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A few words on the leitmotif of this thesis:

The main examples for Hermitian modular forms come from tfaesical case, from Hermitian
Eisenstein series due to Hel Braun [Br3] or from liftingse $&ritsenko, Ikeda, Krieg, and lots
of others. Cohen and Resnikoff [CoRe] introduced the metsfozbnstructing modular forms
via theta-series to the theory of Hermitian modular formd gave a construction for lattices
which yield Hermitian modular forms for an arbitrary imagig quadratic field. In [DeKr]
then one finds an elementary method for the constructionagettattices. One is especially
interested in the number of distinct isometry classes @génus) of lattices which then yield
different theta-series, a problem which was already slkeeteh [CoRe], page 336, "...its [the
genus] class number remains unknown.”. So far, just thatsi with respect to the Gaussian
number field, see [KiMu] or [Sc1], was known. This thesis gatiees these results to arbitrary
imaginary quadratic fields of class number one. In speciall-arranged cases we investigate
the isometry classes of the lattices of interest. Togetligr@rabriele Nebe we have developed a
mass formula which can be applied to imaginary quadratiddief class number 1 easily and can
be adopted to other class numbers. Then we compute thedittratt cusp forms analogous to
[HeKr] where we considered the filtration of cusp forms axgsirom lattices over the Gaussian
number field, but this is limited to very easy cases as bounddifnension estimations get out of
reach very soon. We give some information on the situatidh wmspect to higher class numbers
as 1. The natural continuation of this thesis then is to itigate the situation with respect to
higher class numbers. But things seem to get very ugly vety @n the other hand one can step
deeper into the theory of modular forms itself and try to msdmne advance with respect to the
filtration.

| wish to thank my advisor, Prof. Dr. Aloys Krieg, for the oppumity to write my Phd. thesis
under his supervision and his imperturbable support. Euntbre | am deeply grateful to Prof.
Dr. Gabriele Nebe for her help and ideas she was willing toeshéth me.
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1 The basic theory

1.1 Lattices

Letd € N be a squarefree integer. Th&n= Q(v/—d) is an imaginary quadratic number field.
ObviouslyK is an algebrai®-field extension of degree 2. In cade= 1,2 (4) we have dis(K) =
—4d and in casal = 3 (4) we have dis(K) = —d. We consider the ring of intege€3 of the
Q-field extensiorK, we haveOk = (1, w)z, where

] ivd d=1,2(4)
“TL M d=3(a)

Ok is a Dedekind domain.

Definition 1.1 A lattice of rankn over O =3, is a subsef C Q(v/—d)™ which has the struc-

ture of anOk -submodule with respect to the vector space and fulfils/—d) - = Q(y/—d)".
In full generality one replace®(1/—d)" by an abitrary vector space ai@ by a Dedekind
domain within the underlying field. When the rank and the ulyileg field is not specified we
just speak of a lattice.

Remark 1.2 a) LetK an algebraic number field, which is@extension of finite index, then
the ideal class grouplk is defined as the quotiedk /Px, the group of fractional ideals
modulo the group of fractional principal ideals. The classnberhk is defined as the
orderficlg. For

de{1,2,3,7,11,19,43 67,163}

the imaginary quadratic number fielkdl= Q(v/—d) fulfills hx = 1. In case ohx =1 a
latticel” of rankn overOQ( V=d) is a necessarily fre®x-module, see [OMe], and so there

exists a basiéby, ..., bn) of Q(v/—d)" such thal” = (by,...,bn)oy. I is afreeOx-module
of rankn in the vector spac@(v/—d)".

b) Letl be a free lattice within an arbitrary vector spatelf V is equipped with a regular
symmetric formh:V xV — K, where symmetry may be definied as convenient and regu-
larity means that the form is linear in the first variable &the underlying field, then one
can introduce the Gram matrix of a lattice with a bilineanidi, h) as

(Gram(, h))i,j = h(by, bj).

In the special case of imaginary quadratic fields, the vespaceQ(+/—d)", any square-
freed, is canonically equipped with the standard Hermitian form

() Q(V=d)"xQ(vV-d)" = C,

which is of course linear in the first variable. So fgr = 1 we can always consider Gram
matrices of lattices. When we do not specify, we always va# the standard Hermitian
form.
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c) Let A an O lattice. In the case of arbitrary class number thereyareK" andqj € Jx
with A =5 ajyi, see [OMe].

Definition 1.3  a) Let(I',h) and(A,h’) be two lattices of rank. An Ok-linear bijection
b:F— A, with h(x,y)=h(d(x),d(y)) forallx,yeT,
is called ansometryof the lattices.

b) Anisometryd : T — T is called arautomorphisnof I". If " is a free lattice we have a lattice
basisB, which also is a basis for the vector space, and we ffgge_ Mat(nx n; Ok). This
will be called thecoordinate action

c) WesetAutl) :={¢:I —T; ¢ is anisometry of }, theautomorphism groupf a lattice
r.

When the underlying field is an imaginary quadratic numbdd fisometry and change of basis
can be described via group actions. This is stated in a remark

Remark 1.4 a) Via the isometry relation the set of all lattices in a giwattor space is
divided into classes. Thalassof a lattice/ is denoted by clg\). From the viewpoint of
the coordinate action isometry is provided via the actiothefunitary group Un; K).

b) Letl’ = (by,...,bn)ox. A change of basis from the viewpoint of the coordinate acis
provided via the action of Gh; Ok ). Thus a Gram matrix of a lattice is unique modulo the
action of GIn; Og). On the other hand a lattice is uniquely determined by i{@M )-
orbit in the set of symmetric matrices, where the concepyoifreetry may be defined in a
convenient way.

c) Obviously Autl') Cc U(n;C) is a group. Itis well known, that A(E) is a finite group.

Definition 1.5 a) LetSthe set of all non Archimedian prime spotskfandK, the comple-
tion of K at the spop € S. Furthermore let, the group of fractional ideals ¢f, atp. We
consider the canonical surjective homomorphism

I(S) — I‘37 quVq — pvp.
qe

Then leta, the image under this mapping ©f Jk. For a lattice\ = 5 ajy; we now define
Np =3 apiyi. We say that twa@k latticesA andl™ within K" belong to the samgenusif
Ny is isometric tol, for allep € S. The genus oA\ is denoted by ge\).

b) We define thenass of a genugf lattices® as

1

@) =
mass®) cls(/\z)e(l’) ﬁAUt(Ay

where the sum ranges over representatives of differenteéggnolasses contained in the
genus.
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Remark 1.6  a) Letl’ andA be as chosen in the definition. Obviously g&ih= genl’) <
cls(Ay) =cls(T'y) Vp € S

b) Considering free latticed, ", then the genus condition reduces to the existendg ef
Mat(n x n; Ok ) for all | € N such that the matrix congruences

B/ Gram(A)B, = Gram(T) (1)
hold.

Definition 1.7 Let/A = ajy; anOk lattice, see Remark 1.2 c), together with a regular symmetri
form h. We define thescaleby

sqA\) :=h(AN)
and thevolumeby
vol(A) = [ &f - deth(yi,y)i,j).

Furthermore we call a latticemodularif sc(A) = a and vol[A) = a'. Thedual of a lattice (of
full rank) A with respect to a regular symmetric foitms defined as

N ={xeV; h(x,A) C Og}.

A lattice A is calledintegral if A C A% If we haveA = A? then a lattice is callednimodular
(with respect to the fixed regular symmetric forndy? /A is called thediscriminant groupof a
lattice.

Remark 1.8 a) If A\ is a free lattice the integrality can be read off from a Grantrina
Furthermore\ then is unimodular if the Gram matrix is unimodular.

b) In the case of free lattices the volume equals the dispnanti of a lattice basis which is
equal to the square root of the determinant of a Gram matrix.

Example 1.9 a) Theprincipal genusof lattices of a vector space of dimensiors the genus
that contains the lattice characterized by the Gram mE&tyix he lattices contained in this
genus are obviously unimodular.

b) An important genus for the theory of modular forms is theugeof even and unimodular
Z-lattices. Such lattices exist only if the dimension of teetor spac" is divisible by
8. In dimension 8 the genus just consists ofHgelass, in dimension 16 we hatsg ¢ Esg,
which is the orthogonal sum of twig lattices, and] = (D1s, (%)16)2, the lattice which
is generated by the root lattif® g together with the vector which components are all equal
to 1/2. In dimension 24 we have the 23 Niemeier lattices and theh_ksdtice, see [CoSl].
We want to emphasize that ZiHattices are free lattices.
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1.2 Hermitian modular forms

Our aim is to get structural results on lattices to apply therme theory of modular forms. The
connection is a theta-series construction. The classigal)(case starts with an even and integral
unimodular lattice (in dimension-&, k € N) as an input for the theta-series. We present some
facts of the theory of Hermitian modular forms.

Definition 1.10 TheHermitian half-spac®f degreep € N is given by

Hp(C) 1= {Z € Mat(p x p; C); %(Z—Z”) > 0}.

The unitary symplectic groumvith respect to an imaginary quadratic number figlis defined
as

Sp(p;K) := {M € Mat(2p x 2p;K); MIM"" = J},

whereJ = g _OE . The Hermitian modular groupf degreep € N over the imaginary

guadratic number field is defined as the intersection
Mo(Ok) :=Sp(p; K) NMat(2p x 2p; Ok ).

Remark 1.11 The Hermitian modular group of degrgeacts on the Hermitian half space of
degreep via the usual fractional linear transformation

Z— M(Z):=(AZ+B)(CZ+D) 1,
whereA, B,C, D are thep x p sub-blocks oM.

From [KI] we get explicit generators for the Hermitian moalugjroup.

Theorem 1.12 The modular groug , of degree p with respect to an imaginary quadratic field
K is generated by

<J,T: ( c S) S=5" € Sym(p;0k), R= ( (u01>“ 8),u eGI(n;OK)>,

whereok ist the ring of integers of K.
In view of the theorem we turn to the definition of Hermitian dadar forms.

Definition 1.13 A Hermitian modular formof weightk € Z and degreep is a holomorphic
function f : #/, — C satisfying

(i) f(Z+S)= f(Z) for all Hermitian matrice$Sin Mat(n x n; Ok ),

(i) f(Z[U]) = f(2)forallU € GI(n;Ok),
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(iii)

f(—Z271) = (detz)*f(2),

and forp = 1 the additional condition that

(iv)

f is bounded in the domaifz € C; Im(z) > 3}, f > O.

The vector space of Hermitian modular forms of weiglaind degree is denoted by (Ip).
The subspacsy(lp) is characterized by the condition

fim|e =0,

for all 11 € Sp(p;K), where® is the Siegeld-operator, which is defined analogously to the
Siegel case, the case of Siegel modular forms defined on dgelSialf space, see [SI]].

Remark 1.14 a) Hermitian modular forms exhibit a Fourier expansion

b)
c)

d)

f)

f(Z)= 5  o(T)exp2mi-tracgTZ)),
TeA(p,0k)

where
A(p;Ok) ={T e Mat(p;K); T=T,(T)j €Z, (T)j1 € Ok, | #1},

the dual lattice of the lattice of integral Hermitian ma#sowith respect to the trace form,
see [Brl] or [Kr2].

Hermitian modular forms of negative weight vanish.
Analogous to the Siegel case, the vector spacgs$ p) are finite dimensional.

Forn=1 andK ¢ {Q(v/-1),Q(v/—3)} the groups 1(Ok) are equal to the classical
modular group §P;Z). ForK € {Q(v/—1),Q(v/—3)} we havel1(Ok) = U-SI(2;Z),
wherell is the group of units o0k . Thus forn = 1 the groups of modular transformations
with respect toK, the modular group modulo the constants, are equal to tresichl
modular group for all imaginary quadratic number fields.

We want to emphasize that the invariance condition wipeet to the slash operator
flxM(Z) := de{CZ+ D)X f(M(Z)) = (2)

is equivalent to (i)-(iii) if we havel ¢ {1,3}. Otherwise we have a problem with (ii) which
comes from the existence of the additional roots of unityaring of integers of)(i) and
Q(+v/—3). In comparison to (i)-(iii) one looses many forms when using latter version.
Within the literature one finds both definitions.

For hx = 1 we have a comfortable reduction theory, analogous to takeNékowski
reduction, and therefore the cusp form condition reducd$d®o= 0 which is equal to the
vanishing of all Fourier-coefficients with respect to theridgian matrices which are not
positive definite, see [Br2].
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Example 1.15LetK :=Q(v/—d), pe N, k> 2pand

F\._ rp7 d¢{173}7
P= rpnsi2p,0k), de{1,3}.

Furthermore let

the subgroup of all those matrices whiCkblock is equal to 0. Then thidermitian Eisenstein
seriesis defined to be

EX(Z) := > de{Cz+D) ¥ = ¥ 1M(2),
M:Fpo\[p M:Fpo\Tp

where we have the usual decompositiovbinto blocks. Then fok > 2p the Hermitian Eisen-
stein series is a Hermitian modular form of weidgtend degree, see [Br3] and [Kr2]. In the
latter reference you will also find further characterizat@f the Hermitian Eisensteins series,
including Fourier-coefficients, which are explicitly givéor p = 2.

Definition 1.16 Let f € a1 (I'p) be a Hermitian modular form with Fourier expansion

f(Z)= Z af(T)exp(2ri - traceT 2)).
TeN(p:Ok)

Such anf is calledsingularif a(T) =0forall T > 0.

From [Va] we take the following lemma.
Lemma 1.17 Let K be an imaginary quadratic number field of class number. on

a) Let fe a(I'p) a non-vanishing singular Hermitian modular form, ther=l0 (4) and
k < p. Furthermore fe My (p)o.

b) Every fe a(Ip) with p<kis singular.

c) All Hermitian modular forms of weight k and degree kp vanish identically if k% 0 (4).
For k= 0 (4) we have the identity

Mk (p) = M(Tpo-

Remark 1.18 a) Using the preceding lemma one can prove assertions congeanapping
characteristics of th@-operator.

b) Analogous results for Siegel modular forms and low degmgere obtained in [KoMa].
Most probably these results can be generalized to Hermitiaaular forms.
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1.3 Lattices and Hermitian modular forms

Our aim, following [CoRe], is to construct Hermitian modutarms using theta-series. At first
we will restrict ourselves to free lattices, later in Seat®bwe will discuss the case of non-free
lattices. So letA ¢ K" be a freeOk-lattice of dimensiom with Gram matrixH. Then the
theta-series

O (Z.H) : #4p(C) = C, Z—vol(Ok)P2 Y expritracdZH[G])),
GeMat(nx p;Ok)

satisfies

C)

n
o (-2 LH 1) = (det? ) (detH) PO (2.H),

the theta-transformation formula, where
Mat(n x p; Ok )* = {M € Mat(n x p;C); trace{MN") € Z, forallN € Mat(n x p; Ok)}.

Using this theta-transformation formula we get explicihditions on theOk-lattice A, so that
Oy (Z,H) fulfills the functional equation of Hermitian modular formsth respect to (partial)
involutions in the modular group. Using

Mat(n x p; Ok )* = (\/L__d) Mat(n x p; O )
we get the condition, see [CoRe] p. 332,
detH = 2"d~"/2,
Together with the other conditions from the functional dtraone is interested in latticdsC
Q(v/—d)" together with a Hermitian form,-) : Q(v/—d)" x Q(v/—d)" — Q fulfilling

(i) (x,x) € Q4, forallxeI" (positive definite),
(i) (x,x) € 2Z, for all x € T (integral even),
(iii) det(Gram(T,(-,-))) = 2"d~"2 (determinant condition).

One can show that these conditions urge the theta-seribsr@spect to such lattices to be a
Hermitian modular form with respect to the modular group oarfrom the underlying field,
see [CoRe]. We add & in the notation of theta-series to stress the differencevdset the
Hermitian and the classical Siegel case.

Theorem 1.19 Let " be a free lattice of rank n ovdﬂ@(ﬁ) fulfilling (i), (ii) and (iii). Then
using the abbreviation H= Gram") we have

oP)(Z,H;C) = > exp(Ti - trac€Z - H[G])
GeMat(nx p;0k)

is a Hermitian modular form of weight n. We ha®&)(-,S;C)|o=0"b (., S,C) with
oW(.,sC)lo=1.
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The theta-subspace, the subspace@fl'p) which is spanned by theta-series, is denoted by

Remark 1.20 a) Letl = (by,...,bn)o, be a free lattice of rankover(’)Q(H) fullfilling
the conditions (i)-(iii) from above. Let agaifix = (1, w)z then consider th&-module of
rank zn

FZ = <b1,00b1. R bn,wbn)Z .

Easy calculations show thaf; equipped with the (bilinear) form Ré,-)) is an even and
unimodularZ-lattice. It is immediately clear that this is an equivaleharacterization of
latticesI” C (Q(+v/—d))" fulfilling (i)-(iii). This characterization allows a genalization to
non-free lattices.

b) When' is mapped td 7 we loose the information, which vectors aemultiples, the
complex structure. The complex structure can be recoveoed F;, when knowing the
action of the complexX)k generator of the ring of integers éi,. On the other hand the
complex structure of can be recovered fromy by explicit knowledge of the mapping
M —1rIy.

c) Obviously there is a canonical embedding Ayt— Aut(l'z) C O(2n;Z). The embedded
group will be denoted by A(I ).

We take the preceding theorem and remark as an occasiorefaeit definition.

Definition 1.21 An Ok lattice A ¢ K" of rank n which has the properties as in a) from the
preceding remark is calle@Hlattice.

Remark 1.22 As even and unimodular lattices are classified up to dimerz4g we can use the
results on real unimodular lattices to obtain informatiordelattices. For example one directly
gets the information thdt-lattices only exist if the dimension is divisible by 4.

From [DeKr] one directly gets the following theorem.
Theorem 1.23 For each genus d¥-lattices there exists a class of free lattices.

Furthermore [DeKr] gives explicit constructions fdflattices. But in general one does not get
representatives for all the isometry classes.

Example 1.24 As this thesis is dedicated #lattices we want to give an example. leet —11,
w =iv/11 the complexOk generator and = 4. Then

2 0 flw 2w
0 2 dw
—gw —61—1W 2 0
—GwW W 0 2

is a9-lattice inQ(y/—11)* and the order of its automorphism group equals 1920.
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2 The cased =3

2.1 Formulating a strategy

Remark 2.1 a) The case§(y/—1), the Gaussian number field, with field discriminant disc
—4 andQ(v/—3), the Eisenstein number field, with field discriminant dise-3 stand out due

to the fact that the complex generatoiof their rings of integers can be choosen as a root of 1
and therefore is a unit.

b) The genus of-lattices inQ(v/—1)" is special as the corresponding Gram matrices all have
integral coefficients. For the ranks= 4,8, 12 the genera have been classified in [KiMu].

Now we will follow [KiMu] to classify the genera of-lattices overQ(+/—3) for the ranks
n=4,8,12. The basic idea, which will help to develop a strategyh& the the complex gen-
eratorw acts as an automorphism on thdattices and this action will become manifest in the
automorphism group of the associatedattice of rank 2, see the last section.

Observation Let ' ¢ Q(v/—3)" be ad-lattice. We recall thaf 7, (equipped with the bilinear
form Re :['7 — R) is an even and unimodul&-lattice. The groupJ (n;Q(1/—3)) acts transi-
tively on every class of thé@-lattices, leaving the Gram matrix invariant. The coortinaction

of GI(n;Ok) corresponds analogously to a change of the lattice basighendutomorphism
group (coordinate action) fulfills AGE) = U (n; Q(v/—3)) NGI(n; Ok).

Now letl", ' be9-lattices inQ(v/—3)" with the additional property thdt;, andr/Z belong to the
same class of even and unimodufalattices of rank B. We recall that the complex structure of
thed-lattices can be recovered from the mapping- I'(Z,). An arbritraryg € O(2n;R) applied
to 'z acts on the class dfz but in general one then cannot easily recover the complagtsie
of g(I'z) from the information encoded in the mapping. But the group(Rly, C O(2n;R) will
respect the complex structure in the sense that the complstige can be recovered via the

mapping.

We turn back to the central idea of [KiMu], wich is that the qaex Ok generator acts as an
automorphism of thé-lattices. In the casK = Q(+/—3) the complexOk generatoiw fulfills
w= %(1—1—i\/§) and a calculation shows-@w= 1. So

(WEn)Gram(N)@Ey" = Gram(T)
which meanswE, € Aut(I") and analogouslwE, € Aut(I"). Letl = (by,...,bn)o, andlz =
(f1,..., fon)z with the property thaf; = wfj_1 for j € 2N, j < 2n. We compute the appearance

of wE, embedded into Adf ). Obviously we have

W fi = .fj+l7 1§J§2n72+17
Tl 2 fjg= 8 —wfj— 1, 1<j<2n2|].
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We get

p::(ooEn)Z:(l 1) ,

andp® = —Ea, sop is of order 6.

Thenp is an automorphism df; which respects the complex structurdodnd the same holds
for I',. We takeg € O(2n;R) with g(I'z) =I,. Thenp :=gopog'is an automorphism lyingin
Aut(l'/)z which respects the compléxstructure (iri'/Z). If p'is in the same ALﬂ")Z conjugacy
class a®, for examplep = f1opof, f € Aut(l)z, thenn := fogfulfills p=nopon?

and we observg(I'z) = f(I';) =,. Son centralizep and from this we gey € U (n;C)z, the
unitary group embedded into(@n;R). AsU (n; C)y acts on the class @f-lattices, we conclude
thatl andr™ lie in the same class df-lattices. On the other hand it is then easy to see that if
p and p/ are not conjugated with respect to AD’t)Z the latticed™ andl”’ cannot be of the same
class.

Remark 2.3 A lattice 'z, derived from & -lattice, may yield more than one complex structure.
The number of different complex structureslof, which is the number of classes ®flattices
Ij with (I'j)z = Iz, equals the number of @n; R) conjugacy classes @fwithin Aut(l'z).

This leads to the following strategy.

Strategy 2.4 For each even and unimodular lattiCen a given dimension, we construct the au-
tomorphism group. If” contains a complex structure asidattice overOQ( J/3) then Auty)
has to contain an automorphism of type The next corollary will show that the conjugacy
classes with the invariant of having minimal polynomig) = X? — X + 1 have a one to one
correspondence to conjugacy classes of fypéthin the automorphism group @f. Together
with our considerations from above, it establishes a hijeahapping from &-lattice into the
the conjugacy classes that are having minimal polynop(iXl) = X2 — X 41 as invariant. Ad-
ditionally using the next corollary one can explicitly comgt Hermitian Gram matrices for
O-lattices: Letl” be an even and unimodular lattid@ND a representative of a conjugacy class
of the automorphism group gfwith minimal polynomialp(X) = X2 — X +1 andT < GI(n;Z)
with T-END-T~! = p. Then compute

R:=T GramA)-T".

Now using the information encoded in the mapping- 'z one can recover a Hermitian Gram
matrix for thed-lattice.

Now the crucial corollary.

Corollary 2.5 Every matrix Be Z2™2" with minimal polynomial (B) = X?— X + 1 is conju-
gated todiag A, ..., A) with respect tdl(2n;Z), where

A:<(1) —11).
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Proof: From [Nw], Thm. 111.12, we know thaB is conjugated oveF. to

p
0
_ 0

w
I

0
0

o -

0

X2

X
P

Xn-2
X2n—4
X2n—7

P
0

Xn—1
Xon—3
Xon—6

X(nfl)n/Z
=]

whereX| is an arbitrary (integral) Z 2 matrix. Using excercise 5 from [Nw], p. 54, which is
essentially the theorem by Latimer and McDuffe and the faat the class number @f(v/—3)

is equal to 1, we can already assufe- A. Now take the first index with non-vanishingx;
and annihilateX; by conjugation in GI2n;Z). By iterating this procedure at mogt — 1)n/2
steps we get the desired result. For simplicity we show tleguture forj = 1, a careful look
generalizes the next steps to arbitrgryvhenXy, 1 <k < j—1, already vanish. The first step is

to obtain more structural information ofy. We compute

A2 AX +XA k... %
0 A2 * ... %
52 0 0 A2 . %
0 0 0 ... A2
0 0 0 ... 0 A?

and fromB2 — B+ E;, = 0, a condition arising from the minimal polynomial, the etioAX; +

X1A— X1 = 0 has to hold. An explicit calculation, using

a B
Xl:(v 5)’

leads to the desired structural resultXn

Now we conjugate by

E; X O 0O O
0 E2 O 0 O
0 0 E 0 O
0O 0 O E> O
0O 0 O 0 E
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where
a b
xz(c d).
So we get
Eob - X 0O ... 0 O A Xg X Xn—2 Xn—1
0O Eb O ... 0 O 0 A X Xon—4  Xon—3
0 0 B 0O O 0O 0 A Xon-7  Xon—e
O 0 O E> O 0 0 0 ... A Xnnp2
O 0 O 0 E O 0 0o ... ©O A
E X O 0 O A —XA+AX+X; *
0 E» O 0O O 0 A X L. %k
0 0 B 0O O 0 0 A ... %
0O 0 0 ... E2 O 0 0 0 ... A x
O 0 O 0 E 0 0 0O ... 0A

Using the explicit forms oA, X andX; the matrix equation-X A+ AX + X; = 0 looks like

—b-c a-b-d)\_ [ a y+a
at+c—d c+b - y —-a J°
From this we finally geb+c = a, —a—c+d =Yy, which is easily solvable ovét. O

Remark 2.6 Instead ofp, respectivelywE, C Aut(I"), we alternatively could have had a look at
(w—1)E, C Aut(IM). Both mappings belong to the automorphism group of efielattice, which

is the essential condition. The order fulfills ¢fd— 1)E)z = 3 which could be an advantage
as Sylow subgroups are better to handle. Neverthelessheflargument will not change.

2.2 A mass formula

Before we now apply the strategy, we want to develop a massuiar for thed-lattices. We
proceed as in [BaNe] and so we are in the need of expressiag thittices in terms of modularity.
Recall that a latticé is calledp-modular, ifL = pL!, wherepis an ideal and.? is the dual lattice
with respect to the associated form. In this subsectionrntush more convenient, to consider
the rescaled quadratic form 2Re-)) = tracd---+-~) instead of just R€:,-)). Duality with
respect to the trace-form is denoted-by

Remark 2.7 We fix an Ox-unimodular latticeM, see [Fe]. It is well known, see for example
[CoRe], p. 331, and rescale, that the dual with respect toraélce-form fulfillsM* = (1/+/—3)M.
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When using the counting argument from [BaNe] in the nextstege consider the following
chain of inclusion

v-3M cv-3LcMcCcL=L"cM" =(1/v-3)M,

where the lattices are unimodular with respect to trace and are having detembidetL) =
3-"2; the Hermitian form omM* is (1/3)Ok-valued, the same holds for the Hermitian form on
L. Furthermorex,x) € (1/2)Z for x € L asL is trace-unimodular, so we just count the trace-
unimodular lattices fulfilling the condition thaxk,x) € (1/2)Z N (1/3)Ok = Z. After rescaling

L (or equivalently the form) we get an even lattig@L with determinant det/2L) = 2"3-"/2,
ad-lattice.

Let L be a trace-unimodular lattice. Analogous to [BaNe]
h:L/v-3LxL/V-3L— Ok/(V-3) =Fs, (X§) — V-3(xy)/(V-3),

is a nondegenerate symplectic form on the vector sfpgcéVe have(l,l) € Z for | € L and so
all vectors are isotropic. Let nowe L with —3(x,y) € (v/—3) for ally € L, then(x,y) € Z
and sax € v/—3L. Furthermore leM be a(+/—3)-modular lattice with respect to trace, then

¢:M/V=3MxM/V=3M — O«/(V=3), (%9) — (xy)/(V-3),

is neither a symplectic nor a Hermitian form andg@mduces an orthogonal geometry on the
vector spacé’;. Takex € M with (x,y) € (v/—3) for ally € M. As M is Ok-unimodular we
concludex € v/—3M = 3M*, the non-degeneracy.

Proposition 2.8 Let M be a Hermitian lattice of rank n, which is unimodular kviespect to
the Hermitian form. The unimodular lattices with respectrae containing M are the lattices
L where\/—3L is a full preimage of a maximal isotropic subspace of théogonallFs vector
spacelFy.

Proof: Let v/—3L C M with a trace-unimodular lattice. As L is trace-unimodular and the
trace-values ol lie in Z, we haveM C L andy/—3M c /—3L. We easily see that the image of
v=3L in M/(v/=3)M is maximal isotropic. On the other hand Igt-3L be the full preimage
of a maximal isotropic subspace bf/(v/—3)M. We see that is a lattice and fox € L we
have a look atx,y), ally € L; as\/—3x,+/—3y € v/—3L we conclude thatx,y) € 1/3(v/—3) =
(1/v/=3)Ok. The values of trace ofl/\/—3)Ok are integral, sd. C L*. Forxe L*\L we
havex € (1/v/—3)M\ L. Sov/—3x € M and as there existe L with (x,y) € 1/3(Ok \ (v—3))
(otherwisey/—3x € v/—3L, a contradiction) we see that this is a contradiction, asrtee form
on 1/3(Ok \ (v/—3)) is not integral. 0

Proposition 2.9 Let L be an unimodular lattice with respect to trace. The-unimodular lat-
tices contained in L are the preimages of maximal isotroplispaces of the sympleclig vector

space L/+/—3L.
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Proof: LetM be anOk-unimodular lattice wittM c L; letl’ € v/—3L, then trac&(1/+/—3)I",1) €
Zforalll e L. So{(1/v/-3)I',l) € (1//-3)Ok and sd’ € M, asM C L. We easily see that
the image oM in L/+/—3L is maximal isotropic. On the other hand Mtbe the full preimage
of a maximal isotropic subspace bf+/—3L, then the Hermitian form is integral dvl, hence

M c M’ (whereM’ is the Ok-dual of M with respect to the Hermitian form). Now suppose
me M \M C L\M. As (m,I) € Ok for all | € M, we know that tracg(1/v/—3)m,l)) € Z, we
conclude(1/+/—3)m e M*, a contradiction am ¢ M = /—3M*. 0

Now using the counting argument as in [BaNe], Propositidn &e get the next proposition.

Proposition 2.10 Let 1, be the mass of the genus of g -unimodularOk-lattices in dimen-
sion n and g the mass of the genus of thdattices in dimension n. Then we have

)
u'n_Lln dn,
where

dn = #{max. isotr. subsp. of the orthogori#] vector space
and

Cn = #{max. isotr. subsp. of the symplediig vector space.

From [Fe], Table Vn = 4,8,12, respectively [HaKo] we get the next lemma.

Lemma2.11
. 1
W= 273
. 41
He = 515 310. 52
. 75.373090.789 1847-809-691-73

M2= 522 317 52.7.11. 13 222.317.52.7.11. 13
. 3048163571802983160052643

Mg = 21.322.5%. 11

Now we have to evaluate the fact@nr.

Lemma 2.12 With respect to the vector spaEg the quotient g/d, equals:

N=4|nN=8|n=12| n=16
Cn/n 5 41 73-5 | 193.-17
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Proof: Due to [Ta], Exercise (8.1) from p. 78, we have (symplectiorgetry)

m-1

|'L @™ 1) (@™ +1)/(q™" - 1),

m-1 _ _
Ch= (q2m72| - 1)/(ql+l . 1) —
wheren = 2mand due to [Ta], Exercise (11.3) from p. 174, we have (orthagjgeometry)

m-1

dn — |—L(qm1i _'_1).

The quotient equals

dh g"+1
cn 2
If we specialize ta = 3 we get the tabular from above. 0

And finally:

Theorem 2.13 For the masses of the genera of theattices ofrank4overOg, —, the follow-
ing holds

1
M= 5
1
H8 = 515 310, 52°
 1847-809. 691

M2= o 37 53.7.11.13
1, 16518 3617.1847.800.691.419.47.13

16 — .

231. 322. 54.11.17

2.3 The computation of thed-lattices

Within the next subsections we use MAGMA, see [MAGMA], to elebine thed-lattices over
O@( J/=3) by using our strategy. We also give the orders of the automsmpgroups.

2.3.1 9S-latticesofrankn=4andn=38

Remark 2.14 There is exactly one even and unimodufatattice in dimension 8, the famous
Eg lattice, and exactly two even and unimodufafattice in dimension 16, the latticés & Eg,
which is the orthogonal sum of twis lattices, andDj; = (D1, (3)1)z, the lattice which is
generated by the root lattide;¢ together with the vector which components are alle equal to
1/2. Now we determine the conjugacy classes of those thréedatind search for classes with
invariant minimal polynomiap(X) = X2 — X + 1. Obviously the situation carries over foig

to Eg @ Eg.
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Remark 2.15 a) The group AutEg) contains 696729600 elements and splits into 112 conju-
gacy classes, exactly one of the classes fulfills the minpabinomial condition.

b) The group AutEg & Eg) fulfills #Aut(Eye) = 970.864.271032320.000= 2293105472 and the
number of conjugacy classes of Abg @ Eg) equals 6440, exactly one of them fulfilling the
minimal polynomial condition.

c) The group AutD7,) fulfills fAut(D) = 685597.979.049.984.000= 23°365372.11. 13 and
the number of conjugacy classes of ADf,) equals 2944, none of the classes fulfilling the min-
imal polynomial condition.

This proves the following theorem. A construction for thésitices in the language of Gram
matrices will be pointed out in a subsequent remark.

Theorem 2.16 In the cases of rank & 4 and n= 8 there exists exactly one isometry class of
d-lattices overOg, /—3).

Remark 2.17 a) Letl4 denote a representative of the only clas$ déttices of rankn = 4 over
O@( V3 [DeKir] or the strategy from above provides us with a HeramtiGram matrix. We
compute Autl4) as the normalizer of an element of the conjugacy class fatjithe minimal
polynomial condition. Alternatively take thEg automorphisms which preserve the complex
structure ofEg with respect t@q,/—3). We findgAut(l4) = 155520= 27.3%.5,

b) Let g denote a representative of the only clasdfttices of rank8 ovef)(v/—3). Ob-
viously 'g = ', & 'y which provides a Hermitian Gram matrix. We compute @Agh as the
normalizer of an element of the conjugacy class fulfilling thinimal polynomial condition. We
havefAut(I'g) = 21°-319.52, This is the square of AU 4) times a factor 2 from the component
interchanging, which gives another way to compute to autpitism group.

¢) The computations in the cases of rank 4 andn = 8 just take a few seconds.

2.3.2 Y-lattices of rank n=12

We now turn to the interesting case of ramk 12. The situation is more complicated, as we have
24 unimodular even integrdl-lattices of rank 24. We apply our strategy onto thédattices of
rank 24 and try to determine the conjugacy classes of therarghism groups which fulfill the
minimal polynomial condition of those lattices. We indiedhe Niemeier lattices by their root
system (see [CoSl]).

Lemma 2.18 The Niemeier lattice R3, which corresponds to the root systemgBs has no
complex structure ovef /=)

Proof: From [CoSI] we get AutN23) = Aut(Eg) x Aut(Dj,). As Aut(Dj,) does not contain
elements with minimal polynomia{? — X + 1 the same holds for A@N23). We conclude that
N23 has no complex structure ag dattice overOg, /). 0

Remark 2.19 The other lattices were processed using computer calookatiWe give the total
number of conjugacy classe&£C) and the number of classes with minimal polynonpeX) =
X2 — X +1 ((RCQ). The Niemeier lattices NO1-N24 are indicated by their lattices.
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D24 3Eg Aoy 2D12 | A17E7 | D102E7 | AssDo 3Dg
§CC || 47233 | 253120 | 3916 | 180299| 46200 | 473130 69300 | 181800
fRCC| - 1 - - - - - -

2A12 | A11D7Egs | 4Eg 2AgDg 4Dg 3Ag 2A72Ds5 4Ag
§CC || 10504 | 211750 | 58200| 69174 | 107882| 11780 | 102762| 9975
fFRCC| - - 1 - - - - -

4AsD4 6D4 6A4 8A3 12A; 24A D16Es %)

§CC || 37565| 19857 | 5418 | 7035 1816 814 329728 167
fRCC| - 1 - - 1 - - 1

Theorem 2.20 There exist exactly five classesdofattices of rankl2, corresponding to conju-
gacy classes having as invariant minimal polynomié p= X2 — X + 1 within the automor-
phism groups of the Niemeier lattices. These lattices haedot systems

3Eg, 4Eg,6D4,12A, and .

Proof: From our strategy we know that there is a bijective mappiamfevery rank 13 -lattice
into the conjugacy classes with minimal polynomigk) := X2 — X + 1, of the automorphism
groups of the Niemeier lattices. There exist exactly fivehoke conjugacy classes, which can be
found in the automorphism groups of the Niemeier latticeth woot system Bg, 4Eg, 6D 4, 12A2
and the Leech lattice.

O

Remark 2.21 Our strategy provides us with Hermitian Gram matrices ferfiie 9-lattices of
rank 12. In case ofBs one can get a Gram matrix by summarizinge 4 T 4. All the lattices
are listed at the end of this thesis in the Appendix.

From the description of the root lattices [Qu] we get the rib&brem.

Theorem 2.22 Thed-lattices with respect t8Eg, 6D4 and the Leech lattice yield a quaternionic
structure over the Hurwitz quaternions.

We compute the automorphism groups of théattices as the centralizer of a representative of
the conjugacy classes fulfilling the minimal polynomial ddgion. As pointed out one can also
take the automorphisms of the associdtelattice of rank 2 which preserve the imaginary part

of the Gram matrix. We give the orders of the automorphisnugso

Theorem 2.23

root sys. Es 2Eg 3Eg 4Eg 6D4 12A, Leech
tAuto || 273°.5 | 21531052 | 22231653 | 216317 | 22139.5 | 27315.5.17 | 2143852.7.11.13
gindex || 27-5.7 | 2145272 | 2215378 | 21654 219 212 28.3.52.7.23
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We compute the mass in the case ofltBelimensionab-lattices:

B 1032508093 B
~ 67774344416722944000

in accordance with the mass formula from Subsection 2.2.

H12 1847-809-691.-2722.37 7.5 3.771. 1171 1371,

Finally we compute the index within the quaternionic autopidsm groups.

Theorem 2.24 The index of the automorphism groups of the quaternioniickg within the
automorphism groups of tHe-lattices equals:

root system Es 2Eg 3Eg 6D4 Leech
tHAuto || 27-3-5]| (27-3.5)2.2 | (27-3.5)3.6 | 22133.5 | 2133352.7.13
tindex 3 38 312 36 2.3°.11

Remark 2.25 Although not so pure and elegant this procedure reprodutesesults of Ki-
tazume and Munemasa [KiMu] easily and also gives Gram netfiar the 28 complex lattices

in Q(i)*2
2.4 Another approach to thed-lattices of rank n=4,n=8andn=12

Instead of using computer calculations one can follow [K]vhore directly. This was heavily
supported by Gabriele Nebe.

Well known is the next lemma.

Lemma 2.26 Let L be aroot lattice which has a decompostion into irrethleeand non-isomorphic
root lattices L= RT @ ...®RE. Then we have:

(i) Aut(L) = X;Aut(R"),
(i) Aut(R") = {diag(@1,...,)0; @ € Aut(R), 0 € Sy}

Lemma 2.27 Let L be aroot lattice which has a decomposition into irreithlesand non-isomorphic
root lattices L= Rgl ®...®RE and@< Aut(L) fulfilling the property of having minimal polyno-
mial p(X) = X2 — X + 1. Then all the component interchangiagare of orderl.

Proof: Without loss of generality let = 1. From the minimal polynomial we derive thathas
order 1 or 3. If the order equals 3 thercontains a 3-cycle. After changing the numbering of
the irreducible root lattices we can assume that the 3-@alls(1, 2,3) and@is Ry & Ry & Rs-
invariant. Now an easy calculation with block-matriceswsohatg|r,«r,eRr, cannot fulfill the
minimal polynomial condition, thereforgcannot fulfill the minimal polynomial condition.

From [CoSl] Chapter 4 we get some information on automormlgsoups.



The cased =3 21

Lemma 2.28 (i) Aut(An) = Go-G1, where G = S,11, the Weyl group, which is the permuta-
tion of the coordinates, and{G= 1, n =1, respectively G= +1, n > 2, the negation of
all coordinates.

(i) Aut(Dn) = Go- Gy, where @ is generated by all permutations of the coordinates togethe
with the sign changes of evenly many coordinates, anddatains the sign change of the
last coordiante and, for B= 4 only, the Hadamard graph-automorphism.

Lemma 2.29 (i) Forn # 2the lattices A do not have automorphisms satisfying the minimal
polynomial condition.

(i) For n # 4 the lattices [ do not have automorphisms satisfying the minimal polynbmia
condition.

(i) E7 does not have any automorphism satisfying the minimal potyal condition.

Proof: (ii) The group AutD>) does not contain an element of order 3. Rer 3 orn > 5 an
element of order 3 in AYDy) contains a 3-cycle. After a change of coordinates and basis w
can assume that the 3-cycle(ls 2,3) and the upper & 3 block of a generating matrix is equal
to

-1 -1 0 ...
-1 1 0 ...

An easy calculation shows that the actior{bf2, 3) on the first three basis-vectors is as follows:

di—d;—dzy—d3—dy —dzg—dy,
dp— dz— —dp —d3 — dp,
d3— —dpr —d3+— dy — ds.
An automorphism acting this way cannot fulfill the minimalymomial condition.
(i) For n =1 we haveA, = Z. Forn > 3 an element of order 3 in A(A,) contains a 3-cycle.

After a change of coordinates and basis we can assume thzdcywde is(1,2,3) and the upper
3 x 4 block of a generating matrix is equal to

-1 1 0 0 ...
0O -1 10 ...
0O 0 -11

A calculation shows that the action @, 2, 3) on the three basis-vectors is as follows:
dy—dp— —d1 —do—dy
ho— —di—dy—dy—do
d3+— di +do+d3— do+d3 — ds.
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An automorphism acting this way cannot fulfill the minimalymomial condition.

(iii) As the dimension is odd and the characteristic polyrarhas integer coefficients, we get
a real eigenvalue of any automorphismeaf a contradiction to the minimal polynomial condi-
tion. 0

The next lemma can easily be verified.

Lemma 2.30 The automorphism groups of the root lattices By, Eg and Es contain an auto-
morphism with minimal polynomial(j) = X? — X + 1, which is unique with respect to conju-
gation. In case of this automorphism is a graph automorphism.

Observation A Niemeier lattice/ is the span of the orthogonal sum of root-lattices together
with certain glue vectors, whose components lie in the dofalse root-lattices. Niemeier lattices
are uniquely determined by the underlying root-latticesiclr again are uniquely determined by
their vectors of norm 2. Considering the action of At on the vectors of norm 2, who form a
finite set, together with the proven fact, that isomorphieducible root-lattices are not shuffeld
by an automorphism fulfilling the minimal polynomial condit, we see that the irreducible root
lattices are fixed with respect to automorphisms fulfilliilng tminimal polynomial condition.
Together with the lemmas from above we conclude that an aurf@mism of any Niemeier lattice
fulfilling the minimal polynomial condition requires the &neier lattice to consist of irreducible
root-lattices of type®, D4, Eg Or Eg. Furthermore this automorphism is unique with respect to
conjugation.

The groups AutEs) and AutEsg) are generated by the reflections in the minimal vectors (see
[CoSl], Chapter 4) and so are equal to the Weyl groups of tiheesponding lattices; from the
description of AutA,) we see that an automorphism fulfilling the minimal polynoro@ndition
lies in the Weyl subgroup of Ag#;). The direct product of the Weyl groups of the irreducible
root-lattices is a subgroup of the automorphism group ofcireesponding Niemeier lattice.
Furthermore (see [CoSI] Chapter 16) the automorphism gobthe Niemeier lattice denoted by
6D, is the product of the Weyl groups of the irreduciblglattices, the component interchanging
group of order 6= 720 and a group of order 3 which acts nontrivial on the gludgorsc this
subgroup of order 3 fixes the irreducible components and ti<otained in the Weyl group
and so is the direct product of the graph automorphisi06f order 3. Thus we have proven
that a Niemeier lattice which has just irreducible rootit& components of typ8y, D4, Eg Or

Es has an automorphism, which is unique with respect to comiigiawith minimal polynomial
p(X) = X2 — X + 1. Together with the explicit description of the root lagticof the Niemeier
lattices this is an essential part of the proof of the follogvtheorem.

From the explicit description of Conway ze@y, the automorphism group of the Leech lattice,
see the Atlas of Finite Groups [C0], one gets that there istBxane automorphism of the Leech
lattice corresponding to conjugacy classes with minimaympamial p(X) = X2 — X + 1.

Theorem 2.32 The Niemeier lattices which are denoted Ry, 4E5,6D4 and 12A, and the
Leech lattice have a structure ov@rQ(\/_—S) which is unique up to an isomorphism.
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2.5 Application to Hermitian modular forms
In the following we denote the five classesdefattices of rank 12 ove®y, 3 by 38§, 4E§, 6D},
12A3, 2%,

As there is at most just one class®fiattices with respect to each of the 24-dimensianal
lattices, the transposed Gram Matrix describes the sarieelas the original one. Therefore we
get the next corollary.

Corollary 2.33 The theta-series with respect to thdattices are symmetric Hermitian modular
forms (of weight, 8 respectivelyl 2).

We want to compute the filtration of the cusp forms of the tfeethspace of weight 12 provided
by those fived-lattices.

From [DeKr] we get the lemma.

Lemma 2.34
dim(M12(I2(Ok))) = 3.
To be more precise
M12(T2(Ok))) = (E3, E§, E12)g(y3),

where E is an Hermitian Eisenstein-series of weight k.

From [BoFrWe] we get the next tabular containing the numbiesublattices of certain lattices
as suitably normalized Fourier-coefficients.

Leech| 12A, | 6D4 | 4Eg 3Eg
0 1 1 1 1 1

A01 36 | 72 | 144 | 360
A02 12 | 96 | 480 | 3360
AO3 72 | 1080 | 22680
AO4 864 | 72576

We conclude that the theta-series with respect to our fitedst are linearly independent in
degree 4, as the same holds for the projection to the Siegel ca
Remark 2.35 In view of [NeVe] we consider
v = (365 4ES,6D3, 1275, &%) 0,
and the mapping
OP v — ar15(Tp(Ok))o.
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From the computation of the Fourier-coefficients we defineefollowing theorem.

Theorem 2.36 The form
F@.— @ (353 —30-4E2 + 135 6DF — 160- 123 + 54- @f’)

is a non-trivial Hermitian form of degre4. We either have ) = 0 or F(® is a non-trivial cusp
form of degree. For the dimension of cusp forms of deg#eie holds

dim(Si2(M4(Ok))e) € {0,1}.
The form
G® .= (4E3 —6-6DJ +8-12A3 — 3. @f’)
is a non-trivial cusp form of degre® For the dimension of cusp forms of deg&# holds
dim(S12(M3(Ok))e) € {1,2}.
The form
H®@ =0 (D3 -2 123 + 7
is a non-trivial cusp form of degre2 For the dimension of cusp forms of deg&# holds
dim(S12(M2(Ok))e) = 1.
The form
W= e (12A3 - @3)
is a non-trivial cusp form of degreke For the dimension of cusp forms of degfes holds

dim(Si2(M1(Ok))e) = 1.

As the just mentioned linear combination of lattices builtbais of1’, we have:

degree nN=0|n=1{n=2|n=3|n=4|n>5
dim(Si2(Mn(Ok))e) 1 1 1 1-2 | 0-1 0

Proof: Using the [BoFrWe] tabular§04) we see that the restriction Bf*) onto the Siegel half
space is non-vanishing. $8% is not vanishing.

In the other cases one can also check the [BoFrWe] tabulawdwill give explicit examples of
Fourier-coefficients.
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As we have an example for a non-vanishing Fourier-coefficien
1 200
a > 020 = 3545856
0 0 2
We find the same situation fé+(2 and give a non-vanishing Fourier-coefficient,

1 4 w—3 0
a > w—3 4 0 =7776
0 0O O

Finally JY is non-vanishing, check the root system of the corresp@idmicesA‘Z ando?.

we haveG® 0.

soH® £0.

Using dimM12(T2(Ok))e) = 3 together with]® # 0 andH? # 0 we concludeG® (Z) =0
andF (2 (Z) = 0 by checking a few more Fourier-coefficients.

From the root systems of the corresponding lattices onethatshe Fourier-coefficients with
respect to3[1],3[2],3([3] of H® vanish. Using [Brl], p. 142, Satz 4, we get!)(Z) = 0.
Alternatively one could have had a look at the classical csse Remark 1.14.

Furthermore it is obvious that? (Z) is non vanishing and®© (z) = 0. 0

Remark 2.37 a) All the Fourier coefficients df (3 (Z) with respect to

2 x 4 x x 4 x x 2 % %

x % 2 x * 2 x x 2 x % 0

4 x x 4 x x 2 *x % 4 x x

x x 0 x x 0 * x 0 x x 0
vanish.

b) All the Fourier coefficients o&(? (Z) with respect to

2 % % 4 x x 4 x x *
* % 0 * % 0 * x 0 x 0
and
4 x x
%(*O*)

* x 0
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vanish.
c) As a verification one easily checks that our results fit BeHr\We] tabular.

We conjecture the behavior of the filtration.

Conjecture 2.38 The filtration of cusp forms is as follows.

degree nN=0|n=1|n=2|n=3|n=4|n>5
dim(Si2(Mn(Ok))e) || 1 1 1 1 1 0

Remark 2.39 a) We fail to proveF(® = 0. Nevertheless there is some incidence for the
vanishing ofF (3, like thousands of vanishing Fourier-coefficients and #mgshing of the
restriction to the Siegel case which follows from [NeVe] €binem 3.7.) and the theorem
from above.

b) To prove the open case, essenti&lly) = 0, one could follow [HeKr], which means check-
ing if all Fourier-coefficients corresponding to matridesvith

o 16+2- 12,
™3

wherem € {0,1,2} is the index of the Fourier-Jacobi-coefficient, are equatdm. A
calculation usingn= 2 andk = 12, which is the weight of the Hermitian modular form,
showsr = 11,35.... This implies determining all the vectors of a 24-dimensidflattice
with norm up to 16= 22— 2 — 4. As determining all vectors with norm 8 of our five 24-
dimensionalZ-lattices of interest is already out of reach, one can imagnoticing that
the effort increases exponentially, that the same for na@will be out of reach for some
time.

T:(* *) and tracéT) <r:
* M

c) In[NeVe] Nebe and Venkov use the multiplicatin] o [I;] := g Aut(I")dr ;i ;[['i] on the
formal vector space of lattices to conclude whether thespdorms vanish or not. But the
main tool for their argument is a non-vanishing cusp formighihdegree, which they get
from [BoFrWe]. But in our case it is just the cusp form of higdgdee which is in question.
So the argument of [NeVe] will not work in our case.

d) Another method worth trying seemed the use of the dyadietdue to Poor and Yuen
[PoYu] or the determinant. But the computed bounds were@lsof reach.

Corollary 2.40 From [DeKr], Corollary 2, and Theorem 2.37. we derive thentlgy

441 5 2
H? = (6D2—2-12A2+@3) =c- <E12— ; SOEZ),

6914 o1 ®

__ 109835360, i
where ¢= — 73203 Using [Kr2].
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2.6 A first look onto situation of rank n= 16

Here we take a first short look at the situation of rank 16. The corresponding case of even
and unimodular lattices in dimensiom 2 32 is quite difficult as we have at least one billion
classes of lattices. Our hope is that the restrictions cgrfrom the complex structure of the

O-lattices are strong enough to get a nice classification. $ fiot very encouraging result is

stated in a remark.

Remark 2.41 a) We repeat the mass of the genus ofdHattices OVGI(’)Q( 3

e 13-47-419-691.809- 1847 3617- 16519
H6=77703~ 231.322. 54.17.11

< 0.0020053

b) The first idea to construg-lattices of rank 16 is to construct them via orthogonal sum-
mation from a rank 12 and a rank34lattice. We compute the order of the automorphism
groups.

root system 4Eg 4EgEs 6D4Eg 12A5Eg OEg
# Auto || 23132154 | 223322.5 | 228314.52 | 214320.52. 11 | 22131353.7.11.13

c) From this one can compute the partial mass of the decorhfgolsédtice with respect to the
total mass. We find
1 1

——__— <1510
r decompAUt(r) Hie
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3 The neighbourhood method

The neighbourhood method was originally developed by Kné&seintegral Z-lattices. Here
we will follow Alexander Schiemann and will present the mé&nts roughly in the case of an
imaginary quadratic number field. For the details we ref¢Bt?].

Definition 3.1 Let A be anOk-lattice overO@(ﬁ , h the corresponding Hermitian form and
P C Ok a prime ideal which does not divide the (;iscriminanr\of

a) An integralOk-latticel” with
F/(ANNT)~Ok/P and A/(ANT) ~ Ok/P
is calledP-neighbourof A. Both lattices are then called neighboured.
b) Anve A\ PA with norm inPp is calledadmissible

c) TheP-neighbour at an admissible vectois defined as
AD,V) =P W+ {yeA; (vy) eb}.

The connection between neighbours and admissible vestgigen in the next lemma.

Lemma 3.2 Let A be a lattice as in the definition given above andanother Ok -lattice in
Q(v/—d)". Then the following assertions are equivalent:

a) I is aP-neighbour ofA.
b) There is an\e A\ PA with norm inpP andl = A(D, V).

Lemma 3.3 Let A again anO-lattice in Q(v/—d)" and P a prime ideal not dividing the dis-
criminant of A. If P ist split, inert orP 1 2 then all theP-neighbours of\ lie in the same genus
asA. If P ist ramified withp | 2 then apP-neigbour ofA lies in gerfA\) if and only if the norm
ideals, theOk -ideal generated by all norms of lattice vectors/\o&nd its neighbour coincide.

Definition 3.4 Let A an integralOg-lattice andd € Ok a prime ideal. We define the neighbour-
hood ofA as

Q(A,P) :={I is anOk-lattice ; A = Lo, Ly,...Lg, S.t.Lg € cl(I"), Lj,Lj+1 areP-neighboured.
Now the crucial theorem.
Theorem 3.5 Let A andP as in the definition.

a) Furthermore le® | p a prime. Then

Q(A,P) ={I is anOk-lattice ; disqM) = disq L) and there is & in the unitary group

for all spotsq butyp.
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b) Letn>2,T € gen(A) and T afinite set of spots @. Then there i§’ € cl(I") withI'{ = A
forallgeT.

For the explicit application of the neighbourhood methois ihelpful to determine sets of ad-
missible vectors with respect to the relatien- vV < A(x) = A(X'). As we are dealing with
imaginary quadratic fields we are interested in the spliécas

Lemma 3.6 Let 0 C Ok a prime ideal andy = PN Z. Consider the spacB(A/PA) and for
x € AN\ PA let [x] denote the class of x IA(A/PA). Then every clasx] contains an admissible
vector and all admissible vectors | lead to the same neigbour.

Example 3.7 The following easy computations show an explicit applimatof the neighbour-
hood method and illustrate our implementation. As we focufree lattices the implementation
is easier than in [Sc1,Sc2] as we can omit a lot of ideal coatfmrts and are endued with Gram
matrices.

ConsiderQ(+/—7). Letw:= /-7, then the Gram matrix

14 4w 4w 2w
4.w 14 —w-7 O
—4.w w—7 14 2-w
—2-W 0 —-2-w 14

determines &-lattice A in Q(v/—7)* Letv=(4,1,1,4) € A\ (2-+w)A with respect to the
basisB = (by, ...bs) induced by the Gram matrix. We compute/B, vB) = 462, h the standard
Hermitian form, which is divisible by2 +w)(2+w) = 11. We changés to vB. And get

14 —4.w 8-w+56 2-W
4.w 14 15w+7 0
—8-w+56 —-15-w+7 462 10w+56
—2-W 0 —10-w—+56 14

Let (by,...b,) be the basis induced by the new Gram matrix. Then reads by — 2y, and
get

70 —4-w 28-w—56 2-w-—28
4.w 14 15w+7 0
—28-w—56 —15-w+7 462 10w+56

—2-w—28 0 —10-w—+56 14

"

Again let(by, .. .b,) the basis induced by the new Gram matrix. Replagcby b, — 5b, which
leads to
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70 —-14.-w+140 28w-56 2-w—28
14-w+140 364 65W—273 —70
—28-w—56 —65-w—273 462 10w-+56
—2-w—28 —70 —10-w+56 14

Now we compute the neighbour. Therefor we divide the coeffits(3,1), (3,2) and(3,3) by
2+w and multiply(3,4) by 2+w and treat the columns analogously with- 2

70 —14-w+ 140 —28 —24-w—-70
14-w+ 140 364 —-13-w—-91 —70-w—140

—28 13w-91 42 10 w456
24-w—70 70w—140 —-10-w+56 154

The last Gram matrix represents a 2-neighbour ofA\4 atvB.

3.1 Acloser look ontod-lattices of rank 16 over (’)Q(\/_—g)

We already have taken a short look onto the situation in tise carank 16. Now we want to
apply the neighbourhood method ortdattices of rank 16 ove@Q( /=3 As starting lattices
we take the orthogonal sums ofidattice of rank 12 and &-lattice of rank 4.

Remark 3.8  a) Using the neigbhourhood method we constructed via randwite of ad-
missible vectors parts of the neighbourhood from #hkattices given so far at the ideals
l1=1-w,lhb=2—wandlz=4—w.

b) Furthermore we constructed 16-dimensidhddttices from

(i) self-dual codes iffi®,

(i) Hermitian self-dual codes ifig,
(iif) quaternionic matrix groups (gm-lib. in MAGMA),

(iv) the 15 Koch-Venkov extremal 32-dimensional unimodugdtices,

(v) some of the 28-dimensional unimodular lattices.
The construction of-lattices via codes will explicitly be explained on the npaes. In
(i) and (iv) we look for an automorphism that corresponalthte action oto, the complex
O@(H) generator. In (v) we take the even sublatficef a 28-dimensional unimodular

lattice and check il has a structure with respect €@, —. If this is true we consider
(T L D4, (xLy),l3(xLy)) which then is a 16-dimensionétlattice.

c) So far we have constructed 39attices whose partial mass is more than®@®8% of the
mass of the genus.
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d) You will find the 9-lattices we have already constructed at [MathA]. At the ehthis
thesis we give the orders of the automorphism groups of tlasees together with their
real root-systems. We use the same ordering as in [MathAtemdrk which construction
yields the lattice. Furthermore we give the generators ofesof the automorphism groups
at [MathA|.

e) We have some examples of different isometry classé&slaftices having the same auto-
morphism group order, for example the classes of latticestdel by 39 and 46. All the
lattices found so far are symmetric, which means that fon etass the representatives are
isometric to their Galois conjugates. In terms of Gram noagithis means that for a lattice
given by its Gram matri¥d, this lattice is isometric téi'".

Now we turn to the construction af-lattices from codes which yield th#-lattices of rank 16
whose root-systems are of full rank. From [Kg] (respectij&le]) one gets the next corollary.

Corollary 3.9  a) There are 143 isometry classes of indecomposable evemr@nbdular
Z-lattices of rank32 whose root-lattices have full rank, 119 of them are indecosaple.

b) From the explicit description of the root lattices one frttat there are only 9 isometry
classes of even and unimodul&#attices of rank32 with root-lattices of full rank which
have a structure ove@Q(\/_—3), 5 of them are indecomposable and the 4 decomposable
lattices have g as orthogonal summand. We give these lattices abbreviatedldir root
lattices:

16A5,13A, + Eg, 12A0 + Eg, 10A2 + 2Eg,8D4,6D4 + Eg, 4A0 + 4Eg, 4Eg + Eg, 4Es.

Remark 3.10 As can be seen from the Appendix, these 9 classes are cahiaittee list of 79
lattices which have been found. But we will give explicit stnuctions for these lattices also.

Construction 3.11 For convenience we take the trace form.

a) LetL be ad-lattice whose real root-system contaNf. These lattices are exactly the seven
lattices abbreviated by

16A2, 13A, + Eg, 12A0 + Eg, 10A2 + 2E6, 4A, + 4Eg, 4E6 + Eg, 4Es.

We consider

1
= A= (AF) SLo AR,

where, as usuak denotes the dual with respect to the trace form. It is comrérto consider

A, as the hexagonal lattice, and if we consideras a lattice of rank 1 ovdﬂQ(m) we have
_ _ 16\* /Al6 ~ 116

Ao = (1)0y = SO We havehp = Og =3). Now (A3°)" /AZ® = F3P°. Then the self-dual codes

in IF‘%F correspond td-latticesL¢ of rank 16 which appear as the preimage of the reduction
modquA%6: The complexA, equipped with the trace form has determinani{ Agttrace = 3
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and analogously déAs,trace = 1/3. The self-dual codes R have dimension 8 and as the
reduction is surjective, we then hal(@1%)* : Lc] = 3%. Therefore we see défc, trace = 316-28
from the invariant factors. Lete C be a word of the self dual code and for example/:3 the
preimage of 1 and-1/1/—3 the preimage of 2. From the explicit construction of thamege
and the self duality one concludes that the values of the ti@en on the preimage are integral,
that the norms of preimage vectors are integral and thexefoen with respect to the trace form.

b) LetL be ad-lattice whose real root-system contaID%. These lattices are exactly the three
lattices abbreviated by

8D4,6D4 + Eg, 4Eg.

D_\/i V=3 00
V31 11),
Q=3

we find (D8)*/D§ = F& = {0, 1, w, w?} asF,[w]-modules, wherey = *”T'ﬁ The construction
of lattices then is analogous to the case of ternary codes.

Using

Remark 3.12 a) (i) From [Mu] one gets the seven classes of ternary seif-dades of
length 16.

(i) The classification of the classes of quaternary heaniself-dual codes of length 8
is as follows:

([1,1,0,0,0,0,0,0],[0,0,1,1,0,0,0,0],[0,0,0,0,1,1,0,0],[0,0,0,0,0,0,1,1]),
([1,0,0,1,0,1,1,0],[0,1,0,1,0,1,0,1],[0,0,1,1,0,0,1,1],[0,0,0,0,1,1,1,1]),
([1,1,0,0,0,0,0,0],[0,0,1,0,0,1,w? w],[0,0,0,1,0,1,w,w?,[0,0,0,0,1,1,1,1]).

b) Using the given construction together with the clasdificaeof the root systems of thg-
lattices of rank 16 whose root lattices have full rank, one egplicitly construct these 9
J-lattices from the given ternary and quaternary codes. dddtiat both types of codes
yield thed-lattice abbreviated byHs.

Example 3.13 From [Mu] one finds that(1,2,1,0)'", (0,1, 1,1)")r, is a representative of a self
dual code inFf§. Let 1/y/—3 ¢ AL® be the preimage of 1 and1/,/—3 the preimage of 2 which
are incongruent modulo the reduction with respecAto We get the two generating vectors

of the latticeL as(1/v/—3,—1/v/—3,1/v/-3,0)'" and(0,1/v/-3,1/y/—3,1/+/—3)'". Adding

(1,0,0,0)'" and(0,1,0,0)'" guaranteek > A} = Oa(\/TS)' This gives us a generating matrix for
L from which one gets a Gram matrix.
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4 Lattices with respect to other imaginary quadratic fields

4.1 The case of prime discriminants

Possibly one of the first ideas to extend our results to othaginary quadratic fields is to start
with a generalization of the mass formula. This gives a rtoreakdown into two steps. At
first we need analogous results on unimodular masses as]jrttiee we have to generalize the
counting argument due to Nebe and Venkov as in [NeBa].

From [HaKo] we get the following formula in case of even diraiem.

Proposition 4.1 For the mass of the odd unimodular lattices in even dimensiove have

m_ «
* _ ol-t il |Bivxj| m/2 —1\™? 2m/2 17m 4l d!so(K),
J= J p|disqK), p#£2 prime P /L

1, 21disdK),
where t is the number of distinct prime divisors of the fiektdminant and B,; is the jth gen-
eralized Bernoulli number with respect to the jth power af diaractery = Xgisqi) Which is
attached to the imaginary quadratic number field (see [Za]38) using the additional conven-

tionx(p)! =1if x(p) =0, 2|j, andx(p)! =0if x(p) =0, 21 j.

As the formula from above is quite hard to evaluate we givexamgle, reproducing a result of
[Fe], disc(K)= —3, form= 4.

Example 4.2 At first we have to evaluate the Bernoulli numbers. kdte a Dirichlet character
modN, then

By — N1 Sy (K)By <5)
=N 2 X

where the Bernoulli polynomials are denoted By Focus on the fact that the convention in
[HaKo] forces us to start the summation wkhk= 0. Furthermore with [Za] we get

XdisaK) (1) =1, Xdisq2) = —1,
and forxgisq)(0) we takexgisqk)(0) = 0. Ast = 1 and Legendre’s symbol is equal d, we
get
W =1-(B1(1/3) —B1(2/3)) - 3- (B2(0) + B2(1/3) + B2(2/3))-
-3 (B3(1/3) — B3(2/3)) +3°- (B4(0) + Ba(1/3) + Ba(2/3))-

F(-1? 1
41.24 31104

just as expected.
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We compute the masses of the principal genera for the dimessi = 4,8 andm = 12 with
respect to the imaginary quadratic fields with class numbidtice that results for dise —4
can be found in [KiMu], [HaKo] or [Sc1l]; for dise- —3 see Section 2.

Remark 4.3 We will stick to the notationu* for the masses of the principal genera.

m m=4 m=8 m=12
_ o 1 | . x_ 99161 | .« _ 373435015066676747
d=2 | W'=155 | W' = 113880 | W' = 734003200
m m=4 m=8 m=12
_ «_ 5 . 87673 |, _ 4126009705493629
d=7| W' =1o08 | " = 9528600 | W = ““T760230880
m m=4 m=8 m=12
d—11 || u* = 6L | | — 150219599 | | _ 20840938257308057862000175
= W =10%0 | W = 560408 | W = 223812755744
m m=4 m=8 m=12
d—19 || yu* = 1991 | |+ _ 10433603234087|  « _ 2171624469562764970245227905006271863
= W =570 | M = 39813100 | K = 18300020981760

15355
d=43 || W= 115

» _ 576192760005014764789
Mg = 1393459200
L+ 35498439321428958000013789177199047526879436293659
Mo = 6742112993280
_ » 112699
d=67| W=7
» _ 1349743051608803391092821
Mg = 1393459200
» _ 506977455438697272762706510259666564265803515288883589
o 370816214630400

d= 163 uz _ 6150955

1152
+ _ 308233067846924033623202086525
= 55738368
» _ 14858864844928960562196167127218155452272804758280868223756214361125
o 14832648585216

Remark 4.4 The counting argument from [BaNe], see Section 2, can ebsilgdopted to the
case of imaginary quadratic fields with prime discriminaat$(4). Analogous to Section 2 we
denote by the mass of the genus dflattices and we get

, 4=1(0k/(V—d)).

) ch  qU2+1
= Mn- , Where — = ———
YN ) 2
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Corollary 4.5 Letde N be a prime with{—1/d)| = —1 and K= Q(+/—d) with the property that
there is only one genus of unimodular lattices (the genus doésplit in an odd and even part);
this holds for de {3,7,11,19, 43,67,163}. For the mass of th@-lattices of rank me {4,8,12}
over(’)Q( J/—d) we have

1 dm2_1
lJm_Zm T.'m I_|| INUN dm/2+1

where B ,;j is the jth generalized Bernoulli number, see the propositrom above for further
details.

Back to class number 1. At first we focus on= 4.

Lemma 4.6 For the masses p of the generadafattice of rank m= 4 with respect to the imagi-
nary quadratic fields with & {7,11,19,43 67,163} it holds:

d=7 [ d=11 | d=19 =43
m=4] k= % “4:% M= 10 | =555
d= =
m=4 M:% :4_653

Remark 4.7 We use [DeKr] to construdt-lattices of rankn= 4 and compute the automorphism
groups of these lattices. For the order of these automarpgisups it holds:

d=7]d=11|d=19|d=43|d=67|d=163
fAuto || 5040 | 1920 | 1920 720 1920 1920

This proves part of the next lemma.

Lemma 4.8 The numbers of isometry classes of théattices of rank4 with respect to imag-
inary quadratic fields of class number one equald d € {1,3,7,11}. In the case of d
{19,43,67,163} the number of isometry classesdbiattices is greater than one. More pre-
cisely:

d=19|d=43|d=67| d=163
fiso. cl. 2 4 6 16

Proof: The results fod € {1,3} can be found in Section 2 respectively [Sc1] or in [KiMu].
The rest of the tabular can be achieved using neighbour isig@mm Section 3 applied to a
starting-lattice from [DeKr] at the idedlL + +/—d) C Ok. 0

Remark 4.9 Representatives of the isometry classes ofdHattices given as Gram matrices
can be found in the Appendices.
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Remark 4.10 For rankm = 8 the situation is much more difficult, as the masses grow espo
tially. Furthermore it showed up that isometry testing ie thost time consuming component
of neighbour stepping and as the numbers of lattices gropidfdfor higher ranks and greater
absolut values of discriminants, the computing time insesaapidly. The next lemma describes
the situation for rankn = 8. The results were analogously achieved as for thermaskd case
together with the fact thet—E,} is a subgroup of the automorphism group of the lattices fer th
estimations.

Lemma 4.11 For the numbers of the isometry classesanfk 89-lattices with respect to imagi-
nary fields of class numbédr(except d= 2) it holds:

rank8 ||d=1|d=3|d=7|d=11|d=19
fiso. cl. 3 1 3 7 83

rank 8 d=143 d=67 d=163
#iso.cl. || >480000| >22-1C° | > 3-10%

Remark 4.12 Representatives of the isometry classes oftHattices, with respect to the first
tabular, given as Gram matrices can be found in Section Aegsfely [MathA] ford = 19.

Remark 4.13 The difficulties arising from the rapidly growing masses anders of the auto-
morphism groups grow worse when one considers latticesyana= 12. The situation fod =1
was considered in [KiMu] and faid = 3 see Section 2. Fat € {11,19,43 67,163} the estima-
tions were achieved using thet-E,} is a subgroup of the automorphism group. Het 7 the
simple estimation yields that the number of isometry classgreater than 110 (mass56565).
Application of neighbour stepping yielded 464 isometrysskes of lattices in the genus.

This yiels the next lemma

Lemma 4.14 For the numbers of the isometry classesartk 129-lattices with respect to imag-
inary quadratic fields of class numbgrexcept d= 2) it holds:

m=12 [d=1[d=3[d=7] d=11 [d=19
tiso.cl. | 28 5 464 | >2,1-10° | > 106

m= 12 d=43 d=67 d=163
tiso.cl. || >3,3-10?" | >6,0-10° | >2,1.10%

4.2 The casal =2

We consider the case of the imaginary quadratic fig{¢/ —2) with discriminantdisc= —8.
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The situation varies from the prime discriminant case. We nonsiderOk-latticesM which
are even and unimodular with respect to the Hermitian forich @r-latticesL which areZ-
unimodular with respect to the trace form, the determinanidition is detL) = 8 /2, n the
rank of the lattice, so lattices of typeare suitably scale&-lattices. We consider the chain of
inclusion

1 L1
(\/——Z)LCﬁMCL:L c M.

We consider

h:L/v=2LxL/v—=2L— \/L_ZOK/OK =2, (XY) — 2(xy) + Ok,

which is a nondegenerate symplectic form on the vector spacé/e have(l,l) e J%OK NQ

for | € L and so all vectors are isotropic. Let nowe L with 2(x,y) € Ok for all y € L, then

x € L/, the dual with respect to twice the Hermitian form. The negeheracy follows from

L’ = v/—2L. Furthermore leM be an even unimodular lattice with respect to the Hermitian
form, then

1 1 1 1 1 o o
(p. EM/ (\/—__2) M x EM/ (\/—__2) M— EZ/Z, (X,y) — trace(<x,y>)+Z,
is a nondegenerate symmetric bilinear form on on the veqacel}. Takex € 1/2M with
(x,y) € Z for ally € 1/2M. As the trace of the Hermitian form ory2M x 1/2M lies in 1/27Z,
we gety € v/—2(1/2)M = (1//—2)M, the non-degeneracy. The associated quadratic form

1 1 1 .1
q(P . EM/ (\/—__2) M — EZ/Z, X étrace(<X,X>) +Z,
is nondegenerate. Take= (1/2)M, then adM is even we have the inclusiag(x) € (1/2)trace
((1/4)-2Z) +Z = (1/2)Z+Z. This induces an orthogonal geometry ¥ /(1/v/—2)M = F%.
Remark that the non-degeneracy of the quadratic form andahelegeneracy of the symmetric
bilinear form correspond if and only if the characteristi¢tee underlying field is not 2.

Proposition 4.15 Situation: (1/v/—2)M C L C 1/2M

Let M be an everOk-lattice of rank n, which is unimodular with respect to theriéian
form. The unimodular lattices with respect to trace coneginn (1/2)M are the lattices L
where L is a full preimage of a maximal isotropic subspacehefdrthogonalF, vector space

(1/2M/(1/v=2)M.

Proof: (i) Let L C (1/2)M with a trace-unimodular lattice. As 1/2M is the trace-dual of
(1/v/—2)M andL C 1/2M we have(1/v/—2)M C L. We easily see that the image bfin
(1/2)M/(1/+/—2)M is maximal isotropic.
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(i) On the other hand ldt be the full preimage of a maximal isotropic subspace of the
(1/2)M/(1/+/—2)M-space. Obviously the trace-valueslolie in Z and thereforé. C L*. Now
letl” € L*\ L thenl’ € (1/2)M, and asM is even we have tra¢g,l’) € Z. As tracél’,l) € Z

by definition of L* we have(L,l’)/(1/v/—2)M is a maximal isotropic subspace containing
L/(1/+/—2)M, a contradiction. 0

Proposition 4.16 Situation: /—2L C (1/v/—2)M C L.

Let L be an unimodular lattice with respect to trace. Then ¢henOk-unimodular lattices
scaled by(1/4/—2) contained in L are the preimages of maximal isotropic subspaof the
symplectidf, vector space J./—2L.

Proof: (i) Let M be anOk-unimodular lattice with(1//—2)M C L. (1/v/=2)M is self dual
with respect to twice the Hermitian form. As furthermare-2L is the dual ofL with respect to
twice the Hermitian form an¢il/\/—2)M C L we havey/—2L C (1/v/—2)M. As the Hermitian
form on(1/v/—2)M lies in 1/20k, the image of1//—2)M in the symplectid_//—2L-space
is maximal isotropic.

(i) On the other hand letl//—2)M be the full preimage of a maximal isotropic subspace
of the symplectid_//—2L-space, then the forrh is Ok-valued on(1/v/—~2)M, soM C M’
(whereM’ is the Ok -dual of M with respect to the Hermitian form) &sis essentially twice the
Hermitian form.

Now letn’ € M\ M then(1/v/-2)m €L\ (1/v/—2M) so((1/v/=2)m,(1//—2)m) € (1/2)Z,
therefore ((1/v/—2)M, (1/v/—2)m') //—2L is isotropic with respect to twice the Hermitian
form, a contradiction. Frony/—2L C (1/+/—2)M and(x,X) € (1/2)Z for x € L one gets thai

is even. 0

Remark 4.17 a) Using the counting argument one gets the faé'ﬁ/%zn*—l, see Section 1. It
is well known that there are two genera®@k-unimodular lattices, the even and the odd
genus. The mass of the principal genus equgis 1/128, see [HaKo], and the mass of the
genus of the even unimodular lattices, the one we are ineetés equalsy =1/(12-128),
[Scl]. So we get

13 2 1
©12.1285.-13 3840

s

b) Again from [Sc1] we take the mass of the genus of the evemamdodular lattice$is, o=
99161/275251200. We compute the mass of the gendslattices of rank 8 ove@Q(\/_—z)
as

99161 2 5833
M8 = 27525120@% +1 137625600
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c) Some calculations lead to the conjecture that the unifaodnasses are connected via
(2V2(2V2 — 1)) syen= Kqq- USINgLEqq= 37343501506667674734003200 and the triv-
ial estimation for the order of the automorphism groups, threeefore conjectures more
than 3882 isometry classes of lattices in case of rank 12.

Theorem 4.18 The number of isometry classesdefattices inQ(v/—2)™ where me {4,8} can
be read off from the following tabular. We give a conjectaerh = 12, see the remark from just
above.

I
©

m=12
conj. > 3882

QW 2) [m=4]m

fiso. cl 1

»

Proof: Using [DeKr] we construct a-lattice of rankm = 4 with order of the automorphism
groupfAuto = 3840. The mass shows that there is only one isometry cla8slattices. The
case of rankn= 8 can be revealed by using neighbour stepping. 0

4.3 Application to Hermitian modular forms of low weight

Using thed-lattices we construct Hermitian modular forms. We wantdtedmine the filtration
of cusp forms arising from rank 4 lattices and give some mi&ation of the forms arising from
rank 8 lattices.

4.3.1 Weightk=4

Theorem 4.19 From the computation of Fourier-coefficients in the caseaokd 3-lattices one
gets the filtration for the cusp forms in the ca§®s/—19), Q(v/—43) andQ(+/—67), which is
in these cases the trivial one. The method is describedagtkpin [He].

degree N=0|n=1|n=2|n=3|n=4
dim(&(Tn(Og(y—19))0) || 1 0 1 0 0

degree nN=0|n=1|n=2|n=3|n=4
dim(&(rn(OQ(m)))@) 1 0 3 0 0

degree N=0|n=1|n=2|n=3|n=4

The case left)(1/—163), is the only case showing more interesting behaviour. Fieacom-
putation of the Fourier-coefficients one gets the next lemma
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Lemma 4.20 The filtration of cusp forms with respect to raikattices overQ(+/—163) holds:

degree N=0|n=1|n=2|n=3|n=4
dim(&(rn((’)Q(\/T&)))@) 1 0 13-15| 0-2 0

Remark 4.21 a) From the computation of some hundred thousand Fourifficents we
conjecture

degree nN=0|n=1|n=2|n=3|n

dm(S(MnOg—m))e) | L | 0 | 13 | 2

b) Unfortunately we cannot prove the conjectured behavi@Qanstants in the classical di-
mension formula, see [Brl], are getting far out of reach fghtdiscriminants.

ol ll

c) Other estimations work with dyadic trace or determinastéad of trace [PoYu], [Kn]. But
these estimations are inconvenient for our purpose. Thicéxgpmputation of Fourier-
coefficients of theta-series starts with the computatiahelattice vectors of given length
and then one just counts the scalar products. So working tnatte is the natural way
to do the computations. If one takes for example the deteamtjrone has to check all
the possible combinations of matrix entries, compute tlotors with respect to possible
diagonals and search for the scalar products in the subabdgjoEssentially this search
is the same then as computing the scalar products with regpéee classical trace, but
wastes a lot of information. At present state of time one @canpute Fourier-coefficients
with respect to matrices of trace up to 14.

4.3.2 Weightk=38

From [HeKr] we get an example of a filtration of Hermitian méghforms which are constructed
from rank 89-lattices in the case of the Gaussian integers.

Corollary 4.22 We havelimsg(I'p) = 1for p € {0,2,4} anddimsg(I'p) = 0 otherwise.

Furthermore we have a look a the cades {2,7,11} where the number of isometry classes of
lattices of rank 8 is small. But as the constants within theefision estimations are inoperable,
see the remark from above, we only can give little informaba the filtration.

Lemma4.23 a) d=7. From the explicit computation of the Fourier-coefficiemtgh diag-
onals1/2-(2,2,2,2) we getdim(Mg(I'4(Og,/=7)))) = 3, the forms arising from theta
series are linearly independent in degrée

b) d=2: From the explicit compuation of the Fourier-coefficientdwdiagonalsl/2-(2,2,2,2)
we get the linear independency of the forms in degred-rom the computation of the
Fourier-coefficients with diagonal$/2- (2,2) we getdim(Mg(rz(OQ(\/jz)))) > 3 and
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from the computation of some more Fourier-coefficients heatlassical case we conclude
dim(Ss(M"2(Og(,/=2)))) = 2. From [De] one finally gets the equality in both estimations.

I
(e}

1 n=2|n

2 0-3 | 0-3

I
w
S
I
N

degree n n=

From the computation of some thousand Fourier-coefficiemtsonjecture.

Conjecture 4.24  a) d=7:

degree n= = =
dim(S(Mn(Og(y=7))e) || 1 0 1 0 1

b) d=2:
degree nN=0|n=1|{n=2|n=3|n=4
c) d=11.
degree N=0|n=1|n=2|n=3|n=4
dim(Ss(Mn(Og(y—1p))e) || 1 0 2 0 4
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5 Non-free lattices

From Section 1 we repeat some facts on latticesMe¢ an arbitrary vector space over the field
F andO C F a Dedekind domain. A latticA in the sense of O’ Meara [OMe] is a sub&&t” V
together with arO-module structure. Such a lattice needs not to be free. We wwasthow that
the theta-series with respect to non-fieattices are Hermitian modular forms as well. These
non-freed-lattices correspond to imaginary quadratic number fiefddass number greater 1.
At first we check the transformation with respect to the intioin J. We will follow [Kr1], p.
111. Essentially the proof requires just a careful look atftbe case. But at first we collect some
information on non-free lattices.

Remark 5.1 a) Asthere is no basis for a non-fréelattice A we cannot give a Gram matrix
in the sense of Section 1. This is the reason why one has toopag siore attention to the
non-free case.

b) The result for free lattices was proven in [CoRe] and ctdnfor non-free lattices also
but not proven ,....for convenience...“. But their proof ssed on the existence of a Gram
matrix, so it is worth to elaborate the proof in the generakca short version of the proof
was already published in [HeNe].

c) An O-lattice A is nearly free, which means that there is a basis..,z, for V and a
fractional Ideak such that

N=0z71+...+OZn_1+aZn,
see [OMe].

d) As usual a possibly non-freelattice over an imaginary quadratic number figldan be
considered as A-module of rank f.

For convenience we take a definition for theta-series thgiityy differs from the definition in
Section 1.

Definition 5.2 Let K now be an imaginary quadratic fielk the ring of integers oK, Z € #,,
No an ok-lattice inC™ andA = Aj. We define

o/(z)= Y  expl(ritracelby,b)iiZ)).
(by,....Bn)EA]

This theta-series is essentially the same as the one irteddn Section 1.

Theorem 5.3 Take the setting from above and Ig§ ¢ C™ together with theéraceform beZ-
unimodular. Then we have

oV (3(z) =W (~z~1) = detz/i)"e (2),

which means as = 0(4) that © behaves as a modular form under the transformation by the
involution J.
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Proof: Using the identity theorem we can restrict to the caseiY, Y > 0. At first we consider
the mapping
¢ : R?™" — Mat(mx n;C),
X= (X3 X0 - X X X505 XL - -+ X Xams -« - X Xnds - > X Xim)
= Or XDk

Let A = AJ then¢~1(A) C R?™ is a lattice, so there exiss € Mat(2mnx 2mnR) with
O (FZ2™ = A. We have| detF| = vol(A) = (vol(Ao))". We know thatA\ is trace unimodu-
lar and essentiallp~1(A) ¢ R?™ is n-copies of the corresponding real lattice. So(¥gl= 1
and furthermoré\ = AT, wheret(A,B) := (1/2)tracd AB" + AB"). Now define

W:RZM ., C, x — exp(—TE(O(FX) - d(FX)),Y).
Then
o (iv) = .
A (1Y) gE;mnllJ(g)

Application of the classical Poisson summation yields

o (iy) = w(g) = w —2miht"x)) d
W) ©= 3 | wex-zn) dx

gez?m™n

-3 /exp(—Trr(q)(Fx)tr-¢(Fx)),Y)exp(—2T[ih”x)) dx
he mnX:RZmn

-3, / exp(-m(B)" - 6(y)).Y) exp—2ni" (F 1)) dy- o
y:R R2m

2 / exp(-Te(§)" - 6(y)). ) exp(~2ri (") h)""y))) d.

hez4m

y R2mn

{H ” <”

Now

T(O((F") ). ¢(F1)) = (1/2)trace( (((F) )& (FT)" -+ (FT) To(FI)" ).

Recalling the definition o and the fact that trace is essentially the canonical scataiygst
with respect to Maim x n;K) the right hand side equald’l. So (¢((F'")~1Z?™")) equalsAT.
Therefore

(n) . . - tr
)= 3 [ ew-m@o)

= y:R2mn

—r .
= 3 / exp(—1(T" U, Y) exp(—2rit(H,U)) dU.
< _/\J:Mat(mxn;C)

0(y)),Y) exp(—2ri((¢~'H)"" ) dy
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Furthermore we have the identity
—1(U"U,Y) = 2iT(H,U) = —T1(E[U +iHY 1,Y) — T(E[H],Y1).
Using elementary matrix arithmetic
“T(E[U+iHY YY) = (@ +i- (Y5 H) (U +iHY1),Y)
— (0"U+i- (YD AU 40O HY LY TR HY 1Y)
— _1(T"U,Y) | /2trace(ﬂ”ﬁ”uv” +UHY Y ) -

—i/2trace( U HY Y" +W”W”UY) +trace(\ﬁ”ﬁ”HY*1Y) .

One directly verifies the indentity using =" =Y. So

oM (iv) = / exp(—T(E[U +iHY "1, Y) exp( — T (E[H], Y~ 1)) dU
HEA™=A U:Mat(mxn;C)
— Y exp-m(E[H],YY) / exp(—TT(E[U +W],Y) dU
W:=iHy -1HEA U:Mat(mxn;C)

As the first factor isjuseg\n)(—(l/i)Y—l) and the last integral equals d&et™, see [Kr], p. 110,
the assertion holds. 0

Theorem 5.4 Using the setting from abo@f\n) is a Hermitian modular form.

Proof: Due to a result from Klingen [KI], which we already used in &a&c 1, the modular
groupl , of degreen with respect to an imaginary quadratic fiédds generated by

M= <J,T: ( I(E) g) Se Sym(n;Ok), R= ( <U;1)tr g ) U eGI(n;OK)>,

whereQ ist the ring of integers df. As the lattice\q is even, this also holds for tra@gy, by )« | S)
which means ex(at tracg (b, by )« |S) = 1 and as furthermoréd just permutes the lattice vectors,

see the definitioneg\”)(Z) transforms like a modular form if one takes the theorem frivove
into account. O

Remark 5.5 a) The mass of the odd integral and unimodular lattices df faoverQ(/—5)
equals 63128. Using the counting argument we g¢iL.28 as a lower bound for the mass.
From [DeKr] we construct &-lattice whose automorphism group is of ord¢B&4. After
constructing 100.000 free neighbours of théattice from [DeKr] which were all isometric
to the lattice itself we guess that the hope of just finding frepresentatives in this case
cannot be fulfilled. The representative from [DeKr] yield6@ of the mass-bound.
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b) The situation with respect t9(/—23) is analogously to the just described situation with
respect taQ(y/—5). We haveu = 53/16-2/(23?+1) = 1/80. The order of the automor-
phism group of thed-lattice contributed by [DeKr] equals/240, this is ¥3 of the mass.
But construction of free neighbours did not yield anothemistry class.

d) We conjecture that there is no imaginary quadratic fieldlags number greater than 1
which admits a genus af-lattices of rankn = 4 which consists of just one isometry class.
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A Appendix

A.1 Numbers of isometry classes ao¥-lattices

We give an overview of the number of isometry classe8-tdttices with respect to imaginary
guadratic fields of class number 1 and field discrimirantater we will give Gram matrices for
the representatives of the isometry classes of latticesnéfm =4 forD € {—3,-7,—8,—-19—

43 —67}, for D = —4 see [Sc1] or [HaKo], foD = —11 see Section 1, Example 1.24, and for
d = —163 see [MathA]. For rankn= 8 andD € {—7,—8,—11} see the next pages, fbr= —4
see [Scl] or [HaKo] and foD = —19 see [MathA]. For rankn= 12 andD = —3 see the next

pages.

The situation for rank 4.

m=4 |D=-3|D=-4|\D=-7|D=-8D=-11|D=-19
fiso. cl. 1 1 1 1 1
m=4 D=-43|D=-67| D=-163
fiso. cl. 4 6 16

The situation in for rank 8.
m=8 |D=-3|D=-4|D=-7|D=-8D=-11|D=-19
fiso. cl. 1 3 3 6 7 83
m=38 D=-43 | D=-67 | D=-163
fiso.cl. || >480000| >2,2-10" | >3.10'°

The situation for rank 12.
m=12 | D=-3|D=-4|D=-7 D=-8 =-11 | D=-19
# iso.cl. 5 28 464 | conj.>3882| >2,1-108| > 106
m=12 D=-43 D=-67 D=-163
tisocl. | >3,3-107" | >6,0-10%3 | >2,1-10%
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A.2 Therank4d-lattice over =

2 0 w41l 1/2w

_ 0 2 12w —w+1
OL=1 _wi1 —12w 2 0
~1/2w w41 0 2

With w = iv/2 and automorphism group ordehut(G01) = 3840.

A.3 Therank4d-lattice over Oov=3)

6 0 2w 2w
_ 0 6 2w —2w
OLl=31 2w —2w 6 0
2w 2w 0 6

With w = i1/3 and automorphism group ordphut(G01) = 155520.
A.4  Therank4d-lattice over Og, /=

14 0 6v 4w
1 0 14 4 —6w
7] —6w —4w 28 0

4w 6w O 28

G0l =

With w = iv/7 and automorphism group ordeAut(G01) = 5040.
A.5 The tworank4d-lattices overO /—7g

38 0 6v 6w
1 0 38 6v —6w
19| —-6w —6w 38 0

—-6w 6w O 38

GO01 =

With w = i/7 and automorphism group ordeAut(G01) = 1920.

76 —-w—-19 —-6w+76 —16w—76
GO2 — 1 7w-19 38 1wv+19 —6w+76
" 19| 6w+76 —17w+19 190 —38w—38

low—-76 6nv+76  38v—38 190
With automorphism group ordgAut(G02) = 720.
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A.6 The four rank4d-lattices overO@( N

86 0 1l 12w
1 0 86 1av —ldw
43| —1aw —12w 172 O

1w 14w 0 172

G01 =

With w = iv/43 and automorphism group ordghut(G01) = 720.

774 66v—86 74v+1720 178v—86
GO2 — 1 —66w— 86 258 —159v+43 —14w+688
" 43| —74w+1720 15%v+43 4472 430+ 430

—178v—-86 14v-+688 —430w+430 1892

With automorphism group ordgAut(G02) = 240.

4386 —273v—301 —34w+ 3440 —424v—688

GO3 — 1| 273w-301 774 22%—86 —14w-+1204

" 43| 34w+3440 -—222w— 86 2924 —344v — 344
424v—688 14v+1204  344v— 344 1892

With automorphism group ordgAut(G03) = 120.

516 —129w+ 129 64v —2w+ 688
GO4 — 1| 129w+129 2838 54— 2064 33W-+ 645
T 43 —64w —54w — 2064 1720 —258n — 258

2w+ 688 —33Av+4-645 258v— 258 1892

With automorphism group ordgrut(G04) = 1920.
A.7  The sixrank4d-lattices overOg,  /—g7)

134 0 2&v 20w
1 0 134 2v —20w
67| —20w —20w 402 0O

—20nw 20w O 402

GO01 =

With w = i1/67 and automorphism group ordghut(G01) = 1920.

19832 260v+16884 33&v+134 141w+ 737
GO2 — 1| —260v+ 16884 14606 28R+402 1196v+ 1876
T 67 —334v+134  —-282w+402 402 1608

—141Av+737 —1196v+ 1876 1608 6834
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With automorphism group ord¢Aut(G02) = 240.

19832 506v— 134 10Gv+ 11256 141w+ 737
GO3 — 1 —506nv—134 1072 —32w+201 —-20w+ 2412
" 67| —100w+11256 32w+ 201 6834 80w+ 804

—141W+737 2Qv+2412 —804w-+ 804 6834

With automorphism group ord¢Aut(G03) = 120.

10184 —645v—1005 —100~+ 12060 —995v— 1675
GO4 — 1| 645v—1005 3082 74% — 469 —20w+ 4422
© 67| 100w+12060 —749v—469 14874 —1206v — 1206
995§ — 1675 2Qv+4422 1206v— 1206 6834

With automorphism group ordgiut(G04) = 48.

134 —27w+ 67 13v -+ 67 804
GO5 1 2w+ 67 536 4v—402 19 +871
" 67| —13w+67 —40w—402 804 —20lw— 201
804 —-19w-+871 20Iv—-201 6834

With automorphism group ord¢Aut(G05) = 120.

130918 —6705v— 16817 1488%— 73968 620%v+ 112359
GOB — 1 6705v— 16817 25192 —5698v—41540 4958/ — 35711
" 67| —14882v—73968 5698 — 41540 155172 —1628Ww— 16281
—620w+ 112359 —4953v—35711 16281v— 16281 116178
With automorphism group ordgAut(G06) = 720.
The mass of the genus ist 25760.
A.8 The sixrank83-lattices over(’)Q(\/_—z)
4 0 2w+2 w 0 0 0 0
0 4 w 2w+2 0 0 0 0
—2w+2  —w 4 0 0 0 0 0
GOl — Z_L —W 2w+2 0 4 0 0 0 0
' 0 0 0 0 4 0 2 w
0 0 0 0 0 4 w 2w+2
0 0 0 0 w42 —w 4 0
0 0 0 0 —W 2w+2 0 4

With w = iv/2 and automorphism group ordpAut(G01) = 29491200. The lattic€&01 corresponds to the reg @ Eg lattice.
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8 0

0 4

—2w+2 —w

1 w—2 2

G02 = > —w_a 0
2w+ 2 0

4 0

aw—4 0

L

cocococod= |
N

—-w—2
0
0
—3w
8
—-wW—2
—w—2

2
0
4
3w
—w
0
4 —5w+2

With automorphism group ordé¢iut(G02) = 147456. The lattic€&502 corresponds to the relag @ Eg lattice.

28 —4w—16
4w—16 16
—2w+2 —-w
1 w4 —ow—2
CO3=3| _ow-22 sw+14
2wt16  —4w—10
8w—8  —4w-+8
20W—8 —12w+12

w+2 -w+4  2w-22
w 2w—2 —5w+14
4 0 0
0 4 —2w—6
0 v—-6 24
0 2 -14
0 Awv —10w+8
0 av —19w+4

With automorphism group ordé¢iut(G03) = 786432. The lattic€&S03 corresponds to the reB% lattice.

8 —4
—4 12
-2 —3w+2
1 w—2 2
G04 = 2| —2w+2 w-10
—w-+4 3w—6
4w—4 —8w+8
0 aw—4

-2 —-w—2 2w+ 2
w+2 2 -w—10
4 0 v—-4

0 4 —3w

—-3w—4 3w 20
-w—4 —wW —3w+6
8 0 av—12
-4 4 —9w+6

With automorphism group ord¢iut(G04) = 92160. The latticé&504 corresponds to the relgg @ Eg lattice.

8 4 -w—4 -w—6 2w+ 2

4 12 —2w—10 —6 w+ 10

w—4 2w—10 16 —4w+10 w-16
GO5 ,:il w—6 -6 4w—+10 12 —4w—10

2 —-2w+2 —w+10 —w-16 4v—10 20

—wW —3w—-2 4w+ 2 w2 —4dw—4

4w —4 8w—8 —7w+14 —-8w-+8 9w —12

0 —4w+4 6w—6 4w —9w+6

With automorphism group ordé¢iut(G05) = 43008. The latticé505 corresponds to the reBtf6 lattice.

24 —10w+2
10w+ 2 28
—2w+14  —4w-+6
o1 w+ 10 —4w+8
G06 = > 6 w
5w—8 aw+4
—12w+12 —9w-10
8w—8 w+12

2w+14 —w+10 6
4v+-6 4w+8 —-wW
12 8 -W+6
8 12 —4w+6
w+ 6 4w+ 6 12
3w—-6 2w—6 3w—-6
—8w+8 —8w+8 —7w+4
-4 4w -w—-2

With automorphism group ordé¢iut(G06) = 5160960. The lattic€06 corresponds to the reg ¢ Eg lattice.

The mass of the genus is 58337625600.

—2w+2 4 —4w—4
0 0 0
0 0 0
w 0 4
w—2 w—2 5w+ 2
4 w+2 —4w+2
—3w+2 8 —4w—4
w+2  dw—4 12
—2w+16 —-8w—-8 —-20w-8
aw—10 Av+8 12w+ 12
0 0 0
2 —4w —4w
-14 10v+8 19wv+4
12 —-5w—4 —14w-—-2
5v—4 12 4v+16
14v—-2 —4w-+16 36
w+4 —4w—4 0
—3w—6 8w-+8 —4w—4
w—4 8 —4
w 0 4
w+6 —-9w-12 9w+6
8 —3w—12 6
v—-12 24 —-12
6 -12 12
w —4dw—-14 0
v-—-2 —8w—8 dw+4
—4w+2  w+14 —6w—-6
—2w+2 8w+ 8 —4w
-4 —9w-12 9Ww+6
4 5v—4 —4w+ 2
—5w—4 24 -12
4w+ 2 -12 12
—-5w—-8 1w+12 —-8w-8
—4w+4  9w-10 —7w+12
—3w—6 8w-+8 —4dw—-14
—2Ww—6 8w-+8 —4dw
—3w—6 w+4 w—2
8 —3w—12 6
3w—12 24 -12
6 -12 12
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A.9 Therank8d3-lattice over Oov=3)

6 0 2w 2w O 0 0 O
0 6 2w -2w O 0 0 O

2w -2w 6 O 0 0 0 O

1] -2w 2w 0 6 0 0O 0 O

Go1 3 0 0O 0 O 6 0 & 2w
0 0 0 O 0 6 W —2w

0 0 0 0 -2w -2w 6 O

0 0O 0 0O -2w 2w 0 6

With w = iv/3 and automorphism group ordghut(G01) = 155520. The lattic&01 corresponds to the
real Eg @ Eg lattice.

A.10 The threerank8d-lattices overOQ( V=7

14 0 v 4w 0 0 0 0

0 14 4 —6w 0 0 0 0

—6w —4w 28 0 0 0 0 0

GOl — 1] —4w 6w 0 28 0 0 0 0
7 0 0 0 0 14 0 & 4w
0 0 0 0 0 14 & —6w

0 0 0 0 —-6w —4w 28 0

0 0 0 0 —4w 6w 0 28

With w = iv/7 and automorphism group ordpAut(G01) = 50803200. The lattic€&01 corresponds to the reg @ Eg lattice.

14 0 BV w—7 0 0 0 0
0 28 4 —3w+21 0 w+7 4w —6w
—6w —4w 28 0 0 0 0 0
Go2 — } -w—7 3w+21 0 28 -w—7 ew 0 —Tw+7
7 0 0 0 w—7 14 0 av 4w
0 —7w+7 0 —6w 0 28 v+14 —-3w-21
0 —4w 0 0 —6w  —2w+14 28 0
0 ew 0 w+7 —4w 3w-21 0 28
With automorphism group ordé¢iut(G02) = 225792. The latticé&s02 corresponds to the reﬁ% lattice.
28 0 3v—21 2w-14 w+7 0 6w 4w
0 28 v—14 —-3w+21 0 w+7 4w —6w
—-3w-21 -2w-14 28 0 —6w —4w —Tw+7 0
Go3 ,:il —-2w—14 3w+21 0 28 —4w 6w 0 —Tw-+7
7 —Tw+7 0 6w 4w 28 0 wv+21 v+14
0 —Tw+7 dw —6w 0 28 v+14 —-3w-21
—6w —4w w+7 0 —-3w+21 —-2w+14 28 0
—4w 6w 0 w+7 —2w+14  3w-21 0 28

With automorphism group ord¢rut(G03) = 311040. The lattic€&S03 corresponds to the refag & Eg lattice.

The mass of the genus is /&25600.
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A.11 The severrank83-lattices overO@( V=T0)

22 0 v 2w 0
0 22 v —6w 0
—6w 2w 22 0 0
—2w 6w 0 22 0
0 0 0 0 22
0 0 0 0 0
0 0 0 0 —6w
0 0 0 0 2w

0 0

0 0

0 0

0 0

0 6
22 W
—2w 22

6w 0

Og%’oooo

N
N

With w = iv/11 and automorphism group ordgkut(G01) = 7372800. The lattic€01 corresponds to the reBg @ Eg lattice.

44

0 6v

4w —2w+22

6w+ 22 —-22 1w+11
0 22 v —w+11 0 0 0 0
—6w —2w 22 0 0 0 0 0
G02 = i —4w w+11 O 22 —5w—-11 —-3w+11 0 22
11 2w+ 22 0 0 w—-11 44 8+ 22 AN —22 12v
—6w+ 22 0 0 3Iw+11 -—-8w+22 44 8v—22 8v+44
—22 0 0 0 —4w—22 —8w—22 44 —1iw—11
—1iw+11 0 0 22 —12w —-8w+44 1w-11 66
With automorphism group ord¢iut(G02) = 9216. The lattices corresponds to the reBk @ Eg lattice.
132 66 —10w—22 AN 2w+44 1av—22 —33w—33 22w+ 22
66 66 —Tw—-11 —w+11 4w+22 av—22 —22w—22 1w+11
10w—22 w—11 22 0 v-—-11 —5w—-11 44 —-22
G03 — i —4w w+ 11 0 22 —-5w—-11 —-3w+11 0 22
1 —2w-+44 —4w—+22 —3w-11 S5v—-11 44 12v —9w—33 12v
—14wv—22 —8w—22 5v—11 3wv+11 —12w 44 15v—-33 —3w+33
33w-—33 22v—22 44 0 9v-33 —15w—33 132 —66
—22W+22 —1lw+11 —22 22 —12w 3w—+33 —66 66
With automorphism group ord¢iut(G03) = 10080. The latticé503 corresponds to the relgg @ Eg lattice.
132 —66 —21w—33 Ay 2w+ 44 1l4v—22  —-33w—-33 22v+22
—66 66 1w+11  —w+11 —4w—-22 —8w+22 2av+22 —1lw-11
2lw—-33 —15w+11 66 0 Gv—22 —10w-—22 88 —44
Go4 — i —4w w+11 0 22 —5w—-11 —-3w+11 0 22
1 —2w+44 av—22 —6w—22 S5v—-11 44 12v —9w—33 12v
—14w—22 8w+ 22 1v—22 3w+11 —12w 44 15v—33 —3w+33
33w—-33 —22w+22 88 0 —-33 —-15w—33 132 —66
—22w+22  1w-11 —44 22 —12w 3w+ 33 —66 66
With automorphism group ord¢ut(G04) = 1200. The lattic€504 corresponds to the relg & Eg lattice.
44 22 W-22  W+22  —2w+22  6v+22 —1lw-11 1411
22 66 —2w—-22 —w+55 A+ 22 av+22 —-22w—-22 1w+11
—2w—22  w-22 22 w—11  —2w—22 —5w—11  8wv+422 —6w
G05 — 1 —4w+ 22 w+ 55 —w—-11 66 —w+11 5v+33 —-22w—-22 1w+ 33
11 2w+ 22 —4w+22 w—22 w+ 11 44 8+ 22 —9w—33 12v
—6w-+22 —8w+22 5v—-11 —5w+33 —8w+22 44 —7w—55 8v+44
1lw—11 22v—22  —8w+22 22n— 22 9w —33 M —55 132 —66
—1lw+11 —-1iw+11 e —11lw—+33 —12w —8w-+44 —66 66

With automorphism group ord¢@ut(G05) = 672.

The latticeG05 corresponds to the reB[f6 lattice.
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132 —1lw-77 6n 19w-—-11 —14w+22 —-2w-+66 22v+ 44 44y — 22
1iw—-77 88 v —13w-11 12v 8w—44 —1lw-55 —-33w-33

—6w —2wW 22 0 0 0 0 0

GO6 — i —19w-11 13v—-11 0 44 —w—33 —1lw—-11 —-11w+33 88
1 14w+ 22 —12w 0 w—33 44 8v+22 16v—22 6n — 66
2w+ 66 —8w—44 0 1w-11 —8w+ 22 44 16v+ 22 26n— 22
—22w+44 1w —55 0 1w+33 —16w—-22 -—-16w+22 88 22v+ 88

—44w — 22 33v—-33 0 88 —6w—-66 —26w—22 —22w-+88 198

With automorphism group ordé¢iut(G06) = 10560. The latticé506 corresponds to the reBIfG lattice.

44 8w 6w — 22 v+ 22 —6w —2w liw+11 0
—8w 176 —-w-55 —13w+77 —-3w-77 -20w—-44 3w+44 —28w
—6w—22 w—55 66 —44 Awv+22 av+-22 —22w—-22 1w+11
GO7 — 1 —4w+22 13v+77 —44 66 -9w-33 —-1lw-11 2aw+22 —1lw+11
11 6w 3w—77 —4w+22 9v—33 44 8v+22 —9w—33 12v
2w 20w—44 —8w+22 1w-11 —8w+22 44 —7w—-55 v+ 44
—1iw+11 —-30w+44 2w-22 -22w+22 9w-33 M —55 132 —66
0 28w —1llw+11 1w+11 —12w —8w+44 —66 66

With automorphism group ord¢iut(G07) = 11520. The latticé507 corresponds to the relag @ Eg lattice.

The mass of the genus is 2057%69408.
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A.12 The fiverank 129-lattices overOg,/—3)

1
ammzfg
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With w = iv/3 and automorphism group ordpAut(Gram02) = 22231653, The latticeGramD2 corresponds to the redEglattice.

Gramll = -
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With automorphism group ordéiut(Gramll) = 216317, The latticeGraml1 corresponds to the redE4 lattice.

1
Gmﬂng
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[eNeoNoNoNeNe)
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w+3 0
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With automorphism group ordéut(Graml8) = 2213°.5. The latticeGraml8 corresponds to the reaD4 lattice.

GranRl = =

[eNeNoNeNel
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95

With automorphism group ordéAut(Gran21) = 27315.5.11.

1
Gram24 = —
3

With automorphism group ordéiut(Gram24) = 2143852 .7.11.13. The latticeGram24 corresponds to the real Leech lattice.

12
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2w+ 6
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0
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—3w-3
w+ 3
w+3

w

6
0
6
0
6

3

The latticeGram21 corresponds to the real A2lattice.

-w—3 -2w-6 -6
6 wW+6 —w+3
-w—-3 -3w-3 w-3
w-+3 0 6
12 6 —w+3
6 12 —w+3
w-+3 w-+3 12
-3 2w w—3
w—3 -w—3 —w+3
—3w-3 —2w -w-3
w—3 2w 0
w-+3 3w+3 6

The mass of the genus is 1032508088774344416722944000
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A.13 The non-isometricrank 163-lattices overOQ(\/_—g)

From the isometry classes of the rank d8attices overO

/3 We give the orders of the

automorphism groups, the corresponding real root lattesadditional information. The ab-
breviation "f.r.” stands for full rank and indicates if thercesponding real root lattice has full
rank. Generators for the automorphism group and Gram neatatthed-lattices can be found

at [MathA|.

latt.nr.

O©oO~NOULA WNPE

#Aut

14039648409841827840000

40122452017152
2742118830047232

1316217038422671360

443823666757632
32097961613721600
1451188224
15479341056
48977602560
134369280
1277045637120
8707129344
107495424
22674816
31345665638
423263232
302330880
825564856320
408146688
1679616
4478976
7644119040
161243136
82556485632
9795520512
313456656384
71409344532480
1851353376768
303216721920
15710055797145600
52907904
314928
2519424
1710720
8398080
3265920
186624
15552
139968

root system

4E8
4D4+2E6
AA2+4E6
4EG+ES8
8D4
6D4+ES8
4A2+3D4
4A2+4D4
6A2+D4+E6
2A2+2D4
D4+E6
8A2+2D4
4A2+2D4
6A2+D4
4A2+3D4+E6
8A2
6A2+2D4
6D4
10A2
6A2
4A2+D4
2D4
4A2
4D4
4A2+E6
4A2+3D4+E6
10A2+2E6
16A2
%)
12A2+E8
7A2+D4
4A2
3A2+D4
2A2+D4
5A2+D4
A2+D4
2A2
3A2
5A2

+

+
+
+
+

+
+

+

comment

lattice from ternary adelsomposable

lattice from ternary code

lattice from ternary coelepihposable
lattice from quaternionic matrougy, den. L8P8
decomposable

lattice from quaternionic matrix grougn.d_8P2

lattice from quaternionic matrix graigm). L8P4

lattice from ternary code
lattice from ternary code
lattice from quaternionic matrix group, den. LBW32,L32ss
lattice from ternary codepthposable
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latt.nr. #Aut root system comment

40 58320 3A2 -
41 2426112 A2+DA4 -
42 108864 A2 -
43 1451188224 4A2+3D4 -
44 18144 2A2 -
45 3888 A2 -
46 139968 4A2 -
47 2916 A2 -
48 68024448 4A2 -
49 69984 4A2 -
50 1836660096 9A2+D4 -
51 2834352 TA2 -
52 629856 6A2 -
53 16200 2A2 -
54 418360150720512000 ES8 decomposable
55 21427701120 7A2+E6 -
56 1990656 D4 -
57 4608 1) -
58 4199040 4A2 -
59 25920 2A2 -
60 41472 2A2 -
61 18144 2A2 -
62 7558272 8A2 -
63 22448067840 A2+E6 -
64 113374080 4A2 -
65 1399680 4A2 -
66 387072 1% -
67 2592 %) -
68 29376 1) -
69 9289728 1%} lattice from quaternionic matrix group, den. L32
70 15552000 1%} lattice from quaternionic matrix group, den. L32s
71 87091200 D4 lattice from quaternionic matrix group, de&8P
72 656916480 2D4 -
73 11604018486528 13A2+E6 + lattice from ternary code
74 10368 %) -
75 8064 %) -
76 5760 %) -
77 606528 2A2 -
78 660290641920 D4 -

79 1658880 %) -
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A.14 The non-isometricrank 129-lattices overOQ(\/_—n

The following tabular contains an enumeration of the alle tlon-isometric rank 12-lattices
overOQ(ﬁ), ordered via automorphism group order and root systemheéurtore the column
,Sc" indicates if a lattice is isomorphic to its Galois cogated lattice Re, —Im), for details and
the explicit list, given as Gram matrices, see again [MathA]

latt.nr. #Aut root system sc latt.nr. #Aut root system sc
1 768144384000 3E8 + 2 1567641600 3E8 +
3 1137991680 E8+D16 + 4 227598336 3D8
5 227598336 3D8 6 5419008 2D12 +
7 4667544 4A6 + 8 3359232 4E6 +
9 2419200 ] + 10 870912 2E7+D10 +
11 846720 %) + 12 774144 3D8
13 774144 3D8 14 592704 A15+D9 +
15 497664 6D4 16 497664 6D4
17 331776 6D4 + 18 174960 12A2 +
19 111132 3A8 + 20 84672 2A7+2D5 +
21 82944 3D8 + 22 15876 2A12 +
23 15876 2A9+D6 + 24 15600 ] +
25 14400 1%/ 26 14400 1%
27 13824 1% + 28 13824 4E6 +
29 10368 6D4 + 30 9216 4D6
31 9216 6D4 + 32 9216 4D6
33 8064 24A1 34 8064 24A1
35 7056 1%/ + 36 5760 1%/ +
37 4608 24A1 38 4608 6D4 +
39 4608 24A1 40 4368 (] +
41 3888 8D3 42 3888 8D3 +
43 3888 8D3 44 3456 4D6 +
45 3402 4A6 46 3402 4A6
47 3024 E6+A11+D7 + 48 2592 4A5+D4 +
49 1944 6D4 + 50 1728 2A7+2D5 +
51 1728 2A7+2D5 52 1728 2A7+2D5
53 1440 12A2 + 54 1296 4D6 +
55 1296 8D3 + 56 1008 2A7+2D5 +
57 960 24A1 58 960 24A1
59 882 4A6 + 60 864 12A2 +
61 864 6D4 + 62 864 12A2 +
63 756 2A9+D6 + 64 756 2A7+2D5 +
65 756 3A8 + 66 648 6A4
67 648 6A4 68 648 4A6
69 648 6A4 70 648 4A6
71 648 4A6 + 72 648 6A4
73 576 24A1 74 576 24A1
75 432 6D4 + 76 384 24A1
77 384 6D4 78 384 6D4

79 384 24A1 80 360 12A2
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latt.nr.

81
83
85
87
89
91
93
95
97
99
101
103
105
107
109
111
113
115
117
119
121
123
125
127
129
131
133
135
137
139
141
143
145
147
149
151
153
155
157
159
161
163
165
167
169
171
173
175
177
179
181
183
185
187
189

#Aut

360
336
324
288
288
240
216
216
192
162
144
144
144
144
120
120
108
108
108
96
96
96
96
72
72
72
72
72
72
72
72
72
60
60
60
56
48
48
48
48
48
48
48
48
36
36
36
36
36
36
36
36
36
36
32

root system
12A2
24A1
2A9+D6
8D3
8D3
24A1
8D3
6A4
8D3
3A8
6D4
6D4
12A2
12A2
24A1
6A4
4A6
2A7+2D5
2A7+2D5
4A5+D4
12A2
2A7+2D5
8D3
24A1
12A2
4A5+D4
4A5+D4
8D3
6D4
4A5+D4
8D3
24A1
12A2
12A2
12A2
4A6
12A2
24A1
12A2
12A2
24A1
12A2
24A1
12A2
6A4
4A6
8D3
8D3
2A7+2D5
4A6
8D3
8D3
2A7+2D5
2A7+2D5
24A1

SC

+ +

+ + + 4+ + + +

+ + + +

latt.nr.

82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190

#Aut

336
324
324
288
240
240
216
192
192
160
144
144
144
128
120
120
108
108
108
96
96
96
96
72
72
72
72
72
72
72
72
64
60
60
60
54
48
48
48
48
48
48
48
40
36
36
36
36
36
36
36
36
36
36
32

root system
24A1
6A4
6A4
6D4
24A1
24A1
6A4
8D3
8D3
24A1
12A2
6D4
24A1
8D3
12A2
6A4
4A5+D4
4A5+D4
4A6
24A1
24A1
24A1
24A1
12A2
4A6
8D3
4A5+D4
2A7+2D5
12A2
4A6
12A2
8D3
12A2
12A2
12A2
4A5+D4
24A1
12A2
6D4
24A1
24A1
24A1
24A1
6A4
6A4
8D3
6A4
8D3
8D3
8D3
6A4
6A4
8D3
6A4
24A1

SC

+ + + + + +

+

+ 4+ + +

+
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latt.nr.  #Aut rootsystem sc latt.nr. #Aut rootsystem sc
191 32 8D3 192 32 8D3
193 32 24A1 194 24 24A1 +
195 24 8D3 196 24 6A4
197 24 4A5+D4 198 24 4A5+D4
199 24 6A4 200 24 12A2
201 24 8D3 202 24 8D3
203 24 12A2 + 204 24 6A4 +
205 24 12A2 206 24 12A2
207 24 6A4 208 24 6A4
209 24 12A2 210 24 12A2 +
211 24 6A4 + 212 24 8D3 +
213 24 4A5+D4 + 214 24 8D3 +
215 24 12A2 216 24 8D3
217 24 12A2 218 20 24A1
219 20 24A1 220 18 12A2 +
221 18 4A5+D4 + 222 18 4A5+D4
223 18 8D3 + 224 18 4A5+D4
225 16 12A2 226 16 12A2 +
227 16 8D3 228 16 8D3
229 16 8D3 230 16 8D3
231 16 8D3 232 16 8D3 +
233 16 8D3 234 16 8D3
235 16 8D3 + 236 16 24A1 +
237 16 8D3 238 16 24A1 +
239 16 8D3 240 16 8D3
241 16 8D3 242 16 8D3
243 16 12A2 244 12 4A5+D4 +
245 12 6A4 246 12 12A2 +
247 12 6A4 248 12 12A2
249 12 6A4 250 12 12A2
251 12 6A4 252 12 6A4
253 12 12A2 254 12 12A2 +
255 12 8D3 + 256 12 6A4
257 12 12A2 258 12 6A4 +
259 12 6A4 260 12 8D3 +
261 12 24A1 262 12 6A4
263 12 8D3 264 12 12A2
265 12 12A2 266 12 6A4
267 12 6A4 268 12 8D3 +
269 12 4A6 270 12 24A1 +
271 12 6A4 272 12 12A2
273 12 4A6 274 12 8D3 +
275 12 24A1 276 12 8D3
277 12 6A4 278 12 6A4
279 12 8D3 280 12 4A5+D4 +
281 12 4A5+D4 282 12 12A2
283 12 4A5+D4 + 284 12 8D3
285 12 6A4 + 286 12 6A4
287 12 4A5+D4 288 12 6A4 +
289 12 6A4 290 12 6A4
291 12 12A2 + 292 8 8D3 +
293 8 8D3 294 8 4A5+D4 +
295 8 12A2 296 8 8D3
297 8 8D3 298 8 8D3
299 8 12A2 300 8 12A2
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latt.nr.
301
303
305
307
309
311
313
315
317
319
321
323
325
327
329
331
333
335
337
339
341
343
345
347
349
351
353
355
357
359
361
363
365
367
369
371
373
375
377
379
381
383
385
387
389
391
393
395
397
399
401
403
405
407

#Aut

ArAADPADMEAEPAAEADMAEDPMRADAADDAEDMMNDDADMAEDDDADDEADADEADDADADNOOOO 0OOO COOOOCOOOOODO O 0

root system
8D3
12A2
12A2
8D3
8D3
8D3
12A2
8D3
12A2
8D3
8D3
8D3
12A2
24A1
12A2
24A1
4A5+D4
24A1
4A5+D4
8D3
6A4
6A4
8D3
8D3
8D3
4A5+D4
8D3
6A4
6A4
8D3
8D3
8D3
12A2
8D3
12A2
12A2
12A2
8D3
12A2
12A2
12A2
6A4
8D3
4A5+D4
12A2
8D3
6A4
12A2
8D3
8D3
8D3
8D3
6A4
8D3

SC

+

+ + + + + +

latt.nr.

302
304
306
308
310
312
314
316
318
320
322
324
326
328
330
332
334
336
338
340
342
344
346
348
350
352
354
356
358
360
362
364
366
368
370
372
374
376
378
380
382
384
386
388
390
392
394
396
398
400
402
404
406
408

#Aut

ArAADMMDMMPAPDMAPAEAEPAPDADdDMNPAAEAEDNDdDEADdDPDDEAPEAPDPDEAPPPMPPAPPEAEEAEDEADPDPPPOOOO 000000 0O OO COCOOCOCOO O 0

root system

24A1
12A2
8D3
4A6
12A2
4A5+D4
12A2
6A4
8D3
24A1
12A2
12A2
12A2
24A1
12A2
12A2
8D3
12A2
6A4
4A5+D4
6A4
6A4
8D3
6A4
12A2
12A2
12A2
12A2
8D3
12A2
12A2
12A2
12A2
8D3
8D3
8D3
12A2
8D3
12A2
12A2
6A4
12A2
12A2
8D3
8D3
8D3
12A2
8D3
6A4
6A4
6A4
6A4
8D3
8D3

SC

+

+ + + +

+

+
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latt.nr.  #Aut rootsystem sc latt.nr. #Aut rootsystem sc
409 4 12A2 + 410 4 12A2
411 4 12A2 + 412 4 8D3 +
413 4 6A4 414 4 12A2 +
415 4 8D3 416 4 12A2 +
417 4 12A2 + 418 4 4A5+D4 +
419 4 8D3 420 4 8D3
421 4 6A4 422 4 12A2
423 4 12A2 424 2 8D3 +
425 2 8D3 + 426 2 8D3
427 2 8D3 + 428 2 6A4 +
429 2 6A4 430 2 8D3
431 2 12A2 432 2 12A2 +
433 2 12A2 + 434 2 6A4
435 2 8D3 + 436 2 8D3 +
437 2 12A2 438 2 8D3
439 2 8D3 440 2 12A2 +
441 2 8D3 442 2 6A4 +
443 2 8D3 444 2 4A5+D4 +
445 2 8D3 446 2 8D3
447 2 12A2 448 2 8D3
449 2 12A2 450 2 6A4
451 2 12A2 452 2 8D3 +
453 2 8D3 454 2 8D3 +
455 2 6A4 456 2 12A2 +
457 2 12A2 458 2 8D3
459 2 8D3 + 460 2 8D3
461 2 8D3 + 462 2 8D3
463 2 6A4 + 464 2 8D3
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A.15 The Magma Code for neighbour stepping

Remark A.1  a) On the following pages you will find our implementation bé&tneighbour-
hood method. This implementation is much simpler than th@ementation of [Sc1/2],

as we only deal with class numblag = 1.

b) The most time consuming part is the testing for isometgm&imes it can be useful to
compute the order of the automorphism group as an invariatt fihis has been imple-

mented but is not contained in the following version.

c) Furthermore notice that the Hermitian Gram matrices havee provided in the variable
"Erg” which is an ordered set. Additionally we use "ErgEXTan ordered set, which
contains lists which contain (i) the Hermitian Gram mat(ix, the Gram matrix of the
associatedZ-module, (iii) the complex structure and (iv) some numbersloort vec-
tors. In addition the number field and the compl@x generator have to be provided

"S<w>: =Quadrati cFi el d(-d); "

The code in MAGMA syntax:

R i nportant paraneters------ * kx|
Di mensi on: =16;
| deal P: =1-w;
R i mportant paraneters------ *okx [
b: =[0];
for j:=1 to Dinension-1 do
Append(~b, 0);
end for;

Set Menor yLi mi t (50%102473) ;
| deal PP: =I ntegers() ! (Ideal PxConjugate(ldeal P))[1];
di vi sor: =1;
if Ideal PP nod 2 eq O then
di vi sor: =2;

end if;
[ *--->addi ti onal procedures<---x*/
hel ps: =functi on(n) R R R */
h: =[0];
for j:=1 to Dinension-2 do
Append(~h, 0);
end for;

for t:=1 to (Dinension-2) do
h[t] :=n nod |deal PP; n: =Exact Quoti ent(n-h[t]
end for;

h[ Di nensi on-1]: =n nod | deal PP;

return h;

end function;

vor z: =function(h, vz, e, fi xvecnr) R R R
for t:=1 to Dinension-3 do

h[t]:=h[t]*(-1)"(vz npd 2);vz: =Exact Quotient(vz-(vz nod 2), 2);

end for;
h[ Di nensi on- 2] : =h[ Di nensi on-2] *(-1)"(vz);
ewert: =h[ Di mensi on- 1] +1; Renove( ~h, Di nensi on-1);
if elt fixvecnr then
Insert(~h, e, enert);

, | deal PP);

I nsert (~h, fixvecnr, 0); [ +fixvecnr hat keinen Einflussx/

el se
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I nsert (~h, fixvecnr, 0);
Insert(~h, e, enert);

end if;
return h;
end function;
Umm =function(g); R R */

U =Matri xRi ng(lntegers(), Dinension) ! 1;
space: =KMbdul e( Rati onal s(), Di nensi on);
g: =space ! g;
for idxx:=1 to Di nension do
if g[D nmension+1-idxx] ne O then
sbg: =Di mensi on+1-i dxx;
end if;
end for;
for idxx:=sbg to (Dinension-1) do
tux, sux: =XGCD([ I ntegers() ! g[idxx],Integers() ! g[D nmension]]);
V: =Matri xRi ng(Integers(), Dinension) ! 1;
V[ Di mensi on, i dxx] : =sux[ 1] ; V[ Di mensi on, Di nensi on] : =sux[ 2] ;
V[ i dxx, i dxx] : =Exact Quot i ent (- g[ Di nensi on], t ux);
V[ i dxx, Di mensi on] : =Exact Quoti ent (g[i dxx], tux);
U =U+Tr anspose( V) ;
g: =g * (Hon{space, space) ! Transpose(V));

end for;
return U,
end function;
swap: =function(lin,jin) R LR T */

mat : =Mat ri xRi ng(I ntegers(), Dimension) ! 0;
for lauf:=1 to D nmension do
if lauf eq lin then mat[lin,jin]:=1; end if;
if lauf eq jin then mat[jin,lin]:=1; end if;
if (lauf ne jin) and (lauf ne lin) then mat[lauf,lauf]:=1; end if;
end for;
return nat;
end function;
| *--->addi ti onal procedures<---x*/

rndzahl er: =1000;
for lauff:=1 to rndzahl er do R R starts main | oop*/
richtig: =fal se;
i dgi : =Randon{ #Er g- 1) +1;
while richtig eq fal se do
zero: =true;
for j:=1 to Dinension do
b[j]:=Randon{| deal PP-1);
/ *chooses adm vectorx/
if b[j] ne O then zero:=false; end if;
end for;
if zero eq true then b[1]:=1; end if;
gcdv: =XCCD( b) ;
for j:=1 to Dinension do
b[j]:=Exact Quotient(b[j],gcdv);
end for;
U: =Umm( b) ;
START: =(Ur- 1) *Erg[i dgi ] *xd* Transpose( U*-1);
fixvecnr: =Di nensi on;
wert: =START[ fi xvecnr, fi xvecnr];
rest:=(Integers() ! wert) nod (divisor=*l|deal PP);
if rest eq O then
richtig: =true;
/+h(x,x) \in Ploverline(P)??2?«/
end if;
end while;
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print "Starts with adm vector:", b,". Constr. neighb. of:",idgi; ; /+ " ,Fixvecnr=",fixvecnr;*/
[xxxxxxxxxxxxxxxxxxxxdeterm nes rows/ colums which will be mult. with the ideal ****xxxxxskxxxrrrrxxx/
f:=0;

for s:=1 to D mension do
if s ne fixvecnr then
if START[fixvecnr,s] ne 0 then
wert: =START[ fi xvecnr, s] x| deal P/ | deal PP;
if Isintegral (wert[1]) eq fal se then

f:=s;
end if;

if Islntegral (wert[2]) eq false then
f:=s;
end if;

end if;

end if;
end for;
[*xxxxxxxxxxxxxxxxxxxdeterm nes rows/colums which will be mult. with the ideal **x*xx*xxxkkrkrrrsrxx/

[#%xxxxxxkxrxxxxxxxxxpring matrix in shape to all ow nei ghbour CONStrUCti ON** %%k kkkkkkkrkkkkrx/
for eintrag: =1 to Dinmension do
if (eintrag ne f) and (eintrag ne fixvecnr) then
[xx/
ganz: =f al se;
zaehl er: =0;
wert: =0;
[+*/print "e:", eintrag;
idd: =M ni mun{{f,eintrag});
if eintrag gt fixvecnr then
i dd: =i dd- 1;
end if;
whil e ganz eq fal se do
hz: =hel ps(zaehl er);
t: =D mensi on- 2; viod: =t ;
while (hz[t] eq 0) and (t ge 2) do
t:=t-1;
vnod: =t ;
end whil e;
vz: =1,
while (vz e 2*vnpd) and (ganz eq fal se) do
h: =vorz(hz, vz, ei ntrag, fi xvecnr);
wert: =0;
for idG =idd to Di nension do
wert: =wert+START[fi xvecnr,idg~h[id(F;
end for;
wert: =wert«|deal P/|deal PP;
if (Islntegral (wert[1]) eq true) and (lslntegral (wert[2]) eq true) then

ganz: =true;

r:=h;
end if;
vz:=vz+27(idd-1);
end whil e;
zaehl er: =zaehl er +l deal PP*(i dd-1);
end whil e;
V: =Umm(r) *swap(ei ntrag, fi xvecnr);
START: =(VA- 1) * START* Tr anspose( V*- 1) ;

end if;
end for;
[#%xxxxxxxxxxxxxxxxxxpring matrix in shape to all ow nei ghbour CONStruUCti ONx****xxxkkkkkxkkkrrx/

[ % xxxxxnkrxxxxkxkxxxNel ghDOUr CONSLTUCTI ONx* % **xxkkkrkxkkkkhx/

for t:=1 to D nension do
START[ fi xvecnr,t] :=START[fixvecnr,t]*I|deal P/|deal PP; [ *%%] deal **x*/
START[t, fixvecnr] :=START[t,fixvecnr ]=*Conjugate(ldeal P)/|deal PP; /+**x|deal *x*x/
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START[ f, t] :=START[ f, t] *| deal P; [ +%%] deal **x*/
START[ t, f] :=START[ t, f] *Conj ugat e(| deal P); [+x%] deal **x*/
end for;

print "Nachbar erzeugt...";
/ *nei ghbour construction*/

[ xkkkxhkkxxhhxkkrkxhrxx /- MDOU| @S, xkkxkkkxkkkxkkkkk kx|
VGRAMS:; =START/ d;
Real GRAMS: =Scal ar Matri x( Rati onal s(), 2+*Di nensi on, 0) ;
| NGRAMS: =Scal ar Matri x(Rati onal s(), 2*Di nensi on, 0);
for j:=1 to D nension do
for k:=1 to Dinmension do
Real GRAMS[ | , k] : =VGRAMS[ j , k][ 1];
Real GRAMS[ Di nensi on+j , Di mensi on+k] : =rmul * VGRAMS[ j , k] [ 1] ;
Real GRAMS] j , Di nensi on+k] : =( 1/ 2) * VGRAMS] j , k] [ 1] +( 1/ 2) *d* VGRANVS[ j , k] [ 2] ;
Real GRAMS[ Di nensi on+j , k] :=(1/2) *VGRAMS[ j , k][ 1] - (1/2) »d* VGRAMS[ j , k] [ 2] ;
end for;
end for;

for j:=1 to D nension do
for k:=1 to Dinmension do
| MGRAMS[ j , k] : =VGRAMS[ j , k][ 2];
| "GRAMS[ Di nensi on+j , Di mensi on+k] : =nul * VGRAMS[ j , k] [ 2] ;
| MGRAMS[ j , Di mensi on+k] : =(1/2) * VGRAMS[ j , k] [ 2] - (1/ 2) * VGRAMS[ j , k] [ 1] ;
| MGRAMS[ Di nensi on+j , k] : =(1/2) * VGRANMS] j , k] [ 2] +( 1/ 2) * VGRANMS] j , k] [ 1] ;
end for;
end for;
| NGRAMS: =d* | MGRAMS;

[ xkkkkhkhkhkhkhxhxkx Z- TOOU|l @S** *k*xkkkkkkkkkkkkx k% [

[ *---even nei ghbour ?---x*/
i sot: =f al se;
for 1j1:=1 to (2+«Di mensi on) do
for 1j2:=1 to Di nension do
if Isintegral (Real GRAMS[1j1,1j2]) eq false then
isot:=true;
end if;
if Isintegral (ImMERAMS[1j1,1j2]) eq false then
i sot: =true;
end if;
end for;
end for;
if isot eq true then
print "Not even...";
end if;
| *---even nei ghbour ?---x*/

if isot eq false then

[*%xxxxxxxxxxxxxxxxxxxreduce value of matrix entries (better for i SOMBiry testing)xxxsxxsxkkkrrxkkskns/
for trid:=1 to 10 do

Real GRAMS, Tr af 0S: =SeysenG an( Real GRAMS) ;

Real GRAMS, Traf oL: =LLLGr an{ Real GRAMS) ;

Real GRAMS, Tr af oP: =Pai r ReduceGr an( Real GRAMS) ;

| TGRAMS: =Tr af oP+Tr af oL* Tr af 0S* | mMGRANMS* Tr anspose( Tr af oP+ Tr af oL* Tr af 0S) ;

end for;
[ % xxxxxxrxxxxxxxxxxxreduce value of MALTi X eNtries) xxxsxsxxakkkrkkkkkkhs/

for p:=1 to #Erg do
nunba: =#Er g+1- p;
VGRANMST: =Er g[ nunba] ;
Real GRAMST: =Er gEXT[ nunba, 2] ;
| MGRAMST: =Er gEXT[ nunba, 3] ;
if isot eq false then
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print "Determining isonetry class (", nunba," ?)...";

svi nvari ante: =true;

SS22: =#Short Vectors(Latti ceWt hG an{ Real GRAMS), 2, 2) ;

i f SS22 ne ErgEXT[ nunba, 4] then
svi nvari ant e: =f al se;
print "#SV not equal (",SS22,"|", ErgEXT[ nunba, 4],")!";
end if;

if svinvariante eq true then

[Hkxkxxkhkkkkkkkkkxxk---TRI N | SOMBLTY [@St---tkkrkrrkhkhrrhhkrhxx/
print "#SV equal => isometry testing...";
if Islsonorphic([MitrixRing(lntegers(),2+Di nension) ! Real GRAMST,
Mat ri xRi ng( I ntegers(), 2«Di mension) ! | nGRAMST],
[Matri xRi ng(lntegers(), 2«Di nensi on) ! Real GRAVS,
Mat ri xRi ng( I ntegers(), 2«Di mension) ! | nGRAMS]: ShortVectorsLimt:=10"9) eq true then

i sot:=true;
print " | sonetric to lattice: --->", nunba," <---";
end if;
[Hkkkxxkkkkkkkkkkkxxk---[TAI N | SOMBLTY [@St---tkkrkrxkhrhrrnhkrhrx/
end if;

end if;
end for; /+all present lattices testedx/

if isot eq false then
print "New lattice found...";
I ncl ude( ~Er g, START/ d) ;
START; Print MagmaMat ri x( START) ;
Li ste:=[* *]; Append(~Li st e, VGRAMS) ; Append( ~Li st e, Real GRAMS) ; Append( ~Li st e, | nGRAMS) ;
Append( ~Li st e, S22) ; Append( ~Li st e, #AGS) ;
Append( ~Er gEXT, Li ste);
end if;
end if;
print "Loop nunmber= ",/ lauff; print " ";
end for; /+*rnd-|oop*/
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D Place for notes
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