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Chapter 1Introdu
tionFi
titious domain methods, sometimes also 
alled domain embedding methods, are a familyof tools for the solution of boundary value problems on irregular and 
omplex geometries.What distinguishes them from other methods is that they try to employ simple dis
retiza-tions and methods whi
h work well on regular geometries, and 
oer
e them, in one wayor another, to produ
e a solution of the problem on the 
omplex geometry. They a
hievethis by embedding the original domain into a mu
h simpler one (the �
titious domain), andreformulating the problem there, a step whi
h always involves some form of extension ofthe data. Instead of solving the original problem dire
tly, one obtains an extension to the�
titious domain of the solution of the original problem. The boundary 
onditions are usu-ally enfor
ed by me
hanisms whi
h do not modify the dis
retization on the domain, or doso only in a limited way. Prominent examples of su
h me
hanisms are Lagrange multipliersand penalty parameters.This type of 
onstru
tion produ
es fairly 
exible methods that 
an 
ope easily with prob-lems where the geometry 
hanges often. A 
anoni
al appli
ation is the use as a 
omponentin shape optimization problems or free boundary problems (see for instan
e [24℄). Whatmakes �
titious domain methods so invaluable in these appli
ations is their stri
t bla
k boxapproa
h. Sin
e no remeshing is ne
essary, they 
an operate on ma
hine-generated geometrydes
riptions without supervision, and do so reliably.Another possible reason to use a �
titious domain formulation is to tap the power ofmethods whi
h are only available on simple geometries, a theme explored for example in [3℄and the referen
es therein. It is this point of view whi
h shall dominate in the present thesis.We will study �
titious domain formulations as an alternative to other, more traditionalformulations for standard ellipti
 boundary value problems, fo
using on them as a vehi
le tosimplify the use of wavelet-Galerkin dis
retization s
hemes.1.1 Wavelet methods and �
titious domain formula-tionsWavelets, whi
h appeared �rst as a tool for signal analysis, have been playing an in
reasinglyimportant role in numeri
al algorithms for the solution of partial di�erential equations. For3



4 Wavelet methods and �
titious domain formulationsthe solution of ellipti
 boundary value problems, biorthogonal wavelet bases are an attra
tive
hoi
e. They lead easily to well 
onditioned dis
retizations of the type of operator equationthat appears in these problems. This property, their good approximation power, and their
lear mathemati
al stru
ture have led to the development of novel methods whi
h pro�tfrom results from related mathemati
al dis
iplines.The adaptive wavelet methods developed with the aid of deep approximation theoreti
alresults in [8, 7℄ illustrate this point quite 
learly. These algorithms are 
apable of produ
inggood approximations of the solutions of ellipti
 boundary value problems with an optimalwork/a

ura
y balan
e. They are optimal in the sense that to produ
e an approximation ofthe solution to a given problem, the number of operations needed is proportional to ��1=s,where � is the desired a

ura
y (measured in a relevant norm, usually the Energy norm), andthe parameter s depends on the smoothness of the solution, as measured by thir membershipin 
ertain Besov spa
es.Perhaps the most important property of the 
lass of wavelets used in these methodsis that they are Riesz bases for the Sobolev spa
es involved. But while they are easy to
onstru
t and handle for, say, periodi
 domains, the situation is quite di�erent for domainswith 
omplex geometries. And while the 
onstru
tion for those domains is a solved problem[13℄, the resulting bases are diÆ
ult to handle. The numeri
al properties of su
h bases alsosu�ers somewhat, leading to dis
rete problems whi
h are not as well 
onditioned as their
ounterparts on simple domains. Thus, a possible strategy to over
ome these diÆ
ulties whendealing with 
omplex geometries is to use a �
titious domain formulation. This approa
hwas initiated su

essfully in [27℄.The 
hoi
e of suitable �
titious domain formulations one may 
onsider for this endeavor islimited, however. Methods based on the introdu
tion of penalty parameters lead to dis
reteproblems that are not uniformly well 
onditioned. The same holds for any other methodbased on regularization te
hniques (see for instan
e [20℄).The formulation whi
h seems to be best suited for su
h a purpose is the �
titious domain- Lagrange multiplier (FDLM) approa
h initiated by [1, 22℄, and used in [27℄. To solvea se
ond order ellipti
 boundary value problem with Diri
hlet boundary 
onditions on abounded domain, one extends the data (and the di�erential operator) to a simpler domain,and appends the boundary 
onditions by introdu
ing a Lagrange multiplier. This leads toa saddle-point problem whi
h is amenable to the dis
retization and solution with wavelette
hniques [10℄.In 
hapter three we will show that this approa
h has its limitations. While the solution ofthe original problem may be very smooth in either of the Sobolev or Besov s
ales, this doesnot hold in general for the extended solution obtained through the FDLM formulation. If thedata was not extended in exa
tly the right way, the smoothness of the extended solution isde�
ient, and thus approximating it requires more degrees of freedom, and ultimately morework.



Towards a �
titious domain method with optimally smooth solutions 51.2 Towards a �
titious domain method with optimallysmooth solutionsCorre
ting this de�
ien
y in the FDLM formulation in a way that keeps the formulationpra
ti
al is fairly diÆ
ult; as a matter of fa
t, an extensive sear
h of the literature showedno attempt, su

essful or unsu

essful, to address this problem. There is one trivial wayaround this diÆ
ulty (take the solution of the original problem, extend it smoothly, and usethe di�erential operator to obtain a suitable extension of the data) but it leads to a methodwhi
h is hardly pra
ti
al, sin
e it needs the solution �rst.In 
hapter four we will attempt to 
onstru
t a method whi
h produ
es optimally smoothextensions of the solution. For this we will begin by formulating on the �
titious domain arank-de�
ient, but otherwise well-posed1, least squares problem whose solutions all agree onthe original domain with the original solution. Then we play with the pro
ess of solving thedis
rete equations to obtain a solution of the least squares problem whi
h is also smooth.The smooth extension is 
onstru
ted by a nested iteration s
heme through what amountsto emergent behavior. A proof of this property will be given subje
t to a few 
onditions on the�nite dimensional problems obtained by the pro
ess of dis
retization. We will also 
onstru
ta dis
retization s
heme whi
h, at least numeri
ally, seems to satisfy these 
onditions.The resulting method is fairly simple in stru
ture. Wavelets appear in the dis
retizationas a natural 
hoi
e and, more importantly, no modi�
ation of the bases is needed. Thismakes our method usable as a bla
k box. Furthermore, the method 
an deal in a uni�edway with any type of boundary 
onditions.1.3 OverviewWe begin in 
hapter two by weaving together in a uniform way the theory we will use in thefollowing 
hapters. We will need some elements of approximation theory, theory of ellipti
boundary value problems, and the 
onstru
tion of B-spline wavelets.Chapter three is devoted to the analysis of the �
titious domain - Lagrange multiplierapproa
h. Here we will show how the method is derived, and analyze the smoothness ofthe extended solutions by 
onsidering their membership in Besov and Sobolev spa
es. Weextend and 
omplete �rst the results on smoothness in the Sobolev s
ale found in [21℄,taking an approximation theoreti
al point of view, and then prove new results whi
h boundthe 
onvergen
e rate of nonlinear approximation s
hemes. We have su

eeded in 
olle
ting allthe diÆ
ult te
hni
al details into one lemma, whi
h makes the dis
ussion more transparent.The se
ond half of 
hapter three is then spent proving this lemma.The development of a �
titious domain method able to produ
e optimally smooth solu-tions takes pla
e in 
hapter four. First we introdu
e and analyze the least-squares formulationthat will serve as a foundation, and then we pro
eed to 
onstru
t the method, and provethat under 
ertain assumptions to the dis
retization, it produ
es optimally smooth solutions.Then we introdu
e a dis
retization s
heme designed to satisfy these assumptions.1in the sense that it is solvable, and that its solutions 
an be 
hosen to depend 
ontinuously on the data



6 A
knowledgementsIn 
hapter �ve we will give numeri
al eviden
e that supports the results of 
haptersthree and four. We will begin by showing the e�e
ts of the singularities introdu
ed bythe FDLM approa
h with respe
t to the 
onvergen
e of linear and nonlinear approximations
hemes. Then we will test the method developed in 
hapter four on a set of model problems,and observe how it su

eeds in providing smooth solutions on the �
titious domain whi
h,restri
ted to the original domain, solve the original problem.A 
hapter with �nal notes 
an be found at the end of this thesis, summarizing our �ndsin a 
on
lusions se
tion, and dis
uss dire
tions for further resear
h.1.4 A
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Chapter 2Theoreti
al frameworkThe present 
hapter sets the tapestry on whi
h the material of later 
hapters unfolds. Insteadof presenting a loose 
olle
tion of fa
ts, we have tried to draw a map of the body of theoryinvolved. It has been drawn in a mostly stri
t logi
al order, beginning with spa
e interpola-tion and abstra
t approximation theory, then going on to de�ne Besov and Sobolev spa
esas approximation spa
es. After reviewing the standard tra
e and extension theorems, and
omplementing them with more modern results whi
h will be useful later, we de�ne the 
lassof problems we want to study: se
ond order ellipti
 boundary value problems with eitherDiri
hlet or Neumann boundary 
onditions. After this we introdu
e B-spline wavelets, andthe brand of nonlinear approximation that is the foundation of adaptive wavelet methods.2.1 Interpolation spa
esThe de�nition of what 
onstitutes an interpolation spa
e requires the following steps [2℄. LetA0 and A1 be two normed spa
es. They are 
alled 
ompatible if there exists a Hausdor�topologi
al ve
tor spa
e V su
h that A0 and A1 are subspa
es of it. A normed spa
e Ais 
alled an intermediate spa
e between the 
ompatible spa
es A0 and A1, if A0 \ A1 �A � A0 + A1. An interpolation spa
e with respe
t to the 
ouple (A0; A1) is then anyintermediate spa
e A between A0 and A1 for whi
h the following holds. Whenever a linearmap T : A0 + A1 ! A0 + A1 is also a bounded linear map from A0 to itself, as well as fromA1 to itself, then T maps A boundedly into itself.To 
onstru
t su
h spa
es, we follow here the real method due to J. Peetre, as found in[2℄. We de�ne �rst the K-fun
tional for v 2 A0 + A1 byK(t; v; A0 + A1) := infv=a0+a1 (ka0kA0 + tka1kA1) ;where the in�mum is taken over all possible representations v = a0 + a1 with ao 2 A0 anda1 2 A1. For a �xed v 2 A0 +A1, one 
an show that K(t; v; A0 +A1) is positive, in
reasing,and 
on
ave.The following observation is the key to the 
onstru
tion of interpolation spa
es using theK-fun
tional. Let T : A0 ! A1 be as des
ribed in the �rst paragraph, and let v 2 A0 + A1.7



8 Approximation spa
esThen(2.1) K(t; v; A0 + A1) � C K(t; T v; A0 + A1);where the 
onstant C 2 (0;+1) is independent of t.Now, for 0 < � < 1, 0 < q � 1, let A�;q be the subspa
e of A0 + A1 of elements whi
hsatisfy kvk�;q <1, withkvk�;q := 8><>:�R10 �t��K(t; v; A0 + A1)	q dtt � 1q ; if 0 � q <1,supt2(0;+1) t��K(t; v; A0 + A1) if q = +1.From (2.1) it follows immediately that the spa
e A�;q is an interpolation spa
e between A0and A1. But more is true. If (B0; B1) is another pair of 
ompatible spa
es, and T : A0+A1 !B0 +B1 is su
h that T maps A0 boundedly to B0, and A1 boundedly to B1, then using thesame argument we see that T : A�;q ! B�;q is also a bounded operator.To shed light onto the relation between interpolation spa
es, we in
lude the followingtheorem.Theorem 2.1.1 (The reiteration theorem). Let q0; q1 2 (0;+1), �1; �2 2 (0; 1), and let� = (1� �)�0 + ��1 for some � 2 (0; 1). Then for any q 2 (0;+1) it holds that ([2℄, p.50)((A0; A1)�0;q0; (A0; A1)�1;q1)�;q = (A0; A1)�;qwith equivalent norms.2.2 Approximation spa
esApproximation spa
es allow us to talk about approximation methods in an abstra
t setting1.For this, let X be a normed ve
tor spa
e, and let fXngn2N be a sequen
e of subsets of Xsatisfying the following axioms.Axioms 2.2.1i. Xn � Xn+1 for all n 2 N .ii. aXn � Xn for all x 2 R.iii. There exists a 
onstant 
 2 N su
h that for every n 2 N , Xn +Xn � X
n.iv. If f 2 X, then limn!+1 infx2Xn kf � xk ! 0.1This a

ount follows [18℄



Approximation spa
es 9The sequen
e fXngn2N will play the role of our approximation method.To illustrate what these axioms mean, we 
onsider the 
ase when X is a separable Hilbertspa
e, and B = fbkgk2N is an orthonormal basis. We might 
hooseXn = spanfbk : k � ng;and see immediately that it satis�es the above axioms. Sin
e the Xn are linear spa
es, wespeak of linear approximation.In 
ontrast, 
onsider the 
hoi
eXn = fx 2 X : x =Xk2� 
kbk; � � N with #� � n; 
k 2 Rg;whi
h is the nonlinear spa
e of elements in X whi
h are a linear 
ombination of at most nmembers of B. Whenever the sequen
e fXngn2N 
ontains sets whi
h are not linear subspa
esof X, we speak of nonlinear approximation. We will take a 
loser look at s
hemes of thistype later on.Note that the above are just examples, and their introdu
tion does not amount to a
on
rete de�nition of the spa
es Xn in a parti
ular setting.After having 
hosen an approximation method, we want to rate its performan
e a

ordingto the behavior of the error of approximation, whi
h, for v 2 X, is de�ned byEn(v) := infx2Xn kv � xk:Approximation spa
es 
lassify the elements of X a

ording to how well they 
an beapproximated with fXngn2N. For 0 < s < +1, and 0 < q � +1, they are given byAsq(X; fXng) := ff 2 X : kfkAsq < +1g;with k � kAsq := k � kX + j � jAsq , andjf jAsq := 8><>:�P+1n=1[nsEn(f)℄q 1n� 1q if 0 < q < +1,supn2N nsEn(f) if q = +1.For an element f 2 X, membership in Asq(X; fXngn2N) means above anything else thatthe approximation error de
ays at least as O(n�s). The parameter q further indi
ates theslightly stronger (for q <1) assertion that fnsEn(f)g belongs to `q. The parameter q is ofse
ondary nature; it is possible to prove that if s < r, then(2.2) Arq(X; fXngn2N) � Asp(X; fXngn2N) 8 0 < q; p < +1We obtain the same spa
e, with an equivalent norm, if we use the following (equivalent)seminorm j � jAsq(X;fXngn2N).(2.3) jf jAsq := 8><>:�P+1n=0[2nsE2n(f)℄q�1q if 0 < q < +1,supn2N 2nsE2n(f) if q = +1.



10 Approximation spa
esWhen proving membership in a spa
e Asq, it is often easier to use this last de�nition.The fa
t that (2.3) de�nes an equivalent norm hints at some redundan
y in the sequen
efXngn2N. We shall often write Vj := X2j , j = 0; 1; : : :, and then write(2.4) Asq(X; fVjgj2N0 ) := Asq(X; fXngn2N):In this 
ase, we will always use the seminorm de�ned in (2.3) for the spa
e on the left of(2.4). Stret
hing things a little bit further, we will often start by de�ning the spa
es Vj,obviating the spa
es Xn with n 6= 2j, and using only the spa
e on the left of (2.4). This
auses no problem, sin
e any sequen
e fXng with Vj = X2j , whi
h also satis�es axioms 2.2.1,would de�ne the same spa
e with an equivalent norm.A note is also in order regarding spa
es of the type `p with 0 < p < 1. The 
orresponding`p-"norm" is no longer a norm, but instead is only a quasinorm. The triangle inequalityholds only in its modi�ed formka + bk`p � 2 1p �kak`p + kbk`p� :To substitute the 
on
ept of Bana
h spa
e we de�ne a quasi-Bana
h spa
e as a quasi-normed spa
e (Z; k �k), where every Cau
hy sequen
e (with respe
t to the quasi-norm) has alimit in Z. One 
an then prove that the spa
e `p, 0 < p < 1 is indeed a quasi-Bana
h spa
e.The same holds, mutatis mutandis, for Lp spa
es with 0 < p < 1.2.2.1 approximation spa
es and spa
e interpolationIn this subse
tion we are going to shed some light on the relation between interpolationspa
es and approximation spa
es.The �rst main result that is 
on
erned with this relation states 
onditions under whi
han interpolation spa
e is equal to an approximation spa
e. Let Y � X be a normed spa
ewhi
h 
an be embedded 
ontinuously into X. Let fXngn2N be an approximation methodsatisfying axioms 2.2.1, and suppose that the following inequalities hold.En(f) � Cn�rkfkY ; 8f 2 Y (Ja
kson inequality)(2.5) kSkY � CnrkSkX ; 8S 2 Xn (Bernstein inequality)(2.6)for some r > 0.Theorem 2.2.1. If the Ja
kson and Bernstein inequalities hold, then for every 0 < s < r,and every 0 < q � +1, Asq(X; fXngn2N) = (X; Y )s=r;qwith equivalent norms.An important appli
ation of this theorem is that it allows us to 
ompare approximationspa
es obtained with di�erent approximation methods.



Approximation spa
es 11Corollary 2.2.2. Let fX1ngn2N and fX2ngn2N be two sequen
es satisfying 2.2.1, and supposethat there exists r > 0 su
h that both satisfy the Ja
kson and Bernstein inequalities withrespe
t to a spa
e Y as des
ribed above. Then for every 0 < s < r, 0 < q � +1,Asq(X; fX1ngn2N) = Asq(X; fX2ngn2N)with equivalent norms.As a 
omplement of theorem 2.2.1 we have also that approximation spa
es form indeedan interpolation family.Theorem 2.2.3. [DeVore and Popov, 1988℄ Let fXngn2N satisfy axioms 2.2.1. Then, forany r > 0, the sequen
e fXngn2N satis�es the Bernstein and Ja
kson inequalities with Y =Arq(X; fXngn2N), for any 0 < q � +1. Thus, for all 0 < s < r, and all 0 < q; t � +1 wehave Asq(X; fXngn2N) = (X;Arq(X; fXngn2N))s=r;q:Next we present a 
onsequen
e of the reiteration theorem whi
h 
hara
terizes what weobtain when we de�ne an approximation spa
e inside of an approximation spa
e. It reads2as follows.Theorem 2.2.4. Let 0 < s < r, and fXngn2N satisfy axioms 2.2.1. ThenAr�sq � Asq(X; fXngn2N) ; fXngn2N� = Arq(X; fXngn2N)with equivalent norms.Proof. To keep the notation from obs
uring the arguments, we shall 
hoose a �xed 0 < q �1, and write Z� = A�q (X; fXngn2N) 8 � 2 (0;+1):Given an element v 2 Zs, we de�ne the error of approximation in Zs by~En(v) := infx2Xn kv � xkZs:Suppose for the moment that we have shown that if � > s, then the Ja
kson inequality,~En(f) . n�(��s)kfkZ� 8 f 2 Z�;(2.7)and the Bernstein estimatekSkZ� . n��skSkZs 8 S 2 Xn;(2.8)hold. Then if � > r > s, we obtain from theorem 2.2.1 thatAr�sq (Zs; fXngn2N) = (Zs; Z�)( r�s��s);q:2We have not found this result in the literature, and thus we prove it here.



12 Approximation spa
esSo 
hoose � > �, and use theorem 2.2.3 to observe thatZs = (X;Z�) s� ;q; Z� = (X;Z�) �� ;q:The reiteration theorem now givesAr�sq (Zs; fXngn2N) = �(X;Z�) s� ;q; (X;Z�) �� ;q�( r�s��s);q= (X;Z�) r� ;q= Arq(X; fXng):To �nish the proof, it only remains to show that (2.7) and (2.8) hold. We will do so onlyfor 0 < q < +1, sin
e the 
ase q = +1 is straightforward. To prove (2.8), let S 2 Xn, and0 < q <1. Sin
e S 2 Xn, it holds that Ek(S) = 0 if k � n, so thatjSjZ� =  n�1Xk=1[Ek(S)k�℄q 1k! 1q :But sin
e S 2 Zs, we also have Ek(S) . k�skSkZs, and substituting this expression abovewe obtain jSjZ� . n��skSkZs;from where (2.8) follows.To prove (2.7), we begin by observing that(2.9) infx2XkEj(f � x) � Ej(f); Ek(f);whi
h follows from the properties of the in�mum. Also, sin
e Xn � Xn+1, one has thatEj1(f) � Ej2(f) whenever j2 � j1, and so we see that
(2.10) infx2Xk kXj=1 [Ej(f � x)js℄q 1j!1q

� infx2Xk kXj=1 [E1(f � x)js℄q 1j! 1q� Ek(f)ks:Now, 
onsider the following 
omputation,~Ek(f) = infx2Xk kf � xkZs= infx2Xk8<:kf � xkX + 1Xj=1 [Ej(f � x)js℄q 1j! 1q9=;= infx2Xk8<:kf � xkX + kXj=1 [Ej(f � x)js℄q 1j + 1Xj=k+1[Ej(f)js℄q 1j! 1q9=; ;



Approximation spa
es 13where we have used (2.9) in the last step. Write F (x) for the last expression in 
urly bra
esand note 
arefully thatinfx2Xk F (x) � Ek(f) + kXj=1 [Ek(f)js℄q 1j + 1Xj=k+1[Ej(f)js℄q 1j! 1q =: L:Our next step will be to prove that in fa
t infx2Xk F (x) = L.Let fxngn2N � Xk be su
h that kf � xnkX � �=n � Ek(f) � kf � xnk, where � > 0 was
hosen in su
h a way that Ek(f)� � > 0. Observe also that if j < k, then(2.11) Ej(f � xn) � Ek(f) � Ej(f � xn)� �n:These rather awkward steps are needed be
ause we do not know enough about the sets Xkto be able to 
hoose x� 2 Xk su
h that kf � x�k = Ek(f).Now, observe thatF (xn) = kf � xnkX + kXj=1 [Ej(f � xn)js℄q 1j + 1Xj=k+1[Ej(f)js℄q 1j! 1q
� Ek(f) + kXj=1 [Ek(f)js℄q 1j + 1Xj=k+1[Ej(f)js℄q 1j! 1q (= L)� kf � xnkX � �n � kXj=1 h�Ej(f � xn)� �n� jsiq 1j + 1Xj=k+1[Ej(f)js℄q 1j! 1q :Letting n! +1 shows that indeed infx2Xk F (x) = L.Sumarizing, we have that~Ek(f) = Ek(f) + kXj=1 [Ek(f)js℄q 1j + 1Xj=1 [Ej(f)js℄q 1j! 1q

� Ek(f) + Eqk(f)ksq + 1Xj=k+1[Ej(f)js℄q 1j! 1q ;where we have used (2.10). But if f 2 Z�, then Ek(f) . k�(��s)kfkZ�, so that, after some
omputations, we obtain from the above that~Ek(f) . k�(��s)kfkZ�:



14 Besov and Sobolev spa
es2.3 Besov and Sobolev spa
es as B-spline approxima-tion spa
esAs an alternative to the 
lassi
al de�nitions, one 
an 
hara
terize Besov spa
es, and for auseful range of parameters also Sobolev spa
es, as approximation spa
es. The results we
ite here all refer, as they are found in the literature, to approximation using linear spa
esof smooth, pie
ewise polynomial fun
tions. But by 
orollary 2.2.2, they also apply to othertypes of methods. This will allow us to draw fairly general 
on
lusions from the study ofpie
ewise polynomial approximation alone.2.3.1 B-splinesLet N1 : R ! R be given by �[0;1), where �
 is the 
hara
teristi
 fun
tion of the set 
. Form � 2, let Nm := Nm�1 �N0:The fun
tions Nm, m = 1; 2; : : : are 
alled the m-th order 
ardinal B-spline generator.Note that the spa
e Smj := 
los (spanfNm(2j � �k) : k 2 Zg);where we have used 
los (A) = A as an alternative notation for 
losure, is a subspa
e ofCm�2(R) if m � 2, and that f 2 Smj is a polynomial of degree m� 1 on every interval of theform 2�j[z; z + 1), z 2 Zd.The spa
es Smj reprodu
e lo
ally any polynomial of degree m�1. That is, if p 2 �m�1 =f polynomials of degree m� 1g, and given a bounded set X � Rd , there exists a fun
tion� 2 Smj su
h that �jX = pjX .We extend the de�nition of the spa
es Smj to Rd simply by lettingN (d)m (x1; x2; : : : ; xd) := dYi=1Nm(xi);and setting Sm;(d)j := 
los (spanfN (d)m (2j � �z) : z 2 Zdg). In the sequel we will usually omitthe index d, sin
e it will be 
lear from the 
ontext.2.3.2 Besov spa
esA 
ommon de�nition of Besov spa
es is based on moduli of 
ontinuity. Sin
e these spa
es
an be 
hara
terized thoroughly as approximation spa
es using B-splines, and sin
e this isthe only point of view we shall take, we use this 
hara
terization as a de�nition instead.The remarkable 
onne
tion between approximation spa
es and Besov spa
es was made byDeVore and Popov, see [16℄. The following theorem is a version of this result whi
h has beenadapted to our needs.



Besov and Sobolev spa
es 15Theorem 2.3.1 (DeVore and Popov, 1988). Let 0 < p � +1, m 2 N, and de�ne�p;m;j : Lp(Rd)! [0;+1) by �p;m;j(f) := infs2Smj kf � skLp:The following is an equivalent (quasi)-seminorm for the Besov spa
e Bsq(Lp(Rd)), 0 < q � 1,0 < s < minfm;m� 1 + 1=pg.(2.12) jf jBsq(Lp) =  +1Xj=�1[2js�p;m;j(f)℄q! 1q(with the usual modi�
ation for q =1).A Besov spa
e Bsq(Lp(Rd)) is thus a 
olle
tion of fun
tions in Lp(Rd) whi
h 
an be ap-proximated by fun
tions in Smk at a rate of O(2�ks), and su
h that the error of approximation�p;m;j(f) satis�es the slightly stronger 
onditionf2js�p;m;j(f)gj2Z2 `q(Z):The spa
es Bsq(Lp(Td)), where Td = (R=Z)d is the d�dimensional torus, are de�nedanalogously. The spa
es Sm;Tdj are now de�ned only for j � 0, and we de�ne them bySm;Tdj = span(Xz2ZdNm(2j(� � z)� k) : k 2 Zd) :We also de�ne the fun
tionals�p;m;j(f) := infs2Sm;Tdj kf � skLp; j � 0;and then the 
orresponding equivalent seminorm for the spa
e Bsq(Lp(Td)) is given byjf jBsq(Lp) =  +1Xj=0 [2js�p;m;j(f)℄q! 1q :2.3.3 Besov spa
es on domainsApart from spa
es de�ned on Rd and Td we will also 
onsider bounded open domains 
 � Rdsatisfying 
ertain regularity 
onditions on the boundary.De�nition 2.3.2. A bounded domain 
 � Rd is of 
lass X, where X = Ck, k = 0; 1; : : :,or X = Lip1, the spa
e of Lips
hitz 
ontinuous fun
tions, if for every x 2 �
 there exists�x > 0, an orthogonal map Qx : Rd ! Rd , and a fun
tion �x : Rd�1 ! R, �x 2 X, su
h thatQ�1(B(x; �x) \ 
) = fy 2 Q�1(B(x; �x)) : yd < �x(y1; : : : ; yd�1)g:



16 Besov and Sobolev spa
esHere we have written B(x; �x) for the open ball in Rd with 
enter x and radius �x withrespe
t to the Eu
lidean norm.When 
 is of 
lass X, we also say that �
 is of 
lass X. Often we shall also say that 
(or �
) \is X", as in \�
 is C1", sin
e it makes the exposition easier to read and it 
annot
ause any 
onfusion.When �
 is Ck, k = 1; 2; : : :, then from the above dis
ussion it follows that �
 is a Ckmanifold.Sin
e we will embed 
 into Td, we always assume that for some � > 0, the relation
 � (�; 1� �)d holds.Given a bounded domain 
 with Lips
hitz boundary, one 
an 
hara
terize the spa
eBsq(Lp(
)) by setting �p;m;j(f) := infs2Smj kf � sj
kLp(
):and then de�ning a seminorm for Bsq(Lp(
)) as in (2.12) [17℄. It is then easy to show fromthe above that the restri
tion operator(2.13) r
 : Bsq(Lp(Rd))! Bsq(Lp(
))is bounded and linear for the full range of parameters.2.3.4 Interpolation of Besov spa
esWe have, for any 0 < s1 < s2, 0 < q1; q2 � +1, and any 0 < � < 1, 0 < q � +1, that(2.14) (Bs1q1 (Lp(
)); Bs2q2 (Lp(
)))�;q = Bsq(Lp(
));with s = (1� �)s1 + �s2.The above holds for Lips
hitz domains as well as for 
 2 fRd ;Tdg.2.3.5 Sobolev spa
esThe 
lassi
al Sobolev spa
es measure smoothness of fun
tions in Lp, p � 1, by 
ounting itsnumber of weak derivatives in Lp. The de�nition is, for 1 � p � +1, m = 0; 1; : : :mWmp (
) = ff 2 Lp(
) : kfkpWmp := Xj�j�m kD�fkpLp < +1g:In this thesis we shall restri
t ourselves to the 
ase p = 2, and write, as is 
ustomary,Hm = Wm2 . Sobolev spa
es with positive non-integer smoothness index 
an be obtainedsimply by interpolation. After realizing that Bm2 (L2) = Hm, we use (2.14) above to obtain(2.15) Hs = Bs2(L2):Note, however, that this is not as simple for the spa
es W sp , with p 6= 2. See again [16℄.



Extension 17It would be quite an omission not to mention that the spa
es Hs are Hilbert spa
es. See[34℄ p.209 for instan
e.Another important Sobolev spa
e is the spa
e Hs0(
), whi
h we de�ne as follows.Let X � Rd be a set, and letD(X) := ff 2 C1(X) su
h that supp f � K � X for some 
ompa
t set Kgbe the spa
e of test fun
tions. For s � 0, we de�ne the spa
e Hs0(
) as the 
ompletion ofD(
) in Hs(
). For 0 � s < 12 , or when 
 is either Rd , Td, or a Ck manifold with k > s, thespa
e Hs0(
) 
oin
ides with Hs(
). In all other 
ases the spa
e Hs0(
) is a 
losed subspa
eof Hs(
).The duals of the spa
es Hs0(
), s � 0 are denoted by H�s(
).The interpolation of the spa
es Hs0(
) is a more deli
ate matter. See [28℄ for furtherinformation.2.4 ExtensionWe have already mentioned that the restri
tion operator (2.13) is bounded and linear forthe full range of parameters. But there exist also, for the full range of parameters, operators(2.16) E : Bsq(Lp(
))! Bsq(Lp(Td))su
h that r
(Eu) = u for all u 2 Bsq(Lp(
)) For the 
ase p < 1, however, it does not seempossible to �nd linear E ; see again [17℄.Given a bounded domain 
 with Lips
hitz boundary, and any l 2 N , it is possible to
onstru
t a bounded linear extension operatorFl : L2(
)! L2(Rd)su
h that Fl : H l(
)! H l(Rd)is also bounded [5℄. By interpolation we obtain then thatFl : Bsq(L2(
))! Bsq(L2(Rd))is a bounded linear operator for 0 < s < l, 0 < q � +1.2.4.1 Tra
esGiven u 2 Hs(
), and s suÆ
iently large, we 
an de�ne and deal with quantities of the kinduj�
, or �u�n , where n denotes the outward normal at a point in � := �
. Before doing so, wede�ne Sobolev spa
es on manifolds.The family U = fB(x; �x)gx2�
, given by de�nition 2.3.2, whi
h 
onsists of a sele
tion ofneighborhoods of x where we 
an parametrize �
 by fun
tions of 
lass X 2 Lip1; C1; C2; : : :,is an open 
overing of �
. Thus there exist xi 2 �
, �i > 0, i = 1; 2; : : : ; l su
h that



18 Extension�
 � Sli=1B(xi; �i). Remember that, asso
iated to ea
h pair xi, �i, we have an orthogonaltransformation Qi and a fun
tion �i 2 X su
h thatQ�1i (B(xi; �i) \ 
) = fy 2 Q�1(B(xi; �i)) : yn < �i(y1; : : : ; yn)g:Let f
igi=1;2;:::l, 
i 2 D(Rd), be a partition of unity on �
 subje
t to the 
overing V =fB(xi; �i) : i = 1; 2; : : : ; lg. Given f : �
 ! R we have that f(x) = Pli=1 
i(x) � f(x). One
an de�ne �i : Rd�1 ! Rd by �i := Qi(x; �i(x)), and fi : Rd�1 � R byfi(x) = (
i(�i(x)) � f(�i(x)) if �i(x) 2 B(xi; �i) \ �
,0 otherwise,and then de�ne kfkHs(�
) by(2.17) kfk2Hs(�
) := lXi=1 k(
i � f) Æ �ik2Hs(Rd�1):It 
an be shown that if �
 is Ck, then the norms de�ned by (2.17) for di�erent open
overings and partitions of unity are equivalent.Remark 2.4.1. It is possible to de�ne, via lo
al maps, pie
ewise polynomials on �
. Forthis, we refer to [14℄. We will not give any details here, but are 
ontent with remarking thatit is possible, and that if �
 is Ck, then we 
an de�ne Besov and Sobolev spa
es for s < kusing straight-forward adaptations of the results mentioned in subse
tion 2.3.2.We now 
ontinue with the main result of this se
tion, as found in [34℄.Theorem 2.4.2 (Tra
e theorem). Let r; l 2 N, s 2 R with r � s > l � 1=2. Let 
be a domain with boundary of 
lass Cr, and su
h that �
 is bounded. Then there exists a
ontinuous tra
e operator(2.18) Tl : Hs(
)! lYj=0Hs�j�1=2(�
)with the property that(2.19) Tl� = ��j�
; ���n ; : : : ; �l��nl�for any � 2 C1(
). This operator has a 
ontinuous right inverse.The proof of this theorem essentially extends the map given in (2.19) by 
ontinuity tothe full operator Tl given in (2.18). Thus, when embedding a bounded domain 
 in a largerdomain (say X = Td, or X = Rd), we de�ne the tra
es on �
 of fun
tions in Hs(X)analogously, extending by 
ontinuity the appropriate analogon ~T of (2.19). It follows fromthis 
onstru
tion that under the hypothesis of the tra
e theorem, if u 2 Hs(X), then~Tu = T (r
u):Note also that theorem 2.4.2 does not hold if s � l� 1=2; if this is the 
ase then the map~T 
annot be extended 
ontinuously any longer. See [28℄.
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ond order ellipti
 boundary value problems 192.5 Se
ond order ellipti
 boundary value problemsConsider the se
ond order di�erential operator(2.20) Au = dXi;j=1 aij(x) �2u�xi�xj + dXi=1 bi(x) �u�xi + 
(x)uwith aij; bi; 
 2 C1. We assume that A is uniformly ellipti
, that is, that there exists � > 0su
h that 1Xi;j=1 viaij(x)vj > �kvk2 8 x; v 2 Rd :It is often useful to write (2.20) in divergen
e form,(2.21) Au = X0�j�j;j
j�1(�1)j�jD� (~a�
(x)D
u) ;whi
h is always possible for some ~a�
 2 C1, 0 � j�j; j
j � 1. A is then uniformly ellipti
whenever Xj�j;j
j=1 v�~a�
(x)vg � �kvk2 8 v; x 2 Rdfor some � > 0.The derivatives involved in the de�nition of A are meant in the sense of distributions.Thus A is de�ned as A : D0(X) ! D0(X), with X either Rd , Td, or a bounded domain
 � Rd . The following fa
t will be useful later (see [33℄, page 76).Theorem 2.5.1. The operator A : Hs(Td)! Hs�2(Td) is bounded and has 
losed range forevery s 2 R. Furthermore, dim(N (A)) < +1, and dim(N (A)) = dim(R(A)?).We should stress that the above regularity assumptions are made for simpli
ity, and thatthey are not essential. It would be enough for the development of the theory in 
hapter fourif we had that A : Hs(Td) ! Hs�2(Td) is bounded and has 
losed range for all s 2 [s0; 2℄and some s0 > 2 (in parti
ular for theorem 4.3.8). But 
hoosing the stronger assumptionsalleviates us from the burden of tra
king yet another parameter.Sometimes we will pla
e additional assumptions on the operator A, in parti
ular whendealing with the weak formulation; see 2.5.2In this thesis we are 
on
erned with the solution of the following type of problem. Let 
be a bounded domain. Given f , �nd u su
h that(2.22) Au = f on 
;subje
t to one of the following boundary 
onditions.Either Neumann boundary 
onditions(2.23) BNu = �u�n = g;



20 Se
ond order ellipti
 boundary value problemsor Diri
hlet boundary 
onditions,(2.24) BDu = uj�
 = g;for g given.Equation (2.22) together with (2.23) is 
alled a Neumann problem. Equation (2.22)together with (2.24) is 
alled a Diri
hlet problem.2.5.1 Strong solutionsA solution u of the Diri
hlet or the Neumann problem is a strong solution3 if the equalities(2.22), together with (2.24) or (2.23), respe
tively, hold almost everywhere, and Au; f 2 L2.The situation is parti
ularly simple when 
 has C1 boundary (see [28℄).Theorem 2.5.2. Let s � 0. Then the operators PD : Hs+2(
)! Hs(
)�Hs+3=2(�
) andPN : Hs+2(
)! Hs(
)�Hs+1=2(�
), given byPD = � ABD� PN = � ABN�are bounded, have �nite-dimensional kernels, and their ranges are 
losed with �nite 
odi-mension. In parti
ular, one has that PD and PN are isomorphisms between N (PD)? andR(PD), and between N (PN )? and R(PN ), respe
tively.Above we have used the notation N (F ) for the kernel of an operator F , and R(F ) forits range.2.5.2 Weak formulationLet u 2 H1(
). Then the distribution Au 
annot always be identi�ed with a measurablefun
tion. The weak formulation allows us to handle this 
ase.For � 2 D(
), we have by the de�nition of distributional derivative thathAu; �i = [Au℄(�) = X0�j�j;j
j�1Z
 ~a�
(x)D�uD
�d�:We 
an now de�ne the (bounded) symmetri
 bilinear form a : H10 (
)�H10 (
)! R, asso
i-ated with A, by a(u; v) := hAu; vi:We assume also that A is 
oer
ive, that is, that there exists � > 0 su
h thata(u; u) > �kuk2H10 (
) 8 u 2 H10 (
):3There seems to be some disagreement over the de�nition of a strong solution. We use here the one foundin [34℄, p. 287.



B-spline wavelet bases 21Under these 
ir
umstan
es we invoke the Lax-Milgram lemma, and have then that forea
h f 2 H�1(
) there exists a unique u 2 H10 (
) su
h thata(u; v) = hf; vi 8 v 2 H10 (
):We will say that this u is a weak solution of the problemAu = f on 
uj�
 = 0:Given g 2 H1=2(�
), we 
an use the Tra
e theorem to �nd ug 2 H1(
) su
h that(ug)j�
 = g. But then from the above dis
ussion it follows that there exists a uniqueu� 2 H10 (
) su
h that a(u�; v) = hf � Aug; vi 8 v 2 H10 (
):Now u = u� + ug (whi
h 
an be seen to be independent of the 
hoi
e of ug) satis�es Au = fand also uj�
 = g. Thus, we 
all it a weak solution of the problemAu = f on 
uj�
 = g;noting that a strong solution is also a weak solution.We have the followingTheorem 2.5.3. If A is 
oer
ive, then the operator PD : H1(
)! H�1 �H1=2(�
), givenby PD = � ABD�is an isomorphism.It is not possible to 
onstru
t a similar theory for the Neumann problem. The operatorBN is not bounded on H1(
).2.6 B-spline wavelet basesThe type of wavelets we will use is a family of Riesz bases for Sobolev spa
es and their duals.We sket
h here the 
onstru
tion of pairs of biorthogonal wavelet bases for L2(R), and showhow this 
onstru
tion 
an be extended to the multivariate and periodi
 
ases. Finally, weshow how to produ
e wavelet bases for Sobolev spa
es on these domains.Sin
e they play no role in the rest of this thesis, we have omitted various important
onstru
tions, like wavelets on more general domains, or wavelets on manifolds. Still, wein
lude a fairly detailed a

ount of the 
onstru
tion of B-spline wavelet bases, sin
e some ofthe details play a 
entral role later on.For a thorough introdu
tion to the material from whi
h the summary in this se
tiondraws, see [11℄.



22 B-spline wavelet bases2.6.1 Riesz basesA Riesz basis for a (separable) Hilbert spa
e H is a 
ountable 
olle
tion F = ff�g, with �in some index set r, su
h that the map T : `2(r)! H given byT (fx�g) = X̀2r x�f�is an isomorphism. It follows that there exists a dual Riesz basis ~F = f ~f�g in H0 su
h thatfor every g 2 H, and every h 2 H0, we obtaing =X�2rh ~f�; gif� h =X�2rhh; f�i ~f�;(2.25)where we have written h�; �i for the dual pairing between H and H0. Relations (2.25) implythat hf�; f�i = Æ��, where Æ�� is the Krone
ker delta.Sin
e F and ~F both indu
e isomorphisms between `2 and H, H0, respe
tively, we obtainthe norm equivalen
eskgkH �  X�2r jh ~f�; gij2!1=2 ; khkH0 �  X�2r jhh; f�ij2!1=2 :2.6.2 Multiresolution analysisA multiresolution analysis (MRA) in L2(R) is a sequen
e of 
losed subspa
es fVjgj2Z thatsatis�es the following axioms.Axioms 2.6.1I.Vj � Vj+1, for all j 2 ZII.\jVj = f0gIII.[jVj = L2(R)IV.if f 2 Vj, then f(2 � ) 2 Vj+1V.if f 2 V0, then f(� � k) 2 V0 for all k 2 ZVI.there exists  0 2 V0 su
h that the set f 0(� � k) : k 2 Zg is a Riesz basis for V0. Thisfun
tion is 
alled the s
aling fun
tion4 of the MRA fVjgj2Z.4Here we have taken the liberty to denote the s
aling fun
tion by  0, departing from the tradition whi
huses �. It will be seen that doing so simpli�es the notation greatly, in parti
ular when handling multivariatewavelet bases.



B-spline wavelet bases 23A pair of biorthogonal MRAs fVjg, f ~Vjg is a pair of MRAs whose 
orresponding s
alingfun
tions  0, ~ 0 satisfy h 0(� � k); ~ 0(� � l)i = Ækl for all k; l 2 Z. Su
h a pair de�nes asequen
e of oblique proje
tors Qj : L2(R) ! Vj, ~Qj : L2(R) ! ~Vj, given byQjf =Xk2Zh�j ~ 0(2j � �k; fi�j 0(2j � �k);~Qjf =Xk2Zhf; �j 0(2j � �k)i�j ~ 0(2j � �k);where the s
aling �j = 2�j=2 ensures that k�j 0(2j � �k)kL2 � 1. We will say that a pair ofbiorthogonal MRAs is admissible if the proje
tors Qj, ~Qj are uniformly bounded for j 2 Z.Let Wj = R(Qj+1 �Qj), and ~Wj = R( ~Qj+1 � ~Qj). These spa
es satisfy thatVj+1 = Vj �Wj ~Vj+1 = ~Vj � ~Wjwhile Vj? ~Wj ~Vj?Wj :We further have that (see [11℄)(2.26)  Xj2Z k(Qj+1 �Qj)fkL2! 12 �  Xj2Z


( ~Qj+1 � ~Qj)f


L2! 12 � kfkL2 :It turns out that it is possible to �nd fun
tions  1 2 W0, ~ 1 2 ~W0, su
h that theirinteger translates form a biorthogonal pair of Riesz bases for W0, ~W0, respe
tively. Writing ejk = �j e(2j � �k), where e 2 f0; 1g, j; k 2 Z, we 
an express the proje
tors Qj+1 � Qj,~Qj+1 � ~Qj simply through (Qj+1 �Qj)f =Xk2Zh ~ 1jk; fi 1jk( ~Qj+1 � ~Qj)f =Xk2Zhf;  1jki ~ 1jk:From this, and from (2.26), it follows that the 
olle
tions	 = f 1jk : j; k 2 Zg ~	 = f ~ 1jk : j; k 2 Zg
onstitute a pair of biorthogonal Riesz bases for L2. The bases 	, ~	, are 
alled waveletbases, and the fun
tions  1, ~ 1 are 
alled the mother wavelets of theses bases.Given a pair of (admissible) biorthogonal MRAs, we 
an obtain 
orresponding motherwavelets as follows.First, we realize that from axioms 2.6.1, IV it follows that  0, ~ 0 satisfy the equations 0(x) =Xk2Za0k 0(2 � �k); ~ 0(x) =Xk2Z~a0k ~ 0(2 � �k);



24 B-spline wavelet basesfor some sequen
es fa0kg, f~a0kg. These sequen
es are 
alled the masks of their respe
tivefun
tions. It is 
lear that if these fun
tions are 
ompa
tly supported, then only a �nitenumber of entries in their masks 
an be nonzero. Now, let fa1kg, f~a1kg, be the sequen
eswhose entries are given bya1k = (�1)k~a01�k; ~a1k = (�1)ka01�k:One possible 
hoi
e for  1, ~ 1, is then 1 =Xk2Za1k 0(2 � �k); ~ 1 =Xk2Z~a1k ~ 0(2 � �k):Note that whenever both  0, ~ 0, are 
ompa
tly supported, so are  1, ~ 1.2.6.3 B-spline wavelet basesThe spa
es Smj , de�ned in 2.3.1, satisfy the de�nition of multiresolution analysis. To satisfyaxiom VI, it is 
ustomary to 
hoose 0 = Nm(x+ �m + 12 �):It is an easy exer
ise to 
ompute the mask of this fun
tion. An observation whi
h plays animportant role later on is that all elements of the mask of this  0 are non-negative.The 
onstru
tion of the dual MRA is not at all simple. See [9℄ for details. SuÆ
e itto say that for ~m 2 N , with m + ~m even and ~m � m, there exists a 
ompa
tly supporteds
aling fun
tion ~ whi
h reprodu
es polynomials of degree ~m� 1, and su
h that the spa
esVj = Smj , together with the spa
es~Vj = span f ~ 0(2j � �k) : k 2 Zgde�ne an admissible pair of biorthogonal MRAs.2.6.4 The multivariate and periodi
 
asesLet fVjg, f ~Vjg be a pair of biorthogonal MRAs, and let d > 1 be an integer. Write x =(x1; x2; : : : ; xd) 2 Rd , letE = f0; 1gd, and 
onsider the fun
tions  e(x) =  e1(x1) e2(x2) � � � ed(xd),~ e(x) = ~ e1(x1) ~ e2(x2) � � � ~ ed(xd) for e 2 E. We will always use 0 to denote the element inE whose 
oordinates are all zero. This abuse of notation is very useful, and it never seemsto 
ause any 
onfusion.The spa
es V 0j = span f 0(2j � �k) : k 2 Zdg form a MRA, and with the dual spa
esf ~V 0j g (de�ned analogously) they form a pair of biorthogonal MRAs. The 
omplement spa
esW 0j su
h that V 0j+1 = V 0j �W 0j are spanned by the integer translates of the fun
tions  e withe 2 E n f0g. Using the s
aling fa
tor �j = 2 dj2 , the fun
tions f ejk : j 2 Z ^ k 2 Zd ^ e 2E n (0; 0; : : : ; 0)g, with  ejk = �j e(2j � �k), form a Riesz basis of the spa
e L2(Rd).



B-spline wavelet bases 25Let  e(Td)jk (x) =Xz2Z ejk(x� z):The spa
es V Tj = span f 0(Td)jk : k 2 Zdj g, where we have written Zdj = Zd=2jZd, satisfy allthe axioms for a MRA ex
ept for axiom II, as this de�nition of Vj does not make sense forj � 0. Usually, this axiom is just deleted, and one 
ontents oneself with a Riesz basis thatin
ludes the s
aling fun
tions on V0. We still have that fV Tj gj�0, f ~V Tj gj�0 form a pair ofbiorthogonal MRAs, for and that the set f 0(Td)0;0 g [ f e(Td)jk : j 2 N ^ k 2 Zdj g forms a Rieszbasis of the spa
e L2(T). We will drop the Td supers
ript from now on, sin
e it will be
ome
lear from the 
ontext whi
h set of fun
tions are used.In the notation of 2.6.1, we haver = f� = (e; j; k) : e 2 f0; 1gd; j 2 N ; k 2 Zdj ; with e = 0 only if j = 0g:Thus we write  �, with � = (e; k; j) instead of  ejk. We also use the notation j�j := j for thelevel of  �. Sometimes it is useful to 
onsider only indi
es up to a 
ertain level, or indi
esonly on one level. We denote this byrj = f� 2 r : j�j < jg r0j = f� 2 r : j�j = jg2.6.5 Wavelet bases for Sobolev spa
esThe 
onstru
tion of wavelet bases for Sobolev spa
es from bases for L2 amounts to res
aling.The fundamental result is the following theorem (See [11℄, 108-117). To avoid needless
ompli
ations, we will only write it for spa
es Hs(X), s 2 R, de�ned on X = Rd or X = Td.Theorem 2.6.1. Consider a pair of (admissible) biorthogonal MRAs as above, together withthe 
orresponding L2 wavelet basis, and let
 = supfs :  0 2 Hs(X)g;~
 = supfs : ~ 0 2 Hs(X)g;m = maxfr : �r � V0 (lo
ally) g;~m = maxfr : �r � ~V0 (lo
ally) g:Then, writing r = minf
;mg, ~r = minf~
; ~mg, we obtain that for all s 2 (�~r; r) the sets	(s) = f2sj�j � : � 2 rg; ~	(�s) = f2�sj�j � : � 2 rg;form a pair of biorthogonal Riesz bases for the spa
es Hs(X), H�s(X), respe
tively.When we say that 	 is a Wavelet basis for Hs, we will assume that it has been properlys
aled. That is, when we write  � =  ejk = �j e(2j � �k) we have�j = 2�sj2jd=2:



26 B-spline wavelet bases2.6.6 The fast wavelet transformGiven a pair of MRAs as above, and f 2 Vj+1, j � 0, we have two representations of favailable. We 
an either express it in terms of s
aling fun
tions in Vj+1, or in terms ofwavelets. Here we sket
h brie
y how to translate from one representation to the other in theperiodi
 
ase.Given a sequen
e x = fxkgk2Zd, we 
an asso
iate with it the matrixMxj = (mx;jkl )k2Zdj+1;l2Zdj ,whose entries are given by mx;jkl = �j�j+1 Xz2Zdxk�2l�2j+1z:Note that it de�nes a linear map Mxj : `2(Zdj )! `2(Zdj+1)As before, let E = f0; 1gd. We will write be = fbekgk2Zd for the sequen
e whose entriesare bek = ae1k1ae2k2 � � �aedkd ;where e = (e1; e2; : : : ; ed), and k = (k1; k2; : : : ; kd). This sequen
e is just the tensor produ
tof the 
orresponding 1-dimensional masks.Note that we 
an write f as either(2.27) f = Xk2Zdj+1(
0j+1)k 0j+1;k;or as(2.28) f =Xe2E Xk2Zdj (
je)k ejk;where the 
ej ea
h belong to `2(Zdj ).Using the tensor produ
t masks and the matrix me
hanism de�ned above, we obtain that(2.29) 
j+10 =Xe2EMbej 
je;and that for e 2 E,(2.30) 
je = �M ~bej �T 
j+10 :Relations (2.29) and (2.30) allow us to swit
h between the representations (2.27) and (2.28)at a 
ost of O(N) operations, with N = 2(j+1)d. We 
an repeat this pro
ess for fj :=Pk2Zdj (
j0)k 0jk, and then again analogously until j = 0. Then we have obtained the waveletrepresentation of f ,(2.31) f = (
00)0 00;0 + jXl=0 Xe2Enf0g Xk2Zdj (
je)k ejk:



B-spline wavelet bases 27The 
ost of transforming between (2.27) and (2.31) is also O(N). The method we havedes
ribed here is 
alled the fast wavelet transform. For later use, we de�nerj := f(0; 0; 0)g [ j�1[i=0f(j; k; e) : k 2 Zdj ; e 2 E n f0gg;whi
h allows us to write (2.31) more su

in
tly asf = X�2rj 
� �:2.6.7 Dis
retizing linear operator equationsThe type of operator equation that we will to solve is as follows. Consider a linear, boundedoperator M : Hl ! Hr with 
losed range, where Hl, Hr will be either Sobolev spa
es, ortensor produ
ts of Sobolev spa
es. We always endow the tensor produ
t spa
es with theEu
lidean tensor produ
t norm, whi
h ensures that the resulting spa
e is also a Hilbertspa
e.Given b 2 Hr, we take on the task of �nding x 2 Hl su
h that(2.32) Mx = b:(Note that su
h a solution does not have to exist, nor does it have to be unique; we shallignore this for the moment.)Given a pair of isomorphismsTl : `2 ! Hl; Tr : `2 !Hr;(2.33)whi
h usually will involve wavelet bases, we 
an transform equation (2.32) into an equivalentsystem of equations by taking M = T�1r MTl, and rewrite our problem as follows. Givenb 2 Hr, let b = T�1r b, and �nd x 2 `2 su
h thatMx = b:After �nding x, we then obtain the solution of (2.32) by taking x = Tlx.Using the fa
t that any isomorphism of the type (2.33) indu
es a Riesz basis, and thatfor ea
h Riesz basis there is a biorthogonal Riesz basis, it is easy to �nd simple expressionsfor 
omputing the entries in the matrix M .We 
an obtain dis
retizations of equation (2.32) by using pairs of biorthogonal MRAs.Suppose that fV �j gj�0, f ~V �j gj�0 is su
h a pair for H�, (H�)0, � = r; l, (
onstru
ted, ifneeded, by taking tensor produ
ts of MRAs in the obvious way), and denote by Q�j , ~Q�jtheir respe
tive oblique proje
tors. We shall further assume that these spa
es are �nitedimensional. Write Mj = QrjMQlj , and 
onsider the following dis
rete problem. Given anapproximation bj 2 V rj of b, �nd xj 2 V lj su
h that(2.34) Mjxj = bj:



28 Nonlinear approximation using WaveletsThere are now two possibilities to transform (2.34) into a linear system of equationsin Eu
lidean spa
e. One through the s
aling fun
tion representation of the elements in therespe
tive spa
es, and one using the wavelet representation. If the operatorM is an invertibleellipti
 di�erential operator, then using the wavelet representation leads to a system whose
ondition number is uniformly bounded in j (see [11℄, p. 116�).2.7 Nonlinear approximation using WaveletsUntil now, we have 
onsidered only approximation using linear spa
es. Here we will dis
ussin brevity approximation from nonlinear sets.2.7.1 Best N-term approximationSuppose 	, ~	 are a pair of biorthogonal wavelet Riesz bases for the spa
es H t(Td), H�t(Td),respe
tively, and 
onsider the problem of approximating f 2 H t(Td),f =X�2r 
� �:Let ' : N ! r be a sorting of the 
oeÆ
ient ve
tor f
�g, that is, if n;m 2 N , m � n impliesj
'(m)j � j
'(n)j. The best N � term approximation of f is now de�ned by(2.35) ffNg = NXi=1 
'(i) '(i):Clearly, the idea is to approximate f using only the most important 
oeÆ
ients of its waveletrepresentation, a
hieving, we hope, a better rate of approximation than if we approximatedf by fj = X�2rj 
� � 2 Vj:The approa
h (2.35) is parti
ularly helpful when approximating fun
tions with singular-ities, sin
e the larger 
oeÆ
ients tend to agglomerate there.Let us write �n = ff : f =P�2A 
� �;with A � r, #A � ng. The spa
eAs1(H t(Td); f�ng)
onsists then of all the fun
tions f 2 H t su
h that the 
onvergen
e of its best N -term ap-proximation is as O(N�s).From [8℄ we learn that this is equivalent to the 
ondition that the sequen
e f
�g�2rbelongs to the weak `� spa
es (denoted `w� ), with s = 1=� � 1=2. That is, when#f� : j
�j � �g . ���We have the following result [8℄.Theorem 2.7.1. Let � > 0, and write �� = � + �, s� = 1=�� + 1=2. ThenBsd+t� (L� ) � As1(H t; f�ng) � Bs�d+t�� (L��):
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The following 
hara
terization of `w� will be useful later.Proposition 2.7.2. Let a > 1. v 2 `�w if, and only if for every j 2 Z#fk : jvkj � a�jg . a�j2.7.2 Compressible matri
es, fast matrix-ve
tor multipli
ation, andadaptive wavelet methodsAn in�nite matrix B is said to be in the 
lass Bs of 
ompressible matri
es if there existtwo positive summable sequen
es f�jgj2N, f�jgj2N, su
h that for every j � 0 there exists amatrix Bj with at most 2j�j nonzero entries per row and 
olumn with the property that, inthe spe
tral norm, kB � Bjk � 2�js�j;Proposition 2.7.3. Let � = (s + 12)�1, with 0 < � < 2. If B 2 Bs, then B maps `w�boundedly into itself.The wavelet dis
retizations of the regular di�erential operators in se
tion 2.5 are all
ompressible; see [8℄. The 
ompressibility index s depends on the regularity of the primalwavelet basis and of the approximation power of the dual basis.Another important property of a 
ompressible matrix is that it is possible to 
ompute itsa
tion on a sequen
e eÆ
iently.Theorem 2.7.4. For any v 2 `2 with �nite support, for any B 2 Bs, and given an a

ura
y� > 0, there exists a 
ompa
tly supported sequen
e w 2 `2 su
h thati. kBv � wk < �,ii. kwk`w� . kvk`w�iii. #(supp w) � CB;s��1=skvk1=s`w� .The 
ost of 
omputing w stays bounded by CB;skvk1=s`w� ��1=s +#supp v.For 
on
rete algorithms, and further information, we refer to [8℄.The two last results are the key ingredients of the adaptive wavelet methods devised in[8℄. We refer there and also to [7℄ for further details. Here we only in
lude the following 
oreresult, whi
h only speaks of its eÆ
ien
y and 
onvergen
e, and is only 
on
erned with theproblem after being transformed to a problem in `2.Theorem 2.7.5. Let L : `2 ! `2 be in Bs. Assume further that L is symmetri
 positivede�nite, and 
onsider the equation Lx = b:If the solution x is in `w� , then given � > 0, the adaptive algorithm in [8℄ 
onstru
ts a 
om-pa
tly supported approximation w of x su
h that kx� wk < � and #(supp w) . kvk1=s`w� ��1=s,at a 
ost of at most O(��1=s) operations.
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Chapter 3The �
titious domain Lagrangemultiplier method - A 
ase studyThe �
titious domain - Lagrange multiplier (FDLM) method is a fairly popular �
titiousdomain method; its simpli
ity and good performan
e are appealing, and the theory behindit is very well understood. This makes it a very good example for the type of smoothness-related problems that may arise.This is what we intend to do in this 
hapter: to study in depth the smoothness of thesolutions obtained with the FDLM method in the �
titious domain. This solution is anextension of the solution of the original problem, and what will be shown is that, unless
areful provisions are taken, this extended solution will be diÆ
ult to approximate. Wewill establish that the 
onvergen
e rate of linear s
hemes based on B-splines and nonlinears
hemes based on B-spline wavelets is bounded from below, independently of the order
hosen. This result extends to 
omparable approximation s
hemes via 
orollary 2.2.2 andtheorem 2.7.1, respe
tively.We will begin by sket
hing the derivation of the FDLM method. Then we will studythe results that 
on
ern linear approximation s
hemes, taking �rst a qui
k look at what isalready known, and then extending these results to the full range of parameters. After that,we will also study the 
onvergen
e rates of nonlinear s
hemes. In the derivation of theseresults, we need a 
entral lemma whi
h we prove in the last se
tion, after dis
ussing brie
yhow to obtain better 
onvergen
e rates.3.1 The FDLM methodConsider the following problem. Let 
 � Rd be a bounded domain with C1 boundary, andlet f 2 [H1(
)℄0, g 2 H1=2(�
). We want to �nd u 2 H1(
) su
h thatAu = f on 
,uj�
 = g;(3.1)where A is a uniformly ellipti
 se
ond order di�erential operator as de�ned in se
tion 2.5.We will solve problem (3.1) by embedding 
 into a larger, simpler domain �, the �
titiousdomain. For simpli
ity we will set � = Td. 31



32 The FDLM methodThe next step is to 
hoose an extension f+ 2 H�1(Td) of f . Note that this is alwayspossible sin
e we have required that f 2 [H1(
)℄0. At the very least we 
an take f+ = f Ær
,where r
 is the operator whi
h restri
ts fun
tions to 
.A detail that needs 
arefull adressing is the \extension" of the di�erential operator de�nedon 
. To this end, assume that the 
oeÆ
ients f~a
�g that de�ne A in divergen
e form on
 (see (2.21)) 
an be extended to Td by fa
�g, with a�
 2 C1(Td), 0 � j�j; j
j � 1. Now,de�ne ATd : H1(Td)! H�1(Td) by de�ning ATdu �rst on C1(Td),(ATdu)(�) := X0�j�j;j
j�1ZTd a�
(x)D�uD
�d�; � 2 C1(Td);and then extending it to H1(Td) through 
ontinuity in the usual way.As it is a fun
tional on H1(Td), the \restri
tion to 
" of ATdu, written (ATdu)j
, isde�ned �rst for D(
) by (see [34℄, page 133)(ATdu)j
(�) := (ATdu)(�0); 8� 2 D(
);where we have written �0 for the extension by zero of �. Afterwards, (ATdu)j
 be
omesa fun
tional on H10 (
) again by 
ontinuity. Standard arguments show that it must be abounded fun
tional, and thus we have that (ATdu)j
 2 H�1(
) for all u 2 H1(Td).Now, given u 2 H1(Td), we observe that for ea
h � 2 D(
),(ATdu)j
(�) = X0�j�j;j
j�1ZTd a�
(x)D�uD
�0= X0�j�j;j
j�1Z
 ~a�
(x)D�uD
�= [A(uj
)℄(�):Thus, if we de�ne ATd as above, we 
an write(3.2) (ATdu)j
 = A(uj
):Note 
arefully, however, that while the restri
tion appearing on the right has a pointwiseinterpretation, the restri
tion on the left is in the sense of distributions. (Note also thatthese interpretations would agree whenever ATdu 2 L2(Td), whi
h means that ATdu 
an beexpressed in terms of a fun
tion in L2(Td).) This is fortunate, as we 
an now be sure thatwhenever ATdu+ = f+holds, it is also true that A(u+j
) = f:For simpli
ity, we introdu
e another slight abuse of notation and write again A for the\extension" ATd of A on 
 to Td.



The FDLM method 33Having settled this, we further assume that the bilinear forma(u; v) := hAu; vi 8 u; v 2 H1(Td)is symmetri
, and that it is 
oer
ive on the kernel of the tra
e operator BD : H1(Td) !H1=2(�
). That is, that there exists a 
onstant � > 0 su
h thata(u; u) � �kuk2H1(Td) 8 u 2 N (BD):To simplify the notation, we will write B for BD throughout the rest of this 
hapter.We turn our attention now to a di�erent problem, formulated in terms of the new extendeddata. We seek for the minimizer in H1(Td) of the fun
tional(3.3) F (v) := 12a(v; v)� hf; vi 8 v 2 H1(Td);subje
t to the additional 
onstraint Bv = g. We express this 
onstraint in the equivalentform(3.4) b(v; q) = hg; qi 8 q 2 H�1=2(�
);where we have de�ned b(v; q) := hBv; qiH1=2�H�1=2 .To solve this 
onstrained minimization problem, we append (3.4) to (3.3) using a Lagrangemultiplier. Our problem now reads: �nd p 2 H�1=2(�
), u+ 2 H1(Td), su
h that(3.5) F �(u+; p) := supq2H�1=2(�
) infv2H1(Td)F �(v; q);where F �(v; q) = 12a(v; v)� hf+; vi+ b(v; q)� hg; qiand p is the Lagrange multiplier.Using standard variational arguments one 
on
ludes that (u+; p) 2 H1(Td)�H�1=2(�
)satis�es (3.5) if and only if(3.6) a(u+; v) + b(v; p) = hf+; vi 8 v 2 H1(Td);b(u+; q) = hg; qi 8 q 2 H�1=2(�
):We often write (3.6) in operator form. Thus (u+; p) satis�es (3.5) if and only if(3.7) �A B�B 0 ��u+p � = �f+g � :Our new problem reads, given (f+; g) 2 H�1(Td) � H1=2(�
), �nd (u+; p) 2 H1(Td) �H�1=2(�
) su
h that (3.6), (3.7) hold. Owing to its derivation from (3.5), we 
all this asaddle point problem.



34 Approximating u+One 
an 
he
k (see [22℄, [27℄) that this problem is well posed; the operatorM : H1(Td)�H�1=2(�
)! H�1(Td)�H1=2(�
) given by(3.8) M = �A B�B 0 �is an isomorphism. Furthermore, the restri
tion to 
 of u+, u = u+j
 is the unique solutionof problem (3.1).The dis
retization of problem (3.1) with respe
t to �nite dimensional subspa
es ofH1(Td)�H�1=2(�
) and H�1(Td) � H1=2(�
) requires some 
are, sin
e otherwise the resulting dis-
rete problem be
omes unstable. We omit this dis
ussion here, sin
e it plays no role in therest of this 
hapter, and instead refer to [4℄, [21℄, [12℄.3.2 Approximating u+Throughout the rest of this 
hapter, we will work under the following assumptions. First,that 	, ~	 are a pair of biorthogonal B-spline wavelet bases for H1(Td), H�1(Td) respe
tively(whi
h means that they are already properly s
aled; see subse
tion 2.6.5), with 
orrespondingmultiresolution analysis fVjgj2N0 , f ~Vjgj2N0 . To avoid te
hni
alities, we also assume that themembers of these bases are smooth enough. This means, in parti
ular, that fVjgj2N0 , f ~Vjgj2N0satisfy appropriate Ja
kson and Bernstein inequalities (2.5), so that we 
an always writeAsq(L2; fVjgj2N0 ) = Bsq(L2):We prefer the notation for approximation spa
es be
ause it is a bit more 
exible and to thepoint.For te
hni
al reasons that will be
ome apparent later on, we also assume that the orderof the primal basis is at least m � 4. Thus, If  � 2 	, then  � 2 Cm�2, and  � is at least apie
ewise 
ubi
 fun
tion.3.2.1 Approximating u+ with linear approximation s
hemesThe aim of this subse
tion is to illustrate the e�e
t of the Lagrange multiplier on the Sobolevsmoothness of the extended solution u+. The result we derive here states that even thoughf+ and g are su
h that the original problem would admit a smoother solution (whi
h 
ouldbe approximated more eÆ
iently using linear approximation s
hemes), a non-zero Lagrangemultiplier implies that u+ 2 Hs(Td) is only possible for s � 3=2.This 
riti
al index of 3=2, and the aim of our study, leads us to base our results on thehypothesis that (f+; g) 2 H��1=2(Td) �H�+1(�
) for some � > 0. If g =2 H1+�(�
) for any� > 0, then u+ 
annot belong in any Sobolev spa
e with an index greater than 3=2, regardlessof the value of the Lagrange multiplier. On the other hand, if f+ =2 H��1=2 for any � > 0,then the solution may or may not be smooth, depending on the parti
ular 
ase at hand (seeremark 3.2.6).



Approximating u+ 35We begin by showing that, under 
ertain 
ir
umstan
es, the Lagrange multiplier is thejump in the 
onormal derivatives of u+ at �
. The 
onormal derivatives of v 2 Hs(
) at�
 are given by n � ~arv;where n is the outward normal at a point in �
, and ~a is the 
oeÆ
ient matrix of the operatorA in divergen
e form (see (2.21)).This result has been known for quite some time. It has its origin in [1℄, and 
an befound in a slightly less general form (only for A = �4) in [21℄. The present form essentiallyrealizes a remark in [12℄.Proposition 3.2.1. If f+ 2 L2(Td), g 2 H1=2(�
), and (u+; p) 2 H1(Td) � H�1=2(�
) isthe solution with this data of system (3.7), then p is the value of the jump in the 
onormalderivatives at �
.Proof. Write ~
 = T n 
. On 
, we have that Ar
u+ = r
f+, and so for any ' 2 C1(
),we obtain Z
 'Au+ d� = Z
 f+'d�:Using Green's formula, we also have thatZ
 'Au+ d� = Z�
(n � ~aru+)'d� + Z
r' � ~aru+ d�:We repeat the same argument for ~
, and then, by adding both results, obtain that for every� 2 C1(Td) ZTd f+� d� = ZTdr� � ~aru+ d�+ Z�
 �(n � ~aru+) d� + Z� ~
 �(n � ~aru+) d�;and sin
e the outward normal at � ~
 is minus the outward normal at �
, we obtain thatZTd f+� d� = ZTdr� � ~aru+ d�+ Z�
 � �n � ~aru+��
 d�;where we have written [n � ~aru+℄�
 for the jump in the 
onormal derivatives at �
.But u, p, and f+ also satisfy the �rst equation in (3.6), so we see that for every � 2C1(Td), hf+; �i = a(u+; �) + b(�; p)= a(u+; �) + b(�; �n � ~aru+��
):Thus, we 
on
lude that p = [n � ~aru+℄�
, as we wanted to prove.



36 Approximating u+Note that the hypothesis that f+ is in L2(Td) was mainly used when writingZ
 �f d�+ Z~
 �f d� = ZTd �f d�:So in fa
t what we have used is that sin
e �f is measurable,ZTdn(
[~
) �f d� = 0be
ause �(Td n(
[ ~
)) = 0. So 
learly, proposition 3.2.1 should still hold under more generalhypothesis. It turns out to hold form the full range of parameters we are interested in.Proposition 3.2.2. Suppose that, for some � > 0, (f; g) 2 H��1=2(Td)�H�+1(�
), and let(u+; p) 2 H1(Td)�H�1=2(�
) be the solution of system (3.7) with this data. Then p is thejump in the 
onormal derivative at the boundary.Proof. We extend proposition 3.2.1 by 
ontinuity. To that end, let ffngn2N, fn 2 L2(Td)be su
h that fn ! f in H��1=2(Td). Let (u+n ; pn) be the solutions of the system (3.7) with(fn; g) as data.Given any domain ! � Td, we denote by S! : H�+3=2(!) ! H�(�!) the 
onormalderivative operator, de�ned by S!v = n � rv, where n is the outward normal at a point in�!. As we have done before, we also denote by r! the restri
tion to !.Observe that if ! has a smooth boundary, and if � > 0, then the operator S! is 
ontinuous.To see this, note that the operator BD Æ ��xi : H�+3=2(!)! H�(�!) is bounded. Furthermore,re
all that if ' 2 C1(w), then v 7! 'v is a bounded operator from any H t(w), t > 0, toitself. Thus, sin
e the 
oeÆ
ients ~a are in C1(Td), the operator G : H�+3=2(!)! [H�(�!)℄d(where we endow the latter spa
e with the Eu
lidean tensor produ
t norm), given byGu := ~a(x)0BBB� �u�x1�u�x2...�u�xd
1CCCAis bounded. Thus, S!u = n �~aru = n �Gu is a bounded operator from H�+3=2(!) to H�(�!).We will also need to de�ne the restri
tion to a domain ! of a fun
tional g in H��1=2(Td).As su
h, this makes no sense, sin
e g is not de�ned on Td, as it is a fun
tional on H1=2��(Td).We assume (as we 
an do without loss of generality) that � < 1=2, and given ' 2 C1o (!),we de�ne (R
g)' as the value of g on the extension by zero of ' to Td. This de�nes,by 
ontinuity, a bounded fun
tional on H1=2��0 (!) = H1=2��(!). The map R
 is 
learlybounded; one 
an 
he
k also that if g is given by g(v) = RTd ~gv d�, with ~g 2 L2(!), then(R
g)(v) = R! r!~gv d�. We will no longer make su
h a �ne distin
tion between a fun
tionaland its representation, and write, in what 
onstitutes an abuse in notation, r!g := R!g.Sin
e fn ! f in H��1=2(Td), we have that r
fn ! r
f , and sin
e Au+nj
 = fnj
, Bu+nj
 =g, we also have that the sequen
e fr
u+n g 
onverges in H�+3=2(
), and that it 
onverges tor
u+. An identi
al argument shows that fr~
u+n g 
onverges to r~
u+.



Approximating u+ 37Now, by proposition 3.2.1, pn = S
r
u+n + S~
r~
u+n , and so, by 
ontinuity of M�1 (withM de�ned in (3.8)), S
, S~
, and r
, we obtain that p = S
r
u+ + S~
r~
u+, and so p isexa
tly the jump in the 
onormal derivatives of u+ at �
.The next question is, what does a jump in the 
onormal derivatives imply for the smooth-ness of u+? The following lemma 
lears us from (almost) all doubts.Lemma 3.2.3. If v 2 H�+3=2 for some � > 0, then the jump in the 
onormal derivatives ofv at �
 vanishes.Proof. Let f'ng � C1(Td) be su
h that 'n ! v in H�+3=2(Td) when n ! +1. Using thesame notation as in the proof of proposition 3.2.2, we have thatS
r
'n + S~
r~
'n = 0;and so by 
ontinuity, we obtain that the jump in the 
onormal derivatives of v at �
,S
r
v + S~
r~
v, must also vanish.We 
an now summarize the above results into the following.Theorem 3.2.4. If (f+; g) 2 H��1=2(Td) � H�+1(�
) for some � > 0, and the Lagrangemultiplier obtained when solving (3.7) is nonzero, then u+ 2 Hs(Td) implies s � 3=2.As a 
onsequen
e, we 
an �nally estimate the rate of approximation of u+ by fVjgj2N0 .Corollary 3.2.5. If (f+; g) 2 H��1=2(Td)�H�+1(�
) for some � > 0, and p 6= 0, then(3.9) u+ 2 As2(L2; fVjgj2N0 ) implies s � 3=2;and(3.10) u+ 2 As2(H1; fVjgj2N0) implies s � 1=2:Proof. Apply (2.15) to theorem 3.2.4, and observe that Bs2(L2) = As2(L2; fVjgj2N0 ) for the
orresponding range of s. This settles (3.9). To prove (3.10), apply theorem 2.2.4.Remark 3.2.6. If f+ =2 Hs(Td) for any s > �1=2, then it is possible that the solutionof (3.7) is smooth (i.e, belongs to some Sobolev spa
e H t for some large t), even when theLagrange multiplier is not zero.To see this, 
hoose an arbitrary t > 3=2, and let v 2 H t(Td). Then 
hoose q 2 H�1=2(�
),q 6= 0, and set f+ := Av + B�q, g := Bv. If we solve the system (3.7) with these data,we obtain a pair (u+; p) with u+ = v, and p = q 6= 0. By lemma 3.2.3, it would be a
ontradi
tion if p was the jump in the 
onormal derivatives. But that would 
ontradi
ttheorem 3.2.2, unless f+ =2 Hs(Td) for any s > �1=2.Under some 
ir
umstan
es, it is possible to rule out the 
ase s = 3=2 in 3.2.4.Theorem 3.2.7. Suppose that f+ 2 H�1=2+�(Td) for some � > 0, and let (u+; p) be thesolution of (3.7). If there exists an open set U , and a 
onstant 
 > 0 su
h that p(x) � 
 > 0almost everywhere on U \�
, or alternatively, if p(x) � 
 < 0 almost everywhere on U \�
(this assumes also that p 
an be identi�ed with a measurable fun
tion on that set) thenu+ 2 Hs(Td) implies s < 3=2.



38 Approximating u+This result is based on the following lemma.Lemma 3.2.8. Under the hypothesis on p of theorem 3.2.7, there exists j0 2 N su
h thatfor ea
h j � j0 we 
an �nd Gj � r0j := f� 2 r : j�j = jg with the following properties.i. #Gj & 2j(d�1)ii. � 2 Gj implies that jh �; B�pij & 2�jd=2.The proof of this lemma is fairly te
hni
al, and thus we defer it for the moment.Proof of theorem 3.2.7. We begin by dire
ting our attention to the �rst equation in (3.7),and rewrite it to read(3.11) Au = f+ � B�pNow whenever u+ 2 Hs(Td), then Au+ 2 Hs�2(Td), and thus by (3.11) it will be enough toshow that if f+ � B�p 2 Hs�2, then s� 2 < �1=2. But this redu
es again to prove that ifB�p 2 Hr(Td), then r < �1=2.Sin
e the bases 	, ~	 (
hosen at the beginning of 3.2) are a pair of biorthogonal B-splinewavelet bases for H1(Td), H�1(Td) respe
tively, and thus they are Riesz bases, we 
an write(3.12) kB�pk2H�1(Td) �X�2r jhB�p;  �ij2:Given t � 0 we 
an 
ompute the norm of B�p in H t�1(Td) by introdu
ing an additionals
aling fa
tor in (3.12). We have thatkB�pk2Hr(Td) �X�2r 2tj�jjhB�p;  �ij2= Xj2N0 2jtXr0j jhB�p;  �ij2(3.13)We invoke lemma 3.2.8 and see that if j � j0,Xr0j jhB�p;  �ij2 � X�2Gj jhB�p;  �ij2& 2j(d�1) � 2�jd = 2�j;and thus we have that (3.13) diverges whenever t � 1=2, and thus B�p 2 Hr implies thatr = t� 1 < �1=2.3.2.2 Approximating u+ with nonlinear approximation s
hemesbased on B-spline waveletsThe only result in this subse
tion states (roughly speaking) that,



Approximating u+ 39� if the bases we have 
hosen are suÆ
iently smooth and have enough vanishing moments,� if the rate of 
onvergen
e of the best N�term approximations to f+ is higher than a
ertain threshold,� and if the Lagrange multiplier obtained when solving (3.7) satis�es the hypothesis oflemma 3.2.8,then the rate of 
onvergen
e of the best N� term approximations to u+ is bounded frombelow. Let us be more pre
ise.Theorem 3.2.9. Let f = ff�g�2r 2 `2, f� := hf+;  �i, be the sequen
e of 
oeÆ
ients of f+with respe
t to the basis ~	, and suppose that f 2 `w� for some � < 2(d�1)d (this is equivalentto the assumption that f+ 2 Ar1(H�1;�n( ~	))for r = 1� � 12 > 12(d�1)). If p satis�es the hypothesis of theorem 3.2.7, and if 	, ~	 aresuÆ
iently smooth and have enough vansihing moments, then the sequen
e u = fu�g�2r 2 `2of 
oeÆ
ients of u+, u� := hu+; ~ �i, satis�es that if u 2 `w� , then � � 2(d�1)d . In other words,u+ 2 At1(H1(Td);�n(	))implies that t � 12(d�1) .Proof. When we assume that 	, ~	 are smooth enough and have enough vanishing moments,we mean that they where 
hosen su
h that A, the matrix of A with respe
t to the basis 	,~	, satis�es A 2 Bs for some s > 12(d�1) ; see subse
tion 2.7.2.Let d = fd�g�2r 2 `2 be the 
oeÆ
ients of B�p, d� := hB�p;  �i. From lemma 3.2.8 weobtain that if j > jo, Gj � f� 2 r : jd�j > C2�jd=2g:From this, and again from lemma 3.2.8 we obtain that#f� 2 r : jd�j > 2�jd=2g & 2j(d�1);whi
h, writing a = 2d=2, yields#f� 2 r : jd�j > a�jg & aj 2(d�1)d :Using proposition 2.7.2, we have that(3.14) d 2 `w�only if � � 2(d�1)d .If u 2 `w� , and � < 2(d�1)d , then sin
e A 2 Bs for some s > 12(d�1) , we have that Au 2 `w�for some � � � < 2(d�1)d . But this implies that Au = f + d 2 `w� , and thus by linearity,f + d� f = d 2 `w� . The theorem now follows from this 
ontradi
tion.



40 Approximating u+Thus, we have that under the hypothesis of theorem 3.2.9, the best N -term approxi-mations of u+ 
onverge at best as O(N� 12(d�1) ). As a 
onsequen
e, no adaptive method
omparable with those dis
ussed in [8℄, (see subse
tion 2.7.2), 
an a
hieve an a

ura
y of �without spending at least O(��2(d�1)) operations.Note again that theorems 3.2.7 and 3.2.9 hold whenever the basis fun
tions are smoothenough. Resorting to higher order B-spline wavelets is of no help.Finally, we remark that from (3.14) it also follows that B� is not very 
ompressible (seeproposition 2.7.3).3.2.3 Obtaining better 
onvergen
e ratesIn theory, it is easy to obtain better 
onvergen
e rates. This is illustrated by the followingtwo results.Proposition 3.2.10. Let V 
j = r
Vj, and suppose that the solution u of problem (3.1) isin Asq(L2(
); fV 
j gj2N0) for some s � 1, 0 < q � 1. Then there exists an extension f+of f su
h that the extended solution u+ of (3.7) satis�es u+ 2 Asq(L2(Td); fV 
j gj2N0 ) andu+ 2 As�1q (H1(Td); fV 
j gj2N0 ).Proof. Just �nd an appropriate extension u� of u to Td using the results of se
tion 2.4, andtake f+ = Au�. When we solve (3.7) with this right-hand side (and with g as before), weobtain that (u�; 0) is the (unique) solution, and thus u+ = u� 2 Asq(L2(Td); fV 
j gj2N0). Usinglemma 2.2.4, we also obtain u+ 2 As�1q (H1(Td); fV 
j gj2N0 ).Proposition 3.2.11. Suppose that the solution u of problem (3.1) satis�es u 2 Bsd+1� (L� (
))for some � < 2(d�1)d , and where s = 1� � 12 . Then there exists an extension of f+ of f su
hthat the solution u+ of 3.7 satis�es u+ 2 Bsd+1� (L� (Td)). That is, u+ 2 As��1 (H1;�n(	)) forall 0 < � < s.Proof. Using 2.16, we see that there exists an extension u� 2 Bsd+1� (L� (Td)) of u. We obtainf+ now simply by setting f+ = Au�.We 
on
lude that in order to obtain better 
onvergen
e rates, we must �nd an adequateextension of f . Note that it is not enough to 
hoose a smooth extension of the right handside. It must be smooth and produ
e a smooth solution.The naive approa
h to the 
onstru
tion of a �
titious domain method for solving problem(3.1) without these problems might follow the route proposed by propositions 3.2.11 and3.2.10. That is, to extend the solution and then apply the di�erential operator. This has amajor drawba
k from the point of view of a numeri
al method: it must start with a fairlya

urate solution of problem (3.1), and thus renders the method pointless.In the next 
hapter we will 
onstru
t a method whi
h produ
es smooth solutions by�nding smooth extensions of u and f simultaneously, and without 
ompromising a

ura
y.In what remains of this 
hapter we are going to prove lemma 3.2.8 and the auxiliary resultsneeded.



Proof of lemma 3.2.8 413.3 Proof of lemma 3.2.8To simplify a bit, we begin by assuming that j is always large enough, so that we 
an negle
te�e
ts 
aused by periodization. Spe
i�
ally, we assume that there exists an � > 0 su
h thatfor all j 
onsidered, if supp ejk \
 6= ;, then supp ejk � (0+ �; 1� �)d. We will also restri
tourselves to the 
ase p(x) > 
 > 0, sin
e the 
ase p(x) < �
 < 0 is 
ompletely analogous.Let x0 2 U \ �
, and let �0 > 0, � 2 C1, and Q : Rd ! Rd be an orthogonal transforma-tion as in de�nition 2.3.2. This means thatQ�1(B(x0; �0) \ 
) = fx 2 Q�1(B(x0; �0)) : xd < �(x1; x2; : : : ; xd�1)g:Assume further that B(x0; �0) � U , and let Y � Rd�1 gather all points y 2 Rd su
h that�(y) := Q(y; �(y))T 2 �
 \ B(x0; �0):Note that � satis�es k�(x)� �(y)k > kx� yk for all x; y 2 Y , and that Y is an open set.Given a fun
tion f 2 H1(Td) with supp f � B(x0; �0), we 
omputehB�p; fi = hp; Bfi= ZB(x0;�0)\�
 p(y)f(y)dS= ZY p(�(z))f(�(z))J �(z)dz:(3.15)Here J �(z) is the (d � 1)-dimensional volume of the parallelogram spanned by the ve
torsfD�(z)e1; : : : ; D�(z)ed�1g, see for instan
e [19℄,
hapter 7.3.3.1 Index sets and banded matri
esTo �nd the sets predi
ted by lemma 3.2.8, we will not use 3.15 dire
tly on the wavelets, butwill instead transform the 
laim of the lemma to an analogous 
laim on s
aling fun
tions.Before doing this, we will shed some light on the stru
tural relationship between sets ofs
aling fun
tion and wavelet 
oeÆ
ients.Given a level j, we 
an (obviously) 
onsider the wavelet or s
aling fun
tion 
oeÆ
ientsof a fun
tion f as belonging to a ve
tor spa
e indexed by Zdj = Zd=2jZd. For instan
e, thes
aling fun
tion representation of B�p on level j 
an be interpreted as 
j 2 `2(Zdj ), withentries(3.16) 
jk = hB�p;  0jki = hp; B 0jki; 8k 2 Zdj :This point of view is useful be
ause it allows us to use information on the lo
ation of a basismember on Td. To this end we de�ne a metri
 on Zdj byd(k; k0) = minz2Zd kk + 2jz � k0k1:In this spirit, let X be some �nite set, and let W = `2(X), V = `2(Zdj ). We will saythat a linear map M : W ! V is banded of width dM 2 N if for any k 2 X one has thatif k0; k00 2 suppMek, then d(k0; k00) < dM . Here we have written ek for the member in the
anoni
al basis 
orresponding to k. That is, (ek)l = Ækl, where Ækl is the Krone
ker delta.



42 Proof of lemma 3.2.8Proposition 3.3.1. Let A � Zdj be su
h that for a1; a2 2 A, a1 6= a2 implies d(a1; a2) � dM ,and suppose v 2 V , w 2 W are related by v = Mw. If, for some C2 > 0 one has jvaj � C2for ea
h a 2 A, then there exists C3 > 0, and B � X su
h that jwbj � C3, and #B = #A.Proof. For ea
h a 2 A, write Da = fk 2 X : a 2 Mekg, and let N = supa2A#Da. Now, ifjw
j < C2NkMk1 for all 
 2 Da, we rea
h a 
ontradi
tion with the hypothesis that jvaj � C2,sin
e then jvaj = �����X
2Da(w
Me
)a����� < C2:Thus, we take C3 = C2NkMk1 , and 
hose for ea
h a 2 A a single ba 2 Da su
h thatjvbq j � C3, and 
olle
t all those ba in the set B.It only remains to prove that if ba = ba0 , then a = a0. Indeed, if a 6= a0, then a; a0 2suppMeba , and thus d(a; a0) < dM , 
ontradi
ting the hypothesis.Let d be the 
oeÆ
ients of B�p as above, and let us write dj 2 `2(r0j) for the sequen
eof 
oeÆ
ients on level j only.Let f�1; �2; : : : ; �2dg be an enumeration of the set E n f0g (see 2.6.4). Then we 
an writer0j =Q2di=1 `2(Zdj ), and assign to ea
h �i a 
opy of `2(Zdj ). Then the mapM1j : r0j ! `2(Zdj+1)given by the matrix M1j = �M�1j M�2j : : : M�2dj �maps the wavelet 
oeÆ
ients on a level j to the 
orresponding s
aling fun
tion 
oeÆ
ientson level j+1. This map is banded in the above sense, and the bandwidth dM1j is independentof j if j is large enough. Moreover, the number Nj = maxk2Zdj #f� 2 r0j : k 2M1j e�g is also
onstant if j is large enough. A similar observation holds for kMk1. We are in the positionof proving lemma 3.2.8 using the following lemma.Lemma 3.3.2. Under the hypothesis of lemma 3.2.8, one 
an �nd j0 2 N su
h that for ea
hj � j0 there exists a set Fj 2 Zdj with the following properties(3.17) i: k 2 Fj implies j(M0j�1
j�1)kj & 2� jd2 (see (3.16))ii: #Fj & 2j(d�1)iii: k1; k2 2 Fjwith k1 6= k2 implies d(k1; k2) > dM1jiv: Fj \ supp 
j = ;:Proof of lemma 3.2.8. We 
an write
j+1 =M1j dj +M0j 
j;and thus M1j dj = 
j+1 �M0j 
j:If we write v = 
j+1�M0j 
j, then we have that the sets Fj in (3.17), and the matrix M1j ,both satisfy the hypothesis of proposition 3.3.1. From this, and from the observation thatthe 
onstant C3 in lemma 3.3.1 
an be 
hosen independently of j, we infer the existen
e ofthe sets Gj for j > j0, with j0 as in lemma 3.3.2.



Proof of lemma 3.3.2 433.4 Proof of lemma 3.3.23.4.1 Lower bounds for single integralsWe begin by introdu
ing the notation �jk := 2�j �[0; 1℄d + k�, and then asso
iating to anyset A � Td an index set in Zdj a

ording to the following notation.�0j(A) := fk 2 Zdj : �jk \ A 6= ;g;�nj (A) := fk 2 Zdj : 9k0 2 �0j(A) with d(k; k0) � ng:Let x0; �0; �; Q; � be as 
hosen just before (3.15). Let G := �
 \ B(x0; �=2), and letYG := fx 2 Y : �(x) 2 Gg.Proposition 3.4.1. There exists j0 2 N su
h that j � j0, k 2 �0j(G) implyj
jkj & 2� jd2 :Proof. We begin by realizing that, sin
e the primal s
aling fun
tions are B-splines of orderat least 4, one has that [0; 1℄d � (supp 0)Æ, where AÆ denotes the interior of the set A. Thuswe 
an �nd a 
onstant ~
, and a � > 0 su
h that if x 2 B([0; 1℄d; �), then  0(x) � ~
.Sin
e � is C1(Rd�1), we 
an show that � is Lips
hitz on Y . So let L be su
h that(3.18) k�(x)� �(y)k2 � Lkx� yk2; 8 x; y 2 Y;write �j = 1L2�j� , and 
hose j1 2 N su
h that if j � j1, then B(YG; �j) � Y . This is possible,by (3.18), when �j < �2L , for instan
e.Let j0 � j1 be su
h that j � j0, k0 2 �0j(G) implies supp 0jk0 � B(x0; �0). Given su
hj; k0, let z 2 YG be su
h that �(z) 2 �jk0 � supp 0jk0 . But then B(z; �j) � Y , and also 0jk0(x) � 2�j2 jd2 ~
 8x 2 B(z; �j)be
ause �(B(z; �j)) � B(�jk0; 2�j�), and where the powers of two 
ome from the H1 and L2normalization respe
tively.Re
all that p(�(x)) > 
 almost everywhere on Y , and observe also that sin
e k�(x) ��(y)k � kx� yk for all x; y 2 Y , we have J �(x) > C4 for some C4 > 0.From (3.15) we get 
jk0 & 2�j � 2 jd2 ZB(z;�j) dx & 2� jd2 ;sin
e the volume of B(z; �j) is larger than a 
onstant times 2j(d�1).3.4.2 Index sets and masksTo be able to satisfy requirement (iv) of (3.17) we need to obtain a better understanding ofthe a
tion of the linear map M0j . We bring to our attention that if  0 is a B-spline of orderat least 4, then we have for its mask that(3.19) suppfa0kg = f�; �+ 1; : : : ; �gd � Zd



44 Proof of lemma 3.3.2with � � �2; 2 � �:(3.20)Next we observe that if j is large enough to avoid periodization e�e
ts, we 
an �nd a
onstant C5 > 0, independent of j, su
h that all nonzero entries in M0j are larger that C5.This follows from the de�nition of M0j , and from the fa
t that all entries in the mask of aB-spline generator are non-negative.Let us take a look at indi
es ~k 2 Zdj su
h that suppM0j e~k \ �0j+1(G) 6= ;.Proposition 3.4.2. For these ~k it holds
j~k & 2� jd2 :Proof. Given su
h an entry, we use the re�nement relation to write(3.21) 
j~k = Xz2Zd �j+1�j 
j+1;2~k+zaz:If az 6= 0, then kzk1 � �. And if this is so, then supp 0j+1;2~k+z � B(x0; �0), and thus fromthe de�nition of 
j, and by the hypothesis on p, we have that 
j+1;2~k+z � 0, sin
e for this indexthe integrand in (3.15) is non-negative. On the other hand, sin
e suppM0j e~k \�0j+1(G) 6= ;,there exist at least one z0 su
h that 2~k + z0 2 �0j+1(G) while also az0 6= 0. By proposition3.4.1, and sin
e also the number of z su
h that az 6= 0 is �nite (and thus there is a smallestsu
h az), we have that az0
j+1;2~k+z0 & 2� (j+1)d2 = 2� d2 2� jd2 �Using this knowledge together with (3.21), we obtain the result.The elements in Fj+1 will be 
hosen among those l 2 suppM0j e~k whi
h also satisfy that�d�1(supp 0j+1;l \ �
) = 0, where �d�1 is the Lebesgue measure on �
. Those l satisfyindeed that 
j+1;l = 0 (sin
e then the integral is de�ned on a set of measure zero), while also(by proposition 3.4.2) we have that (M0j 
j)l & 2� jd2 . The following lemma gives us a hint asto where to �nd this type of l.Lemma 3.4.3. Let fa0kgk2Zd be the mask of  0, let �; � 2 Z be as in (3.19), (3.20), and letl 2 ��+1j+1 (�
) n ��j+1(�
). Then it holds thati. �(supp 0j+1;l \ �
) = 0ii. There exists k� 2 �0j+1(�
) su
h that d(l; k�) = � + 1.iii. There exists ~k 2 Zdj su
h that l; k� 2 suppfa0z�2~kgz2Zd, and thus l; k� 2M0j e~k.Proof. The �rst two 
laims follow immediately from the de�nition of �0j+1(�
).To prove the last one, we will show in a 
omponentwise fashion that su
h a ~k exists. Tothis end, let us write l = (l1; l2; : : : ; ld), k� = (k1�; k2�; : : : ; kd�), and ~k = (~k1; ~k2; : : : ; ~kd). We



Proof of lemma 3.3.2 45have (negle
ting, as we 
an, e�e
ts of periodization) that the ~k we are looking for satis�esthat li; ki� 2 f�+ 2~ki; �+ 2~ki + 1; : : : ; � + 2~kig;or in terms of inequalities, that� + 2~ki � li � � + 2~ki �+ 2~ki � ki� � � + 2~ki:But this is equivalent to(3.22) maxfli � �; ki� � �g � 2~ki � minfli � �; ki� � �g:Su
h a ~ki exists, trivially, whenever � � � � 1 (as is being assumed) and li = ki�.If li > ki�, then (3.22) redu
es to li � � � 2~ki � ki� � �, whi
h is equivalent to(3.23) li � ki� � 2~ki � ki� + � � � � �:Sin
e d(l; k�) = � + 1, we have that (3.23) 
an be satis�ed by ~ki whenever� + 1 � 2~ki � ki� + � � � � �;or simply when 1 � 2~ki � ki� � ��. We 
an always 
hoose su
h a ~ki if, as is being assumed,� � �2.The 
ase ki� > li follows analogously.Having established the existen
e of the indi
es we are looking for, it only remains to showthat there are enough of them.3.4.3 Constru
tion of the sets FjLet Pm : Rd ! Rd�1 be given byPm(x1; : : : ; xd) = (x1; : : : ; xm�1; xm+1; : : : ; xd):We will assume for now (and prove this in the next se
tion) that we 
an arrange mattersto be as follows. Suppose we have found a z0 2 B(x0; �0=4), a � > 0, and m 2 f1; : : : ; dgsu
h that(3.24) i: B(z0; �) � B(x0; �0=4)ii: B(z0; �) \G = ;iii: PmB(z0; �) � (Pm[G \B(x0; e0=4)℄)Æiv: z0 = 2�j�z� for some z� 2 Zd, j� 2 N.For j > j� (where we assume that j� is larger than all previous lower bounds for j) wede�ne the set Aj := fz 2 Zdj : (z � z�)m = 0 and 2�jz 2 B(z0; �)g:



46 Proof of lemma 3.3.2Proposition 3.4.4. There exists j�� � j� su
h that if j � j��, then for ea
h a 2 Aj thereexists a number ra 2 Z su
h that la := a + raem 2 ��+1j (�
) n ��j (�
), and su
h that2�jla 2 B(x0; �=4).Proof. It will be enough to 
hoose j�� su
h that if j > j��, then a 2 Aj does not belong to��+1j (�
).Sin
e PmB(z0; �) � (Pm[G \ B(x0; e0=4)℄)Æ, we have that there exists ~ra su
h that a +~raem 2 �0j(�
). We 
an assume, without loss of generality, that ~ra > 0.For 0 � i � ~ra write ki := a + iem, and observe that, by the 
onvexity of the ballB(x0; e0=4), the integer ~ra 
an be 
hosen in su
h a way that 2�jki 2 B(x0; �=4) if 0 � i < ~ra.Let b(i) denote the smallest n 2 N0 su
h that ki 2 �nj (�
). We see that wheneverki 2 �nj (�
), then ki+1 2 �mj (�
) for some m 2 fn � 1; n; n + 1g, and thus 
on
lude thatb(i)� 1 � b(i + 1) � b(i) + 1. From this, and sin
e b(0) > � + 1, b(~ra) = 0, it follows thatthere must exist a number ra 2 Z (the one we are looking for) su
h that b(~r1) = � + 1.Another important observation is that we 
an 
hoose j�� above in su
h a way that ifj > j��, k 2 ��+1j (�
), and 2�jk 2 B(x0; �0=4), then k 2 ���1j (G). Let us do just that, andlet us 
olle
t all the la, a 2 Aj, in the sets Lj. Note that these are pre
isely the l we havebeen looking for.Note that if a1; a2 2 Aj, then d(la1 ; la2) � d(a1; a2):From this we infer that we 
an 
onstru
t the sets Fj needed in lemma 3.3.2 if we 
an �ndsets Ej � Aj su
h thati. #Ej � 2j(d�1)ii. a1; a2 2 Ej, a1 6= a2 implies d(a1; a2) � dM0j .But this, thankfully, is trivial.We are almost done. We only have to prove that we 
an indeed arrange matters as in(3.24).3.4.4 A topology lemmaThe problem 
an be redu
ed a bit. If we �nd z0, �, and m that satisfy the �rst three
onditions in (3.24), then �nding another pair that satis�es the last one is trivial too. Butthe existen
e of su
h z0, �, and m is a 
onsequen
e of the following lemma, whi
h will beproven at the end of this subse
tion.Lemma 3.4.5. Let y0 2 Rd�1 , � : Rd�1 ! R 
ontinuous, Æ > 0, Y = B(y0; Æ), and letG0 = f(x; �(x)) 2 Rd : x 2 Y g:Write x0 = (y0; �(y0)). If Q : Rd ! Rd is orthogonal, then for ea
h � > 0 there existsy 2 B(x0; �), � > 0, and m 2 f1; 2; : : : ; dg su
h thatPmQB(y; �) � (PmQG0)Æwhile B(y; �) \G0 = ;.



Proof of lemma 3.3.2 47We will need some preparations. Given two points x1; x2 2 Rd , we denote by 
 = 
[x1x2℄ :[0; 1℄! Rd the fun
tion 
(t) = (1� t)x1 + tx2. Given 
; � : [0; 1℄ ! Rd , and if 
(1) = �(0)we write � = 
 � � for the fun
tion � : [0; 1℄! Rd given by�(t) = � 
(2t) if 0 � t < 12�(2t� 1) if 12 � t � 1We also write 
[x1x2 � � �xm℄ = 
[x1x2℄ � 
[x2x3℄ � � � � � 
[xm�1xm℄:The proof of lemma 3.4.5 is a simple 
onsequen
e of the following proposition, whi
h isjust a simpler variant of it.Proposition 3.4.6. Let y0 2 Rd�1 , � : Rd�1 ! R 
ontinuous, Æ > 0, Y = B(y0; Æ), and letG0 = f(x; �(x)) 2 Rd : x 2 Y g:Write x0 = (y0; �(y0)). If Q : Rd ! Rd is orthogonal, then there exists m 2 f1; 2; : : : ; dgsu
h that (PmQG0)Æ 6= ;.Proof. For arbitrary n and � > 0, and given a point z 2 Rn , we denote by B1(z; �) the setfy 2 Rn : kx�yk1 < �g, and by B2(x; �) the set fy 2 Rn : kx�yk2 < �g, whi
h 
orrespondsto the de�nition of B(x; �) we have been using until now. De�ne � = supfr > 0 : B1(0; r) �B2(0; 1)g, and note that � � 1.Let � < Æ=2, set W := B2(x0; �) n G0, and note that this set is open and pathwisedis
onne
ted. There is, in parti
ular, no path between the points w� := x0 � ��2 ed andw+ := x0+��2 ed. If Q is orthogonal, then QW is also pathwise dis
onne
ted, and we 
annot�nd a path between Qw+ and Qw� in QW .Now suppose that the lemma is false for a 
ertain orthogonal Q0 : Rd ! Rd .Set W 0 := B1(Q0x0; �Æ) n Q0G0, w0+ := Q0w+; and w0� := Q0w�. By the way we have
hosen the parameters, we have that W 0 � Q0W , that W 0 is open, that w0+; w0� 2 W 0, andthat there is no path between w0+ and w0� in W 0. Let Æ0 > 0 be su
h that B1(w0+; Æ0) � W 0and B1(w0�; Æ0) � W 0:Now, let �1 = w0�, and 
hoose �1 2 B1(�1; Æ0d ) su
h that P1�1 =2 P1Q0G0. This is possiblebe
ause we assumed our lemma false, and thus B1(P1�1; Æ0d ) 6� P1Q0G0. We next 
hoose�1 2 R su
h that the �rst 
oordinates of �2 := �1 + �1e1 and w0+ are equal. Note that thepath 
[�1�1�2℄ lies fully in W 0.Next 
hoose �2 2 B1(�2; Æ0d ) su
h that P2�2 =2 P2Q0G0 (whi
h again has to exist), and
hoose �2 su
h that the se
ond 
oordinates of �3 = �2 + �2e2 and w0+ are equal. Note that,for the same reasons as above, the path 
[�1�1�2�2�2℄ lies fully in W 0.We pro
eed in this fashion until we have 
onstru
ted �d, and note immediately that�d 2 B1(w0+; Æ0), sin
e ea
h 
oordinate of �d is at most at a distan
e of (d�1)Æ0d of the
orresponding one in w0+. But we took 
are to never leave W 0, whi
h implies that the path
[w0��1�2�2 � � � �d�1w0+℄ lies in W 0. This 
ontradi
tion �nishes the proof.Proof of lemma 3.4.5. Without loss of generality, we 
an assume that Æ < �02 , and apply thesame proof as before. The point y0 we are looking for is the last �i obtained before thepro
ess 
annot be 
ontinued, and � 
an be 
hosen as � = Æ0d .Thus ends the proof of lemma 3.3.2, and thus also of lemma 3.2.8
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Chapter 4Towards a �
titious domain methodwith optimally smooth solutions
Introdu
tionIn this 
hapter, we will introdu
e a �
titious domain method designed to produ
e optimallysmooth solutions whenever the given data allows it, and whi
h is also 
apable, in pra
ti
e, todeliver on that promise. We also obtain, albeit with additional assumptions, a solid theoreti-
al understanding of this method, proving 
onvergen
e and reprodu
tion of smoothness. Theen
ouraging numeri
al results, to be presented in 
hapter �ve, suggest that our approa
h ispromising, and that it should be the subje
t of further resear
h.The 
entral idea of the approa
h is the division of responsibilities. Starting from ouroriginal boundary value problem on a domain, we formulate a very simple linear least-squares/�
titious-domain formulation on an extended domain whose solutions will all solve,when restri
ted to the original domain, the original problem. Although this extended prob-lem does not have a unique solution, it 
an be seen to be solvable, and the solution 
an be
hosen to depend 
ontinuously on the data. Instead of modifying this formulation to for
e itto produ
e smooth solutions, our approa
h assigns this responsibility to the solution pro
ess.We show how a simple iterative s
heme is 
apable of re
overing smoothness through whatamounts to emergent behavior.We begin in se
tion 4.1 with a brief review of the de�nition and properties of the Moore-Penrose pseudoinverse. This building blo
k is 
entral in what follows. In se
tion 4.2 weformulate and study the least-squares/�
titious-domain problems mentioned above. In se
-tion 4.3, starting from a sequen
e of dis
retizations of those problems, we propose a solutionoperator 
apable of re
overing smoothness, and prove that it works under 
ertain additional
onditions. Finally, in se
tion 4.4, we 
onstru
t a 
andidate sequen
e of suitable dis
retiza-tions.We leave the a
tual implementation, and numeri
al experiments, to 
hapter �ve.49



50 Moore-Penrose pseudoinverses4.1 Moore-Penrose pseudoinversesLet H1, H2 be two Hilbert spa
es, and let M : H1 !H2 be a bounded operator with 
losedrange. Write N :=MjN (M)?, and re
all that under these 
onditions, N : N (M)? !R(M) isan isomorphism. The Moore-Penrose pseudoinverse is then de�ned by M y := IH1N�1PR(M).Here, PR(M) denotes the orthogonal proje
tion onto the range R(M) of M , and IH1 is theinje
tion into H1. Given b 2 H2, one has that x = M yb is the unique minimizer of smallestnorm inH1 of the fun
tional '(x) := kMx�bk2H2 . One also 
he
ks easily thatM y : H2 !H1is a bounded operator with 
losed range.The following theorem gives us a 
hara
terization of the Moore-Penrose pseudoinverse.See e.g. [15℄, p.182.Theorem 4.1.1. Let B : H2 ! H1 be a bounded linear operator with 
losed range. Thenthe following are equivalent(i). B =M y(ii). BMx = x for all x 2 N (M)?, and By = 0 for all y 2 R(M)?.(iii). MB = PR(M), and BM = PN (M)? = PR(B).(iv). (MB)� =MB, (BM)� = BM , MBM =M , and BMB = B.One has, furthermore, that if Q : H1 ! H1 is an orthogonal proje
tor, then Qy = Q.For the proof of these fa
ts, and for further information, we refer to [15℄, 
hapter 8.A remark is in order with respe
t to the numeri
al aspe
ts of using pseudoinverses.The traditional approa
h to obtaining the pseudoinverse of a matrix is to use a singularvalue de
omposition (SVD) whi
h is rather expensive. Sin
e we are not interested in thepseudoinverse per se, we will use instead appropriate iterative Krylov subspa
e methods,whi
h have mu
h better performan
e, to approximate the produ
t of the pseudoinverse witha given ve
tor. See subse
tion 4.5.4.2 The formulation4.2.1 Problem s
ope and assumptionsConsider the problem Au = f on 
,Bu = g;(4.1)where A is a regular ellipti
 di�erential operator, and B : H2(
)! H�(B)(�
) is either theDiri
hlet or the Neumann boundary operator, with �(B) = 3=2 resp. �(B) = 1=2. We willassume that 
 � Rd is a bounded domain with C1 boundary. The regularity assumptionson A and 
 
an be relaxed, but at the pri
e of obs
uring the arguments. See remark 4.3.10.We further assume that f 2 L2(
), and that g 2 H�(B)(�
). This allows us to 
on
ludethat the solution u of problem (4.1) is at least in H2(
). We shall further assume that



The formulation 51problem (4.1) is well posed; for ea
h f 2 H0(
), g 2 H�(B)(�
), there exists a uniquesolution u 2 H2(
) of (4.1), and this solution depends 
ontinuously on f , g.Remark 4.2.1. The regularity assumptions on the data restri
ts the appli
ability of themethod designed here. We 
hose them sin
e they simplify the theory in a few 
ru
ial aspe
ts,and hope for further resear
h to render the method appli
able to more general settings.4.2.2 The formulationWe start by embedding 
 into a larger domain. Again for simpli
ity, we will assume thatthis domain is Td, and, of 
ourse, that 
 
an be properly embedded in Td. That is, thereexists � > 0 su
h that 
 � (0 + �; 1� �)d. We will further assume that an extension of A toTd is available, and we denote it again by A. In parti
ular, we will use that (
f. 3.2)(Au)j
 = A(uj
) 8 u 2 H2(Td):Note that this does not amount to a \pointwise" interpretation of the di�erential operator,as we are 
onsidering derivatives in the sense of distributions. What we are using here isthat if u 2 H2(Td), then Au 
an be identi�ed in the usual way with an element of L2.We are looking for a way to obtain an u+ 2 H2(Td) whi
h satis�es(4.2) u+j
 = u;where u is the solution of (4.1). There are of 
ourse many elements of H2(Td) whi
h wouldsatisfy (4.2), but after 
onsidering the e�e
ts of smoothness on a

ura
y, we want to �ndone that is as smooth as possible. As was announ
ed in the introdu
tion, our approa
h willbe to set up a minimal least squares problem whose solutions all satisfy (4.2), and then tryto 
onstru
t a smooth solution of said problem. Here we will 
on
entrate on the �rst partof that program, addressing the se
ond part in se
tion 4.3.Observe that the requirement (4.2) is equivalent to requiring that u+ satis�es the equa-tions (Au+)j
 = f;Bu+ = g:Our �rst (prototype) least-squares/�
titious-domain problem will be as follows.Problem LSFD0: Given f and g as above, �nd u+ 2 H2(Td) su
h that it minimizes thefun
tional(4.3) �
(v) = kr
Av � fk2H0(
) + kBv � gk2H�(B)(�
):We see immediately that there is at least one drawba
k of this formulation: It still involvesa spa
e de�ned on 
. To remove this spa
e we introdu
e the operatorC
 : H0(Td)! H0(Td),de�ned by(4.4) C
f := �
 � f;whi
h assigns to ea
h f 2 H0(Td) the extension by zero of its restri
tion to 
. It is easy tosee that C
 is an orthogonal proje
tor with respe
t to the 
anoni
al L2 norm in H0(Td).



52 The formulationRemark 4.2.2. The orthogonality of the operator C
 plays a 
ru
ial role in what follows. Asuitable substitute (either for the orthogonality or for the restri
tion itself) would be neededto extend the method under dis
ussion to more general settings.We 
an now reformulate a new least-squares/�
titious-domain problem, using C
 to avoidthe spa
e H0(
).Problem LSFD: Given f and g as above, and given any extension f1 2 H0(Td) of f ,�nd u+ 2 H2(Td) su
h that it minimizes the fun
tional(4.5) �(v) = kC
Av � f1k2H0(Td) + kBv � gk2H�(B)(�
):We will now 
he
k that these least-squares problems 
an indeed be used to solve ouroriginal problem. This involves verifying that any solution of these problems satis�es (4.2),and that we 
an obtain solutions whose norm is bounded by the norm of the data. We willalso �nd out that the solutions of minimal norm of (4.3) and (4.5) are equal.For notational simpli
ity, let Hl := H2(Td), Hr
 := H0(
)�H�(B)(�
), Hr := H0(Td)�H�(B)(�
), and let M
 : Hl !Hr
, M : Hl !Hr be given byM
 : = �r
AB � M : = �C
AB �where r
 is the restri
tion operator, and C
 is the orthonormal proje
tor introdu
ed above.As done before, we endow Hr
 and Hr with the 
orresponding Eu
lidean tensor produ
tnorms, to ensure that they are Hilbert spa
es.With these operators, and setting b
 = (f; g)T , b = (f1; g)T , we rewrite the fun
tionalsappearing in problems LSFD0 and LSFD as�
(v) = kM
v � b
k2Hr
 �(v) = kMv � bk2Hr :Theorem 4.2.3.(i). The operators M
 and M are bounded and have 
losed range, (and thus have boundedpseudoinverses).(ii). If f1 2 H0(Td) is an extension of f 2 H0(
), then u+ := M yb and w+ := M y
b
 bothsatisfy (4.2).(iii). It holds that u+ = w+.Proof. That these operators are bounded is obvious.From the well-posedness of problem (4.1) it follows that M
 is surje
tive. To see this, leth = (�; 
)T 2 Hr
 be arbitrary. Then there exists a unique � 2 H2(
) whi
h satis�es (4.1),and thus any extension �+ 2 H2(Td) of � satis�es M
�+ = h. Surje
tivity immediatelyimplies that the range of M
 is 
losed.To see that the range of M is 
losed, we use again the well-posedness of (4.1) to provethat R(M) = f(�; 
)T 2 Hr : �j

 = 0g:
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onvergent sequen
e hn = (�n; 
n) 2 R(M), n = 1; 2; : : :, we have that �nj

 = 0.By 
ontinuity of the restri
tion operator it follows that for h = (�; 
) := limn!1 hn it holds�j

 = 0. Thus h 2 R(M), showing that this set is 
losed. This �nishes the proof of (i).Ba
k to problem LSFD0, we 
on
lude from the surje
tivity of M
 that min�
(v) = 0.Sin
e w+ =M y
b
 is a minimizer of �
, we have that r
Aw+ = Ar
w+ = f , Bw+ = g, andthus that w+ satis�es (4.2)To see that u+ := M yb also satis�es (4.2), we begin by 
omputing the minimum of �.For this, observe �rst that (trivially) �(v) � kC
Av � f1k2H0(Td). Sin
e Av 2 H0(Td), andsin
e C
 is an orthogonal proje
tion in this spa
e, we see that �(v) � k(C
 � I)f1k2H0(Td).A simple 
omputation also gives us that �(w+) = k(C
� I)f1k2H0(Td), showing that this lastquantity is indeed the minimum of �.Now observe that u+, being the minimizer of �, must satisfy(4.6) �(u+) = kC
Au+ � f1k2H0(Td) + kBu+ � gk2H�(B)(�
)= k(C
 � I)f1k2H0(Td):But one readily 
he
ks that, sin
e C
 is an orthogonal proje
tor,kC
Au+ � f1k2H0(Td) = kC
Au+ � C
f1k2H0(Td) + k(C
 � I)f1k2H0(Td);and thus from (4.6) it follows that C
Au+ = C
f1, and Bu+ = g. Now C
Au+ = C
f1 ispossible if, and only if, (Au+)j
 = f1j
 = f . So u+ satis�es (4.2), �nishing the proof of (ii).Finally, let us show that M y
b
 = M yb. The key observation here is that for any v 2H2(Td), it holds that(4.7) kM
vkHr
 = kMvkHr :This follows from the fa
t that kC
hkH0(Td) = khj
kH0(
) for ea
h h 2 H0(Td). As a
onsequen
e of (4.7) we have that M and M
 have the same kernel.Now, for u+ =M yb, and w+ =M y
b
 we have thatkM
(u+�w+)k2Hr
 =kr
Au+ � r
Aw+k2H0(
) + kBu+ �Bw+k2H�(B)(�
) = 0;and thus u+ � w+ 2 N (M
). But sin
e M y
b
 ? N (M
) = N (M) ? M yb, it holds thatboth u+ and w+ are orthogonal to N (M
), and thus u+ � w+ = 0. This proves (iii) and�nishes the proof of theorem 4.2.3.Remark 4.2.4. When 
hoosing a dis
retization s
heme for problem LSFD, it should be keptin mind that this result depends 
riti
ally on the fa
t that C
 is an orthogonal proje
tor. Onthe other hand, it is important to note that theorem 4.2.3 remains valid if we 
hange thenorms of H2(Td) to any equivalent norm (the same applies to H�(B)(�
)).



54 Re
overing smoothness4.3 Re
overing smoothnessThe method to re
over smoothness we will present in this se
tion 
annot, at present, bejusti�ed 
ompletely from a theoreti
al point of view. The method performs quite well inpra
ti
e, however, so that even though the theory we present here does not 
over everyaspe
t, we 
an safely 
on
lude that our approa
h is promising. Further resear
h is neededto 
omplete the pi
ture.The available theory has the following form. We assume the existen
e of a sequen
e oflinear dis
rete maps whi
h satis�es a 
ertain set of properties, and subsequently prove that,if su
h a sequen
e exists, and the data allows it, then we 
an 
onstru
t a smooth solution toproblem LSFD.Let fVjgj2N0 , fV rj gj2N0 be nested sequen
es of linear spa
es su
h that(4.8) As2(H2(Td); fVjgj2N0 ) = Hs+2(Td);As2(Hr; fV rj gj2N0 ) = Hs(Td)�H�(B)+s(�
);for some range 0 < s � s0. Additionally, let fQjgj2N0 and fQrjgj2N0 be uniformly boundedsequen
es of proje
tors with R(Qj) = Vj, R(Qrj) = V rj . To re
over smoothness we use asequen
e of linear mapsMj : Vj ! V rj satisfying a few properties that we are going to dis
ussnow in some depth.It is not known, at present, whether su
h a sequen
e exists; see remark 4.3.9 for asummary of the diÆ
ulties. In se
tion 4.4, however, we will 
onstru
t a sequen
e of operatorswhi
h, in view of the numeri
al eviden
e of 
hapter �ve, seems to us to be a strong 
andidate.The �rst thing we would like to require from this sequen
e of maps is that they 
an beused to approximately solve problem LSFD. In parti
ular we expe
t it to satisfyMjQju!Mu; M yjQrjb!M yb;(A1)in th e topology of Hr, H2(Td), respe
tively, for all u 2 H2(Td), and all b 2 Hr. By theuniform boundedness theorem (see e.g. [15℄, page 165) we have as a 
onsequen
e of thisassumption the existen
e of a �nite 
onstant CM > 0 su
h thatmaxfkMjk; kM yj kg � CM j = 0; 1; : : :(4.9)Suppose now that b 2 A~s2(Hr; fVjg), for some ~s > 0, and write bj = Qrjb. The nextassumption is based on our hope that the solution of the problemminuj2Vj 'j(uj) := kMjuj � bjk2Hris a good \guess" for the minimizer of 'j+1. We will assume that there exists some s1 2 (0; s0℄su
h that(A20) kMj+1M yj bj � PR(Mj+1)bj+1kHr . 2�js�kbkAs�2 (Hr;fVjgj2N0);with s� = minf~s; s1g. While (A20) already 
aptures the essen
e of our assumption, we willask for the (only slightly stronger)(A2) 


n2js�kMj+1M yj bj � PR(Mj+1)bj+1kHro


`2 . kbkAs�2 (Hr ;fVjgj2N0);whi
h will help us avoid some epsilons in the proofs that follow.
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overing smoothness 55Remark 4.3.1. Note that this is really only an epsilon, as it is easy to see that if (A20)holds for a given s�0, then (A2) holds for ea
h s� < s�0.Finally, we will require from the sequen
e fMjg that the kernels of these operators benested.(A3) N (Mj) � N (Mj+1):This last assumption is what really drives the method we will introdu
e now.The intuitive idea behind our method is as follows. Suppose that fVjg is the B-splineMRA introdu
ed in 2.6.2. Then the minimizer uj =M yj bj of 'j will have the same smoothnessas any other element in Vj, and, under the right 
ir
umstan
es, we will have that uj is agood approximation of some smooth solution of problem LSFD.While we may expe
t uj to 
onverge to a solution of LSFD, we 
annot expe
t this limitto be smooth. Looking at the kernel of M , we see that it 
onsists of fun
tions � 2 H2(Td)whi
h are zero on 
, and whi
h satisfy B� = 0. There is no reason to expe
t in generalthat an extensions of u to Td with higher Sobolev smoothness than H2 is orthogonal to thiskernel.So to obtain su
h a smooth extension of u using the solutions uj of the dis
rete problemswe may have to \grow" a 
omponent in this kernel. Our plan is to \lift" the smoothness ofthe �nite dimensional spa
es fVjg by 
olle
ting the 
omponents of the solutions uj in thekernels of the operators Mj+1. Thus, the de�nition of our solution operator starts with astandard solution for some initial j (for simpli
ity we begin with j = 0),S0b :=M y0Qr0b =M yob0;(4.10)and then de�ne Sj+1b := PN (Mj+1)Sjb +M yj+1Qrj+1b:(4.11)Theorem 4.3.2. If fMjg satis�es (A1), (A20), (A3), and b 2 As�2 (Hr; fVjg), then fSjbgj2N0
onverges.Proof. We is enough to show that fSjbgj2N0 is a Cau
hy sequen
e.From (4.10) and (4.11) we 
an derive an alternative expression for Sjb. We have thatSjb = jXi=1 PNjPNj�1 � � �PNiM yi�1bi�1 +M yj bj;where we have written Nj := N (Mj). Thus,Sj+1b� Sjb = PNj+1Sjb+M yj+1bj+1 � Sjb=M yj+1bj+1 � PN?j+1Sjb=M yj+1bj+1� jXi=1 PN?j+1PNjPNj�1 � � �PNiM yi�1bi�1 � PN?j+1M yj bj:



56 Re
overing smoothnessNow, sin
e Nj � Nj+1, we have that Nj ? N?j+1 so that PN?j+1PNj = 0. This eliminates thesum in the last expression above. Continuing with the 
al
ulations, we observe thatSj+1b� Sjb = PN?j+1 �M yj+1bj+1 �M yj bj�=M yj+1Mj+1 �M yj+1bj+1 �M yj bj� ;so that(4.12) kSj+1b� SjbkH2 � kM yj+1kkPR(Mj+1)bj+1 �Mj+1M yj bjkHr� CMkPR(Mj+1)bj+1 �Mj+1M yj bkHr ;where CM is the 
onstant in (4.9). Using assumption (A20), we obtain that kSj+1b�SjbkH2 .2�js�. A simple geometri
 sums argument now gives us that fSjbgj2N0 is indeed a Cau
hysequen
e.The next task will be to prove that we really obtain a solution to problem LSFD fromSb := limj!+1Sjb:Theorem 4.3.3. It holds that Sb is a minimizer of �(u) = kMu� bkHr .The proof of this theorem requires some preparations.Lemma 4.3.4. Let H1, H2 be a pair of Hilbert spa
es, and fAjg a sequen
e of bounded linearoperators whi
h is pointwise 
onvergent. It is known that then the operator A : H1 ! H2given by Av = limj!1Ajv is bounded and linear. If also Ayw = limj!1Ayjw for all w 2 H2,then PN (Aj)v ! PN (A)v PN (Aj)?v ! PN (A)?v(4.13) PR(Aj)w! PR(A)w PR(Aj)?w! PR(A)?w(4.14)Proof. Note that, sin
e PV ? = (I � PV ), the 
laim on the right of (4.13) follows triviallyfrom that on the left. Note also that sin
e R(Aj) = N (Ayj)?, we obtain (4.14) from (4.13).Thus, it is enough to prove the 
laim on the left of (4.13).Let v 2 H1, and write v = v0 + v1, where v0 = PN (A)v, and v1 = v � PN (A)v = PN (A)?v.Now, we only have to prove that PN (Aj)v0 ! v0 and PN (Aj)v1 ! 0 when j !1.From the hypothesis on fAjg it follows that Ajv0 ! Av0 = 0, and so(4.15) PN (Aj)?v0 ! 0when j !1. To see this, note that by the uniform boundedness theorem kAyjk � C for allj and some C > 0, and re
all that AyjAj = PN (Aj)?. Thus,kPN (Aj)?v0kH1 � kAyjkkAjv0kH2 � CkAjv0kH2 ! 0;from whi
h (4.15), as well as PN (Aj)v0 = (I � PN (Aj)?)v0 ! v0, follows.
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overing smoothness 57Now, from Ajv1 � Av1 ! 0, we obtain that(4.16) kPN (Aj)?v1 � AyjAv1kH1 � kAyjkkAjv1 � Av1kH2 ! 0:But sin
e AyjAv1 ! v1, we 
an infer from (4.16) that PN (Aj)?v1 ! v1, and thus PN (Aj)v1 ! 0when j !1.So, PN (Aj)v = PN (Aj)v0 + PN (Aj)v1! v0 = PN (A)v;�nishing the proof.Proof of theorem 4.3.3. Observe thatkMjSjb�MSbkHr = kMj(Sjb� Sb) +MjSb�MSbkHr� CMkSjb� SbkHr + kMjSb�MSbkHr ! 0by theorem 4.3.2, and by (A1), so that MjSjb!MSb.Writing Rj := R(Mj), and noting that MjSjb = PRjbj, we also have thatkMjSjb� PR(M)bkHr = kPRjbj � PR(M)bkHr� kPRj(bj � b)kHr + kPRjb� PR(M)bkHr ! 0sin
e bj ! b, and using lemma 4.3.4.In any 
ase, we have that MjSjb ! PR(M)b, and also MjSjb ! MSb, so that MSb =PR(M)b. But then minv2H2(Td)�(v) = minv2H2(Td) kMv � bk2Hr� kPR(M)b� bk2Hr = kMSb� bk2Hr ;�nishing the proof.Theorem 4.3.5. If fMjg satis�es (A1), (A2), and (A3), then for any 0 < s � s1, theoperator S : As2(Hr; fVjg)!As2(H2(Td); fVjg) given by b 7! Sb is linear and bounded.Proof. Let b; d 2 As2(Hr; fVjg), and �; � 2 R. Then S(�b + �d) exists, and is the limit ofSj(�b+�d) = �Sjb+�Sjd, whi
h in turn 
onverges to �Sb+�Sd. This settles the linearity.It remains to see whether Sb 2 As2(H2(Td); fVjg), and whether S is bounded.Using (A2) and (4.12) (the s� there amounts to our 
urrent s), we obtain�2jskSjb� Sj+1bkH2(Td)	 2 `2and 

f2jskSjb� Sj+1bkH2(Td)g

`2 . kbkAs2 :We also have kSjb � SbkH2(Td) � Pi�j kSi+1b � SibkH2(Td), whi
h inspires us to borrowthe following lemma, found in [16℄, p. 408.



58 Re
overing smoothnessLemma 4.3.6 (Dis
rete Hardy Inequality). Let fakgk2N0 , fbkgk2N0 be sequen
es of realnumbers, and let � > 0. If for some 
 > 0, 0 < � � q,jbkj � 
 1Xj=k jajj�!1=�holds for all k, then  1Xk=0(2k�bk)q!1=q � 
 1Xk=0(2k�ak)q!1=q :Thus, we 
on
lude that

f2jskSb� Sjbkg

`2 . 

f2jskSjb� Sj+1bkg

`2 . kbkAs2 :But kSb� Sjbk � kSb� PVjSbk, so that we obtainkSbkAs2 = 

f2jskSb� PVjSbkg

`2. 

f2jskSb� Sjbkg

`2 . kbkAs2A straight-forward 
orollary of theorem 4.3.5 is the following.Corollary 4.3.7. The 
onvergen
e behavior of fSjbg is given bykSjb� SbkH2(Td) . 2�jsIn summary, given a smooth initial extension f1 of f , and if g is smooth too, we obtainvia the linear bounded operator S a solution to problem LSFD with the same degree ofsmoothness. This, of 
ourse, provided the dis
rete operators Mj, j 2 N0 satisfy (A1), (A2),and (A3). We summarize theorems 4.3.2, 4.3.3, and 4.3.5 as follows.Theorem 4.3.8. Let fVjgj2N0 , fV rj gj2N0 be nested sequen
es of linear spa
es su
h that (4.8)holds. Let fMjg, Mj : Vj ! V rj be a sequen
e of linear maps satisfying (A1), (A2), and(A3). Let f 2 Hs(
), g 2 H�(B)+s(�
) for some s1 � s > 0, and let f1 2 Hs(Td) be anextension of f to Td. Then1. The sequen
e fSjbg, with b = (f1; g) 
onverges to Sb at a rate of O(2�js) in the topologyof Hr.2. Sb 2 H2+s(Td)3. (Sb)j
 is the solution of problem (4.1).Thus, to obtain a smooth solution to problem LSFD, we start by 
hoosing an arbitrary,but smooth, extension of f , and then apply S.



A sequen
e of dis
rete problems 59Remark 4.3.9. The diÆ
ulty in �nding the sequen
e fMjg is, in essen
e, that singularoperators are hard to dis
retize properly. Even when the in�nite dimensional problem is wellposed, we 
annot just use a standard Galerkin approa
h to obtain dis
rete problems. Atta
k-ing the problem via regularization is an option that does not lead too far. The above method,through assumption (A3), is based 
riti
ally on the singularity of the dis
rete operators Mj,so eliminating it is not helpful.Remark 4.3.10. Note that if A and �
 do not satisfy the extreme regularity requirementsimposed in subse
tion 4.2.1, then their regularity adds just another upper bound to s intheorem 4.3.8.The sequen
e of dis
rete problems we introdu
e in the next se
tion seems, at least numer-i
ally, to satisfy (A1), (A2), and (A3). The author is 
onvin
ed that it is possible, althoughnot at all trivial, to prove that the sequen
e in question does indeed satisfy the ne
essaryassumptions.4.4 A sequen
e of dis
rete problemsIn this se
tion, we will dis
retize a simple two-dimensional family of problems using a Petrov-Galerkin approa
h. This sequen
e of dis
rete problems will be used in the next se
tion toperform numeri
al experiments using the method outlined in the previous se
tions. We willgo to some level of detail to explain the motivation behind ea
h 
hoi
e.4.4.1 The model problemOur model problem is (�4 + �I)u = f on 
,Bu = g;(4.17)where � � 0, and B is either the Diri
hlet or the Neumann1 boundary operator. As before,we take f 2 H0(
), and g 2 H�(B)(�
). We also assume that we have already an initialextension f+ at hand. The domain 
 � R2 is any domain with smooth boundary.4.4.2 Norms and spa
esWe want to �nd approximations to the minimizer u+ of the fun
tional(4.18) �(v) = kC
Av � f1k2H0(Td) + kBv � gk2H�(B)(�
):Keeping our goal in mind (that is, to solve (4.17)), we will use the insight of remark 4.2.4and begin by 
hanging the involved norms.We will approximate u+ 2 H2(T2) from the spa
es Vj, j 2 N0 , whi
h we 
hoose to bethe periodi
 B-spline spa
es of order m, with m � 3 �xed, on dyadi
 grids of meshlength1In this 
ase, we assume � > 0 to ensure well-posedness.



60 A sequen
e of dis
rete problems2�j. We 
hose an appropriate ~m, and let 	 be the primal wavelet basis of H2(Td) of orderm and dual order ~m. We will use for H2(Td) the norm indu
ed by this basis (see se
tion2.6.3) sin
e it is straight-forward to 
ompute.Remark 4.2.4 also warns us against 
hanging the norm in L2(Td) = H0(Td). There wewill approximate from the spa
esV 0j = ff 2 L2(Td) : fj�jk 2 �m�1g;of dis
ontinuous pie
ewise polynomials of degree m � 1, whi
h 
an be endowed easily withan orthonormal basis. To 
onstru
t su
h a basis for V 0j , we apply �rst Gram-S
hmidt or-thonormalization in L2([0; 1℄2) to the monomials xiyj with i + j � m � 1, i; j � 0. Wewrite f�0; �1; : : : ; �ng for the fun
tions we thus obtain (here, n = (m + 1)m=2), and notethat it also is a basis for V 00 . We write �ijk(x) = 2j�i(2jx � k), and observe that the setf�ijk : i = 1; : : : ; n; k 2 Z2j g, with Zj = Z=2jZ is an orthonormal basis for V 0j . We use the
anoni
al norm on L2(Td).We identify H�(B)(�
) with H�(B)(T) using a suitable parametrization � : T ! �
. ForH�(B)(T) we 
hoose again the B-spline biorthogonal wavelet bases 	�, ~	�, with �xed ordersm� � 3, and ~m� a

ordingly. But instead of spanning H�(B)(T) with the primal basis, weuse for that purpose the (properly res
aled) dual basis ~	�. The reason for doing this is that,from a numeri
al point of view, it will be far easier to 
ompute inner produ
ts with theprimal wavelets, whi
h are pie
ewise polynomial, than with the duals. This implies that inH�(B)(�
) we approximate from the spa
es ~V �j spanned by the dual wavelets up to level j.We will write Q�j for the oblique proje
tor onto ~V �j asso
iated with 	� (again, we refer tose
tion 2.6.3). We will also use the norm indu
ed by these bases for H�(B), H��(B).Given an element in v in any of these spa
es, we de
orate it with an unders
ore to denotethe Eu
lidean ve
tor 
onsisting of its 
oeÆ
ients. Thus, if v 2 Vj, then v 2 `2(rj) is su
hthat v =P�2rj v� �.4.4.3 The dis
rete operatorsWe de�ne Aj : Vj ! V 0j by Aj := PjAjVj , where Pj := PV 0j is the orthogonal proje
tor ontoV 0j , given by PV 0j f =Xk;i hf; �ijki�ijk:Given a fun
tion v 2 Vj, we have that its tra
e on �
 is given by BDv = vÆ� 2 H3=2(�
).If we are dealing with Neumann boundary 
onditions, then BNv = [(rv)Æ�℄ �n 2 H1=2(�
),where n(t) is the outward normal of �
 at the point �(t). Thus, we de�ne either BDj ; BNj :Vj ! ~V �j , as appropriate2, throughBDj v : = X�2r�j hv Æ �;  �i ~ � (= Q�jBDjVj);2This refers to the fa
t that, when 
onsidering a given problem, we will de�ne only one of these twoboundary operators.



A sequen
e of dis
rete problems 61or BNj v : = X�2r�j h[(rv) Æ �℄ � n;  �i ~ � (= Q�jBNjVj):To obtain a suitable dis
retization of C
, some additional 
are is required. The obvious
hoi
e would be Cj : V 0j ! V 0j , Cjfj = PV 0j C
fj, whi
h written expli
itly is given byCjf =Xi;k hfj�
; �ijki�ijk (= PjCjV 0j ):(4.19)This form has a few serious drawba
ks. For one, the 
oeÆ
ients hfj�
; �ijki are, as a 
on-sequen
e of the non-trivial geometry of 
, expensive to obtain, and expensive to 
omputea

urately. But this has serious 
onsequen
es, as the rank of Cj may 
hange as the result ofsmall errors in the 
omputation of these 
oeÆ
ients, a�e
ting the rank of the overall prob-lem, whi
h in turn 
an distort the solution in an unpredi
table way. See [30℄, pages 335-338,for a thorough dis
ussion.Another possibility is to 
onsider(4.20) Cjf =Xi;k Æj;k;
hfj; �ijki�ijk;where Æj;k;
 is given by Æj;k;
 = (1 if �jk \ 
 6= ;,0 otherwise:This amounts to the orthogonal proje
tion onto V 0j of the restri
tion of f 2 V 0j to(4.21) 
j := [�jk\
6=;�jk:When writing the matrix of this map with respe
t to the basis f�ijk : i = 0; 1; : : : ; n; k 2 Z2j g,we obtain a se
tion of the identity, thus redu
ing the possibility of numeri
al errors. We 
an-not eliminate it 
ompletely, as the 
omputation of Æj;k;
 itself is still subje
t to ina

ura
ies.In any 
ase, it is mu
h more eÆ
ient to 
ompute, and as the numeri
al experiments this farsugest, it is also good enough.Now, we de�ne the map Mj : Vj ! V 0j � ~V �j throughMj = �CjAjBj � ;where Bj is the dis
retized Diri
hlet or Neumann boundary operator, as needed.Let �j = f � : � 2 rjg be the wavelet basis for Vj, and let �rj = f�ijk : i = 0; 1; : : : ; n; k 2Z2j g � f ~ �� : � 2 r�j g be the basis for V 0j � ~V �j . Let M j be the matrix of Mj with respe
tto �j, �rj , and let fj = Pjf+, gj = Q�j g. Writing bj = (fj; gj)T 2 V 0j � ~V �j , uj 2 Vj, andbj = (f j; gj)T , we have as a 
onsequen
e of our 
hoi
e of norms and spa
es that(4.22) 

M juj � bj

22 = kMjuj � bjk2Hr :Thus, to �nd the minimizer of the quantity on the right, we 
ompute the minimizer of thequantity on the left, whi
h is now a simple linear least squares problem in Eu
lidean spa
e.



62 Realizing the iteration4.4.4 SparsenessTo �nd a minimizer of (4.22) it would be quite helpful, for performan
e reasons, if givenv 2 Vj, we 
ould evaluate M jv in O(dimVj) operations. The matrix M j, however, is notsparse. It is quasi-sparse, sin
e the matri
es Aj; Bj have O(log dimVj) entries per 
olumn,with N the number of degrees of freedom. This 
an be solved by fa
torizing these blo
ksusing the wavelet transform; see [11℄, page 122.Let v 2 Vj. Let us write v for the 
oeÆ
ients of v with respe
t to the s
aling fun
tionbasis for Vj. The map Tj : `2(rj)! `2(Z2j ), Tj : v ! v is simply the fast wavelet transform,and its numeri
al evaluation 
osts O(dimVj) operations. One easily sees that if A0j is thematrix of Aj with respe
t to the s
aling fun
tion basis in Vj and the basis 
hosen for V 0j ,then A0j is sparse, and thus evaluating Ajv = A0jTjvusing the fa
torization on the right (applying �rst Tj, and then A0j) 
osts also O(dimVj)operations.Similarly, let ~T �j ; T �j : `(r�j ) ! `(Zj) be the fast wavelet transforms g ! g for g 2 ~V �j ,h ! h for h 2 V �j , respe
tively, and let B0j be the matrix of Bj with respe
t to the s
alingfun
tion bases of Vj and ~V �j . Then evaluating(4.23) Bjv = ( ~T �j )�1B0jTjv = (T �j )TB0jTjvusing the fa
torizations on the right also 
osts only O(dimVj) operations. As a 
onsequen
e,we obtain that through this fa
torization we 
an evaluateM jv = �I 00 (T �j )T��CjA0jB0j �Tjvin O(dimVj) operations.4.5 Realizing the iterationThe obtain a minimizer of ��(vj) = 

M jvj � bj

22we 
an use, for example, the 
onjugate gradients (CG) algorithm[26℄ to solve the normalequations,(4.24) MTjM jvj =MTj bj:While this has well known disadvantages, it also has an important advantage, whi
h is thatit 
an give us the proje
tion of vj�1 onto N (M j), needed to realize (4.11) essentially for free.The key to that insight is obtained by taking a look at what the CG algorithm does.To �nd an approximate solution of the �nite dimensional linear equation Ax = d, the CGmethod produ
es iterates xi whi
h are the minimizer in Wi = x(0) +spanfr0; r(1); : : : ; r(i�1)g
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tional 
i(y) = (y � x�)TA(y � x�), where x� is the exa
t solution of Ax = d,x(0) is some initial guess, and r(k) = Akd. The minimizer of 
i in Wi exists, and is unique,only if A is symmetri
 positive de�nite on Wi. One has that x(i) = x� when Wi = Wi+1(if the algorithm is performed with exa
t arithmeti
), but if the 
ondition number of A isreasonable, then the x(i) will be a good approximation of x� far earlier.Suppose now that A is symmetri
 and positive semide�nite. If d ? N (A), then rk ?N (A) for all k, and thus A is symmetri
 positive de�nite onWi = x(0) + spanfr0; r(1); : : : ; r(i�1)g= PN (A)x(0) + PN (A)?x(0) + spanfr0; r(1); : : : ; r(i�1)gfor all i [25℄. Given an initial guess x(0), we will obtain at the i-th step an x(i) su
h thatPN (A)?x(i) is an approximation of x�, but whi
h also satis�es PN (A)x(i) = PN (A)x(0). Sin
eMTj bj ? N (MTjM j), and sin
e N (MTjM j) = N (M j), we 
an 
ompute (see (4.11))uj+1 = PN (Mj+1)uj +M yj+1bj+1by solving (4.24) with the 
onjugate gradient method using uj as an initial guess.Now write CG(A; d; x0; �)for the approximate solution of Ax = d, with x(0) as an initial guess, obtained by iteratinguntil the error is smaller than �. Then the numeri
al realization of (4.10), (4.11) is given by(4.25) SPFD(j0; j; fbjg; �) :=(0 if j < j0CG(MTjM j; MTj bj; SPFD(j0; j � 1; fbjg; �); �) otherwise.Computing an approximation to SJb amounts to evaluate SPFD(j0; J; fbjg; �).The question arises as to what e�e
t the inexa
t evaluation of M yjbj has on the sequen
efSjbg. In the experiments we have performed, it does not seem to play an important role;further resear
h is needed to shed light on this issue.Instead of using standard CG with the normal equations, one should use the mathemati-
ally equivalent but numeri
ally superior CGLS, developed in [25℄. The dire
t appli
ation ofother Krylov subspa
e least-squares solvers is a deli
ate matter. In the 
ase of LSQR[32℄, avery robust least squares solver, the problem is to implement the proje
tions onto the kernel.Still other methods, like RRGMRES [6℄, assume that the system is given through a squarematrix. Again, we see in further resear
h an opportunity for improvements in performan
eof the method des
ribed in this 
hapter.Note that if (4.9) holds, the 
ondition number of the least-squares problems stays boundedwith j, and thus, in theory, no further pre
onditioning is needed. We would have�(Mj) = kMjkkM yj k � C2M ;and if we do not avoid the normal equations, we would end up with�(MTj Mj) � C4M :
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Chapter 5Numeri
al experimentsThe previous two 
hapters have made theoreti
al predi
tions whi
h we would like to observein pra
ti
e. The most important reason is that we have made asymptoti
 predi
tions, andwould like to know whether they are observable, and thus whether they have any relevan
e inpra
ti
e. This is 
omparatively more important for the SPFD method introdu
ed in 
hapterfour, as it makes some strong promises, and sin
e open questions remain, than for the resultsof 
hapter three on the smoothness of solution of the FDLM method, whi
h 
on
ern a knowmethod, and whi
h are theoreti
ally 
on
lusive.It is still worthwhile to 
he
k numeri
ally the e�e
t on smoothness of a non-zero LagrangeMultiplier. From the proofs of theorems 3.2.7, and 3.2.9 (More a

urately, from the proof oflemma 3.2.8), we might be left with the impression that the 
onvergen
e rate predi
ted 
anbe observed only for extremely high resolutions, beyond the rea
h of most pra
ti
al needs.These are the kinds of questions we wish to answer.5.1 The experiments5.1.1 Goals of the experimentsWe will test both methods against a few simple examples and examine the results with thefollowing goals.1. Con
erning the FDLM method(a) Observing experimentally the phenomenon predi
ted by theorem 3.2.7 on the
onvergen
e of linear approximation s
hemes.(b) Observing the phenomenon predi
ted by theorem 3.2.9, on the 
onvergen
e ofnonlinear approximation s
hemes.2. Con
erning the SPFD method(a) Measuring the smoothness of the solution obtained, rated through the 
onvergen
espeed of linear approximation using B-splines.65



66 The experiments(b) Observe the e�e
ts of the nested iteration on the solution. Does it really make adi�eren
e?(
) Establish whether the method 
an take advantage of the approximation power ofhigher order B-splines.(d) Observe the behavior of the method when fa
ed with Neumann boundary 
ondi-tions.5.1.2 Test 
asesGiven 0 < r < 1=2, we 
hoose as a domain a simple dis

r = fx 2 T2 : kx� (0:5; 0:5)k < rg;and parametrize the boundary through � : T ! �
, given by(5.1) �(t) = (0:5; 0:5) + r(sin(2�t); 
os(2�t)):Our 
hoi
e for r will be limited to r = 0:3, ex
ept on
e where we will use r = 0:45 to beable to better measure the 
onvergen
e of nonlinear approximation s
hemes. As always, weembed 
 into T2.We will investigate the behavior of the methods in question on the following test problems.Problem P1: Find u su
h that(�4+ I)u = 1 on 
,BDu = 0;with r = 0:3 (and only on
e with r = 0:45). We 
hoose as the extension to T2 the obviousone, f+I = 1.The above data 
an be 
onsidered too 
anoni
. Thus, we also solve the following problem,using nontrivial data.Problem P2 Find u su
h that(�4+ I)u = fII on 
,BDu = gIIwith fII = 1 + 12 
os(5(x2 + y2)), gII = 0:01 � sin(4�t), r = 0:3.To use any of the �
titious domain methods above, we must 
onstru
t an extension offII to Td. We 
ould just 
hoose the fun
tion f(x; y) = 1 + 12 
os(5(x2 + y2)) on [0; 1)2 as anextension of the above right-hand side, and then lift it to T2 by pretending f is periodi
,but this has the drawba
k that we do not obtain a smooth fun
tion on Td. To �nd anextension for fII from 
 to [0; 1)2 that is smooth, and 
an be lifted smoothly from [0; 1)2to T2, we will 
onstru
t an in�nitely often di�erentiable fun
tion � : [0; 1℄2 ! R whi
h,together with all its derivatives, is zero on �([0; 1℄2), and whi
h is 1 on 
. Then, we takef+II(x; y) := �(x; y)f(x; y), restri
t it to [0; 1)2, and �nally we lift it to T2.For the domain 
r with r = 0:3, a suitable fun
tion � 
an be obtained through a tensorprodu
t with itself of a one-dimensional C1 fun
tion �0 : [0; 1℄ ! R whi
h, together with



Remarks on the implementation of the solvers 67all its derivatives, is zero on 0; 1, and is 1 on [0:2; 0:8℄. To 
onstru
t �0, we will 
onsider thestandard molli�er ��;y(x) = (exp �� �2�2�jx�yj2� if kx� yk2 < �,0 otherwise,and engineer it to suit our purposes, as follows. First, we take ��2(x) = �0:1;0:1(x)��0:1;0:9(x).Then, we de�ne ��1(x) := R x0 ��2(y)dy, and obtain�0(x) = ��1(x)��1(12) :Now, we set �(x; y) = �0(x)�0(y) (see �gure 5.1 for plots of � and fII). In the imple-mentation, we used a standard adaptive quadrature routine to evaluate �0 at any pointx.
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(b) Plot of f+II (and f+III).Figure 5.1: Constru
tion of the right-hand side for problems P2 and P3.The next problem uses the same data as problem P2, but this time we impose Neumannboundary 
onditions.Problem P3 Find u su
h that (�4+ I)u = fIII ;BNu = gIII ;with fII = fIII , and gIII = gII, and r = 0:3. As the extension to Td of the right hand sidewe use exa
tly the same as before, and so have f+III = f+II .5.2 Remarks on the implementation of the solversAll the te
hniques used to implement the 
omponents of the solvers needed for the numeri
alexperiments (�
titious domain - Lagrange multiplier method, and smoothness-preserving



68 Remarks on the implementation of the solvers�
titious domain method) are standard. We will brie
y mention them by name but sparethe reader of details whi
h 
an be found in any elementary numeri
al analysis book. Theimplementation of the periodi
 wavelet transforms employed is also straightforward, andthus we do not dis
uss it here either.We implemented the SPFD method faithfully as des
ribed in 4.4, with the following twodi�eren
es. For one, we used higher pre
ision (smaller �) on lower levels, where iterations
ost less; this has been do
umented in the iteration histories we will provide. The se
onddi�eren
e is that we have given a higher weight to the norm on the boundary than in thedis
retization mentioned in 4.4. This ensures that boundary 
onditions where satis�ed betteron a lower level. Thus, instead of minimizing � as de�ned in 4.18, we minimized(5.2) �(v) = kC
Av � f1k2H0(Td) + �kBv � gk2H�(B)(�
)with � = 70. Again, see remark 4.2.4 for a justi�
ation.The dis
retization of the di�erential operator A = �4 + �I for the FDLM approa
h isdi�erent than that for the SPFD method des
ribed in subse
tion 4.4.3. For appropriate m,~m to be spe
i�ed later, we 
onsider the 
orresponding pair of (properly s
aled) biorthogonalB-spline wavelet bases 	 for H1(T2), ~	 for H�1(T2), and the pair of biorthogonal MRAsfVjg, f ~Vjg of B-splines and duals, respe
tively, from where those bases arise. The dis
reteoperators �Aj : Vj ! ~Vj are given by �Aj = ~QjAjVj .On the other hand, we have that the dis
retization of the Diri
hlet boundary operatorused for the FDLM method is almost identi
al to that used in the SPFD method. Theonly di�eren
e is in the s
aling of the bases 
hosen, sin
e the FDLM formulation 
onsidersBD : H1(T2) ! H1=2(�
), instead of BD : H2(Td) ! H3=2(�
). But just as before,we identify H1=2(�
) with H1=2(T) via the parametrization (5.1), and instead of spanningH1=2(T) with the primal basis, we use for that purpose the (properly res
aled) dual basis~	�, using 	� to span H�1=2(T).Given f+ 2 H�1(T2), g 2 H1=2(�
), we are looking for the 
oeÆ
ients u+, p with respe
tto the bases 	, 	� of fun
tions u+ 2 H1(T2), p 2 H�1=2(�
) su
h that� �Aj (BDj )�BDj 0 ��u+p � = �f+g � ;or rather(5.3) � �Aj (BDj )TBDj 0 ��u+p � = �f+g � ;where the entries in the matrix �Aj are given by( �Aj)�� = hA �;  �iwhile the entries in BDj are given by(BDj )�� = hBD �;  �� i:



Remarks on the implementation of the solvers 69We use the fast wavelet transform to fa
torize �Aj in exa
tly the same way as done beforein 
hapter four, subse
tion 4.4.4. We obtain� �Aj (BDj )TBDj 0 � = � ~T�1j 00 ( ~T �j )�1�� �A0j (BD;0j )TBD;0j 0 ��Tj 00 T �j � ;where �A0j and BD;0j 
orrespond to the representation of A and BD in terms of s
aling-fun
tions; we will 
ome ba
k to this shortly.We will use LSQR (and for 
omparision purposes, also CGLS) to solve the resultingsystem of equations (5.3).Computing matrix 
oeÆ
ientsThe only missing detail left is how to 
ompute the matrix 
oeÆ
ients needed to set upthe systems of linear equations we will solve. We shall do this here, �rst for the boundaryoperators, and then for the di�erential operators. The 
omputation of the entries in Cj isstraight-forward (see (4.20)), and thus we do not dis
uss it any further.We explain in some detail the 
omputation of the entries in the matrix B0j (see (4.23))
orresponding to the boundary operators �rst for the 
ase of the Diri
hlet boundary operator,and then apply the same approa
h to the 
omputation of the entries 
orresponding to theNeumann boundary operator. Again, we always assume that the basis elements are properlys
aled.To 
ompute (BD;0j )kl = h�jk Æ �; ��jli = ZT[�jk Æ �℄(t)��jl(t)dt;we �rst identify a set of pairwise disjoint open intervals fIig in T su
h that, writing �kl(t) =[�jk Æ �℄(t)��jl(t), one has supp �kl = [iIi, and su
h that �kl is C1 on ea
h Ii. This obtainthese intervals, it is enough to look at the intervals on whi
h ��jl is a polynomial, and interse
tthe 
ubes on whi
h �jk is a polynomial with �
. Finally, we 
omputeZT[�jk Æ �℄(t)��jl(t)dt =Xi ZIi[�jk Æ �℄(t)��jl(t)dtby approximating ea
h of the integrals on the right via a high order Gauss Legendre quadra-ture rule. In the implementation used to perform these experiments we used one of order10, whi
h was deemed to be a

urate enough.To 
ompute the entries in the matrix 
orresponding to the Neumann boundary operator,we simply repeated the above pro
ess, but repla
ing �jk Æ � with r�jk(�(t))n(t)��jl(t).To 
ompute the entries in �A0j , given by( �A0j)kl = hA�k; �li = ZTr�kr�ldx;we used the fa
t that the fun
tions involved are pie
ewise polynomials, and thus we 
omputedthese entries using standard quadrature rules on ea
h of the polynomial pie
es.



70 Numeri
al results and dis
ussionThe 
omputation of the entries in the matrix A0j (needed for the SPFD method) were ob-tained by using simple quadrature rules to evaluate the inner produ
ts (A0j)ikl = hA�jk; �ijli.For both the SPFD and FDLM methods we have 
hosen m� = 2, ~m� = 6 for the primaland dual orders of the B-spline wavelet bases used for the boundary. For the B-spline waveletbases o

urring in the dis
retization of the domain, we have 
hosen m = 3, ~m = 7, unlessotherwise stated.5.3 Numeri
al results and dis
ussion5.3.1 Smoothness of the solutions obtained using the FDLMmethodBehavior of the linear approximation errorWe were able to observe the phenomenons predi
ted by theorems 3.2.7 for the fairly 
anoni
alproblem P1, using a radius of r = 0:3 for 
. We 
omputed the solution u+ of the FDLM withthe 
orresponding data to level 8 on Td, and, following [12℄, we used level 6 on �
 to satisfythe LBB 
ondition and obtain better a

ura
y. We did let LSQR iterate until it arrived at aresidual of norm smaller than 10�3, whi
h took 273 iterations1. A plot of the solution 
an beseen in �gure 5.2(a), where it is also possible to appre
iate opti
ally the jump in the normalderivatives. A plot of the Lagrange multiplier 
an be seen in �gure 5.2(b).
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 0  0.2  0.4  0.6  0.8  1(b) Lagrange multiplierFigure 5.2: Solution and Lagrange multiplier obtained when solving problem P1 with theFDLM method.We used the fast wavelet transform to obtain the wavelet 
oeÆ
ients of u+J with respe
tto the basis 	, but this time s
aled to be a basis of L2. This gave us a representation of u+Jof the form u+J = X�249 
� �1the CGLS method needed 1421 iterations to rea
h the same a

ura
y, 
on�rming its known drawba
ks



Numeri
al results and dis
ussion 71with ku+J kL2(Td) �  X�249 j
�j2! 12 :Figure 5.3 plots the errors of linear approximation in the norm indu
ed by 	. That is,the quantities E	j (u+J ) = 0� X�2r8: � =2Vj j
�j1A 12 ;whi
h are uniformly equivalent to the errors,Ej(u+J ) = infv2Vj ku+J � vkL2(Td)but easier to obtain.Remark 5.3.1. The phenomenon observed in �gure 5.3 is the 
onvergen
e rate of the linearapproximation s
heme when applied to the obtained solution. The error plotted should notbe understood as the distan
e to the exa
t solution.
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Figure 5.3: Linear approximation errors when approximating the solution to problem P1obtained with the FDLM method.After some initial irregularity, we observed the expe
ted asymptoti
 behavior. To measureit, we 
hose a range of j where the error seemed to behave as predi
ted, and �tted to it thefun
tion �(j) = C2js, using linear least squares in the 
oordinates of the plot. This gave usan estimate of the order of 
onvergen
e s. We plotted the obtained � (dotted line in �gure5.3), along with marks for the data used in the �t.



72 Numeri
al results and dis
ussionBehavior of the nonlinear approximation errorTo investigate the behavior of the nonlinear approximation error, it was found to be advan-tageous to use a larger radius (we used r = 0:45 for 
). This is due to the fa
t that thenthere are more wavelet 
oeÆ
ients on T2 that interse
t the boundary than if the radius issmaller.We 
omputed the solution u+ of the FDLM with the 
orresponding data to level 8 onTd, and level 6 on �
. We solved again the system of linear equations using LSQR with atoleran
e of 10�3. This time it needed 919 iterations2. A plot of the solution 
an be seen in�gure 5.4, alongside the obtained Lagrange multiplier.
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 0  0.2  0.4  0.6  0.8  1(b) Lagrange multiplier pFigure 5.4: Solution and Lagrange multiplier obtained when solving problem P1 with theFDLM method, this time with r = 0:45.To analyze the solution u+J we used again the fast wavelet transform, this time to obtainthe wavelet 
oeÆ
ients of u+J with respe
t to the basis 	, s
aled to be a basis of H1(Td).This gave us a representation of u+J of the formu+J = X�2r8 b� �with ku+J kH1(Td) �  X�249 jb�j2! 12 :Next, we sorted the 216 
oeÆ
ients in de
reasing order of their absolute values, produ
ingthe ve
tor of real numbers a = (a0; a1; : : : ; a216�1). Thus, we still haveku+J kH1(Td)  216�1Xi=0 a2i! 12 ;2In 
omparision, CGLS needed 1372 iterations.



Numeri
al results and dis
ussion 73while also obtaining the error of the best N -term approximation to u+J fromE	N(u+J ) =  216�1Xi=N a2i! 12 :We subje
ted ! = B�Jp to a similar treatment; that is, we 
omputed the wavelet 
o-eÆ
ients of ! with respe
t to the dual basis ~	 of 	, whi
h is a basis for H�1(Td), andpro
eeding analogously to how we pro
eeded with u+J .We have plotted the 
onvergen
e history of the best N -term approximation in doublylogarithmi
 s
ale, and as done in the linear approximation 
ase, we have plotted it togetherwith the �tted (in doubly logarithmi
 
oordinates) �(x) = CN�s and the data points usedin the �t (
hosen where we believe one 
an observe the asymptoti
 behavior expe
ted). Wehave done this both for u+J and !; see �gure 5.5.
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Figure 5.5: Convergen
e histories of best N-term approximation to u+J and BTp. Idealized
onvergen
e rates have been �tted to measure a
tual 
onvergen
e rates.A mixed pi
ture emerges, whi
h is not entirely unexpe
ted. We are plotting the bestN�term approximation errors with respe
t to the solution u+J and not with respe
t to thesolution of the in�nite dimensional problem, whi
h remains beyond our rea
h. The sequen
eof wavelet 
oeÆ
ients of u+J is 
ompa
tly supported, and thus belongs to any `w� . Eventually(in both �gures from N � 500 onwards), the de
ay of the error must a

elerate, as the bestN -term approximation of u+J is exa
t for N = 216.Note that the a

eleration is due to the exhaustion of the degrees of freedom 
orre-sponding to wavelets whose supports interse
t the boundary. After around N = 1500, thesingularity at the boundary, as re
e
ted in the solution analized, was fully resolved. Fromthen on, the 
onvergen
e rate is due to the smoothness of the solution away from the bound-ary. One should not misunderstand neither the theoreti
al results of 
hapter three, nor thenumeri
al eviden
e presented here. While asymptoti
ally the 
onvergen
e rate of the non-linear approximation s
heme is limited, it still yields greater a

ura
y with far fewer degreesof freedom than the linear approximation s
hemes.



74 Numeri
al results and dis
ussionj Toleran
e Iterations Initial residual3 1.0000e-05 11 7.0711e-014 2.5119e-05 0 6.7104e-115 6.3096e-05 0 6.6714e-116 1.5849e-04 0 6.4922e-117 3.9811e-04 0 6.4058e-118 1.0000e-03 0 6.3563e-11Table 5.1: Iteration history for the SPFD method applied to problem P15.3.2 Behavior of the SPFD methodTo test the SPFD method, we 
hose the smaller radius of r = 0:3, whi
h allows us toappre
iate better the smooth extension of the solution. The re
ursion (4.25) was evaluatedwith j0 = 3, and J = 8, but 
hoosing higher pre
ision for smaller j (where iterations are
heaper) than for higher j. We summarize the iteration history for problem P1 in table 5.1.The 
olumn labeled \initial residual" lists the errorskMTj (M jx0j � bj)k;where x0j is the initial guess obtained from the result of the previous level (or zero, if therewas no previous level). The level 
hosen for the dis
retization on the boundary was alwaysthe same as for the domain.In this parti
ular 
ase we observe the promise of the SPFD method materialize in adramati
 way. Observe that the solution found for j = 3 was already good enough to satisfythe expe
ted a

ura
y even on level 8, needing no further iterations. Find a plot of thesolution in �gure 5.6(a). We have also plotted the boundary values of the solution obtainedin �gure 5.6(b).We �nd this experiment quite remarkable. It shows that the SPFD 
an indeed �nd verysmooth solutions if that is possible. In this 
ase, the solution on the domain is polynomial;one easily 
he
ks that the solution of the original problem isu = 0:25 �r2 � (x� 0:5)2 � (y � 0:5)2� :The SPFD method is a
tually able to �nd in V3 an exa
t extension of u to T2!To test the SPFD method against more realisti
 data, we solved next problem P2. Wehave summarized the iteration history in table 5.2, and show the solution v+J in �gure 5.7.Using the same pro
edure as for the solution of the FDLM method above, we plot the linearapproximation error, together with the �tted idealized 
onvergen
e rate (see �gure 5.7).Sin
e we are using pie
ewise quadrati
 C1 fun
tions with meshsize h = 2�j, and sin
e theextended right-hand side is C1, we expe
t a 
onvergen
e rate of at least 2�3j. The measured
onvergen
e rate is 2sj, with s � �3:65, showing again that the method is able to �nd verygood extensions for the solution.
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 obtained when solving problemP1 with the SPFD method (note the order of magnitude on the y-axis of �gure 5.6(b)).j Toleran
e Iterations Initial residual3 1.0000e-05 75 6.3801e-014 2.5119e-05 112 3.0223e-025 6.3096e-05 167 1.4061e-026 1.5849e-04 237 7.7306e-037 3.9811e-04 215 4.0875e-038 1.0000e-03 7 2.1018e-03Table 5.2: Iteration history for the SPFD method applied to problem P2The e�e
t of the SPFD iterationThe next item on our 
he
klist is to see whether we 
an observe the e�e
ts of the nestediteration s
heme (4.11) on the solution obtained. Opti
ally, at least, it is quite easy to spot.Contrast �gure 5.7 with �gure 5.9(a), where we show the solution of problem P2 on levelJ = 8 without using nested iteration. That is, we solvedkM8w+8 � b8k`2 ! min!with CGLS until the residual was smaller than 10�3, whi
h took 476 iterations. Observealso the linear approximation histories for both solutions, as seen in �gures 5.8 and 5.9(b).We 
on
lude that while the nested iteration de�nately drives the 
onstru
tion of a smoothsolution, the basi
 SPFD formulation by itself (4.5) is quite 
apable of delivering bettersmoothness than the FDLM method.
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Figure 5.8: Linear approximation error and �tted idealized 
onvergen
e rate for v+J .Higher orderWe 
hose m = 5, ~m = 9, and solved again problem P2. The 
onvergen
e history is summa-rized in table 5.3, the solution 
an be seen in �gure 5.10. We observe, as done with exampleI, that the solution at a lower level is good enough to satisfy the equations at a higher levelto the required a

ura
y. The de
ay of the linear approximation errors is far too fast to beof any use rating the 
onvergen
e.The Neumann problemFinally, we try out the SPFD method with the Neumann problem (problem P3). For thesolution, see �gure 5.11(a), while the values of the outward normal derivative at the boundary
an be appre
iated in �gure 5.11(b). We have summarized the iteration history in table 5.4.
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(b) Linear approximation er-rorFigure 5.9: Solution and boundary values of the solution at �
 obtained when solving problemP2 with the SPFD formulation but without nested iteration.j Toleran
e Iterations Initial residual3 1.0000e-05 225 6.3607e-014 2.5119e-05 858 2.0985e-025 6.3096e-05 926 3.9566e-046 1.5849e-04 0 1.0457e-047 3.9811e-04 0 1.0026e-048 1.0000e-03 0 9.6757e-05Table 5.3: Iteration history for the SPFD method applied to problem P2 (using higher orderB-splines)
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j Toleran
e Iterations Initial residual3 1.0000e-05 118 7.4651e-014 2.5119e-05 204 1.1609e-015 6.3096e-05 282 1.9109e-026 1.5849e-04 271 8.6360e-037 3.9811e-04 201 4.1898e-038 1.0000e-03 14 2.0700e-03Table 5.4: Iteration history for the SPFD method applied to problem P3 (Neumann boundary
onditions)



Chapter 6Final notes
6.1 Con
lusionsWhat follows is a brief summary of the main a
hievements and results of this thesis.� We generalized and 
omplemented some results from the literature [21℄, and have foundthat the solutions obtained using the FDLM approa
h do, in general, su�er from a la
kof regularity (see theorem 3.2.7). Whenever the Lagrange multiplier is non-zero, and ifthe right-hand side is in H�1=2+� for some � > 0, then the solution obtained is at bestin H3=2.This la
k of regularity implies that the performan
e of linear approximation s
hemes(that is, in essen
e, approximation from uniform grids) is limited.In parti
ular, it was found that if the Lagrange multiplier is non-zero, then for B-spline approximation from uniform meshes the error in the L2 norm de
ays at best as2�1:5j, where j indi
ates the level of resolution (that is, the meshsize is given throughh = 2�j). This behavior o

urs independently of the order of the used B-spline bases.We were able to observe this behavior in numeri
al experiments.� A similar result was obtained for standard nonlinear approximation s
hemes (isotropi
adaptive s
hemes). We studied best N -term approximation using wavelet bases, andfound that if the Lagrange multiplier 
ould be identi�ed with a measurable non-zerofun
tion on an interval, then best N -term approximation using B-spline wavelet bases
onverged at best as N� 12(d�1) . Again, this behavior is independent of the orders of thewavelets used.The above behavior was also 
on�rmed by numeri
al experiments.� A new �
titious domain method (the smoothness preserving �
titious domain method,or SPFD method) was proposed that is designed to over
ome these limitations. Themethod 
onstru
ts a smooth solution through the 
onstru
tive use of fundamentalprin
iples of approximation theory.It was established that the solutions obtained via the SPFD method are solutions tothe original ellipti
 boundary value problems. That is, the method is sound.79



80 OutlookTheoreti
al eviden
e 
ould be supplied that showed that, under 
ertain 
onditions onthe dis
retization, the solution obtained also has optimal smoothness.A dis
retization s
heme was introdu
ed whi
h promises to satisfy these requirements.Numeri
al experiments were provided that seem to 
on�rm that the solutions obtaineddo indeed have optimal smoothness. This was evaluated by measuring the 
onvergen
erate of B-spline approximation from �xed grids, and 
omparing that rate with the ratepredi
ted by standard approximation results.� Numeri
al experiments with the SPFD method found that the measured approximationorder was higher than the lower bounds predi
ted by theory.The numeri
al and theoreti
al results are very en
ouraging and suggest that the SPFDmethod is worth of further study.6.2 OutlookA lot remains to be done. In parti
ular, we feel that the following tasks are promising routesof further resear
h.Analyze other linear solversThe CGLS method is not very good. This has been known for a long time, and we wereable to 
on�rm it here, taking a look at the number of iterations needed to solve problemP1 with the �
titious domain - Lagrange multiplier approa
h.However, any alternative should preserve the 
omponent in the kernel of the SPFDoperator Mj to be, from a theoreti
 point of view, a good 
andidate.Fill in the gaps of the theoryThe global 
onvergen
e and smoothness of the limit of the SPFD method holds, a

ordingto the provided theory, if the dis
rete operators satisfy assumptions A1, A2, and A3. Thequestion is, does the sequen
e of operators designed in 4.4 satisfy these assumptions? Webelieve that it does. But if not, do su
h sequen
es of operators exist at all?Another possibility is to explore whether requirements A1, A2, and A3 
an be substitutedby other requirements, that are either easier to 
he
k or easier to satisfy. We believe thatthere is a lot of spa
e for variations in this formulation.Use of other approximation spa
esFor the analysis, as well as for the numeri
al experiments, we have used periodi
 splines ondyadi
 grids. While this 
hoi
e guarantees us a lot of simpli
ity and approximation power,it is 
ertainly not the only possibility.For numeri
al purposes, it would be interesting to test the method with more generalspline and �nite-element spa
es, for instan
e.



About the software 81More general formulationAnother limitation of the SPFD method is that, due to its 
urrent formulation, it 
annotdeal with problems on domains that 
ontain 
orners. Thus, 
hanging the formulation toa

omodate for this 
ase is perhaps one of the most urgent dire
tions of resear
h that shouldbe followed.AdaptivityThe SPFD method as it was 
onstru
ted here is not adaptive, and it is not immediately 
learhow to 
onstru
t an adaptive strategy that still realizes the smoothness preserving behavior.It has to be noted that the point of view that has allowed us to 
onstru
t and analyze thismethod is not too distant from the points of view taken in [8℄ and [7℄, making those arti
lesa 
anoni
al starting point.An adaptive SPFD solver would be a very powerful tool for dealing with problems thatinvolve 
omplex domains and singularities.General ellipti
 boundary value problemsIt is not too diÆ
ult to \upgrade" the proofs in 
hapter four to problems where the di�erentialoperator has higher order, and to more general boundary operators. A more interesting routeof exploration are problems where di�erent types of boundary 
onditions hold on di�erentparts of the boundary.Another interesting possibility is to try to apply the SPFD approa
h to other problems,as Stokes and Navier-Stokes problems.6.3 About the softwareThe programs where written in Common Lisp, a modern, obje
t oriented, ANSI standardizeddiale
t of the se
ond oldest programming language still in use (the oldest is Fortran). It wasinitially developed by John M
Carthy in [29℄, and used mainly in the arti�
ial intelligen
e
ommunity. Later it be
ame the general purpose language it is today. Many features of thelanguage work together to improve the produ
tivity of the programmer at several levels.� Syntax: The syntax is very regular and simple. Expressions have the form(hoperatori fhargumentig)where ea
h of the arguments is either atomi
 (number, ve
tor, symbol, et
), or anotherexpression. A mathemati
al expression like sin(�s) + Cex would be written in lisp as(+ (sin (* alpha s))(* C (exp x)))



82 About the softwareWhile at �rst this syntax strikes as hard to understand, a se
ond inspe
tion revealsthat it 
ontains no ambiguities. To deal with the amount of parentheses one needs thesupport of a good text editor. But as a side e�e
t, syntax errors almost disappear. Thenumber of apparent errors (whi
h would trigger a 
ompiler error) and subtle (whi
hmake for hard to �nd errors) is greatly redu
ed. This is a large advantage over somemodern languages that su�er from an ex
eedingly 
omplex syntax (most notably, andrelevant to our goals, C++), a feature whi
h has been observed to degrade programmerprodu
tivity.� Code generation and ma
ros: A side e�e
t of the simple and regular notation isthat sour
e 
ode itself is dire
tly amenable to ma
hine manipulation. What is nowbeing 
alled \generative metaprogramming" using C++ templates has been presentin Common Lisp sin
e far more than a de
ade, and, sin
e the 
omplete language isavailable at 
ompile time, in a more mature and powerful form [23℄.� Ri
h environment: Development in Common Lisp usually happens intera
tively.The REPL (read-eval-print loop) makes it possible to inspe
t immediately newly de-�ned 
omponents of the appli
ation without needing to restart the program froms
rat
h. The user experien
e is similar than that from other intera
tive environments,while the performan
e 
an be the same as that of monolithi
 programs (this dependson the implementation).� Mature Standard: The ANSI Common Lisp standard was formulated at a time whenample experien
e on the use of all features was available. It in
ludes The CommonLisp Obje
t System (CLOS), and its standard library in
ludes many fa
ilities that areonly now beginning to appear in the standard library of modern languages; hash tablesare but one prominent example.While de
ried as slow and hard to use, and held to be 
ertainly not a good 
hoi
e fornumeri
al appli
ations, we found exa
tly the opposite to be true, and are not alone withthat appre
iation; see [31℄. Performan
e 
omparable to C and Fortran is available in 
ertainimplementations1.For our purposes, the most important advantage was that it allowed us to explore manyprototypes and perform many experiments. Its intera
tive nature and high performan
eallowed us to do so with little e�ort. Many di�erent dis
retizations and 
on�gurations weretried before arriving at the 
on�guration presented in se
tion 4.4. Many more than wouldhave been possible using any other language.
1We used CMUCL, a high performan
e Common Lisp 
ompiler to be found at http://www.
ons.org/
mu
l
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