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Abstract

Communication infrastructures and markets are maintained and used by millions of
entities each of them facing a private objective. The vast number of participants
in conjunction with their individual goals to choose the best alternative gave rise to
study such scenarios in the framework of game theory as it is rather unrealistic to
assume that a centrally computed solution can be implemented. In this thesis, we
follow this line of research and study congestion games as introduced by Rosenthal
in 1973 and several modifications of his original approach.

Congestion games model scenarios in which a finite number of players individually
strives to allocate resources maximizing their utility. Here, the resources can corre-
spond to quite different types of objects, e. g. to edges in a network or to machines
processing tasks. Given a set of resources a player’s goal is to select a feasible subset of
the resources, subsequently named a strategy, that minimizes the sum of the latencies
of the resources in the set. Thereby, a subset is feasible if it possesses a predefined
combinatorial structure, e. g., corresponds to a path or a tree in a network. The
latency of a resource depends on the number of players sharing that resource, i. e.,
the congestion, as it increases the more player allocate the resource. Since the semi-
nal presentation of this notion of games several modifications including weighted and
player-specific congestion games have been proposed. In a weighted congestion game,
the congestion on a resource depends on the weighted number of players, whereas
players compute their latencies with respect to player-specific payoff functions in a
player-specific congestion game.

Note that congestion games lie at the intersection of game theory and combinatorial
optimization as from a global perspective we are concerned with a game, whereas
from the local perspective of individual players we are concerned with a combinatorial
optimization problem. Among others, one goal of this thesis is to apply results from
combinatorial optimization in order to gain new insights into congestion games.

At first, we study the existence of Nash equilibria in weighted and in player-specific
congestion games as every standard game without these additional requirements pos-
sesses a Nash equilibrium. We characterize those games with respect to the com-



binatorial structure of the players’ strategy spaces in which a Nash equilibrium is
guaranteed to exist. Namely, we show that the matroid property, i. e., if the strategy
space of each player is the set of bases of a matroid, is the maximal property that
guarantees the existence of Nash equilibria. If this property, however, is not satis-
fied we cannot guarantee the existence of Nash equilibrium without taking additional
properties of the game into account.

We also study dynamics that arise if players actually play a congestion game and
consider the time until they terminate at a stable configuration in which none of the
players can improve its latency. In best response dynamics we assume that players
sequentially switch to the best available strategy given fixed choices of the others.
In case of standard congestion games, we show that the matroid property is the
maximal property on the combinatorial structure of the players’ strategy spaces that
guarantees polynomial time convergence. In case of weighted and player-specific
congestion games, however, we provide analytical and experimental evidence that
even in singleton games, best response dynamics do not terminate quickly. Note that
in singleton games, each strategy is a singleton set.

In case of standard congestion games, we also study concurrent imitation dynam-
ics that arise if players imitate each other on the basis of a protocol we propose.
We motivate to study such dynamics as the assumption that players have complete
knowledge, which is usually applied when considering Nash equilibria, is likely not to
be true in many real world applications. The protocol we propose guarantees pseudo-
polynomial time convergence to an imitation-stable state in a monotonic fashion,
that is, undesirable overshooting effects do not occur. We can also prove that an ap-
proximate equilibrium in which only a small fraction of the players sustains latency
significantly above or below the average is reached quickly.

Finally, we propose to study a modification of player-specific singleton congestion
games in which the resources can assign priorities to the players in order to foster
some of them. In our model only the players with the highest priority gain access
to a resource whereas the others are locked out. We analyze the existence of Nash
equilibria in this class of games and discuss relationships to other existing models.



Zusammenfassung

Die heutigen Kommunikationsinfrastrukturen und Handelsplattformen werden von
Millionen von Teilnehmern benutzt und betrieben. Dabei versucht jeder Benutzer
seinen individuellen Nutzen zu optimieren. Auf Grund der großen Anzahl der Betei-
ligten in Kombination mit deren egoistischen Zielen, werden solche Szenarien häufig
in spieltheoretischen Modellen untersucht, da es unrealistisch erscheint, eine zentral
berechnete Lösung zu installieren. In dieser Arbeit folgen wir diesem Ansatz und
untersuchen Auslastungsspiele, wie sie 1973 von Rosenthal vorgeschlagen wurden,
sowie verschiedene Varianten dieses ursprünglichen Models.

Auslastungsspiele modellieren Szenarien, in denen endlich viele Spieler Ressourcen
zwecks Optimierung Ihres Nutzens auswählen und belegen. Dabei können die Res-
sourcen ganz verschiedene Objekte sein, z.B. die Kanten eines Netzwerks oder Server.
Von einer Menge von Ressourcen möchte jeder Spieler eine solche zulässige Teilmenge,
im Folgenden auch Strategie genannt, belegen, die die Summe der Latenzen mini-
miert. Dabei ist eine Teilmenge zulässig, wenn sie eine bestimmte kombinatorische
Struktur besitzt, z.B. wenn sie ein Pfad oder ein Baum in einem Netzwerk ist. Die
Latenz einer Ressource hängt von ihrer Auslastung, also der Anzahl Spieler, die diese
belegen, ab und steigt typischerweise mit steigender Anzahl von Spieler. Seit der
ersten Präsentation von Auslastungsspielen wurden verschiedene andere Varianten
präsentiert. Dazu zählen gewichtete Spiele, in denen die Auslastung einer Ressource
von der gewichteten Anzahl Spieler abhängt und Spieler-spezifische Spiele, in denen
die Spieler ihre Latenzen an Hand von Spieler-spezifischen Latenzfunktionen bestim-
men.

Offensichtlich liegen Auslastungsspiele in der Schnittmenge von Spieltheorie und kom-
binatorischer Optimierung, da wir aus einer globalen Sicht ein Spiel betrachten, aus
lokaler Sicht jedes einzelnen Spielers aber ein kombinatorisches Optimierungsproblem.
Ein Ziel dieser Arbeit ist die Anwendung von Erkenntnissen der kombinatorischen
Optimierung zur Vertiefung unseres Verständnisses von Auslastungsspielen.

Zunächst untersuchen wir die Existenz von Nash-Gleichgewichten in gewichteten und
in Spieler-spezifischen Auslastungsspielen, da jedes Spiel ohne diese Zusätze ein Nash-



Gleichgewicht besitzt. Wir charakterisieren in Abhängigkeit der kombinatorischen
Struktur der Strategiemengen der Spieler diejenigen Spiele, die immer ein Nash-
Gleichgewicht haben. Dazu zeigen wir, dass jedes Spiel, in dem die Strategiemengen
Mengen von Basen eines Matroids sind, immer ein Nash-Gleichgewicht hat. Falls
diese Bedingung aber nicht erfüllt ist, dann können wir die Existenz eines Gleich-
gewichts nicht garantieren ohne weitere Eigenschaften des Spiels zu berücksichtigen.
Die Matroid-Eigenschaft ist also die maximale Eigenschaft, die die Existenz von Nash-
Gleichgewichten garantiert.

Wir betrachten auch Dynamiken, die auftreten, wenn Spieler ein Auslastungsspiel
spielen und untersuchen wie lange es dauert, bis ein stabiler Zustand, in dem keiner
der Spieler sich verbessern kann, erreicht wird. In der Besten-Antwort Dynamik
nehmen wir an, dass jeweils ein Spieler zu seiner besten Strategie wechselt. Wir be-
weisen, dass im Falle von herkömmlichen Auslastungsspielen die Matroid-Eigenschaft
die maximale Eigenschaft ist, die polynomielle Konvergenzzeit garantiert. Im Falle
von gewichteten und von Spieler-spezifischen Auslastungsspielen präsentieren wir ana-
lytische und empirische Argumente, die untermauern, dass Beste-Anwort Dynamiken
bereits in Spielen, in denen die Strategien nur ein-elementige Mengen sind, im Allge-
meinen nicht schnell terminieren.

Im Fall von herkömmlichen Auslastungsspielen untersuchen wir auch parallele Imi-
tationsdynamiken, die auftreten, wenn die Spieler ein von uns vorgestelltes Protokoll
gleichzeitig anwenden. Motiviert wird dieser Ansatz durch die Beobachtung, dass
die Spieler typischerweise kein vollständiges Wissen haben, die Definition des Nash-
Gleichgewichts aber auf dieser Annahme beruht. Das von uns vorgestellte Pro-
tokoll garantiert, dass Imitationsdynamiken in einer monotonen Art und Weise zu
einem Gleichgewicht konvergieren, ohne dass starke Schwankungen in den Latenzen
auftreten. Wir zeigen außerdem, dass approximative Gleichgewichte, in denen nur
eine kleine Anzahl von Spielern weit nach oben bzw. unten von der durchschnittlichen
Latenz abweicht, schnell erreicht werden.

Abschließend stellen wir eine Modifikation von Spieler-spezifischen Auslastungsspie-
len vor, in den die Ressourcen den Spielern Prioritäten zuordnen, um einige von ihnen
zu begünstigen. In unserem Modell erhalten unter allen Spielern die eine Ressource
belegen wollen, nur diejenigen mit der höchsten Priorität Zugang zu dieser, die an-
deren Spieler aber nicht. Wir untersuchen die Existenz von Nash-Gleichgewichten in
dieser Klasse von Spielen und diskutieren Verbindungen zu anderen Modellen.
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CHAPTER 1

Introduction

Congestion games are by now a well established approach to model scenarios in which
selfish agents individually strive to allocate resources as effectively as possible. They
have been introduced by Rosenthal [Ros73] in 1973 as a refinement of the previously
studied Wardrop model [War52] and are motivated by the following examples. Sup-
pose we are given a road network and a finite set of agents which want to spend about
the same time traveling through the network. The goal of each agent is to select a
route that minimizes the sum of the latencies of the road segments in it. Thereby, the
latency of a segment depends on its congestion, i. e., on the number of agents using it.
Another scenario somehow related to this one is the scenario of network design games
as considered by Anshelevish et al. [ADK+04]. In a network design game we are given
a finite set of agents which strive to build a network satisfying certain connectivity
requirements. Given a network in which every edge can be constructed at a certain
cost each player can select a path connecting its source and its sink in the network.
Now each player seeks to minimize the cost of the selected path which is the sum of
the weighted costs of the edges in the path. Here, the term weighted stands for the
fact that the costs of an edge are equally shared among all players using it. Both
scenarios only differ in the definition of the latency and cost functions, respectively.
However, especially the latter example can be defined with respect to many different
combinatorial structures, e. g. with respect to spanning or Steiner trees.

In general, congestion games can be described as follows. In a congestion game we
are given a finite set of resources and a finite set of players. Each player comes along
with a set of strategies, henceforth called the player’s strategy space. The strategies
are the available options the player has and each of them corresponds to a subset
of the set of resources. For each resource we are also given a payoff function which
takes the congestion on the resource as input. Now each player individually strives
to choose a strategy that optimizes its payoff given the choices of the other players.
Thereby, the payoff of a strategy is the sum of the payoffs of the resources in it. In
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Chapter 1 — Introduction

the terms of the examples discussed above, the set of resources is the set of edges in
the network, a player’s strategy is a path connecting its source and its sink, and a
player’s strategy space is the set of these paths.

From the local perspective of the players each of them faces a combinatorial opti-
mization problem with varying payoffs of the resources. However, given fixed choices
of the others, each player can solve this problem and choose the best available strat-
egy. From a global perspective, however, we do not face a combinatorial optimization
problem as there is no obvious approach to combine the individual players’ quests
for the best strategies into a single objective. For that reason, economists and game
theorists have proposed to study stable states in which none of the players can in-
dividually switch to a different strategy that strictly improves on its payoff. This
notion heavily relies on three assumptions. At first, players are selfish, i. e., they
do not care about each other. Secondly, players have complete knowledge about the
game, i. e., each of them knows its entire strategy space and the latency functions.
Finally, players act rationally, i. e., their behavior is uniquely determined by the pay-
off functions. Due to the influential publication by John F. Nash [Nas50] on stable
states in the general class of strategic games this situation is nowadays called Nash
equilibrium. Rosenthal [Ros73] shows that every congestion game, according to the
above description, possesses such an equilibrium.

In this thesis, we study two kinds of dynamics that arise when players actually “play”
a congestion game. At first, we consider best response dynamics that emerge if players
are permitted to play best responses. In this case, a single player is allowed to
switch to the best available strategy given fixed choices of the others. We provide a
characterization of games with respect to the combinatorial structure of the players’
strategy spaces in which best response dynamics are guaranteed to reach a Nash
equilibrium quickly. Additionally, we consider imitation dynamics in which players
are permitted to imitate each other concurrently according to a protocol we propose.
This approach is motivated by the observation that in many scenarios it is unlikely
that players actually have complete knowledge. Instead, players are likely to imitate
others which perform well. Again, we focus on the time until such dynamics reach
a stable state. However, note that its definition needs to be adopted to the altered
assumptions on the players’ knowledge.

Obviously, the notion of congestion games, as introduced by Rosenthal, is a very
general model capturing a variety of different scenarios in which players allocate
resources. Still, many properties of particular real world scenarios are not taken
into account. For that reason, researchers have proposed to study extensions and
refinements of the original model. In this thesis, we also consider two refinements and
propose to study a third one. The refinements we consider are motivated as follows.
Consider a load balancing scenario in which each player strives to assign a job to one
out of several machines that minimizes the completion time of the job. Obviously,
such a model is related to job scheduling on related machines except that the jobs
cannot be assigned to the machines by a central authority but jobs selfishly choose a
machine. If the jobs all have the same size, then the load balancing scenario would
be a congestion game as described above. However, it is very unlikely that different
jobs have the same size. Hence, the congestion on a resource should be defined

2



1.1 Formal Definition of Congestion Games

as the total weight of the jobs being assigned to it rather than their number only.
This example suggests to study weighted congestion games in which we additionally
associate a weight with each player and define the congestion of a resource as the sum
of the players’ weights allocating it. The second refinement we consider are player-
specific congestion games. This class of games is motivated by the observation that
in certain scenarios players are likely to compute their latencies with respect to their
own private payoff functions instead of common payoff functions applied by everyone
else. For example, different types of vehicles have to obey different speed limits.
Hence, vehicle-specific speed limits have to be taken into account when computing
the travel time along a road segment.

In both classes of games we study the existence of Nash equilibria and provide a
characterization of games with respect to the combinatorial structure of the players’
strategy spaces that are guaranteed to possess Nash equilibria. Furthermore, we
consider best response dynamics as described above and present lower bounds on the
time to reach an equilibrium.

Finally, we propose a new extension of congestion games and introduce congestion
games with priorities. So far, all players allocating a resource gain access and suf-
fer from the same amount of congestion. However, suppose that those authorities
supplying the resources want to support some of the players. To this end, they can
assign priorities to the players in which case only the players with the highest rank
gain access to a resource whereas the other players with less priority are locked out.
We study the existence of Nash equilibria in such games and discuss relationship to
two-sided matching markets as introduced by Gale and Shapley [GS62].

The remainder of this chapter is organized as follows. At first, we provide formal def-
initions of Rosenthal’s model of congestion games, of weighted and of player-specific
congestion games. We proceed with a discussion of combinatorial structures in con-
gestion games and provide a short introduction to matroids. Thereafter, we consider
the notion of Nash equilibria in congestion games and discuss the potential function
method. This method is frequently applied to prove the existence of Nash equilib-
ria. Then, we give a summary of previously known results and point out to related
models whenever appropriate. Finally, we give a more detailed outline of the results
presented in this thesis.

1.1 Formal Definition of Congestion Games

In this section, we provide a formal introduction to congestion games. At first, we
define congestion games as introduced by Rosenthal [Ros73]. Throughout this thesis,
we refer to his definition by the term standard congestion game. We proceed with
weighted congestion games in which the congestion of a resource depends on the play-
ers’ weights. Then we define player-specific congestion games in which the players
compute their payoffs with respect to player-specific payoff functions. Probably, the
first to study these two classes of games is Milchtaich [Mil96]. Note that in correspon-
dence to most existing literature on these models we refer to each player’s objective
function by the term latency function instead of payoff function which is usually em-

3
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ployed in game theory. Furthermore, we change the direction of optimization as we
assume that players want to minimize their latency instead of maximize their payoff.

Throughout this thesis, the term congestion game refers to any kind of game defined
in this section.

1.1.1 Standard Congestion Games

A standard congestion game Γ is a tuple (N , R, (Σi)i∈N , (ℓr)r∈R), where

N = {1, . . . , n} is a set of n players,

R = {r1, . . . , rm} a set of m resources,

Σi ⊆ 2R the strategy space of player i, and

ℓr : N→ N a latency function associated with resource r.

In this thesis, N denotes the set of integers {0, 1, 2, 3, . . .}. Furthermore, we assume
that the latency functions ℓr are non-decreasing.

A state of the game Γ is a vector S = (s1, . . . , sn) where player i ∈ N chooses strategy
si ∈ Σi. Given a state S, S ⊕ s′i denotes the state

(s1, . . . , si−1, s
′
i, si+1, . . . , sn) ,

i. e., the state S except that player i chooses strategy s′i instead of si. For every state
S ∈ Σ1 × . . .× Σn, the congestion xr(S) on resource r is defined as xr(S) = |{i | r ∈
si}|, that is, xr(S) is the number of players sharing resource r in state S. Given a
state S, the latency ℓi(S) of player i is the sum of the latencies of the resources the
player allocates, i. e.,

ℓi(S) =
∑

r∈si

ℓr(xr(S)) .

Furthermore, given a state S, we call a strategy s∗i ∈ Σi a better response of player i
to S if ℓi(S ⊕ s∗i ) < ℓi(S). Additionally, we call a strategy s∗i ∈ Σi a best response of
player i to S if s∗i is a better response and if ℓi(S ⊕ s∗i ) ≤ ℓi(S ⊕ s′i) for all s′i ∈ Σi.
Hence, a best response is the best available better response. Throughout this thesis,
we say that a player plays a better/best response in state S if that player switches to
a better/best response to S. That is, afterwards we obtain a new state S′.

1.1.2 Weighted Congestion Games

In a weighted congestion game, we additionally associate a weight ωi ∈ N \ {0} with
every player i ∈ N . In this case, we adopt the definition of the congestion of a
resource in a particular state of the game in the following way. The congestion xr(S)
on resource r in state S is the sum of the weights of all players sharing resource r in
state S, i. e., xr(S) =

∑

i:r∈si
ωi.

4



1.2 Combinatorial Structures in Congestion Games

1.1.3 Player-specific Congestion Games

In a player-specific congestion game, we assume that each player computes its latency
according to player-specific latency functions instead of common latency functions.
Formally, for every player i ∈ N and every resource r ∈ R we are given a non-
decreasing, player-specific latency function ℓi

r : N→ N. Then, the latency of player i
in state S equals ℓi(S) =

∑

r∈si
ℓi
r(xr(S)).

1.2 Combinatorial Structures in Congestion Games

In the above definition of congestion games, we did not impose restrictions on the
players’ strategy spaces. Typically however, each strategy space possesses a combi-
natorial structure implicitly defined by an oracle determining if a given subset of the
resources is feasible or not. For instance, a player’s strategy space could be the set of
bases of a matroid (see Definition 1.1). Still, in this case the combinatorial structures
among different strategy spaces can differ as we did not assume that the resources
have a common combinatorial interpretation. They can, for instance, be the set of
edges of a graph, and the players’ strategy spaces correspond to those subsets of the
edges possessing a specific combinatorial structure, e. g. paths or trees. Below we
mention three classes of congestion games in which each strategy space has a spe-
cific combinatorial structure, or in which the resources have a common combinatorial
interpretation. We call a game Γ

singleton congestion game if for every player i ∈ N and every strategy si ∈
Σi : |si| = 1, i. e., if all strategies are singleton sets. Note that singleton con-
gestion games are closely related to selfish load balancing scenarios in which
players assign jobs to machines.

network congestion game if the set of resources R is the set of edges of an (un-)
directed graph G = (V,E), and if for every player i the strategy space Σi is the
set of paths connecting a particular source si ∈ V with a particular sink ti ∈ V
in the network.

matroid congestion game if for every player i ∈ N the player’s strategy space
Σi is the set of bases of a matroid. Note that singleton congestion games are
matroid congestion games. Another prominent example of this class of games
are spanning tree congestion games in which players strive to allocate spanning
trees of a graph. For an introduction to matroids and a formal definition of
matroid congestion games we refer the reader to the next section.

We refer to a congestion game by the term general if we do not impose restrictions on
the combinatorial structure of the game. In this case, the players’ strategy spaces are
given explicitly. Furthermore, we call a congestion game symmetric if Σ1 = . . . = Σn,
i. e., if the strategy spaces are equal. Otherwise, we call it asymmetric.

5



Chapter 1 — Introduction

1.3 A Short Introduction to Matroids

Matroids are a well known and extensively studied combinatorial structure. Among
others, they are applicable to minimum spanning trees in undirected graphs. Ma-
troids are exactly those structures possessing the greedy property, that is, an opti-
mum solution can be computed with a greedy algorithm. Furthermore, they possess
the exchange property. This property comes in various different characterizations of
which we present some below. Almost all of these properties are common knowledge
and proofs follow easily from the definition of matroids. Hence, we omit most of them
and refer the reader to [Sch03].

Definition 1.1. A tuple M = (R,I) is called a matroid if R = {r1, . . . , rm} is a
finite set of resources and I is a nonempty collection of subsets of R such that

1. if I ∈ I and J ⊆ I, then J ∈ I.

2. if I, J ∈ I and |J | < |I|, then there exists a resource r ∈ I \J with J ∪{r} ∈ I.

Given a matroid M = (R,I), we call a set I ⊆ R independent if I ∈ I, otherwise
we call it dependent. Furthermore, we call an inclusion-wise maximal independent
set a base of M. It follows easily from the definition of matroids that all bases of a
matroid M have the same size. This size is usually denoted by the rank rk(M) of
the matroid. Prominent examples of matroids are

k-Uniform Matroids A k-uniform matroid is determined by a set of resources R
and an integer k ≤ |R|. The independent sets are the subsets of R of size at
most k, the bases are the subsets of size exactly k.

Linear Matroids A linear matroid is determined by an n×m matrix A. The inde-
pendent sets are the subsets of the columns of A which are linearly independent,
the bases are the maximal linearly independent subsets of the columns.

Graphical Matroids A graphical matroid is determined by an undirected graph
G = (V,E). The independent sets are the subsets E′ of the edges E such that
G′ = (V,E′) is a forest, i. e., G′ = (V,E′) does not contain a cycle. The bases
are the spanning trees of G.

Usually the exchange property of matroids refers to the following characterization of
matroids. This corollary is essentially true due to the second condition in Defini-
tion 1.1.

Corollary 1.2. Let R be a set of resources and let S be a nonempty collection of
subsets of R. Then, the following are equivalent:

• S is the collection of bases of a matroid over R.

• if B1, B2 ∈ S and r1 ∈ B1 \ B2, then there exists r2 ∈ B2 \ B1 such that
B1 ∪ {r2} \ {r1} ∈ S.

6
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A more general formulation of the exchange property is the following one.

Corollary 1.3. Let B1, B2 be bases of a matroid M = (R,I). Consider the bipartite
graph G(B1∆B2) = (V,E) with

• V = (B1 \B2) ∪ (B2 \B1), and

• E = {{r1, r2} | r1 ∈ B1 \B2, r2 ∈ B2 \B1 : B1 ∪ {r2} \ {r1} ∈ I}.

There exists a perfect matching in the graph G(B1∆B2).

Sometimes we consider the k-truncation of a matroid M = (R,I). Given k ∈ N we
callM′ = (R,I ′) with I ′ = {I ∈ I | |I| ≤ k} the k-truncation ofM. It can easily be
verified that M′ is a matroid, too.

We call a matroidM = (R,I) weighted if we are also given a weight function w : R →
N and seek to find a basis of M of minimum weight. The weight of an independent
set I is given by w(I) =

∑

r∈I w(r). A minimum weight basis can be computed by a
greedy algorithm. This algorithm works as follows. It starts with the empty set S,
and iteratively adds minimum weight resources r ∈ R \ S to S such that S ∪ {r} is
an independent set. Given a polynomial time algorithm determining whether a set is
independent or not, this is a polynomial time algorithm. A useful characterization of
a minimum weight basis is the next one.

Corollary 1.4. LetM = (R,I) be a weighted matroid. A basis B ∈ I is a minimum
weight basis of M if and only if there exists no basis B∗ ∈ I with |B \ B∗| = 1 and
w(B∗) < w(B).

The next two corollaries extend the exchange property to weighted matroids in a
natural way.

Corollary 1.5. Let M = (R,I) be a weighted matroid with weights w : R → N and
let Bopt be a basis of M with minimum weight. Suppose that the weight of a single
resource ropt ∈ Bopt is increased such that Bopt is no longer of minimum weight. In
order to obtain a minimum weight basis again, it suffices to exchange ropt with a
resource r∗ ∈ R of minimum weight such that Bopt ∪ {r

∗} \ {ropt} is a basis.

Proof. Let B′
opt be a minimum weight basis with respect to the increased weight of

ropt. Let P be a perfect matching of the graph G(Bopt∆B′
opt) and denote by e the edge

from P that contains ropt. Recall that such a matching exists due to Corollary 1.3.
For every edge {r, r′} ∈ P \ {e}, it holds w(r) ≤ w(r′) as, otherwise, if w(r) > w(r′),
the basis Bopt ∪ {r

′} \ {r} would have smaller weight than Bopt.

Now denote by r′opt the resource that is matched with ropt, i. e., the resource such
that e = {ropt, r

′
opt} ∈ P . Since w(r) ≤ w(r′) for every {r, r′} ∈ P \ {e}, the weight of

Bopt \ {ropt} is bounded from above by the weight of B′
opt \ {r

′
opt}. By the definition

of the matching P , Bopt ∪ {r
′
opt} \ {ropt} is a basis. By our arguments above, the

weight of this basis is bounded from above by the weight of B′
opt. Hence, this basis is

optimal with respect to the increased weight of ropt.

7
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Corollary 1.6. Let M = (R,I) be a matroid with weights w : R → N and let Bopt

be a basis of M with minimum weight. Suppose that the weight of a single resource
r∗ ∈ R \ Bopt is decreased such that Bopt is no longer of minimum weight. In order
to obtain a minimum weight basis again, it suffices to exchange r∗ with a resource
ropt ∈ Bopt of maximum weight such that Bopt ∪ {r

∗} \ {ropt} is a basis.

The proof of Corollary 1.6 follows the same arguments as the proof of Corollary 1.5.
Hence, we omit it.

1.3.1 Matroid Congestion Games

We are now ready to state a formal definition of matroid congestion games.

Definition 1.7. We call a standard congestion game Γ = (N ,R, (Σi)i∈N , (ℓr)r∈R)
matroid congestion game if for every player i ∈ N , Mi := (Ri,Ii) with Ri = ∪s∈Σi

s
and Ii = {I ⊆ S | S ∈ Σi} is a matroid, and if Σi is the set of bases of Mi.
Additionally, we denote by rk(Γ) = maxi∈N rk(Mi) the rank of the matroid congestion
game Γ.

Occasionally, we assume that players only play best responses that exchange the least
number of resources compared to their current strategies. We call such best responses
lazy best responses and define them formally as follows.

Definition 1.8. Given a state S of a standard matroid congestion game, we call a
best response s∗i of player i lazy if it can be decomposed into a sequence of strategies

si = s0
i , s

1
i , . . . , s

k
i = s∗i with |sj+1

i \sj
i | = 1 and ℓi(S⊕sj+1

i ) < ℓi(S⊕sj
i ), for 0 ≤ j < k.

From Corollary 1.4 we can conclude that whenever a player can play a best response,
then there exists a lazy best response for this player, too.

The above definitions are formulated in terms of standard congestion games. However,
both definitions obviously extend to weighted or player-specific congestion games.

1.3.2 A Characterization of Non-Matroid Set Systems

Matroids are uniquely characterized by their exchange properties. Referring to Corol-
laries 1.5 and 1.6 one might also want to call them (1, 1)-exchange properties. Next, we
present a novel characterization of non-matroid set systems in which (1, 2)-exchanges
need to be performed in order to obtain an optimum solution again.

Let S be a set system on a set R of resources, i. e., S is a collection of subsets of
R. The set system S is called an antichain if for every X ∈ S, no proper superset
Y ⊃ X belongs to S. Moreover, we call S a non-matroid set system if the tuple
(R, {X ⊆ S | S ∈ S}) is not a matroid.

Definition 1.9 ((1, 2)-exchange property). Let S be an antichain on a set of resources
R. We say that S satisfies the (1, 2)-exchange property if we can identify three distinct
resources a, b, c ∈ R with the property that for every given k ∈ N with k > |R|, we
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can choose a weight w(r) ∈ {1, k + |R|} for every r ∈ R\ {a, b, c} such that for every
choice of the weights of a, b, and c with |R| ≤ w(a), w(b), w(c) ≤ k, the following
property is satisfied:

• If w(a) + |R| ≤ w(b) + w(c), then for every set S ∈ S with minimum weight,
a ∈ S and b, c /∈ S.

• If w(a) ≥ w(b) + w(c) + |R|, then for every set S ∈ S with minimum weight,
a /∈ S and b, c ∈ S.

We now prove that every non-matroid set system possesses the (1, 2)-exchange prop-
erty.

Lemma 1.10. Let S be an antichain on a set of resources R. Furthermore, let
I = {X ⊆ S |S ∈ S}, and assume that (R,I) is not a matroid, i. e., S is not the set
of bases of some matroid. Then S possesses the (1, 2)-exchange property.

Proof. Since (R,I) is not a matroid, there exist, due to Corollary 1.2, two sets X,Y ∈
S and a resource x ∈ X \ Y such that for every y ∈ Y \X, the set X \ {x} ∪ {y} is
not contained in S.

Let X and Y be such sets and let x ∈ X be such a resource. Consider all subsets
Y ′ of the set X ∪ Y \ {x} with Y ′ ∈ S. Every such set Y ′ can be written as Y ′ =
X \{x = x1, . . . , xl}∪{y1, . . . , yl′} with xi ∈ X \Y and yi ∈ Y \X and l+ l′ > 2. This
is true since l ≥ 1 holds per definition and l′ ≥ 1 holds because S is an antichain.
Furthermore l and l′ cannot both equal 1 as otherwise we obtain a contradiction
to the choice of X,Y , and x. Among all these sets Y ′, let Ymin denote one set for
which l′ is minimal. Observe that we can replace Y by Ymin without changing the
aforementioned properties of X, Y , and x. Hence, in the following, we assume that
Y = Ymin, that is, we assume that Y \X = Y ′ \X for all of the aforementioned sets
Y ′.

We claim that we can always identify resources a, b, c ∈ X ∪ Y such that either
a ∈ X \ Y and b, c ∈ Y \X or a ∈ Y \ X and b, c ∈ X \ Y with the property that
for every Z ⊆ X ∪ Y with Z ∈ S, if a 6∈ Z, then b, c ∈ Z. In order to see this, we
distinguish between the cases l′ = 1 and l′ ≥ 2:

1. Let Y \X = {y1} and hence X \ Y = {x = x1, . . . , xl} with l ≥ 2. Then we set
a = y1, b = x1, and c = x2. Consider a set Z ⊆ X ∪ Y with Z ∈ S and a 6∈ Z.
Then Z = X since S is an antichain, and hence b, c ∈ Z.

2. Let Y \X = {y1, . . . , yl′} with l′ ≥ 2. Then we set a = x, b = y1, and c = y2.
Consider a set Z ⊆ X ∪ Y with Z ∈ S and a 6∈ Z. Since we assumed that
Y = Ymin, it must be b, c ∈ Z as otherwise Z \X 6= Y \X.

Now we define weights for the resources in R \ {a, b, c} such that the properties as
stated in Definition 1.9 are satisfied. Let k ∈ N be chosen as in Definition 1.9, that is,
w(a), w(b), w(c) ∈ {|R|, . . . , k}. We set w(r) = k + |R| for every resource r /∈ X ∪ Y
and w(r) = 1 for every resource r ∈ (X ∪ Y ) \ {a, b, c}. First of all, observe that
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in the first case the weight of Y equals w(a) + |Y | − 1 < k + |R| and that in the
second case the weight of X equals w(a) + |X| − 1 < k + |R|. Hence, a set Z ∈ S
that contains a resource r /∈ X ∪ Y can never have minimum weight as its weight is
at least k + |R|. Thus, only sets Z ∈ S with Z ⊆ X ∪ Y can have minimum weight.
Since for such sets, a /∈ Z implies b, c ∈ Z, we know that every set with minimum
weight must contain a or it must contain b and c.

Consider the case w(a) + |R| ≤ w(b) + w(c) and assume for contradiction that there
exists an optimal set Z∗ with a /∈ Z∗. Due to the choice of a, b, and c, the set Z∗

must then contain b and c. Hence w(Z∗) ≥ w(b) + w(c). Furthermore, again due to
the choice of a, b, and c, there exists a set Z ′ ⊆ X ∪ Y with a ∈ Z ′ and b, c /∈ Z ′.
The weight of Z ′ is w(Z ′) = w(a) + |Z ′| − 1 < w(a) + |R| ≤ w(b) + w(c) ≤ w(Z∗),
contradicting the assumption that Z∗ has minimum weight. Hence, every optimal
set Z∗ must contain a. If Z∗ additionally contains b or c, then its weight is at least
w(a) + |R| > w(Z ′). Hence, in the case w(a) + |R| ≤ w(b) + w(c) every optimal set
Z∗ contains a but it does not contain b and c.

Consider the case w(a) ≥ w(b) + w(c) + |R| and assume for contradiction that there
exists an optimal set Z∗ with b /∈ Z∗ or c /∈ Z∗. Then Z∗ must contain a and
hence its weight is at least w(a). Due to the choice of a, b, and c, there exists a set
Z ′ ⊆ X ∪ Y with a /∈ Z ′ and b, c ∈ Z ′. The weight of Z ′ is w(Z ′) = w(b) + w(c) +
|Z ′| − 2 < w(b) + w(c) + |R| ≤ w(a) ≤ w(Z∗), contradicting the assumption that
Z∗ has minimum weight. Hence, every optimal set Z∗ must contain b and c. If Z∗

additionally contains a, then its weight is at least w(b) + w(c) + |R| > w(Z ′). Hence,
in the case w(a) ≥ w(b) + w(c) + |R| every optimal set Z∗ contains b and c but it
does not contain a.

1.4 Nash Equilibria in Congestion Games

As we already mentioned in the introduction, Nash equilibria are the predominant
solution concept to congestion games. Intuitively, a state is a Nash equilibrium if
none of the players can switch to a different strategy in order to decrease its latency.
Below, we give a formal definition of such states. Before, however, we need to revisit
some assumptions usually made about the players’ knowledge and their behavior.

In congestion games, it is assumed that players only choose pure strategies instead of
mixed strategies, i. e., probability distributions over all strategies. In the latter case,
the latency of a player in a particular state is its expected latency with respect to
the chosen distributions. In computer science the assumption that the players only
choose pure strategies is quite natural and generally accepted, as for various scenarios
“randomizing over strategies is not a realistic option” [ADTW03]. This is especially
true in the presence of pure Nash equilibria.

Additionally, it is assumed that players have complete knowledge about the game
meaning each player knows the entire set of resources, its complete strategy space,
its latency functions and in every state of the game the choices of its opponents. In
this case, each player has access to the information required to determine whether
the selected strategy is the best one to choose or if a better one is available.
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Furthermore, it is assumed that the players act rationally meaning that their behavior
is uniquely determined by their latencies. That is, a player which changes its strategy
always switches to a strategy strictly decreasing its latency. Players could also make
their choices on the basis of additional likes and dislikes not being captured by the
latency functions. For example, a player might not want to share a resource with
a particular other player. Or, players could behave strategically and anticipate the
behavior of others in order to gain advantages in the long run. Obviously, such
constraints are not captured by the payoff functions.

Under these assumptions, a pure Nash equilibrium is defined as a state in which none
of the players can unilaterally decrease its latency by changing its strategy given fixed
choices of the others.

Definition 1.11. Consider a standard, weighted or player-specific congestion game
Γ and let S be a state of Γ. We call S pure Nash equilibrium if and only if for every
player i ∈ N and every strategy s′i ∈ Σi

ℓi(S) ≤ ℓi(S ⊕ s′i) .

In terms of better responses, none of the players can play a better response.

In this thesis, we only consider pure Nash equilibria. One might also consider mixed
Nash equilibria which are defined in a similar way except that players also play mixed
strategies. Therefore, we omit the term pure and refer by the term Nash equilibrium
to a pure one.

Approximate Nash Equilibrium A slight relaxation of the notion of a Nash
equilibrium is that of an approximate Nash equilibrium. It refers to scenarios in
which players are ε-greedy meaning that each of them plays a better response if and
only if its latency would decrease by more than a factor of 1 + ε for some ε > 0.

Definition 1.12. Let ε > 0. Consider a standard, weighted or player-specific con-
gestion game Γ and let S be a state of Γ. We call S approximate Nash equilibrium
if and only if for every player i ∈ N and every strategy s′i ∈ Σi

ℓi(S)

ℓi(S ⊕ s′i)
< 1 + ε .

In terms of better responses, none of the ε-greedy players can play a better response,
i. e., switch to a strategy that decreases its latency by a factor of more than 1 + ε.

The notion of an approximate Nash equilibrium is motivated by the following obser-
vation. If the anticipated latency gain of a player is small compared to its current
latency the player might not want to change its strategy. This is especially true if
changing a strategy is not for free.
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1.4.1 The Potential Function Method

A frequently applied technique to prove the existence of Nash equilibria in congestion
games is the potential functions method. A potential function Φ maps every state of a
congestion game to an element from a totally ordered set. Furthermore, the potential
function has the property that there exists a better state with less potential in the
neighborhood of the state currently considered if and only if this state can be gener-
ated by letting one player play a better response. Throughout this thesis we apply
this method to various classes of congestion games in order to prove the existence of
Nash equilibria. Subsequently, we give a short introduction to this technique which
is studied in detail by Monderer and Shapley [MS96].

Let X be a totally ordered set and let Γ be a congestion game. Monderer and Shapely
call a function Φ: Σ1, . . . ,Σn → X ordinal potential function if and only if for every
state S of the game, every player i ∈ N and every strategy s∗i ∈ Σi

Φ(S ⊕ s∗i )− Φ(S) < 0 ⇔ ℓi(S ⊕ s∗i )− ℓi(S) < 0 . (1.1)

Obviously, if such an ordinal potential function exists, then Γ possesses a Nash equi-
librium since the Cartesian product of the players’ strategy spaces is finite and hence
there exists a minimum in the range of Φ. Monderer and Shapely call a conges-
tion game ordinal potential game if an ordinal potential function exists. Further-
more, they call a congestion game weighted potential game if a potential function
Φ: Σ1, . . . ,Σn → R≥0 and a vector (wi)i∈N , wi ∈ R>0, exists such that for every
player i ∈ N and every strategy s∗i ∈ Σi

Φ(S ⊕ s∗i )− Φ(S) = wi · (ℓi(S ⊕ s∗i )− ℓi(S)) . (1.2)

The reader should note the difference between a player’s weight ωi in a weighted
congestion game and the weight wi associated with player i in the weighted potential
function.

Finally, Monderer and Shapely call a weighted potential game exact potential game
if wi = 1 for every player i ∈ N . A prominent class of exact potential games is the
class of standard congestion games.

Proposition 1.13 (Rosenthal [Ros73]). Every standard congestion game Γ is an
exact potential game.

Proof. Consider the potential function Φ : Σ1 × · · · × Σn → N with

Φ(S) =
∑

r∈R

xr(S)
∑

i=1

ℓr(i) . (1.3)

Let x
(i)
r (S) denote the number of players from the subset {1, . . . , i} of the players

using resource r in state S, and let ℓ′i(S) =
∑

r∈si
ℓr(x

(i)
r (S)). Hence, we can rewrite

Φ(S) as

Φ(S) =
∑

i∈N

∑

r∈si

ℓr(x
(i)
r (S)) =

∑

i∈N

ℓ′i(S) .
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Observe that especially for the last player ℓ′n(S) = ℓn(S) holds. Hence, whenever
player n switches to a different strategy s∗n: Φ(S ⊕ s∗n)−Φ(S) = ℓn(S ⊕ s∗n)− ℓn(S).
However, since the players can be considered in an arbitrary order Φ(S⊕s∗i )−Φ(S) =
ℓi(S ⊕ s∗i ) − ℓi(S) holds for every player i switching to a different strategy s∗i . We
conclude that Φ is an exact potential function.

In this thesis, we refer to the potential function as defined in Equation 1.3 by Rosen-
thal’s potential function. Potential functions are a very elegant way to prove the
existence of Nash equilibria. From the existence of a potential function we can also
conclude that the local search algorithm, which sequentially selects the next player
to play a better or best response, computes a Nash equilibrium after a finite number
of iterations. In other words better and best response dynamics in which one after
the other player plays a better or best response are guaranteed to converge to a Nash
equilibrium.

Unfortunately, not every class of congestion games is a class of potential games al-
though every game from the class possesses a Nash equilibrium. This is especially
true for weighted or for player-specific matroid congestion games. The obvious way
to prove that a class of games is not a class of potential games is to present games
in which the local search algorithm can cycle, i. e., return to a state which it already
visited. In order to prove the existence of Nash equilibria in these games different
techniques are required. Such techniques are presented in Chapter 2.

1.5 State of the Art

Congestion games have a long history in economics as they capture the essence of
many environments in which selfish players independently allocate resources. Prob-
ably, researchers have spent most attention to selfish routing, i. e., to network con-
gestion games in which players strive to select shortest paths in a network. First
results in a slightly different scenario date back to 1920, when Pigou [Pig20] consid-
ered transportation networks with selfish players and observed that selfish behavior
can reduce the global performance. This model assumes an infinite number of players
each of which has an infinitesimal impact on the congestion of the edges it allo-
cates. Probably, Wardorp [War52] was the first to study such games systematically.
Roughgarden [Rou05] provides a detailed introduction to selfish routing and discusses
relationships between selfish routing and routing on the Internet.

Only recently, congestion games have attracted much attention among computer sci-
entists. At first, various computational questions arise when considering congestion
games. Probably the most obvious question asks for the computational complexity of
Nash equilibria. Secondly, since the design and use of communication networks play
an important role in the computer science community, researchers have applied con-
gestion games to such networks in order to gain more insights on the impact of selfish
behavior into the global performance. For instance, researchers successfully applied
congestion games to network design problems [ADK+04] as described in the introduc-
tion and to selfish load balancing scenarios [EDKM03, FPMV07, GLMT06, KP99] as
frequently observed in the Internet or in wireless networks.
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Subsequently, we will summarize previously known results about congestion games.
We focus on the existence and computational complexity of Nash equilibria and on
sequential and concurrent improvement dynamics. Furthermore, we comment on
several extensions and refinements of congestion games that have been considered.

1.5.1 Existence of Nash Equilibria

It is well known that congestion games do not posses Nash equilibria in general.
In this paragraph, we summarize all known results regarding the existence of Nash
equilibria in standard, weighted and player-specific congestion games.

Standard Congestion Games. Applying an exact potential function argument
Rosenthal [Ros73] proves that every standard congestion game possesses a Nash equi-
librium. This potential function neither relays on the assumption that the latency
functions are non-decreasing nor that the players’ strategy spaces have a specific
combinatorial structure. Proposition 1.13 states this result formally.

Player-specific Congestion Games. In general, player-specific congestion games
may not possess Nash equilibria [Mil96, Mil06]. On the other hand, Milchtaich [Mil96]
proves that every player-specific congestion game possesses an equilibrium if the play-
ers’ strategies are singleton sets, although these games are not potential games. In
Section 2.2 we extend his proof towards player-specific matroid congestion games.
Gairing et al. [GMT06] consider a restricted class of player-specific singleton conges-
tion games. Namely, they consider such games with linear latency functions. They
show that in contrast to general player-specific singleton games these games are po-
tential games. Additionally, Mavronicolas et al. [MMMT07] consider the existence
of potential functions in standard singleton congestion games with player-specific
constants.

Milchtaich [Mil06] also considers player-specific network congestion games and
presents a game that does not possess an equilibrium. Because of that, he pro-
poses to characterize those player-specific network congestion games with respect to
the topology of the network which always possess a Nash equilibrium. First results
concerning this issue are presented in [Mil06].

Weighted Congestion Games. Similar to player-specific congestion games weight-
ed congestion games do not necessarily possess Nash equilibria [FKS05, GMV05].
Again, on the other hand, several authors independently observe that weighted sin-
gleton congestion games are ordinal potential games, and hence every such game
possesses a Nash equilibrium [EDKM03, FPT04, FKK+02]. Furthermore, Fotakis et
al. [FKS05] prove that every weighted network congestion game with linear latency
functions possesses a Nash equilibrium, although weighted network congestion games
with arbitrary non-decreasing latency functions do not in general [FKS05, GMV05].
The proof of the first result relies on a weighted potential function that applies to
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every weighted congestion game with affine latency functions regardless of the com-
binatorial structure of the players’ strategy spaces. A similar proof is presented
in [Mey06].

Player-Specific Congestion Games with Weighted Players. Milchtaich ad-
dresses the existence of Nash equilibria in congestion games which are both player-
specific and weighted [Mil96]. He observes that Nash equilibria do not necessarily
exist even in such singleton games. However, Georgiou et al. [GPP06] and Gair-
ing et al. [GMT06] conjecture that every such game possesses a Nash equilibrium if
the player-specific latency functions are linear functions without offsets. Georgiou et
al. [GPP06] prove this conjecture for games with three players and for games with
two resources, whereas Gairing et al. [GMT06] show that potential functions are no
suitable tool to solve this open problem for general games.

1.5.2 Computational Complexity of Nash Equilibria

There are two fundamental computational questions related to Nash equilibria in
congestion games. Given a class of congestion games which, in general, do not possess
Nash equilibria we like to determine efficiently if a particular game possesses an
equilibrium. Subsequently, we refer to this problem by the term existence problem.
Furthermore, given a class of games which are guaranteed to possess Nash equilibria,
we like to compute an equilibrium efficiently. Below, we refer to this problem by
the term search problem. In this section, we summarize previously known results
regarding both problems.

The Existence Problem. For various classes of congestion games which, in gen-
eral, do not possess Nash equilibria it is known that the related decision problem
is NP-complete. Namely, for weighted network congestion games with arbitrary
non-decreasing latency functions and for singleton congestion games which are both
weighted and player-specific it is NP-complete to determine if a given game possesses
an equilibrium [DS06]. In Section 2.4 we extend these completeness results towards
player-specific network congestion.

The Search Problem in Standard Congestion Games. Obviously, the com-
plexity of computing Nash equilibria in standard congestion games is equivalent to the
complexity of computing a local optimum of Rosenthal’s potential function [FPT04].
Subsequently, we first give a short introduction to local search problems, and summa-
rize results about the complexity of computing Nash equilibria in standard congestion
games afterwards.

A local search problem Π is given by its set of instances IΠ. For every instance I ∈ IΠ,
we are given a finite set of feasible solutions F(I), an objective function c : F(I)→ N,
and for every feasible solution S ∈ F(I), a neighborhood N (S, I) ⊆ F(I). Given an
instance I of a local search problem, we seek for a locally optimal solution S∗, i. e., a
solution that does not have a strictly better neighbor. A neighbor S′ of a solution S
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is strictly better if the objective value c(S′) is larger or smaller than c(S) in the case
of a maximization or minimization problem, respectively. The class PLS (polynomial
time local search) is defined by Johnson et al. [JPY88]. It contains all local search
problems with polynomial time-searchable neighborhoods. Johnson et al. also define
the notion of PLS-reduction and prove that complete problems with respect to this
kind of reduction exist. For example, they prove that computing a partition of a graph
that is locally optimal with respect to the Kernighan-Lin local search algorithm is
PLS-complete. Later, Schaeffer and Yannakakis [SY91] introduce a more restricted
kind of PLS-reduction called tight PLS-reduction. This kind of reduction preserves
lower bounds on the length of local search paths.

Fabrikant et al. [FPT04] notice the close relationship between the complexity of com-
puting Nash equilibria in standard congestion games and the complexity of comput-
ing locally optimal solutions. The natural local search algorithm for computing Nash
equilibria in a congestion game works as follows. As long as the current state is not
a Nash equilibrium select an unsatisfied player and let this player play a better or
best response. If best responses can be computed efficiently than the search prob-
lem belong to PLS. As their main result Fabrikant et al. [FPT04] prove that it is
PLS-complete to compute a Nash equilibrium of standard asymmetric network con-
gestion games. However, their reduction is quite involved as it reconsiders a very
complicated PLS-reduction which shows that computing local optimal assignments
of a certain kind of weighted SAT formulas is PLS-complete [SY91]. A much sim-
pler reduction has been presented in [ARV08] which even holds in case of networks
with linear latency functions without offsets. This proof relies on a reduction from
threshold games for which PLS-completeness follows easily by a reduction from the
local search variant of MaxCut. In a threshold game each player either allocates a
single resource on its own, or shares a unique bunch of resources with the other play-
ers. A formal definition of these games and more details about the reductions are
given in Section 4.4. The authors of [ARV08] also prove PLS-completeness for other
classes of structured standard congestion games including market sharing games with
polynomially bounded costs [Mir05] and overlay network design games.

Besides the previously mentioned negative results, there are also some positive ones.
Fabrikant et al. [FPT04] present a polynomial time algorithm computing a Nash equi-
librium in standard symmetric network congestion games. However, this algorithm
is not a local search algorithm as it reduces the problem to a min-cost flow problem.
Additionally, Ieong et al. [IMN+05] prove that in case of singleton strategy spaces the
local search algorithm is guaranteed to terminate quickly. In Section 3.1 we extend
their proof towards matroid congestion games.

One might ask whether the complexity of computing Nash equilibria changes if one
relaxes the notion of equilibria and considers approximate Nash equilibria. In gen-
eral, this is not the case, as Skopalik and Vöcking [SV08] prove that computing an
approximate Nash equilibrium in an asymmetric standard congestion game is PLS-
complete. Again, this proof is quite involved as the players’ strategy spaces and the
latency functions have to be defined very carefully. On the other hand, Chien and
Sinclair [CS07] prove that approximate equilibria in symmetric congestion games can
be computed efficiently if the latency functions satisfy the α-bounded jump condition.
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A latency function satisfies the α-bounded jump condition if ℓ(x + 1)/ℓ(x) ≤ α for
every 1 ≤ x ≤ n.

The Search Problem in Player-specific or Weighted Singleton Congestion

Games. The complexity of computing a Nash equilibria in player-specific singleton
congestion games is addressed by Milchtaich [Mil96]. His existence proof is construc-
tive and implicitly describes an efficient algorithm computing an equilibrium. In con-
trast to this positive result the complexity of computing Nash equilibria in weighted
singleton congestion games is a challenging open problem. Positive results are only
known in two special cases. In the case of resources with linear latency functions
and symmetric players a Nash equilibrium can be computed using Graham’s LPT
scheduling algorithm [FKK+02]. In the same model, but with asymmetric strategy
spaces, Gairing et al. [GLMM04] present an efficient algorithm computing a Nash
equilibrium.

Finally, the authors of [AS07] consider standard network congestion games in which a
player is prohibited to use certain edges. Obviously, such games can be formulated in
terms of player-specific network congestion games however, they are potential games.
In [AS07] it is shown that computing an equilibrium is PLS-complete even in games
with only three players.

1.5.3 Sequential Best Response Dynamics

Best response dynamics arise if players sequentially play best responses. It is of partic-
ular interest when considering such dynamics whether they converge to an equilibrium
at all, and if so, how long it takes. Obviously, in case of potential games they are
guaranteed to converge, whereas they can cycle, i. e., return to states already visited,
in non-potential games. Below, we summarize previously known results on the con-
vergence time of best response dynamics. Note that these results are closely related
to the computational complexity of Nash equilibria in the case of potential games.

Standard Congestion Games. Fabrikant et al. [FPT04] observe that the con-
vergence time of best response dynamics in standard congestion games can be expo-
nential. From their PLS-completeness result about the computational complexity of
Nash equilibria they conclude that there exist games with appropriately chosen initial
states from which the number of best responses until players finally reach an equi-
librium is exponentially. Note that these results hold, regardless of the next player
to play a best response, as in every intermediate state there is exactly one player
which can play a best response. This negative result still holds in case of standard
symmetric network congestion games, although an equilibrium can be computed ef-
ficiently [ARV08, FPT04]. On the positive side, best response dynamics converge
quickly in standard singleton congestion games [IMN+05]. In Section 3.1 we extend
this result towards standard matroid congestion games. Additionally, best response
dynamics in standard network congestion games with linearly independent paths are
guaranteed to terminate quickly [Fot08]. In such games each path contains an edge
that is not contained in any other path.
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The negative result about the convergence time also holds in general standard conges-
tion games with ε-greedy players, i. e., in games in which players only deviate if their
latency decreases by a relative factor of at least 1 + ε [ARV08, CS07, SV08]. If, how-
ever, the latency functions satisfy the α-bounded jump condition then best response
dynamics are guaranteed to terminate quickly in symmetric congestion games [CS07].

Weighted Congestion Games. Even-Dar et al. [EDKM03] consider better and
best response dynamics in weighted singleton congestion games under different as-
sumptions on the players’ weights, the latency functions, and the schedule selecting
the next player to play a best response. For most scenarios they prove pseudo-
polynomial upper bounds and corresponding lower bounds on the convergence time.
Goldberg [Gol04] considers a schedule which selects the next player to act at ran-
dom. This player then migrates to a randomly selected resource if this improves
its latency. In general, the expected time to reach a Nash equilibrium is pseudo-
polynomial whereas it is polynomial in the case of unweighted players.

Player-Specific Congestion Games. Milchtaich observes that best response dy-
namics in player-specific singleton congestion games can cycle. However, he also
shows that from every state of such a game there exists a polynomially long sequence
of best responses leading to a Nash equilibrium. Hence, random best response dy-
namics which select the next player to deviate uniformly at random are guaranteed
to reach an equilibrium with probability one. In Section 3.3 we extend this result to-
wards player-specific matroid congestion games and better responses. We also address
the expected time until random best response dynamics in player-specific singleton
congestion games terminate at an equilibrium.

At this point, we like to mention that better and best response dynamics in two-
sided matching markets possess similar properties as such dynamics in player-specific
singleton congestion games do. For an introduction to two-sided matching markets,
we refer the reader to Section 1.5.7.

1.5.4 Concurrent Improvement Dynamics

In concurrent improvement dynamics players are permitted to change their strategies
concurrently. Obviously, in this case it might happen that several players choose to
select the same strategy at the same point in time. In this case, the latency observed
after the strategy change might be larger than the anticipated latency before the
strategy change. In order to compensate such effects various randomized protocols
concurrently applied by the players have been proposed and analyzed with respect to
their expected convergence time to Nash equilibria. They differ in the assumptions
made about the players’ knowledge and about the latency functions. However, all
these protocols are specially designed for singleton congestion games. In Chapter 4
we propose a protocol that applies to arbitrary symmetric strategy spaces, too.

Even-Dar and Mansour [EDM05] consider concurrent protocols in a setting where the
resources have linear latency functions without offsets. Their protocols require global
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knowledge in the sense that the players must be able to determine the set of under-
and overloaded resources. Given this knowledge, the convergence time is doubly log-
arithmic in the number of players. Berenbrink et al. [BFG+06] consider a protocol for
the case that the latency on a resource equals the load. Note that in this case Nash
equilibria are essentially unique. This protocol does not rely on global knowledge
as in each round every player samples a resource uniformly at random and migrates
with probability max{0, 1− y/x} to that resource. Here, x denotes the congestion of
the resource the player currently allocates and y denotes the congestion of the sam-
pled resource. The convergence time of this protocol is also doubly logarithmic in the
number of players but polynomial in the number of links. Berenbrink et al. [BFHH07]
also generalize the protocol described above to the case of weighted players. In this
case, the convergence time is only pseudo-polynomial, i. e., polynomial in the number
of players, resources, and in the maximum weight. Fotakis et al. [Fot08] consider a
scenario with non-decreasing latency functions. Their protocol involves local coordi-
nation among the players sharing a resource in the sense that in every round at most
one player leaves a resource. For the family of games in which the number of players
asymptotically equals the number of resources they prove fast convergence to almost
Nash equilibria. Intuitively, an almost Nash equilibrium is a state in which there are
not too many too expensive or too cheap resources. We consider a similar notion
of equilibria in Section 4.2.2. Finally, Fischer et al. [FMSV08] consider a scenario
in which no information about potential target resources is available. The authors
present an efficient protocol in which the probability to migrate depends purely on
the latency of the currently selected strategy.

1.5.5 Inefficiency of Equilibria

Most of the existing literature on congestion games investigates the impact of selfish
behavior on the global performance of the system. For that reason, we need to define
the global performance or social cost first. The social cost of a state of a congestion
game is either the sum of the players latencies or the maximum taken over the players’
latencies. In both cases, the price of anarchy of a game is defined as the ratio of the
social cost of the worst Nash equilibrium to that of a state minimizing the social cost.
This quantity is related to the approximation ratio of approximation algorithms which
measures the lack of unbounded computational power [Vaz01], and to the competitive
ratio of online algorithms which measures the lack of complete information [Bor98].
A high-level summary of the various results on the price of anarchy is that under
reasonable assumptions on the latency functions selfish behavior does not reduce the
global performance too much, i. e., by constant factors only. Below we summarize the
most important results on the price of anarchy in congestion games. For a detailed
discussion and further results we refer the reader the Chapters 17-20 in [NRTV07]
and the references given therein.

A number of publications consider the price of anarchy in the KP-model which was
presented first by Koutsoupias and Papadimitriou [KP99]. This model coincides
with our definition of weighted singleton congestion games, except that the resources
always have linear latency functions, and that the players may also choose mixed
strategies. Czumaj and Vöcking [CV07] prove a tight bound of Θ(log m/ log log log m)
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on the price of anarchy for such games. Here the social cost is the maximum over the
players’ latencies. For a summary of all results in the KP-model we refer the reader
to Chapter 20 in [NRTV07].

Among others, the price of anarchy in standard congestion games is considered
in [AAE06, CK05]. Both papers present almost identical results and focus on the sum
of the players’ latencies as the measure of social cost. In the case of linear latency
functions they prove an upper bound of 5/2. Additionally, in the case of polynomial
latency functions with maximum degree d an upper bound of dΘ(d) is shown. Both re-
sults also hold in the case of mixed strategies. Furthermore, Awerbuch et al. [AAE06]
also consider weighted congestion games with linear latency functions and prove an
upper bound of 2.618 on the price of anarchy for such games. However, as there exist
such games which do not possess Nash equilibria Goemans et al. [GMV05] propose
to study the price of sinking in such games. Sink equilibria are guaranteed to exist
in every congestion game, as they correspond to sinks of the best response graphs,
i. e., to subsets of the states that cannot be left again once the dynamics has reached
one of them.

Another series of papers considers the convergence time of sequential best response
dynamics to states which are approximately socially optimal with respect to the
sum of the players latencies [AAE+08, CMS06, GMV05, FFM08, Mir05, MV04].
Mirrokni [Mir05] gives an extensive summary of the early results in this branch of
research. Probably the most interesting result is due to Fanelli et al. [FFM08]. If
players are activated in a round robin fashion and if the latency functions are linear,
then log log n many rounds, i. e., at most n log log n best responses, suffice to reach
a state which is socially optimal up to a constant factor. In Section 4.3 we follow
a similar approach, though, we consider concurrent dynamics instead of sequential
ones.

Finally, we like to mention that the price of anarchy is also considered in player-specific
singleton congestion games with linear latency functions without offset [GMT06].

Complexity of Computing Socially Optimal States The computational com-
plexity of socially optimal states is a matter of interest in its own right. In weighted
singleton congestion games this problem is obviously NP-hard. The same holds if we
seek for a socially optimal Nash equilibrium [GLM+05, FKK+02]. Meyers [Mey06]
fully categorizes the computational complexity of computing socially optimal states
in standard network congestion games as she considers games with respect to different
assumptions on the structure of the game and on the latency functions. In almost all
cases she proves NP-hardness even if we care about approximate solutions only. Note
that she considers the sum of the players’ latencies.

Chakrabarty et al. [CMN05] consider the same problem in player-specific singleton
congestion games with general non-decreasing latency functions. They prove that
under various assumptions computing socially optimal states is NP-hard although
for certain special cases polynomial time algorithms exist. Finally, Blumrosen and
Dobzinski [BD07] consider the same model as Chakrabarty et al., however they as-
sume that the players strive to maximize their latencies and hence they are interested
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in maximizing this sum. They provide hardness results, approximation algorithms,
and point out relationships to combinatorial auctions.

1.5.6 Extensions and Refinements of Congestion Games

Since the first presentation of congestion games, various extensions and refinements
have been proposed. Subsequently, we give a summary of those we are aware of.

Splittable Demands In weighted network congestion games it is often unrealistic
to assume that players only strive to select a single path. For that reason several
models in which players can split their traffic over several paths have been considered.
Note that in all these models the latency of a player on a particular edge is weighted
by the amount of flow sent by that player along the edge.

Meyers [Mey06] considers a model in which each player can assign traffic up to k
paths (k-splittable). Under different assumptions on the amount of traffic that must
be assigned to a path she considers the existence of Nash equilibria and proves that
they are guaranteed to exist if the latency functions are linear. Meyers also considers
the price of anarchy in such games. Dunkel and Schulz [DS06] consider a closely
related model. However, in their model Nash equilibria do not necessarily exist, and
determining if they exist is NP-hard.

Other works consider weighted network congestion games in which players can split
their traffic arbitrarily, i. e., they strive to minimize the latency of a flow [ABJS93,
CCM06, ORS93, RS05]. Under the assumptions that the latency functions are convex
the existence of Nash equilibria in such games follows immediately from a very general
result of Rosen [Ros65]. Orda et al. [ORS93] study conditions on the latency functions
that guarantee uniqueness of Nash equilibria in singleton games, whereas Altman et
al. [ABJS93] prove that in the case of monomial latency functions Nash equilibria
are guaranteed to be unique even in arbitrary networks. Furthermore, Richman
and Shimkin [RS05] present a characterization of networks with one source and one
sink such that Nash equilibria are unique. Their result even holds in the case of
player-specific latency functions. Finally, Cominetti et al. [CCM06] study the price
of anarchy in such games.

Non-Atomic Players. In our definition of congestion games the number of players
is finite, hence, each of them has a non-negligible impact on the congestion of the
resources it allocates. In some scenarios, however, there are millions of participants,
each of them having a negligible impact on the congestion. For example, this is true
in road traffic. In order to study such scenarios Wardrop [War52] proposed to study
non-atomic congestion games with an infinite number of players each carrying an in-
finitesimal small amount of traffic. Much of the existing literature on selfish routing is
dedicated to the Wardrop model and many questions considered in atomic congestion
games have previously been studied in non-atomic games. For an introduction to this
model taking recent results into account we refer the reader to [Rou05].
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Of particular interest for this thesis are the results presented by Fischer [Fis07] and
Fischer et al. [FRV06]. They propose and analyze convergence properties of a concur-
rent imitation protocol according to which players strive to improve on their latency
over time. The approach presented in Chapter 4 is inspired by their work.

Bottleneck Games. In congestion games, the latency a player sustains is the sum
of the latencies of the resources the player allocates. In contrast to this definition,
Banner and Orda [BO07] consider weighted network congestion games in which the
latency of a player is determined by the slowest edge. Banner and Orda distinguish
between games in which the players may or may not split their traffic among several
paths. They focus on the existence of Nash equilibria and show that they always
exist. Furthermore, they care about convergence properties and the price of anarchy.

Selfishness, Altruism and Spite. The notion of Nash equilibria in congestion
games relies on the assumption that players act selfishly, i. e., they neither care
about the latency of others nor try to harm others explicitly. Only recently, several
models taking altruistic and spiteful behavior into account have been proposed, see
e. g. [CK08, HS08] and the references therein. Most related to our model of congestion
games is the one by Hoefer and Skopalik [HS08] who consider singleton congestion
games in which each player strives to minimize a player-specific linear combination
of its individual latency and the social cost. They present results about the existence
and computational complexity of Nash equilibria in such games.

Local-Effect Games. In standard congestion games, the latency of a resource
solely depends on the congestion on that resource. In order to study games with
local effects between resources, Leyton-Brown and Tennenholtz [LBT03] propose to
study standard singleton congestion games in which for every ordered pair of resources
there also exists a latency function accounting for the effect of the congestion of the
first resource on the latency of the second one. They focus on the existence of Nash
equilibria in such games and deduce conditions for the existence of potential functions.
Dunkel and Schulz [DS06] consider a special case of local effect games and prove that
computing Nash equilibria is PLS-complete for such games.

1.5.7 Games with Priorities

So far resources treat players as equal, that is, a resource cannot refuse a player to
use it. Even more, in standard congestion games all players allocating a resource
observe the same latency. In other words, all players sharing a resource are processed
in round-robin with infinitesimally small rounds. Immorlica et al. [ILMS05] and
Farzad et al. [FOV08a] propose models in which the order according to which the
players sharing a resource are processed is determined by a mechanism.

Immorlica et al. [ILMS05] consider weighted singleton congestion games and propose
to study coordination mechanisms that define in which order players sharing a re-
source are processed. Hence, the latency of a player only depends on the weight of the
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players with higher priority. They focus on the price of anarchy with respect to the
maximum of the players’ latencies in such games. Farzad et al. [FOV08a] take a sim-
ilar approach, however, they consider standard network congestion games in which
the order of the players may also depend on the time needed to reach a resource.
Again, they focus on the price of anarchy in such games.

Another model that solely relies on priorities is the notion of two-sided matching
markets which we discuss next.

Two-Sided Matching Markets Actually, two-sided matching markets are no re-
finement of congestion games, but a completely different notion of games. In Chap-
ter 5, however, we present refinements of player-specific singleton congestion games
and of two-sided matching markets that show strong relations between the two mod-
els.

Two sided-matching markets were introduced by Gale and Shapley [GS62] to model
markets on which different kinds of agents are matched to one another, for example
men and women, students and colleges [GS62], interns and hospitals [Rot84]. Using
the same terms as for congestion games, we say that the goal of a two-sided matching
market is to match players and resources (or markets). In contrast to congestion
games, each resource can only be matched to one player. With each pair of player and
resource a payoff is associated, and players are interested in maximizing their payoffs.
Hence, the payoffs implicitly define a preference list over the resources for each player.
Additionally, each resource has a preference list over the players that is independent of
the profits. Every player can strive to allocate a resource and if several players strive to
allocate the same resource, only the most preferred player is assigned to that resource
and receives the corresponding payoff. This way, every set of proposals corresponds
to a bipartite matching between players and resources. A matching is stable if no
player can be assigned to a resource from which it receives a higher payoff than from
its current resource given the proposals of the other players. Gale and Shapley [GS62]
show that stable matchings always exist and can be found in polynomial time. Since
the seminal work of Gale and Shapley there has been a significant amount of work in
studying two-sided matching markets. See for example the book by Knuth [Knu76],
by Gusfield and Irving [GI89] or by Roth and Sotomayor [RS90].

Knuth [Knu76] proposes to study better and best response dynamics in two-sided
matching markets and observes that they can cycle. However, Roth and Vande
Vate [RV90] observe that short better response paths to stable matchings always
exists. The authors of [AGM+08] follow this line of research and prove an exponen-
tial lower bound on the expected time until random better (best) response dynamics
terminate. These results are related to the convergence time of random best response
dynamics in player-specific singleton congestion games as presented in Section 3.3.

1.5.8 Other Equilibrium Concepts

Besides the notion of Nash equilibria, game theory provides several other solution
concepts to strategic games. For an introduction to these concepts we refer the
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reader to his or her favorite book about game theory. Here we comment on those
concepts that have been studied in congestion games.

So far we assumed that players are selfish and do not care about others. However,
it is also natural to consider games in which players can join and leave coalitions.
Fotakis et al. [FKS08b] consider weighted singleton congestion games with identical
resources and with static coalitions. That is, players decide which coalition to join in
advance and never leave it again. They provide results on the existence and compu-
tational complexity of equilibria in such games and consider the price of anarchy.

Holzman and Law-Yone [HLY97] consider standard congestion games in which players
can join and leave coalitions dynamically. In this case, a strong equilibrium is a state
in which no subset of the players can improve on their individual latency if they would
form a coalition and change their strategies in a cooperative way. Holzman and Law-
Yone provide a characterization of the combinatorial structure of the players strategy
spaces that guarantees the existence of strong equilibrium. This result is similar to
our results presented in Section 2.3 and Section 3.1.2.

Finally, Papadimitriou [Pap05] studies the computational complexity of correlated
equilibria in congestion games and proves that they can be computed efficiently if
the players strategy spaces are given explicitly. Last but not least, among others,
Gairing [Gai06] and Tiemann [Tie07] study Bayesian equilibria in congestion games.

1.6 Outline and Bibliographical Notes

In this thesis we consider two fundamental problems related to congestion games and
the notion of Nash equilibria. At first, we consider the existence of Nash equilibria in
player-specific and in weighted congestion games. Secondly, we study dynamics that
arise when players actually play a congestion game. We also propose a refinement of
player-specific congestion games in which the resources assign priorities to the players.
Each of the following paragraphs motivates and states the results presented in the
chapter with the same title. However, more intensive motivations and discussions can
be found at the beginning of each chapter.

Existence of Nash Equilibria It is well known that every standard congestion
game possesses a Nash equilibrium [Ros73], whereas, in general, weighted congestion
games and player-specific congestion games do not [FKK+02, Mil96]. On the other
hand, Fotakis et al. [FKK+02] and Milchtaich [Mil96] prove that every weighted con-
gestion game and every player-specific congestion game possesses a Nash equilibrium
if the strategies are singleton sets only. In Chapter 2 we extend their proofs towards
weighted and towards player-specific matroid congestion games. Furthermore, we
show that the matroid property is the maximal property of the combinatorial struc-
ture of the strategy spaces of individual players that guarantees the existence of Nash
equilibria in such games. Our characterization is based on the characterization of
non-matroid set systems as presented in Section 1.3.2. Additionally, we consider the
computational complexity of determining whether a player-specific network conges-
tion game possesses a Nash equilibrium. We prove that this problem is NP-complete.
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The results are presented in Chapter 2. In preliminary form they already appeared
in [ARV06, AS07].

Best Response Dynamics Rosenthal [Ros73] shows that standard congestion
games are potential games. Besides the fact that every such game possesses a Nash
equilibrium this also implies that best response dynamics are guaranteed to terminate
at a Nash equilibrium after a pseudo-polynomial number of steps. Such dynamics
arise if at each point in time a single player plays a best response. In this thesis,
we consider the maximum number of steps until best response dynamics terminate
at a Nash equilibrium. Subsequently, we refer to this quantity by the convergence
time of best response dynamics. Previous work shows an exponential lower bound
on the convergence time in standard network congestion games [FPT04]. On the
other hand, there exists a polynomial upper bound on the convergence time of best
response dynamics in standard singleton congestion games. At first, we extend this
positive result towards matroid congestion games and prove that best response dy-
namics in standard matroid congestion games are guaranteed to terminate quickly.
Additionally, we show that the matroid property is the maximal property of the
combinatorial structure of the strategy spaces of individual players that guarantees
polynomial convergence time.

In case of weighted singleton congestion games, which are known to be potential
games, too, we present an exponential lower bound on the convergence time of best
response dynamics.

Additionally, we consider best response dynamics in player-specific singleton conges-
tion games. It is well known that there exist games in which best response dynamics
can cycle. On the other hand, it is also known that from every state of such a game
there exists a polynomially long sequence of best responses leading to a Nash equi-
librium [Mil96]. Hence, random best response dynamics in which the next player
to act is selected uniformly at random terminate after a finite number of steps with
probability one. We present empirical evidence supporting our conjecture that there
exists an exponential lower bound on the expected convergence time of random best
response dynamics in player-specific singleton congestion games. Our conjecture is
motivated by a careful analysis of games in which each player chooses between two
resources.

The results are presented in Chapter 3. In preliminary form they already appeared
in [Ack07, AR08, ARV08].

Imitation Dynamics In unknown scenarios players often have only little or no
experience at all upon which they can base their decisions. This is in contrast to the
notion of Nash equilibria in which players have complete knowledge about the game.
An obvious approach to act in unknown scenarios is to imitate successful behavior.
In order to take such behavior into account, we propose to study imitation dynamics
in standard congestion games. In such dynamics players imitate each other in a
round based fashion according to the following protocol. At first, each player samples
another player uniformly at random. Then it considers the latency gain that it would
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have by adopting the strategy of the sampled player, under the assumption that no
one else changes its strategy. If this latency gain is not too small the player adopts the
sampled strategy with a migration probability mainly depending on the anticipated
latency gain. We focus on convergence properties of such dynamics. Using a potential
function argument, we show that imitation dynamics converge in a monotonic fashion
to stable states. In such a state none of the players can improve its latency by
imitating somebody else.

Furthermore, we show rapid convergence to approximate equilibria. In an approxi-
mate equilibrium only a small fraction of players sustains a latency significantly above
or below average. In particular, imitation dynamics behave like fully polynomial time
approximation schemes (FPTAS). Fixing all other parameters, the convergence time
depends only in a logarithmic fashion on the number of players.

Obviously, imitation processes are not innovative, hence they cannot discover unused
strategies. Furthermore, strategies may become extinct with non-zero probability.
For the case of singleton games, we show that the probability of this event occurring
is negligible. Additionally, we prove that the expected social cost of a stable state
reached by our dynamics is not much worse than an optimal state. This result applies
to singleton congestion games with linear latency function. Finally, we discuss how
the protocol can be extended such that, in the long run, the dynamics converges to
a Nash equilibrium.

The results are presented in Chapter 4. In preliminary form they already appeared
in [ABFH08].

Congestion Games with Priorities So far, the notion of congestion games does
not capture the fact that in some scenarios resources might want to foster certain
players. For this reason, we propose to study player-specific singleton congestion
games with priorities in which each resource assigns a rank to every player. Suppose
that several players strive to allocate the same resource. In our model only the players
which are ranked highest by the resource observe finite latency depending on their
number. The other players, however, observe infinite latency on it. Intuitively, they
are displaced by the players with higher priority. We prove that every player-specific
singleton congestion game with priorities possesses a Nash equilibrium.

Furthermore, we observe that our model is closely related to two-sided matching
markets. In a two sided market we are given a set of players and a set of markets.
Each player strives to allocate a market maximizing its revenue. Additionally, each
market has a preference list of the players such that each player receives a unique
rank. The goal is to match players to markets such that none of the players wants
to switch to another market. It is well known that such a stable matching always
exists [GS62]. We extend the notion of two-sided matching markets towards games in
which the markets’ preference lists can contain ties. In this case all players allocating
the same market and having the same maximal rank receive a payoff from the market
that depends on the number of players sharing that market.

The results are presented in Chapter 5. In preliminary form they already appeared
in [AGM+07].
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CHAPTER 2

Existence of Nash Equilibria

As we already discussed in the introduction of this thesis, Nash equilibria are the
predominant solution concept for congestion games if players have complete knowl-
edge and act fully rational. They are stable in the sense that no player unilaterally
wants to change its strategy in order to decrease its latency. In this chapter, we
focus on the existence of such stable states in weighted and in player-specific conges-
tion games, as in contrast to standard congestion games, these games do not possess
Nash equilibria in general [FKS05, Mil96, Mil06]. This is especially true in network
congestion games in which players want to select shortest paths in a network. It is
known, however, that there exist equilibria for both of these variants if the players’
strategies are singleton sets only [FKK+02, Mil96]. Motivated by these positive re-
sults, we study conditions on the combinatorial structure of the strategy spaces of
individual players that guarantee the existence of Nash equilibria. The assumption
that each strategy space is a set of singleton sets can be seen as one such condition.
We extend the positive results from singleton congestion games towards matroid con-
gestion games, and show that both weighted and player-specific congestion games
admit Nash equilibria if the strategy space of each player corresponds to the set of
bases of a matroid. Both results hold, regardless of the global structure of the game
and for any kind of non-decreasing latency functions. In the case of player-specific
matroid congestion games, our analysis also yields a polynomial time algorithm for
computing Nash equilibria. For weighted matroid congestion games, however, we do
not obtain an efficient algorithm for computing Nash equilibria, but we show that
players playing lazy best responses reach a Nash equilibrium after a finite number of
strategy changes. Recall that a best response is lazy if it exchanges the least number
of resources compared to the current strategy (see Definition 1.8).

We can also show that the matroid property is the maximal property of the com-
binatorial structure of the strategy spaces of individual players that guarantees the
existence of Nash equilibria in weighted and in player-specific congestion games with-
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out taking into account how the strategy spaces of different players are interweaved.
To this end, given a non-matroid set system we show how to construct a weighted
and a player-specific congestion game such that the players’ strategy spaces are iso-
morphic to the non-matroid set system and such that the game does not possess a
Nash equilibrium.

Finally, given a class of congestion games which do not possess Nash equilibria in
general, it is natural to ask whether the related decision problem can be solved effi-
ciently. At the end of this chapter, we prove that deciding if a player-specific network
congestion game with two players only possesses a Nash equilibrium is NP-complete.
In contrast to this negative result, we also present an efficient algorithm which deter-
mines whether a player-specific network congestion game with a constant number of
edges possesses a Nash equilibrium.

2.1 Weighted Matroid Congestion Games

In the following, we prove that every weighted matroid congestion game possesses a
Nash equilibrium. Moreover, we show that players who are only permitted to play lazy
best responses that exchange the least number of resources compared to their current
strategies eventually reach a Nash equilibrium (c.f. Definition 1.8). In Section 3.2, we
also show that players sequentially playing arbitrary best responses do not necessarily
reach an equilibrium. Hence, in general, weighted matroid congestion games are not
potential games.

Theorem 2.1. Every weighted matroid congestion game Γ with non-decreasing la-
tency functions possesses a Nash equilibrium. Furthermore, players reach an equilib-
rium after a finite number of lazy best responses.

Proof. Let S be a state of Γ. With each resource r, we associate a pair zr(S) =
(ℓr(xr(S)), xr(S)) consisting of the latency and the congestion of r in state S. For two
resources r and r′ and states S and S′, let zr(S) ≥ zr′(S

′) if and only if ℓr(xr(S)) >
ℓr′(xr′(S

′)) or ℓr(xr(S)) = ℓr′(xr′(S
′)) and xr(S) ≥ xr′(S

′). Let zr(S) > zr′(S
′) if and

only if zr(S) ≥ zr′(S
′) and zr(S) 6= zr′(S

′). Let z̄(S) denote a vector containing the
pairs zr(S) of all resources r ∈ R in non-increasing order, that is, z̄j(S) ≥ z̄j+1(S),
where z̄j(S) denotes the j-th component of z̄(S), for 1 ≤ j < |R|. We denote by <lex

the lexicographic order among the vectors z̄(S), i. e., z̄(S1) <lex z̄(S2) if there exists
an index l such that z̄k(S1) = z̄k(S2), for all k < l, and z̄l(S1) < z̄l(S2).

Due to Corollary 1.4, in every state S which is not a Nash equilibrium there exists at
least one player i who can decrease its latency by playing a lazy best response s∗i . Since
s∗i is a lazy best response, there exists a sequence of strategies si = s0

i , . . . , s
k
i = s∗i

such that, for every 0 ≤ j < k, |sj+1
i \ sj

i | = 1 and

ℓi(S) = ℓi(S ⊕ s0
i ) > ℓi(S ⊕ s1

i ) > · · · > ℓi(S ⊕ sk
i ) = ℓi(S ⊕ s∗i ) .

We now claim that z̄(S ⊕ sj+1
i ) <lex z̄(S ⊕ sj

i ), for every 0 ≤ j < k. Let rj be the

unique resource in sj
i that is not contained in sj+1

i and let r∗j be the unique resource
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that is contained in sj+1
i but not in sj

i . Since the latency decreases strictly with the
exchange, we have

ℓrj
(xrj

(S ⊕ sj
i )) > ℓr∗j

(xr∗j
(S ⊕ sj+1

i )) .

Additionally, since we assume non-decreasing latency functions,

ℓrj
(xrj

(S ⊕ sj
i )) ≥ ℓrj

(xrj
(S ⊕ sj

i )− ωi) = ℓrj
(xrj

(S ⊕ sj+1
i )) .

Furthermore, xrj
(S ⊕ sj

i ) > xrj
(S ⊕ sj+1

i ). Combining these inequalities implies

zrj
(S ⊕ sj

i ) > zrj
(S ⊕ sj+1

i ) and zrj
(S ⊕ sj

i ) > zr∗j
(S ⊕ sj+1

i ). This yields

max
{

zrj
(S ⊕ sj+1

i ), zr∗j
(S ⊕ sj+1

i )
}

< max
{

zrj
(S ⊕ sj

i ), zr∗j
(S ⊕ sj

i )
}

and hence z̄(S ⊕ sj
i ) >lex z̄(S ⊕ sj+1

i ). That is, the lexicographic order decreases with
every exchange and, hence, with every lazy best response. This concludes the proof
of the theorem.

Note, that the above proof does not provide an efficient algorithm for computing Nash
equilibria in weighted matroid congestion games as the number of best responses can
be exponential (c.f. Even-Dar et al. [EDKM03] and Section 3.2). The invention of
such an algorithm remains a challenging open problem.

2.2 Player-Specific Matroid Congestion Games

Next we consider player-specific matroid congestion games and prove that every such
game possesses a Nash equilibrium. Our proof extends techniques invented for sin-
gleton congestion games [Mil96] towards matroid congestion games, and implicitly
describes an efficient algorithm to compute an equilibrium of such games.

Theorem 2.2. Every player-specific matroid congestion game Γ with non-decreasing
latency functions possesses a Nash equilibrium.

Proof. Recall that since the strategy space of player i corresponds to the set of bases
of a matroidMi, all strategies of player i have the same size rk(Mi). In the following,
we represent a strategy of player i by rk(Mi) tokens that the player places on the
resources it allocates. Suppose that we reduce the number of tokens of some of the
players, that is, player i has ki ≤ rk(Mi) tokens that it places on the resources of an
independent set of cardinality ki. Observe that the independent sets of cardinality
ki form the bases of a matroidM′

i whose independent sets correspond to those inde-
pendent sets of Mi with cardinality at most ki. The matroid M′

i is also called the
ki-truncation of the matroid Mi (c.f. Section 1.3). Hence, a game in which some of
the players have a reduced number of tokens is also a matroid congestion game.

We prove the theorem by induction on the total number of tokens τ =
∑

i∈N rk(Mi)
that the players are allowed to place, that is, we prove the existence of Nash equilibria
for a sequence of games Γ0,Γ1, . . . ,Γτ , where Γl+1 is obtained from Γl by giving one
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more token to one of the players. Γ0 is the game in which each player has only the
empty strategy. Obviously, Γ0 has only one state and this state is a Nash equilibrium.

Assume as induction hypothesis that player i has placed ki ≥ 0 tokens, for 1 ≤ i ≤ n,
and this placement corresponds to a Nash equilibrium of the player-specific matroid
congestion game Γl = (N ,R, (Σki

i )i∈N , (ℓi
r)i∈N ,r∈R) with l =

∑

i∈N ki, in which the

set of strategies Σki

i coincides with the ki-truncation of Mi.

Now assume that some player i0 has to place an additional token t0. We show how to
compute a Nash equilibrium for the game Γl+1 obtained from a Nash equilibrium of
Γl by changing i0’s strategy space to the set of independent sets of size ki0 + 1. Since
an optimal basis of a matroid can be computed by a greedy algorithm, there exists a
resource r0 such that placing the token t0 on r0 gives an independent set of size ki0 +1
with minimum latency among all independent sets of the same size. Thus, assuming
that the tokens of the other players are fixed, an optimal strategy for player i0 is to
place t0 on r0 and leave all other tokens unchanged. However, as the congestion on
r0 is increased by one, other players may want to move their tokens from r0 in order
to obtain a better independent set. We use matroid properties to show that a Nash
equilibrium of Γl+1 can be reached with at most n m rk(Γ) moves of tokens.

After placing token t0 of player i0 on resource r0, resource r0 has one additional token
in comparison to the initial Nash equilibrium Sl of the game Γl. Since we assume
non-decreasing latency functions, only the players with a token on r0 might now have
an incentive to change their strategies. Let i1 be one of these players. It follows
from Corollary 1.5 that i1 has a best response in which it moves a token t1 from
resource r0 to another resource that we call r1. Now r1 is the only resource with
one additional token in comparison to Sl. Suppose we have not yet reached a Nash
equilibrium. Only those players with a token on r1 might have an incentive to change
their strategies. Again, by applying Corollary 1.5, we can identify a player i2 that
has a best response in which it moves a token t2 from r1 to a resource r2, which then
is the only resource with one additional token.

The token migration process described above can be continued in the same way until
it reaches a Nash equilibrium of the game Γl+1. The correctness of the process is
ensured by the following invariant.

Invariant 2.3. For every j ≥ 0, after player ij moves token tj onto resource rj ,

a) only players with a token on rj may have an incentive to change their strategy,

b) the Nash equilibrium condition of all players would be satisfied if one ignores
the additional token on rj , that is, if each player calculates the latency on rj as
if there were one token less on this resource.

The invariant follows by induction on j: For player ij the invariant is satisfied as this
player plays a best response according to Corollary 1.5. Thus it satisfies the Nash
equilibrium condition even without virtually reducing the congestion on rj. For all
other players, the validity of the invariant for j follows directly from the validity of
the invariant for j − 1 as these players do not move their tokens.
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Thus, in order to show the existence of a Nash equilibrium for Γl+1, it suffices to show
that the token migration process is finite. Consider an arbitrary token t of player i.
For a resource r, let ℓ+

i (r) denote the latency of i on r if r has one more token than in
the initial state S. Whenever t is moved by the migration process from a resource r to
a resource r′, it must be ℓ+

i (r) > ℓ+
i (r′). Hence, the token t can visit each resource at

most once during the token migration process. As there are at most n · rk(Γ) tokens,
the migration process terminates after at most nm rk(Γ) steps in a Nash equilibrium
of Γl+1.

Observe that the proof of Theorem 2.2 implicitly describes an efficient algorithm to
compute a Nash equilibrium with at most n2 m rk2(Γ) moves of tokens.

Corollary 2.4. There exists a polynomial time algorithm to compute a Nash equilib-
rium of a player-specific matroid congestion game with non-decreasing player-specific
latency functions.

2.3 Non-Matroid Strategy Spaces

In the previous two sections, we showed that the matroid property is a condition of the
combinatorial structure of the players’ strategy spaces that guarantees the existence
of Nash equilibria in weighted and in player-specific matroid congestion games. In
this section, we show that the matroid property is also the maximal property of the
combinatorial structure of the strategy spaces of individual players that guarantees
the existence of Nash equilibria in such games if one does not take into account how
the strategy spaces of different players are interweaved. Our negative result shows
that for every non-matroid set system there exists a weighted and a player-specific
congestion game with the following properties. The strategy space of each player is
isomorphic to the given non-matroid set system, and the game does not possess a
Nash equilibrium. In our construction we assume that the strategy spaces of different
players can be interweaved appropriately, that is, there does not exist a common
combinatorial interpretation of the resources. Furthermore, we require the latency
functions to be positive instead of non-negative.

If one drops these assumptions and considers special classes of congestion games in
which the latency functions or the way in which the strategy spaces can be interweaved
are restricted, then one can identify larger classes of weighted or player-specific con-
gestion games that possess Nash equilibria. For instance, Fotakis et al. [FKS05] prove
that every weighted congestion game possesses a Nash equilibrium if one additionally
assumes that the latency functions are linear. Additionally, Milchtaich [Mil06] shows
that every player-specific network congestion game possesses an equilibrium if the
network graph belongs to a certain restricted class of graphs.

Theorem 2.5. For every non-matroid antichain Σ on a set of resources R there exists
a weighted congestion game Γ with two players whose strategy spaces are isomorphic
to Σ that does not possess a Nash equilibrium. The latency functions in Γ are positive
and non-decreasing.
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Proof. Given a non-matroid antichain we describe how to construct a weighted con-
gestion game with the properties stated in the theorem. We first describe how the
strategy spaces are defined and then how the latency functions are chosen.

Let Σ1 and Σ2 be two set systems on sets of resources R1 and R2, respectively.
In the following we assume that both sets are isomorphic to Σ and that Σi is the
strategy space of player i, for i = 1, 2. Due to the (1, 2)-exchange property we can,
for every player i, identify three distinct resources ai, bi, ci ∈ Ri with the properties
as in Definition 1.9. Since we have not made any assumption on the global structure
of the game, we can arbitrarily decide which resources from R1 and R2 coincide. The
resources Ri \ {ai, bi, ci} are exclusively used by player i. Hence, we can assume that
their latencies are chosen such that the (1, 2)-exchange property is satisfied. Thus, to
simplify matters we can assume that

Σ1 = {{a1}
︸︷︷︸

s1
1

, {b1, c1}
︸ ︷︷ ︸

s2
1

} and Σ2 = {{a2}
︸︷︷︸

s1
2

, {b2, c2}
︸ ︷︷ ︸

s2
2

} .

In the following, we assume that a1 = b2, b1 = a2 and c1 = c2. Thus we can rewrite
the strategy spaces as follows: Σ1 = {r1}, {r2, r3}} and Σ2 = {{r2}, {r1, r3}}.

We set the players’ weights ω1 = 2 and ω2 = 1 and define the following increasing
latency functions for the resources r1, r2 and r3, where m = |R|:

xr = 1 xr = 2 xr = 3

ℓr1(xr1) m 20 ·m 21 ·m

ℓr2(xr2) 5 ·m 12 ·m 15 ·m

ℓr3(xr3) 3 ·m 4 ·m 10 ·m

One can easily verify that |ℓi(S ⊕ s1
i ) − ℓi(S ⊕ s2

i )| ≥ m, for i = 1, 2, regardless of
the choice of the other player. Hence, for every player, one of the inequalities in
Definition 1.9 is always satisfied. This game does not possess a Nash equilibrium
since player 1 prefers to play strategy s2

1 if player 2 plays strategy s1
2, and s1

1 if player
2 plays strategy s2

2. Additionally, player 2 prefers to play strategy s2
2 if player 1 plays

strategy s2
1, and s1

2 if player 1 plays strategy s1
1.

Theorem 2.6. For every non-matroid antichain Σ on a set of resources R there
exists a player-specific congestion game Γ with two players whose strategy spaces are
isomorphic to Σ that does not possess a Nash equilibrium. The latency functions in
Γ are positive and non-decreasing.

Proof. The proof is similar to the proof of Theorem 2.5. In particular, the construc-
tion of the strategy spaces of the players is identical. The player-specific latency
functions are obtained from the latency functions in the proof of Theorem 2.5 as
follows: For the first player ℓ1

r(xr) = ℓr(xr +1), for every resource r ∈ {r1, r2, r3} and
every congestion xr ∈ {1, 2}. For the second player ℓ2

r(1) = ℓr(1) and ℓ2
r(2) = ℓr(3),

for every resource r ∈ {r1, r2, r3}.
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In Theorems 2.1 and 2.2, we showed that every weighted and every player-specific
congestion game possesses a Nash equilibrium if the strategy space of each player cor-
responds to the bases of a matroid. Both results are true regardless of how the strat-
egy spaces of different players are interweaved and for every choice of non-decreasing
latency functions. The previous proofs show that every non-matroid antichain can
be used to construct a weighted and a player-specific congestion game with positive,
non-decreasing latency functions, that does not possess a Nash equilibrium. In both
proofs we assumed that there is no restriction on how the players’ strategy spaces
can be interweaved.

Observe that our negative result also holds if the system is not an antichain but
the pruned set system, i. e., the set system obtained after removing all supersets,
is not the set of bases of a matroid. This is because supersets cannot occur in a
Nash equilibrium in the case of positive latency functions. Correspondingly, our
results presented in Theorems 2.1 and 2.2 show that a weighted or a player-specific
congestion game in which all pruned strategy spaces correspond to bases of matroids
possesses a Nash equilibrium with respect to the pruned and, hence, also with respect
to the original strategy spaces because supersets are weakly dominated by subsets in
the case of non-negative latency functions. Thus, the matroid property (applied to
the pruned strategy spaces) is the maximal property of the combinatorial structure
of the strategy spaces of individual players that guarantees the existence of Nash
equilibria in weighted and in player-specific congestion games.

Corollary 2.7. The matroid property is the maximal property of the combinatorial
structure of the pruned strategy spaces of individual players that guarantees the ex-
istence of Nash equilibria in weighted and in player-specific congestion games with
non-negative, non-decreasing latency functions.

2.3.1 An Embedding into Networks

Our negative results in Theorems 2.5 and 2.6 assume that it is possible to interweave
the strategy spaces of the players in a specific manner. A legitimate question is
whether our construction can nevertheless be embedded into natural classes of con-
gestion games in which the resources have a common combinatorial interpretation.
Here we demonstrate that our construction can, for instance, easily be embedded
into network congestion games. However, note that we are not the first to present
weighted or player-specific network congestion games which do not possess Nash equi-
libria [FKS05, Mil06].

Consider the network depicted in Figure 2.1. The first player likes to route its traffic
from s1 to t1, the second player from s2 to t2. Observe that the sets of paths of player
1 and 2 coincide with the strategy spaces as defined above. We conclude the following
corollary.

Corollary 2.8. There exist instances of player-specific and of weighted network con-
gestion games with non-decreasing latency functions which do not possess Nash equi-
libria.
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s1 = s2

t1 t2

r1 r2

r3

Figure 2.1: An example of a network congestion game with the strategy spaces as
defined in the proofs of Theorems 2.5 and 2.6.

Observe that the players are not symmetric, i. e., they like to connect the source to
different sinks. However, it is not difficult to make the game symmetric by introducing
a common sink t which is connected to t1 and t2 and by appropriately defining the
latency functions of the edges {t1, t} and {t2, t}.

2.4 Player-Specific Network Congestion Games

In this section, we consider the complexity of deciding whether a player-specific net-
work congestion game possesses a Nash equilibrium since, in general, these games do
not possess Nash equilibria [Mil06]. We prove that this problem is NP-complete even
in the case of two players. At first, we consider networks with directed edges and
present a fairly simple reduction from the Directed-Edge-Disjoint Path problem.
Unfortunately, our reduction cannot be extended towards networks with undirected
edges as the Undirected-Edge-Disjoint Path problem admits a polynomial time
algorithm in the case of constant number of source-sink pairs [RS95]. We therefore
present a reduction from 3-Sat in the undirected case. Finally, we consider games
with networks of constant sizes and present a polynomial time algorithm deciding
whether a Nash equilibrium exists.

2.4.1 Networks with Directed Edges

Theorem 2.9. It is NP-complete to decide whether a player-specific network conges-
tion game with directed edges and two players possesses a Nash equilibrium.

Proof. Obviously, the decision problem belongs to NP as one can decide in polynomial
time whether a state S of a player-specific network congestion game with directed
edges and two players is a Nash equilibrium. In order to prove that the problem
is complete, we present a polynomial time reduction from the Directed-Edge-

Disjoint Path problem with two disjoint source-sink pairs. An instance of this
problem consists of a directed graph G = (V,E) and two disjoint node pairs, (s1, t1)
and (s2, t2). Given such an instance, we like to decide whether there exist pairwise
edge-disjoint paths between the two node pairs. This problem is known to be NP-
complete [FHW80].
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ek ek,0

ek,1

ek,2

ek,3

ek,4

ek,5

ek,6

v vu u
⇒

Figure 2.2: The gadget Gek
by which an edge ek is replaced.

Given an instance (G, (s1, t1), (s2, t2)) of the Directed-Edge-Disjoint Path

problem with two source-sink pairs, we construct a player-specific network congestion
game with two players as follows. We substitute every edge ek ∈ E by the gadget Gek

presented in Figure 2.2 in order to obtain the network GΓ = (VΓ, EΓ) on which the
game is played. Player i ∈ {1, 2} wants to allocate a path between the nodes si and ti
in GΓ. Observe that this construction ensures a one-to-one correspondency between
the paths in G and in GΓ in the natural way if one ignores the precise subpaths
through every gadget.

Let M be a sufficiently large number. The player-specific latency functions of the
edges ek,0, . . . ek,6 are defined as presented in Table 2.4.1. Observe that every gadget
Gek

implements a subgame that is played by the players if both want to allocate
a path connecting u and v. If only one player wants to allocate such a path, then
it allocates a player-specific shortest path from u to v. If we choose M sufficiently
large such that the first player never allocates one of the edges ek,2 and ek,3 and such
that the second player never allocates one of the edges ek,5 or ek,6, then the latencies
of these shortest path are 3 and 5. Suppose now that the two players play such a
subgame. In this case it is not difficult to verify that the subgame does not possess
a Nash equilibrium.

ek,0 ek,1 ek,2 ek,3 ek,4 ek,5 ek,6

congestion 1 2 1 2 1 2 1 2 1 2 1 2 1 2

player 1 0 M 1 1 M M M M 1 20 1 1 5 5

player 2 0 M 1 20 1 1 4 5 5 5 M M M M

Table 2.1: The player-specific latency functions of the edges ek,0, . . . , ek,6.

Suppose now that we are given two node-disjoint paths P1 and P2 in G connecting
s1 and t1, and s2 and t2. We map these paths to paths in GΓ in the natural way and
choose player-specific shortest paths through every gadget. Let n(Pi) be the number
of edges on path Pi. Thus, player 1 has latency 3 · n(P1) and player 2 has latency
5 ·n(P2). If one of the two players had an incentive to change its strategy, then it will
only choose a path in which it shares no gadget with the other player, as otherwise
its latency would increase to at least M . This is true as in this case the players would
share at least one edge ek,0. This also implies that the latency of the other player
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does not increase due to the strategy change of the first player. Observe that this
holds for any further best response. Thus, the players converge to an equilibrium
after O(n) best responses as the latency of a player decreases by at least the cost of
the shortest path through a gadget.

Suppose now that we are given a Nash equilibrium of Γ. In this case the players
do not share a gadget as otherwise the state is no Nash equilibrium. Hence, we can
easily construct edge-disjoint paths in G connecting (s1, t1) and (s2, t2).

2.4.2 Networks with Undirected Edges

Theorem 2.10. It is NP-complete to decide whether a player-specific network con-
gestion game with undirected edges and two players possesses a Nash equilibrium.

Proof. Obviously, the decision problem belongs to NP as one can decide in polynomial
time whether a state S of a player-specific network congestion game with undirected
edges and two players is a Nash equilibrium. In order to prove that the problem is
complete, we present a polynomial time reduction from 3-Sat. Let ϕ be a 3-Sat

formula with n variables x1, . . . , xn and m clauses C1, . . . , Cm. We assume that every
clause in ϕ contains exactly three pairwise disjoint literals. Given ϕ we construct
a player-specific network congestion game with undirected edges and two players as
follows. For the sake of simplicity we refer to the players as bit and clause player.
Our construction satisfies the following three properties.

1. The bit player can choose between 2n different paths each of them determining
a unique assignment of the n variables.

2. The clause player can check for every clause separately whether there exists a
variable satisfying that clause.

3. If and only if there exists an unsatisfied clause, then both players are forced
to choose paths through a special gadget. This gadget implements a subgame
which does not possess a Nash equilibrium if both players participate.

In the following we define three different kinds of gadgets called variable, clause and
subgame gadget and describe how they are connected. The gadgets consist of bold,
dashed and dotted edges. Bold edges appear in all three kinds of gadgets, whereas
dotted edges do not appear in the variable gadgets, and dashed edges do not appear
in the clause gadgets. The player-specific latency functions will be chosen in such a
way that the bit player never chooses one of the dotted edges, and that the clause
player never chooses one of the dashed edges.

For every variable xi there is a variable gadget Gxi
as depicted in Figure 2.3. Without

loss of generality let {C1, . . . , Ck} be the set of clauses in which xi appears as positive
literal. For every such clause Cj there is a bold edge ei,j on the upper path in Gxi

.
Additionally, let {Ck+1, . . . , Cl} be the set of clauses in which xi appears as negative
literal. For every such clause Cj there is a bold edge ēi,j on the lower path in Gxi

.
Bold edges are connected by dashed edges as shown in the figure. The order of the
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lower path

upper path

ei,a ei,b ei,c

ēi,d ēi,e ēi,f

Figure 2.3: The bit gadget of variable xi.

bold edges can be chosen arbitrarily. Additionally, the gadgets Gxi
are arranged one

after the other starting with gadget Gx1 and finishing with gadget Gxn . They are
connected by dashed edges.

ep,j

eq,j

ēr,j

shortcut edge to subgame gadget

Figure 2.4: The clause gadget of clause Cj = (xp, xq, x̄r).

For every clause Cj there is a clause gadget GCj
as depicted in Figure 2.4. For every

variable xi which appears as positive literal in Cj there is a bold edge ei,j. For every
variable xi which appears as negative literal in Cj there is a bold edge ēi,j. Observe
that edges ei,j and ēi,j coincide with the corresponding edges in the variable gadgets
Gxi

. Bold edges are connected by dotted edges as shown in the figure. Additionally,
there is a shortcut edge from the leftmost node from every clause gadget to the
subgame gadget. The gadgets GCj

are arranged one after the other starting with
gadget GC1 and finishing with gadget GCm . They are connected by dotted edges.

The subgame gadget is depicted in Figure 2.5. Basically it consists of three bold
edges e1, e2, e3 arranged as a triangle. The dotted shortcut edges from the clause

v1

v2 v3

e1

e3

e2

edge from last variable gadget

edge from last clause gadget

shortcut edges

Figure 2.5: The subgame gadget
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gadgets are connected to vertex v2. Additionally, there is a dotted edge from the
rightmost node of the clause gadget GCm to node v1, and there is a dashed edge from
the rightmost node of the subgame gadget Gxn to node v1. Note that this gadget is
the same one as considered in Section 2.3.1 except that we exchange the source and
the sink of the first player.

It remains to define the source and target nodes of the players and the latency func-
tions of the edges. The bit player wants to allocate a path from the left most node
of the variable gadget Gx1 to the node v3 of the subgame gadget. The clause player,
however, wants to allocate a path connecting the leftmost node from the clause gadget
GC1 with the node v1 of the subgame gadget.

The player-specific latency functions are defined as follows. Let M be a sufficiently
large number. The bit player always has latency 0 on bold and dashed edges, and
latency M on every dotted edge. On bold edges the clause player has latency 0 if
it does not share it with the variable player, otherwise it has latency M . On dotted
edges the clause player always has latency 0. The player-specific latency functions of
the edges e1, . . . , e3 are depicted in Table 2.2. If we choose M sufficiently large, then
the bit player never allocates a dotted edge, and the clause player never allocates a
dashed edge. For the simplicity of presentation, we assume that both players always
allocated cycle-free paths as best responses, that is, they never choose paths visiting
a node twice. One can easily enforce this by a slightly modification of the latency of
the dashed and dotted edges.

e1 e2 e3

congestion 1 2 1 2 1 2

clause player 20 21 12 15 4 10

bit player 1 21 5 15 3 10

Table 2.2: The player-specific latency functions of the edges e1, e2, e3.

Suppose now that there exists a satisfying assignment x̄ of the given 3-SAT formula.
In this case, we can construct a Nash equilibrium as follows. If xi = 0, then the bit
player chooses the upper path in gadget Gxi

, otherwise it chooses the lower path.
Intuitively, it chooses a path that corresponds to the negation of x̄. Additionally, it
chooses the player-specific shortest path with respect to congestion 1 in the subgame
gadget connecting v1 and v3. This path is simply the edge e2. In this case, the bit
player has latency 3. Observe that this is the globally shortest path of the bit player.
The clause player chooses a path through every clause gadget along which it does
not share a bold edge with the bit player. This is possible since x̄ is a satisfying
assignment and since the bit player chooses a path that corresponds to the negation
of x̄. In this case, the bit player enters the subgame gadget at its target node v1.
Observe that this path has latency 0, which is best possible. We conclude that we
can construct a Nash equilibrium if we are given a satisfying assignment, since we
can assign both players to globally shortest paths.

Suppose now that no satisfying assignment exists. In this case, there always exists an
unsatisfied clause Cj , and thus the clause player cannot choose a path through that
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gadget along which both players do not share a bold edge. Due to the choice of M , the
bit player always switches to the shortcut edge of GCj

as best response and enters the
subgame gadget at node v2. Since the bit player always enters the subgame gadget at
v1, the players are forced to play the subgame defined by the subgame gadget. By the
same arguments as in Section 2.3.1 this gadget does not possess a Nash equilibrium.
We conclude that no Nash equilibrium exists if no satisfying assignment exists.

2.4.3 Networks of Constant Size

Theorem 2.11. One can decide in polynomial time whether a player-specific network
congestion game Γ with a constant number of (un)directed edges possesses a Nash
equilibrium.

Proof. The algorithm we present generalizes a technique introduced by Chakrabarty
et al. [CMN05] in order to compute a social optimal state of a player-specific singleton
congestion game with a constant number of resources. Without loss of generality let
P = {P1, . . . Pl} be the set of all simple paths in the network. Note that l ≤ 2m

is constant. Given a state S of Γ we slightly abuse notion and denote by x(S)
the congestion vector (x1(S), . . . , xl(S)) where xi(S) equals the number of players
choosing path Pi in S. Observe that there are at most nl such vectors. In the
following, we describe how to decide whether there exists an equilibrium S of Γ such
that x̄(S) equals a given congestion vector x̄ = (x1, . . . , xl).

Given a congestion vector x = (x1, . . . , xl) we construct a directed graph Gx =
({s, t}∪N ∪P, E(x)) with edge capacities as follows. For every player i ∈ N there is
a vertex ui which is connected to the vertex s. The capacity of such an edge equals
1. For every path Pj ∈ P there is a vertex vj which is connected to the vertex t. The
capacity of such an edge equals xj. Furthermore, a vertex vi is connected to a vertex
wj if the following conditions are satisfied:

1. Player i does not want to change its strategy if it would play strategy Pj .

2. The congestion on the edges is determined by the vector x.

Now we like to decide whether there exists a s-t-flow of capacity n. Observe that such
a flow exists if and only if xj units of flow can flow from xj different player vertices ui

to path vertices vj. Thus, if such a flow exists, and if we assign a player to that path
to which the unit of flow originating in its vertex flows, we obtain a Nash equilibrium,
since the construction ensures that the player is satisfied.

Finally, since there are polynomially many different vectors x, and since the construc-
tion and analysis of Gx can be done in polynomial time, we obtain a polynomial time
algorithm.

The running time of the algorithm is O(poly(2m) · poly(n2m
)). An interesting open

problem is to prove that the problem is fixed parameter tractable, that is, to develop
an algorithm with running time O(poly(2m) · poly(n)). Finally, note that the above
algorithm is not restricted to networks but applies to every player-specific congestion
game with constant number of resources.

39



Chapter 2 — Existence of Nash Equilibria

40



CHAPTER 3

Best Response Dynamics

In a Nash equilibrium each player has chosen the best strategy given fixed choices
of the others, hence, none of them wants to change its strategy. At every non-
equilibrium, however, at least one player wants to deviate from its current strategy
and select a different one strictly decreasing its latency. This observation immediately
motivates to study dynamics that arise when players sequentially play best responses.

In this chapter, we consider such best response dynamics and aim to upper and lower
bound the number of steps until they terminate in a Nash equilibrium. We assume
that the players have complete knowledge about the game and about its current state.
This guarantees that players can compute best responses. Furthermore, we assume
that two players do not change their strategies at the same time. In this case, a
minimum of coordination among the players is needed which can be achieved, e. g.
by the means of a schedule selecting the next player to act given the current state of
the game and probably the history of the play. There are many different approaches
to design such a schedule. For example:

• the round robin schedule selects the next player according to a fixed permutation
of the players. If the selected player has no incentive to change its strategy, then
the next player is selected.

• among all unsatisfied players the random schedule chooses a player uniformly
at random.

• among all unsatisfied players the largest improvement schedule chooses that
player which can decrease its latency most.

• among all unsatisfied players the longest waiting time schedule selects that
player which has not been selected for the longest period of time.
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Obviously, in case of potential games every best response dynamics terminates after
a finite number of steps regardless of the chosen schedule. Monderer and Shap-
ley [MS96] refer to this property by the term finite improvement property. In this
chapter, we take a worst case perspective on best response dynamics in specific classes
of potential games, and aim to upper and lower bound the maximum length of best
response dynamics. In other words, we aim to upper and lower bound the maximum
number of best responses until players reach a Nash equilibrium which holds regard-
less of the chosen schedule and the initial state. We refer to this quantity by the
convergence time of best response dynamics.

In non-potential games, however, it can happen that sequential best response dynam-
ics never reach a Nash equilibrium at all, since the dynamics can cycle. However, if
from every state of a non-potential game a sequence of best response which leads
to a Nash equilibrium exists, then the random schedule is guaranteed to terminate
after a finite number of steps. Milchtaich [Mil96] calls games admitting this property
weakly acyclic. In this chapter, we also consider the maximum expected convergence
time of the random schedule in a class of weakly acyclic congestion games in which
from every state a polynomially long sequence of best responses leading to a Nash
equilibrium exists. We refer to this quantity by the convergence time of random best
response dynamics.

The rest of this chapter is organized as follows. At first, we consider the conver-
gence time of best response dynamics in standard congestion games with arbitrary
strategy spaces and then proceed with weighted singleton congestion games. Recall
that both classes of games are potential games. In case of standard games, we study
conditions on the combinatorial structure of the strategy spaces of individual players
that guarantee polynomial convergence time. Surprisingly, the maximal property is
the same as in case of the existence of Nash equilibria in weighted and player-specific
congestion games. Namely, the matroid property is the maximal property of the
combinatorial structure of the strategy spaces of individual players that guarantees
polynomial time convergence. In case of weighted congestion games, however, we
present a super-polynomial lower bound on the convergence time even if the players’
strategy spaces are singleton sets only. In contrast to previous such constructions the
maximum latency and the maximum weight of a player are polynomially bounded in
the number of players.

Additionally, we consider best response dynamics in player-specific matroid conges-
tion games. At first, we prove that these games are weakly acyclic, that is, we prove
that from every state of such a game there exists a polynomial long sequence of better
responses leading to a Nash equilibrium. We proceed to consider the convergence time
of random best response dynamics in player-specific singleton congestion games and
prove polynomial upper bounds for two special cases. Additionally, we present em-
pirical results supporting the following conjecture: There exists a super-polynomial
lower bound on the convergence time of random best response dynamics in general
player-specific singleton congestion games.
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3.1 Standard Congestion Games

In this section, we consider the convergence time of best response dynamics in stan-
dard congestion games. Since Rosenthal’s potential function yields a pseudo-poly-
nomial upper bound only, we study conditions on the combinatorial structure of the
strategy spaces of individual players that guarantee polynomial convergence time.

In general, we cannot hope for a polynomial upper bound on the convergence time
since Fabrikant et al. [FPT04] show that there exist standard network congestion
games with initial states such that every best response sequence starting from these
states needs an exponential number of steps to reach a Nash equilibrium. On the other
extreme, we find singleton standard congestion games for which Ieong et al. [IMN+05]
show that best response dynamics always reach a Nash equilibrium after a polynomial
number of steps. Hence, the assumption that each strategy space is a singleton set
can be seen as one such condition. We show that the analysis of Ieong et al. [IMN+05]
can be generalized towards standard matroid congestion games, that is, if the strategy
space of each player consists of the bases of a matroid over the set of resources, then
best response dynamics are guaranteed to terminate after a polynomial number of
best responses. This result holds regardless of the global structure of the game and
for any kind of latency functions, even for non-monotone ones.

We can also show that the matroid property is the maximal property of the combina-
torial structure of the individual players’ strategy spaces that guarantees polynomial
convergence time of best response dynamics without taking into account how the
strategy spaces of different players are interweaved. To this end, given a non-matroid
set system we show how to construct a standard congestion game such that the play-
ers’ strategy spaces are isomorphic to the given set system and such that there exists
an exponentially long best response sequence.

Additionally, we show that this characterization holds for ε-greedy players, too. That
is, even if players only deviate if their relative latency gain is sufficiently large, then
the matroid property is the maximal property that guarantees polynomial time con-
vergence. Finally, we consider better response dynamics in which players do not
necessarily play best responses but also better responses. The result of Ieong et
al. [IMN+05] about the convergence time of best response dynamics in singleton
games even holds for better response dynamics. However, we observe that it cannot
be extended towards matroid games.

3.1.1 Matroid Strategy Spaces

Ieong et al. [IMN+05] show that in standard singleton congestion games best response
dynamics terminate after at most n2m steps. Recall that singleton games are standard
matroid congestion games with rk(Mi) = 1 for every player i. In the following, we
extend their analysis to general matroid congestion games.

Theorem 3.1. Let Γ be a standard matroid congestion game. Then players reach
a Nash equilibrium after at most n2m · rk(Γ) best responses. In the case of identi-
cal latency functions, players reach a Nash equilibrium after at most n2 · rk(Γ) best
responses.
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Proof. Consider a list of all latencies ℓr(i) with r ∈ R and 1 ≤ i ≤ n and assume
that this list is sorted in a non-decreasing order. For each resource r, we define an
alternative latency function ℓ̃r : N → N where, for each possible congestion i, ℓ̃r(i)
equals the rank of the latency ℓr(i) in the aforementioned list of all latencies. We
assume that equal latencies receive the same rank.

Lemma 3.2. Let S be a state of a standard matroid congestion game, and let s∗i ∈ Σi

a best response of player i to S with respect to the latencies ℓr which strictly decreases
the latency of i. Then s∗i strictly decreases the latency of player i with respect to the
latencies ℓ̃r.

Proof. Consider the bipartite graph G(s∗i ∆si) which contains a perfect matching PM

due to Corollary 1.3. Let S∗ = S ⊕ s∗i and observe that for every edge {r∗, r} ∈ PM ,
with r∗ ∈ s∗i \ si and r ∈ si \ s∗i , ℓr∗(xr∗(S

∗)) ≤ ℓr(xr(S
∗) + 1) = ℓr(xr(S)), since

otherwise, s∗i is not a best response with respect to the latencies ℓr. Additionally,
there exists at least one edge with ℓr∗(xr∗(S

∗)) < ℓr(xr(S
∗) + 1) = ℓr(xr(S)) since s∗i

strictly decreases the latency of player i. Finally, the same inequalities also hold for
the latencies ℓ̃r as they correspond to the ranks of the original latencies. Thus the
claim follows.

Now due to Lemma 3.2, whenever a player plays a best response with respect to the
latencies ℓr, Rosenthal’s potential decreases with respect to the latencies ℓ̃r. Since
there are at most n ·m different latencies, ℓ̃r(xr) ≤ n ·m for all resources r ∈ R and
for all possible congestion values xr. Hence,

Φ̃(S) =
∑

r∈R

xr(S)
∑

i=1

ℓ̃r(i) ≤
∑

r∈R

xr(S)
∑

i=1

nm ≤ n2m · rk(Γ) ,

where the latter inequality holds as each of the n player occupies at most rk(Γ)
resources. Since Φ̃(S) is lower bounded by 0 and decreases by at least one if a player
plays a best response with respect to the latencies ℓr, the first part of the theorem
follows. In the special case of identical latency functions, there are at most n different
latencies instead of n ·m, and thus the second part of the theorem follows.

Note that Theorem 3.1 is independent of any assumptions on the latency functions.
In particular, we do not assume monotonicity nor that all latencies have the same
sign. Even more, it is independent of any schedule which selects the next player to
play a best response.

3.1.2 Non-Matroid Strategy Spaces

In the previous section, we showed that the matroid property guarantees fast conver-
gence of best response dynamics in standard congestion games. In this section, we
show that the matroid property is also the maximal property of the combinatorial
structure of the strategy spaces of individual players that guarantees fast convergence
to Nash equilibria.
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Theorem 3.3. Let Σ be a non-matroid set system and an antichain on a set of
resources R. Then, for every n ∈ N, there exists a standard congestion game Γ with

• 4n + 1 players each of which having a strategy space isomorphic to Σ, and

• O(n · |R|) resources with positive and non-decreasing latency functions

such that there exists a best response sequence of length 2n.

Proof. A well-known technique for constructing local search problems with exponen-
tially long improvement sequences is to construct instances that resemble the behavior
of a binary counter (see, e. g., [ADK+04, Hak89, Orp97]). Here we construct a game
that consists of n gadgets G0, . . . , Gn−1 that correspond to the bits of the counter.
Each of these gadgets has a 0-state and a 1-state and for each gadget there exists a
best response sequence from its 1-state to its 0-state when no other gadget interferes
with it. A gadget which is in state 0 can be triggered by another gadget to change
to state 1. The crucial property of our construction is that whenever a gadget Gi

changes its state from 0 to 1, then it triggers gadget Gi−1 twice. Hence, if Gn−1

is triggered once, then every gadget Gi is triggered 2n−i−1 times. Thus the game
possesses a best response sequence of length at least 2n.

In the following, we denote by Σi a set system over a set of resources Ri. We assume
that Σi is isomorphic to Σ, and that Σi is the strategy space of some player i. Due
to Lemma 1.10, we can for every player i ∈ N , identify three resources ai, bi, and
ci ∈ Ri with the properties as in Definition 1.9. These are the only resources of player
i that it shares with other players. Resources in the set Ri \{ai, bi, ci} are exclusively
used by player i. We choose the latencies of the resources in Ri \ {ai, bi, ci} in such
a way that the (1, 2)-exchange property is satisfied for ai, bi, and ci. Thus, k, the
parameter from Definition 1.9, is chosen as upper bound on the maximum latency
on one of these three resources. To simplify matters, we can assume without loss
of generality that every player i is interested in only three resources, namely ai, bi,
and ci, and that it is only allowed to play either the strategy {ai} or the strategy
{bi, ci}. Since we have made no restrictions on the global structure of the game, we
can interweave the resources ai, bi, ci of different players in an arbitrary manner.

Each gadget Gi consists of 6 resources r0
i , r

1
i , r

2
i , r

3
i , r

4
i , r

5
i and 4 players which we call

Initi-, Triggeri-, P1
i -, and P2

i -player. Every player has two strategies, namely a 0-
strategy and a 1-strategy. If all players of gadget Gi play their 0-strategies, then we
say that gadget Gi is in its 0-state. Similarly, if all players play their 1-strategies,
then we say that Gi is in its 1-state. If gadget Gi is in state 0, then Initi is the player
who is triggered by the player Triggeri+1 from gadget Gi+1 and initiates a sequences
of best responses resetting Gi to its 1-state.

For every player its 0-strategy consists of one resource and its 1-strategy consists of
two resources. The strategy spaces of the players are defined as follows:
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ΣIniti
= {{r0

i }, {r
1
i , r

2
i }},

ΣTriggeri
= {{r1

i }, {r
3
i , r

0
i−1}},

ΣP1

i
= {{r2

i }, {r
3
i , r

4
i }},

ΣP2

i
= {{r4

i }, {r
1
i , r

5
i }}.

Now we describe the aforementioned best response sequence of gadget Gi in detail.
Assume that gadget Gi is in its 0-state, that is, every player plays its 0-strategy.
If player Initi is triggered by the player Triggeri+1 from gadget Gi+1, that is, if
Triggeri+1 allocates the resource r0

i , then the following sequence of strategy changes
can take place in gadget Gi.

1. Initi changes to its 1-strategy.

2. Triggeri changes to its 1-strategy.

3. P1
i changes to its 1-strategy.

4. Triggeri changes back to its 0-strategy.

5. P2
i changes to its 1-strategy.

6. Triggeri changes to its 1-strategy again.

Moreover, if all players play their 1-strategy and Initi is not triggered by the player
Triggeri+1, then there exists a sequence of best responses such that all players of
Gi change back to their 0-strategies. We assume that Initi changes to its 0-strategy
first, then P1

i , P2
i , and finally Triggeri. Observe that this construction ensures the

property that gadget Gi+1 resets gadget Gi twice from state 0 to state 1 every time
it changes its own state from 0 to 1. The first time gadget Gi triggers gadget Gi−1

takes place after the first two strategy changes of the aforementioned sequence have
been performed. In the last step of this sequence, gadget Gi triggers Gi−1 for the
second time.

Hence, this construction ensures the existence of best response sequences of length
at least 2n. Therefore, assume that initially every gadget is in its 0-state and that
gadget Gn−1 is triggered to change its state to 1. This can be accomplished by,
e. g., introducing one additional player who allocates resource r0

n−1. If all players act
according to the aforementioned sequence of strategy changes, then every gadget Gi

is reseted from its 0-state to its 1-state 2n−i−1 times.

Subsequently, let ∗ denote either 1 or 2. If the following inequalities are satisfied,
then all six strategy changes in the aforementioned sequence of strategy changes are
best responses. Recall that m denotes the number of resources. Moreover, adding m
is due to Definition 1.9.
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1. ℓr0
i
(2) > ℓr1

i
(2) + ℓr2

i
(2) + m,

2. ℓr1
i
(2) > ℓr3

i
(1) + ℓr0

i−1
(∗) + m,

3. ℓr2
i
(2) > ℓr4

i
(2) + ℓr3

i
(2) + m,

4. ℓr1
i
(2) + m < ℓr3

i
(2) + ℓr0

i−1
(∗),

5. ℓr4
i
(2) > ℓr5

i
(1) + ℓr1

i
(3) + m,

6. ℓr1
i
(3) > ℓr3

i
(2) + ℓr0

i−1
(∗) + m.

Let β ≥ 2 be chosen arbitrarily, and for every gadget Gi, let ci = m · β20i. We use
ci to scale the latencies of the resources in such a way that the best response of the
player Triggeri is independent of the latency on the resource r0

i−1.

Next we describe how to choose the latencies of the resources in order to achieve
that the aforementioned best response sequences exist. We set ℓ

rj
i
(1) = ci · β

2j for

every resource rj
i and for every gadget Gi and furthermore ℓr0

i
(2) = ci · β

20, ℓr1
i
(2) =

ci · β
8, ℓr1

i
(3) = ci · β

14, ℓr2
i
(2) = ci · β

18, ℓr3
i
(2) = ci · β

10, ℓr4
i
(2) = ci · β

16. One
can easily verify that the aforementioned inequalities are all satisfied. Furthermore,
observe that the second sequence of strategy changes in which Gi changes its state
from 1 to 0 consists of best responses only since in this sequence every player changes
to a resource that no other player allocates.

The previous theorem shows that given a non-matroid antichain we can always con-
struct a congestion game with an exponentially long best response sequence. Note
that we are only interested in the combinatorial structure of the strategy spaces, and
that we assume that the strategy spaces of different players can be interweaved arbi-
trarily. This matches the setting of our upper bound in Theorem 3.1 where we proved
that in every standard matroid congestion game best response dynamics terminate
after at most n2 m · rk(Γ) steps. The assumption that Σ is an antichain is natural
when all latency functions are positive as, in this case, supersets are dominated by
subsets so that supersets are never used as best responses. Hence, we can conclude
the following corollary.

Corollary 3.4. The matroid property is the maximal property of the combinatorial
structure of the strategy spaces of individual players that guarantees polynomial time
convergence of best response dynamics in standard congestion games with positive,
non-decreasing latency functions.

3.1.3 A Note on ε-greedy Players

Theorem 3.1 also holds if each player is ε-greedy. Moreover, the instances constructed
in the proof of Theorem 3.3 possess the property that a player who decreases its
latency even decreases it by a factor of at least β. Recall that we can choose β ≥ 2
arbitrarily. Hence, with the same discussion as above we can conclude the following
corollary.
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Corollary 3.5. The matroid property is the maximal property of the combinatorial
structure of the strategy spaces of individual players that guarantees polynomial time
convergence of best response dynamics in standard congestion games with positive,
non-decreasing latency functions in which all players are ε-greedy.

Note that Skopalik and Vöcking [SV08] strengthen this result in the sense that they
show the existence of instances in which every sequence of best responses is expo-
nentially long. Also note that the above corollary does not conflict with the result of
Chien and Sinclair [CS07]. They prove that ε-greedy players reach an approximate
Nash equilibrium after a polynomial number of best responses if two additional re-
quirements are satisfied. At first, they require the game to be symmetric, i. e. all
players have the same strategy space, and secondly that the latency functions satisfy
the α-bounded jump condition. Especially the first requirement is not satisfied in our
construction.

3.1.4 A Note on Better Response Dynamics

In singleton standard congestion games even the better response dynamics reaches a
Nash equilibrium after at most n2m better responses [IMN+05]. In general standard
matroid congestion games, however, even a single player can play exponentially many
better responses until it reaches a best response, and hence a Nash equilibrium of the
single-player game.

Theorem 3.6. For every m ∈ N there exists a standard matroid congestion games
with a single player,

(m
2

)
resources and initial state such that the player can play

mm−2 better responses until it reaches a Nash equilibrium.

Proof. Consider a standard spanning tree congestion game with a single player on the
complete graph Gm with m vertices and

(m
2

)
edges e1, . . . , ek. Let 2i be the latency

the player observes if it allocates edge ei. Since G has mm−2 different spanning
tree [KV00], and since all of them have pairwise disjoint latencies, there exists a
better response sequence of length mm−2.

3.2 Weighted Congestion Games

In this section, we consider best response dynamics in weighted matroid congestion
games. In Theorem 2.1 we showed that players playing lazy best responses eventually
reach a Nash equilibrium in every such game. From the proof we can conclude that
every lazy best response dynamics terminates after at most

min

{(
n∑

i=1

ωi

)m

,

(
m

rk(Γ)

)n
}

strategy changes. The first term is an upper bound on the maximum number of
different vectors z̄(S) and the second one bounds the number of different states of a
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matroid congestion game Γ with n players, m resources and maximum rank rk(Γ).
As a first result, we present an example showing that arbitrary best responses do not
necessarily lead to a Nash equilibrium.

Theorem 3.7. There exists a weighted matroid congestion game in which arbitrary
best response dynamics can cycle.

Proof. Consider a weighted matroid congestion game with four resources {1, 2, 3, 4}
and two players with weights ω1 = 1 and ω2 = 2. We define the strategy spaces as
follows:

Σ1 = {{1}, {3}} and Σ2 = {{1, 2}, {1, 3}, {2, 4}, {3, 4}} .

Observe that both strategy spaces are sets of bases of matroids on subsets of the
resources. Additionally, we define non-decreasing latency functions. A dash denotes
a value we do not have to care about.

xr = 1 xr = 2 xr = 3

ℓ1(n1) 2 20 20

ℓ2(n2) - 9 -

ℓ3(n3) 4 8 10

ℓ4(n4) - 20 -

Now consider the following cycle of states:

({3}, {1, 3}) → ({3}, {2, 4}) → ({1}, {2, 4}) → ({1}, {1, 3}) → ({3}, {1, 3}) .

Each strategy change induces a set of inequalities in order to be a best response. One
can easily verify that all these inequalities are satisfied by the above defined latency
functions. Hence, players playing arbitrary best responses do not necessarily converge
to a Nash equilibrium in weighted matroid congestion games.

The latency functions in the previous example are non-decreasing but not strictly
increasing. We leave open the question whether in arbitrary weighted matroid con-
gestion games with strictly increasing latency functions players always converge to
an equilibrium.

Next we focus on the convergence time of best response dynamics in weighted sin-
gleton congestion games. Note that in such games every best response is lazy, and
hence, best response dynamics cannot cycle. We present a family of weighted sin-
gleton congestion games possessing super-polynomial long best response sequences
although every player has either weight one or n and all latencies are polynomially
bounded in the number of players and resources. This result improves the results of
Even-Dar et al. [EDKM03] who already considered the convergence time in weighted
singleton congestion games. In contrast to this thesis, they formulated their model
in terms of scheduling selfish jobs on machines. They distinguish between different
machine models, including identical, restricted, related and unrelated machines, and
different kinds of weights, including integer weights, K distinct weights and identical
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weights. They prove upper and lower bounds on the convergence time depending
on the schedule which selects the next player to deviate. Most related to our re-
sult is Theorem 9 in [EDKM03] which states that there exists a family of weighted
singleton congestion games with symmetric players and identical machine with expo-
nentially long best response sequences. However, in contrast to our result they use
exponentially large weights.

Theorem 3.8. There exists a constant c > 0 such that for every n ∈ N, there exists
a weighted singleton congestion game Γ with at most cn2 players and at most cn
resources that possesses a best response sequence of length 2n. The players in Γ have
either weight 1 or weight n, and the maximum latency is upper bounded by cn3.

Proof. A well known technique for constructing instances of local search problems
with exponentially long best response sequences is to construct instances that resem-
ble the behavior of a binary counter (see, e. g., [ADK+04, Hak89, Orp97]). In the
proof of Theorem 3.1 we already applied this technique to prove the existence of ex-
ponentially long best response sequence in non-matroid standard congestion games.
Unfortunately, we cannot adopt the construction presented there to weighted single-
ton congestion games as players only allocate single resources. For that reason, we
present a different construction below.

Let n ∈ N be chosen arbitrarily. We construct a weighted singleton congestion game
with O(n2) players and O(n) resources that resembles the behavior of a binary counter
counting from 0 to 2n − 1. The instance consists of n gadgets G0, . . . , Gn−1 where
gadget Gi represents the i-th bit of the counter; G0 represents the least significant
bit, Gn−1 the most significant bit. For every gadget Gi, we define three main config-
urations, namely a 0-state, a 1-state and a reset state, with the following properties.

1. If gadget Gi is in its 0-state and no gadget Gj with j > i is in its reset state, then
there exists a best response sequence of gadget Gi such that Gi first changes to
its reset state and then to its 1-state.

2. If gadget Gi is in its 1-state and at least one gadget Gj with j > i is in its
reset state, then there exists a best response sequence of gadget Gi such that
Gi changes to its 0-state.

One can easily verify that these two properties ensure that there exists a best response
sequence of all gadgets that resembles a binary counter counting from 0 to 2n − 1:
Initially all gadgets are in their 0-state. First gadget G0 changes to its 1-state, then
gadget G1. However, when gadget G1 changes to its 1-state it passes its reset state,
and therefore resets gadget G0. Afterwards gadget G0 may change back to its 1-state.
We proceed with gadget G2 that resets the gadgets G0 and G1 by changing to its
1-state. We may continue with gadget G0 and so on.

Now we describe the gadgets G0, . . . , Gn−1 in detail. Gadget Gi consists of i + 2
players and 3 resources ri

1, r
i
2 and ri

3. There are two main players, the bit player
and the reset player, and i additional players, which we call connection players. The
bit player and the reset player both have weight n, and each connection player has
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weight 1. Later, we will define latency functions and strategy spaces such that the
best responses of the connection players are uniquely determined by the choice of the
reset player. The purpose of the connection players is to propagate the decision of
the reset player to the gadgets G0, . . . , Gi−1. The latency functions of the resources
are defined as follows.

dri
1
(nri

1
) =

{

3(n − i + 1) + 1 if nri
1
≤ 2n − i− 2

3n2(i + 1) + 2 otherwise

dri
2
(nri

2
) =

{

3(n − i + 1) + 2 if nri
2
≤ n

3n2(i + 1) + 1 otherwise

dri
3
(nri

3
) =

{

3(n − i + 1) + 3 if nri
3
≤ i

3n2(i + 1) otherwise

We denote by Σi
Bit and Σi

Reset the strategy spaces of the bit and reset player, respec-
tively, and by Σi

Conj
the strategy space of the j-th connection player, with 0 ≤ j ≤ i−1.

Let the strategy spaces be defined as

Σi
Bit = {{ri

1}, {r
i
2}} Σi

Reset = {{ri
3}, {r

i
2}} Σi

Conj
= {{rj

1}, {r
i
3}} .

For every player we name the first strategy according to the above given order, its
0-strategy and the second one its 1-strategy. Figure 3.1 illustrates our construction.

bit player reset player

ri
1 ri

2 ri
3

r0
1 r1

1 r
i−1

1

i connection players

Figure 3.1: Illustration of gadget Gi. Nodes represent resources, edges represent
players.

In the following, we describe the state of gadget Gi by a pair of bits (x, y), meaning
that the bit player plays its x-strategy and that the reset player plays its y-strategy.
When describing the state of a gadget by such a pair, we assume that the connection
players have played their best responses according to strategy y. We denote by (0, 0)
the 0-state of gadget Gi, by (1, 0) the 1-state, and by (0, 1) the reset state. We can
then formulate the aforementioned properties of gadget Gi in terms of sequences of
states (x, y).

1. If gadget Gi is in state (0,0) and every gadget Gj with j > i is in state (0,0) or
(1,0), then there exists a best response sequence of gadget Gi such that Gi first
changes to its reset state (0,1) and then to the state (1,0).

2. If gadget Gi is in state (1,0) and at least one gadget Gj with j > i is in state
(0,1), then there exists a best response sequence of gadget Gi such that Gi

changes to state (0,0).
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It remains to be shown that the latency functions are chosen in the right way, that is,
all strategy changes are best responses. We first show that the connection players of
gadget Gi are solely controlled by the reset player of that gadget. Therefore, consider
the following two cases.

Case 1: If the reset player plays its 0-strategy {ri
3}, then the best response for every

connection player is its 0-strategy. This is true since in this case the latency on
resource ri

3 equals 3n2(i+1) and the maximum latency on any resource rj
1 is at

most 3n2(j + 1) + 2 which is less than 3n2(i + 1) because j < i.

Case 2: If the reset player plays its 1-strategy {ri
2}, then the best response for every

connection player is its 1-strategy. This is true since in this case the latency on
ri
3 equals 3(n − i + 1) + 3, and the minimum latency on any resource rj

1 is at
least 3(n − j + 1) + 1 which is larger than 3(n− i + 1) + 3 because j < i.

In the following, we assume that immediately after each strategy change of the reset
player, the connection players of the corresponding gadget change their strategies
appropriately. Hence, when we say that the reset player of gadget Gi plays its x-
strategy, x ∈ {0, 1}, we implicitly assume that all connection players of that gadget
play their x-strategies, too. Now we study the aforementioned best response sequences
of the bit and reset players of a gadget Gi in detail.

1. Gadget Gi is in state (0, 0) and all reset players of the gadgets Gj with j > i
play their 0-strategy. In this case, the reset player can decrease its latency from
3n2(i+1) to 3(n− i+1)+2 by changing to its 1-strategy. After that, gadget Gi

is in state (0, 1), and the bit player can decrease its latency from 3n2(i + 1) + 2
to 3n2(i + 1) + 1. After that, gadget Gi is in state (1, 1), and the reset player
can decrease its latency from 3n2(i + 1) + 1 to 3n2(i + 1) by changing to its
0-strategy. After that, the gadget is in state (1, 0) and as long as no reset player
of a gadget Gj with j > i plays its 1-strategy it stays in this state.

2. Gadget Gi is in state (1, 0) and at least one reset player of a gadget Gj with
j > i plays its 1-strategy. In this case, the cumulative weight of all players
allocating resource ri

1 is at most n − i − 2. Hence, the bit player can decrease
its latency from (3n− i+1)+2 to (3n− i+1)+1 by changing to its 0-strategy.
After that, the gadget is in state (0, 0).

Altogether, this shows that the aforementioned sequence of strategy changes is a best
response sequence and results in counting from 0 to 2n − 1.

Let us briefly mention that our construction can even be implemented with players
who have only weights 1 or 2. In order to achieve this, one has to introduce additional
players that propagate the decision of the reset players to the connections players.
Based on the observation that a player with weight 2 can displace two players of
weight 1 from a resource, these players can be arranged in a binary tree with i leaves
that propagate the decision to the connection players. As this construction is rather
technical and does not give new insights, we do not present the details. Altogether, we

52



3.3 Player-Specific Congestion Games

conclude the following corollary which is in contrast to standard congestion games for
which Rosenthal’s potential functions implies pseudo-polynomial time convergence.

Corollary 3.9. There exists no pseudo-polynomial upper bound on the convergence
time of best response dynamics in weighted singleton congestion games.

3.3 Player-Specific Congestion Games

In contrast to the games studied in the previous two sections, player-specific matroid
congestion games are not potential games, since even in singleton games best response
dynamics can cycle [Mil96]. On the positive side, Milchtaich [Mil96] observes that
player-specific singleton congestion games are weakly acyclic, since from every state
of such a game there exists a polynomial long sequence of best responses leading to a
Nash equilibrium. As a first result, we prove that a similar property holds for player-
specific matroid congestion games as well. Namely, we show that from every state
of a player-specific matroid congestion game there exists a polynomial long sequence
of better responses leading to a Nash equilibrium. We failed to prove the existence
of best response sequences and leave it as an open question whether such sequences
exist, too.

Additionally, we consider the convergence time of random best response dynamics
in player-specific singleton congestion games. Currently, we are not able to analyze
the convergence time in arbitrary player-specific singleton congestion games, but our
theoretical and experimental results support the following conjecture.

Conjecture 3.10. There exists a family of player-specific singleton congestion games
with corresponding initial states such that the expected convergence time of random
best response dynamics which start in the initial states is super-polynomial.

In order to gain insights into random best response dynamics in player-specific sin-
gleton congestion games, we begin with very simple yet interesting classes of games.
Namely, we consider games in which each player only chooses between two resources.
These games can be represented as multi-graphs: each resource corresponds to a node
and each player to an edge. In the following, we call games that can be represented
as graphs with topology t player-specific congestion games on topology t. At first,
we consider games on trees and on circles. We prove that player-specific congestion
games on trees are potential games and deduce an upper bound of O(n2) on the con-
vergence time of best response dynamics. The result bases on the observation that
one can replace the player-specific latency functions by common latency functions
without changing the players’ preferences. Thus, we can apply the result of Ieong et
al. [IMN+05] to upper bound the convergence time. We proceed with player-specific
congestion games on circles, and show that these games are the simplest games in
which the best response dynamics can cycle. As we are only given four different la-
tency values for each player, we characterize with respect to the order of these four
values in which cases the best response dynamics can cycle. We observe that only
one such case exists. Finally, we analyze the convergence time of the random best
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response dynamics in such games, and prove an upper bound of O(n2) on the ex-
pected convergence time. In order to prove this result, we introduce the notion of
over- and underload tokens. An overload token indicates that a resource is shared
by two players, an underload token indicates that it is unused. We observe that the
number of tokens cannot increase, and that once in a while tokens get stuck or vanish.

Based on the insights gained from analyzing player-specific congestion games on cir-
cles we present a family of games and conjecture that there does not exist a polynomial
upper bound on the expected convergence time of random best response dynamics.
Obviously, this depends on the initial state, and so we implicitly assume that the
initial configuration is chosen appropriately. Our conjecture is motivated and sup-
ported by a slightly different notion of over- and underload tokens. Their definition
now depends on the fact that every resource has a fixed congestion that it takes at
every Nash equilibrium. In contrast to games on circles we show that the number
of over- and underload tokens can also increase if the initial configuration is chosen
appropriately. Intuitively one may think of the number of tokens as a measure of de-
rangement of order. In games on circles this measure can only decrease whereas it can
also increase in general games. We fail to give a rigorous proof of a super-polynomial
lower bound. However, we support our conjecture by empirical results obtained from
simulations.

3.3.1 Short Better Response Sequences to Nash Equilibria

In this section, we show that from every state of a player-specific matroid congestion
game there exists a polynomial long sequence of better responses leading to a Nash
equilibrium. We leave it as an open question whether short sequences of best responses
always exist, too.

Theorem 3.11. Let Γ be a player-specific matroid congestion game with non-decreas-
ing latency functions, and let S be an arbitrary state of Γ. Then there exists a
sequence of better response of length at most 2n2 m rk2(Γ) which starts in state S and
terminates in a Nash equilibrium.

Proof. The proof uses similar arguments as the proof of Theorem 2.2, except that
initially every player places all its tokens. After the first placement of the tokens,
which corresponds to the given state S, we assume that all tokens are deactivated,
i. e., players are not allowed to move them in order to decrease their latencies. We
then consider a sequence of games Γ0, . . . ,Γτ , where Γk+1 is obtained from Γk by
activating one more token. We can achieve that deactivated tokens are not moved
by setting the latency of the corresponding player on the corresponding resource to
0. Then activating a token corresponds to restoring the latency function. Thus, each
game Γk is a player-specific matroid congestion game. Given a Nash equilibrium Sk of
Γk, we show that there exists a short improvement sequence in Γk+1 from the former
equilibrium Sk to a Nash equilibrium Sk+1 of Γk+1. Obviously, by concatenating all
these sequences we obtain a better response sequence from S to a Nash equilibrium
of Γ.
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Assume as induction hypothesis that k tokens have been activated so far and that
the state Sk is a Nash equilibrium of Γk. Suppose now, that an additional token t0
of player i0 is activated, and that i0 moves t0 to a resource r1 in order to decrease its
latency. After that, we are in a situation similar to the one in the proof of Theorem 2.2,
that is, the congestion on one resource r1 is increased by one compared to the Nash
equilibrium Sk of Γk. In contrast to the situation in the proof of Theorem 2.2, in which
the congestion of the other resources remains unchanged, there exists a resource r0

whose congestion is decreased by one compared to the congestion in Γk. Assume that
we place a dummy token on resource r0 which artificially increases the congestion by
one. In this case, we can consider the same token migration process as in the proof
of Theorem 2.2.

In contrast to the proof of Theorem 2.2, there are two different ways in which this
process can terminate. If the process returns to r0, i. e., if it moves a token onto
r0, we terminate the process and remove the dummy token from r0. If the process
does not return to r0, then it is not affected by the dummy token and by the same
arguments as in the proof of Theorem 2.2 it follows that it terminates after at most
n m rk(Γ) moves of tokens.

In the first case, if at some point in time a player moves a token tj from a resource
rj−1 to the resource rj = r0, then after removing the dummy token from r0 we have
reached a Nash equilibrium of Γk+1 due to Invariant 2.3. Since the resource r0 is
not involved in the previous moves of tokens, each of these movements reduces the
latency of the corresponding player also in the game Γk+1 without the dummy token.
In the last step a player moves a token onto r0 and improves its latency even if the
dummy token is present. Hence, it also decreases its latency in Γk+1 without the
dummy token.

In the second case, we have almost reached a Nash equilibrium. That is, all players
were satisfied if we would not remove the dummy token. Suppose now that we
remove the dummy token. As the latency functions are non-decreasing, only players
who can move tokens onto r0 may have an incentive to change their strategies. From
Corollary 1.6 we can conclude that those players who have an incentive to change
their strategies, with respect to the tokens they are allowed to move, only need to
move a token onto r0 in order to obtain a best response.

Suppose now that player i′0 moves a token t′0 from resource r′1 to r0. Afterwards, the
congestion on r0 equals the congestion in the former equilibrium with respect to the
dummy token, and the congestion on r′1 is decreased by one. Again only players who
can move a token onto r′1 have an incentive to change their strategy. We can continue
this process obtaining an additional token migration process in which a token tj+1

moves to the resource from which token tj was removed. As before, we have to show
that this token migration process is finite and terminates in a Nash equilibrium of
Γk+1. The fact that it terminates in a Nash equilibrium is ensured by the following
invariant which is a slight variation of Invariant 2.3.

Invariant 3.12. For every j ≥ 0, after player i′j removes token t′j from resource r′j+1,

a) only players who can move a token onto r′j+1 may violate the Nash equilibrium
condition,
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b) the Nash equilibrium condition of all players would be satisfied if one ignores
the missing token on r′j+1, that is, if each player calculates the latency on r′j+1

as if there were one additional token on this resource.

Invariant 3.12 can be proven analogously to Invariant 2.3. Therefore, its proof is
omitted. It remains to show that the second token migration process is also finite.
Again, the same arguments as in the proof of Theorem 2.2 show that this is true,
and we conclude that the second process terminates after at most nm rk(Γ) moves of
tokens in a Nash equilibrium of Γk+1.

Altogether, we have shown that there exists a better response sequence of length
2nm rk(Γ) from Sk to a Nash equilibrium of Γk+1. As the number of tokens τ is
upper bounded by n rk(Γ), the theorem follows.

3.3.2 The Type of a Player

Before we present our results about the convergence time of random best response
dynamics in player-specific singleton congestion games, we introduce the type of a
player.

Ieong et al. [IMN+05] observe that in standard singleton congestion games one can
always replace the latency values ℓr(xr) with r ∈ R and 1 ≤ xr ≤ n by their ranks in
the sorted list of these values without affecting the players preferences in any state of
the game. Recall that we already applied this approach in the proof of Theorem 3.1.
Additionally, note that this approach is not restricted to standard singleton congestion
games but also applies to player-specific singleton congestion games. That is, given
a player-specific congestion game Γ, fix a player i and consider a list of all latencies
ℓi
r(xr) with r ∈ R and 1 ≤ xr ≤ n. Assume that this list is sorted in a non-decreasing

order. For each resource r, we define an alternative player-specific latency function
ℓ̃i
r : N → N where, for each possible congestion xr, ℓ̃i

r(xr) equals the rank of the
latency ℓi

r(xr) in the aforementioned list of all latencies. Under the assumption that
all latencies are pairwise disjoint, all ranks are unique. In the following, we stick
to this natural assumption, and we define the type of a player i by the order of the
player-specific latencies ℓi

r(1), . . . , ℓi
r(n) of the resources r ∈ Σi.

3.3.3 Games on Trees

In this section, we consider the convergence time of random best response dynamics
in player-specific congestion games on trees. Note that in such games the number
of resources equals the number of players plus one. We observe that one can always
replace the player-specific latency functions by common latency functions such that
the players’ types are preserved. From this observation, we conclude the following
theorem.

Theorem 3.13. In every player-specific congestion game on a tree every best response
dynamics terminates after at most 2n2 steps.
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Proof. Let Γ be a player-specific congestion game Γ on a tree. In the following, we
describe how to replace the player-specific latency functions of Γ by common latency
functions ℓr : N→ N, r ∈ R, with the following property: For every player i its type
with respect to the player-specific latency functions equals its type with respect to
the standard latency functions. Remember that the types completely describe the
preferences of the players, and hence, best response dynamics in Γ are not affected by
replacing the player-specific latency functions by common ones. Since the resulting
game is a standard singleton congestion game, we can apply the result of Ieong et
al. [IMN+05] to upper bound the convergence time. Obviously, the same bound holds
in Γ. Thus, by applying the proof of the convergence time in standard singleton
congestion game as presented in [IMN+05], we conclude that every best response
dynamics for player-specific congestion games on trees terminates after at most 2n2

steps.

We prove the theorem by induction on the number of players and describe how to
construct a sequence of player-specific congestion games Γ1, . . . ,Γn on trees with the
following properties. Γ1 is obtained from Γ by removing the players 2 to n from the
game. The set of resources in Γ0 is the set of the two resources the first player is
interested in. Now Γi is obtained from Γi−1 by adding one player and one resource
to Γi. The player and the resource is chosen in such a way that Γi is a player-specific
congestion game on a tree. That is, we choose a player i who is interested in a resource
r of Γi−1, and add the additional resource r′ the player is interested in to Γi.

Obviously Γ1, the player-specific congestion game with a single player and two re-
sources, is a standard congestion game. Assume as induction hypothesis that we
already replaced the player-specific latency functions in Γi−1 by common ones with-
out affecting the players’ types. For ease of notation let Γ∗

i−1 be this game. In the
following, we assume that for every resource r in Γ∗

i its latency functions is defined
for all possible congestion values xr between 1 and n and not only for the maximum
number of players that are interested in r in Γ∗

i .

Given Γ∗
i−1, we now describe how to choose the latency functions ℓr of the resources in

Γ∗
i such that the players in Γ∗

i and Γi have the same types. The latency functions of the
resources r that belong to Γ∗

i−1 are the same as in Γ∗
i−1. Additionally, we assume that

for every such resource r and every congestion 1 < xr ≤ n, ℓr(xr)− ℓr(xr− 1) ≥ n. If
this is not the case, then due to our assumption that the latency functions are strictly
increasing, we can scale all latencies by a factor of n in order to achieve the desired
goal. Thus, it remains to choose a latency function of the additional resource r′ that
does not belong to Γ∗

i−1. Since the gap between consecutive values of the latency
function ℓr is large enough, we can realize every type for the additional player by
choosing the latency function ℓr′ appropriately.

3.3.4 Games on Circles

In this section, we consider the convergence time of random best response dynamics
in player-specific congestion games on circles. Without loss of generality, we assume
that the resources are enumerated from 0, . . . , n − 1, and that they are arranged in
increasing order clockwise. Furthermore, we assume without loss of generality that for
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every player i, Σi = {ri, ri+1 mod n}. In the following, we call ri the 0- and ri+1 mod n

the 1-strategy of player i. Furthermore, we drop the mod n terms and assume that
all indices are computed modulo n. Due to our assumptions on the latency functions,
there are six different types of players in such games:

ℓi
ri

(1) < ℓi
ri

(2) < ℓi
ri+1

(1) < ℓi
ri+1

(2) type 1

ℓi
ri

(1) < ℓi
ri+1

(1) < ℓi
ri

(2) < ℓi
ri+1

(2) type 2

ℓi
ri

(1) < ℓi
ri+1

(1) < ℓi
ri+1

(2) < ℓi
ri

(2) type 3

We name the three other types, which can be obtained by exchanging the identities
of the resources ri and ri+1 in the above inequalities, type 1′, type 2′, and type 3′.
Furthermore, we call two players i and j consecutive, if they share a resource, that is,
if j = i+1 or i = j+1. Given a state S, we call two consecutive players synchronized,
if both play the same strategy, that is, if both either play their 0- or their 1-strategy.
Moreover, we call a set of consecutive players i, . . . , j synchronized if all players play
the same strategy.

Best Response Dynamics can Cycle

Next we present an infinite family of games in which best response dynamics can
cycle. From this construction we derive a lower bound of Ω(n2) on the convergence
time of random best response dynamics in player-specific congestion games on circles.

Consider a game on a circle with n players which are all of type 3. It is not difficult to
verify that this game possesses only two Nash equilibria: either all players play their
0-strategy or their 1-strategy. Consider now a state S with the following properties:
In S we can partition the players into two non-empty sets S0 and S1 of synchronized
players. Players in S0 all play their 0-strategy, whereas players in S1 all play their
1-strategy. Again, it is not difficult to verify that in every such state there are exactly
two players who have an incentive to change their strategies. From both sets only
the first player clockwise has an incentive to change its strategy. Thus, best response
dynamics can cycle. We obtain such a cycle by selecting players from the two sets
alternately and letting them play best responses.

In order to prove a lower bound on the convergence time of random best response
dynamics, observe that with probability 1/2 the total number of players playing their
0-strategy increases or decreases by one whenever a player is selected uniformly at
random. After the strategy change, either all players are synchronized, and therefore
random best response dynamics terminates, or again we are in a state S′ with two sets
of synchronized players. Observe now that this process is isomorphic to a random
walk on a line with nodes v0, . . . , vn. The node vi corresponds to the fact that i
players play their 0-strategy. As the expected time of a random walk on a line with
n + 1 nodes to reach one of the two ends of the line is Θ(n2) if the walk starts in the
middle of the line [Lov96], we obtain a lower bound of Ω(n2).

Corollary 3.14. There exists a family of instances of player-specific congestion
games on circles with corresponding initial states such that the number of steps until
random best response dynamics terminates is lower bounded by Ω(n2).

58



3.3 Player-Specific Congestion Games

An Upper Bound

In this paragraph, we present an upper bound on the convergence time of random
best response dynamics in player-specific congestion games on circles. We prove the
following theorem which matches the lower bound presented in the above corollary.

Theorem 3.15. In every player-specific congestion game on a circle random best
response dynamics terminates after O(n2) steps in expectation.

The remainder of this paragraph is organized as follows. We characterize with respect
to the types of the players in which cases there are cycles in the transition graphs of
such games. We show that cycles only exist if all players are of type 3 or type 3′. We
analyze the convergence time of deterministic best response dynamics in games in
which best response dynamics cannot cycle by developing a general framework that
allows to derive potential functions from which one can easily derive upper bounds.
Finally, we analyze the convergence time of random best response dynamics in the
case of games with players of type 3 or type 3′.

The Impact of Type 1 Players Firstly, we investigate the impact of type 1
players on the existence of cycles in the transition graphs and on the convergence
time of best response dynamics. We claim that best response dynamics in games
with at least one player of type 1 cannot cycle. Intuitively, this is true since every
player of type 1 changes its strategy at most once, whereas in a cycle every player
changes its strategy at least twice.

Lemma 3.16. Let Γ be a player-specific congestion game on a circle. If there exists at
least one player of type 1 or 1′, then best response dynamics cannot cycle. Moreover,
every best response dynamics terminates after at most 4n2 steps.

In order to prove Lemma 3.16, we first prove the following observation.

Observation 3.17. Let Γ be a player-specific congestion game on a circle in which
best response dynamics can cycle. Then every player changes its strategy at least
twice in every cycle of TG(Γ).

Proof. The fact that players being involved in the cycle change their strategy an even
number of times is obvious. Thus, it remains to show that every player changes its
strategy. For contradiction, assume that there exists a player i and a cycle such that
player i does not change its strategy on that cycle. In this case, we could remove
the player from the game, and artificially increase the congestion on the resource
the player allocates by one. We would then obtain a player-specific congestion game
on a tree in which best response dynamics can cycle. This is a contradiction to
Theorem 3.13.

Next we prove Lemma 3.16 for type 1 players. The proof for type 1′ players is
essentially the same.
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Proof of Lemma 3.16. Without loss of generality, let player 0 be of type 1. Then
observe that player 0 will never play its 1-strategy again, once it played its 0-strategy.
Thus, by Lemma 3.17, best response dynamics cannot cycle.

In order to prove the convergence time, observe that if we fix player 0 to one of its
strategies, then we obtain a player-specific congestion game on a tree. Due to Theo-
rem 3.13, the convergence time in such games is upper bounded by 2n2. Since player
0 changes its strategy at most once we obtain the upper bound on the convergence
time as stated in the lemma.

In the following, we will assume that there exists no player of type 1 or 1′, as otherwise
we could apply Lemma 3.16.

A Framework to Analyze the Convergence Time In this paragraph, we
present a framework to analyze the convergence time of best response dynamics in
player-specific congestion games on circles. Let Γ be a game such that there is no
player of type 1 or 1′. At first we investigate whether there is a sufficient condition
such that player i does not want to change its strategy in a state S of Γ.

Observation 3.18. Suppose that player i is not of type 1 or 1′. Then if it is syn-
chronized with the players i − 1 and i + 1 in S, it has no incentive to change its
strategy.

In the following, we call a resource r overloaded in state S if two players share r.
Additionally, we call a resource r′ underloaded in state S if no player allocates r′.
Obviously in every state of Γ, the total number of overloaded resources equals the
total number of underloaded resources. From Observation 3.18, we conclude that in
every state S only players who allocate a resource that is currently overloaded or who
could allocate a resource that is currently underloaded might have an incentive to
change their strategy.

Based on this observation, we now present a general framework to analyze the con-
vergence time of best response dynamics. At first, we introduce the notion of over-
and underload tokens. Given an arbitrary state S of Γ, we place an overload token
on every overloaded resource. Additionally, we place an underloaded token on every
underloaded resource. Obviously, over- and underload tokens alternate on the circle.
Furthermore, note that a legal placement of tokens uniquely determines the strategies
the players play. A placement of tokens is legal if no two tokens share a resource, and
if the tokens alternate on the circle.

In the following, we investigate in which directions tokens move if players play best
responses. Consider first a sequence of resources ri, . . . , rj and assume that players
i, . . . , j − 1 are of the same type t. Additionally, assume that an overload token is
placed on resource rk, and that an underload token is placed on resource rl with
i < k < l < j. The scenario we consider is depicted in Figure 3.2.

Assume at first, that the distance (number of edges) between the two tokens is at
least two, i.e., |l−k| ≥ 2. In this case, each token can only move in one direction. The
directions are uniquely determined by the type of the players. They can be derived
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overloaded underloaded

orientation of the players

ri rj

overload underload

type 2 anticlockwise clockwise

type 2′ clockwise anticlockwise

type 3 clockwise clockwise

type 3′ anticlockwise anticlockwise

Figure 3.2: In which directions do the tokens move?

from investigating, with respect to the players’ type t, which players have incentives
to change their strategy. The directions are stated in Figure 3.2, too. Assume now
that the distance between the two tokens is one. That is, k = l−1. Then there exists
a player who is interested in the over- and underloaded resource, and who currently
allocates the overloaded one. It is not difficult to verify that this player always has an
incentive to change its strategy. Note that this holds regardless of the player’s type
since we assumed that there are no players of type 1 and 1′. Observe that after the
strategy change of this player all players i, . . . , j − 1 are synchronized and therefore
there exist no over- and underloaded resources anymore. In the following, we call
such an event a collision of tokens.

So far, we considered sequences of players of the same type and observed that there
is a unique direction in which tokens of the same kind move. In sequences with
multiple types of players such unique directions do not exist any longer, i.e., overload
as well as underload tokens can move in both directions. However, if two players of
different types share a resource and if due to best responses of both players an over-
or underload token moves onto this resource, then the token could stop there. In the
following, we formalize this observation with respect to overload tokens and introduce
the notion of termination points.

Definition 3.19. We call a resource ri a termination point of an overload token if
the following conditions are fulfilled.

1. The players i− 1 and i have different types. Let these types be ti−1 and ti.

2. In sets of consecutive players of type ti−1 overload tokens move clockwise, where-
as they move anticlockwise in sets of consecutive players of type ti.

We illustrate the definition in Figure 3.3a. Let player i−1 be of type 3, and let player
i be of type 2. In this case, the requirements of the definition are satisfied. Assume
that player i − 1 plays its 1-strategy and that it is synchronized with player i − 2.
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Additionally, assume that player i plays its 0-strategy and that it is synchronized
with player i + 1. Observe now that the token cannot move as neither player i − 1
nor player i has an incentive to change its strategy. Suppose now that initially all
players along the path play their 0-strategy. Then an overload token that moves from
the left to the right along the path stops at ri. The token may only move on if one
of the two players is not synchronized with its neighbor any longer. In this case, this
player always has an incentive to change its strategy as it can allocate a resource
that is currently underloaded. Thus, an underload and an overload token collide.
Additionally, if initially all players play their 1-strategy and an overload token moves
from the right to the left along the path, we observe the same phenomenon. The
token cannot pass the resource ri unless it collides with an underload token.

Note that the definition of a termination point can easily be adopted to underload
tokens. A list of all termination points is given in Figure 3.3b. In the left column
we present all termination points for overload tokens, in the right one for underload
tokens.

type 2type 3

overloaded

ri

orientation of the players

(a) An Example of a termination point

→→←← ←←→→

2′ 2 2 2′

3 3′ 3 3′

3 2 -

- 2 3′

- 3 2′

2′ 3′ -

(b) A List of all termination
points

Figure 3.3: Termination Points.

Analyzing the Convergence Time In this paragraph, we analyze the conver-
gence time in player-specific congestion games on circles. We distinguish between the
following four cases.

Case 1: For both kinds of tokens there exists at least one termination point.

Case 2: Only for one kind of token there exists at least one termination point.

Case 3: There exist no termination points but over- and underload tokens move
in opposite directions.

Case 4: There exist no termination points and over- and underload tokens move
in the same direction.

In the first two cases, we present potential functions from which we derive that every
best response dynamics terminates after O(n2) steps. In the third case, we can do
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slightly better and prove an upper bound of O(n) on the convergence time. In all
cases one can easily construct matching lower bounds. Only in the fourth case, best
response dynamics can cycle, however, we prove that random best response dynamics
terminate after O(n2) steps in expectation.

Before we take a closer look at the different cases, we discuss which games with
respect to their players’ types belong to which case. Games with players of type 2
and 2′ only or with players of type 3 and 3′ only belong to the first case. Additionally,
some games with more than two types of players belong to this case. The second case
covers all games with at least three different kinds of players which do not belong
to the first case. Furthermore, it covers games with type 2 and type 3 players, with
type 2′ and type 3′ players, type 2′ and type 3 players, and with type 2 and type 3′

players. Games with type 2 players only, or games with type 2′ players only belong
to the third case. Finally, games with type 3 players only and games with type 3′

players only belong to the fourth case. These observations can easily be derived from
Figure 3.3b.

Lemma 3.20 (Case 1). Let Γ be a player-specific congestion game on a circle with
termination points for both kinds of tokens. Then Γ is a potential game, and every
best response dynamics terminates after O(n2) steps.

Proof. Let S be a state of Γ and consider the mapping that maps every token in S
to the next termination point lying in the direction in which the token moves. In the
following, we define d(t, S) as the distance of a token t in state S to its corresponding
termination point. Obviously d(t, S) ≤ n. Consider now the potential function
Φ(S) =

∑

token t d(t, S) and suppose that a player plays a best response. Then either
one token moves closer to its termination point or two tokens collide. In both cases
Φ(S) decreases by at least 1. Thus, Φ(S) strictly decreases if a player plays a best
response and therefore, Γ is a potential game. Moreover, as Φ(S) is upper bounded
by O(n2), every best response dynamics terminates after O(n2) steps.

Lemma 3.21 (Case 2). Let Γ be a player-specific congestion game on a circle with
termination points only for one kind of token. Then Γ is a potential game, and every
best response dynamics terminates after O(n2) steps.

Proof. Without loss of generality, assume that termination points only exist for over-
load tokens. In this case, we define d(to, S) for every overload token to as in the proof
of Lemma 3.20. For every underload token tu we define d(tu, S) as follows. Let to be
the first overload token lying in the same direction as tu moves.

1. If to moves in the opposite direction than tu, we define d(tu, S) as the distance
between the two tokens, where the distance of two tokens moving in opposite
directions is defined as the maximum number of moves of these tokens until
they collide.

2. If to moves in the same directions as tu, then we define d(tu, S) as the distance
between tu and to plus the distance between to and the first termination point
at which to has to stop. Thus, d(tu, S) equals the maximum number of moves
of these two tokens until they collide.
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Observe, that for every underload token tu, d(tu, S) ≤ 2n. Consider the potential
function Φ: Σ1× . . .×Σn → N×N with Φ(S) = (Φ1(S),Φ2(S)), where Φ1(S) equals
the total number of overload tokens in S and Φ2(S) equals the sum of all d(t, S) for
all under- and overload tokens. Suppose now that a player plays a best response.
Obviously if two tokens collide, then Φ1(S) decrease by one. Moreover, if there is no
collision, then Φ2(S) decreases. Note that in the first case Φ2 may increase. This
may happen if, due to the collision, d(tu, S) of a remaining underload token tu has to
be recomputed as its associated overload token has been removed. The new value is
upper bounded by the sum of the old values of tu and the collided underload token
plus 1. Now consider the lexicographic order <Φ of the states of Γ with respect to Φ.
Let S and S′ be two states of Γ. Then

S <Φ S′ ⇔

{

Φ1(S) < Φ1(S
′) or

Φ1(S) = Φ1(S
′) and Φ2(S) < Φ2(S

′) .

Observe that Φ strictly decreases if a player plays a best response. Thus, Γ is a
potential game. Additionally, observe that Φ1 is upper bounded by n, and that Φ2 is
upper bounded by n2. However, as Φ2 only increases by one when Φ1 decreases, we
conclude that every best response dynamics terminates after O(n2) steps.

Lemma 3.22 (Case 3). Let Γ be a player-specific congestion game on a circle with no
termination points in which over- and underload tokens move in opposite directions.
Then Γ is a potential game, and every best response dynamics terminates after O(n)
steps.

Proof. Let S be a state of Γ and consider the one-to-one mapping that maps every
overload token to the next underload token lying in the direction in which the token
moves. We define the distance of such a pair of tokens as the maximum number of
moves of these two tokens until they collide.

Suppose now that a player plays a best response. Then either the number of overload
tokens or the distance between one pair of tokens decreases by one. Consider now the
potential function Φ: Σ → N × N with Φ(S) = (Φ1(S),Φ2(S)), where Φ1(S) equals
the number of overload tokens in S, and Φ2(S) equals the sum of all distances of
pairs of tokens. Observe now that in the case of a best response, Φ1 either decreases
by 1 or remains unchanged. In the first case, Φ2 may increase by 1. This is true as
tokens from different pairs may collide. However, this can happen at most n times.
If this happens, the remaining two tokens form a new pair whose distance equals the
sum of the distances of the previous pairs plus 1. In the second case, Φ2 decreases
by 1. Then by similar arguments as in the proof of Lemma 3.21, we conclude that
Γ is a potential game. Finally, observe that Φ1 is upper bounded by n. Moreover,
Φ2 is upper bounded by n, too. As Φ2 only increases by one when Φ1 decreases, we
conclude that every best response dynamics terminates after O(n) steps.

In the following, we present a proof of the fourth case for players of type 3. By
symmetry of the types 3 and 3′, the same result holds for games with players of type
3′, too.
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Lemma 3.23 (Case 4). Let Γ be a player-specific congestion game on a circle in
which all players are of type 3. Then random best response dynamics terminates
after O(n2) steps in expectation.

Proof. In order to prove the lemma, we first prove the following observation.

Observation 3.24. In every state S of Γ the number of players which want to change
from their 0- to their 1-strategy equals the number of players which want to change
from their 1- to their 0-strategy.

Proof. In the following, we call a synchronized set of consecutive players maximal if
the next players to both ends of the set play different strategies than the synchronized
players. Obviously, in every state S of Γ which is not an equilibrium the number of
maximal synchronized sets of players playing their 0-strategy equals the number of
maximal synchronized sets of players playing their 1-strategy.

We now prove that in every maximal synchronized set of consecutive players only the
first player clockwise has an incentive to change its strategy. Thus, in every maximal
set, there is only a single player who wants to change its strategy. Note that this
suffices to prove the lemma.

Firstly, consider a maximal, synchronized subset of consecutive players N ′ = {i, . . .
j} which all play their 0-strategy. Then player i−1 plays its 1-strategy, and therefore
the players i−1 and i share resource ri. In this case, player i can decrease its latency
by changing to its 1-strategy. Other players k ∈ N ′, k 6= i, do not have an incentive
to change their strategy as this would increase their latency.

Secondly, consider a maximal synchronized subset of consecutive playersN ′ = {i, . . . j}
which all play their 1-strategy. Then player i − 1 plays its 0-strategy and therefore
no player currently allocates resource ri. Observe now that player i may decrease its
latency by changing to its 0-strategy. Again, all other players k ∈ N ′ \ {i} do not
have an incentive to change their strategy as this would increase their latency. This is
especially true for the last player, who currently allocates an overloaded resource.

Consider random best response dynamics in which an unsatisfied player is selected
uniformly at random. From Observation 3.24 we conclude that the total number
of players playing their 0-strategy increases or decreases by 1 with probability 1/2.
Combining this with the observation that at a Nash equilibrium all players play the
same strategy, we conclude that every random best response dynamics is isomorphic
to a random walk on a line with n+1 vertices. Vertex vi corresponds to the fact that
i players play their 0-strategy. As the time of such a random walk to reach one of the
two ends of the line is O(n2), the lemma follows.

3.3.5 Games on General Graphs

In this section, we consider player-specific congestion games on general graphs and
present evidence supporting Conjecture 3.10 by constructing a family of instances
for which experimental results clearly show a super-polynomial convergence time.
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Our analysis of player-specific congestion games on circles is based on the notion of
over- and underload tokens, and there is no straightforward extension of this notion
to player-specific singleton congestion games on general graphs. The instances we
construct have, however, the property that every resource has a fixed congestion that
is taken at every Nash equilibrium, and we can define tokens with respect to these
congestion values. To be precise, if the congestion on a resource deviates by ∆x from
the equilibrium congestion, we place ∆x overload tokens in the case ∆x > 0 and we
place −∆x underload tokens in the case ∆x < 0. Note that for circles with type 3
players this definition coincides with the former definition of tokens.

The crucial property of games on circles with type 3 players leading to polynomial
convergence is that the number of tokens cannot increase. The instances we construct
in this paragraph are in some sense similar to circles with type 3 players, but we
attach additional gadgets to the nodes which can occasionally increase the number
of tokens. We start with a circle with n type 3 players and replace each edge by n
parallel edges. This modification allows each node to store more than one token of the
same kind if the preferences of the players are adjusted accordingly. Other properties
are not affected by this modification, that is, over- and underload tokens still move
in the same direction with approximately the same speed and if an overload and an
underload token meet, they both vanish. Each time a node contains at least two
tokens of the same kind, the gadget attached to the node is triggered with constant
probability. If a gadget is triggered, it can emit a new pair of overload and underload
token into the circle. Usually, this new pair is stored in the gadget and only emitted
after the triggering tokens have moved on a linear number of steps. The new tokens
are not emitted simultaneously but the second one is usually only emitted after the
first one has moved on a linear number of steps in order to prevent the new tokens
from canceling each other out immediately.

Initially, we introduce two overload tokens at node 0 and two underload tokens at
node n/2. The two overload tokens move independently through the circle starting at
the same node. Typically, they meet a couple of times before they meet the underload
tokens and vanish. The same is true for the underload tokens as well, meaning that
typically a couple of gadgets get triggered before the initial tokens vanish. Hence, the
number of tokens has a tendency to increase. Since the triggered gadgets emit the
stored tokens in a random order, the random process soon becomes unwieldy and we
fail to rigorously prove that it takes super-polynomial time in expectation until all
tokens vanish. This conjecture is, however, strongly supported by simulations.

Our Construction

Given n ∈ N, we construct a player-specific congestion game Γn consisting of n
gadgets G0, . . . , Gn−1 as follows. A single gadget Gi is depicted in Figure 3.4a. It
consists of 4 resources ri,0, . . . , ri,3 and 5n players. Each edge in the figure represents
n of them. The gadgets are arranged on a circle, such that for every i the resources
ri,3 and ri+1,0 coincide. Thus, for every i, 6n players are interested in ri,0 and ri,3,
and 2n players are interested in ri,1 and ri,2.

For every player which chooses between the two resources ri,k and ri,l with l < k we
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call ri,l the 0-strategy and ri,k the 1-strategy of that player. In the following, we refer
to a player represented by an edge ei,j by the term type j player. The player-specific
latency functions are defined as follows. All players of the same type j have the same
functions for the two resources they choose between. We define these functions in
terms of a threshold t for their 0-strategies, meaning that the 0-strategy is a best
response if and only if the total number of other players allocating the 0-strategy
resource is less or equal to the threshold t. Otherwise the 1-strategy is best response.
The thresholds are defined as depicted in Figure 3.4b.

ei,0 ei,1

ei,2 ei,3

ei,4

ri,0

ri,1

ri,3

ri,2

(a) Gadget Gi

type 0 t0 = 3n

type 1 t1 = n− 1

type 2 t2 = 3n− 2

type 3 t3 = n− 1

type 4 t4 = 3n− 1
(b) The player-specific latency
functions

Figure 3.4: The lower bound construction.

In the next paragraphs, we prove that every resource has the same congestion at
every Nash equilibrium. We proceed with a description of how gadgets can generate
new tokens. Finally, we present results obtained from simulations.

Properties of Nash Equilibria

In order to simplify our proceeding discussion, we introduce the term cb
i,j(S) ∈ N,

b ∈ {0, 1}, to denote the number of type j players in gadget i who play their b-
strategy in state S. Furthermore, we define xi,j(S) = xri,j

(S). In the following, let
S∗ be a Nash equilibrium of Γn. For ease of notation, we use cb

i,j = cb
i,j(S

∗) and
xi,j = xi,j(S

∗). The following observation is true because S∗ is a Nash equilibrium.

Observation 3.25. Let j ∈ {1, 3} and b ∈ {0, 1}. Then for every 0 ≤ i < n
the number of type j-players playing their b-strategy in gadget Gi in S∗ is uniquely
determined by the number of type j − 1 players playing their b-strategy in gadget Gi

in S∗, i.e., cb
i,j−1 = cb

i,j .

Next we prove that every resource has the same congestion at every Nash equilibrium.

Lemma 3.26. For every Nash equilibrium S∗ of Γn and every 0 ≤ i < n,

xi,0 = 3 · n and xi,1 = xi,2 = n .

Proof. At first, observe that for every gadget Gi, it holds

c0
i,0 ≥ c0

i,4 ≥ c0
i,2 .
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If the first inequality were not true, then there exist type 0 players in Gi playing
their 1-strategy and type 4 players playing their 0-strategy. However, since S∗ is a
Nash equilibrium, all type 4 players in Gi who play their 0-strategy are satisfied and
thus xi,0 ≤ 3n. We observe that all type 0 players currently playing their 1-strategy
have an incentive to change their strategy. A similar argument proves the second
inequality. Essentially, the same arguments prove the following implications:

c0
i,0 < n ⇒ c0

i,4 = 0,

c0
i,4 < n ⇒ c0

i,2 = 0.

Now consider an arbitrary gadget Gi and let 3n−ki−1 be the number of players from
gadget Gi−1 allocating resource ri,0. In the following, we discuss how the parameter
ki−1 affects the choices of the players in gadget Gi at the Nash equilibrium S∗. We
prove that the best responses of the players in Gi are uniquely determined by the
parameter ki−1. In order to do so, we distinguish 6 cases.

1. Case ki−1 = 0: All type 1, type 3, and type 4 players in gadget Gi−1 play their
1-strategy. Due to Observation 3.25 we conclude that all type 0 and type 2
players in Gi−1 play their 1-strategy as well, and therefore the congestion on
ri−1,0 is at most 3n. In this case, however, all type 0 players in Gi−1 have an
incentive to play a best response. We conclude that this case does not appear
in a Nash equilibrium.

2. Case 1 ≤ ki−1 < n: ki−1 +1 type 0 and ki−1 +1 type 1 players in Gi play their 0-
strategy. The remaining players in Gi play their 1-strategy. Thus ki = ki−1 +1.

3. Case ki−1 = n: All type 0 and all type 1 players in Gi play their 0-strategy; all
other players in Gi play their 1-strategy. Thus ki = ki−1.

4. Case n < ki−1 ≤ 2n: All type 0 and all type 1 players in Gi play their 0-strategy.
Additionally, ki−1−n type 4 players in Gi play their 0-strategy. The remaining
players in Gi play their 1-strategy. Thus ki = ki−1.

5. Case 2n < ki−1 < 3n: All type 0, all type 1 and all type 4 players in Gi play their
1-strategy. Additionally, ki−1 − 2n− 1 type 3 and ki−1 − 2n− 1 type 4 players
in Gi play their 0-strategy. The remaining players in Gi play their 1-strategy.
Thus ki = ki−1 − 1.

6. Case ki−1 = 3n: Similar arguments as in the first case show that this case does
not appear in a Nash equilibrium.

As an intermediate observation we conclude that the lemma is true if at least one
gadget Gi exists for which n ≤ ki ≤ 2n holds. In this case, ki−1 = ki for every
1 ≤ i < n and the players play the strategies as described above.

Next we take a closer look at the second and fifth case. We begin with the second one
in which 1 ≤ ki−1 < n implies ki = ki−1 + 1 which implies ki+1 = ki−1 + 2 and so on
until kj = n. In this case we enter the third case which implies kj+1 = n and so on.
Obviously, this leads to a contradiction since ki−1 < n. Thus, whenever there exists
a gadget for which ki−1 < n holds, S∗ is not a Nash equilibrium. Similar arguments
show that the fifth case does not appear in a Nash equilibrium either.
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Generating New Tokens

Motivated by Lemma 3.26 we are now ready to introduce a new notion of tokens.

Definition 3.27. Let S be an arbitrary state of Γn and let x∗
r be the congestion on

a resource r at every Nash equilibrium. Then we place over- and underload on the
resources according to the following rules.

1. If xr(S) = x∗
r + k, k ∈ N, then we place k overload tokens on r.

2. If xr(S) = x∗
r − k, k ∈ N, then we place k underload tokens on r.

Next we describe how the number of overload and underload tokens can increase.
This can happen if there are either at least two overload or at least two underload
tokens on ri,0. In the following, we discuss the first case in detail. The second case
in only depicted in Figure 3.7.

Consider a single gadget Gi as depicted in Figure 3.6a. Numbers attached to resources
correspond to the number of tokens lying on them. Positive numbers indicate that
overload tokens are present, negative numbers indicate that underload tokens are
present. Numbers a attached to edges indicate that a players represented by that
edge play their 0-strategy, whereas n− a players play their 1-strategy.

Configuration 3.6a: Initially, there are two overload tokens on ri,0. In this case, all
type 0 and all type 4 players have an incentive to change to their 1-strategies.
All other players are satisfied. With probability 2/3, given that a player from
Gi is selected, a type 0 player is selected and Configuration 3.6b is reached, in
which there is one overload token on ri,0 and one on ri,1.

Configuration 3.6b: All type 1 and all type 4 players have an incentive to change
to their 1-strategy. With probability 2/3 Configuration 3.6c is reached in which
there is one overload token on ri,0 and one on ri,3.

Configuration 3.6c: Still all type 4 players have an incentive to change to their
1-strategy. However, we assume that the overload token which currently lies on
ri,0 moves on due to a best response of a player in gadget Gi+1. In this case,
Configuration 3.6d is reached in which there is still one overload token on ri,0.
Additionally, one overload token is in gadget Gi+1.

Configuration 3.6d: Again, all type 4 players have an incentive to change to their
1-strategy. In this case, we select one of these players and Configuration 3.6e is
reached in which there is one overload token on ri,4.

Configuration 3.6e: In this configuration, the overload token on ri,4 can move to
the next gadget. Observe that this event is much more likely than the next
one, in which the only type 0 player playing its 1-strategy switches back to its
0-strategy. All other players are satisfied. If both events take place Configu-
ration 3.6f is reached. Note, that in this case additional tokens are generated.
There is a new underload token on ri,1 and a new overload token on ri,0.
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Chapter 3 — Best Response Dynamics

Configuration 3.6f: Finally, all n − 1 type 4 players playing their 0-strategy have
an incentive to change to their 1-strategy. Additionally, the only type 1 player
playing its 1-strategy wants to change back to its its 0-strategy.
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Figure 3.5: Average number of best responses

We simulated random best response dynamics in games Γn and obtained the results
shown in Figure 3.5. On the x-axis we plotted the parameter n, on the y-axis the
average number of best responses until random best response dynamics terminated.
Observe that the y-axis is plotted in log-scale. For every n ∈ {5, 10, . . . , 180, 185} we
started random best response dynamics from the following initial configuration: all
type 0 and all type 1 players play their 0-strategies; all type 2 and all type 3 players
play their 1-strategies. Additionally, n/2 type 4 players in the gadgets G0, . . . , Gn/2−1

and n/2 + 2 type 4 players in the gadgets Gn/2, . . . , Gn−1 play their 1-strategy. All
other type 4 players play their 0-strategy. This initial configuration corresponds to
placing two overload tokens on r0,0 and two underload tokens on rn/2,0. For n ≤ 160
we took the average over 400 runs, and for larger n we took the average over 100
runs.

Unfortunately, it does not seem feasible to simulate best response dynamics for much
larger values of n. We believe, however, that the results in Figure 3.5 are a clear
indication for a super-polynomial, maybe even exponential, convergence time.
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3.3 Player-Specific Congestion Games
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Figure 3.6: The number of tokens increases along the upper path.
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Figure 3.7: The number of tokens increases along the lower path.
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CHAPTER 4

Imitation Dynamics

Recall that the notion of Nash equilibria in congestion games is based on two as-
sumptions. At first, it is assumed that players have complete knowledge about the
game, i. e., about their strategy spaces, the set of resources including their latency
functions, and in every state of the game about the choices of the other players. Sec-
ondly, it is assumed that players act rationally, i. e., they switch to other strategies
if and only if this would decrease their latencies. In the previous chapters we have
complied to these assumptions and investigated the existence of Nash equilibria and
the convergence time of sequential best response dynamics in different classes of con-
gestion games. In this chapter, however, we relax the first assumption in the following
way. We consider scenarios for which players have only little or no experience at all
upon the available options, that is, we assume that the players do not know their
entire strategy spaces. In such scenarios a good strategy to follow is to imitate others
coping successfully with the situation. It is widely accepted that this is a natural
behavior, and thus, imitating behavior has been studied intensively in economics and
game theory [HS98, Wei95].

In this chapter, we focus on imitation dynamics in symmetric standard congestion
games1 that emerge if myopic players imitate each other in order to improve their
own situation. For the sake of mathematical tractability we make the following as-
sumptions. We assume that in every state of the game each player knows its current
strategy and its latency. Furthermore, we assume that each player has the capability
of observing or sampling other players in order to get to know their current strate-
gies. Additionally, we assume that a player can compute its latency if it were the
only player to switch to a different strategy. Hence, a player can decide if imitating
someone else is profitable. However, we also assume that players are oblivious, that
is, once they switch to other strategies they forget about their previous choices.

1Throughout this chapter, we consider symmetric standard congestion games only. Hence, we
omit the terms symmetric and standard and refer by the expression congestion game to such a game.
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Under these assumptions we consider dynamics that emerge if players sequentially
or concurrently imitate each other in order to decrease their latencies. It is quite
obvious that there exist stable states of such dynamics, i. e., states in which none
of the players can successfully imitate a different player. For example, every Nash
equilibrium or every state in which all players choose the same strategy is such a state.
Moreover, sequential imitation dynamics converge to stable states as Rosenthal’s
potential decreases in case of a profitable imitation. Also note that in the worst case
it may take an exponential number of steps until sequential best response dynamics
terminate. For that reasons we focus on concurrent imitation dynamics in which
players concurrently imitate each other in a round based fashion and investigate
under which conditions we can benefit from concurrency.

The major drawback of concurrent imitation dynamics is that several players might
want to imitate the same player at the same time. However, if all of them act that
way their latencies might be larger than before the migration. In this case undesir-
able overshooting effects occur. In order to circumvent these drawbacks we propose a
protocol which we call the Imitation Protocol and analyze the convergence prop-
erties of imitation dynamics emerging if players concurrently apply this protocol. The
Imitation Protocol consists of a sampling and a migration step. Initially, each
player samples another player uniformly at random. Then it considers the latency
gain that it would have by adopting the strategy of the sampled player, under the
assumption that no one else changes its strategy. If this latency gain is not too small
the player adopts the sampled strategy with a migration probability mainly depending
on the anticipated latency gain.

This Imitation Protocol has several appealing properties: it is simple, stateless,
based on local information, and is compatible with the selfish incentives of the play-
ers. Moreover, the Imitation Protocol avoids overshooting effects as the migration
probabilities, according to which the players decide whether they migrate or not, are
defined in a suitable manner without sacrificing the benefit of concurrency. We show
that it suffices to scale the migration probabilities by the elasticity of the latency
functions in order to avoid overshooting effects. The elasticity is a well-known pa-
rameter in economics which describes characteristic properties of markets, e. g. the
ratio of the percent change of the demand of a good to the percent change of its price.
For example, in case of polynomial latency functions with positive coefficients and
maximum degree d the elasticity is bounded from above by d. As we already dis-
cussed above, a natural solution concept to imitation dynamics is imitation stability.
Subsequently, we call a state imitation-stable if no more improvements are possible
based on the Imitation Protocol.

As our first result we prove that the Imitation Protocol succeeds in avoiding
overshooting effects and converges in a monotonic fashion to imitation-stable states.
More precisely, we show that Rosenthal’s potential function decreases on expectation
as long as the system is not yet stable. Thus, the potential is a super-martingale
and eventually reaches a local minimum, corresponding to an imitation-stable state.
Hence, as a corollary, we see that an imitation-stable state is reached in pseudo-
polynomial time.

Our main result, however, is a much stronger bound on the time to reach approximate
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imitation-stable states. What is a natural definition of approximate stability in our
setting? By repeatedly sampling other players, a player gets to know the average
latency of the system. It is approximately satisfied if it does not sustain a latency
much larger than the average. Hence, we say that a state is approximately stable if
almost all players are almost satisfied. More precisely, we consider states in which at
most a δ-fraction of the players deviates by more than an ε-fraction (in any direction)
from the average latency. We show that the expected time to reach such a state is
polynomial in the inverse of the approximation parameters δ and ε as well as in the
maximum elasticity of the latency functions, and logarithmic in the ratio between
maximum and minimum potential. Hence, if the maximum latency of a path is fixed,
the convergence time is only logarithmic in the number of players and independent
of the size of the strategy space and the number of resources.

We complement these results by various lower bounds. At first, it is clear that pseudo-
polynomial time is required to reach exact imitation-stable states. This follows from
the fact that there exist states in which all latency improvements are arbitrarily
small, resulting in arbitrarily small migration probabilities. Hence, already a single
step may take pseudo-polynomially long. As a concept of approximately stable states
one could have required all players to be approximately satisfied, rather than only
all but a δ-fraction. This, however, would require to wait a polynomial number
of rounds for the last player to become approximately satisfied, as opposed to our
logarithmic bound. Finally, we consider sequential imitation processes in which only
one player may move at a time. We extend a construction from [ARV08] to show
that there exist instances in which the shortest sequence of imitations that leads to
an imitation-stable state is exponentially long. In this construction, however, a player
deviates to a different strategy regardless of how big its latency gain is. This is in
contrast to the Imitation Protocol in which players only deviate if the anticipated
latency gain exceeds a small threshold.

Note that there is a fundamental limitation to imitation dynamics: they are not inno-
vative, i. e., they cannot explore new strategies. Even worse, due to our assumption
that players are oblivious the knowledge about a strategy gets lost once no player uses
the strategy any longer. In case of the Imitation Protocol the latter drawback
reads as follows. It might happen with small but non-zero probability that all players
currently using the same strategy s migrate towards other strategies and no other
player migrates towards s. For singleton games, i. e., games in which each strategy is
a singleton set, in which empty links have latency zero, we show that the probability
of this event occurring in a polynomial number of rounds is negligible. This also has
an important consequence: The sum of the players’ latencies of a state to which the
Imitation Protocol converges is, on expectation, not much worse than this sum at
a Nash equilibrium. More precisely, we show for the case of linear latency functions
that the expected sum of the players’ latencies of a state to which the Imitation

Protocol converges is within a constant factor of the optimal solution.

We conclude this chapter with a discussion of a possible extension of the Imitation

Protocol. In cases in which convergence to a Nash equilibrium is required it is
possible to adjust the dynamics and occasionally let players use an Exploration

Protocol. Using such a protocol, players sample other strategies directly instead
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of sampling them by looking at other players. We show that a suitable definition of
such a protocol and a suitable combination with the Imitation Protocol guarantee
convergence to Nash equilibria in the long run.

4.1 Additional Notations and Useful Facts

In this chapter, we slightly change and extend the notions as introduced in Sec-
tion 1.1.1. For ease of presentation, we formulate our results in the terms of sym-
metric network congestion games. Recall that in such a game all players strive to
select a shortest path from the same source to the same sink. Subsequently, we refer
by P to the set of paths in a given network connecting a particular source-sink pair,
and by p to their number, i. e., p = |P|. Furthermore, we use the terms edge e and
path P instead of the terms resource r and strategy s. Additionally, we assume that
the latency functions ℓe : R≥0 → R≥0 are non-decreasing and differentiable, and that
ℓe(x) > 0 for all x > 0.

Previously, we referred to a state by S and denoted by xe(S) the congestion on edge
e. In this chapter, we refer to a state by x as we are more interested in the number of
players allocating a particular resource or selecting a particular strategy rather than
which player plays what strategy. Hence, given a state x, we denote by xe, e ∈ E
the number of players allocation edge e, and by xP , P ∈ P, the number of players
utilizing path P . Furthermore, we denote by ℓP (x) =

∑

e∈P ℓe(xe) the latency of
path P ∈ P in state x. Hence, the latency of a player is the latency of the path it
chooses.

For brevity, for all paths P ∈ P, let 1P denote the p-dimensional unit vector with
the one in position P . Thus, in state x a player would switch from path P to path Q
if this strictly decreases its latency, i. e., if ℓP (x) > ℓQ(x + 1Q − 1P ). For every path
P ∈ P let

ℓ+
P (x) = ℓP (x + 1P ) .

Note that ℓ+
P (x) ≥ ℓP (x + 1P − 1Q) for every path Q ∈ P. Additionally, let

Lav(x) =
∑

P∈P

xP

n
ℓP (x)

denote the average latency of the paths in state x, and let

L+
av(x) =

∑

P∈P

xP

n
ℓP (x + 1P ) .

Finally, let
ℓmax = max

x
max
P∈P

ℓP (x)

denote the maximum latency of any path. Throughout this chapter, whenever we
consider a fixed state x we simply drop the argument (x) from Φ, ℓP , ℓ+

P , Lav, and
L+

av.

Finally, given a fixed game let Φ∗ = minx Φ(x) be the minimum of Rosenthal’s po-
tential function. Due to our definition of the latency functions Φ∗ > 0 holds.
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4.1.1 The Elasticity and the Slope of Latency Functions

In order to give a precise definition of the Imitation Protocol we need to introduce
two additional quantities.

The Elasticity of Latency Functions

In order to bound the steepness of the latency functions and the effect that overshoot-
ing effects may have, we propose to scale the migration probabilities of the players by
the elasticity of the latency functions. Formally, it is defined as follows. Recall that
n denotes the number of player.

Definition 4.1. Consider a differentiable latency function ℓ : R≥0 → R≥0. Then the
elasticity of ℓ at point x ∈ ]0, n] is defined as

d(x) =
ℓ′(x) · x

ℓ(x)
.

The function ℓ has elasticity d if d(x) ≤ d for every x ∈ R≥0.

Graphically, the elasticity at some point x can be interpreted as follows. The slope of
ℓ(·) at x can be estimated by the slope of the secant through the origin and the point
(x, ℓ(x)). Then the elasticity of ℓ(·) at x is the factor by which this estimate is wrong.
As an example, consider the polynomial function ℓ(x) = a · xd which has elasticity d
for every x ∈ R≥0. Throughout this chapter, we frequently apply the following fact.

Fact 4.2. Given a latency function with elasticity d, it holds that for any x0 ∈ R>0

and α ≥ 1, ℓe(α x0) ≤ ℓe(x0) · α
d and for 0 ≤ α < 1, ℓe(α x0) ≥ ℓe(x0) · α

d.

Proof. We first consider the case α ≥ 1. Hence, given ℓ(x0) we like to derive an upper
bound on ℓ(α x0). Since ℓ(·) has elasticity d

ℓ′(x) · x

ℓ(x)
≤ d

holds for every x ≥ 0. Note that the functional equality (ℓ′(x) · x)/ℓ(x) = d together
with our boundary condition on ℓ(x0) is solved by the function ℓ∗(x) = a · xd for
a = ℓ(x0)/x

d
0. Hence, for x ≥ x0, ℓ(x) ≤ axd ≤ ℓ(x0)/x

d
0 · x

d. For x = αx0, this
proves the claim. The case 0 ≤ α < 1 is treated similarly.

The Slope of Latency Functions

As we already mentioned in the introduction, players applying the Imitation Pro-

tocol probably switch to different strategies if the anticipated latency gain is suf-
ficiently large. As we will see below, the gain should be larger than the maximum
slope on almost empty edges. Let νe denote the maximum slope on almost empty
edges, i. e.,

νe = max
x∈{1,...,d}

{ℓe(x)− ℓe(x− 1)} .
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Furthermore, for P ∈ P, let νP =
∑

e∈P νe. Subsequently, we choose ν such that
ν ≥ maxP∈P νP .

As an example, consider monomial latency functions of the form a · xd, a ≥ 0. Then
a very rough upper bound of v is m · a · dd.

4.1.2 Useful Facts

Next, we present some facts which we frequently apply in this chapter.

Fact 4.3 (Chernoff Bounds, see [HR90]). Let X be a sum of Bernoulli variables.
Then

P [X ≥ k · E [X]] ≤ e−E[X] k·(lnk−1) ,

and, for k ≥ 4 > e4/3,

P [X ≥ k · E [X]] ≤ e−
1
4

E[X] k lnk .

Equivalently, for k ≥ 4 E [X],

P [X ≥ k] ≤ e−
1
4

k ln(k/E[X]) .

Fact 4.4. For any r > 0 and x ∈ [0, r], it holds that (ex − 1) ≤ x · er−1
r .

Fact 4.5 (Geometric Series). For every c ∈ ]0, 1[ it holds

∞∑

k=l

ck =
cl

1− c
.

Fact 4.6 (Jensen’s Inequality). Let f : R→ R be a convex function, and let a1, . . . , ak,
x1, . . . , xk ∈ R. Then

f

(∑k
i=1 aixi
∑k

i=1 ai

)

≤

∑k
i=1 aif(xi)
∑k

i=1 ai

.

If f(x) = x2, then

(∑k
i=1 aixi
∑k

i=1 ai

)2

≤

∑k
i=1 ai(xi)

2

∑k
i=1 ai

⇔
1

∑k
i=1 ai

·

(
k∑

i=1

aixi

)2

≤
k∑

i=1

aif(xi) .
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Fact 4.7 ([FOV08b]). Let X0,X1, . . . denote a sequence of non-negative random vari-
ables and assume that for all i ≥ 0

E [Xi | Xi−1 = xi−1] ≤ xi−1 − 1

and let τ denote the first time t such that Xt = 0. Then

E [τ | X0 = x0] ≤ x0 .

Fact 4.8 ([FOV08b]). Let X0,X1, . . . denote a sequence of non-negative random vari-
ables and assume that for all i ≥ 0 E [Xi | Xi−1 = xi−1] ≤ xi−1 · α for some constant
α ∈ (0, 1). Furthermore, fix some constant x∗ ∈ (0, x0] and let τ be the random
variable that describes the smallest t such that Xt ≤ x∗. Then

E [τ | X0 = x0] ≤
2

log(1/α)
· log

(x0

x∗

)

.

4.2 The Imitation Protocol

The Imitation Protocol (Protocol 1) proceeds in two steps. At first, each player
samples another player uniformly at random. Then it considers the latency gain that
it would have by adopting the strategy of the sampled player, under the assumption
that no one else changes its strategy. If this latency gain is not too small the player
adopts the sampled strategy with a migration probability mainly depending on the
anticipated latency gain (ℓP (x)− ℓQ(x + 1Q− 1P ))/ℓP (x) and on the elasticity of the
latency functions given that the absolute latency exceeds the threshold ν.

Protocol 1 The Imitation Protocol, repeatedly executed by all players in parallel.

Let P denote the path of the player in state x
Sample another player uniformly at random. Let Q denote its path.
if ℓP (x) > ℓQ(x + 1Q − 1P ) + ν then

With probability

µPQ =
λ

d
·
ℓP (x)− ℓQ(x + 1Q − 1P )

ℓP (x)

migrate from path P to path Q
end if

Our analysis concentrates on dynamics that result from the protocol being executed
by the players in parallel in a round-based fashion. These dynamics generate a se-
quence of states x(0), x(1), . . .. The resulting dynamics converge to a state that is
stable in the sense that imitation cannot produce further progress, i. e., x(t+1) = x(t)
with probability 1. Such a state is called an imitation-stable state. In other words, a
state is imitation-stable if it is ε-Nash with ε = ν with respect to the strategy space
restricted to the current support. Here ε-Nash means that no player can improve its
own latency by more than ε.
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As discussed in the introduction, the main difficulty in the design of the protocol
is to bound overshooting effects. To get an intuition of this problem, consider two
parallel resources of which the first has the constant latency function ℓ1(x) = c and
the second has the latency function ℓ2(x) = xd. Recall that the elasticity of ℓ2 is
d. Furthermore, assume that only a small number of players x2 utilizes resource 2
whereas the majority of n − x2 users utilizes resource 1. Let b = c − xd

2 > 0 denote
the latency difference between the two resources. A simple calculation shows that
using the protocol without the damping factor 1/d, the expected latency increase
on resource 2 would be Θ(b · d), overshooting the balanced state by a factor d. For
this reason, we reduce the migration probability accordingly. The constant λ will be
determined later.

Note that the arguments in the last paragraph hold for the expected load changes. Our
protocol, however, has to take care of probabilistic effects, i. e., the realized migration
vector may differ from its expectation. Typically, we can use the elasticity to bound
the impact of this effect. However, the elasticity does not give a good estimate of the
latency increase if the congestion on an edge is very small, i. e., less than d. In this
case, the number of joining players is not concentrated sharply enough around its
expectation. Therefore, we add an additional requirement that players only migrate
if the anticipated latency gain is at least ν and use this to bound probabilistic effects
if the congestion of the edge is less than d. Let us remark that we will see below
(Theorem 4.18) that for a large class of singleton games it is very unlikely, that
an edge will ever have a load of d or less, so the protocol will behave in the same
way with high probability for a polynomial number of rounds even if this additional
requirement is dropped.

4.2.1 Convergence to Imitation-Stable States

In this section, we prove that imitation dynamics generated by the Imitation Pro-

tocol converge to imitation stable states since in each round Rosenthal’s potential
function Φ(x) decreases in expectation. From this result we can derive a pseudo-
polynomial upper bound on the convergence time to imitation stable states.

Consider two states x and x′ as well as a migration vector ∆x = (∆xP )P∈P such
that x′ = x + ∆x. We may imagine ∆x as the result of one round of the Imitation

Protocol although the following lemma is independent of how ∆x is constructed.
Furthermore, we consider ∆x to be composed of a set of migrations of players between
pairs of paths, i. e., ∆xPQ denotes the number of players who switch from path P
to path Q, and ∆xP denotes the total increase or decrease of the number of players
utilizing path P , that is,

∆xP =
∑

Q∈P

(xQP − xPQ) .

Also, let ∆xe =
∑

P∋e ∆xP denote the induced change of the number of players
utilizing edge e ∈ E. In order to prove convergence, we define the virtual potential
gain

VPQ(x,∆x) = xPQ · (ℓQ(x + 1Q − 1P )− ℓP (x))

80



4.2 The Imitation Protocol

which is the sum of the potential gains each player migrating from path P to path
Q would contribute to ∆Φ if each of them was the only migrating player. Note that
if a player improves the latency of its path, the potential gain is negative. The sum
of all virtual potential gains is a very rough lower bound on the true potential gain
∆Φ(x,∆x) = Φ(x + ∆x) − Φ(x). In order to compensate for the fact that players
concurrently change their strategies, consider the error term on an edge e ∈ E:

Fe(x,∆x) =







xe+∆xe∑

u=xe+1

ℓe(u)− ℓe(xe + 1) if ∆xe > 0

xe∑

u=xe+∆xe+1

ℓe(xe)− ℓe(u) if ∆xe < 0

0 if ∆xe = 0

Subsequently, we show that the sum of the virtual potential gains and the error terms
is indeed an upper bound on the true potential gain ∆Φ(x,∆x). A similar result is
shown in [FV08] for a continuous model.

Lemma 4.9. For any assignment x and migration vector ∆x it holds that

∆Φ(x,∆x) ≤
∑

P,Q∈P

VPQ(x,∆x) +
∑

e∈E

Fe(x,∆x) .

Proof. We first express the virtual potential gain in terms of latencies on the edges.
Clearly,

∑

P,Q∈P

VPQ(x,∆x) =
∑

P,Q∈P

xPQ · (ℓQ(x + 1Q − 1P )− ℓP (x))

≤
∑

P,Q∈P

xPQ ·




∑

e∈Q

ℓe(xe + 1)−
∑

e∈P

ℓe(xe)





≤
∑

e:∆xe>0

∆xe · ℓe(xe + 1) +
∑

e:∆xe<0

∆xe · ℓe(xe) . (4.1)

The true potential gain, however, is

∆Φ(x,∆x) =
∑

e:∆xe>0

xe+∆xe∑

u=xe+1

ℓe(u)−
∑

e:∆xe<0

xe∑

u=xe−∆xe+1

ℓe(u)

=
∑

e:∆xe>0

(

∆xe · ℓe(xe + 1) +

xe+∆xe∑

u=xe+1

(ℓe(u)− ℓe(xe + 1))

)

+
∑

e:∆xe<0

(

∆xe · ℓe(xe) +
xe∑

u=xe−∆xe+1

(ℓe(xe)− ℓe(u))

)

.

Substituting Equation (4.1) for the left term of each sum and the definition of Fe for
the right term of each sum, we obtain the claim of the Lemma.
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In the following, we consider ∆x to be a migration vector generated by the Imitation

Protocol rather than an arbitrary vector. In this case, ∆x is a random variable
and all probabilities and expectations are taken with respect to the Imitation Pro-

tocol. In order to prove that the potential decreases in expectation, we derive a
bound on the size of the error terms. We show that the error terms reduce the vir-
tual potential gain by at most a factor of two, or, put a different way, that the true
potential gain is at least half of the virtual potential gain.

Lemma 4.10. Let x denote a state and let the random variable ∆x denote a migration
vector generated by the Imitation Protocol. Then,

E [∆Φ(x,∆x)] ≤
1

2

∑

P,Q∈P

E [VPQ(x,∆x)] .

Proof. For any given round, each term in VPQ, P,Q ∈ P and Fe, e ∈ E can be asso-
ciated with an player. Fix an player i migrating from, say, P to Q. Its contribution
to the VPQ(x,∆x) is ℓQ(x + 1Q− 1P )− ℓP (x) (this is the same for all players moving
from P to Q). It may also contribute to Fe, e ∈ P ∪ Q. However, this contribution
depends on ∆xe and whether i migrates towards or away from e. Subsequently, we
describe how to derive upper and lower bounds on these contributions depending on
whether i migrates towards e or away from e.

Below, we consider subsets N ′ ⊂ N of the players and assume that they are ordered
with respect to ascending migration probabilities µPjQj

, where Pj and Qj denote the
origin and destination path of player j ∈ N ′. Ties are broken arbitrarily.

Fix an edge e ∈ Q \P and let A+(e) denote the set of players migrating to e ∈ Q \P .
Let ∆x̃e denote the number of players in A+(e) which occur in our ordering with
respect to µPQ before player i.

Player i’s contribution to Fe(x,∆x), e ∈ Q\P , is upper bounded by ∆ℓ̃e(∆x̃e) where
we define the error function ∆ℓ̃e(δ) = ℓe(xe+1+δ)−ℓe(xe+1). In this case, we forgot
about the positive effects players departing from e might have. For an illustration,
see Figure 4.1. For brevity, let us write ℓe = ℓe(xe) and ℓ+

e = ℓe(xe + 1) as well as
ℓP = ℓP (x) and ℓ+

Q = ℓP (xe + 1Q − 1P ). For e ∈ Q \ P we show that

E

[

∆ℓ̃e (∆x̃e)
]

≤
1

8
· (ℓP − ℓ+

Q) ·

(

ℓ+
e

ℓ+
Q

+
νe

νQ

)

. (4.2)

Now, fix an edge e ∈ P \Q and let A−(e) denote the set of players migrating away
from e ∈ P \Q. Let ∆x̃e denote the number of players in A−(e) which occur in our
ordering with respect to µPQ before player i. Player i’s contribution to Fe(x,∆x),
e ∈ P \ Q is lower bounded by ∆ℓ̃e(∆x̃e) where ∆ℓ̃e(δ) is defined as above. Hence,
we forgot about the positive effects players migrating towards e might have. For
e ∈ P \Q we show that

E

[

∆ℓ̃e (∆x̃e)
]

≤
1

8
· (ℓP − ℓ+

Q) ·

(
ℓe

ℓP
+

νe

νP

)

. (4.3)

82



4.2 The Imitation Protocol

ℓe(x)

x
∆x̃exe

ℓe′(x)

x

Figure 4.1: Potential gain of a player migrating from edge e′ towards edge e. The
hatched area is the player’s virtual potential gain. The shaded area on the left is this
player’s contribution to the error term, caused by the ∆x̃e players ranking before the
player under consideration (with respect to µPQ).

Thus, the expected sum of the error terms of an player migrating from P to Q is at
most

ℓP − ℓ+
Q

8




∑

e∈P\Q

(
ℓe

ℓP
+

νe

νP

)

+




∑

e∈Q\P

ℓ+
e

ℓ+
Q

+
νe

νQ







 ≤
1

2
(ℓP − ℓ+

Q) ,

i. e., half of its virtual potential gain, which proves the lemma. First, consider the
case that e ∈ Q \ P where Q denotes the destination path of agent i.

For brevity, let us write IPQ = (ℓP −ℓ+
Q)/ℓP for the incentive to migrate from P to Q.

Again, consider the case that e ∈ Q where Q denotes the destination path of player
i. Then, due to our order of the players,

E [∆x̃e] ≤ n ·
xe

n
· µPQ ≤

λ · xe · IPQ

d
(4.4)

implying

xe ≥
E [∆x̃e] · d

λ · IPQ
. (4.5)

Furthermore, due to the elasticity of ℓe, and using (1 + 1/x)x ≤ exp(1), we obtain

∆ℓ̃e(δ) ≤ ℓ+
e ·

(
xe + 1 + δ

xe + 1

)d

− ℓ+
e

≤ ℓ+
e ·

(

1 +
δ

xe

)d

− ℓ+
e

≤ ℓ+
e ·
(

e
d δ
xe − 1

)

. (4.6)
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Subsequently, we consider two cases.

Case 1: E [∆x̃e] ≥
1
64 . Substituting Inequality (4.5) into Inequality (4.6), we obtain

for every κ ∈ R≥0

∆ℓ̃e (κ E [∆x̃e]) ≤ ℓ+
e ·
(

eκ λ IPQ − 1
)

.

Now, note that for every k ∈ N and κ ∈ [k, k + 1]

P [∆x̃e ≥ κ E [∆x̃e]] ≤ P [∆x̃e ≥ k E [∆x̃e]] and

∆ℓ̃e(κ E [∆x̃e]) ≤ ∆ℓ̃e((k + 1) E [∆x̃e])

hold. Applying a Chernoff bound (Fact 4.3), we obtain an upper bound for the

expectation of E

[

∆ℓ̃e (∆x̃e)
]

as follows.

E

[

∆ℓ̃e (∆x̃e)
]

≤
∞∑

k=1

P [∆x̃e ≥ k E [∆x̃e]] ·∆ℓ̃e((k + 1) E [∆x̃e])

≤ ∆ℓ̃+
e (5 E [∆x̃e]) +

∞∑

k=5

P [∆x̃e ≥ k E [∆x̃e]] ·∆ℓ̃e((k + 1) E [∆x̃e])

≤ ℓ+
e ·
(

e5 λ IPQ − 1
)

+

∞∑

k=5

e−
1
4

E[∆x̃e] k lnk · ℓ+
e ·
(

e(k+1) λ IPQ − 1
)

≤ ℓ+
e ·
(

e5 λ IPQ − 1
)

+

∞∑

k=5

e−
1
4

E[∆x̃e] k · ℓ+
e ·
(

e2 k λ IPQ − 1
)

≤ ℓ+
e ·
(

e5 λ IPQ − 1
)

+

∫ ∞

4
e−

1
4

E[∆x̃e]u · ℓ+
e ·
(

e2 u λ IPQ − 1
)

du

= ℓ+
e ·



e5λIPQ − 1 + e−E[∆x̃e]
e8 λ IPQ − 1 +

8 λ IPQ

E[∆x̃e]

1
4E [∆x̃e]− 2λ IPQ



 .

Now, due to Fact 4.4 with r = 1 and our assumption that E [∆x̃e] ≥ 1/64, we
obtain

E

[

∆ℓ̃e (∆x̃e)
]

≤ λ · ℓ+
e · IPQ ·

(

5 (e − 1) +
8 (e − 1) + 8 · 64

1
4·64 − 2λ

)

≤ c · λ · ℓ+
e ·

ℓP − ℓ+
Q

ℓP

≤ c · λ · ℓ+
e ·

ℓP − ℓ+
Q

ℓ+
Q

for some constant c. The first inequality holds if λ < 1/512, proving Equa-
tion (4.2) if λ is chosen small enough.
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Case 2: E [∆x̃e] < 1
64 . Again, in this case we can apply a Chernoff bound (Fact 4.3)

to upper bound E

[

∆ℓ̃e (∆x̃e)
]

.

E

[

∆ℓ̃e (∆x̃e)
]

≤
n∑

k=1

P [∆x̃e = k] ·∆ℓ̃e(k)

≤
n∑

k=1

P

[

∆x̃e ≥
k

E [∆x̃e]
E [∆x̃e]

]

·∆ℓ̃e(k)

≤
n∑

k=1

e−k (ln(k/E[∆x̃e])−1) ·∆ℓ̃e(k)

There are two subcases:

Case 2a: xe > d. In order to bound the expected latency increase, we apply
the elasticity bound on ℓe:

E

[

∆ℓ̃e(∆x̃e)
]

≤
n∑

k=1

e−k (ln(k/E[∆x̃e])−1) · ℓ+
e ·
(

e
k d
xe − 1

)

≤ ℓ+
e ·

n∑

k=1

e−k (ln(k)−ln(E[∆x̃e])−1) ·
(

e
k d
xe − 1

)

≤ ℓ+
e ·

n∑

k=1

(

E [∆x̃e] (ek
E [∆x̃e]

k−1)
)

e−k (ln k) ·
(

e
k d
xe − 1

)

≤ ℓ+
e · E [∆x̃e] ·

n∑

k=1

e−k (ln k) ·
(

e
k d
xe − 1

)

.

Now, splitting up the sum, we define

L1 = E [∆x̃e]

⌊ 8 xe
d ⌋∑

k=1

e−k (ln k) ·
(

e
k d
xe − 1

)

≤ E [∆x̃e]
(e8 − 1) d

8xe

⌊ 8 xe
d ⌋∑

k=1

e−k (ln k) · k

≤
e8

4
· E [∆x̃e]

d

xe

≤
e8

4
· λ IPQ ,

where the first inequality uses the observation that e
k d
xe ≤ e8 since k ≤

⌊8xe/d⌋, and Fact 4.4 (with r = 8). Additionally, where the third inequal-
ity uses the observation that

∑∞
k=1 e−k (ln k) · k ≤ 2, and finally where the

last inequality uses Inequality (4.4).
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For the second part of the sum, let

L2 = E [∆x̃e]
∞∑

k=⌈8 xe
d ⌉

e−k (ln k) ·
(

e
k d
xe − 1

)

≤ E [∆x̃e]

∞∑

k=⌈8 xe
d ⌉

e−k (ln k)+ k d
xe

= E [∆x̃e]

∞∑

k=⌈8 xe
d ⌉

e−k (ln k−1) (since xe > d)

≤ E [∆x̃e]
∞∑

k=⌈8 xe
d ⌉

e−
1
2

k lnk (since k ≥
⌈

8 xe

d

⌉
≥ 8)

≤ E [∆x̃e]
∞∑

k=⌈8 xe
d ⌉

(
d

8xe

) 1
2
k

.

Due to Fact 4.5 and since xe > d

L2 = E [∆x̃e]

(
d

8 xe

)8/2

1−
√

d
8 xe

≤ E [∆x̃e]
d

xe

≤ λ IPQ .

Reassembling the sum, we obtain

E

[

∆ℓ̃e(∆x̃e)
]

≤ ℓ+
e · (L1 + L2)

≤ ℓ+
e ·

(
e8

4
+ 1

)

λ IPQ .

Again, by the same arguments as at the end of Case 1 this proves Equa-
tion (4.2) if λ is less than 1/(2e8 + 8).

Case 2b: xe ≤ d. In this case we separate the upper bound on E

[

∆ℓ̃e(∆x̃e)
]

into the section up to d and above d. For the first section we use the fact
that each additional player on resource e causes a latency increase of at
most νe as long as the load is at most d. We define the contribution to the
expected latency increase by the events that up to d− xe join resource e,
i. e., afterwards the congestion is still at most d. In this case, we may use
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νe to bound the contribution of each player:

L1 ≤
d−xe∑

k=1

e−k (ln(k/E[∆x̃e])−1) · k νe

≤ e νe E [∆x̃e] + νe E [∆x̃e]
2

d−xe∑

k=2

e−k (ln(k)−1) · k

≤ e νe E [∆x̃e] · (1 + 8 E [∆x̃e] /e)

≤ 3 νe E [∆x̃e] ,

where the third inequality holds since
∑d−xe

k=2 e−k (ln(k)−1) ·k ≤ 8, and where
the last inequality holds since E [∆x̃e] < 1/64.

For the contribution of the players increasing the load on resource e to
above d we use the elasticity constraint again. This time, we do not con-
sider the latency increase with respect to ℓ+

e (xe) but with respect to ℓe(d):

L2 =

n∑

k=d−xe+1

e−k·(ln(k)/E[∆x̃e])−1) · ℓe(d) ·
(

e
d (k−(d−xe))

d − 1
)

.

By the same arguments as in case (2a),

L2

≤ ℓe(d) · E [∆x̃e] ·
∞∑

k=d−xe+1

e−k lnk+k−(d−xe)

= ℓe(d) · E [∆x̃e] ·
∞∑

k=1

e−(k+(d−xe)) ln(k+(d−xe))+k

= ℓe(d) · E [∆x̃e] · e
−(d−xe) ·

∞∑

k=1

e−(k+(d−xe)) ln(k+(d−xe))+k+d−xe .

Consider the series in the above expression as a function of u = (d − xe)
and denote it by S(u). Note that S(u) converges for every u ≥ 0 and
S(u)→ 0 as u→∞. In particular, S(u) < 8 for any u ≥ 0, so

L2 ≤ 8 ℓe(d) · E [∆x̃e] · e
−(d−xe)

≤ 8 (ℓe(xe) + (d− xe) νe) · E [∆x̃e] · e
−(d−xe) .

Since (d− xe) · e
−(d−xe) < 1/2,

L2 ≤ 4 (ℓe(xe) + νe) · E [∆x̃e] .

Altogether,

E

[

∆ℓ̃e(∆x̃e)
]

≤ L1 + L2

≤ 7 νe E [∆x̃e] + 4 ℓe(xe) E [∆x̃e]

≤ 7 νe E [∆x̃e] + 4
λxe IPQ

d
ℓe(xe)

≤
7

64
ν

νe

νQ
+

4λxe IPQ

d
ℓe(xe)
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where we have used Equation (4.4) for the third inequality, and the in-
equalities E [∆x̃e] < 1/64 and ν ≥ νQ for the last step. Since xe ≤ d and
ℓP − ℓ+

Q ≥ ν,

E

[

∆ℓ̃e(∆x̃e)
]

≤
1

8
(ℓP − ℓ+

Q)
νe

νQ
+

4λ (ℓP − ℓ+
Q)

ℓP
ℓe(xe)

again proving Equation (4.2) if λ ≤ 1/32.

Finally, the case e ∈ P is very similar.

Note that all migrating players add a negative contribution to the virtual potential
gain since they migrate only from paths with currently higher latency to paths with
lower latency. Hence, together with Lemma 4.10, we can derive the next corollary.

Corollary 4.11. Consider a symmetric network congestion game Γ and let x and
x′ denote states of Γ such that x′ is a random state generated after one round of
executing the Imitation Protocol. Then

E
[
Φ(x′)

]
≤ Φ(x)

with strict inequality as long as x is not imitation-stable. Thus, Φ is a super-
martingale.

It is obvious that the sequence of states generated by the Imitation Protocol

terminates at an imitation-stable state. From Lemma 4.10 we can immediately derive
an upper bound on the time to reach such a state. However, since for arbitrary latency
functions the minimum possible latency gain may be very small, this bound can clearly
be only pseudo-polynomial. To see this, consider a state in which only one player can
make an improvement. Then the expected time until the player moves is inversely
proportional to its latency gain.

Theorem 4.12. Consider a symmetric network congestion game in which all players
use the Imitation Protocol. Let x denote the initial state of the dynamics. Then
the dynamics converge to an imitation-stable state in expected time

O

(
dn ℓmax Φ(x)

ν2

)

.

Proof. By definition of the Imitation Protocol, the expected virtual potential gain
in any state x′ which is not yet imitation-stable is at least

E




∑

P,Q∈P

VPQ(x′,∆x′)



 ≤ −ν ·
λ

dn
·

ν

ℓmax
.

Hence, also the expected potential gain E [∆Φ(x′)] in every intermediate state x′ of
the dynamics is bounded from above by at least half of the above value. From this
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it follows that the expected time until the potential drops from at most Φ(x) to the
minimum potential Φ∗ is at most

dn ℓmax(Φ(x)− Φ∗)

λ ν2
.

Formally, this is a consequence of Fact 4.7.

It is obvious that this result cannot be significantly improved since we can easily
construct an instance and a state such that the only possible improvement that can
be made is ν. Hence, already a single step takes pseudo-polynomially long. In case
of polynomial latency functions Theorem 4.12 reads as follows.

Corollary 4.13. Consider a symmetric network congestion game with polynomial
latency functions with maximum degree d and minimum and maximum coefficients
amin and amax, respectively. Then the dynamics converges to an imitation-stable state
in expected time

O

(

d3m2n2d+2 ·

(
amax

amin

)2
)

.

In case of a singleton congestion game with monimial latency function we can improve
the corollary as follows.

Corollary 4.14. Consider a symmetric single congestion game with monomial la-
tency functions with maximum degree d. Then the dynamics converges to an imitation-
stable state in expected time O

(
n2d+2

)
.

Let us remark that all proofs in this section do not rely on the assumption that
the underlying congestion game is symmetric. In fact, the lemmas also hold for
asymmetric congestion games in which each player samples only among players that
have the same strategy space.

4.2.2 Convergence to Approximate Equilibria

Theorem 4.12 guarantees convergence of concurrent imitation dynamics generated by
the Imitation Protocol to an imitation-stable state in the long run. However, it
does not give a reasonable bound on the time due to the small progress that can be
made. Hence, as our main result of this chapter, we present bounds on the time to
reach an approximate equilibrium. Here we relax the definition of an imitation-stable
state in two aspects: We allow only a small minority of players to deviate by more than
a small amount from the average latency. Our notion of an approximate equilibrium
is similar to the notion used in [BEDL06, FRV06, FKS08a]. It is motivated by the
following observation. When sampling other players each player comes to know its
latency if it would adopt that players’ strategy. Hence to some extend each player
can compute the average latency L+

av and determine if its own latency is above or
below that average.
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Definition 4.15 ((δ,ε,ν)-equilibrium). Given a state x, let the set of expensive paths
be P+

ε,ν = {P ∈ P : ℓP (x) > (1 + ε)L+
av

+ ν} and let the set of cheap paths be
P−

ε,ν = {P ∈ P : ℓP (x) < (1 − ε)Lav − ν}. Let Pε,ν = P+
ε,ν ∪ P

−
ε,ν. A configuration x

is at a (δ,ε,ν)-equilibrium if and only if it holds that
∑

P∈Pε,ν xP ≤ δ · n.

Intuitively, a state at (δ,ε,ν)-equilibrium is a state in which almost all players are al-
most satisfied when comparing their own situation with the situation of other players.
One may hope that it is possible to reach a state in which all players are almost sat-
isfied quickly. This relaxation would conceptually be the same as a Nash equilibrium.
We will argue below, however, that there is no rapid convergence to such states.

Theorem 4.16. For an arbitrary initial assignment x0, let τ denote the first round
in which the Imitation Protocol reaches a (δ,ε,ν)-equilibrium. Then

E [τ ] = O

(
d

ε2 δ
log

(
Φ(x0)

Φ∗

))

.

Proof. We consider a state x(t) that is not at a (δ,ε,ν)-equilibrium and derive a lower
bound on the expected potential gain. There are two cases. Either at least half of
the players utilizing paths in Pε,ν utilize paths in P+

ε,ν or at least half of them utilize
paths in P−

ε,ν .

Case 1: Many players use expensive paths, i. e.,
∑

P∈P+
ε,ν

xP ≥ δ n/2. Let us define

the volume T and the average ex-post latency C of potential destination paths,
i. e., paths with ex-post latency at most (1 + ε)L+

av, by

T =
∑

Q:ℓ+
Q
≤(1+ε)L+

av

xQ

n
and C =

1

T

∑

Q:ℓ+
Q
≤(1+ε)L+

av

xQ

n
ℓ+
Q .

Clearly,

L+
av =

∑

P

xP

n
ℓ+
P ≥ T · C + (1− T ) · (1 + ε)L+

av ,

and solving for T yields

T ≥
εL+

av

(1 + ε)L+
av −C

. (4.7)

We now give a lower bound on the expected virtual potential gain given that the
current state is not at a (δ,ε,ν)-equilibrium. We consider only the contribution
of players utilizing paths in P+

ε,ν and sampling paths with ex-post latency below
(1 + ε)L+

av. Then

E




∑

P,Q

VPQ





≤ −
λ

d

∑

P∈P+
ε,ν

xP

∑

Q:ℓ+≤(1+ε)L+
av

xQ

n
·
(ℓP − ℓQ(x + 1Q − 1P ))2

ℓP

≤ −
λ

d

∑

P∈P+
ε,ν

xP ℓP

∑

Q:ℓ+≤(1+ε)L+
av

xQ

n
·

(

ℓP − ℓ+
Q

ℓP

)2

.
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Using Jensen’s inequality (Fact 4.6) and substituting ℓP ≥ L+
av yields

E




∑

P,Q

VPQ



 ≤

−λ
dL+

av

∑

P∈P+
ε,ν

xP

(
∑

Q:ℓ+≤(1+ε)L+
av

xQ

n ·
ℓP−ℓ+

Q

ℓP

)2

∑

Q:ℓ+
Q
≤(1+ε)L+

av

xQ

n

.

Now we substitute ℓP ≥ (1+ε)L+
av and use the fact that the squared expression

is monotone in ℓP . Furthermore, we substitute the definition of T and C to
obtain

E




∑

P,Q

VPQ





≤ −
λ

d
L+

av

∑

P∈P+
ε,ν

xP






T (1 + ε)L+
av −

∑

Q:ℓ+≤(1+ε)L+
av

xQ ℓ+
Q

n

(1 + ε)L+
av






2

·
1

T

≤ −
λ

d
L+

av

∑

P∈P+
ε,ν

xP

(
T (1 + ε)L+

av − T C

(1 + ε)L+
av

)2

·
1

T

= −
λ

d
L+

av ·

(
(1 + ε)L+

av −C

(1 + ε)L+
av

)2

· T ·
∑

P∈P+
ε,ν

xP .

We can now use the tradeoff shown in Equation (4.7), C ≤ L+
av, and

∑

P∈P+
ε,ν

xP > δ n/2

to obtain

E




∑

P,Q

VPQ



 ≤ −
λ

d
· L+

av ·
(1 + ε)L+

av − C

((1 + ε)L+
av)2

· εL+
av ·

∑

P∈P+
ε,ν

xP

≤ −
λ

d
· ε ·

εL+
av

(1 + ε)2
·
δ n

2

≤ −Ω

(
ε2 · δ

d
· n L+

av

)

.

Since nL+
av ≥ Φ, we have by Lemma 4.10

E [Φ(x(t + 1))] ≤ Φ(x(t))−
1

2
E




∑

P,Q

VPQ



 ≤ Φ(x(t))

(

1− Ω

(
ε2 · δ

d

))

.

Case 2: Many players use cheap paths, i. e.,
∑

P∈P−
ε,ν

xP ≥ δ n/2. This time, we

define the volume T and average latency C of paths which are potential origins
of players migrating towards P−

ε,ν .

T =
∑

Q:ℓQ≥(1−ε)Lav

xQ

n
and C =

1

T

∑

Q:ℓQ≥(1−ε)Lav

xQ

n
ℓQ .
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This time,
Lav ≤ T · C + (1− T ) · (1− ε)Lav

implying

T ≥
εLav

C − (1− ε)Lav
. (4.8)

Similar to Case 1 we now give a lower bound on the contribution to the virtual
potential gain caused by players with latency at least (1−ε)Lav sampling players
in P−

ε,ν .

E




∑

P,Q

VPQ



 ≤ −
λ

d

∑

Q:ℓQ≥(1−ε)Lav

xQ ℓQ

∑

P∈P−
ε,ν

xP

n
·

(
ℓQ − ℓ+

P

ℓQ

)2

.

we rearrange the sum, apply Jensen’s inequality (Fact 4.6) to obtain

E




∑

P,Q

VPQ



 ≤ −
λ

d

∑

P∈P−
ε,ν

xP

∑

Q:ℓQ≥(1−ε)Lav

xQ ℓQ

n
·

(
ℓQ − ℓ+

P

ℓQ

)2

≤
−λ

d

∑

P∈P−
ε,ν

xP

(
∑

Q:ℓQ≥(1−ε)Lav

xQ ℓQ

n ·
ℓQ−ℓ+

P

ℓQ

)2

∑

Q:ℓQ≥(1−ε)Lav

xQ ℓQ

n

= −
λ

d

∑

P∈P−
ε,ν

xP




∑

Q:ℓQ≥(1−ε)Lav

xQ

n
· (ℓQ − ℓ+

P )





2

·
1

C T

= −
λ

d

∑

P∈P−
ε,ν

xP

(
T · (C − ℓ+

P )
)2
·

1

C T

≤ −
λ

d
(T · (C − (1− ε)Lav))

2 ·
1

C T
·
∑

P∈P−
ε,ν

xP .

Finally, using Equation (4.8) and C T ≤ Lav,

E




∑

P,Q

VPQ



 ≤ −
λ

d
(εLav)

2 ·
1

C T
·
∑

P∈P−
ε,ν

xP

≤ −
λ ε2 Lav

d
δn

≤ −Ω

(
δ ε2 Φ

d

)

.

In both cases, the potential decreases by at least a factor of (1−Ω(ε2 δ/d)) in expec-
tation, which, by Lemma 4.7, implies that the expected time to reach a state with
Φ(x(t)) ≤ Φ∗ is at most the time stated in the theorem.

From Theorem 4.16 we can immediately derive the next corollary.
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4.3 Imitation Dynamics in Singleton Games

Corollary 4.17. Consider a symmetric network congestion game with polynomial
latency functions of maximum degree d and with minimum and maximum coefficients
amax and amin, respectively. If all players use the Imitation Protocol, then the
expected convergence time of imitation dynamics to an (δ,ε,ν)-equilibrium is upper
bounded by

O

(
d2

ε2 δ
· log

(

n m
amax

amin

))

.

Let us remark, that (δ,ε,ν)-equilibria are transient, i. e., they can be left again once
they are reached, for example, if the average latency decreases or if players migrate
towards low-latency paths. However, our proofs actually do not only bound the time
until a (δ,ε,ν)-equilibrium is reached for the first time, but rather the expected total
number of rounds in which the system is not at a (δ,ε,ν)-equilibrium.

Note that in the definition of (δ,ε,ν)-equilibria we require the majority of players to
deviate by no more than a small amount from L+

av. This is because the expected
latency of a path sampled by a player is Lav, but the latency of the destination path
becomes larger if the player migrates. We use L+

av as an upper bound in our proof,
although we could use a slightly smaller quantity in cases where the origin Q and
the destination P intersect, namely ℓP (x + 1P − 1Q). Using an average over P and
Q of this quantity rather than L+

av would result in a slightly stronger definition of
(δ,ε,ν)-equilibria. However, we go with the definition as presented above for the sake
of clarity of presentation.

Let us conclude this section by showing that there are fundamental limitations to fast
convergence. One could hope to show fast convergence towards a state in which all
players are approximately satisfied, i. e., δ = 0. However, any protocol that proceeds
by sampling either a strategy or a player and then possibly migrates, takes at least
expected time Ω(n) to reach a state in which all players sustain a latency that is
within a constant factor of L+

av. To see this, consider an instance with n = 2m
players and identical linear latency functions. Now let x1 = 3, x2 = 1 and xi = 2
for 3 ≤ i ≤ n. Then the probability that one of the players currently using resource
1 samples resource 2 is at most O (1/m) = O (1/n). Since this is the only possible
improvement step, this yields the desired bound.

4.3 Imitation Dynamics in Singleton Games

In this section, we improve on the results presented in the previous section and
consider imitation dynamics in the special case of singleton congestion games. A
major drawback of the Imitation Protocol is that players which rely on this
protocol cannot explore the complete set of edges if the dynamics starts in a state in
which some edges are unused. Even worse, the event that an edge becomes unused
in later states, although it has been used in the initial state, is not impossible. It
is clear, however, that when starting from a random initial distribution of players
among the edges, the probability of emptying an edge becomes increasingly unlikely
as the number of players increases. In the first part of this section, we formalize this
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intuitive observation and show that under some mild assumptions the probability of
loosing an edge is exponentially small.

Furthermore, we consider the loss in the global performance due to the selfish behavior
of the players. To this end, we introduce the Price of Imitation which is defined as the
ratio between the expected social cost of the state to which the Imitation Protocol

converges and the optimum social cost.

4.3.1 The Unlikely Event of Loosing an Edge

In this section, we formalize the intuitive observation that the probability of emptying
an edge in a singleton congestion game becomes increasingly unlikely as the number
of players increases.

Consider a family of singleton congestion games over the same set of edges with
latency functions without offsets. Then the probability that an edge becomes unused
is exponentially small in the number of players. To this end, consider a vector of
continuous latency functions L = (ℓe)i∈[m] with ℓe : [0, 1] → R≥0. To use these
functions for games with a finite number of players, we have to normalize them
appropriately. For any such function ℓ ∈ L, let ℓn with ℓn(x) = ℓ(x/n) denote the
respective scaled function. We may think of this as having n players with weight 1/n
each. Note that this transformation leaves the elasticity unchanged, whereas the step
size ν decreases as n increases. For a vector of latency functions L = (ℓe)i∈[m], let
Ln = (ℓn

e )i∈[m].

Theorem 4.18. Fix a vector of latency functions L with ℓe(0) = 0 for all i ∈ [m].
For the singleton congestion game over Ln with n players, the probability that the
Imitation Protocol with random initialization generates a state with xe = 0 for
some i ∈ [m] within poly(n) rounds is bounded by 2−Ω(n).

Proof. Let d denote an upper bound on the elasticity of the functions in L, and let
optL = miny{Lav(y)} where the minimum is taken over all y ∈ {y′ ∈ R

m
≥0 |

∑

e y′e =
1}. In other words, optL corresponds to the minimum average latency achievable in
a fractional solution. For any e ∈ [m], by continuity and monotonicity, there exists
an ye > 0 such that ℓe(ye) < optL /4d and ye < 1/m.

Consider the congestion game with n players and fix an arbitrary edge e ∈ [m]. In the
following, we upper bound the probability that the congestion on edge e falls below
n ye/2. At first consider the random initialization in which each resource receives an
expected number of n/m players. The probability that xe < n ye/2 ≤ n/(2m) is at
most 2−Ω(n ye). Now, consider any assignment x with xj > n yj/2 for all e ∈ [m].
There are two cases.

Case 1: xe > ye n. Since in expectation our policy removes at most a λ/d fraction
of the players from edge e, the expected load in the subsequent round is at least
(1 − λ/d)xe. Since for sufficiently small λ it holds that 1 − λ/d ≥ 3/4, we can
apply a Chernoff bound (Fact 4.3) in order to obtain an upper bound of 2−Ω(xe)

for the probability that the congestion on e decreases to below xe/2 ≥ ye n/2.
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Case 2: ye n/2 < xe ≤ ye n. Hence, ℓn
e (xe) ≤ optL /4d. In the following, let n− de-

note the number of players on edges r with ℓn
r (xr + 1) < ℓn

e (xe), and let n+

denote the number of players utilizing edges with latency above optL. There
are two subcases:

Case 2a: n− = 0. Then the probability that an player leaves edge e is 0.

Case 2b: n− ≥ 1. We first show that n+ ≥ 4 max{n−, xe}. For the sake of
contradiction, assume that n+ < 4n−. Now consider an assignment where
all of these players are shifted to edges r with latency ℓn

r (xr) < ℓn
e (xe) ≤

optL /4d, where edge r receives n+ · xr/n
− (fractional) players. In this

assignment, the congestion on all edges is increased by no more than a
factor of n+/n− < 4. Hence, due to the limited elasticity, this increases
the latency by strictly less than a factor of 4d. Then all edges have a
latency of less than optL /4 · 4 = optL and some have latency strictly less
than optL, a contradiction. The same argument also holds if we consider
only resource e rather than all resources r considered above. Hence, also
n+ ≥ 4xe.

Now consider the number of players leaving edge e. Clearly,

E
[
∆X−

e

]
≤ xe ·

λ

d

∑

r:ℓn
r (xr+1)<ℓn

e (xe)

xr

n
= xe ·

λn−

dn
.

All players with current latency at least optL can migrate to resource e
since the anticipated latency gain is larger than ν. Hence, the number of
players migrating towards e, is at least

E
[
∆X+

e

]
≥

∑

r:ℓn
r (xr)≥optL

xr ·
λxe · (ℓ

n
r (xr)− ℓn

e (xe + 1))

n d ℓn
r (xr)

≥
λxe

n d
·

∑

r:ℓn
r (xr)≥optL

xr ·
ℓn
r (xr)− 2d · ℓn

e (xe)

ℓn
r (xr)

≥
λxe

n d
· (1−

1

2d
) · n+

≥ 2 · xe ·
λ

dn
max{n−, xe} .

The third inequality holds since ℓn
r ≥ optL and ℓn

e ≤ optL /4d and the last
inequality holds since d ≥ 1. For any T ≥ 0 it holds that

P [∆Xe ≥ 0] ≥ P
[
(∆X+

e ≥ T ) ∧ (∆X−
e ≤ T )

]

≥
(
1− P

[
∆X+

e < T
])
·
(
1− P

[
∆X−

e > T
])

.

Due to our lower bounds on E [∆X+
e ] and E [∆X−

e ] we can apply a Chernoff
bound (Fact 4.3) on these probabilities. We set

T = 1.5λ max{xe, n
−}xe/(dn)

95



Chapter 4 — Imitation Dynamics

which is an upper bound on E [∆X−
e ] and a lower bound on E [∆X+

e ], so

P
[
∆X+

e < T
]
≤ 2−Ω(T ) ≤ 2−Ω(λ x2

e/(d n)) and

P
[
∆X−

e > T
]
≤ 2−Ω(T ) ≤ 2−Ω(λ x2

e/(d n)) .

Altogether,

P [∆Xe ≥ 0] ≥

(

1− 2
−Ω

„

λ x2
e

d n

«)

·

(

1− 2
−Ω

„

λ x2
e

d n

«)

= 1− 2
−Ω

„

λ x2
e

d n

«

.

Finally, since xe ≥ n ye/2, P [∆Xe < 0] ≤ 2−Ω(λ n y2
e/d) = 2−Ω(xe).

In all cases, the probability that the edge becomes unused is bounded by 2−Ω(xe) =
2−Ω(n). Hence, the same holds also for m = poly(n) edges and poly(n) rounds.

The proof does not only show that edges do not become empty with high probability,
but also that the congestion does not fall below any constant congestion value. In
particular, for the constant d this implies that with high probability the dynamics
never reach case 2b of the proof of Lemma 4.10. This is the only place where our
analysis relies on the parameter ν. Hence, for a large number of players we can remove
it from the protocol and the dynamics converge to an exact Nash equilibrium.

4.3.2 The Price of Imitation

In the preceding section we have seen that it is unlikely that edges become unused
when the granularity of the players decreases. If the instance, i. e., the latency func-
tions and the number of users, is fixed, it is an interesting question, how much the
performance can suffer from the fact that the Imitation Protocol is not innovative.
We measure this degradation of performance by introducing the Price of Imitation
which is defined as the ratio between the expected social cost of the state to which
the Imitation Protocol converges, denoted IΓ, and the optimum social cost. The
expectation is taken with respect to the random choices of the Imitation Protocol,
including random initialization.

We answer this question here for the case of linear latency functions of the form
ℓe(x) = ae x. Then d = 1 is an upper bound on the elasticity and ν = amax =
maxe∈E{ae}. Choosing the average latency SC(x) =

∑

e∈E(xe/n) · ℓe(xe) as the
social cost measure, we show that the Price of Imitation is bounded by a constant. It
is, however, obvious that the same also holds if we consider the makespan, i. e., the
maximum latency, as social cost function.

The performance of the dynamics can be artificially degraded by introducing an
extremely slow edge. Thus, amax can be chosen extremely large such that any state
is imitation-stable. However, such an edge can be removed from the instance without
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4.3 Imitation Dynamics in Singleton Games

harming the optimal solution at all since it would not be used anyhow. We will call
such edges useless and make this notion precise below.

Let us first define some quantities used in the proof. For a set of edges R′ ⊂ R,
let AR′ =

∑

e∈R′
1
ae

and let AΓ = AR. For R′ ⊆ R let Γ \ R′ denote the instance
obtained from Γ by removing all edges in R′. In the proof, we do not compare the
outcome of the Imitation Protocol to the optimum solution, but rather to a lower
bound, namely the optimal fractional solution. The optimal fractional solution x̃e

can be computed as x̃e = n/(AΓ ae). For this solution, the latency of all edges is
ae · x̃e = n/AΓ. An edge is useless if x̃e < 1. In the following, we assume that there
are no useless edges. Then we can show that the social cost of an imitation-stable
state in which all edges are used does not differ by more than a small constant from
the optimal social cost (Lemma 4.20) and that the Price of Imitation is small. In
fact, whereas x̃e ≥ 1 is required for Lemma 4.20, we here need a slightly stronger
assumption, namely that x̃e = Ω(log n).

Theorem 4.19. Assume that for the optimal fractional solution, x̃e = Ω(log n) is
large enough. The price of imitation is at most (3+o(1)). In particular, for δ > 0, and
any n ≥ n0(δ) for a large enough value n0(δ) (which is independent of the instance),

IΓ ≤ (3 + δ) ·
n

AΓ
.

We start by proving two lemmas.

Lemma 4.20. Let x be a state in which no player can gain more than amax. Then

n

AΓ
≤ SC(x) ≤ 3

n

AΓ
.

Proof. The lower bound has been proven above since n/AΓ is the social cost of an
optimal fractional solution. Also note that since there are no useless edges, x̃e ≥ 1
and hence n/AΓ ≥ amax.

For the upper bound, consider a state x in which no player can gain more than
amax. For the sake of contradiction assume that there exists an edge e ∈ [m] with
ℓe(xe) > 3n/AΓ. Since x 6= x̃ there exists a edge f 6= e with xf < x̃f . In particular,
ℓf (xf +1) < n/AΓ +amax ≤ 2n/AΓ ≤ ℓe(xe)−amax. The last inequality holds due to
our assumption on ℓe(xe) and since n/AΓ ≥ amax. Hence, any player on edge e can
improve by amax by migrating to f , a contradiction.

The next lemma follows easily from Corollary 4.14.

Lemma 4.21. The Imitation Protocol converges towards an imitation-stable
state in time O

(
n4
)
.

Based upon the proof of Theorem 4.18 we can now bound the probability that a edge
becomes empty for the case of linear latency functions more specifically.
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Lemma 4.22. The probability that all edges of the subset R′ ⊆ R become empty
simultaneously in one round is bounded from above by

∏

e∈R

2
−Ω

“

n
AΓ ae

”

.

Proof. Recall the bounds on the probability that an edge e ∈ R becomes empty in
the proof of Theorem 4.18. Since we now consider linear latency functions, we may
explicitly compute the value of ye = 1/(AΓ ae). Recall the two cases and the failure
probability in the initialization:

Initialization: Here the error probability was at most

2−Ω(n ye) = 2−Ω(n/(AΓ ae) .

Case 1: xe > ye n. Here the error probability was at most

2−Ω(xe) = 2−Ω(n/(AΓ ae)) .

Case 2: ye n/2 < xe ≤ ye n. Here the error probability was at most

2−Ω(x2
e/n) = 2−Ω(n/(AΓ ae)2) .

In all cases, the probability that edge i becomes empty is at most 2
−Ω

“

n
AΓ ae

”

.

Furthermore, consider edges e and e′ and let E and E′ denote the events that e
and e′ become empty, respectively. It holds that P [E′ | E] ≤ P [E′]. Therefore,
P [E ∩ E′] = P [E] · P [E′ | E] ≤ P [E] · P [E′]. Extending this argument to several
edges yields the statement of the lemma.

Using the above two lemmas, we can now prove the main theorem of this section.

Proof of Theorem 4.19. The proof is by induction on the number of edges m. Clearly,
the statement holds for m = 1, in which case there is only one assignment. In the
following we divide the sequence of state generated by the Imitation Protocol into
phases consisting of several rounds. The phase is terminated by one of the following
events, whatever happens first:

1. A subset of edges R′ becomes empty.

2. The Imitation Protocol reaches an imitation-stable state.

3. The protocol enters round Θ(n5).

If a phase ends because Event 1 occurs, we start a new phase for the instance Γ \R′.
If it ends because of Event 3, we start a new phase for the original instance.

The probability for Event 1 is bounded by Lemma 4.22. Note that the probability
is also bounded for up to poly(n) many rounds. If a phase ends with Event 2 we
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have IΓ ≤ 3 n
AΓ

(Lemma 4.20). We bound the probability of this event by 1, which
is trivially true. Event 3 happens with a probability at most O (1/n). This can be
shown using Lemma 4.21 and Markov’s inequality. Note that the expected social
cost is still at most IΓ. Summing up over all three events, we obtain the following
recurrence:

IΓ ≤
∑

R′⊂R

∏

e∈R′

2−Ω(n/(AΓ ae)) · IΓ\R + 3 ·
n

AΓ
+ O

(
1

n

)

· IΓ

implying

IΓ ·

(

1−O

(
1

n

))

≤ 3 ·
n

AΓ
+
∑

R′⊂R

∏

e∈R′

2
−Ω( n

AΓ ae
)
· IΓ\R′ .

Substituting the induction hypothesis for IΓ\R′ , and introducing a constant c for the
constant in the Ω(),

IΓ ·

(

1−O

(
1

n

))

≤ 3 ·
n

AΓ
+
∑

R′⊂R

∏

e∈R′

2
−c n

(AΓ ae) · 4
n

AΓ\R′

= 3 ·
n

AΓ
+ 4

n

AΓ

∑

R′⊂R

2
−c n A

R′

AΓ ·
AΓ

AΓ\R′

.

Now, by our assumption that for all e ∈ R′, x̃e = n/(AΓ ·ae) ≥ Ω(log n), we know that
for all e, 1/ae ≥ c′ AΓ · log n/n for a constant c′ which we may choose appropriately.
In particular, AR′ ≥ |R′|c′ AΓ · log n/n and AΓ\R′ ≥ c′ AΓ · log n/n. Altogether,

IΓ ·

(

1−O

(
1

n

))

≤
n

AΓ

(

3 + 4
∑

R′⊂R

2−c c′ |R′| log n ·
n

c′ log n

)

=
n

AΓ

(

3 + 4

m−1∑

k=1

(
m

k

)

2−c c′ k log n ·
n

c′ log n

)

≤
n

AΓ

(

3 + 4

m−1∑

k=1

nk · 2−c c′ k log n ·
n

c′ log n

)

≤
n

AΓ

(

3 + 4

m−1∑

k=1

2−(c c′−1) k log n ·
n

c′ log n

)

≤
n

AΓ

(

3 + 4

m−1∑

k=1

n−(c c′−1) k+1

c′ log n

)

≤ (3 + o(1))
n

AΓ
,

since the last sum is bounded by o(n). This implies our claim.

4.4 A Note on Sequential Imitation Dynamics

In Section 4.2.1, we proved that players concurrently applying the Imitation Pro-

tocol reach an imitation-stable state after a pseudo-polynomial number of rounds.
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Recall that in this case each player decreases its latency by at least ν if it were the
only player to change its strategy. In this section, we consider sequential imitation
dynamics such that in each round a single player is permitted to imitate someone
else. Furthermore, we assume that each player changes its path regardless of the
anticipated latency gain. Now it is obvious that sequential imitation dynamics con-
verge towards imitation-stable states as the potential Φ strictly decreases after every
strategy change. Hence, we focus on the convergence time of such dynamics.

For such sequential imitation dynamics we prove an exponential lower bound on the
number of rounds to reach an imitation-stable state. To be precise, we present a fam-
ily of symmetric network congestion games with corresponding initial states such that
every sequence of imitation leading to an imitation-stable state is exponentially long.
To some extent this result complements Theorem 4.12 as it presents an exponential
lower bound in a slightly different model. However, in this lower bound ν is arbi-
trary large and almost every state is imitation-state with respect to the Imitation

Protocol.

Theorem 4.23. For every n ∈ N, there exists a symmetric network congestion game
with n players, initial state Sinit, polynomial bounded network size, and linear la-
tency functions such that every sequential sequence of imitation that start in Sinit is
exponentially long.

We do not give a complete proof of the theorem but we discuss how to adapt a series
of constructions as presented in [ARV08] which shows that there exists a family of
symmetric network congestion games with the same properties as stated in the above
theorem such that every best response dynamics starting in S init is exponentially
long. To be precise, they prove that in every intermediate state of the best response
dynamics exactly one player can play a best response. Recall that in best response
dynamics players know the entire strategy space and that in each round one player
is permitted the switch to the best available path.

In the following, we summarize the constructions presented in [ARV08]. At first, a
PLS-reduction from the local search variant of MaxCut to threshold games is pre-
sented. In a threshold game, each player either allocates a single resource on its own
or shares a bunch of resources with other players. Hence, in a threshold game each
player chooses between two strategies only. The precise definition of these games is
given below. Then a PLS reduction from threshold games to asymmetric network
congestion games is presented. Finally, the authors of [ARV08] show how to trans-
form an asymmetric network congestion game into a symmetric one such that the
desired properties of best response dynamics are preserved. All PLS reductions are
embedding, and there exists a family of instances of MaxCut with corresponding ini-
tial configurations such that in every intermediate configuration generated by a local
search algorithm exactly one node can be moved to the other side of the cut. There-
fore, there exists a family of symmetric network congestion games with the properties
as stated above.

A naive approach to prove a lower bound on the convergence time of imitation dy-
namics in symmetric network congestion games is as follows. Building upon the lower
bound of the convergence time of best responses dynamics, a player for every path is
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added to the game. Then the latency functions are adopted accordingly. However, in
this case we would introduce an exponential number of additional players. In thresh-
old games, however, the players’ strategy spaces have size two only. Hence, we could
apply this approach to threshold games. In the following, we present the details of
this approach. It is then not difficult to verify that the PLS reductions mentioned
above can be reworked in order to prove Theorem 4.23. However, note that this does
not imply that computing an imitation-stable state is PLS-complete since one can
always assign all players to the same strategy which obviously is an imitation-stable
state.

Threshold games are a special class of congestion games in which the set of resources
R can be divided into two disjoint sets Rin and Rout. The set Rout contains exactly
one resource ri for every player i ∈ N . This resource has a fixed latency Ti called
the threshold of player i. Each player i has only two strategies, namely a strategy
Sout

i = {ri} with ri ∈ Rout, and a strategy S in
i ⊆ Rin. The preferences of player i can

be described in a simple and intuitive way: Player i prefers strategy S in
i to strategy

Sout
i if the latency of S in

i is smaller than the threshold Ti. Quadratic threshold games
are a subclass of threshold games in which the set Rin contains exactly one resource
rij for every unordered pair of players {i, j} ⊆ N . Additionally, for every player
i ∈ N of a quadratic threshold game, S in

i = {rij | j ∈ N , j 6= i}. Moreover, for
every resource rij ∈ Rin: ℓrij

(x) = ai,j · x with aij ∈ N, and for every resource ri:
ℓri

(x) = 1/2
∑

j 6=i aij · x to ri.

Let Γ be a quadratic threshold game that has an initial state S init, such that every
best response dynamics which start in this state is exponentially long, and every
intermediate state has a unique player which can improve its latency. Suppose now
that we replace every player i in Γ by three players i1, i2 and i3 which all have the same
strategy spaces as player i has. Additionally, suppose that we choose new latency
functions ℓ′ for every resource ri as follows: ℓ′ri

(x) = 1/2
∑

j 6=i aij · x + 3/2
∑

j 6=i aij.
Hence, we add an additional offset of 3/2

∑

j 6=i aij.

Suppose now that we assign every player i1 to Sout
i , and every player i2 to S in

i . For ev-
ery possible strategy that the i3 players can use, their latency increases by 2

∑

j 6=i aij,
compared to the equivalent state in the original game, in which every player i chooses
the same strategy as player i3 does. Hence, if we assign every player i3 to the strategy
chosen by player i in S init and if the players i1 and i2 were not permitted to change
their strategies, then we would obtain the desired lower bound on the convergence
time of imitation dynamics in threshold games. However, since also i1 and i2 are
permitted to imitate, it remains to show that whenever player i3 has changed its
strategy, then both i1 and i2 do not want to change their strategies anymore.

First, suppose that player i3 switches from the strategy of player i2 to the strategy
of player i1. Obviously, player i1 does not want to change its strategy as otherwise
i3 would not have imitated i1. Suppose now that i2, whose strategy is dropped by
i3, also wants to imitate i1. In this case, all three players would allocate Sout

i , and
hence have latency 3

∑

r∈j 6=i aij. However, if player i2 would stay with strategy S in

then its latency is upper bounded by 2
∑

r∈Sin
i

aij. Hence, players i1, i2, i3 will never
select Sout at the same time.

Second, suppose that player i3 switches from the strategy of player i1 to the strategy
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of player i2. Now, player i2 does not want to change its strategy as otherwise i3
would not have imitated i2. Suppose now that i1, whose strategy is dropped by
i3, also wants to imitate i3. In this case, their latency would increase to at least
3
∑

r∈j 6=i aij , whereas player i1 would have latency 2
∑

r∈j 6=i aij if it would stay with
strategy Sout. Hence, players i1, i2, i3 will never select S in at the same time.

Hence, by applying the above observations that the three players never allocate the
same strategy at the same point in time we can conclude our claim.

4.5 Extensions Guaranteeing Convergence to Nash Equi-

libria

In Section 4.2.1 we have seen that, in the long run, the dynamics resulting from the
Imitation Protocol converges to an imitation-stable state in pseudo-polynomial
time. The Imitation Protocol and the concept of an imitation-stable state have
the drawback that the dynamics can stabilize in quite a disadvantageous situation,
e.g. when all players play the same expensive strategy. This is due to the fact that the
strategy space is essentially restricted to the current strategy choices of the players.
Strategies that might be attractive and offer a large latency gain are “lost” once no
player uses them anymore.

A stronger result would be convergence towards a Nash equilibrium. In the literature,
several other protocols are discussed. For all of the protocols we are aware of, the
probability to migrate from one strategy to another depends in some continuous, non-
decreasing fashion on the anticipated latency gain, and it becomes zero for zero gain.
Hence, in a setting with arbitrary latency functions which we consider here there
always exist simple instances and states that are not at equilibrium and in which
only one improvement step is possible which has an arbitrarily small latency gain.
Thus, it takes pseudo-polynomially long, until an exact Nash equilibrium is reached.
Still, it might be desirable to design a protocol which reaches a Nash equilibrium in
the long run. There are several ways to achieve this goal. We will discuss three of
them here.

Theorem 4.18 states the following for a particular class of singleton congestion games.
With an increasing number of players it becomes increasingly unlikely that useful
strategies are lost. This allows to omit the parameter ν from the protocol. If no
strategies are lost for a long period of time, the dynamics will converge towards an
exact Nash equilibrium.

Secondly, we may add an additional “virtual player” to every strategy, such that the
probability to sample a strategy never becomes zero. This has two implications on
our analysis. On the one hand, there is a certain base load on all resources, denoted
by x0

e. We then need to have an upper bound on the elasticity of ℓe(x − x0
e) which

may be larger than the elasticity of ℓe(x) itself. Furthermore, we have to add |P|
virtual players, which leaves the analysis of the time of convergence unchanged only
if n = Ω(|P|).

As a third alternative, we can add an exploration component to the protocol. With a
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probability of 1/2, the players can sample another path uniformly at random rather
than another player. In this case, however, the elasticity d cannot be used as a
damping factor anymore, since the expected increase of congestion may be much
larger than the current load. Rather, we have to reduce the migration probability

by a factor min
{

1, |P| ℓmin

β n

}

where β is an upper bound on the maximum slope and

ℓmin = mine∈E ℓe(1) is the minimum latency of an empty resource.

Protocol 2 Exploration Protocol, repeatedly executed by all players in parallel.

Let P denote the path of the player in state x.
Sample another path Q ∈ P uniformly at random.
if ℓP (x) > ℓQ(x + 1Q − 1P ) then

with probability

µPQ = min

{

1, λ ·
|P| ℓmin

β n
·
ℓP (x)− ℓQ(x + 1Q − 1P )

ℓP (x)

}

migrate from path P to bin Q.
end if

Lemma 4.24. Let x denote a state and let ∆x denote a random migration vector
generated by the Exploration Protocol. Then,

E [∆Φ(x,∆x)] ≤
1

2

∑

P,Q∈P

E [VPQ(x,∆x)] .

Proof. Recall that Lemma 4.9 states the following for every state x and every migra-
tion vector ∆x

∆Φ(x,∆x) ≤
∑

P,Q∈P

VPQ(x,∆x) +
∑

e∈E

Fe(x,∆x) .

Now in order to proof Lemma 4.24, we apply the same approach as in the proof of

Lemma 4.10. Hence, it remains to adapt the upper bound on E

[

∆ℓ̃e(∆x̃e)
]

to the

Exploration Protocol. Note that this is quite simple, since due to the linearity
of expectation,

E

[

∆ℓ̃e(∆x̃e)
]

≤ β E [∆x̃e]

≤ β n · λ ·
ℓmin |P|

β n
·

1

|P|
·
ℓP − ℓ+

Q

ℓP

≤ λ ·
ℓ+
e

ℓ+
Q

· (ℓP − ℓ+
Q) ,

where we have substituted the migration probability of the protocol and the fact
that there are at most n players that may sample a path containing e. This proves
Equation (4.2) if λ is chosen small enough. With opposite signs, the same argument
holds if e ∈ P .
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Since we have omitted the parameter ν from the protocol, we now need a lower
bound on the minimum improvement that is possible when the system is not yet at
an imitation-stable state in order to give an upper bound on the convergence time.
Formally, let

κ = min
x

min
P,Q ∈ P

ℓp(x) > ℓQ(x + 1Q − 1P )

{ℓP (x)− ℓQ(x + 1Q − 1P )} .

Theorem 4.25. Consider a symmetric network congestion game in which all players
use the Exploration Protocol. Let x denote the initial state of the dynamics.
Then the dynamics converge to a Nash equilibrium in expected time

O

(
Φ(x)β n ℓmax

ℓmin κ2

)

.

Proof. In every state which is not a Nash equilibrium there exists a player currently
utilizing path P ∈ P and a path Q ∈ P such that ℓQ ≤ ℓP − κ. Hence, the expected
virtual potential gain is at least

E [VPQ] ≤ −
1

|P|
·
λ |P| ℓmin

β n
·

κ

ℓP
· κ ≤ −

λ ℓmin

β n
·

κ2

ℓmax
,

and the true potential gain is at least half of this. Again, Lemma 4.7 yields the
expected time until the potential decreases from at most Φ to Φ∗ ≥ 0.

It is obvious that an analogue of Lemmas 4.10 and 4.24 also holds for any protocol
that is a combination of the Imitation Protocol and the Exploration Proto-

col, e. g. a protocol in which in every round every player executes the one or the

other with probability one half. Then in order to bound the value of E

[

∆ℓ̃e(∆x̃e)
]

,

we must make a case differentiation based on whether proportional or uniform sam-
pling dominates the probability that other players migrate towards resource e. Such
a protocol combines the advantages of the Imitation Protocol and the Explo-

ration Protocol: In the long run, it converges to a Nash equilibrium, and reaches
an approximate equilibrium as quickly as stated by Theorem 4.16 (up to a factor of
2).
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CHAPTER 5

Congestion Games with Priorities

One drawback of the classical notion of congestion games as studied in the previous
chapters is that all players are treated as equal, meaning each player has access to
every resource regardless of the other players who already allocate it. In many sce-
narios, however, some players are more “important” than others, and hence resources
are likely to slow down or stop those players with lower priorities.

In this chapter, we introduce congestion games with priorities to model scenarios in
which players with higher priorities can prevent players with lower priorities from
obtaining access to the same resources as they allocate. In our model, each resource
can partition the set of players into classes of different priorities. As long as a resource
is only allocated by players with the same priority, these players incur a latency
depending on the congestion, as in the classical notion of congestion games. But
if players with different priorities allocate a resource, only players with the highest
priority incur a latency depending on the number of players with this priority, and
players with lower priorities incur an infinite latency. Intuitively, they are displaced
by the players with the highest priority.

Obviously, every congestion game can be enhanced with priorities. However, in this
chapter we consider such singleton congestion games. To be precise, we consider
standard and player-specific singleton congestion games with priorities and prove that
every such game possesses a Nash equilibrium. We restrict ourselves to singleton
congestion games, as our model of player-specific singleton congestion games with
priorities does not only extend the notion of congestion games but also the well-
known model of two-sided matching markets. This model was introduced by Gale
and Shapely [GS62] to model markets on which different kinds of agents are matched
to one another, for example men and women, students and colleges [GS62], interns
and hospitals [Rot84], and firms and workers. Using the same terms as for congestion
games, we say that the goal of a two-sided matching market is to match players and
resources (or markets). In contrast to congestion games, each resource can only be
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matched to one player. With each pair of player and resource a payoff is associated,
and players are interested in maximizing their payoffs. Hence, the payoffs implicitly
define a preference list of the resources for each player. Additionally, each resource
has a preference list of the players that is independent of the payoffs and that assigns
a unique rank to each player. Every player can propose to one resource and if several
players propose to a resource, only the most preferred player is assigned to that
resource and receives the corresponding payoff. This way, every set of proposals
corresponds to a bipartite matching between players and resources. A matching is
stable if no player can be assigned to a resource from which it receives a higher
payoff than from its current resource given the proposals of the other players. Gale
and Shapely [GS62] show that stable matchings always exist and can be found in
polynomial time.

In many congestion gamearguments thes it is unrealistic to assume that the resources
have no preferences over the players. In the same way it is unrealistic to assume
that the markets in a two-sided matching market have strict preference lists. Our
model of player-specific congestion games with priorities can also be seen as a model
of two-sided matching markets with ties in which several players can be assigned
to one resource. If different players propose to a resource, only the most preferred
ones are assigned to it. If the most preferred player is not unique, several players
share the payoff of the resource. Such two-sided matching markets correspond to our
model of congestion games with priorities, except that players are now interested in
maximizing their payoffs instead of minimizing their latencies, which does not affect
our results. Two-sided matching markets with ties have been extensively studied
in the literature [GI89, IMMM99]. In these models, ties are somehow broken, i. e.,
despite ties in the preference lists, every resource can be assigned to at most one
player. Hence, these models differ significantly from our model. One application of our
model are markets into which different companies can invest: as long as the investing
companies are of comparable size, they share the payoff of the market, but large
companies can utilize their market power to eliminate smaller companies completely
from the market. Player-specific congestion games and two-sided matching markets
are the special cases of our model in which all players have the same priority or distinct
priorities, respectively. In the following, we use the terms two-sided matching markets
with ties and player-specific congestion games with priorities interchangeably.

We also consider a special case of correlated two-sided matching markets with ties in
which the payoffs of the players and the preference lists of the resources are correlated.
In this model, every resource prefers to be assigned to players which receive the
highest payoff when assigned to it. We show that this special case is a potential
game. Variants of correlated two-sided matching markets without ties have been
studied in the context of content distribution in networks and distributed caching
problems [FGMS06, GMV05, Mir05]. These markets have also been considered for
discovering stable geometric configurations with applications in VLSI design [HHP06].
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5.1 Formal Definition

Next we formally define standard and player-specific singleton congestion games with
priorities and two sided-markets with ties.

Congestion Games with Priorities A singleton congestion game with priorities
is a singleton congestion game in which additionally each resource r ∈ R assigns a
rank rkr(i) to every player i ∈ N . For a state S, let rkr(S) = maxi:r∈Si

rkr(i). We
say that player i allocates resource r if r ∈ si, and we say that player i is assigned
to resource r if r ∈ si and rkr(i) = rkr(S). We define x∗

r(S) to be the number of
players that are assigned to resource r, that is, the number of players i with {r} = si

and rkr(i) = rkr(S). The latency that player i being assigned to r incurs on r is
ℓr(x

∗
r(S)) or ℓi

r(x
∗
r(S)) depending on if the congestion game is a standard game or a

player-specific game. Players which allocate a resource r but are not assigned to it
incur an infinite latency on it.

Two-Sided Matching Markets with Ties A two-sided matching market consists
of two disjoint sets N = {1, . . . , n} and R = {r1, . . . , rm}. We use the terms players
to denote elements from N , and we use the terms resources and markets to denote
elements from R. In a two-sided matching market, every player can be matched to
one resource, and every resource can be matched to one player. We assume that with
every pair (i, r) ∈ N ×R, a payoff pi,r is associated and that player i receives payoff
pi,r if it is matched to resource r. Hence, for each player the payoffs describe implicitly
a preference list of the resource. Additionally, we assume that every resource has a
strict preference list of the players, which is independent of the payoffs. Each player
i ∈ N can propose to a resource ri ∈ R. Given a state S = (r1, . . . , rn), each resource
r ∈ R is matched to the winner of r, which is the player that r ranks highest among
all players i ∈ N with r = ri. If i is the winner of r, it receives a payoff of pi,r. If
a player proposes to a resource won by another player, it receives no payoff at all.
We say that S is a stable matching if none of the players can unilaterally increase its
payoff by changing its proposal given the proposals of the other players. That is, for
each player i who is assigned to a resource ri, each resource r from which it receives
a higher payoff than from ri is matched to a player that r prefers to i.

We define a Two-Sided Matching Market with ties to be a two-sided matching market
in which the preference lists of the resources can have ties. Given a vector of proposals
S = (r1, . . . , rn), we say that a player i ∈ N is matched to resource r ∈ R if r = ri

and if there is no player j ∈ N such that r = rj and j is strictly preferred to i by r.
For a resource r, we denote by xr(S) the number of players proposing to r and by
x∗

r(S) the number of players that are matched to r. We assume that every player i
has a non-increasing payoff function pi

r : N→ N for every resource r. A player i who
is matched to resource r receives a payoff of pi

r(x
∗
r(S)). Also for two-sided matching

markets with ties, we call a state S a stable matching if none of the players can
increase its payoff given the proposals of the other players.

In correlated two-sided matching markets with ties, the preferences of players and
resources are correlated. We assume that also the preference lists of the resources

107



Chapter 5 — Congestion Games with Priorities

are chosen according to the payoffs that are associated with the pairs from N ×R.
That is, a player i ∈ N is preferred to a player j ∈ N by resource r ∈ R if and only
if pi,r > pj,r. Due to this construction, if two players i and j are both matched to a
resource r, the payoffs pi,r and pj,r must be the same. We denote this payoff by pr(S),
and we assume that it is split among the players that are matched to r. The payoff
that a player receives that is matched to r is specified by a function qr(pr(S), x∗

r(S))
with qr(pr(S), 1) = pr(S) that is non-increasing in the number of players matched to
r.

5.2 Existence of Nash Equilibria

In this section, we prove that every standard and every player-specific singleton con-
gestion game with priorities possesses a Nash equilibrium. From our existence proofs
we conclude that Nash equilibria can be computed efficiently.

Theorem 5.1. Every standard singleton congestion game with priorities possesses a
Nash equilibrium. Moreover, every such game is a potential game.

Proof. Let D = (N ∪ {∞}) × N. For elements a = (a1, a2) ∈ D and b = (b1, b2) ∈ D
we denote by “<” the lexicographic order on D in which the first component is to
be minimized and the second component is to be maximized, i. e., we define a < b
if and only if a1 < b1 or if a1 = b1 and a2 > b2. We construct a potential function
Φ: Σ1×· · ·×Σn → D

n that maps every state S = (r1, . . . , rn) to a vector of values from
D. In state S, every resource r ∈ R contributes xr(S) values to the vector Φ(S) and
Φ(S) is obtained by sorting all values contributed by the resources in non-decreasing
order according to the lexicographic order defined above. Resource r contributes the
values (ℓr(1), rkr(S)), . . . , (ℓr(x

∗
r(S)), rkr(S)) to the vector Φ(S) and xr(S) − x∗

r(S)
times the value (∞, 0). We claim that if state S′ is obtained from S by letting one
player play a better response, then Φ(S′) is lexicographically smaller than Φ(S), i.e.,
there is a k with Φj(S) = Φj(S

′) for all j < k and Φk(S
′) < Φk(S).

Assume that in state S player i plays a better response by changing its allocation
from resource ri to resource r′i. We compare the two vectors Φ(S) and Φ(S′), and
we show that the smallest element added to the potential vector is smaller than
the smallest element removed from the potential vector, showing that the potential
decreases lexicographically. Due to the strategy change of player i, either the value
(ℓri

(x∗
ri

(S)), rkri
(S)) or the value (∞, 0) is replaced by the value (ℓr′i

(x∗
r′i

(S′)), rkr′i
(S′)).

Since player i plays a better response, ℓr′i
(x∗

r′i
(S′)) < ℓri

(x∗
ri

(S)) or ℓr′i
(x∗

r′i
(S′)) <∞,

respectively, and hence, the term added to the potential is smaller than the term re-
moved from the potential. In the following we show that all values that are contained
in Φ(S) but not in Φ(S′) are larger than (ℓr′i

(x∗
r′i

(S′)), rkr′i
(S′)). Clearly, only terms

for the resources ri and r′i change and we can restrict our considerations to these two
resources.

Let us consider resource ri first. If the rank of ri does not decrease by the strategy
change of player i or if no player allocates resource ri in state S′, then only the term
(ℓri

(x∗
ri

(S)), rkri
(S)) or (∞, 0) is not contained in the vector Φ(S′) anymore. All
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other terms contributed by resource ri do not change. If the rank of resource ri is
decreased by the strategy change of player i, then additionally some terms (∞, 0) in
the potential are replaced by other terms. Obviously, the removed terms (∞, 0) are
larger than (ℓr′i

(x∗
r′i

(S′)), rkr′i
(S′)).

Now we consider resource r′i. If the rank of r′i does not increase by the strat-
egy change of player i or if no player allocates r′i in state S, then only the term
(ℓr′i

(x∗
r′i

(S′)), rkr′i
(S′)) is added to the potential. All other terms contributed by

r′i do not change. If the rank of r′i is increased by the strategy change of player
i, then additionally the terms (ℓr′i

(1), rkr′i
(S)), . . . , (ℓr′i

(x∗
r′i

(S)), rkr′i
(S)) are replaced

by x∗
r′i

(S) terms (∞, 0). In this case, x∗
r′i

(S′) = 1 and the smallest removed term,

(ℓr′i
(1), rkr′i

(S)), is larger than

(ℓr′i
(1), rkr′i

(S′)) = (ℓr′i
(x∗

r′i
(S′)), rkr′i

(S′))

because rkr′i
(S′) > rkr′i

(S).

Next we consider player-specific singleton congestion game with priorities and prove
that every such games possesses a Nash equilibrium. The proof we present follows
similar arguments as Milchtaich’s proof showing that every player-specific singleton
congestion game without priorities possesses a Nash equilibrium [Mil96]. Note that
we extended this proof towards player-specific matroid congestion games.

Theorem 5.2. Every player-specific singleton congestion game with priorities pos-
sesses a Nash equilibrium.

Proof. In order to prove the existence of Nash equilibria, we compute a sequence of
states S0, . . . , Sk such that S0 is the state in which no player allocates a resource and
Sk is a state in which every player allocates a resource. Remember that we distinguish
between allocating a resource and being assigned to it. Our construction ensures the
invariant that in each state St in this sequence, every player who allocates a resource
has no incentive to change its strategy. Clearly, this invariant is true for S0 and it
implies that Sk is a pure Nash equilibrium.

In state St we pick an arbitrary player i who is allocating no resource and we let it play
its best response. If in state St there is no resource to which i can be assigned, then
i can allocate an arbitrary resource without affecting the players who are already
allocating a resource and hence without affecting the invariant. We still have to
consider the case that after its best response, player i is assigned to a resource r. If
we leave the strategies of the other players unchanged, the invariant may not be true
anymore after the strategy change of player i. The invariant can, however, only be
false for players who are assigned to resource r in state St. We distinguish between
two cases in order to describe how the strategies of these players are modified in order
to maintain the invariant.

Firstly, we consider the case that the rank of resource r does not change by the
strategy change of player i. If there is a player j who is assigned to resource r in St

and who can improve its strategy after i is also assigned to r, we change the strategy
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of j to the empty set, i. e., in state St+1 player j belongs to the set of players which
do not allocate any resource. Besides this, no further modifications of the strategies
are necessary because all other players are not affected by the replacement of j by i
on resource r. In the case that the rank of resource r increases by the strategy change
of player i, all players which are assigned to resource r in state St are set to their
empty strategy in St+1.

All that remains to be shown is that the described process terminates after a poly-
nomial number of strategy changes in a stable state. We prove this by a potential
function that is the lexicographic order of two components. The most important
component is the sum of the ranks of the resources, i.e.,

∑

r∈R rkr(S
t), which is to

be maximized. Observe that this sum does not decrease in any of the two afore-
mentioned cases, and that it increases strictly in the second case. Thus we need to
show that after a polynomial number of consecutive occurrences of the first case, the
second case must occur. Therefore, we need a second and less important component
in our potential function. In order to define this component, we associate with every
pair (i, r) ∈ N ×R for which i is assigned to r in state St a tolerance tolt(i, r) that
describes how many players (including i) can be assigned to r without changing the
property that r is an optimal strategy for i, i.e.,

min{max{b | in St, r is best resp. for i if i shares r with b− 1 players}, n} .

The second component of the potential function is the sum of the tolerances of the
assigned pairs in St, which is to be maximized. We denote the set of assignments in
state St by Et ⊆ N ×R and define the potential function as

Φ(St) =




∑

r∈R

rkr(S
t),

∑

(i,r)∈Et

tola(i, r)



 .

In every occurrence of the first case, the second component increases by at least
1. Since the values of the components are bounded from above by m n and n2 and
bounded below from 0, the potential function implies that there can be at most m n3

strategy changes before an equilibrium is reached. This does not include the last
strategy change of players which are not assigned to any resource in the final state.
In their last strategy change, these players allocate an arbitrary resource, which does
not affect the potential. However, there are less than n such strategy changes.

Let us remark that the potential function does not imply that the considered games
are potential games because it increases only if the strategy changes are made ac-
cording to the above described policy. Additionally, observe that the proof implicitly
describes an efficient algorithm to compute a Nash equilibrium with at most O(m n3)
strategy changes.

Corollary 5.3. There exists a polynomial time algorithm to compute a Nash equilib-
rium of a player-specific singleton congestion game with priorities and non-decreasing
player-specific latency functions.

Finally, we consider correlated two-sided matching markets with ties and we show
that these games are potential games.

110



5.2 Existence of Nash Equilibria

Theorem 5.4. Correlated two-sided matching markets with ties are potential games.

Proof. We define a potential function Φ: Σ1 × · · · × Σn → N
n that is similar to the

one used in the proof of Theorem 5.1 and we show that it increases strictly with every
better response that is played. Again, each resource r contributes xr(S) values to the
potential, namely the values qr(pr(S), 1), . . . , qr(pr(S), x∗

r(S)) and xr(S)−x∗
r(S) times

the value 0. In the potential vector Φ(S), all these values are sorted in non-increasing
order. A state S′ has a higher potential than a state S if Φ(S′) is lexicographically
larger than Φ(S), i.e., if there exists an index k such that Φj(S) = Φj(S

′) for all j < k
and Φk(S) < Φk(S

′).

Let S denote the current state and assume that there exists one player i ∈ N who
plays a better response, leading to state S′. We show that Φ(S′) is lexicographi-
cally larger than Φ(S). Assume that i changes its proposal from ri to r′i. Since i
plays a better response, it must be matched to r′i in state S′. That is, the value
qr′i

(pi,r′i
, x∗

r′i
(S′)) is added to the potential. We show that only smaller values are

removed from the potential, implying that the potential must increase lexicographi-
cally. If i is matched to ri in state S, then only the value qri

(pri
(S), x∗

ri
(S)) is removed

from the vector and maybe, if x∗
ri

(S) = 1, some 0 values are replaced by larger val-
ues. Since player i plays a better response, qri

(pri
(S), x∗

ri
(S)) < qr′i

(pi,r′i
, x∗

r′i
(S′)).

If x∗
r′i

(S′) = 1 and there are players assigned to r′i in state S, then also the val-

ues qr′i
(pr′i

(S), 1), . . . , qr′i
(pr′i

(S), x∗
r′i

(S)) are removed from the potential vector. In

this case, player i displaces the previously assigned players from resource r′i, which
implies qr′i

(pi,r′i
, x∗

r′i
(S′)) = qr′i

(pi,r′i
, 1) > qr′i

(pr′i
(S), 1), as desired.
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CHAPTER 6

Conclusion and Open Problems

In this thesis we presented new results about the existence of Nash equilibria in con-
gestion games and on the time until players playing a congestion game reach a Nash
equilibrium. In particular, we extended our insights on the impact of the combina-
torial structures of the players’ strategy spaces on these problems. Building upon
previous work, we proved that every player-specific and every weighted congestion
game possesses a Nash equilibrium if the players’ strategy spaces correspond to the
set of bases of matroids. Furthermore, we proved that best response dynamics in
standard matroid congestion games are guaranteed to terminate quickly. Note that
both results hold without further assumptions on the global structure of the game
and on the latency functions except monotonicity. In order to prove these results
we applied results from matroid theory, namely we took advantages of the greedy
property and the exchange property of matroids.

We also showed that our results cannot be extended to larger classes of games if we
solely consider the combinatorial structure of the strategy spaces of individual players.
For these purposes, we provided a new characterization of non-matroid set systems
which is complementary to the exchange properties of matroids in the following way.
The exchange property of matroids says that it suffices to consider exchanges on the
bases of pairs of resources in order to obtain a new base again. Our characterization
of non-matroid, however, say that in case of a non-matroid set system there exists at
least one resource that needs to be exchanged with two others. In other words, we
showed that (1, 2)-exchanges cause the trouble.

Our characterization does not rule out the possibility that there exist other classes of
player-specific or weighted congestion games which always possess Nash equilibria or
classes of standard congestion games in which best response dynamics are guaranteed
to terminate quickly. However, from our characterizations we can conclude that in
this case additional properties on the latency functions or how the players’ strategy
spaces can be interweaved have to be taken into account. As an example for the first
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case consider the result presented by Fotakis et al. [FKS05] which shows that every
weighted congestion game possesses a Nash equilibrium if the latency functions are
linear. As an example for the second case consider the recent result of Fotakis [Fot08]
which shows that best response dynamics in standard network congestion games are
guaranteed to terminate quickly if the paths are linearly independent.

At this point we also like to point out that one can check in polynomial time whether
a given strategy space is the set of bases of a matroid. Given an explicit description
of the players’ strategy spaces this follows easily from Corollary 1.2.

Let us compare our results on the impact of the combinatorial structures of the play-
ers’ strategy spaces on the convergence time of best response dynamics in standard
congestion games with the PLS-completeness results as presented in [ARV08]. There
it is shown that computing a Nash equilibrium of a threshold game is PLS-complete.
Recall that in such games players perform (1, n)-exchanges, i. e., either a player al-
locates a private resource on its own or share a bunch of n resources with the other
players. Their analysis shows that (1, n)-exchanges cause the trouble in the complex-
ity of computing Nash equilibria, whereas our results show that (1, 2)-exchanges cause
the trouble in the convergence time. We believe that it is of particular importance to
narrow the gap between (1, 2)- and (1, n)-exchanges in order to gain more insights in
the complexity of computing Nash equilibria as threshold congestion games are the
building block to prove other completeness results. To this end, one might first want
to consider games with a constant number of players but with increasing number of
resources.

Also note that we took a worst case perspective on best response dynamics in standard
congestion games. In order to circumvent this pessimistic assumptions one might want
to consider (semi-)random instances. Such an approach can explain why real world
systems stabilize quite quickly. A similar approach has been proposed and considered
in [Röe08]. There, (semi-)random traveling salesperson instances are considered with
respect to the convergence time of the well-known 2-opt local search heuristic. It
is shown that in (semi-)random instances the 2-opt local search heuristic terminates
quickly, whereas in the worst case it can take exponentially long.

In Chapter 4 we also proposed and analyzed a natural protocol based on imitating
profitable strategies in symmetric standard congestion games. If players concurrently
use our Imitation Protocol, then the resulting dynamics converge rapidly to ap-
proximate equilibria, in which only a small fraction of players have latency signifi-
cantly larger than average. In addition, in finite time the dynamics converges to an
imitation-stable state, in which no player can improve its latency by more than ν
by imitating a different player. To the best of our knowledge, this is the first pro-
tocol that applies to general strategy spaces. Previous work only considers singleton
games [BFG+06, BFHH07, EDM05, FKS08a].

As the Imitation Protocol has the disadvantage that attractive strategies offering
large latency gain can get “lost” once no player uses them anymore we also analyzed
the probability of this event in singleton congestion games. We showed that this event
becomes unlikely to occur as the number of players increases. Hence, by removing
the parameter ν from the protocol, imitation dynamics become likely to converge
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to Nash equilibria. We also showed that in singleton congestion games with linear
latency function imitation dynamics terminated at a state which social cost is on
expectation not much worse than that of a socially optimal state. In order to prove
this result, we required that in a social optimum the number of players allocating a
resource is lower bounded by Ω(log n). Currently, we are not sure whether this result
also holds without this assumption. Hence, we leave it as an open problem to prove
or falsify it. Furthermore, we leave it as an open problem to extend this approach to
games with general strategy spaces.

In Section 3.3 we considered the convergence time of random best response dynam-
ics in player-specific singleton congestion games. We failed to prove an exponential
lower bound on the convergence time of such dynamics, however, we supported this
conjecture by the means of simulations. Our simulations are motivated by a careful
analysis of games in which the derangement of order - measured in terms of under-
and overload tokens - cannot increase. In our experimental lower bound, we carefully
construct games in which their number can also increase. One might want to compare
this conjecture with the recent exponential lower bound on the convergence time of
random better and best response dynamics in two-sided matching markets [AGM+08].
Chapter 5 presents close relationships between the two models, however, the lower
bounds cannot be transferred immediately. In a two-sided matching market a player
can be banished from a resource by someone else, however, this is impossible in a
player-specific singleton congestion game. In the latter class of games, the player still
has selected a feasible strategy except that its latency has increased.

In order to gain more insights into random best response dynamics in player-specific
singleton congestion games one might want to consider the following intermediate
problem: Consider a Nash equilibrium of a player-specific singleton congestion game
and suppose that for some reason a single player changes its latency functions such
that its current strategy is no longer its best choice. How long does it take until subse-
quent best response dynamics are guaranteed to terminate? It can easily be verified
that such dynamics can cycle, too. However, one can also verify that the number
of over- and underload tokens cannot increase. Hence, intuitively such random best
response dynamics cannot last long. Furthermore, recall that player-specific single-
ton congestion games with linear latency functions are potential games [GMT06].
The convergence time of sequential best response dynamics in such games is an open
problem, too.

Besides the classical assumptions that all players allocating a resource are treated
as equal we introduced player-specific singleton congestion games with priorities in
which a resource can foster certain players by assigning a higher priority to them.
In our model players with less priority observe infinite latency if players with higher
priorities allocate the same resource. We showed that every such game possesses a
Nash equilibrium and observed interesting relationships to two-sided matching mar-
kets. However, we think that our model is not yet satisfying from the perspective
of real world applications. In real world applications, it is more likely that certain
players are slowed down or stopped if players with higher priorities are present. More-
over, resources will continue to process these players if the ones with higher priorities
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have been finished. Such models are considered by Farzad et al. [FOV08a] and by
Immorlica et al. [ILMS05]. There, each resource comes along with a priority sys-
tem/mechanism according to which the order in which the players are processed is
determined. Note that in case of congestion games as considered in this thesis one
can say that each resource applies a round-robin schedule with infinitesimal small
time slots. We believe that more effort should be spend on defining more realistic
models.
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[AR08] Heiner Ackermann and Heiko Röglin. On the convergence time of the
best response dynamics in player-specific congestion games. Technical
Report arXiv:0805.1130, Computing Research Repository, 2008.
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Wardrop equilibria with finitely many agents. Distributed Computing,
21(2), 2008. Special Issue DISC 2007.

[FPMV07] Simon Fischer, Marina Petrova, Petri Mähönen, and Berthold Vöcking.
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[KP99] Elias Koutsoupias and Christos H. Papadimitriou. Worst-case equilibria.
In Proceedings of the 16th Annual Symposium on Theoretical Aspects of
Computer Science (STACS), pages 404–413, 1999.

[KV00] Bernhard Korte and Jens Vygen. Combinatorial Optimization. Springer,
2000.

[LBT03] Kevin Leyton-Brown and Moshe Tennenholtz. Local-effect games. In
Proceedings of the 18th International Joint Conferences on Artificial In-
telligence (IJCAI), pages 772–777, 2003.
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