(9)                                                
 C1-N4-C5               117.82(8)                                                
 C11-N2-C7              118.21(8)                                                
 C11-N2-Ag1             120.81(7)                                                
 C7-N2-Ag1              120.97(5)                                                
 N2-C7-C8               122.24(7)                                                
 N2-C7-C6               117.39(7)                                                
 C8-C7-C6               120.15(7)                                                
 H2-C2-C3               120.57(9)                                                
 H2-C2-C1               120.65(9)                                                
 C3-C2-C1               118.77(9)                                                
 H26b-C26-H26a          110.3(1)                                                 
 H26b-C26-H26c          109.0(1)                                                 
 H26b-C26-C24           109.8(1)                                                 
 H26a-C26-H26c          109.0(1)                                                 
 H26a-C26-C24           109.7(1)                                                 
 H26c-C26-C24           109.0(1)                                                 
 H8-C8-C7               120.71(8)                                                
 H8-C8-C9               120.22(8)                                                
 C7-C8-C9               119.07(8)                                                
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 H9-C9-C10              120.11(9)                                                
 H9-C9-C8               121.08(9)                                                
 C10-C9-C8              118.81(8)                                                
 C16-O1-C17             119.81(6)                                                
 H6a-C6-H6b             110.03(7)                                                
 H6a-C6-N1              108.37(7)                                                
 H6a-C6-C7              107.86(7)                                                
 H6b-C6-N1              107.93(7)                                                
 H6b-C6-C7              107.82(7)                                                
 N1-C6-C7               114.79(6)                                                
 H11-C11-N2             118.97(9)                                                
 H11-C11-C10            117.93(9)                                                
 N2-C11-C10             123.10(9)                                                
 H15-C15-C14            121.51(7)                                                
 H15-C15-C16            121.32(9)                                                
 C14-C15-C16            117.16(7)                                                
 H10-C10-C9             120.64(9)                                                
 H10-C10-C11            120.8(1)                                                 
 C9-C10-C11             118.57(8)                                                
 H14-C14-C15            119.63(8)                                                
 H14-C14-C13            120.23(8)                                                
 C15-C14-C13            120.13(6)                                                
 H4-C4-C5               119.7(1)                                                 
 H4-C4-C3               121.83(9)                                                
 C5-C4-C3               118.51(8)                                                
 H19-C19-C27            107.64(8)                                                
 H19-C19-C18            109.25(9)                                                
 H19-C19-C20            108.33(7)                                                
 C27-C19-C18            110.53(7)                                                
 C27-C19-C20            111.88(8)                                                
 C18-C19-C20            109.15(7)                                                
 C16-N3-C12             117.18(6)                                                
 H21b-C21-H21a          109.16(7)                                                
 H21b-C21-C20           109.16(8)                                                
 H21b-C21-C22           109.28(7)                                                
 H21a-C21-C20           108.77(7)                                                
 H21a-C21-C22           108.81(8)                                                
 C20-C21-C22            111.63(6)                                                
 H25a-C25-H25c          110.04(9)                                                
 H25a-C25-H25b          109.60(9)                                                
 H25a-C25-C24           109.61(9)                                                
 H25c-C25-H25b          108.9(1)                                                 
 H25c-C25-C24           109.65(9)                                                
 H25b-C25-C24           109.06(8)                                                
 H18a-C18-H18b          109.68(8)                                                
 H18a-C18-C17           108.91(8)                                                
 H18a-C18-C19           108.16(8)                                                
 H18b-C18-C17           108.97(8)                                                
 H18b-C18-C19           107.62(8)                                                
 C17-C18-C19            113.46(7)                                                
 H20b-C20-H20a          109.03(8)                                                
 H20b-C20-C21           109.68(8)                                                
 H20b-C20-C19           108.89(8)                                                
 H20a-C20-C21           109.69(7)                                                
 H20a-C20-C19           108.98(8)                                                
 C21-C20-C19            110.54(7)                                                
 H27c-C27-H27a          109.2(1)                                                 
 H27c-C27-H27b          108.9(1)                                                 
 H27c-C27-C19           110.10(9)                                                
 H27a-C27-H27b          108.7(1)                                                 
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 H27a-C27-C19           110.02(9)                                                
 H27b-C27-C19           109.92(9)                                                
 O2-N5-O4               120.70(7)                                                
 O2-N5-O3               120.37(7)                                                
 O4-N5-O3               118.93(8)                                                
                                                                                 
                                                                                 
 Dihedral Angles    (degrees)                                                    
                                                                                 
 C15-C16-O1-C17                 163.59(7)                                        
 N3-C16-O1-C17                  -18.1(1)                                         
 O1-C16-C15-C14                 178.53(8)                                        
 O1-C16-C15-H15                  -2.6(1)                                         
 N3-C16-C15-C14                    .3(1)                                         
 N3-C16-C15-H15                 179.18(8)                                        
 O1-C16-N3-C12                 -176.81(8)                                        
 C15-C16-N3-C12                   1.4(1)                                         
 N1-C12-C13-C14                -179.10(8)                                        
 N1-C12-C13-H13                   1.5(1)                                         
 N3-C12-C13-C14                   1.9(1)                                         
 N3-C12-C13-H13                -177.51(8)                                        
 C13-C12-N1-C1                   39.7(1)                                         
 C13-C12-N1-C6                 -173.37(8)                                        
 N3-C12-N1-C1                  -141.18(8)                                        
 N3-C12-N1-C6                     5.7(1)                                         
 C13-C12-N3-C16                  -2.5(1)                                         
 N1-C12-N3-C16                  178.48(8)                                        
 C12-C13-C14-C15                  -.1(1)                                         
 C12-C13-C14-H14                179.16(9)                                        
 H13-C13-C14-C15                179.29(8)                                        
 H13-C13-C14-H14                 -1.5(1)                                         
 C26-C24-C22-C17                -70.9(1)                                         
 C26-C24-C22-C21                 53.8(1)                                         
 C26-C24-C22-H22                171.06(8)                                        
 C25-C24-C22-C17                165.36(6)                                        
 C25-C24-C22-C21                -69.96(9)                                        
 C25-C24-C22-H22                 47.29(8)                                        
 H24-C24-C22-C17                 46.94(9)                                        
 H24-C24-C22-C21                171.62(8)                                        
 H24-C24-C22-H22                -71.1(1)                                         
 C22-C24-C26-H26a              -179.5(1)                                         
 C22-C24-C26-H26b                59.1(1)                                         
 C22-C24-C26-H26c               -60.2(1)                                         
 C25-C24-C26-H26a               -54.8(1)                                         
 C25-C24-C26-H26b              -176.17(9)                                        
 C25-C24-C26-H26c                64.5(1)                                         
 H24-C24-C26-H26a                64.6(1)                                         
 H24-C24-C26-H26b               -56.8(1)                                         
 H24-C24-C26-H26c              -176.2(1)                                         
 C22-C24-C25-H25a              -179.86(7)                                        
 C22-C24-C25-H25b                60.16(9)                                        
 C22-C24-C25-H25c               -58.96(9)                                        
 C26-C24-C25-H25a                53.9(1)                                         
 C26-C24-C25-H25b               -66.1(1)                                         
 C26-C24-C25-H25c               174.80(8)                                        
 H24-C24-C25-H25a               -64.5(1)                                         
 H24-C24-C25-H25b               175.56(8)                                        
 H24-C24-C25-H25c                56.4(1)                                         
 C4-C3-C2-C1                      -.3(1)                                         
 C4-C3-C2-H2                    179.88(7)                                        
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 H3-C3-C2-C1                   -179.71(7)                                        
 H3-C3-C2-H2                       .4(1)                                         
 C2-C3-C4-C5                       .5(1)                                         
 C2-C3-C4-H4                    179.87(7)                                        
 H3-C3-C4-C5                    179.94(7)                                        
 H3-C3-C4-H4                      -.7(1)                                         
 C24-C22-C17-O1                 -63.56(8)                                        
 C24-C22-C17-C18                178.77(6)                                        
 C24-C22-C17-H17                 59.58(8)                                        
 C21-C22-C17-O1                 169.84(6)                                        
 C21-C22-C17-C18                 52.17(8)                                        
 C21-C22-C17-H17                -67.02(9)                                        
 H22-C22-C17-O1                  52.34(9)                                        
 H22-C22-C17-C18                -65.33(8)                                        
 H22-C22-C17-H17                175.48(7)                                        
 C24-C22-C21-C20                176.97(8)                                        
 C24-C22-C21-H21a                56.93(9)                                        
 C24-C22-C21-H21b               -62.2(1)                                         
 C17-C22-C21-C20                -56.49(9)                                        
 C17-C22-C21-H21a              -176.54(7)                                        
 C17-C22-C21-H21b                64.35(9)                                        
 H22-C22-C21-C20                 61.5(1)                                         
 H22-C22-C21-H21a               -58.6(1)                                         
 H22-C22-C21-H21b              -177.70(8)                                        
 N4-C1-N1-C12                  -135.73(7)                                        
 N4-C1-N1-C6                     76.08(9)                                        
 C2-C1-N1-C12                    47.6(1)                                         
 C2-C1-N1-C6                   -100.55(8)                                        
 N1-C1-N4-C5                   -175.23(6)                                        
 C2-C1-N4-C5                      1.3(1)                                         
 N1-C1-C2-C3                    175.70(6)                                        
 N1-C1-C2-H2                     -4.4(1)                                         
 N4-C1-C2-C3                      -.7(1)                                         
 N4-C1-C2-H2                    179.17(7)                                        
 C12-N1-C6-C7                    77.9(1)                                         
 C12-N1-C6-H6a                  -42.8(1)                                         
 C12-N1-C6-H6b                 -161.88(8)                                        
 C1-N1-C6-C7                   -134.47(8)                                        
 C1-N1-C6-H6a                   104.91(8)                                        
 C1-N1-C6-H6b                   -14.2(1)                                         
 C22-C17-O1-C16                 162.43(7)                                        
 C18-C17-O1-C16                 -76.83(9)                                        
 H17-C17-O1-C16                  42.0(1)                                         
 C22-C17-C18-C19                -52.75(9)                                        
 C22-C17-C18-H18a              -173.27(6)                                        
 C22-C17-C18-H18b                67.12(9)                                        
 O1-C17-C18-C19                -168.90(7)                                        
 O1-C17-C18-H18a                 70.58(9)                                        
 O1-C17-C18-H18b                -49.0(1)                                         
 H17-C17-C18-C19                 67.9(1)                                         
 H17-C17-C18-H18a               -52.58(9)                                        
 H17-C17-C18-H18b              -172.19(7)                                        
 C4-C5-N4-C1                     -1.1(1)                                         
 H5-C5-N4-C1                    179.10(7)                                        
 N4-C5-C4-C3                       .2(1)                                         
 N4-C5-C4-H4                   -179.21(7)                                        
 H5-C5-C4-C3                    179.99(7)                                        
 H5-C5-C4-H4                       .6(1)                                         
 Ag1-N2-C7-C8                   178.10(5)                                        
 Ag1-N2-C7-C6                    -7.32(9)                                        
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 C11-N2-C7-C8                     -.5(1)                                         
 C11-N2-C7-C6                   174.07(7)                                        
 Ag1-N2-C11-C10                -178.95(6)                                        
 Ag1-N2-C11-H11                   1.5(1)                                         
 C7-N2-C11-C10                    -.3(1)                                         
 C7-N2-C11-H11                 -179.87(7)                                        
 N2-C7-C8-C9                      1.0(1)                                         
 N2-C7-C8-H8                   -179.23(7)                                        
 C6-C7-C8-C9                   -173.49(7)                                        
 C6-C7-C8-H8                      6.3(1)                                         
 N2-C7-C6-N1                     62.13(9)                                        
 N2-C7-C6-H6a                  -176.97(6)                                        
 N2-C7-C6-H6b                   -58.18(9)                                        
 C8-C7-C6-N1                   -123.17(8)                                        
 C8-C7-C6-H6a                    -2.27(9)                                        
 C8-C7-C6-H6b                   116.52(8)                                        
 C7-C8-C9-C10                     -.5(1)                                         
 C7-C8-C9-H9                   -179.78(7)                                        
 H8-C8-C9-C10                   179.65(7)                                        
 H8-C8-C9-H9                       .4(1)                                         
 C8-C9-C10-C11                    -.3(1)                                         
 C8-C9-C10-H10                  179.89(8)                                        
 H9-C9-C10-C11                  179.00(8)                                        
 H9-C9-C10-H10                    -.9(1)                                         
 N2-C11-C10-C9                     .7(1)                                         
 N2-C11-C10-H10                -179.42(8)                                        
 H11-C11-C10-C9                -179.74(8)                                        
 H11-C11-C10-H10                   .1(1)                                         
 C16-C15-C14-C13                  -.9(1)                                         
 C16-C15-C14-H14                179.85(8)                                        
 H15-C15-C14-C13               -179.81(9)                                        
 H15-C15-C14-H14                   .9(1)                                         
 C20-C19-C18-C17                 54.1(1)                                         
 C20-C19-C18-H18a               175.02(7)                                        
 C20-C19-C18-H18b               -66.6(1)                                         
 C27-C19-C18-C17                177.53(8)                                        
 C27-C19-C18-H18a               -61.5(1)                                         
 C27-C19-C18-H18b                56.9(1)                                         
 H19-C19-C18-C17                -64.2(1)                                         
 H19-C19-C18-H18a                56.7(1)                                         
 H19-C19-C18-H18b               175.16(9)                                        
 C18-C19-C20-C21                -57.33(9)                                        
 C18-C19-C20-H20a              -177.95(7)                                        
 C18-C19-C20-H20b                63.2(1)                                         
 C27-C19-C20-C21               -179.98(6)                                        
 C27-C19-C20-H20a                59.40(9)                                        
 C27-C19-C20-H20b               -59.42(9)                                        
 H19-C19-C20-C21                 61.53(9)                                        
 H19-C19-C20-H20a               -59.1(1)                                         
 H19-C19-C20-H20b              -177.91(8)                                        
 C18-C19-C27-H27a               179.48(9)                                        
 C18-C19-C27-H27b                59.9(1)                                         
 C18-C19-C27-H27c               -60.1(1)                                         
 C20-C19-C27-H27a               -58.7(1)                                         
 C20-C19-C27-H27b              -178.28(7)                                        
 C20-C19-C27-H27c                61.8(1)                                         
 H19-C19-C27-H27a                60.2(1)                                         
 H19-C19-C27-H27b               -59.4(1)                                         
 H19-C19-C27-H27c              -179.35(9)                                        
 C22-C21-C20-C19                 60.42(9)                                        
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 C22-C21-C20-H20a              -179.39(8)                                        
 C22-C21-C20-H20b               -59.7(1)                                         
 H21a-C21-C20-C19              -179.51(6)                                        
 H21a-C21-C20-H20a              -59.3(1)                                         
 H21a-C21-C20-H20b               60.41(9)                                        
 H21b-C21-C20-C19               -60.49(8)                                        
 H21b-C21-C20-H20a               59.7(1)                                         
 H21b-C21-C20-H20b              179.42(7)                                        
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8.1.5 X-ray Structure of N,N-Dipyridylaminopicoline-iron(II) 

Triflate: 

 

 

 

Experimental Details 

Crystal data: 

Chemical formula  : C17H16F3Fe0.5N4O4S 

formula weight   : 457.32 

Crystal system   : monoclinic 

Space group (No.)  :  P21/n (14) 

Z     : 4 

a (Å)    : 9.0516(9) 

b (Å)    : 16.2770(15) 

c (Å)    : 13.7375(13) 

α  (°)    : 90.0 

β  (°)    : 105.225(2) 

γ (°)    : 90.0 

cell volume   : 1952.9(3)Å3 

Density calc.   : 1.555g/cm3 

Radiation    : MoKα (1.54179Å) 

Range for lattice parameters : Ε<Θ <Ε 



 Additional Data 200 

Absorption coefficient  : 0.583mm-1 

Temperature   : 130K 

Crystal source   : recrystallized from acetone and Et2O 

Crystal colour   : yellow 

Crystal shape   : irregular 

Crystal size   : ca. 0.10x0.13x0.32mm 

Data Collection 

Diffractometer type  : Bruker Smart CCD area detector 

collection method  : ω scans 

Absorption correction  : none 

No. of reflections measured : 46610 

No. of independent reflections: 4009 

No. of observed reflections : 3441 

 Θ max  (Ε)    : 26.42 

hmin 6 hmax   :   - 11    6   11 

kmin 6 kmax   :   - 20    6   20 

lmin 6  lmax    :   - 17    6   17 

 



 Additional Data 201 

Criterion for observed  : I > 2σ (I ) 

Rint     : 0.079(65) 

Standard reflections  :   

Variation    :  

Refinement:  

On     : F 

Treatment of hydrogens : Calculated in idealized positions.  
      No refinement of hydrogen  
      parameters    
 
R     : 0.098 

Rw     : 0.104
a) 

Weighting scheme  : w=1/σ2(F) 

No. of parameters refined : 304 

No. of reflections in refmnt. : 3441 

Residual electron density : -2.44/1.97e/Å3  

r*[1]    : not refined 

XABS[2]    :  

Goodness of fit   : 3.31 

Solution    : XTAL3.7[3] 

Remarks    : a)Cell contains disordered CF3SO3
-,  
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 Atomic Positional, Isotropic Displacement and Site Occupation Parameters        
 ---------------------------------------------------------------                 
 Atom    x/a         y/b         z/c        Ueq/Å

2       PP                     
 ---------------------------------------------------------------                 
 Fe      1/2         1/2          0       * 0.0230(6)                            
 S     0.1559(2)   0.3114(1)   0.4698(1)  * 0.047(1)                             
 O     0.3471(5)   0.5907(2)   0.0260(3)  * 0.037(3)                             
 O1    0.058(1)    0.3695(5)   0.427(1)   * 0.28(1)                              
 O2    0.239(2)    0.2858(5)   0.411(1)   * 0.26(2)                              
 O3    0.0936(6)   0.2519(3)   0.5207(4)  * 0.065(4)                             
 N1    0.2627(5)   0.4369(3)   0.1176(4)  * 0.037(3)                             
 N2    0.3175(6)   0.4101(3)  -0.0366(3)  * 0.031(3)                             
 N3    0.5298(5)   0.4456(3)   0.1479(3)  * 0.028(3)                             
 N4    0.2594(6)   0.5906(4)   0.2045(4)  * 0.046(4)                             
 C1    0.2244(7)   0.3992(4)   0.0220(4)  * 0.038(4)                             
 C2    0.0912(8)   0.3514(4)  -0.0094(5)  * 0.052(5)                             
 C3    0.0591(9)   0.3142(4)  -0.1014(6)  * 0.064(5)                             
 C4    0.159(1)    0.3221(4)  -0.1602(5)  * 0.056(5)                             
 C5    0.2866(8)   0.3707(3)  -0.1263(4)  * 0.042(4)                             
 C6    0.4089(7)   0.4271(3)   0.1836(4)  * 0.033(4)                             
 C7    0.4282(8)   0.4008(4)   0.2830(5)  * 0.043(4)                             
 C8    0.5727(8)   0.3927(4)   0.3441(5)  * 0.048(4)                             
 C9    0.6987(7)   0.4081(4)   0.3073(5)  * 0.041(4)                             
 C10   0.6713(7)   0.4342(4)   0.2088(4)  * 0.034(4)                             
 C11   0.1374(7)   0.4583(5)   0.1639(5)  * 0.050(5)                             
 C12   0.1761(7)   0.5316(5)   0.2328(5)  * 0.048(4)                             
 C13   0.1208(8)   0.5372(6)   0.3169(5)  * 0.063(6)                             
 C14   0.155(1)    0.6074(8)   0.3746(6)  * 0.083(7)                             
 C15   0.238(1)    0.6677(6)   0.3469(6)  * 0.076(7)                             
 C16   0.2913(8)   0.6569(5)   0.2629(5)  * 0.060(5)                             
 C18b  0.306(2)    0.348(1)    0.562(1)   * 0.05(1)     0.5000(-)                
 C18a  0.258(2)    0.395(1)    0.553(1)   * 0.05(1)     0.5000(-)                
 F1a   0.136(1)    0.4470(6)   0.5564(9)  * 0.095(9)    0.5000(-)                
 F1b   0.407(1)    0.2901(7)   0.5907(8)  * 0.104(8)    0.5000(-)                
 F2a   0.344(2)    0.4446(8)   0.514(1)   * 0.054(8)    0.5000(-)                
 F2b   0.375(2)    0.4067(9)   0.529(2)   * 0.08(1)     0.5000(-)                
 F3a   0.285(4)    0.374(2)    0.638(2)   * 0.15(2)     0.5000(-)                
 F3b   0.299(3)    0.380(1)    0.647(2)   * 0.08(1)     0.5000(-)                
 H10   0.7577(-)   0.4465(-)   0.1825(-)    0.044(-)                             
 H9    0.8014(-)   0.4002(-)   0.3486(-)    0.052(-)                             
 H7    0.3397(-)   0.3886(-)   0.3081(-)    0.055(-)                             
 H5    0.3574(-)   0.3770(-)  -0.1681(-)    0.054(-)                             
 H8    0.5887(-)   0.3753(-)   0.4133(-)    0.059(-)                             
 H2    0.0229(-)   0.3451(-)   0.0345(-)    0.064(-)                             
 H4    0.1389(-)   0.2933(-)  -0.2244(-)    0.071(-)                             
 H11a  0.1181(-)   0.4106(-)   0.2016(-)    0.062(-)                             
 H11b  0.0458(-)   0.4680(-)   0.1115(-)    0.062(-)                             
 H16   0.3532(-)   0.7010(-)   0.2433(-)    0.079(-)                             
 H3   -0.0331(-)   0.2831(-)  -0.1251(-)    0.073(-)                             
 H13   0.0608(-)   0.4920(-)   0.3351(-)    0.082(-)                             
 H14   0.1224(-)   0.6136(-)   0.4348(-)    0.105(-)                             
 H15   0.2611(-)   0.7196(-)   0.3853(-)    0.094(-)                             
 H_b   0.2916(-)   0.5752(-)   0.0183(-)    0.056(-)                             
 H_a   0.3169(-)   0.5928(-)   0.0889(-)    0.056(-)                             
 ---------------------------------------------------------------                 
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         Atomic Displacement Parameters                                          
 --------------------------------------------------------------------------
-     
 Atom    U11          U22         U33          U12          U13         U23         
 --------------------------------------------------------------------------
-     
 Fe    0.0319(6)   0.0191(6)   0.0193(6)  -0.0001(5)   0.0088(5)   
0.0006(5)     
 S     0.077(1)    0.0309(9)   0.0294(9)   0.0054(9)   0.0075(9)  -
0.0037(7)     
 O     0.047(3)    0.036(2)    0.033(2)    0.007(2)    0.019(2)   -0.003(2)      
 O1    0.153(8)    0.120(7)    0.41(2)    -0.081(6)   -0.19(1)     0.17(1)       
 O2    0.51(2)     0.094(6)    0.35(1)    -0.132(9)    0.40(2)    -0.112(8)      
 O3    0.077(4)    0.067(3)    0.062(3)   -0.001(3)    0.038(3)    0.002(3)      
 N1    0.029(3)    0.049(3)    0.031(3)   -0.009(2)    0.007(2)    0.005(2)      
 N2    0.043(3)    0.022(2)    0.023(3)   -0.005(2)    0.000(2)    0.001(2)      
 N3    0.027(3)    0.032(3)    0.023(2)   -0.003(2)    0.004(2)    0.003(2)      
 N4    0.037(3)    0.072(4)    0.033(3)   -0.002(3)    0.017(3)   -0.011(3)      
 C1    0.046(4)    0.029(3)    0.032(3)   -0.010(3)   -0.002(3)    0.010(3)      
 C2    0.045(4)    0.051(4)    0.051(4)   -0.019(4)   -0.003(4)    0.014(4)      
 C4    0.080(6)    0.027(4)    0.041(4)   -0.006(4)   -0.021(4)   -0.000(3)      
 C3    0.061(5)    0.043(4)    0.063(5)   -0.022(4)   -0.025(4)    0.011(4)      
 C5    0.064(5)    0.023(3)    0.030(3)   -0.003(3)   -0.005(3)   -0.000(3)      
 C6    0.037(4)    0.032(3)    0.027(3)   -0.005(3)    0.005(3)    0.005(3)      
 C7    0.046(4)    0.054(4)    0.031(3)   -0.012(3)    0.013(3)    0.011(3)      
 C8    0.060(5)    0.055(4)    0.025(3)   -0.012(4)    0.004(3)    0.018(3)      
 C9    0.039(4)    0.045(4)    0.033(3)   -0.009(3)   -0.002(3)    0.011(3)      
 C10   0.033(3)    0.036(3)    0.032(3)   -0.007(3)    0.004(3)    0.006(3)      
 C11   0.033(4)    0.075(5)    0.045(4)   -0.007(4)    0.014(3)    0.015(4)      
 C12   0.030(4)    0.083(5)    0.035(4)    0.003(4)    0.016(3)    0.004(4)      
 C13   0.036(4)    0.117(7)    0.037(4)    0.012(4)    0.015(3)    0.011(5)      
 C14   0.057(5)    0.16(1)     0.033(4)    0.031(6)    0.014(4)   -0.005(5)      
 C15   0.060(5)    0.122(8)    0.047(5)    0.013(5)    0.018(4)   -0.029(5)      
 C16   0.045(4)    0.093(6)    0.041(4)    0.004(4)    0.010(3)   -0.026(4)      
 C18a  0.04(1)     0.06(1)     0.05(1)    -0.010(9)    0.026(8)   -0.029(9)      
 C18b  0.05(1)     0.049(9)    0.05(1)     0.008(8)    0.026(8)   -0.013(8)      
 F1a   0.072(7)    0.072(7)    0.15(1)    -0.008(6)    0.053(7)   -0.052(7)      
 F1b   0.054(6)    0.122(9)    0.104(8)    0.044(6)   -0.035(6)   -0.023(7)      
 F2a   0.060(8)    0.060(9)    0.047(6)   -0.024(8)    0.021(5)   -0.010(7)      
 F2b   0.06(1)     0.08(1)     0.09(1)    -0.05(1)     0.038(9)   -0.03(1)       
 F3a   0.26(3)     0.15(2)     0.005(8)   -0.12(2)     0.00(1)    -0.019(9)      
 F3b   0.14(2)     0.056(9)    0.03(1)     0.02(1)     0.00(1)    -0.008(7)      
 H10   0.044(-)                                                                  
 H9    0.052(-)                                                                  
 H7    0.055(-)                                                                  
 H5    0.054(-)                                                                  
 H8    0.059(-)                                                                  
 H2    0.064(-)                                                                  
 H4    0.071(-)                                                                  
 H11a  0.062(-)                                                                  
 H11b  0.062(-)                                                                  
 H16   0.079(-)                                                                  
 H3    0.073(-)                                                                  
 H13   0.082(-)                                                                  
 H14   0.105(-)                                                                  
 H15   0.094(-)                                                                  
 H_b   0.056(-)                                                                  
 H_a   0.056(-)                                                                  
 -------------------------------------------------------------------------- 
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Bond Distances     (Angstroms)                                                  
                                                                                 
 S-O2             1.31(2)                                                        
 S-O1             1.322(9)                                                       
 S-O3             1.397(6)                                                       
 S-C18b           1.70(2)                                                        
 S-C18a           1.85(2)                                                        
 C18b-C18a         .88(2)                                                        
 C18b-F3a         1.19(4)                                                        
 C18b-F2b         1.29(3)                                                        
 C18b-F1b         1.29(2)                                                        
 C18b-F3b         1.30(3)                                                        
 C18a-F3a         1.18(3)                                                        
 C18a-F2b         1.20(3)                                                        
 C18a-F3b         1.28(3)                                                        
 C18a-F2a         1.33(3)                                                        
 C18a-F1a         1.41(2)                                                        
 F3b-F3a           .17(4)                                                        
 F2a-F2b           .69(2)                                                        
 N2-C1            1.322(9)                                                       
 N2-C5            1.351(7)                                                       
 N3-C6            1.346(8)                                                       
 N3-C10           1.346(7)                                                       
 N1-C6            1.403(7)                                                       
 N1-C1            1.409(8)                                                       
 N1-C11           1.480(9)                                                       
 N4-C16           1.33(1)                                                        
 N4-C12           1.34(1)                                                        
 C6-C7            1.398(9)                                                       
 C10-H10           .965(7)                                                       
 C10-C9           1.377(8)                                                       
 C1-C2            1.404(9)                                                       
 C9-H9             .962(6)                                                       
 C9-C8            1.39(1)                                                        
 C7-H7             .971(7)                                                       
 C7-C8            1.363(9)                                                       
 C5-H5             .973(7)                                                       
 C5-C4            1.38(1)                                                        
 C8-H8             .966(6)                                                       
 C2-H2             .975(8)                                                       
 C2-C3            1.36(1)                                                        
 C12-C13          1.38(1)                                                        
 C12-C11          1.51(1)                                                        
 C4-H4             .973(7)                                                       
 C4-C3            1.37(1)                                                        
 C11-H11b          .958(6)                                                       
 C11-H11a          .973(8)                                                       
 C16-H16           .991(8)                                                       
 C16-C15          1.37(1)                                                        
 C3-H3             .958(7)                                                       
 C13-H13           .985(9)                                                       
 C13-C14          1.38(1)                                                        
 C14-H14           .954(9)                                                       
 C14-C15          1.35(2)                                                        
 C15-H15           .99(1)                                                        
 O-H_b             .547(4)                                                       
 O-H_a             .972(4)                                                       
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 Bond Angles        (degrees)                                                    
                                                                                 
 O2-S-O1                112.4(8)                                                 
 O2-S-O3                117.5(5)                                                 
 O2-S-C18b               95.1(8)                                                 
 O2-S-C18a              109.6(8)                                                 
 O1-S-O3                114.1(6)                                                 
 O1-S-C18b              113.2(7)                                                 
 O1-S-C18a               85.2(7)                                                 
 O3-S-C18b              102.5(6)                                                 
 O3-S-C18a              113.7(6)                                                 
 C18b-S-C18a             28.2(8)                                                 
 C18a-C18b-F3a           68(2)                                                   
 C18a-C18b-F2b           64(2)                                                   
 C18a-C18b-F1b          165(2)                                                   
 C18a-C18b-F3b           69(2)                                                   
 C18a-C18b-S             85(1)                                                   
 F3a-C18b-F2b           104(2)                                                   
 F3a-C18b-F1b           105(2)                                                   
 F3a-C18b-F3b             6(2)                                                   
 F3a-C18b-S             120(2)                                                   
 F2b-C18b-F1b           107(2)                                                   
 F2b-C18b-F3b            99(2)                                                   
 F2b-C18b-S             111(1)                                                   
 F1b-C18b-F3b           103(2)                                                   
 F1b-C18b-S             110(1)                                                   
 F3b-C18b-S             126(2)                                                   
 C18b-C18a-F3a           69(2)                                                   
 C18b-C18a-F2b           75(2)                                                   
 C18b-C18a-F3b           71(2)                                                   
 C18b-C18a-F2a          106(2)                                                   
 C18b-C18a-F1a          153(2)                                                   
 C18b-C18a-S             66(1)                                                   
 F3a-C18a-F2b           110(2)                                                   
 F3a-C18a-F3b             7(2)                                                   
 F3a-C18a-F2a           125(2)                                                   
 F3a-C18a-F1a            95(2)                                                   
 F3a-C18a-S             110(2)                                                   
 F2b-C18a-F3b           105(2)                                                   
 F2b-C18a-F2a            31(1)                                                   
 F2b-C18a-F1a           132(2)                                                   
 F2b-C18a-S             107(1)                                                   
 F3b-C18a-F2a           118(2)                                                   
 F3b-C18a-F1a            96(2)                                                   
 F3b-C18a-S             117(2)                                                   
 F2a-C18a-F1a           101(1)                                                   
 F2a-C18a-S             117(1)                                                   
 F1a-C18a-S             101.3(9)                                                 
 F3a-F3b-C18a            54(*)                                                   
 F3a-F3b-C18b            49(*)                                                   
 C18a-F3b-C18b           40(1)                                                   
 F2b-F2a-C18a            64(2)                                                   
 F2a-F2b-C18a            85(3)                                                   
 F2a-F2b-C18b           126(3)                                                   
 C18a-F2b-C18b           41(1)                                                   
 F3b-F3a-C18a           119(*)                                                   
 F3b-F3a-C18b           124(*)                                                   
 C18a-F3a-C18b           43(2)                                                   
 C1-N2-C5               118.6(5)                                                 
 C6-N3-C10              118.3(5)                                                 
 C6-N1-C1               120.8(5)                                                 
 C6-N1-C11              116.6(5)                                                 
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 C1-N1-C11              118.3(5)                                                 
 C16-N4-C12             117.1(6)                                                 
 N3-C6-C7               121.3(5)                                                 
 N3-C6-N1               117.3(5)                                                 
 C7-C6-N1               121.3(6)                                                 
 H10-C10-N3             118.1(5)                                                 
 H10-C10-C9             118.6(5)                                                 
 N3-C10-C9              123.3(6)                                                 
 N2-C1-C2               121.4(6)                                                 
 N2-C1-N1               118.0(5)                                                 
 C2-C1-N1               120.6(6)                                                 
 H9-C9-C10              121.1(7)                                                 
 H9-C9-C8               121.4(6)                                                 
 C10-C9-C8              117.5(5)                                                 
 H7-C7-C8               120.6(6)                                                 
 H7-C7-C6               120.4(6)                                                 
 C8-C7-C6               119.0(7)                                                 
 H5-C5-N2               118.5(6)                                                 
 H5-C5-C4               119.1(6)                                                 
 N2-C5-C4               122.4(7)                                                 
 H8-C8-C7               120.4(8)                                                 
 H8-C8-C9               119.2(6)                                                 
 C7-C8-C9               120.4(6)                                                 
 H2-C2-C3               120.8(7)                                                 
 H2-C2-C1               120.1(6)                                                 
 C3-C2-C1               119.1(7)                                                 
 N4-C12-C13             123.5(7)                                                 
 N4-C12-C11             116.2(6)                                                 
 C13-C12-C11            120.2(7)                                                 
 H4-C4-C3               119.8(7)                                                 
 H4-C4-C5               121.5(8)                                                 
 C3-C4-C5               118.7(6)                                                 
 H11b-C11-H11a          106.9(7)                                                 
 H11b-C11-N1            108.9(6)                                                 
 H11b-C11-C12           110.8(7)                                                 
 H11a-C11-N1            107.8(6)                                                 
 H11a-C11-C12           110.0(6)                                                 
 N1-C11-C12             112.2(5)                                                 
 H16-C16-N4             118.2(7)                                                 
 H16-C16-C15            118.8(8)                                                 
 N4-C16-C15             122.9(8)                                                 
 H3-C3-C2               120.3(9)                                                 
 H3-C3-C4               120.1(8)                                                 
 C2-C3-C4               119.6(7)                                                 
 H13-C13-C12            120.6(8)                                                 
 H13-C13-C14            122.0(8)                                                 
 C12-C13-C14            117.4(8)                                                 
 H14-C14-C15            119(1)                                                   
 H14-C14-C13            121(1)                                                   
 C15-C14-C13            119.9(8)                                                 
 H15-C15-C14            121.5(9)                                                 
 H15-C15-C16            119.4(9)                                                 
 C14-C15-C16            119.2(9)                                                 
 H_b-O-H_a               74.3(5)                                                 
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 Dihedral Angles    (degrees)                                                    
                                                                                 
 O3-S-C18b-C18a                -117(2)                                           
 O3-S-C18b-F3b                  -58(2)                                           
 O3-S-C18b-F2b                 -177(1)                                           
 O3-S-C18b-F1b                   65(1)                                           
 O3-S-C18b-F3a                  -56(2)                                           
 O2-S-C18b-C18a                 123(2)                                           
 O2-S-C18b-F3b                 -177(2)                                           
 O2-S-C18b-F2b                   63(2)                                           
 O2-S-C18b-F1b                  -54(1)                                           
 O2-S-C18b-F3a                 -176(2)                                           
 O1-S-C18b-C18a                   6(2)                                           
 O1-S-C18b-F3b                   66(2)                                           
 O1-S-C18b-F2b                  -54(2)                                           
 O1-S-C18b-F1b                 -171(1)                                           
 O1-S-C18b-F3a                   67(2)                                           
 C18a-S-C18b-C18a                 0(2)                                           
 C18a-S-C18b-F3b                 60(2)                                           
 C18a-S-C18b-F2b                -60(2)                                           
 C18a-S-C18b-F1b               -177(3)                                           
 C18a-S-C18b-F3a                 61(2)                                           
 O3-S-C18a-C18b                  71(2)                                           
 O3-S-C18a-F3b                   19(2)                                           
 O3-S-C18a-F2a                  168(1)                                           
 O3-S-C18a-F1a                  -83(1)                                           
 O3-S-C18a-F2b                  136(1)                                           
 O3-S-C18a-F3a                   17(2)                                           
 O2-S-C18a-C18b                 -62(2)                                           
 O2-S-C18a-F3b                 -115(2)                                           
 O2-S-C18a-F2a                   34(2)                                           
 O2-S-C18a-F1a                  143(1)                                           
 O2-S-C18a-F2b                    2(2)                                           
 O2-S-C18a-F3a                 -117(2)                                           
 O1-S-C18a-C18b                -174(2)                                           
 O1-S-C18a-F3b                  133(2)                                           
 O1-S-C18a-F2a                  -78(1)                                           
 O1-S-C18a-F1a                   31(1)                                           
 O1-S-C18a-F2b                 -110(1)                                           
 O1-S-C18a-F3a                  131(2)                                           
 C18b-S-C18a-C18b                 0(2)                                           
 C18b-S-C18a-F3b                -52(2)                                           
 C18b-S-C18a-F2a                 96(2)                                           
 C18b-S-C18a-F1a               -155(2)                                           
 C18b-S-C18a-F2b                 65(2)                                           
 C18b-S-C18a-F3a                -55(3)                                           
 S-C18b-C18a-S                    -.0(1)                                         
 S-C18b-C18a-F3b                132(2)                                           
 S-C18b-C18a-F2a               -113(1)                                           
 S-C18b-C18a-F1a                 67(4)                                           
 S-C18b-C18a-F2b               -116(1)                                           
 S-C18b-C18a-F3a                125(2)                                           
 F3b-C18b-C18a-S               -132(2)                                           
 F3b-C18b-C18a-F3b                0(2)                                           
 F3b-C18b-C18a-F2a              115(2)                                           
 F3b-C18b-C18a-F1a              -64(4)                                           
 F3b-C18b-C18a-F2b              112(2)                                           
 F3b-C18b-C18a-F3a               -7(2)                                           
 F2b-C18b-C18a-S                116(1)                                           
 F2b-C18b-C18a-F3b             -112(2)                                           
 F2b-C18b-C18a-F2a                3(1)                                           
 F2b-C18b-C18a-F1a             -176(4)                                           
 F2b-C18b-C18a-F2b                0(1)                                           
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 F2b-C18b-C18a-F3a             -119(2)                                           
 F1b-C18b-C18a-S                171(9)                                           
 F1b-C18b-C18a-F3b              -58(9)                                           
 F1b-C18b-C18a-F2a               58(9)                                           
 F1b-C18b-C18a-F1a             -122(8)                                           
 F1b-C18b-C18a-F2b               54(9)                                           
 F1b-C18b-C18a-F3a              -64(9)                                           
 F3a-C18b-C18a-S               -125(2)                                           
 F3a-C18b-C18a-F3b                7(2)                                           
 F3a-C18b-C18a-F2a              122(2)                                           
 F3a-C18b-C18a-F1a              -58(4)                                           
 F3a-C18b-C18a-F2b              119(2)                                           
 F3a-C18b-C18a-F3a                0(3)                                           
 S-C18b-F3b-C18a                -67(2)                                           
 S-C18b-F3b-F3a                  13(*)                                           
 C18a-C18b-F3b-C18a               0(2)                                           
 C18a-C18b-F3b-F3a               80(*)                                           
 F2b-C18b-F3b-C18a               57(2)                                           
 F2b-C18b-F3b-F3a               137(*)                                           
 F1b-C18b-F3b-C18a              167(2)                                           
 F1b-C18b-F3b-F3a              -113(*)                                           
 F3a-C18b-F3b-C18a              -80(*)                                           
 F3a-C18b-F3b-F3a                 0(*)                                           
 S-C18b-F2b-C18a                 73(2)                                           
 S-C18b-F2b-F2a                  66(4)                                           
 C18a-C18b-F2b-C18a               0(2)                                           
 C18a-C18b-F2b-F2a               -7(3)                                           
 F3b-C18b-F2b-C18a              -61(2)                                           
 F3b-C18b-F2b-F2a               -68(4)                                           
 F1b-C18b-F2b-C18a             -167(2)                                           
 F1b-C18b-F2b-F2a              -174(3)                                           
 F3a-C18b-F2b-C18a              -57(2)                                           
 F3a-C18b-F2b-F2a               -64(4)                                           
 S-C18b-F3a-C18a                -71(2)                                           
 S-C18b-F3a-F3b                -168(*)                                           
 C18a-C18b-F3a-C18a               0(2)                                           
 C18a-C18b-F3a-F3b              -97(*)                                           
 F3b-C18b-F3a-C18a               97(*)                                           
 F3b-C18b-F3a-F3b                 0(*)                                           
 F2b-C18b-F3a-C18a               54(2)                                           
 F2b-C18b-F3a-F3b               -43(*)                                           
 F1b-C18b-F3a-C18a              166(2)                                           
 F1b-C18b-F3a-F3b                68(*)                                           
 S-C18a-F3b-C18b                 50(2)                                           
 S-C18a-F3b-F3a                 -17(*)                                           
 C18b-C18a-F3b-C18b               0(2)                                           
 C18b-C18a-F3b-F3a              -67(*)                                           
 F2a-C18a-F3b-C18b              -98(2)                                           
 F2a-C18a-F3b-F3a              -165(*)                                           
 F1a-C18a-F3b-C18b              156(2)                                           
 F1a-C18a-F3b-F3a                89(*)                                           
 F2b-C18a-F3b-C18b              -68(2)                                           
 F2b-C18a-F3b-F3a              -135(*)                                           
 F3a-C18a-F3b-C18b               67(*)                                           
 F3a-C18a-F3b-F3a                 0(*)                                           
 S-C18a-F2a-F2b                 -77(2)                                           
 C18b-C18a-F2a-F2b               -6(3)                                           
 F3b-C18a-F2a-F2b                71(3)                                           
 F1a-C18a-F2a-F2b               174(2)                                           
 F2b-C18a-F2a-F2b                 0(3)                                           
 F3a-C18a-F2a-F2b                69(3)                                           
 S-C18a-F2b-C18b                -59(1)                                           
 S-C18a-F2b-F2a                 115(2)                                           
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 C18b-C18a-F2b-C18b               0(2)                                           
 C18b-C18a-F2b-F2a              174(3)                                           
 F3b-C18a-F2b-C18b               65(2)                                           
 F3b-C18a-F2b-F2a              -121(3)                                           
 F2a-C18a-F2b-C18b             -174(3)                                           
 F2a-C18a-F2b-F2a                 0(2)                                           
 F1a-C18a-F2b-C18b              178(3)                                           
 F1a-C18a-F2b-F2a                -8(3)                                           
 F3a-C18a-F2b-C18b               60(2)                                           
 F3a-C18a-F2b-F2a              -126(3)                                           
 S-C18a-F3a-C18b                 53(2)                                           
 S-C18a-F3a-F3b                 164(*)                                           
 C18b-C18a-F3a-C18b               0(2)                                           
 C18b-C18a-F3a-F3b              111(*)                                           
 F3b-C18a-F3a-C18b             -111(*)                                           
 F3b-C18a-F3a-F3b                 0(*)                                           
 F2a-C18a-F3a-C18b              -95(3)                                           
 F2a-C18a-F3a-F3b                16(*)                                           
 F1a-C18a-F3a-C18b              157(2)                                           
 F1a-C18a-F3a-F3b               -92(*)                                           
 F2b-C18a-F3a-C18b              -64(2)                                           
 F2b-C18a-F3a-F3b                47(*)                                           
 C18b-F3b-F3a-C18b                0(1)                                           
 C18b-F3b-F3a-C18a              -51(9)                                           
 C18a-F3b-F3a-C18b               51(9)                                           
 C18a-F3b-F3a-C18a                0(1)                                           
 C18a-F2a-F2b-C18b                5(2)                                           
 C18a-F2a-F2b-C18a                0(1)                                           
 C5-N2-C1-N1                    176.5(5)                                         
 C5-N2-C1-C2                     -3.5(8)                                         
 C1-N2-C5-C4                      2.5(8)                                         
 C1-N2-C5-H5                   -177.5(5)                                         
 C10-N3-C6-N1                  -177.9(5)                                         
 C10-N3-C6-C7                     3.3(8)                                         
 C6-N3-C10-C9                    -3.0(9)                                         
 C6-N3-C10-H10                  178.7(5)                                         
 C1-N1-C6-N3                     53.6(8)                                         
 C1-N1-C6-C7                   -127.7(6)                                         
 C11-N1-C6-N3                  -149.8(6)                                         
 C11-N1-C6-C7                    28.9(8)                                         
 C6-N1-C1-N2                    -51.1(8)                                         
 C6-N1-C1-C2                    128.8(6)                                         
 C11-N1-C1-N2                   152.6(6)                                         
 C11-N1-C1-C2                   -27.4(8)                                         
 C6-N1-C11-C12                   52.0(7)                                         
 C6-N1-C11-H11a                 -69.4(7)                                         
 C6-N1-C11-H11b                 175.0(6)                                         
 C1-N1-C11-C12                 -150.8(5)                                         
 C1-N1-C11-H11a                  87.8(6)                                         
 C1-N1-C11-H11b                 -27.8(9)                                         
 C16-N4-C12-C11                 178.3(6)                                         
 C16-N4-C12-C13                   1.3(9)                                         
 C12-N4-C16-C15                  -2(1)                                           
 C12-N4-C16-H16                 179.8(6)                                         
 N3-C6-C7-C8                     -1.0(9)                                         
 N3-C6-C7-H7                    179.0(6)                                         
 N1-C6-C7-C8                   -179.7(6)                                         
 N1-C6-C7-H7                      0(1)                                           
 N3-C10-C9-C8                      .3(9)                                         
 N3-C10-C9-H9                   179.5(6)                                         
 H10-C10-C9-C8                  178.6(6)                                         
 H10-C10-C9-H9                   -2(1)                                           
 N2-C1-C2-C3                      1.4(9)                                         
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 N2-C1-C2-H2                   -178.6(6)                                         
 N1-C1-C2-C3                   -178.6(6)                                         
 N1-C1-C2-H2                      1(1)                                           
 C10-C9-C8-C7                     2(1)                                           
 C10-C9-C8-H8                  -178.9(6)                                         
 H9-C9-C8-C7                   -177.1(6)                                         
 H9-C9-C8-H8                      2(1)                                           
 C6-C7-C8-C9                     -2(1)                                           
 C6-C7-C8-H8                    179.2(6)                                         
 H7-C7-C8-C9                    178.2(6)                                         
 H7-C7-C8-H8                      0(1)                                           
 N2-C5-C4-C3                       .7(9)                                         
 N2-C5-C4-H4                   -179.0(6)                                         
 H5-C5-C4-C3                   -179.3(6)                                         
 H5-C5-C4-H4                      0(1)                                           
 C1-C2-C3-C4                      2(1)                                           
 C1-C2-C3-H3                   -177.7(6)                                         
 H2-C2-C3-C4                   -178.1(6)                                         
 H2-C2-C3-H3                      2(1)                                           
 N4-C12-C11-N1                   35.5(8)                                         
 N4-C12-C11-H11a                155.5(6)                                         
 N4-C12-C11-H11b                -86.5(8)                                         
 C13-C12-C11-N1                -147.4(6)                                         
 C13-C12-C11-H11a               -27.3(9)                                         
 C13-C12-C11-H11b                90.6(8)                                         
 N4-C12-C13-C14                   0(1)                                           
 N4-C12-C13-H13                -179.5(6)                                         
 C11-C12-C13-C14               -177.4(7)                                         
 C11-C12-C13-H13                  4(1)                                           
 C5-C4-C3-C2                     -3(1)                                           
 C5-C4-C3-H3                    176.7(6)                                         
 H4-C4-C3-C2                    176.9(6)                                         
 H4-C4-C3-H3                     -3(1)                                           
 N4-C16-C15-C14                   3(1)                                           
 N4-C16-C15-H15                -176.7(7)                                         
 H16-C16-C15-C14               -179.4(7)                                         
 H16-C16-C15-H15                  1(1)                                           
 C12-C13-C14-C15                  0(1)                                           
 C12-C13-C14-H14               -178.0(8)                                         
 H13-C13-C14-C15                179.8(8)                                         
 H13-C13-C14-H14                  0(1)                                           
 C13-C14-C15-C16                 -2(1)                                           
 C13-C14-C15-H15                177.6(8)                                         
 H14-C14-C15-C16                176.9(8)                                         
 H14-C14-C15-H15                 -4(1)                                           
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8.2 Appendix 

 

Å Ångstrom 

abs.  absolute 

Ac  acetyl 

acac  acetylacetonato 

aq.  aqueous 

eq.  equivalent 

Ar  aryl, argon 

RP  representative procedure 

Calc.  calculated 

B.p.  boiling point 

BINAP  2,2´-bis-(diphenylphosphino)-1,1´-binaphthyl 

Boc  tert-butyloxycarbonyl 

Box   bis(oxazoline) 

Bn  benzyl 

Bz  benzoyl 

br.  broad 

BuLi  butyllithium 

Bus  tert-butylsulfonyl 

Cbz  benzyloxycarbonyl 

Cy  cyclohexyl 

CHP  cumene hydroperoxide 

conc.  concentrated 

Cy  cyclohexyl 

d  day, doublett 

dba  dibenzylidenacetone 

DMAP  dimethylaminopyridine 

DME  dimethoxyethane 

DMF  dimethyl formamide 

DMSO  dimethylsulfoxide 

dppp  1,3-bis(diphenylphosphino)propane 

dppf  1,1’-bis(diphenylphosphino)ferocene 

ee  enantiomeric excess 
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EA  ethyl acetate 

EI  elecronic Ionisation 

Et  ethyl 

eV  electronvolt 

g  gram 

GC  gaschromatography 

h  hours, heptet 

HMDS  1,1,1,3,3,3-hexamethyldisilazane 

HPLC  high performance liquid chromatography 

HRMS  high resolution mass spectroscopy 

HV  high vacuum 

i-Pr  isopropyl 

IR  Infrared spectroscopy 

cat.  catalyst 

L  ligand 

LDA  lithiumdiisopropylamine 

Solv.  solvent 

M  molar 

m  multiplet 

m/z  mass/ charge 

Me  methyl 

mg  milligram 

min  minute 

mL  milliliter 

mmol  millimol 

MS  mass spektroscopy, molecularsiebs 

MTBE  methyl-tert-butylether 

NMR  nuclear magnetic resonance 

NBS  N-bromosuccimide 

n  normal 

Ns  p-nitrobenzenesulfonyl 

PCC  pyridinium chlorochromate 

PE  petroleumether (boiling point 40-80°C) 

PG  protecting group 
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Ph  pheny 

PMB  p-methoxybenzyl 

ppm  parts per million 
iPr  isopropyl 

Py  pyridine, pyridyl 

Pybox  2,6-bis(2-oxazoline-2-yl) pyridine 

PTC  phase transfer catalyst 

p-Tol  para-tolyl 

q  quartet 

R  organischer Rest 

rac  racemic 

Rf  ratio of fronts 

r.t.  room temperature 

s  singlet 

SES  trimethylethanesulfonyl 

Sat.  saturated 

t  triplet 

tR  Retention time 

tert  tertiary 

t-Bu  tert-butyl 

TBAB  tetrabutylammonium bromide 

TBAF  tetrabutylammonium fluoride 

TBHP  tert-butylhydroperoxide 

TBS  t-butyldimethysilyl 

Temp.  temperature 

TFA  trifluoroacetic acid 

THF  tetrahydrofuran 

TLC  thin layer chromatography 

TMS  trimethylsilyl 

Tf  trifluormethansulfonyl 

tpy  terpyridine 

Ts  para-toluenesulfonyl 

υ  wave length 

Z  benzyloxycarbonyl
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