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Chapter 1IntrodutionFititious domain methods, sometimes also alled domain embedding methods, are a familyof tools for the solution of boundary value problems on irregular and omplex geometries.What distinguishes them from other methods is that they try to employ simple disretiza-tions and methods whih work well on regular geometries, and oere them, in one wayor another, to produe a solution of the problem on the omplex geometry. They ahievethis by embedding the original domain into a muh simpler one (the �titious domain), andreformulating the problem there, a step whih always involves some form of extension ofthe data. Instead of solving the original problem diretly, one obtains an extension to the�titious domain of the solution of the original problem. The boundary onditions are usu-ally enfored by mehanisms whih do not modify the disretization on the domain, or doso only in a limited way. Prominent examples of suh mehanisms are Lagrange multipliersand penalty parameters.This type of onstrution produes fairly exible methods that an ope easily with prob-lems where the geometry hanges often. A anonial appliation is the use as a omponentin shape optimization problems or free boundary problems (see for instane [24℄). Whatmakes �titious domain methods so invaluable in these appliations is their strit blak boxapproah. Sine no remeshing is neessary, they an operate on mahine-generated geometrydesriptions without supervision, and do so reliably.Another possible reason to use a �titious domain formulation is to tap the power ofmethods whih are only available on simple geometries, a theme explored for example in [3℄and the referenes therein. It is this point of view whih shall dominate in the present thesis.We will study �titious domain formulations as an alternative to other, more traditionalformulations for standard ellipti boundary value problems, fousing on them as a vehile tosimplify the use of wavelet-Galerkin disretization shemes.1.1 Wavelet methods and �titious domain formula-tionsWavelets, whih appeared �rst as a tool for signal analysis, have been playing an inreasinglyimportant role in numerial algorithms for the solution of partial di�erential equations. For3



4 Wavelet methods and �titious domain formulationsthe solution of ellipti boundary value problems, biorthogonal wavelet bases are an attrativehoie. They lead easily to well onditioned disretizations of the type of operator equationthat appears in these problems. This property, their good approximation power, and theirlear mathematial struture have led to the development of novel methods whih pro�tfrom results from related mathematial disiplines.The adaptive wavelet methods developed with the aid of deep approximation theoretialresults in [8, 7℄ illustrate this point quite learly. These algorithms are apable of produinggood approximations of the solutions of ellipti boundary value problems with an optimalwork/auray balane. They are optimal in the sense that to produe an approximation ofthe solution to a given problem, the number of operations needed is proportional to ��1=s,where � is the desired auray (measured in a relevant norm, usually the Energy norm), andthe parameter s depends on the smoothness of the solution, as measured by thir membershipin ertain Besov spaes.Perhaps the most important property of the lass of wavelets used in these methodsis that they are Riesz bases for the Sobolev spaes involved. But while they are easy toonstrut and handle for, say, periodi domains, the situation is quite di�erent for domainswith omplex geometries. And while the onstrution for those domains is a solved problem[13℄, the resulting bases are diÆult to handle. The numerial properties of suh bases alsosu�ers somewhat, leading to disrete problems whih are not as well onditioned as theirounterparts on simple domains. Thus, a possible strategy to overome these diÆulties whendealing with omplex geometries is to use a �titious domain formulation. This approahwas initiated suessfully in [27℄.The hoie of suitable �titious domain formulations one may onsider for this endeavor islimited, however. Methods based on the introdution of penalty parameters lead to disreteproblems that are not uniformly well onditioned. The same holds for any other methodbased on regularization tehniques (see for instane [20℄).The formulation whih seems to be best suited for suh a purpose is the �titious domain- Lagrange multiplier (FDLM) approah initiated by [1, 22℄, and used in [27℄. To solvea seond order ellipti boundary value problem with Dirihlet boundary onditions on abounded domain, one extends the data (and the di�erential operator) to a simpler domain,and appends the boundary onditions by introduing a Lagrange multiplier. This leads toa saddle-point problem whih is amenable to the disretization and solution with wavelettehniques [10℄.In hapter three we will show that this approah has its limitations. While the solution ofthe original problem may be very smooth in either of the Sobolev or Besov sales, this doesnot hold in general for the extended solution obtained through the FDLM formulation. If thedata was not extended in exatly the right way, the smoothness of the extended solution isde�ient, and thus approximating it requires more degrees of freedom, and ultimately morework.



Towards a �titious domain method with optimally smooth solutions 51.2 Towards a �titious domain method with optimallysmooth solutionsCorreting this de�ieny in the FDLM formulation in a way that keeps the formulationpratial is fairly diÆult; as a matter of fat, an extensive searh of the literature showedno attempt, suessful or unsuessful, to address this problem. There is one trivial wayaround this diÆulty (take the solution of the original problem, extend it smoothly, and usethe di�erential operator to obtain a suitable extension of the data) but it leads to a methodwhih is hardly pratial, sine it needs the solution �rst.In hapter four we will attempt to onstrut a method whih produes optimally smoothextensions of the solution. For this we will begin by formulating on the �titious domain arank-de�ient, but otherwise well-posed1, least squares problem whose solutions all agree onthe original domain with the original solution. Then we play with the proess of solving thedisrete equations to obtain a solution of the least squares problem whih is also smooth.The smooth extension is onstruted by a nested iteration sheme through what amountsto emergent behavior. A proof of this property will be given subjet to a few onditions on the�nite dimensional problems obtained by the proess of disretization. We will also onstruta disretization sheme whih, at least numerially, seems to satisfy these onditions.The resulting method is fairly simple in struture. Wavelets appear in the disretizationas a natural hoie and, more importantly, no modi�ation of the bases is needed. Thismakes our method usable as a blak box. Furthermore, the method an deal in a uni�edway with any type of boundary onditions.1.3 OverviewWe begin in hapter two by weaving together in a uniform way the theory we will use in thefollowing hapters. We will need some elements of approximation theory, theory of elliptiboundary value problems, and the onstrution of B-spline wavelets.Chapter three is devoted to the analysis of the �titious domain - Lagrange multiplierapproah. Here we will show how the method is derived, and analyze the smoothness ofthe extended solutions by onsidering their membership in Besov and Sobolev spaes. Weextend and omplete �rst the results on smoothness in the Sobolev sale found in [21℄,taking an approximation theoretial point of view, and then prove new results whih boundthe onvergene rate of nonlinear approximation shemes. We have sueeded in olleting allthe diÆult tehnial details into one lemma, whih makes the disussion more transparent.The seond half of hapter three is then spent proving this lemma.The development of a �titious domain method able to produe optimally smooth solu-tions takes plae in hapter four. First we introdue and analyze the least-squares formulationthat will serve as a foundation, and then we proeed to onstrut the method, and provethat under ertain assumptions to the disretization, it produes optimally smooth solutions.Then we introdue a disretization sheme designed to satisfy these assumptions.1in the sense that it is solvable, and that its solutions an be hosen to depend ontinuously on the data
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Chapter 2Theoretial frameworkThe present hapter sets the tapestry on whih the material of later hapters unfolds. Insteadof presenting a loose olletion of fats, we have tried to draw a map of the body of theoryinvolved. It has been drawn in a mostly strit logial order, beginning with spae interpola-tion and abstrat approximation theory, then going on to de�ne Besov and Sobolev spaesas approximation spaes. After reviewing the standard trae and extension theorems, andomplementing them with more modern results whih will be useful later, we de�ne the lassof problems we want to study: seond order ellipti boundary value problems with eitherDirihlet or Neumann boundary onditions. After this we introdue B-spline wavelets, andthe brand of nonlinear approximation that is the foundation of adaptive wavelet methods.2.1 Interpolation spaesThe de�nition of what onstitutes an interpolation spae requires the following steps [2℄. LetA0 and A1 be two normed spaes. They are alled ompatible if there exists a Hausdor�topologial vetor spae V suh that A0 and A1 are subspaes of it. A normed spae Ais alled an intermediate spae between the ompatible spaes A0 and A1, if A0 \ A1 �A � A0 + A1. An interpolation spae with respet to the ouple (A0; A1) is then anyintermediate spae A between A0 and A1 for whih the following holds. Whenever a linearmap T : A0 + A1 ! A0 + A1 is also a bounded linear map from A0 to itself, as well as fromA1 to itself, then T maps A boundedly into itself.To onstrut suh spaes, we follow here the real method due to J. Peetre, as found in[2℄. We de�ne �rst the K-funtional for v 2 A0 + A1 byK(t; v; A0 + A1) := infv=a0+a1 (ka0kA0 + tka1kA1) ;where the in�mum is taken over all possible representations v = a0 + a1 with ao 2 A0 anda1 2 A1. For a �xed v 2 A0 +A1, one an show that K(t; v; A0 +A1) is positive, inreasing,and onave.The following observation is the key to the onstrution of interpolation spaes using theK-funtional. Let T : A0 ! A1 be as desribed in the �rst paragraph, and let v 2 A0 + A1.7



8 Approximation spaesThen(2.1) K(t; v; A0 + A1) � C K(t; T v; A0 + A1);where the onstant C 2 (0;+1) is independent of t.Now, for 0 < � < 1, 0 < q � 1, let A�;q be the subspae of A0 + A1 of elements whihsatisfy kvk�;q <1, withkvk�;q := 8><>:�R10 �t��K(t; v; A0 + A1)	q dtt � 1q ; if 0 � q <1,supt2(0;+1) t��K(t; v; A0 + A1) if q = +1.From (2.1) it follows immediately that the spae A�;q is an interpolation spae between A0and A1. But more is true. If (B0; B1) is another pair of ompatible spaes, and T : A0+A1 !B0 +B1 is suh that T maps A0 boundedly to B0, and A1 boundedly to B1, then using thesame argument we see that T : A�;q ! B�;q is also a bounded operator.To shed light onto the relation between interpolation spaes, we inlude the followingtheorem.Theorem 2.1.1 (The reiteration theorem). Let q0; q1 2 (0;+1), �1; �2 2 (0; 1), and let� = (1� �)�0 + ��1 for some � 2 (0; 1). Then for any q 2 (0;+1) it holds that ([2℄, p.50)((A0; A1)�0;q0; (A0; A1)�1;q1)�;q = (A0; A1)�;qwith equivalent norms.2.2 Approximation spaesApproximation spaes allow us to talk about approximation methods in an abstrat setting1.For this, let X be a normed vetor spae, and let fXngn2N be a sequene of subsets of Xsatisfying the following axioms.Axioms 2.2.1i. Xn � Xn+1 for all n 2 N .ii. aXn � Xn for all x 2 R.iii. There exists a onstant  2 N suh that for every n 2 N , Xn +Xn � Xn.iv. If f 2 X, then limn!+1 infx2Xn kf � xk ! 0.1This aount follows [18℄



Approximation spaes 9The sequene fXngn2N will play the role of our approximation method.To illustrate what these axioms mean, we onsider the ase when X is a separable Hilbertspae, and B = fbkgk2N is an orthonormal basis. We might hooseXn = spanfbk : k � ng;and see immediately that it satis�es the above axioms. Sine the Xn are linear spaes, wespeak of linear approximation.In ontrast, onsider the hoieXn = fx 2 X : x =Xk2� kbk; � � N with #� � n; k 2 Rg;whih is the nonlinear spae of elements in X whih are a linear ombination of at most nmembers of B. Whenever the sequene fXngn2N ontains sets whih are not linear subspaesof X, we speak of nonlinear approximation. We will take a loser look at shemes of thistype later on.Note that the above are just examples, and their introdution does not amount to aonrete de�nition of the spaes Xn in a partiular setting.After having hosen an approximation method, we want to rate its performane aordingto the behavior of the error of approximation, whih, for v 2 X, is de�ned byEn(v) := infx2Xn kv � xk:Approximation spaes lassify the elements of X aording to how well they an beapproximated with fXngn2N. For 0 < s < +1, and 0 < q � +1, they are given byAsq(X; fXng) := ff 2 X : kfkAsq < +1g;with k � kAsq := k � kX + j � jAsq , andjf jAsq := 8><>:�P+1n=1[nsEn(f)℄q 1n� 1q if 0 < q < +1,supn2N nsEn(f) if q = +1.For an element f 2 X, membership in Asq(X; fXngn2N) means above anything else thatthe approximation error deays at least as O(n�s). The parameter q further indiates theslightly stronger (for q <1) assertion that fnsEn(f)g belongs to `q. The parameter q is ofseondary nature; it is possible to prove that if s < r, then(2.2) Arq(X; fXngn2N) � Asp(X; fXngn2N) 8 0 < q; p < +1We obtain the same spae, with an equivalent norm, if we use the following (equivalent)seminorm j � jAsq(X;fXngn2N).(2.3) jf jAsq := 8><>:�P+1n=0[2nsE2n(f)℄q�1q if 0 < q < +1,supn2N 2nsE2n(f) if q = +1.



10 Approximation spaesWhen proving membership in a spae Asq, it is often easier to use this last de�nition.The fat that (2.3) de�nes an equivalent norm hints at some redundany in the sequenefXngn2N. We shall often write Vj := X2j , j = 0; 1; : : :, and then write(2.4) Asq(X; fVjgj2N0 ) := Asq(X; fXngn2N):In this ase, we will always use the seminorm de�ned in (2.3) for the spae on the left of(2.4). Strething things a little bit further, we will often start by de�ning the spaes Vj,obviating the spaes Xn with n 6= 2j, and using only the spae on the left of (2.4). Thisauses no problem, sine any sequene fXng with Vj = X2j , whih also satis�es axioms 2.2.1,would de�ne the same spae with an equivalent norm.A note is also in order regarding spaes of the type `p with 0 < p < 1. The orresponding`p-"norm" is no longer a norm, but instead is only a quasinorm. The triangle inequalityholds only in its modi�ed formka + bk`p � 2 1p �kak`p + kbk`p� :To substitute the onept of Banah spae we de�ne a quasi-Banah spae as a quasi-normed spae (Z; k �k), where every Cauhy sequene (with respet to the quasi-norm) has alimit in Z. One an then prove that the spae `p, 0 < p < 1 is indeed a quasi-Banah spae.The same holds, mutatis mutandis, for Lp spaes with 0 < p < 1.2.2.1 approximation spaes and spae interpolationIn this subsetion we are going to shed some light on the relation between interpolationspaes and approximation spaes.The �rst main result that is onerned with this relation states onditions under whihan interpolation spae is equal to an approximation spae. Let Y � X be a normed spaewhih an be embedded ontinuously into X. Let fXngn2N be an approximation methodsatisfying axioms 2.2.1, and suppose that the following inequalities hold.En(f) � Cn�rkfkY ; 8f 2 Y (Jakson inequality)(2.5) kSkY � CnrkSkX ; 8S 2 Xn (Bernstein inequality)(2.6)for some r > 0.Theorem 2.2.1. If the Jakson and Bernstein inequalities hold, then for every 0 < s < r,and every 0 < q � +1, Asq(X; fXngn2N) = (X; Y )s=r;qwith equivalent norms.An important appliation of this theorem is that it allows us to ompare approximationspaes obtained with di�erent approximation methods.



Approximation spaes 11Corollary 2.2.2. Let fX1ngn2N and fX2ngn2N be two sequenes satisfying 2.2.1, and supposethat there exists r > 0 suh that both satisfy the Jakson and Bernstein inequalities withrespet to a spae Y as desribed above. Then for every 0 < s < r, 0 < q � +1,Asq(X; fX1ngn2N) = Asq(X; fX2ngn2N)with equivalent norms.As a omplement of theorem 2.2.1 we have also that approximation spaes form indeedan interpolation family.Theorem 2.2.3. [DeVore and Popov, 1988℄ Let fXngn2N satisfy axioms 2.2.1. Then, forany r > 0, the sequene fXngn2N satis�es the Bernstein and Jakson inequalities with Y =Arq(X; fXngn2N), for any 0 < q � +1. Thus, for all 0 < s < r, and all 0 < q; t � +1 wehave Asq(X; fXngn2N) = (X;Arq(X; fXngn2N))s=r;q:Next we present a onsequene of the reiteration theorem whih haraterizes what weobtain when we de�ne an approximation spae inside of an approximation spae. It reads2as follows.Theorem 2.2.4. Let 0 < s < r, and fXngn2N satisfy axioms 2.2.1. ThenAr�sq � Asq(X; fXngn2N) ; fXngn2N� = Arq(X; fXngn2N)with equivalent norms.Proof. To keep the notation from obsuring the arguments, we shall hoose a �xed 0 < q �1, and write Z� = A�q (X; fXngn2N) 8 � 2 (0;+1):Given an element v 2 Zs, we de�ne the error of approximation in Zs by~En(v) := infx2Xn kv � xkZs:Suppose for the moment that we have shown that if � > s, then the Jakson inequality,~En(f) . n�(��s)kfkZ� 8 f 2 Z�;(2.7)and the Bernstein estimatekSkZ� . n��skSkZs 8 S 2 Xn;(2.8)hold. Then if � > r > s, we obtain from theorem 2.2.1 thatAr�sq (Zs; fXngn2N) = (Zs; Z�)( r�s��s);q:2We have not found this result in the literature, and thus we prove it here.



12 Approximation spaesSo hoose � > �, and use theorem 2.2.3 to observe thatZs = (X;Z�) s� ;q; Z� = (X;Z�) �� ;q:The reiteration theorem now givesAr�sq (Zs; fXngn2N) = �(X;Z�) s� ;q; (X;Z�) �� ;q�( r�s��s);q= (X;Z�) r� ;q= Arq(X; fXng):To �nish the proof, it only remains to show that (2.7) and (2.8) hold. We will do so onlyfor 0 < q < +1, sine the ase q = +1 is straightforward. To prove (2.8), let S 2 Xn, and0 < q <1. Sine S 2 Xn, it holds that Ek(S) = 0 if k � n, so thatjSjZ� =  n�1Xk=1[Ek(S)k�℄q 1k! 1q :But sine S 2 Zs, we also have Ek(S) . k�skSkZs, and substituting this expression abovewe obtain jSjZ� . n��skSkZs;from where (2.8) follows.To prove (2.7), we begin by observing that(2.9) infx2XkEj(f � x) � Ej(f); Ek(f);whih follows from the properties of the in�mum. Also, sine Xn � Xn+1, one has thatEj1(f) � Ej2(f) whenever j2 � j1, and so we see that
(2.10) infx2Xk kXj=1 [Ej(f � x)js℄q 1j!1q

� infx2Xk kXj=1 [E1(f � x)js℄q 1j! 1q� Ek(f)ks:Now, onsider the following omputation,~Ek(f) = infx2Xk kf � xkZs= infx2Xk8<:kf � xkX + 1Xj=1 [Ej(f � x)js℄q 1j! 1q9=;= infx2Xk8<:kf � xkX + kXj=1 [Ej(f � x)js℄q 1j + 1Xj=k+1[Ej(f)js℄q 1j! 1q9=; ;



Approximation spaes 13where we have used (2.9) in the last step. Write F (x) for the last expression in urly braesand note arefully thatinfx2Xk F (x) � Ek(f) + kXj=1 [Ek(f)js℄q 1j + 1Xj=k+1[Ej(f)js℄q 1j! 1q =: L:Our next step will be to prove that in fat infx2Xk F (x) = L.Let fxngn2N � Xk be suh that kf � xnkX � �=n � Ek(f) � kf � xnk, where � > 0 washosen in suh a way that Ek(f)� � > 0. Observe also that if j < k, then(2.11) Ej(f � xn) � Ek(f) � Ej(f � xn)� �n:These rather awkward steps are needed beause we do not know enough about the sets Xkto be able to hoose x� 2 Xk suh that kf � x�k = Ek(f).Now, observe thatF (xn) = kf � xnkX + kXj=1 [Ej(f � xn)js℄q 1j + 1Xj=k+1[Ej(f)js℄q 1j! 1q
� Ek(f) + kXj=1 [Ek(f)js℄q 1j + 1Xj=k+1[Ej(f)js℄q 1j! 1q (= L)� kf � xnkX � �n � kXj=1 h�Ej(f � xn)� �n� jsiq 1j + 1Xj=k+1[Ej(f)js℄q 1j! 1q :Letting n! +1 shows that indeed infx2Xk F (x) = L.Sumarizing, we have that~Ek(f) = Ek(f) + kXj=1 [Ek(f)js℄q 1j + 1Xj=1 [Ej(f)js℄q 1j! 1q

� Ek(f) + Eqk(f)ksq + 1Xj=k+1[Ej(f)js℄q 1j! 1q ;where we have used (2.10). But if f 2 Z�, then Ek(f) . k�(��s)kfkZ�, so that, after someomputations, we obtain from the above that~Ek(f) . k�(��s)kfkZ�:



14 Besov and Sobolev spaes2.3 Besov and Sobolev spaes as B-spline approxima-tion spaesAs an alternative to the lassial de�nitions, one an haraterize Besov spaes, and for auseful range of parameters also Sobolev spaes, as approximation spaes. The results weite here all refer, as they are found in the literature, to approximation using linear spaesof smooth, pieewise polynomial funtions. But by orollary 2.2.2, they also apply to othertypes of methods. This will allow us to draw fairly general onlusions from the study ofpieewise polynomial approximation alone.2.3.1 B-splinesLet N1 : R ! R be given by �[0;1), where �
 is the harateristi funtion of the set 
. Form � 2, let Nm := Nm�1 �N0:The funtions Nm, m = 1; 2; : : : are alled the m-th order ardinal B-spline generator.Note that the spae Smj := los (spanfNm(2j � �k) : k 2 Zg);where we have used los (A) = A as an alternative notation for losure, is a subspae ofCm�2(R) if m � 2, and that f 2 Smj is a polynomial of degree m� 1 on every interval of theform 2�j[z; z + 1), z 2 Zd.The spaes Smj reprodue loally any polynomial of degree m�1. That is, if p 2 �m�1 =f polynomials of degree m� 1g, and given a bounded set X � Rd , there exists a funtion� 2 Smj suh that �jX = pjX .We extend the de�nition of the spaes Smj to Rd simply by lettingN (d)m (x1; x2; : : : ; xd) := dYi=1Nm(xi);and setting Sm;(d)j := los (spanfN (d)m (2j � �z) : z 2 Zdg). In the sequel we will usually omitthe index d, sine it will be lear from the ontext.2.3.2 Besov spaesA ommon de�nition of Besov spaes is based on moduli of ontinuity. Sine these spaesan be haraterized thoroughly as approximation spaes using B-splines, and sine this isthe only point of view we shall take, we use this haraterization as a de�nition instead.The remarkable onnetion between approximation spaes and Besov spaes was made byDeVore and Popov, see [16℄. The following theorem is a version of this result whih has beenadapted to our needs.



Besov and Sobolev spaes 15Theorem 2.3.1 (DeVore and Popov, 1988). Let 0 < p � +1, m 2 N, and de�ne�p;m;j : Lp(Rd)! [0;+1) by �p;m;j(f) := infs2Smj kf � skLp:The following is an equivalent (quasi)-seminorm for the Besov spae Bsq(Lp(Rd)), 0 < q � 1,0 < s < minfm;m� 1 + 1=pg.(2.12) jf jBsq(Lp) =  +1Xj=�1[2js�p;m;j(f)℄q! 1q(with the usual modi�ation for q =1).A Besov spae Bsq(Lp(Rd)) is thus a olletion of funtions in Lp(Rd) whih an be ap-proximated by funtions in Smk at a rate of O(2�ks), and suh that the error of approximation�p;m;j(f) satis�es the slightly stronger onditionf2js�p;m;j(f)gj2Z2 `q(Z):The spaes Bsq(Lp(Td)), where Td = (R=Z)d is the d�dimensional torus, are de�nedanalogously. The spaes Sm;Tdj are now de�ned only for j � 0, and we de�ne them bySm;Tdj = span(Xz2ZdNm(2j(� � z)� k) : k 2 Zd) :We also de�ne the funtionals�p;m;j(f) := infs2Sm;Tdj kf � skLp; j � 0;and then the orresponding equivalent seminorm for the spae Bsq(Lp(Td)) is given byjf jBsq(Lp) =  +1Xj=0 [2js�p;m;j(f)℄q! 1q :2.3.3 Besov spaes on domainsApart from spaes de�ned on Rd and Td we will also onsider bounded open domains 
 � Rdsatisfying ertain regularity onditions on the boundary.De�nition 2.3.2. A bounded domain 
 � Rd is of lass X, where X = Ck, k = 0; 1; : : :,or X = Lip1, the spae of Lipshitz ontinuous funtions, if for every x 2 �
 there exists�x > 0, an orthogonal map Qx : Rd ! Rd , and a funtion �x : Rd�1 ! R, �x 2 X, suh thatQ�1(B(x; �x) \ 
) = fy 2 Q�1(B(x; �x)) : yd < �x(y1; : : : ; yd�1)g:



16 Besov and Sobolev spaesHere we have written B(x; �x) for the open ball in Rd with enter x and radius �x withrespet to the Eulidean norm.When 
 is of lass X, we also say that �
 is of lass X. Often we shall also say that 
(or �
) \is X", as in \�
 is C1", sine it makes the exposition easier to read and it annotause any onfusion.When �
 is Ck, k = 1; 2; : : :, then from the above disussion it follows that �
 is a Ckmanifold.Sine we will embed 
 into Td, we always assume that for some � > 0, the relation
 � (�; 1� �)d holds.Given a bounded domain 
 with Lipshitz boundary, one an haraterize the spaeBsq(Lp(
)) by setting �p;m;j(f) := infs2Smj kf � sj
kLp(
):and then de�ning a seminorm for Bsq(Lp(
)) as in (2.12) [17℄. It is then easy to show fromthe above that the restrition operator(2.13) r
 : Bsq(Lp(Rd))! Bsq(Lp(
))is bounded and linear for the full range of parameters.2.3.4 Interpolation of Besov spaesWe have, for any 0 < s1 < s2, 0 < q1; q2 � +1, and any 0 < � < 1, 0 < q � +1, that(2.14) (Bs1q1 (Lp(
)); Bs2q2 (Lp(
)))�;q = Bsq(Lp(
));with s = (1� �)s1 + �s2.The above holds for Lipshitz domains as well as for 
 2 fRd ;Tdg.2.3.5 Sobolev spaesThe lassial Sobolev spaes measure smoothness of funtions in Lp, p � 1, by ounting itsnumber of weak derivatives in Lp. The de�nition is, for 1 � p � +1, m = 0; 1; : : :mWmp (
) = ff 2 Lp(
) : kfkpWmp := Xj�j�m kD�fkpLp < +1g:In this thesis we shall restrit ourselves to the ase p = 2, and write, as is ustomary,Hm = Wm2 . Sobolev spaes with positive non-integer smoothness index an be obtainedsimply by interpolation. After realizing that Bm2 (L2) = Hm, we use (2.14) above to obtain(2.15) Hs = Bs2(L2):Note, however, that this is not as simple for the spaes W sp , with p 6= 2. See again [16℄.



Extension 17It would be quite an omission not to mention that the spaes Hs are Hilbert spaes. See[34℄ p.209 for instane.Another important Sobolev spae is the spae Hs0(
), whih we de�ne as follows.Let X � Rd be a set, and letD(X) := ff 2 C1(X) suh that supp f � K � X for some ompat set Kgbe the spae of test funtions. For s � 0, we de�ne the spae Hs0(
) as the ompletion ofD(
) in Hs(
). For 0 � s < 12 , or when 
 is either Rd , Td, or a Ck manifold with k > s, thespae Hs0(
) oinides with Hs(
). In all other ases the spae Hs0(
) is a losed subspaeof Hs(
).The duals of the spaes Hs0(
), s � 0 are denoted by H�s(
).The interpolation of the spaes Hs0(
) is a more deliate matter. See [28℄ for furtherinformation.2.4 ExtensionWe have already mentioned that the restrition operator (2.13) is bounded and linear forthe full range of parameters. But there exist also, for the full range of parameters, operators(2.16) E : Bsq(Lp(
))! Bsq(Lp(Td))suh that r
(Eu) = u for all u 2 Bsq(Lp(
)) For the ase p < 1, however, it does not seempossible to �nd linear E ; see again [17℄.Given a bounded domain 
 with Lipshitz boundary, and any l 2 N , it is possible toonstrut a bounded linear extension operatorFl : L2(
)! L2(Rd)suh that Fl : H l(
)! H l(Rd)is also bounded [5℄. By interpolation we obtain then thatFl : Bsq(L2(
))! Bsq(L2(Rd))is a bounded linear operator for 0 < s < l, 0 < q � +1.2.4.1 TraesGiven u 2 Hs(
), and s suÆiently large, we an de�ne and deal with quantities of the kinduj�
, or �u�n , where n denotes the outward normal at a point in � := �
. Before doing so, wede�ne Sobolev spaes on manifolds.The family U = fB(x; �x)gx2�
, given by de�nition 2.3.2, whih onsists of a seletion ofneighborhoods of x where we an parametrize �
 by funtions of lass X 2 Lip1; C1; C2; : : :,is an open overing of �
. Thus there exist xi 2 �
, �i > 0, i = 1; 2; : : : ; l suh that



18 Extension�
 � Sli=1B(xi; �i). Remember that, assoiated to eah pair xi, �i, we have an orthogonaltransformation Qi and a funtion �i 2 X suh thatQ�1i (B(xi; �i) \ 
) = fy 2 Q�1(B(xi; �i)) : yn < �i(y1; : : : ; yn)g:Let figi=1;2;:::l, i 2 D(Rd), be a partition of unity on �
 subjet to the overing V =fB(xi; �i) : i = 1; 2; : : : ; lg. Given f : �
 ! R we have that f(x) = Pli=1 i(x) � f(x). Onean de�ne �i : Rd�1 ! Rd by �i := Qi(x; �i(x)), and fi : Rd�1 � R byfi(x) = (i(�i(x)) � f(�i(x)) if �i(x) 2 B(xi; �i) \ �
,0 otherwise,and then de�ne kfkHs(�
) by(2.17) kfk2Hs(�
) := lXi=1 k(i � f) Æ �ik2Hs(Rd�1):It an be shown that if �
 is Ck, then the norms de�ned by (2.17) for di�erent openoverings and partitions of unity are equivalent.Remark 2.4.1. It is possible to de�ne, via loal maps, pieewise polynomials on �
. Forthis, we refer to [14℄. We will not give any details here, but are ontent with remarking thatit is possible, and that if �
 is Ck, then we an de�ne Besov and Sobolev spaes for s < kusing straight-forward adaptations of the results mentioned in subsetion 2.3.2.We now ontinue with the main result of this setion, as found in [34℄.Theorem 2.4.2 (Trae theorem). Let r; l 2 N, s 2 R with r � s > l � 1=2. Let 
be a domain with boundary of lass Cr, and suh that �
 is bounded. Then there exists aontinuous trae operator(2.18) Tl : Hs(
)! lYj=0Hs�j�1=2(�
)with the property that(2.19) Tl� = ��j�
; ���n ; : : : ; �l��nl�for any � 2 C1(
). This operator has a ontinuous right inverse.The proof of this theorem essentially extends the map given in (2.19) by ontinuity tothe full operator Tl given in (2.18). Thus, when embedding a bounded domain 
 in a largerdomain (say X = Td, or X = Rd), we de�ne the traes on �
 of funtions in Hs(X)analogously, extending by ontinuity the appropriate analogon ~T of (2.19). It follows fromthis onstrution that under the hypothesis of the trae theorem, if u 2 Hs(X), then~Tu = T (r
u):Note also that theorem 2.4.2 does not hold if s � l� 1=2; if this is the ase then the map~T annot be extended ontinuously any longer. See [28℄.



Seond order ellipti boundary value problems 192.5 Seond order ellipti boundary value problemsConsider the seond order di�erential operator(2.20) Au = dXi;j=1 aij(x) �2u�xi�xj + dXi=1 bi(x) �u�xi + (x)uwith aij; bi;  2 C1. We assume that A is uniformly ellipti, that is, that there exists � > 0suh that 1Xi;j=1 viaij(x)vj > �kvk2 8 x; v 2 Rd :It is often useful to write (2.20) in divergene form,(2.21) Au = X0�j�j;jj�1(�1)j�jD� (~a�(x)Du) ;whih is always possible for some ~a� 2 C1, 0 � j�j; jj � 1. A is then uniformly elliptiwhenever Xj�j;jj=1 v�~a�(x)vg � �kvk2 8 v; x 2 Rdfor some � > 0.The derivatives involved in the de�nition of A are meant in the sense of distributions.Thus A is de�ned as A : D0(X) ! D0(X), with X either Rd , Td, or a bounded domain
 � Rd . The following fat will be useful later (see [33℄, page 76).Theorem 2.5.1. The operator A : Hs(Td)! Hs�2(Td) is bounded and has losed range forevery s 2 R. Furthermore, dim(N (A)) < +1, and dim(N (A)) = dim(R(A)?).We should stress that the above regularity assumptions are made for simpliity, and thatthey are not essential. It would be enough for the development of the theory in hapter fourif we had that A : Hs(Td) ! Hs�2(Td) is bounded and has losed range for all s 2 [s0; 2℄and some s0 > 2 (in partiular for theorem 4.3.8). But hoosing the stronger assumptionsalleviates us from the burden of traking yet another parameter.Sometimes we will plae additional assumptions on the operator A, in partiular whendealing with the weak formulation; see 2.5.2In this thesis we are onerned with the solution of the following type of problem. Let 
be a bounded domain. Given f , �nd u suh that(2.22) Au = f on 
;subjet to one of the following boundary onditions.Either Neumann boundary onditions(2.23) BNu = �u�n = g;



20 Seond order ellipti boundary value problemsor Dirihlet boundary onditions,(2.24) BDu = uj�
 = g;for g given.Equation (2.22) together with (2.23) is alled a Neumann problem. Equation (2.22)together with (2.24) is alled a Dirihlet problem.2.5.1 Strong solutionsA solution u of the Dirihlet or the Neumann problem is a strong solution3 if the equalities(2.22), together with (2.24) or (2.23), respetively, hold almost everywhere, and Au; f 2 L2.The situation is partiularly simple when 
 has C1 boundary (see [28℄).Theorem 2.5.2. Let s � 0. Then the operators PD : Hs+2(
)! Hs(
)�Hs+3=2(�
) andPN : Hs+2(
)! Hs(
)�Hs+1=2(�
), given byPD = � ABD� PN = � ABN�are bounded, have �nite-dimensional kernels, and their ranges are losed with �nite odi-mension. In partiular, one has that PD and PN are isomorphisms between N (PD)? andR(PD), and between N (PN )? and R(PN ), respetively.Above we have used the notation N (F ) for the kernel of an operator F , and R(F ) forits range.2.5.2 Weak formulationLet u 2 H1(
). Then the distribution Au annot always be identi�ed with a measurablefuntion. The weak formulation allows us to handle this ase.For � 2 D(
), we have by the de�nition of distributional derivative thathAu; �i = [Au℄(�) = X0�j�j;jj�1Z
 ~a�(x)D�uD�d�:We an now de�ne the (bounded) symmetri bilinear form a : H10 (
)�H10 (
)! R, assoi-ated with A, by a(u; v) := hAu; vi:We assume also that A is oerive, that is, that there exists � > 0 suh thata(u; u) > �kuk2H10 (
) 8 u 2 H10 (
):3There seems to be some disagreement over the de�nition of a strong solution. We use here the one foundin [34℄, p. 287.



B-spline wavelet bases 21Under these irumstanes we invoke the Lax-Milgram lemma, and have then that foreah f 2 H�1(
) there exists a unique u 2 H10 (
) suh thata(u; v) = hf; vi 8 v 2 H10 (
):We will say that this u is a weak solution of the problemAu = f on 
uj�
 = 0:Given g 2 H1=2(�
), we an use the Trae theorem to �nd ug 2 H1(
) suh that(ug)j�
 = g. But then from the above disussion it follows that there exists a uniqueu� 2 H10 (
) suh that a(u�; v) = hf � Aug; vi 8 v 2 H10 (
):Now u = u� + ug (whih an be seen to be independent of the hoie of ug) satis�es Au = fand also uj�
 = g. Thus, we all it a weak solution of the problemAu = f on 
uj�
 = g;noting that a strong solution is also a weak solution.We have the followingTheorem 2.5.3. If A is oerive, then the operator PD : H1(
)! H�1 �H1=2(�
), givenby PD = � ABD�is an isomorphism.It is not possible to onstrut a similar theory for the Neumann problem. The operatorBN is not bounded on H1(
).2.6 B-spline wavelet basesThe type of wavelets we will use is a family of Riesz bases for Sobolev spaes and their duals.We sketh here the onstrution of pairs of biorthogonal wavelet bases for L2(R), and showhow this onstrution an be extended to the multivariate and periodi ases. Finally, weshow how to produe wavelet bases for Sobolev spaes on these domains.Sine they play no role in the rest of this thesis, we have omitted various importantonstrutions, like wavelets on more general domains, or wavelets on manifolds. Still, weinlude a fairly detailed aount of the onstrution of B-spline wavelet bases, sine some ofthe details play a entral role later on.For a thorough introdution to the material from whih the summary in this setiondraws, see [11℄.



22 B-spline wavelet bases2.6.1 Riesz basesA Riesz basis for a (separable) Hilbert spae H is a ountable olletion F = ff�g, with �in some index set r, suh that the map T : `2(r)! H given byT (fx�g) = X̀2r x�f�is an isomorphism. It follows that there exists a dual Riesz basis ~F = f ~f�g in H0 suh thatfor every g 2 H, and every h 2 H0, we obtaing =X�2rh ~f�; gif� h =X�2rhh; f�i ~f�;(2.25)where we have written h�; �i for the dual pairing between H and H0. Relations (2.25) implythat hf�; f�i = Æ��, where Æ�� is the Kroneker delta.Sine F and ~F both indue isomorphisms between `2 and H, H0, respetively, we obtainthe norm equivaleneskgkH �  X�2r jh ~f�; gij2!1=2 ; khkH0 �  X�2r jhh; f�ij2!1=2 :2.6.2 Multiresolution analysisA multiresolution analysis (MRA) in L2(R) is a sequene of losed subspaes fVjgj2Z thatsatis�es the following axioms.Axioms 2.6.1I.Vj � Vj+1, for all j 2 ZII.\jVj = f0gIII.[jVj = L2(R)IV.if f 2 Vj, then f(2 � ) 2 Vj+1V.if f 2 V0, then f(� � k) 2 V0 for all k 2 ZVI.there exists  0 2 V0 suh that the set f 0(� � k) : k 2 Zg is a Riesz basis for V0. Thisfuntion is alled the saling funtion4 of the MRA fVjgj2Z.4Here we have taken the liberty to denote the saling funtion by  0, departing from the tradition whihuses �. It will be seen that doing so simpli�es the notation greatly, in partiular when handling multivariatewavelet bases.



B-spline wavelet bases 23A pair of biorthogonal MRAs fVjg, f ~Vjg is a pair of MRAs whose orresponding salingfuntions  0, ~ 0 satisfy h 0(� � k); ~ 0(� � l)i = Ækl for all k; l 2 Z. Suh a pair de�nes asequene of oblique projetors Qj : L2(R) ! Vj, ~Qj : L2(R) ! ~Vj, given byQjf =Xk2Zh�j ~ 0(2j � �k; fi�j 0(2j � �k);~Qjf =Xk2Zhf; �j 0(2j � �k)i�j ~ 0(2j � �k);where the saling �j = 2�j=2 ensures that k�j 0(2j � �k)kL2 � 1. We will say that a pair ofbiorthogonal MRAs is admissible if the projetors Qj, ~Qj are uniformly bounded for j 2 Z.Let Wj = R(Qj+1 �Qj), and ~Wj = R( ~Qj+1 � ~Qj). These spaes satisfy thatVj+1 = Vj �Wj ~Vj+1 = ~Vj � ~Wjwhile Vj? ~Wj ~Vj?Wj :We further have that (see [11℄)(2.26)  Xj2Z k(Qj+1 �Qj)fkL2! 12 �  Xj2Z( ~Qj+1 � ~Qj)fL2! 12 � kfkL2 :It turns out that it is possible to �nd funtions  1 2 W0, ~ 1 2 ~W0, suh that theirinteger translates form a biorthogonal pair of Riesz bases for W0, ~W0, respetively. Writing ejk = �j e(2j � �k), where e 2 f0; 1g, j; k 2 Z, we an express the projetors Qj+1 � Qj,~Qj+1 � ~Qj simply through (Qj+1 �Qj)f =Xk2Zh ~ 1jk; fi 1jk( ~Qj+1 � ~Qj)f =Xk2Zhf;  1jki ~ 1jk:From this, and from (2.26), it follows that the olletions	 = f 1jk : j; k 2 Zg ~	 = f ~ 1jk : j; k 2 Zgonstitute a pair of biorthogonal Riesz bases for L2. The bases 	, ~	, are alled waveletbases, and the funtions  1, ~ 1 are alled the mother wavelets of theses bases.Given a pair of (admissible) biorthogonal MRAs, we an obtain orresponding motherwavelets as follows.First, we realize that from axioms 2.6.1, IV it follows that  0, ~ 0 satisfy the equations 0(x) =Xk2Za0k 0(2 � �k); ~ 0(x) =Xk2Z~a0k ~ 0(2 � �k);



24 B-spline wavelet basesfor some sequenes fa0kg, f~a0kg. These sequenes are alled the masks of their respetivefuntions. It is lear that if these funtions are ompatly supported, then only a �nitenumber of entries in their masks an be nonzero. Now, let fa1kg, f~a1kg, be the sequeneswhose entries are given bya1k = (�1)k~a01�k; ~a1k = (�1)ka01�k:One possible hoie for  1, ~ 1, is then 1 =Xk2Za1k 0(2 � �k); ~ 1 =Xk2Z~a1k ~ 0(2 � �k):Note that whenever both  0, ~ 0, are ompatly supported, so are  1, ~ 1.2.6.3 B-spline wavelet basesThe spaes Smj , de�ned in 2.3.1, satisfy the de�nition of multiresolution analysis. To satisfyaxiom VI, it is ustomary to hoose 0 = Nm(x+ �m + 12 �):It is an easy exerise to ompute the mask of this funtion. An observation whih plays animportant role later on is that all elements of the mask of this  0 are non-negative.The onstrution of the dual MRA is not at all simple. See [9℄ for details. SuÆe itto say that for ~m 2 N , with m + ~m even and ~m � m, there exists a ompatly supportedsaling funtion ~ whih reprodues polynomials of degree ~m� 1, and suh that the spaesVj = Smj , together with the spaes~Vj = span f ~ 0(2j � �k) : k 2 Zgde�ne an admissible pair of biorthogonal MRAs.2.6.4 The multivariate and periodi asesLet fVjg, f ~Vjg be a pair of biorthogonal MRAs, and let d > 1 be an integer. Write x =(x1; x2; : : : ; xd) 2 Rd , letE = f0; 1gd, and onsider the funtions  e(x) =  e1(x1) e2(x2) � � � ed(xd),~ e(x) = ~ e1(x1) ~ e2(x2) � � � ~ ed(xd) for e 2 E. We will always use 0 to denote the element inE whose oordinates are all zero. This abuse of notation is very useful, and it never seemsto ause any onfusion.The spaes V 0j = span f 0(2j � �k) : k 2 Zdg form a MRA, and with the dual spaesf ~V 0j g (de�ned analogously) they form a pair of biorthogonal MRAs. The omplement spaesW 0j suh that V 0j+1 = V 0j �W 0j are spanned by the integer translates of the funtions  e withe 2 E n f0g. Using the saling fator �j = 2 dj2 , the funtions f ejk : j 2 Z ^ k 2 Zd ^ e 2E n (0; 0; : : : ; 0)g, with  ejk = �j e(2j � �k), form a Riesz basis of the spae L2(Rd).



B-spline wavelet bases 25Let  e(Td)jk (x) =Xz2Z ejk(x� z):The spaes V Tj = span f 0(Td)jk : k 2 Zdj g, where we have written Zdj = Zd=2jZd, satisfy allthe axioms for a MRA exept for axiom II, as this de�nition of Vj does not make sense forj � 0. Usually, this axiom is just deleted, and one ontents oneself with a Riesz basis thatinludes the saling funtions on V0. We still have that fV Tj gj�0, f ~V Tj gj�0 form a pair ofbiorthogonal MRAs, for and that the set f 0(Td)0;0 g [ f e(Td)jk : j 2 N ^ k 2 Zdj g forms a Rieszbasis of the spae L2(T). We will drop the Td supersript from now on, sine it will beomelear from the ontext whih set of funtions are used.In the notation of 2.6.1, we haver = f� = (e; j; k) : e 2 f0; 1gd; j 2 N ; k 2 Zdj ; with e = 0 only if j = 0g:Thus we write  �, with � = (e; k; j) instead of  ejk. We also use the notation j�j := j for thelevel of  �. Sometimes it is useful to onsider only indies up to a ertain level, or indiesonly on one level. We denote this byrj = f� 2 r : j�j < jg r0j = f� 2 r : j�j = jg2.6.5 Wavelet bases for Sobolev spaesThe onstrution of wavelet bases for Sobolev spaes from bases for L2 amounts to resaling.The fundamental result is the following theorem (See [11℄, 108-117). To avoid needlessompliations, we will only write it for spaes Hs(X), s 2 R, de�ned on X = Rd or X = Td.Theorem 2.6.1. Consider a pair of (admissible) biorthogonal MRAs as above, together withthe orresponding L2 wavelet basis, and let = supfs :  0 2 Hs(X)g;~ = supfs : ~ 0 2 Hs(X)g;m = maxfr : �r � V0 (loally) g;~m = maxfr : �r � ~V0 (loally) g:Then, writing r = minf;mg, ~r = minf~; ~mg, we obtain that for all s 2 (�~r; r) the sets	(s) = f2sj�j � : � 2 rg; ~	(�s) = f2�sj�j � : � 2 rg;form a pair of biorthogonal Riesz bases for the spaes Hs(X), H�s(X), respetively.When we say that 	 is a Wavelet basis for Hs, we will assume that it has been properlysaled. That is, when we write  � =  ejk = �j e(2j � �k) we have�j = 2�sj2jd=2:



26 B-spline wavelet bases2.6.6 The fast wavelet transformGiven a pair of MRAs as above, and f 2 Vj+1, j � 0, we have two representations of favailable. We an either express it in terms of saling funtions in Vj+1, or in terms ofwavelets. Here we sketh briey how to translate from one representation to the other in theperiodi ase.Given a sequene x = fxkgk2Zd, we an assoiate with it the matrixMxj = (mx;jkl )k2Zdj+1;l2Zdj ,whose entries are given by mx;jkl = �j�j+1 Xz2Zdxk�2l�2j+1z:Note that it de�nes a linear map Mxj : `2(Zdj )! `2(Zdj+1)As before, let E = f0; 1gd. We will write be = fbekgk2Zd for the sequene whose entriesare bek = ae1k1ae2k2 � � �aedkd ;where e = (e1; e2; : : : ; ed), and k = (k1; k2; : : : ; kd). This sequene is just the tensor produtof the orresponding 1-dimensional masks.Note that we an write f as either(2.27) f = Xk2Zdj+1(0j+1)k 0j+1;k;or as(2.28) f =Xe2E Xk2Zdj (je)k ejk;where the ej eah belong to `2(Zdj ).Using the tensor produt masks and the matrix mehanism de�ned above, we obtain that(2.29) j+10 =Xe2EMbej je;and that for e 2 E,(2.30) je = �M ~bej �T j+10 :Relations (2.29) and (2.30) allow us to swith between the representations (2.27) and (2.28)at a ost of O(N) operations, with N = 2(j+1)d. We an repeat this proess for fj :=Pk2Zdj (j0)k 0jk, and then again analogously until j = 0. Then we have obtained the waveletrepresentation of f ,(2.31) f = (00)0 00;0 + jXl=0 Xe2Enf0g Xk2Zdj (je)k ejk:



B-spline wavelet bases 27The ost of transforming between (2.27) and (2.31) is also O(N). The method we havedesribed here is alled the fast wavelet transform. For later use, we de�nerj := f(0; 0; 0)g [ j�1[i=0f(j; k; e) : k 2 Zdj ; e 2 E n f0gg;whih allows us to write (2.31) more suintly asf = X�2rj � �:2.6.7 Disretizing linear operator equationsThe type of operator equation that we will to solve is as follows. Consider a linear, boundedoperator M : Hl ! Hr with losed range, where Hl, Hr will be either Sobolev spaes, ortensor produts of Sobolev spaes. We always endow the tensor produt spaes with theEulidean tensor produt norm, whih ensures that the resulting spae is also a Hilbertspae.Given b 2 Hr, we take on the task of �nding x 2 Hl suh that(2.32) Mx = b:(Note that suh a solution does not have to exist, nor does it have to be unique; we shallignore this for the moment.)Given a pair of isomorphismsTl : `2 ! Hl; Tr : `2 !Hr;(2.33)whih usually will involve wavelet bases, we an transform equation (2.32) into an equivalentsystem of equations by taking M = T�1r MTl, and rewrite our problem as follows. Givenb 2 Hr, let b = T�1r b, and �nd x 2 `2 suh thatMx = b:After �nding x, we then obtain the solution of (2.32) by taking x = Tlx.Using the fat that any isomorphism of the type (2.33) indues a Riesz basis, and thatfor eah Riesz basis there is a biorthogonal Riesz basis, it is easy to �nd simple expressionsfor omputing the entries in the matrix M .We an obtain disretizations of equation (2.32) by using pairs of biorthogonal MRAs.Suppose that fV �j gj�0, f ~V �j gj�0 is suh a pair for H�, (H�)0, � = r; l, (onstruted, ifneeded, by taking tensor produts of MRAs in the obvious way), and denote by Q�j , ~Q�jtheir respetive oblique projetors. We shall further assume that these spaes are �nitedimensional. Write Mj = QrjMQlj , and onsider the following disrete problem. Given anapproximation bj 2 V rj of b, �nd xj 2 V lj suh that(2.34) Mjxj = bj:



28 Nonlinear approximation using WaveletsThere are now two possibilities to transform (2.34) into a linear system of equationsin Eulidean spae. One through the saling funtion representation of the elements in therespetive spaes, and one using the wavelet representation. If the operatorM is an invertibleellipti di�erential operator, then using the wavelet representation leads to a system whoseondition number is uniformly bounded in j (see [11℄, p. 116�).2.7 Nonlinear approximation using WaveletsUntil now, we have onsidered only approximation using linear spaes. Here we will disussin brevity approximation from nonlinear sets.2.7.1 Best N-term approximationSuppose 	, ~	 are a pair of biorthogonal wavelet Riesz bases for the spaes H t(Td), H�t(Td),respetively, and onsider the problem of approximating f 2 H t(Td),f =X�2r � �:Let ' : N ! r be a sorting of the oeÆient vetor f�g, that is, if n;m 2 N , m � n impliesj'(m)j � j'(n)j. The best N � term approximation of f is now de�ned by(2.35) ffNg = NXi=1 '(i) '(i):Clearly, the idea is to approximate f using only the most important oeÆients of its waveletrepresentation, ahieving, we hope, a better rate of approximation than if we approximatedf by fj = X�2rj � � 2 Vj:The approah (2.35) is partiularly helpful when approximating funtions with singular-ities, sine the larger oeÆients tend to agglomerate there.Let us write �n = ff : f =P�2A � �;with A � r, #A � ng. The spaeAs1(H t(Td); f�ng)onsists then of all the funtions f 2 H t suh that the onvergene of its best N -term ap-proximation is as O(N�s).From [8℄ we learn that this is equivalent to the ondition that the sequene f�g�2rbelongs to the weak `� spaes (denoted `w� ), with s = 1=� � 1=2. That is, when#f� : j�j � �g . ���We have the following result [8℄.Theorem 2.7.1. Let � > 0, and write �� = � + �, s� = 1=�� + 1=2. ThenBsd+t� (L� ) � As1(H t; f�ng) � Bs�d+t�� (L��):



Nonlinear approximation using Wavelets 29
The following haraterization of `w� will be useful later.Proposition 2.7.2. Let a > 1. v 2 `�w if, and only if for every j 2 Z#fk : jvkj � a�jg . a�j2.7.2 Compressible matries, fast matrix-vetor multipliation, andadaptive wavelet methodsAn in�nite matrix B is said to be in the lass Bs of ompressible matries if there existtwo positive summable sequenes f�jgj2N, f�jgj2N, suh that for every j � 0 there exists amatrix Bj with at most 2j�j nonzero entries per row and olumn with the property that, inthe spetral norm, kB � Bjk � 2�js�j;Proposition 2.7.3. Let � = (s + 12)�1, with 0 < � < 2. If B 2 Bs, then B maps `w�boundedly into itself.The wavelet disretizations of the regular di�erential operators in setion 2.5 are allompressible; see [8℄. The ompressibility index s depends on the regularity of the primalwavelet basis and of the approximation power of the dual basis.Another important property of a ompressible matrix is that it is possible to ompute itsation on a sequene eÆiently.Theorem 2.7.4. For any v 2 `2 with �nite support, for any B 2 Bs, and given an auray� > 0, there exists a ompatly supported sequene w 2 `2 suh thati. kBv � wk < �,ii. kwk`w� . kvk`w�iii. #(supp w) � CB;s��1=skvk1=s`w� .The ost of omputing w stays bounded by CB;skvk1=s`w� ��1=s +#supp v.For onrete algorithms, and further information, we refer to [8℄.The two last results are the key ingredients of the adaptive wavelet methods devised in[8℄. We refer there and also to [7℄ for further details. Here we only inlude the following oreresult, whih only speaks of its eÆieny and onvergene, and is only onerned with theproblem after being transformed to a problem in `2.Theorem 2.7.5. Let L : `2 ! `2 be in Bs. Assume further that L is symmetri positivede�nite, and onsider the equation Lx = b:If the solution x is in `w� , then given � > 0, the adaptive algorithm in [8℄ onstruts a om-patly supported approximation w of x suh that kx� wk < � and #(supp w) . kvk1=s`w� ��1=s,at a ost of at most O(��1=s) operations.
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Chapter 3The �titious domain Lagrangemultiplier method - A ase studyThe �titious domain - Lagrange multiplier (FDLM) method is a fairly popular �titiousdomain method; its simpliity and good performane are appealing, and the theory behindit is very well understood. This makes it a very good example for the type of smoothness-related problems that may arise.This is what we intend to do in this hapter: to study in depth the smoothness of thesolutions obtained with the FDLM method in the �titious domain. This solution is anextension of the solution of the original problem, and what will be shown is that, unlessareful provisions are taken, this extended solution will be diÆult to approximate. Wewill establish that the onvergene rate of linear shemes based on B-splines and nonlinearshemes based on B-spline wavelets is bounded from below, independently of the orderhosen. This result extends to omparable approximation shemes via orollary 2.2.2 andtheorem 2.7.1, respetively.We will begin by skething the derivation of the FDLM method. Then we will studythe results that onern linear approximation shemes, taking �rst a quik look at what isalready known, and then extending these results to the full range of parameters. After that,we will also study the onvergene rates of nonlinear shemes. In the derivation of theseresults, we need a entral lemma whih we prove in the last setion, after disussing brieyhow to obtain better onvergene rates.3.1 The FDLM methodConsider the following problem. Let 
 � Rd be a bounded domain with C1 boundary, andlet f 2 [H1(
)℄0, g 2 H1=2(�
). We want to �nd u 2 H1(
) suh thatAu = f on 
,uj�
 = g;(3.1)where A is a uniformly ellipti seond order di�erential operator as de�ned in setion 2.5.We will solve problem (3.1) by embedding 
 into a larger, simpler domain �, the �titiousdomain. For simpliity we will set � = Td. 31



32 The FDLM methodThe next step is to hoose an extension f+ 2 H�1(Td) of f . Note that this is alwayspossible sine we have required that f 2 [H1(
)℄0. At the very least we an take f+ = f Ær
,where r
 is the operator whih restrits funtions to 
.A detail that needs arefull adressing is the \extension" of the di�erential operator de�nedon 
. To this end, assume that the oeÆients f~a�g that de�ne A in divergene form on
 (see (2.21)) an be extended to Td by fa�g, with a� 2 C1(Td), 0 � j�j; jj � 1. Now,de�ne ATd : H1(Td)! H�1(Td) by de�ning ATdu �rst on C1(Td),(ATdu)(�) := X0�j�j;jj�1ZTd a�(x)D�uD�d�; � 2 C1(Td);and then extending it to H1(Td) through ontinuity in the usual way.As it is a funtional on H1(Td), the \restrition to 
" of ATdu, written (ATdu)j
, isde�ned �rst for D(
) by (see [34℄, page 133)(ATdu)j
(�) := (ATdu)(�0); 8� 2 D(
);where we have written �0 for the extension by zero of �. Afterwards, (ATdu)j
 beomesa funtional on H10 (
) again by ontinuity. Standard arguments show that it must be abounded funtional, and thus we have that (ATdu)j
 2 H�1(
) for all u 2 H1(Td).Now, given u 2 H1(Td), we observe that for eah � 2 D(
),(ATdu)j
(�) = X0�j�j;jj�1ZTd a�(x)D�uD�0= X0�j�j;jj�1Z
 ~a�(x)D�uD�= [A(uj
)℄(�):Thus, if we de�ne ATd as above, we an write(3.2) (ATdu)j
 = A(uj
):Note arefully, however, that while the restrition appearing on the right has a pointwiseinterpretation, the restrition on the left is in the sense of distributions. (Note also thatthese interpretations would agree whenever ATdu 2 L2(Td), whih means that ATdu an beexpressed in terms of a funtion in L2(Td).) This is fortunate, as we an now be sure thatwhenever ATdu+ = f+holds, it is also true that A(u+j
) = f:For simpliity, we introdue another slight abuse of notation and write again A for the\extension" ATd of A on 
 to Td.



The FDLM method 33Having settled this, we further assume that the bilinear forma(u; v) := hAu; vi 8 u; v 2 H1(Td)is symmetri, and that it is oerive on the kernel of the trae operator BD : H1(Td) !H1=2(�
). That is, that there exists a onstant � > 0 suh thata(u; u) � �kuk2H1(Td) 8 u 2 N (BD):To simplify the notation, we will write B for BD throughout the rest of this hapter.We turn our attention now to a di�erent problem, formulated in terms of the new extendeddata. We seek for the minimizer in H1(Td) of the funtional(3.3) F (v) := 12a(v; v)� hf; vi 8 v 2 H1(Td);subjet to the additional onstraint Bv = g. We express this onstraint in the equivalentform(3.4) b(v; q) = hg; qi 8 q 2 H�1=2(�
);where we have de�ned b(v; q) := hBv; qiH1=2�H�1=2 .To solve this onstrained minimization problem, we append (3.4) to (3.3) using a Lagrangemultiplier. Our problem now reads: �nd p 2 H�1=2(�
), u+ 2 H1(Td), suh that(3.5) F �(u+; p) := supq2H�1=2(�
) infv2H1(Td)F �(v; q);where F �(v; q) = 12a(v; v)� hf+; vi+ b(v; q)� hg; qiand p is the Lagrange multiplier.Using standard variational arguments one onludes that (u+; p) 2 H1(Td)�H�1=2(�
)satis�es (3.5) if and only if(3.6) a(u+; v) + b(v; p) = hf+; vi 8 v 2 H1(Td);b(u+; q) = hg; qi 8 q 2 H�1=2(�
):We often write (3.6) in operator form. Thus (u+; p) satis�es (3.5) if and only if(3.7) �A B�B 0 ��u+p � = �f+g � :Our new problem reads, given (f+; g) 2 H�1(Td) � H1=2(�
), �nd (u+; p) 2 H1(Td) �H�1=2(�
) suh that (3.6), (3.7) hold. Owing to its derivation from (3.5), we all this asaddle point problem.



34 Approximating u+One an hek (see [22℄, [27℄) that this problem is well posed; the operatorM : H1(Td)�H�1=2(�
)! H�1(Td)�H1=2(�
) given by(3.8) M = �A B�B 0 �is an isomorphism. Furthermore, the restrition to 
 of u+, u = u+j
 is the unique solutionof problem (3.1).The disretization of problem (3.1) with respet to �nite dimensional subspaes ofH1(Td)�H�1=2(�
) and H�1(Td) � H1=2(�
) requires some are, sine otherwise the resulting dis-rete problem beomes unstable. We omit this disussion here, sine it plays no role in therest of this hapter, and instead refer to [4℄, [21℄, [12℄.3.2 Approximating u+Throughout the rest of this hapter, we will work under the following assumptions. First,that 	, ~	 are a pair of biorthogonal B-spline wavelet bases for H1(Td), H�1(Td) respetively(whih means that they are already properly saled; see subsetion 2.6.5), with orrespondingmultiresolution analysis fVjgj2N0 , f ~Vjgj2N0 . To avoid tehnialities, we also assume that themembers of these bases are smooth enough. This means, in partiular, that fVjgj2N0 , f ~Vjgj2N0satisfy appropriate Jakson and Bernstein inequalities (2.5), so that we an always writeAsq(L2; fVjgj2N0 ) = Bsq(L2):We prefer the notation for approximation spaes beause it is a bit more exible and to thepoint.For tehnial reasons that will beome apparent later on, we also assume that the orderof the primal basis is at least m � 4. Thus, If  � 2 	, then  � 2 Cm�2, and  � is at least apieewise ubi funtion.3.2.1 Approximating u+ with linear approximation shemesThe aim of this subsetion is to illustrate the e�et of the Lagrange multiplier on the Sobolevsmoothness of the extended solution u+. The result we derive here states that even thoughf+ and g are suh that the original problem would admit a smoother solution (whih ouldbe approximated more eÆiently using linear approximation shemes), a non-zero Lagrangemultiplier implies that u+ 2 Hs(Td) is only possible for s � 3=2.This ritial index of 3=2, and the aim of our study, leads us to base our results on thehypothesis that (f+; g) 2 H��1=2(Td) �H�+1(�
) for some � > 0. If g =2 H1+�(�
) for any� > 0, then u+ annot belong in any Sobolev spae with an index greater than 3=2, regardlessof the value of the Lagrange multiplier. On the other hand, if f+ =2 H��1=2 for any � > 0,then the solution may or may not be smooth, depending on the partiular ase at hand (seeremark 3.2.6).



Approximating u+ 35We begin by showing that, under ertain irumstanes, the Lagrange multiplier is thejump in the onormal derivatives of u+ at �
. The onormal derivatives of v 2 Hs(
) at�
 are given by n � ~arv;where n is the outward normal at a point in �
, and ~a is the oeÆient matrix of the operatorA in divergene form (see (2.21)).This result has been known for quite some time. It has its origin in [1℄, and an befound in a slightly less general form (only for A = �4) in [21℄. The present form essentiallyrealizes a remark in [12℄.Proposition 3.2.1. If f+ 2 L2(Td), g 2 H1=2(�
), and (u+; p) 2 H1(Td) � H�1=2(�
) isthe solution with this data of system (3.7), then p is the value of the jump in the onormalderivatives at �
.Proof. Write ~
 = T n 
. On 
, we have that Ar
u+ = r
f+, and so for any ' 2 C1(
),we obtain Z
 'Au+ d� = Z
 f+'d�:Using Green's formula, we also have thatZ
 'Au+ d� = Z�
(n � ~aru+)'d� + Z
r' � ~aru+ d�:We repeat the same argument for ~
, and then, by adding both results, obtain that for every� 2 C1(Td) ZTd f+� d� = ZTdr� � ~aru+ d�+ Z�
 �(n � ~aru+) d� + Z� ~
 �(n � ~aru+) d�;and sine the outward normal at � ~
 is minus the outward normal at �
, we obtain thatZTd f+� d� = ZTdr� � ~aru+ d�+ Z�
 � �n � ~aru+��
 d�;where we have written [n � ~aru+℄�
 for the jump in the onormal derivatives at �
.But u, p, and f+ also satisfy the �rst equation in (3.6), so we see that for every � 2C1(Td), hf+; �i = a(u+; �) + b(�; p)= a(u+; �) + b(�; �n � ~aru+��
):Thus, we onlude that p = [n � ~aru+℄�
, as we wanted to prove.



36 Approximating u+Note that the hypothesis that f+ is in L2(Td) was mainly used when writingZ
 �f d�+ Z~
 �f d� = ZTd �f d�:So in fat what we have used is that sine �f is measurable,ZTdn(
[~
) �f d� = 0beause �(Td n(
[ ~
)) = 0. So learly, proposition 3.2.1 should still hold under more generalhypothesis. It turns out to hold form the full range of parameters we are interested in.Proposition 3.2.2. Suppose that, for some � > 0, (f; g) 2 H��1=2(Td)�H�+1(�
), and let(u+; p) 2 H1(Td)�H�1=2(�
) be the solution of system (3.7) with this data. Then p is thejump in the onormal derivative at the boundary.Proof. We extend proposition 3.2.1 by ontinuity. To that end, let ffngn2N, fn 2 L2(Td)be suh that fn ! f in H��1=2(Td). Let (u+n ; pn) be the solutions of the system (3.7) with(fn; g) as data.Given any domain ! � Td, we denote by S! : H�+3=2(!) ! H�(�!) the onormalderivative operator, de�ned by S!v = n � rv, where n is the outward normal at a point in�!. As we have done before, we also denote by r! the restrition to !.Observe that if ! has a smooth boundary, and if � > 0, then the operator S! is ontinuous.To see this, note that the operator BD Æ ��xi : H�+3=2(!)! H�(�!) is bounded. Furthermore,reall that if ' 2 C1(w), then v 7! 'v is a bounded operator from any H t(w), t > 0, toitself. Thus, sine the oeÆients ~a are in C1(Td), the operator G : H�+3=2(!)! [H�(�!)℄d(where we endow the latter spae with the Eulidean tensor produt norm), given byGu := ~a(x)0BBB� �u�x1�u�x2...�u�xd
1CCCAis bounded. Thus, S!u = n �~aru = n �Gu is a bounded operator from H�+3=2(!) to H�(�!).We will also need to de�ne the restrition to a domain ! of a funtional g in H��1=2(Td).As suh, this makes no sense, sine g is not de�ned on Td, as it is a funtional on H1=2��(Td).We assume (as we an do without loss of generality) that � < 1=2, and given ' 2 C1o (!),we de�ne (R
g)' as the value of g on the extension by zero of ' to Td. This de�nes,by ontinuity, a bounded funtional on H1=2��0 (!) = H1=2��(!). The map R
 is learlybounded; one an hek also that if g is given by g(v) = RTd ~gv d�, with ~g 2 L2(!), then(R
g)(v) = R! r!~gv d�. We will no longer make suh a �ne distintion between a funtionaland its representation, and write, in what onstitutes an abuse in notation, r!g := R!g.Sine fn ! f in H��1=2(Td), we have that r
fn ! r
f , and sine Au+nj
 = fnj
, Bu+nj
 =g, we also have that the sequene fr
u+n g onverges in H�+3=2(
), and that it onverges tor
u+. An idential argument shows that fr~
u+n g onverges to r~
u+.



Approximating u+ 37Now, by proposition 3.2.1, pn = S
r
u+n + S~
r~
u+n , and so, by ontinuity of M�1 (withM de�ned in (3.8)), S
, S~
, and r
, we obtain that p = S
r
u+ + S~
r~
u+, and so p isexatly the jump in the onormal derivatives of u+ at �
.The next question is, what does a jump in the onormal derivatives imply for the smooth-ness of u+? The following lemma lears us from (almost) all doubts.Lemma 3.2.3. If v 2 H�+3=2 for some � > 0, then the jump in the onormal derivatives ofv at �
 vanishes.Proof. Let f'ng � C1(Td) be suh that 'n ! v in H�+3=2(Td) when n ! +1. Using thesame notation as in the proof of proposition 3.2.2, we have thatS
r
'n + S~
r~
'n = 0;and so by ontinuity, we obtain that the jump in the onormal derivatives of v at �
,S
r
v + S~
r~
v, must also vanish.We an now summarize the above results into the following.Theorem 3.2.4. If (f+; g) 2 H��1=2(Td) � H�+1(�
) for some � > 0, and the Lagrangemultiplier obtained when solving (3.7) is nonzero, then u+ 2 Hs(Td) implies s � 3=2.As a onsequene, we an �nally estimate the rate of approximation of u+ by fVjgj2N0 .Corollary 3.2.5. If (f+; g) 2 H��1=2(Td)�H�+1(�
) for some � > 0, and p 6= 0, then(3.9) u+ 2 As2(L2; fVjgj2N0 ) implies s � 3=2;and(3.10) u+ 2 As2(H1; fVjgj2N0) implies s � 1=2:Proof. Apply (2.15) to theorem 3.2.4, and observe that Bs2(L2) = As2(L2; fVjgj2N0 ) for theorresponding range of s. This settles (3.9). To prove (3.10), apply theorem 2.2.4.Remark 3.2.6. If f+ =2 Hs(Td) for any s > �1=2, then it is possible that the solutionof (3.7) is smooth (i.e, belongs to some Sobolev spae H t for some large t), even when theLagrange multiplier is not zero.To see this, hoose an arbitrary t > 3=2, and let v 2 H t(Td). Then hoose q 2 H�1=2(�
),q 6= 0, and set f+ := Av + B�q, g := Bv. If we solve the system (3.7) with these data,we obtain a pair (u+; p) with u+ = v, and p = q 6= 0. By lemma 3.2.3, it would be aontradition if p was the jump in the onormal derivatives. But that would ontradittheorem 3.2.2, unless f+ =2 Hs(Td) for any s > �1=2.Under some irumstanes, it is possible to rule out the ase s = 3=2 in 3.2.4.Theorem 3.2.7. Suppose that f+ 2 H�1=2+�(Td) for some � > 0, and let (u+; p) be thesolution of (3.7). If there exists an open set U , and a onstant  > 0 suh that p(x) �  > 0almost everywhere on U \�
, or alternatively, if p(x) �  < 0 almost everywhere on U \�
(this assumes also that p an be identi�ed with a measurable funtion on that set) thenu+ 2 Hs(Td) implies s < 3=2.



38 Approximating u+This result is based on the following lemma.Lemma 3.2.8. Under the hypothesis on p of theorem 3.2.7, there exists j0 2 N suh thatfor eah j � j0 we an �nd Gj � r0j := f� 2 r : j�j = jg with the following properties.i. #Gj & 2j(d�1)ii. � 2 Gj implies that jh �; B�pij & 2�jd=2.The proof of this lemma is fairly tehnial, and thus we defer it for the moment.Proof of theorem 3.2.7. We begin by direting our attention to the �rst equation in (3.7),and rewrite it to read(3.11) Au = f+ � B�pNow whenever u+ 2 Hs(Td), then Au+ 2 Hs�2(Td), and thus by (3.11) it will be enough toshow that if f+ � B�p 2 Hs�2, then s� 2 < �1=2. But this redues again to prove that ifB�p 2 Hr(Td), then r < �1=2.Sine the bases 	, ~	 (hosen at the beginning of 3.2) are a pair of biorthogonal B-splinewavelet bases for H1(Td), H�1(Td) respetively, and thus they are Riesz bases, we an write(3.12) kB�pk2H�1(Td) �X�2r jhB�p;  �ij2:Given t � 0 we an ompute the norm of B�p in H t�1(Td) by introduing an additionalsaling fator in (3.12). We have thatkB�pk2Hr(Td) �X�2r 2tj�jjhB�p;  �ij2= Xj2N0 2jtXr0j jhB�p;  �ij2(3.13)We invoke lemma 3.2.8 and see that if j � j0,Xr0j jhB�p;  �ij2 � X�2Gj jhB�p;  �ij2& 2j(d�1) � 2�jd = 2�j;and thus we have that (3.13) diverges whenever t � 1=2, and thus B�p 2 Hr implies thatr = t� 1 < �1=2.3.2.2 Approximating u+ with nonlinear approximation shemesbased on B-spline waveletsThe only result in this subsetion states (roughly speaking) that,



Approximating u+ 39� if the bases we have hosen are suÆiently smooth and have enough vanishing moments,� if the rate of onvergene of the best N�term approximations to f+ is higher than aertain threshold,� and if the Lagrange multiplier obtained when solving (3.7) satis�es the hypothesis oflemma 3.2.8,then the rate of onvergene of the best N� term approximations to u+ is bounded frombelow. Let us be more preise.Theorem 3.2.9. Let f = ff�g�2r 2 `2, f� := hf+;  �i, be the sequene of oeÆients of f+with respet to the basis ~	, and suppose that f 2 `w� for some � < 2(d�1)d (this is equivalentto the assumption that f+ 2 Ar1(H�1;�n( ~	))for r = 1� � 12 > 12(d�1)). If p satis�es the hypothesis of theorem 3.2.7, and if 	, ~	 aresuÆiently smooth and have enough vansihing moments, then the sequene u = fu�g�2r 2 `2of oeÆients of u+, u� := hu+; ~ �i, satis�es that if u 2 `w� , then � � 2(d�1)d . In other words,u+ 2 At1(H1(Td);�n(	))implies that t � 12(d�1) .Proof. When we assume that 	, ~	 are smooth enough and have enough vanishing moments,we mean that they where hosen suh that A, the matrix of A with respet to the basis 	,~	, satis�es A 2 Bs for some s > 12(d�1) ; see subsetion 2.7.2.Let d = fd�g�2r 2 `2 be the oeÆients of B�p, d� := hB�p;  �i. From lemma 3.2.8 weobtain that if j > jo, Gj � f� 2 r : jd�j > C2�jd=2g:From this, and again from lemma 3.2.8 we obtain that#f� 2 r : jd�j > 2�jd=2g & 2j(d�1);whih, writing a = 2d=2, yields#f� 2 r : jd�j > a�jg & aj 2(d�1)d :Using proposition 2.7.2, we have that(3.14) d 2 `w�only if � � 2(d�1)d .If u 2 `w� , and � < 2(d�1)d , then sine A 2 Bs for some s > 12(d�1) , we have that Au 2 `w�for some � � � < 2(d�1)d . But this implies that Au = f + d 2 `w� , and thus by linearity,f + d� f = d 2 `w� . The theorem now follows from this ontradition.



40 Approximating u+Thus, we have that under the hypothesis of theorem 3.2.9, the best N -term approxi-mations of u+ onverge at best as O(N� 12(d�1) ). As a onsequene, no adaptive methodomparable with those disussed in [8℄, (see subsetion 2.7.2), an ahieve an auray of �without spending at least O(��2(d�1)) operations.Note again that theorems 3.2.7 and 3.2.9 hold whenever the basis funtions are smoothenough. Resorting to higher order B-spline wavelets is of no help.Finally, we remark that from (3.14) it also follows that B� is not very ompressible (seeproposition 2.7.3).3.2.3 Obtaining better onvergene ratesIn theory, it is easy to obtain better onvergene rates. This is illustrated by the followingtwo results.Proposition 3.2.10. Let V 
j = r
Vj, and suppose that the solution u of problem (3.1) isin Asq(L2(
); fV 
j gj2N0) for some s � 1, 0 < q � 1. Then there exists an extension f+of f suh that the extended solution u+ of (3.7) satis�es u+ 2 Asq(L2(Td); fV 
j gj2N0 ) andu+ 2 As�1q (H1(Td); fV 
j gj2N0 ).Proof. Just �nd an appropriate extension u� of u to Td using the results of setion 2.4, andtake f+ = Au�. When we solve (3.7) with this right-hand side (and with g as before), weobtain that (u�; 0) is the (unique) solution, and thus u+ = u� 2 Asq(L2(Td); fV 
j gj2N0). Usinglemma 2.2.4, we also obtain u+ 2 As�1q (H1(Td); fV 
j gj2N0 ).Proposition 3.2.11. Suppose that the solution u of problem (3.1) satis�es u 2 Bsd+1� (L� (
))for some � < 2(d�1)d , and where s = 1� � 12 . Then there exists an extension of f+ of f suhthat the solution u+ of 3.7 satis�es u+ 2 Bsd+1� (L� (Td)). That is, u+ 2 As��1 (H1;�n(	)) forall 0 < � < s.Proof. Using 2.16, we see that there exists an extension u� 2 Bsd+1� (L� (Td)) of u. We obtainf+ now simply by setting f+ = Au�.We onlude that in order to obtain better onvergene rates, we must �nd an adequateextension of f . Note that it is not enough to hoose a smooth extension of the right handside. It must be smooth and produe a smooth solution.The naive approah to the onstrution of a �titious domain method for solving problem(3.1) without these problems might follow the route proposed by propositions 3.2.11 and3.2.10. That is, to extend the solution and then apply the di�erential operator. This has amajor drawbak from the point of view of a numerial method: it must start with a fairlyaurate solution of problem (3.1), and thus renders the method pointless.In the next hapter we will onstrut a method whih produes smooth solutions by�nding smooth extensions of u and f simultaneously, and without ompromising auray.In what remains of this hapter we are going to prove lemma 3.2.8 and the auxiliary resultsneeded.



Proof of lemma 3.2.8 413.3 Proof of lemma 3.2.8To simplify a bit, we begin by assuming that j is always large enough, so that we an neglete�ets aused by periodization. Spei�ally, we assume that there exists an � > 0 suh thatfor all j onsidered, if supp ejk \
 6= ;, then supp ejk � (0+ �; 1� �)d. We will also restritourselves to the ase p(x) >  > 0, sine the ase p(x) < � < 0 is ompletely analogous.Let x0 2 U \ �
, and let �0 > 0, � 2 C1, and Q : Rd ! Rd be an orthogonal transforma-tion as in de�nition 2.3.2. This means thatQ�1(B(x0; �0) \ 
) = fx 2 Q�1(B(x0; �0)) : xd < �(x1; x2; : : : ; xd�1)g:Assume further that B(x0; �0) � U , and let Y � Rd�1 gather all points y 2 Rd suh that�(y) := Q(y; �(y))T 2 �
 \ B(x0; �0):Note that � satis�es k�(x)� �(y)k > kx� yk for all x; y 2 Y , and that Y is an open set.Given a funtion f 2 H1(Td) with supp f � B(x0; �0), we omputehB�p; fi = hp; Bfi= ZB(x0;�0)\�
 p(y)f(y)dS= ZY p(�(z))f(�(z))J �(z)dz:(3.15)Here J �(z) is the (d � 1)-dimensional volume of the parallelogram spanned by the vetorsfD�(z)e1; : : : ; D�(z)ed�1g, see for instane [19℄,hapter 7.3.3.1 Index sets and banded matriesTo �nd the sets predited by lemma 3.2.8, we will not use 3.15 diretly on the wavelets, butwill instead transform the laim of the lemma to an analogous laim on saling funtions.Before doing this, we will shed some light on the strutural relationship between sets ofsaling funtion and wavelet oeÆients.Given a level j, we an (obviously) onsider the wavelet or saling funtion oeÆientsof a funtion f as belonging to a vetor spae indexed by Zdj = Zd=2jZd. For instane, thesaling funtion representation of B�p on level j an be interpreted as j 2 `2(Zdj ), withentries(3.16) jk = hB�p;  0jki = hp; B 0jki; 8k 2 Zdj :This point of view is useful beause it allows us to use information on the loation of a basismember on Td. To this end we de�ne a metri on Zdj byd(k; k0) = minz2Zd kk + 2jz � k0k1:In this spirit, let X be some �nite set, and let W = `2(X), V = `2(Zdj ). We will saythat a linear map M : W ! V is banded of width dM 2 N if for any k 2 X one has thatif k0; k00 2 suppMek, then d(k0; k00) < dM . Here we have written ek for the member in theanonial basis orresponding to k. That is, (ek)l = Ækl, where Ækl is the Kroneker delta.



42 Proof of lemma 3.2.8Proposition 3.3.1. Let A � Zdj be suh that for a1; a2 2 A, a1 6= a2 implies d(a1; a2) � dM ,and suppose v 2 V , w 2 W are related by v = Mw. If, for some C2 > 0 one has jvaj � C2for eah a 2 A, then there exists C3 > 0, and B � X suh that jwbj � C3, and #B = #A.Proof. For eah a 2 A, write Da = fk 2 X : a 2 Mekg, and let N = supa2A#Da. Now, ifjwj < C2NkMk1 for all  2 Da, we reah a ontradition with the hypothesis that jvaj � C2,sine then jvaj = �����X2Da(wMe)a����� < C2:Thus, we take C3 = C2NkMk1 , and hose for eah a 2 A a single ba 2 Da suh thatjvbq j � C3, and ollet all those ba in the set B.It only remains to prove that if ba = ba0 , then a = a0. Indeed, if a 6= a0, then a; a0 2suppMeba , and thus d(a; a0) < dM , ontraditing the hypothesis.Let d be the oeÆients of B�p as above, and let us write dj 2 `2(r0j) for the sequeneof oeÆients on level j only.Let f�1; �2; : : : ; �2dg be an enumeration of the set E n f0g (see 2.6.4). Then we an writer0j =Q2di=1 `2(Zdj ), and assign to eah �i a opy of `2(Zdj ). Then the mapM1j : r0j ! `2(Zdj+1)given by the matrix M1j = �M�1j M�2j : : : M�2dj �maps the wavelet oeÆients on a level j to the orresponding saling funtion oeÆientson level j+1. This map is banded in the above sense, and the bandwidth dM1j is independentof j if j is large enough. Moreover, the number Nj = maxk2Zdj #f� 2 r0j : k 2M1j e�g is alsoonstant if j is large enough. A similar observation holds for kMk1. We are in the positionof proving lemma 3.2.8 using the following lemma.Lemma 3.3.2. Under the hypothesis of lemma 3.2.8, one an �nd j0 2 N suh that for eahj � j0 there exists a set Fj 2 Zdj with the following properties(3.17) i: k 2 Fj implies j(M0j�1j�1)kj & 2� jd2 (see (3.16))ii: #Fj & 2j(d�1)iii: k1; k2 2 Fjwith k1 6= k2 implies d(k1; k2) > dM1jiv: Fj \ supp j = ;:Proof of lemma 3.2.8. We an writej+1 =M1j dj +M0j j;and thus M1j dj = j+1 �M0j j:If we write v = j+1�M0j j, then we have that the sets Fj in (3.17), and the matrix M1j ,both satisfy the hypothesis of proposition 3.3.1. From this, and from the observation thatthe onstant C3 in lemma 3.3.1 an be hosen independently of j, we infer the existene ofthe sets Gj for j > j0, with j0 as in lemma 3.3.2.



Proof of lemma 3.3.2 433.4 Proof of lemma 3.3.23.4.1 Lower bounds for single integralsWe begin by introduing the notation �jk := 2�j �[0; 1℄d + k�, and then assoiating to anyset A � Td an index set in Zdj aording to the following notation.�0j(A) := fk 2 Zdj : �jk \ A 6= ;g;�nj (A) := fk 2 Zdj : 9k0 2 �0j(A) with d(k; k0) � ng:Let x0; �0; �; Q; � be as hosen just before (3.15). Let G := �
 \ B(x0; �=2), and letYG := fx 2 Y : �(x) 2 Gg.Proposition 3.4.1. There exists j0 2 N suh that j � j0, k 2 �0j(G) implyjjkj & 2� jd2 :Proof. We begin by realizing that, sine the primal saling funtions are B-splines of orderat least 4, one has that [0; 1℄d � (supp 0)Æ, where AÆ denotes the interior of the set A. Thuswe an �nd a onstant ~, and a � > 0 suh that if x 2 B([0; 1℄d; �), then  0(x) � ~.Sine � is C1(Rd�1), we an show that � is Lipshitz on Y . So let L be suh that(3.18) k�(x)� �(y)k2 � Lkx� yk2; 8 x; y 2 Y;write �j = 1L2�j� , and hose j1 2 N suh that if j � j1, then B(YG; �j) � Y . This is possible,by (3.18), when �j < �2L , for instane.Let j0 � j1 be suh that j � j0, k0 2 �0j(G) implies supp 0jk0 � B(x0; �0). Given suhj; k0, let z 2 YG be suh that �(z) 2 �jk0 � supp 0jk0 . But then B(z; �j) � Y , and also 0jk0(x) � 2�j2 jd2 ~ 8x 2 B(z; �j)beause �(B(z; �j)) � B(�jk0; 2�j�), and where the powers of two ome from the H1 and L2normalization respetively.Reall that p(�(x)) >  almost everywhere on Y , and observe also that sine k�(x) ��(y)k � kx� yk for all x; y 2 Y , we have J �(x) > C4 for some C4 > 0.From (3.15) we get jk0 & 2�j � 2 jd2 ZB(z;�j) dx & 2� jd2 ;sine the volume of B(z; �j) is larger than a onstant times 2j(d�1).3.4.2 Index sets and masksTo be able to satisfy requirement (iv) of (3.17) we need to obtain a better understanding ofthe ation of the linear map M0j . We bring to our attention that if  0 is a B-spline of orderat least 4, then we have for its mask that(3.19) suppfa0kg = f�; �+ 1; : : : ; �gd � Zd



44 Proof of lemma 3.3.2with � � �2; 2 � �:(3.20)Next we observe that if j is large enough to avoid periodization e�ets, we an �nd aonstant C5 > 0, independent of j, suh that all nonzero entries in M0j are larger that C5.This follows from the de�nition of M0j , and from the fat that all entries in the mask of aB-spline generator are non-negative.Let us take a look at indies ~k 2 Zdj suh that suppM0j e~k \ �0j+1(G) 6= ;.Proposition 3.4.2. For these ~k it holdsj~k & 2� jd2 :Proof. Given suh an entry, we use the re�nement relation to write(3.21) j~k = Xz2Zd �j+1�j j+1;2~k+zaz:If az 6= 0, then kzk1 � �. And if this is so, then supp 0j+1;2~k+z � B(x0; �0), and thus fromthe de�nition of j, and by the hypothesis on p, we have that j+1;2~k+z � 0, sine for this indexthe integrand in (3.15) is non-negative. On the other hand, sine suppM0j e~k \�0j+1(G) 6= ;,there exist at least one z0 suh that 2~k + z0 2 �0j+1(G) while also az0 6= 0. By proposition3.4.1, and sine also the number of z suh that az 6= 0 is �nite (and thus there is a smallestsuh az), we have that az0j+1;2~k+z0 & 2� (j+1)d2 = 2� d2 2� jd2 �Using this knowledge together with (3.21), we obtain the result.The elements in Fj+1 will be hosen among those l 2 suppM0j e~k whih also satisfy that�d�1(supp 0j+1;l \ �
) = 0, where �d�1 is the Lebesgue measure on �
. Those l satisfyindeed that j+1;l = 0 (sine then the integral is de�ned on a set of measure zero), while also(by proposition 3.4.2) we have that (M0j j)l & 2� jd2 . The following lemma gives us a hint asto where to �nd this type of l.Lemma 3.4.3. Let fa0kgk2Zd be the mask of  0, let �; � 2 Z be as in (3.19), (3.20), and letl 2 ��+1j+1 (�
) n ��j+1(�
). Then it holds thati. �(supp 0j+1;l \ �
) = 0ii. There exists k� 2 �0j+1(�
) suh that d(l; k�) = � + 1.iii. There exists ~k 2 Zdj suh that l; k� 2 suppfa0z�2~kgz2Zd, and thus l; k� 2M0j e~k.Proof. The �rst two laims follow immediately from the de�nition of �0j+1(�
).To prove the last one, we will show in a omponentwise fashion that suh a ~k exists. Tothis end, let us write l = (l1; l2; : : : ; ld), k� = (k1�; k2�; : : : ; kd�), and ~k = (~k1; ~k2; : : : ; ~kd). We



Proof of lemma 3.3.2 45have (negleting, as we an, e�ets of periodization) that the ~k we are looking for satis�esthat li; ki� 2 f�+ 2~ki; �+ 2~ki + 1; : : : ; � + 2~kig;or in terms of inequalities, that� + 2~ki � li � � + 2~ki �+ 2~ki � ki� � � + 2~ki:But this is equivalent to(3.22) maxfli � �; ki� � �g � 2~ki � minfli � �; ki� � �g:Suh a ~ki exists, trivially, whenever � � � � 1 (as is being assumed) and li = ki�.If li > ki�, then (3.22) redues to li � � � 2~ki � ki� � �, whih is equivalent to(3.23) li � ki� � 2~ki � ki� + � � � � �:Sine d(l; k�) = � + 1, we have that (3.23) an be satis�ed by ~ki whenever� + 1 � 2~ki � ki� + � � � � �;or simply when 1 � 2~ki � ki� � ��. We an always hoose suh a ~ki if, as is being assumed,� � �2.The ase ki� > li follows analogously.Having established the existene of the indies we are looking for, it only remains to showthat there are enough of them.3.4.3 Constrution of the sets FjLet Pm : Rd ! Rd�1 be given byPm(x1; : : : ; xd) = (x1; : : : ; xm�1; xm+1; : : : ; xd):We will assume for now (and prove this in the next setion) that we an arrange mattersto be as follows. Suppose we have found a z0 2 B(x0; �0=4), a � > 0, and m 2 f1; : : : ; dgsuh that(3.24) i: B(z0; �) � B(x0; �0=4)ii: B(z0; �) \G = ;iii: PmB(z0; �) � (Pm[G \B(x0; e0=4)℄)Æiv: z0 = 2�j�z� for some z� 2 Zd, j� 2 N.For j > j� (where we assume that j� is larger than all previous lower bounds for j) wede�ne the set Aj := fz 2 Zdj : (z � z�)m = 0 and 2�jz 2 B(z0; �)g:



46 Proof of lemma 3.3.2Proposition 3.4.4. There exists j�� � j� suh that if j � j��, then for eah a 2 Aj thereexists a number ra 2 Z suh that la := a + raem 2 ��+1j (�
) n ��j (�
), and suh that2�jla 2 B(x0; �=4).Proof. It will be enough to hoose j�� suh that if j > j��, then a 2 Aj does not belong to��+1j (�
).Sine PmB(z0; �) � (Pm[G \ B(x0; e0=4)℄)Æ, we have that there exists ~ra suh that a +~raem 2 �0j(�
). We an assume, without loss of generality, that ~ra > 0.For 0 � i � ~ra write ki := a + iem, and observe that, by the onvexity of the ballB(x0; e0=4), the integer ~ra an be hosen in suh a way that 2�jki 2 B(x0; �=4) if 0 � i < ~ra.Let b(i) denote the smallest n 2 N0 suh that ki 2 �nj (�
). We see that wheneverki 2 �nj (�
), then ki+1 2 �mj (�
) for some m 2 fn � 1; n; n + 1g, and thus onlude thatb(i)� 1 � b(i + 1) � b(i) + 1. From this, and sine b(0) > � + 1, b(~ra) = 0, it follows thatthere must exist a number ra 2 Z (the one we are looking for) suh that b(~r1) = � + 1.Another important observation is that we an hoose j�� above in suh a way that ifj > j��, k 2 ��+1j (�
), and 2�jk 2 B(x0; �0=4), then k 2 ���1j (G). Let us do just that, andlet us ollet all the la, a 2 Aj, in the sets Lj. Note that these are preisely the l we havebeen looking for.Note that if a1; a2 2 Aj, then d(la1 ; la2) � d(a1; a2):From this we infer that we an onstrut the sets Fj needed in lemma 3.3.2 if we an �ndsets Ej � Aj suh thati. #Ej � 2j(d�1)ii. a1; a2 2 Ej, a1 6= a2 implies d(a1; a2) � dM0j .But this, thankfully, is trivial.We are almost done. We only have to prove that we an indeed arrange matters as in(3.24).3.4.4 A topology lemmaThe problem an be redued a bit. If we �nd z0, �, and m that satisfy the �rst threeonditions in (3.24), then �nding another pair that satis�es the last one is trivial too. Butthe existene of suh z0, �, and m is a onsequene of the following lemma, whih will beproven at the end of this subsetion.Lemma 3.4.5. Let y0 2 Rd�1 , � : Rd�1 ! R ontinuous, Æ > 0, Y = B(y0; Æ), and letG0 = f(x; �(x)) 2 Rd : x 2 Y g:Write x0 = (y0; �(y0)). If Q : Rd ! Rd is orthogonal, then for eah � > 0 there existsy 2 B(x0; �), � > 0, and m 2 f1; 2; : : : ; dg suh thatPmQB(y; �) � (PmQG0)Æwhile B(y; �) \G0 = ;.



Proof of lemma 3.3.2 47We will need some preparations. Given two points x1; x2 2 Rd , we denote by  = [x1x2℄ :[0; 1℄! Rd the funtion (t) = (1� t)x1 + tx2. Given ; � : [0; 1℄ ! Rd , and if (1) = �(0)we write � =  � � for the funtion � : [0; 1℄! Rd given by�(t) = � (2t) if 0 � t < 12�(2t� 1) if 12 � t � 1We also write [x1x2 � � �xm℄ = [x1x2℄ � [x2x3℄ � � � � � [xm�1xm℄:The proof of lemma 3.4.5 is a simple onsequene of the following proposition, whih isjust a simpler variant of it.Proposition 3.4.6. Let y0 2 Rd�1 , � : Rd�1 ! R ontinuous, Æ > 0, Y = B(y0; Æ), and letG0 = f(x; �(x)) 2 Rd : x 2 Y g:Write x0 = (y0; �(y0)). If Q : Rd ! Rd is orthogonal, then there exists m 2 f1; 2; : : : ; dgsuh that (PmQG0)Æ 6= ;.Proof. For arbitrary n and � > 0, and given a point z 2 Rn , we denote by B1(z; �) the setfy 2 Rn : kx�yk1 < �g, and by B2(x; �) the set fy 2 Rn : kx�yk2 < �g, whih orrespondsto the de�nition of B(x; �) we have been using until now. De�ne � = supfr > 0 : B1(0; r) �B2(0; 1)g, and note that � � 1.Let � < Æ=2, set W := B2(x0; �) n G0, and note that this set is open and pathwisedisonneted. There is, in partiular, no path between the points w� := x0 � ��2 ed andw+ := x0+��2 ed. If Q is orthogonal, then QW is also pathwise disonneted, and we annot�nd a path between Qw+ and Qw� in QW .Now suppose that the lemma is false for a ertain orthogonal Q0 : Rd ! Rd .Set W 0 := B1(Q0x0; �Æ) n Q0G0, w0+ := Q0w+; and w0� := Q0w�. By the way we havehosen the parameters, we have that W 0 � Q0W , that W 0 is open, that w0+; w0� 2 W 0, andthat there is no path between w0+ and w0� in W 0. Let Æ0 > 0 be suh that B1(w0+; Æ0) � W 0and B1(w0�; Æ0) � W 0:Now, let �1 = w0�, and hoose �1 2 B1(�1; Æ0d ) suh that P1�1 =2 P1Q0G0. This is possiblebeause we assumed our lemma false, and thus B1(P1�1; Æ0d ) 6� P1Q0G0. We next hoose�1 2 R suh that the �rst oordinates of �2 := �1 + �1e1 and w0+ are equal. Note that thepath [�1�1�2℄ lies fully in W 0.Next hoose �2 2 B1(�2; Æ0d ) suh that P2�2 =2 P2Q0G0 (whih again has to exist), andhoose �2 suh that the seond oordinates of �3 = �2 + �2e2 and w0+ are equal. Note that,for the same reasons as above, the path [�1�1�2�2�2℄ lies fully in W 0.We proeed in this fashion until we have onstruted �d, and note immediately that�d 2 B1(w0+; Æ0), sine eah oordinate of �d is at most at a distane of (d�1)Æ0d of theorresponding one in w0+. But we took are to never leave W 0, whih implies that the path[w0��1�2�2 � � � �d�1w0+℄ lies in W 0. This ontradition �nishes the proof.Proof of lemma 3.4.5. Without loss of generality, we an assume that Æ < �02 , and apply thesame proof as before. The point y0 we are looking for is the last �i obtained before theproess annot be ontinued, and � an be hosen as � = Æ0d .Thus ends the proof of lemma 3.3.2, and thus also of lemma 3.2.8
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Chapter 4Towards a �titious domain methodwith optimally smooth solutions
IntrodutionIn this hapter, we will introdue a �titious domain method designed to produe optimallysmooth solutions whenever the given data allows it, and whih is also apable, in pratie, todeliver on that promise. We also obtain, albeit with additional assumptions, a solid theoreti-al understanding of this method, proving onvergene and reprodution of smoothness. Theenouraging numerial results, to be presented in hapter �ve, suggest that our approah ispromising, and that it should be the subjet of further researh.The entral idea of the approah is the division of responsibilities. Starting from ouroriginal boundary value problem on a domain, we formulate a very simple linear least-squares/�titious-domain formulation on an extended domain whose solutions will all solve,when restrited to the original domain, the original problem. Although this extended prob-lem does not have a unique solution, it an be seen to be solvable, and the solution an behosen to depend ontinuously on the data. Instead of modifying this formulation to fore itto produe smooth solutions, our approah assigns this responsibility to the solution proess.We show how a simple iterative sheme is apable of reovering smoothness through whatamounts to emergent behavior.We begin in setion 4.1 with a brief review of the de�nition and properties of the Moore-Penrose pseudoinverse. This building blok is entral in what follows. In setion 4.2 weformulate and study the least-squares/�titious-domain problems mentioned above. In se-tion 4.3, starting from a sequene of disretizations of those problems, we propose a solutionoperator apable of reovering smoothness, and prove that it works under ertain additionalonditions. Finally, in setion 4.4, we onstrut a andidate sequene of suitable disretiza-tions.We leave the atual implementation, and numerial experiments, to hapter �ve.49



50 Moore-Penrose pseudoinverses4.1 Moore-Penrose pseudoinversesLet H1, H2 be two Hilbert spaes, and let M : H1 !H2 be a bounded operator with losedrange. Write N :=MjN (M)?, and reall that under these onditions, N : N (M)? !R(M) isan isomorphism. The Moore-Penrose pseudoinverse is then de�ned by M y := IH1N�1PR(M).Here, PR(M) denotes the orthogonal projetion onto the range R(M) of M , and IH1 is theinjetion into H1. Given b 2 H2, one has that x = M yb is the unique minimizer of smallestnorm inH1 of the funtional '(x) := kMx�bk2H2 . One also heks easily thatM y : H2 !H1is a bounded operator with losed range.The following theorem gives us a haraterization of the Moore-Penrose pseudoinverse.See e.g. [15℄, p.182.Theorem 4.1.1. Let B : H2 ! H1 be a bounded linear operator with losed range. Thenthe following are equivalent(i). B =M y(ii). BMx = x for all x 2 N (M)?, and By = 0 for all y 2 R(M)?.(iii). MB = PR(M), and BM = PN (M)? = PR(B).(iv). (MB)� =MB, (BM)� = BM , MBM =M , and BMB = B.One has, furthermore, that if Q : H1 ! H1 is an orthogonal projetor, then Qy = Q.For the proof of these fats, and for further information, we refer to [15℄, hapter 8.A remark is in order with respet to the numerial aspets of using pseudoinverses.The traditional approah to obtaining the pseudoinverse of a matrix is to use a singularvalue deomposition (SVD) whih is rather expensive. Sine we are not interested in thepseudoinverse per se, we will use instead appropriate iterative Krylov subspae methods,whih have muh better performane, to approximate the produt of the pseudoinverse witha given vetor. See subsetion 4.5.4.2 The formulation4.2.1 Problem sope and assumptionsConsider the problem Au = f on 
,Bu = g;(4.1)where A is a regular ellipti di�erential operator, and B : H2(
)! H�(B)(�
) is either theDirihlet or the Neumann boundary operator, with �(B) = 3=2 resp. �(B) = 1=2. We willassume that 
 � Rd is a bounded domain with C1 boundary. The regularity assumptionson A and 
 an be relaxed, but at the prie of obsuring the arguments. See remark 4.3.10.We further assume that f 2 L2(
), and that g 2 H�(B)(�
). This allows us to onludethat the solution u of problem (4.1) is at least in H2(
). We shall further assume that



The formulation 51problem (4.1) is well posed; for eah f 2 H0(
), g 2 H�(B)(�
), there exists a uniquesolution u 2 H2(
) of (4.1), and this solution depends ontinuously on f , g.Remark 4.2.1. The regularity assumptions on the data restrits the appliability of themethod designed here. We hose them sine they simplify the theory in a few ruial aspets,and hope for further researh to render the method appliable to more general settings.4.2.2 The formulationWe start by embedding 
 into a larger domain. Again for simpliity, we will assume thatthis domain is Td, and, of ourse, that 
 an be properly embedded in Td. That is, thereexists � > 0 suh that 
 � (0 + �; 1� �)d. We will further assume that an extension of A toTd is available, and we denote it again by A. In partiular, we will use that (f. 3.2)(Au)j
 = A(uj
) 8 u 2 H2(Td):Note that this does not amount to a \pointwise" interpretation of the di�erential operator,as we are onsidering derivatives in the sense of distributions. What we are using here isthat if u 2 H2(Td), then Au an be identi�ed in the usual way with an element of L2.We are looking for a way to obtain an u+ 2 H2(Td) whih satis�es(4.2) u+j
 = u;where u is the solution of (4.1). There are of ourse many elements of H2(Td) whih wouldsatisfy (4.2), but after onsidering the e�ets of smoothness on auray, we want to �ndone that is as smooth as possible. As was announed in the introdution, our approah willbe to set up a minimal least squares problem whose solutions all satisfy (4.2), and then tryto onstrut a smooth solution of said problem. Here we will onentrate on the �rst partof that program, addressing the seond part in setion 4.3.Observe that the requirement (4.2) is equivalent to requiring that u+ satis�es the equa-tions (Au+)j
 = f;Bu+ = g:Our �rst (prototype) least-squares/�titious-domain problem will be as follows.Problem LSFD0: Given f and g as above, �nd u+ 2 H2(Td) suh that it minimizes thefuntional(4.3) �
(v) = kr
Av � fk2H0(
) + kBv � gk2H�(B)(�
):We see immediately that there is at least one drawbak of this formulation: It still involvesa spae de�ned on 
. To remove this spae we introdue the operatorC
 : H0(Td)! H0(Td),de�ned by(4.4) C
f := �
 � f;whih assigns to eah f 2 H0(Td) the extension by zero of its restrition to 
. It is easy tosee that C
 is an orthogonal projetor with respet to the anonial L2 norm in H0(Td).



52 The formulationRemark 4.2.2. The orthogonality of the operator C
 plays a ruial role in what follows. Asuitable substitute (either for the orthogonality or for the restrition itself) would be neededto extend the method under disussion to more general settings.We an now reformulate a new least-squares/�titious-domain problem, using C
 to avoidthe spae H0(
).Problem LSFD: Given f and g as above, and given any extension f1 2 H0(Td) of f ,�nd u+ 2 H2(Td) suh that it minimizes the funtional(4.5) �(v) = kC
Av � f1k2H0(Td) + kBv � gk2H�(B)(�
):We will now hek that these least-squares problems an indeed be used to solve ouroriginal problem. This involves verifying that any solution of these problems satis�es (4.2),and that we an obtain solutions whose norm is bounded by the norm of the data. We willalso �nd out that the solutions of minimal norm of (4.3) and (4.5) are equal.For notational simpliity, let Hl := H2(Td), Hr
 := H0(
)�H�(B)(�
), Hr := H0(Td)�H�(B)(�
), and let M
 : Hl !Hr
, M : Hl !Hr be given byM
 : = �r
AB � M : = �C
AB �where r
 is the restrition operator, and C
 is the orthonormal projetor introdued above.As done before, we endow Hr
 and Hr with the orresponding Eulidean tensor produtnorms, to ensure that they are Hilbert spaes.With these operators, and setting b
 = (f; g)T , b = (f1; g)T , we rewrite the funtionalsappearing in problems LSFD0 and LSFD as�
(v) = kM
v � b
k2Hr
 �(v) = kMv � bk2Hr :Theorem 4.2.3.(i). The operators M
 and M are bounded and have losed range, (and thus have boundedpseudoinverses).(ii). If f1 2 H0(Td) is an extension of f 2 H0(
), then u+ := M yb and w+ := M y
b
 bothsatisfy (4.2).(iii). It holds that u+ = w+.Proof. That these operators are bounded is obvious.From the well-posedness of problem (4.1) it follows that M
 is surjetive. To see this, leth = (�; )T 2 Hr
 be arbitrary. Then there exists a unique � 2 H2(
) whih satis�es (4.1),and thus any extension �+ 2 H2(Td) of � satis�es M
�+ = h. Surjetivity immediatelyimplies that the range of M
 is losed.To see that the range of M is losed, we use again the well-posedness of (4.1) to provethat R(M) = f(�; )T 2 Hr : �j
 = 0g:



The formulation 53Now for any onvergent sequene hn = (�n; n) 2 R(M), n = 1; 2; : : :, we have that �nj
 = 0.By ontinuity of the restrition operator it follows that for h = (�; ) := limn!1 hn it holds�j
 = 0. Thus h 2 R(M), showing that this set is losed. This �nishes the proof of (i).Bak to problem LSFD0, we onlude from the surjetivity of M
 that min�
(v) = 0.Sine w+ =M y
b
 is a minimizer of �
, we have that r
Aw+ = Ar
w+ = f , Bw+ = g, andthus that w+ satis�es (4.2)To see that u+ := M yb also satis�es (4.2), we begin by omputing the minimum of �.For this, observe �rst that (trivially) �(v) � kC
Av � f1k2H0(Td). Sine Av 2 H0(Td), andsine C
 is an orthogonal projetion in this spae, we see that �(v) � k(C
 � I)f1k2H0(Td).A simple omputation also gives us that �(w+) = k(C
� I)f1k2H0(Td), showing that this lastquantity is indeed the minimum of �.Now observe that u+, being the minimizer of �, must satisfy(4.6) �(u+) = kC
Au+ � f1k2H0(Td) + kBu+ � gk2H�(B)(�
)= k(C
 � I)f1k2H0(Td):But one readily heks that, sine C
 is an orthogonal projetor,kC
Au+ � f1k2H0(Td) = kC
Au+ � C
f1k2H0(Td) + k(C
 � I)f1k2H0(Td);and thus from (4.6) it follows that C
Au+ = C
f1, and Bu+ = g. Now C
Au+ = C
f1 ispossible if, and only if, (Au+)j
 = f1j
 = f . So u+ satis�es (4.2), �nishing the proof of (ii).Finally, let us show that M y
b
 = M yb. The key observation here is that for any v 2H2(Td), it holds that(4.7) kM
vkHr
 = kMvkHr :This follows from the fat that kC
hkH0(Td) = khj
kH0(
) for eah h 2 H0(Td). As aonsequene of (4.7) we have that M and M
 have the same kernel.Now, for u+ =M yb, and w+ =M y
b
 we have thatkM
(u+�w+)k2Hr
 =kr
Au+ � r
Aw+k2H0(
) + kBu+ �Bw+k2H�(B)(�
) = 0;and thus u+ � w+ 2 N (M
). But sine M y
b
 ? N (M
) = N (M) ? M yb, it holds thatboth u+ and w+ are orthogonal to N (M
), and thus u+ � w+ = 0. This proves (iii) and�nishes the proof of theorem 4.2.3.Remark 4.2.4. When hoosing a disretization sheme for problem LSFD, it should be keptin mind that this result depends ritially on the fat that C
 is an orthogonal projetor. Onthe other hand, it is important to note that theorem 4.2.3 remains valid if we hange thenorms of H2(Td) to any equivalent norm (the same applies to H�(B)(�
)).



54 Reovering smoothness4.3 Reovering smoothnessThe method to reover smoothness we will present in this setion annot, at present, bejusti�ed ompletely from a theoretial point of view. The method performs quite well inpratie, however, so that even though the theory we present here does not over everyaspet, we an safely onlude that our approah is promising. Further researh is neededto omplete the piture.The available theory has the following form. We assume the existene of a sequene oflinear disrete maps whih satis�es a ertain set of properties, and subsequently prove that,if suh a sequene exists, and the data allows it, then we an onstrut a smooth solution toproblem LSFD.Let fVjgj2N0 , fV rj gj2N0 be nested sequenes of linear spaes suh that(4.8) As2(H2(Td); fVjgj2N0 ) = Hs+2(Td);As2(Hr; fV rj gj2N0 ) = Hs(Td)�H�(B)+s(�
);for some range 0 < s � s0. Additionally, let fQjgj2N0 and fQrjgj2N0 be uniformly boundedsequenes of projetors with R(Qj) = Vj, R(Qrj) = V rj . To reover smoothness we use asequene of linear mapsMj : Vj ! V rj satisfying a few properties that we are going to disussnow in some depth.It is not known, at present, whether suh a sequene exists; see remark 4.3.9 for asummary of the diÆulties. In setion 4.4, however, we will onstrut a sequene of operatorswhih, in view of the numerial evidene of hapter �ve, seems to us to be a strong andidate.The �rst thing we would like to require from this sequene of maps is that they an beused to approximately solve problem LSFD. In partiular we expet it to satisfyMjQju!Mu; M yjQrjb!M yb;(A1)in th e topology of Hr, H2(Td), respetively, for all u 2 H2(Td), and all b 2 Hr. By theuniform boundedness theorem (see e.g. [15℄, page 165) we have as a onsequene of thisassumption the existene of a �nite onstant CM > 0 suh thatmaxfkMjk; kM yj kg � CM j = 0; 1; : : :(4.9)Suppose now that b 2 A~s2(Hr; fVjg), for some ~s > 0, and write bj = Qrjb. The nextassumption is based on our hope that the solution of the problemminuj2Vj 'j(uj) := kMjuj � bjk2Hris a good \guess" for the minimizer of 'j+1. We will assume that there exists some s1 2 (0; s0℄suh that(A20) kMj+1M yj bj � PR(Mj+1)bj+1kHr . 2�js�kbkAs�2 (Hr;fVjgj2N0);with s� = minf~s; s1g. While (A20) already aptures the essene of our assumption, we willask for the (only slightly stronger)(A2) n2js�kMj+1M yj bj � PR(Mj+1)bj+1kHro`2 . kbkAs�2 (Hr ;fVjgj2N0);whih will help us avoid some epsilons in the proofs that follow.



Reovering smoothness 55Remark 4.3.1. Note that this is really only an epsilon, as it is easy to see that if (A20)holds for a given s�0, then (A2) holds for eah s� < s�0.Finally, we will require from the sequene fMjg that the kernels of these operators benested.(A3) N (Mj) � N (Mj+1):This last assumption is what really drives the method we will introdue now.The intuitive idea behind our method is as follows. Suppose that fVjg is the B-splineMRA introdued in 2.6.2. Then the minimizer uj =M yj bj of 'j will have the same smoothnessas any other element in Vj, and, under the right irumstanes, we will have that uj is agood approximation of some smooth solution of problem LSFD.While we may expet uj to onverge to a solution of LSFD, we annot expet this limitto be smooth. Looking at the kernel of M , we see that it onsists of funtions � 2 H2(Td)whih are zero on 
, and whih satisfy B� = 0. There is no reason to expet in generalthat an extensions of u to Td with higher Sobolev smoothness than H2 is orthogonal to thiskernel.So to obtain suh a smooth extension of u using the solutions uj of the disrete problemswe may have to \grow" a omponent in this kernel. Our plan is to \lift" the smoothness ofthe �nite dimensional spaes fVjg by olleting the omponents of the solutions uj in thekernels of the operators Mj+1. Thus, the de�nition of our solution operator starts with astandard solution for some initial j (for simpliity we begin with j = 0),S0b :=M y0Qr0b =M yob0;(4.10)and then de�ne Sj+1b := PN (Mj+1)Sjb +M yj+1Qrj+1b:(4.11)Theorem 4.3.2. If fMjg satis�es (A1), (A20), (A3), and b 2 As�2 (Hr; fVjg), then fSjbgj2N0onverges.Proof. We is enough to show that fSjbgj2N0 is a Cauhy sequene.From (4.10) and (4.11) we an derive an alternative expression for Sjb. We have thatSjb = jXi=1 PNjPNj�1 � � �PNiM yi�1bi�1 +M yj bj;where we have written Nj := N (Mj). Thus,Sj+1b� Sjb = PNj+1Sjb+M yj+1bj+1 � Sjb=M yj+1bj+1 � PN?j+1Sjb=M yj+1bj+1� jXi=1 PN?j+1PNjPNj�1 � � �PNiM yi�1bi�1 � PN?j+1M yj bj:



56 Reovering smoothnessNow, sine Nj � Nj+1, we have that Nj ? N?j+1 so that PN?j+1PNj = 0. This eliminates thesum in the last expression above. Continuing with the alulations, we observe thatSj+1b� Sjb = PN?j+1 �M yj+1bj+1 �M yj bj�=M yj+1Mj+1 �M yj+1bj+1 �M yj bj� ;so that(4.12) kSj+1b� SjbkH2 � kM yj+1kkPR(Mj+1)bj+1 �Mj+1M yj bjkHr� CMkPR(Mj+1)bj+1 �Mj+1M yj bkHr ;where CM is the onstant in (4.9). Using assumption (A20), we obtain that kSj+1b�SjbkH2 .2�js�. A simple geometri sums argument now gives us that fSjbgj2N0 is indeed a Cauhysequene.The next task will be to prove that we really obtain a solution to problem LSFD fromSb := limj!+1Sjb:Theorem 4.3.3. It holds that Sb is a minimizer of �(u) = kMu� bkHr .The proof of this theorem requires some preparations.Lemma 4.3.4. Let H1, H2 be a pair of Hilbert spaes, and fAjg a sequene of bounded linearoperators whih is pointwise onvergent. It is known that then the operator A : H1 ! H2given by Av = limj!1Ajv is bounded and linear. If also Ayw = limj!1Ayjw for all w 2 H2,then PN (Aj)v ! PN (A)v PN (Aj)?v ! PN (A)?v(4.13) PR(Aj)w! PR(A)w PR(Aj)?w! PR(A)?w(4.14)Proof. Note that, sine PV ? = (I � PV ), the laim on the right of (4.13) follows triviallyfrom that on the left. Note also that sine R(Aj) = N (Ayj)?, we obtain (4.14) from (4.13).Thus, it is enough to prove the laim on the left of (4.13).Let v 2 H1, and write v = v0 + v1, where v0 = PN (A)v, and v1 = v � PN (A)v = PN (A)?v.Now, we only have to prove that PN (Aj)v0 ! v0 and PN (Aj)v1 ! 0 when j !1.From the hypothesis on fAjg it follows that Ajv0 ! Av0 = 0, and so(4.15) PN (Aj)?v0 ! 0when j !1. To see this, note that by the uniform boundedness theorem kAyjk � C for allj and some C > 0, and reall that AyjAj = PN (Aj)?. Thus,kPN (Aj)?v0kH1 � kAyjkkAjv0kH2 � CkAjv0kH2 ! 0;from whih (4.15), as well as PN (Aj)v0 = (I � PN (Aj)?)v0 ! v0, follows.



Reovering smoothness 57Now, from Ajv1 � Av1 ! 0, we obtain that(4.16) kPN (Aj)?v1 � AyjAv1kH1 � kAyjkkAjv1 � Av1kH2 ! 0:But sine AyjAv1 ! v1, we an infer from (4.16) that PN (Aj)?v1 ! v1, and thus PN (Aj)v1 ! 0when j !1.So, PN (Aj)v = PN (Aj)v0 + PN (Aj)v1! v0 = PN (A)v;�nishing the proof.Proof of theorem 4.3.3. Observe thatkMjSjb�MSbkHr = kMj(Sjb� Sb) +MjSb�MSbkHr� CMkSjb� SbkHr + kMjSb�MSbkHr ! 0by theorem 4.3.2, and by (A1), so that MjSjb!MSb.Writing Rj := R(Mj), and noting that MjSjb = PRjbj, we also have thatkMjSjb� PR(M)bkHr = kPRjbj � PR(M)bkHr� kPRj(bj � b)kHr + kPRjb� PR(M)bkHr ! 0sine bj ! b, and using lemma 4.3.4.In any ase, we have that MjSjb ! PR(M)b, and also MjSjb ! MSb, so that MSb =PR(M)b. But then minv2H2(Td)�(v) = minv2H2(Td) kMv � bk2Hr� kPR(M)b� bk2Hr = kMSb� bk2Hr ;�nishing the proof.Theorem 4.3.5. If fMjg satis�es (A1), (A2), and (A3), then for any 0 < s � s1, theoperator S : As2(Hr; fVjg)!As2(H2(Td); fVjg) given by b 7! Sb is linear and bounded.Proof. Let b; d 2 As2(Hr; fVjg), and �; � 2 R. Then S(�b + �d) exists, and is the limit ofSj(�b+�d) = �Sjb+�Sjd, whih in turn onverges to �Sb+�Sd. This settles the linearity.It remains to see whether Sb 2 As2(H2(Td); fVjg), and whether S is bounded.Using (A2) and (4.12) (the s� there amounts to our urrent s), we obtain�2jskSjb� Sj+1bkH2(Td)	 2 `2and f2jskSjb� Sj+1bkH2(Td)g`2 . kbkAs2 :We also have kSjb � SbkH2(Td) � Pi�j kSi+1b � SibkH2(Td), whih inspires us to borrowthe following lemma, found in [16℄, p. 408.



58 Reovering smoothnessLemma 4.3.6 (Disrete Hardy Inequality). Let fakgk2N0 , fbkgk2N0 be sequenes of realnumbers, and let � > 0. If for some  > 0, 0 < � � q,jbkj �  1Xj=k jajj�!1=�holds for all k, then  1Xk=0(2k�bk)q!1=q �  1Xk=0(2k�ak)q!1=q :Thus, we onlude thatf2jskSb� Sjbkg`2 . f2jskSjb� Sj+1bkg`2 . kbkAs2 :But kSb� Sjbk � kSb� PVjSbk, so that we obtainkSbkAs2 = f2jskSb� PVjSbkg`2. f2jskSb� Sjbkg`2 . kbkAs2A straight-forward orollary of theorem 4.3.5 is the following.Corollary 4.3.7. The onvergene behavior of fSjbg is given bykSjb� SbkH2(Td) . 2�jsIn summary, given a smooth initial extension f1 of f , and if g is smooth too, we obtainvia the linear bounded operator S a solution to problem LSFD with the same degree ofsmoothness. This, of ourse, provided the disrete operators Mj, j 2 N0 satisfy (A1), (A2),and (A3). We summarize theorems 4.3.2, 4.3.3, and 4.3.5 as follows.Theorem 4.3.8. Let fVjgj2N0 , fV rj gj2N0 be nested sequenes of linear spaes suh that (4.8)holds. Let fMjg, Mj : Vj ! V rj be a sequene of linear maps satisfying (A1), (A2), and(A3). Let f 2 Hs(
), g 2 H�(B)+s(�
) for some s1 � s > 0, and let f1 2 Hs(Td) be anextension of f to Td. Then1. The sequene fSjbg, with b = (f1; g) onverges to Sb at a rate of O(2�js) in the topologyof Hr.2. Sb 2 H2+s(Td)3. (Sb)j
 is the solution of problem (4.1).Thus, to obtain a smooth solution to problem LSFD, we start by hoosing an arbitrary,but smooth, extension of f , and then apply S.



A sequene of disrete problems 59Remark 4.3.9. The diÆulty in �nding the sequene fMjg is, in essene, that singularoperators are hard to disretize properly. Even when the in�nite dimensional problem is wellposed, we annot just use a standard Galerkin approah to obtain disrete problems. Attak-ing the problem via regularization is an option that does not lead too far. The above method,through assumption (A3), is based ritially on the singularity of the disrete operators Mj,so eliminating it is not helpful.Remark 4.3.10. Note that if A and �
 do not satisfy the extreme regularity requirementsimposed in subsetion 4.2.1, then their regularity adds just another upper bound to s intheorem 4.3.8.The sequene of disrete problems we introdue in the next setion seems, at least numer-ially, to satisfy (A1), (A2), and (A3). The author is onvined that it is possible, althoughnot at all trivial, to prove that the sequene in question does indeed satisfy the neessaryassumptions.4.4 A sequene of disrete problemsIn this setion, we will disretize a simple two-dimensional family of problems using a Petrov-Galerkin approah. This sequene of disrete problems will be used in the next setion toperform numerial experiments using the method outlined in the previous setions. We willgo to some level of detail to explain the motivation behind eah hoie.4.4.1 The model problemOur model problem is (�4 + �I)u = f on 
,Bu = g;(4.17)where � � 0, and B is either the Dirihlet or the Neumann1 boundary operator. As before,we take f 2 H0(
), and g 2 H�(B)(�
). We also assume that we have already an initialextension f+ at hand. The domain 
 � R2 is any domain with smooth boundary.4.4.2 Norms and spaesWe want to �nd approximations to the minimizer u+ of the funtional(4.18) �(v) = kC
Av � f1k2H0(Td) + kBv � gk2H�(B)(�
):Keeping our goal in mind (that is, to solve (4.17)), we will use the insight of remark 4.2.4and begin by hanging the involved norms.We will approximate u+ 2 H2(T2) from the spaes Vj, j 2 N0 , whih we hoose to bethe periodi B-spline spaes of order m, with m � 3 �xed, on dyadi grids of meshlength1In this ase, we assume � > 0 to ensure well-posedness.



60 A sequene of disrete problems2�j. We hose an appropriate ~m, and let 	 be the primal wavelet basis of H2(Td) of orderm and dual order ~m. We will use for H2(Td) the norm indued by this basis (see setion2.6.3) sine it is straight-forward to ompute.Remark 4.2.4 also warns us against hanging the norm in L2(Td) = H0(Td). There wewill approximate from the spaesV 0j = ff 2 L2(Td) : fj�jk 2 �m�1g;of disontinuous pieewise polynomials of degree m � 1, whih an be endowed easily withan orthonormal basis. To onstrut suh a basis for V 0j , we apply �rst Gram-Shmidt or-thonormalization in L2([0; 1℄2) to the monomials xiyj with i + j � m � 1, i; j � 0. Wewrite f�0; �1; : : : ; �ng for the funtions we thus obtain (here, n = (m + 1)m=2), and notethat it also is a basis for V 00 . We write �ijk(x) = 2j�i(2jx � k), and observe that the setf�ijk : i = 1; : : : ; n; k 2 Z2j g, with Zj = Z=2jZ is an orthonormal basis for V 0j . We use theanonial norm on L2(Td).We identify H�(B)(�
) with H�(B)(T) using a suitable parametrization � : T ! �
. ForH�(B)(T) we hoose again the B-spline biorthogonal wavelet bases 	�, ~	�, with �xed ordersm� � 3, and ~m� aordingly. But instead of spanning H�(B)(T) with the primal basis, weuse for that purpose the (properly resaled) dual basis ~	�. The reason for doing this is that,from a numerial point of view, it will be far easier to ompute inner produts with theprimal wavelets, whih are pieewise polynomial, than with the duals. This implies that inH�(B)(�
) we approximate from the spaes ~V �j spanned by the dual wavelets up to level j.We will write Q�j for the oblique projetor onto ~V �j assoiated with 	� (again, we refer tosetion 2.6.3). We will also use the norm indued by these bases for H�(B), H��(B).Given an element in v in any of these spaes, we deorate it with an undersore to denotethe Eulidean vetor onsisting of its oeÆients. Thus, if v 2 Vj, then v 2 `2(rj) is suhthat v =P�2rj v� �.4.4.3 The disrete operatorsWe de�ne Aj : Vj ! V 0j by Aj := PjAjVj , where Pj := PV 0j is the orthogonal projetor ontoV 0j , given by PV 0j f =Xk;i hf; �ijki�ijk:Given a funtion v 2 Vj, we have that its trae on �
 is given by BDv = vÆ� 2 H3=2(�
).If we are dealing with Neumann boundary onditions, then BNv = [(rv)Æ�℄ �n 2 H1=2(�
),where n(t) is the outward normal of �
 at the point �(t). Thus, we de�ne either BDj ; BNj :Vj ! ~V �j , as appropriate2, throughBDj v : = X�2r�j hv Æ �;  �i ~ � (= Q�jBDjVj);2This refers to the fat that, when onsidering a given problem, we will de�ne only one of these twoboundary operators.



A sequene of disrete problems 61or BNj v : = X�2r�j h[(rv) Æ �℄ � n;  �i ~ � (= Q�jBNjVj):To obtain a suitable disretization of C
, some additional are is required. The obvioushoie would be Cj : V 0j ! V 0j , Cjfj = PV 0j C
fj, whih written expliitly is given byCjf =Xi;k hfj�
; �ijki�ijk (= PjCjV 0j ):(4.19)This form has a few serious drawbaks. For one, the oeÆients hfj�
; �ijki are, as a on-sequene of the non-trivial geometry of 
, expensive to obtain, and expensive to omputeaurately. But this has serious onsequenes, as the rank of Cj may hange as the result ofsmall errors in the omputation of these oeÆients, a�eting the rank of the overall prob-lem, whih in turn an distort the solution in an unpreditable way. See [30℄, pages 335-338,for a thorough disussion.Another possibility is to onsider(4.20) Cjf =Xi;k Æj;k;
hfj; �ijki�ijk;where Æj;k;
 is given by Æj;k;
 = (1 if �jk \ 
 6= ;,0 otherwise:This amounts to the orthogonal projetion onto V 0j of the restrition of f 2 V 0j to(4.21) 
j := [�jk\
6=;�jk:When writing the matrix of this map with respet to the basis f�ijk : i = 0; 1; : : : ; n; k 2 Z2j g,we obtain a setion of the identity, thus reduing the possibility of numerial errors. We an-not eliminate it ompletely, as the omputation of Æj;k;
 itself is still subjet to inauraies.In any ase, it is muh more eÆient to ompute, and as the numerial experiments this farsugest, it is also good enough.Now, we de�ne the map Mj : Vj ! V 0j � ~V �j throughMj = �CjAjBj � ;where Bj is the disretized Dirihlet or Neumann boundary operator, as needed.Let �j = f � : � 2 rjg be the wavelet basis for Vj, and let �rj = f�ijk : i = 0; 1; : : : ; n; k 2Z2j g � f ~ �� : � 2 r�j g be the basis for V 0j � ~V �j . Let M j be the matrix of Mj with respetto �j, �rj , and let fj = Pjf+, gj = Q�j g. Writing bj = (fj; gj)T 2 V 0j � ~V �j , uj 2 Vj, andbj = (f j; gj)T , we have as a onsequene of our hoie of norms and spaes that(4.22) M juj � bj22 = kMjuj � bjk2Hr :Thus, to �nd the minimizer of the quantity on the right, we ompute the minimizer of thequantity on the left, whih is now a simple linear least squares problem in Eulidean spae.



62 Realizing the iteration4.4.4 SparsenessTo �nd a minimizer of (4.22) it would be quite helpful, for performane reasons, if givenv 2 Vj, we ould evaluate M jv in O(dimVj) operations. The matrix M j, however, is notsparse. It is quasi-sparse, sine the matries Aj; Bj have O(log dimVj) entries per olumn,with N the number of degrees of freedom. This an be solved by fatorizing these bloksusing the wavelet transform; see [11℄, page 122.Let v 2 Vj. Let us write v for the oeÆients of v with respet to the saling funtionbasis for Vj. The map Tj : `2(rj)! `2(Z2j ), Tj : v ! v is simply the fast wavelet transform,and its numerial evaluation osts O(dimVj) operations. One easily sees that if A0j is thematrix of Aj with respet to the saling funtion basis in Vj and the basis hosen for V 0j ,then A0j is sparse, and thus evaluating Ajv = A0jTjvusing the fatorization on the right (applying �rst Tj, and then A0j) osts also O(dimVj)operations.Similarly, let ~T �j ; T �j : `(r�j ) ! `(Zj) be the fast wavelet transforms g ! g for g 2 ~V �j ,h ! h for h 2 V �j , respetively, and let B0j be the matrix of Bj with respet to the salingfuntion bases of Vj and ~V �j . Then evaluating(4.23) Bjv = ( ~T �j )�1B0jTjv = (T �j )TB0jTjvusing the fatorizations on the right also osts only O(dimVj) operations. As a onsequene,we obtain that through this fatorization we an evaluateM jv = �I 00 (T �j )T��CjA0jB0j �Tjvin O(dimVj) operations.4.5 Realizing the iterationThe obtain a minimizer of ��(vj) = M jvj � bj22we an use, for example, the onjugate gradients (CG) algorithm[26℄ to solve the normalequations,(4.24) MTjM jvj =MTj bj:While this has well known disadvantages, it also has an important advantage, whih is thatit an give us the projetion of vj�1 onto N (M j), needed to realize (4.11) essentially for free.The key to that insight is obtained by taking a look at what the CG algorithm does.To �nd an approximate solution of the �nite dimensional linear equation Ax = d, the CGmethod produes iterates xi whih are the minimizer in Wi = x(0) +spanfr0; r(1); : : : ; r(i�1)g



Realizing the iteration 63of the funtional i(y) = (y � x�)TA(y � x�), where x� is the exat solution of Ax = d,x(0) is some initial guess, and r(k) = Akd. The minimizer of i in Wi exists, and is unique,only if A is symmetri positive de�nite on Wi. One has that x(i) = x� when Wi = Wi+1(if the algorithm is performed with exat arithmeti), but if the ondition number of A isreasonable, then the x(i) will be a good approximation of x� far earlier.Suppose now that A is symmetri and positive semide�nite. If d ? N (A), then rk ?N (A) for all k, and thus A is symmetri positive de�nite onWi = x(0) + spanfr0; r(1); : : : ; r(i�1)g= PN (A)x(0) + PN (A)?x(0) + spanfr0; r(1); : : : ; r(i�1)gfor all i [25℄. Given an initial guess x(0), we will obtain at the i-th step an x(i) suh thatPN (A)?x(i) is an approximation of x�, but whih also satis�es PN (A)x(i) = PN (A)x(0). SineMTj bj ? N (MTjM j), and sine N (MTjM j) = N (M j), we an ompute (see (4.11))uj+1 = PN (Mj+1)uj +M yj+1bj+1by solving (4.24) with the onjugate gradient method using uj as an initial guess.Now write CG(A; d; x0; �)for the approximate solution of Ax = d, with x(0) as an initial guess, obtained by iteratinguntil the error is smaller than �. Then the numerial realization of (4.10), (4.11) is given by(4.25) SPFD(j0; j; fbjg; �) :=(0 if j < j0CG(MTjM j; MTj bj; SPFD(j0; j � 1; fbjg; �); �) otherwise.Computing an approximation to SJb amounts to evaluate SPFD(j0; J; fbjg; �).The question arises as to what e�et the inexat evaluation of M yjbj has on the sequenefSjbg. In the experiments we have performed, it does not seem to play an important role;further researh is needed to shed light on this issue.Instead of using standard CG with the normal equations, one should use the mathemati-ally equivalent but numerially superior CGLS, developed in [25℄. The diret appliation ofother Krylov subspae least-squares solvers is a deliate matter. In the ase of LSQR[32℄, avery robust least squares solver, the problem is to implement the projetions onto the kernel.Still other methods, like RRGMRES [6℄, assume that the system is given through a squarematrix. Again, we see in further researh an opportunity for improvements in performaneof the method desribed in this hapter.Note that if (4.9) holds, the ondition number of the least-squares problems stays boundedwith j, and thus, in theory, no further preonditioning is needed. We would have�(Mj) = kMjkkM yj k � C2M ;and if we do not avoid the normal equations, we would end up with�(MTj Mj) � C4M :



64 Realizing the iteration



Chapter 5Numerial experimentsThe previous two hapters have made theoretial preditions whih we would like to observein pratie. The most important reason is that we have made asymptoti preditions, andwould like to know whether they are observable, and thus whether they have any relevane inpratie. This is omparatively more important for the SPFD method introdued in hapterfour, as it makes some strong promises, and sine open questions remain, than for the resultsof hapter three on the smoothness of solution of the FDLM method, whih onern a knowmethod, and whih are theoretially onlusive.It is still worthwhile to hek numerially the e�et on smoothness of a non-zero LagrangeMultiplier. From the proofs of theorems 3.2.7, and 3.2.9 (More aurately, from the proof oflemma 3.2.8), we might be left with the impression that the onvergene rate predited anbe observed only for extremely high resolutions, beyond the reah of most pratial needs.These are the kinds of questions we wish to answer.5.1 The experiments5.1.1 Goals of the experimentsWe will test both methods against a few simple examples and examine the results with thefollowing goals.1. Conerning the FDLM method(a) Observing experimentally the phenomenon predited by theorem 3.2.7 on theonvergene of linear approximation shemes.(b) Observing the phenomenon predited by theorem 3.2.9, on the onvergene ofnonlinear approximation shemes.2. Conerning the SPFD method(a) Measuring the smoothness of the solution obtained, rated through the onvergenespeed of linear approximation using B-splines.65



66 The experiments(b) Observe the e�ets of the nested iteration on the solution. Does it really make adi�erene?() Establish whether the method an take advantage of the approximation power ofhigher order B-splines.(d) Observe the behavior of the method when faed with Neumann boundary ondi-tions.5.1.2 Test asesGiven 0 < r < 1=2, we hoose as a domain a simple dis
r = fx 2 T2 : kx� (0:5; 0:5)k < rg;and parametrize the boundary through � : T ! �
, given by(5.1) �(t) = (0:5; 0:5) + r(sin(2�t); os(2�t)):Our hoie for r will be limited to r = 0:3, exept one where we will use r = 0:45 to beable to better measure the onvergene of nonlinear approximation shemes. As always, weembed 
 into T2.We will investigate the behavior of the methods in question on the following test problems.Problem P1: Find u suh that(�4+ I)u = 1 on 
,BDu = 0;with r = 0:3 (and only one with r = 0:45). We hoose as the extension to T2 the obviousone, f+I = 1.The above data an be onsidered too anoni. Thus, we also solve the following problem,using nontrivial data.Problem P2 Find u suh that(�4+ I)u = fII on 
,BDu = gIIwith fII = 1 + 12 os(5(x2 + y2)), gII = 0:01 � sin(4�t), r = 0:3.To use any of the �titious domain methods above, we must onstrut an extension offII to Td. We ould just hoose the funtion f(x; y) = 1 + 12 os(5(x2 + y2)) on [0; 1)2 as anextension of the above right-hand side, and then lift it to T2 by pretending f is periodi,but this has the drawbak that we do not obtain a smooth funtion on Td. To �nd anextension for fII from 
 to [0; 1)2 that is smooth, and an be lifted smoothly from [0; 1)2to T2, we will onstrut an in�nitely often di�erentiable funtion � : [0; 1℄2 ! R whih,together with all its derivatives, is zero on �([0; 1℄2), and whih is 1 on 
. Then, we takef+II(x; y) := �(x; y)f(x; y), restrit it to [0; 1)2, and �nally we lift it to T2.For the domain 
r with r = 0:3, a suitable funtion � an be obtained through a tensorprodut with itself of a one-dimensional C1 funtion �0 : [0; 1℄ ! R whih, together with



Remarks on the implementation of the solvers 67all its derivatives, is zero on 0; 1, and is 1 on [0:2; 0:8℄. To onstrut �0, we will onsider thestandard molli�er ��;y(x) = (exp �� �2�2�jx�yj2� if kx� yk2 < �,0 otherwise,and engineer it to suit our purposes, as follows. First, we take ��2(x) = �0:1;0:1(x)��0:1;0:9(x).Then, we de�ne ��1(x) := R x0 ��2(y)dy, and obtain�0(x) = ��1(x)��1(12) :Now, we set �(x; y) = �0(x)�0(y) (see �gure 5.1 for plots of � and fII). In the imple-mentation, we used a standard adaptive quadrature routine to evaluate �0 at any pointx.
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(a) Plot of �.
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(b) Plot of f+II (and f+III).Figure 5.1: Constrution of the right-hand side for problems P2 and P3.The next problem uses the same data as problem P2, but this time we impose Neumannboundary onditions.Problem P3 Find u suh that (�4+ I)u = fIII ;BNu = gIII ;with fII = fIII , and gIII = gII, and r = 0:3. As the extension to Td of the right hand sidewe use exatly the same as before, and so have f+III = f+II .5.2 Remarks on the implementation of the solversAll the tehniques used to implement the omponents of the solvers needed for the numerialexperiments (�titious domain - Lagrange multiplier method, and smoothness-preserving



68 Remarks on the implementation of the solvers�titious domain method) are standard. We will briey mention them by name but sparethe reader of details whih an be found in any elementary numerial analysis book. Theimplementation of the periodi wavelet transforms employed is also straightforward, andthus we do not disuss it here either.We implemented the SPFD method faithfully as desribed in 4.4, with the following twodi�erenes. For one, we used higher preision (smaller �) on lower levels, where iterationsost less; this has been doumented in the iteration histories we will provide. The seonddi�erene is that we have given a higher weight to the norm on the boundary than in thedisretization mentioned in 4.4. This ensures that boundary onditions where satis�ed betteron a lower level. Thus, instead of minimizing � as de�ned in 4.18, we minimized(5.2) �(v) = kC
Av � f1k2H0(Td) + �kBv � gk2H�(B)(�
)with � = 70. Again, see remark 4.2.4 for a justi�ation.The disretization of the di�erential operator A = �4 + �I for the FDLM approah isdi�erent than that for the SPFD method desribed in subsetion 4.4.3. For appropriate m,~m to be spei�ed later, we onsider the orresponding pair of (properly saled) biorthogonalB-spline wavelet bases 	 for H1(T2), ~	 for H�1(T2), and the pair of biorthogonal MRAsfVjg, f ~Vjg of B-splines and duals, respetively, from where those bases arise. The disreteoperators �Aj : Vj ! ~Vj are given by �Aj = ~QjAjVj .On the other hand, we have that the disretization of the Dirihlet boundary operatorused for the FDLM method is almost idential to that used in the SPFD method. Theonly di�erene is in the saling of the bases hosen, sine the FDLM formulation onsidersBD : H1(T2) ! H1=2(�
), instead of BD : H2(Td) ! H3=2(�
). But just as before,we identify H1=2(�
) with H1=2(T) via the parametrization (5.1), and instead of spanningH1=2(T) with the primal basis, we use for that purpose the (properly resaled) dual basis~	�, using 	� to span H�1=2(T).Given f+ 2 H�1(T2), g 2 H1=2(�
), we are looking for the oeÆients u+, p with respetto the bases 	, 	� of funtions u+ 2 H1(T2), p 2 H�1=2(�
) suh that� �Aj (BDj )�BDj 0 ��u+p � = �f+g � ;or rather(5.3) � �Aj (BDj )TBDj 0 ��u+p � = �f+g � ;where the entries in the matrix �Aj are given by( �Aj)�� = hA �;  �iwhile the entries in BDj are given by(BDj )�� = hBD �;  �� i:



Remarks on the implementation of the solvers 69We use the fast wavelet transform to fatorize �Aj in exatly the same way as done beforein hapter four, subsetion 4.4.4. We obtain� �Aj (BDj )TBDj 0 � = � ~T�1j 00 ( ~T �j )�1�� �A0j (BD;0j )TBD;0j 0 ��Tj 00 T �j � ;where �A0j and BD;0j orrespond to the representation of A and BD in terms of saling-funtions; we will ome bak to this shortly.We will use LSQR (and for omparision purposes, also CGLS) to solve the resultingsystem of equations (5.3).Computing matrix oeÆientsThe only missing detail left is how to ompute the matrix oeÆients needed to set upthe systems of linear equations we will solve. We shall do this here, �rst for the boundaryoperators, and then for the di�erential operators. The omputation of the entries in Cj isstraight-forward (see (4.20)), and thus we do not disuss it any further.We explain in some detail the omputation of the entries in the matrix B0j (see (4.23))orresponding to the boundary operators �rst for the ase of the Dirihlet boundary operator,and then apply the same approah to the omputation of the entries orresponding to theNeumann boundary operator. Again, we always assume that the basis elements are properlysaled.To ompute (BD;0j )kl = h�jk Æ �; ��jli = ZT[�jk Æ �℄(t)��jl(t)dt;we �rst identify a set of pairwise disjoint open intervals fIig in T suh that, writing �kl(t) =[�jk Æ �℄(t)��jl(t), one has supp �kl = [iIi, and suh that �kl is C1 on eah Ii. This obtainthese intervals, it is enough to look at the intervals on whih ��jl is a polynomial, and intersetthe ubes on whih �jk is a polynomial with �
. Finally, we omputeZT[�jk Æ �℄(t)��jl(t)dt =Xi ZIi[�jk Æ �℄(t)��jl(t)dtby approximating eah of the integrals on the right via a high order Gauss Legendre quadra-ture rule. In the implementation used to perform these experiments we used one of order10, whih was deemed to be aurate enough.To ompute the entries in the matrix orresponding to the Neumann boundary operator,we simply repeated the above proess, but replaing �jk Æ � with r�jk(�(t))n(t)��jl(t).To ompute the entries in �A0j , given by( �A0j)kl = hA�k; �li = ZTr�kr�ldx;we used the fat that the funtions involved are pieewise polynomials, and thus we omputedthese entries using standard quadrature rules on eah of the polynomial piees.



70 Numerial results and disussionThe omputation of the entries in the matrix A0j (needed for the SPFD method) were ob-tained by using simple quadrature rules to evaluate the inner produts (A0j)ikl = hA�jk; �ijli.For both the SPFD and FDLM methods we have hosen m� = 2, ~m� = 6 for the primaland dual orders of the B-spline wavelet bases used for the boundary. For the B-spline waveletbases ourring in the disretization of the domain, we have hosen m = 3, ~m = 7, unlessotherwise stated.5.3 Numerial results and disussion5.3.1 Smoothness of the solutions obtained using the FDLMmethodBehavior of the linear approximation errorWe were able to observe the phenomenons predited by theorems 3.2.7 for the fairly anonialproblem P1, using a radius of r = 0:3 for 
. We omputed the solution u+ of the FDLM withthe orresponding data to level 8 on Td, and, following [12℄, we used level 6 on �
 to satisfythe LBB ondition and obtain better auray. We did let LSQR iterate until it arrived at aresidual of norm smaller than 10�3, whih took 273 iterations1. A plot of the solution an beseen in �gure 5.2(a), where it is also possible to appreiate optially the jump in the normalderivatives. A plot of the Lagrange multiplier an be seen in �gure 5.2(b).
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Numerial results and disussion 71with ku+J kL2(Td) �  X�249 j�j2! 12 :Figure 5.3 plots the errors of linear approximation in the norm indued by 	. That is,the quantities E	j (u+J ) = 0� X�2r8: � =2Vj j�j1A 12 ;whih are uniformly equivalent to the errors,Ej(u+J ) = infv2Vj ku+J � vkL2(Td)but easier to obtain.Remark 5.3.1. The phenomenon observed in �gure 5.3 is the onvergene rate of the linearapproximation sheme when applied to the obtained solution. The error plotted should notbe understood as the distane to the exat solution.
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Figure 5.3: Linear approximation errors when approximating the solution to problem P1obtained with the FDLM method.After some initial irregularity, we observed the expeted asymptoti behavior. To measureit, we hose a range of j where the error seemed to behave as predited, and �tted to it thefuntion �(j) = C2js, using linear least squares in the oordinates of the plot. This gave usan estimate of the order of onvergene s. We plotted the obtained � (dotted line in �gure5.3), along with marks for the data used in the �t.



72 Numerial results and disussionBehavior of the nonlinear approximation errorTo investigate the behavior of the nonlinear approximation error, it was found to be advan-tageous to use a larger radius (we used r = 0:45 for 
). This is due to the fat that thenthere are more wavelet oeÆients on T2 that interset the boundary than if the radius issmaller.We omputed the solution u+ of the FDLM with the orresponding data to level 8 onTd, and level 6 on �
. We solved again the system of linear equations using LSQR with atolerane of 10�3. This time it needed 919 iterations2. A plot of the solution an be seen in�gure 5.4, alongside the obtained Lagrange multiplier.
    0.05
    0.04
    0.03
    0.02
    0.01

 0.2
 0.4

 0.6
 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06

(a) Solution u+  0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0  0.2  0.4  0.6  0.8  1(b) Lagrange multiplier pFigure 5.4: Solution and Lagrange multiplier obtained when solving problem P1 with theFDLM method, this time with r = 0:45.To analyze the solution u+J we used again the fast wavelet transform, this time to obtainthe wavelet oeÆients of u+J with respet to the basis 	, saled to be a basis of H1(Td).This gave us a representation of u+J of the formu+J = X�2r8 b� �with ku+J kH1(Td) �  X�249 jb�j2! 12 :Next, we sorted the 216 oeÆients in dereasing order of their absolute values, produingthe vetor of real numbers a = (a0; a1; : : : ; a216�1). Thus, we still haveku+J kH1(Td)  216�1Xi=0 a2i! 12 ;2In omparision, CGLS needed 1372 iterations.



Numerial results and disussion 73while also obtaining the error of the best N -term approximation to u+J fromE	N(u+J ) =  216�1Xi=N a2i! 12 :We subjeted ! = B�Jp to a similar treatment; that is, we omputed the wavelet o-eÆients of ! with respet to the dual basis ~	 of 	, whih is a basis for H�1(Td), andproeeding analogously to how we proeeded with u+J .We have plotted the onvergene history of the best N -term approximation in doublylogarithmi sale, and as done in the linear approximation ase, we have plotted it togetherwith the �tted (in doubly logarithmi oordinates) �(x) = CN�s and the data points usedin the �t (hosen where we believe one an observe the asymptoti behavior expeted). Wehave done this both for u+J and !; see �gure 5.5.
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Figure 5.5: Convergene histories of best N-term approximation to u+J and BTp. Idealizedonvergene rates have been �tted to measure atual onvergene rates.A mixed piture emerges, whih is not entirely unexpeted. We are plotting the bestN�term approximation errors with respet to the solution u+J and not with respet to thesolution of the in�nite dimensional problem, whih remains beyond our reah. The sequeneof wavelet oeÆients of u+J is ompatly supported, and thus belongs to any `w� . Eventually(in both �gures from N � 500 onwards), the deay of the error must aelerate, as the bestN -term approximation of u+J is exat for N = 216.Note that the aeleration is due to the exhaustion of the degrees of freedom orre-sponding to wavelets whose supports interset the boundary. After around N = 1500, thesingularity at the boundary, as reeted in the solution analized, was fully resolved. Fromthen on, the onvergene rate is due to the smoothness of the solution away from the bound-ary. One should not misunderstand neither the theoretial results of hapter three, nor thenumerial evidene presented here. While asymptotially the onvergene rate of the non-linear approximation sheme is limited, it still yields greater auray with far fewer degreesof freedom than the linear approximation shemes.



74 Numerial results and disussionj Tolerane Iterations Initial residual3 1.0000e-05 11 7.0711e-014 2.5119e-05 0 6.7104e-115 6.3096e-05 0 6.6714e-116 1.5849e-04 0 6.4922e-117 3.9811e-04 0 6.4058e-118 1.0000e-03 0 6.3563e-11Table 5.1: Iteration history for the SPFD method applied to problem P15.3.2 Behavior of the SPFD methodTo test the SPFD method, we hose the smaller radius of r = 0:3, whih allows us toappreiate better the smooth extension of the solution. The reursion (4.25) was evaluatedwith j0 = 3, and J = 8, but hoosing higher preision for smaller j (where iterations areheaper) than for higher j. We summarize the iteration history for problem P1 in table 5.1.The olumn labeled \initial residual" lists the errorskMTj (M jx0j � bj)k;where x0j is the initial guess obtained from the result of the previous level (or zero, if therewas no previous level). The level hosen for the disretization on the boundary was alwaysthe same as for the domain.In this partiular ase we observe the promise of the SPFD method materialize in adramati way. Observe that the solution found for j = 3 was already good enough to satisfythe expeted auray even on level 8, needing no further iterations. Find a plot of thesolution in �gure 5.6(a). We have also plotted the boundary values of the solution obtainedin �gure 5.6(b).We �nd this experiment quite remarkable. It shows that the SPFD an indeed �nd verysmooth solutions if that is possible. In this ase, the solution on the domain is polynomial;one easily heks that the solution of the original problem isu = 0:25 �r2 � (x� 0:5)2 � (y � 0:5)2� :The SPFD method is atually able to �nd in V3 an exat extension of u to T2!To test the SPFD method against more realisti data, we solved next problem P2. Wehave summarized the iteration history in table 5.2, and show the solution v+J in �gure 5.7.Using the same proedure as for the solution of the FDLM method above, we plot the linearapproximation error, together with the �tted idealized onvergene rate (see �gure 5.7).Sine we are using pieewise quadrati C1 funtions with meshsize h = 2�j, and sine theextended right-hand side is C1, we expet a onvergene rate of at least 2�3j. The measuredonvergene rate is 2sj, with s � �3:65, showing again that the method is able to �nd verygood extensions for the solution.
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76 Numerial results and disussion
    0.01

3.47e-18
   -0.01
   -0.02
   -0.03
   -0.04
   -0.05

 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.2

 0.4
 0.6

 0.8
 1

-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0
 0.01
 0.02

(a) Extended solution -0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  0.2  0.4  0.6  0.8  1(b) Boundary valuesFigure 5.7: Solution and boundary values of the solution at �
 obtained when solving problemP2 with the SPFD method.

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7

j

Error
Fit (s=-3.65483)

Fit data

Figure 5.8: Linear approximation error and �tted idealized onvergene rate for v+J .Higher orderWe hose m = 5, ~m = 9, and solved again problem P2. The onvergene history is summa-rized in table 5.3, the solution an be seen in �gure 5.10. We observe, as done with exampleI, that the solution at a lower level is good enough to satisfy the equations at a higher levelto the required auray. The deay of the linear approximation errors is far too fast to beof any use rating the onvergene.The Neumann problemFinally, we try out the SPFD method with the Neumann problem (problem P3). For thesolution, see �gure 5.11(a), while the values of the outward normal derivative at the boundaryan be appreiated in �gure 5.11(b). We have summarized the iteration history in table 5.4.
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(b) Linear approximation er-rorFigure 5.9: Solution and boundary values of the solution at �
 obtained when solving problemP2 with the SPFD formulation but without nested iteration.j Tolerane Iterations Initial residual3 1.0000e-05 225 6.3607e-014 2.5119e-05 858 2.0985e-025 6.3096e-05 926 3.9566e-046 1.5849e-04 0 1.0457e-047 3.9811e-04 0 1.0026e-048 1.0000e-03 0 9.6757e-05Table 5.3: Iteration history for the SPFD method applied to problem P2 (using higher orderB-splines)
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j Tolerane Iterations Initial residual3 1.0000e-05 118 7.4651e-014 2.5119e-05 204 1.1609e-015 6.3096e-05 282 1.9109e-026 1.5849e-04 271 8.6360e-037 3.9811e-04 201 4.1898e-038 1.0000e-03 14 2.0700e-03Table 5.4: Iteration history for the SPFD method applied to problem P3 (Neumann boundaryonditions)



Chapter 6Final notes
6.1 ConlusionsWhat follows is a brief summary of the main ahievements and results of this thesis.� We generalized and omplemented some results from the literature [21℄, and have foundthat the solutions obtained using the FDLM approah do, in general, su�er from a lakof regularity (see theorem 3.2.7). Whenever the Lagrange multiplier is non-zero, and ifthe right-hand side is in H�1=2+� for some � > 0, then the solution obtained is at bestin H3=2.This lak of regularity implies that the performane of linear approximation shemes(that is, in essene, approximation from uniform grids) is limited.In partiular, it was found that if the Lagrange multiplier is non-zero, then for B-spline approximation from uniform meshes the error in the L2 norm deays at best as2�1:5j, where j indiates the level of resolution (that is, the meshsize is given throughh = 2�j). This behavior ours independently of the order of the used B-spline bases.We were able to observe this behavior in numerial experiments.� A similar result was obtained for standard nonlinear approximation shemes (isotropiadaptive shemes). We studied best N -term approximation using wavelet bases, andfound that if the Lagrange multiplier ould be identi�ed with a measurable non-zerofuntion on an interval, then best N -term approximation using B-spline wavelet basesonverged at best as N� 12(d�1) . Again, this behavior is independent of the orders of thewavelets used.The above behavior was also on�rmed by numerial experiments.� A new �titious domain method (the smoothness preserving �titious domain method,or SPFD method) was proposed that is designed to overome these limitations. Themethod onstruts a smooth solution through the onstrutive use of fundamentalpriniples of approximation theory.It was established that the solutions obtained via the SPFD method are solutions tothe original ellipti boundary value problems. That is, the method is sound.79



80 OutlookTheoretial evidene ould be supplied that showed that, under ertain onditions onthe disretization, the solution obtained also has optimal smoothness.A disretization sheme was introdued whih promises to satisfy these requirements.Numerial experiments were provided that seem to on�rm that the solutions obtaineddo indeed have optimal smoothness. This was evaluated by measuring the onvergenerate of B-spline approximation from �xed grids, and omparing that rate with the ratepredited by standard approximation results.� Numerial experiments with the SPFD method found that the measured approximationorder was higher than the lower bounds predited by theory.The numerial and theoretial results are very enouraging and suggest that the SPFDmethod is worth of further study.6.2 OutlookA lot remains to be done. In partiular, we feel that the following tasks are promising routesof further researh.Analyze other linear solversThe CGLS method is not very good. This has been known for a long time, and we wereable to on�rm it here, taking a look at the number of iterations needed to solve problemP1 with the �titious domain - Lagrange multiplier approah.However, any alternative should preserve the omponent in the kernel of the SPFDoperator Mj to be, from a theoreti point of view, a good andidate.Fill in the gaps of the theoryThe global onvergene and smoothness of the limit of the SPFD method holds, aordingto the provided theory, if the disrete operators satisfy assumptions A1, A2, and A3. Thequestion is, does the sequene of operators designed in 4.4 satisfy these assumptions? Webelieve that it does. But if not, do suh sequenes of operators exist at all?Another possibility is to explore whether requirements A1, A2, and A3 an be substitutedby other requirements, that are either easier to hek or easier to satisfy. We believe thatthere is a lot of spae for variations in this formulation.Use of other approximation spaesFor the analysis, as well as for the numerial experiments, we have used periodi splines ondyadi grids. While this hoie guarantees us a lot of simpliity and approximation power,it is ertainly not the only possibility.For numerial purposes, it would be interesting to test the method with more generalspline and �nite-element spaes, for instane.



About the software 81More general formulationAnother limitation of the SPFD method is that, due to its urrent formulation, it annotdeal with problems on domains that ontain orners. Thus, hanging the formulation toaomodate for this ase is perhaps one of the most urgent diretions of researh that shouldbe followed.AdaptivityThe SPFD method as it was onstruted here is not adaptive, and it is not immediately learhow to onstrut an adaptive strategy that still realizes the smoothness preserving behavior.It has to be noted that the point of view that has allowed us to onstrut and analyze thismethod is not too distant from the points of view taken in [8℄ and [7℄, making those artilesa anonial starting point.An adaptive SPFD solver would be a very powerful tool for dealing with problems thatinvolve omplex domains and singularities.General ellipti boundary value problemsIt is not too diÆult to \upgrade" the proofs in hapter four to problems where the di�erentialoperator has higher order, and to more general boundary operators. A more interesting routeof exploration are problems where di�erent types of boundary onditions hold on di�erentparts of the boundary.Another interesting possibility is to try to apply the SPFD approah to other problems,as Stokes and Navier-Stokes problems.6.3 About the softwareThe programs where written in Common Lisp, a modern, objet oriented, ANSI standardizeddialet of the seond oldest programming language still in use (the oldest is Fortran). It wasinitially developed by John MCarthy in [29℄, and used mainly in the arti�ial intelligeneommunity. Later it beame the general purpose language it is today. Many features of thelanguage work together to improve the produtivity of the programmer at several levels.� Syntax: The syntax is very regular and simple. Expressions have the form(hoperatori fhargumentig)where eah of the arguments is either atomi (number, vetor, symbol, et), or anotherexpression. A mathematial expression like sin(�s) + Cex would be written in lisp as(+ (sin (* alpha s))(* C (exp x)))



82 About the softwareWhile at �rst this syntax strikes as hard to understand, a seond inspetion revealsthat it ontains no ambiguities. To deal with the amount of parentheses one needs thesupport of a good text editor. But as a side e�et, syntax errors almost disappear. Thenumber of apparent errors (whih would trigger a ompiler error) and subtle (whihmake for hard to �nd errors) is greatly redued. This is a large advantage over somemodern languages that su�er from an exeedingly omplex syntax (most notably, andrelevant to our goals, C++), a feature whih has been observed to degrade programmerprodutivity.� Code generation and maros: A side e�et of the simple and regular notation isthat soure ode itself is diretly amenable to mahine manipulation. What is nowbeing alled \generative metaprogramming" using C++ templates has been presentin Common Lisp sine far more than a deade, and, sine the omplete language isavailable at ompile time, in a more mature and powerful form [23℄.� Rih environment: Development in Common Lisp usually happens interatively.The REPL (read-eval-print loop) makes it possible to inspet immediately newly de-�ned omponents of the appliation without needing to restart the program fromsrath. The user experiene is similar than that from other interative environments,while the performane an be the same as that of monolithi programs (this dependson the implementation).� Mature Standard: The ANSI Common Lisp standard was formulated at a time whenample experiene on the use of all features was available. It inludes The CommonLisp Objet System (CLOS), and its standard library inludes many failities that areonly now beginning to appear in the standard library of modern languages; hash tablesare but one prominent example.While deried as slow and hard to use, and held to be ertainly not a good hoie fornumerial appliations, we found exatly the opposite to be true, and are not alone withthat appreiation; see [31℄. Performane omparable to C and Fortran is available in ertainimplementations1.For our purposes, the most important advantage was that it allowed us to explore manyprototypes and perform many experiments. Its interative nature and high performaneallowed us to do so with little e�ort. Many di�erent disretizations and on�gurations weretried before arriving at the on�guration presented in setion 4.4. Many more than wouldhave been possible using any other language.
1We used CMUCL, a high performane Common Lisp ompiler to be found at http://www.ons.org/mul
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