
Fast Computation Tools

for Adaptive Wavelet Schemes

Von der Mathematisch–Naturwissenschaftlichen Fakultät der
Rheinisch–Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

genehmigte Dissertation

vorgelegt von

Diplom–Mathematiker

Arne Barinka

aus Trier

Berichter: Univ.–Prof. Dr. rer. nat. Wolfgang Dahmen
Univ.–Prof. Dr. rer. nat. Reinhold Schneider

Tag der mündlichen Prüfung: 17.03.2005

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek
online verfügbar.

Acknowledgments

I wish to express my sincere gratitude to Prof. Dr. W. Dahmen, Prof. Dr.
R. Schneider, Prof. Dr. St. Dahlke, Dr. M. Konik, Dr. T. Barsch, Prof. Dr.
K. Urban, and A. Voß – my collaborators, co-authors and teachers.

Special thanks are devoted to Prof. Wolfgang Dahmen, who provides so
much inspiring challenge, Alexander Voß my math- and soul-mate, Nina
Gier for being there when it counts, and my parents, for their bullet-proof
support. Danke.

Abstract

During the past few years, a new algorithmic paradigm for adaptive wavelet
schemes was developed. First approaches covered elliptic problems, but
meanwhile, the class of feasible problems could be significantly enlarged,
including even certain nonlinear problems.

This thesis will present and analyze routines for key tasks arising in con-
nection with those schemes. The central point will be a so called recovery
scheme that allows to compute arrays of wavelet coefficients efficiently by
treating the array as a whole instead of treating each entry separately by
quadrature schemes.

The tools and methods we develop are realized in a C++ implementa-
tion by the author, which we present in form of a schematic overview. All
numerical studies presented in the thesis are based on this implementation.

Zusammenfassung

In den letzten Jahren wurde ein neues algorithmisches Paradigma für adap-
tive Wavelet-Algorithmen entwickelt. Erste Ansätze behandelten ellip-
tische Probleme, doch mittlerweile konnte die Klasse der behandelbaren
Probleme stark erweitert werden und deckt mittlerweile sogar bestimmte
nichtlineare Probleme ab.

In der vorliegenden Arbeit präsentieren und analysieren wir Lösungsmetho-
den für zentrale Teil-Aufgaben dieser neuen Schemata. Der zentrale Punkt
wird ein sogenanntes recovery scheme sein, welches erlaubt, Vektoren von
Wavelet-Koeffizienten als Ganzes zu berechnen, anstatt jeden Eintrag einzeln
mittels Quadratur zu bestimmen.

Die entwickelten Werkzeuge und Methoden wurden vom Autor in einer
C++ Implementierung umgesetzt. Diese wird in schematischer Form vorge-
stellt. Alle hier präsentierten numerischen Beispiele wurden mit Hilfe dieser
Implementierung erstellt.

Contents

Introduction 1

I Prerequisites 7

1 Nonlinear Approximation: Sorting and Thresholding 11

1.1 N -term Approximation . 11

1.2 Binning: Approximate Sorting 17

1.2.1 Construction and Estimates 18

1.2.2 Computational Issues 19

2 Wavelet Prerequisites 25

2.1 Construction and Essential Features 25

2.2 Cardinal B-spline Wavelets 33

2.3 Tree–like Structured Index Sets 35

II Development of the Tools 41

3 The Recovery Scheme 45

3.1 Objectives and Background 45

3.2 The Algorithm . 49

3.2.1 Motivation and Main Idea 50

3.2.2 A Top–To–Bottom Scheme 53

3.3 Error Estimates . 56

3.3.1 Exact Quadrature . 57

3.3.2 The L2-Case . 58

ii Contents

3.3.3 Dual Norms . 62

3.3.4 A Wishlist for the Quadrature Mappings Lj 68

3.4 Recover for Cardinal B-Spline Wavelets 70

3.4.1 Determination of Gj 70

3.4.2 Well-Gradedness . 72

4 Supporting Tools 75

4.1 Quadrature . 75

4.1.1 Reliable Quadrature 77

4.1.2 Gauss-Quadrature for Refinable Functions 80

4.2 Index-Structure . 88

4.3 Recover
∗: Everything in one Sweep 91

III Applications and Numerical Results 95

5 Layout of the Tests 99

6 Approximation in L2 101

6.1 Direct Applications: g = v 101

6.1.1 Applying Recover 101

6.1.2 Failures: Significance of the Safety Region and the
Correction Step . 119

6.2 Approximating Compositions: g = y ◦ u 120

7 Prediction Sets for Compositions 127

7.1 Predicting Approximation Spaces for Compositions 127

7.2 Numerical Results . 133

8 Dual Norms 141

8.1 Gauss Quadrature . 141

8.2 Least Squares Quadrature 143

IV Realization 147

9 Conceptual Remarks 151

Contents iii

9.1 Key Requirements for a Realization 153

9.1.1 How to Treat Wavelet Expansions? 154

9.1.2 The Importance of Point Values 155

9.2 Index Management: Why No Tree Structure? 155

10 Implementation 159

10.1 Requirements on the Components 159

10.2 A Tour Through the Wavelet Library 160

10.2.1 Index Management igpm t lib 162

10.2.2 Wavelet Implementation 165

10.2.3 Index-Manipulation 167

10.2.4 Binning . 167

10.2.5 Auxiliary Classes and Routines 167

List of Figures . 169

List of Algorithms . 171

Introduction

During the past few years, a new algorithmic paradigm for adaptive wavelet
schemes was developed, [DHU00, CDD01, CDD00, CDD03a, CDD03c].
First approaches covered elliptic problems such as elliptic boundary integral
and boundary value problems, but meanwhile, the class of feasible problems
could be significantly enlarged, including even certain nonlinear problems.

This theses will present and analyze routines for key tasks arising in con-
nection with these schemes. The central point will be a so called recovery
scheme that allows to compute arrays of wavelet coefficients efficiently by
treating the array as a whole, instead of treating each entry separately by
quadrature schemes.

The new paradigm comes with new challenges concerning computational
issues, whence there is a need for new computational tools suited for the
new adaptive schemes. This is mainly due to their special requirements
concerning a) data-handling and b) efficiency.

a) The data-handling requirements result from the fact that the proposed
strategy is an iterative routine using finite approximants that are dynami-
cally updated during each step of the iteration.

b) Efficiency is a major issue, because the central points of investigation
in the development of the new paradigm were theoretical convergence and
complexity estimates. They finally lead to numerical schemes that are ca-
pable of solving a given problem with an asymptotically optimal expense of
computational complexity whenever their computational ingredients satisfy
certain now well identified requirements. Optimal means in this context,
that the work in terms of floating point operations and storage manipu-
lations stays proportional to the number of degrees of freedom that are
intrinsically needed to achieve a desired target accuracy.

For certain model cases, computational ingredients that at least asymptot-
ically satisfy these requirements can be easily realized, however the next
crucial step is to develop computational tools that still satisfy these con-
ditions for a wider realistic class of problems. The final goal is of course is

2 Introduction

to put at disposal efficient and flexible computational tools that allow to
fastly realize the new schemes in form of computer programs that preserve
all theoretical achievements.

Background and Motivation

The general format of the problems we are concerned with can be stated
as follows. Let H be a Hilbert space and H′ its dual. Given F : H → H′

and any f ∈ H′ we wish to find a u ∈ H such that

〈v, F (u)〉 = 〈v, f〉 ∀ v ∈ H, (0.0.1)

where this problem is assumed to be well-posed in the sense, cf. [CDD03a],
that there exists a unique solution u ∈ H and that for v in a neighborhood
U of u, there exist constants cF,v, CF,v, such that for all w ∈ H

cF,v‖w‖H ≤ ‖DF (v)w‖H′ ≤ CF,v‖w‖H, (0.0.2)

(see also [CDD03d, CDD03b]). Here DF (·) denotes the Frechet derivative,
which is defined as mapping from H to H′ by

〈v,DF (·)w〉 = lim
h→0

h−1〈v, F (·+ hw)− F (·)〉.

It is essential in this context, that H permits a wavelet characterization. A
wavelet basis Ψ = {ψλ;λ ∈ J } is called a Riesz-basis for H and is said to
characterize H, if a norm-equivalence can be established, i.e., the H-norm
of an element is equivalent to the �2-norm of its (wavelet-) coefficients.

Under these circumstances it has been shown ([CDD01]) that one can find
an equivalent formulation of the original problem in terms of wavelet coef-
ficients in form of an infinite dimensional system F(u) = f , which is now
well-posed in �2. Here u is the unknown array of wavelet coefficients of the
solution u and f are the dual wavelet coefficients of the right-hand side f .

One then can formulate an ideal iterative scheme for the discrete, infinite
dimensional problem Fu = f , e.g.

ui+1 = ui −Ci

(
F(ui)− f

)
, i = 0, 1, 2, ..., (0.0.3)

where Ci is a ’preconditioner’, chosen such that in each step of the itera-
tion, the error is at least reduced by a fixed factor, which is possible because
of the asserted l2-well-posedness ([CDD01]). Each step of the iteration of
this idealized scheme is (approximately) executed by approximating the

Introduction 3

weighted residuals Ci (F(u
i)− f) within certain dynamically updated tol-

erances. This is done by adaptive evaluation of F(ui), which mainly re-
quires the computation of (0.0.1) and an adaptive application of Ci. The
latter task being problem dependent, we focus here on the computation of
(0.0.1).

An evaluation scheme as mentioned above, e.g. for F acting on a finitely
supported array v, consists of two steps and takes the following form:

S1) Prediction step: Given a set Λ = Λ(ε) such that ‖v − v|Λ‖�2 ≤ ε,
for the current accuracy tolerance ε > 0, predict a possibly small set
Γ ⊂ J such that

‖F(v)− F(v)|Γ‖�2 ≤ Cε, (0.0.4)

where C is a fixed constant.

S2) Recovery step: Compute an array w such that

‖F(v)|Γ −w‖�2 ≤ C ′ε, (0.0.5)

with an amount of work that stays proportional to #Γ.

This leads to perturbed, but applicable iteration steps, cf. [CDD01, CDD00,
BDD03], that produce finitely supported �2-approximants within controlled
tolerance.

The Main Task

In this thesis, we mainly concentrate on the recovery step S2), and we shall
for most of the time assume, that the prediction step S1) and therefor Γ
is derived from Λ(ε) through suitable background information provided by
the individual problem at hand. We refer to [DSX00, CDD03c, CDD03d]
in that regard.

The recovery step S2) however leaves us with computing or approximating
an array of wavelet coefficients at a prescribed (order of) tolerance, namely
we have to cope with the following recovery Task R1:

Given g ∈ H′ and some finite subset Γ ⊂ J of indices, compute an array
w supported in Γ that approximates

g(Γ) := (gλ)λ∈Γ := (〈ψλ, g〉)λ∈Γ,

such that ‖g(Γ)−w‖�2(J) is comparable to ‖g − g(Γ)‖�2(J).

1We postpone a more precise and technical formulation to Chapter 3.

4 Introduction

One of the difficulties we have to face is caused by the multilevel struc-
ture of adaptive wavelet schemes, i.e. that already point evaluations are
hampered somewhat by the fact that at a given point, increasingly more
functions may be involved. Another problem concerning the computation
of (〈ψλ, g〉)λ∈Γ is that wavelets of low level have a support comparable to
the whole domain of interest and that the quadrature has to be executed
at an accuracy comparable to the overall error. Therefore, the amount of
work for a strategy based on computing each individual entry 〈ψλ, ·〉 could
not be kept within the desired bounds.

For the recovery scheme, we will therefore pursue a different strategy
([BDS04]) in order to treat the array of inner products as a whole by
picking up an idea suggested already in [DSX00]. There an analytic frame-
work has been proposed that facilitates complexity estimates also for those
situations where the sparseness of wavelet expansions is significant and pro-
hibits transformations to uniform single scale representations at the highest
level.

The recovery-scheme presented in this thesis improves on earlier findings
from [DSX00] in several respects. First, on the algorithmic side, it has a
much simpler structure and offers a significant quantitative improvement of
performance and storage demands. The main difference is that in [DSX00]
at some point a full, usually pessimistically large prediction index set had
to be assembled and allocated. Moreover, approximate coefficients were
generated through a coarse-to-fine-to-coarse sweep. This is avoided in the
new scheme which generates the significant inner products in a single sweep
from fine to coarse. This results in an overall more simply structured
algorithm with less subroutines and reduced storage demands.

Second, a different approach to the complexity analysis is pursued which
addresses the demands put forward by the above mentioned recent develop-
ments of adaptive wavelet methods. The major deficiencies of the approach
in [DSX00] can be summarized as follows. The error analysis relied on re-
lating the accuracy of the computed entries to an approximation error of
a function approximation in L2. As pointed out above, in the context of
adaptive schemes the role of L2 is played by the dual H′ of an energy space,
typically a Sobolev space of negative order. We shall explain later in more
detail why, in spite of norm equivalences induced by scaling wavelet bases,
this poses a serious obstruction.

Moreover, the error analysis in [DSX00] worked under the assumption
that local polynomial errors (caused by quadrature) are essentially equibal-
anced, a fact that can generally not be guaranteed in the context of interest.
Finally, the regularity assumptions which the error analysis in [DSX00] was

Introduction 5

based upon are not quite compatible with the demands of the above men-
tioned developments.

When it comes to realizations (in terms of computer programs) within
the framework given by the paradigm sketched above, one has to deal with
special difficulties that are immanent to the adaptive nature of the method.
A major issue is, that the involved index sets have a lacunary, unstructured
form and that they may change dynamically in each step of the iteration.
This makes the handling of the data extremely tricky and requires not
only sophisticated code design, but also a fine tuning of the underlying
algorithms to prevent the theoretical achievements from being spoiled by
the practical realization.

Nonetheless, first tools and implementations of corresponding adaptive
schemes are at hand, see [BBC+02, MV99, Bar01, Jür01], and also the
methods described in this thesis are realized in a C++ implementation.
All these codes are based on decisions on how to handle the specific ob-
structions, e.g. concerning the data representation, and – even though this
development has just started and much more experience is required – first
paradigms on how to efficiently implement adaptive wavelet schemes seem
to evolve.

The Layout

This thesis is divided into four parts, each starting with a brief overview
on its contents, hopefully providing some additional orientation.

Part I provides notation and preliminary facts for the formulation and anal-
ysis of our algorithms. In Chapter 1, some facts on N -term approximation
are collected, which is essential for formulating our optimality benchmark
and to understand certain thresholding and selection routines in the adap-
tive context. This is followed by a proposition on how to economically
realize these routines using a so-called binning process. Chapter 2 presents
a short introduction to wavelets and their properties as far as we shall need
them. Moreover, so called cardinal B-spline wavelets according to [CDF92]
are introduced as our model discretization tool in the course of this theses,
see also Sections 3.4, 4.1.2 and Part III. To complete the collection of pre-
requisites, Section 2.3 fixes notation to formulate structural demands on
index sets.

We shall then be ready to turn to the development of the tools in Part
II. Chapter 3 first concentrates on algorithmic issues of our main scheme
Recover before outlining the related error- and complexity-analysis in
Section 3.3. Here, certain demands on the scheme become obvious, and

6 Introduction

corresponding computational tools are treated in Chapter 4, mainly focus-
ing on quadrature (Section 4.1) and structural requirements (Section 4.2).
Section 4.3 demonstrates in brief, how the top-down structure can be used
to incorporate conceptually different steps of the approximation process
necessary to accomplish Task R in a single level-sweep of Recover. Note
that a list of the algorithms (presented in form of Nassi-Schneidermann di-
agrams), can be found on page 171.

Part III is concerned with several applications of the tools developed so
far, and presents numerical tests in one and two dimensions, whose general
layout is described in Chapter 5. L2-applications of the recovery scheme
are studied in Chapter 6. Chapter 7 is concerned with a brief comment on
the prediction step S1), namely a discussion of a heuristical strategy based
on [DSX00]. Applications of Recover within dual norms are treated in
Chapter 8.

The issue of realizing the above tools in form of computer routines is ad-
dressed in Part IV, where we sketch the way we have implemented the
schemes presented so far. After a few conceptual remarks in Chapter 9,
Chapter 10 briefly outlines the organization and purposes of the different
components of our wavelet library igpm w lib.

Part I

Prerequisites

Overview: In this Part, we collect all prerequisites for
the development, description and analysis of our central al-
gorithm Recover.
Chapter 1 will briefly review some basics on N -term approx-
imation and will formulate the benchmark for all schemes
presented in this thesis. We also introduce the concept of
binning, a tool that helps to turn certain concepts from the
theory of N -term approximation into efficient algorithms.
In Chapter 2, we collect all facts concerning wavelets needed
later on. This includes their construction and main features
as well as an introduction to the basic notions concerning
structural requirements on (wavelet) index sets.

Chapter 1

Nonlinear Approximation:
Sorting and Thresholding

In this chapter, we are concerned with the principle idea of constructing
an approximant to a target function by selecting only N coordinates. We
clarify, what the ‘optimal’ outcome of such an approximation process can
be, and we specify the benchmark for our algorithms. We also briefly
investigate a so called binning-scheme, a computational tool for realizing
certain algorithmic steps derived from theory.

1.1 N-term Approximation

The basic task in approximation is to replace a given, mostly complicated
target function, by a more simple function, the approximant, satisfying
certain accuracy requirements, typically formulated in a specified norm.

For any normed linear space S, the norm is denoted by ‖ · ‖S. Important
examples are Lp spaces: For 1 ≤ p ≤ ∞, and any Lebesques-measure space
Ω, the space Lp(Ω) consist of those measurable functions v such that

‖v‖Lp(Ω) :=
(∫

Ω

|v(x)|pdx
)1/p

< ∞,

with the usual sup-norm interpretation for p =∞. The case p = 2 occurs
most often in this thesis, and in this case ‖ · ‖2

L2(Ω) = 〈·, ·〉Ω, where

〈u, v〉Ω :=

∫
Ω

u(x)v(x)dx

denotes the standard inner product. In all cases of practical interest we
have Ω = IR or Ω ⊂ IRd being (at least) a Lipschitz domain, bounded, open

12 Nonlinear Approximation: Sorting and Thresholding

and connected. If r is a positive integer, the Sobolev space W r,p(Ω) con-
sists of all functions v ∈ Lp(Ω), whose distributional (partial) derivatives
∂νv, |ν| = r satisfy

|v|W r,p(Ω) :=
(∑

|ν|=r

‖∂νv‖p
Lp(Ω)

)1/p

< ∞.

Here the usual multi-index notation |ν| = |ν1|+ . . .+ |νd| in d dimensions
is used. Adding this semi-norm for W r,p(Ω) to the Lp(Ω)-norm of v gives
the W r,p(Ω)-norm ‖v‖W r,p(Ω). Again, the most important case is p = 2,
where one uses the short-hand notation Hr(Ω) := W r,2(Ω). Sobolev spaces
with non-integer index s ∈ R can be introduced in several ways, e.g. by
interpolation between L2(Ω) and Hr(Ω), r > s, r ∈ IN , see e.g. [Ada00,
BL76, DP88]. If s < 0, one can use duality. For any normed linear space
S, the dual space of bounded linear functionals on S is denoted by S ′ and
is a Banach space under the norm

‖w‖S′ := sup
‖v‖S=1

|w(v)|.

If Ω is a closed manifold we have
(
Hs(Ω)

)′
= H−s(Ω).

We shall also be concerned with Besov spaces Bs
q(Lp(Ω)), 0 < p, q < ∞, s >

0, which arise by interpolating between Lp(Ω) and W r,p(Ω), r ∈ IN , see
[Ada00, DeV98]. One way of defining the corresponding norm is by means
of moduli of continuity

ωr(v, t,Ω)p := sup
|h|≤t

‖∆r
hv‖Lp(Ωr,h),

where |h| denotes the Euclidean norm of h ∈ IRd, ∆r
hv the r-th forward

difference of v in direction h and

Ωr,h := {x ∈ Ω : x+ lh ∈ Ω, l = 0, . . . , r}.

Defining the semi-norm for s < r, r fixed

|v|qBs
q(Lp(Ω)) :=

∞∑
j=0

2qsjωr(v, 2
−j,Ω)qp,

the Besov norm is given by

‖v‖q
Bs

q(Lp(Ω)) := ‖v‖q
Lp(Ω) + |v|qBs

q(Lp(Ω)).

1.1 N -term Approximation 13

For alternative definitions of Besov spaces, e.g., by means of a certain
K functional, and a detailed discussion of their properties, see e.g., the
books [DL93, RS96], the articles [DeV98, CDDD01, DSX00, DP88] and
the references therein.

Suppose now that Ψ := {ψλ, λ ∈ J } is a Riesz-basis for a normed linear
space S, which means that each v ∈ S has a unique expansion

v =
∑
λ∈J

vλψλ, (1.1.1)

and that there exist constants cΨ, CΨ such that

cΨ‖v‖�2(J) ≤ ‖v‖S ≤ CΨ‖v‖�2(J), (1.1.2)

where v := (vλ)λ∈J and �2 is the space of sequences s.t. ‖v‖2
�2
:=
∑

λ∈J |cλ|2 <
∞.
We shall often use the ’formal’ scaler product notation vTΨ to abbreviate
the right-hand side of (1.1.1). Relation (1.1.2) can also be denoted by
‖v‖�2(J) ∼ ‖v‖S, using the convention that a<∼ b means that a can be
bounded by a constant multiple of b (independent of any parameters on
which a and b may depend) and that a ∼ b means a<∼ b and b<∼ a.

When approximating an element v ∈ S, approximants will be chosen from
a subspaces Ŝ of S spanned by finitely many basis functions ψλ. One aims
at increasing the accuracy of an approximation by enlarging the number of
degrees of freedom, but that also increases the associated work and storage.
We aim at balancing this trade off between complexity and accuracy in a
possibly optimal way. Rather than setting

Ŝ = span{ψλk
, 1 ≤ k ≤ N}, N < ∞, (1.1.3)

which will result in a linear approximation process, we will therefore choose
the set of linear combinations of at most N ∈ IN0, N < ∞, coordinates

ΣN :=
⋃

#Λ≤N

span{ψλ, λ ∈ Λ ⊂ J },

without a-priorily specifying the basis functions in ΣN . Let us mention,
that ΣN is obviously a nonlinear space, as the sum of two elements in ΣN

has in general 2N non-zero elements.

For any given g ∈ S, the error of this N-term approximation is defined as

σN (g) := inf
ĝ∈ΣN

‖g − ĝ‖S. (1.1.4)

14 Nonlinear Approximation: Sorting and Thresholding

A function that realizes σN (g) is called a best N-term approximation. In
practice, given a function g, it is often easier to construct a near best N -
term approximant, i.e., to find gN ∈ ΣN , such that

‖g − gN‖H ≤ c σN (g), (1.1.5)

for some uniform constant c ≥ 1.
We are interested in characterizing the quality of approximations with N
degrees of freedom in terms of smoothness. In the case where the ap-
proximation error is measured in Hs, we refer to results in [DeV98] which
roughly state:

C1) For the rate of best approximation of a function v by linear approxi-
mation (on a hierarchy of uniform refinement), it holds: The approx-
imation error decays like N−(α+s)/d if and only if v has smoothness
Hα, α > s.

C2) For the rate of best approximation of a function v by nonlinear ap-
proximation (on a hierarchy of adaptive refinement), it holds: The
approximation error decays like N−(α+s)/d if and only if v has smooth-
ness Bα

τ (Lτ (Ω)), α > s, 1/τ := (α− s)/d+ 1/2).

In these results the range of α and s are limited by the order of the method
and the smoothness of the approximation space. The advantage in nonlin-
ear approximation, is that C2) requires a much weaker smoothness condi-
tion then C1) to ensure the same error decay, i.e., one can compensate the
loss of regularity by judiciously placing degrees of freedom so to retain the
same asymptotically optimal rate.

One example where nonlinear approximation techniques pay off, are elliptic
boundary value problems, as the regularity of the solution could be shown
to be significantly higher in the Besov scale than in the Sobolev scale, see
[DD97, CDD01, CDD00] for more details and further examples.

In the light of the norm equivalence (1.1.2), approximating the function
v ∈ S is equivalent to approximating its array of coefficients v ∈ �2(J).
In the special case of �2, it is in principle easy to obtain a best N -term
approximation. Given a known sequence v ∈ �2(J), a best N -term ap-
proximation v∗

N ∈ ΣN satisfying (1.1.5) is constructed by taking the N
largest entries of v as the elements of v∗

N .

A naive possibility to extract v∗
N from v = (vi)i∈IN ∈ �2(J) is therefore

to rearrange its entries in a non-increasing order of absolute values. This
rearrangement process is not necessarily unique, but any outcome will be

1.1 N -term Approximation 15

denoted by v∗ = (v∗i)i∈IN , i.e. we have |v∗i | ≥ |v∗i+1|. The corresponding
best N -term approximation is then given by (v∗i)

N
i=1 .

As seen earlier, the quantity of major interest in approximation processes is
the so-called error rate that is the dependence of the error σN on N or the
question how accurately one can approximate with N degrees of freedom
in the space under consideration. We want to identify sequences v that
allow approximations of accuracy σN(v)<∼N−s, s > 0. We therefore are
interested in sequences v where for s > 0

‖v‖As := sup
N≥0

(N + 1)sσN (v) < ∞, (1.1.6)

with σ0 := ‖v‖�2(J). The corresponding space of sequences is denoted by

As := {v ∈ �2(J), ‖v‖As < ∞}. (1.1.7)

We now drive at an alternate characterization of As to understand its
nature. The above rearrangement v → v∗ is now used to introduce the
so-called weak �τ spaces �

w
τ , which are defined by

v = (vλ)λ∈J ∈ �w
τ (J) ⇐⇒ #{λ ∈ J , |vλ| ≥ ε} ≤ c ετ , (1.1.8)

This space is contained in �2(J), whenever 0 < τ < 2. Moreover, intro-
ducing the quasi-norm

|v|�w
τ (J) := sup

n≥1
n1/τ |v∗n|, v ∈ �2(J), (1.1.9)

the Lorentz space �w
τ (J) can then be written as

�w
τ (J) := {v ∈ �2(J), |v|�w

τ (J) < ∞}. (1.1.10)

Thus the value of the semi-norm (1.1.12) is just equal to the smallest
constant c such that

|v∗n| ≤ cn−1/τ , n ≥ 1, (1.1.11)

stating that a sequence v ∈ �w
τ (J) indeed has a polynomial decay rate 1/τ .

Moreover the smallest c which satisfies (1.1.8) is equivalent to |v|τ�w
τ (J).

We finally set

‖v‖�w
τ (J) := ‖v‖�2(J) + |v|�w

τ (J), 0 < τ < 2. (1.1.12)

It is easy to see that ‖v‖�w
τ (J) ≤ 2‖v‖�τ (J).

Conditions like v ∈ �τ or v ∈ �w
τ (J) are equivalent to smoothness condi-

tions on the function v, cf. (1.1.1). For Hs, s > 0 and 1/τ = s + 1/2 we

16 Nonlinear Approximation: Sorting and Thresholding

have v ∈ �τ if and only if u ∈ Bsd+t
τ (Lτ (Ω)) and the condition v ∈ �w

τ (J)
is similarly linked to a slightly larger space.

The following Lemma (cf. e.g., [DT96, DeV98]) shows the close connection
between the decay property of �w

τ (J) and the approximation spaces As.

Lemma 1.1.1. The spaces As and �w
τ (J) are the same and have equivalent

norms for s > 0 and 1/τ = s+ 1/2. In this case it holds

‖v‖As ∼ ‖v‖�w
τ (J).

Especially, v ∈ �w
τ (J) gives σN(v) ≤ CN−s‖v‖�w

τ (J), N ∈ IN , where the
constant C only depends on τ when τ tends to zero.

This states that a sequence in �w
τ (J), 1/τ = s+1/2, can be at least approx-

imated at an error proportional to N−s when using at most N coordinates.

Of course, when approximating a target function, most likely we are not in
the ideal situation, that we explicitly know all coordinates of the sequence
of coefficients, i.e., we cannot determine the (near) best N -term approxima-
tion simply by sorting. However, given v ∈ As, approximation at accuracy
ε requires at most the order of ε−1/s degrees of freedom. Therefore, a lower
bound for the complexity of determining any element in the unit ball of
As within accuracy ε is ε−1/s. This suggests to choose the ideal setting of
N -term approximation in a given space S as benchmark for any numerical
scheme operating in S. In this thesis, we will therefore use the following
terminology, cf. [CDD03a].

Definition 1.1.2. An approximation scheme Approx is called asymptot-
ically optimal or s∗-asymptotically optimal, if for any v in the unit ball of
As, s < s∗ and tolerance ε > 0, it determines an approximation ĝ such that
‖v − v̂‖�2(J) ≤ ε and the number of resources (in terms of floating point
operations and storage manipulations) needed to do so, stays proportional
to ε−1/s.

Note, that here the term storage manipulations includes storage allocation
and read/write access, hence in particular sorting operations.

Examples of (up to sorting) asymptotically optimal adaptive schemes can
be found in [CDD01, CDD00, CDD03a, CDD03c, DHU00]. These schemes
apply routines based on best N -term approximation, e.g. thresholding
routines to sparsify approximants and reduce their number of degrees of
freedom in accordance with the rate of the best N -term approximation.
This can be arranged in such a way, that the approximation quality mea-
sured in the �2-norm is not spoiled, as the following has been proven in
[CDD01, CDD03a].

1.2 Binning: Approximate Sorting 17

Theorem 1.1.3. Assume a possibly infinite dimensional vector v is given
and let w be a finite approximant to v satisfying

‖v −w‖�2(J) ≤ η,

with 0 < η ≤ ‖v‖�2(J). Let N be the smallest integer such that

‖w−wN‖�2 ≤ η.

If v ∈ �w
τ (J) for τ = (s + 1/2)−1 for some s > 0, then there is a constant

C > 0 which depends only on s when s → ∞ such that

‖v−wN‖�2(J) ≤ η and ‖v −wN‖�2(J) ≤ C‖v‖�w
τ (J)N

−s.

Moreover ‖wN‖�w
τ (J) ≤ C‖v‖�w

τ (J).

This gives rise to a so-called coarsening or clean-off step which is frequently
applied in the course of various adaptive algorithms. We will next be
concerned with its practical realization.

1.2 Binning: Approximate Sorting

When executing a coarsening/thresholding following the above reasoning
by constructing an N-term approximantwN to a (finite) vectorw, a natural
idea is to construct wN by sorting w. This however leads to a suboptimal
scheme, as sorting involves O(N ′ logN ′), N ′ := # suppw storage manipu-
lations, which is not in accordance with Definition 1.1.2.

The following observations however reveal that this sub-optimality can be
removed, as sorting in a strict sense is actually not required. This becomes
clear, when writing Definition 1.1.8 of the weak space �w

τ (J) in the following
form

�w
τ (J) = {v ∈ �2(J),#{λ ∈ J , 2−j ≥ |vλ| ≥ 2−j−1} ≤ c 2jτ , j ∈ ZZ}.

(1.2.1)
Note that this last characterization of �w

τ (J) is based on orders of magni-
tude only and requires no strict sorting.

Instead of performing a strict sorting element by element which is a log-
linear operation, one can drive at grouping the coordinates of the sequence
according to equivalence classes of orders of magnitude. This can be ar-
ranged in such a way that the resulting rearrangement will be monotone on
the scale of equivalence classes, or bins, as they are sometimes called, but
not on the scale of single elements. We will refer to this as an essentially
monotone rearrangement.

18 Nonlinear Approximation: Sorting and Thresholding

1.2.1 Construction and Estimates

The principle of binning can be found in various contexts, compare [Met02],
e.g., in the method of quantizing. Here we will apply it especially to con-
struct near best N -term approximants to finite vectors in linear complexity.
To describe this, we introduce the following notation.

Definition 1.2.1. Let v = (vλ)λ∈J be a sequence. For j ∈ ZZ we define

Bj(v) := {λ ∈ J , 2−j ≥ |vλ| > 2−j−1}.

Bj(v) will be called the j-th bin of v, v(∗) will denote the rearrangement of

v according to decreasing bins and v
(∗)
j := {vλ, λ ∈ Bj(v)}.

The resulting v(∗) is essentially non-increasing, as for any i, j, j′ ∈ ZZ and
p ∈ N we have: If (v(∗))i ∈ Bj(v) and (v

(∗))i+p ∈ Bj′(v) then j′ ≥ j.

However, the elements of v
(∗)
j , j ∈ ZZ are not necessarily ordered in any

way.

Recalling (1.2.1), we are able to characterize �w
τ (J) spaces by the magni-

tude of the bins of corresponding sequences. A near best N -term approx-
imation to a vector v can therefore be constructed by taking the N first
entries of v(∗). The next lemma will show, that the vector v(N) constructed
by this method is also a near best N -term approximant to v ∈ �w

τ (J).

Lemma 1.2.2. Let s > 0 and v ∈ �w
τ (J), 1/τ = s + 1/2. Then there is a

constant C > 0 such that

‖v − v(N)‖�2 ≤ CN−s|v|�w
τ (J), N ∈ IN.

Consequently, we also have ‖v− v(N)‖�2 ≤ CN−s‖v‖�w
τ (J).

This lemma is analogous to Lemma 1.1.1 and our proof follows [DeV98].
It works also for 1 < p < ∞, s > 0, τ = s+ 1/p.

Proof. Because of (1.2.1) for each k ∈ IN we have

k∑
−∞
#Bk(v) ≤ C2kτ |v|τ�w

τ (J).

Setting vk := (vλ)λ∈Uk
, Uk :=

⋃k
j=−∞Bj , we know that vk ∈ ΣN with

N = �2kτ |v|τ�w
τ (J)�. We have

‖v − vk‖�2 ≤
∞∑

j=k+1

‖v(∗)
j ‖�2.

1.2 Binning: Approximate Sorting 19

Fixing j > k, let us estimate ‖v(∗)
j ‖�2. As |vλ| ≤ 2−j for all λ ∈ Bj(v), we

get
‖v(∗)

j ‖�2 ≤ 2−j(#Bj(v))
1/2 ≤ 2j(τ/2−1)|v|τ/2

�w
τ (J). (1.2.2)

As τ = 2/(2s+ 1), i.e., τ/2 < 1, we conclude that

‖v − vk‖�2 ≤ |v|τ/2
�w
τ (J)

∞∑
j=k+1

2j(τ/2−1) ≤ |v|�w
τ (J)(2

k|v|�w
τ (J))

τ/2−1. (1.2.3)

Hence, for N = 2kτ |v|τ�w
τ (J) we obtain with τ/2− 1 = τ(1/2− 1/τ)

‖v − v(N)‖�2 ≤ N−s|v|�w
τ (J).

Since ‖v − v(N)‖�2 is monotone in N , the last inequality also holds for
N ∈ IN .

In what follows, we will notationally distinguish (if necessary) an N -term
approximant v(N) to a sequence v obtained by the above method from
v∗

N constructed using strict sorting. In general, v(N) will differ from v∗
N ,

yet - apart from the different work count - this has no influence on the
asymptotical performance of the various schemes due to the above lemma.

1.2.2 Computational Issues

When constructing approximations v(N) in practice, namely for a finite vec-
tor vΛ on a computer having a finite precision ηC , we suggest the following
routines. Let η > ηC > 0 be a given tolerance. We define

l0 = l0(η) := �− log2 η� − 1 and l1 = l1(ηC) := �−log2 ηC� . (1.2.4)

We will often drop ηC in the notation, as this quantity is neither method-
nor problem-dependent. With this, for a vector v we define Bj(v, η), j =
l0, l0 + 1, . . . , l1

Bj(v, η) :=

⋃l0

l=−∞ Bl(v), j = l0,
Bj(v), l0 < j < l1,⋃∞

l=l1
Bl(v), j = l1.

(1.2.5)

Hence, if η = 2−i, ηC = 2
−i′ with i, i′ ∈ IN , we have that Bl0(v) = Bi−1 con-

tains all elements v > η, and Bl1(v) = Bi′ all elements v ≤ ηC respectively.

If the assembling of the bins Bj , i.e., an explicite construction of v(N) is
necessary, one can use the following routine.

20 Nonlinear Approximation: Sorting and Thresholding

Bin-Sort — (v, η)→ [Bj(v, ε), j = l0, . . . , l1]

Determine l0, l1 according to (1.2.4)

Set Bj = ∅, j = l0, . . . , l1

For each element v of v

Compute j(v) = log2(v) (e.g. by a bit shift)

Set Bj(v) → Bj(v) ∪ {v}

Algorithm 1.1: Procedure Bin-Sort: Assemble bins

Figure 1.1 shows a small example vector before and after binning.

❄

.

0.0166, 0.04, 0.11, 0.3, 0.51, 2.4, 0.017, 0.032, 0.1, 0.5, 0.6,1.3, 0.12, 1.0

1.3, 2.4

1.0, 0.6, 0.51

0.5, 0.3

B1
0

B1
1

B1
2

B1
3

B1
5

B1
6

B1
7 0.017, 0.0166

0.032, 0.04

0.12, 0.1, 0.11

B1
−1

B1
4

Figure 1.1: An example vector before and after binning with η = 1

Given ε > 0, the task of finding an N -term approximation v(N) to a finite

1.2 Binning: Approximate Sorting 21

vector v that realizes an error no greater than ε can be accomplished by
applying Bin-Sort and setting successively coordinates in bins Bj with
large j, i.e. small entries, to zero until the introduced error reaches the
target accuracy ε. This requires O(N ′), N ′ := # suppv floating point
operations and storage in order to construct v(N) and O(N ′) operations to
check the error bound each time a coordinate is set to zero.

This operation has optimal asymptotical complexity, i.e., we managed to
build a near best N -term approximation v(N) to a finite vector sequence in
v with an overall amount of work proportional to # suppv. This includes
the cost of rearranging, floating point operations and storage.

However, we can avoid to construct the actual bins when thresholding. Re-
viewing the above proof of Lemma 1.2.2, we suggest the following proce-
dure: At first we will make use of a mechanism to determine the magnitude
Bj := #Bj of the bins without constructing them.

Bin-Count — (v, η)→ [#Bj(v, η), j = l0, . . . , l1]

Determine l0, l1 according to (1.2.4)

Set Bj = 0, j = l0, . . . , l1

For each element v of v

Compute j(v) = log2(v) (e.g. by a bit shift)

Set
Bl0 → Bl0 + 1 if j(v) ≤ l0,
Bj(v) → Bj(v) + 1 if l0 < j(v) < l1,
Bl1 → Bl1 + 1 if j(v) ≥ l1.

Finally Bj = #Bj(v, η), j = l0, . . . l1.

Algorithm 1.2: Procedure Bin-Count: Determine magnitude of bins

Bin-Count requires l1 − l0 + 1 integer storage and O(# suppv) floating
point operations. Note that neither searching nor operations to rearrange
data is needed since the scheme computes the magnitude of the bins with-
out actually assembling them. Another useful application of Bin-Count

is a pre-processing to Bin-Sort: If one needs to construct v(∗) by rear-
ranging the entries of v, one can use Bin-Count to determine the amount

22 Nonlinear Approximation: Sorting and Thresholding

of storage for Bj , j = l0, . . . , l1 a-priorily, i.e. before executing Bin-Sort.
This allows an optimized (static) memory management.

Remark 1.2.3. Be N ′ := suppv. The routine Bin-Count(v, η) requires
O(N ′) floating point operations and l(η, ηC) := l1 − l0 + 1 integer storage.
Again, we will often drop the dependency of ηC in notation and write l(η).
Note that by (1.2.4)

l(η) ≤ log2(
η

ηC
).

We will henceforth always assume that N ′ ≥ l(η), which is the typical
situation. Given this, performing Bin-Sort(v, η) requires O(N ′) floating
point operations and storage.

We will now use Bin-Count to execute a thresholding without construct-
ing the bins.

Bin-Thresh — (v, η, ε)→ [v̂, Λ̂]

Determine l0, l1 according to (1.2.4)

Execute Bin-Count(v, η) and set
nj := #Bj(v, η), j = l0, . . . , l1

Set l = l1 and E := nl1 ∗ 2−2l1 .

If E ≤ ε2

Set l → l − 1 and E → E + nl ∗ 2−2l

Set nj → 0 for all j > l

Let nl :=
⌈

E−ε2

2−2l

⌉
, v̂ := 0, e = 0

For each element vλ of v

Compute j(vλ) = log2(vλ)

If nj(vλ) > 0: v̂λ → vλ and nj(vλ) → nj(vλ) − 1
Else: v̂λ → 0, e → e+ |vλ|2

Finally Λ̂ := supp v̂.

Algorithm 1.3: Procedure Bin-Thresh: Thresholding using bins

1.2 Binning: Approximate Sorting 23

The idea is the following: As vλ ∈ Bj means that |vλ|2 ≤ 2−2j , we can
bound the error introduced by setting n entries in Bj to zero by n2−2j ,
and, given #Bj , we know that ‖v(Bj)‖2

�2
≤ #Bj2

−2j, which are bounds for
the error if all entries in Bj are neglected. Hence, given an accuracy ε > 0,
Bin-Thresh first computes l, nl ∈ IN, such that we have

l1∑
j=l+1

#Bj2
−2j + nl2

−2l ≤ ε2.

We then know that we meet the target accuracy, when keeping all elements
in Bj , j < l, nl entries in Bl as and no entry in Bj , j > l. The computation
of the true truncation error

√
e is optional and can be used to discard

additional elements if e < ε2. The same reasoning leads to the lower
bound

‖v− v̂‖�2(J) >

l1∑
j=l+1

#Bj2
−2(j−1) + nl2

−2(l−1),

for the output ĝ of Bin-Thresh, which guarantees that Bin-Thresh is
efficient.

Corollary 1.2.4. The routine Bin-Thresh(v, η, ε) can be executed with
an amount of O(#v) floating point operations and an amount of l(η) in-
teger storage. Furthermore for its output v̂, we have

‖v− v̂‖�2 ≤ ε.

If v ∈ �w
τ (J) for some s > 0 and 1/τ = s+ 1/2, we have

‖v − v̂‖�2
<∼(#Λ̂)

−s|v|τ�w
τ (J).

Proof. Performing Bin-Count(v, ε) requires O(#v) floating point oper-
ations and l(η) integer storage. The determination of l is O(l(η)), the
determination of nl of course is O(1). Finally the computation of v̂ is
O(#v). As l(η) < #v, the first assertion follows. The error estimates are
analogous to the proof of Lemma 1.2.2. Note that

‖v − v̂‖�2 ≤
l1∑

j=l

2−jn
1/2
j ≤

∞∑
j=l

2−j#Bj(v, ε)
1/2

which can be treated analogously to (1.2.2) and (1.2.3).

If not stated differently we will always assume throughout the rest of this
thesis that an N -term approximation vN is constructed using the above
binning routines.

Chapter 2

Wavelet Prerequisites

The recovery scheme that we will discuss in the next chapter will depend
heavily on the fact, that we are working with wavelets. Before we turn to
its description, let us therefore collect the basic facts on wavelets needed
later on.

Wavelet bases are usually constructed with the aid of a multi-resolution
analysis [Mal89], i.e., a sequence of linear, closed, nested spaces with the
properties, that the closure of their union is dense in the considered Hilbert
space H. If the underlying domain is unbounded one has to ensure that
their intersection contains only {0}.
The spaceH plays, for instance, the role of an energy space for a variational
problem and one should think ofH, e.g., as L2(Ω), Ω a domain or manifold,
or as a (closed subspace of a) Sobolev space (defined e.g. by homogeneous
boundary conditions) or a product of such spaces. The space of bounded
linear functionals on H, the normed dual of H, is denoted by H′. The dual
pairing 〈·, ·〉 on H × H′ is always tacitly assumed to be induced by the
standard L2-inner product on the underlying domain Ω and defining the
dual space H′. As usual we set ‖w‖H′ := sup‖v‖H≤1〈v, w〉.

2.1 Construction and Essential Features

In the following, we shall rely on the fact that the wavelet basis Ψ is a
Riesz basis in H as introduced in Section 1.1. The Riesz basis property of
Ψ implies the existence of a dual basis Ψ̃ ⊂ H′ such that 〈ψ̃λ, ψµ〉 = δλ,µ.
This in turn means that

v =
∑
λ∈J

vλψλ =
∑
λ∈J

〈ψ̃λ, v〉ψλ.

26 Wavelet Prerequisites

It will be important, that rescaling such a dual pair Θ = {θλ : λ ∈ Jj} and
Θ̃ = {θ̃λ : λ ∈ Jj} of biorthogonal wavelet bases for L2(Ω) provides Riesz
bases for a whole range of smoothness spaces, see [Dah94, Dah96], whence
we sometime call Θ, Θ̃ anchor bases.

Recall, that a multi-scale basis Θ is called a Riesz basis for L2, if every
element v in L2 has a unique expansion v =

∑
λ∈J vλθλ =: v

TΘ, such that
the following norm equivalence holds

‖v‖�2(J) ∼ ‖v‖L2. (2.1.1)

This means that there exist constants cΘ, CΘ such that for every v ∈ L2

cΘ‖(〈θ̃λ, v〉)λ∈J ‖�2(J) ≤ ‖v‖L2(Ω) ≤ CΘ‖(〈θ̃λ, v〉)λ∈J ‖�2(J),

C−1
Θ ‖(〈θλ, v〉)λ∈J ‖�2(J) ≤ ‖v‖L2(Ω) ≤ c−1

Θ ‖(〈θ̃λ, v〉)λ∈J ‖�2(J).
(2.1.2)

Such anchor bases in L2 are usually constructed with the aid of a multires-
olution analysis. To describe this mechanism, we start with two sequences
of spaces Sj, S̃j ⊂ L2(Ω) with

⋃
j∈IN0

Sj = H, (2.1.3)

and likewise for the dual spaces S̃j. The spaces Sj , S̃j are usually defined
as the span of corresponding generator bases Φj = {φj,k : j ∈ IN0; k ∈ Ij},

Sj = S(Φj) := spanΦj

and likewise S̃j = S(Φ̃j). Focusing first on the primal scaling functions
φj,k, we will require that the basis Φj is uniformly stable

‖c‖�2(Ij) ∼ ‖cTΦj‖H, j ∈ IN0.

Here we used the compact notation of a (formal) vector product

cTΦj :=
∑
k∈Ij

cj,kφj,k, (2.1.4)

viewing Φj := Φ(Ij) as a column vector. By �2(I) we will always denote
the subspace of �2(J) containing sequences whose components with index
not in I ⊂ J are zero. Hence a vector will be interpreted as an infinite

2.1 Construction and Essential Features 27

sequence with only finite support and the support of an element v ∈ �2(J)
will always be understood as

supp v := {λ ∈ J , vλ %= 0}.

The functions φj,k are usually derived from a single refinable function φ by
dilation and integer translation, i.e.,

φj,k(·) = 2jd/2φ(2j/2 · −k), j ∈ IN0, k ∈ Ij , (2.1.5)

d being the spacial dimension. In the so called shift invariant univariate
case Ij = ZZ.

Nestedness of the spaces can then be expressed by a two-scale or refinement
relation, which says that any coarse scale basis function can be written
as a linear combination of functions of the finer scales. Using again the
shorthand notation (2.1.4), the refinement relation can be written as

ΦT
j = Φ

T
j+1Mj,Φ, (2.1.6)

where the k-th column of Mj,Φ consists of the mask of φj,k.

For the dual scaling functions φ̃j,k, we will analogously require compact
support and refinability, i.e.,

Φ̃T
j = Φ̃

T
j+1Mj,Φ̃.

The bases Φ, Φ̃ shall be connected by the following duality relation

〈φj,k, φ̃j,k′〉 = δk,k′, k, k′ ∈ Ij, (2.1.7)

which impliesMT
j,ΦMj,Φ̃ = I. Now we can use this to define projectors onto

the spaces Sj , S̃j

Pj :=
∑
k∈Ij

〈·, φ̃j,k〉φ̃j,k, P̃j :=
∑
k∈Ij

〈·, φj,k〉φj,k. (2.1.8)

One then looks for complement spaces Wj , W̃j such that

Sj+1 = Sj ⊕Wj , S̃j+1 = S̃j ⊕ Wj . (2.1.9)

For larger flexibility, we do not enforce orthogonalityWj ⊥ Sj but biorthog-
onality

W̃j ⊥ Sj, Wj ⊥ S̃j .

28 Wavelet Prerequisites

Note that, because of the nestedness of Sj , S̃j the differences

Qj := Pj − Pj−1 and Q̃j := P̃j − P̃j−1 (2.1.10)

are again projectors and they map onto Wj , W̃j.

Wavelets form bases for these L2-complement spaces

Wj = S(Θj), W̃j = S(Θ̃j),

where again θj,k is obtained by a mother wavelet via the relation θj,k(·) =
2jd/2θ(2j · −k). We will distinguish wavelets and scaling functions in one
dimension by a subscript e ∈ {0, 1} and we will sometimes write

φj,k =: θj−1,k,0, and θj,k =: θj,k,1, j ∈ IN0, k ∈ ZZ,

which also explains the notationMj,0,Mj,1 and M̃j,0, M̃j,1. For convenience
we will condense scale, translation and type in one index

λ := (j, k, e),

with |λ| := j, k(λ) := k and e(λ) := e. Concerning notation, also note
that we will distinguish the set of wavelet indices J from the set of scaling
function indices I and that we will identify (j, k) with λ = (j, k, 0), which
explains the notation λ ∈ I. Using these conventions, the wavelet bases
for the j-th complement spaces are given by

Θj = {θλ : λ ∈ Jj} and Θ̃j = {θ̃λ : λ ∈ Jj},

and
Θ := Φ0 ∪

⋃
j∈IN0

Θj , Θ̃ := Φ̃0 ∪
⋃

j∈IN0

Θ̃j.

Biorthogonality can then also be expressed as

〈Θ, Θ̃〉 = I, (2.1.11)

where we used the convention to denote the generalized infinite Gramian
of two bases (of L2) as

〈Θ1,Θ2〉 := (〈θ1, θ2〉)θ1∈J ,θ2∈J .

Note that since Θj ⊂ Sj+1 and Θ̃j ⊂ S̃j+1 there must exist (#Ij+1)×(#Jj)-
matrices Mj,Θ, and Mj,Θ̃ such that

ΘT
j = Φ

T
j+1Mj,Θ, Θ̃T

j = Φ̃
T
j+1Mj,Θ̃, (2.1.12)

2.1 Construction and Essential Features 29

and biorthogonality again gives MT
j,ΘMj,Θ̃ = I.

As for the scaling functions, we will require locality also for the wavelets,
i.e. for

supp φλ := σλ, supp φ̃λ := σ̃λ, supp θλ := Ωλ, supp θ̃λ := Ω̃λ,

there shall always exist some < ∈ IN

Bλ ⊆ 2−|λ|[k −<, k +<], B ∈ {σ, σ̃,Ω, Ω̃}, (2.1.13)

so that in particular diam (Bλ) ∼ 2−|λ|. As a consequence, the two-scale
matrices Mj,e, M̃j,e, e ∈ {0, 1} are uniformly sparse which means that the
number of non-zero entries per row and column in these matrices remains
uniformly bounded in j.

The next basic property we require from our bases is that the wavelets θ
of the primal system will be orthogonal to polynomials up to the order m̃

〈xi, θ〉 = 0, i = 0, . . . , m̃− 1. (2.1.14)

In this case, we will say that θ has m̃ vanishing moments.

The consequence is a so-called cancellation property, stating the existence
of some m̃ ∈ IN such that

〈v, θλ〉<∼ 2
−|λ|(d

2
+m̃)|v|W m̃∞(Ωλ). (2.1.15)

Clearly m̃ reflects the accuracy of the dual multi-resolution spaces S̃j :=
S(Φ̃j) which are called m̃-th order accurate, if

inf
ṽj∈S̃j

‖v − ṽj‖L2
<∼ 2

−jm̃|v|Hm̃. (2.1.16)

Due to (2.1.6) and (2.1.12) a change between the two bases Φj+1 and Φj∪Θj

of Sj+1 can be described by the matrices

Mj := (Mj,Φ,Mj,Θ), (2.1.17)

mapping �2(Ij) ⊕ �2(Jj) onto �2(Ij+1). The fact that S(Φj+1) = S(Φj) ⊕
S(Θj implies that Mj has to be invertible and it was shown in [CDP96]
that the bases Φj ∪Θj is uniformly stable if and only if

‖Mj‖, ‖M−1
j ‖ = O(1), j ∈ IN, (2.1.18)

where ‖ · ‖ denotes the spectral norm. The analogous reasoning holds for

M̃j := (Mj,Φ̃,Mj,Θ̃). (2.1.19)

30 Wavelet Prerequisites

The construction of wavelets can therefore also be interpreted as the de-
termination of a stable completion for Mj,Φ (Mj,Φ̃), i.e., the task to find

Mj,Θ (Mj,Θ̃) such that Mj (M̃j respectively) is regular and 2.1.18 holds.

For further details, see [Dah97]. It is convenient to block M−1
j , M̃

−1
j as

M−1
j =: Gj =

(
Gj,Φ

Gj,Θ

)
, M̃−1

j =: G̃j =

(
Gj,Φ̃

Gj,Θ̃

)
, (2.1.20)

so that
MjGj = GjMj =Mj,ΦGj,Φ +Mj,ΘGj,Θ = I,

which, in particular, implies because of (2.1.6) and (2.1.12)

ΦT
j+1 = Φ

T
j Gj,Φ +Θ

T
j Gj,Θ. (2.1.21)

Also, note that

Gj,Φ :=Mj,Φ̃
T , Gj,Θ :=Mj,Θ̃

T , Gj,Φ̃ :=Mj,Φ
T , Gj,Θ̃ :=Mj,Θ

T .
(2.1.22)

Each function gJ ∈ SJ , J ∈ IN , can be decomposed into coarse scale infor-
mation situated in SJ−1 and the details in WJ−1

gJ =
∑
k∈IJ

cJ,kφJ,k =
∑

k∈IJ−1

cJ−1,kφJ−1,k +
∑

k∈JJ−1

dJ−1,kθJ−1,k. (2.1.23)

This leads to the multi-scale representation of gJ , given by

gJ =
∑
k∈I0

c0,kφ0,k +

J−1∑
j=0

∑
k∈Jj

dj,kθj,k =

J−1∑
j=−1

∑
k∈Jj

dj,kθj,k,

where S0 := W−1, θ−1,k := φ0,k . The representation of gJ in terms of
scaling functions on some level J will be referred to as its single-scale
representation.

Concerning the expansion coefficients, (2.1.23) takes the form

cJ = (MJ,0,MJ,1)

(
cJ−1

dJ−1

)
. (2.1.24)

To describe the successive reconstruction that takes the multi-scale repre-
sentation into the single-scale representation, one defines

TJ := TJ−1
J . . .T0

1, with Tj−1
j := diag(Mj , I).

2.1 Construction and Essential Features 31

The decomposing inverse transformation T−1
j is realized by successive ap-

plication of

ΦT
j+1cj+1 = Φ

T
j (Gj,0cj+1) + Θ

T
j (Gj,1cj+1) = Φ

T
jcj +Θ

T
jdj . (2.1.25)

Hence,
T−1

J = T1
0 . . .T

J
J−1, with Tj

j−1 := diag(Gj−1, I).

The multi-scale transformationTJ is uniformly well conditioned for J → ∞
in the sense that

‖TJ‖, ‖T−1
J ‖ = O(1), J ∈ IN,

if and only if the biorthogonal multi-scale bases Θ, Θ̃ both are L2-Riesz
bases, see [Dah94, Dah96, Dah97].

Given a dual pair of L2-anchor bases one can generate a whole scale of
bases for other function spaces reflecting for instance different scales of
smoothness. The most prominent example are Sobolev spaces Hs for some
range s ∈ (−γ̃, γ) (where for s < 0 we define Hs = (H−s)′ by duality) but
other variants of energy spaces such as ‖v‖2

H = ν‖∇v‖2
L2(Ω) + ‖v‖2

L2(Ω) are

covered as well [Dah03]. Here Hs stands for Hs(Ω) or for a closed subspace
of Hs(Ω) defined e.g. by homogeneous boundary conditions. In this case a
suitable diagonal scaling of an L2 basis yields one for a Sobolev space: Let
D := diag(ωλ, λ ∈ J), where typically ωλ = 2

−|λ|s, then

‖D−1d‖�2(J) ∼ ‖dTΘ‖Ht(Ω) and ‖Dd‖�2(J) ∼ ‖dTΘ̃‖H−t(Ω). (2.1.26)

Therefore, Ψ := DΘ, Ψ̃ := D−1Θ̃, i.e.

ψλ := ωθλ and ψ̃λ := ω−1θ̃λ, λ ∈ J ,

are indeed Riesz bases for Hs, H−s respectively.

Note that the scaling can be easily incorporated directly in the two scale
relations. We immediately infer from (2.1.12) that

ΨT
j = Φ

T
j+1Mj,Ψ, Mj,Ψ :=Mj,ΘDj. (2.1.27)

Moreover, since Ψ̃T
j = Θ̃

T
j D

−1
j , we infer from (2.1.21)

Φ̃T
j+1 = Φ̃

T
j Gj,Φ̃ + Ψ̃

T
j Gj,Ψ̃, where Gj,Ψ̃ := DjGj,Θ̃. (2.1.28)

In the context of adaptivity, confer Chapter 1, it is important to note, that
such norm equivalences extend to the Besov spaces of positive regularity

32 Wavelet Prerequisites

s > 0, see e.g. [Dah96, DeV98, Dah97]. If Θ, Θ̃ are biorthogonal wavelet
bases in L2, one has

‖v‖q
Bs

q (Lp) ∼
∑

j

∑

|λ|=j

2jq(s+ d
2
− d

p
)|dλ|p

q/p

.

There exist elegant constructions of wavelets in arbitrary dimensions satis-
fying all of the above requirements also for non trivial domain geometries
[CTU98, CTU00, DS99a, DS99b, CM00].

However, we will not be restricted to a special construction of wavelets,
yet we will always require that the basic assumptions summarized in the
following hold:

Assumption 2.1.1. We will always assume that we are given a dual pair
〈Ψ, Ψ̃〉 of biorthogonal wavelet bases in some Hilbert space H and its dual H′

respectively. Each v ∈ H shall have a unique wavelet expansion v = vTΨ
with v = (〈v, ψ̃λ〉)λ∈J . Moreover Ψ is

• local, i.e., diam suppψλ,∼ 2−|λ|,

• stable in H in the sense that ‖v‖�2 ∼ ‖vTΨ‖H, cf. (2.1.26),

• provides a cancellation property, 〈v, ψλ〉<∼ 2−|λ|(d
2

+m̃)‖v‖W m̃∞ , cf. (2.1.15).

The dual basis Ψ̃ is required to satisfy the analogous conditions with H and
m̃ canonically replaced by H̃ and m.

One widespread approach to construct wavelets in higher dimensions is a
classical tensor product ansatz

θλ(x) = θj,k,e(x1, x2, . . . , xd) =

d∏
i=1

θj,ki,ei
(xi), (2.1.29)

with j ∈ IN 0,k = (k1, . . . , kd) ∈ ZZd, e = (e1, . . . ed) ∈ {0, 1}d. In this case,
we get 2d − 1 types of wavelets (e ∈ {0, 1}d\0) and one (type of) scaling
function (e = 0). The masks of the corresponding functions are obtained
by tensor products of the univariate masks. In the tensor product case,
we will describe changes of bases analogously to (2.1.17) and (2.1.20) by
setting

Mj = (Mj,0,Mj,1, . . . ,Mj,2d−1),=: (Mj,Φ,Mj,Θ) (2.1.30)

2.2 Cardinal B-spline Wavelets 33

and likewise

Gj = (Gj,0,Gj,1, . . . ,Gj,2d−1),=: (Gj,Φ,Gj,Θ)
T. (2.1.31)

Tensor products of the spline wavelet family developed in [CDF92] fit into
this setting. As a meanwhile widespread discretization tool, this family
is of particular interest in practice and we will treat spline wavelets as
our model-type of wavelet basis throughout this thesis. We will therfore
review some of their properties in the next section. For further information
on wavelet analysis and construction, the reader is referred to one of the
textbooks on wavelets [Chu92, Dah97, Dau92, KLR95, Mey92, Woj97].

2.2 Cardinal B-spline Wavelets

Cardinal B-spline functions are meanwhile a standard discretization tool
for wavelet methods treating e.g., operator equations. We will use the
term cardinal B-spline wavelets for wavelet systems according to [CDF92]
because the underlying refinable function is a cardinal B-spline. One of
the most important features of these splines at least for our context is that
they allow fast point evaluation at arbitrary points.

In general, the cardinal B-spline κϕ of order κ ∈ IN is a piecewise poly-
nomial of degree κ − 1 which can be defined recursively as a convolution
product, i.e.,

1ϕ(x) := χ[0,1)(x),

κϕ(x) := (κ−1ϕ ∗ 1ϕ)(x) =

∫
IR

κ−1ϕ(x− y)1ϕ(y)dy.

One can show that cardinal B-splines have the following properties: They
are non-negative κϕ(x) ≥ 0 and normalized

∫
IR κϕ(x)dx = 1. Their integer

shifts form a partition of unity
∑

k∈ZZ κϕ(x − k) = 1 , their support is
contained in [0, κ] and they are refinable with

κϕ = 2
1−κ

κ∑
k=0

(
κ

k

)
2ϕ(2 · −k).

Moreover, κϕ ∈ Cκ−2 and the derivatives for κ > 1 satisfy

d

dx
κϕ(x) = κ−1ϕ(x)− κ−1ϕ(x− 1). (2.2.1)

34 Wavelet Prerequisites

For the evaluation of κϕ at a given point x ∈ IR, one uses an alternative
definition of B-splines

κ = 1 : κϕ
i(t) = κϕ

1(t) =

{
1 ti ≤ t < ti+1

0 elsewhere ,
(2.2.2)

κ > 1 : κϕ
i(t) =

t− ti
ti+k − ti

κ−1ϕ
i(t) +

ti+k − t

ti+k − ti+1
κ−1ϕ

i+1(t) ,(2.2.3)

where N := (t0, t1, . . . , tk), ti < ti+1, i = 0, 1, . . . , k − 1 is a given knot-
vector. In the case of cardinal B-splines the knots are chosen to be integer
(or cardinal) numbers ti = i. Given κϕ(t), a repeated application of (2.2.3)
finally yields a representation of κϕ(t) consisting only of splines of order
1, hence (2.2.2) is applicable. This principle leads to the fast and stable
evaluation scheme known as the de Boor algorithm, see e.g. [Sch39].

In the case κ = 2, we obtain the classical symmetric hat function by an
integer shift

2φ(x) := 2ϕ(x+ 1) =

1 + x, −1 ≤ x < 0,
1− x, 0 ≤ x ≤ 1,

0, otherwise.
(2.2.4)

As for the hat function, one often centralizes the spline functions by a shift

κφ(x) = κϕ(x+
⌊κ
2

⌋
),

so that one obtains symmetry around κ∗ := (κmod2)/2, i.e. κφ(x− κ∗) =

κφ(−x + κ∗). As a consequence, the function as well as the associated
refinement mask is supported in [−�κ

2
�, �κ

2
�]. For further details on splines

including computational remarks we refer to [Sch39].

For cardinal B-splines, suitable dual generators are known. In fact, in
[CDF92], families of refinable functions κ,κ̃φ̃, κ+ κ̃ even, were constructed
such that a biorthogonality relation of the form (2.1.7) is satisfied.

The next figure shows primal wavelet according to the hat function (2.2.4)
and one of its duals, 2,4ψ̃.

2.3 Tree–like Structured Index Sets 35

−1.5 −1 −0.5 0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) Wavelet according to 2,2φ

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

2.5

(b) Dual scaling function 2,4φ̃

Figure 2.1: Wavelet basis functions

The pair of cardinal B-spline wavelet bases according to two parameters κ
and κ̃ will henceforth be denoted by N(κ, κ̃) and we will use later on, that
the mask of the dual function κ,κ̃φ̃ is supported in [−�κ

2
�−κ̃+1, �κ

2
�+κ̃−1].

2.3 Tree–like Structured Index Sets

In principle, the best possible (in terms of the ratio accuracy/cardinality)
set Λ for an approximant uΛ to a target function u could be a completely
unstructured selection of indices. However, for our algorithm, we will re-
quire certain structural features such as ‘tree structure’, ’completeness’ and
‘gradedness’, to be explained in a moment.

Working with tree approximations, i.e., with linear combinations of wavelets
whose indices form a ’complete tree’, has turned out to be essential in
the analysis of adaptive wavelet schemes for nonlinear problems of the
form (3.1.8), see [CDD03a, CDD03d]. Yet, such structural demands are
also imposed for adaptive schemes with different background, e.g. one can
find similar conditions for meshes used in adaptive schemes based on cell
averages in the context of hyperbolic conservation laws and finite volume
methods, see e.g. [Mül03].

Support cubes: Recall that λ = (|λ|,k, e) where k = k(λ) is a multi-
index encoding the spatial location and e = e(λ) ∈ {0, 1}d \ 0 refers to
the type of the wavelet. The index sets Jj identify the true wavelets ψλ,
|λ| = j, e(λ) %= 0, on level j. The type e = 0 is always reserved to the

36 Wavelet Prerequisites

scaling functions and we will therefore identify (j,k, 0) with λ◦ = (j,k),
|λ◦| = j,k(λ◦) = k. The set of scaling function indices (j,k) on level j is
denoted by Ij while I denotes the union of these sets over all levels.
For all constructions mentioned one can associate with λ◦ = (j,k) a support
cell �λ◦ with the following properties:

�λ◦ ⊆ suppψλ, |λ| = j, k(λ) = k. (2.3.1)

Moreover, Pj := {�λ◦ : λ◦ ∈ Ij} shall form a hierarchy of nested partitions
of Ω, i.e. Ω̄ =

⋃
λ◦∈Ij

�λ◦ and each �λ◦ is an essentially disjoint union of

support cells of level |λ| + 1. In the simplest case of translation invariant
scaling functions the support cells have the form

�j,k := 2
−j(k + [0, 1]d). (2.3.2)

In what follows, we will often identify λ ∈ J with the support cell �λ◦ and
by Λ◦ we will denote the index-set of support cells associated with the set
of indices in Λ ⊂ J . We will make use of the fact, that Λ◦ ⊂ I. Note, that
except for the case of Haar-wavelets, �λ◦ � suppψλ and that the difference
grows with the order of the wavelets.

Figure 2.2 shows a non-uniform set of wavelet coefficients in one dimension
represented by support cubes. The different gray-shades correspond to the
size of the associated coefficient value.

Parent/child: The Pj induce a natural hierarchy with respect to set
inclusion. Whenever �µ◦ � �λ◦ , µ◦, λ◦ ∈ I, we say that µ◦ is a descendant
of λ◦ which we express by µ◦ . λ◦. When equality is permitted we write
µ◦ / λ◦. Conversely λ◦ is called an ancestor of µ◦, which will be denoted by
λ◦ ≺ µ◦ (or λ◦ 1 µ◦). When |λ◦| = |µ◦|−1, µ◦ is called a child of λ◦ and λ◦

is referred to as the parent of µ◦, which will be expressed by the notation
λ◦ = P(µ◦). Here every dyadic cube �λ◦ , λ◦ ∈ J ◦

j , j > j0 has a unique
parent P(λ◦) = �k(λ◦)/2�, yet note that uniqueness is not necessarily
required for general constructions of support cubes. If P(λ◦) = P(µ◦), µ◦

will be called a sibling of λ◦.

Complete trees: A subset T ◦ ⊂ I is called a tree if for each λ◦ ∈ T ◦ with
|λ◦| > j0 also P(λ◦) ∈ T ◦. It will greatly simplify data structures when
a tree is complete in the sense that whenever λ◦ ∈ T ◦ implies that all the
siblings of λ◦ also belong to T ◦. We shall work in what follows exclusively
with complete trees.

On account of the above association of a support cube with those indices in
J sharing the same level and spatial index k the tree structure of I induces
a tree-like structure in J by saying that T ⊂ J has tree structure if T ◦ is

2.3 Tree–like Structured Index Sets 37

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

1

2

3

4

5

6

7

8

k=0

Le
ve

l
 j

k

Figure 2.2: Non-uniform index set represented by support cubes

a tree in the above sense. Note that therefore λ ∈ T implies that all µ ∈ T
with |µ| = |λ| and k(µ) = k(λ). We shall again refer to this property
as completeness and call also the set T (in slight abuse of terminology) a
(complete) tree.

It is worth the following two remarks: Of course, the tree structure im-
poses a restriction on the selection of active wavelets when compared with
unconstrained N -term approximation. Yet, permitting only tree-like sets
T in the best N -term approximation in H t, cf. Section 1, the desired error
rate N−s is obtained for v ∈ Bt+sd

q (Lp) as long as
1
p
< s

d
+ 1

2
, cf. C2) in

Section 1.1 and see [DeV98, CDDD01]. Compared to the unrestricted case,
this does just no longer include Besov spaces where 1

p
= s

d
+ 1

2
, and the

restriction is in that sense not as strong as one might expect. For a more
detailed discussion of this restriction we refer to [CDD03a, CDD03b].

Secondly, the notion of complete trees is quite natural at least regarding
the output of a heuristic adaptive strategy. We indeed automatically end
up with complete trees, when we compute an initial approximation on a
coarse scale and adapt it by incorporating the descendants of indices with
‘big’ error contributions until a certain stopping criterion is fulfilled.

38 Wavelet Prerequisites

Yet note that an approximation process consisting in thresholding or a
refined prediction strategy may result in an index set not exhibiting the
latter features. In that regard however, it is important to mention, that in
[CDD03c], thresholding strategies have been investigated that will produce
tree shaped index sets. Those ’tree-coarsening’ schemes are based on a
special penalized thresholding by Binev/DeVore.

Leaves: The set of leaves ∂T of a tree T ◦ ⊂ I consists of those λ◦ ∈ T ◦

which belong to T ◦ but none of their children are in T ◦,i.e., The support
cube �λ◦ and likewise λ◦ is called a leaf if none of the children of �λ◦

corresponds to an index in Λ◦. One may confirm that #T ◦ ∼ #∂T ◦. In a
complete tree T ◦, the level |λ| is the highest level of resolution on �λ for
λ◦ ∈ ∂T ◦.

We shall have to deal also with the set ∂T − of outer leaves of T ◦ which
consists of those λ◦ %∈ T ◦ whose parent is in T ◦. It is easy to see that the
set of outer leaves ∂T − forms a partition of Ω consisting of support cubes.
Hence the span of wavelets from a complete tree T ⊂ J are associated in a
natural way with a locally refined mesh, namely ∂T −. Thus the adaptation
potential offered by spans of wavelets whose indices form a complete tree
is comparable to trial spaces on locally refined meshes.

We will make use of the fact that the support cubes of the leaves of a
complete tree form a disjoint non-uniform partition of �, i.e.,⋃

λ◦∈∂Λ◦
�λ◦ = �. (2.3.3)

Of course, the set of leaves of the fully refined sets Λ(J) := {λ ∈ J : |λ| ≤
J} is just the set of cubes {�λ : λ ∈ JJ} forming a uniform mesh of mesh
size 2−J . By contrast, the set of leaves ∂Λ◦ of a sparse tree Λ induces, in
view of (2.3.3), a non-uniform locally refined mesh composed of the dyadic
cubes in ∂Λ◦, see e.g.Figure 2.3 d).

Gradedness As we will see later on, our structural demands will insist
on a certain grading, which is again best explained through the dyadic
partitions. ‘Graded’ means that in the partition ∂T ◦ any two neighboring
cubes, i.e., cubes which share some lower dimensional face, differ at most
by one dyadic level. Thus the transition between cubes of different size is
gradual.

Remark 2.3.1. It has been shown in [Dah82] that every tree T ◦ can be
extended to a graded tree T̂ ◦ such that #T̂ ◦ <∼#T ◦ where the constant
depends only on the spatial dimension d.

Figure 2.3 below shows an example of an unstructured set of support

2.3 Tree–like Structured Index Sets 39

cubes and its minimal tree-shaped hull which is then completed and fi-
nally graded.

−1 −0.5 0 0.5 1 1.5 2

0

1

2

3

Le
ve

l
 j

k

(a) Unstructured set of support
cubes

−1 −0.5 0 0.5 1 1.5 2

0

1

2

3

Le
ve

l
 j

k

(b) Its tree shaped hull

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

1

2

3

Le
ve

l
 j

k

(c) The completed tree

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

1

2

3

Le
ve

l
 j

k

(d) The completed and graded tree

Figure 2.3: A set of support cubes under various structural demands

We even quantify gradedness to further disentangle the transition between
dyadic levels: A tree T ◦ ⊂ J ◦ is called M-graded if for all λ◦ ∈ T ◦

k(P(λ◦)) + [−M,M + 1]d ⊆ T ◦. (2.3.4)

Note that when M ≥ 5
2
< one has, in view of (2.1.13), that

U(∂Tj) ∩ U(∂Tj−2) = ∅, (2.3.5)

where for any finite subset Γ ⊂ J

U(Γ) :=
⋃
λ∈Γ

Ω̃λ,

denotes the domain covered by the dual scaling functions in Γ. Thus, only
supports of wavelets associated with leaves from at most two consecutive
levels overlap, smaller M would permit more levels to interact.

40 Wavelet Prerequisites

Figure 2.4 shows the 2-graded complete hull of the example set of support
cubes from Figure 2.3.

−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

Le
ve

l
 j

k

Figure 2.4: A complete, non uniform 2-graded index tree

Obviously one can pass from any graded tree T ◦ to anM-graded tree T̃ ◦ by
M dyadic subdivisions of the leaves. Hence one still has #T̃ ◦ <∼#T ◦ which
together with Remark 2.3.1 says that at least asymptotically the restriction
to M-graded trees is not essential. It may well matter quantitatively as
observed earlier in [DSX00] which is one of the main reasons for developing
an alternative to the scheme from [DSX00]. In Section 4.2 we will discuss
in detail procedures to find the minimal M-graded tree containing a given
unstructured index set.

Part II

Development of the Tools

Overview: Part II is the central part of this thesis. Here
we present and analyze our main tools, above all the recov-
ery algorithm Recover, cf. [BDS04].
In Chapter 3, we first review the background of the recov-
ery task to understand how Recover fits in the context of
adaptive schemes. We then turn to the layout of the scheme
and its analysis for two types of spaces, namely L2 and in
duals of H t, t > 0.
The demands of Recover lead us to the construction of
several supporting tools, described in Chapter 4. The main
issues there are quadrature, structural requirements and
a thresholding-strategy to minimize overhead due to erro-
neous prediction.

Chapter 3

The Recovery Scheme

The central problem treated in this thesis will be explained now in a suf-
ficiently general format in order to accommodate later several different
cases of interest. We will always assume that for the dual pair (H,H′)
of Hilbert-spaces under consideration, we are given a biorthogonal pair of
wavelet basis satisfying our basic assumption 2.1.1.

3.1 Objectives and Background

The core objective can be formulated as the following recovery Task R

which has two parts:

Task R1Task R1Task R1: Given g ∈ H′
and some finite subset T ⊂ J of indices,

compute an array w supported in T that approximates

g(T) := (gλ)λ∈T := (〈ψλ, g〉)λ∈T .

Task R2Task R2Task R2: Moreover, whenever for a given target accuracy

ε > 0 the truncation error satisfies

‖g − g(T)‖�2(J) ≤ ε, (3.1.1)

the approximation w should satisfy for some fixed con-

stant C
‖g(T)−w‖�2(J) ≤ Cε, (3.1.2)

46 The Recovery Scheme

i.e. the approximation error should be comparable to a

given bound for the truncation error.

To understand this task, recall that the Riesz basis property of Ψ implies
the existence of a dual basis Ψ̃ ⊂ H′ such that 〈ψλ, ψ̃µ〉 = δλ,µ. Thus, the
gλ = 〈ψλ, g〉 are the expansion coefficients of g ∈ H′ with respect to the
dual basis

g =
∑
λ∈J

〈ψλ, g〉ψ̃λ.

Moreover, a duality argument yields (see e.g. [Dah03])

C−1
Ψ ‖(〈ψλ, w〉)λ∈J ‖�2(J) ≤ ‖w‖H′ ≤ c−1

Ψ ‖(〈ψλ, w〉)λ∈J ‖�2(J), ∀ w ∈ H′.
(3.1.3)

Hence

‖w− g(T)‖�2(J) ≤ CΨ‖
∑
λ∈T

wλψ̃λ −
∑
λ∈T

gλψ̃λ‖H′, (3.1.4)

i.e. the accuracy of w as an approximation to g(T) is controlled by an
approximation error for the truncated expansion gT :=

∑
λ∈T gλψ̃λ in H′.

As we will explain later in more detail, the approximation of the finite
array g(T) is often just a vehicle for fabricating an approximation to the
whole infinite array g. The rationale then is that, from some background
information, the set T is known to contain the most significant terms 〈ψλ, g〉
of the whole expansion. Since, due to the norm equivalences, accuracy is
measured in �2(J), “most significant” means here the largest in modulus.
The relevant error is then controlled by

‖w − g‖�2(J) ≤ CΨ‖
∑
λ∈T

wλψ̃λ −
∑
λ∈T

gλψ̃λ‖H′ + ‖g − g(T)‖�2(J), (3.1.5)

which explains Task R2. In fact, ideally the approximation error of the
finite expansion in the first term should be at most of the same order as (a
bound for) the prediction error in the second term.

One might think of many situations where the computation of wavelet
coefficients is needed. The considerations in the present investigations are
guided primarily by the following two scenarios whose brief description may
help identifying the particular computational demands.

L2-approximation: The first case concerns simply H = L2(Ω). Thus
H′ = H = L2(Ω) and the objective is to approximate g in L2(Ω) by some
finite expansion

∑
λ∈T wλψ̃λ (where the role of primal and dual basis does

3.1 Objectives and Background 47

not matter). By (3.1.4), the accuracy of the coefficient array is compara-
ble to the approximation error in L2 which will later be seen to simplify
matters and is essentially the situation considered in [DSX00].

Dual norms: The second scenario typically involves topologies whereH is
compactly embedded in L2(Ω) such as a Sobolev space of positive order. A
corresponding model problem may be formulated as follows, see [CDD03a]
for more details. Given Ω ⊂ IRd, consider

−div(a∇u) +G(u) = f in Ω, u = 0 on ∂Ω, (3.1.6)

where G : v 4→ G◦v = G(v) is a possibly nonlinear composition map and a
is a (possibly variable) uniformly positive definite matrix. For this problem
to be well-posed, cf. (0.0.2), it helps looking at the weak formulation

〈∇v, a∇u〉+ 〈v,G(u)〉 = 〈v, f〉, v ∈ H, (3.1.7)

where now H is to be chosen suitably. Clearly the leading second order
term suggests H = H1

0 (Ω) (the space of L2-functions on Ω whose first order
derivatives are also in L2 and whose trace on ∂Ω vanishes). Thus we require
that G maps H = H1

0 (Ω) into H′ = H−1(Ω) so that (3.1.7) makes sense
whenever the data f belong to H′ = H−1(Ω) as well. The general format
of such problems can be stated as follows. Given F : H → H′ and any
f ∈ H′ we wish to find a u ∈ H such that

〈v, F (u)〉 = 〈v, f〉 ∀ v ∈ H. (3.1.8)

In the above example it is not hard to confirm well-posedness when G is
monotone so that (3.1.7) is the Euler-Lagrange equation of a strictly convex
minimization problem. For instance,

G(v) := v3 =⇒ G : v 4→ G(v), G : H1
0 (Ω)→ H−1(Ω), for d ≤ 3.

(3.1.9)

To explain how Task R fits into this context recall from the introduction
that the strategy proposed in [CDD03a], [CDD03b] deviates from conven-
tional approaches in that the problem is first transformed with the aid of
the basis Ψ into an equivalent one that lives now on �2(J). In fact, testing
both sides of F (u) = f with all basis functions ψλ, λ ∈ J generates for
u =

∑
λ∈J uλψλ the arrays F(u) = (〈ψλ, F (u)〉)λ∈J , f = (〈ψλ, f〉)λ∈J so

that (3.1.8) is equivalent to
F(u) = f , (3.1.10)

48 The Recovery Scheme

where u is the array of wavelet coefficients of u with respect to the Riesz
basis Ψ for H. One then can formulate an iteration in �2(J), see (0.0.3)

un+1 = un −Cn(F(u
n)− f), n = 0, 1, 2, . . . , (3.1.11)

so that (for a suitable initial guess u0 with u0 in some neighborhood U of
u) the error is reduced in each step by at least a fixed factor ρ < 1, i.e.

‖u− un+1‖�2(J) ≤ ρ‖u− un‖�2(J), n = 0, 1, 2, (3.1.12)

Only then one addresses a numerical realization by carrying out such an
iteration approximately. The key task is then to evaluate adaptively for
a given finitely supported input array v the image F(v) within some dy-
namically updated accuracy tolerance. Such an evaluation hinges on two
pillars, namely first the a-posteriori information on the given input v (i.e.
the knowledge of the significant coefficients in v) and, second, the a-priori
information on the mapping F , F respectively.

Aside from the norm equivalences (2.1.2), at this point the second key
feature of wavelet bases namely the cancellation properties (2.1.15), comes
into play see [CDD03d].

This will allow one then to predict the indices hosting the significant coeffi-
cients of the image F(v), cf. (0.0.4). (The prediction set T will actually in
general not be completely arbitrary but will have tree structure, see Section
2.3 and cf. [CDD03d]).

Thus here we have g = F (v) ∈ H′ and the set of significant coefficients
identified by the index set T is known from the prediction in step S1). For
the concrete construction of asymptotically optimal prediction sets for a
certain class of linear and nonlinear operators F (of at most polynomial
growth at infinity) we refer to [CDD03d]. In brief [CDD03d] show that,
given a target accuracy ε > 0, one can predict an ε-significant tree T =
Tε such that ‖g − g(T)‖�2(J) ≤ ε while the cardinality of Tε grows with
decreasing ε at some optimal rate.

In [CDD03a] the precise requirements on the approximation of F(v) have
been identified under which the overall adaptive scheme has asymptotically
optimal complexity, see the notion of s∗-sparsity in [CDD03a]. Together
with the above mentioned prediction results these requirements are met
whenever Task R is fulfilled.

Therefore we focus in this thesis on the recovery step step S2), cf. (0.0.5),
which is exactly Task R. It will be important that the accuracy in the
�2(J)-error (0.0.4) is here related to the accuracy of the corresponding
functions (or distributions) in H′, due to the above mentioned mapping
properties of F .

3.2 The Algorithm 49

Of course, in order to benefit from the ability of the above schemes to
optimally track the significant coefficients of the unknown solution, one
would like to compute the entries of w in a possibly efficient way which
means at a computational cost (in terms of floating point operations and
storage manipulations) that ideally stays proportional to #T . Moreover,
one has to assert the accuracy of such computations e.g. via estimates like
(3.1.5).

A first natural idea would be to compute each individual quantity 〈ψλ, g〉
by quadrature. However, a quick thought confirms that this would never
allow one to keep the above desirable computational budget. In fact, the
coarse scale wavelets give rise to integration domains that are comparable
to the size of Ω and each of these entries would require a growing quadrature
effort with increasing accuracy. In addition wavelets from different scales
still interact.

Instead we shall pursue a different strategy ([BDS04]) and take up an idea
suggested already in [DSX00]. As already pointed out in the introduc-
tion, the algorithm in this thesis improves earlier findings from [DSX00] in
several respects concerning the algorithmic side as well as the complexity
analysis to be now suited for modern adaptive wavelet schemes.

3.2 The Algorithm

We address now Task R. T denotes always a complete finite tree and
we will assume henceforth, that the biorthogonal Riesz bases Ψ, Ψ̃ for H
is obtained through diagonal scaling of a biorthogonal Riesz bases Θ, Θ̃
for L2 as described in Section 2.1, i.e., Ψ := DΘ, Ψ̃ := D−1Θ̃ with D :=
diag(ωλ, λ ∈ J) or

ψλ := ωλθλ, ψ̃λ := ω−1
λ θ̃λ, λ ∈ J , (3.2.1)

Recall that by setting Dj := diag (ωλ : λ ∈ Jj), we can incorporate the
scaling in the refinement (2.1.12) in the following form

ΨT
j = Φ

T
j+1M

Ψ
j , MΨ

j :=MΘ
j Dj . (3.2.2)

By (3.2.1) Ψ̃T
j = Θ̃

T
j D

−1
j we have, cf. (2.1.28)

Φ̃T
j+1 = Φ̃

T
j G

Φ
j + Ψ̃

T
j G

Ψ
j , where GΨ

j := DjG
Θ
j . (3.2.3)

According to Task R, we have to compute a sequence w = (wλ)λ∈T with
suppw ⊆ T that approximates the array

g(T) := (〈ψλ, g〉)λ∈T .

50 The Recovery Scheme

Keep in mind that the entries 〈ψλ, g〉 are nothing but the wavelet coeffi-
cients of g =

∑
λ∈J 〈ψλ, g〉ψ̃λ with respect to the dual basis Ψ̃ whose projec-

tion to the span of Ψ̃T := {ψ̃λ : λ ∈ T } is denoted by gT =
∑

λ∈T 〈ψλ, g〉ψ̃λ.

Of course, since 〈ψλ, g〉ψ̃λ = 〈θλ, g〉θ̃λ, it suffices to compute the array

d̃(T) = (〈ψλ, g〉)λ∈T = (〈ψλ, gT 〉)λ∈J , (3.2.4)

to obtain
g(T) = DT d̃(T), DT := diag (ωλ : λ ∈ T). (3.2.5)

3.2.1 Motivation and Main Idea

The scheme we are going to develop next is based on the coefficients 〈ψλ, g〉,
λ %∈ T , being presumably small in a sense that will be made more precise
later. Specifically, we shall at this point only make use of the fact (to be
established later) that quadrature errors are small on supp φ̃j,k whenever
�j,k is a support cell whose index belong to ∂T −, the set of outer leaves
of T ◦. Recall that the support cells associated with ∂T ◦, form a partition
of Ω. On account of these accuracy considerations we shall speak of safe
approximations/quadrature whenever it applies to the quantities 〈φj,k, g〉
for (j,k) %∈ T ◦.

We shall explain next how to use this in order to compute correspondingly
accurate approximations of all 〈Θλ, g〉 (resp. 〈Ψλ, g〉), λ ∈ T . We deliber-
ately postpone a detailed discussion of accuracy issues and focus first on
the computational ingredients.

We shall abbreviate in the following

cj,k := 〈φj,k, g〉, (j,k) ∈ Ij , dλ := 〈Θλ, g〉, λ ∈ J , (3.2.6)

and write for any subset G of Ij or of J briefly

cj(G) := (cj,k : (j,k) ∈ G), d(G) := (dλ : λ ∈ G),

where we simply set cj = cj(Ij), dj := d(Jj). In terms of these coefficients
(3.2.10) takes, upon using the two-scale relations (2.1.6), (2.1.12), the form

Θ̃T
j dj = Φ̃

T
j+1Mj,Θ̃dj = Φ̃

T
j+1(cj+1 −Mj,Φ̃cj), (3.2.7)

whence we conclude that

cj+1 −Mj,Φ̃cj =Mj,Θ̃dj . (3.2.8)

3.2 The Algorithm 51

We shall employ the canonical projectors

Pjw =
∑
k∈Ij

〈φj,k, w〉φ̃j,k =
∑
k∈Ij

cj,kφ̃j,k (3.2.9)

and exploit the fact that

(Pj+1 − Pj)w =
∑
λ∈Jj

〈Θλ, w〉Θ̃λ. (3.2.10)

To point out the significance of (3.2.8), it will be convenient to introduce
some further notation. Let Tj := T ∩Jj denote the set of elements in T of
level j and let J = max {j ≥ j0 : Tj %= ∅} the highest level appearing in T .
If dj is supported on Tj , (3.2.8) says that the array cj+1 −Mj,Φ̃cj vanishes
outside the union of the columns of Mj,Θ̃ selected by Tj. We record this
observation as follows.

Remark 3.2.1. Denoting for λ ∈ I ∪ Jj by M̃j
|λ, G̃j

λ the λ-th column
of M̃j, respectively the λ-th row of G̃j, and defining Gj+1 ⊂ Ij+1 by

Gj+1 :=
⋃

λ∈T ◦
j

supp M̃j
|λ ∪

⋃
λ∈T ◦

j

supp G̃j
λ, (3.2.11)

one concludes from (3.2.8) that, whenever suppdj ⊆ Tj, one has(
cj+1 −Mj,Φ̃cj

)
(Ij+1 \ Gj+1) = 0. (3.2.12)

Concrete identifications of the sets Gj for the widespread cardinal B-spline
wavelets, cf. Section 2.2, will be given in Section 3.4.

Relation (3.2.12) means that if we approximate the values of cj+1 and cj

only for a subset of indices, such truncated arrays combined via (3.2.8)
cause no error outside a certain finite set of indices. The following consid-
erations aim at exploiting this fact systematically.

To this end, one derives from (2.1.21) that

Φ̃T
j+1cj+1 = Φ̃

T
j Gj,Φ̃cj+1 + Θ̃

T
j Gj,Θ̃cj+1 = Φ̃

T
j cj + Θ̃

T
j dj , (3.2.13)

so that
cj = Gj,Φ̃cj+1, dj = Gj,Θ̃cj+1. (3.2.14)

We wish to compute now as few scaling function coefficients as possible
in order to generate in a reliable way the arrays d(Tj) of non-vanishing

52 The Recovery Scheme

wavelet coefficients. This requires taking the truncation effects in the two-
scale relations into careful account. First, note that, by the second relation
in (3.2.14), we only need to know cj+1(Gj+1) to determine dj(Tj) because

only the rows G̃j
λ with λ ∈ Tj are required and they are all supported

in Gj+1. Likewise, the first relation in (3.2.14) says by the same reasoning
that cj(T ◦

j) is accurately determined from cj+1(Gj+1). So we can think of
cj(T ◦

j) being obtained from accurate data on level j + 1 through (3.2.14).
The remaining coefficients cj(Ij \T ◦

j) need to be computed independently.
So, splitting cj into those two parts in (3.2.13), provides, upon making use
of (2.1.6),

Φ̃T
j+1

(
cj+1 −Mj,Φ̃cj(Ij \ T ◦

j)
)
= Φ̃T

j (Gj,Φ̃cj+1)(T ◦
j) + Θ̃

T
j dj(Tj). (3.2.15)

The main point of this relation can be formulated as follows.

Remark 3.2.2. Relation (3.2.15) remains valid when the full array cj+1

and the array Mj,φ̃cj(Ij \ T ◦
j) are restricted to Gj+1, i.e.

Φ̃T
j+1

(
cj+1(Gj+1)−

(
Mj,Φ̃cj(Ij\T ◦

j)
)
(Gj+1)

)
= Φ̃T

j (Gj,Φ̃cj+1)(T ◦
j)+Θ̃

Tdj(Tj).

(3.2.16)

Proof: This is an immediate consequence of (3.2.12).

Applying nowGj,Φ̃ to the array cj+1(Gj+1)−
(
Mj,Φ̃cj(Ij \T ◦

j)
)
(Gj+1) yields

by (3.2.14) the safe coefficients (Gj,Φ̃cj+1)(T ◦
j) and applying Gj,Θ̃ yields

dj(Tj), provided the partial array cj+1(Gj+1) is safe. Moreover, we do not
need all of cj(Ij \T ◦

j) but only cj(Gj \T ◦
j) because, by the above reasoning

these are the only relevant coefficients for the next lower level.

The main point conveyed by these observations is that, computing only the
entries cj+1(Gj+1) and also a suitable truncation of cj on the next lower
level, these truncated arrays suffice to represent cj+1 −Mj,Φ̃cj exactly on
all of Ij+1 whenever dj is supported in Tj . This motivates us to express
expansions in terms of quantities like cj+1 −Mj,Φ̃cj. In fact, we can write
in view of (3.2.15),

PT g := Pj0g +
J∑

j=j0

(Pj+1 − Pj)g

=

J+1∑
j=j0+1

Φ̃T
j

(
cj(Ij \ T ◦

j)−Mj−1,Φ̃cj−1(Ij−1 \ T ◦
j−1)

)
.(3.2.17)

3.2 The Algorithm 53

In order to derive all necessary information within suitable accuracy tol-
erances, in view of the above localization considerations, we only have to
take into account

G−
j := Gj \ T ◦

j , j ≤ J, G−
J+1 = GJ+1. (3.2.18)

Main idea: The idea now is to compute the arrays cj(G−
j) by quadrature.

Since quadrature is therefore applied only at places where local truncation
errors are small one can hope that a fixed quadrature order, independent
of the scale, suffices. Note that the above reasoning remains unchanged
when the sets Gj are replaced by somewhat larger sets. We shall point out
in Section 3.4 that such supersets are efficiently and easily obtained for an
important class of wavelet constructions. So employing for the purpose of
analysis the exact format of the sets G from (3.2.11) does not interfere with
practical realizations using slightly larger sets.

In view of the above localization considerations, the idea is to compute only
the arrays cj(G−

j) by quadrature in order to derive all necessary information
within suitable accuracy tolerances. This gives rise to the scheme described
below in the next section.

3.2.2 A Top–To–Bottom Scheme

We shall compute an approximation to d(T) working from top to bottom,
guided by the considerations of the previous section. One main point will
be that the vanishing of the coefficients dλ for λ %∈ T implies that the
scaling function coefficients cj,k := 〈φj,k, gT 〉, (j,k) %∈ T ◦ can be computed
by quadrature with high accuracy. At this point it does not matter yet
which quadrature rule is used. Since its choice will be intertwined with a
subsequent error analysis we postpone its specification.

As mentioned before, the important point is that quadrature will only be
used to approximate the arrays cj(G−

j). We shall denote these approxima-
tions by qj which are always understood to be supported on G−

j . The key
is then relation (3.2.16) which is used to successively decompose the rep-
resentation (3.2.17) from top to bottom. The scaling function coefficients
produced on the next lower level are then those obtained by quadrature on
the sets G−

j complemented by those living on T ◦
j obtained from transform-

ing safe coefficients from higher levels.

This leads to the scheme Recover that determines for a given tree T an
approximation dR(T) supported on T to the wavelet coefficients of gT with
respect to the dual basis Θ̃ as follows:

54 The Recovery Scheme

Recover — (g, T)→ [dR(T)]

Find minimal J ∈ IN such that Tj = ∅, j > J

Determine G−
J+1 = GJ+1, compute qJ+1(G−

J+1) and set
čJ+1 := 0.

For j = J, J − 1, . . . , j0 do

Determine G−
j = Gj\Tj and qj(G−

j)

Set

c̄j+1 := čj+1 + qj+1(G−
j+1)−

(
Mj,Φ̃qj(G−

j)
) (

G−
j+1)
(3.2.19)

Compute

čj := Gj,Φ̃c̄j+1, and dR

j := Gj,Θ̃c̄j+1 (3.2.20)

Set dR
j0−1 := cR

j0
:= čj0

Algorithm 3.1: Procedure Recover: Basic algorithm of the recovery scheme

From now on we define for the sake of convenience dj0−1 := cj0 and d
R
j0−1 :=

cR
j0
.

Remark 3.2.3. Note that the support of dR
j is always contained in Tj.

The scheme requires computing the quantities qj,k as approximations to
cj,k = 〈φj,k, g〉 only on the set

G− := G−(T) =
J+1⋃
j=j0

G−
j . (3.2.21)

Moreover, one has
#G− <∼#∂T <∼#T . (3.2.22)

Hence, whenever the quadrature requires at most a constant cost per entry,
the number of flops needed in Recover remains uniformly proportional
to #T .

Thus from the computational complexity point of view the above scheme
satisfies all the requirements put forward in the adaptive solution context
described earlier in Chapter 1.

3.2 The Algorithm 55

Figure 3.1 illustrates the first steps of the recovery scheme according to the
above algorithm on a very simple one dimensional example.

−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

Le
ve

l
 j

k

(a) Input set, J = 3

−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

4

k

Le
ve

l
 j

(b) Processing level 3: Quadrature
on safety-region (level 4)

−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

4

k

Le
ve

l
 j

(c) Quadrature for level 2

−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

4

k

Le
ve

l
 j

(d) Correction step

−4 −3 −2 −1 0 1 2 3 4

0

1

2

3

k

Le
ve

l
 j

(e) Decomposition: Scaling func-
tions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

1

2

3

k

Le
ve

l
 j

(f) Decomposition: Wavelet output
(only support cubes plotted)

Figure 3.1: First steps of the recovery scheme

56 The Recovery Scheme

Subplot 3.1 (a) shows the 2-graded input set of support cubes. Starting on
the top level J = 3, we compute the (approximated) scaling-coefficients for
G4 marked in medium gray in Subplot 3.1 (b). Proceeding with level 2, we
also determine the corresponding approximated scaling function coefficients
(see 3.1 (c)) in order to use them to perform a first correction step, as
illustrated in 3.1 (d). We are then ready to decompose the highest level
in order to obtain the desired wavelet coefficients (the associated support
cubes are plotted in 3.1 (f)). The scaling function portion will merge
with the coefficients on level 3. We would continue by computing the
quasi-interpolants associated to level 1, perform a correction step for the
coefficients on level 2 and decompose the result.

Recall that in the context of Task R2 the objective of Recover is
to produce an array w, that satisfies ‖g(T) − w‖�2(J) ≤ Cε whenever
‖g − g(T)‖�2(J) < ε. However, when g = F(v) is a composition the
prediction set T depends on a-posteriori information about v and priori
knowledge of F. The latter typically refers to a whole class of nonlinearities
and may lead in concrete cases to rather pessimistic predictions rendering
T unnecessarily large. The top-to-bottom structure of Recover easily
accommodates individual adaptive adjustments on the fly, see also Section
4.3. In fact, let J be again the highest level appearing in T and chose for a
given overall target accuracy ε any sequence εj such that

∑J
j=j0

εj = ε. As
soon as the array dR(Tj) is computed in (3.2.20) we can replace it by an ar-
ray dR

j with possibly small support in Tj such that ‖dR(Tj)−dR
j‖�2(Tj) ≤ εj.

This is a typical coarsening step as described in [CDD03a] based on quasi-
sorting, cf. Section 1.2, and thresholding coefficients with smallest modulus.
In this way the complete tree T may never have to be completely assembled
which is a crucial distinction from earlier versions in [DSX00].

3.3 Error Estimates

The scheme Recover introduced above produces for a tree T an array
dR(T) supported on T to approximate the exact sequence d of wavelet
coefficients of g with respect to Θ̃. Likewise the scaled array gR(T) =
DT d

R(T) should approximate the sequence g of wavelet coefficients of g
with respect to Ψ̃.

Recall from (3.1.5) that in either case the total error of such an approxima-
tion has two sources. First, there is the truncation error ‖d−d(T)‖�2(J), re-
spectively ‖g−g(T)‖�2(J), which depends on the prediction set T . Second,
there is the error incurred by quadrature in the scheme Recover when

3.3 Error Estimates 57

recovering the truncated array d(T).

3.3.1 Exact Quadrature

In a number of relevant cases the goal inTask R2, namely that the quadra-
ture error is dominated by (a bound for) the truncation error, can be
achieved trivially because, in principle, the quadrature can be made exact.
To explain this, recall the example in (3.1.6) with F (v) = −div a∇v+G(v)
and suppose first that G ≡ 0, i.e. the problem is linear. In this case one
has to approximate the entries cj,k = 〈φj,k, g〉 with g = F (v). In the con-
text of adaptive schemes v is a finite wavelet expansion v =

∑
λ∈Tv

vλψλ,
with Tv the tree of significant coefficients of v. Just as done in (3.2.17) we
can rewrite v in local scaling function representation v =

∑
(j,k)∈G−

v
c̄j,kφj,k.

Assuming that Tv is well-graded, which means that the transition between
scales is sufficiently gradual (see (3.3.7) below for a precise definition), only
a uniformly finite number of scaling functions in this expansion overlap a
given point. Thus

cj,k = 〈φj,k, F (v)〉 =
∑

(j,k′)∈G−
v

c̄j,k′〈φj,k,−div(a∇φj,k′)〉

=
∑

(j,k′)∈G−
v ,

supp φj,k′∩ supp φj,k �=∅

c̄j,k′〈∇φj,k, a∇φj,k′〉.

By the previous remarks, the sets {(j,k′) : suppφj,k′ ∩ supp φj,k %= ∅} have
uniformly bounded cardinality. Thus, when using piecewise polynomial
scaling functions and whenever the diffusion matrix a is piecewise polyno-
mial, the quantities 〈∇φj,k, a∇φj,k′〉 can be computed exactly, so that in
this case qj,k = cj,k, (j,k) ∈ G−, and no quadrature error occurs. By the
above reasoning, the computational cost stays proportional to #G− so that
Remark 3.2.3 applies.

This extends to simple nonlinearities. For instance, in the case (3.1.9) we
have g = G(v) = v3 so that

cj,k =
∑

(jiki)∈G−
v ,i=1,2,3,

supp φ(ji,ki)
∩supp φj,k �=∅

〈
φj,k,

3∏
i=1

φji,ki

〉
.

Again for each (j,k) there is a uniformly bounded number of integrals
involving still only piecewise polynomials that can be calculated exactly.

58 The Recovery Scheme

Thus in such cases one can, in principle, make the scheme Recover exact
so that, in view of the relation ‖dR(T)−d(T)‖�2(J)

<∼‖d−d(T)‖�2(J), and
likewise ‖DT (d

R(T)−d(T))‖�2(J)
<∼‖g− g(T)‖�2(J), Task R2 is trivially

fulfilled.

In general, however, one may have to accept a quadrature error or prefers
to accept a quadrature error, because even in the above cases the necessary
exactness order of quadrature may be fixed but rather high. Therefore we
need to estimate this error part and devise ways of decreasing this error if
necessary. The subsequent sections are devoted to both issues. We present
ways of estimating this error, out of necessity in an essentially different
way from [DSX00], and derive strategies for controlling it relative to the
truncation or prediction error.

3.3.2 The L2-Case

We shall address first the case H = L2(Ω) which corresponds to the first
scenario indicated in Section 3.1. Let for (j,k) ∈ G−

qj,k − cj,k = ej,k (3.3.1)

denote the deviation of the computed value qj,k from the true one cj,k =
〈φj,k, g〉. The corresponding arrays ej = (ej,k)(j,k)∈G−

j
are always supported

on G−
j without further mentioning. Recall that G−

J+1 = GJ+1.

Since (3.2.17) involves only coefficients that will be approximated by quadra-
ture we can think of Recover to produce the approximation

PR

T g =

J+1∑
j=j0

Φ̃T
j

(
qj −Mj−1,Φ̃qj−1(G−

j−1)
)
(G−

j) (3.3.2)

to PT g, which, by (3.3.1), immediately yields the error representation

ET := PR

T g − PT g =

J+1∑
j=j0

Φ̃T
j

(
ej −Mj−1,Φ̃ej−1(G−

j−1)
)
(G−

j). (3.3.3)

Of course, the approximate coefficients in dR(T) produced by Recover

arise by decomposing PR
T g which generates as byproducts the auxiliary

arrays čj , c̄j , cf. (3.2.19), (3.2.20). It will be therefore important to un-
derstand how the quadrature errors related to G− effects those arrays and

3.3 Error Estimates 59

thereby dR(T). Inserting (2.1.28) into (3.3.3), proceeding from top to bot-
tom, provides

ET = Φ̃
T
j0Ej0−1 +

J∑
j=j0

Θ̃T
j

(
Gj,Θ̃Ej+1

)
(Tj), (3.3.4)

where for j = J, J − 1, . . . , j0

Ej+1 =
[
Gj+1,Φ̃(. . .GJ−2,Φ̃([GJ−1,Φ̃([GJ,Φ̃RJ+1](T ◦

J) +RJ)](T ◦
J−1)

+RJ−1)(T ◦
J−2) + . . .+Rj+1)

]
(Gj+1),

and
Rj := Rj(G−

j) :=
(
ej −Mj−1,Φ̃ej−1(G−

j−1)
)
(G−

j). (3.3.5)

Thus the error on level j+1 prior to decomposing is obtained by successively
decomposing error contributions from higher levels. Here and in what
follows we always assume that the multiscale decompositions are applied
exactly. Alternatively, one can describe Ej recursively as follows

Ej =
[
Gj,Φ̃(Ej+1)

]
(T ◦

j) +Rj. (3.3.6)

Thus the error on level j consists of a part living inside the tree obtained
from decomposing higher level contributions plus a remainder situated on
G−

j that is newly introduced on that level through quadrature.

The overall �2(J)-error in dR(T) caused by the quadrature inRecover can
be easily estimated by exploiting the norm equivalence (2.1.11). To sim-
plify matters technically we shall specify next somewhat our requirements
on the tree T . The theoretical foundation of good predictions for signif-
icant trees T developed in [CDD03d] required the trees to satisfy the so
called expansion property which, roughly speaking means that the leaves of
subsequent levels do not overlap too much, which is familiar in this context,
see also [DSX00]. Here, it will be convenient to quantify this as follows.
The tree T is called well-graded if one has

 ⋃
λ:λ◦∈G−

j

Mj,Φ̃
|λ

 ∩ T ◦

j+1 = ∅. (3.3.7)

In other words, as soon as one leaves the tree on level j those scaling
functions will not overlap the safe area on level j + 1. It has been shown

60 The Recovery Scheme

in [CDD03d] that the expansion property does not affect the asymptotic
growth of the ε-significant tree T = Tε when ε → 0. Since condition
(3.3.7) can be realized by at most a finite uniformly bounded number of
subdivisions of the leaves of a tree with expansion property, the same is true
for well-graded trees. We shall always assume this property in what follows,
see Section 3.4.2 for an easy to check criterion ensuring well-gradedness.
The main result of this section can now be stated as follows.

Theorem 3.3.1. There exists a constant C depending only on the wavelet
bases Θ, Θ̃ and the well-gradedness parameters so that the computed array
dR(T) satisfies

‖cj0 −dR

j0−1‖2
�2(J)+ ‖d(T)−dR(T)‖2

�2(J) ≤ C

J+1∑
j=j0+1

‖ej(G−
j)‖2

�2(J). (3.3.8)

Proof: Recall that ∂T − denotes the set of outer leaves of the tree T ◦, i.e.
λ◦ ∈ ∂T − means that λ◦ does not belong to T ◦, yet its parent does. As
the support cubes associated with ∂T − form a partition of Ω, by (2.1.11)
we have with cR

j0
= dR

j0−1

‖cj0 − cR

j0‖
2
�2(J) + ‖d(T)− dR(T)‖2

�2(J) ≤ c−1
Θ ‖ET ‖2

L2(Ω)

= c−1
Θ

∑
λ◦∈∂T −

‖ET ‖2
L2(�λ◦).

The well-gradedness of T implies that for every λ◦ ∈ ∂T −
j one has that

(Φ̃T
l Rl)|�λ◦ %≡ 0 holds only for a uniformly bounded number K of levels |l−

j| ≤ K. Since the two scale matrices define uniformly bounded mappings
on �2(J), the assertion follows.

Note that the main difference from earlier results in [DSX00] lies in the fact
that the estimate involves no assumptions e.g. concerning the equilibration
of local polynomial approximation errors of g, or in the case g = G◦v, of v.
However, the results in [DSX00] can be recovered under such assumptions.
In fact, suppose the qj,k have the form qj,k = 〈Qj,k(g), φj,k〉 where Qj,k(g)
is a polynomial approximation of g on the support Sj,k of φj,k of some
order m, say. Suppose that e.g. a discrete least squares fit to g on a
fixed sufficiently dense sample set in Sj,k even assures (for the give g)
that ‖g − Qj,k(g)‖L2(Sj,k) ≤ C infP∈Pm ‖g − P‖L2(Sj,k) =: ηj,k(g). Moreover
suppose that the tree T is essentially balanced with respect to the ηj,k. This
means that for some δ > 0 and all (j, k) ∈ ∂T − we have ηi,k(g) ≤ δ while

3.3 Error Estimates 61

for a subset Λ of ∂T with #Λ ≥ c#∂T one has ηj,k(g) ≥ δ, (j, k) ∈ Λ.
Then, whenever g ∈ Bs

q(Lp) with 1/p < s/d+ 1/2 for some s ≤ m one has
(see [DSX00])

 ∑
(j,k)∈∂T −

η2
j,k

1/2

≤ C(#T)−s/d|g|Bs
q(Lp), (3.3.9)

see Section 1 and, e.g., [DeV98] for the definition of the Besov spaces Bs
q(Lp)

and their semi-norms. One immediately derives from (3.3.8) and (3.3.9)(
‖cj0−cR

j0
‖2

�2(J)+‖d(T)−dR(T)‖2
�2(J)

)1/2

≤ C(#T)−s/d|g|Bs
q(Lp). (3.3.10)

The interest in estimates of this type lies in the following points. The
right hand side of (3.3.10) involves measuring smoothness of g in Lp which
for the above admissible range of p imposes much weaker conditions than
measuring smoothness in L2. Thus a proper choice of a tree can make up
for the lack of smoothness so as to retain an optimal order relating accuracy
to the number of degrees of freedom even in the presence of singularities.
Moreover, under the above assumptions the truncation error can be shown
to be also bounded by the right hand side of (3.3.10) (although it could
actually happen to be smaller), so that at least for the class of functions
g ∈ Bs

q(Lp) one obtains optimal error estimates.

However, this line of argument works under certain assumptions on the
distribution of local errors and does not quite meet the demands arising in
the context of adaptive solution schemes, see Section 3.1 and the notion
of s∗-sparsity in [CDD03a], see Section 1.1. Recall from Task R2 that
ideally one would like to relate the errors created by Recover directly to
the truncation error ‖g− PT g‖L2(Ω) or equivalently to ‖d− d(T)‖�2(J) (or
bounds for those terms). Note that one has

‖d− d(T)‖2
�2(J) =

∑
λ◦∈∂T

∑
µ:µ◦�λ◦

|dµ|2. (3.3.11)

Recall that µ◦ . λ◦ means that µ◦ is a descendant of (not equal to) λ◦.
Clearly, the “local remainders”

rλ◦ = rλ◦(d, T) :=
(∑

µ:µ◦�λ◦
|dµ|2

)
1/2, λ◦ ∈ ∂T , (3.3.12)

are just local L2-errors of the approximation PT g to g. Thus it would be
ideal if the quadrature errors eλ◦ (see (3.3.1)) could be estimated in terms

62 The Recovery Scheme

of rλ◦ , or at most by a finite number of nearby local remainders, which
would entail

‖d− dR(T)‖�2(J)
<∼‖d− d(T)‖�2(J). (3.3.13)

We shall return to this issue in the more general case discussed below.

3.3.3 Dual Norms

As indicated before, when dealing with adaptive schemes for operator equa-
tions such as PDE’s the relevant function space is most often not L2 but
some other Hilbert space H′, typically a Sobolev space of positive order,
see Section 3.1 and [CDD03a]. What will matter here is that the primal
norms can be localized, i.e. restrictions of f ∈ H to sub-domains Ω′ ⊂ Ω
(of suitable regularity) belong to a localized version H(Ω′) and that one
has for any partition P of Ω into cells ∆∑

∆∈P
‖f‖2

H(∆)
<∼‖f‖2

H, f ∈ H. (3.3.14)

This is, for instance, the case forH = H t with t ≥ 0. Under the assumption
(3.2.1) that a Riesz basis Ψ is obtained from an L2-Riesz basis Θ through
scaling we can still apply the above scheme Recover to obtain

gR(T) := DT d
R(T) (3.3.15)

as an approximation to the desired array g(T) = (〈ψλ, g〉)λ∈T . Of course,
this scaling should be incorporated in the loop of Recover, namely 3.2.20
will be replaced by dR

j := DTj
Gj,Θ̃c̄j+1. Again our objective is to estimate

‖g(T)− gR(T)‖�2(J) and ultimately ‖g− gR(T)‖�2(J).

Main obstruction and inherent problems

Estimating ‖g(T) − gR(T)‖�2(J) poses a certain principal difficulty which
is perhaps worth pointing out first. The above estimate in Theorem 3.3.1
provides a bound in terms of local L2-errors resulting from approximating
the function g in L2. The relevant function space here, however, is H′. So
in order to estimate the accuracy of the scaled array in (3.3.15) one would
have to relate it to the error in H′. This is not straightforward as Sobolev
norms of negative order do not localize in a simple way.

3.3 Error Estimates 63

At the first glance an easy remedy is offered by the norm equivalences
(2.1.11). In fact, we recall that one can deduce from (2.1.11) and (2.1.2)
that for some constants ĉ, Ĉ one has

ĉ‖
∑
λ∈J

〈ψλ, w〉ψ̃λ‖H′ ≤ ‖
∑
λ∈J

〈ψλ, w〉θ̃λ‖L2

= ‖
∑
λ∈J

ωλ〈θλ, w〉θ̃λ‖L2 ≤ Ĉ‖
∑
λ∈J

〈ψλ, w〉ψ̃λ‖H′ .

This tells us that approximation of some expansion w =
∑

λ∈J 〈ψλ, w〉ψ̃λ

in H′ is equivalent to approximating the scaled expansion

Σ(w) :=
∑
λ∈J

ωλ〈θλ, w〉θ̃λ

in L2, which by (2.1.11) yields an estimate for the approximations to 〈ψλ, w〉
in terms of an L2 error for the approximant. For simplicity we shall as-
sume that the scaling weights ωλ depend only on the scale |λ|, ωλ = ω|λ|.
Accordingly, it is suggested in [XZ03] to approximate

Σ(g)T :=
∑
λ∈T

ωλ〈θλ, g〉θ̃λ = ωj0Pj0g +

J∑
j=j0

ωj(Pj+1 − Pj)g

in L2 and then use the above error estimation. However, that would require
approximating the inner products 〈Σ(g), φj,k〉. This, in turn, would require
knowing the coefficients 〈Σ(g), φj′,k′〉 for all (j′, k′) such that the support
of φ̃j′,k′ intersects that of φj,k, as the level dependent scaling factor ωj pre-
vents cancellation inside the tree, cf. (3.3.16). This difficulty could be seen
as a ’lacking locality’ which, due to the negative norm, is inherent to the
problem. Thus the approximate scaling function coefficients qj,k cannot
be computed by just sampling g locally on the support of φj,k and a re-
lated approach (see [XZ03]) therefore does not seem to be computationally
feasible.

In order to get around this difficulty and use only computationally feasible
approximations to 〈g, φj,k〉 for indices in G−, one could attempt to employ
the same decomposition strategy as before trying to “hollow” the tree. To

64 The Recovery Scheme

this end, note first that one has

gT = ωj0Pj0g +

J∑
j=j0

ωj(Pj+1 − Pj)gT

=

J+1∑
j=j0+1

Φ̃T
j

(
[ωj−1 − ωj]cj(T ◦

j) + ωj−1(cj(Ij \ T ◦
j)− (3.3.16)

Mj−1,Φ̃cj−1(Ij−1 \ T ◦
j−1)

)

=

J+1∑
j=j0+1

Φ̃T
j

(
[ωj−1 − ωj]cj(T ◦

j) + ωj−1

(
cj −Mj−1,Φ̃cj−1(G−

j−1)
)
(G−

j)
)
,

where we have used (3.2.12), see Section 3.2.1. In order to turn this
into an approximation one needs approximations to the arrays cj(T ◦

j) and
cj(G−

j). These approximations are already produced by the scheme Re-

cover. Thus, we are led to define

PT g :=

J+1∑
j=j0+1

Φ̃T
j

(
[ωj−1 − ωj]čj(T ◦

j) + ωj−1

(
qj −Mj−1,Φ̃qj−1(G−

j−1)
)
(G−

j)
)

=

J+1∑
j=j0+1

Φ̃T
j

(
ωj−1c̄j(Gj)− ωj čj(T ◦

j)
)
.

The main difference from the previous situation, reflected by (3.3.2) and
(3.3.3), lies now in the additional term [ωj−1 − ωj]čj(T ◦

j) due to the new
scaling in front of the telescoping summands. This means that the error
terms will no longer live only on G− but that multiscale decompositions of
higher level error components are transported into the interior of T .
It does not seem to be clear how this will effect the overall error. These
observations seem to indicate that error estimation for L2 does not simply
carry over to more general norms. Thus, in summary, the computational
complexity of the approach proposed in [XZ03] is therefore not clear to us.

A general estimate

On account of the remarks brought up in the previous section, we prefer
to stay here with the original order of operation, namely to apply Re-

cover to g and then scale the resulting coefficients, see (3.3.15), as op-
posed to scaling g first into Σ(g) and then applying Recover. It is now

3.3 Error Estimates 65

less obvious though how to estimate the resulting array in a proper way
and, based on such estimates, how to realize Task R2. One probably
cannot expect a complete analysis that works in the generality considered
so far. Therefore the objective of this section is to further explore some
basic aspects of Task R2 and to derive from these considerations suitable
algorithmic ingredients. This is to identify more specific requirements on
the quadrature that may lead to the desired asymptotically optimal com-
putational performance. In particular, it will be seen that, in a strict sense,
this requires generally more than just accuracy bounds for the individual
coefficients qj,k.

For technical simplicity we shall continue assuming in what follows that
the scaling weights in (3.2.1) depend only on the scales, i.e. ωλ = ω|λ|. The
following reasoning, however, can be extended to more general situations.

One easily concludes from (2.1.2) that then for (well behaved sub-domains
Ω′ ⊂ Ω)

inf
vj∈Sj

‖v − vj‖L2(Ω′) <∼ωj‖v‖H(Ω′), v ∈ H. (3.3.17)

Our goal is again to estimate the scaled arrays ‖g(T) − gR(T)‖�2(J) in
terms of the quadrature errors eλ◦ , λ◦ ∈ G−. One might think that the
ideal estimate would be

‖g(T)− gR(T)‖2
�2(J) ≤ C

J+1∑
j=j0+1

ω2
j‖ej(G−

j)‖2
�2(J), (3.3.18)

i.e., the error contributions scale like wavelet coefficients. This would in-
deed be the case if the error components were scaling function coefficients
of some underlying error function, i.e., eλ◦ = 〈φλ◦ , ET 〉 which would entail
the relations

Gj,Φ̃ej+1 = ej . (3.3.19)

This, in turn, is equivalent to

Gj,Φ̃qj+1 = qj , (3.3.20)

which, of course, will generally not be true.

So it seems that all we can hope for is an estimate that involves the de-
viation from (3.3.19) which then hopefully is relatively small. In order to
make this more precise, we introduce the following notation. Let

Ωj :=
⋃

(j,k)∈G−
j

supp φ̃j,k, Pj(w|G−
j) :=

∑
(j,k)∈G−

j

〈φj,k, w〉φ̃j,k. (3.3.21)

66 The Recovery Scheme

We can use (2.1.2) to conclude that

‖g(T)− gR(T)‖�2(J) ≤ CΨ‖ET ‖H′ , (3.3.22)

where ET is given by (3.3.3). Furthermore let P
∗
j (·|G−

j) denote the adjoint
of Pj(·|G−

j) and

‖v‖(H(Ω′))′ := sup
w∈H̃(Ω′)

〈w, v〉Ω′

‖w‖H(Ω′)

where H̃(Ω′) consists for Ω′ ⊂ Ω of those w ∈ H(Ω′) whose extension
by zero to all of Ω is still in H. In order to develop suitable quadrature
techniques, it will be convenient to employ the mappings

Ljg :=
∑

(j,k)∈G−
j

qj,k(g)φ̃j,k, (3.3.23)

which always involve only indices from G−
j . As before, the coefficients

qj,k(g) forming the arrays qj on G−
j are to approximate the exact scaling

function coefficients cj,k = 〈φj,k, g〉 for (j,k) ∈ G−
j . We shall now present

some general estimates for the error in the dual norm.

Proposition 3.3.2. Under the above assumptions we have the following
estimates of the quadrature error ET defined in (3.3.3).

a) One has

‖ET ‖H′ <∼

(
J+1∑
j=j0

‖Φ̃T
j ej‖2

H(Ωj)′

)1/2

. (3.3.24)

b) Recalling the definition of Pj (2.1.8) we have for any Lj given by
(3.3.23)

‖ET ‖H′ <∼

(
J+1∑
j=j0

‖Ljg − Pjg‖2
H(Ωj)′

)1/2

. (3.3.25)

Proof: As for a), we recall the definition (3.3.3) and obtain, upon using

3.3 Error Estimates 67

(2.1.6) and biorthogonality of Φj , Φ̃j several times,

‖ET ‖H′ = sup
w

〈ET , w〉
‖w‖H

= sup
w

∑J+1
j=j0+1〈Φ̃T

j

(
ej −Mj−1,Φ̃ej−1(G−

j−1)
)
(G−

j), w〉Ωj

‖w‖H

= sup
w

∑J+1
j=j0+1〈Φ̃T

j

(
ej −Mj−1,Φ̃ej−1(G−

j−1)
)
(G−

j), P
∗
j (w|G−

j)〉Ωj

‖w‖H

= sup
w

∑J+1
j=j0+1〈Φ̃T

j

(
ej −Mj−1,Φ̃ej−1(G−

j−1)
)
, P ∗

j (w|G−
j)〉Ωj

‖w‖H

= sup
w

∑J+1
j=j0+1〈Φ̃T

j ej − Φ̃T
j−1ej−1, P

∗
j (w|G−

j)〉Ωj

‖w‖H

≤ sup
w

∑J+1
j=j0+1 ‖Φ̃T

j ej − Φ̃j−1ej−1‖(H(Ωj))′‖P ∗
j (w|G−

j)‖H(Ωj)

‖w‖H

<∼ sup
w

∑J+1
j=j0+1 ‖Φ̃T

j ej − Φ̃j−1ej−1‖(H(Ωj))′‖w‖H(Ωj)

‖w‖H
,

where we have also used that the P ∗
j (·|G−

j) are bounded in H. Since ej−1

is supported in G−
j−1, we have that

‖Φ̃j−1ej−1‖(H(Ωj))′ = ‖Φ̃j−1ej−1‖(H(Ωj∩Ωj−1))′ ≤ ‖Φ̃j−1ej−1‖(H(Ωj−1))′ ,

since the dual norm is monotone in the domain.

Using this, applying Cauchy-Schwarz, bearing in mind that, by well-gradedness,
only a uniformly bounded finite number of Ωj overlap at any given point
and employing (3.3.14), yields the assertion a).
Concerning b), we have the representation, cf. (3.3.1)

ej,k = qj,k−cj,k = 〈φj,k, Ljg−Pjg〉, i.e ej = 〈Φj , Ljg−Pj(g|G−
j)〉. (3.3.26)

Clearly, (3.3.26) says that

Φ̃T
j ej = Pj(Ljg|G−

j)− Pj(g|G−
j)) = Ljg − Pj(g|G−

j).

Hence, using the biorthogonality of Φj , Φ̃j , we can rewrite the terms in
(3.3.24) as follows.

‖Φ̃T
j ej‖H(Ωj)′ = sup

w∈H(Ωj)

〈Φ̃T
j ej , P

∗
j (w|G∗

j)〉Ωj

‖w‖H(Ωj)

= sup
w∈H(Ωj)

〈Lj(g|G−
j)− Pj(g|G−

j), P
∗
j (w|G∗

j)〉Ωj

‖w‖H(Ωj)

= sup
w∈H(Ωj)

〈Ljg − Pjg, P
∗
j (w|G∗

j)〉Ωj

‖w‖H(Ωj)

,

68 The Recovery Scheme

which confirms the claim b) by the same arguments as used in a).

3.3.4 A Wishlist for the Quadrature Mappings Lj

So far we have not specified how to compute in Recover the approximate
scaling function coefficients qj,k. So the objective of this section is to find
relevant requirements on quadrature. We will start by identifying desirable
properties of the mappings Lj from (3.3.23).

In what follows we shall make frequent use of the following fact.

Remark 3.3.3. For any sub-domain Ω′ of Ω one has

‖g‖2
(H(Ω′))′

<∼
∑

λ:Sλ∩Ω′ �=∅

|〈ψλ, g〉|2, (3.3.27)

where Sλ = supp ψ̃λ.

Proof: For w ∈ H̃(Ω′) one has

|〈w, g〉| =

∣∣∣∣∣
〈
w,
∑
λ∈J

〈ψλ, g〉ψ̃λ

〉∣∣∣∣∣ =
∣∣∣∣∣∣
∑

λ:Sλ∩Ω′ �=∅

〈w, ψ̃λ〉〈ψλ, g〉

∣∣∣∣∣∣
≤

 ∑

λ:Sλ∩Ω′ �=∅

|〈w, ψ̃λ〉|2

1/2
 ∑

λ:Sλ∩Ω′ �=∅

|〈ψλ, g〉|2

1/2

<∼ ‖w‖H(Ω′)

 ∑

λ:Sλ∩Ω′ �=∅

|〈ψλ, g〉|2

1/2

,

whence the assertion follows.

Recalling that

Pjg =
∑

(j,k)∈Ij

〈φj,k, g〉φ̃j,k =
∑

(j,k)∈Ij

cj,kφ̃j,k, (3.3.28)

the subsequent discussion will be guided by the following simple observa-
tions based on Proposition 3.3.2 b). They show what the Lj should ideally
satisfy.

3.3 Error Estimates 69

Proposition 3.3.4. a) If

‖Ljg − Pjg‖(H(Ωj))′ ≤ C‖g − Pjg‖(H(Ωj))′ (3.3.29)

uniformly in j, then the approximate array gR(T) on the well-graded tree
T produced by Recover satisfies

‖g(T)− gR(T)‖�2(J) ≤ C∗‖g− g(T)‖�2(J), (3.3.30)

where C∗ is independent of T but depends on C from (3.3.29) and the
constant in (3.3.25).

b) Suppose that T satisfies

‖g− g(T)‖�2(J) ≤ ε (3.3.31)

and that J is the highest level appearing in T . If for j0 ≤ j ≤ J + 1

‖Ljg − Pjg‖(H(Ωj))′ ≤ Cε

√
#G−

j

#G− (3.3.32)

uniformly in j ≤ J , one has

‖g − gR(T)‖�2(J) ≤ (1 + C∗)ε, (3.3.33)

where C∗ depends on the constants in (3.2.22) and (3.3.25), but is inde-
pendent of T .

Proof: Applying (3.3.27) to g − Pjg, (3.3.29) says that for gλ = 〈ψλ, g〉

‖Ljg − Pjg‖2
(H(Ωj))′

<∼
∑
|λ|>j

supp ψ̃λ∩Ωj �=∅

|gλ|2. (3.3.34)

Since by well-gradedness of T only finitely many of the Ωj overlap at a
given point and since by (3.2.22) #G−<∼#T <∼#∂T −, we conclude that
the right hand side of (3.3.25) can be bounded in the following way

‖ET ‖H′ <∼
(J+1∑

j=j0

‖Ljg − Pjg‖2
H(Ωj)′

)1/2
<∼
(J+1∑

j=j0

∑
|λ|>j

supp ψ̃λ∩Ωj �=∅

|gλ|2
)1/2

<∼
(∑

λ�∈T
|gλ|2

)1/2

= ‖g− g(T)‖�2(J),

70 The Recovery Scheme

which confirms a). The proof of the second claim is analogous.

Obviously, (3.3.29) is the stronger assumption which would yield the best
possible result, namely that the quadrature error is dominated by the pre-
diction error. Recall, however, that the scenario given by part b) in Propo-
sition 3.3.4 is sufficient for Task R2 which warrants optimal complexity
estimates in the adaptive context described in Section 3.1. This leads us
to the following definition.

Definition 3.3.5. We shall call a quadrature reliable for, respectively ε-
reliable for g when the corresponding mappings Lj satisfy (3.3.29), respec-
tively, when (3.3.32) holds whenever (3.3.31) is provided.

Before we turn to discuss possibilities to construct reliable quadrature for-
mulas, we will first point out some details concerning Recover for our
model wavelet-basis from Section (2.2).

3.4 Recover for Cardinal B-SplineWavelets

In the following, we will specify in more detail computational issues con-
cerning the working sets Gj+1, j = j0, . . . , J and the property well-gradedness
in the case of cardinal B-Spline wavelets [CDF92], see Section 2.2. We again
will confine the discussion to the one dimensional case on IR, as adaptions
to cardinal B-spline based wavelets on intervals or in the periodic case de-
pend on the construction at hand. In any case, a tensor product extention
to higher dimensions is straight forward.

3.4.1 Determination of Gj

According to (3.2.11), Gj+1 is defined as follows,

Gj+1 =
⋃

λ∈T ◦
j ∪Tj

supp M̃
|λ
j ∪

⋃
λ∈T ◦

j ∪Tj

supp G̃λ
j .

Recall from Section 2, that the entries of the matrices M̃j , G̃j are mainly
determined by the masks of the generator functions a, ã and that M̃j , G̃j

do depend on the scale j only concerning their size, [DKU99]. We will
therefore restrict the following discussion to j = j0.

We are always concerned with compactly supported masks, i.e., there exist
numbers m1, m2, m̃1, m̃2 ∈ ZZ such that

supp a = [m1, m2] ∩ ZZ and supp ã = [m̃1, m̃2] ∩ ZZ.

3.4 Recover for Cardinal B-Spline Wavelets 71

With a slight abuse of notation, in the following, we will always write
supp a = [m1, m2].

As introduced in Remark 3.2.1, the symbol X l will denote the l-th row
and X|k the k-th column of a matrix X. Using this notation, it can be
confirmed, that

supp M̃|k = ([m̃1, m̃2] ∪ [1−m2, 1−m1]) + 2k and (3.4.1)

supp G̃k = ([m1, m2] ∪ [1− m̃2, 1− m̃1]) + 2k.

Note, that α ∈ supp M̃|k
implies that (1− α) ∈ supp G̃

k

.

Recall from Section 2.2, that for the cardinal B-spline System N(κ, κ̃), we
have

[m1, m2] = [−�κ
2
�, �κ
2
�] and [m̃1, m̃2] = [−�κ

2
� − κ̃+ 1, �κ

2
�+ κ̃− 1],

(3.4.2)
with (κ + κ̃)mod 2 = 0, and κ, κ̃ denoting the order of φ, φ̃ respectively.

Hence, for spline wavelets, we arrive at

supp M̃|k =
[
−κ

2
− κ̃+ κ∗ + 1,

κ

2
+ κ̃ + κ∗ − 1

]
+ 2k,=: [lG1 , l

G
2] + 2k and

supp G̃k =
[
−κ

2
− κ̃+ 2− κ∗,

κ

2
+ κ̃− κ∗

]
+ 2k =: [lM1 , lM2] + 2k,

where κ∗ := κ mod 2
2
. Note that supp M̃|k = supp G̃k if κ is odd, while

supp M̃|k = [lG1 , l
G
2] + 2k + 1 if κ is even, which leads to

supp M̃|k ∪ supp G̃k = [lM1 , lG2 + (κ+ 1)mod 2] + 2k.

Therefore, by (3.4.1)

Gj+1 =
⋃

k(λ),λ∈T ◦
j ∪Tj

[
−�κ
2
� − κ̃+ 2, �κ

2
�+ κ̃− κ∗

]
+ 2k, j = j0, . . . , J.

For any realization, it is essential to construct all Gj in an efficient way,
and minimal cardinality of Gj might not be the main issue. So one might
consider to work with the minimal symmetric superset set of Gj . Therefore
it is in order to remark that with

Lk := [−m,m] + 2k with m :=
κ

2
+ κ̃− κ∗ = �κ

2
�+ κ̃, (3.4.3)

we can define the symmetric set Lj+1 ⊃ Gj+1

Lj+1 :=
⋃

k(λ),λ∈T ◦
j ∪Tj

Lk.

72 The Recovery Scheme

In general, Lj+1 is somewhat larger then Gj+1, but its symmetry will
substantially ease efficient programming especially in the case of multi-
dimensional tensor product wavelets.

3.4.2 Well-Gradedness

Concerning well-gradedness, we record the following observation.

Remark 3.4.1. For the cardinal B-spline system N(κ, κ̃), every M-graded
tree, with M ≥ l/2, l := �κ

2
�+ κ̃− 1, is well-graded.

Proof: Let j > j0 and µ
◦ ∈ T ◦

j+1 be arbitrary. If T ◦ isM-graded,M ∈ IN ,
by Definition (2.3.4) of M-gradedness we know that

T ◦
j ⊃ �k(µ)

2
�+ [−M,M + 1].

As G−
j = Gj\T ◦

j ⊂ Ij, we conclude{
[−M,M] +

k(µ◦)

2

}
∩ G−

j = ∅. (3.4.4)

For any λ◦ ∈ Ij we have that

k(λ◦) ∈ [−M,M] +
k(µ◦)

2
⇔ k(µ◦) ∈ 2 [−M,M] + 2k(λ◦),

which by (3.4.4) leads to

k(µ◦) %∈

 ⋃

λ:λ◦∈G−
j

2[−M,M] + 2k(λ◦)

 . (3.4.5)

On the other hand, we have by (3.4.2), again preferring to work with sym-
metric sets, that

suppM
Φ̃ |λ
j =

[
−�κ
2
� − κ̃+ 1, �κ

2
�+ κ̃− 1

]
+ 2k(λ)

⊂
[
−�κ
2
� − κ̃+ 1, �κ

2
�+ κ̃− 1

]
+ 2k(λ).

Therefore, with l := 1
2

(
�κ

2
�+ κ̃− 1

)
, we have

⋃
λ:λ◦∈G−

j

suppM
Φ̃ |λ
j ⊂

 ⋃

λ◦∈G−
j

[−l, l] + 2k(λ◦)

 . (3.4.6)

3.4 Recover for Cardinal B-Spline Wavelets 73

Combining (3.4.6) and (3.4.5) withM = l/2, we conclude as µ◦ ∈ T ◦
j+1 was

arbitrary, that

T ◦
j+1 ∩

⋃
λ◦∈G−

j

suppM
Φ̃ |λ◦
j = ∅,

hence that T is well-graded according to Definition (3.3.7).

Similar results can of course be formulated for other wavelet constructions.
Note that the notion of M-gradedness does not involve the refinement ma-
trix, cf. Definition (3.3.7), and is therfore well suited for fast computational
schemes.

Chapter 4

Supporting Tools

In the previous chapter, we identified essential requirements on two key
ingredients of Recover, namely the employed quadrature method and
and the processed index set. In this chapter, we will investigate on how to
ensure these properties and we will propose corresponding computational
tools.

4.1 Quadrature

We still have to detail on how to set up a reliable quadrature routine,
cf. Definition 3.3.5. Before going into this, we comment briefly on the fact
that we are actually dealing with approximating g in spaces on which point
evaluations are generally not continuous. One should keep in mind that
the main context where Recover applies has been outlined in Section
3.1. In this case we have g = F (v) where v is a finite wavelet expansion
and where F is a local operator. Moreover, v itself has usually the form
v =

∑
λ∈Tv

vλψλ where Tv is a tree that is contained in the prediction tree T .
Since quadrature affects only terms 〈φj,k, F (v)〉 where (j,k) ∈ G− and since
T is a well graded tree φj,k “sees” only the image of lower scale wavelets
in the expansion of v under the mapping F . Thus, on the support of φj,k,
F (v) is roughly speaking “finite dimensional” and can only oscillate with
a frequency comparable at most with the diameter of φj,k. Moreover, the
composition actually has some pointwise smoothness even of some positive
Hölder degree. (Of course, when ε → 0 these norms may eventually grow
unboundedly because F (v) is only stable in H′). Thus it is justified to
assume always that point evaluations are well defined and that, for any
fixed T = Tε, refining quadrature locally, does provide increasing accuracy

76 Supporting Tools

of approximations to quantities like 〈φj,k, g〉.
The approximations qj,k(g) approximating the exact scaling function coef-
ficients cj,k = 〈φj,k, g〉 on G−

j can be obtained, for instance, by making use
of the fact that ∫

Ω

φj,k(x)f(x)dx

can often be computed exactly for certain functions f such as arbitrary
other refinable functions or polynomials of any degree, see [DM93] and
Section 4.1.2. A simple way then is to determine some local approximation
Qj,k(g) on the support of φj,k, either by interpolation, cf. Section 4.1.2, or
by a least squares fit using proper oversampling. Then 〈Qj,k(g), φj,k〉 can
be computed exactly providing

qj,k :=

∫
Ω

Qj,k(g)(x)φj,k(x)dx, (j,k) ∈ G−
j . (4.1.1)

Exactness in S̃j: By the above remarks, Qj,k(g) might be a polynomial of
possibly high fixed order, or a linear combination of high order B-splines.
However, recall from (3.3.29) that the main issue is to make Ljg close to
Pjg in (H(Ωj))

′. This suggests to make Lj map into S̃j = span Φ̃j, cf.
Section 3.1. Especially, for fixed but sufficiently dense sampling sets Yj,k

one could define Qj,k(g) by the least squares fit

Qj,k(g) :=
∑

(j,k′):supp φ̃j,k′∩supp φj,k �=∅

q∗j,k′φ̃j,k′, where

q∗ = argminq̃

∑
y∈Yj,k

g(y)−

∑
(j,k′)

q̃j,k′φ̃j,k′(y)

2

, (4.1.2)

so that, by biorthogonality, qj,k = q∗j,k. In this case the mapping Lj would

be indeed exact on S̃j .

Boundedness in (H(Ωj))
′: Moreover, “ideally” the mapping Lj would

be a linear projector onto S̃j(G−
j) := span {φ̃j,k : (j,k) ∈ G−

j } which is
bounded in (H(Ωj))

′. In fact, one could then write Ljg − Pj(g|G−
j) =

Lj(g − Pjg) so that the boundedness of Lj in (H(Ωj))
′ would immediately

give (3.3.29) hence Proposition (3.3.4) a) would apply and provide the de-
sired estimate (3.3.30). Such a requirement will generally not be feasible.
Without any further assumptions on g this cannot be guaranteed by any
fixed rule for forming the qj,k. In fact, Lj can ultimately be based only on
discrete information on some finest resolution level. On the other hand,

4.1 Quadrature 77

in the above mentioned “locally finite dimensional case” one can expect
to contrive a mechanism for improving the quality of the qj,k if necessary.
This means, one can realize the necessary closeness of Ljg to the particular
projector Pjg in (H(Ωj))

′ required by Proposition 3.3.4. We shall describe
next some ingredients of such a mechanism.

4.1.1 Reliable Quadrature

Let us denote by G−
j,r the set of those indices in Ij+r which arise from

an r-fold subdivision of the φ̃j,k, (j,k) ∈ G−
j . These indices enter local

refinements of S̃j over Ωj . Let for r ≥ 0

Lr
jg :=

∑
(j+r,k)∈G−

j,r

qr
j+r,k(g)φ̃j+r,k

be a mapping into S̃j+r(G−
j,r). The L

r
j could be defined by any of the above

ways but with respect to higher resolution level j + r. If Lr
jg provides

better approximations to g with increasing r, then its projection back to
S̃j(G−

j) can be expected to yield better approximations to Pjg, provided
these approximations are stable in (H(Ωj))

′. Thus, given Lr
jg we then set

Ljg := Pj(L
r
jg). (4.1.3)

Writing Ljg = (qr)Tj Φ̃j in the form (3.3.23), a repeated application of
(2.1.28) yields that the array qj is given by

qj = qr
j := Gj,Φ̃ · · ·Gj+r−1,Φ̃q

r
j+r. (4.1.4)

As indicated above, the rationale is that the closer Lr
jg gets to g, due to

the better resolution offered by projecting into S̃j+r, the closer should its
projection by Pj be to Pjg.

A possible obstruction that has to be taken into account is that high fre-
quency components of g might be picked up through the quadrature so
as to render Lr

j unstable in (H(Ωj))
′. We shall discuss possible remedies

under the general assumption that quadrature is feasible. More precisely,
we shall always make the following working assumption.

Assumption 4.1.1. Let T = Tε be the prediction tree for which ‖g −
g(T)‖�2(J) ≤ ε and let J = J(T) be the highest scale occurring in T . For

78 Supporting Tools

any ρ > 0 there exists an R ∈ IN such that one has for all j ≤ J(Tε)
uniformly in ε

inf
v∈S̃j+R

‖g − v‖(H(Ωj))′ ≤ ρ‖g − Pjg‖(H(Ωj))′ , (4.1.5)

i.e. the wavelet coefficients of g with respect to Ψ̃ have some fixed scale-wise
decay and best tree approximation is a near best N-term approximation.

This assumption can be verified for many operators F in the second sce-
nario in Section 3.1 when g = F (v) and v is a finite tree expansion where
the tree for v is contained in the prediction tree T for F (v). We shall refer
to this situation, in a slight abuse of terminology, as the “locally finite
dimensional case” on every support of φj,k with (j,k) ∈ G−. This follows
from the construction of the prediction trees in [CDD03d] and the corre-
sponding error analysis which shows how expanding the tree decreases the
error. Since

‖Ljg − Pjg‖(H(Ωj))′ = ‖Pj(L
r
jg − g)‖(H(Ωj))′ <∼‖Lr

jg − g‖(H(Ωj))′

the condition (3.3.29) would be satisfied for r ≤ R provided that the map-
ping Lr

j is exact on S̃j+r and stable in (H(Ωj))
′. Here are some ingredients

towards this aim. Any linear combination vj+r :=
∑

(j+r,k′)∈G−
j,r
qj+r,k′φ̃j+r,k′

can be written as

vj+r = Pjvj+r + (I − Pj)vj+r = pT
j Φ̃j +

j+r−1∑
l=j

d̄T
l Θl,

where, by (4.1.4)

pj = Gj,Φ̃ · · ·Gj+r−1,Φ̃qj+r, d̄l = Gl,Θ̃Gl+1,Φ̃ · · ·Gj+r−1,Φ̃qj+r. (4.1.6)

Now let Yj+r(G−
j,r) be a set of sampling points in Ωj whose cardinality is

larger than #G−
j,r but of the same order. Fix a positive weight α and

consider the least squares problem

q∗
j+r := argminqj+r

α

∑
y∈Yj+r(G−

j,r)

hd

g(y)−

∑
(j+r,k′)∈G−

j,r

qj+r,k′φ̃j+r,k′(y)

2

+

j+r−1∑
l=j

ω2
j‖Gl,Θ̃Gl+1,Φ̃ · · ·Gj+r−1,Φ̃qj+r‖2

�2(J)

}

=: argminqj+r
{K0(qj+r) +K1(qj+r)} , (4.1.7)

4.1 Quadrature 79

where h measures the spacing between the sampling points. First of all, for
suitable Yj+r(G−

j,r) (4.1.7) has a unique solution. Moreover, if g ∈ S̃j(G−
j)

the minimum of the quadratic functional is zero and Pj(L
r
jg) = g on Ωj .

In fact the first part K0(qj+r) of the functional can be made zero through
the proper fit and the second part vanishes since the wavelet coefficients
of g vanish. In general, we have K1(qj+r) ∼ ‖(I − Pj)vj+r‖2

(H(Ωj))′ controls

the dual norm of the fit whose quality is ensured by K0(qj+r). In fact,
K0(qj+r) can be viewed as a weighted L2-approximation, especially in the
above mentioned locally finite dimensional case. For instance, with α ∼ ω2

j ,

K0(qj+r)
1/2 becomes then a good upper bound for ‖g − vj+r‖(H(Ωj))′ .

In practical terms it is not essential to solve (4.1.7) exactly. What matters is
that K1(qj+r) is controlled thereby stabilizing the (H(Ωj))

′ approximation.
Therefore one can proceed as follows.

(i) For (j,k) ∈ G−
j determine qj,k according to (4.1.2).

(ii) Set qj+r := Mj+r−1,Φ̃ · · ·Mj,Φ̃qj so that the corresponding d̄l, l =
j, . . . , j + r − 1, vanish, see (4.1.6).

(iii) With this qj+r as an initial guess one carries out a few gradient
descent steps to drive K0(qj+r) +K1(qj+r) towards the minimum.

Again, when g ∈ S̃j(G−
j) one already has (up to round off) K0(qj+r) +

K1(qj+r) = 0, i.e. exactness is ensured. Step (iii) provides the desired
(H(Ωj))

′-stability where one could vary the weight α in the course of the
iteration. Clearly, for fixed r the overall computational work remains pro-
portional to #G−

j .

In order to guarantee the desired accuracy of the approximation one could
solve (4.1.7) for several increasing values of r (always using the result of
the previous step as initial guess). This procedure is stopped when either
some fixed upper bound for r is exceeded or when the following criteria are
fulfilled for some r′ > r and some fixed constant c < 1

‖qr′
j − qr

j‖�2(J) ≤ cε(#G−
j /#G−),

(4.1.8)(
j+r′−1∑
l=j+r

ω2
j‖Gl,Θ̃Gl+1,Φ̃ · · ·Gj+r−1,Φ̃qj+r′‖2

�2(J)

)
1/2 ≤ cε(#G−

j /#G−).

An alternative criterion is to increase r until(
K0(q

∗
j+r) +K1(q

∗
j+r)

)1/2 ≤ Cε(#G−
j /#G−), (4.1.9)

80 Supporting Tools

where now C could be a fixed (larger) constant. To explain these criteria
note that, under Assumption 4.1.1, ‖g − Lr

jg‖(H(Ωj))′ gets small compared
with ‖g−Pjg‖(H(Ωj))′ for increasing r so that the q

r
j become stationary for

increasing r while the higher order wavelet coefficients become negligible.
Thus the stopping criteria (4.1.8) are met after a finite number of steps
depending only on the choice of the constants c in (4.1.8), (4.1.9). As for
(4.1.9), a prediction error ‖g−g(T)‖�2(J) ≤ ε suggests to expect a portion
like ε(#G−

j /G−) to be attributed to G−
j . On account of the norm equiva-

lence (3.1.3) one expects that ‖g − Pj(g|G−
j)‖(H(Ωj))′ <∼ ε(#G−

j /G−). Thus

the value of
(
K0(q

∗
j+r) +K1(q

∗
j+r)

)1/2
would be of the order ε(#G−

j /G−)
for q∗

j+r := Mj+r−1,Φ̃ · · ·Mj,Φ̃cj . Hence, when (4.1.9) is met one has an

H′-stable sufficiently good approximation to Pj(·|G−
j).

Remark 4.1.2. Recall that Recover works from top to bottom, i.e.,
G− is not known beforehand and is in fact never assembled. However, on
account of (3.2.22) we can replace #G− in (4.1.8), (4.1.9) by the known
quantity #T ◦.

Thus, in principle, for a wide range of cases an asymptotically optimal
work count, as required by Remark 3.2.3, can be achieved. Nevertheless,
the quantitative performance of a strategy outlined above may still be
unacceptable. It is therefore important to see whether the full scope of
such a strategy is generally necessary. The numerical experiments in Part
II are to shed some light on this issue.

4.1.2 Gauss-Quadrature for Refinable Functions

Assuming that the given problem permits the application of a quadra-
ture method based on interpolation, the use of one of the well–known
quadrature formulas which can be found in any book on numerical analy-
sis, usually still leads to serious trouble. This is due to the fact that the
error-estimates for knot-based quadrature rules which reproduce polyno-
mials such as, e.g., Simpson’s rule, depend on derivatives of the integrand,
that is on the smoothness of the scaling function. As the refinable func-
tion is not necessarily very smooth these quadrature rules may not perform
satisfactorily.

Another problem that may occur is that in many cases, the scaling func-
tions are not known explicitly but only via certain functional equations
from which the function values have to be computed or approximated.
This is possible in principle, however, these function evaluations may be
expensive and/or inaccurate.

4.1 Quadrature 81

In the last few years, several approaches to this problem have been sug-
gested. Dahmen and Micchelli [DM93] developed a method which is based
on the iteration of a specific operator derived from a related subdivision
scheme. It works in any dimension and under very low regularity assump-
tions on the function g, but it might be somewhat expensive. A different
approach is presented in [PS94b, PS94a], where quadrature formulas for
refinable functions are considered. Several types of Newton–Cotes quadra-
tures are discussed, which are determined using Tschebyscheff polynomials.

In this section, we follow the approach in [BBDK01, BBD+02], which is
based on Gauss quadrature. The key ingredient here is, that one can use
the iteration scheme of Dahmen and Micchelli [DM93] to compute the
moments of refinable functions up to round-off. This leads to quadrature
formulas, that are independent of the regularity of the refinable function.

The following method can be used for the computation of integrals involv-
ing scaling functions or wavelets. In view of the recovery scheme we will put
a clear focus on quadrature rules for scaling functions as they are needed
in the recovery scheme and because quadrature rules for wavelets can be
reduced to the former ones.

General Setting

A univariate Gauss quadrature rule replaces an integral of the form∫
[a,b]

g(x)w(x)dx, [a, b] ⊂ IR,

by a weighted sum of point evaluations of g, i.e.,∫
[a,b]

g(x)w(x)dx ≈ In
w(g) :=

n∑
i=1

γig(xi), [a, b] ⊂ IR, n ∈ IN,

(4.1.10)
with knots xi and weights γi, i = 1, . . . n. Here w is called the weight
function, which in the most classical case is chosen to be w ≡ 1. However,
the theory can be developed for a certain class of functions. In fact, w only
has to satisfy the following conditions, cf. [Sto93].

Definition 4.1.3. A function w on the (finite or infinite) interval (a, b) is
called a weight function if it is non-negative and measurable and if all its
moments

µi(w) :=

∫ b

a

xiw(x) dx i = 0, 1, . . . (4.1.11)

exist. Moreover, we always require that µ0(w) > 0.

82 Supporting Tools

Defining the inner product corresponding to w as

〈h, g〉w :=

∫
[a,b]

h(x)g(x)w(x)dx, (4.1.12)

the knots xi of the Gauss rule are the zeros of the n–th orthogonal poly-
nomial with respect to this scalar product. A quadrature rule is said to be
of degree D if it is exact for all polynomials with order up to D. Gauss
quadrature rules with n points are of degree D = 2n. This is optimal,
because it uses 2n degrees of freedom, n knots and n weights. For each
weight function, knots and weights have to be determined only once and
for all, since they do not depend on the integrand.

The computation of the Gauss quadrature rule according to a specific
weight function w can be done in several ways, see e.g., [DR75, GW69], but
in this context we suggest the following well known eigenvector/eigenvalue
ansatz, see [BBDK01, GGP00].

Determine the orthogonal polynomials according to (·, ·)w, which are given
by the following three-term recursion formula

πk+1(x) = (x− αk)πk(x)− βkπk−1(x), k = 0, . . . , n− 1, (4.1.13)

π−1(x) = 0, π0(x) = 1. (4.1.14)

The coefficients αk, βk can be computed as

αk =
〈xπk, πk〉w

〈πk, πk〉w
, βk =

〈πk, πk〉w

〈πk−1, πk−1〉w
. (4.1.15)

Note that all αk vanish if the weight function is symmetric to the origin.
Once αk, βk are determined, one sets up the following n × n symmetric
tri-diagonal matrix,

Wn :=

α0

√
β1

√
β1

. . .
. . .

. . .
√
βn−1√

βn−1 αn−1

 . (4.1.16)

If ωk, υ
k are the eigenvalues and eigenvectors ofWn

Wnυ
k = ωkυ

k, k = 1, . . . , n,

with ‖υk‖2
2 = 〈φ0, π0〉w =

∫
[a,b]

w(x)dx, then, following [GW69], the knots

and weights of the Gauss formula with weight w are determined by

γk = (υ
k
1)

2, xk = ωk.

4.1 Quadrature 83

Note that the weight function only contributes to this process by its mo-
ments. If w is a refinable function or a wavelet, this can be done up to
round off at unit cost, cf. Section 4.1.2.

Once a Gauss quadrature rule of the form (4.1.10) is established, one is
clearly interested in estimating the quadrature error which is defined by

En
w(g) :=

∫
[a,b]

g(x)w(x)dx− In
w(g). (4.1.17)

A classical result states that if g ∈ C2n(IR)

En
w(f) =

g(2n)(ξ)

(2n)!k2
n,0

, for some a < ξ < b, (4.1.18)

see again [DR75] for details. Here kn,0 denotes the leading coefficient of the
n–th orthonormal polynomial with respect to the scalar product 〈·, ·〉w.

One could also consider to construct different quadrature formulas like,
e.g., Newton-Cotes rules taking w as the weight function. Yet, not only
that one will loose the optimal order 2n for an n-point rule, also the error
bounds are less favorable, cf. e.g., [Kon01].

If the weight function and the degree is given by (4.1.18), it is possible
to control the error for any specific Gauss quadrature rule. However, we
would like to estimate kn,0 for n → ∞ in order to be able to quantify the
asymptotical behavior of En

w(f). This is possible, cf. [BBD
+02], at least

for weight functions satisfying some additional conditions as we shall see
in the following.

Definition 4.1.4. Let w be a weight function according to Definition 4.1.3
on the interval [−1, 1]. w is said to be in the function class W if∫ π

−π

| lnw∗(ζ)|dζ < ∞, (4.1.19)

for w∗ := w(cos(ζ)) | sin(ζ)|.

For this special class W, the following theorem holds, see e.g., [Sze39] for
details.

Theorem 4.1.5. Let w ∈ W and

pn(x) =
n∑

i=0

kn,ix
n−i, n = 0, 1, 2, . . . (4.1.20)

84 Supporting Tools

be the system of orthonormal polynomials associated with the weight func-
tion w. Then, as n tends to infinity,

kn,0 ∼ 2nCw, with Cw := π−1/2 exp

(
−1
2π

∫ 1

−1

log(w(x))√
1− x2

dx

)
. (4.1.21)

The constant Cw can be approximated using quadrature. See Table 4.1 for
a comparison between the true and the estimated kn,0 in the B-spline case
w = iφ, i = 2, 3, 4.

m=2 m=3 m=4
n kn,0 2nC1φ kn,0 2nC3φ kn,0 2nC4φ

1 2.45 2.84 3.67 6.11 4.90 15.96
2 5.07 5.68 8.71 12.22 13.02 31.92
3 10.51 11.36 19.09 24.44 30.82 63.84
4 21.26 22.72 40.79 48.88 69.12 127.68
5 86.80 90.24 85.14 97.75 150.62 255.36

Table 4.1: Computed and approximated leading coefficient of the orthogonal
polynomial

Theorem 4.1.5 can now be used to derive the following result for spline
functions.

Corollary 4.1.6. Let w be a non-negative spline function on [−1, 1] having
only a finite number of zeros and let kn,0 be defined according to (4.1.20).
Then as n tends to infinity

kn,0 ∼ 2nCw, with Cw := π−1/2 exp

(
−1
2π

∫ 1

−1

log(w(x))√
1− x2

dx

)
. (4.1.22)

Furthermore, if g ∈ C2n, n ∈ IN, the error of the corresponding Gauss
quadrature satisfies, for n tending to infinity

|En
w(g)| =

∣∣∣∣
∫ 1

−1

g(x)w(x)dx− In
w(g)

∣∣∣∣ ∼
∣∣∣∣ g(2n)(ξ)

(2n)!22nC2
w

∣∣∣∣ , (4.1.23)

for some −1 < ξ < 1.

Gauss quadrature formulas also exist for multivariate integrals. For certain
integration domains such as rectangles Gauss quadrature rules can be de-
rived by a tensor product formula made up of univariate Gauss formulas.
Here the weight function has the form

V(x1, . . . , xd) = ϑ1(x1)ϑ2(x2) · · ·ϑd(xd), (4.1.24)

4.1 Quadrature 85

where ϑi, i = 1, . . . , d, denote univariate weight functions. We search for
a quadrature formula of degree D,D ∈ IN , of the form

∫
supp(ϑ0)

· · ·
∫

supp(ϑd)

f(x1, . . . , xd)ϑ1(x1) · · ·ϑd(xd) dx1 · · ·dxd ∼
n(D)∑
i=1

λif(xi,1, . . . , xi,d).

(4.1.25)
It is easy to derive such a formula from the univariate rule by using the
following general result shown in [Str71]. Let IRd ⊃ I = I1 × I2, I1 ⊂
IRd1 , I2 ⊂ IRd2 be a cube. Suppose that we are given quadrature rules on
I1 and I2 corresponding to weight functions g1 and g2, respectively, and
with points and weights

(xi,1, . . . , xi,d1), λi, i = 1, . . . , n1, and (xj,d1+1, . . . , xj,d), µj, j = 1, . . . , n2,
(4.1.26)

which are of degree D1 and D2, respectively. Let g be defined by

g(x1, . . . , xd) = g1(x1, . . . , xd1)g2(xd1+1, . . . , xd).

Then the following theorem holds.

Theorem 4.1.7. The n = n1n2 points

(xi,1, . . . , xi,d1 , xj,d1+1, . . . , xj,d), (4.1.27)

and weights
λiµj, i = 1, . . . , n1, j = 1, . . . , n2, (4.1.28)

are an integration formula for the weight function g on I which is of degree
D = min(D1, D2).

Applying Theorem 4.1.7 (d− 1) times provides a product quadrature for-
mula for a function V of the form (4.1.24). Error formulas for these product
formulas can also be easily deduced from the one dimensional estimates,
see e.g. [SS66].

In certain cases, it is also possible to construct non–product formulas. For
details in the construction, please see e.g. [BBDK01, BBD+02]. For further
and more general information on quadrature, the reader is referred, e.g. to
[DR75, Kry62, Str71] and the references therein.

Moments of Refinable Functions and Wavelets

Let ϑ be a refinable non-negative weight function. In order to determine
the knots and weights of the Gauss formula according to Section 4.1.2,

86 Supporting Tools

we have to determine the moments of ϑ. In some special cases they can
be computed by simple integration, e.g. in the instance of cardinal B-
spline wavelets. However, in general, this is not possible. Using a usual
quadrature rule like Simpson’s formula, cf. [GGP00] will limit the approach
to ‘smooth’ functions. This would lead to the same problems that we
wanted to circumvent.

The computation of integrals of monomials and scaling functions can be
done efficiently and – up to round off – exactly by using recursion relations,
see [DM93]. The same is true for integrals involving wavelets as they are
linear combinations of scaling functions. Let us briefly recall the basic
ideas. We start with the case of an arbitrary refinable compactly supported
function ϑ ∈ IRd. Let us define

µβ :=

∫
IRd

xβϑ(x)dx, β = (β1, . . . , βd), xβ = xβ1
1 . . . xβd

d . (4.1.29)

The normalization ∫
supp(φ)

ϑ(x)dx = 1 (4.1.30)

leads to µ0 = 1. Defining

cβ
α := 2

−|β|−d

(
β

α

) ∑
k∈ZZd

akk
α, |β| :=

d∑
l=1

βl, (4.1.31)

we obtain
µβ =

∑
0≤α≤β

cβ
β−αµα = cβ

0µβ +
∑

0≤α<β

cβ
β−αµα. (4.1.32)

Here α < β means αj ≤ βj , j = 1, . . . , d, and αi < βi for at least one
i ∈ {1, . . . , d}. This leads to the recursion

µβ = (1− 2−|β|)
∑

0≤α<β

cβ
β−αµα. (4.1.33)

Let us mention that the above scheme to compute the moments does no
longer work for boundary adapted function, compare Section 2. One can
still determine the corresponding moments, at least if the wavelet bases
are according to [DKU99]. In that case however, a modified ansatz has to
be pursued that we will not describe here since it requires details from the
construction in [DKU99], see [BBD+02] for further details.

4.1 Quadrature 87

Gauss Formulas for the Wavelet Setting

The integrals we have to deal with in the (univariate) wavelet setting are
of the following form

〈g, ϑj,k〉 =

∫
supp(ϑj,k)

g(x)ϑj,k(x) dx. (4.1.34)

Herein g is a given function and ϑ is either a refinable function φ or a
wavelet ψ. In view of the recovery scheme, we will mainly be concerned
with the situation ϑ = φ. By means of substitution, one can write (4.1.34)
as ∫

supp(ϑj,k)

g(x)ϑj,k(x) dx = 2−j/2

∫
supp(ϑ)

g(2−j(u+ k)) ϑ(u) du.

Hence, it suffices to find a quadrature rule for integrals of the form∫
supp(ϑ)

g(x)ϑ(x)dx, (4.1.35)

to be able to compute all integrals of the form (4.1.34), i.e. we have to set
up only one quadrature rule for ϑ.

The general idea is now, to construct Gaussian quadrature rules using ϑ
as weight function. No smoothness is required for ϑ, we do not even have
to know it explicitely as long as we can determine its moments and ϑ as a
weight function according to Definition 4.1.11. This however requires that
ϑ should be non–negative which might not be the case for general scaling
functions. Yet, this problem can be fixed using the following lifting trick.
Suppose that for ϑ %≥ 0, ϑ ∈ {φ, ψ} there exists an appropriate constant
c > 0 such that on supp(ϑ)

ϑc(x) := ϑ(x) + cχ[l1,l2](x) ≥ 0, (4.1.36)

where χ[l1,l2] denotes the characteristic function of [l1, l2] ⊇ supp(ϑ). Then
one can set up a quadrature rule with weights λc

i and knots x
c
i corresponding

to the non–negative function ϑc(x). After that, a second Gauss rule with
weights λχ

i and knots x
χ
i for the characteristic function χ[l1,l2] has to be

determined, which is also no problem, since the moments can easily be
computed. In this case, we loose the optimality of the Gauss rules as we
now need 2n knots for a formula of degree 2n.

In this context, its important to note that in the case of cardinal B-spline
wavelet bases, our main discretization tool, the primal generator functions

88 Supporting Tools

φ = κφ are always non-negative. Hence in that case, we do not have to rely
on the shifting device in our recovery algorithm, as there inner products of
the form 〈g, (κφ)λ〉 are required.

n w2φ
i x2φ

i

1 1.000000000000000000000000000000 0.000000000000000000000000000000
2 0.500000000000000000000000000000 0.408248290463863016366214012451
3 0.208333333333333333333333333334 0.632455532033675866399778708887

0.583333333333333333333333333332 0.000000000000000000000000000000
4 0.098866304579875626785852745947 0.750925143304447384549815336033

0.401133695420124373214147254053 0.262229842652747963829202721001
5 0.051658257765490621790913992431 0.821440599738381527872000286332

0.239473240705457390441501909707 0.449920352459841963349447292207
0.417737003058103975535168195725 0.000000000000000000000000000000

Table 4.2: Weights and knots for the hat function 2φ

For an intensive comparison of various quadrature methods including the
presented Gauss type method, in the context of wavelet methods (for
boundary integral equations), see [Kon01].

4.2 Index-Structure

When introducing the recovery scheme Recover in the previous chapter,
we have imposed certain structural features on the underlying index set,
such as an well-gradedness or M-gradedness, completeness etc.

It remains to clarify, how to actually find the minimal M-graded tree of
support cubes (T M)◦ ⊇ Λ◦ for an arbitrary, i.e., unstructured index set
Λ ⊂ J .
Asymptotically, we have for a tree T ∈ J that #T ◦ ∼ #(T M)◦, but
the constants interrelating #T ◦ and #(T M)◦, and the amount of work
necessary to construct (T M)◦ should not be underestimated. Note e.g.,
that grading will have to be increasingly demanding if higher order wavelets
are needed and that the effect of the grading as well as of the enforcing of
the completeness property depends heavily on the dimension.

There are three basic index-related tasks to accomplish: Construct the M-
graded hull, enforce completeness and find the leaves of a set. Note that
all index manipulations will be formulated in terms of support cubes.

4.2 Index-Structure 89

Grading: Let M ∈ IN0 and Λ ⊂ J . The grading routine has to ensure
that for reach index, the M-cube of indices centered around its parent-cell
is also contained in the Λ. Therefore let us define the set

PM(Λ◦) :=
⋃

λ◦∈Λ◦

{
(|λ◦| − 1,k′),k′ ∈ k(P(λ◦)) + {−M,−M + 1, . . . ,M}d

}
.

(4.2.1)
Recall that here for d = 1 we have PM (λ◦) = �k(λ◦)/2�. The following
simple procedure transforms an unstructured set into anM-graded tree on
� = [0, 1]d.

Grading — (Λ◦,M)→ [(T M)◦]

Set (T M
J)◦ := Λ◦

J

For j = J − 1, . . . , j0 do

Set (T M
j)◦ := PM ((T M

j+1)
◦) ∪ Λ◦

j

Algorithm 4.1: Procedure Grading: Grading a set of support cubes

Completion: In addition to gradedness, we also have to complete the tree
of support cubes by inserting all children of all coordinates. For µ ∈ J
with k(µ) = (k1, . . . , kd), the cube [2k(µ), 2k(µ) + 1] := {2k1, 2k1 + 1} ×
. . .× {2kd, 2kd + 1} ⊂ ZZd is just the set of the locations of the children of
�µ obtained by dyadic subdivision. Let Λ◦ denote the complete hull of Λ◦.

90 Supporting Tools

Completion — (Λ◦)→ Λ◦

For j = J, . . . , j0 + 1 do

Set

Λ◦
j = C(P(Λ◦

j)) := {(j,k), k ∈
⋃

µ∈P(Λ◦
j)

[2k(µ), 2k(µ) + 1]}

(4.2.2)

Set Λ◦
j0 := Λ

◦
j0

Algorithm 4.2: Procedure Completion: Completing a set of support cubes

Leaves: In view of Recover we are actually only interested in the leaves
∂T M◦. Recall that the leaves are those indices having no children in the
set, i.e., for Γ ⊂ J we have

∂Γj = Γj\P(Γj+1), j0 ≤ j ≤ J.

For j0 < l ≤ J we will combine the two simple routines above in such a way
that we compute the leaves of an M- graded and complete set T M◦ ⊇ Λ◦

in one sweep.

Leaf — (Λ◦,M)→ [∂T M◦]

Determine J = J(Λ◦) such that Λ◦
j = ∅, j > J

Set ΓJ+1 := ∅

For j = J, J − 1, . . . , j0

(T M
j)◦ := Γj+1 ∪ Λ◦

j

If j > j0:
Γj := P((T M

j)◦) and ∂(T M
j)◦ := C(Γj)\Γj+1

Else:
∂(T M

j)◦ := (T M
j)◦\Γj+1

Algorithm 4.3: Procedure Leaf: Computing leaves of M -graded complete hull

4.3 Recover
∗: Everything in one Sweep 91

Lemma 4.2.1. For a given index set Λ ⊂ J and M ∈ IN0, Grading(Λ◦,M)
produces the minimal M-graded tree (T M)◦ ⊇ Λ◦.
Likewise Leaf(Λ◦,M) determines the leaves of the minimal M-graded and
complete tree T M◦ ⊇ Λ◦

Proof: Let Λ̂◦ with Λ◦ ⊆ Λ̂◦ ⊂ J be an M-graded tree. We will show
that Λ̂◦ ⊇ (T M)◦. Because of Λ◦ ⊆ Λ̂◦ and (T M

J)◦ = Λ◦
J we have that

Λ̂◦
J ⊇ (T M

J)◦. Concerning level J − 1, let λ◦ ∈ (T M
J)◦. Due to (2.3.4) and

(2.3.1) we have

k(P(λ◦))+2−J+1[−M,M+1]d ⊆
⋃

µ◦∈Λ̂◦
J−1

�µ◦ =
⋃

µ◦∈Λ̂◦
J−1

2−J+1
(
k(µ◦) + [0, 1]

d
)
.

Note that

k(P(λ◦)) + 2−J+1[−M,M + 1]d =
⋃

k∈{k(P(λ◦))+{−M,...,M}d}

2−J+1(k+ [0, 1]d),

and hence ⋃
k∈{k(P(λ◦))+{−M,...,M}d}

2−J+1(k+ [0, 1]d) ⊆
⋃

µ◦∈Λ̂◦
J−1

2−J+1
(
k(µ◦) + [0, 1]

d
)
.

Hence PM (λ◦) ⊆ Λ̂◦
J−1 and consequently Λ̂

◦
J−1 ⊇ PM ((T M

J)◦). Therefore,

as Λ̂◦
J−1 ⊇ Λ◦

J−1, we have Λ̂
◦
J−1 = Λ̂

◦
J−1 ∪ Λ◦

J−1 ⊇ PM((T M
J)◦) ∪ Λ◦

J−1 =

(T M
J−1)

◦. Analogously, one concludes that (T M
j−1)

◦ = PM ((T M
j)◦) ⊆ Λ̂◦

j−1

for J > j > j0, i.e., (T M)◦ ⊆ Λ̂◦.

Let us now assume, that the M-graded tree Λ̂◦ ⊇ Λ◦ is also complete. As
Λ̂◦ ⊇ (T M)◦, for each λ◦ ∈ (T M)◦, |λ◦| > j0 we have that P(λ◦) in Λ̂◦.
Completeness means that all children of P(λ◦) are contained in Λ̂◦, hence
C(P(λ◦)) ⊆ Λ̂◦, i.e. T M◦ ⊆ Λ̂◦.

One can use Leaf as a preprocessing step to generate an input set suitable
for the recovery scheme, but for a realization, we suggest the following
version that intertwines the index manipulative and the recovery part.

4.3 Recover
∗: Everything in one Sweep

We will now present a second version of the recovery scheme, that com-
bines Recover, the level-wise clean off-step mentioned already in Section

92 Supporting Tools

3.2.2 and the index manipulations that are necessary if the input set Λ is
(completely) unstructured.

The main advantage is, that performing the index manipulations in a pre-
processing step for Recover requires to assemble and to store the entire
set including all structural demands a-priorily, while the intertwined ver-
sion Recover

∗ avoids this.

As a valuable side-effect, the (approximated) coefficients of the structured
prediction set can be discarded as soon as the wavelet coefficients dR

j of
the corresponding level j have been computed during the iteration of the
recovery scheme. Recall from Sections 3.1 and 3.2.2 that the input set for
the recovery scheme is not necessarily minimal. The above clean-off ’on the
fly’ frees storage at a possibly early stage and also contributes to reduce
the problem that an erroneous entry in the prediction set generates other
unsignificant entries due to structural demands.

One of the simplest possible strategies for this clean-off step is to equally
distribute the level-dependent thresholding parameter εj, i.e. to set εj :=
ε/(J − j0 + 1) and to execute Bin-Thresh(dR

j , εj)→ dj . Of course then

‖dR − d‖�2 ≤
J∑
j0

‖dR

j − dj‖�2 ≤
J∑
j0

εj ≤ ε.

Another possible choice for εj could be εj := ε−
∑J

j+1 ‖dR
j −dj‖�2, so that

‖dR − d‖�2 ≤ ‖dR

j0
− dj0‖�2 +

J∑
j0+1

‖dR

j − dj‖�2 ≤ ε.

The latter strategy of course tends to discard more coefficients at higher
level.

For the formulation of Recover
∗, it will be convenient to formulate the

core step of the above scheme as an individual routine.

4.3 Recover
∗: Everything in one Sweep 93

LeafOne — (Λ◦
j ,Γ

j+1,M)→ [∂(ΛM
j)

◦,Γj]

ΛM◦
j := Γj+1 ∪ Λ◦

j

If j > j0:
Γj := P(ΛM◦

j) and ∂(ΛM
j)

◦ := C(Γj)\Γj+1

Else:
∂(ΛM

j)
◦ := ΛM◦

j \Γj+1

Algorithm 4.4: Procedure LeafOne: Core step of Leaf

Recover
∗ then reads as follows:

Recover
∗ — (g,Λ,M, ε)→ [d(T)]

Find minimal J ∈ IN such that Tj = ∅, j > J

Perform LeafOne(Λ◦
J ,Γ

J+1,M)→ [∂TJ ,Γ
J]

Determine G−
J+1 = GJ+1, qj+1(G−

J+1) and set čJ+1 := 0.

For j = J, J − 1, . . . , j0 do

Execute LeafOne(Λ◦
j−1,Γ

j,M)→ (∂Tj−1,Γ
j−1)

Determine G−
j = Gj\Tj and qj(G−

j)

Set

cj+1 := čj+1 + qj+1(G−
j+1)−

(
MΦ̃

j qj(G−
j)
) (

G−
j+1)

(4.3.1)

Compute

čj := Gj,Φ̃c̄j+1, and dR

j := Gj,Θ̃c̄j+1 (4.3.2)

Let (e.g.) εj := ε/(J − j0 + 1), do
Bin-Thresh(dR

j , εj)→ dj

Set cj0 = dj0−1 := čj0

Algorithm 4.5: A recovery scheme for arbitrary index sets: Simultaneous index
manipulation and computation of coefficients including clean-off

Part III

Applications and Numerical
Results

Overview: Part III is concerned with applications and
numerical tests for the schemes described earlier.
In Chapter 5, we first present the general layout of our nu-
merical tests which is basically identical for all following
chapters.
Chapter 6 is concerned with approximation in L2. We
present ’direct’ applications of Recover, i.e., g = u, and
applications to compositions g = y◦u. We also demonstrate
the significance of the correction step and a proper grading
in quantitative terms.
Concerning the application of Recover for compositions,
we briefly review the prediction strategy of [DSX00] in
Chapter 7, and propose a heuristic strategy for an efficient
application in practice.
Chapter 8 is devoted to applications in the case that the re-
covery takes place in a space with dual norm. There, we also
try to shed some light on the question under which circum-
stances one can avoid sophisticated quadrature strategies,
e.g. based on the least squares ansatz presented earlier.

Chapter 5

Layout of the Tests

The choice of the test cases presented in this part is not motivated by a
special application, as here we are interested in a quantitative validation
of the theoretical investigations in Part II and of our realization described
in Part IV.

The main question we want to clarify are:

• What is the quantitative relation between approximation error and
the error realized by the recovery scheme?

• How strong is the effect of the structural requirements on the index
sets in quantitative terms?

• Does the realization de-facto exhibits a linear growth of CPU-time
with respect to the size of the problem?

We will apply Recover to functions g, which may take the form g = v or
g = y◦v, where v is a finite wavelet expansion approximating some function
u, called the original function. In the latter case of a composition, y is a
smooth nonlinear function. In order to be able to access true errors, the
role of the original function u will actually be played by some fixed highly
accurate approximation uJ of u, namely its (approximate) projection to
S(ΦJ). This is done by first computing the scaling function coefficients
by (highly accurate) quadrature on a uniform grid. The standard wavelet
transform yields then he finite array of wavelet coefficients uJ of uJ with
maximal level J . In the case that g = y ◦ v we likewise compute a highly
accurate approximation gJ ′ to y ◦ uJ for some J

′ ≥ J . The arrays uJ and
gJ ′ will serve as fully known reference quantities. The test routine reads
then as follows:

100 Layout of the Tests

• For a sequence of decreasing parameters ε ∈ {εi, i = 1, 2, . . .} de-
termine approximations v = uε to uJ by thresholding the wavelet
coefficients in uJ yielding u

ε = u(Λε) to uJ .

• In the case of g = y ◦ v, construct the prediction set T ε = T (Λε)
for g based on Λε according to the methods described in [DSX00,
CDD03d]. For g = v, set T ε = Λε.

• Execute Recover (including thresholding, cf. Sect. 4.3) and validate
the results gR (gR

t) by comparison with the reference g
ε := g(T ε).

The results are mainly reported on in form of log-log plots showing the
approximation error ‖g−gA‖�2(J), g

A ∈ {gε, gR, gR
t } versus the cardinality

#gA of the corresponding approximant. The straight lines in the figures
are obtained by a least square fit and the numbers s displayed in the
legends indicate the corresponding slopes. In some cases, we also include
gM := g((T ε))M , i.e., the array of exact coefficients on the M-graded tree,
in the plots to show the effect of the index manipulations.

We will apply this test routine in L2 and in spaces with dual norms, yet to
unify the representation we shall denote the arrays of wavelet coefficients
always by g, g(T), etc. where it is understood that in the L2-case the
diagonal matrix in (3.3.15) is just the identity.

All computations were carried out on an AMD Athlon(Tm)XP 2000+ pro-
cessor with 1.26GHz and 512MB of memory, and we always used biorthog-
onal wavelet bases from [CDF92], see Section 2.2.

Chapter 6

Approximation in L2

This Chapter is devoted to numerical tests in one and two dimensions
concerning the first of the two model situation described in Section 3.1,
namely approximation in L2. The layout of the tests follows Chapter 5,
and in this Chapter, we will use exclusively Gauss-formulas as described
in Section 4.1.2.

6.1 Direct Applications: g = v

6.1.1 Applying Recover

We will at first consider the following two one-dimensional test functions
g1, g2, see Figure 6.1,

g1 :=

{
exp(x) x ∈ [−1, 1]
0 x ∈ (−2, 2) \ (−1, 1) and g2 := exp(−100 ∗ x2).

(6.1.1)

Note that both functions are (numerically) zero for |x| > 1, g2 is smooth
except for jumps at −1, 1, while g2 is smooth everywhere, but exhibits a
strong gradient in the vicinity of the origin, cf. Figure 6.1.

We are interested in the approximation order for these functions and will
therefore compute the As-norm, using spline-wavelets of different order.
Recall that

‖g‖As = sup
N≥0

(N + 1)sσN(g), s > 0, 1/τ = s + 1/2,

and that ‖v‖As ∼ ‖v‖�w
τ (J). Moreover, v ∈ �w

τ (J) if and only if σN (v) ≤
CN−s‖v‖�w

τ (J), N ∈ IN , cf. Definition 1.1.6 and Lemma 1.1.1.

102 Approximation in L2

−3 −2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

x

y

−3 −2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

y

Figure 6.1: One dimensional test functions g1 (left), g2 (right)

To determine ‖gi‖As, i = 1, 2 numerically, we will compute the wavelet
coefficients up to level 15. From this array, we will calculate (N+1)sσN (gi)
for different values of N and s. For the wavelet system N(2, 2), we obtain
for g1:

N\s 0.0 1.0 2.0 2.2 3.0
250 0.64 1.38 8.58 10.60 73.50
1000 0.64 1.38 8.58 13.22 290.59
4100 0.64 1.38 8.62 14.52 1153.9
16400 0.64 1.38 8.64 15.1 4632.39
32800 0.64 1.38 8.71 15.8 9263.64

Table 6.1: Approximated As-norm for a one-dimensional test example using
N(2, 2)

We observe, that the values stay (relatively) constant with growing N for
s = 0, 1, 2, but increase for s = 2.2, 3.0, which leads to the conclusion,
that g1 ∈ As, s ≤ 2. For a more detailed investigation, we computed
(N + 1)sσN (gi) for larger variety of N and s and computed the best fit
straight line. The following table shows the absolute value of its slope for
g1 and g1, using different spline wavelet systems N(m, m̃). We highlight
the first value ≥ 0.5 in each column.

s g1 g2

N(2,2) N(3,3) N(2,2) N(3,3) N(44)
0 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00
1.5 0.00 0.00 0.00 0.00 0.00

continued on next page

6.1 Direct Applications: g = v 103

continued from previous page

s g1 g2

N(2,2) N(3,3) N(2,2) N(3,3) N(44)
1.8 0.02 0.00 0.02 0.00 0.00
1.9 0.04 0.00 0.05 0.00 0.00
2.0 0.06 0.00 0.12 0.00 0.00
2.1 0.06 0.00 0.20 0.00 0.00
2.2 0.09 0.00 0.5 0.00 0.00
2.3 0.84 0.00 1.05 0.00 0.00
2.5 14.01 0.00 4.58 0.00 0.00
2.8 497.26 0.01 39.94 0.02 0.00
2.9 1549.2 0.02 81.49 0.04 0.00
3.0 46755.12 0.03 164.00 0.05 0.00
3.1 0.01 0.06 0.00
3.2 0.12 0.01 0.00
3.3 0.61 2.09 0.00
3.5 6.59 4.01 0.00
3.9 0.06
4.0 2.77 e8 1050 5.5e5 584.4 0.05
4.1 0.01
4.2 1.15
5.0 1.45e13 1.52e7 1.5e10 5.4e6 189.3

Table 6.2: Variation of the approximated As-norm for two examples

The slopes of the log-log diagrams of σN versus N below confirm these
rates in accordance with Lemma 1.1.1.

4 6 8 10 12
−35

−30

−25

−20

−15

−10

−5

s= −2.04

s= −3.09

log(N)

lo
g(

σ N
)

22
ψ

33
ψ

(a) Example g1

4 5 6 7 8 9 10
−35

−30

−25

−20

−15

−10

s= −2.05

s= −3.05

log(N)

lo
g(

σ N
)

s= −4.12
22

ψ

33
ψ

44
ψ

(b) Example g2

Figure 6.2: Error rates of best N -term approximation

These results let us expect, that the wavelet coefficients of g1 with respect
to N(2, 2) (N(3, 3)) can be approximated with an approximated rate of 2.2

104 Approximation in L2

(3.1), while g2 allows approximation rates of about 2.1, 3.2 and 4.1 using
N(2, 2), N(3, 3) and N(4, 4) respectively.

We will now turn to the recovery scheme. For g = gi, i = 1, 2, we will
choose J = 15 and the approximation interval [−2, 2].
Concerning corresponding absolute CPU-times, the following numbers may
serve as orientation: In order to compute the reference solutions, we have
to determine 131073 coefficients 〈g, φJ,k〉, which takes about 0.23s using
N(2, 2), N(3, 3) and a two-point quadrature formula. Decomposing these
arrays consumes 0.54s (N(2, 2)) and 0.66s (N(3, 3)) of time for g = g1.
The time difference is due to the different sizes of the masks. Because
of the fact that the index set for g = g2 contains less non-zero entries,
the decomposition takes 0.28s and 0.32s for N(2, 2), N(3, 3) respectively.
The computation for g = g2 and N(4, 4) is executed using a four-point
quadrature formula, resulting in 1.04s to compute q15 and 0.39s for the
decomposition procedure.

Observe, that the error rates in the log-log plots are in accordance with
the expected rate, and that the error of the result of the recovery scheme
gR and the approximant obtained by thresholding gε are very similar also
in absolute size. It should be noted, that the behavior of the M-graded
version differs significantly from gε when N is relatively small. This is due
to the fact, that the completion and the grading process add indices to the
approximant without taking into account their contribution to the error,
i.e., regardless of the resulting error rate. With growing cardinality of the
index set Λε, the perturbing effect of the index manipulations grows weaker
and finally gM shows the same error behavior than gε.

4 6 8 10 12
−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −2.06

||g−gR
t ||, s= −2.06

||g−g M||

Figure 6.3: Error rate: Recovery scheme and a thresholding of g1 using N(2, 2)

6.1 Direct Applications: g = v 105

Concerning the CPU time for the recovery scheme, the graph below shows
a linear growth with regard to the number of coefficients.

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

N

pr
oc

es
s

tim
e

(s
)

Figure 6.4: CPU time: Recovery scheme for g1 using N(2, 2)

The diagrams below show the index sets corresponding to the major steps
in a computation using with g = g2 and M(2, 2).

106 Approximation in L2

−2 −1 0 1 2

0

1

2

3

4

5

k

Le
ve

l
j

(a) decomp

−1 −0.5 0 0.5 1

0

1

2

3

4

5

k

Le
ve

l
j

(b) thresh

−5 0 5

0

1

2

3

4

5

k

Le
ve

l
j

(c) grad

−2 −1 0 1 2

0

1

2

3

4

5

k

Le
ve

l
j

(d) rec

Figure 6.5: Index sets for recovery scheme for g2 using N(2, 3)

6.1 Direct Applications: g = v 107

For the wavelet system N(3, 3), the tests show similar results, in particular,
the error rate is again very close to the expected value and the CPU time
grows linearly with the number of coefficients

4 5 6 7 8 9 10
−35

−30

−25

−20

−15

−10

−5

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −3.11

||g−gR
t ||, s= −3.12

||g−g M||

(a) Error rates

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

N

pr
oc

es
s

tim
e

(s
)

(b) CPU times for recovery

Figure 6.6: Recovery scheme for g1 using N(3, 3)

The following diagrams show the results for g2. Again, the approximation
interval was chosen to be [−2, 2].

108 Approximation in L2

2 4 6 8 10
−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −2.05

||g−gR
t ||, s= −2.05

||g−g M||

(a) Error rates, N(2, 2)

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.2

0.4

N

pr
oc

es
s

tim
e

(s
)

(b) CPU time for recovery, N(2, 2)

2 4 6 8 10
−30

−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −3.10

||g−gR
t ||, s= −3.12

||g−g M||

(c) Error rates, N(3, 3)

0 0.5 1 1.5 2

x 10
4

0

0.2

0.4

N

pr
oc

es
s

tim
e

(s
)

(d) CPU time for recovery, N(3, 3)

2 4 6 8 10
−30

−25

−20

−15

−10

−5

0

5

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −4.08

||g−gR
t ||, s= −4.07

||g−g M||

(e) Error rates, N(4, 4)

0 500 1000 1500 2000 2500 3000 3500 4000
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N

pr
oc

es
s

tim
e

(s
)

(f) CPU time for recovery, N(4, 4)

Figure 6.7: Comparison: Recovery scheme vs. thresholded version of g2

As a two dimensional test case, we will be concerned with g3, which is

6.1 Direct Applications: g = v 109

defined in analogy to g2 as follows

g3 := exp(−200 ∗ (x2 + y2)). (6.1.2)

Figure 6.8: Two dimensional test functions g3

Again, we are interested in the possible approximation rate of g3. Using
the same methods as in the one-dimensional case, the approximated As

norm lead to the following results:

s N(2,2) N(3,3) N(4,4)
0 0.00 0.00 0.00
0.6 0.00 0.00 0.00
0.7 0.00 0.00 0.00
0.8 0.05 0.00 0.00
0.9 0.11 0.00 0.00
1 0.55 0.00 0.00
1.1 1.98 0.00 0.00
1.2 6.57 0.00 0.00
1.3 21.91 0.02 0.00
1.4 73.31 0.09 0.00
1.5 246.26 0.30 0.00
1.6 830.51 1.02 0.01
1.8 9556.62 11.59 0.21

continued on next page

110 Approximation in L2

continued from previous page

s N(2,2) N(3,3) N(4,4)
2.0 1.16e4 135 0.68
2.2 - - 34.71
3.0 2.99e8 3.5e8 5.3e6

Table 6.3: Variation of the approximated As-norm for a two dimensional func-
tion

We therefore expect, that the array of wavelet coefficients of g3 with respect
to N(2, 2), N(3, 3) and N(4, 4) can be approximated with a rate of 1, 1.5
and 2.0 respectively. Again, these numbers match the slopes of the log-log
diagrams of σN versus N below.

6 8 10 12 14
−22

−20

−18

−16

−14

−12

−10

−8

−6

s= −1.06

s= −1.53

s= −2.03

log(N)

lo
g(

er
ro

r)

22
ψ

33
ψ

44
ψ

Figure 6.9: Error rates of best N -term approximation

The setup for the test of the recovery scheme in two dimensions is in
principle identical to the one-dimensional case: For g = g3, we will chose
the level J = 12 and compute qJ ≡ 〈g,ΦJ〉 on the uniform grid for the
interval [−2, 2]2. This results in 82932 = 67125249 coefficients to compute.
For a two-point quadrature formula, this takes about 14min (849.05s),
while for a formula with four points, as used for N(4, 4), this takes 25min
(1518.35s). Decomposing the array of single scale coefficients on level J
takes about 3min (177.3s) in the case of N(3, 3), while 5min (292.2s) for
N(4, 4).

6.1 Direct Applications: g = v 111

The log-log plots below show again the typical behavior already observed
in the 1D case, yet the constants are somewhat larger, The CPU-time
grows linearly with the number of coefficients. Keep in mind, that time
differences smaller then 0.01s are below measurement accuracy.

On pages 113 and following, we show the major principal steps of the above
test computations. The plots 6.11 and 6.12 show the result of the initial
thresholding step, i.e., T ε. In Figures 6.13 and 6.14, we depict the 2-graded
input set (T ε)M of the recovery scheme for the above test function. For
clarity reasons, we show the case where the maximal level is chosen to be 5
as already here, the support cubes on higher level are hardly distinguishable
on a picture fitting these pages. Note that due to gradedness the tree is
quite wide. On pages 117 and 118 we depict the output of the recovery
scheme including a thresholding with ε = 2.5E − 4. The index set now is
much slimmer, but despite the thresholding very much tree-shaped.

Note, that on each level a square indicates the position of the unit cube
[0, 1]2.

112 Approximation in L2

4 6 8 10 12
−12

−10

−8

−6

−4

−2

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −1.15

||g−gR
t ||, s= −1.21

||g−g M||

(a) Error rates, N(2, 2)

0 1 2 3 4 5 6 7

x 10
5

−5

0

5

10

15

20

25

30

35

N

pr
oc

es
s

tim
e

(s
)

(b) CPU time for recovery, N(2, 2)

4 6 8 10 12 14
−20

−15

−10

−5

0

5

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −1.54

||g−gR
t ||, s= −1.55

||g−g M||

(c) Error rates, N(3, 3)

0 1 2 3 4 5 6 7

x 10
5

0

5

10

15

20

25

30

35

40

45

50

N

pr
oc

es
s

tim
e

(s
)

(d) CPU time for recovery, N(3, 3)

6 8 10 12 14
−22

−20

−18

−16

−14

−12

−10

−8

−6

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −2.06

||g−gR
t ||, s= −1.93

||g−g M||

(e) Error rates, N(4, 4)

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

7

8

9

10

N

pr
oc

es
s

tim
e

(s
)

(f) CPU time for recovery, N(4, 4)

Figure 6.10: Comparison: Recovery scheme vs. thresholded version of g3

6.1 Direct Applications: g = v 113

−1
0

1
2

−2
0

2

0

le
ve

l

(a) Scaling functions, i.e. wavelets type e = (00)

−1
0

1
2

−1
0

1
0

1

2

3

4

5

le
ve

l

(b) Wavelets, type e = (0, 1)

Figure 6.11: T ε for g3 according to N(2, 2) in 2d

114 Approximation in L2

−1
0

1

−2
0

2
0

1

2

3

4

5

le
ve

l

(a) Wavelets, type e = (10)

−1
0

1

−1
0

1
0

1

2

3

4

le
ve

l

(b) Wavelets, type e = (11)

Figure 6.12: T ε for g3 according to N(2, 2) in 2d (continued)

6.1 Direct Applications: g = v 115

−5
0

5

−5
0

5

0

le
ve

l

(a) Scaling functions, i.e. wavelets type e = (00)

−5
0

5

−5
0

5
0

1

2

3

4

5

le
ve

l

(b) Wavelets, type e = (0, 1)

Figure 6.13: (T ε)M for g3 according to N(2, 2) in 2d

116 Approximation in L2

−5
0

5

−5
0

5
0

1

2

3

4

5

le
ve

l

(a) Wavelets, type e = (10)

−5
0

5

−5
0

5
0

1

2

3

4

le
ve

l

(b) Wavelets, type e = (11)

Figure 6.14: (T ε)M for g3 according to N(2, 2) in 2d (continued)

6.1 Direct Applications: g = v 117

−2
0

2
4

−5
0

5

0

le
ve

l

(a) Scaling functions, i.e. wavelets of type e = (0, 0)

−2
0

2
4

−2
0

2
0

1

2

3

4

5

le
ve

l

(b) Wavelets, type e = (0, 1)

Figure 6.15: Output of recovery scheme for g3 (N(2, 2)) in 2d

118 Approximation in L2

−2
0

2

−5
0

5
0

1

2

3

4

5

le
ve

l

(a) Wavelets, type e = (1, 0)

−2
0

2

−2
0

2
0

1

2

3

4

5

le
ve

l

(b) Wavelets, type e = (1, 1)

Figure 6.16: Output of the recovery scheme for g3 (N(2, 2)) in 2d (continued)

6.1 Direct Applications: g = v 119

6.1.2 Failures: Significance of the Safety Region and

the Correction Step

The Correction Step

In the following tests, we will again use the one dimensional function g1, g2

and proceed according to the usual test routine, described at the beginning
of this chapter. Yet, for a qualitative classification of the significance of
the correction step, we will omit it here. This means, for test reasons we
replace the line (3.2.19) by

c̄j+1 := čj+1 + qj+1(G−
j+1)

in the recovery scheme Recover.

2 4 6 8 10
−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −2.07

||g−gR

t
||, s= −0.57

(a) g1, N(2, 2)

4 5 6 7 8 9 10
−35

−30

−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −3.07

||g−gR

t
||, s= −0.31

(b) g1, N(3, 3)

2 3 4 5 6 7 8
−30

−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −3.06

||g−gR

t
||, s= −0.33

(c) g2, N(3, 3)

2 3 4 5 6 7 8
−30

−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −4.06

||g−gR

t
||, s= −0.43

(d) g3, N(4, 4)

Figure 6.17: Computation without correction step

The graphs of Figure 6.17 show hardly an improvement of accuracy of

120 Approximation in L2

the recovery scheme when increasing the number of coefficients, i.e,. the
introduced error by the lacking correction dominates the overall accuracy.

Gradedness

The following example will demonstrate the effect when choosing the grad-
ing parameter M too small, namely < 2, cf. Remark 3.4.1. This yields an
index set that is no longer guaranteed to be well-graded.

0 2 4 6 8 10
−30

−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −3.01

||g−gR

t
||, s= −0.31

(a) g1, N(3, 3). M = 0

0 2 4 6 8 10
−30

−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −3.00

||g−gR

t
||

(b) g1, N(3, 3). M = 1

Figure 6.18: Computation, inadequate grading parameter

Note that this will result in perturbations of the error reduction, In the
case M = 0, the quality it totally unsatisfactorily, however the principle
behavior in the case M = 1 is still according to the expected rate. Per-
turbations are still visible, however their influence seems to decrease with
growing number of coefficients.

6.2 Approximating Compositions: g = y ◦ u
In this chapter, we use the recovery scheme to compute terms of the form

〈ψλ, y(uΛ)〉, λ ∈ Λ′ ⊂ J , (6.2.1)

where y is a nonlinear function and vΛ is a given finite wavelet approxima-
tion with support Λ to the so called original function u. This is exactly the
context that motivated the development of the original recovery technique
in [DSX00].

6.2 Approximating Compositions: g = y ◦ u 121

Terms of the form (6.2.1) may occur, when solving an operator equation
in the variational form

〈ν, L(u)〉 = 〈f, ν〉, for all ν ∈ Ξ ⊂ H,

by a wavelet (Petrov-) Galerkin scheme. Consider, e.g., the problem

−∇u+ y(u) = f in Ω,

u = 0 on ∂Ω,

for some domain Ω and a nonlinear function y(·), e.g., y(·) = ·2.
In many applications, the nonlinear term looks actually different. For
instance, in flow simulations one encounters expressions like ∂

∂xi
y(u(x)).

These terms however can be recast into a derivative-free form by using the
fact, that derivatives of spline wavelets can be expressed as simple linear
combinations of wavelets of lower order, see [LR92, Urb95]. Therefore, we
will stick to the above model.

When we want to approximate a composition in the context of an adaptive
wavelet scheme as described above, cf. Sections 3.1, 6.2, we have to cope
with the following task.

Task R3Task R3Task R3: Given u ∈ H, an approximant uΛ and y : [a, b]→ IR.

Assuming that the approximant uΛ, , |Λ| < ∞, satisfies

‖u− uΛ‖H < ε, (6.2.2)

for some ε > 0, find a finite Λ̂ ⊃ J and determine dΛ̂ such

that

‖〈ΨJ , y(uΛ)〉 − dΛ̂‖�2
<∼ ε, (6.2.3)

spending at most O(|Λ|) work.

Note that the above evaluation task again consists of the typical two steps,
i.e. prediction and recovery, however, in this special case, based on suitable
knowledge on the nonlinear function y, one aims at predicting Λ̂ from Λ,
hence at predicting the consequences (in terms of local resolution) of the
application of y.

However, deliberately postponing discussions on a suitable prediction strat-
egy, we shall first treat the example

u1 =

{
exp(x) x ∈ (−1, 1)
0 x ∈ (−2, 2) \ (−1, 1), y(·) = 4sin(2·), (6.2.4)

relying on the strategy from [DSX00]. Concerning the determination of pre-
diction sets for compositions we refer to Section 7 and [DSX00, CDD03c].

122 Approximation in L2

Hence, we will apply the test routine outlined in Chapter 5 to g = y(u1)
assuming that an index set matching the above task has been found. Recall
that Λε denotes the support of uε, the approximation to u, and that the pre-
diction set is given by Λ̂ = T ε = T (Λε). We again employ the Gauss-type
formulas according to [BBDK01], cf. Section 4.1.2, for the computation of
a uniform scaling function approximation to u1 on level J = 13 (32769
coefficients). The composition is approximated on (−2, 2) in this case on
level J ′ = 15 (131073 coefficients). Due to the jumps of u1 at −1, 1 we
expect significant wavelet coefficients with spatial indices near these points
in uJ , and therefore also in Λ

ε and T ε.

In the next table we exemplarily display cardinalities and errors, where we
used the biorthogonal cardinal B-spline systems N(κ, κ̃). Concerning the
cardinalities of the involved sets, note that as expected, the prediction set
#T ε is significantly larger then the set of actually relevant coefficients and
hence the set resulting from Recover (including top-to-bottom threshold-
ing as described in Section 3.2.2) #ΛR, yet the difference decreases with
growing size of #Λ. Recall that, according to Task R, the reference ac-
curacy is given by ‖g − gε‖. where here and below in the table we write
briefly ‖ · ‖ := ‖ · ‖�2(J).

#T ε 104 332 3664 13908 23256 27040
‖g − gε‖ 2.90e-3 7.41e-5 2.93e-7 4.40e-9 1.57e-11 2.60e-13

‖g − gR‖ 2.90e-3 7.92e-5 3.21e-7 4.51e-9 1.60e-11 2.61e-13
‖g − gR

t ‖ 2.92e-3 7.92e-5 3.3e-7 4.56e-9 1.71e-11 2.61e-13
#ΛR 25 112 1585 8771 15711 18527
‖g−gR‖
‖g−gε‖ 1.0 1.06 1.1 1.02 1.1 1.0

#T ε

#ΛR 4.16 2.96 2.31 1.58 1.48 1.45

Table 6.4: Recovery of g = 4 sin(2u1): Parameter studies

The numerical determination of the approximation rates for y ◦ u1 using
the same methods as before yield the following log-log plots comparing the
near best N-term approximation for u1 y ◦ u1.

6.2 Approximating Compositions: g = y ◦ u 123

4 6 8 10 12
−35

−30

−25

−20

−15

−10

−5

s= −2.04

s= −3.09

log(N)

lo
g(

σ N
)

22
ψ

33
ψ

(a) u1

4 6 8 10 12
−35

−30

−25

−20

−15

−10

−5

s= −2.07

s= −3.11

log(N)

lo
g(

er
ro

r)

22
ψ

33
ψ

(b) y ◦ u1

Figure 6.19: Error rates of best N -term approximation for u1 and compositions

The computation of the (approximated) As-norms confirm these results,
hence the expected error rate for these tests, i.e. the theoretical slope in
the log-log graph error vs. number of coefficients is κ, cf. Section 6.1.1,
which is well reflected by our experiments as soon as the problem reaches a
certain size. The graphs below show the log-log plots of the approximation
gε = g(T ε) to g in comparison with the result of the recovery of gR (on the
left) along with the computation time (on the right) for the bases according
to κ = 2,κ̃ = 2 and κ = 3, κ̃ = 3 respectively.

For smaller problems, we observe a tune-in behavior, however the asymp-
totic (optimal order) regime is entered at a relatively early stage.

The plots (b), (d) in Figure 6.20 confirm that the CPU-time scales linearly
with the size of the problem.

124 Approximation in L2

2 4 6 8 10
−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −2.05

||g−gR||, s= −2.05
||g−g R||, s= −2.04t

(a) Error rates , N(2, 2)

0 1 2 3 4 5 6 7

x 10
4

−0.5

0

0.5

1

N

pr
oc

es
s

tim
e

(s
)

(b) CPU time for recovery, N(2, 2)

2 4 6 8 10 12
−35

−30

−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −3.07

||g−gR||, s= −3.07
||g−g Rt ||, s= −3.04

(c) Error rates , N(3, 3)

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N

pr
oc

es
s

tim
e

(s
)

(d) CPU time for recovery, N(3, 3)

Figure 6.20: 1D-Tests of the recovery scheme, u = u1 and y ◦ u = 4sin(2u1)

As a two dimensional test example, we choose u2 defined by

u2(x1, x2) := exp(−100 ∗ (x2
1 + x2

2)), (6.2.5)

and retain the nonlinearity y = 4sin(2·). The results concerning Recover

are similar to the one dimensional case including the constant C. The
expected asymptotical error rate is s = κ−d/2, which is matched fairly well.
The CPU-times again scale linearly.

6.2 Approximating Compositions: g = y ◦ u 125

4 6 8 10 12
−12

−10

−8

−6

−4

−2

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −1.12

||g−gR||, s= −1.12
||g−g R||, s= −1.15t

(a) Error rates, N(2, 2)

0 1 2 3 4 5 6 7

x 10
5

−5

0

5

10

15

20

25

30

35

N

pr
oc

es
s

tim
e

(s
)

(b) CPU time for recovery, N(2, 2)

8 10 12 14 16 18
−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −2.09

||g−gR||, s= −2.09
||g−g R||, s= −2.14t

(c) Error rates, N(4, 4)

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

7

8

9

10

N

pr
oc

es
s

tim
e

(s
)

(d) CPU time for recovery, N(4, 4)

Figure 6.21: 2D-Tests of the recovery scheme; u = u2, y ◦ u = 4sin(2u2)

Chapter 7

Prediction Sets for
Compositions

We will now briefly present a heuristic strategy based on ideas from [DSX00]
to predict a suitable index set for y ◦u. Recall that we want to find Λ̂ ⊂ J
such that

‖〈ΨJ , y(uΛ)〉 − 〈ΨΛ̂, y(uΛ)〉‖�2
<∼ ε, (7.0.1)

where we assume for the rest of this chapter that uΛ is ε-accurate, i.e.
‖u− uΛ‖�2(J) ≤ ε. Recall from Section 1.1 that #Λ<∼ ε−1/s if u ∈ As.

In [DSX00] and more recently also in [CDD03c], it is shown, that for a wide
classes of nonlinearities, one can indeed predict Λ̂ = Λy(u) from Λ = Λu

and ensure also that Λy(u) is of the ’right’ size, namely #Λy(u) <∼ ε−1/s.

As we have seen earlier, these strategies are necessarily designed to cover
a large class of operators charectarized only in a qualitative way, e.g. by
smoothness or growth conditions. The corresponding asymptotic estimates
are therefore expected to be pessimistic in qualitative terms. Thus in each
concrete case a refined analysis is needed to improve the quantitative per-
formance. The heuristics presented below aims at minimizing the overhead
in the case of the prediction proposed in [DSX00].

7.1 Predicting Approximation Spaces for Com-

positions

Assume, that we are given an ε-accurate set Λu for the function/approximant
pairing (u, uΛu). We shall briefly summerize now the method [DSX00] to
predict an ε-accurate set Λg for (g = y(uΛu), gΛg),

128 Prediction Sets for Compositions

Suppose that the multiresolution spaces Sj , S̃j spanned by all basis func-
tions from Ψ, respectively Ψ̃ up to level j−1 provide approximation orders
m, m̃, respectively. Recall from Chapter 2 that this means

inf
vj∈Sj

‖u− vj‖L2
<∼ 2

−mj‖u‖Hm,

and analogously for the spaces S̃j. In terms of the degrees of freedom N
the decay rate 2−mj can be expressed as N−m/d.

In fact, it has been shown in [DSX00] that when u ∈ Bs
q(Lp) ∩ L∞, s >

0, p, q ∈ (0,∞] with ‖u‖∞ ≤ σ < ∞ the composition y(u) is still in Bs
q(Lp)

if y ∈ Cr([−σ, σ]), r > s and y(0) = 0. This makes use of a result, see e.g.
[RS96], stating that for s > 0 with

1

p
≤ s

d
+ 1

we have that

‖y ◦ v‖Bs
q (Lp) ≤ C(y, ‖v‖L∞) ‖v‖Bs

q(Lp), v ∈ Bs
q(Lp) ∩ L∞. (7.1.1)

The constant C(y, ‖v‖L∞) is of the form

C(y, ‖v‖L∞) = c(‖v‖L∞)N. (7.1.2)

Here c(‖v‖L∞) is another constant and N > 0 satisfies

‖y(l)‖L∞ ≤ N, l = 1, 2, . . . , r, (7.1.3)

see [RS96].

If Λ is anM-graded ε-accurate set for (u, uΛu) it can be shown, see [DSX00],
that an M-graded ε-accurate set Λy(u) for (y(u), Q̃Λy(u)) can be obtained
by a fixed number of dyadic subdivisions of Λu.

The depth of this subdivision depends on the ratio ‖y(u)‖Bs
q(Lp)/‖u‖Bs

q(Lp).

Hence #Λy(u) <∼#Λu uniformly in ε. In fact, Λy(u) is actually ε-accurate
for (y(u), PΛy(u)y(u)), where PΛy(u) is the recovery scheme from Chapter 3.
Of course, to make sure that local errors of approximations to y(u) can be
comparable to those of u, the accuracy order of the dual multiresolution
spaces S̃j should be at least as large as that for the primal spaces Sj , i.e.,
m̃ ≥ m which we will always assume henceforth.

In applications, y is often very regular, say y ∈ Cm. This may suggest to
globally subdivide each element of Λu in order to compensate the action of
y concerning the Besov norm, cf. [DSX00]. Note, however, that it may be

7.1 Predicting Approximation Spaces for Compositions 129

the case that this action is locally very different, hence one should consider
a local subdivision depth

Rλ :=
|y(v)|Bm

q (Lp(�̃λ◦))

‖v‖Bm
q (Lp(�̃λ◦))

,

where �̃λ◦ is a suitable superset of the support cube �λ◦ , e.g., the smallest
cube such that

�̃λ◦ ⊇
⋃

µ:supp φ̃µ∩�λ◦ �=∅

supp φ̃µ.

The feasibility of this more economic subdivision strategy depends on being
provided with the knowledge of Rλ. Due to (7.1.2), one can at least derive
an indicator for Rλ and hence for a suitable local refinement depth on �̃λ◦ ,
cf. (7.1.3), by computing numbers Nλ◦ satisfying

max
l=1,...,s

‖y(l)‖L∞(�̃λ◦) ≤ Nλ◦ .

Examples of sets Λu, u = u1 and Λ
g, g = u2

1 (represented in terms of support
cubes) according to a uniform subdivision r = 1, cf. [DSX00] are displayed
in Figure 7.1. Note that again the different gray-shades in the visualization
of Λu correspond to the size of the associated coefficient value, while in the
prediction set Λg, no values are associated to the support cube.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

1

2

3

4

5

6

7

8

k=0

Le
ve

l
 j

k

(a) Λε: Index set of approximant to u

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

1

2

3

4

5

6

7

8

k=0

Le
ve

l
 j

k

(b) T ε: The prediction set for g

Figure 7.1: Index sets represented by support cubes

We will now illustrate the effect of the action of two different types of non-
linearities on the shape of the index sets in the Figure 7.2 on the following

130 Prediction Sets for Compositions

pages. The function under consideration is again u1, see (6.2.4) In the fol-
lowing tests, we compare the influence of the nonlinear functions y1 = (·)2
and y2 = 4 sin(2·) on u1. We use the abbreviations

g1 := (u1)
2, and g2 := 4 sin(2u1). (7.1.4)

On the interval [−2, 2], these functions are sampled on level 15 using the 2,2φ
scaling functions. This single scale representation is then decomposed and
thresholded. For illustration reasons, we chose relatively low resolution,
i.e., a large thresholding parameter ε = 0.01 in order to end up with a
small index set giving a clear picture.

The pictures on the following pages show index sets Λ1 := Λ(u1, ε) and
Λg

i , i = 1, 2, as well as the corresponding approximations to u1, gi, i =
1, 2. The different gray values in the index plots refer to different sizes of
coefficients, the darker, the larger the value. The graphs on the left-hand
side are those of the wavelet expansions corresponding to the index sets
displayed on the right.

7.1 Predicting Approximation Spaces for Compositions 131

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

x

y

(a) u1, see (6.2.4)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

1

2

3

4

5

6

7

8

k=0

Le
ve

l
 j

k

(b) Λ1, index set for u1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

0

1

2

3

4

5

6

7

8

x

y

(c) g1, see (7.1.4)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

1

2

3

4

5

6

7

8

k=0

Le
ve

l
 j

k

(d) Λg
1, index set for g1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−3

−2

−1

0

1

2

3

4

x

y

(e) g2, see (7.1.4)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

1

2

3

4

5

6

7

8

k=0

Le
ve

l
 j

k

(f) Λg
2, index set for g2

Figure 7.2: Qualitative change in the shape of the index sets for different y

Note that u1 has jumps at±1 and that Λ1 has high level (level 8) coefficients
at these locations. In Λg

1, we observe in principle the same structure. In the
last example g2 however, we observe a steep gradient in the center of the
interval not occurring in u1. This is reflected in the index set Λ

g
2 by the fact,

that coefficients start to pile up around x = 0. Qualitatively speaking the
structure of g2 is comparable to g1, i.e., (·)2 is structure preserving, while

132 Prediction Sets for Compositions

4sin(2·) introduces significant structural changes, namely a ’new’ cone of
coefficients growing with more levels involved.

The following heuristic approach now follows the intuition of ’linking’ the
refinement depth to the local size of the gradient. Motivated by the chain
rule, [y(g)]′ = y′(g)g′, and (7.1.1) the idea is to refine ’proportionally’ to
the absolute size of y′(g). One possible heuristic prediction rule derived
from that ansatz is the following.

H-Subdiv — (u(T), y,Mmax)→ [∂T y]

Let T y := ∅
For each λ◦ ∈ ∂T do

Determine

rλ :=
‖y′(g)‖L∞(�λ)

‖y′(g)‖L∞(Ω)

Mλ◦ := �rλMmax�

T y → T y ∪ {(|λ◦|+Mλ◦ ,k) : �(|λ◦|+Mλ◦ ,k) ⊂ �λ◦}

Algorithm 7.1: Procedure H-Subdiv: Heuristic prediction strategy

Note that H-Subdiv only constructs the leaves of T y, which however de-
termine the entire tree.

Before we turn to numerical examples illustrating this strategy, the follow-
ing remark is in order: In this thesis, we clearly separate the two actions
prediction and recovery of an adaptive evaluation scheme as two concep-
tually different steps. This leads to the algorithmic paradigm proposed so
far, namely that we consider the prediction step as a black-box tool to be
applied as a pre-processing step to Recover.

However, if the prediction technique is known and of suitable type like the
techniques described above, it can be advantageous to merge the prediction
step with the recovery Recover: If we construct T (Λε) according to the
above technique, we have to sweep (at least) the leaves of Λε and to store
the descendants corresponding to the refinement strategy as a whole. Yet
one can combine the index manipulations and the prediction techniques
to perform both steps in a single sweep and during the level-iteration of
Recover. The above refinement strategy, e.g., can be easily merged with

7.2 Numerical Results 133

the Completion routine, cf. (4.2.2), and hence - by a corresponding mod-
ification of LeafOne cf. (4.2.2) - with Recover

∗. The benefit of this is
again that the assembling and storage of the entire, possibly pessimistic
prediction set is avoided.

7.2 Numerical Results

The principal way of carrying out the following test is the same as in
Chapter 5 and we will again use the functions u1, u2:

u1 =

{
exp(x) x ∈ [−1, 1]
0 (−2, 2)\(−1, 1) and u2 = exp(−100 ∗ x2). (7.2.1)

As nonlinearity, we will first consider y(·) = ·2. To numerically determine
the approximation rates for y ◦ u1, y ◦ u2, we used the same methods as
before, cf. Chapter 6. The log-log plots below compare the (numerically
determined) near best N-term approximation for u2 with y ◦ u2.

4 5 6 7 8 9 10
−35

−30

−25

−20

−15

−10

s= −2.05

s= −3.05

log(N)

lo
g(

σ N
)

s= −4.12
22

ψ

33
ψ

44
ψ

(a) u2

4 5 6 7 8 9 10
−40

−35

−30

−25

−20

−15

−10

−5

s= −2.04

s= −3.03

s= −4.08

log(N)

lo
g(

er
ro

r)

22
ψ

33
ψ

44
ψ

(b) y ◦ u2

Figure 7.3: Error rates of best N -term approximation for u2 and compositions

As expected, we observe the same error rates, i.e., the same slopes of the
best fit straight line, for the original function as well as for the composition.
Note also, that given a specific number of coefficients, the corresponding
error for the composition is somewhat larger. Both observations are in
accordance with (7.1.1). The computations of the (approximated) As-
norms confirm these results analogously to Table 6.2.

134 Prediction Sets for Compositions

Classical Prediction

Using a uniform scaling function representation on level 13 (32769 coeffi-
cients) we compute an approximation to ui, i = 1, 2 on the interval [−2, 2]
serving as reference. In the same fashion, we determine a reference for
g = y ◦ u on level 15 (131073 coefficients). After having determined
Λε(u),the prediction set T (g) for g is obtained by an r-fold subdivision
of the support cubes in (Λε(u))◦.

The following Figure 7.4 shows the results of the tests with u = u1. Again,
we displayed the log-log plots of the original approximation uε to u in
comparison with the result of the recovery gR

t of g = y ◦ u along with the
time for the computation.

0 2 4 6 8 10 12
−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||u−uε||, s= −2.06

||g−gR

t
||, s= −2.05

(a) Error rates using N(2, 2)

0 1 2 3 4 5 6 7

x 10
4

−0.5

0

0.5

1

1.5

N

pr
oc

es
s

tim
e

(s
)

(b) CPU time for recovery with
N(2, 2)

2 4 6 8 10
−35

−30

−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||u−uε||, s= −3.12

||g−gR

t
||, s= −3.03

(c) Error rates using N(3, 3)

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

N

pr
oc

es
s

tim
e

(s
)

(d) CPU time for recovery with
N(3, 3)

Figure 7.4: Test of the recovery scheme with u = u1 and g = u2
1

7.2 Numerical Results 135

We observe, that the error rates match the expectations. Moreover, also
here, the computation time grows linearly with the number of coefficients.

The following table lists the most interesting numbers for different sizes of
Λε(u). The numbers in the first table correspond to a computation using
N(2, 2) and y ◦ u = u2

1. Recall that Λ
g is the prediction set for g = y ◦ u

obtained by the strategy in [DSX00]. It already includes all structural
requirements.

#Λε 23 119 1783 7667 11570 13469
‖u− uΛε‖�2 2.9e-3 7.4e-5 2.8e-7 4.2e-9 1.7e-11 2.6e-13

#Λg 104 332 3664 16108 23256 27040

#ΛR
t 25 112 1585 8771 15711 18527

‖g− gR
t ‖ 2.9e-3 7.9e-5 3.2e-7 4.5e-9 1.6e-11 2.6e-13

‖g−gR
t ‖

‖u−uΛε‖ 0.96 1.06 1.11 1.07 0.92 1.0

Table 7.1: Recovery for g = u2
2. Parameter studies, N(2, 2)

The following table corresponds to computations for N(4, 4) and g = u2
2

allowing similar observations as above. All other test computations show
a similar behavior.

#Λε 75 125 292 861 2273
‖u− uΛε‖�2 3.6e-6 3.0e-7 4.5e-9 6.5e-11 9.9e-13

#Λg 296 416 740 1904 4723

#ΛR
t 71 122 304 7766 2274

‖g − gR
t ‖�2 4.2e-6 3.1e-7 4.8e-9 6.7e-11 1.09e-12

‖g−gR
t ‖�2

‖u−uΛεt ‖�2
1.1 1.05 1.06 1.03 1.10

Table 7.2: Recovery for g = u2
2: Parameter studies, N(4, 4)

Figure 7.5 shows the corresponding results for u = u2, g = u2
2 showing the

same good correspondence with the expected behavior.

136 Prediction Sets for Compositions

2 4 6 8 10
−18

−16

−14

−12

−10

−8

−6

−4

−2

log(N)

lo
g(

er
ro

r)

||u−uε||, s= −2.05

||g−gR

t
||, s= −2.00

(a) Error rates using N(2, 2)

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

N

pr
oc

es
s

tim
e

(s
)

(b) CPU time for recovery with
N(2, 2)

2 4 6 8 10
−30

−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||u−uε||, s= −3.06

||g−gR

t
||, s= −3.03

(c) Error rates using N(3, 3)

0 0.5 1 1.5 2 2.5

x 10
4

0

0.2

0.4

N

pr
oc

es
s

tim
e

(s
)

(d) CPU time for recovery with
N(3, 3)

2 4 6 8 10
−30

−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||u−uε||, s= −4.03

||g−gR

t
||, s= −4.02

(e) Error rates using N(4, 4)

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N

pr
oc

es
s

tim
e

(s
)

(f) CPU time for recovery with
N(4, 4)

Figure 7.5: Test of the recovery scheme with u = u2 and g = u2

7.2 Numerical Results 137

The Heuristic Approach

We will now be concerned with g = g1 and the nonlinear function y(·) =
4 sin(2·), see Figure 7.2. For this composition, the expected error rates are
determined by the same methods as before, resulting in 2 for N(2, 2) and
3 for N(3, 3).

4 5 6 7 8 9 10
−30

−25

−20

−15

−10

log(N)

lo
g(

σ)

s= −3.05

s= −2.08

22
ψ

33
ψ

Figure 7.6: Error rates

In this test case, the shape of the index sets for g and y ◦ g differ qualita-
tively, as we illustrated above, cf. Figure 7.2. Therefore, a uniform subdi-
vision of each cube in Λg might lead to a pessimistically large prediction
set Λy◦g.

We will now compute rλ according to Procedure H-Subdiv. Below, in
order to illustrate the proceeding, we plotted the graph of g = g1 as well as
y ◦ g (left-hand side) and |y′(g(x))| for x ∈ [−1, 1] on the right-hand side.

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

g=g
1

y(g)=4sin2(g)

−2 −1 0 1 2
0

1

2

3

4

5

6

7

8
y’(g)

Figure 7.7: g, y(g), and y′(g)

138 Prediction Sets for Compositions

The following figure shows the graph of Y (x) := |y′(g(x))|/‖y′(g(x))‖∞ for
x ∈ [−1, 1] (solid line) and the local subdivision indicator r(x), which we
derived by stating

r(x) =

0, Y (x) ≤ 0.25,
1, Y (x) ∈ (0.25, 0.5],
2, Y (x) > 0.5.

(7.2.2)

−2 −1 0 1 2
0

0.5

1

1.5

2

Y(x)
r(x)

Figure 7.8: Non-uniform refinement strategy: Indicator

Of course, a rule like (7.2.2) is purely heuristic and its shape depends very
much on the circumstances at hand. For any leaf λ ∈ ∂Λg, we will then
choose rλ = maxx∈�λ

r(x) and subdivide �λ in total rλ times. Note that
this strategy leads to a uniform strategy for y(·) = ·α, α ∈ IR, so it is in
agreement with the procedure we applied in the previous section.

The next diagrams compare the results of the recovery scheme for the
prediction set Λg determined by uniform 2-fold subdivision and by the
heuristic strategy according to Figure 7.8. In both cases, the result of
the recovery process shows the expected error rate and both results are
very similar. Yet, comparing the CPU times, displayed on the right-hand
side, the advantage of the heuristic strategy becomes clear: The size of
the predicted set Λg, which serves as input for the recovery scheme, is
about twice as large in the uniform case compared with the heuristically
determined index set, which consequently results in a doubled CPU time.

7.2 Numerical Results 139

2 4 6 8 10
−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||u−uε||, s= −2.09

||g−gR

t
||, s= −2.04

(a) Error rates, uniform strategy
r = 2

0 1 2 3 4 5 6 7

x 10
4

−0.5

0

0.5

1

N

pr
oc

es
s

tim
e

(s
)

(b) CPU time, uniform strategy
r = 2

2 4 6 8 10
−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||u−uε||, s= −2.09

||g−gR

t
||, s= −2.06

(c) Error rates, heuristic strategy

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.5

N

pr
oc

es
s

tim
e

(s
)

(d) CPU time, heuristic strategy

Figure 7.9: Uniform and heuristic prediction strategy using N(2, 2)

We can observe the same effects also when using different types of wavelets
as the following graphs show.

140 Prediction Sets for Compositions

2 4 6 8 10 12
−35

−30

−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||u−uε||, s= −3.10

||g−gR

t
||, s= −3.04

(a) Error rates, uniform strategy
r = 2

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N

pr
oc

es
s

tim
e

(s
)

(b) CPU time, uniform strategy
r = 2

2 4 6 8 10
−35

−30

−25

−20

−15

−10

−5

0

log(N)

lo
g(

er
ro

r)

||u−uε||, s= −3.09

||g−gR

t
||, s= −3.06

(c) Error rates, heuristic strategy

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

N

pr
oc

es
s

tim
e

(s
)

(d) CPU time, heuristic strategy

Figure 7.10: Uniform and heuristic prediction strategy using N(3, 3)

Chapter 8

Dual Norms

The numerical experiments of this chapter refer to the second scenario
sketched in Section 3.1, namely involving topologies where H is compactly
embedded in L2(Ω) such as a Sobolev space H

t of positive order t, which
leads to a recovery in dual norms.

In the following tests, the original function u is subject to a nonlinear
mapping (of polynomial type) y : H t → H−t. As before the examples
are designed in such a way that F (ψλ) is in L2 and pointwise smooth, yet
the H t- and L2-norms are very large compared to the (dual) H

−t-norm
where the recovery is supposed to take place. The general layout of the
test computations follows again Chapter 5.

8.1 Gauss Quadrature

First, we use the Gauss-type formulas from [BBDK01], see Section 4.1.2,
for quadrature. One of our goals here is to illustrate, that this suffices in
practical applications involving pointwise smooth functions.

In 1D, we consider

u3(x) := 2exp(−100 ∗ (x− 0.5)2) and y(·) = ·5. (8.1.1)

For the two-dimensional test we will be concerned with the same nonlin-
earity and

u4(x1, x2) := u3(x1)u3(x2). (8.1.2)

Note that according to [CDD03d], in IRd we have that y : u → up maps H t

into H−t for t < d/2 if

p < p∗ =
d+ 2t

d− 2t . (8.1.3)

142 Dual Norms

For t = 0.334 and d = 1, t = 0.667 and d = 2 respectively, y(·) = ·5 is
therefore close to the limit case. These choices have no practical meaning
but are merely to test the dual norm case in a regime where the nonlinear
mapping affects the norms in a visible way.

The size of the various norms are recorded below.

norm u3 y ◦ u3 norm u4 y ◦ u4

L2 0.709 7.576 L2 0.501 57.395

H0.334 7.115 H0.667 10.548
H−0.334 0.853 H−0.667 0.399

The following figures show the result of our tests in a similar fashion as
before. Note however, that aside from the approximations to u3 and the
final result of the recovery scheme for (y ◦u3)

R we also displayed the inter-
mediate result (y ◦ u3)

r, which is the output of the recovery scheme before
scaling the coefficients by DT , cf. 3.3.15. Compared to the final result, this
intermediate array also has a fixed error decay rate, which is, however, by
0.35 ≈ t lower than the one obtained for the recovery in the correct norm.

2 4 6 8 10
−20

−15

−10

−5

0

5

log(N)

lo
g(

er
ro

r)

||g−gε||, s= −1.48

||g−gR
t ||, s= −1.50

||g−g r ||, s= −1.14t

(a) Error rates

0 0.5 1 1.5 2

x 10
4

−0.05

0

0.05

0.1

0.15

0.2

N

pr
oc

es
s

tim
e

(s
)

(b) CPU time
Figure 8.1: Test of Recover: g = (u3)5, (H, H̃) = (H0.334,H−0.334), N(2, 2).

The following 2D experiments, even though dealing with larger constants,
also show the expected behavior.

8.2 Least Squares Quadrature 143

5 10 15 20
−20

−15

−10

−5

0

5

log(N)

lo
g(

er
ro

r)

||g−gε||, s=−0.78
||g−gR||, s=−0.79

(a) Error rates using N(2, 2)

0 0.5 1 1.5 2 2.5 3

x 10
6

−20

0

20

40

60

80

100

120

N

pr
oc

es
s

tim
e

(s
)

(b) CPU time for recovery with
N(2, 2)

2 4 6 8 10 12 14
−20

−15

−10

−5

0

5

log(N)

lo
g(

er
ro

r)

||g−gε||, s=−1.36
||g−gR||, s=−1.29

(c) Error rates using N(3, 3)

0 0.5 1 1.5 2 2.5

x 10
6

0

20

40

60

80

100

120

140

N

pr
oc

es
s

tim
e

(s
)

(d) CPU time for recovery with
N(3, 3)

Figure 8.2: Tests of Recover: g = (u4)5, (H, H̃) = (H0.667,H−0.667).

8.2 Least Squares Quadrature

Next we will be concerned with the pointwise smooth but oscillatory func-
tion

u5(x) = (exp(−100 ∗ (x− 0.5)) ∗ sin(500x))3,
which is to be recovered for test reasons in H−1. Concerning the H−1

norm we have ‖u5‖H−1 ≈ 0.0877, again determined by the weighted sum of
a (finite) reference wavelet approximation obtained by means of a scaling
function representation on a uniform grid (level 15). In order to validate
the results, the inner products for this reference are computed exactly by
means of automatic, symbolic integration using MAPLE 9.0.

For the above setting, we shall compare the recovery scheme using two dif-
ferent quadratures, namely the Gauss-quadrature according to [BBDK01]
and the following quadrature method which is a simplification of (4.1.7).

Given an overall target accuracy ε > 0, for each level j do:

1. Let r=1.

144 Dual Norms

2. Determine qr
j as described in (4.1.4) and compute

dr
j(g) := Gj,Θ̃ · · ·Gj+r−1,Ψ̃q

r
j+r. (8.2.1)

3. If(
j+r′−1∑
l=j+r

ω2
j‖Gl,Θ̃Gl+1,Φ̃ · · ·Gj+r−1,Φ̃qj+r′‖2

�2(J)

)
1/2 > ε(#Λj/#Λ).

(8.2.2)
set r → r + 1 and go to i) else accept qr

j , cf. (4.1.8). Here we take
r′ ∈ {r + 1, r + 2}.

The following graphs show the results of our computations with N(2, 2) and
N(3, 3). We used Gauss quadratures with two points, the number of sam-
pling points for the least-squares formula is |Y (N(2, 2))| = |Y (N(3, 3))| =
4. The observed average refinement parameter is r = 2.

Note, that the error of the recovery scheme using the Gauss quadrature,
labeled (y ◦ u)R,G in the plot, does not show the desired behavior. It stag-
nates from time to time and even though we can observe an overall error
decay, the rate is certainly insufficient. The reason is, that the error stem-
ming from the Gaussian quadrature dominates the error of the recovery
scheme. On the other hand, the performance of the recovery scheme using
the least-squares method described above, labeled (y◦u)R,LS is satisfactory
as (8.2.2) ensures, that the quadrature error does not dominate.

On the right hand side, we display the CPU-times referring to to least-
squares computation. More than 70% of the CPU time is consumed by
checking the error criterion (8.2.2), namely to apply Gj,Θ̃ and to compute
the norm in (8.2.2).

8.2 Least Squares Quadrature 145

2 4 6 8 10
−20

−15

−10

−5

0

5

log(N)

lo
g(

er
ro

r)

g R,G , s=−1.61
g R,LS , s=−2.16

(a) Error rates using N(2, 2)

0 5000 10000 15000
0

0.5

1

1.5

2

2.5

3

N

pr
oc

es
s

tim
e

(s
)

(b) CPU time for recovery, N(2, 2)

2 4 6 8 10
−30

−25

−20

−15

−10

−5

0

5

log(N)

lo
g(

er
ro

r)

g R,G , s=−1.87
g R,LS , s=−3.20

(c) Error rates using N(3, 3)

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

N

pr
oc

es
s

tim
e

(s
)

(d) CPU time for recovery, N(3, 3)

Figure 8.3: 1D-Tests of the recovery, least-squares quadrature, g = (u5)3

Part IV

Realization

Overview: Part IV gives an overview of the construction
principles and the general layout of the C++-code realizing
the schemes described in this thesis.
Chapter 9 collects some general ideas concerning the realiza-
tion of (wavelet) adaptive schemes that guided the coding.
In Chapter 10 we briefly present the architecture and the
main ingredients of our realization.

Chapter 9

Conceptual Remarks

The ongoing successful developments of theoretical methods to treat op-
erator equations give rise to a growing demand for efficient computer pro-
grams based on these findings. However, the difficulties one encounters,
when carrying out such realizations, should not be underestimated.

For one thing, the adaptive paradigm requires sophisticated data handling
due to the fact of dynamically changing index structures. Secondly, the
theory of adaptive wavelet schemes is focused on asymptotical behavior
and therefore, constants usually do not play an important role. When
transforming the results of this analysis into computer code, the main fo-
cus sometimes is quite opposite to that of the theoretical investigation.
For a realization, constants have to be considered and especially the basic
and therefore frequently used operations require careful treatment. Basic
operations like e.g., the selecting of certain indices from a given set, are
usually not explicitely analyzed in theory. Yet, from a practitioners point
of view, these operations do contain the risk to spoil the optimality of the
scheme by hidden sub-optimalities. Also, there is always the danger, that
they de facto dominate the performance in practice due to huge constants.

Therefore, all ingredients of a realization have to satisfy two crucial condi-
tions: They have to

• preserve the theoretical complexity of the algorithm,
• provide a reasonable scaling of the algorithm.

The latter is to prevent larger constants to spoil the performance of the code
in the sense that the asymptotical gain of the scheme lies beyond reach of
realistic numerical tests. Both conditions demand careful investigations of
the theoretical schemes including all of the required operations concerning
floating point operations, memory allocations, and data access. Moreover,

152 Conceptual Remarks

when turning to implementation, an appropriate design of the program is
most important.

Another issue is, that asymptotical analysis which drives the algorithms
to be realized is always (necessarily) led by the worst case scenario in a
whole class of problems, hence estimates would be too pessimistic for the
concrete case at hand. Nevertheless one wants the optimal result for each
given problem when it comes to computations. A simple example is an
error estimator stating, that we will reach a target accuracy in at most N
(expensive) iteration steps for each member of a whole class of problems,
yet the problem at hand allows to reach it inN ′ steps, N ′ << N . Therefore,
beside preserving the asymptotical quality of the theoretical scheme, it is
necessary to include mechanisms and heuristics that tune the algorithm to
fit better to each current application. In fine tuned complex schemes, this
often is not trivial.

Adaptive wavelet theory – although still very progressively developing –
meanwhile seems to come to quite a clear view on how to treat given
problems in principle. It can be observed that even the newer schemes
are largely described by very few basic operations that can be formulated
independently of the concrete problem at hand: The recovery scheme, var-
ious thresholding routines often using the binning routines, and a special
fast matrix vector product, cf. [CDD01, BDS04], also incorporating Re-

cover. At least in theory, one can combine these basic tools, to suite a
great variety of situations.

To provide this flexibility also in the realization of these tools, while insist-
ing on their optimality, is a great challenge. Attempts in this direction are
documented in [Met02, BBC+02, Bar01, Jür01, Kon01] and also this thesis
wants to make its contribution. However, the ways of how to efficiently
treat the various subproblems critical for any implementation of adaptive
wavelet schemes, are just beginning to be developed and need much more
investigation and experience.

In this part, we will give an overview of the implementation of the algo-
rithms discussed so far. Our main focus is on the binning process and
above all the application of the recovery scheme. Concerning the imple-
mentation of adaptive solvers, in the form as presented in [CDD01] we refer
to [BBC+02, Bar01, Jür01].

We present our methodology and realization in three steps. First of all, we
shall review all of the above mentioned schemes and algorithms trying to
extract their demands on an implementation. This will lead us to certain
design principles that guided the organization and the implementation of
all the material. Then, we shall give an survey on the building blocks of

9.1 Key Requirements for a Realization 153

our code.

One very general design principle is to separate objects and algorithms.
Objects are understood to be (mathematical) elements being manipulated
by algorithms. They are characterized by a set of properties remaining
unchanged in the various contexts. We would like to identify those objects
and implement them with their minimal set of properties. Any additional
features should be formulated as algorithms. Such a strategy is crucial,
especially when considering the constant improvement in theory resulting
in continously changing details in related numerical schemes.

We drive at a realization of the binning routines and of Recover including
its applications. We have to mention that the software presented here
does not yet incorporate non-periodic wavelet bases on bounded domains.
However, our design is open for a future extension in this direction.

9.1 Key Requirements for a Realization

Considering a realization, note that the recovery scheme as well as the
adaptive algorithms, e.g. [CDD01, CDD03c], themselves are based on coef-
ficients that encode level, location and type in a unique index λ. Moreover,
an access function V (λ) associates a single value to λ, hence the coefficient
dλ is a pair of the form (λ, V (λ)). The unique index serves as a key, or iden-
tifier to address the coefficient. Therefore, we have to provide a possibility
to quickly access the value if the index is given.

Concerning sets of coefficients, recall that the binning (or sorting) routines
are solely based on the values of the coefficients. They do not necessar-
ily induce any structure based on index information. Hence we have to
efficiently manage unstructured insertion and deletion. Also, the binning
schemes require, that sets of such coefficients can be passed through fastly.
Here, no ordering concerning level or location is required.

When it comes to the recovery scheme, the essential characteristic from a
data-management point of view is that this algorithm is organized based
on level information. Here it is crucial to fastly access and pass through
the coefficients of a given level. An ordering according to spacial position
again does not play any role.

Hence, we need an index management, that allows fast random access,
randomly ordered passing through the entire set and through a given level.

Concerning the quadrature routines needed in the recovery scheme, we have
to rely on a method that at least evaluates the primal scaling functions and
their linear combinations at arbitrary points in an efficient way.

154 Conceptual Remarks

9.1.1 How to Treat Wavelet Expansions?

The mathematical object we are working with most of the time is a wavelet
expansion

g(·) =
∑
λ∈Λ

cλψλ =
∑
λ∈Λ

c̃λψ̃λ.

Reviewing the above mentioned algorithms and their demands, we note
that in most instances we concentrate on operations based only on the
corresponding coefficient set as we do not actually work with the function,
but with its representative sequence cΛ of coefficients cΛ. Some of the
operations we want to perform depend on the basis the coefficients belong
to in the sense that they e.g., require information on the mask. As one
example, this is true for decomposition and reconstruction. The majority
of operations on the indices, however, are completely independent of the
context of a basis, consider e.g., insertion, deletion or sorting. Also, more
complex algorithms like Grading do not depend on the underlying basis.
They are even independent of the value V (λ) = cλ associated to the index
λ.

This observation motivates the principle decision to create index structures,
i.e., structures representing indices, coefficients (pairings of an index and a
value) and sets of these two types without incorporating any information
referring to a specific basis, i.e., one can handle sets of coefficients without
the context of a basis. This matches our idea to create objects with a
minimal set of characteristic properties and provides additional flexibility.

However, to switch between the single- and the multi-scale representation
of a wavelet expansion involve at least either the primal or the dual mask.
Moreover, such transformations usually involve several levels and do there-
fore require a multi-scale index management.

The requirements on the structure that provides this management and
hence represents a set of indices, however may depend on the application.
Therefore our representation of a wavelet basis will only provide the masks
of the basis functions (and related information). It will not not incorporate
any operations to perform a change of basis.

A structure representing a wavelet expansion (CBSpline) will combine a
context-free index set with a wavelet. With the corresponding masks at
hand, a decomposition for example can be performed by an algorithm work-
ing on the index set using the mask of the wavelet as data. Note, that with
this design, we can relate the index set with a different basis by linking the
decomposition algorithm with a different mask.

9.2 Index Management: Why No Tree Structure? 155

9.1.2 The Importance of Point Values

Section 4.1 relies on the assumption that point values at more or less arbi-
trary knots are feasible at low cost. Of course, one could think of replacing
or modifying the employed quadrature and thereby circumvent or weaken
the necessity of the fast point evaluations at arbitrary points. It is known
that refinable functions can be evaluated at diadic grid points by succes-
sively applying the two-scale relation.

However, in this regard it is good to note that cardinal B-spline wavelets
exhibit the features of Section 2.2 and allow easy point evaluations at ar-
bitrary knots. Using tensor products in higher dimensions also provides all
necessary properties at and offers a simple structure. For more complicated
domains there exist methods to construct suitable bases using cardinal B-
splines and tensor products, cf. Chapter 2. Hence, we can only make use of
quadrature formulas in our program, if the the corresponding point values
are provided by wavelet representation we intend to use. Therfore, concern-
ing all issues related to point values, we restricted the design of our code to
biorthogonal cardinal B-spline wavelets according to [CDF92] and related
constructions. Recall also, that at least in view of the quadrature formu-
las described in Section 4.1.2 a favorable by-product of cardinal B-spline
wavelets is, that their primal scaling functions are always non negative.

9.2 IndexManagement: Why No Tree Struc-

ture?

Due to the constant dynamical changing of the index set, because of the
adaption processes and also due to the intensive manipulations on the
structure of the index set described in Chapter 4.2, an efficient index man-
agement is crucial in any adaptive code. An index management faces the
problem that in general it can not rely on any structural information that
permits to save storage or eases the handling of the data. Reviewing the
key operations, our schemes require, the following are the most demanded:

• Iterations on all entries of the set,

• iterations on all entries on a given level, and

• accesses to entries corresponding to a given key (check if an entry
exists, update, insertion, and deletion of entries).

156 Conceptual Remarks

For Recover, an efficient level-wise access is crucial, but this feature
is not necessarily (explicitely) required in all adaptive schemes. On the
other hand, already a level dependent weighting as e.g., needed for the
preconditioning, can be executed much easier and faster, if one is given the
possibility to sweep the coordinates level by level. We therefore consider
level-wise sweeps as one key operation of index managements in the present
adaptive context.

Yet, in view of Recover and especially the index manipulations, e.g.
Leaf, one might wonder why we do not suggest the index container to
be a tree structure. Tree structures seem to be natural at the first glance,
considering the fact that the recovery scheme is entirely based on a tree-
shaped (support-cube) model of the index set and that tree structure is only
a very weak restriction on an N -term approximation, cf. [CDD01]. Yet we
nevertheless claim, that a corresponding implementation of an index-set
should not explicitely consist of a tree. To explain this, let us compare two
alternatives.

If the implementation of a set incorporated tree structure, we would have to
store for each entry the position of its parent and its children. All in all, 2d+
1 objects if we consider only level-differences of 1. Position here means a
pointer to the storage address. In addition to that, as fast level-wise sweeps
are required, one also needs to store information concerning neighbors (not
necessarily siblings) on the same level. Moreover, any insertion or deletion
in such a set would require the update of all involved parents, children
and neighbors. As a benefit resulting from that effort, we would be able
to access e.g., the parent and the children of a given index directly, i.e.
without searching.

If the data structure is no tree, i.e., if we do not list the storage-position
of parents/children, given an index λ = (j,k, e), we would have to search
the corresponding relative index be it the parent or a child. What is the
expense of that? First of all, to compute the corresponding parent index
is simple and ’cheap’, in the case of wavelets on IRd e.g., it is given by
(j − 1,k/2), where k/2 = (�k1/2�, . . . , �kd/2�) and �ki/2� is obtained by a
simple binary integer division, which is a fast operation, namely a bit shift.

Likewise, we can compute the set of children, see (4.2.2). Secondly due to
the manipulations based solely on the value of a coefficient (e.g. Coarse),
we need unstructured access. This means that given an index λ, we have
to be able to access the corresponding coefficient efficiently, i.e., we have
to provide a fast access function V (·) whether the data-structure is a tree
or not, or else it is not truly suited for adaptive strategies.

9.2 Index Management: Why No Tree Structure? 157

Hence, instead of using storage to track the position of the relatives (result-
ing also in time for updates) we can combine two fast operations to acces
parents/children by algorithmic means: First compute the desired index
and then use the fast random access mechanism. In summary, under the
given circumstances, we consider it more favorable to model an index tree
by algorithm rather then by data structure.

158 Conceptual Remarks

Chapter 10

Implementation

10.1 Requirements on the Components

Let us summarize the building blocks of our attempt to implement the
above mentioned computation tools for adaptive wavelet schemes based on
tensor product cardinal B-spline wavelets on IRd. We made the following
basic decisions.

• Separate objects and algorithms.
• Objects shall have a minimal set of characterizing properties.
• The index management system shall be independent of basis infor-
mation.

• A wavelet basis provides mask information. In the case of primal
basis, point evaluation routines will be added.

• A wavelet expansion will combine the index management with the
basis information and provide all related routines.

In view of the above mentioned requirements, we end up with the following
list of objects and their properties.

Index: minimal storage
An index λ contains a variety of information, namely λ = (j,k, e), where
the level j is an unsigned integer, k = (k1, . . . , k2) are integers and e =
0, . . . , 2d − 1 is the type information. As we expect to store and access a
huge number of indices the storage amount should be kept minimal.

Coefficient: Pair structure, fast access, minimal storage
Remembering Section 1.1, it is clear that a coefficient has to be imple-
mented as a pair structure (λ, V (λ)). These pairs consists in λ = (j,k, e),

160 Implementation

an index playing the role of the access key and the value V (λ), usually
a double. To store, handle and access a huge number of coefficients, the
storage amounts for (λ, V (λ)) should be kept minimal and the key-value
access should be as fast as possible.

Index/Coefficient Set: Memory operations, fast random access, fast
sweeps
We suggest to work with sets of indices λ = (j,k, e) and sets of coeffi-
cients (λ, V (λ)). The key operations, our schemes require from the index
structure are discussed in Section 9.2. Additionally note, that we have to
provide fast dynamical memory operations, as the memory requirements
for an adapted set are not known beforehand. Note that, the fact, that all
(λ, V (λ)) have the same size offers optimization potential with respect to
the standard memory management provided by the computer architecture.

Wavelet bases: Mask information, point evaluation (primal)
We need information on the mask of the wavelets. Moreover, for the M-
grading, support information on all incorporated functions/masks is re-
quired. In the case of the primal basis, we also need to put at disposal
point evaluations of the basis functions.

Wavelet expansion: Efficient coefficient management, fast point evalua-
tion, fast transformations
A wavelet expansion has to unite the key properties of a coefficient set
and the wavelet functions, namely efficient management of the coefficients
and fast point evaluation. Moreover fast decomposition and reconstruction
routines are necessary.

10.2 A Tour Through the Wavelet Library

This chapter is intended to give an overview of the software of the wavelet
library igpm w lib. About 30000 lines of code, more then 50 classes and
various algorithms give rise to some 400 pages of documentation when us-
ing DOXYGEN [vH04], a standard documentation-generator. This renders
a comprehensive description impossible within this thesis. Nevertheless, in
the following we shall mention all important features without going into
technical and language dependent details. For a more complete documen-
tation of the software and further details concerning implementation we
refer to [MV99, BV].

All code was written in C++ and the approach is clearly object oriented.

10.2 A Tour Through the Wavelet Library 161

Algorithms and classes used in the wavelet library igpm w lib intend to be
quite flexible in usage. With this in mind, we used the various concepts, C++
offers in this regard (templates, iterators and streams) intensively. Before
we start to describe our software, let us briefly recall the following basic
facts we can not avoid referring to:

Objects in C++ are usually implemented in classes containing member vari-
ables and methods. Methods are functions and procedures belonging to
a certain class. Classes introduce new data types. Many algorithms and
objects can be formulated in an abstract way, i.e., they are independent of
the concrete context.

An example for such an object is a container of wavelet coefficients, being
in principle independent of the realization of the coefficients. The only
link between index and container is an interface that provides access to
the value of an index. Sorting of the coefficients in the container requires
the existence of some ordering relation, e.g., the usual ≤ for real numbers.
Knowing the interfaces, we can now formulate a sorting algorithm which is
independent of the concrete realization of the coefficients and of the con-
tainer. C++ provides the powerful tool of template arguments to formulate
such abstract objects (classes) and algorithms (functions). Beside usual
run–time parameters, classes and functions can be given template argu-
ments. These parameters cannot change while the program is running, but
have to be set beforehand.

Another language structure allowing abstraction processes is inheritance.
One can e.g. implement a class A and inherit to a class B. An object of type
B then is also of type A, but might have additional features. One advantage
is that all processes working with properties of A can be applied to B and
B (in principle) offers at least the functionality of A. The classically cited
application model for this is a manager who is an employee with additional
functionality.

Abstract containers require a mechanism to provide the user with the pos-
sibility to sweep through its entries without knowing details of the inner
organization of the container. This leads to the iterator concept. An itera-
tor, sometimes called generalized pointer enables the user to sweep through
complex structures as if stepping through a sequence.

To handle data exchange in a flexible way, C++ offers so called streams. A
stream is simply an object containing data which can be filled, read and
displayed independently where the data is stemming from. For further
details on C++, we of course refer to [Str00].

The interactions and dependencies of the most important classes and algo-

162 Implementation

rithms of the igpm w lib are sketched in the diagram below. Its elements
will be explained in a moment.

WaveletMask

− 1d and nd masks
− compute mask entries
− info: support
− output

BasicWavelet

− info: support (function)
− output − hashmap_linked

− hashmap
− index tp

igpm_t_lib

lWavelet (BasicWavelet)

− point evaluation
− plotting routines

− ibfo: support etc.
− output of coefficients
− point eval./plotting
− decomps./reconstr.
− member: hashmap_link

CBSpline

derivate, periodic, etc.

quadrature routines binning routines

index manipulation

DualWavelet (BasicWavelet)

ackedltmi− member: 1d mask

Figure 10.1: Most important classes and algorithms of the igpm w lib

In Figure 10.1 we used rectangles to visualize classes and libraries. The
title contains the name and in the case if inheritance relations the name
of the ‘father’–class. Inheritance relations are indicated by bold full ar-
rows. Dashed rectangles with rounded corners symbolize algorithms. Sim-
ple full arrows are used to denote that one class provides an object, i.e.,
a class member, for another class. Hollow arrows indicate a ‘provides
information’– relation. Here information is provided without creating class
members. The dashed arrows show on which objects the corresponding
algorithm can operate.

10.2.1 Index Management igpm t lib

The index management library igpm t lib we use is mainly due to Alexan-
der Voß. To suit the demands of our schemes, some modifications were
made compared to the first version of the igpm t lib described in [MV99].

10.2 A Tour Through the Wavelet Library 163

Index

An index can be stored in a compressed format implemented in the class
tpackedltmi. Limiting the range of j and k beforehand by certain powers
of two, we can compress these information into a certain number of bytes.

Of course, fixing a maximal level contrasts the principle of adaptivity in
the sense that we do make a priori assumption on the distribution of sig-
nificant coefficients. Note however, that from a principal point of view all
implementations performing on machines offering a limited range of num-
bers have this deficiency. In practical experiments, the user has to decide
whether to choos a compressed format or to use tmultiindex offering the
usual integer range for the application at hand.

Hash-maps

Hash-maps are data containers designed to provide fast access (insertion,
deletion, check of existence) to its entries. It uses a specific part of the
entries, the key, for storage and access management. The part of the
entry not being key is called value. Of course, it is possible that there
is no value, in which case the hash-map represents a mathematical set.
Otherwise, it forms an associative container as the hash-map performs a
mapping between key and value.

The storage and access management of the hash-map is based on a so called
hash–function. It maps the keys to integer numbers in a certain range
0, . . . , n− 1. This integer is then used to encode the position of the entry.
Obviously, the performance of the hash-map depends on the speed and the
separation ability of the hash-function. It is important that possibly few
keys from the range of keys are mapped onto the same integer, causing a
so called collision. Usually the hash-function is not injective. Therefore,
collisions will occur and have to be dealt with by providing an appropriate
collision strategy. One simple, but for our purposes sufficient method is to
store all colliding elements in a list. The probability of collisions obviously
depends heavily on the range of integers the keys are mapped to, i.e. on n.
That is the reason, why the performance of a hash-map depends strongly
on the fill ratio.

The decision, whether an object is already an element of the hash-map
depends only on the key, which therefore has to be stored. This is done
by the so called hash-table. This is a (static) vector of n entries containing
pointers pi, i = 0, . . . n−1 to the beginning of the lists of elements with keys
mapped onto i. Any insert routine will have to check if the key already

164 Implementation

exists. If this is the case, the new entry has to be assigned new memory
space to. Otherwise, the memory space of the existing entry is reused.

An interesting side effect of this, is that we can easily handle conditional
insertion. The situation we constantly face in our schemes is, that we
compute a value for cλ and have to either insert (λ, cλ) in the hash-map or
to update an existing entry corresponding to λ. The insert routine returns
a boolean value indicating whether the key exists and the (either new or
already used) memory address. This enables us to update or replace the
content of the memory without further operations.

While the hash-table does require only little storage, the elements of a hash
map may be complex and huge data structures. However, they usually are
of the same size, hence we can optimize the standard general C++ memory
management. As reallocation of memory is quite time consuming, we will
allocate memory for several entries each time and enlarge this storage area
only if necessary.

Subsets of a Hash-map: Level Access

The structure described so far does not yet provide features to fastly pace
all indices of a certain level as we will have to check each entry of the
hash-map. A fast sweep according to a criterion requires the grouping of
hash-map entries. This can be done by a list. Similar to the hash-table, we
will have to provide a vector of pointers each pointing to the first element of
a level. Furthermore, each entry points to the next entry on the same level.
First and next here only refers to the order of insertion into the hash-map,
i.e., the members of a list representing one level are not stored or sorted
according to individual spatial position. Hence, we actually perform a
binning with respect to the criterion ‘level’.

The resulting structure thashmap linked can be visualized as in Figure
10.2.

10.2 A Tour Through the Wavelet Library 165

List 0

List 1

...

Elem. of KeyT.[,ValueT.] List 1 Level 2

Elem. of KeyT.[,ValueT.] List 0 Level 1

Elem. of KeyT.[,ValueT.] List 0 Level 2

...

Q
Q
Qs�
�
�3

?

6

6

6

Level 0 Level 1 Level 2 ...

(hash table)

(memory heap)

(array of levels)

Figure 10.2: Schematic description of hashmap linked

10.2.2 Wavelet Implementation

The key to all operations concerning the tensor product wavelets is to
provide the one dimensional information and methods and combine them
with efficient tools to handle the tensor product structure. All classes follow
this principle.

Masks: WaveletMask

The multidimensional tensor product masks are not necessarily required for
the algorithms we intend to realize. Even in higher dimensions, we therefore
only compute the one dimensional mask for dual and primal functions in
WaveletMask and provide a mechanism to provide the multidimensional ar-
ray on request. An iterator enables the user to sweep the multidimensional
cube of the mask and provides the information on the mask coefficients.
Moreover, WaveletMask offers information on the support of the mask.

Wavelet Basis Functions: WaveletBasic, Wavelet and DualWavelet

The structure WaveletBasic provides all information valid for dual and
primal wavelets. These are the one dimensional masks (WaveletMask) and
support information. Wavelet and DualWavelet are inherited from that
class. Concerning point evaluation for the primal scaling functions, note
that it is possible to execute the evaluation without any information on
the masks. This complete separation is no longer possible for the wavelet
functions, as we compute their point values via the corresponding linear

166 Implementation

combination of splines given by the scaling functions on the next higher
level. This however is no problem, as we only have to sum over a fix linear
combination of scaling functions. Therefore, at this point, we can avoid
the necessity of more complex index structures.

Our implementation distinguishes dual and primal bases only when it
comes to point evaluation. Primal bases are treated as wavelet bases
(see above) with the additional possibility to be point evaluated. Hence,
Wavelet, representing a primal function, is a WaveletBasic, that addi-
tionally offers methods to carry out point evaluations.

Wavelet Expansions: CBSpline

The structure CBSpline links the data management and the wavelet basis
functions providing change of basis using WaveletMask, support informa-
tion from WaveletBasic and point evaluations for Wavelet. Of course,
the multi-scale transformations could also relate to the mask information
in WaveletBasic, however the present organization strictly separates in-
formation stemming from the mask or the corresponding function to enable
independent changes in the implementation.

For convenience, CBSpline contains a set of coefficients (hashmap linked)
as member variable. All methods, however, can also be performed with any
given set of coefficients. This enables the user to treat an object of type
CBSpline either as a given fix function in form of a wavelet expansion, or
as a wavelet basis context for an arbitrary set coefficients.

Note that the binning and the index-manipulative routines can operate on
a container (hashmap link) and on a wavelet expansion (CBSpline), see
Figure 10.2.

Control Elements

For all of the above classes, igpm w lib provides code to test and verify
the performance. Control structures put at hand easy and standardized
methods to produce and store reference data. They can be used to ensure
the integrity of the schemes after modifying building blocks. This check
can be also performed by the control tools. For the importance of such
tools for the software development in environments with a high probability
for changing requirements on the code, we refer to [Bec00].

10.2 A Tour Through the Wavelet Library 167

10.2.3 Index-Manipulation

The routines in WaveletSetManip.h handle the various structural manip-
ulations on the index set such as constructing theM-graded hull of a given
index set or selecting the leaves. This can be done by combinations of two
basic routines, namely, by deleting or inserting an M-square around the
parent of a given key. We emphasize, that enforcing structure consumes a
lot of computational effort and temporary storage. Both can be reduced by
appropriately choosing the input set and by carefully combining the basic
routines.

10.2.4 Binning

By setting up a tool object, all constants for the binning routine are at
hand and ready to use. The corresponding routines, such as Bin-Count,
Bin-Thresh, and Bin-Sort are implemented as member functions of the
tool class.

10.2.5 Auxiliary Classes and Routines

Quadrature

The class QuadFormula provides numerical integration. The quadrature
formulas used in a numerical scheme are very likely to be subject to frequent
changes by the user. Therefore, to be as flexible as possible, the knots and
weights will not be computed, but they have to be provided as data for
an initialization. This is also due to the fact, that the corresponding data
for a formula can be gained beforehand and hence is not time critical.
Therefore, it does not matter where the knots and weight are stemming
from. The source may be typically some data-base or an ad-hoc build
program in a mathematical language. Streams offer a standardized efficient
way to initialize QuadFormula, which then is ready for usage. We of course
provide data-files for the Gaussian quadrature from Section 4.1.2 according
to a variety of wavelet systems.

Frequently used Constants

Note, that for a given problem to compute most of these constants de-
pend only on the level. As a consequence, during the computation there
are relatively few different constants that are used and reused very often.
Therefore, during compilation, i.e., before a code using the igpm w lib is

168 Implementation

running, frequently used constants like, e.g., 2jd/2, j denoting a wavelet
level, are computed once and for all and stored in a rapidly accessible
structure provided by WaveletConst.

Plotting Routines

tGridIterator provides the user with a fast and easy way to pace mul-
tidimensional cubic grids. The tools in the file igpm matlab arrange the
output of all wavelet structures for display using MATLAB [Inc04].

Periodization

The file periodic provides tools to form and handle 1-periodic wavelet
bases from functions on the real line.

List of Figures

1.1 An example vector before and after binning 20

2.1 Wavelet basis functions . 35

2.2 Non-uniform index set represented by support cubes 37

2.3 A set of support cubes under various structural demands . . 39

2.4 A complete, non uniform 2-graded index tree 40

3.1 First steps of the recovery scheme 55

6.1 One dimensional test functions g1 (left), g2 (right) 102

6.2 Error rates of best N -term approximation 103

6.3 Error rate: Recovery scheme and a thresholding of g1 using
N(2, 2) . 104

6.4 CPU time: Recovery scheme for g1 using N(2, 2) 105

6.5 Index sets for recovery scheme for g2 using N(2, 3) 106

6.6 Recovery scheme for g1 using N(3, 3) 107

6.7 Comparison: Recovery scheme vs. thresholded version of g2 . 108

6.8 Two dimensional test functions g3 109

6.9 Error rates of best N -term approximation 110

6.10 Comparison: Recovery scheme vs. thresholded version of g3 . 112

6.11 T ε for g3 according to N(2, 2) in 2d 113

6.12 T ε for g3 according to N(2, 2) in 2d (continued) 114

6.13 (T ε)M for g3 according to N(2, 2) in 2d 115

6.14 (T ε)M for g3 according to N(2, 2) in 2d (continued) 116

6.15 Output of recovery scheme for g3 (N(2, 2)) in 2d 117

6.16 Output of the recovery scheme for g3 (N(2, 2)) in 2d (con-
tinued) . 118

170 List of Figures

6.17 Computation without correction step 119

6.18 Computation, inadequate grading parameter 120

6.19 Error rates of best N -term approximation for u1 and com-
positions . 123

6.20 1D-Tests of the recovery scheme, u = u1 and y ◦u = 4sin(2u1)124

6.21 2D-Tests of the recovery scheme; u = u2, y ◦ u = 4sin(2u2) . 125

7.1 Index sets represented by support cubes 129

7.2 Qualitative change in the shape of the index sets for different y131

7.3 Error rates of best N -term approximation for u2 and com-
positions . 133

7.4 Test of the recovery scheme with u = u1 and g = u2
1 134

7.5 Test of the recovery scheme with u = u2 and g = u2 136

7.6 Error rates . 137

7.7 g, y(g), and y′(g) . 137

7.8 Non-uniform refinement strategy: Indicator 138

7.9 Uniform and heuristic prediction strategy using N(2, 2) . . . 139

7.10 Uniform and heuristic prediction strategy using N(3, 3) . . . 140

8.1 Test of Recover: g = (u3)
5, (H, H̃) = (H0.334, H−0.334),

N(2, 2). 142

8.2 Tests of Recover: g = (u4)
5, (H, H̃) = (H0.667, H−0.667). . . 143

8.3 1D-Tests of the recovery, least-squares quadrature, g = (u5)
3 145

10.1 Most important classes and algorithms of the igpm w lib . . 162

10.2 Schematic description of hashmap linked 165

List of Algorithms

1.1 Procedure Bin-Sort: Assemble bins 20

1.2 Procedure Bin-Count: Determine magnitude of bins 21

1.3 Procedure Bin-Thresh: Thresholding using bins 22

3.1 Procedure Recover: Basic algorithm of the recovery scheme 54

4.1 Procedure Grading: Grading a set of support cubes 89

4.2 Procedure Completion: Completing a set of support cubes 90

4.3 Procedure Leaf: Computing leaves of M-graded complete
hull . 90

4.4 Procedure LeafOne: Core step of Leaf 93

4.5 Procedure Recover
∗: Recovery scheme for arbitrary index

sets . 93

7.1 Procedure H-Subdiv: Heuristic prediction strategy 132

Bibliography

[Ada00] R.A. Adams, Sobolev spaces, Academic Press, 1900.

[Bar01] T. Barsch, Adaptive multiskalenverfahren für elliptische par-
tielle differentialgleichungen – Realisierung, Umsetzung und
numerische Ergebnisse, Ph.D. thesis, RWTH Aachen, 2001.

[BBC+02] A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W.
Dahmen, and K. Urban, Adaptive wavelet schemes for elliptic
problems – implementation and numerical experiments, SIAM
J. Sci. Comput. 23 (3) (2002), 910–939.

[BBD+02] A. Barinka, T. Barsch, S. Dahlke, M. Konik, and M. Mom-
mer, Some remarks on quadrature formulas for refinable func-
tions and wavelets II: Error analysis, Journal of Computational
Analysis and Applications 4(4) (2002), 339–362.

[BBDK01] A. Barinka, T. Barsch, S. Dahlke, and M. Konik, Some remarks
on quadrature formulas for refinable functions and wavelets,
ZAMM 81 (2001), 839–855.

[BDD03] A. Barinka, Wolfgang Dahmen, and Stephan Dahlke, Adaptive
application of operators in standard representation, Tech. re-
port, IGPM, RWTH Aachen, 2003, to appear in Adv. Comp.
Math.

[BDS04] A. Barinka, W. Dahmen, and R. Schneider, Fast computation
of adaptive wavelet expansions, Tech. report, IGPM, RWTH
Aachen, 2004.

[Bec00] K. Beck, Extreme programming explained. Embrace change,
Addison-Wesley USA, 2000.

[BL76] J. Berg and J. Loefstroem, Interpolation spaces, an introd uc-
tion, Springer, 1976.

174 Algorithms

[BV] A. Barinka and A. Voß, The igpm w lib, in preparation.

[CDD00] A. Cohen, W. Dahmen, and R.A. DeVore, Adaptive wavelet
methods II – beyond the elliptic case, Tech. report, IGPM,
RWTH Aachen, 2000.

[CDD01] A. Cohen, W. Dahmen, and R. DeVore, Wavelet methods for
elliptic operator equations — convergence rates, Math. Comp.
70 (2001), 27–75.

[CDD03a] , Adaptive wavelet schemes for nonlinear variational
problems, SIAM J. Numer. Anal 41(5) (2003), 1785–1823.

[CDD03b] , Adaptive wavelet techniques in numerical simulation,
Tech. report, IGPM, RWTH Aachen, 2003, to appear in En-
cyclopedia of Computational Mechanics, (R. De Borste, T.
Hughes, E. Stein, eds.).

[CDD03c] A. Cohen, W. Dahmen, and R.A. DeVore, Sparse evaluation of
compositions of functions using multiscale expansions, SIAM J.
Math. Anal. 35 (2003), 279–303.

[CDD03d] , Sparse evaluation of nonlinear functionals of multiscale
expansions, SIAM J. Math. Anal. 35 (2003), 279–303.

[CDDD01] A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, Tree ap-
proximation and optimal encoding, Applied and Computational
Harmonic Analysis 11 (1001), 192–226.

[CDF92] A. Cohen, I. Daubechies, and J. Feauveau, Bi–orthogonal bases
of compactly supported wavelets, Comm. Pure Appl. Math. 45
(1992), 485–560.

[CDP96] J.M. Carnicer, W. Dahmen, and J.M. Pena, Local decomposi-
tion of refinable spaces and wavelets, Appl. Comp. Harm. Anal.
3 (1996), 127–153.

[Chu92] C.K. Chui, An introduction to wavelets, Academic Press,
Boston, 1992.

[CM00] A. Cohen and R. Masson, Wavelet adaptive methods for sec-
ond order elliptic problems, boundary conditions and domain
decomposition, Num. Math. 86 (2000), 193–238.

Algorithms 175

[CTU98] C. Canuto, A. Tabacco, and K. Urban, Numerical solution of
elliptic problems by the wavelet element method, ENUMATH
97 (1998), 17–37.

[CTU00] , The wavelet element method, part II: Realization and
additional features in 2d and 3d, Appl. Comp. Harm. Anal. 8
(2000), 123–165.

[Dah82] W. Dahmen, Adaptive approximation by multivariate smooth
splines, J. Approx. Theory 36 (1982), 119–140.

[Dah94] , Some remarks on multiscale transformations, stabil-
ity and biorthogonality, Wavelets, Images and Surface Fitting
(1994), 157–188.

[Dah96] , Stability of multiscale transformations, Journal of
Fourier Analysis and Applications 2 (1996), 341–361.

[Dah97] ,Wavelet and multiscale methods for operator equations,
Acta Mumerica 6 (1997), 55–228.

[Dah03] W. Dahmen, Multiscale and wavelet methods for operator equa-
tions, C.I.M.E. Lecture Notes, vol. 1825, Springer-Verald, Hei-
delberg, 2003.

[Dau92] I. Daubechies, Ten lectures on wavelets, CBMS–NSF Regional
Conference Series in Applied Math, vol. 61, SIAM, Philadel-
phia, 1992.

[DD97] S. Dahlke and R. DeVore, Besov regularity for elliptic boundary
value problems, Comm. Partial Differental Equations 22 (1997),
1–16.

[DeV98] R. DeVore, Nonlinear approximation, Acta Mumerica 7 (1998),
51–150.

[DHU00] S. Dahlke, R. Hochmuth, and K. Urban, Adaptive wavelet meth-
ods for saddle point problems, Mathematical Modelling and Nu-
merical Analysis (M2AN) 34(5) (2000), 1003–1022.

[DKU99] W. Dahmen, A. Kunoth, and K. Urban, Biorthogonal spline–
wavelets on the interval – stability and moment conditions,
Appl. Comp. Harm. Anal. 6 (1999), 132–196.

176 Algorithms

[DL93] R. DeVore and G. Lorentz, Constructive approximation,
Grundleheren der mathematischen Wissenschaften, vol. 303,
Springer Verlag, 1993.

[DM93] W. Dahmen and C.A. Micchelli, Using the refinement equa-
tion for evaluating integrals of wavelets, SIAM J. Numer. Anal.
30(2) (1993), 507–537.

[DP88] R. DeVore and V. Popov, Interpolation of besov spaces, Trans.
Amer. Math. Soc. 305 (1988), 397–414.

[DR75] P. Davis and P. Rabinowitz, Methods of numerical integration,
Academic Presss, New York, 1975.

[DS99a] W. Dahmen and R. Schneider, Composite wavelet bases for op-
erator equations, Math. Comp. 68 (1999), 1533–1567.

[DS99b] , Wavelets on manifolds I: Construction and domain
decomposition, SIAM J. Math. Anal. 31 (1999), 184–230.

[DSX00] W. Dahmen, R. Schneider, and Y. Xu, Nonlinear functions of
wavelet expansions – adaptive reconstruction and fast evalua-
tion, Numer. Math. 86 (2000), 49–101.

[DT96] R. DeVore and V. Temlyakov, Some remarks on greedy algo-
rithms, Advances in Computational Math. 5 (1996), 173–187.

[GGP00] W. Gautschi, L. Gori, and F. Pitolli, Gauss quadrature for refin-
able weight functions, Appl. Comput. Harmon. Anal. 8 (2000),
249–257.

[GW69] W. Gautschi and J.Ã. Welsch, Calculation of gauss quadrature
rules, Math. Comp. 23 (1969), 245–260.

[Inc04] The Mathworks Inc., Matlab, the language of technical comput-
ing, 2004.

[Jür01] M. Jürgens, Adaptive Multiskalenverfahren auf polygonal beran-
deten Gebieten, Master’s thesis, RWTH Aachen, 2001.

[KLR95] J.-P. Kahane and P.-G. Lemarié-Rieusset, Fourier series and
wavelets, Gordon and Breach Science Publishers, Luxembourg,
1995.

[Kon01] M. Konik, A fully discrete wavelet galerkin boundary element
method in three dimensions, Ph.D. thesis, TU Chemnitz, 2001.

Algorithms 177

[Kry62] V.I. Krylov, Approximate calculation of integrals, Macmillan,
New York, 1962, translated by A.H. Stroud.

[LR92] P.G̃. Lemarié-Rieusset, Analyses, multi–résolutions nonorthog-
onales, commutation entre projecteurs et derivation et on-
delettes vecteurs à divergence nulle, Revista Mat. Iberoamer-
icana 8 (1992), 221–236.

[Mal89] S. Mallat, Multiresolution approximation and wavelet orthonor-
mal bases of L2(IR), Trans. Amer. Math. Soc. 315 (1989), 69–
88.

[Met02] A. Metselaar, Handling waveley expansions in numerical meth-
ods, Ph.D. thesis, Universtiet Twente, 2002.

[Mey92] Y. Meyer, Wavelets and operators, Cambridge Studies in Ad-
vanced Mathematics, vol. 37, Cambridge University Press,
1992.

[Mül03] S. Müller, Adaptive mulitscale schemes for conservation laws,
Lecture Notes in Computational Sience and Engeneering,
Springer, Berlin, 2003.

[MV99] S. Müller and A. Voß, The igpm t lib, Tech. report, IGPM,
RWTH Aachen, 1999.

[PS94a] R. Piessens and W. Sweldens, Asymptotic error expansions of
wavelet approximations of smooth functions ii, Numer. Math.
68 (1994), 377–401.

[PS94b] , Quadrature formulae and asymptotic error expansions
for wavelet approximations of smooth functions, SIAM J. Nu-
mer. Anal. 31(4) (1994), 1240–1264.

[RS96] T. Runst and W. Sickel, Sobolev spaces of fractional order, ne-
mitskij operators, and nonlinear partial differential equations,
Nonlinear Analysis and Applications, De Gruyter, New York,
1996.

[Sch39] L.L. Schumaker, Spline functions – basic theory, Pure and ap-
plied Mathematics, Wiley-Interscience, 1939.

[SS66] A.H. Stroud and D. Secrest, Gaussian quadrature formulas,
Prentice–Hall, New Jersey, 1966.

178 Algorithms

[Sto93] J. Stoer, Numerische mathematik 1, 6 ed., Springer, Berlin,
1993.

[Str71] A.H. Stroud, Approximate calculation of multiple integrals,
Prentice–Hall, New Jersey, 1971.

[Str00] B. Stroustrup, The C++ programming language, Addison-
Wesley, Boston, 2000.

[Sze39] G. Szegö, Orthogonal polynomials, American Mathematical So-
ciety Colloquium Publications, vol. 13, American Mathematical
Society, Rhode Island, 1939.

[Urb95] K. Urban, On divergence free wavelets, Advances in Computa-
tional Mathematics 4 (1995), 51–82.

[vH04] Dimitri van Heesch, Doxygen, 2004, www.stack.nl/ dim-
itri/doxygen/.

[Woj97] P. Wojtaszczyk, A mathematical introduction to wavelets, Cam-
bridge University Press, 1997.

[XZ03] Yuesheng Xu and Qingsong Zou, Adaptive wavelet methods for
elliptic operator equations with nonlinear terms, Advances in
Computational Mathematics 19(1) (2003), 99–146.

Lebenslauf

Arne Barinka Name
27.12.1970 Geburtsdatum

Trier Geburtsort

Ausbildung

29.05.1990 Abitur
Friedrich Spee-Gymnasium Trier

1990-1991 Wehrdienst
1991-1993 Grundstudium Mathematik und Physik, RWTH Aachen
1993/94 Studium Mathematik, Universita di Perugia (Italien)

1994-1997 Studium Mathematik, RWTH Aachen
21.01.1997 Diplom in Mathematik, RWTH Aachen

Beruf

1997-1999 Sachbearbeiter für ein Projekt der Volkswagen-Stiftung
Institut für Geometrie und Praktische Mathematik,
RWTH Aachen

1999-2004 Wissenschaftlicher Angestellter
Institut für Geometrie und Praktische Mathematik,
RWTH Aachen

