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Abstract 
Small scale shaken bioreactors (e.g. shake flasks) traditionally equipped with different types 

of sterile closures are very useful tools in biotechnology. The gas transfer coefficient of the 

sterile closures (kplug) plays an important role in aeration of shaken bioreactors. The value of 

kplug depends on the average diffusion coefficient of oxygen (DeO2) and different lengths 

or/and diameters of the neck of flask. Therefore, in this study, a series of pipes with different 

lengths or/and diameters filled with cotton for a special shake flask, so-called ventilation 

flask, were employed. The gas transfer through the sterile closure of the ventilation flasks was 

characterized. Constant values of CO2 and O2 diffusion coefficient were found in all of the 

ventilation flasks. Considering these values and the neck geometry, a variety of kplug in 

ventilation flasks were obtained. Since, decreasing kplug causes a reduction of O2 

concentration and an accumulation of CO2 in the gas phase of the shaken bioreactors, a 

realistic understanding and estimation of gas transfer in shaken bioreactors is advantageous to 

avoid oxygen limitation or carbon dioxide inhibition of a microbial culture. In this study, an 

unsteady state gas transfer model for shake flasks was developed and experimentally 

investigated for a wide range of gas transfer coefficients (kplug). The introduced approach is 

based on the model of Henzler and Schedel [23], which describes the spatially-resolved gas 

partial pressures inside the sterile closure, affected by the local gas diffusion coefficients and 

convective Stefan flow. For further easy processing, the resulting total mass transfer 

coefficient (kplug) is described as a function of the mass flow through the sterile plug (OTRplug) 

by an empirical equation. This equation is introduced into a simulation model which 

calculates the gas partial pressures in the head space of the flask. Additionally, the gas transfer 

rates through the sterile closure and gas-liquid interface inside the flask are provided. 

Simulations indicate that neglecting the oxygen in the head space volume of the flask at initial 

conditions (simple steady state assumption) may lead to an underestimation of the oxygen 

transfer into the liquid phase. The extension of error depends on the conditions. A good 

agreement between the introduced unsteady state model and experimental results for the 

sulfite and biological system confirmed the validity and usefulness of the proposed unsteady 

state approach.  

Moreover, a novel and easy method for quantification of CO2-sensitivity of microorganisms 

in ventilation flask was investigated, using the properties of ventilation flasks. The differences 

between the values of accumulated CO2 and concentration of oxygen in a culture system in 

ventilation flasks confirmed the validity of method. The effect of aeration on the removal of 
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CO2 from the fermentation broth has been documented. Additionally, based on the data of the 

oxygen transfer rate (OTR), obtained by a Respiratory Activity Monitoring System (RAMOS) 

under a variety of specific aeration rates, the purposed new method was developed as an 

online monitoring method for CO2 sensitivity of microorganisms in shaken bioreactors. 

A maximum accumulated CO2 concentration of 12% was derived in both above methods, 

provided that the cultivation system is carried out under optimal conditions (e.g. the same 

filling volume (15m1), appropriate media and buffer capacity to control the pH, the suitable 

OTR (0.05 mol/l/h), operating under non oxygen limitation and RQ≈1). The proper operation 

condition could be predicted using the unsteady state model. 

Applying these mentioned method, a significant effect of accumulated CO2 on the biomass 

concentration, growth rate and lysine product in the fermentation of C. glutamicum DM 1730 

was found. Furthermore, the experimental results on Arxula adeninivorans LS3 and 

Hansenula polymorpha (WT ATCC 34438 and RB11-FMD-GFP) indicated that the CO2 had 

no effect on these microorganisms. Pseudomonas fluorescens DSM 50090 on yeast extract + 

glucose and Corynebacterium glutamicum ATCC WT13032 on L-lactate were found to be 

especially sensitive to CO2, which agree with literature. Some of the important advantages of 

the new methods are simplicity, lower cost and time consumption, easy of handling and 

producing similar results as large scale fermentation.  

Besides, a new aeration strategy from the ventilation flasks to an aerated fermentation system 

(e.g. measuring flask and stirred tank fermentor) was developed, based on the same 

concentration of gas compounds (O2 and CO2) in the headspace of these vessels. By applying 

this method, the concentrations of CO2 and O2 in the gas phase obtained from measuring 

(aerated) flasks and stirred tank bioreactors were comparable to those obtained from 

ventilation flasks. 

Finally in this study a new scale up method from shake flasks to stirred tank bioreactors, 

concerning the aeration strategy, was investigated based on the effect of CO2 ventilation. 

Even for different sets of aerations, similar trends were found for the values of the biomass 

concentration, L-lysine formation, maximum OTR and specific growth rate for fermentation 

of C .glutamicum DM1730 as a model organism, in the both scales. Thus, the possibility of 

scaling up from ventilation flasks to stirred tank bioreactors based on CO2 ventilation 

criterion was demonstrated.  
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RAMOS Respiratory Activity Monitoring System (-) 
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rf measuring flask (-) 
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Sec. Section (-) 

T temperature (°C) 
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Vg gas volume of the headspace of the flask (m3) 

VL filling volume (mL) 

Vmo molar gas volume (L/mol) 

VNa2SO3 sodium sulfite stoichiometric coefficient (-) 

vO2 oxygen stoichiometric coefficient (-) 

vvm volume per volume per minute (-) 

v/v volume per volume (-) 

w velocity (m/s) 
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Xo initial dry cell weight (gr/l) 
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nO2 mole of oxygen in headspace gas volume of flask (mol) 

nO2 g-L transfer rate of oxygen from gas to liquid (mol/h) 

nO2,O2 transfer rate of oxygen through the sterile closure (mol/h) 

RHinside relative humidity inside of flask () 

RHoutside relative humidity outside of flask () 

, g index for gas phase (-) 
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°C degree of centigrade 
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Figure 4.5: Model results for the oxygen transfer rate trough the sterile closure (OTRplug) and 

from the gas in the headspace to the liquid phase (OTRg-L) over time in ventilation 
flask f1 and f9 (Table 4.1). The collapse of OTRg-L to zero (vertical dashed lines) 
indicate the exhaustion of the 0.5 M sulfite solution, T=25 °C, 300 rpm, do=5 cm, 
VL=15 ml. Eqs. 4.1, 4.5, 4.12, 4.17, 4.19 and Eqs. 4.2, 4.12, and 4.15 for unsteady 
state and steady state calculation were used, respectively. 

 
Figure 4.6: Simulation results of head space partial pressure of oxygen (pO2) and the time of 

exhaustion of sulfite and end of the oxidation reaction under unsteady state gas 
transfer condition in the ventilation flasks f1-f9 with different kplug as a function of 
OTRplug (Table 4.1); sulfite system (0.5M), T=25 °C, n=300 rpm, do=5 cm, VL=15 
ml, ζcotton=0.15 g/cm3. 

 
Figure 4.7: Comparison of measured and calculated change of partial pressure of oxygen 

(pO2) in the head space of ventilation flasks with different sterile closures (f1, f4, 
f7 and f9). Sulfite system (0.5 M), T=25 °C, n=300 rpm, do=5 cm, VL=15 ml, 
ζcotton=0.15 g/cm3. 

 
Figure 4.8: Comparison of measured and calculated time of the oxidation reaction of a sulfite 

solution (0.5M) until complete exhaustion. The unsteady state values for the 
ventilation flasks f1-f9 (●) were calculated by Eqs. 4.1, 4.5, 4.12, 4.17 and 4.19 
and steady state values by Eq. 4.2, 4.12 and 4.15, using DeO2=0.153 cm2/s (Table 
3.1), T=25 °C, do=5 cm, 4 ml<VL<25 ml, 100 rpm<n<400 rpm.  

 
Figure 4.9: Model results for OTRplug, OTRg-L and pO2 in the ventilation flasks f1 and f9. The 

input parameters were selected for a fermentation of C. glutamicum DM1730 on 
10 g/l glucose (n=400 rpm, VL=10 ml, T=30 °C, do=5 cm, Yx/s=0.48, Yx/o2=53 
g/mol, RQ=1, Xo=0.5 gr/l, f=0.23 calculated by Eq. 4.13, KS=0.0045 gr/l, 
KO2=10-6 mol/l, µmax=0.32 h-1).  

 
Figure 4.10: Comparison between unsteady state model and experimental results for the 

partial pressure of oxygen in the headspace of the ventilation flasks f1, f4, f7, f9 
obtained for the fermentation of C. glutamicum DM1730 on 10 g/l glucose and 21 
g/l MOPS (n=400 rpm, T=30°C, do=5 cm, Yx/s=0.48, Yx/o2=53 g/mol, RQ=1 [5]). 

 
Figure 5.1: Development of the aeration system of the RAMOS devices [3] employed in this 

study. 
 
Figure 5.2: Simulation results of qin for the aerated flasks of the RAMOS device resulting in 

the same headspace concentration as in ventilation flask f1, using the unsteady 
state model and Eq. 5.4 for fermentation of C. glutamicum DM1730 (n=350 rpm, 
do=5 cm, VL=15 ml, 15 gr/l glucose, Yx/s=0.48, Yx/O2=53 g/mol, T=30°C, 
µmax=0.32 1/h, KS=0.0045 gr/l, KO2=0.0000008 mol/l [5, 68]). 

 
Figure 5.3: Simulation results of qin for the aerated flasks of the RAMOS device resulting in 

the same headspace concentration as in ventilation flask f9, using the unsteady 
state model and Eq. 5.4 for fermentation of C. glutamicum DM 1730 (n=350 rpm, 
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do=5 cm, VL=15 ml, 15 gr/l glucose, Yx/s=0.48, Yx/O2=53 g/mol, T=30 °C, 
µmax=0.32 1/h, KS=0.0045 gr/l, KO2=10-6 mol/l [5, 68]). 

 
Figure 5.4: Comparison between the partial pressure of oxygen in the headspace of the 

ventilation flasks f1, f4, f7 and f9 and aerated flasks for 0.5 M sulfite system 
based on the new aeration strategy (n=300 rpm, d0=5 cm, VL=15 ml, T=25 °C). 
The values of specific aeration rates are given in the legend and in Table 5.1. 

 
Figure 5.5: Comparison between the concentration of oxygen in the headspace of the 

ventilation flasks f1 and f9 and related measuring flasks for the fermentation of C. 
glutamicum DM 1730 on 15 g/l glucose (21 g/l MOPS, pHstart=7.2, VL=15 ml, 
n=350 rpm). The values of the specific aeration rates of the flasks, calculated 
based on the new aeration strategy, are given in Table 5.1. 

 
Figure 6.1: Schematic representation of the oxygen and carbon dioxide transfer in a 

ventilation flask and association/dissociation of CO2 in a biological system [64]. 
Where K1, K2 [sec-1] are the constant rates for the illustrated reactions and Kacid 
[mol/m3] is the dissociation constant value of carbonic acid. 

 
Figure 6.2: Validation of the method by employing a CO2-sensor during the fermentation of 

Hansenula polymorpha in the ventilation flasks f2 and f5 (15 g/l glycerol, 
syn6+0.14 M MES, VL=15 ml, pHstart=6.4, n=200 rpm), having different mass 
transfer resistances of the sterile closure. 

 
Figure 6.3: Results of fermentation of C. glutamicum DM1730 in ventilation flasks (15 g/l 

glucose, 21 g/l MOPS, RQ=1, VL=10 ml, n=350 rpm). 
 
Figure 6.4: OTR results of the fermentation of Arxula adeninivorans LS3 (20 g/l glucose, 

n=200 rpm, RQ≈1, qin=1 vvm, do=5 cm, VL=10 ml; 0.14 M MES buffer, T=30°C, 
pHstart =6.4), C. glutamicum 13032WT (10 g/l Lactate, 21 g/l MOPS, n=350 rpm, 
T= 30°C, RQ≈1, qin=1 vvm, do=5 cm, VL=15 ml, pHstart=6.5), C. glutamicum 
DM1730 (15 g/l glucose, 21 g/l MOPS, RQ≈1, qin=1 vvm, do=5 cm, VL=10 ml, 
pHstart=7.5, n=350 rpm) and Hansenula polymorpha (15 g/l glycerol, 0.14 M MES 
buffer, RQ≈0.87, qin=1 vvm, do=5 cm, VL=15 ml, pHstart=6.4, n=200 rpm) 
obtained using the RAMOS device. 

 
Figure 6.5: Effect of filling volume (10 and 15 ml) on the oxygen partial pressure in the 

headspace of the ventilation flask f9, resulted from the fermentation of C. 
glutamicum DM1730 on 15 g/l glucose, (21 g/l MOPS, n=350 rpm, T=30°C, 
do=5 cm, RQ=1) 

 
Figure 6.6: pH, biomass, glucose concentration, resulted from sampling from the ventilation 

flasks f1, f3 and f6 during the fermentation of Arxula adeninivorans LS3 on 20 g/l 
glucose (15 ml<VL<10 ml, n=350 rpm, do=5cm, pHstart=6.4, 0.14 M MES buffer, 
T=30 °C) based on the use of the new method.  

 
Figure 6.7: The effect of accumulated CO2 on the biomass concentration, obtained from the 

fermentation C. glutamicum 13032 WT on 10 g/l lactate (n=350 rpm, T=30 °C, 
RQ=1, do=5 cm, pHstart=6.5, 15 ml<VL<10 ml) and C. glutamicum DM1730 on 15 
g/l glucose(n=350 rpm, RQ=1, pHstart=7.5, VL=10 ml, T=30 °C), in ventilation 
flasks. 
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Figure 6.8: The effect of maximum accumulated CO2 on the maximum specific growth rate of 

Arxula adeninivorans LS3. Results were obtained by using the values of biomass 
concentration (Figure 6.7). 

 
Figure 6.9: Comparison between the maximum specific growth rate of C. glutamicum 

WT13032 on 10g/l L-lactate, resulted by the new method in ventilation flasks (21 
g/l MOPS, T=30 °C, do=5 cm, n=350 rpm, VL=15 ml, pHstart=6.5) and a 
continuous turbidostatic culture in a fermentor (T=30 °C, qin=1 vvm, n=1200 
rpm, VL=800 ml, pHstart=6.85) [6]. 

 
Figure 6.10: Comparison between the maximum specific growth rate of C. glutamicum 

DM1730 on 15 g/l glucose (21 g/l MOPS, T=30 °C, do=5 cm, n=350 rpm, VL=15 
ml, pHstart=7,18) resulted, using the new method in ventilation flask f1, f4, f7, f9 
and a continuous turbidostatic culture (T=30 °C, qin=1 vvm, n=1200 rpm, VL=800 
ml, pHstart=7) [ 36] 

 
Figure 6.11: L-lysine concentration by fermentation of C. glutamicum DM1730 (15 g/l 

glucose, 21 g/l MOPS, n=350 rpm, T=30 °C, do=5 cm, VL=15 ml) under different 
levels of accumulated CO2 in the headspace of the ventilation flask f1, f4, f7 and 
f9. 

 
Figure 6.12: Dependency between the maximum specific productivity of L-lysine and the 

accumulated CO2 concentration in the headspace of the ventilation flasks f1, f4, f7 
and f9 for fermentation of C. glutamicum DM1730 (15 g/l glucose, 21 g/l MOPS, 
n=350 rpm, T=30°C, do=5 cm, VL=15 ml) 

 
Figure 7.1: A schematic drawing of gas transfer in a measuring flask of the RAMOS device 

[3]. 
 
Figure 7.2: A measuring cycle of a fermentation of C. glutamicum DM 1730 in the measuring 

flask of the RAMOS device with a specific aeration rate of 1.5 vvm. After 
measuring phase a high aeration rate or a short time is used. The term ‘m’ is the 
slope in the measuring phase which is calculated by Eq.7.1. Uα is the values of the 
sensor signal in the end of rising phase and U2 is a value of the sensor signal 
nearly at the end of measuring phase. 

 
Figure 7.3: The effect of aeration rates on the partial pressure of oxygen in the headspace of 

the measuring flasks (rf1, rf4, rf7 and rf9) of the RAMOS device for a 
fermentation of C. glutamicum DM1730 on 15g/l glucose (21 g/l MOPS, 
pHstart=7.18, VL=15 ml, n=400 rpm). The values of the aeration rates for the flasks 
were obtained by the unsteady sate model. 

 
Figure 7.4: The effect of the specific aeration rates on the partial pressure of oxygen in the 

headspace of the measuring flasks of the RAMOS device for a fermentation of C. 
glutamicum 13032WT on 10 g/l lactate (n=350 rpm, T=30 °C, do=5 cm, 
pHstart=6.4). 

 
Figure 7.5: The effect of the specific aeration rate (1.03, 0.55 and 0.23 vvm) on the 

calibration factor (Cf) and OTR for fermentation of C. glutamicum 13032WT on 
10 g/l Lactate (n=350 rpm, T=30 °C, do=5 cm, pHstart=6.4) in the RAMOS device. 
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Figure 7.6: The recalculated values of OTR and calibration factor (Cf), for the fermentation of 

C. glutamicum 13032 WT on 10g/l lactate (n=350 rpm, T=30°C, do=5 cm, 
pHstart=6.4), by an OTR analyzer  

 
Figure 7.7: The results of pO2 and OTR for a fermentation of Pseudomonas fluorescens 

DSM50090 on 5 g/l glucose and 2 g/l yeast extract (21 g/l MOPS, n=350 rpm, 
VL=10 ml, T=30°C, do=5 cm, pHstart=7.0, pHfinal=7.1), under different value of 
accumulated CO2 in the measuring flasks of the RAMOS device, obtained by the 
new method. The vales of OTR were recalculated by the OTR analyzer, based on 
constant value of the calibration factor (Eq.7.3), before the periodic measuring 
phase. 

 
Figure 7.8: Comparison between the CO2 sensitivities of Arxula adeninivorans LS3 on 20 g/l 

glucose (0.14M MES buffer, n=350 rpm, RQ≈1, do=5 cm, T=30 °C, pHstart=6.4); 
C. glutamicum 13032WT on 10 g/l lactate (n=350 rpm, T=30 °C, do=5 cm, 
pHstart=6.5) and C. glutamicum DM1730 on 15g/l glucose (21 g/l MOPS, RQ≈1, 
do=5 cm, VL=10 ml, pHstart=7.5) using the on line monitoring method based on the 
OTR results. 

 
Figure 7.9: Comparison between the maximum specific growth rate of C.glutamicum WT 

13032 on 10 g/l lactate resulted by the online monitoring method in the RAMOS 
device (21 g/l MOPS, T=30°C, do=5 cm, n=350 rpm, VL=15ml, pHstart=7.05, 
pHfinal=8.2) and the continuous turbidostatic culture method (T=30 °C, qin=1 vvm, 
n=1200 rpm, VL=800 ml, pHstart=6.85) [6] 

 
Figure 7.10: Maximum specific growth rate over the maximum accumulated CO2 for several 

micro-organisms obtained using the online monitoring of CO2 sensitivity method. 
The experiments were repeated several times and its reproducibility is indicated in 
brackets. 

 
Figure.8.1: Schematic illustration of a scale up method based on the ventilation criterion 
 
Figure.8.2: Comparison between the oxygen concentration for a fermentation of C. 

glutamicum DM1730 in ventilation flasks, aerated flasks (14 g/l glucose, 21 g/l 
MOPS, pHstart=7.18, VL=15 ml, n=350 rpm)) and a foil fermentor (15.5 g/l 
glucose, 21 g/l MOPS, pHstart=7.18, VL=1800 ml, n=300-1000 rpm)) with 
different specific aeration rates calculated using the Eq. 5..  

 
Figure 8.3: Comparison between the carbon dioxide concentration for a fermentation of C. 

glutamicum DM730 in ventilation flasks, aerated flasks (14 g/l glucose, 21 g/l 
MOPS, pHstart=7.18, VL=15 ml, n=350 rpm)) and a foil fermentor (15.5 g/l 
glucose, 21 g/l MOPS, pHstart=7.18, VL=1800 ml, n=300-1000 rpm) with different 
specific aeration rates of 1.5, 0.39 and 0.1 vvm. 

 
Figure 8.4: Comparison between ORT results of a fermentation of C. glutamicum DM1730 

(15.5 g/l glucose, 21 g/l MOPS, pHstart=7.18, VL=1800 ml, n=300-1000 rpm) in 
the foil fermentor with different specific aeration rates of 1.5, 0.39 and 0.1 vvm. 
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Figure 8.5: Comparison between the OTR results of a fermentation of C. glutamicum 

DM1730 in the measuring flask and the fermentor under different maximum 
accumulated CO2. 

 
Figure 8.6: Comparison between the cell dry weight (biomass) concentrations for 

fermentations of C. glutamicum DM1730 in the fermentor and the ventilation 
flasks, obtained by the new method for scale up based on the effect of CO2 
ventilation. A: f1, 1.5 vvm, B: f4, 0.39 vvm, C: f9, 0.1vvm. (N0 points are shown 
for the fermentor, because the gas analyzer proceedes a continuous signal.  

 
Figure 8.7: Comparison the maximum specific growth rates of C. glutamicum DM1730 from 

fermentations in the ventilation flasks and the fermentor, using the new method 
for scale up based on the effect of CO2 ventilation. 

 
Figure 8.8: Comparison of the L-lysine concentration, fermentation of C. glutamicum 

DM1730 in the ventilation flasks and the fermentor, using the new method for 
scale up based on the effect of CO2 ventilation. 
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Preface 
The research presented in this thesis was conducted at the Department of Biochemical 

Engineering, RWTH Aachen University, Germany. This study is based on the following 

Chapter: 

Chapter 1: In this chapter, general literature is reviewed, and the motivations of this research 

work are also briefly presented.  

Chapter 2: Common materials and methods used in the different experiments are separately 

explained, and also a specially designed shake flask, so called ventilation flask, is introduced.  

Chapter 3: The gas transfer through the sterile closure of ventilation flask is characterized in 

this chapter. 

Chapter 4: An unsteady sate model for gas transfer in the shaken bioreactors, based on a 

variety of mass transfer resistances of the sterile closure and the gas liquid interface, is 

experimentally investigated.  

Chapter 5: This chapter covers a new aeration strategy from the ventilation flasks to the 

aerated fermentation system (e.g. measuring (aerated) flask and stirred tank fermentor), using 

the unsteady state model. 

Chapter 6: A novel and easy method for the quantification of CO2 sensitivity of micro-

organism in shaken bioreactors is described. 

Chapter 7: In this chapter, an online monitoring method to quantify the CO2 sensitivity of 

micro-organisms is developed utilizing a Respiration Activity Monitoring System (RAMOS).  

Chapter 8: In the final chapter a new scale up method from a ventilation flask to a stirred 

tank bioreactors based on the effect of CO2 ventilation is illustrated. 

A summary of this work and possible future investigation are given. 

Also, the references are provided in the alphabetical manner. 

Finally, the declaration and curriculum vita of the author are attached at the end of this thesis. 
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1.1 Literature review 

Shake flask as a small scale bioreactor is a very common and useful tool in bioprocess 

industries, because of its simplicity, low cost and convenient handling [11]. Shake flasks are 

traditionally equipped with different types of gas permeable closures to prevent contamination 

[57 and 66]. 

Aerobic micro-organisms will be oxygen limited if the oxygen transfer rate is smaller than the 

oxygen uptake rate in shaken bioreactors [18, 23, 49, 57, 66 and 79]. To avoid oxygen 

limitation in the shake flasks, it is essential to have a good understanding and estimation of the 

gas transfer conditions. Therefore, it is necessary to evaluate the oxygen transfer rate through 

the sterile closure (OTRplug) and gas liquid oxygen transfer rate (OTRg-L) in the shaken 

bioreactors [57 and 76]. OTRg-L and OTRplug are related to the values of the gas transfer 

coefficients through the sterile closure (kplug) and volumetric gas transfer coefficients gas-

liquid (kLa), respectively. A number of studies have been carried out to describe the 

parameters kLa and kplug by different experimental methods and/ or empirical models [23, 24, 

25, 76 and 79]. Sulfite oxidation has been used as a chemical model for the evaluation of the 

kLa value [24, 44, 46 and 49]. The parameter kplug has been assessed in literature using the 

effective oxygen diffusion coefficient (De,O2) in addition to the geometry of the sterile closure 

[23, 26 and 66]. It can be obtained theoretically by the Henzler model [23] or some 

experimental methods [21, 25 and 57]. Moreover, several methods for the determination of 

De,O2 have been reported [23, 49, 57and 66]. According to these reports, a proportional 

dependency of De,O2 on bulk density of the applied closure has been demonstrated.  

Using a sterile closure leads to a reduction of O2 and An accumulation of CO2 in the gas phase 

of the headspace of the shake flask in an aerobic cultivation system [25, 66 and 80]. This 

carbon dioxide accumulation, produced by the metabolism of the micro-organisms, may be a 

fundamental inhibition or stimulant for the cell growth and productivity [2, 19, 25-27, 50 and 

51]. This CO2 can particularly play a significant role in industrial micro-organisms for the 

fermentation of some important bio-products (e.g. amino acids, antibiotics and etc.) [60]. 

Many authors have indicated the inhibitory effects of CO2 on bacteria [19 and 54], yeasts [34] 

and fungal micro-organisms [12, 26 and 50] in a cultivation process. The most important 

mentioned effects comprise altering growth [12, 19, 34 and 41] and product formation [12 41, 

and 54]. 

Many papers have emphasized that the sterile closures play an important role in the aeration of 

the shaken bioreactors [18, 29 and 66]. In addition, the effect of aeration on the removal of the 
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volatile compounds (e.g. organic acids, NH3, alcohols, hormones, CO2, etc.), so called 

ventilation, from the fermentation broth has been demonstrated [15, 59 and 75]. It has been 

reported that the reduction of aeration in an aerobic fermentor led to an incense of the 

autogenously produced CO2 by micro-organisms [43]. The CO2 inhibition can be the most 

important parameter in the industrial scale fermentors, since the dissolved CO2 concentration 

is increased by increasing the hydrostatic pressure near to the bottom of the vessels [26, 38]. 

Controlling aeration, especially in scale up from shake flask to fermentor, in order to provide 

sufficient oxygen for aerobic cultures is highly demandable [8, 74 and 75]. The suitability of 

scale up methods are usually confirmed by experimental results, which show that, there is no 

difference between fermentation results in various types of small and large scales carried out 

under the same oxygen transfer rate [21]. In spite of this condition, the effect CO2 ventilation 

may become as an important parameter to a discrepancy between the results of both scales [15, 

59 and 75]. Therefore, it is introduced that the ventilation of a bioreactor can be an additional 

scale up criterion [75]. Besides, the failure of scale up from shake flask with sterile closure to 

a stirred tank bioreactor and the possibility of it from an aerated flask to stirred tank bioreactor 

have been reported. This could be due to the effect of CO2 ventilation [37].  

 

1.2 Motivation  
The influence of CO2 on the cultivation system has rarely been studied, compared to O2 [30 

and 31]. Considering the importance of the CO2 effects on productivity and growth rate of the 

industrial micro-organisms, several quantitative methods in the batch, fed-batch and 

continuous fermentors, for the evaluation of these effects have been established [2, 19, 25-27, 

50 and 51]. Although, these mentioned methods have brought valuable results, the operating 

cost, time consumption and reproducibility for experimental results are the limiting factors. 

And even though the CO2 sensitivity of micro-organisms has been addressed using of these 

methods, until now no report has been available on the quantification of the CO2 sensitivity of 

micro-organisms in the small scale shaken bioreactors e.g. shake flask.  

In this study, a novel, easy and economical method for the quantification of CO2 sensitivity of 

micro-organisms in shaken flask bioreactors will be established and developed into an online 

monitoring system. This method is based on the values of the mass transfer coefficient of a 

sterile closure of shake flasks. 
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Finally, a new aeration strategy from a ventilation flask to an aerated fermentation system (e.g. 

measuring flask and stirred tank fermentor) will be developed for making possibility to scale 

up from shake flask to stirred tank fermentor based on the effect of CO2 ventilation. 

Besides, a new unsteady state model will be prepared for advanced understanding of the gas 

transfer in the specially designed shake flasks, so called ventilation flasks, since the current 

steady state model was not capable for achieving our goals. 
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2.1 Description of equipment  
2.1.1 Ventilation flask  

The gas transfer coefficient of the sterile closure (kplug) plays an important role in aeration, for 

the reduction of the oxygen supply and the an accumulation of CO2 in the gas phase of the 

headspace of the shaken bioreactors [23, 49 and 66]. The value of kplug depends on the 

effective diffusion coefficient of oxygen (DeO2) and different dimensions (length or/and 

diameter) of the neck of the flask [23, 29 and 66]. Therefore, in this study a series of pipes 

with different lengths or/and diameters designed for the 250 ml Erlenmeyer flasks (German 

standard, DIN 12380), so called ventilation flasks, were employed (Figure 2.1.B).  

 
 

O2 and CO2

Sensor
Ventilation Flask

Aerated Flask
of RAMOS

Inlet 
gas Outlet 

gas 

D

H

A B C
 

 
 
Figure 2.1: Different kinds of shake flasks; A: ventilation flask equipped with oxygen or carbon 
dioxide sensor, B: ventilation flask C: aerated flask of the RAMOS device 
 
The dimensions of the sterile closures used in the ventilation flasks are given in Table 2.1. The 

necks of these flasks were filled with cotton wool with a constant density of 0.15 g/cm3. This 

ensures the same value of effective diffusion coefficient of oxygen (DeO2) for this sterile 

closure in the ventilation flasks [57, 23, 29 and 66]. In chapter 3, details of the characteristics 

of the gas transfer through the sterile closures in the ventilation flask will be described. 

A series of ventilation flasks were used for the investigation of a new method to quantify the 

CO2 sensitivity of micro-organisms in shaken bioreactors (Chapter 6). These flasks were also 

utilized in a new aeration strategy for scale up from shake flask to aerated system such as 

aerated flask and stirred tank fermentor (Chapters 5 and 8). The Figure 2.2 illustrates a series 

of these flasks with different neck geometries. 
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Table 2.1: The dimensions of the sterile closures of ventilation flasks. 
 

Ventilation 

flask 
Dpipe (cm) Hpipe (cm) 

f1 2.80 2.12 

f2 2.80 4.20 

f3 2.00 3.60 

f4 2.00 4.72 

f5 1.50 3.90 

f6 1.50 4.85 

f7 1.50 7.00 

f8 1.50 11.00 

f9 0.7 3.10 

 
 

H4

D4

Ventilation Flask

H8

D8

H1

D1

f1 ……… f4 f8………
 

 
Figure 2.2: Ventilation flasks with a variety of gas transfer resistances of the sterile closure, employed 
in this study (the dimensions of the neck of ventilation flasks are given in Table 2.1) 
 
2.1.2 Respiration Activity Monitoring System (RAMOS) and measuring (aerated) flask  

The Respiration Activity Monitoring System (RAMOS) for the on-line measurement of OTR, 

CTR and RQ in shake flasks was described by Anderlei et al. [3 and 4]. This device has been 
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successfully applied for the determination of optimal operating conditions and detection of 

limitations in shaken bioreactors, and also obtaining important information for scale up to a 

stirred tank fermentor in several previous projects [72 and 24]. The flasks of this device, so 

called measuring (aerated) flask, are specially designed having one opening at the top of the 

oxygen sensor and three openings for air inlet, air outlet and inoculation (Figure 2.1.C). In 

chapter 7 an online monitoring method for CO2 sensitivity of micro-organisms will be 

investigated by developing an aeration system for RAMOS. The details of these aeration 

systems will be discussed in chapter 5. 

 
2.1.3 Laboratory scale fermentor  

In this study of a new scale up method from ventilation flask to stirred tank fermentors, a foil 

fermentor (Visual Safety- Fermentor (VSF), Bioengineering AG, Wald, CH) was used. The 

operation condition and some important information experimental parameters are given in 

Table 2.3 and Chapter 8. 

 

2.1.4 Oxygen and carbon dioxide sensors 

For detecting the partial pressure of oxygen and the concentration of CO2 in the gas phase of 

the headspace of a flask, an oxygen sensor (Maxtec MAX-250 C, Maxtec Inc., Salt Lake City, 

Utah, USA) and IR- CO2 sensor (GS10, sensor devices GmbH Germany) were inserted in to 

the wall of ventilation shake flask and response curves are monitored by a recorder (Figure 

2.1.A). A calibration between the signal output of the sensors and pO2 and concentration of 

CO2 could be obtained by Eqs. 2.1 and 2.2: 

0.23U
p0.23)(U

p 0

0
O

O
2

2 −

⋅−
=       (2.1) 

%CO2= (UCO2-4.1112)/4.2305     (2.2) 

Where U and UCO2 are the signals of oxygen and CO2 sensors during the process and Uo and 

po
O2 are the initial signals and partial pressure, respectively. 

 

2.2 General experimental conditions in ventilation, RAMOS and 

laboratory scale fermentor 
The values of experimental parameter in ventilation flasks, measuring flasks (RAMOS) and 

lab scale fermentors are given in Table 2.2. In this study an orbital shaker (do=5 cm) (Lab-

Shaker, Kuehner, Basel, Switzerland) for agitating the ventilation and aerated flasks was used. 

A suitable shaking frequency and a filling volume (VL) in ventilation and aerated flasks were 
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selected to ensure a sufficient oxygen transfer capacity for avoidance of oxygen limitation 

[44]. This is possible using a suitable model for gas transfer in ventilation flasks (Chapter 4). 

The experiments were performed under a range of filling volume between 4 and 25 ml in 

shake flasks and 1800 ml in fermentors. The aeration in measuring flask was adjusted between 

3 and 0.8 vvm; however, the aeration in the fermentor was 1.5, 0.39 and 0.1 vvm. Regarding 

to the experiments, the shaking frequency (n) in shake flasks was between 200 and 400 rpm. 

The agitation for the fermentor was selected between 300 and 1000 rpm according to the 

dissolved oxygen concentration. 

 
Table 2.2: The values of experimental parameters for ventilation flasks, measuring flasks (RAMOS) 
and laboratory scale fermentor  
 

Parameter Ventilation flasks* Aerated flasks** Fermentor*** unit

Filling volume 

(VL) 

Variable between 

4 and 25 

Variable between 

4 and 25 
1800 ml 

Shaking 

frequency, stirred 

speed (n) 

Variable between 200 

and 400 

Variable between 

200 and 400 

300→600 

600→900 

900→1200 

rpm 

Temperature 25, 30 25, 30 30 °C 

Shaking diameter 

(d) 
5 5 - cm 

Specific aeration 

rate (qin) 
(Chap. 5) 

Variable between 3 

and 0.08 vvm in one 

flow system 

(Chapter 5) 

1.5, 

0.39, 

0.1 

vvm

 
* Applied for water evaporation method, sulfite and a cultivation system 
** Applied for sulfite and a cultivation system in RAMOS 
*** Applied for a scale up method based on the effect of CO2 ventilation  
 

2.3 Analytical methods 
During the fermentation, samples were taken from the ventilation flasks and fermentor. 

However, samples from measuring flask were only taken at the end of the fermentation. The 

analysis of the fermentation system was performed by the determination of the pH values, 

optical density (OD=600 nm), cell dry weight (biomass), concentrations of carbon source 

(glycerol, L-lactic acid and D-glucose) and L-lysine production. 
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2.3.1 pH measurement 

The pH meter (CG804, Schott, Germany) and pH electrode (Electrolyte 9811, InLab422, 

Mettler Toledo) for off-line and on-line measurements, respectively, were calibrated before 

each experiment. 

 

2.3.2 Determination of cell dry weight (biomass) concentration 

For the determination of biomass concentration empty 15 ml Falcon Tubes were dried in an 

oven at 100 °C for 48 h, placed in the desiccators for 0.5 h and then weighted by a precision 

balance. For each condition at least about 12 ml sample were taken. For each sample, a 

weighted Falcon Tube was filled with 10ml of culture medium and centrifuged for 10 min at 

4°C and 4000 rpm (ROTINA 32 R, Hettich, Germany). The supernatant was decanted and 

used for the analysis of the medium components. The humid pellet in the bottom of the Falcon 

Tube was dried for 48 h in the oven at 100 °C and, afterwards, placed in the desiccators for 0.5 

h and weighted for the determination of the cell dry weight. 

The biomass of Arxula and H. polymorpha was determined as cell dry weight (biomass) by a 

filtration method. In this method 8 ml culture broth was filtered through dried and pre-

weighed cellulose acetate filters, with pore size 0.2 µm (11107-47-N, Sartorius, Germany). 

The filter residue was re-suspended once in 9 g/l NaCl, filtrated again and dried in the oven at 

105 °C until the mass remained constant. 

 

2.3.3 Cell density determination (Optical Density) 

In addition to the biomass measurement, the optical density (OD) was determined at a 

wavelength of 600 nm on a two-channel photometer (UVIKON 922, Kontron Instruments, 

Germany). For each sample, two measurements were accomplished and the arithmetic mean of 

the determined values was calculated. The remaining sample volume was used for external 

control of the pH value. 

 

2.3.4 Carbon sources and by-products concentration  

The amount of glucose, L-lactic acid and ethanol concentration in the supernatant of the 

samples were analyzed by High Performance Liquid Chromatography (HPLC) (Dionex 

Pumpenserie P 580 with Chromelon Software, Dionex Corp., USA). 
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2.3.5 L-lysine concentration 

For quantitative determination of lysine, the supernatant of samples were analyzed by the 

high-performance liquid chromatography system (LC 1090, Hewlett- Packard, Avondale, 

California) [34]. 

 

2.4 Applied models and software 
The following models and software were applied. The input values for our suggested models 

are summarized in the Table 2.3. The details of these models will be described in the related 

Chapters. 

a- Henzler and Schedel model [23] for description of gas transfer through the sterile closures 

in ventilation flasks (Chapter 3). The mathematical models, was transferred into the Model 

Maker software (version 3, 1997 Cherwell Scientific publishing Ltd). 

 
Table 2.3: Input value for simulation models applied in this study, p=1.01325 [bar], Vmo=22.14 
[l/mol], R=0.0831878 [L·bar/mol/°K] (T=25 °C) [61] 
 

New unsteady state 

model Parameter Value 
Henzler 

model 
Sulfite Biological 

RAMOS unit 

Solubility (LO2)  [67]  +++ +++ +++ +++ 
mol/L/

bar 

Temperature (T) 20-30 +++ +++ +++ +++ °C 

Neck geometry 

(D, and H) 
Table 2.1 +++ +++ +++ --- cm 

kplug Chapter  3 --- +++ +++ --- cm 

VL Table 2.2 +++ +++ +++ --- ml 

Shaking frequency (n) Table 2.2 --- +++ +++ --- rpm 

Carbon source 5-50 --- --- +++ --- g/l 

U (voltage of O2 

sensor) 
Chapter  7 --- --- --- +++ mV 

Water evaporation 

rate (ER) 
Chapter  3 +++ --- --- --- g/l 

Related humidity Chapter  3 +++ --- --- ---- - 
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b- Model of unsteady state gas transfer in the ventilation flask based on kplug (Chaps. 4 and 5). 

In order to simulate the effect of kplug and other operation conditions, the mathematical 

equations were transferred into the Model Maker software (version 3, 1997 Cherwell 

Scientific publishing Ltd.).  

c- Lab-view program for RAMOS device (Chaprer 7) 

 

2.5 Micro-organisms and medium preparation  
In this study, the yeast strains Arxula adeninivorans WT LS3 and Hansenula polymorpha (WT 

ATCC34438 and RB11-FMD-GFP), bacterial strains of Corynebacterium glutamicum (ATCC 

WT13032 and DSM1730) and Pseudomonas fluorescens DSM50090 were used as model 

organisms. 

The cultivation of these micro-organisms was performed on agar, complex and minimal 

mediums. The agar plates were made in order to store the micro-organism in the fridge. In this 

study the composition of the complex medium were the same as the agar plate medium except 

the agar-agar component. For the main cultures of the fermentation in ventilation, measuring 

flasks and fermentor, the mineral mediums were used which contained a carbon source, 

appropriate for micro-organisms.  

All fermentations were accomplished with inoculation from the agar plate to a complex 

medium as pre-culture one, and from complex medium to a mineral medium as pre-culture 

two, and finally from pre-culture two to the mineral medium as main culture. The medium of 

the main culture was distributed among the single flasks (ventilation and aerated shake flasks) 

or fermentor. The details of components and preparation methods of these media for each 

cultivation system are separately described as follows. 

 

2.5.1 Cultivation of Arxula adeninivorans (WT LS3) and Hansenula polymorpha (WT 

ATCC 34438 and RB11-FMD-GFP) 

The chemical components and the method of preparation of both YPD and YNB agar and 

complex medium are given in Tables 2.4 for Arxula adeninivorans and Hansenula 

polymorpha, respectively [78 and 40]. The pH of the YPD medium, an agar plate and complex 

liquid medium, was adjusted to ‘6’ using 5 M NaOH.  

The components of YNB, ammonium sulfate, and glycerol were dissolved with 800ml 

distilled water and then its pH was adjusted to ‘6’ by 0.5 M NaOH. The phosphate buffer 
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solution of 200 ml was prepared according to Table 2.5. The pH of the phosphate solution was 

adjusted to ‘6’ and added to YNB solution. 

 

Table 2.4: YPD and YNB complex medium for cultivation of Arxula adeninivorans and Hansenula 
polymorpha. 
 

YPD for Arxula 

adeninivorans 
Amount (g/l) 

YNB for Hansenula 

polymorpha 
Amount (g/l) 

Glucose monohydrate 

(C6H12O6•H2O) 
22 YNB 1.4 

Gelatin, (peptone) 

(Roth 07357562) 
20 Ammonium Sulfate 5 

Glycerin (C3H8O3) 10 Yeast extract 

(Roth 25465689) 
10 

Phosphate buffer Table 2.5 

Agar-Agar* 

(Roth 01251539) 
18 

Agar-Agar * 

(Roth 01251539) 
20 

Final pH 6.4 Final pH 6.4 

*Agar was used for agar plate culture. 

 

Table 2.5: The solution of phosphate buffer for YNB medium of H. polymorpha 
 

Phosphate puffer 

solution 

Concentration 

[g/l] 

% Volume of components from

stock solution for obtaining a 

value of pH=6 

Amount of 

component after 

titration [g/l] 

Na2HPO4 70,98 12,3 8,73 

NaH2PO4 • H2O 69,00 87,7 60,51 

 

The parameters of the cultivations in our vessels are presented in Table 2.6. 

The main culture of these micro-organisms was prepared using a Syn6 minimal medium 

(Table 2.7). For preparation of Syn6 medium, first the basic solution (pH was adjusted to ‘6.4’ 

by adding 0.5 M NaOH), CaCl2, micro elements, vitamin and trace elements, were separately 

prepared and sterilized. Finally, after the cooling CaCl2, micro elements, vitamins and trace 

elements with following volumes and concentrations were added as noted in Table 2.7.  
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Table 2.6: The parameters for cultivation of Arxula adeninivorans and Hansenula polymorpha  
 

Parameters Arxula adeninivorans Hansenula polymorpha 

Type strain WT-LS3 WT ATCC 34438 RB11-FMD-GFP 

C-source (g/l) Glucose 20 Glycerin 10 Glucose 20 

Minimal medium Syn6 Table2.7 -------- Syn6 Table2.7 

Buffer  solution MES (0.14 M) Table 2.5 MES (0.14 M) 

Initial pH 6.4 6 6.4 

T (°C) 30 30 

Filling volume 

(VL, ml) 

between 

4 and 15 

between 

4 and 15 
10, 15 

Agar medium YPD Table 2.4 YNB Table 2.4 YNB Table 2.4 

Complex medium YPD Table 2.4 YNB Table 2.4 YNB Table 2.4 

n (rpm) 350 200, 350 350 

aeration rate in RAMOS 

(vvm) 
between 2.25 and 0.22 

between 2.25 and 

0.22 
1.5, 0.39, 0.19, 0.1

Inoculation (Xo) 3-10 % of total filling volume 

 
 
2.5.2 Cultivation of Corynebacterium glutamicum (ATCC WT13032 and DSM1730) 

The fermentation of the strains of Corynebacterium glutamicum (ATCC 13032WT and 

DM1730) on D-glucose and L-lactate were performed in the ventilation and measuring flasks 

under a variety of accumulated CO2. C. glutamicum DM1730 as a L-lysine product the strain 

was also used for investigation of a new scale up method from a ventilation flask to a stirred 

tank fermentor, based on the effect of CO2 ventilation (Chapter 8). The operation conditions 

for cultivation of these micro-organisms in these vessels are given in Table 2.8. 

The chemical components and the methods for preparation of the medium for cultivation of C. 

glutamicum are described in Tables 2.9 and 2.10. The agar and complex medium has been 

introduced by Buechs [7] and minimal medium by Seletzky et al. [68]. Stored micro 

organisms on agar plates from a fridge were used for a maximum of 10 days. Two pre-cultures 

were carried out in experiments. The first one was performed using the complex medium in 

the RAMOS device, and then inoculated from this pre-culture to a minimal medium (5 % of 

the total volume) as second pre-culture.  
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Table 2.7: Composition and preparation of mineral Syn6-MES 0.14 M medium with glucose as carbon 
source for the cultivation of Arxula adeninivorans and Hansenula polymorpha [16]. 
 

Stock 

solution 
Components Preparation Volume 

Glucose monohydrate 
(C6H12O6•H2O) 22 g 

KH2PO4 1 g 
(NH4)2SO4 7.66 g 

KCl 3.3 g 
MgSO4•7 H2O 3.0 g 

NaCl 0.3 g 

Basic 

solution 

with C- and 

N-source 
MES 

(C6H13NO4SH2O) 27.3 g 

to be solved in 990 ml  
distilled water and adjusted 

pH to 6.4 with 5M NaOH and 
then autoclaved  and filled up 

to 1000ml 

1000 ml 

Calcium 

chloride CaCl2•2H2O 15 g to be solved in 100 ml  
distilled water and autoclaved 

6.67 ml 

(NH4)2Fe(SO4)2•6 
H2O 1000 mg 

CuSO4•5 H2O 80 mg 
ZnSO4•7 H2O 300 mg 
MnSO4•H2O 400 mg 

Micro-

element 

EDTA (Titriplex III) 1000 mg 

to be solved in 100 ml  
distilled water and sterilized 

by filter 
6.67 ml 

D-Biotin 

6 mg in 10 
ml 50 % 
(v/v) 2-

Propanol 
Vitamin 

Thiamin chloride-
hydrochloride 

2000 mg 
in 90 ml 

to be mixed for 100 ml and 
sterilized by filter and used 
to be kept in refrigerator for 

max. one week 

6.67 ml 

NiSO4•6 H2O 10 mg 

CoCl2•6 H2O 10 mg 

Boric Acid 10 mg 

KI 10 mg 

Traces –

element 

Na2MoO4•2 H2O 10 mg 

to be solved in 50 ml  
distilled water and sterilized 

by filter 
 

3.33 ml 
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Table 2.8: Operation condition for cultivation of Corynebacterium glutamicum 
 

Parameters Corynebacterium glutamicum 

Type strain ATCC 13032 WT DM 1730* 

C-source (g/l) L-lactate (10) D-glucose (15) 

Minimal medium Table 2.10 

Buffer solution (g/l) MOPS (21) 

Initial pH between 6 and 7 between 7and 7.5 

T (°C) 30 

Inoculation (Xo) 3-10% of total filling volume 3-7% of total filling volume 

Filling volume (ml) between 4 and 15 

Agar medium Table 2.9 

Complex medium Table 2.9 

Shaking frequency 350, 400 rpm 

aeration in RAMOS 

(vvm) 

Variable between 1.54 and 

0.1 

Variable between 1.3 and 

0.2 

 
*This strain was kindly provided by Dr. Eggeling, IBT-1, Research Centre Jülich, Germany 
 

The media were buffered using MOPS buffer solution. The stock solutions were prepared 

separately. All components were dissolved together in distilled water except biotin and 3,4-

dihydroxybenzoic acid (protocatechuate).  

The pH value of the resulting solution of trace elements was adjusted to pH equal 1 with 

concentrated H2SO4 in order to obtain a better solubility of the involved components. The 

vitamins and 3, 4-dihydroxybenzoic acid solutions have to be freshly prepared because of their 

instability. They can not be stored in a refrigerator until one week. Biotin was dissolved with 

50 % (v/v) 2-propanol and protocatechuate in a 100 g/l NaOH solution.  
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For the preparation of the mineral medium, the carbon source and salts solutions were 

autoclaved, cooled, and mixed together. The trace elements, calcium chloride, biotin and 

protocatechuate solutions were added to this solution through a sterile filter and syringe. The 

pH of the final solution was adjusted between 7 and 7.5. 

 

Table 2.9: Composition of agar plates and complex medium for C. glutamicum [7] 
 

Substances Concentration (g/l) Preparation (1000 ml) 

Glucose 20 
Prepared separately and autoclaved (100 ml) 

and then mixed with other stock solution 

Yeast extract 

(Roth 25465689) 
10 

MgSO4 • 7H2O 0.25 

NaCl 2,5 

Peptone 

Roth 07357562 
10 

MOPS 21 

890 ml is prepared and adjusted to a pH 

between 7-7.5 and filled up to 900 ml and 

mixed with glucose solution. 

Agar-Agar 15 For agar plate 

pH adjusted between 7 and 7.5 with 5 M NaOH  

 

 

2.5.3 Cultivation of Pseudomonas fluorescens (DSM50090) 

Pseudomonas fluorescens as a model organism sensitive to CO2 [19] was selected. The agar 

and minimal media composition and operation condition are given in Tables 2.11, 2.12 and 

2.13, respectively. 
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Table 2.10: Composition and preparation method of the mineral medium with glucose and acid lactic 
as carbon sources for the cultivation of bacterial strains of C. glutamicum in the ventilation and aerated 
flasks and lab scale fomenters [68] 
 

Stock 

solution 
Component 

Amount 

(g/L) 

Preparation for stock 

solution 

Mixing 

(ml) 

Glucose monohydrate 
for DM 1730 strain 15 

to be solved in 50 ml  
distilled water and then 

autoclaved 
C –source 

Lactic acid for WT 
13032 strain 10 

to be solved in 50 ml  
distilled water solution and 
adjust pH to 7 with 97 % 

sulfuric acid (H2SO4), before 
sterilization 

50ml 

(NH4)2SO4 1 
KH2PO4 7.66 
K2HPO4 3.3 

Basic 

solution 
MgSO4 • 7H2O 3.0 

to be solved in 890 ml  
distilled water 890ml 

MOPS C7H15NO4S 21 to be solved in 50 ml distilled 
water 50ml 

Calcium 

chloride CaCL2 • 2H2O 10 
1gr is solved in 100ml  

distilled water autoclaved and 
1ml used for medium 

1ml 

FeSO4 • 7 H20 10 

MnSO4 • H20 10 

ZnSO4 • 7 H20 1 

CuSO4 0.2 

Micro-

element 

NiCl2 • 6 H20 0.02 

1/10 of these components are 
dissolved in 100 ml distilled 
water and adjusted to pH 1 

with 97% sulfuric acid 
(H2SO4) 1 ml of sterile 

filtered solution was used for 
the medium 

1ml 

Vitamin D-Biotin 
C10H16N2O3S 0.2 

0.02gr. is solved in 50 % 
(v/v) 2-propanol and filled up 
to 100 ml with distilled water 
and sterilized by filter and 1 

ml used for medium. 
To be kept in fridge for max. 

one week 

1ml 

3,4-

dihydroxybe

nzoic acid 
C7H6O4 30 

3 gr. is dissolved in 10 % 
NaOH (100 g/l) and filled up 
to 100 ml, kept in fridge and 

1ml  used for medium 

1ml 

Total 

volume 
pH adjusted between 7 and 7.5 with 97% sulfuric acid (H2SO4) or 
NaOH 5M, and filling up to 1000 ml with sterilized distilled water 1000ml 
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Table 2.11: Composition of agar and minimal medium for P. fluorescens 
 

Minimal medium Agar medium 

substances Concentration (g/l) substances Concentration (g/l) 

Glucose 5 peptone 5 

Yeast extract 2 Meat extract 3 

MgSO4•7H2O 0.25 Agar-agar 15 

(NH4)2SO4 6   

MOPS 21   

CaCl2•2H2O 0.02   

Phosphate puffer Table2.13   

adjusted pH to 7 with 5 M NaOH 

 

Table 2.12: Operation condition for cultivation of Pseudomonas fluorescens 
 

Parameters Pseudomonas fluorescens 

Type strain DSM 50090 

C-source  Glucose (5 g/l) + yeast extract (2 g/l) 

Minimal medium Table 2.11 

Buffer solution MOPS (21 g/l) 

Initial pH 7 

Temperature  30 (°C) 

Inoculation (Xo) %10 

Filling volume  10 (ml) 

Agar medium Table 2.11 

Shaking frequency 350 (rpm) 

Aeration in RAMOS  2.35, 0.22, 0.15 (vvm) 

 
Table 2.13: The solution of phosphate buffer for minimal medium of P. fluorescens 
 

Phosphate puffer solution Amount [g/l] 

Na2HPO4 3.5 

NaH2PO4 • H2O 3.5 
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2.5.4 Buffer capacity and adjusting pH 

The media were buffered by MES, phosphate and MOPS buffer solutions. The pH was 

adjusted to a requested value by 15M NaOH or 30 % and 98 % H2SO4. 

 

2.5.5 Sterilization of medium 

The sterilization of the media took place via heat sterilization for 20 min with 121 °C, either in 

autoclaves (Varioklav Dampfsterilisator, H+P Labortechnik GmbH) or in situ in the 

fermentor. Since the thermal treatment of the medium during sterilization procedure destroys 

the added vitamins or trace elements, the vitamins and 3, 4-dihydroxybenzoic acid had to be 

sterilized separately by sterile filter and combined with the other solution under sterile 

conditions.  

 

2.5.6 Inoculation 

An active and optimal inoculation size (usually 3-10 % (v/v)) was generally used to obtain a 

main culture with a minimized lag phase and to avoid low reproducibility of production 

fermentations. 
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3.1 Introduction 

Shake flasks are traditionally equipped with different types of gas permeable closures, made 

from cotton, cloth, paper, polymeric sponger or membrane to prevent contamination. These 

closures play an important role in the aeration of the shaken bioreactors. This role can be 

characterized by mass transfer rates through the sterile closure (OTRplug). The OTRplug 

depends on the value of the gas transfer coefficients of the sterile closure (kplug) and oxygen 

driving concentration [23, 57 and 66]. The parameter kplug was assessed in literature using the 

effective oxygen diffusion coefficient (De,O2), in addition to the geometry of the sterile closure 

[23, 26 and 66]. It can also be obtained by experimental methods [21, 25 and 57]. Several 

methods for the determination of De,O2 have been reported [23, 49, 57, 66]. According to these 

reports, a proportional dependency of De,O2 to bulk density of the applied closure has been 

demonstrated.  

Henzler and Schedel [23] have modeled the diffusive steady state gas transfer through a sterile 

closure by considering Fick´s multi-component gas diffusion [25, 26, 66, 76], combined with 

Stefan’s convection flow. They demonstrated that the diffusion coefficient for oxygen is 

dependent on the gas concentration and, therefore, changes with the spatial location inside the 

sterile closure the operating condition of the shake flask, and the activity of the microbial 

culture. As a consequence, these authors recommended to use the diffusion coefficient for 

carbon dioxide, which is independent of gas concentration and, therefore, suitable to 

characterize the gas mass transfer through a sterile closure.  

Mrotzek et al. [57] used an extended version of the Henzler and Schedel model [23]. They 

introduced an experimental steady state water loss method to characterize the mass transfer 

through a sterile closure and the concentrations of the gas components in the gas phase of the 

headspace of a shake flask (pi). It is a great advantage of this method that no special apparatus 

like an oxygen gas analyzer [25], a polarographic Clark electrode [79] or a non-invasive 

optical sensor [21] is necessary. In this Chapter, the gas transfer coefficient through the cotton 

closure (kplug) will be experimentally characterized using the steady state water loss method 

[57] in the ventilation flasks (Sec. 2.1.1) and the Henzler and Schedel model [23]. 

 

3.2 Theory 
Henzler and Schedel [23] modeled the steady state gas transfer through the sterile closure in 

shake flasks considering Fick´s diffusion combined with Stefan’s convective flow, which 

occurs due to non-equimolar gas component transfer (Figure 3.1).  
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Figure 3.1: Schematic representation of the gas transfer through the sterile closure of a ventilation 
flask [23] 
 

The effect of diffusion (Di) and convective flow (w) on the gas transfer in the sterile closures 

of shake flasks is given by Eq.3.1: 
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where Di is the local effective diffusion coefficient of component “i” (Eq. 3.6) and pi/p is the 

mole fraction of component “i” in a multi-component gas mixture (H2O, O2, N2 and CO2). The 

parameter h is the heights coordinate of the closure. The velocity (w) of the Stefan’s 

convective flow (while the flow rate of the inert component nitrogen will be zero) is given by 

Eq. 3.2: 
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The diffusion coefficient of compounds in the multi-component mixture (Di) depends on the 

composition of the gas mixture [77] and is given by Eq. 3.6: 
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The diffusion coefficient of the compounds O2, CO2, N2 and H2O are, therefore, given by 

following equations, respectively:  
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The kinetic properties of nitrogen and oxygen, which are very similar to each other [61], make 

the binary diffusion coefficients DCO2-O2 and DCO2-N2 equal. Furthermore, the partial pressure 

of nitrogen is 25 times higher than the partial pressure of water vapor. Thus, the partial 

pressure of water vapor can be neglected in the Eq. 3.8. The total pressure (p) is defined as the 

sum of the partial pressures: 

 

OHNCOOi 2222 pppppp +++== ∑  (3.10) 

 

The consideration of Eqs. 3.8 and 3.10 and above assumptions lead to an equal value of the 

diffusion coefficient of carbon dioxide (DCO2) with the values of the binary diffusion 

coefficients DCO2-O2 and DCO2-N2 in the multi-component gas mixture. It is, therefore, 

suggested that the diffusion coefficient of carbon dioxide is very useful to characterize the 

mass transfer through a sterile closure [23]. The diffusion coefficient for oxygen (DO2) is 

dependent on the local gas concentration inside the sterile closure. The gas concentrations can 

change by operating conditions and the activity of the microbial culture. Hence, the average 

(effective) diffusion coefficient of oxygen (DeO2) should be considered, which can be 

calculated by Eq. 3.11. 
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Important parameters for characterizing the gas transfer are the diffusion coefficients of the 

gas compounds in the multi-component mixture (Di), the concentrations of the gas 

components in gas phase of the headspace of a shake flask (pi) and the exact value of the gas 

transfer coefficient through the sterile closure (kplug). OTRplug can be calculated using pO2 and 

kplug with Eq. 3.12.  

)(1
2,2 OoutO

absL
plug pp

pV
OTR −⋅

⋅
⋅= O2plug,k        (3.12) 

An approximate value of kplug and OTRplug can also be derived from Fick’s diffusion law [23 

and 66]: 

)p(p
Vp

1
VH

ADOTR O2outO2,

Labsmo

eO2
plug −⋅

⋅
⋅

⋅
⋅

=         (3.13) 

where: 

mo

O2

VH
ADk e

O2plug,
⋅
⋅

=            (3.14) 

It is noted that the value of DeO2 depends on the density of the cotton closure and can be 

obtained by experimental methods [21, 26 and 79]. By the same method the gas transfer 

coefficient of CO2 can be obtained: 

moVH
ADk CO2

CO2plug,
⋅
⋅

=           (3.15) 

where A/H (cross section area / height) is the neck geometric ratio of the flask.  

 

3.3 Materials and methods 
3.3.1 Ventilation flasks 

In this study the experiments were carried out by using five equal flasks each of nine 

ventilation flask types f1-f9 (Chapter 2, Figure 2.2). The dimensions of these flasks are given 

in Table 2.1. The sterile barriers were made from steal pipes with different lengths or/and 

diameters, filled by cotton. In these experiments the constant cotton density was 0.15 g/cm3. 

For this selected cotton density, an average value for the oxygen diffusion coefficient DeO2 of 

0.153 cm2/sec can be obtained from literature (Table 3.1).  
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Table 3.1: Average value of effective diffusion coefficient of oxygen through the sterile closure (Deo2) 
obtained from literature; the ratio A/H characterizes the plug geometry. 
 

Type of shake flask 
Geometric 

ratio A/H (cm)

Density of 

cotton (g/cm3)
Deo2 (cm2/sec) ref. 

500ml narrow neck 1.7 0.17 0.130 [57] 

250ml wide neck 3 0.16 0.135 [57] 

500ml narrow neck 1.1 0.135 0.167 [23] 

500ml narrow neck 1.8 0.135 0.170 [23] 

500ml narrow neck 1.3 0.15 0.17 [66] 

500ml narrow neck 2.4 0.15 0.153 [76] 

Average 0.153  

 

3.3.2 Steady state water evaporation method to calculate DeO2 and DCO2 in sterile 

closures 

For the measurement of DeO2 and DCO2, a steady state water evaporation method and an 

extended model were used [57]. At first, the ventilation flasks f1-f9 were filled with 25 ml 

distilled water and were shaken under standard conditions (a shaken diameter of 5 cm, a 

shaking frequency of 200 rpm and a constant temperature of 30°C (Table 2.2)). After shaking 

for about 24 hours, in order to reach steady state conditions, the flasks were weighted and 

continuously shaken in an appropriate interval for about 260 hours. The flasks were weighted 

again to determine the rate of water loss during shaking.  
 

3.3.3 The model of Henzler and Schedel 

In this study the extended model of Henzler and Schedel [23] was applied. A ModelMaker 

(Version 3, 11997, Cherwell Scientific Publishing Ltd, UK) program (Eqs. 3.1-9, 3.11 and 

3.12) was prepared similar to Mrotzek et al. [57]. The characteristics of gas transfer in the 

sterile closures were acquired using the data of water evaporation rates and the neck geometry 

of ventilation flasks. The important input variables of this model comprise the average relative 

environmental humidity of the shake flask (RHoutside.), the average temperature (Tave.) detected 

by the sensor (Testo 625, Testo GmbH and Co. Germany), the geometry factor of the shake 

flask which is the quotient of the cross-sectional area and the height of closure (H/A), and the 

water evaporation rate (ER). These variables are summarized in the Table 2.3.  
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3.4 Results and Discussions 
3.4.1 Water evaporation rates in the ventilation flasks 

The effect of the sterile closure resistance on the mass transfer can be evaluated using the 

water evaporation rate method [57]. Figure 3.2 shows the mean values of the water 

evaporation rate in the ventilation flasks f1-f9 and its standard deviation. The deviation clearly 

demonstrates a significant difference between the results of the ventilation flasks f1-f9.  
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Figure 3.2: The values of water evaporation rate in ventilation flasks f1-f9, obtained using the water 
evaporation method (VL=25 ml, Tave=29.85°C, %RHoutside=23.4, do=5 cm, n=200 rpm, ξ=0.15 g/cm3, 
experimental time=210-260 hours)  
 

For instance, the water evaporation rate of the flask f9 was 31 times less than that of the flask 

f1. The effect of the closure dimensions on the amount of water evaporation in a shake flask 

has been also reported [18]. 

 

3.4.2 Determination of DCO2 and DeO2 in ventilation flasks  

The diffusion coefficient of carbon dioxide (DCO2) and the average diffusion coefficient of 

oxygen (DeO2) through the sterile closure of the ventilation flasks were acquired using the 

values of the water evaporation rates (ER) (Sec. 3.4.1) in the extended Model of Henzler and 

Schedel [23]. Other parameters are mentioned in the legend of the Figure 3.2.  
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Figure 3.3 illustrates the values of DCO2. No discrepancy between the mean values of DCO2 for 

the sterile closures of the ventilation flasks f2-f9can be observed. The mean value of DCO2 is 

0.123 cm2/sec. The differences between the average carbon dioxide diffusion coefficients of 

ventilation flasks are lower than 7%. This minor error was due to the manually preparation of 

the closures. As an important consequence of these results, DCO2 has to be regarded 

independent of the geometry of the ventilation flasks, for a selected constant density of cotton 

(0.15 g/cm3) [23 and 57]. 
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Figure 3.3: The comparison of the diffusion coefficient of carbon dioxide (DCO2) determined by the 
water loss method and Henzler model in ventilation flasks f1-f9, (VL=25ml, Tave.=29.85, RHoutside=23.4 
%, do=5 cm, n=200 rpm, geometry factor (Table 2.1), ER obtained from Figure 3.2)  
 
In Figure 3.3 the value of DCO2 for flask f1 is less than that for the others. This can occur as a 

result of the difference between the relative humidity inside of this flask and the other flasks 

f2-f9. The relative humidity of the headspace (RHinside), as an important input parameter of 

Henzler model, was assumed 100%. The correction of this assumption has been verified for 

normal shake flasks before by measurements [57]. In case of ventilation flask f1 the mass 

transfer resistance of the sterile closure with relatively wide cross sectional area and short 

height (Table 2.1) is obviously to decrease that a relative humidity in the headspace of 100% 

is not reached. Therefore, the average value of 0.123 cm2/sec from the other flask f2-f9 was 

used as input value of the model of Henzler and Schedel [23] for flask f1 and the resulting 

relative humidity in the headspace of flask f1 was calculated. Comparison between the water 

evaporation rates (Figure 3.2) and those calculated by the Henzler and Schedel model showed 
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that the inside RH was about 76 % instead of 100 % in the headspace of the ventilation flask 

f1.  

 
3.4.3 Determination of the O2 and CO2 transfer coefficients (kplug,O2 and kplug,CO2) in the 

sterile closure of the ventilation flasks  

The values of DeO2 (with the average of 0.162 cm2/sec) were calculated by Eq.3.11. The value 

of DeO2 is close to the average value of DeO2 obtained from literature (Table 3.1). Considering 

the values of DeO2 and DCO2 (Figure 3.3) in Eqs. 3.14 and 3.15, the values of kplug,O2 and 

kplug,CO2 can be calculated, respectively.  

Figure 3.4 shows the values of DeO2 and kplug,O2. As depicted in this Figure, there is no 

difference of the values of DeO2for different flasks. On the other site there were considerable 

changes in the values of kplug,O2 for the ventilation flasks f1-f9. kplug,O2 in flask f1 is 23.4 times 

larger than that in flasks f9. 

In a similar way, kplug,CO2 could be calculated considering the average value of DCO2 in Eq. 

3.15, which are illustrated by Figure 3.5.  
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Figure 3.4: Average diffusion coefficient of oxygen (DeO2) calculated using Eq.3.11, and the gas 
transfer coefficient of kplug,O2 calculated by Eq.3.14 in the ventilation flasks f1-f9, (VL=25 ml, 
Tave.=29.85 °C, RHoutside=23.4 %, do=5 cm, n=200 rpm) 
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Figure 3.5: Diffusion coefficient of carbon dioxide (DCO2) determined by the water evaporation 
method and the Henzler and Schedel model, and the CO2 transfer coefficient kplug,CO2 calculated from 
Eq.3.15 in ventilation flasks f1-f9, (VL=25 ml, Tave.=29.85 °C, RHoutside=23.4 %, do=5 cm, n=200 rpm, 
ER obtained from Figure 3.2)  
 
3.5 Conclusion 
The gas transfer through the sterile closure of ventilation flasks f1-f9 was characterized using 

Deo2 and DCO2 which were obtained by the water evaporation method and the model of Henzler 

and Schedel. These results indicate that DCO2 is independent on the values of the neck 

geometry (Figure 3.3). There were some considerable differences between the values of kplug,O2 

obtained in the ventilation flasks f1-f9 (Figure 3.5).  

In Chapter 4 the gas transfer in shake flasks will be modeled using the characteristics of gas 

transfer through the sterile closure. Furthermore, the differences between the values of kplug,CO2 

in the ventilation flasks (Figure 3.4) lead to different An accumulation of CO2 s in the 

headspace of the ventilation flasks f1-f9 containing a biological systems. This property of the 

ventilation flasks will be used in Chapter 6 for the investigation of a new method for 

quantification of CO2 sensitivity of micro-organisms. 
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4.1 Introduction 
Aerobic micro-organisms will be oxygen limited if the oxygen transfer rate is smaller than the 

oxygen uptake rate in shaken bioreactors equipped with sterile closures [18, 23, 49, 57, 66 and 

79]. To avoid oxygen limitation in the shake flasks, it is essential to have a good 

understanding and estimation of the gas transfer conditions. Therefore,  it is necessary to 

evaluate the oxygen transfer rate through the sterile closure (OTRplug) and gas liquid oxygen 

transfer rate (OTRg-L) in the shaken bioreactors (Figure  4.1.A). The determination of the 

OTRg-L and OTRplug are related to the values of the gas transfer coefficients through the sterile 

closure (kplug) and volumetric gas transfer coefficients of gas-liquid (kLa). A number of studies 

have been carried out to describe the parameters kLa and kplug by different experimental 

methods and/ or empirical models [23, 24, 25, 76 and 79]. For the evaluation of the kLa value 

e.g. the sulfite oxidation was used as a chemical model system and the dependency of kLa was 

systematically determined for a large variation of operating conditions [24, 44, 46 and 49]. It 

has also been known that for surface aerated shake flasks the gas/liquid mass transfer 

characterized by the sulfite oxidation method can directly be applied for microbial cultures 

employing a specific proportionality factor [46].  

The calculation of parameter kplug has already been explained in Sec. 3.4.3. Henzler and 

Schedel [23] have modeled the diffusive steady state gas transfer through a sterile closure and 

an extended version of this model to characterize the mass transfer through a sterile closure, an 

experimental steady state water loss method, was used as mentioned in Chapter 3. 

In the above mentioned methods, steady state conditions are assumed (OTRplug=OTRg-L) and 

the “buffer capacity” of the gas amount in the head space of the flask is neglected. This 

assumption is not justified any more, if the resistance of the sterile closure becomes as large as 

the resistance of the gas-liquid interface Eq. 4.15. In this case the oxygen in the head space of 

the flask originating from the initial conditions at the time of the inoculation has to be taken 

into account. This oxygen may significantly contribute to the oxygen transfer for biological or 

chemical reaction in liquid phase, calling for an unsteady state approach (Figure 4.1.A). 

The present work is aimed at modeling and understanding of unsteady state gas transfer in 

shake flask. The derived model is able to predict suitable operating conditions and prevent 

oxygen limitation and aeration problems in shaken bioreactors. The validity of the derived 

model was experimentally evaluated with the sulfite oxidation method. The application of this 

model for a biological system is shown later.  
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Figure 4.1: Schematic drawings of shake flasks, employed in this study; A-representation of gas 
transfer in a shake flask; B-apparatus for online measuring of pO2 at varying gas transfer resistances of 
the sterile closures. 
 

4.2 Theory 
4.2.1 Mathematical background and models 

In shaken bioreactors, containing a chemical (sulfite) or biological reaction system, the partial 

pressure of oxygen is dependent on OTRplug and OTRg-L. A mathematical modeling is useful 

for better understanding and quantitatively describing the gas transfer phenomena and 

analyzing the sensitivity of key parameters in shaken bioreactors. Thus, in the following part 

OTRg-L based on an empirical equation for a sulfite reaction and a biological system is 

outlined. Then, the characteristics of steady state gas transfer in sterile closures is explained 

using a simple approximate model and the extended model of Henzler and Schedel [4] as 

described in Sec.3.2. Finally, the equations for modeling of an unsteady state gas transfer will 

be given. 

 

4.2.2 Determination of gas transfer trough a sterile closure (OTRplug) 

As mentioned in Chapter 3, the relation between the oxygen mass transfer through the sterile 

closure (OTRplug) and the mass transfer coefficient (kplug) is given by the following equations: 

)p(p
pV

1kOTR O2outO2,
absL

plugplug −⋅
⋅

⋅=        (4.1) 

mo

O2

VH
ADk e

plug
⋅
⋅

=             (4.2) 

The values of DeO2 in the ventilation flasks (Sec. 3.4.2) was calculated using the experimental 

steady state water loss method [57] and Henzler and Schedel model [23] (Sec. 3.2). Eq. 4.2 is 

additionally used to approximately evaluate the value of kplug in the applied ventilation flasks 

[26 and 66]. These values were determined in the section 3.4.3. In this study, a dependency 

between OTRplug and the exact value of kplug will be obtained using the above model. 
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4.2.3 Gas-liquid oxygen transfer with sulfite reaction system  

The sulfite reaction system is frequently applied to characterize the gas-liquid mass transfer in 

shaken bioreactors [8, 23, 24, 44 and 46]. Hermann et al. [24] and Maier et al. [46] have 

recently described details of the gas-liquid mass transfer by the sulfite system. According to 

the theory of absorption and the assumption of the film model, the order of the sulfite 

oxidation reaction is classified as zero, one and two for sulfite, catalyst and oxygen, 

respectively [42 and 63]. 

When the oxygen concentration in the liquid phase is larger than zero, the gas-liquid oxygen 

transfer rate (OTRg-L) can be calculated by: 

)p(pLakOTR LO2,O2O2LLg −⋅⋅=−  (4.3) 

where LO2 is the solubility of oxygen in the sulfite solution (0.0008 mol/l/bar), which can e.g. 

be calculated by the method of Schumpe et al. [67]. 

It was demonstrated that the concentration of catalyst is an important factor for OTRg-L [44, 

46 and 63]. Maier et al. [44] have proven a linear dependency between OTRg-L and pO2,L (Eq.  

4.4) for a first order reaction at a catalyst concentration of 10-7 M: 

LO2,O21L-g pLkOTR ⋅⋅=  (4.4) 

Where k1 is the first-order reaction constant of 2.358 h-1, reported by Hermann et al. [24]. By 

resolving Eq. 4.4 for pO2,L and inserting this into Eq. 4.3 the following equation is obtained: 

a)k(k
pOLakk
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2O2L1
Lg

+
⋅⋅⋅

=−  (4.5) 

4.2.4 Gas-liquid oxygen transfer in a biological system  

In order to model the gas transfer in a biological system the partial pressure of oxygen in 

liquid phase over the time of fermentation could be given as following: 

Lg
LO2, OTROUR

t
p

−+−=
∂

∂          (4.6) 

Where OUR is oxygen uptake rate and is given by: 

µ.X
Y

1OUR
X/O2

⋅=           (4.7) 

The increase in cell mass during the fermentation is obtained from Eq. 4.8: 

µ.X
t
X

−=
∂
∂            (4.8) 

where µ is specific growth rate, which depends on the substrate and the oxygen concentration, 

and calculates as: 
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O2,L is the dissolved oxygen. The consumption of substrate is described by: 

Xµ
Y

1
t
S

X/S

⋅⋅−=
∂
∂           (4.10) 

In Eqs. 4.7 and 4.10 YX/S and YX/O2 could be obtained from literature data [5].  

 

4.2.5 Maximum oxygen transfer capacity (OTRmax) and gas-liquid transfer coefficient 

(kLa) 

The maximum possible oxygen uptake rate (OUR) of an aerobic culture is restricted by the 

maximum oxygen transfer capacity (OTRmax) [44]. In shake flask cultures, OTRmax strongly 

depends on the surface area of the gas-liquid interface of the rotating liquid and its velocity. 

The operating conditions (shaking frequency, shaking diameter, flask size and shape and the 

liquid culture volume) have an effect on these parameters [44], and consequently, on OTRmax. 

The value of OTRmax in shake flask can be calculated considering the kLa and the partial 

pressure of oxygen in the gas phase (refer to Eq. 4.3 when pO2,L is zero). 

O2O2Laxm pLakOTR ⋅⋅=          (4.10) 

The following empirical equation for kLa is inserted into Eq. 4.5 [44]: 

0.38
do1.15n0.85-V4-10fak LL ⋅⋅⋅⋅=  (4.12) 

The factor ‘f’ for a 0.5 M sulfite system equals to 5.51. Eq. 4.12 can also be applied for a 

biological system and the factor ‘f’ is experimentally determined by comparing a sulfite 

system with the studied biological system. Thus, this factor is calculated as following [72]: 

(sulfite)ak
(biology)ak
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max

max ==        (4.13) 

 

4.2.6 Steady state gas transfer condition in shake flask  

Assuming that the same amount of oxygen entering the flask through the plug is directly 

transferred to the liquid phase, the condition of steady state oxygen transfer (OTRst.st.) is given 

[23, 25 and 79]: 

Lgplugst.st. OTROTROTR −==  (4.14) 

Resolving Eq. 4.1 for pO2 and introducing this expression into Eq. 4.5 the following equation 

for the oxygen transfer rate through the sterile closure or gas liquid interface in the steady state 

condition (OTRst.st) is obtained. 
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Eq. 4.15 clearly shows that if the contribution of the resistance of the sterile closure 

(
plug

absL

k
pV ⋅ ) is in the order of the resistance of the gas-liquid interface (

O2.LL1

L1

Lakk
akk

⋅⋅
+ ), the plug 

will play an important role for the total gas transfer in shaken bioreactors. 

 

4.2.7 Unsteady state gas transfer condition in shaken bioreactors 

In an unsteady state gas transfer model, the mole oxygen balance in the headspace volume of a 

shake flask (Figure 4.1.A) can be developed as follows: 

L-g O2,plugO2, nn
t

nO2 && −=
∂
∂  (4.16) 

According to the ideal gas law, the following equation is derived from Eq. 4.16: 

g
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4.3 Material and Methods 

4.3.1 Ventilation Flasks 

A series of the ventilation flasks f1-f9, described in the section 2.1, were employed as 

described in Secs. 2.2.1 and 3.3.1 (Figure 2.2 and Table 2.1 for characteristic properties).  

 

4.3.2 Apparatus for online measurement of pO2 in ventilation flasks 

For detecting the partial pressure of oxygen in the gas phase of the headspace of the flask, a 

calibrated oxygen sensor (MAX-250 C, Maxtec Inc., Salt Lake City, Utah, USA) was mounted 

in a special flask and response curves were monitored by a recorder. Figure 4.1.B shows this 

apparatus. In section 2.1.4 the measurement of O2 by oxygen sensor was explained in detail. 

 

4.3.3 Sulfite system  

For experimental determination of the oxygen partial pressure in the head space of the flasks 

(pO2) and the time for complete oxidation, the ventilation flasks were filled with sulfite 

solution. This solution consisted of 0.5 M sodium sulfite (98% purity, Roth, Karlsruhe, 

Germany), 10-7 M cobalt sulfate CoSO4, (Fluka, Buchs, Swizerland), 0.012M phosphate buffer 

(Na2HPO4/NaH2PO4, Merck, Darmstadt, Germany), 10-5 M bromthymol blue (Fluka, Buchs, 

Swizerland), pH 8 adjusted with 2 M sulfuric acid. The flasks were fixed on an orbital shaker 

(shaking diameter do=5 cm, Lab-Shaker, Kuehner, Birsfelden, Switzerland). The experiments 

were carried out at a temperature=25 °C, shaking frequency=300 rpm and a filling volume 

5<VL<20 ml.  
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4.3.4 Optical color change method 

For the determination of the overall OTR the sulfite method described by Hermann et al. [24] 

was used. The exhaustion time of sulfite is required in this method. It was determined by 

optically monitoring the color change of the sulfite solution [24]. The depletion of sulfite is 

accompanied by a drop of the pH value from about 8 to about 4, which is followed by the 

color change of the employed pH indicator bromothymol blue from dark blue at pH 7.3 to 

yellow at pH 6.2. The color change was recorded by a video camera (DCR-VX700E, Sony, 

Germany). The overall oxygen transfer (OTR) is proportional to the moles of oxygen 

consumed by the sulfite oxidation and the duration of the sulfite reaction, yielding: 

SO3Na

OSO3Na

2

22

Vt
.vC

OTR
⋅

=  (4.18) 

4.3.5 Biological system 

For the validation of our unsteady state model to simulate the gas transfer in a biological 

system in the ventilation flasks, a strain of Corenobacteriu glutamicum DM 1730 was used as 

a model organism. The composition and preparation of medium (Tables 2.9 and 10) and the 

operation conditions (Table 2.8) were explained in Chapter  2. 

4.3.6 Applied models  

4.3.6.1 Steady state model 

For the calculation of the steady state oxygen transfer (OTRst.st.) Eqs. 4.2 and 4.15 are applied. 

The parameter kLa is obtained from Eq. 4.12 

 

4.3.6.2 Unsteady state model 

The unsteady state model is based on the extended model of Henzler and Schedel [23]. A 

ModelMaker program (Version 3, 11997, Cherwell Scientific Publishing Ltd, UK) was 

prepared similar to Mrotzek et al. [57]. By this model for the determination of the spatially-

resolved concentrations and diffusion coefficients of the gas components in the sterile 

closures, the partial pressure of oxygen in the headspace of the flask (pO2) and the exact value 

of kplug were calculated. 

In order to simulate the unsteady state gas transfer in shake flasks at a variety of operation 

conditions, represented by different resistances of the sterile closure (neck geometry) and 

kinetics of the chemical reaction or the activity of the microbial culture, a second time-
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resolved ModelMaker program was prepared incorporating Eqs. 4.1, 4.5, 4.12 and 4.17. The 

required parameter kplug is calculated from the model of Henzler and Schedel [23], e.g. Eqs. 

3.1-9.  

However, with these equations the spatially-resolved gas concentration in the sterile closure is 

calculated, whereas Eq. 4.17 has to be used to calculate the time-resolved oxygen partial 

pressure in the headspace. These equations can not be solved simultaneously by the applied 

ModelMaker software. Therefore, the dependency of kplug on OTRplug had to be calculated 

beforehand and was correlated by the following simple empirical equation: 

c

2OTR
OTRb

OTRak
plug

plug

plug
plug

++

⋅
=  (4.19) 

This procedure is depicted in Figure 4.2. The model from Henzler and Schedel [23] and Eq. 

4.1 resolved for kplug, was employed. Considering Figure 4.2, first random values for OTRplug 

(theoretically obtained by changing the operation conditions (VL, n and do)) between zero and 

0.04 mol/l/h for a flask with a certain neck geometry is selected. 

 

Select random values for OTRplug between 0-0.04 mol/l/h

Calculate pO2 from 
Model of Henzler and Schedel [23]

Geometry of 
sterile closure

c

2OTR
OTRb

OTRak
plug

plug

plug
plug

++

⋅=

O2outO2,

absLplug
plug

pp
pVOTRk

−
⋅⋅

=

A
VHkD moplug

eo2
⋅⋅=

Fit a, b and c using kplug and OTRplug to:

 
Figure 4.2: Flow sheet for the determination of the dependency of Deo2 and kplug on OTRplug by the 
model of Henzler and Schedel [23] considering the concentration dependency of the diffusive mass 
transfer and the convective Stefan flow. 
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Table 4.1: Characteristics of the sterile closures of the different shake (ventilation) flasks employed; 
values of kplug as a function of OTRplug and kplug as a function of neck geometry (sulfite system (0.5 M), 
T=25 °C, n=300 rpm, do=5 cm, ζcotton=0.15 g/cm3, DCO2=0.116 cm2/s, LO2=0.0008 mol/l/bar) 
 

Number of flask Dpipe (cm) Hpipe (cm) 
c

2OTR
OTRb

OTRa(mol/s)*k
plug

plug

plug
plug

++

⋅
=

 

- - - a*10-6 b*10-3 c 

f1 2.8 2.12 22.4 6.95 19.97 

f2 2.8 4.20 11.06 5.36 10.5 

f3 2.0 3.60 6.68 4.51 6.5 

f4 2.0 4.72 4.98 3.87 2 

f5 1.5 3.90 3.54 2.67 1.99 

f6 1.5 4.85 2.85 2.22 0.923 

f7 1.5 7.00 1.96 1.53 0.68 

f8 1.5 11.00 1.25 0.97 0.47 

f9 0.7 3.10 0.94 0.49 0.43 

*Calculated according to procedure depicted in Figure 4.2 

The partial pressure of oxygen in the headspace of the flask (pO2) and then the exact value of 

kplug (Eq. 4.1) is calculated. With this kplug the effective diffusion coefficient DeO2 is obtained 

(Eq. 4.2). Finally the values of kplug are correlated to OTRplug by fitting the parameters of a, b 

and c (Table 4.1) of the selected empirical Eq. 4.19. The coefficient of correlation factor (r2) 

was 1. The input parameters for this model and also the experimental conditions are 

summarized in the legends of each Figures and Tables.  

 

4.4 Results and Discussions 

The effect of the sterile closure of a shake flask is rarely considered in evaluating the over-all 

gas mass transfer. If the sterile closure is taken into account in literature, (in almost all cases) 

only simple steady state approaches with constant diffusion coefficients have been applied so 

far. Therefore, the effect of the spatially changing gas concentration inside the sterile closure 

and the buffer capacity of the gas present in the head space of the flask at the beginning of an 

experiment is investigated in this work. 
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4.4.1 Comparison between the resistances of sterile closure and gas-liquid interface in 

the sulfite system in the ventilation flasks 

For the interpretation of the effect of sterile closures on the gas transfer, the resistance of the 

sterile closure (
plug

absL

k
pV ⋅ ) and the resistance of the gas-liquid interface (

O2.LL1

L1

Lakk
akk

⋅⋅
+ ) were 

compared [23, 26 and 79]. To calculate these resistances, kplug and kLa obtained by the Eqs. 4.2 

and 4.12 were used respectively. Figure 4.3 illustrates the comparison between these 

resistances for the 0.5 M sulfite system under a steady state condition. As it shows, the 

resistances of gas-liquid interface in the all flasks except f9 is larger than those of the sterile 

closures.  

 

4.4.2 Dependency of DeO2 on OTRplug considering the spatially changing concentration 

in the sterile closure 

The procedure depicted in Figure4.2 was used to calculate the dependency of DeO2 on OTRplug 

for the ventilation flasks f1-f9 (Table 4.1). The results are shown in Figure4.4.  

 

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9

Ventilation flasks   [-]

R
es

is
ta

nc
es

 o
f g

as
-li

qu
iu

d 
in

te
rf

ac
e 

an
d 

st
er

ile
 c

lo
su

re
s 

  [
l.b

ar
.h

/m
ol

]

resistances of plug resistances of gas liquid interface

 
Figure 4.3: Comparison between the resistances of sterile closure and of the gas-liquid interface for 
the sulfite system (0.5 M); (T=25 °C, n=300 rpm, do=5 cm, VL=15 ml) in the ventilation flasks f1-f9, A 
steady state gas transfer condition was assumed. 
 

As illustrated by Figure 4.4, a variation of OTRplug leads to a change in the values of the 

effective diffusion coefficient DeO2. The resulting values are different for the different 
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geometries (ventilation flasks) and don’t fall onto one curve. The calculated effective diffusion 

coefficients are evenly distributed above and below the literature value, depending on OTRplug 

and the geometry. It should be noted that the cotton density of the sterile closures used in this 

work (ζcotton=0.15 g/cm3) was roughly in the same order of magnitude as those cited from 

literature (ζcotton=0.135 - 0.17 g/cm3, see the Table 3.1). 
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Figure 4.4: Dependency of the effective diffusion coefficient for oxygen (DeO2) on the oxygen 
transfer rate through the sterile closure (OTRplug) in flask f1-f9 (Table 4.1), calculated by the procedure 
depicted in Figure 4.2. For comparison the (constant) average diffusion coefficient from literature data 
(Table 3.1) is shown. Input parameters: sulfite system (0.5M), T=25 °C, n=300 rpm, shaking diameter 
do=5cm, saturated partial pressure of water vapor in the head space of the flasks psat.=0.03969 bar [61], 
filling volume VL=15 ml, density of cotton plug ζcotton=0.15 g/cm3 
 

4.4.3 Simulation of gas transfer (OTRplug, OTRg-L and pO2) in shake flasks by unsteady 

state modeling 

It is interesting to investigate whether an unsteady state oxygen mass transfer approach will 

result in large differences compared to a simple steady state approach. Figure 4.5 shows a 

simulation of the oxygen transfer through the sterile closure (OTRplug) and from the gas in the 

headspace of the flask to the liquid (OTRg-L) for ventilation flasks f1 and f9 (Table 4.1) for the 

oxidation of a 0.5M sulfite solution. Eqs. 4.1, 4.5, 4.12, 4.17and 4.19 were used for calculating 

the unsteady state oxygen mass transfer. Note that kplug is continuously recalculated from Eq. 

4.19 using the parameters a, b and c from Table 4.1 for each time step. As a mentioned before, 

the steady state mass transfer was calculated by Eqs. 4.2, 4.12 and 4.15. 
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Figure 4.5: Model results for the oxygen transfer rate trough the sterile closure (OTRplug) and from the 
gas in the headspace to the liquid phase (OTRg-L) over time in ventilation flask f1 and f9 (Table 4.1). 
The collapse of OTRg-L to zero (vertical dashed lines) indicate the exhaustion of the 0.5 M sulfite 
solution, T=25 °C, 300 rpm, do=5 cm, VL=15 ml. Eqs. 4.1, 4.5, 4.12, 4.17, 4.19 and Eqs. 4.2, 4.12, and 
4.15 for unsteady state and steady state calculation were used, respectively. 

 

It can be seen that the OTRg-L is at a maximum level (0.039mol/L/h) at the very beginning of 

the experiment. At this initial moment the head space of the flask is filled with air and, 

therefore, the driving concentration gradient from the head space gas phase to the liquid phase 

is maximal. On the contrary, OTRplug is zero as no driving concentration gradient is present 

over the sterile plug at this time. Due to the continuous consumption of oxygen in the liquid 

and, consequently, removal of oxygen from the head space of the flask, its oxygen partial 

pressure decreases (see also Figure 4.6) as a result of mass transfer limitation of the sterile 

closure (see the Figure 4.3). OTRg-L and OTRplug decreases and increases, respectively, and 

both values approach a common steady state value (horizontal dash-dotted lines in Figure 4.5). 

In case of ventilation flask f1 (with a low mass transfer resistance of the sterile closure) this 

steady state value (0.036mol/L/h) is practically reached in a relatively short time of about 2 

hours before the total amount of 0.5 M sulfite is exhausted and OTRg-L collapses to zero at 

about 7 hours. In case of ventilation flask f9 (representing a relatively high mass transfer 

resistance of the sterile closure, Figure 4.3) the steady state value (0.021mol/L/h) has never 

been reached before complete exhaustion of the sulfite solution shortly before 10 hours. After 

the chemical reaction is completed (and OTRg-L is zero) OTRplug requires some time to 
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decrease to zero. In ventilation flask f9 this takes more time than the reaction itself and is even 

not completed after 25 hours. 

 
Figure 4.6 shows the unsteady state oxygen partial pressures in the head space (pO2) for all 

ventilation flasks f1-f9. The partial pressures of the flasks with 0.5 M sulfite solution is 

depicted as solid lines with small symbols. The hypothetical partial pressures for a reaction of 

infinite duration, approaching steady state conditions, are illustrated as dashed lines. At initial 

conditions all flasks contain air and the oxygen partial pressure is 0.2095 bars. As already 

explained before, the flasks with relatively low mass transfer resistance of the sterile closure 

(f1-f4) reach the steady state value more or less during the reaction. The other flasks (f5-f9) 

approach the steady state value, but the reaction is terminated due to exhaustion of sulfite 

before the oxygen partial pressure becomes close to the steady state value. The smaller the 

mass transfer resistance of the sterile closure of the flask the earlier the oxidation reaction is 

completed. If the hypothetical duration of a sulfite oxidation experiment is calculated based on 

stoichiometry and steady state assumptions (Eqs. 4.2, 4.12 and 4.15), values of 6.45 and 12.66 

hours are obtained for f1 and f9, respectively. Theses times are 1.1 and 25 %, respectively, 

larger than the times obtained by considering unsteady state conditions (6.38 and 9.5 hours).  
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Figure 4.6: Simulation results of head space partial pressure of oxygen (pO2) and the time of 
exhaustion of sulfite and end of the oxidation reaction under unsteady state gas transfer condition in the 
ventilation flasks f1-f9 with different kplug as a function of OTRplug (Table 4.1); 0.5 M sulfite solution, 
T=25 °C, n=300 rpm, do=5 cm, VL=15 ml, ζcotton=0.15 g/cm3 
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This is reasonable because the oxygen “buffer” in the head space, present from the start of the 

experiment, gives a significant contribution to total oxygen consumption. In total, the oxygen 

partial pressure in the head space is larger than that of under steady state assumption and 

consequently the driving concentration gradient for gas-liquid mass transfer is larger. These 

results in a faster reaction and a shorter time required for complete exhaustion of the sulfite. 

These examples clearly demonstrate that a chemical or biological reaction in a shake flask 

may be strongly influenced by the mass transfer characteristics of the sterile closure. Due to 

the high “buffer capacity” of the head space, which is typically given in case of shake flasks, 

the kinetics may be completely different than calculated assuming simple steady state mass 

transfer conditions. 

 

4.4.4 Validation of unsteady state model  

For validation of the new unsteady state approach the model results for the oxygen partial 

pressure in the head space of a shake flask (pO2) and the duration required for complete 

oxidation of 0.5 M sulfite was compared with experimental values. 

For on-line monitoring of pO2 special ventilation flasks (of f1, f4, f7 and f9) and oxygen 

sensors were used as illustrated in Figure 4.1.B. As can be seen from Figure 4.7, the value for 

the oxygen partial pressure (pO2) is 0.2095 bar at the beginning of the experiment. 

Subsequently pO2 decreases over time as the chemical reaction proceeds, the flasks with the 

larger mass transfer resistance of the sterile closure (higher flask numbers) approaching a 

lower level of partial pressure. At a specific time pO2 starts to increase due to the exhaustion 

of the sulfite solution. As has already been discussed for Figure 4.6, the time of sulfite 

exhaustion occurs at later times for flaks with larger mass transfer resistance. There is a 

reasonable agreement between the measured and simulated time course of the oxygen partial 

pressures and the time of sulfite exhaustion. This proves that the general approach is justified 

and unsteady state gas transfer should not be neglected.  

It has to be noted that the agreement between measured and simulated partial pressures is not 

fully given. This may be due to the fact that an approximation (Eq. 4.19) is used here to 

mathematically represent the spatially-resolved oxygen concentration in the sterile closure 

and, therefore, the mass transfer resistance (kplug) as function of the oxygen transfer (OTRplug). 

Another possible explanation of the slight deviation may be incomplete mixing of the gas 

phase of the special ventilation flasks (e.g. in the adapter of the sensor) applied for pO2 

measurement. 
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Figure 4.7: Comparison of measured and calculated change of partial pressure of oxygen (pO2) in the 
head space of ventilation flasks with different sterile closures (f1, f4, f7 and f9). 0.5 M Sulfite solution, 
T=25 °C, n=300 rpm, do=5 cm, VL=15 ml ζcotton=0.15 g/cm3 
 

For additional validation of the new unsteady state approach the time of the exhaustion of 0.5 

M sulfite was recorded for many different operating conditions (ventilation flasks f1-f9 at 

different filling volumes and shaking frequencies) with the color change method described by 

Hermann et al. [24]. The experimental results are compared in a parity plot with simulation 

results for equivalent conditions obtained on the one hand by the steady state and on the other 

hand by the unsteady state approach. Figure 4.8 shows a systematic error for the data points 

calculated by the steady state method. The calculated time for the completion of the oxidation 

reaction is generally being too large.  

It is obvious that the deviation between experiment and prediction is maximal for the shake 

flask with the largest mass transfer resistance of the sterile closure (f9). With decreasing mass 

transfer resistance (f8-f1) the deviation becomes smaller. On the other hand Figure 4.8 

indicates a good agreement (with a regression coefficient (r2) of 0.96) between the 

experimental and predicted time of sulfite exhaustion for all ventilation flasks calculated by 

the unsteady state method. Accordingly, this confirms the validity of the unsteady state model 

for prediction of the gas transfer in shake flasks.  
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Figure 4.8: Comparison of measured and calculated time of the oxidation reaction of a sulfite solution 
(0.5M) until complete exhaustion. The unsteady state values for the ventilation flasks f1-f9 (●) were 
calculated by Eqs. 4.1, 4.5, 4.12, 4.17 and 4.19 and steady state values by Eq. 4.2, 4.12 and 4.15, using 
DeO2=0.153 cm2/s (Table 3.1), T=25 °C, do=5 cm, 4 ml<VL<25 ml, 100 rpm<n<400 rpm.  
 
4.4.5 Application of unsteady state model for a biological system  

The proposed model was modified for an application to simulate the gas transfer in a 

biological system in the ventilation flasks. In order to do that, Eqs. 4.6, 4.7, 4.8, 4.9 and 4.10 

were implemented in our unsteady state model. The simulation of the gas transfer for the 

fermentation of C. glutamicum DM 1730 on 15 g/L glucose in the ventilation flasks f1 and f9 

was obtained using this model. Figure.4.9 shows this simulation results. The values of the 

applied parameters for this model are given in the legend of Figure 4.9 (Table 2.3). As 

illustrated in this Figure, the model is able to predict the characteristics of gas transfer in this 

biological system, e.g. pO2, OTRg-L, OTRplug. With this model it is also possible to predict 

suitable operation conditions to avoid oxygen limitation in ventilation flasks. The simulation 

results for flask f9 confirm strong unsteady state condition, as similar to the sulfite system 

(Figure 4.5). 

For the validation of the unsteady state model for a biological system (Figure 4.9), the 

fermentation of C. glutamicum DM1730 (10 g/l glucose and 10 ml filling volume) in the 

ventilation flasks f1, f4, f7 and f9 equipped with an oxygen sensor (Figure 4.1.B) was carried 

out according to Materials and Methods (Sec. 4.3.5). 



Chap. 4: Modeling of unsteady state gas transfer 47  

 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 2 4 6 8 10 12 14 16 18 20

Time   [h]

O
TR

g-
L, 

O
TR

pl
ug

   
[m

ol
/l/

h]

0

0.05

0.1

0.15

0.2

pO
2 

 [b
ar

]

steady state
part

Unsteady state
part OTRplug f1

OTRg-L f1, f9

OTRplug f9

f9

f1

Figure 4.9: Model results for OTRplug, OTRg-L and pO2 in the ventilation flasks f1 and f9. The input 
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VL=10 ml, T=30 °C, do=5 cm, Yx/s=0.48, Yx/o2=53 g/mol, RQ=1, Xo=0.5 gr/l, f=0.23 calculated by Eq. 
4.13, KS=0.0045 gr/l, KO2=10-6 mol/l, µmax=0.32 h-1) 
 
 
 

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0 2 4 6 8 10 12

Fermentation time   [-]

Pa
rt

ia
l p

re
su

re
 o

f o
xy

ge
n 

pO
 2 

  [
ba

r]

f9

f7

f4

f1

O2-Sensor Results

Model Results

 
Figure 4.10: Comparison between unsteady state model and experimental results for the partial 
pressure of oxygen in the headspace of the ventilation flasks f1, f4, f7, f9 obtained for the fermentation 
of C.glutamicum DM 1730 on 10 g/l glucose and 21 g/l MOPS (VL=10 ml, n=400 rpm, T=30 °C, do=5 
cm, Yx/s=0.48, Yx/o2=53 g/mol, RQ=1 [5]). 
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The pO2 was recalculated using the data of the oxygen sensor (Eq.2.1). The experimental and 

model results were compared in Figure 4.10. A good agreement between both results 

confirmed that the unsteady state model is valid for a biological system. The difference 

between the experimental and model results after 9.6 hours of fermentation may be due to the 

differences in the values of O2 and CO2 diffusion through the sterile closure as described in the 

Figures.3.5 and 3.6.  

 

4.5 Conclusion  
The mass transfer resistance of the sterile closure of a shake flask has a widely neglected 

effect on the performance of microbial cultures. If the characteristics of the sterile closure are 

considered at all, only simple models assuming steady state conditions are applied. In this 

work the influence of the mass transfer resistance of the sterile closure on oxygen partial 

pressure in the head space of a flask (pO2) and on total oxygen transfer is investigated using a 

chemical model reaction (sulfite oxidation) and a biological system. It has been shown that the 

mass transfer resistance of the sterile closure should not be represented just by a constant 

parameter (kplug or DeO2). The model of Henzler and Schedel [23] should be used, which 

correctly describes the spatially-resolved change of the gas partial pressures inside the sterile 

closure. From this extended model a representation of the mass transfer resistance of the 

sterile closure which is closer, to reality and dependent on the mass flow through the plug, can 

be obtained [57]. This representation of the mass transfer resistance of the sterile closure is 

then incorporated into an unsteady state model. It could be shown that large discrepancies are 

obtained between the simple steady state and the new unsteady state simulations. This was 

proven by two kinds of validation experiments applying two different measuring methods. The 

extension of the error depends on the level of mass transfer resistance of the sterile closure and 

the total amount of oxygen consumed by the chemical or biological reaction in the liquid, e.g. 

total time of the experiment. The conventional approach neglects the “buffer capacity” of the 

head space of the flask and, therefore, generally underestimates the oxygen transfer, especially 

at the beginning of an experiment. 

The presented unsteady state model may become a useful tool for correct prediction of gas 

transfer in shaken bioreactors under a wide range of values of kplug and kLa. The findings could 

be a key point for the optimization of the experimental conditions of microbial cultures 

avoiding oxygen limitation.  
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As mentioned in the following Chapter, the introduced ventilation flasks are applied to 

investigate the effect of aeration and of CO2 produced by the cultures and accumulated at 

different partial pressures in ventilation flasks f1-f9 on the performance of different microbial 

systems. 
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5.1 Introduction 

The sterile closures of the shaken bioreactors play an important role in the aeration. Aeration 

in shake flasks is achieved by a simple gas liquid contact, supported by shaking in the 

reciprocating or rotary shaking machines [29 and 46].  

As mentioned in Chapters 3 and 4, the gas transfer in ventilation flasks can be affected by the 

coefficients of the gas liquid interface (kLa) and the sterile closure (kplug). Under a defined 

operation conditions, the values of resistance of sterile closure may become a critical factor for 

supplying the oxygen in aerobic fermentations. Use of manufactured cotton plug leads to poor 

understanding of physical parameters, e.g. gas transfer and aeration factor, in the normal shake 

flasks in comparison with aerated flasks [8 and 23]. Considering this promotion, it is proposed 

that the gas transfer in sterile closure can be characterized using a new dependency of kplug on 

OTRplug (Sec.4.3.6.2). 

The aim of this Chapter is to validate a new strategy for aeration from the ventilation to flasks 

aerated (RAMOS device). By means of this new method, a better comparability based on 

obtaining the same gas concentration in the headspace of both flasks can be achieved. For this 

goal the values of specific aeration rate (qin), calculated by the values of OTRplug in ventilation 

flask, will be used for aerated flasks, e.g. measuring flask of RAMOS device. This could be 

advantageous for scaling -up from a shake flask to a stirred tank bioreactor.  

 

5.2 Theory 
Using the oxygen balance on the gas transfer through the sterile closure and the gas flow into 

the aerated flask, the equations 5.1 and 5.2 are derived, respectively:  

)pO(pO
pV

1kOTR 2out2,
absL

plugplug −⋅
⋅

⋅=        (5.1) 

)pO(pOq
Vp

1OTR 2out2,in
moabs

flow −⋅⋅
⋅

=        (5.2) 

OTRflow is defined as the amount of oxygen transferred by aeration into a chemical or 

biological system in the aerated (measuring) flask, and qin is the specific aeration rate (vvm) in 

this flask. In order to have an equivalent gas concentration (pO2) in the headspace of both 

flasks, OTRplug should be equal to OTRflow. This gives the Eq.5.3: 

gplu
L

mo
in k

V
Vq ⋅=           (5.3) 

The values of kplug were quantified using the dependency of kplug an OTRplug (Eq. 4.19). With 

substitution of Eq. 4.19 in Eq. 5.3, the following equation can be developed: 
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where a, b, c are given in the Table 4.1. Using the values of OTRplug which are resulted by 

unsteady state model (Chapter 4), in the Eq. 5.4 a pattern for the aeration in the sterile closure 

during a sulfite reaction or a biological system can be simulated. From this simulation a 

maximum aeration rate (max. qin) can be obtained. In this chapter, a new aeration strategy will 

be experimentally investigated, using the maximum qin for aeration in the aerated flask. 

 

5.3 Materials and methods 
5.3.1 Ventilation flasks equipped with oxygen sensor  

In this study the special ventilation flasks f1, f4, f7 and f9 equipped with oxygen sensors were 

employed as described in Chapter 2 (Sec. 2.1.4 and Figure 2.1-A).  

 

5.3.2 A special aeration system for the measuring flask of the RAMOS device 

In this study a RAMOS device with measuring flasks (Figure 2.1.C) was utilized (Sec. 2.1.). 

The aeration system of the RAMOS device [3 and 4] was modified for acquiring an equivalent 

gas concentration in the headspace of the measuring flasks to that in the ventilation flasks. The 

aeration system comprises of two mass flow controllers (5850TR, Brooks Instruments, 

Venendaal, NL), two gas distributors and capillary tubes with different length for adjusting the 

aeration rates. Uses of two mass flow controllers were due to obtain a better accuracy in 

supplying the low aeration rates in the aerated flasks. Figure 5.1 illustrates the developed 

aeration system for the measuring flasks of RAMOS device that allow parallel experiments 

with the ventilation flasks. The specific aeration rates (vvm) in the aerated measuring flasks of 

the RAMOS device (rf1, rf4, rf7 and rf9) were adjusted to the calculated amount of the 

maximum qin for the parallel ventilation flasks. The flasks were fixed onto a shaker and the 

sensors were appropriately connected.  

 

5.3.3 Unsteady state model to determine qin in the aerated measuring flasks of the 

RAMOS device 

In order to estimate the values of specific aeration rates (qin), for the aerated measuring flasks 

of the RAMOS device that result in the same gas concentration as in the headspace of the 

ventilation flask. OTRplug was calculated from the unsteady state model (Chapter 4) and 

inserted into Eq. 5.4. This model can simulate qin and OTRplug during the sulfite reaction or 
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biological systems. As will be shown later qin significantly changes with OTRplug and time. 

Therefore, the maximum value of specific aeration rates (max. qin) was arbitrarily chosen to be 

used in order to aerate in the measuring flask of the RAMOS device. 
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Figure 5.1: Development of the aeration system for the RAMOS device [3] employed in this study. 
 
5.3.4 Model organisms and cultivation system 

The C. glutamicum DM 1730 as a model organism was used. The mediums preparation and 

the cultivations system were given in section. 2.6.2. The operation conditions and the aeration 

rates are given in the Table 2.8 and Table 5.1, respectively. 

 

5.4 Results and Discussions 
5.4.1 Simulation of the specific aeration rate (qin) in the ventilation flask  

As noted in Figs. 4.7, 4.8 and 4.10, the unsteady state model was able to correctly simulate the 

gas transfer for a biological system in the ventilation flasks. In this study a modified unsteady 

state model was used (Sec. 5.3.3) for the calculation of the specific aeration rates (qin) of an 

aerated measuring flask of the RAMOS device that result in the same headspace 

concentrations as in the ventilation flasks f1 and f9 for a biological system C. glutamicum DM 

1730. 
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Figures 5.2 and 5.3 show simulations of OTRplug in ventilation flasks f1 and f9 (see also 

Figure 4.9). The input parameters (Table 2.3) of this model are given in the legends of Figures 

5.2 and 5.3. Also qin was calculated for the aerated measuring flasks of the RAMOS device 

which provide equivalent conditions as in the respective ventilation flask The outcomes of this 

model for a sulfite reaction or a biological systems are given in Table 5.1. It is noted that, the 

small differences between the data of aeration rates in the aerated and ventilation flasks f4, f7 

and f9 were due to the difficulty in adjusting the low aeration rates by the capillary system 

As illustrated by Figure5.2 the values of the qin increases with increasing ORTplug until a 

maximum value of 1.45-1.5 vvm.  

Table 5.1: Comparison between the maximum values specific aeration rates in ventilation flask (qin), 
and those values in the (measuring) flask of RAMOS which are used in this study (VL=15ml, do=5cm). 
 

Specific aeration rate qin [vvm] 

0.5 M Sulfite system Biological system 
flasks 

Calculated 

maximum value 

Value adjusted in 

aerated flask 

Calculated 

maximum value 

Value adjusted in 

aerated flask 

f1 1.21 1.85 1.47  1.5  

f4 0.45 0.46 0.39 0.4 

f7 0.18 0.16 0.19 0.21 

f9 0.08 0.09 0.08 0.1  

* Calculated unsteady state model 
** These values were used in our experiments, provided by a special aeration system in RAMOS (Sec. 
5.3.2) 

 

Figure 5.3 shows OTRplug for ventilation flask f9 (see also Figure 4.9)and the resulting 

specific aeration rate qin for a respective aerated flask. In that case, maximum values between 

0.07 and 0.08 vvm were calculated for the specific aeration rate. 

These mentioned maximum values were calculated for the considered biological system under 

non-oxygen limited condition. Other simulations have shown that changing some input 

parameters such as filling volume, carbon source concentration and shaking frequency could 

lead to an oxygen limitation in ventilation flasks. Therefore, the maximum aeration rate was 

used in order to avoid oxygen limitation, since an oxygen limitation may occur from a lower 

aeration rate.  
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Figure 5.2: Simulation results of qin for the aerated flasks of the RAMOS device resulting in the same 
headspace concentration as in ventilation flask f1, using the unsteady state model and Eq. 5.4 for 
fermentation of C. glutamicum DM1730 (n=350 rpm, do=5 cm, VL=15 ml, 15 gr/l glucose, Yx/s=0.48, 
Yx/O2=53 g/mol, T=30 °C, µmax=0.32 1/h, KS=0.0045 gr/l, KO2=10-6 mol/l [5, 68]). 
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Figure 5.3: Simulation results of qin for the aerated flasks of the RAMOS device resulting in the same 
headspace concentration as in ventilation flask f9, using the unsteady state model and Eq. 5.4 for 
fermentation of C. glutamicum DM1730 (n=350 rpm, do=5 cm, VL=15 ml, 15 gr/l glucose, Yx/s=0.48, 
Yx/O2=53 g/mol, T=30 °C, µmax=0.32 1/h, KS=0.0045 gr/l, KO2=10-6 mol/l [5, 68]). 
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In the next sections the new proposed aeration strategy under non-oxygen limited condition 

will be experimentally investigated, utilizing the maximum value of the specific aeration plug 

rate for the sulfite or a biological system in the measuring flasks, parallel to the respective 

ventilation flasksf1, f4, f7 and f9. The maximum values of qin are given in the Table 5.1. 

 
5.4.2 Validation of the method for the sulfite system  

The usefulness of the new aeration method for the 0.5 M sulfite reaction, as a defined kinetic 

system (Sec. 4.3.3), was confirmed by a comparison between the results of the oxygen 

concentration in the headspace of the ventilation flasks (f1, f4, f7 and f9) equipped with 

oxygen sensors, and the respective aerated measuring flasks of RAMOS device. Specific 

aeration rates of 0.45, 0.16 and 0.08 vvm were adjusted in the aerated flasks. These values 

were almost equal to the maximum values of the specific aeration rates resulting from the 

conditions in the ventilation flasks f1, f4, f7 and f9 (Table 5.1). This aeration for aerated flask 

rf1 (1.85vvm) was selected %53 more than the maximum calculated value of qin in the 

ventilation flask f1 (1.21 vvm). The materials and preparation of the sulfite system were given 

in the Section 4.3.3. The aeration system was adjusted according to the Figure 5.1. 
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Figure 5.4: Comparison between the partial pressure of oxygen in the headspace of the ventilation 
flasks f1, f4, f7 and f9 and aerated flasks for 0.5 M sulfite system based on the new aeration strategy 
(n=300 rpm, do=5 cm ,VL=15 ml, T=25 °C). The values of specific aeration rates are given in the 
legend and in Table 5.1. 
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Figure 5.4 demonstrates the results of detection of the oxygen concentration of the gas phase 

in the headspace of the ventilation and aerated flasks. This Figure shows a high similarity 

between the results of the pO2 in the both ventilation and aerated flasks. This confirmed the 

validity of our purposed strategy. As depicted in Figure5.4 the values of pO2 for ventilation 

flask f1 is less than that for the aerated flask rf1. This could occur due to the value of aeration 

in vf1, which was 53 % less than that in rf1. The effect of kplug on the pO2 has been discussed 

in section 4.4.3. Although the both values in the other flasks (f4, f7 and f9) show a similar 

behavior, there are some slight deviations between the results. This could be happened 

because of the incomplete mixing of the gas in the part of mounted sensor in ventilation flask 

(Figure 2.1.A).  

 

5.4.3 Validation of the method for a biological system  

The validation of the new aeration method for the cultivation of C. glutamicum DM1730 as 

model organism was performed by comparing the oxygen concentration in the headspace of 

the ventilation flasks f1 and f9 and the related measuring flask of the RAMOS device. The 

specific aeration rates in the measuring flasks were adjusted equal to the maximum of qin in 

ventilation flasks f1 and f9 (Table 5.1).  
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Figure 5.5: Comparison between the concentration of oxygen in the headspace of the ventilation flasks 
f1 and f9 and related measuring flasks for the fermentation of C. glutamicum DM1730 on 15 g/l 
glucose (21g/l MOPS, pHstart=7.2, VL=15 ml, n=350 rpm, ODstart=1). The values of the specific aeration 
rates of the flasks, calculated based on the new aeration strategy, are given in Table 5.1. 
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The experiments were conducted under operation conditions, obtained using Eq. 5.4 and the 

unsteady state model. The aerations in measuring flasks were adjusted to 1.5 vvm and 0.1 vvm 

by the designed aerated system of the RAMOS device (Figure 5.1). The medium preparation 

and cultivation of the micro-organisms were explained in materials and methods (Sec. 2.6.2). 

The signals of the oxygen sensors are recorded by the control program of the RAMOS device 

for both flasks. The pO2 was calculated from the oxygen sensor signal by Eq. 2.1. 

Figure 5.6 shows the results of the O2 concentration in the headspace of the ventilations and 

the measuring flasks. A good agreement between the oxygen concentration in the head space 

of both ventilation flask f1 and f9 and the related measuring flasks of the RAMOS device 

confirms the proposed new aeration strategy. The slight difference between the minimum 

values of the O2 concentration in f9 may have occurred due to a higher adjusted value of the 

aeration in the measuring flask (0.1vvm) than that in the ventilation flask f9 (qin=0.08vvm) 

and also properly incomplete mixing of the gas in the connector of the mounted sensor in the 

ventilation flask. 

 

5.5 Conclusion 
The biotechnologists desire to provide adequate oxygen for aerobic cultures and to control 

aeration, especially in scale up from shake flask to fermentor. In an aerobic fermentation in a 

shake flask with sterile closure there is in many cases no assurance that the aeration is 

sufficient [18 and 23]. It was the aim of this part of the work to present a new aeration strategy 

based on the values of aeration rate which are calculated in sterile closures using an unsteady 

state model and considering a dependency between kplug and OTRplug (Eq. 5.4). The method 

was confirmed, obtaining the same gas concentration the headspaces of ventilation and aerated 

flasks for a sulfite and a biological system (Figs. 5.4 and 5.5). This method addresses the 

problem of insufficient information on aeration in the shake flask as reported by different 

authors [8, 23, 36, 37, 66 and 75]. This strategy would be a very useful method for scaling up 

from a shake flask to a fermentor, comparing the results of the gas concentration in the gas 

phase. This method will be used in order to develop a new online CO2 sensitivity monitoring 

of micro-organisms in Chapter 7 and a novel scale up method from shake flasks to stirred tank 

fermentors in Chapter 8.  
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6.1 Introduction 
Carbon dioxide plays a major role in many aerobic and anaerobic fermentations. Many authors 

have reported the inhibitory effects of CO2 on bacteria [19 and 54], yeasts [34] and fungal 

micro-organisms [12, 26 and 50] in a cultivation process. The most important effects 

mentioned by them are altering growth [12, 19, 34 and 41] and product formation [12 41, and 

54]. The carbon dioxide in the metabolism of the micro-organisms by carboxylation reaction 

and decarboxylation reaction is the fundamental inhibitor stimulant for cell growth and 

productivity [34]. It can particularly play a significant role in industrial micro-organisms for 

the fermentation of some important bio products (e.g. amino acids, antibiotics and etc.) [60]. 

Table 6.1 summarizes some of the effects of carbon dioxide on several micro-organisms in 

industrial fermentation processes. As noted in the Table 6.1, the degree of growth or 

productivity inhibition by CO2 is different, depending on the species of micro-organism and 

on environmental parameters (e.g. the composition, pH of medium and substrate).  

In spite of these studies, the influence of CO2 on cultivation systems is still not fully 

understood, as compared to the O2 transfer in fermentation systems [30 and 31]. CO2 

inhibition can be the most important parameter in industrial scale fermentors, since, the 

dissolved CO2 concentrations (DCO2) is increased by increasing the hydrostatic pressure near 

to the bottom of the vessels [26 and 38]. 

Considering the importance of the CO2 effects on productivity and growth rate of industrial 

microorganisms, several quantitative methods for evaluation of these effects have been 

reported [2, 19, 25-27, 50 and 51]. Some of these methods are summarized in Table 6.1. In 

these methods continuous gassing of batch, fed-batch and continuous cultures with a constant 

CO2 concentration. The use of batch and fed batch methods have a number of limitations 

including a continuous change in cell concentration, culture age distribution, nutrient/by-

product and dissolved CO2 levels with time. The use of continuous cultures excludes most of 

the changes as noted above [51]. Bäumchen [6] has developed a continuous method based on a 

turbidostatic culture system under sufficient O2 supply mixed with a certain concentration of 

CO2 and nitrogen [45]. This method was set up and validated for Corynebacterium 

glutamicum (WT1320) [6]. This method was employed for investigating the effect of CO2 on 

growth rate and amino acid production by C. glutamicum DM1730 [39].  
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Table 6.1: A summary of some methods employing bioreactors for CO2 sensitivity evaluation of 
several micro-organisms in industrial fermentation processes [12, 28 and 34] 
 

Micro-organism Culture 
method 

CO2 gas 
phase 

Bio-
product Effect of CO2 Ref. 

Histidine 
Increased in 

production at all CO2 
concentration Brevibacterium 

flavum 
Batch 

Air/ CO2 

Different 
concentration 

between 
0.05-20% 

(v/V) Arginine 

Optimal production at 
12 % CO2 (Increased 

below 12 %, 
decreased above 12%) 

[2, 25] 

3 % and 
Slight or no reduction 
in metabolic activity  

at %3 CO2 Batch 
Air/ CO2 

5 % (v/V) 

Penicillin 
increased lag phase 

and decrease in 
penicillin at 5 % CO2 

Penicillium 
chrysogenum 

 
Fed 

batch 
Air/ CO2 

12.6 % Penicillin 40 % decrease in 
penicillin 

[26,27] 

5 % (v/v) 

32 % reduction in 
maximum cell mass; 

20 % decrease in 
Citrate Batch 

Air/CO2 

7.5 % (v/v) 

Citrate 
35% reduction in 

maximum cell mass; 
65.4 % decrease in 

Citrate 

[50] 
 

2 and 4 % 
(v/v) 

No considerable 
change in 

biomass or product 

Aspergillus niger 
 

Continuo
us Air/ 

CO2 10 % (v/v) 

gluconate 22 % decrease in 
biomass; 50 % 

reduction in gluconate 

[51] 
 

Saccharomyces 
cerevisiae 

Continuo
us Air 

and N2/ 
CO2 

4.5-20 
%(V/V) in 
exhaust gas 

Ethanol 

8 % increase in 
ethanol. No 

considerable change 
in biomass 

[41] 

C. glutamicum 

Continuo
us Air 

and 
O2/N2/ 
CO2 

1-50 %(V/V) 
continuous 
air and N2/ 

CO2 

Lysine Effect on growth rate 
and productivity [6] 
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Although the mentioned methods in batch, fed-batch and continuous fermentors have brought 

valuable results, the operating cost, the time consumption and reproducibility are the limiting 

factors for using these methods. Furthermore, using the current methods for evaluation of the 

CO2 sensitivity becomes tedious for researchers in laboratories for new industrial organisms 

created by DNA technologies or mutation.  

Therefore, a novel, easy and economical method for the quantification of CO2 sensitivity of 

micro-organisms in shake flask bioreactors will be presented. The results of this method will 

be compared with the results of current methods e.g. the continuous turbidostatic cultures.  

 

6.2 Theory  
Using a sterile closure leads to a reduction of O2 and an accumulation of CO2 in the gas phase 

of the headspace of the shake flask in an aerobic cultivation system [25, 66 and 80]. As it was 

described in Chapter 4 and 5, the decreasing of kplug causes a reduction of O2 concentration in 

the head space of the ventilation flask under an unsteady state condition. A correlation of the 

kplug on OTRplug is very useful to model the gas transfer in shaken bioreactors (Secs. 4.4.3 and 

4.4.5) and also to calculate the specific flow rates in the ventilation flasks(Secs. 5.4.2 and 

5.4.3).  

 

6.2.1 Thermodynamic of the interactions of CO2 and aqueous medium  

The thermodynamics of the CO2 in a culture media has been already investigated [12 and 34]. 

It has been reported that the CO2 in the fermentation broth as can exist in various forms, e.g. 

dissolved CO2 [CO2,L], bicarbonate ion [HCO-
3] and carbonate [CO-2

3] [64]. Figure 6.1 shows 

the dissociation of dissolved CO2 in a fermentation broth. It has been demonstrated that 

between these species, the dissolved CO2 [CO2,L] and bicarbonate [H CO-
3] are generally 

microbial growth and productivity [12 and 34].  

However, it is still difficult to find a distinct principal mechanism to elucidate an explicit role 

to any molecular species of CO2 in the cultivation systems [52]. It was suggested that the 

microbial inhibition was due to an alteration in the properties of cell membrane, cytoplasm, 

enzymes and etc. [12]. Many studies on the mechanisms of CO2 on the cell membrane and 

metabolism were summarized by Jones and Greenfield in 1982 [34]. 
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Figure 6.1: Schematic representation of the oxygen and carbon dioxide transfer in ventilation flask and 
association/dissociation of CO2 in a biological system [64]. Where K1, K2 [sec-1] are the constant rates 
for the illustrated reactions and Kacid [mol/m3] is the dissociation constant value of carbonic acid. 
 
The effects of the temperature, pH and solutes e.g. salts on the concentration of CO2 species 

have already been studied [30, 34 and 64]. The concentration of dissolved CO2 [CO2,L] and 

bicarbonate [HCO-
3] are calculated by the following Eqs. 6.1-4, considering the dissolution 

and dissociation of CO2 in a culture medium with a range of pH between 5 and 8 [65]: 

]CO[HK][COK
t

],[CO
322L2,1

L2 ⋅+⋅−=
∂

∂        (6.1) 

[ ] [ ]
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3
pH

32 K
HCO10COH

−− ⋅
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][HCO

3
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2
L21

3 −−
−

⋅⋅−⋅=
∂
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where K1= 0.058 [sec-1], K2 = 0.6 [sec-1] are the reaction rates for the indicated reactions, and 

Kacid=0.68 [mol/m3] is the dissociation constant of carbonic acid [61, 95]. 

 

6.2.2 Effect of pH on the CO2  

Regarding to the Eqs. 6.3 and 6.4, the value of pH can critically effect [CO2,L] and [HCO-
3]. 

The concentration of carbonic acid is always very small in comparison with that of the 

dissolved carbon dioxide at neutral pH [65]. The concentration of bicarbonate ions [HCO-
3] 
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increases with increasing pH. It is equal to the dissolved CO2 concentration at the pH of 6.3 

and dramatically climbs at pH 7.3. In the low pH (pH<5.5) the largest part of CO2 exists as 

dissolved CO2 [CO2,L]. Thus, dissolved CO2 plays an important role by lowering the pH of the 

medium, and this acidity leads to a disturbance of some biological systems within the cells 

[34]. 

 

6.2.3 CO2 transfer in the ventilation flasks  

As described in Chapter 4, the gas transfer rates (OTRg-L and OTRplug) can be modeled and 

expressed by the oxygen concentration in the headspace of the ventilation flasks. In the same 

way, the carbon dioxide transfer rate (CTRg-L and CTRplug) in a cultivation system can be 

expressed by the concentration of CO2 of the gas phase in the headspace of the ventilation 

flask (pCO2 ). The mass balance for CO2 in the headspace of these flasks (Figure 6.1) is given 

as follows (Eq. 6.5) 

plugLg
g2, CTRCTR

t
pCO

−=
∂

∂
−         (6.5)  

where CTRplug is the carbon dioxide transfer through the sterile closure and CTRg-L is the 

carbon dioxide transfer across the gas–liquid interface. In the following sections the effective 

factors necessary to calculate CTRplug and CTRg-L, and consequently, pCO2,g will be presented. 

 

6.2.3.1 Gas-liquid carbon dioxide transfer rate (OTRg-L) in a ventilation flask 

For the determination of the gas liquid transfer rate of CO2 (CTRg-L), the thermodynamics of 

the different species of CO2 in the culture media, which has been already explained in section 

6.2.1, would be advantageous. The concentration of dissolved carbon dioxide [CO2,L] in a 

culture medium can be correlated to the partial pressure of carbon dioxide in the headspace of 

the ventilation flask (pCO2,g) by Henry’s law (Eq.6.6) [31]. This law only applies to infinitely 

diluted solutions. 

eCO2g2,L2 H pCO],[CO ⋅=          (6.6) 

The Henry coefficient for carbon dioxide (HeCO2) for pure water is available in literature [61 

and 67]. The accumulation of a high concentration of carbon dioxide in the gas phase and 

good solubility of it in aqueous solution may invalidate the use of the Henry’s law in the 

ventilation flasks. Nevertheless we assumed that the Henry’s law is validated for the 

ventilation flasks. Hence, the concentration of the species of carbon dioxide in the liquid phase 

my become an important factor to calculate the values of dissolved carbon dioxide [CO2,L],  
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CTRg-L and pCO2,g. The CTRg-L can be calculated by using the Eq. 6.7 which is expressed in 

the same way as for OTRg-L [28] or by Eq. 6.8 obtained by a mass balance on the dissolved 

carbon dioxide [CO2,L]: 

)
He
pCO

]([COa)(kCTR
2

g,2

2
CO

L2,COLL-g −⋅=        (6.7) 

t
][HCO

t
][CO

CERCTR 2L2,
Lg

∂
∂

−
∂

∂
−=

−

−        (6.8) 

 

where (kLa)CO2 is the volumetric gas liquid mass transfer coefficient for CO2 [1/s]. In these 

equations it is assumed that both the gas-phase and the liquid phase are well mixed. For the 

determination of CTRg-L, the values of CO2,L in liquid phase, achieved by Eq. 6.3 and (kLa)CO2, 

calculated by Eq. 6.9, must be taken into an account [64]. 
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where kLa)O2 is the volumetric gas–liquid mass transfer coefficient for oxygen which can be 

calculated by Eq. 4.12 (Sec. 4.2.5). 

 

6.2.3.2 Carbon dioxide transfer through the sterile closure (OTRplug) 

As already mentioned in Chapter 3, the O2, CO2, N2 and H2O flow rates through the 

sterile closure can be computed using the model of Henzler and Schedel [23]. The 

constant value of 0.123 cm2/s for DCO2 in the sterile closure of the ventilation flasks with the 

density of 0.15 g/cm3 resulted by using the water loss method (Sec. 3.4.2). The approximate 

values of kplug,CO2 were obtained using DCO2 and different values of the neck geometry in Eq. 

3.15 (Figure3.7). The activity of micro-organisms and the concentration of the 

compounds in the gas mixture can affect the value of OTRplug and CTRplug. Therefore, 

the carbon dioxide transfer rate through the sterile closure (CTRplug) can be calculated 

by Eq. 6.10 in the same way as the OTRplug calculation. 

)pCO(pCO
Vp

1kCTR out2,gas2,

Labs
CO2plug,plug −⋅

⋅
⋅=        (6.10) 

The approximate values of kplug,CO2 obtained by 
mo

CO2

VH
AD

⋅
⋅  are given in Figure 3.6. 
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6.2.3.3 Equation for the determination of the CO2 concentration in the headspace of 

the ventilation flasks 

The effect of the kinetic parameters of the microbial metabolism (e.g. KCO2, KO2, KS and µmax), 

stochiometric parameters (e.g. Yx/s, Yx/O2 and RQ), carbon source concentration, operation 

conditions (e.g. VL, aeration and agitation), and the physicochemical parameters of the 

cultivation system (e.g. pH, temperature, gas solubility) on the concentration of O2 and CO2 in 

the gas phase of aerobic fermentations have been theoretically and experimentally discussed in 

several papers [5, 17 and 79]. Additionally, the effect of the overall gas transfer coefficient of 

the sterile closure (kplug) on the concentration of gas components in the headspace of 

ventilation flasks was already described in Chapters 3, 4 and 5. These factors can be 

theoretically summarized by Eq. 6.11 with substituting Eqs. 6.3, 6.8 and 6.10 in Eq. 6.5. 
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     (6.11) 

where X is the biomass concentration (Eq. 4.8), µ is the specific growth rate depending on the 

substrate and oxygen concentration (Eqs. 4.9 and 4.10) and RQ is the respiration quotient (Eq. 

6.12). 

 

LgOTR
CER

OUR
CERRQ

−

==  (Non oxygen limitation)      (6.12) 

 

The RQ changes by the type of the substrates and products of the micro-organisms. It was 

argued that for cell cultures the RQ can be regarded as an important metabolic parameter for 

identifying suitable medium compounds [65]. It is proved that the oxygen uptake rate (OUR, 

Eq. 4.7) can be limited by the supplied oxygen from the gas phase of shake flask. Otherwise, 

the OUR can be considered equal to OTRg_L (Eq. 4.5) [3, 72].  

Furthermore according to Eq. 6.10, an increase in the values of the an accumulation of CO2  in 

the head space of the ventilation flasks can theoretically decrease CTRg-L due to decreasing of 

the CO2 driving concentration between gas and liquid phases. This leads to an increase of CO2 

concentration in the liquid phase (CO2,L) produced by microorganism during the fermentation 

(CER, see the Figure 6.1). This results in an increase of the concentrations of CO2 species in 

the liquid phase. The effect of these species on the activity of micro-organisms has been 

addressed in many papers as referred in section 6.2.1. As discussed in section 3.4.3, the 
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different levels of CO2 transfer resistances are one of the properties of the ventilation flasks 

(Figure 3.6). Therefore, theoretically using the ventilation flasks for a cultivation system may 

result in different levels of CO2 concentration in the head space of these flasks. On the other 

hand, this may lead to an decrease in the value of the removed CO2,L from culture broth. This 

is an essential base for the proposed method for the quantification of the CO2 sensitivity of 

micro-organisms in shaken bioreactors. Figure 6.1 shows a general schematic representation 

of the oxygen and carbon dioxide transfer in a biological system in the ventilation flasks. 

 
6.3 Materials and methods 
6.3.1 Ventilation flasks  

In this study the ventilation flasks f1-f9 (Figure 2.2) and also a specially designed ventilation 

flasks with a mounted oxygen or CO2 sensor (Sec. 2.1.4 and Figure 2.1-A) were utilized. The 

characteristics of the ventilation flasks f1-f9 are given in Table 2.1.  

 

6.3.2 Respiratory Activity Monitoring System (RAMOS) 

For evaluation of the growth of micro-organisms in a cultivation system, a RAMOS measuring 

flasks (Figure 2.1-C) parallel with ventilation flasks were employed. This system was already 

explained in section 2.1.2  

 

6.3.3 Model organisms and cultivation system 

For the investigation of the purposed new method, experiments with Arxula adeninivorans 

LS3, Corynebacterium glutamicum (DM1730 and ATCC WT13032) and Hansenula 

polymorpha DSM70277 as model organisms in the ventilation flasks are performed. The 

medium preparation and the cultivation system and operation conditions were given in 

Sections 2.6.1 and 2.6.2. The fermentations in the RAMOS device were carried out with a 

normal aeration rate (1 vvm) and operated under the same conditions as the ventilation flask 

f1. The related operation conditions for the experiments were specified in the legend of the 

tables and Figures. 

6.3.4 O2 and CO2 sensors 

For detecting the partial pressure of oxygen and the concentration of CO2 in the gas phase of 

headspace of the flask, the O2 and CO2 sensors were used (Sec. 2.1.4).  

 

6.3.5 Calculation of CO2 from the values of O2 concentration 

It was shown that aeration in aerobic fermentors may have an important role in the equilibrium 

between CO2,g and dissolved CO2,L [64]. Under equilibrium conditions CER becomes equal to 
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CTRg-L. Therefore, under these condition and RQ equal to one the CO2 concentration in the 

gas phase of the headspace can be estimated from the O2 concentration in the head space of a 

ventilation flask (Eq. 6.13). 

( )2g2, pO0.2095100%CO −⋅=         (6.13) 

 

6.3.6  Applied model  

The modified unsteady state model was used to predict the operation conditions of biological 

system in the ventilation flasks (Sec. 4.4.5). 

 

6.3.7 Sampling and analysis the of results 

In our experiments we used 5 series of each ventilation flasks for the determination of the 

biomass concentration (bio dry weight), pH value, carbon source and product concentration 

(Sec. 2.4). Moreover, at the same time, additional experiments were performed with the 

RAMOS device for the determination of OTR, CTR and RQ in the cultivation system (Sec. 

2.1.2). 

 

6.3.8 Calculation of maximum specific growth rate (µmax)  

The maximum specific growth rate (µmax.) in the exponential phase can be calculated by the 

results of the biomass concentration obtaining from sampling, during the fermentation [55]. 

∆t
lnXlnXµ 0

max
−

=    (6.14) 

6.4 Results and Discussions 

6.4.1 Validity of the method 

The effect of the mass transfer resistance of the sterile closures on the aeration of the 

ventilation flasks was quantified using an unsteady state model considering a dependency of 

kplug on OTRplug (Chapters 4 and 5). As described in those Chapters, a decrease of kplug is 

caused by a reduction of the O2 concentration in the head space of the ventilation flasks 

(Figures 5.5 and 5.6). This reduction may lead to an accumulation of CO2 in the gas phase of 

the headspace of a ventilation flask in an aerobic cultivation system [25, 60 and 66]. In this 

section, the validity of the proposed method was experimentally investigated using CO2 and 

O2 sensors (Figure 2.1.A). For these studies, the fermentation of Hansenula polymorpha DSM 

70277 on 10 g/l glycerol and Corynebacterium glutamicum DM 1730 on 15 g/l glucose, were 

performed in the ventilation flasks equipped with the CO2 and O2 sensors.  
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Figure 6.2: Validation of the method by employing a CO2-sensor during the fermentation of 
Hansenula polymorpha in the ventilation flasks f2 and f5 (15 g/l glycerol, Syn6+0.14 M MES, VL=15 
ml, pHstart=6.4, n=200 rpm), having different mass transfer resistances of the sterile closure. 
 

The preparation of the media and cultivation methods were already explained in materials and 

methods for to each micro-organism (Sec. 2.6). The optimal operation conditions were 

predicted utilizing the unsteady state model (Chapter 4). The pH was controlled in the optimal 

ranges, regarded to the growth of micro-organisms using a suitable buffer solution. A parallel 

fermentation in the RAMOS device with the normal aeration (1 vvm) was carried out in the 

same way as described for the ventilation flask f1. 

Figure 6.2 illustrates the accumulated CO2 concentration for the fermentation of Hansenula 

polymorpha DSM70277 in the ventilation flasks f2 and f5 obtained by a CO2-sensor. It is 

noted that the fermentations were operated under the same conditions and pH (between 5.5 

and 6.4 using the 0.14 M MES buffer solution). Under these conditions the sensor results 

revealed that there was a significant difference between the maximum CO2 concentrations of 

0.9 and 1.9 % in the ventilation flasks f2 and f5. This difference occurred as a result of the 

differences between the kplug,CO2 values in these flasks (Figure 3.6). 

The validity of the new method based on using a variety of mass transfer resistances of sterile 

closures was also confirmed by using an O2 sensor mounted on the ventilation flasks f1, f4, f7 

and f9 (Figure 2.1-A). The experiments were carried out for fermentation Corynebacterium 
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glutamicum DM 1730 on 15 g/l glucose (Sec. 2.6.2). The flasks were operated under the same 

conditions and pH (between 7.54 and 6.4 using 21 g/l MOPS buffer).  
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Figure 6.3: Results of fermentation of C. glutamicum DM1730 in ventilation flasks (15 g/l glucose, 21 
g/l MOPS, RQ=1, VL=10 ml, n=350 rpm). 
 

Figure 6.3 shows the O2 concentration, detected by an oxygen sensor (Sec. 2.1.4). The CO2 

concentration was calculated using Eq. 6.13 in the headspace of the ventilation flasks f1, f4, f7 

and f9. According to Figure 6.3, after 10 hours of fermentation, there is a significant 

difference between the minimum levels of 19.6, 18.3, 16.5, and 15.2 % for the O2 

concentration and also between the maximum accumulated CO2 of 1.4, 2.7, 4.5 and 5.2 % in 

the headspace of the ventilation flasks f1, f4, f7 and f9, respectively. This is due to the 

decrease of the mass transfer coefficient of the sterile closures in those ventilation flasks. It is 

noted that, the mass transfer coefficient of the sterile closure of flask f9 is was 23 times 

smaller than that of flask f1, as shown in the Figures. 3.5 and 3.6. 

Furthermore, the OTR for those fermentations described above were simultaneously 

monitored using the RAMOS device. The OTR results are shown in Figure 6.4. Maximum 

OTR values of 0.017 and 0.043 [mol/l/h] for the fermentations of Hansenula polymorpha 

DSM70277 and Corynebacterium glutamicum DM1730 were obtained, respectively.  
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Figure 6.4: OTR results of the fermentation of Arxula adeninivorans LS3 (20 g/l glucose, n=200 rpm, 
RQ≈1, qin=1 vvm, do=5 cm, VL=10 ml; 0.14 M MES buffer, T=30°C, pHstart =6.4), C. glutamicum 
13032WT (10 g/l Lactate, 21 g/l MOPS, n=350 rpm, T= 30°C, RQ≈1, qin=1 vvm, do=5 cm, VL=15 ml, 
pHstart=6.5), C. glutamicum DM1730 (15 g/l glucose, 21 g/l MOPS, RQ≈1, qin=1 vvm, do=5 cm, 
VL=10 ml, pHstart=7.5, n=350 rpm) and Hansenula polymorpha (15 g/l glycerol, 0.14 M MES buffer, 
RQ≈0.87, qin=1 vvm, do=5 cm, VL=15 ml, pHstart=6.4, n=200 rpm) obtained using the RAMOS device. 
 
Above results revealed that the maximum An accumulation of CO2  value (5.2 %) was 

obtained with the highest resistance in the ventilation flasks f9, where C. glutamicum was 

properly cultivated on 15 g/l glucose, 10 ml of filling volume and a maximum value of 

OTR=0.043 mol/l/h. The capacity of the maximum accumulated CO2 in the ventilation flask 

f9 as a distinct factor for the maximum range of application of the new method will be 

discussed in the next section. 

 

6.4.2 Maximum capacity of accumulated CO2 in the ventilation flasks under non 

oxygen limited condition  

The maximum capacity of accumulated CO2 under sufficient oxygen concentration in the 

headspace of the ventilation flasks is an important parameter for the application range of the 

proposed new method. As mentioned in section 6.2.3.3, a maximum accumulated CO2 in the 

headspace of the ventilation flasks can be theoretically derived by selecting optimal operation 

conditions (e.g. VL, aeration, kplug, n) and culture parameters (e.g. RQ, carbon source, pH). 

Among these parameters the carbon source and filling volume (Eq. 6.7 and 6.10) become 

more important to increase the accumulated carbon dioxide in ventilation flasks, according to 
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Eq. 6.11. The relation between the carbon source and the value of RQ (Eq. 6.12) and 

consequently on the CO2 produced by the metabolism of the micro-organisms has been 

already documented [65]. Thus, in the following section the effect of filling volume (VL), as 

an important parameter, on the maximum accumulation of CO2 in the ventilation flask f9 was 

experimentally investigated. Furthermore, to predict optimum fermentation conditions under 

non oxygen limited condition the unsteady state model was employed, considering all 

physico-chemical parameters (Chapter 4). 

 

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 2 4 6 8 10 12

Fermentation time   [-]

Pa
rt

ia
l p

re
su

re
 o

f o
xy

ge
n 

(p
O

 2
)  

 [b
ar

]

f9, VL=10mL

O2 sensor results

f9, VL=15mL

 
Figure 6.5: Effect of filling volume (10 and 15 ml) on the oxygen partial pressure in the headspace of 
the ventilation flask f9, resulted from the fermentation of C. glutamicum DM1730 on 15 g/l glucose, 
(21g/l MOPS, n=350 rpm, T=30 °C, do=5 cm, RQ=1). The oxygen partial pressure is measured using 
an oxygen sensor. 

A fermentation of C. glutamicum DM1730 on 15 g/l glucose (RQ near one), and a sufficient 

buffer capacity to control pH (21 g/l MOPS), was carried out in the ventilation flask f9, 

equipped with an oxygen sensor. This fermentation was conducted under different filling 

volumes (10 ml and 15 ml). To avoid an oxygen limitation, the operation conditions (do=5 cm 

and n=350 rpm) were calculated by the unsteady state model (Sec. 4.4.5). The medium, 

equipment and cultures were prepared as mentioned in Sec. 2.6.2. Figure 6.5 shows the effect 

of filling volume (VL) on the concentration of oxygen in the headspace of the ventilation flask 

f9. From this Figure, a significant variation of pO2 with different filling volume is observed. 
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As mentioned before, the increase of filling volume from 10 to 15 ml leads to a decrease of 

pO2 from 0.152 to 0.11 bar. Using Eq. 6.13, approximate values of 5.9 and 12 % for 

accumulated CO2 concentration were calculated, respectively. This value could be the 

maximum possible amount of CO2 for the investigation of the CO2 sensitivity of micro-

organisms by the new method under a non oxygen limitation condition. 

 

6.4.3 Applications of the new method  

In the following sections the CO2 sensitivity of Arxula adeninivorans LS3 and two strains of 

Corynebacterium glutamicum (13032WT and DM1730) as model organisms will be quantified 

by the new method. After that, the results of Corynebacterium glutamicum (13032WT and 

DM1730) obtained by this method will be compared with the results of a continuous 

turbidostat method [6].  

 

6.4.3.1 Assessment of the CO2 sensitivity of micro-organisms in terms of biomass 

concentration  

Samples obtained from the ventilation flasks during the fermentation, give an advanced 

knowledge of the quantitative effect of CO2 on the activity of micro-organisms. Figure 6.6 

indicates the results of samples (i.e. So (initial sample), S1, S2, S3, S4 and S5) during the 

fermentation of Arxula adeninivorans LS3 on 20 g/l glucose in the ventilation flasks f1, f3 and 

f6. The OTR and RQ were acquired using the RAMOS device. 

Furthermore, values of 1.3, 3.6 and 6 % for the maximum accumulated CO2 in the ventilation 

flasks f1, f3 and f6, respectively, were calculated using the unsteady state model (Chapter 4), 

by considering RQ=1 (Figure 6.6). As shown in the Figure 6.6, there was no difference 

between the biomass concentrations during the fermentation of this micro-organism under 

different accumulated CO2 concentration. This means that the Arxula adeninivoran -LS3 has 

no sensitivity up to CO2 concentration of 6 %. In the same way, the biomass concentrations of 

the two strains of C. glutamicum (13032WT and DM1730) were investigated by using the new 

method. Figure 6.7 shows the results. The accumulated CO2 has a significant effect on the 

biomass concentration during the fermentation of C. glutamicum 13032WT and C. 

glutamicum DM1730 as a compared to Arxula adeninivoran LS3 (Figure 6.6). 
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Figure 6.6: pH, biomass, glucose concentration, resulted from sampling from the ventilation flasks f1, 
f3 and f6 during the fermentation of Arxula adeninivorans LS3 on 20 g/l glucose (15 ml<VL<10 ml, 
n=350 rpm, do=5cm, pH start=6.4, 0.14 M MES buffer , T=30 °C) based on the use of the new method.  
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Figure 6.7: The effect of accumulated CO2 on the biomass concentration, obtained from the 
fermentation C. glutamicum 13032WT on 10 g/l lactate (n=350 rpm, T=30 °C, RQ=1, do=5 cm, 
pHstart=6.5, 15 ml<VL<10 ml) and C. glutamicum DM1730 on 15 g/l glucose(n=350 rpm, RQ=1, 
pHstart=7.5, VL=10 ml, T=30 °C), in ventilation flasks. 
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At the beginning of the fermentation about 4 hours the oxygen demand of the culture was 

small, so a small amount of CO2 accumulated in the ventilation flasks without any significant 

effect on the biomass concentration of both strains. Later, during the period of an intensive 

respiration (the OTR result in the Figure 6.4), the accumulated CO2 reached maximum values 

1.6, 3.2 and 5.6 % in the ventilation flasks f1, f3 and f8 and 1.5, 2.7, 4.5 and 5.9 % for 

ventilation flasks f1, f4, f7 and f9 for fermentation of C. glutamicum 13032WT and C. 

glutamicum DM1730, respectively. At these levels of accumulated CO2 the sensitivity of the 

micro-organisms become visible based on biomass concentration. 

 
6.4.3.2 Assessment of the CO2 sensitivity of the micro-organisms in terms of maximum 

growth rate  

In this study maximum specific growth rate (µmax) was used to evaluate the CO2 sensitivity of 

micro-organisms. For the determination of µmax Eq. 6.14 was applied considering the values of 

the biomass concentration, obtained by sampling from the ventilation flasks (refer to Sec. 

6.4.3.1). The values of the biomass concentration of Arxula adeninivorans  LS3 (Figure 6.7) 

resulted in the maximum value of 0.234 1/h for 1.3, 3.6 and 6.8 % specific growth rate 

maximum accumulated CO2 in the ventilation flasks f1, f3 and f6, respectively. Figure 6.8 

illustrates the µmax over the values of maximum accumulated CO2.  
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Figure 6.8: The effect of maximum accumulated CO2 on the maximum specific growth rate of Arxula 
adeninivorans LS3. Results were obtained by using the values of biomass concentration (Figure 6.7).  
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This reveals that up to maximum value of 6 % for the concentration of CO2 no significant 

effect on the growth rate of Arxula adeninivorans LS3 was detectable. In other studies yeast 

cells showed no sensitivity to the CO2 concentration below 20 % [34 and 41]. 

In the following section the validity of the new method for CO2 sensitivity evaluation was 

investigated for two strains of Corynebacterium glutamicum (ATCC 13032WT and DM1730) 

in the ventilation flasks by comparing the results of a continuous turbidostatic culture method. 

The maximum specific growth rates of 0.31, 0.35 and 0.38 h-1 were calculated (Eq. 6.14) for 

C. glutamicum ATCC 13032 WT, grown on 10 g/l L-lactate as carbon source, under the 

maximum accumulated CO2 values of  1.6, 3.2 and  5.6 % in the ventilation flasks f1, f3 and 

f8, respectively. These results together with the experimental values obtained by continuous 

turbidostatic culture [6] for this micro-organism are represented in Figure 6.9. According to 

this figure, there is a significant effect of the accumulated CO2 on µmax of C. glutamicum 

13032WT demonstrated by both methods. The values of the maximum specific growth rate, 

obtained by the new method, are approximately 18 % less than those values resulted from 

continuous turbidostatic culture. Though, the overall tendency of these methods is almost the 

same.  
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Figure 6.9: Comparison between the maximum specific growth rate of C. glutamicum WT13032 on 
10g/l L-lactate, resulted by the new method in ventilation flasks (21 g/l MOPS, T=30 °C, do=5 cm, 
n=350 rpm, VL=15 ml, pHstart=6.5) and a continuous turbidostatic culture in a fermentor (T=30 °C, 
qin=1 vvm, n=1200 rpm, VL=800 ml, pHstart=6.85) [6]. 
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For the validation of the proposed method, the results of the growth rate of C. glutamicum 

DM1730 were compared with the results of the continuous turbidostatic [39]. These results are 

shown by Figure 6.10. Maximum accumulated CO2 in the headspace of the ventilation flasks 

of 1.3, 4.6, 7.7 and 10.3 % were calculated, using the data of the O2 sensor in Eq. 6.13. Under 

these conditions value of o.43, 0.41, 0.45 and 0.4 h-1 for the maximum specific growth rates 

(µmax) of C. glutamicum DM1730 were computed, respectively. Considering Figure 6.10, these 

values have similar tendencies as the results of µmax obtained by the continuous turbidostatic 

cultures [39]. 

It should be noted that in the Figures 6.8 and 6.9 there are some discrepancies between the 

results of both methods. They could occur due to the differences between the modes of 

adjusting the pH, the operation conditions and the procedure of the µmax calculation. The 

values of µmax determined for the continuous turbidostatic culture system, were expected to be 

higher than those of the batch experiments (e.g. ventilation flasks). In a continuous 

turbidostatic culture the microorganisms always grow at a µmax. In this mode of operation, a 

high concentration of carbon source is available and the pH value is automatically regulated 

[6]. In the batch ventilation flasks the carbon source concentration decreases. Although a 

buffer is used, the pH changes (increase from 6.5 to 8.2, in the case of L-lactate consumption 

and decreased from 6.2 to 7.2 in the case of glucose) [7].  
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Figure 6.10: Comparison between the maximum specific growth rate of C.glutamicum DM1730 on 15 
g/l glucose (21 g/l MOPS, T=30 °C, do=5 cm, n=350 rpm, VL=15 ml, pHstart=7.18), using the new 
method in ventilation flask f1, f4, f7, f9 and a continuous turbidostatic culture (T=30 °C, qin=1 vvm, 
n=1200 rpm, VL=800 ml, pHstart=7) [39] 
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At the end of the batch phase, the growth curve is affected by all this change leading to a 

lower value of µmax as illustrated in the Figures 6.9 and 6.10. 

 

6.4.3.3 Assessment of the CO2 sensitivity of the micro-organisms in terms of maximum 

specific productivity  

Another goal of the new method was to evaluate the influence of different carbon dioxide 

concentrations on the product formation during the fermentation. For this aim, C. glutamicum 

DM1730 was used as a model organism for production of L-lysine. The cultivation in the 

ventilation flasks and sampling method during the fermentation of this micro-organism were 

explained in Secs. 2.4.5 and 2.6.2. The concentration of L-lysine formation was measured by 

HPLC analysis (Sec. 2.4.4). Figure 6.11 illustrates the concentration of L-lysine, produced by 

C. glutamicum DM1730 during the fermentation under different accumulated CO2 values of 

1.3, 4.6, 7.7 and 10.3 % in the headspace of the ventilation flasks f1, f4, f7 and f9, 

respectively. It becomes evident that there was a significant difference between the final 

amounts of 8.28, 4.8, 7.38 and 6.28 mmol/l accumulated L-lysine in these flasks, respectively.  
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Figure 6.11: L-lysine concentration by fermentation of C. glutamicum DM1730 (15g/l glucose, 21 g/l 
MOPS, n=350 rpm, T=30 °C, do=5 cm, VL=15 ml) under different level of accumulated CO2 in the 
headspace of the ventilation flask f1, f4, f7 and f9. 
 

For a better comparability of the obtained results, the maximum specific productivity of L-

lysine in each ventilation flasks was calculated by dividing the concentration of L-lysine by 
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the biomass concentration and the period of the L-lysine formation. Figure 6.12 shows the 

dependency of the maximum specific productivity and also the maximum specific growth rate 

on the maximum accumulated carbon dioxide in the headspace of the ventilation flasks. The 

value of 0.08, 0.067, 0.1 and 0.072 mmol/gr biomass/h were obtained for the maximum 

specific productivity of L-lysine under different values of 1.3, 4.6, 7.7 and 10.3 % for 

accumulated CO2 in the headspace of the ventilation flasks f1, f4, f7 and f9, respectively. The 

similar tendency of the maximum specific growth rate and the productivity that the 

productivity of L-lysine is dependent on the maximum specific growth ate (Figure 6.12).  
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Figure 6.12: Dependency between the maximum specific productivity of L-lysine and the accumulated 
CO2 concentration in the headspace of the ventilation flasks f1, f4, f7 and f9 for fermentation of C. 
glutamicum DM1730 (15 g/l glucose, 21 g/l MOPS, n=350 rpm, T=30°C, do=5 cm, VL=15 ml). 
 

6.5 Conclusion 

Generally CO2 is a grate challenge in some industrial fermentation in which An accumulation 

of CO2 can have an effect on the yield and fermentative capacity. The knowledge of the 

influence of carbon dioxide on growth and product kinetics of industrially important micro-

organisms is essential for the interpretation of a bioprocess. The carbon dioxide sensitivity of 

micro-organisms should be investigated in early stages of a bioprocess designed for an 

accurate planning of an industrial unit.  

Decreasing kplug results in a reduction of O2 concentration and an accumulation of CO2 in the 

gas phase of the headspace of the shaken bioreactors. In this study, a novel and easy method 
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for the quantification of CO2 sensitivity of micro-organisms in shaken bioreactors (called 

ventilation flask) was investigated. The differences between the values of accumulated CO2 

and concentration of oxygen measured by a CO2 and oxygen sensor in a culture system in 

ventilation flasks confirmed the validity of the method (Figures 6.2 and 6.3). The results 

obtained with this method were comparable with the results obtained with a continuous 

turbidostatic culture [6]. Using the new method, a significant effect of accumulated CO2 on 

the biomass concentration and growth rate and lysine formation in the fermentation of C. 

glutamicum DM1730 was found (Figure 6.12). Applying this method for Arxula 

adeninivorans LS3 clarified that CO2 has no effect on this micro-organism (Figures 6.6 and 

6.8). Compared to the currently used method e.g. continuous turbidostatic culture, the 

presented method is simple, low in cost and produce similar results.  

In this study the CO2 sensitivity of micro-organism can be quantified up to a maximum 

concentration of 12 %, of accumulated CO2 under non oxygen limited condition (Figure 6.5). 

This is possible, when the cultivation is carried out as follows: 

a- Operate the biological system at OTR values lower than the maximum oxygen transfer 

capacity of the bioreactor to avoid oxygen limitation. 

b- Use the same filling volume in ventilation flasks. 

c- Use appropriate media and buffer capacity to control the pH during the fermentation. 

It is noted that the unsteady state model (Chapters 4 and 5) could be very useful to predict the 

optimal operation conditions not only for preventing oxygen limitation but also for obtaining 

a maximum accumulated CO2 in the ventilation flasks.  
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7.1 Introduction 

The effect of aeration on the removal of volatile compounds, e.g. organic acids, NH3, alcohols, 

hormones, CO2 etc., from the fermentation broth have been demonstrated [15, 59 and 75]. As 

mentioned in the last Chapter, CO2 has a stimulating and/or inhibiting effect on the growth 

and/or productivity of micro-organisms (Table 6.1). The oxygen transfer rate (OTR) is widely 

used to study the growth behavior of microbial and plant cell cultures (3, 17 and 47). Almost 

every physiological activity is joined to oxygen uptake in aerobic cultures making the OTR an 

excellent indicator of metabolic activity. Physiological responses of aerobic microorganisms 

to specific culture conditions (e.g. oxygen limitation, nutrient limitation, and inhibiting 

factors) are reflected by OTR [3]. A device for measuring the respiration activities (OTR and 

CTR and RQ), so called Respiratory Activity Monitoring System (RAMOS) in shaken 

bioreactors has been presented and developed [3 and 4 ]. This device for the determination of 

the optimal operating conditions, avoiding limitations in shaken bioreactors, and gaining 

important information for scaling up to stirred fermentors has been already applied [72]. 

As described in Chapter 5, a similar composition of the gas mixture in the headspace of 

ventilation and measuring (aerated) flask of the RAMOS device can be obtained by using a 

specific aeration rate. This aeration was calculated by considering the Eq. 5.4 for the 

dependency of kplug on OTRplug, in the unsteady state model. The results indicated that a 

decrease in the aeration led to a reduction of O2 in the headspace of the aerated flask of the 

RAMOS device (Figures 5.4 and 5.5). It has been reported that the reduction of the aeration in 

an aerobic fermentor led to an increase of the autogenously CO2 produced by micro-organisms 

[43]. The CO2 sensitivity of micro-organisms, using batch and continuous fermentor has been 

addressed in many paper [2, 6, 19, 25, 26, 27, 41 and 50], but till date no report is available on 

the online monitoring and quantification of CO2 sensitivity of micro-organisms in small scale 

bioreactors e.g. shake flask.  

In Chapter 6, a new method for the quantification of CO2-sensitivity of micro-organisms in 

shaken bioreactors, based on the variety of resistance of sterile closure was presented. In this 

Chapter, a new online monitoring method for the quantification of the CO2 sensitivity of 

micro-organisms, based on the values of the respiration factors (OTR, CTR), obtained by 

using the RAMOS device with considering a variety of aeration rates in the measuring flask, 

will be investigated. 
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7.2 Theory 
The gas transfer in the measuring flask of the RAMOS device based on the steady state gas 

transfer assumption has already been modeled [45]. The respiratory activities (e.g. OTR, CTR 

and RQ) are calculated by using the values of the partial pressure of oxygen, detected by an 

oxygen sensor.  

In Chapter 4, we concluded that a variety of kplug led to an unsteady state condition in the 

ventilation flasks. In an aerated flask this phenomenon will occur, if a low value of aeration 

rate is used (Figure 5.5). In the following sections, the effect of the aeration rate on the gas 

transfer and the results of OTR, obtained by the RAMOS device, will be discussed.  
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Figure 7.1: A schematic drawing of gas transfer in a measuring flask of the RAMOS device [3]. 

 

7.2.1 Determination of the OTR, CTR and RQ in the RAMOS device  

The equations to calculate the values of OTR, CTR, and RQ based on the data of partial 

pressure of oxygen in the headspace of a measuring flask (Figure 7.1), detected by an oxygen 

sensor, have already been introduced [3 and 4]. During the fermentation in the RAMOS 

divice, a measuring cycle is continuously repeated, which is divided into the measuring and 

rinsing phase. The time interval of the measuring and rising phase depends on the cultivation 

system used. The continuous breathing activity of the micro organisms leads to the change of 

the oxygen partial pressure in the gas of the measuring flask. For instance, Figure 7.2 shows 

the sensor signal during each measuring cycle for the fermentation of C. glutamicum DM1730. 

In order to determine OTR, CTR and RQ during the measuring phase, a dynamic method has 

been employed [3]. At an exact time interval for each period, the inlet and outlet valves of the 

measuring flasks are closed (qin=0). After the measuring phase, the gaseous products are 

removed by flowing fresh gas during the rising phase. At the end of the rising phase, the signal 
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normally reaches a stationary value (Uα). After this stationary condition, the signal drops in a 

linear manner with a slope (m) in the measuring phase. Using the values at the beginning (t1, 

U1) and end (t2, U2) of the measuring phase, the value of slope (m) can be calculated as 

follows: 

const.
dt
dU

t1t2
U1U2m ==

−
−

=            (7.1) 
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Figure 7.2: A measuring cycle of a fermentation of C. glutamicum DM 1730 in the measuring flask of 
the RAMOS device with a specific aeration rate of 1.5 vvm. After measuring phase a high aeration rate 
or a short time is used. The term ‘m’ is the slope in the measuring phase which is calculated by Eq.7.1. 
Uα is the values of the sensor signal in the end of rising phase and U2 is a value of the sensor signal 
nearly at the end of measuring phase. 
 

where ‘m’ is the slope of the sensor signal in the measuring phase [V/h] (Figure 2.7). For the 

conversion of the sensor signal into the oxygen partial pressure, a sensor calibration must be 

done. For the compensation of a possible sensor drift (refer to the part of normal aeration in 

rising phase in the Figure 7.2) and/or for the avoidance of measuring errors by slow changes 

of the environmental conditions (e.g. the change of climate and temperature), the sensor is 

calibrated before the measuring period (refer to the point Uα in Figure 7.2). For a correlation 

between the value of the voltage signal changes and the value of the oxygen partial pressure, 

the following proportional equation is presented [10]:  
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−
is defined as a calibration factors (Cf). Assuming a constant value of the 

calibration factor (Cf), a stationary gas transfer near the end of the rising phase during the 

fermentation is considered (Figure 7.2). In that case, the value of pO2
α becomes a stationary 

value at the end of the rinsing phase which is dependent on the OTR α, RQ and qin. Under 

steady state condition the vaue of pO2
α can be calculated using an overall mass balance (e.g. 

O2, CO2 and N2) in the measuring flask of RAMOS device (Figure 7.1) as follows [10]: 
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where OTRα is the oxygen transfer rate at the end of the rising phase. During the measuring 

phase, OTR, CTR and RQ can be calculated and monitored using the sensor signal values by a 

programming system [3 and 45]. The following equations result from a mass balance for O2 

and CO2 in the headspace of the measuring flasks, considering the ideal gas law [3]: 
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The oxygen transfer rate and the carbon dioxide transfer rate are connected by the respiration 

quotient (RQ). 

OTR
CTRRQ =              (7.6) 

Since the oxygen partial pressure is correlated to the nonlinear signal of the sensor (Eq. 7.2), 

the oxygen transfer rate can be continuously calculated by substitution of Eq. 7.2 into Eq. 7.4: 

mC
TR

1
V
VOTR f

L

G ⋅⋅
⋅

⋅=          (7.7) 

According to the Eqs. 7.1, 7.2 and 7.7, under defined operating conditions (such as VL, 

aeration rate (qin), physical parameter (p, Temperature, Vg)), the calibration factors (Cf) and, 
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consequently, pO2
α play an important role to calculate the value of OTR in the RAMOS 

device.  

As discussed in Chapter 5, a variety of aeration rates led to an unsteady state condition in the 

aerated flasks (Figures 5.5 and 5.6). This condition, especially at low aeration rate could affect 

the stationary values of pO2
α, and consequently on the constant value of Cf. This may lead to 

an error to calculate the OTR (Eq. 7.7). Therefore, in this study an unsteady state model to 

calculate the gas transfer in a headspace of an aerated flask was developed. Under this 

condition the partial pressure of oxygen can be calculated at the end of rising phase as 

following: 

g
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where OTRconv. is the rate of oxygen transferred by convection flow (aeration) through the 

aerated flask of the RAMOS device. OTRconv. can calculate as follows: 
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For a correlation between the values of the sensor voltage and the oxygen partial pressure at 

the end of rising phase, the following proportional equation is presented:  
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Where the Cf is the calibration factor at unsteady state condition and can be calculated by 

substitution of Eqs. 7.8 and 7.9 in Eq.7.10:. 
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Therefore the oxygen transfer rate can be continuously calculated considering the Eqs. 7.7, 7.8 

and 7.9: 
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where the term of 
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q
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⋅  is for rising phase which will be zero if the rising phase 

become a steady state condition.  
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In this study we implemented the Eq.7.11 and 7.12 into an analyzing program, so called OTR 

analyzer, the correct values of OTR can be calculated using the data of oxygen sensor.  

 
7.3 Material and Method 
7.3.1 RAMOS with a special aeration system 

In this study OTR was measured using the Respiration Activity Monitoring System (RAMOS, 

Hitec Zang, Herzogenrath, Germany) with a special aeration system developed our purpose 

(Sec. 5.3.1). The measuring flasks (Figure 7.1) were fixed onto a shaker, the oxygen sensors 

(Sec. 2.1.4) appropriately connected, and then operated under conditions which are given in 

the Table 2.3. The required values (e.g. temperature, air pressure, filling volume, aeration 

rates, measuring and rising time for the RAMOS device etc.) were entered in the programming 

system, and the air flow rates were adjusted using the mass flow controller (5850TR, Brooks 

Instruments, Venendaal, NL). The measuring and rising times were selected as 10 and 20 

mins, respectively. 

A high aeration rate, 5 times higher than a normal aeration rate at the beginning of the rising 

phase, for a short time (2.3 min) was used (Figure 7.2). In this way stationary conditions were 

reached in a shorter time. For further information on the general set-up of the RAMOS device, 

refer to the literature [3].  

 

7.3.2 Program to analyze the OTR results of the RAMOS deice 

In order to control and correct the results of RAMOS, obtained under a variety of aeration rate 

(particularly, at low aeration rate) an analyzing program was applied. The modified equations 

for calculating OTR (Eqs. 7.11 and 7.12) were implemented in an Excel-Makro (Excel 97) in 

VisuaL Basic for Applications [10]. Using this program, the value of the calibration factor (Cf) 

was calculated before the periodic measuring phase. This program also automatically 

recalculates the correct values of OTR, based on the corrected value of the calibration factor 

(Cf). 

 

7.3.3 Model organisms and cultivation  

For the investigation of the new method, fermentations of Arxula adeninivorans WT-LS3, 

Corynebacterium glutamicum (DM1730 and 13032WT), Pseudomonas fluorescens 

DSM50090 and Hansenula polymorpha RB11-FMD-GFP as model organisms were 

performed in the measuring flasks of the RAMOS device. The medium preparation and the 

cultivation method were described in Sec. 2.6. The operating conditions of the experiments are 
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provided in Table 2.3. The fermentations in the RAMOS device were carried out under a 

variety of aeration rates (between 3 and 0.08 vvm), which were calculated using the unsteady 

state model (Sec. 5.3.3). It is noted that the details of the operation conditions of the 

experiments are specified in the legend of Tables and Figures. 

 

7.3.4 Applied model  

The modified unsteady state model for the prediction of operation conditions of a biological 

system in measuring flasks was used (Secs. 5.4.1 and 5.4.3) in order to avoid oxygen 

limitation. 

 

7.3.5 Calculation of the CO2 concentration 

For an aerobic fermentation, with RQ equal to 1, the concentration of accumulated CO2 could 

be easily estimated from the value of pO2 (Eq. 7.13).  

( )2g2, pO0.2095100CO −⋅=  [%]        (7.13) 

 

7.3.6 Calculation of the maximum specific growth rate (µmax )  

The maximum specific growth rate in the exponential phase (µmax.) can be deduced from the 

maximum exponential slope of the OTR [72]: 
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µ 0

−
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=          (7.14) 

7.3.7 Calculation of the oxygen consumption during the fermentation 

The amount of oxygen consumed over the fermentation time was calculated by integration of 

OTR according to the Eq. 7.15.  

∫ ⋅=
t

0
O2 dtOTRC           (7.15) 

 

7.4 Results and Discussions 
Considering the importance of the carbon dioxide for industrial aerobic bioprocesses, the new 

method for quantification of the CO2 sensitivity of microorganisms presented in the Chapter 6, 

was developed via an online monitoring system. In the following sections, this method will be 

firstly validated by carrying out a fermentation of Arxula adeninivorans WT-LS3, 

Corynebacterium glutamicum (DM1730 and 13032WT), Pseudomonas fluorescens 

DSM50090 and Hansenula polymorpha RB11-FMD-GFP as model organisms in the 
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measuring flasks of the RAMOS device. Then, the effect of aeration rate on the calibration 

factor (Cf), and consequently on OTR will be discussed. 

Finally, the CO2 sensitivity of the microorganisms, based on the values of OTR will be 

investigated. In that case, the values of the maximum specific growth rate, calculated by OTR 

values and the productivity, will be used. 

 

7.4.1 The effect of aeration rate on the partial pressure of oxygen  

In the Chapter 5, it was indicated that a pattern for the specific aeration rate (qin) in the 

ventilation flasks could be calculated using the unsteady state model considering Eq. 5.4. By 

utilizing maximum values of qin (refer to the Figures 5.2 and 5.3) for aeration of the measuring 

flasks of the RAMOS device, the same gas concentration of O2 and CO2 in the headspace of 

both flasks under a non oxygen limited condition obtained (Figure 5.6). Therefore, different 

levels of accumulated CO2 in the headspace of the aerated flasks could be adjusted by using 

different aeration rates.  
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Figure 7.3: The effect of aeration rates on the partial pressure of oxygen in the headspace of the 
measuring flasks (rf1, rf4, rf7 and rf9) of the RAMOS device for a fermentation of C. glutamicum 
DM1730 on 15g/l glucose (21 g/l MOPS, pHstart=7.18, VL=15 ml, n=400 rpm). The values of the 
aeration rates for the flasks were obtained by the unsteady sate model. 
 
In order to investigate the effect of aeration on the concentration of the components of the gas 

mixture (O2 and CO2) in the headspace of the measuring flasks of the RAMOS device, the 

fermentation of C. glutamicum DM1730 on 15 g/l glucose (21 g/l MOPS, pHstart=7.18, VL=15 
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ml, n=400 rpm) was performed based on different aeration values of 1.5, 0.45, 0.15 and 0.08 

vvm for aerated flasks rf1, rf4, rf7 and rf9, respectively. These aeration rates were calculated 

by the unsteady state model (Sec. 7.3.4). Figure 7.3 illustrates the results of this fermentation 

in the measuring flasks. After 10.2 hours of the fermentation there are significant differences 

between the minimum levels of the partial pressure of O2 (0.196, 0.174, 0.134, and 0.09 bar). 

Values of 1.5, 3.7, 7.8 and 11.9 % for the maximum accumulated CO2 were obtained in the 

headspace of the aerated flasks rf1, rf4, rf7 and rf9 using Eq. 7.13, respectively. 

These results revealed that the uses of different values of aeration rates in the RAMOS device 

are advantageous for quantifying the CO2 sensitivity of micro-organisms, as an online 

monitoring method. This method is based on the effect of CO2 on the values of the oxygen 

uptake rate. In the following sections the validity of this method will be experimentally 

demonstrated. 

 
7.4.2 Validation of the OTR results of the RAMOS device obtained by the new method 

For the investigation of the effect of a variety of aeration rates (new method) on the values of 

OTR resulted by the RAMOS device, fermentations were performed with C. glutamicum 

13032WT on 10g/l L-lactate (n=350 rpm, T=30 °C, do=5 cm, pHstart=6.4), in the measuring 

flasks with different specific aeration rates of 1.03, 0.55 and 0.23 vvm. Figure 7.4 shows the 

oxygen values of the partial pressure in the headspace of the measuring flasks during this 

fermentation. This figure indicates that the use of different aeration rates of 1.03, 0.55 and 

0.23 vvm for the measuring flasks resulted in minimum value of 18.46, 16.73, and 12.9 % for 

the concentration of O2 in the headspace of these flasks, respectively.  

The values of OTR were calculated using the partial pressure of oxygen, detected by oxygen 

sensor (Sec. 2.1.4) in the programming system. These OTR values are presented in the Figure 

7.5. As illustrated by that Figure, there is a significant discrepancy in the slopes of OTR 

curves. This could be interpreted as a criterion for the effect of CO2 on the C. glutamicum. 

Although the total oxygen consumptions calculated by the integration of OTR over the 

fermentation time for all flasks should be the same (Eq. 7.11), the obtained results were 

different. Those differences clarified that there was an error in the calculation of the OTR, 

specially, for the low aeration rate of 0.23vvm. For this reason of the calibration factor (Cf) 

and the OTR were calculated using the oxygen sensor’s signals. This result is shown in the 

Figure 7.5. Interestingly, it was found that the values of the calibration factor (Cf) were 

strongly changed during the fermentation with low aeration rate (0.23vvm) in comparison with 

the high aeration rate (1.03vvm). The highest variation of Cf values was obtained around the 

maximum OTR for the low aeration in which unsteady state conditions strongly occurred. 
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Figure 7.4: The effect of the specific aeration rates on the partial pressure of oxygen in the headspace 
of the measuring flasks of the RAMOS device for a fermentation of C. glutamicum 13032WT on 10 g/l 
lactate (n=350 rpm, T=30 °C, do=5 cm, pHstart=6.4). 
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Figure 7.5: The effect of the specific aeration rate (1.03, 0.55 and 0.23 vvm) on the calibration factor 
(Cf) and OTR for fermentation of C. glutamicum 13032WT on 10 g/l lactate (n=350 rpm, T=30 °C, 
do=5 cm, pHstart=6.4) in the RAMOS device. 
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The values of Cf and OTR were recalculated by the OTR analyzer. Figure 7.6 illustrates the 

recalculated values of OTR and the corrected value of Cf considering the real value of pO2, 

before each periodic of the measuring phase. According to this method, the same values of 

oxygen consumption for the fermentation of C. glutamicum 13032 WT on 10 g/l L-lactate 

were obtained. In the following section, the new method accompanied with the OTR analyzer 

will be presented for the investigation of the CO2 sensitivity of micro-organisms. 
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Figure 7.6: The recalculated values of OTR and calibration factor (Cf.), for the fermentation of C. 

glutamicum 13032WT on 10g/l lactate (n=350 rpm, T=30 °C, do=5 cm, pHstart=6.4), by an OTR 

analyzer  

 
7.4.3 Evaluation of the CO2 sensitivity of micro-organism using OTR values  

In aerobic cultures, the OTR is a very useful parameter to reflect the physiological responses 

of micro-organisms to specific culture conditions [3]. Thus, the OTR values, obtained by the 

RAMOS dev ice were applied for the investigation of the CO2 sensitivity of micro-organisms. 

Culture experiments were performed with Arxula adeninivorans WT-LS3, Corynebacterium 

glutamicum (DM1730 and 13032WT), Pseudomonas fluorescens DSM50090, as model 

organisms in the RAMOS device, under a variety of aeration rates. The values of OTR, 

obtained by the RAMOS device were recalculated, in advance, by the OTR analyzer. The 

results shown in the Figure 7.6 clarify that there is a significant discrepancy between the slope 

of OTR, recalculated by OTR analyzer, for fermentation of this organisms under the different 
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maximum accumulated CO2 values of 2.49, 4.22 and 8 % related to the aeration rates of 1.03, 

0.55 and 0.23 vvm in the measuring flasks, respectively. On this basis, it can be inferred that 

C. glutamicum 13032WT is sensitive to the values of CO2. The CO2 sensitivity of this 

microorganism has been already reported by a continuous turbidostatic culture system [6]. 

Pseudomonas fluorescens DSM 50090 as an especially sensitive organism to CO2 which 

agrees with literature [19] was fermented (Table 2.11) in the measuring flasks of the RAMOS 

devive under different specific aeration rates of 2.14, 0.17 and 1 vvm.  

The results of OTR recalculated by the OTR analyzer, and pO2 detected by an oxygen sensor 

(Sec. 2.1.4) are illustrated by Figure 7.7. As shown in this figure, minimum pO2 values of 

0.20, 0.19 and 0.18 bar were obtained after 5.1 hours of fermentation under different aeration 

rates of 2.14, 0.17 and 1 vvm in measuring flasks, respectively. Maximum accumulated CO2 

values of 0.9, 2.2 and 3.2 % were computed by Eq. 7.14. Under these conditions, different 

slopes of the OTR curves were obtained, and consequently, different values of 0.4, 0.34 and 

0.23 h-1 for the maximum specific growth rate (µmax) were calculated by Eq. 7.14. From these 

results it can be concluded that this micro-organism was sensitive to CO2 as reported in 

literature [19]. 
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Figure 7.7: The results of pO2 and OTR for a fermentation of Pseudomonas fluorescens DSM50090 
on 5 g/l glucose and 2 g/l yeast extract (21 g/l MOPS, n=350 rpm, VL=10 ml, T=30 °C, do=5 cm, 
pHstart=7.0, pHfinal=7.1), under different values of accumulated CO2 in the measuring flasks of the 
RAMOS device, obtained by the new method. The vales of OTR were recalculated by the OTR 
analyzer, based on constant values of the calibration factor (Eq.7.11), before the periodic the measuring 
phase. 



Chap. 7: Online monitoring of CO2 sensitivity  94 

 

In the same way, the CO2 sensitivities of C. glutamicum DM 1730, C. glutamicum WT 13032 

and Arxula adeninivorans LS3 were evaluated by the online monitoring method. Figure 7.8 

shows the OTR results of these microorganisms.  

The results for Arxula adeninivorans LS3 on 20 g/l glucose (0.14 M MES buffer, n=350 rpm, 

RQ≈1, do=5 cm, T=30 °C, pHstart=6.4), indicated that there was no significant difference 

between the values of OTR after 13.4 hours of the fermentation (in the exponential phase) 

under the maximum accumulated CO2 values of 2.5 and 8 %. Furthermore, the same value of 

0.30 h-1 for the maximum specific growth rate was calculated.  

In case of the fermentation of C. glutamicum DM1730 on 15 g/l glucose (21 g/l MOPS, RQ≈1, 

do=5 cm, VL=10 ml, pHstart=7.5), a significant effect of the accumulated CO2 (4, 4.7 and 7 %) 

on the slope of the OTR and maximum growth rate (0.35, 0.32 and 0.31 h-1), was found. 

Moreover, the results depicted in Figure 7.8 indicated that there was a noticeable effect of 

accumulated CO2 (2.2 and 8 %) on the slopes of OTR and maximum specific growth rate 

(0.24 and 0.28 h-1) in the fermentation of C. glutamicum WT13032. 
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Figure 7.8: Comparison between the CO2 sensitivities of Arxula adeninivorans LS3 on 20 g/l, glucose 
(0.14 M MES buffer, n=350 rpm, RQ≈1, do=5 cm, T=30 °C, pHstart=6.4); C. glutamicum 13032WT on 
10 g/l lactate (n=350 rpm, T=30 °C, do=5 cm, pHstart=6.5) and C. glutamicum DM1730 on 15 g/l 
glucose (21 g/l MOPS, RQ≈1, do=5 cm, VL=10 ml, pHstart=7.5) using the on line monitoring method 
based on the OTR results. 
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7.4.4 Results of the online monitoring method versus those of the continuous 

turbidostatic culture method 

For the validation of the online monitoring method, the results of CO2 sensitivity of 

Corynebacterium glutamicum 13032WT as a model organism obtained by the new method 

were compared with the results of the continuous turbidostatic culture system [6]. This 

comparison is shown in Figure 7.9. As depicted in this figure, the values of µmax obtained with 

the turbidostat system are slightly higher than the values calculated by our method. However, 

the overall tendencies are the same. As mentioned in the Sec. 6.4.3.2, the difference between 

the results of both methods may be due to the differences between adjusting the pH and the 

calculation procedure of µmax. On the basis of the explanations in that section, the values of 

µmax obtained by the online monitoring method in the RAMOS device were validated to 

quantify the CO2 sensitivity of micro-organisms. According to all mentioned results, our new 

method is reliable. 
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Figure 7.9: Comparison between the maximum specific growth rate of C.glutamicum WT13032 on 10 
g/l lactate resulted by the online monitoring method in the RAMOS device (21 g/l MOPS, 30°C, do=5 
cm, n=350 rpm, VL=15 ml, pHstart=7.05, pHfinal=8.2) and the continuous turbidostatic culture method 
(T=30 °C, qin=1 vvm, n=1200 rpm, VL=800 ml, pHstart=6.85) [6] 
 

7.4.5 Quantification of the CO2 sensitivity in terms of the maximum specific growth 

rate 

The quantification of the CO2 sensitivity of Arxula adeninivrtans WT LS3, Corynebacterium 

glutamicum (DM1730 and 13032WT), Pseudomonas fluorescens DSM50090 and Hansenula 
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polymorpha RB11-FMD-GFP were investigated by performing series of experiments based on 

the online monitoring method in the RAMOS device. The values of the maximum specific 

growth rate were calculated using the values of OTR in Eq. 7.10.  

Figure 7.10 indicates the effect of maximum accumulated CO2 concentration on the maximum 

specific growth rate of these microorganisms. The sensitivities of these microorganisms can be 

quantified at the maximum accumulated CO2 range of 12 % using the online monitoring 

method.  

From these results, it could be easily concluded that Arxula adeninivorans LS3 and 

Hansenula polymorpha as yeasts are not sensitive to CO2 [34], and the bacterial strains of 

Corynebacterium glutamicum (DM1730 and 13032WT) are sensitive to autogeneously 

produced CO2. Pseudomonas fluorescens (DSM50090) was found to be a especially sensitive 

organism [19]. 
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Figure7.10 Maximum specific growth rate over the maximum accumulated CO2 for several micro-
organisms obtained using the online monitoring of CO2 sensitivity method. The experiments were 
repeated several times and its reproducibility is indicated in brackets. 
 
7.5 Conclusion  
The measurement of OTR in shake flask cultures provided valuable data during screening. The 

OTR profiles displayed the time dependent course of the screening cultures and reflected the 

metabolic activity with respect to different screening conditions. The quantification of CO2 

sensitivity of micro-organisms could be easily detected using an online monitoring method in 
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the RAMOS device, based on the data of OTR obtained under different aeration rates. In order 

to see the function of the online monitoring method, experiments with several microorganisms 

in the measuring flasks of the RAMOS device were carried out. A maximum value of 12 % for 

accumulated CO2 could be derived by applying a low flow rate of 0.1 vvm (Figure 7.3), under 

the appropriate conditions (e.g. VL, do and n) and culture parameters (e.g. RQ, carbon source, 

pH and etc.). In order to predict these conditions an unsteady state gas transfer model in 

shaken bioreactors would be very advantageous. The data of OTR obtained by the RAMOS 

device were analyzed and recalculated by a program considering the calibration factor (Cf) 

(Eq. 7.11). An approximate constant value for this factor confirms the OTR results 

(Figure7.6). Based on the analyzed OTR, the CO2 sensitivity of micro-organisms was 

quantified by the assessment of the slope of the OTR curves or the values of maximum 

specific growth rate (Figures 7.8 and 7.10). 

The major advantage of the new method is the possibility to determine the metabolic activity, 

independent of manual sampling.  
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8.1 Introduction 
Scale up in fermentation processes is a procedure for the design and assembly of a large scale 

system considering the results from small-scale cultures and devices (e.g. micro titre plates 

and shake flasks). The scale-up of a fermentation process can be divided into three steps [33 

and 35]:  

a- laboratory scale, in which elementary studies are carried out in shaken bioreactors;  

b- pilot scale, where the process optimizations are performed;  

c- plant scale or production scale, where the process is used to fabricate economic 

products. 

Biotechnologists are requested to control aeration, especially in scale up from shake flask to 

fermentors in order to provide sufficient oxygen for aerobic culture [8, 74 and 75]. The scale 

up from shake flasks to stirred tank bioreactors is often very complex and time consuming [8]. 

Generally, the oxygen transfer rate and the specific power input have been used to scale up 

bioprocesses from shaken bioreactors to stirred tank fermentors [8]. The suitability of scale up 

methods are usually confirmed by experimental results, which show that there is no difference 

between fermentation results in various types of small and large scales, carried out under the 

same oxygen transfer rate [21]. Under this condition, the divergence between the values of 

CO2 ventilation in both scales could lead to a discrepancy between the results of both scales 

[15, 59 and 75]. Ventilation is defined as the removal rate of volatile compounds such as 

carbon dioxide, alcohols or auto-inducers, from the fermentation broth [15, 39, 43 and 56]. 

Inhibition of the cell growth, product formation, exhaustion of volatile substrates and 

incomplete induction may happen due to insufficiently adjusted ventilation. The rate of 

ventilation mainly depends on the aeration rate in a fermentation system [30, 58, 59 and 75]. It 

has been shown that at high aeration rates the carbon dioxide concentration in fermentation 

broth is reduced leading to higher inosine formation from shake [69]. Tanaka et al. [75] have 

introduced the ventilation of a bioreactor as an additional scale up criterion. They have 

concluded that the degree of ventilation between shake flasks and a stirred bioreactors could 

be different, and scale up problems may occur. The impossibility of scale up from a shake 

flask with sterile closure to a stirred tank bioreactor and the possibility of it from aerated flasks 

to stirred tank bioreactor have been reported. This was attributed to the effect of CO2 

ventilation [37].  

The dependency of the gas transfer coefficient (kplug) and the oxygen transfer rate (OTRplug) in 

the sterile closure of the ventilation flasks was well described in Chapter 4. Based on this 

dependency a new aeration strategy to determine the specific aeration rate from a ventilation 
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flask to an aerated (measuring) flask was introduced in Chapter 5. A goal of this chapter is the 

investigation of a new scale-up method from a shake flask to a stirred tank fermentor, based 

on the effect of CO2 ventilation. This method is quantified using the aeration strategy 

presented in Chapter 5. Figure 8.1 shows a schematic illustration of this method. 
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Figure 8.1: Schematic illustration of a scale up method based on the ventilation criterion 

 

8.2 Material and Method 
8.2.1 Ventilation flask  

In this study, the ventilation flasks f1, f4 and f9 (Figure 2.2) were used. For measuring the 

pO2, special designed ventilation flasks with mounted oxygen sensors (Figure 2.1-A) were 

employed. The characteristics of these flasks are given in Table 2.1.  

 

8.2.2 Respiratory Activity Monitoring System (RAMOS) 

In order to evaluate the activity of micro-organisms during the fermentation, a the RAMOS 

device with a special aeration system (Figure 5.1) explained in Chapter 5, as a system used in 

parallel to ventilation flasks f1, f4 and f9, was used. More details are given in Secs. 2.1.2 and 

7.3.1. 

 

8.2.3 Laboratory scale fermentor 

In this study a foil fermentor (Visual Safety- Fermentor (VSF), Bioengineering AG, Wald, 

CH) was used. The fermentor is sterilized in situ. The pH electrode (Mettler Toledo) is 

attached to a measuring amplifier. The temperature control is formed by the internal cooling 

system. The aeration rate is adjusted by a mass flow controller (5850TR, Brooks of 
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instrument, Venendaal, NL). The optical density is measured on-line with the help of a flow 

cuvette (170 QA, layer thickness 0,5mm, Hellma). Data acquisition is made by Adam modules 

(4250 + 4018, ADAM). These record the data of CO2 and O2 from the exhaust gas analyzer 

and pO2, pH, OD, temperature, aeration rate and agitation from other equipments. All data are 

transmitted to the process computer, analyzed and stored. The fermentor with the operating 

volume of 1800 ml was prepared, autoclaved and then filled with a medium, and finally 

inoculated by 5 % of a pre-culture. Fermentations in the fermentor were performed at 30°C. 

Specific aeration rates of 1.43, 0.37, 0.1 vvm were selected and the agitation was switched on 

between 300 and 1000 rpm, in order to avoid an oxygen limitation. The operation conditions 

and some important information of the experiments in the fermentor are given in Table 2.2. 

The pH value was controlled utilizing 21 g/l MOPS buffer.  

 

8.2.4 Sampling and analysis of the results 

Five series of each ventilation flask and several samples from the fermentor were taken for the 

determination of the biomass concentration (bio dry weight), pH value and optical density 

(600 nm), carbon source and L-lysine concentration (Sec. 2.4). Furthermore, at the same time, 

additional experiments were performed in the RAMOS device for determination of OTR, CTR 

and RQ. 

 

8.2.5 Model organisms and cultivation  

For the investigation of the scale up method, fermentation of Corynebacterium glutamicum 

DM1730 as model organism was performed in the ventilation flasks, measuring flasks and 

fermentor. The medium preparation, the cultivation system and operation conditions are given 

in section 2.7. The fermentations in the RAMOS device and fermentor were carried out under 

specific aeration rates of 1.43, 0.37, 0.1 vvm, which are calculated using the unsteady state 

model (Chapter 5). It is noted that the operation conditions for the experiments are specified in 

the legend of the tables and Figures. 

 

8.2.6 Determination of O2 and CO2 in the headspace of flasks 

For detecting the partial pressure of oxygen in the gas phase of the headspace of the 

ventilation and measuring flasks O2 sensors were employed (Sec. 2.1.4). The values of CO2 

concentration were calculated by using the data of pO2 in the Eq. 7.10. 
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8.2.7 O2 and CO2 concentration in the exhaust gas of the fermentor 

The exhaust gas left the fermentor through an exhaust gas cooler and a sterile filter and was 

led to the gas analyzer in order to monitor the O2 and CO2 concentrations in the outlet stream. 

This gas analyzer was previously calibrated with a commercial gas of defined composition 

(5% (v/v) O2, 25% (v/v) CO2 and 70% (v/v) N2; Westfalen, Germany). 

 

8.3 Results and Discussions 
In order to investigate the scale up method based on the effects of CO2 ventilation, 

fermentations of C. glutamicum DM1730 on 15 g/l glucose were simultaneously examined in 

the ventilation flasks equipped with an oxygen sensor, measuring flasks of the RAMOS device 

and a stirred tank fermentor. Different specific aeration rates of 1.5, 0.39, 0.1 vvm for the 

measuring flasks and for the fermentor, related to the maximum aeration rate calculated for 

ventilation flasks f1, f4 and f9 were utilized as described in Sec. 5.4.1. The pH was controlled 

using 21 g/l MOPS as a buffer. The agitation in the fermentor was adjusted, so that the 

dissolved oxygen was above 25 % of saturation. This was essential for a scale up from shake 

flask to a fermentor under sufficient oxygen supply [33]. The fermentation results in these 

vessels are compared by observing the gas concentrations in the gas phase (O2 and CO2), 

maximum oxygen transfer rate (OTR), cell dry weight (biomass) concentration, maximum 

specific growth rate and L-lysine formation. It is noted that in the following sections the terms 

f1, f4 and f9 will be used as short forms of the different conditions for the different scales.  

 

8.3.1 Validation of the method based on the comparison of the concentration of CO2 

and O2 in the ventilation flask and the fermentor 

In order to study the method, the oxygen concentrations in the headspace of the ventilation and 

measuring flasks and in the exhaust gas of the fermentor were measured using an oxygen 

sensor and exhaust gas analyzer, respectively. Experiments with C. glutamicum DM1730 as a 

model organism were performed. Figure 8.2 illustrates those results. As indicated in this 

figure, the O2 concentrations in the gas phase obtained in the measuring flasks and the stirred 

tank bioreactor considering different specific aeration rates of 1.5, 0.39 and 0.1 vvm, were 

comparable to those obtained from ventilation flasks f1, f4 and f9, respectively. Moreover, 

there a significant difference between the average minimum values of 19.4, 16.5 and 10.2 % 

for O2 concentrations in the gas phase of all scales (f1, f4 and f9). 
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Figure 8.2: Comparison between the oxygen concentration for a fermentation of C. glutamicum 
DM1730 in ventilation flasks, aerated flasks (14 g/l glucose, 21 g/l MOPS, pHstart=7.18, VL=15 ml, 
n=350 rpm)) and a foil fermentor (15.5 g/l glucose, 21 g/l MOPS, pHstart=7.18, VL=1800 ml, n=300-
1000 rpm)) with different specific aeration rates calculated using the Eq. 5.  
 
As mentioned in Chapter 7, the approximate maximum accumulated CO2 values of 1.5, 3.4 

and 11 % could be calculated by the values of O2 concentration by Eq. 7.10, providing a 

RQ=1. Accordingly, the values of CO2 for the ventilation and measuring flasks were 

calculated and compared with the values of CO2 from the fermentor. The values of CO2 for the 

different scales were compared together in Figure 8.3. This figure also indicates very good 

comparable results for each group of CO2 concentrations in the headspaces of ventilation 

flasks f1, f4 and f9 with measuring flasks and fermentor. 

Regarding Figures 8.3 and 8.4, a plateau becomes clear after 9.6 hours of the fermentation in 

the fermentor, operated under a specific aeration rate of 0.1vvm. This could be due to the 

presence of a low aeration rate (0.1 vvm). This may causes a temporal delay between the 

fermentor and the exhaust gas analyzer cabinet. Therefore, although the concentrations of the 

O2 and CO2 in the gas exhaust of the fermentor are often measured, these concentrations do 

not show the actual concentrations in the gas phase of the fermentor under dynamic 

conditions. Figure 8.4 illustrates the OTR of a fermentation of C. glutamicum DM1730 in the 

foil fermentor with different specific aeration rates of 1.5, 0.39 and 0.1 vvm. This figure 

indicates that, there is a significant discrepancy between the total amount of oxygen 

consumption, calculated by Eq. 7.15, for a low specific aeration rate (0.1vvm) and other 

aeration rates (1.5 and 0.39 vvm). 
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Figure 8.3: Comparison between the carbon dioxide concentration for a fermentation of C. glutamicum 
DM 730 in ventilation flasks, aerated flasks (14 g/l glucose, 21 g/l MOPS, pHstart=7.18, VL=15 ml, 
n=350 rpm)) and a foil fermentor (15.5 g/l glucose, 21 g/l MOPS, pHstart=7.18, VL=1800 ml, n=300-
1000 rpm) with different specific aeration rates of 1.5, 0.39 and 0.1 vvm. 
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Figure 8.4: Comparison between ORT results of a fermentation of C. glutamicum DM1730 (15.5 g/l 
glucose, 21 g/l MOPS, pHstart=7.18, VL=1800 ml, n=300-1000 rpm) in the foil fermentor with different 
specific aeration rates of 1.5, 0.39 and 0.1 vvm. 
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In the following step, the proposed method will be investigated, comparing between both 

scales in terms of OTR, cell dry weight (biomass) concentration, maximum specific growth 

rate and L-lysine formation. 

 

8.3.2 Comparison between the maximum OTR in the ventilation flask and the 

fermentor 

Obtaining the same oxygen transfer rate (OTR) in small and large scale can be a suitable scale 

up method [21]. Figure 8.5 shows the comparison between both scales in terms of OTR for a 

fermentation of C. glutamicum DM1730 in the measuring flasks (f1, f4 and f9) and the 

fermentor under different specific aeration rates of 1.5, 0.39 and 0.1 vvm. An average 

difference of 3 % between the values of maximum OTR in both scales were obtained this 

indicates that there is no noticeable difference between the values of the maximum OTR in the 

measuring flasks and the fermentor. This could confirm a reliable scale up from our shake 

flasks (ventilation and measuring) to foil fermentor. Noted that the results of the ventilation 

flasks and the measuring flasks could be compared, providing that they are operated under the 

same aeration strategy (Chapter 5).  
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Figure 8.5: Comparison between the OTR results of a fermentation of C. glutamicum DM1730 in the 
measuring flask and the fermentor under different maximum accumulated CO2. 

Figure 8.5 also reveals that there was a remarkable deviation of 6 and 19 % between the 

average maximum OTR values of 0.042 and 0.037 mol/l/h under the conditions of f4 and f9, 

in comparison to the f1 (0.045 mol/l/h), in both scales. This points out that the different levels 
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of the accumulated CO2 could have affected the oxygen consumption of C. glutamicum 

DM1730 on glucose [6]. The slight divergence between both scales each condition of f1 and 

f4 could be due to the difference between the amounts of glucose concentration (10 %) [1 and 

68]. In the case of the f9, the maximum OTR in the fermentor is slightly lower than that in the 

measuring flask. As mentioned above, this could occur because of utilizing a low aeration for 

fermentor.  

 

8.3.3 Comparison between the cell dry weight (biomass) concentrations in the 

ventilation flasks and the fermentor 

Figure 8.6 (A, B and C) exemplifies the cell dry weight (biomass) concentrations of a 

fermentation of C. glutamicum DM1730 in ventilation flasks f1, f4 and f9 and relevant 

fermentors. As demonstrated there is a good similarity between the results from the ventilation 

flasks and the fermentor. 12 % deviations between the maximum biomass concentrations in 

both scales were observed, which was due to the differences between the glucose 

concentrations (the glucose in the medium of ventilation flasks was about 10 % lower than 

that of the fermentors). The approximate range of pH values between 7.4 and 6.3, controlled 

by 21 g/l MOPS buffer, indicates that the activity of the micro-organisms was not inhibited by 

this factor [1, 7 and 68].  

 

8.3.4 Comparison between the maximum specific growth rate in the ventilation flasks 

and the fermentor 

Using the values of cell dry weight (biomass) concentration in Eq. 6.14, the values of the 

maximum specific growth rates in the ventilation flasks and the fermentor under the 

conditions of f1, f4 and f9 were calculated. Those results are shown in Figure 8.7. There is no 

significant discrepancy between both scales of each condition of f1, f4 and f9 for the 

maximum specific growth rates. Only a small deviation of 3 % was obtained. Therefore, these 

results also confirm the validity of our proposed new method. 

The average of the maximum specific growth rates of 0.37, 0.316 and 0.266 h-1 were 

calculated for both scales under maximum accumulated CO2 values of 1.5, 4.3 and 11% , 

respectively. They specify that the CO2 ventilation affect the growth rate of this micro-

organism in the fermentor as in the ventilation flasks. This effect has been reported in 

literature [6] and also in Chapter 6.  
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Figure 8.6: Comparison between the cell dry weight (biomass) concentrations for fermentations of C. 
glutamicum DM1730 in the fermentor and the ventilation flasks, obtained by the new method for scale 
up based on the effect of CO2 ventilation. A: f1, 1.5 vvm, B: f4, 0.39 vvm, C: f9, 0.1vvm. (N0 points 
are shown for the fermentor, because the gas analyzer proceedes a continuous signal.  
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Figure 8.7: Comparison the maximum specific growth rates of C. glutamicum DM1730 from 
fermentations in the ventilation flasks and the fermentor, using the new method for scale up based on 
the effect of CO2 ventilation. 
 

8.3.5 Comparison between the L-lysine formation in the ventilation flasks and the 

fermentor 

In Figure 8.8 the L-lysine concentrations obtained by a fermentation of C. glutamicum DM 

1730 in the ventilation flasks f4 and f9 and a fermentor are illustrated. This figure 

demonstrates that the L-lysine formations, obtained from the fermentor with specific aeration 

rates of 0.39 and 0.1 vvm, were quite close to those obtained from the ventilation flasks f4 and 

f9, respectively. It was also found that the different levels of CO2 ventilation (max. 4.3 and 11 

%) have a significant effect on the L-lysine production (in average 0.057 and 0.071 mmol/l), 

due to the different conditions of f4 and f9. It is remarkable that in the fermentor a higher L-

lysine concentration was reached. This could be due to the higher glucose concentration (10 

%) used in fermentor.  
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Figure 8.8: Comparison of the L-lysine concentration, of a fermentation of C. glutamicum DM 1730 
in the ventilation flasks and the fermentors, using the new method for scale up based on the effect of 
CO2 ventilation. 
 

 

8.4 Conclusion 
The data from the shake flasks can be valuable for a bioreactor scale up. While scaling-up a 

fermentation process, it is very important to reproduce the shake flask data in a stirred tank 

fermentor with a minimum number of runs in a pilot fermentation. Furthermore, a direct 

method for scaling-up from a shake flask to a commercial-scale fermentor is suitable to reduce 

research expenses and shorten the research time. In this manner, the values of aeration and 

ventilation might be important criteria for bioreactors scale up, especially in the case of CO2 

sensitive micro-organisms. The scale up from shake flasks to stirred tank bioreactors is often 

very complex and time consuming because of distinctions between the results obtained in 

different scales. Based on the values of kplug of the ventilation flasks, specific aeration rates of 

aerated flasks and stirred tank bioreactors were calculated, using the unsteady state model 

(Chap. 5).  

Moreover, a new aeration strategy to scale up from Erlenmeyer flasks to aerated fermentation 

systems (e.g. measuring flask and fermentor), based on the effects of CO2 ventilation was 

investigated. By applying this method, the concentrations of CO2 and O2 in the gas phase 



Chap. 8: A new scale up method  110  
 

 

obtained from aerated flasks and stirred tank bioreactors were comparable to those obtained 

from ventilation flasks (Figs. 8.2 and 8.3). Under these conditions similar trends in the results 

of the maximum OTR, cell dry weight (biomass) concentration, maximum specific growth rate 

(µmax) and L-lysine formation for fermentation of C. glutamicum DM1730 as a model 

organism were found in both scales. 

As a conclusion of these results there is a possibility for scaling up from ventilation flasks to 

stirred tank bioreactors based on the effect of the CO2 ventilation criterion.  
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In this work a novel and easy method to quantify the CO2 sensitivity of micro organisms in 

shaken bioreactors has been described (Chapters 6 and 7). A new aeration strategy for scale up 

from a shake flask to aerated fermentation system (measuring or aerated flask and stirred tank 

bioreactors) is presented, as well (Chapters 5 and 8). For these aims, at first a variety of the 

gas transfer coefficients through the sterile closure (kplug) of specially designed shake flasks, 

so called ventilation flasks, were obtained. The values of kplug calculated using constant values 

of 0.162 and 0.123 cm2/sec for Deo2 and DCO2 (Figs. 3.4 and 3.5) which are obtained by the 

water evaporation method and the extended model of Henzler and Schedel [23 and 57]. From 

this extended model a representation of the mass transfer coefficient (kplug) of the sterile 

closure can be obtained which is closer to reality and which is dependent on the mass flow 

through the plug (OTRplug) (Eq. 4.19). Then, it was found that unsteady state conditions in the 

ventilation flasks have to be considered, since the current steady state model can not express 

the large discrepancies between calculated and experimental results. Therefore, an unsteady 

state model was prepared to characterize the gas transfer in shaken bioreactors. The method 

was experimentally validated for the sulfite and biological systems for a variety of kplug (Figs. 

4.7, 4.8 and 4.10). In the next step, a new aeration strategy from shake flasks to aerated flasks 

was initiated with implementing equation 4.19 into the unsteady state model, and then the 

specific aeration rates in the ventilation flasks were clarified (Figure 4.5 and 4.6). Using these 

varieties of kplug in ventilation flasks and aeration in measuring (aerated) flasks different levels 

of O2 and CO2 in these flasks were established (Figures 6.2, 6.3 and 7.3). According to these 

results, a new and easy method to quantify the CO2 sensitivity of micro-organisms in shaken 

flask bioreactors of the RAMOS device was established. These methods were tested on several 

micro-organisms (Figure 7.10). A significant effect of accumulated CO2 on the biomass 

concentration, growth rate and lysine production of C. glutamicum DM1730 was found. 

Applying this method for Arxula adeninivorans LS3 and Hansenula polymorpha (WT ATCC 

34438 and RB11-FMD-GFP) indicated that the CO2 has no effect on these microorganisms. 

Pseudomonas fluorescens (DSM 50090) and Corynebacterium glutamicum (ATCC WT13032 

on lactate) was found to be especially sensitive organisms. This method was confirmed by 

comparison of the results with the results reported in literature [6, 19, 34 and 39]. In this study, 

the CO2 sensitivity of micro-organisms could be quantified up to 12 % of accumulated CO2 

under non oxygen limited condition (Figure 6.5). When the cultivation was carried out under 

proper conditions (e.g. appropriate media and buffer capacity to control the pH, the OTR 

lower than the maximum oxygen transfer capacity to avoid oxygen limitation and the use of 

the same filling volume) the above value of CO2 can be provided. Finally, concerning the 
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aeration strategy, a new scale up method from shaken flasks to stirred tank bioreactors was 

successfully developed based on the effect of CO2 ventilation on C. glutamicum DM 1730 as a 

model organism. 

In future, efforts can be made as follows: 

a- Modify the unsteady state model for simultaneously solving the partial differential 

equation for partial pressure of the gas mixture (O2, CO2, N2) in the headspace of the 

ventilation flasks and the spatially-resolved gas concentration in the sterile closure 

(Eq. 3.1) with the model of Henzler and Schedel [23] in an appropriate software 

program (e.g. g-PROMS). This will reduce the discrepancies between the observed 

and theoretically predicted results (Figures 4.8 and 4.10). 

b- Implement the calibration factor (Cf) in to the programming system of the RAMOS 

device to eliminate the errors observed in the OTR results of the RAMOS device. 

c- Apply the proposed method to quantify the CO2 sensitivity of fungal, plant and 

mammalian cells. 

d- Use the ventilation flasks for quantification of the effects of other volatile compounds 

(e.g. alcohols, organic acids, hormones, NH3 etc.) in the fermentation broth on the 

activity of organisms based on the aeration strategy. 

e- Identify the influence of carbon dioxide on metabolic fluxes dependent on the 

autogenously produced CO2 by the organisms. 

f- Controlling the aeration in stirred tank bioreactors based on CO2 ventilation, 

considering the aeration strategy for scale up from a shake flask. This will give a 

better comparability between both scales’ results.  
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