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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit parallelen Algorithmen, welche bei
der Simulation von dreidimensionalen Zweiphasenströmungen auf adaptiv verfein-
erten, unstrukturierten Tetraedergittern eingesetzt werden. Ziel dabei ist es, diese
Strömungen von zwei unmischbaren Phasen auf modernen Hochleistungsrechner-
architekturen zu simulieren, welche derzeit in der Regel aus einer großen Anzahl
von vernetzten Mehrkernprozessoren bestehen.

Die mathematische Modellierung der Zweiphasenströmungen beruht auf den
Navier–Stokes-Gleichungen zur Beschreibung der Strömungsdynamik und der Le-
velset-Methode zur Charakterisierung der beiden Phasen. Um diese partiellen Dif-
ferentialgleichungen rechnergestützt zu lösen, werden für die Ortsdiskretisierung
Finite-Elemente-Funktionen und für die Zeitdiskretisierung ein implizites Theta-
Schema angewandt. Dadurch können Zweiphasenströmungsprobleme in Form ei-
ner Sequenz von großen, dünnbesetzten linearen Gleichungssystemen dargestellt
werden, welche iterativ durch Krylov-Teilraumverfahren gelöst werden.

Um die Rechenarbeit der Simulation auf Rechenkerne mit verteiltem Speicher
aufzuteilen, wird ein Gebietszerlegungsansatz gewählt, in dem – basierend auf
einer Partitionierung des Rechengebiets – die zugrundeliegende Hierarchie von
Tetraedergittern verteilt wird. In dieser Arbeit werden Graph- und Hypergraph-
Partitionierungsmodelle eingeführt, um eine Zerlegung des Rechengebiets für Zwei-
phasenströmungssimulationen zu bestimmen. Ein zentraler Algorithmus bei der
Verwendung des Levelset-Ansatzes ist die Reinitialisierung der Levelset-Funktion,
welche ihre numerisch wichtige Eigenschaft einer vorzeichenbehafteten Abstands-
funktion wiederherstellt. Hierfür kommt ein neuer paralleler Algorithmus auf ei-
nem verteilt gespeicherten, unstrukturierten Tetraedergitter zum Tragen.

Alle in dieser Arbeit vorgestellten Konzepte wurden in dem Software-Werkzeug
DROPS implementiert, das in einer Zusammenarbeit mit dem Lehrstuhl für nu-
merische Mathematik der RWTH Aachen University entwickelt wird. Die parallele
Skalierbarkeit dieser Methoden wird durch detaillierte numerische Experimente auf
bis zu 1 024 Rechenkernen demonstriert. Zudem werden die parallelen Konzepte in
einer ingenieurs-relevanten Fallstudie kombiniert, welche die hochaufgelöste Simu-
lation eines n-Butanol-Tropfens in einer wässrigen Phase beinhaltet. Diese Studie
entstammt dem Sonderforschungsbereich SFB 540 der RWTH und wurde erst
durch den Einsatz paralleler Algorithmen auf modernen Hochleistungsrechnern
ermöglicht, die den nötigen Speicher und Rechenleistung zur Verfügung stellen.



Abstract

This thesis addresses parallel algorithms for three-dimensional two-phase flow sim-
ulations on adaptively refined unstructured tetrahedra grids. These algorithms are
designed to simulate the fluid dynamics of two immiscible phases on recent high-
performance computer architectures which, in general, consist of clusters of a large
number of multi-core processors.

The underlying mathematical model of these two-phase flows is based on the
Navier–Stokes equations to describe the fluid dynamics. The level set approach is
employed to characterize the two phases. The spatial discretization of these partial
differential equations is given by the finite element method whereas the time dis-
cretization is performed by an implicit theta scheme. This approach facilitates the
description of two-phase flow problems as a sequence of large and sparse systems
of linear equations which are efficiently solved by Krylov subspace methods.

The computational work of two-phase flow simulations is decomposed among
compute cores with distributed memory. To this end, a domain decomposition
approach is pursued where the tetrahedra of the underlying hierarchy of trian-
gulations are accordingly distributed. In this thesis, graph and hypergraph parti-
tioning models are introduced which determine tetrahedral decompositions. These
models are specifically designed for two-phase flow simulations. A major algorith-
mic element in such simulations is constituted by the re-initialization algorithm
that periodically rebuilds a numerically crucial property of the level set function,
namely the signed distance property. This task is addressed by a novel paral-
lel algorithm which is capable of re-initializing level set functions on distributed
unstructured triangulations.

The numerical results of the presented parallel concepts are gathered by the
software toolkit DROPS which is being developed in a collaboration with the Chair
of Numerical Mathematics at RWTH Aachen University. The parallel scalability
of the methods is demonstrated by detailed numerical experiments on up to 1 024
compute cores. Furthermore, all parallel concepts are combined in an engineering
relevant case study that is concerned with the analysis of an n-butanol drop in
an aqueous phase on a triangulation with a high resolution. This study originates
from the collaborative research center SFB 540 at RWTH. Its simulation is too
large—in terms of memory and compute time—for sequential computing. Thus,
only the parallel techniques presented in this thesis allow to perform this detailed
analysis.
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1 Introduction

Two-phase flow problems constitute a key element in various areas of computa-
tional science and engineering. These flows occur in systems that contain two
spatially separated regions which vary over time. In each spatial region, all phys-
ical properties are homogeneous. Illustrating examples are water and steam in
power plant boilers, oil slicks in coastal waters, air and water in groundwater flow,
liquid-liquid extraction columns, or falling films. Up to now, a detailed knowledge
of such systems’ behavior still poses a challenge for scientists. To gain a deeper in-
sight in multi-phase and particularly two-phase flow problems, an interdisciplinary
team of researchers from computer science, mathematics, chemistry and engineer-
ing at RWTH Aachen University concentrates on analyzing these flows, e.g., in
single drops [20,87,88] and in falling films [32,55,56,103–105]. The work was part
of the collaborative research center SFB 540 “Model-based experimental analysis
of kinetic phenomena in fluid multi-phase reactive systems” [119] where a central
goal was to derive mathematical models describing two-phase flows. To predict
physical phenomena, these models are then implemented in a simulation software.

In addition to algorithms used to simulate one-phase flows, the complex phenom-
ena of two-phase flows demand special, sophisticated numerical techniques [85]:
the level set approach [160] appropriately describes the two phases; the extended
finite element method [83,135] adequately captures the pressure discontinuity be-
tween the two phases; adaptive tetrahedral grid refinement [82] facilitates a high
spatial resolution in domains of interest; and the continuous surface force term [84]
couples the two phases at the interface. If these methods are applied in a finite
element simulation, then solving two-phase flow problems typically results in large
amount of computational work and memory requirements. To cope with these re-
quirements for meaningful problem sizes, employing high-performance computers
is indispensable as they provide both, the necessary compute power and sufficient
memory.

If we merely consider one-phase flow simulations, the literature includes a vast
variety of serial and parallel algorithms for simulating the computational fluid
dynamics by the finite element method on unstructured grids. However, a quite
different picture is observed for two-phase flow simulations based on the widely
applied level set approach when following a domain decomposition approach [39].
Serial algorithms [85] exist to simulate these flows by the finite element method
on unstructured grids. Although some parallel one-phase flow algorithms can be

1



1 Introduction

adapted to employ a domain decomposition approach, there remains a remarkable
lack of parallel algorithms. To tackle this challenge, the major contributions of this
thesis address the gap of missing parallel algorithms by focusing on load balance
models for parallel two-phase flow simulations and on the re-initialization of level
set functions.

Modeling Load Balancing To efficiently solve the partial differential equations
describing a two-phase flow problem, an adaptive refined tetrahedral grid is em-
ployed to discretize the computational domain yielding a hierarchy of triangu-
lations. Pursuing a domain-decomposition approach to address a distributed-
memory parallelization raises the question of how to distribute the tetrahedra
among the processes. We have presented solutions for two-phase flow problems on
these meshes in [72] and [67]. To this end, the tetrahedral hierarchy is described
by various graph models specifically designed for two-phase flow simulations. A
partitioning of these graphs results in a decomposition of the set of tetrahedra.
Chapter 4 shows how to extend and to combine the graph partitioning models pre-
sented in [72] and [67]. Furthermore, that chapter introduces an innovative model
that relies on a hypergraph formulation. In contrast to “standard” graph models,
this novel hypergraph model is capable of exactly expressing the communication
volume among neighboring processes for linear algebra operations during a dis-
tributed two-phase flow simulation. Although all graph models in this thesis are
particularly designed for two-phase flow simulations, they can also be employed in
other simulations where the computational loads per compute element vary, e.g.,
in simulations where turbulences occur in subdomains.

Parallel Re-Initialization If simulating two-phase flow problems by the level set
approach, the numerically crucial “signed distance property” of the level set func-
tion is not preserved in general. This property ensures that the sign of the level
set function characterizes the two phases while its absolute value describes the
distance between any point in the computational domain and the interface. To
re-establish the signed distance property, the level set function is re-initialized.
Typically, only a small fraction of the execution time is spent for this task in a
serial simulation. However, in parallel simulations dealing with large meaningful
problem instances, a parallelized version of a fast serial re-initialization algorithm
is increasingly getting a major performance bottleneck when adding more and
more processes. The problem of re-establishing the signed distance property of
level set functions occurs—besides in two-phase flow problems—in many appli-
cations which are based on a level set formulation, e.g., propagating interfaces,
optimal path planning and construction of shortest geodesic paths [153]. In the
literature, several serial and parallel algorithms exist for re-initializing level set
functions: PDE-based methods [155], the fast marching method [152], the fast

2



iterative method [99], the fast sweeping method [178], and the Euclidean distance
transform method [61]. Nevertheless, none of these methods is capable of re-
initializing level set functions on distributed unstructured grids. We introduced
a parallel algorithm in [70] which is specifically designed for distributed-memory
computations. This novel algorithm is also well suited in the context of a hybrid
parallel approach where a distributed- and a shared-memory parallelization [69] are
nested to exploit the structure of today’s high-performance computers which com-
monly consist of clusters of multi-core processors. For the parallel re-initialization
algorithm, we combined two known algorithmic elements in a novel way. The first
element consists of a brute-force re-initialization strategy. The second element is a
suitable multidimensional tree data structure which is employed to reduce the time
complexity. Chapter 5 focuses on this novel parallel re-initialization algorithm.

We present a detailed evaluation to demonstrate the general applicability of
these new algorithmic approaches in the context of two-phase flow simulations.
Therefore, the algorithms are implemented in the software Drops [117] which
is being developed in a collaboration with the Chair for Numerical Mathematics
at RWTH Aachen University. In this software, the distributed-memory paral-
lelization is implemented by the Message Passing Interface (MPI) [175] and the
shared-memory parallelization is based on OpenMP [42, 129]. Numerical results
are gathered on recent high-performance compute clusters located at the Cen-
ter for Computing and Communication with up to 1 024 processes. In previous
work [20], the predictive results of the parallel two-phase flow solver Drops are
used to answer engineering questions. Besides forward simulations where for given
input parameters a solution is simulated, this software is also employed in opti-
mizations [30, 32, 86] where, in contrast, the input parameters are sought. For
instance, in [30], the inflow velocity into a measurement cell is estimated such that
the simulated velocities inside the cell [68] match the measured data which are
obtained by nuclear magnetic resonance measurements [5, 6].

In summary, the main new contributions of this thesis are as follows. First,
models for load-balancing of two-phase flow finite element simulations are system-
atically developed and derived. This is the first time, a hypergraph model is used in
this context to determine a decomposition of a tetrahedral hierarchy. Second, the
re-initialization of level-set functions on distributed unstructured triangulations
based on [69, 70] is presented in detail.

The outline of this thesis is as follows. In Chap. 2, we briefly summarize the gov-
erning mathematical equations describing a two-phase flow problem when consid-
ering the level set approach. Furthermore, we recapitulate a finite-element based
algorithm [80,81,85] to simulate such flow problems on a hierarchy of tetrahedral
grids. In Chap. 3, we outline a distributed-memory parallelization of this basic
algorithm. Thereby, we describe a domain-decomposition approach to distribute
the computational domain among processes, and we present the effect of this de-
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1 Introduction

composition on linear algebra operations. A new data format for storing vectors
allows us to increase the accuracy of parallel linear algebra operations. The follow-
ing two chapters represent the main novel contribution of this thesis. In Chap. 4,
we focus on answering the question how to decompose the tetrahedral hierarchy
that discretizes the computational domain. To this end, we formulate various
graph partitioning problems which are specifically designed for parallel two-phase
flow simulations. We summarize the approach of Groß [80] and formulate our
two approaches originally presented in [72] and [67], respectively. Additionally, we
introduce th novel hypergraph model. Chapter 5 deals with the re-initialization
of level set functions. Here, we present our algorithm introduced in [70] and [69].
Furthermore, we analyze this algorithm theoretically and numerically and compare
it with an existing algorithm. Its parallel scalability is demonstrated by numerical
experiments on up to 1 024 compute cores. In Chap. 6, we employ all presented
parallel algorithms and techniques to analyze the effect of grid refinements on the
rising velocity of an n-butanol drop surrounded by an aqueous phase. We also
show that this detailed study is infeasible when solely considering a serial simula-
tion. Chapter 7 finalizes this thesis by summarizing the main contributions of the
present work, stating some open questions for future research, and drawing some
conclusions.

4



2 Modeling and Simulating
Two-Phase Flow Problems

The numerical simulation of two-phase flow problems is complicated by the fact
that, besides the modeling of the fluid dynamics, the interface between the two
phases needs to be represented for the reconstruction of the interfacial move-
ment. In addition, the physical phenomena in the vicinity of the interface de-
mand advanced techniques from computer sciences and mathematics. To numer-
ically represent the two phases and the interface between these phases, two ma-
jor approaches are available in the open literature, namely interface-tracking and
interface-capturing.

Interface-tracking methods explicitly track the interface by computational ele-
ments that follow its movement. Here, either the grid on which the fluid dynamics
are simulated is adapted to the interface (Lagrangian approach) [12] or an addi-
tional grid located at the interface is introduced (Eulerian approach) [169]. Com-
monly, the former one is applied if simulating free surface flows [17]. Nevertheless,
this approach is also employed in two-phase flow simulations [165]. When using
the latter approach joining or breaking regions is difficult to realize.

Interface-capturing methods represent the interface implicitly by suitably de-
fined functions. This class mainly consists of the volume of fluid method and the
level set approach. In the volume of fluid method [95,114], each grid cell contains
information about the phases. For two-phase flows, this information is given by
a fraction describing the ratio of the volume of the fluids in that particular cell.
This method is mass conservative; however, the reconstruction of smooth inter-
faces requires advanced interpolation techniques. An overview of the volume of
fluid method is presented for instance in [141]. The level set approach, presented
in [41, 130], is another interface-capturing method eliminating this inconvenience.
Herein, the position of the interface is captured by the zero level of a scalar-valued
function, called the level set function, that splits the computational domain into
two subdomains. A drawback of this method is that it does not conserve mass
and that the shape of the function may become degenerated when evolving in
simulation time. Yet, an advantage of the level set approach is its elegance and
simplicity to handle complicated problems involving breaking or joining regions.

Besides pure interface-tracking and interface-capturing methods, there exist
variants and combinations of both approaches. For instance in [93], two grids

5



2 Modeling and Simulating Two-Phase Flow Problems

for simulating two-phase flow problems are used. A first, unstructured grid is
employed for discretizing the fluid dynamics and a second, structured grid is in-
troduced for representing the level set function.

In this thesis, we use the level set approach for representing the two phases.
Hereby, the same underlying computational grid is used for both, the fluid dy-
namics and the representation of the phases. The remainder of this chapter is
organized as follows. Section 2.1 presents a mathematical model for simulating
two-phase flow problems. Afterwards, in Sect. 2.2, we outline an algorithm for
numerically solving the mathematical model.

2.1 A Mathematical Model for Two-Phase Flow

Problems

In this section, a mathematical model for describing two-phase flows is presented
which relies on the level set approach [159, 160]. The coupling of the two phases
at the interface is based on a continuous surface force term [27, 41]. A detailed
derivation of the mathematical model is given in [85]. This section is organized
as follows. In Sect. 2.1.1, we outline the level set approach for representing two
phases and describing the evolution of the interface. Afterwards, we summarize
equations that model the underlying fluid dynamics in the context of two-phase
flows in Sect. 2.1.2.

2.1.1 The Level Set Approach

We first introduce some notations to describe two incompressible and immiscible
phases in a domain Ω ⊂ R

3 where we assume that the location of the phases
changes with respect to time τ ∈ [0, τe]. To this end, let Ω1(τ) ⊂ Ω and Ω2(τ) ⊂ Ω
denote the two subdomains where both phases are located. The domain consists of
two immiscible phases which results in Ω = Ω1(τ)∪Ω2(τ) and Ω1(τ) ∩Ω2(τ) = ∅.
The interface between both phases is given by the manifold Γ(τ) = Ω1(τ)∩Ω2(τ).

The level set approach characterizes the two phases and their evolution. To this
end, a scalar-valued function ϕ : Ω × [0, τe] → R, called the level set function, is
introduced. Hereby, at time τ , the interface between both phases is given by the
zero level

Γϕ(τ) := {x ∈ Ω | ϕ(x, τ) = 0}

of ϕ. Since, at time τ , the interface Γ(τ) equals Γϕ(τ), in the remainder of this
theses, we denote the interface by Γϕ(τ) to emphasize the dependence between
the interface and the level set function. To distinguish between the two phases,
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2.1 A Mathematical Model for Two-Phase Flow Problems

Γϕ Γϕ

Ω2 Ω2Ω1

Ω

x

ϕ(x)

(a) One-dimensional example.

Ω1

Γϕ
Ω2

(b) Two-dimensional example.

Figure 2.1: Examples of signed distance functions.

the sign of ϕ(·, τ) is used. That is, a negative value of ϕ(x, τ) indicates that the
point x is located in the first phase at time τ and, vice versa, a positive value
characterizes x in the second phase, in formula

Ω1(τ) = {x ∈ Ω | ϕ(x, τ) < 0} and Ω2(τ) = {x ∈ Ω | ϕ(x, τ) > 0} .

Moreover, it is convenient for numerical reasons that the absolute value of ϕ(x, τ)
equals the distance of x to the interface Γϕ(τ). That is, ϕ fulfills the distance
property

|ϕ(x, τ)| = min
y∈Γϕ
‖x− y‖2 (2.1)

for all x ∈ Ω and τ ∈ [0, τe]. We detail the term of the signed-distance property
in Sect. 5.1.1 and show that this property implies ‖∇ϕ(x, τ)‖2 = 1.

Figure 2.1 shows two examples of level set functions bisecting a computational
domain. Figure 2.1(a) presents a one-dimensional example, where the level set
function is used to decompose an interval. In Fig. 2.1(b), the level set function
describes a circle by its zero level Γϕ(τ) in a square-shaped domain. Here, the first
phase Ω1 is located inside and the second phase Ω2 is located outside of that circle.

The evolution of the interface Γϕ(τ) follows the approach presented in [130]. In
that paper, Osher and Sethian devised a numerical algorithm for surface motion
problems. The approach is driven by the idea that, if a particle x(0) ∈ Γϕ(0) resides
at time τ = 0 at the interface, then it stays on the interface for all τ ∈ [0, τe]. Using
the level set notation, this reads as

ϕ(x(τ), τ) = ϕ(x(0), 0) = 0. (2.2)

Extending (2.2) to the computational domain Ω implies that a particle x(τ) stays
at a given level of ϕ for τ ∈ [0, τe], i.e.,

ϕ(x(τ), τ) = ϕ(x(0), 0) = const.

7



2 Modeling and Simulating Two-Phase Flow Problems

Differentiating this equation with respect to τ leads to

∂

∂τ
ϕ(x(τ), τ) +∇ϕ(x(τ), τ) ·

∂

∂τ
x(τ) = 0. (2.3)

Let u(x, τ) denote the velocity in the computational domain. Then, the motion
of the particles is given by this velocity, i.e.,

∂

∂τ
x(τ) = u(x, τ). (2.4)

The equations (2.3) and (2.4) yield the level set equation

∂

∂τ
ϕ + u · ∇ϕ = 0, (2.5)

which describes the evolution of the interface Γϕ(τ). Next, we couple this level
set equation with a term determining the forces at the interface Γϕ(τ) and the
Navier–Stokes equations describing the fluid dynamics.

2.1.2 The Fluid Dynamics

To describe the underlying fluid dynamics, the velocity u = u(x, τ) and the pres-
sure p = p(x, τ) are modeled by combining the Navier–Stokes equations with the
continuum surface force (CSF) model [27,41]. This model introduces a local force
term

fΓ := γκΓδΓnΓ (2.6)

at the interface Γϕ(τ). Here, γ is the surface tension coefficient which is given
by the material properties of the two-phase system, κΓ the curvature of Γϕ(τ), δΓ
the Dirac delta function, and nΓ the unit normal on Γϕ(τ) pointing from Ω1(τ)
to Ω2(τ). Note that the curvature κΓ and the unit normal nΓ are time dependent
and can be evaluated in terms of the level set function by

nΓ(τ) =
∇ϕ(τ)

‖∇ϕ(τ)‖2
and κΓ(τ) = − div(nΓ(τ)) = − div

(
∇ϕ(τ)

‖∇ϕ(τ)‖2

)
. (2.7)

The combination of the Navier–Stokes equations and the CSF model yields the
following equations in Ω× [0, τe],

̺

(
∂

∂τ
u+ (u · ∇)u

)
= −∇p+ ̺g + div (µD(u)) + fΓ in Ω, (2.8)

div(u) = 0 in Ω (2.9)

with suitable boundary and initial conditions. In these equations, the symbol g
denotes gravity and D(u) := ∇u + (∇u)T the deformation tensor. We assume

8



2.2 Simulating Two-Phase Flow Problems

that the density ̺ and dynamic viscosity µ are constant in each phase and are
given by ̺i and µi, with i = 1, 2, for the first and second phase, respectively.
Then the density ̺ and dynamic viscosity µ in (2.8) are represented by piece-wise
constant functions which depend on the phases and, hence, on the sign of the level
set function, i.e.,

̺(x, τ) = ̺(ϕ) =

{
̺1, x ∈ Ω1(τ)

̺2, x ∈ Ω2(τ)
and (2.10)

µ(x, τ) = µ(ϕ) =

{
µ1, x ∈ Ω1(τ)

µ2, x ∈ Ω2(τ)
. (2.11)

Overall, the Navier–Stokes equations (2.8)–(2.9) with the CSF term (2.6) and
the level set equation (2.5) constitute a mathematical model for describing two-
phase flow problems in Ω× [0, τe]:

̺

(
∂

∂τ
u+ (u · ∇)u

)
= −∇p+ ̺g + div (µD(u)) + γκΓδΓnΓ, (2.12)

div(u) = 0, and (2.13)

∂

∂τ
ϕ+ u · ∇ϕ = 0. (2.14)

In the next section, we present an algorithm that solves this system of coupled
partial differential equations (PDEs) by the finite element method.

2.2 Simulating Two-Phase Flow Problems

The algorithm presented in this section is based on [81] and a detailed description
of the algorithm can be found in [85]. In [20], the algorithm has been validated
by comparing its results to the (measured) rising velocity of an n-butanol drop in
water.

Algorithm 1 summarizes the proposed algorithm. Here, a hierarchy of tetrahe-
dral grids, denoted byM, is employed to numerically describe the computational
domain Ω. In Sect. 2.2.1, we introduce this hierarchy and discuss an algorithm for
suitably modifying it. The velocity, pressure and level set function are discretized
by finite element functions uh, ph and ϕh, whose vector representations at a given
time τi are denoted by ui, pi, and ϕi, respectively. The resulting, discrete two-
phase flow problem and an algorithm to solve the discrete two-phase flow problem
are sketched in Sect. 2.2.2.

Although the continuous formulation of level set method is mass conservative,
the discretization of the underlying partial differential equations may introduce a
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2 Modeling and Simulating Two-Phase Flow Problems

loss of mass [128,167]. To address this drawback, we pursue the following strategy.
If, the difference between the volume of Ω1 and its initial volume is larger or smaller
than a given threshold βV in a time step τi, the level set function is modified such
that the initial volume of the phase Ω1 is recovered. This is implemented by
shifting the level set function. Therefore, let V1(ϕ) denote the volume of Ω1, then,
at time τi, we move ϕ by d ∈ R such that

V1(ϕh(·, τi) + d) = V1(ϕ(·, 0)) =: V0 = const.

This equation is numerically solved by the Anderson–Björck method [8]. Note
that this method cannot be applied in simulations where Ω1 is a domain which is
not connected.

Another challenge in the level set approach is given by keeping the level set
function smooth. While evolving in simulation time, the signed distance prop-
erty (2.1) of the level set function is typically lost. To recover this property, a
re-initialization algorithm is employed, if the gradient of ϕ is larger or smaller
than a given threshold βϕ. This topic is addressed in Chap. 5 in detail.

Algorithm 1: Simulating time dependent two-phase flows.

// Initialization
1 M0 ← Discretize (Ω)
2 k ← 0
3 τ0 ← 0
4 (u0, p0, ϕ0) ← Initialize (M0, τ0)
// Evolve in simulation time

5 for τi ← τ1, τ2, . . . , τN = τe do
6 (ui, pi, ϕi) ← SolveDiscreteTwoPhaseFlowProb (Mk,ui−1, pi−1, ϕi−1)
7 if NeedsUpdate (Mk) then
8 Mk+1 ← Update (Mk)
9 ui ← Update (ui)

10 pi ← Update (pi)
11 ϕi ← Update (ϕi)
12 k ← k + 1

// Conserve mass
13 if V1(ϕ

i) < V0 − βV or V1(ϕ
i) > V0 + βV then

14 ϕi ← UpdateMass (ϕi)

// Recover the distance property
15 if min ‖∇ϕi‖2 < 1− βϕ or max ‖∇ϕi‖2 > 1 + βϕ then
16 ϕi ← ReInitialize (ϕi)

10



2.2 Simulating Two-Phase Flow Problems

2.2.1 Hierarchy of Tetrahedral Grids

We consider a tetrahedral grid to represent the computational domain Ω. More
precisely, a hierarchyM of tetrahedral grids is employed. This hierarchy facilitates
the high resolution of Ω in domains of interest by discretizing these subdomains by
a large number of small tetrahedra. And, vice versa, only a small number of large
tetrahedra is employed to discretize subdomains of less interest. For instance,
we resolve the domain in the vicinity of Γϕ with high resolution and only use a
small number of tetrahedra far from Γϕ to save memory and computing time. In
the relative literature, there exist two main classes of refinement algorithms. The
first class relies on bisecting triangles or tetrahedra [115, 136]. The second class
regularly refines the triangles or tetrahedra and uses a set of irregular refinement
rules to make the mesh conforming [11,21,22,116]. In [123], a comparison of these
methods is given when considering elliptic problems. A data structure for storing,
refining and coarsening a three-dimensional tetrahedral grid is presented in detail
in [25]. In this thesis, we only consider the second class. After demonstrating the
necessity of the grid adaption, we outline the data structures forM that are used
in the implementation of the refinement algorithm [22].

Consider an n-butanol drop in a cuboid shaped domain filled with water as
depicted in Fig. 2.2. The initialization of the drop and a triangulation is given in
Fig. 2.2(a). In this figure, the triangulation is refined in the vicinity of the interface
of the drop. When evolving in simulation time, the n-butanol drop ascends because
it has a lower density than the surrounding water. After a few time steps, the
drop reaches a position as illustrated in Fig. 2.2(b). Here, we notice that the
triangulation is not suitably refined because some small tetrahedra are located far
from the interface and some large tetrahedra are located at Γϕ. Therefore, the grid
is adapted to the location of the drop. The new, modified triangulation is shown
in Fig. 2.2(c). Next, we formalize the underlying tetrahedral hierarchy and outline
the grid refinement algorithm.

Let T0 denote a coarse triangulation representing the computational domain Ω.
A finer triangulation T1 is obtained by refining some tetrahedra of T0 by a red/green
refinement algorithm. Within this algorithm a parent tetrahedron t on the coarse
level is refined to at most eight child tetrahedra Ch(t) which are located on the
finer level. The parent tetrahedron of a child tetrahedron t′ is denoted by Pa(t′).
We distinguish between a regular (red) and an irregular (green) refinement of
a tetrahedron. The former one is used to refine a tetrahedron that is marked
for refinement by some algorithm. The latter one is applied to prevent so-called
“hanging nodes.” Multiple recursive refinements of tetrahedra lead to a hierar-
chy M = (T0, . . . , Tk−1) of k triangulations, where the triangulation Tk−1 rep-
resents the finest triangulation. Note that a child resulting from an irregular
refinement of t is not allowed to be further refined. Instead, first, the parent tetra-
hedron t is regularly refined before refining its children Ch(t). Hence, the red/green
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(a) Initialization.

?g

(b) Moved drop. (c) Grid adaption.

Figure 2.2: Serial simulation of a rising n-butanol drop.

algorithm ensures that all tetrahedra are not degenerated. Additionally, the re-
finement algorithm is capable of adaptively modifying a hierarchy of tetrahedral
grids. The algorithm then transforms a hierarchy M = (T0, . . . , Tk−1) of k levels
to a different hierarchyM′ = (T ′

0 , . . . , T
′
k−1) of k levels where, in general T ′

l 6= Tl
for l = 1, . . . , k − 1.

The hierarchy M = (T0, . . . , Tk−1) of triangulations is called admissible if the
following two conditions hold for all levels l ∈ {1, . . . , k − 1}:

(i) A tetrahedron t ∈ Tl is either in Tl−1 or it is obtained by a refinement of a
tetrahedron t′ ∈ Tl−1.

(ii) If t ∈ Tl−1 ∩ Tl then t ∈ Tl+1, . . . , Tk−1. That is, if the tetrahedron t is not
refined in level l then it stays unrefined in all finer levels l + 1, . . . , k − 1.

Due to these two conditions onM, we can assign each tetrahedron t a unique
level

level(t) := min {m | t ∈ Tm} .

The set of all tetrahedra on level l is denoted by Gl and is called the hierarchical
surplus, i.e.,

Gl := {t | level(t) = l} .

The hierarchical decomposition H is defined by a k-tuple of these hierarchical
surpluses, i.e., H := (G0, . . . ,Gk−1). Since each tetrahedron is located on exactly
one hierarchical surplus this decomposition is used to efficiently store all tetrahe-
dra. A detailed description of the data structures used to represent the hierarchy
is given in [80]. However, both representations of the hierarchy are equivalent.

12



2.2 Simulating Two-Phase Flow Problems

Given a hierarchy of triangulationsM, then the hierarchical decomposition H can
be constructed by

G0 = T0 and Gl = Tl \ Tl−1 for l = 1 . . . , k − 1.

Vice versa, given the decomposition H, then the hierarchyM can be recursively
generated by

T0 = G0 and Tl = Gl ∪ {t ∈ Tl−1 | Ch(t) = ∅} .

The hierarchy in Fig. 2.3 serves as an illustrating example throughout this the-
sis. This hierarchy consists of three triangulations T0, T1, and T2 in—for the sake
of simplicity—two spatial dimensions. The triangulations Ti+1 are obtained by re-
fining Ti, i = 0, 1. In this figure, we label each tetrahedron by tlj, where l denotes
its level and j is a consecutive number in each level. The coarsest triangulation T0
is shown in Fig. 2.3(a) and consists of four tetrahedra. The triangulation T1 results
from T0 by regularly refining the tetrahedra t00 and t01. To avoid hanging nodes,
some tetrahedra are irregularly refined, e.g., in that example t02 is refined to t18
and t19 in Fig. 2.3(b). The refinement continues in Fig. 2.3(c) where the triangu-
lation T2 is shown. This triangulation is obtained by regularly refining t11. The
triangulations are given by

T0 = {t
0
0, . . . , t

0
3}, T1 = {t

0
3, t

1
0, . . . , t

1
9}, and T2 = {t

0
3, t

1
4, . . . , t

1
9, t

2
0, . . . , t

2
9}

whereas the hierarchical surpluses are

G0 = {t
0
0, . . . , t

0
3}, G1 = {t

1
0, . . . , t

1
9}, and G2 = {t

2
0, . . . , t

2
9}.

In each triangulation depicted in Fig. 2.3, only the tetrahedra located in the hier-
archical surpluses G0, G1, and G2 are labeled.

A hierarchy of triangulations can also be regarded as a forest. Here, each tetra-
hedron on level 0 spans a tree which consists of all its descendants, i.e., children,
grandchildren, and so forth. Although no adjacencies are represented by this forest
representation, it simplifies the consideration of the parent-child relation between
tetrahedra. In Fig. 2.4, the forest representation is shown which corresponds to
the hierarchy of triangulation presented in Fig. 2.3.

2.2.2 Solving the Discrete Two-Phase Flow Problem

Next, we concentrate on simulating the two-phase flow problem (2.12)–(2.14) by
means of the finite element method. This method is applied to these equations on
the finest level Tk−1 of the hierarchy of triangulations. Therefore, to simplify no-
tations, we here only consider the triangulation T := Tk−1 rather than a hierarchy
of triangulations.
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t00

t01

t02

t03

(a) Triangulation T0.

t10

t11

t12

t14

t13

t16

t15

t17

t19

t18

(b) Triangulation T1.

t22

t20

t21
t23

t24
t25

t28 t29

t26

t27

(c) Triangulation T2.

Figure 2.3: Triangulation hierarchyM = (T0, T1, T2) of three triangulations. The
tetrahedra in the hierarchical decomposition H = (G0,G1,G2) are
labeled.
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t0
0

t0
1
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t0
3

t1
0

t1
1

t1
2

t1
3

t1
4

t1
5

t1
6

t1
7

t1
8

t1
9

t2
0

t2
1

t2
2

t2
3

t2
4

t2
5

t2
8

t2
9

t2
6

t2
7

Figure 2.4: Forest representation of the triangulation hierarchy M = (T0, T1, T2)
which is depicted in Fig. 2.3.

The time is discretized by the time steps 0 = τ0, . . . , τN = τe. Here, we consider
an implicit time integration, e.g., a fractional theta scheme [134], a one step theta
scheme, or an operator splitting scheme [29]. The spatial discretization is based
on finite elements. To this end, the three unknown functions in (2.12)–(2.14),
namely the velocity u, the level set function ϕ and the pressure p, are discretized
by the finite element functions uh, ph, and ϕh. Here, the functions uh and ϕh

are represented by quadratic (P2) finite element functions whereas ph is given by
so-called extended linear finite element functions (P Γ

1 ) [18, 83, 124, 135]. Thus,
degrees of freedom (DOF) of all finite element functions are located at vertices
and, additionally for uh and ϕh, at mid-vertices of edges of T . Let nu, np, and nϕ

denote the number of DOF to represent the three functions, respectively. Then,
the corresponding vector representations of the finite element functions are given
by u i ∈ R

nu, p i ∈ R
np, and ϕ i ∈ R

nϕ at a given time τi. Note that the length
of these vectors may vary in time due to adaptive grid modifications and the
time-dependent P Γ

1 space. Applying the implicit time integration scheme and the
finite element method to equations (2.12)–(2.14) leads to a discrete two-phase flow
problem which consists of a system of non-linear equations

(
A(ϕ i) +N(u i, ϕ i) BT (ϕ i)

B(ϕ i) 0

)
·

(
u i

p i

)
=

(
b(ϕ i)
c

)
and (2.15)

L(u i) · ϕ i = d. (2.16)

where b ∈ R
nu, c ∈ R

np and d ∈ R
nϕ are determined by physical properties of the

system, the CSF term (2.6), the boundary conditions of equations (2.12)–(2.14),
and the time integration scheme. The CSF term is discretized by an improved
Laplace–Beltrami technique [84] which contributes to the vector b. Note that
this technique does not need second derivatives of ϕ to evaluate the curvature κΓ

on Γϕ as suggested by (2.7). In (2.15), the matrices A ∈ R
nu×nu , N ∈ R

nu×nu,
and B ∈ R

np×nu depend on the position of the interface and on the material
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properties ̺ and µ, cf. (2.10)–(2.11). Thus, the values of the level set function play
an important role when assembling these matrices. Note that the matrix B does
not depend on ϕ i if only considering linear finite elements (P1) functions rather
than P Γ

1 functions to represent the pressure. Discretizing and stabilizing the level
set equation (2.14) by the streamline diffusion method (SDFEM) [66,97,140] yields
the matrix L ∈ R

nϕ×nϕ.

The coupling of the equations (2.15) and (2.16) is handled by a fixed-point
iteration. The non-linearity (u ·∇)u in the Navier–Stokes equation (2.8) is present
in the matrix N in (2.15). Numerically, this non-linearity is decoupled by an
adaptive fixed-point defect correction scheme [85, 171]. This scheme includes a
linearization of the Navier–Stokes equation which results in the Oseen equation

(
Ã(ϕ i) BT (ϕ i)

B(ϕ i) 0

)
·

(
u i

p i

)
=

(
b

c

)
. (2.17)

This equation is either solved by an inexact Uzawa algorithm [132] or by applying
an iterative Krylov subspace method [142] to solve the whole system of linear
equations using special, blocked preconditioners for the matrix Ã and the Schur
complement BÃ−1BT .

This approach of solving the discrete two-phase flow problem (2.15)–(2.16) re-
sults in a variety of systems of linear equations. We approximate a solution of
these systems by preconditioned Krylov subspace methods. In the current imple-
mentation of the presented algorithm the following Krylov subspace methods are
applied: CG [94], GMRES [143], GCR [60], and QMR [73].

Overall, the solution of the discrete two-phase flow problem (2.15)–(2.16) in-
cludes a nested hierarchy of solvers. Figure 2.5 summarizes this section by depict-
ing this hierarchy. In this figure, the boxes represent different parts and solvers
of the simulation. If an arrow points from box A to box B, then the content of
box A is used by the part represented by box B. For instance, the preconditioners
are used withing the Krylov subspace methods. The inexact Uzawa box is printed
dashed because it can be substituted by solving the Oseen equation (2.17) by a
Krylov subspace method without exploiting its structure. Note that the solvers
are strongly coupled because the quality of the respective approximated solution
is adaptively determined when solving the system of non-linear equations. For
instance, consider the decoupling the non-linearity in the Navier–Stokes equations
by a fixed-point approach. Here, in the first iterations, the linear Oseen equation
is approximated with a large tolerance whereas the quality of the approximation
is successively increased with respect to the fixed-point iterations.
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Time integration
and, optionally,

decouple
(2.15) and (2.16)

Solve level set
eq. (2.16) coupling

Solve Navier–
Stokes

eq. (2.15)
by an adapt.

fixed-point iter.

Solve Oseen
eq. (2.17)

Inexact Uzawa

Krylov subspace
methods

Preconditioners

Figure 2.5: Nested solvers for the solution of the coupled discrete Navier–Stokes
equations (2.15) and the level set equation (2.16).
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3 Data Structures for Parallel
Computing

Having described the governing equations and an algorithm for simulating two-
phase flow problems by the level set approach, we now focus on a parallel strategy
for simulating two-phase flow problems where our primary concern is a distributed-
memory approach for the parallel algorithm. Nevertheless, most of the ideas are
also applicable to shared-memory parallelization. As in [78], we distinguish be-
tween the two terms “processor” and “process.” Here, a processor is a hardware
unit that physically performs computations whereas the process is a logical unit
that performs tasks. We follow a domain decomposition approach [39,58,59,156] to
distribute the computational work among a set of processes. Therefore, the tetra-
hedra of the hierarchy of tetrahedral grids are distributed among the processes.
In this chapter, we are concerned with defining suitable data structures for rep-
resenting a distributed hierarchy of tetrahedral grids instead of finding a suitable
decomposition of this hierarchy. The latter topic is addressed in Chap. 4. In the
literature, various data structures and algorithms have been presented to perform
adaptive mesh refinements in parallel. Recall from Sect. 2.2.1 that two different
strategies for grid refinement exist, namely bisection and red-green refinements.
Parallel algorithms based on the bisection approach can be found in [10,100,137].
However, we do not consider a parallel bisection algorithm here, because we aim
to incorporate the ideas and algorithms from the previous chapter. A parallel red-
green refinement algorithm for a hierarchy of triangulations has been introduced
in [82]. The authors consider parallel data structures and analyze the parallel
refinement algorithm with respect to important data partitioning properties such
as data locality and storage overhead. Their work is based on previous work
presented in [14, 15, 21].

Decomposing the set of tetrahedra implies that the numerical data, which are
located at entities of the triangulations, are also spread among the processes. To
perform the linear algebra operations in parallel, we define data structures for
describing distributed numerical data on multiple processes. In Sect. 3.2, we de-
fine three different representations of these data where two of them are described
in [80, 89, 121]. These two distributions pursue an overlapped representation, i.e.,
numerical data on “process boundaries” are stored by all bordering processes.
However, these representations may result in an inaccurate determination of inner
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products which may yield a negative squared 2-norm of vectors due to round-
off errors. Since these negative squared norms are erroneous and unallowable in
numerical simulations, we introduce in Sect. 3.2.2 a third, non-overlapped repre-
sentation to overcome this difficulty. Defining algorithms to execute linear algebra
operations, such as matrix-vector products, vector updates, and inner products on
these distributions, leads to a parallel implementation of Krylov subspace meth-
ods. In this thesis, we do not focus on variants of Krylov subspace methods which
are specially designed for parallel computing. In general, these parallel methods
aim at reducing the synchronization of and communication among processes. Ex-
amples of methods reducing the number of synchronizations are the modified QMR
method [31] or so-called s-step methods [46,47]. A strategy to reduce the number
of communications while allowing redundant computations is given in [52, 125].
We also do not focus on parallel preconditioning methods. However, we interface
Drops to the library hypre [62] which provides a variety of serial and parallel
preconditioners.

This chapter is organized as follows. We first present an admissible distributed
hierarchical decomposition in Sect. 3.1 to distribute a hierarchy of tetrahedral grids
among processes. Afterwards, we concentrate on distributing the numerical data,
such as matrices and vectors in Sect. 3.2. Based on the algorithm in Sect. 2.2.2, this
distribution leads to a parallel algorithm that is capable of simulating two-phase
flow problems. The scalability of the introduced data structures is demonstrated
in Sect. 3.3 where this parallel approach is exemplified by the finite element sim-
ulation of a Poisson equation using up to 1 024 processes. Finally, we conclude
this chapter in Sect. 3.4 by briefly discussing the implementation of the paral-
lel data structures and ongoing work about a hybrid distributed-/shared-memory
parallelization.

3.1 Distributing a Hierarchy of Tetrahedral Grids

To distribute the hierarchy M = (T0, . . . , Tk−1) of tetrahedral grids among P
processes, a subset of tetrahedra is assigned to each process. Therefore, let Gpk
denote the set of tetrahedra on level k that is assigned to a process p ∈ {1, . . . , P}.
Then, the union of all Gpk of all processes results in the hierarchical surplus of
level k, in formula

Gk =
P⋃

p=1

Gpk .

Moreover, the distributed hierarchical decomposition Hp of process p is defined as

Hp := (Gp0 , . . . ,G
p
k−1).

20



3.1 Distributing a Hierarchy of Tetrahedral Grids

It is crucial for the refining and coarsening algorithm that parent and child
tetrahedra can easily access each other. Therefore, we require that all children
are stored by the same process as the parent tetrahedron. If we do not allow
copies of tetrahedra on more than one process, then this request will result in a
coarse granularity. For instance, if a process p stores a tetrahedron t, then p also
has to store all children of t as well as all descendants, i.e., grandchildren, great-
grandchildren, and so on. To prevent a process storing a complete tetrahedron
family, we introduce so-called master and ghost copies of tetrahedra. In principle,
each tetrahedron is exactly represented by a master copy whereas a ghost copy is
introduced for reproducing a parent tetrahedron whose master copy is located on
another process. This classification has been adapted from [23, 24].

We formalize the terms ghost and master by introducing an admissible dis-
tributed hierarchical decomposition [82]. Therefore, let Mapk ⊂ G

p
k and Ghp

k ⊂ G
p
k

respectively denote the master and ghost copies of tetrahedra on level k stored by
process p. Then, a distributed hierarchical decomposition (H1, . . . ,HP ) is called
admissible, if the following conditions are fulfilled.

(i) On each level l, the set {Ma1l , . . .MaPl } forms a partition of the set Gl, i.e.,

P⋃

p=1

Mapl = Gl and Mapl ∩Maql = ∅ for all p 6= q.

(ii) Let t ∈ Gl with l ∈ {0, . . . , k− 2} be a refined tetrahedron and Ch(t) ⊂ Gl+1

its children. Then, all children of t are stored as a master copy on exactly
one process p, in formula

Ch(t) ⊂ Mapl+1 for one and only one p.

Furthermore, the parent tetrahedron t on process p is either stored

a) as a master copy and no ghost copy of t exists, i.e.,

t ∈ Mapl ⇒ t 6∈ Ghql for all q ∈ {1, . . . , P},

b) or as a ghost copy and no other ghost copy exist on another process,
i.e.,

t ∈ Ghpl ⇒ t 6∈ Ghq
l for all q 6= p.

(iii) Let t ∈ Ghp
l with l ∈ {0, . . . , k − 2} be a ghost copy of a tetrahedron t ∈ Gl

on process p. Then, t is refined and p stores all children of t, i.e.,

t ∈ Ghpl ⇒ ∅ 6= Ch(t) ⊂ Mapl+1 .
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The admissible distributed hierarchical decomposition aims at describing an effi-
cient data structure to store a hierarchy of triangulations by multiple processes.
In particular, due to (i), each tetrahedron of the hierarchical decomposition H
is stored exactly once as a master copy and, due to (iii) ghost copies are only
introduced whenever they are needed to represent parents. Moreover, due to (ii),
this data structure allows the reuse of the serial refinement algorithm with only
a few modifications because parents and all their children are stored on the same
process. A detailed discussion of this data structure and the modifications of the
serial refinement algorithm has been presented and analyzed in [82]. The authors
have additionally proven that their parallel refinement algorithm transforms an
admissible distributed hierarchical decomposition into a new hierarchical decom-
position which is also admissible. Note that not only tetrahedra are classified as
master and ghost copies but also their subsimplices, i.e., faces, edges, and vertices
of tetrahedra. For a detailed description, we refer the reader to [79].

Distributing the hierarchical decompositions also leads to distributed triangu-
lations among processes. Therefore, we do not consider the ghost copies when
referring to a triangulation T p

l on level l stored by process p, i.e.,

T p
l := Tl ∩Mapl .

We comment that the local hierarchy (T p
0 , . . . , T

p
k−1) of one process p does not

define an admissible hierarchy as defined in Sect. 2.2.1. Therefore, recall that each
tetrahedron in Tl either exists in Tl or is a child of a parent tetrahedron in Tl−1

in a sequential admissible hierarchy. However, in a local hierarchy of a process p,
a tetrahedron t ∈ T p

l may first occur on level 0 < l < k without existing in T p
l−1

or having a parent element in T p
l−1 because the parent tetrahedron is stored as a

ghost copy on p.

As an example of a decomposition of tetrahedra, we reconsider the hierarchy
of triangulations depicted in Fig. 2.3 in the previous chapter. An admissible dis-
tributed hierarchical decomposition among three processes is shown in Fig. 3.1. In
this figure, the three left figures illustrate the tetrahedra assigned to process 1, the
three figures in the middle those of process 2, and the figures on the right those
of process 3. Note that overlaying the figures in one row results in a hierarchical
surplus, e.g., Fig. 3.1(a)–(c) results in G0. The ghost copies of tetrahedra are de-
picted by dashed lines in these figures. For instance, the tetrahedron t13 ∈ G

2
1 in

Fig. 3.1(e) is stored by process 2 as a ghost copy whereas its master copy t13 ∈ G
1
1

is located on process 1, cf. Fig. 3.1(d). Since t13 is assigned—with all its sib-
lings {t10, t

1
1, t

1
2}—to process 1 and its children Ch(t13) = {t26, t

2
7} are located at

process 2, it is indispensable to store a ghost copy t13 on process 2.

The corresponding forest representation is given in Fig. 3.2, where, again, the
ghosts are illustrated by dashed lines. This figure clarifies that all children of a
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t00

(a) G10 .

t01

(b) G20 .

t02

t03

(c) G30 .

t13

t12

(d) G11 .

t13

(e) G21 .

t12

(f) G31 .

(g) G12 .

t26
t27

(h) G22 . (i) G32 .

Figure 3.1: Admissible distributed hierarchical decomposition among three pro-
cesses of the triangulation hierarchyM = (T0, T1, T2) which is depicted
in Fig. 2.3.

tetrahedron are stored as master copies on one process. This figure also demon-
strates that a local hierarchy of triangulations is not admissible as defined in
Sect. 2.2.1. For instance, the tetrahedron t26 ∈ T

2
2 in Fig. 3.2(b) is a child of t13

which is not located in T 2
1 (but in the triangulation T 1

1 on process 1).

In this thesis, the mathematical model of a two-phase flow problem is numeri-
cally solved on the finest triangulation, in this example on level 2. The triangula-
tion T2 is decomposed among the three processes as follows

T 1
2 = {t20, t

2
1, t

2
2, t

2
3, t

2
4, t

2
5}, T 2

2 = {t14, t
1
5, t

1
6, t

1
7, t

2
6, t

2
7}, and

T 3
2 = {t03, t

1
8, t

1
9, t

2
8, t

2
9}.

Hence, the triangulation T2 is almost evenly distributed among the three processes
if considering the number of tetrahedra on the finest triangulation per process.
More sophisticated models to determine a decomposition of the tetrahedra will be
presented in Chap. 4 in detail.
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t00

t10 t11 t12 t13

t20 t21 t22 t23 t24 t25

(a) Process 1.

t01

t13 t14 t15 t16 t17

t26 t27

(b) Process 2.

t02 t03

t12 t18 t19

t28 t29

(c) Process 3.

Figure 3.2: Distributed forest representation of the hierarchy M = (T0, T1, T2) of
triangulations which is depicted in Fig. 2.3.
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3.2 Distributed Numerical Data

Next, we focus on the distribution of numerical data. Recall from the previous
chapter that we are concerned with the finite element method, where the solution
of the underlying PDEs are discretized by finite element functions. Therefore,
degrees of freedom (DOFs) are introduced on entities of a given triangulation T .
We consider quadratic, linear and extended linear finite element functions in this
thesis. Thus, DOFs are located on vertices and edges of T . The set of DOFs is
distributed among the processes because a decomposition (T 1, . . . , T P ) of T also
results in a decomposition of the vertices and edges of T . We describe in Sect. 3.2.1
three formats representing finite element functions on the tetrahedral decompo-
sition (T 1, . . . , T P ) and how to obtain these formats. Afterwards, in Sect. 3.2.2,
we employ these data formats to present an approach for solving systems of linear
equations in parallel by Krylov subspace methods.

3.2.1 Parallel Representations of Finite Element Functions

First, consider a serial representation of a finite element function of a given tri-
angulation T on a fixed level. Let I = {1, . . . , n} denote an ordering of n DOFs
used to represent a finite element function on that triangulation. For instance,
if a scalar, linear (P1) finite element function is investigated then I is given by
an ordering of the triangulation vertices. Furthermore, let x ∈ R

n be the vector
which contains the DOFs of a finite element function when using the ordering I.

Now, consider a distributed triangulation (T 1, . . . , T P ) among P processes and
let Ip = {1, . . . , np} denote an ordering of the DOFs located at a process p. We
introduce three representations of the vector x by P processes in the following.
The first one x is called the accumulated representation, the second one x̃ the
distributed representation, and the third one x̂ the exclusive representation. The
first two formats have been introduced in [121] where these representations are
referred to as “Type II-” and “Type I-distribution.” These formats are also used
in [89] and [80]. The third representation x̂ of x is primarily employed when
determining inner products. We next describe all three representations..

Accumulated Representation In this representation, each process p stores a
vector xp ∈ R

np

containing the global values of all DOFs located on p. That is,
if a process p stores a DOF with the number i ∈ Ip then the global value of this
DOF is given by (xp)i. In the remainder, the representation

x = (x1, . . . ,xP ) ∈ R
n1

× · · · × R
nP

(3.1)

of a vector x ∈ R
n is called accumulated representation of x.
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From a mathematical point of view, transforming the global vector x to a local
vector xp can be expressed by a linear mapping. To this end, we define the
coincidence matrix Ip ∈ {0, 1}n

p×n whose entries are given by

(Ip)i,j =





1, if a DOF with global number j ∈ I exists on

processor p with local number i ∈ Ip,

0, else

. (3.2)

This matrix is also called the Boolean connectivity matrix in [121]. The accumu-
lated representation of x in (3.1) becomes

x = (I1 · x, . . . , IP · x). (3.3)

Since some vertices and edges of the triangulation are stored overlapped, i.e.,
by multiple processes, some DOFs are located at multiple processes. Hence, the
accumulated number of DOFs is larger than the global number of DOFs, i.e.,

n :=
P∑

p=1

np ≥ n.

Figure 3.3 illustrates this situation for two tetrahedra and two processes p1
and p2. The first tetrahedron t1 is stored by a process p1 and the second tetrahe-
dron t2 by a process p2, indicated by gray-shading. In this example, four global
DOFs exist, namely x1, . . . , x4. These DOFs are distributed among the two pro-
cesses, where each process p determines an ordering Ip = {1, . . . , 3} of its three
DOFs whose values are given by xp

1, x
p
2, and xp

3. In this example, both processes
assign a number for the global DOF x1 which is locally stored as x1

3 and x2
1 on p1

and p2, respectively. Thus, the two entries (Ip1)3,1 and (Ip2)1,1 are nonzero. The
coincidence matrices for p1 and p2 read as

Ip1 =



0 0 1 0
0 1 0 0
1 0 0 0


 and Ip2 =



1 0 0 0
0 0 0 1
0 0 1 0


 .

Distributed Representation Discretizing a PDE by the finite element method is
commonly performed by a loop over all tetrahedra of a given triangulation level.
This loop assembles a system of linear equations which discretely represents the
PDE. That is, in general, the loop sets up a matrix and a vector. Here, each
tetrahedron contributes data to the matrix and the vector. Since the tetrahedra
of the triangulation are distributed among processes, each process assembles parts
of the resulting system of linear equations. For instance, reconsider the example in
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t1 t2

x1

x2

x3

x4

x11

x12

x13 x21

x22

x23

p1 p2

Figure 3.3: Distributed DOFs among two processes.

Fig. 3.3 where the two adjacent tetrahedra t1 and t2 contribute partial information
to the DOF x1 while assembling a system of linear equations. The global values
of DOFs can be obtained by summing up the corresponding local values of the
DOFs. More precisely, a representation x̃ = (x̃1, . . . , x̃P ) ∈ R

n1

× · · · × R
nP

of a
vector x ∈ R

n is called distributed, if the following equation holds

x =
P∑

p=1

(Ip)T x̃p. (3.4)

Note that transforming a distributed vector into an accumulated vector involves
so-called neighbor communication, i.e., all processes which share at least one DOF
communicate their values among each other. Although equation (3.4) contains
a sum over all processes, no global communication and synchronization, e.g., a
reduce-type operation, is needed. Moreover, the neighbor communication can be
overlapped by computations when determining linear algebra operations, as we
will see later in Sect. 3.2.2.

A similar result holds when considering matrices. Let Ãp ∈ R
np×np

denote
the local matrix of process p which is assembled by p when iterating over its
tetrahedra T p. Then, this matrix is stored in a distributed fashion and the global
matrix A ∈ R

n×n can be obtained by summing up the distributed matrix entries.
Employing the coincidence matrix (3.2) yields the formula

A =
P∑

p=1

(Ip)T · Ãp · Ip. (3.5)

A slightly modified version of this equation also holds for rectangular matrices
where different numberings are used to number the rows and columns of the matrix.
For instance, the rows of the matrix B in (2.15) are numbered by the pressure
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DOFs and the columns of B by the velocity DOFs. Here, the local matrices B̃p

stored by processes p = 1, . . . , P are transformed to the global matrix B by using
the coincidence matrices corresponding to the pressure DOFs and the velocity
DOFs in (3.5), respectively.

Exclusive Representation Finally, the third representation aims at assigning
each DOF to exactly one process. This can be seen as a conversion from an
accumulated representation to a distributed one. Moreover, the exclusive repre-
sentation is advantageous to determine inner products as we will see later on. To
this end, we consider a partitioning {Î1, . . . , ÎP} of the global numbering I, i.e.,

P⋃

p=1

Îp = I with Îp ∩ Îq = ∅, p 6= q and

Îp ⊂ Ip. (3.6)

Note that (3.6) assures that a DOF is exclusively assigned to a process which
stores a copy of the DOF in the accumulated or distributed representation. We
define the number of exclusive DOF of process p by n̂p = |Îp|. Then, the global

number of DOFs is given by n =
∑P

n=1 n̂
p. Moreover, let Îp ∈ R

n̂p×n denote the
exclusive coincidence matrix of process p, whose entries are given by

(Îp)i,j =





1, if a DOF with global number j ∈ I exclusively exists

on processor p with local number i ∈ Îp,

0, else

.

The representation x̂ = (x̂1, . . . , x̂P ) ∈ R
n̂1

× · · · × R
n̂P

is called exclusive if

x̂p = Îp x (3.7)

holds for all p = 1, . . . , P . In the style of (3.4), this formula equals

x =

P∑

p=1

(
Îp
)T

x̂p. (3.8)

Note that the exclusive representation can be easily determined from the accumu-
lated representation without communication by restricting the accumulated DOF
to the exclusive ones.

3.2.2 Parallel Linear Algebra

We next focus on executing linear algebra operations in parallel. Recall that
the discrete formulation of the two-phase flow problem (2.15)–(2.16) consists of
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a system of non-linear equations for each time step. When following the method
presented in the previous chapter, that system is solved by a hierarchy of various
solvers, see Fig. 2.5, which—besides operations on scalars—primarily employ the
following linear algebra operations:

(i) matrix-vector products, e.g., y ← A · x,

(ii) vector updates, e.g., z← αx+ y, and

(iii) inner products, e.g., α← xT · y

for α ∈ R, x,y, z ∈ R
n, and A ∈ R

n×n. We describe methods in the following to
execute these operations in parallel when using the three representations of vectors
and the distributed matrix representation presented above.

Matrix-Vector Product Assume that a matrix A is given in the distributed
format, cf. (3.5), and the vector x is available by the accumulated representation x.
Then, the following chain of equations holds:

A · x
(3.5)
=

(
P∑

p=1

(Ip)T · Ãp · Ip

)
· x =

P∑

p=1

(Ip)T · Ãp · (Ip · x)

(3.3)
=

P∑

p=1

(Ip)T · Ãp · xp

︸ ︷︷ ︸
:=ỹp

=

P∑

p=1

(Ip)T · ỹp (3.4)
= y.

Thus, if a process p multiplies an accumulated vector with its local part of a
distributed matrix then the result is a distributed vector. No communication is
necessary for this matrix-vector product. In contrast, if the product of a dis-
tributed matrix and a distributed vector is requested, then the vector has to be
first transformed into an accumulated representation which includes neighbor com-
munication.

Vector updates Computing z← αx+ y does not involve any communication if
the vectors x and y have the same representation. Hereby, the result is represented
in the same format. Since for all p = 1, . . . , P the equation

Ip (αx+ y) = αIpx+ Ipy = αxp + yp

︸ ︷︷ ︸
:=zp

= zp
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holds, the result of a vector update of accumulated vectors results in an accumu-
lated vector z. For the distributed representation, we find

αx+ y = α

(
P∑

p=1

(Ip)T x̃p

)
+

(
P∑

p=1

(Ip)T ỹp

)

=

P∑

p=1

(Ip)T (αx̃p + ỹp)︸ ︷︷ ︸
:=z̃p

=

P∑

p=1

(Ip)T z̃p = z.

When replacing Ip by Îp, these equations prove that updating two exclusive vectors
also results in an exclusive representation of z.

Inner products We present two approaches to determine the inner product of
two vectors x and y ∈ R

n. The first algorithm is also described in [80, 121] and
relies on the following chain of equations

xT · y
(3.4)
= xT ·

P∑

p=1

(Ip)T ỹp =

P∑

p=1

xT · (Ip)T ỹp (3.9)

=
P∑

p=1

(Ipx)T · ỹp (3.3)
=

P∑

p=1

(xp)T · ỹp. (3.10)

Thus, the inner product is computed by, first, locally multiplying the accumulated
representation (xp)T and the distributed representation ỹp by each process and,
afterwards, summing up the results among all processes. This summation includes
a synchronization of all processes which becomes very expensive when considering
a large number of processes.

If both vectors x and y are given in the distributed representation, a preceding
step is necessary to transform one vector into the accumulated form yielding in
neighbor communication. However, this communication can be overlapped by
computations on only locally stored vector entries such as x1

2 in Fig. 3.3.

However, this algorithm may result in negative squared 2-norms of vectors. For
instance, consider the following situation, where P = 4 processes determine the
squared norm ‖x‖22 = xT · x of a one-dimensional vector x ∈ R

1. Furthermore,
assume that each process computes with two significant bits. The values of the
distributed representation are given in the second column of Table 3.1 for each
process p = 1, . . . , 4. First, an accumulated representation of x is required to
compute xT · x. Since the only DOF x1 is distributed among four processes,
each process sends its distributed entry to all other processes. Afterwards, each
process p sums up the distributed entries—in this example—in the following order:

x̃ p
1 + x̃ p+1modP

1 + x̃ p+2modP
1 + x̃ p+3modP

1 . (3.11)
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p x̃
p

x
p (xp)T · x̃p

1 0.95 0.95 − 0.95 − 0.001 + 0.001 = 0 0

2 −0.95 −0.95 − 0.001 + 0.001 + 0.95 = 0 0

3 −0.001 −0.001 + 0.001 + 0.95 − 0.95 = 0 0

4 0.001 0.001 + 0.95 − 0.95 − 0.001 ≈ −0.001 −1 · 10−6

Table 3.1: Computing ‖x‖2 by P = 4 processes.

This results in an accumulated representation of xp. In the third column of Ta-
ble 3.1, the values of this representation are shown for each process when deter-
mining the sum in (3.11) with two significant bits. Then, the product (xp)T · x̃p

is determined by each process leading to the values in the fourth column of Ta-
ble 3.1. Finally, the squared norm ‖x‖22 is determined by the sum of the local
products, i.e., (−1) · 10−6. Hence, in this example, the algorithm determines a
negative squared norm of a real-valued vector. This is numerically unacceptable.

To overcome this issue, we next present an algorithm which makes use of the
exclusive representation. Therefore, consider the following chain of equations

xT · y
(3.8)
= xT ·

P∑

p=1

(
Îp
)T

ŷp =
P∑

p=1

xT ·
(
Îp
)T

ŷp (3.12)

=

P∑

p=1

(
Îpx
)T
· ŷp (3.7)

=

P∑

p=1

(x̂p)T · ŷp. (3.13)

In contrast to the algorithm of (3.9)–(3.10), the local inner products are deter-
mined by using the exclusive representation of the vectors. This algorithm results
in positive squared norms of a vector x since each summand of (x̂p)T · x̂p in (3.13)
is greater or equal zero. To even increase the accuracy of determining inner prod-
ucts, especially for large vectors, we use the Kahan’s summation algorithm [102]
for building the local sums. Note that both vectors are assumed to have an ex-
clusive representation which might imply an additional communication step if at
least one vector is given in distributed format. However, this communication can
be overlapped by computation in the same way as for the algorithm above.

We recall the example from Table 3.1 to illustrate the algorithm based on the
exclusive representation (3.12)–(3.13). If the only entry of x is exclusively assigned
to process 4, the squared 2-norm ‖x‖22 is determined as (−0.001)2 = 1 · 10−6. If
another process exclusively owns the entry, the algorithm correctly computes 0 as
the norm of x.
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3.3 Numerical Results

Having described the parallel data structures and how to execute linear algebra
operations, we now present numerical results showing that the decomposition of
the triangulation and the parallel representation of numerical data is well suited
for solving PDEs in parallel. To this end, consider the following Poisson equation

−∆u = 128(f(y, z) + f(x, z) + f(x, y)) in ΩC := [0, 1]3 and
u = 1 on ∂[0, 1]3

, (3.14)

where f(x1, x2) := x1x2(1 − x1)(1 − x2). We do not consider a simulation of a
two-phase flow problem because the behavior of the nested solvers is highly in-
terdependent. When using different numbers of processes, sums are evaluated in
different orderings which causes different results in floating point arithmetic. Ad-
ditionally, a different partitioning of the matrices and vectors commonly results in
a modified convergence behavior of numerical algorithms [49]. Thus, using differ-
ent numbers of processes may result in different iteration numbers of the solvers
presented in Sect. 2.2. In Chap. 6, we contemplate this issue when simulating two-
phase flow problems. Although the Poisson equation (3.14) is numerically easier
to treat than the coupled, non-linear two-phase flow equations (2.12)–(2.14), from
a computational point of view, its simulation consists of similar parts which dom-
inates the compute time. These parts are the grid generation, the assembly of
systems of linear equations, and the solution of these systems. Therefore, we here
investigate those three parts.

The numerical results of this and the following chapters are gathered by the
software Drops [81,117] on two different clusters located at the Center for Com-
puting and Communication of RWTH Aachen University. The first one is based
on quad-core Harpertown (E5450) processors whereas the second one is assem-
bled by quad-core Nehalem (X5570) processors. In both clusters, two processors
are located on one node and, thus, up to eight cores can access the shared mem-
ory. Furthermore, the nodes are connected by an InfiniBand network. Table 3.2
presents the characteristics of both clusters. In this section, we only consider the
Harpertown cluster. However, the results gathered on the Nehalem cluster show
essentially the same behavior.

We inspect results where (3.14) is discretized by quadratic (P2) finite element
functions on three different tetrahedral grids which vary in their number of tetra-
hedra. A load-balancing algorithm is employed aiming at minimizing faces be-
tween processes and evenly distributing the number of tetrahedra of the finest
level among the processes. We place eight MPI processes per compute node.
Hence, at least eight processes are employed. The size of the grid

|H| =
k−1∑

l=0

P∑

p=1

|Gpk|
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Harpertown Nehalem

processor Intel’s E5450 Intel’s X5570

cores per processor 4 4

clock rate [Ghz] 3.0 2.93

processors per node 2 2

number of nodes 50 192

shared memory per node [GB] 16 24

network DDR InfiniBand QDR InfiniBand

Table 3.2: Characteristics of the two clusters used to gather the numerical results.

Problem |H| n Pmin MDrops(Pmin) [GB]

(ΩC, small) 234 686 249 954 8 3.2

(ΩC,medium) 1 863 999 2 047 587 8 8.5

(ΩC, large) 15 020 070 16 573 239 32 57.6

Table 3.3: Problem characteristics.

and the size of the corresponding system of linear equations n is given in Table 3.3.
Here, the symbol ΩC is used to denote the computational domain [0, 1]3. This table
also shows the minimal number of processes Pmin—as a multiple of eight—that are
needed to represent the corresponding problem in terms of available memory. The
actual memory consumption MDrops(Pmin) to store all data on Pmin processes is
presented in the last column of this table.

We start the discussion of the performance results by considering the time for
solving the system of linear equations A · x = b when discretizing (3.14). In two-
phase flow simulations, this is the main time consuming computational part. The
system of linear equations corresponding to (3.14) is symmetric and positive defi-
nite and can be solved by CG-type algorithms. In contrast, most systems of linear
equations of the discrete two-phase flow problem (2.15)–(2.16) do not exhibit this
property. Therefore, we consider instead a restarted, Jacobi-preconditioned [142]
GMRES method rather than a CG-type method. Figure 3.5 depicts performance
results for three different implementations of the GMRES method.

(i) The serial implementation is parallelized “line-by-line,” i.e., each matrix-
vector multiplication, inner product, and vector update is performed in par-
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Figure 3.4: Convergence of ‖A · xi − b‖2 when solving A · x = b by the three
implementations of the GMRES method

allel. Here, the orthogonalization within the GMRES method is carried out
by the modified Gram–Schmidt [77] method.

(ii) As in the implementation (i), the modified Gram–Schmidt method is em-
ployed. However, a more efficient implementation of the GMRES method
is applied, i.e., intermediate accumulated vectors are stored if they can be
reused later in the algorithm.

(iii) In contrast to the previous two implementations (i) and (ii), the standard
Gram–Schmidt [77] method is used to orthogonalize vectors. This is ad-
vantageous since this orthogonalization includes only one synchronization of
processes opposed to the modified Gram–Schmidt method which performs
multiple synchronizations. As in (ii), an efficient implementation is chosen.

Although the standard Gram–Schmidt method is known to be less numerically sta-
ble than the modified method, all implementations are capable of solving the sys-
tem of linear equations A·x = b with the same number of iterations. Let xi denote
the approximation of the solution x in the i-th iteration of the GMRES method.
In Fig. 3.4, the Euclidean norm of the residual vectors ‖A · xi − b‖2 are depicted
for all three implementations of the GMRES method. Here, P = 8 and P = 32
processes are employed to solve the problems (ΩC, small) and (ΩC, large), respec-
tively. These plots exemplarily illustrate the same convergence behavior of all
three implementations.

The performance results in Fig. 3.5 consist of two parts. First, in the left three
figures (a),(c), and (e), the time T (P ) of all three implementations is shown when
using up to P = 1 024 processes. Second, the related speedup

SPmin
(P ) :=

T (Pmin)

T (P )
· Pmin (3.15)
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is illustrated in the right three plots of Fig. 3.5. Note that the speedup for Pmin

processes is defined as SPmin
(Pmin) := Pmin.

We observe that, in almost all cases, the implementation using the standard
Gram–Schmidt method (iii) results in smaller execution times than the other two
implementations. The difference in the run times increases when solving the Pois-
son equation by larger numbers of processes. For instance, in problem (ΩC, large),
the run time of (ii) and (iii) is almost equal on 128 processes whereas a factor of
approximately 3.4 is observed on P = 1 024 processes. An explanation is given
by the reduced number of synchronizations in implementation (iii). In particular,
in problem (ΩC, small) on P = 1 024 processes, the implementation (iii) is 11.5
times faster than (ii) and even 50.7 times faster than (i) where a larger compu-
tational overhead is present. The reduced communication and synchronization
overhead also implies a better scalability of the implementation (iii). In prob-
lem (ΩC,medium), the implementations (i) and (ii) scale only up to 64 processes
before a slowdown is observed. However, the implementation (iii) is capable of
efficiently solving the system of linear equations by the preconditioned GMRES
method on 1 024 processes. Here, a speedup of about S32(1 024) = 482 is achieved.
Increasing the problem size results in a speedup of S64(1 024) = 1 581 for prob-
lem (ΩC, large). Note that a super linear speedup is observed due to cache effects
and due to the definition of the speedup in (3.15).

Second, we consider the assembly of the system of linear equations which com-
prises the second most time consuming part of simulating two-phase flow prob-
lems. In Table 3.4, the corresponding timing results are presented in the columns
labeled by “assemb.” The run time for assembling the system decreases for all
three problem sizes when increasing the number of processes. The speedup is very
good for all problem instances (ΩC, small), (ΩC,medium), and (ΩC, large), i.e., a
speedup of S8(1 024) = 2 039, S32(1 024) = 1 409, and S64(1 024) = 890 is achieved,
respectively.

Third, we consider the time for generating the hierarchy of triangulations which
is depicted in Table 3.4 in the columns labeled by “grid.” This time includes the
refinement and migration algorithm. Here, we observe that this computational
part scales up to 64 processes for problem (ΩC, small) and up to 256 processes
for the problems (ΩC,medium) and (ΩC, large). The time increases when consid-
ering larger number of processes. In these cases, the problem size is too small
for such large number of processes, i.e., the communication time dominates the
runtime and avoids a scaling. However, the time for generating the grid for the
problem (ΩC, large) by P = 1 024 processes is smaller by a factor of 1.4 than the
time solving the corresponding system of linear equations by the fastest imple-
mentation (iii) of GMRES. In this example, the time for generating the parallel
triangulation hierarchy is larger than assembling the matrices. In constrast, this
does not hold for two-phase flow simulations. Moreover, the time spent in gener-
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Figure 3.5: Performance results for solving the Poisson equation (3.14) when using
the Harpertown cluster.
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3.4 Discussion

(ΩC, small) (ΩC,medium) (ΩC, large)
P

assemb grid assemb grid assemb grid

8 1.672 2.304 — — — —

16 0.8272 1.488 — — — —

32 0.3930 1.013 3.736 6.701 — —

64 0.1692 0.7675 1.824 4.004 14.73 33.55

128 0.06410 1.173 0.9051 2.598 7.607 17.55

256 0.02548 1.024 0.4220 1.678 3.670 9.774

512 0.01230 1.357 0.2016 3.972 2.214 28.84

1 024 0.006560 3.038 0.08480 4.630 1.059 33.76

Table 3.4: Time in seconds for assembling the system of linear equation (assemb)
and generating the grid (grid).

ating and modifying the grid tends to be negligible for two-phase flow problems
because a large number of systems of linear equations are solved on one grid and
only small modifications of the grid are made during the course of simulating these
flows.

Overall, this example demonstrates that the data structures and algorithms pre-
sented in this chapter are capable of efficiently solving PDEs by the finite element
method. We conclude this chapter by a brief discussion of the implementation of
this parallel approach.

3.4 Discussion

A key ingredient of the parallel refinement algorithm and the admissible dis-
tributed hierarchical decomposition is managing and tracking the information
about distributed elements of the triangulations, such as tetrahedra, faces, edges,
and vertices. That is, within the refinement algorithm each process queries infor-
mation about each of its locally stored elements, such as existence of that element
on other processes or a list of processes owning a copy. Furthermore, in some stages
of the refinement algorithm, so-called interface-communication is necessary. Here,
information is communicated among all copies of an element. For instance, decid-
ing if a face needs to be refined involves information from all adjacent tetrahedra
that are possibly located at different processes. Another type of communication
is performed, when tetrahedra are migrated among processes. Here, elements of
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the triangulation must be transferred, forming a delicate task. For instance, if
a tetrahedron should be transferred from process p1 to p2, then its faces, edges,
vertices, and, eventually, its children, need to be sent, too. However, this implies
that, in some cases, not only p1 and p2 exchange information but other processes
as well. For instance, if there is a third process p3 which also stores a copy of an
element of t, e.g., a vertex, then p3 must be informed about the transfer from p1
to p2.

To address those tasks, the parallel implementation of Drops intensively uses
the library DDD [24] (Dynamic Distributed Data) of the software toolkit UG [16]
(Unstructured Grids). This library is not supported any more and due to perfor-
mance issues when considering larger number of processes and longer simulation
times, a replacement of the library DDD is currently being developed. This new
object-orientated module of Drops basically relies on the methods that are used
for the library PMDB which is presented in [65, 144, 151] and is called DiST

(Distributed Simplex Types). Briefly, the functionality of DiST addresses three
tasks. First, it manages the additional information for the distribution of the
tetrahedral hierarchy and allows queries of this information. Second, it imple-
ments the interface communication. And, third, this module supports the transfer
of tetrahedra with all their subsimplices among processes. In the current state,
DiST is not capable of adaptively simulating two-phase flow problems, yet. A de-
tailed description of DiST is not a topic of this thesis. However, some preliminary
results of a two-phase simulation obtained with this module are presented in the
case study chapter, i.e., Chap. 6.

A shared-memory parallelization of Drops has been devised in [163] where the
authors employ OpenMP to distribute the computational work among multiple
threads. Here, the main focus lies on a parallelization strategy for assembling
matrices of the two-phase flow problem and for solving the resulting systems of
linear equations, cf. (2.15)–(2.16). Currently, the ideas of using an OpenMP par-
allelization in combination with object-oriented programming [162] are analyzed to
speed up linear algebra computations in Drops. That is, the underlying classes,
which implement matrix- and vector-operations, execute OpenMP-parallel algo-
rithms [161] to compute matrix-vector products, inner products and vector up-
dates. This approach aims at encapsulating sophisticated, additional code for an
advanced shared-memory parallelization that considers various memory architec-
tures. The shared-memory parallelization does not contradict the development of
the distributed-memory parallelization. Yet, combining both approaches aims at
exploiting the architecture of today’s high-performance computer systems which
primarily consist of clusters of multi-core processors. This so-called hybrid parallel
approach uses the distributed-memory parallelization to decompose the compu-
tational work among compute nodes whereas the shared-memory parallelization
utilizes the compute cores on each node to speedup the computations. In Chap. 5,
we go into detail of such a hybrid distributed-/shared-memory parallel approach.
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In the previous chapter, an admissible distributed hierarchical decomposition has
been introduced. In this chapter, we are concerned with approaches to find a
suitable decomposition of the computational load among the processes. To this
end, we follow a domain decomposition approach where the tetrahedra of the
triangulation hierarchies are distributed among the processes. We first give an
illustrating example showing that load balancing is of particular interest when
simulating two-phase flow problems.

Recall the example of a rising n-butanol drop that has been illustrated in Chap. 2
in Fig. 2.2. Here, first, a triangulation hierarchy M0 is determined to discretize
the computational domain and resolve the physical phenomena in the beginning
of the simulation. Afterwards, this hierarchy M0 is used to solve the two-phase
flow problem for a few number of discrete time steps. When the phases and
characteristics of the flow have been changed, M0 is modified by the refinement
and coarsening algorithm resulting in a new hierarchy of tetrahedral grids which
is denoted by M1. This procedure of solving the fluid dynamics and modifying
the hierarchy is repeatedly applied until the simulation ends. Hence, a sequence
of m ≥ 0 tetrahedral hierarchies (M0, . . . ,Mm−1) is generated during a two-phase
flow simulation.

Next, consider the same example of a rising n-butanol drop simulated by two
processes which is illustrated in Fig. 4.1. In Fig. 4.1(a), the initial hierarchyM0

is distributed among two processes. The tetrahedra stored by the first process are
colored blue and those of the second process are highlighted in red. The n-butanol
drop is colored in yellow. Recall from Chap. 3 that the computational work and
the memory consumption of one process corresponds to the number of tetrahedra
which are stored by this process. However, the work and memory do not depend
on the size of a tetrahedron. Thus, in this figure, roughly the same number of
tetrahedra is colored blue or red. The size of the process boundary approximates
the communication volume between adjacent processes. Therefore, the process
boundary is determined as small as possible in this example. The distribution
of tetrahedra on all levels of the triangulation hierarchy can be expressed by the
partitioning function

π0
M :

⋃

T ∈M0

T → {1, . . . , P}
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(a) Initialization. (b) Moved drop. (c) Grid adaption. (d) Load balance.

Figure 4.1: Parallel simulation of a rising n-butanol drop by two processes. The
tetrahedra stored by the first process are colored in red and those of
the second process in blue. The n-butanol drop is given in a yellow
color.

that maps the tetrahedra of M0 to P ≥ 2 processes. That is, if π0
M(t) = p

holds for a tetrahedron t ∈ M0, then t is assigned to process 1 ≤ p ≤ P . As
in the sequential case, after a few time steps, the hierarchy is modified by the
parallel refinement algorithm to adequately resolve the problem characteristics.
Figure 4.1(b) and (c) respectively show the grid before and after the modifications.
The refinement algorithm may cause an imbalance in the number of tetrahedra
which are assigned to the processes. For instance, there are more red than blue
tetrahedra in Fig. 4.1(c). Hence, the grid modification may lead to a discrepancy
in the computational work load of the processes in contrast to the sequential
case. If this imbalance in the number of tetrahedra is too large, then we seek
for a new partitioning function π1

M that decomposes the tetrahedra ofM1. This
partitioning again aims at reducing the communication volume while balancing
the computational load. Afterwards, according to the mapping π1

M, the tetrahedra
ofM1 are migrated among the processes. For the present example, the result of
the migration is depicted in Fig. 4.1(d).

From a theoretical point of view, we seek for a sequence of m partitioning
functions (π0

M, . . . , πm−1
M ) that describes the decomposition of the m triangulation

hierarchies (M0, . . . ,Mm−1) among P processes while simulating a two-phase flow
problem. Commonly , the triangulation hierarchyMi with 0 < i < m differs only
slightly fromMi−1 because coarsening and refinement operations are only locally
performed on small subdomains of the whole computational domain. Further-
more, the triangulationMi results from the parallel refinement of the distributed
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hierarchyMi−1. Thus, the hierarchyMi is also distributed among the processes.
This leads to two observations. First, if Mi and Mi−1 differ only slightly, the
imbalance in tetrahedra among the processes may be insignificant and there is no
need for migrating tetrahedra. Second, the distribution of tetrahedra inMi−1 may
serve as a good “initial guess” to search for the partitioning πi

M to decomposeMi.
This issue of dynamically or adaptively finding P -way partitioning functions has
been extensively investigated in, e.g., [54,57,65,146,147]. These models include in
general a parameter specifying a trade-off between the computational load and the
migration costs for the computational elements (in our case the tetrahedra). We
investigate two-phase flow simulations in this thesis, where the migration costs for
a tetrahedron are negligible compared to the computational load that is caused by
a single tetrahedron. Therefore, we concentrate on finding a good decomposition
of a single tetrahedral hierarchy M rather than determining partitionings for a
sequence of hierarchies.

In a general two-phase flow simulation, most of the computational load origi-
nates from assembling various systems of linear equations and solving these sys-
tems. Furthermore, storing these systems needs a huge amount of memory. To
simulate large and meaningful instances of two-phase flow problems, parallel com-
puting is indispensable as they provide sufficient memory and necessary compute
power. However, the parallelization commonly results—besides communication—
in a memory overhead compared to the storage of a sequential simulation. For
instance, in the parallel approach presented in Chap. 3, degrees of freedom (DOFs)
at process boundaries are stored by multiple processes. Hence, the goal of this
chapter is to determine a decomposition of the tetrahedra aiming at

• minimizing the storage overhead and the communication volume for parallel
computing, and

• balancing the computational load of all processes.

To determine such a decomposition of tetrahedra, we follow the common load-
balancing approach where the triangulation is represented by a graph and a parti-
tioning of this graph yields a decomposition of the tetrahedra among the processes.
Overall, the load-balancing algorithm redistributes a decomposed hierarchyM of
tetrahedral grids among processes and consists of four steps:

(i) represent the tetrahedral hierarchyM by a graph G;

(ii) partition the graph G;

(iii) interpret the partitioning of the graph G as a partitioning function πM for
the tetrahedral hierarchyM; and

(iv) migrate tetrahedra according to πM.

An overview of literature concerning this approach is given in [164] and, addition-
ally, diverse graph partitioning algorithms and libraries are compared for various
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PDE applications. However, these graph models do not take two-phase flow simu-
lations into account. In this chapter, we focus on the first step of the load-balancing
algorithm and devise graph models to accurately model a triangulation hierarchy
when particularly simulating two-phase flow problems. The second step of the
above algorithm is surveyed in, e.g., [64] and the third and fourth step is detailed
in [79].

The outline of this chapter is as follows. We pursue two different approaches for
determining a decomposition of the tetrahedra among the processes. In the first
approach which is presented in Sect. 4.1, the tetrahedral hierarchy is described
by “standard” graphs. The underlying graph has been presented in [79, 80]. This
graph represents the tetrahedra of the triangulation hierarchy by vertices and their
adjacencies by the graph edges. Thus, a partitioning of the graph vertices results
in a decomposition of the tetrahedra. We advance this graph model for especially
addressing two-phase flow simulations. To this end, we employ specially designed
weighting functions for the vertices and for the edges to represent certain properties
of two-phase flow simulations. These properties include the varying computational
load of each tetrahedron, communication patterns when solving the linear equa-
tion systems, and the storage overhead for representing numerical data in parallel.
These weighting functions have been introduced in [67, 72]. The second approach
is introduced in Sect. 4.2. In contrast to the standard graph models, a hypergraph
model is investigated to exactly model the communication volume among neighbor
processes while performing linear algebra operations on distributed vectors. That
is, the hypergraph representing the hierarchy of triangulations contains informa-
tion about the communication pattern that is applied in the course of simulating
two-phase flow problems. In Sect. 4.3, we conclude this chapter by a discussion
on the presented approaches and an outlook on future work.

Throughout this chapter, we exemplify all presented graph models by the same
hierarchy of triangulations depicted in Fig. 2.3. Recall that this hierarchy consists
of three levels. In Fig. 4.2, this hierarchy is presented again where all tetrahedra
of the finest triangulation are labeled.

4.1 Modeling the Tetrahedral Hierarchy by Graphs

To model the hierarchy of tetrahedral grids by graphs, we first summarize the ap-
proach presented by Sven Groß in [79,80]. In these theses, the vertices and edges of
the graph are defined such that the graph vertices represent the tetrahedra and the
edges their adjacencies in the tetrahedral hierarchy. Furthermore, the vertices and
edges are weighted by information only considering the tetrahedral hierarchy. The
resulting graph is called tetrahedral graph and is denoted by GM. A partitioning
of this graph aims at minimizing the number of faces at process boundaries while
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Figure 4.2: Finest triangulation of the hierarchy in Fig. 2.3.

balancing the number of tetrahedra of the finest triangulation. This approach is
reasonable for finite element simulations due to the following observation stated
in [79]. Let nT denote the number of tetrahedra in a triangulation T used to
discretize a connected domain without holes and nFB

the number of faces at the
boundary. In addition, let A ∈ R

n×n denote the stiffness matrix for linear P1

finite element functions on T . Then, the number of floating point operations for
computing A · x with x ∈ R

n is bounded by

16nT + 7/2nFB
+ 2. (4.1)

However, it turns out that these weights only roughly approximate the compu-
tational load and data dependencies for the finite element solution of a two-phase
flow problem. We cope with these problems by developing two graph models
which rely on the same definition of vertices and edges but different weighting
functions [67, 72]. In [72], we presented a new weighting function for the vertices
to better model the computational load corresponding to a vertex. These vertex
weights are based on information about DOFs and yield the DOF graph GD. We
modify this model in [67] by empirically determining the computational load per
vertex yielding a weighting function for the graph vertices. Moreover, we evalu-
ate the weight of the edges by considering the memory overhead when simulating
two-phase flow problems by multiple processes. This overhead is given by the
DOFs that are redundantly stored on process boundaries. Modeling the storage
overhead by the weight of edges also results in small communication volume when
the discrete two-phase flow problem is simulated. Overall, we call the resulting
graph the two-phase graph which is denoted by GΓ.

This section is organized as follows. In Sect. 4.1.1, we briefly outline the standard
graph partitioning problem. Afterwards, in Sect. 4.1.2, we summarize the approach
given by Groß in [79, 80] yielding the tetrahedral graph GM. The DOF graph GD

and the two-phase graph GΓ are detailed in Sect. 4.1.3 before we present numerical
results on up to 512 processes in Sect. 4.1.4.
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4.1.1 Graph Partitioning

First, we define the general P -way graph partitioning problem before describing
the graph models. To this end, let G = (V,E, ̺, σ) be a weighted graph, where V
denotes the vertices and E the edges of the graph G. The weights of the vertices
and edges are given by the two functions ̺ : V → R

+ and σ : E → R
+, respectively.

In a more general setting, both weighting functions can be multidimensional. If
each vertex is mapped to multiple weights, the corresponding partitioning problem
is called multi-constrained. If the edge-weighting function σ maps each edge to
more than one weight, the partitioning problem is called multi-objective. However,
opposed to Sect. 4.2, we are concerned with one-dimensional weights for both
vertices and edges in this section. The objective of the graph partitioning problem
is to find a P -way graph partitioning function πG : V → {1, . . . , P}. This function
decomposes the set of vertices V into P ≥ 2 disjoint subsets V1, . . . , VP , i.e., the
sets Vp = {v ∈ V | πG(v) = p}, for 1 ≤ p ≤ P , fulfill the two conditions

P⋃

p=1

Vp = V and Vp ∩ Vq = ∅, p 6= q.

Using these notations, we introduce the P -way graph partitioning problem for a
graph by the following definition.

P-way Graph Partitioning

For a given weighted graph G = (V,E, ̺, σ), find a P -way graph partitioning func-
tion πG : V → {1, . . . P} such that

minimize Ecut :=
∑

e=(v,w)∈E

πG(v)<πG(w)

σ(e), (4.2)

s.t.
∑

πG(v)=p

̺(v) ≈
1

P

∑

v∈V

̺(v) for p = 1, . . . , P. (4.3)

That is, find a decomposition of the vertices V into P partitions, such that the
edge cut Ecut is minimized (4.2) while balancing the accumulated vertex weights
of each partition (4.3). From a theoretical point of view, if considering two equal
sized partitions with a minimal edge cut, the graph partitioning problem is known
to be NP-complete [75, 76]. Hence, these types of problems are solved in general
by heuristics or approximation algorithms which can be found in, e.g., [126, 148].

44



4.1 Modeling the Tetrahedral Hierarchy by Graphs

4.1.2 Tetrahedral Graph Model

Next, we describe the tetrahedral graph GM that aims at modeling a hierarchy
of tetrahedral gridsM = (T0, . . . , Tk−1). Since we simulate two-phase flow prob-
lems on the finest triangulation level, the objective of the corresponding P -way
partitioning problem is to decompose the tetrahedra of the finest level among P
processes. In the graph GM, the vertices in V represent the tetrahedra and the
edges in E correspond to adjacencies between the tetrahedra. A vertex v ∈ V is
introduced for each parent tetrahedron t that has at least one child Ch(t) in the
finest triangulation. Formally, we introduce a vertex v ∈ V for each tetrahedron t
with

t ∈
k−1⋃

l=0

Tl and

{
level(t) = 0, if t is unrefined or

Ch(t) ∩ Tk−1 6= ∅, if t is refined
. (4.4)

That is, a vertex v ∈ V either corresponds to an unrefined tetrahedron in the
coarsest triangulation or to a parent tetrahedron with its children where at least
one child is located in the finest triangulation. The second condition ensures
that all children of a parent tetrahedron are represented by a single vertex. The
advantage is twofold. First, using a single vertex to represent a set of tetrahedra
rather than a single tetrahedron reduces the number of vertices in the graph GM.
Therefore, the graph is called reduced in [79]. Second, if a vertex v is assigned to
a process p then all tetrahedra represented by v are assigned to p, too. Recall that
this is crucial for the implementation of the refinement algorithm, cf. Sect. 3.1. In
the remainder, let P(S) denote the power set of a set S and

T : V → P(Tk−1) (4.5)

express the mapping of a vertex v to the set of tetrahedra on the finest triangulation
which are represented by v.

Although T (u) ∩ T (v) = ∅ holds for all u 6= v, there may exist tetrahedra—not
located at the finest triangulation—that are represented by more than one vertex.
For instance, consider the forest representation of a tetrahedral hierarchy which is
displayed in Fig. 4.3. The tetrahedron t0 has two children: the left child t1l and the
right child t1r . The tetrahedron t1l is located on the finest triangulation and, thus,
a vertex v is introduced to represent the tetrahedra t0, t1l and t1r . The mapping
in (4.5) reads as T (v) = {t1l } for this vertex v. The right child t1r of t0 is further
refined into its left t2l and right child t2r . Since both children are located in the finest
triangulation, a vertex v′ is introduced which represents t1r and its children and
thus T (v′) = {t2l , t

2
r}. In this example, the intersection of the sets T (v) and T (v′)

is empty, however, both vertices v and v′ represent the tetrahedron t1r .

The edges E of the graph GM are introduced as follows. Two vertices v and w
of GM are adjacent if there is at least one common face in the sets of tetrahe-
dra T (v) and T (w). To this end, let t1⊓ t2 denote either the common face between
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Figure 4.3: Forest representation and vertices of GM for a tetrahedral hierarchy.

two tetrahedra t1 and t2 or the empty set, if no common face exists. This notation
allows us to define the edges of the graph by

(u, v) ∈ E :⇔ ∃ tu ∈ T (u) and tv ∈ T (v) such that tu ⊓ tv 6= ∅. (4.6)

In the style of (4.5), the mapping F : E → P ({f | f is face in Tk−1}) assigns
each graph edge (v, w) ∈ E to the set of faces that occur in both T (v) and T (w),
in formula

F (u, v) = {f is face in Tk−1 | ∃ tu ∈ T (u) and tv ∈ T (v) : tu ⊓ tv = f} .

An intuitive way of weighting the vertices and the edges of the graph is as
follows. Since each vertex v ∈ V represents a set T (v) of tetrahedra, a reasonable
weight for a vertex is given by

̺T : V → R
+, v 7→ |T (v)| . (4.7)

That is, each vertex is weighted by the number of represented tetrahedra in the
finest triangulation. Note that the vertex weights proposed in [79] slightly differ
from the vertex weights ̺T defined in (4.7). To illustrate the difference, consider
a vertex v that is introduced for a parent tetrahedron t. Then, the weight of v is
determined as the number of all children of t in [79]. In contrast, the weighting
function ̺T only considers the children of t that are located on the finest triangu-
lation level because we aim at evenly distributing these tetrahedra. For instance,
we weight the vertex v in Fig. 4.3 by ̺T(v) = 1 whereas in [79] the weight of v is
computed as 2.

For weighting the edges, we observe the following. The faces in the finest trian-
gulation form the dependencies between the tetrahedra because DOFs are located
at the corner vertices and edges of the faces. If a face of the finest triangulation is
stored on two processes, the adjacent DOFs cause communication. Thus, a larger
number of faces between processes yields a larger communication volume. Hence,
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Figure 4.4: Graph GM representing the triangulation hierarchy M given in
Fig. 2.3.

a meaningful weight for an edge e = (v, w) is given by the number of common
faces between the tetrahedron families T (v) and T (w), in formula

σT : E → R
+, e 7→ |F (e)| .

So, if an edge e represents more faces than another edge e′, i.e., |F (e)| > |F (e′)|,
then the weight of e is larger than the weight of e′, i.e., σT(e) > σT(e

′). These
vertex and edge weights aim at minimizing the number of floating point opera-
tions for determining the sparse matrix vector product of a stiffness matrix for P1

functions, cf. (4.1).

Next, as an illustrating example, we present the graph GM of the hierarchy
of triangulations M in Fig. 4.2. The graph GM is depicted in Fig. 4.4 whereas
the vertices and edges are listed in Table 4.1. Although the corresponding hier-
archy consists of 24 tetrahedra and 21 interior faces, GM has only seven vertices
and seven edges. For instance, the vertex v5 is introduced to represent the par-
ent tetrahedron t11 and its four children t22, . . . , t

2
5 on the finest triangulation T2.

Hence, on the finest triangulation level, the vertex v5 represents the tetrahe-
dra T (v5) = {t22, . . . , t

2
5}. The weight of vertex v5 is determined by ̺T(v5) = 4.

The parent tetrahedron and the mapping T for all vertices are presented in the
second and third column of Table 4.1(a), respectively. This table also includes
the weights ̺T(v) for each vertex v ∈ V . In Table 4.1(b), the adjacent vertices
and the corresponding weights σT(e) are displayed for each graph edge e ∈ E.
For instance, the edge e6 = (v5, v6) is introduced because the two tetrahedron
families T (v5) and T (v6) = {t28, t

2
9} have two common faces, i.e., t22 ⊓ t

2
8 and t25 ⊓ t

2
9.

Using the tetrahedral graph to model a tetrahedral hierarchy M, we arrive
at the problem of tetrahedral graph partitioning for a tetrahedral hierarchy (T-
GPTH) that states the problem of finding a decomposition of M as a P -way
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v parent T (v) ̺T(v)

v1 t01 {t14, t
1
5, t

1
6, t

1
7} 4

v2 t02 {t18, t
1
9} 2

v3 t03 {t03} 1

v4 t10 {t20, t
2
1} 2

v5 t11 {t22, t
2
3, t

2
4, t

2
5} 4

v6 t12 {t28, t
2
9} 2

v7 t13 {t26, t
2
7} 2

(a) List of vertices V .

e vertices σT(e)

e1 (v2, v3) 1

e2 (v1, v2) 2

e3 (v1, v7) 1

e4 (v1, v6) 1

e5 (v5, v7) 2

e6 (v5, v6) 2

e7 (v4, v5) 2

(b) List of edges E.

Table 4.1: Weights ̺T and σT of the graph GM given in Fig. 4.4.

graph partitioning problem.

Tetrahedral Graph Partitioning for a Tetrahedral Hierarchy (T-GPTH)

Given a hierarchyM of tetrahedral grids and the corresponding tetrahedral graph
model GM = (V,E, ̺T, σT). Then, the T-GPTH consists of finding a P -way graph
partitioning function πG : V → {1, . . . , P} that solves the P -way graph partitioning
problem for GM.

Although the weights ̺T and σT for the vertices and edges of the graph GM

are quite meaningful, these weights do not distinguish between different types
of tetrahedra or faces. For instance, a tetrahedron located at the boundary of
the computational domain may cause less computational load than a tetrahedron
intersected by the interface Γϕ between both phases. In addition, the communi-
cation volume via a single face may vary with respect to the location of the face.
Therefore, we present two more sophisticated approaches to weight the vertices
and edges of the graph GM in the following. These approaches rely on the research
presented in [67, 72].

4.1.3 Two-Phase Flow Graph Models

Recall that the discrete two-phase flow problem consists of a system of coupled
non-linear equations, cf. (2.15)–(2.16). This system is assembled by a loop over
all tetrahedra of the finest triangulation Tk−1. Each tetrahedron updates a (small)
subset of nonzeros in the matrices. The size of the subset depends on the DOFs

48



4.1 Modeling the Tetrahedral Hierarchy by Graphs

t ∈ Tk−1 \ TΓ t ∈ TΓ

vertex edge vertex edge

u 3 3 3 3

ϕ 1 1 1 1

p 1 0 2 0

Table 4.2: Number of DOFs to represent the velocity, pressure and level set func-
tion. The numbers are given for vertices and edges of a tetrahedron t
residing on the finest triangulation.

located at the corner vertices and edges of the tetrahedron. In the approach to
simulate a two-phase flow problem presented in Chap. 2, the velocity u is given by
a vector-valued quadratic (P2) function, the pressure by a scalar-valued extended
linear (P Γ

1 ) function, and the level set function is discretized by a scalar-valued
quadratic (P2) function. In the remainder, let TΓ denote the tetrahedra on the
finest triangulation that are intersected by the interface Γϕ. Table 4.2 summa-
rizes the number of DOFs for all three finite element functions located at corner
vertices and edges of a tetrahedron t ∈ Tk−1 in the interior of the computational
domain Ω. Note that these numbers may decrease for tetrahedra that are located
at a domain boundary where Dirichlet boundary conditions are employed. Not
only the storage requirement of a single tetrahedron t depends on its location, but
also the computational work caused by t. For instance, determining the values
of nonzeros related to a tetrahedron of TΓ involve more computational work than
evaluating the nonzeros of a tetrahedron in Tk−1 \ TΓ. Overall, this results in the
following observation:

A tetrahedron intersected by the interface Γϕ causes a higher memory
consumption and computational work than a tetrahedron which is not
intersected by Γϕ.

In [72], we presented a first approach that considers this difference in memory
and work while determining a suitable graph. To this end, we employ a new
weighting function ̺D for the vertices which considers information about DOFs.
Let dof(t) denote the set of velocity, pressure and level set DOFs located at the
vertices and edges of a tetrahedron t ∈ Tk−1 as given in Table 4.2. Then, we
determine the weight of a vertex by

̺D : V → R
+, v 7→

∣∣∣
⋃

t∈T (v)

dof(t)
∣∣∣.

That is, the weight of a vertex v is evaluated by the number of DOFs located
at all vertices and edges of the tetrahedron family T (v). Using the same ver-
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tices V , edges E, and edge weighting function σT as for the tetrahedral graph GM,
we arrive at the DOF graph GD = (V,E, ̺D, σT) for representing a tetrahedral
hierarchy. This model aims at evenly balancing the number of DOFs among the
processes. The P -way graph partitioning problem for GD results in the DOF-graph
partitioning for a tetrahedral hierarchy (T-GPTH).

DOF Graph Partitioning for a Tetrahedral Hierarchy (D-GPTH)

Given a hierarchyM of tetrahedral grids and the corresponding DOF graph denoted
by GD = (V,E, ̺D, σT). Then, the D-GPTH problem consists of finding a P -way
graph partitioning function πG : V → {1, . . . , P} that solves the P -way graph
partitioning problem for GD.

However, the numerical results in Sect. 4.1.4 will show that employing the D-
GPTH problem to determine a decomposition of the tetrahedra among the pro-
cesses is inferior compared to the T-GPTH. Indeed, employing the T-GPTH model
yields a better balance of DOFs as the D-GPTH. An explanation is as follows.
Consider a triangulation vertex u that is adjacent to a large number of tetrahe-
dron families. Then, the number of DOFs located at u influences the weight of
all graph vertices representing the adjacent tetrahedron families. Thus, in the
D-GPTH model, the DOFs located at u are represented multiple times for various
graph vertices. However, in the triangulation, these DOFs occur only once, if u
resides on one process.

To overcome this drawback, we have introduced a new graph model [67] which is
better suited for representing a tetrahedral hierarchy employed in two-phase flow
simulations. Therefore, we now investigate the assembly of the systems of non-
linear equations (2.15)–(2.16) to represent the discrete two-phase flow problem.
We then use this observation to derive a graph partitioning model. Recall that
DOFs located at process boundaries are stored redundantly. Hence, these DOFs
cause a storage overhead. Furthermore, the computational load introduced by a
single tetrahedron varies with respect to its location. We formalize this observation
in the following problem definition.

Parallel Finite Element Assembly (PFEA)

Find a P -way partitioning function πM that decomposes the set of tetrahedra in the
hierarchy M = (T0, . . . , Tk−1) of triangulations to P ≥ 2 processes such that the
amount of redundant storage for the matrices A, N , B, L and the vectors b, c, d
of the discrete two-phase flow problem (2.15)–(2.16) is minimized and the compu-
tational work for assembling these data is evenly balanced among the processes.

Note that finding a partitioning function πM that approximates a solution to
the PFEA problem also provides a “good” partitioning when considering the so-
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4.1 Modeling the Tetrahedral Hierarchy by Graphs

lution process of the non-linear equations systems. Two reasons are given in the
following. First, a small storage overhead implies less communication volume since
the communication takes place on the DOFs that are redundantly stored. Sec-
ond, tetrahedra intersected by the interface Γϕ are linked to more DOFs than
other tetrahedra and, thus, more rows of the systems(2.15)–(2.16) are assigned to
tetrahedra intersected by the interface. So, a tetrahedron intersected by Γϕ causes
more computational load when solving these systems of equations of the discrete
two-phase flow problem. To transform the PFEA problem to a suitable P -way
graph partitioning problem, we consider the same vertices V and edges E as for
the graphs GM and GD and define suitable weights ̺Γ for the vertices and σΓ for
the edges. This results in the two-phase graph GΓ.

The difference in the computational work caused by a single tetrahedron t results
whether t is intersected by Γϕ or t is not located in the vicinity of Γϕ. Since the
vertices V of the graph represent the tetrahedra, we introduce a parameter ̺I ∈ R

+

for weighting the vertices that correspond to intersected tetrahedra. That is, the
parameter ̺I represents the computational overhead that is caused if a tetrahedron
is intersected by Γϕ. For instance, ̺I = 2 states that a tetrahedron t ∈ TΓ causes
twice the computational work than a tetrahedron which is not intersected by Γϕ.
To weight a vertex v, we count the number of intersected tetrahedra, weight these
tetrahedra by ̺I, and add the number of non-intersected tetrahedra. This results
in the definition of ̺Γ by

̺Γ : V → R
+, v 7→ ̺I · |T (v) ∩ TΓ|+ |T (v) \ TΓ| . (4.8)

We use the edge weighting function to model the storage requirements for the
DOFs. Since a graph edge e ∈ E represents the faces F (e) between tetrahedron
families, e also describes the vertices and edges of the finest triangulation where
DOFs are located. So, we define the weighting function for graph edges by

σΓ : E → R
+, e 7→

∣∣∣
⋃

f∈F (e)

dof(f)
∣∣∣.

Here, dof(f) denotes the set of DOFs located at the triangulation vertices and
edges at the face f . This implies that an edge e with a larger weight σΓ(e)
represents more DOFs than an edge e′ with σΓ(e

′) < σΓ(e).

To present an example for both weights ̺Γ and σΓ, we again investigate the
triangulation hierarchy of Sect. 2.2.1, whose finest triangulation is given in Fig. 4.2.
We assume that an interface Γϕ is given as illustrated by the dashed line in Fig. 4.5.
Since the P Γ

1 pressure DOF are extended at intersected tetrahedra, the vertices
containing the extended pressure DOF are highlighted by a circle ◦. Recall that
the vertices and the edges of GΓ are identical to those of GM and GD. Hence,
the graph in Fig. 4.4 also displays V and E of GΓ. The vertex weights ̺Γ(v)
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Γϕ
t03

t14

t16

t15

t17

t18

t19

t20

t21

t22

t23

t24 t25

t26

t27

t28 t29

Figure 4.5: Triangulation T2 of Fig. 4.2 and an interface Γϕ.

for all v ∈ V are displayed in Table 4.3(a). For instance, the weight of the
graph vertex v5 ∈ V of GΓ is obtained as follows. This vertex represents the
four tetrahedra T (v5) = {t22, . . . , t

2
5} on the finest triangulation. Here, the three

tetrahedra {t22, t
2
3, t

2
4} are intersected by Γϕ whereas t25 6∈ TΓ. Hence, in this example,

the weight of vertex v5 is determined as ̺Γ(v5) = 3̺I + 1. The edge weights of
the graph in Fig. 4.4 are presented in Table 4.3(b). The second, third, and fourth
column of this table respectively display the number of pressure, velocity and level
set DOFs on vertices and edges of the triangulation, cf. Table 4.2. For instance,
the graph edge e5 = (v5, v7) represents the two triangulation faces t25⊓t

2
7 and t23⊓t

2
6.

These two faces consist of two edges and three vertices two of which are extended.
So, by Table 4.2, the resulting edge weight of e5 is given by

σΓ(e5) = 5 · 3︸︷︷︸
u

+2 · 2 + 1 · 1︸ ︷︷ ︸
p

+ 5 · 1︸︷︷︸
ϕ

= 25.

Overall, we arrive at the parametrized two-phase graph partitioning for a tetra-
hedral hierarchy (TP-GPTH) problem to model the PFEA problem in terms of
a P -way graph partitioning problem.

Two-Phase Graph Partitioning for a Tetrahedral Hierarchy (̺I-TP-GPTH)

Given a hierarchyM of tetrahedral grids, the parameter ̺I, and the corresponding
two-phase graph GΓ = (V,E, ̺Γ, σΓ). Then, the ̺I-TP-GPTH problem consists
of finding a P -way graph partitioning function πG : V → {1, . . . , P} that solves
the P -way graph partitioning problem for GΓ.

We refer to Table 4.10 in the end of this chapter for a comparison of all present
graph and partitioning approaches. Next, we present results when using the above
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v T (v) ̺Γ(v)

v1 {t14, t
1
5, t

1
6, t

1
7} 4

v2 {t18, t
1
9} 2

v3 {t03} 1

v4 {t20, t
2
1} 2

v5 {t22, t
2
3, t

2
4, t

2
5} 3̺I +1

v6 {t28, t
2
9} ̺I +1

v7 {t26, t
2
7} ̺I +1

(a) List of vertices V .

e p-DOF u-DOF ϕ-DOF σΓ(e)

e1 2 9 3 14

e2 4 15 5 24

e3 3 9 3 15

e4 3 9 3 15

e5 5 15 5 25

e6 5 15 5 25

e7 6 15 5 26

(b) List of edges E.

Table 4.3: Weights ̺Γ and σΓ of the graph GΓ given in Fig. 4.4 when considering
the interface depicted in Fig. 4.5.

defined graph partitioning problems to decompose a hierarchy M of tetrahedral
grids among P processes.

4.1.4 Numerical Results

The graph models are investigated for a two-phase flow problem that consists
of a spherical phase in a cuboid shaped domain ΩC = [0, 1]3 as illustrated in
Fig. 4.6. Two problems are investigated which differ in the number of refinement
steps in the vicinity of Γϕ. Applying three or five consecutive refinements leads to
different number of tetrahedra to represent ΩC and, thus, two different problem
sizes. The corresponding setups are displayed in Table 4.4 and are denoted by S

and L indicating a small and large problem size, respectively. In Table 4.4(a), the
number of tetrahedra |Tk−1| on the finest triangulation level and the number of
intersected tetrahedra |TΓ| are given besides the size of the graph. In this section,
we consider the Nehalem cluster whose characteristics are detailed in Table 3.2. We
chose this cluster because each node provides more memory than the Hapertwon
cluster. For each of the two problems, a minimal number of processes Pmin is
needed to assemble the matrices due to the available memory. As in Sect. 3.3, Pmin

is a multiple of eight to efficiently utilize all cores of a single compute node. This
number is given in the fifth column in Table 4.4(b). Its last column lists the
accumulated memory MDrops(Pmin) used by Pmin processes to store all data of
the two-phase flow simulation. This table also shows the number of DOF nu, np,
and nϕ needed to represent the velocity, the pressure, and the level set function,
respectively. To find an approximate solution of the P -way graph partitioning
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Figure 4.6: Computational domain ΩC and interface Γϕ.

problems, we employ the library ParMETIS [107]. In particular, we use the
function ParMETIS V3 AdaptiveRepart which is a parallel implementation of the
so-called “unified repartitioning algorithm” [147]. This function [109] allows to
specify an acceptable load imbalance by a parameter ε. This parameter is used to
formalize the balance constraint (4.3) of the graph partitioning problem by

∑

πG(v)=p

̺(v) ≤ (1 + ε) ·
1

P

∑

v∈V

̺(v) for p = 1, . . . , P. (4.9)

The parameter ε can also be seen as a trade-off between the quality of the objec-
tive function in (4.2) and the constraints (4.3) of the partitioning problem. For
instance, if choosing ε = P − 1, we allow that all vertices are located in one parti-
tion and, hence, the edge cut is zero. In the following experiments, this parameter
is set to ε = 5%.

Before evaluating the graph models, we empirically estimate the parameter ̺I
that is used to determine the vertex weights ̺Γ of the two-phase graph GΓ in (4.8).
Most of the computational work to assemble the matrices in (2.15)–(2.16) is spent
in determining A and B. Thus, we focus on these two matrices in this section and
measure

(i) the time for determining the nonzeros of A and B using 1 000 tetrahedra
located in TΓ. This timing yields 0.8643 s.

(ii) the time for determining the nonzeros of A and B using 1 000 tetrahedra
located in Tk−1 \ TΓ. This timing yields 0.076 s.

These results imply that 1 000 tetrahedra of TΓ cause 11.37 more computational
work than 1 000 tetrahedra of Tk−1 \ TΓ. This leads to an estimation of the pa-
rameter ̺I by

̺I := 11.37. (4.10)
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Prob. Ref. |Tk−1| |TΓ| |V | |E|

S 3 166 164 42 012 38 238 159 540

L 5 2 997 450 667 224 582 678 2 468 820

(a) Number of tetrahedra and size of the graph.

Prob. nu np nϕ Pmin MDrops(Pmin) [GB]

S 662 631 28 354 223 783 8 8.4

L 12 012 120 501 627 4 006 946 64 138.4

(b) Number of DOF and memory consumption.

Table 4.4: Characteristics of the two problem setups S and L.

Since the library ParMETIS does not support floating point numbers as weights,
we only use integer values for this parameter. We perform the experiments with
three different values for ̺I, namely ̺I ∈ {2, 11, 20}.

As a first result, we compare the solution of the three graph partitioning prob-
lems T-GPTH, D-GPTH, and 11-TP-GPTH, i.e., we employ these problems to
determine a data decomposition for the two-phase flow simulations S and L. In
particular, we focus on the balance constraints of these problems. To this end, we
consider three different balance numbers. First, we define the partition balance

αP(P ; ̺) :=
maxp=1,...,P ̺(Vp)

minp=1,...,P ̺(Vp)
, (4.11)

where the vertex weighting function ̺ is chosen corresponding to the partition-
ing problem, e.g., ̺D when considering the D-GPTH formulation. This balance
number compares the weighted size of the graph partitionings and strictly cor-
responds to the underlying graph partitioning problem. Thus, αP is determined
by the graph partitioning algorithm for different choices of the weighting func-
tions. Opposed to this balance number, the next two balance numbers are related
to the resulting data decomposition of the implementation in the two-phase flow
solver Drops when employing the three different partitioning problems T-GPTH,
D-GPTH, and 11-TP-GPTH. We investigate the tetrahedron balance

αT (P ) :=
maxp=1,...,P |T

p
k−1|

minp=1,...,P |T
p
k−1|

(4.12)

and the DOF balance

αD(P ) :=
maxp=1,...,P |dof(p)|

minp=1,...,P |dof(p)|
. (4.13)
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In (4.13), the symbol dof(p) denotes the set of DOFs stored by process p. For
instance, if αT (P ) = 1.5 or αD(P ) = 1.5 holds, then there is a process that
stores 1.5 times more tetrahedra or DOFs than another process, respectively.

Figure 4.7 displays all three balance numbers for all three partitioning prob-
lems and both problem sizes. Figures 4.7(a) and (b) show the partition balance
number αP. This result only corresponds to the quality of the partitioning li-
brary ParMETIS. The greatest imbalance in the partitioning is observed in
Fig. 4.7(b) for the D-GPTH where on 256 processes a partition balance num-
ber αP(256, ̺D) > 2 is detected. The balance of the number of tetrahedra αT

does only indirectly depend on the graph partitioner ParMETIS but depend on
the decomposition of the tetrahedral hierarchy. This balance number is illustrated
in Fig. 4.7(c) and (d). If using the T-GPTH or 11-TP-GPTH formulation to
compute a decomposition of the tetrahedra, the balance αT is significantly bet-
ter than this balance number for the D-GPTH problem. Although the T-GPTH
is designed to evenly balance the number of tetrahedra among the processes, in
most cases, the 11-TP-GPTH gives a better balance of the tetrahedra than the
T-GPTH. However, this difference is only small and is probably caused by the
heuristic that is used to compute a graph partitioning. In Fig. 4.7(e) and (f), the
DOF balance number αD is presented for the problems S and L. For both problem
sizes, the D-GPTH problem gives the worst results. In Sect. 4.1.3, we presented
the explanation that the vertex weights does not suitably represent the number of
DOFs. The numerical results for αD corroborates this explanation. However, the
two other graph models, T-GPTH and 11-TP-GPTH, distribute the number of
DOFs among the processes much better. Overall, the best results are obtained by
the 11-TP-GPTH problem. Therefore, in the rest of this section, we investigate
the ̺I-TP-GPTH problem for ̺I ∈ {2, 11, 20} in more detail. However, we refer
the reader to [72] for a discussion of the T-GPTH and D-GPTH model.

The objective of the ̺I-TP-GPTH problem is to reduce the storage overhead
when representing the discrete two-phase flow problem by P ≥ 2 processes. This
objective is given by the edge cut Ecut for the two-phase graph GΓ. Therefore, first,
we simultaneously investigate the memory overhead and Ecut. For a distributed
hierarchy of tetrahedral grids obtained by solving the ̺I-TP-GPTH problem, we
define the storage overhead o(P ; ̺I) for P processes by

o(P ) :=

(
P∑

p=1

dof(p)

)

︸ ︷︷ ︸
parallel

− (nu + np + nϕ)︸ ︷︷ ︸
sequential

.

The overhead o(P ) denotes the number of DOFs which are additionally needed
to represent the finite element functions by P processes compared to represent
these functions sequentially. Note that, in comparison to the partition balance
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(a) Partition balance for problem S.
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(b) Partition balance for problem L.
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64 128 256 512
0

2

4

6

8

P

α
T

 

 

T-GPTH
D-GPTH
11-TP-GPTH

(d) Tetrahedron balance for problem L.
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(f) DOF balance for problem L.

Figure 4.7: Comparison of balance numbers for the partitioning problems.
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number αP in (4.11), the edge cut Ecut corresponds to the graph partitioning li-
brary ParMETIS. In contrast—as for the tetrahedral balance αT in (4.12) and
the DOF balance αD in (4.13)—the storage overhead is related to the data distri-
bution obtained from the solution of the ̺I-TP-GPTH problem. In Fig. 4.8, the
edge cut Ecut and the storage overhead o(P ) are printed side-by-side. Obviously,
the edge cut and the storage overhead increase with growing P . In this figure,
using ̺I = 11 for problem L, about o(512) ≈ 2.3 · 106 additional DOFs are stored
on 512 processes compared to a sequential data structure. Although this is an over-
head of approximately 14% in comparison to the sequential number of DOFs in
Table 4.4, the storage overhead on 512 processes is only about 2.3 ·106/512 ≈ 4 500
DOFs per process which is rather moderate. However, this overhead can be fur-
ther reduced by allowing a greater intolerance for the balancing contraints of the
underlying graph partitioning problem in (4.9). This overhead does not strongly
depend on the choice of the parameter ̺I for both problems and all number of
processes. However, we want to point out that o(P ) is approximately twice as
large as Ecut(P ) for all shown cases. This implies that the edge cut is proportional
to the storage overhead, indicating that the ̺I-TP-GPTH problem describes the
storage overhead, adequately.

Next, we present results illustrating that the computational work is evenly bal-
anced among the processes in Fig. 4.9. In contrast to Fig. 4.7, we here present
results with varying ̺I. In the style of the partition balance number αP(P, ̺Γ)
in (4.11), we define a time balance number. To this end, let TAB(p; ̺I) denote the
time of process p spent in assembling the matrices A and B when using the solu-
tion of the ̺I-TP-GPTH problem to distribute the tetrahedral hierarchy. Then,
the time balance for P processes is defined by

αT(P ; ̺I) :=
maxp=1,...,P TAB(p; ̺I)

minp=1,...,P TAB(p; ̺I)
.

The two balance numbers αP and αT are depicted side-by-side in Fig. 4.9 for both
problem sizes. The partition balance number αP(P, ̺Γ) tends to be smaller for
problem S than for problem L. For instance, its maximal value for problem S is
given by 1.37 whereas its maximal value is about 1.84 for problem L. In contrast,
the time balance number αT(P ; ̺I) shows a tendency to decrease while going from
problem S to problem L. Here, the maximal value of 1.49 for problem S decreases
to a maximum of 1.24 for problem L. These results indicate that the computational
work is evenly balanced among up to 512 processes for problem L.

Now, we demonstrate that the good load balancing and minimization of the stor-
age overhead also leads to favorable time for assembling the matrices A and B.
The timings are displayed in Table 4.5. The estimation of ̺I in (4.10) suggests
that the smallest timings should be achieved by setting ̺I = 11. For problem L,
this holds in most cases. However, there are some timings in Table 4.5 where the
execution time for assembling is smaller if choosing ̺I = 2 or ̺I = 20. There
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(b) Storage overhead for problem S.
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(c) Edge cut for problem L.
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(d) Storage overhead for problem L.

Figure 4.8: Edge cut of the graph model and storage overhead of the implementa-
tion using the ̺I-TP-GPTH problem for ̺I ∈ {2, 11, 20}.
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(a) Partition balance number for problem S.
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(b) Time balance number for problem S.
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(c) Partition balance number for problem L.
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(d) Time balance number for problem L.

Figure 4.9: Partition balance number of the graph model and time balance num-
ber of the implementation using the ̺I-TP-GPTH problem with the
parameter ̺I ∈ {2, 11, 20}.
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Time [s]

Prob. P ̺I = 2 ̺I = 11 ̺I = 20

8 6.216 6.368 6.484

S 64 0.7960 0.7613 0.8163

512 0.1328 0.1405 0.2219

64 14.32 14.24 14.34

L 256 3.830 3.681 3.677

512 1.892 1.817 1.972

Table 4.5: Time for assembling the matrices A and B using the ̺I-TP-GPTH
problem for ̺I ∈ {2, 11, 20}.

are two reasonable arguments that help to explain this behavior. First, the pa-
rameter ̺I is estimated by measuring the time for determining the nonzeros of
the matrices A and B. The assembly process also includes the time-consuming
construction of data structures for these two sparse matrices. This part does not
depend on the location of the interface Γϕ. The second argument is based on
investigating the solution of the graph partitioning problem. Suppose that the ̺I-
TP-GPTH problem perfectly describes the PFEA problem. Then there are two
observations. First, rather than computing an exact solution to the problem, the
library ParMETIS uses a heuristic computing an approximate solution. Second,
this library provides a tolerance parameter to specify the imbalance of the parti-
tion sizes that is acceptable for a solution. Hence, the graph partitioning problem
is solved only approximately leading to load imbalances which, in turn, result in
larger execution times. This effect interferes with the study of the parameter ̺I.

Finally, we present the speedup for assembling the matrices A and B. Recall
that at least Pmin = 8 and Pmin = 64 processes are needed to store the data for
problems S and L, respectively. Hence, we define the speedup for P processes as
in Sect. 3.3 by

SPmin
(P ; ̺I) :=

T (Pmin; ̺I)

T (P ; ̺I)
· Pmin.

That is, the speedup for P processes SPmin
(P ; ̺I) is relatively defined with respect

to the time T (Pmin; ̺I). This speedup does not compare the execution times for
different choices of the vertex weight parameter ̺I. Hence, the speedup does not
strongly depend on this parameter. This effect is observed in Fig. 4.10 where the
speedup SPmin

(P ; ̺I) is depicted for both problems S and L and for all parame-
ters ̺I ∈ {2, 11, 20}. In all cases, the assembly scales on up to 512 processes. For
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(a) Speedup for problem S.
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(b) Speedup for problem L.

Figure 4.10: Speedup of assembling the matrices A and B using the ̺I-TP-GPTH
problem for ̺I ∈ {2, 11, 20}.

problem S, a speedup of S8(512, 11) = 374.4 is observed and, for the larger prob-
lem L, a noticeable speedup of S64(512; 11) = 484.5 is achieved which correspondes
to a parallel efficiency of 73.1% and 94.6%, respectively.

4.2 Modeling the Tetrahedral Hierarchy by

Hypergraphs

In this section, we model the triangulation hierarchy by hypergraphs rather than
by standard graphs as in the previous section. Using this type of graphs al-
lows us to formulate a hypergraph partitioning problem that exactly describes the
communication volume among neighbor processes when performing linear algebra
operations on the distributed numerical data introduced in Sect. 3.2.

Hypergraph models have successfully been employed in various computational
combinatorial fields, e.g., Very Large Scale Integration (VLSI) [4, 34], database
storage and data mining [40, 131], and mesh reordering [157]. In particular, hy-
pergraph models are used to partition data when considering sparse matrix-vector
products [38, 90, 173, 174] and their application in preconditioned iterative meth-
ods [172]. For instance, the drawback of the standard graph model is that these
models commonly only approximate the amount of data that is transferred during
one sparse matrix-vector product. In contrast, the advantage of hypergraph mod-
els consists of exactly modeling the amount of transferred data. In this section, we
extend the ideas of the hypergraph model for sparse matrix-vector multiplications
to represent a hierarchy of triangulations.
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This section is organized as follows. In Sect. 4.2.1, we first define hypergraphs
and formulate the P -way hypergraph partitioning problem corresponding to the P -
way graph partitioning problem for standard graphs. Then, in Sect. 4.2.2, we
model the problem of finding a distribution of the hierarchy of triangulations by a
hypergraph partitioning problem. Hereby, we state the main result of this section
that the hypergraph model is capable of exactly representing the communication
volume and the storage overhead. We conclude this section with numerical results
demonstrating that the novel hypergraph model is capable of saving communica-
tion volume and also communication time for linear algebra operations.

4.2.1 Hypergraph Partitioning Problem

A hypergraph is a generalization of a graph and can be expressed by the quadru-
ple H = (V,N, ̺, σ). Here, the set V denotes the vertices and N ⊂ P(V ) the
nets of the hypergraph H . Each net n ∈ N connects a set of vertices, where the
vertices v ∈ n are called pins. Note that, opposed to standard graphs, each net can
express adjacencies between more than one or two vertices. In the style of graphs,
the vertices and the nets are weighted by the functions ̺ and σ, respectively. In this
section, we consider multiple weights on the nets, i.e., σ : N → (R+)m, m > 1. For
a hypergraph H , a P -way hypergraph partitioning function πH : V → {1, . . . , P}
decomposes the set of vertices V into P ≥ 2 disjoint subsets V1, . . . , VP . The P
sets Vp = {v ∈ V | πH(v) = p}, with 1 ≤ p ≤ P , fulfill the two conditions

P⋃

p=1

Vp = V and Vp ∩ Vq = ∅ for p 6= q.

Opposed to standard graphs, a single net can connect multiple parts. This is
expressed by the connectivity λ of a net n ∈ N which is defined by

λ(n) :=
∣∣∣
⋃

v∈n

{p ∈ {1, . . . , P} | πH(v) = p}
∣∣∣,

i.e., λ(n) denotes the number of parts which are connected by n.

As a counterpart of the edge cut Ecut defined in (4.2) for standard graphs, we
introduce the cut size Ncut for a partitioned hypergraph H . Various approaches
are available to model Ncut. These approaches can be generalized by

Ncut :=
∑

n∈N

σ(n) c(λ(n)), (4.14)

where the cost function c : N → N0 is used to model the costs for a net n ∈ N
that connects different parts. Note that Ncut is an m-dimensional vector when

63



4 Load-Balancing Strategies

considering m-dimensional weights on the nets. For a general cost function c
in (4.14), we assume two conditions. First, if all pins of a net n are located in
one partition, i.e., λ(n) = 1, the cost function equals zero, in formula c(1) = 0.
Second, if a net n connects more parts of the partition then another net n′, then
the value of the cost function for n is larger than the value corresponding to n′.
Hence, the cost function c is a monotonically increasing function, i.e.,

λ(n) > λ(n′) ⇒ c(λ(n)) ≥ c(λ(n′)) for all n, n′ ∈ N.

In the literature, the cost function c is commonly determined either as the cut-net
metric

ccn : λ(n) 7→

{
0 , λ(n) = 1

1 , λ(n) ≥ 2
(4.15)

or as the connectivity−1 cut metric

cC−1 : λ(n) 7→ λ(n)− 1. (4.16)

The cut-net metric does not consider the number of parts connected by the nets
when evaluating the cut size in (4.14). Therefore, the connectivity−1 cut metric
weights each net n by λ(n)−1 which commonly better models the communication
volume, i.e., this cost function exactly models the communication volume for one
sparse matrix-vector product. However, in Sect. 4.2.2, we introduce another cost
function that is well suited for modeling a tetrahedral hierarchy.

With these definitions, we can state the problem of finding an “optimal” P -way
hypergraph partitioning function.

P-way hypergraph partitioning

Let H = (V,N, ̺, σ) be a given weighted hypergraph and c : N → N0 be a cost
function. Then, for P ≥ 2, the P -way hypergraph partitioning problem consists of
finding a P -way hypergraph partitioning function πH : V → {1, . . . , P} such that

minimize Ncut :=
∑

n∈N

σ(n) c(λ(n)), (4.17)

s.t.
∑

πH(v)=p

̺(v) ≈
1

P

∑

v∈V

̺(v) for p = 1, . . . , P. (4.18)

Here, minimizing Ncut in (4.17) corresponds to finding a minimal edge cut Ecut

in the P -way graph partitioning problem, cf. (4.2). The constraints in (4.18) are
equal to the constraints in the partitioning problem for standard graphs in (4.3).

64



4.2 Modeling the Tetrahedral Hierarchy by Hypergraphs

As for standard graphs, this problem is called multi-objective [1, 150] or multi-
constrained [9,106] if multiple weights of nets or vertices are defined, respectively.
In the following, we will set up a multi-objective, single-constrained partitioning
problem to model the decomposition of a tetrahedral hierarchy. However, in this
thesis, we do not consider methods to solve multi-objective optimization problems.

Note that—for some definitions of the cost function c and balancing constraints
in (4.18)—the P -way hypergraph partitioning problem [113] and its variants [118]
are NP-hard. Therefore, this problem is generally solved by heuristics or approx-
imation algorithms. Examples of serial heuristics are given in [4, 63, 108] whereas
a parallel heuristic can be found in [168].

4.2.2 Hypergraph Model

Next, we formulate a hypergraph HM = (V,N, ̺H, σH) and a corresponding parti-
tioning problem that aim at determining a suitable decomposition of a tetrahedral
hierarchy M among P processes. Recall that the objective of such a model is
to distribute the tetrahedron families among the processes such that the result-
ing communication volume is minimized and the computational load is balanced.
In Sect. 3.2, we described that neighbor communication occurs when transform-
ing a vector from a distributed into an accumulated representation. We exactly
model this neighbor communication by first defining the vertices and nets of a
hypergraph HM. Afterwards, we introduce a suitable cost function c for the cut
size in (4.14), and weight the vertices and nets by suitable weighting functions ̺H
and σH, respectively. The result is a P -way hypergraph partitioning problem that
exactly models the volume of neighbor communication when transforming a dis-
tributed vector into an accumulated representation.

Since we seek for a partitioning model to distribute tetrahedron families, we
model the vertices V of HM in the same way as for the graph GM in Sect. 4.1.
Thus, the vertices V of the hypergraph are defined by (4.4), i.e., the vertices of
the hypergraph represents the same tetrahedron families as those of the standard
graph models. In this section, we also employ the mapping T (v) of (4.5) to denote
the tetrahedra of the finest triangulation that are represented by a vertex v. The
vertices can be weighted by all vertex weighting functions which are presented in
Sect. 4.1 for the standard graphs.

To introduce the nets, recall that DOFs, which are located at process bound-
aries, cause a storage overhead and neighbor communication when accumulating a
vector, i.e., transforming a distributed vector into an accumulated vector. In this
neighbor communication, each process that stores a distributed DOF exchanges
its local values of the DOF with adjacent processes. In the remainder, let Cp→q(x)
denote the number of DOFs that process p sends to process q during the accumu-
lation of the vector x. Then, the total communication volume for accumulating
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the vector x by P processes is defined by

Ctotal(x, P ) :=

P∑

p=1

P∑

q=1

Cp→q(x). (4.19)

We use this consideration of transferred DOFs to define the nets N and the weight-
ing function σH of the hypergraph HM as well as for defining a cost function c.
For a given hierarchy of triangulations M, let V denote the set of triangulation
vertices and edges where DOFs are located. Then, for each u ∈ V, a corresponding
net nu ∈ N is introduced. The net nu ⊂ V connects these hypergraph vertices
that represent tetrahedra which have the DOF located at u in common. This
results in |V| nets. We arrive at the formal definition of the net nu for u ∈ V by

nu := {v ∈ V | u is located at a tetrahedron of T (v)} .

Since for each u ∈ V a net is introduced, the set of nets N is defined by

N := {nu ⊂ V | u ∈ V} .

To define a suitable cost function c, consider a DOF located at u ∈ V and the
corresponding net nu whose pins are located in λ(nu) partitions. For a triangula-
tion, this means that the DOF located at u is distributed among λ(nu) processes.
When transforming this DOF to an accumulated representation, each of the λ(nu)
processes sends its local DOF value to λ(nu) − 1 adjacent processes. Overall,
the DOF at u causes λ(nu) · (λ(nu) − 1) information packages which need to be
transferred. This observation results in the definition of the cost function

cM : λ(n) 7→ λ(n) · (λ(n)− 1) . (4.20)

Note that if a net is cut into more than two parts, this novel cost function penalizes
this net more than the cut-net or the connectivity−1 metric, defined in (4.15)
and (4.16). That is, we state for each net n ∈ N

λ(n) > 2 ⇒ cM(λ(n)) > cC−1(λ(n)) > ccn(λ(n)).

For evaluating the weight of a net, we consider the number of velocity, pressure
and level set DOFs located at u ∈ V which are denoted by dofu(u), dofp(u)
and dofϕ(u), respectively. These notations allows us to exactly state the length of
each of the cM(λ(nu)) information packages that are transferred. If we accumulate
the, e.g., velocity DOFs at u, each adjacent process sends dofu(u) local DOFs to
its neighbors. Hence, we weight the net nu by the number of DOFs which reside
at u. Since we have three different types of DOFs to represent a two-phase flow
problem, we define the weighting function for the nets by

σH : N → (R+)3, nu 7→



dofu(u)
dofp(u)
dofϕ(u)


 .
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So, the cost function cM models the number of information packages among differ-
ent processes whereas the weight σH determines the length of each of the packages.
Thus, we finally arrive at the definition of the cut size by

Ncut :=
∑

u∈V



dofu(u)
dofp(u)
dofϕ(u)


λ(nu) (λ(nu)− 1) . (4.21)

Due to the above considerations, we state the main result of this section that
this hypergraph model exactly expresses the total communication volume during
the simulation of a two-phase flow problem.

Cut size equals total communication volume

Let Ncut in (4.21) be the cut size of a P -way partitioned hypergraph HM. Moreover,
let C total(·, P ) be the total communication volume defined in (4.19). Then,

Ncut =



C total(u, P )
C total(p, P )
C total(ϕ, P )


 (4.22)

holds, where C total(u, P ), C total(p, P ), and C total(ϕ, P ) denote the total communi-
cation volume for accumulating the velocity u, pressure p and level set ϕ vector
representation, respectively.

Next, we present an illustrating example for a hypergraph. To this end, we
model the triangulation hierarchy in Fig. 2.3 and Fig. 4.2 by a hypergraph. For
the sake of presentation, we only consider the scalar-valued P Γ

1 extended finite
element function for the pressure, whose DOFs reside at the vertices of the trian-
gulation. Figure 4.11 depicts a numbering of the 14 pressure DOFs that is also
employed to number the nets of the corresponding hypergraph HM. The triangula-
tion vertices, that contain an extended DOF to represent the pressure discontinuity
at the interface, are highlighted by the symbol ◦. The corresponding hypergraph
is presented in Fig. 4.12. The seven hypergraph vertices are symbolized by a cir-
cle and the 14 nets by squares. We observe that the hypergraph consists of the
same vertices as the standard graph in Fig. 4.4. Table 4.6 summarizes the nets of
the hypergraph which correspond to the numbering of the 14 pressure DOFs. In
the second column of that table, the pins of the nets nu are given for all DOFs
located at the triangulation vertices u ∈ V. For example, consider the DOF which
is located at the triangulation vertex numbered by 5. This DOF is adjacent to
the tetrahedra t20, t

2
2 and t28 which are represented by v4, v5 and v6, respectively.

Thus, the set of pins of the net n5 is determined by {v4, v5, v6}. Additionally, the
third column of Table 4.6 shows the weight (σH(nu))2 = dofp(u) of each net nu,
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Γϕ

1 2 3 4

5 6 7 8

9 10

11 12 13 14

Figure 4.11: Numbering of the DOFs of a P Γ
1 finite element function on the finest

triangulation T2 and interface Γϕ depicted in Fig. 4.5.

v1

v2

v3v4 v5

v6

v7

n1 n2

n3 n4

n5

n6

n7

n8

n9

n10

n11

n12
n13

n14

Figure 4.12: Hypergraph HM representing the triangulation hierarchyM given in
Fig. 2.3 when using the DOF numbering in Fig. 4.11.

if we solely take the pressure DOF into account. For instance, the weight of the
net n5 is evaluated by (σH(n5))2 = 2 because the corresponding scalar pressure
DOF is extended. To present an example of determining the cut size, assume that
the pins v4, v5 and v6 of the net n5 are located at three different processes p1, p2
and p3, respectively. Thus, the connectivity of n5 is given by λ(n5) = 3. For accu-
mulating the corresponding DOF, each of the three processes sends its local values
to its two neighbors. Hence, 3 · 2 = λ(n5) (λ(n5)− 1) = 6 message packages exist.
Since this pressure DOF is extended, each message package consists of two values.
Overall, the communication volume caused by the DOF at the triangulation vertex
numbered by 5 is evaluated as

2︸︷︷︸
(σH(n5))2

· (3 · (3− 1))︸ ︷︷ ︸
cM(λ(n5))

= 12.

We conclude this section by stating the problem of the hypergraph partitioning
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u ∈ V nu (σH(nu))2

1 {v1, v6} 2

2 {v1} 1

3 {v1, v2, v3} 1

4 {v3} 1

5 {v4, v5, v6} 2

6 {v5, v6} 2

7 {v1, v5, v6, v7} 1

8 {v1, v2} 1

9 {v4, v5} 2

10 {v5, v7} 2

11 {v4} 1

12 {v4, v5, v7} 2

13 {v1, v2, v7} 2

14 {v2, v3} 1

Table 4.6: Nets N of the hypergraph HM presented in Fig. 4.12.

for a tetrahedral hierarchy (HPTH).

Hypergraph Partitioning for a Tetrahedral Hierarchy (HPTH)

Given a hierarchy M of triangulations and the corresponding weighted hyper-
graph HM = (V,N, ̺H, σH). Then, the HPTH problem consists of finding a P -
way hypergraph partitioning function πH : V → {1, . . . , P} that solves the P -way
hypergraph partitioning problem for HM.

Note, that the corresponding P -way hypergraph partitioning problem is a multi-
objective, single-constrained optimization problem.

4.2.3 Numerical Results

We now present results when using the HPTH problem to decompose the set of
tetrahedra among processes. There mainly exist the following libraries which are
capable of finding an approximate solution of a hypergraph partitioning problem:
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- gravity

Figure 4.13: Vertical slice through the computational domain ΩM and a drop de-
scribed by ϕ.

PaToH [37, 38]; hMetis [108]; Mondriaan [174] (for sparse matrices); ML-

part [35] (for circuits); and PHG [53]. However, these libraries do not provide a
functionality that is capable of solving the hypergraph partitioning problem HPTH
defined in Sect. 4.2.2. There are two reasons. First, the HPTH problem is a multi-
objective problem and none of the above libraries support this type of problems.
Second, we use a novel, self-defined cost function cM in (4.20) to determine the
communication when cutting a net into multiple parts. However, these libraries
only provide the cut-net metric (4.15) or the connectivity−1 cut metric (4.16).

In a collaboration with Rob Bisseling and Bas Fagginger Auer at Utrecht Univer-
sity, we are developing a method and an implementation to decompose a tetrahe-
dral hierarchyM obtained by Drops among processes using the HPTH approach.
The corresponding P -way hypergraph partitioning problem with the novel cost
function cM is solved by a heuristic which is implemented in the library Mon-

driaan. This preliminary work is—right now—not capable of considering user
defined weighting functions ̺H for the vertices and σH for the nets and, in partic-
ular multidimensional weights for the nets. We thus weight all vertices and nets
by one, i.e., ̺H ≡ 1 and σH ≡ 1. We allow the same imbalance of ε = 5% for the
balancing constraint in (4.18) for the P -way hypergraph partitioning problem as
for the graph partitioning problems, cf. (4.9). We investigate the quality and the
performance of a hypergraph partitioning when transforming a vector x ∈ R

n from
its distributed representation into its accumulated representation. This transfor-
mation includes the only neighbor communication when performing linear algebra
operations in Drops. The DOFs represented by x reside at vertices and edges
of a triangulation hierarchy that discretizes the computational domain ΩM. This
domain is schematically illustrated in Fig. 4.13. The figure shows a vertical slice
through the domain ΩM and the position of a spherical drop. The domain ΩM

describes an hourglass-shaped measurement cell of 10 cm length and a maximal
diameter of 0.72 cm. The domain ΩM is an optimized measurement cell used to
investigate levitated drops, see [88]. Refining the coarsest triangulation three or
four times results in hierarchies of triangulations with k = 4 and k = 5 levels and,
thus, in two different problem sizes which are detailed in Table 4.7.

We compare the decomposition of a tetrahedral hierarchy obtained by the HPTH
problem with a decomposition obtained by the T-GPTH problem that is solved
by ParMETIS. To this end, we present three different metrics: first, we consider
the total communication volume that occurs when transforming the distributed
representation into the accumulated representation of x; second, we analyze the
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Prob. k |Tk−1| n |V | |N |

S 4 74 354 101 462 16 247 101 462

L 5 411 423 551 425 66 616 551 425

Table 4.7: Size of problems used to investigate the HPTH.

Partit. P
Prob.

prob. 2 4 8 16 32 64 128 256

S T-GPTH 5152 11 310 17 852 28 236 40 602 57 996 81 992 175 946

S HPTH 4836 9 762 16 310 24 982 38 174 55 504 78 976 112 356

L T-GPTH 15 326 33 718 48 112 82 626 119 210 171 030 236 984 315 652

L HPTH 14 250 27 366 45 988 72 692 109 294 160 032 217 088 305 530

Table 4.8: Total communication volume Ctotal(x, P ) for transforming a distributed
vector into an accumulated one.

time for this transformation; and third, we investigate the number of messages
during this operation.

The objective of the hypergraph formulation is to minimize the total communi-
cation volume Ctotal(x, P ). Therefore, we present this volume for both problems
and various numbers of processes in Table 4.8. The results demonstrate that all de-
compositions of the tetrahedral hierarchies obtained by the novel HPTH problem
cause less total communication volume than the corresponding decompositions
obtained by the standard graph-based T-GPTH formulation. For instance, the
communication volume Ctotal(x, 4) for problem S on four processes is reduced by
approximately 13.7% and for problem L by approximately 18.8%. The smallest
reduction is observed for problem L on 256 processes where the communication
volume decreases by 3.2% while the largest reduction is achieved for S on 256
processes and accounts for 36.1%.

Next, we show that a reduced total communication volume also decreases the
time for transforming a distributed representation into an accumulated represen-
tation of a vector. The time for this transformation is dominated by the time
for the neighbor communication. Note that a reduced communication volume
must not necessarily yield smaller transformation times because latency also con-
tributes to the communication time [48]. We analyze the transformation time
on a Nehalem type cluster by performing 1 000 accumulations of a distributed
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Figure 4.14: Time T transf(P ) for transforming a distributed vector into an accu-
mulated one.

vector. Figure 4.14 displays the average time T transf(P ) of one transformation.
The timings show the same behavior for all cases. First, the time is reduced for
a growing number of processes. Afterwards, the time increases when increasing
the number of processes further. If determining a decomposition of the tetrahe-
dral hierarchy by the T-GPTH problem, the minimal transformation time T transf

is obtained by 16 processes for problem S and by 32 processes for L. The cor-
responding minimal timing for a decomposition of tetrahedra determined by the
HPTH problem is observed for 32 and 128 processes for S and L, respectively.
Thus, T transf(P ) with respect to the HPTH problem scales to a higher number of
processes than the time T transf(P ) for the T-GPTH problem. The greatest differ-
ence in the transformation time is noticed for problem L on 256 processes, i.e.,
instead of T transf(P ) =0.57ms only T transf(P ) =0.26ms are spent in one transfor-
mation. Here, the hypergraph formulation is capable of more than bisecting the
transformation time.

The reduction in the transformation time is primarily caused by minimizing the
communication volume and not by reducing the number of messages which are
sent among processes. This is corroborated by Table 4.9 where the numbers of
messages are presented for all transformations. For instance, although the number
of messages determined by the HPTH problem for L on 64 processes is larger than
the corresponding number for the T-GPTH problem, the transformation time
is significantly smaller in Fig. 4.14. However, there is no clear tendency which
partitioning model yields smaller numbers of messages. For instance, the number
of messages in problem S is the same for both partitionings when we consider 2, 4,
or 64 processes. Since neither the HPTH nor the T-GPTH formulation addresses
the reduction of number of messages, this observation is reasonable.
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Partit. P
Prob.

prob. 2 4 8 16 32 64 128 256

S T-GPTH 2 12 50 154 396 922 2 176 4 910

S HPTH 2 12 48 174 392 922 2 020 4 590

L T-GPTH 2 12 48 158 402 926 2 042 4 388

L HPTH 2 12 50 146 412 952 1 988 4 312

Table 4.9: Number of messages for transforming a distributed vector into an ac-
cumulated one.

4.3 Discussion

In this chapter, we introduced various models to determine a decomposition of
tetrahedral hierarchies. In Table 4.10, we present a summary of the graph mod-
els and the corresponding partitioning problems to determine a decomposition of
tetrahedral hierarchies. All of these models result in good performance when dis-
tributing the tetrahedra for a two-phase flow simulation. The major reason is that
these novel models distinguish between computational loads caused by different
types of tetrahedra. These differences will even increase in the future. For in-
stance, if surfactants are also considered an additional equation on the interface
between both phases will be introduced. Obviously, solving these equations in-
creases the computational load of the tetrahedra intersected by the interface and,
thus, the difference in the computational load between different tetrahedron types
even grows. Since we parameterized the difference in the computational load with
respect to different types of tetrahedra, the models in this section are already ca-
pable of handling these future requirements. Besides balancing the computational
load, the novel models aim at minimizing the storage overhead and communication
for parallel simulations. To this end, the introduced two-phase graph and hyper-
graph partitioning problem uses information of the degrees of freedom to address
this objective.

However, there is room for improvements. In the field of high-performance com-
puting, the time for transferring messages is modeled by the latency, the band-
width, and the amount of transferred data [48]. That is, if one process sends
information to another processes, the communication time is determined by set-
ting up the communication and the amount of transferred data divided by the
bandwidth. On recent high-performance computers, the latency dominates the
communication time for moderate message lengths. However, all of the presented
graph and hypergraph models aim at minimizing the length of the messages and
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do not consider the latency. Therefore, future research is required that consid-
ers both, the message length and the latency. One possible approach may be
to minimize the number of neighbor processes. This results in a reduced num-
ber of messages and, hence, aims at minimizing the number of communications,
i.e., latency. Furthermore, the models neglect the topology of processors when
determining a decomposition of the computational work. For instance, in the un-
derlying cluster of processors, there may be differences in the number of compute
cores of the processors or in the connection between the nodes. Right now, this is
not considered by the models. However, this becomes even more important when
taking a hybrid distributed-/shared-memory parallelization into account. There-
fore, future research work should be devoted to map the topology of the processors
into the graph partitioning problems.

We introduced an innovative hypergraph partitioning model to determine a de-
composition of the tetrahedra. The advantage of this model over the standard
graph models consists in its capability of describing neighbor communication on
numerical data, exactly. Although this novel model aims at distributing the tetra-
hedra among the processes, it contains all necessary information to express the
neighbor communication involved in linear algebra operations. We implemented
the hypergraph partitioning formulation in a collaboration with Rob Bisseling
and Bas Fagginger Auer at Utrecht University. The numerical results demon-
strate that the hypergraph model is superior to a standard graph model when
considering the transformation of a distributed vector into an accumulated vector.
Since this is the only neighbor communication involved in linear algebra oper-
ations, this new approach seems to be superior to the standard graph models.
Ongoing work addresses the partitioning of a tetrahedral hierarchy specifically de-
signed for two-phase flow problems. The corresponding two-phase flow simulations
includes different neighbor-communication patterns, e.g., transforming a velocity
vector yield a different pattern than transforming a pressure vector. This results
in a multi-objective hypergraph partitioning problem which is topic of the ongoing
work.
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5 Re-Initializing Level Set Functions

When solving the partial differential equations (PDEs) which correspond to the
level set approach for two-phase flows, it is numerically essential that the level
set function is smooth in the vicinity of the interface. In particular, retaining
the level set function “close” to a signed distance function with respect to the
interface is advantageous [44] for numerical methods determining the interface and
approximating physical phenomena in the vicinity between two phases. However,
the signed distance property of level set functions is typically not preserved when
evolving in simulation time; even if a two-phase flow simulation is set up with a
signed distance function as initial level set function.

In the context of two-phase flow problems, various methods have been devel-
oped or adapted to keep the underlying level set function close to a signed distance
function. In particular, in [70], we have recently published and analyzed a parallel
method which is capable of efficiently recover the signed distance property of level
set functions on an unstructured grid using a distributed-memory parallelization
approach. In contrast to other standard serial re-initialization techniques, our
approach is based on direct distance computations. Our novel method has been
advanced in [69] in order to exploit recent high-performance computer architec-
tures consisting of clusters of multi-core processors. We want to point out that, to
our knowledge, there is no other algorithm in the literature available for efficiently
re-initializing level set functions on distributed, unstructured grids.

This chapter is an extended version of our articles [70] and [69] where the novel
re-initialization algorithm based on direct distances was introduced. This chapter
is organized as follows. In Sect. 5.1, the signed distance property is defined and
an illustrating example is given that highlights the advantage of this property.
This section additionally contains an overview of the open literature concerning
the re-initialization of level set functions. In Sect. 5.2, the serial version of the
re-initialization algorithm is presented. The parallel algorithm, both distributed-
and hybrid distributed-/shared-memory parallel, are described in Sect. 5.3. After-
wards, the algorithm is theoretically analyzed in Sect. 5.4. Section 5.5 focuses on
a detailed numerical investigation of the novel re-initialization algorithm based on
direct distances. Finally, Sect. 5.6 concludes this chapter by a discussion and an
outlook.
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5 Re-Initializing Level Set Functions

5.1 Preserving the Signed Distance Property

In this section, we first introduce a mathematical formulation of the signed distance
property. Then, we explain why this property is advantageous for numerical meth-
ods determining the interface. Finally, we conclude this section by an overview of
the open literature on methods that re-construct the signed distance property for
level set functions.

5.1.1 The Signed Distance Property

We clarify the term “signed distance function.” A level set function ϕ is called a
signed distance function for a given interface Γϕ in the computational domain Ω,
if it satisfies the following two properties:

(i) The sign of ϕ bisects Ω into two domains Ω1 and Ω2, i.e.,

ϕ(x) < 0 ⇔ x ∈ Ω1 and
ϕ(x) > 0 ⇔ x ∈ Ω2.

(ii) The distance between the interface Γϕ and a point x ∈ Ω is given by the
absolute value of ϕ(x), i.e.,

|ϕ(x)| = min
p∈Γϕ
‖p− x‖2. (5.1)

Note that (5.1) implies that the interface between both subdomains Ω1 and Ω2

is characterized by the zero level of ϕ, i.e.,

ϕ(x) = 0 ⇔ x ∈ Γϕ.

Since the interface Γϕ is the zero level of ϕ and the gradient ∇ϕ is orthogonal to
the levels of ϕ, the distance in (5.1) can be expressed by the distance property
which reads as

‖∇ϕ(x)‖2 = 1, x ∈ Ω. (5.2)

Next, we present an illustrating example demonstrating that a signed distance
function is advantageous for numerically determining Γϕ. Consider the following
one-dimensional signed distance function

ϕex : [0, 1]→ R, x 7→ x− 0.25.

This function describes the signed distance between each point x ∈ [0, 1] and the
interface Γϕ = 0.25. Assume that this function changes while evolving in simulation
time and results in the disturbed level set function

ϕdist : [0, 1]→ R, x 7→

{
(ϕex(x))2 , ϕex(x) ≥ 0

(ϕex(x))3 , ϕex(x) < 0
.
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Figure 5.1: Disturbed level set function and its polynomial interpolation.

Note that both functions ϕex and ϕdist have the same zero level and, hence, describe
the same interface Γϕex = Γϕdist = {0.25}. However, this does not hold when
considering their interpolations. For instance, we quadratically interpolate both
functions using data points at 0, 0.5 and 1. Let I(ϕex) and I(ϕdist) denote these
quadratic interpolation of ϕex and ϕdist, respectively. Both polynomials as well
as the functions ϕex and ϕdist are depicted in the range [0, 0.5] in Fig. 5.1. Here,
we observe that the zero-level of the given signed distance function ϕex and its
polynomial interpolation I(ϕex) describe the same interface at 0.25. However,
the (exact) zero-level of the polynomial interpolation I(ϕdist) is not located at 0.25.
Overall, this example illustrates that using a signed distance function as level set
function ϕ facilitates the accurate computation of the interface Γϕ.

5.1.2 Methods for Preserving the Signed Distance Property

Primarily, there exist two different approaches to preserve the signed distance
property for level set functions over simulation time. The first approach relies
on so-called on extension velocities [3, 45]. Here, an additional flow field ũ is
constructed which is based on the flow field u of the underlying fluid dynamics.
Then, rather than using u for describing the movement of the level set function ϕ,
the field ũ is employed to determine the evolution of ϕ. In contrast, the second
approach uses the flow field u of the fluid dynamics for moving ϕ. This approach
may cause the loss of the signed distance property (5.2). In this case, a “new”
level set function is constructed by rebuilding a signed distance function from
the implicit representation of the interface Γϕ. This approach is referred to as
re-initialization of level set functions.
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5 Re-Initializing Level Set Functions

In this chapter, we focus on re-initializing the level set function. To present
various methods for re-initializing level set functions which satisfy the distance
property (5.2), we transform this property to a more general equation. Therefore,
the right hand side of (5.2) is replaced by a speed function h : Ω → R

+ and the
signed distance property becomes the Eikonal equation

‖∇ϕ‖2 = h(x), x ∈ Ω. (5.3)

In general, there exist mainly the following five classes of numerical techniques
for solving the Eikonal equation (5.3):

(i) PDE-based methods,

(ii) fast marching methods,

(iii) fast iterative methods,

(iv) fast sweeping methods, and

(v) Euclidean Distance Transform methods.

In the remainder of this section, we outline each method and discuss why none
of these methods is suitable for re-initializing level set functions on distributed,
unstructured grids as presented in Chap. 3.

The first class consists of PDE-based methods. These methods offer the advan-
tage of exploiting the full range of well-studied numerical techniques for structured
as well as unstructured grids. In particular, PDE-based methods are known to be
amenable to parallel computing [51] and provide a viable alternative for finite
volume and finite difference methods. However, previous research using serial
techniques based on finite elements indicated that such approaches tend to be
numerically inadequate for two-phase flows [81]. Therefore, this class is not con-
sidered further in this thesis; see [155] for a recent survey on PDE-based methods
for the solution of (5.3).

The archetype of another class is the fast marching method (FMM), origi-
nally developed by Sethian [152] for Cartesian grids. It was later generalized
to arbitrary triangulated surfaces [111], unstructured meshes [154], and any d-
dimensional implicit hyper-surfaces [120]. The algorithmic complexity of the FMM
is O(N log(N)) where N is the number of grid points. The reader is referred
to [153] for a detailed overview. The FMM is based on a front propagation scheme
and uses a heap data structure which makes it difficult to parallelize using a do-
main decomposition strategy. The first discussion on a parallel implementation of
the FMM is given in [92] where four different strategies are compared for Cartesian
grids. A recent technique [93] determines the flow field on an unstructured grid
whereas the level set function is described on a Cartesian grid. Both grids are
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5.1 Preserving the Signed Distance Property

adaptively refined and distributed among processes. In [170], the FMM is sepa-
rately applied on each subdomain. This process is iteratively refined exchanging
data across subdomain boundaries. In contrast to a domain decomposition ap-
proach, the parallel FMM presented in [28] is based on distributing the interface
and is discussed for Cartesian grids. To our knowledge, there is no publication of
a parallel FMM on unstructured grids.

In [99], the authors introduce the fast iterative method (FIM) which is de-
signed for parallel computation on Cartesian grids. This recent method relies on
a modification of a label-correction scheme which is a shortest path algorithm
for graphs [13]. This scheme is coupled with an iterative procedure for the grid
point update. A simple list management allows to simultaneously update multiple
points by a Jacobi update, enabling parallel computing. Up to now, this method
is only introduced for Cartesian grids. However, current research extends the FIM
to unstructured triangular and tetrahedral grids.

The fast sweeping method (FSM) [178] solves the Eikonal equation on a d-
dimensional grid by performing 2d directional sweeps in a Gauss–Seidel fashion.
This sweeping idea of visiting nodes of the mesh in a predefined order is also
present in [26, 50]. The FSM has a complexity of O(N) and has been extended
to triangular meshes [133]. Also, a parallel version of FSM was introduced for
structured two-dimensional grids [177]. As far as we know, no parallel version of
the FSM on unstructured grids is available in the open literature.

Although the methods in all of the above classes are designed to solve the Eikonal
equation (5.3), they are often also used for the solution of the special case (5.2),
where the speed function is equal to one. Some of these methods are compared
in [98] concerning numerical efficiency for quadrilateral grids using a serial imple-
mentation. However, there are classes of methods specifically exploiting the par-
ticular structure of (5.2). For instance, the Euclidian Distance Transform (EDT)
is concerned with the following problem on Cartesian grids. Given a subset of grid
points, called sites, the EDT computes the distance of all other grid points to the
closest site in the Euclidean norm. The algorithms for the EDT are surveyed in [61]
and [101] for two- and three-dimensional grids, respectively. Parallel algorithms
for the EDT are investigated for parallel random access machine models [112,176]
and for graphic processors in [36, 96, 138, 139, 149, 158]. Although the literature
on parallel EDT algorithms is vast, we do not consider these methods here. The
reason is that these methods are tailored toward Cartesian grids and that the
points to which the distances are computed are located on the grid. However, we
are concerned with unstructured grids and distances to a given manifold which, in
general, is not located on grid points.
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5 Re-Initializing Level Set Functions

5.2 Re-Initializing Level Set Functions by Direct

Distances

None of the methods described in the previous Sect. 5.1.2 are viable to re-initialize
level set functions on distributed, unstructured tetrahedral grids. Therefore, in the
remainder of this chapter, we present our algorithm which is introduced in [70].
Its main features are

(i) the applicability to unstructured three-dimensional grids,

(ii) the serial expected runtime of O(N log(N)), where N is the number of de-
grees of freedom to represent ϕ, and

(iii) the high degree of parallelism.

5.2.1 Notations and the Base Algorithm

In this section, we introduce some notations and give an outline of re-initialization
algorithms in the context of two-phase flow problems on unstructured grids.

Since we are concerned with the re-initialization algorithm on the finest trian-
gulation, we only consider a triangulation on one level which is denoted by the
symbol T . On this triangulation, the level set function ϕ is discretized by the
finite element function ϕh. The discrete representation of Γϕ is denoted by the set

Γh
ϕ = {x ∈ Ω | ϕh(x) = 0} .

Furthermore, let V denote the points where the degrees of freedom of ϕh are
located. We distinguish between two cases:

(i) If ϕh is only described on vertices of T then V is the union of all vertices
of T . Here, ϕh is called linear. The discrete representation Γh

ϕ forms a planar
segment in each tetrahedron containing the zero level of ϕh.

(ii) Otherwise, if ϕh is described on vertices and edges of T then V consists of all
vertices and midpoints of all edges of T , and ϕh is called quadratic. For the
sake of simplicity, we call u ∈ V a vertex whether u is a vertex or a midpoint
of an edge of T . To determine Γh

ϕ , we consider a finer triangulation T ′ where
all vertices and midpoints in T are the vertices in T ′. The finite element
function ϕ′

h with ϕh(u) = ϕ′
h(u) for all u ∈ V is a linear function on T ′. The

discrete interface Γh
ϕ is then determined as the zero level of ϕ′

h on T ′.

Figure 5.2 displays a discrete interface Γh
ϕ of a quadratic level set function ϕh.

The triangulation T is given by bold lines and the finer triangulation T ′ by
thin lines. The interface Γh

ϕ is a planar segment in each tetrahedron of T ′.
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Γh
ϕ

Figure 5.2: Discrete interface Γh
ϕ of a quadratic level set function ϕh.

Γh
ϕ

Figure 5.3: Triangulation of a unit square, with zero level Γh
ϕ of a piece-wise linear

level set function ϕh. The frontier vertices w ∈ F are denoted by •.

We moreover introduce TΓh as the set of tetrahedra of T which are intersected
by Γh

ϕ and the so-called frontier vertex set F ⊂ V. A vertex w is in F if it is located
at an intersected tetrahedron T ∈ TΓh . The set of the remaining vertices, V \ F ,
is denoted by S and a vertex v ∈ S is called off-site vertex. That is, an off-site
vertex resides at a tetrahedron T ∈ T \ TΓh that is not intersected by Γh

ϕ . Unless
otherwise stated, the symbols w and v are used to express vertices in F and S,
respectively. In Fig. 5.3, a two-dimensional example for these notations is given.
Here, all vertices w ∈ F are depicted by • for a piece-wise linear representation
of ϕh.

The objective of the re-initialization algorithm consists of approximating the
signed distance between all vertices and the discrete interface. That is, the algo-
rithm determines an approximation of ϕ(u) for all u ∈ V. To this end, let d

(
Γh
ϕ ; u

)

denote an approximation of the (unsigned) distance between Γh
ϕ and u ∈ V. Then,

the re-initialization algorithm is assembled by three stages.

(I) Initialization: Determining the distance d
(
Γh
ϕ ;w

)
for frontier vertices w ∈ F .

(II) Propagation: Determining the distance d
(
Γh
ϕ ; v

)
for off-site vertices v ∈ S.
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5 Re-Initializing Level Set Functions

(III) Signing : Determining the value of ϕh(u) for all vertices u ∈ V.

The resulting algorithm is outlined in Algorithm 2. Next, we describe all three
stages in detail.

Algorithm 2: Base algorithm to re-initialize a level set function.

// stage I

1

(
F , d

(
Γh
ϕ ;F

)
,L
)
= InitFrontierSet ()

// stage II
2 foreach v ∈ S do
3 Compute d

(
Γh
ϕ ; v

)

// stage III
4 foreach u ∈ V do
5 Compute ϕh(u)

5.2.2 Determining Distances for Frontier Vertices

In stage I, the frontier vertex set F is initialized by a loop over all tetrahedra. The
idea is introduced in [81]. To determine the distance d

(
Γh
ϕ ;w

)
for a vertex w ∈ F ,

we first define the set T (w) of all tetrahedra which have the vertex w in com-
mon. That is, a tetrahedron is in T (w) if w is one of its vertices. In Fig. 5.4,
the set T (w) for a given vertex w is indicated by gray shading. The approxi-
mated distance d

(
Γh
ϕ ;w

)
between the discrete interface Γh

ϕ and a frontier vertex is
determined by

d
(
Γh
ϕ ;w

)
:= P (w)

where the projection P in T (w) is defined by

P (w) := min
t∈T (w)

Pt(w). (5.4)

The local projection Pt(w) in a single tetrahedron t is defined by the distance
between w and Γh

ϕ in t, in formula

Pt(w) := min
q∈Γh

ϕ ∩t
‖q − w‖2. (5.5)

That is, (5.5) describes the distance between w and Γh
ϕ in a single tetrahedron t

whereas (5.4) characterizes the distance between w and Γh
ϕ in the domain repre-

sented by T (w). In Fig. 5.4, the projection Pt(w) is depicted by a dotted line for
two tetrahedra, t1 and t2. In [85], a suitable, alternative definition

T (w) ⊃ T (w) (5.6)
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Γh
ϕ

wt1

t2

Pt1(w)

Pt2(w)

Figure 5.4: Triangulation of a unit square, with zero level Γh
ϕ of a piece-wise linear

level set function ϕh. Here, the frontier vertices w ∈ F are denoted
by • and the local projection Pt(w) in a tetrahedron t by a dotted line.

of T (w) is presented in an attempt to increase the accuracy of computing distances
between frontier vertices and Γh

ϕ . That method relies on the observation that the
closest interface segment of Γh

ϕ to w may not be located in T (w). For instance, in
Fig. 5.5, the set T (w) of a frontier vertex w does not include the tetrahedron t ∈ TΓh

which contains the closest interface segment of Γh
ϕ to w. The set T (w) is defined

as a superset of T (w).

Next, we focus on the projection Pt to determine the distance between a frontier
vertex w and the interface Γh

ϕ . This projection may be either non-orthogonal or
orthogonal. To characterize this distinction, let qw ∈ Γh

ϕ ∩ t be the closest point to

w

Γh
ϕ

Figure 5.5: The tetrahedron containing the closest interface segment of Γh
ϕ to a

frontier vertex w can be “far” away.
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Γh
ϕ

w1

qw1

w2

q⊥w2

Pt2(w2)

Pt1(w1)

t1

t2

Figure 5.6: Local projections Pt1 and Pt2 for two frontier vertices w1 and w2.

the frontier vertex w, i.e., qw denotes the solution of (5.5) satisfying

‖qw − w‖2 = min
q∈Γh

ϕ ∩t
‖q − w‖.

The projection Pt(w) is non-orthogonal onto Γh
ϕ , if the vector (w − qw) is not or-

thogonal to Γh
ϕ . Here, the distance d

(
Γh
ϕ ;w

)
in t is determined by the distance

between w and the intersection of Γh
ϕ with the edges of t. This situation is illus-

trated by vertex w1 in Fig. 5.6. The projection Pt(w) is called orthogonal, if the
vector (w− q⊥w ) is orthogonal to the representation Γh

ϕ where q⊥w is the perpendic-
ular foot of the projection Pt in a tetrahedron t. This is illustrated by vertex w2

in Fig. 5.6. The set of all perpendicular feet
{
q⊥w | w ∈ F

}
⊂ Γh

ϕ , which are used

to determine d
(
Γh
ϕ ;w

)
, is denoted by L. The orthogonal projection is differently

computed according to the representation of ϕh:

(i) In case of a linear representation of ϕh, the local projection Pt(w) in (5.5) for
a given tetrahedron t is obtained as follows. The local representation of Γh

ϕ

in t is either a vertex, an edge, a triangle, or a quadrilateral. In all cases
the local orthogonal projection can be directly computed by basic geometric
calculations.

(ii) If ϕh is quadratic, we reduce the problem to the linear one. Therefore, we
introduce a finer triangulation T ′, where all vertices and midpoints of T are
the vertices in T ′, i.e., each tetrahedron in T is regularly refined into eight
subtetrahedra. On this finer triangulation, ϕh is linear, and we can apply
the local projection described above in (i). Note that this reduction includes
an error of O(h2).

5.2.3 The Brute-Force Propagation Algorithm

After the initialization stage I, the algorithm determines d
(
Γh
ϕ ; v

)
for all remaining

vertices v ∈ S in stage II. To this end, we follow an approach which is based on
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direct distance computations. Therefore, we first define a distance d
(
Γh
ϕ ; v, w

)

between Γh
ϕ and an off-site vertex v via a frontier vertex w by

d
(
Γh
ϕ ; v, w

)
:= ‖v − w‖2 + d

(
Γh
ϕ ;w

)
. (5.7)

Note that this distance does not define a metric or distance in a mathematical
sense. In Fig. 5.7, the distances d

(
Γh
ϕ ; v, wi

)
for a vertex v via wi, i = 1, 2, are

illustrated by a line from vertex v to wi followed by a line from wi to q⊥wi
. Second,

we define the distance between an off-site vertex v and Γh
ϕ by

min
w∈F

{
d
(
Γh
ϕ ; v, w

)}
. (5.8)

That is, the distance between v and Γh
ϕ is obtained by taking the shortest of all

distances via frontier vertices.

To increase the accuracy of determining the distance in (5.8), the set F is
augmented by all perpendicular feet L which are computed in stage I. Then, the
computation of the distance d

(
Γh
ϕ ; v

)
between a vertex v ∈ S and Γh

ϕ becomes

d
(
Γh
ϕ ; v

)
:= min

w∈F∪L

{
d
(
Γh
ϕ ; v, w

)}
. (5.9)

Since perpendicular feet are located at Γh
ϕ , we define the distance d

(
Γh
ϕ ; q

)
:= 0

for all perpendicular feet q ∈ L leading to

d
(
Γh
ϕ ; v, q

)
= ‖v − q‖2.

In Fig. 5.7, the distances of the vertex v via the perpendicular feet q⊥wi
, i = 1, 2 are

depicted by dashed lines. There are four paths from v via different vertices to Γh
ϕ .

Two of them are via the frontier vertices w1 and w2 and the other two are via the
perpendicular feet q⊥w1

and q⊥w2
. In this figure, the distance d

(
Γh
ϕ ; v

)
is determined

as d
(
Γh
ϕ ; v, q

⊥
w2

)
because

q⊥w2
= argmin

u∈{w1,w2,q⊥w1
,q⊥w2
}

{
d
(
Γh
ϕ ; v, u

)}

holds.

5.2.4 Determining the Signs of the Level Set Function

Finally, stage III of the algorithm consists of assigning a value to ϕh(u) for all
vertices u ∈ V as follows. Let ϕold

h denote the level set function before the re-
initialization algorithm has started. The sign of the new values ϕh(u) for all u ∈ V
is determined by

ϕh(u)←

{
−d
(
Γh
ϕ ; u

)
, ϕold

h < 0

d
(
Γh
ϕ ; u

)
, ϕold

h ≥ 0
. (5.10)
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Γh
ϕ

v

w1

w2

q⊥w1

q⊥w2

L Fd
(
Γh
ϕ ;w1

)

‖v − w1‖2

d
(
Γh
ϕ ; v, q

⊥
w1

)

Figure 5.7: Computing d
(
Γh
ϕ ; v

)
for a vertex v ∈ S.

That is, the signs are restored whereas the distances are computed by the func-
tion d

(
Γh
ϕ ; ·
)
.

Before turning toward the parallel algorithm, we describe an efficient strategy
to compute the distance between the interface and off-site vertices.

5.2.5 Efficiently Computing Distances for Off-Site Vertices

In general two-phase flow simulations, the off-site vertex set S is larger than the
frontier vertex set F . Hence, the computational work of determining the distances
between all off-site vertices and the interface is commonly more time consuming
than determining the distances for all frontier vertices. This implies that most
computational work of the re-initialization algorithm is spent in stage II of Algo-
rithm 2 to determine

d
(
Γh
ϕ ; v

)
← min

w∈F∪L
d
(
Γh
ϕ ; v, w

)
for all v ∈ S. (5.11)

For one off-site vertex v, a näıve implementation of this formula would lead to a
linear search in the set F ∪ L resulting in the time complexity of

T näıve(v) = O(|F ∪ L|).

To reduce the linear complexity, we apply the following approach. We restrict
the search space F ∪ L in equation (5.11) to an “easy-to-compute” set denoted
by N (m, v) ⊂ F ∪ L which depends on the off-site vertex v and a given parame-
ter m ∈ N. This restriction of (5.11) leads to

d
(
Γh
ϕ ; v

)
← min

w∈N (m,v)
d
(
Γh
ϕ ; v, w

)
(5.12)
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for all off-site vertices v ∈ S. Due to the geometric structure of the problem,
we choose the search space N (m, v) as the set of m nearest neighbors of v in
the set F ∪ L. So, the parameter m controls the size of the search subspace and
influences the computational cost of setting up N (m, v) as well as computing the
minimum in (5.12).

An efficient approach to search for the m nearest neighbors in a set of k-
dimensional data points is given by k-d trees (k-dimensional trees) originally in-
troduced by Bentley [19]. Let N denote the number of data points which are
represented by a k-d tree. The expected runtime of setting up this data struc-
ture is then given by O(N log(N)). In [74], an algorithm for searching the m
nearest neighbors of a given k-dimensional data point is presented. Here, the
nearest neighbors are stored in the k-d tree whereas the data point is not nec-
essarily part of that data structure. The expected runtime of the algorithm is
given by O(m log(N)). There are alternative data structures and algorithms for
finding m nearest neighbors. An extensive overview is presented in [145].

We use k-d trees to solve the minimization problem in (5.12). Here, k = 3 and
the tree represents the set F ∪ L. Then, the set N (m, v) is determined by the
tree as the set of the m nearest neighbors of v ∈ S. Note that the k-d tree is built
only once and is used for evaluating all distances of off-site vertices. An analysis
of the runtime to build a k-d tree and to search for nearest neighbors in this tree is
presented in [74] and is as follows. Building the data structure involves an runtime
of

T build = O(|F ∪ L| · log(|F ∪ L|)). (5.13)

The expected runtime of searching for m nearest neighbors of each v is given by

T search(m, v) = O(m · log(|F ∪ L|)). (5.14)

In the next section, we combine the brute-force algorithm and k-d trees to obtain
a parallel re-initialization algorithm.

5.3 The Parallel Re-Initialization Algorithm

The re-initialization algorithm described in Sect. 5.2 is designed for parallel com-
puting. We will show in the remainder of this section that the initialization
stage (I) requires no communication, the propagation stage (II) includes one syn-
chronization point, and no communication is necessary to perform the signing
phase (III). In the following, we first present the parallel algorithm employing
the distributed triangulation, cf. Sect. 3.1. Afterwards, we transform the distri-
buted-memory parallel algorithm to a hybrid distributed-/shared-memory parallel
algorithm in Sect. 5.3.2.
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Γh
ϕ

w1

w2

p1

p2

Figure 5.8: Distributed triangulation of a unit square on processes p1 and p2, with
zero level Γh

ϕ of a piece-wise linear level set function ϕh. Here, the

frontier vertices w ∈ Fp are denoted by •.

5.3.1 Distributed-Memory Parallelization

Recall that the triangulation T is distributed among P processes and that ver-
tices, edges and faces on process boundaries are stored overlapped. For instance,
Fig. 5.8 shows the distribution of the triangulation presented in Fig. 5.3 among two
processes p1 and p2 where the vertices w1 and w2 are stored by both processes.
As in the previous chapters, the restriction of a set to a process p is indicated
by a superscript, e.g., the vertices of the set V on process p are denoted by Vp.
Since ϕh is represented as a finite element function, we assume here that the input
of the algorithm ϕold

h is available in the accumulated form, cf. Sect. 3.2.1. That
is, if a vertex u is located at multiple processes then each process stores the same
value ϕold

h (u).

The parallel algorithm presented in Algorithm 3 follows the approach given
in Algorithm 2 where distances are computed based on nearest neighbors. The
algorithm is designed in such a way that the computational work of all three
stages can be distributed among the processes. However, in comparison to the
serial implementation, a few slight modifications of the algorithm are mandatory
for transforming the serial Algorithm 2 into the parallel Algorithm 3. In the
remainder of this section, we describe the parallel version of all three stages.

Stage I Each process p performs the initialization on its tetrahedra T p leading to
the “local” sets Fp, dp

(
Γh
ϕ ;F

p
)
, and Lp that are computed from the information

that is available by process p. In particular, each process p simultaneously executes
stage I of the serial algorithm without any modifications or communication.
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Algorithm 3: Parallel algorithm based on direct distances to re-initialize a
level set function.

1 for p = 1, . . . , P do in parallel
2 Fp ← ∅

3 dp
(
Γh
ϕ ; u

)
←∞ for all u ∈ Vp

4 Lp ← ∅
// stage I: Initialization

5 foreach t ∈ T p do // FRONT
6 if t is intersected by Γϕ then
7 foreach w is corner of t do
8 Fp ← Fp ∪ {w}

9 dp
(
Γh
ϕ ;w

)
← min(dp

(
Γh
ϕ ;w

)
, Pt(w))

10 if Pt(w) is orthogonal then
11 Lp ← Lp ∪ q⊥w

// stage II: Propagation

12 F ← Gather
(
Fp
)

13 d
(
Γh
ϕ ;F

)
← Gather

(
dp
(
Γh
ϕ ;F

p
) )

14 L ← Gather
(
Lp
)

15 KD ← BuildKDTree
(
F ∪ L

)

16 foreach v ∈ Sp do // OFFSITE
17 N (m, v) ← GetNearestNeighbors

(
KD, v,m

)

18 dp
(
Γh
ϕ ; v

)
← minw∈N (m,v)

{
dp
(
Γh
ϕ ; v, w

)}
// MIN

// stage III: Signing
19 foreach u ∈ Vp do // SIGN

20 ϕh(u)←

{
−dp

(
Γh
ϕ ; u

)
, ϕold

h < 0

dp
(
Γh
ϕ ; u

)
, ϕold

h ≥ 0
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Stage II Recall from (5.9) and (5.12) that the three “global” sets F , d
(
Γh
ϕ ;F

)

and L are needed for computing d
(
Γh
ϕ ; v

)
for all off-site vertices v. Compared to

the serial implementation, an additional step is necessary to gather the global sets
from the local sets. This step is described in the following.

In general, a process p is not able to access all information that is necessary
to reveal the frontier vertices located in its memory, i.e., Fp 6= F ∩ Vp. For an
illustrating example consider Fig. 5.8. Here, the vertex w1 is in Fp2 because there
is a tetrahedron in T (w1) which is stored by process p2 and is intersected by Γh

ϕ .
However, w1 is not in Fp1 because there is no adjacent tetrahedron in T (w1) on
process p1 that is intersected by Γh

ϕ . The global set F is obtained by building the
union of all local sets Fp for p = 1, . . . , P , i.e.,

F =

P⋃

p=1

Fp. (5.15)

In contrast, for obtaining the distances between frontier vertices and the inter-
face, d

(
Γh
ϕ ;F

)
, it is not sufficient to only build the union of all locally determined

distances dp
(
Γh
ϕ ;F

p
)
for p = 1, . . . , P . For instance, assume that a vertex w ∈ F

is located at processes p(w) = {p1, . . . , pk} with 1 ≤ k ≤ P and, without loss of
generality, process p1 stores the tetrahedron which contains the closest segment
of Γh

ϕ . Then, the remaining processes p2, . . . , pk either determine a larger value

of d
(
Γh
ϕ ;w

)
or do not classify w as a frontier vertex. Therefore, the distance be-

tween w and Γh
ϕ is determined as the minimum of the locally computed distances,

in formula,
d
(
Γh
ϕ ;w

)
= min

p∈p(w)
dp
(
Γh
ϕ ;w

)
(5.16)

where dp
(
Γh
ϕ ;w

)
= ∞ if w 6∈ Fp. Recall Fig. 5.8 for an example. The frontier

vertex w2 is located in Fp1 and Fp2. Thus, two local distances δ1 = dp1
(
Γh
ϕ ;w2

)

and δ2 = dp2
(
Γh
ϕ ;w2

)
are computed by p1 and p2, respectively. Since in this

figure δ1 < δ2 holds the “global” distance is computed as d
(
Γh
ϕ ;w2

)
= δ1. Vice

versa, only p2 classifies w1 as a frontier vertex and determines its “local” distance
by dp2

(
Γh
ϕ ;w1

)
. Hence, the distance d

(
Γh
ϕ ;w1

)
is set to dp2

(
Γh
ϕ ;w1

)
.

Finally, the third set L is accumulated by gathering the perpendicular feet
corresponding to the frontier vertices where the minimal distance is obtained.
Let

(
q⊥w
)p

denote the perpendicular foot computed for vertex w by process p—if
this foot exists. Then, the perpendicular feet for all vertices w ∈ F are determined
by

q⊥w =
(
q⊥w
)p∗

with p∗ := argmin
p∈p(w)

(
dp
(
Γh
ϕ ;w

))
. (5.17)

For instance, in Fig. 5.8, the perpendicular foot for vertex w1 is determined by
process p2 and the foot of w2 by process p1.
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From a parallel implementation point of view, the three sets are computed by a
“gather”-type operation. Here, each process p needs to inform all other processes
about its data. Afterwards, each process determines the sets F , d

(
Γh
ϕ ;F

)
, and L

by evaluating the formulae (5.15)–(5.17).

At this point of the algorithm, each process p is capable of determining its set
of off-site vertices by

Sp := Vp \ F .

Here, process p classifies a vertex as an off-site vertex if the distance to Γh
ϕ is still

to be computed. To estimate the distance between v ∈ Sp and Γh
ϕ by (5.12),

the process p needs the k-d tree representing F and L. However, p possesses all
information to generate this tree and, hence, is capable of evaluating (5.12) for its
off-site vertices. Recall from (5.7) that computing the distance between v and Γh

ϕ

via a frontier vertex w includes the “global” distance between w and Γh
ϕ . Thus,

the local distance dp
(
Γh
ϕ ; v, w

)
of local off-site vertices v ∈ Sp is defined by

dp
(
Γh
ϕ ; v, w

)
:= ‖v − w‖2 + d

(
Γh
ϕ ;w

)
. (5.18)

Note that each process redundantly builds and stores the k-d tree in line 15 of
Algorithm 3. We will demonstrate in the numerical results section that this re-
dundant computation and storage is affordable to save communication time when
determining the m nearest neighbors. Overall, this concludes stage II of the par-
allel algorithm.

Stage III Finally, in the last stage of the parallel algorithm, the signed distance
between v and Γh

ϕ is assigned to ϕh(v) for all vertices v ∈ V. Since each process p
has determined the distance between its vertices Vp and Γh

ϕ and also stores the
function ϕold

h , it is capable of assigning the signed distance between its vertices
and Γh

ϕ by applying (5.10).

5.3.2 Hybrid Distributed-/Shared-Memory Parallelization

Before analyzing the algorithm in the next section, we pursue the approach in [69]
and combine the Algorithm 3 with a shared-memory parallelization leading to a
hybrid parallel algorithm for re-initializing level set functions. This improvement
facilitates the employment of recent high-performance computers which commonly
consist of clusters of nodes with multi-core processors. To this end, the computa-
tional work on one subdomain is additionally distributed among threads. In par-
ticular, the three loops labeled by FRONT, OFFSITE, and SIGN in Algorithm 3
are parallelized using OpenMP [42]. A draft of this hybrid distributed-/shared-
memory parallel algorithm is summarized in Algorithm 4. In this pseudo-code
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the distributed memory parallelization is labeled by DistMem whereas the shared-
memory parallelization is labeled by SharedMem (1)–(3). Next, we describe the
shared memory parallelization of all three loops in detail. In this section, references
to code correspond to the hybrid parallel Algorithm 4.

Parallelization of the loop SharedMem (1) Most of the computational work
within step one, i.e., initializing the frontier vertex set and the distance of its
vertices, can be performed in parallel. Hence, the loop over all tetrahedra can
be distributed among threads. However, in general, a frontier vertex w ∈ F is
located at several tetrahedra T (w). If two threads handle two different tetrahedra
but assign dp

(
Γh
ϕ ;w

)
for the same vertex w, then a race condition1 occurs. Hence,

assigning dp
(
Γh
ϕ ;w

)
to a frontier vertex has to be executed by only one thread at

any time.

Parallelization of the loop SharedMem (2) In this loop of Algorithm 4, a
process p determines the m nearest neighbors N (m, v) in line 10 for each off-
site vertex v ∈ Sp. Moreover, the distance dp

(
Γh
ϕ ; v

)
for all v ∈ Sp is computed

in line 12. Both computations do not depend on any other nearest neighbor
set N (m, v′) or distance dp

(
Γh
ϕ ; v

′
)
for all v′ ∈ Sp \ {v}. So, no data dependencies

exist for different loop indices and this loop can be executed in parallel.

Note that searching the minimum in line 12 labeled by SharedMem (2a) can be
also parallelized by a shared-memory reduction2 approach. This parallelization of
the loop in line 9 yields an additional level of shared-memory parallelism, which
is commonly called a nested shared-memory parallelization [42]. However, the
numerical experiments indicate that such an approach involving nested shared-
memory parallelization is not competitive in terms of execution time. Indeed, the
smallest execution times are gained if all available threads are used to execute the
loop SharedMem (2) in a single level of shared-memory parallelism rather than
two levels of shared-memory parallelism.

Parallelization of the loop SharedMem (3) The body of this loop consists
of assigning the signed distance ±dp

(
Γh
ϕ ; u

)
to ϕh(u) in line 14. This assignment

does not depend on any other assignment in that loop. Hence, the computational
work of this loop body is straightforward distributed among the threads.

1A race condition occurs if at least two threads access the same address in memory, where at
least one thread performs a write access and the order of these two accesses is not adjusted
by synchronization mechanisms.

2Reducing the thread local copies to a global value by an associative operation. Here, the global
minimum of all the thread local copies is built.
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Algorithm 4: Hybrid parallel algorithm based on direct distances to re-
initialize a level set function.
1 for p = 1, . . . , P do in parallel // DistMem
2 Init

(
Fpdp

(
Γh
ϕ ;V

)
,Lp
)
dp
(
Γh
ϕ ; u

)
←∞ for all u ∈ Vp

// stage I: Initialization
3 foreach t ∈ T p do in parallel // SharedMem (1)
4 if t is intersected by Γϕ then
5 foreach w is corner of t do
6 Update

(
Fp, dp

(
Γh
ϕ ;w

)
,Lp
)

// stage II: Propagation

7

(
F , d

(
Γh
ϕ ;F

)
,L
)
← Gather

(
Fp, dp

(
Γh
ϕ ;F

p
)
,Lp
)

8 KD ← BuildKDTree
(
F ∪ L

)

9 foreach v ∈ Sp do in parallel // SharedMem (2)
10 N (m, v) ← GetNearestNeighbors

(
KD, v,m

)

11 foreach w ∈ N (m, v) do in parallel // SharedMem (2a)
12 dp

(
Γh
ϕ ; v

)
← min

(
dp
(
Γh
ϕ ; v

)
, dp
(
Γh
ϕ ; v, w

) )

// stage III: Signing
13 foreach u ∈ Vp do in parallel // SharedMem (3)
14 ϕh(u)← Assign

(
dp
(
Γh
ϕ ; u

) )

Obviously, the shared-memory parallelization is not only advantageous for the
parallel re-initialization algorithm but also for a serial implementation of the al-
gorithm. That is, if the the re-initialization algorithm is not executed on a cluster
of processors but only on a single multi-core processor, the shared-memory par-
allelization is capable to significantly speed up the re-initialization of a level set
function.

5.4 Analysis of the Re-Initialization Algorithm

In this section, we present the time complexity of the re-initialization algorithm
based on direct distances and show that the complexity of the serial algorithm
is competitive with the fast marching method. Furthermore, we approximate the
error of the algorithm, and prove that the output is an accumulated representation
of the level set function ϕh. In this section, all references to code lines corresponds
to Algorithm 3.
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Line(s) Time complexity

5–11 |Vp|

12–14 Gather communication

15 |F ∪ L| · log(|F ∪ L|)

17 m · |Sp| · log(|F ∪ L|) (expected)

18 m · |Sp|

20 |Vp|

Table 5.1: Time complexity of Algorithm 3 for a single process p.

5.4.1 Time Complexity

In Table 5.1, the time complexity of the code lines of Algorithm 3 for a single
process p is presented. For stage I, i.e., lines 5–11, we assume that the number of
tetrahedra hosting a vertex w is bounded, in formula |T (w)| ≤ c for c ∈ N for all
frontier vertices w ∈ F . Thus, using the projection (5.4) to determine dp

(
Γh
ϕ ;w

)

for each vertex w ∈ Fp is constant in time. Since the initialization iterates over
all tetrahedra to identify vertices as frontier vertices and compute their distance
to the interface, the complexity of lines 8–11 is bounded by |T p| ≤ |Vp|. As
stated in [166], the communication time for gathering, lines 12–14, is bounded by
the sum of the number of gathered elements and the logarithm of the number of
processes P , i.e.,

O

(
max

p=1,...,P
|Fp|+ log(P )

)
.

The complexity of redundantly building the k-d tree and searching in the tree
is given by (5.13) and (5.14), leading to the complexity of lines 15 and 17. For
each off-site vertex v ∈ Sp, line 18 seeks the smallest distance dp

(
Γh
ϕ ; v, w

)
in

the nearest neighbor set N (m, v) by a linear search. Since this set consists of m
elements the overall time complexity of line 18 is given by m · |Sp|. Iterating over
all local vertices u ∈ Vp to determine ϕh yields the complexity of line 20.

In general, the terms in line 15 and 17 dominate the time complexity. Therefore,
we only discuss these two terms in the following. The number of processes P
influences the cardinalities of the local sets, in particular |Sp|. When increasing P
then |Sp| is reduced and the term in line 17 pales in comparison to the term in
line 15. Thus, line 17 dominates the runtime for a moderate number of processes
and the complexity is given by

O (m · |Sp| · log(|F ∪ L|)) . (5.19)
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That is, computing distances accounts for most of the runtime. In contrast, when
using a large number of processes, the cardinality of Sp is decreased. Then, the
set F ∪ L contains more elements than m · |Sp|, i.e., m · |Sp| < |F ∪ L|. Thus,
building the k-d tree in line 15 dominates the runtime leading to the complexity

O (|F ∪ L| · log(|F ∪ L|)) . (5.20)

If using only one process to execute Algorithm 3, then the runtime is governed
by line 17. Here, the complexity is given by

O (m · |S| · log(|F ∪ L|)) . (5.21)

Numerical tests show that m can be chosen relatively small compared to |Sp|
and |F ∪ L|. Hence, m is assumed to be constant. Additionally, since |L| ≤ |F|
holds the expected serial runtime given by (5.21) is bounded by

O (|S| · log |F|) .

So, the novel re-initialization algorithm based on direct distances has the same
serial complexity as the fast marching method. However, the FMM is difficult to
parallelize in contrast to Algorithm 3.

5.4.2 Accuracy

Next, we focus on the accuracy of the new re-initialization algorithm. Using
the m nearest neighbors rather than the set F ∪ L leads to an error which is
numerically investigated in the next section. Here, for obtaining a bound for the
error, we assume m = |F ∪ L| meaning that we analyze the error of the brute-
force algorithm. To this end, let ϕold

h be the input of the re-initialization algorithm
and Γh

old the zero level of ϕold
h . We assume for the study of the accuracy that Γh

old

approximates a smooth interface. Furthermore, let ϕh denote the re-initialized
level set function, i.e., the output of Algorithm 3. This function describes Γh

ϕ by

its zero level. In [85], the authors formally introduce the superset T (w) ⊃ T (w),
see (5.6), and prove the following statements when using this superset. First, the
signed distance δ between Γh

old and Γh
ϕ is bounded by

∣∣δ
(
Γh
old,Γ

h
ϕ

)∣∣ ≤ h (5.22)

where h represents the maximal length of an edge of the underlying triangula-
tion T (in the vicinity of the interface). Second, the exact distance between
frontier vertices w ∈ F and Γh

old is determined, in formula

δ
(
Γh
old, w

)
= ϕh(w) for all w ∈ F . (5.23)
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Γh
old

Γh
ϕ

w∗v

Figure 5.9: Accuracy of determining the distance between an off-site vertex v ∈ S
and the interface Γh

old.

We now use these two results to present the accuracy of the re-initialization
method. We define the error of the method by

eh := max
u∈V

{∣∣δ
(
Γh
old, u

)
− ϕh(u)

∣∣} .

That is, the error eh describes the maximal difference of the exact distance be-
tween Γh

old and the determined distance ϕh(u) for all u ∈ V. We now show that
this error is bounded by ch. Let u ∈ V be a given vertex. Due to (5.23),
the method determines the exact distance between Γh

old and any frontier vertex,
i.e., δ

(
Γh
old, u

)
−ϕh(u) = 0. Therefore, we now estimate the error when considering

an off-site vertex u = v ∈ S. The re-initialization algorithm determines ϕh(u) by

ϕh(u) = sign(ϕold
h (u)) · (|ϕh(w

∗)|+ ‖u− w∗‖2) .

where w∗ ∈ F ∪ L is obtained by the minimum in (5.9). This situation is illus-
trated in Fig. 5.9. Note that w∗ must not be the minimum if we use m nearest
neighbors instead of the brute force method. Due to (5.22) and (5.23), the dif-
ference between δ

(
Γh
old, v

)
and ϕh(w

∗) + ‖u − w∗‖2 is bounded by ch. Hence, the
overall error of the re-initialization algorithm based on direct distances is given by

eh = max
u∈V

(
δ
(
Γh
old, u

)
− ϕh(u)

)
≤ ch. (5.24)

5.4.3 Correctness

Finally, we prove that the output of the re-algorithm is an accumulated repre-
sentation of ϕh, cf. Sect. 3.2, if the input of the re-initialization algorithm is
an accumulated representation of ϕold

h . Therefore, we have to show that all pro-
cesses p(u) storing a vertex u ∈ V determine the same value for ϕh(u). First,
assume that all processes p(u) compute the same distance between u and Γh

ϕ , in
formula

d
(
Γh
ϕ ; u

)
= dp

(
Γh
ϕ ; u

)
for all p ∈ p(u). (5.25)
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Since the input ϕold
h is accumulated each process determines the same sign of ϕh(u)

in line 20 of Algorithm 3. Thus, each process p ∈ p(u) estimates the same signed
distance between u and Γh

ϕ implying an accumulated representation of ϕh.

It remains to prove that the equality (5.25) holds. To this end, we distinguish
between frontier- and off-site vertices.

(i) Let w ∈ Fp be a local frontier vertex which is located at a process p ∈ p(w).
Each process p computes the distance d

(
Γh
ϕ ;w

)
by evaluating (5.16) where

the minimum of all locally computed distances dp
(
Γh
ϕ ;w

)
is determined.

Thus, each process p ∈ p(w) stores the same value for the distances between
the frontier vertex w and Γh

ϕ .

(ii) Now, let v be an off-site vertex. All processes p ∈ p(v) assign the value
of dp

(
Γh
ϕ ; v

)
in line 18 of Algorithm 3 by evaluating formula (5.12) and (5.18).

Each process p obtains the same results because:

a) the same k-d tree is redundantly stored on all processes and, thus, the
same set N (m, v) of m nearest neighbors of v is obtained; and

b) the same distance between v and Γh
ϕ via a frontier vertex w is determined

because all processes store the same distance between frontier vertices
and Γh

ϕ .

Hence, all processes p(v) evaluate the same distance between the off-site
vertex v and Γh

ϕ .

This proves equation (5.25). So, overall, the output ϕh of the re-initialization
algorithm based on direct distances is accumulated.

5.5 Numerical Results

In this section, we present numerical results concerning the re-initialization algo-
rithm which is based on direct distances. The algorithm is implemented in the
software Drops and the implementation of the k-d trees is based on the library
Kdtree 2 [110]. The decomposition of the computational domain is obtained by
the T-GPTH problem, cf. Sect. 4.1.2, using the ParMETIS library [109]. Some
of the numerical results in this section are taken from [69] and [70].

The experiments are performed for different problems defined by a triple (Ω, ϕ, s)
with the following components. As computational domain, we distinguish between
the measurement cell ΩM presented in Fig. 4.13 and a cube-shaped domain ΩC

which is used to investigate the rising velocity of a single drop [20]. Its simple
geometric structure enables to easily modify the edge length in the triangulation.
As the level set function ϕ, we consider the following three different signed distance
functions describing different interfaces Γϕ.
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Γϕ

(a) Interface for ϕsl.

ϕmsl
3 < 0

ϕmsl
3 < 0

ϕmsl
3 > 0

ϕmsl
3 > 0

(b) Interface for ϕmsl
3 .

Figure 5.10: Computational domain ΩC.

(i) The zero level of ϕsl represents a horizontal slice through the cube ΩC, de-
picted in Fig. 5.10(a). The idea behind this choice of ϕ is to eliminate errors
in computing distances to the interface which is exactly located at some
vertices of V.

(ii) The zero level of ϕmsl
b describes multiple, equidistant horizontal slices through

the cube ΩC, as illustrated in Fig. 5.10(b). The index b denotes the number
of slices. This function aims at increasing the number of frontier vertices
compared to all vertices, i.e., the ratio |F ∪ L|/|V|. It is artificially con-
structed and does not reflect any of the two-phase flow problems we are
interested in where typically the number of frontier vertices is significantly
smaller than the number of off-site vertices.

(iii) The zero level of ϕsp describes a sphere, which is used as initial condition

for ϕ if a drop is simulated in the measurement cell ΩM or in the cube ΩC.

The parameter s describes the level of refinement of the triangulation and is used
to characterize the size of the problem.

In this section, we first investigate the accuracy of the re-initialization algorithm
based on direct distances in Sect. 5.5.1. Afterwards, in Sect. 5.5.2, we present
results concerning the performance of the algorithm on up to 128 processes which
each employs up to 8 threads. So, in total, we utilize up to 1 024 compute cores
for presenting the results.

5.5.1 Numerical Accuracy

We first compare the results of the re-initialization algorithm with a known solution
to present the accuracy of the re-initialization algorithm. We therefore investigate
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the same errors as in [98] which are defined as follows:

e1(ϕ
comp) :=

1

|S|

∑

v∈S

|ϕcomp(v)− ϕex(v)|

|ϕex(v)|
,

e2(ϕ
comp) :=

√√√√ 1

|S|

∑

v∈S

(
|ϕcomp(v)− ϕex(v)|

|ϕex(v)|

)2

, and

e∞(ϕcomp) := max
v∈S
|ϕcomp(v)− ϕex(v)|.

Here, ϕex denotes a given signed distance function and ϕcomp is the computed, re-
initialized level set function which is obtained from a disturbed ϕex. We here only
consider off-site vertices for the error because we want to focus on the propagation
phase. However, we will present accuracy results for frontier vertices in Table 5.3.
We furthermore use ΩC as the computational domain to control the edge length h
and to investigate the error. We set ϕex to ϕsp, i.e.,

ϕex(x) = ‖x− (0.5, 0.5, 0.5)T‖2 − 0.25,

where the interface Γϕ is a sphere of radius 0.25 located in the middle of ΩC. The
parallel re-initialization algorithm is applied to disturbed level set functions, either
a linear disturbance

ϕdist
1 (x) := 100 · ϕex(x),

a piece-wise linear disturbance

ϕdist
2 (x) :=

{
2.5 · ϕex(x), ϕex(x) ≥ 0

3.0 · ϕex(x), ϕex(x) < 0
,

or a non-linear disturbance

ϕdist
3 (x) :=

{
(ϕex(x))2 , ϕex(x) ≥ 0

(ϕex(x))3 , ϕex(x) < 0
.

Five regular triangulations of ΩC are analyzed. The coarsest triangulation con-
sists of 384 tetrahedra. Refining each tetrahedron regularly, i.e., each edge is
bisected, leads to the next finer triangulation. Here, we refine each tetrahedron
up to four times recursively, leading to five triangulations with up to 12 582 912
tetrahedra on the finest level. On the coarsest triangulation, ϕh is discretized
by 729 scalar values and on the finest triangulation by 16 974 593 values.

To avoid the approximation error introduced by the usage of k-d trees, we
chose m = |F ∪L| as the number of nearest neighbors, cf. Sect. 5.4.2. We will also
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h e1 r1 e2 r2 e∞ r∞

0.2165 0.08822 — 0.1308 — 0.06988 —

0.1082 0.02924 1.59 0.04954 1.40 0.02374 1.56

0.0541 0.01111 1.40 0.02574 0.94 0.01383 0.78

0.0271 0.004922 1.17 0.01701 0.60 0.006520 1.08

0.0135 0.002262 1.12 0.01133 0.59 0.003354 0.96

Table 5.2: Errors e1, e2, and e∞ of ϕcomp in ΩC when re-initializing the disturbed
level set function ϕex = ϕsp by ϕdist

1 .

show results with respect to m in Fig. 5.11. In Table 5.2, the errors e1, e2, and e∞
are depicted for all five triangulation hierarchies. This table also presents the
corresponding orders rp of the errors ep for p = 1, 2 and ∞. In all cases, the error
decreases with increasing grid refinement, i.e., decreasing h. With respect to the e2
error the convergence order is greater that 0.59. When considering the e∞ error,
we observe a convergence order greater than 0.78. The best order corresponds to
the e1 error where r1 ≥ 1.1 is obtained. Note that these errors compare the re-
initialized level set function with an exact level set function ϕex. In the analytical
analysis (5.24), we compared ϕcomp and the interface described by input of the
algorithm, i.e., ϕold

h = ϕdist
i for i = 1, 2 and 3.

When solving two-phase flow problems, the gradient ∇ϕh is employed to deter-
mine surface forces at Γϕ, cf. [84]. Therefore, another metric to assess the quality
of the algorithm is to consider the error of ∇ϕ in the vicinity of Γϕ. We measure
this error by

eΓ (∇ϕ
comp) := max

Γh
ϕ

{
‖∇ϕcomp −∇ϕex‖2

}
,

where the gradients are evaluated on tetrahedra that are intersected by Γh
ϕ . The er-

ror is primarily caused by the routine InitFrontierSet() in line 1 of Algorithm 2.
It is possible that the tetrahedron containing the closest interface segment for a
frontier vertex w is not located in the neighboring tetrahedra T (w) as illustrated
in Fig. 5.5. Therefore, we also consider the superset T (w) ⊃ T (w), see (5.6). We
refer to [85] for more details on the definition of T (w). The error eΓ and the cor-
responding order rΓ is given in Table 5.3 for both approaches. Here, we consider
the same triangulations as in Table 5.2 and, in contrast to the numerical results
presented in [85], we re-initialize disturbed signed distance functions. In partic-
ular, we apply the re-initialization algorithm to the three functions ϕdist

1 , ϕdist
2 ,

and ϕdist
3 for ϕex = ϕsp. With increasing grid refinement, indicated by decreas-

ing h, the error stagnates or even increases in all three Tables 5.3(a), (b), and (c)
for T (w). However, the convergence order rΓ of the error eΓ is close to one for ϕdist

1
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using T (w). Although the superset T (w) is used, the error only decreases for up
to h = 0.0271 for ϕdist

2 . There is no decrease for ϕdist
3 . An explanation for the

divergence of the error for ϕdist
2 and ϕdist

3 is given by the following observation
which has been outlined for the one-dimensional introductory example in Fig. 5.1.
Since Drops represents the level set function by a quadratic function, the discrete
representation of the interface Γh

ϕ changes if disturbing ϕex by ϕdist
2 or ϕdist

3 . That
is, the discrete representation Γh

ϕ changes although the zero level of ϕdist
2 and ϕdist

3

are identical. Indeed, these disturbances of ϕex results in such a change of Γh
ϕ in

comparison to the exact interface Γϕ that it cannot be recovered by the routine
InitFrontierSet(). This leads to an error of determining the distance between
frontier vertices and Γϕ which causes the error in the computation of ϕcomp. Thus,
the error eΓ(∇ϕcomp) diverges. However, in practice-relevant applications of the
re-initialization algorithm, level set functions are only slightly disturbed and the
algorithm provides good results as illustrated in Fig. 5.3(a).

Next, we compare the accuracy of the re-initializing algorithm based on di-
rect distances, Algorithm 3, and an implementation of the FMM in Drops.
Both methods employ the set T (w) for frontier vertices w ∈ F in the routine
InitFrontierSet(). We use m = 100 nearest neighbors and re-initialize the
level set function ϕex = ϕsp which is disturbed by ϕdist

2 . The resulting e2 error
is illustrated in Table 5.4 and demonstrates that for this scenario Algorithm 3
delivers a more accurate solution that the FMM. When considering h = 0.0271
the error differs by two orders of magnitude. Furthermore, the FMM does not sig-
nificantly decrease the error when decreasing h. In contrast, the re-initialization
algorithm based on direct distances reduces the error when considering the edge
lengths h = 0.2165 to h = 0.0271. As in Table 5.3(a), we observe that the e2 error
does not decrease for Algorithm 3 when decreasing h from 0.0271 to 0.0135.

To investigate the influence of the parameterm on the error, we use four different
problem settings. For the cube ΩC = [0, 1]3, the level set function ϕsl is used.
Using the measurement cell ΩM, the function ϕsp is applied and, thus, Γϕ is given
by a sphere of radius 0.1 cm located at the narrowing part of the cell. To vary
the problem size, we refine the triangulation in the vicinity of Γh

ϕ leading to two
different problem sizes for each domain. A summary of the characteristics of all
four used problems is given in Table 5.5. Consider the column depicting |L \ F|
in that table. If using ΩC and ϕsl the perpendicular feet are located on frontier
vertices for both problem sizes. Thus, the set L \ F is empty and the accuracy
cannot be increased by augmenting the set F by L when considering (5.9) rather
than (5.8).

The influence of the parameter m on the e1- and e2-error is depicted in Fig. 5.11
for the two problems (ΩM, ϕsp, small) and (ΩM, ϕsp, large). Here, we observe that
the error is large and decreases fast for m < 10. The error decreases only slightly
for 10 ≤ m < 100 nearest neighbors. Choosing m = 100 results in the best
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T (w) T (w)
h

eΓ rΓ eΓ rΓ

0.2165 0.4144 — 0.3796 —

0.1082 0.2125 0.96 0.2099 0.85

0.0541 0.1755 0.28 0.1286 0.71

0.0271 0.2649 -0.60 0.06815 0.92

0.0135 0.3497 -0.40 0.03485 0.96

(a) Re-initialization of ϕdist
1 .

T (w) T (w)
h

eΓ rΓ eΓ rΓ

0.2165 0.4055 — 0.3791 —

0.1082 0.2062 0.98 0.2017 0.91

0.0541 0.1924 0.1 0.1020 0.98

0.0271 0.2423 -0.33 0.08900 0.20

0.0135 0.3491 -0.52 0.09248 -0.06

(b) Re-initialization of ϕdist
2 .

T (w) T (w)
h

eΓ rΓ eΓ rΓ

0.2165 0.6614 — 0.6733 —

0.1082 0.8175 -0.31 0.8056 -0.26

0.0541 0.7312 0.16 0.7233 0.16

0.0271 0.7993 -0.13 0.7771 -0.10

0.0135 0.7364 0.12 0.7596 0.03

(c) Re-initialization of ϕdist
3 .

Table 5.3: Error eΓ(∇ϕ
comp) in ΩC when re-initializing the disturbed level set func-

tion ϕex = ϕsp.
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FMM Algorithm 3
h

e2 e2

0.2165 0.03871 0.01027

0.1082 0.05432 0.009452

0.0541 0.06886 0.006907

0.0271 0.06975 0.0006247

0.0135 0.07329 0.003377

Table 5.4: Comparison of the FMM and the Algorithm 3. Error e2 in ΩC when
re-initializing the disturbed level set function ϕex = ϕsp by ϕdist

2 .

Problem |T |/106 |V|/106 |F|/103 |L \ F|/103 |S|/106 |F∪L|
|V| [%]

(ΩC, ϕsl, small) 0.225 0.275 4.23 0 0.270 1.54

(ΩC, ϕsl, large) 14.4 17.0 66.0 0 16.9 0.39

(ΩM, ϕsp, small) 0.420 0.482 37.1 1.84 0.445 8.00

(ΩM, ϕsp, large) 2.73 3.15 149.0 7.36 3.00 4.95

Table 5.5: Problem characteristics.

105



5 Re-Initializing Level Set Functions

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

m

er
ro

r

 

 

(ΩM
, ϕ

sp
, small), e2

(ΩM
, ϕ

sp
, large), e2

(ΩM
, ϕ

sp
, small), e1

(ΩM
, ϕ

sp
, large), e1

Figure 5.11: Error e1 and e2 for problem (ΩM, ϕsp, small) and (ΩM, ϕsp, large) with
respect to the number of nearest neighbors m when re-initializing the
disturbed level set function ϕex by ϕdist

1 .

approximation and, thus, increasing the value of m any further does not lead to
any improvement of the re-initialization algorithm for these two problems with
respect to the e1- and e2-error.

5.5.2 Serial and Parallel Performance

Next, we consider performance issues of the re-initialization algorithm based on
direct distances. Therefore, we first analyze the dependency of the number of
nearest neighbors m on the runtime. Then, we compare the serial runtime of
Algorithm 3 with the computational time of the FMM. Afterwards, we focus on the
scalability of the re-initialization algorithm. Finally, we address some limitations
of the novel algorithm. All results are gathered on the two different clusters
consisting of Xeon-based quad-core processors whose characteristics are detailed
in Table 3.2. To distinguish between both processor types, we label the results by
either “Harpertown” or “Nehalem,” respectively.

In Sect. 5.1, we demonstrate that the theoretic runtime of the parallel re-ini-
tialization Algorithm 3 does not only depend on the number of processes P but
also on the choice of m, cf. Table 5.1. To investigate this dependency, let Tm(P )
denote the runtime of the parallel algorithm on P processes with the user-given
parameter m. In Fig. 5.12, the normalized times

T norm(m,P ) :=
Tm(P )

T1(P )
(5.26)
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(a) Problem (ΩC, ϕsl, small).
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(b) Problem (ΩC, ϕsl, large).
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(c) Problem (ΩM, ϕsp, small).
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(d) Problem (ΩM, ϕsp, large).

Figure 5.12: Normalized runtime T norm(m,P ) = Tm(P )/T1(P ) of the re-ini-
tializing algorithm for P = 1, 8, 64 and 128 processes (Harpertown).

are illustrated for P ∈ {1, 8, 64, 128} processes for all four problems presented
in Table 5.5. For a given number of processes P , the ratio (5.26) increases for
a growing number of nearest neighbors m. However, the time ratios do not de-
pend linearly on m. For instance, the ratio for m = 500 and P = 1 in prob-
lems (ΩC, ϕsl, small) and (ΩC, ϕsl, large) is about 45 and not 500 as suggested
by (5.19), cf. Fig. 5.12(a) and (b). The corresponding ratio is less than 18 for prob-
lems (ΩM, ϕsp, small) and (ΩM, ϕsp, large), cf. Fig. 5.12(c) and (d). For fixed m,
the ratio T norm(m,P ) in (5.26) tends to decrease with increasing P for all four
problems. That is, the influence of the parameter m on the runtime becomes less
and less important when increasing the number of processes. An explanation is
that the time for building the k-d tree (5.20)—which is independent of m—starts
to dominate the runtime.

We compare the serial runtime of our implementation of the FMM and the
runtime of the novel re-initialization algorithm based on direct distances when
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Problem TFMM/T100(1)

(ΩC, ϕsl, small) 1.29

(ΩC, ϕsl, large) —

(ΩM, ϕsp, small) 1.16

(ΩM, ϕsp, large) 1.24

Table 5.6: Ratio of serial runtime of the FMM and Algorithm 3 (Harpertown).

choosing m = 100. To this end, let TFMM denote the runtime of the FMM. The
ratios TFMM/T100(1) are given in Table 5.6 for all four problems. These results
in this table indicate that the runtime of the FMM is larger than the runtime of
Algorithm 3 by a factor of about 1.2. Note that it was not possible to solve the re-
initialization problem (ΩC, ϕsl, large) by the FMM because its memory requirement
exceeds the maximum available memory of the platform, i.e., 16GB.

Now, we consider the speedup of the hybrid distributed-/shared-memory parallel
re-initialization algorithm based on direct distances which is given in Algorithm 4.
Note that the results are taken from [69]. Recall that both clusters of processors
provide eight cores per node that have access to a shared memory. We describe
different schemes to place the MPI processes and OpenMP threads on these eight
cores per node. We express the schemes by M-O. Here, M denotes the number of
MPI processes placed on each node. For each such process, O denotes the number
of OpenMP threads used to execute the parallel regions of the shared-memory
parallelization. Thus, if n nodes are used, the total number of cores executing
the algorithm is given by n · M · O. For instance, if using the 2-4 scheme, two
processes are placed on each node and each process spawns four threads leading to
eight threads per node. The total number of MPI processes is given by M ·n. The
execution time of the algorithm carried out on n nodes using the M-O scheme is
denoted by TM -O(n). In the following discussion on the performance of the hybrid
parallel algorithm, we setm = 1 000. This rather high number of nearest neighbors
is advantageous for the hybrid parallel approach. However, in [70], we demonstrate
the scalability of the novel algorithm when considering m = 25 and m = 100. To
simplify notations in the remainder of this section, we do not label the compute
times with m.

First, we investigate whichM-O scheme exploits the hardware best. In Fig. 5.13,
we present the execution time TM -O(n) on various number of compute nodes n to
determine dp

(
Γh
ϕ ; v

)
for all v ∈ S of (ΩM, ϕsp, large), i.e., performing lines 9–12

of Algorithm 4. In Fig. 5.13(a), the execution times on a cluster consisting of
Harpertown processors is presented whereas in Fig. 5.13(b), a cluster of Nehalem
processors is used. Although the clock speed of both processor types is approx-
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Figure 5.13: Execution time T8-1(n) of carrying out the loop SharedMem (2)
(lines 9–12 of Algorithm 4) by n nodes.

imately equal to 3Ghz, the execution time on the Harpertown cluster is larger
because the connection between the memory and the Nehalem’s cores is better
than the connection to the Harpertown’s cores. If considering the pure MPI par-
allelization, i.e., the scheme 8-1, the algorithm scales on up to 4 nodes of the
Harpertown cluster and up to 32 nodes of the Nehalem cluster. An explanation is
given by the InfiniBand network connecting the nodes. The Nehalem cluster uses
a newer generation of an InfiniBand network than the Harpertown cluster. This
newer network is faster and, in contrast to the Harpertown cluster, the network
interface cards can better serve the eight MPI processes on a node. Both figures
demonstrate that exclusively using an MPI parallelization yields the largest exe-
cution times on a fixed number of nodes because the shared memory can not be
exploited. For instance, in Fig. 5.13(b), switching from a hybrid MPI/OpenMP

parallelization to a pure MPI parallelization increases the runtime on four nodes
from T1-8(4) = 24.8 s to T8-1(4) = 52.1 s. Thus, four nodes of the Nehalem cluster
are capable of reducing the serial runtime of T1-8(4) = 450.0 s by a factor of 18.1
by using the hybrid parallel approach whereas the corresponding factor is 8.6 for
the pure MPI approach. For both types of processors, the smallest execution time
is generally obtained if placing one process and four threads on each of the two
processors of a node, i.e., using strategy 2-4. In addition, the Nehalem proces-
sors provide simultaneous multithreading (SMT) which allows to place up to 16
threads on one node. However, our experiments show that enabling this technol-
ogy increases the runtime on one node by a factor 1.06 compared to only using
eight threads.

Second, we investigate the speedup of Algorithm 4. To present results concern-
ing the distributed MPI parallelization, we define the speedup SM -O

MPI
(n) using n
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Figure 5.14: Speedup of the hybrid parallel re-initialization algorithm (Algo-
rithm 4) with respect to the number of nodes n.

nodes and the scheme M-O by

SM -O
MPI

(n) :=
TM -O(1)

TM -O(n)
.

For a fixed number of nodes n, the speedup with respect to shared-memory
OpenMP parallelization using O threads is defined by

SM -O
OpenMP(n) :=

TM -1(n)

TM -O(n)
.

In Fig. 5.14, both speedups of the re-initializing algorithm are depicted. The
speedup S2-1

MPI
is illustrated in Fig. 5.14(a) for a varying number of nodes. This

figure demonstrates that the parallel algorithm scales well on both clusters using a
pure MPI parallelization with two processes per node. That is, on both clusters,
the execution time of two MPI processes on one node is reduced by a factor of
about 40 if using 64 nodes. In Fig. 5.14(b), the speedup S1-O

OpenMP
with respect to a

varying number of threads is shown for different numbers of Nehalem nodes. This
figure illustrates that the shared-memory parallelization is capable of decreasing
the runtime by a factor larger than 4 for all nodes using O = 8 cores.

The parallel speedup of the re-initialization algorithm based on direct distances,
Algorithm 3, is limited by three factors:

(i) the communication costs of gathering in lines 12–14;

(ii) the load imbalances in Vp, Fp and Sp; and

(iii) the redundant generation of the k-d tree in line 15
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5.5 Numerical Results

Tm(1) αm(1) Tm(128) αm(128)
Problem m

[s] [%] [s] [%]

(ΩC, ϕsl, small) 25 1.28 0.07 0.02 3.2

(ΩC, ϕsl, large) 25 99.4 0.02 0.88 1.6

(ΩM, ϕsp, small) 25 4.68 0.16 0.20 4.4

(ΩM, ϕsp, large) 25 39.7 0.09 0.75 5.5

(ΩC, ϕsl, small) 100 3.56 0.03 0.05 1.3

(ΩC, ϕsl, large) 100 256 0.007 2.24 0.6

(ΩM, ϕsp, small) 100 10.2 0.075 0.35 2.5

(ΩM, ϕsp, large) 100 83.8 0.042 1.33 3.1

Table 5.7: Time for re-initialization a level set function and fraction αm(P ) of
building the k-d tree on 1 and 128 processes (Harpertown).

In this section, we focus on the aspect (iii). To this end, let αm(P ) denote the
fraction of the runtime Tm(P ) that is used to build the k-d tree. In Table 5.7,
the runtime Tm(P ) of Algorithm 3 as well as αm(P ) are presented for 1 and 128
processes using m = 25 and m = 100 nearest neighbors. For a given parameter m,
increasing P also increases αm(P ) which can be explained by the redundant com-
putation involved in building the k-d tree. If P is fix and m increases, more time
is spent in searching for nearest neighbors in the tree so that building the tree
becomes less time dominant. Hence, αm(P ) is decreased. For both choices of m in
problems (ΩC, ϕsl, small) and (ΩC, ϕsl, large), the fraction αm(P ) is reduced by in-
creasing the problem size because the ratio |F ∪L|/|V| is decreased, cf. Table 5.5.
This behavior also applies for problems (ΩM, ϕsp, small) and (ΩM, ϕsp, large) on one
process. For these two problems, the fractions α25(128) and α100(128) increase by
a factor of about 1.25 if switching from the small to the large problem size. This
can be explained by the following argument. The sizes of all sets are increased.
However, from inspection of the values in Table 5.5, this increase by factors less
than 7 is smaller than the increase in the number of processes from 1 to 128.
Therefore, (5.20) starts to dominate the runtime of the parallel algorithm leading
to an increase of αm(128).

If we assume perfect speedup for all parts except for building the k-d tree,
Amdahl’s law [7] implies that, for an infinite number of processes, the speedup
of the algorithm is bounded by Sm(∞) := 1/αm(1). For instance, in the small
problem (ΩM, ϕsp, small), the ratio α25(1) = 0.16% implies that the speedup is
bounded by S25(∞) = 625, whereas for the large problem (ΩC, ϕsl, large), the
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5 Re-Initializing Level Set Functions

Problem |T |/106 |V|/106 |F|/106 |L \ F|/106 |S|/106 |F∪L|
|V| [%]

(ΩC, ϕmsl
30 , small) 0.225 0.275 0.237 0.0545 0.0380 106.0

(ΩC, ϕmsl
60 , large) 14.4 17.0 10.0 1.55 6.94 68.3

Table 5.8: Problem characteristics of the artificially multi-sliced problems.

fraction of the serial runtime is given by α100(1) = 0.007% yielding a theoretic
limit for the speedup of S100(∞) = 14 286.

We artificially increase the parameter αm to stress the parallel performance
of the re-initialization algorithm and to address some limitations of the current
implementation of the algorithm. Since αm(P ) denotes the time of redundantly
building the k-d tree by each process, this part of the re-initialization algorithm
may constitute the performance bottleneck in terms of runtime and memory con-
sumption, as described in Sect. 5.4.1. To investigate this potential bottleneck,
we construct two artificial problems with no practical relevance. However, in the
following discussion we show that—even for artificially constructed problems—a
serial implementation of the k-d tree is reasonable to avoid any communication.
The characteristics of these two artificial problems are given in Table 5.8 where
the zero level of the signed distance functions describe multiple horizontal slices,
i.e., ϕex = ϕmsl

b with b ∈ {30, 60}. These problems are designed such that the
number of frontier vertices and perpendicular feet compared to the total number
of vertices is significantly larger than in the previous investigated problems from
Table 5.5. In particular, the ratios |F∪L|/|V| in Table 5.5 are below 10%, whereas
the corresponding ratios in Table 5.8 are 106% and 68%. In these problems, the
fraction α100(P ) of the time spent in serially building the k-d tree is given in Ta-
ble 5.9. These fractions are by orders of magnitude larger than those in Table 5.7
for P = 1 and m = 100. For instance, the value of the serial fraction is given in
Table 5.9 by α100(1) = 5.16% whereas the fraction α100(1) = 0.03% is observed
for the problem (ΩC, ϕsl, small) in Table 5.7. So, Amdahl’s law predicts lower
speedups Sm(∞) for these artificial problems. The serial fraction α100(1) = 5.16%
leads to Sm(∞) = 19.4. Clearly, the fraction of the time spent in serially build-
ing the k-d tree increases when increasing the number of processes. Consider the
problem (ΩC, ϕmsl

60 , large) as an example. Here, roughly 3% of the runtime is spent
in building the tree using one process. However, this part consumes about 45.5%
of the time on P = 64 processes. The corresponding speedup of S100(64) = 14 is
indeed low.

Although the serial use of the k-d tree is a substantial bottleneck for these
problems, the serial runtime of novel re-initialization algorithm based on direct
distances is about 3 times smaller than that of the FMM applied to the prob-
lem (ΩC, ϕmsl

30 , small). The storage requirement for the k-d tree is only a small
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5.6 Discussion

Problem α100(1) [%] α100(64) [%] S100(∞) S100(16) S100(64)

(ΩC, ϕmsl
30 , small) 5.16 37.0 19.38 5.0 5.8

(ΩC, ϕmsl
60 , large) 2.81 45.5 35.59 8.2 14.0

Table 5.9: Parallel performance and relative time αm for building the k-d tree of
the artificial multi-sliced problems (Harpertown).

fraction of the memory used to solve the corresponding two-phase flow problem
by Drops. Therefore, storing the k-d tree redundantly on all processes offers the
advantage to avoid communication between processes while determining the m
nearest neighbors. Table 5.10 gives an overview of the storage requirements for all
problems investigated in this section. Here, the symbol MKD denotes the memory
used to store the k-d tree on a single process. The storage for the solution of
the two-phase flow problem accumulated over P processes is given by MDrops(P ).
The symbols MDD and MFMM are used for the memory requirements of the re-
initialization algorithm based on direct distances, Algorithm 3, and the FMM
on one process. As expected, the memory requirement of the k-d tree for prob-
lem (ΩC, ϕmsl

60 , large) is larger than for all other problems. Clearly, the memory
requirement MDrops(8) is much larger than MKD for all problems. Indeed, the
memory requirement MDrops(8) for problems (ΩC, ϕmsl

60 , large) and (ΩC, ϕsl, large)
exceeds the memory capacity of the platform. For the other problems, the ra-
tio 8 ·MKD/MDrops(8) represents the fraction of redundantly storing the k-d tree
compared to the total memory requirement of solving the the two-phase flow prob-
lem on 8 processes. This fraction ranges from 0.05% to 3.8%. However, the largest
fraction is observed for the artificial problem (ΩC, ϕmsl

30 , small) where the k-d tree is
intentionally constructed large. The largest fraction is actually quite small. Hence,
storing the k-d tree redundantly is affordable. For all problems, Algorithm 3 needs
less memory than the FMM. Recall from the previous discussion that the imple-
mentation of the FMM cannot solve the large problem (ΩC, ϕsl, large) with the
available memory. This also holds for the problem (ΩC, ϕmsl

60 , large).

5.6 Discussion

In this chapter, we presented a parallel algorithm that is capable of re-initializing
level set function on a distributed unstructured grid. Therefore, we combined a
brute-force re-initialization scheme and, to reduce the time complexity, a multi-
dimensional tree data structure, k-d trees. We observed a good performance on
recent high-performance computers consisting of clusters of multi-core processors.
Furthermore, we demonstrated that the algorithmic complexity and the accuracy
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5 Re-Initializing Level Set Functions

MKD MDrops(8) 8MKD/MDrops(8) MFMM MDD

Problem
[MB] [GB] [%] [MB] [MB]

(ΩC, ϕmsl
30 , small) 15.3 3.4 3.8 201.2 33.1

(ΩC, ϕmsl
60 , large) 610.6 — — — 1498.6

(ΩC, ϕsl, small) 0.2 2.9 0.053 201.0 9.0

(ΩC, ϕsl, large) 3.7 — — — 539.9

(ΩM, ϕsp, small) 11.7 4.4 2.1 367.3 33.4

(ΩM, ϕsp, large) 85.0 32.1 2.1 2 408.1 233.6

Table 5.10: Memory consumption of Drops (Harpertown and Nehalem).

of the new algorithm based on direct distances is comparable to those of the fast
marching method.

To even increase the parallel efficiency and the numerical accuracy of the pre-
sented algorithms, future research directions are addressed in the following. In
the current implementation of the algorithm, the limiting factor for the parallel
scalability is given by the serial generation of the k-d tree. Thus, the performance
of the algorithm can be increased by generating the k-d tree in parallel [43] or
even replace the k-d tree data structure by another parallel data structure that
is capable of efficiently determining nearest neighbors. Moreover, a narrow-band
approach [2] is not yet considered, where the values of the level set function are
only re-initialized on vertices in the vicinity of the interface. In addition, the
approach presented in this chapter does not exploit the hierarchy of tetrahedral
grids which discretizes the computational domain. This data structure can be
employed to efficiently implement the narrow-band method where only vertices
close to the interface are considered. The accuracy can be increased by two dif-
ferent approaches. First, we observe that the closest segment of the interface to a
frontier vertex may be located on another process than the frontier vertex itself,
cf. Fig. 5.5. Hence, determining the distance of frontier vertices is a delicate task
in parallel and demands for future research. Second, in this thesis, the accuracy
of the re-initialization algorithm has been increased by the following strategy. To
determine the distance between off-site vertices and the interface, the set of fron-
tier vertices has been suitably augmented by the set of perpendicular feet in (5.9).
This results in a larger, more accurate search space for this distance computation.
To further increase the accuracy, this search space can be augmented by adding
more points located at the interface. However, enlarging the search space implies
larger execution times. This trade-off has not been addressed in this thesis and
requires future research efforts.
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6 Case Study

In the previous chapters, we presented parallel algorithms and methods aiming at
simulating two-phase flow problems by multiple processes. These techniques fa-
cilitate the consideration of problems that are too large—in terms of memory and
compute time—for sequential computing. For instance, a pure serial approach
is not feasible for investigating the so-called grid convergence when simulating
the standard test system of a rising n-butanol drop in a surrounding aqueous
phase [122]. In this convergence analysis, we are interested in the effect of grid
refinements on the rising velocity of the n-butanol drop. Here, applying a large
number of local refinements easily results in an amount of data that exceeds the
memory available to one processor. Therefore, we employ the algorithms and
methods presented in the previous chapters to perform the grid convergence anal-
ysis of a rising n-butanol drop. Besides a detailed study of the rising velocity, in
this chapter, we demonstrate the parallel performance of Drops for this numerical
experiment.

In Sect. 6.1, we describe the experimental setup and the simulation algorithm
used to investigate the rising velocity vris(τ) with respect to time τ of the n-butanol
drop in an aqueous phase. In Sect. 6.2, we present numerical results concerning
the rising velocity and the parallel performance of this two-phase flow experiment.

6.1 Experimental Setup

The study of the rising n-butanol drop originates from the collaborative work [20]
where the simulated rising velocity of the drop is compared with “real-world”
experiments. The experiments in that publication are performed in an apparatus
that is schematically depicted in Fig. 6.1. Here, n-butanol drops are generated
through a nozzle submerged in a cylindrical cell that contains an aqueous phase
consisting of deionized and bidistilled water. The density, viscosity, and surface
tension for this two-phase system are given in Table 6.1. Upon generation, the
drop starts to accelerate upwards until it reaches its terminal rising velocity which
is determined by monitoring the drop’s position by a camera. The numerical
simulation is carried out by Drops in a cuboid-shaped domain to predict the
position and velocity of the drop over time. The collaborative work [20] describes
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?

~g

Figure 6.1: Sedimentation apparatus for performing the “real-life” experiments,
taken from [20].

Property n-butanol aqueous phase

Density [kg/m3] 845.442 986.506

Viscosity [Pa s] 3.281 1.388

Interfacial tension [mN/m] 1.64

Table 6.1: Physicochemical properties of the two phases.

the experimental setup in detail and presents further results on the comparison
between the numerical results and the “real-world” experiments.

In this thesis, we analyze the rising velocity vris(τ) of an n-butanol drop with an
initial diameter of 2mm in detail. To this end, we perform different parallel two-
phase flow simulations with Drops. Note that the work [71] also deals with the
parallel approach of this simulation, however, that work does not take extended
finite elements for the pressure into account. The library ParMETIS [107] is em-
ployed to find a solution of the graph partitioning problems. The library DDD [24]
is used to manage and to track the information about distributed elements of the
tetrahedral hierarchies. As in [85], the simulated three-dimensional velocity vdrop

h

of the drop at time τ is determined by numerically evaluating the formula

vdrop
h (τ) =

1

|Ω1(τ)|

∫

Ω1(τ)

uh(x, τ) dx,
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6.1 Experimental Setup

where Ω1(τ) denotes the domain of the drop, |Ω1(τ)| its volume, and uh the simu-
lated velocity field in the computational domain. Then, the rising velocity vris(τ)
is given by the second component of vdrop

h which points upwards, in formula

vris(τ) := (vdrop
h (τ))2. (6.1)

In the computational domain ΩC = [0, 12] × [0, 30] × [0, 12]mm3, the two-phase
flow simulation follows the approach presented in Chap. 2. An implicit, linearized
theta-scheme, with θ = 1, is applied for the time integration and the underlying
Oseen problems are solved by the inexact Uzawa method. Within this method
the Schur complement is preconditioned by a modified Cahouet-Chabard precon-
ditioner [33] which is detailed in [85, 127] whereas a Jacobi preconditioner is used
for the Krylov subspace methods. A decomposition of the tetrahedral hierarchy
is determined by the 11-TP-GPTH graph model of Chap. 4. The signed-distance
property of the level set function is enforced by the novel re-initialization algo-
rithm based on direct distances which is presented in Chap. 5. The user-given
parameter for the number of nearest neighbors is set to m = 100. In this chapter,
we consider two different simulation strategies which differ in the finite element
discretization of the pressure. In the first strategy, XFEM , extended piece-wise
linear P Γ

1 finite functions are employed. The second one, woXFEM , considers
piece-wise linear P1 functions to represent the pressure. In both strategies, the
computational domain ΩC is discretized by small cubes of size [0, 4]3mm3 which
are each divided into six tetrahedra yielding the coarsest triangulation. To explain
the tetrahedral hierarchy, let

ΩC
Γ(d) :=

{
x ∈ ΩC

∣∣∣∣ min
p∈Γh

ϕ

‖x− p‖2 ≤ d

}

denote the set of points which are located in a neighborhood of radius d around
the discrete representation Γh

ϕ of the interface Γϕ. For each of the two strategies,
four different tetrahedral hierarchies are used. These hierarchies vary in the num-
ber of refinement levels and the size of the refined subdomain. For the strategy
XFEM , each tetrahedron whose barycenter is located in ΩC

Γ(16mm) is consecu-
tively refined two to five times in the beginning of the simulation. Ongoing work is
concerned with a parallel adaptive refinement algorithm which is capable of han-
dling extended finite element functions. To still present results obtained with a
parallel XFEM method, we consider a static tetrahedral hierarchy for the strategy
XFEM , i.e., the hierarchy is not modified during the two-phase flow simulation.
In contrast, the strategy woXFEM employs an adaptively refined tetrahedral hi-
erarchy in the domain ΩC

Γ (2mm). That is, if the position of the drop changes, the
tetrahedral hierarchy is adjusted such that the tetrahedra located in ΩC

Γ (2mm)
are refined two to five times. Recall that l refinements yields a tetrahedral hier-
archy M = (T0, . . . , Tl) of l + 1 levels. Thus, the tetrahedral hierarchies consist
of three to six triangulation levels. In the remainder, we denote the number of
triangulation levels by k.
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Triang.

level k
P hmin [mm] nu ∆τ [ms] time steps

3 4 3/4 162 000 2 200

4 32 3/8 1 282 557 1 400

5 160 3/16 10 187 019 0.5 689

6 680 3/32 81 138 516 0.1 926

(a) XFEM .

Triang.

level k
P hmin [mm] nu ∆τ [ms] time steps

3 2 3/4 20 670 1 500

4 4 3/8 102 657 1 500

5 24 3/16 599 622 0.5 1 000

6 72 3/32 4 006 101 0.1 1 002

(b) woXFEM .

Table 6.2: Characteristics of the different grid resolutions with respect to the num-
ber of the triangulation levels k.

Table 6.2(a) summarizes the simulation setup for the strategy XFEM with re-
spect to the number of triangulation levels k, whereas Table 6.2(b) presents the
same summary for the strategy woXFEM . In both tables, the column labeled by P
shows the number of processes that are used for the simulation. Furthermore, in
these tables, the minimal edge length hmin of tetrahedra intersected by Γϕ and the
number of velocity DOF nu are given. Note that due to the non-linear coupling
of the Navier-Stokes equations (2.12)–(2.13) and the level set equation (2.14), we
decrease the time step width ∆τ when increasing k. The last column lists the
number of simulated time steps that are performed to obtain the terminal rising
velocity.

In this section, we compare the simulated rising velocities with the results pre-
sented in [20,85]. The rising velocity of an n-butanol drop with a diameter of 2mm
is determined as 53mm/s in [85] and is obtained by Drops using the extended
finite method. In the collaborative work [20], the numerical experiments consider
both strategies, i.e., discretizing the pressure with and without extended finite
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6.2 Numerical Results

element functions. That work concludes that the results gathered by the extended
finite element method better matches the experimental data. So, we compare our
results only with the presented rising velocity that is computed by the extended
finite element method. Furthermore, in contrast to [85] and this thesis, the rising
velocity is not determined by (6.1) but by differentiating the discrete simulated
positions of the drop’s barycenter with respect to time. These velocities imply
a maximal observed rising velocity of 57mm/s for the n-butanol drop with a di-
ameter of 2mm. In addition, smoothed velocities are considered which result in
a terminal rising velocity of 54mm/s. Moreover, an algebraic model introduced
in [91] is used to approximate the rising velocity of the drop by a function of the
drop diameter. This model does not solve any partial differential equation and
yields a rising velocity of 57.1mm/s.

6.2 Numerical Results

Before analyzing the rising velocity of the n-butanol drop, we compare the result of
a serial and a parallel simulation. Note that this comparison is not feasible for the
large problem setups, i.e., a large number of local refinements. For instance, con-
sider the simulation using the strategy XFEM on the tetrahedral hierarchy with
six triangulation levels. This simulation takes 160 h by 680 processes. Hence, the
serial simulation would take 680·160 h ≈ 12.5 years—if we assume perfect speedup.
Therefore, we compare the serially simulated rising velocity with the rising veloc-
ity determined by a parallel simulation on a hierarchy with k = 3 triangulation
levels. In both simulations, we employ the strategy XFEM . Figure 6.2 displays the
difference ∆vris between the rising velocity obtained by the serial and the parallel
simulation during the time 0 s ≤ τ ≤ 0.4 s. In the first 0.1 s, both simulations
determine the same rising velocity. The first difference occurs when re-initializing
the level set function. In contrast to the parallel simulation, the serial simulation
uses the hard to parallelize but more accurate definition T (w) ⊃ T (w) for frontier
vertices, cf. Sect. 5.2.2. The largest difference between the simulated velocities is
observed at τ = 0.374 s and accounts for 0.019mm/s which is rather small com-
pared to the serial simulated rising velocity of 51.76mm/s at this time. Thus, in
this scenario, the results of the parallel and serial simulation are comparable.

Next, in Fig. 6.3, we focus on the grid convergence, i.e., the influence of the grid
resolution on the rising velocity. Figure 6.3(a) illustrates the rising velocity vris(τ)
of the n-butanol drop in the time interval 0 s ≤ τ ≤ 0.34 s. Here, the strategy
woXFEM is applied to all problem sizes illustrated in Table 6.2. If we consider a
coarse triangulation, i.e., the hierarchy with k = 3 levels, the rising velocity vris(τ)
oscillates and does not converge to a constant terminal rising velocity. The local
maxima correlate with the application of the adaptive grid refinement. That is,
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Figure 6.2: Difference ∆vris between the serial and parallel computed rising veloc-
ity with respect to time τ when using the strategy XFEM and the
tetrahedral hierarchy with k = 3 triangulation levels.

every time the grid is modified the rising velocity tends to decrease in the follow-
ing time steps. This observation indicates that the grid resolution is too coarse
for this two-phase flow simulation. However, if we consider the finer triangula-
tions, i.e., the hierarchies with four to six triangulation levels, this effect vanishes
and the rising velocity becomes a smooth function. The terminal constant rising
velocity is reached at approximately 0.25 s. Furthermore, we observe that the ris-
ing velocity increases when the grid resolution is increased in the vicinity of the
drop’s interface. This effect corresponds to the results in [20]. For the hierar-
chy with k = 6 levels, only the first 0.1 s are simulated because the simulation
time exceeds 160 h. The rising velocity vris(τ) determined by the strategy XFEM
is illustrated in Fig. 6.3(b). As in the left figure, the grid resolution obtained
with k = 3 does not suffice to gain a smooth rising velocity. Increasing the grid
resolution also increases the rising velocity. In contrast to Fig. 6.3(a), the rising
velocity determined on the tetrahedral hierarchies with k = 4 and k = 5 levels
differs only slightly. Moreover, the difference between the rising velocities deter-
mined on the hierarchies with k = 5 and k = 6 levels is only marginal in the
first 0.0925 s. For instance, at 0.925 s the difference accounts for 0.76mm/s, i.e.,
the rising velocity determined on the hierarchy with k = 5 triangulations is only
by 1.7% smaller than the one computed on k = 6 levels. This maginal difference
indicates the grid convergence of the rising velocity when the n-butanol drop is
simulated by the extended finite element method for the pressure on a triangula-
tion with a minimal edge length of hmin = 3/32mm in the vicinity of the drop’s
interface Γϕ.

In Table 6.3, we summarize the results concerning the rising velocity of the n-
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(a) woXFEM .
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(b) XFEM .

Figure 6.3: Comparison between the rising velocities vris(τ) for k = 3, . . . , 6 of
an n-butanol drop with a diameter of 2mm.

Strategy k = 3 k = 4 k = 5

woXFEM 47.5 49.4 51.7

XFEM 50.3 53.3 54.4

Table 6.3: Maximal rising velocity vmax
ris in mm/s of an n-butanol drop with a

diameter of 2mm on tetrahedral hierarchies with different number of
triangulation levels k.

butanol drop with a diameter of 2mm. In this table, the maximal rising velocity

vmax
ris := max

0 s≤τ≤0.34 s
vris(τ)

is illustrated for both strategies and for the tetrahedral hierarchies with k = 3, 4,
and 5 triangulation levels. We notice that the rising velocity increases when in-
creasing the grid resolution as also illustrated in Fig. 6.3. Moreover, we observe
that for a given number of refinements the rising velocity vmax

ris is smaller when
using the strategy woXFEM rather than the strategy XFEM . That is, the rising
velocity depends not only on the minimal edge length hmin in the vicinity of the in-
terface Γϕ but also on the discretization of the pressure. This effect is also reported
in the collaborative work [20]. Although the largest rising velocity determined in
this thesis is smaller than 57.1mm/s as suggested by the algebraic model [91], it
is larger than the velocity 53mm/s as reported in [85] and 54mm/s as presented
in [20] for the smoothed data.

Next, we compare the differences in the rising velocity when considering differ-
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ent strategies to simulate the n-butanol drop in detail. In Sect. 3.4, we note that
a replacement of the library DDD is currently being developed to manage and to
track information about the distributed elements of the triangulations. Right now,
this replacement DiST is capable of generating a tetrahedral hierarchy of arbitrary
levels. However, DiST is not capable to adaptively modify hierarchies over the
simulation time. To even present first results of this preliminary implementation
of DiST, we also employ DiST instead of DDD to simulate the rising n-butanol
drop. In the remainder of this section, this strategy is denoted by DiST and uses
the same settings as the strategy XFEM which are given in Table 6.2. The sim-
ulated rising velocities vris(τ) are depicted for all three strategies XFEM , DiST ,
and woXFEM in Fig. 6.4. In Fig. 6.4(a), the tetrahedral hierarchies with k = 3
levels are used and, in Fig. 6.4(b), the triangulation hierarchies with k = 4 are con-
sidered. As observed above, the strategy XFEM evaluates larger rising velocities
than the strategy woXFEM . Although the strategies XFEM and DiST are using
the same setup and simulation algorithm, the resulting rising velocities vris(τ) dif-
fer, which is observed by comparing the results in Fig. 6.4(a) and (b), respectively.
There are two sound explanations for this observation. First, a decomposition
of the tetrahedral hierarchy is determined by a heuristic of ParMETIS. This
results in different distributions of tetrahedra among the processes and, thus, in-
fluences the convergence behavior of the Krylov subspace methods [49]. Second,
the two strategies use different algorithms to determine inner products of vectors.
Both effects influence the behavior of the adaptive solver hierarchy presented in
Chap. 2 and, hence, result in different rising velocities. However, this difference
is insignificant when a higher grid resolution is used. For instance, in Fig. 6.4(b),
the two simulated rising velocities are nearly congruent on the hierarchy consisting
of k = 5 triangulations.

Finally, we focus on the speedup for solving a two-phase flow problem by the
two strategies woXFEM and XFEM . In this thesis, we do not consider the parallel
efficiency of the preliminary implementation of the module DiST because it is still
being developed. In addition, note that the time spent in the assembly process
and solving systems of sparse linear equations is almost independent of the choice
of DDD or DiST. Therefore, the following results are obtained using the library
DDD. Hereby, we analyze the time T sim(P, k) which is spent by P processes to
simulate five time steps on a tetrahedral hierarchy of k triangulation levels. As
in the other chapters, a minimal number P k

min of processes is needed to perform a
simulation on a given hierarchy of k levels. Thus, we define the speedup by

Ssim
P k
min

(P, k) :=
T sim(P k

min, k)

T sim(P, k)
· P k

min.

This speedup is illustrated in Fig. 6.5(a) and (b) for woXFEM and XFEM , re-
spectively. Here, we observe that the scalability depends on the problem size.
On the tetrahedral hierarchies with k = 3 levels, the two simulations scales up
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Figure 6.4: Comparison of the rising velocities vris(τ) of an n-butanol drop with a
diameter of 2mm determined by the three strategies.

to 32 processes. A scaling on up to 128 processes is observed for the hierarchies
with k = 4 levels. For k = 5 or k = 6, Fig. 6.5 illustrates a scaling on up to 512
processes. For instance, in Fig. 6.5(a), a speedup of Ssim

32 (512, 5) ≈ 300 is achieved
when simulating the rising n-butanol drop by the strategy woXFEM .

Recall that, due to rounding errors and different decompositions of the tetra-
hedral hierarchy, the number of iterations of the nested, iterative solvers may
vary with respect to the number of used processes. Therefore, we here also con-
sider the average time and speedup of one inexact Uzawa iteration. To this end,
let nU(P, k) denotes the number of iterations used by the inexact Uzawa algo-
rithm in all five time steps when using P processes. For instance, in Fig. 6.5(b),
the number nU(P, 3) varies between 84 and 92 with respect to P . We define the
average time and speedup for one inexact Uzawa iteration by

T sim
U (P, k) :=

T sim(P, k)

nU(P, k)
and SU

P k
min

(P, k) :=
T sim
U (P k

min, k)

T sim
U (P, k)

· P k
min.

In Fig. 6.6, the speedup SU
P k
min

(P, k) with k = 3, . . . , 6 is depicted for the strate-

gies XFEM and woXFEM . First, consider the speedup of the strategy woXFEM
in Fig. 6.6(a). Using the tetrahedral hierarchy with k = 6, we observe that
the speedup of one inexact Uzawa iteration for 512 processes is smaller than
the speedup for all five time steps as reported in Fig. 6.5(a). This is primar-
ily caused by the number of inexact Uzawa iterations that are performed by 256
and 512 processes. In this case, the simulation by 512 processes consumes less iter-
ations, nU(512, 6) = 143, than the simulation on 256 processes, nU(256, 6) = 163.
Hence, there is more computational work executed by 256 processes. For the strat-
egy woXFEM on the hierarchy Ref. 5, the speedup of an average inexact Uzawa
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Figure 6.5: Speedup Ssim
Pmin

(P ) of simulating five consecutive time steps of a rising n-
butanol drop.

8 16 32 64 128 256 512
0

100

200

300

400

500

600

P

S
U

 

 

k = 3
k = 4
k = 5
k = 6
ideal

(a) woXFEM .

8 16 32 64 128 256 512
0

100

200

300

400

500

600

P

S
U

 

 

k = 3
k = 4
k = 5
k = 6
ideal

(b) XFEM .

Figure 6.6: Speedup SU
Pmin

(P ) of an average inexact Uzawa iteration when a ris-
ing n-butanol drop is simulated.
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6.2 Numerical Results

iteration is smaller than the speedup of all five time steps, i.e.,

617 = Ssim
256(512, 6) > SU

256(512, 6) = 542.

Next, we consider the strategy XFEM in Fig. 6.6(b). Here, in contrast to the
strategy woXFEM , the number of inexact Uzawa iterations increases when the n-
butanol drop is simulated by 512 rather than by 215 processes on the hierarchy
with k = 6, i.e., 190 = nU(256, 6) < nU(512, 6) = 227. Thus, for the simulation on
the tetrahedral hierarchy of k = 6 triangulation levels, a larger speedup for one
inexact Uzawa iteration on 512 processes is observed in Fig. 6.6(b) than for the
simulation of the five time steps in Fig. 6.5(b). Overall, the performance study
demonstrates the scalability of Drops on up to 512 processes for the two-phase
flow simulation of a rising n-butanol drop in an aqueous phase.
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7 Concluding Remarks and Outlook

This thesis dealt with algorithms and methods for the parallel finite element sim-
ulation of three-dimensional two-phase flow problems. Preceding research [80, 85]
considered the mathematical formulation of such flows by the level set approach
and their numerical solution by the finite element method on a hierarchy of un-
structured triangulations. Furthermore, in [79,80,82], data structures and a paral-
lel refinement algorithm are presented which enable a decomposition of tetrahedral
hierarchies among processes. This method facilitates a domain decomposition
approach that has been successfully employed in [79] to solve different Poisson
equations by multiple processes. All of these techniques are implemented in the
software toolkit Drops [117] that is being developed in a collaboration with the
Chair for Numerical Mathematics at RWTH Aachen University. That research
provides the basis of this thesis.

In the introduction, we revealed the lack of parallel algorithms when simulat-
ing two-phase flow problems on unstructured tetrahedral grids by the level set
approach and the finite element method. This lack primarily consists of inappro-
priate load balancing models for two-phase flow simulations and the nonexistence
of parallel algorithm for re-initializing level set functions. This thesis presented
methods that solve both issues such that an efficient parallel simulation of two-
phase flows is now feasible. Hence, Drops is now capable of simulating problems
stemming from “real-world” applications that are relevant in practice as demon-
strated by the case study of a rising n-butanol drop.

A challenge in two-phase flow simulations on distributed-memory computer ar-
chitecture arises in the context of load balancing. In this thesis, we transformed
the problem of finding a partitioning of the tetrahedra into graph and hypergraph
partitioning models introduced in [67, 72]. These models specifically address the
decomposition of the underlying hierarchy of tetrahedral grids for two-phase flow
simulations and, thus, enable an adaptive domain decomposition approach. To
this end, the partitioning models aim at minimizing the communication volume or
reducing the storage overhead that is caused by parallel computing and evenly bal-
ancing the computational load among the processes. Besides illustrating that the
models are capable of adequately decomposing the tetrahedral hierarchy among
up to 512 processes, we compared these models and found that the hypergraph
approach is the most promising model to determine such decompositions. The
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reason is that hypergraphs are capable of exactly modeling the total communica-
tion volume that occurs during the parallel linear algebra operations which form
a dominant part of the execution time. In addition, the new hypergraph model is
not only tailored toward parallel two-phase flow simulations but also applicable to
any finite element simulation on distributed, unstructured grids.

For these load balancing approaches, there are directions for future research.
We here state three aspects of this research. First, in a parallel two-phase flow
simulation, various algorithmic tasks are distributed among the processes, e.g.,
assembling, solving and preconditioning systems of linear and non-linear equations,
re-initializing the level set function, solving additional equations on the interface,
modifying the tetrahedral hierarchy, and so forth. The models in this thesis aim
to find a decomposition of tetrahedra for these tasks, separately. Therefore, future
research efforts should be devoted to determine the “best” data decomposition for
all of these tasks, simultaneously. Second, when minimizing the communication
volume, neither the graph models nor the hypergraph models distinguish between
the senders and the receivers of the communication and only model the global
communication volume by the edge cut or the cut size, respectively. This global
view of communication may lead to imbalances in the communication volume
per process. Therefore, models need to be explored that minimize the global
communication and balance the communication volume per process. Third, a
single communication is typically modeled by the sum of the latency and the
time for transferring data. Since the presented graph and hypergraph models
only the amount of transferred data, the latency is not addressed. However, the
latency dominates the communication time when moderate message lengths are
considered. Thus, enhanced partitioning models should include the latency, too.

The re-initialization of level set functions typically constitutes only a small frac-
tion of the execution time in two-phase flow simulations on a serial computer. In
contrast, this part becomes dominant in parallel simulations if no suitable algo-
rithm is available that exploits the data distribution among processes. To the best
of our knowledge, there exists no parallel algorithm—except our algorithm pre-
sented in [69] and [70]—in the literature that is capable of re-initializing level set
functions on distributed, unstructured grids. Therefore, in [69, 70] and Chap. 5,
we introduced a novel algorithm that efficiently determines a re-initialized level
set function for two-phase flow simulations by multiple processes. This algorithm
is based on direct distance computations between vertices and the interface by an
efficient multidimensional tree data structure, i.e., k-d trees. In a detailed analysis,
we compared the novel algorithm with the fast marching method (FMM) which
forms a standard serial technique. The theoretical analysis showed that the algo-
rithmic complexity, if executing the new algorithm on one process, is comparable
to the FMM. The numerical results in this thesis illustrated that the new algo-
rithm is more accurate than the FMM. Moreover, in contrast to the FMM which is
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difficult to parallelize, the new parallel algorithm based on direct distances scales
on recent high-performance computers by exploiting their specific architecture.

There is still room for future research and development to further increase the
accuracy of this re-initialization algorithm and its parallel performance. The accu-
racy of the algorithm can be improved by enlarging the search space that describes
the interface. Currently, only frontier vertices and perpendicular feet represent the
interface. It is likely that the accuracy will be improved by adding extra points to
the search space that are located on the interface. However, this approach results
in an additional parameter for the number of extra points and, in addition, de-
creases the performance because the underlying k-d tree needs to represent a larger
search space. This trade-off between accuracy and performance could be explored
in future research. Furthermore, the accuracy of the re-initialization algorithm
strongly depends on a precise determination of distances between the interface
and vertices in its vicinity, i.e., frontier vertices. Current research treats this topic
by high-order projection methods and by sophisticated definitions of tetrahedral
neighbor sets of frontier vertices. However, these methods are challenging to imple-
ment for distributed-memory computers and require future implementation work.
Moreover, the serial and parallel performance can be increased by exploiting the
hierarchy of triangulations to determine the distances between the vertices and
the interface. For instance, the hierarchy can be employed to implement a narrow
band method where distances are only computed for vertices located in a neighbor-
hood around the interface. Finally, we identify the serial generation of the k-d tree
as a limiting element for the parallel scalability in our implementation. Therefore,
the techniques for a parallel k-d tree generation, that are discussed in [43], can be
adapted to improve the parallel efficiency of the re-initialization algorithm based
on direct distances.

In this thesis, the case study of a rising n-butanol drop in an aqueous phase
demonstrated the success of the parallel techniques. The scalability of Drops was
illustrated for up to 512 processes for this non-trivial simulation stemming from a
concrete engineering question. This question is concerned with the rising velocity
of the n-butanol drop which is a standard test system in process engineering [122].
In a detailed study, we analyzed the effect of grid refinements on this velocity.
Therefore, triangulations with a high resolution and a large number of tetrahedra
have been employed. Such a study has never been accomplished before on grids
with such a high resolution.

There are some directions for future developments and implementation works
that aim at performing even larger two-phase flow simulations, utilizing even more
processes, and answering even more advanced engineering questions by Drops.
First, due to the coupling of the Navier-Stokes equations and the level set equa-
tion, the time step width becomes very small when the grid resolution is increased.
Thus, future research should focus on developing time integration schemes that al-
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low to perform larger time steps or to perform time steps simultaneously. Second,
we observed that most of the computational time is spent in solving the system
of non-linear equations occurring in one simulation time step. Although Drops

is interfaced to the library hypre [62] which provides a variety of parallel precon-
ditioners, we are in need of robust preconditioners that are well suited for both
two-phase flow simulations and parallel computing to reduce this computational
time for one time step. Third, in contrast to the serial algorithms implemented in
Drops, the parallel ones are not capable of solving mass and surfactant transport
problems in two-phase flows.

We want to place emphasis on two issues we learned during this thesis. First,
developing parallel algorithms is far more rich than “parallelizing the serial algo-
rithms.” For instance, there is no straightforward way of parallelizing the inherent
sequential fast marching method. Thus, in some cases, parallel algorithms must
differ substantially from serial ones. Second, developing parallel algorithms for
two-phase flow simulations is far more rich than adjusting parallel algorithms for
one-phase flows. For instance, an appropriate decomposition of the computational
domain for one-phase flows may not imply a suitable decomposition for two-phase
flows. Hence, the diverse and complex characteristics of two-phase flow simulations
require specifically designed parallel algorithms.

Finally, the methods and algorithms presented in this thesis enable the parallel
simulation of two-phase flow problems on hierarchies of unstructured, large tri-
angulations when following the level set approach by the finite element method.
To this end, we combined approaches from computer science and numerics. Over-
all, these advancements of parallel methods allow researchers from computational
engineering science to consider and address meaningful problem instances and to
gain a deeper insight into such complex flow problems.
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[18] T. Belytschko, N. Moës, S. Usui, and C. Parimi. Arbitrary discontinuities
in finite elements. Int. J. Numer. Meth. Engng., 50(4):993–1013, 2001.

[19] J. L. Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, 1975.

[20] E. Bertakis, S. Groß, J. Grande, O. Fortmeier, A. Reusken, and A. Pfennig.
Validated simulation of droplet sedimentation with finite-element and level-
set methods. Chem. Eng. Sci., 65:2037–2051, 2010.

[21] J. Bey. Tetrahedral grid refinement. Computing, 55(4):355–378, 1995.

[22] J. Bey. Simplicial grid refinement: On Freudenthal’s algorithm and the
optimal number of congruence classes. Numer. Math., 85(1):1–29, 2000.

[23] K. Birken. Ein Modell zur effizienten Parallelisierung von Algorithmen auf
komplexen, dynamischen Datenstrukturen (in German). PhD thesis, Uni-
versität Stuttgart, 1998.

[24] K. Birken and P. Bastian. Dynamic Distributed Data (DDD) in a paral-
lel programming environment – specification and functionality. Technical
Report RUS–22, Rechenzentrum der Universität Stuttgart, Germany, 1994.

132



Bibliography

[25] R. Biswas and R. C. Strawn. A new procedure for dynamic adaption of
three-dimensional unstructured grids. Appl. Numer. Maths., 13:437–452,
1994.
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[68] O. Fortmeier and H. M. Bücker. A hybrid parallel algorithm for transform-
ing finite element functions from adaptive to Cartesian grids. In Proc. of
the Symposium on High Performance Computing Systems and Applications,
HPCS’09, pages 48–61. Springer, 2009.
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