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Chapter 1

Introduction

Fictitious domain methods, sometimes also called domain embedding methods, are a family
of tools for the solution of boundary value problems on irregular and complex geometries.
What distinguishes them from other methods is that they try to employ simple discretiza-
tions and methods which work well on regular geometries, and coerce them, in one way
or another, to produce a solution of the problem on the complex geometry. They achieve
this by embedding the original domain into a much simpler one (the fictitious domain), and
reformulating the problem there, a step which always involves some form of extension of
the data. Instead of solving the original problem directly, one obtains an extension to the
fictitious domain of the solution of the original problem. The boundary conditions are usu-
ally enforced by mechanisms which do not modify the discretization on the domain, or do
so only in a limited way. Prominent examples of such mechanisms are Lagrange multipliers
and penalty parameters.

This type of construction produces fairly flexible methods that can cope easily with prob-
lems where the geometry changes often. A canonical application is the use as a component
in shape optimization problems or free boundary problems (see for instance [24]). What
makes fictitious domain methods so invaluable in these applications is their strict black box
approach. Since no remeshing is necessary, they can operate on machine-generated geometry
descriptions without supervision, and do so reliably.

Another possible reason to use a fictitious domain formulation is to tap the power of
methods which are only available on simple geometries, a theme explored for example in [3]
and the references therein. It is this point of view which shall dominate in the present thesis.
We will study fictitious domain formulations as an alternative to other, more traditional
formulations for standard elliptic boundary value problems, focusing on them as a vehicle to
simplify the use of wavelet-Galerkin discretization schemes.

1.1 Wavelet methods and fictitious domain formula-
tions

Wavelets, which appeared first as a tool for signal analysis, have been playing an increasingly
important role in numerical algorithms for the solution of partial differential equations. For
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the solution of elliptic boundary value problems, biorthogonal wavelet bases are an attractive
choice. They lead easily to well conditioned discretizations of the type of operator equation
that appears in these problems. This property, their good approximation power, and their
clear mathematical structure have led to the development of novel methods which profit
from results from related mathematical disciplines.

The adaptive wavelet methods developed with the aid of deep approximation theoretical
results in [8, 7] illustrate this point quite clearly. These algorithms are capable of producing
good approximations of the solutions of elliptic boundary value problems with an optimal
work /accuracy balance. They are optimal in the sense that to produce an approximation of
the solution to a given problem, the number of operations needed is proportional to e='/%,
where € is the desired accuracy (measured in a relevant norm, usually the Energy norm), and
the parameter s depends on the smoothness of the solution, as measured by thir membership
in certain Besov spaces.

Perhaps the most important property of the class of wavelets used in these methods
is that they are Riesz bases for the Sobolev spaces involved. But while they are easy to
construct and handle for, say, periodic domains, the situation is quite different for domains
with complex geometries. And while the construction for those domains is a solved problem
[13], the resulting bases are difficult to handle. The numerical properties of such bases also
suffers somewhat, leading to discrete problems which are not as well conditioned as their
counterparts on simple domains. Thus, a possible strategy to overcome these difficulties when
dealing with complex geometries is to use a fictitious domain formulation. This approach
was initiated successfully in [27].

The choice of suitable fictitious domain formulations one may consider for this endeavor is
limited, however. Methods based on the introduction of penalty parameters lead to discrete
problems that are not uniformly well conditioned. The same holds for any other method
based on regularization techniques (see for instance [20]).

The formulation which seems to be best suited for such a purpose is the fictitious domain
- Lagrange multiplier (FDLM) approach initiated by [1, 22], and used in [27]. To solve
a second order elliptic boundary value problem with Dirichlet boundary conditions on a
bounded domain, one extends the data (and the differential operator) to a simpler domain,
and appends the boundary conditions by introducing a Lagrange multiplier. This leads to
a saddle-point problem which is amenable to the discretization and solution with wavelet
techniques [10].

In chapter three we will show that this approach has its limitations. While the solution of
the original problem may be very smooth in either of the Sobolev or Besov scales, this does
not hold in general for the extended solution obtained through the FDLM formulation. If the
data was not extended in exactly the right way, the smoothness of the extended solution is
deficient, and thus approximating it requires more degrees of freedom, and ultimately more
work.
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1.2 Towards a fictitious domain method with optimally
smooth solutions

Correcting this deficiency in the FDLM formulation in a way that keeps the formulation
practical is fairly difficult; as a matter of fact, an extensive search of the literature showed
no attempt, successful or unsuccessful, to address this problem. There is one trivial way
around this difficulty (take the solution of the original problem, extend it smoothly, and use
the differential operator to obtain a suitable extension of the data) but it leads to a method
which is hardly practical, since it needs the solution first.

In chapter four we will attempt to construct a method which produces optimally smooth
extensions of the solution. For this we will begin by formulating on the fictitious domain a
rank-deficient, but otherwise well-posed?, least squares problem whose solutions all agree on
the original domain with the original solution. Then we play with the process of solving the
discrete equations to obtain a solution of the least squares problem which is also smooth.

The smooth extension is constructed by a nested iteration scheme through what amounts
to emergent behavior. A proof of this property will be given subject to a few conditions on the
finite dimensional problems obtained by the process of discretization. We will also construct
a discretization scheme which, at least numerically, seems to satisfy these conditions.

The resulting method is fairly simple in structure. Wavelets appear in the discretization
as a natural choice and, more importantly, no modification of the bases is needed. This
makes our method usable as a black box. Furthermore, the method can deal in a unified
way with any type of boundary conditions.

1.3 Overview

We begin in chapter two by weaving together in a uniform way the theory we will use in the
following chapters. We will need some elements of approximation theory, theory of elliptic
boundary value problems, and the construction of B-spline wavelets.

Chapter three is devoted to the analysis of the fictitious domain - Lagrange multiplier
approach. Here we will show how the method is derived, and analyze the smoothness of
the extended solutions by considering their membership in Besov and Sobolev spaces. We
extend and complete first the results on smoothness in the Sobolev scale found in [21],
taking an approximation theoretical point of view, and then prove new results which bound
the convergence rate of nonlinear approximation schemes. We have succeeded in collecting all
the difficult technical details into one lemma, which makes the discussion more transparent.
The second half of chapter three is then spent proving this lemma.

The development of a fictitious domain method able to produce optimally smooth solu-
tions takes place in chapter four. First we introduce and analyze the least-squares formulation
that will serve as a foundation, and then we proceed to construct the method, and prove
that under certain assumptions to the discretization, it produces optimally smooth solutions.
Then we introduce a discretization scheme designed to satisfy these assumptions.

lin the sense that it is solvable, and that its solutions can be chosen to depend continuously on the data
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In chapter five we will give numerical evidence that supports the results of chapters
three and four. We will begin by showing the effects of the singularities introduced by
the FDLM approach with respect to the convergence of linear and nonlinear approximation
schemes. Then we will test the method developed in chapter four on a set of model problems,
and observe how it succeeds in providing smooth solutions on the fictitious domain which,
restricted to the original domain, solve the original problem.

A chapter with final notes can be found at the end of this thesis, summarizing our finds
in a conclusions section, and discuss directions for further research.

1.4 Acknowledgements

I would like to express my deep gratitude towards prof. Wolfgang Dahmen for his kind
support and his guiding input. Many thanks also go to prof. Karl-Henning Esser for kindly
accepting to coreferee this thesis.

I would also like to thank prof. Angela Kunoth, prof. Silvia Bertoluzza, and prof. Peter
Oswald for many interesting discussions.

[ am also indebted to Dr. Ralf Massjung, Dr. Torben K. Jensen, and Dr. Daniel Castano
for invaluable mathematical discussions and moral support during these years. Also to my
colegues at the “Institut fiir Geometrie und Praktische Mathematik” who always made me
feel at home.



Chapter 2

Theoretical framework

The present chapter sets the tapestry on which the material of later chapters unfolds. Instead
of presenting a loose collection of facts, we have tried to draw a map of the body of theory
involved. It has been drawn in a mostly strict logical order, beginning with space interpola-
tion and abstract approximation theory, then going on to define Besov and Sobolev spaces
as approximation spaces. After reviewing the standard trace and extension theorems, and
complementing them with more modern results which will be useful later, we define the class
of problems we want to study: second order elliptic boundary value problems with either
Dirichlet or Neumann boundary conditions. After this we introduce B-spline wavelets, and
the brand of nonlinear approximation that is the foundation of adaptive wavelet methods.

2.1 Interpolation spaces

The definition of what constitutes an interpolation space requires the following steps [2]. Let
Ag and A; be two normed spaces. They are called compatible if there exists a Hausdorff
topological vector space U such that Ay and A; are subspaces of it. A normed space A
is called an intermediate space between the compatible spaces Ay and A;, if Ag N A, C
A C Ag + Ay, An interpolation space with respect to the couple (Ag, A;) is then any
intermediate space A between Ay and A; for which the following holds. Whenever a linear
map T : Ag+ Ay — Ay + A; is also a bounded linear map from Ajq to itself, as well as from
Aj to itself, then T" maps A boundedly into itself.

To construct such spaces, we follow here the real method due to J. Peetre, as found in
[2]. We define first the K-functional for v € Ay + A; by

K(t.v, Ao+ A1) = inf ([lallag +tlailla),

v “+a1
where the infimum is taken over all possible representations v = ag + a; with a, € Ay and
a; € Ay. For a fixed v € Ag+ Ay, one can show that K(¢,v, Ag + Ay) is positive, increasing,
and concave.

The following observation is the key to the construction of interpolation spaces using the
K-functional. Let T': Ay — A; be as described in the first paragraph, and let v € Ay + A;.

7
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Then
(21) K(t,U,Ag+A1) SCK(t,T’U,Ag"‘Al),

where the constant C' € (0,40c) is independent of .
Now, for 0 < 0 < 1,0 < g < o0, let Ay, be the subspace of Ay + A; of elements which
satisfy ||v||g,, < 00, with

UOOO {t_aK(t,U,Ag +A1)}q %]% , 1f0<¢q < o0,
[0lo.q ==

SUDye (0,400) t K (t,v, Ay + A)) if ¢ = +oc.
From (2.1) it follows immediately that the space Ay, is an interpolation space between A
and A;. But more is true. If (Bg, By) is another pair of compatible spaces, and T : Ag+A; —
By + By is such that 7" maps Ay boundedly to By, and A; boundedly to By, then using the
same argument we see that 7' : Ay, — By, is also a bounded operator.

To shed light onto the relation between interpolation spaces, we include the following

theorem.

Theorem 2.1.1 (The reiteration theorem). Let qq, q; € (0,+0c), 61,0, € (0,1), and let
6 = (1—n)0y + nby for somen € (0,1). Then for any q € (0, +00) it holds that ([2], p.50)

((AOa Al)HO;QO’ (AO’ A1)91,Q1)n,q = (AOa Al)ﬁ,q

with equivalent norms.

2.2 Approximation spaces
Approximation spaces allow us to talk about approximation methods in an abstract setting?.
For this, let X be a normed vector space, and let { X, },en be a sequence of subsets of X

satisfying the following axioms.

Axioms 2.2.1

i. X, C X, forallneN
ii. aX,, C X, forall z € R
iii. There exists a constant ¢ € N such that for every n € N, X,, + X,, C X,,.

iv. If f € X, then lim,,_,, . inf,cx, ||f — x| — 0.

'This account follows [18]
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The sequence { X, },en will play the role of our approximation method.
To illustrate what these axioms mean, we consider the case when X is a separable Hilbert
space, and B = {by }ren is an orthonormal basis. We might choose

X,, = span{b, : k < n},

and see immediately that it satisfies the above axioms. Since the X,, are linear spaces, we
speak of linear approrimation.
In contrast, consider the choice

Xn:{xEX:$:chbk,ACNWith#Agn, cr € R},
kEA

which is the nonlinear space of elements in X which are a linear combination of at most n
members of B. Whenever the sequence {X,, },en contains sets which are not linear subspaces
of X, we speak of nonlinear approrimation. We will take a closer look at schemes of this
type later on.

Note that the above are just examples, and their introduction does not amount to a
concrete definition of the spaces X,, in a particular setting.

After having chosen an approximation method, we want to rate its performance according
to the behavior of the error of approximation, which, for v € X, is defined by

E,(v) = zle%gn |v — x|

Approximation spaces classify the elements of X according to how well they can be
approximated with {X, },en. For 0 < s < 400, and 0 < ¢ < 400, they are given by

AL(XAXGY) = {f € X ¢ || fllag < +oo},
with || - |A,§, = lx+] Az, and
(it El(f)]91) e if 0 < g < +o0,
‘f|Ag =
SUpPyen 1° En (f) if ¢ = +o0.

For an element f € X, membership in A;(X, {X,}nen) means above anything else that
the approximation error decays at least as O(n~*). The parameter ¢ further indicates the
slightly stronger (for ¢ < oo) assertion that {n*E,(f)} belongs to ¢,. The parameter ¢ is of
secondary nature; it is possible to prove that if s < r, then

(22) AZ(Xa {Xn}neN) - A;)(X: {Xn}neN) Vi< q,p < +00
We obtain the same space, with an equivalent norm, if we use the following (equivalent)
seminorm | - A8 (X {Xn }nen)-
(2™ Ean (f)]9)* if 0 < ¢ < +o00,
(2.3) [flag ==

Sup,en 2" Eon (f) if ¢ = +o0.
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When proving membership in a space A7, it is often easier to use this last definition.
The fact that (2.3) defines an equivalent norm hints at some redundancy in the sequence
{X}nen. We shall often write V; := Xy, j =0,1,..., and then write

(2.4) Ag(X {Vibeno) = Ag(X, { X }nen).

In this case, we will always use the seminorm defined in (2.3) for the space on the left of
(2.4). Stretching things a little bit further, we will often start by defining the spaces V},
obviating the spaces X,, with n # 27, and using only the space on the left of (2.4). This
causes no problem, since any sequence {X,,} with V; = X,,, which also satisfies axioms 2.2.1,
would define the same space with an equivalent norm.

A note is also in order regarding spaces of the type ¢, with 0 < p < 1. The corresponding
¢,-"norm” is no longer a norm, but instead is only a quasinorm. The triangle inequality
holds only in its modified form

1
la + blle, < 27 (llalls, + [1blle,) -

To substitute the concept of Banach space we define a quasi-Banach space as a quasi-
normed space (Z, ||-||), where every Cauchy sequence (with respect to the quasi-norm) has a
limit in Z. One can then prove that the space £,, 0 < p < 1 is indeed a quasi-Banach space.

The same holds, mutatis mutandis, for L, spaces with 0 < p < 1.

2.2.1 approximation spaces and space interpolation

In this subsection we are going to shed some light on the relation between interpolation
spaces and approximation spaces.

The first main result that is concerned with this relation states conditions under which
an interpolation space is equal to an approximation space. Let Y C X be a normed space
which can be embedded continuously into X. Let {X,},en be an approximation method
satisfying axioms 2.2.1, and suppose that the following inequalities hold.

(2.5) E.(f) <Cn7"||f|ly,Vf €Y (Jackson inequality)
(2.6) IIS|ly < Cn"||S||x, VS € X, (Bernstein inequality)

for some r > 0.

Theorem 2.2.1. If the Jackson and Bernstein inequalities hold, then for every 0 < s < r,
and every 0 < q¢ < +0o0,

AZ(X, {Xn}nEN) = (X, Y)S/r,q

with equivalent norms.

An important application of this theorem is that it allows us to compare approximation
spaces obtained with different approximation methods.
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Corollary 2.2.2. Let {X!},en and {X2},en be two sequences satisfying 2.2.1, and suppose
that there exists r > 0 such that both satisfy the Jackson and Bernstein inequalities with
respect to a space Y as described above. Then for every 0 < s <r, 0 < q < +o0,

AL (X AX G Jnen) = AKX, {X T nen)
with equivalent norms.

As a complement of theorem 2.2.1 we have also that approximation spaces form indeed
an interpolation family.

Theorem 2.2.3. [DeVore and Popov, 1988] Let { X, }nen satisfy axioms 2.2.1. Then, for
any r > 0, the sequence { X, },en satisfies the Bernstein and Jackson inequalities with Y =
AL(X, A X fnen), for any 0 < g < +oo. Thus, for all 0 < s <7, and all 0 < ¢,t < +00 we
have

ALY X nen) = (X, A { X bnen)) g

Next we present a consequence of the reiteration theorem which characterizes what we
obtain when we define an approximation space inside of an approximation space. It reads?
as follows.

Theorem 2.2.4. Let 0 < s < r, and {X, }nen satisfy axioms 2.2.1. Then
Azis ( AZ(Xa {Xn}nGN) ; {Xn}nEN) = AZ(Xa {Xn}nGN)
with equivalent norms.

Proof. To keep the notation from obscuring the arguments, we shall choose a fixed 0 < ¢ <
oo, and write

2% = AQ(X, { X }nen) Vo€ (0,400).
Given an element v € Z°, we define the error of approximation in Z° by

E,(v) := inf ||v— x|

IGXTL

7.
Suppose for the moment that we have shown that if p > s, then the Jackson inequality,

(2.7) Eu(f) S0 fllzo Vfez,

and the Bernstein estimate

(2.8) 1S]1z0 < n?~*|S]| 2+ VS e X,,

~Y

hold. Then if p > r > s, we obtain from theorem 2.2.1 that

A275(257 {Xn}neN) - (ZS; Zp)(r—s)’q.

p—s

2We have not found this result in the literature, and thus we prove it here.
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So choose o > p, and use theorem 2.2.3 to observe that
Z° = (X, Z“)g,q, 720 = (X,Z2%)e,.
The reiteration theorem now gives
A;is(Zs; {Xn}TLEN) = ((Xa Za)i,qa (X; Zg)f,q) (
= (X: Zg)g,q
= A (X, {Xy}).

To finish the proof, it only remains to show that (2.7) and (2.8) hold. We will do so only
for 0 < g < +o0, since the case ¢ = 400 is straightforvvard. To prove (2.8), let S € X,,, and

0 < ¢ < oo. Since S € X,,, it holds that Ei(S) =0 if k£ > n, so that
n—1 1 é
Slze = | ) _[Ex .
k=1
But since S € Z%, we also have Ej(S) < k~*(|S||zs, and substituting this expression above

we obtain
|S]ze < nP78||S|| 2,

from where (2.8) follows.
To prove (2.7), we begin by observing that

(2.9) inf Ey(f —x) < Ej(f), Ex(f),

rE Xy

which follows from the properties of the infimum. Also, since X,, C X, ,;, one has that
E; (f) > Ej,(f) whenever j, > j;, and so we see that

(2.10) K N\
< 11611)2 (Z[ﬂ(f - ﬁ)js]q;>
< Ex(f)E".

Now, consider the following computation,

Eulf) = inf If

= inf < ||f —zlx + <Z[E3(f — 2)5°]°= + Z [Ej(f)js]q—.> 5

rzeX,
* j=1 N )
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where we have used (2.9) in the last step. Write F'(z) for the last expression in curly braces
and note carefully that

inf Flx) > E,(f) + (Z[Ek<f>ﬂq§+ > [Ej(fmq%) =L

rzeX,
* j=1 j=k+1

Our next step will be to prove that in fact inf,cx, F(z) = L.
Let {2, }nen C Xi be such that ||f — 2,||x — ¢/n < Ex(f) < ||f — ||, where € > 0 was
chosen in such a way that Ej(f) — e > 0. Observe also that if j < k, then

€

(2.11) Ej(f —xa) 2 Ex(f) 2 Ej(f = 2a) = —

These rather awkward steps are needed because we do not know enough about the sets X
to be able to choose x* € X}, such that ||f — z*|| = Ex(f).
Now, observe that

k

Flan) = Il = anllx + (Z[Ej(f - xnmq% + 2 [EAf)qu%)

j=1 j=k+1

> B(f) + (Z[Ekmﬂql sy [EAf)qul) (= 1)

I A j

> ||f = aullx - < - (ij[(Ej(f—xn)—g)jS]ql+ Y [Ej(f)f]ql>q.

J=1

Letting n — 400 shows that indeed inf,cx, F(z) = L.
Sumarizing, we have that

k

7j=1

E(f) = Bu(1) + ( BN + Z[Ej(fmq%)

< E(f) + (E}f(f)kW + Z [Ej(f)js]q%> q :

where we have used (2.10). But if f € Z7, then Ey(f) < k==9|fl|2», so that, after some
computations, we obtain from the above that

Ee(f) Sk fll 2.
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2.3 Besov and Sobolev spaces as B-spline approxima-
tion spaces

As an alternative to the classical definitions, one can characterize Besov spaces, and for a
useful range of parameters also Sobolev spaces, as approximation spaces. The results we
cite here all refer, as they are found in the literature, to approximation using linear spaces
of smooth, piecewise polynomial functions. But by corollary 2.2.2, they also apply to other
types of methods. This will allow us to draw fairly general conclusions from the study of
piecewise polynomial approximation alone.

2.3.1 B-splines

Let Ny : R — R be given by xjo,1), where xq is the characteristic function of the set €. For
m > 2, let
Ny, i= Npy—1 * Np.

The functions N,,, m = 1,2,... are called the m-th order cardinal B-spline generator.
Note that the space

S = clos (span{N,,(2’ - —k) : k € Z}),

where we have used clos (4) = A as an alternative notation for closure, is a subspace of
C™*(R) if m > 2, and that f € S is a polynomial of degree m — 1 on every interval of the
form 277z, 2 + 1), z € Z4.

The spaces 57" reproduce locally any polynomial of degree m — 1. That is, if p € ;1 =
{ polynomials of degree m — 1}, and given a bounded set X C R?, there exists a function
o€ S]m such that QS‘X =Pix-

We extend the definition of the spaces S7" to R? simply by letting

and setting S;-"’(d) = clos (span{N\¥ (29 - —2) : z € Z}). In the sequel we will usually omit
the index d, since it will be clear from the context.

2.3.2 Besov spaces

A common definition of Besov spaces is based on moduli of continuity. Since these spaces
can be characterized thoroughly as approximation spaces using B-splines, and since this is
the only point of view we shall take, we use this characterization as a definition instead.
The remarkable connection between approximation spaces and Besov spaces was made by
DeVore and Popov, see [16]. The following theorem is a version of this result which has been
adapted to our needs.



Besov and Sobolev spaces 15

Theorem 2.3.1 (DeVore and Popov, 1988). Let 0 < p < 400, m € N, and define
Op,m,j Ly(R?) — [0, +00) by

Opmj(f):= nf ||f = sllL,.

SEST

The following is an equivalent (quasi)-seminorm for the Besov space B;(Lp(Rd)), 0<q< oo,
0 < s <min{m,m —1+1/p}.

(2.12) B, = ( > [stap,m,j(f)]q) q

j=—o00
(with the usual modification for ¢ = o).

A Besov space Bj(L,(R")) is thus a collection of functions in L,(R?) which can be ap-
proximated by functions in SJ” at a rate of O(27%%), and such that the error of approximation
opm,j(f) satisfies the slightly stronger condition

{2°0pmi(f)}jez € (o(Z).
The spaces Bj(L,(T%)), where T¢ = (R/Z)" is the d—dimensional torus, are defined

analogously. The spaces ST’W are now defined only for 7 > 0, and we define them by

S;n’Td = span {Z Npn(27(-—2)—k): ke Zd} :

2€74

We also define the functionals

Ppmj(f) = inf d”f - SHLpa J =0,

m,T
sESj

and then the corresponding equivalent seminorm for the space B:(L,(T%)) is given by

1

+00 q
flBs(z,) = (Z[zjspp,m,j(f)]q> :

J=0

2.3.3 Besov spaces on domains

Apart from spaces defined on R? and T? we will also consider bounded open domains Q C R¢
satisfying certain regularity conditions on the boundary.

Definition 2.3.2. A bounded domain Q C R? is of class X, where X = C*, k = 0,1, ...,
or X = Lip,, the space of Lipschitz continuous functions, if for every x € 0 there exists
€, > 0, an orthogonal map @, : R — RY, and a function ¢, : R~ = R, ¢, € X, such that

Q' (B(r,e)NQ) ={y € Q7' (B(x,6)) : ya < a(y1, .- -, Ya-1)}-
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Here we have written B(x,¢,) for the open ball in R? with center x and radius €, with
respect to the Euclidean norm.

When € is of class X, we also say that 02 is of class X. Often we shall also say that €2
(or 9Q) “is X7, as in “0 is C1”, since it makes the exposition easier to read and it cannot
cause any confusion.

When 0Q is C*, k = 1,2,..., then from the above discussion it follows that 9Q is a C*
manifold.

Since we will embed Q into T¢, we always assume that for some € > 0, the relation
Q C (6,1 —¢)? holds.

Given a bounded domain  with Lipschitz boundary, one can characterize the space
B(L,(9)) by setting
Tpmi(f) 1= inf [|f = sjollr,0)-

m
SGSj

and then defining a seminorm for B;(L,(Q2)) as in (2.12) [17]. It is then easy to show from
the above that the restriction operator

(2.13) ro : Bi(Ly(R?)) — BS(L,(Q))

is bounded and linear for the full range of parameters.

2.3.4 Interpolation of Besov spaces
We have, for any 0 < s1 < $9, 0 < q1,¢2 < 400, and any 0 < 0 < 1, 0 < ¢ < +oc, that
(2.14) (Bgy (Lyp(92)), By (Lp($2)))o.g = B3(Ly(92)),
with s = (1 — 6)sy + ss.
The above holds for Lipschitz domains as well as for Q € {R?, T¢}.

2.3.5 Sobolev spaces

The classical Sobolev spaces measure smoothness of functions in L,, p > 1, by counting its
number of weak derivatives in L,. The definition is, for 1 <p < 400, m =0,1,...m

W Q) = {f € Ly(Q) : I I}y := Y IID°fI, < +oo}.

la[<m

In this thesis we shall restrict ourselves to the case p = 2, and write, as is customary,
H™ = WJ". Sobolev spaces with positive non-integer smoothness index can be obtained
simply by interpolation. After realizing that B}'(Ly) = H™, we use (2.14) above to obtain

(2.15) H* = B3(Ly).

Note, however, that this is not as simple for the spaces W, with p # 2. See again [16].
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It would be quite an omission not to mention that the spaces H® are Hilbert spaces. See
[34] p.209 for instance.

Another important Sobolev space is the space Hg(£2), which we define as follows.

Let X C R? be a set, and let

D(X) := {f € C*°(X) such that supp f C K C X for some compact set K}

be the space of test functions. For s > 0, we define the space H{(Q2) as the completion of
D(Q) in H*(2). For 0 < s < 1, or when Q is either R?, T%, or a C* manifold with k > s, the
space HE(2) coincides with H*(€2). In all other cases the space H§(2) is a closed subspace
of H*(Q2).

The duals of the spaces H§(2), s > 0 are denoted by H*(Q).

The interpolation of the spaces H{(€2) is a more delicate matter. See [28] for further
information.

2.4 Extension

We have already mentioned that the restriction operator (2.13) is bounded and linear for
the full range of parameters. But there exist also, for the full range of parameters, operators

(2.16) & : BY(Ly(Q)) — Bi(Ly(T?))

such that rq(Eu) = u for all u € B;(L,(92)) For the case p < 1, however, it does not seem
possible to find linear £; see again [17].

Given a bounded domain 2 with Lipschitz boundary, and any [ € N, it is possible to
construct a bounded linear extension operator

Fi: Ly(Q) — Ly(RY)

such that
Fi: H'(Q) — H'(R)

is also bounded [5]. By interpolation we obtain then that
Fi: Bi(La(9)) = By(L>(R%))

is a bounded linear operator for 0 < s < [, 0 < ¢ < +o0.

2.4.1 'Traces

Given u € H*(Q2), and s sufficiently large, we can define and deal with quantities of the kind
U)g0, OF g—z, where n denotes the outward normal at a point in I" := 0€2. Before doing so, we
define Sobolev spaces on manifolds.

The family U = {B(z, €;) }zca0, given by definition 2.3.2, which consists of a selection of
neighborhoods of  where we can parametrize 02 by functions of class X € Lip;,C',C?, ...,

is an open covering of 9€). Thus there exist x; € 99, ¢ > 0, ¢ = 1,2,...,1 such that
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00 C Uﬁzl B(z;,€;). Remember that, associated to each pair z;, ¢;, we have an orthogonal
transformation (); and a function ¢; € X such that

Qi (B e) NQ) ={y € Q7' (B4 €)) : yn < di(y1,---,Yn) }-
Let {v;}iz12..1, 7 € D(RY), be a partition of unity on 9Q subject to the covering V =
{B(x;,€¢):i=1,2,...,1}. Given f:9Q — R we have that f(r) = 22:1 vi(x) - f(z). One
can define ; : R! — R? by 6; := Q;(x, ¢;(x)), and f; : R — R by

fa) = {%(ai(x)) F(6:(x)) i 6:(x) € Blas, 1) N 09,

0 otherwise,

and then define || f|z:(a0) by

(2.17) /]

2
Hs(Rd—l)-

l
%IS(BQ) = Z (i f) o @il
i=1

It can be shown that if 9Q is C*, then the norms defined by (2.17) for different open
coverings and partitions of unity are equivalent.

Remark 2.4.1. It is possible to define, via local maps, piecewise polynomials on 0S2. For
this, we refer to [14]. We will not give any details here, but are content with remarking that
it is possible, and that if 0Q is C*, then we can define Besov and Sobolev spaces for s < k
using straight-forward adaptations of the results mentioned in subsection 2.3.2.

We now continue with the main result of this section, as found in [34].

Theorem 2.4.2 (Trace theorem). Let r,l € N, s € R withr > s > [ —1/2. Let Q
be a domain with boundary of class C", and such that 0 is bounded. Then there exists a
continuous trace operator

!
(2.18) T H(Q) = [[H7'*(09)
j=0
with the property that
!
(2.19) Tip = < 99 8¢>

¢‘89,8_n,.“,ﬁ
for any ¢ € C°°(Q). This operator has a continuous right inverse.

The proof of this theorem essentially extends the map given in (2.19) by continuity to
the full operator 7; given in (2.18). Thus, when embedding a bounded domain €2 in a larger
domain (say X = T or X = R?), we define the traces on 9 of functions in H*(X)
analogously, extending by continuity the appropriate analogon T' of (2.19). It follows from
this construction that under the hypothesis of the trace theorem, if u € H*(X), then

Tu = T(rqu).

~ Note also that theorem 2.4.2 does not hold if s <1 —1/2; if this is the case then the map
T cannot be extended continuously any longer. See [28].
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2.5 Second order elliptic boundary value problems

Consider the second order differential operator

d

(2.20) Au=>"ay 8 6% Zb

i:j_l i=1

c(x)u

with a;j, b, c € C°. We assume that A is uniformly elliptic, that is, that there exists o > 0
such that

Z viai; (T)v; > aljv])? Vz,v€R

i,j=1

It is often useful to write (2.20) in divergence form,

(2.21) Au= > (=1)'D (dgy(2) D),

0<lo,lv/<1

which is always possible for some a,, € C*, 0 < |o|, |y] < 1. A is then uniformly elliptic
whenever
> gy (x)0? > Ollv]* Yo,z eR!
lo],lv|=1

for some 6 > 0.

The derivatives involved in the definition of A are meant in the sense of distributions.
Thus A is defined as A : D'(X) — D'(X), with X either R?, T¢, or a bounded domain
Q C R?. The following fact will be useful later (see [33], page 76).

Theorem 2.5.1. The operator A : H*(T¢) — H* %(T%) is bounded and has closed range for
every s € R. Furthermore, dim(N(A)) < +o00, and dim(N(A)) = dim(R(A)*1).

We should stress that the above regularity assumptions are made for simplicity, and that
they are not essential. It would be enough for the development of the theory in chapter four
if we had that A : H*(T¢) — H*"2(T%) is bounded and has closed range for all s € [s, 2]
and some sq > 2 (in particular for theorem 4.3.8). But choosing the stronger assumptions
alleviates us from the burden of tracking yet another parameter.

Sometimes we will place additional assumptions on the operator A, in particular when
dealing with the weak formulation; see 2.5.2

In this thesis we are concerned with the solution of the following type of problem. Let
be a bounded domain. Given f, find u such that

(2.22) Au=f on

subject to one of the following boundary conditions.
Either Neumann boundary conditions

ou

B
(2.23) BYVu= o

=9
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or Dirichlet boundary conditions,
(2.24) BPu = ujpq =g,

for g given.
Equation (2.22) together with (2.23) is called a Neumann problem. Equation (2.22)
together with (2.24) is called a Dirichlet problem.

2.5.1 Strong solutions

A solution u of the Dirichlet or the Neumann problem is a strong solution® if the equalities
(2.22), together with (2.24) or (2.23), respectively, hold almost everywhere, and Au, f € L.
The situation is particularly simple when Q has C'* boundary (see [28]).

Theorem 2.5.2. Let s > 0. Then the operators PP : H**2(Q) — H*(Q) x H**¥2(0Q) and
PN HH2(Q) — H*(Q) x HH'/2(09), given by

@ )

are bounded, have finite-dimensional kernels, and their ranges are closed with finite codi-
mension. In particular, one has that PP and PN are isomorphisms between N(PP)L and
R(PP), and between N (PN)* and R(PV), respectively.

Above we have used the notation N (F) for the kernel of an operator F, and R(F) for
its range.

2.5.2 Weak formulation

Let u € H'(2). Then the distribution Au cannot always be identified with a measurable
function. The weak formulation allows us to handle this case.
For ¢ € D(R2), we have by the definition of distributional derivative that

(u,0) =A@ = Y [ (&) D uD o
0<fo yl<1 7

We can now define the (bounded) symmetric bilinear form a : H}(Q) x H}(Q) — R, associ-
ated with A, by
a(u,v) := (Au, v).

We assume also that A is coercive, that is, that there exists o > 0 such that

() > ofully e Vue HYO).

3There seems to be some disagreement over the definition of a strong solution. We use here the one found
in [34], p. 287.
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Under these circumstances we invoke the Lax-Milgram lemma, and have then that for
each f € H~'(Q) there exists a unique v € H} () such that

a(u,v) = (f,v)  Vve Hy(Q)
We will say that this u is a weak solution of the problem

Au=f on )

U‘ag = 0.

Given g € H'Y2(9Q), we can use the Trace theorem to find u, € H'(Q) such that
(ug)lon = g. But then from the above discussion it follows that there exists a unique
u* € Hy(Q) such that

a(u*,v) = (f — Aug,v) Vv e Hy(Q).

Now u = u* + u, (which can be seen to be independent of the choice of u,) satisfies Au = f
and also ujpo = g. Thus, we call it a weak solution of the problem

Au=f on
Ujpn = 9,

noting that a strong solution is also a weak solution.
We have the following

Theorem 2.5.3. If A is coercive, then the operator PP : H'(Q) — H~' x H'/2(0Q), given
by
A
()

It is not possible to construct a similar theory for the Neumann problem. The operator
BY is not bounded on H'(Q).

18 an isomorphism.

2.6 B-spline wavelet bases

The type of wavelets we will use is a family of Riesz bases for Sobolev spaces and their duals.
We sketch here the construction of pairs of biorthogonal wavelet bases for Ly(R), and show
how this construction can be extended to the multivariate and periodic cases. Finally, we
show how to produce wavelet bases for Sobolev spaces on these domains.

Since they play no role in the rest of this thesis, we have omitted various important
constructions, like wavelets on more general domains, or wavelets on manifolds. Still, we
include a fairly detailed account of the construction of B-spline wavelet bases, since some of
the details play a central role later on.

For a thorough introduction to the material from which the summary in this section
draws, see [11].
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2.6.1 Riesz bases

A Riesz basis for a (separable) Hilbert space H is a countable collection F' = {f,}, with A
in some index set V, such that the map T : 5(V) — H given by

T({x}) =Y oafa

Lev

is an isomorphism. It follows that there exists a dual Riesz basis F' = {f\} in #' such that
for every g € H, and every h € H', we obtain

(2.25) 9= (fa)h h=> (b i)

AeV AeV

where we have written (-,-) for the dual pairing between H and H'. Relations (2.25) imply
that (fx, f.) = 0xu, where 0y, is the Kronecker delta.

Since F and F both induce isomorphisms between ¢ and H, H', respectively, we obtain
the norm equivalences

1/2 1/2
gl ~ <Z|<f;,g>|2> : All2 ~ (Z<h, fA>|2) .

AeV AEV

2.6.2 Multiresolution analysis

A multiresolution analysis (MRA) in Ly(R) is a sequence of closed subspaces {V;},cz that
satisfies the following axioms.

Axioms 2.6.1

LV, C Vjyy, forall j € Z
IL.N;V; = {0}
1.0,V = L2(R)
IV.if f €V}, then f(2-) € V44
V.if f € Vi, then f(- — k) € V for all k € Z

VI.there exists )° € V; such that the set {¢°(- — k) : k € Z} is a Riesz basis for V. This
function is called the scaling function® of the MRA {V;};cz.

4Here we have taken the liberty to denote the scaling function by ¢°, departing from the tradition which
uses ¢. It will be seen that doing so simplifies the notation greatly, in particular when handling multivariate
wavelet bases.
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A pair of biorthogonal MRAs {V;}, {‘7]} is a pair of MRAs whose corresponding scaling
functions ¢°, ¢ satisfy (¢°(- — k),%(- — 1)) = oy for all k,I € Z. Such a pair defines a
sequence of oblique projectors @; : Lo(R) — V;, @), : Lo(R) — Vj, given by

Qif =) (U2 - —k, /e’ (2 - —k),

kEZ

Qif =Y (L6002 —k)&u° (2 - —k),

kEZ

where the scaling & = 277/ ensures that [|§;1°(27 - —k)|[1, ~ 1. We will say that a pair of
biorthogonal MRAs is admissible if the projectors ();, Q; are uniformly bounded for j € Z.
Let W; = R(Qj+1 — @), and W; = R(Qj4+1 — Q). These spaces satisfy that

L9+1 ::‘G @9‘@3 v?+& ::(3 @)L@y
while

VLW, V, LW

1
2
) ~ 115

It turns out that it is possible to find functions ¢! € W, zﬁ{ € Wy, such that their
integer translates form a biorthogonal pair of Riesz bases for Wy, Wy, respectively. Writing
Vo, = £ (27 - —k), where e € {0,1}, j, k € Z, we can express the projectors Q;1 — Q;,

Qj+1 — @, simply through

We further have that (see [11])

(2.26) (Z (@1~ @»fnh) - (Z |@1 - i1

JEZ

(Qj+1 - Qj)f = Z(lzglka f>¢gl‘k

kEZ

(Qj+1 - Qj)f = Z<f7 ¢;k>,[7/~"]1k'

kEZ

From this, and from (2.26), it follows that the collections
U= {vj: .k €Z} U= {j ),k € 2}

constitute a pair of biorthogonal Riesz bases for Ls. The bases ¥, 0, are called wavelet
bases, and the functions !, ¢! are called the mother wavelets of theses bases.

Given a pair of (admissible) biorthogonal MRAs, we can obtain corresponding mother
wavelets as follows.

First, we realize that from axioms 2.6.1, IV it follows that ¢°, ¢)° satisfy the equations

V@)= a2 —k), P(2) =Y @2 —k),

kEZ kEZ
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for some sequences {a)}, {a)}. These sequences are called the masks of their respective
functions. It is clear that if these functions are compactly supported, then only a finite
number of entries in their masks can be nonzero. Now, let {a;}, {a,}, be the sequences
whose entries are given by

ap = (=1)*ay ap = (—1)"ay_
One possible choice for ¢!, ¢', is then

Y= a2 —k), = a2 k).

kez keZ

Note that whenever both 1%, ¢°, are compactly supported, so are ¢!, ¢'.

2.6.3 B-spline wavelet bases

The spaces ST, defined in 2.3.1, satisfy the definition of multiresolution analysis. To satisfy
axiom VI, it is customary to choose

Y0 = Ny, (z + {mTHJ ).
It is an easy exercise to compute the mask of this function. An observation which plays an
important role later on is that all elements of the mask of this 1/ are non-negative.

The construction of the dual MRA is not at all simple. See [9] for details. Suffice it
to say that for m € N, with m + m even and m > m, there exists a compactly supported
scaling function ¢/ which reproduces polynomials of degree 7 — 1, and such that the spaces
V; = S7", together with the spaces

‘7j = span {1/;0(2j -—k): kelZ}

define an admissible pair of biorthogonal MRAs.

2.6.4 The multivariate and periodic cases

Let {V;}, {V;} be a pair of biorthogonal MRAs, and let d > 1 be an integer. Write 2 =
(', 22,...,2%) € R¢, let B = {0,1}%, and consider the functions ¢¢(z) = 1 (z!)1p°2 (2?) - - - % (2%),
e (x) = 0 (21 (22) - - () for e € E. We will always use 0 to denote the element in
E whose coordinates are all zero. This abuse of notation is very useful, and it never seems
to cause any confusion.
The spaces V) = span {¢°(2/ - —k) : k € Z"} form a MRA, and with the dual spaces
{VO} (defined analogously) they form a pair of biorthogonal MRAs. The complement spaces
WJ% such that V},, = V? @ W are spanned by the integer translates of the functions ¢ with

e € E\ {0}. Using the scaling factor §; = 2%, the functions {¢§, : j € ZAk € ZéNe €
EN\(0,0,...,0)}, with 9% = &v¢(2/ - —k), form a Riesz basis of the space L?(R?).
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Let

Zwﬂg T — 2)

2€7

The spaces V" = span {w]k : k€ 2}, where we have written Z{ = 7Z/2/79, satisfy all
the axioms for a MRA except for axiom II, as this definition of V; does not make sense for
j < 0. Usually, this axiom is just deleted, and one contents oneself with a Riesz basis that

includes the scaling functions on V5. We still have that {V;"};5,, {V;T}jzo form a pair of

biorthogonal MRAs, for and that the set {wgfgf’i)} U {wj,(cw) :j € NAK € Z¢} forms a Riesz
basis of the space L?(T). We will drop the T superscript from now on, since it will become
clear from the context which set of functions are used.

In the notation of 2.6.1, we have
V={A=(ejk):ec{0,1}jeNke Z/ withe=0onlyifj=0}

Thus we write ¢, with A = (e, &, j) instead of )5, We also use the notation [A| := j for the
level of 1. Sometimes it is useful to consider only indices up to a certain level, or indices
only on one level. We denote this by

V,={ eV :|\<j} Vi={AeV:|\=j}

2.6.5 Wavelet bases for Sobolev spaces

The construction of wavelet bases for Sobolev spaces from bases for Ly amounts to rescaling.
The fundamental result is the following theorem (See [11], 108-117). To avoid needless
complications, we will only write it for spaces H*(X), s € R, defined on X = R? or X = T¢.

Theorem 2.6.1. Consider a pair of (admissible) biorthogonal MRAs as above, together with
the corresponding Ly wavelet basis, and let

v =sup{s: ¢’ € H'(X)},
5 =sup{s: ¢’ € H*(X)},
m = max{r : II, C V§ (locally) },
m = max{r : 1T, C Vy (locally) }.
Then, writing r = min{vy, m}, ¥ = min{y,m}, we obtain that for all s € (—7,r) the sets
@ = (290, 0 ) € W, P9 = {275Ryy - X e VI,
form a pair of biorthogonal Riesz bases for the spaces H*(X), H™%(X), respectively.

When we say that ¥ is a Wavelet basis for H?®, we will assume that it has been properly
scaled. That is, when we write ¢\ = ¢, = £i1°(27 - —k) we have

£ = 9—s79Jd/2
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2.6.6 The fast wavelet transform

Given a pair of MRAs as above, and f € Vji1, 7 > 0, we have two representations of f
available. 'We can either express it in terms of scaling functions in V4, or in terms of
wavelets. Here we sketch briefly how to translate from one representation to the other in the
periodic case.

. _ . . . . X _ x’j
Given a sequence X = {x}, }yczq, We can associate with it the matrix MX = (my; )kezf+1,lezfa
whose entries are given by
X,J _ éj )
my;” = Tp—_91—2i+1,-
&t

2€7Z4

Note that it defines a linear map MY : (5(ZY) — (,(Z],,)
As before, let E = {0,1}¢. We will write b® = {b¢},c74 for the sequence whose entries
are
b= aag o aft,
where e = (e1,€a,...,¢eq), and k = (ky, ks, ..., kq). This sequence is just the tensor product
of the corresponding 1-dimensional masks.
Note that we can write f as either

(2.27) f= Z (02+1)k¢?+1,k:
kezd,
or as
(2.28) F=Y (s,
ecl kez;i

where the ¢/ each belong to £5(Z).
Using the tensor product masks and the matrix mechanism defined above, we obtain that

(2.29) =Y My,
ecE

and that for e € F,
‘ N A
(2.30) ¢ = (M;’ ) it

Relations (2.29) and (2.30) allow us to switch between the representations (2.27) and (2.28)
at a cost of O(N) operations, with N = 20414 We can repeat this process for fi =
> rezi(C0)ry, and then again analogously until j = 0. Then we have obtained the wavelet

representation of f,

(2.31) f=(c0)ot0, + Z Z Z(Ci)klbfk-

1=0 e E\{0} ke z¢
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The cost of transforming between (2.27) and (2.31) is also O(N). The method we have
described here is called the fast wavelet transform. For later use, we define

vV, :=1{(0,0,0)} U U{(j, ke):keZ! ec E\{0}},

which allows us to write (2.31) more succinctly as

=Y av.

AEV;

2.6.7 Discretizing linear operator equations

The type of operator equation that we will to solve is as follows. Consider a linear, bounded
operator M : H' — H" with closed range, where H!, H" will be either Sobolev spaces, or
tensor products of Sobolev spaces. We always endow the tensor product spaces with the
Euclidean tensor product norm, which ensures that the resulting space is also a Hilbert
space.

Given b € H", we take on the task of finding x € H' such that

(2.32) Mz =b.

(Note that such a solution does not have to exist, nor does it have to be unique; we shall
ignore this for the moment.)
Given a pair of isomorphisms

(2.33) Ti: by — H, T, : by —H,

which usually will involve wavelet bases, we can transform equation (2.32) into an equivalent
system of equations by taking M = T~'MT,, and rewrite our problem as follows. Given
beH" let b="T7'b, and find T € {5 such that

M7 = b.

After finding T, we then obtain the solution of (2.32) by taking x = T7.

Using the fact that any isomorphism of the type (2.33) induces a Riesz basis, and that
for each Riesz basis there is a biorthogonal Riesz basis, it is easy to find simple expressions
for computing the entries in the matrix M.

We can obtain discretizations of equation (2.32) by using pairs of biorthogonal MRAs.
Suppose that {V};>o, {Vf}jzo is such a pair for H?, (H?)', o = 1, (constructed, if
needed, by taking tensor products of MRAs in the obvious way), and denote by Q7 Q;’
their respective oblique projectors. We shall further assume that these spaces are finite
dimensional. Write M; = Q;MQ?-, and consider the following discrete problem. Given an
approximation b; € V" of b, find z; € V;l such that
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There are now two possibilities to transform (2.34) into a linear system of equations
in Euclidean space. One through the scaling function representation of the elements in the
respective spaces, and one using the wavelet representation. If the operator M is an invertible
elliptic differential operator, then using the wavelet representation leads to a system whose
condition number is uniformly bounded in j (see [11], p. 116ff).

2.7 Nonlinear approximation using Wavelets

Until now, we have considered only approximation using linear spaces. Here we will discuss
in brevity approximation from nonlinear sets.

2.7.1 Best N-term approximation

Suppose W, ¥ are a pair of biorthogonal wavelet Riesz bases for the spaces H*(T%), H~*(T¢),
respectively, and consider the problem of approximating f € H(T¢),

F=> e

AeV

Let ¢ : N — V be a sorting of the coefficient vector {c,}, that is, if n,m € N, m > n implies
|co(m)| < |€pm)|- The best N — term approximation of f is now defined by

N
(2.35) Fvy =D oy iy
=1

Clearly, the idea is to approximate f using only the most important coefficients of its wavelet
representation, achieving, we hope, a better rate of approximation than if we approximated
f by

fi=) an e

)\GV]‘

The approach (2.35) is particularly helpful when approximating functions with singular-
ities, since the larger coefficients tend to agglomerate there.

Let us write £, = {f : f =Y, c4 cathx, with A C V, #A < n}. The space A% (H'(T?),{Z,})
consists then of all the functions f € H' such that the convergence of its best N-term ap-
proximation is as O(N~*).

From [8] we learn that this is equivalent to the condition that the sequence {c)}iev
belongs to the weak ¢, spaces (denoted (%), with s = 1/7 — 1/2. That is, when

#{A |l = e} S
We have the following result [8].
Theorem 2.7.1. Let € > 0, and write 1. =7 +¢€, se = 1/7.+1/2. Then

BI(L,) € AL (H' {S,}) € BE*!(L,).
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The following characterization of ¢* will be useful later.
Proposition 2.7.2. Let a > 1. v € 0] if, and only if for every j € Z

#{k : Jvg| > a’j} < a™

2.7.2 Compressible matrices, fast matrix-vector multiplication, and
adaptive wavelet methods

An infinite matrix B is said to be in the class By of compressible matrices if there exist
two positive summable sequences {a;}jen, {5;};en, such that for every j > 0 there exists a
matrix B; with at most 2/«; nonzero entries per row and column with the property that, in
the spectral norm,

|1B — Bjl| <277°3;,

Proposition 2.7.3. Let 7 = (s + 3)7', with 0 < 7 < 2. If B € By, then B maps (*
boundedly into itself.

The wavelet discretizations of the regular differential operators in section 2.5 are all
compressible; see [8]. The compressibility index s depends on the regularity of the primal
wavelet basis and of the approximation power of the dual basis.

Another important property of a compressible matrix is that it is possible to compute its
action on a sequence efficiently.

Theorem 2.7.4. For any v € {5y with finite support, for any B € Bs, and given an accuracy
e > 0, there exists a compactly supported sequence w € ly such that

i. ||[Bv—wl| <e,
i |lwllee < [v]ler

iii. #(supp w) < CB,se_l/SHUHZJS'

The cost of computing w stays bounded by C’B,SHUH%SG’I/S + # supp v.

For concrete algorithms, and further information, we refer to [8].

The two last results are the key ingredients of the adaptive wavelet methods devised in
[8]. We refer there and also to [7] for further details. Here we only include the following core
result, which only speaks of its efficiency and convergence, and is only concerned with the
problem after being transformed to a problem in /5.

Theorem 2.7.5. Let L : {5 — (5 be in B;,. Assume further that L is symmetric positive
definite, and consider the equation

Lx =b.
If the solution x is in (¥, then given € > 0, the adaptive algorithm in [8] constructs a com-
pactly supported approzimation w of x such that ||x — wl| < € and #(supp w) < ||v||;{use’1/s,
at a cost of at most O(e~'/%) operations.
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Chapter 3

The fictitious domain Lagrange
multiplier method - A case study

The fictitious domain - Lagrange multiplier (FDLM) method is a fairly popular fictitious
domain method; its simplicity and good performance are appealing, and the theory behind
it is very well understood. This makes it a very good example for the type of smoothness-
related problems that may arise.

This is what we intend to do in this chapter: to study in depth the smoothness of the
solutions obtained with the FDLM method in the fictitious domain. This solution is an
extension of the solution of the original problem, and what will be shown is that, unless
careful provisions are taken, this extended solution will be difficult to approximate. We
will establish that the convergence rate of linear schemes based on B-splines and nonlinear
schemes based on B-spline wavelets is bounded from below, independently of the order
chosen. This result extends to comparable approximation schemes via corollary 2.2.2 and
theorem 2.7.1, respectively.

We will begin by sketching the derivation of the FDLM method. Then we will study
the results that concern linear approximation schemes, taking first a quick look at what is
already known, and then extending these results to the full range of parameters. After that,
we will also study the convergence rates of nonlinear schemes. In the derivation of these
results, we need a central lemma which we prove in the last section, after discussing briefly
how to obtain better convergence rates.

3.1 The FDLM method

Consider the following problem. Let Q C R? be a bounded domain with C'!' boundary, and

let f € [HY(Q)), g€ H'/?(00). We want to find u € H'(2) such that
Au = Q

(3.1) w=f  onf
Up = 9,

where A is a uniformly elliptic second order differential operator as defined in section 2.5.
We will solve problem (3.1) by embedding 2 into a larger, simpler domain =, the fictitious
domain. For simplicity we will set = = T¢.
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The next step is to choose an extension f* € H }(T¢) of f. Note that this is always
possible since we have required that f € [H'(2)]'. At the very least we can take fT = forg,
where rq is the operator which restricts functions to €2.

A detail that needs carefull adressing is the “extension” of the differential operator defined
on €. To this end, assume that the coefficients {a,,} that define A in divergence form on
Q (see (2.21)) can be extended to T¢ by {@,,}, with @,, € C®(T¢), 0 < |o],|y| < 1. Now,
define A™ : HY(T%) — H(T%) by defining A™u first on C>(T%),

(ATdu)(¢) = Z /Tdam(:c)poquclu, ¢ € OC(T),

0<|o]lvI<1

and then extending it to H'(T?) through continuity in the usual way.
As it is a functional on H'(T?), the “restriction to Q" of A™u, written (A™"u)q, is
defined first for D(Q2) by (see [34], page 133)

(A™w)j0(0) = (A"u)(¢"), Vo € D(Q),

where we have written ¢° for the extension by zero of ¢. Afterwards, (ATdu)‘Q becomes
a functional on H} () again by continuity. Standard arguments show that it must be a
bounded functional, and thus we have that (A™"u)q € H~'(Q) for all u € H'(T%).

Now, given u € H(T?), we observe that for each ¢ € D(),

(ATdu)‘Q(¢) = Z /Ed ag,y(x)D”uD7¢0

0<lol,lv/<1

- ¥ /Q o (1) D7uD

0<]o,v[<1

= [A(u0)](9).
Thus, if we define A™ as above, we can write
(3.2) (A™u) 10 = A(ug).

Note carefully, however, that while the restriction appearing on the right has a pointwise
interpretation, the restriction on the left is in the sense of distributions. (Note also that
these interpretations would agree whenever A™u € Ly(T4), which means that A"y can be
expressed in terms of a function in Ly(T¢).) This is fortunate, as we can now be sure that
whenever

AT = ft
holds, it is also true that

A(u‘g) = f.

For simplicity, we introduce another slight abuse of notation and write again A for the
“extension” AT of A4 on Q to T¢.
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Having settled this, we further assume that the bilinear form
a(u,v) := (Au,v) Vu,ve H(TY

is symmetric, and that it is coercive on the kernel of the trace operator B? : H!(T4) —
H'2(0%). That is, that there exists a constant o > 0 such that

a(uw) > ol VueN(BD).

To simplify the notation, we will write B for B? throughout the rest of this chapter.
We turn our attention now to a different problem, formulated in terms of the new extended
data. We seek for the minimizer in H'(T¢) of the functional

(3.3) Fv) = %a(v,v) “(fv) Ve HY(TY,

subject to the additional constraint Bv = g. We express this constraint in the equivalent
form

(3.4) b(v,q) = (g.q) VqeH?0Q),

where we have defined b(v, q) := (Bv, q) gr1/25 g—1/2-
To solve this constrained minimization problem, we append (3.4) to (3.3) using a Lagrange
multiplier. Our problem now reads: find p € H~/2(9Q), u* € H'(T%), such that

3.5 F*(u™,p) := sup inf  F*(v,q),
(3.5) (u™,p) s R (v, q)

where
F*(0,0) = ga(v,0) = (£, 0) + b(v.) = (9.0

and p is the Lagrange multiplier.
Using standard variational arguments one concludes that (u*,p) € H'(T%) x H~'/2(0%)
satisfies (3.5) if and only if

a(ut,v) +blv,p) = (fT,v) Vv e HY(TY),

(3.6)
b(ut,q) = (9,9 Vg e H'?(09).

We often write (3.6) in operator form. Thus (u", p) satisfies (3.5) if and only if

A B*\ (ut\ (f*
6 (50 ()=(0)
Our new problem reads, given (f*,g) € H ' (T%) x HY?(0Q), find (ut,p) € H'(T%) x

H~'2(99Q) such that (3.6), (3.7) hold. Owing to its derivation from (3.5), we call this a
saddle point problem.



34 Approximating u™*

One can check (see [22], [27]) that this problem is well posed; the operator M : H'(T%) x
H='2(0Q) — H™'(T?) x H'/2(09) given by

(3.8) M= (g %)

is an isomorphism. Furthermore, the restriction to Q of u™, u = U\B is the unique solution
of problem (3.1).

The discretization of problem (3.1) with respect to finite dimensional subspaces of H!(T?) x
H=2(0Q) and H~1(T%) x H'?(0S2) requires some care, since otherwise the resulting dis-
crete problem becomes unstable. We omit this discussion here, since it plays no role in the
rest of this chapter, and instead refer to [4], [21], [12].

3.2 Approximating u"

Throughout the rest of this chapter, we will work under the following assumptions. First,
that ¥, ¥ are a pair of biorthogonal B-spline wavelet bases for H'(T%), H~"'(T%) respectively
(which means that they are already properly scaled; see subsection 2.6.5), with corresponding
multiresolution analysis {V;};er,, {Vi}jen,. To avoid technicalities, we also assume that the
members of these bases are smooth enough. This means, in particular, that {V;};en,, {‘N/j}jeNU
satisfy appropriate Jackson and Bernstein inequalities (2.5), so that we can always write

A3 (Lo, {Vi}jen) = Bj(La).

We prefer the notation for approximation spaces because it is a bit more flexible and to the
point.

For technical reasons that will become apparent later on, we also assume that the order
of the primal basis is at least m > 4. Thus, If ¢, € U, then 1)y € C™ 2, and ), is at least a
piecewise cubic function.

3.2.1 Approximating vt with linear approximation schemes

The aim of this subsection is to illustrate the effect of the Lagrange multiplier on the Sobolev
smoothness of the extended solution u*. The result we derive here states that even though
f* and g are such that the original problem would admit a smoother solution (which could
be approximated more efficiently using linear approximation schemes), a non-zero Lagrange
multiplier implies that u™ € H*(T?) is only possible for s < 3/2.

This critical index of 3/2, and the aim of our study, leads us to base our results on the
hypothesis that (f*,g) € H™V/2(T?) x H1(9Q) for some € > 0. If g ¢ H'*<(9Q) for any
e > 0, then u™ cannot belong in any Sobolev space with an index greater than 3/2, regardless
of the value of the Lagrange multiplier. On the other hand, if f* ¢ H /2 for any € > 0,
then the solution may or may not be smooth, depending on the particular case at hand (see
remark 3.2.6).
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We begin by showing that, under certain circumstances, the Lagrange multiplier is the
jump in the conormal derivatives of u™ at 9Q. The conormal derivatives of v € H*(Q) at
o) are given by

n-aVou,

where n is the outward normal at a point in 02, and a is the coefficient matrix of the operator
A in divergence form (see (2.21)).

This result has been known for quite some time. It has its origin in [1], and can be
found in a slightly less general form (only for A = —A) in [21]. The present form essentially
realizes a remark in [12].

Proposition 3.2.1. If T € Ly(T%), g € H'/2(0Q), and (u*,p) € H'(T?) x H~'/2(0Q) is
the solution with this data of system (3.7), then p is the value of the jump in the conormal
derivatives at 0S).

Proof. Write Q = T\ Q. On Q, we have that Arqu™ = rof™, and so for any ¢ € C®(Q),

we obtain
/soAWdu:/f*sodu-
Q Q

Using Green’s formula, we also have that
/ pAuT dp = / (n-aVut)pdo + / V- aVutdpu.
Q o9 Q

We repeat the same argument for Q, and then, by adding both results, obtain that for every
v € C>®(T?)

frodu = / Vo -aVutdy
Td Td

+/ v(n- qu*)da—l—/ v(n-aVu')do,
an i)
and since the outward normal at 9 is minus the outward normal at 92, we obtain that

ffodp = dVU ~aVut du+/ v [n-avu'],, do,
T a0

Td

where we have written [n-aVuT],, for the jump in the conormal derivatives at 0S2.

But u, p, and f* also satisfy the first equation in (3.6), so we see that for every v €
C>=(T?),

= a(u*,v) +b(v, [n-aVu'],,).

Thus, we conclude that p = [n-aVu'],,, as we wanted to prove. O
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Note that the hypothesis that f* is in Ly(T?) was mainly used when writing

/Qvfdwr/ﬁvfdu:/wvfdﬂ.

So in fact what we have used is that since v f is measurable,

/ vfdu=0
Td\ (QUQ)

because z(T4\ (QUQ)) = 0. So clearly, proposition 3.2.1 should still hold under more general
hypothesis. It turns out to hold form the full range of parameters we are interested in.

Proposition 3.2.2. Suppose that, for some € >0, (f,g) € HV%(T) x H*(99Q), and let
(ut,p) € H'(TY) x H='2(9Q) be the solution of system (3.7) with this data. Then p is the
Jump in the conormal derivative at the boundary.

Proof. We extend proposition 3.2.1 by continuity. To that end, let {f,}nen, fn € Lo(T?)
be such that f, — f in H'2(T%). Let (u;},p,) be the solutions of the system (3.7) with
(fn,g) as data.

Given any domain w C T¢, we denote by S, : H/%(w) — H(0w) the conormal
derivative operator, defined by S,v = n - Vv, where n is the outward normal at a point in
Ow. As we have done before, we also denote by r, the restriction to w.

Observe that if w has a smooth boundary, and if € > 0, then the operator S, is continuous.
To see this, note that the operator BP o % : HH3/2(w) — H¢(Ow) is bounded. Furthermore,
recall that if ¢ € C*°(w), then v — v is a bounded operator from any H'(w), ¢ > 0, to
itself. Thus, since the coefficients @ are in C°(T%), the operator G : H*3/2(w) — [H(dw)]"
(where we endow the latter space with the Euclidean tensor product norm), given by

Ou

ox
du

Gu = a(z) | o

ou

Oxg
is bounded. Thus, S,u = n-aVu = n-Gu is a bounded operator from H3/?(w) to H (0w
We will also need to define the restriction to a domain w of a functional g in H*~'/2(T¢
As such, this makes no sense, since g is not defined on T¢, as it is a functional on H'/2~¢(T¢
We assume (as we can do without loss of generality) that e < 1/2, and given ¢ € C°(w
we define (Rng)y as the value of g on the extension by zero of ¢ to T¢. This defines,

).
).
).
):

by continuity, a bounded functional on Hy/* “(w) = H'/2~¢(w). The map Rq is clearly
bounded; one can check also that if g is given by g(v) = [, gvdp, with § € Ly(w), then
(Rag)(v) = [ rugvdp. We will no longer make such a fine distinction between a functional
and its representation, and write, in what constitutes an abuse in notation, r,g := R,g.

Since f, — f in H"'/2(T?), we have that rof, — rof, and since Au;"Q = fl: Bu;’m =
g, we also have that the sequence {rqu;} converges in H+¥2(Q), and that it converges to
rou’. An identical argument shows that {rgu,}} converges to rqu™.
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Now, by proposition 3.2.1, p, = Sarqu,” + Sgrau,t, and so, by continuity of M ! (with
M defined in (3.8)), Sq, Sg, and rq, we obtain that p = Sqrou™ + Sgrgu™, and so p is
exactly the jump in the conormal derivatives of u™ at 9. O

The next question is, what does a jump in the conormal derivatives imply for the smooth-
ness of u*? The following lemma clears us from (almost) all doubts.

Lemma 3.2.3. Ifv € H3/2 for some € > 0, then the jump in the conormal derivatives of
v at 0X) vanishes.

Proof. Let {¢,} € C*®(T?%) be such that ¢, — v in H*+¥2?(T¢) when n — +o00. Using the
same notation as in the proof of proposition 3.2.2, we have that

Sarapn + Sarapn =0,

and so by continuity, we obtain that the jump in the conormal derivatives of v at 02,
Sarqv + Sarav, must also vanish. O

We can now summarize the above results into the following.

Theorem 3.2.4. If (f*,g) € H'/?(T%) x HF(0Q) for some ¢ > 0, and the Lagrange
multiplier obtained when solving (3.7) is nonzero, then u™ € H*(T%) implies s < 3/2.

As a consequence, we can finally estimate the rate of approximation of u™ by {V;};en, -

Corollary 3.2.5. If (f*,g) € HY?(T?%) x H*Y(0Q) for some € >0, and p # 0, then

(3.9) ut € Ay(La, {V;}jen, ) implies s < 3/2,

and

(3.10) ut € AS(H', {V;}en,) implies s < 1/2.

Proof. Apply (2.15) to theorem 3.2.4, and observe that Bj(Ly) = Aj(Lo, {V;}jen,) for the
corresponding range of s. This settles (3.9). To prove (3.10), apply theorem 2.2.4. O

Remark 3.2.6. If f* ¢ H*(TY) for any s > —1/2, then it is possible that the solution
of (3.7) is smooth (i.e, belongs to some Sobolev space H' for some large t), even when the
Lagrange multiplier is not zero.

To see this, choose an arbitrary ¢ > 3/2, and let v € H*(T¢). Then choose ¢ € H~'/2(99),
q # 0, and set f* := Av+ B*q, g := Buv. If we solve the system (3.7) with these data,
we obtain a pair (u*,p) with vt = v, and p = ¢ # 0. By lemma 3.2.3, it would be a
contradiction if p was the jump in the conormal derivatives. But that would contradict
theorem 3.2.2, unless f* ¢ H*(T¢) for any s > —1/2.

Under some circumstances, it is possible to rule out the case s = 3/2 in 3.2.4.

Theorem 3.2.7. Suppose that f+ € H™'/?*<(T%) for some ¢ > 0, and let (u*,p) be the
solution of (3.7). If there exists an open set U, and a constant ¢ > 0 such that p(z) > ¢ > 0
almost everywhere on U NI, or alternatively, if p(x) < ¢ < 0 almost everywhere on U N O

(this assumes also that p can be identified with a measurable function on that set) then
ut € H*(T9) implies s < 3/2.
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This result is based on the following lemma.

Lemma 3.2.8. Under the hypothesis on p of theorem 3.2.7, there exists jo € N such that
for each j > jo we can find G; C V) :={X € V : || = j} with the following properties.

7. #G] Z 2j(d_1)
ii. X € G, implies that |{1y, B*p)| = 2799/2,
The proof of this lemma is fairly technical, and thus we defer it for the moment.

Proof of theorem 3.2.7. We begin by directing our attention to the first equation in (3.7),
and rewrite it to read

(3.11) Au= fT— B*p

Now whenever u™ € H*(T?), then Au™ € H* ?(T?), and thus by (3.11) it will be enough to
show that if f* — B*p € H* 2, then s — 2 < —1/2. But this reduces again to prove that if
B*p € H™(T?), then r < —1/2.

Since the bases ¥, U (chosen at the beginning of 3.2) are a pair of biorthogonal B-spline
wavelet bases for H'(T?), H 1(T?) respectively, and thus they are Riesz bases, we can write

(3.12) 1B*pl -1 1(Td) Z‘ “p,ba) |

AEV

Given t > 0 we can compute the norm of B*p in H'='(T¢) by introducing an additional
scaling factor in (3.12). We have that

Ty ~ > 2N (Bp, )

AeV

=Y 2 [(B'p ol

J€Ny V?

1B"p|

(3.13)

We invoke lemma 3.2.8 and see that if ;7 > jo,

S UB N> Y (B )
v;

AEG;
> 9i(d=1)  9—jd _ 2—]"
and thus we have that (3.13) diverges whenever ¢t > 1/2, and thus B*p € H" implies that
r=t—1<-1/2. O

3.2.2 Approximating «* with nonlinear approximation schemes
based on B-spline wavelets

The only result in this subsection states (roughly speaking) that,
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o if the bases we have chosen are sufficiently smooth and have enough vanishing moments,

e if the rate of convergence of the best N—term approximations to f* is higher than a
certain threshold,

e and if the Lagrange multiplier obtained when solving (3.7) satisfies the hypothesis of
lemma 3.2.8,

then the rate of convergence of the best N— term approximations to u™ is bounded from
below. Let us be more precise.

Theorem 3.2.9. Let f = {filrev € Lo, fr = (fT, 1)), be the sequence of coefficients of fT
with respect to the basis ¥, and suppose that f € Y for some o < ( (thzs 18 equivalent
to the assumption that

fre AL (H, Sa(W))
forr =1 1> (dl 0 ). If p satisfies the hypothesis of theorem 3.2.7, and if U, U are

o 2
sufficiently smooth and have enough vansihing moments, then the sequence @ = {uy}rev € o
of coefficients of u™, uy = (ut, ), satisfies that if uw € £, then 7 > ( Y. In other words,

ut € AL (HY(T), £,(1))

implies that t < ﬁ.

Proof. When we assume that U, U are smooth enough and have enough vanishing moments,
we mean that they where chosen such that A, the matrix of A with respect to the basis W,
U, satisfies A € B, for some s > ( iy; see subsection 2.7.2.

Let d = {dy\}xev € £ be the coefficients of B*p, dy := (B*p,1/y). From lemma 3.2.8 we
obtain that if j > j,, ‘
G; C{N eV :|dy| > 027792},

From this, and again from lemma 3.2.8 we obtain that

#{\ € Vi |dy] > 2792} > 2ild=1),
which, writing @ = 242, yields
)

HINEV : |dy| > a7} > od T

Using proposition 2.7.2, we have that

(3.14) dee”
only if 7 > Q(d’l)
Ifue/l?, and T < ( Y then since 4 € B, for some s > W we have that Au € 0y

for some 0 < p < %. But this implies that Az = f 4+ d € 7, and thus by linearity,

f+d—f=de 7. The theorem now follows from this contradlctlon. O
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Thus, we have that under the hypothesis of theorem 3.2.9, the best N-term approxi-
mations of u™ converge at best as O(me). As a consequence, no adaptive method
comparable with those discussed in [8], (see subsection 2.7.2), can achieve an accuracy of €
without spending at least O(e~24~1)) operations.

Note again that theorems 3.2.7 and 3.2.9 hold whenever the basis functions are smooth
enough. Resorting to higher order B-spline wavelets is of no help.

Finally, we remark that from (3.14) it also follows that B* is not very compressible (see
proposition 2.7.3).

3.2.3 Obtaining better convergence rates

In theory, it is easy to obtain better convergence rates. This is illustrated by the following
two results.

Proposition 3.2.10. Let VjQ = 1oV}, and suppose that the solution u of problem (5.1) is
in A(Ly(Q), {V}"}jen,) for some s > 1, 0 < q < oc. Then there exists an extension f*
of [ such that the extended solution u™ of (3.7) satisfies u™ € A$(La(T%), {V }jen,) and
ut € AFHHN (T, {V !} jeno)-

Proof. Just find an appropriate extension u* of u to T¢ using the results of section 2.4, and
take fT = Au*. When we solve (3.7) with this right-hand side (and with g as before), we
obtain that (u*,0) is the (unique) solution, and thus u* = u* € A$(Ly(T%), {V*}jen,). Using
lemma 2.2.4, we also obtain ut € A3~ (H'(T%), {V}jen,)- O

Proposition 3.2.11. Suppose that the solution u of problem (3.1) satisfies u € B (L. (Q))
for some T < 2(d71), and where s = % — % Then there exists an extension of f+ of f such
that the solution u™ of 8.7 satisfies u™ € B**Y(L,(T%)). That is, u™ € A3 ¢(H', X, (¥)) for

all 0 < € < s.

Proof. Using 2.16, we see that there exists an extension u* € B3+ (L,(T?)) of u. We obtain
T now simply by setting f™ = Au*. O]

We conclude that in order to obtain better convergence rates, we must find an adequate
extension of f. Note that it is not enough to choose a smooth extension of the right hand
side. It must be smooth and produce a smooth solution.

The naive approach to the construction of a fictitious domain method for solving problem
(3.1) without these problems might follow the route proposed by propositions 3.2.11 and
3.2.10. That is, to extend the solution and then apply the differential operator. This has a
major drawback from the point of view of a numerical method: it must start with a fairly
accurate solution of problem (3.1), and thus renders the method pointless.

In the next chapter we will construct a method which produces smooth solutions by
finding smooth extensions of u and f simultaneously, and without compromising accuracy.
In what remains of this chapter we are going to prove lemma 3.2.8 and the auxiliary results
needed.
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3.3 Proof of lemma 3.2.8

To simplify a bit, we begin by assuming that j is always large enough, so that we can neglect
effects caused by periodization. Specifically, we assume that there exists an ¢ > 0 such that
for all j considered, if supp 9%, N Q # (), then supp V5 C (0+¢€,1— €)?. We will also restrict
ourselves to the case p(z) > ¢ > 0, since the case p(x) < —c < 0 is completely analogous.

Let 29 € UNOKY, and let ¢g > 0, ¢ € C', and @ : R? — R? be an orthogonal transforma-
tion as in definition 2.3.2. This means that

Qil(B(l'o, 6(]) N Q) = {l‘ € Qil(B(.IU, 60)) txy < ¢(l‘1,$2, C ,l‘d,l)}.
Assume further that B(zg,¢q) C U, and let Y C R4t gather all points y € R? such that

0(y) == Qy, ¢(y))" € 02N B(zq, €0).

Note that 6 satisfies ||6(z) — 0(y)|| > ||z — y|| for all z,y € Y, and that Y is an open set.
Given a function f € H'(T?) with supp f C B(zo, €), we compute

(B*p, f) = (p, Bf)
1) - / s

- / p(0(2))£(6(2))T0(2)dz.

Here J0(2) is the (d — 1)-dimensional volume of the parallelogram spanned by the vectors
{DO(z)e1,...,DO(z)eq 1}, see for instance [19],chapter 7.

3.3.1 Index sets and banded matrices

To find the sets predicted by lemma 3.2.8, we will not use 3.15 directly on the wavelets, but
will instead transform the claim of the lemma to an analogous claim on scaling functions.
Before doing this, we will shed some light on the structural relationship between sets of
scaling function and wavelet coefficients.

Given a level j, we can (obviously) consider the wavelet or scaling function coefficients
of a function f as belonging to a vector space indexed by Z]d = Z4/2774. For instance, the
scaling function representation of B*p on level j can be interpreted as ¢; € ZQ(ZJd), with
entries

(3.16) Cjk = <B*p,w?k> = (p, Bw?k>7 Vk € ZJ"i‘

This point of view is useful because it allows us to use information on the location of a basis
member on T?. To this end we define a metric on Z{ by

d(k, k') = min ||k + 272 — k|| .
2€74d

In this spirit, let X be some finite set, and let W = (5(X), V = ,(2]). We will say
that a linear map M : W — V is banded of width dy; € N if for any £ € X one has that
if ', k" € supp Mey, then d(k', k") < dyp;. Here we have written e for the member in the
canonical basis corresponding to k. That is, (ey); = 0, where g is the Kronecker delta.
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Proposition 3.3.1. Let A C Zf be such that for ay,as € A, ay # ag implies d(ay, az) > dyy,
and suppose v € V, w € W are related by v = Mw. If, for some Cy > 0 one has |v,| > Cs
for each a € A, then there exists C3 > 0, and B C X such that |wy| > Cs, and #B = #A.

Proof. For each a € A, write D, = {k € X : a € Me;}, and let N = sup,¢ 4 #D,. Now, if
lwe| < NHCW for all ¢ € D,, we reach a contradiction with the hypothesis that |v,| > Cs,

since then
ol = ) (weMe.)y| < Co.
ceED,
Thus, we take C3 = NHCW’ and chose for each a € A a single b, € D, such that

|vy,| > C3, and collect all those b, in the set B.
It only remains to prove that if b, = b,, then a = a'. Indeed, if a # a', then a,d’ €
supp Mey,, and thus d(a, a’) < dy, contradicting the hypothesis. O

Let d be the coefficients of B*p as above, and let us write d; € @(V?) for the sequence
of coefficients on level j only.

Let {nm1,m2,...,7m9a} be an enumeration of the set E \ {0} (see 2.6.4). Then we can write

d .
VO =17, (2(24), and assign to each n; a copy of £>(2%). Then the map M, : VI — (5(24,,)
given by the matrix
1 : Tlyd
M; = (M;” MP ... MpP )

maps the wavelet coefficients on a level j to the corresponding scaling function coefficients
on level 7+ 1. This map is banded in the above sense, and the bandwidth del is independent
of j if j is large enough. Moreover, the number N; = MaXye 7 #{\ € V? ke M]-le,\} is also
constant if j is large enough. A similar observation holds for || M||,. We are in the position
of proving lemma 3.2.8 using the following lemma.

Lemma 3.3.2. Under the hypothesis of lemma 3.2.8, one can find jo € N such that for each
J > jo there exists a set F; € Z;-l with the following properties

i. ke Fjimplies |(M] ¢ 1)kl 2 2% (see (3.16))

i #F; > 2001

111. kl, ko € F]U)Zth ky 7é ko zmplzes d(kl, kg) > del

(3.17)

iv.  FjyNsuppe; = 0.

Proof of lemma 3.2.8. We can write

Cj+1 = Mjldj + M]QC]',
and thus

1 0
Mj dj = Cjy1 — Mj Cj.
If we write v = ¢;41 — Mjc;, then we have that the sets F} in (3.17), and the matrix M},

both satisfy the hypothesis of proposition 3.3.1. From this, and from the observation that

the constant C3 in lemma 3.3.1 can be chosen independently of j, we infer the existence of
the sets G; for j > jo, with j; as in lemma 3.3.2. O
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3.4 Proof of lemma 3.3.2

3.4.1 Lower bounds for single integrals

We begin by introducing the notation [, := 277 ([0, 14 + k), and then associating to any
set A C T¢ an index set in Z{ according to the following notation.

A?(A) ={k € Z;l O N A # 0},
AI(A) == A{k € Z{: 3k € AJ(A) with d(k, k') < n}.

Let xg, €, ¢,Q,0 be as chosen just before (3.15). Let G := 9Q N B(xg,€¢/2), and let
Yo:={z €Y :0(x) € G}

Proposition 3.4.1. There exists jo € N such that j > jo, k € AY(G) imply
el 2 27%

Proof. We begin by realizing that, since the primal scaling functions are B-splines of order
at least 4, one has that [0, 1]¢ C (supp °)°, where A° denotes the interior of the set A. Thus
we can find a constant ¢, and a 7 > 0 such that if z € B([0, 1]¢,7), then ¢°(z) > ¢.

Since 6 is C'(R¢™"), we can show that 6 is Lipschitz on Y. So let L be such that

(3.18) 10(2) = 0(y)ll2 < Lz —yll2,  Va,yel,

write 7; = %2*1'7, and chose j; € N such that if j > j;, then B(Yg, ;) C Y. This is possible,
by (3.18), when 7; < 57, for instance.

Let jo > ji be such that j > jo, ko € AJ(G) implies supp ¢}, C B(wo, €). Given such
J, ko, let z € Y; be such that 6(z) € O, C supp zp?ko. But then B(z,7;) C Y, and also

0 () > 279258 Vre B(z)

because 6(B(z,7;)) C B(Ujk,,277), and where the powers of two come from the H! and L,
normalization respectively.

Recall that p(6(z)) > ¢ almost everywhere on Y, and observe also that since ||0(z) —
0(y)|| > ||z — yl| for all x,y € Y, we have J0(x) > C, for some Cy > 0.

From (3.15) we get

Cjg = 27725 / de > 27%
B(Z’Tj)

since the volume of B(z,7;) is larger than a constant times 2/(~1), O

3.4.2 Index sets and masks

To be able to satisfy requirement (iv) of (3.17) we need to obtain a better understanding of
the action of the linear map Mj. We bring to our attention that if ¢)° is a B-spline of order
at least 4, then we have for its mask that

(3.19) supp{a)} = {a,a+ 1,..., 8} C Z*
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with

(3.20) a< =2, 2 < p.
Next we observe that if j is large enough to avoid periodization effects, we can find a
constant C5 > 0, independent of j, such that all nonzero entries in Z\/[J0 are larger that Cj.
This follows from the definition of M]Q, and from the fact that all entries in the mask of a
B-spline generator are non-negative.
Let us take a look at indices k € Z¢ such that supp MJe; N A9, (G) # 0.
Proposition 3.4.2. For these k it holds

_id
CﬂCZ2 2,

Proof. Given such an entry, we use the refinement relation to write

i1
(3.21) Cik = E : Jgfcj+1,2é+zaz-
j

2€74

If a, # 0, then ||z]| < B. And if this is so, then supp ¢?+1 siss C B(zy, €p), and thus from

the definition of ¢;, and by the hypothesis on p, we have that ¢, | 5, , > 0, since for this index
the integrand in (3.15) is non-negative. On the other hand, since supp Mje; NAJ,,(G) # 0,
there exist at least one z' such that 2k + 2’ € A9, ,(G) while also a,» # 0. By proposition
3.4.1, and since also the number of z such that a, # 0 is finite (and thus there is a smallest

such a,), we have that

a/zlcj+1’2]:3+zl Z 2—% — 2—%2_%-
Using this knowledge together with (3.21), we obtain the result. ]

The elements in F}; will be chosen among those [ € supp M]Qe,; which also satisfy that
a1 (Supp w;]—l—l,l N o) = 0, where py 1 is the Lebesgue measure on 092. Those [ satisfy

indeed that ¢;41, = 0 (since then the integral is defined on a set of measure zero), while also
jd

(by proposition 3.4.2) we have that (Mjc;); 2 2="% . The following lemma gives us a hint as
to where to find this type of [.

Lemma 3.4.3. Let {a}}rczq be the mask of ¥°, let o, B € Z be as in (3.19), (3.20), and let

1€ A7 (09) \ A7, (09). Then it holds that

i. p(supp ¥, NOQ) =0

ii. There exists k, € A, ,(09) such that d(I, k.) =+ 1.

iii. There ezists k € Z¢ such that I, k, € supp{a’_,:}.eza, and thus I, k. € Mez,

—2k

Proof. The first two claims follow immediately from the definition of A}, (9€2).
To prove the last one, we will show in a componentwise fashion that such a k exists. To
this end, let us write [ = (I',12,...,1%), k, = (kL,k2,... k%), and k = (kK',k?,... k%). We

E AR )
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have (neglecting, as we can, effects of periodization) that the k we are looking for satisfies
that o _ _ _
'k, e {a+ 2k a+2k"+1,...,8+ 2k},

or in terms of inequalities, that

a4 2k <1< B+ 2k o+ 2k < k< B+ 2k
But this is equivalent to
(3.22) max{l' — 3, k! — B} < 2k' < min{l’ — a, k! — a}.

Such a k' exists, trivially, whenever 3 — a > 1 (as is being assumed) and I’ = k.

If I' > k%, then (3.22) reduces to [I' — 3 < 2k’ < k! — a, which is equivalent to
(3.23) P -k <2k -k +5<p-oa.
Since d(l, k,) = B+ 1, we have that (3.23) can be satisfied by &’ whenever
B+1<2k —K +B8<8—a,

or simply when 1 < 2k’ — ki < —a. We can always choose such a k' if, as is being assumed,
a< —2.
The case k! > [ follows analogously. O

Having established the existence of the indices we are looking for, it only remains to show
that there are enough of them.

3.4.3 Construction of the sets F
Let P, : R? — R¢"! be given by

Po(xy,..0,2q) = (T1, oo, T 1, Tty « -+ Ta)-

We will assume for now (and prove this in the next section) that we can arrange matters
to be as follows. Suppose we have found a 2z € B(xg,€/4), a 0 > 0, and m € {1,...,d}
such that

i. B(zy,0) C B(xg,€/4)
ii.  B(z,0)NG =10
iii. PpnB(20,0) C (Pn|G N B(xg,e0/4)]))°

(3.24)

. 2y =277z, for some z, € Z% j* € N,

For j > j* (where we assume that j* is larger than all previous lower bounds for j) we
define the set '
Aj={2€2}:(z2—2")m=0and 277z € B(z,0)}.
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Proposition 3.4.4. There exists j** > j* such that if j > j**, then for each a € A; there
erists a number r, € Z such that l, := a + rqee, € Af“(aQ) \A?(@Q), and such that
27jla € B(x0,6/4).
Proof. Tt will be enough to choose j** such that if j > j**, then a € A; does not belong to
AT 09).

Since P,,B(29,0) C (Pn[G N B(xg,e0/4)])°, we have that there exists 7, such that a +
Tobm € A?(@Q). We can assume, without loss of generality, that 7, > 0.

For 0 < i < 7, write k; := a + ie,,, and observe that, by the convexity of the ball
B(xg,e9/4), the integer 7, can be chosen in such a way that 277k; € B(xg, e/4) if 0 < i < 7.

Let b(i) denote the smallest n € Ny such that k; € A}(09Q). We see that whenever
ki € A7(09), then ki € AT(0Q) for some m € {n — 1,n,n + 1}, and thus conclude that
b(i) —1 < b(i+1) <b(i) + 1. From this, and since b(0) > 5+ 1, b(7,) = 0, it follows that
there must exist a number r, € Z (the one we are looking for) such that b(7,) =5 +1. O

Another important observation is that we can choose j** above in such a way that if
j>ji* ke Af“(@ﬂ), and 277k € B(xg,€/4), then k € Af_l(G). Let us do just that, and
let us collect all the [,, a € A;, in the sets L;. Note that these are precisely the [ we have
been looking for.

Note that if a;,as € Aj, then

d(lal, la2) Z d(al, (LQ).

From this we infer that we can construct the sets F; needed in lemma 3.3.2 if we can find
sets F; C A; such that

i. #E; > 2/
ii. ar,as € Ej, a; # ay implies d(ay, as) > dMJg.

But this, thankfully, is trivial.
We are almost done. We only have to prove that we can indeed arrange matters as in
(3.24).

3.4.4 A topology lemma

The problem can be reduced a bit. If we find 25, o, and m that satisfy the first three
conditions in (3.24), then finding another pair that satisfies the last one is trivial too. But
the existence of such zy, o, and m is a consequence of the following lemma, which will be
proven at the end of this subsection.

Lemma 3.4.5. Let yp € R, ¢ : R — R continuous, § > 0, Y = B(yy,d), and let
Go={(z,9(z)) eR 1z € Y}.

Write 29 = (yo, #(10)). If Q@ : R? — R? is orthogonal, then for each n > 0 there exists
y € B(xg,m), k>0, andm € {1,2,...,d} such that

PmQB(ya ’%) - (meGO)O
while B(y, k) N Gy = 0.
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We will need some preparations. Given two points 21, 7, € R?, we denote by v = y[z125] :
[0,1] = R? the function y(t) = (1 — t)z; + twy. Given 7,7 :[0,1] — R?, and if y(1) = n(0)
we write 1 = 7 % 1) for the function ¢ : [0,1] — R? given by

: 1
(1) = v(2t) %f(1)§t< 5
n2t—1) if5<t<1

We also write y[x1xg - - - x| = Y[w129] * y[2223] * -+ % V[T 120 ]
The proof of lemma 3.4.5 is a simple consequence of the following proposition, which is
just a simpler variant of it.

Proposition 3.4.6. Let yp € RO ¢ : R — R continuous, 6 >0, Y = B(yo,d), and let
Go={(z,0(2)) eR 1z € Y}.

Write 1o = (Yo, ¢(0)). If Q : RY — R? is orthogonal, then there exists m € {1,2,...,d}
such that (PnQGy)°® # 0.

Proof. For arbitrary n and € > 0, and given a point z € R", we denote by Bu(z,¢€) the set
{y e R" : ||z —y||o < €}, and by By(z,¢€) the set {y € R" : ||x —y||2 < €}, which corresponds
to the definition of B(z, €) we have been using until now. Define o = sup{r > 0: B, (0,7r) C
By(0,1)}, and note that o < 1.

Let 0 < 6/2, set W := By(xg,0) \ Go, and note that this set is open and pathwise
disconnected. There is, in particular, no path between the points w_ := xy — agey and
wy = g+ afeq. If Q is orthogonal, then QW is also pathwise disconnected, and we cannot
find a path between Qw, and Qw_ in QW.

Now suppose that the lemma is false for a certain orthogonal Qg : R¢ — R?.

Set W' := By (Qoxo, ad) \ QoGo, W', := Qowy, and w’ := Qow_. By the way we have
chosen the parameters, we have that W' C Q,W, that W' is open, that w! ,w’” € W', and
that there is no path between w’, and w' in W'. Let d; > 0 be such that By (w',,dy) C W'
and By (w' ,dy) C W'

Now, let & = w' , and choose (; € By (&1, %0) such that Pi(; ¢ PiQyGy. This is possible
because we assumed our lemma false, and thus B (P&, %0) ¢ PiQoGy. We next choose
A1 € R such that the first coordinates of & := (; 4+ Aje; and w!, are equal. Note that the
path v[& (1&,] lies fully in W,

Next choose (» € Buo (&2, 2) such that Py(s ¢ PQoGo (which again has to exist), and
choose Ay such that the second coordinates of &3 = (5 + Ayes and w’+ are equal. Note that,
for the same reasons as above, the path y[£1(1£2(2€5] lies fully in W',

We proceed in this fashion until we have constructed &;, and note immediately that
£a € Bs(w',d), since each coordinate of &, is at most at a distance of @ of the
corresponding one in w’,. But we took care to never leave W', which implies that the path
YwGi&aCo - - - Cg—qw' ] lies in W', This contradiction finishes the proof. O]

Proof of lemma 3.4.5. Without loss of generality, we can assume that § < 9, and apply the
same proof as before. The point gy, we are looking for is the last & obtained before the

process cannot be continued, and k can be chosen as k = %0. O

Thus ends the proof of lemma 3.3.2, and thus also of lemma 3.2.8
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Chapter 4

Towards a fictitious domain method
with optimally smooth solutions

Introduction

In this chapter, we will introduce a fictitious domain method designed to produce optimally
smooth solutions whenever the given data allows it, and which is also capable, in practice, to
deliver on that promise. We also obtain, albeit with additional assumptions, a solid theoreti-
cal understanding of this method, proving convergence and reproduction of smoothness. The
encouraging numerical results, to be presented in chapter five, suggest that our approach is
promising, and that it should be the subject of further research.

The central idea of the approach is the division of responsibilities. Starting from our
original boundary value problem on a domain, we formulate a very simple linear least-
squares/fictitious-domain formulation on an extended domain whose solutions will all solve,
when restricted to the original domain, the original problem. Although this extended prob-
lem does not have a unique solution, it can be seen to be solvable, and the solution can be
chosen to depend continuously on the data. Instead of modifying this formulation to force it
to produce smooth solutions, our approach assigns this responsibility to the solution process.
We show how a simple iterative scheme is capable of recovering smoothness through what
amounts to emergent behavior.

We begin in section 4.1 with a brief review of the definition and properties of the Moore-
Penrose pseudoinverse. This building block is central in what follows. In section 4.2 we
formulate and study the least-squares/fictitious-domain problems mentioned above. In sec-
tion 4.3, starting from a sequence of discretizations of those problems, we propose a solution
operator capable of recovering smoothness, and prove that it works under certain additional
conditions. Finally, in section 4.4, we construct a candidate sequence of suitable discretiza-
tions.

We leave the actual implementation, and numerical experiments, to chapter five.
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4.1 Moore-Penrose pseudoinverses

Let Hy, Ho be two Hilbert spaces, and let M : H; — H, be a bounded operator with closed
range. Write N := M)y (pr)t, and recall that under these conditions, N : N'(M)*+ — R(M) is
an isomorphism. The Moore-Penrose pseudoinverse is then defined by M := IHIN*IPR(M).
Here, Pr(u) denotes the orthogonal projection onto the range R(M) of M, and Ty, is the
injection into ;. Given b € Hs, one has that z = MTb is the unique minimizer of smallest
norm in H; of the functional ¢(z) := ||[Mz—b||3,. One also checks easily that MT: Hy — H;
is a bounded operator with closed range.

The following theorem gives us a characterization of the Moore-Penrose pseudoinverse.
See e.g. [15], p.182.

Theorem 4.1.1. Let B : Ho — Hi be a bounded linear operator with closed range. Then
the following are equivalent

(i). B= Mt

(ii). BMz =z for all x € N(M)*, and By =0 for all y € R(M)™ .
(iii). MB = Priypy, and BM = Pyne = Pres).
(iv). (MB)* = MB, (BM)* = BM, MBM = M, and BMB = B.

One has, furthermore, that if Q : H; — H, is an orthogonal projector, then Q' = Q.

For the proof of these facts, and for further information, we refer to [15], chapter 8.

A remark is in order with respect to the numerical aspects of using pseudoinverses.
The traditional approach to obtaining the pseudoinverse of a matrix is to use a singular
value decomposition (SVD) which is rather expensive. Since we are not interested in the
pseudoinverse per se, we will use instead appropriate iterative Krylov subspace methods,
which have much better performance, to approximate the product of the pseudoinverse with
a given vector. See subsection 4.5.

4.2 The formulation

4.2.1 Problem scope and assumptions

Consider the problem

Au=f on €,

4.1
(4.1) Bu=g.

where A is a regular elliptic differential operator, and B : H?(Q) — H?(®)(9Q) is either the
Dirichlet or the Neumann boundary operator, with o(B) = 3/2 resp. o(B) = 1/2. We will
assume that 0 C R? is a bounded domain with C* boundary. The regularity assumptions
on A and €) can be relaxed, but at the price of obscuring the arguments. See remark 4.3.10.

We further assume that f € Ly(2), and that g € H®)(99). This allows us to conclude
that the solution u of problem (4.1) is at least in H?(Q2). We shall further assume that
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problem (4.1) is well posed; for each f € H(Q), g € H°®)(9Q), there exists a unique
solution v € H?(2) of (4.1), and this solution depends continuously on f, g.

Remark 4.2.1. The reqularity assumptions on the data restricts the applicability of the
method designed here. We chose them since they simplify the theory in a few crucial aspects,
and hope for further research to render the method applicable to more general settings.

4.2.2 The formulation

We start by embedding 2 into a larger domain. Again for simplicity, we will assume that
this domain is T¢, and, of course, that Q can be properly embedded in T¢. That is, there
exists € > 0 such that Q C (0 +¢,1 — €)4. We will further assume that an extension of A to
T¢ is available, and we denote it again by A. In particular, we will use that (cf. 3.2)

(Au) o = A(uj) Y u e H*(T?).

Note that this does not amount to a “pointwise” interpretation of the differential operator,
as we are considering derivatives in the sense of distributions. What we are using here is
that if u € H?(T?), then Au can be identified in the usual way with an element of L.

We are looking for a way to obtain an u* € H?(T?) which satisfies

(4.2) U\JEZ = u,

where u is the solution of (4.1). There are of course many elements of H?(T?) which would
satisfy (4.2), but after considering the effects of smoothness on accuracy, we want to find
one that is as smooth as possible. As was announced in the introduction, our approach will
be to set up a minimal least squares problem whose solutions all satisfy (4.2), and then try
to construct a smooth solution of said problem. Here we will concentrate on the first part
of that program, addressing the second part in section 4.3.

Observe that the requirement (4.2) is equivalent to requiring that u™ satisfies the equa-

tions
(AuT) o = T,
But = g.

Our first (prototype) least-squares/fictitious-domain problem will be as follows.
Problem LSFDy: Given f and g as above, find u* € H?(T¢) such that it minimizes the
functional

(4.3) Dq(v) = [[roAv — f||%10(n) + [|Bv — g”?tla(B)(aQ)-

We see immediately that there is at least one drawback of this formulation: It still involves
a space defined on Q2. To remove this space we introduce the operator Cq : H(T?) — HO(T¢),
defined by

(4-4) Caof :==xa-f,

which assigns to each f € H°(T?) the extension by zero of its restriction to Q. It is easy to
see that Cgq is an orthogonal projector with respect to the canonical Ly norm in H(T?).
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Remark 4.2.2. The orthogonality of the operator Cq plays a crucial role in what follows. A
suitable substitute (either for the orthogonality or for the restriction itself) would be needed
to extend the method under discussion to more general settings.

We can now reformulate a new least-squares/fictitious-domain problem, using Cq to avoid
the space H°(Q).

Problem LSFD: Given f and g as above, and given any extension f; € H°(T¢) of f,
find ut € H?(T¢) such that it minimizes the functional

(4.5) ®(v) = [|Cadv = filljocray + 1 B0 = 9l 0 a0

We will now check that these least-squares problems can indeed be used to solve our
original problem. This involves verifying that any solution of these problems satisfies (4.2),
and that we can obtain solutions whose norm is bounded by the norm of the data. We will
also find out that the solutions of minimal norm of (4.3) and (4.5) are equal.

For notational simplicity, let H' := H?(T%), H§, := H(Q) x H*B)(9Q), H" := H°(T?) x
H®P)(9Q), and let Mq : H' — Hi, M : H' — H" be given by

o= (%) = (%)

where rq is the restriction operator, and Cq is the orthonormal projector introduced above.
As done before, we endow #Hg, and H" with the corresponding Euclidean tensor product
norms, to ensure that they are Hilbert spaces.

With these operators, and setting bg = (f,g)", b = (f1,9)", we rewrite the functionals
appearing in problems LSFD, and LSFD as

(I)Q(U) = ||MQU—bQ| ’3_[7'.

o ®(v) = ||[Mv — b
Theorem 4.2.3.

(i). The operators Mg and M are bounded and have closed range, (and thus have bounded
pseudoinverses).

(ii). If fi € H'(T%) is an extension of f € HO(Q), then ut := Mtb and w* := M} by both
satisfy (4.2).

(111). It holds that ut = w.

Proof. That these operators are bounded is obvious.

From the well-posedness of problem (4.1) it follows that Mg is surjective. To see this, let
h = (¢,7)" € Hj, be arbitrary. Then there exists a unique v € H?(Q) which satisfies (4.1),
and thus any extension vt € H?(T?) of v satisfies Mqut = h. Surjectivity immediately
implies that the range of Mg is closed.

To see that the range of M is closed, we use again the well-posedness of (4.1) to prove
that

R(M) = {(6,7)" € H' : dja = 0},
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Now for any convergent sequence h, = (¢n, Vo) € R(M),n =1,2,..., we have that ¢, g = 0.
By continuity of the restriction operator it follows that for h = (¢, ) := lim,_, h,, it holds
pjoc = 0. Thus h € R(M), showing that this set is closed. This finishes the proof of (i).

Back to problem LSFDg, we conclude from the surjectivity of Mg that min ®g(v) = 0.
Since wt = Mgsz is a minimizer of ®q, we have that rqAw™ = Arquw™* = f, Bw' = ¢, and
thus that w™ satisfies (4.2)

To see that u* := MTb also satisfies (4.2), we begin by computing the minimum of ®.
For this, observe first that (trivially) ®(v) > ||[CqAv — leHO(’]I‘d Since Av € H°(T?), and
since Cg is an orthogonal projection in this space, we see that ®(v) > [[(Cq — [)leH0 Td)-
A simple computation also gives us that ®(w™) = ||(Cq — )f1||HO ra), showing that this last
quantity is indeed the minimum of .

Now observe that u*, being the minimizer of ®, must satisfy

O(u’) = [|Codu’ — f1||%10(1rd) +[|Bu’ - 9”%{0(3)(39)

4.6
40 = (Co— D o,

But one readily checks that, since Cq is an orthogonal projector,
|CoAu™ — f1||§10(1rd) = [|CaAu™ — CQfIH?qO(Td) +[[(Ca - I)f1||?1[0(11‘d)7

and thus from (4.6) it follows that CoAu™ = Cqfi, and But = g. Now CqAu™ = Cqf is
possible if, and only if, (Au™)q = fijo = f. So u™ satisfies (4.2), finishing the proof of (ii).

Finally, let us show that Mgbg = MTh. The key observation here is that for any v €
H?(T?), it holds that

(4.7) [Mqul[zg, = [[Mv][3.

This follows from the fact that ||Cohlgorey = ||hjallmo@) for each h € H°(T?). As a
consequence of (4.7) we have that M and Mg have the same kernel.
Now, for ut = M'h, and wt = Mbg we have that

2 _

[ Mo (u” —w™)] Hy

[roAu™ — TQAerH%IO(Q) +[|Bu” —~ Bw+||?qo<m(ag) =0,

and thus u* — wt € N(Mg). But since Mibg L N (Mg) = N (M) L M'b, it holds that
both u™ and w™ are orthogonal to N (Mg), and thus u™ — w™ = 0. This proves (iii) and
finishes the proof of theorem 4.2.3. O

Remark 4.2.4. When choosing a discretization scheme for problem LSFD, it should be kept
in mind that this result depends critically on the fact that Cq is an orthogonal projector. On
the other hand, it is important to note that theorem 4.2.3 remains valid if we change the
norms of HQ(']I‘d) to any equivalent norm (the same applies to H"B)(0R)).



54 Recovering smoothness

4.3 Recovering smoothness

The method to recover smoothness we will present in this section cannot, at present, be
justified completely from a theoretical point of view. The method performs quite well in
practice, however, so that even though the theory we present here does not cover every
aspect, we can safely conclude that our approach is promising. Further research is needed
to complete the picture.

The available theory has the following form. We assume the existence of a sequence of
linear discrete maps which satisfies a certain set of properties, and subsequently prove that,
if such a sequence exists, and the data allows it, then we can construct a smooth solution to
problem LSFD.

Let {Vj}jeng, {V] }jen, be nested sequences of linear spaces such that

A (H*(T), {Vi}jeno) = H*F*(T7),
A;(%r’ {V}T}J'ENO) = HS(Td) X HU(BH_S(aQ)a

for some range 0 < s < sp. Additionally, let {Q;};en, and {Q}};en, be uniformly bounded
sequences of projectors with R(Q;) = V;, R(Q}) = VJ. To recover smoothness we use a
sequence of linear maps M; : V; — V[ satistying a few properties that we are going to discuss
now in some depth.

It is not known, at present, whether such a sequence exists; see remark 4.3.9 for a
summary of the difficulties. In section 4.4, however, we will construct a sequence of operators
which, in view of the numerical evidence of chapter five, seems to us to be a strong candidate.

The first thing we would like to require from this sequence of maps is that they can be
used to approximately solve problem LSFD. In particular we expect it to satisfy

(A1) M,;Q,u — Mu, MIQLb — M'b,
in th e topology of H", H%(T¢), respectively, for all u € H%(T%), and all b € H". By the

uniform boundedness theorem (see e.g. [15], page 165) we have as a consequence of this
assumption the existence of a finite constant Cp; > 0 such that

(4.9) max{ || M), || M][|} < Cu Jj=0,1,...

Suppose now that b € A5(H", {V;}), for some § > 0, and write b; = Q}b. The next
assumption is based on our hope that the solution of the problem

(4.8)

min @;(u;) = || Mju; = bjll3

J J
is a good “guess” for the minimizer of ¢; ;. We will assume that there exists some s; € (0, so]
such that

(420) ||Mj+1M}bj — Progbjsille S 277

b”Aé* (H" {V; }jeng)

with s* = min{3$, s;}. While (A2;) already captures the essence of our assumption, we will
ask for the (only slightly stronger)
¢

(A2) H {2”"

which will help us avoid some epsilons in the proofs that follow.

M; 1 M]b; — Priyy )by

, S ||b||A;* (H" {Vj}jeny)
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Remark 4.3.1. Note that this is really only an epsilon, as it is easy to see that if (A2)
holds for a given s}, then (A2) holds for each s* < sj.

Finally, we will require from the sequence {M,} that the kernels of these operators be
nested.

(A3) N(M;) C N (Mjyy).

This last assumption is what really drives the method we will introduce now.

The intuitive idea behind our method is as follows. Suppose that {V;} is the B-spline
MRA introduced in 2.6.2. Then the minimizer u; = M; b; of ¢; will have the same smoothness
as any other element in Vj, and, under the right circumstances, we will have that u; is a
good approximation of some smooth solution of problem LSFD.

While we may expect u; to converge to a solution of LSFD, we cannot expect this limit
to be smooth. Looking at the kernel of M, we see that it consists of functions x € H?(T¢)
which are zero on €2, and which satisfy Bk = 0. There is no reason to expect in general
that an extensions of u to T¢ with higher Sobolev smoothness than H? is orthogonal to this
kernel.

So to obtain such a smooth extension of u using the solutions u; of the discrete problems
we may have to “grow” a component in this kernel. Our plan is to “lift” the smoothness of
the finite dimensional spaces {V;} by collecting the components of the solutions u; in the
kernels of the operators M; ;. Thus, the definition of our solution operator starts with a
standard solution for some initial j (for simplicity we begin with j = 0),

(4.10) Sob := MIQLb = Mib,,
and then define
(4]_].) Sj—l—lb - PN ]+1 S b + M +1Q]—|—1

Theorem 4.3.2. If {M;} satisfies (A1), (A20), (A3), and b € Ay (H",{V;}), then {S;b};en,
converges.

Proof. We is enough to show that {S;b},en, is a Cauchy sequence.
From (4.10) and (4.11) we can derive an alternative expression for S;b. We have that

J
Sib=">_ Py, Py, , -+ Py, M} \bi_y + M]b;,

where we have written N := N(M;). Thus,

Sj_|_1b - Sjb = PN +1S b + M +1b]+1 Sjb
M]+1b]+1 - pNJLJFIS]b

Ml by — ZPNL Py, Py, - P, M by — Py, Mb;.
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Now, since N; C Nj;1, we have that ; L N, so that Py Py, = 0. This eliminates the
J
sum in the last expression above. Continuing with the calculations, we observe that

Sjr1b = Sib = Py (M}L+1bj+1 - M}%)

= M}+1Mj+1 (M}Hbjﬂ - M]Tbj> )
so that
§j+10 = 00| g2 > j+1 R(Mj41)05+1 — M1 845 05| Hr
(412 15510 — S;bl| 2 < | M1, ||| P b M M'b)|

< Ouml|Pr(aaj n)bjv1 — MJHM}bHH’"a

where (') is the constant in (4.9). Using assumption (A2g), we obtain that ||S;116—5;b g2 <
279%". A simple geometric sums argument now gives us that {S;b};cn, is indeed a Cauchy
sequence. [

The next task will be to prove that we really obtain a solution to problem LSFD from

Sb:= lim S;b.

j——+oc
Theorem 4.3.3. It holds that Sb is a minimizer of ®(u) = ||[Mu — b3.
The proof of this theorem requires some preparations.

Lemma 4.3.4. Let Hq, Ho be a pair of Hilbert spaces, and {A;} a sequence of bounded linear
operators which is pointwise convergent. It is known that then the operator A : Hi — Hs
given by Av = lim;_,., A;v is bounded and linear. If also Atw = lim; o A}w for allw € Ho,
then

(4.13) PN(Aj)U — PN(A)U PN(Aj)LU — PN(A)L'U

(4.14) Preajw — Priayw Preajyrw = Preayrw

Proof. Note that, since Py1 = (I — Py), the claim on the right of (4.13) follows trivially
from that on the left. Note also that since R(4;) = N(A;)L, we obtain (4.14) from (4.13).
Thus, it is enough to prove the claim on the left of (4.13).

Let v € Hy, and write v = vy + v1, where vg = Pya)v, and vy = v — Py ayv = Pyayrv.
Now, we only have to prove that Pya;,)v0 — vo and Pya;)v1 — 0 when j — oo.

J J

From the hypothesis on {A;} it follows that A;vy — Avg = 0, and so
(415) P/\[(Aj)lvo —0

when j — oo. To see this, note that by the uniform boundedness theorem ||A;|| < C for all
j and some C' > 0, and recall that A}Aj = Pyr(a;)+- Thus,

1Prcazy2volla < NA3IIA w0l < CllAjvolla, — 0,

from which (4.15), as well as Py(a;)v0 = (I — Pyrea,)1)vo — vo, follows.
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Now, from A;v; — Av; — 0, we obtain that
(4.16) [ Prrayrvn = AlAvy||3, < || AL[[|Ajv1 — Avi |, — 0.

But since A;Avl — v1, we can infer from (4.16) that Pyr(a;yrv1 — vi, and thus Pyayvr — 0
when j — oc.
So,
Prajv = Paagvo + Paay v
— vg = Prrayv,

finishing the proof. O
Proof of theorem 4.3.3. Observe that

I|M;S;b — MSb|

o = || M;(S;b — Sb) 4+ M;Sb — MSb]|3
< Cyl|Sjb — Sbllsr + ||M;Sb — MSb||2 — 0

by theorem 4.3.2, and by (A1), so that M;S;b — M Sb.
Writing R; := R(M;), and noting that M;S;b = Pr,b;, we also have that

< ||Pr, (bj = b)[|3r + || Pr;b — Pr(an)b|

wr — 0

since b; — b, and using lemma 4.3.4.
In any case, we have that M;S;b — Prnb, and also M;S;b — MSb, so that MSb =
PR(M)b But then

. _ . 2
ety L) = it 1M = e
> || Priand = bll3 = [[MSb = b3,
finishing the proof. O

Theorem 4.3.5. If {M;} satisfies (A1), (A2), and (A3), then for any 0 < s < sy, the
operator S« A5(H", {V;}) — AS(H?*(T?),{V;}) given by b+ Sb is linear and bounded.

Proof. Let b,d € A5(H",{V;}), and o, 8 € R. Then S(ab+ fd) exists, and is the limit of
Sj(ab+ pd) = aS;b+ £S;d, which in turn converges to aSb+ 3S5d. This settles the linearity.
It remains to see whether Sb € A5(H?(T?),{V;}), and whether S is bounded.

Using (A2) and (4.12) (the s* there amounts to our current s), we obtain

{27180 — Sjt1bl| g2(ray} € Lo

and ,
H{QJSHSJb — Sj+1b||H2(T‘i)}Hg2 5 ||b|

We also have [|S;b — Sb| g2ray < 32, 1Si41b — Sibl| gr2(rey, which inspires us to borrow
the following lemma, found in [16], p. 408.

A3
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Lemma 4.3.6 (Discrete Hardy Inequality). Let {ax}ren,, {0k }ren, be sequences of real
numbers, and let o > 0. If for some ¢ >0, 0 < u < q,

holds for all k, then

0 1/q o0 1/q
(Z(zk%gq) g(Z(g%gq) :

k=0

Thus, we conclude that

{21156 = S;blI} [, < [{2°1185b — Sjsabll}],, < [1DlLas-
But ||Sb — S;b|| > [|Sb — Py, Sb||, so that we obtain

150]

ag = ({21155 = Py b,
< {27155 = SpiHl,, < 11

4 O
A straight-forward corollary of theorem 4.3.5 is the following.
Corollary 4.3.7. The convergence behavior of {S;b} is given by
15,0 — Shlmsgeay S 27

In summary, given a smooth initial extension f; of f, and if ¢ is smooth too, we obtain
via the linear bounded operator S a solution to problem LSFD with the same degree of
smoothness. This, of course, provided the discrete operators M;, j € Ny satisfy (A1), (A2),
and (A3). We summarize theorems 4.3.2, 4.3.3, and 4.3.5 as follows.

Theorem 4.3.8. Let {V;}jeny, {V] }jen, be nested sequences of linear spaces such that (4.8)
holds. Let {M;}, M; : V; — VI be a sequence of linear maps satisfying (A1), (A2), and
(A3). Let f € H*(Q), g € H'B)*(9Q) for some s, > s > 0, and let fi € H*(T?) be an
extension of f to T¢. Then

1. The sequence {S;b}, with b = (f1, g) converges to Sb at a rate of O(277%) in the topology
of H.

2. Sb e H>(T%)
3. (Sb)|q is the solution of problem (4.1).

Thus, to obtain a smooth solution to problem LSFD, we start by choosing an arbitrary,
but smooth, extension of f, and then apply S.
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Remark 4.3.9. The difficulty in finding the sequence {M,} is, in essence, that singular
operators are hard to discretize properly. Fven when the infinite dimensional problem is well
posed, we cannot just use a standard Galerkin approach to obtain discrete problems. Attack-
ing the problem via reqularization is an option that does not lead too far. The above method,
through assumption (A3), is based critically on the singularity of the discrete operators M,
so eliminating it is not helpful.

Remark 4.3.10. Note that if A and 02 do not satisfy the extreme reqularity requirements
imposed in subsection 4.2.1, then their reqularity adds just another upper bound to s in
theorem 4.3.8.

The sequence of discrete problems we introduce in the next section seems, at least numer-
ically, to satisfy (A1), (A2), and (A3). The author is convinced that it is possible, although
not at all trivial, to prove that the sequence in question does indeed satisfy the necessary
assumptions.

4.4 A sequence of discrete problems

In this section, we will discretize a simple two-dimensional family of problems using a Petrov-
Galerkin approach. This sequence of discrete problems will be used in the next section to
perform numerical experiments using the method outlined in the previous sections. We will
go to some level of detail to explain the motivation behind each choice.

4.4.1 The model problem

Our model problem is

(A +plu=f on (2,

4.17
(4.17) Bu=g.

where p > 0, and B is either the Dirichlet or the Neumann' boundary operator. As before,
we take f € H°(Q), and g € H*®)(99Q). We also assume that we have already an initial
extension f* at hand. The domain Q C R? is any domain with smooth boundary.

4.4.2 Norms and spaces

We want to find approximations to the minimizer u* of the functional
(4.18) ®(v) = [|Cadv — fillforra + [1BY = gl a0)-

Keeping our goal in mind (that is, to solve (4.17)), we will use the insight of remark 4.2.4
and begin by changing the involved norms.

We will approximate ut € H?(T?) from the spaces V;, j € Ny, which we choose to be
the periodic B-spline spaces of order m, with m > 3 fixed, on dyadic grids of meshlength

'In this case, we assume u > 0 to ensure well-posedness.
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277. We chose an appropriate 1, and let U be the primal wavelet basis of H?(T?) of order
m and dual order m. We will use for H%(T¢) the norm induced by this basis (see section
2.6.3) since it is straight-forward to compute.

Remark 4.2.4 also warns us against changing the norm in Lo(T¢) = H°(T¢). There we
will approximate from the spaces

Vi ={f € Ly(T) : fio,, € M},

of discontinuous piecewise polynomials of degree m — 1, which can be endowed easily with
an orthonormal basis. To construct such a basis for \/}U, we apply first Gram-Schmidt or-
thonormalization in Lo([0,1]?) to the monomials z'y/ with i +j < m — 1, 4,5 > 0. We
write {¢% @', ..., ¢"} for the functions we thus obtain (here, n = (m + 1)m/2), and note
that it also is a basis for Vi). We write ¢!, (z) = 2/¢"(27z — k), and observe that the set
{¢l),:i=1,...,n, k€ Z7}, with Z; = Z/2Z is an orthonormal basis for V). We use the
canonical norm on Ly(T%).

We identify H?(P)(9Q) with H?(®)(T) using a suitable parametrization T : T — 9. For
H®B)(T) we choose again the B-spline biorthogonal wavelet bases W', \I;F, with fixed orders
m" > 3, and m" accordingly. But instead of spanning H°®)(T) with the primal basis, we
use for that purpose the (properly rescaled) dual basis U, The reason for doing this is that,
from a numerical point of view, it will be far easier to compute inner products with the
primal wavelets, which are piecewise polynomial, than with the duals. This implies that in
HB)(09) we approximate from the spaces f/jr spanned by the dual wavelets up to level j.
We will write @} for the oblique projector onto ‘7jF associated with U (again, we refer to
section 2.6.3). We will also use the norm induced by these bases for H°(%), H=o(P),

Given an element in v in any of these spaces, we decorate it with an underscore to denote
the Euclidean vector consisting of its coefficients. Thus, if v € V}, then v € ¢5(V;) is such

that v = ervj U\

4.4.3 The discrete operators
We define A, : V; — Vj0 by Aj := PjAy,, where P; := PV}o is the orthogonal projector onto
0 .
Vi, given by o
pvjof = Z<f7 ¢;k> ;k'
ki

Given a function v € Vj, we have that its trace on 9 is given by BPv = vol' € H*2(9Q).
If we are dealing with Neumann boundary conditions, then BNv = [(Vv)ol]-n € H/?(99Q),
where n(t) is the outward normal of 9 at the point I'(£). Thus, we define either BP, Bj\f ;

V; — V', as appropriate?, through

B]Dv D= Z (voTl, ZD,\WN}A (= Q?B\Z{)/j),

r
AEV;

2This refers to the fact that, when considering a given problem, we will define only one of these two
boundary operators.
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or

BYv:=> ([(Vo)oT] n,n)in (= Q) BY,).

r
AeV;

To obtain a suitable discretization of C, some additional care is required. The obvious
choice would be C; : V}O — V}O, Cifj = P‘/}oCij, which written explicitly is given by

(4.19) Cif = (fixa: )i (= PiClvp)-
ik

This form has a few serious drawbacks. For one, the coefficients (f;xq, d)§k> are, as a con-
sequence of the non-trivial geometry of {2, expensive to obtain, and expensive to compute
accurately. But this has serious consequences, as the rank of C; may change as the result of
small errors in the computation of these coefficients, affecting the rank of the overall prob-
lem, which in turn can distort the solution in an unpredictable way. See [30], pages 335-338,
for a thorough discussion.

Another possibility is to consider

(4.20) Cif = dinalfy )b
ik
where 0, .o is given by

1 ifOpnQ#0,
pkSr 0 otherwise.

This amounts to the orthogonal projection onto Vjo of the restriction of f € V}U to

0;,NQA£D
When writing the matrix of this map with respect to the basis {¢%, : 1 =0,1,...,n, k€ 27},
we obtain a section of the identity, thus reducing the possibility of numerical errors. We can-
not eliminate it completely, as the computation of §; x o itself is still subject to inaccuracies.
In any case, it is much more efficient to compute, and as the numerical experiments this far
sugest, it is also good enough.
Now, we define the map M; : V; — V) x ‘7jF through

C,A,
= ( éj]> ’

where B; is the discretized Dirichlet or Neumann boundary operator, as needed.

Let Z; = {tx : A € V;} be the wavelet basis for V;, and let 2§ = {¢%; : i =0,1,...,n, k €
22} x {4} : A € VI} be the basis for V0 x VI Let M, be the matrix of M; with respect
to Z;, Z%, and let f; = P;f*, g; = Q}g. Writing b; = (f;,9;)" € V) x f/jr, u; € V;, and
b; = (ij,gj)T, we have as a consequence of our choice of norms and spaces that

2 2
(4.22) HM]'Q]' - ijQ = || Mju; — b]’”q-n'

Thus, to find the minimizer of the quantity on the right, we compute the minimizer of the
quantity on the left, which is now a simple linear least squares problem in Euclidean space.
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4.4.4 Sparseness

To find a minimizer of (4.22) it would be quite helpful, for performance reasons, if given
v € Vj, we could evaluate M v in O(dimV;) operations. The matrix M;, however, is not
sparse. It is quasi-sparse, since the matrices A;, B, have O(logdim V}) entries per column,
with N the number of degrees of freedom. This can be solved by factorizing these blocks
using the wavelet transform; see [11], page 122.

Let v € Vj. Let us write U for the coefficients of v with respect to the scaling function
basis for V;. The map Tj : £5(V;) — (2(Z3), T; : v — T is simply the fast wavelet transform,
and its numerical evaluation costs O(dimV}) operations. One easily sees that if A? is the
matrix of A; with respect to the scaling function basis in V; and the basis chosen for V;O,
then A? is sparse, and thus evaluating

Aw=ATw

using the factorization on the right (applying first T}, and then A}) costs also O(dimV})
operations. . 5

Similarly, let Ty, T} : £(V}) — ((Z;) be the fast wavelet transforms g — g for g € V[,
h — h for h € V;.F, respectively, and let Bg be the matrix of B; with respect to the scaling
function bases of V; and ‘”/jr. Then evaluating

(4.23) Bjp=(T])"'BiTjw = (1) BITw

using the factorizations on the right also costs only O(dimV;) operations. As a consequence,
we obtain that through this factorization we can evaluate

I 0 C.A°
=y o) ( B] )

in O(dimV}) operations.

4.5 Realizing the iteration

The obtain a minimizer of )

®* (1) = || My, - by,
we can use, for example, the conjugate gradients (CG) algorithm[26] to solve the normal
equations,

T _ T
(4-24) Mj Mjﬂj = Mj bj-

While this has well known disadvantages, it also has an important advantage, which is that
it can give us the projection of v;_; onto N (M), needed to realize (4.11) essentially for free.

The key to that insight is obtained by taking a look at what the CG algorithm does.
To find an approximate solution of the finite dimensional linear equation Az = d, the CG
method produces iterates 2* which are the minimizer in W; = z(® 4 span{r?, (), ... r@=11
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of the functional v;(y) = (y — 2*)TA(y — z*), where z* is the exact solution of Az = d,
2(© is some initial guess, and r*) = A¥d. The minimizer of +; in W; exists, and is unique,
only if A is symmetric positive definite on ;. One has that () = z* when W; = Wi 4
(if the algorithm is performed with exact arithmetic), but if the condition number of A is
reasonable, then the z() will be a good approximation of z* far earlier.

Suppose now that A is symmetric and positive semidefinite. If d 1 N(A), then 7 |
N (A) for all k, and thus A is symmetric positive definite on

W; =20 + span{r?, r T(i—l)}
— P/\/(A)x(ﬂ) + PN(A)LI‘(O) +span{r®, r(, L. pG-DY

for all i [25]. Given an initial guess 2(%), we will obtain at the i-th step an z(? such that
Py(ayrx') is an approximation of z*, but which also satisfies Pya)z? = Py(4yz(”). Since

T T - T _
M;b;, L N(M; M), and since N'(M; M ;) = N(M;), we can compute (see (4.11))

— T
Uiy = Py )ty + Mgy

by solving (4.24) with the conjugate gradient method using u; as an initial guess.
Now write

CG(A, d, zq,€)

for the approximate solution of Az = d, with z(%) as an initial guess, obtained by iterating
until the error is smaller than e. Then the numerical realization of (4.10), (4.11) is given by

SPFD(]O, j, {b]‘}, 6) =

(4.25) 0 i j < jo
CG(MTM,, MTb;, SPFD(jo,j —1,{b;},€), €) otherwise.

= _]’
Computing an approximation to S;b amounts to evaluate SPFD(jo, J, {b;}, €).

The question arises as to what effect the inexact evaluation of M;Qj has on the sequence
{S;b}. In the experiments we have performed, it does not seem to play an important role;
further research is needed to shed light on this issue.

Instead of using standard CG with the normal equations, one should use the mathemati-
cally equivalent but numerically superior CGLS, developed in [25]. The direct application of
other Krylov subspace least-squares solvers is a delicate matter. In the case of LSQR[32], a
very robust least squares solver, the problem is to implement the projections onto the kernel.
Still other methods, like RRGMRES [6], assume that the system is given through a square
matrix. Again, we see in further research an opportunity for improvements in performance
of the method described in this chapter.

Note that if (4.9) holds, the condition number of the least-squares problems stays bounded
with j, and thus, in theory, no further preconditioning is needed. We would have

R(M;) = || M,[[|[M]]] < Gy,
and if we do not avoid the normal equations, we would end up with

k(M) M;) < Cy,.
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Chapter 5

Numerical experiments

The previous two chapters have made theoretical predictions which we would like to observe
in practice. The most important reason is that we have made asymptotic predictions, and
would like to know whether they are observable, and thus whether they have any relevance in
practice. This is comparatively more important for the SPFD method introduced in chapter
four, as it makes some strong promises, and since open questions remain, than for the results
of chapter three on the smoothness of solution of the FDLM method, which concern a know
method, and which are theoretically conclusive.

It is still worthwhile to check numerically the effect on smoothness of a non-zero Lagrange
Multiplier. From the proofs of theorems 3.2.7, and 3.2.9 (More accurately, from the proof of
lemma 3.2.8), we might be left with the impression that the convergence rate predicted can
be observed only for extremely high resolutions, beyond the reach of most practical needs.
These are the kinds of questions we wish to answer.

5.1 The experiments

5.1.1 Goals of the experiments

We will test both methods against a few simple examples and examine the results with the
following goals.

1. Concerning the FDLM method

(a) Observing experimentally the phenomenon predicted by theorem 3.2.7 on the
convergence of linear approximation schemes.

(b) Observing the phenomenon predicted by theorem 3.2.9, on the convergence of
nonlinear approximation schemes.

2. Concerning the SPFD method

(a) Measuring the smoothness of the solution obtained, rated through the convergence
speed of linear approximation using B-splines.
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(b) Observe the effects of the nested iteration on the solution. Does it really make a
difference?

(c) Establish whether the method can take advantage of the approximation power of
higher order B-splines.

(d) Observe the behavior of the method when faced with Neumann boundary condi-
tions.

5.1.2 Test cases

Given 0 < r < 1/2, we choose as a domain a simple disc

Q, ={zeT: |z - (0505) <r},
and parametrize the boundary through I' : T — 0€2, given by
(5.1) ['(t) = (0.5,0.5) + r(sin(27t), cos(27t)).

Our choice for r will be limited to r = 0.3, except once where we will use r = 0.45 to be
able to better measure the convergence of nonlinear approximation schemes. As always, we
embed 2 into T2.
We will investigate the behavior of the methods in question on the following test problems.
Problem P1: Find u such that

(—A+Tu=1 on (2,
BPu =0,

with 7 = 0.3 (and only once with r = 0.45). We choose as the extension to T? the obvious
one, f; = 1.

The above data can be considered too canonic. Thus, we also solve the following problem,
using nontrivial data.

Problem P2 Find u such that

(—A-FI)U:f[[ OHQ,

BPu = grr

with fr; =1+ 1 cos(5(z* 4+ ¢?)), gir = 0.01 - sin(4xt), r = 0.3.

To use any of the fictitious domain methods above, we must construct an extension of
fir to T We could just choose the function f(z,y) =1+ 5 cos(5(z + y?)) on [0,1)? as an
extension of the above right-hand side, and then lift it to T? by pretending f is periodic,
but this has the drawback that we do not obtain a smooth function on T¢. To find an
extension for fr; from Q to [0,1)? that is smooth, and can be lifted smoothly from [0, 1)?
to T?, we will construct an infinitely often differentiable function Y : [0,1]> — R which,
together with all its derivatives, is zero on 9([0,1]?), and which is 1 on Q. Then, we take
fi (@, y) = Y(z,y)f(z,y), restrict it to [0,1)?, and finally we lift it to TZ.

For the domain €2, with » = 0.3, a suitable function T can be obtained through a tensor
product with itself of a one-dimensional C'* function Yy : [0,1] — R which, together with
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all its derivatives, is zero on 0, 1, and is 1 on [0.2, 0.8]. To construct Y, we will consider the
standard mollifier

exp (—ﬁ) if |z —yll2 <,
d)e,y(x) = .
0 otherwise,

and engineer it to suit our purposes, as follows. First, we take Y _o(2) = ¢0.1,0.1(2)—o.1.0.9().
Then, we define Y_;(z) := [;" T_5(y)dy, and obtain

T_l(fE)
Toi(3)
Now, we set Y(z,y) = Yo(x)Yo(y) (see figure 5.1 for plots of Y and f;;). In the imple-

mentation, we used a standard adaptive quadrature routine to evaluate Y, at any point
x.

Yo(z) =

SIS SIS,
SIS =
S S SIS SO SSS, ooy
/@,;%}%W“‘%ﬁ; i
S S S SOSSSSIS SIS .
.,7///,,7//'//,"@":-:'%‘“%'» SN
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S SOSSSISSCs S SoSN
— S S S S S SIS S =
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=
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=
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(a) Plot of Y. (b) Plot of f;; (and f};,).
Figure 5.1: Construction of the right-hand side for problems P2 and P3.

The next problem uses the same data as problem P2, but this time we impose Neumann
boundary conditions.

Problem P3 Find u such that

(=A+1u = frr,
BNU = gI11IT,

with fr7 = frrr, and gr77 = g7, and 7 = 0.3. As the extension to T? of the right hand side
we use exactly the same as before, and so have f, = f.
5.2 Remarks on the implementation of the solvers

All the techniques used to implement the components of the solvers needed for the numerical
experiments (fictitious domain - Lagrange multiplier method, and smoothness-preserving
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fictitious domain method) are standard. We will briefly mention them by name but spare
the reader of details which can be found in any elementary numerical analysis book. The
implementation of the periodic wavelet transforms employed is also straightforward, and
thus we do not discuss it here either.

We implemented the SPFD method faithfully as described in 4.4, with the following two
differences. For one, we used higher precision (smaller €) on lower levels, where iterations
cost less; this has been documented in the iteration histories we will provide. The second
difference is that we have given a higher weight to the norm on the boundary than in the
discretization mentioned in 4.4. This ensures that boundary conditions where satisfied better
on a lower level. Thus, instead of minimizing ® as defined in 4.18, we minimized

(5.2) ®(v) = [Cadv = fillgocra) + AIBY = gllf0) (a0

with p = 70. Again, see remark 4.2.4 for a justification.

The discretization of the differential operator A = —A + ul for the FDLM approach is
different than that for the SPFD method described in subsection 4.4.3. For appropriate m,
m to be specified later, we consider the corresponding pair of (properly scaled) biorthogonal
B-spline wavelet bases ¥ for H'(T?), ¥ for H~'(T?), and the pair of biorthogonal MRAs
{V;}, {V;} of B- splines and duals, respectively, from where those bases arise. The discrete
operators A V= V are given by A = QJAWJ

On the other hand, we have that the discretization of the Dirichlet boundary operator
used for the FDLM method is almost identical to that used in the SPFD method. The
only difference is in the scaling of the bases chosen, since the FDLM formulation considers
BP . HY(T?) — H'Y?(0Q), instead of B? : H?*(TY) — H3?(0Q). But just as before,
we identify H'/2(0€) with H'/?(T) via the parametrization (5.1), and instead of spanning
Hl/Q(']I‘) with the primal basis, we use for that purpose the (properly rescaled) dual basis
¥', using ' to span H- 1/2('11‘)

Given f* € H '(T?), g € H'/?(09), we are looking for the coefficients u*, p with respect
to the bases U, W' of functions u™ € H'(T?), p € H~/2(0Q) such that

()= (),
or rather
o (s ) ()= (5)

where the entries in the matrix Aj are given by

<

(Aj)z\l/ = <Aw)\; ¢u>

while the entries in ﬁ? are given by

(B;D))\U - <BD'¢/\; ¢£>
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We use the fast wavelet transform to factorize Aj in exactly the same way as done before
in chapter four, subsection 4.4.4. We obtain

(3 %)= (% i) (BA_ 26 )

where ﬁj and ij,o correspond to the representation of A and B? in terms of scaling-
functions; we will come back to this shortly.

We will use LSQR (and for comparision purposes, also CGLS) to solve the resulting
system of equations (5.3).

Computing matrix coefficients

The only missing detail left is how to compute the matrix coefficients needed to set up
the systems of linear equations we will solve. We shall do this here, first for the boundary
operators, and then for the differential operators. The computation of the entries in C'; is
straight-forward (see (4.20)), and thus we do not discuss it any further.

We explain in some detail the computation of the entries in the matrix BY (see (4.23))
corresponding to the boundary operators first for the case of the Dirichlet boundary operator,
and then apply the same approach to the computation of the entries corresponding to the
Neumann boundary operator. Again, we always assume that the basis elements are properly
scaled.

To compute

(BP9, = (b 0T, 65) = / (650 0 T](0)0h, (1),

we first identify a set of pairwise disjoint open intervals {I;} in T such that, writing vy (t) =
[ o T (t)¢>;l(t), one has supp vy = U;I;, and such that vy is C* on each I;. This obtain
these intervals, it is enough to look at the intervals on which d)?l is a polynomial, and intersect
the cubes on which ¢;; is a polynomial with 0€). Finally, we compute

ot oit =3 [ fon ool

by approximating each of the integrals on the right via a high order Gauss Legendre quadra-
ture rule. In the implementation used to perform these experiments we used one of order
10, which was deemed to be accurate enough.

To compute the entries in the matrix corresponding to the Neumann boundary operator,
we simply repeated the above process, but replacing ¢;; o I' with V. (I'(2))n(t) o} (t).

To compute the entries in A?, given by

(Af)m = (Adr, 1) = /V¢kv¢zd$,
T

we used the fact that the functions involved are piecewise polynomials, and thus we computed
these entries using standard quadrature rules on each of the polynomial pieces.
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The computation of the entries in the matrix A? (needed for the SPFD method) were ob-
tained by using simple quadrature rules to evaluate the inner products (A?)W = (Adjg, qﬁgl).

For both the SPFD and FDLM methods we have chosen m" = 2, m" = 6 for the primal
and dual orders of the B-spline wavelet bases used for the boundary. For the B-spline wavelet
bases occurring in the discretization of the domain, we have chosen m = 3, m = 7, unless
otherwise stated.

5.3 Numerical results and discussion

5.3.1 Smoothness of the solutions obtained using the FDLM method

Behavior of the linear approximation error

We were able to observe the phenomenons predicted by theorems 3.2.7 for the fairly canonical
problem P1, using a radius of r = 0.3 for 2. We computed the solution u™ of the FDLM with
the corresponding data to level 8 on T¢, and, following [12], we used level 6 on 9f to satisfy
the LBB condition and obtain better accuracy. We did let LSQR iterate until it arrived at a
residual of norm smaller than 1073, which took 273 iterations!. A plot of the solution can be
seen in figure 5.2(a), where it is also possible to appreciate optically the jump in the normal
derivatives. A plot of the Lagrange multiplier can be seen in figure 5.2(b).
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(a) Extended solution (b) Lagrange multiplier

Figure 5.2: Solution and Lagrange multiplier obtained when solving problem P1 with the
FDLM method.

We used the fast wavelet transform to obtain the wavelet coefficients of u} with respect
to the basis U, but this time scaled to be a basis of Ly. This gave us a representation of u}

of the form
ul = Z SYN

AENg

'the CGLS method needed 1421 iterations to reach the same accuracy, confirming its known drawbacks
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with
1
2
||u}—||L2(Td) ~ (Z C/\|2> .
AENg

Figure 5.3 plots the errors of linear approximation in the norm induced by W. That is,
the quantities

D=

E;Il(u}—) = Z |C)\‘ )

AEVR:YAEV

which are uniformly equivalent to the errors,
) — +
Ej(uy) = vlg‘g |uy = vllzy(ra)
J
but easier to obtain.

Remark 5.3.1. The phenomenon observed in figure 5.3 is the convergence rate of the linear
approzimation scheme when applied to the obtained solution. The error plotted should not
be understood as the distance to the exact solution.

0.1 ‘ ‘
Error
Fit (s=-1.49220)
Fit data
0.01 +

0.001

0.0001 ¢

le-05

Figure 5.3: Linear approrimation errors when approximating the solution to problem Pl
obtained with the FDLM method.

After some initial irregularity, we observed the expected asymptotic behavior. To measure
it, we chose a range of j where the error seemed to behave as predicted, and fitted to it the
function n(j) = C27%, using linear least squares in the coordinates of the plot. This gave us
an estimate of the order of convergence s. We plotted the obtained 1 (dotted line in figure
5.3), along with marks for the data used in the fit.
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Behavior of the nonlinear approximation error

To investigate the behavior of the nonlinear approximation error, it was found to be advan-
tageous to use a larger radius (we used r = 0.45 for ). This is due to the fact that then
there are more wavelet coefficients on T? that intersect the boundary than if the radius is
smaller.

We computed the solution ut of the FDLM with the corresponding data to level 8 on
T?, and level 6 on 9Q. We solved again the system of linear equations using LSQR with a
tolerance of 1073, This time it needed 919 iterations®. A plot of the solution can be seen in
figure 5.4, alongside the obtained Lagrange multiplier.
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(a) Solution u™ (b) Lagrange multiplier p

Figure 5.4: Solution and Lagrange multiplier obtained when solving problem P1 with the
EFDLM method, this time with r = 0.45.

To analyze the solution u’} we used again the fast wavelet transform, this time to obtain

the wavelet coefficients of u} with respect to the basis ¥, scaled to be a basis of H'(T¢).
This gave us a representation of u?} of the form

+_
uy = E bty
AeVs

with

||u}—||H1(Td) ~ Z \bx|2

AENg
Next, we sorted the 2'¢ coefficients in decreasing order of their absolute values, producing
the vector of real numbers a = (ag, ai, ..., aze_;). Thus, we still have

1
2161 2
gl a;
J ILHY(T4) i ’
i=0

2In comparision, CGLS needed 1372 iterations.
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while also obtaining the error of the best N-term approximation to u} from

1

FY(u}) = (Z ) .

=N

We subjected w = Bjp to a similar treatment; that is, we computed the wavelet co-
efficients of w with respect to the dual basis ¥ of W, which is a basis for H *(T%), and
proceeding analogously to how we proceeded with u7.

We have plotted the convergence history of the best N-term approximation in doubly
logarithmic scale, and as done in the linear approximation case, we have plotted it together
with the fitted (in doubly logarithmic coordinates) p(z) = CN~* and the data points used
in the fit (chosen where we believe one can observe the asymptotic behavior expected). We
have done this both for u} and w; see figure 5.5.
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Figure 5.5: Convergence histories of best N-term approzimation to v} and BTp. Idealized
convergence rates have been fitted to measure actual convergence rates.

A mixed picture emerges, which is not entirely unexpected. We are plotting the best
N—term approximation errors with respect to the solution u} and not with respect to the
solution of the infinite dimensional problem, which remains beyond our reach. The sequence
of wavelet coefficients of u7 is compactly supported, and thus belongs to any £*. Eventually
(in both figures from N =& 500 onwards), the decay of the error must accelerate, as the best
N-term approximation of u7 is exact for N = 216.

Note that the acceleration is due to the exhaustion of the degrees of freedom corre-
sponding to wavelets whose supports intersect the boundary. After around N = 1500, the
singularity at the boundary, as reflected in the solution analized, was fully resolved. From
then on, the convergence rate is due to the smoothness of the solution away from the bound-
ary. One should not misunderstand neither the theoretical results of chapter three, nor the
numerical evidence presented here. While asymptotically the convergence rate of the non-
linear approximation scheme is limited, it still yields greater accuracy with far fewer degrees
of freedom than the linear approximation schemes.
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‘ ] ‘ Tolerance Iterations | Initial residual ‘
3 | 1.0000e-05 11 | 7.0711e-01
41 2.5119e-05 0| 6.7104e-11
51| 6.3096e-05 0| 6.6714e-11
6 | 1.5849e-04 0| 6.4922e-11
7| 3.9811e-04 0| 6.4058e-11
8 | 1.0000e-03 0 | 6.3563e-11

Table 5.1: Iteration history for the SPFD method applied to problem P1

5.3.2 Behavior of the SPFD method

To test the SPFD method, we chose the smaller radius of r = 0.3, which allows us to
appreciate better the smooth extension of the solution. The recursion (4.25) was evaluated
with jo = 3, and J = 8, but choosing higher precision for smaller j (where iterations are
cheaper) than for higher j. We summarize the iteration history for problem P1 in table 5.1.
The column labeled “initial residual” lists the errors

M (M — b)),

where x? is the initial guess obtained from the result of the previous level (or zero, if there
was no previous level). The level chosen for the discretization on the boundary was always
the same as for the domain.

In this particular case we observe the promise of the SPFD method materialize in a
dramatic way. Observe that the solution found for j = 3 was already good enough to satisfy
the expected accuracy even on level 8, needing no further iterations. Find a plot of the
solution in figure 5.6(a). We have also plotted the boundary values of the solution obtained
in figure 5.6(b).

We find this experiment quite remarkable. Tt shows that the SPFD can indeed find very
smooth solutions if that is possible. In this case, the solution on the domain is polynomial;
one easily checks that the solution of the original problem is

u=025(r’ = (z - 0.5)° — (y — 0.5)%).

The SPFD method is actually able to find in V3 an ezact extension of u to T?!

To test the SPFD method against more realistic data, we solved next problem P2. We
have summarized the iteration history in table 5.2, and show the solution v} in figure 5.7.
Using the same procedure as for the solution of the FDLM method above, we plot the linear
approximation error, together with the fitted idealized convergence rate (see figure 5.7).

Since we are using piecewise quadratic C'! functions with meshsize h = 277, and since the
extended right-hand side is C*, we expect a convergence rate of at least 273, The measured
convergence rate is 2%/, with s ~ —3.65, showing again that the method is able to find very
good extensions for the solution.
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(a) Extended solution (b) Boundary values

Figure 5.6: Solution and boundary values of the solution at OS2 obtained when solving problem
P1 with the SPFD method (note the order of magnitude on the y-axis of figure 5.6(b)).

‘ ] ‘ Tolerance ‘ [terations ‘ Initial residual ‘
3| 1.0000e-05 75 | 6.3801e-01
41 2.5119e-05 112 | 3.0223e-02
5| 6.3096e-05 167 | 1.4061e-02
6 | 1.5849e-04 237 | 7.7306e-03
7| 3.9811e-04 215 | 4.0875e-03
8| 1.0000e-03 712.1018e-03

Table 5.2: Iteration history for the SPFD method applied to problem P2

The effect of the SPFD iteration

The next item on our checklist is to see whether we can observe the effects of the nested
iteration scheme (4.11) on the solution obtained. Optically, at least, it is quite easy to spot.
Contrast figure 5.7 with figure 5.9(a), where we show the solution of problem P2 on level
J = 8 without using nested iteration. That is, we solved

||Mgw8+ — bg|le, — min!

with CGLS until the residual was smaller than 1073, which took 476 iterations. Observe
also the linear approximation histories for both solutions, as seen in figures 5.8 and 5.9(b).
We conclude that while the nested iteration definately drives the construction of a smooth
solution, the basic SPFD formulation by itself (4.5) is quite capable of delivering better
smoothness than the FDLM method.
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Figure 5.7: Solution and boundary values of the solution at OS2 obtained when solving problem
P2 with the SPFD method.
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Figure 5.8: Linear approzimation error and fitted idealized convergence rate for v} .

Higher order

We chose m = 5, m = 9, and solved again problem P2. The convergence history is summa-
rized in table 5.3, the solution can be seen in figure 5.10. We observe, as done with example
I, that the solution at a lower level is good enough to satisfy the equations at a higher level
to the required accuracy. The decay of the linear approximation errors is far too fast to be
of any use rating the convergence.

The Neumann problem

Finally, we try out the SPFD method with the Neumann problem (problem P3). For the
solution, see figure 5.11(a), while the values of the outward normal derivative at the boundary
can be appreciated in figure 5.11(b). We have summarized the iteration history in table 5.4.
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Figure 5.9: Solution and boundary values of the solution at OS2 obtained when solving problem
P2 with the SPFD formulation but without nested iteration.

‘ ] ‘ Tolerance ‘ Iterations ‘ Initial residual ‘
3 | 1.0000e-05 225 | 6.3607e-01
41 2.5119e-05 858 | 2.0985e-02
51| 6.3096e-05 926 | 3.9566e-04
6 | 1.5849e-04 0| 1.0457e-04
7| 3.9811e-04 0| 1.0026e-04
8 | 1.0000e-03 0] 9.6757e-05

Table 5.3: Iteration history for the SPFD method applied to problem P2 (using higher order
B-splines)
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Figure 5.10: Solution and boundary values of the solution at 02 obtained when solving prob-
lem P2 with the SPFD formulation with nested iteration, using B-splines of order 5.
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Figure 5.11: Solution and boundary values of the solution at 02 obtained when solving prob-
lem P3 with the SPFD formulation with nested iteration.

‘ ] ‘ Tolerance Iterations ‘ Initial residual ‘
3| 1.0000e-05 118 | 7.4651e-01
41 2.5119e-05 204 | 1.1609e-01
5] 6.3096e-05 282 | 1.9109e-02
6 | 1.5849e-04 271 | 8.6360e-03
7| 3.9811e-04 201 | 4.1898e-03
8| 1.0000e-03 14 | 2.0700e-03

Table 5.4: Iteration history for the SPFD method applied to problem P8 (Neumann boundary
conditions)



Chapter 6

Final notes

6.1 Conclusions

What follows is a brief summary of the main achievements and results of this thesis.

e We generalized and complemented some results from the literature [21], and have found
that the solutions obtained using the FDLM approach do, in general, suffer from a lack
of regularity (see theorem 3.2.7). Whenever the Lagrange multiplier is non-zero, and if
the right-hand side is in H~/?*¢ for some € > 0, then the solution obtained is at best
in H%2.

This lack of regularity implies that the performance of linear approximation schemes
(that is, in essence, approximation from uniform grids) is limited.

In particular, it was found that if the Lagrange multiplier is non-zero, then for B-
spline approximation from uniform meshes the error in the L, norm decays at best as
2715 where j indicates the level of resolution (that is, the meshsize is given through
h = 2779). This behavior occurs independently of the order of the used B-spline bases.

We were able to observe this behavior in numerical experiments.

e A similar result was obtained for standard nonlinear approximation schemes (isotropic
adaptive schemes). We studied best N-term approximation using wavelet bases, and
found that if the Lagrange multiplier could be identified with a measurable non-zero
function on an interval, then best N-term approximation using B-spline wavelet bases
converged at best as N, Again, this behavior is independent of the orders of the
wavelets used.

The above behavior was also confirmed by numerical experiments.
e A new fictitious domain method (the smoothness preserving fictitious domain method,
or SPFD method) was proposed that is designed to overcome these limitations. The

method constructs a smooth solution through the constructive use of fundamental
principles of approximation theory.

It was established that the solutions obtained via the SPFD method are solutions to
the original elliptic boundary value problems. That is, the method is sound.
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Theoretical evidence could be supplied that showed that, under certain conditions on
the discretization, the solution obtained also has optimal smoothness.

A discretization scheme was introduced which promises to satisfy these requirements.
Numerical experiments were provided that seem to confirm that the solutions obtained
do indeed have optimal smoothness. This was evaluated by measuring the convergence
rate of B-spline approximation from fixed grids, and comparing that rate with the rate
predicted by standard approximation results.

e Numerical experiments with the SPFD method found that the measured approximation
order was higher than the lower bounds predicted by theory.

The numerical and theoretical results are very encouraging and suggest that the SPFD
method is worth of further study.

6.2 Outlook

A lot remains to be done. In particular, we feel that the following tasks are promising routes
of further research.

Analyze other linear solvers

The CGLS method is not very good. This has been known for a long time, and we were
able to confirm it here, taking a look at the number of iterations needed to solve problem
P1 with the fictitious domain - Lagrange multiplier approach.

However, any alternative should preserve the component in the kernel of the SPFD
operator M; to be, from a theoretic point of view, a good candidate.

Fill in the gaps of the theory

The global convergence and smoothness of the limit of the SPFD method holds, according
to the provided theory, if the discrete operators satisfy assumptions A1, A2, and A3. The
question is, does the sequence of operators designed in 4.4 satisfy these assumptions? We
believe that it does. But if not, do such sequences of operators exist at all?

Another possibility is to explore whether requirements A1, A2, and A3 can be substituted
by other requirements, that are either easier to check or easier to satisfy. We believe that
there is a lot of space for variations in this formulation.

Use of other approximation spaces

For the analysis, as well as for the numerical experiments, we have used periodic splines on
dyadic grids. While this choice guarantees us a lot of simplicity and approximation power,
it is certainly not the only possibility.

For numerical purposes, it would be interesting to test the method with more general
spline and finite-element spaces, for instance.
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More general formulation

Another limitation of the SPFD method is that, due to its current formulation, it cannot
deal with problems on domains that contain corners. Thus, changing the formulation to
accomodate for this case is perhaps one of the most urgent directions of research that should
be followed.

Adaptivity

The SPFD method as it was constructed here is not adaptive, and it is not immediately clear
how to construct an adaptive strategy that still realizes the smoothness preserving behavior.
It has to be noted that the point of view that has allowed us to construct and analyze this
method is not too distant from the points of view taken in [8] and [7], making those articles
a canonical starting point.

An adaptive SPFD solver would be a very powerful tool for dealing with problems that
involve complex domains and singularities.

General elliptic boundary value problems

It is not too difficult to “upgrade” the proofs in chapter four to problems where the differential
operator has higher order, and to more general boundary operators. A more interesting route
of exploration are problems where different types of boundary conditions hold on different
parts of the boundary.

Another interesting possibility is to try to apply the SPFD approach to other problems,
as Stokes and Navier-Stokes problems.

6.3 About the software

The programs where written in Common Lisp, a modern, object oriented, ANSI standardized
dialect of the second oldest programming language still in use (the oldest is Fortran). It was
initially developed by John McCarthy in [29], and used mainly in the artificial intelligence
community. Later it became the general purpose language it is today. Many features of the
language work together to improve the productivity of the programmer at several levels.

e Syntax: The syntax is very regular and simple. Expressions have the form
((operator) {(argument)})

where each of the arguments is either atomic (number, vector, symbol, etc), or another
expression. A mathematical expression like sin(as) + C'e® would be written in lisp as

(+ (sin (* alpha s))
(x C (exp x)))
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While at first this syntax strikes as hard to understand, a second inspection reveals
that it contains no ambiguities. To deal with the amount of parentheses one needs the
support of a good text editor. But as a side effect, syntax errors almost disappear. The
number of apparent errors (which would trigger a compiler error) and subtle (which
make for hard to find errors) is greatly reduced. This is a large advantage over some
modern languages that suffer from an exceedingly complex syntax (most notably, and
relevant to our goals, C++), a feature which has been observed to degrade programmer
productivity.

Code generation and macros: A side effect of the simple and regular notation is
that source code itself is directly amenable to machine manipulation. What is now
being called “generative metaprogramming” using C++ templates has been present
in Common Lisp since far more than a decade, and, since the complete language is
available at compile time, in a more mature and powerful form [23].

Rich environment: Development in Common Lisp usually happens interactively.
The REPL (read-eval-print loop) makes it possible to inspect immediately newly de-
fined components of the application without needing to restart the program from
scratch. The user experience is similar than that from other interactive environments,
while the performance can be the same as that of monolithic programs (this depends
on the implementation).

Mature Standard: The ANSI Common Lisp standard was formulated at a time when
ample experience on the use of all features was available. It includes The Common
Lisp Object System (CLOS), and its standard library includes many facilities that are
only now beginning to appear in the standard library of modern languages; hash tables
are but one prominent example.

While decried as slow and hard to use, and held to be certainly not a good choice for

numerical applications, we found exactly the opposite to be true, and are not alone with
that appreciation; see [31]. Performance comparable to C and Fortran is available in certain
implementations’.

For our purposes, the most important advantage was that it allowed us to explore many

prototypes and perform many experiments. Its interactive nature and high performance
allowed us to do so with little effort. Many different discretizations and configurations were
tried before arriving at the configuration presented in section 4.4. Many more than would
have been possible using any other language.

'We used CMUCL, a high performance Common Lisp compiler to be found at http://www.cons.org/cmucl
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