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1. Introduction 

 

The brain is of a stunning elaborateness. It harbours the largest diversities of cell types 

throughout the body. A total of about 80% of genes in the genome is expressed in the 

nervous system (Lein, Hawrylycz et al. 2007). But even this high degree of diversity is 

easily outshined by the complexity of connections between neuronal cells. In the human 

cerebral cortex about 1 billion synapses per cubic millimetre can be found (Alonso-

Nanclares, Gonzalez-Soriano et al. 2008). 

A major attribute of the brain is its neuronal plasticity, the ability to modulate and remodel 

neuronal circuits depending on external or internal inputs. These adaptive changes are not 

restricted to developmental processes, they also occur in adulthood, building the 

foundation of learning and memory (Martin, Grimwood et al. 2000). One of the most 

fascinating questions concerning the brain is how this concert of assembly and reduction, 

as well as the stabilisation of desired structures, is controlled. 

In 1949 Hebb proposed a model, in which correlated activity dependent alteration of 

synaptic strength and formation of new synapses were underlying this plasticity (Hebb 

1949). Experimental proof for Hebb’s postulate was given in 1973. In the hippocampal 

formation a tetanic stimulation dependent form of synaptic plasticity, the so called long-

term potentiation (LTP), was discovered (Bliss and Lomo 1973). LTP is the enhancement 

of synaptic transmission between a presynaptic and a postsynaptic neuron, triggered by 

brief tetanic pulses. LTP comprises biochemical changes, like recruitment of new 

neurotransmitter receptors (Collingridge, Isaac et al. 2004), and morphological alterations, 

such as enlargement of  synapses or the formation of new ones (Yuste and Bonhoeffer 

2001; Matsuzaki, Honkura et al. 2004; Park, Salgado et al. 2006). 

The morphological changes are mainly investigated at dendritic spines, which form the 

postsynaptic contacts for most excitatory synapses in the central nervous system. Key 

factors for the synaptic remodelling are the cytoskeleton, mainly actin (Matus 1999), and 

adhesion proteins, especially cadherins (Okamura, Tanaka et al. 2004). Local remodelling 

of the actin network respectively stabilisation of actin fibres affect the morphological 

plasticity of dendritic spines, thereby attenuating the transmission efficiency. To put it 

simply, larger spines contain stronger synapses than smaller ones (Harris and Stevens 

1989). LTP induction varies in different cell types and brain regions, it is even age 

dependent (Bliss and Lomo 1973; Matsuoka, Kaba et al. 1997; Rogan, Staubli et al. 1997; 



Introduction 

 2 

Bence and Levelt 2005). One major signalling molecule in LTP is calcium (Lynch, Larson 

et al. 1983). Not surprisingly intracellular calcium levels have a great impact on actin fibre 

stability and the association of different proteins to the actin cytoskeleton (Matus 2000). 

Therefore in order to further enlighten LTP, the investigation of calcium dependent actin-

modifying enzymes is of great interest. Possible players could be transglutaminases.  

Transglutaminases present a family of calcium dependent cross-linking enzymes, 

catalysing a transamidation reaction, which links the carboxamide moiety of a protein-

bound glutamine residue to a primary amine (Sarkar, Clarke et al. 1957; Lorand and 

Graham 2003). If the primary amine is a lysine a ε-(γ-glutamyl)lysine isopeptide bridge is 

formed (Pisano, Finlayson et al. 1968). Therefore, transglutaminases were mainly seen as 

“biological glues” for a long time, based on their ability to cross-link proteins in this way 

(Griffin, Casadio et al. 2002). But in the last years the number of known processes 

involving transglutaminase activity has been broadened significantly (Mehta, Fok et al. 

2006). 

Various transglutaminases have been found in tissues besides their initially known 

locations and by now transglutaminase activity is found to be associated with diverse 

processes like immune response (Novogrodsky, Quittner et al. 1978; Cordella-Miele, 

Miele et al. 1993; Mehta, Fok et al. 2006), apoptosis (Fesus and Szondy 2005) or cancer 

(Mehta 1994; Jiang, Ablin et al. 2009). Besides their in vivo roles, transglutaminases 

become increasingly important in industrial and medical applications like food processing 

(Lantto, Puolanne et al. 2005) or wound healing (Jurgensen, Aeschlimann et al. 1997). 

One recent focus of transglutaminase research is the central nervous system. Different 

transglutaminases have been found in the human brain (Kim, Grant et al. 1999; 

Hadjivassiliou, Aeschlimann et al. 2008). They are involved in developmental processes 

(Tucholski, Kuret et al. 1999; Mahoney, Wilkinson et al. 2000; Tucholski and Johnson 

2003) and synaptic plasticity (Friedrich, Fesus et al. 1991; Festoff, Suo et al. 2001). But 

probably most interestingly is the correlation of heightened transglutaminase activity in the 

brain and neurodegenerative disorders (Jeitner, Pinto et al. 2009). Nevertheless, our 

understanding of transglutaminase activity in the brain is still limited, especially as the 

investigation of transglutaminases in the nervous system has been concentrated on only 

one type, the tissue transglutaminases also called transglutaminase 2. 
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1.1 The transglutaminase family 

 

Transglutaminases can be found throughout the tree of life, in microorganisms (Kanaji, 

Ozaki et al. 1993), plants (Serafini-Fracassini and Del Duca 2008), invertebrates (Singh 

and Mehta 1994) and vertebrates (Sarkar, Clarke et al. 1957; Puszkin and Raghuraman 

1985; Yasueda, Nakanishi et al. 1995; Zhang and Masui 1997). In humans there are nine 

known members of the transglutaminase family, the transglutaminases 1 to 7, the factor 

XIIIa and the erythrocyte band 4.2 (Fig. 1). All members go back to a common ancestor 

(Grenard, Bates et al. 2001), possessing a high degree of structural homology.  

Transglutaminase 1 is also named keratinocyte transglutaminase based on its first 

discovered location. It is expressed in terminal differentiating keratinocytes in the granular 

layer of the skin (Thacher 1989) and in cultured keratinocytes under differentiating 

conditions, like heightened calcium levels (Liew and Yamanishi 1992; Yada, Polakowska 

et al. 1993). The role of this enzyme in the skin is well studied. Transglutaminase 1 

participates in the formation of the cornified cell envelope (CE), a ~15 nm thick structure 

around the cell membrane of dead corneocytes (terminal differentiated keratinocytes) in 

the cornified layer of the skin (Nemes and Steinert 1999). The CE consists of a 10 nm thick 

protein envelope (PE), made of cross-linked structural proteins (Rice and Green 1977), and 

a 5 nm thick lipid envelope (LE) linking the protein envelope to intercellular lipids. The 

CE provides mechanical stability and water impermeability to the outer layer of the skin. 

Transglutaminase 1 plays a critical role in assembling the PE (Candi, Melino et al. 1995; 

Candi, Tarcsa et al. 1999) and in the cross-linking of ceramides of the LE to proteins of the 

PE (Nemes, Marekov et al. 1999). Mutations in the transglutaminase 1 gene are linked 

with the severe disease of lamellar ichthyosis, leading to scaling of the skin and diminished 

skin barrier function (Russell, DiGiovanna et al. 1994). A transglutaminase 1 knock-out 

mouse model dies shortly after birth due to fatal water loss, based on a dysfunction in CE 

assembly (Matsuki, Yamashita et al. 1998). 

Beside its localisation in the skin, transglutaminase 1 can be found in other epithelial 

tissues (Hiiragi, Sasaki et al. 1999; Martinet, Bonnard et al. 2003) and some parts of the 

vascular endothelium (Baumgartner, Golenhofen et al. 2004), where it is associated with 

intercellular junctions, most likely stabilising them by cross-linking activity (Baumgartner 

and Weth 2007).  
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Fig. 1.1: Evolutionary distances between the members of the transglutaminase family. The 

evolutionary distances between the cDNA sequences of all nine human transglutaminases were 

calculated using MEGA 4.1 (www.megasoftware.net). The numbers at the joints are bootstrap 

values. 

 

Transglutaminase 2, also named tissue transglutaminase, was the first enzyme discovered 

with transglutaminase activity (Sarkar, Clarke et al. 1957). It is the best investigated family 

member and expressed throughout the body. Besides its transamidating activity, it can also 

bind and hydrolyse guanosine triphosphate (GTP) (Nakaoka, Perez et al. 1994). 

Transglutaminase 2 is mainly an intracellular protein, localised in the cytosol. A small 

portion can also be found in the nucleus (Lesort, Attanavanich et al. 1998). Here it can 

modify histones (Ballestar, Abad et al. 1996) and transcription factors (Tatsukawa, Fukaya 

et al. 2009). Additionally transglutaminase 2 can partly be found extracellularly (Martinez, 

Chalupowicz et al. 1994). Given that transglutaminase 2 lacks a leader sequence, the 

enzyme is not secreted over the normal endoplasmatic reticulum/golgi pathway. Currently 

the export mechanism is still unknown. Extracellular transglutaminase 2 is mostly 

associated to membrane-proteins, primarily integrins (Akimov, Krylov et al. 2000).  

The diverse localisations of transglutaminase 2 give an idea of the manifold functions this 

enzyme has. Transglutaminase 2 shows pro- as well as antiapoptotic properties (Fesus and 

Szondy 2005), depending on its localisation and activity. It plays a role in cell-matrix 

interactions (Zemskov, Janiak et al. 2006), is involved in signalling processes (Nakaoka, 

Perez et al. 1994; Kojima, Inui et al. 1997), inflammation (Lee, Kim et al. 2004) and can 

cross-link various cytoskeletal proteins, including actin (Nemes, Adany et al. 1997). 

Nevertheless, far more target proteins than functions for transglutaminase 2 are known. 

Additionally reports suggest that transglutaminase 2 can also act as a protein disulphide 

isomerase (Hasegawa, Suwa et al. 2003) and has an intrinsic kinase activity (Mishra and 

Murphy 2004). 
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Tranglutaminase 3 is expressed throughout the epidermis (Chung and Folk 1972; Ogawa 

and Goldsmith 1976; Tarcsa, Marekov et al. 1997). It is involved in the CE formation 

(Candi, Tarcsa et al. 1999) and it hardens the inner root sheath in hair follicles (Chung and 

Folk 1972; Tarcsa, Marekov et al. 1997). 

In humans transglutaminase 4 is mainly expressed in the prostate (Dubbink, Verkaik et al. 

1996). Its function is relatively unclear, but prostate cancer cells overexpressing 

transglutaminase 4 are more readily adhering to endothelial cells, resulting in a higher 

invasiveness (Jiang, Ablin et al. 2009). In rodents transglutaminase 4 is involved in the 

formation of the copulatory plug (Williams-Ashman 1984). 

Transglutaminase 5, like transglutaminase 1 and 3, can be found in the skin (Candi, Oddi et 

al. 2001), where it seems to be important for the adhesion between the granular and 

cornified layer (Cassidy, van Steensel et al. 2005). 

Transglutaminase 6 and 7 are largely uncharacterised (Grenard, Bates et al. 2001). 

The enzymatic active A subunit of the blood clotting factor XIII, possesses 

transglutaminase activity and can cross-link fibrin (Lorand, Urayama et al. 1966), leading 

to blood clotting (Lorand 2001). 

The erythrocyte band 4.2 is an enzymatic inactive member of the family and functions as a 

structural protein in membranes. In red blood cells it links CD47 to the cytoskeleton 

(Mouro-Chanteloup, Delaunay et al. 2003). 

 

 

1.2 Structure and catalytic activity of transglutaminases 

 

Typically transglutaminases consist of four domains, an N-terminal β-sandwich domain, a 

catalytic core and two C-terminal β-barrel domains (Yee, Pedersen et al. 1994; Liu, 

Cerione et al. 2002; Ahvazi and Steinert 2003). The core domain includes the reaction 

centre, comprising a catalytic triad of a cysteine, histidine and aspartate (Pedersen, Yee et 

al. 1994). The cysteine residue can attack the target glutamate, thereby forming a thiol-acyl 

enzyme intermediate, which is again attacked by a nucleophilic substrate (Folk 1969). 

Possible nucleophiles are a protein-bound lysine, a small primary amine, water or, at least 

in transglutaminase 1, a ω-hydroxy ceramide (see Fig. 2 for reaction mechanisms). 

Additionally a polyamine can be linked to the glutamine and in a second step another 

amino group of the polyamine is linked to a second glutamine, forming a cross-link 
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between two glutamines in a two step reaction (Martinet, Beninati et al. 1990). The 

transglutaminase reaction is relatively slow (Kim, Kim et al. 1994), with about one 

reaction cycle every three to four seconds. The substrate specificity is based mainly upon 

the glutamate residue (Coussons, Price et al. 1992). The specificity of different 

transglutaminases shows overlapping substrate spectra, but even at the same protein, it 

occurs that different transglutaminases target different glutamines (Hitomi, Horio et al. 

2001).  

Transglutaminases need high calcium levels, in the double digit µM range, to become fully 

active (Candi, Paradisi et al. 2004). The binding of three calcium ions leads to a 

conformational change in the protein, opening a pore to the catalytic core (Ahvazi and 

Steinert 2003), so that the enzyme becomes active. In the cytosol the transamidating 

activity is presumably blocked most of the time, whereas extracellular transglutaminases 

should always be active.  

Besides calcium, at least transglutaminase 2 and 5 are able to bind and hydrolyse GTP 

(Achyuthan and Greenberg 1987; Candi, Paradisi et al. 2004). GTP blocks the calcium 

binding and, therefore, inhibits the transamidation activity of these transglutaminases 

(Hitomi, Ikura et al. 2000). From transglutaminase 2 it is also known, that it can act as a G-

protein (Nakaoka, Perez et al. 1994) in signalling processes. 

 

Fig. 1.2: Reaction mechanisms of transglutaminases. Transglutaminases target specific glutamine 

residues in proteins, which they bind covalently to a protein-bound lysine (cross-linking) or to  small 

primary (poly)amines (amidation). With water the glutamine can be deaminated to a glutamate 

(deamination). At least transglutaminase 1 can create an ester-bond to ω-hydroxy ceramides 

(esterification).  
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But transglutaminase activity is not only modulated by calcium and GTP concentrations. 

Some transglutaminases (e.g. transglutaminase 1, 3 and factor XIII) must be proteolytically 

processed to become fully active (Lorand, Urayama et al. 1966; Kim, Gorman et al. 1993; 

Kim, Kim et al. 1994). Additionally various factors have been found to influence 

transglutaminase activity and substrate specificity (Lai, Bielawska et al. 1997; Nemes, 

Demeny et al. 2000; Sturniolo, Chandraratna et al. 2005; Antonyak, Li et al. 2009). This 

leads to the assumption, that transglutaminase activation in vivo can be much more 

complicated than expected. 

Transglutaminase 1 is larger in size than other members of the transglutaminase family. 

Most additional sequences lie at the N- respectively C-terminus of the protein (Kim, Idler 

et al. 1991). As a unique feature, it can be bound to membranes, by acylation with myrisitc 

or palmitic acid (Chakravarty and Rice 1989). Therefore, transglutaminase 1 seems to be 

constitutively N-myristilated at a cluster of cysteine residues at the N-terminus of the 

protein. Additionally it can also be S-myristilated, or the myristilation can be exchanged 

with an S-palmytilation. At least in the skin, these changes seem to be dependent on the 

activity state of the enzyme (Steinert, Kim et al. 1996). 

To become fully active, transglutaminase 1 has to be cleaved at two distinct sites by a 

protease, resulting in three fragments: a 10 kDa fragment containing the membrane anchor, 

a 67 kDa fragment with the catalytic core and a 33 kDa fragment spanning both β-barrel 

domains (Kim, Chung et al. 1995; Boeshans, Mueser et al. 2007). The three fragments can 

stay associated, limiting transglutaminase 1 activity to the membrane, or the 67 and 33 kDa 

fragments can detach together from the membrane anchor, resulting in cytosolic 

transglutaminase 1 activity. The activity of the membrane bound 67/33/10 kDa complex is 

about hundred times and that of the soluble 67/33 kDa complex is still about ten times 

higher than the full-length protein (Steinert, Chung et al. 1996). 
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1.3 Transglutaminases in the central nervous system 

 

Besides the previous discussed locations of expression, transglutaminase 1, 2, 3 and 6 can 

also be found in the mammalian brain (Kim, Grant et al. 1999; Hadjivassiliou, 

Aeschlimann et al. 2008). The most abundant family member here is transglutaminase 2, at 

least two third of total transglutaminase activity in the mouse forebrain is based on 

transglutaminase 2 (Bailey, Graham et al. 2004). It was found in neuronal (Mahoney, 

Wilkinson et al. 2000) and glial (Monsonego, Shani et al. 1997) cell types. 

One field of action for transglutaminase 2 seems to be the development of the brain. 

During the brain development the expression and activity of transglutaminase 2 changes 

significantly in various regions (Mahoney, Wilkinson et al. 2000; Citron, Zoloty et al. 

2005). Transglutaminase 2 was found to stabilise tau by transamidation (Tucholski, Kuret 

et al. 1999) and could thereby affect axonal outgrowth. Furthermore, transglutaminase 2 

can stabilise new developing neurites (Mahoney, Wilkinson et al. 2000), indicating its 

potential role in wiring of the brain. Transglutaminase 2 can also regulate cAMP response 

element-binding protein (CREB), giving it a role in neuronal cell differentiation (Tucholski 

and Johnson 2003). 

Much less is known about the other members of the transglutaminase family in the brain. 

Transglutaminase 1 was found mainly in the cerebellum and the corpus callosum, 

transglutaminase 3 in the amygdala (Kim, Grant et al. 1999). Their functions in the central 

nervous system are unknown. 

The best investigated field regarding transglutaminases in the brain are neurodegenerative 

disorders. Elevated transglutaminase expression and/or activity have been found in 

Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD) and 

amyotrophic lateral sclerosis (ALS) (Fujita, Honda et al. 1998; Kim, Grant et al. 1999; 

Lesort, Chun et al. 1999; Junn, Ronchetti et al. 2003). Originally it was proposed that 

transglutaminase activity could facilitate protein aggregation (Kahlem, Terre et al. 1996; 

Junn, Ronchetti et al. 2003), a common characteristic of these disorders. In AD, amyloid 

beta and tau are targets for transglutaminase activity (Dudek and Johnson 1993; Dudek and 

Johnson 1994) and transglutaminase 2 expression and activity colocalises with senile 

plaques and neurofibrillary tangles in AD brains (Wilhelmus, Grunberg et al. 2009). But 

surprisingly in HD mouse models the knock-out of transglutaminase 2 produces even more 

protein aggregates (Lai, Tucker et al. 2004) and it was shown that transglutaminase activity 
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can inhibit the formation of amyloid-type protein aggregations in AD (Konno, Morii et al. 

2005). Meanwhile soluble protein oligomers are seen as the toxic species in these disorders 

(Michalik and Van Broeckhoven 2003) and there are evidences that transglutaminase 

activity could stabilise these soluble oligomers (Konno, Morii et al. 2005). 

An additional connection between neurodegenerative disorders and transglutaminases is 

indicated by a frequently dysregulation in the calcium homeostasis in this diseases 

(Palotas, Penke et al. 2004), probably leading to a pathologic overactivation of 

transglutaminases. 

Nevertheless, the role of transglutaminases in the brain in general is poorly understood and 

their exact function in neurodegenerative diseases has still to be elucidated. 

 

1.4 Aim of the thesis 

 
The aim of this work is to further elucidate the expression pattern of transglutaminases in 

the central nervous system and their activity in neurons, with a special regard to 

transglutaminase 1. Investigations of neural transglutaminase 1 expression were so far 

restricted to the human brain in context of neurodegenerative disorders. In this work the 

expression of transglutaminase 1 in the murine brain is studied for the first time, using 

immunohistochemical stainings of cryostatic brain slices. Additionally the transamidating 

activity of transglutaminases in primary neuronal cell cultures of mice and chicken are to 

be investigated. Finally a substrate for neuronal transglutaminase 1 is identified and 

characterised. 
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2. Materials and Methods 

 

2.1 Materials 

 

2.1.1 Chemicals and enzymes 

 

Chemical/Enzyme Company 
5-(biotinamido)pentylamine EZ-link Fisher Scientific (Schwerte, Germany) 
A23187 calcium ionophore Sigma-Aldrich (St. Louis, MO, USA) 
Acetone >99.5% Applichem (Darmstadt, Germany) 
Adenosine tri-phosphate magnesium salt >95% Sigma-Aldrich (St. Louis, MO, USA) 
Adenosine tri-phosphate sodium salt >98% Applichem (Darmstadt, Germany) 
Albumin fraction V (BSA) 98% Carl Roth (Karlsruhe, Germany) 
Albumin from bovine serum 96% Sigma-Aldrich (St. Louis, MO, USA) 
all trans-Retinal Sigma-Aldrich (St. Louis, MO, USA) 
Ammonium peroxide sulphate (APS) Carl Roth (Karlsruhe, Germany) 
Ampicillin sodium salt Sigma-Aldrich (St. Louis, MO, USA) 
Aprotinin Applichem (Darmstadt, Germany) 
Arabinosyl cytosine hydrochloride (araC) Sigma-Aldrich (St. Louis, MO, USA) 
Azure II Fluka (St. Louis, MO, USA) 
BamHI Fermentas (St. Leon-Rot, Germany) 
Bovine brain acetone powder Sigma-Aldrich (St. Louis, MO, USA) 
Bovine calf serum Hyclone (Logan, Utah, USA) 
Bromophenol blue soidum salt Carl Roth (Karlsruhe, Germany) 
Calcium chloride dihydrate Merck (Darmstadt, Germany) 
Casein Sigma-Aldrich (St. Louis, MO, USA) 
Cellfectin Invitrogen (Karslruhe, Germany) 
Coelenterazine fcp Sigma-Aldrich (St. Louis, MO, USA) 
Developer LX24 Kodak (Stuttgart, Germany) 
D-Glucose Carl Roth (Karlsruhe, Germany) 
Dimethyl caseine Sigma-Aldrich (St. Louis, MO, USA) 
Dimethyl sulfoxide Applichem (Darmstadt, Germany) 
Di-sodium hydrogen phosphate dihydrate Carl Roth (Karlsruhe, Germany) 
Di-sodium tetra borate 10-hydrat Merck (Darmstadt, Germany) 
Dithiothreitol Carl Roth (Karlsruhe, Germany) 
DMEM: Ham's F12 Invitrogen (Karslruhe, Germany) 
Dnase I from bovine pancreas Sigma-Aldrich (St. Louis, MO, USA) 
Donor horse serum Biochrom (Berlin, Germany) 
Dulbeccos modified eagles medium (DMEM) Lonza (Basel, Suisse) 
EcoRI Fermentas (St. Leon-Rot, Germany) 
Ethanol >99.8% Carl Roth (Karlsruhe, Germany) 
Ethidium bromide solution 10mg/ml Sigma-Aldrich (St. Louis, MO, USA) 
Ethylene diamine tetracetic acid (EDTA) Carl Roth (Karlsruhe, Germany) 
Ethylene glycol tetracetic acid (EGTA) Carl Roth (Karlsruhe, Germany) 
Fetal calf serum (FCS) Biochrom (Berlin, Germany) 
Fixer AL4 Kodak (Stuttgart, Germany) 
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Gentamycin Sigma-Aldrich (St. Louis, MO, USA) 
Glacial acetic acid Riedel-de Haën (Seelze, Germany) 
Glycerol 86% Carl Roth (Karlsruhe, Germany) 
Glycine Applichem (Darmstadt, Germany) 
Grace's insect medium unsupplemented Invitrogen (Karslruhe, Germany) 
Hanks balance salts Applichem (Darmstadt, Germany) 
HEPES Applichem (Darmstadt, Germany) 
Herculase II polymerase Stratagene (La Jolla, CA, USA) 
Hexamine cobalt (III) chloride Applichem (Darmstadt, Germany) 
HindIII Fermentas (St. Leon-Rot, Germany) 
Hydrochloric acid 25% Carl Roth (Karlsruhe, Germany) 
Hydrogen peroxide 30% Sigma-Aldrich (St. Louis, MO, USA) 
Imidazole Carl Roth (Karlsruhe, Germany) 
IPTG Carl Roth (Karlsruhe, Germany) 
Isopentan Applichem (Darmstadt, Germany) 
Isopropanol Carl Roth (Karlsruhe, Germany) 
Kanamycin Sigma-Aldrich (St. Louis, MO, USA) 
Leupeptin Sigma-Aldrich (St. Louis, MO, USA) 
L-Glutamine Applichem (Darmstadt, Germany) 
Lipofectamine 2000 Invitrogen (Karslruhe, Germany) 
Low melting agarose Invitrogen (Karslruhe, Germany) 
Luminol 98% Fluka (St. Louis, MO, USA) 
Lysozyme molecular grade Applichem (Darmstadt, Germany) 
Magnesium chloride hexahydrate >99% Carl Roth (Karlsruhe, Germany) 
Magnesium sulphate Merck (Darmstadt, Germany) 
Maleic acid Sigma-Aldrich (St. Louis, MO, USA) 
Manganese (II) chloride Merck (Darmstadt, Germany) 
Methanol 99% Carl Roth (Karlsruhe, Germany) 
Methylenblue hydrate Riedel-de Haën (Seelze, Germany) 
Neomycin Carl Roth (Karlsruhe, Germany) 
Nerve growth factor 7S from murine submaxil. gland Sigma-Aldrich (St. Louis, MO, USA) 
Neutral red Carl Roth (Karlsruhe, Germany) 
NheI Fermentas (St. Leon-Rot, Germany) 
Nickel-NTA agarose Qiagen (Hilden, Germany) 
Normal goat serum Sigma-Aldrich (St. Louis, MO, USA) 
NotI Fermentas (St. Leon-Rot, Germany) 
N-propyl gallat Fluka (St. Louis, MO, USA) 
Paraformaldehyde Merck (Darmstadt, Germany) 
p-Coumaric acid Sigma-Aldrich (St. Louis, MO, USA) 
Penicilline G potassium salt Serva (Heidelberg, Germany) 
Pepstatin A 99% Applichem (Darmstadt, Germany) 
Poly-L-lysine hydrobromide MW:30.000-70.000 Sigma-Aldrich (St. Louis, MO, USA) 
Poly-L-lysine solution 0.1% Sigma-Aldrich (St. Louis, MO, USA) 
Ponceau S Carl Roth (Karlsruhe, Germany) 
Potassium acetate Applichem (Darmstadt, Germany) 
Potassium chloride Carl Roth (Karlsruhe, Germany) 
Potassium dihydrogen phosphate Carl Roth (Karlsruhe, Germany) 
RedTaq DNA Polymerase Premix Sigma-Aldrich (St. Louis, MO, USA) 
Rnase A Dnase free Sigma-Aldrich (St. Louis, MO, USA) 
Rotiphorese gel 30 Carl Roth (Karlsruhe, Germany) 
Serva blue Serva (Heidelberg, Germany) 
Sf900 II SFM (1.3x) Invitrogen (Karslruhe, Germany) 
Sf-900 II SFM insect medium Invitrogen (Karslruhe, Germany) 
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Skimmed milk Applichem (Darmstadt, Germany) 
Sodium acetate Merck (Darmstadt, Germany) 
Sodium azide Carl Roth (Karlsruhe, Germany) 
Sodium chloride Carl Roth (Karlsruhe, Germany) 
Sodium dicarbonate water free Merck (Darmstadt, Germany) 
Sodium dihydrogen phosphate dihydrate Carl Roth (Karlsruhe, Germany) 
Sodiumdodecylsulphate (SDS) ultra pure Carl Roth (Karlsruhe, Germany) 
Sodiumhydroxid Carl Roth (Karlsruhe, Germany) 
Streptomycine sulfate Serva (Heidelberg, Germany) 
Supplement B27 Invitrogen (Karslruhe, Germany) 
T4 DNA ligase Applichem (Darmstadt, Germany) 
Tetracycline Sigma-Aldrich (St. Louis, MO, USA) 
Tetramethylethylenediamine (TEMED) Carl Roth (Karlsruhe, Germany) 
Trichlor acetic acid Applichem (Darmstadt, Germany) 
Tris ultra qualtiy Carl Roth (Karlsruhe, Germany) 
Tri-sodium citrate Carl Roth (Karlsruhe, Germany) 
Triton X-100 Carl Roth (Karlsruhe, Germany) 
Trypan blue Applichem (Darmstadt, Germany) 
Trypsin 1:250 Applichem (Darmstadt, Germany) 
Trypsin from bovine pancreas >9000 BAEE units/mg Sigma-Aldrich (St. Louis, MO, USA) 
Trypsin inhibitor from soybean, cell culture tested Sigma-Aldrich (St. Louis, MO, USA) 
Tween 20 Carl Roth (Karlsruhe, Germany) 
X-Gal Carl Roth (Karlsruhe, Germany) 
XhoI Fermentas (St. Leon-Rot, Germany) 
Xylene cyanol FF for molecular biology Sigma-Aldrich (St. Louis, MO, USA) 
Yeast extract Applichem (Darmstadt, Germany) 

 

2.1.2 Devices 

Device Company 
Thermocycler Primus 25 MWG (Ebersberg, Germany) 
Power source PPC 300/200.4 Northumbria Biologicals Limited (Cramlington, UK) 
Semidry blot apparatus Trans-Blot SD Cell Bio-Rad (München, Germany) 
PAGE aparatus Mini Protean II Bio-Rad (München, Germany) 
Horicontal shaker 3017 GFC (Burgwedel, Germany) 
UV table TFP-M/WL LTF Labortechnik (Wasserburg, Germany) 
Heating block Stuart Scientific (Stone, UK) 
Exposing cassette Special/Rapid 200 Dr. Goos Suprema (Heidelberg, Germany) 
Fluorescence microscope 102 M Motic (Wetzlar, Germany) 
Table top centrifuge 5415C Eppendorf (Hamburg, Germany) 
Environmental shaker ES-20 MS Laborgeräte (Wiesloch, Germany) 
Incubator Hera Cell Heraeus (Hanau, Germany) 
Laminar flow cabinet BSB6 Gelaire (Syndney, AUS) 
Centrifuge 3-15 Sigma (Osterode am Harz, Germany) 
Ultracentrifuge TL-100 Beckmann (Fullerton, CA, USA) 
Amplifier SEC-05LX npi electronic GmbH (Tamm, Germany) 
Oscilloscope HM 1507 Hameg Instruments (Mainhausen, Germany) 
Cryostat CM 3050 Leica Microsystems (Wetzlar, Germany) 
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2.1.3 Kits 

Kit Company 
Genomic DNA isolation: Geno/mini DNA 
Isolation Spin Kit 

Applichen (Darmstadt, Germany) 

Plasmid Isolation (mini): Zyppy Plasmid Mini 
Prep Kit 

Zymo Research (Orange, CA, USA) 

Plasmid Isolation (midi): Plasmid Midi Kit Qiagen (Hilden, Germany) 
DNA purification: High Pure PCR Product 
Purification Kit 

Roche Applied Science (Penzberg, Germany) 

Gel DNA extraction: Agarose Gel DNA 
Extraction Kit 

Roche Applied Science (Penzberg, Germany) 

Southern Blot: DIG High Prime DNA Labelling 
and Detection Starter Kit II 

Roche Applied Science (Penzberg, Germany) 

 

2.1.4 Antibodies 

Antibody Species dilution Clone/Cat. no. Company 
anti-Trans-
glutaminase 1 

rat 
ICC/IHC/WB: 
undiluted 

TG1F-1 
Hybridoma supernatant [Hiiragi 
1999] 

anti-Mtap 2ab mouse 
ICC/IHC:  
1:200 

MT-01 Exbio (Vestec, Czech Republic) 

anti-GFAP rabbit 
ICC/IHC:  
1:5000 

ab7260 Abcam (Cambridge, MA, USA) 

anti-Synaptophysin mouse 
ICC/IHC:  
1:1000 SVP-38 

Sigma-Aldrich (St. Louis, MO, 
USA) 

anti-Synapsin 1 rabbit 
ICC/IHC:  
1:500 

S193 
Sigma-Aldrich (St. Louis, MO, 
USA) 

anti-β-actin mouse 
WB:  
1:5000 

AC-15 
Sigma-Aldrich (St. Louis, MO, 
USA) 

anti-GFP rabbit 
WB:  
1:2000 

598 MBL (Woburn, MA, USA) 

anti-Rat-Cy2 goat 
ICC/IHC:  
1:200 

 
Jackson ImmunoResearch  
(West Grove, PA, USA) 

anti-Rat-Cy3 goat 
ICC/IHC:  
1:300 

 
Jackson ImmunoResearch  
(West Grove, PA, USA) 

anti-Rat-Pox goat 
WB:  
1:30.000  

Jackson ImmunoResearch  
(West Grove, PA, USA) 

anti-Mouse-Cy2 goat 
ICC/IHC:  
1:200 

 
Jackson ImmunoResearch  
(West Grove, PA, USA) 

anti-Mouse-Pox goat 
WB:  
1:30.000 

 
Jackson ImmunoResearch  
(West Grove, PA, USA) 

anti-rabbit-Cy2 goat 
ICC/IHC:  
1:200 

 
Jackson ImmunoResearch  
(West Grove, PA, USA) 

anti-Rabbit-Pox goat 
WB:  
1:40.000 

 
Jackson ImmunoResearch  
(West Grove, PA, USA) 

Streptavidin-Cy2 / 
ICC/IHC:  
1:500  

Jackson ImmunoResearch  
(West Grove, PA, USA) 

Streptavidin-Cy3 / 
ICC/IHC:  
1:2.000 

 
Jackson ImmunoResearch  
(West Grove, PA, USA) 

Streptavidin-Pox / 
WB:  
1:70.000 

 
Jackson ImmunoResearch  
(West Grove, PA, USA) 

Cy2: green fluorescent marker; Cy3: red fluorescent marker; Pox: horseradish peroxidase 
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2.1.5 Primer 

Primer Sequence Annealing temp. 
TG1 KO L fw CTC GAG ACC GAT ATA TAC AGG GTT 47°C 
TG1 KO L rev CTC GAG ACT ATG AAT CCG GCA CCA 47°C 
TG1 KO M fw GTC GAC ATA GTG CTC CCC TAG TGC 47°C 
TG1 KO M rev GTC GAC GGT GGG TAC ATC TCT GTA A 47°C 
TG1 KO R fw GGA TCC CAC ATGV CCA CCA CTG GTC TT 51°C 
TG1 KO R rev GCG GCC GCA AAG CCA TAG TAC TTG GAT A 51°C 
TG1 SB S1 fw CGG ACT CTG TGA CCA TGC CT 50°C 
TG1 SB S1 rev CCG ACA TTG AGG ACC TTG GG 50°C 
TG1 SB S2 fw TAG CAA GGT GGA GAG GAG GTT TT 50°C 
TG1 SB S2 rev TTT ACA CCA CTG CCC CGA GA 50°C 
fw: forward primer; rev: reverse primer 

All primers were purchased at Eurofins MWG Operon (Ebersberg, Germany). 

 

2.1.6 Animals 

 

Mice (Mus musculus): 

For cryostatic slices, the brains of adult male mice from the strain C57BL/6 were used. For 

cerebellar granule cell cultures brains of baby mice postnatal day five (P5) were used. The 

cultures used for the immocytochemical staining against transglutaminase 1 (Fig. 9) and 

for the transglutaminase activity staining (Fig. 13) were from BALB/c mice, those used for 

the immunocytochemical doublestainings (Fig. 10) were from C57BL/6 mice. 

 

Chicken (Gallus gallus): 

For the isolation of telencephalic cell cultures fertilised eggs from white leghorns were 

purchased from a local poultry and incubated in a forced draft incubator for 7 to 9 days 

before preparation. 
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2.2 Cell culture 

 

2.2.1 General cell culture solutions 

 

Phosphate-buffered salt solution (PBS): 

80 g/L   Sodium chloride 

0.2 g/L   Potassium chloride 

1.7 g/L   Disodium hydrogen phosphate 

0.2 g/L   Potassium dihydrogen phosphate 

The pH was checked (should be between 7.2-7.4) and the solution was autoclaved. 

 

Hanks balanced salt solution (HBSS): 

9.82 g/L  Hanks Balanced Salts 

0.35 g/L  Sodium bicarbonate 

The solution was sterile filtrated. 

 

Trypsin/EDTA: 

0.5 g/L   Trypsin 1:250 

0.2 g/L   Ethylenediaminetetraacetic acid (EDTA) dihydrate 

Dissolved in PBS. The pH was adjusted to 7.2 with sodium hydroxide and the solution was 

sterile filtrated. 

 

Pen/Strep (100x): 

10 mg/ml  Penicillin G, sodium salt 

10,000 U/ml  Streptomycin 

Dissolved in PBS. The solution was sterile filtrated.  

 

Trypan blue solution: 

0.4% (w/v)  Trypan blue 

Dissolved in PBS. The solution was filtrated through a 0.4 µm syringe filter. 
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2.2.2 PC12 cell culture 

 

2.2.2.1 Maintenance of PC12 cell culture 
 

Solutions 

 

PC12 medium: 

6% (v/v)  Donor horse serum 

6% (v/v)  Bovine calf serum 

1% (v/v)  Pen/Strep 100x (see 2.2.1) 

The solutions were diluted under a clean bench in sterile Dulbecco’s Modified Eagle 

Medium (DMEM) with high glucose and glutamine. 

 

Procedure 

To split a PC12 culture the medium was aspirated and the cells were washed one time with 

PBS. 1 ml (25 cm2 flask) or 3 ml (75 cm2 flask) Trypsin/EDTA was spread over the cell 

layer. Quickly the excessive liquid was aspirated and the cells were incubated for 1-2 min 

until they began to detach from the surface. The cells were washed of with 5 ml (25 cm2 

flask) or 15 ml (75 cm2 flask) of 37°C warm PC12 medium and divided in a ratio of 1:4 to 

1:10 into new flasks. 

The cells were cultivated into 5 ml (25 cm2 flask) or 15 ml (75c m2 flask) PC12 medium at 

37°C and 5% CO2 in a humidified incubator. Every 2-3 days the medium was exchanged. 

Shortly before reaching confluency the cells were passaged again. 

 



Materials and Methods 

 17 

2.2.2.2 Transferring PC12 cells to glass cover slips 
 

Solutions 

 

Poly-l-lysine solution: 

10 mg/ml  Poly-l-lysine hydrobromide 

Dissolved under the clean bench in sterile double distilled water. 

 

Procedure 

The cover slips were cleaned and chemically sterilised in an ultrasonic cleaner in 80% 

ethanol (v/v). Four cover slips at a time were transferred in the 30 mm dishes and washed 

with sterile double distilled water. The glass slips were covered with poly-l-lysine solution 

and incubated at 37°C for 1-2 h. Afterwards the lysine solution was aspirated and the cover 

slips were washed three times for 10 min with sterile water. The cover slips were air dried 

over night under sterile conditions. 

A PC12 culture (see 2.2.2.1) was splitted and transferred to a dish with lysine coated cover 

slips. After 30min the cells attached to the surface and they were cultivated in 2 ml PC12 

medium as described in 2.2.2.1 

 

2.2.2.3 Differentiating PC12 cells 
 

Solutions 

 

NGF solution (1000x): 

50 µg/ml  Nerve growth factor 7S 

1%   Bovine serum albumin 

Dissolved in DMEM and sterile filtrated. 

 

Procedure 

To differentiate the PC12 cells into their neuronal phenotype the cell layer was washed one 

time with PBS. New PC12 medium laced with 50 ng/ml NGF was added to the cells. The 

cells were cultivated as described above (see 2.2.2.1) but medium with NGF was used. 

After 2 days the first neurites could be observed. About 10 days after the first addition of 

NGF the cells stopped dividing. 
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2.2.2.4 Transfection of PC12 cells 
 

Procedure 

2x105 PC12 cells per well were seeded in a 24-well plate and cultivated for one day. The 

culture medium was exchanged with 0.5 ml fresh PC12 medium. 2 µg vector DNA was 

diluted in DMEM, additionally 4 µl Lipofectamine 2000 was diluted in another 50 µl of 

DMEM. The solutions were incubated for 5 min at room temperature. Afterwards they 

were mixed together and incubated for another 20 min. The mixture was added to the cells 

and cultivated for 3 h. Afterwards the cells were washed one time with PC12 medium. 

Fresh medium was added and the cells were cultivated for 48-72 h. 

Prior to analysis transfected cells containing the channelrhodopsin construct were 

incubated with all-trans retinal and cells containing the aequorin/GFP fusionprotein were 

incubated with coelenterazine fcp for 1h in the dark, to activate the proteins. 

 

2.2.2.5 Whole cell current clamp recordings of PC12 cells 
 

Solutions 

 

Extracellular solution: 

140 mM  Sodium chloride 

2.8 mM  Potassium chloride 

2 mM   Calcium chloride 

2 mM   Magnesium chloride 

10 mM   HEPES 

10 mM   D-Glucose 

The pH was adjusted to 7.2 with sodium hydroxide. 
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Intracellular solution: 

140 mM  Potassium chloride 

2 mM   Magnesium chloride 

1 mM   Calcium chloride 

11 mM   Ethylene glycol tetraacedic acid (EGTA) 

10 mM   HEPES 

2 mM   Disodium adenosine triphosphate 

3mM   Magnesium adenosine triphosphate 

The pH was adjusted to 7.2 with potassium hydroxide. 

 

Procedure 

PC12 cells were cultured on cover slips as described in 2.2.2.2. The cells were transferred 

to a chamber containing warm extracellular solution. Glass electrodes with an input 

resistance of 3-8 MΩ were made in a puller and filled with intracellular solution. The 

electrodes were droved up to the cells using a micro manipulator. A light negative pressure 

was applied at the electrode to achieve a seal between cell membrane and electrode. The 

membrane was severed locally by the application of a strong negative pressure. The 

successful access to the cell was controlled via its resting potential, which was typically in 

the range of -30 to -80 mV. Afterwards the reactions of the cell to depolarising or 

hyperpolarising pulses were recorded. 

To record Channelrhodopsin-2 expressing cells, the cells were transfected with pBK-CMV 

Chop2-YFP like described in 2.2.2.4. 30 min before the recording was performed 1 µM 

all-trans retinal was added to the cells, and they were incubated at 37°C in the dark. The 

cells were transferred to the recording chamber and recorded like described above. To 

stimulate the cells they were illuminated with a mercury arc lamp. 

 

2.2.3 Sf9 cell culture 

 

Procedure 

To passage Sf9 cells, the medium was aspired and the cells were washed of with 3 ml (25 

cm2 flask) or 10 ml (75 cm2 flask) Sf-900 II SFM. The cells were split in a ratio of 1:2 to 

1:4 into new flasks and cultivated in 5 ml (25 cm2 flask) or 15 ml (75 cm2 flask) of Sf-900 

II SFM at 27°C in a humidified incubator. If necessary the medium was exchanged ever 4-

5 days. At 80-90% confluency the cells were passaged again. 
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2.2.4 Isolation of chicken telencephalic cells 

 

Solutions 

 

Stop Buffer: 

10% (v/v)  Fetal calf serum (FCS) 

Dissolved in Dulbeccos Modified Eagles Medium/Hams F12 (1:1 mixture) under the clean 

bench. 

 

Telencephalic Media: 

2% (v/v)  50x B27-Supplement 

50 U/ml  Penicillin 

50 µg/ml  Streptomycin 

Dissolved in Dulbeccos Modified Eagles Medium/Hams F12 (1:1 mixture) under the clean 

bench. 

 

Procedure 

5 ml and 15 ml of HBSS (see 2.2.1) were aliquoted in centrifugation tubes and cooled on 

ice. Two microscopy dishes were filled with cold HBSS. The egg was opened at the flat 

end and the embryo was fetched, decapitated and the head was transferred to one of the 

dishes. The skull was opened. The telencephalon was isolated and carried over to the 

second dish. The meninges were removed and the telencephalon was transferred to the tube 

containing 5ml HBSS. The tube was returned to the ice afterwards. 

Under the clean bench the tissue was washed two times with 1ml cold HBSS. Afterwards 

the solution was replaced with 1 ml Trypsin/EDTA (see 2.2.1) and incubated eight minutes 

on ice and another eight minutes at 37°C in the incubator. 

The Trypsin/EDTA was aspired and the digestion stopped with 1 ml Stop buffer. To 

separate the cells, the solution was passed 20-30 times through a 1000 µl Eppendorf 

pipette. The suspension was centrifuged 5 min at 300 g. The supernatant was discarded and 

the cells were resuspended in 1 ml HBSS. The solution was again centrifuged for 5 min at 

300 g. The HBSS was aspired and the cells resuspended in10 ml warm telencephalic 

medium. 
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The cell suspension was counted and seeded in a concentration of 2.5-5x105 cells per cm2 

in poly-l-lysine coated dishes or flasks. The cells were cultivated at 37°C and 5% CO2 in a 

water saturated incubator. 

2.2.5 Isolation of murine cerebellar granule cells 

 

Solutions 

 

10x Krebs Ringer: 

1.2 M   Sodium chloride 

50 mM   Potassium chloride 

12 mM   Potassium dihydrogen phosphate 

0.25 M   Sodium bicarbonate 

0.14 M   D-Glucose 

A small amount (tip of a spatula) of phenolred was added. 

 

MgSO4-Solution: 

3.82% (w/v)  Magnesium sulphate, 7 H2O 

 

CaCl2-Solution: 

1.6% (w/v)  Calcium chloride, 2 H2O 

 

KCl-Solution: 

1.34 M   Potassium chloride 

Dissolved in Basal Eagles Medium and sterile filtrated. 

 

100x Gentamycin-Solution: 

10 mg/ml  Gentamycin sulphate 

Dissolved in double distilled water and sterile filtrated. 

 

100x AraC-Solution: 

1 mM   Cytosine-arabinofuranoside/HCl 

16 µl/ml  KCl-Solution 

Dissolved in Basal Eagles Medium and sterile filtrated. 



Materials and Methods 

 22 

Solution 1: 

30 ml   10x Krebs-Ringer 

0.9 g   Albumin from bovine serum, ≥96%, cell culture tested 

2.4 ml   MgSO4.-Solution 

Dissolved in 300 ml double distilled water and sterile filtrated. 

 

Solution T: 

0.025% (w/v) Trypsin from bovine pancreas, ≥9000 BAEE units/mg protein, cell 

culture tested. 

Dissolved in Solution 1 and sterile filtrated. 

 

Inhibitor-Solution: 

0.008% (w/v) Deoxyribonuclease I from bovine pancreas, ≥2000 Kunitz units/mg 

protein 

0.052% (w/v) Trypsin inhibitor from Glycine max, cell culture tested 

1% (v/v) MgSO4-Solution 

Dissolved in Solution 1 and sterile filtrated. 

 

Thinned-Inhibitor-Solution: 

3.2% (v/v) Inhibitor-Solution 

Dissolved in Solution 1 and sterile filtrated. 

 

Solution Ca: 

0.8% (v/v) MgSO4-Solution 

0.12% (v/v) CaCl2-Solution 

Dissolved in Solution 1 and sterile filtrated. 

 

Granule Cell Medium: 

10% (v/v) Fetal Calf Serum 

2 mM L-Glutamine, cell culture tested 

1% (v/v) 100x Gentamycin-Solution 

1.65% (v/v) KCl-Solution 

Diluted in Basal Eagles Medium under the clean bench. 
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Procedure 

The mouse was decapitated. The scull was opened and the cerebellum transferred to a dish 

with cold Solution 1. The meninges were removed and the tissue was transferred to a 15ml 

centrifugation tube containing 10ml cold Solution 1. The tube was kept on ice until further 

treatments. Up to five brains were pooled for further processing. 

The solution with the tissue was transferred to a clean bench and poured in a 6 cm Petri 

dish. The brain was chopped with a scalpel and poured back into the tube. The solution 

was centrifuged for 3 min at 150 g and the supernatant was aspirated. The tissue was 

resuspended in 7 ml Solution T and transferred to a new 6 cm Petri dish. The tissue was 

incubated for 13 min at 37°C under occasional agitation. 

To stop the trypsin reaction 7 ml of the Thinned Inhibitor Solution was added and the 

sample was transferred to a 15 ml centrifuge tube. It was centrifuged for 3 min at 150 g. 

The supernatant was aspirated and replaced with 2 ml of Inhibitor Solution. The cells were 

triturated by passing them 25 times through a flame polished Pasteur pipette. After 10 min 

the supernatant was transferred to a new centrifuge tube and 3 ml Solution Ca were added. 

To the pellet another 2 ml of Inhibitor-Solution was added and it was again passed 25 

times through a flame polished pipette. Both cell suspensions were united. After another 10 

min the supernatant was transferred to a new tube and centrifuged 10 min at 150 g. The 

supernatant was aspirated and the cells resuspended in warm Granule Cell Medium. 

The cell suspension was counted and seeded in a concentration of 2.5x105 cells per cm2 in 

poly-l-lysine coated dishes or flasks. The cells were cultivated at 37°C and 5% CO2 in a 

water saturated incubator. On the nest day 1% 100x AraC-Solution was added. 
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2.3 General methods 

 

2.3.1 Discontinuous sodium dodecyl sulphate polyacrylamide gel electrophoresis 

 

Solutions 

 

Loading buffer (3x): 

187 mM  Tris 

208 mM  SDS 

37.8% (w/v)  Glycerol 

The chemicals were dissolved in double distilled water and the pH was adjusted to 6.9 with 

hydrochloric acid. 0.4 mg/ml bromophenol blue and for reductive conditions 1.5 mg/ml 

dithiotreithol were added. 

 

Electrophoresis buffer (5x): 

0.5%   SDS 

0.96 M   Glycine 

124 mM  Tris 

 

Stacking gel: 

3.6% (v/v)  Acrylamide/bisacrylamide (37.5:1) 

125 mM  Tris/HCl pH 6.8 

0.1% (w/v)  SDS 

1.5 µl/ml  Tetramethylethylendiamine (TEMED) 

3 µl/ml   10% ammonium persulphate (APS) 

After the addition of TEMED and APS the gel was casted immediately. 
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Resolving gel (10%): 

10% (v/v)  Acrylamide/bisacrylamide (37.5:1) 

375 mM  Tris/HCl pH 8.8 

0.1% (w/v)  SDS 

1.5 µl/ml  TEMED 

3 µl/ml   10% APS 

After the addition of TEMED and APS the gel was casted immediately. 

 

Procedure 

The resolving gel was mixed and immediately poured between glass plates. The gel was 

overlaid with water. After 30 min the water was poured off, the stacking gel was mixed, 

poured immediately on top of the resolving gel and the comb was inserted. After another 

30 min the comb was removed and the gel was transferred to a horizontal electrophoresis 

tank. The tank was filled with 1x electrophoresis buffer. 

The samples were mixed with loading buffer and denatured at 95°C for 5 min. The 

denatured samples were filled into the wells of the gel. Additionally 4 µl of the protein 

ladder was injected into one well. 

A voltage of 80 V was applied until the samples had left the stacking gel. Afterwards the 

voltage was raised to 100-160 V. The electrophoresis was stopped when the blue band of 

the loading buffer left the gel. After the electrophoresis the gel was stained with Coomassie 

blue (see 2.3.2) or the proteins were blotted on a nitrocellulose membrane (see 2.3.3) 

 

2.3.2 Coomassie brilliant blue staining of polyacrylamide gels 

 

Solutions 

 

Staining solution: 

2.5 g/L   Serva blue 

45.4% (v/v)  Isopropanol 

9.2% (v/v)  Glacial acetic acid 

 

Destaining solution: 

5% (v/v)  Glacial acetic acid 

7.5% (v/v)  Ethanol 
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Procedure 

The polyacrylamide gel was transferred to a dish with staining solution and stained for 

10min on a horizontal shaker. The staining solution was transfused and replaced at first 

with tap water and afterwards with destaining solution. The gel was destained on a 

horizontal shaker and the destaining solution was regularly changed until the protein bands 

were clearly visible. 

2.2.3 Western Blot 

 

Solutions 

 

Transfer buffer: 

25 mM   Tris 

192 mM  Glycine 

20% (v/v)  Methanol 

0.1% (w/v)  SDS 

 

Ponceau S: 

0.5% (w/v)  Ponceau S 

3% (w/v)  Trichloracetic acid 

 

PBST: 

0.05% (w/v)  Tween 20 

Dissolve in PBS (see 2.2.1) 

 

Blocking solution: 

5% (w/v)  skimmed milk 

Dissolved in PBST 

 

ECL I: 

2.5 mM  Luminol 

0.396 mM  p-Coumaric acid 

0.1 M   Tris pH 8.5 
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ECL II: 

0.0192% (v/v)  Hydrogen peroxide 

0.1 M   Tris pH 8.5 

 

Procedure 

Six Whatman papers and a nitrocellulose membrane were soaked into transfer buffer and 

stacked with a polyacrylamide gel in the following order: three whatman papers, the 

nitrocellulose membrane, the gel and another three whatman papers. The stack was 

transferred to a semidry blotting chamber and blotted at 47 mA for 90 min. 

After the blotting the membrane was transferred to a dish with Ponceau S solution and 

stained for about 1 min. The staining solution was poured back and the membrane was 

washed several times with double distilled water on a shaker, until the protein bands were 

clearly visible. If necessary the lanes were separated with a scalpel and marked with a 

pencil. To unstain the membrane completely, it was washed in PBS. 

The PBS was exchanged with blocking solution and the membrane was blocked for 30 min 

on a shaker. The primary antibody was diluted in blocking solution. The membrane was 

transferred to a sealing bag and the antibody was added. The primary antibody was 

incubated for 3 h at room temperature or over night at 4°C on a shaker. The membrane was 

transferred to a dish with PBST and washed three times for 10 min under shaking. The 

peroxidase labelled secondary antibody was diluted in PBST. Afterwards the membrane 

was transferred again to a sealing bag containing the secondary antibody and incubated for 

90 min at room temperature. The blot was finally washed three times for 10 min in a dish 

with PBST and stored in PBS until chemiluminescence detection. 

For detection both ECL solutions were mixed in a ratio of 1:1 and the blot was incubated 

for 1 min in this solution. Afterwards the membrane was covered with saran wrap and an 

x-ray film. The bands of the protein weight marker were transferred with a pen to the film. 

The membrane was exposed for 10 sec to 15 min and the film was developed afterwards. 
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2.3.4 Polymerase chain reaction 

 

Procedure 

The template DNA was mixed with 0.25 µM of each Primer (200 pmol/µl) respectively, 10 

µl of the Herculase reaction buffer and 0.5 µl of the dNTP Mix (25µM each dNTP) were 

added. The reaction volume was brought to 49 µl with double distilled water. Afterwards 1 

µl of the polymerase was added. The tube was transferred to a thermocycler and following 

program was run. 

Step Temperature Time Cycles 

Denaturing 95 °C 2 min / 

Denaturing 95°C 20 sec 

Annealing Primer dependent 20 sec 

Elongation 72°C 30 sec/kb DNA 

25-35 

Tab. 2.1: Thermocycler program for polymerase chain reaction 

The annealing temperature depended on the melting point of the used primer pair. The 

elongation time depended on the length of the amplified fragment. 

 

2.3.5 Agarose gel electrophoresis 

 

Solutions 

 

50x TAE buffer: 

2 M   Tris 

1 M   Acetic acid 

0.1 M   EDTA 

The pH was adjusted to 8.3 with acetic acid. 

 

6x Loading buffer: 

10 mM   Tris pH 7.6 

60 mM   EDTA pH 7.6 

0.03% (w/v)  Bromophenolblue 

0.03% (w/v)  Xylene cyanol FF 

60% (w/v)  Glycerol 
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Ethidiumbromide staining solution: 

0.5 µg/ml  Ethidiumbromide 

Dissolved in tap water. Ethidiumbromide is carcinogenic. 

 

Procedure 

Agarose was added to 1x TAE and dissolved by heating in a microwave oven. The 

concentration of the agarose in the solution varied from 0.8% (w/v) for large DNA 

fragments to 2% (w/v) for very small fragments. The solution was poured in the 

electrophoresis chamber and a comb was inserted. After the gel had solidified the comb 

was removed and the gel was overlaid with 1x TAE buffer. 

The DNA was mixed with loading buffer and putted into a well. To be able to estimate the 

length of the DNA a DNA weight marker was added into an additional well. The DNA was 

separated at about 5V/cm electrode distance for 45 min to 90 min. 

After the electrophoresis, the gel was transferred to a dish containing ethidiumbromide 

staining solution and stained for 15min in the dark. Afterwards it was moved to another 

dish with tap water, destained for another 15min in the dark and visualised on an UV table. 

For preparatory purpose the desired DNA band was cut out of the gel with a clean scalpel 

and the DNA was isolated with a commercial available DNA extraction kit (e.g. Roche 

agarose gel DNA extraction kit). 
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2.4 Immunofluorescence stainings 

 

2.4.1 Immunocytochemical stainings of cultured cells 

 

Solutions 

 

Formaldehyde fixative: 

2% (w/v)  Paraformaldehyde 

Mixed in PBS (see 2.2.1). The solution was heated up to 60°C. 1 N NaOH was slowly 

added until the Paraformaldehyde dissolved. Afterwards the solution was filtrated. 

 

Permeabilistation buffer: 

0.1% (w/v)  Triton X-100 

Dissolved in PBS. 

 

Blocking solution: 

1% (w/v)  bovine albumin fraction V (BSA) 

1% (v/v)  normal goat serum (NGS) 

Dissolved in PBS. 

 

Mounting solution: 

1.5% (v/v)  N-propyl gallat 

60% (w/v)  Glycerine 

Dissolved in PBS. 

 

Procedure 

The cells were cultivated in 30 mm tissue culture dishes on polylysine coated glass cover 

slips. The cultures were washed two times with 37°C warm PBS. Afterwards they were 

fixed for 10 min at room temperature in 2% formaldehyde. Alternatively they were fixed in 

100% Methanol at -20°C for 5 min. The fixed cells were washed three times with PBS at 

room temperature. Formaldehyde fixed cells were permeabilised with 0.1% Triton X-100 

for 5 min at room temperature and were washed again three times with PBS, before they 
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were transferred to slides in the humid chamber and blocked with 25 µl blocking solution 

for 30 min at room temperature. Methanol fixed cells were blocked directly. 

The blocking solution was replaced with 20 µl of the primary antibody diluted in an 

antibody dependent ratio in PBS. The antibody was incubated for 3 h at room temperature 

or over night at 4°C. Afterwards the cells were washed one time for 10 min and two times 

for 5 min with PBS at room temperature. For double-stainings the cells were incubated 

with the second primary antibody as described above for the first one. 

The cells were incubated with 20 µl of the secondary antibody, diluted in PBS, for 90 min 

at room temperature in the dark. Afterwards they were washed three times for 5 min in the 

dark. The cover slips were shortly dipped into double distilled water and mounted on a 

drop of mounting solution on a slide with the cell covered surface facing downwards. The 

stainings were stored at 4°C in the dark and were observed at a fluorescence microscope. 

 

2.4.2 Cryostatic brain slices and immunohistochemistry 

 

Solutions 

 

Methylenblue solution: 

Solution 1: 

1% (w/v)  Methyleneblue 

1% (w/v)  Disodium tetraborate 

Solution 2: 

1% (w/v)  Azure II 

1% (w/v)  Disodium tetraborate 

Solution 1 and 2 are mixed in a ratio of 1:1 and filtered. 

 

TG1-P incubation buffer: 

0.1 M   Tris pH 8.0 

5 mM   Calcium chloride 

1 mM   Dithiothreitol 

Stable for one week. 
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TG1-P control buffer: 

0.1 M   Tris pH 8.0 

1 mM   Dithiothreitol 

1 mM   EDTA pH 8.0 

Stable for one week. 

 

Procedure 

Isopentan was cooled down in liquid nitrogen to about -100°C. The animal was 

anesthetised and sacrificed. The brain was isolated and frozen in cold isopentan. 

Afterwards the brain was transferred directly into liquid nitrogen for at laest 10 min. 

Finally, the tissue was stored at -80°C in a deep temperature freezer. 

The brain was cut into 7 µm thick slices using a cryostat. The slices were transferred to 

poly-l-lysine coated slides.  

For methylenblue staining the slides were incubated at 30°C for 10 min and afterwards 

stained for about 2 min in methylenblue solution. The slides were washed with tap water 

and dried. 

For staining with the transglutaminase 1 specific peptide TG1-P the slices were incubated 

at 30°C for 10 min and afterwards blocked for 30 min with blocking solution (see 2.4.1). 

10 µM TG1-P was diluted in TG1-P incubation buffer (for the specific staining) or TG1-P 

control buffer (for the negative control). The blocking buffer was replaced with the TG1-P 

solutions and the slices were incubated for 90 min at 37°C in the dark. Afterwards the 

slides were washed 3 times for 10 min with PBS (see 2.2.1) in the dark.  

For immunohistochemical stainings the slices were fixated at -20°C in acetone and washed 

three times for 5 min with PBS. Afterwards they were blocked for 30 min with blocking 

solution and incubated with primary antibody in a humid chamber for 3 h at room 

temperature or over night at 4°C. The slides were washed three times for 5 min with PBS 

and afterwards incubated for 90 min with the secondary antibody. The slides were washed 

three times for 5 min with PBS. 

The stainings were overlaid with a drop of mounting solution (see 2.4.1) and a glass cover 

slip and were documented at a fluorescence microscope. 
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2.5 Analysis of transglutaminase activity 

 

2.5.1 Biotinylation of transglutaminase target proteins in cell culture 

 

Procedure 

Mouse cerebellar granule or chicken telencephalic cells were cultured as described before 

(see 2.2.4 and 2.2.5). To analyse the transglutaminase activity the culture medium was 

renewed and supplemented with 1.3 mg/ml 5-(biotinamido)pentylamine (5-BPA) and 0.1 

µl/ml R281 (a transglutaminase inhibitor). As negative control, only R281 was added to 

the medium. The cells were incubated over night and afterwards analysed by SDS-PAGE 

and Western Blot (see 2.3.1 and 2.3.2) with a streptavidin coupled to a peroxidase, or by 

imunocytochemistry (see 2.4.1) with a fluorophor coupled streptavidin. 

 

2.5.2 Purification of biotinylated proteins 

 

Solutions 

 

Phosphate buffer: 

0.1 M   Sodium dihydrogen phosphate 

0.15 M   Sodium chloride 

The pH was adjusted to 7.2. 

 

Procedure 

Cell cultures were labelled with 5-BPA as described in section 2.5.1. The cells were 

collected with the help of a rubber policeman in phosphate buffer containing protease 

inhibitors and homogenised by sonification. The cell lysate was pelleted at 10,000g for 10 

min. The supernatant was transferred to a new tube. Streptavidin agarose was equilibrated 

for 30 min with phosphate buffer. The agarose was added to the cell lysate solution. The 

mixture was incubated over night at 4°C and additionally 3h at room temperature under 

constant agitation. The streptavidin agarose was pelleted at 4,000g for 5 min and washed 

two times with phosphate buffer. Afterwards the wash solution was exchanged with SDS 

loading buffer (see 2.3.1) containing dithiothreitol and the sample was incubated for 8 min 
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at 95°C. The agarose was pelleted at 14,000g for 1 min and the supernatant was transferred 

into a new tube. The supernatant was analysed by SDS-PAGE and Western blot with an 

antibody against β-actin or a streptavidin. 

 

 

2.6 Generation and analysation of recombinant human transglutaminase 1  

 

2.6.1 Cloning of TG1 cDNA into pFastBac1 

 

Procedure 

The cDNA sequence of human transglutaminase 1 containing an N-terminal His6-tag was 

excised out of the vector pGEM-T fl hTGk His via NotI and EcoRI. The DNA fragment 

containing the cDNA was purified over an agarose gel (see 2.3.5). The vector pFastBac 1 

was also cut with NotI and EcoRI and column purified with a commercial available kit. 

Afterwards the transglutaminase 1 cDNA was ligated into pFastBacI (see 2.7.4). The 

emerging clones were screened via analytical plasmid preparation (see 2.7.3) and 

restriction analyses and positive clones were sequenced, to verify the correct insert. 

 

2.6.2 Generation of the recombinant bacmid 

 

Solutions 

 

LB Agar Plates: 

See 2.7.2, after cooling to 60°C following solutions were added: 

50 µg/ml  Kanamycin 

7 µg/ml  Gentamicin 

10 µg/ml  Tetracycline 

40 µg/ml  IPTG 

X µg/ml  X-Gal 

The plates were poured immediately. 
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Procedure 

The E. coli DH10Bac were thawed on ice. 100 µl DH10Bac suspension per transformation 

was transferred to a cooled 12 ml round bottom transformation tube. 1 ng of the pFastBacI 

construct or 5 µl sterile double distilled water for the negative control were added to the 

cells and mixed. The cell suspension was incubated for 30min on ice and afterwards heat 

shocked for exactly 45sec at 42°C without shaking. The cells were transferred back on ice 

and cooled down for 2 min. 900µl room temperature SOC medium was added and the 

tubes were shaked at 37°C at about 200rpm for 4 h. 

A tenfold serial dilution (10-1 to 10-3) of the cells in SOC medium was prepared and 100 µl 

of each dilution was plated on LB plates. The plates were incubated for 48h at 37°C and 

for about 1h at 4°C. 

Ten white colonies were chosen from the plates and restreaked on fresh LB agar plates. 

The plates were incubated over night at 37°C. From a single colony confirmed to have a 

white phenotype the bacmid was isolated (see 2.6.3) 

 

2.6.3 Isolation of recombinant bacmid 

 

Solutions 

 

LB media: 

See 2.7.2, before inoculation following solutions were added: 

50 µg/ml  Kanamycin 

7 µg/ml  Gentamicin 

10 µg/ml  Tetracycline 

 

Solution I: 

15 mM   Tris/HCl pH 8.0 

10 mM   EDTA pH 8.0 

100 µg/ml  RNase A, DNase free 

The solution was filter sterilised. 
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Solution II: 

0.2 M   NaOH 

1% (w/v)  SDS 

The solution was filter sterilised. 

 

Potassium Acetate: 

3 M   Potassium acetate 

The pH was adjusted to 5.5 and the solution was autoclaved. 

 

Procedure 

2 ml LB media was inoculated with successfully transformed DH10Bac. The culture was 

grown over night at 37°C and about 200 rpm. 1.5 ml of the culture was transferred to a 

microcentrifuge tube and centrifuged for 1 min at 14,000 g. The supernatant was removed 

and the pellet resuspended in 300 µl of Solution I. To lyse the cells 300µl of Solution II 

was added and the sample was incubated for 5min at room temperature. Afterwards 300 µl 

3M potassium acetate was slowly added and gently mixed in the meantime. The solution 

was incubated on ice for 5 to 10 min and afterwards centrifuged for 10 min at 14,000 g. 

800 µl isopropanol was placed in a microcentrifuge tube and the supernatant was added. 

The solution was mixed by inverting it a few times. Afterwards it was incubated on ice for 

5 to 10 min. The mixture was centrifuged for 15 min at 14,000 g. The supernatant was 

discarded and the pellet was washed with 500 µl 70% ethanol. After another centrifugation 

step of 5 min at 14,000 g, the supernatant was carefully removed completely and the pellet 

was air dried for about 10 min. The pellet, containing the desired DNA, was dissolved in 

40 µl TE buffer and stored at 4°C. 

The bacmid was analysed by a PCR (2.3.4) with specific primers and a subsequent 

gelelectrophoresis (2.3.5), to verify the correct insertion of the transglutaminase 1 

sequence. 
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2.6.4 Transfecting Sf9 cells and isolating P1 viral stock 

 

Procedure 

9x105 cells per well in a six-well plate were seeded in Sf-900 II SFM. After 1h the cells 

had attach. 2 µg of the recombinant bacmid were diluted in 100 µl unsupplemented 

Grace’s medium. Additionally 6 µl of cellfectin reagent were diluted in 100 µl 

unsupplemented Grace’s medium. The DNA and the cellfectin solution were combined, 

gently mixed and incubated for about 30 min at room temperature. In the meantime the 

cells were washed once with unsupplemented Grace’s medium. 

800 µl of unsupplemented Grace’s medium were added to the sample. The wash solution 

was removed from the cells and the DNA/cellfectin mixture was added. The cells were 

incubated for 5 h at 27°C. Afterwards the transfection media was replaced with 2 ml Sf-

900 II SFM. 

After 96 h the medium, containing the recombinant baculovirus, was collected and 

transferred to a 15 ml tube. To remove cells and debris, the medium was clarified for 5 min 

at 500 g. The supernatant was transferred to a new 15 ml tube. 2% (v/v) fetal bovine serum 

was added and this P1 viral stock was stored at 4°C in the dark. 

 

2.6.5 Amplifying the baculoviral stock 

 

Procedure 

1.4x107 Sf9 cells were seeded in a 75 cm2 flask. After 1 h 2.8x106 virus particles (pfu) 

were added to the cells. The virus concentration of the P1 viral stock was assumed with 

1x106 pfu/ml. The cells were incubated for 96 h at 27°C. Afterwards the medium was 

removed and clarified at 500 g for 5 min. The supernatant was transferred to a new 15 ml 

tube and stored at 4°C in the dark. The virus titer of this P2 viral stock should be about ten 

times higher compared to the original stock. The virus concentration was determined by a 

viral plaque assay. 
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2.6.6 Viral plaque assay 

 

Solutions 

 

4% Agarose Gel: 

4% (w/v)  Low melting agarose 

The solution was autoclaved. 

 

Neutral Red: 

1 mg/ml  Neutral Red 

 

Procedure 

1.2x106 Sf9 cells per well are seeded in two 6-well plates. A tenfold serial dilution from 

10-3 to 10-8 was prepared from the baculoviral stock in Sf-900 II SFM. After the cells had 

attached the medium in the 6-well plates was exchanged with 2 ml of the diluted viral 

solutions. Two wells per dilution were used and the cells were incubated for 1 h. 

In the meanwhile the agarose gel was dissolved in a microwave oven and the 1.3x Sf-900 

medium was heated to 37°C. Three parts of the 1.3x Sf-900 medium were combined with 

one part of the liquefied agarose. The solution was mixed and placed in a 37°C water bath. 

Sequentially starting from the highest dilution, the viral solution was exchanged with 2 ml 

of Sf-900 agarose medium. The overlay was allowed to harden for about 15 min, 

afterwards the plates were moved to an incubator and incubated for 10 days at 27°C. 

After 10 days 500 µl of neutral red solution was added to each well and incubated for 2 h. 

The excess stain was removed. Viral plaques appeared as bright spots in a red background. 

The viral titer of the baculoviral stock was calculated. 

Viral titer: 
inoculum of ml

factordilution plaques ofnumber 

ml

pfu ∗=  

Baculoviral stocks with a lower titer than 1x107 pfu/ml were amplified again (see 2.6.5). 
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2.6.7 Expression of recombinant transglutaminase 1 

 

Procedure 

2.25x107 cells were seeded in a 75 cm2 flask. After 1 h the cells were rinsed once with 

medium. Afterwards 15 ml fresh medium was added. The baculoviral stock solution was 

added to gain a viral titer of 4.5x107 pfu per flask. The cells were incubated for 96 h. The 

medium was aspirated and the cells were harvested in 500 µl 3x SDS PAGE buffer. The 

expression was analysed by Western Blot using an anti-transglutaminase 1 antibody (see 

2.3.3) 

 

2.6.8 Purification of recombinant transglutaminase 1 

 

Solutions 

 

Lysis buffer: 

50 mM   Sodium dihydrogen phosphate 

300mM  Sodium chloride 

10mM   Imidazole 

The pH was adjusted to 8.0 with sodium hydroxide. After pH adjustment 1% (w/v) 

Nonidet P40 was added. 

 

Wash buffer: 

50 mM   Sodium dihydrogen phosphate 

300mM  Sodium chloride 

20mM   Imidazole 

The pH was adjusted to 8.0 with sodium hydroxide. 

 

Elution buffer: 

50 mM   Sodium dihydrogen phosphate 

300mM  Sodium chloride 

250mM  Imidazole 

The pH was adjusted to 8.0 with sodium hydroxide. 
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Procedure 

The recombinant protein was expressed as described in section 2.6.7, but, instead, of 3x 

SDS PAGE buffer 8 ml lysis buffer was used to harvest the cells. The cell suspension was 

incubated for 10 min on ice and afterwards centrifuged for 10 min at 10,000 g and 4°C. 

The supernatant was transferred to a new tube. 

400 µl of Ni-NTA agarose was equilibrated with 10 ml PBS. The equilibrated Ni-NTA 

agarose was transferred to the tube containing the cleared lysate and incubated under 

shaking for 2h at 4°C. 

The mixture was loaded onto a 3 ml column and the flow-through was collected for 

analysis. The column was washed three times with 4 ml wash buffer, each time collecting 

the wash fraction for analysis. Afterwards the protein was eluted four times with 200 µl 

elution buffer. The eluates were collected separately. The purification was analysed by 

SDS-PAGE with Coomassie staining (see 2.3.2) and Western Blot (see 2.3.3). 

Eluate fractions containing transglutaminase 1 were pooled and protease inhibitors were 

added to the solution.  

 

2.6.9 Cross-linking of actin with recombinant transglutaminase 1 

 

Solutions 

 

Extraction buffer: 

2 mM   Tris pH 8.0 

0.2 mM  Adenosine triphosphate sodium salt 

0.5 mM  Dithiothreitol 

0.2 mM  Calcium chloride 

0.01% (w/v)  Sodium azide 

 

Procedure 

20 ml extraction buffer was prechilled on ice water. 1 g acetone powder was added to the 

buffer and stirred on ice for 30 min. The solution was clarified for 10 min at 10.000 g. The 

supernatant was filtered through glass wool into a graduated cylinder and the volume was 

determined. Under stirring potassium chloride was added to a final concentration of 50 

mM. Afterwards magnesium chloride was added to a concentration of 2 mM and adenosine 

triphosphate to a concentration of 1 mM. 
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The solution was incubated at room temperature for 30 min and for 90 min at 4°C without 

stirring. Afterwards the solution was stirred slowly at 4°C and potassium chloride was 

added to a final concentration of 0.6 M. The solution was incubated another 90 min at 4°C, 

this time with stirring. For experiments with F-actin this solution was used. Otherwise the 

solution was centrifuged for 3 h at 84.000 g and the supernatant was discarded. The pellet 

was washed one time with chilled extraction buffer and afterwards soaked in 1 ml buffer 

for 1 h. Subsequently the pellet was resuspended using a Dounce homogenizer. The 

suspension was transferred to a dialysing membrane and dialysed in extraction buffer at 

4°C for 3 days. The buffer was changed every day. To clarify the solution it was 

centrifuged at 84.000 g for 3 h. The supernatant was transferred to a new tube and stored at 

-20°C. 

To cross-link the purified actin, 1/10 volume of the actin solution and 100 ng/ml 

recombinant transglutaminase 1 was added to TG1-P incubation buffer and the solution 

was incubated for 2h at 37°C. To tag the target glutamate of actin with a biotin group 

additionally 1 mg/ml 5-(biotinamido)pentylamine was added. 

 

 

2.7 Cloning of DNA fragments 

 

2.7.1 Generation of competent cells 

 

Solutions 

 

FSB buffer: 

100 mM  Potassium chloride 

45 mM   Manganese dichloride 

10 mM   Calcium dichloride 

3 mM   Hexamine cobalt trichloride 

10 mM   Potassium acetate 

10% (w/v)  Glycerine 

The pH was adjusted to 6.5 with acetate and the solution was sterile filtrated.  
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DMSO: 

Aliquots of 500 µl of dimethyl sulfoxide (DMSO) were aerated with nitrogen and stored at 

-20°C. 

 

SOB medium: 

20 g/L   Casein 

5 g/L   Yeast extract 

10 mM   Sodium chloride 

2.5 mM  Potassium chloride 

The medium was autoclaved and after cooling following sterile solutions were added. 

0.5% (v/v)  1 M magnesium chloride 

0.5% (v/v)  1 M magnesium sulphate 

 

SOB agar: 

16 g/L agar were mixed with SOB basal medium and autoclaved. Afterwards magnesium 

chloride and sulphate were added and the agar plates were poured. 

 

Procedure 

A fresh SOB agar plate was inoculated with Escherichia coli DH5α and incubated at 37°C 

over night. 50 ml SOB medium was inoculated with five colonies from the agar plate and 

incubated at 37°C on a shaker. The OD600nm of the culture was continuously checked and 

the incubation was stopped at an OD of 0.44-0.5 (about 4-6 h). The suspension was 

transferred to a Falcon tube and cooled on ice. Afterwards it was pelleted at about 1000 g 

for 12 min at 4°C. The supernatant was discarded and the pellet dissolved in 14 ml cold 

FSB buffer. The suspension was incubated for 15 min on ice and afterwards centrifuged 

again at 1000 g and 4°C for 10 min. The supernatant was discarded and the pellet 

resuspended in 3.36 ml FSB buffer. The solution was incubated on ice for 5 min. 117.6 µl 

DMSO were added, mixed well and incubated for another 5 min on ice. This step was 

repeated once. The suspension was portioned in 210 µl aliquots and immediately frozen in 

liquid nitrogen. Afterwards the aliquots were transferred to a -80°C freezer. 
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2.7.2 Transformation of competent cells 

 

Solutions 

 

LB medium: 

10 g/L   Casein 

5 g/L   Yeast extract 

10 g/L   Sodium chloride 

The pH was adjusted to 7.4 with sodium hydroxide and the solution was autoclaved. 

 

Ampicillin solution: 

50 mg/ml  Ampicillin 

The solution was sterile filtrated. 

 

Kanamycin solution: 

70 mg/ml  Kanamycin 

The solution was sterile filtrated. 

 

LB agar plates: 

15 g/L agar were added to LB medium and the solution was autoclaved. After the solution 

cooled down to about 60°C 1 µl/ml antibiotic solution was added (ampicillin or 

kanamycin) and the plates were poured. 

 

SOC medium: 

10 µl/ml sterile 2M glucose solution was added to SOB medium (see 3.2.1) 

 

Procedure 

Two agar plates per transformation and an additional plate for the negative control were 

poured. The competent cells were thawed on ice. 10 µl of a ligation reaction (see 2.7.4) 

were filled into a transformation tube and cooled on ice, for negative control additionally 

10 µl sterile double distilled water were used. 100 µl competent cells were added to the 

tubes and incubated for 40 min on ice. The cells were heat shocked for exactly 90 sec in a 

42°C water bath and afterwards cooled immediately on ice for 3 min. 900 µl SOC medium 

were added and incubated on a shaker at 37°C for 90 min. 100 µl of the solution was plated 
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on a agar plate, the remaining 900 µl were pelleted, resuspended in 100 µl SOC medium 

and plated on a second agar plate. The plates were incubated over night at 37°C. Clones 

were picked for analysis (see 2.7.3) and the plates were stored at 4°C. 

 

2.7.3 Analytical plasmid preparation 

 

Solutions 

 

STET buffer: 

0.1 M   Sodium chloride 

10 mM   Tris/HCl pH 8.0 

1 mM   Ethylene diamine tetraacetic acid pH 8.0 (EDTA) 

5% (w/v)  Triton X-100 

 

Lysozyme solution: 

10 mg/ml  Lysozyme 

Dissolved in STET buffer. 

 

TE buffer: 

10 mM   Trsi/HCl pH 8.0 

1 mM   EDTA pH 8.0 

 

RNase A solution: 

20 µg/ml  Ribonuclease A DNase free 

Dissolved in TE buffer. 

 

Sodium acetate solution: 

3 M   Sodium acetate 

The pH was adjusted to 5.2 with acetate. 
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Procedure 

5 ml of antibiotic containing LB media was inoculated with the desired bacteria and 

incubated over night at 37°C on a shaker. 1.5 ml of the culture was pelleted at 12000g for 1 

min. The supernatant was discarded and resuspended in 350 µl STET buffer. 25 µl 

lysozyme solution was added. The tube was placed for 90 sec in a boiling water bath and 

afterwards centrifuged at 12000g for 10 min. The pellet was removed with a sterile 

toothpick and 40 µl sodium acetate and 420 µl isopropanol were added. After incubating 5 

min at room temperature, the tube was centrifuged again at 12000g for 15 min. The 

supernatant was removed and the pellet washed with 1 ml 70% ethanol. After another 

centrifugation step at 12000g for 5 min the supernatant was completely removed and the 

pellet dried for 5-10 min and resuspended in 40 µl RNase A solution. The solution was 

incubated for 10 min at 37°C and stored at -20°C. 

The isolated vector was investigated by restriction analysis with a commercial available 

restriction enzyme and subsequent agarose gel electrophoresis (see 2.3.5). 

 

2.7.4 Ligation of DNA fragments into a vector 

 

Procedure 

The vector and insert DNA were digested with the same restriction enzymes and column or 

gel purified. 100ng of the vector were mixed with the 3-4 molar excess of the insert. The 

reaction volume was brought to 17.5 µl with double distilled water. The sample was 

incubated at 45°C for 5 min. 2 µl of 10x Ligase buffer and 0.5 µl of T4 DNA Ligase (0.5 

units) was added. The ligation was performed at 16°C for 4 h or over night at 4°C. 

Afterwards the sample was heated to 65°C for 10 min. 10 µl of this ligation reaction was 

used for transformation (see 2.7.2). 
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2.8 Conditional transglutaminase 1 knock-out mouse 

 

2.8.1 Assembly of the transglutaminase 1 knock-out vector 

 

Procedure 

Genomic DNA of C57BL/6 mice was isolated with a genomic DNA isolation kit. Via a 

PCR reaction (see 2.2.4) three DNA fragments (L, M and R) were amplified and cloned 

into a vector (see 2.7). The used primer pairs were TG1 KO L, TG1 KO M and TG1 KO R 

(see 2.1.5). With the help of the PCR primers specific restriction sites were inserted at the 

ends of the fragments (see 2.1.5, underlined sequences). With these restriction enzymes the 

fragments were consecutively subcloned into the destination vector pTarget. 

The emerging vector pTarget TG1-KO was isolated from the bacteria with a commercial 

available midi prep kit and linearised with NotI. Afterwards the vector was electroporated 

into mouse stem cells and the cells were cultivated in medium containing the selective 

antibiotic G418. The evolving clones were singularised and their DNA was isolated and 

analysed. 

 

2.8.2 Analysis of stem cell clones via Southern blot 

 

Solutions 

 

Depurination solution: 

0.125 M  Hydrochloric acid 

 

Denaturation solution: 

87.66 g/L  Sodium chloride 

20 g/L   Sodium hydroxide 

 

Neutralisation buffer: 

87.66 g/L  Sodium chloride 

60.5 g/L  Tris 

The pH was adjusted to 7.5 with hydrochloric acid. 
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20x SSC: 

3 M   Sodium chloride 

0.3 M   tri-Sodium citrate dihydrate 

The pH was adjusted to 7.0 with hydrochloric acid and the solution was autoclaved. 

 

Low stringency wash buffer: 

0.1% (w/v)  Sodium dodecylsulphate 

2x   SSC 

 

High stringency wash buffer: 

0.1 % (w/v)  Sodium dodecylsulphate 

0.5x   SSC 

 

Maleic acid buffer: 

0.1 M   Maleic acid 

0.15 M   Sodium chloride 

The pH was adjusted to 7.5 with sodium hydroxide and the solution was autoclaved. 

 

Antibody wash buffer: 

0.3% (w/v)  Tween 20 

Diluted in maleic acid buffer. 

 

Blocking buffer: 

10% (v/v)  10x blocking buffer (Roche) 

Diluted in maleic acid buffer.  

 

Detection buffer: 

0.1 M   Tris 

0.1 M   Sodium chloride 

The pH was adjusted to 9.5 with hydrochloric acid. 
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Procedure 

Genomic DNA of C57BL/6 mice was isolated with a commercial available kit and two 

DNA fragments (S1 and S2) were amplified over an PCR reaction (see 2.3.4) and cloned 

(see 2.7). The used primer pairs were TG1 SB S1 and TG1 SB S2. The constructs 

containing these fragments were isolated and the fragments were excised with BamHI and 

NotI and gel purified. A Digoxygenin labelling reaction with the DIG high prime DNA 

labelling and detection kit was performed, following the random prime method. The 

labelled probes were purified with a PCR Purification kit. 

The genomic DNA of the stem cell clones (see 2.8.1) was digested with BamHI (for S1) or 

HindIII (for S2) and separated over an agarose gel (see 2.3.5). The gel was incubated for 

10 min in depurination buffer, for 30 min in denaturation buffer, for 30 min in 

neutralisation buffer and finally for 15 min in 20xSSC. Afterwards the separated DNA was 

blotted in a capillary blot to a nylon membrane. Therefore, in a dish filled with 20xSSC a 

platform was created. On this platform two crossed bridges of whatman papers, their ends 

hanging into the 20xSSC solution, were build up. At the crossing of the bridges a pile of 

three soaked whatman papers, the gel, the membrane, another three soaked whatman 

papers and a 5 cm stack of paper towels was build up. On top of the pile a weight of about 

500g was placed. The gel was blotted over night. 

The next day the pile was dismantled and the nylon membrane was fixated at 80°C for 2 h. 

Afterwards the membrane was transferred to a hybridization bag and prehybridised with 

DIG Easy Hyb hybridization solution at 38°C for about 4 h under shaking. About 25 ng 

DIG labelled DNA probe per ml hybridization solution was transferred to a new 

microcentrifuge tube and denaturated in a boiling water bath for 5 min. Afterwards the 

probe was cooled on ice water and diluted in DIG Easy Hyb hybridisation solution. The 

prehybridisation solution was exchanged with the hybridisation solution and the blot was 

hybridised over night at 38°C under constant agitation. 

The next day the blot was washed two times for 10 min in low stringency buffer at room 

temperature and two times for 30 min in high stringency buffer at 68°C on a shaker. 

Afterwards the blot was washed in antibody wash solution for 3 min at 38°C and blocked 

for 30 min in blocking solution. The blocking solution was exchanged with the antibody 

solution consisting of anti-Digoxygenin antibody diluted 1:10000 in blocking solution. The 

blot was incubated for another 30 min with the antibody at 38°C. Afterwards it was 

washed two times for 15 min at 38°C in antibody washing buffer and additionally 

incubated for 3 min with detection buffer. 
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The detection buffer was poured of and the hybridization bag was cut open. The membrane 

was covered with CSPD chemiluminescence buffer and immediately covered again with 

the bag. After 5 min of incubation the bag was sealed again and the blot was incubated for 

another 10 min. Afterwards the blot was exposed to X-ray film for 20-45 min. 
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3. Results 

 

3.1 Transglutaminase 1 expression in the murine brain 

 

So far only limited data are available for the expression pattern of tranglutaminase 1 in the 

brain. Transglutaminase 1 has been detected in the cerebral cortex, the corpus callosum 

and the cerebellum (Kim, Grant et al. 1999). It has been found in neuronal and glial cells. 

However, its definite expression pattern remains unknown. 

To further elucidate the occurrence of transglutaminase 1 in the brain, 7 µm thick coronal 

sections of the brain of an adult male C57BL/6 mouse were prepared and 

immunohistochemically stained against transglutaminase 1 and microtubule-associated 

protein 2 (Mtap2) respectively glial fibrilary acidic protein (GFAP). Mtap2 is a neuronal 

marker. It appears mainly in dendritic microtubules (Friedrich and Aszodi 1991). GFAP on 

the other hand is a glial marker, primarily for astrocytes, occurring in intermediate 

filaments (Eng, Ghirnikar et al. 2000). To back up the findings with the anti-

transglutaminase 1 antibody a synthetic peptide (TG1-P; sequence: YEQHKLPSSWPF), 

known to be a preferred substrate of transglutaminase 1 (Sugimura, Hosono et al. 2008), 

was used to visualise transglutaminase 1 via its activity. The glutamine in TG1-P is a target 

for transglutaminase 1 activity, but not for the transglutaminases 2 and 3, as well as factor 

XIIIa. Transglutaminase 1 cross-links the peptide to nearby proteins. This activity is 

visualised via a fluorescein marker at the C-terminus of the peptide. 

Throughout the brain the anti-translgutaminase 1 antibody stained the endothelial lining of 

blood vessels (see Fig. 3.1). The signal was located at the membranes of endothelial cells. 

Additionally transglutaminase 1 stainings were also found in parts of the ventricular 

system in ependymal cells, like in the lateral ventricle in figure 3.1. Similar to the 

endothelium the signal was located at the membranes, but most common at the basal side. 

So it seems that a membrane-bound form of transglutaminase 1 is expressed in endothelial 

and ependymal cells of the brain. 
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              A          B 
 
 
 
 
 
 
 
 
 
              C          D 
 
 
 
 
 
 
 
 
 

Fig. 3.1: Transglutaminase 1 expression in blood vessels and ventricles. 

Detection of transglutaminase 1 activity with TG1-P (A+C) and 

immunohistochemical stainings against transglutaminase 1 (B+D) in cryostatic 

slices of the mouse brain. 

Scale bar: 10 µm 

 

Other prominent signals of the anti-transglutaminase 1 antibody were found in different 

fibre tracts, like the corpus callosum (see Fig. 3.2), the amygdala capsule and the external 

capsule (see Fig. 3.3). A streak like staining was found. The intensity of these streaks 

decreased towards the borders and could not be linked to specific structures or cell borders, 

although they colocalised at least partly with GFAP stainings.  

In addition transglutaminase 1 staining was found in parts of the caudoputamen (Fig. 3.3). 

Like the structures before the expression was mainly restricted to nerve fibres. But again 

the signal was only found sparsely in a streaked or punctuated pattern and not throughout 

all of the fibres. 

Even though these stainings look rather unspecific, the immunohistochemcial findings 

were supported by transglutaminase 1 activity stainings using TG1-P. Additionally both 

negative controls, an immunohistochemical staining without primary antibody and a TG1-

P staining with EDTA (to inhibit the calcium dependent transglutaminase activity), were 

negative in this regions. It seems that transglutaminase 1 is expressed in parts of nerve 

fibres. It is partially localised in astrocytes, but for the most parts in GFAP and Mtap2 

negative regions, presumably axons. 
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Fig. 3.2: Double staining in the region of the corpus callosum. Cryostatic slices of a mouse brain 
were immunohistochemically stained against A: transglutaminase 1, B: Mtap 2, C: overlay of A+B, 
D: transglutaminase 1, E: GFAP, F: overlay of D+E. G: Staining of transglutaminase activity with 
TG1-P, H: phase contrast image, I: overlay of G+H, J: negative control for anti-transglutaminase 1 
staining (corpus callosum in the upper half), K: negative control for TG1-P staining (corpus 
callosum on the left side) 
Scale bar: 10µm (A-C, J+K) or 20µm (D-I). 
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   Fig. 3.3: Double staining in the region of the external capsule and the caudoputamen. Cryostatic 

slices of a mouse brain were immunohistochemically stained against transglutaminase 1 (A, D, K 

and N), Mtap 2 (B and L) and GFAP (E and O). Additionally transglutaminase activity was 

visualised with TG1-P (H and Q), I and R are phase contrast images of the TG1-P stainings. The 

pictures in the last row are overlays of the two previous pictures. The stainings A-J were in the 

region of the external capsule, the stainings K-S were in the caudoputamen. 

Scale bar: 10µm. 
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Fig. 3.4: Double staining of the cerebral cortex and the cerebellum. Cryostatic slices of a mouse 

brain were immunohistochemically stained against A: transglutaminase 1, B: Mtap 2, C: overlay of 

A+B, D: transglutaminase 1, E: GFAP, F: overlay of D+E. G: Staining of transglutaminase activity 

with TG1-P, H: phase contrast image, I: overlay of G+H. 

Scale bar: 10µm (A-C and G-I) or 20µm (D-F) 
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Besides these prominent stainings far-scattered transglutaminase 1 positive astrocytes were 

found in the cerebral cortex and in the cerebellum (see Fig. 3.4). Few positive neurons 

were also found in the granular layer of the cerebellum (see Fig. 3.4). In contrast to the 

endothelial and ependymal cells, no clear membrane localisation of the signal was visible. 

Summing up in the murine brain membrane-bound transglutaminase 1 was found in 

endothelial cells of the brain vascular system and partly in ependymal cells of the 

ventricular system. In neural cell types some astrocytes of the cerebral cortex and the 

cerebellum, as well as few neurons of the cerebellar granule layer were transglutaminase 1 

positive. But most striking was the transglutaminase 1 staining found in different fibre 

tracts, most likely in projecting axons. 
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3.2 Transglutaminase 1 expression in cerebellar granule cell culture 

 

To further investigate the role of transglutaminase 1 in the brain, considering its expression 

in some cells of the cerebellum, cell cultures of primary cerebellar granule cells were 

chosen. The cells were isolated form five days old baby mice and cultivated for up to four 

weeks. Figure 3.5 shows anti-transglutaminase 1 stainings at various time points in this 

culture. 

           
 A        B 
 
 
 
                   G     
 
 
 
 
 
 

 C        D 
 
 
 
 
 
 
 
 
 
 E        F 
 
 
 
 
 
 
 
 
 
Fig. 3.5: Time dependent expression of transglutaminase 1 in murine cerebellar granule cells. Cell 
cultures of cerebellar granule cells where fixed and stained against transglutaminase 1 at various 
time points. A: DiV 1; B: DiV 3; C: DiV 5; D: DiV 9; E: DiV 14; F: DiV 28. The * marks cells with a 
weak transglutaminase 1 expression. G: Western Blot of 14 days old granule cell cultures against 
transglutaminase 1. 72 and 95 kDa are marked in the blot. 
Scale bar: 10 µm 
 

72 

95 
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During the first five days only a faint staining of a handful of cells was visible, becoming 

stronger and more frequent over cultivation time. Interestingly the staining mostly showed 

no clear membrane localisation of transglutaminase 1, therein reflecting the 

immunohistochemical stainings, indicating that a high percentage of the expressed 

transglutaminase 1 exists in its soluble form. At later time point (>1 week) groups of 

transglutaminase 1 positive cells were observed frequently. The expression intensity could 

then be divided roughly in three groups, transglutaminase 1 negative cells, cells with a low 

expression of transglutaminase 1 (Fig. 3.5 D+E cells marked with an asterisk) and cells 

with a high expression of transglutaminase 1 (Fig 3.5 D+F). Western Blot analysis of later 

cultures with an anti-transglutaminase 1 antibody revealed a single band at about 92 kDa 

(Fig 3.5 G), which matched the calculated mass of the soluble transglutaminase 1 protein. 

 

         Tranglutaminase 1                       GFAP/Mtap2                                     overlay 
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Fig. 3.6: Double stainings of murine cerebellar granule cells. 5 days old cultures (A-C) and 9 days 
old cultures (D-I) of cerebellar granule cells were stained against A: transglutaminase 1, B: GFAP, 
C: overlay of A+B, D: transglutaminase 1, E: GFAP, F: overlay D+E, G: transglutaminase 1, H: 
Mtap2, I: overlay of G+H.  
Scale bar: 10µm. 
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Double stainings against transglutaminase 1 and Mtap2 respectively GFAP gave 

information about the cell types of transglutaminase 1 positive cells. In the first eight days 

of the culture only glial cells were found to be transglutaminase 1 positive (Fig. 3.6 A-C). 

At day nine in culture the first transglutaminase 1 positive neurons were found (Fig. 3.6 G-

I). But even though the total number of neurons exceeded the number of glial cells in the 

culture, the number of transglutaminase 1 positive neurons remained relatively low during 

the cultivation time, compared to transglutaminase 1 positive astrocytes. Additionally the 

average signal strength in glial cells lay clearly above the expression in neuronal cell types. 

 



Results 

 59 

3.3 Transglutaminase activity in neuronal cell cultures 

 

Transglutaminase 1 is normally dormant intracellulary and has to be activated by 

heightened calcium levels. Therefore, the activity of transglutaminase 1 in the cell culture 

was analysed. A synthetic substrate for transglutaminases named 5-

(biotinamido)pentylamine (5-BPA) was used for these experiments. The molecule consists 

of a small primary amine which gets linked to a target glutamine of transglutaminases by 

their activity. For detection purpose this amine is coupled to a biotin, which can be 

detected with streptavidin. The 5-BPA is membrane permeable and can be added directly 

to the cell culture. Given that 5-BPA is a substrate of all members of the transglutaminase 

family, prior to testing the activity, the expression of other transglutaminases known to be 

found in the cerebellum, namely transglutaminase 2, has to be checked. Therefore, granule 

cell cultures were stained against transglutaminase 2 (Fig. 3.7). 

 
 

               A                                                          B  
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Fig. 3.7: Transglutaminase 2 
expression in murine cerebellar 
granule cells. Immunocytochemical 
stainings of granular cell cultures (DiV 
10: A+B, DiV 21: C-E) against 
transglutaminase 1 (A+C) and trans-
glutaminase 2 (B,D,E). The white 
arrow points to the weak 
transglutaminase 2 staining in the 
soma of a cell. 
Scale bar: 10 µm. 
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 In young cultures there was no transglutaminase 2 signal detectable (Fig. 3.7 B). Only in 

cultures older than two weeks a spotted staining in the soma of some cells was visible (Fig. 

3.7 E). Transglutaminase 2 is partly expressed extracellulary, so it is most likely that in 

these cells the transglutaminase 2 is located in some type of secretory vesicles. To block 

this presumed extracellular activity of transglutaminase 2 a membrane impermeable 

inhibitor of transglutaminases called R281 was added to the cultures in all activity 

experiments. 
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Fig. 3.8: Transglutaminase activity in murine cerebellar granule cells. Granule cell cultures (DiV 21) 

preincubated with 5-biotinamidopentylamine (A-C and G-J) or without preincubation (D-F), were 

stained against biotin (A,D,G,I) and synaptophysin (B+E) or transglutaminase 1 (H+J). C and F are 

overlays of A+B, respectively D+E. 

Scale bar: 10 µm 
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For these experiments cultures were incubated with 0.1 mM 5-BPA for 16 hours, before 

the cells were fixed and stained with streptavidin, detecting the biotin group of the 5-BPA 

and thereby visualising the transglutaminase activity (Fig. 3.8). The streptavidin stainings 

showed a punctuated pattern colocalised with synaptic markers (Fig. 3.8 A-C) and a 

streaked pattern, suggesting staining of cytoskeletal structures. These staining patterns 

were also found in culture which were not preincubated with 5-BPA (Fig. 3.8 D-F). They 

most likely display naturally biotinylated proteins. The direct comparison of streptavidin 

stainings of cells expressing transglutaminase 1 (Fig. 3.8 G+H) with cells lacking 

transglutaminase 1 (Fig. 3.8 I+J), led to the conclusion that the transglutaminase 1 in this 

cell culture was inactive under normal cultivation conditions. So the cerebellar granule cell 

culture seems to be an improper model system to investigate the activity of 

transglutaminase 1 in neural cells. 

Alternatively a telencephalic cell culture from the chicken was tested. These cells were 

isolated from chicken embryos at embryonic day eight to nine and cultured under serum 

free conditions. There is no specific antibody available against chicken transglutaminase 1 

so far. Several different transglutaminase antibodies were tested in this cell culture, but no 

specific signal was detectable with one of them. To still be able to visualise the potential 

transglutaminase 1 expression in these cells the transglutaminase 1 specific peptide TG1-P 

was used. Staining with TG1-P revealed a solemnly membrane associated signal (see Fig. 

3.9). This signal could be prevented by addition of EDTA or R281, so it seems to be based 

on transglutaminase activity. However, TG1-P was not tested with chicken 

transglutaminases, so these stainings are no clear evidence for transglutaminase 1 

expression. Nevertheless, a membrane-bound transglutaminase was expressed in this cell 

culture, so it was tested for transglutaminase activity with 5-BPA (Fig. 3.10). 

Streptavidin stainings of cultures incubated with 5-BPA showed a specific staining of some 

nuclei (Fig. 3.10 B), most likely due to transglutaminase 2 activity, which can also act as a 

transcription regulator in the nucleus. In addition a punctuated staining of neurites was 

found (Fig. 3.10 E). This staining was colocalised with the synaptic marker synapsin I. 

Thus transglutaminase activity is localised in synaptic endings of chicken telencephalic 

cells. 
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 A                                               B                                               C 

 
 
 
 
 
 
 
Fig. 3.9: TG1-P staining of chicken telencephalic cultures. Telencephalic cultures (DiV 13) were 
stained with TG1-P. The fluorescent labelled peptide is cross-linked to the membranes of the cells 
due to transglutaminase activity (A+B). By addition of R281 the transglutaminase activity is blocked 
and the staining disappears (C). 
Scale bar: 10 µm 
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Fig. 3.10: Transglutaminase activity in chicken telencephalic 
cultures. Telencephalic cell cultures (DiV 18) preincubated with 5-
biotinamidopentylamine (A-F) or without preincubation (G) and 
stained against synapsin I (A,D) or biotin (B,E,G). C and F are 
overlays of A+B respectively D+E. 
Scale bar: 12.5 µm (A-C and G) or 5 µm (D-F). 
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     A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
B Fig. 3.11: Target proteins for transglutaminases in chicken telencephalic 

cultures. A: Cell lysates of telencephalic cell cultures (DiV 14) with (+) or 

without (-) 5-biotinamidopentylamine preincubation (see first row) were 

blotted against biotin (S) or β-actin (A) (see second row). In a second step 

the lysates were purified over a streptavidin column (see third row) and 

blotted afterwards. The black arrow points at the band of the same height 

as β-actin in the streptavidin blot. B: Cell lysates of organotypic cultures of 

chicken telencephalon cultivated for 20 days, incubated for one day with 5-

BPA and purified over a streptavidin column. The eluate was blotted 

against β-actin. The numbers indicate the positions of a molecular weight 

marker in kDa. 
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To identify the proteins that are transamidated by transglutaminase activity, cells 

preincubated with 5-BPA were lysed. The proteins where separated by a polyacrylamide 

gel, blotted and stained against biotin via streptavidin (Fig. 3.11 A). The comparison 

between the streptavidin staining of cell lysates incubated with 5-BPA and the negative 

control showed several bands which only occur after addition of 5-BPA, indicating that 

these proteins were biotinylated over a transglutaminase dependent cross-linking of 5-

BPA. One of the biotinylated bands in the streptavidin blot was found to be at the same 

height as β-actin (Fig. 3.11, black arrow). To clarify the nature of this band the cell lysate 

was purified over a streptavidin agarose column, thereby isolating all biotinylated proteins 

and the eluates of this column were blotted against β-actin (Fig. 3.11 A, second blot). In 

contrast to the negative control, in the eluate of cells preincubated with 5-BPA β-actin was 

detectable, although the addition of 5-BPA had no effect on the expression level of β-actin 

(Fig. 3.11 A, second blot lane 3 and 4). 5-BPA seemed to be cross-linked to β-actin via 

transglutaminase activity. Combining these facts it is most likely that β-actin is one target 

protein for transglutaminases at least in telencephalic cell cultures of the chicken. 

Regarding its membrane localisation transglutaminase 1 could be the enzyme cross-linking 

synaptic β-actin. Purification of 5-BPA incubated chicken organotypic slice cultures of the 

telencephalon over a streptavidin column showed the same results concerning the cross-

linking of 5-BPA to β-actin (Fig. 3.11 B). 

To unravel the exact cross linking mechanism of β-actin column purified lysates of 

telencephalic cultures incubated with 5-BPA were separated over a polyacrylamide gel and 

the β-actin band was cut out. The protein was extracted from the gel, digested with trypsin 

and analysed with a mass spectrometer (Tab. 3.1). The target glutamine becomes linked to 

the 5-BPA through transglutaminase activity and thereby the mass of the protein fragment 

containing the target glutamine should depart distinguishable from the normal value. 

Unfortunately only some fragments of the actin were found by the mass spectrometer, not 

including any altered one. But at least five glutamine residues can be excluded as targets 

for transglutaminase activity in the telencephalic cells, sparing seven potential target 

glutamines. 
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                           10                                       20                                       30                                       40                                      50 

 MDDDI AALVV DNGSG MCKAG FAGDD APRAV FPSIV GRPRH QGVMV GMGQK  

                                        60                                       70                                       80                                       90                                     100 
 DSYVG DEAQS KRGIL TLKYP IEHGI VTNWD DMEKI WHHTF YNELR VAPEE  

                                        110                                     120                                     130                                     140                                   150 
 HPVLL TEAPL NPKAN REKMT QIMFE TFNTP AMYVA IQAVL SLYAS GRTTG  

                                        160                                     170                                     180                                     190                                   200 
 IVMDS GDGVT HTVPI YEGYA LPHAI LRLDL AGRDL TDYLM KILTE RGYSF  

                                        210                                     220                                     230                                     240                                   250 
 TTTAE REIVR DIKEK LCYVA LDFEQ EMATA ASSSS LEKSY ELPDG QVITI  

                                        260                                     270                                     280                                     290                                   300 
 GNERF RCPEA LFQPS FLGME SCGIH ETTFN SIMKC DVDIR KDLYA NTVLS  

                                        310                                     320                                     330                                     340                                   350 
 GGTTM YPGIA DRMQK EITAL APSTM KIKII APPER KYSVW IGGSI LASLS  

                                        360                                     370                                    
 TFQQM WISKQ EYDES GPSIV HRKCF 
 

Tab. 3.1: Mass spectrometer analysis of β-actin from chicken. Marked in red are the protein 

fragments found in the mass spectrometer. Glutamines detected in the MS are marked 

green, undetected glutamines are marked blue. 

 

To clarify if β-actin is really a target for transglutaminase 1, recombinant human 

transglutaminase 1 was expressed in Sf9 cells, with the help of the baculovirus method. 

The recombinant transglutaminase contains a His6-tag, so it could be purified over a Ni-

NTA column. The transfected Sf9 cells showed a transglutaminase 1 positive band in the 

Western Blot at the predicted height (Fig. 3.12 A, lane 1). After column purification no 

other band was detectable via Coomassie staining. Surprisingly after prolonged storage the 

transglutaminase band at about 92 kDa diminishes and a new band appears with a much 

higher molecular weight, hardly entering the stacking gel (Fig 3.12 A, lane 4). This band is 

also transglutaminase 1 positive. The most likely explanation is that tranglutaminase 1 

cross-links itself forming high molecular complexes, even though the storage buffer does 

not contain any calcium, so the activity level should be rather low. 

To test the activity of the recombinant protein, dimethylcaseine, a known target for 

transglutaminases used in many activity assays, was incubated with 5-BPA and the 

expressed transglutaminase (Fig 3.13 A). Dimethylcaseine consists of several different 

proteins. The recombinant transglutaminase cross-linked the 5-BPA mainly to a protein of 

about 30 kDa, such cross-link was not found in samples without transglutaminase 1. Thus 

the recombinant transglutaminase was functional. 
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Fig. 3.12: Expression of recombinant transglutaminase 1 and extraction of actin. A: Western Blot of 

cell lysates of transglutaminase 1 expressing Sf9 cells (lane 1), eluate fractions 3 and 4 after 

purification of the lysates over a Ni-NTA column (lane 2+3) and eluate after prolonged storage 

(lane 4) the blot was stained against transglutaminase 1. B: Coomassie stained gel of an actin 

extraction from brain acetone powder. The arrow marks the actin band. The numbers indicate the 

mass of a molecular weight marker in kDa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13: Activity of recombinant transglutaminase 1. A: Molecular weight marker (lane 1), 

Coomassie staining of DMC (lane 2), DMC incubated with 100 ng transglutaminase 1 and 5-BPA 

(lane 3), DMC incubated with 10 ng transglutaminase 1 and 5-BPA (lane 4) and DMC incubated 

without transglutaminase 1 and with 5-BPA (lane 5). B: Western Blot stained with Streptavidin of G-

actin with transglutaminase 1 and 5-BPA (lane 1), F-actin with transglutaminase 1 and 5-BPA (lane 

2), F-actin without transglutaminase 1 but with 5-BPA (lane 3) and F-actin incubated with 

transglutaminase 1 and without 5-BPA (lane 4) stained against β-actin. 
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To check if the expressed transglutaminase also cross-links β-actin, actin was purified from 

brain acetone powder by successive polymerisation and depolymerisation (Fig. 3.12 B) and 

incubated with 5-BPA and the recombinant transglutaminase. Globular actin (G-actin) was 

only weakly cross-linked with 5-BPA (Fig 3.13 B, lane 1), in contrast F-actin was by far 

stronger labelled (Fig. 3.13 B, lane 2). So β-actin is a target for recombinant 

transglutaminase 1 in vitro and F-actin is a better substrate than G-actin. To clarify whether 

inter- or intramolecular bonds are catalysed by transglutaminase 1, incubations of F-actin 

and transglutaminase 1 without 5-BPA were performed. Subsequent Western blot analysis 

revealed only a single band of about 45 kDa (Fig 3.13 B, lane 4), representing an actin 

monomer, showing that actin was not cross-linked to any other protein in the sample, but 

rather intermolecular. 
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3.4 Synaptic activity dependent activation of transglutaminases 

 

Combining the calcium dependency of transglutaminases with the synaptic localisation at 

least in chicken telencephalic cultures an elegant regulatory mechanism seems possible. In 

glutamatergic neurons synaptic activity leads to an influx of calcium in pre- and 

postsynaptic endings, heightening the local intracellular calcium level to an extent where 

transglutaminases could be activated. 

To check this hypothesis about neuronal activity dependent transglutaminase activation, 

neurons in culture had to be stimulated over a prolonged time. To reach this goal a light 

gated cation channel named channelrhodopsin 2 (Chop2) was used (Nagel, Szellas et al. 

2003). Chop2 is sensitive for blue light and leads after activation to a depolarisation of 

cells by influx of cations. This depolarisation should activate voltage gated channels in 

neurons, leading to an action potential (Boyden, Zhang et al. 2005). To easily detect this 

activation another construct was used, a fusion protein of aequorin and a modified green 

fluorescent protein (eGFP). Both originate from the jellyfish Aequorea victoria 

(Shimomura, Johnson et al. 1962; Chalfie 1995). Aequorin is a calcium dependent 

chemiluminescent protein (Jones, Hibbert et al. 1999), able to detect the calcium influx 

attending the activation of a neuron. The aequorin signal, however, is very weak and hard 

to detect. Therefore, an eGFP was fused to the aequorin. The energy of the excited 

aequorin is transferred radiationless via fluorescence resonance energy transfer (FRET) to 

the eGFP. The emerging green fluorescence is about 50 times stronger than the aequorin 

signal alone (Baubet, Le Mouellic et al. 2000). 

Non dividing primary cells are very hard to transfect with a vector, therefore, a new model 

system was chosen for these experiments, a cell line called PC12. PC12s are rat 

pheochromocytoma cells. They can be reversibly differentiated into a neuronal phenotype 

(Greene and Tischler 1976), by addition of nerve growth factor (NGF) to the medium. It is 

known that PC12 cells express transglutaminase 1 and 2 (Byrd and Lichti 1987). To 

transfect these cells with Chop2 respectively aequorin/eGFP two constructs were used 

(Fig. 3.14), containing the proteins under the control of the cytomegalovirus immediately 

early promoter (CMV) (Boshart, Weber et al. 1985) for expression in eukaryotic cells. The 

vector pBK-CMV/Chop2-YFP contains additionally a yellow fluorescent protein (YFP) as 

a marker gene, to check the transfection and expression efficiency. 
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Fig. 3.14: Vector maps of pBK-CMV/Chop2+YFP and pGCA2. Maps of the vectors for 

expressing the Channelrhodopsin 2 YFP and the Aequorin eGFP fusion proteins in PC12 cells 

under the control of a CMV promoter. 
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Fig. 3.15: Transfections of PC12 cells with Channelrhodopsin-2/YFP and 

Aequorin/eGFP. Undifferentiated PC12 cells were transfected with the vector pBK-

CMV/Chop2+YFP (A+B) respectively pGCA2 (C+D). Scale bar: 50 µm. 
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PC12 cells were tranfected separately with both constructs (Fig. 3.15). The membrane 

bound localisation of the channelrhodopsin/YFP was clearly distinguishable from the 

cytosolic expression of the aequorin/eGFP. The expression strength varied within the 

culture, but the transfection efficiency seemed sufficient to induce network activity and 

monitor it respectively. 

To check the Chop2 activity, differentiated PC12 cells were transfected with pBK-

CMV/Chop2+YFP and recorded via patch clamp 72 hours after transfection, at the peak of 

Chop2 expression. Prior to recordings the cells were incubated with all-trans retinal for 

half an hour to activate the Chop2. Retinal is the co-factor of Chop2. Only cells showing a 

strong YFP signal were chosen for recording. These cells were stimulated with white light 

from a mercury-arc lamp, normally used for fluorescence excitation. Figure 3.16 shows 

recordings of two stimulated cells. Illumination resulted in an initial strong depolarisation 

to the extent of maximally 10 mV (black arrows), which declined to a solid state after 

about 100 ms. This behaviour fits well to the known desensitisation of the channel. There 

was no active response from the cell to the depolarisation visible. The first recording 

shows the behaviour in response to two consecutive illuminations, spaced by one second. 

The reaction to the second illumination had a lower initial depolarisation, demonstrating 

that the channel needed more time to recover completely. However, with recovery times 

above ten seconds the cells could be activated several times in a row showing a 

comparable response pattern. Nevertheless, no active response of the stimulated cells was 

recordable. 

To further characterise the cells electrophysiologically, fully differentiated untransfected 

PC12 cells were recorded with the whole cell patch clamp technique (Fig. 3.18). The 

resting potentials of the recorded cells lay between -30 and -80 mV, with the median at 

about -40 mV. Not all recorded cells showed any response to depolarising stimuli. But in 

all positive cases, a depolarisation to -20 mV or above was necessary to evoke an active 

response. This shows that the depolarisation of maximal 10 mV, achieved by activation of 

Chop2, is not strong enough to stimulate the cells, in particular because most cells showed 

a reaction comparable to the second record of figure 3.16, with a depolarisation below 5 

mV. Furthermore, no recorded PC12 cell showed a mature action potential. Only relative 

broad and low voltage peaks could be evoked, casting some doubt that the cells possess 

real synaptic activity. The reactivity of the aequorin/eGFP fusion protein was tested using 

the calcium ionophore A23187. This ionophore assembles itself into the membrane of cells 
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and allows divalent cations (mostly Mn2+, Ca2+ and Mg2+) to enter the cell (Reed and 

Lardy 1972).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.16: Whole cell patch clamp recordings of Channelrhodopsin 2 

transfected PC12 cells. Seven days differentiated PC12 cells where 

transfected with pBK-CMV/Chop2+YFP. 72h after transfection retinal 

was added. Under a fluorescence microscope transfected cells were 

selected and stimulated with white light. Electrophysiological recordings 

were performed intracellulary with a sharp electrode. The black arrows 

indicate the initial depolarization at stimulation. 

 

 

 

 

Fig. 3.17: Western Blot of PC12 cells transfected with 

Aequorin/eGFP. Undifferentiated PC12 cells were 

transfected with pGCA2 and 72h after transfection the 

cells were lysed and the lysates blotted against an 

anti-GFP antibody. The numbers indicate the mass of 

a molecular weight marker in kDa. 
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The cells were investigated under a microscope in the dark and the ionophore was added to 

the medium. The inflow of calcium should activate the aequorin and leads to a green 

fluorescence. However, no reaction was visible. Even with long exposed images of a 

camera, no signal was detectable. To investigate the functional expression of 

aequorin/eGFP, PC12 cells were transfected with pGCA2 and cell lysates were blotted 

against an anti-GFP antibody (Fig. 3.17). Instead, of a single band at about 50 kDa, 

representing the fusion protein, three different bands ranging from over 50 to 33 kDa were 

visible. The highest band presumably represents the complete protein. The smaller bands 

were most likely products of an incomplete transcription or degradation products of 

protease activity. So only about one third of the protein seems to be complete and thereby 

functional, probably this reduces the aequorin/eGFP signal under the detection limit. 

 
Fig. 3.18: Whole cell patch clamp recordings of PC12 cells. Electrophysiological recordings from 

ten days differentiated PC12 cells. The stimulus ranged from 0.2 nA to 0.8 nA and lasted for 200 

ms. 
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3.5 Transglutaminase 1 knock-out mouse 

 

Probably the best method to investigate the in vivo function of a protein is the generation of 

a knock-out mutant. The developing phenotype can reveal a lot about the role of a protein 

in an organism. The classical example for such a mutant is a knock-out mouse. Via 

recombination the original gene is replaced with a non-functional construct, leading to a 

system wide knock-out of this gene. In the case of transglutaminase 1 such a constitutively 

knock-out already exists (Matsuki, Yamashita et al. 1998). Unfortunately the developing 

mice are not viable postnatal due to skin defects leading to fatal water loss. To overcome 

this problem we plan to use a conditional knock-out mutant of transglutaminase 1 (Lobe 

and Nagy 1998), utilising the Cre/lox-system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.19: Vector map of the transglutaminase 1 knock-out 

construct. The pTarget/TG1 KO vector containing both 

homology regions (L+R) the knockout region (M) flanked by 

loxP sites (in green) and the Neomycin resistance cassette 

flanked by FRT sites (in yellow). Under it the organisation of the 

tranglutaminase 1 gene with it’s exons (orange boxes) and the 

regions spanned by the KO construct with the KO region (M) 

containing the exons III and IV. 
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To interrupt the gene about 1800 base pairs including the exons III and IV should be 

deleted (Fig 3.19). This leads to a frame-shift mutation in the coding sequence, introducing 

a premature stop codon. The remaining fragment lacks the catalytic core and should posses 

no enzymatic activity. To achieve this knock-out a vector was constructed (Fig. 3.19) 

containing a ~1 kb long homologous fragment upstream (fragment L) and a ~5 kb long 

homologous fragment downstream (fragment R) of the targeted knock-out fragment 

(fragment M). Fragment M is bordered by two loxP sites, enabling to excise this part by 

Cre recombinase activity. Additionally a neomycin resistance cassette was inserted, to 

screen the stem cells with G418 after transfection. This cassette is flanked by FRT sites to 

delete it after successful transfection via FLIP recombinase activity. 

 

 

                                   A                                      B 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.20: Amplification of DNA fragments for 

the knock-out construct. A: Agarose 

electrophoresis of the PCR for the L (lane 1) 

and M (lane 2) fragment of pTarget/TG1 KO. B: 

Agarose gel electrophoresis of the PCR for the 

R (lane 1) fragment of pTarget/TG1 KO. The 

numbers are masses in base pairs of a 

molecular weight marker. 
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The fragments L, M and R were amplified from C57BL/6 genomic DNA (Fig. 3.20) and 

cloned individually into the vector pPCR-Script Amp. To validate the DNA sequences the 

cloned fragments were completely sequenced (see Appendix for sequence information). 

Afterwards the three fragments were excised with restriction enzymes and subcloned into 

the knock-out vector pTarget, which already contained loxP sites and the resistance 

cassette. The correct insertion of the fragments was again validated by sequencing. The 

complete construct was electroporated into mouse stem cells and the cells were cultured 

with the selective antibiotic G418. Evolving clones were separated and the genomic DNA 

of these clones was isolated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To analyse the clones for a correct recombination of the construct into the transglutaminase 

1 gene, the genomic DNA was digested with BamHI (for southern blot probe 1) or HindIII 

(for southern blot probe 2) and two southern blots were performed, detecting additionally 

binding sites for these restriction enzymes in positive clones. With probe 1 four positive 

clones (14, 23, 30 and 132) were detected (Fig. 3.21). This blot verifies that the part 

upstream of the knock-out fragment was successfully inserted into the gene. The analysis 

of a correct recombination of the part downstream of the knock-out fragment could not be 

completed in time. 

 

Fig 3.21: Southern Blot analysis of 

transglutaminase 1 knock-out clones. 

Genomic DNA of stem cell clones 

transfected with the knock-out construct 

were analysed via Southern Blot with probe 

1. Four clones (14, 23, 30 and 132 from left 

to right) were positive for the recombination. 

The lower band is the recombinant one. 

The numbers are masses in basepairs of a 

molecular weight marker. 
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4. Discussion 

 

4.1 Expression of transglutaminase 1 in the murine brain and cerebellar granule cells 

 

Until now studies regarding the expression of tranglutaminase 1 in the CNS were mainly 

restricted to the human brain in the context of neurodegenerative diseases (Kim, Grant et 

al. 1999; Zemaitaitis, Kim et al. 2003; Wilhelmus, Grunberg et al. 2009; Wilhelmus, 

Verhaar et al. 2009). To further elucidate the distribution of transglutaminase 1 in the 

murine CNS cryostatic slices of mouse brains were prepared and double-stained against 

transglutaminase 1 and Mtap2, respectively GFAP. Additionally the occurrence of 

transglutaminase 1 was investigated by its cross-linking activity with a fluoresceine 

labelled peptide (TG1-P). TG1-P is not efficiently cross-linked by the transglutaminases 2 

and 3 as well as factor XIIIa (Sugimura, Hosono et al. 2008), therefore, at least in the brain 

it should be specific for transglutaminase 1.  

A prominent location of transglutaminase 1 expression is the endothelium. Throughout the 

brain vascular system transglutaminase 1 can be found at the membranes of endothelial 

cells. Transglutaminase 1 expression has been previously described in the endothelium of 

the mouse myocard (Baumgartner, Golenhofen et al. 2004). It is shown to be localised at 

adherens junctions and one target of its cross-linking activity was β-actin (Baumgartner 

and Weth 2007). At adherens junctions clusters of cadherins are associated intracellulary 

over catenins with actin fibres (F-actin) (Hirano, Nose et al. 1987; Rimm, Koslov et al. 

1995). The cadherin-dependent adhesion at these junctions depends on the association with 

the cytoskeleton (Baumgartner, Schutz et al. 2003; Waschke, Curry et al. 2005). In the 

endothelium inflammatory signals lead to the assembly of contractile actin stress fibres and 

disassembly of the junctional F-actin network. The weakened junctions can then be 

disrupted by the contractile apparatus, resulting in a heightened endothelial permeability. 

Elevated calcium levels are a key signal for this response (Curry 1992; Sandoval, Malik et 

al. 2001). In vitro it was shown that endothelial cells expressing transglutaminase 1 are 

more resistant to barrier breaking effects than endothelial cells with silenced 

transglutaminase 1 expression (Baumgartner, Golenhofen et al. 2004). It is hypothesised 

that the increased calcium concentration activates transglutaminase 1, which then can 
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cross-link and stabilise F-actin, resulting in an enhancement of the VE-cadherin adhesion 

at the adherens junctions. 

In the brain endothelial cells form the blood-brain barrier, rigorously controlling the 

diffusion of molecules between blood stream and brain tissue. This barrier can also be 

disrupted by inflammatory signals (Abbott 2000). The transglutaminase 1 expression in the 

brain endothelium was not found to be concentrated at adherens junctions. Nevertheless, 

the most likely role of transglutaminase 1 here resembles its role in the myocard, 

stabilising adherens junctions by its cross-linking activity. Transglutaminase 1 could 

thereby be an important factor in sustaining the blood-brain barrier. 

Besides the endothelium, transglutaminase 1 can be found in parts of the ependyma, the 

lining of the ventricular system. The expression is found at the membranes of ependymal 

cells and is mainly concentrated at the basal site. The ependyma resembles epithelial 

membranes in other tissues. It is assumed that it builds up a barrier between the 

cerebrospinal fluid and the brain, resembling the blood-brain barrier (Del Bigio 1995; 

Bruni 1998). So transglutaminase 1 could play a similar role here like in the endothelium, 

stabilising intercellular junctions. Regarding its location at the basal site it could also 

enhance the adhesion of the cells to the basal lamina. However, it remains unclear why 

transglutaminase 1 is restricted to certain parts of the ependyma. 

Even more ambiguous is the localisation of transglutaminase 1 in parts of fibre tracts. It 

was reported before, that transglutaminase 1 is present in the corpus callosum (Kim, Grant 

et al. 1999). Nevertheless, the found expression pattern in the mouse brain did not 

resemble the pattern in human brain. Only partially the expression was limited to cellular 

structures, namely astrocytes. Most parts of the staining were streak-like and could not be 

ascribed to a distinct structure. The transglutaminase seems to be located in axons, yet only 

in parts of them, but not in defined tracts. Transglutaminase 1 positive neurons, projecting 

these axons were not found anywhere on the slices. The anti-transglutaminase 1 staining 

would be implausible, if the activity dependent staining would not display the same 

picture. It is not to be excluded that both stainings were unspecific, even though the 

negativity of the control staining with TG1-P and without calcium is a good argument for 

the specificity of the staining. Another possibility is that the antibody and the TG1-P could 

not penetrate the tissue completely, showing only parts of the existent transglutaminase 1. 

But this seems very unlikely, regarding the thickness of only 7 µm of the slices. However, 

it is hard to draw any conclusions further than, transglutaminase 1 is expressed at least in 
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parts of different fibre tracts, including the corpus callosum, the external capsule and parts 

of the caudoputamen. 

The expression of transglutaminase 1 in glial cells seemed to be randomly scattered. 

Furthermore, it is unclear why only a handful of neurons in the cerebellum were expressing 

it. Therein these results mirror the literature, in which also a clear constriction of 

transglutaminase 1 expression to definite cell types of the brain is lacking. It seems certain 

that transglutaminase 1 is not permanently expressed in specific cell types. Rather 

unknown events have to initiate the expression. The transglutaminase 1 promoter contains 

a AP1-like site and two Sp1-like sites (Medvedev, Saunders et al. 1999; Phillips, Jessen et 

al. 2004). Transcription factors able to bind at these sites are involved in several different 

processes, leaving plenty of room for speculations. AP-1 and Sp1 activity is linked among 

other things to cell differentiation, proliferation, survival, migration, apoptosis and immune 

response (Opitz and Rustgi 2000; Herdegen and Waetzig 2001; Shaulian and Karin 2002; 

Kaczynski, Cook et al. 2003; Wagner and Eferl 2005). In the brain AP-1 activation 

corresponds to neuronal activity (Alberini 2009) and is found in neuronal development, as 

well as neurodegeneration and apoptosis (Herdegen and Leah 1998). Primary cell cultures 

are a promising tool to investigate the initiation of transglutaminase 1 expression. 

In recent literature only transglutaminase 2 expression has been investigated in cerebellar 

granule cells cultivated on a specific substrate (Perry, Mahoney et al. 1995). In these cells 

transglutaminase 2 is found to be involved in neurite-outgrowth (Mahoney, Wilkinson et 

al. 2000) and excitotoxicity (Ientile, Caccamo et al. 2002). Transglutaminase 1 expression 

has been described generally in the cerebellum, but not in cerebellar granule cell cultures. 

In the cerebellum of baby mice (P5) as well as in young granule cell cultures 

transglutaminase 1 was only found in some astrocytes. Beginning from day nine in vitro 

(DiV9) the first neurons expressing transglutaminase 1 were found. The onset of 

transglutaminase 1 expression seems to depend on the differentiation process of the 

neurons in culture. Interestingly the expression was mainly cytosolic. Western blots of 

granule cell cultures showed only a single band, representing the full-length protein. Hence 

transglutaminase 1 was not proteolytically activated. Although it is known that even 

unprocessed transglutaminase 1 can cycle between a membrane-bound and a soluble state 

(Steinert, Chung et al. 1996), it is surprising that only small amounts of transglutaminase 1 

were membrane bound in these cells. However, the constitutively myristilation of 

transglutaminase 1 is only shown in keratinocytes (Steinert, Kim et al. 1996), so probably 
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most parts of transglutaminase 1 in these cultures were not acylated by fatty acids, leading 

to the mainly cytosolic localisation. 

The number of transglutaminase 1 positive cells, as well as the expression strength, rises 

with cultivation time. In later cultures clusters of transglutaminase 1 positive cells were 

found surprisingly frequently. One possible explanation would be a lateral induction of the 

expression. However, the mechanisms underlying the regulation of transglutaminase 1 

remained unclear. Just as the differences between transglutaminase 1 positive and negative 

cells. To further characterise the neuronal population of the culture, stainings against 

vesicular glutamate transporter 1 (VGLUT-1), a presynaptic protein of glutamatergic 

synapses, were performed. VGLUT-1 is expressed by cerebellar granule cells in vivo 

(Hioki, Fujiyama et al. 2003). However, in contrast to VGLUT-1 expression found in 

cryostatic slices, no VGLUT-1 was detectable in the cell culture. The most likely 

explanation would be that at least no functional glutamatergic postsynaptic sites are 

formed. It remained unclear if the transglutaminase 1 positive neurons belong to a specific 

subtype. Also there were no phenotypic differences detectable between glial cells 

expressing transglutaminase 1 and those that do not. 

Especially the in vivo expression of transglutaminase 1 remained enigmatic. Not only has 

the diffuse expression in projecting axons of fibre tracts raised questions, but also the 

absence of transglutaminase 1 in the somas of neurons outside the cerebellum was 

surprising. The later especially because in the literature there are evidences of neuronal 

transglutaminase 1 expression in the cerebral cortex (Kim, Grant et al. 1999; Wilhelmus, 

Verhaar et al. 2009). To further characterise the expression pattern of transglutaminase 1 in 

the brain, western blots and quantitative real time PCRs of interesting brain regions would 

be the methods of choice. 

Granule cell cultures mirrored the transglutaminase 1 expression of the cerebellum quite 

well, even though the density of transglutaminase 1 positive cells in later cultures is 

significant higher than in vivo. The main question remaining is about the difference 

between transglutaminase 1 positive and negative cells. What processes or signalling 

molecules trigger the onset of the expression? Further characterisation of transglutaminase 

1 expressing cells could reveal certain subtypes of neuronal or glial cells being positive for 

transglutaminase 1. More likely the transglutaminase 1 expression is locally induced. 

Identifying those induction mechanisms would be a hard task. But the investigation of 

transcription factors binding to AP1 or Sp1 elements could reveal the regulatory 

mechanism controlling transglutaminase 1 expression in these cells and in the brain. 
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4.2 Transglutaminase 1 knock-out mouse 

 

The constitutive transglutaminase 1 knock-out mouse from Matsuki et al. (Matsuki, 

Yamashita et al. 1998) clarified the importance of transglutaminase 1 in the formation of 

the cornified cell envelope. But besides the defective stratum corneum of the skin no 

abnormalities in other transglutaminase 1 expressing tissues were found. It is known that 

transglutaminases can partially be replaced in their functions by other family members. For 

example a transglutaminase 2 knock-out mouse shows a nearly unaltered phenotype (De 

Laurenzi and Melino 2001), despite the various functions of transglutaminase 2. This could 

also be the case in the transglutaminase 1 knock-out. However, another possibility is that 

abnormalities would primary develop at later time points. The neonatal death of the knock-

out mouse would hide those alterations. To avoid this problem we are developing a 

conditional knock-out of transglutaminase 1. Unfortunately the completion of the knock-

out could not be accomplished in time. But at least a knock-out construct was cloned and 

successfully inserted into mouse stem cells. In the coming months the knock-out mouse 

has to be finished and analysed. 

Hopefully, the knock-out gives insight into the role of transglutaminase 1 in the brain. It 

could clarify the expression and function of transglutaminase 1 in fibre tracts and it could 

probably reveal the events underlying the activation of transglutaminase 1 expression in 

glial cells and neurons. 
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4.3 Transglutaminase activity in neuronal cell cultures 

 

Usually transglutaminase activity is monitored with labelled transglutaminase substrates, 

small primary amines in general. 5-(biotinamido)pentylamine (5-BPA) is such a molecule. 

It consists of a cadaverine linked to a biotin. 5-BPA is a known substrate of 

transglutaminases (Slaughter, Achyuthan et al. 1992). Due to its membrane permeability, it 

is a good tool to monitor intracellular transglutaminase activity in cell cultures. 5-BPA 

shows no specificity towards a certain transglutaminase subtype, so it can give no 

information about the transglutaminase it is cross-linked by. 

In cerebellar granule cell cultures the most likely source for transglutaminase activity 

besides transglutaminase 1 is transglutaminase 2. In vivo transglutaminase 2 was found in 

the first two weeks postnatal in the cerebellum (Perry, Mahoney et al. 1995). In vitro it is 

found only under specific cultivation conditions, like the addition of retinoic acid or the 

cultivation on a special biomatrix (Perry, Mahoney et al. 1995; Mahoney, Wilkinson et al. 

2000). Transglutaminase 2 stainings of granule cell cultures revealed only a faint 

expression in later cultures, located in vesicle like structures. Most likely transglutaminase 

2 is secreted into the extracellular space. Its activity could thereby easily be blocked by the 

membrane impermeable transglutaminase inhibitor R281. Because transglutaminase 3 and 

6 are not expressed in the cerebellum, transglutaminase 1 should be the only source of 

intracellular transglutaminase activity. 

To display transglutaminase activity cerebellar granule cell cultures were incubated with 5-

BPA and stained afterwards with a fluorophor coupled streptavidin. There was no visible 

differences in the staining of cells preincubated with 5-BPA compared to control cells, 

independent from the transglutaminase expression of these cells. Apparently the 

transglutaminase 1 in these cells was inactive, which is not much of a surprise considering 

the relatively low cytosolic calcium concentrations. For an activation of transglutaminase 1 

at least a local elevation of calcium levels would be necessary. 

In neurons such a heightened calcium level can be achieved by synaptic activity. The 

influx of calcium through glutamate receptors and voltage-gated calcium channels could 

activate the transglutaminase. Although the cerebellar granule cells in culture were positive 

for the synaptic markers synapsin 1 and synaptophysin, no VGLUT-1 expression was 

detectable, additionally they were also negative for postsynaptic density-95 (PSD95), a 

protein of the postsynaptic site. Hence it is questionable if these cells develop functional 
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synapses in culture. Additionally granule cells were cultivated at high potassium 

concentrations (Gallo, Kingsbury et al. 1987). In vivo mature granule cells need the 

association to purkinje cells, otherwise they die (Chen and Hillman 1989). Granule cells 

cultured under low potassium conditions also die. Therefore, the cells are kept in a 

premature state, by cultivating them under depolarising conditions, comparable to not fully 

differentiated granule cells (Okazawa, Abe et al. 2009). On the one hand such a treatment 

keeps them alive, on the other hand, these cells are not totally differentiated (Mellor, Merlo 

et al. 1998). In organotypic cultures of granule cells chronic depolarisation is shown to 

impair synaptogenesis (Okazawa, Abe et al. 2009), suggesting the conclusion that these 

cells fail to form fully functional synapses in the culture. Attempts to activate the 

transglutaminase in vitro by elevating the potassium levels to further depolarise the cells 

and evoke synaptic activity failed, just as attempts to further differentiate the granule cells 

by lowering the potassium concentrations after ten days in culture. 

A further investigation of transglutaminase 1 activity in neurons was achieved with another 

cell culture model, using chicken telencephalic neurons. Cortical neurons of chicken are 

known to develop functional synapses in culture (Tokioka, Matsuo et al. 1993). A major 

drawback of this model system is that until now no transglutaminase 1 homologue was 

found in the chicken. Transglutaminases of the type 1 are known from mammals and some 

fish, but were not found in any birds or reptiles so far. The only evidence for 

transglutaminase 1 expression in the chicken is provided by a work on cornification 

proteins in the avian epidermis (Alibardi and Toni 2004). Immunohistochemical stainings 

of the chicken skin revealed a transglutaminase 1 like pattern of expression. Nevertheless, 

it remains unclear, if this staining was really based on transglutaminase 1 expression. 

Attempts using various transglutaminase 1 antibodies, as well as reverse transcription 

polymerase chain reactions with primers homologue to conserved regions of 

transglutaminase 1 remained unsuccessful. 

A characterisation of a potential transglutaminase 1 expression in the telencephalic cultures 

nonetheless, was implemented by using TG1-P. This method showed a membrane-bound 

transglutaminase activity in these cells, although it remained unclear if this activity was 

really based on a transglutaminase 1 homologue protein. There are no reports about 

transglutaminases in the avian brain. However, transglutaminase 2 would be another 

candidate, besides transglutaminase 1, for this activity in telencephalic neurons. 

5-BPA incubations showed transglutaminase activity in the nucleus and in synapses of 

chicken telencephalic cell cultures. Because transglutaminase 2 is the only family member 
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known to be transported into the nucleus, the nuclear activity originates, without much 

doubt, from it. The synaptic transglutaminase activity could be caused by the membrane-

bound assumed transglutaminase 1. Although distributed over the whole membrane, the 

transglutaminase could be locally activated by synaptic activity.  
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4.4 β-Actin is a target for transglutaminase activity in chicken telencephalic cell 
cultures 

 

Purification of telencephalic cell lysates over a streptavidin-column revealed that β-actin 

was only biotinylated after the addition of 5-BPA to the medium. This implied that 5-BPA 

was cross-linked to β-actin by synaptic transglutaminase activity in the culture. 

Additionally recombinant human transglutaminase 1 was able to cross-link 5-BPA to F-

actin, purified from brain acetone powder. Actin is a known target for transglutaminase 1, 

2 and factor XIIIa (Cohen, Blankenberg et al. 1980; Gorman and Folk 1980; Baumgartner 

and Weth 2007), but here it is shown for the first time that synaptic β-actin functioned as a 

substrate for transglutaminases. The cross-linking of 5-BPA to β-actin was also found in 

organotypic cultures of chicken forebrain (see Fig. 17 B), suggesting that synaptic 

transglutaminase activity also occurs in vivo. 

The attempt to characterise the target glutamine within β-actin was unsuccessful, but at 

least some glutamate residues could be excluded. In vitro it was shown that 

transglutaminase 2 cross-links small primary amines to glutamine 41 of actin, resulting in a 

higher polymerisation rate and lower requirements on the actin concentration for the 

polymerisation initiation (Takashi 1988). Bacterial transglutaminases can form an 

intramolecular cross-link in globular actin between the glutamine residue 41 and the lysine 

residue 50 (Eli-Berchoer, Hegyi et al. 2000). This intermolecular bridge has no effect on 

the polymerisation of actin, but it leads to higher thermo-stability and an enhanced 

resistance against proteolysis. In endothelial cells it is shown, that transglutaminase 1 is 

able to stabilise the actin network (Baumgartner and Weth 2007). Additionally actin-

associated proteins can be cross-linked to actin. Myosin is shown to be cross-linked to 

glutamine 41 of actin through transglutaminase activity (Eligula, Chuang et al. 1998). 

These cross-linking reactions all take place under artificial conditions and not 

intracellulary. Also transglutaminase 1 and 2 at least have partial differing substrate 

specificities (Sugimura, Hosono et al. 2006; Sugimura, Hosono et al. 2008). However, it is 

likely that glutamine 41 is a common target for transglutaminase activity and our mass 

spectroscopy data did not exclude this residue as the target glutamine in telencephalic cells. 

Although the identification of the cross-linked glutamine residue of β-actin would be very 

interesting, 5-BPA is an artificial cross-linking partner of actin, so the function of the in 

vivo cross-link can only be assumed. In Western blot experiments cell lysates of chicken 

telencephalic cultures showed only a single band of β-actin, which is contrary to the 
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possibility that actin is linked to an associated protein. Additionally incubation of β-actin 

with recombinant transglutaminase 1 showed no cross-linking of actin monomers among 

each other or to other proteins. So the most likely transamidating reaction is the formation 

of an intramolecular bond between glutamine 41 and lysine 50. Assuming that this cross-

link is formed at synapses and that it stabilises F-actin against network disrupting 

mechanisms, still leaves a plenty of different possibilities for the effect of transglutaminase 

activity at synapses. 

Actin is a key molecule for many modulating processes at the synapse. At the presynaptic 

site it was shown that the actin conformation influences the neurotransmitter release 

(Bernstein, DeWit et al. 1998). F-Actin disassembles at the active zone during synaptic 

activity and repolymerise again at prolonged depolarisation of the cell, leading to a decline 

in neurotransmitter release. Experiments with F-actin disrupting and stabilising agents 

show that F-actin can act as a physical barrier between the readily-releasable 

neurotransmitter vesicle pool at the active site and storage pools. Only after partial 

depolymerisation of the actin network at the active site, the readily-releasable pool can be 

replenished (Bernstein, DeWit et al. 1998). 

At the postsynaptic site actin is associated with many proteins of the postsynaptic density. 

NMDA and AMPA receptors, the neurotransmitter receptors of glutamatergic synapses, 

are coupled to it. The activity of these receptors leads to an uncoupling of them from the 

cytoskeleton, resulting in a displacement of the receptors out of the active zone and thereby 

in an activity-dependent negative feedback loop (Rosenmund and Westbrook 1993; 

Furukawa, Fu et al. 1997). Besides these direct modulations of neurotransmitter signalling, 

actin reorganisation also underlies the morphological plasticity of dendritic spines (Fischer, 

Kaech et al. 1998). Therefore, actin is important for the formation of new spines, as well as 

the activity-dependent enlargement of existing ones (Nikonenko, Jourdain et al. 2002). 

Interestingly most of the actin reorganisation processes underlying these modulatory 

functions are regulated by locally increased calcium concentrations, thus linking these 

mechanisms to synaptic, as well as transglutaminase activity. Therefore, transglutaminases 

could play a counterpart against calcium dependent disruption of the actin cytoskeleton by 

stabilising F-actin via cross-linking activity. 
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1.) In the dormant synapse cadherin dimers are 
flanking the active site. 

 
2.) Following activation Ca2+-ions stream into the 
presynapse over voltage-gated Ca2+-channels 
and to the postsynapse over NMDA receptors. 

 
3.) The influx leads to the depletion of Ca2+ in 
the synaptic cleft, thus disrupting the cadherin 
adhesion. Intracellulary the heightened Ca2+ 
level activates actin severing proteins like 
gelsolin and F-actin depolymerises. Thereby the 
connection of cadherins to the actin cytoskeleton 
is disrupted. The cadherin monomers can diffuse 
laterally along the membrane. 

 
4.) In regions bordering the active site, the Ca2+ 
concentrations intra- and extracellulary are at 
normal levels. Cadherin monomers diffusing in 
these regions will form dimers and they can 
attach to the intact cytoskeleton again. 
Repetitive activations could consequently lead to 
an enlargement of the synapse. 

 
3b) In neurons expressing transglutaminase 1, 
the transglutaminase is activated by the 
heightened calcium level. Actin is cross-linked 
intramoleculary and thereby stabilised. The 
depolymerisation of F-actin is prevented. The 
cadherin molecules stay attached to the 
cytoskeleton and the morphology of the synapse 
is preserved. 

    
            Actin filament          Cadherin 
 
             AMPA-                   Neurotransmitter 
             receptor                   vesicle 
 
             Calcium-                 NMDA- 
             channel                    receptor 
 

 
Fig. 4.1: Hypothesis for the role of transglutaminase 1 in synaptic endings. 
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But perhaps the most interesting potential function of actin stabilisation by 

transglutaminase activity relates to the adhesion proteins of synapses. Synaptic connections 

resemble adherens junctions as they can be found in epithelial cells (Tepass, Truong et al. 

2000). Cadherins, mostly flank the active sites and are the main adhesion proteins of 

synapses (Uchida, Honjo et al. 1996). They are associated intracellulary to the actin 

cytoskeleton via catenins and actin binding proteins. Some published work, therefore, 

propose that the synapse is a specific adaptation of epithelial adherens junctions (Fannon 

and Colman 1996). The role of synaptic cadherins is not limited to the development and 

maintenance of synaptic endings. In the last years cell adhesion-dependant and –

independent roles of cadherins in synaptic plasticity are revealed (Arikkath and Reichardt 

2008; Tai, Kim et al. 2008). 

NMDA receptor activity can trigger the expansion of spine heads, thereby enhancing the 

synaptic efficacy. This process is dependent on actin polymerisation and cadherin adhesion 

(Okamura, Tanaka et al. 2004). A possible mechanism underlying the spine enlargement is 

a calcium-dependent disruption and reconstitution of cadherin adhesion. Adhesion of 

cadherins is calcium-dependent. Upon calcium binding cis- and trans-dimerisation of 

cadherin molecules is stabilised and the adhesion is enhanced. During synaptic activity the 

extracellular calcium concentration in the synaptic cleft drops from 1.5 – 2 mM to 0.3 – 0.8 

mM (Nicholson, ten Bruggencate et al. 1978; Rusakov and Fine 2003), due to the influx of 

calcium ions into the synapse. Such a drop in calcium levels leads to a reduction of the 

adhesion strength of 40% to 85% for N-Cadherin, the major cadherin of synapses  (Heupel, 

Baumgartner et al. 2008). Simultaneously the intracellular heightened calcium 

concentrations could lead to a depolymerisation of synaptic actin, for example via gelsolin 

(Furukawa, Fu et al. 1997). Cadherin molecules would detach from their binding partners 

extracellulary and from the cytoskeleton intracellulary. The free cadherins could diffuse 

laterally in the synaptic cleft. In the periphery of the active zone the intra- and extracellular 

calcium concentrations would be normal. Free cadherins reaching this zone would dimerise 

again and attach to actin. Subsequent activations could thereby enlarge the area of cadherin 

adhesion around the active site. N-Cadherin binding is able to recruit AMPA receptors to 

the membrane (Saglietti, Dequidt et al. 2007), so the enlargement of the adhesive area 

could lead to an enlargement of the active zone of the synapse. 

What would be the role of transglutaminase activity in such a model? Most likely the 

influx of calcium ions after the activation of the synapse would activate the previous 

dormant transglutaminase. Intercellular cross-linking of actin could stabilise F-actin and 
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thereby prevent the dissociation of the cadherin/catenin complex from the cytoskeleton. 

The cadherin-dependent adhesion would be strengthened and the lateral diffusion of 

cadherins should be prevented (see Fig 4.1 for a model). Therefore, synaptic 

transglutaminase activity could be a regulatory mechanism limiting the activity-driven 

cadherin remodelling at synapses. Interestingly, cross-links introduced by 

transglutaminases into a protein can not be reversed by any known proteinase. This means 

that the modification and so the stabilisation of actin would persist throughout the life of 

the protein, leading to a long lasting stabilisation of the synaptic morphology. The 

stabilising effect of transglutaminase 1 activity on cadherin adhesion is already 

hypothesised in endo- and epithelial adherens junctions (Hiiragi, Sasaki et al. 1999; 

Baumgartner, Golenhofen et al. 2004). Therefore, this role of transglutaminase activity at 

synapses would not be a totally new one. 

The next step in investigating synaptic transglutaminase activity could be a further 

characterisation of actin cross-linking. It is still unknown if the assumed intramolecular 

cross-link is really formed. Furthermore, western blots of telencephalic cell lysates 

preincubated with 5-BPA showed various biotinylated proteins beside β-actin, which were 

not identified so far. It would be interesting to see if actin associated proteins like catenins 

or α-actinin, which links NMDA receptors to the cytoskeleton (Allison, Gelfand et al. 

1998), are under these cross-linked proteins. Finally a characterisation of the in vivo cross-

linking activity at synapses could be achieved by immunoprecipitation of synaptosomal 

proteins with an antibody against the ε-(γ-glutamyl)lysine isopeptide bridge, formed by 

transglutaminases. Unfortunately such an N-ε-(γ-glutamyl)lysine antibody tested in our 

lab, was found to be too unspecific for this task. 
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4.5 Synaptic activity dependent activation of transglutaminases 

 

The induction of transglutaminase cross-linking activity by neuronal activation is an 

obvious assumption. Nevertheless, this hypothesis has to be verified. With the light-

dependent cation-channel channelrhodopsin 2 (Chop2) a direct activation of neuronal cells 

is possible (Nagel, Szellas et al. 2003; Boyden, Zhang et al. 2005). To avoid the difficult 

transfection of primary neurons, the cell line PC12 was used. PC12 cells can be 

differentiated in a neuronal phenotype (Greene and Tischler 1976; Greene and Rein 1977). 

They express voltage-gated calcium and potassium channels (Streit and Lux 1987; Hoshi 

and Aldrich 1988), as well as transglutaminase 1 and 2 (Byrd and Lichti 1987). Hence 

light-induced depolarisation of Chop2-expressing PC12 cells should lead to an influx of 

calcium ions, thereby activating both transglutaminases. 

Unfortunately the depolarisation achieved by Chop2-activity is not sufficient to cause an 

activation of these cells. The utilisation of a stronger light source could lead to a 

depolarisation strong enough to cross the threshold for activation. Alternatively and 

probably more promising, the replacement of PC12 cells with primary neurons could solve 

the problem. Even though this means that the tranfection method has to be changed. An 

adeno- or lentiviral system seems to be most suitable for such transfection. An exchange of 

the model system could also prevent the degradation of the aequorin/eGFP fusionprotein. 
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4.6 Conclusions 

 
The results from murine and chicken neural cells showed a diverse picture. In the murine 

brain the situation remained inconclusive. The expression and even more the function of 

transglutaminase 1 in nerve fibre tracts are ambiguous, as well as the expression in 

neuronal and glial cells of the cerebellum. It seems certain that transglutaminase 1 is not 

permanently expressed in specific cell types. Rather unknown events have to initiate the 

expression. Otherwise in endothelial and ependymal cells the role of transglutaminase 1 is 

by far clearer. The predicted function as a stabiliser of intercellular junctions suits well to 

the membrane localisation and is consistent with the known role of transglutaminase 1 in 

other endothelial and epithelial tissues. The conditional transglutaminase 1 knock-out 

mouse is a promising tool to investigate the open questions. 

In chicken forebrain cultures transglutaminase expression and activity could be described 

comparatively well, even though the final proof that the activity bases on transglutaminase 

1 is still pending. However, transglutaminase activity was clearly localised at synaptic 

endings and β-actin is one of the substrates for the transglutaminase. β-Actin is at least a 

target for recombinant human transglutaminase 1. It seems likely that transglutaminase 1 

also cross-links actin in vivo. The exact cross-linking mechanism as well as the possible 

connection with synaptic activity remained unclear. Even so an intracellular linkage 

between glutamine 41 and lysine 50 is not only the most likely possibility it is also in line 

with the experimental findings. The activity dependent stabilisation of the actin 

cytoskeleton is a consequential hypothesis and the stabilisation of synaptic intercellular 

junctions is an elegant model to link the potential role of transglutaminase 1 in endothelial 

and epithelial cells with its role in neurons. 
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5. Summary 

 
The transglutaminases family includes calcium-dependent cross-linking enzymes 

catalysing a transamidation reaction between a protein-bound glutamine residue and a 

small primary amine or a protein-bound lysine residue. Transglutaminase 1, a member of 

this family, is expressed in different epithelial and endothelial tissues. Recently 

transglutaminase 1 was also identified in the brain. Here its activity was found to be up 

regulated in correlation with neurodegenerative diseases. However, little is known about 

the distribution and the function of transglutaminase 1 in the nervous system. The aim of 

this study was the characterisation of the expression of transglutaminase 1 in the brain and 

the analysis of transglutaminase activity in neural cell cultures. 

To investigate the distribution of transglutaminase 1 in the central nervous system, 

cryostatic slices of mouse brains were immunohistochemically stained against 

transglutaminase 1 and neuronal, as well as glial markers. Transglutaminase 1 expression 

was found in scattered astrocytes throughout the cerebral cortex and the cerebellum, in few 

neurons inside the granular layer of the cerebellum, the caudoputamen and in parts of 

different fibre tracts, like the corpus callosum and the external capsule. The function of 

transglutaminase 1 in these cell types remained enigmatic. 

Transglutaminase 1 was also found in endothelial cells of the brain vascular system and in 

parts of the ependymal lining of the ventricular system. Transglutaminase 1 is associated 

with adherens junctions in endothelial and epithelial cells of other tissues. Therefore we 

assume that the transglutaminase 1 found in the vascular and ventricular system of the 

brain is also involved in the stabilisation of intercellular junctions. 

To clarify the role of transglutaminase 1 in the murine brain, a construct for a conditional 

knock-out mutant of transglutaminase 1 was cloned and successfully transfected into 

mouse stem cells. Unfortunately the knock-out mouse was not finished in time. 

To investigate the activity of transglutaminase 1 two primary cell cultures, murine 

cerebellar granule cells and chicken telencephalic cells were established. Neurons and 

astrocytes of the granule cell culture were shown to partly express transglutaminase 1, but 

the enzyme was inactive in this culture. In the telencephalic cultures a membrane bound 

transglutaminase 1 staining was detected and a transglutaminase activity located in 

synaptic endings was found. In addition β-actin was found to be a substrate for this 

synaptic transglutaminase activity. This finding was supported with the expression of a 
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recombinant transglutaminase 1, which was able to cross-link a small primary amine to β-

actin. 

A model was proposed for the activation of transglutaminase 1 via calcium influx 

following synaptic activity and for the stabilisation of F-actin through transglutaminase 1 

catalysed intramolecular cross-links between glutamine 41 and lysine 50 of β-actin. In this 

way transglutaminase 1 could stabilise the morphology of synaptic endings in a neuronal 

activity dependent fashion. 
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Transglutaminasen sind calciumabhängige Quervernetzungsproteine, die eine 

Transamidierungsreaktion zwischen spezifischen proteingebundenen Glutaminresten und 

kleinen primären Aminen, bzw. einem proteingebundenen Lysin, katalysieren können. 

Transglutaminase 1 wird in unterschiedlichen Epithelien und Endothelien expremiert. Des 

Weiteren wurde es auch im Gehirn entdeckt. Hier scheint seine Expression und Aktivität 

im Zusammenhang mit verschiedenen neurodegenrativen Erkrankungen, wie z.B. Morbus 

Alzheimer oder Morbus Parkinson, erhöht zu sein. Bisher liegen jedoch wenige Daten über 

die normale Expression und Funktion von Transglutaminase 1 im Gehirn vor. Ziel dieser 

Arbeit war daher die Untersuchung des Expressionsmusters von Transglutaminase 1 im 

Gehirn und seiner Aktivität in neuronalen Zellkulturen. 

Zur Aufklärung der Verteilung von Transglutaminase 1 im Gehirn in vivo wurden 

Kryostatschnitte von Mäusehirnen angefertigt und immunhistochemisch gegen 

Transglutaminase 1 und verschiedene Marker für Neuronen und Gliazellen angefärbt. 

Vereinzelte Transglutaminase 1 positive Astrocyten wurden dabei im cerebralen Cortex 

und im Kleinhirn gefunden. Des Weiteren wurde Transglutaminase 1 in einzelnen 

Neuronen im Kleinhirn, sowie in verschieden Fasertrakten des Gehirns, wie dem Corpus 

Callosum, der externen Kapsel oder dem Caudoputamen festgestellt. Die Funktion der 

Transglutaminase in diesen Zellen blieb jedoch schleierhaft. 

Zusätzlich wurde Transglutaminase 1 Expression auch in Endothelzellen der Blutgefäße 

und in Ependymzellen des Ventrikulärsystems entdeckt. Transglutaminase 1 ist in 

Endothelien und Epithelien anderer Gewebe mit Adherens Junctions assoziiert, daher 

nehmen wir an das auch im Gehirn interzelluläre Kontakte im Endothel und Ependym 

stabilisiert werden. 

Für die nähere Untersuchung der Funktion von Transglutaminase 1 im murinen Gehirn 

wurde ein Vektorkonstrukt für eine konditionelle Transglutaminase 1 knockout Maus 

kloniert und erfolgreich in Mäusestammzellen rekombiniert. Leider konnte die knockout 

Maus nicht im Rahmen der Doktorarbeit fertig gestellt werden. 

Die neuronale Aktivität von Transglutaminase 1 wurde mit Hilfe zweier primärer 

Zellkulturen, zum einen Körnerzellen aus dem Kleinhirn der Maus, zum anderen 

Telencephalonkulturen aus dem Hühnchen, untersucht. In der Körnerzellkultur wurden 

vereinzelte Transglutaminase 1 positive Neuronen und Astrocyten entdeckt, diese 

Transglutaminase 1 zeigte aber in vitro keinerlei Transamidierungsaktivität. In den 

Telencephalonkulturen wurde eine membranlokalisierte Transglutaminase 1 Färbung und 

eine synaptische Transglutaminaseaktivität nachgewiesen. Es wurde festgestellt, dass β-
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Aktin ein Zielprotein für diese Transglutaminaseaktivität und das F-Aktin ein Substrat für 

rekombinant expremierte Transglutaminase 1 ist. 

Eine Hypothese wurde vorgeschlagen, wonach neuronale Transglutaminase 1 durch 

aktivtätsabhängigen Einstrom von Calcium in Synapsen aktiviert wird und dort 

intramolekular Aktin zwischen Glutamin 41 und Lysin 50 quervernetzt. Die dadurch 

zustande kommende Stabiliserung von F-Aktin könnte einen Mechanismus darstellen, 

wodurch die Morphologie von Synapsen aktivitätsabhängig gefestigt wird. 
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Sequences of used constructs and vectors 
 
pGEM-T TGase1fl-His6, in bold the insert 
GGGCGAATTGGGCCCGACGTCGCATGCTCCCGGCCGCCATGGCCGCGGGATACATAAGTCACTTACCAGGTCT
GTCCCTGCGGCATCCAGTCTGTGGGTCCTGTCCCATCCATCCTGACCTGTTCCATCTCAGCCCCAGGACTCAG
TACTGCGGTTGCCAACACTGCTGCCAGGCATGATGGATGGGCCACGTTCCGATGTGGGCCGTTGGGGTGGCAA
CCCCTTGCAGCCCCCTACCACGCCATCTCCAGAGCCAGAGCCAGAGCCAGACGGACGCTCTCGCAGAGGAGGA
GGCCGTTCCTTCTGGGCTCGCTGCTGTGGCTGCTGTTCATGCCGAAATGCGGCAGATGACGACTGGGGACCTG
AACCCTCTGACTCCAGGGGTCGAGGGTCCAGCTCTGGCACTCGAAGACCTGGCTCCCGGGGCTCAGACTCCCG
CCGGCCTGTATCCCGGGGCAGCGGTGTCAATGCAGCTGGAGATGGCACCATCCGAGAGGGCATGCTAGTAGTG
AACGGTGTGGACTTGCTGAGCTCGCGCTCGGACCAGAACCGCCGAGAGCACCACACAGACGAGTATGAGTACG
ACGAGCTGATAGTGCGCCGCGGGCAGCCTTTCCATATGCTCCTCCTCCTGTCCCGGACCTATGAATCCTCTGA
TCGCATCACCCTTGAGTTACTCATCGGAAACAACCCCGAGGTGGGCAAGGGCACGCACGTGATCATCCCAGTG
GGCAAGGGGGGCAGTGGAGGCTGGAAAGCCCAGGTGGTCAAGGCCAGTGGGCAGAATCTGAACCTGCGGGTCC
ACACTTCCCCCAACGCCATCATCGGCAAGTTTCAGTTCACAGTCCGCACACAATCAGACGCTGGGGAGTTCCA
GTTGCCCTTTGACCCCCGCAATGAGATCTACATCCTCTTCAACCCCTGGTGCCCAGAGGACATTGTGTACGTG
GACCATGAGGATTGGCGGCAGGAGTATGTTCTTAATGAGTCTGGGAGAATTTACTACGGGACCGAAGCACAGA
TTGGTGAGCGGACCTGGAACTACGGCCAGTTTGACCACGGGGTGCTGGATGCCTGCTTATACATCCTGGACCG
GCGGGGGATGCCATATGGAGGCCGTGGAGACCCAGTCAATGTCTCCCGGGTCATCTCTGCCATGGTGAACTCC
CTGGATGACAATGGAGTCCTGATTGGGAACTGGTCTGGTGATTACTCCCGAGGCACCAACCCATCAGCGTGGG
TGGGCAGCGTGGAGATCCTGCTTAGCTACCTACGCACGGGATATTCCGTCCCCTATGGCCAGTGCTGGGTCTT
TGCTGGCGTGACCACCACAGTGCTGCGCTGCCTGGGTCTGGCCACCCGTACTGTCACCAACTTCAACTCCGCC
CACGACACAGACACATCCCTTACCATGGACATCTACTTCGACGAGAACATGAAGCCCCTGGAGCACCTGAACC
ATGATTCTGTCTGGAACTTCCATGTGTGGAACGACTGCTGGATGAAGAGGCCGGATCTGCCCTCGGGCTTTGA
TGGGTGGCAGGTGGTGGATGCCACACCCCAAGAGACTAGCAGTGGCATCTTCTGCTGCGGCCCCTGCTCTGTG
GAGTCCATCAAGAATGGCCTGGTCTACATGAAGTACGACACGCCTTTCATTTTTGCTGAGGTGAATAGTGACA
AGGTGTACTGGCAGCGGCAGGATGATGGCAGCTTCAAGATTGTTTATGTGGAGGAGAAGGCCATCGGCACACT
CATTGTCACAAAGGCCATCAGCTCCAACATGCGGGAGGACATCACCTACCTCTATAAGCACCCAGAAGGCTCA
GACGCAGAGCGGAAGGCAGTAGAGACAGCAGCAGCCCACGGCAGCAAACCCAATGTGTATGCCAACCGGGGCT
CAGCGGAGGATGTGGCCATGCAGGTGGAGGCACAGGACGCGGTGATGGGGCAGGATCTGATGGTCTCTGTGAT
GCTGATCAATCACAGCAGCAGCCGCCGCACAGTGAAACTGCACCTCTACCTCTCAGTCACTTTCTATACTGGT
GTCAGTGGTACCATCTTCAAGGAGACCAAGAAGGAAGTGGAGCTGGCACCAGGGGCCTCGGACCGTGTGACCA
TGCCAGTGGCCTACAAGGAATACCGGCCCCATCTTGTGGACCAGGGGGCCATGCTGCTCAATGTCTCAGGCCA
CGTCAAGGAGAGCGGGCAGGTGCTGGCCAAGCAGCACACCTTCCGTCTGCGCACCCCAGACCTCTCCCTCACG
TTACTGGGAGCAGCAGTGGTTGGCCAGGAGTGTGAAGTACAGATTGTCTTCAAGAACCCCCTTCCCGTCACCC
TCACCAATGTCGTCTTCCGGCTCGAAGGCTCTGGGTTACAGAGGCCCAAGATCCTCAACGTTGGGGACATTGG
AGGCAATGAAACAGTGACACTGCGCCAGTCGTTTGTGCCTGTGCGACCAGGCCCCCGCCAGCTCATTGCCAGC
TTGGACAGCCCACAGCTCTCCCAGGTGCACGGTGTCATCCAGGTGGATGTGGCCCCAGCCCCTGGGGATGGGG
GCTTCTTCTCAGACGCTGGAGGTGACAGTCACTTAGGAGAGACCATCCCTATGGCATCTCGAGGTGGAGCTTA
GCCCTGTGCCAGGAGCAATGGGACTGGAGTCAGATGAGCAAGGACATTGCCCCAAGATAGGGGCACACTACAG
AGCAGCTCCCCAGGAGCTCAGGTGGGGAGTCCAGGGCTCCCGGAGGGGGAGTCCAGGGCTCCCGGAGAGGGAG
TCAGTCTTCACTTGCACTGGGGGAACAGATGCTAATAAACTGTTTTTTAATGAAATCCACCACCACCACCACC
ACACTAGTGCGGCCGCCTGCAGGTCGACCATATGGGAGAGCTCCCAACGCGTTGGATGCATAGCTTGAGTATT
CTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCA
CAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCAC
ATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGC
CAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGG
TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAA
CGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTT
TTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAG
GACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTAC
CGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGT
TCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTAT
CCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAG
GATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGA
AGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCG
GCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATC
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TCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTG
GTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAA
GTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCT
ATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGC
CCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCG
GAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGC
TAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGC
TCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGT
GCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCAT
GGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTAC
TCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATA
CCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGAT
CTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTC
ACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAAT
GTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATA
CATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGAT
GCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGAAATTGTAAGCGTTAATATTTTGT
TAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTA
TAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAAC
GTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAAT
CAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTG
ACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCA
AGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTC
GCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAA
GGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGG
CCAGTGAATTGTAATACGACTCACTATA 

 
pBK-CMV Chop2(315)+YFP, in bold the insert 
GATCCACTAGCGGATCTGACGGTTCACTAAACCAGCTCTGCTTATATAGACCTCCCACCGTACACGCCTACCG
CCCATTTGCGTCAATGGGGCGGAGTTGTTACGACATTTTGGAAAGTCCCGTTGATTTTGGTGCCAAAACAAAC
TCCCATTGACGTCAATGGGGTGGAGACTTGGAAATCCCCGTGAGTCAAACCGCTATCCACGCCCATTGATGTA
CTGCCAAAACCGCATCACCATGGTAATAGCGATGACTAATACGTAGATGTACTGCCAAGTAGGAAAGTCCCAT
AAGGTCATGTACTGGGCATAATGCCAGGCGGGCCATTTACCGTCATTGACGTCAATAGGGGGCGTACTTGGCA
TATGATACACTTGATGTACTGCCAAGTGGGCAGTTTACCGTAAATACTCCACCCATTGACGTCAATGGAAAGT
CCCTATTGGCGTTACTATGGGAACATACGTCATTATTGACGTCAATGGGCGGGGGTCGTTGGGCGGTCAGCCA
GGCGGGCCATTTACCGTAAGTTATGTAACGCGGAACTCCATATATGGGCTATGAACTAATGACCCCGTAATTG
ATTACTATTAATAACTAATGCATGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACA
TGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCG
CCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATAC
CAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCG
CCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGT
TCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGT
CTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGA
GGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGG
TATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACC
GCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTT
TGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATC
AAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAA
CCTGAGGCTATGGCAGGGCCTGCCGCCCCGACGTTGGCTGCGAGCCCTGGGCCTTCACCCGAACTTGGGGGGT
GGGGTGGGGAAAAGGAAGAAACGCGGGCGTATTGGCCCCAATGGGGTCTCGGTGGGGTATCGACAGAGTGCCA
GCCCTGGGACCGAACCCCGCGTTTATGAACAAACGACCCAACACCGTGCGTTTTATTCTGTCTTTTTATTGCC
GTCATAGCGCGGGTTCCTTCCGGTATTGTCTCCTTCCGTGTTTCAGTTAGCCTCCCCCTAGGGTGGGCGAAGA
ACTCCAGCATGAGATCCCCGCGCTGGAGGATCATCCAGCCGGCGTCCCGGAAAACGATTCCGAAGCCCAACCT
TTCATAGAAGGCGGCGGTGGAATCGAAATCTCGTGATGGCAGGTTGGGCGTCGCTTGGTCGGTCATTTCGAAC
CCCAGAGTCCCGCTCAGAAGAACTCGTCAAGAAGGCGATAGAAGGCGATGCGCTGCGAATCGGGAGCGGCGAT
ACCGTAAAGCACGAGGAAGCGGTCAGCCCATTCGCCGCCAAGCTCTTCAGCAATATCACGGGTAGCCAACGCT
ATGTCCTGATAGCGGTCCGCCACACCCAGCCGGCCACAGTCGATGAATCCAGAAAAGCGGCCATTTTCCACCA
TGATATTCGGCAAGCAGGCATCGCCATGGGTCACGACGAGATCCTCGCCGTCGGGCATGCTCGCCTTGAGCCT
GGCGAACAGTTCGGCTGGCGCGAGCCCCTGATGCTCTTCGTCCAGATCATCCTGATCGACAAGACCGGCTTCC
ATCCGAGTACGTGCTCGCTCGATGCGATGTTTCGCTTGGTGGTCGAATGGGCAGGTAGCCGGATCAAGCGTAT
GCAGCCGCCGCATTGCATCAGCCATGATGGATACTTTCTCGGCAGGAGCAAGGTGAGATGACAGGAGATCCTG
CCCCGGCACTTCGCCCAATAGCAGCCAGTCCCTTCCCGCTTCAGTGACAACGTCGAGCACAGCTGCGCAAGGA
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ACGCCCGTCGTGGCCAGCCACGATAGCCGCGCTGCCTCGTCTTGCAGTTCATTCAGGGCACCGGACAGGTCGG
TCTTGACAAAAAGAACCGGGCGCCCCTGCGCTGACAGCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTG
TTGTGCCCAGTCATAGCCGAATAGCCTCTCCACCCAAGCGGCCGGAGAACCTGCGTGCAATCCATCTTGTTCA
ATCATGCGAAACGATCCTCATCCTGTCTCTTGATCGATCTTTGCAAAAGCCTAGGCCTCCAAAAAAGCCTCCT
CACTACTTCTGGAATAGCTCAGAGGCCGAGGCGGCCTCGGCCTCTGCATAAATAAAAAAAATTAGTCAGCCAT
GGGGCGGAGAATGGGCGGAACTGGGCGGAGTTAGGGGCGGGATGGGCGGAGTTAGGGGCGGGACTATGGTTGC
TGACTAATTGAGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCTGGTTGCT
GACTAATTGAGATGCATGCTTTGCATACTTCTGCCTGCTGGGGAGCCTGGGGACTTTCCACACCCTAACTGAC
ACACATTCCACAGCTGGTTCTTTCCGCCTCAGGACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGT
TATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTC
CCCGAAAAGTGCCACCTGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGT
GACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCC
GGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACC
CCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGAC
GTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTAT
TCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTA
ACGCGAATTTTAACAAAATATTAACGCTTACAATTTACGCGTTAAGATACATTGATGAGTTTGGACAAACCAC
AACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATA
AGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGG
TTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGCTGATTATGATCATGAACAGACTGTGAGGACTGA
GGGGCCTGAAATGAGCCTTGGGACTGTGAATCTAAAATACACAAACAATTAGAATCAGTAGTTTAACACATTA
TACACTTAAAAATTGGATCTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCT
CTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTC
CCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGTACACTT
ACCTGGTACCCCACCCGGGTGGAAAATCGATGGGCCCGCGGCCGCTCTAGAAGTACTCTCGAGAAGCTTACTT
GCCGGCGGCCGCTTTACTTGTACAGCTCGTCCATGCCGAGAGTGATCCCGGCGGCGGTCACGAACTCCAGCAG
GACCATGTGATCGCGCTTCTCGTTGGGGTCTTTGCTCAGGGCGGACTGGTAGCTCAGGTAGTGGTTGTCGGGC
AGCAGCACGGGGCCGTCGCCGATGGGGGTGTTCTGCTGGTAGTGGTCGGCGAGCTGCACGCTGCCGTCCTCGA
TGTTGTGGCGGATCTTGAAGTTCACCTTGATGCCGTTCTTCTGCTTGTCGGCCATGATATAGACGTTGTGGCT
GTTGTAGTTGTACTCCAGCTTGTGCCCCAGGATGTTGCCGTCCTCCTTGAAGTCGATGCCCTTCAGCTCGATG
CGGTTCACCAGGGTGTCGCCCTCGAACTTCACCTCGGCGCGGGTCTTGTAGTTGCCGTCGTCCTTGAAGAAGA
TGGTGCGCTCCTGGACGTAGCCTTCGGGCATGGCGGACTTGAAGAAGTCGTGCTGCTTCATGTGGTCGGGGTA
GCGGGCGAAGCACTGCAGGCCGTAGCCGAAGGTGGTCACGAGGGTGGGCCAGGGCACGGGCAGCTTGCCGGTG
GTGCAGATGAACTTCAGGGTCAGCTTGCCGTAGGTGGCATCGCCCTCGCCCTCGCCGGACACGCTGAACTTGT
GGCCGTTTACGTCGCCGTCCAGCTCGACCAGGATGGGCACCACCCCGGTGAACAGCTCCTCGCCCTTGCTCAC
CATGGTGGCGGCCGCGGGTACCGCGCCAGCCTCGGCCTCGTCCTCCACCAGCGTCTCGACCTCAATCTCAGTG
CCACCAATGTTCAATTTGGTGGTCTTGCGAATGTCGCCGTGGATGAGGATATGCTCGTGGATCAGCACGCGCA
GGTAGTGGCCGAGCAGACCCCAGCAGTTCTTCGACATCAGGTCAATGATGGTGTGGCCGACGGTGGAGCCGTA
CACGCTCAGGACGCCGAAGCCCTCGGGGCCGAGGATGAACAGGATGGGGAACATACCCCATGATACGAAGAAG
AGCCAAGCCATGCCAGTCACCACCTGGCGACACCGGCCCTTCGGCACGGTGTGGTAACCCTCGATGTAGGCCT
TGGCAGCGTGAAAGAACGTGTTAGCACCATAACACAGACCCAGGCAGAAGAAGATGACCTTGACGTATCCGGT
GGCCATGGCGGAAGTGGCGCCCCACACAATTGTGCCAATATCAGACACAAGCAGACCCATGGTGCGCCTGCTG
TAGTCGTTGGACAAGCCCGTCAGGTTTGACAGGTGAATGAGAATGACCGGGCAGGTGAGAAGCCACTCGGCGT
AACGCAACCACTGGACGCGGTGGCCTGTGGCTAGATACAGCATGGACGGGTTCTTAAACTCGAAGAAGAACTC
GAGAATCACCTTGACCATCTCGATAGCGCACACATAGATCTCCTCCCAGCCGCAGGTTGACTTCCATGTTTGG
TAGGCGTAAAACATAAGCAGTAGGATGGAGAAGCCAGCAGCAAGCCATTGCAGCACGTTCGACGCCGTTTGGG
CACCGTTTGTGCCACGCGACTCAATCCAGCCCGCGCAGTAACACTGGTCCTCAGGCACAAGTACAGAGCCATT
GACGACTACTGGGTTCGTTACAAATAGCAGCTCGCGCCCAACGGCACTCAGGGCGCCTCCATAATCCATG 

 
pGCA2, in bold the insert 
TAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATAACTT
ACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGACGTATGTTCCCA
TAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGT
ACATCAAGTGTATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTAT
GCCCAGTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGG
TGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGATTTCCAAGTCTCCACCC
CATTGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAACTCCGCC
CCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTGGTTTAGTGAACCGTC
AGATCCGCTAGCGCTACCGCGGGCCACCATGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTG
GTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACG
GCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCT
GACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATG
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CCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGA
AGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCT
GGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATC
AAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACA
CCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGA
CCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGAC
GAGCTGTACAAGTCCGGCGGGAGCGGATCCGGCGGCCAGTCCGGCGGGAGCGGATCCGGCGGCCAGTCCGGCG
GGAGCGGATCCGGCGGCCAGTCCGGCGGGAGCGGATCCGGCGGCCAGTCCGGCGGGAGCGGATCCGGCGGCCA
GTCCGGACTCAGATCTGTCAAACTTACATCAGACTTCGACAACCCAAGATGGATTGGACGACACAAGCATATG
TTCAATTTCCTTGATGTCAACCACAATGGAAAAATCTCTCTTGACGAGATGGTCTACAAGGCATCTGATATTG
TCATCAATAACCTTGGAGCAACACCTGAGCAAGCCAAACGACACAAAGATGCTGTAGAAGCCTTCTTCGGAGG
AGCTGGAATGAAATATGGTGTGGAAACTGATTGGCCTGCATATATTGAAGGATGGAAAAAATTGGCTACTGAT
GAATTGGAGAAATACGCCAAAAACGAACCAACCCTCATCCGCATCTGGGGTGATGCTTTGTTTGATATCGTTG
ACAAAGATCAAAATGGAGCCATTACACTGGATGAATGGAAAGCATACACCAAAGCTGCTGGTATCATCCAATC
ATCAGAAGATTGCGAGGAAACATTCAGAGTGTGCGATATTGATGAAAGTGGACAACTCGATGTTGATGAGATG
ACAAGACAACATTTAGGATTTTGGTACACCATGGATCCTGCTTGCGAAAAGCTCTACGGTGGAGCTGTCCCCT
AATCTCGACGGGGATCCACCGGATCTAGATAACTGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACT
TGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTG
TTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCAC
TGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTAACGCGTAAATTGTAAGCGTTAATATTTTGT
TAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTA
TAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAAC
GTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAAT
CAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTG
ACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCA
AGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCAGGTG
GCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCT
CATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTCCTGAGGCGGAAAGAACCAGC
TGTGGAATGTGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCA
TCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCAT
CTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCC
ATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATT
CCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAGATCGATCAAGAGACAGGATGAGGATC
GTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTAT
GACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGCCCGGTTC
TTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTGCAAGACGAGGCAGCGCGGCTATCGTGGCTGGC
CACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTATTGGGC
GAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAA
TGCGGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAGC
ACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCC
GAACTGTTCGCCAGGCTCAAGGCGAGCATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCT
TGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCG
CTATCAGGACATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTC
GTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAG
CGGGACTCTGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCC
GCCTTCTATGAAAGGTTGGGCTTCGGAATCGTTTTCCGGGACGCCGGCTGGATGATCCTCCAGCGCGGGGATC
TCATGCTGGAGTTCTTCGCCCACCCTAGGGGGAGGCTAACTGAAACACGGAAGGAGACAATACCGGAAGGAAC
CCGCGCTATGACGGCAATAAAAAGACAGAATAAAACGCACGGTGTTGGGTCGTTTGTTCATAAACGCGGGGTT
CGGTCCCAGGGCTGGCACTCTGTCGATACCCCACCGAGACCCCATTGGGGCCAATACGCCCGCGTTTCTTCCT
TTTCCCCACCCCACCCCCCAAGTTCGGGTGAAGGCCCAGGGCTCGCAGCCAACGTCGGGGCGGCAGGCCCTGC
CATAGCCTCAGGTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTG
AAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCG
TAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACC
ACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGC
AGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCAC
CGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGG
GTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCC
AGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCG
AAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGG
GGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGC
TCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGC
CTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCATGCAT 
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pPCR Script Amp SK+ (empty vector), * marks the insert site 
CTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAA
TAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTT
GGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGG
CCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCT
AAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGA
AAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAA
TGCGCCGCTACAGGGCGCGTCCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCC
TCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTT
CCCAGTCACGACGTTGTAAAACGACGGCCAGTGAGCGCGCGTAATACGACTCACTATAGGGCGAATTGGGTAC
CGGGCCCCCCCTCGAGGTCGACGGTATCGATAAGCTTGATATCGAATTCCTGCAGCCCGGGGGATCCGCCC*G
GGCTAGAGCGGCCGCCACCGCGGTGGAGCTCCAGCTTTTGTTCCCTTTAGTGAGGGTTAATTGCGCGCTTGGC
GTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGA
AGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCG
CTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCG
TATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCA
GCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAG
GCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGA
GCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCC
CCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTT
CGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCT
GGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAAC
CCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCG
GTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCT
GCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGT
GGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTA
CGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTT
CACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGAC
AGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGAC
TCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGA
CCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCT
GCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATA
GTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAG
CTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGT
CCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTC
TTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTG
TATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAA
GTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGA
TGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAAC
AGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTT
CAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATA
AACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCAC 

 
Insert of pPCR Script TG1 KO L, in bold the restriction sites for subcloning 
CTCGAGACCGATATATACAGGGTTTGGAGGTGTTCTCTTAGGCAACTGTGCATTTCCTCAGATGGATCTTCAA
TGGTTTCTCCACTGGACATCTGTTTTTTAGTATGATTTGAGAGTGTCTATAGCAAGGTGGAGAGGAGGTTTTT
CTCTGCAATATAAGGTGCTTCTTCTGGGTGACTGAATAGGGTCTTTGGGGCATCTCAGGGTGAGAATGTGATT
ATCCCAGTCACCTAGCTGGTACTGAACCAATTTCTCTGGATAGAGTTTCTGGGTGGGTGGGATGGACATCCCA
GGCACAGGAGATCTGAGTGAATGAGCACCCTCTGTCTCTTCTACACAGGCACAATGGAAGGTCCTCGCTCAGA
CGTGGGCCGCTGGGGCAGGAGCCCCTGGCAGCCCCCTACAACACCGTCACCGGAGCCAGAGCCGGTGCCGGAG
CCAGACAGACGCTCGCGCTCCCGCCGAGGAGGAGGCCGCTCCTTCTGGGCTCGTTGTTGTGGCTGCTGCTCAT
GTGGGAACAGAGGGGACGATGACTGGGGACCTGAACCTTCTGGCTCCAGAAGCAGAGGGACCAGCTCCCGGGG
TAGGGACTCTCGGGGTGGCCGAAGACCCGAGTCTCGGGGCAGTGGTGTAAATGCAGCTGGAGATGGCACCATC
CGAGGTGAGATTACACACCTTAACCTAGAGCTGAGCCTTTATGGAACCTAAGGTTTATCCTGGCATCTCTAAG
GGGGCTTCTGAGACTTCTGAGGAGGGACTGGGCTCTTCGTGAACTCTTCACTGACCCATGGATGTGGTTTCAC
AGAGGGAATGCTGGTTGTGACTGGTGTGGATCTGCTGTGCTCACGATCAGACCAGAACCGCCGAGAGCACCAC
ACGGATGAGTTTGAATATGATGAGCTGATTGTGCGCCGTGGGCAGCCCTTCCACATGATCCTTTTCTTGAACC
GGGAATATGAGTCCTCTGATCGCATTGCCCTTGAGCTCCTCATTGGTGAGTGGGACCTGGAATGGGAAGGGTA
AAGCCCCTAGACTTGAAGGGCTGGTGTTAGGTTAGAGAGGTCTTTAGGCTCCTCCCCGGCACTCCTCACCTCT
GCCAAAAGAGGCTGGTGCCGGATTCATAGTCTCGAG 
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Insert of pPCR Script TG1 KO M, in bold the restriction sites for subcloning 
GTCGACATAGTGCTCCCCTAGTGGTGCTCTCAGAAAAGATGTGGTCCTGCAGTTTCCTCAAGCTGGCTTTCCA
CAAGCCTCCAGAGGCAACTGTCTTTCTCACAGTGCTGGCCCCTGTGTCTCCTTCAGCACGGTTGACTCCATGT
CTCCATGTGCCCCTCTTTCTGGGTCTTGCTGGGTCATCCCCCTAGCCCCCATCTATCAATCTCTCTGCCTTTT
TATCACAAGGCCCAAGGCAGGTGCCTCCCTCACCATGTTGCCTGGTGACCGTTGACTGCTCAGGCTGGTGATT
ATACAGCTACTGGGGGCGGGCGGGTGACTCTTCTAACCCTTTGATTACAGCCCAGCCATGCACACCCCAGTCT
CTAATTTCCCAGGTACCCCTACCACCTCCAGAAATGCTCTGGGCTCTAGAAGCAGTGACCCCAGAGAGCCACT
CTGCCCTTTAGTATCTGGAGTATTCTTTCCTATGGGGCAAATGGATTGGATTCAATTCTCTCCTTTTAGTCCT
GTAGGACAGTAGTGACAATGGCCCCAGTGTCCCCTCCCCACTTGAGTTCATTGTCGGGGAAACAGGTTTGGGA
TGTTGGACTGGGGTTCTGCCCTGACATGCGGGAGAGCACGGGGCGGCCACCAAGCTGCCCTAAGGAAGATTGT
CACAGGCTGGTGTGGTAACTACTTAGGGACACATAAATTGGCTCATAGACACTGGGTGGGGTTGAATGAATTC
CTAGTCTCTCCCCACTTCCAGAGCGACTCGCTCACTGCCTAGTTGCTGGTCTTGTTACTCTAGGAAGCAATCC
GGAGGTGGGCAAGGGCACCCACGTGATCATCCCAGTGGGTAAGGGAGGCAGTGGTGGCTGGAAGGCCCAAGTG
ACTAAGAACAACGGACACAACCTAAACCTACGCGTCCACACCTCCCCCAATGCCATCATTGGCAAGTTTCAGT
TCACTGTCCGCACCCGCTCTGAAGCTGGAGAGTTCCAGTTGCCCTTTGACCCCCGCAATGAGATCTACATCCT
CTTCAATCCCTGGTGCCCAGGTAAGCCAGCTGGGGTCAAGAGCAGAGGGCAGGTGGGTCAGGACTTCCTTTCC
TGAGATCCAGGTGGGTGTCTGGACATCTGGTCATAGGAAAAGACACCCTCCCATTGTCCAGGAGAGGAGACTG
AGGCCCAGTATAGAAAAGAGTCCCACCTCACTTCTGATAAAGGGTCCTGGCCACAGCCAATCTTTCTCACCAT
CCTTCCTTAGAGCAGTCCGATTAGGCTAGAAGCACCCCCAATCCCACCCCCACCCCCACCCCATAGGGATGAG
TCCTGCAGACCCGGCAGAGGGGAAGGCAGGGCCCTTGAAGAAAATAGATAGGATTTGCAATTTATTTTCTGGG
GATACAGAGGACATAGTGTATGTGGACCATGAGGACTGGCGGCAAGAATATGTGCTTAATGAGTCTGGAAGAA
TCTACTATGGAACAGAAGCACAGATTGGCGAACGAACCTGGAACTATGGTCAGGTATGGCTGGGCTCGCATCC
CTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTTTCTCTCTCTCTCTCTCTC
TCTCTCTCTCTCTCTCTTACTTTCCTTCTTTTTTTCTTCCTTTCTCTCTCTTTTGTTTTGTTTTTTTGTTTGT
TTGTTTGTTTTGGGTTTTTTTTTTTTGAGACAGGATTTCTCTGTGTAGTGTTGGCTGTCCTGGAACTCACTCT
GTGGACCAGACTGGCCTTGAACTTACAGAGATCTACCCACCGTCGAC 
 

Insert of pPCR Script TG1 KO R, in bold the restriction sites for subcloning 
GGATCCCACATGCCACCACTGGTCTTGCACACTCATTAAAGGGAGATAGAAGTGAGGGACATGGTGGGCCGAC
ACTAGCCTTTGGTTTGAGCATCACTTGAGGAGCTGTCATGACCTCTGCCCTCCTGCCTTCTAGTTTGACCATG
GGGTGCTGGATGCCTGCCTGTACATCCTGGATCGGAGGGGGATGCCATATGGAGGTCGTGGGGACCCAGTCAG
TGTCTCTCGGGTTGTCTCTGCCATGGTGAGCACCTCTGTATCTCTAAGCCCTATCTGTGCCTTCCTGCCCTGC
CCTTTATGGATTTTCCATCCCTGTCCCTGAAGAGATTTTTCACCCCTTCTCCCTCCCCTCCCCAACCCCCTCT
ATCCCACCTCACCTTTCATTGTTTCTGTCCTGGCTCCTTTGGAATGTAAGGCGCCAAACCCCAAACTTGGCAC
ACCCAGTGTTCACATTCCAGTGTTACAGCAGATGGGTTGGGGGAGGGATGGGCAGGTTTAAGTTGACCTCTCA
AGAGGTTGCAGTGTTAGGGGTTGGGGAATCCAGAAGGTCCTAAGCACCTCCCCAAATCCAGCCGCACCCTATC
TTTTCCTGGGCAGGTGAACTCCCTGGATGACAATGGAGTTCTGATTGGGAACTGGACCGGTGACTACTCTCGA
GGCACCAACCCCTCAGCGTGGGTGGGCAGTGTGGAGATCCTGCTCAGCTACCTACGCACCGGCTATTCCGTCC
CCTACGGCCAATGCTGGGTCTTTGCCGGTGTGACCACCACAGGTAGTACAGGGAATGGGCCAGGAATAGCCTG
GGCTCTATGAGGAGGGAAGGGTTCTATTTCTGCCCAGCCCAACTATGGCTACAGGATAGGGTGCCACTAAGGG
TGGATGATAGCATGACCTTAATTATCATTAATTAGTGTCTGCAACTGAGAGGCCTAAGGGAGAGAAAGAAGAG
GCAATAGTCCGGGTCTGTGTCAAGCAGGTGGCTTTGTAACCCACACTGCTTTGCAGCCCAAAGGACACCTGGG
TCTTCTGACCCCTAACTGTGATGGTCCCTCCAAGCTTGGCAAGTTCAGCACCCTTTTCTTCCTGCGGATGCCG
CACACACAGCCAACCTCTGCCCCAGCCCTTACCCCTGGCTCTTCCACAGTGCTCCGATGTCTGGGCTTCGCTA
CCCGTACCGTCACCAACTTCAACTCTGCACACGACACAGACACCTCCCTCACTATGGACATCTACTTTGATGA
GAACATGAAGCCACTTGAACATCTGAACCATGATTCTGTTTGGTGAGCACAGGGTGAGGGGTGGCCTGTCATG
TGCCCTGAAGATGACCTGAGGCTTGAGTATGGATCGGGGCTGGGAGGACCTGAATGGGAACCTCAGGCCCAGA
GCCCCCTCCTTGCCCCTCTAGGAACTTCCACGTGTGGAACGACTGCTGGATGAAGAGGCCAGATCTGCCCTCA
GGCTTTGATGGGTGGCAGGTTGTGGATGCCACACCCCAGGAGACCAGCAGTGGTAAGGCAGGCCTTGCCCAGA
CCCTATCCAGAACATCTCCAGCTCCTGTATGTTAGCCCCGGTCTTGGCTAGACAGCCAAATCTATAGTTCTTT
GTATGGATTTATCAACTGAACCACCACCAAGCCATTAGTTTATTTTCCTCTCTTTAGCTACTTGACTTAATTT
TATTTTATAATTTATAATGGTTAATATACTGAGATGGTTCAAAAGTCAAAAGAGATTCAAGAATATTCAGTAA
GAGGTTTCCCTTTCCTGATAAGCTCATTATTCTTACTTGCTTTTTTTTGTTTGTTTGCTTTGCTTCGCTTTTT
TCGAGACAGGGTTTCTCTGTGTAGCCCTGGCTGTCCTGGAACTCTCTCTATAGACTAGGCTGGCCTCTAATTC
AGAGTACTGGGATTAAAGGTCACACCACACTGCCCAGTTCTTACTTGCTTTTTAATTTATATATCCCAGATAC
AATTAATTAAAAGACACGCATACAGAGAGAAAAGTTATGAGTAATAAATGTGTGAATGGAAGGACAAAACGGT
ATTGAATTGAATAAGATAAAATATAACAGTTTCTTATTTTCCCTTAGATGTCTTTAAAGTAAATTTCTATGGG
GGGGAGTCCCAGGAGTCCCACCCAAAATCTTTTCATCAGTCTTGGTCCATCAGATTTCCAGCAATAGGATCTA
GTAGTATGTATCTATTTCTTCCCAGTCCTGGTTTTGAACCTGGGGCTTTGAGCATGCTCAGCATCCATTTTTC
ATTCTCTATTTCAAAAGTTCCTGGTAATTCTTATGGACACCCATGTTTGGAACAAACCTCCATGCCAATGGAA
CACATGGTAAATGCGGCTCTGGGAGGCAGAATGGCTTTGTCTGGGTCTCCAGCAGAATGAGGCCTAGTTTCCC
TTCTTTTTGTTCCCCTGTTCACTGCATTCATGTGCAGTATAGAGAAATCAGGGCTCAGGCAGAAAACAGCTCT
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GTAACTGTCAGATCTGACCTGGGCGACACGACCTGTCAGTCGCTTATCTCTTCTCTGCATCCGCAAATGCTGT
CTCCATAGCAGTAGCCCTGTTCTTGGCTCTGCCCTCGTGACCTCCTCTCCCTCTGGCTGCAATGCTCCCTCCA
GGTTACTCAGCCTGTCCCACCAGCTACTTCCTTCTCTCCTCCACCTTCCTAGAGTCAGACAGCCTTGGCCTGA
CTTACATTCTTCTGCCCATTTCCCAGAACCCTCCCTGTCAATCATCTATGTAAAAAGGTGTCCTGGGTTGCAT
AACCTAGCAATGCTCACCGTGGACTTGGAGACTTGATCTCTGGTCCAGCTCTAAGAAGTAATGGGGTAGGTGT
CAGGCAGGGGCCCTCACAGGATGGCCAGGGCTTCGGTCTACCACGATTACTTCTTAGATGAGTGATATTGGCA
AGGAAGTACCTTACACCTTTGTGTTTTGTATTCTGTGTGTGTGTGTGTGTGTGTGTGTACTAGAGACCATATG
GTGTGGTTGGGAGGATTAAATGGACACCATGTAGCATGTAGCATGCTGACAACATTACAGCTGCTAAGTCGGT
AGAAGCTTTCCCAGCTGTCTTATAAGGTCTTGGCATCCGTCACACTGGCTAGGCCTGTTTCCCCATCTGCCGA
AGGAGGCCAGAGCATTAGGTGTTAAGGTTCTTTCCTATTGGATAGCCCTCACCTCCTGTTTTCACTTTCTGTC
CCAGCCTGCCCATTTCAGCCAGCTCGCCATGGTCCTCGGTAGGGAACCCTCCTGAGTATAAGGACAGTCCCTT
CTTGCCCACCACCCTTCTCATTTCCCAATCAGGAAATCAGAGAGTGCTGCAAAGCTGAGGTGTTTCTGAAGGG
GTGCTCGATGGTGCTACCACTGCTCTCAGCCAACCAGAACCATTATAGGTCCTGGATTGATTGTGATGAAAGA
CTGGGGGAGGGTGTCCTGCACTCTGAGATTCATGGACAGTGCAGCCTGCCAGCTCAGAGAATGTGCTAACAAC
CTGGTTATCAAGTTGGGCTGTCCGCAGGCCCCTCCCACTCCCACCCTGCTGTTGGAGCCTCGTGTGGCCTCTA
GACCAGACCACAAGAGGACCCCTTGGCCTTCTTAGACCCATCGCCTGCTTCATTTCCTAGGCATCTTCTGCTG
TGGCCCCTGTTCTGTGGAGTCCGTCAAGAATGGCTTAGTCTACATGAAGTATGACACACCTTTCATTTTTGCT
GAGGTGAGGGCTGGGCTCTAGGTGCCTCCTCTAGCAAACAGTCTGAAGTGACCAGAGCCTTGGCTTCAGTCCT
GAACACTCTGGTCTTGACTTCCCCGCTGACTGACTAGCTGTGTAACCTCGGGCAAGTCACTCATTCTAGAGTC
ATGGTTTCCTCAACTGTAAAAAGGAGATAATAATGGCTGCCTCGCTTCCTGTCCTCAGGATCAAAAGAGATAA
TGGATATGGGGCTGCTTCATTAGTTATAAAGCAAGCGAATACGCACAAGGAATTACTGTTATTAATGCCAAAA
TGGGCTACAAGGAGCCTCCTAGGCAAGCTTCTTCCCCTGCTTTCAGAGCATGGCAGGTTGGCCCTGCCTGCAG
TCCCTAGAGTTGAGGGAAGGTACCGGGGTCTCGCTCGCCTGTCTTCCTGGCCCTTCAGTCCTGCTGACCTTTG
CTCACCACAGGTAAATAGCGATAAGGTATACTGGCAGCGGCAGGATGATGGCAGCTTTAAGATAGTGTACGTG
GAAGAGAAAGCCATTGGCACACTCATTGTCACAAAGGCGATCCACTCCAACAATCGAGAGGACATCACCCACA
TCTATAAGCACCCAGAAGGTAACATGCTCCCAGCCCAGCCCGCTCCTGGCTGAGGGTCCCCGCAGAGCCTGTG
CCTACCCCAGCCAGAGCTCAAACGCACCTTTGACCTCAACCCCCAGGCTCAGAAGCAGAGCGGAGGGCTGTGG
AGAAGGCGGCAGCCCATGGCAGCAAACCTAATGTGTATGCCACCCGGGACTCCGCTGAGGATGTGGCAATGCA
GGTGGAGGCGCAGGACGCTGTGATGGGGCAGGATCTGGCTGTCTCTGTGGTGCTGACCAATCGTGGTAGTAGC
CGACGCACTGTGAAGTTGCACCTCTACCTTTGTGTCACCTACTACACTGGTGTCTCTGGGCCTACCTTCAAGG
AGGCCAAAAAGGAAGTGACATTAGCCCCAGGAGCCTGTAAGTGGTCCTTCCTCAATCCTGTCCCTAGATGGTA
TTCCCTCTACCTAGATGGTGCTCCCTTCCCAGCCCTGCCCCTAGATGGTGCTCCCTCCCAGCCCTGCCCCTAA
ATGGTGCTCCCACCCCAGCCCTGCCCCTAAATGGTGCTCCCACCCCAGCACTGTCCCTAGATGGTGCTCCCAC
CCCAGCCCTGCCCCTAGATGGTGCTCCTATCCCAGCCCTGCCCCTAGATGGTGCTCCCACCCCAGCACTGTCC
CTAGATGGTGCTTCCACCCCAGCTCTGCCCCTAGATGGTGCTCCCACCCCAGCCCTGCCCCTAGATGGTACTC
CCTTCCCAGCTCTGCCCCTAGATGGTACTCCCTCTCCTGCCCTGCCTCTGGGTATCCAAGTACTATGGCTTTG
CGGCCGC 
 

Insert of pPCR Script TG1 SB S1 
CGGACTCTGTGACCATGCCTGTGGCCTACAAGGAATACAAGCCCCACCTTGTGGACCAGGGGGCAATGTTGCT
CAATGTCTCAGGCCATGTCAAGGAGAGTGGGCAGGTACTAGCCAAGCAACACACCTTCCGTTTGCGCACCCCA
GACCTTTCTCTTACGGTGAGTGCAGCTTTCTGGGACTCATGGGGGTAAATAGAGACCCAGAGCTTGAGGCTAA
GGAAAACTGTGGGCAAGGGGAGCACGCTAAGCCTGAGACAAGTTACCCTGATGAGCCTTTTCGGAGAAGGTTA
AAGTCCAGATCTGGCCTTAGTTTCCTCATCAATAAAATGGGTTCTCAGGTCCAATTCTGTTTCATATTCAGAT
TGCAGAATGAATATGAGTTGCCTCCTCAATTTTTGAGGTAGCTTCTCTGAAGGACTGAAATGTGGAACTTGGC
GAGATTTTGAACCAAACACATTTCTCCCTTGGGTACAAACTGTGGGCTGGCCAGGGTCTCTGATGAGGGGTGG
ATTTCTCTCTCACTCAGTTACTGGGAGCAGCAGTTGTTGGTCAGGAATGTGGAGTACAGATCGTGTTCAAGAA
CCCCCTGCCTGTCACCCTCACCAACGTCGTCTTCCGGCTCGAAGGTTCTGGATTACAGAGACCCAAGGTCCTC
AATGTCGG 
 

Insert of pPCR Script TG1 SB S2 
TAGCAAGGTGGAGAGGAGGTTTTTCTCTGCAATATAAGGTGCTTCTTCTGGGTGACTGAATAGGGTCTTTGGG
GCATCTCAGGGTGAGAATGTGATTATCCCAGTCACCTAGCTGGTACTGAACCAATTTCTCTGGATAGAGTTTC
TGGGTGGGTGGGATGGACATCCCAGGCACAGGAGATCTGAGTGAATGAGCACCCTCTGTCTCTTCTACACAGG
CACAATGGAAGGTCCTCGCTCAGACGTGGGCCGCTGGGGCAGGAGCCCCTGGCAGCCCCCTACAACACCGTCA
CCGGAGCCAGAGCCGGTGCCGGAGCCAGACAGACGCTCGCGCTCCCGCCGAGGAGGAGGCCGCTCCTTCTGGG
CTCGTTGTTGTGGCTGCTGCTCATGTGGGAACAGAGGGGACGATGACTGGGGACCTGAACCTTCTGGCTCCAG
AAGCAGAGGGACCAGCTCCCGGGGTAGGGACTCTCGGGGTGGCCGAAGACCCGAGTCTCGGGGCAGTGGTGTA
AA 
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pTarget TG1 KO 
GTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCC
GCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTC
CGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAG
TAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCT
TGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTA
TCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACT
CACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAG
TGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAAC
ATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTG
ACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTC
CCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCT
GGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAG
ATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACA
GATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAG
ATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAA
TCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCC
TTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGAT
CAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAG
TGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTT
ACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAG
GCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGA
GATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAG
CGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTC
GGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACG
CCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATC
CCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAG
CGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGA
TTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAG
TTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGC
GGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCGCGCAATTAACCCTCACTAAAGGG
AACAAAAGCTGGAGCTCCACCGCGGTGCGGCCGCAAAGCCATAGTACTTGGATACCCAGAGGCAGGGCAGGAG
AGGGAGTACCATCTAGGGGCAGAGCTGGGAAGGGAGTACCATCTAGGGGCAGGGCTGGGGTGGGAGCACCATC
TAGGGGCAGAGCTGGGGTGGAAGCACCATCTAGGGACAGTGCTGGGGTGGGAGCACCATCTAGGGGCAGGGCT
GGGATAGGAGCACCATCTAGGGGCAGGGCTGGGGTGGGAGCACCATCTAGGGACAGTGCTGGGGTGGGAGCAC
CATTTAGGGGCAGGGCTGGGGTGGGAGCACCATTTAGGGGCAGGGCTGGGAGGGAGCACCATCTAGGGGCAGG
GCTGGGAAGGGAGCACCATCTAGGTAGAGGGAATACCATCTAGGGACAGGATTGAGGAAGGACCACTTACAGG
CTCCTGGGGCTAATGTCACTTCCTTTTTGGCCTCCTTGAAGGTAGGCCCAGAGACACCAGTGTAGTAGGTGAC
ACAAAGGTAGAGGTGCAACTTCACAGTGCGTCGGCTACTACCACGATTGGTCAGCACCACAGAGACAGCCAGA
TCCTGCCCCATCACAGCGTCCTGCGCCTCCACCTGCATTGCCACATCCTCAGCGGAGTCCCGGGTGGCATACA
CATTAGGTTTGCTGCCATGGGCTGCCGCCTTCTCCACAGCCCTCCGCTCTGCTTCTGAGCCTGGGGGTTGAGG
TCAAAGGTGCGTTTGAGCTCTGGCTGGGGTAGGCACAGGCTCTGCGGGGACCCTCAGCCAGGAGCGGGCTGGG
CTGGGAGCATGTTACCTTCTGGGTGCTTATAGATGTGGGTGATGTCCTCTCGATTGTTGGAGTGGATCGCCTT
TGTGACAATGAGTGTGCCAATGGCTTTCTCTTCCACGTACACTATCTTAAAGCTGCCATCATCCTGCCGCTGC
CAGTATACCTTATCGCTATTTACCTGTGGTGAGCAAAGGTCAGCAGGACTGAAGGGCCAGGAAGACAGGCGAG
CGAGACCCCGGTACCTTCCCTCAACTCTAGGGACTGCAGGCAGGGCCAACCTGCCATGCTCTGAAAGCAGGGG
AAGAAGCTTGCCTAGGAGGCTCCTTGTAGCCCATTTTGGCATTAATAACAGTAATTCCTTGTGCGTATTCGCT
TGCTTTATAACTAATGAAGCAGCCCCATATCCATTATCTCTTTTGATCCTGAGGACAGGAAGCGAGGCAGCCA
TTATTATCTCCTTTTTACAGTTGAGGAAACCATGACTCTAGAATGAGTGACTTGCCCGAGGTTACACAGCTAG
TCAGTCAGCGGGGAAGTCAAGACCAGAGTGTTCAGGACTGAAGCCAAGGCTCTGGTCACTTCAGACTGTTTGC
TAGAGGAGGCACCTAGAGCCCAGCCCTCACCTCAGCAAAAATGAAAGGTGTGTCATACTTCATGTAGACTAAG
CCATTCTTGACGGACTCCACAGAACAGGGGCCACAGCAGAAGATGCCTAGGAAATGAAGCAGGCGATGGGTCT
AAGAAGGCCAAGGGGTCCTCTTGTGGTCTGGTCTAGAGGCCACACGAGGCTCCAACAGCAGGGTGGGAGTGGG
AGGGGCCTGCGGACAGCCCAACTTGATAACCAGGTTGTTAGCACATTCTCTGAGCTGGCAGGCTGCACTGTCC
ATGAATCTCAGAGTGCAGGACACCCTCCCCCAGTCTTTCATCACAATCAATCCAGGACCTATAATGGTTCTGG
TTGGCTGAGAGCAGTGGTAGCACCATCGAGCACCCCTTCAGAAACACCTCAGCTTTGCAGCACTCTCTGATTT
CCTGATTGGGAAATGAGAAGGGTGGTGGGCAAGAAGGGACTGTCCTTATACTCAGGAGGGTTCCCTACCGAGG
ACCATGGCGAGCTGGCTGAAATGGGCAGGCTGGGACAGAAAGTGAAAACAGGAGGTGAGGGCTATCCAATAGG
AAAGAACCTTAACACCTAATGCTCTGGCCTCCTTCGGCAGATGGGGAAACAGGCCTAGCCAGTGTGACGGATG
CCAAGACCTTATAAGACAGCTGGGAAAGCTTCTACCGACTTAGCAGCTGTAATGTTGTCAGCATGCTACATGC
TACATGGTGTCCATTTAATCCTCCCAACCACACCATATGGTCTCTAGTACACACACACACACACACACACACA
GAATACAAAACACAAAGGTGTAAGGTACTTCCTTGCCAATATCACTCATCTAAGAAGTAATCGTGGTAGACCG
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AAGCCCTGGCCATCCTGTGAGGGCCCCTGCCTGACACCTACCCCATTACTTCTTAGAGCTGGACCAGAGATCA
AGTCTCCAAGTCCACGGTGAGCATTGCTAGGTTATGCAACCCAGGACACCTTTTTACATAGATGATTGACAGG
GAGGGTTCTGGGAAATGGGCAGAAGAATGTAAGTCAGGCCAAGGCTGTCTGACTCTAGGAAGGTGGAGGAGAG
AAGGAAGTAGCTGGTGGGACAGGCTGAGTAACCTGGAGGGAGCATTGCAGCCAGAGGGAGAGGAGGTCACGAG
GGCAGAGCCAAGAACAGGGCTACTGCTATGGAGACAGCATTTGCGGATGCAGAGAAGAGATAAGCGACTGACA
GGTCGTGTCGCCCAGGTCAGATCTGACAGTTACAGAGCTGTTTTCTGCCTGAGCCCTGATTTCTCTATACTGC
ACATGAATGCAGTGAACAGGGGAACAAAAAGAAGGGAAACTAGGCCTCATTCTGCTGGAGACCCAGACAAAGC
CATTCTGCCTCCCAGAGCCGCATTTACCATGTGTTCCATTGGCATGGAGGTTTGTTCCAAACATGGGTGTCCA
TAAGAATTACCAGGAACTTTTGAAATAGAGAATGAAAAATGGATGCTGAGCATGCTCAAAGCCCCAGGTTCAA
AACCAGGACTGGGAAGAAATAGATACATACTACTAGATCCTATTGCTGGAAATCTGATGGACCAAGACTGATG
AAAAGATTTTGGGTGGGACTCCTGGGACTCCCCCCCATAGAAATTTACTTTAAAGACATCTAAGGGAAAATAA
GAAACTGTTATATTTTATCTTATTCAATTCAATACCGTTTTGTCCTTCCATTCACACATTTATTACTCATAAC
TTTTCTCTCTGTATGCGTGTCTTTTAATTAATTGTATCTGGGATATATAAATTAAAAAGCAAGTAAGAACTGG
GCAGTGTGGTGTGACCTTTAATCCCAGTACTCTGAATTAGAGGCCAGCCTAGTCTATAGAGAGAGTTCCAGGA
CAGCCAGGGCTACACAGAGAAACCCTGTCTCGAAAAAAGCGAAGCAAAGCAAACAAACAAAAAAAAGCAAGTA
AGAATAATGAGCTTATCAGGAAAGGGAAACCTCTTACTGAATATTCTTGAATCTCTTTTGACTTTTGAACCAT
CTCAGTATATTAACCATTATAAATTATAAAATAAAATTAAGTCAAGTAGCTAAAGAGAGGAAAATAAACTAAT
GGCTTGGTGGTGGTTCAGTTGATAAATCCATACAAAGAACTATAGATTTGGCTGTCTAGCCAAGACCGGGGCT
AACATACAGGAGCTGGAGATGTTCTGGATAGGGTCTGGGCAAGGCCTGCCTTACCACTGCTGGTCTCCTGGGG
TGTGGCATCCACAACCTGCCACCCATCAAAGCCTGAGGGCAGATCTGGCCTCTTCATCCAGCAGTCGTTCCAC
ACGTGGAAGTTCCTAGAGGGGCAAGGAGGGGGCTCTGGGCCTGAGGTTCCCATTCAGGTCCTCCCAGCCCCGA
TCCATACTCAAGCCTCAGGTCATCTTCAGGGCACATGACAGGCCACCCCTCACCCTGTGCTCACCAAACAGAA
TCATGGTTCAGATGTTCAAGTGGCTTCATGTTCTCATCAAAGTAGATGTCCATAGTGAGGGAGGTGTCTGTGT
CGTGTGCAGAGTTGAAGTTGGTGACGGTACGGGTAGCGAAGCCCAGACATCGGAGCACTGTGGAAGAGCCAGG
GGTAAGGGCTGGGGCAGAGGTTGGCTGTGTGTGCGGCATCCGCAGGAAGAAAAGGGTGCTGAACTTGCCAAGC
TTGGAGGGACCATCACAGTTAGGGGTCAGAAGACCCAGGTGTCCTTTGGGCTGCAAAGCAGTGTGGGTTACAA
AGCCACCTGCTTGACACAGACCCGGACTATTGCCTCTTCTTTCTCTCCCTTAGGCCTCTCAGTTGCAGACACT
AATTAATGATAATTAAGGTCATGCTATCATCCACCCTTAGTGGCACCCTATCCTGTAGCCATAGTTGGGCTGG
GCAGAAATAGAACCCTTCCCTCCTCATAGAGCCCAGGCTATTCCTGGCCCATTCCCTGTACTACCTGTGGTGG
TCACACCGGCAAAGACCCAGCATTGGCCGTAGGGGACGGAATAGCCGGTGCGTAGGTAGCTGAGCAGGATCTC
CACACTGCCCACCCACGCTGAGGGGTTGGTGCCTCGAGAGTAGTCACCGGTCCAGTTCCCAATCAGAACTCCA
TTGTCATCCAGGGAGTTCACCTGCCCAGGAAAAGATAGGGTGCGGCTGGATTTGGGGAGGTGCTTAGGACCTT
CTGGATTCCCCAACCCCTAACACTGCAACCTCTTGAGAGGTCAACTTAAACCTGCCCATCCCTCCCCCAACCC
ATCTGCTGTAACACTGGAATGTGAACACTGGGTGTGCCAAGTTTGGGGTTTGGCGCCTTACATTCCAAAGGAG
CCAGGACAGAAACAATGAAAGGTGAGGTGGGATAGAGGGGGTTGGGGAGGGGAGGGAGAAGGGGTGAAAAATC
TCTTCAGGGACAGGGATGGAAAATCCATAAAGGGCAGGGCAGGAAGGCACAGATAGGGCTTAGAGATACAGAG
GTGCTCACCATGGCAGAGACAACCCGAGAGACACTGACTGGGTCCCCACGACCTCCATATGGCATCCCCCTCC
GATCCAGGATGTACAGGCAGGCATCCAGCACCCCATGGTCAAACTAGAAGGCAGGAGGGCAGAGGTCATGACA
GCTCCTCAAGTGATGCTCAAACCAAAGGCTAGTGTCGGCCCACCATGTCCCTCACTTCTATCTCCCTTTAATG
AGTGTGCAAGACCAGTGGTGGCATGTGGGATCCTGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGAATT
CTACCGGGTAGGGGAGGCGCTTTTCCCAAGGCAGTCTGGAGCATGCGCTTTAGCAGCCCCGCTGGGCACTTGG
CGCTACACAATGTGCCTCTGGCCTCGCACACATTCCACAGCCACCGGTAGGCGCCAACCGGCTCCGTTCTTAG
GTGGCCCCTTCGCGCCACCTTCTACTCCTCCCCTAGTCAGGAAGTTCCCCCCCGCCCCGCAGCTCGCGTCGTG
CAGGACGTGACAAATGGAAGTAGCACGTCTCACTAGTCTCGTGCAGATGGACAGCACCGCTGAGCAATGGAAG
CGGGTAGGCCTTTGGGGCAGCGGCCAATAGCAGCTTTGCTCCTTCGCTTTCTGGGCTTCAGAGGCTGGGAAGG
GGTGGGTCCGGGGGCGGGCTCAGGGGCGGGCTCAGGGGCGGTCGGGCGCCCGAAGGTCCTCCGGAGGCCCGGC
ATTCTGCACGCTTCAAAAGCGCACGTCTGCCGCGCTGTTCTCCTCTTCCTCATCTCCGGGCCTTTCGACCTGC
ATCCCGCCACCATGAAAAAGCCTGAACTCACCGCGACGTCTGTCGAGAAGTTTCTGATCGAAAAGTTCGACAG
CGTCTCCGACCTGATGCAGCTCTCGGAGGGCGAAGAATCTCGTGCTTTCAGCTTCGATGTAVGAGGGCGTGGA
TATGTCCTGCGGGTAAATAGCTGCGCCGATGGTTTCTACAAAGATCGTTATGTTTATCGGCACTTTGCATCGG
CCGCGCTCCCGATTCCGGAAGTGCTTGACATTGGGGAATTCAGCGAGAGCCTGACCTATTGCATCTCCCGCCG
TGCACAGGGTGTCACGTTGCAAGACCTGCCTGAAACCGAACTGCCCGCTGTTCTGCAGCCGGTCGCGGAGGCC
ATGGATGCGATCGCTGCGGCCGATCTTAGCCAGACGAGCGGGTTCGGCCCATTCGGACCGCAAGGAATCGGTC
AATACACTACATGGCGTGATTTCATATGCGCGATTGCTGATCCCCATGTGTATCACTGTGAAGTTCCTATACT
TTCTAGAGAATAGGAACTTCGCCGGCCAATAACTTCGTATAATGTATGCTATACGAAGTTATGTCGACGGTGG
GTAGATCTCTGTAAGTTCAAGGCCAGTCTGGTCCACAGAGTGAGTTCCAGGACAGCCAACACTACACAGAGAA
ATCCTGTCTCAAAAAAAAAAAACCCAAAACAAACAAACAAACAAAAAAACAAAACAAAAGAGAGAGAAAGGAA
GAAAAAAAGAAGGAAAGTAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAAAGAAAGAAAGAAAGAAAG
AAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGAAAGGGATGCGAGCCCAGCCATACCTGACCATAGTTCCAGG
TTCGTTCGCCAATCTGTGCTTCTGTTCCATAGTAGATTCTTCCAGACTCATTAAGCACATATTCTTGCCGCCA
GTCCTCATGGTCCACATACACTATGTCCTCTGTATCCCCAGAAAATAAATTGCAAATCCTATCTATTTTCTTC
AAGGGCCCTGCCTTCCCCTCTGCCGGGTCTGCAGGACTCATCCCTATGGGGTGGGGGTGGGGGTGGGATTGGG
GGTGCTTCTAGCCTAATCGGACTGCTCTAAGGAAGGATGGTGAGAAAGATTGGCTGTGGCCAGGACCCTTTAT
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CAGAAGTGAGGTGGGACTCTTTTCTATACTGGGCCTCAGTCTCCTCTCCTGGACAATGGGAGGGTGTCTTTTC
CTATGACCAGATGTCCAGACACCCACCTGGATCTCAGGAAAGGAAGTCCTGACCCACCTGCCCTCTGCTCTTG
ACCCCAGCTGGCTTACCTGGGCACCAGGGATTGAAGAGGATGTAGATCTCATTGCGGGGGTCAAAGGGCAACT
GGAACTCTCCAGCTTCAGAGCGGGTGCGGACAGTGAACTGAAACTTGCCAATGATGGCATTGGGGGAGGTGTG
GACGCGTAGGTTTAGGTTGTGTCCGTTGTTCTTAGTCACTTGGGCCTTCCAGCCACCACTGCCTCCCTTACCC
ACTGGGATGATCACGTGGGTGCCCTTGCCCACCTCCGGATTGCTTCCTAGAGTAACAAGACCAGCAACTAGGC
AGTGAGCGAGTCGCTCTGGAAGTGGGGAGAGACTAGGAATTCATTCAACCCCACCCAGTGTCTATGAGCCAAT
TTATGTGTCCCTAAGTAGTTACCACACCAGCCTGTGACAATCTTCCTTAGGGCAGCTTGGTGGCCGCCCCGTG
CTCTCCCGCATGTCAGGGCAGAACCCCAGTCCAACATCCCAAACCTGTTTCCCCGACAATGAACTCAAGTGGG
GAGGGGACACTGGGGCCATTGTCACTACTGTCCTACAGGACTAAAAGGAGAGAATTGAATCCAATCCATTTGC
CCCATAGGAAAGAATACTCCAGATACTAAAGGGCAGAGTGGCTCTCTGGGGTCACTGCTTCTAGAGCCCAGAG
CATTTCTGGAGGTGGTAGGGGTACCTGGGAAATTAGAGACTGGGGTGTGCATGGCTGGGCTGTAATCAAAGGG
TTAGAAGAGTCACCCGCCCGCCCCCAGTAGCTGTATAATCACCAGCCTGAGCAGTCAACGGTCACCAGGCAAC
ATGGTGAGGGAGGCACCTGCCTTGGGCCTTGTGATAAAAAGGCAGAGAGATTGATAGATGGGGGCTAGGGGGA
TGACCCAGCAAGACCCAGAAAGAGGGGCACATGGAGACATGGAGTCAACCGTGCTGAAGGAGACACAGGGGCC
AGCACTGTGAGAAAGACAGTTGCCTCTGGAGGCTTGTGGAAAGCCAGCTTGAGGAAACTGCAGGACCACATCT
TTTCTGAGAGCACCACTAGGGGAGCACTATGTCGACTATAACTTCGTATAATGTATGCTATACGAAGTTATAA
GCTTGCGGCCGGCCGCCTCGAGACTATGAATCCGGCACCAGCCTCTTTTGGCAGAGGTGAGGAGTGCCGGGGA
GGAGCCTAAAGACCTCTCTAACCTAACACCAGCCCTTCAAGTCTAGGGGCTTTACCCTTCCCATTCCAGGTCC
CACTCACCAATGAGGAGCTCAAGGGCAATGCGATCAGAGGACTCATATTCCCGGTTCAAGAAAAGGATCATGT
GGAAGGGCTGCCCACGGCGCACAATCAGCTCATCATATTCAAACTCATCCGTGTGGTGCTCTCGGCGGTTCTG
GTCTGATCGTGAGCACAGCAGATCCACACCAGTCACAACCAGCATTCCCTCTGTGAAACCACATCCATGGGTC
AGTGAAGAGTTCACGAAGAGCCCAGTCCCTCCTCAGAAGTCTCAGAAGCCCCCTTAGAGATGCCAGGATAAAC
CTTAGGTTCCATAAAGGCTCAGCTCTAGGTTAAGGTGTGTAATCTCACCTCGGATGGTGCCATCTCCAGCTGC
ATTTACACCACTGCCCCGAGACTCGGGTCTTCGGCCACCCCGAGAGTCCCTACCCCGGGAGCTGGTCCCTCTG
CTTCTGGAGCCAGAAGGTTCAGGTCCCCAGTCATCGTCCCCTCTGTTCCCACATGAGCAGCAGCCACAACAAC
GAGCCCAGAAGGAGCGGCCTCCTCCTCGGCGGGAGCGCGAGCGTCTGTCTGGCTCCGGCACCGGCTCTGGCTC
CGGTGACGGTGTTGTAGGGGGCTGCCAGGGGCTCCTGCCCCAGCGGCCCACGTCTGAGCGAGGACCTTCCATT
GTGCCTGTGTAGAAGAGACAGAGGGTGCTCATTCACTCAGATCTCCTGTGCCTGGGATGTCCATCCCACCCAC
CCAGAAACTCTATCCAGAGAAATTGGTTCAGTACCAGCTAGGTGACTGGGATAATCACATTCTCACCCTGAGA
TGCCCCAAAGACCCTATTCAGTCACCCAGAAGAAGCACCTTATATTGCAGAGAAAAACCTCCTCTCCACCTTG
CTATAGACACTCTCAAATCATACTAAAAAACAGATGTCCAGTGGAGAAACCATTGAAGATCCATCTGAGGAAA
TGCACAGTTGCCTAAGAGAACACCTCCAAACCCTGTATATATCGGTCTCGAGGGGGGGCCCGGTACCCAATTC
GCCCTATAGTGAGTCGTATTACGCGCGCTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGC
GTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCG
ATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGC
GGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTC
CCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGAT
TTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTG
ATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACA
ACACTCAACCCTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAA
ATGAGCTGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTAG 
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