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Chapter 1

Introduction

Summary

This thesis considers the panel–flutter–problem to study issues of numerical schemes and
well–posedness that appear in aeroelastic models. Apart from its own relevance concern-
ing the stable performance of aircraft skin, panel–flutter is a valuable model problem of
aeroelasticity showing phenomena similar to those observed at aircraft wings.

Simulating numerically the time–dependent processes of aeroelastic systems becomes
an increasingly important tool in designing elastic structures such that they can savely
be exposed to interaction with environmental fluid flows. The possible conditions under
which the structure has to perform have to lie in the stable regime of the fluid–structure
system.

Mathematically, time–dependent processes are formulated as initial boundary value
problems (IBVP). In the present application two continuum fields are involved, the fluid
and the structure and at their interface coupling conditions have to be posed. The most
important mathematical properties of an IBVP are those concerning its well–posedness.
Here an IBVP is formulated, describing a clamped plate which is in contact over the whole
of its top side with a given amount of fluid material. A function space is given in which
only one solution to the IBVP can exist. This uniqueness theorem is proven using as the
fluid model the compressible Navier–Stokes equations (in Lagrangian coordinates) and
as the structural model a variant of the von–Kármán plate equation. The theorem is a
short time statement allowing large data. Since the proof uses the energy method it also
contains stability estimates to some extent. The question of the existence of a solution is
still open.

When simulating an aeroelastic process, typically existing fluid and structure codes
are called by a master program to advance the separate media in time. A time–step–
wise decoupling of the fluid–structure–equations underlies these methods. This is a very
economic approach, but one has to be aware of possibly having lost something through
the decoupling procedure. Additional stability restrictions and loss of the time integration
order present in the separate fluid and structure codes may result, as one violates on the
discrete level such important properties as the correct energy transfer between fluid and
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2 CHAPTER 1. INTRODUCTION

structure. Further, the underlying physical stability problem of detecting bifurcations
of the aeroelastic system in parameter space may lead to a confusion of numerical and
physical instabilities or at least poses the question, how sharp the bifurcations can be
caught by the decoupling strategies.

In contrast to these decoupling strategies, here we have implemented a matrix–free
Newton–GMRes iteration on the coupled set of discrete fluid–structure equations to
achieve a so–called tight coupling. It is compared with other schemes, in particular
with a fixed–point–iteration, that tries to achieve a tight coupling by iterating between
the decoupled codes within each time step. The implementation solves the panel flut-
ter problem modelled with the 2D Euler equations of gas dynamics and a strip of the
von–Kármán plate.

Furthermore, we have constructed a scheme that guarantees a correct energy transfer
between fluid and structure on the discrete level. It is implicit in time over the coupled
fluid–structure system. Using the common finite element discretizations for the structure
and finite volume methods on polygonal cells for the fluid, the scheme combines the
time integration scheme, the load transfer from fluid to structure and the fluid boundary
movement due to structural deflections such that the correct energy transfer is given. Its
residual may be diminished by the matrix–free Newton–GMRes within in each time step.

The following sections of this introductory chapter put the work presented in the later
chapters in a broader context: First we discuss physical and modelling issues of panel
flutter and the relevance of panel flutter as a valuable model problem for aeroelasticity.
Then we give two very simple aeroelastic models to envision the appearance of aeroelastic
instabilities. Further, the methodologies of Computational Aeroelasticity used to simulate
aeroelastic processes with tools from Computational Fluid Dynamics and Computational
Structural Dynamics are discussed, stressing the issues relevant to this thesis. Finally, we
state the aims and achievements of the thesis and give a guide to the following Chapters.

1.1 Panel flutter, aircraft wing flutter and nonlinear-

ities

The panel flutter problem consists of a clamped or simply supported plate (panel) over
which a compressible fluid (air) flows. Here we reduce the space dimensions by one,
assuming the panel to be long in direction perpendicular to the inflow. More precisely, we
assume constant behaviour in the direction of the long panel side (spanwise direction), so
that a 2D flow passes over a strip of the plate, which is clamped or simply supported at the
leading and the trailing edge, compare Fig. 1.1. Disturbing the panel with an impulse, the
fluid–structure–interaction is triggered and in the long time behaviour this system may
fall into a time periodic oscillation with large amplitudes, called flutter. Other observed
long time behaviours are a steady state with either deflected panel (divergence) or an
undeflected panel (damped or stable behaviour). These phenomena can also be found in
the aeroelastic behaviour of aircraft wings. Further, both aeroelastic systems exhibit a
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transonic dip. This means that the dynamic pressure (kinetic energy of the inflow) needed
to obtain unstable behaviour (flutter or divergence) drops considerably to a minimum at
an inflow Mach number near unity. Another common feature of panel flutter and wing
flutter is that shock movements play a significant role in the unstable mechanisms when
the flow is transonic [4], [14].

Thus, panel flutter can serve as an important model with a simple 2D flow geometry
to study numerical schemes for aeroelasticity, which have become an important tool in
designing aircrafts [20]. The major aeroelastic design criterion is to avoid unstable be-
haviour, which may be destructive or lead to long time failure due to material fatigue.
The aircraft design has to ensure that the aircraft operates considerably away from its
aeroelastically unstable regime.

If one wants to observe the unstable phenomena, which exhibit large structural de-
flections, one has to take these into account in the panel model. This can be done by
employing the von–Kármán plate model in its 1D variant, as done by Dowell [18], who
combined it with simple aerodynamic models to describe panel flutter. In particular, in
the 1D von–Kármán model a third order nonlinearity is present, which is typical for a large
class of structural nonlinearities appearing in aeroelastic problems [41]. The nonlinearity
activates a restoring force when the panel is stretched due to large deflections.

The activation of nonlinearities either in the structure or in the fluid or in both media
causes the appearance of limit cycle oscillations. In general dynamical systems, limit
cycle oscillations typically appear when nonlinearities become significant at large ampli-
tudes, preventing the infinite growth in amplitudes that is predicted by corresponding
linear models [48].

Being interested in the transonic regimes, one has to resolve nonlinearities governing
the flow field around shocks. As long as flow separation is not present, shocks are very
well captured by inviscid flow models. In the steady transonic case, the resolution of
these nonlinearities, employing the Euler equations is exhibited in [31], comparisons with
reduced models and experimental data are also made. In our unsteady case, the need to
employ nonlinear flow models, associated with the presence of shocks, arises as follows.
In the unsteady case, the reduced frequency k = ω l/2u∞ is an important similarity
parameter, where ω is the frequency of an obstacle in the fluid oscillating in one degree
of freedom. Here l is a typical length scale of the problem and u∞ the inflow velocity,
as for example in Fig. 1.1. Experimental results of an airfoil section oscillating in pitch
in transonic flow are presented in [62]. It is shown that at quasi–steady situations up
to moderate reduced frequencies, the nonlinear effects of unsteady transonic flow are
fully developed with the largest amplitudes in shock motion. In particular, this range
includes the range of interest for flutter phenomena ( k . 0.5 ). For sufficiently high
reduced frequencies, the flow behaviour becomes linear. The phase lag between the shock
motions and the motion of the airfoil, which increases with k is also discussed in [62].
In a case measured in [4] it already reaches its maximum value at k = 0.5 . This phase
lag is attributed to play an important role in the meachanisms of transonic flutter [4].
Already at low k, the influence of the phase lag is reported to be significant. As an
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Figure 1.1: Geometry of the 2D panel–flutter–problem.

example, for the panel flutter problem, a reduced frequency of 0.015 was identified for
a transonic flutter case in [27]. In [35] airfoil flutter was studied and the differences
between the nonlinear transonic small disturbance equations as flow model and a linear
aerodynamic model was seen to be severe, as the linear model even misses to indicate
the existence of the transonic dip. [2] airfoil flutter is treated using the Euler equations
as flow model and the authors say that an accurate prediction of the phase lag cannot
be assured with a transonic small disturbance model, and clearly the validity of a small
disturbance model degrades compared to the Euler equations when thickness effects are
pronounced. Modelling panel–flutter with the von–Kármán and the Euler equations was
introduced in [14].

Flow separation was already mentioned above. It can create another important non-
linear aerodynamic effect that can only be captured with a viscous flow model. Due to
shock–boundary–layer interaction or high angles of attack the flow may separate. In par-
ticular, structural vibrations may cause the flow to alternately separate and reattach, a
highly nonlinear process, which creates highly unsteady aerodynamic loads on the struc-
ture, and the interplay leads to very challenging aeroelastic phenomena [20].

1.2 Two simple aeroelastic problems

We want to illustrate some elementary features of aeroelastic problems with two simple
examples. In these examples only one, respectively two, degrees of freedom suffice to
obtain dynamic aeroelastic instabilities. Three common causes of aeroelastic instabilities
are aerodynamic forces that induce a negative damping for the structure (Sec. 1.2.1), the
aerodynamic coupling of structural modes (Sec. 1.2.2) and the resonance of unsteady
periodic aerodynamic phenomena with natural frequencies of the structure.

The last case may occur when the shape of the structure can create a time periodic flow
field. E.g. assuming the structure as rigid and fixed in space, a flow passing it may shed
vortices periodically, inducing periodic forces on the structure. If the natural frequency
of the structure and the shedding frequency coincide, we have a resonance that causes
the structural motions to grow. Such examples can be found in [9]. Let us mention the
most famous aeroelastic catastrophe, the failure of the Tacoma Narrows Bridge, which is
mainly attributed to vortex resonance [9]. One day in 1940 this suspension bridge started
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Figure 1.3: Steady aerodynamic forces

oscillating when a wind of 42 miles per hours blew against it and it finally broke after 30
minutes of violently growing motions [25].

In any case, structural (Sec. 1.2.2) or aerodynamic (Sec. 1.2.1) nonlinearities may cause
the structural motions to be finite in the unstable aeroelastic regime, so that limit cycle
oscillations are observed. These oscillations are self–excited ones, since no excitation
oscillation is imposed from outside the aeroelastic system, in particular not from the
incoming flow.

1.2.1 A square prism in incompressible flow

Let us look at a long undeformable straight rod with a square cross-section. Let it be
directed along the z–axis and let us look at its cross-section in the xy–plane. Let the rod
have mass m and only one degree of freedom, namely to move into y–direction and let
its suspension be subject to a (linear) stiffness and a (linear) friction force. Further let
a constant wind of velocity u∞, directed into x–direction, blow against the rod; compare
the sketched situation in Fig. 1.2.

Modelling this situation with stiffness k and friction r and a quasi–steady approach
to obtain the force of the wind onto the rod, we obtain the equation

m ÿ + r ẏ + k y = f(ẏ/u∞) .

From a quasi–steady point of view, the forces f(ẏ/u∞) induced by the wind, depend on
the wind velocity relative to the rod, which can be determined from a measurement with a
fixed rod in a wind of velocity uα and angle of attack α, compare Fig. 1.2. The sensitivity
with regard to Reynolds number is reported to be small in the considered range [50], so
that the exclusive dependence of f on ẏ/u∞ is reasonable. In [50] conditions for the
validity of the quasi–steady approach are given. From a set of measurements the relation
f(ẏ/u∞) may be fitted. In Fig. 1.3 the qualitative form of a good fit of the measurements
made in [50] is shown.
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In any case, the simplest fit, valid only for a limited range of rod movements, is the
linear one, f(ẏ/u∞) ≈ c ẏ . This allows an immediate stability analysis for the system:

m ÿ + (r − c) ẏ + k y = 0 has

{

infinitely growing solutions for r − c < 0
damped solutions for r − c > 0

We see that the aerodynamic forces may induce a negative damping for the structure.
Recasting the above in the aerodynamicist’s terminology, introducing the steady lift and
drag forces in terms of the coefficients CL, CD,

FL(α) =
1

2
ρ∞ u∞ACL(α) , FD(α) =

1

2
ρ∞ u∞ACD(α) ,

where A is the area of a long side of the rod, the linear aerodynamic model is given by [9]

c = −
1

2
ρ∞ u∞A

(

∂CL

∂α
+ CD

)

∣

∣

∣

α=0
.

Thus the system is definitely stable for
(

∂CL

∂α
+ CD

)

∣

∣

∣

α=0
> 0

and the critical wind velocity for unstable behaviour is

ucrit
∞ = −

2 r

ρ∞A

(

∂CL

∂α
+ CD

)

∣

∣

∣

α=0

.

The linear fit captures only a single aspect of the true dynamics, it finds the onset of
instability but cannot resolve the true behaviour of the system at and beyond this point,
since nonlinearities are activated.

The true form of f is nonlinear, activating forces at large α that prevent an infinite
growth in deflection. A fit of f with an odd polynomial of degree seven, corresponding
to Fig. 1.3, captures the measurements in a wide range. Using such a nonlinear repre-
sentation of f and applying the method of slowly varying amplitudes and phase angles,
the appearances of limit cycles and their basins of attraction in phase space could be
determined in [50]. This reveals the stability behaviour found in the experiments of [50],
with a very accurate coincidence in amplitudes and bifurcation points. The amplitudes
y of the limit cycles appearing at a given u∞ are shown in Fig. 1.4 which is qualitatively
reproduced from [50]. At some values of u∞ three limit cycles appear. Two of these are
stable and the one corresponding to the dotted line section is unstable.

1.2.2 Supersonic panel flutter

A reasonable aeroelastic model with a nonlinear structural behaviour and linear aerody-
namic loads is given by the panel flutter problem when the flow is in the high supersonic



1.2. TWO SIMPLE AEROELASTIC PROBLEMS 7

y

u∞ucrit
∞

Figure 1.4: Limit cycle amplitudes

range. We let the panel be simply supported at the leading and the trailing edge. As
mentioned in Sec. 1.1, the panel dynamics may be described by the von–Kármán model,

Dwxxxx −N wxx +mwtt = − p , with N =
E h

2 l

∫ l

0

w2x dx

where w(t, x) is the panel deflection and p(t, x) is the load on the panel. The material
constants and panel dimensions are given by the stiffness D, the modulus of elasticity
E, the panel thickness h, the panel length l, the panel mass per unit length m, compare
section 2.1.2. The nonlinearity N introduces a restoring force due to the panel stretching.

If the inflow Mach number M∞ is considerably greater than 1, a good model for the
local aerodynamic loads is given by [6]

p =
ρ∞u

2
∞

M∞

[

wx +
1

u∞
wt

]

.

Here ρ∞, u∞ are the inflow density and velocity. Plugging the aerodynamic load into the
above equation we have the aeroelastic model which reads in non–dimensional form (ν is
the Poisson ratio, see Sec. 2.1.2)

wxxxx − 6 (1− ν2)wxx

∫ 1

0

w2x dx + wtt + λ

[

wx +

√

µ

M∞λ
wt

]

= 0 , (1.1)

where we have introduced
λ = ρ∞ u

2
∞ l

3/(M∞D),
µ = ρ∞ l/m,

the nondimensional dynamic pressure and the mass ratio. We employ Galerkin’s method,
using modes that satisfy the panel boundary conditions, i.e.

w(t, x) =
∑

an(t) sin (nπ x)
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Figure 1.5: Stability at µ/M∞ = 0.01

and obtain a system of ODE’s. Using only the first mode, we obtain an ODE for a1 ,
and we see that we have a positive damping coefficient and the system is always stable.
Instabilities only occur, when the modes interact: Using Galerkin’s Method with the first
two modes we obtain the system

π4

4
a1 + 3π4 (1− ν2) (a21/2 + 2 a22) a1 + 2 ä21 −

4

3
λ a2 +

√

λµ

M∞

ȧ1 = 0 ,

8π4 a2 + 12π4 (1− ν2) (a21/2 + 2 a22) a2 + 2 ä22 +
4

3
λ a1 +

√

λµ

M∞

ȧ2 = 0 .

We see that the damping term
√

λµ

M∞

I

(

ȧ1
ȧ2

)

has a positive definite damping factor. The coupling term that is created by the aerody-
namic loads,

4

3
λ

(

0 −1
1 0

)(

a1
a2

)

,

has a circulatory matrix factor and is responsible for the flutter instability [60].
Looking at the linearized system ż = A z , with z ≡ (a1, ȧ1, a2, ȧ2)

T that is valid near
z = 0 , from the eigenvalues of the matrix A we can see when the origin in phase space is
unstable. This is the case when an eigenvalue of A has positive real part. Denoting by ω
the maximum real part of A’s eigenvalues and plotting it over λ at fixed µ andM∞, we can
see at which dynamic pressure the aeroelastic system becomes unstable. This is done in
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Fig. 1.5 for µ/M∞ = 0.01 , and we see that the instability appears at λ ≈ 284 . In [19] and
[15] it was shown that using the first 6 modes suffices to obtain an accurate description of
the phenomena. The resulting system of ODE’s was integrated numerically for various λ.
It was also seen that employing only the first two modes results in a qualitatively correct
picture.

Two–mode–coupling also occurs in the classical flutter of airfoil sections, where the
plunge and the torsion mode interact [9].

1.3 Computational Aeroelasticity

As explained in Sec. 1.1, the necessity to resolve 2D or 3D nonlinear flow fields interacting
with elastic structures is given. The development of the corresponding flow solvers and
structural solvers have separate histories, and in each field distinct techniques have pre-
vailed over the years. When simulating an aeroelastic process one obviously wants to use
these far developed tools. This poses difficulties when trying to satisfy physical properties
of the aeroelastic problem on the discrete level, in order to improve stability, accuracy
and robustness characteristics of the aeroelastic scheme.

One point of imperfection is that the fluid–structure–interfaces have non–matching
discrete representations in fluid and structure. For example, in the 2D panel–flutter–
problem a finite volume fluid solver typically works with a piecewise linear representation
of the (moving) boundary. Part of the fluid boundary is given by the panel deflection which
is a piecewise cubic polynomial stemming from the structural Finite Element Method.
Additionally the fluid typically needs a finer spacial resolution than the structure. The
connectivity of fluid and structure is usually imposed at the fluid vertices, which are
enforced to stick to the structure, compare Fig. 1.6. A more significant difficulty is to
carry over the time–accuracy present in the separate fluid and structural solvers to the
aeroelastic solver. The simplest and most popular way to couple fluid and structural
solvers is the so called loose coupling which takes the fluid pressure from the beginning
of the time step to advance the structure in time and then to advance the fluid due to the
obtained structural movement. Obviously this scheme has only first order time accuracy
due to the ”lagged action” of the fluid pressure on the structure. Still one of the early
successful implementations of this type is due to Guruswamy [29], where the aeroelastic
behaviour of a wing–body structure in a flow modeled by the compressible Navier–Stokes
equations was simulated.

Let us use some illustrative formulas for the case when an inviscid flow model is
employed. We denote by pnF the discrete pressure distribution in the fluid code at time
level n. The superscripts are always related to a time level in this section. In a high
order fluid code an intermediate value p

n+1/2
F is used in the surface force to advance the

fluid from time level n to n+1. Let similarly p
n+1/2
S denote the discrete load distribution

that enters the structural equations. Let a projection of pnF onto the structural grid be
denoted by (pnF )S . Let us further introduce the structural deflection wn, which defines a
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x

y

ξ

structural deflection wn(ξ)

structural node

fluid vertex

fluid boundary Γn

n
n2

Figure 1.6: Representation of the interface in fluid and structure

fluid grid configuration xn. Let the grid velocities during the time step from level n to
n+ 1 be denoted by ẋn+1/2 . In the loose coupling one sets

p
n+1/2
S := (pnF )S . (1.2)

A conservative load transfer for the forces in y–direction (n2 is the normal component
in this direction as indicated in Fig. 1.6 and its value is negative),

∫

Γn+1/2

−p
n+1/2
F n2 ds =

∫ l

0

p
n+1/2
S dx , (1.3)

is therefore not satisfied for the loose coupling. Here Γn+1/2 is the interface belonging
to the grid configuration xn+1/2 and associated with the time level corresponding to the
pressure distribution p

n+1/2
F . Note that all formulas in this section are on the discrete

level and thus in this section the integrals stand for the corresponding quadrature rules
employed in the scheme.

In [11] strategies to employ global load conservation in the projection step are dis-
cussed, i.e. quadrature formulas are required to satisfy

∫

Γn

−pnF n2 ds =

∫ l

0

(pnF )S dx . (1.4)

In [11] numerical experiments were made with a loose coupling, but the time discretiza-
tions employed were not discussed. It seems that no efforts were made to satisfy (1.3).
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Still, drastic improvements over projections obtained from traditional interpolation meth-
ods are found. In the corresponding examples, loads with sharp peaks are present, where
interpolation violates the conservation properties immensely.

Apart from the load transfer, the connectivity of the two media is imposed by an
exchange of discrete interface locations between fluid and structure, which additionally
defines the fluid grid velocities ẋn+1/2 . The sum of all tranfers governs the energy ex-
change of the two media on the discrete level. Global conservation of the energy,

∫

Γn+1/2

−p
n+1/2
F (ẋn+1/2)Tnn+1/2 ds =

∫ l

0

p
n+1/2
S w

n+1/2
t dξ (1.5)

is the most important property to hold on the interface. Here, w
n+1/2
t represents the

discrete structural velocity that contributes in the energy balance. Satisfaction of (1.5) is
the subject of [24], but again the discussion circumvents the time discretization. Compar-
isons with traditional interpolation methods brought no improvement for smooth pressure
distributions and minor improvements in the presence of shocks.

Other researchers tackle an improvement of the loose coupling by iteration between
fluid and structural solver to achieve converged states of higher order time discretizations
at the interface, a so–called tight coupling. This is done in [2] and [46] without attributing
properties such as (1.3) or (1.5) to the proposed schemes. Further, the actual convergence
in each time step and comparisons with simpler coupling schemes are rarely documented.
In [2] an airfoil section with plunge and pitch degree–of–freedom in transonic flow is
considered. The iteration method is Jameson’s dual time–stepping, where a data–transfer
between fluid and structure takes place at each pseudo time step. In [46] a low Mach
number flow interacting with an elastically mounted cylinder, where vortex shedding plays
an important role, is simulated and considerable improvements over the loose coupling
are obtained for large time step sizes. Here the iteration is a straight forward fixed–point–
iteration, alternating several times between fluid and structural solver within one time
step, using as data for each medium the most recent obtained in the other medium.

An entirely different approach, that relies on explicit time–integration–schemes, was
proposed by Bendiksen [7]. An explicit 5–stage Runge–Kutta–Scheme was applied to the
spacially discretized fluid–structure system, exchanging data at each Runge–Kutta stage.
This seems to be a rather consistent treatment in time. It was applied in the transonic
regime to the flutter of wing sections and to panel flutter [14], [8]. In particular it improved
considerably the earlier version, where the 5–stage Runge–Kutta–Scheme was only used
in the fluid and was stage–wise coupled to a separate structural code. In [7] evidence is
given through numerical tests, showing that the energy transfer properties are very good,
in contrast to the earlier version. The main draw back of Bendiksen’s method is that it
is not applicable when the time step limitations of an explicit scheme are prohibitive, as
is often the case, especially in applications involving viscous flow effects.

Other strategies to improve the loose coupling are predictions of either the fluid state
[33] or the structural state [52] by interpolating to the end of the time step, or staggering
strategies [38] that place the time levels of one media in the middle of two consecutive
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time levels of the other media. An approach that drives the loose coupling even further
is subcycling [52], where a structural time step contains several fluid time steps.

A stability analysis of a comparably simple aeroelastic problem, a 1D fluid model
attached to a spring, was made in [10]. Stability limits of several coupling scheme were
compared by considering the eigenvalues of the linearizations. For the problem considered,
the improvements from the loose to stronger coupling schemes are clearly observed in the
obtained stability limits of the schemes.

Alltogether we may group the schemes into

A Scheme with time lag (loose and subcycling),

B Schemes that aim to remove the time lag without a convergence criterion (staggered
and predictions),

C Schemes that diminish the residual of the coupled system such that higher orders
are achieved at the interface and hopefully a conservative energy transfer (tight
coupling).

A comparison of schemes of type A and B in transonic and supersonic aeroelastic
problems were conducted by Farhat and Lesoinne [23], noting that the violation of a
correct energy transfer may lead to a confusion of numerical instabilities with physical
instabilities, whereas we are interested in accurately predicting the physical instabilities.
In [23], the term partitioned schemes is used, containig all the schemes of type A and
B, further the term monolithic schemes is introduced, which seems to coincide with our
class C.

1.4 Aims, achievements and chapter guide

The aim of the present work was to develop a scheme of type C, to observe its convergence
properties and to carve out its influences on the numerical solutions in comparison with
other schemes. Further, it was intended to keep the implementation most relevant for
practical purposes, though not to optimize it in every respect but rather to observe its
principle feasibility. Prior to the numerical work, analytical investigations to give a well–
posed mathematical formulation of an aeroelastic initial boundary value problem were
conducted. In the course of these studies the interest in the afore given numerical aims
were motivated, especially to have on the discrete level a formulation that corresponds
in significant issues to the well–posed continuous formulation. The major issue is a con-
servative energy transfer which, of course, is an at least equally fundamental physical
property.

In Chapter 2 the continuous formulation of the 2D panel flutter problem is given,
employing the 2D Euler equations interacting with a strip of a plate, where the von–
Kármán plate model is used. The aeroelastic stability problem and the parameters of the
problem are discussed.
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A result of the work on the well–posedness is given in Chapter 3. Further related
work can be found in the author’s technical report [45]. A fluid–structure–interaction
problem is formulated with the 3D compressible Navier–Stokes equations and a variant
of the von–Kármán plate model. It is proved that it admits no more than one solution
in a given function space. The proof is based on the proof of Secchi and Valli [55] on
a free–boundary value problem for the flow equations and results on the plate equation
from the book of Lions [39]. Similar analytical results on the fluid–structure–interaction
are not known to the author.

Chapter 4 presents the discretization techniques introduced to solve numerically the
problem of Chapter 2. The high–resolution finite volume method is used for the flow
equations and the finite element method for the structural equations to perform the
spacial discretizations. In time, classical schemes of second order are used. Since the fluid
grid moves, issues like the geometric conservation law and the treatment of numerical
fluxes for moving edges are discussed. In particular, a new method was developed in
coordination with V. Elling, in the course of his Diplom–thesis [21], to transform an
arbitrarily given numerical flux function from its formulation for fixed grids to the case
of a moving grid. This makes use of the Galilean invariance of the Euler equations,
see Sec. 4.1.5. Further, a multidimensional reconstruction is proposed in Sec. 4.1.7 and
a technique to impose the slip condition exactly at the quadrature points of edges on
impermeable boundaries, compare Sec. 4.1.7.1. The coupling schemes that have been
categorized in type A, B, C above, are discussed in more detail in Sec. 4.3. In Sec. 4.4
a discretization of the coupled fluid–structure–problem with a correct energy transfer
is constructed. For this purpose appropriate data transfer formulas are added to the
afore developed non–matching discretizations of the separate media. In particular, this
is a scheme that is implicit in time over the coupled spacially discretized fluid–structure
system. This kind of construction is also not available in the literature.

In Chapter 5 the solution algorithms to diminish the residuals in the implicit time dis-
cretizations of fluid, structure and the coupled fluid–structure system are presented. In all
cases a matrix–free Newton–GMRes methodology, motivated by the one for compressible
flow problems in [43], [44], was implemented. The very important issue of precondition-
ing to obtain acceptable convergence speeds for GMRes is implemented in a decoupled
fashion for fluid–structure–problems. This means that the fluid components, respectively
the structural components, of the coupled fluid–structure system are preconditioned by
the separate fluid, respectively structural, preconditioner. Still, the Jacobian of the cou-
pled equations steers the iteration in the Newton steps. This new kind of algorithmic
implementation of a tight coupling and its comparison with other schemes is the major
achievement of the thesis. In particular, it is still in a form that can use largely indepen-
dent fluid and structural codes.

The comparisons are found in Chapter 6. Here the significant numerical parameters
and the numerical problems associated with physical phenomena are discussed. Coupling
schemes of type A, B, C are compared. In particular, a tight coupling via a fixed–point–
iteration is compared with the Newton–iteration. In Sec. 6.4 we present, how bifurcations
in parameter space depend on the coupling scheme.
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Chapter 2

The Continuous Problem

2.1 Panel flutter with a 1D nonlinear panel and 2D

inviscid flow

2.1.1 Fluid

The balance equations for a moving domain Ω(t) in a 2D compressible inviscid flow of a
perfect gas are given by

d

dt

∫

Ω(t)

U dx dy +

∫

∂Ω(t)

U (v − ẋ)T n ds =

∫

∂Ω(t)









0
−p n1
−p n2
−pvTn









ds . (2.1)

Here the conservative state vector U = (ρ, ρ u, ρ v, 1
2
ρ |v|2 + p

γ−1
)T is made up of the

density ρ, the velocity vector v = (u, v)T and the pressure p. The latter quantities give
the primitive state vector U = (ρ, u, v, p) . The only material parameter in the inviscid
perfect gas model is the adiabatic exponent γ which we set 1.4 throughout, the value of a
diatomic gas such as air. On a point of the boundary ∂Ω(t), n = (n1, n2)

T is the outward
unit normal of Ω(t) and ẋ is the velocity of a boundary point x(t). Moving all boundary
integrals on one side, the integrand contains the so called flux of the 2D Euler equations
multiplied by n. The flux, here for the case of a moving grid, is given by

f(U, ẋ) ≡ U (v − ẋ)T +









0 0
p 0
0 p
p u p v









. (2.2)

Another important quantity in the polytropic gas model is the speed of sound c, given by
c =

√

γ p/ρ .

15
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2.1.1.1 Moving impermeable boundaries

At a point on a moving impermeable boundary an inviscid flow should have the same
normal velocity as the boundary, i.e. at a boundary point we want vTn = ẋTn . We see
that given such a boundary part Γ(t) ⊂ ∂Ω(t) , the corresponding part of the boundary
integral reduces to

∫

Γ(t)

f(U, ẋ)n ds =

∫

Γ(t)









0
p n1
p n2
p ẋTn









ds . (2.3)

2.1.1.2 Restriction to a finite domain

Restricting the infinite domain to a finite domain, a necessary step before discretizing
the fluid equations, one has to pose boundary conditions at the newly created artificial
boundary. These have to be chosen such that the solution on the finite domain is the
restriction of the solution on the infinite domain. This sounds impossible. One can
merely formulate the so called non-reflecting boundary conditions which work well in
many applications. See [61] for a case in which they don‘t bring satisfactory results. The
general idea is to argue as follows:

Due to the hyperbolic nature of the Euler equations, one may also write them in char-
acteristic form, in which the characteristic velocities and the quantities transported with
these velocities (waves) become visible, see [31]. Now one wants the boundary condition
to be such that waves moving outwards at the artificial boundary are not reflected into
the interior of the domain. This is accomplished by cancelling any kind of wave movement
that is directed inward at the boundary. A modification of the Euler equations with this
property is given by

Ut + A+n (U)
∂ U

∂ n
+

∂ f(U) τ

∂ τ
= 0 . (2.4)

Let us shortly explain this equation and show how to derive it: We assume that the
artificial boundary does not move. Thus, using f(U) ≡ f(U, 0) we can write (2.1) as a
PDE,

Ut + ∇ f(U) = 0 .

Transforming locally to the normal (n) and tangential (τ ) directions of the boundary, as
in [57], one has

Ut +
∂ f(U)n

∂ n
+

∂ f(U) τ

∂ τ
= 0 .

Here ∂/∂ n and ∂/∂ τ are the spacial derivatives in normal, respectively tangential,
direction. Then, we write the normal flux derivative in non-conservative form, see [31],
page 139,

∂ f(U)n

∂ n
≡ An(U)

∂ U

∂ n
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and replace the Jacobian An(U) by A+n (U) , which forces the velocity of the inward
moving waves to be zero, i.e. inward moving waves do not exist. A+n (U) is commonly
used in upwinding strategies; it is constructed by transforming An(U) to diagonal form,
then setting all negative eigenvalues (the speeds of the waves moving against the normal
direction) to 0 and transforming back to obtain the matrix A+n , for details see [31], [42].
In [31] the corresponding boundary treatment for the one-dimensional case is proposed
and equation (2.4) may also be derived directly from equation (34) in [61].

2.1.2 Structure

Here we consider a geometrically nonlinear thin elastic plate (modelling assumptions). It
is in fact a von–Kármán plate model with infinite width to chord ratio, where variations
in width direction are neglected and therefore a strip of unit width suffices to describe
the deformation. This elastic strip may be regarded as a beam with a rectangular cross
section. And we call it a plate or a panel in the sequel. We want the panel to be simply
supported at the two fixed ends, therefore introducing the space V := H2(0, l)∩H1

0 (0, l) .
H2(0, l) is a well–known Sobolev space, see [5], consisting of all measurable functions
on the interval (0, l) with distributional derivatives up to second order lying in L2(0, l) .
Accordingly, the functions in H1

0 (0, l) have derivatives up to first order lying in L2(0, l)
and homogeneous boundary values in the sense of traces. Below, the boundary conditions
are discussed further. The variational formulation is to find w ∈ C2(IR, V ) satisfying

D (wxx, ϕxx) + N(w) · (wx, ϕx) + m (wtt, ϕ) = − (p1 − p2, ϕ) ∀ ϕ ∈ V (2.5)

where the nonlinear term models a restoring force due to the panel stretching, with

N(w) =
E h

2 l

∫ l

0

w2x dx .

Neglecting the nonlinearity, N = 0, the Bernoulli beam model remains. Here (·, ·) is the
L2-inner product; w is the panel deflection and p1, respectively p2, are the pressure on
the upper and the lower surface of the panel. All other quantities appearing are constants
defining the panel material and dimensions. Since we consider only aluminium panels
later, we give the material constants for aluminium, taken from [37]:

ρs = 2700 kg/m3 density of the panel material (aluminium)
h panel thickness
l panel chord length
m = ρsh mass per unit area (unit width× unit chord)
E = 7.1 · 1010 Pa Young’s modulus of elasticity (aluminium)
ν = 0.34 Poisson’s ratio (aluminium)
D = Eh3/12(1− ν2) panel stiffness

hrel = h/l















































(2.6)
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ΩF (0)

ρ∞
u∞
p∞

p∞

ΩF (t)
ρ∞
u∞
p∞

p∞

Figure 2.1: Fluid-structure-interaction at t = 0 and t > 0 .

The mathematical conditions characterizing a beam which is simply supported at the two
ends are

w(t, 0) = w(t, l) = 0 , (2.7)

wxx(t, 0) = wxx(t, l) = 0 . (2.8)

Since V ⊂ {f ∈ C1[0, l] : f(0) = f(l) = 0} , the conditions (2.7) are satisfied by a
solution of the variational formulation. (2.8) are natural boundary conditions. Assuming
the solution to be smooth, w(t) ∈ C4[0, l] ∩ V , partial integration of the variational
equation yields that w satisfies also (2.8) and for all x ∈ [0, l] the PDE

Dwxxxx − N(w)wxx + mwtt = − (p1 − p2) . (2.9)

2.1.3 Fluid–structure interaction

Now we define the physical problem we want to solve. Geometrically we consider a 2D
cartesian coordinate system and place a panel, as introduced in Sec. 2.1.2, on the x-axis.
It simply supported at its fixed endpoints at x = 0 and x = l. The remaining part of
the x-axis constitutes a solid wall. At time t = 0 the plate is in its undeflected position
and the halfspace x > 0 is filled with an inviscid gas slipping over panel and wall in a
stationary state with density ρ∞, x-velocity u∞, y-velocity 0 and pressure p∞ at infinity.
A velocity distribution is assigned to the panel at t = 0, causing the panel to move,
triggering the fluid-structure-interaction. Below the panel we assign p∞ as a constant
pressure. In Fig. 2.1 the two dots are the panel endpoints, the line between the dots is
the undeflected panel at t = 0 in the left picture and the deflected panel at t > 0 in the
right picture.

With the given initial conditions we can formulate the conditions under which the
system evolves in time. The following have to be satisfied for all times.
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• the fluid domain at time t is defined as the space above the deflecting panel and
solid wall and is denoted by ΩF (t), i.e. for each fluid interface point x(t) associated
with a panel point ξ ∈ [0, l] ,

x(0) = (ξ, 0)T , x(t) = (ξ, w(t, ξ))T (2.10)

• for all moving domains Ω(t) ⊆ ΩF (t) (2.1) holds,

• (2.5) holds with the r.h.s determined from the fluid pressure on top and p∞ on the
bottom,

p1(t, ξ) ≡ p(t, ξ, w(t, ξ)) (2.11)

p2 ≡ p∞

• at infinity we have ρ = ρ∞ , u = u∞ , v = 0 , p = p∞ ,

• on the remaining boundary of ΩF (t) the fluid velocity in direction n equals the
velocity of the boundary in direction n, i.e. on the fluid-structure interface

vTn = ẋTn = wt n2 (2.12)

2.2 Dimensionless equations

The dimensionless form of the fluid-structure system is obtained using the reference values
from the fluid:

x∗ = l
v∗ = u∞
t∗ = u∞/l
ρ∗ = ρ∞
p∗ = ρ∞ u

2
∞

w∗ = l

With these reference values the dimensionless form of the Euler equations is exactly the
same as the original one (2.1). The dimensionless form of the panel equation (2.9) becomes

wxxxx −
6 (1− ν2)

h2rel
wxx

∫ 1

0

w2x dx +
12 (1− ν2)

E
ρs hrel u

2
∞wtt =

=
12 (1− ν2)

E
ρ∞ u

2
∞ (p2 − p1) . (2.13)
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2.3 Energy considerations

Let us now look at the energy transfer between fluid and structure as an argument to
reconfirm the coupling conditions (2.10), (2.11), (2.12). The energy argument will be
considered in another light in the next Chapter to prove analytically a uniqueness theorem
for an initial-boundary-value-problem of fluid-structure-interaction.

The energy transfer is correct if there is no energy production on the fluid-structure-
interface. The energy equations for fluid and structure are given by

d

dt
EF +

∫

∂ΩF (t)

(

1

2
ρv2 +

p

γ − 1

)

(v − ẋ)Tn ds =

∫

∂ΩF (t)

−pvTn ds ,

d

dt
ES =

∫ l

0

(p2 − p1)wt dx ,

where we have denoted the energy in fluid and structure by

EF (t) ≡

∫

ΩF (t)

1

2
ρv2 +

p

γ − 1
dx ,

ES(t) ≡

∫ l

0

m

2
w2t +

D

2
w2xx dx +

E h

2 l

(

1

2

∫ l

0

w2x dx

)2

.

Here the energy equation of the fluid is simply the last component of (2.1), taken over the
whole fluid domain. The energy equation of the panel is obtained by multiplying the PDE
(2.9) by wt and integrating. The energy equation of the fluid-structure-system is obtained
by adding the separate energy equations and plugging in the coupling conditions (2.10),
(2.11), (2.12). No energy production within the system should occur, i.e. after dividing
the fluid boundary into its interface part and the remaining part, ∂ΩF = ΓFS ∪ ΓF , we
want the production terms on the interface to cancel,

∫

ΓFS(t)

−

(

1

2
ρv2 +

p

γ − 1

)

(v − ẋ)Tn − pvTn ds

+

∫ l

0

− p1wt dx
!!!
= 0 .

(2.14)

Using the interface condition in the first integral and the parametrization of the interface
x(t) ∈ ΓFS(t) by x(t) = (ξ, w(t, ξ))T , ξ ∈ [0, l] , we get

∫

ΓFS(t)

−

(

1

2
ρv2 +

p

γ − 1

)

(v − ẋ)Tn − pvTn ds =

∫

ΓFS(t)

−p ẋTn ds =

=

∫ l

0

−p ẋTn
√

1 + w2x dξ
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and further from ẋTn = wtn2 and wx = −n1/n2 we obtain

∫ l

0

−p ẋTn
√

1 + w2x dξ =

∫

ΓFS(t)

−p wt n2
√

1 + (n1/n2)2 ds =

=

∫ l

0

−sign(n2) p wt dξ =

∫ l

0

p wt dξ .

Thus the cancellation (2.14) occurs, when (2.11) is used.

2.4 Parameter space

Let us summarize here all the parameters appearing in the above problem and discuss
which dimensionless parameters are of importance to the fluid-structure-interaction. In
the fluid we have the conditions at infinity ρ∞, u∞, p∞, and the only parameter in the
gas model is γ = 1.4 and the Mach-number at infinity is given by M∞ = u∞/

√

γ p∞/ρ∞ .
The panel is defined through its geometrical dimensions, the panel height h and the

panel length l or hrel = h/l ; further we have the material constants, the panel density
ρs, its modulus of elasticity E and its Poisson ratio ν. From these we have all other panel
parameters, see (2.6).

Nondimensional parameters of an aeroelastic problem are:

• mass ratio

µ ≡
ρ∞ l

ρs h
≡

ρ∞
ρs hrel

• nondimensional dynamic pressure

λ ≡
ρ∞ u

2
∞ l

3

D
≡

ρ∞ u
2
∞ 12 (1− ν2)

E h3rel

• reduced frequency

k ≡
ω l

2u∞

Actually the reduced frequency k is more appropriate in the context of unsteady aero-
dynamics, i.e. when considering the flow around a body oscillating in some degree of
freedom with the frequency ω, e.g. [62]. In our case ω may be extracted from the data if
the solution is known and a frequency can be identified.

The standard stability chart of an aeroelastic problem is given in the M∞λ-plane,
showing regions of the systems qualitative behaviour, dividing stable from unstable be-
haviour. In our case this is achieved in the following way: We consider a panel with
given ρs, E, ν and hrel, which are all panel parameters needed in the dimensionless form
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Figure 2.2: Panel mid–point deflections of an aluminium panel with hrel = 0.004537 ,
µ = 0.1 for various (M∞, λ) pairs, as given in the box.

(2.13). Further, we fix a value for µ and vary M∞ and λ in the area of interest and get
the remaining fluid parameters as

ρ∞ = µ ρs hrel , u∞ =

√

λE h3rel
12 (1− ν2) ρ∞

, p∞ =
u2∞ ρ∞
γ M2

∞

. (2.15)

Selecting some parameter pairs (M∞, λ), for an aluminium panel with hrel = 0.004537
and using µ = 0.1 , numerical simulations result in the time histories of the panel midpoint
deflections w/h shown in Fig. 2.2.

The typical long time behaviours that can be observed are

• stable behaviour, a stationary state with undeflected panel,

• divergence, a stationary state with deflected panel,

• flutter, a limit cycle oscillation.

These may be charted in M∞, λ–space. The stability boundary separates the stable
behaviour from the others. In Fig. 2.3 we show a stability chart from [33]. The symbols
are results produced in [33] and the solid line is the stability boundary obtained in [14],
dividing the stable from the unstable regime.
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Figure 2.3: Stability chart of a simply supported aluminium panel with hrel = 0.004537 ,
µ = 0.1 , from [33] and [14].
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Chapter 3

On Well-Posedness of an Aeroelastic
Problem

Here we consider the question of well-posedness of the PDE-System describing an aeroe-
lastic problem. The fluid and structure models used in the previous Chapter pose ana-
lytical difficulties. The difficulties attributed to the Euler equations are believed to be
of technical nature, i.e. although the Euler equations are intensively investigated upon,
their analysis is not developed satisfactorily yet. On the other hand, for the von-Kármán
model non-unique solutions are present [32].

Thus we change the physical models, going to a higher level of modelling, obtaining
equations with more complete analytical results. Including viscosity and heat-conduction
in the flow model, we consider the (3D) compressible Navier-Stokes equations. The classi-
cal von-Kármán model plate model is the one, from which the strip model can be derived,
that was used in the previous Chapter. Here we use a refined version of the von-Kármán
model plate model, by taking the rotational energy of the cross-sections into account.
Still the cross-sections are assumed to remain orthogonal to the deforming mid-plane of
the plate. This plate model appeared in [47].

A classical approach in the analysis of PDE’s is to obtain energy estimates for solutions
of the PDE or the differential operator. Here we tackle the question of the uniqueness
of assumed solutions for the aeroelastic system. The essential steps in the proof of the
following theorem originate from the proof of theorem A in the paper of Secchi and
Valli [55], who’s basic idea stems from Serrin’s paper [59]. Secchi and Valli have shown
uniqueness and — for small times — existence of a solution for a free boundary value
problem for the compressible Navier-Stokes equations; they considered the expansion of
a gas with given environmental pressure.

We use a material fixed approach in the fluid, which means that we have a given
amount of fluid material that is in contact with the plate. This is not completely satis-
factory, since a true inflow or outflow as typical for our application of Chapter 2 is not
present, one may merely generate a fluid movement by imposing a movement on the fluid’s
boundary particles. A uniqueness proof for the aeroelastic problem with a finite fluid do-
main with inflow and outflow boundaries could not yet be found. Also, the question of

25
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the existence of a solution is still open.

Some notation and differentiation rules

In this Chapter we use an overbar for all expressions represented in Eulerian coordinates
and we remove the bar when changing to the Lagrangian representation. This choice was
simply made to make the proof below more readable, since it uses Lagrangian coordinates
throughout. For the same reason we make some more notational conventions:

Let Ω ∈ IRn be a domain and b : Ω → IRn, A, C : Ω → IRn×n vector fields with
components bi and matrix fields with components aij, cij respectively, Ai the rows of A:

b =











b1
b2
...
bn











, A =











a11 · · · a1n
a21 · · · a2n

...
an1 · · · ann











=











A1
A2
...
An











We use

A : C ≡ trace(A · C) ≡
n
∑

i,j=1

ajicij , i.e. AT : A =
n
∑

i,j=1

a2ij .

The differentiation operator ∇ is considered as a vector

∇ =











∂/∂x1
∂/∂x2

...
∂/∂xn











and we multipy it with matrices from the left and the right, as we usually multiply vectors
and matrices, but instead of the multiplication of the components we always carry out
the corresponding differentiation of the matrix component. For example

grad b = b∇T =











b1x1
· · · b1xn

b2x1
· · · b2xn

...
bnx1

· · · bnxn











div b = bT∇ = ∇T b

∇TA = (a11x1
+ a21x2

+ · · · + an1xn , a12x1
+ a22x2

+ · · · + an2xn ,

· · · , a1nx1
+ a2nx2

+ · · · + annxn)

Later on, vectors of the form










(AT
1∇

T ) : CT

(AT
2∇

T ) : CT

...
(AT

n∇
T ) : CT
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will appear; symbolically we denote them by [A∇T ] ◦◦CT . (Note, that A∇T wouldn’t make
sense and we don’t intend to define it as an n-array of n× n-matrices, as it only appears
in the form given above.) Therefore we have the following product rules:

(bTC)∇ = bT (C∇) + (b∇T )T : C = bT (C∇) + (b∇T ) : CT

(AC)∇ = A(C∇) + [A∇T ] ◦◦CT ,

where the second rule is obtained by applying the first in every component.

Fluid equations in Eulerian coordinates

We first give a well–known form of the Navier-Stokes equations in Eulerian coordinates.

D

Dt
ρ + ρ (∇

T
v) = 0

ρ
D

Dt
v = S∇

ρ cv(θ)
D

Dt
θ = S : D + κ (θ∇

T
)∇

with D = 1/2 · (v∇
T
+∇vT ) , S = −p(ρ, θ)I + 2µD + (ζ −

2

3
µ) (vT ∇) · I

Here ∇ is the gradient with respect to Eulerian coordinates and D/Dt is the substantial
derivative. The uniqueness proof will depart from the corresponding fluid equations in
Lagrangian coordinates. In the equations the following quantities appear:

ρ density
v velocity vector
η particle path vector
θ absolute temperature
κ constant heat conduction coefficient
µ, ζ constant viscosity coefficients
D deformation tensor
S stress tensor
p = p(ρ, θ) the state equation for the pressure
cv = cv(θ) the specific heat capacity of the (thermodynamically) ideal

gas, i.e. we have for the specific internal energy e = e(θ), compare
[58], page 174

Transformation to Lagrangian coordinates

The transformation to Lagrangian coordinates is defined via the particle paths η :

ηt(t,x) = v(t,η(t,x)) , η(0,x) = x for x ∈ ΩF
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Then, for example, the density in Lagrangian coordinates is given by

ρ(t,x) := ρ(t,η(t,x)) .

Further we introduce an abbreviation for the determinant of the particle path gradient,
which is to appear frequently in the sequel,

D(t,x) := det(η∇T ) .

Next we discuss how boundary integrals transform to Lagrangian coordinates, which
enables us to formulate boundary conditions in Lagrangian coordinates. For a moving
volume Ω(t) = {η(t,x) : x ∈ Ω} of fluid material with Ω ⊂ ΩF let n(t, ξ) denote the
outward normal in ξ ∈ ∂Ω(t). Then we have the following relation for the surface forces:

∫

Γ(t)

S(t, ξ)n(t, ξ) dσ =

∫

Γ

D(t,x) · S(t,η(t,x)) · (η(t,x)∇T )−T n ds

for all pieces Γ ⊆ ∂Ω , Γ(t) := {η(t,x) : x ∈ Γ} , compare [28], pages 178 and 184. In the
continuum mechanics of large deformations, after defining S(t,x) := S(t,η(t,x)) , the
tensor

D(t,x) · S(t,x) · (η(t,x)∇T )−T

is referred to as the first Piola-Kirchhoff-stress-tensor, [28], page 178, and it will appear
in our formulation of the interface conditions below.

Particular terms transform as follows from Eulerian to Lagrangian coordinates:

ρ(t,x) := ρ(t,η(t,x)), v(t,x) := v(t,η(t,x)), θ(t,x) := θ(t,η(t,x)), x ∈ ΩF

Hence

∂

∂xi

ρ(t,x) =
d

dxi

ρ(t,η(t,x)) =
3
∑

j=1

ρξj
· (ηj)xi

= (ρ∇
T
) · ηxi

,

and therefore

ρ∇T = (ρ · ∇
T
)(η∇T ) and (ρ∇T ) · (η∇T )−1 = ρ · ∇

T
,

and in the last identity, (t,x) appears as argument on the left, and ∇ is the gradient with
respect to x; the argument on the right is (t, ξ) with ξ = η(t,x), and ∇ is taken with
respect to ξ. Similarly, we have

(v∇T ) · (η∇T )−1 = v · ∇
T

(3.1)

∇
T
v = div(v) = tr(v · ∇

T
) = (v∇T ) : (η∇T )−1 (3.2)

D

Dt
ρ(t, ξ) = ρt + (ρ · ∇

T
)v =

d

dt
ρ(t,η(t,x)) = ρt . (3.3)
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3.1 The IBVP

With the above explanations we are ready to state an initial boundary value problem
describing the interaction of a plate with a given amount of fluid material. Our second
interface condition, which corresponds to the boundary condition at the free boundary
in [55], is completely formulated in the reference configuration, in contrast to [55]. We
consider this the natural formulation for a material fixed fluid description. It is obtained
by transforming the Navier–Stokes equations from Eulerian coordinates with the aid of
the relations (3.2), (3.3) to Lagrangian coordinates.

Fluid (in Lagrangian coordinates)1:

ρt = −ρ(v∇
T ) : (η∇T )−1 for x ∈ ΩF

ρvt = S∇T
◦◦ (η∇T )−1 for x ∈ ΩF

ρcvθt = S : D + κ · ([(η∇T )−T (θ∇)]∇T ) : (η∇T )−1 for x ∈ ΩF

v(t,x) = uw
t (t,x) for x ∈ ∂Ω \ ΓFS

θ(t,x) = θw(t,x) for x ∈ ∂ΩF

ρ(0,x) = ρo(x), v(0,x) = vo(x), θ(0,x) = θo(x) in ΩF

where S(t,x) := S(t,η(t,x)) and D(t,x) := D(t,η(t,x)) , which for example leads
to

S = −π(ρ, θ) · I + µ · [(v∇T )(η∇T )−1 + (η∇T )−T (v∇T )T ] +

+ (ζ −
2

3
µ) · (v∇T ) : (η∇T )−1 · I

Particle paths:

ηt(t,x) = v(t,x) for x ∈ ΩF

η(0,x) = x for x ∈ ΩF

Interface condition:

−wt(t, x1, x2) · n = v(t,x) for x = (x1, x2, 0) ∈ ΓFS (i)

−p1(t, x1, x2) = nT ·
[

D · S · (η∇T )−T
]

(t,x) · n for x = (x1, x2, 0) ∈ ΓFS (ii)

1Here, the continuity equation can be replaced by ρ(t,x)·D(t,x) = ρo(x) which is a direct consequence
of the conservation of mass in integral form and, on the other hand, implies the continuity equation
obtained from the transformation to Lagrangian coordinates ([28], S. 89).
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Plate:

wtt − α ·∆wtt + β ·∆2w − [w,ψ] = p2 − p1 for (x1, x2) ∈ ΩS

γ ·∆2ψ + [w,w] = 0 for (x1, x2) ∈ ΩS

w(t, x1, x2) = 0,
∂w(t, x1, x2)

∂nS
= 0 for (x1, x2) ∈ ∂ΩS

ψ(t, x1, x2) = 0,
∂ψ(t, x1, x2)

∂nS
= 0 for (x1, x2) ∈ ∂ΩS

w(0, x1, x2) = 0, wt(0, x1, x2) = 0 for (x1, x2) ∈ ΩS

In the plate equation the so–called Airy function ψ, which characterizes the in–plane
stress distribution, appears as an unknown besides the deflection w. α, β, γ are positive
material constants. On the boundary of the two dimensional structural domain the normal
is nS. Further, the Laplace operator (in 2D) is defined by ∆w ≡ (w∇T )∇ according to
the introduced notation. The bracket abbreviates

[w,ψ] ≡ wx1x1
ψx2x2

− 2wx1x2
ψx1x2

+ wx2x2
ψx1x1

.

Further, the following data is assumed to be given:

p2(t, x) external pressure on the lower surface of the plate
uw(t, x) movement of the fluid boundary, except for the interface
θw(t, x) temperature at the fluid boundary
ρo(x) initial density
vo(x) initial velocity
θo(x) initial temperature

3.2 A uniqueness theorem

First, some notation: QT := (0, T )×ΩF , and | · | denotes the norm of a scalar, vector or
matrix. For vectors (b) and matrices (A), we use

| b | = (bT b)1/2, | A | = (AT : A)1/2 = (trace(ATA))1/2.

Further, in this chapter ‖ · ‖ is reserved for norms in function spaces and equipped with
the corresponding subscript. For example, for a measurable and integrable matrix field
A(t,x) on QT , we have

‖ A ‖L1(0,T ;L∞(ΩF )) =

∫ T

0

‖ A(t,x) ‖L∞(ΩF ) dt =

∫ T

0

ess.sup x∈ΩF
| A(t,x) | dt.

Theorem 1: Let ΩF and ΩS be bounded domains with Lipschitz boundary, and
let the constants µ, ζ, κ > 0 and the thermodynamic relations p(ρ, θ) ∈ C1 and
cv(θ) ∈ C

1, so that there is a cv∗ > 0 with cv ≥ cv∗. Further, let the constants α, β, γ > 0
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and p2 ∈ L2(0, T ;L2(ΩS)) . Then the initial boundary value problem has at most one
solution in the following class of functions.

w ∈ C(0, T ;W 2,2(ΩS)), ψ ∈ L
∞(0, T ;W 2,2(ΩS)) and wt ∈ C(0, T ;W 1,2(ΩS)),

ρ ∈ L∞(QT ), Dρ ∈ L
2(0, T ;L∞(ΩF )) and ∃ρ∗ > 0 : ρ ≥ ρ∗ in QT ,

v ∈ L∞(QT ), Dv ∈ L2(0, T ;L∞(ΩF )) and D2v ∈ L2(0, T ;L∞(ΩF )),

θ ∈ L∞(QT ), Dθ ∈ L
2(0, T ;L∞(ΩF )) and D2θ ∈ L2(0, T ;L∞(ΩF )),

η ∈ L∞(QT ), Dη ∈ L∞(QT ) and D2η ∈ L∞(QT )

and2 ∃D∗ > 0 : D ≡ det(η∇T ) ≥ D∗ in QT

and η(t, · ) : ΩA → IRn is injective for every t ∈ [0, T ] .

Before giving the proof we discuss some points related to the smoothness demanded
for the solution:

After separating the fluid equations such that only the time derivatives ρt, vt, θt stand
on the left-hand sides of the equations, for a function with the required regularity, all
right-hand sides (these contain all partial derivatives in the space directions) in the dif-
ferential equations are in L1(0, T ;L2(ΩF )) resp. L1(0, T ;L2(ΩS)), and the solution can
be interpreted in the D((0, T );L2(ΩF ))- resp. D((0, T );L

2(ΩS))-distribution sense. Fur-
ther, the continuity of the solution in the time direction in the sense ρ,v, θ,η,η∇T ∈
C([0, T ];L2(ΩF )) follows [68] (theorem 25.5). Besides determining that way the sense in
which the initial values are satisfied, the quantity E(0) (introduced below, after Gron-
wall’s Lemma) is also well-defined. For that reason we demanded a ”slightly” higher
smoothness for v and θ compared to [55] 3. On the other hand, this smoothness for v

is also important since it determines the smoothness of the right hand side of the plate
equation through the interface condition.

All boundary and interface conditions can be interpreted in the trace sense (H 1/2(Γ)
or L2(Γ) almost everywhere (a.e.) on [0, T ]).

As a preview of the proof we show the type of estimate we need in order to apply
Gronwall’s Lemma, here given in the version of [13], page 559:

Gronwall’s Lemma: Given E ∈ L∞(0, T ) and c ∈ L1(0, T ) with E(t) ≥ 0 and
c(t) ≥ 0 a.e. on [0, T ] then for an arbitrary constant Eo the inequality

E(t) ≤ Eo +

∫ t

0

c(τ)E(τ) dτ a.e. on [0, T ]

2According to earlier remarks on the various forms of the continuity equation in Lagrangian coordi-
nates, if we require ρo(x) ≥ ρo∗ > 0, we have: existence of the lower bound D∗ for D(t,x)⇔ existence of
an upper bound for ρ.

3In [55], only L1 rather than L2 was demanded for D2v,D2θ, which leads to vt, θt ∈ L1(0, T ;L∞(ΩF )).
However, according to [13], Chapter XVIII, section 3, especially page 483, prop. 9, this is not sufficient
for v, θ ∈ C([0, T ];L∞(ΩF )).
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implies the inequality

E(t) ≤ Eo · exp

(∫ t

0

c(τ) dτ

)

a.e. on [0, T ] .

Now, we assume there exist two solutions which satisfy the regularity conditions of
the theorem and the same initial value and boundary conditions: w̃, ψ̃, ρ̃, ṽ, θ̃, η̃ and
w,ψ, ρ,v, θ,η. The differences are defined as w′ := w̃ − w,ψ′ := ψ̃ − ψ, ρ′ := ρ̃ − ρ, ....
Then in the proof we will find the time dependent coefficient c(t) with the choice

E(t) =
1

2

∫

ΩS

w′t
2
+ α |∇w′t|

2 + β (∆w′)2 dx dy +

∫

ΩF

|η′|2 + |η′∇T |2 + |ρ′|2 +
1

2
D̃ ρ̃ |v′|2 +

1

2
ρ̃ c̃v D̃ |θ

′|2 dx .

E(t) is related to the energy in the physical sense, and we will have Eo = E(0) which
vanishes due to the initial conditions 4 . Thus E(t) ≡ 0 from Gronwall’s Lemma, i.e.
uniqueness will follow.

Proof: Let the two solutions and their difference be defined as above.

Energy estimate for the plate: In the book of Lions [39] (pages 50-53) we find the
identity

1

2

∫

ΩS

w′t
2
+ α|w′t∇|

2 + β(∆w′)2 d(x1, x2) =

=

∫ t

0

∫

ΩS

(

[w̃, ψ̃]− [w,ψ]
)

· w′t − (p̃1 − p1) · w
′
t d(x1, x2) dτ ,

and further integral estimates for the term
(

[w̃, ψ̃]− [w,ψ]
)

·w′t from [39] (compare the

step “Unicité”, pg. 52) result in the energy estimate for the plate:

1

2

∫

ΩS

w′t
2
+ α|w′t∇|

2 + β(∆w′)2 d(x1, x2) ≤

≤

∫ t

0

∫

ΩS

c0 ·
(

|w′t∇|
2 + (∆w′)2

)

− w′t · (p̃1 − p1) d(x1, x2) dτ

for almost all t ∈ [0, T ] with a constant c0 > 0

Energy estimates for the fluid: The nonlinearity in the fluid equations is tackled with
the simple relations

ãb̃− ab = ab′ + a′b̃, ãb̃c̃− abc = a′b̃c̃+ ab′c̃+ abc′,

4As already discussed above, E(0) is well-defined due to the regularity of the solutions. We have
to add that Dη ∈ L2(0, T ;H1,∞(ΩF )) , (Dη)t ∈ L2(0, T ;L∞(ΩF )) i.e. Dη ∈ C([0, T ];L2(ΩF )) and
similarly we get that Du ∈ C([0, T ];L2(ΩS)) , so that

∫

ΩS

1
2D

E′

: SE′

dx ∈ C[0, T ] .
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where ã, b̃, c̃, a, b, c ∈ IR and a′ := ã− a, b′ := b̃− b, c′ := c̃− c

yield ρ′,v′, θ′ after subtracting the differential equations of both solutions. We will refer
to the “ãb̃-rule” whenever we apply one of these relations.

Estimates for the particle paths: First, we have η′t = v′ and η′Tt η′ = v′Tη′ , hence

d

dt

∫

ΩF

1

2
|η′|2 dx =

∫

ΩF

v′Tη′ dx ≤
1

2

∫

ΩF

|v′|2 + |η′|2 dx .

The regularity required in the theorem allows for (η ′t)∇
T = (η′∇T )t = v′∇T , hence

d

dt

∫

ΩF

1

2
|η′∇T |2 dx =

∫

ΩF

(v′∇T )T : (η′∇T ) dx ≤

≤
1

2c

∫

ΩF

|η′∇T |2 dx +
c

2

∫

ΩF

|v′∇T |2 dx

for arbitrary c > 0. The sum of both inequalities gives us the estimate for the particle
paths:

For each c1 > 0 there exists a constant c1 > 0, such that

d

dt

∫

ΩF

|η′|2 + |η′∇T |2 dx ≤

≤ c1

∫

ΩF

|v′|2 + |η′|2 + |η′∇T |2 dx + c1

∫

ΩF

|v′∇T |2 dx .

Later, we choose a particular c1; this choice will depend on the constant co appearing in
the energy estimate for the momentum equation.

Estimate for continuity equation: Subtraction of the continuity equations provides

ρ̃t − ρt = −ρ̃(ṽ∇
T ) : (η̃∇T )−1 + ρ(v∇T ) : (η∇T )−1 .

Applying the ãb̃-rule in combination with Q′ := (η̃∇T )−1 − (η∇T )−1 yields

ρ′t = −ρ
′(ṽ∇T ) : (η̃∇T )−1 + ρ(ṽ∇T ) : Q′ + ρ(v′∇T ) : (η∇T )−1.

Thus
d

dt

∫

ΩF

| ρ′ |2 dx = 2

∫

ΩF

ρ′ρ′t dx =

= − 2

∫

ΩF

ρ′ · [ρ′(ṽ∇T ) : (η̃∇T )−1 + ρ(ṽ∇T ) : Q′ + ρ(v′∇T ) : (η∇T )−1] dx

≤

∫

ΩF

2|ρ′|2 · |ṽ∇T | · |(η̃∇T )−1| + |ρ| · |ṽ∇T | · (|ρ′|2 + |Q′|2) +

+ 2|ρ′| · ‖ρ‖L∞(QT ) · ‖(η∇
T )−1‖L∞(QT ) · |v

′∇T | dx .
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α := ‖ρ‖L∞(QT ) · ‖(η∇
T )−1‖L∞(QT ) is, according to the assumptions, larger than zero, and

via Cramer’s rule we get5 (η∇T )−1 ∈ L∞(QT ) . This yields, for all c2 > 0,

2α|ρ′| · |v′∇T | = α · 2 · |ρ′|(
4α

c2
)1/2 · |v′∇T |(

c2
4α

)1/2 ≤
4α2

c2
|ρ′|2 +

c2
4
|v′∇T | ,

d

dt

∫

ΩF

| ρ′ |2 dx ≤

∫

ΩF

2|ρ′|2 · ‖ṽ∇T‖L∞(ΩF ) · ‖(η̃∇
T )−1‖L∞(QT ) +

+ ‖ρ‖L∞(QT ) · ‖ṽ∇
T‖L∞(ΩF ) · (|ρ

′|2 + |Q′|2) +
4α2

c2
|ρ′|2 +

c2
4
|v′∇T | dx .

Using the Lipschitz continuity of the matrix inversion, we obtain6

|Q′| = |(η̃∇T )−1 − (η∇T )−1| ≤ c2 · |η̃∇
T − η∇T | = c2 · |η

′∇T | .

This implies the estimate for the continuity equation, where a time dependent coefficient
appears due to the term ‖ṽ∇T‖L∞(ΩF ) and the assumption Dv ∈ L2(0, T ;L∞(ΩF )) of
the theorem:

For each c2 > 0 there exists a constant c3(t) ∈ L
2(0, T ), such that

d

dt

∫

ΩF

| ρ′ |2 dx ≤ c3(t)

∫

ΩF

|ρ′|2 + |η′∇T |2 dx + c2

∫

ΩF

|v′∇T |2 dx

As mentioned for the energy estimate of the particle path equation, we will later choose
a particular c2.

Energy estimates for the momentum equation: The time variation of the expression
∫

ΩF

1
2
D̃ρ̃ | v′ |2 dx is estimated, which is obviously related to the kinetic energy of the

particles in ΩF (t) at time t. As already introduced, D(t,x) = det(η∇T ).

d

dt

∫

ΩF

1

2
D̃ρ̃ | v′ |2 dx =

∫

ΩF

1

2
D̃tρ̃ | v

′ |2 +
1

2
D̃ρ̃t | v

′ |2 + D̃ρ̃ · v′Tv′t dx (3.4)

The first two terms on the right side are easily controlled by the methods already used for
the continuity equation. In the sequel, we focus on the third term, for which we obtain
(using the ãb̃-rule) the following expression for ρ̃v′t from the momentum equation:

ρ̃ṽt − ρvt = S̃∇T
◦◦ (η̃∇T )−1 − S∇T

◦◦ (η∇T )−1 and ρ̃ṽt − ρvt = ρ̃v′t + ρ′vt ,

5We choose M := {A ∈ IRn×n : detA ≥ D∗ and |A| ≤ M := max
[

‖η∇T ‖L∞(QT ), ‖η̃∇
T ‖L∞(QT )

]

}.
For A = [aij ] ∈ M, from the equivalence of norms, max|aij | ≤ K1|A| ≤ K1M and using Cramer’s rule
(n = 3 for simplicity): |A−1|2 = (detA)−2 · [(a22a33 − a32a23)

2 + ... ] ≤ D−2
∗ K2 ·

∑

ijlm a2ija
2
lm ≤

D−2
∗ K2K

2
1M

2 ·
∑

ijlm a2ij ≤ K2
3 |A|

2 .
6This is inequality (2.15) in [55]. We have (for the local Lipschitz continuity of matrix inversion, we

refer to [67], p.110): |Ã−1 − A−1| = |Ã−1(A − Ã)A−1| ≤ K3M · |A − Ã| · K3M ∀ Ã, A ∈ M ,
hence c2 = K2

3M
2.
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so that
∫

ΩF

D̃ρ̃ · v′Tv′t dx =

∫

ΩF

−D̃ρ′ · v′Tvt +

+ v′T · [D̃(S̃∇T ) ◦◦ (η̃∇T )−1 −D(S∇T ) ◦◦ (η∇T )−1 −D′(S∇T ) ◦◦ (η∇T )−1] dx .

Here, D′(t,x) := D̃(t,x)−D(t,x). By product differentiation,

[DS(η∇T )−T ]∇ = (S∇T ) ◦◦ [D(η∇T )−1] + S[(D(η∇T )−T )∇]

and Cramer’s rule yields (D(η∇T )−T )∇ = 0. Therefore, we can write

∫

ΩF

D̃ρ̃ · v′Tv′t dx =

=

∫

ΩF

−D̃ρ′ · v′Tvt + v′T · [J ′∇] − v′T · [D′(S∇T ) ◦◦ (η∇T )−1] dx

with J ′ := D̃S̃(η̃∇T )−T −DS(η∇T )−T . Another product differentiation leads to

∫

ΩF

D̃ρ̃ · v′Tv′t dx =

∫

ΩF

−D̃ρ′ · v′Tvt +

+ [v′TJ ′]∇ − (v′∇T )T : J ′ − v′T · [D′(S∇T ) ◦◦ (η∇T )−1] dx,

and Gauss’ theorem combined with the boundary values v′ = 0 on ΓA (∂ΩF = ΓA∪ΓFS)
yields

∫

ΩF

D̃ρ̃ · v′Tv′t dx =

∫

ΩF

− D̃ρ′ · v′Tvt − (v′∇T )T : J ′ +

− v′T · [D′(S∇T ) ◦◦ (η∇T )−1] dx +

∫

ΓFS

v′TJ ′n ds .

Recalling with the definition of J ′, we see that the boundary integral contains only terms
appearing in the interface conditions. Adding this identity to the energy estimate of the
plate already eliminates the integrals over the interface ΓFS.

Applying the ãb̃-rule to J ′ in the integral over ΩF , finally leads to

∫

ΩF

D̃ρ̃ · v′Tv′t dx =

∫

ΩF

− D̃ρ′ · v′Tvt − v′T · [D′(S∇T ) ◦◦ (η∇T )−1] +

− (v′∇T )T : [S ′D̃(η̃∇T )−T + SD′(η̃∇T )−T + SDQ′
T
] dx +

+

∫

ΓFS

v′TJ ′n ds (3.5)

with S ′ := S̃ − S.
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The main task in the remaining part of the proof is the elimination of v ′∇T from the
energy estimate. The goal is to obtain an estimate of the form

(

d

dt

∫

ΩF

energies dx

)

+ co

∫

ΩF

|v′∇T |2 dx ≤

≤

∫

ΩF

energies dx + co

∫

ΩF

|v′∇T |2 dx +

∫

ΓFS

v′TJ ′n ds (3.6)

after adding all energy estimates of the fluid.
∫

ΩF
|v′∇T |2 dx was already obtained on

the right-hand sides of the estimates for the particle path and the continuity equation and
weighted with arbitrary constants. In order to obtain co

∫

ΩF
|v′∇T |2 dx on the left-hand

side of (3.6), we insert the constitutive equation for S and split in (3.5) according to

−(v′∇T )T : [S ′D̃(η̃∇T )−T ] = − D̃ · β + γ (3.7)

which will lead on the following four pages to the estimate
∫

ΩF

D̃ · β dx ≥ co

∫

ΩF

|v′∇T |2 dx − c4

∫

ΩF

|v′|2 dx (3.8)

with co, c4 > 0. The remaining free constants (those with the bars, such as c2 in the
estimate for the continuity equation) have to be chosen so that they add up and let co
appear on the right-hand side of (3.6) as-well.

We have

S = −π(ρ, θ) · I + µ · [(v∇T )(η∇T )−1 + (η∇T )−T (v∇T )T ] +

+ (ζ −
2

3
µ) · (v∇T ) : (η∇T )−1 · I ,

and using the ãb̃-rule and π′(t,x) := π(ρ̃(t,x), θ̃(t,x))− π(ρ(t,x), θ(t,x)) ,

S ′ = −π′ · I + µ · [(v∇T )Q′ + (v′∇T )(η̃∇T )−1 +Q′(v∇T )T +

+(η̃∇T )−T (v′∇T )T ] + (ζ −
2

3
µ) · [(v∇T ) : Q′ + (v∇T ) : (η̃∇T )−1] · I .

Moreover, using this identity the splitting (3.7) is carried out as follows,

β := (v′∇T )T : [{ µ(v′∇T )(η̃∇T )−1 + µ(η̃∇T )−T (v′∇T )T +

+ (ζ −
2

3
µ) · (v∇T ) : (η̃∇T )−1 · I } · (η̃∇T )−T ]

γ := −(v′∇T )T : [ D̃ · {−π′ · I + µ(v∇T )Q′ + µQ′(v∇T )T +
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+ (ζ −
2

3
µ) · (v∇T ) : Q′ · I } · (η̃∇T )−T ] .

Next we show the estimate (3.8). We abbreviate the matrix fields A := v ′∇T , B :=
(η̃∇T )−1, and because of the identity

AT : [(AB +BTAT )BT ] = [BTAT ] : (AB +BTAT ) =

=
1

2
(AB +BTAT ) : (AB +BTAT ) =

=
1

2
(AB +BTAT )T : (AB +BTAT ) =

1

2
|(AB +BTAT )|2 ,

(cf. [28], p.6), β has the form

β =
µ

2
| (v′∇T )(η̃∇T )−1 + (η̃∇T )−T (v′∇T )T |2 +

+ (ζ −
2

3
µ) [ (v∇T ) : (η∇T )−1]2 =

=
µ

2
|AB +BTAT |2 +

(

ζ −
2µ

3

)

[A : B]2 .

The first step towards the proof of (3.8) is the following estimate which is independent of
the form of the square matrices A,B, but holds for dimensions n = 2, 3 only,

β ≥ min

(

µ

2
,
3ζ

4

)

· |AB +BTAT |2 . (3.9)

In the case ζ −
2

3
µ ≥ 0 , we have

µ

2
= min

(

µ

2
,
3ζ

4

)

, so that (3.9) follows immediately.

The case ζ −
2

3
µ < 0 is a little more difficult. To this end, let

A =











A1
A2
...
An











und B = (B1, B2, · · · , Bn) ,

in other words, Ai respectively Bi are the columns of A respectively B. We have7

[A : B]2 =

[

n
∑

i=1

AiBi

]2

=
n
∑

i=1

(AiBi)
2 +

+ 2
∑

1≤i<j≤n

AiBi · AjBj ≤ n
n
∑

i=1

(AiBi)
2 .

7Using C := AB, (3.9) can be shown entirely with C. In this case, A : B = traceC and AiBj = cij .
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Hence, only for n = 2 or 3 [A : B]2 ≤ 3
∑n

i=1(AiBi)
2 holds. In addition,

|AB +BTAT |2 = 2(AB) : (AB) + 2(AB) : (BTAT ) =

= 2
n
∑

i,j=1

(AiBj) · (AjBi) + 2
n
∑

i,j=1

(AiBj)
2 =

= 4
n
∑

i=1

(AiBi)
2 + 2

n
∑

1≤i<j≤n

(AiBj + AjBi)
2 .

Therefore, we have

|AB +BTAT |2 − 4
n
∑

i=1

(AiBi)
2 ≥ 0 .

Together with
3ζ

4
= min

(

µ

2
,
3ζ

4

)

,

β ≥
3ζ

4

[

|AB +BTAT |2 − 4
n
∑

i=1

(AiBi)
2

]

+

+
µ

2

[

4
n
∑

i=1

(AiBi)
2

]

+

(

ζ −
2µ

3

)

[A : B]2 ≥

≥
3ζ

4

[

|AB +BTAT |2 − 4
n
∑

i=1

(AiBi)
2

]

+

+
µ

2

[

4
n
∑

i=1

(AiBi)
2

]

+ 3

(

ζ −
2µ

3

) n
∑

i=1

(AiBi)
2

follows, where the last estimate is correct because of ζ −
2µ

3
< 0 . Thus, (3.9) is

proven. This means that we have reached

∫

ΩF

D̃ · β dx ≥ c5

∫

ΩF

D̃ · | (v′∇T )(η̃∇T )−1 + (η̃∇T )−T (v′∇T )T |2 dx (3.10)

with c5 = min

(

µ

2
,
3

4ζ

)

> 0 . The step from (3.10) to (3.8) utilizes Korn’s inequality

(cf. [32], theorem 3.4, page 84):

Let Ω ⊆ IR3 be a connected domain with Lipschitz boundary, and for w ∈ W 1,2(Ω)
define D(w) := 1

2
[(w∇T ) + (w∇T )T ]. There is a constant C(Ω) > 0 so that

‖w‖2W 1,2(Ω) ≤ C(Ω) ·

∫

Ω

|w|2 + |D(w)|2 dy ∀ w ∈ W 1,2(Ω) .
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Defining w(t, y) := v′(t, η̃−1(t, y)) on Ω̃A(t) := η̃(t,ΩF ) , where η̃−1(t, y) is the
inverse of the mapping

η̃(t, ·) : ΩF → Ω̃A(t), x 7→ η̃(t,x) for fixed t,

we immediately see that
∫

Ω̃A(t)
4 · |D(w)|2 dy is precisely the integral on the right-hand

side of (3.10). We know that Korn’s inequality is valid for Ω = ΩF . η̃
−1(t, ·) maps Ω̃A(t)

to ΩF , where the regularity conditions of the theorem imply that8

‖η̃−1(t, y)‖H2,∞(Ω̃A(t))
on [0, T ] uniformly bounded

and det[η̃−1∇T
y ] ≥ d∗ > 0 for all (t, y) with t ∈ [0, T ], y ∈ Ω̃A(t) .

The procedure in [51] (pages 95/96) yields a constant independent of t such that9

∫

Ω̃A(t)

|w|2 + |w∇T
y |
2 dy ≤ c6 ·

∫

Ω̃A(t)

|w|2 + |D(w)|2 dy

∀ t ∈ [0, T ], w ∈ W 1,2(Ω̃A(t)) .

Using the substitution w(t, y) := v′(t, η̃−1(t, y)), we obtain
∫

ΩF

1− c6
c6

D̃ |v′|2 +
1

c6
D̃ | (v′∇T )(η̃∇T )−1 |2 dx ≤

≤
1

4

∫

ΩF

D̃ · | (v′∇T )(η̃∇T )−1 + (η̃∇T )−T (v′∇T )T |2 dx ∀ t

and, with A,B as above, we have

| (v′∇T )(η̃∇T )−1 |2 = trace(ABBTAT ) =
n
∑

i=1

AiBB
TAT

i ≥

≥
1

c27

n
∑

i=1

|Ai|
2 =

1

c27
|A|2 =

1

c27
|v′∇T |2 ,

where |B−1| = |η̃∇T | ≤ c7, with a suitable constant c7 > 0, because of Dη ∈ L∞(QT ).
Alltogether, we have

c5

∫

ΩF

D̃ · | (v′∇T )(η̃∇T )−1 + (η̃∇T )−T (v′∇T )T |2 dx ≥

≥ co

∫

ΩF

|v′∇T |2 dx − c4

∫

ΩF

|v′|2 dx

8To this end, (η∇T )−1 is determined using Cramer’s rule, the rule for differentiation of inverses ([67],
p. 119) is used, and finally the particle path equation and the regularity of η and v is applied.

9The constants α, β, γ, ε on page 96 in [51] can be chosen independent of t because of the properties
of η̃−1.
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with the constants c4 := 4D∗c5(c6−1)/c6 > 0 and co := 4D∗c5/(c6c
2
7) > 0. Together with

(3.10), (3.8) follows. From (3.4), (3.5), (3.7) and the definition of γ, we see that

d

dt

∫

ΩF

1

2
D̃ρ̃ | v′ |2 dx =

∫

ΩF

1

2
D̃tρ̃ | v

′ |2 +
1

2
D̃ρ̃t | v

′ |2 +

+ D̃ρ′ · v′Tvt − v′T · [D′(S∇T ) ◦◦ (η∇T )−1] − D̃β

− (v′∇T )T : [SD′(η̃∇T )−T + SDQ′
T

+ D̃ · {−π′ · I + µ(v∇T )Q′ +

+ µQ′(v∇T )T + (ζ −
2

3
µ) · (v∇T ) : Q′ · I } · (η̃∇T )−T ] dx +

+

∫

ΓFS

v′TJ ′n ds .

All summands in the integral over ΩF (after performing all matrix-vector-multipli-
cations) have the form a′b′c, and we use 2|a′b′c| ≤ |c| · (ε2a2 + ε−2b2) , where we need
ε 6= 1 only if a′ or b′ are components of v′∇T . The more, we use (3.8) now and need the
Lipschitz continuity of π for estimating π′ = π(ρ̃, θ̃)−π(ρ, θ), and the Lipschitz continuity
of the determinant10 for estimating D′ := det(η̃∇T )− det(η∇T ). Using the definition of
J ′, we obtain the energy estimate of the momentum equation:

d

dt

∫

ΩF

1

2
D̃ρ̃|v′|2 dx + co

∫

ΩF

|v′∇T |2 dx ≤

≤ c8(t)

∫

ΩF

1

2
D̃ρ̃|v′|2 + |ρ′|2 +

1

2
D̃ρ̃c̃v|θ

′|2 + |η′∇T |2 dx +

+
co
2

∫

ΩF

|v′∇T |2 dx +

∫

ΓFS

v′T
[

D̃S̃(η̃∇T )−T −DS(η∇T )−T
]

n ds

with11 c8(t) ∈ L
2(0, T )

In order to understand the rest of the proof, we assume temporarily that we have an
isothermic fluid model, i.e. we use a pressure equation of the form π = π(ρ) and may
discard the temperature equation. In this case, the term 1

2
D̃ρ̃c̃v|θ

′|2 does not appear in

10explicit computation of the determinat yields (n = 3 for simplicity): |det Ã−det A| = | ã11ã22ã33−
a11a22a33 + ... | = | (ã11 − a11)ã22ã33 + a11(ã22 − a22)ã33 + a11a22(ã33 − a33) + ... | ≤

∑

i,j |ãij −

aij | ·KijK
2
1M

2, hence |det Ã − det A|2 ≤ K4|Ã − A|2 for Ã, A ∈ M. Here, the ãb̃-rule was used, and
the Kij are fixed constants necessary since some matrix entries appear once, others multiple times in the
determinant formula.
11From the assumptions in [55] we can deduce vt ∈ L1(0, T ;L∞(ΩF )) and get c8(t) ∈ L1(0, T ) due

to the term D̃ρ′ · v′Tvt . Similar consequences result from (S∇T ) ◦◦ (η∇T )−1 .
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the quantity E(t) as defined at the beginning of the proof. Adding all estimates found
so far and using the interface conditions yields

d

dt

[

1

2

∫

ΩS

w′t
2
+ α|w′t∇|

2 + β(∆w′)2 d(x1, x2) +

∫

ΩF

|η′|2 + |η′∇T |2 + |ρ′|2 +
1

2
D̃ρ̃|v′|2 dx

]

≤ c9(t)

[

1

2

∫

ΩS

w′t
2
+ α|w′t∇|

2 + β(∆w′)2 d(x1, x2) +

∫

ΩF

|η′|2 + |η′∇T |2 + |ρ′|2 +
1

2
D̃ρ̃|v′|2 dx

]

.

All |v′∇T |2-integrals disappeared due to the choice c1 = c2 = co/4; and we have c9(t) ∈
L2(0, T ). Integration over time intervals (0, t), t ≤ T and application of Gronwall’s
lemma finally leads to u′ = ρ′ = v′ = η′ = 0, hence uniqueness.

We also present the most important steps for obtaining the estimate of the energy
equation, or temperature equation, due to the form we have put it in. Again, simple
estimation techniques and partial integration are sufficient. In contrast to [55], we estimate
the variation of

∫

ΩF

1
2
D̃c̃v|θ

′|2 dx , which is obiously related to the internal energy of the

fluid with c̃v(t,x) := cv(θ̃(t,x)) .

Energy estimate for the temperature equation: Differentiating d
dt

∫

ΩF

1
2
ρ̃c̃vD̃|θ

′|2 dx

leads to the expression
∫

ΩF
ρ̃c̃vD̃θ

′θ′t dx , which is examined further. The ãb̃-rule gives

(ρ̃c̃vD̃)θ̃t − (ρcvD)θt = ρ̃c̃vD̃θ
′
t + (ρ̃c̃vD̃ − ρcvD)θt

and in combination with the temperature equation we obtain

ρ̃c̃vD̃θ
′θ′t = θ′[D̃S̃ : D̃ −DS : D] − θ′[D̃(q̃∇T ) : (η̃∇T )−1 +

− D(q∇T ) : (η∇T )−1] − (ρ̃c̃vD̃ − ρcvD)θ
′θt

where q = −κ[(η∇T )−T (θ∇)] . The product rule yields

D(q∇T ) : (η∇T )−1 = [qTD(η∇T )−T ]∇ − qT [(D(η∇T )−T )∇] .

Again, the last summand on the right-hand side vanishes due to Cramer’s rule, and
another product differentiation leads to

θ′
[

[qTD(η∇T )−T ]∇
]

= [θ′qTD(η∇T )−T ]∇ − [qTD(η∇T )−T ](θ′∇) .

Therefore,
∫

ΩF

ρ̃c̃vD̃θ
′θ′t dx =

∫

ΩF

θ′[D̃S̃ : D̃ −DS : D] +
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− (ρ̃c̃vD̃ − ρcvD)θ
′θt + [q̃T D̃(η̃∇T )−T − qTD(η∇T )−T ](θ′∇) dx +

−

∫

∂ΩF

θ′ · [q̃T D̃(η̃∇T )−T − qTD(η∇T )−T ] · n ds .

As for the momentum equation, (θ′∇) has to be eliminated. Here, this can be done in a
simpler way and independently of the other energy estimates:

(θ′∇T )(η̃∇T )−1(η̃∇T )−T (θ′∇) = |(η̃∇T )−T (θ′∇)|2 ≥
1

c27
|θ′∇|2

as already seen when deriving the energy estimate for the momentum equation, and by
definition of the heat flux vector q,

[ q̃T D̃(η̃∇T )−T − qTD(η∇T )−T ](θ′∇) ≤

≤ −
D̃κ

c27
|θ′∇|2 − κ(θ∇T )[D̃(η̃∇T )−1(η̃∇T )−T − D(η∇T )−1(η∇T )−T ](θ′∇) .

Simple estimation techniques, as those used when treating the continuity equation, com-
bined with c10 := D∗κ/c

2
7 > 0, yield the energy estimate for the temperature equation:

For each c3 > 0 there exists a function c11(t) ∈ L
1(0, T ), such that

d

dt

∫

ΩF

1

2
ρ̃c̃vD̃|θ

′|2 dx + c10

∫

ΩF

|θ′∇|2 dx ≤

≤ c11(t)

∫

ΩF

|ρ′|2 +
1

2
ρ̃c̃vD̃|θ

′|2 + |η′∇T |2 dx +

+ c3

∫

ΩF

|v′∇T |2 dx + c10

∫

ΩF

|θ′∇|2 dx +

−

∫

∂ΩF

θ′ · [q̃T D̃(η̃∇T )−T − qTD(η∇T )−T ] · n ds

The integrand of the boundary integral is zero on the piece (∂ΩF )1 ∪ (∂ΩF )3, and finally
the boundary condition on (∂ΩF )2 gives

−

∫

∂ΩF

θ′ · [q̃T D̃(η̃∇T )−T − qTD(η∇T )−T ] · n ds = −

∫

(∂ΩF )2

k · |θ′|2 ds ,

that is, we have another positive term on the left-hand side of the energy estimate. As
for the isothermic case, we show uniqueness by choosing c1 = c2 = c3 = co/6 .



Chapter 4

The Discrete Equations

4.1 High-resolution Finite Volume Discretization for

the Euler equations on moving grids

Here we discuss our flow discretization on moving grids using the Finite Volume Method.
The use of concepts like upwinding, numerical dissipation and Riemann-Solvers [31], [42],
[26] are assumed to be known by the reader, and will therefore not be detailed in the
sequel.

4.1.1 The finite volume approach

We recall the Euler equations (2.1) for a moving control volume, now written with the
flux (2.2) and integrated from an arbitrary time tn to tn+1 ≡ tn +∆t ,

∫

Ω(tn+1)

U dx −

∫

Ω(tn)

U dx +

∫ tn+1

tn

∫

∂Ω(t)

f(U, ẋ)n ds dt = 0 . (4.1)

This equation has to hold for any domain Ω(t) moving within the fluid domain ΩF (t). In
many applications the fluid domain reaches up to infinity. For a numerical simulation we
only consider a finite moving domain ΩC

F (t) containing the area of interest. This introduces
artificial boundaries, which are dotted in Fig. 4.1. This choice of a finite computational
domain ΩC

F defines a very common situation in CFD, where we have artifical boundaries,
the in- and outflow boundaries, from where the fluid is meant to attain the∞-state away
from ΩC

F (t). Further the common situation is that ΩC
F (t) has also impermeable boundaries

which may move, as in our case. Next this finite domain is split into a finite set of moving
subdomains, the cells Ωi(t) , such that all Ωi(t) are disjoint at each instant of time and
that their union gives ΩC

F (t).

In a finite volume scheme one denotes the state Ui(t) as the mean value of the conserved
quantity U in the cell Ωi(t). Abbreviating Un

i ≡ Ui(t
n) and Ωn

i ≡ Ωi(t
n) we can rewrite

43
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(4.1) for the cell Ωi as

|Ωn+1
i |Un+1

i − |Ωn
i |U

n
i +

∫ tn+1

tn

∫

∂Ωi(t)

f(U, ẋ)n ds dt = 0 . (4.2)

So far nothing really has happened, but now we will have to face an approximation.
Assuming all the meanvalues Un

i to be known, we want to know the values Un+1
i at the

time tn+1. Here we employ 4 approximation steps.
Namely, the first is a reconstruction-limitation rule that calculates from all the mean

values some higher order representation of U within each cell, reducing to first order at
discontinuities. From this representation we are only interested in the values resulting at
the cell-edges, for evaluating the boundary integral. The details of the reconstruction and
limitation are given in Sec. 4.1.7.

At a point on an edge, we will have two values of U coming from each neighbouring cell,
which are different in general. This results in the use of a numerical flux function, which
approximates f n on the edge due to the two values and is the second approximation
step. There are many possible choices for a numerical flux function. The ones emloyed
here are given in Sec. 4.1.4, their implementation for moving edges in Sec. 4.1.5 and the
modification at boundaries in Sec. 4.1.6.

At this point we want to introduce the reconstruction-limitation step and the numerical
flux function formally. For this purpose, if Ωi has an edge in common with Ωj let the
edge be denoted by eij. Let further the outward normal of Ωi on eij be denoted by
nij, the velocity of eij by ẋij and let the value at eij due to the reconstruction in Ωi

be denoted by Uij. The numerical flux function approximating f n on the edge eij in
(4.2) can then be expressed in the form F (Uij, Uji, ẋij,nij) . Thus, from reconstruction,
limitation and numerical flux, we formally have an approximation of (4.2) as

|Ωn+1
i |Un+1

i − |Ωn
i |U

n
i +

∫ tn+1

tn

∑

eij⊂∂Ωi

∫

eij

F (Uij, Uji, ẋij,nij) ds dt = 0 . (4.3)

The third approximation step is to replace the surface integrals by quadrature for-
mulas. A simple but important example is given in Sec. 4.1.2.

And the fourth approximation step is to use quadrature formulas for the time integral.
Then the resulting set of equations may be solved for the mean values Un+1

i . Alternatively,
we could also insert the first three approximations into (2.1). To the resulting set of
ordinary differential equations we could apply a Runge-Kutta Method, which is then
equivalent to what is done here in the fourth step, see [30]. This fourth step interferes
with the Geometric Conservation Law, which is discussed is Sec. 4.1.3.

4.1.2 Grid movement and cells with polygonal boundaries

In most CFD-codes for 2D-problems the cells have polygonal boundaries, as implemented
in our case, too. Then the edges are straight lines and a quadrature formula for the
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ΩC
F (t)Ωi(t)

Ωj(t)

Figure 4.1: Domain of discrete problem and part of the grid

surface integral that is of second order is given by

∫

eij

F (Uij, Uji, ẋij,nij) ds ≈ |eij| · F (Uij,c, Uji,c, ẋij,c,nij,c) , (4.4)

where the c-subscript indicates that all values are taken at the edge center.
The movement of the grid is usually based on the movement of the vertices. A very

general approach is to model the vertices as a system of mass points connected by springs
along the edges and to solve the spring-mass-system under the constraint that the vertices
on the boundary follow the boundary movement. In the case of a simple geometry the
vertices may be moved by some analytically given stretching rule, which is how the grid
movement for the panel flutter problem is implemented here.

In the remaining part we only consider moving cells with polygonal boundaries where
the cell movement is prescribed by the movement of the vertices.

4.1.3 The Geometric Conservation Law (GCL)

Here we outline the meaning and implications of the GCL for 2D finite volume schemes
on moving grids. For the moving subdomain Ω(t) we can formulate the (continuous)
GCL,

|Ω(tn+1)| − |Ω(tn)| =

∫ tn+1

tn

∫

∂Ω(t)

ẋT n ds dt . (4.5)

It states that the change in volume is due to the area swept over by the moving boundary.
Of course, this equality is also present in the Euler equations. It may be refound by noting
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that U ≡ U = const. is a solution of the Euler equations and thus also has to satisfy the
Euler equations when expressed for a moving domain. I.e. plugging U ≡ U into (4.1),
using the flux (2.2) and the fact that

∫

∂Ω
cTn ds = 0 for a constant vector c, (4.5) results.

It makes sense to demand (4.5) also on the discrete level as a consistency condition,
which influences the 3rd and 4th approximation step. More precisely, in the recent paper
[22], assuming a CFL–condition, the satisfaction of the discrete GCL that corresponds
to a scheme was proven to be equivalent to nonlinear stability for scalar hyperbolic
equations. Here some explanations are needed: Propose some scheme by discretizing
the integrals in (4.3); if this scheme is satisfied for Un

i ≡ Un+1
i ≡ U = const. , then

the scheme is said to satisfy its discrete GCL. Nonlinear stability is meant in the sense
that the maxima, respectively minima, do not increase, respectively decrease, from one
to the next time level, a property shared also by the exact solution of a scalar hyperbolic
equation.

Let us discuss the discrete GCL for a certain class of discretizations: We assume vertex
movements x(t) to be given and the edges moving as straight lines between them. We
employ a standard quadrature rule for the integrals in (4.3) and in case that intermediate
values for U are needed let them be defined through linear interpolation from U n and
Un+1. Plugging Un

i ≡ Un+1
i ≡ U = const. into this scheme, using the fact that a

reconstruction-limitation and numerical flux have to satisfy the compatibility condition
Uij ≡ U ∀ij and F (U,U, ẋ,n) ≡ f(U, ẋ)n , we obtain that (4.5) has to be satisfied
exactly, when replacing all expressions by the corresponding ones on the discrete level.

Since the cell areas |Ωn+1
i | , |Ωn

i | are evaluated exactly for cells with polygonal bound-
aries, their difference has to be equal to the discrete evaluation of the r.h.s. in (4.5), which
depends only on the choices made in the third and fourth approximation steps. Thus we
obtain the requirement, that the discrete evaluation of the r.h.s. in (4.5) has to give the
exact value of the integral. Below, we will express the integrand in (4.5) as a polynomial,
which means that the discrete scheme has to be exact for the degree of the polynomial!
Otherwise the discrete equations are not satisfied when plugging in U n

i ≡ U .

Now, let us express the r.h.s. of (4.5) for one edge of a moving cell with polygonal
boundary. The movement of this straight edge is entirely defined by the movement of the
edge endpoints (the vertices). Assuming the movement of the two vertices to be given by
xl(t) and xr(t), a parametrization of the moving edge is given by

αxl(t) + (1− α)xr(t) , withα ∈ [0, 1] .

Expressing the normal, which is constant along the straight edge, as

n(t) = H ·
xr(t)− xl(t)

||xl(t)− xr(t)||2
, with H =

(

0 −1
1 0

)
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and using the calculus of integrals, we obtain

∫ tn+1

tn

∫

e

ẋT n ds dt =

=

∫ tn+1

tn

∫ 1

0

||xl(t)− xr(t)||2 ·
(

α ẋl(t) + (1− α) ẋr(t)
)T
· n(t) dα dt

=

∫ tn+1

tn

1

2

(

ẋl(t) + ẋr(t)
)T
H (xr(t)− xl(t)) dt

The integration over α is exact when using any second order quadrature rule in our third
approximation step, since the integrand is linear in α. E.g. the midpoint rule (4.4) may
be used. The remaining integration over t demands the consistency between the choice of
vertex-movement x(t) and the time integration scheme. E.g. when it suffices to represent
the vertex positions x(tn) and x(tn+1) exactly, we can assume x(t) to be linear within
each time step. Then ẋ is a constant and the integrand is linear in t, i.e. a second
order time integration suffices for the exact integration. If one wants to be exact in both
position and velocities at tn and tn+1 one chooses x(t) as a polynomial of third degree,
and then the integrand is of degree 5 and thus a sixth order time integration scheme is
needed. This discussion was motivated by a similar one in [38].

4.1.4 The numerical flux

Here we discuss the implementation of the numerical fluxes. In our code, the Van-Leer
Flux-Vector Splitting (FVS) [63] and the Solomon-Osher flux [49], [26] are implemented.
The Van-Leer FVS is further important for our algorithm since it is used throughout
as the flux discretization in the preconditioner. Thus we only give the Van-Leer FVS
explicitly.

From now on we use primitive states as flux arguments and for convenience we keep
the notations for the flux f of the Euler equations (2.2) and the numerical flux F , which
was introduced formally in (4.3). This corresponds also to the actual implementation.

We define the numerical fluxes for the case that the edge lies on the y-axis with the cell
under consideration in the halfspace x < 0 and the neighbour cell in the halfspace x > 0.
Having the primitive states U respectively V in the left respectively right halfspace, a
Riemann-problem in 2D is defined and we denote the value of the exact solution at x = 0
by U∗. We are interested in an approximation of the flux

fx(U) ≡ f(U ,0) · (1, 0)T

at U∗. Here f is the flux of the Euler equations (2.2). We denote the approximation given
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by the numerical flux by F x(U ,V) , thus formally we want to have

F x(U ,V) ≈ fx(U∗) ≡ U ∗ u∗ +









0
p∗

0
p∗ u∗









. (4.6)

The general case of the numerical flux F (U ,V , ẋ) on an arbitrarily oriented edge moving
with velocity ẋ is then carried back to F x via transformations in Sec. 4.1.5.

The Van-Leer FVS

The typical form of a FVS is F x(U ,V) = f+(U) + f−(V) , where f+ and f− are chosen
such that at least

• fx = f+ + f− ,

• the Jacobian of f+, respectively f−, taken with respect to the conservative state,
has only nonnegative, respectively nonpositive, eigenvalues.

Van-Leer’s FVS satisfies these conditions, and has some more useful properties, see [63].
Using M = u/c , Van-Leer’s FVS is given by

f−(U) = fx(U) and f+(U) = 0 , if M ≤ −1

f±(U) = ±
ρ

4 c
(u± c)2 ·





























1

(γ − 1)u± 2 c

γ

v

((γ − 1)u± 2 c)2

2 (γ2 − 1)





























, if − 1 < M < 1

f−(U) = 0 and f+(U) = fx(U) , if M ≥ 1

(4.7)

4.1.5 General representation of numerical fluxes over moving
edges

Here we use the rotational and the Galilean invariance of the Euler equations and carry
them over to the numerical fluxes. For proofs of these invariances, see [26]. We obtain
an expression for the evaluation of the numerical flux at an arbitrarily oriented moving
edge via transformations of F x. Actually, one can also set up various numerical fluxes
for arbitrary edges and prove their invariances; the rotational invariance of the Solomon-
Osher flux and some others is proven in [26].
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4.1.5.1 Rotational invariance

We introduce the rotation matrix Q corresponding to an edge with normal vector n =
(cos, sin)T , such that the velocity components in U are transformed to their normal and
tangential part by Q−1. We have

vn = vTn = u cos+ v sin , vt = −u sin+ v cos ,

so that

Q−1 =









1
cos sin
−sin cos

1









, Q =









1
cos −sin
sin cos

1









.

Then it is easily shown that the flux (2.2) of the Euler equations satisfies

f(U , 0)n = Qfx(Q−1 U) . (4.8)

Comparing with (4.6), we obtain the numerical flux F (U ,V ,0) over a generally oriented
non-moving edge,

F (U ,V ,0) = QF x(Q−1 U , Q−1 V) . (4.9)

4.1.5.2 Galilean invariance

We look again at a Riemann-Problem. Initially, we have constant states on the two sides
of an arbitrarily oriented interface, U in the −n-halfspace and V in the n-halfspace. We
let the interface move with the constant velocity ẋ and pick the value U

∗
of the solution

on the moving interface. We look for a formula for f(U
∗
, ẋ)n in terms of the flux at a

non–moving interface:
Given the solution of the Riemann-problem U(t,x) ≡ (ρ(t,x),v(t,x), p(t,x) ), from

the Galilean invariance of the Euler equations we get that

U(t,xG) ≡ ( ρ(t,xG + ẋ t), v(t,xG + ẋ t)− ẋ, p(t,xG + ẋ t) )

is the solution corresponding to the Riemann-data U − Ẋ , V − Ẋ , where we have set
Ẋ ≡ (0, ẋ, ẏ, 0)T with a constant velocity vector ẋ ≡ (ẋ, ẏ)T . Galilei moves with the
velocity ẋ and the coordinates in the system moving with him are denoted by xG. So
when Galilei keeps looking at the same point xG he observes the fluid state U . Thus the
value U(t,x) he observes on the moving interface is U ∗ ≡ U

∗
− Ẋ .

Inserting these relations, we have

f(U
∗
, ẋ)n =









ρ∗

ρ∗u∗

ρ∗v∗
1
2
ρ∗ |v∗|2 + p∗/(γ − 1)









(v∗ − ẋ)Tn +









0
p∗cos
p∗sin
p∗ v∗Tn
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=









ρ∗

ρ∗(u∗ + ẋ)
ρ∗(v∗ + ẏ)

1
2
ρ∗ |v∗ + ẋ|2 + p∗/(γ − 1)









v∗Tn +









0
p∗cos
p∗sin

p∗ (v∗ + ẋ)Tn









=









ρ∗

ρ∗u∗

ρ∗v∗
1
2
ρ∗ |v∗|2 + p∗/(γ − 1)









v∗Tn +









0
p∗cos
p∗sin
p∗ v∗Tn









+

+









0
ẋ ρ∗v∗Tn
ẏ ρ∗v∗Tn

(1
2
|ẋ|2 + v∗T ẋ) ρ∗v∗Tn+ p∗ẋTn









.

This may also be written as

f(U
∗
, ẋ)n = S · f(U ∗,0)n = S · f(U

∗
− Ẋ,0)n (4.10)

where

S =









1
ẋ 1
ẏ 1

|ẋ|2/2 ẋ ẏ 1









.

Carrying this identity over to the numerical flux, we have

F (U ,V , ẋ,n) = S F (U − Ẋ, V − Ẋ,0,n) . (4.11)

Note again, that (4.11) was derived by carrying over the corresponding identity (4.10)
that holds for exact solutions of the Euler equations. Actually (4.11) may be used as
a definition for the l.h.s. The l.h.s. may also be derived by other means, for example
in [3] Van-Leer’s FVS was extended to the case of moving edges by carrying over Van-
Leer’s derivation of the FVS for fixed edges [63]. Collecting terms, one can check that
the expression found in [3] for the l.h.s of (4.11) is equal to the expression which we get
when inserting Van-Leer’s FVS from [63] into the r.h.s. of (4.11).

Alltogether

Applying (4.11) and (4.9) successively we get a formula for the flux F (U ,V , ẋ,n) over a
generally oriented moving edge in terms of F x,

F (U ,V , ẋ,n) = S QF x
(

Q−1 (U − Ẋ), Q−1 (V − Ẋ)
)

. (4.12)
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4.1.6 The numerical flux at impermeable and artificial bound-
aries

As will be seen in the following section the boundary condition vTn = ẋTn from
Sec. 2.1.1.1 which is to be imposed at moving impermeable boundaries is satisfied at
the quadrature point of the edge, due to the reconstruction. The flux at such a boundary
is given by (2.3) which is approximated with the pressure at the edge center and the
normal velocity of the center, i.e.

|eij| · F (Uij, · , ẋij,nij) = |eij| pij









0
nij,1

nij,2

ẋT
ijnij









. (4.13)

Often this implementation of the boundary flux is successfully implemented in CFD–
codes without taking care of the condition vTn = ẋTn imposed on the velocity.

At an artificial boundary edge (inflow or outflow) we place a ghost cell which is con-
sidered to lie on the boundary. Across the boundary edge the nonreflecting modification
of the Euler equations (2.4) discussed in Sec. 2.1.1.2 is discretized in upwind manner of
first order in space. The tangential contribution of (2.4) is neglected, i.e. denoting the
state inside the domain by Ui and the state in the ghost cell by Ug, the discrete equations
are

dUg

dt
+ A+n (Ug)

Ug − Ui

∆xn

= 0 .

4.1.7 Linear reconstruction and limiter

The issues of reconstruction and limiting are both implemented in an unstructured grid
manner. The reconstruction is obtained from a least-squares-problem for each cell and the
switch towards a first order discretization near discontinuities is realized with Venkatakr-
ishnan’s limiter [64]. According to [1] this strategy is superior in solution quality and
convergence properties compared to other combinations of reconstruction and limiting on
unstructured grids. The implementations presented below were tested with the steady
problems considered in [1], yielding similar solution qualities and convergence properties.

To obtain the reconstruction from a least-squares-problem is a common strategy [26].
Here we propose a least-squares-functional that should suit unstructured grids very well.

We assume each primitive variable q to have in each cell a linear distribution of the
form

q(x, y) = qi + qx(x− xi) + qy(y − yi) ,

where (xi, yi) is the cell barycenter and thus qi its mean value. The distribution of the
mean values over all cells are assumed as known and the slopes qx, qy are selected such
that they minimize

F (qx, qy) =

∫

C

(q(x, y)− qC(x, y))
2ds .
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Here the curve C is the closed polygonal curve connecting the barycenters of adjacent
neighbour cells, as shown in the Fig. 4.2. qC is the continuous, piecewise linear function
defined on that curve by setting

qC(xj, yj) = qj for all barycenters of the neighbour cells (xj, yj) .

Since q − qC is linear on each section of the curve that connects two barycenters, F can
be calculated exactly by simple quadrature formulas and F is a quadratic functional in
(qx, qy) . The problem

find qx, qy such that F (qx, qy) = min
(s1,s2)∈IR

2
F (s1, s2)

is easily solved via a system of two linear equations. Finally we steer the space discretiza-
tion order by modifying the slopes with a factor φ,

qx := φ · qx , qy := φ · qy.

For a given cell Ωi Venkatakrishnan’s slope limiter φ is given as a minimum over all its
edges:

Defining ε =

(

k · | Ci |

π

)3

with k = 2 and the ”cell diameter” | Ci |/π ,

∆ij = qj − qi ,

∆ij = qx (xij − xi) − qy (yij − yi) ,
with the coordinates of the edge center (xij, yij)
and if ∆ij ·∆ij < 0 then set ∆ij = 0 ,

the limiter is φ = mineij⊂∂Ωi

(∆2
ij + ε) + 2∆ij ∆ij

∆2
ij + 2∆

2

ij +∆ij ∆ij + ε
.

4.1.7.1 Modification at impermeable boundaries

At a flux evaluation point on a (moving) wall we want the normal fluid velocity to equal
the normal wall velocity, ẋTn = vTn. We achieve this by modifying the velocity-slopes
obtained from the above reconstruction and limiting process. Let ux, uy, vx, vy be the
obtained slopes of the velocity vector v ≡ (u, v)T . We define the normalized vector η
to point from the cell barycenter to the evaluation point on the edge and the normal-
ized vector ϑ to be perpendicular to η. Then we consider the possible set of modified
slopes ux, uy, vx, vy to be those obtained by keeping the ϑ-derivatives uϑ and vϑ fixed
and changing the η-derivatives uη and vη such that we have ẋTn = vTn, where v is
the velocity at the evaluation point due to the modified slopes. Amongst the possible
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C

Ωi

Figure 4.2: The cell Ωi, its neighbour cells and the curve C are shown. C is a polygonal
curve connecting the barycenters of Ωi’s neighbour cells.

modified slopes we choose the one deviating the least from the original slopes, i.e. we
solve the least-squares-problem

min{(ux−ux)
2+(uy−uy)

2+(vx−vx)
2+(vy−vy)

2 : all ux, uy, vx, vy with ẋTn = vTn} .

The construction makes the least-squares-problem particularly simple:

v = vi +∆ · (uη, vη)
T ,

where ∆ is the distance from the center to the evaluation point and vi is the mean
velocity vector of the cell. Thus the condition ẋTn = vTn characterizes the set of
possible modified slopes as

{ux, uy, vx, vy with uη n1 + vη n2 = (ẋ− vi)
Tn/∆} . (4.14)

Since we have fixed the ϑ-derivatives, we have
(

ux

uy

)

=

(

η1 −η2
η2 η1

) (

uη

uϑ

)

,

(

vx
vy

)

=

(

η1 −η2
η2 η1

) (

vη
vϑ

)

,

and plugging into the least-squares-functional together with the condition in (4.14), we
have a quadratic functional in, say, uη. We find the minimum at some u∗η and define the
modified slopes for the boundary cell to be

(

ux

uy

)

=

(

η1 −η2
η2 η1

) (

u∗η
uϑ

)

,

(

vx
vy

)

=

(

η1 −η2
η2 η1

) (

v∗η
vϑ

)

.
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4.2 Finite element discretization for the von-Kármán

panel

The standard discretization of elliptic oper-
ators is the Finite Element Method, used al-
most exclusively in current applications for
the spacial discretization of structural equa-
tions. Conformal elements in one dimension
for fourth order operators are constructed
from the Hermite shape functions on the unit
interval, ξ ∈ [0, 1] ,

s0,l(ξ) = (1 + 2ξ) (1− ξ)2 ,
s0,r(ξ) = (3− 2ξ) ξ2 ,
s1,l(ξ) = ξ (1− ξ)2 ,
s1,r(ξ) = −(1− ξ) ξ2 .

These shapes are seen in the figures on the
right. They satisfy the interpolation condi-
tions

ξ
0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

s0,l

s0,r

s0,l(0) = 1, s0,l(1) = s′0,l(0) = s′0,l(1) = 0 ,
s0,r(1) = 1, s0,r(0) = s′0,r(0) = s′0,r(1) = 0 ,
s′1,l(0) = 1, s1,l(0) = s1,l(1) = s′1,l(1) = 0 ,
s′1,r(1) = 1, s1,r(0) = s1,r(1) = s′1,r(0) = 0 .

From the shapes we construct the basis func-
tions. We have a domain (a, b) ⊂ IR and
n + 1 equidistant nodes xi = a + i h , i =
0, 1, ..., n , with h = (b − a)/n . We only
consider the boundary condition that mod-
els a beam that is simply supported at its
ends. Thus we have a basis function at the
left boundary node,

φ10(x) =

{

s1,l((x− x0)/h) x ∈ [x0, x1]
0 otherwise

,

two basis functions centered at each inner
node,

ξ
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φ0i (x) =







s0,r((x− xi−1)/h) x ∈ [xi−1, xi]
s0,l((x− xi)/h) x ∈ [xi, xi+1]

0 otherwise
,

φ1i (x) =







s1,r((x− xi−1)/h) x ∈ [xi−1, xi]
s1,l((x− xi)/h) x ∈ [xi, xi+1]

0 otherwise
,

for i = 1, 2, ..., n− 1 , and a basis function at
the right boundary,

φ1n(x) =

{

s1,r((x− xn−1)/h) x ∈ [xn−1, xn]
0 otherwise .

.

For all basis functions we have

φk
i ∈ H2(a, b) ∩H1

0 (a, b)

⊂ {f ∈ C1[a, b] : f(a) = f(b) = 0} .

Now the spacial discretization of the von-
Kármán equations is achieved by posing
the problem (2.5) only on a subspace of
H2(0, l)∩H1

0 (0, l) , namely on the linear hull
of the basis functions defined above. Thus
we plug

w(t, x) =
∑

i,k

αk
i (t)φ

k
i (x)

into (2.5) and test with only the basis func-
tions; further we introduce βk

i ≡ (αk
i )t and

obtain a first order system of ODEs:

0

0.1

0.2

0.3

0.4

0.5

0.6
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0.8

0.9

1

xi−1 xi xi+1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

xi−1 xi xi+1

φ1i for i = 1, ..., n− 1

φ0i for i = 1, ..., n− 1

∑

i,k

Dαk
i (φ

k
i , φ

l
j)2 + αk

i N(wx) (φ
k
i , φ

l
j)1 + m (βk

i )t (φ
k
i , φ

l
j)0 = − (p1 − p2, φ

l
j)0 ∀ j, l ,

(αl
j)t = βl

j ∀ j, l .

Above we let the indices of the basis functions φk
i , φ

l
j run without any further specification,

but they are meant to run over all index pairs, for which a basis function was defined.
Further, we have introduced abbreviations for the inner products,

(φ, ψ)0 ≡ (φ, ψ),

(φ, ψ)1 ≡ (φx, ψx),

(φ, ψ)2 ≡ (φxx, ψxx).
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The set of 4(n−1)+4 ODEs may now be integrated in time with any kind of Runge-Kutta-
scheme to approximately solve for discrete values of the coefficients αk

i (t) , β
k
i (t) . The

following implicit mid-point rule will be used below in the construction of an aeroelastic
scheme with correct energy transfer:

∑

i,k

D (αk
i )

n+1/2 (φk
i , φ

l
j)2+(αk

i )
n+1/2Nn+1/2 (φk

i , φ
l
j)1+m

(βk
i )

n+1 − (βk
i )

n

∆t
(φk

i , φ
l
j)0 =

= − ((p1 − p2)
n+1/2, φl

j)0 ∀ j, l ,

(αl
j)

n+1 − (αl
j)

n

∆t
= (βl

j)
n+1/2 ∀ j, l ,

where we have set (...)n+1/2 ≡ ((...)n+1 + (...)n)/2 . Defining wn(x) ≡
∑

i,k(α
k
i )

n φk
i (x)

and introducing the velocity vn(x) ≡
∑

i,k(β
k
i )

n φk
i (x) , this system reads

Nn+1/2 = (N(wn+1) +N(wn))/2

D (wn+1/2, φl
j)2 + Nn+1/2 (wn+1/2, φl

j)1 +

+ m (vn+1 − vn, φl
j)0 = −∆t ((p1 − p2)

n+1/2, φl
j)0

(αl
j)

n+1 − (αl
j)

n = ∆t (βl
j)

n+1/2

for all j, l



































(4.15)

4.3 Coupling schemes

So far the spacial and temporal discretizations of fluid and structure are given for the
separate fluid and structural code. In order to simulate a time dependent aeroelastic
process, we can call the routines that advance the fluid or the structure by a single time
step from a master program, providing each medium with available data from the other
medium. This kind of partitioned coupling can be performed in various ways, leading to
the classes of coupling schemes A, B, C as discussed in the introductory chapter. Those
partitioned schemes implemented here for the purpose of comparisons are discussed in
more detail below. The newly developed Newton–GMRes algorithm to achieve a tight
coupling (class C) is not a partitioned scheme, but uses independent modules from the
fluid and the structure code. The Newton–GMRes coupling is described in more detail in
Sec. 5.3.

The most simple coupling scheme, the loose coupling, is depicted in Fig. 4.3. We can
see that with fluid state U 0 and structure deflection w0 given at the same time level,
first the structure is advanced, taking as the load the pressure from U 0. The time and
space discretization of the structure may be of arbitrary order. Next the new position
x1 of the fluid grid is determined from the calculated deflection w1. We assume to use a
standard high-resolution FVM in the fluid as described in Sec. 4.1. The GCL is satisfied
by employing the mid-point rule in the time integration, assuming the vertex movements
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as linear with a constant velocity within each time step. The flux evaluation is performed
at the half time grid position and averaged fluid state U 1/2 and the grid velocities as
given in the figure. Of course, due to the lagged action of the aerodynamic load, this
scheme does not have a conservative load transfer at the fluid-structure-interface and the
high orders present in the separate fluid and structure codes are reduced in the coupled
version, compare Chapter 6 or [38]. Nevertheless, this scheme may suffice in many cases
[23] and is the easiest to implement.

Apart from the flow solver and the structural solver the loose coupling is finally defined
when the discrete load transfer from the representation of the fluid pressure to the repre-
sentation of the structural load is specified and the boundary positions of the fluid grid
are given through the discrete panel deflections. These points are discussed in Sec. 4.4,
and are also subject to verification for the following coupling schemes.

An improved partitioned scheme is the staggered scheme from [38], shown in Fig. 4.4.

A time stepping scheme that is formally of second order in each discretization step,
with no time shift in the load transfer, is given in Fig. 4.5, the tight coupling. It integrates
the coupled discrete fluid-structure system implicitly in time. For this coupling scheme
the discretization at the interface can further be specified to result in a correct energy
transfer between fluid and structure as shown in the next section. Due to the implicit
nature of this scheme a sufficiently convergent iteration process is needed to reduce the
residual.

One possible way to achieve a tight coupling, is to apply a fixed–point–iteration
(FPI), where a fixed–point–step is done in the manner of a loose coupling. We do this
by taking U 0 as an initial guess for U 1 and then satisfy alternatingly the equations of the
tight coupling in the sequence 1,2,3 defined in the loose coupling. In the third step U 1 is
renewed and is then used to repeat the iteration until a convergence criterion is met. A
similar strategy to obtain a tight coupling can be found in [46] or [33].

The particular iteration proposed here to achieve a tight coupling is to use a matrix–
free Newton–GMRes iteration that is applied to the coupled system of fluid–structure
equations of Fig. 4.5. This algorithm is further discussed in Sec. 5.3.

Other coupling procedures

Various other coupling procedures can be found in the literature. We mention two classes
not implemented here: Often the structural codes allow larger time steps than the fluid
codes, so that the loose or the staggered coupling is further refined by doing several
fluid time steps during one structural time step, which is a coupling procedure known
as subcycling [23]. A predictor scheme is present, when either the fluid data [33] or the
structural data [52] is interpolated from previous time steps to obtain an estimate of the
fluid or the structural state at the end of the current time step.
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Figure 4.3: Loose Coupling
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Figure 4.4: Staggered Coupling
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4.4 Energy transfer on the discrete level

On the continuous level, continuity in the forces and the connectivity of the two media
also imply a correct energy transfer between fluid and structure. This was used in Sec. 2.3
to reconfirm the coupling conditions on the continuous level and it was connected to the
question of uniqueness via an energy-estimate in Sec. 3.2.

The description of the coupling schemes in Fig. 4.3, Fig. 4.4, Fig. 4.5 only inform us
about the time levels from which fluid and structure data are taken to transfer them to
the other medium. These transfers concern the connectivity of the media and the load
transfer. Details, like the quadrature rules defining the load transfer, still have to be
specified.

4.4.1 Connectivity

In all coupling schemes, the transfer imposing the connectivity is directed from the struc-
ture to the fluid. It is implemented by placing fluid vertices on the panel initially and thus
identifying each of these vertices with a material point of the panel. At a discrete time
level the position of each of these vertices is defined by the position of the corresponding
material point on the deflected panel.

4.4.2 Load transfer

Given a discrete pressure distribution in the fluid on the interface, a conservative load
projection to the structure can be implemented as follows. For each fluid edge it has to be
checked, which panel element it intersects, and then a sufficiently accurate quadrature rule
on the intersection interval has to be employed to evaluate the load integral in (4.15). This
kind of load projection is an option in our code. Various other possibilities to handle this
point are discussed in [11]. But note that, as for example in the loose coupling, Fig. 4.3,
even if the pressure distribution from U 0 is projected conservatively to a structural load
distribution, we do not have a conservative load transfer, since the pressure distribution
from U 1/2 enters the flux evaluation in the fluid! Note the subtle differences in our usage of
the terms conservative projection and conservative transfer, that was already discussed
in the introductory chapter with the aid of the formulas (1.4) and (1.3). We can only
speak of a conservative load transfer, if we take the pressure distribution of the fluid that
enters the flux evaluation, and project this pressure distribution conservatively to obtain
the load that enters the structural equation.

In any case, as pointed out in [11], a conservative load projection can be very ad-
vantageous. In the presence of pressure distributions with sharp peaks it is superior in
comparison to projections that rely on traditional interpolation strategies.
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Figure 4.5: Tight Coupling

4.4.3 Construction of a scheme with correct energy transfer

Even with a conservative load transfer as described in Sec. 4.4.2 a correct or conservative
energy transfer on the discrete level will only be realized approximately. To implement
a correct energy transfer, the fluid grid movement and the evaluation of the load integrals
have to be adapted to each other. Below we construct such a scheme with a rather
simple load transfer quadrature rule. In this construction, different, so–called non −
matching, representations of the fluid boundary and the deflected panel are present. Here,
as described in earlier sections, the fluid boundary is piecewise linear, while the deflected
panel is a piecewise polynomial of third order, compare Fig. 4.6. Such non-matching
representations are commonly used in fluid-structure discretizations.

Employing the mid-point rule for the time integration of the spacially discretized flow
equations (4.3), the energy component for a cell can be written as

En+1
F,i − En

F,i = −∆t ·
∑

eij⊂∂Ωi

|e
n+1/2
ij | · F4(U

n+1/2
ij ,U

n+1/2
ji , ẋ

n+1/2
ij ,n

n+1/2
ij ) .

Here F4 is the fourth component of the numerical flux F in (4.3) and all its arguments are
taken at the edge center and the energy contained in the ith cell at time level n is En

F,i =
|Ωn

i | ·(ρ
n
i |v

n
i |
2/2+pni /(γ−1)) . Similar to Sec. 2.3 we look at the energy production on the

interface, which we want to vanish. The discrete fluid energy is En
F ≡

∑

Ωi⊂ΩC
F
En

F,i . We

can divide the energy production into the contribution ∂E
n+1/2
FS coming from the interface

and the contribution ∂E
n+1/2
F from the remaining boundary. Thus we have

En+1
F − En

F = ∂E
n+1/2
FS + ∂E

n+1/2
F . (4.16)
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The numerical flux at an interface edge is given by

F4(U
n+1/2
ij , · , ẋ

n+1/2
ij ,n

n+1/2
ij ) ≡ p

n+1/2
ij (ẋ

n+1/2
ij )Tn

n+1/2
ij ,

and summing over all edges on the interface, we obtain

∂E
n+1/2
FS ≡ −∆t

∑

eij⊂ΓFS

|e
n+1/2
ij | · p

n+1/2
ij (ẋ

n+1/2
ij )Tn

n+1/2
ij .

Let us look at a single edge e ≡ xl xr ⊂ ΓFS with end vertices xl,xr , omitting the
ij-indices for the moment. Then ẋn+1/2 is given by

ẋn+1/2 ≡
1

2

{

xn+1
l − xn

l

∆t
+

xn+1
r − xn

r

∆t

}

.

Further from xn
l = (ξl, w

n
l )

T , wn
l ≡ w(tn, ξl) for some ξl ∈ [0, l] , and correspondingly for

the right point xn
r , we get

(ẋn+1/2)Tnn+1/2 =
1

2

{

wn+1
l − wn

l

∆t
+
wn+1

r − wn
r

∆t

}

n
n+1/2
2 .

Looking again at specific edges, adding the indices ij, using |e
n+1/2
ij | = −(ξr,ij−ξl,ij)/n

n+1/2
2,ij

and denoting ∆ξij ≡ ξr,ij − ξl,ij , we obtain

∂E
n+1/2
FS =

= ∆t
∑

eij⊂ΓFS
∆ξij p

n+1/2
ij

1

2

{

wn+1(ξl,ij)− wn(ξl,ij)

∆t
+
wn+1(ξr,ij)− wn(ξr,ij)

∆t

}

.
(4.17)

We turn to the discrete panel equations (4.15) and have to specify the load term due to
the coupling conditions and its evaluation through a quadrature rule,

−∆t
(

(p1 − p2)
n+1/2 , φh

k

)

0
= −∆t

(

p(ξ, wn+1/2(ξ))− p∞ , φ
h
k(ξ)

)

0
≈

≈ −∆t
∑

eij⊂ΓFS
∆ξij (p

n+1/2
ij − p∞)

{

φh
k(ξl,ij) + φh

k(ξr,ij)
}

/2 .
(4.18)

Note that most summands do not contribute anything since ξl,ij, ξr,ij /∈ supp(φh
k) in most

cases. For the inner products on the l.h.s. of (4.15) we may use a different quadrature rule,
let us assume that this rule is exact (the inner products of the shapes can be calculated
and stored at the beginnning of the computation !!). Using the quadrature formula (4.18)
in (4.15) and multiplying with (β l

j)
n+1/2 = ((αl

j)
n+1 − (αl

j)
n)/∆ t and summing over all

j, l we obtain
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D (wn+1/2, vn+1/2)2 + Nn+1/2 (wn+1/2, vn+1/2)1 + m (vn+1 − vn, vn+1/2)0 =

= −∆t
∑

eij⊂ΓFS

∆ξij (p
n+1/2
ij − p∞)

1

2

{

wn+1(ξl,ij)− wn(ξl,ij)

∆t
+

+
wn+1(ξr,ij)− wn(ξr,ij)

∆t

}

.

From the third equation of (4.15) we have

wn+1 − wn = ∆t vn+1/2 .

Differentiating with respect to x, multiplying by (αl
j)

n+1/2φl
j , respectively its derivatives,

and summing over all j, l gives

1

2
(wn+1 − wn, wn+1 + wn)k = (vn+1/2, wn+1/2)k for k = 0, 1, 2 ,

or

1

2

{

(wn+1, wn+1)k − (wn, wn)k
}

= (vn+1/2, wn+1/2)k for k = 0, 1, 2 .

Note that Nn+1/2 = E h
2 l
{(wn+1, wn+1)1 + (wn, wn)1} /2 and thus

Nn+1/2 (wn+1/2, vn+1/2)1 =
E h

2 l

(wn+1, wn+1)1 + (wn, wn)1
2

(wn+1, wn+1)1 − (wn, wn)1
2

=
E h

2 l

(wn+1, wn+1)21 − (wn, wn)21
4

.

The discrete panel energy

En
S ≡

m

2
(vn, vn)0 +

E h

2 l

(

(wn, wn)1
2

)2

+
D

2
(wn, wn)2 ,

the energy change on the discrete level is

En+1
S − En

S =

=
∑

eij⊂ΓFS

∆ξij (p∞ − p
n+1/2
ij )

2

{

wn+1(ξl,ij)− wn(ξl,ij) + wn+1(ξr,ij)− wn(ξr,ij)
}

.
(4.19)

Now, from (4.16), (4.17), and (4.19) we see that in the energy change of the discrete
fluid-structure-system, En+1

F + En+1
S − (En

F + En
S) , the contributions from the interface

cancel, so that the following theorem holds:
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Figure 4.6: Representation of the interface in fluid and structure, Nk−1, Nk, Nk+1 are
panel nodes

Theorem 2: The numerical scheme
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eij⊂∂Ωi
|e

n+1/2
ij |F (U

n+1/2
ij , U

n+1/2
ji , ẋ

n+1/2
ij ,n

n+1/2
ij ) = 0 ,

with the boundary treatment (4.13),

xn
ij,l = (ξij,l, w

n(ξij,l))
T , xn

ij,r = (ξij,r, w
n(ξij,r))

T

for all flow edges on the panel,



































(4.20)

D (wn+1/2, φl
j)2 + Nn+1/2 (wn+1/2, φl

j)1 + m (vn+1 − vn, φl
j)0 =

= −∆t
∑

eij⊂ΓFS
∆ξij p

n+1/2
ij

{

φl
j(ξl,ij) + φl

j(ξr,ij)
}

/2 ∀ j, l ,

(αl
j)

n+1 − (αl
j)

n = ∆t (βl
j)

n+1/2 ∀ j, l ,















(4.21)

approximating the aeroelastic initial-boundary-value-problem of Chapter 2 satisfies the
GCL in the fluid and has a correct energy transfer at the fluid-structure interface.

Remark:

We have compared each coupling scheme in combination with the conservative load pro-
jection of Sec. 4.4.2 and the one given in Theorem 2. These comparisons of the load
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projection strategies did not show a notable difference in the results. The significant
practical issue in the scheme with conservative energy transfer is its characteristic prop-
erty as a tight coupling scheme, namely the removement of the time lag present in the
loose coupling, which comes along with a high order time discretization at the interface.
This is demonstrated through various numerical experiments in Chapter 6.



Chapter 5

The Solution Algorithm

In the first section the solution algorithm for the discretized fluid equations on moving
grids is discussed in detail. The basic methodology is to use a matrix–free Newton–GMRes
iteration to solve the set of nonlinear equations in each time step approximately. This
strategy was also used in [43], [44], [53] in the context of compressible flows. This method
is also used to solve the structural equations (Sec. 5.2). One may alternate between
the obtained fluid solver and structural solver, performing a loose or staggered coupling
or a tight coupling with fixed–point–iteration (FPI), to approximate the solution of a
fluid-structure-interaction. The matrix–free Newton–GMRes can also be applied on the
coupled set of discrete fluid-structure-equations from Theorem 2, which is explained in
Sec. 5.3. Finally we discuss the convergence criterion used in the tight coupling for both
the FPI and the Newton iteration (Sec. 5.4).

5.1 Matrix–free Newton–GMRes for the discrete

fluid system

The space-discretized equations (4.3) of the fluid may shortly be written as

V oln+1 Un+1 − V oln Un +

∫ tn+1

tn
F(U , x, ẋ) dt = 0 .

Here U , respectively U , contain the conservative, respectively the primitive, state vectors
of all cells and F(U, x, ẋ) contains the discrete version of the boundary integrals for all
cells. In the diagonal matrix V oln we collect all cell volumes. x represents the whole grid
geometry, i.e. vertex coordinates, normals and so on, and ẋ the grid velocities. I.e. for
the cell Ωi this system of equations contains (in 2D) the set of 4 equations

|Ωn+1
i |Un+1

i − |Ωn
i |U

n
i +

∫ tn+1

tn
Fi(U , x, ẋ) dt = 0 .

Of course, Fi depends on the state Ui and the states Uj of cells Ωj lying in a neighborhood
of Ωi. The size of this neighborhood is related to the order of the spacial discretization.

65
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Here we have a second order spacial discretization. The vertex velocities within each
time step are constant, given by ẋn+1/2 = (xn+1 − xn)/∆t . Different second order time
integration schemes are implemented, an explicit second order Runge-Kutta scheme and
two implicit schemes, the trapezoidal and the mid-point rule. Here we present the solution
algorithm for the general implicit scheme

|Ωn+1
i |Un+1

i − |Ωn
i |U

n
i +

+ (1− α)∆tFi(U
n+1, xn+1, ẋn+1/2) + α∆tFi(U

n, xn, ẋn+1/2) = 0 .
(5.1)

At each time step we solve this system for Un+1 by a Newton-iteration. The iteration
runs in primitive variables U , so a Newton-step is to solve approximately

[

V oln+1
∂U

∂U
+ ∆t (1− α)

∂ F(U , xn+1, ẋn+1/2)

∂U

]

U∗

∆U = rhs(U∗) (5.2)

and update U∗ = U∗ +∆U , where

rhs(U∗) =

= −V oln+1 U∗ + V oln Un − ∆t (1− α)F(U ∗, xn+1, ẋn+1/2) − ∆t αF(Un, xn, ẋn+1/2) .

As initial guess we use U ∗ = Un and if a stopping criterion such as

||rhs(U∗)||2 < εnonlin · ||rhs(U
n)||2 or ||rhs(U∗)||2 < αnonlin

is satisfied, we set Un+1 = U∗ and proceed to the next time step.
Let A denote the Jacobian–matrix [....] appearing in equation (5.2). Combining the

Newton-iteration with an iterative linear solver such as GMRes, where A contributes
only in multiplications of A with vectors [54], one may avoid the calculation and the
storage of the matrix A by employing an approximation. Namely, in the present case, the
matrix–vector–product can be approximated by a simple difference formula

AV ≈

≈ V oln+1
∂U

∂U

∣

∣

∣

∗
V +

∆t (1− α)

ε

(

F(U∗ + εV , xn+1, ẋn+1/2) − F(U∗, xn+1, ẋn+1/2)
)

.

Of course, a difficulty with this approach lies in the choice of ε, which should be a good
compromise, such that the derivative is approximated well and cancellation is avoided.
In [53] several proposals for ε from the literature are given; throughout, in all kinds of
Newton–GMRes iterations, we have used the simplest choice, which was also preferred by
the authors of [53]:

ε =
eps1/2

||V||2
where eps is the machine-accuracy
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5.1.1 Iterating with low and high order spacial resolution

Let us denote the l.h.s. of equation (5.1) by G2, respectively G1, if the order of the spacial
discretization in F is two, respectively one. The matrix–free methods corresponding to
the Newton schemes

G ′1(U
∗)∆U = −G2(U

∗) , U∗ = U∗ +∆U (5.3)

and

G ′2(U
∗)∆U = −G2(U

∗) , U∗ = U∗ +∆U (5.4)

are implemented. Scheme (5.4) is the classical Newton scheme. Scheme (5.3) turns out
to be much more robust and it is also cheaper, since reconstruction and limitation do not
contribute in the matrix–free evaluation of the matrix–vector –product. It has frequently
been observed, that when convergence stalled it was safer to iterate with (5.3), since in
such instances (5.4) tended to shoot into ranges of negative density or pressure. So usually
the nonlinear iteration is started with (5.3) and changes to (5.4) after a certain accuracy
is reached. When no troubles occur, it can be seen that (5.4) converges much faster.

5.1.2 Preconditioning

It is well known that preconditioning can drastically improve the convergence of GMRes
[54] and its successful application within compressible flow solvers was shown in [43],
[65]. For the purpose of preconditioning, we have to find a computationally cheap way to
roughly invert the equation AV = b . This is achieved by

• considering ÃV = b instead, where Ã = G ′1(U
∗) and for the purpose of precon-

ditioning the van-Leer flux vector splitting is used in G1 (this is very efficient and
rather simple to implement) and

• performing a single (block) Symmetric Gauss-Seidel (SGS) sweep on ÃV = b , i.e.
solving

(D̃ + L̃) D̃−1(D̃ + R̃)V = b

• for a renumbered version of the equations, which results from the application of the
Reverse-Cuthill-MacKee (RCM) Algorithm on the cell connectivity .

The blocking is cell–wise, the calculation of the matrix blocks is presented below.
Amongst others, the use of SGS for preconditioning in compressible flow solvers was

also proposed in [43], [44]. It is well known that the RCM-renumbering can accelerate the
convergence of such approximate factorization methods as SGS or the Incomplete Lower
Upper factorization (ILU). Renumbering strategies were also applied to compressible flow
solvers in [65]. The RCM-renumbering is explained in [5].

A preconditioning consistent with memory savings of a matrix–free approach should
of course use only memory that is small compared to the memory that would be needed
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for the Jacobian. In fact in SGS only the diagonal blocks need to be calculated and the
multiplications with the remaining blocks may also be performed in a matrix–free fashion,
see [43]. Here we store the diagonal blocks, D̃, and calculate the blocks of L̃ and R̃ when
needed.

Calculation of Preconditioning blocks

The 4 × 4 blocks in the matrix Ã are obtained from a first order version of F with the
van-Leer flux vector splitting. This approximation of Fi is (for a cell away from the
boundary)

Fi
1st order

=
∑

eij⊂∂Ωi

|eij| Sij Qij

(

f+(Q−1ij (Ui − Ẋij)) + f−(Q−1ij (Uj − Ẋij))
)

,

with the split fluxes f+ and f− from equation (4.7).
Finally, the Jacobian blocks according to this spacial discretization are obtained from

the derivative
∂ S Qf±(Q−1(U − Ẋ))

∂ U
.

Let us introduce some abbreviations,

λ± = vn − ẋn ± c
f±m = ± ρ (λ±)2/(4 c)
C± =

(

(γ − 1) (vn − ẋn)± 2 c
)

/γ
κvl = 0.5 γ2/(γ2 − 1)
M = (vn − ẋn)/c

so that together with (4.7) we get

f±(Q−1(U − Ẋ)) = f±m ·









1
C±

vτ − ẋτ

κvl (C
±)2









in the case |M | < 1 . Thus, essentially we have to find the derivatives of f±m and C±,
which are

∂ f±m
∂ U

=

(

λ±

8
(1± 3M),

ρ cos

2
(1±M),

ρ sin

2
(1±M),

ρ λ±

8 p
(1∓M)

)

and
∂ C±

∂ U
=

(

∓
c

γ ρ
,
γ − 1

γ
cos,

γ − 1

γ
sin, ±

c

γ p

)

.

In the case |M | ≥ 1 the flux is either 0 or the flux of the Euler equations f(U, ẋ)n ,
compare (2.2), and the derivative is easily found.
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5.2 Matrix–free Newton–GMRes for the discrete

structural system

Given the loads p1, p2, at each time step, the discrete structural system (4.15) is a non-
linear system of equations for the unknown vector containing the coefficients (αk

i )
n+1,

(βk
i )

n+1. The coefficients are blocked node–wise and collected in the vector

W ≡ (...., α0i , β
0
i , α

1
i , β

1
i , ....)

T ,

where the 4 coefficients of an (inner) node are shown. The nonlinear system for Wn+1 is
also solved with the matrix–free Newton–GMRes using a block–Jacobi preconditioner.

5.3 Matrix–free Newton–GMRes for the discrete

fluid-structure system

The discrete fluid–structure system from Theorem 2 (sec 4.4) to be solved at each time
step may be written in compact form as

H(Un+1,Wn+1;Un,Wn) ≡

(

HF (U
n+1,Wn+1;Un,Wn)

HS(U
n+1,Wn+1;Un,Wn)

)

= 0 .

Here the states of fluid Un and structure Wn at the beginning of the time step are given.
We have to solve for Un+1 and Wn+1. In the evaluation of the structural equations HS

only the (reconstructed) pressures from the fluid states Un+1, Un are needed to determine
the loads, whereas in HF only the deflections from Wn+1, Wn are needed to determine
the fluid grid positions at the new and old time level which define the grid velocities.

When the spacial fluid discretization is of second order, the reconstructed fluid pres-
sures are only available when the grid is defined, which in turn depends on the structural
deflection. Thus an evaluation of H proceeds as follows:

• determine the new grid from Wn+1

• determine the grid velocities

• reconstruct and limit

• determine the fluxes

• HF is given according to (4.20)

• from the reconstructed pressure determine the structural load

• HS is given according to (4.21)

Again we employ a matrix–free Newton GMRes iteration, using

H′(U∗,W∗;Un,Wn)

(

VF

VS

)

≈
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≈
1

ε

(

H(U∗ + εVF , W
∗ + εVS; U

n,Wn) − H(U∗, W∗; Un,Wn)
)

Especially at this point the currently implemented version is far from efficient. For ex-
ample, it should suffice to perturb the fluid grid in the evaluation of

HF (U
∗ + εVF , W

∗ + εVS; U
n,Wn)

only in a neighbourhood of the structure to catch the significant part of H’s Jacobian!
We may also switch to a method that uses only the first order spacial fluid discretiza-

tion in the Jacobian, as discussed in Sec. 5.1.1.
The preconditioning is done in a decoupled fashion. This means that the equation

H′(VF ,VS)
T = (bF , bS)

T is ”roughly inverted” by employing the fluid preconditioner of
Sec. 5.1.2 to the r.h.s. bF to obtain VF and the structural preconditioner of Sec. 5.2 to
the r.h.s. bS to obtain VS. This point may also be subject to further improvements.

As an initial guess for the Newton–iteration the result of a loose coupling step is used.
This loose coupling step may be varied to be well or not so well converged in the two
media. A cheap interpolation from previous time steps may also be a good option to
obtain an initial guess, but this variant has not been implemented yet.

5.4 Convergence criterion for tight coupling

The convergence criterion is to reduce the residual in the tightly coupled structural equa-
tion (4.21) under a given threshold, no matter whether we use the fixed–point–iteration
or the Newton–iteration described above. When employing a loose coupling (Fig. 4.3) as
an initial guess the structural equation of the loose coupling may be well converged, but
this is not equation (4.21). Thus when plugging the initial guess into (4.21) the residual
increases immensely. In the following iteration this residual is then reduced by a factor
around 10−2. In the fluid equation the changes are not so drastic, the residual may even
increase without worsening the result, since the fluid equations of the loose coupling step
are the same as those in the tightly coupled version (4.20).



Chapter 6

Numerical Experiments

The main objective of the numerical experiments presented in this Chapter is to examine
the influence of the numerical coupling procedures on the obtained approximate solutions
and to prove the feasibility of the tight coupling via a matrix–free Newton–iteration of the
coupled fluid–structure system. Further, we want to find insight into typical behaviours
of the numerical simulations and the limitations of the algorithms. It is not the primary
target to compare the different algorithms with respect to efficiency, but we keep an eye
on this issue.

All computations were performed in the regime 0.7 < M∞ < 1.3 , where the panel flut-
ter problem has its severest nonlinearities. Let us distinguish three categories of physical
behaviour, namely

• transonic flutter,

• supersonic flutter,

• aeroelastic cases with a steady state (divergence or stable behaviour).

In the latter category the transient phase that leads to the steady state may exhibit
phenomena similar to those appearing periodically in the other two categories. To the
knowledge of the author, panel flutter with purely subsonic flow has not been observed
yet. Transonic and supersonic flutter cases were found to be of different severity for the
numerical algorithm. A typical difference found in the solution, is that in transonic flutter
cases shock movements are present on the panel, whereas in the supersonic flutter cases
the fluid solution remains smooth along the panel.

These principle differences between transonic and supersonic flutter cases are shown
in Sec. 6.2. Convergence behaviour of the coupling algorithms with respect to ∆t is also
found in Sec. 6.2. The fixed–point–iteration (FPI) and the Newton–iteration, which are
employed in each time step to achieve a tight coupling, are compared with respect to
their convergence properties in Sec. 6.3. In Sec. 6.4 the effect of the different coupling
algorithms on the aeroleastic solutions is investigated, where locations of bifurcations in
parameter space are demonstrated to depend on the coupling scheme. Finally, in Sec. 6.5

71
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we determine the stability boundary of an aluminium panel, and compare it to results
from the literature.

6.1 Parameters of numerical schemes

Let us discuss the numerical parameters that influence and control the computations.

Grid: The panel flutter problem has a simple geometry; a structured fluid grid with
quadratic cells in the neighbourhood of the panel may be used, as was done here. The
grid is mainly determined by the number of cells on the panel and the distance from the
panel to the artificial boundaries. In the literature 50 to 100 cells were used on the panel
[33], [14], whereas we have found that 50 fluid cells may suffice to produce good results
when looking at the panel deflections, although the solution in the fluid does not look
satisfactory. 80 cells on the panel were seen to be a sufficient choice. Grid convergence
studies for the panel flutter problem conducted in [33], using 48, 96 and 200 cells on the
panel showed that sometimes 48, but definitely 96 cells on the panel were enough, which
confirms our choice.

A complete fluid grid with 80 cells on the panel and a total of 8998 cells is shown
in Fig. 6.1; the cells are stretched away from the panel, compare the details given under
Fig. 6.1. An enlarged view of the grid around the trailing edge of the deformed panel
is shown in Fig. 6.2. This grid was used in all experiments presented here. Let us note
that, although the grid is logically cartesian in this case, we have a fully unstructured
algorithm with unstructured discretization concepts for further developments.

In the structure we have used 26 nodes, whereas 11 to 26 were used in [14] and up to
41 in [33].

Time step size and order: The time step size ∆t is dictated by the physical time
scales present on the one hand, i.e. by a targeted time accuracy, and on the other hand
by the stability requirements of the scheme. When an explicit method is applied, the
stability condition of the time-integration scheme can be very restrictive. For the implicit
methods employed, formally there are no linear stability conditions; but the sufficient
convergence of the nonlinear iteration needed in each time step may restrict the time
step size. In order to better compare the different schemes, we only present computations
that were run with fixed ∆t . All calculations were performed with fluid and structural
codes of second order in time.

CFL number: Of course, when an implicit algorithm is good enough to use large time
step sizes that correspond to an appropriate temporal resolution, the corresponding CFL
number may heavily depend on the given grid. Here a reliable CFL number was found
to be 7, which corresponds to a dimensionless time step size ∆t/t∗ around 0.04. In some
cases CFL numbers of up to 40 could produce satisfactory results. In [27] ∆t/t∗ = 0.02
was used with 50 cells on the panel, whereas in [33] ∆t/t∗ around 0.05 and up to 0.2
brought good results with 96 cells on the panel.

Preconditioner: The performance of Newton–GMRes iterations in implicit schemes
may be drastically influenced by the preconditioner, thus influencing the time step size.
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Figure 6.1: 8998 quadrilateral cells are in the fluid grid, 80 of them are in contact with
the panel, which is located on the x-axis between x = 0 and x = 1 . The triangles seen
in the picture are artificially produced. In order to match our data structure with the
visualization tool each quadrilateral cell is divided into 4 triangles. On the panel we have
equally spaced quadratic cells with edge lengths ∆x = ∆y . ∆x remains constant another
10 cell columns in front and behind the panel and ∆y remains constant 10 cell rows above
the panel. Then the edge lengths grow from row to row, respectively column to column,
by a factor of 1.1 up to the artificial boundaries.



74 CHAPTER 6. NUMERICAL EXPERIMENTS

X

Y

0.6 0.8 1 1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6.2: An enlargement of the grid around the deformed panel trailing edge is shown.
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As described in Chapter 5, we have used the Block–SGS preconditioner in the fluid and
the Block–Jacobi preconditioner in the structure.

Let us introduce notations for some significant quantities appearing in the numerical
tests below.

TF flutter period, a relevant time scale of a limit cycle oscillation
CFL CFL-number in the fluid
α absolute residual threshold in any kind of iteration, threshold below

which the residual has to drop
ε relative residual threshold in any kind of iteration, threshold below

which the residual divided by the initial residual has to drop
εl relative residual threshold in (linear) GMRes iteration
αnl, εnl absolute and relative residual thresholds in (nonlinear) Newton iteration
αF , εF absolute and relative residual thresholds in fluid system
αS, εS absolute and relative residual thresholds in structural system
α, ε absolute and relative residual thresholds in the tightly coupled

fluid–structure system

6.2 Typical computations and convergence in ∆t

Here we present two typical cases showing the relation of primary parameters such as the
CFL number, residual thresholds and the number of iterations.

Initial condition: Initially, the complete fluid domain is filled with the inflow state,
the panel is undeflected and provided with a sinusoidal velocity distribution over the
length of the panel with 0.005 · u∞ as velocity peak.

Fluid iteration: A typical relative residual threshold used in the literature, e.g. [66],
for unsteady aerodynamic applications is εFnl = 0.01 and as initial guess for the fluid
state at the end of the time step, one takes the given fluid state at the beginning of the
time step. Here we use the same initial guess and assign αF

nl = 10−6 , which generally
corresponds to εFnl = 0.01 . In a Newton step in the (separate) fluid algorithm, a maximum
number of 30 GMRes iterations is possible. Actually, when iterating with the low order
Jacobian (5.3), we assign εFl = 0.1 and need only a single GMRes iteration. Increasing
εFl does not improve anything for the nonlinear iteration, which is not surprising, due to
the inexact linearization. When iterating with the high order Jacobian (5.4), it always
takes less than 15 GMRes iterations to reach the assigned threshold of εFl = 10−3 . The
nonlinear iteration in the fluid is sometimes not satisfactory. As will be seen throughout
the examples presented, this did not have a bad effect on the obtained results, as seen
through convergence studies in ∆t.

Structural iteration: In the (separate) structural algorithm, we have very few un-
knowns and it is very easy to reduce the residual to machine accuracy, which is practically
done, by setting αS

nl = 10−12 .
Iteration to achieve tight coupling: Here the convergence criterion is assigned

in terms of αS , which corresponds to an εS ≤ 0.1 . The maximum number of fluid–
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structure–loops is usually 3. Using the FPI, a fluid–structure–loop contains a time step
iteration of the fluid code with αF

nl = 10−6 and a time step iteration of the structural code
with αS

nl = 10−12 . Using the Newton–iteration, a fluid–structure–loop is a Newton–step
applied to the tightly coupled fluid–structure equations. Here εFS

l = 10−2 is used for the
linear solver. In the transonic flutter case presented in Sec. 6.2.1 below, this results in 5
GMRes iterations at CFL = 7 and 10 GMRes iterations at CFL = 15. For the number
of fluid–structure–loops actually needed, see Sec. 6.3.

6.2.1 Transonic flutter at M∞ = 1

The physical data of this case is given by an aluminium panel, i.e. the material constants
given in Sec. 2.1.2, and a panel thickness of hrel = 0.004537 . The infinity state of the
fluid is determined through µ = 0.1 , λ = 260 and M∞ = 1 , compare (2.15). After an
initial transient phase, the system falls into a limit cycle oscillation. In Fig. 6.3 the panel
mid–point deflection is shown over two cycles of the limit cycle oscillation, resulting in a
reduced frequency of k = 0.02 . The periodic panel deflection has evolved in interaction
with the fluid, which exhibits a periodic shock movement in the limit cycle. The shock
movement along the panel is shown over one cycle in Fig. 6.6.

The result shown in Fig. 6.3 was obtained with a fluid CFL number of 15, which is
equivalent to 260 time steps per flutter period. A higher time step size seemed impossible
to be achieved with the code. Two facts may indicate why from the physical time scales
present, higher time step sizes would not make sense: First, in Fig. 6.4 we see that there
are higher harmonics present in the panel, which are visualized by the panel deflections
at 25% and 75% chord. Secondly, we wonder how the shock velocity relates to the space–
time–grid: The visualization in Fig. 6.6 was obtained with a CFL number of 7; rotating
the visualization, such that we look onto the tx–plane, we can see how the shock moves
across the space–time–grid in Fig. 6.7. The spacing ∆t shown in the figure corresponds
to one time step and the spacing ∆x corresponds to one edge length of a fluid cell on the
panel. We can observe that at the given CFL number it takes five time steps to advance
the shock by ∆x. This suggests a possible connection between the shock speed and the
time step restrictions.

An example showing the convergence history during a single time step in the fluid is
given in Fig. 6.5. The slow convergence with the low order Jacobian and the acceleration
with the high order Jacobian is clearly seen.

Convergence in ∆t

In the upper picture of Fig. 6.8 we see how the time accuracy is lost in the initial transient,
when increasing the time step size for the loose coupling. With the tight coupling, here
performed via Newton–iteration, this does not happen. A result for the tight coupling
is shown with CFL=15. All results obtained with the tight coupling and smaller CFL–
numbers do not leave the thick line drawn for CFL=15. At later times, see the lower
picture, this fact still holds for the tight coupling. The loose coupling already fails for
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Figure 6.3: M∞ = 1 ; the panel mid–point deflection is shown over two periods of the
limit cycle.
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Figure 6.4: M∞ = 1 ; the panel deflection at 25% and 75% chord is shown, revealing the
presence of higher harmonics in the panel.
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Figure 6.5: M∞ = 1 ; a typical convergence history for a single time step in the fluid
solver at CFL = 7 is shown. We have an initial residual > 10−4, then 7 Newton iterations
with (5.3) follow, each taking only 1 GMRes–iteration until the residual reaches 10−5 and
finally a single Newton step of type (5.4) with 7 GMRes–iterations reduces the residual
below 10−8.

CFL=7 at some point and thus this solution does not appear in the lower picture. Never-
theless, we can look at the obtained limit cycles, and see how their prediction behaves for
different schemes and different ∆t. Let us characterize the limit cycle by the deflection
amplitude and the flutter period TF . Convergence in these quantities, measured around
t/t∗ = 500 , is shown in Fig. 6.9. It can be observed that the loose coupling and the tight
coupling converge practically to the same limit cycle.

6.2.2 Supersonic flutter at M∞ = 1.2

Here we consider an aluminium panel with hrel = 0.004 , a flow with M∞ = 1.2 , and ρ∞,
p∞ are obtained from the conditions at 20000 feet altitude [36]. In the long time behaviour
the system flutters with the panel mid–point deflection as presented in Fig. 6.12. The
reduced frequency of the solution is k = 0.07 . Higher harmonics are less activated in
the panel, compared to the transonic case, as seen in Fig. 6.14. Further, the fluid states
along the panel remain smooth, which is visualized in Fig. 6.10, where the Mach–number
distribution on the panel over a complete flutter cycle can be seen. At the trailing edge a
lambda–shock periodically builds up, its feet bend downstream and its head finally swims
downstream, until the shock is completely dissolved and then the lambda–shock, shown
in Fig. 6.11, builds up again.
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Figure 6.6: M∞ = 1 ; the evolution of the Mach number along the panel during one
period of the limit cycle is seen, showing the shock movement.
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Figure 6.7: M∞ = 1 ; the shock movement in the limit cycle across the tx–grid is shown.
The gray–scale plot gives the Mach–number distribution on the panel between 34% and
44% chord, where the shock reaches its highest velocity. The position of the shock is
clearly located, where the sudden change in gray–scale occurs. The grid spacing uses
a ∆x that corresponds to 80 fluid cells on the panel and a ∆t that corresponds to a
CFL–number of 7. We can read off that 5 time steps are needed to advance the shock by
∆x.
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Figure 6.8: The loose and the tight coupling via Newton–iteration were run with different
CFL number for the transonic flutter case at M∞ = 1 . The panel mid–point deflection
is shown for the initial transient in the upper picture and in the lower picture we see a
time interval at which the limit cycle oscillation has been reached. The results with the
tight coupling for CFL < 15 cannot be distinguished from the one shown with CFL=15.
The loose coupling with CFL=7 failed at an earlier time step and is thus not seen in the
lower picture.
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Figure 6.9: M∞ = 1 ; the convergence with respect to ∆t is shown, comparing the loose
and the tight coupling via Newton–iteration. The observed quantities are those specifying
the limit cycle oscillation. These are the negative peak of the panel mid–point oscillation
and the flutter periode.

Convergence in ∆t

The mid–point deflections of Fig. 6.12 were obtained with the staggered scheme and differ-
ent CFL numbers. Below CFL=0.7 the solution does not change anymore. A convergence
in the time–accurate solution from CFL=40 to CFL=0.7 is clearly visible. Details on the
chosen threshold are given in the comments of the figure. In Fig. 6.13 the convergence
in flutter period TF and the flutter amplitude are shown. But even the rather coarse
time resolution of 27 time steps per flutter period, which corresponds to CFL=40, deliv-
ered acceptable results and did not interfere with the performance of the algorithm. At
this CFL–number the calculations took 2–3 Newton–iterations in the fluid, each with 15
GMRes iterations.

So far we have used only the staggered scheme in this flutter case. In Fig. 6.15 we see
that the tightly coupled solutions converge faster with respect to ∆t, and that in the limit
the same result is obtained as with the staggered coupling. The tightly coupled solutions
shown, were obtained with the Newton–iteration, and the FPI brought exactly the same
solutions.

6.2.3 Supersonic flutter near the stability boundary

We show another supersonic flutter case for an aluminium panel with hrel = 0.004537 and
µ = 0.1 , λ = 21 and M∞ = 1.1 . This case is situated just above the stability boundary.
We compare the loose and the tight coupling at various ∆t in the same manner as above,
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Figure 6.10: M∞ = 1.2 ; the evolution of the Mach number along the panel in the
supersonic flutter case is shown over a full period of the limit cycle oscillation.
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Figure 6.11: M∞ = 1.2 ; the instantanious Mach number distribution above the panel is
shown. The panel is simply supported at x = 0 and x = 1 . The calculation was made
with CFL = 40.
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Figure 6.12: M∞ = 1.2 ; the panel mid–point deflection, calculated with the staggered
scheme and various CFL numbers is shown. Below CFL = 0.7 the solutions do not
change. Here, CFL = 40 ⇐⇒ 27∆t ≈ TF . As residual threshold we chose αF

nl = 10−6,
εFl = 10−3 , which took 2–3 Newton iterations, each with 15 GMRes iterations
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Figure 6.13: M∞ = 1.2 ; the convergence of the staggered scheme in the quantities
characterizing the limit cycle is shown.
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Figure 6.14: M∞ = 1.2 ; the panel deflection at 25% and 75% chord from the staggered
calculation with CFL = 0.7 is shown.
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Figure 6.15: M∞ = 1.2 ; a comparison of the tight coupling with Newton–iteration and
the staggered coupling is shown. We see that the solution obtained with tight coupling
and CFL = 3 coincides with the one obtained with the staggered coupling and CFL =
0.7. Compared with these solutions, the tightly coupled solution at CFL = 15 and the
staggered solution at CFL = 3 deviate by roughly the same amount. As expected, the
tight coupling converges faster with respect to ∆t . The tight coupling iterarting with
FPI brought exactly the same results as the Newton–iteration.
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Figure 6.16: M∞ = 1.1 ; the panel mid–point deflection obtained for various CFL–
numbers with the loose coupling and the tight coupling via Newton–iteration. Results
for the tight coupling with smaller CFL are not shown, since they reproduce the result
obtained with CFL = 15.

looking at the panel deflections in Fig. 6.16 and at the convergence in the amplitude. The
behaviour is as before, but quantitatively this case is more drastic, since the amplitudes
vary by 10% when reducing the CFL number for the loose coupling from 7 to 0.7. At
CFL = 7 the negative deflection peak is w/h = −0.114 , whereas for CFL = 0.7 it is
w/h = −0.124 . The tight coupling via Newton–iteration is practically converged at CFL
= 15. The loose coupling failed at that CFL number.

6.3 Convergence of tight coupling algorithms

In this section we compare the convergence properties of the implemented tight coupling
algorithms. One such algorithm is a fixed point iteration (FPI), see Sec. 4.3, which
has also been implemented by other authors [33], [46]. The second algorithm is the
matrix-free Newton-GMRes applied at each time step to the coupled set of discrete
fluid–structure equations, see Sec. 5.3, which has been newly developed in the course
of this thesis. The performance of the two algorithms is compared by considering the
convergence history in each time step. As initial guess for both algorithms we take a
loose coupling step, which additionally quantifies the improvements of the tight coupling
over the loose coupling. The behaviour of the two algorithms is seen to depend on the
parameters of the aeroelastic problem, and we find that the FPI works quite well for
supersonic flutter cases, but not very satisfactory in transonic flutter cases. The Newton–
iteration is seen to be more robust. We look again at the supersonic flutter case from
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Sec. 6.2.2, at the transonic flutter case from Sec. 6.2.1 and at another transonic flutter
case at M∞ = 0.95 .

Note again, as discussed in Sec. 5.4, that we expect to observe a drop in the struc-
tural residual of the tightly coupled equations, since in the initial guess another residual
was reduced, namely the one corresponding to the loose coupling. On the other hand,
the initial guess reduced the right residual in the fluid, but using the wrong structural
deflection. Thus, a stagnation in the fluid residual can be accepted.

The computing times were not strictly compared. One can say that the two algorithms
take roughly the same computing times, and that in the transonic flutter cases, where
the FPI took more iteration steps, its computing times were higher than the ones needed
when employing the Newton–iteration.

6.3.1 Supersonic flutter

This is the case with M∞ = 1.2 from Sec. 6.2.2. It was seen to be numerically less
challenging than the transonic flutter cases and CFL–numbers of up to 40 produced
rather good results.

In Fig. 6.17 the convergence histories in the structural residual at two different CFL–
numbers are shown. For each time step, the residual of the initial guess and the ones
obtained after each iteration are indicated by symbols. The symbols are connected by
lines, in particular connecting the last residual obtained in a time step with the residual of
the initial guess from the following time step. If this line departs from the lowest residual
value of a time step, then we know that the residual was actually diminished in this time
step.

The FPI converges faster than the Newton–iteration in most time steps. This is very
obvious at CFL = 15 in the lower picture of Fig. 6.17. But at CFL = 3, in the upper
picture, at certain time steps the FPI fails to reach the convergence criterion within the
assigned maximum number of 3 FPI–loops. This situation repeats regularly throughout
the computation. Compare further the comments of the figures.

6.3.2 Transonic flutter at M∞ = 0.95

An aluminium panel with hrel = 0.002 and a flow with M∞ = 0.95 and µ = 0.1 ,
λ = 2900 constitute this flutter case. A large amplitude in the panel mid–point deflection
with a negative peak of w ≈ −6.5h , a positive peak of w ≈ 7h and a moving shock on
the panel characterize the limit cycle. Computations were run with CFL = 7 and the
Newton–iteration is seen to be clearly superior to the FPI.

To get an overview of the coupling iterations performed in each time step, we first
show the residual histories over 2000 time steps in Fig. 6.18 and Fig. 6.19. A closer look
in Fig. 6.20 reveals what actually happens. Typically, we can observe a very regular per-
formance of the Newton–iteration in contrast to the FPI. The Newton–iteration reduces
the structural residual in one step by about two orders of magnitudes, over the whole
range of 2000 time steps shown in Fig. 6.18. The FPI very often takes several iterations
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Figure 6.17: Convergence histories in the tightly coupled structural equations for the
flutter case at M∞ = 1.2 , with CFL = 3 and CFL = 15. For CFL = 3 the Newton–
iteration reaches the threshold αS = 10−5 or εS = 10−1 with one iteration, whereas
the FPI reduces in many time steps the residual much better but regularly fails to reach
the threshold within the assigned 3 iterations. This picture is very representative for
the complete computation. At CFL =15 the FPI is better than the Newton–iteration,
throughout the computation. The problems seen with CFL = 3 are not present here
for the FPI; occasionally the Newton–iteration needs two iterations, as in the picture, to
reach the threshold αS = 5 · 10−4 or εS = 10−1 .
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or fails to reach the convergence criterion in the assigned maximum number of 3 fluid–
structure–loops. This behaviour can be observed for selected time steps in the upper
picture of Fig. 6.20. In particular, we see in this picture, that the residual of the FPI
increases in time step 3204, which can be noted since the dotted line, that connects time
step 3204 and 3205, does not leave from the lowest residual value obtained in time step
3204.

The convergence histories in the fluid are depicted in Fig. 6.19. As discussed before, a
stagnation of this residual can be accepted, and actually a stagnation of the fluid residual
can be observed in the close up view in the bottom picture of Fig. 6.20. The most
important step seems to be, to obtain a good residual value in the initial guess. As we
see, this inital residual varies by orders of magnitude, due to convergence problems in the
separate fluid solver. This is not satisfactory. But this seemed not to have an adverse
effect on the obtained results, as all the results presented are reconfirmed by calculations
with lower time step sizes.

Varying the residual threshold

Here we demonstrate that the choice αS = 5 · 10−4 , which corresponds to εS = 0.1 ,
suffices. We use a tight coupling with the Newton–iteration. The largest CFL number, at
which the calculation terminates successfully, is 15. With CFL = 18 the algorithm failed.
The CFL number was varied between 3 and 15 and there is almost no variation in the
solution; also the residual threshold for the coupled equations in the Newton–iteration
was lowered down to αS = 5 · 10−6 without any notable effect. In the upper picture of
Fig. 6.21, no differences in the solutions can be noted and only an enlargement in the
lower picture, reveals that there are differences at all.

6.3.3 Transonic flutter at M∞ = 1

In this transonic flutter case, that was already discussed in Sec. 6.2.1, we can make the
same observations as in the case just discussed with M∞ = 0.95 . Fig. 6.22 shows the
convergence histories in the tightly coupled structural residual that are representative
for the full computation. We chose CFL = 7 and CFL = 3, and we see again that the
FPI often fails to converge and that the Newton–iteration converges regularly with one
iteration step.

6.4 Bifurcations depending on coupling schemes

As seen in Sec. 6.2 and 6.3, the coupling schemes have different convergence properties.
The effect of these on the aeroelastic solutions is presented in this section. Usually the
stability characteristics of the aeroelastic system are exposed in a stability chart by iden-
tifying bifurcations of the aeroelastic system in parameter space. The classical parameter
space in our context is the M∞λ–space introduced in Sec. 2.4. In each of the following
two experiments we keep the inflow Mach–numberM∞ fixed and vary the nondimensional
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Figure 6.18: Global view of the residual histories in the structure, over 2000 time steps,
for the transonic flutter case at M∞ = 0.95 . The computations were run with CFL =
7 and the very regular convergence of the Newton–iteration can be observed, in contrast
to the FPI. A typical enlargement is given in the upper picture of Fig. 6.20, where the
details of the convergence histories can be seen.
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Figure 6.19: Global view of the residual histories in the fluid, over 2000 time steps, for
the transonic flutter case at M∞ = 0.95 . It can only be interpreted with the typical
enlargement given in the lower picture of Fig. 6.20 (CFL = 7).
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Figure 6.20: M∞ = 0.95 ; an enlarged view of Fig. 6.18 and Fig. 6.19 is shown, revealing
the superiority of the Newton–iteration over the FPI, as red off from the structural residual
histories. In the history of the fluid residual we see the expected stagnation in each time
step. Further, the variations in orders of magnitude in the residual of the initial guess
can be observed, which is not satisfactory (CFL = 7).
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Figure 6.21: M∞ = 0.95 ; we see results of four computations with different CFL numbers
and different residual thrshold αS. The results cannot be distingished in the upper picture
and only an enlargement in the lower picture makes differences visible. Since the results
using CFL=3, αS = 5 · 10−4 and CFL=7, αS = 5 · 10−6 cannnot be distinguished,
they are represented by one line, as is also the case with results obtained with CFL=15,
αS = 5 · 10−4 and CFL=7, αS = 5 · 10−4 .
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Figure 6.22: Convergence histories in the tightly coupled structural equations for the
flutter case at M∞ = 1 , with CFL = 7 and CFL = 3. In both cases we have εS = 0.1
which corresponds with CFL = 7 to αS = 10−4 and with CFL = 3 to αS = 2 · 10−5 .
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dynamic pressure λ in ranges where a bifurcation was detected. Here, the bifurcations
are qualitative changes in the solution from divergence to flutter and will be shown to
occur at different λ for different coupling schemes. In the case of Sec. 6.4.2 the bifurcation
point varies in λ by roughly 10%, depending on the coupling scheme. These results are
independent of the chosen time step size, since all results were reconfirmed with lower ∆t.
Unfortunately, a definite reference solution is not available. But looking at the results
of sections Sec. 6.2 and 6.3, we know the improvements of the tight coupling over other
coupling schemes and further, the superiority of the Newton–iteration over the FPI in
transonic flutter cases. These observations are particularly relevant for the experiments
in this section, since here we look at flutter cases with the same or similar data.

6.4.1 A bifurcation at M∞ = 1

Here we keep the inflow Mach number constant at M∞ = 1, and vary the nondimensional
dynamic pressure in the range 160 ≤ λ ≤ 180, where the aeroelastic behaviour changes
from divergence to flutter. Depending on the coupling scheme, this change occurs at
different λ. Note that in Sec. 6.2.1 we were clearly in the flutter region with λ = 260. Here
we chose the reasonable CFL number of 7 and the loose coupling and the tight coupling
schemes with FPI and Newton–iteration to perform computations at λ = 160, 170, 180 .
All schemes predicted divergence at λ = 160 and flutter at λ = 180 , see Fig. 6.23 and
Fig. 6.25. At λ = 170 the FPI failed to terminate the computation successfully, so that
it was run with CFL = 3. It predicted flutter. The Newton–iteration predicted flutter
as–well, using CFL = 7. The loose coupling predicted divergence at CFL = 7, and the
loose coupling was also run at CFL = 3, predicting divergence again. The results are
shown in Fig. 6.24.

6.4.2 A bifurcation at M∞ = 0.95

Again, the inflow Mach number is held constant, now at M∞ = 0.95, and the nondi-
mensional dynamic pressure is varied in the range 2500 ≤ λ ≤ 2900. I.e. the case
studied in Sec. 6.3.2 is included. The qualitative results obtained are shown in the table
of Fig. 6.26 and reveal a variation of the bifurcation point depending on the coupling
scheme by roughly 10% in dynamic pressure. All the results obtained with CFL = 7 were
reconfirmed with CFL = 3. In particular the bad performance of the FPI compared to the
Newton–iteration, which was observed in the convergence histories of Sec. 6.3.2, seems to
have a rather big influence on the location of the bifurcation point. Note also, that using
a tight coupling scheme, the change to flutter is detected at λ = 2500 in [27].

6.5 Stability chart

The stability boundary of a simply supported aluminium panel of thickness hrel =
0.004537 and with a mass ratio between fluid and structure of µ = 0.1 was determined
in [14] and reconfirmed in [33], as we have seen in Fig. 2.3. Here we compare the stability
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Figure 6.23: M∞ = 1, λ = 160: All schemes predict divergence, the mid–point deflections
almost coincide.
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Figure 6.24: M∞ = 1, λ = 170: Only the loose coupling predicts divergence. The FPI
and the Newton–iteration predict flutter. The calculation of the FPI failed with CFL =
7, but terminated successfully with CFL = 3. The loose coupling brought divergence at
CFL = 7, as–well.
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Figure 6.25: M∞ = 1, λ = 180: All schemes predict flutter, the mid–point deflections of
the FPI and the Newton–iteration coincide, the loose coupling gets very close to it.
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Figure 6.26: Bifurcation at M∞ = 0.95 with respect to λ from divergence (D) to flutter
(F) using different coupling schemes.
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boundary of Davis and Bendiksen [14] with the one we have obtained with the tight cou-
pling via Newton–iteration at a CFL–number of 7. The stability boundary is produced
in M∞λ–space. At a given Mach number the deflection amplitudes of the calculated long
time behaviours increase gradually with λ. We have chosen an amplitude value in the
panel mid–point deflection of w = 0.01h to mark the stability boundary; for smaller am-
plitudes the system was defined as stable, for larger amplitudes as unstable. For M∞ < 1
and M∞ > 1 the change from stable to unstable is rather sharp. Here the amplitudes
of the results just above the stability boundary show divergence or flutter amplitudes of
w ≈ 0.1h . Just below the stability boundary, at a dimensionless time of 1000, the panel
deflections are either by orders of magnitudes below w ≈ 0.01h or around w ≈ 0.01h
with the clear tendency to fall. At M∞ = 1 the increase in amplitudes is rather slow; the
development at M∞ = 1 over a larger λ–range is discussed below, see Fig. 6.28.

These observations show that the panel deflections are rather small in the neighbour-
hood of the stability boundary. Our algorithm performed perfectly well in this situation,
reducing all residuals as required. The results coincide very well with [14] for M∞ < 1.15 .
The difference at M∞ = 1 may be due to the amplitude value that defines the stability
boundary, as discussed above. Small divergence amplitudes at M∞ = 1 for very small λ
are also obtained in [33]. The mismatch for M∞ > 1.15 cannot be addressed to this fact.
The main difference between our code and the codes of [14] and [33] is the way in which
numerical diffusion is implemented in the fluid code. Both [14] and [33] use a central
differencing in space with artificial viscosity added, whereas we use flux differencing with
reconstruction and limitation. But no significant shocks can be observed in the calcula-
tions around the stability boundary, so that these differences in the discretization should
not have an effect. A difference attributed to the coupling scheme should be tested by
implementing the coupling of [14] in our code.

In Fig. 6.28 the development at M∞ = 1 is visualized. The amplitudes in the long
time behaviour are plotted against λ, showing a sudden change from positively deflected
divergence to negatively deflected divergence at λ ≈ 30 and a change from divergence to
flutter at λ ≈ 165 . The latter result was obtained in Sect. 6.4.1.
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Figure 6.27: The stability boundary of a simply supported aluminium panel with hrel =
0.004537 and µ = 0.1 , compared with the stability–boundary obtained by Davis and
Bendiksen [14].
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Figure 6.28: A simply supported aluminium panel with hrel = 0.004537 , µ = 0.1 ; the
development of the panel mid–point amplitudes are shown at M∞ = 1 for various λ.
First we have the slight increase in divergence amplitude, which defines the location of
the stability boundary of Fig. 6.27 at M∞ = 1 . Then the divergence amplitude suddenly
changes its sign and remains negative up to λ = 160 . From λ = 170 on, flutter solutions
occur. From the corresponding limit cycles, the negative and positive deflection peaks are
plotted with dashed lines.
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Chapter 7

Summary

In order to investigate analytical and numerical issues appearing in aeroelastic problems
with structural nonlinearities and transonic flow nonlinearities, we have considered the
panel flutter problem.

A first step concerning the question of well–posedness for the initial boundary value
problem describing panel flutter was made by proving a uniqueness theorem. The pre-
scribed initial boundary value problem uses a purely Lagrangian viewpoint in the fluid; a
generalization of the uniqueness result to the case of an Arbitrary–Lagrangian–Eulerian
formulation in the fluid is still missing, also an existence result is not available yet.

Further, numerical schemes for aeroelasticity were implemented for the panel flutter
problem. In particular, a new coupling algorithm achieving a tight coupling was proposed
and successfully implemented. It applies a matrix–free Newton–GMRes iteration to the
discrete fluid–structure system. The implementation can be considered as a base version,
which may be optimized and improved in various ways. We have compared this tight
coupling with other coupling strategies, in particular with a fixed–point–iteration that
also aims to achieve a tight coupling. We can observe the superiority of the tight coupling
schemes over simpler coupling schemes for large time step sizes; the tight coupling schemes
seem to allow higher time step sizes also from a stability point of view. Nevertheless the
loose or staggered coupling schemes yield very good results in many cases. The superiority
of the Newton–iteration over the fixed–point–iteration to achieve a tight coupling was
found for transonic flutter cases, which also resulted in improved computing times. An
example that showed a severe influence of the coupling scheme was the determination of
a bifurcation from divergence to flutter in the transonic regime, where the bifurcation
point varied by 10% in terms of dynamic pressure, depending on the coupling scheme. A
notable difference between the tight coupling via Newton–iteration and the tight coupling
via fixed–point–iteration can also be observed in this example. A deviation from a stability
boundary of the literature is observed in the supersonic regime. These deviations should
be investigated further by implementing the coupling scheme used in the literature.

Further improvements should be made in the unsteady fluid code. Together with an
optimized version of the tight coupling via Newton–iteration more complex applications
may be tackled.
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