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Abstract

This dissertation is about the solution of Markovian stochastic process algebra
(SPA) models and the avoidance of the state-space explosion problem. We try
to answer the question whether the compositionality of SPA models can be
exploited to overcome the largeness problems appearing when evaluating such
models.

First, instead of a global view, we take up a local view, i.e., we focus on
components of SPA models, and derive some general results about the relation
between components. We identify waiting times, throughputs, and branching
probabilities as the three quantities that should be known for a compositional
performance evaluation strategy.

Then, we consider a special class of SPA processes that describe semi-Markov
processes. SPA processes in this class are suitable to be solved by a very efficient
new technique. An important step in applying this technique is the computation
of the mean value of the maximum of phase-type distributed random variables.
A naive approach for a computation would require exponential space, but we
present an efficient algorithm of polynomial complexity in time and space in
the number of considered random variables.

Finally, we consider a true-concurrency semantics for SPA models and investi-
gate its use for an efficient solution of SPA models. We identify three important
quantities to express performance measures in this semantics. Unfortunately,
as we will show, only for very restricted cases the true-concurrency-view on
SPA models allows the actual computation of measures.
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Zusammenfassung

Diese Dissertation behandelt Lösungsverfahren für Markovsche stochachsti-
sche Prozeßalgebren mit dem Ziel, das Problem der Zustandsraumexplosion
zu vermeiden. Wir untersuchen die Frage, ob die Kompositionalität von SPA-
Modellen zur Vermeidung der Zustandsraumexplosion ausgenutzt werden kann.

Zuerst konzentrieren wir unsere Untersuchungen auf die Komponenten eines
SPA-Modells und leiten einige allgemeine Ergebnisse her, die Aufschluss über
die stochastischen Abhängigkeiten zwischen diesen Komponenten geben. Wir
identifizieren Wartezeiten, Durchsätze und Verzweigungswahrscheinlichkeiten
als die drei wichtigsten Quantitäten, die die Abhängigkeiten zwischen Kompo-
nenten beschreiben, und die es erlauben, Leistungsmaße auszudrücken.

Wir untersuchen dann eine spezielle Klasse von SPA-Prozessen, die Semi-Mar-
kov-Prozesse beschreiben. SPA-Modelle in dieser Klasse können sehr effizient
gelöst werden. Ein wichtiger Teilschritt dieser Technik ist dabei die effiziente
Berechnung des Mittelwertes des Maximums von phasenverteilten Zufallsvaria-
blen. Ein naiver Ansatz würde sofort zu einem exponentiellem Anwachsen zu-
mindest der Lösungszeit führen, abhängig von der Anzahl der Zufallsvariablen.
Wir stellen jedoch ein Verfahren vor, dessen Speicherbedarf und Lösungszeit
nur polynomial mit der Anzahl der Zufallsvariablen wachsen.

Schließlich betrachten wir eine true-concurrency-Semantik für SPA, die auf
Ereignis-Strukturen basiert. Letztere ermöglichen eine explizite Darstellung
von Parallelität und Lokalität. Wir untersuchen, ob diese Semantik Vortei-
le bietet für die effiziente Lösung von SPA-Modellen. Wir identifizieren drei
grundlegende Quantitäten, mit denen sich Leistungsmaße in Ereignis-Struktu-
ren darstellen lassen. Bedauerlicherweise zeigt ein anderes Ergebnis, daß nur
unter starken Einschränkungen Leistungsmaße auch tatsächlich berechnet wer-
den können.
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Chapter 1

Introduction

Model-based performance evaluation of computer- and communication systems has a long
history. Agner K. Erlang (1878–1929) was the first person who used contemporary math-
ematics to model parts of the developing telephone networks stochastically and to solve
some dimensioning problems a priori. He founded the theory of queues and published his
most important results already in 1909 and 1917 [51, 52].

Since then, the research in the field of performance evaluation has led to a rich theory,
heavily influenced by the theory of stochastic processes, which is based on the seminal
work of Andrei A. Markov (1856–1922) from 1907 [101]. Performance models are generally
described as stochastic processes. Since direct modelling of complex systems in terms of
stochastic processes is merely impossible, over the time, more abstract formalisms have
been invented to describe performance models. The better known formalisms are queues,
queueing networks [83, 57], stochastic automata networks [119], and stochastic Petri nets
(SPN) [114, 103].

In this dissertation, we consider the most recent development in the field of stochastic
modelling formalisms: Stochastic Process Algebras (SPAs). SPAs are formalisms in which
a distributed systems is described by means of a simple formal language with formal se-
mantics. SPAs are Process Algebras (PAs) with stochastic extensions. PAs are a family of
well-understood formalisms to model distributed systems, to verify their behaviour, and
to check for certain properties, e.g., deadlock-freeness. The smallest acting unit in a pro-
cess algebra is the process, and complex processes are composed of simpler ones. This
is commonly referred to as compositionality , and it is one of the most attractive features
of process algebras. Compositionality gives process algebra specifications a modular and
hierarchical structure and allows to treat parts of complex systems in isolation.

The basic activity of a process is an action. In stochastic process algebras, actions are
equipped with a distribution function, which describes the execution time of the action
stochastically. SPAs are suitable to describe functional as well as stochastic behaviour in
one single specification. Therefore, they belong in two worlds: the modelled systems can
be checked for design flaws with formal verification methods, and they can be checked

3
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for performance and dependability properties by investigating the underlying stochastic
process. A single model can give information about, e.g., deadlock-freeness and liveness,
and about, e.g., throughputs, bottlenecks, availability, and the reliability of the considered
system.

Up to the current day, SPAs are the only compositional formalisms that allow the user to
integrate functional and stochastic information into a single model.

Performance Analysis with Stochastic Process Algebras

Many different SPAs have been defined until now and some of them describe very general
types of stochastic processes. Such models can usually only be evaluated by discrete-event
simulation [111, 128]. One of the major drawbacks of simulation as evaluation technique
is that usually many simulation runs are required to obtain statistically valid measures.
Moreover, each run usually requires a long time to complete.

Markov processes are a restricted class of stochastic processes which, contrary to most
other stochastic processes, enjoy the nice property that they can be analysed numerically.
There are many SPAs which are restricted such that the underlying stochastic process
is always Markovian. Consequently, such models can be evaluated numerically. One of
the standard tasks in the performance evaluation of Markovian SPA models is to derive an
explicit representation of the underlying Markov process. This is usually just a reachability
analysis of the state space of the considered SPA model, and the result is a matrix of real
numbers: the generator matrix. The evaluation of a Markov process requires only the
solution of a system of linear equations, which is defined by the generator matrix.

The advantage of a numerical evaluation over a simulation is that the results are usually
much faster obtained and are statistically accurate. One of the disadvantages of Markovian
modelling is that the size of the generator matrix can become very large—larger than
computers can possibly handle.

Complexity Problems

The derivation and numerical analysis of Markov processes underlying SPA specifications
is complex: the size of the state space usually grows exponentially in the number of
(sub-)processes of the SPA specification. The reason for this is that SPA (sub-)processes
describe independent activities of one or another kind. In the worst case, the state space
of an SPA process is the cross-product of all its sub-processes. So, if a process comprises
n sub-processes, and if each of these sub-processes has at most k states in its individual
state space Si, for i = 1, . . . , n, then the state space of the whole process would be of
order O(kn). The exponential growth of the state space in the size of the model is referred
to as state space explosion problem1, and it makes it sometimes impossible to assess the

1Sometimes also referred to as largeness problem.
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performance characteristics of even moderately sized models. Responsible for the state
space explosion is the global view on the system : a state of the overall process comprises
all states of the individual components (the local states), and all possible combinations of
the local states have to be taken into account.

Aims and Overview

This dissertation is concerned with solving Markovian SPA models while avoiding the state
space explosion problem. The structure that is inherently available in SPA specifications
raises the question whether this structure can not be exploited in the stochastic analysis
of the model. Processes are composed of smaller processes, i.e., its components. We inves-
tigate possibilities to carry out computations on the smaller processes to obtain measures
for the considered overall model. Such a procedure should have a memory consumption
that grows only polynomially or even only linearly in the number of components. It would
be ideal if the computation time would also be only polynomial or linear in the number or
components. Such a procedure does not (yet) exist for SPAs, and as appealing this idea
might be, it is by no means obvious how such a procedure should work.

In this dissertation, we will take first steps towards the direction of a solution method for
SPA processes that exploit the compositionality of process descriptions. We proceed along
the lines below.

A Stochastic Process Algebra. Before we can start our investigations, we must agree
upon a formalism that is suitable to convey the ideas to be developed. To do so, we
define the stochastic Markovian process algebra YAWN . Using this SPA, we will describe
systems of nearly independent components that interact by means of synchronisation. A
synchronisation happens at a point on the time scale which is defined to be the earliest
time where all components that are meant to participate in the synchronisation are actually
ready to do so. Once a synchronisation has happened, all participating components again
proceed independently from each other. The semantics of YAWN will be given in terms
of labelled transition systems.

What Is Going on Inside? The usual perspective to look at SPA models is the global
view, represented by the global Markov process. Now that we have decided to focus on
components, we have to adjust the perspective. Therefore, instead of a global view, we will
take up a local view. To do so, we will describe components and the performance measures
that can be derived for them. Moreover, we will describe the relation between components
and the complete system processes as well as the relation to other components. We will
describe the local view in terms of the transition systems that are defined by the semantics
of YAWN .
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SPA and Semi-Markov Processes. Continuous-time stochastic processes have a no-
tion of state and time. A continuous-time Markov process has the memoryless property,
i.e., the future of such a stochastic process depends only on its current state, at all times.
The class of semi-Markov processes is a strict generalisation of the class of Markov pro-
cesses. In general, being memoryless does not hold for semi-Markov processes, except at
state changes. The future of a semi-Markov process depends only on its current state and
the time that has passed since the occurrence of the last state change, and that at all times.
We call the instances at which the future of a stochastic process depends only on its current
state regeneration points. For continuous-time Markov processes, every time instance is a
regeneration point. For semi-Markov processes, only state-changes are regeneration points.

Generally, synchronisations are regeneration points of a given SPA model since for the
underlying Markov processes, every point in time is a regeneration point. However, this is
only true for the global view. If we focus on one specific component, say, C, i.e., choose the
local perspective of C, things are different. The future of C depends on other components,
due to synchronisation. If C takes part in a synchronisation at time t, then it knows, in the
moment of the synchronisation, about the state of other participants. Hence, C’s future
does not depend on the history of these components before t. However, in general there are
also components that do not participate in the synchronisation with C. Nevertheless, they
could influence C in later synchronisations at times t′ > t, i.e., the future of C generally
depends on them. C does not know in which particular state these components are at time
t. Whichever state it is, it depends on t, and therefore, also the future of C depends on
t. From the perspective of a component, a synchronisation is only a limited regeneration
point, because the future of a participating component is independent of its own past and of
the past of other participants of the synchronisation, but not of the past of the components
that did not take part in the synchronisation.

We will consider the case when synchronisations are always regeneration points, global and
local. This will lead us to an interesting class of SPA processes, for which we can compute
local performance measures in a much more efficient way than by the usual steady-state
analysis. Moreover, we will show that the state space explosion problem does not exist for
this class.

Event Structures. We have distinguished between the global and the local view. The
methods to express locality are complicated, since locality is not a natural notion for
transition systems. There are, however, formalisms known in which locality, and therefore
also concurrency, is explicitly expressed. The formalisms are used as semantical basis for
e.g., process algebras and Petri nets. Due to their explicit notion of concurrency they are
called true-concurrency semantics.

One well-known class of formalisms of the true-concurrency type are event structures [116,
50, 18, 94, 84]. Event structures represent the evolution of a system by a partially ordered
set of events. Events denote the occurrence of a most basic activity of the considered
formalism (e.g., the firing of a transition or the execution of an action). The partial
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order represents the causal relationship between events. The relation between mutually-
exclusive events is explicitly represented by a conflict relation. Stochastic extensions of
event structures exist and are straightforward [84, 126, 38].

We will consider an event structure semantics for YAWN . We will reconsider the concept
of locality and the results that we have already derived before.

Related Work

The largeness problem does not only occur with SPA models. Queueing networks, stochas-
tic Petri nets, stochastic activity networks—they all share this problem. Many approaches
exist that aim at overcoming the largeness problem. In this section, we will present a
classification of these approaches. We still restrict ourselves to Markovian models, i.e.,
models which stochastic behaviours can be described by finite state Markov processes, and
we consider only methods to obtain steady-state measures.

The ultimate goal of the analysis of performance models is to obtain performance measures
that can be interpreted within these models. A straightforward approach to obtain these
measures is to explicitly derive the generator matrix of the Markov chain that describes
the stochastic behaviour of the considered model, to solve it, and to compute the desired
performance measures of the model from the probability distribution thus obtained. This
approach allows us to derive most steady-state performance measures for a model.

This general approach, however, is also the most vulnerable to the largeness problem. We
will now describe two different classes of approaches that try to avoid this problem.

Methods to Represent the Generator Matrix

The goal of methods in this category is to compute the steady-state probability distri-
bution of the Markov chain underlying the considered model. These approaches do not
actually tackle the state space explosion problem itself, but the problem that generator
matrices of such Markov chains do not fit into the main memory of a computer. Thus,
these techniques do not avoid the problem, but rather circumvent the necessity to hold
the complete generator matrix in the memory. These approaches differ in whether they
compute exact steady-state probabilities or approximations, and whether they rely on a
special structure of the considered generator matrix or not. In the following, we describe
some of these approaches in more detail.

Brute force approach: The most straightforward way to tackle the largeness problem
is to invest in hardware, i.e., in memory. Several approaches exist to implement
the derivation and solution algorithm for the generator matrix on large machines,
possibly taking the advantage of having several processors into account. This has
been done, for example, by Allmaier et al. [3] and Knottenbelt et al. [90, 89, 91].
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Based on work of Ciardo et al. [28], Haverkort, Bell and Bohnenkamp have considered
clusters of personal computers as the hardware basis [63, 7] and have developed a
distributed algorithm for deriving and solving large generator matrices.

Time scale decomposition: Generator matrices are said to be nearly complete decom-
posable (NCD), if they have a block diagonal structure, as depicted in Figure 1.1,
and if the blocks A1, . . . ,An have entries that differ from the rates in the off-diagonal
blocks in orders of magnitude. This structure ensures that, once a set of states is
entered that is described by, say, block Ai, then the probability to leave this set of
states is much smaller than the probability to stay in this set. NCD matrices occur

. . .

A4

A2

A1

A3

An

Figure 1.1: Block structure of an NCD matrix

frequently in dependability models: the “large” rates usually describe the operation
of a system in a normal mode, whereas the “small” rates describe the possibilities
of a breakdown, which usually occur rather seldomly. NCD matrices can be decom-
posed as follows: the blocks A1, . . . ,An are considered in isolation, and steady-state
solutions are computed for them. The off-diagonal blocks are used to define a super-
ordinated Markov chain that describes the transitions between the diagonal blocks.
This Markov chain must be solved, too, and all results have then to be combined
to yield the (approximated) steady-state probabilities of the original Markov chains.
The quality of the solution depends on the order of magnitude in which the “large”
and “small” rates differ.

The fact that especially NCD matrices are very suitable to be solved in this “one-step
divide-and-conquer” fashion goes back to the work of Simon and Ando [131]. Based
on this work, the so-called time scale decomposition of performance models, as, e.g.,
for queueing networks [40], and stochastic Petri nets [4, 14], has been developed.

Kronecker representation: Plateau et al. proposed Kronecker algebra to represent glo-
bal Markov chains [119]. She used stochastic automata networks (SAN), a formalism
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quite similar to SPA, where sub-entities act independently from each other and in-
teract occasionally. The generator matrix of an SAN is not represented explicitly,
but implicitly by means of expressions in the corresponding Kronecker algebra. Such
a representation still suffers from the state space explosion problem, since still all
states are considered. However, the representation of this state space on a computer
requires memory that grows only linearly in the number of components. The time
complexity, however, remains the same, i.e., grows exponentially in the number of
components.

Several approaches exist to transfer the results for SANs to other formalisms, e.g.,
stochastic Petri nets [47].

Product-form solution: Two important properties of Markov chains that imply a very
efficient solution method are reversibility and quasi-reversibility. Especially for some
classes of Markovian queueing networks, e.g., Gordon-Newell-Networks [57], and
BCMP networks [6], the properties have been proven to be most valuable. Re-
versibility and quasi-reversibility allow to derive performance measures analytically,
i.e., not by numerical techniques, but by closed mathematical formulae. There is no
need to construct the state space, i.e., the generator matrix of the Markov chain un-
derlying a model with product-form. However, since product-form solutions do allow
the derivation of Markov chain probabilities (and it is still necessary to obtain them
to derive measures for, e.g., queueing networks), the structure of the state space must
be known in advance. For closed queueing systems, for example, the state space can
usually be described by all vectors of non-negative integers, which entries sum up to
a certain constant.

Since product-form solutions are very attractive, there were also approaches to define
classes of other performance models with underlying reversible or quasi-reversible
Markov processes.

Symbolic methods: The most recent and very promising approaches to represent the
generator matrix of the considered Markov process is based on the work of Bryant on
Binary Decision Diagrams (BDDs) [23, 24]. Bryant has introduced (ordered) BDDs
as an efficient means for the representation and manipulation of Boolean functions,
which can be represented as a set of strings of fixed length of zeroes and ones. Such
set of strings can be represented in a directed acyclic graph, where each path in this
graph represents one string. The graph is constructed in a way such that isomorphic
sub-graphs are amalgamated.

The idea to represent state spaces in terms of OBDDs is based on an encoding of
states and transitions as binary functions (i.e., as a set of strings of zeroes and ones).
It has been demonstrated that the BDD representation of a state space can be very
memory efficient: Markov chains can be represented in the memory of a simple PC,
for which a solution would require centuries.

Initial work for stochastic transition systems has been done by Siegle [129, 130], based
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on earlier work of Clarke et al. [37], and Hachtel et al. [59]. The latest approach,
based on a mutation of BDDs, called MDDs (Multi-valued decision diagrams), and
Kronecker techniques is from Ciardo et al. [29, 30, 32].

All approaches that we have presented in this section have at least one of the two following
limitations:

1. The steady-state probability vector of the considered Markov process must be repre-
sented explicitly in the memory of the computer (except, perhaps, for product-form
solutions). The size of this solution vector grows exponentially in the size of the
model.

2. The derivation of the steady-state distribution takes usually an amount of time that
also grows exponentially with the size of the model.

Hence, although the state space of the considered Markov process might be represented
very efficiently by the described approaches, the practical applicability is still restricted by
the memory requirements of the solution vector and the time one wants to wait until a
result is computed.

Methods Based on Model Modification

In this section, we will consider a class of approaches which do tackle the problem on a
higher level. Instead of finding a way to compute steady-state measures of the overall
Markov chain, the model itself is manipulated before computations take place. The aim of
this approach is to actually reduce the complexity of the solution task.

Inherent to such an approach is that the model is modified. As a consequence, the measures
that are eventually derived from it differ possibly from that of the original model. Moreover,
the manipulation can alter the structural properties of the model in such a way that only
a subset of those performance measures can be obtained that could be derived at least
theoretically from a steady-state analysis of the original, overall Markov process.

A typical example for a model modification approach is the decomposition of the model:
the model is decomposed in several sub-models, which are then solved in isolation. If
the model is, for example, a Petri net, then a decomposition approach would cut the net
in smaller subnets, which are then perhaps solved in isolation by the usual steady-state
analysis. Generally, it will be the case that only measures that are valid for the subnets
can be derived. Measures that relate to two or more different subnets, however, can not be
computed, since subnets are treated independently from each other. Measures that relate
to more than one sub-net are usually not expressible by these independent measures.
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Example 1.1

We illustrate this with an informal example. We assume a small dependability model
(it is not important how it is modelled), that comprises a machine which is either
operational or out of order, and a repair person. If the machine breaks down, the
repair person comes to repair the machine and to set it back to operational. The
repair person, however, can have vacations, which possibly result in a delay of the
repair. A measure of interest now could be the probability that the repair person has
her holidays when the machine breaks down. With an ordinary steady-state analysis,
this probability can be easily obtained. However, when we decompose a model of
this system and consider the machine and the repair person as different components,
then all we could probably derive are the probability that the machine breaks down
and the probability that the repair person has her holidays—but not the conditional
probability that the repair person has her holidays when the machine breaks down.

To summarise, model manipulation techniques might reduce the set of measures that can
be obtained for models.

We discuss now in more detail three model manipulation techniques which are based on
decomposition and aggregation.

FES method: An early approach that is based on decomposition and aggregation has
been developed for queueing networks [27]. The technique decomposes a closed queue-
ing network into an FES sub-network (FES stands for Flow Equivalent Server) and
the complement sub-network. The FES sub-network is short-circuited to form a closed
network again. Then, for different job populations k = 1, . . . , K, the throughputs
T (k) across the short-circuit of the FES sub-network are computed. The complement
sub-network is also closed again, where the FES sub-network is replaced by a single,
load-dependent queue (the FES node). The parameters of the queue are derived from
the throughputs T (k). The complement sub-network with FES node is then solved
by the usual methods available for load-dependent queueing networks.

The approach yields exact results if the considered original queueing network has a
product-form solution. Otherwise, the results are approximations.

Decomposition and Response Time Preservation: Stochastic marked graphs (SMGs)
are a special class of stochastic Petri nets which only allow zero or one token to
be in a place and which are decision free. For SMGs, Campo, Silva, Jungnitz et
al. have worked on decomposition techniques based on Response Time Preservation
(RTP) [2], which has much similarities to the FES method described above: SMGs
are cut in subnets along some cutting lines [26]. For each piece, a closed sub-net is
constructed, where the respective other sub-nets are replaced by a single transition,
respectively. A superordinate SMG is constructed which describes the dependencies
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among sub-nets. The modified sub-nets, together with the superordinate net, are
solved and special export parameters from the sub-nets are mutually imported in
the respective other nets. The nets are repeatedly solved, each time with updated
export/import parameters. The procedure stops when the imported parameters con-
verge. The measures obtained are local to the sub-nets.

Near-Independence: Ciardo and Trivedi have proposed a method to decompose stochas-
tic reward nets (a special kind of stochastic Petri nets) into nearly-independent parts,
to define stochastic measures that describe the dependencies between the parts and
to solve the parts (possibly involving an fixed-point iteration) [31]. The difference to
the previous method is that no restriction on the structure of Petri nets is assumed,
and that the decomposition heavily depends on the attribute near-independent. The
less different sub-parts of an SRN do interact, the more they are suitable to be con-
sidered in isolation. The perfect case would be when there was no interaction at all,
but that would be a trivial case not worth any consideration. The problem with this
approach is that it is very difficult to identify nearly-independent parts of an SRN.
This requires intuition and skill.

Adaption to SPA

For SPA, several of the above approaches have been adapted or exploited to overcome the
state space explosion also for SPA models. A complete survey can be found in [74].

1. Harrison and Hillston have defined classes of SPA processes such that the underlying
Markov process is reversible [77]. Thomas and Gilmore have defined a class of SPA
processes that is quasi-reversible [134]. Both approaches allow product-form solution
of the underlying Markov process.

2. Mertsiotakis and Hillston have developed a method to exploit near-decomposability
by time-scale decomposition of SPA processes [72, 108].

3. Buchholz has defined a semantics for an SPA that is based on the Kronecker ap-
proach of Plateau for SANs [25]. A similar approach has been chosen by Hillston and
Kloul [75].

4. Mertsiotakis and Silva developed an algorithm that is based on the RTP approach
described above [107, 108].

This Dissertation

The approaches so far developed for the decomposition of SPA models have been all more
or less motivated by existing approaches for other formalisms. The general method for
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all of them is to find a class of SPA models that has the same or similar properties that
are required for an analysis by the already known techniques. The requirements that have
to be met by the specifications such that the considered Markov process has the required
property to be exploited, are sometimes a bit artificial, when formulated for SPAs.

In this dissertation, we go a different way. We focus strictly on stochastic process alge-
bras. While in other formalisms compositionality is an artificial concept, it is inherent in
stochastic process algebras. Thus, the invention of a genuine, component based solution
approach for stochastic process algebras that takes advantage of the compositionality is
very promising.

Compared to the approaches presented in the previous sections, our view on SPA models
is very similar to that chosen by Ciardo and Trivedi [31] (although we will never try to
adapt their solution approach): components of an SPA specification can be seen as nearly-
independent parts of the whole system. It is our belief that this view on SPA models is
the most natural one, since the identification of nearly-independent parts of the system is
already given by the compositionality of the specification.

Outline of this Dissertation

This dissertation assumes knowledge of basic probability theory and the theory of Markov
processes. In Appendix A and B, the most common notations, definitions, and results for
the formalisms used are summarised.

We begin in Chapter 2 with a concise review of the theory of process algebras, its stochastic
extensions, and the solution techniques available for them.

In Chapter 3, we introduce the SPA YAWN , which we will use in the subsequent chapters.

In Chapter 4, we introduce local measures for the components of a YAWN specification.
Moreover, we identify the stochastic dependencies between the different components of
a YAWN process. Finally, we characterise waiting times and show that they are the
measures on that a component-wise steady-state analysis could be based upon.

In Chapter 5, we identify a class of processes that can be solved very efficiently without
the need of constructing the complete state space. We show that the memory requirements
for this approach grow only linearly with the number of components. Therefore, the state
explosion problem is avoided for this class of processes. We show that waiting times for
this class of processes can also be derived. All derived quantities for this approach are
exact. However, only local measures can be computed.

In Chapter 6, we introduce an event structure semantics for YAWN . Then, we define first
some important stochastic measures in terms of the event structures, then we consider the
possibility to actually compute them. Our results, unfortunately, show that an approach
based on event structures does not help to derive performance measures more efficiently.

In Chapter 7, we summarise the thesis, discuss the achievements and tie up some loose
ends.





Chapter 2

Stochastic Process Algebra

In this chapter, we will give a short introduction into the theory of process algebras and
stochastic process algebras. Nothing in this chapter is original. Most of the presented
material is from the books of Baeten et al. [5], Milner [110], Hennessy [65], and the work
from Hillston [73], Hermanns [66], and many others.

2.1 Process Algebra in a Nutshell

Process calculi are formalisms which are designed to describe reactive systems. Such de-
scriptions (or specifications) are expressed by means of a simple formal language with
well-defined semantics. Among the first and best-known representants of process calculi
are CSP [78, 79], CCS [109, 110], and ACP [5]. Research on all of them has begun in the
early 80’s.

The approach to describe reactive systems by means of a language was inspired by the
research on the field of functional programming languages. There, it has been shown that
a simple calculus, the λ-calculus, is expressive enough to compute all functions that can
also be computed by a Turing machine. On basis of the λ-calculus programming languages
have been defined, like LISP.

One of the aims for the invention of process calculi (among others) was to create a simple
formalism that can capture all important aspects of reactive systems, as the λ-calculus can
for computable partial functions. Methods and means are very similar to those that have
been used in the area of functional programming. Research has been fruitful, and as one
result, the process calculus CSP served as a basis for the programming language OCCAM,
which was particularly well suited to describe programs on tightly-coupled multi-processor
systems (transputer). Also based on CSP, Brinksma and others developed the specification
language LOTOS [21, 22], which eventually has been standardised by the ISO [82].

15
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2.1.1 The Structure of a Process Calculus

The entities on which all process calculi are based upon are so-called actions. Actions
denote the possibility of the occurrence of an activity. The most basic non-trivial activity
is the execution of an action. Actions are atomic, i.e., they either occur completely or
not at all. Process calculi are formalisms which define how the atomic actions can be
combined to describe more complex behaviour. We say that the behaviour thus described
forms a process. A certain set of combinators has been developed with the purpose to
define the behaviour of complex processes as a combination of more simple ones. Each
process calculus has its own special set of operators, but they all can be classified. We
describe this classification in the next paragraph.

The most simple imaginable behaviour is when nothing can happen. This behaviour must
be expressible. Some process calculi, like e.g. CCS, introduce the special process stop, the
process that never does anything. Other process algebras define the actions themself as
the most basic processes, i.e., if a is an action, then a is also the process that can execute
the action a. The process that does nothing is then represented by the empty string, ε.
Some process calculi have a special notion of deadlock as well as for successful termination
of a process. ACP, for example, defines the special process δ, which denotes the process
which runs in a deadlock (“with a crunching sound”, as figuratively described in [8]).

On top of the basic processes, other processes can be defined inductively. The operators
used for this can be classified as follows:

Sequential composition and prefixing. As already mentioned above, in ACP the most
basic process is the action. Hence, to describe the successive execution of actions, an
operator for sequential composition, ·;·, of processes is needed. On the other hand, if
we regard the stop process as the only basic process, we must consider the actions as
operators on processes, i.e., if P is a process then a(P ) is a process that can perform
an action a and then behaves as P . Normally, to spare the parentheses, a(P ) is
written as a.P .

Choice. The purpose of choice operators is to denote the possibility of choice between
different behaviours. Choice is often denoted by +, and if P, Q are processes, then
P + Q denotes the process that can either behave as P or as Q. There are different
ways how a choice can be resolved, a decision can be made. We can distinguish
between external choice, i.e., the choice of an alternative is influenced externally,
or internal choice, i.e., the process decides for itself which alternative is chosen. In
some process calculi, external and internal choice are explicitly expressed by different
operators (e.g., in [98]). In other calculi, only one operator is defined and whether
the choice has to be seen as external or internal depends on the situation.

Recursion. With the sequential and choice operators, only finite behaviour can be de-
scribed. Since reactive systems generally never terminate, a formalism to describe
such systems should have a facility to describe infinite behaviour. In the context of
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process calculi there are two approaches to do so: defining equations and recursion
operators.

For the first approach, a set CONST of so-called process constants is needed. A

constant C ∈ CONST is assigned a process by means of a defining equation: C
def
=

a.C ′ is an example for such a defining equation. It states that C behaves as a.C ′.
C ′ can itself be a process constant or a process. Whenever a process constant C
occurs in a process, its behaviour is determined by the process on the right side
of its defining equation. Defining equations can be recursive, i.e., the constant to
be defined can occur within the expression that it defines. The defining equation

A
def
= a.A is an example. Intuitively, A is supposed to be the process that can execute

an infinite number of a actions. We can say that the process that can make an infinite
number of a is the solution of this recursive equation1. There is no process expression
which really expresses this behaviour—at least, not a finite one. Obviously, recursive
equations define processes only implicitly, i.e., their solution can not be represented
by a finite process term which contains only prefix and choice operators. Nevertheless,
for some cases it is desirable to have such a finite representation, and a satisfying
workaround has been invented. So-called recursion operators recX for X ∈ VAR must
be defined, where VAR is a set of process variables. The solution of the recursive

defining equation X
def
= P is then explicitly denoted as recX : P . For the above

example that means that recX : P behaves like the process P [recX : P/X], where
P [recX : P/X] is the process term where simultaneously all occurrences of X in P
are syntactically replaced by recX : P .

As long as only a finite number of (recursive) equations is employed to express the
(non-terminating) behaviour of a process, the both forms to define infinite behaviour
are equivalent in the sense that a finite system of defining equations can be repre-
sented by a recX expression, and each recX expression can be converted to a finite
system of defining equations.

Parallel Composition. The parallel operators are the operators that make process cal-
culi powerful formalisms for the description of reactive systems. With the parallel
operator it is possible to define entities that can interact, either by simple synchro-
nisation or even by communication with value passing. It is, of course, also possible
to model independent parallel execution of processes. The major differences between
process calculi can be found in the definition of the parallel operators. As examples
we consider CCS and LOTOS.

The CCS style of parallel composition assumes a special structure of the set of actions.
For each action a, there is a complementary action ā. We call a a send and ā a receive

action. Then, if we put the process P
def
= a.stop and Q

def
= ā.stop in parallel, i.e., if we

1Not all recursive equations have a unique solution. For example, the equation X
def
= X has infinitely

many of them. Generally, in an recursive equation, all occurrences of the recursion variables must be
guarded, i.e., prefixed with an action, to guarantee the existence of a unique solution of the equation.
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consider the process R
def
= P |Q, then both P and Q can communicate: both processes

execute a and ā simultaneously. a is also said to be a channel between P and Q.
Synchronisation in CCS is a two-party matter, i.e., no third process can take part in
it.

In LOTOS, things are different. There we have no complementary actions. The
communication is not necessarily between only two parties. The parallel operator is
equipped with a subset of the action set, the synchronisation set . This set contains
all those actions on which the combined processes have to synchronise over.

Example 2.1

If we consider the processes P
def
= a.b.c.stop and Q

def
= d.b.e.stop, then R

def
= P‖bQ

denotes a process in which both P and Q can perform the actions a and d
independently from each other, but must then synchronise over action b in order
to proceed. After the synchronisation has taken place, both P and Q can proceed
again independently from each other, i.e., the can perform the c action and the
e action, respectively.

Example 2.2

If we consider the process (P‖bQ1)‖bQ2, where Q1
def
= Q2

def
= Q, then all three

processes can start independently from each other, but have all to take part in
the synchronisation over b before they can execute their respective last action.

A slight restriction of the LOTOS synchronisation is used in CSP, where the syn-
chronisation set is the intersection of the actions that occur in the processes put in
parallel.

Hiding and restriction. Another important class of operators is that of the hiding or
restriction operators. The purpose of these is to mark the scope of actions which
should never again take part in synchronisations. To do so, a special action is in-
troduced, which is often denoted as τ or i: the internal action. If we reconsider
Example 2.2, process Q2 could be inhibited from participating in the synchronisation
over b that P and Q1 are already involved in. The idea is to restrict the scope of
a synchronisation. This is done by means of the postfix operator \H, where H is a
subset of the action set. The effect of the hiding operator is that all actions in H are
hidden away: they are no longer visible from the outside. Then, a process where P
and Q1 do synchronise and Q2 proceeds independently from both can be expressed
as (P‖bQ1) \ {b}‖{}Q2.
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Another purpose of the hiding operator is that of abstraction. Once the actions of
a process are hidden, they are no longer visible from the outside and do not longer
play a role. The internals of a specification are hidden away.

2.1.2 Syntax and Semantics

In the previous section we have introduced the main modelling facilities that come with
process calculi. The description was most incomplete and informal. In this section, we
want to show how specifications, written down in a process calculus language, can be given
a precise, unambiguous meaning. A specification in a process calculus is a syntactic entity;
it is a word from a certain language defined by some grammar. To give meaning to these
terms normally means to assign a certain mathematical structure to the specification, which
somehow describes the aspects of the behaviour that the writer of the specifications has
in mind. Many different mathematical structures have already been used to give meaning.
Nevertheless, there is one structure that serves as a standard semantics for almost every
process calculus introduced so far: the labelled transition system.

Definition 2.3 A labelled transition system is a tuple (S, Lab, T ), where S is a set of states,
Lab is a set of labels, and T ⊆ (S × Lab × S) is a set of labelled transitions.

The states denote the states of a process, and the transitions denote the possible state
changes of the process. The assignment from process term to transition system is normally
done by a concept introduced by Plotkin [120], the structured operational semantics (SOS).

We want now give an explicit definition of syntax and semantics of an process calculus
that is similar to LOTOS. The first thing to do is to define the set of actions that are
executed by processes. By Com we denote the set of visible actions. Visible actions are
those actions that can be influenced from the outside by means of synchronisation. Then
we define one special action, i 6∈ Com, the internal action. Action i is an action that can
never be influenced from the outside: it is never possible to synchronise over i. We define
Act = Com ∪ {i} to be the set of all actions.

Now we are ready to define a formal language for our process algebra, the language of all
process descriptions:

Definition 2.4 The language LPA is that defined by the following grammar:

P −→ stop | a.P | P + P | P‖SP | P \ H | A

where a ∈ Act , S ⊆ Act , H ⊆ Com, and A ∈ CONST .

The structural operational semantics for this language is now given by a labelled transition
system. The state space S is a set of processes, the set of labels are the actions (i.e.,
Lab = Act). The state space as well as the transitions are derived by means of a set of
derivation rules. If (P, a, P ′) is a transition, then we write P

a
−−→ P ′.



20 Chapter 2

The SOS rules take the form

PREMISES

CONCLUSION
(side conditions).

The premises and conclusions make statements about the membership of labelled transi-
tions in the transition system to be defined. The side conditions give further requirements
for the applicability of the rule. There are special rules without premises, which are the
axioms of the SOS. Usually, there is only one axiom in an SOS, namely

a.P
a

−−→ P
.

Actually, this is an axiom pattern, since P ∈ LPA is an arbitrary process term. It states
that

for all processes that are syntactically of the form a.P for P ∈ LPA,

a.P
a

−−→ P

is a valid transition from a.P to P .

The next rule is not an axiom pattern, but a derivation rule:

P
a

−−→ P ′

P + Q
a

−−→ P ′

It states:

Whenever P
a

−−→ P ′ is a valid transition, then P + Q
a

−−→ P ′ is a valid
transition as well.

The other rules are read in a similar fashion and hence we list them only uncommented in
Table 2.1.

If we have given a process P ∈ LPA, then the SOS rules allow us to derive from P all
transition which originate from P . This has be done by repeated application of the SOS
rules. Such repeated applications of derivation rules form a derivation tree.
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a.P
a

−−→ P

P
a

−−→ P ′

P + Q
a

−−→ P ′

Q
a

−−→ Q′

P + Q
a

−−→ Q′

P
a

−−→ P ′

A
a

−−→ P ′
(A

def
= P )

P{recX : P/X}
a

−−→ P ′

recX : P
a

−−→ P ′

P
a

−−→ P ′

P‖SQ
a

−−→ P ′‖SQ
(a 6∈ S)

Q
a

−−→ Q′

P‖SQ
a

−−→ P‖SQ′
(a 6∈ S)

P
a

−−→ P ′Q
a

−−→ Q′

P‖SQ
a

−−→ P ′‖SQ′
(a ∈ S)

P
a

−−→ P ′

P \ H
τ

−−→ P ′ \ H
(a ∈ H)

P
a

−−→ P ′

P \ H
a

−−→ P ′ \ H
(a 6∈ H)

where a ∈ Act , S ⊆ Com, H ⊆ Com, and X ∈ VAR.

Table 2.1: LPA structural operational semantic rules

Example 2.5

We consider the process

P
def
= a.b.stop + b.c.stop‖a(a.c.stop‖aa.d.stop)

For P , we can derive the following derivation tree:

a.b.stop
a

−−→ b.stop

a.b.stop + b.c.stop
a

−−→ b.stop

a.c.stop
a

−−→ c.stop a.d.stop
a

−−→ d.stop

a.c.stop ‖aa.d.stop
a

−−→ c.stop‖ad.stop

a.b.stop + b.c.stop‖aa.c.stop‖aa.d.stop
a

−−→ b.stop‖ac.stop‖ad.stop

Please note that P can execute more than one action (namely b), hence there are
more derivation trees for P .

The semantics for this PA is then a transition system that contains exactly all those
transitions that can be derived by the rules of Table 2.1.
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2.1.3 Process Algebra

Till now we have only written about process calculi as tools to describe concurrent systems.
But generally, these formalisms are called process algebra. The main purpose of the formal
modelling of concurrent systems is not only to describe them, but to reason about them.
One of the most important questions is whether two descriptions of the same system
are equal. This requires a formal definition of what equality between process descriptions
means. There are many ways to define equality between processes, each one a little different,
one more discriminating, and the other more levelling.

If a notion of equality does already exist, it is necessary to find a way to prove the equality
of two descriptions.

There have always been two approaches to solve these problems, which in some sense are
complementary to each other. For both approach it is necessary to define the objects on
which all reasoning is focussed on: a language, which describes processes.

Algebraic approach. The first approach starts with the definition of an algebra on the
set of all process descriptions. This means, that a set of equations on the terms is
defined, which is initial in the sense that they are sufficient to prove whether two
arbitrary processes are equal or not. This is nothing else then the definition of an
abstract algebra with a carrier set and a set of axioms. Generally, this approach
would be sufficient to decide between the equality of processes (if this question is
decidable at all! This is generally not the case.). But this might be cumbersome.
It is hence sometimes more elegant to find a concrete model for the algebra, i.e.,
to define a semantics for it that is fully abstract with respect to to the equality
defined by the algebraic laws [137]. Fully abstractness means that iff two processes
t1 and t2 are equal in the algebra, then their semantics, the associated mathematical
objects [[t1]] and [[t2]] are identical. If the semantic objects are easy to identify or to
distinguish, then the decision of equality or difference of two process descriptions is
much easier.

Example 2.6

The first version of CSP was a process algebra with a trace semantics: the
meaning of the considered processes is given by means of the set of action se-
quences (traces) that a process can execute. This semantics shows that the roots
of process algebra is classical automata theory and formal languages. As was
shown, a trace semantics is not general enough. For example it is not possible
to determine the deadlock–freeness of processes.

Behavioural approach. The language is given a semantics. Generally this means, for
each process description a mathematical object is derived which is meant to describe
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the behaviour of the process. Then, by reasoning on the semantic objects, an equiv-
alence relation on the process terms is derived which is meant to be the equality
that is looked for. The equality is required to have the plug-in replacement property,
i.e., it must be a congruence with respect to the operators of the considered process
algebra.

Once the equivalence is chosen and proven to be a congruence, the process calculus
is ready to become a process algebra. To do so, a set of axioms must be defined
which induces a notion of equality on the set of processes terms. The equality must
coincide exactly with the congruence relation defined before.

In the following, we will describe one of the most common congruences that is used to
define equality on processes: bisimulations.

2.1.4 Bisimulation

Bisimulations [118] are the most common congruences for process algebras, and for nearly
every one a notion of bisimulation has been defined. In the following definition we introduce
bisimulation for processes in LPA.

Definition 2.7 A relation r ⊆ LPA × LPA is a strong bisimulation, if PrQ implies for all
a ∈ Act :

– ∀P ′ ∈ LPA : if P
a

−−→ P ′ then ∃Q′ ∈ LPA : Q
a

−−→ Q′ and P ′rQ′

– ∀Q′ ∈ LPA : if Q
a

−−→ Q′ then ∃P ′ ∈ LPA : P
a

−−→ P ′ and P ′
rQ′

Two processes P and Q are said to be strongly bisimilar (P m Q) if there is a bisimulation r

such that PrQ.

Informally, we can characterise bisimilarity as follows: two processes P, Q are considered
to be bisimulation equivalent, if there is a bisimulation r such that, if PrQ, both processes
can execute the same sequences of actions, and after the execution, can stop in states P ′, Q′

such that P ′rQ′. Strong bisimilarity m is an equivalence relation on LPA, and it can be
shown that it is also a congruence with respect to all language operators.

Another important bisimulation congruence is weak congruence [110]. The most important
thing about this congruence is that it abstracts from the execution of internal actions.



24 Chapter 2

2.2 Stochastic Process Algebra

Stochastic process algebras have been invented in the early 90’s. The research on the
subject is stimulated by Herzog [69, 70], although earlier approaches seemed to have been
proposed already in 1985 [117].

We will keep this section short and describe only the general picture, since in Chapter 3
an SPA is introduced in greater detail.

2.2.1 Introduction

The main idea of stochastic process algebra is to incorporate quantitative information in
a qualitative process algebra model. In the approaches proposed so far, the quantitative
information is given in terms of distribution functions or random variables, which denote
the duration of an action. Those durations are specified together with an action.

Although the aim of the first SPAs was already to provide support for generally timed
actions, the approaches where practically not feasible. As a consequence, research has fo-
cussed on exponentially distributed durations of actions, which made it possible to describe
the stochastic behaviour of SPA processes by Markov processes. The first representatives
of Markovian stochastic process algebras were PEPA [73], EMPA [12], MPA [25], and
MTIPP [67]. The most recent representant of Markovian process algebra is IMC [66].
Some SPA are non-Markovian, first of all to mention ♠ (Spades) [41], and Interactive
Generalised Markov-Chains [19]. ♠ is designed as a modelling language for simulation
models.

Why should a system developer bother with stochastic process algebra? This has three
good reasons.

1. In the development phase of distributed systems, be it computer systems or com-
munication systems, the performance evaluation of a newly designed system often
comes very late in the design process. The design might be functionally correct and
a prototype might already exist, but if the performance of the system is assessed too
late, the developers might experience a bad surprise, if their system does not meet
the performance criteria that it should. In such a case, the system design must often
be started from scratch. Such a scenario lets it appear reasonable to consider the
performance aspects as early as possible in the design trajectory.

2. Performance evaluation is based on models. If one wants to evaluate the performance
of a system in an early design stage, a model of the considered system has to be
created. If the same developer wants to ensure that the design of his system is
correct from a qualitative point of view, he probably has to define another model of
his system, which he then must verify or check.

With SPA, only one model must be defined. This has immense advantages:
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• Only one model has to developed, which saves time.

• The integrated approach ensures that qualitative as well as quantitative descrip-
tions relate to the same system.

• The performance measures can be interpreted in the qualitative model.

3. Stochastic process algebras allow to describe the qualitative, logical, as well as the
quantitative, temporal behaviour of distributed systems in a single formalism. The
qualitative description is nothing else but an “ordinary” process algebra description
of the considered system. Hence, all techniques and tools for verification and model
checking that have been developed for process algebra yet can also be applied to
stochastic process algebra. The delay specifications define implicitly an stochastic
process which can be evaluated, either analytically, numerically, or by simulation,
depending on the properties of the underlying stochastic process.

The main idea of SPAs is to enhance actions with a notion of duration. Durations are
described stochastically by means of distribution functions. In Markovian SPA, only ex-
ponential distributions are considered as delay distributions. An exponential distribution
function is uniquely determined by its rate, so it is possible to accompany an action simply
with a rate to specify the desired duration distribution. A nice property of exponential
distributions is that their mean value is 1/λ. A typical, although simple, SPA process is

then P
def
= (a, λ).P ′, where a is an action and λ the rate of the action duration. P has to be

understood as the process that executes action a, which takes an exponentially distributed
random amount of time with mean value 1/λ, and which then behaves as P ′.

Since the rate is the only information that has to be added to an action, we can define the
syntax of a simple SPA as follows:

Definition 2.8 The language LSPA is defined by the following grammar:

P −→ stop | X | (a, λ).P | P + P | P‖SP | P \ H

where a ∈ Act , λ ∈ IR+, S ⊆ Act , H ⊆ Com and X ∈ VAR.

As we see, only the syntax of the prefix operators change: actions are now accompanied
by a positive real value, the rate of the duration distribution.

We now give a further example to illustrate the behaviour of SPA processes.

Example 2.9

The process P
def
= (a, λ).P ′ +(b, µ).P ′′ for P ′, P ′′ ∈ LSPA executes either action a and

behaves then as P ′, or action b and behaves then as P ′′. Assuming, that the environ-
ment has no influence (for example, by means of synchronisation), the actions a and
b are here in a “race condition”. The decision which action is chosen is determined by
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the length of their respective duration: the quicker one wins. Although this sounds
complicated, the choice can be described stochastically in terms of the rates λ and µ:
the duration until one of the both actions is executed is still exponentially distributed
with parameter λ + µ. The probabilities which of the both actions is executed can
be expressed in terms of the rates, and they are equal to λ

λ+µ for action a and µ
λ+µ

for b. Again, we assume that an action is atomic: it is executed either completely, or
not at all. Hence, the action that looses a choice leaves no traces.

The recursion and hiding operators are used as in non-stochastic process calculi. The
parallel composition of processes, however, is more difficult to treat. Although the most
Markovian process algebras employ a CSP/LOTOS style synchronisation (from the func-
tional point of view), they differ in the way in which durations are assigned to synchronising
actions. In fact, the major differences between the different stochastic process algebras is
how the temporal aspects for synchronisation are treated.

2.2.2 Variants of SPA

The established Markovian SPAs all use a parallel composition that is related to that of
LOTOS: processes that are combined can proceed independently from each other, unless
the action to be executed is member of a given set of actions on which all participating
processes have to synchronise over. Such a synchronising action should, for consistency rea-
sons, also have an associated duration distribution, represented by a rate. A synchronising
action describes an activity that is executed by all participants. It is convenient to think of
this as a cooperation between the participating processes, as coined by Hillston [73]. The
problem is now to derive a rate that is appropriate to be assigned to such an synchronised
action.

In Figure 2.1, the problem is illustrated: we have two processes, P
def
= (a, λ).P ′ and

Q
def
= (a, µ).Q′, and we consider the process (a, λ).P ′‖a(a, µ).Q′. Clearly, (a, λ).P‖a(a, µ).Q

should be able to make an a-transition, but which rate should be assigned? For the mo-
ment all we want to assume is that it should be a value that is derived from the rates λ
and µ by means of some function f . Intuitively, a cooperation should start, if all individual
components that must be involved in the cooperation are ready to do so, and it should
end when all components participating in the cooperation are ready with their local con-
tribution. If X1, X2, . . . , Xn are exponentially distributed random variables which express
the duration of the participants of a cooperation, the duration of the cooperation itself
should then be expressed as max{X1, X2, . . . , Xn}. Hence, we could consider to assign
1/E[max{X1, X2, . . . , Xn}] as the rate of the cooperation. For the example in Figure 2.1,
then f(λ, µ) = fmax(λ, µ) = E[max{Xλ, Xµ}]−1, where Xλ and Xµ are exponentially dis-
tributed random variables with rate λ and µ, respectively.
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(a, µ).Q′

Q′

a, µ

P ′

a, λ

(a, λ).P ′ (a, λ).P ′‖a(a, µ).Q′

P‖aQ
′

‖a

a, f(λ, µ)

Figure 2.1: Cooperation between processes

However appealing this idea seems to be, it does not work. As has been discovered by
Götz [58], the function f must be associative (i.e., f(x, (f(y, z)) = f(f(x, y, ), z)) and dis-
tributive with respect to + (f(x, y + z) = f(x, y) + f(x, z)). The function fmax, however,
does not respect the associativity of the parallel operator.

The difference between the different Markovian process algebras lies in the definitions of
the function f . For TIPP, f = fTIPP is the ordinary real number multiplication. For
PEPA, the definition of f = fPEPA is a bit more involved. We define the apparent rate
ra(P ) of a process P with respect to action a as follows:

ra((b, λ) =

{
λ if b = a
0 otherwise.

ra(P + Q) = ra(P ) + ra(Q)

ra(P \ H) =

{
ra(P ) if a 6∈ H
0 otherwise.

ra(P‖SQ) =

{
ra(P ) + ra(Q) if a 6∈ S
min{ra(P ), ra(Q)} otherwise.

Then, the cooperation of two PEPA components is defined by the rule

P
(a,λ)

−−−−−→ P ′ Q
(a,µ)

−−−−−→ Q′

P‖SQ
(a,R)

−−−−−→ P ′‖SQ′
(for a ∈ S),

where

R = fPEPA(λ, µ) =
λ

ra(P )

µ

ra(Q)
min{ra(P ), ra(Q)}.

A more thorough introduction in the treatment of synchronisation in stochastic process
algebras and a discussion about the different approaches chosen in the Markovian case can
be found in [20].
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2.2.3 Delays vs. Durations

Hermanns and Rettelbach have proposed a different view on the quantitative extensions
of SPA [68, 66]. The specified times are not seen as durations of actions, but as delays.
Actions themselves are considered as timeless. For the prefix, choice, recursion, and hiding
operators this does not make any difference to the other paradigm. However, for parallel
composition, this has important consequences: synchronisation takes place between time-
less actions and is therefore timeless as well. There is no cooperation anymore, but only
synchronisation.

In [66], this concept has been generalised to a strict separation between timed and untimed
actions: timed actions are always local to a component in the sense that they can not be
used for synchronisations. Timed actions are not visible from the outside. Untimed actions,
on the other hand, are visible (although there are exceptions) and they can be synchronised
with other visible actions.

Even though the renunciation of cooperation does eliminate the problem to find a “rea-
sonable” rate for the synchronising actions, this approach does have its own peculiarity:
nondeterminism.

Nondeterminism is a very important concept in (classical) process algebra. It allows to
specify behaviours which inner mechanisms are not yet fully known or are not required to be
implemented in full detail. In such cases, a model is said to be underspecified. On the other
hand, in stochastic process algebra, nondeterminism is a nuisance: a nondeterministic SPA
model is underspecified and it is not possible to analyse it, since parameters are missing.
We will comment on this problem in Section 3.1.5 in more detail.

2.2.4 Equivalences

As for the non-stochastic case, also for stochastic process algebras congruences have to be
defined. Generally, the defined congruences do combine the pure, functional bisimulation,
as defined in Definition 2.7, with the concept of ordinary lumpability , which is a concept
known from the area of continuous time Markov chains [87]. In Section 3.1.4 we will find
examples for bisimulations of this type.

2.3 Performance Evaluation with SPA

As described in Section 2.1.2, the semantics of process algebra specifications is given in
terms of transition systems. For the Markovian SPA that do not distinguish between timed
and untimed actions, like TIPP and PEPA, all transitions are labelled with actions as well
as rates. The transition system completely describes the CTMC of the considered SPA
process, and only the action labels and self-loops must be eliminated from it (self-loops do



2.3 Performance Evaluation with SPA 29

not have influence on the behaviour of a CTMC). From the resulting transition system a
generator matrix of the CTMC can be obtained most easily.

For the Markovian SPA that distinguishes between timed and untimed actions, there has
more to be done: the untimed transitions have to be eliminated from the transition system.

For IMC, this is done in several steps. We assume an IMC process P , from which we want
to derive a Markov chain. We also assume that there is a transition system T for P has
been derived already. The steps are:

Hiding of all visible actions. Instead of P , P \Com is considered, i.e., all visible actions
are hidden away. All action labels in T are hence converted to the internal action, τ .

State space reduction. Then, for T a transition system, T ′ is derived that is weakly
bisimilar to T and that is minimal, i.e., there is no transition system T ′′ that is
weakly bisimilar to T and that has less states than T ′.

If P is completely specified and does not show nondeterministic behaviour, then T ′ does
only contain timed transitions and can be converted to a CTMC.

Once a CTMC is derived from an SPA transition system, a transient or steady-state prob-
ability distribution can be derived, as described in Appendix B.3.2.

2.3.1 Expressing Performance Measures

All performance measures of an Markovian SPA model can be expressed in terms of the
steady-state solution of the underlying CTMC. However, before measures can be computed,
they must be specified. For this purpose, rewards [80] have proven to be valuable additions
of Markov models [64]. Let {Xt} be a CTMC with state space S. Following [135], a reward
specification is a function r : S −→ IR, that assigns real values, the rewards, to the CTMC
states. The most interesting steady-state reward measures is the expected reward of the
Markov chain, which is defined as

E[M ] =
∑

i∈S

riπ(i),

where π(i) is the steady-state probability of state i of the CTMC.

Since rewards are a well accepted approach to specify measures of interest, they should
also be used in the area of performance analysis with SPA. Till now, two fundamentally
different approaches for the specification of rewards for SPA models have been proposed.
The first [34, 36, 35] uses a separate language based on a temporal logic to assign rewards
to states. The second [9, 11] assigns rewards in the course of the state space construction
to transitions (although, after the generation, the rewards are interpreted for states).

The fact that we can describe all relevant steady-state performance measures by means of
rewards does allow us to neglect the actual derivation of performance measures for SPA



30 Chapter 2

models. It is sufficient to concentrate on the methods to derive the steady-state probability
vector, since this task is completely independent from the question how more expressive
performance measures can be derived from them.

2.4 Conclusions

In this chapter, we gave an introduction in the basic concepts of process algebras and
stochastic process algebra. We have discussed different variants of process algebras, meth-
ods for the definition of semantics, the role of congruences, and finally, the stochastic
extensions of process algebras that are known until now.

The development of process algebras with stochastic extensions is not over yet. The most
recent approach, the modelling language MoDeST [42], integrates the benefits of several
different formalisms for the modelling of stochastic, probabilistic, and non-deterministic
systems. The purpose of the language is to provide an easy-to-use formalism with well-
defined formal semantics, that can be evaluated either by ordinary or probabilistic verifi-
cation, model-checking, numerical performance analysis or simulation.
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Stochastic Process Calculus YAWN

In this chapter, we will define a formalism for the stochastic and functional specifica-
tions of distributed systems: YAWN-MPA(Yet Another Well-defined Nondeterministic
Markovian Process Algebra), abbreviated YAWN . YAWN is a stochastic process algebra
very similar to IMC, defined by Hermanns [66], but there are some differences of technical
nature. All properties of, all techniques developed for and all results derived from IMC
should, however, also hold for YAWN .

The purpose of this chapter is to create a vehicle which is suitable to transport the ideas
that we will develop in the subsequent chapters. Where appropriate, we will refer to the
results of Hermanns [66] or other authors. Only special properties of YAWN are treated
in more detail.

Outline of this Chapter. In Section 3.1, we introduce syntax, semantics and equiva-
lences of YAWN . In Section 3.2 we define how we derive continuous-time Markov chains
from YAWN processes. In Section 3.3, we conclude the chapter.

3.1 YAWN

In this section, we introduce the basic definitions for YAWN . In Section 3.1.1, we define
the action set, which has some unusual properties, compared with other SPA. In Sec-
tion 3.1.2, we define the transition systems that we will use to define the semantics of
YAWN . In Section 3.1.3, the syntax and operational semantics of YAWN is introduced.
In Section 3.1.4, we introduce two different notions of bisimulation, which we need later in
the thesis. Since YAWN is similar to IMC, nondeterminism is also an issue for YAWN .
We comment on this in Section 3.1.5. In Section 3.1.6, we define a class of finite YAWN
processes. We conclude with an example in Section 3.1.7.

31
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3.1.1 Actions

As already described in the previous chapter, actions are the basic entities of process
algebras. By Com we denote the set of visible actions, as defined in Section 2.1.2.

Internal Actions

We define iset to be the set of internal actions. iset is defined as

iset = {ia | a ∈ Com} ∪ {iτ}

Each internal action corresponds directly to a visible action from Com, except iτ , which
purpose is described later. The reason to define a whole set of internal actions for YAWN ,
where other SPA can rely on only one, is the following: the hiding operator of process
algebras usually renames visible actions to one internal action. Once an action is hidden,
it is no longer possible to say where the hidden action came from. Later, in Chapter 5,
we need this information. Therefore, we will define the hiding operator in a way that an
action a will be converted to internal action ia. An action ia has all the properties of an
“ordinary” internal action (i.e., synchronisations over ia are not possible), but nevertheless,
it is still possible to see where it came from, since the former action name gets preserved.

We will often refer to the internal action i, which has to be understood as a wild card for
an arbitrary element of iset. As usual, i is said to be the internal action, which, contrary
to the actions from Com, is considered to be not observable.

We define Act = Com ∪ iset.

Timed Action

Another special action needed for YAWN is t. Where all actions from Act are considered
to have no duration, t is an action that explicitly denotes the passing of time, although
the time itself is not specified. How the time is assigned to a t-action will be shown in
Definition 3.1.

We define Comt = Com ∪ {t} and Act t = Act ∪ {t, it}. The internal action it is
needed, since we will allow to hide timed transitions. We will come back to this issue in
Section 3.1.3.

3.1.2 Generalised Markovian Transition Systems

The semantics of YAWN processes is given in terms of transition systems. The transition
systems we use for this are defined as follows:
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Definition 3.1 A generalised Markovian transition system (GMTS) is a tuple (S, A, T,R),
where

• S is a set of states;

• A is a set of labels;

• T ⊆ S × A × S is a set of labelled transitions;

• R : T −→ IR+ ∪ {∞} is a function that assigns transition rates to transitions.

Typical elements of S are s, s′, s′′, s1, s2, . . ., and typical elements of T are t, t′, t′′, t1, t2, . . ..
Transitions labelled with t are meant to be exponentially distributed time delays. The
function R specifies the rates of the distributions. A GMTS is said to be properly timed ,
if, whenever t ∈ T with t = (s, a, s′) and a ∈ Act (i.e., for all actions a 6= t), then
R(t) = ∞. Hence, all internal or visible actions are considered to have no duration, which
is expressed by assigning them an infinite rate. .

Definition 3.2 We call a GMTS (S, A, T,R) together with a state s ∈ S (starting state) a
generalised Markovian process (GMP). We denote a GMP by a five-tuple (S, A, T,R, s).

Some Useful Notations

To access information from a GMTS more easily, we introduce the following notation. Let
G = (S, A, T,R) be a GMTS.

• The set S is said to be the state space from G (abbreviated as SP(G)).

• If t = (s, a, s′) ∈ T , then we define

– src(t) = s (source state of t);

– dst(t) = s′ (destination state of t);

– lbl(t) = a (label of t).

When a transition t has label a then we say that t is an a-transition.

• We adopt the common notation for transitions: if there is a transition (s, a, s′) ∈ T ,
then we write s

a
−−→ s′

• A finite path of length n − 1 ( for n > 0) through the transition system is an al-
ternating sequence of states and labels s1, a1, s2, a2, s3, a3, s4, a4, s5, . . . , an−1, sn such
that for all i with 1 ≤ i < n holds: si

ai−−→ si+1. We say that state s′ is reachable
from s, if there is a n ∈ IN and a path of length n such that s = s1 and s′ = sn+1.
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• We write s
i

���s′, if s′ is reachable from s via a path σ where the actions of σ are all

equal to i. Since paths can be of length 0, the trivial case is included, i.e., s
i

���s
for all s ∈ S.

• Accordingly, we write s
t

���s′, if s′ is reachable from s via a path σ where the

actions of σ are all equal to t. The trivial case is included, i.e., s
t

���s for all s ∈ S.

• For a ∈ Com, we write s
a

���s′′′, if there are states s′, s′′ such that s
i

���s′,

s′
a

−−→ s′′, and s′′
i

���s′′′.

• A transition t ∈ T is said to be an immediate or untimed transition, if lbl(t) ∈ Act .
t is said to be timed, if lbl(t) = t.

• t is said to be a hidden or internal transition, if lbl(t) = i.

• If t = (s, a, s′) ∈ T then α(t) = {a}, if a ∈ Com, else ∅. Hence, α(t) 6= ∅, if lbl(a) is
visible. For G, the GMTS in question, we define

α(G) =
⋃

t∈T

α(t).

α(G) is the set of all actions of GMTS G that are visible.

The states and transitions of GMP G can be classified as follows:

• The set of synchronising states Ssyn(G) ⊆ S of G is defined as

Ssyn(G) =
{

s ∈ S | ∃s′ ∈ S, ∃a ∈ Com : s
a

−−→ s′
}

• A state s of G is called stable, if for all t ∈ T with src(t) = s we have lbl(t) = t and
R(t) < ∞1.

• All states that are not stable are said to be immediate or vanishing .

• A synchronising transition is a transition with an action label that is visible. The
set of synchronising transitions Tsyn(G) ⊆ T is defined as

Tsyn(G) = {t ∈ T | α(t) 6= ∅}

1In the area of Generalised Stochastic Petri Nets, such states are called tangible.
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3.1.3 Syntax and Semantics of YAWN

We define now the language in which YAWN processes will be specified. We first define
the set L of all process algebra expressions. An expression P ∈ L is said to be closed iff
every process variable, say X, occurring in P occurs within the scope of a recX operator,
and if every process constant is defined by a defining equation.

Definition 3.3 (LYAWN) Let L be the language defined by the following grammar:

P −→ stop X A a.P [λ].P P + P recX : P P \ H P ‖S P

where X ∈ VAR, A ∈ CONST , a ∈ Com ∪ {iτ}, λ ∈ IR+, H ⊆ Comt and S ⊆ Com. Then
LYAWN ⊆ L is the set of all closed process algebra expressions. Elements of LYAWN are said
to be YAWN processes.

CONST is a set of process constants and VAR is a set of process variables (cf. Section 2.1.1).
a can be an action from Com, or the special internal action iτ ∈ iset. Note that we have
unusual hiding operators, · \ H. The set H is allowed to contain the timed action t,
which means, that we allow to hide the timed action. We will discuss this in detail after
Definition 3.4.

We assume that the operators have the following precedence: prefix > recursion > hiding
> choice > parallel composition, i.e., prefix has precedence over recursion, recursion over
hiding, etc. Parentheses can be used to circumvent these rules. If we have more than
two processes combined (as, for example, in P1 + P2 + P3 or P1‖SP2‖S′P3 for Pi ∈ LYAWN ,
i = 1, 2, 3) then we assume a left-associative evaluation order: P1+P2+P3 and P1‖SP2‖S′P3

are assumed to be equal to (P1 + P2) + P3 and (P1‖SP2)‖S′P3, respectively. These rules
determine a unique evaluation order, which later will become especially important for the
application of SOS rules.

Please note that the YAWN language comes with bells and whistles: we allow to define
recursion by means of process constants, and by recX operators with process variables.
The only reason for this is to have a more convenient syntax for YAWN .

Frequently, we have to compare elements of the YAWN language syntactically. For two
terms P, Q ∈ LYAWN , we define P ≡ Q, iff P and Q are syntactically equal.

Since we have already described the informal meaning of the operators in Chapter 2, we
proceed now immediately with the semantics. This, again, is given in the style of an SOS.
The derivation rules are listed in Table 3.1.

The semantics of all YAWN processes is described by a GMTS GYAWN . The definition of
GYAWN comes in two stages. In the first stage, the actual transition system of the GMTS
is constructed, i.e., the set of transitions T . In the second stage, the function R is defined.
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1)
a.P

a
−−→ P

2)
[λ].P

t
−−→ P

3)
P

a
−−→ P ′

P + Q
a

−−→ P ′
4)

Q
a

−−→ Q′

P + Q
a

−−→ Q′

5a)
P{recX : P/X}

a
−−→ P ′

recX : P
a

−−→ P ′
5b)

P
a

−−→ P ′

A
a

−−→ P ′
(A

def
= P )

6)
P

a
−−→ P ′

P‖SQ
a

−−→ P ′‖SQ
(a 6∈ S) 7)

Q
a

−−→ Q′

P‖SQ
a

−−→ P‖SQ′
(a 6∈ S)

8)
P

a
−−→ P ′ Q

a
−−→ Q′

P‖SQ
a

−−→ P ′‖SQ′
(a ∈ S)

9)
P

a
−−→ P ′

P \ H
ia−−→ P ′ \ H

(a ∈ H) 10)
P

a
−−→ P ′

P \ H
a

−−→ P ′ \ H
(a 6∈ H)

Table 3.1: SOS rules for YAWN

First Stage

Definition 3.4 (GYAWN , Stage I) We define GYAWN = (LYAWN ,Act t, T,R) to be the
least GMTS that satisfies the rules of Table 3.1.

Actually, we must define GYAWN always relative to a set of defining equations that gives
meaning to process constants. Since definitions of process constants can differ, the def-
inition of GYAWN is only unique with respect to these equations. In the following we
will always make sufficiently clear which set of defining equations we consider, such that
confusion shall never be possible.

Unusual for this semantics of YAWN is that we allow the hiding of timed transitions. This
feature allows us to strip all timing information from a YAWN process, leaving behind a
process that shows only functional behaviour. As a consequence, we later will be able to
compare YAWN processes only with respect to their functional behaviour. Under normal
circumstances, though, it will neither be necessary nor wise to use this feature; only in
Chapter 5 we will find an application for it.
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Second Stage

In the second stage, we define the function R. To do so, we have to introduce an auxiliary
concept. Each transition of GYAWN is derived by successive application of the derivation
rules of Table 3.1. The applied rules form a derivation tree (cf. [110]). We are now
interested in timed transitions, i.e., those transitions with label t. It is possible that for a
transition more than one derivation tree exists. For example, the transition

[12].stop + [10].stop
t

−−→ stop

is derived by

1. Rule 2) (axiom), then Rule 3):

3)
[12].stop

t
−−→ stop

[12].stop + [10].stop
t

−−→ stop

2. Rule 2) (axiom), then Rule 4):

4)
[10].stop

t
−−→ stop

[12].stop + [10].stop
t

−−→ stop

If t ∈ T is a transition, then we define DT t to be the set of all derivation trees of t. For
all timed transitions of GYAWN , the derivation tree starts with exactly one axiom of type
2). We define the multiset

DVRt = {|λ | [λ].P
t

−−→ P is the axiom of a derivation tree d ∈ DT t|}

and let ρ(t) =
∑

λ∈DVRt
λ be the sum of all values in DVRt. For the above example,

t = [12].stop + [10].stop
t

−−→ stop,

we have DVRt = {|10, 12|} and the sum of the rates is ρ(t) = 22.

We are now ready to enter the second stage of the definition of GYAWN :

Definition 3.5 (GYAWN , Stage II) The function R of GYAWN is defined as follows:

R :







T −→ IR+ ∪ {∞}

t 7−→

{
∞ if lbl(t) ∈ Act
ρ(t) if lbl(t) = t



38 Chapter 3

A Bit more Notation

The derivatives of a term P ∈ LYAWN are all those elements of LYAWN that can be reached
by a path starting with P . We call the set of these terms Reach(P ), the reachability set .

With the reachability set of a process P ∈ LYAWN , a GMP which describes the behaviour
of P is implicitly defined.

Definition 3.6 For P ∈ LYAWN , [[P ]] = (Reach(P ),Act t, TP ,RP , P ) is said to be the global
GMP of P , where TP = T ∩ (Reach(P ) × Act t × Reach(P )) and RP = R

TP

.

It is obvious that [[P ]] contains exactly the information to describe the behaviour of P .

To keep notation simple, we write α(P ) instead of α([[P ]]) to denote the set of visible
actions of a global GMP [[P ]]. We say that P is non-interactive if α(P ) = ∅.

3.1.4 Notions of Equivalence

In this section, we define under which circumstances we assume two YAWN processes to
be equivalent (and substitutive) in their behaviour. Since GMP are very similar to IMC
transition systems, we can adopt the definitions from [66].

The congruences we are going to define are strong Markovian bisimulation and weak Marko-
vian congruence.

Strong Markovian Bisimulation

To define strong Markovian bisimulation, we first need a function γM that sums up all
rates from transitions that start in a single state s and end in some state in a set C.

Definition 3.7 (γM) Let (S, A, T,R) be a GMTS and for s ∈ S and C ⊆ S, let

T s
C = {t | t ∈ {s} × {t} × C}.

Then the function γM is defined as

γM :

{
S × 2S −→ IR
(s, C) 7−→

∑

t∈T s
C
R(t).

Example 3.8

Consider a GMTS with states s, s1, s2, s3, s4 and the state sets C1 = {s1, s2} and
C2 = {s3, s4}. In Figure 3.1, we see transitions going from s to si for i = 1, . . . , 4.

Then,
γM (s, C1) = λ + µ and γM (s, C2) = 2λ.
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C2 C1

s4 s3 s2 s1

s

λ λ µ λ

Figure 3.1: Illustration of Example 3.8

Definition 3.9 (Strong Bisimulation) An equivalence relation r ⊆ LYAWN × LYAWN is
a strong Markovian bisimulation iff P r Q implies for all a ∈ Act t and all equivalence classes
C of r:

1. if P
a

−−→ P ′ then Q
a

−−→ Q′ and P ′ r Q′;

2. if P
i

−−−→6 then γM(P, C) = γM(Q, C).

P and Q are said to be strongly Markovian bisimulation equivalent (P ∼ Q) iff there is a strong
Markovian bisimulation r such that P r Q.

It can be shown that strong Markovian bisimulation equivalence is a congruence with
respect to all language operators. For a proof we refer to [66].

Expansion Law

The following law expresses the most basic principle of the operational semantics of process
algebras. It states that for each parallel composition of “sums” of processes P (where the
choice operator takes the role of the sum here) there exists a process P ′ such that P ∼ P ′

and P ′ is the “sum” of parallel compositions. This means that parallelism is not represented
explicitly, but encoded by the choice operator.

Lemma 3.10 (Expansion Law) Let

P =
∑

I

[λi].Pi +
∑

J

aj.Pj

and

Q =
∑

K

[µk].Qk +
∑

L

bl.Ql
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where i, j, k, l range over the respective index sets I, J, K, L. Let S ⊆ Com. Then

P‖SQ ∼
∑

I

[λi].(Pi‖SQ) +
∑

aj 6∈S

aj.(Pj‖SQ)

+
∑

K

[µk].(P‖SQk) +
∑

bl 6∈S

bl.(P‖SQl)

+
∑

A∩B∩S
aj=bl

aj.(Pj‖SQl),

where A = {aj|j ∈ J}, B = {bl|l ∈ L}.

Weak Markovian Congruence

The weak Markovian congruence does abstract from internal actions. To treat internal
transitions properly, we need the following definition:

Definition 3.11 (C i) Let (S, A, T,R) be a GMTS and C ⊆ S. The internal backward
closure C i is defined as

C i = { s′ ∈ S | ∃s ∈ C : s′
i

���s}

A first approach towards the definition of weak Markovian congruence is weak Markovian
bisimulation.

Definition 3.12 (Weak Markovian Bisimulation) An equivalence relation r with r =⊆
LYAWN ×LYAWN is called a weak Markovian bisimulation iff PrQ implies for all a ∈ Act and
all equivalence classes C of r

1. P
a

���P ′ implies Q
a

���Q′ for some Q′ ∈ LYAWN with P ′rQ′.

2. P
i

���P ′ and P ′ 6
i

−−→ imply γM(p, C i) = γM(q, C i).

P and Q are called weakly Markovian bisimulation equivalent (P ≈ Q) if there is a weak
Markovian bisimulation r such that P r Q.

In [66], Hermanns has shown that ≈ is a congruence for all IMC operators (and hence also
for YAWN ), except for the choice operator. The reasons for this are well known due to
Milner [110], and the deficiency is fixed with the following definition:

Definition 3.13 (Weak Markovian Congruence) P and Q are said to be weakly Marko-
vian congruent (P ' Q) iff for all a ∈ Act , all C ∈ LYAWN/ ≈:

1. P
a

−−→ P ′ implies Q
a

���Q′ for some Q′ ∈ LYAWN and P ′ ≈ Q′;
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2. Q
a

−−→ Q′ implies P
a

���P ′ for some P ′ ∈ LYAWN and P ′ ≈ Q′;

3. P stable =⇒ γM(P, C) = γM(Q, C);

4. P stable ⇐⇒ Q stable.

Theorem 3.14 Weak congruence is a congruence with respect to prefix, choice, parallel com-
position and recursion.

Proof: We refer to [66]. →•

Weak Markovian congruence can be used to minimise the state space of a process. A
minimal GMP (with respect to weak Markovian congruence) is one which state space does
not contain states s, s′ such that s ' s′. Lifting this property to the set of process terms
yields the notion of minimal representant .

Definition 3.15 (Minimal Representant) Let P ∈ YAWN . A minimal representant of
P with respect to weak Markovian congruence is a process Pmin ∈ YAWN such that P ' Pmin

and there is no process P ′ ∈ YAWN such that P ′ ' P and #Reach(P ′) < #Reach(Pmin).

Note that Pmin is not necessarily unique.

Example 3.16

Consider P
def
= a.b.stop + b.a.stop and Q

def
= a.stop‖b.stop. P ' Q and both P and Q

are minimal. However, their state space is completely different.

Although there can be different minimal representants of a process P , when we abstract
from the syntactic properties of the states, we find that two weakly congruent minimal
representant have an isomorphic transition system.

A Note on Hiding

As mentioned before, we allow the hiding operators to hide away timed transitions. Unfor-
tunately, this breaks the congruence property of ' with respect to hiding. We show this
by means of the following example.



42 Chapter 3

P

i t

P ′′P ′

'

i

P ′

Q

(a)

P \ {t}

i it

P ′′ \ {t}P ′ \ {t}

6'

i

Q \ {t}

(b)

P ′ \ {t}

Figure 3.2: Branching Structure of P and Q (Example 3.17)

Example 3.17

We consider the process P = i.P ′+[λ].P ′′ and Q = i.P ′ (see Figure 3.2 (a)). Without
loss of generality we assume that P ′ 6' P ′′. Certainly, P ' Q. However, generally
P \ {t} 6' Q \ {t}. The reason is that implicitly immediate transitions in choice
with timed transitions have priority in execution (maximal-progress assumption).
This is the reason why P ' Q — the process P ′′ can never be reached from P and
hence the complete branch can be eliminated without loss. On the other hand, if we
hide the timed transitions, then the label is turned from t to it. Since we have not
agreed on any precedence on different internal actions, both branches for P \ {t} in
Figure 3.2 (b), left part, have the same priority. Hence, P −−→ P ′′ has become a
legal state change. Q \ {t}, on the other hand, does not have the option to evolve
into P ′′.

Generally, the lack of the congruence property for an operator is not desirable. However,
in this case the only application of hiding-of-timed-transitions will occur in Section 5.2.
There, we exclude explicitly the possibility of a choice between a timed and an internal
action.

3.1.5 Nondeterminism

Nondeterminism is an important concept in process algebra. It allows to specify behaviours
of which the inner mechanisms are not fully known or which are not required to be im-
plemented in full detail, or to describe different behaviours from which the environment
(i.e., other components) can choose from. A nondeterministic model is also said to be
underspecified .

Example 3.18

A communication protocol allows to send packets from a sender to a receiver. Packets
are acknowledged by the receiver, hence the sender is receiving acknowledgement
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messages. Packets from sender to receiver might get lost. In this case the receiver
informs the sender with an error message.

On a certain level of abstraction, there is no difference between an error message
and an acknowledgement: both are packets that are received by the sender. Both,
however, require different treatment. So the receiver part of the sender could be
modelled as follows:

Sender
def
= send packet.Sender

+receive ack.TreatAck

+receive err.TreatErr

Here, the actions receive ack and receive err denote the acceptance of an inbound
acknowledgement or error packet. The process constants TreatAck and TreatErr

are not defined here, but denote the appropriate handling of acknowledgement and
error packages. The nondeterminism in the example is the fact that here the three
actions send packet, receive ack and receive err are in choice. In this case, the
nondeterminism could be resolved by the environment, since a synchronisation could
decide which action to choose.

With the advent of SPAs which differentiate between timed and synchronising actions (as
IMC), nondeterminism can become a problem. To compute a steady-state solution for an
SPA model, the model must not be underspecified. It is necessary to describe a system
in such detail that nondeterminism does not occur. This, however, is not always possible:
there are situations where nondeterministic choices sneak in through the backdoor and can
not be eliminated anymore. Nondeterminism can be introduced unconsciously by parallel
composition of two or more processes.

Example 3.19

We consider the three processes

P1 = [λ].a.P1

P2 = [λ].a.P2

P3 = [λ].a.P3.

All three processes are doing basically the same and are, what is more important,
deterministic. But the process

R = P1‖a(P2‖P3)

is nondeterministic: it can evolve to

R′ = a.P1‖a(a.P2‖a.P3).

From this state, two a-transitions are possible:
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a.P1‖a(a.P2‖a.P3)

P1‖a(P2‖a.P3) P1‖a(a.P2‖P3)

a a

Even by external influence, this nondeterministic choice can not be resolved: there
is no way to choose between two identical actions.

This effect is called auto-concurrency and is an inherent problem for IMC (at least, if
stochastic evaluation of the model is planned) and likewise for YAWN .

To resolve the problem of nondeterminism and underspecification for stochastic systems,
several approaches have been proposed. The simplest one is to change a nondeterministic
choice in a probabilistic choice2. It is up to the modeller to distribute probability on the
different branches of the nondeterministic choice. There is, however, the problem to find a
criterion which allows to decide whether a chosen probability distribution is appropriate.
Normally such a criterion can not be given. It is therefore common practice to distribute
probability uniformly over all branches. Though this approach can be given a stochastic
justification3, the measures obtained from the model are only valid for this explicit choice to
resolve nondeterminism by uniform distributions. Consequently, this approach has brought
up some critique.

An alternative approach, that goes back to work of Vardi [136] has been proposed by
De Alfaro [44]: instead of resolving the nondeterminism, it is retained and the model is to
be seen as a Markov decision process [80, 123]. There are techniques to assess the (long
run) average measures and bounds.

In this thesis we assume that we have a system that is not underspecified. We do not say
that a system is deterministic in this case, since there are still decisions which are described
stochastically. Hence, we say that a model that is not underspecified is s-deterministic.

In Section 3.2.1 we will come back to this issue once more.

2Neither IMC nor YAWN have mechanisms to assign probabilities to individual, immediate transitions.
Nevertheless, we assume that such mechanisms can be defined and utilised. If we say it is a simple
approach to assign probabilities to transitions, then we mean that the idea is simple (and appealing).
However, technically the approach is by no means simple nor trivial. Several process algebras that allow
for the mixture of stochastic specification of delays and explicit assignment of probabilities exist, e.g., from
Rettelbach [124], Katoen [84], and Bernardo et al. [13].

3We refer here to Bernoulli’s principle of insufficient reason that states, following Harrison and Pa-
tel [60], that all events over a sample space should have the same probability unless there is evidence to
the contrary. As an aside, this principle, combined with information theoretical considerations, has lead
to the so-called maximum entropy methods. These are used to ensure that only that much information is
derived from a model (or a measurement) as the model (measurement) actually can provide. In perfor-
mance evaluation, maximum entropy methods have been used by Kouvatsos et al. [92] to derive results for
general queueing networks.
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3.1.6 Finiteness

To be able to derive measures from SPA models, it is generally necessary for them to have a
finite state space. Although there are approaches to derive measures even for infinite state
systems, they work only for a class of processes with a certain structure (Processes that
have the Quasi-Birth-and-Death structure [112, 48]). Finiteness of PA models is generally
not decidable, however, syntactic subclasses of the PA languages exist whose elements are
only finite state and which are nevertheless expressive enough to describe realistic models.
The basic trick is to disallow expressions of the form P = recX : Q, where Q contains
one or more parallel operators. If, for example, Q = recY : a.Y ‖b.X, then the expanded
process P{recX : Q/X} = recY : a.Y ‖b.recX : Q can execute a b action and suddenly
contain two processes recY : a.Y running in parallel. Since the expansion of recX : P can
be performed an arbitrary number of times, always yielding more processes than before,
the state space of P is obviously of infinite size.

In the rest of the dissertation, we will only consider so-called communicating components,
which are guaranteed to have a finite reachability set.

Definition 3.20 (Systems of Communicating Components) Let L be the language
defined by following grammar:

C −→ P | C‖SC | C \ H

P −→ stop | X | a.P | [λ].P | P + P | recX : P | A

where X ∈ VAR, A ∈ CONST , a ∈ Com ∪ {iτ}, λ ∈ IR+, H ⊆ Comt, and S ⊆ Com. The
set of systems of communicating components is defined to be the set LCC ⊆ L of all closed

expressions contained in L. Defining equations have to be of the form A
def
= P , where P is a

term described by the production P in the above grammar.

In important property of a YAWN process to be suitable for a stochastic analysis is
irreducibility.

Definition 3.21 (Irreducibility) A GMTS (S, A, T,R) is said to be irreducible iff for all
states s, s′ ∈ S holds: s is reachable from s′, i.e., each state s ∈ S can reach each other state
s′ ∈ S.

3.1.7 Example

In this section we develop a simple example to illustrate the concepts introduced so far.
The example is a YAWN process that describes a Gordon-Newell queueing network [57].
The system comprises M queues of M |M |1 type. Since the system is closed, only a finite
number K of customers circulates between the queues. Hence the queues only need finite
buffer capacity with K − 1 places and the whole system can be described with finitely
many states.
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Figure 3.3: GMP describing server i

An individual queue is composed of a server, which does the actual work, and a buffer,
that holds the jobs waiting for the server to become free.

The (idle) Server i can be described as follows:

Serveri
def
= ini.SFi,

where

SFi
def
=

M∑

j=1

[λij].outij.Serveri.

In Figure 3.3 we see a graphical representation of the GMP corresponding to the server
description Server i, i.e., [[Server i]]. The server expects a signal to start a job over action
ini and changes state from Serveri to SFi when it arrives. State SFi is stable: all outgoing
transitions have label t, and since we assume that all components are properly timed, they
have an associated positive rate. Hence, state SFi has a positive, exponentially distributed
sojourn time, whose rate is the sum of the rates of all outgoing transitions. The mean
sojourn time of this state is the equivalent of the mean service time of a queue in a GNQN.
The reason to split the rate over several transitions is that a probabilistic choice has to be
made, in which queue the processed job shall be enqueued when execution is done. Once
one of the [λij] actions has been executed (say, [λik] for k ∈ {1, . . . , M}), the server offers
the job to the queue k via action outik. In case k = i, the server routes the finished job
back to its own queue.
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The buffer of queue i is given as follows:

Buffer i
def
= Buf i0

def
=

M∑

j=1

outji.Buf i1

...

Bufik
def
=

M∑

j=1

outji.Buf i,k+1 + ini.Buf i,k−1

...

Bufi ,K−1
def
= ini.Buf i,K−2

The corresponding GMP is depicted in Figure 3.4. The buffer of service station i is signalled

��� ���� ����
ini

out1i . . . outMi

ini

out1i . . . outMi

ini

out1i . . .outMi out1i . . . outMi

ini BufiK−1Bufi0 Bufi1 Bufi2

· · ·

Figure 3.4: GMP describing buffer i

an incoming job via the actions outji for j = 1, . . . , M , the same actions that have been
already used in the specification of Serveri. The buffer can hold at most K − 1 jobs and
as soon as a job arrives the buffer tries to signal the server Serveri via action ini the
possibility to get some work done. When we combine Serveri and Buffer i, we obtain the
description of a complete, empty Queue, Queuei:

Queuei
def
= (Server i‖{ini,outii}Buffer i) \ {ini, outii}.

The set of visible actions of Queuei is

α(Queuei) = {outi1, . . . , outi,i−1, outi,i+1, . . . , outiM}

∪ {out1,i, . . . , outi−1,i, outi+1,i, . . . , outMi}

Each of these actions can be seen as unidirectional channel between the different queues,
over which jobs are transfered. Over the channel outij jobs are transfered from queue i to
queue j.

A queue that is filled with K customers is described by

FullQueuei
def
= (SF i‖{ini,outii}Buf i,K−1) \ {ini, outii}.

Then, a complete GNQN is described by

GNQN
def
= ( FullQueue1 ‖A1

(Queue2 ‖A2 (· · · (QueueM−1‖AM−1
QueueM) · · · ) )
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where Ai = {outij | j = i + 1, . . . , M}, i = 1, . . . , M − 1. Process GNQN describes a
queueing system, where, initially, K customers are in queue 1 and all other queues are
empty.

3.2 GMP and Continuous-Time Markov Chains

The derivation of continuous-time Markov chains from stochastic process algebra models
is a crucial step towards the numerical evaluation of the stochastic properties of the model.
In this section we will define a procedure for this purpose for YAWN .

Since YAWN is very similar to IMC, we will give an overview over the CTMC generation
procedure of IMC in Section 3.2.1. Moreover, we justify why we do not adopt the IMC
method. In Section 3.2.2, we present the procedure we have chosen for YAWN and which
is based on an approach developed for Generalised Stochastic Petri Nets [103, 102].

The necessary notation and definitions for discrete-time and continuous-time Markov chains
are summarised in Appendix B.3.

3.2.1 CTMC Derivation from IMC

Since IMC is the SPA most similar to YAWN , it is worthwhile to describe CTMC gen-
eration for IMC and to point out why we do not regard the procedure as suitable for our
purposes. The CTMC generation for IMC has two aims (besides the generation itself):

1. Minimisation of the state space by aggregating weakly bisimilar states;

2. Detection of nondeterministic behaviour.

The first aim is to cushion the state space explosion. The second one is necessary to
determine whether the IMC model is underspecified or not.

Minimisation has several advantages: the memory consumption is lower, and even though
some models might show nondeterministic behaviour, it might get eliminated by the re-
duction (we call this soft nondeterminism, in opposition to hard nondeterminism that can
not be eliminated by aggregation).

However, the aggregation does not come without cost. The main penalty is loss of in-
formation that could be obtained from the model. The reduction of the state space is
based on aggregation of weakly congruent states. The steady-state probabilities are then
computed for the aggregated states. In some cases this might be sufficient, but sometimes
it is important to know how the probability mass of an aggregated state distributes on
the states which form the aggregate: the probability mass can not simply be distributed
equally over all states that form the aggregate.
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Example 3.22

We illustrate this by means of a small Markov chain. Consider the CTMC in Fig-
ure 3.5 (a). States s3 and s4 are equivalent and can be aggregated, as shown in
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Figure 3.5: CTMC

Figure 3.5 (b). However, we can see that the throughput of state s4, τ(s4), is smaller
than the throughput of state s3, τ(s3). To be more specific, τ(s3) = 2·τ(s4). The rea-
son is that the branches outgoing from s2 have different rates. So τ(s3) = 2

3τ(s2) and
τ(s4) = 1

3τ(s2). Since the steady-state probability of a CTMC state can be expressed
by its throughput and the sum of its outgoing rates, the steady-state probability of
s3 is equal to τ(s3) and that of s4 equal to τ(s4).

State s3,4 of the aggregated CTMC has throughput τ(s3,4) = τ(s3) + τ(s4) and
consequently the steady-state probability would be equal to τ(s3,4). Nothing tells us
how this probability should be distributed again on the states s3 and s4, since we
“throw away” the information of the original CTMC (cf. Figure 3.5 (a)).

Hence, in case that probabilities for individual states are needed, and not only for aggre-
gates, state space reduction is not recommended. The problem is even harder, if nondeter-
minism comes into play: if the original model shows soft nondeterministic behaviour which
has been eliminated in the reduced model, it is not possible to distribute the probability
mass over the original states at all4.

4Things might be different, if the pure IMC specification is superimposed by a reward structure [80]:
a reward structure is a function on the state space which assigns a reward rate to a state. There are
different approaches known to define reward structures for SPA models [34, 10, 36]. Whichever approach
is chosen, an aggregation algorithm should only aggregate these states that are weakly bisimilar and which

have the same reward rate assigned. Then, two weakly bisimilar states are either distinguished by the
reward structure, or not. The point is that a reward structure brings the choice between distinguishing
and aggregating weakly bisimilar states back under the control of the system modeller.
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Apart from this potential problem, for our purposes it is necessary to retain the structure
of a YAWN transition system as far as possible, since we will need this information in
Chapter 4. This inhibits the use of state aggregation and elimination of nondeterminism.
Though the former requirement is not really a problem, the latter forces us to make a
design decision: we can not allow a YAWN model to show nondeterministic behaviour,
neither soft nor hard .

3.2.2 CTMC Derivation and Evaluation for GMP

The CTMC generation from a given GMP and its evaluation is done in five steps. Let
Gu = (Su, T u,Ru, su) be an s-deterministic (cf Section 3.1.5), non-interactive GMP with
#S = n (the meaning of the superscript u is described below). The steps are:

1. Reduction of Gu to an irreducible GMP G;

2. Generation of a CTMC described by a generator matrix Q;

3. Computation of the steady-state probabilities π of Q;

4. Interpretation of π in G.

5. Computation of throughputs τ of G.

We will comment on these steps in detail below.

Step 1: Reduction

Since Gu is non-interactive, T only contains i- and t-transitions. i-transitions denote
timeless state changes of the GMP and have priority over t-transitions, which is a direct
consequence of the definition of weak Markovian congruence (cf. Definition 3.13).

Example 3.23

Consider the process R
def
= i.P + [λ].Q for P,Q ∈ LYAWN . It is easy to check that

R ' i.P . In other words, all states of Reach(Q) are reachable from R, by the
definition of reachability, but the probability that this will happen is 0 (assuming
Reach(P ) ∩Reach(Q) = ∅). The [λ]-branch of the choice will never be chosen in the
execution of R.
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Hence, a GMP may contain states which are effectively not reachable from the starting
state, since the probability that this happens is 0. In such a case the GMP would not be
irreducible. Before the actual CTMC generation can take place, the GMP has to be freed
from these unreachable states. This is what in the following we will call reduction. The
simplest way to do so is to recompute the state space of Gu and eliminate all states that
are effectively not reachable.

Definition 3.24 The reduced GMP G = reduce(Gu) = (S, A, T,R, s) is defined as follows:
T = T u ∩ (S × Act t × S) and R = Ru|T . S is inductively defined as follows:

1. su ∈ S and s = su.

2. If p ∈ S and p is stable then, if t ∈ T u such that src(t) = p then dst(t) ∈ S.

3. If p ∈ S is not stable than for all5 t ∈ T u with src(t) = p and lbl(t) = i: dst(t) ∈ S.

4. S is the smallest set containing all states that can be derived by the above rules.

Note that even after a GMP has been reduced by the described procedure, it it is not
necessarily true that the resulting GMP is irreducible. Reduction as defined here only
ensures that all states of the considered GMP are reachable from the starting state, but
not vice versa.

Step 2: CTMC Generation

Let G = (S, A, T,R, s) be an s-deterministic, non-interactive, reduced, and irreducible
GMP with #S = n. To derive a generator matrix from G, we have to remove its untimed
transitions. To define the generator matrix, we adopt a technique known from the area of
Generalised Stochastic Petri Nets (GSPN) [103, 102]. We number the states of G from 1
to n such that I = {1, 2, . . . , m} (for m ≤ n) numbers all states which are not stable and
J = {m + 1, . . . , n} those that are. For the rest of this section, we identify the states with
their number. In the first step, we define a matrix Q′ = (q′ij)n,n of the following form:

Q′ =

(
C D
E F

)

,

where C ∈ IRm×m describes transitions from immediate (unstable) states to immediate
states, D ∈ IRm×(n−m) transitions from immediate to stable states, E ∈ IR(n−m)×m those
from stable to immediate states and finally, F ∈ IR(n−m)×(n−m) transitions from stable to
stable states. More formally, Q′ is defined for all t ∈ T such that, if src(t) = i, dst(t) = j,
then:

1. if i, j ∈ I with i 6= j: q′ij := 1 (sub-matrix C);

5Since we assume s-determinism, this can be at most one transition.
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2. if i ∈ I, j ∈ J : q′ij := 1 (sub-matrix D);

3. if i ∈ J, j ∈ I: q′ij := R(t) (sub-matrix E);

4. if i, j ∈ J , i 6= j: q′ij := R(t) (sub-matrix F).

The condition i 6= j is important since self-loops do not play a role in CTMCs. Instead,
we define for all stable states, i.e., for i = m + 1, . . . , n :

qii = −
n∑

j=1
j 6=i

qij.

All other entries of Q′ are defined to be 0. Please note that the definition of the sub-
matrices C and D is based on the assumption that G is s-deterministic. Therefore, the ith
row of Q′ for i ∈ I contains at most one 1.

We define the generator matrix Q of the CTMC underlying G as

Q = F + E(I − C)−1D (3.1)

The proof that Q indeed describes the same Markov process as Q′ can be found in [102].
The sub-matrix F describes the transitions between stable states. The sub-matrix E de-
scribes the transitions from a stable to an immediate state. Due to the irreducibility
property of the GMP G, the probability to eventually enter a stable state from an imme-
diate state is 1. However, before a stable state is reached, an arbitrary (although finite)
number of immediate states can be visited. The probabilities to reach from one immedi-
ate state i the stable state j in an arbitrary number of steps is described by the (i, j)th
entry in the matrix (I − C)−1D, which occurs in (3.1). That the number of steps can be
arbitrary large is reflected by the matrix (I − C)−1, which is a closed-form expression for
the geometric sum of C,

∑∞
ν=0 Cν.

An entry at position (k, l) of matrix E(I − C)−1D then denotes the rate with which a
transition from stable state k to stable state l is made, with a detour over the set of
immediate states. This matrix has to be added to F to completely specify the behaviour
of G without explicit reference to the set of immediate states.

Q obviously has the same dimensions as F and its rows correspond one-to-one to the stable
states of G.

Step 3: Steady-State Probabilities

The steady-state distribution π of a CTMC with generator matrix Q is defined as the
solution of the system of linear equations

πQ = 0

π 1 = 1.
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If Q is derived from a GMP G by Step 2, then π describes the steady-state probabilities for
all stable states of G. Since they already sum up to 1, the immediate states consequently
carry no probability mass. The steady-state probability vector of the GMP is then denoted
as

πG = (0, . . . , 0
︸ ︷︷ ︸

m times

, π1, . . . , πn).

The leading null vector of πG denotes the probabilities of the immediate states of G.

Step 4: Interpretation of π in G

In the following, we will no longer refer to the enumeration of the states of the GMP, but
write πG(s) to denote the steady-state probability of state s of G.

Step 5: Throughputs of GMP

The throughputs of the stable states and the respective transitions of GMP G are the
throughputs that can be computed by means of the techniques described in Appendix B.3.2.
If ∆ = diag(qm+1,m+1, . . . , qnn)

−1, then the throughputs for the stable states are defined as

τ = −π∆−1.

We can also define throughputs for immediate states, and as we will see later, we need
them. They can be derived by means of the matrices C and E. The vector of throughputs
for immediate states is denoted as τ i and can be derived as

τ i = −τ∆E(I − C)−1

= −(−π∆−1)∆E(I− C)−1

= πE(I− C)−1.

πE describes the vector of throughputs from stable states to immediate states. (I − C)−1

is the matrix that describes the probabilities that, starting in state i ∈ J , state j ∈ I is
reached in an arbitrary number of steps. These probabilities describe how the incoming
throughput πE distributes on the states i ∈ I. We define the vector of throughputs of the
states of G as τG = τ i ◦ τ , where “◦” denotes simple vector concatenation.

As for the probabilities, later we will not refer to the enumeration of the states of the GMP,
but write τG(s) to denote the throughput of state s.

We can also express the throughput of individual transitions. To do so, we consider a
matrix P′ that describes the branching probabilities of all states of the considered CTMC:
P′ is the probability matrix of the CTMCs embedded Markov chain. P′ can be written as

P′ =

(
C D

∆E I− ∆F

)

.
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The branching probabilities distribute the incoming throughput of a state s over the out-
going transitions of s. Then

TG = (τij)n,n = τGP′

is the matrix of all transition throughputs of GMP G. If t ∈ T and src(t) = i and dst(t) = j,
then we define τG(t) = τij. Please note that τG(·) is overloaded, i.e., defined for states and
transitions.

3.3 Conclusions

In this chapter, we have defined the stochastic Markovian process algebra YAWN . We
have first defined the transition systems, namely GMTS, that we use to give meaning to
YAWN processes. Then we defined the syntax of YAWN and the operational semantics.
The stochastic information is given in term of exponentially distributed delays, specified
by rates assigned to transitions. We have then given two notions of congruence, strong
Markovian bisimulation equivalence and weak Markovian congruence. Finally, we have
demonstrated how CTMCs can be derived from GMTS.

Since IMC is the nearest relative of YAWN in the family of SPA, we will briefly compare
both calculi. Noteworthy differences between IMC and YAWN are only of technical, but
not of conceptual nature. Therefore, the properties of IMC should also hold for YAWN .

The main difference is that YAWN uses a completely different kind of transition system
to describe the semantics of processes. Rather then using heterogeneous labelled (multi-)
transitions systems to describe functional and temporal behaviour, for YAWN we use
ordinary labelled transition systems, which are equipped with rates by means of a simple
function.

We will compare IMC and YAWN more thoroughly in the following. The major differences
are also summarised in Table 3.2.

Expressiveness

One of the most important characteristics of a process algebra is its expressiveness. Al-
though IMC and YAWN are of the same breed, there are minor differences regarding their
expressiveness. The most important difference is that we have not only one, but many in-
ternal actions. This allows that even for YAWN processes in which all actions are hidden
away, it is still possible to see from which visible action a hidden action originally came
from. The hiding operator in YAWN is not transparent. This allows a more thorough
analysis of the inner structure of a YAWN process, however, the observable behaviour of
a YAWN process is not distinguishable from an equivalent IMC process.

We can conclude that from a YAWN model it is still possible to obtain information about
the internal structure, where this information might be lost in IMC.
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Feature IMC YAWN

Syntax Differs in minor details

State space Set of terms

Actions • Synchronising actions
a ∈ Com

• Timed actions λ ∈ IR
• Internal action τ

• Synchronising actions
a ∈ Com

• Special action t

• Internal actions ia for
a ∈ Com ∪ {t}

Transition system Heterogeneous (multi-)sets of
transitions (Interactive Markov

Chains)

Homogeneous set of labelled
transitions (GMTS )

Timing information Special labelled multi-transition
relation

Function on transition set

Treatment of identical
timed transitions

Explicitly represented in multi-
relation

Amalgamated, with proper ad-
dition of rates

CTMC generation Componentwise minimisation
according to weak congruence.
Soft nondeterminism allowed

Elimination of immediate tran-
sitions. Nondeterminism not al-
lowed.

Table 3.2: Differences between YAWN and IMC

CTMC Generation

In Section 3.2 we have presented a way to derive CTMCs from YAWN s-deterministic
processes that is not based on aggregation, as for IMC. We chose a method known from
the area of Generalised Stochastic Petri Nets and adapted it for YAWN . The reason to go
without the advantages of aggregation is that we have to retain the structure of the global
state space as much as possible. We will see this in the next chapter.
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Chapter 4

Properties of YAWN Processes: Local
Measures and Waiting Times

In Section 2.3, several approaches have been sketched to derive performance measures
for SPA models without having the problem of state space explosion. We found that
product-form solutions are the most advantageous, since they allow to compute results on
the component level and combine them afterwards to yield global performance measures.
Basically, this means that a probability distribution on the global state space can be com-
puted, on which most other desired performance measures depend. Global probabilities
are obtained by simple multiplication, as the name suggests (a normalisation might be
necessary, however).

Product-form solution techniques require, however, that the structure of the global state
space is known. Otherwise there would be no way to know which local measures should be
combined, and how. Stated differently, if a process is considered for which the structure of
the state space is not known without generating it explicitly, such a process will not have a
product-form structure. As a consequence, if we want to do a component-based analysis of
a process to avoid the state space explosion, all we possibly can derive are local measures,
i.e., measures that only inform about individual components, but not about the system as
a whole.

In this chapter, we will define local measures, more specifically, local steady-state proba-
bilities, in terms of global measures. This provides us a theoretical framework to describe
exhaustively the stochastic dependencies that can be found between synchronising compo-
nents. As a result, we can establish criteria how local measures should be related to each
other, whichever method is chosen to derive them. These criteria can therefore be used as
a touchstone for local measures that have been derived by whichever solution technique.
However, no computational methods are presented to actually derive measures.

Outline of this Chapter. In this chapter we will formally introduce some of the con-
cepts that have already been used (informally) in the previous chapter. In particular, in
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Section 4.1, we define what we mean by a component. After that, in Section 4.2, we in-
troduce the concept of a local measure for a component in its most general way, and set
it into relation to what we shall name a global measure. In Section 4.3, we show that the
mean number of synchronisations of interacting components plays a very important role
to describe the stochastic dependencies between components. In Section 4.4 we introduce
the concept of waiting times. The chapter is concluded by a short summary in Section 4.5.

4.1 Processes and Components

4.1.1 Sub-Processes, Locations, and Components

In this section, we define the term component . Intuitively, we shall consider a component
as a sub-entity that is part of a system and that communicates with other sub-entities of
the same system. It is a common property of all process calculi that the system descriptions
are structured from the beginning. This structure gives many hints to decide which part of
the process belongs to one or another component. However, the structure of the process is
a feature of the description methodology used for PA: processes are described by syntactic
objects of a language, and the structure of a process is pre-determined by the structure
of its syntactic description. It is straightforward to decompose such a process description:
informally, we want to consider everything as part of one component that is syntactically
enclosed in parallel operators, like ‖S. But this approach does not reach far enough. A
decomposition of a process description yields a number of syntactic objects, which in the
following we will refer to as sub-processes. We can assume that sub-processes are related
to what we want to call “components”. However, since they are proper process terms, they
describe a behaviour; but this is generally not the behaviour that we want to be described.
A sub-process has no notion that it is part of a whole. What is described by a sub-process
is the potential behaviour of a component, but not the actual behaviour which, in fact,
also depends on the influence of other components, e.g., via synchronisations.

It is therefore obvious that a syntactic decomposition of a YAWN system description (i.e.,
a process) is not sufficient to derive components. The decomposition must take place on
the semantical level.

What we therefore do in this section is to identify the components of a system properly
and to describe their actual behaviour. First, we introduce a number of concepts:

1. A sub-process is meant to be a syntactic entity derived by the syntactic decomposition
of a process1. We will only consider processes P ∈ LCC, as defined in Definition 3.20.
Intuitively, sub-processes of a YAWN process are more simple YAWN processes
which are combined by means of the parallel operators ‖S.

1As described Section 3.1.3, processes are defined to be syntactic entities.
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2. A location is meant to be an abstract identifier of a component and its behaviour.
For each location of a process there is also an unique sub-process. One can think of
a location as the place where a component “lives”. We will use the terms “compo-
nent” and “location” interchangeably. We exploit the fact that the processes that we
consider have a static structure with respect to the parallel operator. Sub-processes
are enclosed within parallel operators (except the leftmost and the rightmost) and
do not change their position relative to these delimiters. We can therefore identify
components by their position within the term. We say that the ith position within
a process P is location i. Then, the syntactic entity at location i of process P is said
to be the ith sub-process of P .

3. The actual behaviour of a component is described by a GMP: the local GMP. For
each location i there is a local GMP Gi. If Pi is a sub-process that belongs to location
i, then Gi is a sub-GMP of [[Pi]], the GMP defined by the sub-process Pi. “Sub-GMP”
means that state-space and transition set of G are a subset of the state-space and
transition set of [[P ]], respectively. We will see in the following how sub-GMPs are
obtained.

Sub-processes are derived from processes by functions which we will refer to as projections.
Before we can define them formally, we need to define the number of locations of a process:

Definition 4.1 (#loc) Let P ∈ LCC. Then #loc(P ), the number of locations of P , is defined
as

#loc(P ) =







#loc(Q) + #loc(R) if P ≡ Q‖SR
#loc(Q) if P ≡ Q \ H
1 otherwise.

Example 4.2

We consider the YAWN process

P
def
= recX : a.b.X‖{b}

(
(recY : b.c.Y ‖{c}recZ : c.d.Z) \ {c}

)
.2

Then, P has 3 locations:

#loc(P ) = #loc(recX : a.b.X‖{b}(recY : b.c.Y ‖{c}recZ : c.d.Z) \ {c})

= #loc(recX : a.b.X) + #loc(recY : b.c.Y ‖{c}recZ : c.d.Z)

= 1 + #loc(recY : b.c.Y ) + #loc(recZ : c.d.Z)

= 1 + 1 + 1 = 3.

2In the following, we underline process terms for better readability.
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4.1.2 Projection on Local States

We now introduce a function ⇓⇓
P
i that maps a process P ∈ LCC on the sub-process at

location i, 1 ≤ i ≤ #loc(P ); ⇓⇓
P
i is said to be the ith projection of P and is defined as:

Definition 4.3 (Projection) Let P ∈ LCC. Then, for 1 ≤ i ≤ #loc(P ):

⇓⇓
P
i :







Reach(P ) −→ LYAWN

P ′ 7−→







⇓⇓
Q
i (Q) if P ′ ≡ Q‖SR and i ≤ #loc(Q)

⇓⇓
R
i−#loc(Q)(R) if P ′ ≡ Q‖SR and i > #loc(Q)

⇓⇓
Q
i (Q) if P ′ ≡ Q \ H

P ′ otherwise.

If Pi
def
= ⇓⇓

P
i (P ), then certainly ⇓⇓

P
i (Reach(P )) ⊆ Reach(Pi). We say that ⇓⇓

P
i (Reach(P )) is

the local state space of component i of P .

Example 4.4

We continue Example 4.2 and derive now the sub-process at location 2 of P (we leave
out the superscript P for better readability):

⇓⇓2(P ) = ⇓⇓2

(

recX : a.b.X‖{b}
(
(recY : b.c.Y ‖{c}recZ : c.d.Z) \ {c}

))

= ⇓⇓2−1

(

(recY : b.c.Y ‖{c}recZ : c.d.Z) \ {c}
)

= ⇓⇓1

(

recY : b.c.Y ‖{c}recZ : c.d.Z
)

= ⇓⇓1(recY : b.c.Y )

= recY : b.c.Y

We see that the fact that the action c was hidden is not taken into account by the
projection ⇓⇓ .

We now want to define the set of partial decompositions of a term P ∈ LCC, denoted as
pDecomp(P ).

Definition 4.5 (Partial decompositions) Let P ∈ LCC. The set of partial decomposi-
tions of P is defined as

pDecomp(P ) =







pDecomp(P1) ∪ pDecomp(P2) ∪ {P} if P ≡ P1‖SP2

pDecomp(P ′) ∪ {P} if P ≡ P ′ \ H
P otherwise.

Sub-processes are partial decompositions of P , i.e., ⇓⇓
P
i (P ) ∈ pDecomp(P ).
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Example 4.6

Let P
def
= A‖c((B‖bC) \ {b}), where A,B,C are process constants. Then the partial

decompositions of P are

pDecomp(P ) = pDecomp(A) ∪ pDecomp((B‖bC) \ {b}) ∪ {P}

= {A,P} ∪ pDecomp(B‖bC) ∪ {(B‖bC) \ {b}}

= {A,P, (B‖bC) \ {b}} ∪ pDecomp(B) ∪ pDecomp(C) ∪ {B‖bC}

= {A,P, (B‖bC) \ {b}, B‖bC} ∪ pDecomp(B) ∪ pDecomp(C)

= {A,P, (B‖bC) \ {b}, B‖bC,B,C}

4.1.3 Projection on Local Transitions

We are not only interested in a mapping from the global onto the local state space, but
also in a mapping from the set of the global transitions to that of the respective sub-
processes. We define a function ⇓P

i that maps the transitions of [[P ]] on the transitions of
[[

⇓⇓
P
i (P )

]]

. Such a function can only be partially defined, since usually not all components

will participate in one global transition. Timed transitions are always executed by single
components only. So, when we consider a timed global transition, for example, t of [[P ]],
then there is only one location i such that ⇓P

i (t) is defined. For j 6= i, ⇓P
j (t) is undefined,

which we denote as ⇓P
j (t) =↑.

In process calculi, the relation between global and local transitions usually can not be
expressed by functions. In YAWN this is possible. Before we explain why this works for
YAWN , we describe the problem.

In other processes calculi, some operators do merge two local transitions to one global,
so that it is not possible to express by a function which components caused this global
transition. The operator which is the most likely cause of this this “trouble” is the hiding
operator. We illustrate this in the following example.

Example 4.7

We consider the process P
def
= a.stop+b.stop, which we interpret according to the SOS

given in Table 2.1. Then P has two outgoing transitions, namely t1 = P
a

−−→ stop

and t2 = P
b

−−→ stop. The process P \ {a, b} has only one outgoing transition,

t3 = P \ {a, b}
i

−−→ stop. Although P \ {a, b} is a trivial process comprising only
one component, it is not possible to say to which transition t1 or t2 the transition t3
corresponds. This information is lost.
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The problem in Example 4.7 cannot occur with YAWN . In Section 3.1.1, we have defined
a whole set of internal actions. The hiding operator of YAWN is defined such that a
relabelled transition still retains the information which action is hidden. Each hidden
transition still carries the information from which transition it was originally derived.

Example 4.8

We reconsider the process P
def
= a.stop + b.stop of Example 4.7, now interpreted

according to the YAWN SOS in Table 3.1. Again, P has two outgoing transitions

t1 = P
a

−−→ stop and t2 = P
b

−−→ stop— as does the process P \{a, b}. The YAWN

semantics ensures that [[P ]] contains the two transitions P \ {a, b}
ia−−→ stop and

P \ {a, b}
ib−−→ stop.

To define the function ⇓P
i for P ∈ LCC we again rely on the fact that for each transition

t of [[P ]] there is a set of derivation trees DT t which proves that t is a legal transition.
If a location i contributes to t with a local transition t′, then a derivation subtree D′ of
a derivation tree D ∈ DT t will prove that there is indeed a transition t′ of component i
that participates in t. Our definition of a projection from global on local transitions is
based on the idea to find a derivation sub-tree of the global transition which proves that
the component contributes with a local transition. If there is such a derivation subtree, we
define ⇓P

i (t) = t′. If no derivation subtree for the location does exist, we define ⇓P
i (t) =↑.3

We introduce this concept now more formally.

Definition 4.9 (Projections on Local Transitions) Let P ∈ LCC, [[P ]] = (S, A, T,R, P ),

and t ∈ T . Let P ′ def
= ⇓⇓

P
i (src(t)) for a location i of P and [[P ′]] = (S ′, A′, T ′,R′, P ′). Let

T = {t′ ∈ T ′ | src(t′) = P ′} the set of all transitions of [[P ′]] with source P ′. Let DT loc(P
′)

contain all derivation trees for all transitions that have source state P ′.

Define the function ⇓P
i : T −→ T ′ ∪ {↑} such that ⇓P

i (t) = t′ if there is a D′ ∈ DT loc(P
′) and

a D ∈ DT t such that D′ is a derivation sub-tree of D and proves a transition of location i. If
no such D and D′ exist then ⇓P

i (t) =↑.

Example 4.10

We consider the processes

P1
def
= a.c.P1

P2
def
= a.b.P2 + b.a.P2

P3
def
= c.b.P3

3A similar approach to this has been proposed by Priami [121]: there, the transitions are labelled with
the proof trees that prove them. With this approach, all transitions can always be distinguished from each
other, regardless whether the other labels differ or not.
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and

R
def
= P1 ‖{a,c} ( P2 ‖b P3 ).

Pi is the sub-process of location i for i = 1, 2, 3. Surely, R
a

−−→ c.P1 ‖{a,c} ( b.P2 ‖b P3 )
is a transition of [[R]] (which we name t for easier reference). The derivation tree D
(there is only one) of t is

a.c.P1
a

−−→ c.P1

a.b.P2
a

−−→ b.P2

a.b.P2 + b.a.P2
a

−−→ b.P2

P2
a

−−→ b.P2

P2 ‖b P3
a

−−→ b.P2 ‖b P3

R
a

−−→ c.P1 ‖{a,c} ( b.P2 ‖b P3 )

What is ⇓R
1 (t)? There is a derivation sub-tree in D that proves that location i is

involved in the execution of t: it is the left branch,

a.c.P1
a

−−→ c.P1

,

hence, we can set ⇓R
1 (t) = a.c.P1

a
−−→ c.P1. For location 2, we find that ⇓R

2 (t) =

a.b.P2
a

−−→ b.P2, since the right branch of D leads directly to a derivation of location
2. ⇓R

3 (t) is then equal to ↑, since there are no derivation sub-trees left.

Even though the definition of the projection on transitions, as given in Definition 4.9, has
been designed very carefully, there are still some open problems. In the next example
we will see that there are situations where a (global) transition can be mapped on two
transitions of different components, even though the both components might be completely
unrelated. This is a situation that we would like to avoid, since it is contrary to the
assumption that different, unsynchronising local transitions correspond to different global
ones.

Example 4.11

We consider the process

R
def
= recX : a.X‖recX : a.X.

The GMP [[R]] has only one state, R, and only one transition, the self-loop R
a

−−→ R.
However, there are two derivation trees for this process, even though they are not
easy to distinguish: the first is

6)

5a)
a.recX : a.X

a
−−→ recX : a.X

recX : a.X
a

−−→ recX : a.X

recX : a.X‖recX : a.X
a

−−→ recX : a.X‖recX : a.X
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and the second is

7)

5a)
a.recX : a.X

a
−−→ recX : a.X

recX : a.X
a

−−→ recX : a.X

recX : a.X‖recX : a.X
a

−−→ recX : a.X‖recX : a.X

The difference is that the first derivation tree uses SOS Rule 1), Rule 5a), and then
Rule 6) (cf. Table 3.1), whereas the second derivation tree uses SOS Rule 1), Rule 5a),
and then Rule 7). Consequently, the left location as well as the right one are described
by the transition R

a
−−→ R, even though they are completely independent.

We want to exclude such effects from our further considerations, and we show now that we
can avoid these situations.

There are several possibilities why two transitions can be amalgamated, although the
should not. First of all, this can only happen when self-loops are involved. Otherwise, the
state change would already be sufficient to distinguish the transitions in question.

We describe now the different scenarios that can occur by means of examples:

• Two (or more) processes P1 and P2 have two timed self-loops which are amalgamated
in P1‖SP2. In the Markovian case, timed self-loops are irrelevant for stochastic eval-
uation of a process, hence they can be eliminated from the start.

• Two (or more) processes P1 and P2 have two untimed self-loop transitions t1 and t2

with lbl(t1) = lbl(t2) = a ∈ Com. If we now consider the process P
def
= P1‖SP2 with

a ∈ S, we can assume without loss of generality that [[P ]] has a self-loop transition
t with label lbl(t) = a such that ⇓P

1 (t) = t1 and ⇓P
2 (t) = t2. But this is correct,

since both transition t1 and t2 actually participate in t. Hence, the situation of
Example 4.11 does not belong to this case.

• Two (or more) processes P1 and P2 are combined to a process R
def
= P1‖SP2 with

lbl(t1) = lbl(t2) 6∈ S such that t1 and t2 are amalgamated. This is the situation of

Example 4.11, where P1
def
= P2

def
= recX : a.X and S

def
= ∅. Now, we consider the

processes P ′
1 = P ′

2 = recX : a.a.X. It is easy to see that P1 ∼ P ′
1 and P2 ∼ P ′

2.
Consequently, P1‖P2 ∼ P ′

1‖P
′
2. But the latter process is nondeterministic, since

P ′
1‖P

′
2

a
−−→ a.recX : a.a.X ‖ P ′

2 and P ′
1‖P

′
2

a
−−→ P ′

1‖ a.recX : a.a.X. Hence, we
must understand the situation in Example 4.11 as a form of nondeterminism that is
not so easy to detect, but is forbidden due to our requirement that we only consider
s-deterministic processes.

Only the last item is hence relevant to us, and since it is detectable we can exclude it from
our considerations.
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Local GMP

By means of the projections we can now define the local GMPs of a process:

Definition 4.12 Let P ∈ LCC and [[P ]] = (S,Act t, T,R, P ), i a location of P , Pi = ⇓⇓
P
i (P ),

and [[Pi]] = (Si,Act t, Ti,Ri, Pi). The local GMP of location i of P is then the GMP

GP
i = (SP

i ,Actt, T
P
i ,RP

i ,⇓⇓
P
i (P ))

where

• SP
i = ⇓⇓

P
i (S);

• T P
i =⇓P

i (T ) \ {↑};

• RP
i = Ri T P

i

.

In GMP [[P ]] for P ∈ LYAWN , there is always a tight relationship between the individual
states and the complete transition system itself: states are processes, and a state s has
exactly that transition encoded that is formed by the sub-GMP of [[P ]] with state space
Reach(s). Local GMPs are different, because states do no longer have this property: in

case that states of sub-process
[[

⇓⇓
P
i (P )

]]

become unreachable, this is reflected in the local

GMP GP
i , but not in its states. Thus, the local GMP GP

i describes the actual behaviour of

a component more exactly than
[[

⇓⇓
P
i (P )

]]

. Nevertheless, the description is not accurate,

as the next example shows.

Example 4.13

We consider the process

P
def
= (recX : a.b.X)‖{a,b}a.b.a.b.a.b.stop

P has two locations. Obviously, P can only make a finite number of steps until it
blocks forever. Nevertheless, the local GMP of location 1 can be described by the
process recX : a.b.X, which shows infinite behaviour. Hence, local GMP generally
do not reflect reachability properties of components accurately.

For our purpose, local GMPs are however accurate enough.
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4.1.4 Inverse Projections

Projections relate global states to local states and global transitions to local ones. We can
also use both functions to reverse the direction and relate local states and transitions to
global states and transitions, respectively. We will do so in Section 4.2 by means of the
inverse of the projections. In this section, we define the notation we will use for them. We
give the definitions again in two parts, first for states, then for transitions.

Definition 4.14 Let P ∈ LCC, GP
i as defined in Definition 4.12 for a location i of P . Then

the inverse of the projection ⇓⇓
P
i is denoted as ⇑⇑

P
i and is defined as

⇑⇑
P
i (Q) :

{
SP

i −→ 2Reach(P )

Q 7−→
{

P ′ ∈ Reach(P )
∣
∣
∣ ⇓⇓

P
i (P ′) = Q

}

⇑⇑
P
j obviously partitions Reach(P ).

The definition of inverses of the projections on the transition sets is similar:

Definition 4.15 Let [[P ]] = (S,Act t, T,R, P ) and GP
i = (SP

i ,Act t, T
P
i ,RP

i ,⇓⇓
P
i (P )) the ith

local GMP as defined in Definition 4.12 for a P ∈ LCC. Then the inverse of ⇓P
i is denoted as

⇑P
i and is defined as

⇑P
i :

{
T P

i −→ 2T

t′ 7−→
{

t ∈ T
∣
∣ ⇓P

j (t) = t′
}

.

4.2 Local Measures

In this section, we will show the use of projections and inverse projections. We consider a

process P ∈ LYAWN , the sub-process Pi
def
= ⇓⇓

P
i (P ) and the local GMP GP

i for a location i
of P .

4.2.1 Local Probabilities

Let P ∈ LYAWN . An inverse projection ⇑⇑
P
i for i ∈ {1, . . . , #loc(P )} defines implicitly a

partition and an equivalence relation on Reach(P ): P ′, Q′ ∈ Reach(P ) are in one equiv-

alence class, if and only if ⇓⇓
P
i (P ′) = ⇓⇓

P
i (Q′). We denote this equivalence as EP

i . Let
π : Reach(P ) −→ [0, 1] be a probability measure on the state space of [[P ]]. Then we define
for C ∈ Reach(P )/EP

i

π(C) =
∑

s∈C

π(s). (4.1)
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Definition 4.16 Let P ∈ LCC such that a steady-state probability measure π on Reach(P )

does exist. If ⇓⇓
P
i (C) = {Q} for C ∈ Reach(P )/EP

i , then π(C) is said to be the local (steady-
state) probability of Q and is denoted as φP

i (Q).

If we define a numbering on the states of the local GMP GP
i of P then we can write the

local probabilities as vector

φP

i
=
(
φP

i (1), φP
i (2), . . . , φP

i (m)
)
,

where m = #SP
i and φP

i (j) = φP
i (R) if R ∈ SP

i has number j.

Lemma 4.17 φP
i is a stochastic vector.

Proof: We only have to check that φP

i
is not sub-stochastic. The requirement that all

elements have to be positive is trivially fulfilled.

By the definition of ⇑⇑
P
i (cf. Definition 4.14) it is easy to see that ⇑⇑

P
i (S

P
i ) = S. Hence, by

means of (4.1), we accumulate the probability mass of the global state space on the local
states. Since the global probabilities sum up to 1, so do the local. →•

4.2.2 Local Throughputs

Let P ∈ LCC and GP
i defined as in Definition 4.12 and let us assume that the throughputs of

the transitions of [[P ]] are described by the function τ : S −→ IR. We want to describe the
throughputs of the local GMP GP

i in dependence of τ . We do so by means of the projection
⇓P

i and its inverse. For t ∈ Ti, the set ⇑P
i (t) contains all transitions of [[P ]] which affect

a state change of sub-process i. The sum of the throughputs of these transitions, i.e.,
the mean number of instances in which these transitions are “used”, is consequently the
throughput of t.

Definition 4.18 If C =⇑P
i (t), we define for t ∈ Ti the local throughput σP

i (t) of t as

σP
i (t) =

∑

t′∈C

τG(t′).

By overloading of σP
i we define the throughput of a state s ∈ Si to be

σP
i (s) =

∑

t∈Ti

src(t)=s

σP
i (t)
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4.2.3 Action Throughputs

In the following we will also be interested in the overall throughput of a component in
which a transition with label a is involved. In general, we name this quantity the action
throughput, or, more specifically, the a-throughput. Again, we assume a process P ∈ LCC,
the local GMP GP

i as defined in Definition 4.12. For a ∈ Com, the a-throughput θP
i (a) is

defined as

θP
i (a) =

∑

t∈Ti

lbl(t)=a

σP
i (t).

θP
i (a) is the mean number of a actions that location i of P performs in unit time. We

enhance this definition on partial decompositions of P as follows.

Definition 4.19 Let P ′ ∈ pDecomp(P ) and a ∈ Com. Then the a-throughput ΘP
a (P ′) of

P ′ is defined as

ΘP
a (P ′) =







ΘP
a (P1) + ΘP

a (P2) if P ′ ≡ P1‖SP2 and a 6∈ S,
ΘP

a (P1) if P ′ ≡ P1‖SP2 and a ∈ S,
ΘP

a (P1) if P ′ ≡ P1 \ H and a 6∈ H,

θP
i (a) if P ′ ≡ ⇓⇓

P
i (P ) for a location i of P and a ∈ α(P ′) ,

0 otherwise.

In the definition of ΘP
a we have made an assumption that needs justification: in the case

that P ′ = P1‖SP2 and a ∈ S, we have set ΘP
a (P ′) = ΘP

a (P1), i.e., we have not at all taken
ΘP

a (P2) into account. The reason for that is the following theorem.

Theorem 4.20 Let P ∈ LCC, P ′ = P1‖SP2 ∈ pDecomp(P ), and a ∈ S. Then

ΘP
a (P1) = ΘP

a (P2) (4.2)

Proof: Due to the fact that a is an element of the synchronisation set S, both P1 and
P2 can perform an a action only in synchrony. Hence, the mean number of instances an
a-transitions is performed is equal for both P1 and P2. →•

Theorem 4.20 will become important in Section 4.3.

4.2.4 Branching Probabilities and Throughput Equations

For a process P ∈ LCC, we assume that for [[P ]] = (S,Act t, T,R, P ) the throughputs τ(t)
for all transitions t ∈ T and the respective throughputs τ(s) for s ∈ S are determined. The
branching probabilities of a state s of [[P ]] are a probability distribution over the transition
set Ts = {t ∈ T | src(t) = s}. It describes the probability β(t) that transition t is “used”
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to leave state s = src(t), once it is entered. These probabilities can be described by the
throughputs τ(t) for t ∈ Ts. We define for t ∈ Ts

β(t) =
τ(t)

∑

t′∈Ts
τ(t′)

=
τ(t)

τ(s)
.

With the branching probabilities we can express the throughputs of the transition as

τ(t) = β(t)τ(s)

Since the throughput going into a state must be equal to the throughput leaving the state,
we can formulate for each state s ∈ S a balance equation as follows.

∑

t∈T
src(t)=s

τ(t) =
∑

t′∈T
dst(t′)=s

τ(t′).

Rewritten with branching probabilities, we yield

τ(s)
∑

t∈T
src(t)=s

β(t) =
∑

t′∈T
dst(t′)=s

β(t′)τ(src(t′)),

which is equivalent to

τ(s) =
∑

t′∈T
dst(t′)=s

β(t′)τ(src(t′)), (4.3)

since ∑

t∈T
src(t)=s

β(t) = 1.

Matrix notation

If we assume a numbering of all states s ∈ S, we can bring the above equations in matrix
form. We define τi = τ(s), if state s corresponds to number i. Let βij = β(t), if src(t)
and dst(t) correspond to number i and j, respectively. If #S = N , then the throughputs
are described by a vector τ = (τ1, . . . , τN) and the branching probabilities by a matrix
B = (βij)N,N . The system of linear equations, described by (4.3), can then be formulated
as

τB = τ . (4.4)

This system of linear equations is very similar to the system of global balance equations of
an DTMC, and indeed: the matrix B is a probability matrix: the embedded Markov chain
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of the Markov process described by the GMP [[P ]]. We call (4.4) the system of throughput
equations of GMP [[P ]].

As is well known, a system of linear equations like (4.4) has not full rank. In our case it
is of rank N − 1. For a DTMC, usually the condition that all probabilities sum up to one
is employed to determine a unique solution. But since τ is a vector of throughputs, this
condition is of no use to yield a unique solution for (4.4). There is only the possibility
to express all throughputs relatively to one arbitrarily chosen reference. If we assume a
solution τ for (4.4) and choose τ1 as the reference throughput, we can define a vector v as

v =
1

τ1

τ

= (1, v2, . . . , vN)

The vector v = (v1, . . . , vN) (with v1 = 1) is said to be the vector of visit counts and ν = τ1

the reference throughput4. In subsequent sections we will no longer explicitly define which
throughput is chosen to be the reference throughput; we will only refer to the reference
throughput ν. Then for all throughputs τi can be expressed as

τi = viν.

As usual, we write v(s) for the visit count vi, if s ∈ S corresponds to number i and if we
do not want to refer to an explicit numeration of state space S. For all transitions t ∈ Ts,
the throughput of t can then be written as

τ(t) = v(t)ν

for v(t) = β(t)v(s).

Now, we assume that π : S −→ [0, 1] is the steady-state probability distribution of [[P ]]. Let
GP

i = (Si,Act t, Ti,Ri, si) for i = 1, . . . , #loc(P ) be the local GMPs for P . Definition 4.18
allows us to derive that for t ∈ Tj and C =⇑P

j (t):

σP
j (t) =

∑

t′∈C

τ(t′)

= ν
∑

t′∈C

v(t′) (4.5)

A consequence of (4.5) is that also local throughputs, regardless to which transition in
whatever location they belong, are linearly dependent on the reference throughput ν, and
therefore, also on each other.

4The terminology chosen for the throughput equations comes actually from queueing theory. For closed
queueing networks, like Gordon-Newell queueing networks, a system of linear equations has to be solved
that expresses the routing probabilities between the different queues: the so-called traffic equations.
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4.3 Throughputs and Synchronisations

In Section 4.2.4 we have shown that the throughputs of locations can be expressed by
visit counts and one global reference throughput ν. In this section we state this fact in a
different way: we set the a-throughputs (for a ∈ Com) of the locations of a P ∈ LCC in
relation to each other. This approach is based on Theorem 4.20.

4.3.1 Local Throughput Equations

We consider a process P ∈ LCC from which we assume that a steady-state measure π :

Reach(P ) −→ [0, 1] on [[P ]] does exist. Let Pi
def
= ⇓⇓

P
i (P ) and let GP

i = (Si,Act t, Ti,Ri, Pi)
be the local GMP of P for location i = 1, . . . , #loc(P ). For each of the GP

i a system of
throughput equations can be defined, as shown in Section 4.2.4. This system of linear
equations defines visit counts vi(s) and vi(t) for each state s ∈ Si, and each transition
t ∈ Ti of GP

i , respectively. Each location i has also its own reference throughput, νi.

Location i can only interact with other locations by synchronisation over the set of visible
actions, α(GP

i ). Therefore, we are only interested in the a-throughputs θP
i (a) for a ∈

α(GP
i ). The a-throughputs for a ∈ α(GP

i ) and a location i are related to each other by the
throughput equations defined for GP

i . Consequently, all a-throughputs for a ∈ α(GP
i ) for

location i can be expressed by means of the reference throughput νi and the visit counts
that are defined for GP

i :

θP
i (a) =

∑

t∈Ti

lbl(t)=a

vi(t)νi.

If we define θP
i (a) to be the new reference throughput, we can express the action through-

puts θP
i (b) for b ∈ α(Pi) \ {a} as

θP
i (b) = abiθ

P
i (a) (4.6)

where abi is a scaling parameter derived from the visit counts of i, and which is defined as

abi =
∑

t∈Ti

lbl(t)=b

vi(t)

/
∑

t∈Ti

lbl(t)=a

vi(t).

Note that the following property holds:

abi =
1

bai

.

If #(α(Pi)) = ki, then (4.6) defines ki − 1 independent equations for the local throughput
in location i. Hence, if we have #loc(P ) = n locations, then there are

∑n
i=1 ki − n linearly

independent equations in total.
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Example 4.21

We consider the (sub-)processes A,B,C,D,E ∈ LYAWN , which are defined as follows:

A
def
= a.[α1].b.[α2].b.[α3].A

B
def
= b.[β1].a.[β2].b.[β3].B

C
def
= a.[γ1].c.[γ2].c.[γ3].C

D
def
= c.[δ1].a.[δ2].d.[δ3].d.[δ4].c.[δ5].D

E
def
= d.[ε1].a.[ε2].d.[ε3].E.

Then
R

def
= ( A ‖b B ) ‖a ( C ‖c (D ‖d E) )

is the system of communicating components that we consider in this example. A
resides at location 1, B at location 2, C at 3, D at 4, and E at location 5. We
compute now the visit counts for each process. Since the processes do not branch,
the branching probabilities are trivial and always equal to 1. For location 1, we
choose θR

1 (b) as reference throughput. It is easy to see that for two b-transitions to
be made there is one a transition. Hence, ba1 = 1

2 and

θR
1 (a) = ba1θ

R
1 (b) =

1

2
θR
1 (b)

For location 2 (choosing the b-throughput θR
2 (b) as reference) we obtain the same

result:

θR
2 (a) = ba2θ

R
2 (b) =

1

2
θR
2 (b)

For location 3, the derivations are similar: choosing θR
3 (c) as reference, we find that

ca3 = 1
2 . For location 4, da4 = 1

2 and dc4 = 1, and finally for location 5, da5 = 1
2 .

Counting the visible actions that occur in the sub-processes, we find that there are
6 equations that describe the relation between the different throughputs.

4.3.2 Global Throughput Equations

The equations for one component that we have defined with Equation (4.6) are unrelated to
the equations derived for the other components. But Theorem 4.20 allows us to define a set
of equations that establishes a relationship between a-throughputs of different locations.

Definition 4.22 Let P ∈ LCC. Then we define the set EqP (Q) of global throughput equa-
tions of P recursively as follows:
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1. if Q = Q1‖SQ2 ∈ pDecomp(P ), then

EqP (Q) =
{
ΘP

a (Q1) = ΘP
a (Q2) | a ∈ S

}
∪ EqP (Q1) ∪ EqP (Q2)

2. if Q = Q′ \ H ∈ pDecomp(P ), then

EqP (Q) = EqP (Q′)

3. EqP (Q) = ∅, otherwise.

Note that in the first case, Q1 and Q2 can be sub-processes which are only partially
decomposed. In that case it is necessary to expand ΘP

a (Q1) and ΘP
a (Q2) according to

Definition 4.19.

If Pi
def
= ⇓⇓

P
i (P ), then, according to Definition 4.19, ΘP

a (Pi) = θP
i (a). Hence, it is obvious

that the equations of EqP (P ) indeed relate the internal throughputs of the different com-
ponents to each other.

Example 4.23

We continue Example 4.21 and derive the set of equations EqR(R). We find that

EqR(R) =
{

ΘR
a (A‖bB) = ΘR

a ( C ‖c (D ‖d E))
}

∪ EqR(A‖bB)

∪ EqR(C‖c(D‖dE)).

We expand EqR(A‖bB) and derive

EqR(A‖bB) =
{

ΘR
b (A) = ΘR

b (B)
}

∪ EqR(A) (= ∅)

∪ EqR(B) (= ∅).

The expansion of EqR(C‖c(D‖dE)) yields

EqR(C‖c(D‖dE)) =
{

ΘR
c (C) = ΘR

c (D‖dE)
}

∪ EqR(C) (= ∅)

∪ EqR(D‖dE)

=
{

ΘR
c (C) = ΘR

c (D‖dE)
}

∪
{

ΘR
d (D) = ΘR

d (E)
}

∪ EqR(D) (= ∅)

∪ EqR(E) (= ∅).
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Expanding the four equations by means of Definition 4.19, we obtain

ΘR
a (A) + ΘR

a (B) = ΘR
a (C) + ΘR

a (D) + ΘR
a (E) (4.7)

ΘR
b (A) = ΘR

b (B) (4.8)

ΘR
c (C) = ΘR

c (D) (4.9)

ΘR
d (D) = ΘR

d (E) (4.10)

The elements in EqP (P ) form a system of linear equations. Note that for all actions a that
are used for synchronisation within P and for all components Pi in which a is used, there is
an equation in EqP (P ) in which the throughput ΘP

a (Pi) occurs. We have seen above that
for all a ∈ α(GP

i ), the throughputs θP
i (a) can be expressed by one reference throughput and

the scaling parameters aa′
i. Therefore, the equations of EqP (P ) can be modified such that

only reference throughputs of the different components are referred to. As a consequence,
the equations that are introduced as an application of rule 1 of Definition 4.22 are linearly
dependent and can be expressed by only a single equation. Since in a process P ∈ LCC

with n locations only n − 1 parallel operators can occur, the system of linear equations
EqP (P ) is of rank n − 1.

Example 4.24

We continue Example 4.23. Using equations (4.7)–(4.10) and the local throughput
equations that we have derived in Example 4.21, we can solve this system of linear
equations up to one unknown. We begin with Equation (4.7). We can rewrite the
left-hand side as

ΘR
a (A) + ΘR

a (B) = ΘR
a (A) + ba2Θ

R
b (B) (cf. Example 4.21)

= ΘR
a (A) + ba2Θ

R
b (A) (by (4.7))

= ΘR
a (A) + ba2

ΘR
a (A)

ba1

= ΘR
a (A)

(

1 +
ba2

ba1

)

and the right-hand side as

ΘR
a (C) + ΘR

a (D) + ΘR
a (E) = ΘR

a (C) + ΘR
a (D) + da5Θ

R
d (E)

= ΘR
a (C) + ΘR

a (D) + da5Θ
R
d (D)

= ΘR
a (C) + ΘR

d (D)
(
da4 + da5

)

= ΘR
a (C) + ΘR

c (C)
da4 + da5

dc4

= ΘR
a (C) + ΘR

a (C)
da4 + da5

ca3dc4

= ΘR
a (C)

(

1 +
da4 + da5

ca3dc4

)

.
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Hence,

ΘR
a (A) = ΘR

a (C) ·
ca3dc4 + da4 + da5

ba1 + ba2

·
ba1

ca3dc4

, (4.11)

or, using the ratios computed in Example 4.21,

ΘR
a (A) =

3

2
ΘR

a (C).

Equation (4.11) can now be used to express all other a-throughputs of R in terms of
ΘR

a (C).

4.3.3 Branching Probabilities Revisited

The throughput equations in Sections 4.3.1 and 4.3.2 can be defined without knowledge of
the steady-state probabilities of the global system, if certain requirements are met. The
most crucial requirement is that branching probabilities for all choices have to be known.
If global throughputs are unknown, then this generally requires that choices can be only
made from stable states. Only in that case the branching probabilities can be obtained to
define the local throughput equations.

However, this assumption can be relaxed in some cases. We demonstrate this by means
of the next example: sometimes, the throughput equations are sufficient to express the
branching probabilities of a choice directly.

Example 4.25

We consider the following (sub-)processes:

P1
def
= [λ1].c.c.P1 + [µ1].a.P1

Q
def
= a.[λ].Q + b.[µ].Q

P2
def
= c.P3

P3
def
= [λ3].c.c.P3 + [µ3].b.P3

and the global process

R
def
= ( P1 ‖c P2 )‖{a,b} Q.

Process Q has a nondeterministic choice: we have the transitions Q
a

−−→ [λ].Q

and Q
b

−−→ [µ].Q. However, the GMP [[R]] is completely s-deterministic, so that a
Markov chain can be derived. This means that the nondeterministic choice of Q is
resolved by the other components by means of synchronisation (external choice). In
particular, the components P1 and P3 are controlling whether Q should perform an
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a or an b. If P1 is given control over Q, then Q has to do an a, and if P1 hands
over control to P2, then Q has to do an b. The decision whether P1 or P2 triggers
Q or hands over control to the respective other component is made locally by the
component in possession of the control over Q.

Hence, the branching probabilities of state Q are well-defined. The interesting fact is
now that these branching probabilities are already determined by the local through-
put equations of the components P1, P2 and Q and the global throughput equations.
The global throughput equations for R are (according to Definition 4.22):

ΘR
c (P1) = ΘR

c (P2) (4.12)

ΘR
a (P1) + ΘR

a (P2) = ΘR
a (Q) (4.13)

ΘR
b (P1) + ΘR

b (P2) = ΘR
b (Q). (4.14)

Equations (4.13) and (4.14) can be simplified to

ΘR
a (P1) = ΘR

a (Q)

ΘR
b (P2) = ΘR

b (Q).

We can now introduce another equation, which expresses the ratio between the mean
number of a-synchronisations and b-synchronisations:

βa =
ΘR

a (Q)

ΘR
a (Q) + ΘR

b (Q)

and

βb =
ΘR

b (Q)

ΘR
a (Q) + ΘR

b (Q)
.

As is easy to see, βa = 1 − βb and βb are the unknown branching probabilities of Q.
The global throughput equations allow us now to express ΘR

b (Q) by means of ΘR
a (Q):

ΘR
b (Q) = C ·ΘR

a (Q) for a certain scaling parameter C (which we could compute, but
leave unspecified for sake of simplicity). Then

βa =
ΘR

a (Q)

ΘR
a (Q) + C · ΘR

a (Q)
=

1

1 + C
(4.15)

and

βb =
C

1 + C
.

This example shows that some local parameters of components are determined by the
environment, i.e., other components. In this case, the local parameters are the branching
probabilities of Q, and they can be expressed by means of the global throughputs ΘR

a and
ΘR

b . That means that the global throughput equations can determine parameters within
components without referring to the global state space.
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Now immediately the question arises, whether this is always the case: can branching
probabilities be always determined by the global throughput equations? Unfortunately,
no, as the following example shows.

Example 4.26

We consider the processes P1, P2, and P3 as in Example 4.25, and

Q′ = a.[λ].Q1 + b.[µ].Q′

Q1 = a.[λ].Q′ + b.[µ].Q′.

Q′ is strongly bisimilar to process Q from Example 4.25, but we have duplicated the
nondeterministic choice. An abstract view on a fragment of the GMP [[Q]] is shown
in Figure 4.1.

Q′

• •

• •

Q1

a1

a2

b1

b2

λ

Figure 4.1: Part of [[Q′]]

We consider the process

R′ def
= ( P1 ‖c P2 )‖{a,b} Q′.

R′ is, as R, s-deterministic. However, the a-throughput ΘR′

a (Q′) and the b-throughput
ΘR′

b (Q′) are now distributed over the transitions labelled a1 and a2 and b1 and b2,
respectively, but the ratio is unknown: at least one of the branching probabilities of
Q′ or Q1 must be known. In the example of Figure 4.1, this would be sufficient, but
it is no problem whatsoever to define processes that are bisimilar to Q and for which
even more branching probabilities are unknown. Since the number of throughput
equations that would be needed to determine these probabilities does not increase,
they can obviously not be expressed by means of throughput equations only. A
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consequence of all this is that throughput equations are not the only factors that
govern the behaviour of components.

Nevertheless, in the example of process R′, the probabilities can be expressed by local
parameters only, without referring to the global state space of R ′. The derivation is
much more involved than in case of process R, as we demonstrate now.

First, we derive βa2
, the probability that the a2 transition is chosen, given that we are

in state Q1. This is the probability to make an a synchronisation under the assump-
tion that immediately before state Q1 has been entered, another a synchronisation
has happened. This means however that component P1 had control over component
Q. That means that the probability βa2

is

1. the probability that P1 decides to let an a synchronisation happen again (with
probability µ1

λ1+µ1
); or

2. to hand over control to P2, receive it back immediately, and then do an a
synchronisation (with probability λ1λ3µ1

(λ1+µ1)2(λ3+µ3)); or

3. do the hand-over procedure several times (without performing a b synchronisa-
tion), and then executing action a.

In summary that means that βa2
can be expressed as

βa2
=

µ1

λ1 + µ1

1

1 − z
, where z =

λ1λ3

(λ1 + µ1)(λ3 + µ3)
.

The probability for transition a1, i.e., βa1
, can then be derived from βa2

and the
quotient in Equation (4.15).

This example shows that

1. it is sometimes possible to express local quantities such as branching probabilities
without the necessity to refer to the global Markov chain at all, but that

2. even for simple examples a profound knowledge of the behaviour of components is
required.

A more practical conclusion of this example is that the rank of the system of throughput
equations is not sufficient to determine whether the considered system shows nondetermin-
ism or not.
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4.4 To Synchronise Means to Wait

4.4.1 Introduction

Generally, in CTMCs it is possible to compute steady-state probabilities from throughputs
and vice-versa. If τ(i) is the throughput of state i of a CTMC, then the steady-state
probability for i is equal to τ(i)/qi, where qi is the sum of the rates of all outgoing transitions
of i.

We assume now that we know the throughputs of a local GMP GP
i , as defined in Sec-

tion 4.2.4. The question arises whether we can also derive the steady-state probabilities
for GP

i , i.e., the local probabilities of location i, as we can do for CTMCs. To answer
this question, we must distinguish between stable and other states. Stable states are those
where all outgoing transitions are timed. Since we know the outgoing rates in such case,
we can compute the steady-state probability for this state by the simple division provided
in the previous paragraph.

Other states are, first of all, not stable. That means, only if they are non-synchronising,
we can say what probability mass they carry: zero. The remaining states are then syn-
chronising . These states usually do carry probability mass, but it is a problem to derive
it. The knowledge of the throughput is not enough.

We consider a process P ∈ LCC and assume that a global steady-state measure π :

Reach(P ) → [0, 1] for [[P ]] is defined. Let Pi
def
= ⇓⇓

P
i (P ) and GP

i be the local GMP for loca-

tions 1 ≤ i ≤ #loc(P ). Let s ∈ Ssyn(GP
i ) be a synchronising state. Then ⇑⇑

P
i (s) ⊆ Reach(P )

and φP
i (s) = π

(

⇑⇑
P
i (s)

)

is the local probability that component i is in state s. Even though

s is synchronising, φP
i (s) is usually larger than 0 and consequently, the mean sojourn time

for s is positive and there is a positive probability that component i is in state s.

We refer to sojourn times of synchronising states as waiting times: the reason why a
component remains in a synchronising state is that it has to wait until the other participants
in the synchronisation become ready for it.

So, we now know that synchronising states do accumulate probability mass. But this
information does not help to compute the steady-state probabilities for these states, since
the sojourn times of these states are generally not known locally. It is this lack of knowledge
that inhibits us from solving a local GMP like an ordinary Markov chain.

In the following, we will characterise waiting times more thoroughly.

4.4.2 Characterisation of Waiting Times

In this section we show that the waiting time of a local synchronising state is phase-
type distributed. Actually, this is no surprise: what else could be a distribution in a
Markovian “environment” be, if not of phase-type? Again, we assume that s ∈ Ssyn(GP

i )
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is a synchronising state. ⇑⇑
P
i (s) implicitly defines a sub-GMTS of [[P ]]. We can define this

as

W P
i,s =

(

C,Act t, Ti C
,R

Ti
C

)

(4.16)

where C = ⇑⇑
P
i (s) and Ti C

= Ti∩(C×Act t×C). The rate function of W P
i,s is the restriction

of R on Ti C
. W P

i,s forms that part of the global GMP of P in which component i stays in
state s. It describes the behaviour of G in which component i does not participate.

W P
i,s implicitly describes an absorbing Markov chain. Implicitly, because the absorbing

states and the transitions that lead to them are not part of it. However, they can easily be
retrieved from the global GMP [[P ]]: the absorbing states are all those global states which
are not element of C, but which in the global GMP can be reached in one step from states
in W P

i,s.

A phase-type distribution can be represented by means of an absorbing Markov chain (cf.
Appendix B) and a starting distribution. Since W P

i,s is an absorbing Markov chain, we have
one part of the representation of a phase-type distribution.

The sub-GMTS W P
i,s is part of the global GMP G. Since G is assumed to be irreducible,

the states of W P
i,s are positive recurrent. Hence, there is always a positive probability that

the states of W P
i,s are eventually entered. Entering W P

i,s means that component i starts to
wait. It is possible that W P

i,s can be entered via different transitions and different states.
Certainly, for each of these starting states s′ of of W P

i,s there exists a probability p(s′) that
W P

i,s is entered via state s′.

These probabilities define a probability measure p on all states of W P
i,s, and it is this

probability distribution p that completes the representation of the waiting time distribution
of state s.

We can describe the vector p. To do so, we need the following theorem.

Theorem 4.27 Let Q be the generator matrix of an ergodic CTMC and −q the vector of
diagonal elements of Q. Let E = (eij)n,n = I + Qdiag(q)−1. E describes the EMC of Q. Let

K ⊂ {1, . . . , n}, and let K = {1, . . . , n} \ K. Then, in steady-state,

Pr(current state is k ∈ K | a transition from K to K has last occurred ) =

∑

j∈K pjejk
∑

l∈K

∑

j∈K pjejl

Proof: To prove this theorem we just have to resolve the conditional probability according
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to the usual law. We can reformulate the above probabilities, assuming steady state, as

Pr(current state is k ∈ K | a transition from K to K has last occurred )

(4.17)

=
Pr(current state is k ∈ K and a transition from K to K has occurred last)

Pr(a transition from K to K has occurred last)

(4.18)

=

∑

j∈K pjejk
∑

j∈K

∑

l∈K pjejl

→•

With the last theorem, we have the means to describe the starting distribution of an
absorbing Markov chain describing the waiting time of a synchronising state. To use the
result, however, it is necessary to define an embedded Markov chain for a GMP.

In Section 3.2.2 we have describe a reduced, irreducible GMP by a matrix

Q′ =

(
C D
E F

)

where C ∈ IRm×m describes transitions from immediate states to immediate states, D ∈
IRm×(n−m) transitions from immediate to stable states, E ∈ IR(n−m)×m those from stable to
immediate states and finally, F ∈ IR(n−m)×(n−m) transitions from stable to stable states.

We define now a DTMC G, the EMC of Q′, as follows. Let −f be the vector of the
diagonal entries of matrix F. Then,

G =

(
C D

E · diag(f)−1 F · diag(f)−1 + I

)

.

G is a probabilistic matrix and describes an irreducible DTMC.

Let P ∈ LCC with G = (S, A, T,R, P ) = [[P ]] be a process with m locations. Let Gi =
(Si, Ai, Ti,Ri,⇓⇓i(P )) = [[⇓⇓i(P )]] for i = 1, . . . , m. Let n = #Reach(P ). We assume that
the elements of Reach(P ) are numbered from 1 to n. Let G = (gij)n,n be the EMC of
the Markov process defined by P , and let p = (p1, . . . , pn) 6= 0 be a vector such that
pG = p and p · 1 = 1 hold. Let s ∈ Ssyn(Pi) be a synchronising state of component i. We
assume now that the numbers in the set K ⊂ {1, . . . , n} correspond to the states of the
absorbing Markov chain defined by W P

i,s (and K = {1, . . . , n} \ K). Then, we can employ
Theorem 4.27 to describe the probability distribution ν on the states of K once a state in
K has been entered. The value ν(l) for l ∈ K is the probability of the global GMP G to
be in the global state l immediately after component i has entered its local synchronising
state s.
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As we can see, the probability distribution ν can be expressed in terms of global steady-
state probabilities of the EMC of a CTMC. Only in special cases, it is possible to derive ν
without direct reference to the global probabilities. In Chapter 5 we will see an example.

In the following, we describe the different scenarios that are imaginable for the waiting
period of a component.

1: Only Synchronising Outgoing Transitions

We still assume the synchronising state s of component i, as above. The simplest case oc-
curs when s has only synchronising outgoing transitions, say, tout . In that case, component
i can only proceed when the other components that are required to synchronise with i are
ready to do so. The sojourn time of component i in s is then completely determined by
the GMP W P

i,s and the starting distribution p.

Example 4.28

We consider the process R
def
= A‖{a,b}B ∈ LCC , where

A
def
= a.[λ].b.[µ].A

and

B
def
= a.[γ].[δ].b.B.

[[R]] is irreducible, and we consider the state P
def
= b.[µ].A ∈ Reach(A). When com-

ponent A reaches P , then component B can be either in state

[γ].[δ].b.B or [δ].b.B or b.B.

Then the absorbing Markov chain describing the waiting time for the synchronising
state P has the generator matrix

Q =





−γ γ 0
0 −δ δ
0 0 0



 .

However, we do not know in which state B is, when component A starts to wait, and
thus have no starting distribution for Q.
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2: Timeouts: Mixture between Synchronising and Timed Outgoing Transitions

In the second case we want to consider that Q has more than one outgoing transition.
A mixture of synchronising and timed transitions is allowed. To keep things simple, we
consider only the case of one timed and one synchronising transition.

Again we assume synchronising state s of component i, now with one outgoing synchro-
nising transition tout and one outgoing timed transition, ttimed . As in (4.16), we can define
the GMP W P

i,s, and again we denote with p the starting distribution.

The sojourn time of s, however, is now not determined by W P
i,s and p alone: the transition

ttimed influences this quantity as well. There is always a positive probability that ttimed fires
and state s is left before the awaited synchronisation occurs. If this happens, component
i is generally no longer willing and able to synchronise over lbl(tout), at least not until the
next synchronising state is entered. Hence, we can see the timed transition as a kind of
timeout which preempts the waiting period in state s.

We can describe the behaviour of ttimed , i.e., the time until it fires, by a random variable
X, which is exponentially distributed with rate R(ttimed ). On the other hand, we can
assume a random variable Y which is distributed according to the phase-type distribution
described by W P

i,s and p. Since ttimed is a local transition, it is completely uninfluenced and
independent from other components. That means that X is stochastically independent
from Y . The sojourn time of s is then the random variable Z = min{X, Y }.

Example 4.29

We reconsider Example 4.28, but with a different process A′ for location 1:

A′ def
= a.[λ].

(
b.[µ].A′ + [ζ].[θ].b.A′

)
.

We consider now the synchronising state P ′ def
= b.[µ].A′ + [ζ].[θ].b.A′ ∈ Reach(A′).

This state has a “timeout” transition with rate ζ. The absorbing Markov chain
describing the waiting time is the same as in Example 4.28 (Q), but now the sojourn
time of P ′ is also influenced by the transition with rate ζ. It is the minimum of
the waiting time described by Q and the timeout with rate ζ. This time is also
phase-type distributed and its absorbing Markov chain has generator

Q′ =







−(γ + ζ) γ 0 ζ
0 −(δ + ζ) δ ζ
0 0 0 0
0 0 0 0







.

Q′ has an additional absorbing state which corresponds to the state [θ].b.A′ ∈
Reach(A′). It reflects the fact that the timeout transition disabled the synchro-
nisation.
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As in Example 4.28, we are not able to determine the mean value of the sojourn time
of P ′, since again the starting distribution of Q is lacking.

4.4.3 Summary

In this section, we have characterised waiting-times of components of a GMP. Waiting times
are parameters associated with synchronising states that, even if only the mean values could
be derived, would allow us to derive local steady-state probabilities for components by an
ordinary steady-state analysis.

We have shown that waiting times are phase-type distributed, where the associated ab-
sorbing Markov chain is a part of the global state-space of the considered GMP. We have
shown that the starting probabilities of a waiting time distribution can be expressed by
means of the global steady-state probabilities of the EMC underlying the considered GMP.

We have distinguished two kinds of synchronising states, where the first is a special case of
the second. In the first case, a synchronising state has only one outgoing transition. Then,
the waiting time is simply the time that has to pass until the other components become
ready to synchronise. In the second case, the synchronising state has also outgoing timed,
local transitions, which can end the waiting time of the considered component without
a synchronisation happening. This time can also be characterised as the minimum of a
phase-type distribution (the actual waiting time), and an exponential distribution, which
is the time until the waiting time times out and decides to proceed along locally.

4.5 Conclusions

We have defined formally the concept of component for YAWN processes, and local mea-
sures on them. The most important local measures for a component are local steady-state
probabilities and local throughputs. We have shown that it is possible to describe the
stochastic dependency between synchronising components most naturally in terms of their
local throughput equations, defined by the local GMP and its branching probabilities, and
a set of global throughput equations that are implicitly defined by the syntactic structure of
the process description. We finally have defined waiting times and their distribution that
occur naturally when components synchronise. We have introduced all these concepts in
terms of the global state space of the considered YAWN process and its global steady-state
distribution.

We have identified three important quantities which would, if known, determine the local
steady-state probabilities. When all branching probabilities in all components would be
known, then the local and global throughput equations were completely specified. However,
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we have found that this system of linear equations is not of full rank: the “final equation”
is missing. In ordinary CTMC analysis, the global balance equations are nothing else but
throughput equations, and they also are not of full rank. However, for CTMCs, there is
a final equation: it is the normalisation condition, the demand that all probabilities for
all states have to sum up to one. For components, we can not give such a normalisation.
The reason is that for the determination of local steady-state probabilities not only the
throughput, but the sojourn time for all states must be known. Only then it is possible to
relate the throughput with the probability: the steady-state probability to be in a certain
state is the product of the throughput of this state and its sojourn time. For synchronising
states we do, however, not know the sojourn times. The sojourn times of the synchronising
states of a component are the (mean) waiting times as defined in before. So, if we knew the
(mean) waiting times for synchronising states, we could define a normalisation equation
for the local steady-state probabilities (which is nothing else but the requirement that the
local probabilities have to sum up to one), and then had a system of local throughput
equations with full rank.

In this chapter we did not propose a technique to really obtain the required quantities.
Instead, we have defined conditions and properties that can be used to test the quality of
potential methodologies to derive local measures. Such a methodology can either aim to
derive a reasonable value for a reference throughput, i.e., to derive the “final equation”
(be it in an exact or approximate fashion), or to derive waiting times for the individual
components. In both cases, the measures obtained must fulfil the system of throughput
equations.

In the next chapter, we will present a class of SPA processes that is special in the sense
that throughputs as well as waiting times can be derived efficiently.

In Chapter 6, we will introduce a formalism that is well suited to describe the structure of
waiting times more thoroughly.





Chapter 5

Phase-Type Distributions,
Semi-Markov Chains, and YAWN

In this chapter, we will present a numerical technique that allows to derive local steady-
state measures very efficiently for a special class of YAWN processes. The state-space
explosion problem for this class of processes is solved.

5.1 Introduction

In Section 3.2, we have introduced a method to derive a continuous-time Markov chain
from YAWN processes. All steady-state performance measures can be expressed by means
of the steady-state probability distribution of this CTMC. The solution of the CTMC
is that of a system of linear equations, where each equation corresponds to a state of the
GMP defined by the YAWN process. Since the state space of a YAWN processes generally
grows exponentially with the number of concurrent components, the CTMC suffers from
the state space explosion problem.

In this chapter we will present a different approach to derive performance measures from
YAWN processes. We call this approach the AWCI-Technique. The name comes from
three properties, A, WC, and I, that characterise the processes that are suitable to be
considered for a solution by the AWCI-Technique. Consequently, we call these processes
AWCI-processes. The algorithm is only applicable to a restricted class of YAWN processes
and allows the derivation of performance measures which are local to the components (cf.
Section 4.2). In fact, the algorithm computes only local steady-state probabilities for the
components, but as in the general case, these probabilities can be used to derive many
other local results.

As we shall see, the AWCI-Technique requires exponential time (in the worst case) and
linear space in the number of components to compute the local measures. Hence, for this
class of processes the problem of state space explosion does not exist.

89
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The YAWN processes that are suitable to be solved by the AWCI-Technique are shaped
such that their stochastic behaviour can be described in terms of a semi-Markov process
(SMC, cf. Appendix B.3.3). This SMC can be solved efficiently. The key measures that
can be derived from the SMC are throughputs, which can be interpreted within the YAWN
components according to the results of Section 4.3.

To derive the throughputs from the SMC, it is necessary, as we will see, to compute
the mean value of the maximum of a set of phase-type distributed random variables.
This is a hard problem, as long as the standard approach to derive mean values from
phase-type distributed random variables is chosen (which is described in Appendix B.4).
However, in this chapter we present a method to overcome this problem. The mean value
of the maximum of a set of n phase-type distributed random variables can be computed
in polynomial time in n.

As a by-product of these computations, also the mean waiting times of synchronising
states can be obtained. Hence, the local probabilities of the components can be completely
obtained.

Preliminary versions of parts of this chapter have been published in [15, 17]. The material
of Section 5.5 and Section 5.6 is completely new and yet unpublished. The idea for the
application example in Section 5.7 goes back to Boudewijn Haverkort.

Outline of this chapter. In Section 5.2, we introduce the class of YAWN processes
that are suitable to be solved by the AWCI-Technique. In Section 5.3 we describe how the
YAWN processes can be reformulated in terms of semi-Markov processes. In Section 5.4
we derive the important measures from the SMC and reinterpret them in terms of the
components of the original YAWN process. In Section 5.5 we present a new technique
to compute the mean value of the maximum of a set of phase-type distributed random
variables. In Section 5.6 we show that also waiting times can be obtained for the considered
processes. Section 5.7 concludes the chapter with a small application example.

5.2 The Class of Processes

The applicability of our approach is restricted to a certain class of YAWN processes, which
we will describe in this section.

Generally, the YAWN processes considered here are of the form

R
def
= P1‖SP2‖S · · · ‖SPn (5.1)

for n ∈ IN, S ⊆ Com, and P = {P1, . . . , Pn} ⊆ LYAWN
1. Sometimes we abbreviate and

write R
def
=!SP. The set P as well as the individual P ∈ P have to fulfil three requirements.

1Actually, we must assume P to be a multi-set, since different components can be syntactically equal.
However, for sake of simplicity we assume that we can distinguish all components from each other, such
that we can assume that P is an ordinary set.
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5.2.1 Three Requirements

The processes that are suitable to be considered to be solved by the AWCI-Technique are
characterised by three requirements A, WC, and ID, which we describe in the following.

A: Alternation. For each P ∈ P, the GMP [[P ]] has to show an alternating behaviour
between local, invisible or timed transitions and synchronising transitions. We demand
especially that there are no choices between synchronising actions and timed or non-
synchronising actions, respectively. More formally, we say that set P has property A with
respect to synchronisation set S if for all P ∈ P and for all P ′ ∈ Reach(P ) with P ′ a

−−→

for some a ∈ Act the condition P ′ 6
t

−−→ holds. This condition ensures from the start that
once a component P ∈ P wants to synchronise with another component (or better, with all
the others, by the structure of R), it has to wait until this synchronisation really happens.
Hence, a component either executes local actions or waits for the other components to
synchronise with it. To keep things more simple in this chapter, we demand without loss
of generality that all P ∈ P only have transitions with labels from S ∪ {t}. To express
this requirement in terms of Section 4.2.4, we require that the branching probabilities of
all components are determined locally.

Alternation is the reason why times between the execution of an synchronisation and the
start of the next waiting period are determined only locally and can be described uniquely
by a phase-type distribution: if t is a synchronising transition of Pi, then the starting state
of the next local phase is dst(t) with probability 1, and the absorbing states are all those
synchronising states which can be reached by dst(t) without visiting another synchronising
state in between. The states that lie between starting and absorbing states are all stable
and the absorbing Markov chain describing the phase-type distribution is formed out of all
those states and the respective transitions connecting them.

Example 5.1

We assume the processes

Q
def
= a.[λ].(Q1 + Q2)

and

Q1
def
= [µ1].[µ2].b.Q

′

Q2
def
= [γ1].[γ2].c.Q

′′

to be a derivative of components i, Pi (where Q′, Q′′ are some process constants which
are defined somehow but are not of interest here). In Figure 5.1 (a), the transition
system of Q is depicted, where the states are denoted s1, . . . , s9 for easier reference.
If we assume that {a, b, c} ⊆ S, states s1, s5 and s8 are synchronising states. Since
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Figure 5.1: Transition system of Q and corresponding Markov chain

s5 and s8 are the synchronising states that can be reached next from s2, the time,
say D, between entering s2 and entering state s5 or s8, respectively, is determined by
all the transitions that lie between these states. Since YAWN is a Markovian SPA,
the transitions denote exponential phases and hence, D is phase-type distributed.
The corresponding absorbing Markov chain is depicted in Figure 5.1 (b) (states are
denoted as in Figure 5.1 (a)).

WC: Weak (functional) congruence of components. From Equation (5.1) we see
that all components synchronise over a single synchronisation set S. We define S =
Comt \ S. Then, for all P, Q ∈ P we require that

P \ S ' Q \ S,

that is, the components have to be weakly congruent with respect to their functional
behaviour only, and with respect to the actions contained in the synchronisation set S.
Only those actions are left to be visible. Even the temporal information is irrelevant, since
t ∈ S (cf. Section 3.1.3). In the following, set P is said to have property WC with respect
to a synchronisation set S if all pairs of components in P fulfill the above condition.
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ID: Irreducibility. Apart from the two requirements A and WC, irreducibility of the
components P ∈ P (cf. Definition 3.21) as well as the irreducibility and s-determinism of
R is required. If these conditions are fulfilled, set P is said to have property ID.

5.2.2 Properties of !SP

In this section, we consider a set P of components with the properties A, WC and ID

with respect to a synchronisation set S. We will derive some properties for R
def
=!SP which

will prove to be useful in subsequent sections. It is sufficient to assume P having only two
elements, P and Q, since the results will turn out to be valid also for larger component
sets.

The first result shows that R is deadlock-free.

Lemma 5.2 Let P ′ ∈ Reach(P ) and Q′ ∈ Reach(Q) such that P ′‖SQ′ ∈ Reach(R). When-

ever P ′
a

���P ′′ for a ∈ S, then with probability one, Q′ evolves into a state Q′′ ∈ Reach(Q)

such that Q′
t

���Q′′ and Q′′ a
−−→.

Proof: We assume that the probability that there is a transition sequence Q′
t

���Q′′ to
a state Q′′ with Q′′ a

−−→ is smaller than one. In that case there must be a local, implicit
probabilistic choice in Q′, which leads to a synchronising state Q′′′ with Q′′′ a

−−−→6 . Hence,
there is a positive probability that P ′‖Q′ evolves to P ′′‖SQ′′′, but this is an absorbing state,
since P ′′ can not synchronise with Q′′′. This is a contradiction to the irreducibility require-
ment of R. →•

The next lemma shows that there is a strong relation between components P and Q
and the process P‖SQ, if {P, Q} have the properties A, WC and ID with respect to a
synchronisation set S ⊆ Com. Again, we define S = Comt \ S.

Proposition 5.3 Let {P, Q} have the properties A, WC and ID with respect to a synchro-
nisation set S ⊆ Com. Then

P \ S ' (P‖SQ) \ S

The proof of Proposition 5.3 needs the following lemma.

Lemma 5.4 Let P, Q ∈ LYAWN . Then (P‖SQ) \ S ' (P \ S)‖S(Q \ S)

Proof: We prove that (P‖SQ) \ S is even strongly bisimilar to
(
P \ S

)
‖S

(
Q \ S

)
. We

define the relation

B =
{(

(P ′‖SQ′) \ S, (P ′ \ S)‖S(Q′ \ S)
)∣
∣
∣ (P ′‖SQ′) \ S ∈ Reach(P‖SQ) \ S)

}
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(the individual terms are underlined for better readability). Then we define the set B
to be the symmetric and transient closure of B. We show that B is a strong Markovian
bisimulation. We choose an arbitrary element from B, say,

(

(P ′‖SQ′) \ S, (P ′ \ S)‖S(Q′ \ S)
)

.

The expansion law (cf. Lemma 3.10) states that

P ′ ∼
∑

i∈I

[λi].Pi +
∑

j∈J

aj.Pj

and
Q′ ∼

∑

k∈K

[µk].Qk +
∑

l∈L

bl.Ql,

where I, J, K, L are appropriately chosen, pairwise disjoint index sets. Then (Lemma 3.10)

(P ′‖SQ′) ∼
∑

i∈I

[λi].(Pi‖SQ′) +
∑

j∈J
aj 6∈S

aj.(Pj‖SQ′)

+
∑

j∈J
aj∈S

bl=aj

aj.(Pj‖SQl)

+
∑

l∈L
bl 6∈S

bl.(P
′‖SQl) +

∑

k∈K

[µk].(P
′‖SQk).

Consequently,

(P ′‖SQ′) \ S ∼
∑

i∈I

i.
(
(Pi‖SQ′) \ S

)
+

∑

j∈J
aj 6∈S

i.
(
(Pj‖SQ′) \ S

)

+
∑

j∈J
aj∈S

bl=aj

aj.
(
(Pj‖SQl) \ S

)

+
∑

l∈L
bl 6∈S

i.
(
(P ′‖SQl) \ S

)
+

∑

k∈K

i.
(
(P ′‖SQk) \ S

)
.

On the other hand,

P ′ \ S ∼
∑

i∈I

i.
(
Pi \ S

)
+

∑

j∈J
aj 6∈S

i.
(
Pj \ S

)
+

∑

j∈J
aj∈S

aj.
(
Pj \ S

)

and

Q′ \ S ∼
∑

k∈K

i.
(
Qk \ S

)
+

∑

l∈L
bl 6∈S

i.
(
Ql \ S

)
+

∑

l∈L
bl∈S

bl.
(
Ql \ S

)
.
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Then we have

(
P ′ \ S

)
‖S

(
Q′ \ S

)
∼

∑

i∈I

i.
(
Pi \ S

)
‖S

(
Q′ \ S

)
+

∑

j∈J
aj 6∈S

i.
(
Pj \ S

)
‖S

(
Q′ \ S

)

+
∑

j∈J
aj∈S

bl=aj

aj.
(
Pi \ S

)
‖S

(
Ql \ S

)

+
∑

l∈L
bl 6∈S

i.
(
P ′ \ S

)
‖S

(
Ql \ S

)
+

∑

k∈K

i.
(
P ′ \ S

)
‖S

(
Qk \ S

)
.

It is now easy to see that B is indeed a strong bisimulation. Hence, (P‖SQ) \ S ∼
(P \ S)‖S(Q \ S), which immediately leads to Lemma 5.4. →•

We now prove Proposition 5.3.

Proof (of Proposition 5.3): We consider the minimal representants of P \S and Q\S with
respect to ', denoted in the following by Pmin and Qmin, respectively (cf. Definition 3.15).
Due to the alternating behaviour of P and Q, there are no choices between internal and
synchronising actions in neither P \ S nor Q \ S. As a consequence, Pmin and Qmin, which
are isomorphic anyway, do not contain a single transition labelled with an invisible action.
Consequently, in Pmin‖SQmin, Pmin and Qmin act in full synchrony, and hence

Pmin ' Pmin‖SQmin ' Qmin.

Due to the congruence property of ' with respect to ‖S and because Pmin ' P \S ' Q\S,
we also have

P \ S ' P \ S‖SQ \ S ' Q \ S.

By means of Lemma 5.4 we derive

P \ S ' (P‖SQ) \ S,

as desired. →•

The proof of Proposition 5.3 shows that if R = P‖SQ, where {P, Q} has the properties
A, WC and ID, then {R, P, Q} has these properties as well. This result can easily be
generalised.

Corollary 5.5 Let P = {P1, . . . , Pn} ⊆ LYAWN such that P has the properties A, WC and
ID with respect to the synchronisation set S. If R = P1‖S · · · ‖SPn, then {R} ∪ P has these
properties as well.
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The next result solves a problem with checking property ID. Although it is possible to
determine efficiently whether components are irreducible by means of state-space explo-
ration, the conditions that R is s-deterministic and irreducible is not so easy to check:
generally, the global state space of R must also be generated for this. The both following
Lemma 5.6 and 5.7 together relieve us of this problem.

The first lemma shows that the irreducibility of R can indeed be ensured by some structural
properties of the components.

Lemma 5.6 Let P be a set of components with properties A and WC with respect to
a synchronisation set S, and let all components in P be irreducible. For all P ∈ P we
assume that, if P ′ ∈ Reach(P ) is a synchronising state, and if Q1, Q2, . . . ∈ Reach(P ) are the
synchronising states that are reachable from P ′ with paths that only visit non-synchronising
states, then Q \ S ' Q′ \ S for all Q, Q′ ∈ {Q1, Q2, . . .}.

Then R =!SP is irreducible.

Proof: Again, we assume only two components P and Q and R = P‖SQ and define
Pmin and Qmin to be the minimal representants of P \ S and Q \ S, respectively. Since
P \S ' Q\S, also Pmin ' Qmin and Pmin and Qmin are isomorphic. For P , the synchronising
successor states of a synchronising state P ′ ∈ Reach(P ) are all weakly congruent and are
hence all represented by one state in Pmin. A consequence is that Pmin and Qmin are
choice-free: each choice in P \ S is eliminated in Pmin: if not, the choice would be between
states that are not weakly congruent, which would contradict the premises. Since the
irreducibility of P is also preserved in P \S and also in Pmin, the transition system of Pmin

is strongly connected and forms a cycle.

The considerations are also true for Q, and hence Pmin‖SQmin is an irreducible process
acting in full synchrony. Consequently, also P \ S‖SQ \ S is irreducible, and so is P‖SQ.
→•

The next lemma shows that we can demand some properties of the components such that
R is s-deterministic.

Lemma 5.7 Let P be a set of components with properties A and WC with respect to a
synchronisation set S, and let all components in P be irreducible as well. If the components do
only contain transitions with labels a ∈ S, or timed transitions, and are s-deterministic, then
R =!SP is s-deterministic.

Proof: Again, it is sufficient to show the lemma only for a set of two components. The
general result follows from the previous lemma in this section.

We prove the lemma by contradiction. We assume that P = {P, Q} fulfils all the require-
ments of the lemma, but P‖SQ is nondeterministic. Hence, there must be a state s in
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[[P‖SQ]] with (at least) two outgoing transitions of the form

a1 a2

s

s′ s′′

(5.2)

If transition (s, a1, s
′) corresponds to P , then (s, a1, s

′′) must correspond to Q (or vice
versa). Otherwise, one of the components would itself be nondeterministic, which contra-
dicts the premises. Hence there is without loss of generality a transition with label a1 in
P and one with label a2 in Q. Both a1 and a2 can not be element of S, since then the
situation in (5.2) could not arise. But a1, a2 6∈ S again is a contradiction to the premises
of the lemma. →•

A consequence of Lemma 5.7 is that, if a component makes only synchronising and timed
transitions, then !SP is s-deterministic. In the following we will hence replace property ID
with property I, which together with A and WC implies property ID and which can be
checked locally on the components:

A set P of components is said to have property I with respect to a synchroni-
sation set S, iff the premises of Lemma 5.6 and Lemma 5.7 are fulfilled for all
P ∈ P, and P, respectively.

Although property I might look as a restriction to the class of components to which
the AWCI-Technique is applicable, it is not. If there is a component P which has tran-
sitions with labels a ∈ H with H ∩ S = ∅, we can hide them safely from the view of the
outside world, i.e., consider P \(H \{i}), since those transitions are obviously not supposed
to synchronise with other components and do neither contribute to the quantitative nor to
the functional behaviour of the component. Additionally, those transitions that now have
label i can be safely eliminated, i.e., there is a process P ′ ' P \ (H \ {i}) that does not
contain these transitions. P ′ is then suitable for the AWCI-Technique.

5.3 From GMP to SMC

The alternating behaviour of the components P1, . . . , Pn allows us to characterise their
stochastic behaviour in an uncommon way: rather than describing it by an ordinary CTMC,
we can describe it by means of a semi-Markov process (cf. Appendix B.3.3)2.

2Of course, a CTMC is a special form of a semi-Markov process. However, the semi-Markov processes
we aim at here are generally not CTMCs.
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5.3.1 SMCs from Components

In this section we derive an SMC description of components. To ease the definition we first
introduce

Recipe 5.8 Let P ∈ LYAWN be alternating and [[P ]] = (S, A, T,R). Let s ∈ Ssyn(P ). The
absorbing CTMC {Xt} following s is defined as follows:

• The state space S of {Xt} are all those states s′ ∈ S, s′ 6= s such that s′ occurs in a path
σ starting with s, ending with an synchronising state s′′ ∈ Ssyn(P ), and no synchronising
state occurs within σ.

• We assume that m = #S and number the states in S from 1 to m. From now on
we identify the states with their number and assume that the state being the (unique)
successor of s has number 1.

• The generator matrix Qs = (qij)m,m describing the CTMC {Xt} is then defined as follows:

qij =

{
R(t) if t ∈ T ∩ (S × A × S), src(t) = i and dst(t) = j,
0 otherwise.

The diagonal elements of Qs are then defined as the negative sum of the non-diagonal
elements of their respective row.

• The starting distribution of Qs is defined to be π0 = em
1 (cf. Appendix A.1).

The reformulation of a YAWN process in terms of a semi-Markov chain is now described
in the following definition and the subsequent paragraph.

Definition 5.9 Let P ∈ LYAWN be alternating and irreducible. Then SMC(P ) = (Σ,E, J)
is defined to be the semi-Markov chain corresponding to P , where

• Σ = Ssyn(P ) is the state space of the SMC;

• E = (eij)n,n is the embedded DTMC, where n = #Σ;

• J : Σ −→ F+ is a mapping from states to positive distribution functions. If s ∈ Σ, then
J(s) is the phase-type distribution described by the absorbing CTMC with generator Qs,
constructed by Recipe 5.8. Though not a distribution function, we will often identify
J(s) with the generator matrix Qs.

With Definition 5.9, only the state space and the sojourn time distributions of SMC(P ) are
actually defined. We now proceed with the definition of E, the embedded Markov chain.
We assume a certain numbering of the states in Σ and agree that a state with number i
corresponds to the ith row of E.
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Although the mutual reachability of the SMC states is known, it remains to assign prob-
abilities to the transitions to make it an actual EMC of the SMC. Reachability between
synchronising states can also be expressed by means of the distributions assigned to the
states. We assume si, sj1, , . . . , sjk

∈ Σ for {i, j1, . . . , jk} ⊆ {1, . . . , n} such that sj1, . . . , sjk

are the k absorbing states of J(si). We assume that si, sj1, . . . , sjk
each correspond to

the respective rows i, j1, . . . , jk of E, and so we are now going to define the probabilities
ei,j1, . . . , ei,jk

. These values can be derived from J(si). If J(si) = Q is the generator ma-
trix of the absorbing CTMC describing the phase-type distribution (with, say, dimension
m × m) then this matrix generally can be brought in the form

Q = (qij)m,m =















T Ta

0 0















,

where T is a sub-matrix which describes the transitions between the non-absorbing states,
Ta the transitions from non-absorbing to absorbing states, and the rows with only 0’s on
them the absorbing states, each row one. Again, we assume that there is a one-to-one
correspondence between the rows of the matrix and the states of an transition system of
the CTMC. Furthermore, we assume a one-to-one correspondence between the “absorbing”
rows of Q and the states sj1, . . . , sjk

. For our purposes we can assume that we always start
in the state that corresponds to the first row of the matrix.

To extract the branching probabilities from Q, we detour. First, we turn Q in a uniformised
DTMC P, that is defined as

P = (pij)m,m =
1

q
Q + I =
















U Ua

1

0
. . .

1
















,

where q = max{|q11|, . . . , |qmm|} and I the m × m unit matrix (cf. Appendix B.3.2). The
entries pij of P describe the one-step probabilities of a discrete Markov process, i.e., the
probabilities to leave state i (once it is entered) and change to state j after a mean time
period of 1/q. We are interested to compute the probabilities to reach the respective
absorbing states after an arbitrary number of steps. It is well known that the l-step
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Figure 5.2: Absorbing CTMC (left) and associated DTMC (right) for Example 5.10

transition probabilities (for l ∈ IN) of DTMCs can be expressed by Pl. We can derive

Pl =
















Ul
∑l−1

i=0 UlUa

1

0
. . .

1
















.

The entries u
(l)
ij of the matrix Ul denote the probabilities to end up in state j after

starting in state i and jumping exactly l times. This holds also for the entries of the
matrix

∑l−1
i=0 UiUa, but these probabilities can also be interpreted differently: they denote

the probabilities to reach an absorbing state in at most l steps. Since we want to know the
probabilities to reach an absorbing state in an arbitrary number of steps, we are interested
in the limes liml→∞ Pl, especially in the up-right sub-matrix, which then becomes the
infinite sum

∑∞
i=0 UiUa. The sum does converge3 and we can write it down in closed-form:

∞∑

i=0

UiUa = (I − U)−1Ua

= (I − U)−1Ta

q

= (qI − qU)−1Ta

= (qI − (T + qI))−1Ta

= −T−1Ta.

Since we always deal with absorbing Markov chains with a fixed starting state, we can
express the probabilities to eventually reach the respective absorbing states by the row
vector

β = (β1, . . . , βk) = −(1, 0, . . . , 0)T−1Ta.

3This is a general property of a matrix like U . See [55].



5.3 From GMP to SMC 101

where βl corresponds to state sjl
of SMC(P ). Note that a similar derivation is used to

obtain branching probabilities in the course of elimination of vanishing markings in GSPN
analysis [103, 102], cf. Section 3.2.2.4

Example 5.10

We consider the absorbing CTMC with two absorbing states, depicted in Figure 5.2.
The generator matrix is

Q =







−3 1 2 ·
2 −5 · 3
· · · ·
· · · ·







and P =










2
5

1
5

2
5 ·

2
5 · · 3

5

· · 1 ·

· · · 1










Starting state is s1. One would expect that the probability p(s3) to eventually reach
state s3 satisfies the recurrence

p(s3) =
2

5
· p(s3) +

2

25
· p(s3) +

2

5
.

Hence,

p(s3) =
2

5
·

1

1 − 2
5 − 2

25

=
10

13
.

The probability for s4 is consequently p(s4) = 1 − p(s3) = 3
13 .

If we employ the equations derived in this section, we have to compute −T−1Ta. A
quick Maple session reveals that

T−1 =

(
− 5

13
−1
13

−2
13

−3
13

)

,

and hence

−T−1Ta =

(
10
13

3
13

4
13

9
13

)

.

Since we assume s1 to be the starting state, we are only interested in the first line
and hence, β = ( 10

13 , 3
13 ), as expected.

4One might ask whether it is not better to derive this result via the embedded Markov chain. We
demonstrate now that this is just a matter of personal taste. Let q be the vector of diagonal entries of T.

Define D = −diag(q). We redefine the matrices U and Ua as U = I+D−1T and Ua = D−1Ta. Again we

are interested in the series
∑∞

i=0
UiUa. Then

∑∞
i=0

UiUa = (I −U)−1Ua = (I − I −D−1T)−1D−1Ta =
−T−1Ta, as before.



102 Chapter 5

Coming back to the definition of the EMC E, we define the ith row of E now as follows:
for l = 1, . . . , n:

ei,l =

{
βr if l = jr for a r ∈ {1, . . . , k}
0 else.

The experienced reader will notice at once that the probability vectors β derived above
are in fact the steady-state probabilities for the absorbing states of the absorbing Markov
chain under the assumption that it is started in state 1 with probability 1. The steady-state
probabilities can be stated in a different way, namely by π∞ = limt→∞ π(t), where

π(t) = π0e
Qt,

and π0 is a vector of starting probabilities (as mentioned above, π0 = (1, 0, . . . , 0) in our
case). The vector β is then a sub-vector of π∞. Though this fact is not of practical use in
this section, we will need it later.

5.3.2 Combining Two Processes

We have seen that, if {P, Q} ⊆ LYAWN which fulfils requirements A, WC and I for
a certain synchronisation set S, then R = P‖SQ does fulfil these requirements as well
(Corollary 5.5). Especially properties A and I are of interest to us, because they allow us
to derive an SMC for R in the same fashion as described in the previous section.

In this section we want to explore the properties of SMC(R) = (ΣR,ER, JR). We are
especially interested in the structure of ER and of the delay distributions. We suspect that
the branching probabilities of the combined processes can somehow be derived by simple
multiplication of the branching probabilities of the components due to the fact that the
probabilistic choices in the components are completely independent from each other.

Since P \S ' (P‖SQ)\S, we can define a relation l between the synchronising states
of P and Q by means of Reach(P‖SQ): if P ′‖SQ′ ∈ Reach(P‖SQ) is a synchronising state,
then P ′ and Q′ are synchronising as well, and we define P ′ l Q′. If we consider now each
synchronising state P ′‖SQ′ ∈ Reach(R) as a state of an SMC, then we can assign a phase-
type distribution that reflects the time until the next synchronisation happens, i.e., until
(one of) the next synchronising states is reached. Intuitively, the next synchronisation
happens, when both components are ready to participate. If the (random) time to get
ready is denoted XP for P and XQ for Q, then the time for P‖SQ is XP � XQ. XP and
XQ are random variables, and if FP and FQ denote their distribution functions, then the
distribution of XP � XQ is FP ·FQ (cf. Appendix A.3 for notation). The maximum of two
phase-type distributed random variable is phase-type distributed and can be represented by
the Kronecker sum of the absorbing Markov chains representing the individual distributions
(cf. Section A.2).

In the following, we determine the branching probabilities between the synchronising states
of P‖SQ. Let hence P ′‖SQ′ ∈ Reach(P‖SQ) be a synchronising state, Q1 be the absorbing
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Markov chain describing the distribution of P ′ and Q2 that of Q′. Then, the distribution
of P ′‖SQ′ is described by the absorbing CTMC with generator Q1 ⊕ Q2. Let π

(i)
0 be the

starting probabilities of Qi, for i = 1, 2. Then π0 = π
(1)
0 ⊗ π

(2)
0 is the starting probability

vector of Q1 and Q2.

Lemma 5.11 Let Qi, i = 1, 2 be the generator matrices of two absorbing Markov chains with
starting distributions π

(1)
0 and π

(2)
0 , respectively. Let π0 = π

(1)
0 ⊗ π

(2)
0 and π(i)(t) = π

(i)
0 eQit for

i = 1, 2. Then
π(t) = π0e

(Q1⊕Q2)t = π(1)(t) ⊗ π(2)(t).

Proof:

π(t) = π0e
(Q1⊕Q2)t

= π0e
(Q1⊗I2)t+(I1⊗Q2)t

= π0e
(Q1t⊗I2)+(I1⊗Q2t)

= π0e
Q1t⊗I2eI1⊗Q2t

By means of repeated application of the equation (A⊗B)n = (An⊗Bn) (cf. Appendix A.2),
the exponential eQ1t⊗I2 can be expressed as

eQ1t⊗I2 =

∞∑

n=0

(Q1t ⊗ I2)
n

n!

=

∞∑

n=0

(Q1t)
n ⊗ I2

n!

=

∞∑

n=0

(Q1t)
n

n!
⊗ I2

= eQ1t ⊗ I2,

and eI1⊗Q2t accordingly. Then

π(t) = π0

(
eQ1t ⊗ I2

) (
I1 ⊗ eQ2t

)

= π0

(
eQ1t ⊗ eQ2t

)

=
(

π
(1)
0 ⊗ π

(2)
0

) (
eQ1t ⊗ eQ2t

)

= π
(1)
0 eQ1t ⊗ π

(2)
0 eQ2t

= π(1)(t) ⊗ π(2)(t)

→•

A consequence of this is that
π∞ = π(1)

∞ ⊗ π(2)
∞ .

Hence, the branching probabilities of Q1 ⊕ Q2 can be obtained from those of Q1 and Q2

by simple multiplication, which implies that they are stochastically independent from each
other.
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Kronecker Product of Local EMCs

Why can we not combine the EMCs EP and EQ directly, i.e., compute EP ⊗ EQ? The
reason is that, if EP is of dimension n and EQ of m, then EP ⊗ EQ is of dimension mn.
But ER is usually much smaller, sometimes even just as small as EP or EQ. The reason is
that in EP ⊗ EQ all rows of EP , i.e., all states of SMC(P ), are combined with all rows of
EQ, i.e., all states of SMC(Q). This is not appropriate, since not all of these combinations
correspond to synchronising states of R. In fact, EP ⊗EQ describes a DTMC which consists
of several unconnected parts. Only that part that contains the state which corresponds to
P‖SQ is of interest to us. Instead of constructing EP ⊗ EQ, and extracting the part that
interests us, we construct it directly: by means of the relation l5.

We now define the operation �S on SMCs, for which SMC(P‖SQ) = SMC(P ) �S SMC(Q),
where S, as usual, denotes the synchronisation set. If clear from the context, we omit the
subscript and write simply �.

Definition 5.12 (Diamond Product �S) Let {P, Q} ⊆ LYAWN have properties A, WC
and I with respect to a synchronisation set S. Let R = P‖SQ and l⊆ Reach(P )×Reach(Q)
be defined as above. Let SMC(P ) = (ΣP ,EP , JP ) and SMC(Q) = (ΣQ,EQ, JQ).

Then we define the Diamond Product SMC(P ) �S SMC(Q) to be the SMC (Σ,E, J), where:

• Σ is the set of synchronising states of R.

• The matrix E is of dimension n× n, where n = # l and the entries e(ij),(kl) are defined
as follows:

– if i corresponds to synchronising state P ′ ∈ Reach(P ), j to P ′′ ∈ Reach(P ),

– k to Q′ ∈ Reach(Q) and l to Q′′ ∈ Reach(Q), and

– if P ′ l Q′ and P ′′ l Q′′,

then
e(ij),(kl) = e

(P )
ij · e(Q)

kl .

• The distribution functions for all P ′‖SQ′ ∈ Σ are described as

JR(P ′‖SQ′) = JP (P ′) ⊕ JQ(Q′).

Lemma 5.13 Let P, Q, R, S be defined as in Definition 5.12. Then

SMC(R) = SMC(P ) �S SMC(Q)

5The deeper reason why EP ⊗ EQ disintegrates in several independent sub-matrices is that both EP

and EQ are periodic and hence irreducible, but not ergodic. As a consequence, not all combinations of
states from EP and EQ can be reached from one designated state. Stated differently, if EP and EQ were
aperiodic (or at least one of them), then EP ⊗ EQ would be aperiodic as well and each combination of
states could be reached.
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Proof: Follows from the considerations of this section. →•

To keep notation simple, we will sometimes write EP �S EQ for E.

5.3.3 Combining more than Two Processes

If we have a set P = {P1, . . . , Pn} ⊆ LYAWN which has the properties A, WC and I with
respect to synchronisation set S, we can derive SMC(R) for R = P1‖S · · · ‖SPn by repeated
application of �:

SMC(R) = (· · · (SMC(P1) �S SMC(P2)) �S · · · �S SMC(Pn−1)) �S SMC(Pn).

5.4 SMC Results to SPA Results

In this section we are going to explain why a reformulation of SPA models in terms of SMC
is useful. What we want to do is to solve the SMC. We will show that we obtain results
that can be interpreted directly within the original model.

5.4.1 Relevant Information: Steady-State Probabilities

The structure of the SPA model and the derived SMC is very similar. In fact, the SMC
can be seen as a reformulation of the original model. The entities that relate both models
are synchronising states.

We assume again a set {P1, . . . , Pn} ⊆ LYAWN with the properties A, WC and I with re-
spect to synchronisation set S, and let R = P1‖S · · · ‖SPn. We define SMC(Pi) = (Σi,Ei, Ji)
and SMC(R) = (ΣR,ER, JR).

We want to solve SMC(R). To do so, we have to do three things:

1. We have to solve the EMC ER and derive a steady-state probability vector p;

2. We have to compute the mean values µ
(R)
s for all s ∈ ΣR;

3. We have to actually compute the steady-state solution of SMC(R).
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Steady-State Solutions of the EMC

We know that ER is a sub-matrix of
⊗n

i=1 Ei. It is common knowledge that, if π(i) are the
steady-state solutions of Ei for i = 1, . . . , n, then the vector π =

⊗n
i=1 π(i) is a solution of

the equation

π

n⊗

i=1

Ei = π.

This can be shown by repeated application of Equation (A.1).

As stated in Section 5.3.2,
⊗n

i=1 Ei disintegrates into several independent sub-matrices,
from which only one is interesting for us. Therefore, we have to choose all those entries
from π that correspond to a state of ER. Since the π 1 = 1, the chosen entries generally
do not sum up to one and must be renormalised.

Mean Sojourn Times of the SMC States

For all states s ∈ ΣR, we have to compute the mean value of a random variable distributed
according to JR(s). By definition, JR(s) is a Kronecker sum of absorbing Markov chains
representing phase-type distributions. Even though a Kronecker representation of a matrix
is very memory efficient, the computation times still grow exponentially with the number
of summands.

For the time being, we postpone considerations about the actual computations until Sec-
tion 5.5 and assume, that the proper value for µ is available.

Steady-State Solutions of SMC(R)

Combining the steady-state solution p(R) for ER with the mean values µ, we are able to
compute the steady-state probabilities for SMC(R) by means of Equation B.6, i.e.,

σ(R) =
1

p(R) µT
p(R) diag(µ).

5.4.2 Throughputs for the YAWN Model

As for CTMCs, we can derive throughputs for states and transitions of SMC(R). Again,
the throughput of a state is the mean number of visits to this state in unit time, and that
of the transitions the mean number of instances per unit time this transition is “used”.
The vector τ (R) = σ(R) ·µT is hence the vector of the state throughputs of R. Accordingly,

T(R) = diag(τ)ER is the vector of transition throughputs of SMC(R).

In this section, we will use the results of Chapter 4 to relate the throughputs derived for
SMC(R) to the performance measures of R.
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Visit Counts for the Components

We know from Section 4.2.4 that visit counts are scaling parameters that allow us to express
the throughputs of states of a GMP relative to one reference throughput. To obtain visit
counts, the branching probabilities of the GMP must be known for all transitions.

The good news is that, whenever a set P of YAWN processes has the properties A,WC,
and I with respect to a synchronisation set S, then the branching probabilities for each
P ∈ P are well-defined. This is an immediate consequence of the fact that a state of
[[P ]] is either stable, or synchronising without timeout. The fact that !SP \ S ' P \ S
for all P ∈ P ensures that no state of P becomes unreachable due to synchronisation
constraints. Therefore, [[P ]] not only describes the potential but also the actual behaviour
of the component described by P . It is therefore possible to define for each P a system of
linear equations of the form described in Section 4.2.4 to derive the visit counts for each
component.

Once the visit counts are obtained, we must derive for each component i the scaling
parameters abi for a, b ∈ S to describe the relationship between a-throughputs and b-
throughputs (cf. Section 4.3.1). Note that, due to the special structure of the process R,
the a-throughputs for all a ∈ S are equal for all components. Therefore, for a, b ∈ S,

abi = abj

for all i, j ∈ {1, . . . , #loc(R)}. We omit the indices in the following.

Throughputs

The states of SMC(R) correspond by definition to the synchronising states of R. We
interpret the state throughputs that we have derived for SMC(R) as the throughputs for
the synchronising states for R.

Each synchronising state of R is synchronising over a unique action a ∈ S. Since we now
know the throughputs for each of these states, we can compute the values θR(a) for each
a ∈ S. Since

θR(a) = θP (a)

for each a ∈ S and P ∈ P, we can interpret the a-throughputs of R directly within its
components P ∈ P.

The throughput relations within a component are described by the visit counts. It is
therefore necessary to derive the reference throughput from one of the a-throughputs. For
component i, we know that

θP
i (a) =

∑

t∈Ti

lbl(t)=a

vi(t)νi
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(cf. Section 4.3.1). Consequently,

νi =
θP

i (a)
∑

t∈Ti

lbl(t)=a

vi(t)
.

Then, for all states s ∈ Si, we have

τ(s) = vi(s)νi.

Steady-state probabilities

Steady-state probabilities can now be obtained for all stable states of all components. For
the synchronising states this is not possible, since we do not know their sojourn times yet.
However, as already mentioned before, we can derive the sojourn times of synchronising
states with a technique that we describe in Section 5.6. Then we can also derive steady-
state probabilities for synchronising states.

5.4.3 Global Probabilities from Local Probabilities?

We consider now the question whether it is possible to compute global steady-state mea-
sures from the local probabilities. In the following we demonstrate why this is not possible.

We know throughputs for the starting states of absorbing Markov chains. As demonstrated
in Appendix B.4, we can derive steady-state probabilities for the states of this Markov
chain. Following Equation (B.8), we have the following system of linear equations:

πT = (−τ, 0, . . . , 0),

where T = 〈JR(P ′)〉 and τ is the throughput. Since JR(P ′) is the Kronecker sum of all
generator matrices Ji(P

′
i ) for i = 1, . . . , n, one might wonder whether the solution of the

above system of linear equations, π, can not be obtained from the local probabilities πi,
for example by means of ⊗. Unfortunately, this is not possible, as the next examples
demonstrates:

Example 5.14

We consider two absorbing CTMCs with generators Q1 and Q2, where

Q1 =





−1 1 0
0 −1 1
0 0 0



 and Q2 =





−2 2 0
0 −2 2
0 0 0
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We choose to compute the probability vectors π1 and π2 for the throughput τ = 1/4,
i.e., π1 is the solution of the system of linear equations π1 〈Q1〉 = −τ(1, 0) and π2

that of π2 〈Q2〉 = −τ(1, 0). Then

π1 =

(
1

4
,
1

4

)

and π2 =

(
1

8
,
1

8

)

.

The Kronecker product of both vectors is

π1 ⊗ π2 =
1

32
(1, 1, 1, 1).

On the other hand,

π =

(
1

12
,

1

18
,
1

9
,

1

36
,

1

27
,

5

27
,

1

72
,

7

216

)

is the solution of the system of linear equations π 〈Q1 ⊕Q2〉 = −τ(1, 0, 0, 0, 0, 0, 0, 0).
Apart from the fact that both vectors have different length, there is no relation
between the values of both vectors.

The example shows that the state probabilities of two components are not independent
from each other and that we have therefore no product-form.

5.5 The Mean Value of the Maximum

As described in Appendix B.3.3, the solution of an SMC requires the computation of
the steady-state solution of the EMC and the determination of the mean values of the
sojourn time distributions. In the previous section the sojourn time distributions of
SMC(P1‖SP2‖S · · · ‖SPn) have been defined as Kronecker sums of absorbing Markov chains
which describe the sojourn time distributions of the individual components. As already
pointed out in Chapter 1, the Kronecker representation of (generator) matrices is very
memory efficient, but does not really avoid the state-space explosion problem. Computa-
tions on matrices thus represented grow still exponentially with the number of Kronecker
factors.

In this section, we will introduce an algorithm that computes the mean value of the maxi-
mum of phase-type distributed random variables in an efficient way: the size of the state
space grows only linearly and the computation time only grows polynomially in the num-
ber of components and the size of the considered absorbing Markov chains, rather than
exponentially.
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5.5.1 A Bit of Random Variable Arithmetic

To begin with, we first consider some properties of the maximum of a set of positive
random variables. If X1, X2, . . . , Xn are positive random variables with CDF Fi and pdf
fi for i = 1, . . . , n, then it is well known that the CDF of X1 � · · ·�Xn is

∏n
i=1 Fi. If Xi is

phase-type distributed according to absorbing Markov chain Qi and starting distribution
πi

0, then Q =
⊕n

i=1 Qi with the starting distribution π0 =
⊗n

i=1 π
(i)
0 describes the absorbing

Markov chain for the distribution of X1 � · · · � Xn.

We want to compute
E[X1 � · · ·� Xn]. (5.3)

We now pick an arbitrary random variable out of the set {X1, . . . , Xn}, X1, say. Then we
can rewrite (5.3) as follows 6:

E[X1 � · · ·� Xn] = E

[
(X1 � · · · � Xn) X1

X1

]

= E

[(
X1

X1

�
X2

X1

� · · ·�
Xn

X1

)

X1

]

= E

[(

0 �
X2

X1

� · · · �
Xn

X1

)

X1

]

= E

[((

0 �
X2

X1

)

�

(

0 �
X3

X1

)

� · · · �

(

0 �
Xn

X1

))

X1

]

(5.4)

We define

Y
(2)
i = 0 �

Xi

X1

for i = 2, . . . , n and can rewrite

E[X1 � · · ·� Xn] = E[X1] + E
[(

Y
(2)
2 � Y

(2)
3 � · · ·� Y (2)

n

)]

. (5.5)

The random variables Y
(2)
i , for i = 2, . . . , n, are non-negative since they are all bounded

by 0. Hence, we can repeat the derivation from (5.4) to (5.5), now the Y
(2)
j , j = 2, . . . , n

taking the roles of the Xi, i = 1, . . . , n. Again we choose a variable, say, Y
(2)
2 . We once

again derive an equation, similar to (5.5), to obtain:

E[X1 � · · · � Xn] = E[X1] + E[Y
(2)
2 ] + E

[(

Y
(3)
3 � Y

(3)
4 � · · ·� Y (3)

n

)]

(5.6)

where

Y
(3)
i = 0 �

Y
(2)
i

Y
(2)
2

6Note that all expressions within the E[·] operators are in (�,�) notation, cf. Appendix A.3.
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for i = 3, . . . , n. Applying this procedure n − 1 times, we eventually end up with the
equation

E[X1 � · · · � Xn] = E[X1] + E
[

Y
(2)
2

]

+ E
[

Y
(3)
3

]

+ · · · + E
[
Y (n)

n

]
. (5.7)

If we set Y
(1)
i = Xi for i = 1, . . . , n, then

E[X1 � · · ·� Xn] =
n∑

i=1

E
[

Y
(i)
i

]

.

We have hence expressed the mean value of the maximum of a set of positive random
variables by the sum of the mean values of some other, related, random variables.

The derivation of Equation (5.7) has been performed in its most general form, but we
are interested in the case where the random variables Xi, for i = 1, . . . , n are phase-type
distributed. In this case, the interesting result is that the random variable Y

(i)
i are phase-

type distributed as well, and that the absorbing Markov chains describing the distributions
of Y

(i)
i are described by the original generator matrices Qi! The only difference between

the distribution of Xi and Y
(i)
i lie in the respective starting distributions!

To demonstrate this, we first do an example, before we continue with the formal derivation
of the starting distribution of Y

(i)
i .

Example 5.15

As an example we consider three frogs on a lily pond7. The pond is covered with n
lily pads, and each frog starts from pad i with probability π0(i). Each frog hops from
pad to pad, where on each pad i it thinks for a negative exponentially distributed
time about which pad to hop next. Frogs are not good at thinking, therefore, the next
pad is actually chosen at random. The thinking time and the hopping probabilities
depend only on the pad the frog sits on.

There is one pad that is actually a frog trap, probably installed by a representative
of the french cuisine. Therefore, once a frog lands on the trap pad, it gets absorbed
by a frog absorber.

We assume that the individual times of the frogs to reach the trap are random
variables X1, X2 and X3. All three random variables are in fact identical distributed
and of phase-type: the lily pond with trap represents an absorbing Markov chain. The
states of the absorbing Markov chain Q correspond to the lily pads. The probability
vector π0 represents the starting distribution8.

We assume that the frog hunt starts at time 0. We consider now the frogs 2 and 3 at
the time instant X1, i.e., the time frog 1 is trapped. Now, we want to know how long

7This example is an adaption of an example given in [81].
8The reason why we consider all random variables as identically distributed is only to keep the example

simple. We could also assume different lily ponds.
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the frog trapper has still to wait until frogs 2 and 3 get trapped. A good guess would
be Xi − X1, for i = 2, 3. Nevertheless, we must be careful, because these differences
may be negative — if frog 1 was the last to reach the trap, even all of them would
be negative. It is hence necessary to define the residual life times of the other frogs

as Y
(2)
i = 0 �

Xi

X1
, for i = 2, 3. The remaining time until all the main ingredients for

dinner are available is then Y
(2)
2 � Y

(2)
3 .

What are the distributions of Y
(2)
2 and Y

(2)
3 ? Since we assume that the lily pond has

not changed and frogs 2 and 3 are still there, they have somehow changed the position

since time 0. Nevertheless, the random variables Y
(2)
2 and Y

(2)
3 are still phase-type

distributed with absorbing Markov chain Q. Only the probabilities on which pad the
remaining frogs sit when frog 1 is catched differ from the starting probabilities.

We now can ask, how long frog 3 still has to live if frog 1 and frog 2 have been trapped

(without knowing the order of arrival). The time from the start is X1 � Y
(2)
2 =

X1 � X2. Hence, the remaining life time of frog 3 is

Y
(3)
3 = 0 �

X3

X1 � X2
= 0 �

X3

X1 � Y
(2)
2

.

Again, the distribution of Y
(3)
3 is represented by Q, the lily pond, but again the

probability for frog 3 to be found on pad i has shifted somehow.

To conclude, the mean time until all three frogs are catched can be given by

E[X1 � X2 � X3] = E[X1] + E
[

Y
(2)
2

]

+ E
[

Y
(3)
3

]

In the next section we show how we can derive the starting probability distributions

of the random variables Y
(2)
2 and Y

(3)
3 .

5.5.2 Computing Residual Times

In this section we present a method to compute the probability distributions of an absorbing
Markov chain under the assumption that a random, phase-type distributed amount of time
has passed. We call this the RT-Technique.

We assume two phase-type distributed random variables A, B with representations (α,A)
for A and (β,B) for B. The associated generator matrices are denoted by Ȧ = (aij)ka,ka

and Ḃ = (bij)kb,kb
, their starting distributions by α̇ and β̇, respectively. The column vectors

A0 and B0 are defined as

A0 = −A1 and B0 = −B1.
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The distribution function of A is given by

FA(t) = 1 − αeAt1.

The distribution function of B, FB, is defined accordingly.

We want to compute df(Z) (cf. Appendix B.2 for notation), where Z =
A � B

A
= 0 �

B

A
.

Z is the residual time of B given A. How can we compute df(Z)? We can imagine that the
probability mass which has been distributed over the states of the CTMC with generator
Ḃ according to β̇ at time 0 has shifted somehow towards the absorbing state in the time
period [0, A). Hence, the residual time of B with given A is a phase-type distribution with
generator matrix Ḃ and a new starting distribution. This starting distribution is equal to
the distribution β̇(A) = β̇eḂA. Note that β̇(A) is a random variable itself, depending on

A. To take all different outcomes of A into account, we have to decondition β̇(A), i.e., we

have to compute E
[

β̇(A)
]

in the following way:

β̇
′

=

∫ ∞

0

β̇eḂtdFA(t). (5.8)

However, β̇
′
must be computed effectively, and doing this by means of Equation (5.8) is

usually much too awkward. To compute β̇
′

more elegantly, we use the same trick that
is also used in Jensens method: uniformisation (cf. Section B.3.2). We do not use the
generator matrix Ḃ directly, but rather an associated stochastic matrix ṖB, which is defined
as

ṖB =
Ḃ

b
+ I,

where b = max {|bii|}. Consequently, Ḃ = b(ṖB − I). Substituting this in Equation (5.8)
yields

β̇ ′ =

∫ ∞

0

β̇eb(ṖB−I)tdFA(t) (5.9)

= β̇

∫ ∞

0

e−bteṖBbtdFA(t) (5.10)

= β̇

∫ ∞

0

e−bt

∞∑

n=0

(bt)n

n!
Ṗn

B dFA(t) (5.11)

= β̇

∞∑

n=0

bn

n!
Ṗn

B

∫ ∞

0

e−bttndFA(t) (5.12)

= β̇
∞∑

n=0

bn

n!
Ṗn

B E[e−bAAn] (5.13)
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One might wonder whether E[e−bAAn] is not as difficult to compute as β̇ ′. But in fact,
E[e−bAAn] can be computed quite easily if we employ uniformisation again. In the following
derivation, we need the phase-type density of A, which, according to [115], is given as

fA(t) = αeAtA0

Similar as before, we can define a matrix PA, such that

PA =
A

a
+ I,

where a = max {|aii|}. This time, PA is sub-stochastic since A is not a complete generator
matrix. Therefore, the entries of PA have values between 0 and 1, but the rows do not
necessarily sum up to 1. However, A = a(PA − I), and we can derive

E[e−bAAn] =

∫ ∞

0

e−bttnfA(t)dt (5.14)

=

∫ ∞

0

e−bttnαeAtA0dt (5.15)

= α

∫ ∞

0

e−bttnea(PA−I)tA0dt (5.16)

= α

∫ ∞

0

e−(b+a)ttnePAatA0dt (5.17)

= α

∫ ∞

0

tne−(b+a)t

∞∑

m=0

(at)m

m!
Pm

A dtA0 (5.18)

= α

∞∑

m=0

am

m!
Pm

A A0

∫ ∞

0

tn+me−(b+a)tdt (5.19)

We then recognise that the integral in Equation (5.19) resembles the (n + m)th moment

of an exponential distribution with rate a + b, i.e.,
(n + m)!

(a + b)n+m
, so that we can rewrite

Equation (5.19) as follows:

E[e−bAAn] = α
∞∑

m=0

am

m!
Pm

A A0

(n + m)!

(a + b)m+n+1
(5.20)

Equation (5.20) is an infinite sum, but it can be brought in closed form. First, we refor-
mulate Equation (5.20) as follows:

α

∞∑

m=0

am

m!
Pm

A A0

(n + m)!

(a + b)m+n+1

= α
1

(a + b)n+1

(
∞∑

m=0

(
a

a + b
PA

)m n∏

i=1

(m + i)

)

A0
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As can be shown, the sum now has the shape of the nth derivative of the geometric series.

Since
a

a + b
PA is sub-stochastic, the sum does converge and we can write

α
n!

(a + b)n+1

(
∞∑

m=0

(
a

a + b
PA

)m n∏

i=1

(m + i)

)

A0

= α
n!

(a + b)n+1

(

I −
a

a + b
PA

)−(n+1)

A0

= n! · α ((a + b)I − PAa)−(n+1) A0

= n! · α (bI − A)−(n+1) A0 (5.21)

Now we have to combine Equation (5.13) and Equation (5.21) to compute the new starting
distribution β̇ ′:

β̇ ′ = β̇
∞∑

n=0

bn

n!
Ṗn

B E[e−bAAn]

= β̇

∞∑

n=0

bn

n!
Ṗn

B α

∞∑

m=0

am

m!
Pm

A A0

(n + m)!

(a + b)m+n+1
(5.22)

= β̇

∞∑

n=0

Ṗn
B bnα (bI − A)−(n+1) A0

= β̇

∞∑

n=0

Ṗn
B bnα

(

b

(

I −
1

b
A

))−(n+1)

A0

=
1

b
β̇

∞∑

n=0

Ṗn
B α

(

I −
1

b
A

)−(n+1)

A0 (5.23)

From Equation (5.22) as well as (5.23) algorithms can be developed which efficiently com-
pute β̇ ′. Nevertheless, careful considerations have to be made to guarantee convergence
and numerical stability. This will be discussed in Section 5.5.3.

5.5.3 Numerical and Complexity Issues

Equations (5.22) and (5.23) propose different methods to compute β̇
′
. Which to choose

depends on the numerical quality of the solution. Both ways may have their advantages
or disadvantages. In this section we will shed light on this. We assume that the outer sum
in (5.22) will be computed from n = 0 to n = N and the inner sum, for (5.22), from m = 0
to m = M .
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Equation (5.22): Double Summation

Using Equation (5.22), all employed variables have to be prevented from overflow. We
define the following functions L and R recursively as follows:

L(n) =







β̇, n = 0,

b

n
L(n − 1)ṖB, otherwise,

and

R(n, m) =







α

(a + b)n+1
, m = 0,

a

a + b

m + n

m
R(n, m − 1)PA, otherwise.

Then (5.22) can be rewritten as:

β̇ ′ =
∞∑

n=0

L(n)
∞∑

m=0

R(n, m)A0.

The computation of L(n) as well as R(n, m) is carried out on positive numbers only. This
has great advantages from a numerical point of view, since cancellation errors, a frequent
source of numerical instability introduced by subtraction, can not occur. A disadvantage
is, of course, that only finite summations can be computed, and hence a truncation error
is introduced. We assume in the following that the finite sum

β̇ ′ =

N∑

n=0

L(n)

M∑

m=0

R(n, m)A0 (5.24)

for N, M ∈ IN is computed.

The complexity of this algorithm can be assessed as follows: L(n) must be computed
for n = 0, . . . , N , i.e., N + 1 times. Since L(n) is computed recursively from L(n − 1),
only one vector-matrix multiplication is required. Hence, the computation of all L(n)
for n = 0, . . . , N requires O(Nk2) operations. The computation of R(n, m) is also done
recursively and hence requires only one matrix-vector multiplication for each (n, m) ∈
{0, . . . , N}× {0, . . . , M}. Hence, the number of operations is O(NMk2) and consequently

that of the whole computation of β̇
′
of order O(NMk2).

Equation (5.23): Explicit Inversion

The computation of β̇
′
by means of Equation (5.23) involves an explicit matrix inversion.

If M is a regular k×k matrix then M−1 is usually computed by solving k systems of linear
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equations: since MM−1 = Ik, one has to solve Mmi = ei for i = 1, . . . , k to obtain the k
column vectors mi of M−1. In our case,

M =

(

I −
A

b

)

. (5.25)

Once the inverse of M is obtained, the inner sum of Equation (5.22) is replaced by a
single matrix-vector multiplication. All computations of factorials and exponentials of
scalars have reduced to a minimum. As done in the previous paragraph, we can define two

recursive functions which facilitate the computation of β̇
′
:

E(n) =







1

b
β̇, n = 0,

E(n − 1)ṖB, otherwise,

and

F (n) =







αM−1, n = 0,

F (n − 1)M−1, otherwise.

Then

β̇
′
=

∞∑

n=0

E(n)(F (n)A0).

Note that the vector A0 has to be multiplied to F (n) for every iteration. F (n) can not be
combined with E(n), since both matrices have generally different dimensions.

This approach requires an explicit matrix inversion. The complexity of the solution of a
system of linear equations is O(k3), hence, a matrix inversion requires O(k4) steps. On the
other hand, the explicit computation of β̇ ′ requires only two matrix-vector-multiplications
per iteration step for the computation of E(n) and F (n). Therefore, the computation of
β̇ ′ is of order O(Nk2). Nevertheless, the overall complexity remains O(k4).

Equation (5.23): Successive Solution of Systems of Linear Equations

Another way to compute β̇
′
by means of Equation (5.23) is the following: for each iteration

step n, the vector α is multiplied with M−(n+1) (M is defined as in (5.25)). For n = 0, we
have to compute x(0) = αM−1, which is the solution of the system of linear equations

x(0)M = α

Then, for n ≥ 1 we must compute x(n) = αM−(n+1) = x(n−1)M−1, which is the solution of
the system of linear equations

x(n)M = x(n−1).
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Hence, each step in the summation of (5.23) requires the solution of one system of linear
equations, and

β̇
′
=

∞∑

n=0

E(n)(x(n+1)A0).

The complexity of this approach is then of order O(Nk3 + Nk2) = O(Nk3).

Conclusions

All three approaches we have described have the same complexity. The three independent
parameter that influence the behaviour of any algorithm based on the approaches so far
are k, M, N . If we define K = max{k, M, N}, then the worst case complexity for all three
approaches is of order O(K4). Of course, this is a rough measure. The question which
approach is the most efficient must be determined by comparison of real implementations.
The complexity is no criterion to choose an approach.

From a numerical point of view, however, we can say a priori that probably an algorithm
based on Equation (5.22) is most attractive, since computations are carried out on positive
numbers only. This suggests stability since cancellation errors can not occur.

5.5.4 Comparative Complexity Considerations

In this section we compare the worst-case complexity of our approach to compute E[X1 �

· · ·� Xn] with the worst-case complexity of the common approach.

The latter approach, which we will refer to as the explicit approach, is based on the
expression αT−11, where (α,T) is the representation of the phase-type distribution of
X1 � · · · � Xn.

We assume n different absorbing CTMCs with representations (αi,Ai), which describe
the describe the distributions of Xi, i = 1, . . . , n. We assume that the generators have
dimensions ki × ki and define k = max{ki}.

Explicit Approach. We can assume a constant e which is the mean number of non-zero
entries in the matrices Ȧi per row. Hence, matrix Ȧi has about e · ki non-zero entries. We
assume that the storage requirements of the matrices Ȧi can be neglected.

Let Ȧ =
⊕n

i=1 Ȧi and α̇ =
⊗n

i=1 α̇i. Then Ȧ has about e · n non-zero entries per row and

hence the number of non-zeros of Ȧ is of order O(kn).

The mean value m = E[X1 � · · · � Xn] of a random variable distributed according to
Ȧ can be computed as m = −αA−11. First a solution of xA = α should be computed.
Then m = x 1. The computation of the mean value then reduces to the solution of a
system of linear equations. If this is done numerically, for example by means of a Jacobi
iteration, then one iteration step costs a number of operations that grows with the number
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of non-zero elements of Ȧ, i.e., with O(kn). Usually the number of iterations is negligible
compared to the number of states (in [7], Bell and Haverkort report a number of about 4000
iterations for a (sparse) system of of 750 million equations). Hence, although the solution
process might require only O(nk) memory (by exploiting the Kronecker structure), the
time it requires grows exponentially with the number of components.

The RT-Technique. The RT-Technique takes several steps:

1. Computing a mean value for all Ai, i.e., n times. If we assume complexity O(k3
i ) for

case i, the overall effort is, in the worst case, O(nk3).

2. Computing starting vectors according to either (5.22) or (5.23). This has to be done
n(n−1)

2
times, i.e., O(n2).

3. From the considerations of Section 5.5.3 we see that the computation of the vector

β̇
′
requires about O(K4) steps, for K = max{N, M, k}. Which one to choose is then

a numerical, not a complexity issue.

The overall complexity of our approach is consequently of order O(nK3+n2K4) = O(n2K4).

Conclusions. We see that the number of operations to compute the mean value m by
means of the RT-Technique is polynomial, whereas the effort to compute even one iteration
step by means of the explicit approach is exponential in the number of the random variables.
The memory consumption is to neglect for both approaches since it is never necessary to
construct the global state space.

Note that the complexity bound O(n2K4) describes the worst case. For example, we have
always assumed that a matrix-vector multiplication requires O(k2) steps. This is certainly
true for dense matrices, but if the used generator matrices happen to be sparse, the effort
for a matrix-vector multiplication depends linearly on the number of non-zero entries of
the matrices, which is of order O(k). It is not uncommon that generator matrices are
in fact sparse, so frequently the number of operations needed by the RT-Technique can
be bounded more tightly by a function of order O(n2K3), at least, if no explicit matrix
inversions must be computed.

5.5.5 Summary

The RT-Technique allows to derive the mean value of the maximum of phase-type dis-
tributed random variables. The basic approach is to express the mean value of the maxi-
mum of the random variable X1, . . . , Xn, i.e., E[X1 � · · · � Xn], as a sum of mean values
of random variables Y1, . . . , Yn, i.e.,

E[X1 � · · · � Xn] = E[Y1] + · · ·+ E[Yn].
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We have seen that the random variables Yi can be represented by the same absorbing
Markov chain as Xi for i = 1, . . . , n. Only the starting distribution corresponding to Yi is
different to that of Xi.

The RT-Technique provides the efficient means to derive the appropriate starting distri-
butions for the random variables Yi for i = 1, . . . , n. The actual mean value of the random
variables Yi can then be computed by standard measures. The method is also numerically
stable if an algorithm is used that is based on Uniformisation: cancellation errors are then
avoided.

The complexity to derive the starting distributions of the random variables Yi is polynomial
in the number of components and the size of considered Markov chains. We can conclude
that the RT-Technique is the main reason for a considerable efficiency improvement of
the AWCI-Technique, as introduced in the previous sections of this chapter.

5.6 Waiting Times

In this section we show that we even can compute waiting times for AWCI-processes.

5.6.1 Introduction

In this section, we show which means are required to compute waiting times for AWCI-
processes. We do this along the lines of a running example.

Let P = {P1, . . . , Pn} be a set of components (indices indicating the locations) with the

requirements A, WC, and I with respect to a synchronisation set S. Let R
def
=!SP. Let

SMC(Pi) = (Σi,Ei, Ji) and SMC(R) = (Σ,E, J). We consider a synchronising state G =
L1‖SL2‖S · · · ‖SLn ∈ Ssyn(!SP). The time that passes between a visit of G and one of
the next reachable synchronising states is described by J(G) =

⊕n
i=1 J(Li). Let Xi for

i = 1, . . . , n be random variables distributed according to J(Li). Then, the mean value for
the distribution J(G) is E[X1 � · · ·� Xn]. If we assume that component i becomes ready
to synchronise, then the time until the synchronisation happens can be expressed by

X1 � · · ·� Xn

Xi

.

We define the mean value of this random variable as Mi(G) = E[X1 � · · · � Xn] − E[Xi].
Mi(G) is the mean waiting time of component i and can be computed efficiently by the
RT-Technique proposed in Section 5.5.

We now observe that Mi(G) is a quantity that relates to location i, but it is not a quantity
that relates to the local sub-process Li of G. The reason is that the global synchronising
state G denotes the beginning of a time period from which all components work on their
own. Mi(G) then is the mean time that all locations except i still work on their own,
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whereas location i has already reached a local synchronising state that succeeds Li and
waits there. That means that Mi(G) is a quantity that relates to the successors of Li, not
to Li itself. Moreover, Mi(G) is only one measure, even though Li can have more than
one successor state. That means that in Mi(G) the information for all successor states of
Li about their respective mean waiting times is summarised.

What we learn from this is that, if we want to obtain waiting times for a local synchronising
state Li, we must consider synchronising predecessor states, not successor states of Li.
Moreover, the analysis method must be fine enough to obtain measures for individual
states, not only measures that summarise information of several states.

Obviously, it is necessary to have a clear notion of the reachability between synchronising
states of the considered process. Fortunately, this information is already explicitly ex-
pressed in the EMCs E and Ei for i = 1, 2, . . . , n of the considered AWCI-process. In the
following we say that a synchronising state Li of component i can reach a synchronising
state L′

i (in the same component), if the probability e(i)(Li, L
′
i) > 0. The same should hold

for global synchronising states and E.

We illustrate this by means of the next example.

Example 5.16

We assume a process P , which is defined as follows:

P
def
= [1].([1].P2 + [1].[1].[1].P3),

P2
def
= [1].P4 + [1].[1].P3,

P3
def
= b.[2].P5,

P4
def
= b.[1].P5,

P5
def
= a.P.

t, 1

P2

P

P4

b

t, 1

t, 2

t, 1

b

a

t, 1

t, 1 t, 1

t, 1 t, 1

P3P5

The transition system of P is depicted in the right diagram. The process R
def
=

P‖{a,b}P has two locations and is an AWCI-process. The set of global synchronising
states of [[R]] is

Ssyn(R) =
{

P3‖{a,b}P3, P3‖{a,b}P4, P4‖{a,b}P3, P4‖{a,b}P4, P5‖{a,b}P5

}

.

The elements of Ssyn(R) are underlined for better readability.

The embedded Markov chain E of SMC(R) is depicted in Figure 5.3. As we easily
can see by the definition of P3, P4, and P5, there is only one synchronising state
representing a synchronisation over action a (P5‖{a,b}P5), and four states representing

a synchronisation over action b (all the others).
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P3‖{a,b}P4P3‖{a,b}P3

P5‖{a,b}P5

P4‖{a,b}P3P4‖{a,b}P4

3

16

3

16

1

1 1

1

9

16

1

16

Figure 5.3: EMC of R (Example 5.16)

The absorbing Markov chain that describes the distribution of the time to reach a
synchronising successor state of state P is depicted in Figure 5.4. We now want to

P

P3

1

1

1

1

1

1

P2

1

P4

Q =













−1 1 0 0 0 0 0
0 −2 1 1 0 0 0
0 0 −2 0 1 1 0
0 0 0 −1 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −1 1
0 0 0 0 0 0 0













Figure 5.4: Absorbing Markov chain Q for P

compute the mean waiting time for component 1 of the state G
def
= P5‖{a,b}P5, i.e.,

the quantity M1(G). If X1, X2 are two random variables that both are distributed
according to Q, then M1(G) = E[X1 �X2]−E[X1]. Numerically, we derive M1(G) =
15
16 .

The quantity M1(G) is the mean waiting time of location 1 under the assumption
that it waits either in local state P3 or local state P4. This information, however,
is not sufficient. We want to know the mean waiting time under the assumption
that we know in which state component 1 does wait. We denote these quantities as
MG

P5,P3
and MG

P5,P4
, respectively. We define the probabilities for component 1 to wait

either in state P3 or P4 as π3 and π4, respectively. Then, π4 = 1
4 , since there is only

one path leading to P4 from P5, and the probability for this path to be chosen is 1
4 .

Consequently, π3 = 1 − π4 = 3
4 . A first guess for MG

P5,P3
and MG

P5,P4
would be to

weight the overall mean waiting time with the probabilities π3 and π4, i.e., to set
MG

P5,P3
= π3M1(G) = 45

64 and MG
P5,P3

= π4M1(G) = 15
64 .

These results are incorrect, unfortunately. Instead, we must define two new absorbing
Markov chains, one describing the case that P3 is reached from P and the other
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describing the case that P4 is reached. These two Markov chains are depicted in
Figure 5.5. The left one (denoted Q3) describes the phase-type distribution of the

P

P3

1

1

1

1

1

2
P2

Q3

P
1

P4

2

2

Q4

P2

Figure 5.5: The CTMCs for P3 and P4 (Example 5.16)

time that is needed to reach state P3 from P under the assumption that we know

that P3 (and not P4) is reached. The right one (denoted Q4) describes the same for
P4. Note that for some transitions the assigned rates have been adapted such that
the mean sojourn times of the respective source states are the same as in the original
Markov chain, Q. If Y3 is a random variable distributed according to Q3 and Y4 is a
random variable distributed according to Q4, then the mean waiting time for state
P3 can be expressed as E[Y3 � X2] − E[Y3], and that for P4 as E[Y4 � X2] − E[Y4].
This means, that

MG
P5,P3

= (E[Y3 � X2] − E[Y3])

and

MG
P5,P4

= (E[Y4 � X2] − E[Y4]).

Computing this numerically, we obtain

MG
P5,P3

=
85

108

and

MG
P5,P4

=
25

18
.

If we take the sum of these both quantities, weighted with π3 and π4, we obtain

π3M
G
P5,P3

+ π4M
G
P5,P4

=
15

16
= M1(L).

What we have learned from Example 5.16 is that for each local synchronising state Li of a
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component i, for all its preceding local synchronising state L′
i an absorbing Markov chain

has to be constructed from Ji(L
′
i).

This conclusion, however, raises another problem. It is not necessarily the case that a local
synchronising state Li has a unique predecessor. That implies that a global synchronising
state G with sub-process ⇓⇓i(G) = Li also has no unique predecessor. The waiting times
for component i depend then on the predecessor state from which the considered state G
has been entered. Therefore, we have to take all different scenarios that can happen into
account. We illustrate this with the next example.

Example 5.17

We reconsider the processes P and R from Example 5.16. The local synchronising
state P5 of [[P ]] has two synchronising predecessors: P3 and P4. As indicated by the
EMC of R in Figure 5.3, there are four different possibilities to reach the synchronising

state R′ def
= P5‖{a,b}P5 (namely P3‖{a,b}P3, P3‖{a,b}P4, P4‖{a,b}P3, and P4‖{a,b}P4).

Each of these four states represent a different situation for component 1 to reach
the local synchronising state P5, and consequently, they all have to be taken into
account.

To formulate this differently, if component 1 enters state P5 and begins to wait for
component 2 to synchronise, there are four possible different synchronisations that
could have preceded the one that has to come and that component 1 is waiting for.

For all of these four situations we can derive waiting times for component 1. If
we consider the case that P3‖{a,b}P3 is representing the preceding synchronisation,
both components have to wait an exponentially distributed time period with rate 1
until they reach state P5. The mean time until the next synchronisation is therefore
E[X1 � X ′

1], where X1 and X ′
1 are independent exponentially distributed random

variables with rate 1. The waiting time of component 1 for this considered case is
therefore W3,3 = E[X1 � X ′

1] − E[X1] = 1
2 .

If we consider the case that P4‖{a,b}P4 is representing the preceding synchronisation,
the mean time until the next synchronisation can be expressed by E[X2 �X ′

2], where
X2, X

′
2 are independent, exponentially distributed random variables with rate 2. The

waiting time for this case is W4,4 = E[X2 � X ′
2] − E[X2] = 1

4 .

The waiting times for the other cases can be derived accordingly and have the values
W3,4 = 1

6 and W4,3 = 2
3 .

For each synchronising predecessor G′ of a global synchronising state G the mean waiting
time W L

G′,G of a component i with ⇓⇓i(G) = L can be derived. However, we want to have a
value for the mean waiting time that is independent of the synchronisation that happened
last. This can be done by summing the values W L

G′,G for each predecessor G′, each weighted
with the probability that G′ was indeed the predecessor of G.
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Example 5.18

We continue Example 5.17. Since the states of the EMC E correspond directly
to the synchronising states of [[R]], we can see immediately in Figure 5.3 that the
synchronising states preceding state P5‖{a,b}P5 are

P3‖{a,b}P3, P3‖{a,b}P4, P4‖{a,b}P3, and P4‖{a,b}P4.

We must obtain for each of the preceding states the probability that, under the
assumption that we just have entered P5‖{a,b}P5, we came from this specific preceding
state.

The question which synchronising state can reach another one in one step can be answered
by means of the EMC of the considered process. We show now that we can also derive the
desired probabilities from this EMC.

We state the problem in a more abstract way. We assume an irreducible DTMC with
probability matrix D = (dij)n,n and steady-state probability vector p. If we assume steady-
state, and if we assume that we are in a certain state j ∈ {1, . . . , n}: what is the probability
that state j was entered from state i 6= j?

Lemma 5.19 Let D = (dij)n,n a stochastic matrix describing an irreducible DTMC {Xk, k =
0, 1, 2, 3, . . .}, and let p be its steady-state probability vector. Let i, j for i 6= j be two states.
If we assume that we are in state i, then the steady-state probability that the previous state
was j is given by

bij =
pj · dji

pi

Proof: We are looking for the probability

bij = Pr(previous state was j | current state is i)

We can express this conditional probability as

bij =
Pr(previous state was j and current state is i)

Pr(current state is i)

From the denominator we know that in steady-state

Pr(current state is i) = pi.

The numerator, on the other hand, can be expressed as

Pr(previous state was j and current state is i) = pjdji.
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Combining the two equations yields

bij =
pj · dji

pi
.

→•

Note that we can (and, of course, will) use this lemma also for semi-Markov chains: to
derive the probabilities bij for an SMC, it is enough to consider only the EMC (which
is a DTMC) and its steady-state distribution, rather than the steady-state distribution
of the whole SMC. The reason for this is that it is not important how long a state is
occupied; only the frequency with which a state is entered, compared with the other states,
is important. This information is provided by the steady-state probability distribution of
the EMC, which, as we know, is a normalised vector of visit counts.

Example 5.20

We continue Example 5.18. We number the states of E such that

P5‖{a,b}P5 =̃ 1

P3‖{a,b}P3 =̃ 2

P3‖{a,b}P4 =̃ 3

P4‖{a,b}P3 =̃ 4

P4‖{a,b}P4 =̃ 5

The probability matrix has the form

E =









0 9
16

3
16

3
16

1
16

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0









Then the steady-state probabilities of E are equal to π =
(

1
2 , 9

32 , 3
32 , 3

32 , 1
32

)
.

For state 1, the probabilities b1,j for j = 2, 3, 4, 5, computed according to Lemma 5.19,
yield

b1,2 =
9

16
, b1,3 =

3

16
,

b1,4 =
3

16
, b1,5 =

1

16
.

We are now ready to compute the mean waiting time of a local synchronising state, inde-
pendent from which synchronising predecessor state it has been entered.



5.6 Waiting Times 127

5.6.2 An Algorithm for the Waiting Times

In this section, we summarise the considerations of the previous section and define an
algorithm to compute the waiting times for AWCI-processes.

We assume a set P = {P1, . . . , Pn} of components which fulfils the requirements A, WC,
and I with respect to a synchronisation set S. Let R =!SP, SMC(Pi) = (Σi,Ei =

(e
(i)
kl )mi,mi

, Ji), where mi = #Σi, and SMC(R) = (Σ,E = (ekl)m,m, J), where m = #Σ.
The sets Σ and Σi, for i = 1, . . . , n, contain by definition the synchronising states of [[R]]
and [[Pi]], respectively. If s, s′ ∈ Σi correspond to the kth and lth row of Ei, then we define

e(i)(s, s′) = e
(i)
kl . Let p(i) be the steady-state probability vector of Ei and p that of E.

Similarly as before, for s ∈ Σi, we define p(i)(s) = p
(i)
k , if the kth row of Ei corresponds to

s.

For the EMC E, we define B to be the matrix (bk,l)m,m of probabilities which are defined
as

bkl =
plelk

pk

for k, l ∈ {1, . . . , ni}. Note that the probabilities bkl are those that we have derived in
Lemma 5.19.

If we assume the above definitions and notations to be global variables of some program,
then Algorithm 5.1 on page 129 computes the waiting time for a given local synchronising
state of a given location. In the following, we comment on this algorithm.

Input and Output: The algorithm computes the waiting time of the local synchronising
state L of component i.

Line 1. Glob(L) is the set of all global synchronising states G ∈ Ssyn(P ) for which ⇓⇓i(G) =
L holds.

Line 2. Outer loop: computations take place for all global synchronising states G ∈
Glob(L). Each iteration of this loop computes a value W L

G (see Line 11).

Line 3. The set Pred(G) contains all global synchronising states P which, according to
the EMC E, can reach G in one step.

Line 4. Inner loop: computation take place for all states P ∈ Pred(G). Each iteration of
this loop computes a value W L

P,G.

Lines 5–7. Here random variables X1, . . . , Xn, except Xi, are defined, where Xk is dis-
tributed according to Jk(⇓⇓i(P )) for k 6= i.

Line 8 Xi is distributed according to Ji(⇓⇓i(P, L)), the conditional distribution that as-
sumes that an absorbing state of Ji(⇓⇓i(P )) is reached that corresponds to L.
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Line 9. Here, W L
P,G is computed, the mean value E[maxj=1,...,n{Xj}] − E[Xi]. This can

be seen as a procedure call to the RT-Technique of Section 5.5.

Line 10. End of inner loop.

Line 11. Outer loop again. Here, the values W L
P,G, computed in the inner loop, are com-

bined in a weighted sum, where each value W L
P,G is weighted with the probability

bP,G. The result is, as mentioned above, W L
G . This is the mean value of the waiting

time of L under the assumption that the waiting time ends by a synchronisation that
is represented by state G.

Line 12. End of outer loop.

Line 13. WL is the final result computed by this algorithm. It is a sum that combines all
values W L

G for all G ∈ Glob(L), weighted with the EMC steady-state probability of
state G.

5.6.3 Importing the Waiting Times

Let us assume now that Gi = (Si, Ai, Ti,Ri, Pi) = [[Pi]] for i ∈ {1, . . . , n} and that we
have computed all waiting times W L for L ∈ Ssyn(Pi). Then we define the GMP G′

i =
(S ′

i, A
′
i, T

′
i ,Ri, P

′
i ) as follows:

1. S ′
i = Si, A′

i = Ai, T ′
i = Ti, and P ′

i = Pi;

2. R′
i is defined as follows: for t ∈ T ′,

R′
i(t) =







1

W L
, if L ∈ Ssyn(Pi) and src(t) = L;

Ri(t), otherwise.

We assign therefore a rate to each synchronising transition with source state L that de-
termines that the sojourn time of L is W L. Note that the GMP G′ is not properly timed
anymore (cf. Section 3.1.2), since now also synchronising transitions have a rate assigned.
However, there is no need to be worried about this since all we want to do with P ′ is to de-
rive a steady-state distribution for it. Since all transition of G′ now have a rate associated,
a generator matrix can be derived most easily and the system of the global balance equa-
tions can be solved with standard methods. The result is the local steady-state distribution
for component i.
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· Input: a location i and a synchronising state L of location i.

· Output: mean waiting time W L of L.

1. Glob(L) := {G | G ∈ Ssyn(P ) and ⇓⇓i(G) = L}

2. forall G ∈ Glob(L) do

3. Pred(G) := {P | P is a predecessor of G in E}

4. forall P ∈ Glob(L) do

5. forall k ∈ {1, . . . , n}, k 6= i do

6. Xk ∼ Jk

(

⇓⇓k(P )
)

7. end

8. Xi ∼ Ji

(

⇓⇓i(P ) , L
)

9. W L
P,G := E[maxj 6=i{Xj}] − E[Xi]

10. end

11. W L
G :=

∑

P∈Pred(G)

bP,GW L
P,G

12. end

13. W L =
∑

G∈Glob(L)

p(G)W L
G

Algorithm 5.1: The WT algorithm
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5.7 Application Example

In this section, we present an application example. We will not give numerical results for
this example, but rather illustrate that the class of processes that is suitable to be analysed
by the AWCI-Technique, is large enough to contain meaningful examples.

5.7.1 The Model

The application we have chosen originates from the area of parallel processing. The system
addressed is a master/slave configuration, in which a master prepares the slaves to compute
tasks in parallel and to return the results to the master eventually.

The set of visible actions is defined as

Com := {split, join, reqhelp, ready}.

S and R are auxiliary sets and defined as S := {split, join} and R := Com \ S. The other
action identifiers have to be seen as variables for rates. Then, the master/slave system
System is defined as

System
def
= Master ‖S (SlaveSystem1‖S · · · ‖SSlaveSystemn)

Master
def
= split.[garbcol].join.[newjobs].Master

SlaveSystem
def
= (Slave ‖R Helper‖R Helper ) \ R

Slave
def
= split.[working].reqhelp.SlaveWait

SlaveWait
def
= ready.[working].join.Slave

Helper
def
= reqhelp.

(
[goodmood].[fasthelp].ready.Helper

+ [badmood].[slowhelp].ready.Helper
)
.

The master Master submits jobs to the slave systems SlaveSystem i (i = 1, . . . , n) and
indicates with action split that the slaves should begin to work.9 It then passes the waiting
time with garbage collecting. After that, it waits on action join for the slaves. When
all slaves have indicated that they have finished, the master generates new jobs for the
slaves (newjobs). A slave system SlaveSystem i consists of three components, Slave and
two instances of Helper . Slave waits for the master to submit a job on action split. It
then starts working on the job (working) and eventually requests help from the helpers
(action reqhelp). The helpers eventually return control to Slave (action ready) and the
slave proceeds to work. Finally, the slave indicates the master that it is ready (action
join) and starts from the beginning. The helpers accept requests from the slave Slave.
The decision whether a helper works quickly (fasthelp) or slowly (slowhelp) depends on the

9For the sake of simplicity, we assume that the slave components SlaveSystem i are all identical to the
process SlaveSystem defined above. Of course, this is not generally necessary.
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stochastic choice between badmood and goodmood. After a helper has returned control to
the slave, it starts from the beginning.

This example shows that the components which are used for the subsequent solution ap-
proach must not necessarily be sequential. Thanks to the expansion law, they can be
the result of the parallel composition of smaller components, although that compositional
structure can not be exploited by the AWCI-Technique. The modeller, however, has more
modelling freedom than the three properties A, WC, and I might impose.

In the following, we will consider the processes SlaveSystem i (for i = 1, 2) and Master
as the components for our decomposition approach. The flow of control for this system
is shown in the sequence chart in Figure 5.6. The vertical arrow compounds are the
threads the system comprises. A solid arrow denotes that the thread is active, a dotted
line denotes that the thread is waiting. Dashed horizontal lines denote synchronisation
instances (labelled with the respective synchronising actions).

Master

SlaveSystem 1 SlaveSystem 2

Helper
1 2

Helper
1 2

︷ ︸︸ ︷

...

...

reqhelp

reqhelp

ready

ready

join

split

...

︷ ︸︸ ︷

time

Figure 5.6: Sequence chart of Master/Slave system

5.7.2 Checking for A, WC and I

Before we can do anything, we must make sure that the set

C = {SlaveSystem1, SlaveSystem2,Master}
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has the properties A, WC and I. To do so, we have to check the YAWN processes
SlaveSystem \ S and Master \ S.

We start with property I. To ensure the irreducibility and s-determinism of the components,
we normally have to perform a reachability analysis of all of them. In case of this example,
however, a sharp look at the definitions of Master and SlaveSystem is sufficient to assure
us of the irreducibility of these components.

It is obvious that SlaveSystem contains transitions with label i: the transitions that were
formerly labelled with reqhelp and ready and which have been hidden now. However, the
transitions can be eliminated, since they do not lead to nondeterminism and are also not
in choice with other transitions. We conclude that condition I is met by Master as well as
by SlaveSystem.

Since no choices between timed and untimed actions do occur, the processes are alternating.
Therefore, property A is also fulfilled with respect to C.

Now we must check whether property WC holds for C. The Master is very simple, hence
we can agree immediately that

Master \ S ' recX : split.join.X.

Now we must show that also SlaveSystem \ S ' recX : split.join.X. Looking sharply at
the definition of SlaveSystem for a while reveals that the only visible actions are split and
join(as already recognised above) and that there is only one synchronising state for each
action. Since SlaveSystem is irreducible, we can conclude that both states are mutually
reachable and hence indeed

SlaveSystem \ S ' recX : split.join.X.

As a consequence, SlaveSystem \ S ' Master \ S, so condition WC is fulfilled by set C.

5.7.3 Derivation of the Local SMCs

In this section we derive SMC(Master) = (ΣM ,EM , JM) and SMC(SlaveSystem) = (ΣS,ES, JS).
The state space ΣM of SMC(Master) is

ΣM =






Master
︸ ︷︷ ︸

m1

, join.[newjobs].Master
︸ ︷︷ ︸

m2






,

where the states are renamed m1 and m2 for easier reference.

The state space of SMC(SlaveSystem) is

ΣS =






(Slave ‖R Helper‖R Helper ) \ R
︸ ︷︷ ︸

s1

, (join.Slave‖R Helper‖R Helper ) \ R
︸ ︷︷ ︸

s2






,
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where the states are renamed s1 and s2.

As can easily be seen, the EMCs of Master as well as for SlaveSystem have only two states.
The EMCs have the probability matrix

EM = ES =

(
0 1
1 0

)

, (5.26)

For Master ,

JM(m1) =

(
−garbcol garbcol

0 0

)

JM(m2) =

(
−newjobs newjobs

0 0

)

The distributions for SlaveSystem are slightly more complicated. JS(s1) is an 18 × 18
matrix. If we abbreviate rate working with w, goodmood with g, badmood with b, fasthelp
with f and slowhelp with s, then we define in Figure 5.7 the auxiliary matrix S (where

S =



































w · · · · · · · · · · · · · · · ·
· g b · g · · · b · · · · · · · ·
· · · f · g · · · b · · · · · · ·
· · · s · · g · · · b · · · · · ·
· · · · g b · g · · · b · · · · ·
· · · · · · f · · · · · f · · · ·
· · · · · · s · · · · · · f · · ·
· · · · · · · g b · · · · · f · ·
· · · · · · · · · f · · · · · f ·
· · · · · · · · · s · · s · · · ·
· · · · · · · · · · g b · s · · ·
· · · · · · · · · · · · f · s · ·
· · · · · · · · · · · · s · · s ·
· · · · · · · · · · · · · g b · ·
· · · · · · · · · · · · · · · f ·
· · · · · · · · · · · · · · · s ·
· · · · · · · · · · · · · · · · w
· · · · · · · · · · · · · · · · ·



































Figure 5.7:

all “dotted” entries are meant to be equal 0) and define JS(s1) = S − diag(S1). JS(s1)
describes the time that the SlaveSystem needs to perform the work that was ordered by
the master, with involvement of the two Helper.

For the last distribution we find that JS(s2) = (0). This is the time for the SlaveSystem
to become ready again to accept a new job from the Master.

The overall system System has about 650 states10. Adding another slave system would
increase the number of states to about 11650 states, adding two even to about 210000.
This shows that even small specifications lead to and impressive growth of the numbers of
states.

10These numbers have been derived by a prototype tool based on the software package SPNP.
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5.7.4 Solving the SMCs

The next step in our example is to solve this SMPs we have defined above, or better, the
SMC(System) = (ΣA,EA, JA) = SMC(Master) � SMC(SlaveSystem) � SMC(SlaveSystem).
The state space is then given as

ΣA =






m1 ‖S s1 ‖S s1
︸ ︷︷ ︸

a1

, m2 ‖S s2 ‖S s2
︸ ︷︷ ︸

a2






,

the EMC as

EA = EM � ES � ES =

(
1

1

)

.

Finally,

JA(a1) = JM(m1) ⊕ JS(s1) ⊕ JS(s1)

and

JA(a2) = JM(m2) ⊕ JS(s2) ⊕ JS(s2).

Solving the EMCs

The first step to solve SMC(System) is to find a solution for the EMC EA. Although EA

has a trivial solution, as well as EM and ES, this is the right moment to demonstrate that
EM ⊗ ES ⊗ ES does not yield the desired EMC for SMC(System):

EM ⊗ ES ⊗ ES =







· · · 1
· · 1 ·
· 1 · ·
1 · · ·







⊗ ES

=















· · · · · · · 1
· · · · · · 1 ·
· · · · · 1 · ·
· · · · 1 · · ·
· · · 1 · · · ·
· · 1 · · · · ·
· 1 · · · · · ·
1 · · · · · · ·















This matrix describes four independent two-state DTMCs, from which only one is of in-
terest for us, since it represents the part with the starting state. Hence, the EMC has not
grown at all and its solution is again trivial: π(System) = (1

2
, 1

2
).
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Mean Values for SMC(System)

What we need to compute next are the mean values for the distributions JA(a) for a ∈ ΣA.
We know that

JA(a2) = JM(m2) ⊕ JS(s2) ⊕ JS(s2)

= JM(m2) ⊕ (0)

=

(
−newjobs newjobs

0 0

)

.

Consequently, the mean value of JA(m2‖Ss2‖Ss2) is 1
newjobs

.

More difficult is the computation of the mean value of JA(a1) = JM(m1)⊕JS(s1)⊕JS(s1),
since this CTMC has already 2 · 182 = 648 states. Although this is still a relatively small
matrix, there is no point to present a symbolic representation of the result here.

Steady-state Solution of SMC(System) and Throughputs

The solution of SMC(System) is now trivial. By means of Equation B.6 we derive that the
steady-state solution of SMC(System) is

σ(a1) =
JA(a1)

JA(a1) + JA(a2)

and

σ(a2) =
JA(a2)

JA(a1) + JA(a2)
.

Consequently, the throughput of both a1 and a2 is

τ(a1) = τ(a2) =
1

JA(a1) + JA(a2)
.

Reinterpreting the Throughputs

The throughputs τ(a1) and τ(a2) can now be interpreted in the original local GMPs
[[Master ]] and [[SlaveSystem]]. The throughputs τ(a1) is the throughput of the synchro-
nising state Master‖SSlaveSystem1‖SSlaveSystem2 ∈ Ssyn(System) and therefore, also of
the local states Master , SlaveSystem1 and SlaveSystem2. Since we know the branching
probabilities for all states of all components, we can employ the results of Section 4.3.1 to
obtain the throughputs for all states and the steady-state probabilities for all stable states.
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5.7.5 Waiting Times

For the synchronising states, however, we can not derive the steady-state probabilities,
since we have to know the mean sojourn time of these states.

Therefore, to obtain the values for these states, we have to employ the results of Section 5.6
to obtain the sojourn times of synchronising states. We have to look at the EMC EA. This
is a simple two-state DTMC, where each state represents the synchronisation of the three
components. State a1 represents a synchronisation over action split, state a2 over action
join.

We have already obtained all information necessary to compute the waiting time and can
therefore use Algorithm 5.1 immediately. We show this for state m1 of the Master .

According to the algorithm we first have to find all global synchronising states that have
m1 as a sub-process. There is only one, a1. For this state we have to find all predecessors.
Again, there is only one, a2. If X1 ∼ JM(m2), X2 ∼ JS(s2), X3 ∼ JS(s2), then we want to
compute (in the notation of Algorithm 5.1):

W m1

m2,m1
= E[X1 � X2 � X3] − E[X1].

For this specific example, W m1

m2,m1
is the only value that has to be computed, and therefore,

W m1 = W m1

m2,m1
. More specifically, since X2 = X3 = 0 with probability one,

W m1 = E[X1 � X2 � X3] − E[X1]

= E[X1] − E[X1]

= 0.

The waiting time for local state m1 is hence 0.

The same algorithm could now be applied to state m2 of Master , but actually this is not
necessary. The reason is that we already know the steady state probabilities of all stable
states of Master (computed by means of the throughputs τ(a1) and τ(a2)), and of the
synchronising state m1 (which is zero). Since there is now only one state left for which the
probability is not known, we can compute it easily from the probabilities that are already
known (by simple subtraction of the known probabilities from 1).

The waiting times for state s1 of component SlaveSystem1 (and also for SlaveSystem2) can
be expressed by

W s1 = E[X1 � X2 � X3] − E[X2] = E[X1]

5.8 Conclusions

The state-space explosion problem for AWCI-processes has been solved. We have intro-
duced a technique, the AWCI-Technique, that allows to derive local steady-state measures
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for AWCI-processes. AWCI-processes describe a stochastic semi-Markov process, where
the synchronisations are regeneration points. The AWCI-Technique is based on a refor-
mulation of the original model, given as a set of local GMP, in terms of a semi-Markov
process in a way that is much more compact than a global transition system as derived by
the standard SOS rules. We have identified conditions that are sufficient to ensure that
the considered system can indeed be solved by the AWCI-Technique. Computations are
never carried out on the global state space, but always on parts of local state spaces.

As has been shown, a very important problem that arises in the course of the evaluation
with the AWCI-Technique is the computation of mean values of the maximum of phase-
type distributed random variables. Following a naive approach, the complexity of this
computation of these values would grow exponentially in the number of considered random
variables. In this chapter, it has been shown that the worst case complexity of this problem
is in fact only polynomial in the number of considered random variables and polynomial in
the size of the absorbing Markov chains that represent the distributions of these random
variables.

The AWCI-Technique aims at the computation of throughputs of synchronising states.
These throughputs can then be interpreted in the entire component by means of the local
throughput equations (cf. Chapter 4). Throughputs are not sufficient to describe steady-
state probabilities for synchronising states. However, we have seen that for AWCI-processes
waiting times for local synchronising states can be obtained efficiently.

By means of a simple example we have seen that, even though the class of processes is
restricted, meaningful examples that meet the requirements of the AWCI-Technique are
widely available.
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Chapter 6

Unfoldings and Stochastic Measures

The most common way to give meaning to process algebra specifications is to derive a
transition system by means of a set of SOS rules, thus yielding a structure that describes
the possible actions and global state changes of the system. This semantics is usually of
the interleaving type, i.e., a process a.stop‖b.stop is identified with the process a.b.stop +
b.a.stop.

We have seen that for Markovian stochastic process algebras, transition systems are a very
advantageous structure to serve as a semantics, since performance models, i.e., CTMCs
can be derived most easily.

However, interleaving is only one possibility to express parallelism. There are other for-
malisms which have an explicit notion of parallelism, e.g., Mazurkiewicz-traces [104], Petri
nets, and event structures of different kinds [116, 50, 18, 94, 84].

In this chapter, we will focus on a special variant of partial-order formalisms, or event
structures. The event structures we will consider here are derived from YAWN processes
by means of an unfolding semantics. This type of semantics is introduced for process
algebras by Langerak and Brinksma [96, 97] and is based on an approach known for Petri
nets [105, 106]. We want to find an answer to the question what these formalisms can
offer to performance evaluation. This, first, includes the question whether performance
models can be expressed in terms of a partial-order model anyway, and, second, whether
it is possible to derive measures from them.

The first question has been already addressed in the literature. In [84], Katoen has defined a
partial-order semantics for a stochastic process algebra in terms of bundle event structures.
The SPA was of a most general type, i.e., the actions where endowed with general, positive
distribution functions. In [38], Cloth has presented a semantics for a similar SPA, based
on unfoldings, as invented by Langerak and Brinksma [96, 97]. A similar approach has
been chosen in [127]. All approaches have proven that the representation of most general
stochastic systems is straightforward in terms of event structures.

141



142 Chapter 6

However, the question, whether it is possible to exploit the expressiveness of event struc-
tures to derive stochastic measures for them is not yet fully answered. In [86], an approach
is presented to use stochastic bundle event structures as a basis to derive a discrete-event
simulation model. There are so far no approaches known to exploit stochastic partial-
order models for the performance evaluation, thereby using numerical techniques, except
for special cases [127, 39]. This is where the considerations of this chapter start.

Outline of this Chapter. In Section 6.1, we describe the generation of event structures
in an intuitive manner for Petri nets. Second, in Section 6.2, we introduce the actual
derivation of event structures from YAWN specifications. In Section 6.3, we will define
event occurrence times, random variables that describe the time until an event of an event
structure happens, given that it happens at all. In Section 6.4, we define event occurrence
probabilities, the probabilities for events to happen at all. In Section 6.5 we use event
occurrence times and event occurrence probabilities to express waiting times for local
synchronising states of a YAWN process in terms of its unfolding. In Section 6.6, we
reconsider an approach proposed in [16] to compute performance measures from an event
structure. We conclude the chapter with Section 6.7.

6.1 The Idea of Unfolding

Unfoldings have first been defined for Petri nets [105, 106]. Unfoldings of Petri nets provide
the easiest way to gain admission to the world of event structures.

We demonstrate the idea of unfolding by means of a simple example. We consider the Petri
net N in Figure 6.1. N has four places, s1, . . . , s4, and four transitions, t1, . . . , t4. This net

s1

t1 t2 t3

s4s3

t4

s2

Figure 6.1: Simple Petri net N

has one synchronising transition t3 and a conflict situation between t2 and t3: t2 is enabled
if and only if t3 is enabled, but only one of then can then fire. The net is cyclic. Now, an
unfolding U of N is also a Petri net, that describes in a certain way the same behaviour
as N . The big difference is that an unfolding is always acyclic.

An unfolding can be derived from a Petri net by means of the token game. It is created
by the successive addition of places and transitions, starting from the empty net. For each
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place in the initial marking of N (identifying markings with sets of places1) we introduce
a new place in the unfolding (cf. Figure 6.2, (a)). Now, we fire all transitions from the
current marking in N . For each fired transition and each of the places where a token was
newly placed, we introduce respective new transitions and new places in the unfolding.
In Figure 6.2, (b), we see the unfolding after t2 and t3 have been fired. Note that s3 has
been duplicated. We repeat this for all so-far-reached markings in N . In Figure 6.2, (c)
and (d), we see some further unfoldings of N . A formal algorithm for the derivation of
an unfolding can be found in [53]. Finite unfoldings of cyclic nets like N can be ordered

(a) (b) (c) (d)

s3

s2

s3

t2 t3

t1

s1

s2

t2 t3

t1

s2s1s1

t4t1t1

t1 t1 t4

s1 s1

s1s1

t4

s4s3s3

t2 t3

s4

s2

s2s1

t3t2

s4s3s3

t1 t1 t4

s1 s1 s2

s2s1s2s1

t3t2

Figure 6.2: Unfoldings for N

in a prefix-relation. The finite prefixes approximate then an infinite unfolding, which is
uniquely determined.

Unfoldings can be seen as Petri nets, however, to stress the fact that they are unfoldings,
places are usually referred to as conditions, transitions as events. Events and conditions
are also called nodes. We can define several relations on nodes which are implied by the
structure of the unfolding:

• the causal relation ≤. An event e2 depends on e1 (e1 ≤ e2), if, when e2 was fired (or
“occurred”) in a system run, then e1 must also have occurred in this run.

1In case that we consider non-safe nets, we have to consider multi-sets here.
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• the conflict relation: two events e1 and e2 are in conflict with each other when
neither of them can occur in a system run, in which the respective other has already
occurred. To be more specific, two events are in conflict in an unfolding, if there
is a condition on which both events depend. As conditions are actually places, and
events are transitions, we see that in the described case, only one transition (event)
can consume the token in the shared place (condition).

The causal and conflict relations can easily be lifted to the set of all nodes.

An unfolding defines an event structure of a special kind, a prime event structure [116]. A
prime event structure of an unfolding is the set of events of the unfolding, together with
the causal relation and the conflict relation, restricted to the event sets.

6.2 Unfolding YAWN Processes

In this section, we describe an unfolding approach for YAWN that is based on the approach
of Langerak and Brinksma [96, 97]. There, the unfolding was defined for an non-stochastic
process algebra. However, as has been shown in [38, 127] , enhancing the approach to
stochastic process algebras is straightforward and, more importantly, orthogonal to the
original approach. Therefore, first we can describe the unfolding approach without explicit
reference to the stochastic part of YAWN .

The explanations and definitions in this section are simplified, since many technical details
are not relevant for us. For a thorough and formally correct treatment of the topic, we
refer the reader to [96, 97, 126].

The unfolding of a process algebra specification has many similarities to the unfolding of a
Petri net, as we have described it in the previous section. This, however, is not obvious. In
Petri nets, we have the concepts of place and transition, both of which correspond directly
to the conditions and events of the unfolding2. In fact, an event in an unfolding represents
the firing of a transition in the run of the considered Petri net. The firing of a transition is
only possible, when it is enabled, i.e., if the enabling condition of the transition is fulfilled.
For save Petri nets, this means that there is a token in all places connected to the transition
by an incoming arc. The unfolding of a Petri net is then derived by playing the token game.

In process algebras, there is no concept of place or transition in the sense of Petri nets.
Instead of firing rules, there are SOS rules that govern the behaviour described by the
considered processes. Transitions between states are derived by means of SOS rules. Also
there is no token game, which would allow to derive an unfolding. Moreover, the unfolding
of an Petri net is again a Petri net, which seems to be very natural. For process algebras,
no such natural target formalism does exist.

The approach proposed in [96, 97] comprises two steps:

2This correspondence has been formally defined in [50].
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1. Invention of concepts that allow to mimic the purpose of places and the firing of
transitions in Petri nets. We describe these concepts in Section 6.2.1

2. Definition of a formalism which allows the representation unfoldings of process alge-
bra specifications. We describe this formalism in Section 6.2.2;

Before we come to these topics, we first must define the language for which we want to
introduce the concepts. For the sake of simplicity, we will describe all the concepts used in
this section only for a sub-language of YAWN that does not support the hiding operators
and that does only use process constants as a means to describe recursion.

Definition 6.1 The syntax of such language is therefore to be the set Lunf of terms defined
by the following grammar:

P −→ stop | a.P | [λ].P | P + P | P‖SP | A,

where λ ∈ IR+, S ⊆ Com, and A is a process constant.

Note that we have allowed the timed prefix, [λ].P , but since we delay the treatment of
time until Section 6.2.4, we assume that such an expression stands for t.P .

6.2.1 Fragments and States

Several event structure semantics for process algebras have been proposed, e.g., from
Boudol et al. [18], Golz et al. [98], or Katoen [84]. These semantics are not based on
an unfolding approach, but are of the denotational type. However, common to all of them
is that an event of such an event structure denotes a state change of the considered process.
This is not different for the approach of Langerak and Brinksma. The unfolding approach
is based on a successive derivation of state changes and their respective dependencies and
conflicts.

In Petri nets, places play a crucial role to define the behaviour of a net and serve as
a template for conditions to be added to an unfolding. For the unfolding approach of
Langerak, the concept of fragment is introduced3. Fragments have two purposes: first,
they are supposed to play a similar role as places for Petri nets, and second, since there are
no tokens to define the enabling of a state change, they are also used to determine when
an event can happen. Fragments are defined as follows:

Definition 6.2 (Fragments) The set Frag of all Fragments is defined by the following
grammar:

F → stop
∣
∣ a.P

∣
∣ [λ].P

∣
∣ (F ) ‖A

∣
∣ ‖S (F )

where P ∈ Lunf , and S ⊆ Com.

3Actually, the concept that we call fragment here, is named component in [96, 97]. We have renamed
this to avoid confusion with what have called component in the previous chapters.
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Fragments are prefixed process algebra expressions (i.e., they are syntactic entities) which
are enclosed in synchronisation contexts, denoted by the (·)‖S operators. If possible, we will
omit the contexts, or, if not possible, at least the parentheses. A fragment that is prefixed
with a timed prefix (like [λ].· for λ ∈ IR) is said to be a timed fragment. A fragment that
is prefixed with a synchronising prefix (like a.· for a ∈ Com) is said to be a synchronising
fragment. In the following, we consider sets of fragments, and it will become necessary
to assign a synchronisation context to all elements of a fragment set. If F ⊆ Frag, then
we define ‖AF = {‖A(f) | f ∈ F} and F‖A = {(f)‖A | f ∈ F}. We enhance this on
relations, i.e., if R ⊆ Frag × Frag, then ‖AR = {(‖A(f1), ‖A(f2)) | (f1, f2) ∈ R}, and R‖A

accordingly.

Fragments are now used to define a new notion of state, the so called d-state. Whereas in the
usual meaning a state is just a process algebra term, a d-state is a set of fragments, together
with a relation on this set, the choice relation. However, there is a tight relationship
between the two concepts, as we will see below. Formally, a d-state is defined as follows:

Definition 6.3 A d-state is a tuple (S, C), where S is a set4 of fragments and C ⊆ S ×S an
irreflexive and symmetric relation between fragments, the choice relation.

Formally, process algebra terms are mapped on d-states by means of the decomposition
function dec:

Definition 6.4 dec is defined inductively as follows (we assume that dec(P ) = (S(P ), C(P ))
and dec(Q) = (S(Q), C(Q)) ):

dec(stop) = ({stop}, ∅)

dec(a.P ) = ({a.P}, ∅)

dec([λ].P ) = ({[λ].P}, ∅)

dec(P‖AQ) = (S(P )‖A ∪ ‖AS(Q), C(P )‖A ∪ ‖AC(Q))

dec(P + Q) = (S(P ) ∪ S(Q), C(P ) ∪ C(Q) ∪ (S(P ) × S(Q))s)

dec(A) = dec(P ), if A
def
= P

where (A × B)s denotes the symmetric closure of (A × B).

Example 6.5

A d-state can obviously seen as a reformulation of a process algebra term. To demon-
strate this, we consider the process

P = (a.P1 + b.P2) ‖a (c.P3 + a.P4).

4Formally, we should consider multi-sets here, since there can be identical fragments which must be
distinguished. However, we assume that we can somehow distinguish all fragments, so that the use of sets
is safe. In fact, in [96, 97], the fragments are endowed with additional unique indices, which we have left
out here for the sake of simplicity.
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Then,

dec(P ) = (S, C)

where

S = {(a.P1)‖a, (b.P2)‖a, ‖a(c.P3), ‖a(a.P4) } and C = {(a.P1, b.P2), (c.P3, a.P4)}
s.

The term P is decomposed in the four fragments contained in S. Each fragment
is enclosed in a synchronisation context, denoting that the respective fragment is
supposed to synchronise, in this case, over the action a. The fact that there is a
choice between different behaviours in term P , on both sides of the parallel operator,
is now reflected by the choice relation C. For the sub-process a.P1 + b.P2 we have
now the elements {(a.P1, b.P2), (b.P2, a.P1)} in the choice relation C. The same holds
for the sub-process {(c.P3, a.P4), (a.P4, c.P3)}.

We only consider complete d-states, i.e., d-states (S, C) for which a term P exists such that
dec(P ) = (S, C). dec is not injective, but all terms P, P ′, P ′′, . . . which decompose to the
same d-state differ only with respect to the commutativity and associativity of the choice
operator.

6.2.2 Condition Event Structures

Before we describe how d-states are used to derive an unfolding, we describe the formalism
that is used to represent unfoldings. In case for Petri nets this was not necessary since the
unfolding of a Petri net was again a Petri net. Here the unfolding is not an acyclic Petri
net (although very similar), but a new structure: a condition event structure.

Definition 6.6 A condition event structure is a 4-tuple (D, E, F,≺), where

• D is a set of conditions

• E is a set of events

• F ⊆ D × D is a symmetric and irreflexive choice relation

• ≺⊆ (D × E) ∪ (E × D) is the flow relation

There are some similarities between the acyclic Petri nets that we have seen in Section 6.1
and condition event structures. Events, conditions and the flow relation have the same
purpose for both formalisms. New in condition event structures is the choice relation F.
We describe its purpose by means of an example:
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Example 6.7

We consider the condition event structure (D,E,F,≺), where

D = {d1, d2, d3, d4, d5}

E = {e1, e2, e3}

F = {(d2, d4)}
s

and the flow relation is defined as described by the arcs in Figure 6.3. If we imagine

e3

e2

e1

d5d4

d1

d2 d3

Figure 6.3: Condition Event Structure (Example 6.7)

a token in d1 (just as we do for Petri nets), then the event e1 is enabled by this
token and can happen. The successor conditions of e1 are d2 and d4, and they are
in the choice relation, as is depicted by the dashed line in Figure 6.3: d2Fd4. The
question is now, what happens after the occurrence of e1. Where does the token go?
Intuitively, we can assume that the token is distributed over both conditions d2 and
d4, as long as the choice between has not been made. The purpose of the choice
relation is to describe that only one of the events e2 and e3 can happen.

We introduce now some notation which allows us to deal more conveniently with condition
event structures.

The transitive closure of ≺ on D ∪ E is denoted by <, the transitive and reflexive closure
by ≤. A marking is a set of conditions. A node is either a condition or an event, and
we define the set of all nodes N as N = D ∪ E. The initial marking M0 is defined by
M0 = {d ∈ D | ¬∃d′ ∈ D : d′ ≤ d and d′ 6= d}.

Although we do not define it explicitly in the following, we always assume an event ⊥ ∈ E
that is minimal with respect to the flow relation, i.e., there is no node x such that x ≤ ⊥,
and, for all y ∈ N , ⊥ ≤ y does hold. We call this event the bottom event.

The preset of a node x, denoted by •x, is defined as •x = {y ∈ N | y ≺ x}. Accordingly,
the postset x• is defined as x• = {y ∈ N | x ≺ y}. When the preset (postset) of a node
x is a singleton, i.e., •x = {y} or x• = {y} , we frequently identify •x and x• with y,
respectively.
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We enhance the notion of pre- and postset on sets of nodes. When I is an arbitrary index
set, then •{ xi ∈ N | i ∈ I} =

⋃

i∈I
•xi. ·

• is defined accordingly. We abbreviate •(•x) and
(x•)• as ••x and x••, respectively.

Sometimes it is necessary to denote the set of conditions that are in a choice relation with
a certain condition d. We denote this set as Fd = {d′|d′Fd}.

The relation ≤ is the causality relation, as for Petri net unfoldings. There is also a conflict
relation.

Definition 6.8 The conflict relation on nodes ] ⊆ N×N is defined as follows: for x1, x2 ∈ N ,
x1]x2 iff there are two nodes y1 and y2, such that y1 ≤ x1, y2 ≤ x2, and

1. either y1Fy2,

2. or y1, y2 ∈ E and •y1 ∩ •y2 6= ∅.

Note that, different to Petri net unfoldings, condition event structures have two sources of
conflict. The first is the same as for Petri net unfoldings (Item 2 in Definition 6.8). The
second one is is introduced by the choice relation that is defined on the set of conditions
(Item 1).

We have said before that event structures have an explicit notion of concurrency. This is
expressed by the following relation, which is the negation of ≤ and ]: the independence
relation �.

Definition 6.9 (Independence relation �) Two nodes x, x′ ∈ N are said to be inde-
pendent (x � x′), iff neither x ≤ x′, x′ ≤ x, nor x]x′. If X ⊆ N , we say that x � X iff
∀x′ ∈ N : x � x′.

Independent events can occur independently from each other. Stated otherwise, when e, e′

are events and e � e′, then, when e happens then e′ can also happen (if its occurrence is
not inhibited by a third event), and vice versa.

6.2.3 From Processes to Event Structures

In this section, we describe how a condition event structure can be derived from a process
algebra term by unfolding. To do so, we first introduce an extension to the definition of
condition event structures, which links d-states and condition event structures.

Definition 6.10 (Fragment event structure) A condition event structure (D, E, F,≺),
together with mappings lD : D −→ Frag and lE : E −→ Act t, is said to be a fragment event
structure.



150 Chapter 6

Frequently, we will denote a fragment event structure by a tuple (D, E, F,≺, lD, lE). A
fragment event structure is a condition event structure, where the conditions are labelled
with fragments and the events with actions. The fragments are needed to define the
unfolding algorithm for process algebra terms.

Now, we will define the unfolding procedure for a process P ∈ Lunf . For Petri nets, the
unfolding is generated by playing the token game and introducing new conditions and
events, depending on which transition was fired and which places were changed. The basic
operation there is the firing of transitions. We define now a mechanism that takes the
same place in the context of condition event structures, as transition-firing in the context
of Petri nets. We define a set of SOS rules that define transitions between sets of fragments
and d-states. The transitions are labelled with actions. The derived transitions are used

1)
{a.P}

a
−−→ dec(P )

2)
{[λ].P}

t
−−→ dec(P )

3)
S

a
−−→ (S ′, C ′)

S‖A
a

−−→ (S ′‖A, C ′‖A)
(a 6∈ S)

4)
S

a
−−→ (S ′, C ′)

S‖A
a

−−→ (‖AS ′, ‖AC ′)
(a 6∈ S)

5) S1
a

−−→ (S ′
1, C

′
1) S2

a
−−→ (S ′

2, C
′
2)

S1‖A ∪ ‖AS2
a

−−→ (S1′‖A ∪ ‖AS ′
2, C

′
1‖A ∪ ‖AC ′

2)
(a ∈ S)

Table 6.1: SOS defining a transition relation between d-states

to successively extend an existing unfolding. If P ∈ Lunf and dec(P ) = (S, C), then the
smallest non-trivial finite unfolding of P is a fragment event structure (D, E, F,≺, lD, lE),
where D is a set of conditions with the same cardinality as S, lD = S, lE = ∅, ≺= ∅, and
dFd′ iff lD(d) C lD(d′).

Starting from this unfolding, we can define extensions of a fragment event structure as
follows.

Definition 6.11 Let E = (D, E, F,≺, lD, lE) be a fragment event structure. The set of
possible extensions PE(E) of E is the set of all pairs (D,S

a
−−→ (S ′, C ′)) such that

1. D ⊆ D is a set of pairwise independent conditions with lD(D) = S;

2. the transition S
a

−−→ (S ′, C ′) can be derived by the rules in Table 6.1;

3. E does not already contain an event e with lE(e) = a such that •e = D.
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The possible extensions are used to enhance the original fragment event structure by adding
a new event e, e 6∈ E, with lE(e) = a, and a set of new conditions D′, one for each fragment
in S ′, and labelled by lD with the respective fragments. The choice relation C is used to
enhance the choice relation F on D′. Additionally, we require that •e = D and e• = D′.
In [97], an algorithm is drafted which constructs a fragment event structure, starting from
an initial unfolding by successive addition of possible extensions to the unfolding. Without
describing it in more detail, we define the unfolding Unf (P ) of a YAWN process P to be
the fragment event structure constructed by successive addition of all possible extensions
of the initial marking S, where dec(P ) = (S, C).

6.2.4 Markovian Fragment Event Structures

So far, we have not considered the fact that the language Lunf describes processes with
timed prefixes. However, the extension of fragment event structures into a stochastic,
Markovian version can be done most easily. Actually, a fragment event structure does
implicitly contain already all information to make it a stochastic fragment event structure,
as we will see below. However, we will now define the necessary enhancements explic-
itly. First, we enhance the definition of fragment event structure to describe stochastic
information.

Definition 6.12 (Markovian Stochastic Fragment Event Structure) A fragment
event structure (D, E, F,≺, lD, lE), together with a mapping λD : D −→ IR+ ∪ {∞}, is
said to be a Markovian stochastic fragment event structure.

We write Markovian stochastic fragment event structures as tuple (D, E, F,≺, lD, lE, λD).
The function λD assigns rates to conditions. We could define λD by means of a refined
version of the unfolding algorithm, where each extension of an unfolding also extends
the definition of λD. However, this is not necessary. The function lD maps conditions to
fragments, and these fragments contain the information that we need. Therefore, we define
λD by means of lD.

Definition 6.13 Let Unf (P ) = (D, E, F,≺, lD, lE) be a fragment event structure derived
from a process P ∈ Lunf . Then, we define the function λD : D −→ IR+ ∪{∞} as follows. For
all d ∈ D,

λD(d) =

{
λ if lD(d) = [λ].P
∞ otherwise.

Note that a fragment lD(d) for d ∈ D is usually enclosed in a synchronisation context. For
the sake of simplicity, we have ignored them, since they do not contain relevant information
for the definition of λD.
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6.2.5 Some Important Definitions

In this section, we define the most basic notions to handle condition event structures. We
consider a condition event structure E = (D, E, F,≺).

First, we introduce the notion of configuration. A configuration is a (finite) set of events
C ⊆ E that have happened in a system run and that is closed with respect to the flow
equation, i.e., if e ∈ C, the all events e′ ∈ E with e′ ≤ e are also in C. A configuration
describes how far the considered event structure has evolved. More formally, a configuration
is defined as follows.

Definition 6.14 (Configuration) A set of events C ⊆ E is said to be a configuration, iff
it is conflict-free (∀e, e′ ∈ C : (e, e′) 6∈ ]) and left-closed (if e ∈ C, e′ ∈ E and e′ ≤ e then
e′ ∈ C).

Example 6.15

If we reconsider Example 6.7, then {e1}, {e1, e2} and {e1, e3} are configurations. The
set {e2, e3} is not a configuration.

A special case of a configuration is the local configuration.

Definition 6.16 (Local configuration) A configuration C is said to be a local configura-
tion iff max(C) (with respect to ≤) is a singleton. If e is an event, we write [e] for the local
configuration which has e as the maximum element.

The local configuration [e] of an event e is uniquely determined: it contains all, and only
those, events (including e) that are necessary to let e happen.

A marking is a set of conditions. We denote the set of minimal conditions of a condition
event structure (with respect to ≤ ) as M0, the initial marking .

A very important concept is now that of a cut : a cut can be seen as a reachable marking
within a condition event structure.

Definition 6.17 (Cut) A cut is a marking M such that for each pair d, d′ ∈ M , d 6= d′

holds: d � d′ or dFd′ and that M is maximal with respect to set inclusion.

Example 6.18

For Example 6.7, {d1} is a cut (in fact, also the initial marking), as well as {d2, d4},
{d3}, and {d5}. The set {d3, d5} is not a cut, since d3]d5.
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A nice property is that there is a one-to-one correspondence between cuts and configura-
tions.

Definition 6.19 Let C be a configuration and M a cut.

1. Cut(C) = (M0 ∪
•C) \ (•C ∪ F(•C))

2. Conf (M) = {e ∈ E | ∃d ∈ M : e ≤ d}.

Lemma 6.20 Let C be a configuration and M a cut.

1. Cut(C) is a cut;

2. Conf (M) is a configuration;

3. Conf (Cut(C)) = C;

4. Cut(Conf (C)) = M .

Proof: See [97], Theorem 3.10. →•

6.3 Event Occurrence Times

In the previous section, we have described an unfolding semantics for YAWN . The unfold-
ings are fragment event structures, enhanced with stochastic information. We have seen
that an unfolding semantics is very suitable to give meaning to stochastic process algebra
models, and in [38, 84, 127] it has been shown that it is straightforward to give more
general than just Markovian stochastic process algebras a semantics in terms of stochastic
event structures.

The representation of stochastic models is one issue. Another issue is to actually use
the representation to derive performance measures. In the following sections, we will
investigate whether stochastically enhanced partial-order models can be of use for the
stochastic analysis of performance models.

We will not be able to provide an exhaustive answer to the above question. We begin with
the definition of stochastic measures that describe the stochastic properties of partial-order
models. With these measures we will be able to describe the occurrence times of events
as random variables, the probability that an event occurs at all and the time that passes
between the occurrence between a certain “starting” event and several stopping events.

These measures were used in [16]. There, an algorithm for the approximation of waiting
times of local, synchronising states is proposed. However, some unproven assumptions were
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made, so that the whole approach was not complete. In this chapter, however, we will be
able to complete the approach of [16] and to assess it more thoroughly.

In this section, we will consider the event occurrence time of an event e of a Markovian
fragment event structure E = (D, E, F, <, lD, lE, λD), such that E = Unf (P ) for P ∈
Lunf . An event e ∈ E determines a finite system run, in which all events of the local
configuration [e] have happened. We are now interested in the time between system start,
i.e., the occurrence of event ⊥, and the occurrence of e, assuming that e does not become
permanently inhibited, e.g., by the occurrence of an event e′ that is in conflict with e.

We will assume the maximal-progress property. If t is the time where event e becomes
enabled, and t′ is the time until it occurs, then we always assume that t = t′.

6.3.1 Definition of Occurrence Times

The stochastic information of a Markovian fragment event structure is associated with
the conditions. Now, for d ∈ D, we denote by Yd a random variable which is either
exponentially distributed with rate λD(d), when λD(d) is finite, or 0 with probability 1,
when λD(d) = ∞. The time interval described by Yd starts with the occurrence of the event
•d. We say that a condition d is active from the moment the (unique) event e ∈ •d occured
and the time Yd has passed. We say that Yd is the activation delay of d. A condition d
is deactivated from the instant that an event e′ happens that is either in conflict with d
(d]e′), or which depends on d (d ≤ e′). In the former case, d must not necessarily have been
activated. Stated differently, d can be deactivated before it ever becomes activated. In the
latter case, d has been activated, i.e., the activation delay Yd must have been expired. In
that case, event e′ is an element of d•.

It is now possible to express the time between system start and the occurrence of event e
in terms of the random variables Yd. We denote the occurrence time of event e as Xe, and
define it as follows:

Definition 6.21 (Event occurrence time) Let e ∈ E. Then the event occurrence time
of e is defined as

Xe =

{
0 if e = ⊥;

max{Yd′ + Xe′ | d′ ∈ •e and e′ ∈ •d′} otherwise.

Note that, since •d is a singleton for each condition d ∈ D, the random variable Xe is
uniquely determined.

Example 6.22

We consider the processes P1 and Q1, which are structurally identical, except that
we chose different rates for timed prefixes.

P1
def
= [λ1].P2 Q1

def
= [µ1].Q2

P2
def
= a.stop + [λ2].stop + [λ3].stop Q2

def
= a.stop + [µ2].stop + [µ3].stop
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Let R
def
= P1‖aQ1. The unfolding Unf (R) of R is depicted in Figure 6.4 (the re-

[λ2].stop

e4 e7

[λ3].stop

d6

d4

d1

d7

P1

e3

e2

d5

a.stop

d2

P2

d3

d11

d14

d8Q1

[µ3].stop

[µ2].stop

e1

Q2

d13

d12

d10

d9

e5

e6

a.stop

Figure 6.4: Unfolding of R (Example 6.22)

spective three conditions that make up the states P2 and Q2 are connected by the
shaded areas). We have two sets of conditions here which are in a choice relation:
{d3, d4, d5} for component P1, and {d9, d11, d12} for component Q1.

We give event occurrence times for different events. Event e2 happens as soon as
condition d1 is activated. This happens at time Yd1

, where Yd1
is exponentially dis-

tributed with rate λ1. Therefore, Xe2
= Yd1

. Event e3 happens as soon as condition
d4 is activated. This happens at time Xe2

+Yd4
(Yd4

being exponentially distributed
with rate λ3), hence, Xe3

= Xe2
+ Yd4

.

Event e4 is the only synchronisation event in the unfolding, and it happens when
both d5 and d11 are activated. Since λD(d5) = λD(d11) = ∞, Yd5

= Yd11
= 0 with

probability 1, and the event enabling time for e4 is therefore

Xe4
= max{Xe2

+ Yd5
, Xe5

+ Yd11
} = max{Xe2

, Xe5
}

6.3.2 PERT Networks

The occurrence time of an event e in an unfolding Unf (P ) is completely determined by
the Markovian fragment event structure that is given by Unf (P ), restricted on the events
of [e]. This fragment events structure is conflict-free, and the flow relation ≺ defines an
directed acyclic graph with root ⊥ and (only) leaf e.
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These structures (which are conflict-free, finite condition event structures) have some simi-
larities to a concept known for a very long time: PERT networks. PERT is an abbreviation
for Performance Evaluation and Review Technique, and was already developed in the 50’s
of the last century [99]. Following [49], a PERT network describes a project , which com-
prises activities and events5. An activity is an entity that consumes time, which is described
by a non-negative random variable. An event in a PERT network is an well-defined oc-
currence in time, that does not consume time itself. Activities and events are ordered by
a precedence relation. Events denote the start or end of an activity, and an activity can
only start, when its preceding activities have finished. A project can be represented by an
directed, acyclic graph, where the vertices denote activities and the nodes event

6.

Obviously, there are some similarities between PERT networks and stochastic condition
event structures: activities correspond to conditions, events to events and the precedence
relation to causality. It is easy to interpret a conflict-free, finite Markovian condition event
structure as a PERT network, and vice versa.

PERT networks are used in Operations Research to assess the duration of projects that
are pursued by the accomplishment of different (dependent) activities. The measures of
interest of an PERT network are therefore its completion time distribution, and the mean
completion time. Deriving accurate results for these quantities is not a trivial problem,
since the length of activities can be arbitrarily distributed and activities may depend on
each other. Many research activities aimed at the development of techniques to derive
reliable results for completion time measures (in [1] a bibliography on the subject is
given).

Several methods for the computation of the completion time of a PERT network exist,
and some are implemented in the tool Pepp [43, 61]. In [127, 126], the tool Forest is
described. Forest is capable to derive a finite unfolding of a process algebra specification
(as defined in [96]), and exports a task-graph to pepp. pepp then computes approximations
of completion (event occurrence) time distributions as well as mean completion times.

6.4 Probabilities for Events

Important information about an event e is the probability for it to happen. We call this
the occurrence probability of e. In this section, we will define the occurrence probability
for events. Informally stated, an event e occurs if and only if no other event has occurred
before, which is in conflict with e. The probability that e happens is the probability that
all relevant conflict situations are decided in favour of e. Therefore, we must turn our
attention first on the resolution of conflicts in a fragment event structure.

5We write the PERT eventin a slanted face to distinguish them from event structure events.
6Or vice-versa: it is also possible to regard nodes as activities and vertices as event: both representations

are equivalent.
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6.4.1 Sources of Conflict

The definition of the conflict relation ] states that there are two sources of conflict in an
unfolding (cf. Definition 6.8). The following theorem states that an unfolding Unf (P ) that
is derived from an s-deterministic process P ∈ Lunf has only one source of conflict.

Theorem 6.23 In an unfolding Unf (P ) for P ∈ YAWN that is s-deterministic, the only
source of conflict in Unf (P ) is the choice between conditions.

Proof: According to Definition 6.8, there are two sources of conflict between two nodes x1

and x2: either the conflict is introduced by the choice relation between preceding conditions
(we call this a conflict of Type 1), or because there is a condition d, such that d ≤ x1 and
d ≤ x2 (Type 2)7. We want to show that all conflicts are of Type 1. We do this by showing
that a conflict that seems to be of Type 2 must have been introduced earlier by a conflict
of Type 1.

Example 6.24

d3

(b)

e2e1

d

d1 d2

d

e1 e2

(a)

d4

d1 d2

Figure 6.5: Conflict inducing situations

A typical conflict situation of Type 2 is depicted in Figure 6.5 (a). However, Fig-
ure 6.5 (a) is incomplete. The depicted situation can never arise in an unfolding,
since there is no single fragment that allows the derivation of two events. Therefore,
if we have a situation that a condition d has more than one successor event, then for
any of these events e ∈ d•, the preset •e must contain more than one condition. In
Figure 6.5 (b), we see an example of this situation. Since #•ej > 1 for j = 1, 2, both
events are synchronising. A first conclusion of our considerations so far is therefore
that conflicts of Type 2 can only occur when synchronisation is involved.

7Actually, there might be more conditions than only one on which x1 and x2 can both depend. The
considerations for two conditions can, however, be easily extended to the more general case.
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So, if we assume a condition d with #d• > 1, then for events e, e′ ∈ d•, the conditions
d′ ∈ •e ∪ •e′ for d′ 6= d must be independent from d: otherwise, e and e′ could not happen.
We can also conclude that there must be conditions c ∈ •e and c′ ∈ •e′ such that c and
c′ are in conflict. To justify this, we assume that all conditions of •e ∪ •e′ are pairwise
independent. Then also e and e′ would be independent. There are three different scenarios
that we have to consider now:

1. All events in ••e occur before event •d, and event •d happens before some of the
events ••e′. In this case, event e would happen.

2. The same situation, only with the role of e and e′ swapped; then e′ would happen.

3. All events in ••e∪ ••e′ occur before event •d. In this case, when •d occurs, both e and
e′ still can happen. Which one will happen can not be described stochastically: this
is a nondeterministic situation. This means that the unfolding is not s-deterministic,
which contradicts the assumption.

Therefore, there must be a c ∈ •e and c′ ∈ •e′ such that c]c′.

Example 6.25

For the situation depicted in Figure 6.5 (b), d3 and d4 must be in conflict.

Since we have now at least two conflicting conditions c ∈ •e and c′ ∈ •e′, we can repeat the
argumentation of this proof: either the conflict can be traced back to a conflict introduced
by choice; then we are done; or we find again a situation similar to that in Figure 6.5:
then we can start the argumentation of this proof again. This perhaps can be repeated for
a while, but since the flow relation is well-founded, this must eventually end, at least at
the initial cut. The only way to introduce conflict in the initial cut is the choice relation.
Hence, conflicts in a s-deterministic process is always introduced by choice, which proves
the theorem. →•

Please note that this theorem does not state that a process is always s-deterministic when
only choices introduce conflict. The process a.P + a.Q is the simplest example for a
nondeterministic process.

6.4.2 Occurrence Probabilities

In this section, we define the function Ω : E → [0, 1], which assigns occurrence probabilities
to events. Note that Ω is not a probability measure on E: the probabilities usually do not
sum up to one. Would Ω be indeed a probability measure, then, since we must assume that
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the bottom event ⊥ occurs with probability one, all other events would have an occurrence
probability of zero, which does not make sense.

Citing Feller [54], one should never speak of probabilities “except in relation to a given
sample space”. Therefore, we should indicate on which sample space the probabilities Ω(e)
are actually based. We will not do this formally, since it would go beyond our needs in
this chapter. However, informally, the sample space is the set of all system runs of an
unfolding, i.e., the set of all infinite configurations. This set is not denumerable (except
when the unfolding is finite), which makes an explicit definition of a probability measure
on its sample points impossible. However, interpreted on the sample space, Ω(e) for e ∈ E
is the probability for event e to occur in a system run. This probability can indeed be
expressed by finite means and without explicit reference to the sample space.

Although Ω is not a probability measure on E, it defines a probability measure on subsets
of events of E. We will come to this later.

In Section 6.2, we have described an unfolding semantics for Markovian process algebra
in its most general form. However, in this section we limit the class of processes that
we want to consider. We not only demand that a process P has to be an element of
Lunf , but also of LCC (cf. Definition 3.20). This restriction ensures that the choice relation
between fragments (and in the unfolding, between conditions) is not only symmetric, but
also transitive. If we would drop the structural conditions of LCC, then this property can
not be ensured. Choices can be seen as experiments, where the outcomes are the events
that can resolve the choice. Hence, obtaining probabilities for the different “outcomes”
of a “choice experiment” is crucial for the determination of the occurrence probabilities
of events. When we now allow processes of arbitrary structure, then the choice relation
can become arbitrarily complicated, and, consequently, also the derivation of probabilities
for the different outcomes of a choice. If, on the other hand, we allow only processes
P ∈ Lunf ∩ LCC, then due to the transitivity of the choice relation, the definition of
occurrence probabilities becomes much simpler. Since we have considered only processes
P ∈ LCC in this dissertation anyway, we will not aim at utmost generality, but stick with
this restriction.

Example 6.26

(From [96]) We consider the process P
def
= c.stop + (a.stop‖b.stop). P is not element

of LCC . In Figure 6.6 we see the unfolding of P . The actions a and b are independent
from each other, and hence are the conditions d1 and d2. Both a and b are, however,
in choice with c, hence condition d3 is in choice with d1 and d2.

We define Ω(e) in two steps. First, we must derive the probability for an event to happen,
once all its preceding events have happened. We denote these probabilities as immediate
occurrence probabilities (IOP). Second, we must combine the IOP to obtain the values for
Ω(e).
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d3d1

b.stop

d2

e1 e3

a.stop c.stop

cba e2

Figure 6.6: Unf (P ) (Example 6.26)

Immediate Occurrence Probabilities

We assume a process P ∈ LCC ∩ Lunf , the unfolding Unf (P ) = (D, E,≺, lE, lD, λD) and
a fixed event e ∈ E for which we want to derive the occurrence probability, Ω(e). Event
e occurs immediately when all conditions d ∈ •e have become active. So, the probability
that e occurs is equal to the probability that all d ∈ •e are active at one moment in time.

We first want to derive the IOP for e. Therefore, we assume that all events g ∈ ••e will
happen. Under this assumption, the probability whether e will happen or not depends on
whether the conditions in •e will be active at the same time or not. This depends not only
on •e, but on all conditions that are in a choice relation with conditions in •e.

A condition d ∈ •e is prevented from becoming active or is deactivated when an event
happens that is in conflict with d or which depends on d.

The latter case can only happen when the event that deactivates d is event e itself. If
there is another event e′ ∈ d• which has happened, then it is in conflict with e, and, as we
have seen in the proof of Theorem 6.23, e as well as e′ must denote synchronisations over
identical actions. We have assumed earlier that all events in ••e have happened already. If
e′ is not in conflict with one of the events g ∈ ••e, then both e′ and e can still happen. This
is the situation we have depicted in Figure 6.5 (b), and which implies nondeterminism.
Since we assumed the considered process to be s-deterministic, we can conclude that e′

must be in conflict with one of the events g ∈ ••e. To conclude, a condition d ∈ •e can
only be deactivated by the occurrence of an event that is in conflict with d.

Since we assume that g ∈ •d has happened, the only nodes that can be in conflict with d
are the conditions d′ ∈ Fd and their descendants with respect to ≤.

Example 6.27

We reconsider Example 6.22 (Figure6.4). We want to derive the occurrence proba-
bility of event e4, the only synchronisation event in the unfolding. We assume that
e2 and e5 will happen. Event e4 depends on the set of conditions •e4 = {d5, d11}.
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The conditions that can prevent e4 from happening are Fd5 = {d3,d4}, and Fd11 =
{d9, d12}.

The condition d3 is in choice with conditions d4 and d5. Hence, when event e1 or
e3 happens, then d5 would be deactivated. The situation is similar for conditions d9

and d12.

Event e only happens when all conditions d ∈ •e become active simultaneously. To capture
this formally, we define intervals Id on the real line, which denote the time period for a
condition d to be active. For event e to happen, the intersection of all Id for d ∈ •e must
be non-empty. To define Id, we first need to define a random variable Y off

d , which denotes
the time between the occurrence of the event •d and the deactivation of d by conflicting
events.

The time until a condition d gets deactivated is the minimum of the occurrence times of
all events that are in conflict with d. In case that there are no such events, Y off

d equals ∞.

Definition 6.28 (Y off
d ) Let d be a condition. Then the random variable Y off

d is defined as

Y off
d = min

d′∈ o d
e′∈d′•

{Xe′,∞} .

Note that ∞ is in the set because Fd can be empty. In that case, d can never be deacti-
vated, once it is activated.

Definition 6.29 (Id) Let d be a condition with g ∈ •d. Then the left-closed interval Id is
defined as

Id =







[

Xg + Yd, Y
off
d

)

if Xg + Yd ≤ Y off
d ,

∅ otherwise.8

Example 6.30

We continue Example 6.22. For condition d5 ∈ •e4, we have random variable Y off
d5

=
min{Xe2

+ Yd3
, Xe2

+ Yd4
}. The event preceding d5 is e2, so then

Id5
=
[

Xe2
+ Yd5

, Y off
d5

)

For the other side, we have Y off
d11

= min{Xe5
+ Yd9

, Xe5
+ Yd12

}, and e5 ∈ •d11. Then

Id11
=
[

Xe5
+ Yd11

, Y off
d11

)

8We distinguish the two cases here since the interval would not be defined for the case Xg + Yd > Y off
s ,

Id.
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We are now ready to define the IOP for event e. We denote this probability as Ω(e|••e).

Definition 6.31 (Immediate Occurrence Probability) The probability Ω(e|••e) is de-
fined as

Ω(e|••e) = Pr

((
⋂

d∈•e

Id

)

6= ∅

)

.

Since we assume maximal-progress, event e happens as soon as all conditions d ∈ •e are
active. Hence, event e happens at time t = inf

(⋂

d∈•e Id

)
, given that

⋂

d∈•e Id is not empty.

Note that we can express Ω(e|••e) also as

Ω(e|••e) = Pr

(

max
d∈•e

{X•d + Yd} ≤ min
d∈•e

{

Y off
d

})

, (6.1)

i.e., as the probability that the maximum of all left bounds of all intervals Id are smaller
than the minimum of all right bounds of these intervals. This formulation of Ω(e|••e) is
easier to deal with than referring to the interval notation, hence, in the following we will
use it exclusively.

The quantity Ω(e|••e) is the probability that all intervals Id for d ∈ •e have a non-empty
intersection. Since Id is the interval in which condition d is active, Ω(e|••e) is also the
probability that all conditions are simultaneously active for some time, thus enabling event
e. Due to the maximal-progress assumption, e actually happens in that case, hence Ω(e|••e)
is also the probability that e occurs, under the assumption that all events e′ ∈ ••e occur.

Example 6.32

For Example 6.22, Ω(e4|
••e4) = Pr((Id5

∩ Id11
) 6= ∅), or, written as in Equation 6.1,

Ω(e4|
••e4) = Pr

(

max {Xe2
+ Yd5

, Xe5
+ Yd11

}

≤ min
{

Y off
d5

, Y off
d11

})

= Pr (max {Xe2
+ Yd5

, Xe5
+ Yd11

} (6.2)

≤ min {Xe2
+ Yd4

, Xe2
+ Yd3

, Xe5
+ Yd9

, Xe5
+ Yd12

}) .

Since d5 and d11 correspond to fragments with synchronising action a, Yd5
= Yd11

= 0.
Hence, Equation (6.2) simplifies to

Ω(e4|
••e4) = Pr (max {Xe2

, Xe5
} ≤ min {Xe2

+ Yd4
, Xe2

+ Yd3
, Xe5

+ Yd9
, Xe5

+ Yd12
})

(6.3)
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Deriving the occurrence probabilities Ω(e)

From the IOPs, we can now derive Ω(e), the unconditional occurrence probability of e.
Intuitively, the occurrence probability of an event e is the probability that all choices that
are relevant for the occurrence of e are actually decided in favour of e. Formally, we define
this probability as follows:

Definition 6.33 (Occurrence Probability) Let e be an event and Ge =
⋃

g∈••e[g]. Then
the occurrence probability of e, Ω(e), is defined as

Ω(e) = Ω(e|••e) ·
∏

e′∈••e

Ω(e′) (6.4)

= Ω(e|••e) ·
∏

e′∈Ge

Ω(e′|••e′) (6.5)

=
∏

e′∈[e]

Ω(e′|••e′) (6.6)

Equation (6.4) is the probability that event e happens under the condition that all pre-
decessor events have happened, i.e., the IOP of e, multiplied with the probability that
all preceding events e′ ∈ ••e have happened. The latter probability can be expressed as
the product of all IOPs of all events e′ ∈ Ge (Equation (6.5)). Therefore, the occurrence
probability of event e is the product of all IOPs of the events e′ ∈ [e] (Equation (6.6)).

Example 6.34

We reconsider Example 6.22. We want to compute Ω(e4). We therefore need the
IOPs Ω(e′|••e′) for e′ ∈ [e4], e for all events {e2, e5, e4}. For e2 and e5, this is easy:
both events happen with probability 1.

From Equation (6.3) we know Ω(e4|
••e4), and therefore, Ω(e4) = Ω(e4|

••e4).

Example 6.35

We consider the processes

P1
def
= [µ].stop + [λ].[δ].P2 Q1

def
= [α].stop + [β].[µ].a.stop

P2
def
= [ζ].stop + a.stop

and R
def
= P1‖{a}Q1. In Figure 6.7 the unfolding Unf (R) is depicted. Both P1 and

Q1 can only do one synchronisation, if at all. This is represented by event e8 in the
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[ζ].stop

e4

λ α

e2 e3e1
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d9
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P1

d6

d4

d11
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d12

e8
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Figure 6.7: Unfolding of R (Example 6.35)

unfolding. What is the probability Ω(e8)? To compute this, we need the IOPs for
all events e ∈ [e8] = {e2, e3, e5, e6, e8}.

We first compute Ω(e2|
••e2). The only condition e2 depends on immediately, is d2,

and d2 is in choice with d1. We must therefore determine the probability that d2

is not deactivated by the occurrence of e1. This probability is also the probability
Ω(e2|

••e2). In this case,

Ω(e2|
••e2) = Pr

(

Yd2
≤ Y off

d2

)

,

where Y off
d2

= Xe1
= Yd1

. Since we consider exponential distributions,

Ω(e2|
••e2) =

λ

λ + µ
.

By analogous considerations, we can derive

Ω(e3|
••e3) =

β

α + β
.

Since both events only have ⊥ in their preset, also Ω(e2) = Ω(e2|
••e2) and Ω(e3) =

Ω(e3|
••e3).

Since e5 and e6 only depend on d6 and d7, respectively, they must happen, once e2

and e3 have happened. Therefore, Ω(e5|
••e5) = Ω(e6|

••e6) = 1. An immediately
consequence is that Ω(e5) = Ω(e2|

••e2) = λ
λ+µ , and Ω(e6) = Ω(e3|

••e3) = β
α+β .
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Deriving Ω(e8|
••e8) is slightly more difficult. Here we have the case that, if e5 and

e6 happen, the occurrence of e8 can be inhibited by the occurrence of event e7.
Therefore, we have to find the probability that e8 occurs before e7, i.e., Ω(e8|

••e8).
According to the definition,

Ω(e8|
••e8) = Pr

(

max
d∈•e8

{X•d + Yd} ≤ min
d∈•e8

{

Y off
d

})

. (6.7)

By elementary arithmetic with max and min operators, we can rewrite Equation (6.7)
as

Ω(e8|
••e8) = Pr (max {Xe5

+ Yd10
, Xe6

+ Yd11
} ≤ min {∞, Xe5

+ Yd9
})

= Pr (max {Xe5
, Xe6

} ≤ Xe5
+ Yd9

)

= Pr(Xe6
≤ Xe5

) + Pr(Xe6
> Xe5

) Pr(Xe6
≤ Xe5

+ Yd9
)

= Pr(Xe6
≤ Xe5

) + Pr(Xe5
< Xe6

≤ Xe5
+ Yd9

).

To conclude,

Ω(e8) = Ω(e8|
••e8) · Ω(e5|

••e5) · Ω(e6|
••e6) · Ω(e2|

••e2) · Ω(e3|
••e3)

=
β

α + β

λ

λ + µ

(

Pr(Xe6
≤ Xe5

) + Pr(Xe5
< Xe6

≤ Xe5
+ Yd9

)

)

.

6.4.3 Special Cases

In the previous section, we have derived the occurrence probabilities Ω(e) for an event e
in its most general form.

According to Equation (6.1),

Ω(e|••e) = Pr

(

max
d∈•e

{X•d + Yd} ≤ min
d∈•e

{

Y off
d

})

.

Written differently,
Ω(e|••e) = Pr(Ze ≤ 0),

where Ze is a random variable defined on the real numbers, defined as

Ze = max
d∈•e

{X•d + Yd} − min
d∈•e

{

Y off
d

}

. (6.8)

We then can write

Ω(e|••e) = FZe(0) =

∫ 0

−∞

fZe(t)dt,
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where FZe is the distribution of Ze and fZe its density.

Computing FZe is usually very difficult. It depends on the distributions of the occurrence
times Xe′ of the events e′ ∈ ••e. These are usually not independent from each other,
and, since they are phase-type distributions, their representations can become quite large.
Furthermore, computing FZe from the right-hand-side of Equation (6.8) is not an easy
task, either. However, there are special cases, where Equation (6.8) becomes much easier
to handle. These cases are internal choice and synchronisation without timeouts, as will
be discussed below.

Internal Choice

We consider an event e that

1. is not a synchronisation, and

2. for {d} = •e, the set
⋃

d′∈ o d

d′•

contains only events that are not synchronisations.

These two conditions ensure that the time until deactivation of condition d, Y off
d , is deter-

mined solely by the random variable Yd′ for d′ ∈ Fd. Since we agreed on the restriction to
only consider processes that are elements of LCC, the conditions {d} ∪ Fd are all pairwise
in a choice relation. The choice is resolved by the occurrence of a non-synchronisation
event. Hence, this situation describes an internal choice.

For this special case, Equation (6.8) can be simplified. The set ••e is a singleton, say, {g}.
Then we have:

Ze = max
d′∈•e

{X•d′ + Yd′} − min
d′∈•e

{

Y off
d′

}

= Xg + Yd − Y off
d

= Xg + Yd − min
d′∈ o d
e′∈d′•

{Xe′}.

We can rewrite the minimum expression, and yield

Ze = Xg + Yd − min
d′∈ o d

{Xg + Yd′}

= Yd − min
d′∈ o d

{Yd′}

Hence,
Ω(e|••e) = Pr(Yd − min

d′∈ o d
{Yd′} ≤ 0).
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This is the probability that one exponentially distributed random variable is smaller than
another exponentially distributed random variable. This probability can be expressed
solely by the rates of the respective distributions. This means that

Ω(e|••e) =
λD(d)

λD(d) +
∑

d′∈ o d λD(d′)
(6.9)

Example 6.36

We consider the process P
def
= [1].stop+[2].stop+[3].stop. The unfolding of this prefix

is finite and depicted in Figure 6.8 All three events e1, e2, e3 are not synchronisations,

[2].stop

d2

e1 e3e2t t

d3d1

[1].stop [3].stop

t

g

Figure 6.8: Unfolding for Example 6.36

and λD(di) = i for i = 1, 2, 3. In this example, event g = ⊥.

We then have

Ω(e1|
••e1) =

λD(d1)

λD(d1) + λD(d2) + λD(d3)
=

1

1 + 2 + 3
=

1

6
.

Accordingly, Ω(e2|
••e2) = 1

3 , and Ω(e3|
••e3) = 1

2 .



168 Chapter 6

Synchronisation without Timeouts

The second special case we want to consider is when event e is synchronising, but for
d ∈ •e : Fd = ∅. In this case, once condition d ∈ •e has been activated, it never
gets deactivated, except by the occurrence of e. In terms of random variables, we have
Y off

d = ∞. Then, Equation (6.1) simplifies to

Ω(e|••e) = Pr

(

max
d∈•e

{X•d + Yd} ≤ ∞

)

= 1.

According to Definition 6.33, we then have

Ω(e) = Ω(e|••e) ·
∏

e′∈[g]

Ω(e′|••e′) = Ω(g),

where {g} = ••e.

The special cases we have treated here are not unfamiliar. Both have already appeared
in Chapter 4. The restriction to internal choice and synchronisations without timeouts
ensured that the branching probabilities within components can be determined locally (cf.
Section 4.3.1).

6.4.4 Concluding Remarks

In this section, we have defined the occurrence probabilities for events. Basically, we first
have computed probability distributions on sets of events whose preceding conditions are
in a choice relation. These probabilities are valid for the case that the resolution of this
choice is imminent. Then, we have defined the occurrence probability of an event e to be
the probability that all choices that are relevant for the occurrence of e are actually decided
in favour of e. This is therefore the product of all individual probabilities of all events e′

in e.

This approach has a close resemblance to the one chosen by Katoen in [84]. There, for
bundle event structures a stochastic extension is defined where probability distributions
were assigned to sets of mutually conflicting events, so-called clusters. Events in clusters are
required to denote local activity. Therefore, in terms of this section, only local probabilistic
choices have been modelled. It is not mandatory to assign all events a probability. Thus
the description of nondeterminism is possible. However, when we assume the special case
where all events carry a probability, then for all configurations of such an event structure
a probability can be derived, by simple multiplication of the probabilities of all the events
in this configuration.

The similarities to our approach for the unfolding are obvious. We also derive probabilities
for individual events (the IOPs). With Definition 6.33, for an event e we multiply the
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IOPs of all events in the local configuration [e] to obtain the occurrence probability for
e. The difference is that the individual probabilities that we assigned to events are not
given deliberately, but are rather already implicitly determined by the stochastic temporal
behaviour of the whole process.

We should point out that the probabilities Ω(e), although computed by means of the
local configuration [e], is not the probability that the state St([e]) is ever entered. We
demonstrate this with the following example.

Example 6.37

We consider the two events e1 and e2 in part (a) of Figure 6.9.

e2 [e2]

µ
λ+µ

λ
λ+µ

1 1

(b)

∅

[e1]

{e1, e2}

µλ

e1

(a)

d1

d3 d4

d2

Figure 6.9: Illustration of Example 6.37

The transition system defined on the sets of configurations, together with the branch-
ing probabilities, is shown in part (b). The probability that the local configuration
[e1] is reached is λ

λ+µ , but the probability that e1 will happen is 1.

The occurrence probability of event e, Ω(e) is the probability that a state of the associated
transition system is entered via a transition with label lE(e). So Ω(e) is the probability
that the considered system evolves along a path through the transition system that has a
transition in it that is labelled with the indexed action lE(e).

6.5 Waiting Times

In Section 6.3, we have defined for an event e of an unfolding its event occurrence time
Xe. We can use these occurrence times to characterise an important performance measure
that we have identified in Section 4.4, namely waiting times.

We proceed in three steps: first, we define the waiting time for a component under the
assumption that one specific synchronisation event occurs. We call this the individual
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waiting time (IWT). Second, we define the waiting time for a component under the as-
sumption that the considered component starts waiting with the occurrence of a specific
event e. We call this a waiting period . Third, we define the (mean) waiting time for a
certain local state of a component. We will see that these three quantities are related: we
need individual waiting times to define waiting periods, and we need waiting periods to
define waiting times.

6.5.1 Individual Waiting Times

We consider a process P and its unfolding Unf (P ) = (D, E, F,≺, lD, lE, λD). Remember
that events e with #•e > 1 are synchronisation events. Let us assume that e is a synchro-
nisation event. For d ∈ •e, with loc(d) = i, the instance at which e′ ∈ •d happens denotes
the start of a waiting period for location i. Since Yd = 0 with probability 1 for d ∈ •e
(since d denotes a synchronising fragment), the individual waiting time of component i for
event e, IW e,i, is defined as

IW e,i = max
g∈••e

{Xg} − Xe′.

Since e′ ∈ ••e, we obtain
IW e,i = max

g∈••e
{Xg − Xe′, 0}

Individual waiting times are hence positive or zero.

As the above derivation shows, individual waiting times can always be described as

max{X1, . . . , Xn} − Xj,

where {Xi | i = 1, . . . , n } is a set of (possibly dependent) positive random variables. Each
Xi for i ∈ {1, . . . , n} describes the time at which location i becomes ready to synchronise.
Hence, the random variable max{X1, . . . , Xn} is the enabling time of the considered syn-
chronisation, and max{X1, . . . , Xn}−Xj is the time that has to pass between the instance
component j becomes ready to synchronise, and the actual synchronisation.

6.5.2 Waiting Periods

The waiting periods we have defined in Section 6.5.1 are individual waiting times: they are
only about one instant, one specific situation of a synchronisation. The reason for this is
that we have chosen a synchronisation event as the reference for the IWT. A synchronisation
event denotes the end of a waiting period, but usually there is more than only one event
that ends the same waiting period. We will see this in the next example. However, a waiting
period of a location i is started by exactly one event, say, e ∈ E. Let F = {ej|j ∈ J} ⊆ E
(J being an index set) be the set of events that end the waiting period started by e. The
local configurations [ej] of the events ej ∈ F for j ∈ J all have the event e in common,
i.e., e ∈

⋂∞
j∈J [ej]. To find out all about the waiting period started by e, we must take all

events ej ∈ F for j ∈ J into account.
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⊥

e3

P

P

e2

e1

a

a

a

P

Q

Q

Q

Q

Figure 6.10: Unfolding of P‖aQ (Example 6.38)

Example 6.38

We assume two processes P and Q as follows:

P
def
= a.P

Q
def
= [].a.Q + [].Q

An (incomplete) sketch of the unfolding of the process P‖aQ is depicted in Fig-
ure 6.10. The start event, ⊥, denotes also the start of a waiting period: component
1 (P ) waits for a synchronisation with component 2 (Q) over a. As we can see in
Figure 6.10, this waiting period is ended by the events e1, e2, e3, . . .. Actually, there
are infinite many events that end the waiting period started with ⊥.

The events ej ∈ F can neither be independent nor causally related. Hence, they must
be in conflict. Let p(ej), j ∈ J be the probability that event ej happens, under the
condition, that e has already happened. Since all events ej ∈ F causally depend on e,
the occurrence of one of them implies already the occurrence of e, and therefore, the
probability Pr(ej and e happen) equals Pr(ej happens) = Ω(ej). Then, from the definition
of conditional probabilities, we can derive

p(ej) = Pr(ej happens | e happens) =
Pr(ej and e happen)

Pr(e happens)
=

Ω(ej)

Ω(e)
.
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For each of the events ej, j ∈ J , we can compute the IWT IW ej ,i, as defined in Section 6.5.2.
Then, the waiting time of component i under the assumption that event e has started the
waiting period, can be derived as

WPe =
∑

j∈J

p(ej)IW ej ,i =
1

Ω(e)

∑

j∈J

Ω(ej)IW ej ,i

6.5.3 Mean Waiting Times

The waiting periods WPe, as derived in the previous section, are in terms of events only.
Our aim is to express the mean waiting times introduced in Section 4.4, but these refer to
local, synchronising states. In this section, we establish a relation between (mean) waiting
times and waiting periods.

We assume now a synchronising state s of a component i. Generally, the events e that
denote the start of a waiting period also relate to local synchronising states: they denote
the time instance where such a state is entered. Since we assume irreducibility, for state s
there are infinitely many events in the unfolding which denote that this state is entered. We
denote this set of events as Ms. For each e ∈ Ms, a waiting period WPe can be described.
It is obvious that these quantities must be combined somehow to yield the (mean) waiting
time Ws of local state s. The questions are now:

1. Which events e ∈ Ms should be chosen such that the quantities WPe can be com-
bined?

2. How should the WPe be combined?

We give answers to these questions in the following two paragraphs.

Choosing the Right Events

Let e, e′ ∈ Ms. Events e and e′ can not be independent from each other: a component can
not enter one of its states twice without a dependency between these two events.

Hence, e and e′ are either in conflict or causally related. We define now a relation Cs⊆
(Ms ∪ {⊥}) × (Ms ∪ {⊥}) as follows: for e, e′ ∈ Ms ∪ {⊥},

e Cs e′ ⇐⇒ e < e′ and there is no other event e′′ ∈ Ms such that e < e′′ < e′.

We denote by Es the transitive closure of Cs.

Lemma 6.39 Let P ∈ Lunf ∩LCC be an s-deterministic, irreducible process. Let s be a local,
synchronising state of a component i of P , and let Ms be defined as before. Then, the relation
Cs defines a tree with root ⊥.
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Proof: Event ⊥ is the root, since every element of the unfolding Unf (P ) depends on ⊥
by definition. Cs is also acyclic, since < is acyclic. Remains to show that each e ∈ Ms has
exactly one predecessor with respect to Cs. Assume that this is not the case, i.e., there is
an event e ∈ Ms with two events e′, e′′ such that e′ Cs e and e′′ Cs e. For e to happen, both
e′ and e′′ must happen before. That means that both events must be independent, which
we have ruled out before. Therefore, an event e ∈ Ms can only have one predecessor. →•

As a consequence, if we have two events e, e′ ∈ Ms, and neither e Es e′ nor e′ Es e,
then e and e′ must be in conflict. This has interesting consequences. Let M l

s = {e ∈
Ms | e is a node of depth l in Ms }. Remember now that Ω(e) denotes the occurrence
probability of event e (cf. Section 6.4). Ω is not a probability measure on the whole set of
events E, but Ω, restricted to the sets M l

s, is a probability measure.

Lemma 6.40 Let P ∈ Lunf ∩LCC be an s-deterministic, irreducible process. Let s be a local,
synchronising state of a component i of P , and let, for l ∈ IN, M l

s be defined as before. Then
Ω

M l
s

is a probability measure on M l
s.

Proof: By induction on the depth of the tree:

l = 0 : M0
s = {⊥}, and Ω(⊥) = 1 by definition.

l → l + 1 : We assume that the lemma has been shown for M l
s. The events e ∈ M l+1

s

depend on that of M l
s. We have to prove the axioms for a probability measure.

1. By definition of Ω, 0 ≤ Ω(e) ≤ 1 for all events e ∈ M l+1
s .

2. For e ∈ M l
s,
∑

{e′:e p se′} Ω(e′) ≤ Ω(e), since for e Cs e′, the probability that e′

happens can not be larger than the probability that e happens, i.e., Ω(e′) ≤
Ω(e). Since the events e′ ∈ M l+1

s are mutually exclusive, their probabilities
do not “overlap”, and therefore

∑

{e′:e p se′} Ω(e′) ≤ Ω(e) holds. Irreducibility
ensures that, once a certain state has been entered, the probability that it will
be entered again is equal to one. Hence, by deconditioning, we can conclude
that equality holds, i.e.,

∑

{e′:e p se′}

Ω(e′)=Ω(e).

From this it follows immediately that
∑

e∈M l
s

∑

{e′:e p se′}

Ω(e′) =
∑

e′∈M l+1
s

Ω(e′)

= 1

by means of the induction hypotheses.

→•
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Combining Waiting Periods

We have ordered the events starting a waiting period for a local synchronising state s
(e ∈ Ms) in a tree, and we have shown that the function Ω, restricted on the events with
equal depth l in this tree (M l

s for l ∈ IN), is a probability distribution.

Each event e ∈ M l
s denotes the l-th instance of a waiting period of synchronising state s

since system start. The events e ∈ M l
s all have different histories, and, most likely, different

values for E[WPe], e ∈ M l
s. Then, most naturally, the l-th waiting time of state s can be

expressed as

WT l
s =

∑

e∈M l
s

Ω(e)WPe

WT l
s is a random variable, a weighted sum of waiting periods, WPe for e ∈ M l

s. The mean
waiting time can then be expressed as E[WT l

s] =
∑

e∈M l
s
Ω(e)E[WPe].

The waiting times that we have defined in Section 4.4 were steady-state waiting times: we
have assumed that the considered system has run for a very long (i.e., infinitely long) time
period. The quantities WT l

s are quantities that only relate to finite system runs: at least
the number of steps until one of the events in M l

s happens is finite. Hence, the actual
waiting time has to be defined as

WTs = lim
l→∞

∑

e∈M l
s

Ω(e)WPe, (6.10)

and

E[WTs] = lim
l→∞

∑

e∈M l
s

Ω(e)E[WPe].

6.6 Event Structures for Waiting Times

In [16], an algorithm has been proposed to compute the mean waiting times for synchro-
nising local states of a component. The approach is based on bundle event structures
with stochastic extension. The ingredients used there are the same as we have defined
in this chapter: the algorithm relies on the computation of mean event occurrence times,
event occurrence probabilities, and individual waiting times. However, the problem was
not addressed how to exactly combine the individual waiting times

In this chapter, we have gathered enough knowledge about the properties of stochastic
event structures to fill in the spaces that were left blank in [16].

We first give a renewed version of the algorithm given in [16] (Algorithm 6.1) before we
comment on it.
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· Input: a process P ∈ Lunf ,
a location i
a synchronising state s of location i
a number l ∈ IN.

· Output: approximated mean waiting time Ê[WTs] of s.

1. Compute the unfolding E = (D, E,≺, lD, lE, λD) = Unf (P ) of P ;

2. Derive M l
s ⊆ E;

3. W := 0

4. forall e ∈ M l
s do

5. Compute WPe;

6. Compute Ω(e);

7. W := W + Ω(e) · WPe

8. end

9. Ê[WTs] := W

Algorithm 6.1: Deriving Ws from Unf (P ).

6.6.1 The Algorithm

In the following, we describe Algorithm 6.1:

Input and Output: The algorithm computes the waiting time of the local synchronis-
ing state s of component i from the unfolding Unf (P ) of P ∈ Lunf . The value l
determines the depth of the tree of events that is defined by Cs.

Line 1. Compute the unfolding of P .

Line 2. The set M l
s is the set of events which are of depth l in the tree defined by the

relation Cs.

Line 3. W is an auxiliary real variable, set to zero at the beginning of the subsequent
loop.

Line 4. Loop: computations take place for all events e ∈ M l
s.
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Line 5. Compute the mean waiting period that is started by event e.

Line 6 Compute the probability that e occurs, i.e., that the waiting period WPe really
starts.

Line 7. Update the weighted sum of the waiting periods that have occurred.

Line 8. End of loop.

Line 9. Output Ê[WTs].

We have defined the mean waiting time for a local synchronising state s to be E[WTs] =
liml→∞

∑

e∈M l
s
Ω(e)WPe. In finite time only an approximation of the actual value can be

computed, and so Algorithm 6.1 computes only an approximation of the waiting time of an
synchronising state. The accuracy grows with the input parameter l. The larger l is, the
deeper in the tree the computations take place and the nearer we are to the steady-state.

These considerations are nevertheless naive, since it assumes that the waiting periods and
occurrence probabilities are already available. This is not the case, and therefore we have
to look at this.

Waiting Periods

The algorithm combines different values for waiting periods. However, as we have seen, a
waiting period WPe is characterised by one starting event e, and possibly infinitely many
stopping events. In case of infinitely many, it would only be possible to take finitely many
of them into account. Therefore, a value for WPe can only be an approximation.

Occurrence Probabilities

Even before we can compute an approximation of a mean waiting time, we must compute
the probability with which the starting events of a waiting period do occur. This requires
in general the knowledge of the complete distribution of the occurrence time of all events
that are in choice with the event in question, as we know from Definition 6.31 and 6.33.
Moreover, we must compute the distribution of the minimum of these occurrence times.
This is usually not an easy task: the different occurrence times usually depend on each
other, since they can share part of their history.

Unfoldings and Complete Prefixes

An unfolding of a recursive process is usually an infinite structure. To carry out actual
computations on it, it must be represented finitely. In [96, 97], Langerak and Brinksma
have defined an algorithm to compute a finite prefix of an unfolding that contains exactly
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the information the unfolding contains (such a prefix is said to be complete). In [95], an
alternative representation of the unfolding is described, which is based on the complete
prefix approach. Finite representation of an unfolding is therefore no problem.

It would of course be desirable to do all computations only on the finite prefix. However,
the question arises, if a complete finite prefix contains enough information to completely
describe also the stochastic properties of the unfolding in question, such as occurrence
probabilities and occurrence times.

As we have seen in Section 6.4, the probability Ω(e) of an event e to occur depends on the
complete history of this event (i.e., [e]) and on the history of the conditions that are in
choice with •e. In a finite prefix, this history is only for those events completely available
that are part of this prefix. In case that information is needed about events that are in the
unfolding, but not in the current prefix, this is not the case. So a complete prefix might
be not sufficient to describe occurrence probabilities or event enabling times.

We have found in Section 6.4.3 two special cases, however, where the choice between
different conditions is independent of the history (local choice and synchronisation without
timeouts). If we only consider processes which have these kinds of choice, the occurrence
probabilities of events can possibly described by the information that is available in a
complete prefix alone. Further research is, however, required to validate this assumption.
For the time being, it has been shown only that the prefix is sufficient to express waiting
times for the case that in the prefix occurs no choice at all [39].

6.6.2 Final Comments

From what we have derived in the previous section, we must conclude that the idea to
compute mean waiting times from unfoldings is at least questionable. The algorithm does
only make sense when the space complexity (i.e., the memory consumption of a potential
algorithm) is lower than an ordinary steady-state analysis of the considered SPA model.

Since we have defined waiting times as a limit (cf. Definition 6.10), the accuracy of the
results that we can obtain by Algorithm 6.1 depends on the maximal depth of the tree
defined by Cs that we allow the algorithm to consider for the computation. Moreover,
each waiting period has possibly infinitely many stopping events, so that the accuracy of
a waiting time depends also on the number of stopping events we take into account. A
(non-trivial) tree has the unpleasant property that its breadth grows exponentially with
the depth, hence, the higher the accuracy that we wish to obtain for waiting times, the
longer the computations take, and the faster the memory limit is reached. Obviously, the
upper bound for the complexity of such an approach can not be described by a polynomial.
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6.7 Conclusions

In this chapter we have defined the following stochastic measures for unfoldings of YAWN
processes:

• for each event e the time that passes from system start until event e happens, given
that it happens at all;

• the probability that an event e actually happens in a system run;

• three different quantities, that are related to waiting times:

individual waiting times, which denotes the time that one component has to wait
until one specific synchronisation event happens, that ends the waiting;

waiting periods, which denote the time that one component has to wait until one
of the possible synchronisation events happens that ends the waiting;

mean waiting times, which are a weighted sum of mean waiting periods that relate
to the same local state in which the considered component waits.

We have defined a conceptual algorithm to compute mean waiting times for a local synchro-
nising state of a component. The discussion of this algorithm has shown that an approach
based on unfoldings to compute actual measures is not feasible.
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Conclusions

In this dissertation, we have considered Markovian stochastic process algebras (SPA). SPA
are formalisms with well-defined semantics for the compositional specification of functional
and performability models. The steady-state performability analysis of Markovian SPA
specifications requires the solution of a system of linear equations. This is usually a complex
task, since the number of equations grows exponentially with the size of the considered
specification (state-space explosion).

The largeness problem is shared by many other specification formalisms for performance
modelling, and there are many approaches known for these formalisms to avoid it. Some
of these approaches have been adapted to SPA formalisms, either by translation, or by
the identification of subclasses of SPA models that have advantageous properties for the
more efficient solution technique. However, so far, there has been no genuine approache
for SPAs that actually takes the compositional nature of model specifications as a starting
point to overcome the largeness problem.

In this dissertation, we have taken first steps in the direction of a solution technique that
exploits the structure of SPA specifications.

Outline of this Chapter. In Section 7.1, we summarise the original contributions of
this dissertation. In Section 7.2, we come to some final conclusions. In Section 7.3, we give
directions for future research.

7.1 Summary

7.1.1 The Stochastic Process Algebra YAWN

In Chapter 3, we have introduced the stochastic process algebra YAWN . YAWN is inspired
by the work of Hermanns on IMC [66]. However, we have chosen a different method to
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define the semantics of YAWN . Instead of using labelled multi-transition systems to
express the meaning of a YAWN specification, we have used ordinary labelled transition
systems, endowed with an extra function that assigned rates to transitions. This approach
facilitated the technical derivations in Chapter 4.

7.1.2 Global and Local Measures

In Chapter 1, we have argued that a solution approach that exploits the compositionality
of SPA models, i.e., that considers components in isolation, can only provide a subset
of the performance measures that could be obtained from the ordinary CTMC steady-
state probabilities. The measures that can be obtained must be local to the components,
since treating components in isolation destroys information about dependencies between
measures of different components. Hence, there is a price to pay: advanced efficiency
causes reduced expressiveness.

In Chapter 4, we have formally defined what local measures are. We have expressed local
steady-state probabilities and local throughputs in terms of the overall, global steady-state
probabilities and throughputs. We have done this by means of projections, functions, that
map states of the global state-space on states of components, i.e., local states. Then, we
have identified three important classes of quantities that must be known for a component-
wise solution of SPA models: local throughputs, branching probabilities, and waiting times.
Where the first two quantities are sufficient to allow the derivation of local steady-state
probabilities for non-synchronising states, i.e., states which only have outgoing transitions
with associated rates, the knowledge of the third quantity would allow the derivation of
local steady-state probabilities for all states.

7.1.3 SPA and Semi-Markov Chains

In Chapter 5, we have applied the knowledge that we have gained in Chapter 4. We have
introduced a class of SPA processes, which have the so called AWCI-property. This class
of processes, the so-called AWCI-processes, can be solved very efficiently. The main idea
of the solution approach is to derive a semi-Markov chain (SMC) from the considered
AWCI-process. The AWCI-property ensures that this is always possible. The SMC
can be solved efficiently, and the measures of interest are the throughputs of the SMC
states. These throughputs can be interpreted in the original AWCI-process, and can be
used to derive steady-state probabilities for local, non-synchronising states. Moreover,
for AWCI-processes it is also possible to efficiently derive mean waiting times for local,
synchronising states, so that the derivation of steady-state probabilities for these states is
also possible.

The core of the technique is the solution of the SMC. This requires, as we have shown,
the efficient computation of the maximum of phase-type distributed random variables.
With a naive approach, the computation of these quantities would require exponential
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time and possibly exponential memory in the number of random variables. However, we
have provided an algorithm that computes these quantities in only polynomial time and
space requirements in the number of involved variables. As a consequence, the state-space
explosion problem has been solved for this class of processes. The overall effort to compute
measures is, however, still exponential in time in the worst case, although still much more
efficient than ordinary steady-state analysis of the global Markov chain.

7.1.4 Event Structures and YAWN

In Chapter 6, we have considered an event structure semantics for SPA. In Chapter 4,
we have distinguished between local and global behaviour. This distinction is, however,
not appropriately expressed in the standard semantics of YAWN i.e., labelled transition
systems (LTS). LTS have no explicit notion of locality. Event structures are, however,
true-concurrency formalisms. They have an explicit notion of concurrence, and thus, for
locality. In Chapter 6, we have investigated whether event structures offer advantages
for the compositional solution of SPA models. We first have defined a semantics for a
sub-language of YAWN that is based on unfolding [96]. Then we have investigated the
stochastic properties of the event structures. We have defined two basic stochastic mea-
sures, first, the occurrence time of an event, counted from system start, and second, the
probability that an event happens at all. We have shown that we can express the waiting
times of synchronising states in terms of occurrence times and occurrence probabilities.

Then, we have reconsidered an algorithm that was first proposed in [16]. This algorithm
computes approximations for the mean waiting times for synchronising states of a YAWN
process. We have shown that the algorithm is not feasible.

7.2 Conclusions

In this dissertation, we have taken a first step towards the direction of a genuine approach
for the compositional solution of stochastic process algebras models. Our approach to
this problem has been very general. We first have derived the measures that could be
obtained by such a solution technique. Then we have investigated why such a solution
technique is not trivial: there are three classes of quantities that have to be known for a
complete componentwise solution: branching probabilities, throughputs, and waiting times
of synchronising states. If we consider a component C that we wish to solve, then these
three types of quantities describe the influence of other components on C.

• The branching probabilities of synchronising states are unknown when there is a
choice between local, timed transitions, and synchronising transitions. The question
which one will be executed first (and disable the other) is decided by a race: the
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synchronisation wins when all components that have to participate in the synchroni-
sation become ready faster than the local transition. Stated the other way round, if
the local transition is executed before the last synchronisation partner is are ready
to synchronise, the synchronisation is disabled (the component has a timeout). Ob-
viously, the question whether other components are faster than a local transition can
only be answered if we take up the global view.

So, it comes as no surprise that we have required in Chapter 5 that the AWCI-
processes must not have timeouts (property A), as described above. This restriction
ensures that we do not have to derive branching probabilities for synchronising states.
If the AWCI-technique can be enhanced such that timouts can be permitted can
only be subject to speculation for now.

• Throughputs describe the pace at which the considered system evolves. Local through-
puts depend linearly on the throughputs of other components, as we have seen in
Chapter 4. Therefore, throughputs are global parameters.

• Waiting times describe the time that a component willing to synchronise has to wait
until all other participants in the synchronisation are ready to do so. Hence, also
waiting times are global parameters.

The three quantities are not independent from each other:

• In case that we know throughputs and waiting times, we can derive local steady-state
probabilities all local states of a component.

• In case that we know branching probabilities and waiting times for a component,
we can directly derive local throughputs and local steady-state probabilities for a
component by ordinary CTMC analysis.

• In case that we know throughputs and branching probabilities, we can at least derive
local steady-state probabilities for local, non-synchronising states.

As we can see, for a complete derivation of local steady-state probabilities, waiting times
have always to be known. They can not be described by throughputs and branching
probabilities. As a consequence, the derivation of waiting times should be given special
attention. In Chapter 5, we have seen that it is possible to derive waiting times for
AWCI-processes. The reason for this to work is that the starting distribution of the phase-
type distributions that describe the waiting times can be obtained. However, in Chapter 6,
we have tried to find a method to derive waiting times for more general processes, but we
have failed. The complexity makes the chosen approach unfeasible. It is the big challenge
for the componentwise solution of SPA models to find methods that compute or, at least,
approximate waiting times of components.
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7.3 Research Directions

As we have pointed out before, the derivation of waiting times and the determination of
branching probabilities are a very challenging problem. However, the question, whether
these quantities can be derived or approximated for the most general class of YAWN
processes can not be answered yet. The considerations of Chapter 6 suggest that it is very
likely that the task to compute waiting times is too complex to be actually carried out. It
is well possible that the ordinary steady-state analysis of an SPA model is in general the
most efficient technique to derive waiting times. In that case, bothering with them does
not make sense, of course.

The technique to solve AWCI-processes, however, is a good starting point for further
research. There are many open questions that have not been addressed in this disser-
tation. We have only considered steady-state analysis, but the question, whether the
AWCI-processes can facilitate transient analysis is completely open. Another question
is whether it is possible to allow more general than just exponential distributions. This
would require a more advanced SPA than YAWN is, especially one that can express general
distributions. For those SPA it is still possible to define the AWCI restrictions. In princi-
ple, the AWCI-technique should also work for these processes, even though the numerical
difficulties would probably be much higher.

This dissertation can only be seen as a first step towards a component-based solution
technique for SPA models. The future shows us if there will be a next step.
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Appendix A

Miscellaneous

A.1 Notation

Many problems in this thesis can be conveniently expressed in matrix and vector notation.

Vectors are underlined, i.e., v denotes a vector. If not stated otherwise, we always assume
row vectors. However, we allow three exceptions: first, for n ∈ IN,

1n = (1, . . . , 1
︸ ︷︷ ︸

n times

)T

is the column vector of n ones. Second,

0n = 1n − 1n

is the column vector of n zeros. If the length of the vectors 0n and 1n becomes clear from
the context, the subscript n is omitted. Third, the column vector en

i is defined as

en
i = (0, . . . , 0, 1

︸︷︷︸

i-th position

, 0, . . . , 0)T .

Again, if possible, the length n is omitted.

Matrices are always denoted with bold upper case letters, A,B, . . .. For a matrix

A =








a1,1 a1,2 · · · a1,m

a2,1 a2,2 · · · a1,m
...

...
. . .

...
an,1 an,2 · · · a1,m








we write A = (aij)n,m.

If v = (v1, v2, . . . , vn) is a vector, then diag(v) is defined to be the diagonal matrix with
vector v as diagonal.
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A.2 Kronecker Products and Sums

Most material in this section is from [132].

The Kronecker product ⊗ of two matrices D = (dij)n,m and E (of arbitrary dimension) is
defined as

D ⊗ E :=








d1,1E d1,2E · · · d1,mE
d2,1E d2,2E · · · d2,mE

...
. . .

...
dn,1E dn,2E · · · dn,mE








The Kronecker product is compatible with the normal scalar multiplication, i.e., if we
identify real numbers with 1 × 1 matrices, then (r) ⊗ M = M ⊗ (r) = rM , where r ∈ IR
and M ∈ IRn×m. The most important law is the following:

Lemma A.1 Let A,B,C,D be matrices, where the dimensions are such that the matrix
products AC and BD are defined. Then

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD) (A.1)

An immediate consequence of this is that

r(A ⊗ B) = (rA) ⊗ B = A ⊗ (rB)

for r ∈ IR and arbitrary matrices A and B. Another consequence of Lemma A.1 is that, if
A and B are square matrices, then

(A ⊗ B)n = (An ⊗ Bn). (A.2)

Another operation on matrices, which is very important in the field of CTMCs, is the
Kronecker sum:

Definition A.2 Let A be an n × n matrix and B and m × m matrix. Then the Kronecker
sum of A and B is a (nm) × (nm) matrix defined by

A ⊕ B := (A⊗ IB) + (IA ⊗ B), (A.3)

where IA and IB are the n × n and m × m unit matrices, respectively.
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A.3 Max-Plus Algebra

The maximum operation on scalars, together with the usual addition, form an algebra.
For X, Y ∈ S, where S is some linearly ordered set, we define X � Y = max{X, Y }. �

is a monoid operation, i.e., � is associative, and there is a neutral element. On the real
numbers, −∞ is defined to be the neutral element.

Very confusing at first sight, we denote the usual addition of numbers as product, �.

A semifield is a set S endowed with two operations + and · where + is a monoid on S
with neutral element ε and · defines a group on S \ {ε} with neutral element e. · must be
distributive with respect to + and ε · e = e · ε = ε. A semifield is

1. idempotent, if + is idempotent, i.e., a + a = a, ∀a ∈ S;

2. commutative, if · is commutative.

IR ∪ {−∞} with the operations � and � is an idempotent, commutative semifield with
neutral element −∞ for � and 0 for �. When possible, we omit �, i.e., we write ab instead
of a � b. The division a � b−1 (which actually is the substraction a − b on numbers) is

written as fraction
a

b
(note that the fraction line is thicker than the usual one).
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Stochastic Preliminaries

In this appendix, we describe the stochastic preliminaries of this dissertation. The material
of this section (except Theorem B.5) is based on various textbooks about probability theory
(e.g., Feller [54]), stochastic processes (e.g., Kulkarni [93], Howard [80], Çinlar [33]), and
performance evaluation (e.g., Haverkort [62], Harrison et al. [60]).

B.1 Sample Spaces and Probability Measures

Basic structure of probability theory is the sample space, Ω, together with a probability
measure Pr : 2Ω → [0, 1]. Subsets of Elements of Ω are are said to be events. A probability
measure on a sample space has to obey the following axioms:

1. for any event A ⊆ Ω, 0 ≤ Pr(A) ≤ 1;

2. Pr(Ω) = 1;

3. for any sequence A1, A2, A3, . . . of disjoint events,

Pr

(
∞⋃

i=1

Ai

)

=
∞∑

i=1

Pr(Ai)

B.2 Random Variables and Distribution Functions

Most often, we are not dealing with probability spaces directly, but with functions on
probability spaces.

Definition B.1 A function X : Ω → E from a probability space in the set E is said to be a
random variable.
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A random variable X is completely characterised by its distribution function, which is
defined as FX(t) = Pr{ω : X(ω) ≤ t}. We abbreviate the expression Pr{ω : X(ω) ≤ t} as
Pr(X ≤ t). If X is a random variable, then we denote by df(X) the distribution function
of X.

It is common to not even refer to the probability space of a random variable, but to simply
assume “a random variable X with a distribution function F .” Whenever we introduce a
random variable this way, we always can be sure that there is indeed a probability space
Ω and a probability measure Pr : 2Ω → [0, 1] such that X is a random variable on Ω and
F (t) = Pr(X ≤ t).

A random variable X is said to be positive if Pr(X ≤ 0) = 0. A random variable is said to
be non-negative if Pr(X < 0) = 0. Accordingly, we say that the distribution function of a
random variable X is positive (non-negative), if X is positive (non-negative).

B.3 Stochastic Processes

A stochastic process is a collection of random variables {X(i), i ∈ T} on a sample space Ω,
indexed by the parameter i taking values in the parameter set T . The random variables
take values in a set S, the state space of the stochastic process. If T is linearly ordered and
enumerable then {Xi} is called a discrete-time stochastic process. If T is linearly ordered
and continuous, then {Xi} is a continuous-time stochastic process. In this dissertation,
we will deal with deterministic-time and continuous-time Markov chains (DTMCs and
CTMCs, respectively), special classes of stochastic processes.

B.3.1 DTMC

Definition B.2 Let Ω be a sample space and P a probability measure on it. Let S be a
countable state space. A stochastic process X = {Xm, m ∈ IN} is said to be a discrete-time
Markov chain (DTMC) provided that

P{Xm+1 = j | X0, X1, . . . , Xm} = P{Xm+1 = j | Xm}

for all j ∈ S and m ∈ IN.

In this thesis we only have to deal with time-homogeneous DTMCs, i.e., DTMCs for which
P{Xm+1 = j | Xm = i} is independent of m.

A finite state DTMC with, say, n states can be described by a stochastic matrix P =
(pij)n,n, i.e., a non-negative matrix which satisfies P1 = 1. P is said to be the transition
probability matrix of the DTMC. A DTMC can be seen as a set of states and a token that
jumps from state to state. The entry pij describes the probability that the token jumps to
state j, once it has landed on i. The i-th row of P contains all possibilities to leave state
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i. The trivial case is included, i.e., if pii > 0, then this is the probability to leave i and
return to it immediately. It is sometimes convenient to identify states of the DTMC with
rows of the corresponding probability matrix. DTMCs can be depicted by directed graphs,
where the nodes denote the states and the arcs the possible transitions between states. A
transition between two states i, j is possible, if pij > 0. Or, the other way round, if pij = 0
then there is no arc from i to j. Arcs are labelled with the respective probabilities. In
Figure B.1 an example of a stochastic matrix and the corresponding graph is shown.
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0.2 0 0.8
1 0 0
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Figure B.1: Stochastic matrix and graph of a 3-state DTMC

Classification of states. The state space S of a DTMC can be classified according to
certain reachability properties. A state j is reachable from another state i (i → j), if there
is a path leading from i to j in the corresponding graph. States i and j are said to be
communicating (i ↔ j), if i → j and j → i. ↔ is an equivalence relation on the state space
and induces a partition on S with the set of equivalence classes, S/↔. A DTMC is said
to be irreducible, if S/↔ has only one element, i.e., if every state i ∈ S can communicate
with every other state j ∈ S.

A state i is said to be transient , if there is a positive probability that, once i has been
reached, it can never be reached again. All other states are said to be recurrent1. If a
state i is transient, all states communicating with j are transient as well. Consequently,
the same holds for the property of a state to be recurrent.

The probability to choose a certain finite path in a DTMC is the product of the probabilities
of all transitions that are “used” on this path. pl

ij is then defined to be the probability
to reach state j from i with a path of length l. There may be several paths with length l
which lead from i to j, hence, pl

ij is the sum of of the probabilities of all those paths. A
state i is said to be periodic with period a > 1, if pl

ii = 0, unless l = νa for ν ∈ Nset and a
is the largest integer with this property. State i is said to be aperiodic, if no such a exists.

Stochastic measures. A basic stochastic measure that can be obtained from DTMCs is
the probability to be in certain state after a certain amount of time. Since time is discrete
for DTMCs, it can be measured in the number of state changes (including the trivial ones).

1In the literature there is usually the distinction between null-recurrence and positive recurrence. Since
we only consider finite state DTMCs, the distinction is not important for us: in finite-state DTMCs, all
recurrent states are positive-recurrent.
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The matrix P describes the 1-step probabilities to change from one state to another. It is
not hard to verify that P2 describes the 2-step probabilities and, generally, Pl, the l-step
transition probabilities. If α = (α1, . . . , αn) is a probabilistic vector of dimension n (the
starting distribution), then the vector π(m) = αPm is a probability vector with entries
πi(m), i = 1, . . . , n, which denote the probability to be in state i after m steps, when
starting in state j with probability αj for j = 1, . . . , n. The limit π(∞) = α limm→∞ Pm

does exist, when P is irreducible and aperiodic, and πi(∞) denotes the probability to be
in state i after an infinite number of steps. π(∞) is usually referred to as the steady-state
probability distribution and denoted π.

If the DTMC described by P is irreducible and aperiodic, it is said to be ergodic. It can be
shown that the steady-state distribution is the solution of the system of linear equations

πP = π (B.1)

and π 1 = 1. Note that the starting distribution is irrelevant for steady-state measures.

Steady-State Probabilities of Periodic DTMCs

Periodic DTMCs have special properties that make it more difficult to define steady-state
probabilities. The limit limk→∞ P k does not exist, and therefore also π(∞), as defined
in the previous section, is not defined. However, we can define a steady-state probability
vector for periodic DTMC by means of Equation (B.1).

Definition B.3 Let P be the probability matrix of an irreducible, periodic Markov chain.
Then the steady-state distribution vector of P is defined to be the (unique) probability vector
π that solves the equation

πP = π

We can express the steady-state probability vector of a periodic DTMC differently. We will
do so in Theorem B.5. First, in the following lemma, we prove that, although limk→∞ Pk

does not exist, there exists a limes for a power of P.

Lemma B.4 Let P = (pij)n,n be the probability matrix of an irreducible, periodic DTMC
with period p. Then there is a integer ν such that Pνp is a stochastic matrix which describes
an aperiodic, irreducible DTMC.

Proof: Pνp is a stochastic matrix. By definition of periodicity, there must be a state i
and an integer ν such that p

(νp)
ii > 0 ( where p

(νp)
ii is the diagonal element of Pνp at position

(i, i)). Therefore, Pνp describes an ergodic DTMC. →•

As a consequence, the limes limk→∞ Pkνp does exist.
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Theorem B.5 Let P be the probability matrix of an irreducible, periodic DTMC with period
p and integer ν, as defined in Lemma B.4. Let π0 be an arbitrary starting distribution for P.
Let Q = limk→∞ Pkνp. We define the vector π as

π = π0

1

νp
Q

νp−1
∑

l=0

Pl (B.2)

Then π is a solution of Equation (B.1).

Proof:

πP =

(

π0

1

νp
Q

νp−1
∑

l=0

Pl

)

P

= π0

1

νp
Q

νp
∑

l=1

Pl

= π0

1

νp



QPνp

︸ ︷︷ ︸

=QI

+Q

νp−1
∑

l=1

Pl





= π0

1

νp
Q

νp−1
∑

l=0

Pl

= π.

We see that the steady-state probabilities are independent from the starting distributions,
as is also the case for ergodic DTMCs. →•

We have not shown that π, as defined in Theorem B.5, is a probability vector. We can
however be sure that π has only non-negative entries. In case that π is not stochastic
requires then only a renormalisation to obtain a proper probability vector.

We can give an intuitive explanation of Equation B.2. We can rewrite it as

π = π0

(
1

νp
Q +

1

νp
QP +

1

νp
QP2 +

1

νp
QP3 + · · ·+

1

νp
QPνp−1

)

This is the sum of all terms QPl for l = 0, . . . , νp − 1, weighted with the probability 1
νp

.

The entries qij of the matrix QPl are the probabilities to change from state i to state j
in an infinite number of steps (which, however, must be divisible by νp)2, and then in l
additional steps. Since we must assume that in steady-state each value of l ∈ {0, . . . , νp−1}
has the same probability, the νp terms must be weighted with a uniform distribution.

2This remark does not make sense, but helps the intuition.
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B.3.2 CTMC

CTMCs have, as the name suggests, much in common with DTMCs. As for DTMCs, a
CTMC has a discrete state space (which, from now on, we assume to be finite), a graphical
representation and a matrix representation. The major difference is that the token that
is jumping from state to state remains for a certain time period in each state that can be
described by negative-exponentially distributed random variable.

A negative-exponential distribution (we omit the “negative” from now on) is completely
specified by by the equation F (t) = 1 − eλt and the positive, real parameter λ, the rate.

An n-state CTMC can be described by the so-called generator matrix Q = (qij)n,n, whose
non-diagonal entries are non-negative real numbers, and which fullfills the equation Q1 = 0.
Obviously, the diagonal elements qi = qii for 1 ≤ i ≤ n are the negative sums of the non-
diagonal entries of row i. The generator matrix can be interpreted as follows: if the token
enters state i, it remains there for a time period that is exponentially distributed with rate
|qi| and jumps then to state j with probability qij/|qi|. There is no way to return to state
i immediately, i.e., without entering one or more other states first.

Classification of states. The classification of states for CTMCs is nearly identical to
that for DTMC. The difference is that there is no concept of periodicity of states, hence a
CTMC is ergodic, if it is irreducible and vice versa. States that have no outgoing transitions
are called absorbing . A CTMC with absorbing states is called absorbing.

Steady-State measures. For irreducible CTMCs a steady-state distribution can be
computed by means of the system of linear equations

πQ = 0 (B.3)

and π 1 = 1. As for the DTMC case, for steady-state measures the starting distribution is
not important.

Relations to DTMCs We can immediately verify that DTMCs can be seen as CTMCs:
a reformulation of Equation (B.1) is π(P−I) = 0, and P−I has all properties of a generator
matrix. On the other hand, it is not difficult to turn a generator matrix Q in a transition
matrix of a DTMC with the additional condition that both Markov chains have the same
steady-state distribution. To do so, one has to choose a q > 0 such that P = Q

q
+ I is

a stochastic matrix. This is fulfilled if q > maxi=1,...,n |qii|. Then it is easy to see that, if
πQ = 0 for a non-zero vector π, then πP = π. The transformation from Q to P is usually
referred to as uniformisation.

Another important DTMC with respect to to a certain CTMC is its embedded Markov
chain (EMC). Let q = (q11, q22, . . . , qnn) be the vector of the diagonal entries of Q and
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∆ = diag(q). Then the EMC of the CTMC described by Q is the DTMC described by the
probability matrix

E = −∆−1Q + I.

The rows of E = (eij)n,n correspond directly to the states of the originating CTMC, and
the values eij for i, j ∈ {1, . . . , n} are the probability that CTMC Q changes from state
i to state j, under the assumption that state i is actually left. Therefore, eii = 0 for all
i = 1, . . . , n.

Throughputs. An important concept for CTMCs with non-trivial steady-state solution
is that of throughput . Let Q = (qij)n,n be a generator matrix with steady-state probability
vector π. The throughput of a state i is the mean number of visits to state i per unit time.
The throughput of a transition t is the mean number of instances per unit time that t is
“used” to change state. The throughput of state i is defined by −πiqii. The throughput
of a transition t with source state i depends on the throughput of i: if p is the probability
that state i is left via transition t, then the throughput of t is −pπiqii.

Let ∆ = diag (q11, . . . , qnn). The vector of all state throughputs is τ = −π∆. The deriva-
tion of the throughputs of each transition is slightly more involved. Let P = (pij)n,n =
I−∆−1Q be the EMC of Q. Entries pij of P describe the jump probability from state i to
state j given that state i is really left. Then the throughputs of the individual transitions
are described by a matrix T which is defined as T = (tij)n,n = diag(τ)P. The multiplica-
tion of diag(τ) with P “distributes” the state throughputs on the outgoing transitions of
the respective state.

Throughputs are sometimes referred to as probability flux through the respective states or
transitions, comparing probability with a liquid that circulates through the Markov chain
(as long as it is irreducible). State probabilities are then to be seen as a certain reservoir of
probability liquid that accumulates in a state due to the limited capacity of the outgoing
transitions to drain the probability from the state. This capacity is expressed by the rates
of the transitions. The system of linear equations, πQ = 0, given above, simply states that
the probability flux going into a state is equal to that going out.

This is only a metaphorical view on CTMCs, but it will prove useful in Section B.4.

Transient measures. As for DTMCs, it is sometimes interesting to have non-steady-
state measures. The question is, what the probabilities are to be in a certain state after a
certain time period t? The answer is a probability vector π(t), which is defined as

π(t) = π(0)eQt, (B.4)

where π(0) = α, the starting distribution. The matrix exponential is defined via the
Taylor-McLaurin expansion of the exponential function:

ex =

∞∑

i=0

xi

i!
.
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From a numerical point of view, Equation (B.4) is not very useful to compute π(t) [113].
Instead, Jensen has developed a method, which is numerically very stable and which al-
lows the computation of the number of summations that are required to yield a given
precision in advance. The method is based on uniformisation, i.e., one has to choose a
q ≥ maxi=1,...,n |qii| and compute P = Q

q
+ I. Then Q = q(P − I) and (B.4) can be

transformed as follows:

π(t) = π(0)eQt

= π(0)eq(P−I)t

= π(0)e−qteqPt

= π(0)
∞∑

n=0

e−qt (qt)
n

n!
Pn

This summation drafts an algorithm to compute π(t). The numerical stability is due to
the fact that only positive values between 0 and 1 are added, which reduces the danger of
cancellation errors.

Numerical techniques. Continuous-time Markov chains that describe performance or
dependability models are usually very large in terms of number of rows of the generator
matrix. On the other hand, these matrices are very sparse: a matrix might have dimensions
in the order of 109 × 109, but it is not uncommon that each row has less then 100 non-zero
entries.

As seen above, generator matrices define a system of linear equations that has to be
solved in order to derive the steady-state probability vector. Such large systems of linear
equations can not be solved by direct methods, as Gaussian Elimination, anymore. Instead,
numerical methods must be employed. The three techniques that are used most often
are Jacobi-Iteration, Gauss-Seidel-Iteration, and the Successive Over-Relaxation (SOR)
method. In [133] a comprehensive overview for numerical solution of Markov chains can
be found.

Kronecker Sums of Generator Matrices If A and B are generator matrices of
CTMCs, Q = A ⊕ B describes a CTMC in which both A and B act concurrently and
independent from each other. Especially, if πA(t) and πB(t) are the transient probability
vectors for A and B, respectively (with given starting distributions πA(0) and πB(0)),
then the transient probability vector πQ(t) at time t, is equal to πA(t)⊗πB(t) (with start-
ing distribution πQ = πA(0) ⊗ πB(0)). This can be shown by repeated application of
Lemma A.1.
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B.3.3 Semi-Markov Chains

Definition

Semi-Markov chains (SMC) can be seen as generalisations of discrete- as well as continuous-
time Markov chains. A semi-Markov chain can be described by a tuple (Σ, p

0
,E, J), where

Σ is the state space of the SMC, E a stochastic matrix of dimension #Σ, describing a
DTMC, the embedded Markov chain (EMC), p

0
is a starting probability distribution of

E and J : Σ −→ F+ is a function that assigns non-negative distribution functions (the
elements of F+) to states. J(s) describes the state sojourn time of state s ∈ Σ. An SMC
is a CTMC, if for all s ∈ Σ, J(s) is a negative-exponential distribution (with arbitrary rate
rs ∈ IR+). An SMC is a DTMC, if the sojourn time distributions for all states are ignored.

Steady-State Solution

The steady-state solution of an SMC is a probability vector π = (π1, . . . , πn) that can be
computed quite easily. Let p = (p1, . . . , pn) the steady-state solution of EMC E. We assume
that the solution exists, or, stated otherwise, a solution for an SMC only exists if a solution
for its EMC exists. For F = J(i), let µi be the solution to the integral

∫∞

0
1 − F (x)dx,

i = 1, . . . , n. Then µi is the mean value of a random variable that is distributed according
to J(i). Then the steady-state probabilities πi of the SMC are defined as follows:

πi =
piµi

∑n
j=1 pjµj

, (B.5)

or, in matrix notation,

π =
1

p µT
p diag(µ). (B.6)

For a proof we refer to [80, Chapters 10 and 11].

B.4 Phase-Type Distributions

An important class of non-negative distribution functions is the class of so-called phase-
type distributions. Phase-type distributions are strongly related to absorbing CTMCs. In
fact, if X is a phase-type distributed random variable, then there is an absorbing CTMC
with a generator matrix Q ∈ IRm×m with absorbing state m and with starting distribution
π(0) such that

Pr(X ≤ t) = π(t)em,

where π(t) = π(0)eQt. This is also valid the other way around, i.e., if Q describes an
absorbing CTMC, then F (t) = π(t)em is a phase-type distribution.
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Generator matrices which represent phase-type distributions are generally of the form

Q =

(
T T0

0 0

)

, (B.7)

where T is a (m − 1) × (m − 1) sub-matrix and T0 is a (m − 1) × 1 column vector. Note
that T0 = −T1.

It is common to describe a phase-type distribution by its representation, i.e., the tuple
(α,T), where αi = πi(0) for i = 1, . . . , m − 1.

If we have a phase-type distribution defined by a representation (α,T), it is sometimes
necessary to refer to the complete generator matrix. We denote this with a dot, i.e., Ṫ,
where

Ṫ =

(
T −T1
0 0

)

Accordingly, α̇ is the starting distribution of Ṫ, i.e., α̇ = (α1, α2, . . . , αm−1, 1 − α 1). On
the other hand, if Q is the generator matrix of an absorbing Markov chain of the form
given in Equation B.7, then we define 〈Q〉 = T.

Moments of phase-type distributions. If X is a phase-type distributed random vari-
able with representation (α,T), then the moments of the random variable are given by

E[Xn] = (−1)n · n! · αT−n1

The derivation E[Xn] does not really require an explicit matrix inversion. Instead, one can
solve the system of linear equations

x(1)T = α.

Then E[X] = −x(1)1. For the nth moment ( n > 1) one has to compute the vectors x(i)

successively for i = 2, . . . , n, where xi is the solution of the system of linear equations

x(i)T = x(i−1)

Then E[Xn] = (−1)n · n! · x(n)1.

Throughputs and state probabilities. We will now look at phase-type distributions
from an unusual angle. We assume an absorbing CTMC with generator matrix Q = (qij)n,n,
one distinguished starting state and one absorbing state. Without loss of generality, we
assume the first row of Q to correspond to the starting state and the last to the absorbing
state. We now assume that with rate τ , probability “liquid” is flowing into the starting
state (see Section B.3.2) and distributes over the CTMC according to transition rates
given by the generator matrix. How much probability mass πi is accumulating in each
state 1 ≤ i ≤ n?
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Clearly, this requires a proper definition of flow balance equations. For the first state, we
have

n∑

j=2

π1q1j = τ +

n∑

j=2

πjqj1

For states 2 ≤ i ≤ n − 1, we simply have

n∑

j=1

j 6=i

πiqij =

n∑

j=1

j 6=i

πjqji

For the absorbing state, n, we have the equation

τ =
n−1∑

j=1

πjqjn

With a little rewriting of the equations and the insight that the last equation is actually not
necessary, we can conclude that we are looking for the solution π of the following system
of linear equations:

πT = (−τ, 0, . . . , 0), (B.8)

where T is defined as in B.7. Normally, π will be sub-stochastic, i.e., π 1 < 1. To ensure
that π 1 ≤ 1 holds, we have to require that 1/τ ≥ −eT

1 T−11: since

πT = −τ(1, 0, . . . , 0)

is equivalent to
π = −τ(1, 0, . . . , 0)T−1,

we can derive
π 1 ≤ 1

⇐⇒ −τ(1, 0, . . . , 0)T−11 ≤ 1

⇐⇒ −(1, 0, . . . , 0)T−11 ≤
1

τ
,

so that the requirement above for π is met.
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ZM4/SIMPLE: a general approach to performance-measurement and evaluation of
distributed systems. In T.L. Casavant and M. Singhal, editors, Advances in Dis-
tributed Computing: Concepts and Design. IEEE Computer Society Press, 1992.

[44] Luca de Alfaro. Stochastic transition systems. In Davide Sangiorgi and Robert
de Simone, editors, CONCUR ’98: Concurrency Theory (Proceedings), volume 1466
of Lecture Notes in Computer Science. Springer-Verlag, 1998.

[45] Luca de Alfaro and Stephen Gilmore, editors. Process Algebra and Probabilistic
Methods (PAPM-ProbmiV 2001), volume 2165 of Lecture Notes in Computer Science.
Springer Verlag, September 2001.

[46] J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors. Linear Time, Branch-
ing Time and Partial Order in Logics and Models for Concurrency, volume 354 of
Lecture Notes in Computer Science. Springer-Verlag, June 1988.

[47] Susanna Donatelli. Superposed stochastic automata: a class of stochastic Petri nets
with parallel solution and distributed state space. Performance Evaluation, 18:21–26,
1993.



BIBLIOGRAPHY 207

[48] Amani El-Rays, Marta Kwiatkowska, and Gethin Norman. Solving infinite stochastic
process algebra models through matrix-geometric methods. In Hillston and Silva [76].

[49] Salah E. Elmaghraby. Activity Networks. John Wiley & Sons, 1977.

[50] Joost Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575–591,
1991.

[51] Agner K. Erlang. The theory of probabilities and telephone conversations. Nyt
Tidsskrift for Matematik B, 20, 1909.

[52] Agner K. Erlang. Solution of some problems in the theory of probabilities of signifi-
cance in automatic telephone exchanges. Elektrotkeknikeren, 13, 1917.
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