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Abstract: In the scope of a broader study about modelling wine acetification, the use of polynomial
black-box models seems to be the best choice. Additionally, the use of two serially arranged bioreactors
was expected to result in increased overall acetic acid productivity. This paper describes the
experiments needed to obtain enough data for modelling the process and the use of second-order
polynomials for this task. A fractional experimental design with central points was used with the
ethanol concentrations during loading of the bioreactors, their operation temperatures, the ethanol
concentrations at unloading time, and the unloaded volume in the first one as factors. Because using
two serial reactors imposed some constraints on the operating ranges for the process, an exhaustive
combinatorial analysis was used to identify a working combination of such ranges. The obtained
models provided highly accurate predictions of the mean overall rate of acetic acid formation,
the mean total production of acetic acid of the two-reactor system, and ethanol concentration at the
time the second reactor is unloaded. The operational variables associated with the first bioreactor
were the more strongly influential to the process, particularly the ethanol concentration at the time
the first reactor was unloaded, the unloaded volume, and the ethanol concentration when loading.

Keywords: vinegar; wine; acetification; bioprocesses; experimental design; polynomial modelling;
black-box models

1. Introduction

Vinegar production is a biotechnological process essentially involving the biological conversion
of ethanol from a given source into acetic acid. Vinegar can be obtained from alcohol, wine, cereals or
fruits, among other sources [1–4]. The key step of the process is possibly that by which a complex
microbiota of acetic acid bacteria (AAB) convert ethanol into acetic acid in a bioreactor. The bacterial
mixture affecting the conversion arises from the natural microbial selection in the acetification medium.
In practice, only AAB can exist in an environment containing medium concentrations of ethanol
and acetic acid at the beginning but low levels of the former and high levels of the latter at the
end [5]. These conditions make it unnecessary to sterilize containers or keep aseptic conditions
during operation.

Acetification bioreactors usually operate in a semi-continuous mode. Thus, once the reactors are
in full operation, the ethanol concentration is allowed to decrease to a preset level and then an also
preset fraction of the reactor contents is unloaded, the remainder being allowed to stand in it in order
to act as an inoculum in the next conversion cycle [6–10]. After the bioreactor is unloaded, it is slowly
replenished with a fresh alcoholic substrate to start a new ethanol depletion cycle.
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Because the temperature and airflow rate are usually fixed, the operational variables that can be
altered include the ethanol concentration at the time the reactor is unloaded, the proportion of broth that
is unloaded, the loading mode and/or rate, and the total concentration of the culture medium—which is
the combination of the ethanol concentration in % v/v and the acidity in % w/v [11–16]. These variables
influence the mean ethanol concentration and acidity in each cycle [8–10], which in turn affect the AAB
concentration and cell activity [17,18]. As a result, the acetification conditions will be more or less
stressful for the bacteria affecting the process (AAB).

Usually, an acetification bioreactor is operated in an automated manner in order to not alter the
spontaneous dynamics of the system. In practice, this allows repeated cycling to be easily and rapidly
achieved [19]. Also, the characteristics of AAB [20–23] make cultivation and selection outside their
typical natural or industrial environment rather difficult. In addition, their complex identification,
behaviour, and interactions, and their potential synergistic effects, require determining their optimum
conditions of operation in an empirical manner.

Notwithstanding the previous difficulties, there is a wealth of technical experience and knowledge
about the most suitable working methods and operating conditions for acetification. The use of
non-segregated non-structured models [24] could be appropriated to model this kind of system;
working with this type of approach allowed us to reach most of the knowledge on this particular
process, which has allowed quantitative relations between operational variables and diverse industrial
objective functions such as productivity to be established [8–10,25–30].

The advent of massive methods of analysis, such as several omic techniques, has considerably
expanded available knowledge about the acetification process at the molecular level, and is bound
to help improve the stability and food safety of the end-product [31]. There is, however, an ongoing
search for more or less structured modelling approaches to relating the variables of the overall process.

Previous modelling studies [7,10,30] led to proposing the use of two serially arranged bioreactors
to optimize the outcome of the acetification process under operationally restricted conditions. Thus,
vinegar production is most often subjected to strict regulations with regards to the properties of the
end-product, which, for example, should contain very little or no ethanol. In practice, however, ethanol
in the acetification medium should never be depleted before the reactor is unloaded since that would
place AAB under extremely stressful conditions (viz., a high acidity and a lack of substrate) and
render them virtually useless in subsequent biomass conversion cycles. As a result, many industrial
acetification plants use additional bioreactors to deplete ethanol present in the vinegar following the
unloading of the production bioreactors.

In this scenario, modelling of the two serial bioreactors system requires the use of an appropriate
experimental design. Previous experience with modelling of the biotransformation stage in the
vinegar production process suggests that black-box models based on second-order generalized
polynomials [7,19,32–34] provide a more accurate depiction of the experimental results than do
existing alternatives, allowing it to describe potential interactions between independent variables
to be considered—and with added advantages like ease of development and statistical validation.
The number of experiments needed for the accurate fitting of a polynomial equation depends on
whether the polynomial is linear or non-linear [35]. In any case, the greater the number of polynomial
terms is (increasing the accuracy of the model), the more experiments will be required to calculate
their coefficients. All testing should be conducted in the framework of an experimental design
using the minimum possible number of runs to identify interactions between variables and allowing
representative equations for the target process to be established as possible.

Based on the previous comments, the main aim of this work was to obtain polynomial models for
several key variables of the two serially arranged bioreactors system and to determine an appropriate
experimental design for gathering the experimental data needed to estimate such models. A fractional
factorial design with central points including the six major operational variables involved on the
acetification process has been used, considering the fulfilment of several restrictions arising from
the operation of the two bioreactors, which required identifying and examining the impact of such
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variables (specifically, establishing their lower and upper limits in the framework of the experimental
design). Once the experiments were conducted, polynomial models of relevant target variables of
the process such as productivity, acetification rate, etc. were fitted using the gathered experimental
data. As far as we know, this thorough study where a detailed analysis considering the constraints for
the operational variables, the so many experiments, as well as the replications carried out for each
experimental set of variables’ values has not been done before; additionally, the modelling approach
for this acetification set-up has not been reported in any other previous work.

2. Materials and Methods

2.1. Operating Mode

A diagram showing the operation of two bioreactors working serially is depicted in Figure 1,
where the process involved the following operations:

1. Once the ethanol concentration in the first reactor was reduced to Eu1, a volume fraction of
culture medium Vu1 was unloaded, whereas the remainder was used as inoculum for the fresh
medium to be loaded in order to replace the unloaded fraction. Immediately before the first
reactor was partially unloaded, the second was completely unloaded in order to receive the
portion withdrawn from the first.

2. Both reactors were loaded with fresh substrate (wine) controlling the ethanol concentrations to
El1 in the first and El2 in the second. This allowed drastic changes in the ethanol and acetic acid
concentrations to be avoided. In fact, intermittently adding appropriate amounts of fresh substrate
allowed a constant concentration of ethanol to be maintained throughout the loading stage.

3. Once loading was finished, both reactors continued to operate until the second was again unloaded
prior to the first.
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Figure 1. The two serial reactors operating in a semi-continuous mode. Figure 1. The two serial reactors operating in a semi-continuous mode.

This scheme allowed the following operational variables to be changed: ethanol concentration at
the time the first reactor was unloaded (Eu1), volume unloaded from the first reactor (Vu1), the ethanol
concentration while the first and second reactor were loaded (El1 and El2, respectively), and the
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temperature in each reactor (T1 and T2, respectively). A total of six operational variables were thus
involved. Although the alcoholic strength of the wine and the airflow rate could also have been used
as variables, the feed wine usually contains 12% (v/v) ethanol, and the airflow rate is usually as high as
possible (especially when productivity is to be maximized). Also, using gas condensers minimized the
sweeping of volatiles.

Except for the temperatures, the working range for the previous variables could not be freely
chosen because each variable was subjected to physical limitations, especially because the serial
operation of the two reactors imposed constraints arising from the mutual relationships between the
variables. This required careful planning of the experimental work in order to define the number of
experiments needed to obtain accurate information with a view to predicting the influence of each
variable on the resulting system behavior. As described in Section 3.1, a fractional factorial design for
this purpose was used [36].

2.2. Experimental Set-Up

Figure 2 shows the two serially arranged bioreactors used to conduct the experiments. The reactors
were two 8 L Acetators from Heinrich Frings GmbH & Co. KG (Rheinbach, Germany) equipped with
self-aspirating turbines in the bottom in order to obtain a dispersion of fine air bubbles. The reactors
were highly efficient in transferring oxygen between the gas phase and the substrate [11]. The ensemble
was interfaced to a computer for automated operation, especially with regards to loading and unloading
of reactors, and monitoring of the process. This resulted in highly reproducible loading and unloading,
and in efficient acquisition of data [6,11,37].
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Figure 2. The experimental set-up for the bioconversion of ethanol into acetic acid.

2.3. Raw Material

The substrate used was white wine from the Montilla–Moriles D.O. (Córdoba, Spain) containing
(11.5 ± 0.5)% (v/v) ethanol and an initial acidity of (0.4 ± 0.1)% (w/v) as acetic acid.

2.4. Microorganisms

The inoculum used was a mixed culture of acetic acid bacteria (AAB) obtained from bioreactors
previously operating in repeated acetification cycles with the same type of wine as the substrate. This is
the usual mode of operation for the vinegar industry.
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2.5. Analytical Methods

The only variable not determined automatically was acidity, which was measured by acid—base
titration with an NaOH solution approximately 0.5 N that was previously standardized with potassium
hydrogen phthalate. The volume and ethanol concentration were measured in a continuous manner
by using an EJA 110 differential pressure probe from Yokogawa Electric Corp. (Tokyo, Japan) and an
Alkosens probe equipped with an Acetomat transducer from Heinrich Frings, respectively.

2.6. Mathematical Methods

2.6.1. Polynomial Models and Fitting Methods

The models used here were based on second-order non-linear polynomial equations of the
following type:

Y = b0 +
n∑

i=1

bi·Xi +
n∑

i = 1
i < j

bi j·Xi·X j +
n∑

i=1

bii·X2
i , (1)

where Y denotes the dependent variable, b0 the independent regression term, bi the coefficients of the
linear (first-order) terms, bi j those of non-linear (interaction) terms, bii those of quadratic terms, Xi the
independent variables, X j the independent variables with i < j, and n the number of independent
variables. The Y variable is the response or output of the polynomial model and X variables are
the inputs.

The equations were fitted by using one of several specific methods along with experimental data
to calculate the previous coefficients. Such methods allow identifying those terms in Equation (1) that
are significant and those that are not. In practice, they solve a least-squares problem by minimizing the
sum of squares of the residuals (prediction errors). Second-order polynomial models can be fitted by
using several methods [38–43]. In this work, the Forward Stepwise Regression method has been used,
which successively incorporates one by one those independent variables that contribute to predicting a
dependent variable from the most to the least predictive. The sequence in which terms are added to
or removed from a polynomial in each step of the process is established according to the F-to-enter,
F-to-remove (reference values set by the modeler for the F-values associated to each term of the model),
R and R2 criteria. Then, the F-statistics also give a measure of the model sensitivity to each term of the
polynomial relating the input variables.

2.6.2. ANalysis Of VAriance (ANOVA)

Before the model equations were fitted, the experimental data to be used for this purpose were
checked for statistical differences by analysis of variance (ANOVA), which compares the means for
two or more data samples in terms of their variances. ANOVA’s null hypothesis is that all means are
identical and the alternative hypothesis that at least one mean will be different from all others [36].
ANOVA is used to identify sources of differences among data samples and to assess whether the
differences among sample media are too large to be assigned to random errors alone [44].

3. Results and Discussion

3.1. Experimental Design

The experimental design that was initially intended to use was a Box-Behnken or Doehlert central
composite factorial design. With two levels per factor, the total number of experiments needed was
2n + 2n + 1, where the first term represents the overall factorial design, the second the central points of
the faces, and the third the central point. The factors (operational variables) used were the ethanol
concentration at the loading stage in the first bioreactor (El1), the ethanol concentration at unloading
time in the first bioreactor (Eu1), the volume unloaded from the first bioreactor into the second one
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(Vu1), the working temperature in the first bioreactor (T1), the ethanol concentration at loading time
in the second bioreactor (El2), and the working temperature in the second bioreactor (T2). A total of
77 different experiments were in theory needed for to model these operational variables. In practice,
however, this would have involved too many runs—probably more than needed to fit the model. Also,
each experiment would have to be replicated many times to obtain reproducible results and lag phases
would be needed each time the operational variables were modified to investigate a new case.

It was therefore necessary to reduce the number of experiments without sacrificing experimental
information. This was accomplished by using a fractional factorial design requiring only 2n−p

experiments, where n is the total number of variables and p the number of those variables obtained
from some interactions of the others. Thus, considering p = 2 (variables T1 and T2) and design
generators I1 = Vu1·Eu1·El1 and I2 = Vu1·Eu1·El2 for a 1/4 fraction design, the experimental setup is
shown in Table 1. Normalized values −1 and +1 have been used for Vu1, Eu1, El1, El2 and columns for
T1, T2 have been obtained using I1, I2 generators, respectively. For example, normalized values for T1

were the product of normalized values of Vu1, Eu1 and El1; similarly, normalized values for T2 were the
product of normalized values of Vu1, Eu1 and El2.

Table 1. Normalized values of the operational variables for the proposed 26−2 fractional factorial
experimental design.

Experiment No. Vu1 Eu1 El1 El2 T1 T2

1 −1 −1 −1 −1 −1 −1
2 +1 −1 −1 −1 +1 +1
3 −1 +1 −1 −1 +1 +1
4 +1 +1 −1 −1 −1 −1
5 −1 −1 +1 −1 +1 −1
6 +1 −1 +1 −1 −1 +1
7 −1 +1 +1 −1 −1 +1
8 +1 +1 +1 −1 +1 −1
9 −1 −1 −1 +1 −1 +1
10 +1 −1 −1 +1 +1 −1
11 −1 +1 −1 +1 +1 −1
12 +1 +1 −1 +1 −1 +1
13 −1 −1 +1 +1 +1 +1
14 +1 −1 +1 +1 −1 −1
15 −1 +1 +1 +1 −1 −1
16 +1 +1 +1 +1 +1 +1

It was thought essential to use more than one central experiment (level 0 of all operational
variables) at different times in order to examine the variance of the response variables. In this work,
we used two central experiments (see Table 2). We would also use far-spaced experiments (levels −2
and +2) symmetrically placed at a distance α from center, α being the fourth root of the number of
fractional factorial design experiments excluding central points (i.e., α =

4√16 = 2). Therefore, the
distance of levels (−2) and (+2) from level (0) was twice that from (0) to (−1) and (+1). This required
adding two experiments per operational variable (see Table 3). In summary, a total of 30 experiments
would be required with the proposed design (i.e., less than one-half those required by a pure factorial
design), with the added advantage that the ranges of operating conditions would be extended to far
extreme values.

Table 2. Normalized values of the operational variables for the central points of the proposed 26−2

experimental design.

Experiment No. Vu1 Eu1 El1 El2 T1 T2

17 0 0 0 0 0 0
18 0 0 0 0 0 0
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Table 3. Normalized values of the operational variables for the extended points of the proposed 26−2

experimental design.

Experiment No. Vu1 Eu1 El1 El2 T1 T2

19 +2 0 0 0 0 0
20 −2 0 0 0 0 0
21 0 +2 0 0 0 0
22 0 −2 0 0 0 0
23 0 0 +2 0 0 0
24 0 0 −2 0 0 0
25 0 0 0 +2 0 0
26 0 0 0 −2 0 0
27 0 0 0 0 +2 0
28 0 0 0 0 −2 0
29 0 0 0 0 0 +2
30 0 0 0 0 0 −2

Because of the serial operation of the two bioreactors, several specific constraints must be
considered for previous variables, since they cannot take certain values in practice:

Constraints on El1 :

1. The ethanol concentration of the feed wine would invariably be 12% (v/v).
2. El1 ≥ Eu1 as it would make no sense to have an ethanol concentration at the reactor loading stage

lower than that at unloading time.
3. El1 must be less than the maximum ethanol concentration in the first bioreactor (El1)max at any

time. The latter concentration depends on Eu1, Vu1 and the ethanol concentration of the feed
wine, and can be calculated from the following mass balance:

(El1)max =
(8−Vu1)·Eu1 + Vu1·12

8
, (2)

Constraints on Eu1:

1. Eu1 must be greater than 1% (v/v) in order to prevent ethanol depletion from happening too early
in the first bioreactor—the second bioreactor was used for this purpose. Also, too low a value
would slow down acetification and decrease productivity as a result [15].

2. Eu1 must not be too high. Otherwise, ethanol not consumed in the first bioreactor would have
to be used in the second and the probability of complete depletion before unloading would be
diminished. Also, ethanol concentrations higher than 5–6% (v/v) could detract from microbial
activity [15,45]. Therefore, Eu1 must not exceed 5% (v/v).

3. Eu1 < (El1)max (Equation (2)).

Constraints on Vu1:
This variable must range from 1 to 7 L if the self-aspirating turbine with which the bioreactors

were equipped is to operate properly. The turbine was used to feed oxygen to the microorganisms and
help homogenize the culture medium.

Constraints on T1 and T2:
The values of these variables must be compatible with the activity of acetic acid bacteria (AAB),

which are the microorganisms affecting the process. The optimum temperature for AAB to oxidize
ethanol into acetic acid is 25–35 ◦C. Because AAB activity drops outside this range [46,47], temperatures
from 26 to 34 ◦C have been used here.

Constraints on El2:

1. The ethanol concentration in the feed wine is typically 12% (v/v).



Appl. Sci. 2020, 10, 9064 8 of 23

2. El2 must be less than the maximum ethanol concentration in the medium of the second bioreactor
at any time. Such a concentration depends on Eu1, Vu1 and the ethanol concentration of feed
wine, and can be easily obtained from a simple mass balance:

(El2)max =
Vu1·Eu1 + (8−Vu1)·12

8
, (3)

Based on the previous constraints, Eu1, Vu1, El1 and El2 are mutually related; also, feasible Eu1 and
Vu1 values span the range 1–5% (v/v) and 1–7 L, respectively. However, not all potential combinations
of the values of the operational variables can be used in practice. Thus, the initial volume of the second
bioreactor—unloaded from the first—Vu1, together with Eu1, imposes some additional constraints on
El1 and El2. As a result, the experimental design is subjected to the following constraints:

• Based on constraint 2 on El1 and the experiments of Table 1, El1 level (−1) must not be less than
Eu1 level (+1). Likewise, El1 level (−2) must be greater than or at least equal to Eu1 level (0)
(see Table 3).

• Based on Tables 2 and 3, El1 level (0) can only be used in conjunction with Eu1 levels (0), (−2) and
(+2). Therefore, El1 level (0) must be greater than or equal to Eu1 level (+2), unless no experiments
under the extended conditions are to be conducted—in which case El1 level (0) must be greater
than or equal to Eu1 level (0).

• Based on Equation (2), El1 level (+1) must be less than the smallest (El1)max value. Also, based on
Equation (3), El2 level (+1) must be less than the smallest (El2)max value. Such values are obtained
by using all possible combinations of levels (−1) and (+1) of Vu1 and Eu1 (see Table 1).

• El1 and El2 level (+2) must be less than the smallest value of (El1)max (Equation (2)) and (El2)max
(Equation (3)), respectively, as obtained by using level (0) of Vu1 and Eu1 (see Table 3).

• El1 and El2 level (0) must be less than the smallest values of (El1)max (Equation (2)) and (El2)max
(Equation (3)), respectively, as obtained by using all possible combinations of levels (0), (−2) and
(+2) of Vu1 and Eu1 (see Tables 2 and 3).

Based on the foregoing, the constraints on El1 and El2 can be summarized as follows:
Constraints on El1:

• Level (+1) must be less than the smallest (El1)max value (Equation (2)) when Vu1 and Eu1 levels
(−1) and (+1) are to be used; also, level (−1) must be greater than or equal to Eu1 level (+1).

• Level (0) must be less than the smallest (El1)max value (Equation (2)) when Vu1 and Eu1 levels (0),
(−2) and (+2) are to be used, but greater than or equal to Eu1 level (+2).

• Level (+2) must be less than (El1)max (Equation (2) when Vu1 and Eu1 are used at level (0) and
level (−2) must be greater than or equal to Eu1 level (0).

Constraints on El2:

• Level (+1) must be less than the smallest (El2)max value (Equation (3)) when Vu1 and Eu1 levels
(−1) and (+1) are to be used.

• Level (0) must be less than the smallest (El2)max value (Equation (3)) when Vu1 and Eu1 are to be
used at levels (0), (−2) and (+2).

• Level (+2) must be less than (El2)max (Equation (3)) with level (0) of Vu1 and Eu1.

A systematic analysis of all possible combinations of the values of the operational variables with
provision for the above-described constraints was done by using a self-developed script in MATLAB [48]
(see MATLAB file “Get_feasible_combinations.m” in Supplementary Materials). Each combination
corresponded to a complete experimental design, as depicted in Tables 1–3. The software used different
values for level (0) of each variable within a preset range in combination with different values for levels
(−2) and (+2)—levels (−1) and (+1) were calculated automatically in each case. The specific ranges
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considered for level (0) were 1–5% (v/v) for Eu1, El1 and El2; and 1–7 L for Vu1, all in 0.5 steps. A 0.5
step over the range 0.5–5 was used for iteration of levels (−2) and (+2) in each case.

The script initially identified 148611 feasible combinations. Such a large number required
additional constraints to be imposed based on the following practical arguments:

A1. There must be a simultaneous maximum difference between levels (−1) and (+1) in Eu1 and
Vu1 (see Table 1). This constraint expanded the feasible range of operational conditions and allowed
the influence of each variable and mutual relations to be more accurately detected and examined as
a result.

A2. Because in the semi-continuous operation mode it is a common practice to unload at least half
of the working volume from the first bioreactor, Vu1 level (−1) must be greater than or equal to 4 L.

A3. Because the initial ethanol concentration in the second bioreactor must not be too high in
order to facilitate appropriate performance (see constraint 2 on Eu1), Eu1 level (+2) must be less than
5% (v/v).

Introducing these additional constraints in the MATLAB script reduced the number of feasible
combinations to 310 (see tab “Pass 1” in Excel file “Results.xlsx” in Supplementary Materials).
Subsequently, in line with the previous argument A1, the MATLAB script was used with those
combinations maximizing the difference between El1 levels (−2) and (+2), which further reduced the
number of combinations to 31 (see tab “Pass 2” in Excel file “Results.xlsx” in Supplementary Materials).
Finally, selecting the combinations resulting in the greatest differences between El2 levels (−2) and (+2)
reduced the number of choices to 4 (see Table 4).

Table 4. The last four feasible combinations of the operational variables values and the selected
combination (in grey).

Variable Level Combination 1 Combination 2 Combination 3 Combination 4

Vu1 (L)

−2 3.50 3.50 3.50 4.00
+2 6.50 6.50 6.50 7.00
−1 4.25 4.25 4.25 4.75
+1 5.75 5.75 5.75 6.25
0 5.00 5.00 5.00 5.50

Eu1 [% (v/v)]

−2 1.00 1.00 1.00 1.00
+2 5.00 5.00 5.00 5.00
−1 2.00 2.00 2.00 2.00
+1 4.00 4.00 4.00 4.00
0 3.00 3.00 3.00 3.00

El1 [% (v/v)]

−2 3.00 3.00 3.00 3.00
+2 7.00 7.00 7.00 7.00
−1 4.00 4.00 4.00 4.00
+1 6.00 6.00 6.00 6.00
0 5.00 5.00 5.00 5.00

El2 [% (v/v)]

−2 1.00 1.50 1.00 1.00
+2 5.00 5.50 6.00 5.00
−1 2.00 2.50 2.25 2.00
+1 4.00 4.50 4.75 4.00
0 3.00 3.50 3.50 3.00

On the other hand, too low an El2 value would slow down the process exceedingly at the loading
stage. This fact allows the combinations involving the lowest El2 value at level (−2) (viz., 1, 3 and
4 in Table 4) to be discarded, thus leaving a single one which fulfils all constraints imposed (viz.,
combination 2 in Table 4). Tables 5–7 show the set of experiments corresponding to such a combination
as established according to the 26−2 experimental design previously described by using an identical
range for both working temperatures (T1 and T2): 26–34 ◦C.
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As recommended when using experimental design methodology, only the experiments in Tables 5
and 6 would initially be performed (in random order). If the results were not conclusive enough,
then the experiments in Table 7 would also be needed.

Table 5. Experiments performed according to the proposed 26−2 fractional factorial design.

Experiment No. Vu1 (L) Eu1 [% (v/v)] El1 [% (v/v)] El2 [% (v/v)] T1 (◦C) T2 (◦C)

1 4.25 2.00 4.00 2.50 28 28
2 5.75 2.00 4.00 2.50 32 32
3 4.25 4.00 4.00 2.50 32 32
4 5.75 4.00 4.00 2.50 28 28

5 4.25 2.00 6.00 2.50 32 28
6 5.75 2.00 6.00 2.50 28 32
7 4.25 4.00 6.00 2.50 28 32
8 5.75 4.00 6.00 2.50 32 28

9 4.25 2.00 4.00 4.50 28 32
10 5.75 2.00 4.00 4.50 32 28
11 4.25 4.00 4.00 4.50 32 28
12 5.75 4.00 4.00 4.50 28 32

13 4.25 2.00 6.00 4.50 32 32
14 5.75 2.00 6.00 4.50 28 28
15 4.25 4.00 6.00 4.50 28 28
16 5.75 4.00 6.00 4.50 32 32

Table 6. Experiments for the central points of the proposed 26−2 fractional factorial design.

Experiment No. Vu1 (L) Eu1 [% (v/v)] El1 [% (v/v)] El2 [% (v/v)] T1 (◦C) T2 (◦C)

17 5.00 3.00 5.00 3.50 30 30
18 5.00 3.00 5.00 3.50 30 30

Table 7. Extended experiments for the proposed 26−2 fractional factorial design.

Experiment No. Vu1 (L) Eu1 [% (v/v)] El1 [% (v/v)] El2 [% (v/v)] T1 (◦C) T2 (◦C)

19 6.50 3.00 5.00 3.50 30 30
20 3.50 3.00 5.00 3.50 30 30
21 5.00 5.00 5.00 3.50 30 30
22 5.00 1.00 5.00 3.50 30 30

23 5.00 3.00 7.00 3.50 30 30
24 5.00 3.00 3.00 3.50 30 30
25 5.00 3.00 5.00 5.50 30 30
26 5.00 3.00 5.00 1.50 30 30

27 5.00 3.00 5.00 3.50 34 30
28 5.00 3.00 5.00 3.50 26 30
29 5.00 3.00 5.00 3.50 30 34
30 5.00 3.00 5.00 3.50 30 26

3.2. Experimental Results

Conducting the 18 experiments of Tables 5 and 6 (compiled in Table S2.1 in file “S2.docx” in
Supplementary Materials) required changing the operating conditions between experiments, so cycles
had to be repeated until steady conditions were reached with each new set of operation variables;
after that, the experiments were replicated to obtain statistically valid results. Table 8 shows the total
number of cycles and that of useful cycles for each experiment. As can be seen, the minimum number
of cycles used to calculate the target variables was 5—some experiments required nearly 20, however.
The fact that the total number of cycles differed markedly among experiments was a result of being
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performed in random order. Therefore, depending on the differences in the operating conditions
between consecutive experiments, either a lower or a greater number of cycles may be required for the
system to become stable again as a result.

Table 8. Experimental cycles.

Experiment No.
Number of Cycles

Total Useful

1 25 5
2 19 8
3 15 10
4 7 6
5 19 7
6 16 7
7 14 9
8 9 5
9 17 13
10 13 5
11 15 13
12 15 10
13 40 12
14 15 8
15 25 8
16 20 8
17 22 9
18 26 19

By way of example, Figure 3 shows the results in terms of ethanol, acidity, volume, and total and
viable cells in the first reactor in Experiment 1. Each result was the mean of 5 replicate cycles with its
standard deviation (see Table 8). Similarly, Figure 4 shows the ethanol, acidity, and volume results for
the second reactor as the means for 5 replicated runs and their standard deviations. The previous results
were used to obtain the values of Table 9. The procedure used to calculate the values of non-measurable
variables (e.g., mean rate of acetic acid formation, total acetic acid production and mean volume) is
described in file “S1.docx” in Supplementary Materials. Figure S1.1 in such file shows the typical time
course of ethanol concentration, acidity and volume in the first bioreactor and Figures S1.2–S1.3 show
the time course of such variables in the second bioreactor when a fast loading or pre-depletion step
exists, respectively. Also, the results obtained in the 18 experiments of Tables 5 and 6 are compiled in
file “S2.docx” in Supplementary Materials (Figures S2.1 to S2.36 and Tables S2.2 to S2.19). On the other
hand, Tables 10 and 11 show the experimental values of the key variables intended to be modelled
using polynomial models relating them to the operational variables.

3.3. Obtained Polynomial Models

Below are stated the polynomial models (or response surfaces) corresponding to the target
variables. By way of example, the specific procedure used to estimate the mean overall rate of acetic
acid formation in the proposed two-bioreactor system, (rA)global est, is detailed below, and that for each
of the other variables in file “S3.docx” in the Supplementary Materials.

3.3.1. Mean Overall Rate of Acetic Acid Formation

ANOVA exposed the presence of significant differences at a 99.9% confidence level in the mean
overall rate of acetic acid formation, (rA)global, among experiments. In the absence of such differences,
(rA)global would be independent of the operational variables due to experimental error. Therefore,
the 18 experiments of Tables 5 and 6 were representative enough of the operating conditions, so the
other 12 potentially required (experiments in Table 7) were unnecessary. As shown below, the ANOVA
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led to identical conclusions for all target variables. Accordingly, the experimental (rA)global data in
Table 10 were fitted to a second-order polynomial by Forward Stepwise Regression, as described in
Section 2.6.1, using the software SigmaStat 2.0 [49]. Although 27 terms (viz., the 6 individual operational
variables and their 21 possible interactions) were initially considered, the maximum possible number
was that of the experiments performed: 18.

Each fitted polynomial was checked for significant differences in the regressions between each
step and the previous one by the effect of the addition or removal of terms. ANOVA revealed the
presence of significant differences at a 95% confidence level in all cases and, therefore, the results are
worth no additional detailed description here.

The fitting steps using the Forward Stepwise Regression method (Section 2.6.1) are detailed in
Section S3.1 in file “S3.docx” in Supplementary Materials (Tables S3.1 to S3.14 show intermediate
results). The final model was that of Equation (4) and allowed the mean overall rate of acetic acid
formation to be estimated with an error of 0.01 g acetic acid·(100 mL·h)−1. Such a model, however, only
held over the operating ranges shown in Tables 5 and 6 for each variable.

(rA)global est = −0.51 + 0.43·Eu1 − 0.0654·E2
u1

−0.00456·El2·Vu1 − 0.00468·Eu1·El1
+0.000672·T1·El1 + 0.000839·El2·T1

, (4)

Based on statistical significance, not all operational variables in Equation (4) had a direct influence
on (rA)global (in fact, only Eu1 had a direct impact) and this variable was independent of T2. Also,
only some of the interaction terms influenced (rA)global.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 24 
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Table 9. The results obtained in Experiment 1.

Variable Value

Total cycle duration (h) 39.7 ± 0.8
Duration of the fast loading stage in the first bioreactor (h) 0.9 ± 0.1
Duration of the slow loading stage in the first bioreactor (h) 28.3 ± 0.6
Duration of the depletion stage in the first bioreactor (h) 10.5 ± 1.0
Duration of the fast loading stage in the second bioreactor (h) 0.2 ± 0.1
Duration of the slow loading stage in the second bioreactor (h) 39.4 ± 1.2
Time fraction of the fast loading stage in the first bioreactor over the cycle duration 0.023 ± 0.003
Time fraction of the slow loading stage in the first bioreactor over the cycle duration 0.713 ± 0.021
Time fraction of the depletion stage in the first bioreactor over the cycle duration 0.264 ± 0.026
Time fraction of the fast loading stage in the second bioreactor over the cycle duration 0.006 ± 0.001
Time fraction of the slow loading stage in the second bioreactor over the cycle duration 0.994 ± 0.043
Mean volume in the fast loading stage in the first bioreactor (L) 4.21 ± 0.05
Mean volume in the slow loading stage in the first bioreactor (L) 6.35 ± 0.05
Mean volume in the depletion stage in the first bioreactor (L) 8.02 ± 0.05
Mean volume in the first bioreactor (L) 6.74 ± 0.25
Mean volume in the fast loading stage in the second bioreactor (L) 4.38 ± 0.05
Mean volume in the slow loading stage in the second bioreactor (L) 5.86 ± 0.05
Mean volume in the second bioreactor (L) 5.85 ± 0.25
Mean overall volume during a cycle in the two bioreactors as a whole (L) 12.59 ± 0.35
Mean volume of fermentation medium unloaded from the second reactor (L) 7.2 ± 0.05
Final ethanol concentration at the time the second bioreactor was unloaded (% v/v) 2.3 ± 0.2
Mean ethanol concentration in the first bioreactor (% v/v) 3.7 ± 0.1
Mean ethanol concentration in the second bioreactor (% v/v) 3.9 ± 0.1
Final acetic acid concentration at the time the first bioreactor was unloaded (% w/v) 9.4 ± 0.2
Final acetic acid concentration at the time the second bioreactor was unloaded (% w/v) 9.2 ± 0.2
Mean acetic acid concentration in the first bioreactor (% w/v) 7.8 ± 0.1
Mean acetic acid concentration in the second bioreactor (% w/v) 7.6 ± 0.1
Mean rate of acetic acid formation in the first bioreactor (% w/v·h−1) 0.15 ± 0.01
Mean rate of acetic acid formation in second bioreactor (% w/v·h−1) 0.11 ± 0.01
Mean overall rate of acetic acid formation in the two bioreactors as a whole (% w/v·h−1) 0.13 ± 0.01
Total acetic acid production in the first bioreactor (g acetic acid·h−1) 10.1 ± 0.3
Total acetic acid production in the second bioreactor (g acetic acid·h−1) 6.6 ± 0.5
Total acetic acid production in the two bioreactors as a whole (g acetic acid·h−1) 16.7 ± 0.5
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Table 10. Experimental values of selected variables: (rA)global is the mean overall rate of acetic acid
formation in the two-bioreactor system, Pm the total acetic acid production in the two-bioreactor
system, Eu2 the ethanol concentration at the time the second bioreactor was unloaded, Vu2 the volume
unloaded from the second reactor, tcycle the duration of a cycle, and Vm the mean overall volume in the
two-bioreactor system during a cycle.

Exp. No.
(rA)global, g Acetic
Acid (100 mL·h)−1

Pm, g Acetic
Acid·h−1 Eu2, %(v/v) Vu2, L tcycle, h Vm, L

1 0.13 ± 0.01 16.7 ± 0.5 2.3 ± 0.2 7.20 ± 0.05 39.7 ± 0.8 12.59 ± 0.35
2 0.13 ± 0.01 17.2 ± 0.5 1.2 ± 0.2 8.00 ± 0.05 48 ± 0.9 12.94 ± 0.29
3 0.19 ± 0.01 19.5 ± 0.6 2.3 ± 0.2 4.40 ± 0.05 20.8 ± 0.5 10.19 ± 0.36
4 0.16 ± 0.01 19.7 ± 0.6 0.0 ± 0.2 8.00 ± 0.05 46.8 ± 1.2 12.15 ± 0.31
5 0.18 ± 0.01 24.6 ± 0.8 2.5 ± 0.2 7.80 ± 0.05 28.5 ± 0.7 13.74 ± 0.36
6 0.14 ± 0.01 20.8 ± 0.5 0.0 ± 0.2 8.00 ± 0.05 44.3 ± 0.6 14.58 ± 0.27
7 0.18 ± 0.01 20.9 ± 0.8 2.5 ± 0.2 5.30 ± 0.05 22.8 ± 0.7 11.65 ± 0.37
8 0.18 ± 0.01 23.9 ± 0.5 0.0 ± 0.2 8.00 ± 0.05 38.5 ± 0.5 13.38 ± 0.32
9 0.14 ± 0.01 20.1 ± 0.6 1.5 ± 0.2 7.98 ± 0.05 39.7 ± 0.9 14.02 ± 0.33

10 0.14 ± 0.01 19.6 ± 0.4 0.0 ± 0.2 8.00 ± 0.05 47.3 ± 0.6 13.96 ± 0.23
11 0.21 ± 0.01 24.4 ± 1.0 4.5 ± 0.2 7.00 ± 0.05 20.1 ± 0.6 11.65 ± 0.49
12 0.16 ± 0.01 20.1 ± 0.6 0.0 ± 0.2 8.00 ± 0.05 45.7 ± 1.2 12.98 ± 0.37
13 0.19 ± 0.01 28.6 ± 0.9 0.9 ± 0.2 8.00 ± 0.05 29.6 ± 0.8 14.78 ± 0.46
14 0.13 ± 0.01 19.7 ± 0.6 0.0 ± 0.2 8.00 ± 0.05 46.8 ± 1.1 14.88 ± 0.39
15 0.18 ± 0.01 22.1 ± 0.9 4.5 ± 0.2 6.40 ± 0.05 20.3 ± 0.6 12.43 ± 0.41
16 0.17 ± 0.01 24.0 ± 0.6 0.0 ± 0.2 8.00 ± 0.05 38.3 ± 0.6 13.74 ± 0.30
17 0.23 ± 0.01 31.4 ± 1.0 0.4 ± 0.2 8.00 ± 0.05 28.3 ± 0.7 13.93 ± 0.35
18 0.22 ± 0.01 30.8 ± 1.0 0.5 ± 0.2 8.00 ± 0.05 28.6 ± 0.8 13.96 ± 0.42

Table 11. Experimental values of selected variables. EtOHm1 is the mean ethanol concentration in the
first bioreactor during a cycle, EtOHm2 the mean ethanol concentration in the second bioreactor during
a cycle, HAcm1 the mean acetic acid concentration in the first bioreactor during a cycle, and HAcm2 the
mean acetic acid concentration in the second bioreactor during a cycle.

Exp. No. EtOHm1, % (v/v) EtOHm2, % (v/v) HAcm1, % (w/v) HAcm2, % (w/v)

1 3.7 ± 0.1 3.9 ± 0.1 7.8 ± 0.1 7.6 ± 0.1
2 3.8 ± 0.1 2.3 ± 0.1 7.7 ± 0.1 9.2 ± 0.1
3 4.0 ± 0.1 2.9 ± 0.2 7.5 ± 0.1 8.6 ± 0.2
4 4.0 ± 0.1 2.2 ± 0.2 7.5 ± 0.1 9.3 ± 0.2
5 4.4 ± 0.4 2.5 ± 0.1 7.1 ± 0.4 9.0 ± 0.1
6 4.7 ± 0.3 1.9 ± 0.2 6.8 ± 0.3 9.6 ± 0.2
7 5.5 ± 0.2 2.7 ± 0.1 6.0 ± 0.2 8.8 ± 0.1
8 5.6 ± 0.2 2.1 ± 0.2 5.9 ± 0.2 9.4 ± 0.2
9 3.6 ± 0.1 2.3 ± 0.1 7.9 ± 0.1 9.2 ± 0.1

10 3.7 ± 0.1 2.6 ± 0.3 7.8 ± 0.1 8.9 ± 0.3
11 4.0 ± 0.1 4.5 ± 0.1 7.5 ± 0.1 7.0 ± 0.1
12 4.0 ± 0.1 2.9 ± 0.4 7.5 ± 0.1 8.6 ± 0.4
13 4.5 ± 0.4 3.7 ± 0.3 7.0 ± 0.4 7.8 ± 0.3
14 4.8 ± 0.3 3.0 ± 0.4 6.7 ± 0.3 8.5 ± 0.4
15 5.5 ± 0.2 4.5 ± 0.2 6.0 ± 0.2 7.0 ± 0.2
16 5.7 ± 0.1 3.2 ± 0.4 5.8 ± 0.1 8.2 ± 0.4
17 4.7 ± 0.2 2.9 ± 0.3 6.8 ± 0.2 8.6 ± 0.3
18 4.7 ± 0.2 2.9 ± 0.2 6.8 ± 0.2 8.6 ± 0.2

A comparison of the (rA)global predictions with the experimental values (Figure 5, which is the
same as Figure S3.1 in in file “S3.docx” in Supplementary Materials) reveals that the two coincided
exactly in 10 of the 18 experiments and differed only very slightly in the other 8. Also, all predictions
fell within the 95% prediction interval.
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Figure 6. Residuals of the fitting of (rA)global est for each experiment.

The process used with the other estimated variables is described in file “S3.docx” in Supplementary
Materials. Their polynomial models are discussed below.

3.3.2. Total Acetic Acid Production

This variable, Pm, was also estimated from the experimental data of Table 10. ANOVA revealed
statistically significant differences at a 99.9% confidence level between experiments and, hence,
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Pm was dependent on the operational variables. Therefore, the experimental data of Pm were fitted
to a second-order polynomial by using Forward Stepwise Regression to construct the model of
Equation (5), which estimated this variable with an error of 0.7 g acetic acid·h−1. The fitting steps
are detailed in Section S3.2 in file “S3.docx” in Supplementary Materials (Tables S3.15 to S3.28 show
intermediate results)

Pm est = −243.705 + 18.324·Vu1 + 72.736·El1 + 21.525·Eu1

−9.708·E2
l1 − 1.102·Eu1·Vu1 − 0.534·T1·Vu1

+0.742·T1·El1 − 0.416·El2·El1 + 0.175·T2·El1
−0.12·T1·Eu1 − 0.399·T2·Eu1 + 0.101·T2·El2

, (5)

As can be seen, Pm est depends directly on Vu1, Eu1 and El1, as well as on various interaction terms.
A comparison of Pm est and its experimental counterpart (Figure S3.3 in file “S3.docx” in Supplementary
Materials) revealed the presence of scarcely significant differences. Also, the residuals of the fitting
had a near-zero mean in most experiments and were normally distributed in all (see Figure S3.4 in file
“S3.docx” in Supplementary Materials).

3.3.3. Final Ethanol Concentration at the Time the Second Reactor Was Unloaded

As with the previous two variables, the ANOVA on Eu2 (Table 10) revealed the presence of
statistically significant differences at a 99.9% confidence level between the predicted and experimental
results. As before, the experimental results were fitted to a second-order polynomial by using Forward
Stepwise Regression. The fitting steps are detailed in Section S3.3 in file “S3.docx” in Supplementary
Materials (Tables S3.29 to S3.41 show intermediate results). The resulting model (Equation (6)) predicted
the ethanol concentration with an error of 0.3% (v/v).

Eu2 est = 14.935− 5.371·Eu1 + 0.988·E2
u1 − 0.0592·El1·Vu1

−0.456·Eu1·Vu1 + 0.0678·Eu1·El1
+0.494·El2·Eu1 − 0.049·T2·El2

, (6)

As can be seen, the variable Eu2 est is directly dependent on Eu1 and on some interaction terms;
however, it is independent of T1.

As with the previous variables, a comparison of Eu2 est and its experimental counterpart (Figure S3.5
in file “S3.docx” in Supplementary Materials) confirmed that the predictions of the model were quite
accurate; also, they fell within the 95% prediction interval except in one case.

Finally, as can be seen from Figure S3.6 in file “S3.docx” in Supplementary Materials, the residuals
had a near-zero mean in most experiments and were normally distributed in all.

3.3.4. Volume of Fermentation Medium Unloaded from the Second Reactor

The ANOVA of the volume unloaded from the second reactor, Vu2, revealed the presence of
statistically significant differences between experiment means at a 99.9% confidence level (see Table 10).

Like the previous variables, Vu2 was fitted by Forward Stepwise Regression. The fitting steps
are detailed in Section S3.4 in file “S3.docx” in Supplementary Materials (Tables S3.42 to S3.53 show
intermediate results). The resulting model (Equation (7)) predicted it with an error of 0.22 L.

Vu2 est = 4.921 + 1.399·El2 − 0.59·E2
u1

+0.665·Eu1·Vu1 − 0.324·El2·Vu1

+0.172·El2·Eu1 − 0.0275·T2·Eu1

, (7)

As can be seen, Vu2 est is independent of El1 and T1. A comparison of Vu2 est and its experimental
counterpart, Vu2, confirmed the goodness of the predictions (see Figure S3.7 in file “S3.docx” in
Supplementary Materials). In fact, all fell within the 95% prediction interval. Also, the residuals had a
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zero or near-zero mean in most experiments and were normally distributed in all (see Figure S3.8 in
file “S3.docx” in Supplementary Materials).

3.3.5. Total Cycle Duration

As in the previous cases, the ANOVA on tcycle revealed the presence of statistically significant
differences at a 99.9% confidence level (see Table 10). Applying Forward Stepwise Regression to the
experimental data provided the model of Equation (8), which predicted tcycle with an error of 2.5 h.
The fitting steps are detailed in Section S3.5 in file “S3.docx” in Supplementary Materials (Tables S3.54
to S3.60 show intermediate results)

tcycle est = 518.591− 156.652·Vu1

−6.474·T1 + 13.556·V2
u1

+1.076·T1·Vu1 − 0.864·Eu1·El1

, (8)

As can be seen, tcycle est is influenced by the variables Vu1, El1, Eu1 and T1, which is logical since the
overall behaviour of the first bioreactor dictates when the second is to be unloaded. A comparison of
tcycle est and its experimental counterpart, tcycle, revealed that all predictions fell within the 95% interval
(see Figure S3.9 in file “S3.docx” in Supplementary Materials). Finally, as with the previous variables,
the residuals had a near-zero mean in most cases and were normally distributed in all (see Figure S3.10
in file “S3.docx” in Supplementary Materials).

3.3.6. Mean Overall Volume in the Two-Bioreactor System

The ANOVA on the experimental data of Vm (Table 10) revealed statistically significant differences
between experiment means at a 99.9% confidence level. The multiple regression model obtained
(Equation (9)) estimated the mean overall volume in each cycle with an error of 0.33 L. The fitting steps
are detailed in Section S3.6 in file “S3.docx” in Supplementary Materials (Tables S3.61 to S3.74 show
intermediate results). Also, as can be seen from the equation, Vm est is independent of T1.

Vm est = 4.306 + 4.739·Eu1 − 0.841·E2
u1

+0.336·Eu1·Vu1 − 0.0127·T2·Vu1

−0.125·El2·El1 + 0.0326·T2·El1
−0.0735·T2·Eu1 + 0.0358·T2·El2

, (9)

As shown by a plot of Vm est against the experimental data Vm (Figure S3.11 in file “S3.docx” in
Supplementary Materials), all predictions fell within the 95% interval, so the degree of fitting was
acceptable. This was further confirmed by the residuals for each experiment (Figure S3.12 in file
“S3.docx” in Supplementary Materials), which had a near-zero mean in virtually all experiments and
were normally distributed.

3.3.7. Mean Ethanol Concentration in the First Bioreactor

The ANOVA of EtOHm1 (Table 11) also exposed statistically significant differences between
experiment means at a 99.9% confidence level. The experimental data were fitted by Forward Stepwise
Regression to construct Equation (10), which reproduced them with an estimation error of 0.2% (v/v).
The fitting steps are detailed in Section S3.7 in file “S3.docx” in Supplementary Materials (Tables S3.75
to S3.81 show intermediate results)

EtOHm1 est = 2.312− 0.0932·E2
u1

+0.0191·El1·Vu1 + 0.175·Eu1·El1
, (10)

As expected, EtOHm1 est is independent of T1, El2 and T2. Comparing EtOHm1 est and its
experimental counterpart EtOHm1 (Figure S3.13 in in file “S3.docx” Supplementary Materials) revealed
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that all predictions of the model fell within the 95% interval. Therefore, the fitting was good, as further
confirmed by the residuals (Figure S3.14 in file “S3.docx” in Supplementary Materials), which had a
near-zero mean in most experiments and were normally distributed.

3.3.8. Mean Ethanol Concentration in the Second Bioreactor

Based on the results of the ANOVA on EtOHm2 (Table 11), there were statistically significant
differences between experiment means at a 99.9% confidence level. Fitting the experimental results by
Forward Stepwise Regression provided the model of Equation (11), which estimated EtOHm2 with an
error of 0.4% (v/v). The fitting steps are detailed in Section S3.8 in file “S3.docx” in Supplementary
Materials (Tables S3.82 to S3.88 show intermediate results)

EtOHm2 est = 4.327− 0.179·Eu1·Vu1

+0.306·El2·Eu1 − 0.0182·T2·El2
, (11)

As can be seen, EtOHm2 est is independent of El1 and T1. A plot of EtOHm2 est against experimental
data EtOHm2 (Figure S3.15 in file “S3.docx” in Supplementary Materials) revealed that the former all fell
within the 95% prediction interval. Also, the residuals (Figure S3.16 in file “S3.docx” in Supplementary
Materials) were all normally distributed and had a near-zero mean in most cases.

3.3.9. Mean Acetic Acid Concentration in the First Bioreactor

Based on the results of the ANOVA on HAcm1 (Table 11), there were statistically significant
differences between experiments at a 99.9% confidence level. Fitting the data provided the model
represented by Equation (12), which predicted the mean acetic acid concentration in the first bioreactor
with an error of 0.2% (w/v). The fitting steps are detailed in Section S3.9 in file “S3.docx” in
Supplementary Materials (Tables S3.89 to S3.95 show intermediate results)

HAcm1 est = 9.188 + 0.0932·E2
u1

−0.0191·El1·Vu1 − 0.175·Eu1·El1
, (12)

As can be seen, HAcm1 est depends on the same variables as EtOHm1 est and is also independent of
T1, El2 and T2—a logical result, since the two variables are mutually related.

A comparison of HAcm1 est and its experimental counterpart HAcm1 (Figure S3.17 in file “S3.docx”
in Supplementary Materials) revealed that the predictions of the model all fell within the 95% interval.
Also, as can be seen from Figure S3.18 in file “S3.docx” in the Supplementary Materials, the residuals
had a near-zero mean in virtually all cases and were normally distributed.

3.3.10. Mean Acetic Acid Concentration in the Second Bioreactor

As with the previous variables, the ANOVA on HAcm2 (Table 11) exposed statistically significant
differences at a 99.9% confidence level in mean acetic acid concentration between experiments.
Equation (13) represents the linear model obtained by fitting the experimental data with the Forward
Stepwise Regression method. The fitting steps are detailed in Section S3.10 in file “S3.docx” in
Supplementary Materials (Tables S3.96 to S3.102 show intermediate results). The model predicted
HAcm2 with an error of 0.4% (w/v).

HAcm2 est = 7.227 + 0.177·Eu1·Vu1

−0.305·El2·Eu1 + 0.0178·T2·El2
, (13)

Similarly to HAcm1 est and EtOHm1 est, HAcm2 est is dependent on the same operational variables
as HAcm2. A comparison of HAcm2 est predictions and experimental data (HAcm2, Figure S3.19 in
file “S3.docx” in Supplementary Materials) revealed that the former invariably fell within the 95%
interval. Also, the residuals (Figure S3.20 in file “S3.docx” in Supplementary Materials) had a near-zero
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mean in most cases and were normally distributed in all. Therefore, the model can be deemed
acceptably accurate.

3.4. Discussion about the Obtained Polynomial Models

Although a black-box model does not allow one to ascertain why some operational variables are
influential whereas others are not, it could be interesting to identify the most influential variables and
their interaction terms. The influence (statistical significance) of each term in a polynomial equation
can be assessed through statistic F, which was used here to decide whether a term was to be included
or excluded. By way of example, Table S3.14 in file “S3.docx” in Supplementary Materials reveals that
the highest F values were those for Eu1 and E2

u1. Therefore, the variable (rA)global est was especially
sensitive to the ethanol concentration at the time the first bioreactor was unloaded—it was directly
influenced by Eu1 and by its quadratic term.

As a rule, the operational variables associated to the first bioreactor were more markedly influential
on most of the dependent variables than were those pertaining to the second. This is unsurprising if
one considers that the first reactor not only contributed to the total acetic acid production but also
supplied the second with the microorganisms which must work under more extreme conditions in
the second bioreactor, since one of the main goals was to deplete ethanol in the medium. Therefore,
the conditions prevailing in the first reactor should allow a high concentration of very active acetic acid
bacteria to be maintained. As stated in the introduction, such conditions are obtained by keeping the
ethanol and acetic acid concentration at not too high levels. It is thus unsurprising that the polynomials
used to estimate (rA)global est and Pm est were so strongly dependent on Eu1 and El1 as the latter two
variables are directly related to acidity in the reaction medium. Vu1 is also highly influential; in fact,
the greater the volume unloaded into the second bioreactor is, the more marked will be the potential
changes in ethanol and acidity levels in the first as a result of the need for a greater volume of fresh
medium for replenishment. As expected, the interaction term Eu1·El1 in the polynomial for EtOHm1 est
is especially important; in fact, changes in Eu1 and El1 must have a strong impact on the mean ethanol
concentration in each transformation cycle in the first bioreactor.

One other interesting inference is that the polynomials for EtOHm1 est and HAcm1 est are
complementary; in fact, they only differ in the independent term and in the signs of the others.
The sum of the independent term coincides with the overall content of the medium [% (v/v) ethanol +

% (w/v) acetic acid]. Since the total concentration remains constant, in the absence of volatile losses
by sweeping—which was the case with our experiments—this result is unsurprising and provides
support for the correlation procedure used to develop the equations. Similar reasoning can be applied
to EtOHm2 est and HAcm2 est.

The variable Ed2 est is of special interest as it is a measure of ethanol depletion in each
biotransformation cycle. One aim of the acetification process may be not to operate at the highest
possible rate but rather to deplete or nearly deplete the substrate in each cycle—in which case Ed2 est
will be zero or near-zero. Again, the variables Eu1, El1 and Vu1 will be especially influential—not
directly, but through their interaction terms—, but so will T2 and El2.

Once the previously described models have been obtained, the operating conditions can only be
optimized, for specific purposes, through a well-designed optimization process using several objective
functions. Hence, additional work would be necessary in this regard.

4. Conclusions

Despite the broad available experience and technical knowledge available on the biotransformation
of ethanol into acetic acid in the vinegar production process, a number of essential questions remain
unanswered. Such is the case, for example, with the nature of the microbiota that effects the process
and with its complex metabolic interactions. In practice, the process continues to require more
or less extensive modelling in order to relate operational variables to specific objective functions.
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Black-box models based on generalized polynomials have proved especially suitable for representing
the behaviour of acetification systems in the form of response surfaces.

In this work, an effective experimental design based on useful data for the unequivocal calculation
of the coefficients of the polynomial equations has been developed. Once the main operational
variables have been identified, their admissible ranges have been established. That information has
been used into an experimental design in order to identify the combinations of values of the operational
variables that would allow the number of experiments maximizing the predictive ability of a model
to be minimized. Another aim carried out in this work was to model key variables related to the
acetification process performed with two serial bioreactors working in the semi-continuous mode by
using quadratic polynomial equations.

The operational variables considered were the ethanol concentration at the time of unloading
(Eu1), unloaded volume (Vu1), ethanol concentration during loading (El1) and operating temperature
(T1) in the first reactor, and the ethanol concentration during loading (El2) and operating temperature
(T2) in the second. As it has been shown, the variation ranges for these variables are subject not only to
physico–chemical constraints, but also to others arising from the fact that the two reactors operate in a
serial mode and from the limited number of combinations allowed for by the experimental design.

As a result, a fractional factorial design with 30 experiments (see Tables 5–7) considering the previous
constraints has been obtained, with it being necessary to perform only 18 of them (see Tables 5 and 6).

With the gathered experimental data, second-order polynomials for several target variables
of interest in terms of the considered operational variables involved in the industrial production
process were developed. Specifically, models for the mean overall rate of acetic acid formation in the
two-bioreactor system [(rA)global], total acetic acid production in the system (Pm), ethanol concentration
at the time the second bioreactor was unloaded (Eu2), the volume unloaded from the second bioreactor
(Vu2), cycle duration (tcycle), the mean overall volume in the two bioreactors during a cycle (Vm),
the mean ethanol concentration in the first bioreactor during a cycle (EtOHm1), the mean ethanol
concentration in the second bioreactor during a cycle (EtOHm2), the mean acetic acid concentration in
the first reactor during a cycle (HAcm1) and the mean acetic acid concentration in the second reactor
during a cycle (HAcm2) were obtained. The experimental results and their estimates were correlated
via Forward Stepwise Regression, which allowed models with high predictive ability and minimal
errors to be obtained. The resulting goodness of fit allowed a set of polynomials to be established that
accurately reproduced the experimental results with only 18 experiments rather than the 30 needed in
theory. Such models should allow us to carry out further optimization studies.

With all models, the variables associated to the first bioreactor were the more influential on the
process. This was particularly so with Eu1, El1 and Vu1, and can be ascribed not only to the fact that
these variables depend on the fermentation conditions in the first bioreactor—and hence contribute to
the total production of acetic acid—but also to the operating conditions in the second—usually more
extreme—being influenced by those under which the first is operated.

Supplementary Materials: The following are available online at http://www.mdpi.com/xxx/s1.
“Get_feasible_combinations.m”: MATLAB script for systematic analysis of feasible combinations of operational
variables. File “Results.xlsx”: Excel file with successively obtained feasible combinations of operational variables.
File “S1.pdf”: Description of the procedure used to determine the non-measurable variables of the process.
File “S2.pdf”: Description of the experimental results. File “S3.pdf”: Detailed description of the procedure used to
obtain the polynomial models of all analysed variables.
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