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A few words on the leitmotif of this thesis:
The main examples for Hermitian modular forms come from the classical case, from Hermitian
Eisenstein series due to Hel Braun [Br3] or from liftings, see Gritsenko, Ikeda, Krieg, and lots
of others. Cohen and Resnikoff [CoRe] introduced the methodof constructing modular forms
via theta-series to the theory of Hermitian modular forms and gave a construction for lattices
which yield Hermitian modular forms for an arbitrary imaginary quadratic field. In [DeKr]
then one finds an elementary method for the construction of those lattices. One is especially
interested in the number of distinct isometry classes (in the genus) of lattices which then yield
different theta-series, a problem which was already sketched in [CoRe], page 336, ”...its [the
genus] class number remains unknown.”. So far, just the situation with respect to the Gaussian
number field, see [KiMu] or [Sc1], was known. This thesis generalizes these results to arbitrary
imaginary quadratic fields of class number one. In special, well-arranged cases we investigate
the isometry classes of the lattices of interest. Together with Grabriele Nebe we have developed a
mass formula which can be applied to imaginary quadratic fields of class number 1 easily and can
be adopted to other class numbers. Then we compute the filtration of cusp forms analogous to
[HeKr] where we considered the filtration of cusp forms arising from lattices over the Gaussian
number field, but this is limited to very easy cases as bounds for dimension estimations get out of
reach very soon. We give some information on the situation with respect to higher class numbers
as 1. The natural continuation of this thesis then is to investigate the situation with respect to
higher class numbers. But things seem to get very ugly very fast. On the other hand one can step
deeper into the theory of modular forms itself and try to makesome advance with respect to the
filtration.

I wish to thank my advisor, Prof. Dr. Aloys Krieg, for the opportunity to write my Phd. thesis
under his supervision and his imperturbable support. Furthermore I am deeply grateful to Prof.
Dr. Gabriele Nebe for her help and ideas she was willing to share with me.
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1 The basic theory

1.1 Lattices

Let d ∈ N be a squarefree integer. ThenK := Q(
√
−d) is an imaginary quadratic number field.

ObviouslyK is an algebraicQ-field extension of degree 2. In cased≡ 1,2 (4) we have disc(K) =
−4d and in cased ≡ 3 (4) we have disc(K) = −d. We consider the ring of integersOK of the
Q-field extensionK, we haveOK = 〈1,ω〉Z, where

ω =

{
i
√

d d≡ 1,2 (4)
1+i

√
d

2 d ≡ 3 (4).

OK is a Dedekind domain.

Definition 1.1 A lattice of rankn overOQ(
√
−d) is a subsetΓ ⊂ Q(

√
−d)n which has the struc-

ture of anOK-submodule with respect to the vector space and fulfillsQ(
√
−d) ·Γ = Q(

√
−d)n.

In full generality one replacesQ(
√
−d)n by an abitrary vector space andOK by a Dedekind

domain within the underlying field. When the rank and the underlying field is not specified we
just speak of a lattice.

Remark 1.2 a) LetK an algebraic number field, which is aQ-extension of finite index, then
the ideal class groupclK is defined as the quotientJK/PK, the group of fractional ideals
modulo the group of fractional principal ideals. The class numberhK is defined as the
order♯clK. For

d ∈ {1,2,3,7,11,19,43,67,163}

the imaginary quadratic number fieldK = Q(
√
−d) fulfills hK = 1. In case ofhK = 1 a

latticeΓ of rankn overOQ(
√
−d) is a necessarily freeOK-module, see [OMe], and so there

exists a basis(b1, . . . ,bn) of Q(
√
−d)n such thatΓ = 〈b1, . . . ,bn〉OK . Γ is a freeOK-module

of rankn in the vector spaceQ(
√
−d)n.

b) Let Γ be a free lattice within an arbitrary vector spaceV. If V is equipped with a regular
symmetric formh : V ×V → K, where symmetry may be definied as convenient and regu-
larity means that the form is linear in the first variable andK the underlying field, then one
can introduce the Gram matrix of a lattice with a bilinear form (Γ,h) as

(Gram(Γ,h))i, j = h(bi,b j).

In the special case of imaginary quadratic fields, the vectorspaceQ(
√
−d)n, any square-

freed, is canonically equipped with the standard Hermitian form

〈·, ·〉 : Q(
√
−d)n×Q(

√
−d)n → C,

which is of course linear in the first variable. So forhK = 1 we can always consider Gram
matrices of lattices. When we do not specify, we always will use the standard Hermitian
form.
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c) Let Λ anOK lattice. In the case of arbitrary class number there areyi ∈ Kn andai ∈ JK

with Λ = ∑aiyi , see [OMe].

Definition 1.3 a) Let(Γ,h) and(Λ,h′) be two lattices of rankn. An OK-linear bijection

ϕ : Γ → Λ, with h(x,y) = h′(ϕ(x),ϕ(y)) for all x,y∈ Γ,

is called anisometryof the lattices.

b) An isometryϕ : Γ→ Γ is called anautomorphismof Γ. If Γ is a free lattice we have a lattice
basisB, which also is a basis for the vector space, and we have[ϕ]B⊂Mat(n×n;OK). This
will be called thecoordinate action.

c) We set Aut(Γ) := {ϕ : Γ → Γ; ϕ is an isometry ofΓ}, theautomorphism groupof a lattice
Γ.

When the underlying field is an imaginary quadratic number field, isometry and change of basis
can be described via group actions. This is stated in a remark.

Remark 1.4 a) Via the isometry relation the set of all lattices in a givenvector space is
divided into classes. Theclassof a latticeΛ is denoted by cls(Λ). From the viewpoint of
the coordinate action isometry is provided via the action ofthe unitary group U(n;K).

b) Let Γ = 〈b1, . . . ,bn〉OK . A change of basis from the viewpoint of the coordinate action is
provided via the action of Gl(n;OK). Thus a Gram matrix of a lattice is unique modulo the
action of Gl(n;OK). On the other hand a lattice is uniquely determined by its Gl(n;OK)-
orbit in the set of symmetric matrices, where the concept of symmetry may be defined in a
convenient way.

c) Obviously Aut(Γ) ⊂U(n;C) is a group. It is well known, that Aut(Γ) is a finite group.

Definition 1.5 a) LetS the set of all non Archimedian prime spots ofK andKp the comple-
tion of K at the spotp ∈ S. Furthermore letIp the group of fractional ideals ofKp atp. We
consider the canonical surjective homomorphism

I(S)→ Ip, ∏
q∈S

qνq 7→ pνp.

Then letap the image under this mapping ofa ∈ JK. For a latticeΛ = ∑aiyi we now define
Λp = ∑ap,iyi . We say that twoOK latticesΛ andΓ within Kn belong to the samegenusif
Λp is isometric toΓp for allep ∈ S. The genus ofΛ is denoted by gen(Λ).

b) We define themass of a genusof latticesG as

mass(G) := ∑
cls(Λ)∈G

1
♯Aut(Λ)

,

where the sum ranges over representatives of different isometry classes contained in the
genus.
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Remark 1.6 a) LetΓ andΛ be as chosen in the definition. Obviously gen(Λ) = gen(Γ) ⇔
cls(Λp) = cls(Γp) ∀p ∈ S.

b) Considering free latticesΛ,Γ, then the genus condition reduces to the existence ofBl ∈
Mat(n×n;OK) for all l ∈ N such that the matrix congruences

Bl
tr

Gram(Λ)Bl ≡ Gram(Γ) (l)

hold.

Definition 1.7 Let Λ = ∑aiyi anOK lattice, see Remark 1.2 c), together with a regular symmetric
form h. We define thescaleby

sc(Λ) := h(Λ,Λ)

and thevolumeby

vol(Λ) = ∏a2i ·det(h(yi ,y j)i, j).

Furthermore we call a latticea-modular if sc(Λ) = a and vol(Λ) = ar . Thedual of a lattice (of
full rank) Λ with respect to a regular symmetric formh is defined as

Λ♯ = {x∈V; h(x,Λ) ⊂OK}.

A lattice Λ is calledintegral if Λ ⊂ Λ♯. If we haveΛ = Λ♯ then a lattice is calledunimodular
(with respect to the fixed regular symmetric form).Λ♯/Λ is called thediscriminant groupof a
lattice.

Remark 1.8 a) If Λ is a free lattice the integrality can be read off from a Gram matrix.
FurthermoreΛ then is unimodular if the Gram matrix is unimodular.

b) In the case of free lattices the volume equals the discriminant of a lattice basis which is
equal to the square root of the determinant of a Gram matrix.

Example 1.9 a) Theprincipal genusof lattices of a vector space of dimensionn is the genus
that contains the lattice characterized by the Gram matrixEn. The lattices contained in this
genus are obviously unimodular.

b) An important genus for the theory of modular forms is the genus of even and unimodular
Z-lattices. Such lattices exist only if the dimension of the vector spaceRn is divisible by
8. In dimension 8 the genus just consists of theE8 class, in dimension 16 we haveE8⊕E8,
which is the orthogonal sum of twoE8 lattices, andD+

16 = 〈D16,(
1
2)16〉Z, the lattice which

is generated by the root latticeD16 together with the vector which components are all equal
to 1/2. In dimension 24 we have the 23 Niemeier lattices and the Leech lattice, see [CoSl].
We want to emphasize that allZ-lattices are free lattices.
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1.2 Hermitian modular forms

Our aim is to get structural results on lattices to apply themto the theory of modular forms. The
connection is a theta-series construction. The classical (real) case starts with an even and integral
unimodular lattice (in dimension 8· k, k ∈ N) as an input for the theta-series. We present some
facts of the theory of Hermitian modular forms.

Definition 1.10 TheHermitian half-spaceof degreep∈ N is given by

H p(C) :=

{
Z ∈ Mat(p× p;C);

1
2i

(Z−Z
tr
) > 0

}
.

Theunitary symplectic groupwith respect to an imaginary quadratic number fieldK is defined
as

Sp(p;K) :=
{

M ∈ Mat(2p×2p;K); MJM
tr

= J
}

,

whereJ =

(
0 −E
E 0

)
. The Hermitian modular groupof degreep ∈ N over the imaginary

quadratic number fieldK is defined as the intersection

Γp(OK) := Sp(p;K)∩Mat(2p×2p;OK).

Remark 1.11 The Hermitian modular group of degreep acts on the Hermitian half space of
degreep via the usual fractional linear transformation

Z 7→ M〈Z〉 := (AZ+B)(CZ+D)−1,

whereA,B,C,D are thep× p sub-blocks ofM.

From [Kl] we get explicit generators for the Hermitian modular group.

Theorem 1.12 The modular groupΓp of degree p with respect to an imaginary quadratic field
K is generated by

〈
J,T =

(
E S
0 E

)
, S= S

tr ∈ Sym(p;OK), R=

(
(U−1)tr 0

0 U

)
, U ∈ Gl(n;OK)

〉
,

whereOK ist the ring of integers of K.

In view of the theorem we turn to the definition of Hermitian modular forms.

Definition 1.13 A Hermitian modular formof weight k ∈ Z and degreep is a holomorphic
function f : H p → C satisfying

(i) f (Z+S) = f (Z) for all Hermitian matricesS in Mat(n×n;OK),

(ii) f (Z[U ]) = f (Z) for all U ∈ Gl(n;OK),
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(iii) f (−Z−1) = (detZ)k f (Z),

and forp = 1 the additional condition that

(iv) f is bounded in the domain{z∈ C; Im(z) ≥ β}, β > 0.

The vector space of Hermitian modular forms of weightk and degreep is denoted byM k(Γp).
The subspaceSk(Γp) is characterized by the condition

f |M|Φ = 0,

for all M ∈ Sp(p;K), whereΦ is the SiegelΦ-operator, which is defined analogously to the
Siegel case, the case of Siegel modular forms defined on the Siegel half space, see [Si].

Remark 1.14 a) Hermitian modular forms exhibit a Fourier expansion

f (Z) = ∑
T∈Λ(p;OK)

α f (T)exp(2πi · trace(TZ)),

where

Λ(p;OK) = {T ∈ Mat(p;K); T = Ttr ,(T) j , j ∈ Z, (T) j ,l ∈O⋆
K , j 6= l},

the dual lattice of the lattice of integral Hermitian matrices with respect to the trace form,
see [Br1] or [Kr2].

b) Hermitian modular forms of negative weight vanish.

c) Analogous to the Siegel case, the vector spacesM k(Γp) are finite dimensional.

d) For n = 1 andK 6∈ {Q(
√
−1),Q(

√
−3)} the groupsΓ1(OK) are equal to the classical

modular group Sl(2;Z). For K ∈ {Q(
√
−1),Q(

√
−3)} we haveΓ1(OK) = U ·Sl(2;Z),

whereU is the group of units ofOK. Thus forn= 1 the groups of modular transformations
with respect toK, the modular group modulo the constants, are equal to the classical
modular group for all imaginary quadratic number fields.

e) We want to emphasize that the invariance condition with respect to the slash operator

f |kM(Z) := det(CZ+D)−k · f (M〈Z〉) = f (Z)

is equivalent to (i)-(iii) if we haved 6∈ {1,3}. Otherwise we have a problem with (ii) which
comes from the existence of the additional roots of unity in the ring of integers ofQ(i) and
Q(

√
−3). In comparison to (i)-(iii) one looses many forms when usingthe latter version.

Within the literature one finds both definitions.

f) For hK = 1 we have a comfortable reduction theory, analogous to the real Minkowski
reduction, and therefore the cusp form condition reduces tof |Φ = 0 which is equal to the
vanishing of all Fourier-coefficients with respect to the Hermitian matrices which are not
positive definite, see [Br2].
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Example 1.15 Let K := Q(
√
−d), p∈ N, k > 2p and

Γ̂p :=

{
Γp, d 6∈ {1,3},

Γp∩Sl(2p,OK), d ∈ {1,3}.

Furthermore let

Γ̂p,0 :=

{
M =

(
A B
C D

)
∈ Γ̂p; C = 0

}

the subgroup of all those matrices whichC-block is equal to 0. Then theHermitian Eisenstein
seriesis defined to be

Ek
n(Z) := ∑

M:Γ̂p,0\Γ̂p

det(CZ+D)−k = ∑
M:Γ̂p,0\Γ̂p

1|kM(Z),

where we have the usual decomposition ofM into blocks. Then fork > 2p the Hermitian Eisen-
stein series is a Hermitian modular form of weightk and degreep, see [Br3] and [Kr2]. In the
latter reference you will also find further characterizations of the Hermitian Eisensteins series,
including Fourier-coefficients, which are explicitly given for p = 2.

Definition 1.16 Let f ∈M k(Γp) be a Hermitian modular form with Fourier expansion

f (Z) = ∑
T∈Λ(p;OK)

α f (T)exp(2πi · trace(TZ)).

Such anf is calledsingular if α f (T) = 0 for all T > 0.

From [Va] we take the following lemma.

Lemma 1.17 Let K be an imaginary quadratic number field of class number one.

a) Let f ∈ M k(Γp) a non-vanishing singular Hermitian modular form, then k≡ 0 (4) and
k < p. Furthermore f∈M k(Γp)Θ.

b) Every f∈M k(Γp) with p< k is singular.

c) All Hermitian modular forms of weight k and degree k< p vanish identically if k6≡ 0 (4).
For k≡ 0 (4) we have the identity

M k(Γp) =M k(Γp)Θ.

Remark 1.18 a) Using the preceding lemma one can prove assertions concerning mapping
characteristics of theΦ-operator.

b) Analogous results for Siegel modular forms and low degrees were obtained in [KoMa].
Most probably these results can be generalized to Hermitianmodular forms.
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1.3 Lattices and Hermitian modular forms

Our aim, following [CoRe], is to construct Hermitian modular forms using theta-series. At first
we will restrict ourselves to free lattices, later in Section 5 we will discuss the case of non-free
lattices. So letΛ ⊂ Kn be a freeOK-lattice of dimensionn with Gram matrixH. Then the
theta-series

Θ(p)
OK

(Z,H) : H p(C) → C, Z 7→ vol(OK)p/2 ∑
G∈Mat(n×p;OK)

exp(πi trace(ZH[G])),

satisfies

Θ
O

♯
K
(−Z−1,H−1) =

(
det

Z
i

)n

(detH)pΘOK(Z,H),

the theta-transformation formula, where

Mat(n× p;OK)♯ = {M ∈ Mat(n× p;C); trace(MN
tr
) ∈ Z, for all N ∈ Mat(n× p;OK)}.

Using this theta-transformation formula we get explicit conditions on theOK-latticeΛ, so that
ΘOK(Z,H) fulfills the functional equation of Hermitian modular formswith respect to (partial)
involutions in the modular group. Using

Mat(n× p;OK)♯ =

(
2√
−d

)
Mat(n× p;OK)

we get the condition, see [CoRe] p. 332,

detH = 2nd−n/2.

Together with the other conditions from the functional equation one is interested in latticesΓ ⊂
Q(

√
−d)n together with a Hermitian form〈·, ·〉 : Q(

√
−d)n×Q(

√
−d)n → Q fulfilling

(i) 〈x,x〉 ∈ Q+, for all x∈ Γ (positive definite),

(ii) 〈x,x〉 ∈ 2Z, for all x∈ Γ (integral even),

(iii) det(Gram(Γ,〈·, ·〉)) = 2nd−n/2 (determinant condition).

One can show that these conditions urge the theta-series with respect to such lattices to be a
Hermitian modular form with respect to the modular group coming from the underlying field,
see [CoRe]. We add aC in the notation of theta-series to stress the difference between the
Hermitian and the classical Siegel case.

Theorem 1.19 Let Γ be a free lattice of rank n overOQ(
√
−d) fulfilling (i), (ii) and (iii). Then

using the abbreviation H:= Gram(Γ) we have

Θ(p)(Z,H;C) := ∑
G∈Mat(n×p;OK)

exp(πi · trace(Z ·H[G])

is a Hermitian modular form of weight n. We haveΘ(n)(·,S;C)|φ = Θ(n−1) (·,S;C) with
Θ(1)(·,S;C)|φ = 1.
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The theta-subspace, the subspace ofM k(Γp) which is spanned by theta-series, is denoted by
M k(Γp)Θ.

Remark 1.20 a) Let Γ = 〈b1, . . . ,bn〉OK be a free lattice of rankn overOQ(
√
−d) fullfilling

the conditions (i)-(iii) from above. Let againOK = 〈1,ω〉Z then consider theZ-module of
rank 2n

ΓZ = 〈b1,ωb1 . . . ,bn,ωbn〉Z .

Easy calculations show thatΓZ equipped with the (bilinear) form Re(〈·, ·〉) is an even and
unimodularZ-lattice. It is immediately clear that this is an equivalentcharacterization of
latticesΓ ⊂ (Q(

√
−d))n fulfilling (i)-(iii). This characterization allows a generalization to

non-free lattices.

b) WhenΓ is mapped toΓZ we loose the information, which vectors areC multiples, the
complex structure. The complex structure can be recovered from ΓZ when knowing the
action of the complexOK generator of the ring of integers onΓZ. On the other hand the
complex structure ofΓ can be recovered fromΓZ by explicit knowledge of the mapping
Γ → ΓZ.

c) Obviously there is a canonical embedding Aut(Γ) →֒ Aut(ΓZ)⊂ O(2n;Z). The embedded
group will be denoted by Aut(Γ)Z.

We take the preceding theorem and remark as an occasion for the next definition.

Definition 1.21 An OK lattice Λ ⊂ Kn of rank n which has the properties as in a) from the
preceding remark is calledϑ-lattice.

Remark 1.22 As even and unimodular lattices are classified up to dimension 24, we can use the
results on real unimodular lattices to obtain information on ϑ-lattices. For example one directly
gets the information thatϑ-lattices only exist if the dimension is divisible by 4.

From [DeKr] one directly gets the following theorem.

Theorem 1.23 For each genus ofϑ-lattices there exists a class of free lattices.

Furthermore [DeKr] gives explicit constructions forϑ-lattices. But in general one does not get
representatives for all the isometry classes.

Example 1.24 As this thesis is dedicated toϑ-lattices we want to give an example. Letd =−11,
w = i

√
11 the complexOK generator andn = 4. Then




2 0 6
11w 2

11w
0 2 2

11w − 6
11w

− 6
11w − 2

11w 2 0
− 2

11w 6
11w 0 2




is aϑ-lattice inQ(
√
−11)4 and the order of its automorphism group equals 1920.



The cased = 3 11

2 The cased = 3

2.1 Formulating a strategy

Remark 2.1 a) The casesQ(
√
−1), the Gaussian number field, with field discriminant disc=

−4 andQ(
√
−3), the Eisenstein number field, with field discriminant disc= −3 stand out due

to the fact that the complex generatorω of their rings of integers can be choosen as a root of 1
and therefore is a unit.
b) The genus ofϑ-lattices inQ(

√
−1)n is special as the corresponding Gram matrices all have

integral coefficients. For the ranksn = 4,8,12 the genera have been classified in [KiMu].

Now we will follow [KiMu] to classify the genera ofϑ-lattices overQ(
√
−3) for the ranks

n = 4,8,12. The basic idea, which will help to develop a strategy, is that the the complex gen-
eratorω acts as an automorphism on theϑ-lattices and this action will become manifest in the
automorphism group of the associatedZ-lattice of rank 2n, see the last section.

Observation Let Γ ⊂ Q(
√
−3)n be aϑ-lattice. We recall thatΓZ (equipped with the bilinear

form Re :ΓZ → R) is an even and unimodularZ-lattice. The groupU(n;Q(
√
−3)) acts transi-

tively on every class of theϑ-lattices, leaving the Gram matrix invariant. The coordinate action
of Gl(n;OK) corresponds analogously to a change of the lattice basis andthe automorphism
group (coordinate action) fulfills Aut(Γ) = U(n;Q(

√
−3))∩Gl(n;OK).

Now letΓ,Γ′
beϑ-lattices inQ(

√
−3)n with the additional property thatΓZ andΓ′

Z belong to the
same class of even and unimodularZ-lattices of rank 2n. We recall that the complex structure of

theϑ-lattices can be recovered from the mappingΓ → Γ(′)
Z . An arbritraryg∈ O(2n;R) applied

to ΓZ acts on the class ofΓZ but in general one then cannot easily recover the complex structure
of g(ΓZ) from the information encoded in the mapping. But the group Aut(Γ)Z ⊂ O(2n;R) will
respect the complex structure in the sense that the complex structure can be recovered via the
mapping.

We turn back to the central idea of [KiMu], wich is that the complex OK generator acts as an
automorphism of theϑ-lattices. In the caseK = Q(

√
−3) the complexOK generatorω fulfills

ω = 1
2(1+ i

√
3) and a calculation showsω ·ω = 1. So

(ωEn)Gram(Γ)ωEn
tr

= Gram(Γ)

which meansωEn ∈ Aut(Γ) and analogouslyωEn ∈ Aut(Γ′
). Let Γ = 〈b1, . . . ,bn〉OK andΓZ =

〈 f1, . . . , f2n〉Z with the property thatf j = ω f j−1 for j ∈ 2N, j ≤ 2n. We compute the appearance
of ωEn embedded into Aut(Γ)Z. Obviously we have

ω · f j =

{
f j+1, 1≤ j ≤ 2n,2 ∤ j,

ω2 · f j−1 = −1+i·
√

3
2 f j−1 = ω f j − f j−1, 1≤ j ≤ 2n,2 | j.
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We get

ρ := (ωEn)Z =

(
0 −1
1 1

)⊕n

,

andρ3 = −E2n, soρ is of order 6.

Thenρ is an automorphism ofΓZ which respects the complex structure ofΓ and the same holds
for Γ′

Z. We takeg∈O(2n;R) with g(ΓZ) = Γ′
Z. Thenρ′

:= g◦ρ◦g−1 is an automorphism lying in
Aut(Γ′

)Z which respects the complexΓ structure (inΓ′
Z). If ρ′

is in the same Aut(Γ′
)Z conjugacy

class asρ, for exampleρ′
= f−1 ◦ρ ◦ f , f ∈ Aut(Γ′

)Z, thenη := f ◦g fulfills ρ = η ◦ρ ◦η−1

and we observeη(ΓZ) = f (Γ′
Z) = Γ′

Z. Soη centralizesρ and from this we getη ∈U(n;C)Z, the
unitary group embedded into O(2n;R). AsU(n;C)Z acts on the class ofϑ-lattices, we conclude
thatΓ andΓ′

lie in the same class ofϑ-lattices. On the other hand it is then easy to see that if
ρ andρ′

are not conjugated with respect to Aut(Γ′
)Z the latticesΓ andΓ′

cannot be of the same
class.

Remark 2.3 A lattice ΓZ, derived from aϑ-lattice, may yield more than one complex structure.
The number of different complex structures ofΓZ, which is the number of classes ofϑ-lattices
Γ j with (Γ j)Z = ΓZ, equals the number of O(2n;R) conjugacy classes ofρ within Aut(ΓZ).

This leads to the following strategy.

Strategy 2.4 For each even and unimodular latticeΓ in a given dimension, we construct the au-
tomorphism group. IfΓ contains a complex structure as aϑ-lattice overOQ(

√
−3) then Aut(γ)

has to contain an automorphism of typeρ. The next corollary will show that the conjugacy
classes with the invariant of having minimal polynomialp(X) = X2−X + 1 have a one to one
correspondence to conjugacy classes of typeρ within the automorphism group ofΓ. Together
with our considerations from above, it establishes a bijective mapping from aϑ-lattice into the
the conjugacy classes that are having minimal polynomialp(X) = X2−X +1 as invariant. Ad-
ditionally using the next corollary one can explicitly construct Hermitian Gram matrices for
ϑ-lattices: LetΓ be an even and unimodular lattice,END a representative of a conjugacy class
of the automorphism group ofγ with minimal polynomialp(X) = X2−X +1 andT ∈ Gl(n;Z)
with T ·END·T−1 = ρ. Then compute

R := T ·Gram(Λ) ·Ttr .

Now using the information encoded in the mappingΓ → ΓZ one can recover a Hermitian Gram
matrix for theϑ-lattice.

Now the crucial corollary.

Corollary 2.5 Every matrix B∈ Z2n×2n with minimal polynomial p(B) = X2−X +1 is conju-
gated todiag(A, . . . ,A) with respect toGl(2n;Z), where

A =

(
0 −1
1 1

)
.
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Proof: From [Nw], Thm. III.12, we know thatB is conjugated overZ to

B̃ =




P X1 X2 . . . Xn−2 Xn−1

0 P Xn . . . X2n−4 X2n−3

0 0 P . . . X2n−7 X2n−6
...

...
...

. . .
...

...
0 0 0 . . . P X(n−1)n/2
0 0 0 . . . 0 P




,

whereXj is an arbitrary (integral) 2×2 matrix. Using excercise 5 from [Nw], p. 54, which is
essentially the theorem by Latimer and McDuffe and the fact that the class number ofQ(

√
−3)

is equal to 1, we can already assumeP = A. Now take the first indexj with non-vanishingXj

and annihilateXj by conjugation in Gl(2n;Z). By iterating this procedure at most(n−1)n/2
steps we get the desired result. For simplicity we show the procedure forj = 1, a careful look
generalizes the next steps to arbitraryj, whenXk, 1≤ k < j −1, already vanish. The first step is
to obtain more structural information onX1. We compute

B̃2 =




A2 AX1+X1A ∗ . . . ∗ ∗
0 A2 ∗ . . . ∗ ∗
0 0 A2 . . . ∗ ∗
...

...
...

. . .
...

...
0 0 0 . . . A2 ∗
0 0 0 . . . 0 A2




,

and fromB̃2− B̃+E2n = 0, a condition arising from the minimal polynomial, the equation AX1+
X1A−X1 = 0 has to hold. An explicit calculation, using

X1 =

(
α β
γ δ

)
,

leads to the desired structural result onX1,

X1 =

(
α γ+α
γ −α

)
.

Now we conjugate by



E2 X 0 . . . 0 0
0 E2 0 . . . 0 0
0 0 E2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . E2 0
0 0 0 . . . 0 E2




,



14 On Hermitian theta-series and modular forms

where

X =

(
a b
c d

)
.

So we get



E2 −X 0 . . . 0 0
0 E2 0 . . . 0 0
0 0 E2 . . . 0 0
...

...
...

.. .
...

...
0 0 0 . . . E2 0
0 0 0 . . . 0 E2




·




A X1 X2 . . . Xn−2 Xn−1

0 A Xn . . . X2n−4 X2n−3

0 0 A . . . X2n−7 X2n−6
...

...
...

. . .
...

...
0 0 0 . . . A X(n−1)n/2
0 0 0 . . . 0 A



·

·




E2 X 0 . . . 0 0
0 E2 0 . . . 0 0
0 0 E2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . E2 0
0 0 0 . . . 0 E2




=




A −XA+AX+X1 ∗ . . . ∗ ∗
0 A ∗ . . . ∗ ∗
0 0 A . . . ∗ ∗
...

...
...

. . .
...

...
0 0 0 . . . A ∗
0 0 0 . . . 0 A




.

Using the explicit forms ofA,X andX1 the matrix equation−XA+AX+X1 = 0 looks like
(

−b−c a−b−d
a+c−d c+b

)
= −

(
α γ+α
γ −α

)
.

From this we finally getb+c = α, −a−c+d = γ, which is easily solvable overZ. �

Remark 2.6 Instead ofρ, respectivelyωEn ⊂ Aut(Γ), we alternatively could have had a look at
(ω−1)En⊂Aut(Γ). Both mappings belong to the automorphism group of everyϑ-lattice, which
is the essential condition. The order fulfills ord((ω−1)En)Z = 3 which could be an advantage
as Sylow subgroups are better to handle. Nevertheless the line of argument will not change.

2.2 A mass formula

Before we now apply the strategy, we want to develop a mass formula for theϑ-lattices. We
proceed as in [BaNe] and so we are in the need of expressing those lattices in terms of modularity.
Recall that a latticeL is calledp-modular, ifL = pL♯, wherep is an ideal andL♯ is the dual lattice
with respect to the associated form. In this subsection it ismuch more convenient, to consider
the rescaled quadratic form 2Re(〈·, ·〉) = trace(· · ·+ · · ·) instead of just Re(〈·, ·〉). Duality with
respect to the trace-form is denoted by⋆.

Remark 2.7 We fix anOK-unimodular latticeM, see [Fe]. It is well known, see for example
[CoRe], p. 331, and rescale, that the dual with respect to thetrace-form fulfillsM⋆ = (1/

√
−3)M.
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When using the counting argument from [BaNe] in the next steps, we consider the following
chain of inclusion

√
−3M ⊂

√
−3L ⊂ M ⊂ L = L⋆ ⊂ M⋆ = (1/

√
−3)M,

where the latticesL are unimodular with respect to trace and are having determinant det(L) =
3−n/2; the Hermitian form onM⋆ is (1/3)OK-valued, the same holds for the Hermitian form on
L. Furthermore〈x,x〉 ∈ (1/2)Z for x ∈ L asL is trace-unimodular, so we just count the trace-
unimodular lattices fulfilling the condition that〈x,x〉 ∈ (1/2)Z∩ (1/3)OK = Z. After rescaling
L (or equivalently the form) we get an even lattice

√
2L with determinant det(

√
2L) = 2n3−n/2,

a ϑ-lattice.

Let L be a trace-unimodular lattice. Analogous to [BaNe]

h : L/
√
−3L×L/

√
−3L →OK/(

√
−3) ∼= F3, (x̃, ỹ) 7→

√
−3〈x,y〉/(

√
−3),

is a nondegenerate symplectic form on the vector spaceFn
3. We have〈l , l〉 ∈ Z for l ∈ L and so

all vectors are isotropic. Let nowx∈ L with
√
−3〈x,y〉 ∈ (

√
−3) for all y ∈ L, then〈x,y〉 ∈ Z

and sox∈
√
−3L. Furthermore letM be a(

√
−3)-modular lattice with respect to trace, then

φ : M/
√
−3M×M/

√
−3M →OK/(

√
−3), (x̃, ỹ) 7→ 〈x,y〉/(

√
−3),

is neither a symplectic nor a Hermitian form and soφ induces an orthogonal geometry on the
vector spaceFn

3. Takex ∈ M with 〈x,y〉 ∈ (
√
−3) for all y ∈ M. As M is OK-unimodular we

concludex∈
√
−3M = 3M⋆, the non-degeneracy.

Proposition 2.8 Let M be a Hermitian lattice of rank n, which is unimodular with respect to
the Hermitian form. The unimodular lattices with respect totrace containing M are the lattices
L where

√
−3L is a full preimage of a maximal isotropic subspace of the orthogonalF3 vector

spaceFn
3.

Proof: Let
√
−3L ⊂ M with a trace-unimodular latticeL. As L is trace-unimodular and the

trace-values ofM lie in Z, we haveM ⊂ L and
√
−3M ⊂

√
−3L. We easily see that the image of√

−3L in M/(
√
−3)M is maximal isotropic. On the other hand let

√
−3L be the full preimage

of a maximal isotropic subspace ofM/(
√
−3)M. We see thatL is a lattice and forx ∈ L we

have a look at〈x,y〉, all y∈ L; as
√
−3x,

√
−3y∈

√
−3L we conclude that〈x,y〉 ∈ 1/3(

√
−3) =

(1/
√
−3)OK . The values of trace on(1/

√
−3)OK are integral, soL ⊂ L⋆. For x ∈ L⋆ \ L we

havex∈ (1/
√
−3)M \L. So

√
−3x∈ M and as there existy∈ L with 〈x,y〉 ∈ 1/3(OK \ (

√
−3))

(otherwise
√
−3x∈

√
−3L, a contradiction) we see that this is a contradiction, as thetrace form

on 1/3(OK \ (
√
−3)) is not integral. �

Proposition 2.9 Let L be an unimodular lattice with respect to trace. TheOK-unimodular lat-
tices contained in L are the preimages of maximal isotropic subspaces of the symplecticF3 vector
space L/

√
−3L.
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Proof: LetM be anOK-unimodular lattice withM ⊂L; let l ′ ∈
√
−3L, then trace〈(1/

√
−3)l ′, l〉 ∈

Z for all l ∈ L. So〈(1/
√
−3)l ′, l〉 ∈ (1/

√
−3)OK and sol ′ ∈ M, asM ⊂ L. We easily see that

the image ofM in L/
√
−3L is maximal isotropic. On the other hand letM be the full preimage

of a maximal isotropic subspace ofL/
√
−3L, then the Hermitian form is integral onM, hence

M ⊂ M′ (whereM′ is theOK-dual of M with respect to the Hermitian form). Now suppose
m∈ M′ \M ⊂ L\M. As 〈m, l〉 ∈ OK for all l ∈ M, we know that trace(〈(1/

√
−3)m, l〉) ∈ Z, we

conclude(1/
√
−3)m∈ M⋆, a contradiction asm 6∈ M =

√
−3M⋆. �

Now using the counting argument as in [BaNe], Proposition 2.4, we get the next proposition.

Proposition 2.10 Let µ∗n be the mass of the genus of theOK-unimodularOK-lattices in dimen-
sion n and µn the mass of the genus of theϑ-lattices in dimension n. Then we have

µ∗n = µn ·
cn

dn
,

where

dn = ♯{max. isotr. subsp. of the orthogonalFn
3 vector space}

and

cn = ♯{max. isotr. subsp. of the symplecticFn
3 vector space}.

From [Fe], Table V,n = 4,8,12, respectively [HaKo] we get the next lemma.

Lemma 2.11

µ∗4 =
1

27 ·35 ,

µ∗8 =
41

215 ·310 ·52 ,

µ∗12 =
75.373.090.789

222 ·317 ·52 ·7 ·11·13
=

1847·809·691·73
222 ·317 ·52 ·7 ·11·13

,

µ∗16 =
3048163571802983160052643

231 ·322 ·54 ·11
.

Now we have to evaluate the factorcn
dn

.

Lemma 2.12 With respect to the vector spaceFn
3 the quotient cn/dn equals:

n = 4 n = 8 n = 12 n = 16
cn/dn 5 41 73·5 193·17
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Proof: Due to [Ta], Exercise (8.1) from p. 78, we have (symplectic geometry)

cn =
m−1

∏
i=0

(q2m−2i −1)/(qi+1−1) =
m−1

∏
i=0

(qm−i −1)(qm−i +1)/(qm−i −1),

wheren = 2mand due to [Ta], Exercise (11.3) from p. 174, we have (orthogonal geometry)

dn =
m−1

∏
i=0

(qm−1−i +1).

The quotient equals

dn

cn
=

qm+1
2

.

If we specialize toq = 3 we get the tabular from above. �

And finally:

Theorem 2.13 For the masses of the genera of theϑ-lattices ofrank4overOQ(
√
−3) the follow-

ing holds

µ4 =
1

27 ·35 ·5,

µ8 =
1

215 ·310 ·52 ,

µ12 =
1847·809·691

222 ·317 ·53 ·7 ·11·13
,

µ16 =
16519·3617·1847·809·691·419·47·13

231 ·322 ·54 ·11·17
.

2.3 The computation of theϑ-lattices

Within the next subsections we use MAGMA, see [MAGMA], to determine theϑ-lattices over
OQ(

√
−3) by using our strategy. We also give the orders of the automorphism groups.

2.3.1 ϑ-lattices of rank n = 4 and n = 8

Remark 2.14 There is exactly one even and unimodularZ-lattice in dimension 8, the famous
E8 lattice, and exactly two even and unimodularZ-lattice in dimension 16, the latticesE8⊕E8,
which is the orthogonal sum of twoE8 lattices, andD+

16 = 〈D16,(
1
2)16〉Z, the lattice which is

generated by the root latticeD16 together with the vector which components are alle equal to
1/2. Now we determine the conjugacy classes of those three lattices and search for classes with
invariant minimal polynomialp(X) = X2−X +1. Obviously the situation carries over formE8

to E8⊕E8.
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Remark 2.15 a) The group Aut(E8) contains 696.729.600 elements and splits into 112 conju-
gacy classes, exactly one of the classes fulfills the minimalpolynomial condition.
b) The group Aut(E8⊕E8) fulfills ♯Aut(E16) = 970.864.271.032.320.000= 2293105472 and the
number of conjugacy classes of Aut(E8⊕E8) equals 6440, exactly one of them fulfilling the
minimal polynomial condition.
c) The group Aut(D+

16) fulfills ♯Aut(D+
16) = 685.597.979.049.984.000= 230365372 ·11·13 and

the number of conjugacy classes of Aut(D+
16) equals 2944, none of the classes fulfilling the min-

imal polynomial condition.

This proves the following theorem. A construction for theselattices in the language of Gram
matrices will be pointed out in a subsequent remark.

Theorem 2.16 In the cases of rank n= 4 and n= 8 there exists exactly one isometry class of
ϑ-lattices overOQ(

√
−3).

Remark 2.17 a) LetΓ4 denote a representative of the only class ofϑ-lattices of rankn = 4 over
OQ(

√
−3). [DeKr] or the strategy from above provides us with a Hermitian Gram matrix. We

compute Aut(Γ4) as the normalizer of an element of the conjugacy class fulfilling the minimal
polynomial condition. Alternatively take theE8 automorphisms which preserve the complex
structure ofE8 with respect toOQ(

√
−3). We find♯Aut(Γ4) = 155.520= 27 ·35 ·5.

b) Let Γ8 denote a representative of the only class ofϑ-lattices of rank8 overQ(
√
−3). Ob-

viously Γ8 = Γ4⊕Γ4 which provides a Hermitian Gram matrix. We compute Aut(Γ8) as the
normalizer of an element of the conjugacy class fulfilling the minimal polynomial condition. We
have♯Aut(Γ8) = 215·310·52. This is the square of Aut(Γ4) times a factor 2 from the component
interchanging, which gives another way to compute to automorphism group.
c) The computations in the cases of rankn = 4 andn = 8 just take a few seconds.

2.3.2 ϑ-lattices of rank n = 12

We now turn to the interesting case of rankn= 12. The situation is more complicated, as we have
24 unimodular even integralZ-lattices of rank 24. We apply our strategy onto theseZ-lattices of
rank 24 and try to determine the conjugacy classes of the automorphism groups which fulfill the
minimal polynomial condition of those lattices. We indicate the Niemeier lattices by their root
system (see [CoSl]).

Lemma 2.18 The Niemeier lattice N23, which corresponds to the root system D16E8 has no
complex structure overOQ(

√
−3).

Proof: From [CoSl] we get Aut(N23) = Aut(E8)×Aut(D+
16). As Aut(D+

16) does not contain
elements with minimal polynomialX2−X +1 the same holds for Aut(N23). We conclude that
N23 has no complex structure as aϑ-lattice overOQ(

√
−3). �

Remark 2.19 The other lattices were processed using computer calculations. We give the total
number of conjugacy classes (♯CC) and the number of classes with minimal polynomialp(X) =
X2−X +1 (♯RCC). The Niemeier lattices N01-N24 are indicated by their rootlattices.
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D24 3E8 A24 2D12 A17E7 D102E7 A15D9 3D8

♯ CC 47233 253120 3916 180299 46200 473130 69300 181800
♯ RCC - 1 - - - - - -

2A12 A11D7E6 4E6 2A9D6 4D6 3A8 2A72D5 4A6

♯ CC 10504 211750 58200 69174 107882 11780 102762 9975
♯ RCC - - 1 - - - - -

4A5D4 6D4 6A4 8A3 12A2 24A1 D16E8 ∅
♯ CC 37565 19857 5418 7035 1816 814 329728 167
♯ RCC - 1 - - 1 - - 1

Theorem 2.20 There exist exactly five classes ofϑ-lattices of rank12, corresponding to conju-
gacy classes having as invariant minimal polynomial p(X) = X2−X + 1 within the automor-
phism groups of the Niemeier lattices. These lattices have the root systems

3E8,4E6,6D4,12A2 and ∅.

Proof: From our strategy we know that there is a bijective mapping from every rank 12ϑ-lattice
into the conjugacy classes with minimal polynomialp(X) := X2−X +1, of the automorphism
groups of the Niemeier lattices. There exist exactly five of those conjugacy classes, which can be
found in the automorphism groups of the Niemeier lattices with root system 3E8,4E6,6D4,12A2

and the Leech lattice. �

Remark 2.21 Our strategy provides us with Hermitian Gram matrices for the fiveϑ-lattices of
rank 12. In case of 3E8 one can get a Gram matrix by summarizingΓ4⊕Γ4⊕Γ4. All the lattices
are listed at the end of this thesis in the Appendix.

From the description of the root lattices [Qu] we get the nexttheorem.

Theorem 2.22 Theϑ-lattices with respect to3E8, 6D4 and the Leech lattice yield a quaternionic
structure over the Hurwitz quaternions.

We compute the automorphism groups of theϑ-lattices as the centralizer of a representative of
the conjugacy classes fulfilling the minimal polynomial condition. As pointed out one can also
take the automorphisms of the associatedZ-lattice of rank 2n which preserve the imaginary part
of the Gram matrix. We give the orders of the automorphism groups.

Theorem 2.23

root sys. E8 2E8 3E8 4E6 6D4 12A2 Leech

♯Auto 2735 ·5 21531052 22231653 216317 22139 ·5 27315 ·5 ·11 2143852 ·7 ·11·13

♯index 27 ·5 ·7 2145272 2215373 21654 219 212 28 ·3 ·52 ·7 ·23
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We compute the mass in the case of the12-dimensionalϑ-lattices:

µ12 =
1032508093

67774344416722944000
= 1847·809·691·2−22·3−17 ·5−3 ·7−1 ·11−1 ·13−1,

in accordance with the mass formula from Subsection 2.2.

Finally we compute the index within the quaternionic automorphism groups.

Theorem 2.24 The index of the automorphism groups of the quaternionic lattices within the
automorphism groups of theϑ-lattices equals:

root system E8 2E8 3E8 6D4 Leech

♯HAuto 27 ·3 ·5 (27 ·3 ·5)2 ·2 (27 ·3 ·5)3 ·6 22133 ·5 2133352 ·7 ·13

♯index 34 38 312 36 2 ·35 ·11

Remark 2.25 Although not so pure and elegant this procedure reproduces the results of Ki-
tazume and Munemasa [KiMu] easily and also gives Gram matrices for the 28 complex lattices
in Q(i)12.

2.4 Another approach to theϑ-lattices of rank n = 4, n = 8 and n = 12

Instead of using computer calculations one can follow [KiMu] more directly. This was heavily
supported by Gabriele Nebe.

Well known is the next lemma.

Lemma 2.26 Let L be a root lattice which has a decompostion into irreducible and non-isomorphic
root lattices L= Rn1

1 ⊕ . . .⊕Rns
s . Then we have:

(i) Aut(L) =×i Aut(Rni
i ),

(ii) Aut(Rni
i ) = {diag(φ1, . . . ,φni)σ; φi ∈ Aut(Ri), σ ∈ Sni}.

Lemma 2.27 Let L be a root lattice which has a decomposition into irreducible and non-isomorphic
root lattices L= Rn1

1 ⊕ . . .⊕Rns
s andφ ∈ Aut(L) fulfilling the property of having minimal polyno-

mial p(X) = X2−X +1. Then all the component interchangingσ are of order1.

Proof: Without loss of generality lets= 1. From the minimal polynomial we derive thatσ has
order 1 or 3. If the order equals 3 thenσ contains a 3-cycle. After changing the numbering of
the irreducible root lattices we can assume that the 3-cycleequals(1,2,3) andφ is R1⊕R2⊕R3-
invariant. Now an easy calculation with block-matrices shows thatφ|R1⊕R2⊕R3 cannot fulfill the
minimal polynomial condition, thereforeφ cannot fulfill the minimal polynomial condition. �

From [CoSl] Chapter 4 we get some information on automorphism groups.
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Lemma 2.28 (i) Aut(An) = G0 ·G1, where G0
∼= Sn+1, the Weyl group, which is the permuta-

tion of the coordinates, and G1 = 1, n = 1, respectively Gn = ±1, n≥ 2, the negation of
all coordinates.

(ii) Aut(Dn) = G0 ·G1, where G0 is generated by all permutations of the coordinates together
with the sign changes of evenly many coordinates, and G1 contains the sign change of the
last coordiante and, for n= 4 only, the Hadamard graph-automorphism.

Lemma 2.29 (i) For n 6= 2 the lattices An do not have automorphisms satisfying the minimal
polynomial condition.

(ii) For n 6= 4 the lattices Dn do not have automorphisms satisfying the minimal polynomial
condition.

(iii) E7 does not have any automorphism satisfying the minimal polynomial condition.

Proof: (ii) The group Aut(D2) does not contain an element of order 3. Forn = 3 or n ≥ 5 an
element of order 3 in Aut(Dn) contains a 3-cycle. After a change of coordinates and basis we
can assume that the 3-cycle is(1,2,3) and the upper 3×3 block of a generating matrix is equal
to 



−1 −1 0 . . .
−1 1 0 . . .

0 −1 1 . . .
...

...
...

. . .


 .

An easy calculation shows that the action of(1,2,3) on the first three basis-vectors is as follows:

d1 7→ d1−d2−d3 7→ d1−d3 7→ d1,

d2 7→ d3 7→ −d2−d3 7→ d2,

d3 7→ −d2−d3 7→ d2 7→ d3.

An automorphism acting this way cannot fulfill the minimal polynomial condition.
(i) For n = 1 we haveAn

∼= Z. For n ≥ 3 an element of order 3 in Aut(An) contains a 3-cycle.
After a change of coordinates and basis we can assume that the3-cycle is(1,2,3) and the upper
3×4 block of a generating matrix is equal to




−1 1 0 0 . . .
0 −1 1 0 . . .
0 0 −1 1 . . .
...

...
...

...
.. .


 .

A calculation shows that the action of(1,2,3) on the three basis-vectors is as follows:

d1 7→ d2 7→ −d1−d2 7→ d1

d2 7→ −d1−d2 7→ d1 7→ d2

d3 7→ d1+d2+d3 7→ d2+d3 7→ d3.
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An automorphism acting this way cannot fulfill the minimal polynomial condition.
(iii) As the dimension is odd and the characteristic polynomial has integer coefficients, we get
a real eigenvalue of any automorphism ofE7, a contradiction to the minimal polynomial condi-
tion. �

The next lemma can easily be verified.

Lemma 2.30 The automorphism groups of the root lattices A2,D4,E6 and E8 contain an auto-
morphism with minimal polynomial p(X) = X2−X +1, which is unique with respect to conju-
gation. In case of D4 this automorphism is a graph automorphism.

Observation A Niemeier latticeΛ is the span of the orthogonal sum of root-lattices together
with certain glue vectors, whose components lie in the dualsof the root-lattices. Niemeier lattices
are uniquely determined by the underlying root-lattices, which again are uniquely determined by
their vectors of norm 2. Considering the action of Aut(Λ) on the vectors of norm 2, who form a
finite set, together with the proven fact, that isomorphic irreducible root-lattices are not shuffeld
by an automorphism fulfilling the minimal polynomial condition, we see that the irreducible root
lattices are fixed with respect to automorphisms fulfilling the minimal polynomial condition.
Together with the lemmas from above we conclude that an automorphism of any Niemeier lattice
fulfilling the minimal polynomial condition requires the Niemeier lattice to consist of irreducible
root-lattices of typeA2,D4,E6 or E8. Furthermore this automorphism is unique with respect to
conjugation.

The groups Aut(E6) and Aut(E8) are generated by the reflections in the minimal vectors (see
[CoSl], Chapter 4) and so are equal to the Weyl groups of the corresponding lattices; from the
description of Aut(A2) we see that an automorphism fulfilling the minimal polynomial condition
lies in the Weyl subgroup of Aut(A2). The direct product of the Weyl groups of the irreducible
root-lattices is a subgroup of the automorphism group of thecorresponding Niemeier lattice.
Furthermore (see [CoSl] Chapter 16) the automorphism groupof the Niemeier lattice denoted by
6D4 is the product of the Weyl groups of the irreducibleD4 lattices, the component interchanging
group of order 6!= 720 and a group of order 3 which acts nontrivial on the glue vectors; this
subgroup of order 3 fixes the irreducible components and is not contained in the Weyl group
and so is the direct product of the graph automorphism ofD4 of order 3. Thus we have proven
that a Niemeier lattice which has just irreducible root-lattice components of typeA2,D4,E6 or
E8 has an automorphism, which is unique with respect to conjugation, with minimal polynomial
p(X) = X2−X + 1. Together with the explicit description of the root lattices of the Niemeier
lattices this is an essential part of the proof of the following theorem.

From the explicit description of Conway zeroC0, the automorphism group of the Leech lattice,
see the Atlas of Finite Groups [Co], one gets that there is exactly one automorphism of the Leech
lattice corresponding to conjugacy classes with minimal polynomial p(X) = X2−X +1.

Theorem 2.32 The Niemeier lattices which are denoted by3E8,4E6,6D4 and 12A2 and the
Leech lattice have a structure overOQ(

√
−3) which is unique up to an isomorphism.
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2.5 Application to Hermitian modular forms

In the following we denote the five classes ofϑ-lattices of rank 12 overOQ(
√
−3) by 3Eϑ

8 ,4Eϑ
6 ,6Dϑ

4 ,

12Aϑ
2 ,∅ϑ.

As there is at most just one class ofϑ-lattices with respect to each of the 24-dimensionalZ-
lattices, the transposed Gram Matrix describes the same lattice as the original one. Therefore we
get the next corollary.

Corollary 2.33 The theta-series with respect to theϑ-lattices are symmetric Hermitian modular
forms (of weight4, 8 respectively12).

We want to compute the filtration of the cusp forms of the theta-subspace of weight 12 provided
by those fiveϑ-lattices.

From [DeKr] we get the lemma.

Lemma 2.34

dim(M12(Γ2(OK))) = 3.

To be more precise

M12(Γ2(OK))) = 〈E3
4,E2

6,E12〉Q(
√
−3),

where Ek is an Hermitian Eisenstein-series of weight k.

From [BoFrWe] we get the next tabular containing the number of sublattices of certain lattices
as suitably normalized Fourier-coefficients.

Leech 12A2 6D4 4E6 3E8

0 1 1 1 1 1
A01 36 72 144 360
A02 12 96 480 3360
A03 72 1080 22680
A04 864 72576

We conclude that the theta-series with respect to our five lattices are linearly independent in
degree 4, as the same holds for the projection to the Siegel case.

Remark 2.35 In view of [NeVe] we consider

V := 〈3Eϑ
8 ,4EC

6 ,6Dϑ
4 ,12Aϑ

2 ,∅ϑ〉OK

and the mapping

Θ(p) : V →M 12(Γp(OK))Θ.
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From the computation of the Fourier-coefficients we derive the following theorem.

Theorem 2.36 The form

F(4) := Θ(4)
(

3Eϑ
8 −30·4Eϑ

6 +135·6Dϑ
4 −160·12Aϑ

2 +54·∅ϑ
)

is a non-trivial Hermitian form of degree4. We either have F(3) ≡ 0 or F (3) is a non-trivial cusp
form of degree3. For the dimension of cusp forms of degree4 it holds

dim(S12(Γ4(OK))Θ) ∈ {0,1}.

The form

G(3) := Θ(3)
(

4Eϑ
6 −6 ·6Dϑ

4 +8 ·12Aϑ
2 −3 ·∅ϑ

)

is a non-trivial cusp form of degree3. For the dimension of cusp forms of degree3 it holds

dim(S12(Γ3(OK))Θ) ∈ {1,2}.

The form

H(2) := Θ(2)
(

6Dϑ
4 −2 ·12Aϑ

2 +∅ϑ
)

is a non-trivial cusp form of degree2. For the dimension of cusp forms of degree2 it holds

dim(S12(Γ2(OK))Θ) = 1.

The form

J(1) := Θ(1)
(

12Aϑ
2 −∅ϑ

)

is a non-trivial cusp form of degree1. For the dimension of cusp forms of degree1 it holds

dim(S12(Γ1(OK))Θ) = 1.

As the just mentioned linear combination of lattices build abasis ofV , we have:

degree n = 0 n = 1 n = 2 n = 3 n = 4 n≥ 5
dim(S12(Γn(OK))Θ) 1 1 1 1-2 0-1 0

Proof: Using the [BoFrWe] tabular (A04) we see that the restriction ofF(4) onto the Siegel half
space is non-vanishing. SoF(4) is not vanishing.

In the other cases one can also check the [BoFrWe] tabular, but we will give explicit examples of
Fourier-coefficients.
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As we have an example for a non-vanishing Fourier-coefficient,

α


1

2




2 0 0
0 2 0
0 0 2




= 3545856,

we haveG(3) 6≡ 0.

We find the same situation forH(2) and give a non-vanishing Fourier-coefficient,

α


1

2




4 w−3 0
w−3 4 0

0 0 0




= 7776,

soH(2) 6≡ 0.

Finally J(1) is non-vanishing, check the root system of the corresponding latticesAϑ
2 and∅ϑ.

Using dim(M12(Γ2(OK))Θ) = 3 together withJ(2) 6≡ 0 andH(2) 6≡ 0 we concludeG(2)(Z) ≡ 0
andF(2)(Z) ≡ 0 by checking a few more Fourier-coefficients.

From the root systems of the corresponding lattices one getsthat the Fourier-coefficients with
respect to1

2[1], 1
2[2], 1

2[3] of H(1) vanish. Using [Br1], p. 142, Satz 4, we getH(1)(Z) ≡ 0.
Alternatively one could have had a look at the classical case, see Remark 1.14.

Furthermore it is obvious thatJ(1)(Z) is non vanishing andJ(0)(Z) ≡ 0. �

Remark 2.37 a) All the Fourier coefficients ofF(3)(Z) with respect to

1
2 ·




2 ∗ ∗
∗ 2 ∗
∗ ∗ 2


 1

2 ·




4 ∗ ∗
∗ 2 ∗
∗ ∗ 2


 1

2 ·




4 ∗ ∗
∗ 4 ∗
∗ ∗ 2


 1

2 ·




2 ∗ ∗
∗ 2 ∗
∗ ∗ 0




1
2 ·




4 ∗ ∗
∗ 2 ∗
∗ ∗ 0


 1

2 ·




4 ∗ ∗
∗ 4 ∗
∗ ∗ 0


 1

2 ·




2 ∗ ∗
∗ 0 ∗
∗ ∗ 0


 1

2 ·




4 ∗ ∗
∗ 0 ∗
∗ ∗ 0




vanish.

b) All the Fourier coefficients ofG(2)(Z) with respect to

1
2 ·




2 ∗ ∗
∗ 2 ∗
∗ ∗ 0


 1

2 ·




4 ∗ ∗
∗ 2 ∗
∗ ∗ 0


 1

2 ·




4 ∗ ∗
∗ 4 ∗
∗ ∗ 0


 1

2 ·




2 ∗ ∗
∗ 0 ∗
∗ ∗ 0




and

1
2 ·




4 ∗ ∗
∗ 0 ∗
∗ ∗ 0



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vanish.

c) As a verification one easily checks that our results fit the [BoFrWe] tabular.

We conjecture the behavior of the filtration.

Conjecture 2.38 The filtration of cusp forms is as follows.

degree n = 0 n = 1 n = 2 n = 3 n = 4 n≥ 5
dim(S12(Γn(OK))Θ) 1 1 1 1 1 0

Remark 2.39 a) We fail to proveF(3) ≡ 0. Nevertheless there is some incidence for the
vanishing ofF(3), like thousands of vanishing Fourier-coefficients and the vanishing of the
restriction to the Siegel case which follows from [NeVe] (Theorem 3.7.) and the theorem
from above.

b) To prove the open case, essentiallyF(3) ≡ 0, one could follow [HeKr], which means check-
ing if all Fourier-coefficients corresponding to matricesT with

T =

(
∗ ∗
∗ m

)
and trace(T) ≤ r := 2m+

16+2 ·12

π
√

3
,

wherem∈ {0,1,2} is the index of the Fourier-Jacobi-coefficient, are equal tozero. A
calculation usingm= 2 andk = 12, which is the weight of the Hermitian modular form,
showsr = 11,35... . This implies determining all the vectors of a 24-dimensional Z-lattice
with norm up to 16= 22−2−4. As determining all vectors with norm 8 of our five 24-
dimensionalZ-lattices of interest is already out of reach, one can imagine, noticing that
the effort increases exponentially, that the same for norm 16 will be out of reach for some
time.

c) In [NeVe] Nebe and Venkov use the multiplication[Γi]◦ [Γ j ] := ♯Aut(Γi)δ[Γi ],[Γ j ][Γi] on the
formal vector space of lattices to conclude whether their cusp forms vanish or not. But the
main tool for their argument is a non-vanishing cusp form of high degree, which they get
from [BoFrWe]. But in our case it is just the cusp form of high degree which is in question.
So the argument of [NeVe] will not work in our case.

d) Another method worth trying seemed the use of the dyadic trace due to Poor and Yuen
[PoYu] or the determinant. But the computed bounds were alsoout of reach.

Corollary 2.40 From [DeKr], Corollary 2, and Theorem 2.37. we derive the identitiy

H(2) = Θ(2)
(

6Dϑ
4 −2 ·12Aϑ

2 +∅ϑ
)

= c·
(

E12−
441
691

E3
4 −

250
691

E2
6

)
,

where c= −109835360
11486493 using [Kr2].
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2.6 A first look onto situation of rank n = 16

Here we take a first short look at the situation of rankn = 16. The corresponding case of even
and unimodular lattices in dimension 2n = 32 is quite difficult as we have at least one billion
classes of lattices. Our hope is that the restrictions coming from the complex structure of the
ϑ-lattices are strong enough to get a nice classification. A first not very encouraging result is
stated in a remark.

Remark 2.41 a) We repeat the mass of the genus of theϑ-lattices overOQ(
√
−3).

µ16 =
µ16

17·193
=

13·47·419·691·809·1847·3617·16519
231 ·322 ·54 ·17·11

< 0.0020053

b) The first idea to constructϑ-lattices of rank 16 is to construct them via orthogonal sum-
mation from a rank 12 and a rank 4ϑ-lattice. We compute the order of the automorphism
groups.

root system 4E8 4E6E8 6D4E8 12A2E8 ∅E8

♯ Auto 23132154 223322 ·5 228314 ·52 214320 ·52 ·11 22131353 ·7 ·11·13

c) From this one can compute the partial mass of the decomposable lattice with respect to the
total mass. We find

∑
Γ: decomp.

1
Aut(Γ)

1
µ16

< 1,5 ·10−17.
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3 The neighbourhood method

The neighbourhood method was originally developed by Kneser for integralZ-lattices. Here
we will follow Alexander Schiemann and will present the mainfacts roughly in the case of an
imaginary quadratic number field. For the details we refer to[Sc2].

Definition 3.1 Let Λ be anOK-lattice overOQ(
√
−d), h the corresponding Hermitian form and

P⊂OK a prime ideal which does not divide the discriminant ofΛ.

a) An integralOK-latticeΓ with

Γ/(Λ∩Γ) ≃OK/P and Λ/(Λ∩Γ) ≃OK/P

is calledP-neighbourof Λ. Both lattices are then called neighboured.

b) An v∈ Λ\PΛ with norm inPP is calledadmissible.

c) TheP-neighbour at an admissible vectorv is defined as

Λ(P,v) := P−1v+{y∈ Λ; (v,y) ∈ P}.

The connection between neighbours and admissible vectors is given in the next lemma.

Lemma 3.2 Let Λ be a lattice as in the definition given above andΓ anotherOK-lattice in
Q(

√
−d)n. Then the following assertions are equivalent:

a) Γ is aP-neighbour ofΛ.

b) There is an v∈ Λ\PΛ with norm inPP andΓ = Λ(P,v).

Lemma 3.3 Let Λ again anOK-lattice in Q(
√
−d)n andP a prime ideal not dividing the dis-

criminant ofΛ. If P ist split, inert orP ∤ 2 then all theP-neighbours ofΛ lie in the same genus
asΛ. If P ist ramified withP | 2 then aP-neigbour ofΛ lies in gen(Λ) if and only if the norm
ideals, theOK-ideal generated by all norms of lattice vectors, ofΛ and its neighbour coincide.

Definition 3.4 Let Λ an integralOK-lattice andP⊂OK a prime ideal. We define the neighbour-
hood ofΛ as

N(Λ,P) := {Γ is anOK-lattice ; Λ = L0,L1, . . .Lk, s.t.LK ∈ cl(Γ), Li ,Li+1 areP-neighboured}.

Now the crucial theorem.

Theorem 3.5 Let Λ andP as in the definition.

a) Furthermore letP | p a prime. Then

N(Λ,P) ={Γ is anOK-lattice ; disc(M) = disc(L) and there is aβ in the unitary group

s.t.Λq = βΓq}

for all spotsq butp.
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b) Let n≥ 2, Γ∈ gen(Λ) and T a finite set of spots inQ. Then there isΓ′ ∈ cl(Γ) with Γ′
q= Λq

for all q ∈ T.

For the explicit application of the neighbourhood method itis helpful to determine sets of ad-
missible vectors with respect to the relationv ∼ v′ ⇔ Λ(x) = Λ(x′). As we are dealing with
imaginary quadratic fields we are interested in the split case.

Lemma 3.6 Let P ⊂ OK a prime ideal andp = P∩Z. Consider the spaceP(Λ/PΛ) and for
x∈ Λ\PΛ let [x] denote the class of x inP(Λ/PΛ). Then every class[x] contains an admissible
vector and all admissible vectors in[x] lead to the same neigbour.

Example 3.7 The following easy computations show an explicit application of the neighbour-
hood method and illustrate our implementation. As we focus on free lattices the implementation
is easier than in [Sc1,Sc2] as we can omit a lot of ideal computations and are endued with Gram
matrices.

ConsiderQ(
√
−7). Let w :=

√
−7, then the Gram matrix




14 −4 ·w 4 ·w 2 ·w
4 ·w 14 −w−7 0
−4 ·w w−7 14 2·w
−2 ·w 0 −2 ·w 14




determines aϑ-lattice Λ in Q(
√
−7)4. Let v = (4,1,1,4) ∈ Λ \ (2+ w)Λ with respect to the

basisB = (b1, . . .b4) induced by the Gram matrix. We computeh(vB,vB) = 462,h the standard
Hermitian form, which is divisible by(2+w)(2+w) = 11. We changeb3 to vB. And get




14 −4 ·w 8 ·w+56 2·w
4 ·w 14 15·w+7 0

−8 ·w+56 −15·w+7 462 10·w+56
−2 ·w 0 −10·w+56 14


 .

Let (b′1, . . .b
′
4) be the basis induced by the new Gram matrix. Then replaceb′1 by b′1−2b′4 and

get




70 −4 ·w 28·w−56 2·w−28
4 ·w 14 15·w+7 0

−28·w−56 −15·w+7 462 10·w+56
−2 ·w−28 0 −10·w+56 14


 .

Again let(b
′′
1, . . .b

′′
4) the basis induced by the new Gram matrix. Replaceb

′′
2 by b

′′
2−5b

′′
4 which

leads to
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


70 −14·w+140 28·w−56 2·w−28
14·w+140 364 65·w−273 −70
−28·w−56 −65·w−273 462 10·w+56
−2 ·w−28 −70 −10·w+56 14


 .

Now we compute the neighbour. Therefor we divide the coefficients(3,1),(3,2) and(3,3) by
2+w and multiply(3,4) by 2+w and treat the columns analogously with 2−w




70 −14·w+140 −28 −24·w−70
14·w+140 364 −13·w−91 −70·w−140

−28 13·w−91 42 10·w+56
24·w−70 70·w−140 −10·w+56 154


 .

The last Gram matrix represents a 2+w-neighbour ofΛ4 at vB.

3.1 A closer look ontoϑ-lattices of rank 16overOQ(
√
−3)

We already have taken a short look onto the situation in the case of rank 16. Now we want to
apply the neighbourhood method ontoϑ-lattices of rank 16 overOQ(

√
−3). As starting lattices

we take the orthogonal sums of aϑ-lattice of rank 12 and aϑ-lattice of rank 4.

Remark 3.8 a) Using the neigbhourhood method we constructed via randomchoice of ad-
missible vectors parts of the neighbourhood from theϑ-lattices given so far at the ideals
I1 = 1−w, I2 = 2−w andI3 = 4−w.

b) Furthermore we constructed 16-dimensionalϑ-lattices from

(i) self-dual codes inF16
3 ,

(ii) Hermitian self-dual codes inF8
4,

(iii) quaternionic matrix groups (qm-lib. in MAGMA),

(iv) the 15 Koch-Venkov extremal 32-dimensional unimodular lattices,

(v) some of the 28-dimensional unimodular lattices.

The construction ofϑ-lattices via codes will explicitly be explained on the nextpages. In
(iii) and (iv) we look for an automorphism that corresponds to the action ofω, the complex
OQ(

√
−3) generator. In (v) we take the even sublatticeT of a 28-dimensional unimodular

lattice and check ifT has a structure with respect toOQ(
√
−3). If this is true we consider

〈T ⊥ D4,(x⊥ y),ζ3(x⊥ y)〉 which then is a 16-dimensionalϑ-lattice.

c) So far we have constructed 79ϑ-lattices whose partial mass is more than 99,978% of the
mass of the genus.
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d) You will find the ϑ-lattices we have already constructed at [MathA]. At the endof this
thesis we give the orders of the automorphism groups of theselattices together with their
real root-systems. We use the same ordering as in [MathA] andremark which construction
yields the lattice. Furthermore we give the generators of some of the automorphism groups
at [MathA].

e) We have some examples of different isometry classes ofϑ-lattices having the same auto-
morphism group order, for example the classes of lattices denoted by 39 and 46. All the
lattices found so far are symmetric, which means that for each class the representatives are
isometric to their Galois conjugates. In terms of Gram matrices this means that for a lattice
given by its Gram matrixH, this lattice is isometric toHtr .

Now we turn to the construction ofϑ-lattices from codes which yield theϑ-lattices of rank 16
whose root-systems are of full rank. From [Kg] (respectively [Ke]) one gets the next corollary.

Corollary 3.9 a) There are 143 isometry classes of indecomposable even andunimodular
Z-lattices of rank32whose root-lattices have full rank, 119 of them are indecomposable.

b) From the explicit description of the root lattices one finds that there are only 9 isometry
classes of even and unimodularZ-lattices of rank32 with root-lattices of full rank which
have a structure overOQ(

√
−3), 5 of them are indecomposable and the 4 decomposable

lattices have E8 as orthogonal summand. We give these lattices abbreviated by their root
lattices:

16A2,13A2+E6,12A2+E8,10A2+2E6,8D4,6D4+E8,4A2+4E6,4E6+E8,4E8.

Remark 3.10 As can be seen from the Appendix, these 9 classes are contained in the list of 79
lattices which have been found. But we will give explicit constructions for these lattices also.

Construction 3.11 For convenience we take the trace form.

a) LetL be aϑ-lattice whose real root-system containsA16
2 . These lattices are exactly the seven

lattices abbreviated by

16A2,13A2+E6,12A2+E8,10A2+2E6,4A2+4E6,4E6+E8,4E8.

We consider

1√
−3

A16
2 =

(
A16

2

)⋆
⊃ L ⊃ A16

2 ,

where, as usual,⋆ denotes the dual with respect to the trace form. It is convenient to consider
A2 as the hexagonal lattice, and if we considerA2 as a lattice of rank 1 overOQ(

√
−3) we have

A2 = 〈1〉OQ(
√
−3)

, so we haveA2 = OQ(
√
−3). Now

(
A16

2

)⋆
/A16

2
∼= F16

3 . Then the self-dual codes

in F16
3 correspond toϑ-latticesLC of rank 16 which appear as the preimage of the reduction

moduloA16
2 : The complexA2 equipped with the trace form has determinant det(A2, trace) = 3
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and analogously det(A⋆
2, trace) = 1/3. The self-dual codes inF16

3 have dimension 8 and as the
reduction is surjective, we then have[(A16

2 )⋆ : LC] = 38. Therefore we see det(LC, trace) = 316−2·8

from the invariant factors. Letv∈C be a word of the self dual code and for example 1/
√
−3 the

preimage of 1 and−1/
√
−3 the preimage of 2. From the explicit construction of the preimage

and the self duality one concludes that the values of the trace form on the preimage are integral,
that the norms of preimage vectors are integral and therefore even with respect to the trace form.

b) Let L be aϑ-lattice whose real root-system containsD8
4. These lattices are exactly the three

lattices abbreviated by

8D4,6D4+E8,4E8.

Using

D4 =

√
1
3

( √
−3 0 0
1 1 1

)

OQ(
√
−3)

we find(D8
4)

⋆/D8
4
∼= F8

4 = {0,1,ω,ω2} asF2[ω]-modules, whereω = −1+i
√

3
2 . The construction

of lattices then is analogous to the case of ternary codes.

Remark 3.12 a) (i) From [Mu] one gets the seven classes of ternary self-dual codes of
length 16.

(ii) The classification of the classes of quaternary hermitian self-dual codes of length 8
is as follows:

〈[1,1,0,0,0,0,0,0], [0,0,1,1,0,0,0,0], [0,0,0,0,1,1,0,0], [0,0,0,0,0,0,1,1]〉,
〈[1,0,0,1,0,1,1,0], [0,1,0,1,0,1,0,1], [0,0,1,1,0,0,1,1], [0,0,0,0,1,1,1,1]〉,
〈[1,1,0,0,0,0,0,0], [0,0,1,0,0,1,w2,w], [0,0,0,1,0,1,w,w2], [0,0,0,0,1,1,1,1]〉.

b) Using the given construction together with the classification of the root systems of theϑ-
lattices of rank 16 whose root lattices have full rank, one can explicitly construct these 9
ϑ-lattices from the given ternary and quaternary codes. Notice that both types of codes
yield theϑ-lattice abbreviated by 4E8.

Example 3.13 From [Mu] one finds that〈(1,2,1,0)tr,(0,1,1,1)tr〉F3 is a representative of a self
dual code inF4

3. Let 1/
√
−3 6∈ A16

2 be the preimage of 1 and−1/
√
−3 the preimage of 2 which

are incongruent modulo the reduction with respect toA2. We get the two generating vectors
of the latticeL as(1/

√
−3,−1/

√
−3,1/

√
−3,0)tr and(0,1/

√
−3,1/

√
−3,1/

√
−3)tr . Adding

(1,0,0,0)tr and(0,1,0,0)tr guaranteesL ⊃ A4
2
∼=O4

Q(
√
−3)

. This gives us a generating matrix for

L from which one gets a Gram matrix.
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4 Lattices with respect to other imaginary quadratic fields

4.1 The case of prime discriminants

Possibly one of the first ideas to extend our results to other imaginary quadratic fields is to start
with a generalization of the mass formula. This gives a natural breakdown into two steps. At
first we need analogous results on unimodular masses as in [Fe], then we have to generalize the
counting argument due to Nebe and Venkov as in [NeBa].
From [HaKo] we get the following formula in case of even dimension.

Proposition 4.1 For the mass of the odd unimodular lattices in even dimensionm we have

µ⋆
m = 21−t

m

∏
j=1

|B j ,χ j |
2 j ∏

p|disc(K), p6=2 prime

(
pm/2 +

(−1
p

)m/2

L

)
·





2m−1, 4 ‖ disc(K),

2m/2(2m−1), 8 ‖ disc(K),
1, 2 ∤ disc(K),

where t is the number of distinct prime divisors of the field discriminant and Bj ,χ j is the jth gen-
eralized Bernoulli number with respect to the jth power of the characterχ = χdisc(K) which is
attached to the imaginary quadratic number field (see [Za], p. 38) using the additional conven-
tion χ(p) j = 1 if χ(p) = 0, 2| j, andχ(p) j = 0 if χ(p) = 0, 2 ∤ j.

As the formula from above is quite hard to evaluate we give an example, reproducing a result of
[Fe], disc(K)= −3, for m= 4.

Example 4.2 At first we have to evaluate the Bernoulli numbers. Letχ be a Dirichlet character
modN, then

Bn,χ = Nn−1
N−1

∑
k=0

χ(k)Bn

(
k
N

)
,

where the Bernoulli polynomials are denoted byBn. Focus on the fact that the convention in
[HaKo] forces us to start the summation withk = 0. Furthermore with [Za] we get

χdisc(K)(1) = 1, χdisc(2) = −1,

and forχdisc(K)(0) we takeχdisc(K)(0) = 0. As t = 1 and Legendre’s symbol is equal to−1, we
get

µ4 =1 · (B1(1/3)−B1(2/3)) ·3 · (B2(0)+B2(1/3)+B2(2/3))·
·32 · (B3(1/3)−B3(2/3))+33 · (B4(0)+B4(1/3)+B4(2/3))·

· 32+(−1)2

4! ·24 =
1

31104
,

just as expected.
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We compute the masses of the principal genera for the dimensionsm = 4,8 andm = 12 with
respect to the imaginary quadratic fields with class number 1. Notice that results for disc= −4
can be found in [KiMu], [HaKo] or [Sc1]; for disc= −3 see Section 2.

Remark 4.3 We will stick to the notationµ⋆ for the masses of the principal genera.

m m= 4 m= 8 m= 12

d = 2 µ⋆ = 1
128 µ⋆ = 99161

1146880 µ⋆ = 373435015066676747
734003200

m m= 4 m= 8 m= 12

d = 7 µ⋆ = 5
1008 µ⋆ = 87673

9525600 µ⋆ = 4126009705493629
1260236880

m m= 4 m= 8 m= 12

d = 11 µ⋆ = 61
1920 µ⋆ = 150219599

7569408 µ⋆ = 20840938257308057862000175
223812255744

m m= 4 m= 8 m= 12

d = 19 µ⋆ = 1991
5760 µ⋆ = 10433603234087

39813120 µ⋆ = 2171624469562764970245227905006271863
18300020981760

d = 43 µ⋆
4 = 15355

1152

µ⋆
8 = 576192760005014764789

1393459200

µ⋆
12 = 35498439321428958000013789177199047526879436293659

6742112993280

d = 67 µ⋆
4 = 112699

1152

µ⋆
8 = 1349743051608803391092821

1393459200

µ⋆
12 = 50697745543869727276270651025966656426580351523683788188589

370816214630400

d = 163 µ⋆
4 = 6150955

1152

µ⋆
8 = 308233067846924033623202086525

55738368

µ⋆
12 = 1485886484492896056219616712721815545227280475824084950068223756214361125

14832648585216

Remark 4.4 The counting argument from [BaNe], see Section 2, can easilybe adopted to the
case of imaginary quadratic fields with prime discriminants≡ 1(4). Analogous to Section 2 we
denote byµ the mass of the genus ofϑ-lattices and we get

µ∗n = µn ·
cn(q)

dn(q)
, where

cn

dn
=

qm/2+1
2

, q = ♯(OK/(
√
−d)).
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Corollary 4.5 Let d∈N be a prime with(−1/d)L =−1and K= Q(
√
−d) with the property that

there is only one genus of unimodular lattices (the genus does not split in an odd and even part);
this holds for d∈ {3,7,11,19, 43,67,163}. For the mass of theϑ-lattices of rank m∈ {4,8,12}
overOQ(

√
−d) we have

µm =
1

2m−1 ·m!

m

∏
j=1

|B j ,χ j | · dm/2−1

dm/2 +1

where Bj ,χ j is the jth generalized Bernoulli number, see the proposition from above for further
details.

Back to class number 1. At first we focus onm= 4.

Lemma 4.6 For the masses µ of the genera ofϑ-lattice of rank m= 4 with respect to the imagi-
nary quadratic fields with d∈ {7,11,19,43, 67,163} it holds:

d = 7 d = 11 d = 19 d = 43

m= 4 µ4 = 1
5040 µ4 = 1

1920 µ4 = 11
3 · 1

1920 µ4 = 83
8·720

d = 67 d = 163

m= 4 µ4 = 251
5760 µ4 = 463

1152

Remark 4.7 We use [DeKr] to constructϑ-lattices of rankm= 4 and compute the automorphism
groups of these lattices. For the order of these automorphism groups it holds:

d = 7 d = 11 d = 19 d = 43 d = 67 d = 163

♯Auto 5040 1920 1920 720 1920 1920

This proves part of the next lemma.

Lemma 4.8 The numbers of isometry classes of theϑ-lattices of rank4 with respect to imag-
inary quadratic fields of class number one equals1 if d ∈ {1,3,7,11}. In the case of d∈
{19,43,67,163} the number of isometry classes ofϑ-lattices is greater than one. More pre-
cisely:

d = 19 d = 43 d = 67 d = 163

♯ iso. cl. 2 4 6 16

Proof: The results ford ∈ {1,3} can be found in Section 2 respectively [Sc1] or in [KiMu].
The rest of the tabular can be achieved using neighbour stepping from Section 3 applied to a
starting-lattice from [DeKr] at the ideal(1+

√
−d) ⊂OK. �

Remark 4.9 Representatives of the isometry classes of theϑ-lattices given as Gram matrices
can be found in the Appendices.
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Remark 4.10 For rankm= 8 the situation is much more difficult, as the masses grow exponen-
tially. Furthermore it showed up that isometry testing is the most time consuming component
of neighbour stepping and as the numbers of lattices grow radpidly for higher ranks and greater
absolut values of discriminants, the computing time increases rapidly. The next lemma describes
the situation for rankm= 8. The results were analogously achieved as for the rankm= 4 case
together with the fact that{−Em} is a subgroup of the automorphism group of the lattices for the
estimations.

Lemma 4.11 For the numbers of the isometry classes ofrank8ϑ-lattices with respect to imagi-
nary fields of class number1 (except d= 2) it holds:

rank 8 d = 1 d = 3 d = 7 d = 11 d = 19

♯ iso. cl. 3 1 3 7 83

rank 8 d = 43 d = 67 d = 163

♯ iso. cl. > 480.000 > 22·106 > 3 ·1013

Remark 4.12 Representatives of the isometry classes of theϑ-lattices, with respect to the first
tabular, given as Gram matrices can be found in Section A respectively [MathA] ford = 19.

Remark 4.13 The difficulties arising from the rapidly growing masses andorders of the auto-
morphism groups grow worse when one considers lattices of rankm= 12. The situation ford = 1
was considered in [KiMu] and ford = 3 see Section 2. Ford ∈ {11,19,43,67,163} the estima-
tions were achieved using that{±Em} is a subgroup of the automorphism group. Ford = 7 the
simple estimation yields that the number of isometry classes is greater than 110 (mass=55,6565).
Application of neighbour stepping yielded 464 isometry classes of lattices in the genus.

This yiels the next lemma

Lemma 4.14 For the numbers of the isometry classes ofrank12ϑ-lattices with respect to imag-
inary quadratic fields of class number1 (except d= 2) it holds:

m= 12 d = 1 d = 3 d = 7 d = 11 d = 19

♯ iso .cl. 28 5 464 > 2,1 ·108 > 1016

m= 12 d = 43 d = 67 d = 163

♯ iso. cl. > 3,3 ·1027 > 6,0 ·1033 > 2,1 ·1046

4.2 The cased = 2

We consider the case of the imaginary quadratic fieldQ(
√
−2) with discriminantdisc= −8.
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The situation varies from the prime discriminant case. We now considerOK-latticesM which
are even and unimodular with respect to the Hermitian form and OK-latticesL which areZ-
unimodular with respect to the trace form, the determinant condition is det(L) = 8−n/2, n the
rank of the lattice, so lattices of typeL are suitably scaledϑ-lattices. We consider the chain of
inclusion

(
√
−2)L ⊂ 1(√

−2
)M ⊂ L = L∗ ⊂ 1

2
M.

We consider

h : L/
√
−2L×L/

√
−2L → 1√

−2
OK/OK

∼= F2, (x̃, ỹ) 7→ 2〈x,y〉+OK,

which is a nondegenerate symplectic form on the vector spaceFn
2. We have〈l , l〉 ∈ 1√

−2
OK ∩Q

for l ∈ L and so all vectors are isotropic. Let nowx ∈ L with 2〈x,y〉 ∈ OK for all y ∈ L, then
x ∈ L′, the dual with respect to twice the Hermitian form. The non-degeneracy follows from
L′ =

√
−2L. Furthermore letM be an even unimodular lattice with respect to the Hermitian

form, then

φ :
1
2

M/

(
1√
−2

)
M× 1

2
M/

(
1√
−2

)
M → 1

2
Z/Z, (x̃, ỹ) 7→ trace(〈x,y〉)+Z,

is a nondegenerate symmetric bilinear form on on the vector spaceFn
2. Takex ∈ 1/2M with

〈x,y〉 ∈ Z for all y∈ 1/2M. As the trace of the Hermitian form on 1/2M×1/2M lies in 1/2Z,
we gety∈

√
−2(1/2)M = (1/

√
−2)M, the non-degeneracy. The associated quadratic form

qφ :
1
2

M/

(
1√
−2

)
M → 1

2
Z/Z, x̃ 7→ 1

2
trace(〈x,x〉)+Z,

is nondegenerate. Takex∈ (1/2)M, then asM is even we have the inclusionqφ(x) ∈ (1/2)trace
((1/4) ·2Z) +Z = (1/2)Z+Z. This induces an orthogonal geometry on1

2M/(1/
√
−2)M ∼= Fn

2.
Remark that the non-degeneracy of the quadratic form and thenon-degeneracy of the symmetric
bilinear form correspond if and only if the characteristic of the underlying field is not 2.

Proposition 4.15 Situation: (1/
√
−2)M ⊂ L ⊂ 1/2M

Let M be an evenOK-lattice of rank n, which is unimodular with respect to the Hermitian
form. The unimodular lattices with respect to trace contained in (1/2)M are the lattices L
where L is a full preimage of a maximal isotropic subspace of the orthogonalF2 vector space
(1/2)M/(1/

√
−2)M.

Proof: (i) Let L ⊂ (1/2)M with a trace-unimodular latticeL. As 1/2M is the trace-dual of
(1/

√
−2)M and L ⊂ 1/2M we have(1/

√
−2)M ⊂ L. We easily see that the image ofL in

(1/2)M/(1/
√
−2)M is maximal isotropic.



38 On Hermitian theta-series and modular forms

(ii) On the other hand letL be the full preimage of a maximal isotropic subspace of the
(1/2)M/(1/

√
−2)M-space. Obviously the trace-values onL lie in Z and thereforeL ⊂ L⋆. Now

let l ′ ∈ L⋆ \L then l ′ ∈ (1/2)M, and asM is even we have trace(l ′, l ′) ∈ Z. As trace(l ′, l) ∈ Z
by definition of L⋆ we have〈L, l ′〉/(1/

√
−2)M is a maximal isotropic subspace containing

L/(1/
√
−2)M, a contradiction. �

Proposition 4.16 Situation:
√
−2L ⊂ (1/

√
−2)M ⊂ L.

Let L be an unimodular lattice with respect to trace. Then theevenOK-unimodular lattices
scaled by(1/

√
−2) contained in L are the preimages of maximal isotropic subspaces of the

symplecticF2 vector space L/
√
−2L.

Proof: (i) Let M be anOK-unimodular lattice with(1/
√
−2)M ⊂ L. (1/

√
−2)M is self dual

with respect to twice the Hermitian form. As furthermore
√
−2L is the dual ofL with respect to

twice the Hermitian form and(1/
√
−2)M ⊂ L we have

√
−2L ⊂ (1/

√
−2)M. As the Hermitian

form on(1/
√
−2)M lies in 1/2OK, the image of(1/

√
−2)M in the symplecticL/

√
−2L-space

is maximal isotropic.

(ii) On the other hand let(1/
√
−2)M be the full preimage of a maximal isotropic subspace

of the symplecticL/
√
−2L-space, then the formh is OK-valued on(1/

√
−2)M, so M ⊂ M′

(whereM′ is theOK-dual ofM with respect to the Hermitian form) ash is essentially twice the
Hermitian form.
Now letm′ ∈M′\M then(1/

√
−2)m′ ∈ L\(1/

√
−2M) so〈(1/

√
−2)m′,(1/

√
−2)m′〉 ∈ (1/2)Z,

therefore〈(1/
√
−2)M,(1/

√
−2)m′〉/

√
−2L is isotropic with respect to twice the Hermitian

form, a contradiction. From
√
−2L ⊂ (1/

√
−2)M and〈x,x〉 ∈ (1/2)Z for x∈ L one gets thatM

is even. �

Remark 4.17 a) Using the counting argument one gets the factor2n/2+1
2 , see Section 1. It

is well known that there are two genera ofOK-unimodular lattices, the even and the odd
genus. The mass of the principal genus equalsµ⋆

4 = 1/128, see [HaKo], and the mass of the
genus of the even unimodular lattices, the one we are interested in, equalsµ⋆

4 = 1/(12·128),
[Sc1]. So we get

µ4 =
13

12·128
2

5 ·13
=

1
3840

b) Again from [Sc1] we take the mass of the genus of the even andunimodular latticesµ⋆
even=

99161/275251200. We compute the mass of the genus ofϑ-lattices of rank 8 overOQ(
√
−2)

as

µ8 =
99161

275251200
2

24+1
=

5833
137625600

.
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c) Some calculations lead to the conjecture that the unimodular masses are connected via
(2n/2(2n/2−1))µ⋆

even= µ⋆
odd. Usingµ⋆

odd= 373435015066676747/734003200 and the triv-
ial estimation for the order of the automorphism groups, onetherefore conjectures more
than 3882 isometry classes of lattices in case of rank12.

Theorem 4.18 The number of isometry classes ofϑ-lattices inQ(
√
−2)m where m∈ {4,8} can

be read off from the following tabular. We give a conjecture for m= 12, see the remark from just
above.

Q(
√
−2) m= 4 m= 8 m= 12

♯ iso. cl 1 6 conj. > 3882

Proof: Using [DeKr] we construct aϑ-lattice of rankm = 4 with order of the automorphism
group♯Auto = 3840. The mass shows that there is only one isometry class ofϑ-lattices. The
case of rankm= 8 can be revealed by using neighbour stepping. �

4.3 Application to Hermitian modular forms of low weight

Using theϑ-lattices we construct Hermitian modular forms. We want to determine the filtration
of cusp forms arising from rank 4 lattices and give some information of the forms arising from
rank 8 lattices.

4.3.1 Weightk = 4

Theorem 4.19 From the computation of Fourier-coefficients in the case of rank4 ϑ-lattices one
gets the filtration for the cusp forms in the casesQ(

√
−19), Q(

√
−43) andQ(

√
−67), which is

in these cases the trivial one. The method is described explicitly in [He].

degree n = 0 n = 1 n = 2 n = 3 n = 4
dim(S4(Γn(OQ(

√
−19)))Θ) 1 0 1 0 0

degree n = 0 n = 1 n = 2 n = 3 n = 4
dim(S4(Γn(OQ(

√
−43)))Θ) 1 0 3 0 0

degree n = 0 n = 1 n = 2 n = 3 n = 4
dim(S4(Γn(OQ(

√
−67)))Θ) 1 0 5 0 0

The case left,Q(
√
−163), is the only case showing more interesting behaviour. From the com-

putation of the Fourier-coefficients one gets the next lemma.
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Lemma 4.20 The filtration of cusp forms with respect to rank4 lattices overQ(
√
−163) holds:

degree n = 0 n = 1 n = 2 n = 3 n = 4
dim(S4(Γn(OQ(

√
−163)))Θ) 1 0 13-15 0-2 0

Remark 4.21 a) From the computation of some hundred thousand Fourier-coefficients we
conjecture

degree n = 0 n = 1 n = 2 n = 3 n = 4
dim(S4(Γn(OQ(

√
−163)))Θ) 1 0 13 2 0

b) Unfortunately we cannot prove the conjectured behaviour. Constants in the classical di-
mension formula, see [Br1], are getting far out of reach for high discriminants.

c) Other estimations work with dyadic trace or determinant instead of trace [PoYu], [Kn]. But
these estimations are inconvenient for our purpose. The explicit computation of Fourier-
coefficients of theta-series starts with the computation ofthe lattice vectors of given length
and then one just counts the scalar products. So working withtrace is the natural way
to do the computations. If one takes for example the determinant, one has to check all
the possible combinations of matrix entries, compute the vectors with respect to possible
diagonals and search for the scalar products in the subdiagonals. Essentially this search
is the same then as computing the scalar products with respect to the classical trace, but
wastes a lot of information. At present state of time one can compute Fourier-coefficients
with respect to matrices of trace up to 14.

4.3.2 Weightk = 8

From [HeKr] we get an example of a filtration of Hermitian modular forms which are constructed
from rank8ϑ-lattices in the case of the Gaussian integers.

Corollary 4.22 We havedimS8(Γp) = 1 for p∈ {0,2,4} anddimS8(Γp) = 0 otherwise.

Furthermore we have a look a the casesd ∈ {2,7,11} where the number of isometry classes of
lattices of rank 8 is small. But as the constants within the dimension estimations are inoperable,
see the remark from above, we only can give little information on the filtration.

Lemma 4.23 a) d=7: From the explicit computation of the Fourier-coefficientswith diag-
onals 1/2 · (2,2,2,2) we getdim(M8(Γ4(OQ(

√
−7)))) = 3, the forms arising from theta

series are linearly independent in degree4.

b) d=2: From the explicit compuation of the Fourier-coefficients with diagonals1/2·(2,2,2,2)
we get the linear independency of the forms in degree4. From the computation of the
Fourier-coefficients with diagonals1/2 · (2,2) we getdim(M8(Γ2(OQ(

√
−2)))) ≥ 3 and
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from the computation of some more Fourier-coefficients and the classical case we conclude
dim(S8(Γ2(OQ(

√
−2)))) ≥ 2. From [De] one finally gets the equality in both estimations.

degree n = 0 n = 1 n = 2 n = 3 n = 4
dim(S8(Γn(OQ(

√
−2)))Θ) 1 0 2 0-3 0-3

From the computation of some thousand Fourier-coefficientswe conjecture.

Conjecture 4.24 a) d=7:

degree n = 0 n = 1 n = 2 n = 3 n = 4
dim(S8(Γn(OQ(

√
−7)))Θ) 1 0 1 0 1

b) d=2:

degree n = 0 n = 1 n = 2 n = 3 n = 4
dim(S8(Γn(OQ(

√
−2)))Θ) 1 0 2 0 3

c) d=11:

degree n = 0 n = 1 n = 2 n = 3 n = 4
dim(S8(Γn(OQ(

√
−11)))Θ) 1 0 2 0 4
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5 Non-free lattices

From Section 1 we repeat some facts on lattices. LetV be an arbitrary vector space over the field
F andO⊂ F a Dedekind domain. A latticeΛ in the sense of O’ Meara [OMe] is a subsetM ⊂V
together with anO-module structure. Such a lattice needs not to be free. We want to show that
the theta-series with respect to non-freeϑ-lattices are Hermitian modular forms as well. These
non-freeϑ-lattices correspond to imaginary quadratic number fields of class number greater 1.
At first we check the transformation with respect to the involution J. We will follow [Kr1], p.
111. Essentially the proof requires just a careful look at the free case. But at first we collect some
information on non-free lattices.

Remark 5.1 a) As there is no basis for a non-freeO-latticeΛ we cannot give a Gram matrix
in the sense of Section 1. This is the reason why one has to pay some more attention to the
non-free case.

b) The result for free lattices was proven in [CoRe] and claimed for non-free lattices also
but not proven „...for convenience...“. But their proof is based on the existence of a Gram
matrix, so it is worth to elaborate the proof in the general case. A short version of the proof
was already published in [HeNe].

c) An O-lattice Λ is nearly free, which means that there is a basisz1, . . . ,zm for V and a
fractional Ideala such that

Λ = Oz1+ . . .+Ozm−1 + azm,

see [OMe].

d) As usual a possibly non-freeϑ-lattice over an imaginary quadratic number fieldK can be
considered as aZ-module of rank 2m.

For convenience we take a definition for theta-series that slightly differs from the definition in
Section 1.

Definition 5.2 Let K now be an imaginary quadratic field,OK the ring of integers ofK, Z ∈ H n,
Λ0 anOK-lattice inCm andΛ = Λn

0. We define

Θ(n)
Λ (Z) = ∑

(b1,...,bn)∈Λn
0

exp((πi trace〈bk,bl〉k,l Z)).

This theta-series is essentially the same as the one introduced in Section 1.

Theorem 5.3 Take the setting from above and letΛ0 ⊂ Cm together with thetrace-form beZ-
unimodular. Then we have

Θ(n)
Λ (J〈Z〉) = Θ(n)

Λ (−Z−1) = det(Z/i)mΘ(n)
Λ (Z),

which means as m≡ 0(4) that Θ behaves as a modular form under the transformation by the
involution J.
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Proof: Using the identity theorem we can restrict to the caseZ = iY, Y > 0. At first we consider
the mapping

ϕ : R2mn→ Mat(m×n;C),

x = (xRe
1,1,x

Im
1,1, . . .x

Re
1,m,xIm

1,m,xRe
2,1,x

Im
2,1, . . . ,x

Re
2,m,xIm

2,m, . . .xRe
n,1,x

Im
n,1, . . . ,x

Re
n,m,xIm

n,m)tr 7→
7→ (xRe

k,l + i ·xIm
k,l )l ,k.

Let Λ = Λn
0 then ϕ−1(Λ) ⊂ R2mn is a lattice, so there existsF ∈ Mat(2mn× 2mn;R) with

ϕ(FZ2mn) = Λ. We have|detF| = vol(Λ) = (vol(Λ0))
n. We know thatΛ0 is trace unimodu-

lar and essentiallyϕ−1(Λ) ⊂ R2mn is n-copies of the corresponding real lattice. So vol(Λ) = 1
and furthermoreΛ = Λτ, whereτ(A,B) := (1/2) trace(AB

tr
+ABtr). Now define

ψ : R2mn→ C, x 7→ exp(−πτ(ϕ(Fx)
tr ·ϕ(Fx)),Y).

Then

Θ(n)
Λ (iY) = ∑

g∈Z2mn

ψ(g).

Application of the classical Poisson summation yields

Θ(n)
Λ (iY) = ∑

g∈Z2mn

ψ(g) = ∑
h∈Z2mn

Z

x:R2mn

ψ(x)exp(−2πihtrx)) dx

= ∑
h∈Z2mn

Z

x:R2mn

exp(−πτ(ϕ(Fx)
tr ·ϕ(Fx)),Y)exp(−2πihtrx)) dx

=︸︷︷︸
y=Fx

∑
h∈Z2mn

Z

y:R2mn

exp(−πτ(ϕ(y)
tr ·ϕ(y)),Y)exp(−2πihtr(F−1y)) dy· 1

|detF|

=︸︷︷︸
|detF |=1

∑
h∈Z2mn

Z

y:R2mn

exp(−πτ(ϕ(y)
tr ·ϕ(y)),Y)exp(−2πi((Ftr)−1h)try))) dy.

Now

τ(ϕ((Ftr)−1h),ϕ(Fl)) = (1/2) trace
(
(ϕ((Ftr)−1h)ϕ(Fl)

tr
+(Ftr)−1h)ϕ(Fl)tr

)
.

Recalling the definition ofϕ and the fact that trace is essentially the canonical scalar product
with respect to Mat(m×n;K) the right hand side equalshtr l . So (ϕ((Ftr)−1Z2mn)) equalsΛτ.
Therefore

Θ(n)
Λ (iY) = ∑

H∈Λτ=Λ

Z

y:R2mn

exp(−πτ(ϕ(y)
tr ·ϕ(y)),Y)exp(−2πi((ϕ−1H)tr ·y))) dy

=︸︷︷︸
U=ϕ(Y)

∑
H∈Λτ=Λ

Z

U :Mat(m×n;C)

exp(−πτ(Utr ·U,Y)exp(−2πiτ(H,U)) dU.
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Furthermore we have the identity

−τ(U tr
U,Y)−2iτ(H,U) = −τ(E[U + iHY−1],Y)− τ(E[H],Y−1).

Using elementary matrix arithmetic

−τ(E[U + iHY−1],Y) = −τ((U tr
+ i · (Y−1)

tr
H

tr
)(U + iHY−1),Y)

= −τ(U tr
U + i · (Y−1)

tr
H

tr
U + i ·U tr

HY−1−Y−1tr
H

tr
HY−1,Y)

= −τ(U tr
U,Y)− i/2trace

(
(Y−1)

tr
H

tr
UY

tr
+U

tr
HY−1Y

)
−

− i/2trace
(
U

tr
HY−1Y

tr
+Y−1tr

H
tr

UY
)

+ trace
(
Y−1tr

H
tr

HY−1Y
)

.

One directly verifies the indentity usingY−1tr
= Y−1. So

Θ(n)
Λ (iY) = ∑

H∈Λτ=Λ

Z

U :Mat(m×n;C)

exp(−πτ(E[U + iHY−1],Y)exp(−πτ(E[H],Y−1)) dU

=︸︷︷︸
W:=iHY−1

∑
H∈Λ

exp(−πτ(E[H],Y−1))
Z

U :Mat(m×n;C)

exp(−πτ(E[U +W],Y) dU

As the first factor is justΘ(n)
Λ (−(1/i)Y−1) and the last integral equals detY−m, see [Kr], p. 110,

the assertion holds. �

Theorem 5.4 Using the setting from aboveΘ(n)
Λ is a Hermitian modular form.

Proof: Due to a result from Klingen [Kl], which we already used in Section 1, the modular
groupΓn of degreen with respect to an imaginary quadratic fieldK is generated by

Γ =

〈
J,T =

(
E S
0 E

)
, S∈ Sym(n;OK), R=

(
(U−1)tr 0

0 U

)
, U ∈ Gl(n;OK)

〉
,

whereOK ist the ring of integers ofK. As the latticeΛ0 is even, this also holds for trace(〈bk,bl〉k,lS)
which means exp(πi trace(〈bk,bl 〉k,lS) = 1 and as furthermoreU just permutes the lattice vectors,

see the definition,Θ(n)
Λ (Z) transforms like a modular form if one takes the theorem from above

into account. �

Remark 5.5 a) The mass of the odd integral and unimodular lattices of rank 4 overQ(
√
−5)

equals 65/128. Using the counting argument we get 5/128 as a lower bound for the mass.
From [DeKr] we construct aϑ-lattice whose automorphism group is of order 1/384. After
constructing 100.000 free neighbours of theϑ-lattice from [DeKr] which were all isometric
to the lattice itself we guess that the hope of just finding free representatives in this case
cannot be fulfilled. The representative from [DeKr] yields 6.66% of the mass-bound.
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b) The situation with respect toQ(
√
−23) is analogously to the just described situation with

respect toQ(
√
−5). We haveµ = 53/16·2/(232+1) = 1/80. The order of the automor-

phism group of theϑ-lattice contributed by [DeKr] equals 1/240, this is 1/3 of the mass.
But construction of free neighbours did not yield another isometry class.

d) We conjecture that there is no imaginary quadratic field ofclass number greater than 1
which admits a genus ofϑ-lattices of rankm= 4 which consists of just one isometry class.
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A Appendix

A.1 Numbers of isometry classes ofϑ-lattices

We give an overview of the number of isometry classes ofϑ-lattices with respect to imaginary
quadratic fields of class number 1 and field discriminantD. Later we will give Gram matrices for
the representatives of the isometry classes of lattices of rankm= 4 for D ∈ {−3,−7,−8,−19−
43,−67}, for D = −4 see [Sc1] or [HaKo], forD = −11 see Section 1, Example 1.24, and for
d = −163 see [MathA]. For rankm= 8 andD ∈ {−7,−8,−11} see the next pages, forD = −4
see [Sc1] or [HaKo] and forD = −19 see [MathA]. For rankm= 12 andD = −3 see the next
pages.

The situation for rank 4.

m= 4 D = −3 D = −4 D = −7 D = −8 D = −11 D = −19

♯ iso. cl. 1 1 1 1 1 2

m= 4 D = −43 D = −67 D = −163

♯ iso. cl. 4 6 16

The situation in for rank 8.

m= 8 D = −3 D = −4 D = −7 D = −8 D = −11 D = −19

♯ iso. cl. 1 3 3 6 7 83

m= 8 D = −43 D = −67 D = −163

♯ iso. cl. > 480.000 > 2,2 ·107 > 3 ·1013

The situation for rank 12.

m= 12 D = −3 D = −4 D = −7 D = −8 D = −11 D = −19

♯ iso.cl. 5 28 464 conj. > 3882 > 2,1 ·108 > 1016

m= 12 D = −43 D = −67 D = −163

♯ iso.cl. > 3,3 ·1027 > 6,0 ·1033 > 2,1 ·1046
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A.2 The rank4ϑ-lattice overOQ(
√
−2)

G01 :=




2 0 w+1 1/2w
0 2 1/2w −w+1

−w+1 −1/2w 2 0
−1/2w w+1 0 2




With w = i
√

2 and automorphism group order♯Aut(G01) = 3840.

A.3 The rank4ϑ-lattice overOQ(
√
−3)

G01 :=
1
3




6 0 2w 2w
0 6 2w −2w

−2w −2w 6 0
−2w 2w 0 6




With w = i
√

3 and automorphism group order♯Aut(G01) = 155520.

A.4 The rank4ϑ-lattice overOQ(
√
−7)

G01 :=
1
7




14 0 6w 4w
0 14 4w −6w

−6w −4w 28 0
−4w 6w 0 28




With w = i
√

7 and automorphism group order♯Aut(G01) = 5040.

A.5 The two rank4ϑ-lattices overOQ(
√
−19)

G01 :=
1
19




38 0 6w 6w
0 38 6w −6w

−6w −6w 38 0
−6w 6w 0 38




With w = i
√

7 and automorphism group order♯Aut(G01) = 1920.

G02 :=
1
19




76 −7w−19 −6w+76 −16w−76
7w−19 38 17w+19 −6w+76
6w+76 −17w+19 190 −38w−38
16w−76 6w+76 38w−38 190




With automorphism group order♯Aut(G02) = 720.
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A.6 The four rank4ϑ-lattices overOQ(
√
−43)

G01 :=
1
43




86 0 14w 12w
0 86 12w −14w

−14w −12w 172 0
−12w 14w 0 172




With w = i
√

43 and automorphism group order♯Aut(G01) = 720.

G02 :=
1
43




774 66w−86 74w+1720 178w−86
−66w−86 258 −159w+43 −14w+688
−74w+1720 159w+43 4472 430w+430
−178w−86 14w+688 −430w+430 1892




With automorphism group order♯Aut(G02) = 240.

G03 :=
1
43




4386 −273w−301 −34w+3440 −424w−688
273w−301 774 222w−86 −14w+1204
34w+3440 −222w−86 2924 −344w−344
424w−688 14w+1204 344w−344 1892




With automorphism group order♯Aut(G03) = 120.

G04 :=
1
43




516 −129w+129 64w −2w+688
129w+129 2838 54w−2064 337w+645

−64w −54w−2064 1720 −258w−258
2w+688 −337w+645 258w−258 1892




With automorphism group order♯Aut(G04) = 1920.

A.7 The six rank4ϑ-lattices overOQ(
√
−67)

G01 :=
1
67




134 0 20w 20w
0 134 20w −20w

−20w −20w 402 0
−20w 20w 0 402




With w = i
√

67 and automorphism group order♯Aut(G01) = 1920.

G02 :=
1
67




19832 260w+16884 334w+134 1417w+737
−260w+16884 14606 282w+402 1196w+1876
−334w+134 −282w+402 402 1608
−1417w+737 −1196w+1876 1608 6834



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With automorphism group order♯Aut(G02) = 240.

G03 :=
1
67




19832 506w−134 100w+11256 1417w+737
−506w−134 1072 −321w+201 −20w+2412
−100w+11256 321w+201 6834 804w+804
−1417w+737 20w+2412 −804w+804 6834




With automorphism group order♯Aut(G03) = 120.

G04 :=
1
67




10184 −645w−1005 −100w+12060 −995w−1675
645w−1005 3082 749w−469 −20w+4422
100w+12060 −749w−469 14874 −1206w−1206
995w−1675 20w+4422 1206w−1206 6834




With automorphism group order♯Aut(G04) = 48.

G05 :=
1
67




134 −27w+67 13w+67 804
27w+67 536 40w−402 191w+871
−13w+67 −40w−402 804 −201w−201

804 −191w+871 201w−201 6834




With automorphism group order♯Aut(G05) = 120.

G06 :=
1
67




130918 −6705w−16817 14882w−73968 6201w+112359
6705w−16817 25192 −5698w−41540 4953w−35711

−14882w−73968 5698w−41540 155172 −16281w−16281
−6201w+112359 −4953w−35711 16281w−16281 116178




With automorphism group order♯Aut(G06) = 720.

The mass of the genus ist 251/5760.

A.8 The six rank8ϑ-lattices overOQ(
√
−2)

G01 :=
1
2




4 0 2w+2 w 0 0 0 0
0 4 w −2w+2 0 0 0 0

−2w+2 −w 4 0 0 0 0 0
−w 2w+2 0 4 0 0 0 0
0 0 0 0 4 0 2w+2 w
0 0 0 0 0 4 w −2w+2
0 0 0 0 −2w+2 −w 4 0
0 0 0 0 −w 2w+2 0 4




With w = i
√

2 and automorphism group order♯Aut(G01) = 29491200. The latticeG01 corresponds to the realE8⊕E8 lattice.
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G02 :=
1
2




8 0 2w+2 −w−2 w−4 −2w+2 4 −4w−4
0 4 w 2 0 0 0 0

−2w+2 −w 4 0 0 0 0 0
w−2 2 0 4 −3w w 0 4
−w−4 0 0 3w 8 w−2 w−2 5w+2
2w+2 0 0 −w −w−2 4 3w+2 −4w+2

4 0 0 0 −w−2 −3w+2 8 −4w−4
4w−4 0 0 4 −5w+2 4w+2 4w−4 12




With automorphism group order♯Aut(G02) = 147456. The latticeG02 corresponds to the realE8⊕E8 lattice.

G03 :=
1
2




28 −4w−16 2w+2 −w+4 2w−22 −2w+16 −8w−8 −20w−8
4w−16 16 w 2w−2 −5w+14 4w−10 4w+8 12w+12
−2w+2 −w 4 0 0 0 0 0

w+4 −2w−2 0 4 −2w−6 2 −4w −4w
−2w−22 5w+14 0 2w−6 24 −14 10w+8 19w+4
2w+16 −4w−10 0 2 −14 12 −5w−4 −14w−2
8w−8 −4w+8 0 4w −10w+8 5w−4 12 4w+16
20w−8 −12w+12 0 4w −19w+4 14w−2 −4w+16 36




With automorphism group order♯Aut(G03) = 786432. The latticeG03 corresponds to the realD+
16 lattice.

G04 :=
1
2




8 −4 −2 −w−2 2w+2 w+4 −4w−4 0
−4 12 3w+2 2 −w−10 −3w−6 8w+8 −4w−4
−2 −3w+2 4 0 3w−4 w−4 8 −4

w−2 2 0 4 −3w w 0 4
−2w+2 w−10 −3w−4 3w 20 3w+6 −9w−12 9w+6
−w+4 3w−6 −w−4 −w −3w+6 8 −3w−12 6
4w−4 −8w+8 8 0 9w−12 3w−12 24 −12

0 4w−4 −4 4 −9w+6 6 −12 12




With automorphism group order♯Aut(G04) = 92160. The latticeG04 corresponds to the realE8⊕E8 lattice.

G05 :=
1
2




8 4 −w−4 −w−6 2w+2 w −4w−4 0
4 12 −2w−10 −6 w+10 3w−2 −8w−8 4w+4

w−4 2w−10 16 −4w+10 w−16 −4w+2 7w+14 −6w−6
w−6 −6 4w+10 12 −4w−10 −2w+2 8w+8 −4w

−2w+2 −w+10 −w−16 4w−10 20 4w−4 −9w−12 9w+6
−w −3w−2 4w+2 2w+2 −4w−4 4 5w−4 −4w+2

4w−4 8w−8 −7w+14 −8w+8 9w−12 −5w−4 24 −12
0 −4w+4 6w−6 4w −9w+6 4w+2 −12 12




With automorphism group order♯Aut(G05) = 43008. The latticeG05 corresponds to the realD+
16 lattice.

G06 :=
1
2




24 −10w+2 2w+14 −w+10 6 −5w−8 12w+12 −8w−8
10w+2 28 4w+6 4w+8 −w −4w+4 9w−10 −7w+12
−2w+14 −4w+6 12 8 −w+6 −3w−6 8w+8 −4w−4

w+10 −4w+8 8 12 −4w+6 −2w−6 8w+8 −4w
6 w w+6 4w+6 12 −3w−6 7w+4 w−2

5w−8 4w+4 3w−6 2w−6 3w−6 8 −3w−12 6
−12w+12 −9w−10 −8w+8 −8w+8 −7w+4 3w−12 24 −12

8w−8 7w+12 4w−4 4w −w−2 6 −12 12




With automorphism group order♯Aut(G06) = 5160960. The latticeG06 corresponds to the realE8⊕E8 lattice.

The mass of the genus is 5833/137625600.
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A.9 The rank8ϑ-lattice overOQ(
√
−3)

G01 :=
1
3




6 0 2w 2w 0 0 0 0
0 6 2w −2w 0 0 0 0

−2w −2w 6 0 0 0 0 0
−2w 2w 0 6 0 0 0 0

0 0 0 0 6 0 2w 2w
0 0 0 0 0 6 2w −2w
0 0 0 0 −2w −2w 6 0
0 0 0 0 −2w 2w 0 6




With w = i
√

3 and automorphism group order♯Aut(G01) = 155520. The latticeG01 corresponds to the
realE8⊕E8 lattice.

A.10 The threerank8ϑ-lattices overOQ(
√
−7)

G01 :=
1
7




14 0 6w 4w 0 0 0 0
0 14 4w −6w 0 0 0 0

−6w −4w 28 0 0 0 0 0
−4w 6w 0 28 0 0 0 0

0 0 0 0 14 0 6w 4w
0 0 0 0 0 14 4w −6w
0 0 0 0 −6w −4w 28 0
0 0 0 0 −4w 6w 0 28




With w = i
√

7 and automorphism group order♯Aut(G01) = 50803200. The latticeG01 corresponds to the realE8⊕E8 lattice.

G02 :=
1
7




14 0 6w w−7 0 0 0 0
0 28 4w −3w+21 0 7w+7 4w −6w

−6w −4w 28 0 0 0 0 0
−w−7 3w+21 0 28 −w−7 6w 0 −7w+7

0 0 0 w−7 14 0 6w 4w
0 −7w+7 0 −6w 0 28 2w+14 −3w−21
0 −4w 0 0 −6w −2w+14 28 0
0 6w 0 7w+7 −4w 3w−21 0 28




With automorphism group order♯Aut(G02) = 225792. The latticeG02 corresponds to the realD+
16 lattice.

G03 :=
1
7




28 0 3w−21 2w−14 7w+7 0 6w 4w
0 28 2w−14 −3w+21 0 7w+7 4w −6w

−3w−21 −2w−14 28 0 −6w −4w −7w+7 0
−2w−14 3w+21 0 28 −4w 6w 0 −7w+7
−7w+7 0 6w 4w 28 0 3w+21 2w+14

0 −7w+7 4w −6w 0 28 2w+14 −3w−21
−6w −4w 7w+7 0 −3w+21 −2w+14 28 0
−4w 6w 0 7w+7 −2w+14 3w−21 0 28




With automorphism group order♯Aut(G03) = 311040. The latticeG03 corresponds to the realE8⊕E8 lattice.

The mass of the genus is 73/9525600.
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A.11 The sevenrank8ϑ-lattices overOQ(
√
−11)

G01 :=
1
11




22 0 6w 2w 0 0 0 0
0 22 2w −6w 0 0 0 0

−6w −2w 22 0 0 0 0 0
−2w 6w 0 22 0 0 0 0

0 0 0 0 22 0 6w 2w
0 0 0 0 0 22 2w −6w
0 0 0 0 −6w −2w 22 0
0 0 0 0 −2w 6w 0 22




With w = i
√

11 and automorphism group order♯Aut(G01) = 7372800. The latticeG01 corresponds to the realE8⊕E8 lattice.

G02 :=
1
11




44 0 6w 4w −2w+22 6w+22 −22 11w+11
0 22 2w −w+11 0 0 0 0

−6w −2w 22 0 0 0 0 0
−4w w+11 0 22 −5w−11 −3w+11 0 22

2w+22 0 0 5w−11 44 8w+22 4w−22 12w
−6w+22 0 0 3w+11 −8w+22 44 8w−22 8w+44

−22 0 0 0 −4w−22 −8w−22 44 −11w−11
−11w+11 0 0 22 −12w −8w+44 11w−11 66




With automorphism group order♯Aut(G02) = 9216. The latticeG corresponds to the realE8⊕E8 lattice.

G03 :=
1
11




132 66 −10w−22 4w 2w+44 14w−22 −33w−33 22w+22
66 66 −7w−11 −w+11 4w+22 8w−22 −22w−22 11w+11

10w−22 7w−11 22 0 3w−11 −5w−11 44 −22
−4w w+11 0 22 −5w−11 −3w+11 0 22

−2w+44 −4w+22 −3w−11 5w−11 44 12w −9w−33 12w
−14w−22 −8w−22 5w−11 3w+11 −12w 44 15w−33 −3w+33
33w−33 22w−22 44 0 9w−33 −15w−33 132 −66
−22w+22 −11w+11 −22 22 −12w 3w+33 −66 66




With automorphism group order♯Aut(G03) = 10080. The latticeG03 corresponds to the realE8⊕E8 lattice.

G04 :=
1
11




132 −66 −21w−33 4w 2w+44 14w−22 −33w−33 22w+22
−66 66 15w+11 −w+11 −4w−22 −8w+22 22w+22 −11w−11

21w−33 −15w+11 66 0 6w−22 −10w−22 88 −44
−4w w+11 0 22 −5w−11 −3w+11 0 22

−2w+44 4w−22 −6w−22 5w−11 44 12w −9w−33 12w
−14w−22 8w+22 10w−22 3w+11 −12w 44 15w−33 −3w+33
33w−33 −22w+22 88 0 9w−33 −15w−33 132 −66
−22w+22 11w−11 −44 22 −12w 3w+33 −66 66




With automorphism group order♯Aut(G04) = 1200. The latticeG04 corresponds to the realE8⊕E8 lattice.

G05 :=
1
11




44 22 2w−22 4w+22 −2w+22 6w+22 −11w−11 11w+11
22 66 −2w−22 −w+55 4w+22 8w+22 −22w−22 11w+11

−2w−22 2w−22 22 w−11 −2w−22 −5w−11 8w+22 −6w
−4w+22 w+55 −w−11 66 −w+11 5w+33 −22w−22 11w+33
2w+22 −4w+22 2w−22 w+11 44 8w+22 −9w−33 12w
−6w+22 −8w+22 5w−11 −5w+33 −8w+22 44 −7w−55 8w+44
11w−11 22w−22 −8w+22 22w−22 9w−33 7w−55 132 −66
−11w+11 −11w+11 6w −11w+33 −12w −8w+44 −66 66




With automorphism group order♯Aut(G05) = 672. The latticeG05 corresponds to the realD+
16 lattice.
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G06 :=
1
11




132 −11w−77 6w 19w−11 −14w+22 −2w+66 22w+44 44w−22
11w−77 88 2w −13w−11 12w 8w−44 −11w−55 −33w−33
−6w −2w 22 0 0 0 0 0

−19w−11 13w−11 0 44 −w−33 −11w−11 −11w+33 88
14w+22 −12w 0 w−33 44 8w+22 16w−22 6w−66
2w+66 −8w−44 0 11w−11 −8w+22 44 16w+22 26w−22

−22w+44 11w−55 0 11w+33 −16w−22 −16w+22 88 22w+88
−44w−22 33w−33 0 88 −6w−66 −26w−22 −22w+88 198




With automorphism group order♯Aut(G06) = 10560. The latticeG06 corresponds to the realD+
16 lattice.

G07 :=
1
11




44 8w 6w−22 4w+22 −6w −2w 11w+11 0
−8w 176 −w−55 −13w+77 −3w−77 −20w−44 30w+44 −28w

−6w−22 w−55 66 −44 4w+22 8w+22 −22w−22 11w+11
−4w+22 13w+77 −44 66 −9w−33 −11w−11 22w+22 −11w+11

6w 3w−77 −4w+22 9w−33 44 8w+22 −9w−33 12w
2w 20w−44 −8w+22 11w−11 −8w+22 44 −7w−55 8w+44

−11w+11 −30w+44 22w−22 −22w+22 9w−33 7w−55 132 −66
0 28w −11w+11 11w+11 −12w −8w+44 −66 66




With automorphism group order♯Aut(G07) = 11520. The latticeG07 corresponds to the realE8⊕E8 lattice.

The mass of the genus is 20519/7569408.
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A.12 The fiverank12ϑ-lattices overOQ(
√
−3)

Gram02 :=
1
3




6 −w+3 −w+3 w+3 0 0 0 0 0 0 0 0
w+3 6 w+3 w+3 0 0 0 0 0 0 0 0
w+3 −w+3 6 w+3 0 0 0 0 0 0 0 0
−w+3 −w+3 −w+3 6 0 0 0 0 0 0 0 0

0 0 0 0 6 w−3 −w+3 −w+3 0 0 0 0
0 0 0 0 −w−3 6 −w−3 w−3 0 0 0 0
0 0 0 0 w+3 w−3 6 −w+3 0 0 0 0
0 0 0 0 w+3 −w−3 w+3 6 0 0 0 0
0 0 0 0 0 0 0 0 6 w+3 w−3 w−3
0 0 0 0 0 0 0 0 −w+3 6 w−3 w−3
0 0 0 0 0 0 0 0 −w−3 −w−3 6 −w+3
0 0 0 0 0 0 0 0 −w−3 −w−3 w+3 6




With w = i
√

3 and automorphism group order♯Aut(Gram02) = 22231653. The latticeGram02 corresponds to the real 3E8 lattice.

Gram11 :=
1
3




6 w+3 0 0 0 0 0 0 0 −w+3 2w 2w
−w+3 6 0 0 0 0 0 0 0 −2w 2w 2w

0 0 6 −w+3 0 0 0 0 0 0 −w−3 0
0 0 w+3 6 0 0 0 0 0 0 0 0
0 0 0 0 6 w−3 −w+3 0 0 −w−3 w−3 −w−3
0 0 0 0 −w−3 6 −w−3 0 0 w+3 −w+3 w+3
0 0 0 0 w+3 w−3 6 0 0 −w−3 w−3 −w−3
0 0 0 0 0 0 0 6 −w+3 −w−3 0 −w−3
0 0 0 0 0 0 0 w+3 6 0 0 −w−3

w+3 2w 0 0 w−3 −w+3 w−3 w−3 0 12 −2w w+3
−2w −2w w−3 0 −w−3 w+3 −w−3 0 0 2w 12 2w+6
−2w −2w 0 0 w−3 −w+3 w−3 w−3 w−3 −w+3 −2w+6 12




With automorphism group order♯Aut(Gram11) = 216317. The latticeGram11 corresponds to the real 4E6 lattice.

Gram18 :=
1
3




6 w+3 0 0 0 0 0 0 −w−3 −w−3 w+3 −w+3
−w+3 6 0 0 0 0 0 0 −w−3 −w−3 −w+3 −2w

0 0 6 w+3 0 0 0 0 w−3 −w−3 w−3 0
0 0 −w+3 6 0 0 0 0 w−3 0 0 0
0 0 0 0 6 0 0 0 0 0 0 w+3
0 0 0 0 0 6 −w+3 0 w−3 2w 0 0
0 0 0 0 0 w+3 6 0 w−3 0 w+3 −w−3
0 0 0 0 0 0 0 6 0 0 w−3 −w+3

w−3 w−3 −w−3 −w−3 0 −w−3 −w−3 0 12 w+3 0 2w
w−3 w−3 w−3 0 0 −2w 0 0 −w+3 12 0 0
−w+3 w+3 −w−3 0 0 0 −w+3 −w−3 0 0 12 −w−3
w+3 2w 0 0 −w+3 0 w−3 w+3 −2w 0 w−3 12




With automorphism group order♯Aut(Gram18) = 22139 ·5. The latticeGram18 corresponds to the real 6D4 lattice.

Gram21 :=
1
3




6 0 0 0 0 w+3 w+3 w+3 w+3 w+3 0 0
0 6 0 0 0 w+3 w+3 −w+3 w−3 0 w+3 −w+3
0 0 6 0 0 0 0 0 0 −w−3 −w−3 0
0 0 0 6 0 −w−3 0 w+3 w+3 2w −w−3 −w−3
0 0 0 0 6 −w+3 w−3 −w+3 0 w−3 0 −w−3

−w+3 −w+3 0 w−3 w+3 12 −w+3 −w+3 w−3 −w−3 6 −3w+3
−w+3 −w+3 0 0 −w−3 w+3 12 −2w 2w 6 w+3 w+3
−w+3 w+3 0 −w+3 w+3 w+3 2w 12 0 2w w−3 −w−3
−w+3 −w−3 0 −w+3 0 −w−3 −2w 0 12 6 −w−3 w−3
−w+3 0 w−3 −2w −w−3 w−3 6 −2w 6 12 2w 4w

0 −w+3 w−3 w−3 0 6 −w+3 −w−3 w−3 −2w 12 −2w+6
0 w+3 0 w−3 w−3 3w+3 −w+3 w−3 −w−3 −4w 2w+6 12



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With automorphism group order♯Aut(Gram21) = 27315 ·5·11. The latticeGram21 corresponds to the real 12A2 lattice.

Gram24 :=
1
3




12 −6 −2w+6 w−3 −w−3 −2w−6 −6 w−3 w+3 0 2w 2w−6
−6 12 2w−6 −w−3 6 2w+6 −w+3 −w−3 −2w−6 3w−3 −w+3 −w+3

2w+6 −2w−6 12 w−3 −w−3 −3w−3 w−3 0 2w −2w 2w−6 2w−6
−w−3 w−3 −w−3 12 w+3 0 6 0 6 0 −w−3 6
w−3 6 w−3 −w+3 12 6 −w+3 −3w−3 −w−3 3w−3 −w−3 −w+3
2w−6 −2w+6 3w−3 0 6 12 −w+3 −2w w−3 2w −2w −3w+3
−6 w+3 −w−3 6 w+3 w+3 12 −w−3 w+3 w−3 0 6

−w−3 w−3 0 0 3w−3 2w w−3 12 −w−3 −2w −2w 0
−w+3 2w−6 −2w 6 w−3 −w−3 −w+3 w−3 12 −w+3 0 0

0 −3w−3 2w 0 −3w−3 −2w −w−3 2w w+3 12 −2w −w−3
−2w w+3 −2w−6 w−3 w−3 2w 0 2w 0 2w 12 −w+3

−2w−6 w+3 −2w−6 6 w+3 3w+3 6 0 0 w−3 w+3 12




With automorphism group order♯Aut(Gram24) = 2143852 ·7·11·13. The latticeGram24 corresponds to the real Leech lattice.

The mass of the genus is 1032508093/67774344416722944000.
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A.13 The non-isometricrank16ϑ-lattices overOQ(
√
−3)

From the isometry classes of the rank 16ϑ-lattices overOQ(
√
−3) we give the orders of the

automorphism groups, the corresponding real root latticesand additional information. The ab-
breviation ”f.r.” stands for full rank and indicates if the corresponding real root lattice has full
rank. Generators for the automorphism group and Gram matrices of theϑ-lattices can be found
at [MathA].

latt.nr. #Aut root system f.r. comment
1 14039648409841827840000 4E8 + lattice from ternary code,decomposable
2 40122452017152 4D4+2E6 -
3 2742118830047232 4A2+4E6 + lattice from ternary code
4 1316217038422671360 4E6+E8 + lattice from ternary code, decomposable
5 443823666757632 8D4 + lattice from quaternionic matrix group, den. L8P8
6 32097961613721600 6D4+E8 + decomposable
7 1451188224 4A2+3D4 -
8 15479341056 4A2+4D4 -
9 48977602560 6A2+D4+E6 -
10 134369280 2A2+2D4 -
11 1277045637120 D4+E6 -
12 8707129344 8A2+2D4 -
13 107495424 4A2+2D4 -
14 22674816 6A2+D4 -
15 31345665638 4A2+3D4+E6 -
16 423263232 8A2 -
17 302330880 6A2+2D4 -
18 825564856320 6D4 -
19 408146688 10A2 -
20 1679616 6A2 -
21 4478976 4A2+D4 -
22 7644119040 2D4 lattice from quaternionic matrix group, den. L8P2
23 161243136 4A2 -
24 82556485632 4D4 lattice from quaternionic matrix group,den. L8P4
25 9795520512 4A2+E6 -
26 313456656384 4A2+3D4+E6 -
27 71409344532480 10A2+2E6 + lattice from ternary code
28 1851353376768 16A2 + lattice from ternary code
29 303216721920 ∅ lattice from quaternionic matrix group, den. LBW32,L32ss
30 15710055797145600 12A2+E8 + lattice from ternary code, decomposable
31 52907904 7A2+D4 -
32 314928 4A2 -
33 2519424 3A2+D4 -
34 1710720 2A2+D4 -
35 8398080 5A2+D4 -
36 3265920 A2+D4 -
37 186624 2A2 -
38 15552 3A2 -
39 139968 5A2 -
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latt.nr. #Aut root system f.r. comment
40 58320 3A2 -
41 2426112 A2+D4 -
42 108864 A2 -
43 1451188224 4A2+3D4 -
44 18144 2A2 -
45 3888 A2 -
46 139968 4A2 -
47 2916 A2 -
48 68024448 4A2 -
49 69984 4A2 -
50 1836660096 9A2+D4 -
51 2834352 7A2 -
52 629856 6A2 -
53 16200 2A2 -
54 418360150720512000 E8 decomposable
55 21427701120 7A2+E6 -
56 1990656 D4 -
57 4608 ∅ -
58 4199040 4A2 -
59 25920 2A2 -
60 41472 2A2 -
61 18144 2A2 -
62 7558272 8A2 -
63 22448067840 A2+E6 -
64 113374080 4A2 -
65 1399680 4A2 -
66 387072 ∅ -
67 2592 ∅ -
68 29376 ∅ -
69 9289728 ∅ lattice from quaternionic matrix group, den. L32
70 15552000 ∅ lattice from quaternionic matrix group, den. L32s
71 87091200 D4 lattice from quaternionic matrix group, den.L8P
72 656916480 2D4 -
73 11604018486528 13A2+E6 + lattice from ternary code
74 10368 ∅ -
75 8064 ∅ -
76 5760 ∅ -
77 606528 2A2 -
78 660290641920 D4 -
79 1658880 ∅ -
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A.14 The non-isometricrank12ϑ-lattices overOQ(
√
−7)

The following tabular contains an enumeration of the alle the non-isometric rank12ϑ-lattices
overOQ(

√
−7), ordered via automorphism group order and root system. Furthermore the column

„sc“ indicates if a lattice is isomorphic to its Galois conjugated lattice(Re,−Im), for details and
the explicit list, given as Gram matrices, see again [MathA].

latt.nr. #Aut root system sc latt.nr. #Aut root system sc
1 768144384000 3E8 + 2 1567641600 3E8 +
3 1137991680 E8+D16 + 4 227598336 3D8
5 227598336 3D8 6 5419008 2D12 +
7 4667544 4A6 + 8 3359232 4E6 +
9 2419200 ∅ + 10 870912 2E7+D10 +
11 846720 ∅ + 12 774144 3D8
13 774144 3D8 14 592704 A15+D9 +
15 497664 6D4 16 497664 6D4
17 331776 6D4 + 18 174960 12A2 +
19 111132 3A8 + 20 84672 2A7+2D5 +
21 82944 3D8 + 22 15876 2A12 +
23 15876 2A9+D6 + 24 15600 ∅ +
25 14400 ∅ 26 14400 ∅
27 13824 ∅ + 28 13824 4E6 +
29 10368 6D4 + 30 9216 4D6
31 9216 6D4 + 32 9216 4D6
33 8064 24A1 34 8064 24A1
35 7056 ∅ + 36 5760 ∅ +
37 4608 24A1 38 4608 6D4 +
39 4608 24A1 40 4368 ∅ +
41 3888 8D3 42 3888 8D3 +
43 3888 8D3 44 3456 4D6 +
45 3402 4A6 46 3402 4A6
47 3024 E6+A11+D7 + 48 2592 4A5+D4 +
49 1944 6D4 + 50 1728 2A7+2D5 +
51 1728 2A7+2D5 52 1728 2A7+2D5
53 1440 12A2 + 54 1296 4D6 +
55 1296 8D3 + 56 1008 2A7+2D5 +
57 960 24A1 58 960 24A1
59 882 4A6 + 60 864 12A2 +
61 864 6D4 + 62 864 12A2 +
63 756 2A9+D6 + 64 756 2A7+2D5 +
65 756 3A8 + 66 648 6A4
67 648 6A4 68 648 4A6
69 648 6A4 70 648 4A6
71 648 4A6 + 72 648 6A4
73 576 24A1 74 576 24A1
75 432 6D4 + 76 384 24A1
77 384 6D4 78 384 6D4
79 384 24A1 80 360 12A2
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latt.nr. #Aut root system sc latt.nr. #Aut root system sc
81 360 12A2 82 336 24A1
83 336 24A1 84 324 6A4
85 324 2A9+D6 + 86 324 6A4
87 288 8D3 88 288 6D4 +
89 288 8D3 90 240 24A1
91 240 24A1 + 92 240 24A1
93 216 8D3 + 94 216 6A4
95 216 6A4 96 192 8D3
97 192 8D3 + 98 192 8D3
99 162 3A8 + 100 160 24A1 +
101 144 6D4 + 102 144 12A2 +
103 144 6D4 + 104 144 6D4 +
105 144 12A2 + 106 144 24A1 +
107 144 12A2 + 108 128 8D3 +
109 120 24A1 + 110 120 12A2 +
111 120 6A4 112 120 6A4
113 108 4A6 114 108 4A5+D4
115 108 2A7+2D5 116 108 4A5+D4
117 108 2A7+2D5 118 108 4A6
119 96 4A5+D4 + 120 96 24A1
121 96 12A2 + 122 96 24A1
123 96 2A7+2D5 + 124 96 24A1
125 96 8D3 + 126 96 24A1
127 72 24A1 128 72 12A2 +
129 72 12A2 130 72 4A6
131 72 4A5+D4 + 132 72 8D3 +
133 72 4A5+D4 134 72 4A5+D4 +
135 72 8D3 + 136 72 2A7+2D5 +
137 72 6D4 + 138 72 12A2 +
139 72 4A5+D4 140 72 4A6
141 72 8D3 + 142 72 12A2
143 72 24A1 144 64 8D3 +
145 60 12A2 146 60 12A2
147 60 12A2 148 60 12A2
149 60 12A2 150 60 12A2
151 56 4A6 + 152 54 4A5+D4 +
153 48 12A2 + 154 48 24A1
155 48 24A1 156 48 12A2 +
157 48 12A2 + 158 48 6D4 +
159 48 12A2 160 48 24A1
161 48 24A1 162 48 24A1 +
163 48 12A2 + 164 48 24A1
165 48 24A1 166 48 24A1 +
167 48 12A2 168 40 6A4 +
169 36 6A4 170 36 6A4 +
171 36 4A6 + 172 36 8D3
173 36 8D3 174 36 6A4 +
175 36 8D3 + 176 36 8D3
177 36 2A7+2D5 + 178 36 8D3
179 36 4A6 + 180 36 8D3
181 36 8D3 182 36 6A4 +
183 36 8D3 184 36 6A4 +
185 36 2A7+2D5 + 186 36 8D3
187 36 2A7+2D5 + 188 36 6A4
189 32 24A1 190 32 24A1 +
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latt.nr. #Aut root system sc latt.nr. #Aut root system sc
191 32 8D3 192 32 8D3
193 32 24A1 194 24 24A1 +
195 24 8D3 196 24 6A4
197 24 4A5+D4 198 24 4A5+D4
199 24 6A4 200 24 12A2
201 24 8D3 202 24 8D3
203 24 12A2 + 204 24 6A4 +
205 24 12A2 206 24 12A2
207 24 6A4 208 24 6A4
209 24 12A2 210 24 12A2 +
211 24 6A4 + 212 24 8D3 +
213 24 4A5+D4 + 214 24 8D3 +
215 24 12A2 216 24 8D3
217 24 12A2 218 20 24A1
219 20 24A1 220 18 12A2 +
221 18 4A5+D4 + 222 18 4A5+D4
223 18 8D3 + 224 18 4A5+D4
225 16 12A2 226 16 12A2 +
227 16 8D3 228 16 8D3
229 16 8D3 230 16 8D3
231 16 8D3 232 16 8D3 +
233 16 8D3 234 16 8D3
235 16 8D3 + 236 16 24A1 +
237 16 8D3 238 16 24A1 +
239 16 8D3 240 16 8D3
241 16 8D3 242 16 8D3
243 16 12A2 244 12 4A5+D4 +
245 12 6A4 246 12 12A2 +
247 12 6A4 248 12 12A2
249 12 6A4 250 12 12A2
251 12 6A4 252 12 6A4
253 12 12A2 254 12 12A2 +
255 12 8D3 + 256 12 6A4
257 12 12A2 258 12 6A4 +
259 12 6A4 260 12 8D3 +
261 12 24A1 262 12 6A4
263 12 8D3 264 12 12A2
265 12 12A2 266 12 6A4
267 12 6A4 268 12 8D3 +
269 12 4A6 270 12 24A1 +
271 12 6A4 272 12 12A2
273 12 4A6 274 12 8D3 +
275 12 24A1 276 12 8D3
277 12 6A4 278 12 6A4
279 12 8D3 280 12 4A5+D4 +
281 12 4A5+D4 282 12 12A2
283 12 4A5+D4 + 284 12 8D3
285 12 6A4 + 286 12 6A4
287 12 4A5+D4 288 12 6A4 +
289 12 6A4 290 12 6A4
291 12 12A2 + 292 8 8D3 +
293 8 8D3 294 8 4A5+D4 +
295 8 12A2 296 8 8D3
297 8 8D3 298 8 8D3
299 8 12A2 300 8 12A2
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latt.nr. #Aut root system sc latt.nr. #Aut root system sc
301 8 8D3 302 8 24A1 +
303 8 12A2 304 8 12A2
305 8 12A2 306 8 8D3 +
307 8 8D3 + 308 8 4A6 +
309 8 8D3 + 310 8 12A2 +
311 8 8D3 312 8 4A5+D4 +
313 8 12A2 314 8 12A2
315 8 8D3 + 316 8 6A4 +
317 8 12A2 318 8 8D3 +
319 8 8D3 + 320 8 24A1
321 8 8D3 + 322 8 12A2
323 8 8D3 324 8 12A2
325 8 12A2 326 8 12A2
327 8 24A1 + 328 8 24A1
329 8 12A2 330 8 12A2 +
331 8 24A1 + 332 8 12A2
333 8 4A5+D4 + 334 8 8D3
335 8 24A1 + 336 8 12A2
337 6 4A5+D4 + 338 6 6A4 +
339 6 8D3 + 340 6 4A5+D4 +
341 6 6A4 + 342 6 6A4
343 6 6A4 344 4 6A4 +
345 4 8D3 346 4 8D3
347 4 8D3 348 4 6A4
349 4 8D3 + 350 4 12A2 +
351 4 4A5+D4 + 352 4 12A2 +
353 4 8D3 354 4 12A2
355 4 6A4 356 4 12A2
357 4 6A4 358 4 8D3 +
359 4 8D3 360 4 12A2
361 4 8D3 362 4 12A2
363 4 8D3 + 364 4 12A2
365 4 12A2 366 4 12A2
367 4 8D3 368 4 8D3
369 4 12A2 + 370 4 8D3 +
371 4 12A2 372 4 8D3
373 4 12A2 374 4 12A2
375 4 8D3 + 376 4 8D3
377 4 12A2 378 4 12A2
379 4 12A2 380 4 12A2
381 4 12A2 + 382 4 6A4
383 4 6A4 384 4 12A2 +
385 4 8D3 386 4 12A2
387 4 4A5+D4 + 388 4 8D3
389 4 12A2 390 4 8D3 +
391 4 8D3 + 392 4 8D3
393 4 6A4 394 4 12A2
395 4 12A2 + 396 4 8D3
397 4 8D3 398 4 6A4 +
399 4 8D3 400 4 6A4 +
401 4 8D3 + 402 4 6A4 +
403 4 8D3 + 404 4 6A4
405 4 6A4 406 4 8D3
407 4 8D3 408 4 8D3
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latt.nr. #Aut root system sc latt.nr. #Aut root system sc
409 4 12A2 + 410 4 12A2
411 4 12A2 + 412 4 8D3 +
413 4 6A4 414 4 12A2 +
415 4 8D3 416 4 12A2 +
417 4 12A2 + 418 4 4A5+D4 +
419 4 8D3 420 4 8D3
421 4 6A4 422 4 12A2
423 4 12A2 424 2 8D3 +
425 2 8D3 + 426 2 8D3
427 2 8D3 + 428 2 6A4 +
429 2 6A4 430 2 8D3
431 2 12A2 432 2 12A2 +
433 2 12A2 + 434 2 6A4
435 2 8D3 + 436 2 8D3 +
437 2 12A2 438 2 8D3
439 2 8D3 440 2 12A2 +
441 2 8D3 442 2 6A4 +
443 2 8D3 444 2 4A5+D4 +
445 2 8D3 446 2 8D3
447 2 12A2 448 2 8D3
449 2 12A2 450 2 6A4
451 2 12A2 452 2 8D3 +
453 2 8D3 454 2 8D3 +
455 2 6A4 456 2 12A2 +
457 2 12A2 458 2 8D3
459 2 8D3 + 460 2 8D3
461 2 8D3 + 462 2 8D3
463 2 6A4 + 464 2 8D3
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A.15 The Magma Code for neighbour stepping

Remark A.1 a) On the following pages you will find our implementation of the neighbour-
hood method. This implementation is much simpler than the implementation of [Sc1/2],
as we only deal with class numberhK = 1.

b) The most time consuming part is the testing for isometry. Sometimes it can be useful to
compute the order of the automorphism group as an invariant first. This has been imple-
mented but is not contained in the following version.

c) Furthermore notice that the Hermitian Gram matrices haveto be provided in the variable
”Erg” which is an ordered set. Additionally we use ”ErgEXT”,an ordered set, which
contains lists which contain (i) the Hermitian Gram matrix,(ii) the Gram matrix of the
associatedZ-module, (iii) the complex structure and (iv) some numbers of short vec-
tors. In addition the number field and the complexOK generator have to be provided
”S<w>:=QuadraticField(-d);”.

The code in MAGMA syntax:

/***------important parameters------***/
Dimension:=16;
IdealP:=1-w;
/***------important parameters------***/
b:=[0];
for j:=1 to Dimension-1 do

Append(~b,0);
end for;

SetMemoryLimit(50*1024^3);
IdealPP:=Integers() ! (IdealP*Conjugate(IdealP))[1];
divisor:=1;
if IdealPP mod 2 eq 0 then

divisor:=2;
end if;

/*--->additional procedures<---*/
helps:=function(n) /*<-----------------------------*/
h:=[0];
for j:=1 to Dimension-2 do

Append(~h,0);
end for;

for t:=1 to (Dimension-2) do
h[t] :=n mod IdealPP;n:=ExactQuotient(n-h[t] ,IdealPP);
end for;

h[Dimension-1]:=n mod IdealPP;
return h;
end function;

vorz:=function(h,vz,e,fixvecnr) /*<-----------------------------*/
for t:=1 to Dimension-3 do

h[t]:=h[t]*(-1)^(vz mod 2);vz:=ExactQuotient(vz-(vz mod 2),2);
end for;

h[Dimension-2]:=h[Dimension-2]*(-1)^(vz);
ewert:=h[Dimension-1]+1;Remove(~h,Dimension-1);
if e lt fixvecnr then

Insert(~h,e,ewert);
Insert(~h,fixvecnr,0); /*fixvecnr hat keinen Einfluss*/
else
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Insert(~h,fixvecnr,0);
Insert(~h,e,ewert);
end if;

return h;
end function;

Umm:=function(g); /*<-----------------------------*/
U:=MatrixRing(Integers(),Dimension) ! 1;
space:=KModule(Rationals(),Dimension);
g:=space ! g;
for idxx:=1 to Dimension do

if g[Dimension+1-idxx] ne 0 then
sbg:=Dimension+1-idxx;
end if;

end for;
for idxx:=sbg to (Dimension-1) do

tux,sux:=XGCD([Integers() ! g[idxx],Integers() ! g[Dimension]]);
V:=MatrixRing(Integers(),Dimension) ! 1;
V[Dimension,idxx]:=sux[1];V[Dimension,Dimension]:=sux[2];
V[idxx,idxx]:=ExactQuotient(-g[Dimension],tux);
V[idxx,Dimension]:=ExactQuotient(g[idxx],tux);
U:=U*Transpose(V);
g:=g * (Hom(space,space) ! Transpose(V));
end for;

return U;
end function;

swap:=function(lin,jin) /*<-----------------------------*/
mat:=MatrixRing(Integers(),Dimension) ! 0;
for lauf:=1 to Dimension do

if lauf eq lin then mat[lin,jin]:=1; end if;
if lauf eq jin then mat[jin,lin]:=1; end if;
if (lauf ne jin) and (lauf ne lin) then mat[lauf,lauf]:=1; end if;
end for;

return mat;
end function;
/*--->additional procedures<---*/

rndzahler:=1000;
for lauff:=1 to rndzahler do /*<----------------starts main loop*/

richtig:=false;
idgi:=Random(#Erg-1)+1;
while richtig eq false do

zero:=true;
for j:=1 to Dimension do

b[j]:=Random(IdealPP-1);
/*chooses adm. vector*/
if b[j] ne 0 then zero:=false; end if;
end for;

if zero eq true then b[1]:=1; end if;
gcdv:=XGCD(b);
for j:=1 to Dimension do

b[j]:=ExactQuotient(b[j],gcdv);
end for;

U:=Umm(b);
START:=(U^-1)*Erg[idgi]*d*Transpose(U^-1);
fixvecnr:=Dimension;
wert:=START[fixvecnr,fixvecnr];
rest:=(Integers() ! wert) mod (divisor*IdealPP);
if rest eq 0 then

richtig:=true;
/*h(x,x) \in P\overline(P)???*/
end if;

end while;
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print "Starts with adm. vector:", b,". Constr. neighb. of:",idgi; ; /* " ,Fixvecnr=",fixvecnr;*/

/********************determines rows/columns which will be mult. with the ideal********************/
f:=0;
for s:=1 to Dimension do

if s ne fixvecnr then
if START[fixvecnr,s] ne 0 then

wert:=START[fixvecnr,s]*IdealP/IdealPP;
if IsIntegral(wert[1]) eq false then

f:=s;
end if;

if IsIntegral(wert[2]) eq false then
f:=s;
end if;

end if;
end if;

end for;
/********************determines rows/columns which will be mult. with the ideal********************/

/********************bring matrix in shape to allow neighbour construction********************/
for eintrag:=1 to Dimension do

if (eintrag ne f) and (eintrag ne fixvecnr) then
/**/
ganz:=false;
zaehler:=0;
wert:=0;
/**/print "e:",eintrag;
idd:=Minimum({f,eintrag});
if eintrag gt fixvecnr then

idd:=idd-1;
end if;

while ganz eq false do
hz:=helps(zaehler);
t:=Dimension-2;vmod:=t;
while (hz[t] eq 0) and (t ge 2) do

t:=t-1;
vmod:=t;
end while;

vz:=1;
while (vz le 2^vmod) and (ganz eq false) do

h:=vorz(hz,vz,eintrag,fixvecnr);
wert:=0;
for idG:=idd to Dimension do

wert:=wert+START[fixvecnr,idG]*h[idG];
end for;

wert:=wert*IdealP/IdealPP;
if (IsIntegral(wert[1]) eq true) and (IsIntegral(wert[2]) eq true) then

ganz:=true;
r:=h;
end if;

vz:=vz+2^(idd-1);
end while;

zaehler:=zaehler+IdealPP^(idd-1);
end while;

V:=Umm(r)*swap(eintrag,fixvecnr);
START:=(V^-1)*START*Transpose(V^-1);

end if;
end for;
/********************bring matrix in shape to allow neighbour construction********************/

/********************neighbour construction********************/
for t:=1 to Dimension do

START[fixvecnr,t] :=START[fixvecnr,t]*IdealP/IdealPP; /***Ideal***/
START[t,fixvecnr] :=START[t,fixvecnr ]*Conjugate(IdealP)/IdealPP; /***Ideal***/
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START[f,t] :=START[f,t]*IdealP; /***Ideal***/
START[t,f] :=START[t,f]*Conjugate(IdealP); /***Ideal***/
end for;

print "Nachbar erzeugt...";
/*neighbour construction*/

/********************Z-modules********************/
VGRAMS:=START/d;
RealGRAMS:=ScalarMatrix(Rationals(),2*Dimension,0);
ImGRAMS:=ScalarMatrix(Rationals(),2*Dimension,0);
for j:=1 to Dimension do

for k:=1 to Dimension do
RealGRAMS[j,k]:=VGRAMS[j,k][1];
RealGRAMS[Dimension+j,Dimension+k]:=mul*VGRAMS[j,k][1];
RealGRAMS[j,Dimension+k]:=(1/2)*VGRAMS[j,k][1]+(1/2)*d*VGRAMS[j,k][2];
RealGRAMS[Dimension+j,k]:=(1/2)*VGRAMS[j,k][1]-(1/2)*d*VGRAMS[j,k][2];

end for;
end for;

for j:=1 to Dimension do
for k:=1 to Dimension do

ImGRAMS[j,k]:=VGRAMS[j,k][2];
ImGRAMS[Dimension+j,Dimension+k]:=mul*VGRAMS[j,k][2];
ImGRAMS[j,Dimension+k]:=(1/2)*VGRAMS[j,k][2]-(1/2)*VGRAMS[j,k][1];
ImGRAMS[Dimension+j,k]:=(1/2)*VGRAMS[j,k][2]+(1/2)*VGRAMS[j,k][1];

end for;
end for;

ImGRAMS:=d*ImGRAMS;
/********************Z-modules********************/

/*---even neighbour?---*/
isot:=false;
for lj1:=1 to (2*Dimension) do

for lj2:=1 to Dimension do
if IsIntegral(RealGRAMS[lj1,lj2]) eq false then

isot:=true;
end if;

if IsIntegral(ImGRAMS[lj1,lj2]) eq false then
isot:=true;
end if;

end for;
end for;

if isot eq true then
print "Not even...";
end if;

/*---even neighbour?---*/

if isot eq false then

/********************reduce value of matrix entries (better for isometry testing)********************/
for trid:=1 to 10 do

RealGRAMS, TrafoS:=SeysenGram(RealGRAMS);
RealGRAMS, TrafoL:=LLLGram(RealGRAMS);
RealGRAMS, TrafoP:=PairReduceGram(RealGRAMS);
ImGRAMS:=TrafoP*TrafoL*TrafoS*ImGRAMS*Transpose(TrafoP*TrafoL*TrafoS);
end for;

/********************reduce value of matrix entries)********************/

for p:=1 to #Erg do
numba:=#Erg+1-p;
VGRAMST:=Erg[numba];
RealGRAMST:=ErgEXT[numba,2];
ImGRAMST:=ErgEXT[numba,3];
if isot eq false then
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print "Determining isometry class (",numba," ?)...";
svinvariante:=true;
SS22:=#ShortVectors(LatticeWithGram(RealGRAMS),2,2);
if SS22 ne ErgEXT[numba,4] then

svinvariante:=false;
print "#SV not equal (",SS22,"|",ErgEXT[numba,4],")!";
end if;

if svinvariante eq true then

/********************---main isometry test---********************/
print "#SV equal => isometry testing...";

if IsIsomorphic([MatrixRing(Integers(),2*Dimension) ! RealGRAMST,
MatrixRing(Integers(),2*Dimension) ! ImGRAMST],
[MatrixRing(Integers(),2*Dimension) ! RealGRAMS,
MatrixRing(Integers(),2*Dimension) ! ImGRAMS]: ShortVectorsLimit:=10^9) eq true then

isot:=true;
print " Isometric to lattice: ---> ", numba," <---";

end if;
/********************---main isometry test---********************/

end if;
end if;

end for; /*all present lattices tested*/

if isot eq false then
print "New lattice found...";
Include(~Erg,START/d);
START; PrintMagmaMatrix(START);
Liste:=[* *];Append(~Liste,VGRAMS);Append(~Liste,RealGRAMS);Append(~Liste,ImGRAMS);
Append(~Liste,S22);Append(~Liste,#AGS);
Append(~ErgEXT,Liste);
end if;

end if;

print "Loop number= ",lauff; print " ";
end for; /*rnd-loop*/
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