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“So let us then try to climb the mountain,

not by stepping on what is below us,

but to pull us up at what is above us,

for my part at the stars.”

M.C. Escher

to my parents
Teresa and Willi

to my brother and sisters
Claudio, Valeria and Olivia

to my grandmother
Olga
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un valor muy especial.

Por último quiero agradecer mucho a la gente del instituto, a los que
siguen y a los que ya continuaron su camino, por el apoyo y el compañerismo
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Preface

Given a network, say a computer network or a railway network, it is some-
times of great interest to determine a set of nodes or vertices which “controls”
the rest, that is, a set such that every other node is connected to a vertex
of the controlling set. It is often of special interest, for instance in view of
reducing costs, to find a “controlling” node set with the smallest possible
number of nodes. In graph theoretical terminology, this means that, if we
have a graph G, we would like to find a subset D of the vertex set such that
every vertex not in D has a neighbor in D. We say then that D dominates
the vertices of G.

The study of domination in graphs turns back to the early 1850’s where
chess enthusiasts were interested in finding the minimum number of queens
that are needed to place on a chessboard such that every field not occupied
by a queen is attacked by at least one. More than a century later, in 1962,
Ore [55] was the first in publishing about domination in graphs. From then
on, the study of domination in graphs has achieved more and more interest
among graph theorists. The two monographs of Haynes, Hedetniemi and
Slater [43, 44] testify the relevancy and increased interest of the last years in
this topic.

If a “controlling” node or an edge in a network fails, then it is possible that
the controlling effect on the vertex set is not anymore guaranteed. Assuming
that as a not wished situation, this problem could be prevented increasing
the controlling level by demanding every vertex outside the dominating set
to have at least k ≥ 2 vertices controlling it. With this aim, in 1985, Fink
and Jacobson [27, 28] generalized the concept of domination and introduced
the so called k-dominating sets. Here again, we are interested in finding k-
dominating sets of minimum cardinality and denote with γk(G) the order of
a minimum k-dominating set in a graph G. Inspired by Fink and Jacobson,
Cockayne, Gamble and Shepherd [20] proved in the same year that the k-
domination number of a graph with minimum degree δ ≥ k is at most k/(k+
1) times its order. Further results followed in 1985 and 1988 by Favaron
[23, 24], by Jacobson and Peters [48] in 1989, and later, in 1990, by Caro

xi



xii Preface

[11], Caro and Roditty [12] and Jacobson, Peters and Rall [49]. Since then,
the concept of k-domination has gained increased popularity among graph
theorists. More recent results can be found in [7, 8, 13, 14, 18, 61, 66, 69, 70].
However, there is still very much to do in this field and, with this purpose,
this thesis aims basically to make a contribution to the study of k-domination
in graphs.

In the first chapter, we introduce the concepts of domination and k-
domination. As it was shown in 1989 by Jacobson and Peters [48], the prob-
lem of finding a minimum k-dominating set belongs to the class of NP-hard
problems. However, for some graph classes this problem turns polynomial.
We present here a polynomial algorithm for finding a minimum f -dominating
set in a block graph, where f -domination is an even more general concept as
k-domination. This algorithm comprises those of Volkmann [67] for finding
a minimum dominating set in a block graph, of Hedetniemi, Laskar and Pfaff
(see [45]) for finding minimum f -dominating sets in trees and of Jacobson
and Peters [48] for determining a minimum k-dominating set in a tree.

The second chapter handles with different bounds on the k-domination
number. First, we present an Erdős-type argument that is useful in prov-
ing different inequalities, in particular, beside some new bounds on the k-
domination number, we derive a classical bound on the k-domination number
due to Caro and Roditty [12] and another of Hopkins and Staton [47] on the
k-dependence number. Moreover, we are able to characterize the graphs
achieving equality in the bound of Cockayne, Gamble and Shepherd [20]
mentioned above. Further, we use a probabilistic method in order to ob-
tain other upper bounds for the k-domination number. As a consequence
of one of these probabilistic approaches, it follows the well-known inequality
γ(G) ≤ n(ln(δ+1)+1)/(δ+1) for the usual domination number γ(G) by Ar-
nautov [3], Lovász [52] and Payan [57], where n is the order and δ ≥ 1 the min-
imum degree of the graph G. The last part of this chapter is devoted to the
analysis of the graphs achieving equality in the bound γk(G) ≥ γ(G) + k − 2
for graphs with maximum degree at least k ≥ 2, given by Fink and Jacobson
in one of their introducing papers [27]. As easy as it is to prove this bound,
as difficult it seems the characterization of the equality for arbitrary graphs.
Even the case k = 2 looks extremely complicated. However, we tackle the
problem, and towards a solution, we present different interesting properties
of the extremal graphs. In particular, we show that such graphs contain
many induced cycles of length four. Moreover, we characterize the claw-free
graphs, the line graphs and the cactus graphs with equal 2-domination and
domination numbers.

In Chapter 3, we compare the k-domination number with other graph
parameters. Among other results concerning the parameter α(G) for the
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independence number, we show, applying also the well-known theorem of
Brooks for the chromatic number, that every connected graph G with mini-
mum degree δ ≥ k fulfills γk(G) ≤ (∆− 1)α(G), if G is neither the complete
graph on k + 1 vertices nor, in case that k = 2, a cycle of odd length. We
also give a characterization for the non-regular graphs attaining equality and
the regular case remains as a conjecture. Moreover, we prove that, for bipar-
tite graphs G, γ2(G) ≤ 3α(G)/2 holds and we obtain a nice characterization
of the extremal graphs. Further, we analyze the connections between the
2-domination number and the independent domination number i(G), which
denotes the minimum cardinality of an independent dominating set in G,
and we obtain similar results to previous given ones concerning usual domi-
nation. Finally, we explore the relations between the k-domination number
and the matching number, the connected domination number and the total
domination number.

The fourth and last chapter is devoted to special k-domination param-
eters, where, apart from being k-dominating, we demand the k-dominating
set to fulfill further properties, like for example that the underlying induced
subgraph is connected or that not only the vertices outside the dominating
set but also the vertices inside should be k-dominated. Regarding the respec-
tive parameters for the minimum number of vertices required for a subset of
vertices in a graph to be k-dominating and satisfying a determined property,
we develop some interesting bounds that often either generalize or improve
known ones.
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Chapter 1

Introduction

1.1 Main graph theoretical terminology

We consider finite, undirected and simple graphs G = (V (G), E(G)) with
vertex set V = V (G) and edge set E = E(G). If multiple edges are allowed,
we will specify the graph as a multigraph, otherwise we will call it only graph.
The number of vertices |V (G)| of a graph G is called the order of G and is
denoted by n = n(G) and m = m(G) is the number of edges or rather the
size of G. If A and B are two disjoint subsets of the vertex set, then (A, B) is
the set of edges with one end vertex in A and one in B and m(A, B) denotes
its cardinality.

The open neighborhood N(v) = NG(v) of a vertex v consists of the vertices
adjacent to v and d(v) = dG(v) = |N(v)| is the degree of v. The closed
neighborhood of a vertex v ∈ V is the set N [v] = NG[v] = N(v) ∪ {v}. For a
subset S ⊆ V (G), we define N(S) = NG(S) =

⋃

v∈S N(v), N [S] = NG[S] =
N(S) ∪ S, and G[S] is the subgraph induced by S, that is the graph with
vertex set S and edge set {uv : u, v ∈ S, uv ∈ E(G)}. If H is a subgraph of
G and S is a subset of V (G), we denote with NG(S, H) the set of neighbors
of S with respect to H , that is, the set NG(S)∩V (H). We denote with δ(G)
and ∆(G) the minimum and, respectively, the maximum of all degrees of the
vertices of G. A vertex of degree one is called a leaf. We denote the set of
leaves of G with L(G). The distance d(x, y) = dG(x, y) of two vertices x and
y of a connected graph G is the length of a path of minimum length with
end vertices x and y. The graph G is called the complement of G and is
defined as the graph with vertex set V (G) = V (G) and edge set E(G) such
that e ∈ E(G) if and only if e /∈ E(G). A regular graph is a graph whose
vertices have all the same degree. If d(x) = r for all x ∈ V (G), we call G
r-regular and if d(x) ∈ {r, r + 1} we say that G is semiregular.

1
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We denote with Kn the complete graph of order n and with Cn the cycle
of length n. A connected acyclic graph is called a tree. A graph with exactly
one induced cycle is called unicyclic. A clique in a graph is an induced
complete subgraph. Let G1 and G2 be two graphs. The G2-corona of G1

is the graph G1 ◦ G2 formed from one copy of G1 and n(G1) copies of G2

where the ith vertex of G1 is adjacent to every vertex in the ith copy of
G2. If G2

∼= K1, then we call G1 ◦ G2 the corona graph of G1. We refer
to the complete bipartite graph with partition sets of cardinality p and q as
the graph Kp,q. A triangulated graph G is a graph with no induced cycles
of length 4 or larger. A graph G is called cubic if every vertex in V (G) has
degree three.

A cut vertex in a graph G is a vertex whose removal increases the number
of components of G. Analogously, a bridge in G is an edge whose removal
increases the number of components. A block of G is an induced subgraph
without cut vertices of maximum cardinality. We say to a block to be an
end block if it contains at most one cut vertex of G. A graph G is a block-
cactus graph if every block of G is either a complete graph or a cycle. G is a
cactus graph if every block of G is a cycle or a K2 and it is a block graph if
every block is a clique. If we substitute each edge in a nontrivial tree by two
parallel edges and then subdivide each edge, then we speak of a C4-cactus.

The subdivision graph S(G) of a graph G is that graph obtained from
G by replacing each edge uv of G by a vertex w and edges uw and vw. In
the case that G is the trivial graph, we define S(G) = G. Let SSt be the
subdivision graph of the star K1,t. A tree is a double star if it contains exactly
two vertices of degree at least two. A double star with respectively s and t
leaves attached at each support vertex is denoted by Ss,t. Instead of S(Ss,t)
we write SSs,t. A generalized star is a tree that results from a star K1,t by
subdividing its edges arbitrary many times.

Let P be a property defined on sets of vertices. We say that S ⊆ V (G)
is maximum (minimum) in G with respect to the property P if S has the
property P and, among all subsets of V (G) with this property, it is of maxi-
mum (minimum) cardinality. Let ϕ(G) denote the cardinality of a maximum
(minimum) subset of V (G) with respect to the property P. If S has the
property P and |S| = ϕ(G), we call S a ϕ(G)-set .

A mapping h : V (G) → {1, 2, . . . , q} is called a coloring of the vertex set
of G, where the values 1, 2, . . . , q are called the colors. If no two adjacent
vertices x, y ∈ V (G) have the same color, that is if h(x) 6= h(y), we say the
coloring h to be proper. A proper coloring of G with the minimum number
of colors is a minimum coloring of G and the chromatic number χ(G) is the
cardinality of a minimum proper vertex coloring of G.
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1.2 The minimum dominating set problem

and k-domination

In the 1850s, chess enthusiasts in Europe considered the problem of deter-
mining the minimum number of queens that can be placed on a chessboard
so that all squares are either attacked by a queen or are occupied by a queen.
It was correctly thought in that time that five is the minimum number of
queens that can dominate all of the squares of an 8×8 chessboard (see Figure
1.1).

Figure 1.1: Five queens dominating the chessboard.

The problem of dominating the squares of a chessboard can be stated
more generally as a problem of dominating the vertices of a graph. A subset
S of V is called dominating in G if every vertex of V − S has at least one
neighbor in S. The domination number γ(G) is the minimum cardinality of
a dominating set of G. Let Qn be the graph that has the squares of the n×n
chessboard as its vertices and two squares are adjacent if they are in the
same row, column, or diagonal. Then the minimum number of queens that
dominate the n × n chessboard is equal to γ(Qn). The problem of finding
the domination number of the queen’s graph has interested mathematicians
for well over a century. Until now, γ(Qn) is only known for small values of
n and other special cases (see [56] for more information). The problem of
finding a minimum dominating set in a general graph has been shown by
Garey and Johnson [31] in 1979 to be NP-hard. Therefore, most of the study
of domination in graphs is based on finding good bounds for the domination
number. Evidently 1 ≤ γ(G) ≤ n for any graph G on n vertices. For graphs
without isolated vertices, the upper bound was improved considerably by
Ore in 1962, who was the first in publishing results about dominating sets in
graphs.
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Theorem 1.1 (Ore [55], 1962) If G is a graph without isolated vertices, then
γ(G) ≤ n(G)/2.

The graphs of even order achieving equality in previous bound were char-
acterized independently by Payan and Xuong in 1982 and Fink, Jacobson,
Kinch and Roberts in 1985.

Theorem 1.2 (Payan, Xuong [58], 1982, Fink, Jacobson, Kinch, Roberts
[29], 1985) Let G be a connected graph. Then γ(G) = n(G)/2 if and only if
G is the K1-corona graph of any connected graph J or G is isomorphic to
the cycle C4.

In 1998, Randerath and Volkmann [60] and independently, in 2000, Xu,
Cockayne, Haynes, Hedetniemi and Zhou [21] characterized the odd order
graphs G for which γ(G) = ⌊n(G)/2⌋.

The search for good upper bounds for the domination number in terms
of order and minimum degree has been a very discussed topic in the study
of domination. Some important bounds of this kind are given in [46, 53, 54,
62, 64, 73]. For a more comprehensive treatment on domination in graphs,
see the monographs by Haynes, Hedetniemi and Slater [43, 44].

A dominating set D in a graph can be seen as a set of vertices or nodes
controlling or monitoring the vertices in V −D. Then the removal or failure
of a vertex in D or of an arbitrary edge, may cause the set D to be not
dominating anymore. If this is an undesirable situation, then it may be
necessary to increase the level of domination of each vertex, so that, even if
a vertex or edge fails, the set D will still be a dominating set in G. This idea
led Fink and Jacobson [27, 28] in 1985 to introduce the concept of multiple
domination. A subset D ⊆ V is k-dominating in G if every vertex of V − D
has at least k neighbors in S. The cardinality of a minimum k-dominating
set is called the k-domination number γk(G) of G. Clearly, γ1(G) = γ(G).
Naturally, every k-dominating set of a graph G contains all vertices of degree
less than k and, if n ≥ k, γk(G) ≥ k. Of course, every (k + 1)-dominating
set is also a k-dominating set and so γk(G) ≤ γk+1(G). Moreover, the vertex
set V is the only (∆ + 1)-dominating set but evidently it is not a minimum
∆-dominating set. Thus every graph G satisfies

γ(G) = γ1(G) ≤ γ2(G) ≤ .... ≤ γ∆(G) < γ∆+1(G) = |V | .

In the same work, Fink and Jacobson presented the following lower bounds
for the k-domination number. Hereby, we call a bipartite graph G k-semiregu-
lar if its vertex set can be bipartitioned in such a way that every vertex of
one of the partite sets has degree k.
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Theorem 1.3 (Fink, Jacobson [27], 1985) If G is a graph of order n and
maximum degree ∆, then

γk(G) ≥ k

∆ + k
n

for every integer k ∈ N.

Theorem 1.4 (Fink, Jacobson [28], 1985) If G is a graph with n vertices
and m edges, then

γk(G) ≥ n − m

k

for each k ≥ 1. Furthermore, if m 6= 0, then γk(G) = n− m
k

if and only if G
is a k-semiregular graph.

In the same year as the publication of Fink and Jacobson, Cockayne,
Gamble and Shepherd published a generalization of Ore’s theorem for mul-
tiple domination.

Theorem 1.5 (Cockayne, Gamble, Shepherd [20], 1985) Let G be a graph
of order n and minimum degree δ. Then

γk(G) ≤ k

k + 1
n

for every integer k ≤ δ.

As the problem of finding a minimum dominating set, the problem of
determining the k-domination number in an arbitrary graph has been shown
by Jacobson and Peters [48] to be NP-hard. Therefore, we are interested
in analyzing properties of the k-domination number with respect to other
graph parameters which lead to good upper and lower bounds that help us
to understand better this concept. This thesis handles with such questions
and presents primarily the results on my investigations on k-domination of
the past three years of my doctoral preparation, reviewing also several other
important results on this topic that have been achieved over the years by
other researchers.

1.3 Minimum f-dominating sets in block

graphs

As mentioned in the introduction, the problem of finding a minimum k-
dominating set in a graph is NP-hard. However, for special graph classes, this
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problem turns polynomial. This is the case of block graphs. In this section,
we present an algorithm for finding a minimum f -dominating set in a block
graph, which is a more general concept as the one of k-domination. Since
trees are a special kind of block graphs, and since the k-domination general-
izes the concept of the usual domination, this algorithm generalizes the one of
Hedetniemi, Hedetniemi and Pfaff (see [45]) for minimum f -dominating sets
in trees, the one of Jacobson and Peters for finding a minimum k-dominating
set in a tree and the one of Volkmann [67] for minimum dominating sets in
block graphs.

Let G be a graph with vertex set V and let f : V → {0, 1, . . . , k} be a
map on V . A subset D ⊆ V is called an f -dominating set of G if every vertex
x ∈ V −D has at least f(x) neighbors in D. The cardinality of a minimum f -
dominating set of G is the f -domination number and is denoted with γf (G).
Note that if f(x) = k for all x ∈ V , the f -dominating set corresponds with
a k-dominating set of G.

The following theorem is the main tool of the algorithm.

Theorem 1.6 (Reduction Theorem for Block Graphs) Let G be a block
graph with vertex set V and let B be an end block of G. Let f : V →
{0, 1, . . . , k} be a map on V and set R := {x ∈ V (B) | dG(x) < f(x)}.

I. Suppose that R 6= ∅. Let h : V − R → {0, 1, . . . , k} be a map such that

h(x) =

{

max{0, f(x) − |R|}, if x ∈ V (B),

f(x), otherwise.

If D is a minimum h-dominating set of H = G − R, then D ∪ R is a
minimum f -dominating set of G.

II. Suppose that R = ∅ and that B has no cut vertex. Set l := max
x∈V (B)

f(x)

and S = f−1(l) ∩ V (B).

(i) If |S| ≥ l, let H ′ = G − V (B) and h′ = f |V (H′). If D′ is a
minimum h′-dominating set of H ′, then, for a subset U ⊂ V with
|U | = l, D′ ∪ U is a minimum f -dominating set of G.

(ii) If |S| < l, then define a map h′′ : V − S → {0, 1, . . . , k} such that
h′′(x) = max{0, f(x) − |S|} for every x ∈ V (B) − S and h′′(x) =
f(x) for x ∈ V − V (B). If D′′ is a minimum h′′-dominating set
of H ′′ = G − S, then D′′ ∪ S is a minimum f -dominating set of
G.
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III. Suppose that R = ∅ and that B has a cut vertex v. Set l′ := max{f(x) | x ∈
V (B − v)} and S ′ := f−1(l′) ∩ V (B).

(i) If l′ = 0 and D1 is a minimum h1-dominating set of H1 = G −
V (B − v), where h1 = f |V (H1), then D1 is also a minimum f -
dominating set of G.

(ii) If s′ = |S ′ − {v}| ≥ l′ > 0, let H2 = G − V (B) and define a map
h2 : V (H2) → {0, 1, . . . , k} such that

h2(x) =

{

max{0, f(x) − 1}, if x ∈ NG(v)

f(x) otherwise.

If D2 is a minimum h2-dominating set of H2, then

D2 ∪ W ∪ {v}
is a minimum f -dominating set of G for each subset W ⊆ V (B)−
{v} of cardinality l′ − 1.

(iii) If s′ = |S ′ − {v}| < l′, let H3 = G − (S ′ − {v}) and define a map
h3 := V (H3) → {0, 1, . . . , k} such that

h3(x) =

{

max{0, f(x) − s′}, if x ∈ V (B)

f(x), otherwise.

If D3 is a minimum h3-dominating set of H3, then

D3 ∪ (S ′ − {v})
is a minimum f -dominating set of G.

Proof. I. Suppose that |R| > 0. Let Df be a minimum f -dominating set of
G. Then it is evident that R ⊆ Df . Let x ∈ (V (G) − Df ). Then

|NH(x) ∩ (Df − R)| = |NG(x) ∩ Df | − |NG(x) ∩ R|

≥
{

f(x) − |R|, if x ∈ V (B)

f(x), otherwise

= h(x).

Therefore, Df − R is a h-dominating set of H . On the other side, since

|NG(x) ∩ (D ∪ R)| = |NG(x) ∩ D| + |NG(x) ∩ R|

≥
{

h(x) + |R|, if x ∈ V (B)

h(x), otherwise

= f(x),
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D ∪ R is an f -dominating set of G. Thus, we obtain

γf(G) ≤ |D ∪ R| = |D| + |R| = γh(H)

≤ |Df − R| + |R| = |Df | = γf(G).

II. Suppose that R = ∅ and that B has no cut vertex. Then B is a component
of G and B ∼= Kn(B). Let f0 = f |V (B).

(i) Let x ∈ V (B) − U . Then |NG(x) ∩ U | = |U | = l ≥ f0(x) and thus
U is an f0-dominating set of B. Suppose there is a f0-dominating set D0 of
B with |D0| < |U | = l. Then the set S − D0 is not empty and thus there
is a vertex x ∈ S − D0 with |NG(x) ∩ D0| ≤ |D0| < l = f0(x), which is a
contradiction. It follows that U is a minimum f0-dominating set of B and
thus D′ ∪ U is a minimum f -dominating set of G.

(ii) Let x ∈ V (B) − (D′′ ∪ S). Then

|NG(x) ∩ (D′′ ∪ S)| = |NG(x) ∩ D′′| + |S|
= |NH′′(x) ∩ D′′| + |S|
≥ h′′(x) + |S| ≥ f(x)

and therefore D′′ ∪ S is an f -dominating set of G. Let Df be a minimum
f -dominating set of G. Suppose that there is a vertex x ∈ S − Df . Then,
obviously |Df ∩ V (B)| ≥ l and thus there is a vertex y ∈ Df ∩ V (B) − S.
Note that (Df − {y}) ∪ {x} is again an f -dominating set of G. Hence, we
can assume that S ⊆ Df . Now let u ∈ V (B) − (S ∪ Df). It follows that

|NH′′(u)∩(Df−S)| = |NG(u)∩Df |−|NG(u)∩S| ≥ max{f(x)−|S|, 0} = h(x).

Hence, Df − S is an h′′-dominating set of G − S. Altogether, we obtain

γf(G) ≤ |D′′ ∪ S| = γh′′(H ′′) + |S| ≤ |Df − S| + |S| = |Df | = γf(G),

implying that D′′ ∪ S is a minimum f -dominating set of G.
III. Suppose that R = ∅ and B has a cut vertex v. Let Df be a minimum
f -dominating set of G.
(i) Suppose that l = 0. Then |Df ∩ V (B)| ≤ 1. If |Df ∩ V (B)| = 1 we
can suppose, without loss of generality, that v ∈ Df . Then, if either |Df ∩
V (B)| = 1 or Df ∩ V (B) = ∅, Df ⊆ V − V (B − v) holds and so Df is
evidently an h1-dominating set of H1 and thus γh1

(H1) ≤ γf(G). Obviously
every h1-dominating set of H1 is also an f -dominating set of G and so the
statement follows.
(ii) Suppose that |S ′ − {v}| ≥ l′ > 0.

Claim 1: |V (B) ∩ Df | = l′ and (Df − {x}) ∪ {v} is a minimum f -
dominating set for every x ∈ V (B) ∩ Df .
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Since Df is a minimum f -dominating set of G, it follows from the definition
of l′ and because G is a block graph that |V (B) ∩ Df | ≤ l′. If there is a
vertex x ∈ S ′ such that x /∈ Df , then we obtain that |N(x) ∩ Df | ≥ l′

and so, since N(x) ⊂ V (B), we have |V (B) ∩ Df | ≥ l′. If S ′ ⊆ Df , then
|V (B)∩Df | ≥ |S ′| ≥ l′. Thus |V (B)∩Df | = l′. Let y ∈ V −((Df−{x})∪{v}).
If y ∈ V (B), then |N(y)∩ ((Df −{x})∪{v})| ≥ l′ ≥ f(y). If y ∈ V −V (B),
then |N(y)∩((Df−{x})∪{v})| ≥ |N(y)∩Df | ≥ f(y). Hence, (Df−{x})∪{v}
is also a minimum f -dominating set of G and so the claim is proved.

Claim 2: If v ∈ Df , then Df − V (B) is a h2-dominating set of H2.
Let x ∈ V − (Df ∪ V (B)). If x ∈ N(v), then |N(x) ∩ (Df − V (B))| =
|N(x)∩ (Df −{v})| = |N(x)∩Df | − 1 ≥ f(x)− 1 = h2(x). If x ∈ V −N(v),
then |N(x)∩ (Df −V (B))| = |N(x)∩Df | ≥ f(x) = h2(x). This implies that
Df − V (B) is a h2-dominating set of H2.

Claim 3: If W is a subset of V (B)−{v} of order l−1, then D2∪W ∪{v}
is an f -dominating set of G.
Since D2 is a minimum h2-dominating set of H2, |D2 ∩ N(x)| ≥ h2(x) holds
for all x ∈ V − (D2 ∪V (B)). Let x ∈ V − (D2 ∪W ∪{v}). If x ∈ V (B), then
|N(x)∩(D2∪W ∪{v})| = |W ∪{v}| = l′ ≥ f(x) follows. If x ∈ N(v)−V (B)
then |(D2 ∪ W ∪ {v}) ∩ N(x)| = |(D2 ∪ {v}) ∩ N(x)| = |D2 ∩ N(x)| + 1 ≥
h2(x) + 1 = f(x). If x ∈ V − N(v), then |(D2 ∪ W ∪ {v}) ∩ N(x)| =
|D2 ∩N(x)| = h2(x) = f(x). Hence, D2 ∪W ∪ {v} is an f -dominating set of
G.

Without lost of generality, because of Claim 1, we can suppose that v ∈
Df . Together with Claims 1, 2 and 3, we can write the following inequality
chain:

γf(G) ≤ |D2 ∪ W ∪ {v}| = |D2| + l′ = γh2
(H2) + l′

≤ |Df − V (B)| + l′ = |Df | = γf(G),

implying that D2 ∪ W ∪ {v} is a minimum f -dominating set of G.

(iii) Suppose that |S ′ − {v}| < l′.
Claim 1: We can assume that S ′ − {v} ⊆ Df .

Suppose that there is a vertex x ∈ S ′ − (D ∪ {v}). Then |N(x) ∩ D| ≥ l′

and hence |(N(x) ∩ Df) − (S ′ ∪ {v})| > 0. Thus there is a vertex y ∈
(N(x)∩Df )− (S ′ ∪{v}). For being G a block graph, it follows that |N(y)∩
((Df∪{x})−{y})| = |N(y)∩Df |+1 = |N(x)∩(Df−{y})|+1 = |N(x)∩Df | ≥
l′ ≥ f(y). Moreover, for every vertex z ∈ V − (Df ∪ {x}) it holds that
|N(z) ∩ ((Df ∪ {x}) − {y})| = |N(z) ∩ Df | ≥ f(z). Thus Df ∪ {x} − {y}
is a minimum f -dominating set of G containing x. So, we can assume that
S ′ − {v} ⊆ Df .
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Thus without loss of generality, suppose that S ′ − {v} ⊆ Df .
Claim 2: Df − (S ′ − {v}) is a h3-dominating set of H3.

Let x ∈ V (H3) − (Df − (S ′ − {v})) = V (H3) − Df . If x ∈ V (B), then
|N(x) ∩ (Df − (S ′ − {v})| = |N(x) ∩ Df | − s′ ≥ f(x) − s′ = h3(x). If
x /∈ V (B), then |N(x) ∩ (Df − (S ′ − {v})| = |N(x) ∩ Df | ≥ f(x) = h3(x).
Hence, the claim follows.

Claim 3: If D3 is a minimum h3-dominating set of H3, then D3∪(S ′−{v})
is an f -dominating set of G.
Let x be a vertex in V − (D3 ∪ (S ′ − {v})). If x /∈ V (B), then |N(x) ∩
(D3 ∪ (S ′ − {v}))| = |N(x) ∩ D3| ≥ h3(x) = f(x). If x ∈ V (B), then
|N(x)∩ (D3 ∪ (S ′−{v}))| = |N(x)∩Df |+ |N(x)∩ (S ′−{v})| ≥ h3(x)+ s′ =
f(x). Thus, D3 ∪ (S ′ − {v}) is an f -dominating set of G.

With Claims 1, 2 and 3 we obtain finally

γf(G) ≤ |D3 ∪ (S ′ − {v})| = |D3| + |S ′ − {v}| = γh3
(H3) + |S ′ − {v}|

≤ |Df − (S ′ − {v})| + |S ′ − {v}| = |Df | = γf(G)

and thus D3 ∪ (S ′ − {v}) is a minimum f -dominating set of G. �

Having now the theoretical background, we can present the algorithm.

Algorithm for finding a minimum f-dominating set in a block graph

Let G be a block graph and let f : V (G) → {0, 1, . . . , k} be a map on
V (G).

0) Set D := ∅, H := G, h := f and go to step 1.

1) If V (H) = ∅, then STOP. Otherwise, let B be an end block of H and
go to step 2.

2) Set R := {x ∈ V (B) | dH(x) < h(x)}. If R = ∅ and B has no cut
vertex, go to step 4. If R = ∅ and B has a cut vertex v, go to step 5.
Otherwise go to step 3.

3) Set

H := H − R,

h : V (H) → {1, 2, . . . , k},

h(x) :=

{

max{0, h(x) − |R|}, if x ∈ V (B),

h(x), otherwise,

D := D ∪ R and

B := B − R.



1.3 Minimum f-dominating sets in block graphs 11

If V (B) = ∅ or if B has a cut vertex v and V (B)−{v} = ∅, go to step
1. Otherwise go to step 2.

4) Set l := max
x∈V (B)

h(x) and S := h−1(l) ∩ V (B).

i. If l ≥ 0 and |S| ≥ l, then take a subset U ⊂ V (B) such that
|U | = l and set:

H := H − V (B)

h := h |V (H) and

D := D ∪ U

and go to step 1.

ii. If |S| < l, then set:

H := H − S,

h : V (H) → {1, 2, . . . , k},

h(x) :=

{

max{0, h(x) − |S|}, if x ∈ V (B),

h(x), otherwise,

D := D ∪ S and

B := B − S.

If V (B) = ∅ go to step 1, otherwise go to step 2.

5) Set l′ := max
x∈V (B−v)

h(x) and S ′ := h−1(l′) ∩ V (B).

i. If l′ = 0, then set:

H := H − V (B − v) and

h := h |V −V (B−v)

and go to step 1.

ii. If l′ > 0 and |S ′ − {v}| ≥ l′, take a subset W ⊂ V (B) − {v} such
that |W | = l′ − 1 and set:

H := H − V (B)

h : V (H) → {0, 1, . . . , p},

h(x) :=

{

max{0, h(x) − 1}, if x ∈ N(v),

h(x), otherwise, and

D := D ∪ W ∪ {v}
and go to step 1.
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iii. If s′ = |S ′ − {v}| < l′, then set:

H := H − (S ′ − {v}),
h : V (H) → {0, 1, . . . , p},

h(x) :=

{

max{0, h(x) − s′}, if x ∈ V (B),

h(x), otherwise,

D := D ∪ (S ′ − {v}) and

B := B − (S ′ − {v}).

If V (B) = ∅, go to step 1. Otherwise go to step 2.

When the algorithm stops, V (H) = ∅ and D is a minimum f -dominating
set of G.

Proof. In every reduction step, the block B is reduced to a smaller block
or it is removed from the graph. In the first case, the algorithm returns
to step 2. In the second, it goes again to step 1. Since in every reduction
step the graph H is always reduced to a graph with less vertices, in a finite
number of steps V (H) = ∅ and the algorithm stops. Note that steps 3, 4 and
5 correspond to parts I, II and III of Theorem 1.6, respectively. Therefore,
since the emptyset is an h-dominating set for a graph without vertices and
for the empty map h : ∅ → {0, 1, . . . , k}, D is a minimum f -dominating set
of G when V (H) = ∅. �

Remark 1.7 For step (1) of the algorithm it is necessary to identify all cut
vertices and blocks of the graph G. This can be done in O(max{n, m}) steps
(see for example [32], pp. 24 -27). All other steps are done in linear time.
Since the whole procedure is repeated at most n times, the entire algorithm
makes at most O(n max{n, m}) steps until it stops.
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STEP 0:

D = ∅, H = G, h = f

STEP 1

STOP

Select an end
block B of H

STEP 2:

R = {x ∈ V (B)|dH(x) < h(x)}

STEP 3:

REDUCTION
as in (3)

STEP 4:

l = max
x∈V (B)

h(x)

S = h−1(l) ∩ V (B)

STEP 5:

l′ = max
x∈V (B−v)

h(x)

S ′ = h−1(l′) ∩ V (B)

REDUCTION
as in (4.ii)

REDUCTION
as in (4.i)

REDUCTION
as in (5.iii)

REDUCTION
as in (5.ii)

REDUCTION
as in (5.i)

V (H)=∅
V (H)%=∅

R%=∅
R=∅,
B has
no cut
vertex

R=∅,
B has
a cut
vertex v

|S|<l

|S|≥l

l′>0,
|S′−{v}|<l′

l′>0,
|S′−{v}|≥l′

l′=0

V (B)=∅

V (B)%=∅

V (B)=∅

V (B)%=∅

V (B)=∅

V (B)%=∅

Figure 1.2: Sketch of the algorithm.
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Chapter 2

Bounds on the k-domination
number

In this chapter, some new and some known bounds on the k-domination
number are presented. Also, we analyze the structure of the extremal graphs.

2.1 An Erdős-type result and its applications

For a graph G with vertex set V , a subset I ⊆ V is called independent if the
graph induced by I is empty. In [27, 28], Fink and Jacobson also generalized
this concept by defining the k-dependence. Hereby, I is a k-dependent set
if ∆(G[I]) < k. The cardinality of a maximum k-dependent set is denoted
with αk(G) and is called the k-dependence number of G. In the special case
that k = 1, we set α(G) = α1(G) and call it the independence number of G.

Next we will present a classical Erdős-type exchange argument in order
to prove in a short and unique way some well-known results concerning k-
domination and k-dependence. In particular, we will give proofs of theorems
of Caro and Roditty and of Hopkins and Staton, who already used this
principle in a similar way.

Theorem 2.1 (Favaron, Hansberg, Volkmann [25], 2008) Let G be a graph.
If r ≥ 1 is an integer, then there is a partition V (G) = V1 ∪ V2 ∪ . . . ∪ Vr of
V (G) such that

|N(u) ∩ Vi| ≤
d(u)

r
(2.1)

for each i ∈ {1, 2, . . . , r} and each u ∈ Vi.

Proof. Let V1 ∪ V2 ∪ . . . ∪ Vr be a partition of V (G) such that the value
∑r

i=1

∑

u∈Vi
|N(u) ∩ Vi| is minimum. Suppose that there is some index i0 ∈

15
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{1, 2, . . . , r} and some u0 ∈ Vi0 such that |N(u0) ∩ Vi0 | > d(u0)
r

. Then there

exists some index i1 with 1 ≤ i1 ≤ r such that |N(u0) ∩ Vi1| < d(u0)
r

. If
V ′

i0
= Vi0 −{u0}, V ′

i1
= Vi1 ∪ {u0} and V ′

t = Vt for 1 ≤ t ≤ r with t 6∈ {i0, i1},
then

r
∑

i=1

∑

u∈V ′

i

|N(u) ∩ V ′
i | =

r
∑

i=1

∑

u∈Vi

|N(u) ∩ Vi| − 2|N(u0) ∩ Vi0 | + 2|N(u0) ∩ Vi1 |

<
r
∑

i=1

∑

u∈Vi

|N(u) ∩ Vi|.

This contradiction completes the proof of Theorem 1. �

Applying this theorem, we obtain a result of Caro and Roditty of the year
1990.

Corollary 2.2 (Caro, Roditty [12], 1990) If G is a graph, then, for every
integer r ≥ 1, there is a factor H of G such that rdH(x) ≥ (r − 1)dG(x) for
all x ∈ V (G).

Proof. By Theorem 2.1, there is a partition V (G) = V1∪V2∪. . .∪Vr of V (G)

such that |N(u)∩Vi| ≤ d(u)
r

for each i ∈ {1, 2, . . . , r} and each u ∈ Vi. Let H
be the factor of G that remains by deleting all edges which are incident alone
to vertices of Vi for each 1 ≤ i ≤ r. Then, for x ∈ Vj and j ∈ {1, 2, . . . , r},

dH(x) = dG(x) − |NG(x) ∩ Vj | ≥
r − 1

r
dG(x).

�

Corollary 2.3 (Caro, Roditty [12], 1990) Let r, k be positive integers and G
a graph of order n and minimum degree δ ≥ (r + 1)k/r − 1. Then

γk(G) ≤ r

r + 1
n.

Proof. Let r′ = r + 1 and let V1, V2, . . . , Vr′ and H be like in Corollary 2.2
such that |V1| ≥ |V2| ≥ . . . ≥ |Vr′|. Then, together with the hypothesis on δ,
it follows that dH(x) ≥ r′−1

r′
dG(x) = r

r+1
dG(x) ≥ r

r+1
δ ≥ k − r

r+1
and hence,

since dH(x) is an integer, dH(x) ≥ k for all x ∈ V (G). Thus, V − V1 is a
k-dominating set of H and therefore

γk(G) ≤ γk(H) ≤ |V (G) − V1| ≤ n − n

r′
=

r

r + 1
n.

�
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This proof was the same given by Caro and Roditty and for reasons of
completeness we presented it here again. An equivalent statement of Caro
and Roditty’s Theorem is the following corollary, which is some times better
for applications.

Corollary 2.4 (Favaron, Hansberg, Volkmann [25], 2008) Let G be a graph
of order n and minimum degree δ. If k ≤ δ is an integer, then

γk(G) ≤
⌈ k

δ+1−k
⌉

⌈ k
δ+1−k

⌉ + 1
n.

Proof. Let r = ⌈ δ+1
δ+1−k

⌉ and let V1, V2, . . . , Vr be like in Theorem 2.1. Then
inequality (2.1) leads to

|N(u) ∩ Vi| ≤
d(u)

r
≤ δ + 1 − k

δ + 1
d(u)

for each i ∈ {1, 2, . . . , r} and each u ∈ Vi. Hence

d(u) − |N(u) ∩ Vi| ≥ d(u) − δ + 1 − k

δ + 1
d(u) =

kd(u)

δ + 1
≥ kδ

δ + 1
= k − k

δ + 1

and thus, with k
δ+1

< 1, d(u)− |N(u) ∩ Vi| ≥ k for each i ∈ {1, 2, . . . , r} and
each u ∈ Vi. So V (G)−Vi is a k-dominating set of G for each i ∈ {1, 2, . . . , r}.
Since max{|Vi| : 1 ≤ i ≤ r} ≥ n

r
, we deduce that

γk(G) ≤ n − n

r
=

r − 1

r
n =

⌈ k
δ+1−k

⌉
⌈ k

δ+1−k
⌉ + 1

n.

�

The bound of Caro and Roditty, although excellent, is not always easy
to use because of its discontinuity and one can ask for a continuous explicit
bound on γk(G) in terms of the minimum degree. This was first done by
Stracke and Volkmann in 1993 [66] by introducing the new and more complex
concept of f -dominating sets. Following the same idea, Chen and Zhou
slightly improved their result and proved in 1998

Theorem 2.5 (Chen, Zhou [17], 1998) Let G be a graph of order n and
minimum degree δ ≥ 5. Then

γk(G) ≤ 2k − δ − 1

2k − δ
n

for every integer k with (δ + 3)/2 ≤ k ≤ δ − 1.
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In the next section we will give an improvement of this bound. But first,
we want to present another application of Theorem 2.1 that leads to the
following result of Hopkins and Staton, which will be later useful in this
work.

Corollary 2.6 (Hopkins, Staton [47], 1986) Let G be a graph of order n and
maximum degree ∆. If k ≥ 1 is an integer, then

αk(G) ≥ n

1 + ⌊∆
k
⌋ .

Proof. If r = 1 + ⌊∆
k
⌋, then inequality (2.1) leads to

|N(u) ∩ Vi| ≤
d(u)

r
≤ ∆

1 + ⌊∆
k
⌋ < k

and thus |N(u) ∩ Vi| ≤ k − 1 for each i ∈ {1, 2, . . . , r} and each u ∈ Vi.
Therefore, each Vi is a k-dependent set of G for 1 ≤ i ≤ r. Since

αk(G) ≥ max{|Vi| : 1 ≤ i ≤ r} ≥ n

r
,

the desired bound follows. �

2.2 On k-domination and minimum degree

Now we will present some new bounds of the k-domination number in terms
of order and minimum degree. Corollary 2.4 leads to the next result.

Corollary 2.7 (Favaron, Hansberg, Volkmann [25], 2008) Let G be a graph
of order n and minimum degree δ. If k ≤ δ is an integer, then

γk(G) ≤ δ

2δ + 1 − k
n.

Proof. Since ⌈a
b
⌉ ≤ a+b−1

b
for positive integers a and b and since the function

x
x+1

is increasing for x positive, Corollary 2.4 implies

γk(G) ≤
⌈ k

δ+1−k
⌉

⌈ k
δ+1−k

⌉ + 1
n ≤

δ
δ+1−k

δ
δ+1−k

+ 1
n =

δ

2δ + 1 − k
n.

�
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A simple calculation yields

δ

2δ + 1 − k
≤ 2k − δ − 1

2k − δ

for (δ + 4)/2 ≤ k ≤ δ − 1 and thus δ ≥ 6. This shows that the bound in
Corollary 2.7 is better than the one by Chen and Zhou in Theorem 2.5 for
the case that (δ + 4)/2 ≤ k ≤ δ − 1 and δ ≥ 6. For the remaining case
that k = δ+3

2
, since δ+3

2
≤ 2δ+2

3
for δ ≥ 3, Corollary 2.4 leads to the bound

γk(G) ≤ 2
3
n of Chen and Zhou.

Theorem 2.8 (Favaron, Hansberg, Volkmann [25], 2008) Every graph of
order n and minimum degree δ satisfies

γk(G) +
(k′ − k + 1)

2k′ − k
γk′(G) ≤ n

for all integers k and k′ with 1 ≤ k ≤ k′ ≤ δ.

Proof. Let H be a spanning subgraph of G of minimum degree k′ and
minimal for this property. Since γj(G − e) ≥ γj(G) for any edge e of G and
any positive integer j, γj(H) ≥ γj(G). By the minimality of H , the set A of
vertices of H of degree more than k′ is independent or empty. Let B be a
maximal independent set of H containing A and let U = V −B. Since every
vertex of U has degree k′ in H , and at least one neighbor in B,

∆H(U) ≤ k′ − 1. (2.2)

Moreover the set U is k′-dominating in H and thus

|U | ≥ γk′(H). (2.3)

By Corollary 2.6, (2.2) and (2.3), the (k′−k+1)-dependence number of H [U ]
satisfies

αk′−k+1(U) ≥ |U |
1 + ⌊ ∆(U)

k′−k+1
⌋
≥ γk′(H)

1 + ⌊ k′−1
k′−k+1

⌋ ≥ γk′(H)(k′ − k + 1)

2k′ − k
. (2.4)

Let W be a maximum (k′ − k + 1)-dependent set of H [U ]. Every vertex x
in W has at most k′ − k neighbors in W , and thus at least k neighbors in
V − W . Therefore, V − W is a k-dominating set of H and

|V − W | ≥ γk(H) (2.5)
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Therefore, by (2.4) and (2.5),

γk(H) ≤ n − αk′−k+1(U) ≤ n − γk′(H)(k′ − k + 1)

2k′ − k
.

Hence γk(H)+
k′ − k + 1

2k′ − k
γk′(H) ≤ n and since γk(G) ≤ γk(H) and γk′(G) ≤

γk′(H), the same inequality holds for G. �

As well as Corollaries 2.3 and 2.4, this theorem yields Theorem 1.5 of
Cockayne, Gamble and Shepherd by setting k′ = k. We give it here again as
a corollary.

Corollary 2.9 (Cockayne, Gamble, Shepherd [20], 1985) Let G be a graph
of order n and minimum degree δ. Then

γk(G) ≤ k

k + 1
n

for every integer k ≤ δ.

Moreover, we can use Theorem 2.4 in order to characterize the graphs
satisfying equality in Corollary 2.9.

Theorem 2.10 (Favaron, Hansberg, Volkmann [25], 2008) Let G be a con-
nected graph of order n and minimum degree δ. Then G satisfies γk(G) =

k
k+1

n for some integer k with 1 ≤ k ≤ δ if and only if G is the corona J ◦Kk,
when k ≥ 2, and J ◦ K1 or G ∼= C4, when k = 1, where J is any connected
graph.

Proof. If G is isomorphic to the cycle C4, it follows that γ(G) = 2 = n/2.
If G = J ◦ Kk, then the vertices not in J form a k-dominating set and each
k-dominating set must have at least k vertices in each clique Kk+1 with one
vertex in J . Therefore γk(G) = k|V (J)| = k n

k+1
.

We prove the converse. With k′ = k we have equality in the whole proof
of Theorem 2.8. Following the proof of this theorem, we obtain ∆(H [U ]) =

k − 1 and β(H [U ]) = |U |
1+∆(H[U ])

, which implies that U consists of, say, p

disjoint cliques C1, C2, . . . , Cp isomorphic to Kk (see for instance chap. 13
in [5]). Then |U | = pk and W contains exactly one vertex of each clique
C1, C2, . . . , Cp, which implies |W | = p, |U−W | = (k−1)p and |V −W | = n−p.
Because of the equalities in (2.3) and (2.5) of Theorem 2.8, U and V − W
have to be both γk(G)-sets and thus pk = n−p. It follows that p = n/(k+1)
and that |B| = n − |U | = p(k + 1) − pk = p = |W |. Each vertex of U has
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degree k in H and thus has exactly one neighbor in B. Since each vertex in
B has degree at least k in H we obtain pk ≤ mH(B, U) = mH(U, B) = pk
and so H is k-regular and the set A of vertices with degree greater than k is
empty, which implies that B is an arbitrary maximum independent set of H .

We will now show that each vertex of B is adjacent to exactly all vertices
of one of the cliques of H [U ] in H . Suppose there is a vertex v ∈ B which is
adjacent to two vertices x1 ∈ V (C1) and x2 ∈ V (C2) of two different cliques
C1 and C2 of H [U ]. Since x1 and x2 cannot be adjacent to other vertices in
B for having already k − 1 neighbors in U , the set (B − {v}) ∪ {x1, x2} is
an independent set of H greater that B, which is a contradiction. It follows
that v can only have neighbors in one clique of H [U ]. Since H is k-regular,
each vertex vi of B = {v1, v2, . . . , vp} has to be adjacent to all vertices of
a particular clique Ci of H [U ] and thus H is the disjoint union of p cliques
L1, L2, . . . , Lp isomorphic to Kk+1.

When p ≥ 2, it remains to see which edges can be added to H to construct
a connected graph G keeping the property γk(G) = kn/(k + 1). We call red
the edges of G − H and their end vertices. Suppose two different vertices x
and y of some clique Li, say L1, are red and let x′ and L(x′) (y′ and L(y′)
respectively) be a red neighbor of x (y) and the clique of H containing x′

(y′).
Assume first that k = 1, x′ 6= y′ and L(x′) = L(y′). Then the vertices

x′, x, y, y′ form a cycle of length 4. If there would be more edges than these
four, say x would be adjacent to a vertex w (which can also be y′), then we
could construct a dominating set with exactly one vertex of each clique Li

for i ≥ 2, among them w and y′, and γ(G) ≤ p − 1 = n/2 − 1, which is a
contradiction. Thus, since G is connected, there can neither be more vertices
nor more edges in G and so G is isomorphic to the cycle C4.

Now suppose that k ≥ 2 or that k = 1 and x′ = y′ or L(x′) 6= L(y′). Then
we can construct a k-dominating set by taking L1 − {x, y} and k vertices in
each Li for i ≥ 2, among them x′ in L(x′) and y′ in L(y′) (note that this con-
struction includes the particular cases x′ = y′ and x′ 6= y′ but L(x′) = L(y′)).
Hence, γk(G) ≤ k(p − 1) + k − 1 = kn/(k + 1)− 1, a contradiction. Since G
is connected, this means that there is exactly one red vertex in each clique
Li for 1 ≤ i ≤ p and that the red vertices form a connected graph J and so
G is isomorphic to the Kk-corona graph of J . �

Cockayne, Gamble and Shepherd’s bound is given for graphs with mini-
mum degree δ ≥ k. Under the stronger assumption on the minimum degree
that

√
ln δ > k, Caro and Yuster [14] gave an upper bound of the form of

(1 + oδ(1))n ln δ
δ

for the minimum cardinality of an (F, k)-core, which is a
more general concept for a k-dominating set. Weakening considerably the
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condition on the minimum degree, Rautenbach and Volkmann presented the
following upper bound on the k-domination number γk. Due to the weaker
conditions, this bound is as expected not as strong as the previous mentioned
bounds.

Theorem 2.11 (Rautenbach, Volkmann [61], 2007) Let G be a graph on n
vertices with minimum degree δ ≥ 1 and let k ∈ N. If δ+1

ln(δ+1)
≥ 2k, then

γk(G) ≤ n

δ + 1

(

k ln(δ + 1) +
k−1
∑

i=0

1

i! (δ + 1)k−1−i

)

.

Following the same probabilistic method as in [61] (see also [2]), we will
present two new bounds for the k-domination number γk. The first one is
shown using the same method as in the proof of Theorem 2.11, changing only
the construction of the k-dominating set. Note that even though it preserves
the same assumptions, the achieved bound is better. Moreover, we obtain as
a corollary a well-known bound for the usual domination number of Arnautov
[3], Lovász [52] and Payan [57]. The second one weakens a little more the
assumption on the minimum degree δ and, for k ≥ 3, it is even better than
the previous one.

Theorem 2.12 (Hansberg, Volkmann [41], 2009) Let G be a graph on n
vertices with minimum degree δ ≥ 1 and let k ∈ N. If δ+1

ln(δ+1)
≥ 2k, then

γk(G) ≤ n

δ + 1

(

k ln(δ + 1) +

k−1
∑

i=0

δi

i! (δ + 1)k−1

)

.

Proof. Let 2k ≤ δ+1
ln(δ+1)

and define p = k ln(δ+1)
δ+1

. The condition on δ implies

that p ≤ 1
2
. Also, it implies that δ ≥ k. This can be shown assuming by

contradiction that δ ≤ k − 1. Since the function h(x) = x
ln x

is monotonically
increasing for x > e and h(2) = h(4), we obtain that h(x) ≤ h(y) for integers
y ≥ x ≥ 2, except for the case that x = 2 and y = 3. Thus, when δ 6= 1 or
k 6= 3, it follows that

2k ≤ δ + 1

ln(δ + 1)
≤ k

ln k
,

which leads to the contradiction k ≤ √
e. If δ = 1 and k = 3, evidently

2k ≤ δ+1
ln(δ+1)

is not fulfilled and we are done.

Now we select a set of vertices A ⊆ V (G) independently at random with
P (v ∈ A) = p. Let B be the set of vertices of V (G) − A with less than
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k neighbors in A. Then A ∪ B is a k-dominating set of G. We will now
determine P (v ∈ B).

P (v ∈ B) = P (|N(v) ∩ A| ≤ k − 1, v /∈ A)

=
k−1
∑

i=0

P (|N(v) ∩ A| = i)(1 − p)

=
k−1
∑

i=0

(

d(v)

i

)

pi(1 − p)d(v)−i+1

=

k−1
∑

i=0

(

d(v)

i

)(

p

1 − p

)i

(1 − p)d(v)+1

≤
k−1
∑

i=0

(

d(v)

i

)

(1 − p)d(v)+1

≤
k−1
∑

i=0

d(v)i

i!
(1 − p)d(v)+1.

Let fi(d(v)) = −p(d(v) + 1) + i ln(d(v)). Then

∂fi

∂d(v)
(−p(d(v) + 1) + i ln(d(v))) = −p +

i

d(v)
≤ −p +

k − 1

δ
.

Since δ ≥ k, it is a simple matter to check that k
δ+1

≥ k−1
δ

. Thus, if δ ≥ 2,

we obtain ln(δ + 1) k
δ+1

≥ k−1
δ

. In the case that δ = 1, it follows that k = 1

and the inequality ln(δ + 1) k
δ+1

≥ k−1
δ

is trivial. Hence,

∂fi

∂d(v)
(−p(d(v) + 1) + i ln(d(v))) ≤ −p +

k − 1

δ
= −k ln(δ + 1)

δ + 1
+

k − 1

δ
≤ 0

and thus fi(d(v)) is monotonically decreasing. Together with 1−x ≤ e−x for
x ∈ [0, 1], this implies

P (v ∈ B) ≤
k−1
∑

i=0

1

i!
e−p(d(v)+1)+i ln(d(v))

≤
k−1
∑

i=0

1

i!
e−p(δ+1)+i ln(δ)

=

k−1
∑

i=0

1

i!
e−k ln(δ+1)+i ln(δ)

=

k−1
∑

i=0

1

i!

δi

(δ + 1)k
.
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Hence we obtain finally

γk(G) ≤ E[A ∪ B] = E[|A|] + E[|B|]

≤ n
k ln(δ + 1)

δ + 1
+ n

k−1
∑

i=0

δi

i! (δ + 1)k

=
n

δ + 1

(

k ln(δ + 1) +

k−1
∑

i=0

δi

i! (δ + 1)k−1

)

.

�

Corollary 2.13 (Hansberg, Volkmann [41], 2009) Let G be a graph on n
vertices with minimum degree δ ≥ 1 and let k ∈ N. If δ+1

ln(δ+1)
≥ 2k, then

γk(G) ≤ n

δ + 1
(k ln(δ + 1) + 1)).

Proof. Using

k−1
∑

i=0

δi ≤ (δ + 1)k−1, it follows that

k−1
∑

i=0

1

i!

δi

(δ + 1)k−1
≤ 1

(δ + 1)k−1

k−1
∑

i=0

δi ≤ 1

and hence Theorem 2.12 implies

γk(G) ≤ n

δ + 1

(

k ln(δ + 1) +
k−1
∑

i=0

δi

i! (δ + 1)k−1

)

≤ n

δ + 1
(k ln(δ + 1) + 1).

�

For the case k = 1, we obtain directly the above mentioned bound for the
usual domination number γ, which was proved independently by Arnautov
in 1974 and in 1975 by Lovász and by Payan.

Corollary 2.14 (Arnautov [3] 1974, Lovász [52], Payan [57] 1975) If G is a
graph on n vertices with minimum degree δ ≥ 1, then

γ(G) ≤ n

δ + 1
(ln(δ + 1) + 1).
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For the second bound we use a slightly different probability p as in The-
orem 2.12.

Theorem 2.15 (Hansberg, Volkmann [41], 2009) Let G be a graph on n

vertices with minimum degree δ ≥ k, where k ∈ N. If δ+1+2 ln(2)
ln(δ+1)

≥ 2k then

γk(G) ≤ n

δ + 1

(

k ln(δ + 1) − ln(2) + 2
k−1
∑

i=0

δi

i! (δ + 1)k−1

)

.

Proof. Let 2k ≤ δ+1+2 ln(2)
ln(δ+1)

and define p = k ln(δ+1)−ln(2)
δ+1

. The condition on

δ implies that p ≤ 1
2
. We select a set of vertices A ⊆ V (G) independently

at random with P (v ∈ A) = p. Let B be the set of vertices of V (G) − A
with less than k neighbors in A. Then A∪B is a k-dominating set of G and
f = (V (G) − (A ∪ B), B, A) is a k-Roman domination function for G. It is
easy to see that −p + k−1

δ
≤ 0 when k = 1. Since p ≤ 1

2
, the case δ = k = 2

has not to be considered. For the case that δ ≥ 3 and k ≥ 2, note that the
inequality −p + k−1

δ
≤ 0 is equivalent to

k

(

δ + 1

δ
− ln(δ + 1)

)

≤ δ + 1

δ
− ln(2),

which is obviously true, since the expression on the left is negative and the
one on the right positive for δ ≥ 3 and k ≥ 2. Altogether it follows for any
δ ≥ k ≥ 1 that −p + k−1

δ
≤ 0 and hence, as in the proof of Theorem 2.12, we

have

P (v ∈ B) ≤
k−1
∑

i=0

1

i!
e−p(δ+1)+i ln(δ).

Thus, we obtain in this case

P (v ∈ B) ≤
k−1
∑

i=0

1

i!
e−k ln(δ+1)+ln(2)+i ln(δ) =

k−1
∑

i=0

2 δi

i! (δ + 1)k
.

This implies

γk(G) ≤ E[|A ∪ B|] = E[|A|] + E[|B|]

≤ n

(

k ln(δ + 1) − ln(2)

δ + 1

)

+ n

k−1
∑

i=0

2 δi

i! (δ + 1)k

=
n

δ + 1

(

k ln(δ + 1) − ln(2) + 2

k−1
∑

i=0

δi

i! (δ + 1)k−1

)
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and we are done. �

Although the condition on δ in this theorem is weaker as in Theorem
2.12, for k ≥ 3, the bound for γk given here is even better as the former one.
This can be seen the following way. We want to show that for k ≥ 3

2

k−1
∑

i=0

δi

i! (δ + 1)k−1
− ln(2) ≤

k−1
∑

i=0

δi

i! (δ + 1)k−1
.

This is equivalent to prove that

k−1
∑

i=0

δi

i!
≤ ln(2)(δ + 1)k−1 = ln(2)

k−1
∑

i=0

(

k − 1

i

)

δi

or rather that

1 − ln(2) ≤
k−1
∑

i=1

(

ln(2)

(

k − 1

i

)

− 1

i!

)

δi. (2.6)

Note that, considering k ≥ 3, the coefficients of the sum given in (2.6) are
always positive. Thus, using δ ≥ 1, it is easy to see that

k−1
∑

i=1

(

ln(2)

(

k − 1

i

)

− 1

i!

)

δi ≥
k−1
∑

i=1

(

ln(2)

(

k − 1

i

)

− 1

i!

)

≥ ln(2)(k − 1) − 1

≥ 1 − ln(2)

and therefore (2.6) is proved.

The following observation shows that, for k ≥ 4, Corollary 2.13 can be
improved.

Observation 2.16 (Hansberg, Volkmann [41], 2009) Let k ≥ 4 be an integer
and G a graph of minimum degree δ ≥ k.

(i) If 2k ≤ δ+1
ln(δ+1)

, then

γk(G) ≤ n

δ + 1

(

k ln(δ + 1) + 1 − k − 1

δ

)

.
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(ii) If δ+1+2 ln(2)
ln(δ+1)

≥ 2k, then

γk(G) ≤ n

δ + 1

(

k ln(δ + 1) − ln(2) + 2 − 2
k − 1

δ

)

.

Proof. Due to Theorems 2.12 and 2.15, we only have to show that, for k ≥ 4,

k−1
∑

i=0

δi

i! (δ + 1)k−1
≤ 1 − k − 1

δ
.

If δ ≥ k = 4, it is easy to check this property. If δ ≥ k ≥ 5, it follows by the
induction hypothesis that

k
∑

i=0

δi

i! (δ + 1)k
=

1

δ + 1

(

δk

(δ + 1)k−1 k!
+

k−1
∑

i=0

δi

i! (δ + 1)k−1

)

≤ 1

δ + 1

(

δk

(δ + 1)k−1 k!
+ 1 − k − 1

δ

)

.

Thus, it remains to show that

δk

(δ + 1)k k!
+

1

δ + 1

(

1 − k − 1

δ

)

≤ 1 − k − 1

δ
.

Since δk

(δ+1)k ≤ δ
δ+1

, it is enough to show that

δ

(δ + 1) k!
+

1

δ + 1

(

1 − k − 1

δ

)

≤ 1 − k − 1

δ
,

which is equivalent to

δ ≤ (δ − k + 1)k!.

From the fact that δ ≤ (δ − k + 1)k, which is straightforward to prove, this
last inequality follows immediately and the proof is complete. �

Note that for k = 3, instead of the term k−1
δ

of previous observation, we
can set everywhere the term k−2

δ
and we obtain for this case a better result

as in Corollary 2.13, too.
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2.3 On k-domination and usual domination

Let G be a graph such that 2 ≤ k ≤ ∆(G) for an integer k. Then V − D is
not empty and we can take a vertex x ∈ V − D. If X ⊆ NG(x) ∩ D is a set
of neighbors of x in D such that |X| = k − 1, then evidently every vertex in
V − ((D − X) ∪ {x}) has a neighbor in (D − X) ∪ {x} and thus the latter
is a dominating set of G. This implies the following theorem of Fink and
Jacobson, which establishes a relation between the usual domination number
γ(G) and the k-domination number γk(G).

Theorem 2.17 (Fink, Jacobson [27], 1985) If k ≥ 2 is an integer and G is
a graph with k ≤ ∆(G), then

γk(G) ≥ γ(G) + k − 2. (2.7)

In this section, we will deal with analyzing the structure of the graphs
satisfying equality in this bound. Although the proof of the bound is very
easy, the characterization of the extremal graphs seems to be an extremely
difficult problem. The first part of this section presents some properties for
the graphs G with γk(G) = γ(G) + k − 2, in the second one we concentrate
on the special case k = 2 and give some characterizations of different graph
classes achieving equality.

2.3.1 Properties of the extremal graphs

Next theorem gives a property for graphs achieving equality in (2.7) with
respect to the concept of k-dependence.

Theorem 2.18 (Hansberg [34]) Let G be a connected graph and k an integer
with ∆(G) ≥ k ≥ 2. If γk(G) = γ(G) + k − 2 and D is a minimum k-
dominating set, then D is a (k − 1)-dependent set of G and thus γk(G) ≤
αk−1(G).

Proof. Suppose that there is a vertex x ∈ D such that |NG(x)∩D| ≥ k− 1.
Let S be a subset of NG(x)∩D with |S| = k−1. Since every vertex in V −D
has at least one neighbor in D − S and the vertices of S are dominated by
x in D − S, D − S is a dominating set of G with γk(G) − k + 1 vertices,
a contradiction to the hypothesis that γk(G) = γ(G) + k − 2. Thus, the
statement follows. �

Corollary 2.19 If G is a connected graph with γ2(G) = γ(G), then every
minimum 2-dominating set is independent.
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In the following, we will analyze the structure of the graphs satisfying
equality in (2.7) with respect to the induced cycles of length four contained
in them. As we shall see, the cycle C4 plays an important role in this matter.
The following lemma will be an important tool for the next theorems.

Lemma 2.20 (Chellali, Favaron, Hansberg, Volkmann [16]) Let G be a non-
trivial graph of order n such that m(G) ≤ n − 2 and ∆(G) ≤ n − 2. Then
m(G) ≥

⌈

n
2

⌉

and G contains at least m(G) − 1 induced cycles of length 4.

Proof. Let q = m(G). If dG(v) ≤ n−2 for all v ∈ V (G), then n2 −n−2q =
n(n − 1) − 2q = 2m(G) ≤ n(n − 2) = n2 − 2n and thus q ≥

⌈

n
2

⌉

.
Let l be the number of vertices in G with degree n − 2. Then 2m(G) =

n2 − n − 2q ≤ l(n − 2) + (n − l)(n − 3) = n2 − 3n + l and so it follows that
l ≥ 2(n − q) ≥ 4.

We will now prove by induction on n that there are at least q−1 induced
cycles of length 4 in G. For n ∈ {2, 3} the property dG(v) ≤ n − 2 is not
satisfied for any q ≤ n − 2. If n = 4, then the only possibility for having
∆(G) ≤ n − 2 is when q = 2 and G ∼= C4. Now suppose that n ≥ 5.

Case 1. Suppose that there is a vertex x of degree n − 2 in G such that
the only vertex that is not adjacent to x, say y, has degree less than n − 2.
Then all vertices in G′ := G−x have degree at most n−3 and m(G′) ≤ q−1
and so from the induction hypothesis follows that G′ contains at least q − 2
induced cycles of length 4. If all neighbors of y would be adjacent to each
other, that is, if G[NG[y]] ∼= KdG(y)+1, then, since ∆(G) ≤ n − 2, for each
z ∈ NG(y) would exist a vertex z′ ∈ NG(y) such that zz′ ∈ E(G). But this
would imply that q ≥ dG(y) + dG(y) = n − 1, which is a contradiction. So,
there have to be two vertices z, w ∈ NG(y) such that zw ∈ E(G). It follows
that xzywx is a new induced cycle of length 4 in G and thus G has at least
q − 1 induced C4.

Case 2. Suppose that every vertex of degree n − 2 in G is exactly not
adjacent to another vertex of degree n−2. Then the vertices of degree n−2 in
G induce a matching M in G and thus l is even and |M | = l/2 ≥ n− q. This
implies that if xy ∈ M and x′y′ ∈ E(G) − {xy}, then the vertices x, x′, y, y′

induce a cycle of length 4 in G. It follows that there are |M |(|M | − 1)/2
induced C4 with vertices in V (M) and |M |(q−|M |) induced C4 with vertices
in both V (M) and V (G)−V (M). Since n/2 ≥ |M | = l/2 ≥ n−q, we obtain
that there are at least

(n − q − 1)(n − q)

2
+

(n − q)(2q − n)

2
=

(n − q)(q − 1)

2
≥ q − 1

cycles of length 4. �



30 Chapter 2: Bounds on the k-domination number

The next two lemmas contain two main structure properties on graphs G
with γk(G) = γ(G) + k − 2, which we will need in order to prove the main
results.

Lemma 2.21 (Hansberg [34]) Let G be a connected graph and k an integer
with ∆(G) ≥ k ≥ 2. If γk(G) = γ(G) + k − 2 and D is a minimum k-
dominating set of G, then, for every vertex u ∈ V − D and every set Au ⊆
N(u)∩D with |Au| = k, there are non-adjacent vertices xu, x

′
u ∈ V −D such

that D ∩ N(xu) = D ∩ N(x′
u) = Au.

Proof. Since ∆(G) ≥ k ≥ 2, V − D is not empty. Let u be a vertex in
V − D and Au ⊆ N(u) ∩ D a set such that |Au| = k. Suppose to the con-
trary that for all vertices in x ∈ V − (D ∪{u}) either |Au ∩N(x)| ≤ k− 1 or
|D∩N(x)| ≥ k+1 and Au ⊂ N(x) holds. Then every vertex in V −(D∪{u})
has at least one neighbor in D − Au and every vertex from Au is dominated
by u. Hence, (D−Au)∪{u} is a dominating set of G with γk(G)−k+1 ver-
tices, which is a contradiction to our hypothesis. Therefore, there is a vertex
xu ∈ V −(D∪{u}) such that N(xu)∩D = Au. If xu would be the only vertex
with this property, then (D−Au)∪{xu} would be a dominating set of G with
γk(G) − k + 1 vertices. Hence there is another vertex y ∈ V − D such that
N(y)∩D = Au. If all vertices y ∈ V − (D∪{xu}) with N(y)∩D = Au were
adjacent to xu, then the set (D − Au) ∪ {xu} would again be a dominating
set of G. Therefore, there has to be a vertex x′

u ∈ V − (D ∪ {xu}) with
N(x′

u) ∩ D = Au such that it is not adjacent to xu and we are done. �

Lemma 2.22 (Hansberg [34]) Let G be a connected graph with γk(G) =
γ(G) + k − 2 for an integer k with ∆(G) ≥ k ≥ 2. If D is a minimum
k-dominating set of G and u ∈ D, then there is a vertex x ∈ V − D such
that x ∈ N(u) and |D ∩ N(x)| = k.

Proof. Since ∆(G) ≥ k ≥ 2, V − D is not empty. Let u ∈ D. Assume for
contradiction that u does not have neighbors in V − D. Suppose first that
N(u) ∩ N(x) ∩ D = ∅ for every vertex x ∈ V − D. Let x ∈ V − D and let
Ax be a subset of N(x) ∩ D with |Ax| = k and let v ∈ Ax. We will show
that the set D′ = (D − (Ax ∪ N(u))) ∪ {x, v} is a dominating set of G. Let
z ∈ V −D′. If z ∈ Ax − {v}, then it is dominated by x. If z ∈ N(u), then it
is dominated by u. If z ∈ V − (D ∪{x}), then it has at least one neighbor in
(D − Ax) ∪ {v} and it does not belong to N(u). Hence, D′ is a dominating
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set of G and thus

γ(G) ≤ |D′| = |(D − (Ax ∪ N(u))) ∪ {x, v}|
= γk(G) − k − |N(u)| + 2

≤ γk(G) − k + 1,

for G is connected, and we obtain a contradiction. It follows that there is a
vertex x ∈ V −D which has at least one common neighbor with u in D. Let
now Ax be a subset of N(x) ∩ D with |Ax| = k, such that N(u) ∩ Ax 6= ∅.
Now it is easy to check that (D − (Ax ∪ {u})) ∪ {x, y} is a dominating set
of G, where y ∈ N(u) ∩ Ax, and we obtain again the contradiction that
γ(G) ≤ γk(G) − k + 1. Thence, u has at least one neighbor in V − D.

Suppose now for contradiction that every vertex in N(u) ∩ (V − D)
has at least k + 1 neighbors in D. Let x ∈ N(u) ∩ (V − D) and let
Ax be a subset of D ∩ N(x) with |Ax| = k such that u /∈ Ax. Define
D′′ = (D− (Ax∪{u}))∪{x, v}, where v is a vertex in Ax. Let z ∈ V −D′′. If
z ∈ Ax∪{u}, then it is dominated by x. If z ∈ V − (D∪N(u)), then it has k
neighbors in D−{u} and thus at least one neighbor in (D−(Ax∪{u}))∪{v}.
If z ∈ (V −D)∩N(u), then it has at least k +1 neighbors in D and hence at
least one neighbor in (D−(Ax∪{u}))∪{v}. It follows that D′′ is a dominating
set of G with γk(G)−k+1 vertices, a contradiction to our hypothesis. There-
fore, there is a vertex in (V −D)∩N(u) that has exactly k neighbors in D. �

Theorem 2.23 (Hansberg [34]) Let G be a connected graph and k an integer
with ∆(G) ≥ k ≥ 2. If γk(G) = γ(G) + k − 2, then every vertex of G lies on
an induced cycle of length 4.

Proof. Let D be a minimum k-dominating set of G and let x be a vertex of
G.

Case 1. Suppose that x ∈ V − D. Let Ax be a subset of N(x) ∩ D with
|Ax| = k. Let X be the set of vertices in V − (D ∪ {x}) that contain the set
Ax in its neighborhood. By Lemma 2.21, the set X is not empty. Suppose
that x is adjacent to every vertex from X. Define D′ = (D−Ax)∪{x} and let
z ∈ V −D′. If z ∈ Ax∪X, it is dominated by x. If z ∈ V −(D∪X∪{x}), it has
a neighbor in D−Ax. Hence, D′ is a dominating set of G with γk(G)−k +1
vertices, a contradiction to the hypothesis that γk(G) = γ(G) + k − 2. It
follows that there is a vertex y ∈ X that is not adjacent to x. Since, by
Theorem 2.18, ∆(G[Ax]) ≤ k − 2 holds, there are two non-adjacent vertices
a, b ∈ Ax. It is now evident that the vertices x, y, a and b induce a cycle of
length four in G.
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Case 2. Suppose that x ∈ D. By Lemma 2.22, there is a vertex u such
that x ∈ N(u) − D. Let Au be a subset of N(u) ∩ D such that x ∈ Au

and |Au| = k. Now Lemma 2.21 implies that there are non-adjacent vertices
xu, x

′
u ∈ V − D with D ∩ N(xu) = D ∩ N(x′

u) = Au. Since from Theorem
2.18 we have that ∆(G[Au]) ≤ k − 2, Au contains at least a vertex v which
is not adjacent to x. Hence, the vertices x, v, xu and x′

u induce a cycle of
length 4 containing x. �

Corollary 2.24 (Hansberg [34]) Let G be a connected graph. If there is a
vertex u ∈ V that is not contained in any induced cycle of length 4 of G, then
γk(G) ≥ γ(G) + k − 1.

As Theorem 2.23 suggests, graphs G with γk(G) = γ(G) + k − 2, contain
many induced cycles of length 4. Next, we will determine a lower bound for
the number of induced cycles of length 4 contained in such graphs. Before
that, we need the following lemma.

Lemma 2.25 (Hansberg [34]) Let G be a graph with vertex set V = V1 ∪ V2

such that |V1| = |V2| = k ≥ 2 and V1 6= V2. If m(G[Vi]) ≤ k − 2 for i = 1, 2
and δ(G) ≥ n(G) − k + 1, then |V1 ∩ V2| ≤ 1.

Proof. Let r be the number of edges contained in G[V1 ∩ V2] and let r =
|V1∩V2|. Suppose that r ≥ 2. With the condition that δ(G) ≥ n(G)−k+1 =
k − r + 1, we obtain

m(V1 ∩ V2, V − (V1 ∩ V2)) ≥ r(k − r + 1) − 2r.

Without loss of generality, we can suppose that

m(V1 ∩ V2, V1 − V2) ≥
r(k − r + 1) − 2r

2
.

Hence, k − 2 ≥ m(G[V1]) ≥ m(V1 ∩ V2, V1 − V2) + r ≥ 1
2
r(k − r + 1) and thus

r2 − r − 4 ≥ k(r − 2). Since k ≥ r + 1 and r ≥ 2, it follows that

r2 − r − 4 ≥ k(r − 2) ≥ (r + 1)(r − 2) = r2 − r − 2,

which is a contradiction. Therefore, r = |V1 ∩ V2| is at most 1. �

Theorem 2.26 (Hansberg [34]) Let G be a connected graph and k an integer
with ∆(G) ≥ k ≥ 2. If γk(G) = γ(G) + k − 2, then G contains at least
(γ(G) − 1)(k − 1) induced cycles of length 4.
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Proof. Let D be a minimum k-dominating set of G. Then Lemma 2.21
implies that |V − D| ≥ 2.

Claim 1. Let u ∈ V − D and xu and x′
u be like in Lemma 2.21. Then

G[Au ∪ {xu, x
′
u}] contains at least k − 1 induced cycles C4. Moreover, if

m(G[Au]) ≥ k−1, G[Au∪{xu, x
′
u}] has at least k−1 induced cycles of length

4 each containing both vertices xu and x′
u.

Proof. Since xu and x′
u are not adjacent in G and Au = N(xu) ∩ D =

N(x′
u)∩D, every two non adjacent vertices from Au together with xu and x′

u

induce a cycle of length 4 in G[Au ∪ {xu, x
′
u}]. Hence, if m(G[Au]) ≥ k − 1,

there are at least k − 1 induced cycles C4 in G[Au ∪ {xu, x
′
u}], all of them

containing both vertices xu and x′
u. Now suppose that m(G[Au]) ≤ k − 2.

As ∆(G[Au]) ≤ k−2, we obtain from Lemma 2.20 that m(G[Au]) ≥ ⌈k
2
⌉ and

that there are at least m(G[Au]) − 1 induced cycles C4 in G[Au]. Hence, in
G[Au∪{xu, x

′
u}] there are at least 2m(G[Au])−1 ≥ 2⌈k

2
⌉−1 ≥ k−1 induced

cycles C4. ‖

Now let B′ 6= ∅ be a proper subset of V − D. For each u ∈ B′, let Au

be a subset of N(u) ∩ D such that |Au| = k. Define S =
⋃

u∈B′ Au and
B = {v ∈ V − D | |N(v) ∩ S| ≥ k}.

Claim 2. Let S 6= D. Then there is a vertex y ∈ V − (D ∪ B) such that
k − 2 ≤ |N(y) ∩ S| ≤ k − 1.

Proof. Since S 6= D, it follows from Lemma 2.22 that the set V − (D ∪B) is
not empty. From the definition of the set B, the inequality |N(y)∩S| ≤ k−1
follows immediately for all y ∈ V − (D ∪ B). Now we will prove that there
is a vertex y ∈ V − (D ∪ B) such that |N(y) ∩ S| ≥ k − 2. For the case
that k = 2, it is trivial. For the case that k ≥ 3, suppose to the contrary
that |N(y) ∩ S| ≤ k − 3 for every vertex y ∈ V − (D ∪ B). Let u ∈ B′,
x ∈ Au and let v, w ∈ (N(y) ∩ D) − S for a vertex y ∈ V − (D ∪ B). We
will prove that D′ = (D− (Au ∪{v, w}))∪{x, y, u} is a dominating set of G.
Let z ∈ V − D′. If z ∈ Au − {x}, then it is dominated by u. If z ∈ {v, w},
then it is dominated by y. Since every vertex in B − {u} has k neighbors
in S, each z ∈ B − {u}, it has at least one neighbor in (S − Au) ∪ {x}. If
z ∈ V − (D ∪ B ∪ {y}), then it has at least 3 neighbors in D − S and thus
at least one neighbor in D − (S ∪ {v, w}). Hence, D′ is a dominating set of
G and, consequently,

γ(G) ≤ |D′| = |(D − (Au ∪ {v, w})) ∪ {x, y, u}|
= γk(G) − k − 2 + 3 = γk(G) − k + 1.
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This contradiction proves Claim 2. ‖

Claim 3. Let k ≥ 3 and suppose that S 6= D and that |N(z) ∩ S| ≤ k − 2
for all vertices z ∈ V − (D ∪ B). For a vertex y ∈ V − (D ∪ B) with
|N(y) ∩ S| = k − 2, let Ay ⊆ N(y) ∩ D with |Ay| = k and N(y) ∩ S ⊂ Ay.
Then there is a vertex y′ ∈ V −(D∪B∪{y}) and a set Ay′ ⊆ N(y′)∩(S∪Ay)
such that |Ay′| = k and Ay′ 6= Ay.
Proof. From Lemma 2.21, since S 6= D, V − (D ∪B) has at least 2 vertices.
By Claim 2 and since |N(z) ∩ S| ≤ k − 2 for all z ∈ V − (D ∪ B), the
existence of the vertex y ∈ V − (D∪B) with |N(y)∩S| = k−2 is garanteed.
Suppose that for all z ∈ V − (D ∪B ∪ {y}) either |N(z) ∩ (S ∪Ay)| ≤ k − 1
or N(z) ∩ D = Ay. Let {v, w} = Ay − S and u ∈ Ay ∩ S. From the con-
struction of S follows that there is a vertex x ∈ B′ such that u ∈ Ax. Now
we will show that D′ = (D − (Ax ∪ {v, w})) ∪ {u, x, y} is a dominating set
of G. Let z be a vertex from V − D′. If z ∈ {v, w}, it is dominated by y.
If z ∈ Ax − {u}, then z is dominated by x. If z ∈ B − {x}, then z has k
neighbors in S and thus at least one neighbor in (S − Ax) ∪ {u} ⊂ D′. Let
now z be in V − (B ∪ D ∪ {y}). If |N(z) ∩ (S ∪ Ay)| ≤ k − 1, then z has at
least a neighbor in D−(S∪Ay) ⊂ D′. If Ay = N(z)∩D, then z is dominated
by u. Hence, we obtain the contradiction that D′ is a dominating set of G
with γk(G) − k + 1 vertices and Claim 3 is proved. ‖

Claim 4. Let k = 2 and suppose that that S 6= D and that N(z) ∩ S = ∅
for all vertices z ∈ V − (D ∪ B). Then there is a vertex y ∈ V − (D ∪ B)
with a neighbor in B. Moreover, if Ay ⊆ D ∩ N(y) is a set with |Ay| = 2
and Z ⊆ V − (D ∪ B) is the set of all vertices z with Ay ⊆ N(z), then
m(G[Z]) ≥ 2.
Proof. Because of S 6= D, V − (D∪B) 6= ∅. Since G is connected, and, from
Corollary 2.19, D is independent, there has to be a vertex y ∈ V − (S ∪ B)
with a neighbor x in B. Let Ax ⊆ N(x)∩S with |Ax| = 2 and let u ∈ Ax. The
assumption that y ∈ D−S, would imply that (D−{u, y})∪{x} is a domina-
ting set of G with less vertices than D. Hence y ∈ V −(D∪B). From Lemma
2.21, |Z| ≥ 2. If |Z| = 2, say Z = {y, y′}, then (D − (Ay ∪ {u})) ∪ {x, y′}
would be a dominating set of G with one vertex less than D. Thus, |Z| ≥ 3.
Suppose that m(G[Z]) ≤ 1. Then there is a vertex z ∈ Z adjacent to all
vertices of Z −{z} and it follows that (D −Ay)∪ {z} is a dominating set of
G with less vertices than D, a contradiction. Hence, m(G[Z]) ≥ 2. ‖

Now let y0 be an arbitrary vertex in V − D. Let A0 ⊆ N(y0) ∩ D such
that |A0| = k. Then we set S0 = A0 and B0 = {v ∈ V −D | |N(v)∩S0| ≥ k}.
For i ≥ 1, unless Si−1 = D, let yi be a vertex in V − (D ∪ Bi−1) such that
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|N(yi) ∩ Si−1| = k − 1 or, in case that there is no such vertex, such that
|N(yi) ∩ Si−1| = k − 2 (existence was shown in Claim 2). If, additionally
to the latter, k = 2, choose a vertex yi such that it has a neighbor in Bi−1

(see Claim 4). Further, let Ai be a subset of N(yi) ∩ D with |Ai| = k and
N(yi) ∩ Si−1 ⊂ Ai and define recursively

Si = Si−1 ∪ Ai and

Bi = {v ∈ V − D | |N(v) ∩ Si| ≥ k}.
Since for all indices i for which Si−1 6= D, evidently |Si−1| < |Si| holds,

there has to be an integer l ≥ 1 such that Sl = D. For 0 ≤ i ≤ l, we define
Gi = G[Si ∪ Bi]. Note that, if m(G[Ai1 ]) ≤ k − 2 and m(G[Ai2 ]) ≤ k − 2 for
two indices 0 ≤ i1, i2 ≤ l, then, since ∆(G[Ai1 ∪Ai2 ]) ≤ k− 2, the conditions
for Lemma 2.25 with respect to the graph G[Ai1 ∪Ai2 ] are fulfilled and hence
|Ai1 ∩ Ai2| ≤ 1. For each yi, let xi and x′

i be the non-adjacent vertices xyi

and, respectively, x′
yi

of Lemma 2.21.

Claim 5. In Gi there are at least (|Si| − k + 1)(k − 1) induced cycles C4 for
all 0 ≤ i ≤ l.
Proof. If i = 0, since G[A0 ∪ {x0, x

′
0}] is a subgraph of G0, the statement

follows directly from Claim 1. Moreover, if m(G[A0]) ≥ k − 1, there are at
least k−1 induced cycles C4 in G0 containing the vertices x0 and x′

0. If l = 0,
we are ready. Suppose now that l ≥ 1 and that, for an index 0 ≤ i ≤ l − 1,
the statement holds. Moreover, assume that every cycle counted until now
is contained in a graph G[Aj ∪ {xj , x

′
j}] for some 1 ≤ j ≤ l − 1 and in such

manner that, if m(G[Aj ]) ≥ k − 1, the cycle contains both vertices xj and
x′

j .
From Claim 1, we know that G[Ai+1∪{xi+1, x

′
i+1}] contains at least k−1

induced cycles C4. If m(G[Ai+1]) ≥ k−1, there are at least k−1 such induced
cycles C4 containing the vertices xi+1 and x′

i+1 and thus all different from the
cycles of Gi. If m(G[Ai+1]) ≤ k − 2, we already noted that |Aj ∩ Ai+1| ≤ 1
for all indices j such that m(G[Aj ]) ≤ k − 2, and hence the cycles counted
here are new, too. If |N(yi+1)∩Si| = k−1, then |Si+1| = |Si|+1 and, by the
induction hypothesis, there are at least (|Si|−k+1)(k−1) induced cycles C4

in Gi and thus at least (|Si|−k +1)(k−1)+ (k−1) = (|Si+1|−k +1)(k−1)
in Gi+1.

Now suppose that |N(yi+1)∩Si| = k− 2. Then we have |Si+1| = |Si|+ 2.
Hence, in this case we need to find k − 1 more cycles. We distinguish two
cases.

Case 1: k ≥ 3. By Claim 3, there is a vertex z ∈ V −(D∪Bi) different from
yi+1 and a set Az ⊆ N(z)∩(S∪Ai+1) such that |Az| = k and Az 6= Ai+1. Thus
the vertices xz and x′

z are both different from xi+1 and x′
i+1. If m(G[Az]) ≥
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k − 1, Claim 1 implies that there are at least k − 1 induced cycles C4 in
G[Az ∪ {xz, x

′
z}] containing both vertices xz and x′

z and thus different from
all other induced cycles counted until yet. If m(G[Az ]) ≤ k−2, we obtain, by
Claim 1, that there are at least k − 1 induced cycles C4 in G[Az ∪ {xz, x

′
z}].

Since |Az ∩Aj | ≤ 1 for all indices 0 ≤ j ≤ i + 1 such that m(G[Aj ]) ≤ k − 2,
all these cycles are new, too. Hence, we can count with k − 1 more induced
cycles C4.

Case 2: k = 2. Then we can apply Claim 4 by setting yi+1 for y. Since
m(G[Z]) ≥ 2, there has to be a vertex z ∈ Z−{xi+1, x

′
i+1} being not adjacent

to some z′ ∈ Z (this includes the cases z′ = xi+1 and z′ = x′
i+1). So, z and

z′ together with the vertices from Ai+1 build another induced C4 with which
we can count.

Hence, by the induction hypothesis, there are at least

(|Si| − k + 1)(k − 1) + 2(k − 1) = (|Si+1| − k + 1)(k − 1)

induced cycles of length 4 in Gi+1. ‖

By the last claim, setting i = l, we obtain that G = Gl has at least

(|Sl| − k + 1)(k − 1) = (|D| − k + 1)(k − 1)

= (γk(G) − k + 1)(k − 1)

= (γ(G) − 1)(k − 1)

induced cycles of length 4. �

Example 2.27 (Hansberg [34]) Let l and k be two positive integers, where
k ≥ 2. Let G be a graph consisting of a complete graph H on k − 1 vertices
and of vertices ui, vi, wi, for 1 ≤ i ≤ l, such that every ui and wi is adjacent
to every vertex of H and to vi (see Figure 1). Then it is easy to see that
γk(G) = k + l − 1, γ(G) = l + 1 and thus γk(G) = γ(G) + k − 2. Since G
contains exactly l(k − 1) = (γ(G) − 1)(k − 1) induced cycles of length 4, it
follows that the bound in Theorem 2.26 is sharp.

Using Theorem 1.3, we obtain easily following corollary.

Corollary 2.28 (Hansberg [34]) Let G be a graph and k an integer such
that 2 ≤ k ≤ ∆(G). If γk(G) = γ(G) + k − 2, then G contains at least
( n

∆(G)+1
− 1)(k − 1) induced cycles of length 4.
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Figure 2.1: Example of a graph G with γk(G) = γ(G)+ k− 2 and exactly (γ(G)−
1)(k − 1) induced cycles of length 4. A double line connecting a vertex ui or wi to

the complete graph Kk−1 in the middle means that it is adjacent to all vertices of

Kk−1.

Note that, if G is a graph with γk(G) = γ(G) + k − 2 for an integer k
with 2 ≤ k ≤ ∆(G), γ(G) is at least 2 and thus ∆(G) ≤ n(G) − 2, which
implies that the factor ( n

∆(G)+1
− 1) above is always positive.

Reverting the assertion of the theorem, we gain an improvement of Fink
and Jacobson’s lower bound and we obtain, as a corollary, a theorem of
Chellali, Favaron, Hansberg and Volkmann.

Corollary 2.29 (Hansberg [34]) Let G be a graph with ∆(G) ≤ n(G) − 2.
If G has less than (γ(G)− 1)(k− 1) induced cycles of length 4 for an integer
k with ∆(G) ≥ k ≥ 2, then γk(G) ≥ γ(G) + k − 1.

Corollary 2.30 (Chellali, Favaron, Hansberg, Volkmann [16]) If G is a
graph with at most k − 2 induced cycles of length 4 for an integer k with
∆(G) ≥ k ≥ 2, then γk(G) ≥ γ(G) + k − 1.

Corollary 2.31 (Chellali, Favaron, Hansberg, Volkmann [16]) If G is a
graph without an induced cycle C4, then γk(G) ≥ γ(G) + k − 1 for every
positive integer k with ∆(G) ≥ k ≥ 2.

Proof. If ∆(G) = n(G) − 1, then γ(G) = 1 and, since ∆(G) ≥ k ≥ 2, evi-
dently γk(G) ≥ k. If ∆(G) ≤ n(G) − 2, previous corollary yields the desired
assertion. �

Since triangulated graphs do not contain induced C4, we also obtain the
following corollary.
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Corollary 2.32 (Chellali, Favaron, Hansberg, Volkmann [16]) If G is a tri-
angulated graph, then γk(G) ≥ γ(G) + k − 1 for every positive integer k with
∆(G) ≥ k ≥ 2.

In particular, every nontrivial block graph G has the property γk(G) ≥
γ(G) + k − 1 for every positive integer k with ∆(G) ≥ k ≥ 2. If we regard
the graph G = Kn ◦ K1, where n is an integer with n ≥ k, it is evident that
G fulfills γk(G) = n + k − 1 and γ(G) = n. This shows that Corollary 2.32
is best possible.

In 1996, Reed gave the following upper bound for the usual domination
number γ.

Theorem 2.33 (Reed [62], 1996) If G is a connected graph with minimum
degree δ ≥ 3, then γ(G) ≤ 3

8
n(G).

Theorems 2.33 and 1.3 lead directly to the next observation.

Observation 2.34 (Chellali, Favaron, Hansberg, Volkmann [16]) If G is a
graph of order n, maximum degree ∆ and δ(G) ≥ 3, then

γk(G) − γ(G) ≥ 5k − 3∆

8(∆ + k)
n

for every integer k ∈ N.

Remark 2.35 (Chellali, Favaron, Hansberg, Volkmann [16]) If G is a graph
of order n with δ(G) ≥ 3 and 5k > 3∆(G), then previous observation yields
γk(G) ≥ γ(G) + 5k−3∆

8(∆+k)
n. This shows that if c ≥ k − 2 is an arbitrary

constant, then there exist only a finite number of graphs G such that δ(G) ≥ 3,
5k > 3∆(G) and γk(G) ≤ γ(G) + c.

Remark 2.36 (Chellali, Favaron, Hansberg, Volkmann [16]) Let G be a cu-
bic graph. Observation 2.34 implies that γ2(G) ≥ n

40
+ γ(G) and γ3(G) ≥

n
8

+ γ(G). Hence the cubic graphs with γ2(G) = γ(G) + 1 have at most 40
vertices and those with γ3(G) = γ(G) + 1 at most 8. Analyzing all cubic
graphs with at most 8 vertices, it is a simple matter to verify that the only
cubic graph that fulfills γ3(G) = γ(G) + 1 is G ∼= K3,3.

Remark 2.37 Analogously to previous remark, it is easy to see that there
are no cubic graphs G with γ(G) = γ2(G) and thus always γ2(G) ≥ γ(G) + 1
holds for a cubic graph G.
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Remark 2.38 More generally, suppose that we know that for any graph G
on n vertices, there is a factor f(G) ∈ (0, 1) such that γ(G) ≤ f(G)n,
where f(G) can depend on different parameters of G (like for example the
minimum degree). Then the number of graphs G with γk(G) = γ(G) + k − 2
and k

k+∆(G)
> f(G) is finite.

Theorem 2.17 implies that γk(G) > γ(G) for k ≥ 3. However, for k = 2
the equality γ2(G) = γ(G) is possible. Next, we will present some sufficient
as well as some necessary conditions for graphs G with the property that
γ2(G) = γ(G).

A subset S ⊆ V (G) is called a covering if every edge in G is incident to at
least one vertex of S. The cardinality of a minimum covering of G is denoted
with β(G) and is called the covering number of G.

Proposition 2.39 (Teschner, Volkmann (cf. [68], p. 221)) If G is a con-
nected graph with γ(G) = β(G), then δ(G) ≤ 2.

Observation 2.40 (Hansberg [34]) If G is a graph with δ(G) ≥ k ≥ 2
for an integer k, then every covering is also a k-dominating set and thus
γk(G) ≤ β(G).

Observation 2.41 (Hansberg [34]) If G is a graph with δ(G) ≥ k ≥ 2 for
an integer k and such that β(G) ≤ γ(G)+ k− 2, then γk(G) = γ(G)+ k− 2.

Proof. With Theorem 2.17 and previous observation, we obtain

γ(G) + k − 2 ≤ γk(G) ≤ β(G) ≤ γ(G) + k − 2,

and thus the statement follows. �

We obtain directly, for the case that k = 2, the following corollaries.

Corollary 2.42 (Blidia, Chellali, Volkmann [7], 2006) If G is a graph with
δ(G) ≥ 2, then every covering is also a 2-dominating set and thus γ2(G) ≤
β(G).

Corollary 2.43 (Hansberg, Volkmann [39], 2007) If G is a graph with δ(G) ≥
2 and γ(G) = β(G), then γ2(G) = γ(G).

Theorem 2.44 (Hansberg, Volkmann [39], 2007) If G is a connected non-
trivial graph with γ2(G) = γ(G), then δ(G) ≥ 2.
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Proof. Assume that δ(G) = 1 and let u be a leaf of G. If D is a γ2(G)-set
and S = V (G)−D, then u ∈ D. If S = ∅, then we arrive at the contradiction
γ(G) < n(G) = γ2(G). So we assume now that S 6= ∅. Let w be the neighbor
of the leaf u. If w ∈ D, then D′ = D − {u} is a dominating set of G with
|D′| = |D| − 1, a contradiction to |D| = γ2(G) = γ(G). If w ∈ S, then
there exists a vertex v ∈ N(w) ∩ D with v 6= u. Since each vertex in S is
adjacent to 2 or more vertices in D, we observe that D′′ = (D∪{w})−{u, v}
is a dominating set of D with |D′′| = |D| − 1. This is a contradiction to
|D| = γ(G), and the proof is complete. �

Theorem 2.45 (Hansberg, Volkmann [39], 2007) Let G be a connected non-
trivial graph with γ2(G) = γ(G). Then G contains a bipartite factor H with
γ(H) = β(H) and δ(H) = 2.

Proof. Let D be a γ2(G)-set and S = V (G) − D. In view of Theorem 2.44,
δ(G) ≥ 2 and thus S 6= ∅. By Corollary 2.19, D is independent.

If we delete all edges in G[S], then we obtain a bipartite factor H of G
such that each vertex in S is furthermore adjacent to 2 or more vertices in
D. Thus δ(H) ≥ 2, γ2(H) = γ2(G) = γ(G) and D is a covering of H . This
implies

γ(G) = γ(H) ≤ β(H) ≤ γ2(G) = γ(G)

and consequently γ(H) = β(H). From Proposition 2.39 we finally obtain
δ(H) = 2. �

Regarding Theorem 2.45, one is tempted to believe that the converse of
Corollary 2.43 is valid for all bipartite graphs. However, this assumption
is completely wrong. We will illustrate this by the an example, in which
γ2 = γ and δ ≥ 2 but β is arbitrary large. The graph in Figure 2.2 consists
of two complete bipartite graphs K2,k, where k ≥ 4. Both are connected by
a matching that is built by exactly k − 2 vertices of the two partition sets of
order k of the K2,k’s. Between the vertices that are incident to this matching
one can also add arbitrary many edges such that the graph remains bipar-
tite and the result is the same. It is now evident that γ2(G) = γ(G) = 4,
δ(G) ≥ 2 and β(G) = k + 2.

Anyhow, for cactus graphs without bridges the converse of Corollary 2.43
is valid. We will show this statement by proving the next theorem.

Theorem 2.46 (Hansberg, Volkmann [39], 2007) Let G be a connected cac-
tus graph without bridges. Then γ2(G) = β(G).
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Figure 2.2: Graph with γ2(G) = γ(G) = 4, δ(G) ≥ 2 and β(G) = k + 2.

Proof. We will prove our statement by induction on the number ν(G) of
cycles in G. If G is a cycle, then the statement is clear and every minimum
covering of G is at the same time a γ2(G)-set. Now assume that ν(G) ≥ 2
and that in every connected cactus graph G′ with ν(G′) < ν(G) and without
bridges the property γ2(G

′) = β(G′) is fulfilled and that every 2-domination
set of G′ is at the same time a covering set. Note that, since there are no
bridges, δ(G′) ≥ 2 and hence by Corollary 2.42 every covering is also a 2-
dominating set. Let C be an end cycle in G and u its cut vertex in G. Since
G does not contain bridges, G′ = G− (V (C)−{u})) is again a cactus graph
with ν(G′) = ν(G) − 1 and of course without bridges. It follows by the
induction hypothesis γ2(G

′) = β(G′). Let B be a minimum covering of C.
Then B is also a γ2(C)-set and, without loss of generality, we can assume
that u ∈ B.

Case 1. Assume that there is a γ2(G
′)-set D′ of G′ with u ∈ D′. By

the induction hypothesis we obtain that D′ is also a minimum covering of
G′. The set D′ ∪ (B − {u}) is thus both a covering and a 2-dominating
set of G. Suppose there is a 2-dominating set D of G with γ2(G) = |D| <
|D′ ∪ (B −{u})|. We can assume, without loss of generality, that u ∈ D and
thus |D ∩ V (C)| = |B| and D ∩ V (G′) is a 2-dominating set of G′. It follows

|D ∩ V (G′)| = |D| − |D ∩ V (C)| + 1 < |D′ ∪ (B − {u})| − |B| + 1 = |D′|
and we obtain a contradiction to the minimality of D′. Hence D′∪ (B−{u})
is a γ2(G)-set. For being δ(G) ≥ 2 we have again γ2(G) ≤ β(G) and since
D′∪ (B −{u}) is also a covering of G, we obtain |D′∪ (B −{u})| = γ2(G) =
β(G).

Case 2. Assume that u /∈ D′ for every γ2(G
′)-set D′. By induction

hypothesis D′ is also a minimum covering, which implies that D′∪B is as well
a covering of G as a 2-dominating set of G. Suppose there is a 2-dominating
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set D of G with γ2(G) = |D| < |B ∪ D′|. Without loss of generality, let
u ∈ D. Then |D ∩ V (C)| = |B| and D ∩ V (G′) is a 2-dominating set of G′.
This implies

|D ∩ V (G′)| = |D| − |D ∩ V (C)| + 1 < |D′ ∪ B| − |B| + 1 = |D′| + 1

and thus |D ∩V (G′)| ≤ |D′| and D ∩V (G′) is a γ2(G
′)-set which contains u,

a contradiction to our assumption. �

The condition in Theorem 2.46 without bridges is sufficient but not nec-
essary for satisfying the property γ2 = β. Figure 2.3 shows that for cactus
graphs with bridges the covering number can be much larger than the 2-
domination number. However, there are indeed cactus graphs with bridges
that satisfy the property γ2 = β, as for example the graph in Figure 2.4
illustrates.
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Figure 2.4: Graph with bridges and γ2 = β.

Corollary 2.47 (Hansberg, Volkmann [39], 2007) Let G be a connected cac-
tus graph without bridges. Then γ2(G) = γ(G) if and only if γ(G) = β(G).

Proof. If γ(G) = β(G) then, because of δ(G) ≥ 2, it follows from Corol-
lary 2.43 that γ2(G) = γ(G). If γ2(G) = γ(G), then Theorem 2.46 implies
γ2(G) = β(G) and thus γ(G) = β(G). �
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We finish this section with an observation, for which we need the following
result of Bollobás and Cockayne.

Theorem 2.48 (Bollobás, Cockayne [9], 1979) If G is a graph without iso-
lated vertices, then G has a minimum dominating set D such that for all
d ∈ D there exists a neighbor f(d) ∈ V (G) − D of d such that f(d) is not a
neighbor of a vertex x ∈ D − {d}.

Observation 2.49 (Hansberg, Volkmann [39], 2007) Let G be a connected
graph. If γ2(G) = γ(G), then G has at least two minimum dominating sets.

Proof. Suppose to the contrary that G has exactly one minimum domina-
ting set D. According to Theorem 2.48, each vertex d ∈ D has a neighbor
f(d) ∈ (V (G)−D) such that f(d) is not a neighbor of a vertex x ∈ D−{d}.
Thus f(d) has exactly one neighbor in D and so D is not a 2-dominating
set of G. However, since D is the unique minimum dominating set of G, we
conclude that γ2(G) ≥ γ(G) + 1. This contradiction completes the proof. �

2.3.2 Graphs with γ = γ2

Now we will present the characterization of cactus, claw-free and line-graphs
with equal 2-domination and domination numbers. For cactus graphs, the
proof of Theorem 2.26 yields us the characterization. This result was given
by Hansberg and Volkmann in [39] using a different method for the proof.

Theorem 2.50 (Hansberg, Volkmann [39], 2007) Let G be a cactus graph.
Then γ2(G) = γ(G) if and only if G is a C4-cactus.

Proof. (Hansberg [34]) It is easy to check that every C4-cactus G satisfies
γ(G) = γ2(G). Suppose now that γ2(G) = γ(G). Following the proof of
Theorem 2.26, let Ai = {ai, bi} for 0 ≤ i ≤ l. Since G is a cactus graph, the
vertices ai and bi have exactly xi and x′

i as their common neighbors and both
xi and x′

i are of degree 2 in G. Hence, the situation of Claim 4 can never
occur and thus |Ai+1 ∩Si| = 1 for all indices 0 ≤ i ≤ l− 1.We define the tree
T with vertex set V (T ) = D and edge set E(T ) = {aibi | 0 ≤ i ≤ l}. Now it
is easy to see that G arises from T by duplicating its edges and subdividing
them once (adding for each i the vertices xi and x′

i). Hence, G is a C4-cactus.
�

Now we center our attention on claw-free graphs. A claw-free graph is
a graph which does not contain a K1,3 as an induced subgraph. The next
lemma follows directly from Lemma 2.21.
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Lemma 2.51 Let G be a connected nontrivial graph with γ2(G) = γ(G)
and let D be a minimum 2-dominating set of G. Then, for each vertex
x ∈ V (G) − D and a, b ∈ D ∩ N(x), there is a vertex y ∈ V (G) − D such
that x, y, a and b induce a C4.

Lemma 2.52 Let G be a connected nontrivial claw-free graph. If γ(G) =
γ2(G), then every minimum 2-dominating set D of G fulfills

(i) every vertex in V (G) − D has exactly two neighbors in D, and

(ii) every two vertices a, b ∈ D have distance 2 in G.

Proof. Let D be a γ2(G)-set. As before, D is an independent set. Because
G is claw free and D is an independent 2-dominating set, every vertex in
V (G) − D has exactly two neighbors in D and thus (i) follows.

Suppose that a and b are two vertices in D such that dG(a, b′) > 2. Let
P be a shortest path from a to b in G and, without loss of generality, say
that b is the first vertex on P with dG(a, b) > 2. Let u be the neighbor of a
in P and v the second neighbor of u in P . Then u and v do not belong to D
and both have two neighbors in D. Let c be the second neighbor of u from
D. Since G is claw-free, v has to be adjacent either to a or to c. Because
of the minimality of the length of P , v cannot be adjacent to a and thus it
is adjacent to another vertex from D. From the choice of the vertex b, we
obtain that b is the second neighbor of v in D. Let S be the set of vertices
in V (G)−D which have two neighbors from {a, b, c} and let H be the graph
induced by the set S ∪ {a, b, c}. Since dG(a, b) > 2, there are no vertices
which have a and b as neighbors. Further, from Lemma 2.51, we obtain that
there are vertices u′ and v′ in S such that u′ is adjacent to a and c but not
to u, and v′ is adjacent to c and b but not to v. Besides, u and v′ cannot
be adjacent for otherwise the vertices u, a, v, v′ would induce a claw in G.
Hence, as G[{c, v′, u′, u}] cannot be a claw, u′ and v′ are adjacent.

Now we will show that the set D′ = (D − {a, b, c}) ∪ {u, v′} is a domi-
nating set of G. Let z ∈ V (G) − D′. From the construction of H and since
D is 2-dominating, it is evident that if z ∈ V (G) − V (H), then it has at
least one neighbor in D − {a, b, c}. If z ∈ {a, c, v}, it has u as neighbor in
D′ and if z ∈ {b, u′}, it is dominated by v′ in D′. It remains the case that
z ∈ V (H)−{a, b, c, u, u′, v, v′}. Then z has exactly either a and c or c and b
as neighbors in {a, b, c}. Suppose that z is neighbor of a and c. In that case,
it follows that z is either adjacent to u or to u′, otherwise we would have a
claw. If z is adjacent to u, we are ready. If z is adjacent to u′ and not to u,
then z has to be adjacent to v′, otherwise u, z, v′ and c would induce a claw
in G. Thus, z is dominated by v′ in D′. The case that c and b are neighbors
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of z follows analogously. Hence, D′ is a dominating set of G with less vertices
than D and this is a contradiction to γ(G) = γ2(G) = |D|. Thus, we obtain
statement (ii). �

For a vertex x ∈ V , let H = (Vx, Ex) be a graph with Vx ∩ V = ∅. We
say that the graph G′ arises by inflating the vertex x to the graph Hx if
G′ consists of the vertex set (V − {x}) ∪ Vx and edges E ∪ Ex ∪ E ′, where
E ′ = {uv : u ∈ Vx, v ∈ NG(x)}. The cartesian product of two graphs G1 and
G2 is the graph G1 ×G2 with vertex set V (G1)×V (G2) and vertices (u1, u2)
and (v1, v2) are adjacent if and only if either u1 = v1 and u2v2 ∈ E(G2) or
u2 = v2 and u1v1 ∈ E(G1). Let u be a vertex of G1 and v a vertex of G2.
Then the sets of vertices {(u, y) | y ∈ V (G2)} and {(x, v) | x ∈ V (G1)} are
called a row and, respectively, a column of G1 × G2. A set of vertices in
V (G1×G2) is called a transversal of G1×G2 if it contains exactly one vertex
of every row and every column of G1 × G2.

Let H be the family of graphs such that G ∈ H if and only if either G
arises from a cartesian product Kp×Kp of two complete graphs of order p for
an integer p ≥ 3 by inflating every vertex but the ones on a transversal (we
call it the diagonal) to a clique of arbitrary order, or G is a claw-free graph
with ∆(G) = n(G) − 2 containing two non-adjacent vertices of maximum
degree.

Kn1
Kn2

Kn3
Kn4

Kn5
Kn6

a

b

Figure 2.5: Examples of graphs from the family H (here, ni ∈ N for 1 ≤ i ≤ 6).

Now we are able to present the characterization of the claw-free graphs
with equal domination and 2-domination numbers.

Theorem 2.53 Let G be a connected claw-free graph. Then γ(G) = γ2(G)
if and only if G ∈ H.
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Proof. Let G be a connected graph. It is evident that ∆(G) ≤ n(G) − 2
if and only if γ(G) ≥ 2. Hence, if G is a graph with ∆(G) = n(G) − 2
containing two non-adjacent vertices a and b with dG(a) = dG(b) = ∆(G),
then every vertex x ∈ V (G)−{a, b} is adjacent to both a and b. This implies
that 2 ≤ γ(G) ≤ γ2(G) ≤ 2 and so γ(G) = γ2(G) = 2.

Let now p ≥ 3 be an integer and H be a graph isomorphic to the cartesian
product Kp ×Kp of two complete graphs of order p, T ⊂ V (H) a transversal
of H and let G be a graph that arises from H by inflating every vertex
x ∈ V (H) − T to a clique Cx of arbitrary order. Clearly, every dominating
set of G has to contain vertices of every “inflated row” and every “inflated
column” of G and thus p ≤ γ(G). Since T is a 2-dominating set of G, we
obtain p ≤ γ(G) ≤ γ2(G) ≤ p and hence, γ(G) = γ2(G) = p.

We prove the converse. If G is a connected graph such that γ(G) =
γ2(G) = 2, then ∆(G) ≤ n(G) − 2 and every minimum 2-dominating set is
independent. Hence, there are two non adjacent vertices a and b such that
every other vertex is adjacent to both of them, that is, dG(a) = dG(b) =
n(G)−2 = ∆(G). Thus, if G is claw-free, G ∈ H. Now let G be a connected
claw-free graph with γ(G) = γ2(G) ≥ 3. Let D be a minimum 2-dominating
set of G and let p = |D|. Since by Lemma 2.52 (ii) every two vertices of D
have distance two in G, then from Lemma 2.51 it follows that each pair of
vertices of D has two non-adjacent common neighbors in V (G) − D. Let S
be a subset of V (G) − D which contains exactly two non-adjacent common
neighbors of every pair of vertices of D. This is possible because of Lemma
2.52 (i). Let H be the subgraph induced by the vertex set D ∪S. Evidently,
H is again claw-free and |V (H)| = |D| + 2

(

|D|
2

)

= |D|2 = p2.

Claim 1. Let v be a vertex in V (H). Then the graph induced by NH(v) con-
sists of two disjoint cliques.

Proof. Assume first that v is a vertex in D. From the construction of H
and since D is independent, v is adjacent to exactly (|D| − 1) = p − 1
pairs of non adjacent vertices from S, such that each pair has the same two
neighbors in D. Let x and y be such a pair. Let z be a neighbor of v different
from x and y. As G is claw-free, z is adjacent either to x or to y. Hence,
NH [v] ⊆ NH [x]∪NH [y]. Suppose that the set NH [x]∩NH [y]∩NH(v) contains
a vertex w. Let b be the second neighbor of x and y in D and c the second
neighbor of w in D. Then, since x, y and c are pairwise non adjacent, together
with w, they build a claw and we obtain a contradiction. It follows that the
sets NH [x]∩NH(v) and NH [y]∩NH(v) are disjoint. Because of G being claw-
free, each of these sets is a clique. Since NH(v) = (NH [x]∪NH [y])∩NH(v) =
(NH [x] ∩ NH(v)) ∪ (NH [y]∩NH(v)), it follows that H [NH(v)] is the disjoint
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union of two cliques.
Assume now that v ∈ S. Let a and b be the two neighbors of v in D. Since

there is only a second vertex which is adjacent to both a and b in H and as
it is not neighbor of v in H , it follows that the set NH(a)∩NH(b)∩NH(v) is
empty. As G is claw-free, the sets NH [a]∩NH(v) and NH [b]∩NH(v) build two
disjoint cliques and, for the same reason, every other neighbor of v in H is ad-
jacent either to a or to b. Hence, NH(v) = (NH [a]∩NH(v))∪(NH [b]∩NH(v))
and H [NH(v)] is the disjoint union of two cliques. ‖

Let D = {a1, a2, . . . , ap}. Let C1 and C2 be the two complete graphs
induced by NH [a1] in H such that V (C1)∩V (C2) = {a1}. As H is claw-free,
C1 and C2 contain exactly one vertex of each pair of non-adjacent vertices
from S which have a1 and a second common neighbor in D. Then, for every
vertex ai ∈ D − {a1}, there are vertices ui ∈ V (C1) and vi ∈ V (C2) such
that ui and vi are common neighbors of a1 and ai. We define u1 := a1 and
v1 := a1. By the construction of H , it follows that V (C1) = {u1, u2, . . . , up}
and V (C2) = {v1, v2, . . . , vp}.

Claim 2. For every vertex x ∈ V (H) − (V (C1) ∪ V (C2)) there are unique
vertices ux ∈ V (C1) and vx ∈ V (C2) which are adjacent to x.

Proof. If x ∈ D, then x = ai for some 2 ≤ i ≤ |D| and, from the construction
of H , x has exactly ui ∈ V (C1) and vi ∈ V (C2) as neighbors. Let x ∈
V (H) − (V (C1) ∪ V (C2) ∪ D). Then x has two neighbors ai and aj in D,
where 2 ≤ i < j ≤ p. Let Cui

and Cvi
be the cliques induced by NH [ai]

such that ui is contained in the first one and vi in the second (see Claim 1).
Analogously, define Cuj

and Cvj
. Then x is either neighbor of ui or neighbor

of vi. By the same manner, x is either neighbor of uj or of vj . Now we will
show that the set V (Cui

) ∩ V (Cuj
) is empty. Suppose to the contrary that

x ∈ V (Cui
) ∩ V (Cuj

). Applying again Claim 1, we obtain that x /∈ V (Cvi
)

and x /∈ V (Cvj
). Let y be the second vertex from S that is adjacent to both

ai and aj . Since x and y are not adjacent, it follows that y ∈ V (Cvi
)∩V (Cvj

).
We will now prove that D′ := (D − {a1, ai, aj})∪ {x, vj} is a dominating set
of G.

Let w ∈ V (G) − D′. If w ∈ {a1, ai, aj}, then w is either adjacent to
x or to vj . Thus suppose that w ∈ V (G) − (D ∪ {x, vj}). Since D is a
2-dominating set, w has 2 neighbors in D. If one of these two neighbors
is different from a1, ai and aj , then w has a neighbor in D′. So we can
assume that w has two neighbors in {a1, ai, aj}. Suppose that a1 and ai are
neighbors of w. Then w ∈ V (Cvj

) or w ∈ V (Cui
). Since vj ∈ V (Cvj

) and
x ∈ V (Cui

), w is dominated either by vj or by x in D′. The other cases that
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a1 and aj or rather ai and aj are neighbors of w follow similarly. Hence, D′

is a dominating set of G with less vertices than D, a contradiction to the
hypothesis that |D| = γ2(G) = γ(G).

Thus, V (Cui
) ∩ V (Cuj

) = ∅. Analogously, we obtain that V (Cvi
) ∩

V (Cvj
) = ∅. Hence, x is adjacent either to ui and to vj or to uj and to

vi but not to more than two of them. It follows that every vertex x ∈
V (H) − (V (C1) ∪ V (C2)) has unique neighbors ux ∈ V (C1) and vx ∈ V (C2)
and Claim 2 is proved. ‖

Now we can define the mapping

φ : V (H) −→ V (C1 × C2) : ui 7→ (ui, v1), for ui ∈ V (C1)

vi 7→ (u1, vi), for vi ∈ V (C2)

x 7→ (ux, vx), otherwise.

Claim 3. Let x and y be two vertices in V (H) and let φ(x) = (ui, vj) and
φ(y) = (ul, vm). Then x and y are adjacent if and only if i = l or j = m.

Proof. Suppose that x is neighbor of y. From the definition of the mapping
φ we have that x is adjacent to ui and vj and that y is adjacent to ul and vm.
From Claim 1 it follows that y is adjacent either to ui or to vj . This implies
that i = l or j = m.

Conversely, if i = l or j = m, it follows again by Claim 1 that x and y
are in a clique together with either ui = ul or with vj = vm. ‖

Claim 4. The mapping φ is bijective.

Proof. Let be x and y two vertices from ∈ V (H) − (V (C1) ∪ V (C2)) such
that φ(x) = (ui, vj) = φ(y). Let Cui

and Cvj
be like in Claim 3. Then

x and y are contained in V (Cui
) ∪ V (Cvj

). By Claim 1, we obtain that
{x} = V (Cui

) ∩ V (Cvj
) = {y} and thus x = y. Hence, φ is injective. Since

|V (H) − (V (C1) ∪ V (C2))| = |D|2 − 2|D| + 1 = (|D| − 1)2

= |(V (C1) − {u1}) × (V (C2) − {v1})|,

it follows that φ is bijective.‖

From Claims 3 and 4 it follows that H ∼= C1 × C2
∼= Kp × Kp. Because

D is a dominating set of H with |D| = p, evidently it is a transversal of H .
Let x be a vertex in V (G) − V (H) and let a and b be the neighbors of

x in D. Then H contains exactly two non-adjacent vertices u and v having
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both a and b as neighbors. As G is claw-free, x is either adjacent to u or to
v. Without loss of generality, say that x is adjacent to u.

Claim 5. The graph induced by the set (V (H)− {u})∪ {x} is again isomor-
phic to Kp × Kp.

Proof. From Lemma 2.52 (ii), there is a vertex y in G that is not adjacent to
u but to a and b. Note that the set V (H) − D is an arbitrary set such that
it has exactly two non-adjacent common neighbors of every pair of vertices
of D. Hence, we could exchange u and v by x and y in H and we would
obtain again a graph isomorphic to Kp × Kp. This implies that x has the
same neighbors in V (H)−{u, v} as u. Suppose that x is adjacent to v. Since
p ≥ 3, there are two vertices u1 and u2 in NH(u) such that u1, u2 and v lie
pairwise on different columns and rows. Then, non of these three vertices are
adjacent to eachother and, hence, together with x, they form a claw. This
implies that x is not adjacent to v and so, without loss of generality, we can
say that y = v. We obtain now that the set (V (H) − {u}) ∪ {x} induces
again a graph Kp × Kp and the claim is proved. ‖

It is now easy to see that, for every vertex u ∈ V (H) − D, the set
(NG(u)− V (H))∪ {u} induces a clique Cu in G and that NG[x] = NG[u] for
every vertex x ∈ NG(u)−V (H). Hence, if we melt all vertices of every clique
Cu for each vertex u ∈ V (H)−D to a unique vertex û, we obtain a graph Ĥ
isomorphic to Kp × Kp. Reverting the process, that is, inflating each vertex
û to the original clique Cu, we obtain again G. Therefore G ∈ H. �

If G is a graph, then the line graph of G, usually denoted by L(G), is
obtained by associating one vertex to each edge of G, and two vertices of
L(G) being joined by an edge if and only if the corresponding edges in G
are incident to eachother. If, for a graph G, there is a graph G′ whose line
graph is isomorphic to G, then we say that G is a line graph. In 1943, Krausz
presented the following characterization of line graphs.

Theorem 2.54 (Krausz [51], 1943) A graph G is a line graph if and only if
it can be partitioned into edge disjoint complete graphs such that every vertex
of G belongs to at most two of them.

In 1968, Beineke [4] obtained a characterization of line graphs in terms
of nine forbidden induced subgraphs. In Figure 2.6, we present three of the
forbidden induced subgraphs, to which we will refer.
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K1,3 H1 H2

Figure 2.6: Three forbidden induced subgraphs in line graphs.

Since the claw is one of those subgraphs, every line graph is claw-free.
Thus the characterization of the line graphs with equal domination and 2-
domination numbers follows from the one of claw-free graphs.

Theorem 2.55 Let G be a line graph. Then γ2(G) = γ(G) if and only if G
is either the cartesian product Kp × Kp of two complete graphs of the same
cardinality p or G is isomorphic to the graph J depicted in Figure 2.7.

Figure 2.7: Graph J

Proof. Since every line graph is claw-free, the set of line graphs with γ = γ2

is contained in H. If G is a cartesian product of two complete graphs Kp for
an integer p ≥ 2, then the graphs induced by the vertices of every row and of
every column of G are complete graphs Kp and form a partition of G in edge
disjoint complete subgraphs such that every vertex of G is contained in at
most two of them. Hence, by Theorem 2.54, G is a line graph. If G ∼= J , it
is not difficult to obtain a partition of the graph J in edge disjoint complete
subgraphs such that every vertex of J is contained in at most two of them
and thus J is a line graph.

Conversely, suppose that G ∈ H is a line graph.
Case 1. Assume that G is a cartesian product Kp × Kp of two complete
graphs of order p for an integer p ≥ 2 such that the vertices not in a certain
transversal T of G are inflated into a clique of arbitrary order. Let a and
b be two elements of T and C1 and C2 the two inflated vertices which are
neighbors of both a and b. Suppose that C1 has order at least 2 and let x
and y be vertices in C1 and z a vertex in C2. It is now easy to see that
the vertices a, b, x, y and z induce the graph H1 of Figure 2.6. Hence, G
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cannot be a line graph, which contradicts our hypothesis. Thus, G contains
no inflated vertices, that is, it is a cartesian product of two complete graphs
of order p ≥ 2.
Case 2. Assume that G is a graph of maximum degree ∆(G) = n(G) − 2
containing two non-adjacent vertices a and b such that every vertex x ∈ V (G)
is adjacent to both a and b. If n(G) = 4, then obviously it is a C4 and thus
isomorphic to K2 × K2. Since the only claw-free graph in H of order 5 is
isomorphic to H1, which is not a line graph, we can assume that n(G) ≥ 6.
Since ∆(G) = n(G)−2, there are two non adjacent vertices x and y different
from a and b. Let z ∈ V (G) − {a, b, x, y}. Since G is claw-free and every
vertex in V (G)−{a, b} is adjacent to both a and b, without loss of generality,
we can suppose that z is neighbor of x. If z is not adjacent to y, the vertices
a, b, x, z and y would induce a graph isomorphic to H1 and G would not
be a line graph. Hence, z is neighbor of y. Since ∆(G) = n(G) − 2, there is
another vertex z′ which is not adjacent to z, but, analogously, adjacent to x
and y and of course to a and b. If n(G) = 6, we are ready and G ∼= J . If
n(G) ≥ 7, then there is another vertex w adjacent to x, y, z and z′ (with the
same arguments as before). But then, the vertices a, b, x, z and w induce a
graph isomorphic to H2 of Figure 2.6 and G is not a line graph. Therefore,
G cannot have order greater than 6 and, thus, the only possibility for G is
being isomorphic to the graph J .

It follows that γ2(G) = γ(G) if and only if G is either the cartesian prod-
uct Kp × Kp of two complete graphs of the same cardinality p ≥ 2 or G is
isomorphic to the graph J of Figure 2.7. �
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Chapter 3

The k-domination number and
other parameters

In this chapter, we will present several results concerning k-domination and
other graph parameters like the independence number, the chromatic num-
ber, the independent domination number i, the matching number, the con-
nected domination number and the total domination number.

3.1 Independence and k-domination in graphs

We start with the independence number α and the following theorem.

Theorem 3.1 (Hansberg, Meierling, Volkmann [36]) If G is a connected
graph of order n with δ(G) ≤ q − 1 and ∆(G) ≤ q for an integer q ≥ 1, then

α(G) ≥ n

q
.

Proof. For q = 1 it is trivial. If 1 ≤ n ≤ q, the statement is clear. Assume
now that n > q ≥ 2. Let x be a vertex of G of minimum degree δ(G) and
let G′ be the graph G − NG[x]. Since n > q and |NG[x]| ≤ q, V (G′) is not
empty. Let Q1, Q2, . . . , Qs be the components of G′. Then ∆(Qi) ≤ q for
all 1 ≤ i ≤ s and, since G is connected and ∆(G) ≤ q, it is evident that
δ(Qi) ≤ q − 1 for 1 ≤ i ≤ s. Thus, by the induction hypothesis, it follows

that α(Qi) ≥ n(Qi)
q

for 1 ≤ i ≤ s. Let I be a maximum independent set of

G′. Then I ∩ V (Qi) is a maximum independent set for each Qi and I ∪ {x}
is an independent set of G. Now we obtain

53
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α(G) ≥ 1 + |I| = 1 +

s
∑

i=1

α(Qi)

≥ 1 +
s
∑

i=1

n(Qi)

q
= 1 +

n(G′)

q
= 1 +

n − δ(G) − 1

q

≥ 1 +
n − q

q
=

n

q
,

and the proof is complete. �

In 1941, Brooks presented the following theorem.

Theorem 3.2 (Brooks [10], 1941) If G is a connected graph different from
the complete graph and from a cycle of odd length, then χ(G) ≤ ∆(G).

Brooks’ Theorem and the well-known inequality α(G) ≥ n(G)
χ(G)

for a graph
G imply that, if G is neither the complete graph nor a cycle of odd length,
then α(G) ≥ n(G)

∆(G)
. From Theorem 3.1, this inequality follows only for non-

regular graphs. Another bound for α with respect to the degrees of the
vertices of a graph was given by Wei in 1980.

Theorem 3.3 (Wei [72], 1980) If G is a graph, then

α(G) ≥
∑

x∈V (G)

1

dG(x) + 1
.

For regular graphs, Theorem 3.1 and Wei’s Theorem lead to the same
bound for α. For semiregular graphs, our bound in Theorem 3.1 is even
better as Wei’s bound. In other cases, Brooks’ and Wei’s theorems can
achieve better bounds for α. However, if no facts about the degree of the
vertices are known and the possibility of the graph being isomorphic to Kn

or to an odd cycle cannot be excluded, Theorem 3.1 is better applicable.
Now we proceed with some results about the k-domination number.

Theorem 3.4 (Hansberg, Meierling, Volkmann [36]) Let G be an r-partite
graph of order n. If k is a positive integer, then

γk(G) ≤ (r − 1)n + |{x ∈ V (G) : dG(x) ≤ k − 1}|
r

.
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Proof. If S ⊆ V (G) is a set of vertices of degree at most k − 1, then S is
contained in every γk(G)-set. In the case that |S| = |V (G)| = n, we are done.
In the remaining case that |S| < |V (G)|, let V1, V2, . . . , Vr be a partition of
the r-partite graph G[V (G) − S] such that |V1| ≥ |V2| ≥ . . . ≥ |Vr|, where
Vi = ∅ is possible for i ≥ 2. Then every vertex of V1 has degree at least k
and all its neighbors are in V (G) − V1. Thus V (G) − V1 is a k-dominating
set of G such that

|V1| ≥
|V1| + |V2| + . . . + |Vr|

r
=

n − |S|
r

and thus

γk(G) ≤ |V (G) − V1| = n − |V1| ≤ n − n − |S|
r

=
(r − 1)n + |S|

r
.

This completes the proof of Theorem 3.4. �

Corollary 3.5 (Blidia, Chellali, Volkmann [8], 2006) Let k be a positive
integer. If G is a bipartite graph of order n, then

γk(G) ≤ n + |{x ∈ V (G) : dG(x) ≤ k − 1}|
2

.

Theorem 3.6 (Hansberg, Meierling, Volkmann [36]) If G is a connected
r-partite graph and k is an integer such that ∆(G) ≥ k, then

γk(G) ≤ α(G)

r
((r − 1)r + k − 1).

Proof. If k = 1, the statement follows from the fact that α(G) ≥ n(G)
r

and
Theorem 3.4. Assume now that k ≥ 2. Let S := {x ∈ V (G) : dG(x) ≤ k−1}.
Since G is connected and V (G)−S is not empty, every component Q of G[S]
fulfills δ(Q) ≤ k − 2 and ∆(Q) ≤ k − 1. From Theorem 3.1, it follows
that α(Q) ≥ n(Q)/(k − 1). Thus, if Q1, Q2, . . . , Qs are the components of
G[S], then we obtain α(G) ≥ α(G[S]) ≥ ∑s

i=1 α(Qi) ≥ n(G[S])/(k − 1) =
|S|/(k − 1). Together with n(G) ≤ rα(G), Theorem 3.4 implies

γk(G) ≤ (r − 1)n(G) + |S|
r

≤ (r − 1)rα(G) + (k − 1)α(G)

r

=
α(G)

r
((r − 1)r + k − 1).

�
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Corollary 3.7 (Hansberg, Meierling, Volkmann [36]) If G is a connected
bipartite graph with ∆(G) ≥ k, then

γk(G) ≤ (k + 1)α(G)

2
.

Corollary 3.8 (Blidia, Chellali, Favaron [6], 2005) If T is a tree of order
n ≥ 3, then

γ2(T ) ≤ 3α(T )

2
.

Blidia, Chellali and Favaron also characterized the trees satisfying equal-
ity in the previous corollary. This demonstrates that the inequality given in
Theorem 3.6 is sharp for the case that r = 2 and k = 2. In the next section,
we will center our attention in the special case k = 2.

Corollary 3.9 (Hansberg, Meierling, Volkmann [36]) Let G be an r-partite
graph of order n. If k is a positive integer and δ(G) ≥ k, then

γk(G) ≤ (r − 1)α(G).

Proof. Since n ≤ rα(G), this result immediately follows from Theorem 3.4.
�

Since every graph G is χ(G)-partite, we obtain following corollaries from
Theorems 3.4 and 3.6 and Corollary 3.9.

Corollary 3.10 (Hansberg, Meierling, Volkmann [36]) If G is a graph of
order n and k a positive integer, then

γk(G) ≤ (χ(G) − 1)n + |{x ∈ V (G) : dG(x) ≤ k − 1}|
χ(G)

.

Corollary 3.11 (Hansberg, Meierling, Volkmann [36]) Let G be a connected
graph with ∆(G) ≥ k. Then

γk(G) ≤ α(G)

χ(G)
((χ(G) − 1)χ(G) + k − 1).

Corollary 3.12 (Hansberg, Meierling, Volkmann [36]) Let G be a graph with
δ(G) ≥ k for a positive integer k. Then

γk(G) ≤ (χ(G) − 1)α(G).
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Combining Brooks’ Theorem and Corollary 3.12, we obtain the following
theorem.

Theorem 3.13 (Hansberg, Meierling, Volkmann [36]) Let G be a connected
nontrivial graph with maximum degree ∆ and let k be a positive integer such
that δ(G) ≥ k. If G is neither isomorphic to a cycle of odd length, if k = 2,
nor to the complete graph Kk+1, then

γk(G) ≤ (∆ − 1)α(G).

Proof. If k = 1 and G is neither the K1 nor the K2, then ∆ ≥ 2 and hence,
from the well-known property γ(G) ≤ α(G) for every connected graph G,
γ(G) ≤ (∆ − 1)α(G) follows. Assume now that k > 1. If G is the complete
graph Kn, then ∆ = n− 1, δ(G) = n− 1 ≥ k ≥ 2, γk(G) = k and α(G) = 1.
Consequently, γk(G) ≤ (∆ − 1)α(G) if and only if n ≥ k + 2, that is, if
n 6= k + 1. For all other graphs not isomorphic to a cycle of odd length, the
statement follows directly from Brooks’ theorem and Corollary 3.12. �

Next, we will characterize the graphs G with α(G) = n(G)/∆(G).

Theorem 3.14 (Hansberg, Meierling, Volkmann [36]) Let G be a connected
graph of order n with δ(G) ≤ q−1 and ∆(G) ≤ q for an integer q ≥ 2. Then
α(G) = n

q
if and only if δ(G) = q − 1 and

(i) G consists of several cliques of order q connected by a matching, or

(ii) q = 3 and G consists of several graphs isomorphic to H1, to H2, to
H3 (illustrated in Figure 3.1) or to the complete graph K3, all of them
connected by a matching, or

(iii) q = 4 and G consists of several graphs isomorphic to H4 (illustrated
in Figure 3.1) or to the complete graph K4, all of them connected by a
matching.

Proof. Let q ≥ 2 and let G be a graph with δ(G) ≤ q−1 and ∆(G) ≤ q such
that it has one of the structures described in the theorem. Let Q1, Q2, . . . , Qs

be the subgraphs of G that are, like described, connected by a matching. It is
easy to see that α(Hi) = n(Hi)

3
for 1 ≤ i ≤ 3 and α(H4) = n(H4)

4
and evidently

α(Kq) = n(Kq)
q

= 1. Thus,

α(G) ≤
s
∑

i=1

α(Qi) =

s
∑

i=1

n(Qi)

q
=

n

q
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Figure 3.1: Graphs H1, H2, H3 and H4.

and with Theorem 3.1 we obtain α(G) = n
q
.

Conversely, assume now that G is a connected graph with δ(G) ≤ q − 1

and ∆(G) ≤ q and such that α(G) = n(G)
q

for an integer q ≥ 2. If α(G) = 1,

then it is evident that G ∼= Kq = Kn and that δ(G) = q − 1. If q = 2,
then G is a path of order n = 2α(G). Suppose now that α(G) ≥ 2 and
q ≥ 3. As in the proof of Theorem 3.1, let x be a vertex of degree δ(G), let
G′ denote the graph G−NG[x] and let Q1, Q2, . . . , Qs be the components of
G′. Following the proof of this theorem, we must have equality in the given
inequality chain. This implies that δ(G) = q − 1 and α(Qi) = n(Qi)

q
for each

component Qi of G′. Again for each component Qi we have δ(Qi) = q − 1
and, by the induction hypothesis, they have one of the structures (i) - (iii).
Before continuing with the proof, we will first verify the following claims.

Claim 1. If F is a connected graph with structure like described in the the-
orem, then, for each vertex u ∈ V (F ) of degree q − 1, there is a maximum
independent set I containing u and such that every vertex in I − {u} is of
degree q.

Proof. We will prove the claim by induction on the number of graphs F1,
F2, . . . , Fr isomorphic to Kq for q ≥ 2 or to H1, H2 or H3, if q = 3, or to H4,
if q = 4, such that they are connected by a matching. If r = 1, then the claim
is easy to verify. If r ≥ 2, then there is a vertex u of degree dF (u) = q − 1
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contained in one of the graphs F1, F2, . . . , Fr, say, without loss of generality,
in Fr. Now consider the graph F ′ := F − V (Fr) and let C1, C2, . . . , Cs be its
components. Since every component Ci of F ′, for 1 ≤ i ≤ s, has the same
structure like F but with less graphs connected by a matching, we can apply
the induction hypothesis on it. Also, for every Ci there is a vertex ui with
dCi

(ui) = q− 1 that is adjacent to a vertex of Fr. It follows that for every Ci

there is either a maximum independent set Ii with only vertices of degree q
or there is a maximum independent set Ii containing ui such that all vertices
in Ii − {ui} have degree q in Ci and thus also in F .

Further, if q = 3 and Fr
∼= Hj for j ∈ {1, 2, 3} or, if q = 4 and Fr

∼= H4,
it is easy to see that there is a maximum independent set I ′ of Fr containing
u and such that I ′ − {u} has only vertices of degree q. In such a case define
I :=

⋃s
i=1 Ii ∪ I ′. If q ≥ 2 and Fr

∼= Kq, then define I :=
⋃s

i=1 Ii ∪ {u}.
In both cases I is a maximum independent set of F containing u such that
I − {u} contains only vertices of degree q. ‖

Claim 2. If F is a connected graph of a structure like in (i) for an integer
q ≥ 2 and there are at least 2α(F ) vertices of degree q in F , then there is a
maximum independent set I of F with only vertices of degree q.

Proof. Let C be the set of cliques which compose the graph F and M the
matching which connects them. For a vertex x ∈ V (F ), we denote with Cx

the clique to which x belongs. Define F as the multigraph with vertex set
V (F) = C and edge set E(F) = {CxCy | xy ∈ M}, where CxCy represents
an edge between the cliques Cx and Cy. Let T be a spanning tree of F .
Since F has at least 2α(F ) vertices of degree q (those which are incident to
an edge from M), it follows that F has at least α(F ) edges and, hence, there
is at least one edge CuCv ∈ E(F) that does not belong to T . We call Cu the
root of T and define the mapping g : E(F) → V (F ) by

g(CxCy) =

{

x, if dT (Cu, Cx) > dT (Cu, Cy)
y, otherwise.

It is now easy to see that the set I = {g(CxCy) | CxCy ∈ E(T )} ∪ {u}
contains exactly one vertex of every clique of C and that it is an independent
set of F of cardinality α(F ) such that dF (x) = q for all x ∈ I. ‖

Claim 3. If F is a connected graph of a structure like in (ii) or (iii) for
q = 3 and, respectively, q = 4 but not like in (i), then there is a maximum
independent set of F with only vertices of degree q.
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Proof. If F ∼= Hi for an i ∈ {1, 2, 3, 4} and respective q ∈ {3, 4}, then it is
obvious that there is a maximum independent set of F with only vertices of
degree q. Suppose now that F consists of at least two subgraphs connected
by a matching. Since F has not the structure from (i), there is a subgraph H
that is isomorphic to a Hi for i ∈ {1, 2, 3, 4}. Note that there are at most two
vertices of degree q − 1 in H and thus the graph F − V (H) has at most two
components which have one of the structures of the theorem. From Claim
1, we can choose for each component of F − V (H) a maximum independent
set of only vertices of degree q or containing the vertices that are incident to
a matching edge that connects them with H and else only vertices of degree
q. Since H has also a maximum independent set with only vertices of degree
q, all these independent sets build together a maximum independent set of
F with only vertices of degree q. ‖

Claim 4. If y and z are non-adjacent vertices from NG(x), then there is a
component Q of G′ with α(Q) ≤ 2 and structure like in (i) and such that
|NG({y, z})| ≥ q.

Proof. If all components Qi of G′, 1 ≤ i ≤ s, are either isomorphic to a Hi,
for i ∈ {1, 2, 3, 4}, or they have 2α(Qi) vertices of degree q in Qi, then, by
Claims 2 and 3, there is for each component Qi a maximum independent set
Ii with only vertices of degree q in Qi, which together with {y, z} build an
independent set of G with 1+

∑s
i=1 α(Qi) = 1+α(G) vertices, a contradiction.

Thus, there is a partition S ∪R of {1, 2, . . . , s}, with S 6= ∅, such that every
component Qj , for j ∈ S, has structure like in (i) and has at most 2α(Qj)−2
vertices of degree q in Qj and every component Qi, for i ∈ R, has at least
2α(Qi) vertices of degree q in Qi. Let Ĩi be a maximum independent set of
Qi with only vertices of degree q in Qi for i ∈ R. Suppose now that for all
j ∈ S there is a vertex vj ∈ V (Qj)−NG({y, z}) with dQj

(vj) = q − 1. Then,

from Claim 1, it follows that there are maximum independent sets Îj of Qj

with vj ∈ Îj and such that all vertices from Îj − {vj} are of degree q in Qj.
But then

⋃

j∈S

Îj ∪
⋃

i∈R

Ĩi ∪ {y, z}

is an independent set of G with α(G)+1 vertices, a contradiction. Therefore,
there has to exist a component Q in G′ with structure like in (i), with at
most 2α(Q)−2 vertices of degree q in Q and such that the vertices of degree
q − 1 in Q are all contained in NG({y, z}). It follows that

2q − 2 ≥ |NG({y, z}, Q)| ≥ n(Q) − (2α(Q) − 2) = (q − 2)α(Q) + 2 ≥ q,
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which implies q(α(Q) − 2) ≤ 2(α(Q) − 2) and thus, since q ≥ 3, we obtain
α(Q) ≤ 2 and we are done. ‖

Now we proceed further with the proof of the theorem.
If all vertices of NG(x) are pairwise adjacent, then G[NG[x]] ∼= Kq and it

is immediate that G has the desired structure. Thus, assume now that there
are two vertices y and z in NG(x) that are not adjacent. From Claim 4, it
follows that there is a component Q of G′ with α(Q) ≤ 2 and structure like in
(i) and such that |NG({y, z}, Q)| ≥ q. Suppose first that α(Q) = 2. Then the
inequality given in Claim 4 implies that |NG({y, z}, Q)| = 2q − 2 and thus
y and z have no neighbors in NG(x). This implies that Q consists of two
cliques Kq joined by a single edge and that |NG(y, Q)| = |NG(z, Q)| = q − 1.
If q = 3, NG(x) = {y, z} and it is a simple matter to verify that G is
isomorphic to H2 or to H3. For q ≥ 4, there is a vertex w ∈ NG(x) − {y, z}.
From Claim 4 it follows that there has to be another component R of G′

with α(R) ≤ 2 and structure like in (i) and such that |NG({y, w}, R)| ≥
q. Since all neighbors of y are already contained in V (Q) ∪ {x}, it follows
that |NG(w, R)| = |NG({y, w}, R)| ≥ q, which is a contradiction, since w is
adjacent to x and it has at most q neighbors in G. Hence, we may now assume
that α(Q) = 1, that is Q ∼= Kq, and that every vertex of Q is contained in
NG({y, z}). If q = 3, then it is easy to see that G ∼= H1. Thus, suppose
that q ≥ 4. If G has three pairwise non-adjacent vertices w, y, z from NG(x),
it follows from Claim 4 that each pair of vertices of {w, y, z} has at least q
neighbors contained in a particular component with structure like in (i) and
thus we would have dG(w)+dG(y)+dG(z) ≥ 3q +3, which is a contradiction
to the fact that q is the maximum degree in G. Therefore, it holds for all
vertices w ∈ NG(x) − {y, z} that w is adjacent either to y or to z in G or to
both. This implies that

2q ≥ dG(y) + dG(z)

≥ 2 + |NG(y) ∩ NG(x)| + |NG(z) ∩ NG(x)| + |NG({y, z}, Q)|
≥ 2 + |NG(x) − {y, z}| + |NG({y, z}, Q)| = 2q − 1.

Hence, |NG(y) ∩ NG(x)| + |NG(z) ∩ NG(x)| ≤ q − 2. If q = 4, it is easy to
see that y and z are both adjacent to w and one obtains that G ∼= H4. If
q ≥ 5 this implies that there has to be a vertex v ∈ NG(x) − {y, z} which
is not adjacent to one of the vertices y or z, say, without loss of generality,
to y. The inequality above also implies that y has already q − 1 neighbors
in V (Q) ∪ NG[x]. It follows again with Claim 4 that there is a component
R with structure like in (i) such that |NG({v, y}, R)| ≥ q and we obtain that
|NG(v, R)| = q − 1 and |NG(y, R)| = 1. But this implies that v is neither
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adjacent to y nor to z, which is a contradiction.
Hence, for q ≥ 5, only the structure of (i) is possible for G and the proof

of the theorem is complete. �

Corollary 3.15 (Hansberg, Meierling, Volkmann [36]) Let G be a connected
non-regular graph of order n and maximum degree ∆. Then α(G) = n

∆
if and

only if

(i) G consists of several cliques of order ∆ connected by a matching, or

(ii) ∆ = 3 and G consists of several graphs isomorphic to H1, to H2, to
H3 (illustrated in Figure 3.1) or to the complete graph K3, all of them
connected by a matching, or

(iii) ∆ = 4 and G consists of several graphs isomorphic to H4 (illustrated
in Figure 3.1) or to the complete graph K4, all of them connected by a
matching.

If G is a connected non-complete and regular graph such that properties
(i)-(iii) of Corollary 3.15 are satisfied, that is, the matching connecting the

different subgraphs is perfect and not empty, then α(G) = n(G)
∆(G)

is fulfilled.
Also, the graphs illustrated in Figure 3.2 satisfy α = n

∆
.

Figure 3.2: A 3-, a 4- and a 5-regular graph with α = n
∆ .

We believe that the connected regular graphs with α = n
∆

are exactly
those non-complete connected regular graphs satisfying properties (i)-(iii) of
Corollary 3.15 with exception of a finite number of special cases, to which
the graphs of Figure 3.2 belong. We present this statement in the following
conjecture.

Conjecture 3.16 (Hansberg, Meierling, Volkmann [36]) Let G be a con-
nected ∆-regular graph. Then there is a finite set H of regular graphs such
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that α(G) = n(G)
∆

if and only if G is either a non-complete graph satisfying
properties (i)-(iii) of Corollary 3.15 or G ∈ H.

However, in order to characterize these graphs, we cannot proceed induc-
tively like in Theorem 3.14 and therefore another method is required.

Now we will discuss which connected graphs fulfill the equality in the
bound of Theorem 3.13. These turn to be, with some exceptions, a subclass
of the graphs satisfying α = n/∆. As for this class, we achieve the charac-
terization for the non-regular graphs, whereas the regular case depends on
our conjecture.

Theorem 3.17 (Hansberg, Meierling, Volkmann [36]) Let G be a connected
non-regular graph and k an integer such that k ≤ δ(G). Then

γk(G) = (∆(G) − 1)α(G)

if and only if G is the Kk-corona graph of a K2.

Proof. If G is isomorphic to the Kk-corona graph of a K2, it is easy to verify
that γk(G) = (∆ − 1)α(G). Conversely, suppose that γk(G) = (∆ − 1)α(G).
With Corollary 3.10, because of α(G) ≥ n

χ(G)
, we obtain

(∆ − 1)α(G) = γk(G) ≤ χ(G) − 1

χ(G)
n ≤ (χ(G) − 1)α(G)

and thus with Brooks’ Theorem, since G is neither a complete graph nor a
cycle, it follows that ∆ = χ(G) and hence γk(G) = χ(G)−1

χ(G)
n = ∆−1

∆
n. Now

Theorem 1.5 and the fact that k ≤ δ(G) ≤ ∆ − 1 lead to

∆ − 1

∆
n = γk(G) ≤ k

k + 1
n ≤ ∆ − 1

∆
n, (3.1)

which implies that γk(G) = k
k+1

n and ∆ − 1 = k. With Theorem 2.10 we
obtain that G is isomorphic to the Kk-corona graph of a connected graph J .
Since the maximum degree of G is ∆ = δ(G) + 1, the graph J is necessarily
isomorphic to the K2 and we are done. �

Theorem 3.18 (Hansberg, Meierling, Volkmann [36]) Let G be a connected
∆-regular graph and k a positive integer such that ∆ ≥ k. Then γk(G) =
(∆− 1)α(G) if and only if G is either isomorphic to the Kk+2, or k = 1 and

G is a cycle of length 4, 5 or 7, or k = ∆ and α(G) = n(G)
∆

.
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Proof. Let G be a ∆-regular graph. If G ∼= Kn, then γk(G) = k, α(G) = 1
and ∆(G) = n − 1 and thus γk(G) = (∆ − 1)α(G) holds exactly when
n = k + 2. If G is a cycle different from C3

∼= K3, then it is a simple matter
to verify that γ(G) = α(G) if and only if it has length 4, 5 or 7. If G is a
cycle of odd length, then it is evident that γ2(G) 6= α(G). Assume now that
G is neither complete nor a cycle of odd length nor the cycle C4.

Let be ∆ = k and α(G) = n(G)
∆

. We will show that γ∆(G) = (∆−1)α(G)
follows. Suppose to the contrary that D is a ∆-dominating set with less
vertices than (∆−1)α(G). Since for each vertex x ∈ V (G)−D all neighbors
of x are contained in D, V −D is an independent set. Hence, |V −D| ≤ α(G)
and thus

|V | = |V − D| + |D| < α(G) + (∆ − 1)α(G) = ∆α(G),

which is a contradition. So, with Theorem 3.13, we obtain γ∆(G) = (∆ −
1)α(G).

Conversely, if G fulfills γk(G) = (∆ − 1)α(G), we obtain as in Theorem
3.17 that

(∆ − 1)α(G) = γk(G) ≤ χ(G) − 1

χ(G)
n ≤ (χ(G) − 1)α(G) ≤ (∆ − 1)α(G).

This implies that γk(G) = ∆−1
∆

n and that α(G) = n(G)
∆

. Since G is not a
cycle of length 4 and because of the regularity, G cannot be of the form of
the graphs of Theorem 2.10. Therefore, the last inequality in the inequality
chain (3.1) cannot occur and it follows that k = δ(G) = ∆. �

Remark 3.19 (Hansberg, Meierling, Volkmann [36]) Let G be a connected
∆-regular graph and k a positive integer with ∆ ≥ k. If our conjecture is
true, then γk(G) = (∆ − 1)α(G) if and only if G is either isomorphic to the
Kk+2, or k = 1 and G is a cycle of length 4, 5 or 7, or k = ∆ and G either
satisfies properties (i)-(iii) of Corollary 3.15 or G is contained in H.

3.2 Independence and 2-domination in graphs

In [6], Blidia, Chellali and Favaron examined the relation between the inde-
pendence number and the 2-domination number in trees. In particular, they
proved that the ratio γ2(T )/α(T ) for a tree T is contained in a small interval.

Theorem 3.20 (Blidia, Chellali, Favaron [6], 2005) For any tree, α(T ) ≤
γ2(T ) ≤ 3

2
α(T ).
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Actually, from Corollary 3.7 it follows directly that the upper bound given
in this theorem yet holds for all connected bipartite graphs with at least 3
vertices. Since the proof for the case k = 2 was found earlier and as it is
very illuminating, we will present it here again. Moreover, we will give a nice
characterization of the equality. But first we need some tools.

Observation 3.21 (Fujisawa, Hansberg, Kubo, Saito, Sugita, Volkmann
[30], 2008) If a connected graph G is the corona of a corona graph or the
corona of the cycle C4, then γ2(G) = 3

2
α(G) = 3

4
n(G).

Observation 3.22 (Fujisawa, Hansberg, Kubo, Saito, Sugita, Volkmann
[30], 2008) If G is the corona graph of a connected graph H of order at
least two, then γ2(G) ≤ 3

4
n(G) with equality if and only if H is either the

corona of a connected graph or H is isomorphic to the cycle C4.

Proof. Let L be the set of leaves of G and let D be a minimum dominating
set of H = G − L. Then, since G is a corona graph, D ∪ L is a minimum
2-dominating set of G and hence we obtain with Ore’s inequality

γ2(G) = γ(H) + |L| ≤ |G − L|
2

+ |L| =
3

4
n(G).

In view of Theorem 1.2, equality holds if and only if H is the corona of a
connected graph or if H ∼= C4. �

Theorem 3.23 (Fujisawa, Hansberg, Kubo, Saito, Sugita, Volkmann [30],
2008) If G is a connected bipartite graph of order at least 3, then γ2(G) ≤
3
2
α(G) and equality holds if and only if G is the corona of the corona of a

connected bipartite graph or G is the corona of the cycle C4.

Proof. Let L be the set of leaves in G, and let I be a maximum independent
set of G. Since n(G) ≥ 3, we can assume, without loss of generality, that
L ⊆ I and thus it follows that |L| ≤ α(G). Since G is bipartite, evidently
2α(G) ≥ n(G).

Let A and B be the partition sets of G. Define A1 := A − L and B1 :=
B −L and assume, without loss of generality, that |A1| ≤ |B1|. Then |A1| ≤
n(G)−|L|

2
. Since every vertex in B1 has at least two neighbors in A1 ∪ L, we

see that the latter is a 2-dominating set of G and hence

γ2(G) ≤ |A1 ∪ L| ≤ n(G) − |L|
2

+ |L| =
n(G) + |L|

2
.
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Combining this inequality with |L| ≤ α(G) and n(G) ≤ 2α(G), we obtain
the desired bound

γ2(G) ≤ n(G) + |L|
2

≤ 2α(G) + α(G)

2
=

3

2
α(G).

Thus G is a bipartite graph with γ2(G) = 3
2
α(G) if and only if n(G) =

2α(G), |L| = α(G) and γ2(G) = n(G)+|L|
2

. The facts that |L| = α(G) and
n(G) = 2α(G) = 2|L| show that G is a corona graph. Furthermore, the

identity γ2(G) = n(G)+|L|
2

leads to γ2(G) = 3
4
n(G) and, in view of Observation

3.22, it follows that G is either the corona of the corona of a connected
bipartite graph or G is the corona of the cycle C4.

Conversely, if G is either the corona of the corona of a bipartite graph
or G is the corona of the cycle C4, then Observation 3.21 implies that
γ2(G) = 3

2
α(G). �

In 1998, Randerath and Volkmann and independently, in 2000, Xu, Cock-
ayne, Haynes, Hedetniemi and Zhou characterized the odd order graphs G
for which γ(G) = ⌊n(G)/2⌋. In the next theorem, we only note the part of
this characterization which we will use for the next theorem.

Theorem 3.24 (Randerath, Volkmann [60], 1998; Xu, Cockayne, Haynes,
Hedetniemi, Zhou [21], 2000) Let G be a nontrivial connected bipartite graph
of odd order. Then γ(G) = ⌊n(G)/2⌋ if and only if

(i) G consists of two cycles with a common vertex, or

(i) G is isomorphic to the complete graph K2,3, or

(iii) |NG(L(G))| = |L(G)| − 1 and G − NG[L(G)] = ∅, or

(iv) |NG(L(G))| = |L(G)| and G − NG[L(G)] is an isolated vertex, or

(v) |NG(L(G))| = |L(G)| and G − NG[L(G)] is a star of order three such
that the center of the star has degree two in G, or

(vi) |NG(L(G))| = |L(G)| and G − NG[L(G)] is a bipartite graph G1 with
|G1| = 5, γ(G1)− δ(G1) = 2, and the graph G′

1, induced by the vertices
of G1, which are not adjacent to a vertex of N(L(G), G), is a C4, or

(vii) |NG(L(G))| = |L(G)| and G − NG[L(G)] is a bipartite graph H1 with
one leaf u, which is also a cut vertex of G, and H1 − u = C4.

Next, we present the characterization of the bipartite graphs G of odd
order with γ2(G) = 3α(G)−1

2
.
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Theorem 3.25 Let G be a connected bipartite graph of order at least 3 such
that α = α(G) is odd. Then γ2(G) = 3α(G)−1

2
if and only if

(a) G ∼= K1 ◦ (K1 ◦ J) + {x, xy}, where y ∈ V (J) and x is a new vertex.

(b) G ∼= K1 ◦H, where H is a member of the family described in Theorem
3.24.

(c) G ∼= K1 ◦H −{a, b}, where a and b are leaves of K1 ◦H with adjacent
support vertices u and v such that dH(u), dH(v) ≥ 2 and either:

(i) H ∼= K1 ◦ J , where J is a connected bipartite graph with u, v ∈
V (J),

(ii) H ∼= C4,

(iii) H ∼= (K1 ◦ J) + {uv}, where J is a bipartite graph and u, v ∈
L(K1 ◦ J),

(iv) H ∼= (K1 ◦J)+{x, y, uv, xu′, yv′, xy}, where J is a bipartite graph
u, v ∈ L(K1 ◦J), lK1◦J(u′) = u, lK1◦J(v′) = v and x and y are new
vertices,

(v) H ∼= K1 ◦ J − {lK1◦J(u), lK1◦J (v)}, where J is a bipartite graph
with u, v ∈ V (J) and where dH(u) = 2,

(vi) H ∼= (K1◦J)+{lK1◦J(u)x}, where J is a connected bipartite graph
with u, v ∈ V (J) and x is a vertex in L(K1◦J)∩NK1◦J (NK1◦J(u)−
{v}), or

(vii) H ∼= (K1 ◦ J) + {lK1◦J(u)x, lK1◦J(v)y}, where J is a connected
bipartite graph with u, v ∈ V (J), x ∈ L(K1◦J)∩NK1◦J (NK1◦J(u)−
{v}) and y ∈ L(K1 ◦ J) ∩ NK1◦J(NK1◦J(v) − {u}).

Proof. Let L = L(G). According to the proof of Theorem 3.23, we have

γ2(G) ≤ n(G) + |L|
2

≤ 3α

2
. (3.2)

Since G is a bipartite graph of order at least 3, we observe that n(G) ≤ 2α
and |L| ≤ α. Combining this with (3.2), the hypothesis γ2(G) = (3α − 1)/2
implies that either n(G) = 2α − 1 and |L| = α, n(G) = 2α and |L| = α − 1
or n(G) = 2α and |L| = α.

(a) Assume that n(G) = 2α − 1 and |L| = α. If γ2(G) = (3α − 1)/2,
then γ2(G) = (3n(G) + 1)/4 and thus n(G) = 4q + 1 and γ2(G) = 3q + 1
for an integer q ≥ 1. Because of |L| = α and n(G) = 2α − 1, it follows that
each vertex x ∈ V (G) − L is adjacent to at least one leaf and exactly one
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vertex of V (G) − L is adjacent to two leaves of G. If H = G − L, then H is
a connected bipartite graph of order 2q. If D is a γ(H)-set, then D ∪ L is a
2-dominating set of G. Therefore Theorem 1.1 implies that

3q + 1 = γ2(G) ≤ |L| + |D| ≤ |L| + n(H)

2
= |L| + |G − L|

2
= 3q + 1

and so γ(H) = |D| = n(H)/2. In view of Theorem 1.2, the graph H is a
corona graph of a connected bipartite graph or H is isomorphic to the cycle
C4 of length four.

If H = C4, then G has not the desired properties. Now let H be a corona
graph with L(H) = {u1, u2, . . . , uq} and V (H)−L(H) = {v1, v2, . . . , vq} such
that ui is adjacent to vi for 1 ≤ i ≤ q. If, say, uq, is adjacent to two leaves of
G, then we arrive at the contradiction

3q + 1 = γ2(G) ≤ |L| + |{v1, v2, . . . , vq−1}| = 3q.

In the remaining case that vi is adjacent to two leaves of G, we obtain the
desired result γ2(G) = 3q + 1 and G has the form of (a).

(b) Assume that n(G) = 2α and |L| = α. If γ2(G) = (3α − 1)/2, then
γ2(G) = (3n(G) − 2)/4 and thus n(G) = 4q + 2 and γ2(G) = 3q + 1 for
an integer q ≥ 1. Because of |L| = α and n(G) = 2α, it follows that each
vertex x ∈ V (G) − L is adjacent to exactly one leaf of G, and hence G is a
corona graph of connected bipartite graph H of order n(H) = 2q + 1. If D
is a γ(H)-set, then D∪L is a 2-dominating set of G. Therefore Theorem 1.1
implies that

3q + 1 = γ2(G) ≤ |L| + |D| ≤ |L| ≤
⌊

α +
n(H)

2

⌋

= 3q + 1

and so γ(H) = |D| = (n(H) − 1)/2. Thus the graph H is a member of the
family described in Theorem 3.24 (i) - (vii). Conversely, if H is a member of
the family described in Theorem 3.24 (i) - (vii)i, then it is straightforward
to verify that G has the desired properties.

(c) Assume that n(G) = 2α and |L| = α− 1. If γ2(G) = 3(α− 1)/2, then
γ2(G) = (3n(G) − 2)/4 and thus n(G) = 4q + 2, γ2(G) = 3q + 1, α = 2q + 1
and |L| = 2q for an integer q ≥ 1.

First we show that no vertex of H = G − L is adjacent to two ore more
leaves of G. Suppose to the contrary that u ∈ V (G)−L is adjacent to r ≥ 2
leaves. If R ⊂ V (G) − L is the set of vertices not adjacent to any leaf, then
|L| = α − 1 = 2q implies that |R| ≥ 3. Thus α = 2q + 1 implies that G[R]
is a complete graph, a contradiction to the hypothesis that G is a bipartite
graph.
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Now let u, v ∈ V (G) − L be exactly the two vertices, which are not
adjacent to a leaf of G. Since α = |L| + 1, we observe that u and v are
adjacent and dH(u), dH(v) ≥ 2. Since H is a connected bipartite graph of
order n(H) = 2q+2, Theorem 1.1 implies that γ(H) ≤ q+1. If γ(H) ≤ q−1,
then we easily obtain the contradiction

3q + 1 = γ2(G) ≤ |L| + q = 3q.

Assume that γ(H) = q + 1 = n(H)/2. According to Theorem 3.24,
the graph H is a corona graph of a connected bipartite graph J or H is
isomorphic to the cycle C4 of length four. Because of dH(u), dH(v) ≥ 2, if
H ∼= K1 ◦ J , we deduce that u, v ∈ V (J). Hence, G is of the form of (c)(i)
or (c)(ii). Conversely, if H is like in (c)(i) or (c)(ii), then G has the desired
properties.

Finally, assume that γ(H) = q = (n(H)−2)/2. Let Ĥ = H−NH [{u, v}],
let I be the set of isolated vertices in Ĥ and Q = Ĥ − I. Define Iu =
I∩NH(NH(u)) and Iv = I∩NH(NH(v)) and let D be a minimum dominating
set of the graph Q. Since G is bipartite and uv ∈ E(G), it is clear that
Iu∩Iv = ∅. Since H is connected, each component of Ĥ has vertices adjacent
to some vertex in N = N({u, v}) − {u, v}, in particular, the vertices from I
have all at least one neighbor in the latter. Now we distinguish three cases.

Case 1. Assume that I = ∅. Then Ĥ = Q and L ∪ D ∪ {u, v} is a
2-dominating set of G and thus, with Theorem 1.1, we obtain

3q + 1 = γ2(G) ≤ |L| + |D| + 2 ≤ 2q +
n(Q)

2
+ 2 = 2q +

n(H)

2
= 3q + 1,

which implies that γ(Q) = n(Q)/2 and |NH [{u, v}]| = 4. Hence, since Q
has no isolated vertices, according to Theorems 1.1 and 1.2, each component
of Q is a corona graph or a cycle of length four. Let {u′} = NH(v) − {v}
and {v′} = NH(v) − {u}. Suppose that there is a component C of Q which
is a C4, say C = x1x2x3x4x1. Since G is connected, one of the vertices xi

has a neighbor in {u′, v′}. Without loss of generality, say that x1v
′ ∈ E(G).

Then, if D′ is a minimum dominating set of Q − C, L ∪ D′ ∪ {u, v′, x3} is
a 2-dominating set of G with at most 2q + n(Q − C)/2 + 3 = 3q vertices, a
contradiction. Therefore, every component of Q is a corona graph, that is,
Q ∼= K1 ◦ J ′ for a bipartite graph J ′. Now we will determine which vertices
of Q can be adjacent to u′ or to v′. If u′ and v′ have only neighbors in V (J ′),
then G is of the form of (c)(iii) with J = J ′. Thus, suppose first that u′ (v′) is
neighbor of a leaf z of a component C of Q with n(C) ≥ 4. Then, if z′ is the
support vertex of z in Q, L∪(V (J ′)−{z′})∪{u′, v} (L∪(V (J ′)−{z′})∪{v′, u})
is a 2-dominating set of G with 3q vertices, which is a contradiction. Suppose
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now that there are two trivial components C1 and C2 of J ′ with V (Ci) = {xi}
for i = 1, 2 and such that u′ is neighbor of x1 and x2 and v′ is neighbor of
lQ(x1) and of lQ(x2) in G. Then the set L ∪ (V (J ′) − {x1, x2}) ∪ {u, u′, v′}
is a 2-dominating set of G with 3q vertices, which is not possible. Hence,
there is at most one trivial component C of J ′ such that, if V (C) = {x}, u′

is neighbor of x and v′ is neighbor of y = lQ(x). In this case we obtain that
G has the structure like in (c)(iv) with J = H [V (J ′) ∪ {u′, v′}].

Case 2. Assume that I 6= ∅.
Subcase 2.1. Suppose that |N | < |I|. Then L ∪ N ∪ {v} ∪ D is a 2-

dominating set of G and thus

3q + 1 = γ2(G) ≤ |L| + |N ∪ {v}| + |D|

< 2q +
|N ∪ {u, v} ∪ I|

2
+

n(Q)

2

= 2q +
n(H)

2
= 3q + 1,

which is a contradiction.
Subcase 2.2. Suppose that |N | = |I|. Assume first that both dG(u) and dG(v)
are at least 3. Then L ∪ N ∪ D is a 2-dominating set of G with at most

2q +
|N ∪ I|

2
+

n(Q)

2
= 2q +

n(H) − 2

2
= 3q

vertices, which contradicts the hypothesis taken for this case. Thus, assume,
without loss of generality, that dG(u) = 2. Now the set L∪N ∪ {v} ∪D is a
2-dominating set of G and thus

3q + 1 = γ2(G) ≤ |L| + |N ∪ {v}| + |D|

≤ 2q +
|N ∪ {u, v} ∪ I|

2
+

n(Q)

2

= 2q +
n(H)

2
= 3q + 1,

which implies that γ(Q) = n(Q)/2. Again, the components of Q have to be
either corona graphs or cycles of length 4. As in Case 1, the possibilities that
a component of Q is a cycle of length 4 and that a vertex from N is adjacent
to a leaf of a corona component C of Q with n(C) ≥ 4 can be eliminated
analogously. Hence, we can regard Q as the corona of a (not necessarily
connected) bipartite graph J ′. Now suppose that there is a component C of Q
with V (C) = {x, y} and that there are vertices u′ ∈ NG(u)−{v} = N∩NG(u)
and v′ ∈ NG(v) − {u} = N ∩ NG(v) such that u′ is adjacent to x and v′ is
adjacent to y. Then the set L∪N ∪ (V (J)−{x}) is a 2-dominating set of G
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with 3q vertices and we have a contradiction. Thus we can say, without loss
of generality, that the vertices of N have only neighbors from V (J ′) ∪ I and
hence if J = J ′ + I, then H is the corona of the graph J without the leaves
whose support vertices are u, and v, i. e. H is like in (c)(v).

Subcase 2.3. Suppose that |N | = |I|+1. Then there is a vertex x ∈ I such
that |N(x)∩N | ≥ 2. If y is a vertex from N(x)∩N , then L∪(N−{y})∪{u}∪D
is a 2-dominating set of G and thus

3q + 1 = γ2(G) ≤ |L| + |N − {y}|+ 1 + |D|

≤ 2q +
|N ∪ I| − 1

2
+ 1 +

n(Q)

2

= 2q +
n(H) − 1

2
= 3q +

1

2
,

which implies that this case is not possible.
Subcase 2.4. Suppose that |N | = |I|+2. Assume first that |N −NH(I)| =

2. Then we have |NH(I)| = |I|. If there were vertices u′ ∈ NG(u) and
v′ ∈ NG(v) such that N = NH(I) ∪ {u′, v′}, then NH(I) ∪ {u, v} ∪ D would

be a dominating set of H with at most n(H)
2

vertices, a contradiction to the
assumption that γ(H) = q. Hence, we may assume that N −NH(I) ⊆ NG(u)
and thus L ∪ NH(I) ∪ {u} ∪ D is a 2-dominating set of G and therefore we
obtain following contradiction:

3q + 1 = γ2(G) ≤ |L| + |NH(I)| + 1 + |D|

≤ 2q +
|NH(I) ∪ I|

2
+ 1 +

n(Q)

2

= 2q +
n(H) − 2

2
= 3q.

It follows that |N − NH(I)| ≤ 1. Let S be a subset of NH(I) with |S| = |I|
such that every vertex in I has a neighbor in S. Then L ∪ S ∪ {u, v} ∪ D is
a 2-dominating set of G and we obtain

3q + 1 = γ2(G) ≤ |L| + |S| + 2 + |D|

≤ 2q +
|S ∪ I|

2
+ 2 +

n(Q)

2

= 2q +
n(H)

2
= 3q + 1.

Therefore, we have again that γ(Q) = n(Q)/2 and thus the components of
Q are either corona graphs or cycles of length 4. Similarly as in the former
cases, we obtain contradictions for the cases that either a component of Q is
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a cycle of length 4 and that a vertex from NG({u, v})− {u, v} is adjacent to
a leaf of a corona component C of Q with n(C) ≥ 4. Also as in Case 2, it
is not possible that two vertices from NG({u, v}) − {u, v} are adjacent each
of them to a vertex of a component C of Q with n(C) = 2. With similar
arguments as before and using the fact that G does not contain cycles of odd
length, it is straight forward to verify that there can only be added either
an edge joining u′ and a vertex in NG(u) − {v} or rather an edge joining v′

and a vertex in NG(v) − {u} or both. It follows that H is the corona of a
graph J = J ′ together with one or two of the edges mentioned here. These
are exactly the graphs described in (c)(vi) and (c)(vii).
Subcase 2.5. Suppose that |N | > |I| + 2. Let S be a subset of NH(I) with
|S| = |I| and such that every vertex from I has a neighbor in S. Then
L ∪ S ∪ {u, v} ∪ D is a 2-dominating set of G and, since |N − S| ≥ 3, we
obtain the contradiction

3q + 1 = γ2(G) ≤ |L| + |S| + 2 + |D|

≤ 2q +
|N ∪ I| − 3

2
+ 2 +

n(Q)

2

= 2q +
n(H) − 1

2
= 3q +

1

2
.

Hence, this case cannot occur.

Conversely, if G has structure like in (c)(i) - (vii), it is straight forward

to verify that γ2(G) = 3α(G)−1
2

. �

3.3 Independent domination and 2-domina-

tion

If a dominating set D of a graph G is also independent, then D is called
an independent dominating set. The cardinality of a minimum independent
dominating set in G is denoted with i(G) and is called independent domina-
tion number of G. In this section, we will explore the connection between
the 2-domination and the independent domination in block-cactus graphs
and, more specialized, in trees. Since every independent dominating set is
dominating, the inequality i(G) ≥ γ(G) is trivial for any graph G.

Theorem 3.26 (Hansberg, Volkmann [42]) If G is a connected block-cactus
graph, then γ2(G) ≥ i(G).
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Proof. If G is a complete graph or a cycle, then it is easy to see that
γ2(G) ≥ i(G). Now suppose that G has a cut vertex. We will prove the
statement by induction on the number of blocks in G. Let B be an end block
of G with cut vertex u in G.

Case 1. Suppose that B ∼= K2. Let D be a γ2(G)-set and let V (B) =
{u, v}.

Case 1.1. Suppose that u /∈ D. If Lu ∪ {u} = V (G), then G is a star
and we are done. Let |Lu ∪ {u}| < n. Then D − Lu is a 2-dominating set of
G′ := G−(Lu∪{u}) and so γ2(G

′) ≤ γ2(G)−|Lu|. Clearly, i(G) ≤ i(G′)+|Lu|.
By the induction hypothesis follows γ2 ≥ i for every component of G′ and
thus γ2(G

′) ≥ i(G′). This implies

γ2(G) ≥ γ2(G
′) + |Lu| ≥ i(G′) + |Lu| ≥ i(G).

Case 1.2. Suppose that u ∈ D. Since D − {v} is a 2-dominating set of
G′′ := G − v, we conclude γ2(G

′′) ≤ γ2(G) − 1. Since i(G) ≤ i(G′′) + 1, we
obtain by the induction hypothesis

γ2(G) ≥ γ2(G
′′) + 1 ≥ i(G′′) + 1 ≥ i(G).

Case 2. Assume that B ∼= Kp for an integer p ≥ 3. Let D be a γ2(G)-set.
Without loss of generality, we can suppose that u ∈ D. Then D − (V (B) −
{u}) is a 2-dominating set of G′ := G − (V (B) − {u}) and thus together
with the induction hypothesis and the evident fact that i(G′) + 1 ≥ i(G) we
obtain

γ2(G) ≥ γ2(G
′) + 1 ≥ i(G′) + 1 ≥ i(G)

Case 3. Assume that B is isomorphic to a cycle of length p ≥ 3. Let D
be a γ2(G)-set. Without loss of generality, we can suppose that u ∈ D. Then
D − (V (B) − {u}) is a 2-dominating set of G′ := G − (V (B) − {u}) and so

γ2(G
′) ≤ γ2(G) −

⌈

n(B) − 2

2

⌉

.

On the other hand, we observe that

i(G) ≤ i(G′) +

⌈

n(B) − 1

3

⌉

.

It follows by the induction hypothesis

γ2(G) ≥ γ2(G
′) +

⌈

n(B) − 2

2

⌉

≥ i(G′) +

⌈

n(B) − 1

3

⌉

≥ i(G)
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and the statement is proved. �

If the block-cactus graph contains a block different from a C4, then we
can give a better inequality.

Theorem 3.27 (Hansberg, Volkmann [42]) Let G be a connected block-cactus
graph. If there is a block B of G, which is different from the cycle C4, then
γ2(G) ≥ i(G) + 1.

Proof. If G is a complete graph or a cycle different from C4, then it is evident
that γ2(G) ≥ i(G) + 1. Now suppose that G has a cut vertex. Let B be an
end block of G with cut vertex u in G such that G′ := G− (V (B)−{u}) has
still a block different from the cycle C4. Now we can proceed as in the proof
of Theorem 3.1 with the only difference that by the induction hypothesis we
have γ2(G

′) ≥ i(G′) + 1. Thus in all three cases we obtain γ2(G) ≥ i(G) + 1
and the proof is complete. �

Corollary 3.28 (Hansberg, Volkmann [42]) Let G be a non-trivial block
graph. Then γ2(G) ≥ i(G) + 1.

Corollary 3.29 (Hansberg, Volkmann [42]) Let G be a unicyclic graph. If
G 6= C4, then γ2(G) ≥ i(G) + 1.

Theorem 3.27 allows us to give a former result of Hansberg and Volkmann
as a corollary.

Corollary 3.30 (Hansberg, Volkmann [37, 38]) If G is a non-trivial block
graph or a unicyclic graph different from the cycle C4, then γ2(G) ≥ γ(G)+1.

Proof. In view of the inequality γ(G) ≤ i(G) and Corollaries 3.28 and 3.29,
the statement is evident. �

In [37, 38], Hansberg and Volkmann characterized all block graphs and
unicyclic graphs G with γ2(G) = γ(G) + 1.

Additionally, we obtain directly from Theorem 3.27 the following result,
which will be very usefull for characterizing all block-cactus graphs G with
γ2(G) = i(G).

Corollary 3.31 (Hansberg, Volkmann [42]) If G is a block-cactus graph with
γ2(G) = i(G), then G only consists of C4-blocks.
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Theorem 1.4 of Fink and Jacobson [28] states that, for a graph G with
n vertices and m edges, γk(G) ≥ n − m

k
for each k ≥ 1 and that the k-

semiregular graphs are exactly the graphs satisfying equality in this bound.
For a tree T , since m(T ) = n(T )−1, the following theorem is straightforward.

Theorem 3.32 (Fink, Jacobson [28], 1985) Let k ≥ 1 be an integer. If T is
a tree, then

γk(T ) ≥ (k − 1)n(T ) + 1

k

and γk(T ) = ((k − 1)n(T ) + 1)/k if and only if T is a k-semiregular tree or
n(T ) = 1.

Thus, for k = 2, this implies the next corollary.

Corollary 3.33 (Fink, Jacobson [28], 1985) If T is a tree, then

γ2(T ) ≥ n(T ) + 1

2

and γ2(T ) = n(T )+1
2

if and only if T is the subdivision graph of another tree.

In 2007, Volkmann completed the characterization of Theorem 3.32 for

the trees T with γk(T ) =
⌈

(k−1)n+1
k

⌉

.

Theorem 3.34 (Volkmann [69], 2007) If T is a tree of order n = n(T ), then

γk(T ) =
⌈

(k−1)n+1
k

⌉

if and only if

(i) n = kt + 1 for an integer t ≥ 0 and T is a k-semiregular tree or n = 1
or

(ii) n = kt + r for integers t ≥ 0 and 2 ≤ r ≤ k and T consists of r trees
T1, T2, . . . , Tr which satisfy the conditions in (i) and r−1 further edges
such that the trees T1, T2, . . . , Tr together with these r − 1 edges result
in a tree.

The following corollary is immediate.

Corollary 3.35 (Volkmann [69], 2007) If T is a tree of order n = n(T ),
then γ2(T ) =

⌈

n+1
2

⌉

if and only if

(i) n is odd and T is the subdivision graph of another tree or
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(ii) n is even and T consists of two subdivision trees S(T1) and S(T2) and
a further edge, connecting S(T1) with S(T2).

Lemma 3.36 (Hansberg, Volkmann [42]) Let T be a tree of order n = n(T ).
If γ2(T ) = i(T ) + 1, then γ2(T ) = ⌈n+1

2
⌉.

Proof. Suppose that γ2(T ) ≥ ⌈n+1
2
⌉ + 1. Let A and B be bipartition sets

of T . Then both sets A and B are independent and dominating and hence
i(T ) ≤ n/2 holds. It follows

γ2(T ) ≥
⌈

n + 1

2

⌉

+ 1 >
n

2
+ 1 ≥ i(T ) + 1,

which is a contradiction to our hypothesis. Therefore γ2(G) ≤ ⌈n+1
2
⌉ and,

together with Corollary 3.33, we obtain γ2(T ) = ⌈n+1
2
⌉. �

We will use these results for the next theorem.

Theorem 3.37 (Hansberg, Volkmann [42]) Let T be a non-trivial tree of
order n. Then γ2(T ) = i(T ) + 1 if and only if γ2(T ) = γ(T ) + 1 or T is
isomorphic to the graph J illustrated in Figure 3.3.

s
s s s ss�� @@

@@ ��

Figure 3.3: Graph J .

Proof. If T is isomorphic to the graph in Figure 2, then γ2(T ) = 4 = i(T )+1.
If γ2(T ) = γ(T )+1, then, since the inequality i(T ) ≥ γ(T ) is always valid and
since γ2(T ) ≥ i(T )+1 in view of Corollary 3.28, we obtain γ2(T ) = i(T )+1.

Conversely, assume that γ2(T ) = i(G) + 1. Hence, Lemma 3.36 leads to
γ2(T ) = ⌈n+1

2
⌉. We distinguish two cases.

Case 1. Assume that n is odd. Then γ2(T ) = (n+1)/2 and by Corollary
3.35 it follows that T is the subdivision graph of another tree. If dm(T ) ≤ 6,
we obtain that T is either a subdivided star SSt or a subdivided double star
SSs,t, for which γ2(T ) = γ(T )+1 hold. We will now prove by induction on n
that we can never reach equality in γ2(T ) ≥ i(T )+1 for dm(T ) ≥ 8. Let z be
the central vertex of T and let Li be the set of leaves in T of distance i from
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z. If dm(T ) = 8, then NT (L4) ∪ L2 ∪ {z} is an independent dominating set
of G. Since |L4| ≥ 2, one can easily see that |NT (L4) ∪ L2 ∪ {z}| ≤ n−3

2
and

hence γ2(T ) = n+1
2

> n−3
2

+ 1 ≥ i(T ) + 1. Now suppose that dm(T ) ≥ 10.
Let u be a leaf of T and v its support vertex, for which obviously dT (v) = 2
is fulfilled. Let T ′ := T − {u, v} and let I ′ be an i(T ′)-set. Then I ′ ∪ {u} is
an independent dominating set of T and i(T ) ≤ i(T ′) + 1 follows. Since T ′

is again a subdivision graph and dm(T ′) ≥ 8, by the induction hypothesis it
follows that

i(T ) + 1 ≤ i(T ′) + 2 < γ2(T
′) + 1 =

n − 1

2
+ 1 =

n + 1

2
= γ2(T ).

Therefore the only possible trees T of odd order with γ2(T ) = i(G) + 1 are
those with dm(T ) ≤ 6.

Case 2. Assume that n is even. Then γ2(T ) = (n + 2)/2 and from Corol-
lary 3.35 we obtain that T consists of two subdivsion trees T1 and T2 of other
two trees and T1 and T2 are connected by a further edge uv where u ∈ V (T1)
and v ∈ V (T2). Additionally, n(T1) and n(T2) are both odd and, by Corollary
3.33, γ2(T1) = (n(T1) + 1)/2 and γ2(T2) = (n(T2) + 1)/2.

Case 2.1 Assume that n(T1) ≥ 3 and n(T2) ≥ 3. Let A1 and A2 be the
smaller sets of the bipartition sets of T1 and T2, respectively. Then A1 is an
independent dominating set of T1 and A2 an independent dominating set of
T2. If u /∈ A1 or v /∈ A2, then A1 ∪A2 is an independent dominating set of T
and thus

i(T ) ≤ |A1| + |A2| ≤
n(T1) − 1

2
+

n(T2) − 1

2
=

n + 2

2
− 2 = γ2(T ) − 2,

which is a contradiction. Hence, let u ∈ A1 and v ∈ A2 and, since T1 and
T2 are subdivision trees and A1 and A2 are the smaller partite sets of T1 and
T2, dT1

(u) = 2 and dT2
(v) = 2. Then, if we regard T2 − v, it consists of

two sudivision trees T ′
2 and T ′′

2 . Suppose that n(T ′
2) ≥ 3 and n(T ′′

2 ) ≥ 3 and
let A′

2 and A′′
2 be the smaller partite sets of the bipartitions of T ′

2 and T ′′
2 ,

respectively. Then A1 ∪ A′
2 ∪ A′′

2 is an independent dominating set of T and
thus

i(T ) ≤ |A1| + |A′
2| + |A′′

2| ≤
n(T1) − 1

2
+

n(T ′
2) − 1

2
+

n(T ′′
2 ) − 1

2

=
n − 4

2
=

n + 2

2
− 3 = γ2(T ) − 3,

which is a contradiction. Now assume that n(T ′
2) = 1 or n(T ′′

2 ) = 1. Suppose
that n(T ′

2) = 1 and n(T ′′
2 ) ≥ 3. Let V (T ′

2) = {w}. Then, if A′′
2 is again the
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smaller partite set of the bipartition of T ′′
2 , A1 ∪ A′′

2 ∪ {w} is a independent
dominating set of T and thus

i(T ) ≤ |A1| + |A′
2| + 1 ≤ n(T1) − 1

2
+

n(T ′
2) − 1

2
+ 1

=
n − 4

2
+ 1 =

n + 2

2
− 2 = γ2(T ) − 2,

again a contradiction. It follows that n(T ′
2) = n(T ′′

2 ) = 1. Because of the
symmetry, the same follows for T1 and thus T is isomorphic to the graph J
illustrated in Figure 3.3.

Case 2.2 Assume that T1 is the trivial graph. We distinguish now with
respect to the diameter dm(T2) of T2 four cases.

(i) If dm(T2) = 0, then T2 is the trivial graph and T consists only
of the edge uv, that is, T is a subdivided star SS1 without a leaf and
γ2(T ) = γ(T ) + 1 = 2.

(ii) Let dm(T2) = 2. Then T2 is a path of length 2. If uv would be
incident to the central vertex of T2, we would have i(T ) = 1 and γ2(T ) = 3,
which is not allowed. Therefore uv has to be incident to a leaf of T2 and
hence T is a path of length 3, that is, the subdivided star SS2 without a leaf
and γ2(T ) = γ(T ) + 1 = 3.

(iii) Let dm(T2) = 4. Then T2 is a subdivided star SSt for an integer
t ≥ 2. If uv would be incident to a leaf or with a vertex x 6= z in T2, where
z is the central vertex of T2, then γ2(T ) = t + 2 and i(T ) = t and the as-
sumption γ2(T ) = i(T ) + 1 would be contradicted. Therefore uv has to be
incident to the central vertex z of T2. In this case T is the subdivided star
SSt+1 without a leaf and γ2(T ) = γ(T ) + 1 = t + 1.

(iv) Suppose dm(T2) ≥ 6. We will show by induction on n that in such a
case the assumption γ2(T ) = i(T ) + 1 cannot be satisfied. Let dm(T2) = 6.
Then T2 is a subdivided double star SSs,t. By analyzing which vertices of
V (T2) the edge uv could be incident to, one can easily show that γ2(T ) =
i(T ) + 2 holds always. Let now dm(T2) ≥ 8. Let x be a leaf in T2 and y
its support vertex such that u /∈ NT ({x, y}). Then T2 − {x, y} is again a
subdivided graph of diameter at least 6 and by the induction hypothesis we
know that in T ′ = T − {x, y} the inequality γ2(T

′) ≥ i(T ′) + 2 holds. Thus
if I ′ is a i(T ′)-set, then I ′ ∪ {x} is an independent dominating set of T and
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hence it is not difficult to see that

i(T ) ≤ i(T ′) + 1 ≤ γ2(T
′) − 1 ≤ γ2(T ) − 2.

Because of the symmetry, we do not have to distinguish more cases and
thus γ2(T ) = γ(T ) + 1 or T is isomorphic to the graph in Figure 3.3. �

Corollary 3.38 (Hansberg, Volkmann [42]) Let T be a non-trivial tree of
order n. Then γ2(T ) = i(G) + 1 if and only if T is a subdivided star SSt or
a subdivided star SSt minus a leaf or a subdivided double star SSs,t or T is
isomorphic to the graph showed in Figure 3.3.

Proof. This follows directly from Theorems 3.27 and 3.37. �

Now we focus on graphs with equal 2-domination and independent domi-
nation numbers.

Theorem 3.39 (Hansberg, Volkmann [42]) Let G be a non-trivial connected
block-cactus graph. Then γ2(G) = i(G) if and only if G is a C4-cactus.

Proof. By Corollary 3.31, G is a block-cactus graph whose blocks are all
C4-cycles. If G consists of only one block, then G ∼= C4. If G has a cut vertex,
then there is an end block C isomorphic to the cycle C4. Let u be the cut
vertex of C in G. Then it is easy to see for the graph G′ := G−(V (C)−{u})
that

γ2(G
′) ≤ γ2(G) − 1 = i(G) − 1 ≤ i(G′),

and together with Theorem 3.26 we have that γ2(G
′) = i(G′). Now consider

the following graph F .

F:

s
s
s
s
s
s
s s
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Here γ2(F ) = 5 = i(F )+1 holds. Note that the block-cactus G is a C4-cactus
if and only if every block of G is a C4-cycle and G does not contain the graph
F as a subgraph. Hence, if G would not be a C4-cactus, we could reduce G to
the graph F by taking away C4-end cycles one after the other. According to
our previous analysis, every reduction G′ of G should satisfy γ2(G

′) = i(G′).
Hence, γ2(F ) has to be equal to i(F ), which is a contradiction. It is now
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evident that G has to be a C4-cactus. �

Because of the inequality chain γ2 ≥ i ≥ γ for block-cactus graphs and
since the C4-cactus graphs fulfill always γ = γ2, it follows that

γ2(G) = i(G) ⇔ γ2(G) = γ(G)

for every block-cactus graph G. Thus, we obtain again as a corollary to this
theorem the characterization of all connected block-cactus graphs G with
γ2(G) = γ(G) (see Theorem 2.50).

Moreover, for graphs G with γ(G) = i(G) it holds also γ2(G) = γ(G)
if and only if γ2(G) = i(G). Claw-free graphs have this property (see [1]).
Therefore, with our Theorems 2.53 and 2.55 of previous chapter, we ob-
tain the characterization of the claw-free graphs and the line-graphs G with
γ2(G) = i(G).

We finish this section with an observation, for which we need the next
lemma of Randerath and Volkmann.

Lemma 3.40 (Randerath, Volkmann [59], 1998) Let G be a connected C4-
cactus with the partite sets A and B. If |A| ≤ |B|, then |A| = γ(G) = β(G)
and |B| = 2|A| − 2.

Observation 3.41 (Hansberg, Volkmann [42]) Let G be a connected C4-
cactus with partite sets A and B and |A| ≤ |B|. Then the following properties
are satisfied:

(i) A is a γ(G)-, a γ2(G)-, an i(G)- and a β(G)-set.

(ii) If n(G) ≥ 7, then A is the only γ2(G)- and β(G)-set of G.

Proof. (i) By Lemma 3.40 we know that |A| = γ(G) = β(G) and we al-
ready observed that γ2(G) = i(G) = γ(G). Thus |A| = γ2(G) = γ(G) =
i(G) = β(G). Moreover, since every vertex x ∈ B has degree dG(x) ≥ 2 and
NG(V (B)) = A, A is a 2-dominating set in G and thus dominating and, for
being a partite set, it is independent. Evidently A is also a covering of G
and hence (i) follows.

(ii) We will prove the statement by induction on n = n(G). If n(G) = 7,
then we have a C4-cactus which consists of two C4-cycles that have exactly
one vertex in common. Then |A| = 3 < |B| = 4 and A is the only γ2(G)-
and β(G)-set of G. Observe that all vertices x ∈ V (G) with dG(x) > 2 are
contained in A.
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Now suppose that n(G) > 7. Let C be an end block of G with cut ver-
tex u in G. Then the graph G′ := G − (V (C) − {u}) is again a C4-cactus
graph but with less vertices than G. If A′ and B′ are partite sets of G′ with
|A′| ≤ |B′|, then it follows by the induction hypothesis that A′ is the unique
γ2(G

′)- and β(G′)-set of G′ and that all vertices x ∈ V (G′) with dG′(x) > 2
are contained in A′. It is now evident from the definition of a C4-cactus that
u ∈ A′, |A| = |A′| + 1 and |B| = |B′| + 2 and that A is both a 2-dominating
set and a coverig of G. Since γ2(G) ≥ γ2(G

′) + 1 and β(G) ≥ β(G′) + 1,
it follows that A is both a γ2(G)- and a β(G)-set of G. It is also the only
γ2(G)- and β(G)-set of G since otherwise would exist a γ2(G

′)- and a β(G′)-
set different from A′. �

3.4 The k-domination number and the match-

ing number

A set of pairwise not incident edges of a graph G is called a matching. A
matching M0 with maximum number of edges is a maximum matching and
the number α0(G) = |M0| is called the matching number of G. Let M be a
matching of a graph G. A path is said to be M-alternating if its edges belong
alternatively to M and not to M .

Volkmann showed in [69] that, if T is a nontrivial tree, then γ2(T ) ≥
β(T ) + 1, and he characterized all such trees with γ2(T ) = β(T ) + 1. This
implies that

γ2(T ) ≥ β(T ) + 1 ≥ α0(T ) + 1.

Applying the well-known identity β(G) = α0(G) of König [50] for every
bipartite graph G, we observe that, for a nontrivial tree T , γ2(T ) = β(T )+1
if and only if γ2(T ) = α0(T ) + 1. As an extension of the inequality γ2(T ) ≥
α0(T ) + 1 for nontrivial trees T , we will show that γ2(G) ≥ α0(G) + 1 for all
connected cactus graphs G without cycles of even length and for all cactus
graphs G of odd order and one even cycle. But first, we need some more
theory.

Recall that a bipartite graph G is called k-semiregular if its vertex set
can be bipartitioned in such a way that every vertex of one of the partite
sets has degree k. We already presented Fink and Jacobson’s [27] bound

γk(G) ≥ n − m

k
(3.3)

for a graph G with n vertices and m edges (see Theorem 1.4). Here, if m 6= 0,
then γk(G) = n − m

k
if and only if G is a k-semiregular graph. Now we will
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prove a similar theorem, introducing a new parameter µo(G), which stands
for the minimum number of edges that can be removed from a graph G such
that the remaining graph is bipartite.

Theorem 3.42 (Hansberg, Volkmann [40], 2009) Let G be a graph of order
n and size m and let µo = µo(G). Then

γk(G) ≥ n − m − µo

k
.

Additionally, if m 6= 0, then γk(G) = ⌈n− m−µo

k
⌉ if and only if G contains a

k-semiregular factor H with m(H) = m− µo − r, where r is an integer such
that 0 ≤ r ≤ k − 1 and m − µo − r ≡ 0 (mod k).

Proof. Let V = V (G) and let D be a γk(G)-set. Let K = (D, D) ∪ (V −
D, V −D). Since G−K contains no odd cycles, it follows that |K| ≥ µo. As
every vertex in V − D has at least k neighbors in D, it follows

m = m(D, V − D) + |K| ≥ k |V − D| + |K|
≥ k |V − D| + µo = k(n − γk(G)) + µo

and consequently we obtain

γk(G) ≥ n − m − µo

k
.

Now assume that m 6= 0. Suppose first that γk(G) = n − m−µo−r

k
for an

integer r with 0 ≤ r ≤ k−1. Since m−µo 6= 0, it follows that γk(G) ≤ n−1
and thus V −D can never be empty. Let H be the k-semiregular factor of G
such that the vertex sets D and V −D are both independent sets and every
vertex in V − D has exactly degree k. Since D is still a k-dominating set of
H , we obtain

γk(H) = γk(G) = n − m − µo − r

k
= n − (n − γk(G))k

k
= n − m(H)

k
.

It follows that m(H) = m − µo − r.
Conversely, assume that G has a k-semiregular factor H with m(H) =

m−µo−r for an integer r such that 0 ≤ r ≤ k−1 and m−µo−r ≡ 0 (mod k).
Let S be the partition set in H of vertices of degree k. Then |S| = m(H)/k
and V − S is a k-dominating set of H . This implies

γk(H) ≤ |V − S| = n − |S| = n − m(H)

k
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and thus, together with (3.3) , V − S is a γk(H)-set. Since V − S is also a
k-dominating set of G, we obtain

γk(G) ≤ |V − S| = n − m(H)

k
= n − m − µo − r

k

and so γk(G) = n − m−µo−r

k
= ⌈n − m−µo

k
⌉ follows. �

Observation 3.43 (Hansberg, Volkmann [40], 2009) Let G be a connected
graph and let T be a spanning tree of G with partition sets A and B. Since
T contains no cycles, it is obvious that µo(G) ≤ mG(A, A) + mG(B, B). Let
now K be a set of edges of G such that |K| = µo(G) and G − K is bipartite
and let A′ and B′ be the partition sets of G − K. Then G − K is connected
and every edge e ∈ K belongs either to (A′, A′) or to (B′, B′), otherwise
it would contradict the minimality of µo(G). Conversely, every edge e ∈
(A′, A′)∪(B′, B′) belongs to K. This shows that µo(G) = |K| = mG(A′, A′)+
mG(B′, B′). It follows that there is a spanning tree with bipartition sets A′

and B′ and µo(G) = mG(A′, A′) + mG(B′, B′) and consequently

µo(G) = min{mG(A, A) + mG(B, B) | A, B partition sets
of a spanning tree of G}.

Since for cactus graphs G the parameter µo(G) equals the number of odd
cycles νo(G) in G, we obtain the following corollary from Theorem 3.42.

Corollary 3.44 (Hansberg, Volkmann [40], 2009) Let G be a connected cac-
tus graph of order n, size m and νo cycles of odd length. If k ≥ 1 is an integer,
then

γk(G) ≥ n − m − νo

k
and, if m 6= 0, then γk(G) = ⌈n− m−νo

k
⌉ if and only if G has a k-semiregular

factor H with m(H) = m − νo − r for an integer r with 0 ≤ r ≤ k − 1 and
m − νo − r ≡ 0 (mod k).

Corollary 3.45 (Hansberg, Volkmann [40], 2009) Let G be a connected cac-
tus graph of order n, size m and νe cycles of even length. If k ≥ 1 is an
integer, then

γk(G) ≥ (k − 1)n − νe + 1

k
.

Proof. This follows directly from Corollary 3.44 and the well known identity
m = n + νe + νo − 1 for cactus graphs. �

The next lemma will be useful in proving our results about cactus graphs
and the matching number.
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Lemma 3.46 (Hansberg, Volkmann [40], 2009) Let G be the subdivision
graph of a connected multigraph H and n = n(G). Then γ2(G) = α0(G)
when n is even and α0(G) ≤ γ2(G) ≤ α0(G) + 1 when n is odd.

Proof. It is evident that the sets A := V (H) and B := V (G) − V (H) form
a bipartition of G where all vertices in B are of degree 2, that is, G is a
2-semiregular simple graph. Since A is a 2-dominating set,

γ2(G) ≤ |A| = n(G) − m(G)

2

holds and thus (3.3) implies that A is a γ2(G)-set. Then it is clear that
α0(G) ≤ γ2(G). Let M be a maximum matching of G and suppose that
γ2(G) > α0(G). It follows that there has to be a vertex u ∈ A such that
u /∈ V (M). If n is even, this implies that there is another vertex v 6= u
such that v /∈ V (M). If n is odd, assume that there is another vertex v 6= u
such that v /∈ V (M). Let x be the first vertex in a path P from u to v in
G such that x /∈ V (M) and let Pux be the part of the path P from u to x.
It follows that x ∈ B, otherwise would Pux be of even length and either x
should be in V (M) or there would be a vertex before x in Pux that does not
belong to V (M) (remember that every vertex in B has degree 2). But then
(M − E(Pux)) ∪ (E(Pux) − M) is a matching in G with one more edge than
M and we obtain a contradiction. It follows that γ2(G) = α0(G) when n is
even, and that γ2(G) ≤ α0(G) + 1 when n is odd. �

Corollary 3.47 (Hansberg, Volkmann [40], 2009) Let G be the subdivision
graph of a connected multigraph. If G has odd order and γ2(G) = α0(G) + 1,
then G contains an almost perfect matching.

Proof. Since γ2(G) = α0(G) + 1, following the proof of Lemma 3.46, this
implies that A = (V (M) ∩ A) ∪ {u} and B = V (M) ∩ B and the proof is
complete. �

Now we can concentrate on cactus graphs.

Theorem 3.48 (Hansberg, Volkmann [40], 2009) If G is a connected cactus
graph of order n with νe cycles of even length, then

γ2(G) ≥ α0(G) + 1 −
⌈νe

2

⌉

, (3.4)

and if n and νe are both odd, then

γ2(G) ≥ α0(G) + 2 −
⌈νe

2

⌉

. (3.5)
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Proof. Corollary 3.45 implies

γ2(G) ≥ n + 1 − νe

2
. (3.6)

Using the fact that α0(G) ≤ n
2
, it follows from (3.6) that

γ2(G) ≥ α0(G) +
1 − νe

2

and thus (3.4). If n is odd, then α0(G) ≤ n−1
2

, and we deduce from (3.6) that

γ2(G) ≥ α0(G) +
2 − νe

2
.

This leads to (3.5) when νe is odd, and the proof is complete. �

In the following figures we present examples which show that Theorem
3.48 is best possible.



86 Chapter 3: The k-domination number and other parameters

s ss
s s ss
s s ss
s s ss
s s ss
s s ss
s

s s s s s s

s s
s s

p p p p p

@@
��@@

��
�

�
�

�
�

�
� �

�
�

�
��
�

�
�

�

@
@

@
@

@ Q
Q

Q
Q

Q
Q

Q

@@
��

@@
��

@@
��

@@
��

@@
��

@@
��

2s1 2 3 4

Figure 3.4: Graph of even order and odd number of cycles of even length with
equality in (3.4).
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Figure 3.5: Graph of odd order and even number of cycles of even length with
equality in (3.4).

The cactus graph in Figure 3.4 is of even order n = 10s + 4 with an
odd number νe = 2s + 1 of cycles of even length such that γ2 = 4s + 2 and
α0 = 5s + 2 and therefore equality in (3.4).

The cactus graph in Figure 3.5 is of odd order n = 10s − 1 with an even
number νe = 2s of cycles of even length such that γ2 = 4s and α0 = 5s − 1
and therefore equality in (3.4).

The cactus graph in Figure 3.6 is of even order n = 10s with an even
number νe = 2s of cycles of even length such that γ2 = 4s + 1 and α0 = 5s
and therefore equality in (3.4).

The cactus graph in Figure 3.7 is of odd order n = 10s + 5 with an odd
number νe = 2s + 1 of cycles of even length such that γ2 = 4s + 3 and
α0 = 5s + 2 and therefore equality in (3.5).

For cactus graphs with at most one cycle of even length, we can prove
the following result.
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Figure 3.6: Graph of even order and even number of cycles of even length with
equality in (3.4).
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Figure 3.7: Graph of odd order and odd number of cycles of even length with
equality in (3.5).

Theorem 3.49 (Hansberg, Volkmann [40], 2009) Let G be a connected cac-
tus graph of order n and size m and let νe = νe(G) and νo = νo(G). Then
the following holds.

(i) If n is odd and νe ≤ 1, then γ2(G) ≥ α0(G) + 1 and γ2(G) = α0(G) + 1
if and only if G has a 2-semiregular factor H with m(H) = m−νo−νe.

(ii) If n is even and νe = 1, then γ2(G) ≥ α0(G) and γ2(G) = α0(G) if and
only if G has a 2-semiregular factor H with m(H) = m − νo.

(iii) If n is even and νe = 0, then γ2(G) ≥ α0(G)+1 and γ2(G) = α0(G)+1
if and only if G has a 2-semiregular factor H with m(H) = m− νo −1.

Proof. (i) Let n be odd and νe ≤ 1. From Theorem 3.48 follows directly
γ2(G) ≥ α0(G) + 1. Assume now that γ2(G) = α0(G) + 1. Then Corollary
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3.45 leads to

α0(G) + 1 = γ2(G) ≥
⌈

n − νe + 1

2

⌉

=
n + 1

2
≥ α0(G) + 1.

This implies γ2(G) = ⌈n−νe+1
2

⌉, which is the same as n − m−νo

2
, if νe = 0,

and the same as n − m−νo−1
2

, if νe = 1. If follows that γ2(G) = n − m−νo−νe

2

and so, by Theorem 3.42, G contains a 2-semiregular factor H with m(H) =
m − νo − νe.

Conversely, assume that G contains a 2-semiregular factor H with m(H) =
m− νo − νe. It is easy to see that H is the subdivision graph of a particular
multigraph. Since H is bipartite, at least νo edges from E(G)−E(H) belong
to pairwise different odd cycles of G and hence, as νe ≤ 1, H consists of at
most two components, in such a case is one of them odd and the other one
even. Thus Lemma 3.46 leads to α0(H) ≤ γ2(H) ≤ α0(H)+ 1. According to
(3.4) and (3.5), we obtain

α0(G) + 1 ≥ α0(H) + 1 ≥ γ2(H) ≥ γ2(G) ≥ α0(G) + 1

and hence γ2(G) = α0(G) + 1.
(ii) Let n be even and νe = 1. From Theorem 3.48 follows directly that

γ2(G) ≥ α0(G). Suppose that γ2(G) = α0(G). Then, again Corollary 3.45
yields

α0(G) = γ2(G) ≥
⌈

n + 1 − νe

2

⌉

=
n

2
≥ α0(G).

This leads to the fact that γ2(G) = n− m−νo

2
. Hence, applying Theorem 3.42,

G has a 2-semiregular factor H with m(H) = m − νo.
Conversely, assume that G has a 2-semiregular factor H with m(H) =

m − νo. As above, H is the subdivision graph of a particular multigraph.
Since H is a bipartite cactus graph, the set E(G) − E(H) contains exactly
one edge of every odd cycle in G and thus H is connected. It follows with
Theorem 3.48 and Lemma 3.46 that

α0(G) ≥ α0(H) = γ2(H) ≥ γ2(G) ≥ α0(G),

which implies α0(G) = γ2(G).
(iii) Let n be even and νe = 0. Theorem 3.48 implies that γ2(G) ≥

α0(G) + 1. Assume first that γ2(G) = α0(G) + 1. Then, applying once more
Corollary 3.45, it follows

α0(G) + 1 = γ2(G) ≥
⌈

n + 1 − νe

2

⌉

=
n + 2

2
≥ α0(G) + 1,
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which implies that γ2(G) = n+ νo−m+1
2

and thus G has a 2-semiregular factor
with m(H) = m − νo − 1. Conversely, suppose that G has a 2-semiregular
factor with m(H) = m − νo − 1. With the same arguments as above, H
consists of exactly two components. If γ2(H) = α0(H), then it follows,
together with (3.4),

α0(G) ≥ α0(H) = γ2(H) ≥ γ2(G) ≥ α0(G) + 1,

which is a contradiction. Therefore, regarding Lemma 3.46, H has two odd
components H1 and H2 with γ2(Hi) = α0(Hi) + 1 for at least one i ∈ {1, 2}.
If, say, γ2(H1) = α0(H1), then γ2(H2) = α0(H2) + 1 and thus, together with
(3.4),

α0(G) + 1 ≥ α0(H) + 1 = α0(H1) + α0(H2) + 1

= γ2(H1) + γ2(H2) = γ2(H) ≥ γ2(G) ≥ α0(G) + 1,

which means that γ2(G) = α0(G) + 1. Let now γ2(Hi) = α0(Hi) + 1 for
i = 1, 2. Let uv be an edge in G such that H + uv is connected (there has
to be such an edge since there are νo different edges in E(G) − E(H) which
belong to pairwise different odd cycles of G). Let u ∈ V (H1) and v ∈ V (H2).
Let M ′

1 be a maximum matching in H1 and suppose that u ∈ V (M ′
1). Let

D and V (H1) − D be a bipartition of H1 such that D is a γ2(H1)-set and
V (H1)−D consists of vertices of degree 2. Since γ2(H1) = α0(H1)+ 1, there
is a vertex x ∈ D such that x /∈ V (M ′

1). As H1 is a connected bipartite
graph and since M ′

1 is an almost perfect matching in H1 (see Corollary 3.47)
and every vertex in V (H1)−D has degree 2 in H1, it follows that there is an
M ′

1-alternating path P from x to v. Then M1 = (M ′
1 −E(P ))∪ (E(P )−M ′

1)
is also a maximum matching of H1 with u /∈ V (M1). Analogously, there
is a maximum matching M2 of H2 such that v /∈ V (M2). It follows that
M = M1 ∪ M2 ∪ {uv} is a matching in G and so, with (3.4),

α0(G) + 1 ≥ α0(H) + 2 = γ2(H) ≥ γ2(G) ≥ α0(G) + 1,

which implies that γ2(G) = α0(G) + 1. �

Since unicyclic graphs are cactus graphs with exactly one cycle, we obtain
following corollary.

Corollary 3.50 (Hansberg, Volkmann [40], 2009) Let G be a connected uni-
cyclic graph of order n.

(i) If n is odd, then γ2(G) ≥ α0(G)+ 1 and γ2(G) = α0(G)+ 1 if and only
if there is an edge e ∈ E(G) such that G− e is the subdivision graph of
a unicyclic multigraph.
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(ii) If n and the unique cycle of G are both even, then γ2(G) ≥ α0(G) and
γ2(G) = α0(G) if and only if G is the subdivision graph of a unicyclic
multigraph.

(iii) If n is even and the unique cycle of G is odd, then γ2(G) ≥ α0(G) + 1
and γ2(G) = α0(G) + 1 if and only if there are two edges e, f ∈ E(G)
such that G−{e, f} is the subdivision graph of a unicyclic multigraph.

Proof. Since a 2-semiregular unicyclic graph is a subdivision graph of a
unicyclic multigraph and vice versa, the statements (i) - (iii) follow directly
from Theorem 3.49. �

3.5 Connected, total and k-domination

A subset D ⊆ V (G) is a k-star-forming set of G if for each vertex u in V −D
with less than k neighbors in D, N(u) ∩ D 6= ∅ and at least one vertex of
N(u) ∩ D has at least k − 1 neighbors in D. This means that every vertex
u of V − D is contained in a (not necessarily induced) k-star K1,k of the
subgraph induced by D ∪{u}. The minimum cardinality of a k-star-forming
set of G is denoted sfk(G). As every k-dominating set is a k-star-forming set,
γk(G) ≥ sfk(G) for every graph G and every positive integer k. Note that
sf1(G) = γ1(G) = γ(G) for every graph G. The concept of k-star-forming
set was introduced by Chellali and Favaron in [15]. A subset S ⊆ V (G) is
said to be a total dominating set if every vertex in V (G) has at least one
neighbor in S and it is a connected dominating set, if it is a dominating set
and the graph induced by S is connected. The total domination number
γt(G) and the connected domination number γc(G) represent the cardinality
of a minimum total dominating set and of a minimum connected dominating
set of G, respectively. In [15], Chellali and Favaron obtained the following
result.

Theorem 3.51 (Chellali, Favaron [15]) Every nontrivial connected triangu-
lated graph G satisfies sf2(G) = γt(G).

Considering the total domination number γt in block graphs, we can give
a similar result to the one of Fink and Jacobson in Theorem 1.3. This will
follow from the next theorem.

Theorem 3.52 (Chellali, Favaron, Hansberg, Volkmann [16]) Let G be a
connected {C4, K4 − e}-free graph and k, q two integers such that 2 ≤ q ≤
k ≤ ∆(G). Then γk(G) ≥ sfq(G) + k − q.



3.5 Connected, total and k-domination 91

Proof. If k = q, we already know that γk(G) ≥ sfk(G). So assume k ≥ q+1
and consider a γk(G)-set D. Since k ≤ ∆(G), V − D 6= ∅. Let v ∈ V − D,
A a subset of N(v) ∩ D of size k − q + 1, and D′ = (D − A) ∪ {v}. Sup-
pose that D′ is not a q-star-forming set. Then there exists a vertex u in
V − D′ = A ∪ (V − (D ∪ {v})) having less than q neighbors in D′ and such
that every vertex of N(u)∩D′, if any, has degree less than q − 1 in D′. This
vertex u cannot be in A since every vertex of A is adjacent to v ∈ D′ and (as v
is k-dominated by D) v has at least q−1 neighbors in D−A ⊆ D′. Therefore
u ∈ V −(D∪{v}). The vertex u, which has at least k neighbors in D but less
than q in D′ = (D −A) ∪ {v}, is adjacent to every vertex in A but not to v.
Since |A| = k−q+1 ≥ 2, the subgraph induced by A∪{u, v} contains either
an induced cycle C4 or a K4 minus an edge, contradicting the hypothesis on
G. Thus D′ is a q-star-forming set and sfq(G) ≤ |D′| = γk − k + q. �

As, by Theorem 3.51, sf2(G) = γt(G) holds for every nontrivial triangu-
lated graph G, we obtain from Theorem 3.52 with q = 2 following corollary
for block graphs.

Corollary 3.53 (Chellali, Favaron, Hansberg, Volkmann [16]) Let G be a
nontrivial block graph. If ∆(G) ≥ k for an integer k ≥ 2, then γk(G) ≥
γt(G) + k − 2.

For the block graphs G where γt(G) > γ(G), this is a stronger result than
Corollary 2.32. Now we will concentrate on trees, which are a special kind
of block graphs.

Theorem 3.54 (Chellali, Favaron, Hansberg, Volkmann [16]) Let T be a
tree with ∆(T ) ≥ k ≥ 3 for an integer k. Then γk(T ) ≥ γc(T ) + k − 1
with equality if and only if T is a generalized star with k leaves or, in the
case k = 3, if T has maximum degree 3 and no two vertices of degree 3 are
adjacent to each other.

Proof. Let τi be the number of vertices of degree i in T , ∆ = ∆(T ) and let
L be the set of leaves in T . Since T is a tree,

τ1 = 2 +
∆
∑

i=3

(i − 2)τi (3.7)

holds (see for example [68], p. 31). Because every k-dominating set contains
all vertices of degree less than k and V (T )−L is a γc(T )-set of T , we deduce
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that

γk(T ) ≥
k−1
∑

i=1

τi = 2 +
∆
∑

i=3

(i − 2)τi +
k−1
∑

i=2

τi

= (n − τ1) + 2 +
k−1
∑

i=3

(i − 2)τi +
∆
∑

i=k

(i − 3)τi

≥ γc(T ) + 2 + (∆ − 3)τ∆

≥ γc(T ) + 2 + (k − 3) = γc(T ) + k − 1.

Case 1. Assume that k ≥ 4. It is a simple matter to verify that if T is a
generalized star with k leaves, then γk(T ) = γc(T )+k−1 holds. Assume now
that γk(T ) = γc(T )+ k− 1. Then we obtain equality in the whole inequality
chain above, in particular ∆ = k, τ∆ = τk = 1 and τi = 0 for 3 ≤ i ≤ k − 1.
We deduce that γk(T ) = n − 1 and the inequality chain implies

γc(T ) + k − 1 = γk(T ) = (n − τ1) + 2 + (k − 3) = n − 1,

which leads to τ1 = k and γc(T ) = n−k. The tree T consists then of a vertex
of degree k, k vertices of degree 1 and the remaining vertices are of degree 2.
It follows that T is a generalized star with k leaves.

Case 2. Assume that k = 3. If T has maximum degree ∆(T ) = 3 and no
two vertices of degree 3 are adjacent to each other, then it is easy to check
that V (T )− L is a γc(T )-set and that V (T ) − L3 is a γ3(T )-set, where L3 is
the set of vertices of degree 3. It follows with (3.7) that γ3(T ) = n − τ3 =
n − τ1 + 2 = γc(T ) + 2.

Conversely, assume that γ3(T ) = γc(T )+2. It follows from the inequality
chain that ∆(T ) = 3 and γ3(T ) = τ1 + τ2. So, if L2 is the set of vertices
with degree 2 in T , then L ∪ L2 is a γ3(T )-set and V (T ) − L is a γc(T )-set.
This implies that no two vertices of degree 3 can be adjacent to each other. �

If k ≥ 3, then every star K1,k satisfies γk(G) = γt(G) + k − 2. We will
show in the next theorem that these are the only trees which satisfy this
equality and for all other trees T the inequality γk(T ) ≥ γt(T ) + k − 1 is
valid. We also give a characterization of those with γk(T ) = γt(T ) + k − 1.

Let St be the family of trees that are obtained from a star K1,t for t ≥ 3
by subdividing one edge twice and the remaining edges at most twice but not
all edges are subdivided twice. Let Tt be the tree that is obtained from the
star K1,t by subdividing one edge exactly three times and let T be the family
of graphs that are obtained from every tree T ∈ S3 ∪ {T3} by attaching a
leave to one or to both support vertices which have distance at least 2 to the
unique vertex of degree 3 in T .
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Theorem 3.55 (Chellali, Favaron, Hansberg, Volkmann [16]) Let T be a
tree different from a star such that ∆(T ) ≥ k ≥ 3 for an integer k. Then
γk(T ) ≥ γt(T ) + k − 1 with equality if and only if T ∈ Sk ∪ {Tk} or T is
isomorphic to a subdivided star SSk minus r leaves for an integer 0 ≤ r ≤
k − 1 or T ∈ T in the case k = 3.

Proof. If T is different from a star, then it evident that γc(T ) ≥ γt(T ).
With Theorem 3.54, we obtain then γk(T ) ≥ γc(T ) + k − 1 ≥ γt(T ) + k − 1.

Case 1. Suppose that k ≥ 4. If T ∈ Sk ∪ {Tk} or T is isomorphic to a
subdivided star SSk minus r leaves for an integer 0 ≤ r ≤ k − 1, then it is
simple to verify that γk(T ) = γt(T ) + k − 1.

Now assume that γk(T ) = γt(T ) + k − 1. Then γk(T ) = γc(T ) + k − 1
holds, too, and T is a generalized star. Additionally, regarding the proof of
Theorem 3.54, γt(T ) = γc(T ) = n − τ1 holds and hence V (T ) − L has to be
a γt(T )-set. If v is the unique vertex of degree k, then it follows that every
path from v to a leaf has length at most 4, otherwise V (T )−L would not be
a minimum total dominating set. Further, if there is a path of length 4 from
v to a leaf, then the other neighbors of v have to be leaves, since otherwise
it would again contradict the minimality of V (T )−L. Thus T is isomorphic
to Tk. Assume now that every path from v has length at most 3. Then T
must contain at least one path of length one or two. It is now evident that,
since T is not a star, T is either isomorphic to a subdivided star, SSk with
k leaves minus r leaves or a for an integer 0 ≤ r ≤ k − 1 or T ∈ Sk.

Case 2. Assume that k = 3. It is obvious that, if T ∈ T , then γ3(T ) =
γt(T ) + 2.

Suppose now that γ3(T ) = γt(T ) + 2. As above, γ3(T ) = γc(T ) + 2 and
V (T )− L is both γc(T ) and γt(T )-set. From Theorem 3.54, T is a tree with
maximum degree ∆(T ) = 3 such that no two vertices of degree 3 are adjacent
to each other.

If T has only one vertex of degree three, then by using a same argument
to that used in Case 1, T ∈ S3 ∪ {T3} or T is isomorphic to a subdivided
star SS3 minus r leaves for an integer 0 ≤ r ≤ 2. Thus we assume that
T has at least two vertices of maximum degree. Now let H be the graph
induced by the γt(T )-set V (T ) − L. Assume for a contradiction that H
contains two vertices x, y of maximum degree and all their neighbors, that is
dH(x) = dH(y) = 3. Then, since H is connected, all vertices on the unique
path between x and y have degree two in T and so V (T ) − L minus any
vertex adjacent to x or y on this path is a total dominating set, which is a
contradiction. Thus let us assume that H contains one vertex u such that
dH(u) = 3, and let NH(u) = {u1, u2, u3}. Then dT (ui) = 2 for each i. The
minimality of H implies that one of u1, u2, u3, say u1, is a support vertex
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in T . Since T has at least two vertices of maximum degree, we can assume
that u2 has a second neighbor v in H . Again by minimality dH(v) = 1 and
v is a support vertex of two leaves (since it has to be the second vertex of
maximum degree). Now if dH(u3) = 1, then u3 is a support vertex of exactly
one leaf and thus T ∈ T . Let now w 6= u be the neighbor of u3 in H . It is
clear that dH(w) = 1 and w is a support vertex of one or two leaves in T . It
follows that T ∈ T .

Assume now that dH(x) ≤ 2 for every vertex in H . Since H is connected,
H is a path. Assume that a vertex u of maximum degree has two neighbors
in H , say u1 and u2. Then u is a support vertex, dT (u1) = dT (u2) = 2 and
so, without loss of generality, u1 has another neighbor in H , say w. By the
minimality of the γt(T )-set V (T ) − L, it follows that w is a support vertex
of two leaves and dH(w) = 1. Now if dH(u2) = 1, then u2 is a support vertex
of one leaf in T and T ∈ T . Thus let z 6= u be the neighbor of u2 in H .
Then dH(z) = 1 and z is a support vertex of one or two leaves in T and thus
T ∈ T .

Now we may assume that every vertex of maximum degree is a leaf in
H . Let u be a vertex of maximum degree, v its unique neighbor in H and
w 6= u a neighbor of v in H . If dH(w) = 1, then w is a support vertex of two
leaves in T and so T ∈ T . Thus let z 6= v be a neighbor of w in H . Then
dT (w) = 2 and, again by minimality, dH(z) = 1 and z is a support vertex of
two leaves in T , which implies that T ∈ T .

Now we have achieved every tree contained in T ∪ {T3}, too, and the
proof is complete. �

In [69], Volkmann showed that a nontrivial tree T satisfies γ2(T ) = γ(T )+
1 if and only if T is a subdivided star SSt or a subdivided star SSt minus
a leaf or a subdivided double star SSs,t. As an extension to this result and
as a consequence of the previous theorem, we characterize all trees T with
γk(T ) = γ(T ) + k − 1 for k ≥ 3.

Theorem 3.56 (Chellali, Favaron, Hansberg, Volkmann [16]) Let T be a
tree such that ∆(T ) ≥ k ≥ 3 for an integer k. Then γk(T ) ≥ γ(T ) + k − 1
and γk(T ) = γ(T ) + k − 1 if and only if T is isomorphic to a subdivided star
SSk minus r leaves for an integer 1 ≤ r ≤ k.

Proof. Since γc(T ) ≥ γ(T ), from Theorem 3.54 follows γk(T ) ≥ γ(T )+k−1.
If T is isomorphic to a subdivided star SSk minus r leaves for an integer

1 ≤ r ≤ k, then it is easy to see that γk(T ) = γ(T ) + k − 1.
Conversely, let T be a tree with γk(T ) = γ(T )+k−1. Since γt(T ) ≥ γ(T ),

it follows, together with the former theorem, that either T is a star or
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γk(G) = γt(T ) + k − 1. If T is a star K1,t, then it is easy to see that
t = k. Assume now that T is not a star. Then T has to be of the form of the
graphs of Theorem 3.55 satisfying γt(T ) = γ(T ). It is now straightforward
to verify that T is isomorphic to a subdivided star SSk minus r leaves for an
integer 1 ≤ r ≤ k. �
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Chapter 4

Other k-domination parameters

In this chapter we will deal with some different k-domination parameters,
where besides the property of a set of being k-dominating, we ask for some
other additional properties.

4.1 The connected k-domination number and

related parameters

Let k be a positive integer. A subset S ⊆ V (G) is said to be a total k-
dominating set, if every vertex in V (G) has at least k neighbors in S and
it is a connected k-dominating set, if it is a k-dominating set and the graph
induced by S is connected. The set S is called connected total k-dominating
set if it is a total k-dominating set and G[S] is connected. The total k-
domination number γt

k(G), the connected k-domination number γc
k(G) and

the connected total k-domination number γc,t
k (G) represent the cardinality of

a minimum total k-dominating set, a minimum connected k-dominating set
and, of a minimum connected total k-dominating set of G, respectively. For
k = 1, we write γc, γt and γc,t instead of, respectively, γc

1, γt
1 and γc,t

1 .
Analogous to the bound of Arnautov, Lovász and Payan (see Corollary

2.14) for the k-domination number, Caro, West and Yuster [13] showed in
2000 that assuming δ = δ(G) large enough (here k <

√
ln δ) the connected

k-domination number is bounded by n ln δ
δ

(1 + oδ(1)) from above. The same
result was later given by Caro and Yuster [14] for (F, k)-cores, which is a
more general concept for connected total k-dominating sets.

In [71], Volkmann continued the study of the connected k-domination. In
particular, he presented two bounds closely related to Theorems 1.3 and 1.4
by Fink and Jacobson [27].

Simmilar to the bound γk(G) ≥ γ(G) + k − 2 for graphs G with 2 ≤ k ≤

97
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∆(G) given by Fink and Jacobson in [27] (Theorem 2.17), we present the
following bound for the connected case.

Theorem 4.1 (Hansberg [33]) Let G be a connected graph and k an integer
with 2 ≤ k ≤ δ(G). Then

γc
k(G) ≥ γc(G) + k − 2.

Proof. Let D be a minimum connected k-dominating set of G. Since
δ(G) ≥ k, V − D is not empty. Let u ∈ V − D and let T be a span-
ning tree of the connected graph G′ = G[D ∪ {u}] such that uv ∈ E(T )
for all v ∈ NG(u) ∩ D. Since dG′(u) ≥ k, the tree T has at least k leaves
u1, u2, . . . , uk. Then T − {u1, u2, . . . , uk−1} is connected and every vertex
in (V − D) ∪ {u1, u2, . . . , uk−1}) has at least one neighbor in D′ = (D ∪
{u})−{u1, u2, . . . , uk−1}. Hence, D′ is a connected dominating set of G and
it follows

γc(G) ≤ γc
k(G) − k + 2,

which completes the proof. �

Note that in the connected case the assumption k ≥ ∆(G) is not sufficient
for guaranteeing the non-emptiness of V − D, as can be seen for example in
the graph K1,r for r ≥ k.

In [71], Volkmann proved also the following theorem.

Theorem 4.2 (Volkmann [71], 2009) If G is a connected nontrivial graph,
then γc

2(G) ≥ γc(G) + 1 and γc
3(G) ≥ γc(G) + 2

He also gave examples of graphs G with γc
k(G) = γc(G)+ k− 2 for k ≥ 4.

Thus, the inequality of Theorem 4.1 is sharp for k ≥ 4. For the case that
k = 2 and graphs with cut vertices, we present the following bound, which
improves in some manner the bound of Volkmann. Hereby, we denote with
κmax(G) the maximum number of components of G − u among all vertices
u ∈ V .

Theorem 4.3 (Hansberg [33]) Let G be a connected graph on n ≥ 2 vertices.
If G has a cut vertex, then

γc
2(G) ≥ γc(G) + κmax(G).
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Proof. Let D be a minimum connected 2-dominating set of G. Since G
has a cut vertex, κ = κmax(G) ≥ 2. Let u ∈ V such that G − u has κ
components G1, G2, . . . , Gκ. Since u is a cut vertex, it is evident that u ∈ D.
Let vi ∈ D ∩ V (Gi) be a leaf of a spanning tree of G[D] for each 1 ≤ i ≤ κ
and define U = {v1, v2, . . . , vκ}. Then the graph G[D − U ] is connected.
Moreover, every vertex in (V − D) ∪ U has at least one neighbor in D − U .
This implies that D − U is a connected dominating set of G and hence
γc(G) ≤ γc

2(G) − κmax(G). �

Volkmann’s inequality γc
2 ≥ γc +1 of Theorem 4.2 together with Theorem

4.3 imply the following corollary.

Corollary 4.4 (Hansberg [33]) If G is a connected nontrivial graph, then

γc
2(G) ≥ γc(G) + κmax(G).

Easily, following corollaries are derived from this statement.

Corollary 4.5 (Hansberg [33]) If G is a graph with γc
2(G) = γc(G)+ q, then

κmax(G) ≤ q.

Corollary 4.6 (Hansberg [33]) If G is a graph with γc
2(G) = γc(G)+1, then

G contains no cut vertices.

Corollary 4.7 (Hansberg [33]) Let G be a block-cactus graph. Then γc
2(G) =

γc(G) + 1 if and only if G is either a complete graph Kn of order n ≥ 2 or a
cycle Cn of length n ≥ 3.

Example 4.8 (Hansberg [33]) Let H be the graph that consists of r ≥ 2
different graphs Hi

∼= Kqi
for integers qi ≥ 2, 1 ≤ i ≤ r, an additional vertex

x joining the Hi’s each by an edge and a leaf xi attached to a vertex of degree
qi − 1 in Hi for 1 ≤ i ≤ r. Then γc(H) = 2r + 1, γ2(H) = 3r + 1 and
κmax(H) = r and thus the inequality of Theorem 4.3 is sharp.

The bound of Theorem 4.1 can be improved the following way.

Theorem 4.9 (Hansberg [33]) Let G be a connected graph and k an integer
with 2 ≤ k ≤ δ(G). Then

γc
k(G) ≥ γc(G) + (k − 2)κmax(G).
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Proof. If κmax(G) = 1, Theorem 4.1 yields the desired result. Thus, suppose
that κ = κmax(G) ≥ 2. Let u be a vertex of G such that G − u has κ
components G1, G2, . . . , Gκ. Let D be a minimum connected k-dominating
set of G and define Di = V (Gi) ∩ D for each 1 ≤ i ≤ κ. Because u is a
cut vertex, u ∈ D. Since δ(G) ≥ k, V (Gi) − Di 6= ∅. Let xi ∈ V (Gi) − Di,
1 ≤ i ≤ κ. Then xi has at least k neighbors in Di ∪ {u} and there is a
spanning tree Ti of G[Di ∪ {u, xi}] containing xi and all edges xiy , where
y ∈ (Di ∪ {u}) ∩ N(xi). Evidently, Ti has at least k leaves (where u is
also possible). For each 1 ≤ i ≤ κ, let Ui be a set of k − 1 leaves of
Ti such that they are all different from u, and define U =

⋃κ

i=1 Ui. Then
D′ = (D − U) ∪ {x1, x2, . . . , xκ} is a connected dominating set and hence

γc(G) ≤ γc
k(G) − κ(k − 1) + κ = γc

k(G) − (k − 2)κmax(G).

�

For graphs containing cut vertices, where obviously κmax(G) ≥ 2 holds,
we gain the next corollary.

Corollary 4.10 (Hansberg [33]) Let G be a connected graph and k an integer
with 2 ≤ k ≤ δ(G). If G has a cut vertex, then

γc
k(G) ≥ γc(G) + 2(k − 2).

Theorem 4.11 (Hansberg [33]) Let G be a connected graph on n vertices
with minimum degree δ ≥ 2 and let k be an integer with 1 ≤ k ≤ δ. Then

γc
k(G) ≤ n − κmax(G)(δ − k + 1).

Proof. If G is the trivial graph, then κmax(G) = 0 and the statement is
immediate. Thus assume that δ ≥ 1. Let u be a vertex of G such that
G − u has κ = κmax(G) components G1, G2, . . . , Gκ. For each 1 ≤ i ≤ κ,
let ui ∈ V (Gi) be a neighbor of u and let Hi = G[V (Gi) ∪ {u}]. Then
dHi

(ui) ≥ δ ≥ 1. For each 1 ≤ i ≤ κ, let Ti be a spanning tree of Hi

containing ui and all edges uix, where x ∈ V (Hi) ∩ N(ui). Then Ti has at
least max{δ, 2} leaves, where u is also possible. Let Li ⊆ V (Gi) be a set of
exactly δ − k + 1 ≥ 1 leaves of Ti (i.e. all different from u), for 1 ≤ i ≤ κ,
and let L = ∪κ

i=1Li. Evidently G[V − L] is connected. Moreover, if x ∈ Li,
then |N(x) ∩ (V − L)| = |N(x) ∩ (V − Li)| ≥ δ − |Li − {x}| ≥ k. Hence,
V − L is a connected k-dominating set of G and thus

γc
k(G) ≤ n − κmax(G)(δ − k + 1).

�

As a consequence, following proposition of Volkmann follows.
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Corollary 4.12 (Volkmann [71], 2009) Let k and r be two integers such that
k ≥ 1 and r ≥ 0. If G is a connected graph of order n and minimum degree
δ ≥ k + r, then

γc
k(G) ≤ n − r − 1.

Again, for graphs containing cut vertices, we obtain a corollary.

Corollary 4.13 (Hansberg [33]) Let G be a connected graph on n vertices
and minimum degree δ and let k be an integer with 1 ≤ k ≤ δ. If G has a
cut vertex, then

γc
k(G) ≤ n − 2(δ − k + 1).

Example 4.14 (Hansberg [33]) Let p, r and k be integers such that p ≥ k +
1 ≥ 2 and r ≥ max{p−1, 2}. Let G be the graph consisting of a vertex u and
r copies of a Kp joined each to the vertex u by an edge. Then κmax(G) = r,
δ(G) = p−1, γc

k(G) = kr +1 = (pr +1)− r(p−k) = n−κmax(G)(δ−k +1).
Thus the inequality in Theorem 4.11 is sharp.

The following two theorems are proved using the method described in
[35].

Theorem 4.15 (Hansberg [33]) Let G be a connected graph and k an integer
with 2 ≤ k ≤ ∆(G). Then

γc
k(G) ≤ 2γk(G) − k + 1.

Proof. Let D be a minimum k-dominating set and let x ∈ V − D. Note
that V − D is not empty since ∆(G) ≥ k. If G[D ∪ {x}] is connected, then
γc

k(G) ≤ γk(G)+1 ≤ 2γk(G)−k+1. Thus, we assume that G[D∪{x}] is not
connected. We will add vertices successively from V − (D ∪ {x}) to D ∪ {x}
in order to decrease the number of components of G[D∪{x}] at least by one
in each step, until we obtain a set whose induced graph is connected. Note
that if we partition D∪{x} into parts A, B such that A and B have no edges
connecting them and we take vertices a ∈ A and b ∈ B such that the distance
between a and b is minimum, then the property of D of being dominating
implies that d(a, b) ≤ 3. Thus, in each step of increasing D we need to add
at most 2 vertices from V − (D ∪ {x}). Let r1 and r2 be the number of
steps where we include one vertex and two vertices from V − (D ∪ {x}),
respectively, and let r = r1 + r2. Let D0 ⊂ D ∪ {x} be the set of vertices
of the component of G[D ∪ {x}] to which x belongs and let Di ⊂ D be the
set of vertices connected to

⋃i−1
j=0 Di in step i. Obviously |D0| ≥ k + 1 and

|Di| ≥ 1 for 1 ≤ i ≤ r. Moreover, since D is a k-dominating set, in the steps
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where two vertices from V −(D∪{x}) are added we even have that |Di| ≥ k.
Thus we obtain

γk(G) = |D| = |D0 − {x}| +
r
∑

i=1

|Di| ≥ k(1 + r2) + r1

and thus r1 ≤ γk(G)− (r2 + 1)k. Further, D ∪ {x} together with all vertices
from V − (D ∪ {x}) added in steps 1 to r form a connected k-dominating
set. Hence, since k ≥ 2,

γc
k(G) ≤ |D| + 1 + r1 + 2r2 ≤ γk(G) + 1 + γk(G) − (r2 + 1)k + 2r2

= 2γk(G) − k + 1 − r2(k − 2) ≤ 2γk(G) − k + 1

and we are done. �

Regarding the graph Kk,p for an integer p ≥ 1, one can see that the bound
in this theorem is sharp.

In 1981, Duchet and Meyniel [22] proved that γc(G) ≤ 3γ(G) − 2. In
[14], Caro and Yuster presented an analogous bound involving the total and
the connected total k-domination numbers, which they used for proving the
probabilistic approach mentioned in the beginning of the section for the min-
imum cardinality of an (F, k)-core.

Lemma 4.16 (Caro, West, Yuster [13], 2000) If G is a connected graph,
then

γt
k(G) ≤ γc,t

k (G) ≤ 3γt
k(G) − 2.

The next theorem improves this bound considerably.

Theorem 4.17 (Hansberg [33]) Let G be a connected graph and k ≥ 1 an
integer. Then

max{γc
k(G), γt

k(G)} ≤ γc,t
k (G) ≤ k + 3

k + 1
γt

k(G) − 2.

Proof. Let D be a minimum total k-dominating set. If G[D] is connected,
then the upper bound is trivial. Thus suppose that G[D] is not connected.
We will add vertices successively from V − D to D in order to decrease the
number of components of G[D] at least one in each step, until we obtain a
set whose induced graph is connected. Note that if we partition D into parts
A, B such that A and B have no edges connecting them and we take vertices
a ∈ A and b ∈ B such that the distance between a and b is minimum, then
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the property of D of being dominating implies that d(a, b) ≤ 3. Thus, in
each step of increasing D we need to add at most 2 vertices from V −D. Let
r1 be the number of steps where we include exactly one vertex and let r be
the total number of steps required in the whole process. Since D is a total
k-dominating set, every component of G[D] is of order at least k + 1. Thus

r ≤ γt
k(G)

k + 1
− 1.

On the other side, let Si ⊆ V −D be the set of one or two vertices included
in step i. Then D ∪⋃r

i=1 Si is a connected total k-dominating set and hence

γc,t
k (G) ≤ |D| +

r
∑

i=1

|Si| = γt
k(G) + 2r − r1

≤ γt
k(G) + 2

γt
k(G)

k + 1
− 2 − r1 =

k + 3

k + 1
γt

k(G) − 2 − r1

≤ k + 3

k + 1
γt

k(G) − 2

Since the inequalities γc
k(G) ≤ γc,t

k (G) and γt
k(G) ≤ γc,t

k (G) are trivial, the
proof is complete. �

For k = 1, we obtain a result of Favaron and Kratsch [26].

Corollary 4.18 (Favaron, Kratsch [26], 1991) If G is a connected nontrivial
graph, then

γc(G) ≤ 2(γt(G) − 1).

Example 4.19 (Hansberg [33]) Let G1 and G2 be two graphs with vertex sets
V (Gi) = Ai∪̇Bi, i = 1, 2, such that Gi[Ai] ∼= Kk+1 and Bi is an independent
set of vertices of degree k and suppose that NGi

(Bi) = Ai and |Bi| ≥ 2. Let G
be the union of G1 and G2 joined by an arbitrary matching between vertices
of B1 and B2. Then

k + 3

k + 1
γt

k(G) − 2 =
k + 3

k + 1
2(k + 1) − 2 = 2(k + 3) − 2 = 2(k + 1) = γc,t

k (G).

Hence, the bound of Theorem 4.17 is sharp.

4.2 The Roman k-domination number

A Roman k-dominating function on G is a function f : V (G) −→ {0, 1, 2}
such that every vertex u for which f(u) = 0 is adjacent to at least k vertices
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v1, v2, . . . , vk with f(vi) = 2 for i = 1, 2, . . . , k. The weight of a Roman k-
dominating function is the value f(V (G)) =

∑

v∈V (G) f(v). The minimum
weight of a Roman k-dominating function on a graph G is called the Roman
k-domination number γkR(G). If f : V (G) −→ {0, 1, 2} is a Roman k-
dominating function on G, then let (V0, V1, V2) be the ordered partition of
V (G) induced by f , where Vi = {v ∈ V (G) | f(v) = i} for i = 0, 1, 2.
Note that there is a one to one correspondence between the functions f :
V (G) → {0, 1, 2} and the ordered partitions (V0, V1, V2) of V (G). The Roman
1-domination number γ1R corresponds to the well-known Roman domination
number γR, which was given implicitly by Steward in [65] and by ReVelle
and Rosing in [63]. We present now the following bounds, which are proved
using the probabilistic method like for the k-domination number in Theorem
2.12.

Theorem 4.20 (Hansberg, Volkmann [41], 2009) Let G be a graph on n

vertices with minimum degree δ ≥ 1 and let k ∈ N. If δ+1+2 ln(2)
ln(δ+1)

≥ 2k then

γkR(G) ≤ 2n

δ + 1

(

k ln(δ + 1) − ln(2) +
k−1
∑

i=0

1

i!

δi

(δ + 1)k−1

)

.

Proof. Let 2k ≤ δ+1+2 ln(2)
ln(δ+1)

and define p = k ln(δ+1)−ln(2)
δ+1

. The condition on

δ implies that p ≤ 1
2
. We select a set of vertices A ⊆ V (G) independently

at random with P (v ∈ A) = p. Let B be the set of vertices of V (G) − A
with less than k neighbors in A. Then A∪B is a k-dominating set of G and
f = (V (G) − (A ∪ B), B, A) is a k-roman domination function for G. As in
the proof of Theorem 2.12, we have

P (v ∈ B) ≤
k−1
∑

i=0

1

i!
e−p(δ+1)+i ln(δ).

Thus, we obtain in this case

P (v ∈ B) ≤
k−1
∑

i=0

1

i!
e−k ln(δ+1)+ln(2)+i ln(δ) =

k−1
∑

i=0

2 δi

i! (δ + 1)k
.

This implies

γkR(G) ≤ E[f(V (G))] = E[|A|] + 2E[|B|]

≤ 2n

(

k ln(δ + 1) − ln(2)

δ + 1

)

+ n

k−1
∑

i=0

2 δi

i! (δ + 1)k

=
2n

δ + 1

(

k ln(δ + 1) − ln(2) +
k−1
∑

i=0

δi

i! (δ + 1)k−1

)

.
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Corollary 4.21 (Hansberg, Volkmann [41], 2009) Let G be a graph on n

vertices with minimum degree δ ≥ k, where k ∈ N. If δ+1+2 ln(2)
ln(δ+1)

≥ 2k, then

γkR(G) ≤ 2n

δ + 1
(k ln(δ + 1) − ln(2) + 1).

Proof. As in the proof of Corollary 2.13, Theorem 4.20 and the fact that
∑k−1

i=0 δi ≤ (δ + 1)k−1 imply

γkR(G) ≤ 2n

δ + 1

(

k ln(δ + 1) − ln(2) +
k−1
∑

i=0

1

i!

δi

(δ + 1)k−1

)

≤ 2n

δ + 1
(k ln(δ + 1) − ln(2) + 1).

�

Setting k = 1, we obtain the following bound for the usual Roman do-
mination number γR. Note that this should be the same bound computed
by Cockayne, Dreyer, Hedetniemi and Hedetniemi in [19] if we consider the
error that was made in that paper forgetting a factor 2 in their computation.
Moreover, the condition δ ≥ 1 cannot be avoided, otherwise the chosen prob-
ability p of the above theorem, which is also the same for k = 1 as in [19],
would be negative. Hence, the theorem given by the former authors, should
be like follows.

Corollary 4.22 (Cockayne, Dreyer, Hedetniemi, Hedetniemi [19], 2004,
2009) Let G be a graph on n vertices with minimum degree δ ≥ 1. Then

γR(G) ≤ 2n

δ + 1
(ln(δ + 1) − ln(2) + 1).

The following observation shows that, for k ≥ 3, Corollary 4.21 can be
inproved.

Observation 4.23 (Hansberg, Volkmann [41], 2009) Let k ≥ 4 be an integer

and G a graph of minimum degree δ ≥ k. If δ+1+2 ln(2)
ln(δ+1)

≥ 2k, then

γkR(G) ≤ 2n

δ + 1

(

k ln(δ + 1) − ln(2) + 1 − k − 1

δ

)

.
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Proof. In view Theorem 4.20, we only have to show that, for k ≥ 4,

k−1
∑

i=0

δi

i! (δ + 1)k−1
≤ 1 − k − 1

δ
.

Since this was already shown in Observation 2.16, we are done. �

Note that for k = 3, instead of the term k−1
δ

of previous observation, we
can set everywhere the term k−2

δ
and we obtain for this case a better result

as in Corollary 4.21, too.
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List of notations

(A, B) set of edges with one vertex in A and one in B 1
Cn cycle of length n 2
d(v) = dG(v) degree of v 1
d(x, y) = dG(x, y) distance between x and y 1
E = E(G) edge set 1
G1 ◦ G2 G2-corona of G1 2
G1 × G2 cartesian product of G1 and G2 45

G complement of G 1
G[S] graph induced by S 1
i(G) independent domination number 72
Kn complete graph of order n 2
Kp,q complete bipartite graph 2
K1,t star 2
L(G) set of leaves 1
L(G) line graph of G 49
m(A, B) cardinality of (A, B) 1
m = m(G) size 1
n = n(G) order 1
N(S) = NG(S) open neighborhood of the set S 1
N(S, H) = NG(S, H) neighbors of S with respect to H 1
N(v) = NG(v) open neighborhood 1
N [S] = NG[S] closed neighborhood of the set S 1
N [v] = NG[v] closed neighborhood 1
sfk(G) k-star forming set number 90
SSt subdivided star 2
SSs,t subdivided double star 2
S(G) subdivision graph 2
Ss,t double star 2
V = V (G) vertex set 1
α(G) independence number 15
αk(G) k-dependence number 15
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114 List of notations

α0(G) matching number 81
β(G) covering number 39
γ(G) domination number 3
γc(G) connected domination number 90
γc,t(G) connected total domination number 97
γf (G) f -domination number 6
γk(G) k-domination number 4
γkR(G) Roman k-domination number 104
γc

k(G) connected k-domination number 97
γc,t

k (G) connected total k-domination number 97
γt

k(G) total k-domination number 97
γR(G) Roman domination number 104
γt(G) total domination number 90
δ(G) minimum degree 1
∆(G) maximum degree 1
µo(G) odd index 82
νe(G) number of even cycles 83
νo(G) number of odd cycles 83
χ(G) chromatic number 2



Index

(F, k)-core, 21
C4-cactus, 2
ϕ(G)-set, 2
f -dominating set, 6
f -domination number, 6
k-dependence number, 15
k-dependent set, 15
k-dominating set, 4

connected, 97
connected total, 97
total, 97

k-domination number, 4
connected, 97
connected total, 97
total, 97

k-semiregular, 4
k-star forming set, 90
r-regular, 1

alternating path, 81

block, 2
end, 2

block graph, 2
block-cactus graph, 2
bridge, 2

cactus graph, 2
cartesian product, 45
chromatic number, 2
claw-free graph, 43
clique, 2
color, 2
coloring, 2

proper, 2
column, 45
complement, 1
complete bipartite graph, 2
complete graph, 2
connected dominating set, 90
corona, 2
corona graph, 2
covering, 39
covering number, 39
cubic graph, 2
cut vertex, 2
cycle, 2

degree, 1
maximum, 1
minimum, 1

diagonal, 45
distance, 1
dominating set, 3
domination number, 3
double star, 2

edge set, 1

generalized star, 2

independence number, 15
independent dominating set, 72
independent domination number, 72
independent set, 15
induced subgraph, 1
inflated vertex, 45

leaf, 1
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line graph, 49

matching, 81
maximum, 81

matching number, 81
maximum set w.r.t. a property, 2
minimum set w.r.t. a property, 2
multiple domination, 4

neighborhood
closed, 1
open, 1

order, 1

regular graph, 1
Roman k-dominating function, 103

weight of a, 104
Roman k-domination number, 104
Roman domination number, 104
row, 45

semiregular, 1
size, 1
star, 2
subdivision graph, 2

total dominating set, 90
transversal, 45
tree, 2
triangulated graph, 2

unicyclic, 2

vertex set, 1
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