
Towards More Realistic Logic-Based Robot
Controllers in the GOLOG Framework

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
Rheinisch-Westfälischen Technischen Hochschule Aachen zur

Erlangung des akademischen Grades eines Doktors der
Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom-Informatiker

Henrik Grosskreutz

aus Berlin

Berichter:

Universitätsprofessor Gerhard Lakemeyer, Ph.D.

Universitätsprofessor Dr. Michael Thielscher

Tag der mündlichen Prüfung: 1. Februar 2002

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

To my parents

Acknowledgements

First and foremost, I would like to thank my advisor Gerhard Lakemeyer. I
particularly enjoyed our discussions, from which I took great benefit. He taught me
to scrutinize preliminary conceptualizations in order to clarify and structure my
ideas, and had a profound impact on my scientific education. I am also indebted
to him for reading and commenting on earlier versions of this thesis. This work
wouldn’t have been possible without his help and advice.

I would also like to thank Michael Beetz who had a strong influence on my view of
high-level robot control. Thanks also to Gero Iwan, who was always interested in
the problems I struggled with and who gave me useful suggestions, Frank Dylla,
Günter Gans and Alexander Ferrein. I am also grateful to Michael Thielscher who
kindly took on the task of second reviewer for this thesis. Finally, I would like to
thank Simone for bravely listening to my complaints during the tough times and
for enjoying the good times with me, my family and my friends.

Abstract

High-level robot control languages should not only be expressive but should also
support reasoning about actions, in particular, the projection of robot plans. Pro-
jection is useful for the robot when choosing among different courses of action as
well as for the designer of robot controllers, since projections allow for qualitative
simulations. The high-level programming language GOLOG was specifically pro-
posed for this purpose. The semantics of GOLOG, which offers constructs such as
sequences, iterations and recursive procedures, is based on the situation calculus,
a logical language for reasoning about action and change. In particular, every
primitive GOLOG action is an action of the underlying situation calculus theory,
which allows reasoning about the effects of primitive actions or complex GOLOG
programs.

While GOLOG comes equipped with a powerful projection mechanism, however,
it lacks the expressiveness provided by non-logic-based robot programming lan-
guages like RPL, RAP or Colbert. In particular, it does not provide facilities for
dealing with continuous change, event-driven behavior, and communication with
lower-level routines for navigation or localization, to which we refer to as low-
level processes. Another limitation of GOLOG is that it assumes that actions have
deterministic effects and cannot represent probabilistic uncertainty. In realistic
domains, however, uncertainty seems to be ubiquitous: a robot has often only
probabilistic beliefs about the state of the world, and low-level processes have
probabilistic outcomes.

In this thesis, we show how the GOLOG framework can be extended to deal with
issues like continuous change, event-driven actions and low-level processes in a nat-
ural way, thus shortening the gap in expressiveness between non-logic-based and
logic-based robot control languages. In particular, we integrate continuous time
and change directly in the ontology of GOLOG. To facilitate the actual execution
of high-level plans on a real robot, we employ a layered robot control architec-
ture where a high-level controller communicates via message with the low-level
processes provided by the basic-task execution system. Our framework allows not
only the projection and the actual (on-line) execution of the same plans, but also
supports the specification of plans with interleave projection and on-line execu-
tion. Furthermore, we provide means to represent and deal with probabilistic
beliefs and noisy sensors and effectors. Finally, the extended GOLOG formal-
ism is implemented in PROLOG and evaluated in several experiments, including
delivery tasks where the mobile robot CARL operates in the Computer Science
Department V at Aachen University of Technology.

Zusammenfassung

Sprachen zur Steuerung mobiler Roboter sollten nicht nur eine geeignete Aus-
drucksstärke besitzen, sondern zudem die Möglichkeit bieten, Pläne zu projizieren,
das heißt automatisch über deren Effekte auf den Zustand der Welt zu folgern.
Diese Fähigkeit ist sowohl bei der Auswahl eines geeigneten Plans durch den
Roboter als auch während der Entwicklung hilfreich, da sie qualitative Aussagen
über die Auswirkungen eines Plans liefert. Aus dieser Motivation heraus wurde
die Sprache GOLOG entwickelt, die Programmkonstrukte wie Sequenzen, Itera-
tionen und rekursive Prozeduren bietet und deren Semantik auf dem Situatio-
nenkalkül beruht, einem logischen Formalismus zum Schließen über Aktionen und
deren Effekte. Insbesondere ist jede primitive GOLOG-Instruktion eine Aktion der
zugrundeliegenden Situationenkalkül-Theorie, was das Schließen über die Effekte
einzelner Aktionen sowie komplexer Programme ermöglicht.

Dieser herausragenden Eigenschaft steht jedoch die geringe Ausdrucksstärke von
GOLOG verglichen mit nicht-logikbasierten Roboterprogrammiersprachen wie RPL,
RAP oder Colbert gegenüber. Insbesondere bietet GOLOG keine Kontrollstruk-
turen zum Umgang mit kontinuierlicher Veränderung, ereignisgesteuerten Ak-
tionen oder zur Kommunikation mit spezialisierten Basisprozessen, die Grund-
funktionalitäten wie Navigation oder Lokalisierung realisieren. Zudem verwen-
det GOLOG ein deterministisches Modell der Effekte von primitiven Aktionen
und ermöglicht es nicht, probabilistische Unsicherheit über den Zustand der Welt
zu repräsentieren. Diese ist in realistischen Robotikanwendungen jedoch allge-
genwärtig.

Ziel dieser Arbeit ist es, die Ausdrucksstärke von GOLOG an die nicht-logikbasierter
Roboterprogrammiersprachen anzugleichen. Insbesondere werden in dieser Arbeit
Ansätze zum Umgang mit kontinuierlicher Veränderung, ereignisgesteuerten Ak-
tionen und spezialisierten Basisprozessen in GOLOG beschrieben. Hierzu wird
die Ontologie des Situationenkalküls um sich kontinuierlich verändernde Größen
erweitert, was zum Beispiel eine adäquatere Modellierung der sich verändernden
Roboterposition ermöglicht. Zur tatsächlichen Ausführung von Plänen wird eine
geschichtete Kontrollarchitektur vorgeschlagen, in der eine Plan- und Kontrollein-
heit mittels Nachrichten mit spezialisierten Basisprozessen kommuniziert. Der
Formalismus erlaubt die Projektion von Plänen, ihre tatsächliche Ausführung,
sowie das Spezifizieren von Plänen die zur Ausführungszeit Teilpläne projizieren
und deren weitere Ausführung vom Ergebnis der Projektionen abhängt. Hierbei
können auch probabilistische Unsicherheit sowie unsichere Sensoren und Effek-
toren berücksichtigt werden. Neben dem logischen Formalismus beschreibt die
Arbeit eine prototypische PROLOG-Implementierung des Ansatzes sowie deren
Evaluierung in verschiedenen Experimenten, unter anderem in einem Szenario, in
dem der mobile Roboter CARL in der Abteilung Informatik V der RWTH Aachen
als Bürobote agiert.

Contents

1 Introduction 11
1.1 Goals and Contributions . 14
1.2 Outline of this Thesis . 17

2 Related Work 19
2.1 Reasoning about Action and Change . 19

2.1.1 The Situation Calculus . 19
2.1.2 Other Approaches to Reasoning about Action and Change 23

2.2 GOLOG and its Derivatives . 28
2.3 Robot Controllers . 32

2.3.1 Robot Control Architectures . 32
2.3.2 Non-Logic-Based Robot Programming Languages 33

2.4 Discussion . 35

3 The Situation Calculus and ConGolog 37
3.1 The Situation Calculus . 37

3.1.1 A Simple Solution to the Frame Problem (Sometimes) 39
3.1.2 Basic Action Theories . 41
3.1.3 An Example . 42

3.2 ConGolog . 42
3.2.1 A Transition Semantics . 44
3.2.2 An Example . 46
3.2.3 Extending the Transition Semantics to Procedures 50

3.3 A Probabilistic, Epistemic Situation Calculus 53
3.3.1 Foundational Axioms for the Epistemic Situation Calculus 53
3.3.2 Belief . 54

4 cc-Golog – Dealing with Continuous Change 55
4.1 Continuous Change and Time . 57

4.1.1 Adding a Timeline . 57
4.1.2 Continuous Fluents . 58
4.1.3 Functions of Time . 58
4.1.4 The passage of Time . 58
4.1.5 A Simple Model of Robot Navigation 61

4.2 cc-Golog: a Continuous, Concurrent GOLOG Dialect 62
4.2.1 A New Semantics for Concurrent Execution 63

7

8 CONTENTS

4.2.2 Blocking Policies . 65
4.2.3 Extending the Semantics to Procedures 66
4.2.4 Discussion: cc-Golog and Nondeterminism 69

4.3 A Robot Control Architecture . 70
4.3.1 The Communication between the High-Level Controller and the Low-

Level Processes . 70
4.3.2 Modeling Low-Level Processes as cc-Golog Procedures 71
4.3.3 Projection . 72
4.3.4 The Example Revisited . 76

4.4 Discussion . 78

5 On-Line Execution of cc-Golog Plans 81
5.1 On-Line Execution of cc-Golog Plans . 82

5.1.1 ccUpdate - Updating Continuous Fluents 83
5.1.2 The Passage of Time During On-Line Execution 84
5.1.3 On-Line Execution of waitFor Instructions 84
5.1.4 On-Line Execution Traces . 85
5.1.5 Examples . 86

5.2 Interleaving Projection and On-Line Execution 89
5.2.1 Projection in Non-Initial Situations . 89
5.2.2 (Limited) Lookahead: Projection Tests 90
5.2.3 Projection Tests at Work . 91

5.3 Discussion . 93

6 pGOLOG - Dealing with Probabilistic Uncertainty 95
6.1 pGOLOG: a Probabilistic GOLOG Dialect 96

6.1.1 A Weighted Transition Semantics . 97
6.1.2 An Example . 101
6.1.3 Extending the Semantics to Procedures 102
6.1.4 Formal Properties . 108

6.2 A Control Architecture for Acting under Uncertainty 116
6.2.1 The Probabilistic Epistemic State . 116
6.2.2 The Communication between the High-Level Controller and the Low-

Level Processes . 117
6.2.3 Modeling the Low-Level Processes . 118
6.2.4 High-Level Plans and Directly Observable Fluents 121

6.3 Probabilistic Projection in pGOLOG . 123
6.3.1 Projected Belief . 124
6.3.2 Examples . 124
6.3.3 Probabilistic Projection and Expected Utility 128

6.4 Discussion . 129

7 Belief Update in pGOLOG 133
7.1 On-line Execution and Belief Update . 134

7.1.1 On-Line Execution and On-line Execution Traces 134
7.1.2 The Epistemic State as a Distribution over Configurations 137
7.1.3 Belief Update . 138

CONTENTS 9

7.1.4 Examples . 140
7.1.5 Formal Properties . 143

7.2 Belief Update at Work - BHL’s 1-Dimensional Robot 150
7.2.1 Specification of the domain . 150
7.2.2 Dealing with Noisy Sensors . 152
7.2.3 Dealing with Noisy Effectors . 154

7.3 Belief-Based Programs and Probabilistic Projection Tests 156
7.3.1 Belief-Based Programs . 156
7.3.2 Probabilistic Projection Tests . 160
7.3.3 Dealing with Continuous Fluents in Probabilistic Projection Tests . . 161

7.4 Discussion . 166

8 Implementation and Experimentation 169
8.1 A cc-Golog Interpreter in PROLOG . 169

8.1.1 Legal Domain Specifications . 169
8.1.2 Legal cc-Golog Programs . 170
8.1.3 Dealing with Temporal Constraints . 171
8.1.4 The cc-Golog Interpreter . 171
8.1.5 Experimental Results . 175

8.2 Running cc-Golog on a Real Robot . 180
8.2.1 The BeeSoft System . 181
8.2.2 The Link between cc-Golog and BeeSoft 182
8.2.3 Interleaving On-Line Execution and Projection 183

8.3 A pGOLOG Interpreter in PROLOG . 186
8.3.1 Probabilistic Projection . 187
8.3.2 Belief and Belief Update . 189
8.3.3 Epistemic Conditions and bGOLOG Programs 190
8.3.4 Experimental Results . 191

8.4 Running pGOLOG on a Real Robot . 193
8.4.1 An Example Application: Colored Letter Delivery 193
8.4.2 The Link between pGOLOG and BeeSoft 194
8.4.3 A Simple Greedy pGOLOG Controller 194
8.4.4 Experimental Results . 198

8.5 Discussion . 201

9 Conclusions 203
9.1 Summary . 203
9.2 Discussion and Future Work . 205

Index of Technical Terms 208

A Reification of Programs as Terms 211
A.1 Preliminaries . 211

A.1.1 Sort Idx . 211
A.1.2 Sorts PseudoSit, PseudoObj, PseudoAct, PseudoReal, PseudoTime and

PseudoProb . 212
A.1.3 Sort PseudoForm . 213

10 CONTENTS

A.1.4 Sorts PseudoCF and PseudoTForm . 215
A.2 Encoding cc-Golog Programs . 216

A.2.1 Sorts ProgccGolog and EnvccGolog . 217
A.2.2 Sorts PseudoProjTest, ProgccGologPT and EnvccGologPT 219

A.3 Encoding pGOLOG and bGOLOG Programs 222
A.3.1 Sorts ProgpgologS and EnvpGologS . 223
A.3.2 Sorts PseudoBBForm, ProgbGolog and EnvbGolog 226
A.3.3 Sort Progpgolog . 229
A.3.4 Sorts PseudoPProjTst, ProgbGologPT and EnvbGologPT 230

A.4 Consistency Preservation . 233

B A Second-Order Specification of Summation 235

Bibliography 237

Chapter 1

Introduction

In the last five years, substantial progress has been made in building autonomous mobile
robots which can navigate safely in populated areas like office environments, museums, or
the like [KBM98, BCF+00]. We now have fairly robust solutions to basic “low-level” tasks
like obstacle avoidance [FBT97] or self-localization [GBFK98, FBT99, FBDT99] so that it
is possible to more seriously think about high-level control issues, that is, telling the robot
what to do and how to do it. Intuitively, high-level control is concerned with the appropriate
coordination of tasks like navigation in order to achieve the robot’s overall goals.

Among the peculiarities of high-level robot control, we have the fact that the actions per-
formed by the high-level controller are executed in order to achieve effects in the world outside
the robot, and hence outside the computer controlling the robot. Similarly, goals pursued by
the high-level controller and many objects it is dealing with lie outside the computer. For
example, in a mail delivery application, the purpose of the high-level controller is to have
letters – clearly objects lying outside the computer – moved to a new destination, like for
example to the recipient’s desk. Thus, unlike most programs which deal with objects inside
the computer, a high-level robot controller is concerned with the effects of robot programs
on the state of world. Another feature of high-level robot control is that autonomous robots
have to robustly perform different and changing tasks in dynamic and incompletely known
environments.

A central concept in the context of high-level robot control is the notion of a plan. Here,
we adopt the view of McDermott [McD92a] who takes plans to be “that part of the robot’s
program whose future execution the robot reasons about explicitly”. Given that the purpose of
a high-level controller is to cause effects in the world, that is on objects outside the computer,
this reasoning is (at least implicitly) concerned with the effects of the plan on the state of
the world. The ability to do automated reasoning about the task at hand, in particular, the
ability to project the outcome of a given plan or program, is important not only because it
is an integral part of intelligent behavior such as rationally choosing among different courses
of actions but also for pragmatic reasons. Note that projecting a plan can be thought of as
a (qualitative) simulation of how the world evolves when actions are executed, which is quite
helpful for debugging purposes. This is especially true for plans with concurrent actions,
which arise naturally in robotics applications. Moreover, simulations are in general much
faster than actually running tests on the robot.

Preferably, then, a high-level controller should make use of programs, or plans, which
are not only suitable for (on-line) execution, but also for the purpose of projection, which is

11

12 CHAPTER 1. INTRODUCTION

sometimes also called off-line execution. However, as McDermott notes in [McD92a], there is
a trade-off between the expressivity and “planability” of a plan notation, where planning is
“explicit reasoning about future execution” of plans (or, emphasizing the purpose of planning,
“the automatic generation, debugging, or optimization of robot plans”).

At one end of the spectrum, we have the classical area of planning (e.g. [MR91, BF95,
KS96]) in the tradition of Green [Gre69] and STRIPS [FN71], which aims at the automatic
generation of a plan to bring about a desired state of affairs, given a description of the domain
and of the effects of the robot’s actions. When it comes to high-level control for robots in
dynamic and incompletely known environments, however, these approaches suffer from at
least two drawbacks: for one, the resulting plans are not adequate as a representation of real
high-level robot programs. In their basic form, planners only consider sequences of primitive
actions as possible plans, and this restriction is incompatible with the inherently concurrent
nature of high-level robot control, which is due to the fact that sensors and effectors run in
parallel.1 For another, the approach to synthesize plans may end up being too demanding
computationally in more complex settings (cf. [Byl94, LGM98]). The latter is particularly
true for planners that take into account the robot’s uncertainty (e.g [SW98]), planners that
generate conditional plans that appeal to sensing (e.g. [WAS98, GA99]) or planners that
account for probabilistic action effects (e.g. [DHW94, ML98]).

At another extreme, we have languages like RAP [Fir87], PRS [GI89, Mye96], RPL [McD91]
and Colbert [Kon97].2 These control languages provide concepts like concurrency, sensor-
integration, interrupts, priorities, semaphores, and communication with lower-level routines
for navigation or localization, to which we refer to as low-level processes. As a result, they
allow very natural formulations of robot controllers. The drawback of these notations is
that they do not rely on a formal framework for reasoning about actions, and thus that
it is difficult to reason about whether a program is executable and whether it will satisfy
the intended goals.3 Among them, only RPL allows for plan projection. RPL’s projection
mechanism called xfrm [McD92a, McD94] is problematic, however, because projections rely
on using RPL’s run-time system, which lacks a formal semantics and which makes predictions
implementation dependent.

Somewhere between these extremes, we have the action programming language GOLOG
[LRL+97], which allows the projection of plans based on a perspicuous declarative seman-
tics. GOLOG, which offers constructs such as sequences, iterations and recursive procedures
to define complex actions, is unique in that its semantics is based on the situation calcu-
lus [McC63, LPR98], a logical language for reasoning about dynamic worlds. Roughly, the
ontology of the situation calculus is based on situations, describing possible states of the world,
and actions which cause the world to evolve from one situation to a successor situation. In

1Although many planners produce partial-order plans which do not prescribe a total order on the actions
of the plan (e.g. [MR91, PW92]), all that is usually meant by the partial order is that any compatible order
is allowed.

2One might object that languages like RAP or PRS are merely robot programming languages. In fact, in
[McD91] McDermott refers to RPL and its relatives as a “family of notations for writing reactive plans for
agents (e.g. robots).” Although some of these languages really are at the borderline of being plan languages,
they provide at least a flavor of the ingredients necessary for reasoning. For example, as Firby states in his
Ph.D. thesis [Fir89], “RAPs are designed to be used in two different ways: as abstract planning operators, and
as programs to be run by the RAP interpreter”.

3We remark that several proposals have been made to combine the use of a deliberative “classical” planner
on top of a sequencer layer running a reactive program written in PRS, RAP or the like within a layered control
architecture.

13

GOLOG programs, all primitive actions are the actions of the underlying situation calculus
theory. Similarly, tests and conditionals in GOLOG do not refer to ordinary variables in the
robot’s computer memory, but to properties of the world (or, more exactly, to fluents4 in the
situation calculus axiomatization of the world). As a benefit, GOLOG supports projections
firmly grounded in logic.

On the downside, however, GOLOG lacks the expressiveness provided by non-logic-based
robot control languages like RPL, and is not expressive enough for realistic robot domains, first
successful experiments using GOLOG to control a real museum-tour-guide robot [BCF+00]
notwithstanding. Although there are extensions of GOLOG, in particular the concurrent
programming language ConGolog [dGLL97, dGLL00] which provides additional facilities like
prioritized execution of concurrent processes and interrupts, these still do not go far enough.
Among the things that are missing we have at least the following:

1. Dealing with Continuous Change

In the situation calculus (which underlies GOLOG), the world changes in a discrete
fashion. However, in the context of mobile robots many changes are best thought of
as continuous. For example, while moving, the robot changes its position continuously.
The same holds for the battery level or the passage of time. While it may be possible
to approximate such changes by discrete approximations, this seems at least unnatural
and often adds considerable complexity to the reasoning involved.

2. Time and Event-Driven Behavior

In the current temporal extension of GOLOG [Rei98], the user has to explicitly supply the
time of execution for each action. However, when specifying a robot’s task, this seems
rarely appropriate and is often infeasible, especially in the context of concurrency. For
example, suppose we want to tell the robot to do the following: (1) deliver today’s mail
to the offices; (2) whenever you pass near Gerhard’s room say “hello”; (3) whenever the
battery level drops dangerously low, interrupt whatever you are currently doing and
re-charge your batteries. Notice that nowhere do we say explicitly when an action has
to be taken. Instead, actions are conditioned on certain events happening like passing
a certain office or reaching a low battery level. We call this event-driven behavior.

3. A Layered Control Architecture

In order to pursue its goals, the high-level controller has to interact with specialized
routines which we call low-level processes, and which provide basic-level capabilities like
navigation or grasping objects. While in the original GOLOG framework all “actions” are
represented as atomic situation calculus actions, typical “robot actions” like a low-level
navigation process take time, and thus can not adequately be represented by an atomic,
duration-less action. While there are proposals to represent such “robot actions” by
means of a pair of duration-less actions representing their initiation and termination
[Pin94, Ter94, Rei96] these approaches do not go far enough. In particular, they do not
distinguish the nature of initiation and termination events, but uniformly treat them as
actions executed by the high-level controller (cf. [Rei98]). However, while the initiation
of a navigation process is under control of the high-level controller, its termination is
an exogenous action, that is an action not under the control of the high-level controller.

4A fluent is a predicate whose truth value depends on the situation under consideration; see Section 3.1.

14 CHAPTER 1. INTRODUCTION

While this means that during actual execution the high-level controller can merely wait
for the termination of the (navigation) process, for the task of projection it needs a
model of the behavior of the low-level process, which provides an estimate when the
low-level process will complete execution.

4. Reasoning about Probabilistic Effects and Noisy Sensors

Actions in the situation calculus always have deterministic effects, that is, there is no
uncertainty about whether or not an action achieves the desired results. As a result, the
language GOLOG, whose tests and primitive actions refer to the underlying situation
calculus model, do not allow for probabilistic reasoning.

In practice, however, uncertainty seems to be ubiquitous, which is aggravated by the
shortcomings of today’s robots. Consider, for example, a pickup action. Given a certain
characteristic of the gripper and the object to be lifted, we may want to say that the
pickup action succeeds 80% of the time and fails otherwise, which, in its simplest form,
may amount to having no effect at all. Similarly, sensor informations gathered by the
high-level controller are subject to noise. For example, we may want to model that a
letter recognition process has a 10% probability to overlook a letter to be delivered.
Given such a probabilistic characterization, the high-level controller should not only
be able to project the probabilistic effects of candidate plans, but should also update
its beliefs during actual on-line execution (in particular, take into account noisy sensor
information gathered). These two reasoning tasks are different in nature because the
former does not involve any actual action or sensing information, while the latter deals
with actual on-line execution.

1.1 Goals and Contributions

The goal of this thesis is to extend the GOLOG framework to represent, reason about and
execute concurrent, event-driven plans in dynamic domains involving continuous change and
probabilistic effects, thus shortening the gap in expressiveness between non-logic-based and
logic-based robot control languages. The work reported here thus fits into the research area
of Cognitive Robotics [LR98], which is concerned with the theory and the implementation of
robots that reason, act and perceive in changing, incompletely known, unpredictable environ-
ments.

The framework presented in this thesis allows the specification of concurrent, event-driven
plans. It supports the projection of candidate plans firmly grounded in logic, based on a
precise representation of the interaction of the high-level controller with low-level processes
and a model of the effects of the low-level processes on the world. The framework accounts for
time, continuous change, probabilistic outcomes and noisy sensing. Although the automatic
generation of plans within this setting becomes infeasible (at least computationally), the
resulting framework helps the user in developing and experimenting high-level controllers.
Not only does it provide the user with the possibility to generate projections of plans during
development, but it also allows the specification of plans which appeal to the robot’s beliefs
at execution time and to on-the-fly projections of sub-plans, resulting in an interleaving of
projection and on-line execution. The latter means that a plan may condition the execution of
actions on the projected effects of a sub-plan, which allows the programmer to provide domain
dependent procedural knowledge in a natural way. As an example, it is possible to execute a

1.1. GOALS AND CONTRIBUTIONS 15

sub-plan only if it is projected to have a reasonable probability to achieve a goal.5 Besides,
plans can be executed on-line, and we show how the resulting high-level control framework
can be coupled to a real robot system, namely to the BeeSoft basic-task execution system
which has successfully been used to control the mobile robots Rhino [BBC+95, BCF+00] and
MINERVA [TBB+99].

In particular, this thesis makes the following contributions:

Dealing with Continuous Change, Time and Event-Driven Actions In robotics
applications, we are faced with processes such as navigation which cause properties like the
robot’s location and orientation to change continuously over time. In order to model such
processes in the situation calculus in a natural way, we add continuous change and time
directly to its ontology, based on previous work by Pinto and Reiter [Pin94, Rei96, Rei98].
Furthermore, we adapt the semantics of ConGolog to the resulting temporal situation calcu-
lus. In particular, the resulting dialect of ConGolog, which we call cc-Golog, provides a new
instruction waitFor(τ) which allows the plan to wait until a condition τ whose truth depends
on the value of continuously changing properties becomes true. Using waitFor, it is possi-
ble to specify event-driven actions, that is actions whose execution time depends on certain
conditions becoming true. For example, this allows a quite natural specification of tasks like
“say hello if you come near Door 6213” by using an expression τ that verifies that the robot’s
location is near Door 6213 within a waitFor instruction.

A Layered Control Architecture As mentioned above, the initiation action that acti-
vates a low-level process and the termination action that represents its completion process are
of different nature. In particular, while the activation action is under control of the high-level
controller, the termination action is not. Actually, during on-line execution the termination
action is exogenous, and during projection is has to be simulated by a model of the low-level
process. In order to correctly account for both modes of execution (i.e. on-line execution
and projection, which is also called off-line execution), we show how a robot control architec-
ture where a high-level controller communicates with low-level processes via messages can be
modeled directly in our situation calculus framework. The main advantage is that there is a
clear separation of the actions of the high-level controller from those of low-level processes like
a navigation process. Thereafter, we show how cc-Golog can be used to specify a simulated
environment for the purpose of projection. For example, a navigation process can be modeled
by a cc-Golog program which specifies that some seconds after its activation the navigation
process will produce an action that signals that the destination has been reached.

On-Line Execution of cc-Golog Plans While during projection the time point of a
waitFor-condition like a low battery level is computed based on an idealized model of the
world, during actual execution, of course, the robot should react at the actual time where a
condition becomes true. For example, the robot should react to the actual battery level by
periodically reading its voltage meter. In order to use the same cc-Golog program both for
online execution and projection, we explicitly distinguish between both modes of operation in

5The idea to interleave on-line execution and projection is due to [dGL99b]. However, while in their
approach projection is used by the interpreter to resolve nondeterministic specifications, in our framework
projection during on-line execution is explicitly required in test and branch conditions.

16 CHAPTER 1. INTRODUCTION

the semantics of waitFor instructions. In particular, we treat waitFor’s simply as special tests
during online execution, and make use of frequent exogenous actions to provide the high-level
controller with the latest estimates of continuous properties like the robot’s position.

Interleaving On-Line Execution and Projection under User Control Motivated by
the work on incremental execution of [dGL99b], which suggest that a combination between
online execution and projection (which they call off-line execution) arises as a practical and
still powerful scheme of execution, we add a local lookahead constructor which allows projec-
tion under user control. In particular, a plan may condition the execution of actions on the
projected outcomes of a sub-plan. This can be done by means of branch instructions whose
branch condition appeal to the result of a projection. For reasons of efficiency, we even go
beyond that and allow for a restricted projection of a program, which only searches up to
a (temporally) limited horizon. This allows the programmer to provide domain dependent
procedural knowledge in a natural way. For instance, the programmer can specify that if the
robot is in the middle of a delivery but near the docking station, then it has to make use of
time bounded projection to find out whether the coming activities would allow it to operate
for at least another 5 minutes and, if not, charge its batteries first.

Representing Noisy Low-Level Processes In realistic robot scenarios, the high-level
controller is inherently uncertain in what the world is like and the outcome of many of the
robot’s low-level processes, due to the fact that robot hard- and software is imperfect and
error-prone. For example, a pickup process may only succeeds 80% of the time and fail oth-
erwise. In order to represent low-level processes with probabilistic outcomes, we model them
as probabilistic programs in a probabilistic extension of GOLOG which we call pGOLOG. The
intuition is that the different probabilistic branches of the programs correspond to different
possible outcomes of the processes. For example, we can model the noisy pickup process men-
tioned above by a program which results in the pickup being successful with probability 80%,
and else remains effect-less. Given a faithful characterization of the low-level processes in
terms of pGOLOG programs, we can then reason about the effects of their activation through
simulation of the corresponding pGOLOG models.

Representing Noisy Sensor Processes In our layered control architecture, sensing is
handled by means of low-level processes like a door-state estimation process which, soon
after their activation, provide information about the state of the world. We call such low-
level processes sensor processes. For example, once a door state estimation processes has
been activated, it makes use of physical sensors and appropriate pre-processing algorithms to
estimate the opening angle of the door, and finally issues a message to provide the high-level
controller with its estimate.

Thus, to us sensing means: activate a sensor process, which, in turn, has as effect a “sen-
sor reading.” Roughly, we represent the “answer” of a sensor process by means of exogenous
actions, which results in a view of sensing which significantly differs from the well-known sens-
ing actions of Scherl and Levesque [SL93, Lev96]. While during on-line execution the actual
low-level process provides the answer, for the task of projection we model the behavior of the
sensor process by means of a probabilistic pGOLOG program, which includes the very same
exogenous actions as those used to represent the “answer” of the sensor process. Thereby, we
represent the noisy outcomes of the sensor process by different probabilistic branches in the

1.2. OUTLINE OF THIS THESIS 17

pGOLOG program, which execute different exogenous actions.

Probabilistic Projection Based on a pGOLOG model of the low-level processes and a
probabilistic characterization of the robot’s epistemic state due to [BHL95], we show how to
project high-level plans, appealing to a probabilistic model of the world and the low-level
processes. As projections now yield the probability of a plan to achieve a goal, this leads us
to the notion of probabilistic projection.

Belief Update in pGOLOG Besides being able to generate probabilistic projections of can-
didate plans, a high-level controller should update its beliefs during actual on-line execution,
for example take into account noisy sensor information gathered. In particular, the ability
to update the probabilistic belief state according to the occurrence of actions is required to
allow the projection of plans in non-initial situations. This is quite important to accomplish
intelligent behavior over an extended period of time, because after the execution of a first
plan we want the robot to achieve further goals, which necessitates the projection of new
candidate plans based on the updated belief state.

Based on pGOLOG programs which model the possible outcomes of all low-level processes
(in particular of sensor processes), we show how probabilistic belief update can be realized
within the pGOLOG framework. Roughly, after the activation of a low-level process, the beliefs
are updated by assuming that any probabilistic outcome of the program can have happened.
On the other hand, if a sensor process provides an answer, the pGOLOG model of the sensor
process is used to sharpen the robots belief state in a Bayesian manner [RN95].

Implementation and Coupling to a Real Robot System Besides the formal specifica-
tions, we sketch a possible implementation of an interpreter for both cc-Golog and pGOLOG in
PROLOG. As in the case of ConGolog [dGLL00], the implementation follows quite naturally
from the formal specification of cc-Golog respectively pGOLOG, which consists of predicate
calculus axioms. However, our implementation differs from the theory in it makes the usual
closed world assumption on the initial database and makes use of PROLOG set-predicates
like findall [SS94] where the theory appeals to second-order logic. Finally, we describe how
the PROLOG implementation can be coupled with the BeeSoft execution system, a basic-task
execution system which was successfully used to control the museum tour-guide robots Rhino

[BBC+95, BCF+00] and MINERVA [TBB+99].

1.2 Outline of this Thesis

The rest of this thesis is organized as follows.

• In Chapter 2 we discuss related work in the areas of reasoning about action and change,
cognitive robotics and non-logic-based robot control.

• In Chapter 3 we give a formal introduction to the situation calculus, the logical frame-
work on which GOLOG and its derivatives is based on. Thereafter, we introduce the
language ConGolog and give a formal semantics for it. Finally, we describe a methodol-
ogy due to Bacchus, Halpern and Levesque [BHL95] which allows the representation of
the robot’s probabilistic belief state within the situation calculus.

18 CHAPTER 1. INTRODUCTION

• In the Chapter 4, we show how to extend the situation calculus to include continuous
change and time. Thereafter, we present cc-Golog, a derivative of ConGolog which
takes into account the extended situation calculus, in particular its notion of time and
temporal precedence. Finally, we show how a robot control architecture where a high-
level controller communicates with low-level processes via messages can be modeled
directly in cc-Golog, and show how cc-Golog can be used to provide natural specifications
of event-driven tasks like immediately interrupting a delivery to charge batteries when
the battery level drops dangerously low.

• In Chapter 5, we discuss the changes needed to allow both on-line execution and pro-
jection of cc-Golog programs, and to allow the user to interleave on-line execution and
projection.

• In Chapter 6 we introduce the probabilistic language pGOLOG. Thereafter, we model the
robot’s probabilistic epistemic state following [BHL95, BHL99], and show how noisy low-
level processes, in particular sensor processes, can be modeled using pGOLOG. Finally,
we show how probabilistic projection works in pGOLOG.

• In Chapter 7, we show how belief update can be achieved within the pGOLOG frame-
work. In particular, we show how the robots confidence decreases when the robot
activates noisy low-level processes, and how it is sharpened when a sensor process pro-
vides information. Thereafter, we show how our framework can be used to replicate
an example considered in [BHL99]. Finally, we show how to interleave online execution
and probabilistic projection.

• In Chapter 8 we sketch the implementation of a cc-Golog and a pGOLOG interpreter in
PROLOG, and provide some experimental results regarding the runtime of our proto-
type implementation. This is followed by a description of an execution system which
couples cc-Golog respectively pGOLOG to a real robot, namely to the BeeSoft execution
system [BBC+95, BCF+00].

• Finally, we end with a summary and concluding remarks in Chapter 9.

Some of the results reported in this thesis have already been published before. In partic-
ular, the language cc-Golog described in Chapter 4 was introduced in [GL00a]. The approach
to on-line execution of cc-Golog plans presented in Chapter 5 was first proposed in [GL01b].
The probabilistic language pGOLOG described in Chapter 6 was introduced in [GL00b], and
finally the approach to belief update presented in Chapter 7 is based on earlier work reported
in [Gro00, GL01a].

Chapter 2

Related Work

In this chapter, we briefly summarize the most relevant existing work related to our approach
to high-level robot control. The chapter is subdivided into three sections. In the first section,
we go over some of the most important formalisms for representing and reasoning about
action and change. The next section introduces the high-level programming language GOLOG
[LRL+97] and discusses its various derivatives. Finally, in the last section we consider the
area of non-logic-based robot control, elaborating on the robot programming language RPL
whose expressive power has largely motivated the approach presented in this thesis.

2.1 Reasoning about Action and Change

As described in the previous chapter, the purpose of a high-level controller is to cause effects
in the world. Hence, a substantial task in reasoning about the effects of a plan is to reason
about its effects on the state of the world, and in particular to reason about the effects of
the execution of primitive actions on the state of the world. In this section, we will provide
a brief survey of the most important approaches to reasoning about actions and their effects,
also known as reasoning about actions and change. We will focus on logic-based approaches,
in particular on a formalism called the situation calculus.

2.1.1 The Situation Calculus

The situation calculus [McC63] is a logical language designed for representing dynamically
changing worlds. It characterizes the world as consisting of a sequence of situations, which can
be understood as “snapshots” of the state of the world. All situations are first-order citizens
of the logical language. In particular, there is a special constant S0 used to denote the initial
situation, namely that situation in which no actions have yet occurred. All changes are the
result of primitive actions. Just like situations, actions are first order terms and are denoted
by functional symbols. For example, the term gotoRoom(R2) could be used to represent the
action of the robot moving to room R2. All actions have preconditions, requirements that
must be satisfied for the action to be executed. For example, a robot can only give someone
a letter if it has loaded that letter.

To represent how the world changes from one situation to its successor, the situation cal-
culus includes a distinguished binary function symbol do, where do(a, s) denotes the situation
that results from performing action a in situation s. For example, do(gotoRoom(R2), S0)

19

20 CHAPTER 2. RELATED WORK

would represent the situation where the robot has moved to room R2, and nothing has hap-
pened before. In order to represent time-varying properties of the world, like for example the
robot’s location, the situation calculus offers the concept of a fluent, a relation or function
which takes a situation as last argument. For example, the function symbol robotLoc(s) could
be used to represent the location of the robot in a particular situation s. “Causal laws”
specifying how primitive actions affect the value of fluents are specified by effect axioms. For
example, an effect axiom could specify that after the execution of a gotoRoom(R2) action the
value of robotLoc is R2.

The Frame-, the Qualification- and the Ramification-Problem Besides specifying
which facts change as a result of the execution of an action, one needs axioms specifying which
facts remain unaffected by the action. For example, one needs axioms stating that a gotoRoom
action does not change the color of a letter loaded. The “non-effects” of actions are described
by frame axioms. Together, effect axioms and frame axioms provide a complete description
of how the world evolves in response to the agent’s actions. One of the early problems
encountered in using the situation calculus (as well as other formalisms for reasoning about
actions) is known as the frame problem: it arises because in general the number of frame
axioms is very large, which complicates the axiomatizing a domain and can make theorem
proving extremely inefficient. In the next Chapter, where we will provide a more formal
introduction to the situation calculus (Section 3.1), we will describe a simple solution to
the frame problem due to Ray Reiter where successor state axioms are used as a compact
representation of both effect and frame axioms [Rei91].

At least two other problems have surfaced in the study of reasoning about actions: the
qualification and the ramification problem. The qualification problem arises because in the
real world it is difficult to explicitly specify all the necessary and sufficient conditions for an
action a to be executable. For example, a robot can obviously only hand over a letter if it has
actually loaded this letter, but even so the robot’s gripper may be damaged, the letter may
be glued to the gripper etc. The ramification problem has to do with implicit consequences of
actions. For example, if the robot is covered with dust or bacteria, then while moving around
the robot also carries each particle that adheres to the robot. Though it might be possible
to explicitly describe such effects as part of the description of a gotoRoom action, one would
prefer to describe such indirect effects in a modular way. A large body of work exists dealing
with these two issues (e.g. [LR94, Thi01b]). However, in this thesis we are mainly concerned
with other issues, so we will simply ignore these two problems.

In the remainder of this section, we will describe some extensions of the situation calculus
which allow a more natural specification of real-world domains. In particular, we consider
approaches to incorporate continuous time and change, knowledge and sensing, and proba-
bilistic reasoning into the situation calculus, as these are important features of typical robotics
applications.

Continuous Time and Change in the Situation Calculus In its basic form, the sit-
uation calculus has no quantitative notion of time - there is a partial order on situations
induced by the function do(a, s) but otherwise the different situations are not dated. In or-
der to represent quantitative time in the situation calculus, Pinto and Reiter [PR93, PR95]
introduce a functional fluent start(s), which represents the starting time of situation s. The
structure of time is considered to be isomorphic to that of the positive real numbers, and

2.1. REASONING ABOUT ACTION AND CHANGE 21

each occurring action is associated with a time point at which the action is said to occur. To
represent an action that has a duration (also called a process), they propose to make use of
two instantaneous actions that represent the initiation and the termination of the process.
The idea is to represent a process like picking up a block by a start pickup and an end pickup
action.

In real-world applications, one is also often concerned with processes which cause proper-
ties to change continuously over time. For example, in a mobile robot application the robot’s
location and orientation change continuously as it navigates through its environment. To
represent continuous change in the situation calculus, Pinto [Pin94, Pin97] proposes to repre-
sent the properties of the world using two different concepts: discrete fluents, and continuous
parameters, which represent continuously varying properties of the world. A parameter can
be stated to behave as described by a named function of time through the special binary
fluent .=, which takes as arguments a parameter and a named function of time. The idea is
to express, for example, that a ball is moving with velocity v by writing axioms of the form
ballPosition(s) .= linear(v, x0), where linear(v, x0) is an (appropriately axiomatized) named
function of time.

In [Rei96], Reiter proposes a version of the situation calculus where all primitive actions
take as last argument a parameter denoting their occurrence time. The approach also consid-
ers truly concurrent actions which consist of a set of primitive actions, and natural actions
which occur in response to known laws of physics. In particular, the approach makes use of
action precondition axioms which determine the occurrence time of an action by means of
numerical equations. For example, a bounce action representing that a falling ball bounces of
the floor is specified to be possible only at the time where its height becomes zero, where the
height of the ball at time t is calculated using the laws of physics. Natural actions are required
to occur at their predicted times, provided no earlier action prevent them from occurring. For
example, a bounce action will happen unless the ball is caught before.

Based on Reiter’s framework, Kelley [Kel96b, Kel96a] demonstrates how natural actions
can be used to model and reason about complex dynamic systems within the situation calcu-
lus.

Knowledge and Sensing in the Situation Calculus The approaches described so far
were only concerned about representing and reasoning about the actual state of the world.
However, in many real-world applications a robot or agent has only limited knowledge about
its environment. As an example, consider a mobile robot whose goal is to get into a room.
Furthermore, assume that the robot can travel into the room through one of two doors, and
that it knows that one door is open, but that it does not know which door is open. Clearly,
in this example there is no sequence of primitive actions which can be shown to achieve the
goal.

In such applications, representing the limited knowledge of the agent and its ability to
sense properties of the world is an important issue. For example, what is needed in our
robot application is a sensing action which allows the robot to determine whether a specific
door is open. Building on the work of Moore [Moo85], Scherl and Levesque provide a theory
of knowledge and sensing in the situation calculus [SL93]. Briefly, they propose to use a
new fluent K whose first argument is also a situation: informally, K(s′, s) holds when a
robot in situation s, unsure of what situation it is in, thinks it could be in situation s′.
Knowledge for the robot, then, is defined as what holds in all of these so-called accessible

22 CHAPTER 2. RELATED WORK

situations. Furthermore, they introduce sensing actions into the situation calculus, actions
which provide the robot with information about the state of the world. In particular, they
consider binary sensing actions that tell the robot whether or not some condition holds in the
current situation. Their approach is based on the use of so-called sensed fluent axioms which
specify that a sensing action a can be used to determine the truth value of a condition φa.
Based on these axioms, they formalize how the robot’s knowledge - characterized by a set of
situations considered possible - evolves from one situation to another. As an example, within
this framework it would be possible to formalize that after execution of a senseDoor action,
representing that the robot senses the state of a door, it knows whether or not the door is
open.

Finally, in [Lak96, LL98], Lakemeyer and Levesque consider the issue of only knowing in
the situation calculus, which is concerned with expressing that an agent knows a sentence,
and nothing more. The idea is that if an agent only knows φ, then it considers every situation
s′ as possible which satisfies φ and hence has minimal knowledge except for the knowledge
that φ holds.

Probabilistic Reasoning in the Situation Calculus Although the approaches discussed
in the previous section account for uncertainty about the state of the world, they do so in
a qualitative way - for example, the robot knows whether a door is open, or not. In real-
world applications, however, an agent often has degrees of confidence in various propositions,
and must cope with noisy sensors that can only be used to increase its beliefs in certain
propositions. An appealing approach to deal quantitatively with this kind of uncertainty in
the situation calculus is to integrate concepts from probability theory.

In [BHL95, BHL99], Bacchus, Halpern and Levesque (BHL) propose a framework for
reasoning about noisy sensors and effectors in the situation calculus which is based on a new
functional epistemic fluent p. Roughly, p can be thought of as a weighted version of Scherl
and Levesque’s epistemic fluent K [SL93]; that is, it can be read as “in situation s, the
agent thinks that s′ is possible with degree of likelihood p(s′, s).” Based on p, they define
Bel(φ, s), the agent’s degree of belief that φ holds in situation s, as the (normalized) sum
of the degrees of likelihood of all situations s′ considered possible in s that fulfill φ. To
represent that noisy sensors and effectors can have different possible outcomes, they make use
of nondeterministic instructions, i.e. instructions which can result in many different outcomes
(see also Section 3.2). For example, in an example domain where a mobile robot is moving
along a straight line in a 1-dimensional world, they use the nondeterministic instruction
noisyAdv(x) which is specified to stand for any exactAdv(x, y) action. Here, exactAdv(x, y)
stands for the robot trying to advance by x units but actually moving y units. The idea is
that the robot cannot directly execute the primitive action exactAdv(x, y), but instead can
only execute the nondeterministic instruction noisyAdv(x).

The main topic of their approach is to represent how the robot’s beliefs change when it
activates noisy sensors and effectors. In order to represent the agent’s limited perceptual
capabilities, they introduce observation-indistinguishability axioms (OI-axioms) which are
used to specify that (in a certain situation) the agent is unable to discriminate a set of actions
a′ from the action a. For example, OI axioms are used to specify that the robot cannot
distinguish two exactAdv(x, y) and exactAdv(x, y′) actions. Additionally, action-likelihood
axioms are introduced to specify the likelihood of an action a in situation s, for example to
model that the agent believes that there is a 50% chance that noisyAdv(x) will move the

2.1. REASONING ABOUT ACTION AND CHANGE 23

robot by the exact distance x. Noisy sensors can be represented similarly. Based on these
concepts, BHL define a successor state axiom for the epistemic fluent p, thereby formalizing
how the robot’s beliefs change as it activates noisy sensors and effectors. They illustrate that
their framework correctly captures the intuitive effects of noisy sensors and effectors on the
robot’s beliefs, and show (under a few assumptions) that the robot’s beliefs are updated in a
manner identical to standard Bayesian conditioning.1

In [PSSM00], Pinto et al. propose a different approach to integrate probability theory
into the situation calculus. Their approach is based on the idea that an agent cannot directly
execute a primitive action, but instead can only provide an input which results in a transition,
and that thereafter nature steps in and probabilistically chooses an actual outcome. Any
primitive action in their framework thus consists of two components: the agent’s input and
the actual outcome. As an example, in a coin-toss example there is only one possible input,
toss, and the possible outcomes (chosen by nature) are heads and tails. The primitive actions
in this example thus are the pairs 〈toss, heads〉 and 〈toss, tails〉. As these primitive actions
have deterministic effects, the resulting formalism can employ Reiter’s solution to the frame
problem.

The different possible reactions of nature are assigned probabilities. Based upon these
probabilities, the probability that a fluent F holds after a sequence of inputs is defined in
terms of the (deterministic) action sequences that can result from the inputs and nature’s
reactions. While the original framework is restricted to discrete probability distributions,
in [MPP+01] it is extended to domains where the set of possible outcomes is continuous.
Basically, this is realized by relying on an “oracle” that provides the result of operations on real
numbers, probability distributions and the like (in the implementation, the Mathematica

software system [Wol96] is used as oracle). Unlike the framework of BHL, this approach is not
“agent centered,” meaning that it does not consider the agent’s beliefs, but only the external
probability of success of possible actions. In particular, the approach does not consider
sensing.

2.1.2 Other Approaches to Reasoning about Action and Change

While the situation calculus is one formalism for reasoning about action and change, there
are many others. In this subsection, we will briefly go over the most important ones, focusing
on logic-based approaches.

STRIPS The STRIPS planning system [FN71] was designed as the planning component
for the (second version) of the robot Shakey [Nil84]. Its purpose was to generate a plan of
actions that Shakey could then execute step by step in order to achieve a given goal. STRIPS

uses a restricted, propositional language for representing the effects of actions, which lends
itself to efficient planning algorithms. In the following, we use the term STRIPS to refer to
STRIPS’ representation language. Its central concept is the STRIPS operator, which is used
to represent the available actions. A STRIPS operator essentially consists of a set of atoms
which represent the preconditions that must be true before the operator can be applied, and
a set of literals (positive or negative atoms) that describe its effects, i.e. how the situation
changes when the operator is applied. The frame problem is solved by assuming inertia

1Roughly, Bayes’ rule says that the probability of Y given evidence X corresponds to the product of the
probability of X given Y and the prior probability of Y , divided by a normalizing factor; cf. [RN95].

24 CHAPTER 2. RELATED WORK

regarding those propositions not affected by the operator (cf. [GL98a], where a transitions-
based semantics for STRIPS is considered). A formal account of STRIPS which discusses
its relation to the situation calculus can be found in [LR95].

While the early STRIPS-based planners where searching for plans consisting of a to-
tally ordered set of operators, by now it is common to consider partially ordered plans (e.g.
[Sac75, MR91]). A plan is partially ordered if some steps are ordered with respect to each
other and other steps are unordered. A partially ordered plans is considered a solution to a
planning problem if any linearization of it is a solution. The ADL formalism extends the (quite
restrictive) STRIPS representation to allow for conditional effects [Ped89, PW92]. The area
of conditional planning (e.g. [War76, PS92, WAS98]) aims at synthesizing plans involving
sensing actions and conditionals. Probabilistic planners (e.g. [KHW95, ML98]) use a prob-
abilistic extension of STRIPS where the operators can have different probabilistic effects.
Probabilistic planners that accounts for sensing (e.g. [GA99, BL99]) additionally consider
(noisy) information-producing actions, and consider plans whose steps can be conditioned on
the outcome of (previously executed) information-producing actions. Several planning system
consider (continuous) resources such as time, money and energy (e.g. [Ver83, Koe98, HG01]).
STRIPS-planning is still an area of active research. Many of today’s most efficient planners
are based on plan graphs [BF95, KNHD97], planning as satisfiability testing [KS92, KS96],
or heuristic planning [BG99, DK01].

The Event Calculus The event calculus was originally introduced by Kowalski and Sergot
as a logic programming formalism for representing events and their effects, especially in
database applications [KS86, Kow92]. Here, we follow the dialect of the event calculus due to
Shanahan, described in [Sha99]. Its ontology comprises events (also called actions), fluents and
time points. Events initiate and terminate periods during which fluents hold. Here, fluents
(just as events and time points) are first-class objects, unlike in the situation calculus. The
event calculus includes predicates for saying what happens when (“happens(action,time)”),
for describing the initial situation, for describing the effects of actions, and for saying what
fluents hold at what times.

The frame problem is solved using circumscription [McC80], a form of non-monotonic
reasoning which is based on the idea to minimize the extension of certain named predicates
(in a nutshell, a logic or formalism is non-monotonic if adding axioms to a theory may
non-monotonically change the set of sentences entailed). In particular, the extension of the
predicate happens, representing the set of action occurrences, is minimized, as well as the
extension of predicates representing the positive and negative effects of actions. The key
to this solution is the splitting of the theory into different parts, which are circumscribed
separately. We remark that unlike Reiter’s solution to the frame problem, which essentially
works by incrementing the axiom set with additional axioms (cf. Section 3.1.1) and therefore
represents a syntactic method for reducing the intended model set, the event calculus’ solution
to the frame problem is semantic. In the case where the theories are restricted to Horn
Clauses, the circumscriptions reduce to predicate completions [Cla78] and the non-monotonic
theory can be “compiled” into a classical (monotonic) logical theory. A significant difference
compared with the situation calculus is that in the event calculus planning has to be handled
as abduction, not as deduction.

The formalism can handle actions with indirect and nondeterministic effects, compound
actions (which can include standard programming constructs such as sequences, conditionals

2.1. REASONING ABOUT ACTION AND CHANGE 25

and recursion) and concurrent actions. In [Sha90], Shanahan presents an extension of the
event calculus which is able to represent continuous change. The approach is based on the
notion of the trajectory of a continuously changing quantity, which is a path plotted against
time through the corresponding quantity space. In [MS96], the framework is extended to
allow descriptions using arbitrary systems of differential equations, based on a case study by
Miller on continuous change in the situation calculus [Mil96]. In particular, the extended
framework includes the concept of a derivative function.

In [Sha96], Shanahan provides a logical account of sensor data assimilation in which a
model of the actual state of the world is constructed through an abductive process. The
approach is developed using the example of a mobile robot with simple proximity sensors.
Essentially, the abduction process hypothesizes the existence and locations of objects to ex-
plain the sensor data obtained. The theory builds on a representation of space as R2, and
of objects as 2-dimensional regions. The approach also represents noisy effects (in particular
motor noise) by nondeterminism. For that purpose, the robot’s location (which is represented
as changing continuously) is only constrained to be within a circle of uncertainty centered
on the location where it would be if its motors weren’t noisy. In [Sha97], the framework
is restated based on the method of determining fluents, which allows it to deal with noisy
sensors. Again, noise is considered as nondeterminism.

Sandewall’s Approach In [San89a], Sandewall proposes to combine non-monotonic tem-
poral logic with differential calculus. The formalism is based on the concept of parameters,
continuously changing properties which are assumed to be piecewise continuous. Parameters
(which correspond to fluents) have a real-number value at each point in time. The possible
histories over time may contain an arbitrary number of time-points called breakpoints, where
the parameters may have discontinuities. In the intervals between two breakpoints, the pa-
rameters are assumed to be continuous. An example where a breakpoint arises is when an
object held is let go, which causes its vertical acceleration to change from 0 to -9.81 m/s2.

While differential calculus is used to characterize the parameters and their continuous
intervals between breakpoints, a non-monotonic temporal logic is used to characterize the
behavior of the parameters around the breakpoints. The non-monotonicity is needed in order
to formalize that parameters are continuous at break-points whenever that is consistent with
the axioms. For example, this is needed to ensure that if one object is let go (which means that
there is a break-point), other objects retain their positions. The semantics of the logic is based
on the concept of preferred interpretations, which involve minimal changes at breakpoints.
This concept is similar to the principle of chronological minimization introduced by Shoham
[Sho87, Sho88].

While the original approach was limited to the case in which there are no agents or actions
in the world, in [San89b, San94] the approach is extended to the case where actions may occur.
In the presence of actions, it turns out that the conventional preferential semantics, also called
chronological minimization of discontinuities (CMD), will include anomalous models. In order
to overcome this problem, Sandewall proposes a semantics based on the concepts of filtering
and occlusion (or masking relations). The idea is to separate the axioms describing the
observations (or goals, in a planning problem) from the formulas representing all the other
given information (like action statements) and to first determine by means of CMD the set of
all possible developments in the world regardless of any observation. Thereafter, this set of
interpretations is “filtered” with the given observation, instead of applying CMD to the union

26 CHAPTER 2. RELATED WORK

of the observation and the other axioms. Finally, the idea of occlusion is to minimize only
those discontinuities which are not caused by actions. Note that this is similar to a solution
to the frame problem, but for a continuous domain. In [DL94], Doherty and Lukaszewicz
shows how this preferential entailment can be characterized in terms of standard predicate
calculus and circumscription.

The Action Language A The action language A [GL93] is a simple (propositional) lan-
guage for describing actions. The ontology of A is based on fluents and actions. A state is
a set of fluents. A domain description consists of value propositions and effect propositions.
Value propositions provide information about the value of fluents in the initial state or after
execution of some actions. Effect propositions describe the effects of actions on the fluents.
The semantics of A is based on the concept of a transition function, which is a mapping from
a state and an action to a successor state. The entailment relation of A is non-monotonic
in the sense that adding effect propositions to a domain description may non-monotonically
change the set of propositions entailed.

In [SB98], Son and Baral include the notion of knowledge into the action language A.
Their approach is based on that of Scherl and Levesque [SL93]. Essentially, they extend the
notion of a state, which in A is a set of fluents, to a k-state, which consists of a pair 〈s,Σ〉.
Here, s is a state (representing the real state of the world) and Σ a set of possible states which
the agent believes it might be in. So-called k-propositions specify which actions can be used
to determine the truth value of a fluent. They also define conditional plans, which execute
depending on the knowledge of the agent.

In [BT01], Baral and Tuan propose a probabilistic extension of the language A. Basically,
they add a new set to the language, the unknown variables. As in A, there is also a set of
propositional fluent symbols and a set of action symbols. Unknown variables can only occur
in the antecedent of effect propositions, meaning that causal rules never affect the truth value
of unknown variables. On the other hand, unknown variables can affect the value of fluents
in a state. The underlying idea is that nature’s laws are deterministic, and randomness
surfaces due to the reasoner’s ignorance of the underlying boundary conditions. Besides the
domain specification, a domain description in probabilistic A includes a set of propositions
which specifies the probability of the unknown variables. The formalism also includes an
observation language which allows the user to state that certain facts hold initially or after
the execution of some actions. Given a domain description, a specification of the unconditional
probabilities and some observations, the user can then ask for the probability that a formula
holds after the execution of some actions.

Causal Theories and the Language C The causal theories proposed in [MT97] are
based on the principle of universal causation: every fact that obtains is caused. That is, they
distinguish between the claim that a proposition is true and the stronger claim that there is a
cause for it to be true. Roughly, a causal theory D is a set of causal laws of the form φ⇒ ψ.
The idea is that a world history is (causally) possible if every fact that holds in it is caused, or
put another way, that exactly the fact that obtain in it are caused in it. The formal semantics
is based on a fixed-point definition, which states that, intuitively, I is a causally explained
interpretation of a causal theory D if is is a model of its consequences with respect to the
causal laws of D. The entailment relation of causal theories is non-monotonic. Based on this
framework, it is possible to formalize domains which account for nondeterministic actions and

2.1. REASONING ABOUT ACTION AND CHANGE 27

for facts which are explained by inertia, ramification and qualification constraints.
While the original approach only accounted for propositional causal rules, in [Lif97] the

framework is extended to arbitrary non-propositional rules. In addition, the principle of
universal causation is weakened in that it only applies to a subset of the symbols, the “ex-
plainable” symbols. This is achieved by a translation into second-order predicate logic. This
extended framework is the foundation for the action language C [GL98b, GL98a]. In C, there
are two kinds of proposition: static laws and dynamic laws. As in A, the semantics is based
on transitions. Here, however, a transition is required to be causally explained. Only those
fact hold after execution of an action which have been caused. Thus, inertia is not a built-in
feature in the semantics of C, unlike in A. Roughly, in the semantics of C, the principle of
universal causation is applied to the world histories that consist of two time instants - before
and after executing an action - and restricted to the facts obtained in the second of these
time instants.

The Fluent Calculus The aim of the fluent calculus [Thi99c, Thi99b] is to provide a more
efficient way to compute the (non)-effects of actions (this is sometimes called the “inferential”
frame problem). One motivation for the fluent calculus is that in the situation calculus, in
order to solve a projection task one has to carry the truth value of any fluent from the point
of its appearance past each intermediate situation to the point of its use. This has to be done
one-by-one, and using separate instances of the relevant axioms.

The idea behind the fluent calculus is that instead a single state update axiom will suffice to
derive the entire change caused by the action in question. To achieve this, the fluent calculus
extends the ontology of the situation calculus from which it descends in that it distinguishes
between the concept of a situation (which is a sequence of actions), and a state. A state
is simply a collection of fluents, which are reified to this end, that is treated as first-order
objects. Each situation is related to a state, which characterizes the state of the world in
that situation. State update axioms specify how the states at two consecutive situations are
related, that is which fluents become true respectively false by the execution of a primitive
action. Similar to Reiter’s solution to the frame problem [Rei91], the concept of state update
axioms is based on the assumption that a set of axioms is complete in the sense that it specifies
all relevant effects of all actions involved [Thi98].

While the use of state update axioms allows to derive the entire change caused by actions
using significantly fewer instances of axioms, it is not clear whether in practice the fluent
calculus is always superior to the situation calculus because the use of state update axioms
requires extended unique names axioms for states, which compute complete sets of most
general unifiers with respect to the equational theory of associativity, commutativity, and
existence of unit element. Besides, state update axioms require that an action does not have
potentially infinitely many effects.

In [Thi99a], Thielscher shows how to integrate continuous change into the fluent calculus.
[Thi00b] describes how Scherl and Levesque’s framework for dealing with knowledge and sens-
ing in the situation calculus [SL93] can be adapted to the fluent calculus with the additional
benefit that the resulting framework also allows to distinguish between the actual effects of
actions, and what a robot knows about these effects (for example, there might be a button
which causes a door to open, but the robot does not know that the button is causally related
to the door).

28 CHAPTER 2. RELATED WORK

(PO)MDPs Another principled approach to reasoning and acting under probabilistic un-
certainty is the theory of Markov decision processes [Bel57, Put94]. A Markov Decision
Process (MDP) is defined in terms of the following components: a finite set of states; a fi-
nite set of actions which influence the system state; a transition function that, given a state
and an action, returns a probability distribution over resulting states; and, finally, a reward
function which specifies the reward given in each state. The process is fully observable in
the sense that although the agent cannot predict the outcome of an action with certainty,
it can observe the state once it is reached. The decision problem faced by an agent in an
MDP is that of forming an optimal policy, that is a mapping from states to actions that
maximizes the expected total accumulated reward over some (finite or infinite) horizon. A
partially observable MDP, or a POMDP, is an MDP together with a set of observables and
an observation function that specifies the probability distribution for the observables for each
state and action [KLC98]. In a POMDP, the agent is unable to observe the current state.
Instead, it makes an observation based on the action and resulting state. The agent’s goal
remains to maximize its total expected reward.

One difficulty faced by classical approaches to (PO)MDPs like dynamic programming
[Bel57] is their reliance on an explicit state-space formulation, which causes their complexity
to be exponential in the number of state variables. As a result, the computational cost rapidly
becomes prohibitive already in relatively small domains (cf [GB98]). Recent work in decision
theoretic planning has focused on the development of compact, natural representations for
POMDP [BP96, GB98]. One possibility is to use Bayesian networks [Pea88], which provide
a compact representation of the dependencies between probabilistic variables. For example,
Dean and Kanazawa [DK89] use two-stage temporal Bayesian networks which represent the
transition probability associated with an action by two disjunct sets of nodes. One set of
nodes represent the state prior to the action, while another set represent the state after the
action has been performed. [BRP01] consider first-order representations of state spaces and
use an operation called decision-theoretic regression to compute policies.

Other Approaches Other approaches to reasoning about action and change include the
temporal logics by McDermott and Allen [McD82, All84, AF94]. Herrmann and Thielscher
[HT96] propose a calculus based on the notion of processes where a situation is characterized
by a (real-valued) time point together with a set of processes, and where transition laws
involve numerical equations specifying when processes end and new processes begin. Finally,
the area of qualitative reasoning [Hay79, Hay85, For84, Kui86] is concerned with representing
continuous changing properties using discrete qualitative representation.

2.2 GOLOG and its Derivatives

As described in the previous section, the situation calculus respectively its various exten-
sions are well suited to represent and reason about the effects of primitive actions in complex
robotics domains. The same holds for (some of) the other approaches described in Subsec-
tion 2.1.2, like the event calculus or the fluent calculus. However, in robotics applications
we would not only like to reason about the effects of primitive actions, but about the ef-
fects of complex high-level robot programs. For that purpose, the use of a situation calculus
based approach is suggestive because there exists a family of powerful high-level programming
languages built on top of it.

2.2. GOLOG AND ITS DERIVATIVES 29

GOLOG and ConGolog GOLOG [LRL+97] is a high-level programming language designed
for the specification of complex behavior in dynamic domains, like for example high-level con-
trollers operating mobile robots. GOLOG comes with a declarative semantics which is based
on the situation calculus. In particular, every primitive GOLOG instruction is a primitive
action of the underlying situation calculus theory. As a result, the GOLOG interpreter can
automatically maintain a model of the world during the execution of a plan simply by keeping
track of the primitive actions being executed. Similarly, it is straightforward to reason about
the effects of GOLOG plans on the state of the world.

Besides executing primitive actions, a GOLOG program can test properties of the domain
by appealing to the value of fluents, and similarly can condition the execution of actions on
the value of fluents or complex formulas. GOLOG also provides instructions like sequences, it-
erations and recursive procedures to define complex programs. Additionally, GOLOG provides
nondeterministic instructions. This allows the specification of nondeterministic programs like
“execute action a or action b, and verify that afterwards φ holds,” with the idea that the
GOLOG interpreter shall automatically search for a sequence of actions that constitutes a
legal execution of the nondeterministic program. In doing so, the GOLOG interpreter makes
use of the underlying situation calculus theory to reason about the effects of various courses
of actions. A prototype implementation of GOLOG has been developed and has already been
used to control different real robots [LTJ98, BCF+00]. In particular, Hähnel et al. [HBL98]
describe how GOLOG can be coupled to the quite successful BeeSoft robot control system
[BCF+00].

In [dGLL97, dGLL00], instructions for concurrent execution are introduced with a con-
ventional interleaving semantics. Besides this concurrent extension called ConGolog, several
other extensions of GOLOG have been proposed. In the remainder of this section, we will
briefly discuss the most important ones and sketch their underlying ideas.

Sequential, temporal GOLOG In [Rei98], Reiter proposes a temporal extension of GOLOG
which is based on the temporal situation calculus presented in [Rei96]. In particular, each
primitive action has a starting time, which has to be explicitly stated in the program. Ac-
tions with duration (processes) are represented by instantaneous actions that represent the
initiation and the termination of the process. For example, to represent that a robot travels
from a location loc1 to a new location loc2, in sequential, temporal GOLOG one would make
use of a program like [startGo(loc1, loc2, t); endGo(loc1, loc2, t+ travelTime(loc1, loc2))], where
the robot first starts moving from loc1 to loc2 at time t, and then stops moving at time
t+ travelTime(loc1, loc2).

While this representation is well suited for the projection of a plan, it would be unrealistic
to expect the robot to execute a program like the above and to meet the exact times in
the resulting schedule of actions. One approach to overcome this problem is to make use of
execution monitoring. Execution monitoring is the robot’s process of observing the world for
discrepancies between the actual world and its internal representation of it, and recovering
from such discrepancies [dGRS98]. In the case of temporal programs, the execution monitor’s
(primary) task would be to adapt the schedule to the actions’ actual occurrence time.

On-line Execution of GOLOG Programs The GOLOG dialects considered so far execute
in an off-line manner: given a program, the interpreter finds a sequence of actions constituting
an entire legal execution of the program before actually executing any of them in the world.

30 CHAPTER 2. RELATED WORK

In [dGL99b], de Giacomo and Levesque argue that this execution mode is problematic when
large nondeterministic programs are to be executed, and, maybe more fundamentally, in the
presence of sensing actions. As an alternative to the off-line execution style, they propose to
consider the on-line execution of programs. In the on-line execution of a GOLOG program,
nondeterministic choices are treated like random ones, and any action selected is executed
immediately.

The on-line style of execution is well-suited to programs containing binary sensing actions
[SL93]. An off-line GOLOG interpreter cannot predict the outcome of a sensing action, and
the best it can do is search for a sequence of actions that is a legal execution for both possible
outcomes of a sensing action. On the other hand, an on-line interpreter does not have to
reason about the impact of future sensing actions when executing a plan and can nevertheless
take into account the outcome of sensing actions. Of course, on-line execution of programs
involving a lot of nondeterminism is also much faster, because the random execution style
does not require any reasoning. However, this execution style has the serious drawback that
it does not guarantee that the execution will successfully complete. To get the best of both
approaches, de Giacomo and Levesque propose to interleave on-line and off-line execution.
In particular, they introduce a new operator Σ for off-line search, so that Σδ, where δ is any
program, means “consider δ off-line, searching for a globally successful termination state.”

sGolog Another approach for dealing with sensing actions is Lakemeyer’s sGOLOG [Lak99].
Unlike the approach of de Giacomo and Levesque, sGOLOG is based on off-line execution.
One motivation is that the on-line execution of [dGL99b] does not allow the automatic (off-
line) verification of a plan. The idea is that instead of deriving a linear sequence of actions
the interpreter should yield a tree of actions. A particular path in the tree then represents
a legal execution of primitive actions conditioned on the possible outcome of sensing actions
along the way. To represent such trees, Lakemeyer augments the situation calculus with
conditional action trees (CAT). Besides primitive actions, a CAT may include branching
nodes. A branching node has the form [φ, c1, c2], where φ is a formula which determines
which branch is to be executed, and c1 and c2 are the true- and false-branch. Given a
program that may contain sensing actions, the sGOLOG interpreter produces CAT’s instead
of sequences of actions in an off-line fashion. Here, the introduction of new branches in a
CAT is left under the control of the user, who also has the responsibility to ensure that the
branch conditions will be known at execution time.

Recently, Sardina [Sar01] has proposed to combine de Giacomo and Levesque’s idea to
interleave on-line and off-line execution with sGOLOG’s notion of CAT’s. In particular, he
introduces a new operator Σc which allows for off-line search of conditional plans under user
control.

DTGolog In [BRST00, Sou01], Boutilier, Reiter, Soutchanski and Thrun propose a decision-
theoretic extension of GOLOG called DTGolog. DTGolog can be seen as a synthesis of MDPs
and GOLOG. To represent the effects of noisy actions, DTGolog employs an action theory sim-
ilar to the probabilistic situation calculus proposed by Pinto et al. [PSSM00]. In particular,
stochastic agent actions are associated with a finite set of deterministic actions from which
nature chooses stochastically. Additionally, a DTGolog domain specification includes an op-
timization theory which contains axioms specifying a reward function. A DTGolog program
is written using the same instructions as in GOLOG, in particular nondeterministic instruc-

2.2. GOLOG AND ITS DERIVATIVES 31

tions. Given a background theory, the semantics of a DTGolog program corresponds to that
execution of the (nondeterministic) program which has the highest expected utility. Thus,
from the point of view of MDPs, DTGolog programs can be seen as constraints on the space
of allowable policies.

DTGolog assumes full observability of the domain. To “implement” full observability, a
DTGolog background action theory includes a new class of sense condition axioms. These
axioms associate a logical condition with each of nature’s deterministic actions, which allows
the agent to disambiguate the state using sensor information. The output of the DTGolog
interpreter thus consists of the sequential composition of agent actions, sensing actions which
serve to identify nature’s choices, and conditionals. Intuitively, the agent senses the outcome
of each stochastic action a (which deterministic action has been chosen by nature?), and then
branches depending on the actual action which has occurred.

Knowledge-Based Programs In [Rei00], Reiter investigates the issue of knowledge based
programming. Here, a knowledge-based program is a GOLOG program that includes sensing
actions (in the sense of [SL93]) and that explicitly makes appeal to the agent’s knowledge at
execution time. Knowledge-based programs are intended to be executed on-line. Although
they may involve nondeterministic instructions, they have to be designed in a way that pre-
vents backtracking over sensing actions. The paper also shows how knowledge tests can be
reduced to provability.

Further Work Related to GOLOG Poole [Poo96, Poo98] proposes an integration of deci-
sion theory, the independent choice logic [Poo97], and the situation calculus. Unlike the pre-
vious approaches, Poole’s approach is not based on the standard predicate calculus semantics
but on the concepts of selector functions [Poo97] and stable models [GL88]. In particular, an
agent always knows what situation it is in, but the situation doesn’t fully specify what is true
in the world. To account for sensing, Poole introduces passive sensors which are represented
by means of a set of terms called observables (there are no sensing actions in the sense of
[SL93]). In any situation the robot has perfect knowledge of the value of the observables,
and it can execute plans which are conditioned on the value of observables. The aim of this
approach is to predict the probabilistic effects of a conditional plan, and in particular its
expected utility.2

Thielscher has developed the action programming language FLUX [Thi00a], which provides
similar facilities as GOLOG but is based on the fluent calculus. In [Thi01a], the language is
extended to deal with knowledge and sensing, similarly to Reiter’s knowledge based programs
[Rei00]. Unlike Reiter’s approach which is restricted to pure on-line execution, the extended
FLUX interpreter is able to infer conditional plans including sensing actions. In [MT01], Mar-
tin and Thielscher present a planning and execution monitoring extension of FLUX based on
a solution to the qualification problem in the fluent calculus [Thi01b], which allows recovering
from unexpected action failures.

Based on Scherl and Levesque’s representation of knowledge and sensing in the situation
calculus [SL93], Levesque [Lev96] proposes the language R which includes loops and the

2As Poole states, “in [BHL95, BHL99] the probabilistic reasoning is internal to the agent”, while in his
framework “the agents [...] do not (have to) do probabilistic reasoning”; “an optimal agent may maintain a
belief state [...] but it does not have to.” Thus, Poole’s approach is about probabilistic projection, not about
belief update.

32 CHAPTER 2. RELATED WORK

conditional construct branch(a, r1, r2). The intuition is that branch(a, r1, r2) first executes a
binary sensing action a, and thereafter either executes the program r1 or r2 depending on the
outcome of a. Finally, Shanahan [Sha98, SW00] has advocated a fully logic-based approach
to robot control where a variety of tasks like planning, sensor integration, navigation and map
building are all accomplished in an event-calculus framework.

2.3 Robot Controllers

In most existing robotics applications, the robot controllers are written using specialized,
non-logic-based robot programming languages. Those languages provide features which are
not present in the GOLOG family of languages and which have proven to be quite useful in
practice. We will now take a look at the area of non-logic-based robot control and on the
features provided by modern non-logic-based robot programming languages.

2.3.1 Robot Control Architectures

In the early days of AI-based robotics, the dominant control architecture for autonomous
robots was the classical sense-plan-act (SPA) approach. This approach, which goes back to
the work on the (first version) of the robot Shakey [Nil84], decomposed the control problem
into three functional elements: a sensing system which translated sensor input into a world
model, a planning system, and an execution system. This classical approach suffered from
numerous shortcomings. In particular, planning and world modeling turned out to be very
hard which caused the approach to have difficulties to react in real-time, and open-loop
plan execution was inadequate in the face of the uncertainty encountered in realistic robot
environments.

Several alternative approaches to robot control have been proposed to overcome the short-
comings of SPA. One the most prominent (and radical) departures from SPA is the behavior-
based approach advocated by Rodney Brooks [Bro86, Bro91]. The behavior-based approach
stresses the use of minimal internal representation, following the slogan “the world is its own
model”. Brooks proposed to decompose the problem of robot control into layers correspond-
ing to different levels of behavior. Central to his approach is the concept of subsumption,
which means that more complex layers can influence lower layers. Subsumption achieved
dramatic success regarding basic-level tasks like obstacle avoidance or navigation. However,
the approach had severe difficulties to scale to more complex tasks (cf. [Gat98]).

Today, most robot control architectures are hybrid systems that make use of both reactive
components like behaviors, and components which are based on a symbolic representation.
All of these approaches comprise two main layers: a reactive feedback control mechanism,
and a task-control or sequencer layer which initiates and monitors behaviors, taking care of
temporal aspects of coordinating behaviors. In addition, these architecture usually include a
higher-level deliberative layer to provide look-ahead planning capabilities. The communica-
tion between the different layers is achieved via messages. Some of the most prominent hybrid
control architectures are the 3T architecture [BFG+97], Atlantis [Gat92] and SSS [Con92].
But they also include the mobile robot Diablo [BFH+98], whose higher control level is based on
the languageA, the very successful museum tour-guide robots Rhino [BBC+95, BCF+00] and
MINERVA [TBB+99], as well as Saphira [KMRS97], XAVIER [SGH+97b] and NMR [PBC+97].

2.3. ROBOT CONTROLLERS 33

Low-Level Processes At the lowest layer, most hybrid architectures employ a suite of
continuous processes (often called behaviors or skills) that provide situated control for the
physical actions effected by the system. Here, we refer to such processes as low-level processes.
We won’t elaborate on the topic of low-level robot control except to note that this layer can
be quite complex. It may involve a fuzzy controller [KMRS97] or may be based on POMDPs
[SK95]. State-of-the-art basic-task levels like the BeeSoft system [BCF+00] used in the Rhino

and MINERVA projects provide robust facilities for collision avoidance [FBT97], localization
[FBT99, FBDT99], map building building and path planning [TBB+98].

2.3.2 Non-Logic-Based Robot Programming Languages

In most of these architectures, it is the sequencer that plays the role of the main executive,
and which (eventually) invokes the planner to accomplish goals. The sequencer must support
continuous processes and concurrent actions, since a robot must generally perform many
activities. While parts of the sequencer programs may automatically be generated by a
planner, quite often they are hand-tailored by a robot programmer. As stated by Kurt
Konolige [Kon97], “when one thinks of writing robot programs, it is sequencer programs that
are the result.” We will now briefly go over some of the most prominent robot programming
languages and then elaborate on McDermott’s reactive plan language RPL [McD91].

PRS-Lite PRS-Lite [Mye96] is a derivative of the family of Procedural Reasoning Systems
[GI89] optimized for compactness and efficiency. PRS-Lite provides constructs like test in-
structions which provide the ability to test environment variables, execute instructions used
to set environment variables or to trigger external actions, intend and unintend instructions
used to activate respectively to explicitly terminate low-level processes, and wait-for instruc-
tions that enable limited suspension until a certain condition or event occurs. The wait-for
modality is critical in that it enables synchronization among concurrent processes. Sequencing
constructs like if (conditional activation) and and (parallel activation) allow goal-ordering. A
compiler transforms the specifications into finite-state machines, which allows the realization
of an execution loop with a very short cycle time.

Colbert Colbert [Kon97] is a successor of the PRS-Lite system which provides similar in-
structions. A major difference between PRS-Lite and Colbert is that the syntax of the latter is
based on ANSI C, which facilitates the readability of robot control programs for programmers
used to sequential, conditional and iterative constructs. Nevertheless, it provides much the
same functionality as PRS-Lite, including iteration, concurrent activities and suspension via
waitfor. Just like PRS-Lite, Colbert does not include capabilities for deliberation over different
procedures.

RAP The RAP system [Fir87, Fir95] is a plan and task representation based on program-
like reactive action packages, or RAPs. The idea is that a planner produces “sketchy” plans,
relatively vague plans where some steps must be determined at run-time. The RAP execution
system then fills in the details of the sketchy plan at run time. The RAPs thus serve as
a bridge between the planner and the control system. They expand vague plan steps into
detailed instructions by choosing an appropriate method for the next step from a preexisting
library. To determine what method to use, it maintains a memory containing what is believed
to be true about the world. If a method does not achieve its intended goal, the RAP system

34 CHAPTER 2. RELATED WORK

chooses another method and tries again. Like PRS-Lite and Colbert, RAP provides facilities
for concurrent execution and synchronization (in particular, the wait-for construct). The RAP
system can thus be seen in two different ways: as a reactive system which can accomplish
quite complex goals given the methods in the library, or, on the other hand, as supplying a
planner with abstract “primitive actions.”

RPL RPL [McD91, McD92a, Bee99] is a notation for writing reactive plans for agents, e.g.
for robots. Recently, it has been used successfully to control the behavior of the mobile robot
MINERVA deployed in a realistic environment for an extended period of time [TBB+99].
RPL’s immediate ancestor is the RAP notation. Compared to RAP, however, it does not
attempt to maintain a world model that tracks the situation outside the robot. The intent of
RPL is to spell out how the behavior of an agent is to be driven by events around it, and to
do so in a transparent notation.

RPL is implemented in LISP, and RPL programs look like LISP programs. RPL provides the
constructs (seq c1 ... cn), (if cond cthen cfalse) and (loop cond -body-), which allow, respectively,
sequential execution of several sub-plans, conditional execution depending on the truth-value
of cond, and while-loop iteration. Local variables can be declared by the usual LISP construct
(let ((v1 val1) (vn valn)) -body-), which introduces new variables vi with initial value vali.
Finally, RPL code affects the outside world by special RPL procedures that send signals to
the output ports.

As mentioned above, the intent of RPL is to specify how the behavior of an agent is to be
driven by events around it. A key mechanism to achieve this aim is the concept of a fluent.
Here, the term fluent is used to refer to a program variable of time-varying value which is
set by sensors. The RPL run-time system takes care of automatically updating the value of
fluents when new sensor inputs arrive. For example, a reactive controller written in RPL will
make use of fluents like robot-x and robot-y to represent the robot’s x and y coordinates. We
stress that in RPL fluents are merely a special kind of program variable, and should not be
confused with the situation calculus notion of a fluent.

robot-x

860.0

1265.0

819.0

robot-y

<

>

<

AND in-room?

Figure 2.1: A fluent network

An RPL plan can react to changes of the values of
fluents by means of the RPL instruction (wait-for fl),
where fl is a binary fluent. This construct causes the
execution to suspend if the truth value of fl is false, and
to wait until it becomes true. The wait-for instruction
can not only be applied to primitive fluents, but also to
fluent-networks, boolean expressions involving fluents.
Figure 2.1 illustrates an example fluent network which
verifies that the robot’s position lies in a certain range.
Using wait-for and such a fluent-network, it is possible
to specify a robot program that reacts as soon as the robot enters a specific area.

RPL supports true concurrency, meaning that several sub-programs can be executed in
parallel. In particular, RPL provides the constructs (par a1...an) and (try-all a1...an), which
both start executing the sub-plans a1...an in parallel. The difference between the two construct
is that the former ends only after all sub-plans a1...an have ended, while the latter is completed
as soon as the first sub-plans ends.

Programs running concurrently often compete for resources. For example, different pro-
cesses may compete for the control of the robot’s wheels. In order to synchronize concurrent

2.4. DISCUSSION 35

programs that should not execute simultaneously, RPL provides a type of semaphore called
a valve. Whenever two procedures should not run concurrently, they are arranged such that
they compete for a valve. The loser waits for the winner to finish and release it.

It is also possible to execute sub-plans with different priorities. A process with a higher
priority can preempt a valve from a process with a lower priority. The construct (with-policy
pol body) indicates that the two procedures pol and body are to be executed in parallel, and
that pol has a higher priority than body. This construct is useful if a secondary plan, the
policy, is executed solely to constrain the execution of the plan body. For example, a robot
might go from one place to another, but adopt the policy that if its gripper should ever become
empty, then it must stop and pick up the object it dropped. Note that here policies are just
ordinary plans, which should not be confused with the notion of a policy in (PO)MDPs.

The XFRM System The xfrm system of Beetz and McDermott [McD92b, BM94, BM97]
is a planning framework which provides powerful and general tools for execution monitoring
and prediction-based revision of RPL plans. In particular, it includes the projection mod-
ule ptopa [McD94] that generates symbolic representations of possible execution scenarios.
ptopa takes as its input an RPL plan, rules for generating exogenous events, and a set of
probabilistic rules describing the effects of exogenous events and low-level processes. ptopa

randomly samples execution scenarios from the probability distribution that is implied by the
rules. In [BG98], the framework is extended to allow the projection of RPL plans interacting
with low-level processes involving continuous change.

Unlike the GOLOG family of languages discussed in the next section, the xfrm projection
mechanism does not rely on a perspicuous declarative semantics. Although Davis [Dav92] has
presented a formal semantics for a subset of the language RPL that relates a task’s starting
time, its completion, and the primitive actions that it executes to those of its subtasks, this
formalism has not been connected to the ptopa projection module. On the other hand,
[McD94] provides a formal semantics for ptopa, which however is restricted to plans that
consist of a totally ordered sequence of primitive actions. Finally, [BG00] partly formalizes
the extension of xfrm for dealing with continuous change.

Other Approaches to Robot Control Other approaches to robot control include the
following: The language L [Bro93] is a dialect of LISP, which is tailored for robot control.
In particular, it can run a LISP system in an embedded systems with 10 KB of memory,
complete with garbage collector, and provides multi threading facilities to support concurrent
execution. [AI99] describes a logic-based control architecture based on subsumption. The
approach includes a set of first-order logic theories for each layer, and makes use of non-
monotonic reasoning (circumscription) to model the connections between the layers. Finally,
[FLK93] and [LK92] propose robot control architectures based on a Blackboard control unit.

2.4 Discussion

As described in Section 2.1, there exists a large body of sophisticated formalisms for rea-
soning about action and change, including the situation calculus. While (some of) the other
approaches to reasoning about action and change are similarly expressive or sometimes even
superior to the situation calculus, the situation calculus stands out in that there exists an ad-
vanced body of work on the integration of expressive high-level programming languages into it,

36 CHAPTER 2. RELATED WORK

namely the GOLOG family described in Section 2.2. GOLOG and its derivatives allow the spec-
ification of high-level robot behavior on a high level of abstraction, provide powerful projection
capabilities based on a perspicuous formalism for reasoning about action and change, and have
already been used to control real robots in first successful experiments [LTJ98, BCF+00].

However, in its current form the GOLOG family of logic-based languages lacks the expres-
siveness provided by non-logic-based robot programming languages like RPL, RAP or Colbert
discussed in Section 2.3.1. In particular, the GOLOG family does not provide facilities for
dealing with continuous change, event-driven behavior, low-level processes or probabilistic
uncertainty. On the other hand, the non-logic-based languages do not provide the possibility
to project plans based on a perspicuous, declarative semantics. In the remainder of this thesis,
we will investigate how the GOLOG framework can be extended so as to shorten the gap in
expressiveness between non-logic-based and logic-based robot control languages, thus making
GOLOG more suitable for realistic applications.

Chapter 3

The Situation Calculus and
ConGolog

In this chapter, we will introduce the logical framework on which the work presented in this
thesis is based. In particular, we formally describe the situation calculus [McC63, LPR98],
a logical language for reasoning about dynamically changing worlds, and ConGolog [dGLL97,
dGLL00], a high-level programming language based on the situation calculus. Here, we use a
version of the situation calculus developed at the University of Toronto (cf. [Rei01]). Finally,
we describe how the situation calculus can be extended to represent probabilistic uncertainty
about the state of the world, following [BHL95, BHL99].

A word on the notation: we use the standard logical connectives “¬” (negation), “∧”
(conjunction), “∨” (disjunction), “⊃” (implication), “≡” (equivalence), “∀” (universal quan-
tification), and “∃” (existential quantification). In logical languages, when confusions may
arise a quantifier’s scope must be indicated explicitly with parentheses. As an alternative,
we often use the “dot” notation which indicates that the quantifier preceding the dot has
maximum scope. So ∀x.P (x) ⊃ Q(x) stands for (∀x)[P (x) ⊃ Q(x)]. Likewise, we often omit
parenthesis by assuming that ∧ takes precedence over ∨, so that P ∧ Q ∨ R ∧ S stands for
(P ∧Q)∨ (R∧S). ⊃ and ≡ bind with lowest precedence. In formulas involving second-order
quantification over predicate or function variables, we leave the arity of the second-order
variables implicit. For example, we simply write ∀P.(∀x)[P (x)] ⊃ (∃y)[P (y)]. The arity will
become clear from the context. Instead of an expression ∃x1.∃x2. ...∃xn.P (x1, ...xn) we of-
ten use the abbreviation ∃x1, ...xn.P (x1, ...xn), and analogously for universal quantification.
Similarly, we sometimes abbreviate sequences x1, ..., xn of pairwise different variables as ~x,
and use the notation ~x = ~y as a shorthand for x1 = y1 ∧ ... ∧ xn = yn. Finally, we use the
convention that all free variables are implicitly universally quantified, so ∃y.y > x stands for
∀x.∃y.y > x.

3.1 The Situation Calculus

The situation calculus [McC63, LPR98] is a sorted second-order language with equality, de-
signed for representing and reasoning about dynamically changing worlds. The intuition
behind the situation calculus is that initially, the world is in an initial situation, and that
the world evolves from one situation to another as the result of the execution of primitive
actions. There are three disjoint sorts: actions, situations, and ordinary objects. There are

37

38 CHAPTER 3. THE SITUATION CALCULUS AND CONGOLOG

two functions of sort situation: a special constant S0 used to denote the initial situation,
namely that situation in which no actions have yet occurred, and a binary function symbol
do where do(a, s) denotes the successor situation of s resulting from performing action a in
s. For convenience, we abbreviated nested do expression of the form do(an, · · · do(a1, S0) · · ·)
as do([a1, . . . , an], S0).

Actions may be parameterized. For example, gotoRoom(r) might stand for the action of a
robot traveling to room r. Accordingly, do(gotoRoom(R1), s) denotes the situation resulting
from the robot traveling to Room R1 when the world is in situation s. The state of the world
in a particular situation s is characterized by relational and functional fluents, relations and
functions taking a situation term as their last argument. For example, CoffeeRequest(r, s)
might mean that in situation s the robot is requested to deliver coffee to room r. Similarly,
the functional fluent robotLoc(s) might represent the room in which the robot is located in
situation s.

The applicability and the effects of actions are characterized by certain types of axioms.
First, there is a binary predicate symbol Poss : action × situation, which intuitively represents
whether an action is physically possible in a certain situation. In order to state the necessary
and sufficient conditions for an action a, we adopt the idealizing approach to write an action
precondition axiom of the form Poss(a(~x), s) ≡ Φ(~x, s), where ~x stands for the arguments of
a.1 As an example, the action precondition axiom Poss(giveCoffee(r), s) ≡ robotLoc(s) = r
says that in any situation s the robot can serve coffee in room r if and only if the robot is in
room r in situation s.

Besides specifying action precondition axiom, one must specify how the actions affect the
state of the world. This can be done by writing positive and negative effect axioms. Positive
respectively negative effect axioms have the following form:

Poss(A, s) ∧ φ+(~x, s) ⊃ F (~x, do(A, s));

Poss(A, s) ∧ φ−(~x, s) ⊃ ¬F (~x, do(A, s)).

Here, φ+ and φ− are first-order formulas specifying the conditions under which the action A
will have the effect of causing the fluent F to become true respectively false. For example,
the positive effect axiom

Poss(giveCoffee(r), s) ∧ CoffeeRequest(r, s) ⊃ happy(r, do(giveCoffee(r), s))

says that serving coffee in a room r in which coffee is requested causes the people in room r
to be happy. Similarly, the negative effect axiom

Poss(giveCoffee(r), s) ⊃ ¬CoffeeRequest(r, do(giveCoffee(r), s))

says that after serving coffee in a room r the robot is no longer requested to serve coffee
in r (in this axiom the condition φ− corresponds to True). Effect axioms thus provide the
“causal laws” for the domain.

Unfortunately, in general these types of axioms are not sufficient to reason about change.
The problem is that one also needs to say which fluents are not affected by the performance
of an action. For example, in order to deduce that serving coffee does not affect the robot’s
position one needs axioms like robotLoc(s) = r ⊃ robotLoc(do(giveCoffee(r), s)) = r. Such

1Note that by this idealizing approach we simply ignore the qualification problem (cf. Section 2.1.1).

3.1. THE SITUATION CALCULUS 39

axioms, which state the “non-effects” of actions are called frame axioms. The so-called frame
problem arises because the number of these frame axioms is very large, in general of the order
of 2×A×F , where A is the number of actions and F the number of fluents. This complicates
the task of axiomatizing a domain and can make theorem proving extremely inefficient. In a
nutshell, the frame problem corresponds to the question how to represent the effects of actions
without having to explicitly represent all their non-effects. It was first brought to light by
McCarthy and Hayes in the late Sixties [MH69].

3.1.1 A Simple Solution to the Frame Problem (Sometimes)

To deal with the frame problem, we use a monotonic approach due to Ray Reiter [Rei91],
which is based on earlier proposals by Pednault, Haas, and Schubert [Ped89, Haa87, Sch90].
The solution only applies to deterministic actions, hence the caveat “sometimes” in the title.2

The approach is based on the idea to collect all effect axioms about a given fluent and make
a completeness assumption, that is assume that they specify all of the ways that the value
of the fluent may change. A syntactic transformation is then applied to obtain a successor
state axiom for the fluent. For example, the following is a successor state axiom for the fluent
CoffeeRequest(r, s):

Poss(a, s) ⊃ [CoffeeRequest(r, do(a, s)) ≡ a = newRequest(r)∨
CoffeeRequest(r, s) ∧ a 6= giveCoffee(r)].

We will now describe how Reiter’s solution to the frame problem works for relational fluents;
functional fluent can be handled similarly. The first step consists of rewriting all positive
effect axioms for a given fluent as a single, logically equivalent positive effect axiom with the
following syntactic normal form:

Poss(a, s) ∧ γ+
F (~x, a, s) ⊃ F (~x, do(a, s)). (3.1)

Similarly, one rewrites the negative effect axioms into the following normal form:

Poss(a, s) ∧ γ−F (~x, a, s) ⊃ ¬F (~x, do(a, s)). (3.2)

This transformation into normal form can be done automatically as follows: each of the given
positive effect axioms has the form:

Poss(A, s) ∧ φ+
F ⊃ F (~t, do(A, s))

where A is an action term (like giveCoffee(r)) and the ~t are terms. One then rewrites the
positive effect axiom in the following, logically equivalent form:

Poss(a, s) ∧ a = A ∧ ~x = ~t ∧ φ+
F ⊃ F (~x, do(a, s)).

Here, ~x are new variables distinct from one another and from any variable occurring in the
original effect axiom. Now suppose y1, ..., ym are all the free variables occurring in the original
effect axioms except for the situation variable s. These variables are thus implicitly universally
quantified in the above axiom, and one can rewrite it in the following, logically equivalent
form:

2In particular, the solution does not apply to nondeterministic action with disjunctive effects, like for
example a coin toss that can result in either heads or tails: Poss(toss, s) ⊃ heads(do(toss, s))∨ tails(do(toss, s)).

40 CHAPTER 3. THE SITUATION CALCULUS AND CONGOLOG

Poss(a, s) ∧ [∃y1, ...,∃ym.a = A ∧ ~x = ~t ∧ φ+
F] ⊃ F (~x, do(a, s)).

So each positive effect axiom for fluent F can be rewritten in the logically equivalent form:

Poss(a, s) ∧ ΦF ⊃ F (~x, do(a, s))

where ΦF is a formula whose free variables are among ~x, a, s. If one does this for each of the
k positive effect axiom for F , one gets

Poss(a, s) ∧ Φ(1)
F ⊃ F (~x, do(a, s))

...
Poss(a, s) ∧ Φ(k)

F ⊃ F (~x, do(a, s)).

These sentences can be rewritten as a single, logically equivalent sentence

Poss(a, s) ∧ [Φ(1)
F ∨ ... ∨ Φ(k)

F] ⊃ F (~x, do(a, s))

which is the normal form for the positive effect axiom for fluent F . The normal form for
negative effect axioms can be computed similarly.

Next, one makes the following causal completeness assumption: The two axioms 3.1
and 3.2 characterize all the conditions under which action a can lead to F becoming true
(respectively false) in the successor situation. Hence, if F ’s truth value changes from False

in situation s to True in the next situation do(a, s), then γ+
F (~x, a, s) must have been true.

Similarly, if F ’s truth value changes from True to False then γ−F (~x, a, s) must have been
true. The causal completeness assumption can thus be formally specified by the following
explanation closure axioms:

Poss(a, s) ∧ F (~x, s) ∧ ¬F (~x, do(a, s)) ⊃ γ−F (~x, a, s), (3.3)
Poss(a, s) ∧ ¬F (~x, s) ∧ F (~x, do(a, s)) ⊃ γ+

F (~x, a, s). (3.4)

To see how explanation closure axioms function like frame axioms, we rewrite them in the
logically equivalent form:

Poss(a, s) ∧ F (~x, s) ∧ ¬γ−F (~x, a, s) ⊃ F (~x, do(a, s)),

Poss(a, s) ∧ ¬F (~x, s) ∧ ¬γ+
F (~x, a, s) ⊃ ¬F (~x, do(a, s)).

To make this work, one needs unique names axioms for actions: for distinct action names A
and B,

A(~x) 6= B(~x),

A(~x) = A(~y) ⊃ ~x = ~y.

Reiter shows that if T is a first-order theory that entails ¬∃~x, a, s.Poss(a, s) ∧ γ+
F (~x, a, s) ∧

γ−F (~x, a, s) then T entails that the effect axioms in normal form 3.1 and 3.2 together with the
explanation closure axioms 3.3 and 3.4 are logically equivalent to:

Poss(a, s) ⊃ [F (~x, do(a, s)) ≡ γ+
F (~x, a, s) ∨ F (~x, s) ∧ ¬γ−F (~x, a, s)].

3.1. THE SITUATION CALCULUS 41

The above formula is called the successor state axiom for the relational fluent F . Similarly,
a successor state axiom for a functional fluent f has the following form [Rei01]:

Poss(a, s) ⊃ [f(~x, do(a, s)) = y ≡ γf (~x, y, a, s) ∨ f(~x, s) = y ∧ ¬∃y′.γf (~x, y′, a, s)]. (3.5)

Here, γf (~x, y, a, s) is a first order formula whose free variables are among ~x, y, a, s. Intuitively,
γf (~x, y, a, s) specifies the conditions under which action a has the effect of causing f to get
value y. In order to guarantee the consistency of a successor state axiom for a functional
fluent, the following sentence must be entailed by the background theory:

¬∃~x, y, y′, a, s.γf (~x, y, a, s) ∧ γf (~x, y′, a, s) ∧ y 6= y′. (3.6)

Note that this approach results in exactly F successor state axioms (together with A action
precondition axioms plus the unique names axioms), compared to the 2 × A × F explicit
frame axioms that would otherwise be required. Summarizing, this solution to the frame
problem relies on the quantification over actions and on the causal completeness assumption.
We remark that this approach is monotonic once the additions to the original axiom set have
been performed, but as seen from the original axioms it is a non-monotonic method.

3.1.2 Basic Action Theories

Based on Reiter’s solution of the frame problem, one can formulate a basic action theory
[LPR98] which describe how the world changes as the result of the available actions. A basic
action theory has the following form:

• Axioms describing the initial situation, S0.

• Action precondition axioms, one for each primitive action a, characterizing Poss(a, s).

• Successor state axioms, one for each relational fluent F , stating under what conditions
the relational fluent F (~x, do(a, s)) holds as a function of what holds in situation s. Sim-
ilarly, successor state axioms for each functional fluent f , stating under what conditions
f(~x, do(a, s)) = y holds.

• Unique names axioms for the primitive actions.

• Foundational, domain independent axioms:

1. S0 6= do(a, s);

2. do(a, s) = do(a′, s′) ⊃ a = a′ ∧ s = s′;

3. ∀P.P (S0) ∧ [∀s∀a.(P (s) ⊃ P (do(a, s)))] ⊃ ∀sP (s);

4. ¬(s < S0);

5. s < do(a, s′) ≡ s v s′, where s v s′ stands for (s < s′) ∨ (s = s′);

6. s ≺ s′ ≡ s < s′ ∧ ∀a, s∗.s < do(a, s∗) v s′ ⊃ Poss(a, s∗).

The first three foundational axioms serve to characterize the space of all situations, making it
isomorphic to the set of ground terms of the form do(an, · · · do(a1, S0) · · ·). The third axiom
ensures, by second-order induction, that there are no situations other than those accessible
using do(a, s) from S0. As described in [Rei93, PR99], this induction axiom is important to

42 CHAPTER 3. THE SITUATION CALCULUS AND CONGOLOG

prove sentences that are universally quantified over states. The two axioms 4 and 5 serve to
characterize the binary predicate <: situation × situation, which defines an ordering relation
on situations. Intuitively, s < s′ holds if s′ can be obtained from s by performing a finite
number of actions. Finally, the last axiom defines the relation ≺, where s ≺ s′ means that s is
an initial subsequence of s′ and that all the actions of s′ following those of s can be executed
one after the other. We call a situation s such that (S0 ≺ s) executable. A situation s such
that ¬(S0 ≺ s) is a “ghost state,” meaning that is is not reachable from S0 by any executable
sequence of actions. As with v, we will use s � s′ is a shorthand for s ≺ s′ ∨ s = s′.

3.1.3 An Example

To illustrate the use of the situation calculus, let us consider a simple coffee delivery applica-
tion, where a robot is to deliver coffee in an office environment with four rooms R1, R2, R3,
and R4. In this domain, the state of the world can be characterized by the functional fluent
robotLoc(s), which represents the room the robot is currently in, and the relational fluent
CoffeeRequest(r, s), stating whether or not the robot is to deliver coffee to room r. The robot
can travel to room r by means of the primitive action gotoRoom(r), and satisfy a coffee
request by executing giveCoffee(r) in room r.

The following axioms, together with the foundational axioms and unique names axioms
for primitive actions, represent a basic action theory modeling our coffee delivery application:

robotLoc(S0) = R1 ∧ CoffeeRequest(r, S0) ≡ [r = R2 ∨ r = R4]; (3.7)
Poss(gotoRoom(r), s) ≡ True; (3.8)

Poss(giveCoffee(r), s) ≡ robotLoc(s) = r; (3.9)
robotLoc(do(a, s)) = r ≡ a = gotoRoom(r)∨

a 6= gotoRoom(r) ∧ robotLoc(s) = r;
(3.10)

CoffeeRequest(r, do(a, s)) ≡ CoffeeRequest(r, s) ∧ a 6= giveCoffee(r). (3.11)

In this example, do([gotoRoom(R2), giveCoffee(R2)], S0) denotes the situation resulting from
first traveling to room R2 and then serving coffee. It is straightforward to show that this
situation is executable, i.e. that S0 ≺ do([gotoRoom(R2), giveCoffee(R2)], S0) holds.

Proof: (Sketch) The first action, gotoRoom(R2), is always possible (Axiom 3.8). From the
successor state axiom for robotLoc (Axiom 3.10), we can conclude that after execution of that
action the robot is in room R2, i.e. robotLoc(do(gotoRoom(R2), S0)) = R2. From this fact,
and the action precondition for giveCoffee (Axiom 3.9), one can conclude that the second
action, giveCoffee(R2), is possible in do(gotoRoom(R2), S0). 2

Similarly, it is straightforward to show that after traveling to room R2 and serving coffee
the coffee request for Room R2 has been fulfilled. Formally, the above statement can be ex-
pressed as ¬CoffeeRequest(R2, do([gotoRoom(R2), giveCoffee(R2)], S0)), which follows directly
from CoffeeRequest’s successor state axiom (Axiom 3.11).

3.2 ConGolog

ConGolog [dGLL97, dGLL00], a derivative of GOLOG [LRL+97], is a special action program-
ming language based on the situation calculus. In particular, every primitive action in a

3.2. CONGOLOG 43

ConGolog program is an action of the underlying situation calculus domain theory. As a
result, it is possible to project the outcome of a program, that is, to reason about how the
world evolves when a program is executed. Thus, we use the terms complex action, program
and plan interchangeably, following McDermott [McD92a] who takes plans to be programs
whose execution can be reasoned about by the agent who executes the program.

Besides primitive actions, there is another class of primitive instructions: tests of the form
φ?, where φ stands for a situation calculus formula. The intuition behind φ? is to block if
φ is false in the actual situation, and else continue with execution. Using tests, a program
can query ConGolog’s situation calculus model of the environment. The primitive instruc-
tions can be composed by constructs such as sequences, iterations and recursive procedures
to define complex actions. ConGolog also provides nondeterministic instructions which allow
the specification of nondeterministic programs. In addition to the sequential constructs al-
ready present in GOLOG [LRL+97], concurrent actions are introduced with a conventional
interleaving semantics. Altogether, ConGolog provides the following deterministic and non-
deterministic constructs:3

nil empty program
α primitive action
φ? wait/test action
[σ1, σ2] sequence of two programs σ1 and σ2

if(φ, σ1, σ2) conditional execution of σ1 or σ2

while(φ, σ) loop
σ1 〉〉 σ2 prioritized concurrent execution

σ1|σ2 nondeterministic choice between actions
πx.σ nondeterministic choice of arguments
σ∗ nondeterministic iteration
σ1 || σ2 concurrent execution
σ|| concurrent iteration

{proc(P1(~v1), β1); ...; proc(Pn(~vn), βn);σ} procedures.

Here, nil is the empty program, which denotes the fact that nothing remains to be done.
φ stands for a situation calculus formula where now may be used to refer to the current
situation. For example, CoffeeRequest(R1,now)? will block if φ is false in the actual situation
in which the test is to be executed, and else succeed immediately. Similarly, α stands for a
situation calculus action where the special situation constant now may be used to refer to
the current situation. Using now in primitive actions is convenient to parameterize the action
with the value of a functional fluent. For example, giveCoffee(robotLoc(now)) means that
the robot is to serve coffee in the room it is actually in. When no confusions arise, we will
simply leave out the now argument from the fluents altogether, e.g. write CoffeeRequest(R1)
as an abbreviation for CoffeeRequest(R1,now). Besides, we will use [α, β, γ] as a shorthand
for [α, [β, γ]], and similarly write if(φ, α) instead of if(φ, α, nil).

The semantics of the deterministic constructs [σ1, σ2], if(φ, σ1, σ2), while(φ, σ) and proc
correspond, roughly, to the their usual semantics in ordinary programming languages. How-
ever, we remark that if and while are synchronized in the sense that testing the condition φ

3[dGLL00] additionally considers the interrupt construct < φ→ σ >, which however is only a macro defined
in terms of the other constructs.

44 CHAPTER 3. THE SITUATION CALCULUS AND CONGOLOG

and executing the first action of the branch chosen are executed as an atomic unit.4 σ1 〉〉 σ2

denotes the concurrent execution of the actions of σ1 and σ2, but with σ1 having a higher
priority than σ2. This means that σ2 may only execute when σ1 is either done or blocked;
whenever σ1 can execute, it blocks the execution of σ2.

Besides these deterministic instructions, ConGolog provides the nondeterministic con-
structs (σ1 | σ2), (πx.σ), (σ∗), (σ1 || σ2) and (σ||). The idea of the first three constructs
is, respectively, to nondeterministically execute either σ1 or σ2; to nondeterministically pick
an individual x, and for that x perform the program σ; and to execute σ an arbitrary number
of times. The σ1 || σ2 construct denotes un-prioritized concurrent execution. σ1 || σ2 is a
nondeterministic instruction in that it allows an arbitrary interleaving of the actions of σ1

and σ2. Finally, the σ|| construct is like nondeterministic iteration, but where the instances
of σ are executed concurrently, rather than in sequence.

3.2.1 A Transition Semantics

Formally, the semantics of ConGolog is defined using a so-called transition semantics, which de-
fines single steps of computation. There is a relation, denoted by the predicate Trans(σ, s, δ, s′),
that associates with a given program σ and situation s a new situation s′ that results from
executing σ’s first action in s, and a new program δ that represents what remains of σ after
having performed that action. Furthermore, one needs to define which configurations 〈σ, s〉
are final, meaning that the computation can be considered completed when a final configura-
tion is reached. This is denoted by the predicate Final(σ, s). Note that the use of a transition
semantics necessitates the reification of programs as first order terms in the logical language
(cf. [dGLL00] and Appendix A). To simplify the discussion, we postpone the introduction of
procedures which necessitates the use of second-order logic.

The predicate Final is characterized by the following set of axioms. The term φ[s] denotes
the formula obtained by substituting the situation variable s for all occurrences of now in
fluents appearing in φ (cf. [dGLL00] and Appendix A).

Final(α, s) ≡ False , where α is a primitive action

Final(nil, s) ≡ True, where nil is the empty program

Final(φ?, s) ≡ False

Final([σ1, σ2], s) ≡ Final(σ1, s) ∧ Final(σ2, s)

Final(if(φ, σ1, σ2), s) ≡ φ[s] ∧ Final(σ1, s) ∨ ¬φ[s] ∧ Final(σ2, s)

Final(while(φ, σ), s) ≡ ¬φ[s] ∨ Final(σ, s)

Final(σ1 〉〉 σ2, s) ≡ Final(σ1, s) ∧ Final(σ2, s)

Final(σ1|σ2, s) ≡ Final(σ1) ∨ Final(σ2)

Final(πx.σ, s) ≡ ∃v.Final(σxv , s)

Final(σ∗, s) ≡ True

Final(σ1 || σ2) ≡ Final(σ1) ∧ Final(σ2)

Final(σ||, s) ≡ True

4We remark that non-concurrent GOLOG [LRL+97] considers non-synchronized versions of the if-then-else
and loop constructs.

3.2. CONGOLOG 45

Let us first consider when a deterministic program is final. A program that consists of a
primitive action α or a test φ? is never final. On the other hand, the empty program nil is
always final. A conditional if(φ, σ1, σ2) is final if φ holds and σ1 is final, or if φ is false and σ2

is final. A sequence [σ1, σ2] is final if and only if both σ1 and σ2 are final. A while(φ, σ) loop
is final if φ is false or if σ is final. The concurrent, prioritized execution of two programs is
final if and only if both programs are final. As for the nondeterministic instructions, σ1|σ2 is
final if any nondeterministic branch σi is final. πx.σ is final if there exists a binding v for x
such that σxv is final, where σxv is obtained from σ by substituting x with v. σ∗ is final, since
it is allowed to execute 0 times. Similarly for σ||. Finally, σ1 || σ2 is final if and only if both
σi are final.

The following set of axioms characterizes the predicate Trans. Similar to φ[s], α[s] denotes
the action obtained by substituting the situation variable s for all occurrences of now in
functional fluents appearing in α (cf. [dGLL00] and Appendix A).

Trans(nil, s, δ, s′) ≡ False

Trans(α, s, δ, s′) ≡ Poss(α[s], s) ∧ δ = nil ∧ s′ = do(α[s], s)

Trans(φ?, s, δ, s′) ≡ φ[s] ∧ δ = nil ∧ s′ = s

Trans([σ1, σ2], s, δ, s′) ≡
∃γ.Trans(σ1, s, γ, s

′) ∧ δ = [γ, σ2] ∨ Final(σ1, s) ∧ Trans(σ2, s, δ, s
′)

Trans(if(φ, σ1, σ2), s, δ, s′) ≡
φ[s] ∧ Trans(σ1, s, δ, s

′) ∨ ¬φ[s] ∧ Trans(σ2, s, δ, s
′)

Trans(while(φ, σ), s, δ, s′) ≡
∃γ.Trans(σ, s, γ, s′) ∧ φ[s] ∧ δ = [γ,while(φ, σ)]

Trans(σ1 〉〉 σ2, s, δ, s
′) ≡

∃γ.δ = (γ 〉〉 σ2) ∧ Trans(σ1, s, γ, s
′)∨

∃γ.δ = (σ1 〉〉 γ) ∧ Trans(σ2, s, γ, s
′) ∧ ∀γ′, s′′.¬Trans(σ1, s, γ

′, s′′)

Trans(σ1|σ2, s, δ, s
′) ≡ Trans(σ1, s, δ, s

′) ∨ Trans(σ2, s, δ, s
′)

Trans(πx.σ, s, δ, s′) ≡ ∃v.Trans(σxv , s, δ, s)

Trans(σ∗, s, δ, s′) ≡ ∃γ.δ = [γ, σ∗] ∧ Trans(σ, s, γ, s′)

Trans(σ1 || σ2, s, δ, s
′) ≡

∃γ.δ = (γ || σ2) ∧ Trans(σ1, s, γ, s
′) ∨ ∃γ.δ = (σ1 || γ) ∧ Trans(σ2, s, γ, s

′)

Trans(σ||, s, δ, s′) ≡ ∃γ.δ = (γ || σ||) ∧ Trans(σ, s, γ, s′)

As before, we first consider the deterministic instructions. Intuitively, a program that consists
of a single atomic action α in a situation s results in the execution of α[s] with an empty
remaining program if and only if α[s] is executable in s. A test φ? succeeds if φ[s] holds,
leaving nothing to be done, or is blocked, meaning that it cannot result in a transition. The
execution of [σ1, σ2] in s may result in any successor situation that could be reached by the
execution of σ1, with remaining program [γ, σ2], where γ is what remains of σ1; or, if σ1

is final in s, it just corresponds to the execution of σ2. The execution of if(φ, σ1, σ2) in s
corresponds to the execution of σ1 if φ is true in s, else it corresponds to the execution of σ2.
A while(φ, σ) loop may only result in a successor configuration if φ is true, in which case the
remain program is [γ,while(φ, σ)], where again γ is what remains of σ. (σ1 〉〉 σ2) executes

46 CHAPTER 3. THE SITUATION CALCULUS AND CONGOLOG

σ1 whenever possible; however, if σ1 is blocked it executes σ2.
The execution of the nondeterministic instruction (σ1|σ2) in s can result in any successor

configuration that can be reached through the execution of σ1 or σ2 in s. The execution of
πx.σ can result in a successor configuration 〈δ, s′〉 if there is a v such that the execution of
any σxv can result in 〈δ, s′〉. Here, σxv is the program resulting from σ by substituting x with v.
The execution of σ∗ in s can result in a new situation s′ if the execution of σ can do so. The
remaining program then consists of the sequence [γ, σ∗], where γ is what remains of σ after
the transition from s to s′. Similarly, the execution of σ|| in s can result in a new situation s′

if the execution of σ can do so. This time, the remaining program consists of the concurrent
execution of γ and σ||. Finally, (σ1 || σ2) may result in any successor situation which can be
reached by a single step of any σi. The remaining program then consists of the concurrent
execution of what remains of σi, and the other (unmodified) process.

A final situation s′ reachable after a finite number of transitions from a starting situation
s is identified with the situation resulting from a possible execution trace of program σ,
starting in situation s. This is captured by the predicate Do(σ, s, s′), which is defined in
terms of Trans∗, the transitive closure of Trans:

Do(σ, s, s′) ≡ ∃δ.T rans∗(σ, s, δ, s′) ∧ Final(δ, s′)
Trans∗(σ, s, δ, s′) ≡ ∀T [... ⊃ T (σ, s, δ, s′)]

where the ellipsis stands for the universal closure of the conjunction of the following formulas:

T (σ, s, σ, s)

Trans(σ, s, σ∗, s∗) ∧ T (σ∗, s∗, δ, s′) ⊃ T (σ, s, δ, s′)

Given a program δ, proving that δ is executable in the initial situation then amounts to
proving Γ |= ∃s.Do(δ, S0, s), where Γ consists of the above axioms for ConGolog together with
a situation calculus basic action theory. The following proposition (Lemma 4 from [dGLL00])
turns out to be quite useful in doing so. Intuitively, it says that to show that Trans∗(σ, s, δ, s′)
holds, it is sufficient to show that there is a sequence of transitions leading from 〈σ, s〉 to 〈δ, s′〉.

Proposition 1 : Let AX be the foundational axioms of the situation calculus together
with the definitions of Trans, Final and Trans∗. Then for every model M of AX, M |=
Trans∗(σ, s, δ, s′) if and only if there exist σ1, s1, ..., σn, sn such that σ1 = σ, s1 = s, σn =
δ, sn = s′ and M |= Trans(σi, si, σi+1, si+1) for i = 1, ...n− 1.

3.2.2 An Example

To illustrate the use of ConGolog, let us go back to the coffee delivery example of the previous
section. Suppose we want to instruct the robot to subsequently serve coffee to all who have
issued a coffee request. This can be specified by the following ConGolog plan:

Πdeliv
.= while(∃r.CoffeeRequest(r),

[gotoRoom(nextRoom), giveCoffee(robotLoc)])

A word on notation: throughout this thesis, we will use terms of the form Πname to denote
plans. Note that we have not yet defined the semantics of procedures; accordingly we consider
Πdeliv as an abbreviation. Πdeliv makes use of the defined functional fluent nextRoom to

3.2. CONGOLOG 47

determine the order in which coffee requests are to be fulfilled. nextRoom is defined as
follows:

nextRoom(s) = r ≡ r = nil ∧ ∀r′.¬CoffeeRequest(r′, s)∨
CoffeeRequest(r, s) ∧ ¬∃r′.[CoffeeRequest(r′, s) ∧ roomOrder(r′, r)].

(3.12)

Here, the predicate roomOrder defines an (arbitrary) total ordering on the room names. For
means of simplicity, we use the following definition of roomOrder:

roomOrder(r′, r) ≡r′ = R1 ∧ r ∈ {R2, R3, R4}∨
r′ = R2 ∧ r ∈ {R3, R4}∨
r′ = R3 ∧ r ∈ {R4}.

(3.13)

Let Γ be the basic action theory describing the coffee delivery domain from the previous
section together with the axioms defining Trans, Final, Trans∗ and Do from this section, the
definitions of nextRoom and roomOrder and the axioms needed for the encoding of programs
as first-order terms (cf. [dGLL00] and Appendix A). Then from Γ we can deduce that the
execution of Πdeliv in S0 results in a situation (an execution trace) where all requests have
been satisfied:

Γ |= ∃s.Do(Πdeliv, S0, s) ∧ ¬∃r.CoffeeRequest(r, s)∧
s = do([gotoRoom(R2), giveCoffee(R2), gotoRoom(R4), giveCoffee(R4)], S0).

Proof: Although the proof is straightforward, it is quite laborious. By Proposition 1, to
prove that do([gotoRoom(R2), giveCoffee(R2), gotoRoom(R4), giveCoffee(R4)], S0) is an exe-
cution trace of Πdeliv in S0 we have to show that there is a sequence of transitions from S0

to do([gotoRoom(R2), giveCoffee(R2), gotoRoom(R4), giveCoffee(R4)], S0). Furthermore, we
have to show that the last configuration is final. From the initial state description (Ax-
iom 3.7), we get:

CoffeeRequest(R2, S0). (3.14)

Hence, ∃r.CoffeeRequest(r, S0). From this and the definition of Final:

¬Final(Πdeliv, S0). (3.15)

From the definition of Trans regarding while-loops:5

Trans(while(∃r.CoffeeRequest(r),
[gotoRoom(nextRoom), giveCoffee(robotLoc)]), S0, δ, s

′) ≡
∃γ.Trans([gotoRoom(nextRoom), giveCoffee(robotLoc)], S0, γ, s

′)∧
∃r.CoffeeRequest(r, S0)∧
δ = [γ,while(∃r.CoffeeRequest(r),

[gotoRoom(nextRoom), giveCoffee(robotLoc)])].

(3.16)

From the initial state description (Axiom 3.7), the definition of nextRoom (Axiom 3.12) and
the definition of roomOrder (Axiom 3.13):

nextRoom(S0) = R2. (3.17)
5To be more precise, we also need the predicate Holds(φ, s), which is used to evaluate reified conditions

used in tests (“φ[s]”). See [dGLL00] and Appendix A.

48 CHAPTER 3. THE SITUATION CALCULUS AND CONGOLOG

From 3.17, the action precondition for gotoRoom (Axiom 3.8) and the definition of Trans
regarding primitive actions:

Trans(gotoRoom(nextRoom), S0, δ, s
′) ≡ s′ = do(gotoRoom(R2), S0) ∧ δ = nil. (3.18)

From 3.18 and the definition of Trans regarding sequences:

Trans([gotoRoom(nextRoom), giveCoffee(robotLoc)]), S0, δ, s
′) ≡

s′ = do(gotoRoom(R2), S0) ∧ δ = [nil, giveCoffee(robotLoc)].
(3.19)

From 3.14, 3.16 and 3.19 we get the following, which shows that there is a transition from S0

to do(gotoRoom(R2), S0).

Trans(while(∃r.CoffeeRequest(r),
[gotoRoom(nextRoom), giveCoffee(robotLoc)]), S0, δ, s

′) ≡
δ = [[nil, giveCoffee(robotLoc)],while(∃r.CoffeeRequest(r),

[gotoRoom(nextRoom),
giveCoffee(robotLoc)])]∧

s′ = do(gotoRoom(R2), S0).

(3.20)

Let S1
.= do(gotoRoom(R2), S0). From the definition of Final:

¬Final([[nil, giveCoffee(robotLoc)],Πdeliv], S1). (3.21)

From the definition of Trans regarding sequences and 3.21:

Trans([[nil, giveCoffee(robotLoc)],Πdeliv], S1, δ, s
′) ≡

∃γ.Trans([nil, giveCoffee(robotLoc)], S1, γ, s
′)∧

δ = [γ,Πdeliv].
(3.22)

From the definition of Trans regarding sequences and the fact Final(nil, s):

Trans([nil, giveCoffee(robotLoc)], s, δ, s′) ≡ Trans(giveCoffee(robotLoc), s, δ, s′). (3.23)

From the successor state axiom for robotLoc (Axiom 3.10):

robotLoc(S1) = R2. (3.24)

From 3.24, the action precondition axiom for giveCoffee (Axiom 3.9) and the definition of
Trans regarding primitive actions:

Trans(giveCoffee(robotLoc), S1, δ, s
′) ≡

s′ = do(giveCoffee(R2)], S1) ∧ δ = nil.
(3.25)

From 3.25 and 3.23 and 3.22 we get the following, which shows that there is a transition from
S1 to do(giveCoffee(R2), S1):

Trans([[nil, giveCoffee(robotLoc)],Πdeliv], S1, δ, s
′) ≡

δ = [nil,Πdeliv] ∧ s′ = do(giveCoffee(R2), S1).
(3.26)

Let S2
.= do(giveCoffee(R2), S1). From the successor state axiom for CoffeeRequest (Ax-

iom 3.11) and the initial state description (Axiom 3.7):

CoffeeRequest(R4, S2). (3.27)

3.2. CONGOLOG 49

From 3.27 and the definition of Final:

¬Final([nil,Πdeliv], S2). (3.28)

From the definition of Trans regarding sequences and the fact Final(nil, s):

Trans([nil,Πdeliv], S2, δ, s
′) ≡

Trans(Πdeliv, S2, δ, s
′).

(3.29)

From 3.29, 3.27 and the definition of Trans regarding while-loops:

Trans([nil,Πdeliv], S2, δ, s
′) ≡

Trans([gotoRoom(nextRoom), giveCoffee(robotLoc)], S2, γ, s
′)∧

δ = [γ,Πdeliv].
(3.30)

From the definition of nextRoom (Axiom 3.12), the successor state axiom for CoffeeRequest
(Axiom 3.11) and the definition of roomOrder (Axiom 3.13):

nextRoom(S2) = R4. (3.31)

From 3.30, 3.31, the action precondition axiom for gotoRoom (Axiom 3.8) and the def-
inition of Trans we get the following, which shows that there is a transition from S2 to
do(gotoRoom(R4), S2):

Trans([nil,Πdeliv], S2, δ, s
′) ≡

s′ = do(gotoRoom(R4), S2)∧
δ = [[nil, giveCoffee(robotLoc)],Πdeliv].

(3.32)

Let S3
.= do(gotoRoom(R4), S2). From the definition of Final:

¬Final([[nil, giveCoffee(robotLoc)],Πdeliv], S3) (3.33)

From the successor state axiom for robotLoc (Axiom 3.10):

robotLoc(S3) = R4 (3.34)

From the definition of Trans regarding sequences and 3.33:

Trans([[nil, giveCoffee(robotLoc)],Πdeliv], S3, δ, s
′) ≡

∃γ.Trans([nil, giveCoffee(robotLoc)], S3, γ, s
′)∧

δ = [γ,Πdeliv].
(3.35)

From the action precondition axiom for giveCoffee (Axiom 3.9), 3.34 and the definition of
Trans:

Trans([nil, giveCoffee(robotLoc)], S3, δ, s
′) ≡

s′ = do(giveCoffee(R4), S3) ∧ δ = nil.
(3.36)

From 3.35 and 3.36, we get the following, which shows that there is a transition from S3 to
do(giveCoffee(R4), S3):

Trans([[nil, giveCoffee(robotLoc)],Πdeliv], S3, δ, s
′) ≡

s′ = do(giveCoffee(R4), S3) ∧ δ = [nil,Πdeliv].
(3.37)

50 CHAPTER 3. THE SITUATION CALCULUS AND CONGOLOG

Let S4
.= do(giveCoffee(R4), S3). We have now shown that there is a sequence of transi-

tions from S0 to S4 = do([gotoRoom(R2), giveCoffee(R2), gotoRoom(R4), giveCoffee(R4)], S0).
From 3.20, 3.26, 3.32, 3.37 and Proposition 1:

Trans∗(Πdeliv, S0, [nil,Πdeliv], S4). (3.38)

In order to show that S4 is an execution trace of Πdeliv, we still have to show that the
configuration reached is final. From the successor state axiom for CoffeeRequest (Axiom 3.11)
and the initial state description (Axiom 3.7):

¬∃r.CoffeeRequest(r, S4). (3.39)

From 3.39 and the definition of Final regarding while-loops:

Final(while(∃r.CoffeeRequest(r),
[gotoRoom(nextRoom), giveCoffee(robotLoc)]), S4).

(3.40)

From 3.40, the fact Final(nil, s) and the definition of Final regarding sequences:

Final([nil,Πdeliv], S4). (3.41)

Finally, from the definition of Do, 3.38 and 3.41, we can conclude that S4 is an execution
trace of Πdeliv in S0:

Γ |= Do(Πdeliv, S0, S4). (3.42)

This, together with 3.39, finishes the proof. 2

As the above proof illustrates, proving that the execution of a program results in a par-
ticular execution trace is a straightforward but laborious task. In general, it is suggestive to
make use of a ConGolog implementation instead of calculating execution traces by hand. In
fact, all example executions presented in this thesis were computed using the prototypical
implementations described in Chapter 8. Accordingly, in the remainder of this thesis we will
only provide some (informal) arguments as to why a program results in a particular execution
trace.

3.2.3 Extending the Transition Semantics to Procedures

This subsection describes how the transition semantics of ConGolog can be extended to deal
with procedures. Extending the semantics to deal with procedures necessitates the use of a
second-order definition of Trans and Final, because a recursive procedure may do an arbitrary
number of procedure calls before it performs a primitive action or test, and such procedure
calls are not viewed as transitions. The material presented in this subsection is quite technical
and can be skipped by the reader on a first reading.

A central notion in the definition of the semantics of ConGolog regarding procedures is
the concept of an environment. An environment E is a collection of procedure definitions
proc(P1(~v1), β1); ...; proc(Pn(~vn), βn), where Pi is the name of the i-th procedure in E , ~vi are
its formal parameters and βi is its procedure body. A procedure body is a ConGolog program,
possibly including both procedure calls and new procedure definitions.

Formally, to extend the semantics of ConGolog to deal with procedures we have to consider
three new program constructs:

3.2. CONGOLOG 51

• {E ;σ}, where E is an environment and σ a program extended with procedure calls. This
is the {proc(P1(~v1), β1); ...; proc(Pn(~vn), βn);σ} construct already listed in Section 3.2.
{E ;σ} binds procedure calls in σ to the definitions given in E . The usual notion of free
and bound apply, so for example in {proc(P1(), a); [P2, P1]}, P1 is bound but P2 is free.

• P (~t), where P is a procedure name and ~t actual parameters associated to the procedure
P ; as usual, the situation argument in the terms constituting ~t is replaced by now .
P (~t) denotes a procedure call, which invokes procedure P on the actual parameters ~t
evaluated in the current situation.

• [E : P (~t)], where E is an environment, P a procedure name and ~t actual parameters
associated to the procedure P . [E : P (~t)] denotes a procedure call that has been con-
textualized by the environment in which the definition of P is to be looked for is E .

The semantics of ConGolog programs with procedures is specified by providing a second-order
definition for both Trans and Final. Trans is defined as follows:

Trans(σ, s, δ, s′) ≡ ∀T.[... ⊃ T (σ, s, δ, s′)]. (3.43)

Here, the ellipsis stands for the universal closure of the conjunction of the original set of
axioms for Trans modulo textual substitution of Trans with T , together with the following
two assertions:

T ({E ;σ}, s, δ, s′) ≡ T (σPi(
~t)

[E:Pi(~t)]
, s, δ, s′); (3.44)

T ([E : P (~t)], s, δ, s′) ≡ T ({E ;βP
~vp
~t[s]
}, s, δ, s′). (3.45)

Here, σPi(
~t)

[E:Pi(~t)]
denotes the program σ with all procedures bound by E and free in σ replaced

by their contextualized version, and where βP
~vp
~t[s]

denotes the body of the procedure P in E

with formal parameters ~vp substituted by the actual parameters ~t evaluated in the current
situation. The first of these two axioms says that when a program with an associated en-
vironment E is executed, all procedure calls bound by E are simultaneously substituted by
procedure calls contextualized by the environment of the procedure. The second axiom says
that when a contextualized procedure call is executed, the call is replaced by the body of
the procedure, associated with E in order to deal with further procedure calls according to
the lexical (or static) scoping rule. Furthermore, the actual parameters are evaluated in the
current situation, and then are substituted for the formal parameters in the procedure bodies,
which yields call-by-value parameter passing.

Similarly, Final is defined as follows:

Final(σ, s) ≡ ∀F.[... ⊃ F (σ, s)],

where the ellipsis stands for the universal closure of the conjunction of the original set of
axioms for Final modulo textual substitution of Final with F , together with the following
assertions:

F ({E ;σ}, s) ≡ F (σPi(
~t)

[E:Pi(~t)]
, s);

F ([E : P (~t)], s) ≡ F ({E ;βP
~vp
~t[s]
}, s).

52 CHAPTER 3. THE SITUATION CALCULUS AND CONGOLOG

In [dGLL00], de Giacomo, Lespérance and Levesque show the following equivalence (their
Theorem 4):

Proposition 2: With respect to programs without procedures, the second order definition of
Trans and Final introduced above is equivalent to the versions introduced in Section 3.2.1.

Note that no assertions for uncontextualized procedure calls are present in the defini-
tions of Trans and Final: a procedure call which cannot be bound to a procedure definition
neither can do transitions nor can be considered successfully completed. In particular, the
second-order definition allows to assign a formal semantics to every recursive procedure, in-
cluding vicious circular ones. The definition of Trans disallows the (step-wise) execution
of such ill-formed procedures, and at the same time through the definition of Final they
are not considered as completed. As an example, let us consider the ill-formed program
{proc(P (), P ());P ()}. We will use E1 as an abbreviation for proc(P (), P ()). The program
{E1;P ()} can do a transition if and only if Trans({E1;P ()}, s, δ, s′) holds for some 〈s′, δ〉.
From the second-order definition of Trans and the fact that {E1;P ()} does only involve pro-
cedure definition and invocation follows that Trans({E1;P ()}, s, δ, s′) holds if and only if
T ({E1;P ()}, s, δ, s′) holds for all predicates T that satisfy the two assertions 3.44 and 3.45.
This is equivalent to the following:

T ({E1;P}, s, δ, s′) ≡
T ([E1 : P], s, δ, s′) ≡
T ({E1;P}, s, δ, s′).

The above does not cause any implications regarding the truth value of T ({E1;P}, s, δ, s′).
As a result, the second-order definition of Trans yields Trans({proc(P (), P ());P ()}, s, δ, s′) ≡
False. Similarly, it is possible to verify that {proc(P (), P ());P ()}, s, δ, s′)} is not final. Thus,
{proc(P (), P ());P ()} can neither perform transitions nor is it final.

On the other hand, if we consider programs with well-defined procedures (or without
procedures), we obtain clear implications for the predicates T . As an example, let us consider
a modification of the coffee delivery example, where the robot plan is specified by a procedure.
Let

E2
.= proc(Πdeliv(),while(∃r.CoffeeRequest(r),

[gotoRoom(nextRoom), giveCoffee(robotLoc)]).

Then, by the new definition of Trans we get:

Trans({E2; Πdeliv()}, s, δ, s′) ≡
Trans([E2 : Πdeliv()], s, δ, s′) ≡
Trans({E2; while(∃r.CoffeeRequest(r),

[gotoRoom(nextRoom), giveCoffee(robotLoc)])}, s, δ, s′) ≡
Trans(while(∃r.CoffeeRequest(r),

[gotoRoom(nextRoom), giveCoffee(robotLoc)]), s, δ, s′).

Thus, we can deduce that the execution of {E2; Πdeliv} in S0 corresponds to the execution of
the procedure body of Πdeliv. From this and the considerations in Section 3.2.2, we can then
conclude:

Γ |= ∃s.Do({E2; Πdeliv}, S0, s)∧
s = do([gotoRoom(R2), giveCoffee(R2), gotoRoom(R4), giveCoffee(R4)], S0).

3.3. A PROBABILISTIC, EPISTEMIC SITUATION CALCULUS 53

For simplicity, in the remainder of this thesis we use the convention to first present the
definition of procedures in the form proc(Πname, body), and thereafter to simply use Πname as
a shorthand for the program {proc(Πname, body); Πname}.

3.3 A Probabilistic, Epistemic Situation Calculus

The situation calculus presented in Section 3.1 allows us to talk only about how the actual
world evolves, starting in the initial situation S0. But in many realistic scenarios, a robot or
agent is uncertain about the (initial) state of the world. For example, a robot might not know
whether a door is open or not, or might be uncertain about its actual position. Instead, the
robot often only has probabilistic knowledge, like “the door is open with probability 70%”.
To take this into account, Bacchus, Halpern and Levesque (BHL) [BHL95, BHL99] propose
to characterize an agent’s epistemic state in a probabilistic fashion. More specifically, they
propose to characterize an epistemic state by a set of situations considered possible, and the
likelihood assigned to the different possibilities. We will now describe in somewhat more detail
how to specify and reason about a probabilistic epistemic state in the situation calculus.

Formally, there is a binary functional fluent p(s′, s) which can be read as “in situation s,
the agent thinks that s′ is possible with degree of likelihood p(s′, s).” All weights must be
non-negative and situations considered impossible will be given weight 0:

S0 ≺ s ⊃ p(s′, s) ≥ 0.

We do not require that the degrees of likelihood (which we also call “weights”) of all possible
situations sum to 1, that is p represents an unnormalized probability distribution. However,
we assume that the sum of the weights is finite in order to assure that the unnormalized
probability distribution is well-defined:

S0 ≺ s ⊃ ∃n.
∑
s′

p(s′, s) = n

Appendix B describes how this and similar summations can be expressed using second-order
quantification. Finally, all situations considered possible in S0 must be initial. Here, we write
Init(σ) to say that σ is an initial situation. Formally, Init(σ) is an abbreviation defined as
follows:

Init(σ) .= ∀s, a.σ 6= do(a, s).

3.3.1 Foundational Axioms for the Epistemic Situation Calculus

Having more than one initial situation means that Reiter’s induction axiom for situations
(foundational axiom 3) no longer holds, just as in [BHL99]. Instead, we consider the following
set of foundational axioms, adapted from [LPR98, LL98]:

1. Init(S0) ∧ ∀s′.p(s′, S0) > 0 ⊃ Init(s′);

2. do(a, s) = do(a′, s′) ⊃ a = a′ ∧ s = s′;

3. The following is a weaker version of the original induction axiom:

∀P.{∀s.Init(s) ⊃ P (s) ∧ [∀s, a.P (s) ⊃ P (do(a, s)))]} ⊃ ∀sP (s);

54 CHAPTER 3. THE SITUATION CALCULUS AND CONGOLOG

4. Init(s′) ⊃ ¬(s < s′);

5. s < do(a, s′) ≡ s v s′, where s v s′ stands for (s < s′) ∨ (s = s′);

6. s ≺ s′ ≡ s < s′ ∧ ∀a, s∗.s < do(a, s∗) v s′ ⊃ Poss(a, s∗).

The first three foundational axioms characterize the space of all situations. Unlike the foun-
dational axioms for the non-epistemic situation calculus, which characterize the space of all
situations as a tree with root S0, the foundational axioms for the epistemic situation calculus
make the set of situations isomorphic to a set of trees (a forest), where the roots of the differ-
ent trees are the initial situations. The last three axioms characterize the binary predicates
< and ≺, just as in Section 3.1.2.

3.3.2 Belief

Based on p, BHL define Bel(φ, s), the agent’s degree of belief that φ holds in situation s.
As usual, φ stands for a situation calculus formula where now may be used to refer to the
current situation. Formally, they define Bel(φ, s) = p as an abbreviation for the following
term expressible in second-order logic:∑

s′:φ[s′]

p(s′, s)/
∑
s′

p(s′, s) = p.

Intuitively, Bel(φ, s) is the (normalized) sum of the degree of likelihood of all situations s′

considered possible in s that fulfill φ. Note that we are restricting ourselves to discrete
probability distributions, where the probability of a set can be computed as the sum of the
probabilities of the elements of the set.

As an example, let us describe the initial belief state of a robot whose confidence to be
in room R1 is 90%, and which believes to be in room R2 else. In this situation, the world is
initially in one of two states, s1 and s2, which occur with probability 0.9 and 0.1, respectively.
In this simple scenario, these are the only possibilities, all other situations have likelihood 0.
The following axiom makes this precise together with what holds and does not hold in each
of the two states:

∃s1, s2.∀s.s 6= s1 ∧ s 6= s2 ⊃ p(s, S0) = 0 ∧
p(s1, S0) = 9 ∧ p(s2, S0) = 1∧
robotLoc(s1) = R1 ∧ robotLoc(s2) = R2.

From this, it is easy to deduce Bel(robotLoc(now) = R1, S0) = 0.9.

Chapter 4

cc-Golog – Dealing with Continuous
Change

Rm 6212

Rm 6214

Rm 6213a

Rm 6213

 Rm 6204

Rm 6205

Figure 4.1: Robot environment

In real-world applications, high-level controllers typically
operate low-level processes which change the world in a
continuous fashion over time. Although it may some-
times seem reasonable to abstract away from the contin-
uous change involved, for example to represent a pickup
as causing discrete qualitative change, abstracting away
from the actual continuous movement of the gripper, this
is not always appropriate. For example, consider a robot
operating in the north floor of the Computer Science De-
partment V at Aachen University of Technology, illustrated
in Figure 4.1. Here, dealing with event-driven actions like
“say hello if you come near Door 6213” is both problematic
and un-natural without taking into account the continuous
trajectory caused by the navigation process.

In order to deal with continuously changing properties in a natural way, the non-logic-
based robot programming languages RPL, RAP, PRS-Lite and Colbert introduced in Section 2.3
all offer a special wait-for instruction, which suspends activity until a condition appealing to
continuously changing properties becomes true. As an example, consider the following RPL
program:

(with-policy (loop

wait-for Batt-Level ≤ 46
charge-batteries)

(with-policy (loop

wait-for near-door(Rm 6213)
say(“hello”)
wait-for ¬near-door(Rm 6313))

deliver-mail))

Figure 4.2: Office delivery plan

Roughly, the robot’s main task is to deliver mail, which we merely indicate by a call to

55

56 CHAPTER 4. CC-GOLOG – DEALING WITH CONTINUOUS CHANGE

the procedure deliver-mail. While executing this procedure, the robot concurrently also does
the following, with an increasing level of priority: whenever it passes the door to Room 6213
it says “hello” and, should the battery level drop dangerously low, it recharges its batteries
interrupting whatever else it is doing at this moment. Even this simple program exhibits
important features of high-level robot controllers:

• The timing of actions is largely event-driven, that is, rather than explicitly stating when
an action occurs, the execution time depends on certain conditions becoming true such
as reaching a certain door. In this example, the specification of reactive behavior is
realized using the wait-for construct.

• Actions are executed as soon as possible, that is, immediately after their precondition
becoming true. For example, the batteries are charged immediately after a low voltage
level is determined.

• Conditions such as the voltage level are best thought of as changing continuously over
time.

• Parts of programs which execute with high priority must allow the execution of con-
current sub-programs with lower priority, other parts must interdict the execution of
concurrent sub-programs with lower priority. For example, while waiting for a low bat-
tery level, mail delivery should continue. On the other hand, the actual charging of the
battery should block the mail delivery. We will refer to high-priority sub-programs that
interdict the execution of concurrent programs as blocking policies. In RPL, blocking
policies are handled by having the different procedures (for example deliver-mail and
charge-batteries) compete for a valve (cf. the discussion on page 34).

Given the inherent complexity of concurrent robot programs, answers to questions like whether
a program is executable and whether it will satisfy the intended goals are not easy to come
by, yet important to both the designer during program development and the robot who may
want to choose among different courses of action. A principled approach to answering such
questions is to project how the world evolves when actions are performed. Although the
xfrm system [McD92a, McD94] allows the projection of RPL plans like the above [BG98], it
relies on RPL’s run-time system, which lacks a formal semantics and which makes predictions
implementation dependent. Preferably one would like a language which is as powerful as
RPL yet allows for projections based on a perspicuous, declarative semantics. As for other
non-logic-based robot control languages discussed in Section 2.3, they either model complex
programs as primitive actions (like RAP), or do not consider projection at all.

Although ConGolog offers features such as concurrency and priorities, it turns out that in
its current form it is not suitable to represent robot controllers such as the example above. The
problem is that in its current form, the situation calculus on which it is based is only able to
represent discrete change, and lacks the capability to express that a property like the robot’s
position changes continuously over time. On the other hand, the existing temporal extension
of GOLOG [Rei98] requires that the execution time of an action is supplied explicitly, which
seems incompatible with event-driven specifications. Finally, it is not clear how to handle
both blocking and non-blocking prioritized execution in ConGolog. In particular, ConGolog’s
(σ1 〉〉 σ2) construct simply blocks the execution of of σ2 whenever σ1 can execute (cf. page 43).

In this chapter, we will present an extension of GOLOG and the situation calculus which
will allow the specification and projection of plans which react to continuously changing

4.1. CONTINUOUS CHANGE AND TIME 57

properties, similarly to the example of Figure 4.2. We proceed in three steps. First we present
a new extension of the situation calculus which, besides dealing with continuous change,
allows us to model actions which are event-driven by including a special action waitFor in
the logic. We then turn to a new variant of ConGolog called cc-Golog, which is based on the
extended situation calculus. In particular, cc-Golog comes with a new semantics for concurrent
execution, which ensures that actions which can be executed earlier are always preferred.
Unlike ConGolog, cc-Golog only provides deterministic instructions, which is due to anomalies
which arise from the interaction of waitFor-actions, concurrency and nondeterminism.

Finally, we show how a robot control architecture where a high-level controller commu-
nicates with low-level processes via messages (like the layered robot control architectures
discussed in Section 2.3) can be modeled directly in cc-Golog. Thereby, we model complex
low-level processes like the navigation process as cc-Golog programs. This allows a very fine-
grained characterization of the effects of the low-level processes at a level of detail involving
many atomic actions, in particular taking into account the temporal extent of low-level pro-
cesses like the navigation process. Given a faithful characterization of the low-level processes
in terms of cc-Golog programs, we can then reason about the effects of their activation through
simulation of the corresponding cc-Golog model. The main advantage of having an explicit
model of the robot control architecture is that there is a clear separation of the actions of the
high-level controller from those of low-level processes. We remark that in this chapter, we are
only concerned with how to project a cc-Golog plan. Actual (on-line) execution of cc-Golog
plans will be the topic of the next chapter.

The rest of this chapter is organized as follows. In the next section, we show how to extend
the basic situation calculus to include continuous change and time. Thereafter, we present
cc-Golog which takes into account the extended situation calculus, in particular its notion
of time and temporal precedence. Finally, we show how to model a layered robot control
architecture, develop a cc-Golog model of a low-level navigation process, and show how the
example-program can be specified quite naturally in cc-Golog with the additional benefit of
supporting projections firmly grounded in logic.

4.1 Continuous Change and Time

Actions in the situation calculus cause discrete changes and, in its basic form, there is no
notion of time. In robotics applications, however, we are faced with processes such as naviga-
tion which cause properties like the robot’s location and orientation to change continuously
over time. In order to model such processes in the situation calculus in a natural way, we add
continuous change and time directly to its ontology.

4.1.1 Adding a Timeline

As demonstrated by Miller, Pinto and Reiter [Mil96, Pin97, Rei96], adding time is a simple
matter. We add a new sort Real ranging over the real numbers and, for mnemonic reasons,
another sort Time ranging over the reals as well. For simplicity, the reals are not axiomatized
and we assume their standard interpretations together with the usual operations and ordering
relations; confer [Har96] for an in-depth treatment of theorem proving with reals. In order to
connect situations and time, we add a special unary functional fluent start to the language
with the understanding that start(s) denotes the time when situation s begins. We will see
later how start obtains its values and, in particular, how the passage of time is modeled.

58 CHAPTER 4. CC-GOLOG – DEALING WITH CONTINUOUS CHANGE

4.1.2 Continuous Fluents

A fundamental assumption of the situation calculus is that fluents have a fixed value at every
given situation. In order to see that this assumption still allows us to model continuous
change, let us consider the example of a mobile robot moving along a straight line in a 1-
dimensional world, that is, the robot’s location at any given time is simply a real number.
There are two types of actions the robot can perform, startGo(v), which initiates moving the
robot with speed v, and endGo which stops the movement of the robot. The robot can start
and stop moving along the line at any time.

Let us denote the robot’s location by the fluent robotLoc1d. What should the value of
robotLoc1d be after executing startGo(v) in situation s? Certainly it cannot be a fixed real
value, since the position should change over time as long as the robot moves. In fact, the
location of the robot at any time after startGo(v) (and before the robot changes its velocity)
can be characterized (in a somewhat idealized fashion) by the function x0 +v× (t− t0), where
x0 is the starting position and t0 the starting time. The solution is then to take this function
of time to be the value of robotLoc1d. We call functional fluents whose values range over
functions of time continuous fluents. In the next subsection, we will see how functions of time
can be integrated into the situation calculus.

4.1.3 Functions of Time

In order to represent the value of continuous fluents, we introduce a new sort t-function, whose
elements are meant to be functions of time. Formally, then, a continuous fluent is a fluent
of sort t-function. For our 1-dimensional robot example, it suffices to consider two kinds
of t-functions: constant functions, denoted by constant(x) and the special linear functions
introduced above, which we denote as linear(x, v, t0). In order to say what values these
functions have at any particular time t, we use a new binary function val. In the example, we
would add the following axioms:

val(constant(x), t) = x;
val(linear(x0, v, t0), t) = x0 + v× (t− t0).

4.1.4 The passage of Time

Let us now turn to the issue of modeling the passage of time during a course of actions. As
indicated in the introduction of this chapter, motivated by the treatment of time in robot
control languages like RPL, RAP, or Colbert, we introduce a new type of primitive action
waitFor(τ). The intuition is as follows: normally, every action happens immediately, that is,
the starting time of the situation after doing a in s is the same as the starting time of s. The
only exception is waitFor(τ): whenever this action occurs, the starting time of the resulting
situation is advanced to the earliest time in the future when τ becomes true. Note that this
has the effect that actions always happen as soon as possible.

One may object that requiring that two actions other than waitFor must happen at the
same time is unrealistic. However, in robotics applications, actions often involve little more
than sending messages in order to initiate or terminate processes so that the actual duration
of such actions is negligible. For example, a procedure like mail delivery essentially consists
of startGo and waitFor actions, which cause the robot to start moving towards its destination
respectively to wait until it has been reached. In this example, a considerable amount of

4.1. CONTINUOUS CHANGE AND TIME 59

time passes only while the high-level controller is waiting (i.e. the robot is traveling to its
destination). Moreover, if two actions cannot happen at the same time, they can always be
separated explicitly using waitFor.

The arguments of waitFor are restricted to what we call a t-form, which is a Boolean
combination of closed atomic formulas of the form (F op r), where F is a continuous fluent
where now may refer to the actual situation, op ∈ {<,=}, and r is a term of type real (not
mentioning val). We freely use ≤, ≥, or > as well. An example is τ = (robotLoc1d ≥ 1000).
To evaluate a t-form at a situation s and time t, we write τ [s, t] which results in a formula
which is like τ except that every continuous fluent F is replaced by val(F (s), t). For instance,
(robotLoc1d ≥ 1000)[s, t] becomes (val(robotLoc1d(s), t) ≥ 1000). We will not go into the
details of reifying t-forms within the language; a thorough treatment of these issues can be
found in Appendix A.1.4.

To see how actions are forced to happen as soon as possible, let ltp(τ, s, t) be an abbrevi-
ation for the formula

τ [s, t] ∧ t ≥ start(s) ∧ ∀t′.start(s) ≤ t′ < t ⊃ ¬τ [s, t′],

that is, t in ltp(τ, s, t) is the least time point after the start of s where τ becomes true.1 Then
we require that a waitFor-action is possible if and only if the condition has a least time point.
In practice, this means that it is up to the user to ensure that τ has a least time point.

Poss(waitFor(τ), s) ≡ ∃t.ltp(τ, s, t).

Intuitively, thus, a waitFor(τ) action is not possible in s if there is no least time point after
the start of s where τ becomes true. For example, if robotLoc1d(S0) = linear(0, 1, start(S0)),
then waitFor(robotLoc > 1) is not possible in S0 because there is no least time point t such
that 0 + 1 × t > 1. On the other hand, it is straightforward to show that, if ∃t.ltp(τ, s, t) is
satisfied, then t is unique.

Finally, we need to characterize how the fluent start changes its value when an action
occurs. The following successor state axiom for start captures the intuition that the starting
time of a situation changes only as a result of a waitFor(τ), in which case it advances to the
earliest time in the future when τ holds.

Poss(a, s) ⊃ [start(do(a, s)) = t ≡
∃τ.a = waitFor(τ) ∧ ltp(τ, s, t) ∨ ∀τ.a 6= waitFor(τ) ∧ t = start(s)]]

(4.1)

Let AXcc be the foundational axioms of the situation calculus from Section 3.1 together with
the axioms required for t-form’s, the precondition axiom for waitFor, and the successor state
axiom for start. Then, the following formulas are logical consequences of AXcc.

Proposition 3:

1. Actions happen as soon as possible:
s ≺ do(a, s) ⊃ [start(do(a, s)) = start(s)]∨ [∃τ.a = waitFor(τ)∧ ltp(τ, s, start(do(a, s)))];

2. The starting time of legal action sequences is monotonically nondecreasing:
s ≺ s′ ⊃ start(s) ≤ start(s′).

1This is not unlike Reiter’s definition of a least natural time point in the context of natural actions [Rei96].
Similar ideas occur in the context of delaying processes in real-time programming languages like Ada [BW91].

60 CHAPTER 4. CC-GOLOG – DEALING WITH CONTINUOUS CHANGE

Proof: (1) Follows directly from Axiom 4.1 and the fact that a is possible in s.
(2) Follows by induction on n, the number of actions performed to obtain s′ from s. n = 1

follows from (1), and the fact that, by definition, ltp(τ, s, t) ⊃ t ≥ start(s). If n > 1, then
∃a∗, s∗.s′ = do(a∗, s∗) ∧ s ≺ s∗ ∧ Poss(a∗, s∗). By induction hypothesis, start(s) ≤ start(s∗).
From this, together with (1) and ltp(τ, s, t) ⊃ t ≥ start(s), we get start(s) ≤ start(s′). 2

To illustrate the approach, let us go back to the 1-dimensional robot example. First, we
can formulate a successor state axiom for robotLoc1d:

Poss(a, s) ⊃ [robotLoc1d(do(a, s)) = y ≡
∃t0, v, x.t0 = start(s) ∧ x = val(robotLoc1d(s), t0)∧

[a = startGo(v) ∧ y = linear(x, v, t0)∨
a = endGo ∧ y = constant(x)]∨

¬∃v.(a = startGo(v) ∨ a = endGo) ∧ y = robotLoc1d(s)]

In other words, when an action is performed, robotLoc1d is assigned either the function
linear(x, v, t0), if the robot starts moving with velocity v and x is the location of the robot at
situation s, or it is assigned constant(x) if the robot stops, or it remains the same as in s. To
see that the above successor state axiom is well-defined, let

γf (a, s, y) .= ∃t0, v, x.t0 = start(s) ∧ x = val(robotLoc1d(s), t0)∧
[a = startGo(v) ∧ y = linear(x, v, t0)∨
a = endGo ∧ y = constant(x)].

It is easy to see that

∀a, s.[∃y.γf (a, s, y) ≡ ∃v.(a = startGo(v) ∨ a = endGo)].

Furthermore, for every startGo or endGo action the value of y is uniquely determined. Thus,
from the unique names axioms for primitive actions, we get:

¬∃a, s, y, y′.γf (a, s, y) ∧ γf (a, s, y′) ∧ y 6= y′

and hence the successor state axiom for robotLoc1d(s) is equivalent to a successor state axiom
of the form of Axiom 3.5 on page 41, and is well-defined (cf. Axiom 3.6).

Let Γ be AXcc together with the axioms for val, the successor state axiom for robotLoc1d,
precondition axioms stating that startGo and endGo are always possible, and the facts
robotLoc1d(S0) = constant(0) and start(S0) = 0, that is, the robot initially rests at position 0
and the starting time of the initial situation is 0. Let us assume the robot starts moving at
speed 50 (cm/s) and then waits until it reaches location 1000 (cm), at which point it stops.
The resulting situation is S1 = do([startGo(50),waitFor(robotLoc1d = 1000), endGo], S0).
Then:

Γ |= start(S1) = 20 ∧ robotLoc1d(S1) = constant(1000).

Proof: (Sketch) In situation do(startGo(50), S0), the value of robotLoc1d is linear(0, 50, 0).
val(linear(0, 50, 0), 20) = 1000, and hence the least time point of the t-form robotLoc1d =
1000 in situation do(startGo(50), S0) is 20. Thus, in do([startGo(50),waitFor(robotLoc1d =
1000)], S0) the value of start is 20, and the value of robotLoc1d remains linear(0, 50, 0). Fi-
nally, the execution of endGo leaves start unaffected (i.e. 20), and changes robotLoc1d to
constant(1000) because val(linear(0, 50, 0), 20) = 1000. 2

In other words, the robot moves for 20 seconds and stops at location 1000, as one would
expect.

4.1. CONTINUOUS CHANGE AND TIME 61

4.1.5 A Simple Model of Robot Navigation

We will now model how in our introductory robot delivery example the robot’s location
changes as a result of primitive actions. For simplicity, we ignore the robot’s orientation and
represent its position by a tuple of reals. We begin by defining a 2-dimensional version of the
t-functions constant and linear, ignoring the details of representing tuples of reals in logic:2

val(constant(x, y), t) = 〈x, y〉
val(linear(x, y, vx, vy, t0), t) = 〈x′, y′〉 ≡
x′ = x+ vx ∗ (t− t0) ∧ y′ = y + vy ∗ (t− t0).

While constant(x, y) always evaluates to 〈x, y〉, linear(x, y, vx, vy, t0) is a linear function in-
tended to approximate the movement of a robot in 2-dimensional space.

We represent the robot’s position by the continuous fluent robotLoc, which evaluates to
a 2-dimensional t-function. Again, robotLoc is affected by startGo and endGo, however this
time startGo has two arguments. startGo(〈x, y〉) initiates moving the robot towards position
〈x, y〉 and endGo stops the movement of the robot. For simplicity, we model the robot as
always traveling at speed 1m/s (in a more realistic model, we would also consider different
velocities). Then, we obtain the following successor state axiom for robotLoc:

Poss(a, s) ⊃ [robotLoc(do(a, s)) = f ≡
∃t, x, y. t = start(s) ∧ val(robotLoc(s), t) = 〈x, y〉∧

[∃x′, y′, vx, vy.a = startGo(〈x′, y′〉)∧
vx = (x′ − x)/ν ∧ vy = (y′ − y)/ν ∧ f = linear(x, y, vx, vy, t)∨

a = endGo ∧ f = constant(x, y)∨
∀x′, y′.a 6= startGo(x′, y′) ∧ a 6= endGo ∧ f = robotLoc(s)]]

The variables x and y refer to the coordinates of the robot. After startGo(〈x′, y′〉), robotLoc
has as value a linear t-function starting at the current position and moving towards 〈x′, y′〉.
After endGo, it is constant(〈x, y〉). If a is neither a startGo nor a endGo action, robotLoc
remains unchanged. Finally, ν .=

√
(x′ − x)2 + (y′ − y)2 is a normalizing factor which ensures

that the total 2-dimensional velocity is 1. In order to avoid ν = 0, we assume that startGo
is only possible if the destination differs from the robot’s current location. Furthermore, we
assume a battery level of at least 45 V. endGo is always possible. In the following axioms, t
refers to the actual time, and x and y to the robot’s current position:

Poss(startGo(〈x′, y′〉), s) ≡
∃t, x, y. t = start(s) ∧ val(robotLoc(s), t) = 〈x, y〉 ∧ 〈x, y〉 6= 〈x′, y′〉∧
battLevel[s, t] ≥ 45;

Poss(endGo) ≡ True.

Besides affecting the robot’s position, startGo and endGo also have an effect on the robot’s
battery level. We assume that the battery level only decreases if the robot is moving, in which
case it decreases with ∆V V per second. The following successor state axiom for battLevel
makes this precise:

2One possibility would be to treat 〈x, y〉 as an abbreviation for the term coord(x, y) and to use unique names
axioms for coord.

62 CHAPTER 4. CC-GOLOG – DEALING WITH CONTINUOUS CHANGE

Poss(a, s) ⊃ [battLevel(do(a, s)) = f ≡
∃t, l. t = start(s) ∧ val(battLevel(s), t) = l∧

[∃x′, y′.a = startGo(〈x′, y′〉) ∧ f = linear(l,−∆V , t)∨
a = endGo ∧ f = constant(l)∨

∀x′, y′.a 6= startGo(x′, y′) ∧ a 6= endGo ∧ f = battLevel(s)]].

To ensure that this axiom and the above successor state axiom for robotLoc is well defined,
we have to make sure that the value of battLevel in the initial situation is a 1-dimensional
t-function, and the value of robotLoc a 2-dimensional t-function.

Summarizing, to model continuous change and time in the situation calculus, we have
added four new sorts: Real, Time, t-function (functions of time), and t-form (temporal for-
mulas). We call functional fluents whose value is a t-function continuous fluents. In addition,
we introduced a special function val to evaluate t-functions, a new kind of primitive action
waitFor(τ), whose argument is of sort t-form, together with a domain-independent precondi-
tion axiom, and a new fluent start (the starting time of a situation) together with a successor
state axiom.

4.2 cc-Golog: a Continuous, Concurrent GOLOG Dialect

We will now introduce a variant of ConGolog, which we call cc-Golog and which is founded
on our new extension of the situation calculus. The main difference between ConGolog and
cc-Golog is that the semantics of the latter are adapted to the new temporal situation calculus,
and in particular assures that every action is executed as soon as possible.

First, we slightly change the language by replacing the instruction (σ1 〉〉 σ2) by the
construct conc(σ1, σ2). Similar to (σ1 〉〉 σ2), conc(σ1, σ2) starts the prioritized concurrent
execution of σ1 and σ2; but unlike (σ1 〉〉 σ2), which requires both σ1 and σ2 to reach a final
state, the parallel execution of conc stops as soon as one of them reaches a final state. The
concurrent execution of two subplans until the first one ends is quite useful in specifying robust
robot control programs. For example, it is possible to execute a low-priority plan which moves
a robot from one place to another, and to concurrently execute a high-priority secondary plan
that stops the robot if its gripper should ever become empty to pick up the object dropped.
Another example is the outermost policy of the example program from Figure 4.2, which will
never finish. Note that if the full concurrent execution of two programs σ1 and σ2 is desired,
one can always apply conc to two programs σ′1 and σ′2 which first execute σ1 respectively σ2

and then wait (e.g. by an appropriate test) until the other program has finished execution.

Besides the new conc construct, cc-Golog provides another instruction that was not present
in ConGolog: the withCtrl(φ, σ) instruction. The purpose of withCtrl is to facilitate the speci-
fication of blocking policies. Intuitively, withCtrl(φ, σ) executes the program σ as long as the
condition φ is true, but gets blocked otherwise. The idea is that a high-priority policy can
block and unblock a low-priory sub-program of the form withCtrl(φ, σ) by modifying the truth
value of φ; we will elaborate on the use of withCtrl in Section 4.2.2. Altogether, cc-Golog offers
the following constructs:

4.2. CC-GOLOG: A CONTINUOUS, CONCURRENT GOLOG DIALECT 63

nil the empty program
α primitive action or waitFor(τ)
φ? wait/test action
[σ1, σ2] sequence
if(φ, σ1, σ2) conditional
while(φ, σ) loop
conc(σ1, σ2) prioritized execution until any σi ends
withCtrl(φ, σ) guarded execution
{proc(P1(~v1), β1); ...; proc(Pn(~vn), βn);σ} procedures

Note that in cc-Golog, all nondeterministic instruction found in ConGolog are missing. The
reason why we had to remove them is that nondeterministic instructions are problematic with
respect to cc-Golog’s new semantics, as we will see in Section 4.2.4.3

4.2.1 A New Semantics for Concurrent Execution

To start with, the semantics remains exactly the same for all the non-concurrent constructs
inherited from deterministic GOLOG, in particular for procedure definition. Note that this is
also true for the new waitFor(τ) construct, which is treated like any other primitive action.
When considering the transition of concurrent programs, however, care must be taken in order
to avoid conflicts with the assumption that actions should happen as soon as possible, which
underlies our new version of the situation calculus. To see why, let us consider the following
example:

conc([waitFor(battLevel ≤ 46), chargeBatteries,False?],
[startGo(6213),waitFor(inRoom(6213)), endGo, giveCoffee]).

Here, inRoom(r) is a macro expression that is true if and only if the value of robotLoc cor-
responds to a position inside Room r. The idea is to deliver coffee and, with higher priority,
watch for a low battery level, at which point the batteries are charged. The test False? in the
high-priority branch is executed in order to ensure that the high-priority program will never
end, and hence that the execution of the overall program will continue until the low-priority
branch has completed execution. Note that a test False? is neither final nor is there any
possible transition to a successor configuration, and hence the execution is “blocked” forever.

In the discussion of a similar scenario written in RPL, we already pointed out that the
waitFor-action should not block the mail delivery even though it belongs to the high priority
policy. However, the obvious adaptation of ConGolog’s Trans-definition of (σ1 〉〉 σ2) from
Section 3.2 to the case of conc(σ1, σ2) (roughly, replace (σ1 〉〉 σ2) by conc(σ1, σ2) and add
¬Final(σ1, s) and ¬Final(σ2, s) as additional conjuncts in the definition’s right-hand side)
would yield the following trace:

do([waitFor(battLevel ≤ 46), chargeBatteries,
startGo(6213),waitFor(inRoom(6213)), giveCoffee], S0).

This result, where the robot first waits until its batteries are low, is clearly unacceptable. It
is caused by ConGolog’s Trans definition of (σ1 〉〉 σ2), which simply prefers the action with
the higher priority. The fact that startGo(6213) could immediately be executed while the

3Although un-prioritized concurrency is not problematic [GL00a], it is not considered here since it would
also become problematic in probabilistic domains (see Section 6.4).

64 CHAPTER 4. CC-GOLOG – DEALING WITH CONTINUOUS CHANGE

condition battLevel ≤ 46 will only become true later on is not taken into account. What is
required for a reasonable execution trace is that the preference is based on the execution time
of actions, a concept which is not present in ConGolog.

As in Section 3.2.2, let us first consider a first-order definition of Trans, ignoring proce-
dures. The following definition shows that it is not hard to require that actions which can be
executed earlier are always preferred, restoring the original idea that actions should happen
as early as possible:

Trans(conc(σ1, σ2), s, δ, s′) ≡
¬Final(σ1, s) ∧ ¬Final(σ2, s) ∧ [
∃δ1.Trans(σ1, s, δ1, s

′) ∧ δ = conc(δ1, σ2)∧
[∀δ2, s2.Trans(σ2, s, δ2, s2) ⊃ start(s′) ≤ start(s2)]∨
∃δ2.Trans(σ2, s, δ2, s

′) ∧ δ = conc(σ1, δ2)∧
[∀δ1, s1.Trans(σ1, s, δ1, s1) ⊃ start(s′) < start(s1)]].

Interestingly, the two disjuncts of this axiom are almost identical. The only difference is that
≤ is replaced by < in the last line. This ensures that σ1 takes precedence if both σi are about
to execute an action at the same time. We remark that this axiom stipulates that temporal
precedence supersedes conc priority.

Finally, it is straightforward to give Final its intended meaning, that is, conc ends if one
of the two programs ends:

Final(conc(σ1, σ2), s) ≡ Final(σ1, s) ∨ Final(σ2, s).

We remark that for non-temporal programs, i.e. for programs that do not involve waitFor
actions, the new instruction conc(σ1, σ2) only differs from ConGolog’s (σ1 〉〉 σ2) in that
conc(σ1, σ2) becomes final as soon as any of the two programs σ1 and σ2 becomes final,
while (σ1 〉〉 σ2) only becomes final when both σ1 and σ2 are final. In particular, we have the
following proposition:

Proposition 4: Let s be a legal action sequence, i.e. a situation s such that S0 ≺ s, and
let σ1 and σ2 be two cc-Golog programs that do not include waitFor actions. Let Γ be the
(first-order) axioms for ConGolog from Section 3.2 together with the above axiom for conc
plus the axioms needed for the encoding of programs as first-order terms. Then:

Γ |= Trans(conc(σ1, σ2), s, δ, s′) ≡
Trans((σ1 〉〉 σ2), s, δ, s′) ∧ ¬Final(σ1, s) ∧ ¬Final(σ2, s).

Proof: If neither σ1 nor σ2 involve waitFor instructions, then by induction on the structure
of σ1:

Trans(σ1, s, δ1, s
′) ⊃ s′ = s ∨ ∃a.[s′ = do(a, s) ∧ Poss(a, s) ∧ ∀τ.a 6= waitFor(τ)].

Similarly for Trans(σ2, s, δ2, s
′′). By the definition of start, we then get

[Trans(σ1, s, δ1, s
′) ∧ Trans(σ2, s, δ2, s

′′)] ⊃ [start(s′) = start(s) = start(s′′)].

Thus,

[Trans(σ1, s, δ1, s
′) ∧ [∀δ2, s2.Trans(σ2, s, δ2, s2) ⊃ start(s′) ≤ start(s2)]]

4.2. CC-GOLOG: A CONTINUOUS, CONCURRENT GOLOG DIALECT 65

is equivalent to

Trans(σ1, s, δ1, s
′),

and

Trans(σ2, s, δ2, s
′) ∧ [∀δ1, s1.Trans(σ1, s, δ1, s1) ⊃ start(s′) < start(s1)]

is equivalent to

Trans(σ2, s, δ2, s
′) ∧ ∀δ1, s1.¬Trans(σ1, s, δ1, s1).

2

4.2.2 Blocking Policies

As described above, in cc-Golog the preference of concurrent actions is based on their ex-
ecution time, motivated by the fact that in our introductory delivery plan an action like
waitFor(battLevel ≤ 46) should not block the concurrently running lower-priority delivery
plan. Let us now turn to the case where during the execution of the introductory plan the
battery level drops below 46 V. Once the routine for charging the batteries starts, it should
not be interrupted, that is, it should run in blocking mode, unlike before.

To get a sense of the issues that arise if the robot is to execute some high-priority plans
in blocking mode, let us consider the following cc-Golog procedure chargeBatteries which
represents a possible realization of the routine for charging the batteries. plugIn and plugOut
indicate that the robot connects respectively disconnects its batteries with the power supply,
and the term atPos(DockingStation) is a macro expression that is true if and only if the value
of robotLoc corresponds to a position near the docking station.

proc(chargeBatteries,
[startGo(dockingStation),waitFor(atPos(DockingStation)),
plugIn,waitFor(battLevel ≥ 49), plugOut])

Throughout its execution, chargeBatteries should not be interrupted, that is, concurrently
running programs like the mail delivery routine should remain blocked. In particular, the
mail delivery routine should remain blocked while chargeBatteries executes waitFor-actions it
contains such as waiting for arrival at the docking station. Note that according to cc-Golog’s
semantics this would not be guaranteed if we would simply execute chargeBatteries and the
mail delivery routine concurrently using conc.

To allow a natural specification of policies running in blocking mode, we have added the
instruction withCtrl(φ, σ) which executes the program σ as long as the condition φ is true,
but gets blocked otherwise. Using withCtrl, the effect of a policy in blocking mode can be
obtained by having the truth value of φ be controlled by the policy and using the withCtrl(φ, σ)-
construct in the low priority program. For example, assuming a fluent wheels which is initially
True, set False by the primitive action grabWheels and reset by releaseWheels, the execution
of chargeBatteries in blocking mode can be assured by the following plan, where deliverMail
implements the actual mail delivery:

conc([waitFor(battLevel ≤ 46), grabWheels, chargeBatteries, releaseWheels],
withCtrl(wheels, deliverMail)).

66 CHAPTER 4. CC-GOLOG – DEALING WITH CONTINUOUS CHANGE

The formal semantics of withCtrl is defined by the following axioms:

Trans(withCtrl(φ, σ), s, δ, s′) ≡ φ[s] ∧ ∃γ.Trans(σ, s, γ, s′) ∧ δ = withCtrl(φ, γ);

Final(withCtrl(φ, σ), s) ≡ φ[s] ∧ Final(σ, s).

To further understand the definition of withCtrl, let us first consider the case where φ is false.
Here, withCtrl(φ, σ) is neither Final nor can it ever lead to a transition. Thus, withCtrl(φ, σ)
is blocked (and not final) as long as φ is false. If φ is true, however, withCtrl(φ, σ) behaves
exactly like σ.

For convenience, in the remainder of this thesis we will also use the following macros in
cc-Golog programs.4

forever(σ) infinite loop
whenever(τ, σ) interrupt triggered by continuous functions
withPol(σ1, σ2) prioritized execution until σ2 ends

Formally, these macros are defined as follows:

forever(σ) .= while(True, σ)
whenever(τ, σ) .= forever([waitFor(τ), σ])
withPol(σ1, σ2) .= conc([σ1,False?], σ2).

The macro forever(σ) executes a program σ over and over again. whenever(τ, σ) is used to
specify that whenever the continuous condition τ becomes true, the program σ is to be
executed.5 withPol is inspired by RPL’s with-policy construct (cf. page 35), which has been
found very useful in specifying complex concurrent behavior. Like conc(σ1, σ2), withPol(σ1, σ2)
executes σ1 and σ2 concurrently; unlike conc, it ends if and only if σ2 becomes final. The
test False? in the definition of withPol is used to ensure that the high-priority branch will
never end, and hence that the execution will continue until the low-priority branch completes
execution. As in RPL, in a program withPol(σ1, σ2) we call σ1 the policy of σ2.

4.2.3 Extending the Semantics to Procedures

Let us now extend the semantics of cc-Golog to procedures. This can be done in complete
analogy to the case of ConGolog described in Section 3.2.3. That is, we define Trans by the
following second-order axiom:

Trans(σ, s, δ, s′) ≡ ∀T.[... ⊃ T (σ, s, δ, s′)],

where the ellipsis stands for the universal closure of the conjunction of the following assertions:
4We remark that [GL00a] proposes an approach to the specification of blocking policies without procedures

based on the use of a macro withCtrl(φ, σ) (this macro stands for σ with every primitive action or test α
replaced by if(φ, α,False?)). However, we do not pursue that approach here because it is not clear how it can
be extended to deal with (recursive) procedures.

5For those familiar with [dGLL97, dGLL00], we remark that a similar idea underlies their interrupt macro
< φ → σ >. However, while < φ → σ > executes σ whenever a non-temporal condition φ becomes true,
whenever(τ, σ) executes σ whenever the continuous condition τ becomes true.

4.2. CC-GOLOG: A CONTINUOUS, CONCURRENT GOLOG DIALECT 67

T (nil, s, δ, s′) ≡ False

T (α, s, δ, s′) ≡ Poss(α[s], s) ∧ δ = nil ∧ s′ = do(α[s], s)

T (φ?, s, δ, s′) ≡ φ[s] ∧ δ = nil ∧ s′ = s

T ([σ1, σ2], s, δ, s′) ≡ ∃γ.T (σ1, s, γ, s
′) ∧ δ = [γ, σ2] ∨ Final(σ1, s) ∧ T (σ2, s, δ, s

′)

T (if(φ, σ1, σ2), s, δ, s′) ≡ φ[s] ∧ T (σ1, s, δ, s
′) ∨ ¬φ[s] ∧ T (σ2, s, δ, s

′)

T (while(φ, σ), s, δ, s′) ≡ φ[s] ∧ ∃γ.T (σ, s, γ, s′) ∧ δ = [γ,while(φ, σ)]

T (conc(σ1, σ2), s, δ, s′) ≡
¬Final(σ1, s) ∧ ¬Final(σ2, s) ∧ [
∃δ1.T (σ1, s, δ1, s

′) ∧ δ = conc(δ1, σ2)∧
[∀δ2, s2.T (σ2, s, δ2, s2) ⊃ start(s′) ≤ start(s2)]∨
∃δ2.T (σ2, s, δ2, s

′) ∧ δ = conc(σ1, δ2)∧
[∀δ1, s1.T (σ1, s, δ1, s1) ⊃ start(s′) < start(s1)]]

T (withCtrl(φ, σ), s, δ, s′) ≡ φ[s] ∧ ∃γ.T (σ, s, γ, s′) ∧ δ = withCtrl(φ, γ)

T ({E ;σ}, s, δ, s′) ≡ T (σPi(
~t)

[E:Pi(~t)]
, s, δ, s′)

T ([E : P (~t)], s, δ, s′) ≡ T ({E ;βP
~vp
~t[s]
}, s, δ, s′).

The only difference to the second-order definition of Trans in ConGolog is that the assertion
for (σ1 〉〉 σ2) is replaced by the assertion for conc(σ1, σ2), that all assertions regarding non-
deterministic instructions have been removed and that we have added a new assertion for
withCtrl(φ, σ).

Similarly, Final is defined as follows:

Final(σ, s) ≡ ∀F.[... ⊃ F (σ, s)],

where the ellipsis stands for the universal closure of the conjunction of the following assertions:

F (α, s) ≡ False , where α is a primitive action

F (nil, s) ≡ True, where nil is the empty program

F (φ?, s) ≡ False

F ([σ1, σ2], s) ≡ F (σ1, s) ∧ F (σ2, s)

F (if(φ, σ1, σ2), s) ≡ φ[s] ∧ F (σ1, s) ∨ ¬φ[s] ∧ F (σ2, s)

F (while(φ, σ), s) ≡ ¬φ[s] ∨ F (σ, s)

F (conc(σ1, σ2, s)) ≡ F (σ1, s) ∨ F (σ2, s)

F (withCtrl(φ, σ), s) ≡ φ[s] ∧ F (σ, s)

F ({E ;σ}, s) ≡ F (σPi(
~t)

[E:Pi(~t)]
, s);

F ([E : P (~t)], s) ≡ F ({E ;βP
~vp
~t[s]
}, s).

68 CHAPTER 4. CC-GOLOG – DEALING WITH CONTINUOUS CHANGE

As in the case of ConGolog, it is possible to show that with respect to programs without
procedures, the first-order and the second-order definitions of Trans and Final are equivalent.

Proposition 5: With respect to cc-Golog programs without procedures, the first-order and
the second-order definition of Trans and Final are equivalent.

Proof: We prove this in complete analogy to the proof in [dGLL00] regarding ConGolog
(Theorem 4). First, observe that the second-order definition of Trans and Final can be put
in the following form:

Trans(σ, s, δ, s′) ≡
∀T.[∀σ1, s1, δ2, s2.ΦTrans(T, σ1, s1, δ2, s2) ≡ T (σ1, s1, δ2, s2)]
⊃ T (σ, s, δ, s′)

Final(σ, s) ≡
∀F.[∀σ1, s1.ΦFinal(F, σ1, s1) ≡ F (σ1, s1)] ⊃ F (σ, s)

where ΦTrans and ΦFinal are obtained by rewriting each of the assertions in the definition of
Trans and Final so that only variables appear in the left-hand part of the equations and then
getting the disjunction of all right-hand sides, which are mutually exclusive since each of them
deals with programs of a specific form.Then the following sentences are consequences of the
second-order definitions of Trans and Final, respectively:

∀P.[∀σ1, s1, σ2, s2.ΦTrans(P, σ1, s1, σ2, s2) ≡ P (σ1, s1, σ2, s2)]
⊃ ∀σ, s, δ, s′.Trans(σ, s, δ, s′) ⊃ P (σ, s, δ, s′)

∀P.[∀σ1, s1.ΦFinal(P, σ1, s1) ≡ P (σ1, s1)]
⊃ ∀σ, s.Final(σ, s) ⊃ P (σ, s).

The proof is straightforward and can be found in [dGLL00]. The above sentences tells us that
to prove that a property P holds for instances of Trans and Final, it suffices to prove that the
property is closed under the assertions in the definition of Trans and Final, that is it suffices
to show:

ΦTrans(P, σ1, s1, σ2, s2) ≡ P (σ1, s1, σ2, s2)

ΦFinal(P, σ1, s1) ≡ P (σ1, s1).

Let us now denote Trans defined by the second-order sentence as TransSOL and the earlier
first-order definition of Trans as TransFOL. Since procedures are not considered, we can
drop, without loss of generality, the assertions for contextualized procedures and procedures
with an environment in the definition of TransSOL. Then:

• TransSOL(σ, s, δ, s′) ⊃ TransFOL(σ, s, δ, s′) is proven simply by noting that TransFOL
is closed under the assertions in the definition of TransSOL.

• TransFOL(σ, s, δ, s′) ⊃ TransSOL(σ, s, δ, s′) is proven by induction on the structure of
σ considering as base cases nil, a, and φ?, and then applying the induction argument.

4.2. CC-GOLOG: A CONTINUOUS, CONCURRENT GOLOG DIALECT 69

Similarly for Final. 2

This then ends the discussion of the semantics of Final and Trans in cc-Golog. Trans∗ and
Do are defined the same way as in ConGolog. As a trivial result of the fact that regarding
sequential (non-concurrent) deterministic instructions the definitions for cc-Golog reflect the
definitions for ConGolog, we have the following:

Corollary 6: For sequential deterministic programs, the semantics of cc-Golog corresponds
to that of ConGolog.

4.2.4 Discussion: cc-Golog and Nondeterminism

Unlike ConGolog, cc-Golog does not provide nondeterministic instructions. We will now elab-
orate on the reason why we had to omit them in cc-Golog. As indicated earlier, this is because
the use of nondeterminism together with cc-Golog’s new semantics for concurrent execution
would yield counterintuitive results. As an example, let us consider the following program: a
robot is to serve a cup of coffee, and has to inform its supervisor about it either just before or
after it actually gives the coffee. The possible choice is expressed using the nondeterministic
branch instruction (σ1|σ2).

withPol([(waitFor(enterRoom)|waitFor(leaveRoom)), informSupervisor],
[startGo(desk),waitFor(atDesk), give(coffee),
startGo(home),waitFor(atHome)])

Intuitively, executing this program in S0 can lead to two different situations, reflecting the
fact that the robot can inform its supervisor before or after it actually gives the coffee:

do([startGo(desk),waitFor(enterRoom), informSupervisor,
waitFor(atDesk), give(coffee), startGo(home),waitFor(atHome)], S0);

and

do([startGo(desk),waitFor(atDesk), give(coffee),
waitFor(leaveRoom), informSupervisor, startGo(home),waitFor(atHome)], S0).

However, only the first situation is implied by the semantics: the second one is not allowed
because it amounts to first pursuing a transition along waitFor(atDesk), which is forbidden
because the nondeterministic subplan may cause an earlier transition. The situation is even
worse when considering the following program, where the (1-dimensional) robot starts moving
with speed 1 and then, in parallel, picks arbitrary locations, waits until it gets there, and then
announces where it is:

[startGo(1),
conc([πx.waitFor(robotLoc1d = x), say(x), set1completed, 2completed?],

[πy.waitFor(robotLoc1d = y), say(y), set2completed, 1completed?]),
endGo].

To ensure that both concurrent branches get executed, we assume fluents 1completed and
2completed which are initially False and set True by the actions set1/2completed, which are
always possible. The testing of the fluents at the end of each concurrent branch forces that
both branches need to finish.

70 CHAPTER 4. CC-GOLOG – DEALING WITH CONTINUOUS CHANGE

In this example, contrary to our intuition, only one choice for x is allowed by the semantics: the
starting position. This is because if x is chosen to be greater than the starting position, then
there still exists a smaller y, and vice versa. Recall that just removing the guilty conditions
∀δ2, s2.Trans(σ2, s, δ2, s2) ⊃ start(s′) ≤ start(s2) respectively ∀δ1, s1.Trans(σ1, s, δ1, s1) ⊃
start(s′) < start(s1) in the definition of Trans is no option here, because this would lead to
the anomalies mentioned in Section 4.2.1.

To avoid these counterintuitive results, we have chosen to completely renounce to the use
of nondeterminism in cc-Golog. We admit that this represents a serious restriction to the
expressiveness of cc-Golog. On the upside, cc-Golog programs are generally much faster to
execute. In these aspects, cc-Golog is more like the non-logic-based programming language
RPL and its relatives. However, we remark that unlike the non-logic-based approaches, cc-
Golog comes with a thorough declarative semantics. Finally, as we will see in Section 5.2.2, it
is possible to specify cc-Golog plans which appeal to on-the-fly projections of sub-plans, which
represents a restricted form of deliberation over different sub-plans. While the explicit use of
on-the-fly projections in conditions is certainly not as elegant as the use of nondeterministic
instructions (which are resolved through projection by the interpreter), it gives the user a
better idea of the exact amount of reasoning (i.e. projection) involved in the execution of a
plan. We will elaborate on this topic in Section 5.3.

4.3 A Robot Control Architecture

In modern robot architectures like XAVIER [SGH+97c, SGH+97a] and Rhino [BCF+00], the
high-level controller does not directly operate the robot’s physical sensors and effectors (cf.
Section 2.3). Instead, it is connected to a basic task-execution level which provides specialized
low-level processes like a navigation process, an object recognition process or a process for
grasping objects. The job of the high-level controller is then to combine the activation and
deactivation of these routines in a way to fulfill the overall goals. It turns out that cc-Golog
allows a logical reconstruction of this type of architecture in a fairly natural way. The overall
architecture is illustrated in Figure 4.3.

controller
high-level low-level

system
WORLD

process

process

1

n

...
reg(destRm)

reg(reached) reply

send

Figure 4.3: A Robot Control Architecture

4.3.1 The Communication between the High-Level Controller and the Low-
Level Processes

The communication between the low-level processes and the high-level plan is achieved through
the special fluent reg(id, s). When no confusion arises, we will simply write reg(id) or “register
id” instead of reg(id, s). The high-level interpreter can affect the value of reg by means of
the special action send(id, val), whose effect is to assign reg(id) the value val. The intuition is
that in order to activate a low-level process, the high-level controller executes a send action.
For example, the execution of send(destRoom, 6213) would tell the navigation process to start
moving towards Room 6213.

4.3. A ROBOT CONTROL ARCHITECTURE 71

On the other hand, the low-level processes can provide the high-level controller with
information by means of the exogenous action reply(id, val).6 For example, in order to inform
the high-level controller that it has reached its destination, the low-level process would cause
an exogenous reply(arrivedAt , 6213) action. The following successor state axiom specifies how
reg is affected by send and reply:

Poss(a, s) ⊃ [reg(id, do(a, s)) = val ≡
a = send(id, val) ∨ a = reply(id, val)∨
reg(id, s) = val ∧ ¬∃v.(a = send(id, v) ∨ a = reply(id, v))].

send and reply are always executable, that is Poss(send(id, val)) ≡ True and similarly
Poss(reply(id, val)) ≡ True. In the remainder of this thesis, we will use AXarch to refer
to the successor state axioms for reg together with axioms stating that reply and send are
always possible. Furthermore, we use the convention that initially all registers have value nil,
and thus add ∀id.reg(id, S0) = nil to AXarch. In particular, this means that no messages have
been issued in S0.

4.3.2 Modeling Low-Level Processes as cc-Golog Procedures

Most low-level processes in real-world applications need to be described at a level of detail
involving many atomic actions interacting in complicated ways. To describe complex low-
level processes like a navigation process, we model them as cc-Golog procedures. We thereby
abandon the simplified view of the previous sections where we assumed that the high-level
controller directly operates the physical devices. Given a faithful characterization of the low-
level processes in terms of cc-Golog procedures, we can then project the effect of the activation
of these processes using their corresponding cc-Golog models. We stress that these procedures
are not meant to be executed, but rather represent a model of the effects of the corresponding
low-level process.

As an example, let us consider the low-level navigation process. It is activated through
a send(destRoom, r) action, which assigns reg(destRoom) the value r and tells the navigation
process to travel to room r. The navigation process then starts moving the robot to its desired
location, making use of intermediate goal points like those outside doorways for robustness.
The process remains active until r is reached or reg(destRoom) is assigned a new value. In the
former case, it informs the high-level controller of the arrival by means of a reply(arrivedAt , r).
In the latter case, the navigation process aborts its journey and immediately restarts with
the new destination.

We model this behavior by the cc-Golog procedure navProc. navProc makes use of the
defined functional fluent currentRoom, which is defined in terms of robotLoc and whose value
in a situation s is the name of the room the robot is in at the beginning of s. Initially,
navProc is blocked until reg(destRoom) is assigned a (non-nil) room name different from the
one the robot is actually in. If reg(destRoom) is assigned a new value, navProc calls the
procedure travelTo(reg(destRoom)) which simulates the behavior of the low-level navigation
process while travelling to a new destination (see the description below). After the execution
of travelTo, navProc returns to its initial state. We remark that navProc will run forever.
This is fine because we will never consider the mere projection of navProc, but instead of a

6As mentioned in the introduction (i.e. Chapter 1), we consider actions as exogenous if they are not under
the control of the high-level controller. We remark that reply actions represent a kind of sensing, as we will
elaborate in the next chapters.

72 CHAPTER 4. CC-GOLOG – DEALING WITH CONTINUOUS CHANGE

high-level cc-Golog plan running concurrently to navProc; the projection will only be pursued
until the completion of the high-level plan.

proc(gotoLoc(〈x, y〉), [startGo(〈x, y〉),waitFor(near(〈x, y〉))])

proc(travelTo(dest),conc([if(currentRoom 6= hallway,
[gotoLoc(exitOf (currentRoom)),
gotoLoc(entryOf (currentRoom))]),

gotoLoc(entryOf (dest)),
gotoLoc(exitOf (dest)),
gotoLoc(centreOf (dest)),
endGo, reply(arrivedAt , dest)],

[(reg(destRoom) 6= dest)?, endGo]))

proc(navProc, forever([(reg(destRoom) 6= currentRoom ∧ reg(destRoom) 6= nil)?,
travelTo(reg(destRoom))]))

The procedure travelTo makes us of the following functions: exitOf (r), entryOf (r) and
centreOf (r). exitOf maps a room name r to (the coordinates 〈x, y〉 of) a location inside
room r next to its exit, entryOf to a location outside r and centreOf to a location within r.
travelTo concurrently starts travelling towards the destination room and checking whether it
is aborted. The latter is realized by the second branch of conc which immediately executes
endGo and becomes final if reg(destRoom) is assigned a new value. If this happens, the second
branch of conc becomes unblocked due to cc-Gologs call-by-value parameter passing, inherited
from ConGolog (cf. Section 3.2.3). After the execution of endGo, the whole conc becomes
final.

Using exitOf (r), entryOf (r) and centreOf (r), the trajectory is approximated by a polyline
with an edge in front and behind every door the robot has to travel through (see Figure 4.4).
The procedure gotoLoc(〈x, y〉) causes the robot to travel to the coordinates 〈x, y〉. The term
near(〈x, y〉) is a macro expression that is true if the value of robotLoc is sufficiently close to
〈x, y〉, typically within a few centimeters.

4.3.3 Projection

We will now describe how to project a cc-Golog plan, taking into account the cc-Golog model
of the low-level processes. Let s be a situation, llmodel a model of the low-level processes, and
σ a cc-Golog program. We identify a projection with the situation s′ that results from the
concurrent simulation of σ and llmodel until σ ends, starting in s:

Proj(s, σ, llmodel, s′)
.= Do(s,withPol(llmodel, σ), s′).

Note that although we represent the low-level processes as running with higher priority than
the high-level plan, this priority ordering has no deep impact on the resulting projections.
This is because we consider processes with temporal extent, where the different priorities
manifest only when two processes wish to execute an action at exactly the same time; actions
with different execution times are not affected.

As an example, let us consider a projection of the following simple plan Πsimple. We write
inHallway as an abbreviation for an expression that is true if the value of robotLoc corresponds
to a position in the hallway.

4.3. A ROBOT CONTROL ARCHITECTURE 73

Πsimple
.= withPol([waitFor(inHallway), say(“in Hallway”)],

[send(destRoom, 6205), (reg(arrivedAt) = 6205)?])

5

1

2
3

4

Rm 6213

Rm 6205

Figure 4.4: Piece-wise Linear Approximation of the Actual Trajectory

In this example, the navigation process is the only low-level process, so we can simply use
navProc as llmodel (more precisely, we would use {E ,navProc} where the environment E com-
prises the procedure definitions of Section 4.3.2; cf. the discussion on Page 53). If there
were more relevant low-level processes, llmodel would amount to the concurrent execution of
the individual cc-Golog models (cf. Sections 6.2.2 and 6.2.3). Let Γ be the set of axioms
AXcc from the previous chapter, axioms for val defining the value of the t-functions, the set
of axioms AXarch, the axioms for cc-Golog (cf. Sections 4.2.1, 4.2.2 and 4.2.3), the axioms
needed for the encoding of cc-Golog programs as first-order terms (cf. Appendix A), initial
state axioms stating that the robots initial position is constant and lies within Room 6213
and that the initial battery voltage is sufficiently high, successor state axioms specifying how
the robot’s location and battery level are affected by startGo and endGo (cf. Section 4.1.5),
and precondition axioms stating that endGo is always possible and startGo is only possible
if the destination differs from the robot’s current location. Using Γ, we can project the plan
Πsimple:

Γ |= Proj(S0,Πsimple,navProc, s) ≡
s = do([send(destRoom, 6205), startGo(l1),

waitFor(near(l1)), startGo(l2),
waitFor(inHallway), say(“in Hallway”)
waitFor(near(l2)), startGo(l3),
waitFor(near(l3)), startGo(l4),
waitFor(near(l4)), startGo(l5),
waitFor(near(l5)), endGo,
reply(arrivedAt , 6205)], S0).

Before we present a proof sketch, we remark that the projected execution trace includes
a startGo(li) and waitFor(near(li)) action for every node on the approximating trajectory,
where the li stand for coordinates corresponding to the nodes i in Figure 4.4. Additionally,

74 CHAPTER 4. CC-GOLOG – DEALING WITH CONTINUOUS CHANGE

it includes a say(“in Hallway”) which is executed immediately after the hallway has been
reached, which is assumed to happen just after leaving near(l1). The execution trace ends
with reply(arrivedAt , 6205), which completes the navigation task.

Proof: (Sketch) Just as in the ConGolog example of Section 3.2.2, the proof is straightforward
but quite laborious. Essentially, it amounts to proving that there is a sequence of transitions
from 〈withPol(llmodel,Πsimple), S0〉 to a final configuration with the above projection trace
as situation component. We will only consider some of the transitions along the sequence.
In particular, we will focus on the interaction of the prioritized model navProc and the low-
priority plan Πsimple, and on the impact of cc-Golog’s new semantics for concurrent execution.

As mentioned above, strictly speaking we do not use navProc as the model of the low-
level navigation process but {E ,navProc}, where the environment E comprises the procedure
definitions of Section 4.3.2. However, in the following we simply leave out the environment.
Initially, navProc is blocked because reg(destRoom) = nil. On the other hand, Πsimple is ready
to execute send(destRoom, 6205). So we get:

Trans(withPol(navProc,Πsimple), S0, δ, s) ≡
s = do(send(destRoom, 6205), S0)∧
δ =withPol(navProc,

withPol([waitFor(inHallway), say(“in Hallway”)],
[nil, (reg(arrivedAt) = 6205)?])).

That is, there is a transition to a configuration with situation component

• S1
.= do(send(destRoom, 6205), S0)

and program component

• withPol(navProc,
withPol([waitFor(inHallway), say(“in Hallway”)],

[nil, (reg(arrivedAt) = 6205)?])).

This is the only successor configuration that can be directly reached via Trans. In the new
configuration, the high-priority process navProc gets unblocked, because

currentRoom(S1) = 6213 ∧ reg(destRoom, S1) = 6205.

Thus, navProc can cause an immediate transition involving the evaluation of its initial test
(reg(destRoom) 6= currentRoom ∧ reg(destRoom) 6= nil)?. As navProc is the high-priority
branch and the transition is immediate, the definition of Trans implies that there is a transition
from the above configuration to a new configuration 〈s′, δ〉 if and only if:

• s′ = S1, and

• δ = withPol([[nil, travelTo(reg(destRoom))],navProc],
withPol([waitFor(inHallway), say(“in Hallway”)],

[nil, (reg(arrivedAt) = 6205)?])).

Next, from the definition of Trans and the fact that startGo(l1) is possible, we can conclude
that there is a transition from the above configuration to a new configuration 〈s′, δ〉 if and
only if:

4.3. A ROBOT CONTROL ARCHITECTURE 75

• s = S2
.= do(startGo(l1), S1), and

• δ = withPol([conc([[[nil,waitFor(near(l1))],
gotoLoc(entryOf (currentRoom))],

gotoLoc(entryOf (6205)),
gotoLoc(exitOf (6205)),
gotoLoc(centreOf (6205)),
endGo, reply(arrivedAt , 6205)]
[(reg(destRoom) 6= 6205)?, endGo]),

navProc],
withPol([waitFor(inHallway), say(“in Hallway”)],

[nil, (reg(arrivedAt) = 6205)?])).

Note that the outermost policy corresponds to the model of navProc, while the last two lines
represent what remains of Πsimple. In this configuration, both the outermost high-priority
policy representing the navigation process and the plan’s policy can cause a transition: the
former involves the execution of waitFor(near(l1)), and the latter of waitFor(inHallway). The
low-priority branch of the plan can not cause a transition because reg(arrivedAt , S2) 6= 6205.
As Figure 4.4 illustrates, the least time point of the t-form near(l1) is earlier than that of
the t-form inHallway: the value of robotLoc(S2) is a linear function of time whose orientation
corresponds to the dotted line from the robot’s initial position to node (1), and this line crosses
node (1) before it crosses the hallway. Thus, according to the new semantics for concurrent
execution, the high-priority process takes precedence. That is, there is a transition from the
above configuration to a new configuration 〈s′, δ〉 if and only if:

• s = S3
.= do(waitFor(near(l1)), S2), and

• δ = withPol([conc([[nil,
gotoLoc(entryOf (currentRoom))],

gotoLoc(entryOf (6205)),
gotoLoc(exitOf (6205)),
gotoLoc(centreOf (6205)),
endGo, reply(arrivedAt , 6205)]
[(reg(destRoom) 6= 6205)?, endGo]),

navProc],
withPol([waitFor(inHallway), say(“in Hallway”)],

[nil, (reg(arrivedAt) = 6205)?])).

We remark that while so far the starting time was unaffected by the transitions, the execution
of waitFor(near(l1)) causes start to advance to the least time point of the t-form near(l1). The
next transition is caused by the high-priority process which executes startGo(l2): there is a
transition from the above configuration to a new configuration 〈s′, δ〉 if and only if:

• s = S4
.= do(startGo(l2), S3), and

• withPol([conc([[nil,waitFor(near(l2))],
gotoLoc(entryOf (6205)),
gotoLoc(exitOf (6205)),
gotoLoc(centreOf (6205)),

76 CHAPTER 4. CC-GOLOG – DEALING WITH CONTINUOUS CHANGE

endGo, reply(arrivedAt , r)]
[(reg(destRoom) 6= 6205)?, endGo]),
navProc],

withPol([waitFor(inHallway), say(“in Hallway”)],
[nil, (reg(arrivedAt) = 6205)?])).

Once again, both the outermost high-priority policy representing the navigation process and
Πsimple’s policy can cause a transition in this configuration. The former involves the exe-
cution of waitFor(near(l2)), and the latter of waitFor(inHallway). This time, as illustrated
by Figure 4.4, the least time point of the t-form inHallway is earlier than that of the t-form
near(l2). That is, the lower-priority process can cause a transition before the high-priority
process. According to the new semantics for concurrent execution, the earlier transition is
pursued, that is the lower-priority plan may execute before the high-priority model of the
low-level navigation process. Thus, there is a transition from the above configuration to a
new configuration 〈s′, δ〉 if and only if:

• s = S5 = do(waitFor(inHallway), S4), and

• withPol([conc([[nil,waitFor(near(l2))],
gotoLoc(entryOf (6205)),
gotoLoc(exitOf (6205)),
gotoLoc(centreOf (6205)),
endGo, reply(arrivedAt , r)]
[(reg(destRoom) 6= 6205)?, endGo]),
navProc],

withPol([nil, say(“in Hallway”)],
[nil, (reg(arrivedAt) = 6205)?])).

Here, the lower-priority plan executes another action, namely say(“in Hallway”) which can
immediately be executed. Thereafter, the high-priority branch corresponding to the naviga-
tion process resumes execution. We do not consider these transitions in detail. Finally, we
come to a final configuration whose situation component corresponds to the overall execution
trace, which together with the definitions of Trans∗, Do and Proj finishes the proof. 2

4.3.4 The Example Revisited

This leads us, finally, to the specification of our initial example in cc-Golog. Again, we assume
a fluent wheels, which is initially True, set False by grabWheels, and reset by the action
releaseWheels.

Πintro
.= withPol(whenever(battLevel ≤ 46,

[grabWheels, chargeBatteries, releaseWheels]),
withPol(whenever(nearDoor(r6213),

[say(“hello”),waitFor(¬nearDoor(r6213))]),
withCtrl(wheels, deliverMail)))

In this program, nearDoor(r6213) is a macro which is true if the robot’s position is near
Door 6213. The outermost policy is waiting until the battery level drops to 46. At this point,
a grabWheels is immediately executed, which blocks the execution of the program deliverMail.

4.3. A ROBOT CONTROL ARCHITECTURE 77

It is only after the complete execution of chargeBatteries that wheels gets released so that
deliverMail may resume execution (if, while driving to the battery docking station, the robot
passes by Room 6213, it would still say “hello”). Note that the cc-Golog program is in a form
very close to the original RPL-program we started out with. Hence we feel that cc-Golog is a
step in the right direction towards modeling more realistic domains which so far could only be
dealt with in non-logic-based approaches. Moreover, with their rigorous logical foundation,
it is now possible to make provable predictions about how the world evolves when executing
cc-Golog programs.

In order to complete the example, we only need to specify the procedures chargeBatteries
and deliverMail. In this example, new subtleties arise due to the fact that the high-priority
policy might interrupt a low-level process during execution. In particular, deliverMail might
be interrupted by chargeBatteries due to low voltage level while travelling to a room r. If this
happens, chargeBatteries will block the further execution of deliverMail and will immediately
tell the navigation process to abort its actual task and instead travel to the docking station.
It is only after completition of chargeBatteries that deliverMail will become unblocked. By
that time, however, the low-level navigation process will have completed execution – the robot
is already near the docking station. That is, the navigation process will not cause the robot
to move towards r. So if deliverMail would simply wait for reg(arrivedAt) = r like Πsimple

(cf. page 73), it would get blocked forever.
In order to avoid this deadlock, deliverMail has to realize that the navigation process is

idle, and has to reactivate it. The following cc-Golog procedure represents a possible solution
to an interruptible high-level navigation routine leading the robot to room r. It makes use of
the fact that the condition reg(arrivedAt) = reg(destRoom) can be used to determine whether
the low-level process has finished execution. If after completion of the navigation process
currentRoom is different from r, then the navigation process is activated once again. Thus,
gotoRoom(r) only ends if the robot has actually reached room r.

proc(gotoRoom(r),
while(currentRoom 6= r,

[send(destRoom, r), reg(arrivedAt) = reg(destRoom)?]))

The following code sketches a possible realization of deliverMail, which makes use of gotoRoom
to assure that the delivery is interruptible. It is defined in terms of the functional fluent
letterQueue, which intuitively represents a queue whose elements are the letters that are to
be delivered. We assume a predicate empty(letterQueue), which is true if and only if no letter
is queued in letterQueue, and two functions top(letterQueue) and destination(l), whose values
correspond to the first element of letterQueue respectively to the name of the destination
of letter l. Furthermore, we assume appropriate successor state axioms which ensure that
the effect of push(l, letterQueue) and pop(letterQueue) is to enqueue a letter, respectively to
remove the first element of letterQueue.

proc(deliverMail,
while(¬empty(letterQueue),

[gotoRoom(destination(top(letterQueue))),
say(“hello, i got mail for you”),
... /* wait for the user to get her letter */
pop(letterQueue)]))

78 CHAPTER 4. CC-GOLOG – DEALING WITH CONTINUOUS CHANGE

Finally, the following procedure replaces the earlier definition on page 65, which did not
account for the fact that the high-level plans do not directly operate the robot’s physical
sensors and effectors.

proc(chargeBatteries,
[gotoRoom(dockingStation), plugIn,waitFor(battLevel ≥ 49), plugOut])

Figure 4.5 illustrates a possible projection trace of the example plan Πintro, where the robot
is to deliver two letters to Room 6205 respectively to Room 6214. The robot first delivers a
letter to Room 6205 (“1”), and then heads towards Room 6214. During this route, the battery
level drops below 46 V, and the mail delivery is interrupted by chargeBatteries (“2”). After
recharging its batteries (“3”), deliverMail is reactivated. The routine gotoRoom realizes that
the journey towards Room 6214 has been aborted, and issues another send(destRoom, 6214),
which causes the robot to move to Room 6214 and complete its journey (“4”).

4

2

1
3

BattStation
Batteries

! low !

Rm 6214

Rm 6205

Rm 6213

Figure 4.5: Projection of the mail delivery plan

4.4 Discussion

In this chapter, we have presented an extension of the situation calculus which includes a
model of continuous change and a novel approach to modeling the passage of time. The pre-
sentation in the sections 4.1.1, 4.1.2 and 4.1.3 essentially follows Pinto [Pin97], in a somewhat
simplified form. We then considered cc-Golog, a deterministic variant of ConGolog which is
based on the extended situation calculus. A key feature of the new language is the ability to
have part of a program wait for an event like the battery voltage dropping dangerously low
while other parts of the program run in parallel. For that purpose, we have introduced the
special action waitFor, motivated by the fact that a similar instruction is present in many
special robot programming languages, in particular in RPL, RAP, PRS-Lite and Colbert. Such
mechanisms allow very natural formulations of robot controllers, in particular, because there
is no need to state explicitly in the program when actions should occur. On the downside,
cc-Golog does not provide nondeterministic instructions.

4.4. DISCUSSION 79

We remark that waitFor cannot be simulated by means of the instructions already present
in ConGolog. Although it may seem suggestive to make use of tests (φ?) to react to con-
ditions like low voltage level, this does not result in the intended behavior. The problem
is that continuously changing conditions are neither true nor false in a given situation, but
instead become true at a certain time point. For example, imagine we would run the test
nearDoor(6204)? concurrently to deliverMail. Even though deliverMail will cause the robot
to come near this door, the nearDoor condition might never be true at the beginning of a
situation during the execution trace.

Of course, one could make use of an explicit “clock” which causes time to advance by means
of a sequence of discrete “clock tick” actions. However, one objection against the use of a clock
is that it is not clear what granularity to choose – the right granularity may depend on the
application as well as on the high-level plan considered. Furthermore, the resulting execution
traces would be glutted with irrelevant “clock tick” actions. This is particularly undesirable
because a large number of clock tick actions may significantly decrease the performance of an
implementation. Note that after every clock tick action the interpreter would have to check
whether that action unblocks any of the concurrently running sub-plans.

We end this section with some remarks on Reiter’s proposal for a temporal version of
GOLOG [Rei98], which makes use of a different temporal extension of the situation calcu-
lus [Rei96]. Roughly, the idea is that every primitive action has as an extra argument its
execution time. For example, we would write endGo(20) to indicate that endGo is executed
at time 20. It turns out that this explicit mention of time is problematic when it comes to
formulating programs such as the one from Section 4.3.4. Consider the part about saying
“hello” whenever the robot is near Room 6213. In Reiter’s approach, the programmer would
have to supply a temporal expression as an argument of the say-action. However, it is far
from obvious what this expression would look like since it involves analyzing the mail delivery
sub-program as well as considering the odd chance of a battery recharge. In a nutshell, while
Reiter’s approach forces the user to figure out when to act, we let cc-Golog do the work. —
As a final aside, we remark that waitFor-actions allow us to easily emulate Reiter’s approach
within our framework by using a continuous fluent time with value linear(0, 1, 0) and replacing
every dated action a(~x, t) by the sequence [waitFor(time = t), a(~x)].

80 CHAPTER 4. CC-GOLOG – DEALING WITH CONTINUOUS CHANGE

Chapter 5

On-Line Execution of cc-Golog Plans

Using the high-level language cc-Golog introduced in the last chapter, it is possible to provide
quite natural formulations of robot controllers, in particular to specify event-driven actions
which react to conditions on the value of continuously changing properties like the robot’s
position. So far, however, we have only shown how to project event-driven cc-Golog plans,
making use of an extended situation calculus capable of representing continuous change. Up
to now, it remains unclear how to actually execute a cc-Golog plan.

5

1

2
3

4

Rm 6213

Rm 6205

‘‘In Hallway’’

Figure 5.1: Piece-wise Linear Approximation and Actual Trajectory

To get a sense of the problem, consider a cc-Golog plan telling the robot to move from
Room 6213 to Room 6205, and concurrently to react to the continuous condition inHall-
way by announcing that it has just reached the hallway (see Figure 5.1). In the previous
chapter, we have shown how, based on a model of the robot control architecture and the
low-level processes, it is possible to generate projections of such cc-Golog plans. In particular,
the projected execution traces include waitFor actions for every node on the approximating
trajectory. While the resulting execution traces can be understood as a way of assessing
whether a program is executable in principle, they are not suitable as input to the execution
mechanism of the robot for several reasons.

For one, many of the actions in the projected execution trace only serve to model the

81

82 CHAPTER 5. ON-LINE EXECUTION OF CC-GOLOG PLANS

navigation process and are not meant to be executed by the high-level controller at all. For
example, the waitFor actions corresponding to the nodes on the approximating trajectory
result from the simulation of a cc-Golog program which models the effects of the level-low
navigation process. During actual execution, the controller should only issue a message to
the low-level navigation process telling it the new destination (i.e. node 5 in Figure 5.1),
and the navigation process would then move the robot to its desired location. For another,
the time point of actions that do belong to the high-level controller like waitFor(inHallway)
or waitFor(battLevel ≤ 46) must be interpreted differently during on-line execution. This is
because during projection, the time point of a waitFor-condition like inHallway or battLevel ≤
46 is computed based on an idealized model of the world (like piece-wise linear trajectories
and constant energy consumption). However, the robot has no control over the passage of
time, and the actual trajectory often follows a function quite different from the idealized
approximation (see the curved vs. the straight (dotted) line in Figure 5.1). During actual
execution, of course, the robot should react at the actual time where a condition becomes
true.

What is needed, it seems, are frequent sensor readings telling the robot about the current
time and location, which should be used instead of the models of how time passes or how the
robot moves. For example, the robot should react to the actual battery level by periodically
reading its voltage meter. A waitFor action would then simply reduce to a test, where a
condition like being at a certain location is matched against sensor readings reflecting the
actual state of affairs. That is, we opt for an on-line style of execution (cf. Section 2.2)
where we distinguish between projection-time and execution-time effects. Thereby, we take
advantage from the fact that in our robot control architecture from Section 4.3 there is a
clear separation of the actions of the high-level controller from those of low-level processes
like the navigation process, and completely ignore the model of the low-level processes during
execution.

Apart from this, while projection in cc-Golog so far is limited to a complete program
starting in the initial state, one would often like to project on the fly during execution,
similar to the search operator of de Giacomo and Levesque [dGL99b]. However, for reasons
of limited resources, we would like to go beyond that and allow for a restricted projection of a
program, which only searches up to a (temporally) limited horizon. For instance, if the robot
is in the middle of a delivery but near the docking station, we want to enable it to find out
whether the coming activities would allow it to operate for at least another 5 minutes and, if
not, decide to charge the batteries first.

In this chapter, we show how all this can be done in cc-Golog. The chapter is organized
as follows: in the next section, we discuss the changes necessary to use the same cc-Golog
program both for on-line execution and projection. Thereafter, we show how on-line execution
and projection can be interleaved, and introduce a time-bounded projection mechanism that
can be used to appeal to on-the-fly projection in cc-Golog programs.

5.1 On-Line Execution of cc-Golog Plans

As mentioned above, during on-line execution of a cc-Golog plan it seems appropriate to make
use of frequent sensor readings telling the robot about the current time and location, instead
of using the models of how time passes or how the robot moves. In order to see how such sensor
readings can be obtained, let us briefly look at how actual robots like Rhino [Bee99, BCF+00]

5.1. ON-LINE EXECUTION OF CC-GOLOG PLANS 83

or MINERVA [TBB+99] deal with it. There, we find a tight update loop between the low-level
system and the high-level controller. This update loop periodically provides the high-level
controller with an update of the low-level processes’ estimates of continuous properties like
the batteries’ voltage level or the robot’s position (typically several times a second). The
period of time between two subsequent updates is so small that for practical purposes the
latest update can be regarded as providing not only the correct current time but also accurate
values of the continuous fluents at the current time.

5.1.1 ccUpdate - Updating Continuous Fluents

Our solution is then to represent the updates by means of a new exogenous action ccUpdate
and to treat waitFor’s simply as special tests during on-line execution. Intuitively, the effect
of ccUpdate is to set the value of the continuous fluents to the latest estimates of the low-
level processes. On the other hand, we completely ignore the cc-Golog model of the low-level
processes during (on-line) execution.

The actual arguments of ccUpdate depend on the continuous fluents that are to be updated.
In our example scenario, ccUpdate has four arguments: x, y, l and t, where x and y refer to
the current position of the robot, l to the current voltage level and t to the current time.1 To
get a sense of the effect of ccUpdate, let us consider a new version of the successor state axiom
for robotLoc of Section 4.1.5 suitable for both on-line execution and projection. We assume
that ccUpdate never occurs during projection (in particular, ccUpdate may not be used in the
cc-Golog models of the low-level processes). Similarly, we assume that the actions startGo
and endGo only occur during projection, where they are part of the model of the low-level
navigation process.

Poss(a, s) ⊃ [robotLoc(do(a, s)) = f ≡
∃t, x, y. t = start(s) ∧ val(robotLoc(s), t) = 〈x, y〉∧

[∃x′, y′, vx, vy.a = startGo(〈x′, y′〉)∧
vx = (x′ − x)/ν ∧ vy = (y′ − y)/ν ∧ ∧f = linear(x, y, vx, vy, t)∨

a = endGo ∧ f = constant(x, y)∨
∃x′, y′, l′, t′.a = ccUpdate(x′, y′, l′, t′) ∧ f = constant(x′, y′)∨

∀~x.a 6= startGo(~x) ∧ a 6= ccUpdate(~x) ∧ a 6= endGo ∧ f = robotLoc(s)]

The first five lines of this axiom correspond to those of the old version of the successor
state axiom for robotLoc from Section 4.1.5. In particular, the variables x and y refer to
the actual coordinates of the robot; after startGo(〈x′, y′〉), robotLoc has as value a linear
t-function moving towards 〈x′, y′〉; and after endGo, it is constant(〈x, y〉). As before, ν .=√

(x′ − x)2 + (y′ − y)2 is a normalizing factor which ensures that the total 2-dimensional
velocity is 1.

Let us now consider the new case where a is a ccUpdate(x′, y′, l′, t′) action. In this case,
which is handled by the sixth line of the above axiom, the value of robotLoc after execution of
a is simply the constant function constant(x′, y′). This reflects the idea that, during on-line
execution, the linear approximation of the trajectory plays no role and that the actual values
〈x′, y′〉 should be used instead, where 〈x′, y′〉 is the latest estimates of the low-level navigation
process. Finally, the last line of the above axiom say that if a is neither a startGo, an endGo
nor a ccUpdate action, robotLoc remains unchanged.

1Strictly speaking, ccUpdate is an action schema. The actual signature of ccUpdate depends on the specific
low-level execution system that is to be coupled with cc-Golog.

84 CHAPTER 5. ON-LINE EXECUTION OF CC-GOLOG PLANS

Similarly, the following successor state axiom for battLevel is suitable for both on-line
execution and projection:

Poss(a, s) ⊃ [battLevel(do(a, s)) = f ≡
∃t, l. t = start(s) ∧ val(battLevel(s), t) = l∧

[∃x′, y′.a = startGo(〈x′, y′〉) ∧ f = linear(l,−∆V , t)∨
a = endGo ∧ f = constant(l)∨
∃x′, y′, l′, t′.a = ccUpdate(x′, y′, l′, t′) ∧ f = constant(l′)∨

∀~x.a 6= startGo(~x) ∧ a 6= endGo ∧ a 6= ccUpdate(~x) ∧ f = battLevel(s)]].

5.1.2 The Passage of Time During On-Line Execution

Besides updating the value of the continuous fluents, ccUpdate is of prime importance because
it causes time to advance during execution – waitFor can no longer take on this role because it
makes use of an idealizing model. Therefore, we need to modify the successor state axiom of
the fluent start. In order to account for the fact that time advances differently in projections
and during on-line execution, we need to explicitly distinguish between the two modes of
operation. For that purpose, we introduce a special fluent online(s) which can only change
truth values by the special actions setOnline and clipOnline, respectively:

Poss(a, s) ⊃ [online(do(a, s)) ≡ a = setOnline ∨ [a 6= clipOnline ∧ online(s)]].

setOnline and clipOnline are always possible, that is Poss(setOnline) ≡ True and simi-
larly Poss(clipOnline) ≡ True. We remark that setOnline and clipOnline are special actions
whose purpose is to allow both on-line execution and projection of the same cc-Golog plan.
We assume that neither setOnline nor clipOnline ever occur within a cc-Golog plan. Using
online, we can formally define how start changes its value both in projection and in on-line
execution mode:

Poss(a, s) ⊃ [start(do(a, s)) = t ≡
∃τ.a = waitFor(τ) ∧ ¬online(s) ∧ ltp(τ, s, t)∨
∃xu, yu, lu.a = ccUpdate(xu, yu, lu, t) ∧ online(s)∨
[∀τ.a 6= waitFor(τ) ∨ online(s)] ∧ [∀~x.a 6= ccUpdate(~x) ∨ ¬online(s)]
∧t = start(s)].

The precondition axiom for ccUpdate ensures that the starting time of legal action se-
quences is monotonically nondecreasing, just as in Section 4.1.4:

Poss(ccUpdate(x, y, l, t), s) ≡ t ≥ start(s)).

5.1.3 On-Line Execution of waitFor Instructions

During on-line execution, a waitFor(τ) instruction is treated as a special kind of test : it
succeeds immediately if and only if the condition τ is true at the beginning of the actual
situation. To ensure this intended behavior, we modify the (first-order) definition of Trans
for primitive actions as follows:

Trans(α, s, δ, s′) ≡
¬online(s) ∧ Poss(α[s], s) ∧ δ = nil ∧ s′ = do(α[s], s)∨
online(s) ∧ ∀τ.α 6= waitFor(τ) ∧ Poss(α[s], s) ∧ δ = nil ∧ s′ = do(α[s], s)∨
online(s) ∧ ∃τ.α = waitFor(τ) ∧ τ [s, start(s)] ∧ δ = nil ∧ s = s′.

5.1. ON-LINE EXECUTION OF CC-GOLOG PLANS 85

If we are in projection mode, then in situation s there is a transition from the primitive or
waitFor action α to a successor configuration 〈δ, s′〉 if and only if α is possible, s′ = do(α[s], s)
and δ = nil, just as before (cf. Sections 3.2 and 4.2.1). The same holds if we are in on-line
execution mode and a is not a waitFor action. If we are in on-line execution mode and a is a
waitFor(τ) action, however, a is treated as a special kind of test: there is a transition if and
only if the t-form τ is true at the beginning of the actual situation, that is if τ [s, start(s)]
holds. In this case, the situation does not change along the transition, that is s = s′. As
before, nothing remains to be done in the new configuration, thus δ = nil.

Similarly, the new second-order definition for Trans obtains by replacing the old assertion
for primitive actions by the above definition, modulo textual substitution of Trans with T .

5.1.4 On-Line Execution Traces

Let us now consider how the actual on-line execution of a cc-Golog program works. The on-line
interpreter searches for a next legal transition; if there is any such transition, it commits to it,
and then continues. If the transition involves a send action, the interpreter checks whether this
signals an activation of a low-level process and, as a side-effect, activates the actual low-level
process if necessary.2 Concurrently, the low-level execution system can cause an exogenous
reply or ccUpdate action at any time. Thus, an on-line execution consists of a sequence of
transitions caused by the high-level program, with an arbitrary number of exogenous actions
between any two ordinary transitions. Formally, we define on-line execution as follows:3

Definition 7 Let AX be the axioms for cc-Golog (including the new definition of Trans from
Section 5.1.3, the axioms dealing with start, ccUpdate and online from Section 5.1.2 and the
axioms needed for the encoding of cc-Golog programs as first-order terms) together with a
situation calculus axiomatization of an application domain. Then an on-line execution with
respect to AX of a program σ0 in a situation s0 is a sequence σ0, s0, ..., σn, sn such that for
i = 0, ...n− 1:

1. AX |= Trans(σi, si, σi+1, si+1); or

2. ∃a, i, n. a = reply(i, n) ∧ σi+1 = σi ∧ si+1 = do(a, si); or

3. ∃a, ~x, t. a = ccUpdate(~x, t) ∧ [∀σ′, s′. Trans(σi, si, σ′, s′) ⊃ t ≤ start(s′)] ∧ σi+1 = σi ∧
si+1 = do(a, si).

We call an on-line execution completed if AX |= Final(σn, sn). Besides, we say that there
is an on-line execution of σ0 in s0 that results in (σn, sn) if and only if there is an on-line
execution σ0, s0, ..., σn, sn of σ0 in s0. Finally, we say that a situation sn is a legal on-line
execution trace of σ0 in s0 if and only if there is a program σn such that there is an on-line
execution of σ0 in s0 that results in (σn, sn).

By this definition, we only make the following assumption about the way in which exoge-
nous reply and ccUpdate actions and actions performed by the high-level controller interleave:
if the high-level plan can perform an action at time t, and no exogenous action occurs at time
t, then this action is executed by the high-level controller (cf. Assertion 3). For example, if

2We will elaborate on this topic in Section 8.2, where we describe an implementation of a run-time system
that couples cc-Golog to a real robot.

3This defintion is similar to the definition of on-line execution in [dGLS01].

86 CHAPTER 5. ON-LINE EXECUTION OF CC-GOLOG PLANS

the high-level plan is about to perform a grabWheels, then this action can be delayed by the
occurrence of reply actions, but not by a ccUpdate that makes time advance. Otherwise, we
do not impose any constraints on the occurrences of exogenous actions.

Note that (the first assertion of) this definition requires that there is a concrete transi-
tion to a particular configuration 〈σi+1, si+1〉 logically implied by the axioms, and not just
the existence of a transition, i.e. ∃δ, s′.Trans(σ, s, δ, s′). This reflects the fact that the inter-
preter can only perform a transition involving the execution of an action if it is clear which
action is to be executed. The following example illustrates the importance of this require-
ment. Let Γ be the axioms for cc-Golog together with a situation calculus theory involving
the primitive action say(txt). Furthermore, let Γ be such that Γ 6|= φ[S0] and Γ 6|= ¬φ[S0],
and Γ |= Poss(say(txt), s). Consider the program σ = if(φ, say(its true), say(its false)).
Then although there is a legal off-line execution of σ is S0, i.e. Γ |= ∃s′.Do(σ, S0, s

′),
there is no on-line execution of σ is S0. This is because there is no particular transi-
tion logically implied by the axioms; neither Γ |= Trans(σ, S0, nil, do(say(its true), S0)) nor
Γ |= Trans(σ, S0, nil, do(say(its false), S0)) holds.

5.1.5 Examples

To illustrate the concepts introduced in this section, let us now consider some on-line execution
traces of the plan Πsimple, which was already introduced in Section 4.3.3.

Πsimple
.= withPol([waitFor(inHallway), say(“in Hallway”)],

[send(destRoom, 6205), (reg(arrivedAt) = 6205)?])

As before, we assume that initially the robot is in Room 6213. Πsimple’s first action
is send(destRoom, 6205), which results in an activation of the navigation process, which we
then assume to provide the high-level controller with ccUpdate actions every .25 sec. After 1
second, the execution results in situation Sexec1, where the pi, qi stand for appropriate x− y-
coordinates along the path of the robot (we have left out the 3rd argument (voltage level) of
ccUpdate for simplicity). Sexec1 is visualized in Figure 5.2, where the black points represent
the ccUpdates.

Sexec1
.= do([send(destRoom, 6205),

ccUpdate(p1, q1, 0.25), ccUpdate(p2, q2, 0.5),
ccUpdate(p3, q3, 0.75), ccUpdate(p4, q4, 1.0)], S0)

It is not hard to see that Sexec1 is a legal on-line execution trace of Πsimple in S0. Let
AXccx be the new (second-order) axioms for cc-Golog together with the foundational axioms
of the situation calculus from Section 3.1, axioms required for t-form’s, val axioms for the
t-functions of the previous chapter, the precondition axiom for waitFor, the new definitions of
this chapter concerning start, online and ccUpdate, the set of axioms AXarch from Section 4.3.1,
the axioms needed for the encoding of cc-Golog programs as first-order terms and the fact
online(S0). Finally, let Γ be AXccx together with the new successor state axioms for robotLoc
and battLevel from Section 5.1.1, initial state axioms stating that the robots initial position
is constant and lies within Room 6213 and that the initial battery voltage is sufficiently high,
and precondition axioms stating that endGo is always possible and startGo is only possible if
the destination differs from the robot’s current location. Then, there is an on-line execution
of Πsimple in S0 with respect to Γ that results in situation Sexec1 with remaining program:

5.1. ON-LINE EXECUTION OF CC-GOLOG PLANS 87

D

Rm 6213

Rm 6205

Figure 5.2: Execution Scenario of Πsimple

δ = withPol([waitFor(inHallway), say(“in Hallway”)],
[nil, reg(arrivedAt) = 6205]?).

Proof: (Sketch) The first transition results from the execution of a primitive action by Πsimple

(here, by transition we mean that one of the three conditions of Definition 7 is satisfied).
From the definition of Trans, together with the facts Poss(send(destRoom, 6205), S0) and
¬inHallway [S0, start(S0)]:

Trans(withPol([waitFor(inHallway), say(“in Hallway”)],
[send(destRoom, 6205), (reg(arrivedAt) = 6205)?]), S0, δ, s

′) ≡
s = do(send(destRoom, 6205), S0)∧
δ = withPol([waitFor(inHallway), say(“in Hallway”)],

[nil, (reg(arrivedAt) = 6205)?]).

(5.1)

Let Π1 and S1 refer to the program respectively to the situation component of the new configu-
ration. From the definition of Trans, together with the fact that neither ∃t.inHallway [S1, t] nor
reg(arrivedAt , S1) = 6205 holds, we obtain ¬Trans(Π1, S1, δ, s

′). Note however that 〈Π1, S1〉
is not final. In fact, in this configuration the program is waiting until an exogenous action
signals that the robot has either reached the hallway or is arrived in Room 6205.

Indeed, the other transitions leading to Sexec1 are exogenous “ccUpdate” transitions. While
they leave the program component unaffected, they subsequently modify the situation term
from S1 to

• S2
.= do([send(destRoom, 6205), ccUpdate(p1, q1, 0.25)], S0);

• S3
.= do([send(destRoom, 6205), ccUpdate(p1, q1, 0.25), ccUpdate(p2, q2, 0.5)], S0);

• S4
.= do([send(destRoom, 6205), ccUpdate(p1, q1, 0.25),

ccUpdate(p2, q2, 0.5), ccUpdate(p3, q3, 0.75)], S0);

• S5
.= Sexec1.

88 CHAPTER 5. ON-LINE EXECUTION OF CC-GOLOG PLANS

Let us now verify that the sequence σ0, S0, ...σ5, S5 with σ0 = Πsimple and σi = Π1 for i = 1, ..5
satisfies Definition 7. The first transition is legal because of Πsimple’s initial transition (5.1).
The other four transitions are “ccUpdate” transitions, which are allowed to make time ad-
vance because Π1 is blocked, i.e. ∀δ′, s′.¬Trans(σ1, S1, δ

′, s′). 2

Note that in the new configuration 〈Π1, Sexec1〉, where Π1 is what remains from the initial
plan in Sexec1, the program Π1 is still blocked. The on-line execution can only evolve as a
result of further exogenous actions, which either signal that the robot has reached the hallway
or has arrived in Room 6205.

Next, let us consider the situation Sexec2 where the robot has just reached the hallway
(we assume that 〈p8, q8〉 is the first position within the hallway):

Sexec2
.= do([ccUpdate(p5, q5, 1.25), ccUpdate(p6, q6, 1.5),

ccUpdate(p7, q7, 1.75), ccUpdate(p8, q8, 2.0)], Sexec1).

Just as before, it is possible to show that Sexec2 is a legal on-line execution trace of Πsimple

in S0. In particular, there is an on-line execution of Πsimple in S0 that results in Sexec2 with
remaining program:

withPol([waitFor(inHallway), say(“in Hallway”)],
[nil, reg(arrivedAt) = 6205]?).

D

Rm 6213

Rm 6205

‘‘In Hallway’’

Figure 5.3: Execution Scenario of Πsimple (ii)

While so far the high-level program was blocked, in Sexec2 the special test waitFor(inHallway)
becomes true. Formally, it is possible to prove:

Γ |= Trans(withPol([waitFor(inHallway), say(“in Hallway”)],
[nil, reg(arrivedAt) = 6205]?), Sexec2,

withPol([nil, say(“in Hallway”)],
[nil, reg(arrivedAt) = 6205]?), Sexec2).

Note that the situation component of the new configuration does not differ from its pre-
decessor since waitFor is now merely a test. The next action to be executed by the high-level
controller is say(“in Hallway”). Formally:

5.2. INTERLEAVING PROJECTION AND ON-LINE EXECUTION 89

Γ |= Trans(withPol([nil, say(“in Hallway”)],
[nil, reg(arrivedAt) = 6205]?), Sexec2,

withPol(nil, [nil, reg(arrivedAt) = 6205]?),
do(say(“in Hallway”), Sexec2)).

The resulting situation Sexec3
.= do(say(“in Hallway”), Sexec2) is visualised in Figure 5.3.

Just as before, it is possible to show that it is a legal on-line execution trace of Πsimple in S0.

5.2 Interleaving Projection and On-Line Execution

In [dGL99b], de Giacomo and Levesque suggest that it is often useful to interleave on-line
execution and projection. With our model of time we can take this idea one step further and
define projection during on-line execution with the possibility to explicitly put a time-bound
on the projection. A prerequisite for the bounded projection of plans during on-line execution
is the ability to project plans in non-initial situations.

5.2.1 Projection in Non-Initial Situations

While so far we have only considered the projection of cc-Golog plans in the initial situation,
a robot that is to exhibit intelligent behavior over an extended period of time must be able to
deduce the effects of the remaining plan (as well as of different plans) in non-initial situations.
To see how projection works in non-initial situations, let us again consider our example
scenario, where projection makes use of a model of the navigation process.

Suppose we are in Situation Sexec1 illustrated in Figure 5.2 (page 87), which occurs during
the on-line execution of Πsimple. First, let us consider the value of the fluents robotLoc and
reg(destRoom) in Sexec1. Let Γ be defined as before. It is easy to see that:

Γ |= robotLoc(Sexec1) = constant(p4, q4) ∧ reg(destRoom, Sexec1) = 6205.

5

1

2
3

4

Rm 6213

Rm 6205

Figure 5.4: Projection during Execution

Given the updated value of robotLoc, we can now correctly project that the remaining
plan will cause the robot to travel directly to its destination. In particular, due to the fact

90 CHAPTER 5. ON-LINE EXECUTION OF CC-GOLOG PLANS

that reg(destRoom) = 6205, the procedure navProc will immediately become active because
the robot actually is not inside Room 6205. Note the use of clipOnline, which forces a switch
to projection mode. The following projection is visualized in Figure 5.4.

Γ |= [Proj(do(clipOnline, Sexec1),
withPol([waitFor(inHallway), say(“in Hallway”)],

[nil, reg(arrivedAt) = 6205]?),
navProc, s)] ≡

[s = do([startGo(l1),
waitFor(near(l1)), startGo(l2),
waitFor(inHallway), say(“in Hallway”)
waitFor(near(l2)), startGo(l3),
waitFor(near(l3)), startGo(l4),
waitFor(near(l4)), startGo(l5),
waitFor(near(l5)), endGo,
reply(arrivedAt , 6205)], do(clipOnline, Sexec1))]

The above can be shown by similar reasoning as in Section 4.3.3, where we considered the
projection of Πsimple in S0.

Similarly, in situation Sexec3
.= do(say(“In Hallway”), Sexec2) we can project the remaining

program withPol(nil, [nil, reg(arrivedAt) = 6205]?). Note that in the following projection,
which is visualized in Figure 5.5, the robot directly travels towards l3 without first visiting
l2. This is because in Sexec3 the robot is no longer in Room 6213, and thus the conditional in
the procedure travelTo is not executed (see Section 4.3.2, page 72).

Γ |= Proj(do(clipOnline, Sexec3),
withPol(nil, [nil, reg(arrivedAt) = 6205]?),navProc, s) ≡

s = do([startGo(l3),
waitFor(near(l3)), startGo(l4),
waitFor(near(l4)), startGo(l5),
waitFor(near(l5)), endGo,
reply(arrivedAt , 6205)], do(clipOnline, Sexec3))]

The reason why projections in non-initial situations of the example scenario are fairly
straightforward is that we never have to remember the state the actual navigation process is
in. More precisely, for any given position, the cc-Golog model of the navigation process yields
an appropriate approximation of the remaining trajectory of the robot (as illustrated by the
above projections). While many low-level processes used in mobile robots seem to have this
property, we remark that in Section 7.3.3 we will show how processes can be dealt with where
one needs to keep track of their internal state during execution.

5.2.2 (Limited) Lookahead: Projection Tests

Motivated by the work on incremental execution of [dGL99b], which suggest that a combina-
tion between on-line execution and projection (which they call off-line execution) arises as a
practical and still powerfull scheme of execution, we add a local lookahead constructor which
allows projection under user control, with the possibility to explicitly put a time-bound on
the projection. Formally, we define the predicate Lookahead(φ, t, σ, llmodel, s), which is true,
roughly, if φ holds at time t in the projected execution of a plan σ in situation s. Here, φ

5.2. INTERLEAVING PROJECTION AND ON-LINE EXECUTION 91

5

3

4

Rm 6213

Rm 6205

Figure 5.5: Projection during Execution (ii)

stands for a situation calculus formula where the special situation constant now may be used
to refer to the resulting projected situation. As before, llmodel refers to an appropriate model
of the low-level processes.

Lookahead(φ, t, σ, llmodel, s) ≡
∃σ∗, s∗.φ[s∗] ∧ start(s∗) ≤ t∧
Trans∗(withPol(llmodel, σ), do(clipOnline, s), σ∗, s∗)∧
[∀σ∗∗, s∗∗.Trans∗(σ∗, s∗, σ∗∗, s∗∗) ⊃ start(s∗∗) > t ∨ Final(σ∗, s∗)]

Again, we use clipOnline to switch to projection mode. The disjunct involving Final
covers the case where the projected plan ends before time t. In order to allow local lookahead
within cc-Golog programs, we allow the use of the term Lookahead(φ, t, σ, llmodel) within test
conditions. Lookahead is a reified version of Lookahead with situation argument suppressed,
with the idea that during execution Lookahead conditions are interpreted with respect to the
actual situation (just like reified fluents).

Technically, the use of projection tests within cc-Golog programs raises subtle issues.
First, we have to reify them as first-order terms, just like any fluent which may be used
within programs. Second, in reifying Lookahead great care has to be taken to avoid defining
self-referencing sentences, like cc-Golog programs appealing to their own effects. Here, we
will not go into the details of reifying Lookahead within the language except to note that
running into self-referencing programs is avoided by distinguishing between two sorts of cc-
Golog programs: “ordinary” cc-Golog programs, and cc-Golog programs including projection
tests. Only the former are allowed to occur within Lookaheads. See Appendix A.2.2 for an
in-depth treatment of these issues.

5.2.3 Projection Tests at Work

Using Lookahead within test conditions, a cc-Golog plan can check whether a possible behavior
would lead to certain conditions, and thus deliberate over different possible subplans. In
addition, the lookahead can be limited to a certain amount of time t, which seems very

92 CHAPTER 5. ON-LINE EXECUTION OF CC-GOLOG PLANS

useful in order to make quick decisions. A possible application of this test, illustrated by the
following program, would be to check if the battery level is going to drop below 46V in the
next 300 seconds if the robot comes close to the battery docking station:

proc(Πlookahead,
withPol(whenever(nearDockingStation,

if(Lookahead(lowBattLevel, start(now) + 300, deliverMail,navProc),
[grabWheels, chargeBatteries, releaseWheels])),

withCtrl(wheels, deliverMail))).

Here, we use lowBattLevel as an abbreviation for an expression that is true if and only if
the value of battLevel is below 46V in the projected execution trace.

Let us now consider an on-line execution of Πlookahead, assuming that the robot’s initial
position is in Room 6213, that the battery docking station is in Room 6204, and that there
are two letters to be delivered, one to Room 6205 and one to Room 6214, just as in the
example illustrated in Figure 4.5 on page 78. This time however, the robot does not wait
until the battery level drops below 46V before it reacts, but instead makes use of the lookahead
construct. The resulting on-line execution trace is visualized in Figure 5.6. We remark that
the behavior exhibited by the high-level plan making use of a projection test is superior to
the behavior illustrated in Figure 4.5; in particular, the length of the overall trajectory is
shorter.

2

4

3

1

Rm 6205

BattStation

Proj:
battLvl < 46 in 5 min

Rm 6214

Figure 5.6: Delivery with lookahead

Let us now take a closer look at the resulting on-line execution trace. Up to the node
marked “1”, the execution runs in a similar way as the previous examples. Let Slookahead refer
to the situation where nearDockingStation becomes true, that is to the situation where the
robot has just reached node “1”. Furthermore, let us assume that in Slookahead the battery
level is quite low (recall that the actual voltage level is provided by ccUpdate actions; see
Section 5.1.1). At this point, the high-level controller running in on-line execution mode
will evaluate Lookahead(lowBattLevel, start(now) + 300, deliverMail,navProc), that is, it will
project the effects of deliverMail. The projection test will look for a successor configuration
〈σ∗, s∗〉 whose start time lies just below start(Slookahead) + 300, and will then verify that in

5.3. DISCUSSION 93

this configuration the battery level is below 46 V. Formally, this means that the projection
test will verify:

Γ |= ∃σ∗, s∗.Trans∗(withPol(navProc, deliverMail), do(clipOnline, Slookahead), σ∗, s∗)∧
[∀σ∗∗, s∗∗.Trans∗(σ∗, s∗, σ∗∗, s∗∗) ⊃ start(s∗∗) > start(Slookahead) + 300∨

Final(σ∗, s∗)]∧
start(s∗) ≤ start(Slookahead) + 300∧
[battLevel ≤ 46][s∗, start(Slookahead) + 300].

Assuming that the above holds, the high-level controller then interrupts deliverMail in
Slookahead to first charge its batteries (node “2”). Thereafter, it completes the delivery.

Another possible application of the Lookahead construct arises in the context of multi-
robot control (cf. [ACF+98, AFH+98]). Suppose a user makes a request to have a letter
delivered by one of several courier robots. In order to determine which robot should deliver
the letter, each robot might use projection to determine the cost that would arise if it were
to carry out this job, and the task could then be assigned to the robot with a minimal cost
estimate.

5.3 Discussion

In summary, we have extended cc-Golog so that it becomes suitable for both projections of
plans and their on-line execution. To account for the fact that time advances differently in
projections and during on-line execution, we explicitly distinguished between the two modes
of operation. In particular, during on-line execution we make use of exogenous ccUpdate
actions to frequently update the value of continuous fluents like robotLoc, and treat waitFor
instructions simply as a special kind of test. Finally, we have shown how to interleave on-line
execution and a form of time-bounded projection.

As mentioned before, the idea of interleaving projection and on-line execution was first
explored by de Giacomo and Levesque [dGL99b]. However, they consider neither time nor the
idea of low-level processes which interact with a high-level controller in complex ways. Most
importantly, there is no distinction between the effects on fluents during projection and on-line
execution, a distinction we feel is necessary when it comes to modeling essential features of
mobile robots such as their location at a given time. Lespérance and Ng [LN00] have extended
de Giacomo and Levesque’s ideas in a direction which bears some resemblances to ours. They
propose that during projection one also needs to consider a simulated environment which, for
example, produces exogenous actions to inform the high-level controller that the destination
is reached. However, their notion of a simulated environment remains fairly simple since
they are not able to model temporally extended processes, and they also do not distinguish
between the effects on fluents during projection and on-line execution.

While the approach of [dGL99b] provides nondeterministic instructions, in cc-Golog de-
liberation over different sub-plans is only possible by means of explicit projection tests. This
scheme is certainly neither as elegant nor as expressive as the use of nondeterministic in-
structions. However, the explicit use of constructs like Lookahead gives the user finer-grained
control over the amount of projection involved in the execution of a plan, which is useful
when dealing with limited resources. Finally, using projection tests it is possible to specify
a program which first projects the successful execution of a program P , but then executes
a different program P ′. This can be quite useful, as illustrated by the multi-robot example,

94 CHAPTER 5. ON-LINE EXECUTION OF CC-GOLOG PLANS

where (potentially) every robot will project that it can carry out the next job, but only one
robot will actually do so.

The idea to distinguish between the plan time effects and the run time effects of an action
is also present in [BP98], where both the plan time effects and the run time effects of an
action on the knowledge of an agent is modeled. As for the ccUpdate actions, we remark that
they represent a kind of “passive” sensing, where sensory information continually becomes
available without the need for an explicit request, as opposed to more classical approaches
to sensing like [GW96, Lev96, WAS98]. This view of sensing is somewhat similar to that of
Poole [Poo96, Poo98], and de Giacomo and Levesque [dGL99a], where sensing functions are
used to represent on-board sensors that provide sensor readings at any time. However, while
in [dGL99a] projection is defined in terms of histories, which intuitively consist of a situation
and a formula representing the values of the sensors in each situation, we manage solely with
a situation enriched with an arbitrary number of ccUpdate actions.

Chapter 6

pGOLOG - Dealing with
Probabilistic Uncertainty

In the previous chapters, we have assumed that all low-level processes have deterministic
effects. In particular, there is no uncertainty about whether or not a low-level process achieves
the desired results. However, an important feature of real robot environments is the inherent
uncertainty in what the world is like and the outcome of many of a robot’s low-level processes,
due to the fact that robot hard- and software is imperfect and error-prone. For example, if a
robot tries to pickup a cup, many different outcomes are possible: the robot may completely
miss the cup, the cup may drop on the floor, the robot may push adjacent objects or might
even break the cup or an adjacent object. These outcomes typically occur with different
probabilities. For example, the pickup may succeed perfectly about 80% of the time and may
have some other outcomes with lower probability.

In this chapter, we will show how the GOLOG framework presented so far can be extended
to allow the projection of high-level plans interacting with noisy low-level processes, based
on a probabilistic characterization of the robot’s beliefs. In particular, we model low-level
processes with uncertain outcome as probabilistic programs in a probabilistic extension of
GOLOG which we call pGOLOG. The intuition is that the different probabilistic branches of the
programs correspond to different outcomes of the processes. Given a faithful characterization
of the low-level processes in terms of pGOLOG programs, we can then reason about the effects
of their activation through simulation of the corresponding pGOLOG model. As a result of
this probabilistic setting, projection now yields the probability of a plan to achieve a goal,
which leads us to the notion of probabilistic projection.

To get a better feel for what we are aiming at, let us consider the following ship/reject-
example, adapted from [DHW94]: We are given a manufacturing robot with the goal of having
a widget painted (PA) and processed (PR). Processing widgets is accomplished by rejecting
parts that are flawed (FL) or shipping parts that are not flawed. This can be done by means
of the low-level processes ship and reject. The robot also has a low-level process paint that
usually makes PA true. Initially, all widgets are flawed if and only if they are blemished (BL),
and the probability of being flawed is 0.3.

Although the robot cannot tell directly if the widget is flawed, the low-level process inspect
can be used to determine whether or not it is blemished. inspect reports OK (“not OK”) if
the widget is blemished, and OK if not. The inspect process can be used to decide whether
or not the widget is flawed because FL and BL are initially perfectly correlated. The use

95

96 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

of inspect is complicated by two things, however. (1) inspect is not perfect: if the widget is
blemished, then 90% of the time it reports OK, but 10% of the time it erroneously reports OK.
If the widget is not blemished, however, inspect always correctly reports OK. (2) Painting
the widget removes a blemish but not a flaw, so executing inspect after the widget has been
painted no longer conveys information about whether it is flawed. All low-level processes
can always be activated, but may result in different effects. paint makes PA True (and BL
False) with probability 0.95 if the widget was not already processed. Otherwise, it causes
an execution error (ER). ship and reject always make PR True, ship makes ER true if FL
holds, and reject makes ER True if FL does not hold. The goal of our manufacturing robot
is to have the widget painted and processed with at least 90% probability.

In this scenario, an example projection task is the following: how probable is it that the
plan “first inspect, then paint the widget; afterwards, if OK holds then ship else reject it” will
falsely ship a flawed widget? In order to answer this kind of question, we have to represent
the robot’s uncertainty about the initial state of the world, and must reason about low-level
processes like paint which have uncertain outcomes. As mentioned above, we make use of
probabilistic pGOLOG programs to model noisy low-level processes; for example, we model
paint by a program which either causes PA to become true, or not. Besides, we have to deal
with low-level processes like inspect which provide (noisy) information about the state of the
world, i.e. we have to integrate sensing into our architecture. We call low-level processes
like inspect “sensor processes.” Roughly, we deal with sensor processes as follows: during
actual execution, we treat answers like OK as special exogenous actions. For the task of
projection, on the other hand, we model the sensor processes by pGOLOG programs involving
these special actions.

As for the representation of the uncertainty about the state of the world, we follow Bac-
chus, Halpern and Levesque [BHL99] and characterize the robot’s epistemic state by a dis-
tribution over possible situations considered possible. While in general this probabilistic
representation of the robot’s beliefs would allow us to specify GOLOG-style plans whose tests
and conditionals appeal to the robot’s real-valued beliefs, for means of simplicity in this chap-
ter we do not allow plans involving conditionals like “if the robot’s belief that the widget is
flawed is beyond 10%, then reject the widget.” Instead, we only consider plans whose actions
are essentially conditioned on the answers provided by the sensor processes, like “OK” or
“OK,” which we call directly observable. We will consider the issue of real-valued belief tests
in the next chapter.

This chapter is organized as follows. In the next section, we define pGOLOG and show
how low-level processes with uncertain outcome like paint can be modeled in pGOLOG. In
Section 6.2, we extend the robot control architecture used in the previous chapters to account
for uncertainty and sensing. Finally, in Section 6.3 we show how probabilistic projection
works in pGOLOG, and briefly discuss the relation between probabilistic projection and the
concept of expected utility.

6.1 pGOLOG: a Probabilistic GOLOG Dialect

As the above example illustrates, it is often convenient to model real-world processes as
having different possible probabilistic outcomes. For example, the paint process might not be
guaranteed to succeed, and this inaccuracy can naturally be modeled by assigning probabilities
to different outcomes (e.g. success and failure). To take this into account, we introduce a new

6.1. PGOLOG: A PROBABILISTIC GOLOG DIALECT 97

sort probability ranging over the subset [0, 1] of the reals1 and extend cc-Golog with a new
probabilistic branching instruction: prob(p, σ1, σ2). Here, σ1 and σ2 are pGOLOG programs
and p is a probability which lies between 0 and 1, i.e. 0 < p < 1. The intended meaning of
prob(p, σ1, σ2) is to execute program σ1 with probability p, and σ2 with probability 1−p. The
idea is to model noisy low-level processes through probabilistic programs, where the different
probabilistic branches of the programs correspond to different outcomes of the processes.
Altogether, the new language pGOLOG offers the following instructions:

α primitive action or waitFor
φ? wait/test action
[σ1, σ2] sequence
if(φ, σ1, σ2) conditional
while(φ, σ) loop
withCtrl(φ, σ) guarded execution
conc(σ1, σ2) prioritized execution
prob(p, σ1, σ2) probabilistic execution of either σ1 or σ2

{proc(P1(~v1), β1); ...; proc(Pn(~vn), βn);σ} procedures.

To illustrate the use of pGOLOG, we will now model the effects of the paint process by the
pGOLOG program paintProc. Intuitively, if the widget is already processed, trying to paint it
results in an error. Otherwise, paint will result in the widget being painted with probability
95%. There is also a 5% chance that although the widget is not processed, paint will remain
effectless. In both probabilistic cases, a possible blemish is removed. To model the effects of
paint, we make use of the fluents PA, FL, BL, PR and ER to represent the properties of our
example domain, and assume successor state axioms that ensure that the truth value of PA
is only affected by the primitive actions setPA and clipPA, whose effect is to make it True

respectively False. Similarly for the other fluents. Here and in the remainder of this thesis,
we use prob(p, σ) as a shorthand for prob(p, σ, nil).

paintProc .= if(PR,setER, [clipBL, prob(0.95, setPA)])

Given this characterization of the paint process, we can reason about the effects of its acti-
vation through simulation of the pGOLOG model. We stress that pGOLOG programs like the
above are not intended for actual execution. The purpose of pGOLOG programs like paintProc
is to model the behavior of low-level processes as probabilistic programs, and thus to provide
a faithful characterization of their effects on the world, similarly to the cc-Golog program
navProc used in Section 4.3.2 as model of the navigation process.

6.1.1 A Weighted Transition Semantics

Similar to ConGolog, the semantics of pGOLOG is defined using a transition semantics, spec-
ifying which configuration 〈δ, s′〉 can be reached from a configuration 〈σ, s〉 by a single step
of computation. As in ConGolog, the use of transition semantics necessitates the reification
of programs as first order terms in the logical language; see Appendix A. However, unlike
in the case of cc-Golog and deterministic ConGolog, when dealing with probabilistic pGOLOG
programs a configuration may have more than one successor configuration, and the different

1As before, the reals are not axiomatized and we assume their standard interpretations together with the
usual operations and ordering relations.

98 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

successor configurations have a specific probability.2 In particular, a configuration involving
prob(p, σ1, σ2) has two possible successor configurations, which intuitively correspond to the
execution of σ1 respectively of σ2. The respective probabilities of these successor configura-
tions is p and 1− p.

In order to account for the different probabilities of the possible successor configurations,
we replace the predicate Trans used in the definition of the semantics of ConGolog by the
function transPr which takes the role of Trans but additionally assigns a degree of likelihood
to different possible transitions. Roughly, transPr(σ, s, δ, s′) is the transition probability asso-
ciated with a given program σ and situation s as well as a new situation s′ that results from
executing σ’s first primitive action in s, and a new program δ that represents what remains of
σ after having performed that action. For simplicity, we first present a first-order definition
of transPr that does not account for procedures. Furthermore, for readability we write

f(~x) = if ∃~y.φ(~x, ~y) then g(~x, ~y) else h(~x)

as an abbreviation for

f(~x) = p ≡ ∃~y.φ(~x, ~y) ∧ p = g(~x, ~y) ∨ ¬∃~y.φ(~x, ~y) ∧ p = h(~x),

where φ(~x, ~y) is a first-order formula with free variables among ~x ∪ ~y, and similarly g(~x, ~y)
and h(~x) are functions whose arguments range over ~x ∪ ~y and ~x, respectively. Similarly, the
nested if - then - else construct

f(~x) = if ∃~y1.φ1(~x, ~y1) then g1(~x, ~y1)
else if ∃~y2.φ2(~x, ~y2) then g2(~x, ~y2)

else h(~x)

is an abbreviation for

f(~x) = p ≡∃~y1.φ1(~x, ~y1) ∧ p = g1(~x, ~y1) ∨ ∃~y2.φ2(~x, ~y2) ∧ p = g2(~x, ~y2)∨
¬[∃~y1.φ1(~x, ~y1) ∨ ∃~y2.φ2(~x, ~y2)] ∧ p = h(~x).

Formally, transPr is defined as follows:

transPr(nil, s, δ, s′) = 0

transPr(α, s, δ, s′) =
if Poss(α[s], s) ∧ δ = nil ∧ s′ = do(α[s], s) then 1 else 0

transPr(φ?, s, δ, s′) =
if φ[s] ∧ δ = nil ∧ s′ = s then 1 else 0

transPr(if(φ, σ1, σ2), s, δ, s′) =
if φ[s] then transPr(σ1, s, δ, s

′) else transPr(σ2, s, δ, s
′)

transPr([σ1, σ2], s, δ, s′) =
if ∃γ.δ = [γ, σ2] ∧ transPr(σ1, s, γ, s

′) > 0 then transPr(σ1, s, γ, s
′)

else if Final(σ1, s) ∧ transPr(σ2, s, δ, s
′) > 0 then transPr(σ2, s, δ, s

′) else 0

transPr(while(φ, σ), s, δ, s′) =
2Of course, nondeterministic ConGolog programs [dGLL00] are also concerned with multiple successor con-

figurations; however, nondeterministic programs do not consider the probability of a transition. We will
elaborate on this topic in Section 6.4.

6.1. PGOLOG: A PROBABILISTIC GOLOG DIALECT 99

if ∃γ.φ[s] ∧ δ = [γ,while(φ, σ)] then transPr(σ, s, γ, s′) else 0

transPr(withCtrl(φ, σ), s, δ, s′) =
if ∃γ.φ[s] ∧ δ = withCtrl(φ, γ) then transPr(σ, s, γ, s′) else 0

transPr(conc(σ1, σ2), s, δ, s′) =
if ¬Final(σ1, s) ∧ ¬Final(σ2, s)∧
∃δ1.transPr(σ1, s, δ1, s

′) > 0 ∧ δ = conc(δ1, σ2)∧
∀δ2, s2.transPr(σ2, s, δ2, s2) > 0 ⊃ start(s′) ≤ start(s2)

then transPr(σ1, s, δ1, s
′)

else if ¬Final(σ1, s) ∧ ¬Final(σ2, s)∧
∃δ2.transPr(σ2, s, δ2, s

′) > 0 ∧ δ = conc(σ1, δ2)∧
∀δ1, s1.transPr(σ1, s, δ1, s1) > 0 ⊃ start(s′) < start(s1)

then transPr(σ2, s, δ2, s
′) else 0

transPr(prob(p, σ1, σ2), s, δ, s′) =
if δ = σ1 ∧ s′ = do(tossHead, s) then p
else if δ = σ2 ∧ s′ = do(tossTail, s) then 1− p else 0

Concerning the instructions already present in cc-Golog, the definition of transPr essentially
reflects cc-Golog’s (first-order) definition of Trans. In particular, by inspection it is easy to
see that for non-probabilistic programs σ and δ the following holds:

transPr(σ, s, δ, s′) > 0 if and only if Trans(σ, s, δ, s′).

As in cc-Golog, a program that consists of a single atomic action α results in the execution of
α[s] and an empty remaining program with probability 1 if and only if α[s] is executable; all
other configurations 〈δ, s′〉 have probability 0. Similarly, a test can only result in a transition
if φ holds in s. The execution of the conditional if(φ, σ1, σ2) in s corresponds to the execution
of σ1 or σ2, depending on the truth value of φ in s. The execution of [σ1, σ2] in s may result
in any successor situation that could be reached by the execution of σ1, with a remaining
program [γ, σ2], where γ is what remains of σ1; or, if σ1 is final, it just corresponds to the
execution of σ2. A while(φ, σ) loop may only cause a transition if φ holds in s. A withCtrl(φ, σ)
construct is blocked if φ is false, and else behaves like σ. Finally, the concurrent execution of
σ1 and σ2 means that one action of one of the programs is performed, whereby actions which
can be executed earlier are always preferred. If both σ1 and σ2 are about to execute an action
at the same time, then σ1 which has higher priority takes precedence.

Let us now turn to the new instruction prob. The execution of prob(p, σ1, σ2) results in the
execution of a dummy action tossHead or tossTail with probability p respectively 1− p with
remaining program σ1, respectively σ2. The tossHead respectively tossTail actions ensure that
the situation component of the two possible successor configurations differ. Intuitively, this is
necessary because nothing prevents us from specifying a prob instruction with two identical
programs σ1 and σ2, and if we would not distinguish the two possible resulting configurations
by means of tossHead respectively tossTail, this would result in two identical successor config-
urations, that is, a single successor configuration which is assigned the probability p and 1−p
at the same time, obviously a contradiction. Note that even though we could syntactically
restrict the use of prob to different programs σi, the execution of these programs could still
result in an identical execution trace s′′, which would again result in a contradiction. We
assume that tossHead and tossTail have no effects and are always possible.

100 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

As in Section 3.2, we also have to define the final configurations 〈σ, s〉. For all instructions
already present in cc-Golog, the definition of Final remains unchanged. A prob instruction is
never final:

Final(prob(p, σ1, σ2), s) ≡ False.

So far, we have only defined which successor configurations can be reached through a
single transition. Now, as in the definition of the semantics of ConGolog we want to define
which configurations can be reached by a sequence of transitions, that is we want to define the
transitive closure of transPr. The definition of transPr∗(σ, s, δ, s′), the transitive closure of
transPr, is related to that of Trans∗. However, it is somewhat more complex because it does
not only specify which configurations 〈δ, s′〉 can be reached but also specifies the probability
to reach them:

transPr∗(σ, s, δ, s′) = p ≡∀t[... ⊃ t(σ, s, δ, s′) = p]∨
p = 0 ∧ ¬∃p′.∀t[... ⊃ t(σ, s, δ, s′) = p′]

where the ellipsis stands for the universal closure of the conjunction of the following formulas:

t(σ, s, σ, s) = 1 (6.1)

[t(σ, s, σ∗, s∗) = p2 ∧ transPr(σ∗, s∗, δ, s′) = p1 ∧ p1 > 0 ∧ p2 > 0]
⊃ t(σ, s, δ, s′) = p1 ∗ p2.

(6.2)

Basically, this formula says that i) if there is a path of nonzero transitions from 〈σ, s〉 to
〈δ, s′〉, then transPr∗(σ, s, δ, s′) is equal to the product of the transition probabilities p along
this path (which we call its weight), otherwise it is zero; and ii) there are no two paths from
one configuration to another with different weights (else, transPr∗(σ, s, δ, s′) would have more
than one value).

If there is a path of nonzero transitions, then (i) obtains, roughly, by “iterating” through
Formula 6.2, making use of the reflexivity of t (Formula 6.1) for the case where there is a
direct transition (i.e. a transPr connection) from 〈σ, s〉 to 〈δ, s′〉. In this case, 〈σ, s〉 and
〈σ∗, s∗〉 are the same and the weight of transPr∗ corresponds to that of transPr. If there is no
path without nonzero transitions, then one can always find a function t1 which satisfies the
ellipsis such that t1(σ, s, δ, s′) = 0. Hence transPr∗(σ, s, δ, s′) = 0.

To see why ii) holds, let us assume that there are two paths with different weights from
〈σ, s〉 to 〈δ, s′〉. Then no function t exists that satisfies Formula 6.2; therefore ∀t[...] is vacu-
ously True, and transPr∗(σ, s, δ, s′) = p for all p, a contradiction. Recall that to prevent this
from happening when executing a prob even if σ1 = σ2, we introduced the dummy actions
tossHead and tossTail which ensure that the situations associated with σ1 and σ2 are different.
Formally, we have the following proposition:

Proposition 8: Let AX be the foundational axioms of the epistemic situation calculus
together with the definitions of transPr, Final and transPr∗ of this section plus the axioms
needed for the encoding of pGOLOG programs as first-order terms. Then for every model
M of AX, M |= transPr∗(σ, s, δ, s′) > 0 if and only if there exist σ1, s1, ..., σn, sn such that
σ1 = σ, s1 = s, σn = δ, sn = s′ and M |= transPr(σi, si, σi+1, si+1) > 0 for i = 1, ..., n− 1.

Proof: (The proof is analogous to the proof of Lemma 2 in the Appendix of [dGLL00]).

6.1. PGOLOG: A PROBABILISTIC GOLOG DIALECT 101

⇐ By induction on n. If n = 1, then M |= transPr∗(σ, s, σ, s) > 0 by the definition
of transPr∗. If n > 1, then by induction hypothesis M |= transPr∗(σ1, s1, σn−1, sn−1) > 0.
Furthermore, since M |= transPr(σn−1, sn−1, σn, sn) we get M |= transPr∗(σ1, s1, σn, sn) > 0
by the definition of transPr∗.
⇒ Let R be the relation formed by the tuples (σ1, s1, σn, sn) such that there exist σ1, s1,

..., σn, sn and M |= transPr(σi, si, σi+1, si+1) > 0 for i = 1, ...n − 1. It is easy to ver-
ify that (i) for all δ, s, (δ, s, δ, s) ∈ R; (ii) for all δ, s, δ′, s′, δ′′, s′′, (δ, s, δ′, s′) ∈ R and
M |= transPr(δ′, s′, δ′′, s′′) > 0 implies (δ, s, δ′′, s′′) ∈ R. 2

Finally, based on transPr∗ we can define the probability that the execution of σ in s
results in an execution trace s′, that is the probability to end up in a final configuration with
situation component s′. This is captured by the function doPr(σ, s, s′), which is defined as
follows:

doPr(σ, s, s′) =
if ∃δ.transPr(σ, s, δ, s′) > 0 ∧ Final(δ, s′) then transPr(σ, s, δ, s′)
else 0.

This definition is non-ambiguous because in every final configuration 〈δ, s′〉 reachable by a
sequence of transition starting in 〈σ, s〉 the situation s′ uniquely determines its associated
remaining program δ. We will prove this (Proposition 16) and other properties of pGOLOG
in Section 6.1.4.

6.1.2 An Example

In order to illustrate the semantics of pGOLOG, we will now discuss the different ways the
world may evolve when the program paintProc is executed, assuming that initially the widget
is neither processed nor painted.

Let AX be the foundational axioms of the epistemic situation calculus together with
the definitions of transPr, Final, transPr∗ and doPr of this section, the axioms needed for
the encoding of pGOLOG programs as first-order terms, the precondition axiom for waitFor
and the successor state axiom for start. Furthermore, let Γ be AX together with the fact
¬PR(S0)∧¬PA(S0) and appropriate successor state axiom for FL, BL, PR, ER and PA (that
is, axioms of the form Poss(a, s) ⊃ [PA(do(a, s)) ≡ a = setPA ∨ a 6= clipPA ∧ PA(s)], and
similarly for the other fluents). Then, from Γ we can deduce that paintProc can result in
two possible execution traces. Intuitively, the two possible execution traces correspond to the
possible results of the prob instruction in the definition of paintProc. If the first branch is
taken, this results in the execution of setPA, which causes PA to become true. If the second
branch is taken, the execution trace simply ends with tossTail.

Γ |= doPr(paintProc, S0, s
′) = p ∧ p > 0 ≡

[s′ = do([clipBL, tossHead, setPA], S0) ∧ PA(s′) ∧ p = 0.95∨
s′ = do([clipBL, tossTail], S0) ∧ ¬PA(s′) ∧ p = 0.05]

Proof: Similar to earlier proofs dealing with the execution of a ConGolog or cc-Golog pro-
gram, this proof is straightforward but laborious. By Proposition 8, we can prove the
thesis by showing that there is a sequence of transitions from 〈paintProc, S0〉 to a final
configuration with situation component do([clipBL, tossHead, setPA], S0) with total weight
0.95, and another sequence of transitions to a final configuration with situation component

102 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

do([clipBL, tossTail], S0). Furthermore, we have to show that these are the only sequences
that lead to a final configuration.

First, from the definition of transPr and the fact ¬PR(S0), we get:

transPr(if(PR, setER, [clipBL, prob(0.95, setPA), nil]), S0, δ, s
′) = p ≡

transPr([clipBL, prob(0.95, setPA), nil], S0, δ, s
′) = p.

(6.3)

From the fact that clipBL is always possible:

transPr([clipBL, prob(0.95, setPA, nil)], S0, δ, s
′) = p ≡

[p = 1 ∧ s′ = do(clipBL, S0) ∧ δ = [nil, prob(0.95, setPA, nil)]∨
p = 0 ∧ ¬(s′ = do(clipBL, S0) ∧ δ = [nil, prob(0.95, setPA, nil)])].

(6.4)

Thus, there is only one successor configuration with positive weight. From the definition of
transPr regarding prob, we get:

transPr([nil, prob(0.95, setPA, nil)], do(clipBL, S0), δ, s′) = p ≡
[p = 0.95 ∧ s′ = do([clipBL, tossHead], S0) ∧ δ = setPA∨
p = 0.05 ∧ s′ = do([clipBL, tossTail], S0) ∧ δ = nil∨
p = 0 ∧ ¬[s′ = do([clipBL, tossHead], S0) ∧ δ = setPA∨

s′ = do([clipBL, tossTail], S0) ∧ δ = nil]].

(6.5)

Let us first consider the first branch. Here, from the fact that setPA is always possible:

transPr(setPA, do([tossHead, clipBL], S0), δ, s′) = p ≡
[p = 1 ∧ s′ = do([clipBL, tossHead, setPA], S0) ∧ δ = nil∨
p = 0 ∧ ¬(s′ = do([clipBL, tossHead, setPA], S0) ∧ δ = nil)].

(6.6)

The new configuration has nil as program component, and is thus final. That is, there is a
sequence of transitions from 〈paintProc, S0〉 to 〈nil, do([clipBL, tossHead, setPA], S0)〉. From
6.3, 6.4, 6.5 and 6.6 we get that the product of the weights along this sequence is 1*0.95*1 =
0.95.

Next, let us consider the second disjunct in 6.5, that is the other configuration with
positive weight, 〈nil, do([clipBL, tossHead], S0)〉. It is easy to see that this configuration is
Final, meaning that we have found another sequence of transitions from 〈paintProc, S0〉 to a
final configuration. Furthermore, this configuration has do([clipBL, tossHead], S0) as situation
component. From 6.3, 6.4 and 6.5 we get that the product of the weights along this sequence
is 1*0.05 = 0.05.

Finally, from 6.3, 6.4, 6.5 and 6.6 we get that there are no other sequences of transition
from 〈paintProc, S0〉 to a final configuration, which finishes the proof. 2

6.1.3 Extending the Semantics to Procedures

Let us now extend the semantics of pGOLOG to procedures. Similar to the case of ConGolog
and cc-Golog described in the Sections 3.2.3 and 4.2.1, this is done by providing a second-order
definition of transPr (the definitions of transPr∗ and doPr remain unaffected). In particular,
we have to consider the following three additional program constructs:

• Procedure definitions {E ;σ}, where E is an environment and σ a program extended with
procedure calls;

6.1. PGOLOG: A PROBABILISTIC GOLOG DIALECT 103

• Procedure calls P (~t), where P is a procedure name and ~t actual parameters associated
to the procedure P ;

• Contextualized procedure calls [E : P (~t)], where E is an environment, P a procedure
name and ~t actual parameters associated to the procedure P .

Because we want to show some important properties of the second-order versions of Final and
transPr, we define them in a syntactically somewhat different form than that used to define
Final and Trans in ConGolog and cc-Golog. In particular, we do not define transPr as the
smallest set that satisfies a set of equivalence assertions (Φ ≡ Ψ), but instead as the smallest
set that satisfies a set of implications (Φ ⊃ Ψ). Similarly for Final. The implication form
turned out to be more convenient because it allows us to prove properties simply by showing
that the property is closed under the implications that inductively define transPr respectively
Final.3

First, we reformulate the second-order definition of Final:

Final(σ, s) ≡ ∀F.[... ⊃ F (σ, s)],

where the ellipsis stands for the universal closure of the conjunction of the following set of
implications:

True ⊃F (nil, s)

F (σ1, s) ∧ F (σ2, s) ⊃F ([σ1, σ2], s)

φ[s] ∧ F (σ1, s) ⊃F (if(φ, σ1, σ2), s)

¬φ[s] ∧ F (σ2, s) ⊃F (if(φ, σ1, σ2), s)

¬φ[s] ⊃F (while(φ, σ), s)

F (σ, s) ⊃F (while(φ, σ), s)

F (σ, s) ∧ φ[s] ⊃F (withCtrl(φ, σ), s)

F (σ1, s) ⊃F (conc(σ1, σ2), s)

F (σ2, s) ⊃F (conc(σ1, σ2), s)

F (σPi(
~t)

[E:Pi(~t)]
, s) ⊃F ({E ;σ}, s)

F ({E ;βP
~vp
~t[s]
}, s) ⊃F ([E : P (~t)], s).

Proposition 9: The above definition for Final is equivalent to cc-Golog’s definition of Final.

Proof: Similar to [dGLL00] (their proof of Theorem 10), we show the equivalence of the
above definition and the definition for cc-Golog using the Tarski-Knaster fixpoint theorem
[Tar55]. The Tarski-Knaster fixpoint theorem says that if

S(~x) ≡ ∀Z.[[∀~y.Φ(Z, ~y) ⊃ Z(~y)] ⊃ Z(~x)] (6.7)
3The idea to define transPr in terms of a set implications is inspired by [dGLL00], who reformulate a subset

of their definition of Trans in implication form in their Appendix B.

104 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

and Φ(Z, ~y) is monotonic, then we get the following consequence:

S(~x) ≡ ∀Z.[[∀~y.Z(~y) ≡ Φ(Z, ~y)] ⊃ Z(~x)]. (6.8)

Here, Φ(Z, ~y) is called monotonic if and only if ∀Z1, Z2.[∀~y.Z1(~y) ⊃ Z2(~y)] ⊃ [∀~y.Φ(Z1, ~y) ⊃
Φ(Z2, ~y)]. A sufficient condition for monotonicity is that all occurrences of Z occur within an
even number of negations (note that Φ ⊃ Ψ is an abbreviation for ¬Φ ∨Ψ).

Now similar to the proof of Proposition 5 (Page 68), the above definition of Final can
be put in the form (6.7). In particular, each of the implications in the above definition of
Final can be rewritten so that only the variables s, σ appear in the right-hand part of the
implications. The form (6.7) can then be obtained by getting the disjunction of all left-hand
sides, which have the following form:

σ = nil

F (σ1, s) ∧ F (σ2, s) ∧ σ = [σ1, σ2]
φ[s] ∧ F (σ1, s) ∧ σ = if(φ, σ1, σ2)
¬φ[s] ∧ F (σ2, s) ∧ σ = if(φ, σ1, σ2)

¬φ[s] ∧ σ = while(φ, γ)
F (γ, s) ∧ σ = while(φ, γ)

F (γ, s) ∧ φ[s] ∧ σ = withCtrl(φ, γ)
F (σ1, s) ∧ σ = conc(σ1, σ2)
F (σ2, s) ∧ σ = conc(σ1, σ2)

F (γPi(
~t)

[E:Pi(~t)]
, s) ∧ σ = {E ; γ}

F ({E ;βP
~vp
~t[s]
}, s) ∧ σ = [E : P (~t)].

Now it is easy to see that the resulting formula Φ is indeed monotonic because the predicate
variable F does not occur in the scope of any negation. Thus, by the Tarski-Knaster fixpoint
theorem, the above definition can be rewritten in the form (6.8). Once in this form it is easy
to see that the above definition is equivalent to cc-Golog’s definition of Final; cf. the proof of
Proposition 5. 2

As an aside, we remark that unfortunately, neither Trans nor transPr is syntactically
monotonic, so we cannot use the Tarski-Knaster fixpoint theorem to convert the second-order
definition of transPr to the form (6.8).

Similar to Final, the possible transitions for pGOLOG programs with procedures are spec-
ified by the following second-order definition of transPr:

transPr(σ, s, δ, s′) = p ≡∀t.[ΦtransPr ⊃ t(σ, s, δ, s′) = p]∨
p = 0 ∧ ¬∃p′.∀t[ΦtransPr ⊃ t(σ, s, δ, s′) = p′]

(6.9)

where ΦtransPr stands for the universal closure of the conjunction of the following set of
implications:

6.1. PGOLOG: A PROBABILISTIC GOLOG DIALECT 105

Poss(α[s], s) ⊃ t(α, s, nil, do(α[s], s)) = 1

φ[s] ⊃ t(φ?, s, nil, s) = 1

t(σ1, s, γ, s
′) = p ∧ p > 0 ⊃ t([σ1, σ2], s, [γ, σ2], s′) = p

Final(σ1, s) ∧ t(σ2, s, δ, s
′) = p ∧ p > 0 ⊃ t([σ1, σ2], s, δ, s′) = p

φ[s] ∧ t(σ1, s, δ, s
′) = p ∧ p > 0 ⊃ t(if(φ, σ1, σ2), s, δ, s′) = p

¬φ[s] ∧ t(σ2, s, δ, s
′) = p ∧ p > 0 ⊃ t(if(φ, σ1, σ2), s, δ, s′) = p

φ[s] ∧ t(σ, s, γ, s′) = p ∧ p > 0 ⊃ t(while(φ, σ), s, [γ,while(φ, σ)], s′) = p

φ[s] ∧ t(σ, s, γ, s′) = p ∧ p > 0 ⊃ t(withCtrl(φ, σ), s,withCtrl(φ, γ), s′) = p

¬Final(σ1, s) ∧ ¬Final(σ2, s)∧
t(σ1, s, δ1, s

′) = p ∧ p > 0∧
[∀δ2, s2.t(σ2, s, δ2, s2) > 0
⊃ start(s′) ≤ start(s2)] ⊃ t(conc(σ1, σ2), s, conc(δ1, σ2), s′) = p

¬Final(σ1, s) ∧ ¬Final(σ2, s)∧
t(σ2, s, δ2, s

′) = p ∧ p > 0∧
[∀δ1, s1.t(σ1, s, δ1, s1) > 0
⊃ start(s′) < start(s1)] ⊃ t(conc(σ1, σ2), s, conc(σ1, δ2), s′) = p

True ⊃ t(prob(p, σ1, σ2), s, σ1, do(tossHead, s)) = p

True ⊃ t(prob(p, σ1, σ2), s, σ2, do(tossTail, s)) = 1− p

t(σPi(
~t)

[E:Pi(~t)]
, s, δ, s′) = p ∧ p > 0 ⊃ t({E ;σ}, s, δ, s′) = p

t({E ;βP
~vp
~t[s]
}, s, δ, s′) = p ∧ p > 0 ⊃ t([E : P (~t)], s, δ, s′) = p.

Let us now consider the definition of transPr in more detail, beginning with definition (6.9).
It is somewhat more complex than its counterpart (3.43) on page 51 because it does not only
specify which configurations 〈δ, s′〉 can be reached but also specifies the probability to reach
them. To understand how the definition works, let us first consider the first disjunct of (6.9).
This disjunct deals with the case where ΦtransPr uniquely implies a weight p for the transition
from 〈σ, s〉 to 〈δ, s′〉. If this is the case, then p is also the weight of transPr(σ, s, δ, s′). On the
other hand, if ΦtransPr does not uniquely implies a weight p for the transition from 〈σ, s〉 to
〈δ, s′〉 then transPr(σ, s, δ, s′) = 0.

Next, let us consider the implications in ΦtransPr. The first eleven implications (all im-
plications except for the last two) take care of programs without procedures, and thus take
the role of the first-order definition of transPr. Note that they only state – by means of
implications – in which cases t(σ, s, δ, s′) is required to have a positive value. For example,
the first implication deals with the case of primitive actions, saying that if a primitive action
α is possible in s, then t(α, s, nil, do(α[s], s)) must have value 1. However, nothing is said
about the case where α is not possible in s. This is unlike in the first-order definition of

106 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

transPr where we also explicitly stated when a transition has probability 0. Intuitively, in
the implications of ΦtransPr it is not necessary to consider the cases where t(σ, s, δ, s′) must
have value 0 because by (6.9) transPr is defined to have value 0 whenever ΦtransPr does not
require all functions t to have the same (positive) value.

Finally, let us consider the last two implications of the set ΦtransPr. As in Section 3.2.3,
σ
Pi(~t)

[E:Pi(~t)]
denotes the program σ with all procedures bound by E and free in σ replaced by

their contextualized version, and βP
~vp
~t[s]

denotes the body of the procedure P in E with formal

parameters ~vp substituted by the actual parameters ~t evaluated in the current situation.
Here, the usual notion of free and bound apply, so for example in {proc(P1(), a); [P2, P1]}, P1

is bound but P2 is free. The first of the two axioms says that to show that a program σ with
an associated environment E can cause a transition, one has to show that the program which
results from σ by simultaneously substituting all procedure calls bound by E with procedure
calls contextualized by the environment of the procedure can cause a transition. The second
axiom says that to show that a contextualized procedure call can cause a transition one has
to show that the body of the procedure, with the formal parameters substituted with the
actual parameters evaluated in the current situation, and associated with E in order to deal
with further procedure calls, can cause a transition.

Similar to the case of cc-Golog, we have the following proposition:

Proposition 10: With respect to pGOLOG programs without procedures, the first-order and
the second-order definitions of transPr and Final are equivalent.

Proof: The proof for Final is analogous to the proof for transPr, so we only consider the
latter. Let us now denote transPr defined by the second-order sentence as transPrSOL and the
earlier first-order definition of transPr as transPrFOL. Since procedures are not considered,
we can drop, without loss of generality, the assertions for contextualized procedures and
procedures with an environment in the definition of transPrSOL. Then:

• transPrSOL(σ, s, δ, s′) = p ∧ p > 0 ⊃ transPrFOL(σ, s, δ, s′) = p.

By definition 6.9, transPrSOL(σ, s, δ, s′) = p ∧ p > 0 implies ∀t.[ΦtransPr ⊃ t(σ, s, δ, s′) =
p]. Thus, to prove transPrFOL(σ, s, δ, s′) = p it suffices to show that transPrFOL satisfies
the set of implications ΦtransPr (with transPrFOL as instance of the variable t). We only
give details for a few cases; the other cases are analogous.

– Primitive action. We have to show Poss(α[s], s) ⊃ transPrFOL(α, s, nil, do(α[s], s)) =
1. This holds by the definition of transPrFOL.

– First implication for sequences. We have to show

transPrFOL(σ1, s, γ, s
′) = p ∧ p > 0 ⊃ transPrFOL([σ1, σ2], s, [γ, σ2], s′) = p.

This holds by the definition of transPrFOL.

– Second implication for sequences. As above,

Final(σ1, s) ∧ transPrFOL(σ2, s, δ, s
′) = p ∧ p > 0 ⊃ transPrFOL([σ1, σ2], s, δ, s′) = p

holds by the definition of transPrFOL.

– First implication for concurrent execution. We have to show

6.1. PGOLOG: A PROBABILISTIC GOLOG DIALECT 107

[¬Final(σ1, s) ∧ ¬Final(σ2, s) ∧ transPrFOL(σ1, s, δ1, s
′) = p ∧ p > 0∧

∀δ2, s2.transPrFOL(σ2, s, δ2, s2) > 0 ⊃ start(s′) ≤ start(s2)]
⊃ transPrFOL(conc(σ1, σ2), s, conc(δ1, σ2), s′) = p

This holds by the definition of transPrFOL.

• transPrFOL(σ, s, δ, s′) = p ∧ p > 0 ⊃ transPrSOL(σ, s, δ, s′) = p.

By induction on the structure of σ considering as base cases nil, a, and φ?, and then ap-
plying the induction argument. We only give details for primitive actions and sequences.
The other cases are analogous.

– Base case: primitive action.
By the definition of transPrFOL, transPrFOL(α, s, δ, s′) = p ∧ p > 0 if and only if
Poss(α[s], s) ∧ δ = nil ∧ s′ = do(α[s], s), in which case p is 1. Thus, we have to
show that Poss(α[s], s) implies transPrSOL(α, s, nil, do(α[s], s)) = 1.
By definition 6.9, transPrSOL(α, s, nil, do(α[s], s)) = p, p > 0 if and only if any func-
tion t satisfying ΦtransPr fulfills t(α, s, nil, do(α[s], s)) = p. Consider any function t
satisfying ΦtransPr. By the first implication of ΦtransPr, t(α, s, nil, do(α[s], s)) = 1.

– Induction step: sequence.
By the definition of transPrFOL, transPrFOL([σ1, σ2], s, δ, s′) = p ∧ p > 0 if and
only if either (a) ∃γ.δ = [γ, σ2] ∧ transPrFOL(σ1, s, γ, s

′) = p or (b) Final(σ1, s) ∧
transPrFOL(σ2, s, δ, s

′) = p.
Let us first consider case (a). By induction hypothesis, transPrSOL(σ1, s, γ, s

′) = p.
Thus, by definition 6.9 any function t satisfying ΦtransPr fulfills t(σ1, s, γ, s

′) = p.
Then, by ΦtransPr’s first implication for sequences we get t([σ1, σ2], s, δ, s′) = p for
any function t satisfying ΦtransPr, and hence transPrSOL([σ1, σ2], s, δ, s′) = p. Case
(b) can be shown analogously, using ΦtransPr’s second implication for sequences.

2

To illustrate the new second-order definition of transPr, let us now consider the example
program {E1; paintProc()}, where the procedure paintProc is defined by E1 as follows:

E1
.= proc(paintProc, if(PR,setER, [clipBL, prob(0.95, setPA)])).

Then, by the definition of ΦtransPr we get:

t(if(PR, setER, [clipBL, prob(0.95, setPA)]), s, δ, s′) = p ∧ p > 0 ⊃
t({E1; if(PR, setER, [clipBL, prob(0.95, setPA)])}, s, δ, s′) = p ∧ p > 0 ⊃
t([E1 : paintProc()], s, δ, s′) = p ∧ p > 0 ⊃
t({E1; paintProc()}, s, δ, s′) = p.

Thus, if in s the body of paintProc can cause a transition with positive weight p to a successor
configuration 〈δ, s′〉, then {E1; paintProc()} can cause the same transition with weight p. In
particular, from Proposition 10 and the considerations from Section 6.1.2 where we considered
an execution of the body of paintProc we can conclude

transPr({E1; paintProc()}, S0, [nil, prob(0.95, setPA, nil)], do(clipBL, S0)) = 1.

108 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

To see that this is the only possible transition (that is the only transition with positive
probability) of {E1; paintProc()} in S0 to a successor configuration, observe that ΦtransPr does
not imply any other positive implications for the value of t({E1; paintProc()}, S0, δ, s

′). Thus
one can always choose a function t0 that satisfies ΦtransPr such that

t0({E1; paintProc()}, S0, δ, s
′) = 0 ≡

¬(s′ = do(clipBL, S0) ∧ δ = [nil, prob(0.95, setPA, nil)]).

By the definition of transPr (6.9), then, we get:

transPr({E1; paintProc()}, S0, δ, s
′) = 0 ≡

¬(s′ = do(clipBL, S0) ∧ δ = [nil, prob(0.95, setPA, nil)]).

Similarly, we can conclude that the overall execution of {E1; paintProc()} in S0 can result in
exactly the following two execution traces:

• do([clipBL, tossHead, setPA], S0), and

• do([clipBL, tossTail], S0).

Finally, to see that the new definition of transPr correctly deals with circular recursive
procedure, let us consider the ill-formed program {proc(P (), P ());P ()}. Let E2 be an ab-
breviation for proc(P (), P ()). The only implications we get by ΦtransPr about the value of
t({E2;P}, s, δ, s′) are:

t({E2;P}, s, δ, s′) = p ⊃
t([E2 : P], s, δ, s′) = p ⊃
t({E2;P}, s, δ, s′) = p.

Thus, we can choose two functions t0 and t1 which both satisfy the implication in ΦtransPr

and where t0({E2;P}, s, δ, s′) = 0 and t1({E2;P}, s, δ, s′) = 1. So there is no p′ such that
∀t[ΦtransPr ⊃ t({E2;P}, s, δ, s′) = p′], and hence transPr({E2;P}, s, δ, s′) = 0. We remark
that {{E2;P}, s, δ, s′)} is not final, meaning that the ill-formed program cannot perform a
transition with positive probability and at the same time is not final.

6.1.4 Formal Properties

We will now investigate some important properties of transPr, Final and doPr. In particular,
we show that doPr is well defined because in every final configuration 〈δ, s′〉 reachable by a
sequence of transitions starting in 〈σ, s〉 the situation s′ uniquely determines its associated
remaining program δ (Proposition 16). The following properties will also be helpful in the
next chapter, where we specify how the robot is to update its probabilistic beliefs. We remark
that Proposition 8 still holds for the new second-order definition of transPr (recall that the
proof does not rely on any particular features of transPr). To simplify the presentation of
the proofs, we will use the same symbols to denote terms and elements of the domain of
interpretation; the meaning will be clear from the context.

The first proposition tells us that to show that the tuples σ, s, δ, s′ such that there is
transition from 〈σ, s〉 to 〈δ, s′〉 have a property P , it suffices to prove that P satisfies the

6.1. PGOLOG: A PROBABILISTIC GOLOG DIALECT 109

following set of implications ΦProp:

Poss(α[s], s) ⊃ P (α, s, nil, do(α[s], s))

φ[s] ⊃ P (φ?, s, nil, s)

P (σ1, s, γ, s
′) ⊃ P ([σ1, σ2], s, [γ, σ2], s′)

Final(σ1, s) ∧ P (σ2, s, δ, s
′) ⊃ P ([σ1, σ2], s, δ, s′)

φ[s] ∧ P (σ1, s, δ, s
′) ⊃ P (if(φ, σ1, σ2), s, δ, s′)

¬φ[s] ∧ P (σ2, s, δ, s
′) ⊃ P (if(φ, σ1, σ2), s, δ, s′)

φ[s] ∧ P (σ, s, γ, s′) ⊃ P (while(φ, σ), s, [γ,while(φ, σ)], s′)

φ[s] ∧ P (σ, s, γ, s′) ⊃ P (withCtrl(φ, σ), s,withCtrl(φ, γ), s′)

¬Final(σ1, s) ∧ ¬Final(σ2, s) ∧ P (σ1, s, δ1, s
′)∧

[∀δ2, s2.P (σ2, s, δ2, s2) ⊃ start(s′) ≤ start(s2)] ⊃ P (conc(σ1, σ2), s, conc(δ1, σ2), s′)

¬Final(σ1, s) ∧ ¬Final(σ2, s) ∧ P (σ2, s, δ2, s
′)∧

[∀δ1, s1.P (σ1, s, δ1, s1) ⊃ start(s′) < start(s1)] ⊃ P (conc(σ1, σ2), s, conc(σ1, δ2), s′)

True ⊃ P (prob(p, σ1, σ2), s, σ1, do(tossHead, s))

True ⊃ P (prob(p, σ1, σ2), s, σ2, do(tossTail, s))

P (σPi(
~t)

[E:Pi(~t)]
, s, δ, s′) ⊃ P ({E ;σ}, s, δ, s′)

P ({E ;βP
~vp
~t[s]
}, s, δ, s′) ⊃ P ([E : P (~t)], s, δ, s′)

Note that the above set of implications corresponds, roughly, to ΦtransPr with the condition
t(σ, s, δ, s′) > 0 replaced by P (σ, s, δ, s′).

Proposition 11: Let AXtransPr be the foundational axioms of the epistemic situation cal-
culus together with the precondition axiom for waitFor, the successor state axiom for start,
the (second-order) definitions of transPr, Final and transPr∗ plus the axioms needed for the
encoding of pGOLOG programs as first-order terms. Then:

AXtransPr |= transPr(σ, s, δ, s′) > 0 ⊃ ∀P.[ΦProp ⊃ P (σ, s, δ, s′)].

Proof: First, note that transPr(σ, s, δ, s′) > 0 is equivalent to ∀t.[ΦtransPr ⊃ t(σ, s, δ, s′) > 0].
The latter is equivalent to ∀t.[Φ1

transPr ⊃ t(σ, s, δ, s′) > 0], where Φ1
transPr is obtained from

ΦtransPr by replacing the two implication for prob instructions by

True ⊃ t(prob(p, σ1, σ2), s, σ1, do(tossHead, s)) = 1

True ⊃ t(prob(p, σ1, σ2), s, σ2, do(tossTail, s)) = 1.

In particular, for every function t which satisfies ΦtransPr there is exactly one function t1

which satisfies Φ1
transPr and which has positive value at σ, s, δ, s′ if and only if t has positive

value at σ, s, δ, s′. Note that we have restricted prob instructions to a value p which satisfies 0 <

110 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

p < 1, hence both p and 1−p are > 0. Finally, note that the different implications in ΦtransPr

are mutually exclusive since each of them deals with programs of a specific form, and we have
required unique names for programs and situations (cf. Section 3.1.1 and Appendix A).

Next, we show that for all σ, s, δ, s′, ∀t.[Φ1
transPr ⊃ t(σ, s, δ, s′) > 0] implies ∀P.[ΦProp ⊃

P (σ, s, δ, s′)] by proving that for all σ, s, δ, s′, ∃P.ΦProp ∧ ¬P (σ, s, δ, s′) implies ∃t.Φ1
transPr ∧

¬t(σ, s, δ, s′) > 0. Let σ0, s0, δ0, s
′
0 be an arbitrary tuple, and suppose that there is a relation Q

which satisfies ΦProp such that ¬Q(σ0, s0, δ0, s
′
0) holds. We will use this relation to construct

a function tQ which satisfies Φ1
transPr but assigns value 0 to σ0, s0, δ0, s

′
0. In particular, tQ is

defined as follows:

tQ(σ, s, δ, s′) = p ≡ Q(σ, s, δ, s′) ∧ p = 1 ∨ ¬Q(σ, s, δ, s′) ∧ p = 0. (6.10)

That is, tQ(σ, s, δ, s′) has value 1 wherever Q(σ, s, δ, s′) holds and else has value 0. In
particular, tQ(σ0, s0, δ0, s

′
0) = 0. Next, we show that the function tQ satisfies Φ1

transPr by
verifying that tQ satisfies all the implications in Φ1

transPr. We only give details for the most
important cases:

• Primitive action. If α[s] is possible in s, then Q(α, s, nil, do(α[s], s)) holds because Q
satisfies (the first implication of) ΦProp. Thus, tQ(α, s, nil, do(α[s], s)) = 1.

• Second implication for sequences. We have to show

Final(σ1, s) ∧ tQ(σ2, s, δ, s
′) = p ∧ p > 0 ⊃ tQ([σ1, σ2], s, δ, s′) = p.

Assume tQ satisfies tQ(σ2, s, δ, s
′) = p∧p > 0 (else, there is nothing to be shown). Then,

by construction of tQ (6.10) p must be 1 and Q(σ2, s, δ, s
′) must hold. Hence, by ΦProp

(second implication for sequences) we get Q([σ1, σ2], s, δ, s′), and thus by construction
of tQ tQ([σ1, σ2], s, δ, s′) = 1 = p.

• First implication for concurrent execution. We have to show

¬Final(σ1, s) ∧ ¬Final(σ2, s) ∧ tQ(σ1, s, δ1, s
′) = p ∧ p > 0∧

[∀δ2, s2.tQ(σ2, s, δ2, s2) > 0 ⊃ start(s′) ≤ start(s2)]
⊃ tQ(conc(σ1, σ2), s, conc(δ1, σ2), s′) = p

Assume tQ satisfies the left-hand-side of the implication (else, there is nothing to be
shown). Then, by the construction of tQ (6.10) we get:

tQ(σ1, s, δ1, s
′) = 1

Q(σ1, s, δ1, s
′)

[∀δ2, s2.Q(σ2, s, δ2, s2) ⊃ start(s′) ≤ start(s2)].

Now from this and ΦProp (second implication for concurrent execution) it follows that
Q(conc(σ1, σ2), s, conc(δ1, σ2), s′) holds, and hence tQ(conc(σ1, σ2), s, conc(δ1, σ2), s′) =
1.

• First implication for prob. Q(prob(p, σ1, σ2), s, σ1, do(tossHead, s)) holds because Q sat-
isfies ΦProp (first implication for prob). Thus, tQ(prob(p, σ1, σ2), s, σ1, do(tossHead, s)) =
1.

• Program with associated environment. We have to show

6.1. PGOLOG: A PROBABILISTIC GOLOG DIALECT 111

tQ(σPi(
~t)

[E:Pi(~t)]
, s, δ, s′) = p ∧ p > 0 ⊃ tQ({E ;σ}, s, δ, s′) = p.

Assume tQ satisfies the left-hand-side of the implication. Then by the construction

of tQ we get tQ(σPi(
~t)

[E:Pi(~t)]
, s, δ, s′) = 1 and Q(σPi(

~t)

[E:Pi(~t)]
, s, δ, s′). Furthermore, by ΦProp,

Q({E ;σ}, s, δ, s′) holds. Thus, tQ({E ;σ}, s, δ, s′) = 1.

2

The next proposition says that there is no configuration 〈σ, s〉 which at the same time is
final and has a successor configuration with positive weight.

Proposition 12: Let AXtransPr be as above. Then:

AXtransPr |= transPr(σ, s, δ, s′) > 0 ⊃ ¬Final(σ, s).

Proof: By Proposition 11, it suffices to show that Final satisfies the set of implications
ΦProp. We use the fact that by Proposition 9 the set of axioms in the definition of Final can
be rewritten in the form Φ ≡ Ψ (see page 67).

• Primitive action. We have to show Poss(α[s], s) ⊃ ¬Final(α, s). This holds by the
definition of Final because a primitive action is never final.

• Test. A test is never final

• First implication for sequences. We have to show ¬Final(σ1, s) ⊃ ¬Final([σ1, σ2], s).
This holds by definition of Final.

• Second implication for sequences. We have to show Final(σ1, s) ∧ ¬Final(σ2, s) ⊃
¬Final([σ1, σ2], s), which holds by the definition of Final.

• First implication for conditionals. We have to show that φ[s] ∧ ¬Final(σ1, s) implies
¬Final(if(φ, σ1, σ2), s), which holds by the definition of Final.

• Second implication for conditionals. We have to show ¬φ[s] ∧ ¬Final(σ2, s, δ, s
′) ⊃

¬Final(if(φ, σ1, σ2)), which holds by the definition of Final.

• While loops. We have to show φ[s] ∧ ¬Final(σ, s) ⊃ ¬Final(while(φ, σ), s), which holds
by the definition of Final.

• First implication for concurrent execution. It suffices to show

¬Final(σ1, s) ∧ ¬Final(σ2, s) ⊃ ¬Final(conc(σ1, σ2), s),

which holds by the definition of Final. Analogous for the second implication for con-
current execution.

• First implication for prob. We have to show True ⊃ ¬Final(prob(p, σ1, σ2)), which
holds by the definition of Final because prob is never Final. Analogous for the second
implication for prob.

112 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

• Program with associated environment. We have to show

¬Final(σPi(
~t)

[E:Pi(~t)]
, s) ⊃ ¬Final({E ;σ}, s),

which holds by the definition of Final.

• Contextualized procedure call. We have to show

¬Final({E ;βP
~vp
~t[s]
}, s) ⊃ ¬Final([E : P (~t)], s),

which holds by the definition of Final.

2

While the previous proposition says that a configuration cannot at the same time be final
and have a successor configuration with positive weight, the following proposition says that if
〈δ, s′〉 is a successor configuration of 〈σ, s〉 then s′ can be obtained from s by executing at most
one action. Furthermore, it says that a configuration can have at most two successor config-
urations with positive weight, and that if a configuration has two successor configurations,
then these two configurations have syntactically different situation components.

Proposition 13: Let AXtransPr be as above. Then:

• AXtransPr |= transPr(σ, s, σ′, s′) > 0 ⊃ s = s′ ∨ ∃a.s′ = do(a, s); and

• AXtransPr |=transPr(σ, s, σ′, s′) > 0 ∧ transPr(σ, s, σ′′, s′′) > 0 ⊃
s′ = s′′ ∧ σ′ = σ′′∨
s′ = do(tossHead, s) ∧ s′′ = do(tossTail, s)∨
s′ = do(tossTail, s) ∧ s′′ = do(tossHead, s).

Proof: The first part of the proposition follows analogously to Proposition 12, using Proposi-
tion 11. Unfortunately, the second part of the proposition involves two occurrences of transPr,
so we cannot prove it similarly.

To see that the second part holds, first note that ΦtransPr’s implications for sequences,
conditionals, while-loops, withCtrl-constructs, concurrent execution, programs with associated
environment and contextualized procedure calls are mutually exclusive in the sense that for
every possible configuration 〈σ, s〉 there is at most one implication which can be used to derive
that there is a successor configuration 〈σ′, s′〉 such that transPr(σ, s, σ′, s′) > 0. In particular,
the implications for syntactically different programs are mutually exclusive because programs
have unique names. On the other hand, the two implications for sequences are mutually
exclusive because, by Proposition 12, transPr(σ1, s, γ, s

′) implies ¬Final(σ1, s). Similarly, the
two implications for concurrent execution are mutually exclusive because their antecedents
contradict each other (we remark that this does not hold for ConGolog’s (σ1 || σ2) construct,
which is the reason why we do not consider unprioritized concurrency in pGOLOG). Finally,
the antecedents of the two implications for conditional execution also contradict each other.

Next, observe that the implications for primitive actions, tests and prob instructions can
be rewritten in the form

Ψi(σ, s, σ′, s′) ⊃ t(σ, s, σ′, s′) > 0 (6.11)

where Ψi is a formula whose free variables are among σ, s, σ′, s′. For example, the implication
for primitive actions can be rewritten as

6.1. PGOLOG: A PROBABILISTIC GOLOG DIALECT 113

σ = α[s] ∧ Poss(σ, s) ∧ σ′ = nil ∧ s′ = do(α[s], s) ⊃ t(σ, s, σ′, s′) = 1.

Similarly the implications for sequences, conditionals, while-loops, withCtrl-constructs, con-
current execution, programs with associated environment and contextualized procedure calls
can all be rewritten in the following form:

t(σp, s, σ′p, s
′) > 0 ∧Ψi(σp, σ, s, σ′p, σ

′, s′) ⊃ t(σ, s, σ′, s′) > 0. (6.12)

For example, the first implication for concurrent execution can be rewritten as follows:

t(σp, s, δp, s′) = p ∧ p > 0∧
[∃σ2.σ = conc(σp, σ2) ∧ σ′ = conc(δp, σ2) ∧ ¬Final(σp, s) ∧ ¬Final(σ2, s)∧
[∀δ2, s2.t(σ2, s, δ2, s2) > 0 ⊃ start(s′) ≤ start(s2)]]

⊃ t(σ, s, σ′, s′) > 0

Furthermore, it is easy to verify that each such condition Ψi satisfies the following assertions:

Ψi(σp, σ, s, σ′p, σ
′, s′) ∧Ψi(δp, δ, s, δ′p, δ

′, s′′) ∧ σ′ 6= δ′ ∧ σ = δ ⊃ σp = δp ∧ σ′p 6= δ′p; (6.13)
Ψi(σp, σ, s, σ′p, σ

′, s′) ∧Ψi(δp, δ, s, δ′p, δ
′, s′′) ∧ s′ 6= s′′ ∧ σ = δ ⊃ σp = δp. (6.14)

The first assertion says that an implication of the form (6.12) only implies that a config-
uration 〈σ, s〉 has two successor configurations 〈σ′, s′〉 and 〈δ′, s′′〉 with different program
component if there is another configuration 〈σp, s〉 which has two successor configurations
〈σ′p, s′〉 and 〈δ′p, s′′〉 with different program component. Similarly, the second assertion says
that an implication of the form (6.12) only implies that a configuration 〈σ, s〉 has two succes-
sor configurations 〈σ′, s′〉 and 〈δ′, s′′〉 with different situation component if there is another
configuration 〈σp, s〉 which has two successor configurations 〈σ′p, s′〉 and 〈δ′p, s′′〉 (which ob-
viously have different situation component). Intuitively, this tells us that the implications
for sequences, conditionals, while-loops, withCtrl-constructs, concurrent execution, programs
with associated environment and contextualized procedure calls are not the ultimate “cause”
of configurations with more than one successor configuration.

Next, observe that, by the definition of transPr, transPr(σ, s, σ′, s′) > 0 implies that all
functions t satisfying ΦtransPr fulfill t(σ, s, σ′, s′) > 0. That is, transPr(σ, s, σ′, s′) > 0 implies
that ΦtransPr entails t(σ, s, σ′, s′) > 0, where t is considered as an ordinary first-order function
symbol. Due to the fact that ΦtransPr is equivalent to a set of implications of the form (6.12)
and (6.11), this means that there must be a finite sequence of implications

Ψ1(σ1, s, σ
′
1, s
′) ⊃ t(σ1, s, σ

′
1, s
′) > 0,

t(σ1, s, σ
′
1, s
′) > 0 ∧Ψ2(s, σ1, σ2, s

′, σ′1, σ
′
2) ⊃ t(σ2, s, σ

′
2, s
′) > 0,

...
t(σn−1, s, σ

′
n−1, s

′) > 0 ∧Ψn(s, σn−1, σn, s
′, σ′n−1, σn) ⊃ t(σn, s, σ′n, s′) > 0

such that every Ψi holds and σn = σ, σ′n = σ′. We are now about to prove the second part
of the proposition. The implication in the second part of the proposition is equivalent to the
following two implications:

(1) transPr(σ, s, σ′, s′) > 0 ∧ transPr(σ, s, σ′′, s′′) > 0 ∧ σ′ 6= σ′′ ⊃
s′ = do(tossHead, s) ∧ s′′ = do(tossTail, s) ∨ s′ = do(tossTail, s) ∧ s′′ = do(tossHead, s)

(2) transPr(σ, s, σ′, s′) > 0 ∧ transPr(σ, s, σ′′, s′′) > 0 ∧ s′ 6= s′′ ⊃
s′ = do(tossHead, s) ∧ s′′ = do(tossTail, s) ∨ s′ = do(tossTail, s) ∧ s′′ = do(tossHead, s).

114 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

We first show implication (1). As discussed above, transPr(σ, s, σ′, s′) > 0 implies that
there is a sequence of implications involving σi, σ′i, Ψi, i = 1, ..., n such that σ = σn and σ′ =
σ′n. Similarly, transPr(σ, s, σ′′, s′′) > 0 implies that there is another sequence of implications
involving δi, δ′i, Ξi, i = 1, ...,m such that σ = δm and σ′′ = δ′m. Without loss of generality,
let m ≥ n. Then there is a base case which says Ψ1(σ1, s, σ

′
1, s
′) ⊃ t(σ1, s, σ

′
1, s
′) > 0.

Furthermore, by σ′ 6= σ′′ and (6.13), we get σ1 = δm−n+1 and σ′1 6= δ′m−n+1 (per induction
on n). As the different implications for sequences, conditionals, concurrent execution and
procedures are mutually exclusive, Ψ1 and Ξm−n+1 must deal with the same (base) case, that
is n = m and the sequence involving δi, δ′i, Ξi starts with Ξ1(σ1, s, δ

′
1, s
′′) ⊃ t(σ1, s, δ

′
1, s
′′) > 0.

Ψ1 and Ξ1 cannot deal with primitive actions or tests, because δ′1 6= σ′1 holds by as-
sumption, Ψ1(σ1, s, σ

′
1, s
′) and Ξ1(σ1, s, δ

′
1, s
′′) must hold, and it is easy two verify that the

conditions Ψi for primitive actions or tests satisfy the following:

Ψi(σ1, s, σ
′
1, s
′) ∧Ψi(δ1, s, δ

′
1, s
′′) ∧ σ1 = δ1 ⊃ σ′1 = δ′1 = nil.

Thus, the two implication involving Ψ1 and Ξ1 must be prob implications. As by assumption
σ′1 6= δ′1, the implication involving Ψ1 must be an instance of the first implication for prob, and
the implication involving Ξ1 must be an instance of the second implication for prob, or vice
versa. Thus, finally, we get s′ = do(tossHead, s)∧ s′′ = do(tossTail, s) or s′ = do(tossTail, s)∧
s′′ = do(tossHead, s), and hence the implication (1).

Next, we show implication (2). By a similar argument as above, there must be two
sequences of implications involving σi, σ

′
i, Ψi respectively δi, δ

′
i, Ξi such that σ = δm = σn.

By (6.14), then, we get σ1 = δ1, and two conditions Ξ1(σ1, s, σ
′
1, s
′) and Ψ1(σ1, s, δ

′
1, s
′′) which

must both deal with the same base case. It is easy two verify that the conditions Ψi for
primitive actions or tests satisfy

Ψi(σ1, s, σ
′
1, s
′) ∧Ψi(σ1, s, δ

′
1, s
′′) ⊃ s′ = s′′ = s

and hence, by the assumption that s′ 6= s′′, Ψ1 and Ξ1 must belong to two prob implica-
tions. Thus, we get s′ = do(tossHead, s) ∧ s′′ = do(tossTail, s) or s′ = do(tossTail, s) ∧ s′′ =
do(tossHead, s), and hence the thesis. 2

The next proposition says that if c1, ..., cn is a sequence of configurations such that there
is a transition with positive weight from ci to ci+1, i = 1, ..., n − 1, then for any i, 1 ≤ i ≤ n
the situation component of ci is rooted in the situation component of c1, and similarly the
situation component of cn is rooted in the situation component of ci.

Proposition 14: Let AXtransPr be defined as above. Then for every model M of AXtransPr:

• If there exists a sequence σ1, s1, ..., σn, sn such that M |= transPr(σi, si, σi+1, si+1) > 0
for i = 1, ..., n− 1 then M |= s1 v si ∧ si v sn for i = 1, ..., n− 1;

• In particular, M |= transPr∗(σ, s, σ′, s′) > 0 ⊃ s v s′.

Proof: Part (1) follows by induction of n, using Proposition 13 if n > 1. Part (2) follows
from part(1) and Proposition 8 (page 100). 2

The next proposition says that if two configurations cn and c′ can both be reached (by a
sequence of transitions) from the same starting configuration c, and if the situation component
of cn can be obtained from the situation component of c′ by a finite number of actions, then

6.1. PGOLOG: A PROBABILISTIC GOLOG DIALECT 115

the sequence of transitions from c to c′ must be a prefix of the sequence of transitions from c
to cn.

Proposition 15: Let AXtransPr be defined as above. Then for every model M of AXtransPr

• M |= transPr∗(σ1, s1, σn, sn) > 0 ∧ transPr∗(σ1, s1, σ
′, s′) > 0 ∧ s′ < sn

implies that there exists a sequence σ1, s1, ..., σn, sn such that

• M |= transPr(σi, si, σi+1, si+1) > 0 for i = 1, ...n− 1, and

• there is a j, 1 ≤ j < n such that σ′ = σj , s
′ = sj.

Proof: By contradiction. By Proposition 8 (page 100) there is a sequence σ1, s1, ..., σn, sn
such that M |= transPr(σi, si, σi+1, si+1) > 0 for i = 1, ...n − 1. So assuming that the
implication does not hold means that there is no j, 1 ≤ j ≤ n such that σ′ = σj , s

′ = sj .
Again by Proposition 8 we can conclude that there is a second sequence σ′1, s

′
1, ..., σ

′
m, s

′
m

from s1, σ1 to s′, σ′. The sequence σ′i, s
′
i cannot be a superset of the sequence σi, si, be-

cause else we would get sn v s′ by Proposition 14; contradiction. Furthermore, the se-
quence σ′i, s

′
i must differ from the sequence σi, si, otherwise σ′ = σm, s

′ = sm. Let k be
the smallest index such that σk = σ′k and sk = s′k but σk+1 6= σ′k+1 or sk+1 6= s′k+1.
That is, M |= transPr(σk, sk, σk+1, sk+1) > 0 and M |= transPr(σk, sk, σ′k+1, s

′
k+1) > 0.

By Proposition 13 and the assumption ¬(σk+1 = σ′k+1 ∧ sk+1 = s′k+1), we get sk+1 =
do(tossHead, sk) ∧ s′k+1 = do(tossTail, sk) or vice versa. Thus, by Proposition 14 we get
do(tossHead, sk) v s′ and do(tossTail, sk) v sn, and hence the unique names axioms for situ-
ations imply ¬(s′ v sn). Contradiction. 2

Finally, the next proposition shows that doPr is well-defined:

Proposition 16: Let AXtransPr be defined as above. Then:

AXtransPr |= [transPr∗(σ, s, δ, s′) > 0 ∧ Final(δ, s′)∧
transPr∗(σ, s, δ′, s′) > 0 ∧ Final(δ′, s′)] ⊃ δ = δ′.

Proof: By contradiction. Assume that there is an interpretation M of AXtransPr and two
configurations 〈δ, s′〉 and 〈δ′, s′〉 such that δ 6= δ′ and M |= transPr∗(σ, s, δ, s′) > 0, M |=
transPr∗(σ, s, δ′, s′) > 0, M |= Final(δ, s′) and M |= Final(δ′, s′).

By Proposition 14, we get s v s′. Let us first consider the case where s′ = s. By
Proposition 8 we can conclude that there is a sequence of transitions seq from 〈σ, s〉 to 〈δ, s′〉
and another sequence seq′ from 〈σ, s〉 to 〈δ′, s′〉. Because s′ = s, these transitions do not
involve the execution of any new action, and in particular they do not involve any tossHead
or tossTail action. By Proposition 13, then, we get that either seq is a subsequence of seq′ or
vice versa. Without loss of generality, we assume seq ⊆ seq′. Furthermore, seq 6= seq′ because
of the assumption δ 6= δ′, hence there must be a transition with positive weight from 〈δ, s′〉
to a successor configuration. At the same time, 〈δ, s′〉 is assumed to be final. Contradiction
with Proposition 12.

Let us now turn to the case s < s′. Again, by Proposition 8 there is a sequence of
transitions σ1, s1, ..., σn, sn from 〈σ, s〉 to 〈δ, s′〉 and another sequence σ′1, s

′
1, ..., σ

′
m, s

′
m from

〈σ, s〉 to 〈δ′, s′〉. The two sequences must differ because δ 6= δ′. Furthermore, by a similar

116 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

argument as above, none of the two sequences is a proper subsequence of the other. Thus
the two sequences must differ at some point. Let k be the smallest index such that σk = σ′k
and sk = s′k but σk+1 6= σ′k+1 or sk+1 6= s′k+1. That is, M |= transPr(σk, sk, σk+1, sk+1) > 0
and M |= transPr(σk, sk, σ′k+1, s

′
k+1) > 0. By Proposition 13 and the assumption ¬(σk+1 =

σ′k+1 ∧ sk+1 = s′k+1), we get sk+1 = do(tossHead, sk) ∧ s′k+1 = do(tossTail, sk) or vice versa.
Thus, by Proposition 14 we get do(tossHead, sk) v s′ and do(tossTail, sk) v s′. Contradiction
with the unique names axioms for situations. 2

6.2 A Control Architecture for Acting under Uncertainty

In order to reason about the possible effects of high-level controllers operating in uncertain
domains, we have to adapt our model of the layered control architecture from Section 4.3.
In particular, we have to account for the robot’s uncertainty about the state of the world,
and for the fact that low-level processes have uncertain outcomes. In this section, we a) show
how to characterize the robot’s beliefs about the state of the world in a probabilistic fashion,
b) model noisy low-level processes by pGOLOG programs representing their different possible
outcomes, and c) show how to deal with sensor processes like inspect which provide information
about the state of the world, meaning that we integrate sensing into our architecture. The
changes required to deal with uncertainty in our overall control architecture are illustrated in
Figure 6.1.

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

controller
high-level reg(fork)

reg(inspect)

low-level

system
WORLD

process

process

1

n

...

UNCER-
TAINTYNOISESENSING

reply

send

Figure 6.1: A Robot Control Architecture for Acting under Uncertainty

6.2.1 The Probabilistic Epistemic State

Let us begin with the representation of the robot’s knowledge about the state of the world.
While the plain situation calculus allows us to talk only about the actual world, in particular
about the initial situation S0, in scenarios like the ship/reject example, there is uncertainty
about the initial situation. To deal with this uncertainty, we follow [BHL99] and characterize
the probabilistic epistemic state of the robot by a set of situations considered possible, and
the likelihood assigned to the different possibilities (cf. Section 3.3).

In our example, the robot initially considers two situations possible, s1 and s2, with
degree of likelihood 0.3 and 0.7, respectively. As these two situations are the only situations
considered possible, all other situations have likelihood 0. The following axiom makes this
precise together with what holds and does not hold in each of the two situations:

∃s1, s2∀s.s 6= s1 ∧ s 6= s2 ⊃ p(s, S0) = 0 ∧
p(s1, S0) = 0.3 ∧ p(s2, S0) = 0.7∧
FL(s1) ∧ BL(s1) ∧ ¬PA(s1) ∧ ¬PR(s1) ∧ ¬ER(s1)∧
¬FL(s2) ∧ ¬BL(s2) ∧ ¬PA(s2) ∧ ¬PR(s2) ∧ ¬ER(s2).

6.2. A CONTROL ARCHITECTURE FOR ACTING UNDER UNCERTAINTY 117

As described in Section 3.3.2, the term Bel(φ, s) is used to denote the agent’s degree of belief
that φ holds in situation s. (As usual, φ stands for a situation calculus formula where now is
used to refer to the situation under consideration.) Formally, Bel(φ, s) = p is an abbreviation
for the following term expressible in second-order logic:∑

s′:φ[s′]

p(s′, s)/
∑
s′

p(s′, s) = p.

Intuitively, Bel(φ, s) is the normalized sum of the weights of all situations s′ considered possible
in s that fulfill φ; in our example, Bel(FL, S0) is 0.3.

6.2.2 The Communication between the High-Level Controller and the Low-
Level Processes

Similar to Section 4.3.1, the communication between the high-level controller and the low-
level processes is achieved through the fluent reg and the primitive actions send and reply.
Arguably, there is no uncertainty about the value of the set of registers reg, i.e. the high-level
controller has perfect information about them. Therefore, we require that reg’s initial value
is reflected in all situations s′ considered possible in S0 (we will elaborate on the impact of
this assumption in Section 6.2.4):

p(s′, S0) > 0 ⊃ reg(id, s′) = reg(id, S0).

For reasons of efficiency, we use a slightly different scheme than that employed in the previous
chapter to represent the activation of the low-level processes. In Section 4.3.2, we made use
of reg(destRoom) and of an explicit test (reg(destRoom) 6= currentRoom)? in the model of
the navigation process to check whether the navigation process is activated. This activation
scheme could easily be extended to a set of low-level processes by making use of a particular
register rp for each low-level process p. While this activation scheme is fine as long as the
number of low-level processes involved is relatively small, it becomes expensive when the
number of low-level processes becomes larger. In particular, during projection of a plan, in
each simulated transition the projection mechanism has to evaluate each individual test.

To avoid this overhead, in this chapter we will proceed in a different manner. Instead
of making use of a particular register rp for each process p, we only use the special register
fork.4 The understanding is that whenever the high-level controller wants to activate a low-
level process p, it assigns reg(fork) the value p. For example, the high-level controller would
execute send(fork, paint) to tell the execution system to start the paint process. We remark
that this activation scheme corresponds to an execution system where the different low-level
processes are not continuously running, but instead are instantiated by the operating system
when the high-level controller activates them.

Sensing and Sensor Processes While the high-level controller makes use of send actions
to activate low-level processes, the low-level processes can execute reply actions to commu-
nicate with the high-level controller. In particular, the reply actions are used to provide
information about the state of the world. For example, after its activation the inspect pro-
cess will make use of physical sensors and appropriate pre-processing algorithms to estimate

4The term fork is an allusion to the procedure fork used in UNIX-like operating systems to create new
concurrent processes.

118 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

whether or not the widget is blemished, whereupon it will execute a reply(inspect,OK) or a
reply(inspect,OK) action.5 As a result, reg(inspect) is assigned the value OK respectively OK.
Thus, the reply actions are used to provide the high-level controller with an “OK” or “OK”
answer, i.e. with a (noisy) sensor reading.

We remark that the resulting view of sensing significantly differs from the well-known
sensing actions of Scherl and Levesque [SL93, Lev96]. To us, sensing means: activate a
special low-level process, which we sometimes call a sensor process. This “activation” has
as an effect a reply action, a “sensor reading”. We assume that every answer of a sensor
process is provided by means of an exogenous reply action. Furthermore, we assume that
the high-level controller is aware of all exogenous reply actions (as opposed to “actions” like
setPA which are solely used to model the effects of the low-level processes). In short, sensing
is thus realized by low-level processes which, after activation, cause an exogenous reply action
to occur. In Chapter 7, we will show how reply actions are used to update the robot’s belief
state, that is, how they affect the set of situations considered possible.

6.2.3 Modeling the Low-Level Processes

While during real execution the actual sensor processes provide reply answers, for the task
of projection we need a model specifying the possible ways the activation of a sensor process
may result in a reply action. For example, we need a model of inspect specifying that if
the widget is blemished then inspect will execute reply(inspect,OK) with probability 90%. As
mentioned in Section 6.1, we model all low-level processes by probabilistic pGOLOG programs.
Thereby, however, we restrict the primitive actions involved in the pGOLOG model of a low-
level process: we do not allow the use of send actions; see Appendix A.3.1 for the details.
Intuitively, this restriction reflects the fact that only the high-level controller may execute
send actions.

The following pGOLOG procedure simulates the effects of inspect, taking into account
that inspect is only perfect if the widget is not blemished, and that otherwise there is a 10%
probability to erroneously report OK although the widget is blemished. We assume that
inspect first operates a camera for 7 seconds to get an image of the widget, and thereafter
makes use of image processing routines which need another 3 seconds to provide an estimate.
The program makes use of the procedure waitTime discussed below to represent the temporal
extent of the low-level process:

proc(inspectProc, [waitTime(7),
if(PR,setER,

if(BL,[waitTime(3), prob(0.9,reply(inspect,OK),
reply(inspect,OK))],

[waitTime(3), reply(inspect,OK)]))]).

Intuitively waitTime(n) waits for n seconds, that is, it remains blocked until start has increased
by n. The following is a simple realization of waitTime(n); at the end of this paragraph, we
will see a more elegant definition of waitTime(n). We assume a continuous fluent clock, which
intuitively represents the actual time. Besides clock, we assume a functional fluent timer,
which is set to the actual time by the primitive action setTimer and remains unmodified else.
Formally:

5We remark that here OK and OK are ordinary terms, not logical formulas. We could as well use the terms
1 and 0.

6.2. A CONTROL ARCHITECTURE FOR ACTING UNDER UNCERTAINTY 119

proc(waitTime(n), [setTimer,waitFor(clock ≥ timer + n)]);

Poss(a, s) ⊃ timer(do(a, s)) = t ≡ a = setTimer ∧ start(s) = t∨
a 6= setTimer ∧ timer(s) = t;

Poss(setTimer, s) ≡ True;

clock(S0) = linear(0, 1, 0) and Poss(a, s) ⊃ clock(do(a, s)) = clock(s).6

We remark that the conditional in inspectProc is evaluated 7 seconds after the activation of
the process, reflecting the fact that the last 3 seconds are merely needed for the execution of
image processing routines. Again, we stress that not all pGOLOG programs are meant to be
actually executed. In fact, given the robot’s uncertainty about the value of a fluent like BL
it is unclear how the high-level controller should execute a pGOLOG program like inspectProc
(similarly, the pGOLOG program paintProc cannot be executed by the high-level controller
because it cannot directly execute actions like setPA). pGOLOG programs like the above are
only used to reason about the effects of low-level processes; during real execution, the actual
low-level processes are activated.

Next, let us model the other low-level processes. The following model of the paint process,
which replaces the simpler one from Section 6.1, distinguishes two distinct steps: first, the
widget is undercoated (UC), after which it is painted (PA). We assume that a possible blemish
is removed immediately after activation of paint, and that after 10 seconds the widget is
undercoated. After 30 seconds, the widget becomes painted with probability 95%. Finally,
paint confirms completion by means of a reply(painted,>) action:7

proc(paintProc, [clipBL,waitTime(10), if(PR, setER, setUC),
waitTime(20), if(PR, setER, prob(0.95, setPA)), reply(painted,>)]).

Similarly, we model the remaining low-level processes ship and reject, accounting for their
duration. The following two programs state that both ship and reject take 10 seconds to
complete execution, whereupon they confirm completion by means of a reply(processed,>)
action. Unlike paint, the low-level processes ship and reject have no uncertain outcomes,
which means that we can specify their behavior without making use of prob instructions.
However, ship and reject have conditional effects: if the widget is flawed, the execution of ship
results in an error, and, vice versa, if it is not flawed, reject causes an error:

proc(shipProc, [waitTime(10), if(PR ∨ FL, setER), setPR, reply(processed,>)]);

proc(rejectProc, [waitTime(10), if(PR ∨ ¬FL, setER), setPR, reply(processed,>)]).

Aside - A More General Definition of waitTime As defined above, the procedure
waitTime suffers from the drawback that it depends on the fact that no concurrent program
affects the value of timer. This assumption is problematic for example if many programs
modeling low-level processes are running concurrently. The following is a more general def-
inition of waitTime which does not rely on the use of a fluent to memorize the time where
it was activated. In the remainder of this thesis, whenever we write waitTime(n) we refer to
the following definition:

6Note that this ensures val(clock(s), t) = t.
7Strictly speaking, paint is thus also a sensor process: the reply(painted,>) action informs the high-level

controller that the painting is completed.

120 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

proc(waitTime(n),waitUntil(start(now) + n));

proc(waitUntil(t), [True?,waitFor(clock ≥ t)]).

The new procedure waitTime(n) is realized by a call to waitUntil with start(now) + n as
argument. waitUntil(t) simply waits until time t, using the continuous fluent clock introduced
above. The reason why we need the dummy test True? in waitUntil is quite subtle; the test
is needed to ensure that the term start(now) in the procedure call waitUntil(start(now) + n)
is evaluated as soon as possible even if other programs are running concurrently. That is,
the dummy test ensures that start(now) is evaluated as soon as the procedure waitTime(n) is
called. To see why the dummy test True? is needed, let us consider the following program:

{proc(waitUntilnaive(t),waitFor(clock ≥ t));
withPol(waitFor(clock ≥ 5),waitUntilnaive(start(now) + 10))}.

An execution of the above program in situation S0, assuming start(S0) = 0, would result in
do([waitFor(clock ≥ 5),waitFor(clock ≥ 5 + 10)], S0), i.e. in a situation with starting time 15
instead of 10! The reason is that the term start(now) in the low-priority branch is actually
re-evaluated after execution of the first waitFor action. The dummy test True? in the body
of waitUntil is used to avoid a similarly delayed evaluation of start(now) if waitTime is called.
This trick depends on the transition semantics of cc-Golog regarding procedure invocation (see
Sections 4.2.1 and 3.2.3). The dummy test ensures that the execution of the procedure body
of waitUntil starts as soon as possible, resulting in a transition to a new configuration which
has the same situation component and a remaining program where start(now) has already
been evaluated at transition time.

The Overall Low-Level Execution System Given a characterization of every low-level
process in terms of a pGOLOG program, we can characterize the behavior of the whole exe-
cution level by a single pGOLOG program. This program models the runtime-system of the
robot, that is of the robot’s operating system or “kernel process”, which ensures that a send
action results in the activation of the corresponding low-level process:

proc(kernelProc, [reg(fork) 6= nil?,
if(reg(fork) = inspect, [reply(fork, nil),withPol(inspectProc, kernelProc)],

if(reg(fork) = paint, [reply(fork, nil),withPol(paintProc, kernelProc)],
if(reg(fork) = ship, [reply(fork, nil),withPol(shipProc, kernelProc)],

if(reg(fork) = reject, [reply(fork, nil),withPol(rejectProc, kernelProc)],
[reply(fork, nil), kernelProc]))))]).

As long as reg(fork) is nil, nothing happens. If reg(fork) is assigned the name of a low-
level process, then reg(fork) is reset to nil, and the low-level process is run concurrently to the
operating system’s kernel process. In Section 7.2 (page 152), we will see that this activation
scheme is also suited for the activation of low-level processes involving arguments (like the
navigation process). We remark that similar to the procedure navProc used as a model of the
low-level processes in the previous chapters (see page 72), kernelProc will run forever.

As an aside, we remark that we could as well stick to the activation scheme corresponding
to the view where all processes are continuously active. In this case, we could use something
like the following program as a model of the overall low-level execution system:

6.2. A CONTROL ARCHITECTURE FOR ACTING UNDER UNCERTAINTY 121

conc(forever([reg(paint) = nil?, reply(paint, nil), paintProc]),
forever([reg(inspect) = nil?, reply(inspect, nil), inspectProc]),
forever([reg(ship) = nil?, reply(ship, nil), shipProc]),
forever([reg(reject) = nil?, reply(reject, nil), rejectProc])).

Note that the actual priority ordering of the different programs is arbitrary.

6.2.4 High-Level Plans and Directly Observable Fluents

While in ConGolog and cc-Golog plans the execution of actions is conditioned on the value of
fluents which are either true or false, in a probabilistic setting the high-level controller has
merely beliefs about the value of fluents. For example, in our example the robot initially
believes that FL holds with probability 30%. As a result, in our probabilistic framework we
no longer consider high-level plans whose tests appeal to the value of fluents, but instead
consider belief-based plans which appeal to the robot’s beliefs at execution time.8

In particular, we only consider programs written in a variant of pGOLOG which we call
bGOLOG as legal high-level plans. bGOLOG programs are non-probabilistic and may only
appeal to the robot’s beliefs, that is to the term Bel which is a reified version of the fluent
Bel (cf. Section 3.3.2) with situation argument suppressed. Similarly, a legal bGOLOG plan
may not appeal to functional fluents in primitive actions or procedure calls (we will relax
this assumption in Section 7.3.1). Furthermore, a bGOLOG plan may not include waitFor(τ)
actions, because their execution appeals to the least time point of τ , and the robot is not
guaranteed to know about it (we will elaborate on this assumption in Section 7.3.1). Finally,
as we assume that the high-level controller cannot directly affect the state of the world (cf.
Figure 6.1), we only consider bGOLOG programs as legal high-level plans if they do not
execute any action which affects a fluent used to describe the state of the world (as opposed
to a fluent like reg used to describe the state of the high-level controller). For simplicity, we
restrict the primitive actions which may occur in a high-level bGOLOG plan to send actions.
See Appendix A.3.2 for a thorough treatment of these issues, including the reification of Bel as
first-order term. As the examples in the remainder of this chapter illustrate, these restrictions
are not as severe as they may seem.

As a simple example, the following bGOLOG plan activates both inspect and paint, waits
for their completion and finally processes the widget according to the result of inspect:

Πbb
.= [send(fork, inspect),Bel(reg(inspect) 6= nil) = 1?,

send(fork, paint),Bel(reg(painted) 6= nil) = 1?,
if(Bel(reg(inspect) = OK) = 1, send(fork, ship), send(fork, reject)),
Bel(reg(processed) 6= nil) = 1?].

The test Bel(reg(inspect) 6= nil) = 1? can be used to verify that inspect has executed a reply
action due to the fact that initially all registers have the value nil.9 Thus, the value of
reg(inspect) only changes from nil to a new value (i.e. OK or OK) when inspect executes a
reply(inspect,OK/OK) action, and as the high-level controller is aware of all reply actions (cf.

8This is similar to Reiter’s notion of knowledge-based programming [Rei00]. However, we remark that here
we are dealing with degrees of belief.

9Note that actually Bel(reg(inspect) 6= nil) = 1? is an abbreviation for Bel(reg(inspect,now) 6= nil) = 1?.

122 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

Section 6.2.2), its belief in reg(inspect) 6= nil rises to 1 right after the completion of inspect.10

Similarly for the other epistemic tests.
Note that the above plan only appeals to the robot’s beliefs concerning the value of the

fluent reg. Furthermore, the robot’s beliefs are only compared with the values 1 and 0,
meaning that the above plan does not really appeal to probabilistic, real-valued beliefs. This
is no coincidence. In fact, in this chapter we will only consider pseudo-belief-based plans whose
tests and conditionals only appeal to the robot’s beliefs concerning the set of registers reg.
That is, while in general bGOLOG plans can also appeal to the robot’s real-valued beliefs
concerning other fluents, in this chapter we do not consider programs like the following:11

Πforbidden
.= [send(fork, inspect),Bel(FL) 6= 0.3?,

send(fork, paint),Bel(PA) > 0?,
if(Bel(FL < 0.5, send(fork, ship), send(fork, reject)),
Bel(PR) = 1?].

The reason why in this chapter we only consider epistemic tests appealing to the robot’s beliefs
concerning the set of registers reg is that in order to determine the belief in arbitrary sentences
we need a successor state axiom for the fluent p, specifying how the robot’s beliefs evolve over
time. However, the specification of such a successor state axiom is quite complicated, and
we will postpone it to the next chapter (we will consider general belief-based programs in
Section 7.3.1). On the other hand, as we will see, it is straightforward to determine the
robot’s beliefs concerning the fluent reg.

Intuitively, the robot always has perfect information about the value of reg, because it
is aware of all actions that affect its truth value, namely of all send and reply actions. As
there is no uncertainty about the value of reg, we distinguish reg from other fluents and call
it directly observable. Directly observable fluents are such that the agent always has perfect
information about them - like the display of one’s watch or a fuel gauge in the car. Formally,
directly observables are defined as follows:

Definition 17 (Directly Observable Fluents) Let Γ be a situation calculus theory includ-
ing a characterization of an agent’s epistemic state in terms of the fluent p (see Section 3.3).
We call a relational fluent F directly observable with respect to Γ if and only if the following
holds:

Γ |= [S0 � s ∧ p(s′, s) > 0] ⊃ F (~x, s′) ≡ F (~x, s).

Similarly, we call a functional fluent f directly observable if and only if

Γ |= S0 � s ∧ p(s′, s) > 0 ⊃ f(~x, s′) = f(~x, s).

The following proposition, which follows directly from the definition of Bel, ensures that
we do not have to worry about the fluent p to determine the robot’s beliefs concerning the
value of directly observable fluents.

Proposition 18:
Let Γ be a situation calculus theory including a characterization of an agent’s epistemic

state in terms of the fluent p, and F a directly observable fluent with respect to Γ. Then:
10We remark that so far, this claim is only supported by our intuition, as we have not yet presented a

successor state axiom for p, specifying how the robot’s beliefs evolve over time.
11We remark that in the ship/reject domain Πforbidden specifies the same behavior as Πbb.

6.3. PROBABILISTIC PROJECTION IN PGOLOG 123

Γ |= S0 � s ⊃ [Bel(F (~x), s) = 1 ∧ F (~x, s) ∨ Bel(F (~x), s) = 0 ∧ ¬F (~x, s)]

Proof: (Outline) In calculating Bel(F (~x), s), it is sufficent to consider the situations s′ with
positive weight, that is Bel(F (~x), s) =

∑
{s′:F (~x,s′)∧p(s′,s)>0} p(s

′, s)/
∑
{s′:p(s′,s)>0} p(s

′, s). Fur-
thermore, F is directly observable, hence S0 � s ⊃ [p(s′, s) > 0 ⊃ F (~x, s′) ≡ F (~x, s)]. Thus,

S0 � s ⊃ Bel(F (~x, s) = p ≡
∑
{s′:F (~x,s′)∧p(s′,s)>0} p(s

′, s)∑
{s′:p(s′,s)>0} p(s′, s)

= p

is equivalent to the following expression, where s′ is replaced by s in the condition F (~x, s):

S0 � s ⊃ Bel(F (~x, s) = p ≡
∑
{s′:F (~x,s)∧p(s′,s)>0} p(s

′, s)∑
{s′:p(s′,s)>0} p(s′, s)

= p

and thus to

S0 � s ⊃ Bel(F (~x, s) = p ≡ [F (~x, s) ∧
∑
{s′:p(s′,s)>0} p(s

′, s)∑
{s′:p(s′,s)>0} p(s′, s)

= p ∨ ¬F (~x, s) ∧ p = 0],

which is equivalent to S0 � s ⊃ Bel(F (~x, s) = p ≡ [F (~x, s)∧ p = 1∨¬F (~x, s)∧ p = 0]. Hence,
the proposition holds. 2

As we have already discussed in Section 6.2.2, in our model of the overall control architec-
ture there is no uncertainty about the initial value of reg. Furthermore, we have required that
its initial value is reflected in S0 (cf. Section 6.2.2). This, together with the facts that reg
changes its value only as a result of the primitive actions send and reply and that we assume
that the high-level controller is aware of all send and reply actions, implies that in our overall
control architecture the fluent reg is directly observable. (As we do not provide a successor
state axiom for the fluent p in this chapter, we have to postpone a formal proof of this claim
to Section 7.1.5, Proposition 25.)

Thus, for the execution of pseudo-belief-based plans that only appeal to the robot’s beliefs
concerning the set of registers reg, we do not need to consider the fluent p and the set of
situations considered possible. The whole reasoning can be based solely on the actual state
of the world, as we do not have to distinguish between the value of the fluent reg and robot’s
beliefs about reg. In particular, this means that we do not have to worry about the robot’s
epistemic state during the actual execution of a bGOLOG plan appealing only to the robot’s
beliefs concerning reg.12 We remark that as a result, in our framework directly observable
fluents play a similar role as the program variables used in robot programming languages like
RPL.

6.3 Probabilistic Projection in pGOLOG

Now that we have introduced pGOLOG and have presented our extended control architecture
for acting and reasoning under uncertainty, we can turn to the probabilistic projection of a
bGOLOG plan: How probable, from the point of view of a robot with a probabilistic belief
state, is it that a sentence φ will hold after the execution of the bGOLOG plan σ in situation
s, given a faithful characterization of the low-level execution system in terms of a pGOLOG
program?

12This is unlike [Lak99], which makes use of the special term Kwhether to ensure that the truth value of
fluents tested within a plan are known at execution time.

124 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

6.3.1 Projected Belief

To determine the projected belief that a sentence φ will hold after execution of a bGOLOG
plan σ in situation s, we have to simulate the concurrent execution of the plan σ and the
pGOLOG model of the low-level processes, similar to Section 4.3.3. We have already seen in
Section 6.1.2 that the execution of a probabilistic pGOLOG program may result in different
execution traces, which all have to be considered to determine the probability that a sentence
holds afterwards. However, in Section 6.1.2 we only considered the execution of a plan in
one specific situation. Here, we are dealing with a probabilistic epistemic state represented
by a set of possible situations. For example, in the ship/reject domain our robot initially
considers two situations s1 and s2 possible (cf. Section 6.2.1). In order to correctly determine
the projected belief in φ, we thus have to simulate the execution of σ (which may result
in different execution traces) in every situation s′ considered possible in s, weighted by the
likelihood of s′ in s as specified by p(s′, s).

We are now ready for the formal definition of projected belief. Let φ be a formula whose
only term of sort situation is the special situation term now , s a situation, llmodel a model
of the low-level processes (for example kernelProc), and σ a bGOLOG program. We write
PBel(φ, s, σ, llmodel) to denote the agent’s belief that φ holds after the execution of σ in
situation s. PBel(φ, s, σ, llmodel) = p is an abbreviation for the following term expressible in
second-order logic:∑

s′,s∗:φ[s∗] p(s
′, s) ∗ doPr(withPol(llmodel, σ), s′, s∗)∑

s′ p(s′, s)
= p.

As usual, φ[s∗] denotes the formula obtained by substituting the situation variable s∗ for all
occurrences of now in fluents appearing in φ. PBel(φ, s, σ, llmodel) is thus defined to be the
weight of all paths that reach a final configuration 〈δ∗, s∗〉 where φ[s∗] holds, starting from
a configuration 〈withPol(llmodel, σ), s′〉, weighted by the robot’s belief in s′. Note that the
low-level processes are taken into account by concurrently executing llmodel. As usual, we will
leave out the now argument when no confusion arises.

In order to correctly project bGOLOG plans appealing to the robot’s beliefs, we assume
that the accessibility relation defined by the fluent p is Euclidean, meaning that for any legal
situation s and any situation s′ considered possible in s, s and s′ agree on the set of situation
considered possible. Formally, we require the following axiom:13

S0 � s ∧ p(s′, s) > 0 ∧ p(s′′, s) = p ⊃ p(s′′, s′) = p.

We remark that there are configurations 〈σ, s〉 such that PBel(True, s, σ, llmodel) < 1. This
is due to the fact that (probabilistic branches of) the program withPol(llmodel, σ) may never
become final. For example, the agent’s projected belief that True? holds after the execution
of a program which results in the simulation of a program like prob(0.5,False?,True?) is
merely 50%. Possibly PBel may be better read as “the probability that σ ends and that
thereafter φ holds”.

6.3.2 Examples

To illustrate our definition of PBel, we will now consider probabilistic projections of some
simple plans in the ship/reject domain.

13We remark that so far we have not defined a successor state axiom for p. We will reconsider the assumption
that p is Euclidean in Section 7.1.5, where we specify how p evolves from one situation to another.

6.3. PROBABILISTIC PROJECTION IN PGOLOG 125

A simple plan We begin with the simple plan Πrobby1, which activates the paint process,
and ships the widget after paint has finished execution. For readability, we use processed as
a shorthand for Bel(reg(processed) = >) = 1, painted as a shorthand for Bel(reg(painted) =
>) = 1, forkInspect as a shorthand for send(fork, inspect), and similarly for forkPaint, forkShip
and forkInspect:

Πrobby1
.= [forkPaint, painted?, forkShip, processed?].

We will now calculate the robot’s projected belief that the widget is painted, processed and
that no execution error has occurred after the execution of Πrobby1 in S0, using kernelProc
as the model of the low-level processes. Let AXpGolog be the set of axioms AXtransPr (cf.
Proposition 11) together with the set of axioms AXarch and the definition of doPr. Fur-
thermore, let Γ be the set of axioms AXpGolog together with successor state axioms for the
fluents PA, PR, ER, FL and BL, val axioms for the t-functions (in our example scenario,
we only need the t-function linear), axioms for the continuous fluent clock, precondition ax-
ioms stating that all set and clip actions are always possible, the axiom from Section 6.2.1
specifying the initial belief state, the above axiom stating that p is Euclidean, and the facts
S0 � s ⊃ [Bel(reg(id) = val), s) = 1 ≡ reg(id, s) = val], stating that reg is directly observable,
and reg(id, S0) = nil, our usual convention that initially all registers have value nil. Then, it
is possible to show:

Γ |= PBel(PA ∧ PR ∧ ¬ER, S0,Πrobby1, kernelProc) = 0.665.

Note that although Γ does not include a successor state axiom for p, we can simulate the
execution of bGOLOG plans like Πrobby1, appealing only to the robot’s beliefs with respect
to reg, because reg is directly observable. The projected belief is determined as follows: if
the world is as described by s1 (cf. Section 6.2.1), that is if the widget is flawed, then the
execution of ship will result in an error, and the overall plan will fail regardless of the outcome
of paint. On the other hand, if the world is as described by s2, the widget will be processed
correctly. However, there is a 5% probability that the paint process will not make PA true.
Given that the initial probability of s2 is 0.7, this results in a total success probability of
0.7 ∗ 0.95 = 0.665.

In fact, we can deduce that the concurrent execution of kernelProc and Πrobby1, starting
in a situation s′ considered possible in S0, can result in one of four possible execution traces
s∗. In the following formula, we write waitFor(t) as an abbreviation for waitFor(clock ≥ t).
To facilitate the readability, we have underlined actions executed by the high-level controller:

Γ |= p(s′, S0) > 0 ∧ doPr(withPol(kernelProc,Πrobby1), s′, s∗) > 0 ≡
∃s′0.[s∗ = do([send(fork, paint), reply(fork, nil), clipBL,waitFor(10), setUC,

waitFor(30), tossHead, setPA, reply(painted,>), send(fork, ship),
reply(fork, nil),waitFor(40), setER, setPR, reply(processed,>)], s′0)∨

s∗ = do([send(fork, paint), reply(fork, nil), clipBL,waitFor(10), setUC,
waitFor(30), tossTail, reply(painted,>), send(fork, ship),
reply(fork, nil),waitFor(40), setER, setPR, reply(processed,>)], s′0)∨

s∗ = do([send(fork, paint), reply(fork, nil), clipBL,waitFor(10), setUC,
waitFor(30), tossHead, setPA, reply(painted,>), send(fork, ship),
reply(fork, nil),waitFor(40), setPR, reply(processed,>)], s′0)∨

s∗ = do([send(fork, paint), reply(fork, nil), clipBL,waitFor(10), setUC,

126 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

waitFor(30), tossTail, reply(painted,>), send(fork, ship),
reply(fork, nil),waitFor(40), setPR, reply(processed,>)], s′0)].

Proof: Similar to the proof in Section 6.1.2, this is straightforward but laborious. We only
give an intuitive sketch. Besides, we remark that the above execution traces were also obtained
by running the pGOLOG interpreter from Section 8.3 on the example (as well as on the other
examples in this chapter).

The first two disjuncts represent the possible execution traces if the world is as described
by s1; the last two represent the possible execution traces if the world is as described by s2.
We will only consider the first two execution traces. They both start with a send(fork, paint)
action executed by Πrobby1. This action has the effect of unblocking kernelProc, which first
executes reply(fork, nil) and then invokes the procedure paintProc. paintProc’s first action is
clipBL. Thereafter, it waits for 10 seconds. During this time, the high-level plan is blocked,
because it is waiting for Bel(reg(painted) = >) = 1 to become true. After waiting 10 seconds,
paintProc (or rather what remains of it) resumes execution. PR does not hold, so it executes
setUC, and then waits for another 20 seconds. Thereafter, it executes the prob instruction.
Recall that the two probabilistic branches represent, respectively, the case where the paint
process successfully causes the widget to be painted, or fails. If the first branch if taken, this
results in the execution of setPA. Thereafter, the paint process executes reply(painted,>) and
finishes execution. This case corresponds to the first disjunct in the above statement. If the
other branch is taken, the paint process immediately executes reply(painted,>). This case
corresponds to the second disjunct in the above axiom.

From here, the two execution traces (the first and second disjunct) evolve alike. The
reply(painted,>) action unblocks the high-level plan, which then executes send(fork, ship). As
before, this action unblocks kernelProc, which first executes reply(fork, nil) and then invokes
the procedure shipProc. The high-level plan is blocked, waiting for Bel(reg(processed) = >)
to become 1, and thus shipProc first executes waitTime(10). Thereafter, it executes the
conditional if(PR ∨ FL, setER). FL holds (recall that we consider the execution traces that
result if the world is as described by s1), and thus the pGOLOG model of ship executes setER.
Finally, it executes setPR and reply(processed,>), which unblocks the high-level plan and
completes the execution.

The last two disjunct can be obtained analogously. Note that they do not include setER
actions because they represent the possible execution traces if the world is as described by
s2, meaning that FL does not hold. 2

We remark that the test processed? at the end of Πrobby1 is necessary to obtain correct
results. In fact, the projection of [forkPaint, painted?, forkShip] results in the widget being
processed with probability 0, because the condition PR is tested right after the activation of
ship, without waiting for its completion.

A Sensing Plan Next, we will project the very simple sensing plan Πrobby2 which activates
the inspect process and waits until inspect provides an answer. We write inspected as a
shorthand for Bel(reg(inspect) 6= nil) = 1:

Πrobby2
.= [forkInspect, inspected?].

6.3. PROBABILISTIC PROJECTION IN PGOLOG 127

Let us consider the projected belief in FL after the execution of this plan. Let Γ be defined
as above. Then one can deduce:

Γ |= PBel(FL, S0,Πrobby2, kernelProc) = 0.3.

The projected uncertainty in the widget being flawed does not differ from the uncertainty
in S0! Although this might at first come as a surprise, it is indeed the only possible result,
because the projection of a sensing action can by no means sharpen the robot’s belief state (the
actual execution, of course, can do so because it provides an actual observation). Actually,
the effect of inspect is to modify the value of reg(inspect), making it an estimate for the value
of BL. This effect is reflected in the projected belief state:

Γ |= p(s′, S0) > 0 ∧ doPr(withPol(kernelProc,Πrobby2), s′, s∗) = p ∧ p > 0 ≡
BL(s∗) ∧ reg(inspect, s∗) = OK ∧ p = 0.3 ∗ 0.9∨
BL(s∗) ∧ reg(inspect, s∗) = OK ∧ p = 0.3 ∗ 0.1∨
¬BL(s∗) ∧ reg(inspect, s∗) = OK ∧ p = 0.7.

Proof: (Outline) In all execution traces, Πrobby2 executes send(fork, inspect) which activates
inspectProc, the model of the inspect process. The first two execution traces s∗ charac-
terized above correspond to the case where the world is as described by s1, meaning that
both FL and BL holds. In this case, inspectProc can either execute a reply(inspect,OK) or a
reply(inspect,OK), with probability 90% respectively 10%. As the probability that the world
is as in s1 is 30%, the respective weight of the two execution traces if 0.3*0.9 respectively
0.3*0.1. Finally, the last execution trace corresponds to the case where the world is as de-
scribed by s2. The probability that the world is as in s1 is 70%, and there is only one possible
execution of inspectProc, which involves a reply(inspect,OK) action. This execution trace has
probability 0.7*1.0. 2

As we can see, there is a correlation between the value of reg(inspect) and the truth value
of BL. In particular, we can deduce that the directly observable fluent reg(inspect) is a correct
estimate of the value of BL with probability 97%:

Γ |= PBel([BL ≡ (reg(inspect) = OK)], S0,Πrobby2, kernelProc) = 0.97.

Roughly, this is because there is only one possible execution trace s∗ where [BL(s∗) ≡
(reg(inspect, s∗) = OK)] does not hold, and this situation is quite unlikely: it has only proba-
bility 0.3*0.1.

A Conditional Plan The above result suggests that a conditional plan branching on the
value of reg(inspect), or, more exactly, on the robot’s beliefs regarding reg(inspect), can achieve
a higher probability to correctly process the widget than the unconditional plan Πrobby1. As an
example, the following example plan Πrobby3 combines sensing with the conditional activation
of ship respectively reject in order to achieve PR ∧ ¬ER. We write OK as a a shorthand for
Bel(reg(inspect) = OK)) = 1:

Πrobby3
.= [forkInspect, inspected?, if(OK, forkShip, forkReject), processed?].

From Γ, we can deduce that this conditional plan has a higher probability to achieve PR∧¬ER
than the non-conditional plan Πrobby1:

Γ |=PBel(PR ∧ ¬ER, S0,Πrobby3, kernelProc) = 0.97∧
PBel(PR ∧ ¬ER, S0,Πrobby1, kernelProc) = 0.7.

128 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

The reason for the superiority of the conditional plan is the correlation of (reg(inspect) = OK)
and FL after execution of inspect.

A solution to the example problem We end this section with the projection of a con-
ditional plan that represents a reasonable solution to the ship/reject example. This plan,
Πrobby4, is similar to the above plan Πrobby3 but additionally activates the paint process be-
fore branching on reg(inspect). We remark that the following plan Πrobby4 coincides with the
example plan Πbb from Section 6.2.4:

Πrobby4
.= [forkInspect, inspected?, forkPaint, painted?

if(OK, forkShip, forkReject), processed?].

This plan has a probability of 92.15 % to achieve the goal to paint and correctly process the
widget:

Γ |= PBel(PA ∧ PR ∧ ¬ER, S0,Πrobby4) = 0.9215.

6.3.3 Probabilistic Projection and Expected Utility

So far, we have only considered the question “how probable is it that a sentence φ will hold
after the execution of the plan σ”. In examples like the ship/reject domain where a robot
is to fulfill a given goal with a certain probability, this is all there is to answer. In other
settings, however, a robot is often concerned with the goal to maximize the expected utility
of its behavior, a common notion in utility theory and decision theory (cf. [RN95]). Here
the idea is that the agent is given a real valued, bounded reward function which assigns a
specific reward to every state or situation, and has the goal to maximizes the expected total
accumulated reward over some horizon of interest. The key difference compared to the issues
we considered so far is that the quality of a possible plan is determined by its expected reward,
rather than by its probability to achieve a sentence φ.

It turns out that the concepts of utility theory can easily be integrated into our framework.
To illustrate how expected utility can be dealt with in our framework, we follow [BRST00] and
make use of the functional fluent reward(do(a, s)) of sort Real that asserts costs and rewards
to each situation as a function of the action taken, properties of the current situation, or
both. For example, we might assert that each activation of paint and inspect causes costs of
1 unit, shipping a widget which is painted and not flawed provides a reward of 10 units, but
erroneously shipping a widget which is flawed or not painted causes a cost of 20 units:

• reward(do(send(fork, inspect), s)) = −1

• reward(do(send(fork, paint), s)) = −1

• reward(do(send(fork, ship), s)) = if ¬FL(s) ∧ PA(s) then 10 else − 20.

We assume that all other actions result in reward 0. In order to calculate the total utility of
a possible execution trace, we then define the functional fluent U of sort Real which has value
0 in all initial situations, and which changes its value as a result of the execution of primitive
actions:

∀s′.p(s′, S0) > 0 ⊃ U(s′) = 0;

Poss(a) ⊃ [U(do(a, s)) = u ≡ U(s) = u′ ∧ reward(do(a, s)) = r ∧ u = u′ + r].

6.4. DISCUSSION 129

EU(σ, s, llmodel), the expected utility of the plan σ in situation s given llmodel as model of
the low-level processes, is then defined as the weighted average of the value of U in all
possible execution traces resulting from the execution of σ in s. Formally, the expression
u = EU(σ, s, llmodel) is an abbreviation for the following formula expressible in second-order
logic:14

u =
∑
x

x ∗ PBel(U(now) = x, s, σ, llmodel).

Note the use of PBel in the definition EU. As an example, let us determine the expected utility
of the plan Πrobby4 from Section 6.3.2. Let Γ be the set of axioms AXpGolog from Section 6.1.2
together with successor state axioms for the fluents PA, PR, ER, FL and BL, val axioms for
the t-functions, axioms for the continuous fluent clock, precondition axioms stating that all
set and clip actions are always possible, the axiom from Section 6.2.1 specifying the initial
belief state and finally appropriate axioms for the functions reward and U sketched above.
Then, it is possible to show:

Γ |= EU(Πrobby4, S0, kernelProc) = 3.35.

The expected utility is determined as follows: in any case, paint and inspect are activated
once, causing a total cost of 2 units. The probability to ship a widget which is not flawed
and painted is 70% ∗ 95%. The probability to ship a widget which is not flawed but neither
painted is 70%∗5%. Finally, the probability to erroneously ship a flawed widget is 30%∗10%.
The total expected utility is thus −1−1 + 10∗0.7∗0.95−20∗0.7∗0.05−20∗0.3∗0.1 = 3.35.

6.4 Discussion

Summarizing, we have proposed pGOLOG, a probabilistic extension of GOLOG, as a modeling
language for noisy low-level processes. Then, we have shown how to extend the control
architecture from Section 4.3 to account for the robot’s uncertainty about the state of the
world. Next, we have introduced sensor processes as a means to handle sensing within this
architecture, and have shown how pGOLOG can be used to model all low-level processes
involved. Thereafter, we have defined bGOLOG plans, and have introduced the notion of
directly observable fluents. In bGOLOG plans, directly observable fluents play a role similar
to program variable in ordinary programming languages. Next, we have provided a projection
mechanism that allows us to assess the probability that a sentence will hold after the execution
of a bGOLOG plan. The integration of uncertainty and sensing in our framework allows us
to formally verify the superiority of conditional, sensing plans over simple sequential plans.
Finally, we have sketched the relation between projection and expected utility.

Before we compare pGOLOG with some related approaches, we make a note on pGOLOG’s
relation to nondeterminism. Unlike in ConGolog, dealing with nondeterministic instructions
like (σ1|σ2) (nondeterministic choice) or πx.σ (nondeterministic choice of argument) is prob-
lematic in pGOLOG. This is due to the fact that both nondeterministic instructions and proba-
bilistic prob instructions can result in multiple possible successor configurations. In particular,
the semantics of ConGolog’s nondeterministic instructions is defined by means of Trans axioms
which specify more than one successor configuration. Similarly, pGOLOG’s transPr definition

14In utility theory, it is quite common to accumulate the rewards only up to a finite time horizon. We remark
that within our framework this could be realized similarly to the definition of the limited lookahead construct
of Section 5.2.2.

130 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

concerning prob also specifies two possible successors, but additionally assigns a weight to the
different possible successors. The problem is that nondeterministic ConGolog and pGOLOG
use the feature of multiple possible outcomes for different purposes. In the probabilistic case,
the different outcomes of a prob instruction have specific probabilities, and these probabilities
are used during probabilistic projection where the weights of different branches are summed
up. On the other hand, in the nondeterministic case the different outcomes are not associated
a weight, and the interpreter is not counting different outcomes but is just looking for a suc-
cessful execution trace. It is not clear how to handle both kind of nondeterministic outcomes
directly within the definition of Trans respectively of transPr.15

The work of Bacchus, Halpern and Levesque [BHL95, BHL99] on noisy sensors and ef-
fectors may seem like an alternative to our treatment of probabilistic outcomes. However,
although technically the work presented in this chapter is based on concepts like the p fluent
introduced by BHL, the topic of their approach and of the approach presented in this chapter
are different. They are concerned with how the epistemic state of an agent changes as a result
of the execution of noisy actions and the perception of noisy sensor readings, an aspect we
completely ignore in this chapter (we will investigate this issue in Chapter 7). In turn, they
do not consider the probabilistic projection of a plan, and it is not clear how their framework
could be extended to allow for projection. Instead, we model noisy low-level processes as
probabilistic procedures, and make use of these procedures to project the (prior) probabil-
ity that a sentence will hold after the execution of a bGOLOG plan. Note that the tasks
of probabilistic projection and belief update are different in nature because the former does
not involve any actual execution or sensing information, while the latter deals with actual
execution and sensing information.

Maybe the closest work to that reported in this chapter is Poole’s [Poo96, Poo98] integra-
tion of independent choice logic [Poo97], the situation calculus and conditional plans. Similar
to us, Poole aims at representing and reasoning about the different outcomes of conditional
plans executed in stochastic domains. In particular, Poole is concerned about the expected
utility of a plan. Although we focus on probabilistic projection and only briefly consider
expected utility, Poole’s and our framework are both concerned with predicting the proba-
bilistic effects of a plan, as opposed to BHL which consider the way the belief of an agent
changes during execution. Poole’s view of sensing is also quite similar to ours: he assumes
passive sensors (i.e. no sensing actions as in Scherl and Levesque [SL93, Lev96]), which are
represented by means of a set of terms called observables. In particular, in any situation the
robot has perfect knowledge of the value of the observables. This is quite similar to our notion
of directly observable fluents. However, the technical design decisions are different in Poole’s
work and in ours. In particular, we differ with respect to whether a situation should deter-
mine what facts hold at a point, that is in what state the world is in.16 In our framework, we
keep the conceptualization that a situation corresponds to a state (however, the agent doesn’t
know what situation it is in). In Poole’s framework, an agent knows what situation it is in,
but the situation doesn’t fully specify what is true.17 Besides, in Poole’s framework actions
are equated with motor control commands that are sent by the agent’s controller, while in

15A possible approach to handling nondeterminism in pGOLOG is proposed in [GL00b], where a nondeter-
ministic plan is mapped to deterministic variants of the plan, which are amenable to probabilistic projection.

16The distinction of state and situation made here is somewhat similar to that underlying the fluent calculus
[Thi99c].

17In particular, there is a probability distribution over which facts hold in the different situations. To
determine the truth value of a fluent in a situation, one has to make use of a selector function [Poo97].

6.4. DISCUSSION 131

our approach actions are used to represent arbitrary change. Finally, while Poole’s approach
is based on stable model semantics [GL88], our framework is based on the standard predicate
calculus semantics.

Acting under uncertainty lies at the heart of POMDPs [KLC98] and they deal with
these aspects in a more exhaustive way, but the computational cost is prohibitive already
in relatively small domains (e.g. [GB98]). Note that unlike POMDPs, probabilistic plan-
ners [KHW95, ML98], and probabilistic planners that accounts for sensing [GA99, BL99], our
framework is fully logic based and much more expressive since we are not restricted to proposi-
tional representations. On the other hand, the recently proposed DTGolog [BRST00, Sou01]
assumes full observability of the domain. As for high-level programming approaches like
[Lev96, Lak99, Rei00] which are based on Scherl and Levesque’s representation of (incomplete)
knowledge and sensing in the situation calculus [SL93], they do not account for probabilistic
uncertainty. Finally, we remark that all the related approaches mentioned in this section do
not account for the temporal extent of low-level processes.

132 CHAPTER 6. PGOLOG - DEALING WITH PROBABILISTIC UNCERTAINTY

Chapter 7

Belief Update in pGOLOG

In the previous chapter, we have presented an extension of the GOLOG framework which allows
the probabilistic projection of plans, based on a probabilistic characterization of the robot’s
belief state and of the noisy low-level processes. So far, however, we have only considered
the projection of a plan based on an explicit specification of the actual epistemic state. In
particular, we have only considered projection in the initial situation, based on a specification
of the initial epistemic state of the robot. However, similar to cc-Golog where we allowed on-
the-fly projection during on-line execution, we would like to interleave on-line execution and
probabilistic projection in pGOLOG. In order to allow probabilistic projection during on-line
execution, a robot controller must adapt its beliefs during the execution of a plan involving
the activation of noisy low-level (sensor) processes. We will refer to this task as belief update,
following Bacchus, Halpern and Levesque [BHL99]. Belief update is not only a prerequisite
for the definition of local lookahead constructors which allows probabilistic projection under
user control, but also allows the execution of belief-based programs, high-level programs that
appeal to the agent’s real-valued beliefs at execution time.

To get a better intuition for the difference between belief update and probabilistic pro-
jection, let us consider some examples in the ship/reject domain introduced in the previous
chapter. In this domain a typical projection task is the following: “how probable is it that
the plan [inspect, if(OK, ship, reject)] will falsely ship a flawed widget?” On the other hand,
belief update is concerned with questions like: “what is the probability that the widget is
flawed if during on-line-execution the robot actually perceived OK?1” The difference between
the two tasks is that in the former case, the agent reasons about how the world might evolve,
while in the latter case its beliefs change as a result of actual actions. Finally, a belief-based
plan is a specification appealing to the robot’s real-valued beliefs, like for example “as long
as your (the robot’s) confidence in whether the widget is flawed or not is below a threshold of
99%, (re-)inspect the widget.” Note that in this plan the activation of the low-level inspect
process is conditioned on the robot’s beliefs at execution time.

In this chapter, we will present an approach to belief update which is based on the use
of pGOLOG programs to represent (the internal state of) the low-level processes. Note that
besides updating its beliefs concerning the state of the world in terms of fluents like PA or
PR, the robot also has to update its beliefs concerning the state of execution of the low-level
processes. For example, 15 seconds after activation of the paint process the robot should not
only be aware of the fact that the widget is under-coated by now, but also that the process is

1The respective probabilities are 0.3*0.1=3% and 3/73=4.1%.

133

134 CHAPTER 7. BELIEF UPDATE IN PGOLOG

no longer in its initial state but only 15 seconds away from completion (recall that we assume
that paint first undercoats the widget, and thereafter paints if; cf. Section 6.2.3). Roughly,
then, we represent the robot’s belief state by a set of configurations 〈s′, llmodel〉 considered
possible, where s′ is a possible situation and llmodel a model of the low-level processes and
their actual state of execution. Thereby, we use different pGOLOG programs to represent
different states of execution of the low-level processes. For example, initially we characterize
the paint process by paintProc, but 15 seconds after its activation we characterize it by what
remains of paintProc after 15 seconds of execution. This approach can be formalized quite
naturally in pGOLOG due to the fact that pGOLOG’s semantics includes a specification of the
continuation of a program.

Based on the characterization of the robot’s epistemic state as a distribution over con-
figurations, belief update works as follows. Initially, all low-level processes are wait-blocked.
Whenever the high-level controller executes an action a, in the resulting situation do(a, s)
the possible configurations 〈s′, llmodel〉 are replaced by configurations which results (roughly)
from the execution of llmodel in s′. In particular, if a is a send action that activates a low-level
process, then in the successor situation do(a, s) all configurations considered possible will
account for the fact that llmodel has become unblocked. For example, if a activates the paint
process then in the following situations the configurations considered possible will account
for the fact that paintProc is active and will subsequently cause UC and (possibly) PA to
become true. Finally, whenever a reply action occurs, the high-level controller makes use of
this action to sharpen its belief state: in every configuration considered possible it verifies
whether this reply is “compatible” with the pGOLOG program llmodel, meaning that llmodel is
about to execute this very reply action. Then, in the successor situation do(a, s) it rules out
all those configurations from the belief state which are not compatible with the observation.
Intuitively, these configurations can be removed from the epistemic state because they do not
correctly characterize the actual world.

This chapter is organized as follows: in the next section, we show how belief update can be
realized in the pGOLOG framework. In Section 7.2 we make use of our framework to replicate
an example from [BHL99]. Finally, we consider belief-based programs, and show how on-line
execution and probabilistic projection can be interleaved.

7.1 On-line Execution and Belief Update

In this section, we will present our approach to belief update under probabilistic uncertainty,
which is based on the use of probabilistic pGOLOG programs modeling (the state of execution
of) the noisy low-level processes. However, before we can turn to the specification of belief
update, we first have to consider on-line execution in pGOLOG.

7.1.1 On-Line Execution and On-line Execution Traces

To start with, similar to Chapter 5 we modify pGOLOG’s semantics regarding waitFor actions
to account for both projection and on-line execution. As in Section 5.1.3, we make use of the
fluent online(s) to distinguish between both modes of operation, and simply treat waitFor
actions as tests during on-line execution. Formally, we replace the assertion for primitive
actions in the first-order definition of transPr by a new axiom. As before, for readability
we specify the new axiom for transPr in the if - then - else notation introduced in
Section 6.1.1:

7.1. ON-LINE EXECUTION AND BELIEF UPDATE 135

transPr(α, s, δ, s′) =
if [¬online(s) ∨ ∀τ.α 6= waitFor(τ)] ∧ Poss(α[s], s) ∧ δ = nil ∧ s′ = do(α[s], s) then 1
else if online(s) ∧ ∃τ.α = waitFor(τ) ∧ τ [s, start(s)] ∧ δ = nil ∧ s = s′ then 1 else 0.

As in cc-Golog, the semantics of transPr is as before if we are in projection mode: in situation
s, there is a transition with probability 1 from the primitive or waitFor action α to a successor
configuration 〈δ, s′〉 if α is possible, s′ = do(α[s], s) and δ = nil, and there is no other transition
with positive weight. The same holds if we are in on-line execution mode and a is not a waitFor
action. However, if we are in on-line execution mode and a is a waitFor(τ) action, then a
is treated as test, meaning that there is a transition with positive weight if and only if the
t-form τ is true at the beginning of the actual situation, that is if τ [s, start(s)] holds. If this
is true, there is exactly one transition with positive weight, and the weight of this transition
is 1. Furthermore, in the new configuration s = s′ and δ = nil.

Similarly, the second order definition of transPr is obtained by replacing the implication
for primitive actions in ΦtransPr by the following two implications:

Poss(α[s], s) ∧ [¬online(s) ∨ ∀τ.α 6= waitFor(τ)] ⊃ t(α, s, nil, do(α[s], s)) = 1

online(s) ∧ τ [s, start(s)] ⊃ t(waitFor(τ), s, nil, s) = 1.

We remark that all propositions of the previous chapter regarding the properties of transPr
and transPr∗ continue to hold with respect to the new definition of transPr. The only differ-
ence is that in the proofs an additional base case has to be considered.

On-Line Execution Traces Now that we have adapted pGOLOG’s semantics to account
for on-line execution, let us consider the situations which can result from an actual on-line
execution of a bGOLOG plan. As in Section 5.1 where we considered the on-line execution
of cc-Golog plans, we assume that the execution system of the robot periodically provides
the high-level controller with ccUpdates that set the value of the continuous fluents to the
latest estimates of the low-level processes. Besides updating continuous fluents, these actions
also provide the correct current time; thus, we use the same successor state axiom for start
as in Section 5.1.2. Finally, the low-level processes can execute reply actions to provide the
high-level controller the answers of sensor processes. The following definition is completely
analogous to the definition of on-line execution in cc-Golog (cf. Section 5.1.4).

Definition 19 Let AXpOnline be the foundational axioms of the epistemic situation calculus
together with the precondition axioms for waitFor and ccUpdate, the successor state axioms
for start and online from Section 5.1.2, the (second-order) definitions of Final and transPr∗

from the previous chapter, the axioms needed for the encoding of programs as first-order terms,
the axioms required for t-form’s, the set of axioms AXarch from Section 4.3.1, and the new
second-order definition of transPr. Furthermore, let AX be AXpOnline together with a situation
calculus axiomatization of an application domain. Then an on-line execution with respect to
AX of a program σ0 in a situation s0 is a sequence σ0, s0, ..., σn, sn such that for i = 0, ...n−1:

1. AX |= transPr(σi, si, σi+1, si+1) > 0; or

2. ∃a, i, n. a = reply(i, n) ∧ σi+1 = σi ∧ si+1 = do(a, si); or

3. ∃a, ~x, t. a = ccUpdate(~x, t) ∧ [∀σ′, s′. transPr(σi, si, σ′, s′) > 0 ⊃ t ≤ start(s′)] ∧ σi+1 =
σi ∧ si+1 = do(a, si).

136 CHAPTER 7. BELIEF UPDATE IN PGOLOG

We call an on-line execution completed if AX |= Final(σn, sn). Besides, we say that there
is an on-line execution of σ0 in s0 that results in (σn, sn) if and only if there is an on-line
execution σ0, s0, ..., σn, sn of σ0 in s0. Finally, we say that a situation sn is a legal on-line
execution trace of σ0 in s0 if and only if there is a program σn such that there is an on-line
execution of σ0 in s0 that results in (σn, sn).

The only difference between this definition and the definition of an on-line execution of a
cc-Golog plans is that Trans(σ, s, δ, s′) is replaced by transPr(σ, s, δ, s′) > 0. Note that as
bGOLOG plans do not include prob instructions, a bGOLOG plan can always execute at most
one action at any time (cf. Proposition 13).

As an example, let us reconsider the plan Πrobby4 from Section 6.3.2:

Πrobby4
.= [send(fork, inspect),Bel(reg(inspect) 6= nil) = 1?,

send(fork, paint),Bel(reg(painted) = >) = 1?,
if(Bel(reg(inspect) = OK) = 1,

[send(fork, ship),Bel(reg(processed) = >) = 1?]
[send(fork, reject),Bel(reg(processed) = >) = 1?])].

Let Γ be the set of axioms AXpOnline together with an axiomatization of the ship/reject domain
(cf. Section 6.3.2). The following situation is a legal on-line execution trace of Πrobby4 in S0

with respect to Γ, assuming that the execution system provides a ccUpdate action every 0.25
seconds (we only write the last argument (time) of ccUpdate):

S1
.= do([send(fork, inspect),

reply(fork, nil), ccUpdate(0.25), ..., ccUpdate(10.0),
reply(inspect,OK),
send(fork, paint),
reply(fork, nil), ccUpdate(10.25), ..., ccUpdate(40.0), reply(painted,>)
send(fork, reject),
reply(fork, nil), ccUpdate(40.25), ..., ccUpdate(50.0), reply(processed,>)], S0).

Proof: (Outline) A send action is always possible, so Πrobby4 can execute send(fork, inspect).
The low-level execution system answers by executing reply(fork, nil). Thereafter, the remain-
ing plan is blocked, waiting for Bel(reg(inspect) 6= nil) = 1, that is for a reply(inspect,OK) or
reply(inspect,OK) action. So the low-level execution system can execute exogenous ccUpdate
actions which cause time to advance (cf. the third condition in Definition 19). Then, the
inspect process executes a reply(inspect,OK) action, which unblocks the high-level plan. As
a result, the plan activates the paint process and waits for Bel(reg(painted) = >) = 1 to
become true. Again, the low-level system replies by reply(fork, nil), and executes a sequence
of ccUpdate actions. Finally, the paint process signals completion by reply(painted,>). This
reactivates the plan, which evaluates the conditional. The value of register inspect is OK
because of the reply(inspect,OK) answer of the inspect process, so the plan activates reject.
Thereafter, it waits until the reject process executes reply(processed,>) and ends. 2

Another example of an on-line execution trace is the following situation SUC which results
from the execution of the plan [send(fork, paint),Bel(reg(painted) = >) = 1?]. Note that in
the following situation SUC the execution of the high-level plan is not completed:

SUC
.= do([send(fork, paint),

reply(fork, nil), ccUpdate(0.25), ..., ccUpdate(15.0)], S0).

7.1. ON-LINE EXECUTION AND BELIEF UPDATE 137

We remark that our definition of an on-line execution does not ensure that an execution
trace actually includes all the reply actions predicted by the pGOLOG model of the low-level
processes. Nevertheless, the framework for belief update presented in this chapter relies on
their occurrence; in particular, we assume that only such reply actions occur during on-line
execution which are considered in the pGOLOG model of the low-level processes. So in a
sense the definition of on-line execution is under-constrained. The argument is that pGOLOG
programs like kernelProc are designed by the user as a faithful model of the actual low-level
processes. That is, the user has to take care that if during on-line execution a particular reply
action can occur, then there is a probabilistic branch in the pGOLOG model of the low-level
processes involving this reply action.

Similarly, we assume that the difference ∆ = ti+1 − ti between two subsequent updates
ccUpdate(~x, ti) and ccUpdate(~x, ti+1) is smaller than the minimal delay between the execution
time of any two actions of the pGOLOG models which have different execution time. Further-
more, we assume that if a reply is modeled to happen at time t, then during on-line execution
the high-level controller’s run-time system will generate a ccUpdate action causing start to
advance to t before the actual reply action happens.

7.1.2 The Epistemic State as a Distribution over Configurations

As our notion of belief is defined in terms of the set of situations considered possible, in
particular using the epistemic fluent p, it is obvious that one of the main tasks in specifying
how a robot is to update its beliefs is the definition of an appropriate successor state axiom
for the fluent p. However, specifying how the set of situations considered possible evolves is
not sufficent. To see why, let us reconsider the situation SUC where the robot has activated
the paint process in the initial situation through send(fork, paint), after which it has waited
for 15 seconds. Recall that as described in Section 6.2.3 we assume that the paint process
first undercoats the widget, and thereafter paints it, as specified by the following pGOLOG
model:

proc(paintProc, [clipBL,waitTime(10), if(PR, setER, setUC),
waitTime(20), if(PR, setER, prob(0.95, setPA)), reply(painted,>)]).

Intuitively, the robot’s epistemic state in SUC should reflect the fact that the activation of
the low-level process paint has affected the truth value of UC, and, additionally, that unlike
in S0 the low-level process paint is now active, has already executed setUC, and is about
to probably execute setPA. Thus, the paint process is no longer correctly characterized by
paintProc, but instead by the remaining fragment of paintProc after 15 seconds have passed.

The example suggests that the appropriate pGOLOG model of the low-level processes is
not the same for all situations, but depends on the history of actions. Thus we associate with
every possible situation a specific pGOLOG model. Formally, we replace the binary fluent p
by a ternary fluent pll.2 pll(s′, ll′, s) that can be read as “in situation s, the agent thinks
that the world may be situation s′ and that the low-level processes can be characterized by
ll′ with degree of likelihood pll(s′, ll′, s).” We require that initially every possible situation
is associated with exactly one model of the low-level processes, and that every situation

2In earlier work [GL01a], we made use of two fluents p(s′, s) and ll(s′, s) to represent the epistemic state of
the robot by a distribution over configurations. The fluent pll is related to p and ll as follows: pll(s′, ll′, s) >
0 ≡ p(s′, s) > 0 ∧ ll(s′, s) = ll′.

138 CHAPTER 7. BELIEF UPDATE IN PGOLOG

considered possible initially is initial. Formally:

[pll(s′, ll′, S0) > 0 ∧ pll(s′, ll∗, S0) > 0] ⊃ [ll′ = ll∗ ∧ Init(s′)]. (7.1)

Here, Init(s) is as defined in Section 3.3. Then, p can be understood as a restriction of pll
ignoring the ll′ argument, that is:

p(s′, s) = p ≡ ∃ll′.pll(s′, ll′, s) = p. (7.2)

In Section 7.1.5 (Proposition 22), we will show that p is well-defined given the above axiom.
As an example, the following axiom which replaces the initial state description from Sec-

tion 6.2.1 says that the robot initially considers two situations possible, s1 and s2, with degree
of likelihood 0.3 and 0.7, respectively, and that in both s1 and s2 the low-level processes are
as described by kernelProc. These two configurations are the only configurations considered
possible:

∃s1, s2.pll(s1, kernelProc, S0) = 0.3 ∧ p(s2, kernelProc, S0) = 0.7∧
FL(s1) ∧ BL(s1) ∧ ¬PA(s1) ∧ ¬PR(s1) ∧ ¬ER(s1)∧
¬FL(s2) ∧ ¬BL(s2) ∧ ¬PA(s2) ∧ ¬PR(s2) ∧ ¬ER(s2)∧
∀s′, ll′. pll(s′, ll′, S0) > 0 ⊃ ll′ = kernelProc∧

[s′ 6= s1 ∧ s′ 6= s2] ⊃ pll(s′, ll′, S0) = 0.

(7.3)

7.1.3 Belief Update

Let us now turn to the specification of a successor state axiom for the epistemic fluent pll,
stating how the robot’s epistemic state evolves from a situation s to a successor situation
do(a, s). Our approach is based on the following assumptions: every answer of a sensor
process is provided by means of an exogenous reply action, and the high-level controller is
aware of all exogenous reply actions. On the other hand, the high-level controller is not aware
of any other “action” executed by the low-level processes, like, for example, the setPA action
which we used to model the effects of the low-level processes. In order to specify a successor
state axioms for pll, then, we have to distinguish three cases: (i) a is an action executed by
the high-level controller; (ii) a is a ccUpdate action; and (iii) a is a reply action performed by
a sensor process. Note that these three cases correspond to the three cases in the definition
of an online execution (cf. Definition 19).

Ordinary Actions Unlike reply actions which provide sensing information, actions exe-
cuted by the high-level controller and ccUpdate actions do not provide any relevant informa-
tions about the actual state of the world, and thus cannot be used to sharpen the robot’s
beliefs. Therefore, we treat case (i) and (ii) similarly. Intuitively, all the robot can do if it exe-
cutes an action a or if a ccUpdate action occurs is to update its beliefs, which are characterized
by a set of configurations considered possible, by simulating how the possible configurations
evolve from s to do(a, s). Formally, if a is an action executed by the high-level controller or
a ccUpdate action, then the configurations considered possible in s execute up to the point
where one of the following conditions occur:

1. they are blocked;

2. or they are about to execute a reply action.

7.1. ON-LINE EXECUTION AND BELIEF UPDATE 139

While the first condition is fairly obvious, the second condition reflects the intuition that
the high-level controller is “aware” of all reply actions; as a is no reply action, the low-level
processes cannot (yet) have executed a reply action.

We will now formalize the idea of executing a program σ in s until a configuration 〈δ, s′〉
is reached where one of the above conditions is true. For this, we define the special function
transPr/(σ, s, δ, s′) which specifies the probability that a simulation of σ is s which does not
involve the execution of a reply action results in 〈δ, s′〉. In the following formulas, isReply(a)
is a shorthand for ∃r, v.a = reply(r, v):

transPr/(σ, s, δ, s′) =
if transPr∗(σ, s, δ, s′) > 0∧
∀a∗, s∗.[s < do(a∗, s∗) ∧ do(a∗, s∗) v s′] ⊃ ¬isReply(a∗)∧
∀δ∗, s∗.transPr(δ, s′, δ∗, s∗) > 0 ⊃ [∃a∗.s∗ = do(a∗, s′) ∧ isReply(a∗)]

then transPr∗(σ, s, δ, s′) else 0.

While the second line of the if condition verifies that no reply action was executed, the third
line ensures that the configuration 〈δ, s′〉 satisfies one of the above two conditions, meaning
that the simulation has been pursued as far as possible.

reply actions Now that we have formalized how the low-level processes evolve if a is an
ordinary action, let us turn to the other case where a is a reply action. The reason that we
distinguish reply actions from other actions is that reply actions provide sensing information,
and can thus be used to sharpen the robot’s beliefs. For example, if the robot observes a
reply(inspect,OK) action after activation of inspect, it can rule out those configurations from
its belief state where ¬FL holds, because the inspect process never erroneously reports OK.
In general, we use the observation of a reply action to rule out those configurations so far
considered possible which are not about to execute this very reply action. Intuitively, this
reflects the fact that if a configuration is not compatible with the reply action, it cannot be
a correct characterization of the actual state of the world.

Before we formally define a successor state axiom for pll, we first define an auxiliary
predicate pll4. Like pll, pll4(s∗, ll∗, s, p) represents the probability p of a configuration 〈s∗, ll∗〉
in situation s. Based on pll4, we will define pll as:

S0 ≺ s ⊃ [pll(s∗, ll∗, s) = p ≡ pll4(s∗, ll∗, s, p)].

The reason why we do not directly define pll is that we first have to show that the probability
p in pll4(s∗, ll∗, s, p) is uniquely determined for every configuration 〈s∗, ll∗〉 and every situation
s rooted in S0. The following initial state axiom specifies that initially pll and pll4 agree on
the weight of the configurations considered possible:

pll4(s∗, ll∗, S0, p) ≡ pll(s∗, ll∗, S0) = p. (7.4)

Finally, the following axiom specifies how pll4 changes its value from s to do(a, s):3

S0 ≺ s ⊃ [pll4(s∗, ll∗, do(a, s), p) ≡
[∃s′, ll′, s′′, ll′′, p′, p∗. pll4(s′, ll′, s, p′) ∧ p′ > 0∧

3We remark that this definition is somewhat similar to a guarded successor state axiom [dGL99a]. However,
it is not a guarded successor state axiom because the condition at the place of the “guard” mentions the
situation term S0.

140 CHAPTER 7. BELIEF UPDATE IN PGOLOG

transPr/(ll′, s′, ll′′, s′′) = p∗ ∧ p∗ > 0 ∧ s∗ = do(a, s′′) ∧ p = p′ ∗ p∗∧
(¬isReply(a) ∧ ll∗ = ll′′ ∨ isReply(a) ∧ transPr(ll′′, s′′, ll∗, s∗) = 1)]
∨p = 0 ∧ ¬[∃s′, ll′, s′′, ll′′, p′. pll4(s′, ll′, s, p′) ∧ p′ > 0 ∧ transPr/(ll′, s′, ll′′, s′′) > 0

∧s∗ = do(a, s′′) ∧ (¬isReply(a) ∧ ll∗ = ll′′∨
isReply(a) ∧ transPr(ll′′, s′′, ll∗, s∗) = 1)]].

If a is an ordinary action, all configurations 〈s∗, ll∗〉 considered possible (that is having a
positive probability) in do(a, s) are successors of configurations 〈s′, ll′〉 considered possible in s.
In particular, we require that s∗ is of the form s∗ = do(a, s′′) and that transPr/(ll′, s′, ll∗, s′′) is
positive, meaning that 〈s′′, ll∗〉 is obtained from 〈s′, ll′〉 by a sequence of transition as specified
by transPr/. On the other hand, if a is a reply action, then 〈s∗, ll∗〉 is only considered possible
in do(a, s) if there is an intermediate configuration 〈s′′, ll′′〉 such that 〈s′′, ll′′〉 is obtained from
〈s′, ll′〉 by a sequence of transition as specified by transPr/, and transPr(ll′′, s′′, ll∗, s∗) = 1
with s∗ = do(a, s′′). Thus, the case where a is a reply action is similar to the other case but
additionally requires that the configuration 〈s′′, ll′′〉 is “compatible” with the reply action,
meaning that 〈s′′, ll′′〉 is about to execute this very reply action.

Note that by this definition, a reply action a has the effect to update the probability of
the configurations considered possible in a way similar to Bayesian conditioning (cf. [RN95]).
In particular, if a configuration c has several different successors (as specified by transPr/),
from which one successor with weight p∗ involves the execution of the reply action a, then
the (unnormalized) probability of the successor configuration of c in do(a, s) is p∗ times the
probability of c in s.

7.1.4 Examples

Before we formally show some properties of pll4, in particular that p and pll can safely be
defined in terms of pll4, we will present some examples to provide an intuition as to how pll4
evolves as a result of the execution of actions. Let us first reconsider the example situation
SUC from Section 7.1.1, where the robot has activated the paint process in the initial situation
after which it has waited for 15 seconds:

SUC
.= do([send(fork, paint),

reply(fork, nil), ccUpdate(0.25), ...ccUpdate(15.0)], S0).

Recall that the paint process is modeled as follows:

proc(paintProc, [clipBL,waitTime(10), if(PR, setER, setUC),
waitTime(20), if(PR, setER, prob(0.95, setPA)), reply(painted,>)]).

Then from our axiomatization of pll4 together with the initial epistemic state specification
(7.3) one can conclude the following:

pll4(s′, ll′, SUC, p
′) ∧ p′ > 0 ⊃

∃s0,p0.p0 > 0 ∧ pll4(s0, kernelProc, S0, p0)∧
s′ = do([send(fork, paint), reply(fork, nil),

ccUpdate(0.25), ..., ccUpdate(10), setUC,
ccUpdate(10.25), ..., ccUpdate(15)], s′0)∧

ll′ =withPol([[nil,waitFor(clock ≥ 30)],
if(PR, setER, prob(0.95, setPA)), reply(painted,>)],

kernelProc).

7.1. ON-LINE EXECUTION AND BELIEF UPDATE 141

That is, the situations considered possible in SUC are successors of (one of the two) situations
considered possible initially. In particular, they result from a situation s0 considered possible
initially by execution of a set of actions which includes all actions executed in SUC. In
addition to the actions present in the history of SUC, this set of actions includes the action
setUC. This action has been executed by the model of the low-level processes, namely by
paintProc. Note that this action guarantees that in SUC the robot believes (with probability
100%) that the widget is painted, because it is present in all situations considered possible
in SUC.

Next, let us consider the models of the low-level processes considered possible in SUC.
Unlike in the initial situation, the low-level processes are not represented by the program
kernelProc. Instead, they are modeled by what remains of kernelProc, and in particular of
paintProc after 15 seconds of execution. Thus, pll4 accounts for the fact that the state of
execution of the low-level processes has changed from S0 to SUC.

Similarly, if the robot waits for another 15 seconds, then in the resulting situation

SalmostPA
.= do([send(fork, paint),

reply(fork, nil), ccUpdate(0.25), ...ccUpdate(30.0)], S0)

the model of the low-level processes becomes unblocked because the waitFor(clock ≥ 30)
condition becomes true, that is

pll4(s′, ll′, SalmostPA, p
′) ∧ p′ > 0 ⊃

∃s′′.s′ = do(ccUpdate(30), s′′) ∧ clock[s′, start(s′)] = 30

and hence in situation
SPA = do(reply(painted,>), SalmostPA)

the model of the low-level processes might have executed setPA (with probability 95%):

pll4(s′, ll′, SalmostPA, p
′) ∧ p′ > 0 ⊃

∃s′′.[s′ = do([ccUpdate(30), setPA, reply(painted,>)], s′′)∨
s′ = do([ccUpdate(30), reply(painted,>)], s′′)]∧

ll′ =withPol(nil, kernelProc).

In particular, it is possible to show that the sum of the weights of the situations s′ which
include a setPA action is 95%.

As another example, let us consider the situation

Sinspect
.= do([send(fork, inspect), reply(fork, nil), ccUpdate(0.25), ...ccUpdate(10.0)], S0).

where the robot has first activated inspect, and then has waited for 10 seconds. Recall that
the inspect process was modelled as follows:

proc(inspectProc, [waitTime(7),
if(PR,setER,

if(BL,[waitTime(3), prob(0.9,reply(inspect,OK),
reply(inspect,OK))],

[waitTime(3), reply(inspect,OK)]))]).

Then, one can deduce that in Sinspect two situations are considered possible, that is:

142 CHAPTER 7. BELIEF UPDATE IN PGOLOG

pll4(s′, ll′, Sinspect , p
′) ∧ p′ > 0 ⊃

[∃s0.s
′ = do([send(fork, inspect), reply(fork, nil), ccUpdate(0.25), ..., ccUpdate(10.0)], s0)
∧BL(s0) ∧ FL(s0) ∧ p′ = 0.3
∧ll′ =withPol([[nil,waitFor(clock ≥ 10)],

prob(0.9, reply(inspect,OK), reply(inspect,OK))],
kernelProc)∨

∃s0.s
′ = do([send(fork, inspect), reply(fork, nil), ccUpdate(0.25), ..., ccUpdate(10.0)], s0)
∧¬BL(s0) ∧ ¬FL(s0) ∧ p′ = 0.7
∧ll′ =withPol([[nil,waitFor(clock ≥ 10)], reply(inspect,OK)]

kernelProc)].

Again, the situations considered possible in Sinspect are obtained from situations considered
possible initially. The associated model of the low-level processes has evolved beyond the
conditional appealing to the truth value of BL; intuitively, the program in the first disjunct
correspond to the situation where the widget is flawed, and the second to the situation where
it is not flawed. Due to the fact that the starting time of Sinspect is 10, they are both unblocked
and about to execute a reply action.

Let us now consider the situation which results if the inspect process provides a OK answer,
that is executes reply(inspect,OK) in Sinspect , leading to

S¬ok
.= do(reply(inspect,OK), Sinspect).

The reply action results in a smaller set of configurations considered possible, reflecting the
fact that the reply(inspect,OK) action sharpens the robot’s beliefs. In particular, by the
definition of pll4 only those configurations are considered possible in S¬ok whose program
component was about to execute the reply(inspect,OK) action, and hence are compatible
with the reply(inspect,OK) action. All other configurations are removed from the robot’s
belief state as they do not correctly describe the actual state of the world. In particular, we
can deduce:

pll4(s′, ll′,S¬ok, p′) ∧ p′ > 0 ⊃
∃s0.[s′ = do([send(fork, inspect), reply(fork, nil),

ccUpdate(0.25), ..., ccUpdate(10.0), tossHead, reply(inspect,OK)], s0)
∧BL(s0) ∧ FL(s0).

Note that this means that there is only one configuration which remains, and that FL holds
in the situation component of this configuration. This reflects the fact that the robot’s beliefs
in the widget being flawed rise to 100%.

Let us now consider the situation which results if the inspect process provides an OK
answer, leading to situation

Sok
.= do(reply(inspect,OK), Sinspect).

Here, we can deduce that two configurations remain possible, that is:

pll4(s′, ll′, Sinspect , p
′) ∧ p′ > 0 ⊃

[∃s0.s
′ = do([send(fork, inspect), reply(fork, nil),

ccUpdate(0.25), ..., ccUpdate(10.0), tossTail, reply(inspect,OK)], s0)

7.1. ON-LINE EXECUTION AND BELIEF UPDATE 143

∧BL(s0) ∧ FL(s0) ∧ p′ = 0.3 ∗ 0.1∨
∃s0.s

′ = do([send(fork, inspect), reply(fork, nil),
ccUpdate(0.25), ..., ccUpdate(10.0), reply(inspect,OK)], s0)∧

¬BL(s0) ∧ ¬FL(s0) ∧ p′ = 0.7].

The two configurations correspond to the case where (a) the widget is flawed but the inspect
process overlooks the blemish, and (b) the widget is not flawed. The respective (unnormalized)
weights of the two configurations is 0.3 × 0.1 (widget flawed but inspect fails) and 0.7 × 1.0
(no flaw). This means that there is a normalized probability of 0.03/0.73 that the widget is
flawed.

7.1.5 Formal Properties

In this subsection, we will show that we can safely define p and pll in terms of pll4. In
particular, we will show that in every situation s rooted in S0 every configuration 〈s∗, ll∗〉
is assigned exactly one probability by pll4, and that for every configuration 〈s∗, ll∗〉 with
positive probability the situation component s∗ uniquely determines the program component
ll∗. Finally, we will show that in the resulting theory the fluent reg is directly observable.

To start with, we show some properties of transPr/. The following proposition shows
that transPr/ only assigns a positive weight to maximal configurations, meaning that if
transPr/(σ, s, δ, s′) > 0 then there is no successor configuration 〈δ∗, s∗〉 of 〈δ, s′〉 which also
satisfies transPr/(σ, s, δ∗, s∗) > 0. As before, to simplify the presentation of the proofs we use
the same symbols to denote terms and elements of the domain of interpretation; the meaning
will be clear from the context.

Proposition 20: Let Γ be the set of axioms AXpOnline (cf. Definition 19 on page 135)
together with the definition of transPr/. Then:

Γ |=[transPr/(σ, s, δ′, s′) > 0 ∧ transPr/(σ, s, δ′′, s′′) > 0] ⊃
[s v s′ ∧ s v s′′ ∧ ¬(s′ < s′′)]

Proof: The first two conjuncts in the implication (that is s v s′ and s v s′′) follow directly
from Proposition 14 (page 114) and the fact that by definition transPr/(σ, s, δ, s′) > 0 implies
transPr∗(σ, s, δ, s′) > 0. The last conjunct follows by contradiction. Let us assume there are
situations s, s′ and s′′ and programs σ, δ′ and δ′′ satisfying the implication’s left-hand side
such that s′ < s′′. Then, by the definition of transPr/, we get:

transPr∗(σ, s, δ′, s′) > 0∧
∀δ∗, s∗.transPr(δ, s′, δ∗, s∗) > 0 ⊃ [∃a∗.s∗ = do(a∗, s′) ∧ isReply(a∗)].

(7.5)

By the same definition we also get:

transPr∗(σ, s, δ′′, s′′) > 0∧
∀a∗, s∗.[s < do(a∗, s∗) ∧ do(a∗, s∗) v s′′] ⊃ ¬isReply(a∗).

(7.6)

Let M be any model of Γ. Then by Proposition 15 (page 115) there is a sequence
of configurations σ1, s1, ..., σn, sn such that σ1 = σ, s1 = s, σn = δ′′, sn = s′′ and M |=
transPr(σi, si, σi+1, si+1) > 0 for i = 1, ...n − 1, and furthermore there is a j, 1 ≤ j < n
such that σj = δ′, sj = s′. Thus, M entails transPr(σ′, s′, σj+1, sj+1) > 0, and by (7.6)

144 CHAPTER 7. BELIEF UPDATE IN PGOLOG

¬∃a∗, s∗.sj+1 = do(a∗, s∗) ∧ isReply(a∗). Contradiction with (7.5). 2

The next proposition says that the simulation via transPr/ of a configuration 〈σ, s〉 never
results in two successor configurations which have the same situation component but different
program components.

Proposition 21: Let Γ be as in the previous proposition. Then:

Γ |= transPr/(σ, s, δ, s′) > 0 ∧ transPr/(σ, s, δ′, s′) > 0 ⊃ δ = δ′.

Proof: By contradiction. The proof is somewhat similar to that of Proposition 16. First,
note that by definition transPr/(σ, s, δ, s′) > 0 implies transPr∗(σ, s, δ, s′) > 0 and

[s < do(a∗, s∗) ∧ do(a∗, s∗) v s′] ⊃ ¬isReply(a∗) (7.7)

and
transPr(δ, s′, δ∗, s∗) > 0 ⊃ [∃a∗.s∗ = do(a∗, s′) ∧ isReply(a∗)]. (7.8)

Similarly for transPr/(σ, s, δ′, s′) > 0. Assume that there is a model M of Γ and that there
are configurations 〈σ, s〉, 〈δ, s′〉 and 〈δ′, s′〉 such that δ 6= δ′ and M |= transPr/(σ, s, δ, s′) >
0 ∧ transPr/(σ, s, δ′, s′) > 0. By Proposition 14, we get s v s′. Let us first consider the
case where s′ = s. By Proposition 8 (page 100) we can conclude that there is a sequence of
transitions with positive weight seq from 〈σ, s〉 to 〈δ, s′〉 and another sequence seq′ from 〈σ, s〉
to 〈δ′, s′〉. Because s′ = s, these transitions do not involve the execution of any new action,
and in particular they do not involve any tossHead or tossTail action. By Proposition 13
(page 112), then, we get that either seq is a subsequence of seq′ or vice versa. Without loss of
generality, we assume seq ⊆ seq′. Furthermore, seq 6= seq′ because of the assumption δ 6= δ′,
hence there must be a transition with positive weight from 〈δ, s′〉 to a successor configuration.
Again, this transition cannot involve the execution of an action because s′ = s. However, by
(7.8) every transition from 〈δ, s′〉 to a successor configuration involves the execution of a reply
action. Contradiction.

Let us now turn to the case s < s′. Again, by Proposition 8 there is a sequence of
transitions with positive weight σ1, s1, ..., σn, sn from 〈σ, s〉 to 〈δ, s′〉 and another sequence
σ′1, s

′
1, ..., σ

′
m, s

′
m from 〈σ, s〉 to 〈δ′, s′〉. The two sequences must differ because δ 6= δ′. Let

us first consider the case where one sequence is a proper subsequence of the other. Without
loss of generality, we assume m < n and 〈σi, si〉 = 〈σ′i, s′i〉 for i = 1, ...m. By (7.8) every
transition from 〈σm, sm〉 to a successor configuration involves the execution of a reply action,
that is ∃a∗.isReply(a∗) ∧ sm+1 = do(a∗, sm). However, by (7.7) and Proposition 14 we get
transPr(σm, sm, σm+1, sm+1) > 0 ⊃ ¬∃a∗, s∗.[isReply(a∗)∧ sm+1 = do(a∗, s∗)]. Contradiction.

So the two sequences must differ at some point. Let k be the smallest index such that σk =
σ′k and sk = s′k but σk+1 6= σ′k+1 or sk+1 6= s′k+1. That is, M |= transPr(σk, sk, σk+1, sk+1) > 0,
M |= transPr(σk, sk, σ′k+1, s

′
k+1) > 0 and ¬(σk+1 = σ′k+1 ∧ sk+1 = s′k+1). By Proposition 13,

we get sk+1 = do(tossHead, sk) ∧ s′k+1 = do(tossTail, sk) or vice versa. Thus, by Proposition
14 we get do(tossHead, sk) v s′ and do(tossTail, sk) v s′. Contradiction with the unique
names axioms for situations. 2

Next, we show some important properties of pll4.

Proposition 22: Let Γ be the set of axioms AXpOnline together with the definitions of
transPr/ and pll4 and the Axioms 7.4 and 7.1. Then:

7.1. ON-LINE EXECUTION AND BELIEF UPDATE 145

1. For every situation s such that S0 ≺ s there are no two situations s′, s′′ considered
possible in s such that s′′ can be obtained from s′:

Γ |= [S0 ≺ s ∧ pll4(s′, ll′, s, p′) ∧ p′ > 0 ∧ pll4(s′′, ll′′, s, p′′) ∧ p′′ > 0] ⊃
[¬(s′ < s′′) ∧ ¬(s′′ < s′)].

2. For every situation s such that S0 ≺ s the weight of a configuration 〈s′, ll′〉 considered
possible is unique:

Γ |= [S0 < s ∧ pll4(s′, ll′, s, p) ∧ p > 0 ∧ pll4(s′, ll′, s, p′) ∧ p′ > 0] ⊃ p = p′.

3. For every situation s such that S0 ≺ s and every situation s′, there is at most one
configuration 〈s′, ll′〉 with positive weight in s:

Γ |= [S0 < s ∧ pll4(s′, ll′, s, p′) ∧ p′ > 0 ∧ pll4(s′, ll′′, s, p′′) ∧ p′′ > 0] ⊃ ll′ = ll′′.

Proof: We show all three assertions simultaneously by induction on the number of actions
one has to execute to obtain s from S0. That is, we use the induction principle from [Rei01]
which says that to show that φ(s) holds in all situations rooted in the initial situation S0 we
only have to show that φ(S0) and [φ(s) ∧ S0 v s] ⊃ φ(do(a, s)).

In S0, (1) holds because of (7.4) and (7.1) ; similarly, (2) holds because of (7.4); and finally
(3) follows from (7.1). In the induction step, we show the three assertions as follows:

1. By contradiction. Assume there is an interpretation of Γ in which there are two config-
urations 〈s′, ll′〉 and 〈s′′, ll′′〉 such that s′ < s′′ and ∃p′ > 0 ∧ pll4(s′, ll′, do(a, s), p′)
and ∃p′ > 0 ∧ pll4(s′′, ll′′, do(a, s), p′) holds. Then by the definition of pll4, there
must be two configurations 〈ll′p, s′p〉 and 〈s′a, ll′a〉 such that (the interpretation entails)
∃p′.pll4(s′p, ll

′
p, s, p

′) ∧ p′ > 0 and transPr/(ll′p, s
′
p, ll
′
a, s
′
a) > 0 and s′ = do(a, s′a).

Similarly, there must be two configurations 〈ll′′p , s′′p〉 and 〈s′′a, ll′′a〉 such that ∃p′.p′ >
0 ∧ pll4(s′′p, ll

′′
p , s, p

′) and transPr/(ll′′p , s
′′
p, ll
′′
a, s
′′
a) > 0 and s′′ = do(a, s′′a). By induction

hypothesis (1), neither s′p < s′′p nor vice versa. If s′p = s′′p, then, by induction hypothesis
(3), ll′p and ll′′p must be the same; but then by Proposition 20 we get ¬(s′a < s′′a), and
finally ¬(s′ < s′′) because s′ = do(a, s′a) and s′′ = do(a, s′′a). Contradiction.

So s′p and s′′p must be different. By definition, transPr/(ll′p, s
′
p, ll
′
a, s
′
a) > 0 implies

transPr∗(ll′p, s
′
p, ll
′
a, s
′
a) > 0, so by Proposition 14 (page 114) we get s′p v s′a and s′′p v s′′a.

Furthermore, we get s′p v s′ and s′′p v s′′ because of s′ = do(a, s′a) and s′′ = do(a, s′′a).
However, by induction hypothesis (1) we also get ¬(s′p < s′′p) and ¬(s′′p < s′p), which
together with s′p 6= s′′p means that s′ and s′′ must be different. Contradiction.

2. By contradiction. Assume there is an interpretation of Γ in which there is a configura-
tion 〈ll′, s′〉 which at the same time has two different positive weights p and p′ in do(a, s),
that is pll4(s′, ll′, do(a, s), p) and pll4(s′, ll′, do(a, s), p′) and p 6= p′ ∧ p, p′ > 0. Again, by
the definition of pll4, there must be two configurations 〈ll′p, s′p〉 and 〈s′a, ll′a〉 and a posi-
tive probability p′p such that pll4(s′p, ll

′
p, s, p

′
p) and transPr/(ll′p, s

′
p, ll
′
a, s
′
a) > 0 and s′ =

do(a, s′a) and p = p′p ∗ transPr/(ll′p, s
′
p, ll
′
a, s
′
a). Similarly, there must be two other config-

urations 〈ll′′p , s′′p〉 and 〈s′′a, ll′′a〉 and a positive probability p′′p such that pll4(s′′p, ll
′′
p , s, p

′′
p)

and transPr/(ll′′p , s
′′
p, ll
′′
a, s
′′
a) > 0 and s′ = do(a, s′′a) and p = p′′p ∗ transPr/(ll′′p , s

′′
p, ll
′′
a, s
′′
a).

146 CHAPTER 7. BELIEF UPDATE IN PGOLOG

First, we show that 〈ll′p, s′p〉 must be the same as 〈ll′′p , s′′p〉. Assume that this is not true.
Then by induction hypothesis (3) s′p and s′′p must be different. By induction hypothesis
(1), we get ¬(s′p v s′′p) and ¬(s′′p v s′p). By the fact that transPr/(ll′p, s

′
p, ll
′
a, s
′
a) >

0 implies transPr∗(ll′p, s
′
p, ll
′
a, s
′
a) > 0 and Proposition 14 we get s′p v s′a and s′′p v

s′′a. Furthermore, as s′ = do(a, s′a) and s′ = do(a, s′′a) we get s′p v s′ and s′′p v s′.
Contradiction with ¬(s′p v s′′p) ∧ ¬(s′′p v s′p).
So 〈ll′p, s′p〉 must be the same as 〈ll′′p , s′′p〉. From this together with induction hy-
pothesis (2), it follows that p′p = p′′p. As by assumption p 6= p′, this means that
transPr/(ll′p, s

′
p, ll
′
a, s
′
a) must differ from transPr/(ll′′p , s

′′
p, ll
′′
a, s
′′
a). However, by s′ =

do(a, s′a) and s′ = do(a, s′′a) we get s′a = s′′a. Thus, transPr/(ll′p, s
′
p, ll
′
a, s
′
a) must be

6= transPr/(ll′p, s
′
p, ll
′′
a, s
′
a). Contradiction with Proposition 21.

3. By contradiction. Assume there is an interpretation of Γ in which there are two con-
figurations 〈ll′, s′〉 and 〈ll′′, s′〉 such that ll′ 6= ll′′ and ∃p′.p′ > 0∧ pll4(s′, ll′, do(a, s), p′)
and ∃p′′.p′′ > 0∧ pll4(s′, ll′′, do(a, s), p′′). As before, by the definition of pll4 there must
be two configurations 〈ll′p, s′p〉 and 〈s′a, ll′a〉 such that ∃p′.p′ > 0 ∧ pll4(s′p, ll

′
p, s, p

′
p) and

transPr/(ll′p, s
′
p, ll
′
a, s
′
a) > 0 and

s′ = do(a, s′a) ∧ [¬isReply(a) ∧ ll′ = ll′a∨
isReply(a) ∧ transPr(ll′a, s

′
a, ll
′, s′) = 1].

(7.9)

and another two configurations 〈ll′′p , s′′p〉 and 〈s′′a, ll′′a〉 s.t. ∃p′.p′ > 0 ∧ pll4(s′′p, ll
′′
p , s, p

′′
p)

and transPr/(ll′′p , s
′′
p, ll
′′
a, s
′′
a) > 0 and

s′ = do(a, s′′a) ∧ [¬isReply(a) ∧ ll′′ = ll′′a∨
isReply(a) ∧ transPr(ll′′a, s

′′
a, ll
′′, s′) = 1].

(7.10)

As in the induction step for part (2), we can show that 〈ll′p, s′p〉 must be the same
as 〈ll′′p , s′′p〉. Similarly, we can show that 〈ll′a, s′a〉 must be the same as 〈ll′′a, s′′a〉. This,
together with (7.9) and (7.10) implies:

s′ = do(a, s′a) ∧ [¬isReply(a) ∧ ll′ = ll′a∨
isReply(a) ∧ transPr(ll′a, s

′
a, ll
′, s′) = 1]

(7.11)

s′ = do(a, s′a) ∧ [¬isReply(a) ∧ ll′′ = ll′a∨
isReply(a) ∧ transPr(ll′a, s

′
a, ll
′′, s′) = 1].

(7.12)

Let us first consider the case where a is no reply action. Here, we get ll′ = ll′a = ll′′,
contradiction. Next, consider the case where a is a reply action. Here, (7.11) and (7.12)
imply transPr(ll′a, s

′
a, ll
′, do(a, s′a)) = 1 and transPr(ll′a, s

′
a, ll
′′, do(a, s′a)) = 1. From

Proposition 13 (page 112), then, we get ll′ = ll′′. Contradiction.

2

The above proposition tells us that we can safely define pll and p in terms of pll4. In
particular, the second part of the above proposition tells us that for every situation s, S0 ≺ s,
and every configuration 〈s′, ll′〉, the “weight” p of 〈s′, ll′〉 is uniquely determined by pll4.
Hence, for every situation s which may result from the on-line execution of a legal bGOLOG
program, we define pll as follows:

onlineExecTrace(s) ⊃ [pll(s′, ll′, s) = p ≡ pll4(s′, ll′, s, p)]. (7.13)

7.1. ON-LINE EXECUTION AND BELIEF UPDATE 147

Here, onlineExecTrace(s) is a shorthand for:

S0 � s ∧ ∀a, s∗. do(a, s∗) v s ⊃ [∃~x.a = send(~x) ∨ a = reply(~x) ∨ a = ccUpdate(~x),

meaning that s is required to be rooted in S0 and may only include send, reply or ccUpdate
actions. Note that these three possibilities correspond to the three conditions in Definition 19
along with the assumption that a high-level bGOLOG plan may only executes send actions
(cf. Section 6.2.4).

The reason why we only define the value of pll in terms of pll4 for situations s which satisfy
onlineExecTrace(s) is that we want to correctly project bGOLOG plans appealing to the robot’s
beliefs in non-initial situations which result from on-line execution (e.g. to interleave on-line
execution and probabilistic projection). Hence, we have to ensure that for every situation s′

considered possible in an on-line execution trace s, the sets of situations considered possible
in s′ and s coincide. In particular, this means that pll is required to be Euclidean, similarly
to Section 6.3.1:

[S0 � s ∧ pll(s′, ll′, s) > 0 ∧ pll(s′′, ll′′, s) = p] ⊃ pll(s′′, ll′′, s′) = p. (7.14)

However, the above axiom is not sufficient to guarantee that the sets of situations considered
possible in an execution trace s and in a situation s′ coincide (where s′ is a situation considered
possible in s). Additionally, we have to ensure that there is no second situation s2 (S0 ≺ s2

and s 6= s2), such that s′ is also considered possible in s2 (because s1 and s2 might consider
a different set of situations as possible). To avoid running into ambiguities, we require that
all situations rooted in S0 which do not result from an on-line execution have an “empty”
epistemic state:

S0 ≺ s ∧ ¬onlineExecTrace(s) ⊃ ∀s′, ll′.pll(s′, ll′, s) = 0. (7.15)

The following proposition tells us that the two Axioms (7.13) and (7.15) ensure that for every
situation s′, there is at most one situation s rooted in S0 such that s′ is considered possible
in s:

Proposition 23: Let Γ be the set of axioms AXpOnline together with the definitions of
transPr/, pll4, pll and the Axioms 7.4, 7.1, 7.13 and 7.15. Then:

Γ |= S0 ≺ s1 ∧ S0 ≺ s2 ∧ ∃ll′.pll(s′, ll′, s1) > 0 ∧ ∃ll′′.pll(s′, ll′′, s2) > 0 ⊃ s1 = s2.

Proof: We first show the following: for every two situations s1 and s2 such that S0 � s1,
S0 � s2 and s1 < s2, the following holds:

pll(s′, ll′, s2) > 0 ⊃ [∃s′p, ll′p.s′p < s′ ∧ pll(s′p, ll
′
p, s1) > 0].

This follows by induction on the number of actions that lead from s1 to s2, using the definition
of pll.

Using this property of pll, we show the proposition by contradiction. Suppose there is a
situation s′ considered possible in two different situations s1 and s2 rooted in S0. Axiom (7.15)
implies that s1 and s2 are on-line execution traces. Furthermore, s2 must be a successor of s1,
or vice versa. Else s1 and s2 would differ at some point in their history, meaning that there
are two different send, reply or ccUpdate actions a1 and a2 such that at some point in the
history, s1 includes a1 while s2 includes a2. By the definition of pll4, if s′ is considered possible

148 CHAPTER 7. BELIEF UPDATE IN PGOLOG

in s1 then every action in the history of s1 also occurs in the history of s′. Furthermore, s′

may not include additional send, reply or ccUpdate actions not present in the history of s1,
because by assumption send and ccUpdate actions never occur in the (pGOLOG) models of
the low-level processes (cf. Sections 6.2.3 and 5.1.1) and the high-level controller is aware
of all reply actions, meaning that the low-level processes may only cause a reply action a to
occur in s′ if a also occurs in s1 (cf. Section 7.1.3). Similarly, every action in the history of s2

must occur in the history of s′, and no additional send, reply or ccUpdate action may occur
in s′. However, by assumption a1 and a2 are different, a contradiction.

So let us consider the case where one situation si is a successor of the other situation.
Without loss of generality, we assume s1 < s2. Then, by the above implication there must be
a situation s′p considered possible in s1 such that s′p < s′. Contradiction with Proposition 22,
part 1. 2

Thus, for every situation s′ considered possible in a situation rooted in S0, the set of
configurations considered possible in s′ corresponds to the set of configurations considered
possible in the uniquely determined situation s in which s′ is considered possible. Hence, the
sets of configurations considered possible in s and in s′ coincide.

Now that we have defined how pll obtains its value in different situations, let us turn to
the epistemic fluent p. The third part of the Proposition 22 tells us that we can safely define
p(s′, s) as follows:

p(s′, s) = p ≡ ∃ll′.pll(s′, ll′, s) = p. (7.16)

Now that we have provided axioms which define the value of p in every situation s rooted in
S0, we will show that the fluent reg is directly observable with respect to our axiomatization.
We first show the following property of transPr∗:

Proposition 24: If the program σ does not include the primitive action a, then for any
sequence of transitions leading from 〈σ, s〉 to 〈δ, s′〉, s′ is obtained from s without the execution
of a and δ does not include a. Formally, let AXpOnline be the set of axioms from Definition 19
and let notIncludes(σ, a) be an expression which is true if and only if the program σ does not
include the primitive action a (see Appendix A.3.1 for the details). Then:

AXpOnline |= notIncludes(σ, a) ∧ transPr∗(σ, s, δ, s′) > 0
⊃ notIncludes(δ, a) ∧ ∀a∗, s∗.[s < do(a∗, s∗) ∧ do(a∗, s∗) v s′] ⊃ a∗ 6= a.

Proof: (Outline) First, we prove

AXpOnline |= transPr(σ, s, δ, s′) > 0 ⊃ [notIncludes(σ, a) ⊃ [notIncludes(δ, a) ∧ s′ 6= do(a, s)]].

Using Proposition 11, this follows from the fact that notIncludes(σ, a) ⊃ [notIncludes(δ, a) ∧
s′ 6= do(a, s)] satisfies the set of implications ΦProp from Section 6.1.4. Next, using Proposi-
tion 8 (page 100), we show the thesis for transPr∗ by induction on the length of the sequence
of transitions with positive weight from 〈σ, s〉 to 〈δ, s′〉. 2

We are now ready for the following proposition, which shows that reg is directly observable
with respect to our axiomatization.

Proposition 25: Let AXBelUp be the set of axioms AXpOnline together with the definition of
transPr/, the axioms (7.13), (7.15) (7.14) and (7.16), the axiom for pll4 from Section 7.1.3,

7.1. ON-LINE EXECUTION AND BELIEF UPDATE 149

the axiom p(s′, S0) > 0 ⊃ reg(id, s′) = reg(id, S0) from Section 6.2.2 specifying that the initial
value of reg is reflected in all situations s′ considered possible initially, and the assertion
pll(s′, ll′, S0) > 0 ⊃ notIncludes(ll′, send(id, val)) stating that a pGOLOG model of the low-
level processes may not include a send action. Then reg is directly observable with respect to
AXBelUp.

Proof: We prove the proposition by showing the stronger property that in every situation s
rooted in S0 the following holds:

pll(s∗, ll∗, s) > 0 ⊃ [notIncludes(ll∗, send(id, val)) ∧ reg(id, s∗) = reg(id, s)]. (7.17)

By the induction principle [Rei01], we only have to show φ(S0) and [φ(s) ∧ S0 v s] ⊃
φ(do(a, s)), where φ refers to the above property. In S0, the property holds trivially be-
cause AXBelUp includes the two assertions p(s′, S0) > 0 ⊃ reg(id, s′) = reg(id, S0) and
pll(s′, ll′, S0) > 0 ⊃ notIncludes(ll′, send(id, val)).

In the induction step, we make use of the fact that, by definition, pll(s∗, ll∗, do(a, s)) > 0
implies that there are s′, ll′, s′′, ll′′, t such that pll(s′, ll′, s) > 0 and transPr/(ll′, s′, ll′′, s′′) > 0
and

s∗ = do(a, s′′) ∧ (¬isReply(a) ∧ ll∗ = ll′′ ∨ isReply(a) ∧ transPr(ll′′, s′′, ll∗, s∗) = 1). (7.18)

By the induction hypothesis, we get notIncludes(ll′, send(id, val)). Then, from (7.18), the
fact that by definition transPr/(ll′, s′, ll′′, s′′) > 0 implies transPr∗(ll′, s′, ll′′, s′′) > 0 and
Proposition 24, we can conclude notIncludes(ll∗, send(id, val)). Thus, we have shown the
induction step for the first conjunct of the right-hand side of implication (7.17).

It remains to be shown that pll(s∗, ll∗, do(a, s)) > 0 ⊃ reg(id, s∗) = reg(id, do(a, s)). Again,
from notIncludes(ll′, send(id, val)), the definition of transPr/(ll′, s′, ll′′, s′′) > 0 and Proposi-
tion 24, we can conclude

∀a∗, s∗.[s′ < do(a∗, s∗) ∧ do(a∗, s∗) v s′′] ⊃ ∀id, val.a∗ 6= send(id, val). (7.19)

Furthermore, the definition of transPr/(ll′, s′, ll′′, s′′) > 0 implies

∀a∗, s∗.[s′ < do(a∗, s∗) ∧ do(a∗, s∗) v s′′] ⊃ ∀id, val.a∗ 6= reply(id, val). (7.20)

Recall that the successor state axiom for reg has the following form:

Poss(a, s) ⊃ [reg(id, do(a, s)) = val ≡
a = send(id, val) ∨ a = reply(id, val)∨
reg(id, s) = val ∧ ¬(∃r, v.a = send(r, v) ∨ a = reply(r, v))].

Then, from (7.19) and (7.20) and the successor state axiom for reg we get reg(id, s′) =
reg(id, s′′). Furthermore, by induction hypothesis reg(id, s′) = reg(id, s). Finally, by (7.18)
and the successor state axiom for reg we get reg(id, s∗) = reg(id, do(a, s′′)) = reg(id, do(a, s)),
which finishes the proof. 2

In Section 6.2.3, we introduced the continuous fluent clock which intuitively represents the
actual time. It is straightforward to show that if initially the robot has perfect information
about the value of clock then in the resulting theory clock is directly observable.

150 CHAPTER 7. BELIEF UPDATE IN PGOLOG

Proposition 26: Let AXBelUp be as in Proposition 25. Furthermore, let Γ be AXBelUp

together with the following axioms:

1. Poss(a, s) ⊃ clock(do(a, s)) = clock(s), and

2. p(s′, S0) > 0 ⊃ clock(s′) = clock(S0).

Then clock is directly observable with respect to Γ.

Proof: (Outline) We have to show S0 � s ⊃ [pll(s∗, ll∗, s) > 0 ⊃ clock(s′) = clock(S0)].
Again, the thesis is shown using the induction principle [Rei01]. In S0 the thesis is fulfilled
because of axiom (2). In the induction step, the thesis is fulfilled because of axiom (1). 2

This finishes the discussion of the formal properties of our specification of belief update.

7.2 Belief Update at Work - BHL’s 1-Dimensional Robot

In the previous section, we have specified how the robot’s epistemic state is to be updated, and
have shown important properties of our axiomatization. In this section, we will show how our
approach can be used to replicate the 1-dimensional robot example considered by Bacchus,
Halpern and Levesque in [BHL99]. Here, we are given a mobile robot moving along a straight
line in a 1-dimensional world. Initially, the robot believes to be at position 10 with probability
of 50%. The other positions considered possible are 8, 9, 11 and 12, and each of these four
possibilities is considered to have probability 12.5%. The robot can estimate its position by
means of a noisy low-level process noisySensePos. noisySensePos has a 50% probability to
correctly report the robot’s position, and else reports a value that deviates by exactly one from
the correct position. The probabilities for over- respectively for underestimation are equal.
Finally, the robot can move by means of the low-level process noisyAdv. noisyAdv is also
subject to noise; there is a 50% chance that it will correctly move the robot by the distance
specified, otherwise it will move the robot one unit more or less with equal probability.

7.2.1 Specification of the domain

Let us first formally specify the initial epistemic state of our 1-dimensional robot. We use the
functional fluent position to denote the robot’s position, and assume that position can only
take integer values. Initially, five situations are considered possible, and the value of position
in these situations ranges from 8 to 12. The weight of the situation fulfilling position = 10
is 1/2, and the weight of the other four situation is 1/8. The following axiom makes this
precise:4

∃s1, s2, s3, s4, s5 ∀s.s 6= s1 ∧ s 6= s2 ∧ s 6= s3 ∧ s 6= s4 ∧ s 6= s5 ⊃ p(s, S0) = 0 ∧
p(s2, S0) = 1/8 ∧ position(s2) = 8 ∧ p(s3, S0) = 1/8 ∧ position(s3) = 9∧
p(s4, S0) = 1/8 ∧ position(s4) = 11 ∧ p(s5, S0) = 1/8 ∧ position(s5) = 12∧
p(s1, S0) = 0.5 ∧ position(s1) = 10.

(7.21)

It is easy to verify that the above axiom implies that the robot’s beliefs regarding position
are distributed as specified in the example description. In particular, let Γ be the set of

4We remark that as our approach does not require normalized probabilities, we could as well assign weight
4 to the situation s′ satisfying position(s′) = 10 and weight 1 to the other possible situations.

7.2. BELIEF UPDATE AT WORK - BHL’S 1-DIMENSIONAL ROBOT 151

axioms AXBelUp from Proposition 25 together with the definition of Bel and the above axiom
specifying the robot’s initial epistemic state. Then it is easy to verify that Γ entails the
following:

Bel(position = l, S0) =

1/8 if l = 8
1/8 if l = 9
1/2 if l = 10
1/8 if l = 11
1/8 if l = 12
0 else.

Noisy Sense Position Next, let us characterize the position estimation process by the
pGOLOG procedure estimateProc. After activation, estimateProc provides an estimate of the
actual position through a reply action affecting reg(posEstimate). To model that the estimate
is correct with probability 50% and else deviates by one unit from the correct position, we
make use of two nested prob instructions. Note that throughout this section, we represent
low-level processes as instantaneous, abstracting away from their temporal extent.

proc(estimateProc, prob(0.5,reply(posEstimate, position),
prob(0.5,reply(posEstimate, position + 1),

reply(posEstimate, position− 1))))

At this point, it seems appropriate to clarify the sort of the different terms in this program.
position is a (reified) functional fluent that is evaluated at simulation time; actually, it is a
shorthand for the term position(now). On the other hand, reply(posEstimate, position) is a
primitive action, and its effect is to assign a new value to reg(posEstimate), namely the value
of position in the actual situation. Note that unlike reg, position is not directly observable.

Noisy Advance Now that we have modelled the position estimation process by the prob-
abilistic program estimateProc, let us turn to the low-level process noisyAdv. We model the
advance process by the pGOLOG procedure advanceProc, which takes as argument the integer
d. advanceProc affects the position of the robot through the primitive action exactAdv (see
below). To model that there is only a 50% probability that noisyAdv will move the robot by
exactly d units, we use two nested prob instructions.

proc(advanceProc(d), prob(0.5, exactAdv(d),
prob(0.5,exactAdv(d+ 1), exactAdv(d− 1))))

The following successor state axiom specifies that position changes its value only as an effect
of the execution of the primitive action exactAdv(d). We assume that exactAdv(d) is always
possible.

Poss(a, s) ⊃ [position(do(a, s)) = l ≡
∃d.a = exactAdv(d) ∧ l = position(s) + d ∨ ∀d.a 6= exactAdv(d) ∧ l = position(s)]

The Execution System’s Kernel Process Next, we have to characterize the behavior of
the whole execution level by a single pGOLOG procedure. The following procedure kernelBHL
is similar to the procedure kernelProc used in Section 6.2.3. However, unlike kernelProc,
kernelBHL has to deal with low-level processes involving arguments, namely with noisyAdv. In

152 CHAPTER 7. BELIEF UPDATE IN PGOLOG

particular, if reg(fork) is assigned the value advance(d), where d is an integer, then kernelBHL
must call advanceProc with the argument d. To this end, we make use of the functional fluent
getAdvArg defined below.

proc(kernelBHL, [reg(fork) 6= nil?,
if(reg(fork) = sense,

[reply(fork, nil),withPol(estimateProc, kernelBHL)],
if(∃d.reg(fork) = advance(d),

withPol(advanceProc(getAdvArg), [reply(fork, nil), kernelBHL]),
[reply(fork, nil), kernelBHL]))])

The functional fluent getAdvArg can be used to determine the number of units to move because
it is defined to have value d if reg(fork) = advance(d):

getAdvArg(x, s) = d ≡ reg(fork, s) = advance(d)∨
d = 0 ∧ ∀d′. reg(fork, s) 6= advance(d′).

Finally, we can characterize the robot’s initial epistemic state regarding the low-level processes
by the following axiom:

pll(s′, ll′, S0) > 0 ⊃ ll′ = kernelBHL. (7.22)

7.2.2 Dealing with Noisy Sensors

We will now discuss how the robot’s beliefs evolve as a result of a sequence of activations of
noisySensePos and noisyAdv. First, suppose the robot activates the noisy position estimation
process, for example because it executes the following plan:

[send(fork, sense),Bel(reg(posEstimate) 6= nil) = 1?].

Let Γ be the set of axioms AXBelUp from Proposition 25 together with the definition of Bel
and the axioms from Section 7.2.1, that is the two axioms (7.21) and (7.22), the successor
state axiom for position, the definition of getAdvArg, and the action precondition axiom
Poss(exactAdv(x)) ≡ True. Then, it is easy to verify that there is an (uncompleted) on-line
execution trace of the above program in S0 that results in the following situation:

do([send(fork, sense), reply(fork, nil)], S0).

We remark that the above situation represents the state of the world immediately before
noisySensePos provides its estimate. It is possible to show that in this situation the robot’s
belief state is composed of situations that result from the execution of send(fork, sense) and
reply(fork, nil) in an initial situation:

Γ |=p(s′, do([send(fork, sense), reply(fork, nil)], S0)) > 0 ≡
∃s′0. p(s′0, S0) > 0 ∧ s′ = do([send(fork, sense), reply(fork, nil)], s′0).

Intuitively, the send(fork, sense) action unblocks the model of the low-level processes, which
then immediately executes reply(fork, nil). Next, let us consider the state of execution of the
low-level processes associated with the possible situations. Here, we get the following:

Γ |=pll(s′, ll′, do([send(fork, sense), reply(fork, nil)], S0)) > 0 ⊃
ll′ = [nil,withPol(estimateProc, kernelBHL)].

7.2. BELIEF UPDATE AT WORK - BHL’S 1-DIMENSIONAL ROBOT 153

That is, the low-level process noisySensePos has been activated. Next, let us consider the
following situation where noisySensePos has provided an estimate of 11. As before, it is
possible to show that the following situation is a legal on-line execution trace:

Sr1
.= do([send(fork, sense), reply(fork, nil), reply(posEstimate, 11)], S0).

Here, we can deduce that only three situations remain in the updated belief state (recall that
initially five situations have been considered possible):

Γ |=p(s′, Sr1) = p ∧ p > 0 ≡ ∃s′0. p(s′0, S0) > 0 ∧
[s′ = do([send(fork, sense), reply(fork, nil), tossTail, tossTail, reply(posEstimate, 11)], s′0)
∧p = 1/2 ∗ 1/4 ∧ position(s′0) = 10 ∨

s′ = do([send(fork, sense), reply(fork, nil), tossHead, reply(posEstimate, 11)], s′0)
∧p = 1/8 ∗ 1/2 ∧ position(s′0) = 11 ∨

s′ = do([send(fork, sense), reply(fork, nil), tossTail, tossHead, reply(posEstimate, 11)], s′0)
∧p = 1/8 ∗ 1/4 ∧ position(s′0) = 12].

These situations correspond to a) the robot being at position 10 and the position estimation
process reporting position + 1; b) the robot being at position 11 and noisySensePos’ estimate
being perfect; or c) the robot being at position 12 and the position estimation process report-
ing position− 1. The respective (unnormalized!) weights are 1/2*1/4, 1/8*1/2 and 1/8*1/4.
Thus, the total weight of all situations considered possible is 7/32, and as a result in Sr1 the
robot’s updated (normalized) beliefs in its position are distributed as follows:

Bel(position = l, Sr1) =

4/7 if l = 10
2/7 if l = 11
1/7 if l = 12
0 else.

We will now consider how the belief changes after a sequence of activations of noisySensePos.
Let us assume that the agent re-activates noisySensePos in Situation Sr1, for example because
it executes the plan

[send(fork, sense),Bel(reg(posEstimate) 6= nil) = 1?,
send(posEstimate, nil), send(fork, sense),Bel(reg(posEstimate) 6= nil) = 1?].

Note the send(posEstimate, nil) action which is used to reset the value of reg(posEstimate) to
nil. This is needed to ensure that the second test Bel(reg(posEstimate) 6= nil) = 1? will cause
the high-level controller to wait until the inspect process has provided a second estimate.
Furthermore, let us assume that the position estimation process yields another estimate of
11, resulting in the following situation:

Sr2
.= do([send(estimate, nil), send(fork, sense), reply(fork, nil), reply(posEstimate, 11)], Sr1).

Note that Sr2 is a legal on-line execution trace of the above plan in S0. It is possible to deduce
that in this situation, the robot considers the following situations as possible:

Γ |=p(s′, Sr2) = p ∧ p > 0 ≡ ∃s′0. p(s′0, S0) > 0 ∧
[s′ = do([send(fork, sense), reply(fork, nil), tossTail, tossTail, reply(posEstimate, 11),

send(estimate, nil), send(fork, sense),
reply(fork, nil), tossTail, tossTail, reply(posEstimate, 11)], s′0)

154 CHAPTER 7. BELIEF UPDATE IN PGOLOG

∧p = 1/2 ∗ 1/4 ∗ 1/4 ∧ position(s′0) = 10 ∨
s′ = do([send(fork, sense), reply(fork, nil), tossHead, reply(posEstimate, 11),

send(estimate, nil), send(fork, sense),
reply(fork, nil), tossHead, reply(posEstimate, 11)], s′0)

∧p = 1/8 ∗ 1/2 ∗ 1/2 ∧ position(s′0) = 11 ∨
s′ = do([send(fork, sense), reply(fork, nil), tossTail, tossHead, reply(posEstimate, 11),

send(estimate, nil), send(fork, sense),
reply(fork, nil), tossTail, tossHead, reply(posEstimate, 11)], s′0)

∧p = 1/8 ∗ 1/4 ∗ 1/4 ∧ position(s′0) = 12].

Analogous to the situations considered possible in Sr1, the situations considered possible in
Sr2 thus correspond to a) the robot being at position 10 and the position estimation process
twice reporting position + 1; b) the robot being at position 11 and the position estimation
process twice reporting position; and c) the robot being at position 12 and the position
estimation process twice reporting position − 1. As a result, in Sr2 the robot’s beliefs about
its positions are distributed as follows:

Bel(position = l, Sr2) =

4/9 if l = 10
4/9 if l = 11
1/9 if l = 12
0 else.

Finally, suppose the robot activates noisySensePos yet another time, and that the estimate
turns out to be 11 again. Then in the resulting situation Sr3 the robot’s beliefs about position
are distributed as follows:

Bel(position = l, Sr3) =

4/13 if l = 10
8/13 if l = 11
1/13 if l = 12
0 else.

7.2.3 Dealing with Noisy Effectors

The above examples illustrate how the activation of the sensor process noisySensePos sharpens
the robot’s belief state. Let us now consider the effects of an activation of noisyAdv. Suppose
the robot decides to advance by 1 unit in Situation Sr3, leading to the following situation:

Sr4
.= do([send(fork, advance(1)), reply(fork, nil)], Sr3).

In this situation, the robot only considers situations possible which end with a sequence of
actions corresponding to one of the three different probabilistic branches of advanceProc.
Intuitively, this is because the send(fork, advance(1)) action has activated the noisy advance
process. In fact, it is possible to show

Γ |= p(s′, Sr4) = p ∧ p > 0 ≡ [∃s′′.
s′ = do([send(fork, advance(1)), tossHead, exactAdv(1), reply(fork, nil)], s′′)
∧p = 1/2 ∗ p(s′′, Sr3)∨

s′ = do([send(fork, advance(1)), tossTail, tossHead, exactAdv(1 + 1), reply(fork, nil)], s′′)
∧p = 1/4 ∗ p(s′′, Sr3)∨

s′ = do([send(fork, advance(1)), tossHead, tossTail, exactAdv(1− 1), reply(fork, nil)], s′′)
∧p = 1/4 ∗ p(s′′, Sr3)].

7.2. BELIEF UPDATE AT WORK - BHL’S 1-DIMENSIONAL ROBOT 155

We remark that in total, there are 9 situations considered possible, which correspond to the
three different execution traces of advanceProc in the three situations considered possible
in Sr3. Note that the weight of the situations including an exactAdv(1) action is doubled
compared to the weight of the class of situations including an exactAdv(0) or an exactAdv(2)
action. Altogether, this results in the following distribution over the robot’s beliefs regarding
position:

Bel(position = l, Sr4) =

4/52 if l = 10
16/52 if l = 11
21/52 if l = 12
10/52 if l = 13
1/52 if l = 14
0 else.

The above example illustrates that the activation of the noisy advance process causes the
robot’s confidence in its position to decrease. Now suppose the robot attempts to move back
to its previous position by activating noisySensePos with −1 as argument. It is possible to
show that robot’s beliefs in the resulting situation

Sr5
.= do([send(fork, advance(−1)), reply(fork, nil)], Sr4)

are distributed as follows:

Bel(position = l, Sr5) =

4/208 if l = 8
24/208 if l = 9
57/208 if l = 10
68/208 if l = 11
42/208 if l = 12
12/208 if l = 13
1/208 if l = 14
0 else.

That is, the re-activation of the noisy advance process further decreases the robot’s confidence
in its position. As a final example, let us assume that the robot activates noisySensePos yet
another time, and that once again the low-level process reports 11. In particular, let us
consider the situation Sr6 defined as follows:

do([send(posEstimate, nil), send(fork, inspect), reply(fork, nil), reply(posEstimate, 11)], Sr5).

Then, we can deduce that the new activation of the position estimation process has sharpened
the robot’s belief state, resulting in the following beliefs regarding position:

Bel(position = l, Sr6) =

57/235 if l = 10
136/235 if l = 11
42/235 if l = 12
0 else.

Finally, we remark that the distributions we obtained using belief update in the pGOLOG
framework coincide with the distributions obtained in [BHL99], Section 7.4, and correspond
to what one would expect using Bayesian conditioning.

156 CHAPTER 7. BELIEF UPDATE IN PGOLOG

7.3 Belief-Based Programs and Probabilistic Projection Tests

In this section, we will investigate two applications of belief update. First, we will show how
based on the specification of how the fluents pll and p evolve it becomes possible to execute
belief-based plans that appeal to the robot’s real-valued beliefs at execution time. Second,
we will show how to interleave on-line execution and probabilistic projection, in analogy to
the interleaving of on-line execution and time-bound projection in cc-Golog considered in
Section 5.2.

7.3.1 Belief-Based Programs

The belief-based bGOLOG plans we have considered so far were only pseudo-belief-based plans,
that is belief-based plans whose tests and conditionals made only appeal to the robot’s beliefs
concerning the directly observable fluent reg. The reason why we only considered pseudo-
belief-based plans is that reg is directly observable, and thus that the robot’s beliefs regarding
reg can be determined without considering the epistemic fluent p. Note that as reg is directly
observable, the robot’s beliefs regarding the value of a register are always either 0 or 100%.
Now that we have formally specified how the epistemic fluents p and pll evolve, we can consider
unrestricted belief-based plans that appeal to arbitrary real-valued beliefs.

As an example, let us go back to the ship/reject domain (cf. Chapter 6) and assume that
we want to specify that the robot is to correctly process the widget with probability 99%. For
simplicity, we do not require the widget to be painted. This can be achieved by the following
belief-based bGOLOG plan:

proc(ΠloopInsp,
[while(¬(Bel(FL) ≥ 0.99 ∨ Bel(¬FL) ≥ 0.99),

[send(inspect, nil), send(fork, inspect),Bel(reg(inspect) 6= nil) = 1?]),
if(Bel(FL) = 1, send(fork, reject), send(fork, ship)),Bel(reg(processed) 6= nil) = 1?]).

The above plan specifies that the robot is to activate the inspect process until it is sufficiently
confident about whether the widget is flawed or not. Note that the send(inspect, nil) action in
the body of the while-loop is necessary to guarantee that the test Bel(reg(inspect) 6= nil) = 1?
blocks the plan until inspect has completed execution even if inspect has already been activated
before. Once the robot is sufficiently confident about the value of FL, the widget is shipped
or rejected, depending on the robot’s beliefs. Let us now consider some example on-line
execution traces of ΠloopInsp. First, let us consider the following situation:

S1
.= do([send(inspect, nil), send(fork, inspect),

reply(fork, nil), ccUpdate(0.25), ...ccUpdate(10.0),
reply(inspect,OK),
send(fork, reject),
reply(fork, nil), ccUpdate(10.25), ...ccUpdate(20.0), reply(processed,>)], S0).

Let Γ be the set of axioms AXBelUp (cf. Proposition 25) together with the axioms from
Section 6.3.2 modeling the ship/reject domain. Then it is not difficult to see that S1 is a
legal (completed) on-line execution trace of ΠloopInsp with respect to Γ. Initially, ΠloopInsp

can cause two transition, involving the execution of send(inspect, nil) and send(fork, inspect).
Note that initially the while-loop is not Final because the robot’s intial beliefs in FL are 0.3.
Thereafter, the belief-based plan becomes blocked, waiting for reg(inspect) to get a non-nil

7.3. BELIEF-BASED PROGRAMS AND PROBABILISTIC PROJECTION TESTS 157

value. The next actions in S1 are exogenous actions. The reply(inspect,OK) action causes
the robot’s beliefs in FL to immediately rise to 100% (cf. Section 7.1.4). As a result, the
belief-based plan becomes unblocked. The while-loop is Final because in the actual situation
Bel(FL) is 1, so the belief-based plan pursues the conditional, which results in the execution of
send(fork, reject). Therafter, it waits for the reject process to finish execution, which is signaled
by the exogeneous reply(processed,>) action, and finishes execution. Thus S1 corresponds to
a completed on-line execution.

The on-line execution of ΠloopInsp can also result in other execution traces, like for example:

S2
.= do([send(inspect, nil), send(fork, inspect),

reply(fork, nil), ccUpdate(0.25), ...ccUpdate(10.0), reply(inspect,OK),
send(inspect, nil), send(fork, inspect),
reply(fork, nil), ccUpdate(10.25), ...ccUpdate(20.0), reply(inspect,OK),
send(fork, reject),
reply(fork, nil), ccUpdate(20.25), ...ccUpdate(30.0), reply(processed,>)], S0).

As discussed in Section 7.1.4, the observation of one OK answer causes the robot’s belief in
¬FL to rise to 70/73 = 0.7/(0.7 + 0.3 ∗ 0.1). Similarly, the observation of two OKs cause the
robot’s belief in ¬FL to rise to 0.7/(0.7 + 0.3 ∗ 0.1 ∗ 0.1), which is more than 0.99. Thus, af-
ter the second OK answer the while-loop becomes Final and ΠloopInsp executes the conditional.

As another example, the following belief-based plan specifies that the robot is to activate
the inspect process until it is sufficiently confident about whether the widget is flawed or not,
then it is to activate the paint process until its belief in the widget being painted rises to 99%,
and finally it is to process the widget:

proc(ΠloopInsp&Paint,
[while(¬(Bel(FL) = 1 ∨ Bel(¬FL) ≥ 0.99),

[send(inspect, nil), send(fork, inspect),Bel(reg(inspect) 6= nil) = 1?]),
[while(Bel(PA) ≤ 0.99,

[send(painted, nil), send(fork, paint),Bel(reg(painted) 6= nil) = 1?]),
if(Bel(FL) = 1, send(fork, reject), send(fork, ship)),Bel(reg(processed) 6= nil) = 1?]).

As the examples illustrate, belief-based programs allow the programmer to provide domain
dependent procedural knowledge in a natural way. We remark that our framework does
not only allow the on-line execution of belief-based plans like ΠloopInsp, but also supports
probabilistic projection of belief-based plans. In particular, from the set of axioms Γ it is
possible to deduce:

PBel(PR ∧ ¬ER, S0,ΠloopInsp, kernelBHL) = 99.7, and

PBel(PA ∧ PR ∧ ¬ER, S0,ΠloopInsp&Paint, kernelBHL) = 99.45075.

Functional Fluents in Belief-Based Programs In Section 6.2.4, we required that a
bGOLOG plan may not refer to functional fluents as arguments of primitive actions or proce-
dure calls. Intuitively, the reason why we had to make this assumption is that bGOLOG plans
may only appeal to the robot’s beliefs but not to the actual value of fluents. In particular,
this means that a bGOLOG plan may not appeal to the value of functional fluents. Thus, the

158 CHAPTER 7. BELIEF UPDATE IN PGOLOG

following pGOLOG program is not a legal high-level plan with respect to our formalization of
BHL’s 1-dimensional robot example:

[say(“My position is:”), say(position)].

While it is clear that the robot cannot refer to the value of position because it is un-
certain about it, intuitively nothing prevents the robot from announcing the estimate of
the actual position, namely the value of reg(posEstimate) provided by the low-level process
noisySensePos. Note that unlike in the case of position, the robot is certain about the value
of reg(posEstimate), meaning that it has a 100% belief.

To allow the robot to refer to functional fluents about which it is certain, we introduce
the epistemic functional fluent Kwhich(f). Kwhich takes as argument a functional fluent f .
Intuitively, the value of Kwhich(f) is v if the robot has a 100% evidence that the value of f
is v; else Kwhich(f) = nil. The following axiom makes this precise:

Kwhich(f, s) = v ≡ Bel(f = v, s) = 1 ∨ ¬∃v′.Bel(f = v′, s) = 1 ∧ v = nil.

Thus, Kwhich allows the robot to refer to the value of functional fluents about which it has
100% beliefs. Using Kwhich, it would be possible to specify that the robot is to announce the
estimate provided by noisySensePos, for example using the following instructions:

[say(“My position is:”), say(Kwhich(reg(posEstimate)))].

As another application of Kwhich, suppose the 1-dimensional robot wants to get to position
0. Then, taking advantage of Kwhich, one could specify the following plan, telling the robot
to first activate noisySensePos, then wait until it provides an estimate d, and finally activate
noisyAdv, telling it to move back the robot by d units:

Πkwhich
.= [send(fork, sense),Bel(reg(posEstimate) = nil) < 1?,

send(fork, advance(−1 ∗Kwhich(reg(posEstimate)))),Bel(position = 0) > 0?].

Using probabilistic projection, one can deduce that this plan has a reasonable probability to
result in the robot being at position 0. Let Γ be the set of axioms AXBelUp together with
the definition of PBel, the axioms (7.21) and (7.22) from Section 7.2.1 specifying the robot’s
initial epistemic state, the successor state axiom for position, the definition of getAdvArg, and
the action precondition axiom Poss(exactAdv(x)) ≡ True. Then, it is possible to show:

Γ |= PBel(position = 0, S0,Πkwhich, kernelBHL) = 3/8.

That is, the plan has a probility of 37.5% to move the robot to position 0. We remark that
our formalism also entails that the probability to end up at position 1 respectively -1 is 25%,
and that the probability to end up at position 2 respectively -2 is 6.25%. In total, there are
45 possible execution traces.

Aside – waitFor in Belief-Based Programs In Section 6.2.4 we also required that a
bGOLOG plan may not include waitFor actions. Intuitively, the reason why we had to make
this assumption is that while bGOLOG plans may only appeal to the robot’s beliefs, waitFor
actions directly appeal to the value of continuous fluents, like for example clock, battLevel or
robotLoc. In the remainder of this subsection, we will sketch some consideration as to how
this restriction can be overcome.

7.3. BELIEF-BASED PROGRAMS AND PROBABILISTIC PROJECTION TESTS 159

The idea is that although a bGOLOG plan may not wait for the value of a continuous
fluent to fulfill certain conditions, it may very well wait for the robot’s continuously changing
beliefs about the value of continuous fluents to fulfill a condition. To get a feel for this idea,
let us reconsider the 1-dimensional robot example from Section 4.1.2, where a mobile robot
is moving along a straight line (this is not the example from Bacchus, Halpern and Levesque
which doesn’t account for continuous change). The robot’s location is represented by the
fluent robotLoc1d. For simplicity, we will not consider any actions that affect the robot’s
position, nor a model of the low-level processes.

Let us assume that initially the robot knows that it is moving with velocity 1, but is unsure
about its position at the beginning of S0: there is a 30% chance that it is at position 9, and
a 70% chance that it is at position 10. The following axiom makes this precise, specifying
that initially the robot considers two situations possible, s1 and s2, with degree of likelihood
0.3 respectively 0.7. s1 represents the situation where at the beginning of S0 the robot is at
position 9, and s2 where it starts at position 10. Note that in both situations, the value of
robotLoc1d is a continuous linear function of time (cf. Section 4.1.3 on page 58).

∃s1, s2∀s.s 6= s1 ∧ s 6= s2 ⊃ p(s, S0) = 0 ∧
p(s1, S0) = 0.3 ∧ p(s2, S0) = 0.7∧
robotLoc1d(s1) = linear(9, 1, start(s1))∧
robotLoc1d(s2) = linear(10, 1, start(s2))

Next, let us assume that the robot’s task is to execute the action say(“I am at 20”) as soon as
it reaches position 20. Intuitively, the robot cannot execute waitFor(robotLoc1d ≥ 20) because
it has only probabilistic beliefs about its position. However, it can wait until its belief that it
has reached position 20 exceeds a certain threshold. For example, it can wait for its belief in
being at a position ≥ 20 to exceed 50%. Intuitively, this should be the case after 10 seconds.
Or, it can wait for its belief to be at a position ≥ 20 to exceed 99%, which should cause it to
wait for 11 seconds.

The above example suggests that one possibility to relax the condition that no waitFor
actions may occur in bGOLOG plans would be to allow the occurence of waitFor actions
appealing to epistemic t-forms. Here, an epistemic t-form is an expression of the form
Bel(τ) op p, where τ is an ordinary t-form, op ∈ {≥,=≤}, and p is a probability. An example is
Bel(robotLoc1d ≥ 20) ≥ 0.5. As with ordinary t-forms, one would evaluate an epistemic t-form
at a situation s and time t. [Bel(τ) op p][s, t] would then be defined as Bel(τ [s, t]) op p, where
τ [s, t] is the expression used to evaluate ordinary t-forms (cf. Section 4.1.4 on page 58). For ex-
ample, [Bel(robotLoc1d ≥ 20) ≥ 0.5][s, t] would become Bel(val(robotLoc1d(s), t) ≥ 20) ≥ 0.5.
Using this approach, it would be possible to specify and project bGOLOG plans like the
following:

[waitFor(Bel(robotLoc1d ≥ 20) ≥ 0.5), say(“I am at 20”)].

However, these ideas can only be considered as pre-considerations to a more general framework
for dealing with probabilistic uncertainty and continuous change in pGOLOG. There are many
reasons why the considerations presented above cannot be considered complete. For one, so
far we assume that during on-line execution the high-level controller is provided with estimates
of the value of all continuous fluents by means of ccUpdate actions. This means that during
on-line execution the continuous fluents are directly observable. However, in general it seems
desirable to consider both directly observable and non-observable continuous fluents. For
example, unlike the voltage level of the robot’s batteries, which arguably can be considered

160 CHAPTER 7. BELIEF UPDATE IN PGOLOG

as directly observable during on-line execution, the (continuous) position of a ball kicked by
the robot can hardly be considered as directly observable.

For another, our successor state axiom for pll specifies that a configuration c considered
possible is only removed from the epistemic state (without replacement by a successor con-
figuration) if a reply action occurs that is not compatible with the program component of c.
However, when dealing with continuous change it is appealing to also make use of ccUpdate
actions to sharpen the robot’s epistemic state. For example, in the mobile robot example
considered in Chapter 4 and 5 one could imagine to remove a configuration c from the robot’s
epistemic state if the approximation of the trajectory yielded by c and the estimates provided
by the ccUpdates differ significantly. We leave this to future work.

7.3.2 Probabilistic Projection Tests

As elaborated in Section 5.2, it is often useful to interleave on-line execution and projection,
for example in order to deliberate over possible sub-plans before committing to one of them.
In this subsection, we will discuss the changes necessary to allow for probabilistic projection
during on-line execution. In particular, we will introduce local lookahead constructs which
allows probabilistic projection and projection of the expected utility under user control.

Before we can turn to the definition of the projection tests, we first have to adapt our
definition of projected belief to our characterization of the robot’s epistemic state as a dis-
tribution over configurations. Note that the PBel construct introduced in Section 6.3.1 only
allowed the projection of a plan using the same model of the low-level processes in all situa-
tions considered possible. On the other hand, in our characterization of the robot’s epistemic
state by the fluent pll the pGOLOG program modeling (the state of execution of) the low-level
processes may differ from situation to situation.

Similar to Section 6.3, in situation s the projected probability that a sentence φ will hold
after the execution of a plan σ is determined by simulating σ in each situation s′ considered
possible in s, weighted by the likelihood of s′ as specified by p. The possible effects of the
low-level processes are taken into account by concurrently simulating the pGOLOG model ll′

associated with s′. Formally, let φ be a formula whose only term of sort situation is the special
situation term now , s a situation, and σ a bGOLOG plan. Then we redefine PBel(φ, σ, s), the
projected belief that that φ holds after the execution of σ in situation s, as follows:

PBel(φ, σ, s) = p ≡
∃punorm, soffline.soffline = do(clipOnline, s)∧
punorm =

∑
{s′,ll′,s∗|φ[s∗]} pll(s′, ll′, soffline)× doPr(withPol(ll′, σ), s′, s∗)∧

p = punorm/
∑
{s′} p(s

′, soffline)

PBel(φ, σ, s) is thus defined to be the weight of all paths that reach a final situation s∗ where φ
holds, starting from a possible configuration 〈ll′, s′〉, weighted by the robot’s belief in 〈ll′, s′〉.
Note the use of clipOnline, which switches to projection mode both in the actual situation and
in the situations considered possible. The main difference between the definition in Section 6.3
and this one is that while the former made use of the same pGOLOG model llmodel in every
situation s′, here the pGOLOG model of the low-level processes may vary over the different
situations s′ considered possible.

Now that we have adapted our definition of projected belief, we can turn to the definition
of programs which appeal to probabilistic projection tests. In particular, similar to Sec-
tion 5.2.2 we introduce a term PBel which is a reified version of PBel with situation argument

7.3. BELIEF-BASED PROGRAMS AND PROBABILISTIC PROJECTION TESTS 161

suppressed. The idea is that PBel may be used within tests, conditionals and while-loops to
allow probabilistic projection under user control. Similar to Section 5.2.2, in order to avoid
running into self-referencing sentences like programs appealing to their own effects, we intro-
duce a new sort of programs: ProgbGologPT . programs of sort ProgbGologPT are like bGOLOG
programs but additionally may appeal to PBel conditions. On the other hand, PBel condi-
tions are restricted to ordinary bGOLOG programs (as second argument) in order to avoid
the definition of self-referencing programs. See Appendix A.3.4 for an in-depth treatment of
these issues.

Similarly, we redefine the expected utility operator EU from Section 6.3.3, adapting it
to our characterization of an epistemic state as a distribution over configurations. Formally,
EU(σ, s), the expected utility of the plan σ in situation s, is defined as the weighted average of
the utility U (cf. Section 6.3.3) of the possible execution traces resulting from the execution
of σ in s:

EU(σ, s) = u ≡ u =
∑
v

v × PBel(U(now) = v, σ, s).

Similarly to PBel, we define a term EU which is a reified version of EU and which may be
used within programs of sort ProgbGologPT ; cf. Appendix A.3.4 for the details. Note that the
use of EU requires an axiomatization of the utility and reward functions U and reward, just
as in Section 6.3.3. We remark that in Section 8.4.3, we will present an extended example
illustrating the use of the EU operator.

7.3.3 Dealing with Continuous Fluents in Probabilistic Projection Tests

If we want to interleave on-line execution and probabilistic projection in domains involving
continuous fluents, new issues arise. These have to do with the fact that during on-line
execution the low-level system periodically provides the high-level controller with updates of
the values of the continuous fluents by means of ccUpdate actions, and that these actions
affect the value of the continuous fluents.

To get a sense of the problem, let us reconsider the mobile robot example from Chapter 4
and 5. Here, we made use of the continuous fluent robotLoc to represent the robot’s position,
and approximated the robot’s trajectory by a piecewise linear function. Let us assume that
the robot, standing in the entrance of a room, starts traveling to a certain location l within
the room. In this situation, an appropriate model of the low-level navigation process would
specify that robotLoc is characterized by a linear function heading towards l, and that the
low-level navigation process can be characterized as waiting until l is reached. The situation
is illustrated in Figure 7.1 (left).

In order to enable the projection of the remaining plan at any time during on-line ex-
ecution, in particular immediately after a ccUpdate action, we have to ensure that after a
ccUpdate the continuous fluent robotLoc has as value a t-function which heads towards the
destination (else the model of the low-level navigation process will wait forever). However,
according to our current approach discussed in Section 5.1.1, ccUpdate would simply assign
robotLoc a constant function of time, meaning that the robot would be projected never to
get to its destination. Note that as illustrated by Figure 7.1 (right), specifying that instead
ccUpdate is to shift the t-function, sticking to its derivatives, is no solution either because the
resulting approximated trajectory may never reach the destination.

In order to overcome this problem, we need a new successor state axiom for robotLoc
which specifies that after a ccUpdate action robotLoc has as value a t-function which starts at

162 CHAPTER 7. BELIEF UPDATE IN PGOLOG

t-function

location l

Figure 7.1: A shifted t-function missing the destination.

the robot’s actual location but is heading towards the destination. For this purpose, we first
define the new t-function toCoords. Similarly to linear, toCoords is a linear function of time.
However, toCoords additionally provides information about the robot’s destination. Formally,
toCoords is a function with six argument: x0, y0, t0, xd, yd, and v. The intuition is that at time
t0, toCoords has as value the tuple 〈x0, y0〉. Starting from there, toCoords(x0, y0, t0, xd, yd, v)
moves linearly towards 〈xd, yd〉 with velocity v. The following axiom makes this precise:

val(toCoords(x0, y0, t0, xd, yd, v), t) = 〈x, y〉 ≡
¬[xd = x0 ∧ yd = y0]∧x = x0 + (t− t0) ∗ v ∗ (xd − x0)/ν∧

y = y0 + (t− t0) ∗ v ∗ (yd − y0)/ν∨
xd = x0 ∧ yd = y0 ∧ x = x0 ∧ y = y0.

Here, ν .=
√

(xd − x0)2 + (yd − x0)2 is the total length of the arc from 〈x0, y0〉 to 〈xd, yd〉.
This normalizing factor is needed in order to ensure that the total 2-dimensional velocity
does not exceed v. We remark that the second disjunct of the above axiom ensures that the
funtion is well defined even if 〈x0, y0〉 = 〈xd, yd〉.

Using the new t-function toCoords, we can specify a new successor state axiom for robotLoc
which ensures that if the value of robotLoc is a function of time heading towards a location l,
then after a ccUpdate robotLoc is still heading towards l:

Poss(a, s) ⊃ [robotLoc(do(a, s)) = f ≡
∃t, x, y. t = start(do(a, s)) ∧ val(robotLoc(s), t) = 〈x, y〉 ∧ v = 30cm/s∧

[∃x′, y′.a = startGo(〈x′, y′〉) ∧ f = toCoords(x, y, t, x′, y′, v)∨
a = endGo ∧ f = constant(x, y)∨
∃xu, yu, lu, tu.a = ccUpdate(xu, yu, lu, tu)∧

[∃x′, y′, x′′, y′′, t′, v′′. robotLoc(s) = toCoords(x′, y′, t′, x′′, y′′, v′′)
∧f = toCoords(xu, yu, tu, x′′, y′′, v)∨

robotLoc(s) = constant(x, y) ∧ f = constant(xu, yu)]∨
¬∃x, y, l, t.[a = startGo(x, y) ∨ a = endGo ∨ a = ccUpdate(x, y, l, t)]∧
f = robotLoc(s)]].

As in the old successor state axiom from Section 5.1.1, the variables x and y refer to the actual
coordinates of the robot and t to the starting time of the new situation. After startGo(〈x′, y′〉),

7.3. BELIEF-BASED PROGRAMS AND PROBABILISTIC PROJECTION TESTS 163

robotLoc has as value a t-function toCoords starting at the current position and moving toward
〈x′, y′〉. After endGo, it is constant. If a is a ccUpdate(xu, yu, lu, tu) action, things are some-
what more complicated: if the robot was travelling to location 〈x′′, y′′〉, robotLoc is updated
to a function toCoords whose value at the time where ccUpdate occurs is 〈xu, yu〉 and which
is moving towards 〈x′′, y′′〉; if the position was constant, it is updated to constant(xu, yu).
Finally, if a is neither a startGo, endGo nor a ccUpdate action, robotLoc remains unchanged.
For simplicity, we model the robot as travelling at a constant speed of 30 cm/s.

Intuitively, by the new successor state axiom we memorize the robot’s destination in the
fluent robotLoc. To illustrate how this allows the projection of a plan dealing with continuous
change immediately after a ccUpdate action, let us consider the following bGOLOG plan Πccp.
The following examples are similar to the ones in Section 5.1.5, with the difference that here
the robot’s updated belief state keeps track of the internal state of exection of the low-level
navigation process.

Πccp
.= [send(destRoom, 6205), [reg(arrivedAt) = 6205]?]

We assume the following specification of the robot’s initial epistemic state. For simplicity we
only consider one situation possible:

∃s∗, ll∗.ll∗ = navProc ∧ robotLoc(s∗) = constant(p0, q0) ∧ battLevel(s∗) = 48∧
[pll(s′, ll′, S0) = p ∧ p > 0 ≡ s′ = s∗ ∧ ll′ = ll∗].

D

Rm 6213

Rm 6205

Figure 7.2: On-Line Execution Trace of Πccp

The above axiom specifies that initially the robot believes to be at position 〈p0, q0〉, which we
assume to be in Room 6213, and that the batteries voltage level is 48, which is sufficiently high
to allow the robot to navigate. Furthermore, it specifies that initially the low-level navigation
process (which in this example is the only low-level process) can be characterized by the
procedure navProc described in Section 4.3.2. For convenience, we repeat the definition of
navProc here:

proc(gotoLoc(〈x, y〉), [startGo(〈x, y〉),waitFor(near(〈x, y〉))])

proc(travelTo(dest),conc([if(currentRoom 6= hallway,
[gotoLoc(exitOf (currentRoom)),
gotoLoc(entryOf (currentRoom))]),

164 CHAPTER 7. BELIEF UPDATE IN PGOLOG

gotoLoc(entryOf (dest)),
gotoLoc(exitOf (dest)),
gotoLoc(centreOf (dest)),
endGo, reply(arrivedAt , dest)],

[(reg(destRoom) 6= dest)?, endGo]))

proc(navProc, forever([(reg(destRoom) 6= currentRoom ∧ reg(destRoom) 6= nil)?,
travelTo(reg(destRoom))])).

Let Γ be the set of axioms AXBelUp together with the new successor state axiom for robotLoc,
the successor state axiom for battLevel and the action precondition axioms for startGo and
endGo from Section 5.1.1, and the above axiom specifying the robot’s initial epitemic state.
Then, similar to Section 5.1.5, it is possible to show that the following situation Sexec visu-
alized in Figure 7.2 is a legal on-line execution trace of the bGOLOG plan Πccp with respect
to Γ. As usual, we assume that the navigation process provides a ccUpdate action every .25
seconds, and use pi, qi as appropriate x− y-coordinates along the path of the robot (we have
left out the 3rd argument (voltage level) of ccUpdate):

Sexec
.= do([send(destRoom, 6205),

ccUpdate(p1, q1, 0.25), ccUpdate(p2, q2, 0.5),
ccUpdate(p3, q3, 0.75), ccUpdate(p4, q4, 1.0),
ccUpdate(p5, q5, 1.25), ccUpdate(p6, q6, 1.5),
ccUpdate(p7, q7, 1.75), ccUpdate(p8, q8, 2.0)], S0).

Similarly, it is not difficult to show that the following plan is what remains of Πccp in Sexec:

Πrem
ccp

.= [nil, reg(arrivedAt) = 6205?].

Now let us take a look at the situations considered possible in Sexec. From Γ, it is possible
to show that only one situation is considered possible in Sexec, and that this situation can
be obtained from an initial situation s0 by execution of the same actions as those which lead
from S0 to Sexec plus two additional startGo actions:

Γ |= p(s′, Sexec) > 0 ⊃ ∃s0.p(s0, S0) > 0∧
s′ = do([send(destRoom, 6205),

startGo(exitOf (6213)),
ccUpdate(p1, q1, 0.25), ccUpdate(p2, q2, 0.5),
ccUpdate(p3, q3, 0.75), ccUpdate(p4, q4, 1.0)
ccUpdate(p5, q5, 1.25), ccUpdate(p6, q6, 1.5),
startGo(entryOf (6213)),
ccUpdate(p7, q7, 1.75), ccUpdate(p8, q8, 2.0)], s0).

As in the examples in Section 7.1.4, the additional actions result from the fact that the model
of the low-level processes (namely navProc) has become unblocked (because of the execution of
send(destRoom, 6205) by the high-level plan). In particular, navProc has first subsequently
invoked travelTo and gotoLoc, which has finally executed startGo(exitOf (6213)). Then, it
was blocked, waiting for the robot to reach a position near exitOf (6213). We assume that
〈p6, q6〉 is the first position which fulfills this condition. Thereafter, navProc has executed
startGo(entryOf (6213)).

7.3. BELIEF-BASED PROGRAMS AND PROBABILISTIC PROJECTION TESTS 165

Next, let us consider the value of the continuous fluent robotLoc in the above situation s′.
From Γ, we can deduce that robotLoc(s′) has as value a t-function toCoords starting at 〈p8, q8〉
and heading to 〈x1, y1〉, where x1, y1 stand for the x − y-coordinates of the intermeadiate
position entryOf (6213):

Γ |= p(s′, Sexec) > 0 ⊃
∃t8, v.start(s′) = t8 ∧ robotLoc(s′) = toCoords(p8, q8, t8, x1, y1, v).

Finally, let us consider the state of the pGOLOG model ll′ associated with the situation s′.
As one would expect, from Γ we can deduce that ll′ corresponds to what remains of navProc
after execution of startGo(exitOf (6213)) and startGo(entryOf (6213)):

Γ |= pll(s′, ll′, Sexec) > 0 ⊃
ll′ =[conc([[nil,waitFor(near(entryOf (6213)))],

gotoLoc(entryOf (6205)),
gotoLoc(exitOf (6205)),
gotoLoc(centreOf (6205)),
endGo, reply(arrivedAt , 6205)],
[(reg(destRoom) 6= 6205)?, endGo]),

navProc].

5

3

4

2

Rm 6213

Rm 6205

Figure 7.3: Projection during Execution

From the above, one can infer that it is possible to correctly project the remaining plan Πrem
ccp

in Sexec. To see why, observe that (a) robotLoc(s′) is heading towards intermediate position
2, that is towards entryOf (6213) and (b) the pGOLOG model ll′ accounts for the fact that
the navigation process has already started execution and is now waiting to reach a position
near entryOf (6213). Figure 7.3 illustrates the simulation of the remaining plan in situation
s′ with ll′ being used as model of the low-level navigation process.5 Thus, the use of the new
successor state axiom for robotLoc based on the t-function toCoords overcomes the problems

5We remark that the projection illustrated in Figure 7.3 slightly differs from the corresponding projection
in Section 5.2.1. In particular, here the simulated execution trace includes a waitFor action at intermeadiate
position l2 which was not present in Figure 5.5 on page 91. This is because in Section 5.2.1 we did not memorize
the state of execution of the low-level process, but instead used the whole program navProc as the model of
the navigation process.

166 CHAPTER 7. BELIEF UPDATE IN PGOLOG

which arise when on-line execution and probabilistic projection is interleaved in the mobile
robot domain which involves continuous change.

Finally, we remark that the approach presented in this subsection requires that the model
of every low-level process is correct in the following sense: if it includes a waitFor action
which is specified to always happen before a reply action, then during actual on-line execu-
tion the low-level process must be guaranteed to cause this waitFor action to become true
before it provides the reply action. For example, if the model of the navigation process spec-
ifies that the navigation process first waits until near(entryOf (6213)) becomes true and only
thereafter executes reply(arrivedAt , dest), then during actual on-line execution the naviga-
tion process must really move the robot near the entry of Room 6213 before providing a
reply(arrivedAt , dest). If this is not guaranteed, the model of the low-level processes will lose
synchronization with the actual state of the world, meaning that it will still be waiting for a
waitFor condition like near(entryOf (6213)) to become true at the time where the reply action
will occur. As a result, the model of the low-level process will not be compatible with that
action (cf. Section 7.1.3). – Of course, if the user is not sure which path the navigation pro-
cess will use, she can always specify a probabilistic model of the navigation process involving
different probabilistic branches representing the different possible paths.

7.4 Discussion

In this chapter, we have specified how the robot is to update its probabilistic belief state
during the on-line execution of high-level programs. Our approach accounts for noise, the
temporal extent of low-level processes, and partial observability of the domain. It is based on
the idea of characterizing the robot’s epistemic state as a distribution over possible configu-
rations, which consist of a situation modeling the possible state of the world, and a pGOLOG
program modeling the low-level processes and their internal state of execution. Based on
this characterization, belief update is realized, roughly, by simulating how the configurations
considered possible evolve from s to do(a, s). In doing so, reply actions which provide sensing
information are used to sharpen the robot’s epistemic state. In particular, if a reply action
occurs then all configurations that did not predict the occurrence of this reply action are re-
moved from the epistemic state. We have shown some important properties of our approach,
and have proved the fluent reg to be directly observable with respect to our axiomatization.

Thereafter, we have illustrated our approach by showing that it can be used to replicate
the 1-dimensional robot example considered in [BHL99]. Finally, we have shown how based
on our approach it becomes possible to specify and execute belief-based plans, and how on-
line execution and probabilisitic projection can be interleaved under user control. We have
also elaborated on some issues which arise in the presence of continuous fluents. However,
as discussed in the last paragraph of Section 7.3.1, there are still open issues regarding the
seamless integration of continuous change, on-line execution and probabilistic belief update.

Many of the ideas in this paper rely on previous work by Bacchus, Halpern and Levesque
[BHL95, BHL99]. In particular, we owe them the epistemic fluent p. Our approach and theirs
differ in that we manage solely with the prob instruction, while they appeal to nondeterministic
instructions, action-likelihood and observation-indistinguishability axioms. In particular, to
represent that noisy sensors and effectors can have different possible outcomes, they make use
of GOLOG’s nondeterministic instructions σ1|σ2 and πx.σ. For example, to model a mobile
robot moving along a straight line in a 1-dimensional world, they make use of the primitive

7.4. DISCUSSION 167

action exactAdv(x, y), and of the nondeterministic action

noisyAdv(x) .= πy.exactAdv(x, y).

Here, noisyAdv(x) represents an action directly executable by the robot, namely trying to
move x, and exactAdv(x, y) stands for the robot trying to move x but actually moving y. The
idea is that the robot cannot directly execute the primitive action exactAdv(x, y), but instead
can only execute the nondeterministic action noisyAdv(x). To ensure that the difference
between the nominal value x and the actual value y is bound, they make use of appropriate
precondition axioms, like for example:

Poss(exactAdv(x, y), s) ≡ |x− y| ≤ b.

In order to represent the agent’s limited perceptual capabilities, they introduce observation-
indistinguishability axioms (OI-axioms) which are used to specifies that (in a certain situa-
tion) the agent is unable to discriminate a set of actions a′ from the action a. For example,
they specify that after execution of a concrete exactAdv(x, y), the agent does not know which
exactAdv(x, y′) was executed by the following observation-indistinguishability axiom:

OI(exactAdv(x, y), a′, s) ≡ ∃y′.a′ = exactAdv(x, y′).

Additionally, they use action-likelihood axioms (l-axioms) to specify the likelihood of an
action a in situation s. For example, to model that the agent believes that there is a 50%
chance that noisyAdv(x) will move the robot by a value y which deviates by one unit from
the intended distance x they use the following axiom:

l(exactAdv(x, y), s) = if x = y then 0.5 else if |x− y| = 1 then 0.25 else 0.

Noisy sensors can be represented similarly. One effect of the different characterization
of noisy low-level processes in their approach and in ours is that in the two approaches the
situations s′ considered possible in a situation s have a different relation to the actual history
of actions in s. In their approach, the situations s′ considered possible in s may only differ
from the actual history in that some actions may have been replaced by “indistinguishable”
actions. On the other hand, in our approach the situations considered possible may include
additional actions besides those present in the actual history. Although their approach results
in a simpler successor state axiom for p, this comes at the cost that it is not clear how to
project a plan within their framework, which is straightforward in ours. In particular, our
approach allows for probabilistic projection of programs appealing to projection tests and to
the robot’s real-valued beliefs at execution time.

As for the decision-theoretic DTGolog [BRST00, Sou01] whose semantics is based on the
projection of the expected utility of a plan, it assumes full observability of the domain. On
the other hand, DTGolog provides nondeterministic instructions, which – once again – are
problematic in our approach. In particular, many of the properties shown in Section 7.1.5
which are necessary to guarantee that the epistemic fluent pll is well-defined would not hold
if we would consider nondeterministic instructions.

168 CHAPTER 7. BELIEF UPDATE IN PGOLOG

Chapter 8

Implementation and
Experimentation

In this chapter, we will sketch PROLOG implementations of interpreters for cc-Golog and
pGOLOG. Just as in the case of ConGolog, although in the definition of the semantics we
resorted to first- and second-order logic, it is relatively simple to provide a prototype im-
plementation in PROLOG [dGLL00]. However, the implementation differs from the formal
specification in that it makes the usual closed world assumption on the initial database.
Furthermore, while the definition of pGOLOG makes use of second-order axioms to define
summation, our implementation makes use of PROLOG set-predicates like findall. Finally,
the implementation computes the transitive closure using negation as failure [Cla78], and
makes use of the logic programming library clp(q,r) [Hol95] to deal with linear constraints.
Note that this is a limitation of this particular implementation, not the theory.1

8.1 A cc-Golog Interpreter in PROLOG

We begin with the presentation of a cc-Golog interpreter in PROLOG. Unlike the ConGolog
interpreter presented in [dGLL00], our interpreter does not only allow the use of relational
fluents, but also of (non-continuous) functional fluents and, of course, of continuous fluents.
The need for functional fluents, which were not present in the ConGolog implementation,
stems from the fact that cc-Golog does not provide nondeterministic instructions.2

8.1.1 Legal Domain Specifications

Our implementation assumes that a domain specification consists of the follow parts:
1See [dGLL00] for an in-depth treatment of the relation between the second order axiomatization of Con-

Golog and a PROLOG implementation.
2In particular, ConGologs nondeterministic pick instruction Πx.σ allows the introduction of a variable x,

which can be bound at execution time and thereby allows the simulation of functional fluents. To see how
the use of functional fluents can be overcome by using Π instructions, let us consider an example taken from
[LRL+97], where a GOLOG program is used to control a simple elevator. In this example, the elevator controller
has to serve the nearest floor as long as there is a floor which has to be served. Using a functional fluent
nextFloor(s), the task of serving the nearest floor can be specified as serve(nextFloor), where nextFloor(s) = n
holds if and only if n is the nearest floor that has to be served in situation s. On the other hand, the same
behavior can be realized by the nondeterministic GOLOG program Π n. [nextFloor(n)?,serve(n)] which uses
the relational fluent nextFloor(n, s) which is true if and only if nextFloor(s) = n.

169

170 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

• A collection of clauses defining the predicate poss(A,S), which specifies under which
preconditions action A is executable in situation S.

• A collection of clauses defining the predicate holds(F,s0), which specifies which fluents
F hold in the initial situation s0.

• A collection of clauses defining the predicate holds(F,do(A,S)), which specifies the
successor state axiom for every fluent F.

• A collection of clauses defining the predicate hasValCF(CF,TFunc,s0), which specifies
that the initial value of the continuous fluent CF is the t-function TFunc.

• A collection of clauses defining the predicate hasValCF(CF,TFunc,do(A,S)), which
specifies the successor state axiom of every continuous fluent CF.

• A collection of clauses defining the predicate isFF(FF), which is used to declare every
functional fluent FF.

• A collection of clauses defining the predicate hasValFF(FF,V,s0). hasValFF/3 speci-
fies, for each functional fluent FF, its initial value V.

• A collection of clauses defining the predicate hasValFF(FF,V,do(A,S)), which specifies
the successor state axiom of every functional fluent FF.

• A collection of clauses defining the predicate proc(procName,[x1,...xn],Body), used
to define all cc-Golog procedures. In such clauses, the formal parameters of the procedure
are represented by the lower-case PROLOG terms x1,...xn. Our implementation does
not consider nested procedures.

• A collection of clauses defining the predicate val(TFunc,V,T), which specifies the value
V of the t-function TFunc at a given time T. These clauses implement the function val
introduced in Section 4.1.3.

8.1.2 Legal cc-Golog Programs

The following PROLOG terms are considered as legal representations of cc-Golog programs:

• nil, the empty program;

• a, where a is the name of a user-declared primitive action or defined procedure;

• p?, where p is a condition as described below;

• the sequence [a1,...,an], where every ai is a cc-Golog program;

• the conditional if(p,a1,a2), where p is a condition and a1 and a2 cc-Golog programs;

• the while loop while(p,a), where p is a condition and a a cc-Golog program;

• the construct withCtrl(p,a), where p is a condition and a a cc-Golog program;

• the concurrent construct conc(a1,a2), where a1 and a2 cc-Golog programs;

• and finally waitFor(tf), where tf is a t-form as described below.

8.1. A CC-GOLOG INTERPRETER IN PROLOG 171

The argument of a primitive action or a procedure call is either an ordinary object, a functional
fluent (as defined by isFF/1), or an expression f1+f2, f1-f2, f1*f2, f1/f2, where f1 and f2 are
PROLOG numbers or numerical functional fluents. A condition p is either a PROLOG-term
representing an atomic formula with the situation arguments suppressed, or an expression
and(p1,p2), or(p1,p2), not(p) or exists(v,p), with the obvious intended meaning. In the
last case, v is a PROLOG constant, standing for a logical variable, and p a condition using
v. A t-form tf is either a PROLOG-term cf >= x or cf =< x, where cf is a continuous
fluent and x a number, or an expression and(tf1,tf2) or or(tf1,tf2), with the obvious
intended meaning. Additionally, our implementation supports the definition of user-defined
t-forms. We assume a clause holdsTFormMacro(TForm,S,T) for each user-defined t-form,
stating whether TForm holds at time T in situation S.

8.1.3 Dealing with Temporal Constraints

In order to deal with temporal constraints arising as a result of waitFor(τ) instructions, an
implementation of a cc-Golog interpreter must have a temporal reasoning component. The
task of this component is to infer how different constraints combine, for example to infer that
T1 = T2 follows from T1 ≤ T2∧T2 ≤ T1. Similar to [Rei98], our implementation relies on a
logic programming language with a built-in constraint solving capacity, namely on the ECRC
Common Logic Programming System Eclipse and the constraint logic programming library
clp(q,r) [Hol95]. clp(q,r) allows the specification of linear constraints on PROLOG variables in
the style of {T >= T1, T <= T2}, and provides the predicate minimize(T) to minimize the
value of the variable T with respect to its constraints. The following Eclipse output illustrates
the use of clp(q,r):

[eclipse 8]: {2*X+Y >= 16, X+2*Y >= 11, Z = 30*X+50*Y},
minimize(Z).

X = 7
Y = 2
Z = 310
yes.

Using clp(q,r), we can specify the value of the t-functions constant and linear, which im-
plement the functions constant and linear from Section 4.1.3, through the following clauses:

val(constant(CONST),V,T) :- {V = CONST, T >= 0}.

val(linear(FROM,VEL,T0),V,T) :- {V = FROM+VEL*(T-T0)}.

8.1.4 The cc-Golog Interpreter

The following PROLOG clauses, defining the predicates trans/4, final/2, trans*/4 and
do/3, implement the predicates Trans, Final, Trans∗ and Do, respectively. They make use of
the predicates holds/2, ltp/3, earlier/2, earliereq/2, and restoreFF/5. holds(P,S) is
used to evaluate conditions in tests, while-loops and conditionals, ltp(TForm,S,T) to deter-
mine the least time point of a t-form, and earlier(S1,S2) respectively earliereq(S1,S2)
to determine whether the starting time of S1 is less than S2, respectively less or equal S2.

172 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

Finally, restoreFF(FormalArgs,Args,Body,S,BodyS) is used to replace a list of formal ar-
guments FormalArgs in a procedure body or primitive action Body by the value of the actual
arguments Args in situation S. The actual arguments Args may includes functional fluents,
which will first be evaluated in S before being inserted in place of the formal arguments.3 We
remark that restoreFF/5 is not only used to evaluate the arguments of a procedure call, but
also to evaluate the arguments of primitive actions.

% Definition of Final
final(nil,_).
final([],_).
final([A|L],S) :- final(A,S), final(L,S).
final(if(P,A1,A2),S) :-

holds(P,S), final(A1,S); holds(not(P),S), final(A2,S).
final(while(P,A),S) :- holds(not(P),S); final(A,S).
final(withCtrl(P,A),S) :- holds(P,S), final(A,S).
final(conc(A1,A2),S) :- final(A1,S); final(A2,S).

% Definition of Trans
trans(A,S,nil,do(Ainst,S)) :-

poss(A,S),
A=..[Name|Args],
restoreFF(Args,Args,A,S,Ainst).

trans(waitFor(TF),S,nil,SS,S)) :-
holds(online,S) -> start(S,T), holdsTForm(TF,S,T), SS = S;

ltp(P,S,T), SS=do(waitFor(TF),S).

trans(P?,S,nil,S) :-
holds(P,S).

trans([A|L],S,R,S1) :-
final(A,S), trans(L,S,R,S1);
trans(A,S,R1,S1), R=[R1|L].

trans(if(P,A1,A2),S,R,S1) :-
holds(P,S), trans(A1,S,R,S1);
holds(not(P),S), trans(A2,S,R,S1).

trans(while(P,A),S,[R,while(P,A)],S1) :-
holds(P,S), trans(A,S,R,S1).

trans(withCtrl(P,A),S,RR,SS) :-
holds(P,S), trans(A,S,R,SS), RR = withCtrl(P,R).

3To illustrate the meaning of restoreFF/5, let us consider the example of an elevator controller and
assume that we have a procedure serveFloor with formal parameter f whose purpose is to serve floor f.
Furthermore, let us assume that we have defined a functional fluent nextFloor. Then, if serveFloor is
called in a situation s, restoreFF([f],[nextFloor],serveFloorBody,s,BodyS) is invoked by the interpreter
to replace all occurrences of f in serveFloorBody (the body of serveFloor) by the value of nextFloor in s.

8.1. A CC-GOLOG INTERPRETER IN PROLOG 173

trans(conc(A1,A2),S,RR,SS) :-
not final(A1,S), not final(A2,S),
(trans(A1,S,R1,SS), RR=conc(R1,A2),

(trans(A2,S,R2,S2) -> earliereq(SS,S2);true);
trans(A2,S,R2,SS), RR=conc(A1,R2),
(trans(A1,S,R1,S1) -> earlier(SS,S1);true)).

trans(Proc,S,R,S1) :-
Proc =..[ProcName|L],
proc(ProcName,FormalArgs,Body),
restoreFF(FormalArgs,L,Body,S,BodyS),
trans(BodyS,S,R,S1)).

trans(A,S,R,SS) :- proc(A,Body), trans(Body,S,R,SS).

% Definition of Trans* and Do using negation as failure
trans*(A,S,A,S).
trans*(A,S,R,S1) :- trans(A,S,R2,S2), trans*(R2,S2,R,S1).

do(A,S,S1) :- trans*(A,S,R,S1), final(R,S1).

Let us now turn to the definition of the predicates holds/2, ltp/3, earlier/2, earliereq/2,
and restoreFF/5. The following clauses defining holds/2 correspond to those presented in
[LRL+97]. They make use of the predicate sub/4 which implements substitution so that
sub(x, y, t, t′) means that t′ = txy .

holds(and(P1,P2),S) :- holds(P1,S), holds(P2,S).
holds(or(P1,P2),S) :- holds(P1,S); holds(P2,S).
holds(exists(V,P),S) :- sub(V,_,P,P1), holds(P1,S).
holds(not(P),S) :- not holds(P,S). /* negation as failure */

In order to define the predicate ltp/3, we first have to specify how we evaluate t-forms, i.e.
temporal conditions. For that purpose, we define the predicate holdsTForm(τ, s, t), which
implements τ [s, t]. If TForm is primitive, i.e. a PROLOG-term cf >= x or cf =< x, where
cf is a continuous fluent and x a number, holdsTForm(TForm,S,T) makes use of hasValCF/3
and val/3 to determine the value V of the t-form TForm in situation S at time T, and V is
constrained to be at least X, respectively at most X. On the other hand, if TForm is a composite
expression and(tf1,tf2) or or(tf1,tf2), holdsTForm is defined recursively.

%Test if a tForm holds in situation S at time T
holdsTForm(CF>=X,S,T) :- hasValCF(CF,TFunc,S), val(TFunc,V,T), {V >= X}.
holdsTForm(CF=<X,S,T) :- hasValCF(CF,TFunc,S), val(TFunc,V,T), {V =< X}.

holdsTForm(and(P1,P2),S,T) :- holdsTForm(P1,S,T), holdsTForm(P2,S,T).
holdsTForm(or(P1,P2),S,T) :- holdsTForm(P1,S,T); holdsTForm(P2,S,T).

Based on holdsTForm/3, ltp(TF,S,T) is defined by means of the predicate minimize/1
provided by clp(q,r). Intuitively, ltp(TF,S,T) is true if T is the least time point after the
start of S where TF becomes true.

174 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

ltp(TF,S,T) :-
holdsTForm(TF,S,T), start(S,T0), {T >= T0}, minimize(T).

earlier/2 and earliereq/2 are defined in terms of start/2, which implements the function
start, mapping a situation to its starting time. The term ccUpdate([x1,...,xn],T) used in
the definition of start/2 refers to exogenous action ccUpdate, introduced in Section 5.1.1 to
update the value of the continuous fluents during on-line execution.

earliereq(S1,S2) :-
start(S1,T1), start(S2,T2), T1 =< T2.

earlier(S1,S2) :-
start(S1,T1), start(S2,T2), T1 < T2.

start(s0,0).
start(do(A,S),T) :-

A=waitFor(TF), ltp(TF,S,T);
A=ccUpdate(_,T);
not A=waitFor(_), not A=ccUpdate(_,_), start(S,T).

Next, we define restoreFF(FormalArgs,Args,Body,S,BodyS), which takes a program Body
and replaces each formal argument xi in the list FormalArgs by the value of the corresponding
argument ai in the list Args, evaluated in situation S. The result is the (instantiated) program
BodyS. restoreFF/5 makes use of the predicates sub all/4 and evalFF/3. The predicate
sub all/4 is similar to sub/4, but substitutes a set of variables instead of a single variable;
thus, sub all(~x, ~y, t, t′) means that t′ = t~x~y . The predicate evalFF(L,S,LS) takes a list of
expressions L, evaluates each element in situation S, and returns the list of resulting values
LS.

restoreFF(FormalArgs,Args,Body,S,BodyS) :-
evalFF(Args,S,ArgsS),
sub_all(FormalArgs,ArgsS,Body,BodyS), !.

evalFF([],S,[]).

evalFF([FF|L],S,[FFInst|LInst]) :-
hasValFFExp(FF,FFInst,S),
evalFF(L,S,LInst).

Finally, evalFF/3 makes use of hasValFFExp/3 to determine the value of an expressions
involving functional fluents. In particular, if FFExp is a functional fluent or an expression
f1+f2, f1-f2, f1*f2, f1/f2, where f1 and f2 are numbers or numerical functional fluents,
then hasValFFExp(FFExp,S,FFExpS) determines the value FFExpS that FFExp has in S.

% Determine the value of complex expressions
hasValFFExp(FF1+FF2,FFInst,S) :- !,

hasValFFExp(FF1,FFI1,S),
hasValFFExp(FF2,FFI2,S),
FFInst is FFI1 + FFI2.

8.1. A CC-GOLOG INTERPRETER IN PROLOG 175

% Analogously for -,*,/
% ...

% Determine the value of primitive expressions
hasValFFExp(FF,FFInst,S) :-

isFF(FF) -> hasValFF(FF,FFInst,S); FFInst=FF.

8.1.5 Experimental Results

Library
A-110

A-111
A-112

A-113

A-114

A-121
A-120 A-119

A-118

A-117Classroom

Hallway

Figure 8.1: Example environment

In order to evaluate the performance of our cc-Golog
interpreter, we have applied it to the (slightly modi-
fied) example of [BG98], and have compared the re-
sulting runtime with that of [BG98], where the xfrm

framework [McD92a, McD94] was used to project RPL
plans involving continuous change. In this example, a
mobile robot is to deliver letters in the environment
depicted in Figure 8.1. At the same time, it has to
monitor the state of the environment, in particular it
has to check whether doors are open, and eventually
has to react if it realizes that a door is open.

To approximate the robot’s trajectory, we only
make use of the t-function toCoords, which imple-
ments the t-function toCoords from Section 7.3.3.
toCoords is a two-dimensional, linear function of time which takes six argument:
x0, y0, t0, xd, yd, and v. At time t0, toCoords has as value the tuple 〈x0, y0〉. Starting from
there, toCoords(x0, y0, t0, xd, yd, v) linearly moves toward 〈xd, yd〉 with velocity v. The follow-
ing PROLOG clause defines the value of toCoords at any time T. Note that we take care of
the case where 〈x0, y0〉 = 〈xd, yd〉.

val(toCoords(X0,Y0,T0,Xd,Yd,V),[X,Y],T) :-
X0=Xd, Y0=Yd, X= X0, Y=Y0;
not (X0=Xd, Y0=Yd),
Nu2 is (X0-Xd)*(X0-Xd)+(Y0-Yd)*(Y0-Yd),sqrt(Nu2,Nu),
{X = X0 + (Xd-X0)*(T-T0)*V/Nu,
Y = Y0 + (Yd-Y0)*(T-T0)*V/Nu}.

To represent the robot’s position, we make use of the continuous fluent robotLoc, whose
value is a 2-dimensional t-function. In particular, we make use of the t-function toCoords
to approximate any robot trajectory by a piece-wise linear function. robotLoc is only af-
fected by the primitive actions startTo(X,Y), stop and ccUpdate([X,Y|],T). Intuitively,
startTo(X,Y) causes the robot to travel towards position 〈X,Y〉, stop causes it to stay at
its current position, and ccUpdate([X,Y|],T), which represents an update provided by the
low-level position estimation process, sets the value of the continuous fluents to the latest
position estimate 〈X,Y〉. For means of simplicity, we assume that the robot always travels at
speed 30 m/s. The following clause specifies how robotLoc changes its value as a result of
the execution of primitive actions.

hasValCF(robotLoc,F,do(A,S)):-

176 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

hasValCF(robotLoc,F0,S),
(not A=ccUpdate([X,Y|_],T), not A=startTo(X,Y), not A=stop, F=F0;
A = ccUpdate([X,Y|_],Tnow), !, V = 30,

F0 = toCoords(X0,Y0,T0,Xd,Yd,_), F=toCoords(X,Y,Tnow,Xd,Yd,V);
A = startTo(X,Y), !, start(S,Tnow), V = 30,

val(F0,[Xnow,Ynow],Tnow), F=toCoords(Xnow,Ynow,Tnow,X,Y,V);
A = stop, !, start(S,Tnow), V = 1, val(F0,[Xnow,Ynow],Tnow),

F= toCoords(Xnow,Ynow,Tnow,Xnow,Ynow,V)).

As the model of the navigation process, we use the procedure navProc, which is a variant of
the cc-Golog program navProc described in Section 4.3.2. navProc becomes active as soon
as reg(destRoom) is assigned a new value, whereat it calls the procedure navProcTravelTo
with reg(destRoom) as argument.4 In turn, navProcTravelTo approximates the robot’s
trajectory by polylines, consisting of the starting location, the goal location and a point in
front of and behind every passed doorway, similarly to the model of the navigation process
used in [BG98]. To do so, it makes use of the procedures leaveRoom and gotoLoc, and of
the functional fluents entryX/Y(R), exitX/Y(R), centerX/Y(R). While the value of these
functional fluents correspond to the X respectively Y coordinates of the different interme-
diate positions, the procedure leaveRoom is used to simulated that the robot is leaving a
room. Finally, navProcTravelTo and leaveRoom make use of the procedure gotoLoc, which
essentially executes a startTo(x,y) action and waits until the position 〈x,y〉 is reached.

proc(navProc,[],
while(true,

[and(not(currentRoom=reg(destRoom)),not(reg(destRoom)=nil))?,
navProcTravelTo(reg(destRoom))])).

proc(navProcTravelTo,[r],
[conc([if(not(currentRoom=nil),

leaveRoom(currentRoom)),
gotoLoc(entryX(r),entryY(r)),
gotoLoc(exitX(r),exitY(r)),
gotoLoc(centerX(r),centerY(r)),
stop,
reply(arrivedAt,r)],

[not(reg(destRoom)=r)?,stop])]).

proc(leaveRoom,[r],
[gotoLoc(exitX(r),exitY(r)),
gotoLoc(entryX(r),entryY(r))]).

In order to determine the opening state of a door, our example robot can activate a special
low-level process (see [SB00] for a possible realization of such a low-level door state estimation
process). However, this low-level process can only determine the opening state of a door if
the robot is near that door. That is, a high-level plan must only activate the door state

4We assume that reg has been declared as a functional fluent, using the PROLOG clause isFF(reg()).
Additionally, we assume initial and successor state axiom for reg by means of PROLOG clauses defining
hasValFF(reg(Id),Val,s0) and hasValFF(reg(Id),Val,S).

8.1. A CC-GOLOG INTERPRETER IN PROLOG 177

estimation process if it is near a door. To determine whether the robot is near a door at a
certain time t in a certain situation s, we make use of the t-form-macro nearDoor(D) which
verifies that the value of robotLoc in situation s at time t is a position which is near door D.

Some Example Plans Let us now consider an example high-level robot plan, adapted from
[BG98]. The robot is to deliver mail to room A-118. At the same time, it has to monitor
the state of the environment, that is, it has to check whether doors are open. As soon as
it realizes that the door to A-113 is open, it has to interrupt its actual delivery in order to
deliver an urgent letter to A-113. This can be specified as a policy that leads the robot inside
A-113 as soon as the opportunity is recognized. The following cc-Golog plan makes use of the
procedures checkDoor and gotoRoom. While checkDoor is used to activate the door state
estimation process, gotoRoom implements the procedure gotoRoom from Section 4.3.4. The
program also includes say actions, which are effectless and are merely used to provide an
intuition of the “side-effects” of the procedure.

proc(aips98Ex,
withPol(whenever(inHallway,

[say(enterHW),
conc(
[whenever(nearDoor(a-114+117),

[checkDoor(a114),checkDoor(a117),false?])],
[whenever(nearDoor(a-113+118),

[checkDoor(a113),checkDoor(a118),false?])],
[whenever(nearDoor(a-112+119),

[checkDoor(a113),checkDoor(a118),false?])],
[whenever(nearDoor(a-111+120),

[checkDoor(a113),checkDoor(a118),false?])],
[whenever(nearDoor(a-110+121),

[checkDoor(a113),checkDoor(a118),false?])],
[waitFor(leftHallway),say(leftHW)])]),

withPol([reg(useOpp)=yes?,gotoRoom(a113),deliverUrgentMail],
[gotoRoom(a118),giveMail(gerhard)]))).

The outer policy is activated whenever the robot enters the hallway, and deactivated when the
robot leaves the hallway. It concurrently monitors whether the robot reaches a location near
two opposite doors, at which point it checks whether the doors are open or not. The false?
test executed after each checkDoor causes the corresponding thread to block forever, which
means that while the robot stays on the floor, it will not check this door again. However, if
the robot leaves the hallway and thereafter enters it again, the whole outer policy is activated
once again, and thus will re-check the doors it comes close to.

The role of the procedure checkDoor is to assign the value yes to the register useOpp
if A-113 is detected to be open. This results in an activation of the inner policy, which is
waiting for reg(useOpp)=yes. The purpose of this policy is to use the opportunity to enter
A-113 as soon as possible. Figure 8.2 (left) illustrates the projected trajectory starting in
Room A-119, assuming that the door to A-113 is indeed open. In this projection, we simply
modeled checkDoor as executing reply(useOpp,yes) if and only if it is activated with a-113
as argument.

178 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

A-113

A-119 A-117

(a) Urgent delivery (b) Long trajectory

Figure 8.2: Projected Execution Scenarios

We also used our cc-Golog implementation to project the following plan, which results in
a longer trajectory through all rooms.

proc(longTraj,
withPol(whenever(inHallway,

[say(enterHW),
conc(
[whenever(nearDoor(a-114+117),

[checkDoor(a114),checkDoor(a117),false?])],
[whenever(nearDoor(a-113+118),

[checkDoor(a113),checkDoor(a118),false?])],
[whenever(nearDoor(a-112+119),

[checkDoor(a113),checkDoor(a118),false?])],
[whenever(nearDoor(a-111+120),

[checkDoor(a113),checkDoor(a118),false?])],
[whenever(nearDoor(a-110+121),

[checkDoor(a113),checkDoor(a118),false?])],
[waitFor(leftHallway),say(leftHW)])]),

[gotoRoom(a-114),say("hello a-114"),
gotoRoom(a-113),say("hello a-113"),
gotoRoom(a-112),say("hello a-112"),
gotoRoom(a-111),say("hello a-111"),
gotoRoom(a-110),say("hello a-110"),
gotoRoom(a-117),say("hello a-117"),
gotoRoom(a-118),say("hello a-118"),
gotoRoom(a-119),say("hello a-119"),
gotoRoom(a-120),say("hello a-120"),
gotoRoom(a-121),say("hello a-121")
])))))

8.1. A CC-GOLOG INTERPRETER IN PROLOG 179

chargeB.

Deliv1
battLvl!

Deliv3

Deliv2

Start

‘‘hello’’
low

Figure 8.3: Projection of introEx

The projection of the above plan is illustrated in Figure 8.2 (right). Finally, we used our
cc-Golog implementation to project the following plan introEx, which is adapted from the
example plan Πintro in Section 4.3.4. We assume that there are three letters to be delivered.

proc(introEx,[],
withPol([waitFor(battLevel=<46),

grabWheels,chargeBatteries,releaseWheels],
withPol([whenever(nearDoor(r6213),

[say(hello),waitFor(notNearDoor(r6213))])],
withCtrl(wheels,

[gotoRoom(r6212),giveCoffee(ralf),
gotoRoom(r6214),giveCoffee(guenter),
gotoRoom(r6205),giveCoffee(sascha)
])))).

The projection of the example plan introEx is illustrated in Figure 8.3, assuming that the
delivery is once interrupted by low battery voltage. Figure 8.4 shows the time it took to gen-
erate a projection of the example plans using cc-Golog respectively xfrm, together with the
number of actions respectively events occurring in the projection. Both cc-Golog and xfrm

run on a Linux Pentium III 500Mhz Workstation, under Allegro Common Lisp Trial Edition
5.0 respectively under Eclipse 4.2. Regarding these (quite natural) examples, our cc-Golog

Problem: cc-Golog xfrm

introEx 0.45 s / 115 acts -5

aips98Ex 0.74 s / 82 acts 2.7 s / 105 evs
longTraj 3.69 s / 370 acts 15.7 s/ 488 evs

Figure 8.4: Runtime in seconds

180 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

implementation appears to be much faster than xfrm. We believe that cc-Golog owes this
somewhat surprising advantage to the fact that it lends itself to a simple implementation
with little overhead, while xfrm relies on a rather complex implementation involving many
thousand lines of Lisp code. However, it turns out that when we consider more complex plans
involving a larger number of concurrent sub-plans executing waitFor actions, xfrm outper-
forms our cc-Golog implementation. To study how the performance of cc-Golog respectively
of xfrm scales up to more complex plans, we consider versions of longTraj where the outer
policy (which is waiting for the robot to come close to a door) is repeated several times. That
is, we considered plans of the form:

withPol(whenever(inHallway,door policy,
withPol(whenever(inHallway,door policy,
withPol(whenever(inHallway,door policy,

...
goto all rooms)...)

where door policy stands for the outer policy of longTraj and goto all rooms stands for
the sequence of gotoRoom procedure calls. In particular, we defined a set of procedures
longTraji, where the index i represents the number of nested door policy ’s. Although these
plans all result in (approximately) the same behavior, they are well suited to study how
the performance of an implementation scales to a larger number of concurrent sub-plans
involving waitFor actions. As Figure 8.5 illustrates, the xfrm system scales much better
than our implementation, which is (probably) due to the fact that xfrm employs special-
purpose routines for dealing with blocked threads.

Problem: cc-Golog xfrm

longTraj 3.69 s 15.7 s
longTraj2 13.23 s 20.7 s
longTraj3 35.37 s 27.3 s
longTraj4 84.14 s 32.8 s

Figure 8.5: Runtime in seconds

We remark that the above examples where xfrm outperforms cc-Golog are rather patho-
logical. Nevertheless, the most important difference between cc-Golog and xfrm is that the
cc-Golog implementation is firmly based on a logical specification, while xfrm relies on the
procedural semantics of the RPL interpreter.

8.2 Running cc-Golog on a Real Robot

So far, our cc-Golog interpreter is only suitable for the projection of cc-Golog plans. In order
to allow the actual on-line execution of cc-Golog plans, we need a run-time system that couples
cc-Golog to a real robot. In particular, the run-time system has to handle send actions issued
by the high-level controller (by eventually activating low-level processes), has to process the

5We did not use xfrm to project the introductory example because in its present form xfrm has no model
of the batteries voltage level.

8.2. RUNNING CC-GOLOG ON A REAL ROBOT 181

messages received from sensor processes (by mapping them to exogenous reply actions), and
has to realized the link between waitFor-actions and continuous low-level processes.

Figure 8.6: The robot CARL

In this section, we describe an implementation of a run-
time system that couples the cc-Golog interpreter presented
in the last section to the BeeSoft execution system [BBC+95,
BCF+00], and we show how this run-time system can be used
to control the mobile robot CARL, an RWI B21 robot (Fig. 8.6).
CARL is equipped with a laser range finder, 24 sonars and 56
infra-red sensors and four buttons, which can for example be
used to confirm a receipt or to choose among different options.

8.2.1 The BeeSoft System

The BeeSoft system is a state-of-the-art basic-task execu-
tion system, which has successfully been used to control sev-
eral robots over extended periods of time. Among others,
it has been used to control the museum tourguides Rhino

[BBC+95, BCF+00] and MINERVA [TBB+99]. The BeeSoft
package consist of several modules which run asynchronously
and communicate using the TCX communication library [Fed93]. The overall architecture is
illustrated in Figure 8.7. Here, we will only briefly go over the most important modules of
the BeeSoft system.

Plan

Localize

Buttons

ColliServer BaseServer

Sound

thesis.tex

emacs@vespucci

Figure 8.7: Overview of the BeeSoft Architecture

BASESERVER At the bottom of the architecture, a hardware-interface operates the
robot’s motors and physical sensors.

COLLISERVER The hardware-interface module is used by a collision avoidance system,
which also makes use of laser scans and sonar readings to ensures that the robot does not
bump into obstacles, following the “dynamic window approach” [FBT97].

LOCALIZE The sensor scans are also used by the Markov localization module [BFHS96,
FBDT99], which makes use of a occupancy map of the environment and a model of the
sensors to maintain a probability distribution over the possible positions of the robot. Recent
experiments have shown that Markov-localization is able to robustly track the position of the
robot over an extended period of time [GBFK98, FBT99, BCF+00].

182 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

PLAN Navigation is accomplished using a path planer [TBB+98], which is based on an
occupancy grid representation of the environment. Given the robot’s location and a (sequence
of) destination point(s), the path planer makes use of “value iteration” [Bel57] to determine
a path from the actual position to the destination. The actual navigation along this path is
accomplished using the collision avoidance module.

SOUND and BUTTONS Finally, it is possible to play sound files and synthesize speech
via a standard sound-card, and to activate and query the robot’s buttons.

8.2.2 The Link between cc-Golog and BeeSoft

To couple our PROLOG implementation of cc-Golog to the BeeSoft execution system, we
rely on the High-Level Interface HLI [HBL98], which has already been used as link between
the BeeSoft system and plain GOLOG in the Rhino museum tour-guide project [BCF+00].
Roughly, HLI provides a uniform PROLOG interface to the different modules of BeeSoft,
which allows the parameterized activation of modules along with a monitoring component
which provides status updates about the state of execution of the activated modules.

Let us now go over the main execution loop of our cc-Golog execution system ccx. In our
PROLOG implementation, the on-line execution of a high-level plan A is accomplished by
the procedure ccx/3. If ccx(A,S,Exec) is invoked, where S is a situation term representing
the actual situation and A a term representing the high-level plan to be executed, then ccx/3
results in the on-line execution of A. Upon completion of ccx/3, Exec is bound to a situation
term which represents the resulting on-line execution trace. For example, to start the execu-
tion of the plan introEx, the high-level controller would call ccx(introEx,s0,ExecTrace).

ccx(A,S,Exec) :- final(A,S), !, S=Exec.
ccx(A,S,Exec) :-

exoAction(E,S), !, ccx(A,do(E,S),Exec);
trans(A,S,R,SS),

(SS = do(send(Id,Val),S), execute(send(Id,Val)); true), !,
ccx(R,SS,Exec));

not trans(A,S,R,SS), sleepTillNextExog, !, ccx(A,S,Exec).

If A is final in S, the execution of ccx ends. Else, ccx first checks whether an exogenous action
E has append (either a ccUpdate or a reply). This is realized by a call to exoAction/2, which
asks HLI if a new message has been received, and if so maps the message to an exogenous
action E. If there is such an action E, the execution is pursued using do(E,S) as actual
situation. Else, ccx determines whether there is a transition leading from the actual situation
and the cc-Golog plan under execution to a successor configuration 〈R, SS〉. If the transition
involves the execution of a send action, ccx calls the procedure execute/1 which invokes HLI
to communicate this command to the appropriate BeeSoft module; thereafter, the execution
of the remaining plan R is pursued in SS. Finally, if the plan is blocked, i.e. there is no
transition to a successor, then ccx calls sleepTillNextExog/0 to wait until an exogenous
event occurs, whereupon it resumes execution. We remark that ccx’s architecture, illustrated
in Figure 8.8, corresponds to the overall kind of architecture assumed in Section 4.3.

Using our cc-Golog run-time system ccx, we executed the cc-Golog plan introEx from
Section 8.1.5 on the mobile robot CARL in the north floor of the Computer Science Depart-
ment V at Aachen University of Technology. Figure 8.9 illustrates the behavior generated

8.2. RUNNING CC-GOLOG ON A REAL ROBOT 183

Localize

colliServer

Plan

Sound

Buttons

HLI

CCX

ccUpdate
send

execute exoAction

reply,

Figure 8.8: The Architecture coupling cc-Golog to BeeSoft

by introEx in two different runs. While the left sub-figure shows an on-line execution trace
where the delivery is not interrupted by low battery voltage, the right sub-figure shows an
execution trace where the battery level drops dangerously low during delivery, and CARL first
travels to Room 6204 to recharge its batteries before it completes the delivery.

8.2.3 Interleaving On-Line Execution and Projection

Next, we consider an example where interleaving projection and on-line execution is useful in
specifying intelligent robot behavior. Again, our robot is to deliver letters. Additionally, it
has to be back in Room 6204 by 15:30, where a practical course will start. In this scenario,
a reasonable high-level behavior would be to deliver letters until the time is not sufficient for
another delivery (but yet sufficient to travel to Room 6204), at which point the robot would
start moving to Room 6204. Using a time-bound projection test telling us whether the robot
will be able to deliver another letter and to travel to Room 6204 before 15:30, this behavior
can (informally) be turned into the following high-level plan: “if projection indicates that
there is enough time to deliver another letter, then do so; else, travel to Room 6204.”

Before we can turn to the formal specification of this plan, we first have to show how
our cc-Golog implementation can be extended to account for time-bounded projection tests
(cf. Section 5.2.2). In particular, we introduce the condition lookahead which implements
the projection test Lookahead discussed in Section 5.2.2. lookahead(Phi,T,A,LL) is true if
the projection of the plan A with time-bound T, using LL as model of the low-level processes,
results in a situation where Phi holds. As it turns out, the evaluation of projection tests does
not cause any difficulties in PROLOG. In fact, we only need to add a new holds/2 clause to
those already listed in Section 8.1.4.

184 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

‘‘hello’’
Deliv1 Deliv2

Deliv3Start

(a) Sufficient Battery Voltage

‘‘hello’’
Deliv1 Deliv2

Deliv3Start

battLvl!
low

chargeB.

(b) Low Battery Voltage

Figure 8.9: On-Line Execution Scenarios of introEx

holds(lookahead(Phi,T,A,LL),S) :-
timeboundDo(withPol(LL,A),S,T,LL,SS),
holds(Phi,SS).

Note that the low-level processes are taken into account during projection by concurrently
simulating LL and A. To perform a time-bounded projection, the lookahead test makes use of
the predicate timeboundDo/4. timeboundDo(A,S,T,S1) is defined similarly to do(A,S,S1)
(cf. Section 8.1), but additionally verifies that the simulation ends if a situation S1 is reached
whose successor has a starting time beyond T.

timeboundDo(A,S,T,S) :- final(A,S).

timeboundDo(A,S,T,S1) :-
trans(A,S,R2,S2), start(S2,T2),
(T2 > T, S1 = S;
T2 =< T, timeboundDo(R2,S2,T,S1)).

Now that we have implemented the projection test lookahead, we are settled for the specifica-
tion of a plan realizing the behavior informally discussed at the beginning of this sub-section.
We begin with a specification of the domain. To represent the letters to be delivered, we make
use of the fluent letter(L,Origin,Destination), which is true if letter L is to be deliver
from Origin to Destination. The fluent letter is only affected by the primitive action
deliver(L), as specified by the following clauses:

holds(letter(L,Origin,Dest),s0) :-
[L,Origin,Dest] = [l1,r6213a,r6213];
[L,Origin,Dest] = [l2,r6214,r6212];
[L,Origin,Dest] = [l3,r6213,r6205].

holds(letter(L,Origin,Dest),do(A,S)) :-
holdsF(letter(L,Origin,Dest),S), not A = deliver(L).

8.2. RUNNING CC-GOLOG ON A REAL ROBOT 185

To deliver a letter l, the high-level controller can invoke the procedure deliverLetter with l
as argument. deliverLetter makes use of the procedure gotoRoom(r) to travel to a room t,
and of the functional fluents lOrig(l) and lDest(l), whose value is the origin respectively
the destination of letter l.

proc(delivLetter,[l],
[gotoRoom(lOrig(l)),
pickup(l),
gotoRoom(lDest(l)),
deliver(l)]).

isFF(nextLetter).
isFF(lOrig(L)).
isFF(lDest(L)).

hasValFF(lOrig(L),V,S) :- (holds(letter(L,V,_),S), ! ; V = nil).
hasValFF(lDest(L),V,S) :- (holds(letter(L,_,V),S), ! ; V = nil).

Now that we have introduced the projection test lookahead and have specified the example
domain, we can turn the informal specification “if projection indicates that there is enough
time to deliver another letter, then do so; else, travel to Room 6204” into the cc-Golog plan
deliverUntil. deliverUntil takes as argument the time t at which the robot has to be
back in Room 6204. If there are no letters to be delivered, deliverUntil directly causes
the robot to travel to Room 6204. If there still are letters to be delivered, deliverUntil
determines – by means of a projection test – if it is possible to deliver the next letter and to
be back in Room 6204 by time t. If so, it delivers the next letter and re-evaluates the new
situation. Finally, if there is not enough time to deliver another letter, deliverUntil causes
the robot to travel directly to Room 6204:

proc(delivUntil,[t],
if(not(exists(l,exists(o,exists(d,letter(l,o,d))))),

gotoRoom(r6204), % Delivery Completed
if(lookahead(robotInRoom(r6204),t,

[deliverLetter(nextLetter),gotoRoom(r6204)],
navProc),

% If enough time, then continue delivery
[deliverLetter(nextLetter),delivUntil(t)],

% Else stop delivery
gotoRoom(r6204)))).

Here, robotInRoom(R) is a macro, which is true if the robot’s position lies within room R,
and nextLetter is a functional fluent (defined in terms of the fluent letter) whose value is
the next letter to be delivered.

Figure 8.10 illustrates three different runs of deliverUntil. In the execution trace shown
in the left sub-figure, CARL is only left 80 seconds to perform delivery, which only suffices to
deliver one letter from Room 6213a to Room 6213. In the execution trace shown in the middle
sub-figure, the robot can perform for 350 seconds before it has to be back in Room 6204, which
allows it to deliver another letter from Room 6214 to Room 6212. Finally, the right sub-figure

186 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

Start
Stop

deliv(l1) pickup(l1)

(a) 80 seconds remaining

Stop

deliv(l1) pickup(l1)

Start

deliv(l2) pickup(l2)

(b) 350 seconds remaining

deliv(l1) pickup(l1)

StopStart

deliv(l2) pickup(l2)

deliv(l3)

pickup(l3)

(c) 950 seconds remaining

Figure 8.10: Time-Bound Delivery

shows an execution trace where the robot has enough time to deliver all letters. We remark
that all limited projection tests involved in these examples were computed in less than 0.15
seconds, running on a Pentium III 500Mhz Linux Workstation.

Finally, we remark that in examples like the above, the reliability of the high-level con-
troller heavily depends on the accuracy of the model of the navigation process used in the
projection test. However, our execution scheme interleaving on-line execution and projection
is still much more robust than the unreflected execution of a plan determined completely
off-line, because each projection test takes into account the actual history encountered so far,
thus adapting the robot’s behavior to previous delays.

8.3 A pGOLOG Interpreter in PROLOG

Let us now turn to the implementation of a pGOLOG interpreter in PROLOG. We use the
same PROLOG terms as legal representations of pGOLOG programs as for cc-Golog (cf. Sec-
tion 8.1.2), together with the following construct which represents the probabilistic branching
instruction prob:

• prob(p,a1,a2), where p is a number between 0 and 1, and a1 and a2 are programs.

In addition to the clauses listed in Section 8.1.1, which are used to define a non-probabilistic
domain, our pGOLOG implementation requires the following parts to specify the robot’s prob-
abilistic epistemic state:

• A collection of clauses defining the predicate initialSit(si,pi), which is used to spec-
ify all situations si which the robot considers possible initially, together with their initial
probability pi.

• A collection of clauses defining the predicate initialLL(si,lli). Here, lli is a pGOLOG
program modeling the low-level processes in situation si. The idea is that initialSit/2
together with initialLL/2 specify the initial value of the fluent pll (cf. Section 7.1.2).

• A collection of clauses defining the predicate holdsF(F,si), defining which fluents F are
true in the possible situations si. Similarly, we require clauses hasValCF(CF,TFunc,si)
and hasValFF(FF,V,si) to define the value of the continuous and functional fluents.

8.3. A PGOLOG INTERPRETER IN PROLOG 187

8.3.1 Probabilistic Projection

The following PROLOG clauses defining the predicates transPr/5, transPr*/5 and doPr/4
implement, respectively, the functions transPr, transPr∗, and doPr. Here, we use the last
argument of the predicates to represent the value of the function implemented, i.e. the
transition probability. The following clauses make use of the predicates holdsTForm/3, ltp/3,
start/2, holds/2 and final/2, which were already discussed in the previous section.

% Definition of transPr
transPr(A,S,nil,do(Ainst,S),1) :-

poss(A,S),
A=..[Name|Args],
restoreFF(Args,Args,A,S,Ainst).

transPr(waitFor(TF),S,nil,SS,1) :-
holds(online,S) -> start(S,T), holdsTForm(TF,S,T), SS = S;

ltp(P,S,T), SS=do(waitFor(TF),S).

transPr(P?,S,nil,S,1) :-
holds(P,S).

transPr([A|L],S,R,S1,Prob) :-
final(A,S) -> transPr(L,S,R,S1,Prob);

transPr(A,S,R1,S1,Prob), R=[R1|L].

transPr(if(P,A1,A2),S,R,S1,Prob) :-
holds(P,S) -> transPr(A1,S,R,S1,Prob);

transPr(A2,S,R,S1,Prob).

transPr(while(P,A),S,[R,while(P,A)],S1,Prob) :-
holds(P,S), transPr(A,S,R,S1,Prob).

transPr(withCtrl(P,A),S,RR,SS,P) :-
holds(P,S), transPr(A,S,R,SS,P), RR = withCtrl(P,R).

transPr(conc(A1,A2),S,R,SS,Prob) :-
not final(A1,S), not final(A2,S), (

transPr(A1,S,R1,SS,Prob),
(transPr(A2,S,R2,S2,_) -> earliereq(SS,S2);true),

R = conc(R1,A2);
transPr(A2,S,R2,SS,Prob),
(transPr(A1,S,R1,S1,_) -> earlier(SS,S1);true),
R = conc(A1,R2)).

transPr(prob(P,A1,A2),S,R,S1,Prob) :-
Prob is P, R=A1, S1=do(tossHead,S);
Prob is 1-P, R=A2, S1=do(tossTail,S).

188 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

transPr(Proc,S,R,S1,Prob) :-
proc(Proc,Body), !, transPr(Body,S,R,S1,Prob).

% Definition of transPr* and doPr using negation as failure
transPr*(A,S,A,S,1).
transPr*(A,S,R,S1,Prob) :-

transPr(A,S,R2,S2,P1), transPr*(R2,S2,R,S1,P2), Prob is P1*P2.

doPr(A,S,S1,Prob) :- transPr*(A,S,R,S1,Prob), final(R,S1).

Based on doPr/4, we turn to the definition of pbel/4, which implements the term PBel
from Section 6.3.1. Given a sentence Phi, a program A and a situation S, pbel(Phi,S,A,P)
calculates the agent’s belief P that Phi will hold after the execution of A in situation S. While
so far the PROLOG axioms followed quite naturally from the logical axioms, at this point
our implementation differs from the formal specification given Section 6.3.1. In particular,
while the formal specification of Proj resorts to second-order logic to specify a summation,
our interpreter makes use of PROLOG’s all-solution predicate setof.

Before we define pbel/4, however, we first introduce the predicate pll/4 which imple-
ments the fluent pll from Section 7.1.2. pll(S1,LL1,S,P) is true if in situation S, the robot
considers situation S1 possible with probability P, and believes that if the world is in situa-
tion S1 then the low-level processes can be characterized by the pGOLOG program LL1. The
following clause makes use of the user-defined predicates initialSit/2 and initialLL/2 to
determine the initial value of pll/4.6

pll(S1,LL1,S,P) :- initial(S), initialSit(S1,P), initialLL(S1,LL1).

In the definition of pbel/4, we make use of the predicates getAllTraces/3, calcPhiProb/3
and normFactor/2. The meaning of these predicates is as follows: Given a program A
and a list L of tuples [S1,LL1,P1], each representing a possible situation together with
its associated pGOLOG program and weight, getAllTraces(L,A,Traces) determines the list
Traces of all execution traces that can result from the execution of A in an initial con-
figuration in L. The elements of Traces are tuples [S,P], where S is a possible execution
trace and P its weighted occurrence probability (cf. Section 6.3.1). On the other hand,
calcPhiProb(Phi,Traces,Punorm) is used to determine the unnormalized weight Punorm of
all execution scenarios in Traces that satisfy condition Phi. Finally, normFactor(L,Norm) is
used to determine the sum of the weights of the elements of list L.

pbel(Phi,S,A,P) :-
setof([S1,LL1,P],pll(S1,LL1,S,P),L),
getAllTraces(L,A,Traces),
calcPhiProb(Phi,Traces,Punorm),
normFactor(L,Norm),
(Norm = 0 -> P = undefined;

P is Punorm/Norm).

After collecting all situations considered possible in the list L, pbel/4 invokes getAllTraces/3
to get all execution scenarios that can result from the execution of A in a situation in L. There-
after, it makes use of calPhiProb/3 and normFactor/2 to calculate the normalized belief P

6In our implementation, the predicate initial(S) is true if and only if S is s0 or a situation si considered
possible initially. Note that as a result, the PROLOG clause specifies that p is Euclidean (cf. Section 6.3.1).

8.3. A PGOLOG INTERPRETER IN PROLOG 189

that Phi will hold after the execution of A in situation S. The predicates getAllTraces/3,
calPhiProb/3 and normFactor/2 are implemented as follows:

getAllTraces([],A,[]).
getAllTraces([[S1,LL1,P1]|T],A,Traces) :-

setof([S,Pw],weightedDoPr(withPol(LL1,A),S1,P1,S,Pw),Traces1),
getAllTraces(T,A,TracesT),
append(Traces1,TracesT,Traces).

% Weight probability of exec. trace with initial prob. of S1
weightedDoPr(A,S1,P1,SS,Pweighted) :-

doPr(A,S1,SS,Ptrace), Pweighted is Ptrace*P1.

calcPhiProb(Phi,[],0).
calcPhiProb(Phi,[[S1,P1]|T],P) :-

holds(Phi,S1), calcPhiProb(Phi,T,P2), P is P1+P2;
calcPhiProb(Phi,T,P2), not holds(Phi,S1), P is P2.

normFactor([],0).
normFactor([[_,_,P1]|L],N) :- normFactor(L,N1), N is N1+P1.

Based on pbel/4, it is straightforward to calculate the expected utility of a plan (cf. Sec-
tions 6.3.3 and 7.3.2). For that purpose, we define the predicate eu(S,A,Res), which im-
plements the function EU(σ, s) (as usual, the last argument of eu/3 represents the value of
the function EU). Note that to make use of eu(S,A,Res) the user has to define the fluent
util(U), whose value in a situation S is the total accumulated utility in S.

eu(S,A,Res) :-
findall([V,P],pbel(util(V),S,A,P),L),
calcEU(L,Res).

calcEU([],0).
calcEU([[V,P]|T],Res) :-

calcEU(T,Res2), Res is (V*P) + Res2.

The expected utility of plan A in situation S is simply the weighted average of the projected
value of the fluent util after execution of A in S.

8.3.2 Belief and Belief Update

Let us now turn to the predicates dealing with belief and belief update. The following
PROLOG clauses define the predicate transPrTo/5, which implements the function transPr/.
Given a program L, a situation S and a time limit T, transPrTo(L,S,LL,SS,P) returns a
farthest configuration 〈LL, SS〉 which can be reached through simulation of L in S without
executing a reply action. Additionally, it computes the probability P to reach 〈LL, SS〉 (there
may be many farthest configurations).

transPrTo(L,S,LL,SS,P) :-
findall([L1,S1,P1],

190 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

(transPr(L,S,L1,S1,P1), not S1 = do(reply(_,_),S)
),
Lsucc),

(Lsucc=[] -> LL=L,SS=S,P=1;
member([L1,S1,P1],Lsucc),
transPrTo(L1,S1,LL,SS,P2), P is P1*P2).

Unlike transPr/, transPrTo/5 is not based on transPr∗ but instead computes the transitive
closure of transPr by itself. In particular, transPrTo/5 computes the set Lsucc of all
successor configurations of 〈L, S〉 which can be reached without execution of a reply action.
If this set is empty, then 〈L, S〉 is a farthest configuration. Else, transPrTo/5 is recursively
applied to each element of Lsucc.

Based on transPrTo/5, we define the successor state axiom for pll/4. The following
definition follows directly from the successor state axiom for pll4 from Section 7.1.3.

pll(S1,LL1,do(A,S),P) :-
pll(S11,LL11,S,P1),
transPrTo(LL11,S11,L1,SS1,P11),S1=do(A,SS1),
(A \= reply(_,_), LL1=L1, P is P1 * P11;
A = reply(_,_), transPr(L1,SS1,LL1,S1,1), P is P1 * P11).

Next, we define the predicate bel/3, which implements the function Bel. Given a situation S
and a formula Phi, bel(Phi,S,Prob) calculates the robot’s degree of belief that Phi holds in
S. To do so, bel/3 first determines the set L of all situations considered possible in S, together
with their weight. Thereafter, it calculates Punorm, the sum of the weights of all situations in
L which satisfy Phi, using the predicate calcPhiProb/3 introduced in Section 8.3.1. Finally,
it calculates the total sum of the weights of all situations in L, in order to determine the
normalized belief in Phi.

bel(Phi,S,Prob) :-
setof([S1,P],pll(S1,_,S,P),L),
calcPhiProb(Phi,L,Punorm),
calcPhiProb(true,L,Norm),
(Norm = 0 -> Prob = undefined;

Prob is Punorm/Norm).

8.3.3 Epistemic Conditions and bGOLOG Programs

As discussed in Section 6.2.4, high-level bGOLOG plans are restricted in the actions they may
execute and in the fluents they may appeal to. In particular, they may only appeal to the
robot’s beliefs or to a projection test in conditionals, tests, while-loops and withCtrl instruc-
tions, and they may only appeal to the epistemic functional fluent Kwhich (cf. Section 7.3.1)
in primitive actions or procedure calls. We will now describe how epistemic conditions are
dealt with in our implementation.

In particular, we have implemented the condition bel(Phi,Prob), which is true if the
robot’s actual belief in Phi is Prob, along with the projection test pbel(Phi,A,Prob), which
is true if the robot’s projected belief that Phi will hold after execution of A is Prob, and
the utility test eu(A,Util), which is true if the expected utility of the plan A in the actual
situation is Util. Similar to the projection test implemented in Section 8.2.3, the evaluation

8.3. A PGOLOG INTERPRETER IN PROLOG 191

of conditions appealing to the robot’s beliefs does not cause any difficulties in PROLOG. We
merely have to add another few holds/2 clauses.

holds(bel(reg(Id)=Val,Prob),S) :-
!, hasValFF(reg(Id),Val,S) -> Prob=1;Prob=0.

holds(bel(Phi,Prob),S) :-
bel(Phi,S,Prob)),

holds(pbel(Phi,A,Prob),S) :-
pbel(Phi,S,A,Prob).

holds(eu(A,Util),S) :-
eu(S,A,Util).

The first clause makes use of the fact that reg is directly observable to provide an efficient
evaluation of belief tests appealing to reg. The other clauses simply invoke the corresponding
PROLOG predicates to determine the truth value of bel, pbel and eu conditions, respectively.

Similarly, the epistemic functional fluent kwhich from Section 7.3.1 can be implemented
by adding the following clause to the definition of the predicate hasValFFExp/3, which is
used to determine the value of expressions involving functional fluents (cf. Section 8.1.4):

hasValFFExp(kwhich(FF),FFInst,S) :-
bel(FF=X,S,1) -> FFInst=X; FFInst=nil.

Based on the implementation of epistemic conditions, we can now turn to the representation of
bGOLOG plans in PROLOG. We use similar terms as for pGOLOG programs, but additionally
require that bGOLOG plans:

• do not include any prob or waitFor instruction;

• do only appeal to epistemic conditions in tests, conditionals, while-loops and withCtrl
constructs;

• do not appeal to functional fluents in primitive actions and procedure calls, except for
the epistemic functional fluent kwhich;

• and do not execute actions which affect a fluent used to describe the state of the world.

8.3.4 Experimental Results

To evaluate the performance of our pGOLOG implementation, we used it to project the plans
Πrobby1,Πrobby2,Πrobby3 and Πrobby4 from Section 6.3.2 in the ship/reject domain. The running
time for the projection of the different plans is summarized in the following table, where the
interpreter run on a Pentium III 500Mhz Linux Workstation.

Projection - plans appealing only to directly observables

Domain ship/reject

Plan Πrobby1 Πrobby2 Πrobby3 Πrobby4

Runtime in seconds 0.12 0.05 0.09 0.25

192 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

Besides the above bGOLOG plans which only appeal to the robot’s beliefs regarding the value
of the directly observable reg, we also projected the truly belief-based plan Πforbidden from
Section 6.2.4 (a variant of Πrobby4 which completely avoids the use of reg in tests), and the
belief-based plans ΠloopInsp and ΠloopInsp&Paint from Section 7.3.1. We also computed the
expected utility of the plans Πrobby4 and Πforbidden (cf. Section 6.3.3). As the following
table shows, the use of belief tests referring to non-observable fluents significantly reduces the
performance of our PROLOG interpreter.

Projection (ii) - belief-based plans

Mode Projection Expected Util.
Plan Πforbidden ΠloopInsp ΠloopInsp&Paint Πrobby4 Πforbidden

Runtime in sec. 16.79 2.07 23.02 0.3 16.76

This strong increase in runtime compared to the projection of plans which only appeal to the
robot’s beliefs in reg is due to the fact that calculating the robot’s beliefs is a much more
complex task than determining the value of an ordinary fluent (which suffices to determine
the beliefs in reg because reg is directly observable). Note that to calculate the robot’s beliefs
the interpreter has to determine all situations considered possible by invoking pll/4, which
will recurse all the way back to the initial situation. This results in a runtime which is at least
linear in the length of the history of the actual situation, and can even become exponential
depending on the number of situations considered possible.7 Furthermore, we remark that
even the projection of ΠloopInsp implies the evaluation of 40 belief tests; the projection of
ΠloopInsp&Paint even implies the evaluation of 140 belief tests.

Next, we used our implementation to calculate the probability distribution over the robot’s
updated beliefs in its position in different situations of the BHL domain. In particular, we
considered the situations Sr1 to Sr6 from Section 7.2. We also computed the robot’s beliefs
in the widget being flawed in situation Sok and in the widget being undercoated in situation
SUC (cf. Sections 7.1.4 and 7.1.1, respectively). The running time for the different situations
is summarized in the following table.

Belief

Domain BHL ship/reject

Situation Sr1 Sr2 Sr3 Sr4 Sr5 Sr6 Sok SUC

Runtime in sec. 0.02 0.04 0.07 0.11 0.28 0.73 0.02 0.02

Finally, a promising property of the pGOLOG framework is that it is easily amenable
to Monte-Carlo methods (e.g. [Fis96]) for the estimation of the success probability of a
pGOLOG program (unless, of course, exact assessment is required). In a nutshell, Monte-
Carlo simulation can be achieved by pursuing only one of the branches of a prob instruction
depending on the outcome of a random number toss. The appealing property of Monte-Carlo
methods is that the number of samples to be considered depends only on the desired precision
of the estimate, not on the length of the program. In the domains considered so far, however,
we did not feel the need for Monte-Carlo methods.

7A promising approach to improve the performance of our implementation would be to use some kind of
database progression [LR97] during on-line execution.

8.4. RUNNING PGOLOG ON A REAL ROBOT 193

8.4 Running pGOLOG on a Real Robot

Similarly to cc-Golog, we have used pGOLOG to control a real robot. In this section, we
describe a letter delivery application where a mobile robot is to deal with sensing and proba-
bilistic effects, and show how the pGOLOG framework can be used to specify a simple greedy
robot controller which tries to minimize the robot’s total expected travel time. Finally, we
describe some scenarios where the pGOLOG controller was run on the mobile robot CARL.

8.4.1 An Example Application: Colored Letter Delivery

To illustrate the use of pGOLOG to control a mobile robot, let us consider the following letter
delivery application, adapted from [BBG99]: a mobile robot is to deliver letters, which are
inside colored envelopes. The envelopes can be either red, yellow, green or blue. The robot
must care about the color of the envelopes loaded because whenever it delivers a letter, it has
to tell the recipient the color of the envelope of the letter designated for her. The recipient will
then pick up the letter and acknowledge the receipt by pressing one of the robot’s buttons.
In order to avoid ambiguities, the robot should take care not to carry different envelopes with
the same color, because this forces the recipient to open different envelopes in order to find
out which letter is intended for her. Although we do not treat this as a hard constraint, it
causes an undesirable delay. As environment we use the north floor of the Computer Science
Department V at Aachen University of Technology, familiar from Section 8.2.

Initially, the robot has only incomplete information about the letters to be delivered.
Although each letter delivery request includes the origin and the destination of the letter to
be delivered, it does not necessarily provide information about the color of the envelope the
letter will be in. In particular, we assume that the letter requests are represented by means
of the following registers

• reg(lReq(L)). This register is used to specify which letters L are to be delivered. If the
value of reg(lReq(L)) is red, yellow, green or blue this indicates that letter L is
to be delivered in an envelope of the corresponding color, while the value unspecified
indicates a request where the envelope’s color has not yet been specified.8

• reg(lOrig(L)). This register is used to specify the room where letter L is to be picked
up.

• reg(lDest(L)). This register is used to specify the destination of letter L.

In case of an under-specified letter request, the robot will first be told the color of the letter’s
envelope when it picks up the letter. For that purpose, the sender will make use of the four
buttons of the robot, that is she will press the button with the envelope’s color after giving
the robot the letter.

The Low-Level Processes More specifically, the low-level execution system provides a
low-level process pickup which can be used to pick up a letter. The low-level process pickup
can be activated by executing send(fork,pickupLetter([L,ColorSpec])), where L refers

8We remark that in principle it would be possible to represent a partially specified request by means
of a distribution over possible envelope colors. However, for practical purposes our representation is more
appropriate as it results in a computationally simpler reasoning task; see the discussion at the end of this
subsection.

194 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

to the letter to be picked up and ColSpec is either the color of L’s envelope or the term
unspecified. Once activate, pickup asks the user to give the robot the letter and thereafter
to press a button; if the color of the letter to be picked up is unspecified, pickup asks the
sender to press the button with the envelope’s color. Once the user has given the letter to
the robot and pressed a button, pickup executes a reply(lLoaded(L),C) action, where C is
the color of the envelope loaded.

Similarly, the robot can make use of the low-level process deliver to deliver a letter. deliver
is activated by executing send(fork,deliverLetter([L,Color])), where L refers to the let-
ter to be delivered and Color to the color of the envelope the letter is in. Once activated,
deliver asks the recipient to take her letter, and tells her the color of the envelope in which
her letter is in. Next, deliver waits until the user presses a button to acknowledge the receipt.
Finally, it subsequently executes a reply(lLoaded(L),nil) and a reply(lReq(L),nil) ac-
tion, accounting for the fact that letter L has now been delivered. We remark that the register
reg(lLoaded(L)) can thus be used to determine which letters the robot has currently loaded.

8.4.2 The Link between pGOLOG and BeeSoft

In order to execute bGOLOG plans on a real robot, we have to couple our PROLOG interpreter
to the low-level execution system of the robot. As it turns out, adapting the run-time system
for cc-Golog described in Section 8.2 to pGOLOG only requires minor changes. The coupling
of our pGOLOG interpreter to the BeeSoft execution system is realized by the PROLOG
procedure px/3. If called with Prg bound to a bGOLOG plan and S bound to a situation,
px(Prg,S,Exec) results in the on-line execution of Prg, and in Exec being bound to the
resulting on-line execution trace. px/3 is implemented in complete analogy to the procedure
ccx/3 described in Section 8.2.2. The only difference is that it makes use of transPr/5
instead of trans/4 to determine the transitions caused by the plan.

px(Prg,S,Exec) :- final(Prg,S), !, S=Exec.
px(Prg,S,Exec) :-

exoAction(E,S), !, px(Prg,do(E,S),Exec);
transPr(Prg,S,R,SS,1),

(SS = do(send(Id,Val),S), execute(send(Id,Val)); true), !,
px(R,SS,Exec));

not transPr(Prg,S,R,SS,1), sleepTillNextExog, !, px(Prg,S,Exec).

8.4.3 A Simple Greedy pGOLOG Controller

To illustrate how the pGOLOG framework can be used to design robot controllers that account
for probabilistic uncertainty, we will now present a simple greedy pGOLOG controller. Our
controller aims at minimizing the total amount of time needed to deliver all letters. In
particular, we assume that if the robot delivers a letter whose envelope’s color is ambiguous,
meaning that it has loaded another envelope with the same color, the recipient will need 30
seconds on average to find the right letter. Note that this means that we simply identify utility
with total delivery time, and do not further penalize the robot for unnecessarily disturbing
people while asking them to find out the right envelope. Furthermore, we assume that if
the robot picks up a letter whose color has not been specified beforehand, all four possible
envelope colors have the same probability.

8.4. RUNNING PGOLOG ON A REAL ROBOT 195

The basic idea is as follows: when the robot has loaded some letters, it can either (a) first
pick up another letter before delivering the letters loaded; or (b) first deliver all letters loaded
before picking up further letters. In general, the robot could also deliberate over which letter
to pick up next. Here, however, we use a quite simple heuristic to determine the letter that
is potentially to be picked up next: we sort the pickup places clockwise, and identify the
next letter to be picked up with the pickup place next to the robots actual position. For
example, if the robot is in Room 6204, we subsequently determine if there is a pickup request
for Room 6204, 6205, 6214, 6213a, 6213, and finally 6212, and identify the first request found
with the next letter to be picked up. Similarly, if the robot starts delivering letters, it proceeds
in a clockwise manner.

The decision which option to take depends on which is faster: (a) first picking up the
next letter, then delivering all letters; or (b) first delivering all letters loaded, then picking
up and delivering the next letter. To correctly estimate the execution time of the different
strategies, the robot has to take into account that an ambiguous delivery will cause a delay
of 30 seconds on average. Whether or not the robot should put up with this delay not only
depends on the length of the detour that (b) would cause, but also of the probability that (a)
will result in a delay: note that the robot has only incomplete information about the colors
of the envelopes to be delivered. Although this heuristic might not always lead to an ideal
robot behavior, our experiments suggest that in practice it results in quite good schedules.

The Model of the Low-Level Processes Before we can turn this informally described
heuristic strategy into a bGOLOG plan, we need a pGOLOG model of all the low-level processes
involved. To start with, we use the same model of the navigation process as in Section 8.1.5.
Note that this model makes use of the t-function toCoords, which (as elaborated in Sec-
tion 7.3.3) enables the projection of the remaining plan at any time during on-line execution,
based on the updated belief state of the robot. This feature of the model of the navigation
process is important here, because our high-level controller will make use of the epistemic test
eu (cf. Section 8.3.3) and will thus interleave on-line execution and probabilistic projection.

The effects of the activation of pickup is modeled by the procedure prgPickupLetter,
which takes as arguments the letter l to be picked up and the specification of the color of
the letter’s envelope, colSpec. The value of colSpec may either be red, yellow, green,
blue or unspecified. The outcome of prgPickupLetter depends on whether or not the
color of the envelope to be picked up is specified. In particular, if the color is yet unspecified
prgPickupLetter can result in four different outcomes, which reflects the fact that the user
can push each of the four buttons of the robot. Each possible outcome has an occurrence
probability of 25%. If the color was specified, prgPickupLetter has only one possible out-
come. Note that each execution trace of prgPickupLetter results in the execution of exactly
one reply(lLoaded(l),C) action.

proc(prgPickupLetter,[l,colSpec],
if(colSpec=unspecified,

%Color unspecified; four possible outcomes
[say("Please give me the letter,

then press the button with the envelope’s color."),
prob(0.5,prob(0.5,[reply(lLoaded(l),red)],

[reply(lLoaded(l),yellow)]),
prob(0.5,[reply(lLoaded(l),green)],

196 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

[reply(lLoaded(l),blue)]))],
%Color specified
[say("Please give me the letter, then press any button."),
if(colSpec=red,[reply(lLoaded(l),red)],

if(colSpec=yellow,[reply(lLoaded(l),yellow)],
if(colSpec=green,[reply(lLoaded(l),green)],

if(colSpec=blue,[reply(lLoaded(l),blue)]))))])).

To model the low-level process deliver, we make use of the procedure prgDeliverLetter
which takes as arguments the letter l to be delivered and the color of the letter’s envelope.
prgDeliverLetter accounts for the fact that if the robot has loaded more than one envelope
with color color the recipient has to find out the right envelope by eventually executing
waitTime(60) (as elaborated in Section 6.2.3, the purpose of waitTime(n) is to wait for n
seconds). Finally, prgDeliverLetter results in the execution of reply(lLoaded(l),nil)
and reply(lReq(l),nil), which tells the high-level controller that Letter l1 has now been
delivered.

proc(prgDeliverLetter,[l,color],
[if(exists(l2,and(reg(lLoaded(l2),color),not(l=l2))),

%Different envelopes with same color
[say("Your letter is in one of the",color,"envelopes."),
prob(0.5,waitTime(0),waitTime(60))],

%Unambiguous delivery
say("Your letter is in the",color,"envelope.")),

reply(lLoaded(l),nil),
reply(lReq(l),nil)]).

Based on these models of the individual low-level processes, the whole low-level execution
system is then modeled by a single pGOLOG program, analogously to the treatment in Sec-
tion 6.2.3.

The High-Level Plans Now that we have a model of the low-level processes involved,
we can turn to the specification of the high-level bGOLOG plans. We begin by specifying
bGOLOG plans which implement the two possible behaviors the robot will deliberate over,
i.e. (a) first pick up the next letter, then deliver all letters loaded; and (b) first deliver all
letters loaded, then pick up and deliver the next letter. The two possibilities are implemented
by the procedures firstGet and firstDeliv. Besides appealing to the (directly observable)
registers, these procedures make use of the kwhich construct to evaluate the functional fluents
nextPickup and nextDeliv. nextPickup and nextDeliv are defined functional fluent whose
value is the name of the next room where a letter is to be picked up respectively to be
delivered. As mentioned earlier, the value of these functional fluents is defined based on a
clockwise ordering of the rooms.

proc(firstGet,[],
[if(not(kwhich(nextPickup)=nil),

getLetter(kwhich(nextPickup))),
delivAllLoaded]).

8.4. RUNNING PGOLOG ON A REAL ROBOT 197

proc(firstDeliv,[],
[delivAllLoaded,
if(not(kwhich(nextPickup)=nil),

getLetter(kwhich(nextPickup))),
delivAllLoaded]).

The above procedures make use of the procedures getLetter and delivAllLoaded to get
the next letter respectively to deliver all letters loaded. getLetter first calls gotoRoom
to move to the right place and then activates the low-level process pickup by means of a
send(fork,pickupLetter(l,cs)) action. delivAllLoaded invokes deliverLetter to de-
liver one letter after another until all letters loaded have been delivered. Finally, the procedure
deliverLetter makes use of gotoRoom to move the robot to the letter’s destination and then
activates deliver by means of a send(fork,deliverLetter(l,color)) action.

proc(getLetter,[l],
if(and(exists(colSpec,and(bel(reg(lReq(l))=colSpec,1),

not(colSpec=nil))),
bel(reg(lLoaded(l))=nil,1)),

[gotoRoom(kwhich(reg(lOrig(l)))),
send(fork,pickupLetter([l,kwhich(reg(lReq(l)))])),
bel(reg(lLoaded(l))=nil,0)?],

say("Error! Can’t get letter",l))).

proc(delivAllLoaded,[],
[say("Beginning Delivery"),
while(exists(l,exists(c,and(bel(reg(lLoaded(l))=c,1),

not(c=nil)))),
deliverLetter(kwhich(nextDeliv)))]).

proc(deliverLetter,[l],
if(and(exists(colSpec,and(bel(reg(lReq(l))=colSpec,1),

not(colSpec=nil))),
exists(c,and(bel(reg(lLoaded(l))=c,1),not(c=nil)))),

[gotoRoom(kwhich(reg(lDest(l)))),
send(fork,deliverLetter([l,kwhich(reg(lLoaded(l)))])),
bel(reg(lLoaded(l))=nil,1)?],

say("Error! Can’t deliver letter",l))).

Based on the procedures firstGet and firstDeliv, we can specify the overall high-level
plan, which is implemented by the procedure main. The body of main consists of a while loop
which only becomes final if no letter request remains to be achieved. What happens within
this while-loop depends on whether or not there still exists a letter which is to be delivered
and which has not yet been picked up by the robot. If there are no such letters, then all
letters loaded are delivered, and the overall plan ends.

On the other hand, if there still are letters which have to be delivered and have not yet been
loaded, main makes use of the two procedures firstGet and firstDeliv to deliberate over
the two possible behaviors: first pickup another letter, or first deliver the letters loaded. For

198 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

this purpose, it determines the expected utility uGet of firstGet by means of the epistemic
test eu (cf. Section 8.3.1), and compares it with the expected utility uDeliv of firstDeliv.
Here, we simply identify the utility of a situation with its starting time multiplied with -1,
which means that an execution trace that ends earlier has a higher utility. If uGet is at
least as high as uDeliv, then main picks up the next letter; else, it delivers all letters loaded.
Thereafter, the overall plan goes in the next loop.

proc(main,[],
while(exists(l,exists(c,and(bel(reg(lReq(l))=c,1),

not(c=nil)))),
if(not(exists(l,and(exists(c,and(bel(reg(lReq(l))=c,1),

not(c=nil))),
bel(reg(lLoaded(l))=nil,1)))),

[say("No more letters to pickup."),
delivAllLoaded],

[if(exists(uGet,exists(uDeliv,
and(and(eu(firstGet,uGet),eu(firstDeliv,uDeliv)),

uGet>=uDeliv))),
[say("I will first pickup the next letter."),
getLetter(kwhich(nextPickup))],

[say("I will first deliver the letters."),
delivAllLoaded])]))).

8.4.4 Experimental Results

Let us now consider some on-line execution traces resulting from the execution of the high-
level program main. In all scenarios, the robot is initially in Room 6204. In the first scenario,
the robot is to deliver two letters, l1 and l2. Letter l1 is to be delivered from Room 6214 to
Room 6212, and Letter l2 from Room 6213a to Room 6205. While the request for Letter l2
specifies that the letter will be within a red envelope, the color of the envelope for Letter l1
is unspecified. Figure 8.11 illustrates two possible executions traces of main in this scenario.
Here, dotted lines are used to represent deliveries whose color was not specified in advance,
while solid lines are used to represent deliveries resulting from a fully specified request. The
labeled nodes indicate subsequent locations of the robot.

Let us first consider the execution trace illustrated in the left sub-figure. After its activa-
tion, main first causes the robot to travel to a pickup place, namely to Room 6214. Here, the
robot asks for Letter l1, and is told that l1 is within a blue envelope, that is the user presses
the blue button. The robot now estimates the expected utility of the two procedures firstGet
and firstDeliv. The trajectory resulting from the execution of firstGet is slightly shorter
than that resulting from the execution of firstDeliv. Furthermore, as Letter l1 is within
a blue envelope and the next letter to be picked up, Letter l2, has been specified to be in a
red envelope, the execution of firstGet should not result in a delay due to an ambiguous
delivery. Thus, firstGet has a lower estimated duration, that is a higher expected utility,
and the robot first travels to Room 6213a where it picks up Letter l2. Finally, it subsequently
travels to the Rooms 6212 and 6205 to deliver the letters loaded.

Next, let us consider the execution trace illustrated in the right sub-figure. Again, the
robot first travels to Room 6214 to pick up Letter l1. This time, however, it is told that l1 is

8.4. RUNNING PGOLOG ON A REAL ROBOT 199

pickup l2

bluecolor:
pickup l1

3
24

5

deliver

5

deliver l2
1

deliver l1

6204 6205

62146213a62136212

(a) Letter 1 is Blue

deliver l1
pickup
color: red

l1

2pickup l2

43

l2
1

5

deliver

(b) Letter 1 is Red

Figure 8.11: Colored Envelopes - Scenario I

within a red envelope, which means that if the robot would first pick up the next letter this
would result in two red envelopes being loaded. The projection of firstGet thus predicts a
possible delay due to an ambiguous letter delivery, and as a consequence the expected utility
of firstGet in the actual situation drops below that of firstDeliv. Thus, the robot first
delivers Letter l1 in Room 6212, then travels back to Room 6213a to pick up Letter l2, and
finally delivers Letter l2 in Room 6205.

The above scenario shows that our high-level program main will sometimes choose a longer
trajectory in order to avoid carrying two letters with the same color. However, main will only
avoid carrying two envelopes with the same color as long as this does not result in a major
detour, as shown by our next scenario. Here, the robot is to deliver Letter l2 to Room 6204
(not to Room 6205); otherwise this scenario corresponds to the previous one. As Room 6204
is closer to Room 6212 than Room 6205 but farther away from Room 6213a, the trajectory
resulting from the execution of firstDeliv (the robot being in Room 6214) is significantly
longer than that resulting from the execution of firstGet. In fact, firstDeliv would cause
the robot to first travel to Room 6212, then back to Room 6213a and finally to Room 6204,
a major detour. Accordingly, the execution of main causes the robot to first pick up both
letters even if this results in an ambiguous delivery, as illustrated in Figure 8.12.

As final example, we used a somewhat more complex scenario where the robot is to deliver
four letters. The exact delivery requests are as follows:

• Deliver Letter l1 from Room 6214 to Room 6212, color unspecified;

• Deliver Letter l2 from Room 6213a to Room 6205, color red;

• Deliver Letter l3 from Room 6205 to Room 6204, color green;

• Deliver Letter l4 from Room 6213 to Room 6204, color unspecified.

Figure 8.13 illustrates an execution trace of our high-level program main in this scenario.
The robot first moves to Room 6205, where it picks up Letter l3, which is inside a green

200 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

1
deliver l2

4

5

6204 6205

deliver l1

3
pickup l2

bluecolor:
pickup l1

2

6213a6212 6214

(a) Letter 1 is Blue

color:
pickup l1

red
deliver l1

3
pickup l2

1
deliver l2

5

4

l1 and l2 loaded !!!

2

(b) Letter 1 is Red

Figure 8.12: Colored Envelopes - Scenario II

envelope (node 2). Thereafter, it estimates the utility of firstGet and firstDeliv, where
Letter l1 is the next letter to be picked up. As the color of Letter l1 is unspecified, there is
a 25% probability that the execution of firstGet will result in the two green letters being
loaded. Nevertheless, the expected utility of firstGet is higher than that of firstDeliv, so
the robot travels to Room 6214 to pick up Letter l1. Here, the robot is given a a red letter
(node 3).

At this point, the robot has loaded two letters, a green and a red one. The two letters
have to be delivered to Room 6204 respectively to Room 6212. The next pickup place is
in Room 6213a, where the robot could pick up Letter l2, which is inside a red envelope.
Although Room 6213a is half on the way to Room 6212, the robot ignores the opportunity to
pick up Letter l2 because it has already loaded a red letter. Instead, it delivers the Letters l1
and l3 to Room 6212 (node 4) respectively to Room 6204 (node 5).

Back in Room 6204, the robot decides to move to Room 6213a to pick up Letter l2,
which is inside a red envelope (node 6). Here, it determine that first delivering Letter l2
in Room 6205 and then delivering Letter l4 (whose color is unspecified) from Room 6213
to Room 6204 has a higher utility than first picking up Letter l4 and then delivering the
two letters loaded. Thus, the robot subsequently travels to Room 6205 (node 7) to deliver
Letter l2, and to Room 6213 where it is given Letter l4 in a blue envelope (node 8). Finally,
it travels to Room 6204 where it delivers Letter l4 (node 9) and completes its journey. We
remark that the resulting overall trajectory represents a quite reasonable schedule.

The Performance of our PROLOG Interpreter We end this section with some remarks
regarding the performance of our PROLOG implementation. The execution trace illustrated
in the left sub-figure of Figure 8.11 consists of 502 actions, the execution trace in the right sub-
figure of 569 actions. The execution traces illustrated in Figure 8.12 consist of 556 respectively
of 693 actions. Finally, the execution trace illustrated in Figure 8.13 consists of 1118 actions.9

9The actual number of actions heavily depends of the actual execution trace. In particular, the number
ccUpdate actions depends on the actual duration of a low-level navigation task and on the time the user needs

8.5. DISCUSSION 201

6204 6205

62146213a62136212

1
5

7

3
8

2
9

4
6

red

red

blue

gr
ee

n

Figure 8.13: Colored Envelopes - Scenario III

In the execution trace illustrated in Figure 8.11 (left), our interpreter was able to evaluate
each eu condition in less than 1 second (on a Pentium III 500Mhz Linux Workstation). In
the execution trace illustrated in Figure 8.11 (right), the calculation of the expected utility
of firstGet required 1.7 seconds; this additional computation time is due to the fact that
the projection of firstGet involves an ambiguous delivery, which results in a distribution
over the projected duration of the delivery. The execution traces illustrated in Figure 8.12
required similar computation time.

As for the longer execution trace illustrated in Figure 8.13, the longest computation time
required to determine the expected utility of a sub-plan during its execution arose while
the robot was in Room 6213a (node 6). Here, the runtime involved in the calculation of the
expected utility of firstGet amounted to almost 7.5 seconds, in a situation consisting of over
740 actions. We remark that during these computations our interpreter determined the value
of the epistemic functional fluents kwhich(nextPickup) and kwhich(nextDeliv) without
considering the epistemic fluent p, which is possible because nextPickup and nextDeliv are
defined in terms of reg.

8.5 Discussion

In this chapter, we have presented a prototype PROLOG implementation of the formal frame-
work presented in the previous four chapters. In particular, we have presented a cc-Golog and
a pGOLOG interpreter, and have used them to compute several example reasoning tasks
employed in the previous chapters. It turned out that although the formal specification of cc-
Golog and pGOLOG requires first and even second-order logic, it is relatively straightforward
to write a cc-Golog respectively a pGOLOG interpreter in PROLOG. Furthermore, the imple-
mentation is relatively efficient. Except for the projection of truly belief-based programs, we

to acknowledge a receipt.

202 CHAPTER 8. IMPLEMENTATION AND EXPERIMENTATION

were able to compute all example reasoning tasks in at the very most a few seconds.
We also used our interpreters to control a real robot, the RWI B21 robot CARL. To do

so, we coupled our PROLOG implementation to the low-level execution system BeeSoft, a
state-of-the-art basic-task execution system, which has successfully been used in several real-
world applications. In particular, we made use of the software package HLI which provides
a uniform interface between BeeSoft and PROLOG and has already successfully been used
as link between the BeeSoft system and plain GOLOG. We used the resulting run-time sys-
tems for cc-Golog and pGOLOG in several example delivery tasks. In particular, we did not
only consider the on-line execution of simple non-deliberative plans, but also of plans whose
outcome is conditioned on the predicted effects of different possible sub-plans.

We end this chapter with some remarks on the computational limitations of our proto-
type implementation regarding real-world applications. Concerning the use of cc-Golog, our
experimental results suggest that our PROLOG implementation is well suited for even larger
domains than those considered here. Regarding pGOLOG, however, the computation-time
involved in the execution of bGOLOG plans was sometimes at the limit of being tolerable. We
believe that these experiments give a good impression of the size of the problems which can
be handled by our pGOLOG implementation. In particular, we remark that (at least at the
moment) realistic examples like the colored letter delivery can only be handled if we restrict
ourselves to bGOLOG plans which primarily make appeal to the directly observable fluent reg,
and only occasionally make use of epistemic tests like eu. As a final anecdote, we remark that
we had to abandon the development of an earlier version of a bGOLOG controller for the col-
ored letter scenario because it was computationally much too demanding. This approach was
based on the idea to represent under-specified delivery requests by a probability distribution
over fully-specified requests, which required all bGOLOG plans depending on the letters to be
delivered to appeal to robot’s beliefs, instead of simply testing the value of some registers.

Chapter 9

Conclusions

In this chapter, we provide a summary of the logic-based framework for robot control presented
in this thesis, discuss the main contributions of our approach and point out some possible
future work.

9.1 Summary

While the original situation calculus which underlies GOLOG can only represent discrete
change, in mobile robot applications the world changes in a continuous way, for example
when the robot moves to its destination. To deal in a natural way with continuously changing
properties of the world, like for example the robot’s position, we have proposed a new temporal
version of the situation calculus. In particular, our temporal situation calculus provides the
concept of continuous fluents, fluents whose value change continuously over the duration of a
situation. The notion of time of our temporal situation calculus is based on the idea that time
advances only while the robot is waiting (via the special action waitFor) for the occurrence
of conditions appealing to continuous fluents.

Based on this temporal situation calculus, we have developed a dialect of GOLOG, which
we call cc-Golog, and which allows the specification of event-driven high-level robot plans,
like for example a plan which interrupts a delivery immediately if the voltage level falls
dangerously low. Such event-driven actions can be specified in a natural way using the new
waitFor instruction. The semantics of ConGolog and of cc-Golog differ in that if two programs
are executed concurrently, then in cc-Golog the decision which branch may execute first is not
only based on the priority of the different branches but also on the execution time of actions,
a concept not present in ConGolog. As a result, cc-Golog is well suited for the specification of
high-level controllers where high-priority policies monitor certain condition (like a low voltage
level) without blocking the execution of concurrent programs (like a letter delivery). On the
other hand, cc-Golog provides a new construct, withCtrl, which allows to specify that parts of
the plan shall run mutually exclusive. Using withCtrl, it is possible to specify, for example,
that a high-priority policy for re-charging the batteries shall block the low-priority letter
delivery.

To facilitate the actual execution of cc-Golog plans on a real robot, we have employed
a layered robot control architecture where a high-level controller running cc-Golog plans is
coupled to a state-of-the-art basic-task execution system like the BeeSoft system. The com-
munication between the high-level controller and low-level processes like a navigation process

203

204 CHAPTER 9. CONCLUSIONS

provided by the underlying basic-task execution system is achieved via messages. In our sit-
uation calculus framework, these messages are represented by the special primitive actions
send and reply. The resulting robot control architecture is well suited to deal with processes
like a navigation process whose termination does not lie under the control of the high-level
controller, and which results in continuous trajectories which may differ from the predicted
trajectories.

To allow both the projection and the actual (on-line) execution of the same cc-Golog
plans, we have modeled every part of the basic-task execution system in our situation calculus
framework. In particular, we have modeled the low-level processes by cc-Golog procedures.
Having an explicit model of the low-level processes allows us to either execute a cc-Golog plan
(ignoring the model of the low-level processes) or to project its effects. Based on the ability
to both project and execute the same cc-Golog plan, we have introduced a local lookahead
construct which allows time-bound projection during execution under user control. The use of
projection during execution is quite useful in specifying intelligent robot behavior, for example
to check at execution time if a robot which has to keep an appointment still has enough time
to accomplish some other task before.

Besides considering issues related to continuous change and event-driven actions, we have
investigated the possibility to extend the GOLOG framework to deal with probabilistic do-
mains. In particular, to represent probabilistic beliefs we have characterized the robot’s epis-
temic state as a distribution over situations considered possible, following [BHL95, BHL99].
Based on this representation, we have introduced belief-based bGOLOG programs, GOLOG-
style programs whose tests and conditionals appeal to the robot’s beliefs, as opposed to
ordinary GOLOG programs which appeal to the value of fluents. Intuitively, the reason why
bGOLOG plans may not directly appeal to the value of fluents is that in a probabilistic setting
the robot is uncertain about their values – it has only beliefs about their possible values.

To represent and reason about low-level processes with probabilistic effects, we have in-
troduced a probabilistic derivative of GOLOG called pGOLOG. The language pGOLOG allows
the characterization of noisy low-level processes as probabilistic programs, with the idea that
different probabilistic branches of the programs correspond to different outcomes of the pro-
cesses. This approach does not only allow the representation of low-level processes which
have probabilistic effects on the state of the world, but also of what we call sensor processes,
low-level processes which provide (noisy) sensor information. Using pGOLOG procedures char-
acterizing the low-level processes, we have extended GOLOG’s concept of plan projection to
probabilistic domains, arriving at a notion of probabilistic projection. Unlike ordinary pro-
jection, probabilistic projection is not concerned with which facts hold after the execution
of a plan, but with the probability that certain facts hold after the execution of a bGOLOG
plan. We have also discussed how probabilistic projection is related to the expected utility of
a plan.

Besides using pGOLOG in the formalization of probabilistic projection, we employed it
to characterize how the robot’s probabilistic beliefs change when it executes actions (like
activating a low-level process) or receives sensor input. Our approach to belief update is based
on the idea to represent different states of execution of a low-level process by different pGOLOG
programs. Intuitively, if a low-level program has executed some actions, then in the next
situation it is characterized by what remains of the pGOLOG program after execution of these
actions. In particular, we have extended our representation of the robot’s epistemic state by
associating with every situation considered possible a pGOLOG program modeling the actual
state of execution of the low-level processes, arriving at a distribution over configurations.

9.2. DISCUSSION AND FUTURE WORK 205

Using this extended characterization, we can take into account that actions of the high-level
controller activate low-level processes, which will subsequently cause change in the world.
On the other hand, sensor inputs are used to remove configurations from the epistemic state
which are not compatible with the observations.

Within this framework, we have isolated a certain class of beliefs, namely beliefs regard-
ing what we call directly observable fluents. Directly observable fluents are such that the
underlying situation calculus theory implies that the robot always has perfect information
about them - in particular, the robot has always perfect information about messages it has
received from the low-level processes. Directly observable fluents play an important role in
our framework because they provide a means to efficiently derive the robot’s beliefs regarding
certain properties. This allows the efficient execution of bGOLOG plans which only appeal to
the robot’s beliefs regarding directly observable fluents.

Finally, we have extended the idea to interleave on-line execution and projection of cc-
Golog plans to our probabilistic dialect bGOLOG. In particular, we have defined a local looka-
head construct which allows the specification of plans appealing to probabilistic projection
during execution. Similarly, we have defined a test which makes it possible to determine the
expected utility of a candidate sub-plan with respect to the actual situation. Using these
tests, it is possible to specify plans which compare the expected utility of different candi-
date sub-plans at execution time, and which thereafter execute the sub-plan with the highest
expected utility.

We have shown several important properties of our formalization, and have implemented
a cc-Golog and a pGOLOG interpreter in PROLOG. Furthermore, we have coupled our in-
terpreters to the BeeSoft basic-task execution system, and have used the resulting run-time
system to control the RWI B21 robot CARL in several experiments.

9.2 Discussion and Future Work

The extensions of the language GOLOG proposed in this thesis represent an important step
towards more realistic logic-based robot controllers. Our framework provides several features
which so far where only present in non-logic-based approaches: a layered control architecture
which allows the interaction with low-level processes involving continuous time and change,
and whose exact duration and behavior varies from time to time; a new construct which
allows the specification of event-driven actions; and facilities which support the specification
of mutually exclusive sub-plans. At the same time, our framework has a declarative semantics
and relies on a well-understood formalism for reasoning about action and change. This gives
the user a clear understanding of the effects of programs, gives her the possibility to project
candidate plans based on a (probabilistic) model and allows her to investigate properties of
plans, which is problematic in non-logic-based approaches.

Given that the extended GOLOG framework provides most of the features which so far were
only found in non-logic-based robot programming languages, virtually every high-level robot
controller written in a non-logic-based robot programming language like RPL could as well be
specified using a GOLOG derivative like cc-Golog. However, in practice GOLOG will probably
only become an attractive alternative to the predominating non-logic-based languages if it can
really benefit from its special features in concrete applications, in particular from its ability to
automatically project candidate plans both during development and at run-time. Actually, in
most of today’s real-world robotics applications the robots perform relatively simple high-level

206 CHAPTER 9. CONCLUSIONS

tasks, like guiding people, delivering letters or serving coffee. In such scenarios, the use of
logic-based robot controllers with built-in projection mechanisms may not be too convincing
because projections do not seem really beneficial or even necessary, especially at run-time.
We believe that it is only once robots will engage in more complex tasks that the advantages
of projections will become apparent.

As an example, consider a multi-robot delivery scenario where a user makes a request
to have a letter delivered by one of the robots. Then in order to determine which robot
should deliver the letter, each robot might use projection to determine the cost that would
arise if it were to carry out this job, and the task could then be assigned to the robot with a
minimal cost estimate. On-the-fly projection becomes even more important when robots need
to coordinate their activities. Suppose that two robots agree to meet somewhere at a certain
time in the future. Until then they would probably want to carry out as much of their other
duties as possible. Since tasks may not be interruptible at arbitrary times, each robot would
be well-advised to check how much of the current task can be completed before heading off
to the meeting point. To do so, some form of projection seems necessary.

However, until such complex applications are attacked the choice which high-level pro-
gramming language to use is more likely to be made depending on the simplicity of the
robot programming language, on the availability of a sophisticated debugging environment
and on the portability and efficiency of the implementation. Unfortunately, today’s existing
debugging tools for GOLOG are quite restricted. As for the performance of our prototypi-
cal implementations, in particular when applied to real-world applications, the experiments
in Chapter 8 demonstrate that our cc-Golog implementation is well suited for the execution
of complex plans in realistic domains. On the other hand, the experiments regarding our
pGOLOG implementation, like the colored letter delivery example in Section 8.4.1, suggest
that our prototype implementation is only suitable for programs which are almost exclusively
limited to belief tests appealing to directly observable fluents. As it seems, bGOLOG programs
appealing to real-valued beliefs and to probabilistic projection tests can only be handled ef-
fectively in large probabilistic domains if we significantly improve the performance of our
implementation. A promising approach would be to use some kind of database progression
[LR97] during on-line execution.

Technically, the approach might also benefit from choosing a slightly different underlying
formalism for reasoning about action and change. The transition semantics inherited from
ConGolog requires that programs as well as formulas and fluents which are allowed to appear
within programs are first-order terms. As a result, every relational fluent is represented by
both an ordinary situation calculus predicate symbol and by a function symbol which denotes
its reified variant. One possibility to overcome this redundancy and to reduce the amount
of technical material needed in the encoding of programs as terms (cf. Appendix A) would
be to rely on a formalism where fluents are considered as first-order citizens, like [PR93] or
[Thi99c]. In this context, it would also be interesting to investigate whether the occurrence of
self-referencing programs can be excluded without appealing to several different logical sorts
distinguishing different kinds of programs.

Another issue is the applicability of our extended GOLOG dialects to (classical) planning.
Here, it becomes apparent that the extensions of GOLOG presented in this thesis come at a
price. Maybe the most important restriction of our framework compared with the original
GOLOG is that we had to remove all nondeterministic instructions from the language. This
clearly represents a significant loss of expressiveness. As an – admittedly incomplete – re-
placement for the nondeterministic instructions, we have introduced facilities for time-bound

9.2. DISCUSSION AND FUTURE WORK 207

projection and probabilistic projection under user control during on-line execution. Although
these features clearly do not compensate the loss in expressiveness, from a practical point
of view they also have advantages. In particular, if logic-based robot controllers are to be
used to control robots in highly dynamic environments, like for example in the context of
RoboCup, they often must come up with quick decisions. In such applications, the use of
unrestricted nondeterminism is prohibitive as it potentially results in an enormous amount of
reasoning, and the user writing a nondeterministic program often has no good intuition as to
where significant reasoning is required. While the incremental GOLOG interpreter proposed
in [dGL99b] provides features to control the amount of reasoning involved in the execution of
a plan, the explicit use of projection tests provides the user with even finer-grained control.

Finally, as discussed in Section 7.3.1 there are still open issues regarding the integration
of continuous change, on-line execution and probabilistic belief update. In particular, while
in our approach only reply actions can sharpen the robot’s beliefs, in domains involving
continuous change it seems suggestive to also make use of the actual course of continuous
trajectories to determine whether a situation is compatible with the actual state of the world.
For example, if a robot faces another agent on a path involving two lanes, then it is suggestive
to consider the actual trajectory covered by the other agent in order to determine which of
the two lanes it probably intends to use.

Nevertheless, even though much remains to be done we believe that the work reported in
this thesis represents a significant step towards more realistic logic-based robot controllers.

Index

action
exogenous, 10
natural, 18
primitive, 34

action precondition axiom, 35
AXccx, 82

basic action theory, 38
BeeSoft, 175
Bel, 51
belief, 51, see also Bel
belief update, 128, 133
belief-based programs, 150, see also bGOLOG
bGOLOG, 117

CARL, 175
cc-Golog, 59

semantics, see Trans, Final
conc, 59
ConGolog, 39
control architecture, 67, 112

Do, 43
doPr, 97

effect axiom, 35
epistemic state, 50, 112, 132
EU, 125, 155
expected utility, see EU

Final, 41, 64, 99
fluent, 35

continuous, 55
directly observable, 118

frame axioms, 36
frame problem, 17, 36

Reiter’s solution, 36
function of time, see t-function

golog, 9, see also ConGolog

induction axiom, 38

K fluent, 18
knowledge, 18
Kwhich, 152

least time point, see ltp
low-level process, 9, 30

as cc-Golog procedure, 68
as pGOLOG procedure, 114

ltp, 56

MDP, 25

nondeterminism, 40, 66, 125

off-line execution, 9
on-line execution

in cc-Golog, 81
in pGOLOG, 130

p fluent, 19
PBel, 120, 155
pGOLOG, 92

semantics, see transPr, Final
plan, 8
pll fluent, 132
policy, 32

blocking, 53, 62
POMDP, 25
prob, 93
probabilistic projection, 119
Proj, 69
projected belief, see PBel
projection, see Proj
projection test

probabilistic & continuous fluents, 155
probabilistic, 154

qualification problem, 17

208

INDEX 209

ramification problem, 17
reasoning about action and change, 16
robot programming languages

GOLOG and its derivatives, 25
non-logic-based, 30

RPL, 31

sensor process, 113
situation calculus, 34

foundational axioms, 38, 50
start, 54
successor state axiom, 36

t-form, 56
epistemic, 153

t-function, 55
timeline, see start
Trans, 41, 63
transPr, 94, 100
transPr/, 134

valve, 31

waitFor, 55
withCtrl, 59

210 INDEX

Appendix A

Reification of Programs as Terms

In this section, we will describe how programs can be encoded as first-order terms. Further-
more, we will provide a formal account of the terms α[s], φ[s] and τ [s, t] informally introduced
in the Sections 3.2.1 and 4.1.4.

This appendix is essentially an extension of [dGLL00], Appendix A. In particular, Sec-
tions A.1.1 to A.1.3, which develop an encoding of formulas, correspond (almost literally) to
the Sections A.1 to A.3 of [dGLL00], with the only difference that here we also account for the
new sorts Real, Time and Prob. Section A.1.4 then presents an encoding of continuous fluents
and t-forms, concepts which were not present in [dGLL00]. The following Sections A.2 and
A.3, which present an encoding of cc-Golog programs respectively of pGOLOG and bGOLOG
programs as terms, are based on Section A.5 of [dGLL00] which describes an encoding of Con-
Golog programs as terms. However, our Sections A.2 and A.3 are significantly more complex
than their counterpart in [dGLL00]. This is because in Section A.2 we do not only encode
(simple) cc-Golog programs, but additionally encode projection tests and cc-Golog programs
involving projection tests, unlike [dGLL00] who only consider programs without projection
tests; similarly, in Section A.3 we first encode pGOLOG and bGOLOG programs as terms, and
thereupon encode probabilistic projection tests and bGOLOG programs with projection tests.

A.1 Preliminaries

First, we add the following new sorts to the situation calculus: Idx, PseudoSit, PseudoAct,
PseudoObj, PseudoReal, PseudoTime, PseudoProb, PseudoForm, PseudoCF and PseudoT-
Form. Intuitively, elements of Idx denote natural numbers, and are used for building indexing
functions. Elements of PseudoAct, PseudoObj, PseudoReal, PseudoTime, PseudoProb, Pseu-
doSit, PseudoForm, PseudoCF and PseudoTForm are syntactic devices to denote respectively
actions, objects, reals, time points, probabilities, situations, formulas, continuous fluents and
t-forms.

A.1.1 Sort Idx

We introduce the constant 0 of sort Idx, and a function succ : Idx → Idx . For them we enforce
the following unique names axioms:

succ(i) 6= 0
succ(i) = succ(i′) ⊃ i = i′.

211

212 APPENDIX A. REIFICATION OF PROGRAMS AS TERMS

We define the predicate Idx of sort Idx as:

Idx(i) ≡ ∀X.[... ⊃ X(i)]

where the ellipsis stands for the universal closure of the conjunction of

X(0)
X(i) ⊃ X(succ(i)).

Finally we assume the following domain closure axiom for sort Idx:

∀i.Idx(i)

where i denotes a variable of sort Idx.

A.1.2 Sorts PseudoSit, PseudoObj, PseudoAct, PseudoReal, PseudoTime and Pseu-
doProb

The languages of PseudoSit, PseudoObj, PseudoReal, PseudoTime, PseudoProb and Pseu-
doAct are as follows:

• A constant now of sort PseudoSit ;

• A function nameOfSort : Sort→ PseudoSort for Sort = Obj,Act,Real ,Time,Prob;

• A function varSort : Idx → PseudoSort for Sort = Obj,Act,Real ,Time,Prob. We call
terms of the form varSort(i) pseudo-variables and we use the notation zi (or just x, y, z)
to denote varSort(i), leaving Sort implicit;

• A function f : PseudoSort1 × ... × PseudoSortn → PseudoSortn+1 for each fluent or
non-fluent function f of sort Sort1 × ...× Sortn → Sortn+1 with Sorti = Obj, Act, Real,
Time, Prob, Sit in the original language (note that if n = 0 then f is a constant).
Note also that this does not include the epistemic fluents p (cf. Section 3.3), pll (cf.
Section 7.1.2), Lookahead (cf. Section 5.2.2), Bel (cf. Section 6.2.1), PBel and EU (cf.
Section 7.3.2).

We define the predicates PseudoSit of sort PseudoSit, PseudoObj of sort PseudoObj, PseudoReal
of sort PseudoReal, PseudoTime of sort PseudoTime, PseudoProb of sort PseudoProb and
PseudoAct of sort PseudoAct respectively as:

PseudoSit(x) ≡ ∀PSit, PObj, PAct, PReal , PTime , PProb .[... ⊃ PSit(x)]
PseudoObj(x) ≡ ∀PSit, PObj, PAct, PReal , PTime , PProb .[... ⊃ PObj(x)]

PseudoReal(x) ≡ ∀PSit, PObj, PAct, PReal , PTime , PProb .[... ⊃ PReal (x)]
PseudoTime(x) ≡ ∀PSit, PObj, PAct, PReal , PTime , PProb .[... ⊃ PTime(x)]
PseudoProb(x) ≡ ∀PSit, PObj, PAct, PReal , PTime , PProb .[... ⊃ PProb(x)]

PseudoAct(x) ≡ ∀PSit, PObj, PAct, PReal , PTime , PProb .[... ⊃ PAct(x)]

where the ellipsis stands for the universal closure of the conjunction of

PSit(now)
PSort(nameOfSort(x)) for Sort = Obj,Act,Real ,Time,Prob

PSort(zi) for Sort = Obj,Act,Real ,Time,Prob
PSort(x1) ∧ ... ∧ PSort(xn) ⊃ PSort(f(x1, ..., xn)) (for each f).

A.1. PRELIMINARIES 213

We assume the following domain closure axioms for the sorts PseudoSit, PseudoObj, Pseu-
doAct, PseudoReal, PseudoTime and PseudoProb:

∀x.PseudoSit(x)
∀x.PseudoObj(x)
∀x.PseudoAct(x)
∀x.PseudoReal(x)
∀x.PseudoTime(x)
∀x.PseudoProb(x).

We also enforce unique names axioms for them, that is, for all functions g, g′ of any arity
(including constants) introduced above:

g(x1, ..., xn) 6= g′(y1, ..., ym)
g(x1, ..., xn) = g′(y1, ..., yn) ⊃ x1 = y1 ∧ ... ∧ xn = yn.

Observe that the unique names axioms impose that nameOf(x) = nameOf(y) ⊃ x = y but do
not say anything about domain elements denoted by x and y since these are elements of Act,
Real , Time, Prob or Obj.

Next we want to relate pseudo-situations, pseudo-objects, pseudo-reals, pseudo-time-
points, pseudo-probabilities and pseudo-actions to real situations, object, reals, time points,
probabilities and actions. In fact we do not want to relate all terms of sort PseudoObj, Pseudo-
Real, PseudoTime, PseudoProb and PseudoAct to real object and actions, but just the “closed”
ones, i.e. those in which no pseudo variable zi occur. To formalize the notion of “closedness”,
we introduce the predicate Closed of sort PseudoSort for Sort = Sit,Obj,Act,Real ,Time,Prob,
characterized by the following assertions:

Closed(now)
Closed(nameOf(x))

¬Closed(zi)
Closed(f(x1, ..., xn)) ≡ Closed(x1) ∧ ... ∧ Closed(xn) for each f.

Closed terms of sort PseudoObj, PseudoReal, PseudoTime, PseudoProb and PseudoAct are
related to real objects, reals, time points, probabilities and actions by means of the func-
tion decode : PseudoSort × Sit → Sort for Sort = Sit,Obj,Real ,Time,Prob,Act. We use
the notation x[s] to denote decode(x, s). Such a function is characterized by the following
assertions:

decode(now , s) = s
decode(nameOf(x), s) = x
decode(f(x1, ..., xn), s) = f(decode(x1, s), ..., decode(xn, s)) (for each f).

A.1.3 Sort PseudoForm

Next we introduce pseudo-formulas used in tests. Specifically, we introduce:

• A function p : PseudoSort1×...×PseudoSortn → PseudoForm for each non-fluent/fluent
predicate p in the underlying situation calculus language. Note that this does not include
the new predicates introduced in this section;

214 APPENDIX A. REIFICATION OF PROGRAMS AS TERMS

• A function and : PseudoForm × PseudoForm → PseudoForm. We use the notation
ρ1 ∧ ρ2 to denote and(ρ1, ρ2);

• A function not : PseudoForm → PseudoForm. We use the notation ¬ρ to denote not(ρ);

• A function someSort : PseudoSort × PseudoForm → PseudoForm, for PseudoSort=
PseudoObj, PseudoReal, PseudoTime, PseudoProb and PseudoAct. We use the notation
∃zi.ρ to denote some(varSort(i), ρ), leaving Sort implicit.

We define the predicate PseudoForm of sort PseudoForm as:

PseudoForm(p) ≡ ∀PForm.[... ⊃ PForm(p)]

where the ellipsis stands for the universal closure of the conjunction of

PForm(p(x1, ..., xn)) (for each p)
PForm(ρ1) ∧ PForm(ρ2) ⊃ PForm(ρ1 ∧ ρ2)

PForm(ρ) ⊃ PForm(¬ρ)
PForm(ρ) ⊃ PForm(∃zi.ρ).

We assume the following domain closure axiom for the sort PseudoForm:

∀ρ.PseudoForm(ρ).

We also enforce unique names axioms for pseudo-formulas, that is, for all functions g, g′ of
any arity introduced above:

g(x1, ..., xn) 6= g′(y1, ..., ym)
g(x1, ..., xn) = g′(y1, ..., yn) ⊃ x1 = y1 ∧ ... ∧ xn = yn.

Next we formalize the notion of substitution. We introduce the function sub : PseudoSort×
PseudoSort × PseudoSort ′ → PseudoSort ′ for Sort =Obj, Real, Prob, Time, Act and Sort′ =
Sit, Obj, Real, Prob, Time, Act. We use the notation txy to denote sub(x, y, t). Such a function
is characterized by the following assertions:

nowx
y = now

nameOf(t)xy = nameOf(t)
(zi)zi

y = y

f(t1, ..., tn)xy = f((t1)xy , ...(tn)xy) (for each f).

We extend the function sub to pseudo-formulas (as third argument) as follows:

p(t1, ..., tm)xy = p((t1)xy , ..., (tn)xy) (for each p)
(ρ1 ∧ ρ2)xy = (ρ1)xy ∧ (ρ2)xy
(¬ρ)xy = ¬(ρ)xy
(∃zi.ρ)zi

y = ∃zi.ρ
x 6= zi ⊃ (∃zi.ρ)xy = ∃zi(ρxy).

Next we extend the predicate Closed to pseudo-formulas in a natural way:

Closed(p(x1, ..., xn)) ≡ Closed(x1) ∧ ... ∧ Closed(xn) (for each p)
Closed(ρ1 ∧ ρ2) ≡ Closed(ρ1) ∧ Closed(ρ2)

Closed(¬ρ) ≡ Closed(ρ)
Closed(∃zi.ρ) ≡ ∀y.Closed(ρzi

nameOf(y)).

A.1. PRELIMINARIES 215

We relate closed pseudo-formulas to real formulas by introducing a new predicate Holds :
PseudoForm × Sit, characterized by the following assertions:

Holds(p(x1, ..., xn), s) ≡ p(decode(x1, s), ..., decode(xn, s)) (for each p)
Holds(ρ1 ∧ ρ2, s) ≡ Holds(ρ1, s) ∧ Holds(ρ2, s)

Holds(¬ρ, s) ≡ ¬Holds(ρ, s)
Holds(∃z.ρ, s) ≡ ∃y.Holds(ρz

nameOf(y), s)

where y in the last equation is any variable that does not appear in ρ. We use the notation
φ[s] to denote Holds(φ, s).

A.1.4 Sorts PseudoCF and PseudoTForm

Next we introduce new sorts for pseudo-continuous-fluents and t-forms, which are used as
argument of waitFor actions. Specifically, for each continuous fluent cf of sort Sort1 × ... ×
Sortn → t-function in the original language we introduce a function

cf : PseudoSort1 × ...× PseudoSortn → PseudoCF .

We define the predicate PseudoCF of sort PseudoCF as:

PseudoCF (p) ≡ ∀PCF .[... ⊃ PForm(p)]

where the ellipsis stands for the universal closure of the conjunction of

PCF (cf(x1, ..., xn)) (for each cf).

We assume the following domain closure axiom for the sort PseudoCF:

∀τ.PseudoCF(τ).

We also enforce unique names axioms for pseudo-continuous-fluents, that is, for all functions
g, g′ of any arity introduced above:

g(x1, ..., xn) 6= g′(y1, ..., ym)
g(x1, ..., xn) = g′(y1, ..., yn) ⊃ x1 = y1 ∧ ... ∧ xn = yn.

Next, we define the language of PseudoTForm as follows:

• Functions EQ,GR : PseudoCF × PseudoReal → PseudoTForm. We use the notation
cf = n respectively cf > n to denote EQ(cf, n) respectively GR(cf, n);

• A function and : PseudoTForm×PseudoTForm → PseudoTForm. We use the notation
ρ1 ∧ ρ2 to denote and(ρ1, ρ2);

• A function not : PseudoTForm → PseudoTForm. We use the notation ¬p to denote
not(ρ).

We define the predicate PseudoTForm of sort PseudoTForm as:

PseudoTForm(p) ≡ ∀PTForm .[... ⊃ PTForm(p)]

where the ellipsis stands for the universal closure of the conjunction of

216 APPENDIX A. REIFICATION OF PROGRAMS AS TERMS

PTForm(EQ(cf(x1, ..., xn), n) (for each cf)
PTForm(GR(cf(x1, ..., xn), n) (for each cf)

PTForm(τ1) ∧ PTForm(τ2) ⊃ PTForm(τ1 ∧ τ2)
PTForm(τ) ⊃ PTForm(¬τ).

We assume the following domain closure axiom for the sort PseudoTForm:

∀ρ.PseudoTForm(ρ).

We also enforce unique names axioms for t-forms, that is, for all functions g, g′ of any arity
introduced above:

g(x1, ..., xn) 6= g′(y1, ..., ym)
g(x1, ..., xn) = g′(y1, ..., yn) ⊃ x1 = y1 ∧ ... ∧ xn = yn.

We relate t-forms to real formulas by introducing a predicate HoldsAt : PseudoTForm ×Sit×
Time, characterized by the following assertions:

HoldsAt(EQ(cf(x1, ..., xn), n), s, t) ≡ val(cf(decode(x1, s), ..., decode(xn, s), t)
= decode(n, s) (for each cf)

HoldsAt(GR(cf(x1, ..., xn), n), s, t) ≡ val(cf(decode(x1, s), ..., decode(xn, s), t)
> decode(n, s) (for each cf)

HoldsAt(ρ1 ∧ ρ2, s, t) ≡ Holds(ρ1, s, t) ∧ Holds(ρ2, s, t)
HoldsAt(¬ρ, s, t) ≡ ¬Holds(ρ, s, t)

We use the notation τ [s, t] to denote HoldsAt(τ, s, t).

A.2 Encoding cc-Golog Programs

In this section, we encode cc-Golog programs as terms. In doing so, great care has to be
taken to avoid defining self-referencing sentences. This is particularly true when we consider
high-level programs which refer to projection tests, and hence to programs. In order to
avoid running into self-referencing programs, we have chosen to first encode ordinary cc-Golog
programs as terms, and thereafter, based on this encoding, to encode cc-Golog programs with
projection tests as terms of a different sort.

In particular, we first introduce the sorts ProgccGolog and EnvccGolog whose elements de-
note, respectively, ordinary cc-Golog programs without projection tests and environments,
i.e. sets of ProgccGolog procedure definitions. Next, we introduce the sort PseudoProjTest
whose elements denote projection tests. Only cc-Golog programs without projection tests are
allowed to occur within projection tests. Thereupon, we introduce the sorts ProgccGologPT and
EnvccGologPT whose elements denote cc-Golog programs with projection tests and ProgccGologPT
environments.

We remark that while our decision to encode cc-Golog programs and cc-Golog programs
with projection tests as terms of different sorts clearly prevents the specification of self-
referencing programs, it may be excessively cautious. The resulting encoding is quite complex,
and there may be simpler ways to prevent the specification of self-referencing programs. We
have opted for the following characterization because the introduction of different sorts pro-
vides a neat subdivision of the different types of programs we are dealing with and emphasize
the ontological difference between them.

A.2. ENCODING CC-GOLOG PROGRAMS 217

A.2.1 Sorts ProgccGolog and EnvccGolog

First, we introduce cc-Golog programs. Specifically, we introduce:

• A constant nil of sort ProgccGolog;

• A function act : PseudoAct → ProgccGolog . As notation we write simply a to denote
act(a);

• A function test : PseudoForm → ProgccGolog . We use the notation ρ? to denote test(ρ);

• A function seq : ProgccGolog ×ProgccGolog → ProgccGolog . We use the notation [σ1, σ2] to
denote seq(σ1, σ2);

• A function if : PseudoForm × ProgccGolog × ProgccGolog → ProgccGolog ;

• A function while : PseudoForm × ProgccGolog → ProgccGolog ;

• A function conc : ProgccGolog × ProgccGolog → ProgccGolog ;

• A function withCtrl : PseudoForm × ProgccGolog → ProgccGolog .

To deal with procedures we need to introduce the notion of environment together with that
of program. We introduce:

• A finite number of functions P : PseudoSort1 × ...× PseudoSortn → ProgccGolog , where
PseudoSort i is either PseudoObj, PseudoReal, PseudoProb, PseudoTime or PseudoAct.
These functions are going to be used as procedure calls;

• A function proc : ProgccGolog × ProgccGolog → ProgccGolog . This function is used to
build procedure definitions and so we will force the first argument to have the form
P (zi1 , ..., zin), where z1, ..., zn are used to denote the formal parameters of the defined
procedure;

• A constant ε of sort EnvccGolog, denoting the empty environment;

• A function addproc : EnvccGolog×ProgccGolog → EnvccGolog . We will restrict the programs
allowed to appear as the second argument to procedure definitions only. We use the
notation E ; proc(P (~z), δ) to denote addproc(E ; proc(P (~z), δ));

• A function pblock : EnvccGolog × ProgccGolog → ProgccGolog . We use the notation {E ; δ}
to denote pblock(E , δ);

• A function c call : EnvccGolog ×ProgccGolog → ProgccGolog . We will restrict the programs
allowed to appear as the second argument to procedure calls only. We use the notation
[E : P(~t)] to denote c call(E ,P(~t)).

Next we introduce a predicate defined : ProgccGolog × EnvccGolog meaning that a procedure is
defined in an environment. It is specified as:

defined(c, E) ≡ ∀D.[... ⊃ D(c, E)]

218 APPENDIX A. REIFICATION OF PROGRAMS AS TERMS

where the ellipsis stands for the universal closure of the conjunction of

D(P(~x), ε; proc(P(~y), σ))
D(c, E ′) ⊃ D(c, E ′; d).

Observe that procedures P are only defined in an environment E , and that the parameters the
procedure is applied to do not play any role in determining whether the procedure is defined.

Now we define the predicate ProgccGolog of sort ProgccGolog and the predicate EnvccGolog of
sort EnvccGolog as:

ProgccGolog(δ) ≡ ∀PProg , PEnv .[... ⊃ PProg(δ)]
EnvccGolog(E) ≡ ∀PProg , PEnv .[... ⊃ PEnv (δ)]

where the ellipsis stands for the universal closure of the conjunction of

PProg(nil)
PProg(act(a)) (a pseudo-action)

PProg(ρ?) (ρ pseudo-formula)
PProg(σ1) ∧ PProg(σ2) ⊃ PProg([σ1, σ2])
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(if(ρ, σ1, σ2))

PProg(σ) ⊃ PProg(while(ρ, σ))
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(conc(σ1, σ2))

PProg(σ) ⊃ PProg(withCtrl(ρ, σ))
PProg(P(x1, ...xn)) (for each P)
PEnv (E) ∧ PProg(σ) ⊃ PProg({E ;σ})

PEnv (E) ∧ defined(P(~z), E) ⊃ PProg([E : P(x1, ..., xn)])
PEnv (ε)

PEnv (E) ∧ PProg(σ) ∧ ¬defined(P(~z), E)∧
(
∧n
h,k=1 zih 6= zik) ⊃ PEnv (E ; proc(P(zi1 , ..., zin), σ)).

We assume the following domain closure axioms for the sorts ProgccGolog and EnvccGolog:

∀σ.ProgccGolog(σ)
∀E .EnvccGolog(E).

We also enforce unique names axioms for programs and environments, that is for all functions
g, g′ of any arity introduced above:

g(x1, ...xn) 6= g′(y1, ...ym)
g(x1, ..., xn) = g′(y1, ...yn) ⊃ x1 = y1 ∧ ... ∧ xn = yn.

We extend the predicate Closed to ProgccGolog by induction on the structure of the program
terms in the obvious way so as to consider closed, programs in which all occurrences of pseudo-
variables zi are bound by being a formal parameter of a procedure. Only closed programs are
considered legal.

We introduce the function resolve : EnvccGolog ×ProgccGolog ×ProgccGolog → ProgccGolog , to
be used to associate to procedure calls the environment to be used to resolve them. Namely,
given the procedure P defined in the environment E , resolve(E ,P(~t), δ) denoted by (δ)P(~t)

[E:P(~t)]
,

suitably replaces P(~t) by c call(E ,P(~t)) in order to obtain static scope for procedures. It is

A.2. ENCODING CC-GOLOG PROGRAMS 219

obvious how the function can be extended to resolve whole sets of procedure calls whose
procedures are defined in the environment E . Formally this function satisfies the following
assertions:

(nil)P(~x)
[E:P(~x)] = nil

(a)P(~x)
[E:P(~x)] = a

(ρ?)P(~x)
[E:P(~x)] = ρ?

([σ1, σ2])P(~x)
[E:P(~x)] = [(σ1)P(~x)

[E:P(~x)], (σ2)P(~x)
[E:P(~x)]]

(if(ρ, σ1, σ2))P(~x)
[E:P(~x)] = if(ρ, (σ1)P(~x)

[E:P(~x)], (σ2)P(~x)
[E:P(~x)])

(while(ρ, σ)P(~x)
[E:P(~x)] = while(ρ, (σ)P(~x)

[E:P(~x)])

(conc(σ1, σ2))P(~x)
[E:P(~x)] = conc((σ1)P(~x)

[E:P(~x)], (σ2)P(~x)
[E:P(~x)])

(withCtrl(ρ, σ)P(~x)
[E:P(~x)] = withCtrl(ρ, (σ)P(~x)

[E:P(~x)])

(P(~x))P(~x)
[E:P(~x)] = [E : P(~x)]

(Q(~t))P(~x)
[E:P(~x)] = Q(~t) for any procedure call Q(~t) different from P(~x)

({E ′; δ})P(~x)
[E:P(~x)] =

{
{E ′; δ} if procedure P is (re)defined in E ′

{E ′; (δ)P(~x)
[E:P(~x)]} otherwise

([E ′ : Q(~t)]P(~x)
[E:P(~x)] = [E ′ : Q(~t)] for every procedure call Q(~t) and environment E ′.

We extend the function sub to ProgccGolog (as third argument) again by induction on the struc-
ture of program terms in the natural way without doing any substitutions into environments.
sub is used for substituting formal parameters with actual parameters in contextualized pro-
cedure calls. We also introduce a function c body : ProgccGolog × EnvccGolog → ProgccGolog to
be used to return the body of the procedures. Namely, c body(P(~x), E) returns the body of
the procedure P in E with the formal parameters substituted by the actual parameters ~x, and
thus formalizes the term βP

~vp
~x used in the sections 3.2.3 and 4.2.3. Formally this function

satisfies the following assertions:

c body(P(~x), E ; proc(P(~y), δ) = δ~y~x
c body(P(~x), E ; proc(Q(~y), δ) = c body(P(~x), E) for Q 6= P.

A.2.2 Sorts PseudoProjTest, ProgccGologPT and EnvccGologPT

Next we introduce the sort PseudoProjTest whose elements denote cc-Golog projection tests.
Specifically, we introduce:

• A function Lookahead : PseudoForm × PseudoTime × ProgccGolog × ProgccGolog →
PseudoProjTest (recall that Lookahead takes two programs as arguments: a cc-Golog
plan to be projected, and a cc-Golog program modeling the low-level processes);

• A function and : PseudoProjTest × PseudoProjTest → PseudoProjTest . We use the
notation ρ1 ∧ ρ2 to denote and(ρ1, ρ2);

220 APPENDIX A. REIFICATION OF PROGRAMS AS TERMS

• A function not : PseudoProjTest → PseudoProjTest . We use the notation ¬ρ to denote
not(ρ).

We remark that by this definition only cc-Golog programs without projection tests are allowed
to occur within a Lookahead construct. Next, we define the predicate PseudoProjTest of sort
PseudoProjTest as:

PseudoProjTest(p) ≡ ∀PPrTst.[... ⊃ PPrTst(p)]

where the ellipsis stands for the universal closure of the conjunction of

PPrTst(Lookahead(φ, t, σ, llmodel))
PPrTst(ρ1) ∧ PPrTst(ρ2) ⊃ PPrTst(ρ1 ∧ ρ2)

PPrTst(ρ) ⊃ PPrTst(¬ρ).

We assume the following domain closure axiom for the sort PseudoProjTest:

∀ρ.PseudoProjTest(ρ).

We also enforce unique names axioms for pseudo-projection-tests. To relate projection-tests
to real formulas, we extend the predicate Holds to PseudoProjTest. Specifically, we add the
following assertions:

Holds(Lookahead(φ, t, σ, llmodel), s) ≡ Lookahead(φ, decode(t, s), σ, llmodel, s)
Holds(ρ1 ∧ ρ2, s) ≡ Holds(ρ1, s) ∧ Holds(ρ2, s)

Holds(¬ρ, s) ≡ ¬Holds(ρ, s)

where Lookahead is the predicate defined in Section 5.2.2 to allow the projection of a cc-Golog
plan. Note that Holds does not decode the pseudo-formula φ, which instead is directly turned
over to the predicate Lookahead. As discussed in Section 5.2.2, the predicate Lookahead does
not evaluate the truth value of φ in s, but in the projected execution trace that results from
the execution of the program σ in s.

Next, we define the sort ProgccGologPT of cc-Golog programs including projection tests.
ProgccGologPT is a super-sort of ProgccGolog, meaning that every element of ProgccGolog is a
legal element of ProgccGologPT . Additionally, we introduce the following functions of sort
ProgccGologPT :

• A function testpt : PseudoProjTest → ProgccGologPT . We use the notation ρ? to denote
testpt(ρ);

• A function ifpt : PseudoProjTest ∪ PseudoForm × ProgccGologPT × ProgccGologPT →
ProgccGologPT ;

• A function whilept : PseudoProjTest ∪ PseudoForm × ProgccGologPT → ProgccGologPT ;

• A function withCtrlpt : PseudoProjTest ∪PseudoForm ×ProgccGologPT → ProgccGologPT ;

• A function seqpt : ProgccGologPT × ProgccGologPT → ProgccGologPT . We use the notation
[σ1, σ2] to denote seqpt(σ1, σ2);

• A function concpt : ProgccGologPT × ProgccGologPT → ProgccGologPT .

A.2. ENCODING CC-GOLOG PROGRAMS 221

The first four functions are variants of the corresponding constructs of sort ProgccGolog which
may take a projection test instead of the pseudo-formula argument, and programs of sort
ProgccGologPT instead of programs of sort ProgccGolog. The functions seqpt and concpt are
variants of the functions seq and conc of sort ProgccGolog which take as arguments arbitrary
programs of sort ProgccGologPT and not just programs of sort ProgccGolog. These new functions
are needed because the original constructs may not be used to compose programs involving
projection tests. Otherwise, however, the new constructs do not differ from seq and conc.
Therefore, throughout the thesis we use the convention to not distinguish the new functions
from the original functions, and for example to simply write conc instead of concpt. The
meaning will be clear from the context. In particular, whenever a conc instruction has as
argument a program involving a projection test, it stands for concpt.

As the new functions have the same intuitive meaning than the original functions, we
require that they are assigned the same semantics in terms of Trans and Final. In particular,
this means that every axiom in Chapter 4 and 5 which defines Trans or Final regarding test, if,
while, withCtrl, seq, conc actually is an axiom schema which stands for both the original axiom
and for a second variant which is obtained by textual substitution of the original construct
with, respectively, testpt, ifpt, whilept, withCtrlpt, seqpt, or concpt

Next, just as in the case of ordinary cc-Golog without projection tests we introduce a sort
EnvccGologPT of environments for programs of sort ProgccGologPT . EnvccGologPT is a super-sort
of EnvccGolog. In addition to the function inherited from EnvccGolog, we introduce the following
functions:

• A finite number of functions P : PseudoSort1×...×PseudoSortn → ProgccGologPT , where
PseudoSort i is either PseudoObj, PseudoTime, PseudoProb, PseudoReal or PseudoAct.
These functions are going to be used as procedure calls;

• A function procpt : ProgccGologPT × ProgccGologPT → ProgccGologPT . Similar to proc, this
function is used to build procedure definitions;

• A function addprocpt : EnvccGologPT ×ProgccGologPT → EnvccGologPT . As before, we will
restrict the programs allowed to appear as the second argument to procedure definitions
only. We use the notation E ; proc(P (~z), δ) to denote addproc(E ; proc(P (~z), δ));

• A function pblockpt : EnvccGologPT×ProgccGologPT → ProgccGologPT . We use the notation
{E ; δ} to denote pblockpt(E , δ);

• A function c callpt : EnvccGologPT × ProgccGologPT → ProgccGologPT . We will restrict the
programs allowed to appear as the second argument to procedure calls only. We use the
notation [E : P(~t)] to denote c callpt(E ,P(~t)).

As with the new functions of sort ProgccGologPT introduced above, these new functions of sort
ProgccGologPT and EnvccGologPT are variants of the corresponding constructs of sort ProgccGolog
respectively EnvccGolog. They are needed in order to allow the use of procedures appealing to
projection tests. Apart from the fact that they take programs respectively environments of the
sorts ProgccGologPT and EnvccGologPT , they do not differ from the original constructs. Thus,
throughout this thesis we do not distinguish the new functions from the original functions;
the meaning will be clear from the context. Furthermore, to ensure that they are treated
the same way during execution, we postulate that every axiom in Chapter 4 and 5 which
defines Trans or Final regarding pblock respectively c call is an axiom schema standing for

222 APPENDIX A. REIFICATION OF PROGRAMS AS TERMS

both the original axiom and for a second variant which is obtained by textual substitution of
the original construct with, respectively, pblockpt or c callpt.

Next, we extend the predicate defined to ProgccGologPT as first argument in analogy to
Section A.2.1. Then, we define the predicate ProgccGologPT of sort ProgccGologPT and the
predicate EnvccGolog of sort EnvccGolog as:

ProgccGologPT(δ) ≡ ∀PProg , PEnv .[... ⊃ PProg(δ)]
EnvccGologPT(E) ≡ ∀PProg , PEnv .[... ⊃ PEnv (δ)]

where the ellipsis stands for the universal closure of the conjunction of

PProg(nil)
PProg(act(a)) (a pseudo-action)

PProg(ρ?) (ρ pseudo-formula or projection-test)
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(seq(σ1, σ2))
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(seqpt(σ1, σ2))
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(if(ρ, σ1, σ2))
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(ifpt(ρ, σ1, σ2))

PProg(σ) ⊃ PProg(while(ρ, σ))
PProg(σ) ⊃ PProg(whilept(ρ, σ))

PProg(σ1) ∧ PProg(σ2) ⊃ PProg(conc(σ1, σ2))
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(concpt(σ1, σ2))

PProg(σ) ⊃ PProg(withCtrl(ρ, σ))
PProg(σ) ⊃ PProg(withCtrlpt(ρ, σ))

PProg(P(x1, ...xn)) (for each P)
PEnv (E) ∧ PProg(σ) ⊃ PProg(pblock(E , σ))
PEnv (E) ∧ PProg(σ) ⊃ PProg(pblockpt(E , σ))

PEnv (E) ∧ defined(P(~z), E) ⊃ PProg(c call(E : P(x1, ..., xn)))
PEnv (E) ∧ defined(P(~z), E) ⊃ PProg(c callpt(E : P(x1, ..., xn)))

PEnv (ε)
PEnv (E) ∧ PProg(σ) ∧ ¬defined(P(~z), E)∧

(
∧n
h,k=1 zih 6= zik) ⊃ PEnv (addproc(E , proc(P(zi1 , ..., zin), σ)))

PEnv (E) ∧ PProg(σ) ∧ ¬defined(P(~z), E)∧
(
∧n
h,k=1 zih 6= zik) ⊃ PEnv (addprocpt(E , proc(P(zi1 , ..., zin), σ))).

We assume the following domain closure axioms for the sorts ProgccGologPT and EnvccGologPT :

∀σ.ProgccGologPT(σ)
∀E .EnvccGologPT(E).

Next, we enforce unique names axioms for the sorts ProgccGologPT and EnvccGologPT . Then, we
extend the predicate Closed to ProgccGologPT ; as before, only closed programs are considered
legal. Finally, we extend the functions resolve, sub and c body to ProgccGologPT . This is done
in complete analogy to Section A.2.1.

A.3 Encoding pGOLOG and bGOLOG Programs

In this section, we will encode pGOLOG and bGOLOG programs as terms. As in the previous
section, to avoid running into self-referencing programs we introduce different sorts of pro-
grams. In particular, we first introduce the sort ProgpgologS , whose elements denote ordinary

A.3. ENCODING PGOLOG AND BGOLOG PROGRAMS 223

pGOLOG programs. Similarly, we introduce the sorts PseudoBBForm and ProgbGolog, whose
elements denote, respectively, belief-based formulas and bGOLOG programs without projec-
tion tests. Besides, we introduce the sorts EnvpGologS and EnvbGolog whose elements denote
program environments of the different sorts of programs.

Based on the sorts ProgpgologS and ProgbGolog, we introduce the sort Progpgolog whose ele-
ments denote “mixed” programs built from ProgpgologS and ProgbGolog programs. This sort is
needed because our definition of probabilistic projection is based on the concurrent execution
of a bGOLOG plan and the pGOLOG model of the low-level processes (cf. Section 7.3.2).
Thereupon, we introduce the sort PseudoPProjTst whose elements denote probabilistic pro-
jection tests. Finally, we introduce the sorts ProgbGologPT and EnvbGologPT , whose elements
denote bGOLOG programs with projection tests and ProgbGologPT environments, respectively.

A.3.1 Sorts ProgpgologS and EnvpGologS

First, we introduce simple pGOLOG programs. In particular, we introduce the following
constants and symbols:

• A constant nil of sort ProgpgologS ;

• A function act : PseudoAct → ProgpgologS . As notation we write simply a to denote
act(a);

• A function test : PseudoForm → ProgpgologS . We use the notation ρ? to denote test(ρ);

• A function seq : ProgpgologS × ProgpgologS → ProgpgologS . We use the notation [σ1, σ2] to
denote seq(σ1, σ2);

• A function if : PseudoForm × ProgpgologS × ProgpgologS → ProgpgologS ;

• A function conc : ProgpgologS × ProgpgologS → ProgpgologS ;

• A function withCtrl : PseudoForm × ProgpgologS → ProgpgologS ;

• A function prob : PseudoProb × ProgpgologS × ProgpgologS → ProgpgologS .

As in the case of cc-Golog, we introduce a sort of program environments. Specifically, we
introduce:

• A finite number of functions P : PseudoSort1 × ...× PseudoSortn → ProgpgologS , where
PseudoSort i is either PseudoObj, PseudoReal, PseudoProb, PseudoTime or PseudoAct.
These functions are going to be used as procedure calls;

• A function proc : ProgpgologS × ProgpgologS → ProgpgologS . This function is used to
build procedure definitions and so we will force the first argument to have the form
P (zi1 , ..., zin), where z1, ..., zn are used to denote the formal parameters of the defined
procedure;

• A constant ε of sort EnvpGologS , denoting the empty environment;

• A function addproc : EnvpGologS × ProgpgologS → EnvpGologS . We will restrict the pro-
grams allowed to appear as the second argument to procedure definitions only. We use
the notation E ; proc(P (~z), δ) to denote addproc(E ; proc(P (~z), δ));

224 APPENDIX A. REIFICATION OF PROGRAMS AS TERMS

• A function pblock : EnvpGologS × ProgpgologS → ProgpgologS . We use the notation {E ; δ}
to denote pblock(E , δ);

• A function c call : EnvpGologS ×ProgpgologS → ProgpgologS . We will restrict the programs
allowed to appear as the second argument to procedure calls only. We use the notation
[E : P(~t)] to denote c call(E ,P(~t)).

Next, we extend the predicate defined to ProgpgologS , specifying whether a simple pGOLOG
procedure is defined in an EnvpGologS environment.

defined(c, E) ≡ ∀D.[... ⊃ D(c, E)]

where the ellipsis stands for the universal closure of the conjunction of

D(P(~x, ε; proc(P(~y), σ))
D(c, E ′) ⊃ D(c, E ′; d).

Next, we define the predicate ProgpgologS of sort ProgpgologS and the predicate EnvpGologS of
sort EnvpGologS as:

ProgpgologS(δ) ≡ ∀PProg , PEnv .[... ⊃ PProg(δ)]
EnvpGologS(E) ≡ ∀PProg , PEnv .[... ⊃ PEnv (δ)]

where the ellipsis stands for the universal closure of the conjunction of

PProg(nil)
PProg(act(a)) (a pseudo-action)

PProg(ρ?) (ρ pseudo-formula)
PProg(σ1) ∧ PProg(σ2) ⊃ PProg([σ1, σ2])
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(if(ρ, σ1, σ2))

PProg(σ) ⊃ PProg(while(ρ, σ))
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(conc(σ1, σ2))

PProg(σ) ⊃ PProg(withCtrl(ρ, σ))
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(prob(p, σ1, σ2)) (0 < p < 1)

PProg(P(x1, ...xn)) (for each P)
PEnv (E) ∧ PProg(σ) ⊃ PProg({E ;σ})

PEnv (E) ∧ defined(P(~z), E) ⊃ PProg([E : P(x1, ..., xn)])
PEnv (ε)

PEnv (E) ∧ PProg(σ) ∧ ¬defined(P(~z), E)∧
(
∧n
h,k=1 zih 6= zik) ⊃ PEnv (E ; proc(P(zi1 , ..., zin), σ)).

We assume the following domain closure axioms for the sorts ProgpgologS and EnvpGologS :

∀σ.ProgpgologS(σ)
∀E .EnvpGologS(E).

We also enforce unique names axioms for programs and environments in the usual way. Next,
we extend the predicate Closed to ProgpgologS ; as usual, only closed programs are considered
legal. Then, we introduce the function resolve : EnvpGologS × ProgpgologS × ProgpgologS →
ProgpgologS , to be used to associate to procedure calls the environment to be used to resolve

A.3. ENCODING PGOLOG AND BGOLOG PROGRAMS 225

them. Namely, given the procedure P defined in the environment E , resolve(E ,P(~t), δ) de-

noted by (δ)P(~t)

[E:P(~t)]
, suitably replaces P(~t) by c call(E ,P(~t)) in order to obtain static scope for

procedures. Formally this function satisfies the following assertions:

(nil)P(~x)
[E:P(~x)] = nil

(a)P(~x)
[E:P(~x)] = a

(ρ?)P(~x)
[E:P(~x)] = ρ?

([σ1, σ2])P(~x)
[E:P(~x)] = [(σ1)P(~x)

[E:P(~x)], (σ2)P(~x)
[E:P(~x)]]

(if(ρ, σ1, σ2))P(~x)
[E:P(~x)] = if(ρ, (σ1)P(~x)

[E:P(~x)], (σ2)P(~x)
[E:P(~x)])

(while(ρ, σ)P(~x)
[E:P(~x)] = while(ρ, (σ)P(~x)

[E:P(~x)])

(conc(σ1, σ2))P(~x)
[E:P(~x)] = conc((σ1)P(~x)

[E:P(~x)], (σ2)P(~x)
[E:P(~x)])

(withCtrl(ρ, σ)P(~x)
[E:P(~x)] = withCtrl(ρ, (σ)P(~x)

[E:P(~x)])

(prob(p, σ1, σ2))P(~x)
[E:P(~x)] = prob(p, (σ1)P(~x)

[E:P(~x)], (σ2)P(~x)
[E:P(~x)])

(P(~x))P(~x)
[E:P(~x)] = [E : P(~x)]

(Q(~t))P(~x)
[E:P(~x)] = Q(~t) for any procedure call Q(~t) different from P(~x)

({E ′; δ})P(~x)
[E:P(~x)] =

{
{E ′; δ} if procedure P is (re)defined in E ′

{E ′; (δ)P(~x)
[E:P(~x)]} otherwise

([E ′ : Q(~t)]P(~x)
[E:P(~x)] = [E ′ : Q(~t)] for every procedure call Q(~t) and environment E ′.

Next, we extend the functions sub and c body to ProgpgologS in analogy to Section A.2.1.
Finally, we define the predicate notIncludes : ProgpgologS × PseudoAct (cf. Section 6.2.3) as:

notIncludes(δ, α) ≡ ∀NIProg ,NIEnv .[... ⊃ NIProg(δ, α)]

where the ellipsis stands for the universal closure of the conjunction of

NIProg(nil, α)
NIProg(ρ?, α) (ρ pseudo-formula)

a 6= α ⊃ NIProg(act(a), α) (a pseudo-action)
NIProg(σ1, α) ∧NIProg(σ2, α) ⊃ NIProg([σ1, σ2], α)
NIProg(σ1, α) ∧NIProg(σ2, α) ⊃ NIProg(if(ρ, σ1, σ2), α)

NIProg(σ, α) ⊃ NIProg(while(ρ, σ), α)
NIProg(σ1, α) ∧NIProg(σ2, α) ⊃ NIProg(conc(σ1, σ2), α)

NIProg(σ, α) ⊃ NIProg(withCtrl(ρ, σ), α)
NIProg(σ1, α) ∧NIProg(σ2, α) ⊃ NIProg(prob(p, σ1, σ2), α) (p probability)

NIProg(P(x1, ...xn), α) (for each P)
NIEnv (E , α) ∧NIProg(σ) ⊃ NIProg({E ;σ}, α)

NIEnv (E) ∧ defined(P(~z), E) ⊃ NIProg([E : P(x1, ..., xn)])
NIEnv (ε, α)

NIEnv (E , α) ∧NIProg(σ, α)∧
¬defined(P(~z), E) ∧ (

∧n
h,k=1 zih 6= zik) ⊃ NIEnv (E ; proc(P(zi1 , ..., zin), σ), α).

226 APPENDIX A. REIFICATION OF PROGRAMS AS TERMS

As discussed in Section 6.2.3, we only consider pGOLOG programs which do not include send
actions as legal models of the low-level processes. Formally, this means that every pGOLOG
program σ used as a model of the low-level processes must satisfy the following:

∀id, val.notIncludes(σ, nameOf(send(id, val))).

A.3.2 Sorts PseudoBBForm, ProgbGolog and EnvbGolog

Next we introduce belief-based-formulas used in bGOLOG tests. Specifically, we introduce:

• A function Bel EQ : PseudoForm×PseudoProb → PseudoBBForm. We use the notation
Bel(φ) = p to denote Bel EQ(φ, p);

• A function Bel GR : PseudoForm×PseudoProb → PseudoBBForm. We use the notation
Bel(φ) > p to denote Bel GR(φ, p);

• A function and : PseudoBBForm × PseudoBBForm → PseudoBBForm. We use the
notation ρ1 ∧ ρ2 to denote and(ρ1, ρ2);

• A function not : PseudoBBForm → PseudoBBForm. We use the notation ¬ρ to denote
not(ρ);

We define the predicate PseudoBBForm of sort PseudoBBForm as:

PseudoBBForm(p) ≡ ∀PForm .[... ⊃ PForm(p)]

where the ellipsis stands for the universal closure of the conjunction of

PForm(Bel(φ) = p)
PForm(Bel(φ) > p)

PForm(ρ1) ∧ PForm(ρ2) ⊃ PForm(ρ1 ∧ ρ2)
PForm(ρ) ⊃ PForm(¬ρ).

We assume the following domain closure axiom for the sort PseudoBBForm:

∀ρ.PseudoBBForm(ρ).

We also enforce unique names axioms for pseudo-formulas, that is, for all functions g, g′ of
any arity introduced above:

g(x1, ..., xn) 6= g′(y1, ..., ym)
g(x1, ..., xn) = g′(y1, ..., yn) ⊃ x1 = y1 ∧ ... ∧ xn = yn.

We relate pseudo-belief-based-formulas to real formulas by extending the predicate Holds to
PseudoBBForm (as first argument) as follows:

Holds(Bel(φ) = p, s) ≡ Bel(φ, s) = decode(p, s)
Holds(Bel(φ) > p, s) ≡ Bel(φ, s) > decode(p, s)

Holds(ρ1 ∧ ρ2, s) ≡ Holds(ρ1, s) ∧ Holds(ρ2, s)
Holds(¬ρ, s) ≡ ¬Holds(ρ, s)

where Bel is as defined in Section 3.3.2.
Based on the sort PseudoBBForm, we define the sorts ProgbGolog and EnvbGolog. Specifi-

cally, we introduce:

A.3. ENCODING PGOLOG AND BGOLOG PROGRAMS 227

• A constant nilbb of sort ProgbGolog;

• A function actbb : PseudoAct → ProgbGolog . As notation we write simply a to denote
act(a);

• A function testbb : PseudoBBForm → ProgbGolog . We use the notation ρ? to denote
test(ρ);

• A function seqbb : ProgbGolog × ProgbGolog → ProgbGolog . We use the notation [σ1, σ2] to
denote seq(σ1, σ2);

• A function ifbb : PseudoBBForm × ProgbGolog × ProgbGolog → ProgbGolog ;

• A function whilebb : PseudoBBForm × ProgbGolog → ProgbGolog .

• A function concbb : ProgbGolog × ProgbGolog → ProgbGolog ;

• A function withCtrlbb : PseudoBBForm × ProgbGolog → ProgbGolog ;

• A finite number of functions P : PseudoSort1 × ... × PseudoSortn → ProgbGolog , where
PseudoSort i is either PseudoObj or PseudoAct. These functions are going to be used as
procedure calls;

• A function procbb : ProgbGolog × ProgbGolog → ProgbGolog . This function is used to
build procedure definitions and so we will force the first argument to have the form
P (zi1 , ..., zin), where z1, ..., zn are used to denote the formal parameters of the defined
procedure;

• A constant εbb of sort EnvbGolog, denoting the empty environment;

• A function addprocbb : EnvbGolog×ProgbGolog → EnvbGolog . We will restrict the programs
allowed to appear as the second argument to procedure definitions only. We use the
notation E ; proc(P (~z), δ) to denote addproc(E ; proc(P (~z), δ));

• A function pblockbb : EnvbGolog × ProgbGolog → ProgbGolog . We use the notation {E ; δ}
to denote pblock(E , δ);

• A function c callbb : EnvbGolog × ProgbGolog → ProgbGolog . We will restrict the programs
allowed to appear as the second argument to procedure calls only. We use the notation
[E : P(~t)] to denote c call(E ,P(~t)).

As with cc-Golog programs with projection tests, we use the convention to leave out the
subscript bb; it always becomes clear from the context whether a program is a simple pGOLOG
programs or a bGOLOG plan. Furthermore, to ensure that the above functions are treated the
same way as the corresponding constructs in simple pGOLOG programs during execution, we
postulate that every axiom in Chapter 6 and 7 which defines transPr or Final regarding one
pGOLOG’s constructs is an axiom schema standing for the original axiom, a second variant
which is obtained by textual substitution of the original construct with the construct with
subscript bb – and additional variants to be discussed below.

Next, we extend the predicates defined and Closed to ProgbGolog . Thereafter, we require
domain closure and unique names axioms for the sorts ProgbGolog and EnvbGolog in the usual
way. Similarly, we extend the functions resolve, sub and c body to ProgbGolog in the usual way.

228 APPENDIX A. REIFICATION OF PROGRAMS AS TERMS

Finally, we extend the predicate notIncludes to sort ProgbGolog. We only consider a bGOLOG
program as a legal high-level plans if it only involves send actions (cf. Section 6.2.4). Formally,
this means that a high-level plan σ must satisfy the following:

[¬∃id, val.a = send(id, val)] ⊃ notIncludes(σ, nameOf(a)).

Additionally, we introduce the predicate notIncludesArg : ProgbGolog ×PseudoSort for Sort =
Obj,Act,Real ,Time,Prob. Intuitively, notIncludesArg(σ, y) holds if the program σ does not
appeal to y as argument in primitive actions, tests or procedure calls. Before we formally
define notIncludesArg, we first define the predicate occursIn : PseudoSort × PseudoSort for
Sort = Obj,Act,Real ,Time,Prob. Intuitively, occursIn(y, a) holds if the term y occurs within
the term a. occursIn is defined as follows:

occursIn(y, a) ≡ ∀OI.[... ⊃ OI(y, a)]

where the ellipsis stands for the universal closure of the conjunction of

OI(f(~x), f(~x)) (for each pseudo-fluent function f)
a = f(x1, ..., xn)∧

[occursIn(y, x1) ∨ ... ∨ occursIn(y, xn)] ⊃ OI(y, a).

Note that we have enforced unique names for the pseudo-sorts concerned, thus occursIn(y, a)
actually determines whether the term y syntactically occurs in the term a. We extend occursIn
to pseudo-formulas (as second argument) as follows:

occursIn(y, p(t1, ..., tm)) ≡ occursIn(y, t1) ∨ ...occursIn(y, tm) (for each p)
occursIn(y, (ρ1 ∧ ρ2)) ≡ occursIn(y, ρ1) ∨ occursIn(y, ρ2)
occursIn(y, (¬ρ)) ≡ occursIn(y, ρ)
occursIn(y, (∃zi.ρ)) ≡ occursIn(y, ρ).

Based on occursIn, we define notIncludesArg as follows:

notIncludesArg(δ, x) ≡ ∀NIAProg ,NIAEnv .[... ⊃ NIAProg(δ, α)]

where the ellipsis stands for the universal closure of the conjunction of

NIAProg(nil, y)
¬occursIn(y, ρ) ⊃ NIAProg(ρ?, y) (ρ pseudo-formula)
¬occursIn(y, a) ⊃ NIAProg(act(a), y) (a pseudo-action)

NIAProg(σ1, y) ∧NIAProg(σ2, y) ⊃ NIAProg([σ1, σ2], y)
NIAProg(σ1, y) ∧NIAProg(σ2, y) ⊃ NIAProg(if(ρ, σ1, σ2), y)

NIAProg(σ, y) ⊃ NIAProg(while(ρ, σ), y)
NIAProg(σ1, y) ∧NIAProg(σ2, y) ⊃ NIAProg(conc(σ1, σ2), y)

NIAProg(σ, y) ⊃ NIAProg(withCtrl(ρ, σ), y)
NIAProg(σ1, y) ∧NIAProg(σ2, y) ⊃ NIAProg(prob(p, σ1, σ2), y)

¬[occursIn(y, x1) ∨ ... ∨ occursIn(y, xn)] ⊃ NIAProg(P(x1, ...xn), y) (for each P)
NIAEnv (E , y) ∧NIAProg(σ) ⊃ NIAProg({E ;σ}, y)

NIAEnv (E) ∧ defined(P(~z), E)∧
¬[occursIn(y, x1)∨ ...∨ occursIn(y, xn)] ⊃ NIAProg([E : P(x1, ..., xn)])

NIAEnv (ε, y)
NIAEnv (E , y) ∧NIAProg(σ, y)∧

¬defined(P(~z), E) ∧ (
∧n
h,k=1 zih 6= zik) ⊃ NIAEnv (E ; proc(P(zi1 , ..., zin), σ), y).

A.3. ENCODING PGOLOG AND BGOLOG PROGRAMS 229

We only consider a bGOLOG program σ as a legal high-level plans if it does not appeal to
functional fluents in primitive actions or procedure calls (cf. Section 6.2.4). That is, for every
functional fluent f (except the epistemic fluent Kwhich from Section 7.3.1) we require

notIncludesArg(σ, nameOf(f(~x))).

A.3.3 Sort Progpgolog

Now that we have defined simple pGOLOG programs and simple bGOLOG programs, we define
the sort Progpgolog of arbitrary pGOLOG programs (without projection tests). Progpgolog is a
super-sort of pGOLOG and bGOLOG. In addition to the symbols inherited from its sub-sorts,
we introduce the following symbol of sort Progpgolog:

• A function concmixed : ProgpgologS × ProgbGolog → Progpgolog .

This symbol is used to define programs which concurrently execute a pGOLOG program and
a bGOLOG plan. Note that this kind of program is used in Section 7.3.2 in the definition
of probabilistic projection, which is based on the concurrent execution of a bGOLOG plan
and the pGOLOG model of the low-level processes. As usual, we abuse notation and use the
convention to leave out the subscript mixed. It always becomes clear from the context whether
conc, concbb or concmixed is meant. Furthermore, we postulate that every axiom in Chapter 6
and 7 which defines transPr or Final regarding conc is an axiom schema which also stands
for a variant which is obtained by textual substitution of conc with concmixed.

Next, we extend the predicates defined and Closed to Progpgolog . To enforce unique names
for programs, we define the predicate Progpgolog of sort Progpgolog as:

Progpgolog(δ) ≡ ∀PProg , PEnv .[... ⊃ PProg(δ)]

where the ellipsis stands for the universal closure of the conjunction of

PProg(nil)
PProg(nilbb)

PProg(act(a)) (a pseudo-action)
PProg(actbb(a)) (a pseudo-action)

PProg test(ρ) (ρ pseudo-formula)
PProg testbb(ρ) (ρ belief-based-formula)

PProg(σ1) ∧ PProg(σ2) ⊃ PProg(seq(σ1, σ2))
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(seqbb(σ1, σ2))

PProg(σ1) ∧ PProg(σ2) ⊃ PProg(if(ρ, σ1, σ2))
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(ifbb(ρ, σ1, σ2))

PProg(σ) ⊃ PProg(while(ρ, σ))
PProg(σ) ⊃ PProg(whilebb(ρ, σ))

PProg(σ1) ∧ PProg(σ2) ⊃ PProg(conc(σ1, σ2))
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(concbb(σ1, σ2))
PProg(σ1) ∧ PProg(σ2) ⊃ PProg(concmixed(σ1, σ2))

230 APPENDIX A. REIFICATION OF PROGRAMS AS TERMS

PProg(σ) ⊃ PProg(withCtrl(ρ, σ))
PProg(σ) ⊃ PProg(withCtrlbb(ρ, σ))

PProg(σ1) ∧ PProg(σ2) ⊃ PProg(prob(p, σ1, σ2))

PProg(P(x1, ...xn)) (for each P)

PEnv (E) ∧ PProg(σ) ⊃ PProg(pblock(E , σ))
PEnv (E) ∧ PProg(σ) ⊃ PProg(pblockbb(E , σ))

PEnv (E) ∧ defined(P(~z), E) ⊃ PProg(c call(E ,P(x1, ..., xn)))
PEnv (E) ∧ defined(P(~z), E) ⊃ PProg(c callbb(E ,P(x1, ..., xn))).

We assume the following domain closure axioms for the sort Progpgolog:

∀σ.Progpgolog(σ)

We also enforce unique names axioms for programs and environments, that is for all functions
g, g′ of any arity introduced above:

g(x1, ...xn) 6= g′(y1, ...ym)
g(x1, ..., xn) = g′(y1, ...yn) ⊃ x1 = y1 ∧ ... ∧ xn = yn.

Note that we did not introduce Progpgolog environments. Neither did we consider conditionals
or sequences involving programs both of sort ProgpgologS and ProgbGolog. Every program of
sort Progpgolog is either a program of sort ProgpgologS , a program of sort ProgbGolog, or a
program which concurrently executes programs of sort ProgpgologS and ProgbGolog.

Finally, we extend the functions resolve, sub and c body and the predicates notIncludes
and notIncludesArg to Progpgolog.

A.3.4 Sorts PseudoPProjTst, ProgbGologPT and EnvbGologPT

Next we introduce the sort PseudoPProjTst whose elements denote probabilistic projection
tests. Specifically, we introduce:

• Functions Proj EQ, Proj GR : PseudoForm×ProgbGolog×PseudoProb → PseudoPProjTst .
We use the notation PBel(φ, σ) = p to denote Proj EQ(φ, σ, p), and PBel(φ, σ) > p to
denote Proj GR(φ, σ, p),

• Functions EU EQ, EU GR : ProgbGolog × PseudoReal → PseudoPProjTst . We use the
notation EU(σ) = u to denote EU EQ(σ, u), and EU(σ) > u to denote EU EQ(σ, u);

• A function and : PseudoPProjTst × PseudoPProjTst → PseudoPProjTst . We use the
notation ρ1 ∧ ρ2 to denote and(ρ1, ρ2);

• A function not : PseudoPProjTst → PseudoPProjTst . We use the notation ¬ρ to denote
not(ρ);

We define the predicate PseudoPProjTest of sort PseudoPProjTst as:

PseudoPProjTest(p) ≡ ∀PProjTst .[... ⊃ PProjTst(p)]

where the ellipsis stands for the universal closure of the conjunction of

A.3. ENCODING PGOLOG AND BGOLOG PROGRAMS 231

PProjTst(PBel(φ, σ) = p)
PProjTst(PBel(φ, σ) > p)

PProjTst(EU(σ) = p)
PProjTst(EU(σ) > p)

PProjTst(ρ1) ∧ PProjTst(ρ2) ⊃ PProjTst(ρ1 ∧ ρ2)
PProjTst(ρ) ⊃ PProjTst(¬ρ).

We assume the following domain closure axiom for the sort PseudoPProjTst:

∀ρ.PseudoPProjTest(ρ).

We also enforce unique names axioms for pseudo-formulas, that is, for all functions g, g′ of
any arity introduced above:

g(x1, ..., xn) 6= g′(y1, ..., ym)
g(x1, ..., xn) = g′(y1, ..., yn) ⊃ x1 = y1 ∧ ... ∧ xn = yn.

We relate probabilistic projection tests to real formulas by extending the predicate Holds to
PseudoPProjTst (as first argument) as follows:

Holds(PBel(φ, σ) = p, s) ≡ PBel(φ, σ, s) = decode(p, s)
Holds(PBel(φ, σ) > p, s) ≡ PBel(φ, σ, s) > decode(p, s)

Holds(EU(σ) = u, s) ≡ EU(σ, s) = decode(u, s)
Holds(EU(σ) > u, s) ≡ EU(σ, s) > decode(u, s)

Holds(ρ1 ∧ ρ2, s) ≡ Holds(ρ1, s) ∧ Holds(ρ2, s)
Holds(¬ρ, s) ≡ ¬Holds(ρ, s).

Here, PBel and EU are the predicates defined in Section 7.3.2 to allow probabilistic projection
and projection of the expected utility of a bGOLOG plan σ. Note that PBel simulates the
concurrent execution of σ and the pGOLOG model of the low-level processes, meaning that it
simulates a “mixed” program of sort Progpgolog.

Based on the sort PseudoPProjTst, we define the sorts ProgbGologPT and EnvbGologPT .
ProgbGologPT is a super-sort of ProgbGolog. Similarly, EnvbGologPT is a super-sort of EnvbGolog.
Besides the symbols inherited from ProgbGolog and from EnvbGolog, respectively, we introduce
the following symbols of sort ProgbGologPT and EnvbGologPT :

• A function testppt : PseudoPProjTst → ProgbGologPT . We use the notation ρ? to denote
testppt(ρ);

• A function seqppt : ProgbGologPT × ProgbGologPT → ProgbGologPT . We use the notation
[σ1, σ2] to denote seqppt(σ1, σ2);

• A function ifppt : PseudoPProjTst ∪ PseudoBBForm × ProgbGologPT × ProgbGologPT →
ProgbGologPT ;

• A function whileppt : PseudoPProjTst ∪PseudoBBForm×ProgbGologPT → ProgbGologPT .

• A function concppt : ProgbGologPT × ProgbGologPT → ProgbGologPT ;

• A function withCtrlppt : PseudoPProjTst∪PseudoBBForm×ProgbGologPT → ProgbGologPT .

232 APPENDIX A. REIFICATION OF PROGRAMS AS TERMS

• A finite number of functions P : PseudoSort1× ...×PseudoSortn → ProgbGologPT , where
PseudoSort i is either PseudoObj or PseudoAct. These functions are going to be used as
procedure calls;

• A function procppt : ProgbGologPT × ProgbGologPT → ProgbGologPT . This function is used
to build procedure definitions and so we will force the first argument to have the form
P (zi1 , ..., zin), where z1, ..., zn are used to denote the formal parameters of the defined
procedure;

• A function addprocppt : EnvbGologPT ×ProgbGologPT → EnvbGologPT . We will restrict the
programs allowed to appear as the second argument to procedure definitions only. We
use the notation E ; proc(P (~z), δ) to denote addproc(E ; proc(P (~z), δ));

• A function pblockppt : EnvbGologPT ×ProgbGologPT → ProgbGologPT . We use the notation
{E ; δ} to denote pblock(E , δ);

• A function c callppt : EnvbGologPT × ProgbGologPT → ProgbGologPT . We will restrict the
programs allowed to appear as the second argument to procedure calls only. We use the
notation [E : P(~t)] to denote c call(E ,P(~t)).

As before, the reason why we have to introduce new symbols like seqppt which take arguments
of sort ProgbGologPT is that the corresponding constructs of sort ProgbGolog are restricted to
programs which do not involve probabilistic projection tests. As usual, we use the convention
to leave out the subscript ppt; it always becomes clear from the context whether a program
is an ordinary bGOLOG plan or a bGOLOG program with projection tests. Furthermore, to
ensure that the above functions are treated the same way as the corresponding constructs in
simple pGOLOG programs, we postulate that every axiom in Chapter 6 and 7 which defines
transPr or Final regarding one pGOLOG’s constructs is an axiom schema which also stands for
a variant which is obtained by textual substitution of the original construct with the construct
with subscript ppt. The axioms schemas stand for no other variants than those mentioned in
the Sections A.3.2 to A.3.4.

Next, we extend the predicates defined and Closed to ProgbGologPT . Analogous to Sec-
tion A.2.2, we enforce domain closure axioms for the sorts ProgbGologPT and EnvbGologPT which
specify that every program and environment of sort ProgbGologPT respectively EnvbGologPT
must be built from the constructs introduced in this section and in Section A.3.2. Thereafter,
we extend the functions resolve, sub and c body to ProgbGologPT .

Thereafter, we extend the predicates notIncludes and notIncludesArg to sort ProgbGologPT .
As before, we only consider a bGOLOG program σ as a legal high-level plan if it only involves
send actions and does not appeal to functional fluents in primitive actions or procedure calls.
Formally, this means that a high-level plan σ must satisfy the following:

[¬∃id, val.a = send(id, val)] ⊃ notIncludes(σ, nameOf(a));

notIncludesArg(σ, nameOf(f(~x))).

Finally, we remark that if we wish to generate probabilistic projections of programs of
sort ProgbGologPT , we have to define a new sort which is a super-sort of ProgbGologPT and
ProgpgologS and which includes “mixed” programs where a plan of sort ProgbGologPT is executed
concurrently to a program of sort ProgpgologS . This can be done in complete analogy to
Section A.3.3. It is not required, however, if we only wish to execute programs of sort
ProgbGologPT .

A.4. CONSISTENCY PRESERVATION 233

A.4 Consistency Preservation

Just as in [dGLL00], the encoding presented here preserves consistency as stated by the
following theorem:

Proposition 27: Let H be the axioms defining the encoding above. Then every model
of an action theory D involving sorts Sit, Act, Obj, Real, Time and Prob can be extended
to a model of H ∪ D (involving the additional sorts Idx, PseudoSit, PseudoAct, PseudoObj,
PseudoReal, PseudoTime, PseudoProb, PseudoForm, PseudoCF, PseudoTForm, ProgccGolog,
EnvccGolog, PseudoProjTest, ProgccGologPT , EnvccGologPT , ProgpgologS, EnvpGologS, PseudoBB-
Form, ProgbGolog, EnvbGolog, Progpgolog, PseudoPProjTst, ProgbGologPT and EnvbGologPT).

Proof:
The proof is analogous to the proof of [dGLL00], Theorem 9. In particular, it suffices to

observe that for each new sort H contains:

• A second-order axiom that explicitly defines a predicate which inductively characterizes
the elements of the sort.

• An axiom that closes the domain of the new sort with respect to the characterizing
predicate.

• Unique names axioms that extend the interpretation of = to the new sort by induction
on the structure of the elements (as imposed by the characterizing axiom).

• Axioms that characterize predicates and functions, such as Closed, decode, sub, Holds,
HoldsAt, notIncludes, notIncludesArg, etc., by induction on the structure of the elements
of the sort.

Hence, given a model M of the action theory D, it is straightforward to introduce domains
for the new sorts that satisfy the characterizing predicate, the domain closure axioms, and
the unique names axioms for the sort, by proceeding by induction on the structure of the
elements forced by the characterizing predicate, and then establishing the extension of the
newly defined predicates/functions for the sort. 2

234 APPENDIX A. REIFICATION OF PROGRAMS AS TERMS

Appendix B

A Second-Order Specification of
Summation

In this section, we describe how a summation like
∑
{s′:φ[s′]} p(s

′, s) can be specified using
second order quantification. The presentation essentially follows [BHL99]. For convenience,
we assume that the language includes natural numbers as a sub-sort of the reals, and that the
language offers variables that range only over these sorts. Let r, r′ be variables of sort real,
f and g second order function variables, that is variables ranging over all functions, and m,
i, and j be variables of sort natural number. Formally, then, the sum of the weights p(s′, s)
of all situations s′ that fulfill the condition φ is defined as follows:∑

{s′:φ[s′]} p(s
′, s) = r

.= ∀r′.(r′ < r) ≡
∃f, g,m.∀i, j.(i 6= j ⊃ g(i) 6= g(j)) ∧ (i ≤ m ⊃ φ[g(i)])

∧f(0) = 0
∧∀i.f(i+ 1) = f(i) + p(g(i), s)
∧f(m) > r′.

Basically, this formula says that Σ{s′:φ[now|s′]}p(s′, s) is equal to r if and only if for every value
r′, r′ is less than r if and only if there exists a finite set of m situations (enumerated by the
function g(0), ...g(m)) satisfying φ whose weight p(g(i), s) sum to a value greater than r′. The
sum of the weights is computed by the function f , that is, intuitively, f(i) =

∑
0≤j≤i p(g(j), s).

Note that this definition entails that the weight of an infinite set of situations is the limit of
the sum of the weights of its elements.

Similarly, one can define a summation over tuples of variables. For example, the value of
w(s1, s2, s) can be summed over all situations s1, s2 satisfying φ1(s1) and φ2(s1, s2) as follows:∑

{s1|φ1(s1)}
∑
{s2|φ2(s1,s2)} w(s1, s2, s) = r

.=
∀r′(r′ < r) ≡
∃f, g,m.∀i, j.(i 6= j ⊃ g(i) 6= g(j)) ∧ (i ≤ m ⊃ φ1(g(i))) ∧ f(0) = 0 ∧ f(m) > r′

∧∀i.[∃r2.f(i+ 1) = f(i) + r2

∧∀r′2(r′2 < r2) ≡
∃f2, g2,m2.∀i2, j2.(i2 6= j2 ⊃ g(i2) 6= g(j2)) ∧ (i2 ≤ m2 ⊃ φ2(g(i), g2(i2)))
∧f2(0) = 0 ∧ ∀i2.f2(i2 + 1) = f2(i2) + w(g(i), g2(i2), s) ∧ f2(m2) > r′2].

The last three lines of the above definition compute the inner sum, r2, which is then used
instead of p in the fourth line to compute the outer sum. All summations in this thesis can
be defined analogously.

235

236 APPENDIX B. A SECOND-ORDER SPECIFICATION OF SUMMATION

Bibliography

[ACF+98] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture for
autonomy. IJRR, Special Issue on “Integrated Architectures for Robot Control
and Programming”, 1998.

[AF94] James F. Allen and George Ferguson. Actions and events in interval temporal
logic. Journal of Logic and Computation, 4(5):531–579, October 1994.

[AFH+98] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and F. Robert. Multi robot cooper-
ation in the martha project. IEEE Robotics and Automation Magazine (Special
Issue on “Robotics & Automation in the European Union”), 1998.

[AI99] E. Amir and P. Maynard-Reid II. Logic-based subsumption architectur. In 16th
Intl’ Joint Conference on Artificial Intelligence (IJCAI’99), 1999.

[All84] J.F. Allen. A general model of action and time. Artificial Intelligence 23, 2, 1984.

[BBC+95] Joachim Buhmann, Wolfram Burgard, Armin B. Cremers, Dieter Fox, Thomas
Hofmann, Frank Schneider, Jiannis Strikos, and Sebastian Thrun. The mobile
robot Rhino. AI Magazine, 16(2):31–38, Summer 1995.

[BBG99] Michael Beetz, Maren Bennewitz, and Henrik Grosskreutz. Probabilistic,
prediction-based schedule debugging for autonomous robot office couriers. In
Proceedings of the 23rd Annual German Conference on Advances in Artificial
Intelligence (KI-99), volume 1701 of LNAI. Springer, 1999.

[BCF+00] W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun. Experiences with an interactive museum tour-guide
robot. Artificial Intelligence, 114(1-2), 2000.

[Bee99] Michael Beetz. Structured reactive controllers: Controlling robots that perform
everyday activity. In Oren Etzioni, Jörg P. Müller, and Jeffrey M. Bradshaw,
editors, Proceedings of the Third Annual Conference on Autonomous Agents
(AGENTS-99), pages 228–235, New York, May 1–5 1999. ACM Press.

[Bel57] R.E. Bellman. Dynamic Programming. Princeton University Press, Princeton,
New Jersey, 1957.

[BF95] Avrim Blum and Merrick Furst. Fast planning through planning graph analysis.
In Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence (IJCAI 95), pages 1636–1642, August 1995.

237

238 BIBLIOGRAPHY

[BFG+97] P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack. Experi-
ences with an architecture for intelligent, reactive agents. Journal of Experimental
and Theoretical Artificial Intelligence, 9(1), 1997.

[BFH+98] C. Baral, L. Florian, A. Hardesty, D. Morales, N. Nogueira, and T. Son. From
theory to practice: the UTEP robot in AAAI 96 and 97 robot contests. In Proc.
of the second international conference on automated agents (Agents 98), 1998.

[BFHS96] Wolfram Burgard, Dieter Fox, Daniel Hennig, and Timo Schmidt. Estimating the
absolute position of a mobile robot using position probability grids. In Proc. of the
Fourteenth National Conference on Artificial Intelligence, pages 896–901, 1996.

[BG98] M. Beetz and H. Grosskreutz. Causal models of mobile service robot behavior.
In Artificial Intelligence Planning Systems, pages 163–170, 1998.

[BG99] B. Bonet and H. Geffner. Planning as heuristic search: New results. In Proc.
European Conference on Planning (ECP-99). Springer, 1999.

[BG00] M. Beetz and H. Grosskreutz. Probabilistic hybrid action models for predict-
ing concurrent percept-driven robot behavior. In Artificial Intelligence Planning
Systems, pages 42–61, 2000.

[BHL95] F. Bacchus, J.Y. Halpern, and H. Levesque. Reasoning about noisy sensors in
the situation calculus. In Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, pages 1933–1940, 1995.

[BHL99] F. Bacchus, J.Y. Halpern, and H. Levesque. Reasoning about noisy sensors and
effectors in the situation calculus. Artificial Intelligence 111(1-2), 1999.

[BL99] Avrim Blum and John Langford. Probabilistic planning in the graphplan frame-
work. In 5th European Conference on Planning (ECP’99), 1999.

[BM94] M. Beetz and D. McDermott. Improving robot plans during their execution. In
Kris Hammond, editor, Second International Conference on AI Planning Sys-
tems, pages 3–12, Morgan Kaufmann, 1994.

[BM97] M. Beetz and D. McDermott. Expressing transformations of structured reactive
plans. In Recent Advances in AI Planning. Proceedings of the 1997 European
Conference on Planning, pages 64–76. Springer Publishers, 1997.

[BP96] Craig Boutilier and David Poole. Computing optimal policies for partially ob-
servable decision processes using compact representations. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence and the Eighth Innova-
tive Applications of Artificial Intelligence Conference, pages 1168–1175, Menlo
Park, August4–8 1996. AAAI Press / MIT Press.

[BP98] Fahiem Bacchus and Ron Petrick. Modeling an agent’s incomplete knowledge
during planning and execution. In Anthony G. Cohn, Lenhart Schubert, and
Stuart C. Shapiro, editors, Proceedings of the 6th International Conference on
Principles of Knowledge Representation and Reasoning (KR’98), pages 432–443,
San Francisco, June 2–5 1998. Morgan Kaufmann Publishers.

BIBLIOGRAPHY 239

[Bro86] R. Brooks. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, pages 14–23, April 1986.

[Bro91] Rodney A. Brooks. Intelligence without representation. Artificial Intelligence,
47(1–3):139–159, January 1991.

[Bro93] R. Brooks. L: A subset of common lisp. Technical report, MIT AI Lab, 1993.

[BRP01] C. Boutilier, R. Reiter, and R. Price. Symbolic dynamic programming for first-
order MDPs. In Proc. of the Intl. Joint Conference on Artificial Intelligence,
pages 690–700, 2001.

[BRST00] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun. Decision-theoretic, high-
level agent programming in the situation calculus. In AAAI’2000, 2000.

[BT01] Chitta Baral and Le-Hi Tuan. Reasoning about actions in a probabilistic set-
ting. In Fifth Symposium on Logical Formalizations of Commonsense Reasoning
(Common Sense 2001), 2001.

[BW91] Alan Burns and Andy Wellings. Real-time systems and their programming lan-
guages. Addison-Wesley, 1991.

[Byl94] Tom Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1–2):165–204, 1994.

[Cla78] K. L. Clark. Negation as failure. In Logic and Databases, pages 293–322. Plenum
Press, 1978.

[Con92] J. Connell. SSS: A hybrid architecture applied to robot navigation. In Proc. of
IEEE International Conference on Robotics and Automation (ICRA), 1992.

[Dav92] Ernest Davis. Semantics for tasks that can be interrupted or abandoned. In
AIPS’92: Proc. of the First International Conference on Artificial Intelligence
Planning Systems, pages 37–44, College Park, Maryland, USA, 1992.

[dGL99a] G. de Giacomo and H. Levesque. Projection using regression and sensors. In
Proc. of the Intl. Joint Conference on Artificial Intelligence (IJCAI’99), 1999.

[dGL99b] G. de Giacomo and H.J. Levesque. An incremental interpreter for high-level
programs with sensing. In H. Levesque and F. Pirri, editors, Logical Foundations
for Cognitive Agents, pages 86–102. Springer, 1999.

[dGLL97] G. de Giacomo, Y. Lesperance, and H. J Levesque. Reasoning about concurrent
execution, prioritized interrupts, and exogeneous actions in the situation calculus.
In Proc. of the Intl. Joint Conference on Artificial Intelligence (IJCAI’97), 1997.

[dGLL00] Guiseppe de Giacomo, Yves Lesperance, and Hector J Levesque. Congolog, a
concurrent programming language based on the situation calculus. Artificial
Intelligence, 121:109–169, 2000.

[dGLS01] G. de Giacomo, H. Levesque, and S. Sardina. Incremental execution of guarded
theories. ACM Transactions on Computational Logic, (to appear), 2001.

240 BIBLIOGRAPHY

[dGRS98] G. de Giacomo, R. Reiter, and M. Soutchanski. Execution monitoring of high-
level robot programms. In Proceedings of the International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR), 1998.

[DHW94] D. Draper, S. Hanks, and D. Weld. Probabilistic planning with information gath-
ering and contingent execution. In Proceedings of the International Conference
on Artificial Intelligence Planning Systems (AIPS’94), 1994.

[DK89] T. Dean and K. Kanazawa. A model for reasoning about persistence and causa-
tion. Computational Inteligence, 5(3), 1989.

[DK01] P. Doherty and J. Kvarnström. Talplanner: A temporal logic based planner. AI
Magazine, 2001.

[DL94] P. Doherty and W. Lukaszewicz. Circumscribing features and fluents. In First
Int’l Conference on Temporal Logic, Springer Lecture Notes in AI Vol. 827, 1994.

[FBDT99] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte carlo localization: Efficient
position estimation for mobile robots. In In Proc. of the National Conference on
Artificial Intelligence (AAAI), 1999.

[FBT97] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window ap-
proach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1):23–
33, March 1997.

[FBT99] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in
dynamic environments. Journal of Artificial Intelligence Research (JAIR), 11,
1999.

[Fed93] C. Fedor. TCX. An interprocess communication system for building robotic ar-
chitectures. Programmer’s guide to version 10.xx. Carnegie Mellon University,
Pittsurgh, PA 15213, 12 1993.

[Fir87] J. Firby. An investigation into reactive planning in complex domains. In Proc.
of AAAI-87, pages 202–206, 1987.

[Fir89] J. Firby. Adaptive Execution in Complex Dynamic Worlds. Technical report 672,
Yale University, Department of Computer Science, January 1989.

[Fir95] J. Firby. The RAP language manual. Animate Agent Project Working Note
AAP-6, University of Chicago, 1995.

[Fis96] George S. Fishman. Monte Carlo - Concepts, Algorithms, and Applications.
Springer, 1196.

[FLK93] R. E. Fayek, R. Liscano, and G. M. Karam. A system architecture for a mobile
robot based on activities and a blackboard control unit. In Lisa Werner, Robert;
O’Conner, editor, Proceedings of the 1993 IEEE International Conference on
Robotics and Automation: Volume 2, pages 267–274, Atlanta, GE, May 1993.
IEEE Computer Society Press.

BIBLIOGRAPHY 241

[FN71] R.E. Fikes and N.J. Nilsson. Strips: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2:189–208, 1971.

[For84] K. Forbus. Qualitative process theory. Artificial Intelligence, 24:85–168, 1984.

[GA99] Emmanuel Guere and Rachid Alami. A possibilistic planner that deals with non-
determinism and contingency. In Proc. of the Intl. Joint Conference on Artificial
Intelligence (IJCAI’99), 1999.

[Gat92] E. Gat. Integrating planning and reacting in a heterogeneous asynchronous ar-
chitecture for controlling real-world mobile robots. In Proc. of the National Con-
ference on Artificial Intelligence (AAAI), San Jose, CA, 1992.

[Gat98] Erann Gat. On three layer architectures. In D. Kortenkamp, R.P. Bonasso, and
R. Murphy, editors, AI and Mobile Robots. MIT/AAAI Press, 1998.

[GB98] H. Geffner and B. Bonet. High-level planning and control with incomplete in-
formation using pomdps. In Proc. Fall AAAI Symposium on Cognitive Robotics,
1998.

[GBFK98] J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental compar-
ison of localization methods. In Proc. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 1998.

[GI89] M. Georgeff and F. Ingrand. Decision making in an embedded reasing system.
In Proc. of the 11 th Int. Joint Conference on Artificial Intelligence (IJCAI’89),
pages 972–978, Detroit, MI, 1989.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proceedings of the Fifth Logic Programming Symposium, pages 1070–1080,
1988.

[GL93] M. Gelfond and V. Lifschitz. Representing Actions and Change by Logic Pro-
grams. Journal of Logic Programming, 1993.

[GL98a] M. Gelfond and V. Lifschitz. Action languages. Linköping Elec-
tronic Articles in Computer and Information Science, 3(16), 1998. URL:
http://www.ep.liu.se/ea/cis/1998/018/.

[GL98b] E. Giunchiglia and V. Lifschitz. An action language based on causal explanation:
preliminary report. In Proc. of the National Conference on Artificial Intelligence
(AAAI), 1998.

[GL00a] H. Grosskreutz and G. Lakemeyer. cc-golog: Towards more realistic logic-based
robot controllers. In Proc. of the National Conference on Artificial Intelligence
(AAAI), 2000.

[GL00b] H. Grosskreutz and G. Lakemeyer. Turning high-level plans into robot programs
in uncertain domains. In Proceedings of the European Conference on Artificial
Intelligence (ECAI’2000), 2000.

242 BIBLIOGRAPHY

[GL01a] H. Grosskreutz and G. Lakemeyer. Belief update in the pGOLOG framework.
In Proceedings of the German Annual Conference on Artificial Intelligence (KI),
2001.

[GL01b] H. Grosskreutz and G. Lakemeyer. Online-execution of ccgolog plans. In Proc.
of the Intl. Joint Conference on Artificial Intelligence (IJCAI’01), 2001.

[Gre69] Cordell Green. Application of theorem proving to problem solving. In Donald E.
Walker and Lewis M. Norton, editors, Proceedings of the 1st International Joint
Conference on Artificial Intelligence, pages 219–240, Washington, D. C., May
1969. William Kaufmann.

[Gro00] H. Grosskreutz. Probabilistic projection and belief update in the pgolog frame-
work. In Second International Cognitive Robotics Workshop, 2000.

[GW96] Keith Golden and Daniel Weld. Representing sensing actions: The middle ground
revisited. In Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro, editors,
KR’96: Principles of Knowledge Representation and Reasoning, pages 174–185.
Morgan Kaufmann, San Francisco, California, 1996.

[Haa87] A. R. Haas. The case for domain-specific frame axioms. In The Frame Problem
in Artificial Intelligence. Proc. of the 1987 Workshop, 1987.

[Har96] J. Harrison. Theorem Proving with the Real Numbers. PhD thesis, University of
Cambridge, 1996.

[Hay79] P. Hayes. The naive physics manifesto. In Donald Michie, editor, Expert Systems
in the Micro Electronic Age. Edinburgh University Press, 1979.

[Hay85] P. Hayes. The second naive physics manifesto. In J. R. Hobbs and R. C. Moore,
editors, Formal Theories of the Commonsense World, pages 1–36. Ablex, Nor-
wood, NJ, 1985.

[HBL98] D. Hähnel, W. Burgard, and G. Lakemeyer. Golex - bridging the gap between
logic (golog) and a real robot. In Proceedings of the 22st German Conference on
Artificial Intelligence (KI 98), 1998.

[HG01] P. Haslum and H. Geffner. Heuristic planning with time and resources. In Work-
shop Notes of the IJCAI-01 Workshop on Planning with Resources, 2001.

[Hol95] C. Holzbauer. Ofai clp(q,r) manual. Technical Report TR-95-09, Austian Re-
search Institute for Artificial Intelligence, Vienna, 1995.

[HT96] Christoph S. Herrmann and Michael Thielscher. Reasoning about continuous
processes. In B. Clancey and D. Weld, editors, Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI), pages 639–644, Portland,
OR, August 1996. MIT Press.

[KBM98] D. Kortenkamp, R.P. Bonasso, and R. Murphy. AI-based Mobile Robots: Case
studies of successful robot systems. MIT Press, 1998.

BIBLIOGRAPHY 243

[Kel96a] T. Kelley. Modeling complex systems in the situation calculus: A case study
using the dagstuhl steam boiler problem. In Proceedings of the International
Conference on Principles of Knowledge Representation and Reasoning (KR’96),
1996.

[Kel96b] T. Kelley. Reasoning about physical systems with the situation calculus. In
Common Sense 96, Third Symposium on Logical Formalizations of Commonsense
Reasoning, 1996.

[KHW95] N. Kushmerick, S. Hanks, and D. Weld. An algorithm for probabilistic planning.
Artificial Intelligence, 76:239–286, 1995.

[KLC98] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence 101(1-2, 1998.

[KMRS97] Kurt Konolige, Karen Myers, Enrique Ruspini, and Alessandro Saffiotti. The
saphira architecture: A design for autonomy. Journal of Experimental and The-
oretical Artificial Intelligence, 9(2), 1997.

[KNHD97] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending planning
graphs to an adl subset. In Proc. European Conference on Planning (ECP-97),
volume 1348 of LNAI, pages 273–285. Springer, 1997.

[Koe98] J. Koehler. Planning under resource constraints. In Proceedings of the European
Conference on Artificial Intelligence (ECAI’98), pages 489–493, 1998.

[Kon97] Kurt Konolige. Colbert: A language for reactive control in sapphira. In Proceed-
ings of the German Annual Conference on Artificial Intelligence (KI’97), volume
1303 of LNAI, 1997.

[Kow92] R. A. Kowalski. Database Updates in the Event Calculus. Journal of Logic
Programming, 12:121–146, 1992.

[KS86] R. A. Kowalski and M. J. Sergot. A logic-based calculus of events. New Genera-
tion Computing, 4:67–95, 1986.

[KS92] H. Kautz and B. Selman. Planning as satisfiability. In Bernd Neumann, editor,
Proceedings of the 10th European Conference on Artificial Intelligence, pages 359–
363, Vienna, Austria, August 1992. John Wiley & Sons.

[KS96] Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional
logic and stochastic search. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence and the Eighth Innovative Applications of Artificial In-
telligence Conference, pages 1194–1201, Menlo Park, August 4–8 1996. AAAI
Press / MIT Press.

[Kui86] B. Kuipers. Qualitative simulation. Artificial Intelligence, 29, 1986.

[Lak96] G. Lakemeyer. Only knowing in the situation calculus. In Proc. of the 5th Inter-
national Conference on Principles of Knowledge Representation and Reasoning,
pages 14–25, Morgan Kaufmann, 1996.

244 BIBLIOGRAPHY

[Lak99] G. Lakemeyer. On sensing and off-line interpreting in golog. In H. Levesque and
F. Pirri, editors, Logical Foundations for Cognitive Agents. Springer, 1999.

[Lev96] H. J. Levesque. What is planning in the presence of sensing. In Proc. of the
National Conference on Artificial Intelligence (AAAI’96), 1996.

[LGM98] Michael L. Littman, Judy Goldsmith, and Martin Mundhenk. The computational
complexity of probabilistic planning. Journal of Artificial Intelligence Research,
9:1–36, 1998.

[Lif97] V. Lifschitz. On the logic of causal explanation. Artificial Intelligence, 96, 1997.

[LK92] R. Liscano and R.E. Fayekand G. M. Karam. A blackboard, activity-based control
architecture for a mobile platform. In IEEE/RSJ Intelligent Robots & Systems
IROS’92, pages 333–338, 1992.

[LL98] G. Lakemeyer and H. J. Levesque. Aol: a logic of acting, sensing, knowing, and
only knowing. In Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning (KR’98), Morgan Kaufmann, 1998.

[LN00] Y. Lesperance and H.-K. Ng. Integrating planning into reactive high-level robot
programs. In Second International Cognitive Robotics Workshop, 2000.

[LPR98] Hector Levesque, Fiora Pirri, and Ray Reiter. Foundations for the situation
calculus. Linköping Electronic Articles in Computer and Information Science,
3(18), 1998. URL: http://www.ep.liu.se/ea/cis/1998/018/.

[LR94] F. Lin and R. Reiter. State constraints revisited. Journal of logic and computa-
tion, 4(5):655–678, 1994.

[LR95] F. Lin and R. Reiter. How to progress a database II: The STRIPS connection. In
Proc. of the 14th International Joint Conference on Artificial Intelligence, pages
2001–2007, Montreal, Canada, 1995.

[LR97] F. Lin and R. Reiter. How to progress a database. Artificial Intelligence, 92:131–
167, 1997.

[LR98] Hector J. Levesque and Raymond Reiter. High-level robotic control: beyond plan-
ning. A position paper. In AAAI 1998 Spring Symposium: Integrating Robotics
Research: Taking the Next Big Leap, 1998.

[LRL+97] Hector J. Levesque, Raymond Reiter, Yves Lesprance, Fangzhen Lin, and Richard
Scherl. Golog: A logic programming language for dynamic domains. Journal of
Logic Programming, 31:59–84, 1997.

[LTJ98] Y. Lesperance, K. Tam, and M. Jenkin. Reactivity in a logic-based robot pro-
gramming framework. In AAAI’98 Fall Symposium on Cognitive Robotics, 1998.

[McC63] J. McCarthy. Situations, actions and causal laws. Technical report, Stanford
University. Reprinted 1968 in Semantic Information Processing (M.Minske ed.),
MIT Press, 1963.

BIBLIOGRAPHY 245

[McC80] J. McCarthy. Circumscription – A Form of Non-Monotonic Reasoning. Artificial
Intelligence, 13, 1980.

[McD82] D. McDermott. A temporal logic for reasoning about processes and plans. Cog-
nitive Science, 6, 1982.

[McD91] D. McDermott. A reactive plan language. Research Report YALEU/DCS/RR-
864, Yale University, 1991.

[McD92a] D. McDermott. Robot planning. AI Magazine, 13(2):55–79, 1992.

[McD92b] D. McDermott. Transformational planning of reactive behavior. Research Report
YALEU/DCS/RR-941, Yale University, www.cs.yale.edu/AI/Planning/xfrm.html,
1992.

[McD94] D. McDermott. An algorithm for probabilistic, totally-ordered tempo-
ral projection. Research Report YALEU/DCS/RR-1014, Yale University,
www.cs.yale.edu/AI/Planning/xfrm.html, 1994.

[MH69] John McCarthy and P. J. Hayes. Some philosphical problems from the standpoint
of artificial intelligence. In Machine Intelligence 4. Edinburgh University Press,
Edinburgh, 1969.

[Mil96] Rob Miller. A case study in reasoning about actions and continuous change.
In Proceedings of the European Conference on Artificial Intelligence (ECAI’96),
1996.

[ML98] Stephen M. Majercik and Michael L. Littman. Maxplan: A new approach to
probabilistic planning. In Proceedings of the International Conference on Artifi-
cial Intelligence Planning Systems (AIPS’98), 1998.

[Moo85] Robert C. Moore. A formal theory of knowledge and action. In Formal Theories
of the Commonsense World. Ablex Publishing Corp., Norwood, New Jersey, 1985.

[MPP+01] P. Mateus, A. Pacheco, J. Pinto, A. Sernadas, and C. Sernadas. Probabilistic
situation calculus. Annals of Mathematics and Artificial Intelligence, 2001. To
appear.

[MR91] David McAllester and David Rosenblitt. Systematic nonlinear planning. In Pro-
ceedings of the Ninth National Conference on Artificial Intelligence (AAAI’91),
volume 2, pages 634–639, Anaheim, California, USA, July 1991. AAAI Press/MIT
Press.

[MS96] Rob Miller and Murray Shanahan. Reasoning about discontinuities in the event
calculus. In KR’96: Principles of Knowledge Representation and Reasoning,
pages 63–74. Morgan Kaufmann, 1996.

[MT97] Norman McCain and Hudson Turner. Causal theories of action and change. In
Proc. of the National Conference on Artificial Intelligence (AAAI), 1997.

246 BIBLIOGRAPHY

[MT01] Yves Martin and Michael Thielscher. Addressing the qualification problem in
flux. In F. Baader, G. Brewka, and T. Eiter, editors, Proceedings of the German
Annual Conference on Artificial Intelligence (KI), volume 2174 of LNAI, Vienna,
Austria, September 2001. Springer.

[Mye96] Karen L. Myers. A procedural knowledge approach to task-level control. In
B. Drabble, editor, Proceedings of the 3rd International Conference on Artificial
Intelligence Planning Systems (AIPS’96), pages 158–165. AAAI Press, 1996.

[Nil84] Nils J. Nilsson. Shakey the robot. Technical report, SRI International, 1984.

[PBC+97] Barney Pell, Douglas E. Bernard, Steve A. Chien, Erann Gat, Nicola Muscettola,
P. Pandurang Nayak, Michael D. Wagner, and Brian C. Williams. An autonomous
spacecraft agent prototype. In W. Lewis Johnson and Barbara Hayes-Roth, ed-
itors, Proceedings of the 1st International Conference on Autonomous Agents,
pages 253–261, New York, February 5–8 1997. ACM Press.

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, Inc., 1988.

[Ped89] E. P. D. Pednault. ADL: Exploring the middle ground between STRIPS and the
situation calculus. In Proc. of the First International Conference on Principles
of Knowledge Representation and Reasoning (KR’89), 1989.

[Pin94] Javier Pinto. Temporal Reasoning in the Situation Calculus. PhD thesis, Depart-
ment of Computer Science, University of Toronto, Toronto, Ontario, Canada,
February 1994.

[Pin97] Javier Pinto. Integrating discrete and continuous change in a logical framework.
Computational Intelligence, 14(1), 1997.

[Poo96] David Poole. A framework for decision-theoretic planning I: Combining the situa-
tion calculus, conditional plans, probability and utility. In Proceedings of the 12th
Conference on Uncertainty in Artificial Intelligence (UAI’96). Morgan Kaufmann
Publishers, 1996.

[Poo97] David Poole. The independent choice logic for modelling multiple agents under
uncertainty. Artificial Intelligence, 94(1–2):5–56, 1997.

[Poo98] David Poole. Decision theory, the situation calculus and conditional plans.
Linköping Electronic Articles in Computer and Information Science, 3(8), 1998.
URL: http://www.ep.liu.se/ea/cis/1998/008/.

[PR93] J. Pinto and R. Reiter. Temporal reasoning in logic programming: A case for the
situation calculus. In Proc. 10th Int. Conf. on Logic Programming, 1993.

[PR95] J. Pinto and R. Reiter. Reasoning about time in the situation calculus. Annals
of Mathematics and Artificial Intelligence, 14, 1995.

[PR99] Fiora Pirri and Ray Reiter. Some contributions to the metatheory of the situation
calculus. Journal of the ACM, 46(3):325–361, 1999.

BIBLIOGRAPHY 247

[PS92] M. Peot and D. Smith. Conditional nonlinear planning. In J. Hendler, editor,
AIPS’92: Proc. of the First International Conference on Artificial Intelligence
Planning Systems, pages 189–197, San Mateo, CA, 1992. Kaufmann.

[PSSM00] J. Pinto, A. Sernadas, C. Sernadas, and P. Mateus. Non-determinism and uncer-
tainty in the situation calculus. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 8(2):127–149, 2000.

[Put94] M. Puterman. Markov Decision Processes. Wiley, New York, 1994.

[PW92] J.Scott. Penberthy and Daniel.S. Weld. Ucpop: A sound, complete partial order
planer for ADL. In Principles of Knowledge Representation and Reasoning: Proc.
of the Third International Conference (KR’92), 1992.

[Rei91] Ray Reiter. The frame problem in the situation calculus: a simple solution (some-
times) and a ccompleteness result for goal regression. In In Artificial Intelligence
and Mathematic Theory of Computation: Papers in Honor of John McCarthy,
1991.

[Rei93] R. Reiter. Proving properties of states in the situation calculus. Artificial Intel-
ligence, 64:337–351, 1993.

[Rei96] Ray Reiter. Natural actions, concurrency and continuous time in the situation
calculus. In Proceedings of the International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’96), pages 2–13, 1996.

[Rei98] R. Reiter. Sequential, temporal golog. In Proceedings of the International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR’98), 1998.

[Rei00] R. Reiter. On knowledge-based programming with sensing in the situation cal-
culus. In Second International Cognitive Robotics Workshop, 2000.

[Rei01] R. Reiter. KNOWLEDGE IN ACTION: Logical Foundations for Describing and
Implementing Dynamical Systems. MIT Press, 2001.

[RN95] Stuart Russel and Peter Norvig. Artificial Intelligence - a Modern Approach.
Prentice Hall, 1995.

[Sac75] E. D. Sacerdoti. The nonlinear nature of plans. In Proc. of the 4th International
Joint Conference on Artificial Intelligence (IJCA-75), 1975.

[San89a] Erik Sandewall. Combining logic and differential equations for describing real-
world systems. In Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning (KR’89), pages 412–420, 1989.

[San89b] Erik Sandewall. Filter prederential entailment for the logic of action in almost
continuous worlds. In IJCAI’89, 1989.

[San94] Erik Sandewall. Features and Fluents. Oxford University Press, 1994.

[Sar01] Sebastian Sardina. Local conditional high-level robot programs. In Workshop on
Nonmonotonic Reasoning, Action, and Change at IJCAI-01 (NRAC-01), 2001.

248 BIBLIOGRAPHY

[SB98] Trans Cao Son and Chitta Baral. Formalizing sensing actions - a transition
function based approach. In AAAI’98 Fall Symposium on Cognitive Robotics,
pages 13–20, 1998.

[SB00] Dirk Schulz and Wolfram Burgard. Probabilistic state estimation techniques for
maintaining object-based world models of mobile robots. In Second International
Cognitive Robotics Workshop, 2000.

[Sch90] L. K. Schubert. Monotonic solution to the frame problem in the situation cal-
culus: an efficient method for worlds with fully specified actions. In Knowledge
Representation and Defeasible Reasoning, pages 23–67. Kluwer Academic Press,
Boston, Mass., 1990.

[SGH+97a] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, and J. Sullivan. A layered
architecture for office delivery robots. In First International Conference on Au-
tonomous Agents (Agents’97), pages 235–242, 1997.

[SGH+97b] Reid G. Simmons, Richard Goodwin, Karen Zita Haigh, Sven Koenig, Joseph
O’Sullivan, and Manuela M. Veloso. Xavier: Experience with a layered robot
architecture. ACM magazine Intelligence, 1997.

[SGH+97c] R.G. Simmons, R. Goodwin, K.Z. Haigh, S. Koenig, J. O’Sullivan, and M.M.
Veloso. Xavier: Experience with a layered robot architecture. ACM SIGART
Bulletin Intelligence, 8 (1–4), 1997.

[Sha90] M. Shanahan. Representing continuous change in the event calculus. In Proceed-
ings of the European Conference on Artificial Intelligence (ECAI’90), 1990.

[Sha96] Murray Shanahan. Noise and the common sense informatic situation for a mobile
robot. In Proc. of the National Conference on Artificial Intelligence (AAAI’96),
Vol. 2, pages 1098–1103, 1996.

[Sha97] M. Shanahan. Noise, non-determinism and spatial uncertainty. In Proc. of the
National Conference on Artificial Intelligence (AAAI’97), 1997.

[Sha98] M. Shanahan. Reinventing shakey. In AAAI 1998 Fall Symposium on Cognitive
Robotics., 1998.

[Sha99] Murray Shanahan. The event calculus explained. In Michael Wooldridge and
Manuela M. Veloso, editors, Artificial Intelligence Today: Recent Trends and
Developments, volume 1600 of Lecture Notes in Computer Science, pages 409–
430. Springer, 1999.

[Sho87] Yoav Shoham. Nonmonotonic logics: Meaning and utility. In Proc. of the Intl.
Joint Conference on Artificial Intelligence (IJCAI’87), 1987.

[Sho88] Yoav Shoham. Reasoning about Change. MIT Press, 1988.

[SK95] Reid Simmons and Sven Koenig. Probabilistic robot navigation in partially ob-
servable environments. In Proc. International Joint Conference on Artificial In-
telligence, 1995.

BIBLIOGRAPHY 249

[SL93] R. Scherl and H. J. Levesque. The frame problem and knowledge producing
actions. In Proc. of the National Conference on Artificial Intelligence, pages
689–695, 1993.

[Sou01] Mikhail Soutchanski. An on-line decision-theoretic golog interpreter. In Proc. of
the Intl. Joint Conference on Artificial Intelligence (IJCAI’2001), 2001.

[SS94] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press, Cambridge,
Mass., second edition, 1994.

[SW98] David E. Smith and Daniel S. Weld. Conformant graphplan. In Proceedings of
the 15th National Conference on Artificial Intelligence (AAAI’98) and of the 10th
Conference on Innovative Applications of Artificial Intelligence (IAAI’98), pages
889–896, Menlo Park, July 26–30 1998. AAAI Press.

[SW00] M. Shanahan and M. Witkowski. High-level robot control through logic. In
Proceedings ATAL 2000, 2000.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

[TBB+98] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig, T. Hof-
mann, M. Krell, and T. Schimdt. Map learning and high-speed navigation in
RHINO. In D. Kortenkamp, R.P. Bonasso, and R. Murphy, editors, AI-based
Mobile Robots: Case studies of successful robot systems. MIT/AAAI Press, 1998.

[TBB+99] S. Thrun, M. Bennewitz, W. Burgard, F. Dellaert, D. Fox, D. Haehnel, C. Rosen-
berg, N. Roy, J. Schulte, and D. Schulz. Minerva: A second-generation museum
tour-guide robot. In Proc. of IEEE International Conference on Robotics and
Automation (ICRA), 1999.

[Ter94] E. Ternovskaia. Interval situation calculus. In Proc. of the ECAI’94 Workshop
W5 on Logic and Change, 1994.

[Thi98] Michael Thielscher. Towards state update axioms: Reifying successor state ax-
ioms. In L. F. del Cerro, J. Dix, and U. Furbach, editors, JELIA, volume 1489
of LNAI, pages 248–263, Dagstuhl, Germany, 1998. Springer.

[Thi99a] Michael Thielscher. Fluent calculus planning with continuous change. Linköping
Electronic Articles in Computer and Information Science, 4(11), 1999. URL:
http://www.ep.liu.se/ea/cis/1999/011/.

[Thi99b] Michael Thielscher. From Situation Calculus to Fluent Calculus: State update
axioms as a solution to the inferential frame problem. Artificial Intelligence,
111(1–2):277–299, 1999.

[Thi99c] Michael Thielscher. Introduction to the fluent calculus. Linköping Electronic
Articles in Computer and Information Science, 1999.

[Thi00a] Michael Thielscher. The Fluent Calculus: A Specification Language for Robots
with Sensors in Nondeterministic, Concurrent, and Ramifying Environments.

Technical Report CL-2000-01, Computational Logic Group, Department of Com-
puter Science, Dresden University of Technology, October 2000.

[Thi00b] Michael Thielscher. Representing the knowledge of a robot. In A. Cohn, F.
Giunchiglia, and B. Selman, editors, Proceedings of the International Conference
on Principles of Knowledge Representation and Reasoning (KR), pages 109–120,
Breckenridge, CO, April 2000. Morgan Kaufmann.

[Thi01a] Michael Thielscher. Inferring implicit state knowledge and plans with sensing
actions. In F. Baader, G. Brewka, and T. Eiter, editors, Proceedings of the
German Annual Conference on Artificial Intelligence (KI), volume 2174 of LNAI,
Vienna, Austria, September 2001. Springer.

[Thi01b] Michael Thielscher. The Qualification Problem: A solution to the problem of
anomalous models. Artificial Intelligence, 2001.

[Ver83] Steven A. Vere. Planning in time: Windows and durations for activities and
goals. In IEEE Transact. on Pattern Analysis and Machine Intelligence, volume
PAMI-5, pages 246–267. IEEE, May 1983.

[War76] D. H. D. Warren. Generating conditional plans and programs. In Proc. of the
AISB Summer Conference, 1976.

[WAS98] Daniel S. Weld, Corin R. Anderson, and David E. Smith. Extending graphplan
to handle uncertainty and sensing actions. In Proceedings of the 15th National
Conference on Artificial Intelligence (AAAI’98), pages 897–904, Menlo Park,
1998. AAAI Press.

[Wol96] S. Wolfram. The Mathematica Book. Wolfram Media, 1996.

Curriculum Vitae

Name: Henrik Grosskreutz

Geburtsdatum: 9.5.1972

Geburtsort: Berlin

Schulbildung:

1977-1980 École de la Fontaine in Niamey, Niger
1980-1983 École du Plateau in Dakar, Senegal
1983-1991 Taunusschule Königstein
1991 Abitur

Zivildienst:

1991-1992 Zivildienst beim DRK Hochtaunus

Studium:

1992-1994 Informatikstudium an der Universität Würzburg
1994 Vordiplom
1994-1995 Informatikstudium an der Universität Caen,

Frankreich
1995 Licence d’ Informatique
1995-1998 Informatikstudium an der Universität Bonn
1998 Diplom
1998-2001 Stipendiat im Graduiertenkolleg “Informatik und

Technik” an der RWTH Aachen

	Introduction
	Goals and Contributions
	Outline of this Thesis

	Related Work
	Reasoning about Action and Change
	The Situation Calculus
	Other Approaches to Reasoning about Action and Change

	GOLOG and its Derivatives
	Robot Controllers
	Robot Control Architectures
	Non-Logic-Based Robot Programming Languages

	Discussion

	The Situation Calculus and ConGolog
	The Situation Calculus
	A Simple Solution to the Frame Problem (Sometimes)
	Basic Action Theories
	An Example

	ConGolog
	A Transition Semantics
	An Example
	Extending the Transition Semantics to Procedures

	A Probabilistic, Epistemic Situation Calculus
	Foundational Axioms for the Epistemic Situation Calculus
	Belief

	cc-Golog -- Dealing with Continuous Change
	Continuous Change and Time
	Adding a Timeline
	Continuous Fluents
	Functions of Time
	The passage of Time
	A Simple Model of Robot Navigation

	cc-Golog: a Continuous, Concurrent GOLOG Dialect
	A New Semantics for Concurrent Execution
	Blocking Policies
	Extending the Semantics to Procedures
	Discussion: cc-Golog and Nondeterminism

	A Robot Control Architecture
	The Communication between the High-Level Controller and the Low-Level Processes
	Modeling Low-Level Processes as cc-Golog Procedures
	Projection
	The Example Revisited

	Discussion

	On-Line Execution of cc-Golog Plans
	On-Line Execution of cc-Golog Plans
	ccUpdate - Updating Continuous Fluents
	The Passage of Time During On-Line Execution
	On-Line Execution of waitFor Instructions
	On-Line Execution Traces
	Examples

	Interleaving Projection and On-Line Execution
	Projection in Non-Initial Situations
	(Limited) Lookahead: Projection Tests
	Projection Tests at Work

	Discussion

	pGOLOG - Dealing with Probabilistic Uncertainty
	pGOLOG: a Probabilistic GOLOG Dialect
	A Weighted Transition Semantics
	An Example
	Extending the Semantics to Procedures
	Formal Properties

	A Control Architecture for Acting under Uncertainty
	The Probabilistic Epistemic State
	The Communication between the High-Level Controller and the Low-Level Processes
	Modeling the Low-Level Processes
	High-Level Plans and Directly Observable Fluents

	Probabilistic Projection in pGOLOG
	Projected Belief
	Examples
	Probabilistic Projection and Expected Utility

	Discussion

	Belief Update in pGOLOG
	On-line Execution and Belief Update
	On-Line Execution and On-line Execution Traces
	The Epistemic State as a Distribution over Configurations
	Belief Update
	Examples
	Formal Properties

	Belief Update at Work - BHL's 1-Dimensional Robot
	Specification of the domain
	Dealing with Noisy Sensors
	Dealing with Noisy Effectors

	Belief-Based Programs and Probabilistic Projection Tests
	Belief-Based Programs
	Probabilistic Projection Tests
	Dealing with Continuous Fluents in Probabilistic Projection Tests

	Discussion

	Implementation and Experimentation
	A cc-Golog Interpreter in PROLOG
	Legal Domain Specifications
	Legal cc-Golog Programs
	Dealing with Temporal Constraints
	The cc-Golog Interpreter
	Experimental Results

	Running cc-Golog on a Real Robot
	The BeeSoft System
	The Link between cc-Golog and BeeSoft
	Interleaving On-Line Execution and Projection

	A pGOLOG Interpreter in PROLOG
	Probabilistic Projection
	Belief and Belief Update
	Epistemic Conditions and bGOLOG Programs
	Experimental Results

	Running pGOLOG on a Real Robot
	An Example Application: Colored Letter Delivery
	The Link between pGOLOG and BeeSoft
	A Simple Greedy pGOLOG Controller
	Experimental Results

	Discussion

	Conclusions
	Summary
	Discussion and Future Work

	Index of Technical Terms
	Reification of Programs as Terms
	Preliminaries
	Sort Idx
	Sorts PseudoSit, PseudoObj, PseudoAct, PseudoReal, PseudoTime and PseudoProb
	Sort PseudoForm
	Sorts PseudoCF and PseudoTForm

	Encoding cc-Golog Programs
	Sorts ProgccGolog and EnvccGolog
	Sorts PseudoProjTest, ProgccGologPT and EnvccGologPT

	Encoding pGOLOG and bGOLOG Programs
	Sorts ProgpgologS and EnvpGologS
	Sorts PseudoBBForm, ProgbGolog and EnvbGolog
	Sort Progpgolog
	Sorts PseudoPProjTst, ProgbGologPT and EnvbGologPT

	Consistency Preservation

	A Second-Order Specification of Summation
	Bibliography

