Vergleich eines rekombinanten Anti ICAM – 1 Fab Fragmentes mit einem IgG Vollantikörper in der Behandlung von Verbrennungstraumata am Kaninchen

Von der Medizinischen Fakultät der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades einer Doktorin der Medizin genehmigte Dissertation

vorgelegt von

Claudia Schrimpf

aus Mönchengladbach

Berichter Herr Universitätsprofessor Dr. med. Dr. univ. med. Prof. h.c. (RC) Norbert Pallua

> Herr Universitätsprofessor Dr. med. Malte Kelm

Tag der mündlichen Prüfung: Dienstag 23. September 2008

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Meinen Eltern und Großeltern

Inhaltsverzeichnis	I —II
Abbildungsverzeichnis	III - V
Abkürzungsverzeichnis	VI - VII
Tabellenverzeichnis	VIII

1. Einleitung	1
1.1 Motivation der Arbeit	1
1.2 Allgemeine Definition der Verbrennung	1
1.3 Verbrennungsarten	1
1.4 Aufbau der Haut	2
1.5 Physiologische Funktionen der Haut	3
1.6 Einteilung der Verbrennungstiefe	3
1.7 Zoneneinteilung der Verbrennungswunde	5
1.8 Therapeutische Maßnahmen	7
1.9 Immunologische Grundlagen	8
1.10 Immunologische Reaktionen nach Verbrennungstraumata	14
1.11 Therapieansätze	19
1.12 Funktionsprinzip LFA-1 / ICAM - 1	21
1.13 Fragestellung	26
2. Material und Methoden	27
2.1 Versuchsvorbereitung	27
2.2 Versuchsaufbau	28
2.3. Versuchsablauf	31
2.4 Histologische Auswertung	38
2.5 Statistische Auswertung	38
3. Ergebnisse	39
3.1 Durchblutung	39
3.2 Leukozytenzählung	50

	29
4.1 Allgemeines	59

4.2 Methoden	59
4.3 Ergebnisse	64
4.4 Schlussfolgerung	73
5. Anhang	74
5.1 Paarvergleiche für die Stasezone	74
5.2 Paarvergleiche für die Verbrennungszone	77
5.3 Wahrscheinlichkeiten für die Stasezone mittels ANOVA	80
5.4 Wahrscheinlichkeiten für die Verbrennungszone mittels ANOVA	86
5.5. Kapillarfüllung pro Gesichtsfeld in den einzelnen histologischen Schnitten	92
5.6 Nekrosetiefe pro Gesichtsfeld in den einzelnen histologischen Schnitten	93
5.7 Wahrscheinlichkeiten der Kapillarfüllung mittels ANOVA	94
6. Literaturverzeichnis	96
7. Zusammenfassung	108
0. Dublikationen	400
8. Publikationen	109
9. Danksagung	. 110
11. Datenaufbewahrungserklärung	111
12. Lebenslauf	112

Abbildungsverzeichnis:

Abbildung 1:	Zonen der Verbrennungswunde: 1.Hyperämiezone, 2. Zone der
	Stase, 3. Koagulationszone7
Abbildung 2:	Aufbau des IgG Moleküls10
Abbildung 3:	Spaltung des IgGs durch Papain11
Abbildung 4:	Modell der Antigenerkennung mittels T-Zell Rezeptor
	CD 4 cluster of differntiation 4, TCR T-Zell Rezeptor,
	LFA1 Lymphozyten Funktions Antigen 1,
	APZ Antigen präsentierende Zelle
	ICAM1 interzelluläres Adhäsionsmolekül 1
	MHC II mayor histocompatibility complex II13
Abbildung 5:	Diagramm der Entstehung von SIRS und MOV15
Abbildung 6:	Darstellung des ICAM-1 Moleküls, seiner Liganden, sowie der
	Gewebeverteilung22
Abbildung 7:	Darstellung des LFA-1 Moleküls, seines Liganden sowie der
	Gewebeverteilung23
Abbildung 8:	Interaktionsprinzip von ICAM-1 mit LFA-1 TCR T-Zell Rezeptor,
	CD4 cluster of differentiation 4, APZ Antigen präsentierende Zelle,
	LFA 1 Lymphozyten Funktions Antigen 1,
	ICAM 1 interzelluläres Adhäsionsmolekül 1,
	MHC II mayor histocompatibility complex II24
Abbildung 9:	Versuchsaufbau29
Abbildung 10	: Schematische Verbrennungsanordnung32
Abbildung 11	: Verbrennungsanordnung am Tiermodell
	Z = Standardleuchtmarke, X = 3 gradige Verbrennung,
	W = 2 gradige Verbrennung, Y = Zone der Stase,
Abbildung 12	: Indocyaningrün – Anflutung in verschiedenen hautarealen zur
	Bestimmung er Durchblutung mittels Fluoreszenzintensitätsmessung
	Grün = gesunde Haut; Rot/Blau = verbrannte Areale
	Gelb = Standard34
Abbildung 13	: Graphische Darstellung der Werte für die Verschiedenen Areale
	mittels IC-Calc35

Abbildung 14:	Hautdurchblutung verbrannter	Areale in Bezug zur Hautdurchblutung
	unverbrannten Gewebes in Pro	ozent40
Abbildung15: Paarvergleiche für verbrannte Areale 1h nach Verbrennung mittels		
,	"two Sample t-test for means" m	it p – Werten als Ergebnis und
ż	zugehöriger Mittelwerttabelle	41
Abbildung 16:	Hautdurchblutung der Stasezor	e im Vergleich zur Hautdurchblutung
	gesunder Hautareale in Prozen	t42
Abbildung 17:	Paarvergleiche für die Stasezor	ne 4 Stunden nach Verbrennung
	mittels "two sample t-test for me	eans" mit p-Wert als Ergebnis
	und zugehöriger Mittelwerttabel	le (MW)43
Abbildung 18:	Hautdurchblutung der Stasezor	e bei Therapiebeginn nach 30 min im
	Vergleich zur Haudurchblutung	gesunder Hautareale in Prozent44
Abbildung 19:	Hautdurchblutung der Stasezor	e bei Therapie nach 3 Stunden im
	Vergleich zur Hautdurchblutung	gesunder Hautareale in Prozent46
Abbildung 20:	Paarvergleiche für Stasezone 4	8 Stunden nach Verbrennung mittels
	"two sample t-test for means" m	it p-Wert als Ergebnis
	und zugehöriger Mittelwerttabe	lle (MW)48
Abbildung 21:	Variationsbreite innerhalb der T	herapiegruppen als
	Boxplots 48 Stunden nach Verk	prennung
	Gruppe 0: Kontrollgruppe	Gruppe 1: Fab 30 min
	Gruppe 2: IgG 30 min	Gruppe 3: IgG 3h
	Gruppe 4: Fab 3h	48
Abbildung 22:	Paarvergleiche für Stasezone 7	2 Stunden nach Verbrennung mittels
	"two sample t-test for means" m	it p als Ergebnis
	und zugehöriger Mittelwerttabel	le49
Abbildung 23:	Variationsbreite innerhalb der T	herapiegruppen als
	Boxplots 72 Stunden nach Verb	prennung
	Gruppe 0: Kontrollgruppe	Gruppe 1: Fab 30 min
	Gruppe 2: IgG 30 min	Gruppe 3: IgG 3 Stunden
	Gruppe 4: Fab 3 Stunden	50
Abbildung 24:	Leukozytenzahlen im Versuchs	verlauf51
Abbildung 25:	histologische Darstellung der St	tasezone innerhalb der Kontrollgruppe
	mit 100facher Vergrößerung	K= Erythrozyten gefüllte Kapillaren,
	Y= Epitheliolyse und Blasenbild	dung, Z= Haarfollikel52

Abbildung 26: Boxplot der gefüllten Kapillaren nach Versuchsende in den einzelnen	
Therapiegruppen innerhalb der Stasezone54	4
Abbildung 27: Boxplot der gefüllten Kapillaren nach Versuchsende in den einzelnen	
Therapiegruppen innerhalb der Verbrennungszone5	5
Abbildung 28: Boxplot der gefüllten Kapillaren nach Versuchsende in den einzelnen	
Therapiegruppen innerhalb gesunder Haut	3
Abbildung 29: Histologische Darstellung der Stasezone in der IgG 30 min Gruppe	
mit 100facher Vergrößerung, X= Kapillaren, Y= Epithel,	
Z= Haarfollikel56	3
Abbildung 30: Histologische Darstellung der Stasezone in der IgG 3 Stunden Gruppe	¢
mit 100facher Vergrößerung, X= Kapillaren, Y= Epithel,	
Z= Haarfollikel57	,
Abbildung 31: Histologische Darstellung der Stasezone in der Fab 30 min Gruppe	
mit 100facher Vergrößerung, X= Kapillaren, Y= Epithel,	
Z= Haarfollikel5	7
Abbildung 32: Histologische Darstellung der Stasezone in der Fab 3 Stunden Gruppe	Э
mit 100facher Vergrößerung, X= Kapillaren, Y= Epithel,	
Z= Haarfollikel5	8

Abkürzungsverzeichnis:

APZ:	Antigenpräsentierende Zelle
ARDS:	acute respiratory distress syndrome
BIRR1 [.]	CD 54 / monoklonaler Antikörner
CD:	cluster of differentiation
cm:	Zentimeter
E. coli:	Escherichia coli
EDTA:	Ethylene diamine tetra cetic acid
Fab:	fragment antigen binding
h:	Stunde / Stunden
HE:	Hämatoxylin / Eosin
i.v.:	intravenös
ICAM – 1:	Interzelluläres Adhäsionsmolekül 1
ICG:	Indocyanin Grün
IC-View:	Indocyanin-View
IFN-gamma:	Interferon-gamma
lgG:	Immunglobulin G
lgM:	Immunglobulin M
IL-1:	Interleukin 1
IL-2:	Interleukin 2
IL-6:	Interleukin 6
IL-8:	Interleukin 8
kg:	Kilogramm
LFA – 1:	Lymphozyten – Funktions assoziiertes Antigen

MAC 1:	Membran Angriffs Komplex
mg:	Milligramm
MHC I:	mayor histocompatibility complex I
MHC II:	mayor histocompatibility complex II
min:	Minuten
ml:	Milliliter
mm:	Millimeter
MOV:	Multiorganversagen
MW:	Mittelwert
PGE2:	Prostaglandin E2
SIRS:	Systemic inflammatory response syndrome
TCR:	T-Zell-Rezeptor
TNF alpha:	Tumornekrosefaktor alpha

Tabellenverzeichnis:

Tabelle 1:	verschiedene Verbrennungstraumata	2
Tabelle 2:	Verbrennungstiefen nach alter und neuer Nomenklatur	4
Tabelle 3:	Gruppenaufteilung und Therapieschemata	30
Tabelle 4:	Mittelwerte (MW) der verbrannten Areale	40
Tabelle 5:	Mittelwerte (MW) der Stasezone	43
Tabelle 6:	Mittelwerte(MW) für die Leukozytenzählung während des	
	Versuchablaufs	52

1. Einleitung

1.1 Intention der Arbeit:

Jedes Jahr stellen sich in deutschen Kliniken ca. 25000 Patienten mit Verbrennungen vor, davon allein 7000 Kinder. Die Dunkelziffer der tatsächlich stattgehabten Verbrennungen pro Jahr dürfte dabei noch um ein Vielfaches höher liegen, da viele minimale Verbrennungen oft gar nicht in die ärztliche Behandlung treten und zu Hause oder vom Hausarzt versorgt werden. Bei den ernsthaft verbrannten Patienten, die eine Notfallbehandlung im Krankenhaus benötigen folgt auf die Akutversorgung meist ein langer Krankenhausaufenthalt und eine große Anzahl der Patienten benötigt anschließend weitere Operationen damit Funktionseinschränkungen, z.B. bedingt durch Narbenstränge und Ähnliches behoben oder zumindest minimiert werden können.

Gegenstand aktueller Forschung sind Therapiemöglichkeiten, die die Tiefen- und Weitenausdehnung der Verbrennung minimieren. So erfolgt in dieser Arbeit die Testung eines Antikörpers, der sowohl einen positiven Effekt auf die Weiten- als auch auf die Tiefenausdehnung haben soll.

1.2 Allgemeine Definition der Verbrennung:

Bei einer Verbrennung handelt es sich um eine Gewebeschädigung infolge externer oder interner Hitzeeinwirkung.

1.3 Verbrennungsarten:

Verbrennungen können in thermische und nicht thermische Verbrennungen eingeteilt werden. Zu den thermischen Verbrennungen zählen direkte Verbrennungen, indirekte Verbrennungen, Verbrühungen und Kontaktverbrennungen. Nichtthermische Verbrennungen werden in chemische, elektrische, strahlenbedingte und toxische Ursachen untergliedert.

Thermische Verbrennungen	Nicht thermische Verbrennungen	
Direkte Verbrennung	Chemisch:	
z.B. offenes Feuer, Explosion	Säuren, Laugen, chem. Kampfstoffe	
Indirekte Verbrennung	Elektrisch:	
z.B. durch brennende Kleidung	Haushalts-, Schwach- oder Starkstrom	
Verbrühung	Strahlungsbedingt:	
Heißes Wasser, Wasserdampf	Sonnenbrand	
Kontaktverbrennung	Toxisch:	
z.B. flüssiges Metall, heiße Festkörper	Lyell-Syndrom, Streptokokkentoxin	

Tabelle 1Verschiedene Verbrennungstraumata [1]

Allerdings sind nicht nur die Art der Verbrennung, sondern auch die Einwirkzeit sowie die Temperatur von großer Wichtigkeit für das resultierende Ausmaß der Verbrennungswunde. Darüber hinaus ist es Verbrennungslokalisation von großer Bedeutung.

1.4 Aufbau der Haut:

Nach histologischen Gesichtspunkten wird die Haut in mehrere Anteile und Schichten unterteilt. Die Kutis besteht zum einen aus Epidermis, der Oberhaut, welche aus mehrschichtig verhorntem Plattenepithel besteht und zum anderen aus der Dermis, dem Corium oder der Lederhaut, welche ein straffes, faserreiches Bindegewebe beinhaltet.

Sowohl Epidermis als auch Dermis werden in verschiedene Schichten untergliedert.

Unterhalb der Dermis liegt die Tela subcutanea. Sie besteht aus lockerem Bindegewebe, welches dafür sorgt, dass die Haut verschieblich mit den unter ihr gelegenen Strukturen (Periost und Muskulatur) verbunden ist. In dieses lockere Bindegewebe ist Fettgewebe eingebettet, welches als Druckpolster und Wärmeisolator dient.

An der Grenze zwischen Tela subcutanea und Dermis liegt ein weitmaschiger, subkutaner Arterien- und Venenplexus. Von hier aus steigen kleine Arterien gebogen in die Dermis auf [2].

1.5 physiologische Funktionen der Haut:

Die Haut ist mit ca. 1,5-1,8 m² Fläche, in Abhängigkeit von der Körpergröße und einem Gewicht von ca. 16% des Körpergewichtes, das größte Organ des Menschen. Die Haut schützt das Körperinnere vor äußeren Einflüssen und besitzt regulatorische, sensatorische sowie immunologische Funktionen. Neben der Protektion vor thermischen, mechanischen und chemischen Einflüssen sowie der Protektion vor Bakterieninvasion werden regulatorische Funktionen im Bereich des Flüssigkeits-, Elektrolyt- und Eiweißhaushalts sowie der Thermoregulation (Vasokonstriktion/ dilatation) durchgeführt.

Durch Vorkommen von immunkompetenten Zellen wie Mastzellen, B- und T-Lymphozyten in der Dermis kommen der Haut immunologische Funktionen zu. Zudem agiert die Haut durch ihre zahlreichen Rezeptoren als Sinnesorgan [2].

1.6 Einteilung der Verbrennungstiefe:

Lange Zeit wurden Verbrennungen in drei Grade eingeteilt, allerdings wurde diese Einteilung nicht einheitlich verwendet [4]. Deshalb beschloss die "European Burn Association" 2001 für wissenschaftliche Arbeiten eine einheitliche Einteilung der Verbrennungstiefe nach P.G. Shakespeare vorzunehmen [4, 5]. Einen detaillierten Überblick liefert die folgende Tabelle 2.

Alte	Neue	Verbrennungstiefe
Nomenklatur	Nomenklatur	
I	Superficial burns	die Epidermis betreffend
lla	Superficial partial thickness burns	das stratum papillare der
		Dermis sowie die
		Epidermis betreffend
llb	Deep dermal partial thickness burns	die Dermis einschließlich
		dem stratum reticulare
		sowie die Epidermis
		betreffend
	Full thickness burns	die gesamte Kutis sowie
		möglicherweise die
		Subkutis betreffend

Tabelle 2 Verbrennungstiefen nach alter und neuer Nomenklatur

In Bezug auf klinische Aspekte stellen sich folgende Merkmale der einzelnen Verbrennungstiefen dar:

Oberflächliche Verbrennungen stellen sich anhand einer Rötung des betroffenen Areals dar. Diese Farbe beruht auf einer Irritation des vaskulären Plexus, welcher sich durch die Epidermis hindurch auf die Oberfläche projiziert [6]. Bei rein oberflächlichen Verbrennungen treten keine Blasen auf, die Oberfläche ist trocken [6, 7]. Aufgrund einer hohen Berührungsempfindlichkeit resultiert ein starkes Schmerzempfinden. Eine Ödementstehung ist möglich. Oberflächliche Verbrennungen heilen per primam innerhalb von 3 bis 5 Tagen ab, ohne Narben zu hinterlassen.

Oberflächliche partielle Verbrennungen stellen sich ebenfalls erythematös dar. Die Rötung resultiert aus einer Inflammation des Gewebes. Innerhalb von Minuten nach der Verbrennung treten dünnwandige, flüssigkeitsgefüllte Blasen zwischen Epidermis und Corium auf. Über an zerplatzten Blasen anliegende Nervenenden werden, leichte Berührungen, sowie Temperaturveränderungen als auch die Nozizeption vermittelt. Dies resultiert in einer hohen Schmerzhaftigkeit des verbrannten Areals [67]. Die Wunde ist feucht, da die Schutzfunktion der Haut an dieser Stelle vermindert ist. Es tritt Wundsekret aus. Die Hautanhangsgebilde wie Haare und Drüsen bleiben intakt. Es tritt keine Defektheilung auf.

Tief dermale Verbrennungen stellen sich als Mischung von hoch roter und teils wächsern weiß aussehender Oberfläche dar. Die Blasenbildung ist im Vergleich zu oberflächlich partiellen Verbrennungen deutlich reduziert. Typischerweise ist ein Ödem anzutreffen und die Sensibilität ist in Arealen mit tiefergehender Verbrennung eingeschränkt. Die Schmerzempfindung bei tief dermalen Verbrennungen ist aufgrund der partiellen Zerstörung der Schmerzrezeptoren reduziert, Hautanhangsgebilde werden geschädigt. Die Wunde heilt unter Defektbildung ab, die Regeneration der Haut erfolgt über verbliebenes funktionsfähiges Gewebe der Hautanhangsgebilde. Die Heilung erfolgt als narbige Defektheilung woraus sich eine Indikation zur Hauttransplantation ergibt [6-7].

Allschichtige Verbrennungen betreffen entsprechend der Nomenklatur alle Schichten der Haut sowie die Hautanhangsgebilde. Auch Muskeln, Knochen und Interstitium können betroffen sein. Ein Ödem entwickelt sich innerhalb von Stunden durch Protein- und Flüssigkeitsverschiebungen. Aufgrund der weitreichenden Schädigung der Hautanhangsgebilde ist eine Regeneration des geschädigten Gewebes nur in geringem Ausmaß möglich, so dass wie bei der tief dermalen Verbrennung eine OP Indikation gegeben ist [6-7].

1.7 Zoneneinteilung der Verbrennungswunde:

Nach Jackson gibt es drei Zonen der Verbrennung (siehe Abbildung 1):

- Hyperämie Zone
- Zone der Stase
- Koagulationszone [8]

Eine Variabilität bezüglich der Zonen ist nicht auszuschließen, so dass einige Zonen dominieren können, während andere fehlen [8]. Betrachtet man eine konzentrische

Verbrennung, so stellt man meist fest, dass die Verbrennung in Ihrem Zentrum die tiefste Gewebszerstörung aufweist und zu den Seiten hin oberflächlicher wird [8].

1.7.1 die Hyperämiezone:

Sie befindet sich am marginalen Rand der Verbrennungswunde und erscheint als rote Zone, die auf Druck hin weiß wird und bei Nachlassen des Drucks wieder zu ihrer roten Farbe zurückkehrt. Diese Hyperämiezone ist dadurch gekennzeichnet, dass in ihr Mikrozirkulation und Metabolismus gestört, aber noch vorhanden sind. Darüber hinaus findet in dieser Zone eine Vasodilatation statt aus welcher eine Mehrdurchblutung des Gewebes resultiert, welche die rote Farbe bedingt. Die Zellen in dieser Zone sind kaum zerstört und das Gewebe zeigt eine vollständige Regenerationsfähigkeit. Die Heilung der Hyperämiezone ist meist am 7. Tag nach Verbrennung abgeschlossen [8].

1.7.2 die Zone der Stase:

Die Zone der Stase schließt sich an den medialen Anteil der Hyperämiezone an. Der Metabolismus als auch der Blutfluss sind in dieser Zone stark eingeschränkt. Auf der Oberfläche der Stasezone können petechiale Blutungen auftreten. Die Zellen sind in dieser Zone zu Beginn aktiv, können jedoch nach Anhalten der Stase zu Grunde gehen. Eine vollständige Stase tritt laut Jackson 24 Stunden nach Verbrennung ein. Die Stase resultiert aus einer Vasokonstriktion und Endothelzellschwellung. Darüber hinaus bilden sich Plättchenthromben und Fibrinablagerungen. Zudem trägt eine Verminderung der Wanderungsgeschwindigkeit der Granulozyten zur Adhäsion an die Zellwand bei [9, 10]. Nach 3 bis 7 Tagen verändert sich der farbliche Aspekt der Stasezone. Die zuvor rote Oberfläche wird nun weiß. Dieser Farbumschlag ist durch eine Hämolyse der Erythrozyten, die zuvor die Blutgefäße okkludiert haben bedingt. Die Dermis erscheint avaskulär und nekrotisch [8].

Weitere Schädigungen der Zone der Stase, wie z.B. Druck, Infektion und Hypovolämie, können zu einer Konversion dieser Zone in die Koagulationszone führen.

1.7.3 die Koagulationszone

Die Koagulationszone beschreibt den zentralen Teil der Verbrennungswunde.

In dieser Zone findet kein Blutfluss mehr statt. Die Gefäßlumina im subpapillären Plexus und in den Kapillarschleifen sind komplett obliteriert, das gesamte Areal ist durch Denaturierung und Nekrose gekennzeichnet. Die weiße Farbe der Zone liegt in einer Koagulation des Gewebes und in einem primären Gefäßspasmus aufgrund der Temperatureinwirkung begründet [11]. Schon unmittelbar posttraumatisch ist in diesem Bereich kein regenerationsfähiges Gewebe mehr zu finden.

Abbildung 1 Zonen der Verbrennungswunde: 1.Hyperämiezone, 2. Zone der Stase, 3. Koagulationszone [30]

1.8 Therapeutische Maßnahmen:

1.8.1 Volumenersatztherapie

Eine Verbrennung von mehr als 25% der gesamten Körperoberfläche führt bei Erwachsenen zu einer Störung der Herzkreislauffunktion, welche als Verbrennungsschock bezeichnet wird [12]. Eine ausgeprägte Ödembildung führt zu einer massiven Hypovolämie. Durch die gestörte Barrierefunktion der Haut verliert der Brandverletzte enorme Flüssigkeitsmengen [13]. Um einem hypovolämischen Schock mit begleitendem Multiorganversagen entgegenzuwirken, muss demnach reichlich Flüssigkeit substituiert werden.

Dies geschieht nach der Parklandformel, die bei der Verbrennungsschocktherapie unter Verwendung von Ringer Laktat eingesetzt wird [14]:

Parkland Formel = Ringerlaktat 4ml x kg KG x (% VKOF in 24h)

KG= Körpergewicht VKOF= verbrannte Körperoberfläche

Die Hälfte der errechneten Volumenmenge sollte in den ersten 8h nach der Verbrennung substituiert werden.

1.8.2 Therapie der Verbrennungswunde:

Nach einer Verbrennung resultieren aufgrund von Dysregulationsmechanismen des Körpers, immunologische Reaktionen, bei denen verschiedene gewebeschädigende Mediatoren und Transmitter ausgeschüttet werden. Zudem kann durch Vasokonstriktion und Endothelzellschwellung in der Zone der Stase (siehe 1.6), diese nach einiger Zeit in eine Koagulationszone übergehen [15]. Deshalb strebt eine Verbrennungsbehandlung die sofortige Beseitigung schädlicher Noxen, welche als Ursache pathologischer Vorgänge angesehen werden, an [16]. Diese Beseitigung geschieht wenn möglich als Sofortdébridement innerhalb der ersten 6-8 Stunden nach der Verbrennung. Anschließend wird eine primäre Hauttransplantation angestrebt. Alternativ kann eine temporäre Deckung des Defekts mit Fremdhaut oder einer künstlichen Abdeckung erfolgen und der Defekt später in einer zweiten Sitzung behoben werden [138].

1.9 Immunologische Grundlagen:

Zur Erkennung körperfremder Antigene im Organismus dienen hauptsächlich zwei Moleküle. Die Immunglobuline und der T - Zell Rezeptor. Ein weiterer wichtiger Mechanismus zur Verhinderung der Ausbreitung von körperfremden Antigenen ist das Komplementsystem.

1.9.1 Immunglobuline:

Immunglobuline (Ig) sind Glykoproteine, die im Serum sowie in Körperflüssigkeiten aller Säugetiere vorkommen. Sie werden in Plasmazellen produziert, welche zuvor aus Vorläufer-B-Zellen durch Aktivierung entstanden sind. Immunglobuline üben die Funktion eines Antikörpers im menschlichen Körper aus.

a) Unterteilung der Immunglobuline:

Immunglobuline werden in fünf verschiedene Klassen unterteilt, welche Unterschiede in ihrer Größe, elektrischen Ladung, Aminosäurenzusammensetzung sowie ihrem Kohlenhydratanteil aufweisen. Zu nennen sind hier IgG, welches das relevante Immunglobulin dieser Arbeit darstellt, als auch IgM, IgA, IgE und IgD.

IgG stellt mit einem Prozentsatz von 70-75% des gesamten Immunglobulinpools den quantitativen Hauptteil der Immunglobuline. Es stellt zudem den wichtigsten Antikörper der sekundären Immunantwort dar [17]. IgM ist der Antikörper der frühen Immunantwort, IgA schützt Proteine vor Proteolyse [18] und IgD befindet sich in großen Mengen auf den Membranen zirkulierender B-Lymphozyten [19]. IgE ist an Überempfindlichkeitsreaktionen vom Soforttyp beteiligt [20].

b) Allgemeiner Aufbau von Immunglobulinen:

Wie Rodney und Porter 1962 herausfanden, besteht das Grundgerüst eines Immunglobulins aus zwei leichten und zwei schweren Polypeptidketten, die durch Disulfidbrücken miteinander verbunden sind. Innerhalb der Ketten gibt es verschiedene Klassen. Die Klasse der schweren Kette legt den Typ des Immunglobulins fest. Auf den leichten Ketten gibt es zwei verschiedene Hauptregionen. Zum einen die konstante Region am c-terminalen Ende; sie besitzt an ihrem Ende eine Carboxylgruppe; und zum anderen die variable Region, welche mit einer Aminogruppe am n-terminalen Ende der Kette sitzt und sehr variabel in ihrer Sequenz erscheint [21, 22].

Da in der Arbeit ausschließlich IgG sowie ein Fab Fragment (fragment of **a**ntigen **b**inding) als Antikörper benutzt wurden, soll im folgenden nur auf die Darstellung der

Struktur und Funktion des IgG sowie des Fab Fragmentes eingegangen und wichtige Grundlagen anhand dieser beiden Beispiele erläutert werden.

c) Aufbau des IgG Moleküls:

Immunglobulin G besitzt neben der Grundstruktur eines Immunglobulins an der Bindungsstelle der Disulfidbrücken eine Region, welche den Abstand zwischen den beiden n-terminalen Enden der Ketten variieren kann und als "Hinge" Region bezeichnet wird (siehe Abbildung 2) [23]. Des Weiteren besteht IgG aus zwei Fab Fragmenten und einem Fc Teil. Diese beiden Teile des Immunglobulins erhält man, wenn man IgG mittels Papain, einer Protease, spaltet (siehe Abb. 3). Das Fab Fragment ist für die Bindung des Antigens an den Antikörper verantwortlich. Es enthält das n-terminale Ende des IgG Moleküls mit seiner variablen Region. Der Fc-Teil übt die Effektorfunktionen des Moleküls aus. Er enthält das c-terminale Ende und vermittelt die Komplementaktivierung sowie die Monozytenbindung. Wie anhand von Abbildung 3 deutlich wird, kann ein Fab Fragment nur jeweils ein Antigen binden. IgG hingegen ist in der Lage zwei Antigene zu binden und kann dadurch die Stabilität der Antigenbindung erhöhen.

Abbildung 2 Aufbau des IgG Moleküls [21]

Abbildung 3 Spaltung des IgGs durch Papain [24]

d) Aufgaben der Immunglobuline:

Die Funktion der Immunglobuline besteht v. a. in der Bindung des Antigens. Des Weiteren werden Immunglobulinen sekundäre Effektorfunktionen zugeschrieben. Sie aktivieren das Komplementsystem, binden an Monozyten, präsentieren dem Wirtgewebe das Antigen und setzten gleichzeitig Abwehrmechanismen in Gang [23]. Diese Funktionen werden durch das Fab-Fragment und den Fc-Teil des Moleküls vermittelt.

e) die Antigenbindung:

Die Antigenbindung mit dem Immunglobulin erfolgt über die hypervariable Region des Immunglobulins. Mit diesem Begriff bezeichnet man einen Bereich der variablen Region, der aus variierenden Polypeptidsegmenten besteht. Das Antigen muss um eine Bindung eingehen zu können, komplementär zum Antigenbindungsort des Immunglobulins sein [24]. Passende Atomgruppen von Antigen und Antikörper müssen sich gegenüber stehen. Bei sich überlappenden Atomwolken kommt es zur Abstoßung. Die Oberfläche jedes Antigens weist mehrere Epitope auf und bedingt damit die Möglichkeit der Bindung verschiedener Antikörper an der Oberfläche nur eines Antigens [24]. Anhand dieser Variationsbreite wird ein Antikörper als hochoder niedrigaffin bezeichnet. Ein hochaffiner Antikörper ist so spezialisiert, dass er nur die antigene Determinante eines einzigen Antigens erkennt. Hochaffine Antikörper sind niedrigaffinen Antikörpern in ihren Eigenschaften, wie z.B. Membranschädigung, Hämagglutination, Hämolyse, Komplementbindung, passive kutane Anaphylaxie, Enzymaktivierung und Beseitigung des Antigens überlegen [24].

1.9.2 Der T-Zell Rezeptor

a) Aufbau des T-Zell Rezeptors:

Der T-Zell Rezeptor besteht aus zwei Hauptgruppen dem T-Zell Rezeptor 1 und 2. Diese werden anhand ihrer Rezeptorketten, ähnlich der Immunglobuline, unterschieden. Zusätzlich zu den beiden Hauptgruppen besitzt der T-Zell Rezeptor eine CD 3 (cluster of differentiation) Untereinheit. Der T-Zell Rezeptor 1 reguliert den T-Zell Rezeptor 2. Bestimmte Regionen des T-Zell Rezeptors 2 interagieren mit den so genannten MHC Molekülen und können dadurch Antigene identifizieren. Diese Regionen des T-Zell Rezeptors 2 werden CDR 1 und CDR 2 genannt. Die CD3 Untereinheit beschreibt eine Reihe von Molekülen, in die der T-Zell Rezeptor eingebettet ist und welche auf zytotoxischen T-Zellen und T- Helfer Zellen vorkommen. Die CD 3 Untereinheit vermittelt die Signalübertragung. Diese findet statt, wenn die T-Zellen durch die Bindung von Antigen an den T-Zell Rezeptor aktiviert werden [24].

b) Antigenerkennung durch den T-Zell Rezeptor:

T-Zellen erkennen ein Antigen nur, wenn es ihnen in Verbindung mit einem MHC Molekül präsentiert wird. Das Antigen muss sich demnach auf der Oberfläche einer anderen Zelle befinden und dort an ein MHC Molekül gebunden sein. Ohne Bindung an ein MHC Molekül kann der T-Zell Rezeptor das Antigen nicht erkennen und nicht an der Zelle binden. Zellen, die Antigene auf ihrer Oberfläche präsentieren können, sind entweder virusinfizierte Zellen, oder Antigen präsentierende Zellen (APZ). Die APZ nehmen das Antigen zuvor auf, spalten es in ihrem Zellinneren in einzelne Fragmente, bestehend aus Peptiden von jeweils 8-24 Aminosäuren, binden ein Fragment an ein MHC Molekül und präsentieren es dann an ihrer Oberfläche in Verbindung mit MHC. Durch die Bindung der T-Zelle an eine Antigen präsentierende Zelle wird die T-Zelle zur Teilung angeregt [25]. Antigen präsentierende Zellen sind beispielsweise Makrophagen, dendritische Follikelzellen, B-Zellen, Langerhans Zellen der Haut und Kupffer Zellen der Leber.

Abbildung 4 Modell der Antigenerkennung mittels T-Zell Rezeptor CD 4 cluster of differntiation 4, TCR T-Zell Rezeptor, LFA1 Lymphozyten Funktions Antigen 1, APZ Antigen präsentierende Zelle ICAM-1 interzelluläres Adhäsionsmolekül 1 MHC II mayor histocompatibility complex II

1.9.3 Das MHC Molekül:

Es gibt zwei unterschiedliche MHC Moleküle. MHC I wird von Zellen erkannt, die auf ihrer Oberfläche CD8 exprimieren, dies sind zytotoxische T-Zellen. MHC Klasse II wird von Zellen erkannt, die auf ihrer Oberfläche CD4 exprimieren und bei denen es sich um sogenannte T-Helfer Zellen handelt. MHC I kommt auf allen kernhaltigen Zellen des Menschen vor, während MHC II ausschließlich auf Antigen präsentierenden Zellen und B-Zellen zu finden ist [26].

1.9.4 Interaktion weiterer Moleküle mit dem T-Zell Rezeptor

Es finden sich eine Reihe von Rezeptoren, die beispielsweise mit dem Endothel interagieren oder den Lymphozyten helfen das Gewebe zu lokalisieren in dem die immunologische Reaktion abläuft. Als Lymphozytenfunktionsantigene, d.h. Moleküle die der Zelladhäsion, Kooperation und zytotoxischen Interaktion dienen, sind hier LFA-1, LFA-2 und LFA-3 zu nennen. LFA-1 und LFA-2 befinden sich auf der Lymphozytenoberfläche. LFA-1 interagiert mit seinem Liganden ICAM-1, einem interzellulären Adhäsionsmolekül [147]. Auf die Funktion von LFA-1 sowie ICAM-1 wird zu einem späteren Zeitpunkt der Arbeit ausführlich eingegangen.

1.10 Immunologische Reaktionen nach Verbrennungstrauma:

Nach einer Verbrennung kommt es im Körper zu einer lokalen und systemischen Reaktion. Die systemische Reaktion kann in einen humoralen und einen zellulären Anteil untergliedert werden. Die systemische Reaktion beginnt lokal am Ort der Verbrennung und breitet sich von dort in den Organismus aus. Es kommt zur Freisetzung von multiplen Entzündungsmediatoren. Diese Entzündungsmediatoren aktivieren Makrophagen und Abwehrzellen, die dann indirekt zur Gewebeschädigung beitragen, indem sie selbst Mediatoren freisetzten und das umgebende Gewebe schädigen. Daraufhin erfolgt eine Aktivierung immunologisch aktiver Zellen, die die Gewebeschäden abbauen. Als lokale Reaktion sieht man bei Verbrennungen eine Schwellung, die pathophysiologisch durch den Einstrom von Flüssigkeit in den Extravasalraum bedingt ist. Diese sogenannten "Lecks" in der kapillären Strombahn wurden bereits 1978 beschrieben [27]. Breitet sich die lokale immunologische Reaktion nach einer Verbrennung systemisch aus, kann dies über das systemic inflammatory response syndrome (SIRS) zu einem Multiorganversagen (MOV) führen (siehe Abbildung 5) [28, 29].

Die Mechanismen, die eine Änderung des Immunsystems bedingen, sind schon vielfach untersucht worden.[42 - 46]. Ursächlich für die Änderungen sind meist Mediatoren, wie Interleukine, Lymphokine und Zytokine. Im Folgenden wird ein Überblick über die relevanten Mediatoren und Funktionsmechanismen gegeben.

1.10.1 Humorale Veränderungen nach Verbrennung:

Nach einer Verbrennung finden sich Veränderungen in multiplen Enzymkaskaden des Organismus. Hierbei agieren die einzelnen Kaskaden nicht unabhängig voneinander, sondern sind auf verschiedenen Stufen miteinander verknüpft. Zu erwähnen ist hier die Arachidonsäure Kaskade, die durch Leukotrienentstehung neutrophile Granulozyten aktiviert und die Permeabilität der Gefäßmembran steigert. Zudem entstehen durch Spaltung von Arachidonsäure durch die Cyclooxygenase, Thromboxane und Prostaglandine. Prostaglandin E2 ist nach einer Verbrennung von besonderer Bedeutung. Es hemmt die Produktion von Interleukin-2 (IL-2) aus den T- Zellen [31] und besitzt immunsuppressive Eigenschaften. Thromboxan wirkt vasokonstriktiv und führt zur Thrombozytenaggregation. Darüber hinaus stellt das Komplementsystem eine wesentliche Hauptkomponente bei Entzündungsreaktionen zu Opsonierung, Chemotaxis sowie dar und führt Zytolyse [32]. Das Komplementsystem besteht aus einem alternativen, sowie einem klassischen Aktivierungsweg. Bei Verbrennung wird der alternative Weg durch thermisch geschädigte Zellen sowie bei der Verbrennung entstandene Lipopolysaccharide und Zellfragmente aktiviert [33, 34]. Der klassische Weg wird über Antikörper als auch das C-reaktive Protein (CRP) aktiviert [35, 36]. Zudem produziert die Komplementkaskade nach einer Verbrennung Anaphylatoxine. Gleichzeitig werden Kininsystem, Gerinnungskaskade und Fibrinolyse aktiviert [37]. Die regulatorische Rückkopplung innerhalb des Komplementsystems bleibt aus und es resultiert ein sich selbst verstärkender Regelkreis. Darüber hinaus wirkt die Komplementkaskade auf immunkompetente Zellen, die sie zur Migration, Margination und Aktivierung stimuliert. Zu diesen Zellen zählen z.B. die neutrophilen Granulozyten, die dann zu einer entzündlichen Schädigung des Endothels führen, an das Endothel binden und einen Austritt von Flüssigkeit in das umgebende Gewebe bedingen [27].

In der Zytokinkaskade sind nach Verbrennungen mehrere Mediatoren verändert. In der Frühphase sind hier insbesondere IL-1, IL-6 und TNF - alpha zu erwähnen [38, 39]. IL-1 hat einen lokalen Einfluss auf die Abläufe der Entzündungsreaktion nach einer Verbrennung. Es stimuliert T-Zellen, induziert die Synthese von IL-2 und steigert die Produktion von Interferon gamma. TNF - alpha wird von Monozyten produziert und zeigt direkt nach der Verbrennung einen deutlichen Anstieg. Es ist ein Mediator der Endotoxämie und vermittelt zudem einem Anstieg des regulatorisch wirksamen PGE2 [40, 41]. Darüber hinaus führt TNF - alpha zu einem Anstieg der akute Phase Proteine, der Kollagenaseproduktion, der Makrophagenaktivität, der Endothelzellaktivität, induziert den hämodynamischen Schock und sorgt für eine vermehrte Freisetzung von Sauerstoffradikalen. IL-6 ist potent proinflammatorisch. Es induziert die Produktion von akute Phase Proteinen in der Leber und stimuliert die IgM und IgG Synthese der B-Lymphozyten [42, 43].

1.10.1.1 Die zelluläre Abwehr:

Die wichtigsten an der zellulären Abwehr beteiligten Zellen sind die Makrophagen, Granulozyten und Lymphozyten.

Makrophagen sind über IL-8 für die Chemotaxis der Granulozyten verantwortlich. Sie aktivieren über die Freisetzung von IL-6, IL-2 und TNF- alpha die T- und B- Zellen und sind für die Opsonierung bakterieller Zellfragmente an der Oberfläche verantwortlich. Als Reaktion auf die Verbrennung zeigt sich die gesteigerte Aktivität des monozytären Systems anhand einer Zunahme der Komplementrezeptoren auf der Zelloberfläche [44].

Innerhalb der ersten 24h nach einer Verbrennung ist die Zahl der Granulozyten erhöht [45]. Granulozyten wandern zum Ort des Geschehens und migrieren in das betroffene Gewebe [46]. Stimuli dafür sind Anaphylatoxine, Prostaglandine sowie das Kininsystem. Eine weitere Auswirkung des Verbrennungstraumas zeigt sich in einer vermehrten Expression von Adhäsionsmolekülen auf der Oberfläche der Granulozyten. Diese Akkumulation bedingt eine gesteigerte Adhärenz an das Endothel [47]. Nach Aktivierung der Granulozyten durch das Verbrennungstrauma degranulieren diese und schütten vermehrt Sauerstoffradikale aus [48].

Die Anzahl der T-Lymphozyten nimmt nach Verbrennungstrauma innerhalb von 48 Stunden ab. Das Verhältnis von CD4 positiven zu CD8 positiven T-Zellen verschiebt sich zugunsten der CD8 positiven Zellen [49], welche zur Klasse der T - Suppressor Zellen oder der zytotoxischen T-Zellen gehören. Durch diese Verschiebung wird das Abwehrsystem geschwächt. Die aktivierten T-Zellen schütten zudem erhöhte Mengen von IL-2 aus. Auch die Anzahl der IL-2 Rezeptoren wird hochreguliert [50-52]. B-Lymphozyten kommen nach einer Verbrennung vermehrt im Blut vor [53]. Durch ihre Aktivierung resultiert eine vermehrte IgG Synthese in der Zellkultur [50] während die IgM Synthese verringert wird. [54]

1.10.1.2 Phase der Immunsuppression:

Auf die Phase der gesteigerten Immunantwort nach Verbrennungstrauma folgt eine Latenzphase, in welcher die Rückresorption der eingelagerten Flüssigkeit im Gewebe beginnt. Dies ist nach ca. 12 h der Fall. Anschließend folgt eine Phase der Immunsuppression. Nach gesteigerter Aktivierung der Lymphozyten, Makrophagen

Einleitung

und Granulozyten sind diese nicht sofort wieder in der Lage von neuem aktiviert zu werden, sondern verhalten sich refraktär [55, 56]. Dadurch wird die Immunantwort gestört. Auch die Tatsache, dass sich die CD4/CD8 Ratio zugunsten der CD8 positiven Zellen verschiebt bedingt eine weitere Störung der Immunantwort, da die CD4 positiven T-Helferzellen maßgeblich an der Aktivierung der B-Lymphozyten und somit an der Produktion von Immunglobulinen beteiligt sind. Zudem trägt ein Verbrauch an Komplementfaktoren zu dieser Störung der Immunantwort bei. Die Immunsuppression konnte durch mehrere Arbeiten bestätigt werden [57, 58].

1.10.1.3 Immunsuppression auf humoraler Ebene:

Durch die Aktivierung der Arachidonsäurekaskade kommt es zu einer vermehrten Produktion von PGE2, welches immunsuppressive Eigenschaften aufweist [59, 60]. Die Expression von IL-6 wird reduziert [61]. Dies hat eine Inhibition der IL-2 Sekretion zur Folge [62]. Eine Erhöhung von TGF - alpha nach Verbrennungstrauma führt zu einer verminderten Phagozytose von Mikroorganismen. Zudem bewirkt erhöhtes TGF - alpha eine Stimulation der Produktion von PGE2 in den Makrophagen. Hinzu kommt die immunsuppressive Wirkung von Komplementspaltprodukten [34, 63]. An der humoralen Immunsuppression sind zudem verschiedene Hormone beteiligt [64]. Hier wirken z.B. Glukokortikoide durch eine Verminderung der Produktion von Immunglobulinen und Zytokinen [64].

1.10.1.4 Immunsuppression auf zellulärer Ebene:

Am zweiten bis vierten Tag nach einem Verbrennungstrauma fällt die Zahl der zirkulierenden neutrophilen Granulozyten deutlich ab. Dies bedingt einen Abfall der Phagozytose, sowie eine Verminderung der Reaktion auf chemotaktische Reize [56]. Auf der Oberfläche der neutrophilen Granulozyten befinden sich quantitativ weniger Oberflächenrezeptoren für Komplementfaktoren sowie für Fc-Teile von Immunglobulinen [55, 56]. Durch die Degranulation der Granulozyten kommt es zu einer erhöhten Leukotrienentstehung [65] und zu einer vermehrten Produktion von PGE2.

1.10.2 Two hit Theorie:

Die Two hit Theorie beschreibt eine mögliche Ursache der resultierenden Immuninkompetenz nach Verbrennung. Durch die Verbrennung wird das Immunsystem des Organismus aktiviert. Dieser Vorgang wird auch als *"Priming"* bezeichnet, da Effektorzellen der Immunabwehr, wie Makrophagen und Granulozyten aktiviert werden. Anschließend befindet sich die Immunantwort in einer Latenzphase. Erfolgt zu diesem Zeitpunkt eine erneute Stimulation des Immunsystems, z.B. durch Endotoxine; Operation oder Infektion des Organismus, kommt es durch diesen *"second hit"* zu einer erneuten Aktivierung der Signalantwort und zu einer überschießenden Immunreaktion. Die Gesamtabwehrleistung des Organismus wird ineffektiv und die gebildeten Entzündungsmediatoren schaden zudem dem Organismus. Dies kann zu einem SIRS und einer konsekutiven Sepsis, sowie daraus resultierendem Multiorganversagen führen [66 – 69].

1.11 Therapieansätze:

Die Therapieansätze müssen der jeweiligen Erkrankungsphase angepasst werden. Ist der Patient immunsupprimiert, sollten primär immunstimulierende Maßnahmen ergriffen werden. Immunsuppressive Maßnahmen sollten zu einer Abschwächung der, die Immunantwort unterhaltenden Triggereffekte ergriffen werden.

1.11.1 Immunmodulatorische Ernährungstherapie:

Neben der initialen parenteralen Nährstoffsubstitution, soll eine frühe Enteralisierung über eine Magensonde, die bakterielle Translokation aus dem Darm verhindern [71]. Auch die Zusammensetzung der Nahrung ist wichtig, da bestimmte Bestandteile die Aktivität von Makrophagen, Lymphozyten und Granulozyten erhöhen können [70].

1.11.2 Frühnekrektomie / Sofortnekrektomie:

Nach einer Verbrennung kommt es im Areal des Traumas durch eine direkte Schädigung des Endothels zum *"capillary leak"* [27]. Bei einer oberflächlichen dermalen Verbrennung, kommt es zu Blasenbildung im betroffenen Bereich. Die Flüssigkeit der Blase setzt sich aus Exsudat der Stasezone, Plasmaproteinen und Zelldebris zusammen, so dass ein osmotischer Gradient entsteht, der eine weitere Flüssigkeitsansammlung bedingt und somit eine Vergrößerung der Brandblase bewirkt. Eine Mediatorausschüttung von Prostaglandinen, Bradikinin und Serotonin übt einen negativen Effekt aus, so dass die Stasezone unter Einfluss dieser Mediatoren zu einer Zone mit Gewebeuntergang konvertieren kann. Klinische Studien haben gezeigt, dass eine frühzeitige Nekrektomie der betroffenen Areale die Aktivität der zytotoxischen T-Zellen [72] sowie die Phagozytose [73] verbessert und somit die Stasezone schützen kann.

Eingriffe in die Immunreaktion:

1.11.3 Immununterstützende Therapie:

Es gibt viele immununterstützende Therapieansätze. Neben der Immunglobulinsubstitution und Impfung in der Phase der Immunsuppression, welche in kleinen Studien eine Reduktion der Sepsisentwicklung zeigte [74], ist auch bei der Gabe von Lymphokinen ein positiver Effekt nachgewiesen worden [75, 76]. Zudem zeigte eine Substitution von Hormonen (Steroide, Wachstumshormon) in mehreren Studien einen Rückgang der Infektionsrate [77,78]. Darüber hinaus erwies sich eine Substitution von IL-2 [52] als wirksam.

1.11.4 Antiinflammatorische Therapieoptionen:

Im Sinne einer antiinflammatorischen Therapie kann auf mehreren Ebenen der humoralen sowie zellulären Abwehr eingegriffen werden. Beispielsweise kann eine Unterdrückung der PGE2 Signalkette eine physiologische Zellreifung im Knochenmark bewirken und dadurch zu einer Normalisierung der Granulozytenfunktion beitragen [79]. Eine TNF-alpha Blockade zeigte im Tierversuch bessere Überlebensraten [68] und eine Substitution monoklonaler Antikörper gegen bestimmte Interleukine bewies sich als wirksam [80]. Eine Hemmung der Auswanderung von Granulozyten durch Blockade der Adhäsionsmoleküle und die dadurch verhinderte Freisetzung schädigender Mediatorsubstanzen stellt einen weiteren Therapieansatz dar [81, 82]. Diese Blockade kann mittels eines monoklonalen Antikörpers gegen den CD11bCD18 (LFA-1) Liganden erfolgen [83]. Diese Therapiemöglichkeit wurde in dieser Arbeit untersucht.

In dem durchgeführten Tierversuch wurde ein monoklonaler Antikörper zum einen als Fab Fragment sowie zum anderen als Immunglobulin der Unterklasse G zu verschiedenen Zeitpunkten nach einem Verbrennungstrauma substituiert.

1.12 Funktionsprinzip LFA-1 / ICAM-1:

Aktivierte inflammatorische Zellen setzen Faktoren frei, welche Neutrophile aktivieren. Zu diesen Aktivierungsfaktoren zählen IL-8 und platelet activating factor (PAF), die dann ihrerseits Oberflächenmoleküle auf der Zelloberfläche der Neutrophilen, wie MAC I und Lymphozyten - Funktionsassoziiertes Antigen (LFA-1) in einen Aktivitätszustand versetzen [84 - 87]. Anschließend binden die aktivierten neutrophilen Granulozyten an das Gefäßendothel und können daraufhin aus dem Gefäß in das Interstitium migrieren, um dort auf das infiltrierte, entzündete oder geschädigte Gewebe einzuwirken. Die Einwirkung geschieht anhand einer Freisetzung von Proteasen aus den Granula der Neutrophilen. Hier sind Granulozyten - Elastase und freie Radikale zu nennen, die das umgebende Gewebe angreifen und zu Organschäden führen können [88]. In diese Mechanismen sind Endotoxine, Zytokine sowie Adhäsionsmoleküle involviert [84 - 87].

Der Mechanismus der Aktivierung, Anheftung und anschließender Migration in das umliegende Gewebe wird für viele unterschiedliche Arten der Verletzungen, wie Hämorrhagie, Sepsis, Endotoxinschock, aber auch thermische Traumata angenommen [89, 90]. Die Vermittlung der Adhärenz an das Endothel verläuft über Adhäsionsmoleküle und die dazu passenden Kontrarezeptoren. Eines dieser Liganden/Rezeptor Paare ist LFA-1/ICAM-1 [91].

1.12.1 ICAM-1:

ICAM-1 gehört zu der Immunglobulin - Superfamilie, besteht aus 5 Domänen [92, 93] und ist ein Glykoprotein der Zelloberfläche mit einem Molekulargewicht von 90-110 kDa [92, 94]. ICAM-1 wird auf Antigen präsentierenden Zellen (APZ), sowie auf Zellen die in Entzündungsreaktionen involviert sind, exprimiert. Liegt keine inflammatorische Antwort auf einen Prozess im Körper vor, so ist ICAM-1 nur auf wenigen Zelltypen zu finden [95].

Inflammatorische Mediatoren, wie Lipopolysaccharid, IFN-gamma, IL-1, und TNF alpha induzieren ICAM-1 in vielen unterschiedlichen Geweben [95, 96] und verstärken die Anheftung von Lymphozyten und Monozyten über das auf ihrer Zelloberfläche vorkommende LFA-1 [93, 98]. Nach einer Verbrennung sind diese Mediatoren im systemischen Kreislauf erhöht [96].

		Name	Gewebeverteilung	Ligand
Immunglob ulin Superfamilie	ICAM-1	ICAM-1 (CD 54)	Aktiviertes Endothel	LFA-1 Mac 1
Verschiedene Rollen in der Zelladhäsion Ligand für Integrine		ICAM-2 (CD102)	Ruhendes Endothel dendritische Zellen	LFA -1
	L	VCAM-1 (CD106)	Aktiviertes Endothel	VLA-4
		PECAM (CD 31)	Aktivierte Leukozyten Endothelzell Zell-Zell Verbindungen	CD31

Abbildung 6 Darstellung des ICAM-1 Moleküls, seiner Liganden, sowie der Gewebeverteilung [24]

1.12.2 LFA-1:

Das Oberflächenmolekül LFA-1 kommt auf hämatopoetischen Zellen, T-Zellen und B-Zellen sowie Granulozyten vor [97]. LFA-1 gehört zu der Gruppe der Integrine und erkennt Proteine der Immunglobulin - Superfamilie anhand ihrer immunglobulinähnlichen Domänen [99]. LFA-1 ist ein Heterodimer bestehend aus zwei Domänen (alpha und beta), die durch eine Disulfidbrücke miteinander verbunden sind [100]. Sowohl alpha als auch beta Untereinheit sind für die Bindung der Liganden verantwortlich.

LFA-1 zeigt wie alle Integrine einen Aufbau bestehend aus einem globulären Kopfteil, der aus den beiden Untereinheiten besteht, sowie zwei Wurzeln, die in die Lipiddoppelschicht der Zelle hineinragen. [100].

LFA-1 ist in mehrere Prozesse der Immunantwort involviert. So unterstützt es T-Helfer Zellen und B-Lymphozyten bei ihrer Immunantwort, ist für die Adhäsion von Leukozyten an das Endothel, an Fibroblasten und Epithelzellen verantwortlich, stimuliert das *"natural killing"* und ist an dem T-Zell unabhängigen Töten von Zielzellen anhand der antikörperabhängigen Zytotoxizität von Monozyten und Granulozyten beteiligt [101].

Abbildung 7 Darstellung des LFA-1 Moleküls, seines Liganden sowie der Gewebeverteilung [24]

1.12.3 Interaktion der T-Zelle mit ICAM-1/LFA-1:

Für die Immunantwort der T-Zellen sind der Zell-Zell-Kontakt sowie die Adhäsion von enormer Wichtigkeit [102]. Die Adhäsion der T-Zelle an hämatopoetische und nicht hämatopoetische Zellen ist ein obligater Schritt der Antigenpräsentation [103, 104], sowie der Effektorfunktionen, wie z.B. die Zytolyse durch zytotoxische T-Zellen. An diesem Adhäsionsprozess sind ICAM-1 und LFA-1 beteiligt [105].

ICAM-1 wird bei zwei LFA-1 abhängigen Adhäsionsvorgängen benutzt. Zum einen bei der Leukozyten-Leukozyten Aggregation und zum anderen bei der Haftung an anderen Zellen [95].

Die T-Zelle wird über ein Aktivierungssignal, das über den T-Zell Rezeptor vermittelt wird aktiviert. Zusätzlich ist ein zweites kostimulatorisches Signal notwendig. Dieses wird über auf der Zelloberfläche sitzende Moleküle vermittelt. Sind beide Signale vorhanden, sorgt die Bindung von LFA-1 an ICAM-1 für eine Verstärkung der Signale und somit für eine Steigerung der Effizienz der antigenspezifischen Rezeptor Interaktion [106-108]. Darüber hinaus ist LFA-1 an der Signaltransduktion entlang der T-Zell Membran beteiligt. Die verstärkte Adhäsion durch aktivierte T-Zellen, wird nicht

durch einen Anstieg von LFA-1 auf der Zelloberfläche bedingt, sondern über eine Konfirmationsänderung dieses Integrins (siehe Abbildung 7) [109].

Abbildung 8 Interaktionsprinzip von ICAM-1 mit LFA-1 TCR T-Zell Rezeptor, CD4 cluster of differentiation 4, APZ Antigen präsentierende Zelle, LFA 1 Lymphozyten Funktions Antigen 1, ICAM 1 interzelluläres Adhäsionsmolekül 1, MHC II mayor histocompatibility complex II

1.12.4 Blockade von LFA-1 oder ICAM-1:

Substituiert man einen gegen ICAM-1 gerichteten monoklonalen Antikörper, blockiert dieser die T-Lymphozytenadhäsion an Fibroblasten und Endothelzellen und unterbricht somit die Interaktion zwischen zytotoxischer T-Zelle und Zielzelle. Bei diesem komplexen Prozess werden viele verschiedene Oberflächenmoleküle benötigt [110, 111].

Die Wichtigkeit von ICAM-1 in der T-Zell Antwort wurde von Makgobar et al. bereits 1988 gezeigt [112]. Hier wurde der Zelltod der Zielzelle durch eine T-Zelle mittels Antikörper gegen ICAM-1 blockiert. Anhand dieses Sachverhalts sind auf mehreren Gebieten Studien durchgeführt worden, bei denen die Gabe eines monoklonalen Antikörpers gegen LFA-1 oder ICAM-1 einen positiven Effekt auf die Inhibition der Immunantwort zeigte. So führte die Implantation von Polyvinylspangen im Tierversuch an Kaninchen, unter der Gabe eines murinen Antikörpers, "Ab 60.3", gegen CD18 zu einer Inhibition der in vivo Migration neutrophiler Granulozyten [113]. In einem weiteren Tierexperiment konnte durch Blockade mit einem monoklonalen Antikörper gegen ICAM-1, die Infiltration von Eosinophilen in den Alveolarraum der Lunge bei einer Antigen - induzierten Lungeninflammation verhindert werden [114]. Auch bei Erfrierungen findet die Substitution eines monoklonalen Antikörpers 60.3 gegen CD11/CD18 im Tierexperiment bereits Anwendung. Hier zeigten Mileski et al 1993, dass eine Therapie der Tiere mit "Mab 60.3" zu einer Verminderung des Gewebeschadens nach Erfrierung und Wiederaufwärmung durch Blockade der Adhärenz zwischen CD11/CD18 tragenden Neutrophilen und der Endothelzelle führt [81]. Mileski legte diesen Mechanismus auch für vermehrte Untersuchungen von Verbrennungstraumata zu Grunde. Kaninchen wurde eine tief dermale Verbrennung auf einer rasierten Rückenpartie zugefügt und die Verminderung des Gewebeschadens nach Substitution eines monoklonalen Antikörpers gegen ICAM-1, gemessen. Es zeigte sich eine deutliche Verminderung des Schadens nach Behandlung mittels Antikörper [115 - 117]. 2003 zeigte Mileski die klinische Relevanz einer Inhibition der Leukozytenadhäsion anhand einer Blockade von ICAM-1 mittels monoklonalem Antikörper (Enlinomab) bei partiellen Verbrennungen an einem Patientenkollektiv von 110 Patienten auf [118].

Das Grundprinzip dieser Arbeit beruht auf den Untersuchungen von Mileski. Da die Gabe eines monoklonalen Antikörpers eine gute Therapieoption für die Prävention der Ausbreitung einer Verbrennung zu sein scheint, ist es sinnvoll diese Therapieoption weiter zu untersuchen. Deshalb wurden in dieser Arbeit, analog zu Mileski, Therapieoptionen mit einem Fab Fragment und mit einem IgG -Vollantikörper zu unterschiedlichen Zeitpunkten untersucht. Die Frage nach der Wirksamkeit eines Fab Fragmentes anstelle eines murinen Vollantikörpers stellte sich aufgrund der Tatsache, dass es bei Behandlungen innerhalb von klinischen Phase 2 Studien, im Rahmen einer Medikamentenzulassung dieses Antikörpers bei Verbrennungspatienten, zu Nebenwirkungen gekommen war [118]. Insbesondere zeigten sich in dieser Arbeit von Mileski et al. unerwünschte Arzneimittelwirkungen wie Erbrechen und Fieber [118]. Betrachtet man nun das Fab Fragment dieses Antikörpers, welches ohne den Fc Teil des IgG Antikörpers auskommt, der bekanntermaßen für die Effektorfunktionen (Komplementaktivierung und

25

Monozytenbindung) des Moleküls verantwortlich ist [23], so stellt sich die Frage ob eine Inhibition der Leukozyten- / Endothelzell Interaktion auch mittels Fab Fragment ausreichend blockiert werden kann und mögliche Nebenwirkungen aufgrund des Fehlens des Fc Teils ausbleiben.

1.13 Fragestellung:

Dieser Arbeit liegt die Hypothese zugrunde, dass Substitution eines Vollantikörpers oder eines Fab Fragmentes gegen ICAM-1 nach einer standardisierten, tief dermalen Verbrennung eine Auswirkung auf die Zone der Stase und auf das Phänomen des Nachbrennens aufweist. Die Überprüfung der Wirksamkeit wird anhand dreier Kriterien überprüft:

- Durchblutungsmessung in der Stasezone mittels IC-VIEW
- Laborchemische Leukozytenbestimmung zu unterschiedlichen Zeitpunkten des Versuchablaufs, als Marker der systemischen Inflammation
- Histomorphologische Überprüfung der Kapillarfüllung in der Stasezone, als Hinweis auf Verbesserung der Mikrozirkulation innerhalb der verschiedenen Therapiegruppen
2. Material und Methoden

2.1 Versuchsvorbereitung:

2.1.1 Herstellung des Antikörpers:

Der murine Antikörper BIRR1 (R. 6.5.) welcher einem IgG2A Isotyp entspricht wurde durch eine Standard Protein A Chromatographie aus einer Hybridkultur, welche aus ATCC der Nummer HB-9580 bestand hergestellt.

Das Endotoxin, welches im Material enthalten war, wurde durch die Kinetik eines auf LAL basierendes Assays mit einer Konzentration von unter 1EU/mg IgG festgelegt.

2.1.2 Herstellung des rekombinanten BIRR1 Fab:

Durch Fusion der variablen Region des murinen Antikörpers mab BIRR1 mit der menschlichen konstanten Ig Region-CH1/CI wurde das rekombinante BIRR1 Fab Fragment mit Hilfe des Morphosys'Fab –Expressionsvektors pMORPH®X9_FS hergestellt.

Das hergestellte Produkt wurde anschließend in eine E. coli Kultur (TG1F) gegeben und zur Fermentation gebracht. Das Fab Fragment trug ein C-terminales Ende welches anschließend zur Reinigung des Fab Fragmentes benutzt wurde. Down-Stream verarbeitend wurde durch Gelfiltration und der Entfernung der Endotoxin Komponente vom geklärten Zellysat über eine Streptacin[®] Säule (IBA GmbH Göttingen) gereinigtes Fab Fragment hergestellt.

Der Gehalt an Endotoxin im Fab Fragment wurde über die Kinetik einen LAL basierten Assays gemessen und betrug ca. 4EU/mg. Dieser Assay dient der Verbesserung des Enzymes Limbulus Amebocyte Lysate, welches zur Endotoxin Reaktion benötigt wird. Es wird vorausgesetzt, dass diese Endotoxin Konzentration die durchgeführten *in vivo* Studien nicht beeinflusst.

Sowohl die Herstellung des Antikörpers als auch die Herstellung des rekombinanten Fab Fragmentes erfolgte durch die Morphosys AG Martinsried.

2.1.3 Auswahl der Versuchstiere:

Das Protokoll wurde von der Tierschutzkommission des Regierungspräsidiums Köln genehmigt. Es wurden New Zealand white Kaninchen, weiblichen Geschlechts und einem Gewicht variierend zwischen 2,5 und 3,8 kg Körpergewicht verwendet. Die Anzahl der Tiere betrug insgesamt n = 48. Zwei Tiere verstarben und wurden nicht mit in die Versuchsauswertung einbezogen.

Die Auswahl der Kaninchen als Versuchstier im Allgemeinen als auch die Bestimmung der Rasse wurde analog der Untersuchungen von Mileski et al [115]. durchgeführt. Die Aufzucht der Tiere erfolgte unter standardisierten und normierten Bedingungen beim üblichen Lieferanten der RWTH- Aachen.

2.1.4 Haltung der Tiere:

Nach Erhalt der Tiere wurden diese artgemäß unter Standardbedingungen gehalten. Die Temperatur des Tierstalls betrug 18-20°C bei einer relativen Luftfeuchtigkeit von 50-60%. Zum Erhalt des Schlaf-/Wach Rhythmus der Tiere wurde Licht als Aktivitätsregulator und externer Zeitgeber eingesetzt. Der Hell / Dunkel Rhythmus im Labor betrug 12h / 12h. Nach Ablauf einer 2 wöchigen Aufenthaltszeit konnten die Tiere zu Versuchszwecken verwendet werden.

2.2 Versuchsaufbau:

2.2.1 Versuchsbedingungen:

Die Anästhesie der Tiere wurde mit Ketamin10%[®] (CEVA, Düsseldorf) in einer Dosierung von 0,3ml/kg Körpergewicht und Domitor[®] (Medetomidin, Pfizer, Karlsruhe) 0,1ml/kg Körpergewicht durchgeführt.

Anschließend wurde den Tieren ein peripherer 24er gauge Katheter in eine marginale Ohrvene eingeführt und dieser mit Leukoplast fixiert. Einmal täglich

wurden diese Katheter mit einer Heparinlösung gespült. Die Rückenpartie der Tiere wurde mit einem Langhaarschneider rasiert.

Das jeweils zu untersuchende Versuchstier wurde unter oben genannter Anästhesie auf einem Tisch mit einem Klettgurt fixiert. Auf dem Rücken des Tieres wurden die zu messenden Areale in Richtung eines Lasers des IC-View-Systems (Pulsion Medical Systems, München) mit einer Wellenlänge von 780 nm ausgerichtet. Eine Standardmarke, zur Festlegung der maximalen Fluoreszenz wurde ebenfalls auf dem Rücken des Tieres angebracht. Der Laser wurde einer digitalen Videokamera vorgeschaltet, welche auf einem Stativ fixiert war. Anschließend erfolgte die Messung über den Laser über 1 min.

2.2.2 Versuchsgruppen:

Die n = 48 Tiere wurden auf 5 verschiedene Versuchsgruppen verteilt. Zusätzlich wurden zwei Tiere zu Vorversuchen und zur Etablierung des Protokolls verwendet. Die fünf Gruppen wurden nach verschiedenen Therapiekonzepten eingeteilt:

 Die erste Gruppe umfasste die Kontrollgruppe. Hier wurde den Tieren 30 Minuten nach Traumainduktion 3 ml isotonischer 0,9% NaCl Lösung appliziert. Die Kontrollgruppe umfasste insgesamt n =10 Tiere (Tier 002-012).

- Die zweite Gruppe enthielt n = 9 Tiere. Diesen Tieren wurde nach Ablauf von 30 Minuten nach Verbrennung ein Fab Fragment (BIRR1) des Antikörpers intravenös in einer Dosierung von 5mg/kg Körpergewicht als Therapie verabreicht (Tier 101-109).
- In der dritten Gruppe mit n = 9 Tiere, bestand die Therapie aus der intravenösen Gabe eines IgG Vollantikörpers (BIRR1) in einer Dosierung von 2mg/kg Körpergewicht (Tier 201-209).
- In der vierten Gruppe bestehend aus n = 9 Tieren wurde ein IgG Vollantikörper (BIRR1) mit einer Dosierung von 2mg/kg Körpergewicht appliziert. Die Applikation erfolgte drei Stunden nach Trauma (Tier 301-309).
- In der letzten Gruppe gab man als Therapieoption das Fab Fragment (BIRR1) des Antikörpers mit einer Dosierung von 5mg/kg Körpergewicht drei Stunden post Trauma. Auch hier betrug die Gruppenanzahl n = 9 Tiere (Tier 401-409).

Das Fab Fragment wurde in einer höheren Dosierung verabreicht, da eine kürzere Halbwertszeit im Vergleich zu IgG angenommen wurde.

Untersuchte Grup	pen : Therap	ie:	Anzahl der Tiere (n):	
Vorversuche			2 Tiere	
Kontrollgruppe	3ml NaCl 30min	. post	10 Tiere	
burn				
Therapiegruppe 1	5mg/kg BIRR ²	l Fab	9 Tiere	
30min. post burn				
Therapiegruppe 2	2mg/kg BIRR	1 IgG	9 Tiere	
30min. post burn				
Therapiegruppe 3	2mg/kg BIRR	1 IgG	9 Tiere	
3h. post burn				
Therapiegruppe 4	5mg/kg BIRR	1 Fab	9 Tiere	
3h. post burn				

Tabelle 3 Gruppenaufteilung und Therapieschemata

In den unterschiedenen Gruppen erfolgten identische Messungen der Hautdurchblutung. Die Messzeitpunkte wurden zu 1h, 2h, 3h, 4h, 24h, 48h und 72h

gewählt. Zu jedem Messzeitpunkt wurde die Hautdurchblutung in der Zone der Stase, in den verbrannten Arealen, als auch in unverbrannter Haut bestimmt.

2.3 Versuchsablauf:

2.3.1 Durchführung der Verbrennung:

Bevor das Trauma gesetzt wurde erhielten die Tiere eine zusätzliche Analgesie mit einer intravenösen Gabe von 0,1ml/kg Körpergewicht Domitor[®] (Medetomidin, Pfizer, Karlsruhe) und 0,1ml/kg Körpergewicht Ketamin 10%[®] (CEVA; Düsseldorf). Die lokale Verbrennung wurde mittels eines Messingstempels mit einem standardisierten Gewicht von 1670g erzeugt, der auf 100°C erhitzt und auf die Rücken der Tiere gedrückt wurde. Auf diese Weise entstanden 6 Areale mit einem Abstand von 5mm voneinander und einer jeweiligen Größe von 10x30mm.

Vier dieser Areale sollten einer III° Verbrennung entsprechen, während zwei der sechs Areale nach Auflage der Tierschutzkommission eine II° Verbrennung darstellen sollten. Die III° Verbrennungen wurden durch eine Aufdruckdauer von 30 Sekunden auf dem Rücken der Tiere erzeugt, während für die II° Verbrennungen 7 Sekunden benötigt wurden.

Die folgenden Messungen bezogen sich auf die III° Verbrennungen als auch auf die Stasezone. Als Stasezone wurden die Bereiche definiert, die zwischen den III° Verbrennungen lagen, insgesamt resultierten aus dem Versuchsaufbau vier Stasezonen auf jedem Tierrücken.

Nach Abdunklung des Raumes erfolgte die intravenöse Injektion des Farbstoffes Indocyaningrün in einer Dosierung von 0,5 mg/kg Körpergewicht in eine marginale Ohrvene. Anschließend wurde die Anflutung des fluoreszierenden Farbstoffs in der Haut mittels IC-View gemessen.

Abbildung 10 schematische Verbrennungsanordnung

Abbildung 11Verbrennungsanordnung am TiermodellZ = Standardleuchtmarke, X.= III° Verbrennung,W = II° Verbrennung, Y = Zone der Stase,

2.3.2 Messungen:

Während des Versuchsablaufs wurde die Hautdurchblutung mittels IC-View gemessen, einem System der Pulsion Medical Systems in München.

Material und Methoden

Hierfür wurden 0,5 mg Indocyaningrün, ein fluoreszierenden Farbstoffs, pro kg Körpergewicht über den marginalen Ohrvenenkatheter verabreicht. Die pulvrige Form des Farbstoffs wurde mit den dazu vorgegebenen Lösungsampullen vermischt und die anschließende Konzentration mit destilliertem Wasser (Aqua dest.) verdünnt. Der Zusatz von Aqua dest. erfolgte, weil es bei kochsalzhaltiger Verdünnung zu einem Ausfall des Farbstoffs kommen kann. Nach Injektion des fluoreszierenden Farbstoffs wurde dessen Anflutung in der Haut gemessen. Dazu wurde eine digitale Videokamera benutzt. Ihr wurde ein Laser mit einer Wellenlänge von 780nm vorgeschaltet, dieser maß die anflutende Fluoreszenzintensität. Aufgezeichnet wurde ein Zeitraum von jeweils 1 Minute post injectionem. Die Messungen wurden an den einzelnen Versuchstagen immer zur gleichen Tageszeit und mit gleichem Procedere durchgeführt.

2.3.3 Datenübertragung und Auswertung:

Nach Aufzeichnung der Videos wurden diese auf einen Computer überspielt und anschließend mittels IC-Calc Software (Pulsion Medical Systems, München) [119, 120,121] ausgewertet.

Als objektiver Parameter der Durchblutung wurde die Fluoreszenzintensität des Farbstoffes im Gewebe definiert, und die Fluoreszenz anschließend durch das Programm anhand der Pixelintensität gemessen.

Bei der Auswertung der Durchblutung musste darauf geachtet werden, dass man am selben Tier verschiedene Areale zur Messung definierte. Dazu benötigte man zuerst ein gesundes, nicht verbranntes Areal. In diesem Areal wurde die für das Tier zuvor normale Durchblutung ermittelt. Die verbrannten Bereiche wurden zu diesem Areal in Beziehung gesetzt. Das Areal mit gesunder Haut wurde aufgrund der Tatsache, dass es die Durchblutung gesunder Haut darstellt, mit einem Wert der Hautdurchblutung von 100% versehen. Die verbrannten Bereiche erhielten durch die IC-Calc Software einen Wert für die Hautdurchblutung, der in Relation zu dem Wert gesunder Haut gesetzt wurde. Diese Werte wurden in Prozent angegeben.

Die Werte wurden von der IC-Calc Software in einer Graphik dargestellt. Hierbei wurden die prozentualen Anteile der Durchblutung in den verbrannten Arealen in Bezug auf die gesunde Haut mathematisch anhand einer Tangente ermittelt. Wichtig war für die Auswertung darüber hinaus, dass ein Standardwert für die maximal mögliche Pixelintensität definiert wurde. Dieser Standard ermittelte sich anhand eines Plättchens, welches man auf den Rücken des Tieres auflegte und welches dann, aufgrund eigener fluoreszierender Eigenschaften unabhängig von der Durchblutung leuchtet.

Abbildung 12 Indocyaningrün-Anflutung in verschiedenen Hautarealen zur Bestimmung der Durchblutung mittels Fluoreszenzintensitätsmessung Grün = gesunde Haut; Rot/Blau = verbrannte Areale, Gelb = Standard

Abbildung 13 Graphische Darstellung der Werte für die Verschiedenen Areale mittels IC-Calc

Die Auswertung mittels IC-Calc Software erfolgte für verschiedene Areale. So wurden nicht nur die Verbrennungen dritten Grades in die Betrachtung miteinbezogen, sondern auch die Stasezonen, welche zuvor als Bereiche zwischen den III° Verbrennungen wurden. Die Messungen wurden an jedem Tier durchgeführt.

2.3.4 Hämatologische Untersuchungen:

Während der Versuchsdauer von vier Tagen pro Tier erfolgte eine tägliche Blutentnahme. Das Blut wurde aus einer marginalen Ohrvene zu Oh, 24h, 48h und 72h entnommen. Hierbei war darauf zu achten, dass die Blutentnahme vor der Messung mittels IC-View erfolgte. Das dabei verwendete EDTA Röhrchen wurde anschließend in dem Labor der Versuchstierkunde der RWTH mittels Standardverfahren an einem Hämocytometer (Celltek M, Nihon Kohden) maschinell ausgewertet. Das Augenmerk wurde hierbei auf die Leukozytenzahlen gerichtet. Das Ergebnis ist in der Einheit 10³Zellen/µl angegeben.

2.3.5 Versuchsende:

Nach Beendigung des letzen Versuchstages wurden die Tiere mit einer letalen Pentobarbital-Natrium[®] Dosis (CEVA; Düsseldorf) eingeschläfert. Anschließend

wurden mittels eines *"Punch Biopsie Stempels"* Biopsien in Größe von 5 mm aus der Zone der Stase, dem III° verbrannten Hautareal, dem II° verbrannten Hautareal, als auch aus gesunder Haut entnommen. Die Tiefe der Biopsie reichte bis auf die subdermale Muskelfaszie. Die gewonnen Biopsien wurden sofort nach ihrer Entnahme in Einbettkassetten asserviert, in gepufferter 4 prozentiger Formalinlösung mit einem pH von 7,2 fixiert und zur Aufbereitung der histologischen Schnitte ins Labor transportiert. In dieser Lösung verblieben die Biopsien für mindestens 12h bis 24h.

2.3.6 Histologieaufbereitung:

Anschließend wurden die Gewebeproben aus dem Formalin entfernt und unter fließendem Leitungswasser für 1 bis 2h ausgewaschen, um das restliche Formalin zu entfernen. Daraufhin folgte die Entwässerung der Biopsien in einer aufsteigenden Alkohol-Reihe. Die einzelnen Stufen dieser Reihe bestanden aus:

- 1. 60% 2-Propanol
- 2. 90% 2-Propanol
- 3. 100% 2-Propanol I
- 4. 100% 2-Propanol II
- 5. 100% 2Propanol III

Die fünfte Stufe wurde bei 60°C im Paraffinschrank für eine Stunde gelagert.

Anschließend erfolgte zur Vorbereitung der Einbettung des Biopsats eine Lagerung in einem Paraplast[®] (Tyco healthcare group, Mansfield, USA) -2-Propanol-Gemisch in einem Verhältnis von 1:1 für 1h.

Nach Beendigung dieses Schrittes wurden die Biopsien über Nacht in Paraplast[®] I gebettet um am nächsten Morgen bis zu ihrer Einbettung in Paraplast[®] II gelagert zu werden. Nach Einbettung der Biopsate in flüssigem Paraplast[®] wartete man so lange, bis dieses erkaltet war. Danach konnten die so erhaltenen Paraplastblöcke mit den darin vorhandenen Biopsien auf einem Schlittenmikrotom (Histoslide 2000, Reichert-Jung, München) geschnitten und folgend auf Objektträger aufgezogen werden. Diese Objektträger wurden anschließend über Nacht in einem Wärmeschrank bei ca. 65° C inkubiert. Dieser Schritt diente dazu, das überschüssige Paraplast[®] ablaufen zu

lassen. Die absolute Entfernung überschüssigen Paraplasts[®] folgte daraufhin in einer Entparaffinierungsreihe in Xylol und Ethanol entsprechend eines Standardprotokolls.

Bei der Ausführung der Reihe war darüber hinaus auf Schlierenbildung auf den Objektträgern zu achten. Diese Schlieren zeigten an, dass sich noch Paraffin auf den Objektträgern befand und deshalb sollten sie nach Beendigung des Aqua dest Bades nicht mehr auf den Objektträgern vorzufinden sein.

Nach Beendigung der Entparaffinierungsreihe erfolgte die Hämalaun Eosin (HE) Färbung der Schnitte. Dazu wurde eine Hämalaun Lösung, bestehend aus:

> Selbstangesetztem Hämalaun Mayers Hämalaun (Merck, Darmstadt) und Hämalaun (Shandon, Frankfurt)

in einem Verhältnis von je 1/3 sowie etwas Aqua dest (hauseigene Apotheke des UKA) angesetzt.

Die Eosinlösung bestand aus einem Ansatz von Eosin G von Merck mit der Art.-Nr.: 115935. Wichtig war bei dem Ansatz der Eosin Lösung, dass ihr maximal drei Tropfen Essigsäure pro 100ml Eosinlösung hinzugefügt wurden, da sonst die Hämalaunlösung in Mitleidenschaft gezogen wurde.

Die Färbung der Schnitte vollzog sich in folgenden Schritten:

Zuerst wurde eine Kernfärbung in frisch filtriertem Hämalaun für 8 min durchgeführt. Anschließend wurden die so behandelten Schnitte gründlich für 10 min in warmem Leitungswasser gespült. Dabei bläuten die Schnitte. Als nächsten Schritt wurden die Schnitte in einer 0,3%igen wäßrigen Eosinlösung für 5 min gefärbt und anschließend in Leitungswasser abgespült. Nachdem die Färbung abgeschlossen war, wurden die Präparate in einer aufsteigenden Alkoholreihe dehydriert.

Dafür wurden die Schnitte zuerst in

	80% E	thanol dif	feren	ziert,		
dann in	96% E	thanol ge	spült			
um anschließend in	100%	Ethanol	für	mindestens	10	min.
behandelt zu werden.						

Daraufhin erfolgte die Behandlung mit Xylol, (hauseigen) bevor die Präparate mit Vitoclud (Kindler, Freiburg) und Deckgläsern eingedeckt wurden.

2.4 Histologische Auswertung:

Die histologische Auswertung der Schnitte erfolgte mit Hilfe des Instituts für Pathologie. Es wurden Kriterien für die Beurteilung der Schnitte erstellt. Von Bedeutung waren zum einen die Nekrosetiefe der Verbrennungen, diese wurde anhand der zerstörten Zellstrukturen (Zellkerne) und der Zerstörung des Gewebeverbandes (Auflockerungen) festgemacht, und zum anderen die Epitheliolyse und der Verschluss von Kapillaren. Die Schnitte wurden von drei verschiedenen Untersuchern bewertet. Alle Schnitte wurden bei 100-facher Vergrößerung beurteilt. Die bei der Beurteilung der Schnitte gemachten Beobachtungen wurden semi-quantitativ zusammengefasst, so dass man die histologischen Ergebnisse als deskriptiv zu werten hat.

2.5 Statistische Analyse:

Die statistische Analyse des Versuchs wurde in Kooperation mit dem Institut für Statistik der RWTH durchgeführt. Die Betreuung wurde von Herrn Kwiecien übernommen. Mit Hilfe des Programms SAS[®] (Heidelberg, Deutschland) wurde eine *"repeated measures ANOVA"* durchgeführt, um den Einfluß der einzelnen Gruppen sowie der Zeit in den III° verbrannten Arealen als auch in der Zone der Stase herauszufinden. Abschließend wurde ein Paarvergleich der einzelnen Gruppen untereinander zu bestimmten Messzeitpunkten mittels eines *"two sample t-test for means"* durchgeführt. Als Signifikanzniveau wurde p < 0.05 gewählt.

3. Ergebnisse

3.1 Durchblutung

3.1.1 Durchblutungsmessung in verbrannten Arealen

In der Auswertung der Durchblutung der Verbrennungszone mittels ANOVA zeigte sich zu keinem Zeitpunkt, innerhalb des Versuchablaufs eine statistische Signifikanz (vergleiche Tabellenanhang 5.4.1-7). Viel wichtiger als die Signifikanz zu den einzelnen Zeitpunkten ist jedoch die Frage, ob es einen statistisch signifikanten Unterschied bei der Zugehörigkeit zur Therapiegruppe, zur Zeit und zur Therapiegruppe in Kombination mit dem Versuchszeitpunkt gibt.

Hier zeigt sich für die Durchblutung in der Verbrennungszone ein hochsignifikantes Ergebnis bezüglich der zeitlichen Zuordnung mit p<0,0001 (siehe 5.4.9). Bezüglich der Zuordnung in eine Therapiegruppe, lässt sich in der Verbrennungszone kein statistisch signifikanter Unterschied erkennen (siehe 5.4.11) auch der Zeit *Gruppen Effekt stellt sich als statistisch nicht signifikant heraus (siehe 5.4.10).

Zur Verifizierung der Signifikanz jeder Therapiegruppe wurde im Folgenden eine weitere statistische Auswertung mittels two sample t-test for means durchgeführt. Mit diesem Test konnten die einzelnen Therapiegruppen zu jedem Versuchszeitpunkt untereinander, als auch mit der Kontrollgruppe verglichen werden.

3.1.1.1 Durchblutung in der Verbrennungszone im Versuchsverlauf:

1 Stunde nach Trauma hat die Durchblutung in den verbrannten Arealen im Vergleich zur Durchblutung in unbetroffenen Arealen bei allen Therapiegruppen um 40 - 60% abgenommen (siehe Abbildung 14).

Abbildung 14 Hautdurchblutung verbrannter Areale in Bezug zur Hautdurchblutung unverbrannten Gewebes in Prozent

	MW1h	MW2h	MW3h	MW4h	MW24h	MW48h	MW72h
Kontrolle	54,62	30,18	22,24	27,05	29,52	42,46	57,5
Fab 30 min	47,44	44	27,16	39,78	34,9	39,87	53,78
lgG 30 min	53,33	43,38	29,77	33,13	33,37	46,06	56,5
lgG 3h	44,16	40,55	32,53	37,21	35,12	41,66	52,66
Fab 3h	41,5	38,22	28,25	29,75	33,72	41	49,66

Tabelle 4 Mittelwerte (MW) der verbrannten Areale

Anschließend fällt die Durchblutung in allen Therapiegruppen weiter ab, bis sie 3 Stunden nach der Verbrennung ihr Minimum mit maximal 20 - 33% der Hautdurchblutung normaler, unverbrannter Haut erreicht. Nach diesem Minimum bei 3 Stunden, steigt die Hautdurchblutung in allen Versuchsgruppen an, erreicht allerdings nicht mehr als 60% der Referenzwerte (siehe Abbildung 14).

3.1.1.2 Statistische Auswertung der Durchblutung in den Therapiegruppen

In den verbrannten Arealen zeigen sich zwischen den Therapieoptionen IgG und Fab als auch zur Kontrollgruppe keine statistisch signifikanten Unterschiede in der Durchblutung, mit Ausnahme der Paarvergleiche mittels *"two sample t-test for means"* nach 1 h (SAS). Hier zeigt sich im Paarvergleich eine statistische Signifikanz für den Vergleich der Kontrollgruppe mit IgG nach 3 Stunden und mit Fab nach 3 Stunden. In der Auswertung der mittels ANOVA gewonnenen Signifikanzen zeigt sich zu diesem Zeitpunkt keine Signifikanz (siehe Abbildung im Anhang 5.4.3).

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,1093	0,8536	0,0107	0,0053
Fab 30 min			0,457	0,5244	0,2828
lgG 30 min				0,2337	0,1408
lgG 3h					0,592
lgG 3h					

Gruppe	MW_1h
Kontrolle	54,62
Fab 30 min	47,44
lgG 30 min	53,33
lgG 3h	44,16
Fab 3h	41,5

Abbildung15 Paarvergleiche für verbrannte Areale 1h nach Verbrennung mittels "*two* Sample t-test for means" mit p – Werten als Ergebnis und zugehöriger Mittelwerttabelle

3.1.2 Durchblutungsmessung in der Zone der Stase

In der Auswertung der Durchblutung der Stasezone mittels ANOVA zeigten sich zu 2h, 48h sowie 72h innerhalb des Versuchablaufs statistisch signifikante Ergebnisse (siehe Anhang 5.3.1-7). Von Interesse für die statistische Auswertung waren die Zugehörigkeit zu einer Therapiegruppe und der Versuchszeitpunkt. Darüber hinaus war die statistische Beurteilung der Kombination einer Therapiegruppe zu einem bestimmten Versuchszeitpunkt von Bedeutung.

Für die Durchblutung in der Stasezone zeigte sich ein hochsignifikantes Ergebnis bezüglich der zeitlichen Zuordnung mit p < 0,0001 (siehe 5.3.9).

Bezüglich der Zuordnung in eine Therapiegruppe, lässt sich in der Stasezone ein statistisch signifikanter Unterschied zeigen (p=0,0177 siehe 5.3.11) auch der Zeit *Gruppen Effekt stellt sich als statistisch signifikant heraus (p=0,0057, siehe 5.3.12).

Da anhand der mittels ANOVA getroffenen Ergebnisse ein signifikanter Unterschied der Therapiegruppen und der Zeit getroffen werden konnte, erfolgt in der weiteren Analyse der Ergebnisse eine Auseinandersetzung mit den Paarvergleichen der einzelnen Therapiegruppen zum jeweiligen Versuchszeitpunkt.

3.1.2.1 Durchblutungsmessung in der Stasezone im Zeitverlauf (Therapie nach 30 min)

30 min: In der Fab und IgG Gruppe (Therapie nach 30 min) erkennt man, dass die Durchblutung im Vergleich zur Kontrollgruppe reduziert ist. Es liegt eine Durchblutung von 81,8% für IgG, 2 mg / kg Körpergewicht und 79,61% für die Therapie mit 5 mg / kg Körpergewicht Fab vor.

1 Stunde: In der Kontrollgruppe (Therapie 3 ml isotoner NaCl Lösung) zeigt sich eine leichte Hyperämie, die 105,39% des Referenzwertes betrifft (siehe Abbildung 16).

Abbildung 16 Hautdurchblutung der Stasezone im Vergleich zur Hautdurchblutung gesunder Hautareale in Prozent

	MW1h	MW2h	MW3h	MW4h	MW24h	MW48h	MW72h
Kontrolle	105,39	33,19	26,42	23,55	33,72	60,52	82,18
Fab 30 min	79,61	53,75	45,27	48,84	64,6	81,81	118,18
lgG 30 min	81,88	63,16	48,88	44,07	50	72,93	102,87
lgG 3h	103,66	41,16	34,57	52,61	67	78,94	127,11
Fab 3h	97,72	39,66	31,94	50	64,88	90,75	127,72

Tabelle 5 Mittelwerte (MW) der Stasezone

4 Stunden: Eine weitere Reduktion der Durchblutung (Kontrollgruppe 23,55%, IgG 30 min Gruppe 44,07% und Fab 30 min Gruppe 50%) ist ersichtlich. Es zeigt sich eine Signifikanz in der Behandlungsmethode mit IgG oder Fab im Vergleich zur Kontrollgruppe (p = 0,0009 Fab 30 min, p = 0,0018 IgG 30 min, p < 0,0001 IgG 3h und p = 0,0065 Fab 3h) (siehe Abbildung 17).

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,0009	0,0018	0,0001	0,0065
Fab 30 min			0,6595	0,4063	0,7148
lgG 30 min				0,1801	0,4885
lgG 3h					0,845
Fab 3h					

Gruppe	MW_4h
Kontrolle	23,55
Fab 30 min	48,84
lgG 30 min	44,07
lgG 3h	52,61
Fab 3h	50

Abbildung 17 Paarvergleiche für die Stasezone 4 Stunden nach Verbrennung mittels *"two sample t-test for means"* mit p-Wert als Ergebnis und zugehöriger Mittelwerttabelle (MW)

Im Zeitverlauf kann man erkennen, dass beide Therapiegruppen, eine verbesserte Perfusion im Vergleich zur Kontrollgruppe aufzeigen (siehe Abbildung 18).

24 Stunden: Die Fab Gruppe weist eine Durchblutung von 64,6% und die IgG Gruppe von 50% auf. Die Kontrollgruppe erreicht lediglich einen Wert von 33,72% gesunder Haut (siehe Abbildung 18).

Statistische Beurteilung:

Die Unterschiede der Therapiegruppen mit Therapie nach 30 min, sind statistisch signifikant im Vergleich mit der Kontrollgruppe, allerdings nicht im Vergleich der beiden 30 min Gruppen untereinander. Dies ergibt sich aus dem Paarvergleich der beiden Gruppen. Hier zeigt sich zu keinem Messpunkt ein statistisch signifikanter Unterschied. Der p - Wert für 4 h (siehe Abbildung 17) im Vergleich beider Gruppen miteinander beträgt p = 0,6595, der 1 Stunden Wert p = 0,8796 und der 3 Stunden Wert p = 0,6423. Auch zu 24, 48 und 72 Stunden lässt sich keine Signifikanz erkennen (siehe Kapitel 5, 5.3).

Abbildung 18 Hautdurchblutung der Stasezone bei Therapiebeginn nach 30 min im Vergleich zur Haudurchblutung gesunder Hautareale in Prozent

3.1.2.2 Durchblutungsmessung in der Stasezone im Zeitverlauf (Therapie nach3h) sowie statistische Auswertung:

Betrachtet man die beiden Gruppen mit späterer Therapieeinleitung, 3 Stunden nach Verbrennung, und die Kontrollgruppe zeigt sich eine Durchblutungszunahme über den Versuchszeitraum von 72 Stunden in allen drei Gruppen. Die behandelten Tiere zeigen jedoch eine höhere Durchblutungsrate als die Tiere der Kontrollgruppe (siehe Abb.19). Zu Versuchsbeginn verhalten sich die beiden 3 Stunden Therapie Gruppen ähnlich der Kontrollgruppe.

1 Stunde: Die Werte der Gruppen variieren um 7,68% (siehe Abbildung 19).

2 Stunden: Es bestätigt sich, dass die Therapiegruppen mit Gabe nach 3 Stunden dem Verhalten der Kontrollgruppe gleichen (siehe Abbildung 19). Die Werte variieren lediglich um 7,97%.

3 Stunden: Nun zeigt sich in den beiden Gruppen ein Verhalten, das von dem der Kontrollgruppe abweicht (Behandlungsbeginn bei 3 h). Der Durchblutungswert der Fab 5mg / kg Körpergewicht beträgt 31,94%, der der IgG 2mg / kg Körpergewicht Gruppe bei 34,57%. Der Durchblutungswert für die Kontrollgruppe liegt bei 26,43% (siehe Abbildung 19). Diese Unterschiede zeigten in der Auswertung mittels ANOVA keine statistisch signifikanten Unterschiede (siehe Kapitel 5, 5.3.3). Nach Gabe von Fab und IgG, zeigen die Werte eine deutliche Verbesserung der Durchblutung im Vergleich zur Kontrollgruppe an.

4 Stunden: nach Verbrennungstrauma beträgt die Durchblutung 52,61% für IgG, 50% für Fab und nur 23,55% für die Kontrollgruppe. Der p - Wert der beiden Therapiegruppen im Paarvergleich (Paarvergleich für 3h) liegt für die Fab Gabe bei p = 0,4892 und für die IgG Gabe bei p = 0,2095. Er stimmt mit den mittels ANOVA gewonnenen Werten überein. Der Paarvergleich bei 4 Stunden dieser beiden Gruppen mit der Kontrollgruppe zeigt für die Fab Gabe eine statistische Signifikanz von p < 0,0001 und für die IgG Gabe von p = 0,0065 (siehe Abbildung 17). In der dazugehörigen ANOVA Untersuchung zeigt sich zu diesem Zeitpunkt keine statistische Signifikanz (siehe Kapitel 5, 5.3.4). Dazu anzumerken ist jedoch, dass bei der Auswertung mittels ANOVA nicht jede einzelne Gruppe zu jedem Zeitpunkt. Somit lässt sich hier die fehlende Signifikanz erklären. Die Durchblutung der beiden Therapiegruppen steigt ab dem 3 Stunden Wert bis zum Ende des Experiments stetig an.

24 Stunden: Die Fab Gruppe weist eine Durchblutung von 64,88%, die IgG Gruppe von 67% und die Kontrollgruppe von 33,72% auf. Dieser Anstieg ist im Vergleich zur Kontrollgruppe statistisch signifikant (IgG vs. Kontrolle p = 0,0009; Fab vs. Kontrolle p = 0.01) (siehe Paarvergleich Kapitel 5, 5.1.5).

48 Stunden: Die Durchblutung der mit Fab behandelten Tiere beträgt 90,75% und der mit IgG behandelten Tiere 78,94%. Die Tiere der Kontrollgruppe zeigen eine Durchblutung von 60,52% (siehe Abbildung 19). Im Paarvergleich nach 48 h hat die Behandlung mittels Fab Fragment (Therapie nach 3h) einen Wert von p = 0.0278. Die Behandlung mittels IgG (Therapie nach 3h) weist einen Wert von p = 0,0976 im Vergleich zur Kontrollgruppe auf (siehe Abbildung 20). Eine Signifikanz zeigt sich demnach nur für die Fab-Therapie nach 3 h im Vergleich zur Kontrollgruppe. Im direkten Paarvergleich der Fab nach 3 h Gabe mit der IgG nach 3 h Gabe zeigt sich mit p = 0,2895 kein signifikanter Vorteil der Fab nach 3 h Therapie gegenüber der IgG nach 3 h Therapieoption (siehe Abbildung 20). Der ANOVA Wert nach 48 h beträgt p = 0,0075 und bestätigt damit den eindeutigen Vorteil einer Therapie, gegenüber unterlassener Therapie (siehe Kapitel 5, 5.3.6).

72 Stunden: Bei Versuchsende zeigen die Tiere der Fab Gruppe einen leicht hyperämischen Wert von 127,27%, die IgG Gruppe einen Wert von 127,11% und die Kontrollgruppe einen Wert von 82,18% an (siehe Abb. 18).

Abbildung 19 Hautdurchblutung der Stasezone bei Therapie nach 3 Stunden im Vergleich zur Hautdurchblutung gesunder Hautareale in Prozent

3.1.2.3 Vergleich der Behandlungsschemata Therapie nach 30 min und Therapie nach 3 Stunden:

Vergleicht man die Behandlungsschemata 30 min und 3 Stunden miteinander so stellt man fest, dass die Durchblutung der Tiere, die eine Therapie nach 3 Stunden erhalten haben, genauso schnell wieder hergestellt wurde, als die der Tiere mit Therapie bereits nach 30 min (siehe Abbildung 16). Nach 72 Stunden ist die Durchblutung der 3 Stunden Gruppen im Vergleich mit den 30 min Gruppen gesteigert mit 127,11% und 127,27% für IgG und Fab (Therapie nach 3h) und 102,87% sowie 118,18% für IgG und Fab (Therapie nach 30min) (siehe Abbildung 16). Dieser Unterschied stellt sich allerdings statistisch nicht in allen Bereichen als signifikant dar (siehe Paarvergleich Kapitel 5, 5.1.7). Es zeigt sich lediglich ein signifikanter Unterschied im Vergleich der IgG 30 min mit der Fab nach 3 Stunden Gruppe mit p = 0.0471 (siehe 5.1.7). Der ANOVA Wert bei 72h mit p = 0,0042 (siehe Kapitel 5, 5.2.7) zeigt eine deutliche Abhängigkeit des Durchblutungsergebnisses von der Therapie verglichen mit der Kontrolle auf. Es zeigt sich eine statistisch signifikant verbesserte Durchblutung aller Therapiegruppen im Vergleich zur Kontrollgruppe. Betrachtet man die Paarvergleiche Therapie nach 30 min bzw. 3h, so stellt man fest, dass es bei der 48 Stunden Messung keine statistische Überlegenheit eines Therapiezeitpunktes gegenüber einem anderen Zeitpunkt gibt. Eine statistisch bessere Durchblutung zeigt sich im Vergleich der signifikant beiden Therapiezeitpunkte nicht (siehe Abbildung 20).

	Kontrolle	Fab 30 min	IgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,0861	0,2845	0,0976	0,0278
Fab 30 min			0,3782	0,7721	0,4666
lgG 30 min				0,495	0,1247
lgG 3h					0,2895
Fab 3h					

Gruppe	MW_48h
Kontrolle	62,52
Fab 30 min	81,81
lgG 30 min	72,93
lgG 3h	78,94
Fab 3h	90,75

Abbildung 20 Paarvergleiche für Stasezone 48 Stunden nach Verbrennung mittels *"two sample t-test for means"* mit p-Wert als Ergebnis und zugehöriger Mittelwerttabelle (MW)

3.1.2.4 Boxplot Darstellung aller Therapiegruppen im Vergleich zur Kontrolle bei 48 und 72 Stunden:

Eine weitere Verdeutlichung der Untersuchungsergebnisse ist anhand der Boxplots für den Messzeitpunkt nach 48 Stunden graphisch dargestellt (Abbildung 21). Hier zeigt sich eine geringe Variationsbreite der Mittelwerte. Einige Werte weichen innerhalb der Gruppen stark nach oben und unten ab, z.B. in der Therapiegruppe Fab 30 min (Gruppe 1) und Fab nach 3 Stunden (Gruppe 4).

Therapiegruppe 2 (IgG 30 min) und Gruppe 3 (IgG 3 Stunden) im Boxplot zeigen eine geringere Variationsbreite. Es hat keine extremen Ausreißer in diese Gruppen

gegeben. Vergleicht man die Kontrollgruppe (Gruppe 0) mit den 4 Therapiegruppen, so stellt sich heraus, dass die Kontrollgruppe (Gruppe 0), mit einem Mittelwert von 60,52% zwar unterhalb der Mittelwerte der anderen Gruppen liegt, allerdings mit diesem Wert trotzdem in den Wertebereich der einzelnen Gruppen fällt, insbesondere in den Gruppen 2 (IgG 30 min) und 3 (IgG 3 h).

Bei der Betrachtung der 72 Stunden Messwerte sieht man deutliche Unterschiede in den unterschiedlichen Therapiegruppen. Sowohl die Fab 30 min Gruppe (Gruppe 1), als auch die IgG 3 Stunden (Gruppe 3) und Fab 3 Stunden Gruppe (Gruppe 4) sind hier statistisch signifikant gegenüber der Kontrollgruppe (siehe Abbildung 22). Für die IgG 30 min Gruppe (Gruppe 2) ist im Vergleich zur Kontrollgruppe keine Signifikanz ersichtlich. Zudem erkennt man einen signifikanten Unterschied zwischen der Therapiegruppe Fab nach 3 Stunden (Gruppe 4) verglichen mit der IgG nach 30 min Gruppe (Gruppe 2) mit p = 0,0471.

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,0324	0,1993	0,0199	0,0118
Fab 30 min			0,1533	0,5826	0,5058
lgG 30 min				0,0814	0,0471
lgG 3h					0,9651
Fab 3h					

Gruppe	MW_72 h
Kontrolle	82,18
Fab 30 min	118,18
lgG 30 min	102,87
lgG 3h	127,11
Fab 3h	127,72

Abbildung 22 Paarvergleiche für Stasezone 72 Stunden nach Verbrennung mittels "*two sample t-test for means"* mit p als Ergebnis und zugehöriger Mittelwerttabelle (MW)

Die Boxplot Darstellung nach 72h liefert ein eindeutigeres Ergebnis als während der 48 Stunden Messung. Betrachtet man Abbildung 23, sieht man eindeutig eine geringere Variationsbreite und eine größere Homogenität innerhalb der einzelnen Gruppen. Zwar gibt es immer noch Ausreißer nach oben und unten, diese sind allerdings deutlich geringer als bei der 48 Stunden Messung. In den Therapiegruppen Fab 3h (Gruppe 4) und IgG 3h (Gruppe 3), stellen sich die Ausreißer nach unten sogar als minimal heraus, während es positive Abweichungen nach oben gibt. Auch die Mittelwerte der Gruppen 2 (IgG 30 min), 3 (IgG 3h) und 4 (Fab 3h) sind eindeutig höher als der Mittelwert der Kontrollgruppe. Die Kontrollgruppe weist darüber hinaus ein größeres Variationsspektrum als die Versuchsgruppen auf. Keine der Versuchsgruppen zeigt, selbst innerhalb der Ausreißer, einen so niedrigen Wert der Durchblutung, wie er in der Kontrollgruppe innerhalb der Variationsbreite vorkommt (siehe Abbildung 23).

3.2 Leukozytenzählung:

Die Auswertung der Leukozytenmessungen zu den Zeitpunkten 0 Stunden, 24 Stunden, 48 Stunden und 72 Stunden zeigt einen maximalen Anstieg der Leukozyten 24 Stunden nach Induktion des Verbrennungstraumas in allen Fab und IgG behandelten Gruppen (siehe Abbildung 24).

Abbildung 24 Leukozytenzahlen im Versuchsverlauf

	MW 0h	MW 24h	MW 48h	MW 72h
Kontrollgruppe	5,58	6,24	6,7	6,4
Fab 30min	3,38	8,49	7,49	5,4
lgG 30min	4,31	8,4	6,69	5,97
lgG 3h	6,74	9,59	6,58	7,1
Fab 3h	5,14	12,71	9,06	6,17

Tabelle 6Mittelwerte (MW) für die Leukozytenzählung während des
Versuchablaufs

Die Werte zeigen in allen vier Gruppen eine Erhöhung der Leukozyten, die die Werte der Kontrollgruppe bei weitem überschreiten, allerdings immer noch in dem für Kaninchen angegebenen Normbereich für Leukozyten (2,5 - 14,5 x 10*3 Zellen / µl)

(Referenzbereiche entsprechend den Normbereichen der Versuchstierkunde des UKA) liegen. Nach 48 Stunden zeigen die Werte der Therapiegruppen einen Abfall der Leukozytenzahlen und nähern sich den Werten der Kontrollgruppe an. Für die Fab 30 min Gruppe beträgt der Wert 7,49 x 10*3 Zellen / μ l, für die IgG 30 min Gruppe 6,69 x 10*3 Zellen / μ l, für die Fab 3 Stunden Gruppe 9,06 x 10*3 Zellen / μ l und für die IgG 3 Stunden Gruppe 6,58x10^3 Zellen/ μ l, während die Kontrollgruppe einen Wert von 6,7 x 10*3 Zellen / μ l (Abb. 23) Bei der statistischen Auswertung zeigt sich während des gesamten Versuchablaufs kein statistisch signifikanter Unterschied zwischen den Therapiegruppen im Vergleich zur Kontrollgruppe.

3.3 Histologische Beurteilung

Die histologische Untersuchung der entnommenen Hautbiopsate, zeigt 72 Stunden nach Verbrennungstrauma in der Kontrollgruppe deutliche Zeichen der Zellzerstörung und Entzündung des Gewebes (Abbildung 25).

Abbildung 25 histologische Darstellung der Stasezone innerhalb der Kontrollgruppe mit 100-facher Vergrößerung X= Erythrozyten gefüllte Kapillaren Y= Epitheliolyse und Blasenbildung Z= Haarfollikel Man erkennt dilatierte Kapillaren, die mit Erythrozyten gefüllt sind. Dies ist in einem verminderten Blutfluß und einer veränderten Mikrozirkulation begründet und ist als Zeichen für eine lokale Inflammation des Gewebes anzusehen. In allen Therapiegruppen sind solche Zeichen einer reduzierten Mikrozirkulation deutlich seltener aufzufinden.

Betrachtet man die Kontrollgruppe so stellt man in mehr als 60% der Fälle vergrößerte, mit Erythrozyten gefüllte Kapillaren fest, dies ist als Hinweis auf einen verminderten Blutfluss in Zusammenhang mit einer Inflammation des umgebenden Interstitiums zu werten. Statistisch zeigt sich ein signifikanter Unterschied im Vergleich der gefüllten Kapillaren in der Kontrollgruppe mit den vier Therapiegruppen innerhalb der Stasezone. Im Vergleich zur Kontrollgruppe ergibt sich für Fab 30 min einen Wert von p = 0,021, für IgG 30 min von p = 0,028, für IgG 3h von p = 0,014 und für Fab 3h von p = 0,037 (siehe Tabelle 5.7.1 und 5.7.2). Vergleicht man die Therapiegruppen untereinander, so lässt sich kein signifikanter Unterschied erheben (siehe Tabelle 5.7.1 und 5.7.2).

Zusätzlich zeigt sich auf dem histologischen Schnitt eine deutliche Epitheliolyse mit Blasenbildung im Bereich der Stasezone innerhalb der Kontrollgruppe. Dies zeigt eine Zerstörung oberflächlicher Epithelzellen an. Abbildung 25 zeigt einen Schnitt eines, nach Versuchsende (72 Stunden) gewonnenen Hautbiopsats innerhalb der Kontrollgruppe. Man erkennt einen Haarfollikel (Z), oberhalb davon sieht man Epitheliolyse und Blasenbildung (Y) als Zeichen der Zerstörung oberflächlicher Epidermiszellen. Des Weiteren lassen sich auf dem Bild viele erweiterte mit Erythrozyten gefüllte Kapillaren im subdermalen Plexus der Haut als Zeichen verminderter Mikrozirkulation (X) erkennen. Eine Nekrose tieferer Zellschichten, charakterisiert durch Zellkernverlust oder Lyse der Zellmembran lässt sich nicht erkennen.

Betrachtet man nun die Abbildungen 29 bis 32, die aus Hautbiopsaten behandelter Tiere gewonnen wurden, lassen sich in weniger als 15% der Fälle mit Erythrozyten gefüllte Kapillaren finden. Dieser rein deskriptiv gewonnene, und damit semiquantitative Wert korreliert mit den durch die statistische Auswertung mittels ANOVA gewonnenen Ergebnissen. Es zeigt sich eine signifikante Abnahme aller Kapillarfüllungen der therapierten Tiere im Vergleich mit der Kontrollgruppe. Dieser Sachverhalt lässt sich anschaulich durch die Betrachtung der Boxplots für die gefüllten Kapillaren innerhalb der Stasezone verdeutlichen (siehe Abbildung 26).

Abbildung 26 Boxplot der gefüllten Kapillaren nach Versuchsende in den einzelnen Therapiegruppen innerhalb der Stasezone

Im histologischen Bild zeigt sich in der Zone der Stase, für die mit IgG und Fab behandelten Tiere keine Epitheliolyse. Eine Gewebsnekrose, welche anhand von Verlust des Zellkerns, Fibrose oder anhaftendem Gewebe verifiziert wird, zeigt sich in allen Versuchsgruppen in den allschichtig verbrannten Arealen. Betrachtet man die Kapillarfüllungen im Bereich der allschichtigen Verbrennung so lässt sich hier mittels ANOVA kein signifikanter Unterschied der Therapien im Vergleich zur Kontrollgruppe ausmachen. Der p-Wert für Fab 30 min betrug p = 0,763, für IgG 30 min p = 0,981, für IgG 3h p = 0,907 und für Fab 3h p = 0,128 (siehe Tabelle 5.7.1 und 5.7.2). Anhand der Boxplots für die Kapillarfüllung innerhalb der allschichtigen Verbrennung lässt sich dies anschaulich verdeutlichen (siehe Abbildung 27).

Abbildung 27 Boxplot der gefüllten Kapillaren nach Versuchsende in den einzelnen Therapiegruppen innerhalb der Verbrennungszone

Die Betrachtung der Kapillarfüllung im Bereich gesunder Haut erbrachte mittels ANOVA das Ergebnis, dass selbst hier ein hochsignifikanter Unterschied der Kapillarfüllung der einzelnen Therapiegruppen verglichen mit der Kontrollgruppe, in diesem nicht interventionell veränderten Bereich bestand. Für Fab 30 min ergab sich ein p Wert von p < 0,001, für IgG 30min von p < 0,002, für IgG 3 h von p < 0,0001 und für Fab 3h von p < 0,001. Der Boxplot verdeutlicht dies in Abbildung 28.

Im histologischen Bild zeigten sich im Vergleich der Therapiegruppen keine mikroskopisch ersichtlichen Unterschiede in den verschiedenen entnommenen Bereichen Stasezone, gesunde Haut und verbrannte Haut.

Eine Gewebsnekrose, welche anhand von Verlust des Zellkerns, Fibrose oder anhaftendem Gewebe verifiziert wird, zeigt sich in allen Versuchsgruppen in den allschichtig verbrannten Arealen.

Histologische Unterschiede zwischen therapierten und nicht therapierten Tieren finden sich in den allschichtig verbrannten Arealen nicht.

Abbildung 28 Boxplot der gefüllten Kapillaren nach Versuchsende in den einzelnen Therapiegruppen innerhalb gesunder Haut

Abbildung 29 Histologische Darstellung der Stasezone in der IgG 30 min Gruppe mit 100-facher Vergrößerung , X= Kapillaren, Y= Epithel, Z= Haarfollikel

Abbildung 30 Histologische Darstellung der Stasezone in der IgG 3 Stunden Gruppe mit 100facher Vergrößerung X= Kapillaren, Y= Epithel, Z= Haarfollikel

Abbildung 31 Histologische Darstellung der Stasezone in der Fab 30 min Gruppe mit 100facher Vergrößerung X= Kapillaren, Y= Epithel, Z= Haarfollikel

Abbildung 32 Histologische Darstellung der Stasezone in der Fab 3 Stunden Gruppe mit 100facher Vergrößerung X= Kapillaren, Y= Epithel, Z= Haarfollikel

4. Diskussion

4.1 Allgemeines:

Obwohl sich in den letzten Jahren die Wundbehandlung und Versorgung von Verbrennungspatienten verbessert hat, gibt es immer noch eine hohe Zahl an Morbidität innerhalb dieses Patientenkollektivs. Therapien, die die vertikale und horizontale Ausdehnung der Verbrennungswunde verhindern oder minimieren konnten bisher nicht etabliert werden. Zum jetzigen Zeitpunkt stellt die Früh- sowie die Sofortnekrektomie neben einem gleichzeitig eingeleitetem Intensivmanagement mit Flüssigkeits- und Elektrolytsubstitution sowie die anschließende lokale Wundversorgung mittels Spalt- oder Vollhauttransplantaten den wesentlichen Anteil der Therapie dar [138].

Betrachtet man die immunologische Ebene des Verbrennungsgeschehens so zeigt sich hier eine Vielzahl von potentiellen therapeutischen Angriffspunkten, welche eine neue Dimension der Therapie bei Verbrennungen ermöglichen könnten. Durch neue innovative Medikamente auf immunologischer Ebene könnte die Möglichkeit bestehen, nicht ausschließlich die Verbrennung als solche zu behandeln, sondern auch ihre Ausdehnung und ihre Ausbreitung in die Tiefe zu minimieren.

Die Inhibition von Leukozyten stellt ein Verfahren dar, das bereits in anderen Teilbereichen der Medizin als Möglichkeit erkannt wurde, die Zerstörung von Gewebe zu minimieren. Hier sind Gewebe des ZNS [122], des Myokards, des Intestinaltrakts und der Haut zu nennen. So konnte Fukushima 2006 zeigen, dass die Gabe eines Antikörpers gegen ICAM – 1 kurz vor myokardialer Reperfusion im Rattenmodell bei der Untersuchung einer koronaren Okklusion, die Größe des Infarktes signifikant im zur Kontrolle minimiert und zudem mit einer Reduktion der Vergleich Leukozytenakkumulation sowie einem verbesserten lokalen Blutfluss assoziiert ist [123]. Auch Ma et al. zeigten, dass die Gabe eines monoklonalen Antikörpers RR1/1 gegen ICAM - 1 in einem Tiermodell an Katzen weniger Nekrosen mit einer Wahrscheinlichkeit von p<0,01 nach Myokardischämie im Vergleich zur Kontrollgruppe aufzeigte [124]. In der Dermatologie konnte bei einer Versuchsreihe an Mäusen ebenfalls gezeigt werden, dass die Gabe eines Vollantikörpers gegen

ICAM – 1 sowohl einen Reduktion der epidermalen Dicke als auch des entzündlichen Infiltrates der den Mäusen zuvor transplantierten psoriatischen Plaque zeigte [125]. Auch im Bereich der Verbrennungschirurgie ist es Gegenstand ausgiebiger Forschung eine suffiziente Möglichkeit der Leukozytenaggregationshemmung zu finden und damit den Gewebeschaden bei einer Verbrennung zu minimieren. In diesem Bereich sind insbesondere die Arbeiten von Mileski et al. zu nennen. In auf dieser Arbeitsgruppe wurden unterschiedlichen Ebenen der Medikamentenzulassung Untersuchungen angestellt, die durch Gabe eines murinen Antikörpers gegen ICAM – 1 die Wirksamkeit desselben bei der Verminderung einer Verbrennungsausbreitung sowie einer verbesserten Perfusion des Gewebes im Vergleich zur Kontrolle zeigten [115, 89, 116, 118].

Unsere Arbeit knüpft an die Untersuchungsergebnisse von Mileski et al an.

4.2 Methoden:

4.2.1 Auswahl des Antikörpers und Auswahl des Fab Fragmentes

In diesem Verbrennungsmodell mit New Zealand white Kaninchen weiblichen Geschlechts, wurde die Fähigkeit des rekombinanten Fab Fragments BIRR1 die Durchblutung in der Zone der Stase nach einem Verbrennungstrauma zu erhöhen mit der eines Anti-ICAM-1 Antikörpers BIRR1 als IgG Vollantikörper und der einer Kontrollgruppe ohne aktive Behandlung verglichen. Die Frage nach der Wirksamkeit eines Fab Fragmentes anstelle eines murinen Vollantikörpers stellte sich aufgrund der Tatsache, dass es bei Behandlungen innerhalb von klinischen Phase II Studien einer Medikamentenzulassung dieses Antikörpers bei Verbrennungspatienten zu Nebenwirkungen gekommen war [118]. Insbesondere zeigten sich in dieser Arbeit von Mileski et al. unerwünschten Arzneimittelreaktionen wie Erbrechen und Fieber [118]. Betrachtet man nun das Fab Fragment dieses Antikörpers, das ohne den Fc auskommt, welcher bekanntermaßen Teil des IgG Antikörpers für die Effektorfunktionen (Komplementaktivierung und Monozytenbindung) des Moleküls verantwortlich ist [23], so stellt sich die Frage ob eine Inhibition der Leukozyten-/Endothelzell Interaktion auch mittels Fab Fragment ausreichend durchgeführt werden kann.

4.2.2 Auswahl der Versuchstiere:

Die Auswahl von New Zealand white Kaninchen weiblichen Geschlechts erfolgte analog zu den Untersuchungen von Mileski et al. [116]. Das Kaninchen als Versuchstier wurde aufgrund der Tatsache ausgewählt, dass es sich bei dieser Spezies um das kleinstmögliche Wirbeltier handelt, welches eine dem Menschen ähnlichen Hautaufbau aufweist [126] und zudem in der Lage ist serielle Blutentnahmen von mehreren Tagen zu tolerieren, ohne seine hämodynamische Gesamtsituation zu verschlechtern [127].

Ein Unterschied der beiden Experimente liegt darin, dass Mileski et al. New Zealand white Kaninchen beiden Geschlechts für seine Untersuchungen verwendete [116, 115]. Bei diesem Versuch wurden lediglich weibliche Tiere verwendet. Dies lag in der Haltung der Tiere begründet, die für weibliche Tiere im Gruppenverband erfolgen kann, während männliche Tiere in Einzelhaltung versorgt werden müssen. Darüber hinaus konnten durch die Auswahl von nur einem Geschlecht, geschlechtsspezifische Unterschiede vermieden werden.

4.2.3 Versuchsaufbau:

Als Modell dieser Arbeit diente eine Vorlage des Versuchaufbaus nach Mileski, welches bereits als standardisiertes Tiermodell etabliert werden konnte [116, 115]. In dieser Arbeit wurden kleinere Modifikationen an dem bekannten Modell vorgenommen. Die Durchführung der Verbrennung erfolgte mit einem Stempelkissen zusätzlich wurde eine vorgefertigte Schablone verwendet, die eine konstante Größe der Stasezone gewährleistete (Vgl. Abb. 9, Kapitel 2). In Mileskis Arbeit [116] wird ein bereits mit einem definierten Abstand versehener Stempel mit mehreren Andruckstellen verwendet. Dies bedeutet jedoch, dass aufgrund der anatomischen Kyphose des Rückens der Tiere, die Stempel bei Mileski an einer Seite des Stempels wesentlich geringeren Gewebekontakt aufweisen als auf der kontralateralen Seite. Somit wird zwangsläufig das Areal der Verbrennung als auch die Zone der Stase inhomogen. In unserer Arbeit wurde dieses Problem durch die Anpassung der Schablone an die Kyphose des Tierrückens vermieden. Zudem ist bei uns eine manuelle Nachjustierung des Aufdruckes im Gegensatz zu Mileskis Arbeit möglich. Beide Arbeiten haben eine Andruckzeit von 30 Sekunden für eine III° Verbrennung

Diskussion

bei einer Temperatur von 100°C verwendet. Für eine II° Verbrennung reduzierten wir die Andruckzeit auf 7 Sekunden. In Mileskis Arbeit [116] wird keine Aussage über die Standardisierung des Andruckes auf den Messingstempel gemacht. Es stellt sich jedoch die Frage, ob nicht aufgrund der Variabilität des Andruckes, ein Unterschied in der erzeugten Verbrennungstiefe resultieren könnte. Um zumindest subjektiv einen relativ konstanten Andruck des Stempels zu gewährleisten, wurde in unserer Arbeit von ausschließlich einer Person die Verbrennung induziert und lediglich das Eigengewicht des Stempels appliziert. Damit lässt sich zwar nicht ausschließen, dass es eine Variationsbreite bezüglich des Druckes gibt, jedoch wird die Streuung durch dieses Vorgehen minimiert.

Trotzdem ist zu bemerken, dass eine maschinelle Anfertigung der Verbrennung, mittels eines Stempels, der immer mit einem konstanten Druck auf die zuvor rasierte Rückenpartie der Tiere aufgebracht wird, zu einer noch besseren Reproduzierbarkeit der Ergebnisse beigetragen hätte. Dies wäre jedoch mit einem unverhältnismäßig großen apparativen Aufwand verbunden gewesen.

Auch Knabl et al. beschreibt ein Verbrennungsmodell am Kaninchen [127]. Eine Verbesserung zu unserer Arbeit besteht hier in der Tatsache, dass über einen Sensor, eine permanente Temperaturkontrolle bei der Induktion der Verbrennung erfolgte. Die Bedienung des Stempels erfolgte hier ebenfalls manuell. Der manuelle Betrieb wurde gegenüber einer maschinellen Verbrennungsinduktion favorisiert. Neben der bereits oben diskutierten anatomischen Schwierigkeit sieht Knabl et al. zusätzlich ein Problem in der sehr elastischen und weichen Haut der Kaninchen, welches zum Verrutschen der Andruckstelle führen kann und somit eine Inhomogenität der Verbrennungstiefe verursacht. Bei der manuellen Induktion der Verbrennung kann bei Verrutschen eine sofortige Gegenregulation durch Verminderung des Druckes und Änderung des Druckvektors erfolgen. Darüber hinaus erfolgt bei Knabl eine Kühlung der Verbrennungsgebiete im Anschluss an die Traumainduktion. Dies ist in unserer Arbeit nicht sinnvoll, da damit der zu untersuchende Effekt des Nachbrennens erheblich beeinflusst wird.

Zor et al [128]. benutzten das *"Comb"* Modell zur Verbrennungsinduktion. Dabei wurde ein Messingstempel mittels Wasser auf die gewünschte Temperatur erhitzt und anschließend die Verbrennung induziert. Auch in diesem Modell werden keine Aussagen zur Konstanz des Druckes bei Induktion der Verbrennung gegeben, eine feste Apparatur zur Erzeugung der Verbrennung besteht ebenfalls nicht [128].

62
Diskussion

Choi et al benutzt ein Modell ähnlich dem Mileskis mit vorgefertigten Verbrennungsarealen [83]. Choi gibt an, den Stempel ohne zusätzlichen Druck auf die Haut aufgebracht zu haben. Ein wesentlicher Unterschied besteht hier, ebenfalls wie bei Zorn und Kollegen darin, dass zur Erreichung der Ausgangstemperatur der Stempel in heißem Wasser aufgeheizt wurde und keine konstante Temperatur wie in unserer Arbeit durch die elektrische Aufheizung des Stempels besteht. Die Anwendung von Elektrizität als Energiequelle stellt einen deutlichen Vorteil zu der von Choi durchgeführten Versuchsreihe dar, weil eine konstante Temperatur während der Induktion der Verbrennung gesichert wird. Das Problem bezüglich der Wirbelsäule der Tiere wurde von Choi et al dahingehend gelöst, dass die Verbrennung auf beiden Seiten der Wirbelsäule, separiert nacheinander ausgeübt wurde [83].

Als weiterer Aspekt bezüglich des Versuchaufbaus ist die Messmethode zur Durchblutungsbestimmung der Haut zu diskutieren. Dabei ist von Bedeutung; dass Mileski [116] als auch Choi [83] in ihrem Modell einen Laserdoppler zur Aufzeichnung des Blutflusses verwenden. Wohingegen in dieser Arbeit die Durchblutung mit dem IC-View System (Pulsion Medical Systems, München) gemessen wurde. Beide messen die Hautdurchblutung innerhalb angewandten Methoden des zu untersuchenden Areals. Bei der Laserdoppleruntersuchung wird zunächst die Durchblutung des nativen Hautareals gemessen. Dieser Wert wird als Referenzwert verwendet. Anschließend wird in diesem zuvor gemessenen Areal die Verbrennung / Stasezone initiiert. Daraufhin erfolgt ein Vergleich der Durchblutungswerte zu den Zeitpunkten: 1h, 2h, 3h, 4h, 24h, 48h und 72h [129]. Analog dazu funktioniert das in unserer Arbeit verwandte IC-View-System. Bei dieser Art der Durchblutungsmessung wird die aktuelle Durchblutung eines gesunden, unverbrannten Areals zu den gewählten Untersuchungszeitpunkten mit dem Bereich des momentanen Interesses verglichen [119, 130]. Diese Vorgehensweise stellt einen erheblichen Vorteil gegenüber den Messungen Mileskis dar. Die simultane Messung der Durchblutung sowohl im Bereich gesunder Haut als auch im Bereich der Verbrennungs- bzw. Stasezone ermöglicht einen direkten Vergleich der Werte. Unterschiede, die durch wechselndes Herz-Zeit-Volumen oder andere kardiovaskuläre Parameter auftreten können, beeinflussen in unserer Methodik die Berechnungen nicht. Bei Mileski wurde diesem Aspekt keine Berücksichtigung geschenkt. Ein weiterer Vorteil der in unserer

Arbeit angewandten Methode ist die Tatsache, dass zur Ermittlung der Verbrennungstiefe eines zu bestimmenden Areals, nicht wie bei Mileski et al. das Detektors das verbrannte Areal Aufbringen eines auf nötig ist. Die Laserdoppleruntersuchung misst die durch die Verschiebung der Erythrozyten erzeugte Reflektion, der durch einen Laser eingebrachten Strahlung in das Gewebe [131]. Streustrahlung, die im Bereich der Epidermis und Dermis entsteht, ist in diesen Berechnungen miteinbezogen. Zudem benötigt man, um nicht nach der Reflektion an den Erythrozyten einen verfälschten Wert außerhalb des Gewebes zu erhalten, einen Detektor, der unmittelbar auf die Haut des Individuums / Versuchtieres aufgebracht wird. Dieser Detektor misst die vom Gewebe reflektierte Strahlung und damit auch die Veränderung des Blutflusses [131]. Hier liegt ein Problem der Laserdoppleruntersuchung im klinischen Alltag begründet. Um ein verbranntes Areal größeren Ausmaßes, bezüglich seiner Tiefenausdehnung zu evaluieren, bedarf es mehrerer Untersuchungen, bei denen der Detektor jeweils auf ein anderes Areal aufgebracht wird. Dies ist insbesondere bei "partial thickness burns" (Verbrennung II°) für die Patienten mit einer deutlich vermehrten Schmerzhaftigkeit verbunden. Das IC-View-System kommt im Gegensatz dazu, ohne diesen Hautkontakt aus. Die Injektion von Indocyaningrün und die Fluoreszenzmessung und /-aufzeichnung mittels Kamera, ermöglicht zudem die Erfassung größeren eines Verbrennungsareals.

4.3 Ergebnisse:

4.3.1 Durchblutungsmessung in den verbrannten Arealen

Die Auswertung der Durchblutungsergebnisse in den verbrannten Arealen zeigte einen 1h Wert mit einer Abnahme der Durchblutung von 40 bis 60% im Vergleich zu unbetroffenem Gewebe. In der Betrachtung der Mittelwerte und der Kontrolle der Signifikanzen zeigte sich für den Zeitpunkt "1h post Trauma" im Paarvergleich ein signifikanter Unterschied der beiden Therapieoptionen Fab, sowie IgG nach 3h im Vergleich zur Kontrollgruppe (siehe Abb. 14). Die Therapieoption mittels Fab oder IgG nach 3h hatte zum Zeitpunkt des Auftretens des signifikanten Unterschiedes (1h post injectionem) in den beiden Gruppen noch nicht stattgefunden. Daraus ergibt sich die Folgerung, dass der Signifikanzunterschied zu diesem Zeitpunkt des Experimentes nicht in der Therapie begründet liegen kann. Vielmehr sollte sich ein Verhalten zeigen, welches keinen Unterschied zu der Kontrollgruppe aufweist, da die Haltung der Tiere sowie die Induktion der Verbrennung bei allen Tieren in gleicher Weise erfolgten. Zudem ist eine Beeinflussung des Ergebnisses durch den Untersucher zu Beginn des Versuchs weitestgehend ausgeschlossen. Erst bei der Gabe der Therapie wurde entschieden, welches Tier in welche Gruppe eingeteilt wurde. An dieser Stelle liegt die Möglichkeit einer Fehlerquelle begründet, da zum Zeitpunkt von 1h post Verbrennung anhand des Versuchdesigns determiniert war, dass die beiden verbliebenen Tiere in eine der beiden Therapiegruppen nach 3h fallen würden. Wie diese Tatsache jedoch das statistische Ergebnis beeinflusst, bleibt ungeklärt.

Aus diesem Grunde muss die Aussagekraft des signifikanten Ergebnisses an dieser Stelle unter Vorbehalt betrachtet werden. Eine Relevanz für die Therapieoption Fab oder IgG nach 3h ergibt sich nicht.

Des Weiteren zeigt sich in der Beurteilung der verbrannten Areale ein erwartetes Verhalten. Die Durchblutung nimmt ab bis sie nach 3h ein Minimum von 20 bis 33% unverbrannter Hautdurchblutung erreicht, daraufhin zeigt sich ein Anstieg bis maximal 60% der Referenzwerte. Ein statistisch signifikanter Unterschied im Bereich Hautdurchblutung sich, außer dem oben der zeigt zu diskutierten Untersuchungszeitpunkt nicht. Diese Ergebnisse zeigen ein gleichförmiges Verhalten zu den Ergebnissen, die Mileski in seiner Arbeit publizierte [116]. Dort zeigte sich ebenfalls eine Reduktion des dermalen Blutflusses im Vergleich zum relativen Blutfluss der Tiere. Diese in beiden Versuchsreihen beobachtete konstante Verminderung der Durchblutung in allen Versuchsgruppen spricht dafür, dass eine gleichmäßige, vergleichbare Verbrennung in allen Versuchsgruppen stattgefunden hat. Ein Unterschied der sich zwischen unserer und Mileskis Arbeit jedoch zeigt ist die Tatsache, dass in Mileskis Versuchsreihe die 30min nach Verbrennung mit R15.7 behandelte Gruppe einen signifikanten Unterschied im Vergleich zur Kontrollgruppe aufwies und höhere Durchschnittswerte zeigte. Aufgrund der Tatsache, dass in unserem Versuchsdesign abweichend zu dem von Mileski nur die Gabe eines Fab Fragmentes oder eines monoklonalen Antikörpers gegen ICAM-1 getestet wurde und nicht der Antikörper gegen den CD18 Komplex (R15.7), erklärt den gesehenen Unterschied und lässt aufgrund des unterschiedlichen Antikörpers keinen Vergleich der beiden Arbeiten bezüglich dieses Aspekts zu.

Diskussion

Eine Arbeit von Choi et al. [83] an männlichen Sprague-Dawley Ratten beschäftigt sich ebenfalls mit den Verbrennungszonen, als auch mit den Zonen der Stase zwischen einzelnen Verbrennungszonen. Hier wurden ebenfalls Therapieoptionen mit monoklonalen Antikörpern gegen CD11 und CD18 getestet. Es zeigte sich auch hier im Bereich der Verbrennungszonen eine Reduktion des Blutflusses auf minimal 18% ± 8% des Normwertes bereits 1h nach Verbrennung, sowie von 6% ± 2% im Vergleich zum Referenzwert 24h nach Traumainduktion. Eine Antikörpergabe hatte in dieser Versuchsreihe keinen Einfluss auf die Durchblutung der Verbrennungszonen. Aussagen bezüglich der Signifikanz wurden von Choi et al. nicht getroffen. Trotzdem bestätigt diese Arbeit die Regelhaftigkeit der in unserer Versuchreihe erhobenen Ergebnisse. Eine Abnahme der Durchblutung im Bereich der Koagulationszonen stellt eine physiologische Reaktion des Körpers auf das Verbrennungstrauma dar.

4.3.2 Durchblutungsmessung in der Zone der Stase:

Der signifikante Unterschied der Kontroll- und Therapiegruppen (Therapie nach 30 min) zum Messzeitpunkt 4h, als auch der 3h Therapiegruppen im Vergleich zur Kontrolle bestätigen die Effektivität der Therapie mittels Fab Fragment als auch IgG Vollantikörper (siehe Abbildung 17). Aufgrund fehlender Signifikanz im Paarvergleich der Gruppen untereinander, kann eine Überlegenheit einer Therapieoption über eine andere nicht festgestellt werden (Anhang Tabelle 5.1.1). Eine Gleichheit der Versuchsbedingungen für Therapiegruppen und Kontrolle wird anhand eines gleichförmigen Verhaltens der Durchblutungswerte vor Eintritt der Therapie bei 3h deutlich (siehe Anhang Tabelle 5.1.1, 5.1.2, 5.1.3). Fehlende Signifikanz im Vergleich der beiden 3h Optionen untereinander verdeutlicht die Ebenbürtigkeit der Therapiegruppen. Trotz signifikanter Durchblutungsverbesserung der Fab 3h Gruppe zum Versuchszeitpunkt 48h im Vergleich zur Kontrollgruppe (p<0,0279), konnte eine Überlegenheit dieser Therapie anhand der Paarvergleiche nicht bestätigt werden (siehe Abbildung 20). Ein Therapiebeginn nach 30min als auch nach 3h zeigte eine gleichwertige Wiederherstellung der Durchblutung (siehe Abbildung 16), jedoch ohne statistische Signifikanz (p<0,4665).

Zu Versuchende (72 Stunden) sind alle Therapieoptionen, mit Ausnahme der IgG nach 30min Gabe, als effizient zu werten (siehe Abb. 21). Der IgG Gruppe mit Gabe

66

nach 30min fehlt zu Versuchsende als einziger Gruppe eine signifikante Durchblutungsverbesserung im Vergleich zur Kontrollgruppe. Die homogenen Mittelwerte (Boxplot Abb. 22) dieser Gruppe (Gruppe 2), die im Wertebereich der Kontrollgruppe (Gruppe0) liegen, stellen ein weiteres Indiz für ihre Unterlegenheit im Vergleich zu den anderen Therapieoptionen mit generell höheren Mittelwerten dar, welche darüber hinaus positive Ausreißer nach oben zeigen.

Die signifikante Durchblutungssteigerung wurde ebenfalls in der Arbeit von Mileski et al. [116] aufgezeigt. Dabei zeigte sich sowohl für die Antikörpergabe vor der Verbrennung, als auch nach der Verbrennung eine deutliche Verbesserung der Durchblutung zum Zeitpunkt 1h, 4h, 24h 48h und 72h nach Verbrennungsinduktion. In unserer Arbeit konnte lediglich eine signifikante Verbesserung der Durchblutung zu den Zeitpunkten 2h und 3h in den Therapiegruppen nach 30min, zur 4h Messung in allen Therapiegruppen, bei der 24h Messung in Therapiegruppe Fab nach 30 min, IgG nach 3h und Fab nach 3h sowie bei der 48h Messung in der Therapiegruppe Fab nach 3h und zum Zeitpunkt von72h, in der Therapiegruppe Fab nach 30 min, IgG nach 3h und ebenfalls Fab nach 3h gezeigt werden (siehe Anhang 5.1). Auffällig ist hierbei, dass sowohl zum Zeitpunkt 24h als auch 72h eine Unterlegenheit der Therapiegruppe IgG nach 30min (Gruppe2) im Vergleich zu den anderen Therapiegruppen imponiert. Zudem ist dieses Verhalten der Gruppe 2 abweichend zu den Ergebnissen Mileskis [116], hier zeigt die Gruppe mit Antikörpergabe R6,5 30min nach Verbrennungsinduktion wie bereits oben erwähnt eine Signifikanz zu den Zeitpunkten 1h, 4h, 24h, 48h und 72h. Ein Unterschied im Antikörper ist als Ursache auszuschließen, da sowohl Mileski, als auch unsere Forschungsgruppe den Antikörper R 6,5 verwendete. Zudem wurde in beiden Arbeiten eine Dosierung des Antikörpers von 2,0 mg / kg Körpergewicht gewählt. Zu diskutieren ist ein Unterschied des Geschlechts der Versuchstiere, bei uns wurden nur weibliche Tiere, bei Mileski eine heterogene Versuchstiergruppe verwendet. Darüber hinaus ist die Gruppengröße zu diskutieren. In beiden Arbeiten wurde aufgrund ethischer Gesichtspunkte und der Tatsache möglichst wenige Versuchstiere zu verwenden eine kleine Gruppengröße gewählt. Bei Mileski betrug die Größe der Versuchsgruppen jeweils 6 Tiere und in den Kontrollgruppen jeweils 12 Tiere. In unserem Versuchsaufbau wurde eine konstante Gruppengröße mit jeweils 9 Tieren für die Versuchsgruppen sowie 10 Tieren für die Kontrollgruppen gewählt. Die Gruppengröße in unserer Versuchsreihe ist demnach 50% größer als die in Mileskis Arbeit. Zusätzlich ist die Größe der Kontrollgruppe mit 10 Tieren in unserer Arbeit vergleichbarer mit den 9 Tieren der Versuchsgruppe bei Mileski, wo die Kontrollgruppe sogar doppelt so viele Tiere wie die Versuchsgruppe aufweist. Zwar erhält man durch die Auswahl eines größeren Gruppenkollektivs in der Kontrolle eine bessere Aussage über das native Verhalten der Durchblutung ohne Therapie, die Vergleichbarkeit mit der deutlich geringeren Versuchsgruppe sinkt jedoch.

In einer weiteren Arbeit von Mileski [115] wird zusätzlich eine Therapiegruppe mit R 6,5 Antikörpergabe nach 3h als auch nach 6h nach Verbrennungsinduktion zu der älteren Arbeit [116] hinzugefügt. Die oben bereits diskutierte Gruppengröße als auch die Wahl beider Geschlechter als Versuchstier bleibt konstant. Auch muss im Vergleich der Ergebnisse nochmals auf die unterschiedlichen Messmethodik (Laserdoppler / Mileski und IC-View System / unsere Arbeitsgruppe) hingewiesen werden (Vgl. 4.3.2). Auffällig an den gewonnenen Resultaten Mileskis ist die Tatsache, dass die Durchblutung der Kontrollgruppe, wie auch schon in der Vorarbeit [116], nach 4 Stunden bei einem Wert von 40% persistiert und dann über den restlichen Versuchszeitraum konstant bleibt. In unserer Arbeit zeigte sich eine Durchblutungsrate innerhalb der Kontrollgruppe von 60,52% nach 48 Stunden und 80,18% nach 72 Stunden. Ob die auf 40% der normalen Durchblutung reduzierte Durchblutungsrate in der Zone der Stase innerhalb der Kontrollgruppe bei Mileski der Durchblutung der verbrannten Areale entspricht und somit als Konversion in die Verbrennungszone zu werten ist, bleibt aufgrund fehlender Angaben hierzu unklar. In unserer Arbeit lassen sich die Werte eindeutig feststellen und unterscheiden. Bei 48 Stunden entspricht die Durchblutung innerhalb der verbrannten Areale einem Wert von 42,46% und nach 72 Stunden einem Wert von 57,5%. Diese Werte unterscheiden sich eindeutig von den Werten der Stasezone, was für eine fehlende Konversion der Stase in die Verbrennungszone spricht.

4.3.3 Leukozytenzählung

In Abbildung 24 lässt sich das Verhalten der Leukozyten während des Versuchzeitraumes für alle Gruppen ablesen. Es zeigt sich in allen Therapiegruppen ein Anstieg der Leukozyten nach 24h. Dieser Wert nähert sich jedoch bereits in der

nächsten Messung dem Wert der Kontrollgruppe an. Ein signifikanter Unterschied im Vergleich mit der Kontrollgruppe, konnte jedoch für keine Therapiegruppe gezeigt werden und die Werte der Tiere bewegten sich stets im Referenzbereich der für Kaninchen üblichen Werte. Das simultane Verhalten mit einem Anstieg der Werte genau zu 24h nach Verbrennungsinduktion und die Tatsache, dass dieser Anstieg nur in den Therapiegruppen erfolgt, lässt jedoch einen immunologischen Zusammenhang mit dem Anstieg der Leukozyten und der Antikörper- bzw. Fab Gabe vermuten. Bewiesen wurde diese Vermutung jedoch nicht. Auch bei Mileski et al. [116] zeigt sich 24h nach Verbrennung ein vergleichbarer Leukozytenzenith bei den mit R 6,5 behandelten Tieren. Unbehandelte Tiere wiesen diesen Anstieg in deutlich geringerem Maße auf. Jedoch erfolgte eine Wiederanpassung an die Werte der Kontrollgruppe innerhalb von 48 bis 72 Stunden. Diese milde Leukozytose, die sowohl in unserer Arbeit als auch bei Mileski et al. nach 24h festgestellt wurde deckt sich mit den Ergebnissen in weiteren Tiermodellen [132]. Zu Klären bliebe an dieser Stelle ob die detektierte Leukozytose aufgrund der verminderten Adhäsion der Leukozyten zustande kommt, oder ob es sich dabei um einen Antikörper induzierten Stimulus der Leukozytenmigration handelt. Des Weiteren ist hier eine "Stressleukozytose" im Rahmen der Verbrennungsinduktion differentialdiagnostisch in Betracht zu ziehen. Weitere Untersuchungen mittels Markierung der Leukozyten könnten hier Klärung bringen.

4.3.4 Histologie

In unserer Arbeit erfolgte die histologische Auswertung mit freundlicher Unterstützung des Instituts für Pathologie der RWTH Aachen. Es wurden spezielle Kriterien für die Beurteilung der Schnitte erstellt. Von Bedeutung waren zum einen die Nekrosetiefe der Verbrennungen, diese wurde anhand der zerstörten Zellstrukturen (Zellkerne) und der Zerstörung des Gewebeverbandes (Auflockerungen) festgemacht, und zum anderen die Epitheliolyse sowie der Verschluss von Kapillaren.

Auch bei Knabl et al. [127] wird zur histologischen Auswertung die Zerstörung des Gewebeverbandes beurteilt. Dies geschieht hier anhand der Feststellung der Zerstörung der Kollagenstrukturen durch Schrumpfung. Zudem wird bei Knabl et al. ebenfalls eine Übersichtsfärbung mittels Hämatoxilin-Eosin durchgeführt, welches der Färbung in unserer Arbeit entspricht. Ein Unterschied ist im Vergleich der beiden Arbeiten darin zu sehen, dass Knabl et al. eine Messung der Verbrennungstiefe zwischen gesunder und verbrannter Haut vorgenommen hat, welches wir in unserer Arbeit nicht durchgeführt haben.

Es wird in der Literatur kontrovers diskutiert, ob eine Verbrennungseinteilung anhand der Tiefe eine suffiziente, histologische Beurteilungsmethode darstellt [129]. Banwell zitiert in seiner Arbeit Autoren, die anhand der Gewebe- und Zellzerstörung eine Einteilung der Tiefenausdehnung getroffen haben, beschreibt aber dabei auch, dass es selbst für den erfahrenen Pathologen eine Schwierigkeit darstellt, die Destruktion von Matrixproteinen, sowie die Aufhebung der Gewebearchitektur festzustellen. Zudem weist er in seinem Artikel auf die Schwierigkeit hin, allein anhand der Färbung auf eine Hitzedenaturierung des Kollagens rückzuschließen. Dies wäre z.B. einfacher in einer Masson-Goldner Färbung durch einen Farbumschlag bei Denaturierung von Blau nach Rot nachzuweisen [133]. Vielmehr propagiert Banwell, die Beurteilung der Gefäßobstruktion und Destruktion [134] als histologisches Kriterium zur Beurteilung der Verbrennungstiefe. Watts et al. [134] etabliert in seiner Arbeit von 2001 ein Modell zur einfachen Festlegung der Verbrennungstiefe anhand einer histologischen Beurteilung der Gefäßobstruktion.

Eine Gefäßobstruktion wird bei Watts definiert als ein mit Erythrozyten gepacktes Gefäß mit deutlicher Zelldegeneration, als der Verlust der endothelialen Zelllinien und mit Debris gefülltem Lumen, sowie als Destruktion der Gefäßwand mit oder ohne umgebenes erythrozytäres Extravasat.

Ein funktionell intaktes Gefäß ist definiert als Gefäß, dessen Gefäßwände aus normalem Endothel bestehen und dessen Lumen nicht mit Zelldebritus oder dicht gepackten Erythrozyten gefüllt ist [134].

Die in unserer Arbeit durchgeführte Gefäßbeurteilung hat genau diese Kriterien angewendet. Zudem wurde jedoch auch auf Zellkernverlust und Aufhebung der architektonischen Gewebestruktur Rücksicht genommen, so dass gesagt werden kann, dass unsere Arbeit beide Aspekte der histologischen Beurteilung der Verbrennung zu vereinen versucht.

Die Ergebnisse der statistischen Auswertung bezüglich der Histologie zeigten im Bereich der Stasezone einen statistisch signifikanten Unterschied der Kapillarfüllung zwischen der Kontrollgruppe und den therapierten Tieren (siehe Tabelle 5.7.1 Anhang). Da die Auffüllung der Kapillaren und der Verlust der endothelialen Zelllinien als Untergang der Mikrozirkulation gewertet werden kann [134], sind die bei uns gewonnenen Ergebnisse ein weiterer Indikator für die positive Wirkung der ICAM – 1 Blockade mittels monoklonalem Antikörper. Ein weiterer Hinweis für die Richtigkeit dieser Annahme ist die Tatsache, dass im Bereich der allschichtigen Verbrennung, kein signifikanter Unterschied zwischen Kontroll- und Therapiegruppen zu finden ist (Tabelle 5.7.1).

Der hochsignifikante Unterschied zwischen Therapiegruppen und Kontrolle für gesunde Hautareale (siehe Tabelle 5.7.1) zeigt die systemische Wirkung des Therapeutikums auf. Eine Blockade von ICAM- 1 bewirkt auch an anderen Stellen der Haut, welche nicht pathologischen Veränderungen unterworfen sind, eine Verbesserung der Mikrozirkulation. Anzumerken zu der statistische Auswertung der Histologie ist jedoch, dass die gewonnenen Ergebnisse lediglich als Hinweis und nicht, auch bei signifikanten Ergebnissen, als Beweis angesehen werden können. Dies liegt in der Probebiopsiegewinnung als auch der Auswertung pro Gesichtsfeld begründet. Nicht in jeder Probebiopsie ist die gleiche Anzahl an Gefäßen getroffen. Zudem kann durch den Verlauf eines Gefäßes durch Windungen etc. in einem histologischen Schnitt, dieses mehrfach angeschnitten sein, in anderen Schnitten kann das Gefäß nur einmalig getroffen sein, so dass eine hohe Variabilität vorliegt. Des Weiteren ist die Auswertung eines Gesichtsfeldes auf kleinerer Ebene mit der gleichen Problematik behaftet. Um validierte Ergebnisse zu erhalten, müsste ein histologisches Standardverfahren bestehen, welches solche Variablen ausgleicht. Ein Vergleich der statistischen Ergebnisse mit anderen Arbeitsgruppen ist nicht möglich, da in keiner vergleichbaren Arbeit statistische Aussagen bezüglich der histologischen Auswertung getroffen wurden.

Vergleicht man unsere Arbeit nun erneut mit der Mileskis, so zeigt sich ein weiterer großer Unterschied. In unserer Arbeit konnte man keine komplette Hautnekrose in der Zone der Stase in keinem der Versuchstiere finden, während bei Mileski in der Stasezone komplette Hautnekrosen ersichtlich waren. Dieser Unterschied zeigt sich insbesondere im Bereich der Kontrollgruppen (Vgl. Tabelle in Mileskis Arbeit mit Tabelle 5.6 / Anhang).

Darüber hinaus ist erwähnenswert, dass Mileski in seiner Arbeit nicht die Kriterien erwähnt anhand derer er den Gewebeschaden oder die Gewebeveränderungen

71

definiert [115]. In unserer Arbeit sind die oben diskutierten histologischen Kriterien definiert. Dabei sind Zell- / Gewebeveränderungen, Epitheliolyse, Zellkernverlust, Anfüllung der Kapillaren mit Erythrozyten und Lyse der Zellmembran erwähnenswert. Aufgrund der fehlenden Angaben bei Mileski sind Vergleiche der beiden Arbeiten zu diesem Aspekt schwierig.

Ein weiterer wichtiger Aspekt in der Betrachtung von Verbrennungstraumata ist die mögliche inflammatorische Antwort des Organismus. Hier sind insbesondere das SIRS und das daraus als Folge möglicherweise resultierende *acute respiratory* distress syndrome" (ARDS) zu nennen [28]. Es gibt Untersuchungen, dass die Blockade von ICAM-1 zu einer Reduktion des SIRS führt [135]. Diese Vermutung konnte z.B. für die Entstehung einer Lungenbeteiligung bei akuter Pankreatitis gezeigt werden [136, 137], bei der ein Fehlen von ICAM 1 zu einer Verminderung des ARDS führte. Da wie bereits zu Beginn der Diskussion erwähnt, eine gegen ICAM- 1 gerichtete Antikörpertherapie in mehreren Bereichen der Medizin vorteilhafte Ergebnisse in Bezug auf die Perfusion von Gewebe aufzeigte [123, 124], ist eine Antikörpertherapie gegen ICAM-1 auch als vorteilhaft bei der Therapie des SIRS anzusehen [135]. Unsere Arbeit stellt einen weiteren Indikator für die Korrektheit dieser Vermutung dar. In unserer Arbeit konnte gezeigt werden, dass für die lokale Gewebereaktion nach Verbrennung durch die Therapie mittels eines gegen ICAM-1 gerichteten Antikörpers sowie eines Fab Fragmentes eine Verbesserung eingetreten ist. Diese Verbesserung und damit die mutmaßliche inflammatorische Intervention lässt sich anhand der verbesserten Gewebeperfusion nach Therapie, sowie der histologischen Ergebnisse nachweisen. Auch die Tatsache. dass ein hochsignifikanter Unterschied zwischen Therapie und Kontrolle im Bereich der Mikrozirkulation gesunder Haut besteht, zeigt die systemische Wirkung der ICAM – 1 Blockade.

4.4 Schlussfolgerung

Zusammenfassend lässt sich sagen, dass in der Zone der Stase innerhalb der Kontrollgruppe, Zeichen einer voranschreitenden Entzündung und Zeichen eines Zellschadens, vergleichbar mit dem histologischen Bild einer II^o Verbrennung zu finden waren, es aber keinen Anhalt für eine definierte Nekrose gab. Im Gegensatz dazu stellt sich die Stasezone innerhalb der Therapiegruppen ähnlich unverbrannter, gesunder Haut dar. Durch Blockade der Leukozytenadhäsion konnte die Mikrozirkulation im Bereich der Zone der Stase verbessert werden. Ein verbesserter Blutfluss im Bereich der Stasezone nach Gabe eines Anti-ICAM-1 Fab Fragmentes und eines IgG Vollantikörpers gegen ICAM-1 belegen diese These. Auch die histologischen Ergebnisse deuten darauf hin, dass die Gabe eines IgG Vollantikörpers gegen ICAM-1 und die Gabe eines Fab Fragmentes gegen ICAM-1 innerhalb von 3 Stunden nach Verbrennungstrauma das Fortschreiten von Entzündung und Zellschaden signifikant vermindern kann. Diese Arbeit hat zudem gezeigt, dass eine Behandlung mittels eines Fab Fragmentes welches gegen ICAM-1 gerichtet ist genauso effektiv ist, wie die Therapie mittels eines gegen ICAM-1 IgG Vollantikörpers. Beide Therapieoptionen gerichteten verbessern die Mikrozirkulation im Bereich der Stasezone. Darüber hinaus indizieren die Ergebnisse, dass die Blockade der Leukozytenadhäsion an die Endothelzellen ein Hauptmechanismus der Interaktion ist und Effektorfunktionen die auf dem Fc Teil des IgG Antikörpers gelegen sind, wenn überhaupt nur eine untergeordnete Rolle spielen. Die lässt sich daran zeigen, dass mittels Fab Fragment Therapie, welches keinen Fc Teil besitzt, die gleiche Effektivität erreicht wird wie mittels Vollantikörper. Betrachtet man diese Tatsache unter dem therapeutischen Aspekt so scheint die Gabe eines Fab Fragmentes eine gute Alternative zur Behandlung mit einem Vollantikörper darzustellen, nicht zuletzt durch die damit verbundene drastische Reduktion der bekannten Nebenwirkung bei Behandlungen mit Vollantikörpern.

Mit der vorliegenden Arbeit konnte gezeigt werden, dass die therapeutische Gabe eines Fab Fragmentes im Tiermodell genauso effizient in der Durchblutungsverbesserung der Zone der Stase bei Applikation bis zu 3 Stunden nach Verbrennung, wie die Gabe eines IgG Vollantikörpers ist.

5. Anhang

5.1 Paarvergleiche für die Stasezone

5.1.1 Paarvergleich der Mittelwerte der Stasezone 1h nach Verbrennung:

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,0896	0,099	0,8937	0,4638
Fab 30 min			0,8796	0,1115	0,1631
lgG 30 min				0,1274	0,1886
lgG 3h					0,5914
Fab 3h					

Gruppe	MW_1 h	
Kontrolle	105,39	
Fab 30 min	79,61	
lgG 30 min	81,88	
lgG 3h	103,66	
Fab 3h	97,72	

5.1.2 Paarvergleich der Mittelwerte der Stasezone 2h nach Verbrennung:

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,0243	0,0007	0,1334	0,4005
Fab 30 min			0,2462	0,0558	0,0745
IgG 30 min				0,0008	0,0025
lgG 3h					0,7562
Fab 3h					

Gruppe	MW_2 h
Kontrolle	33,19
Fab 30 min	53,75
lgG 30 min	63,16
lgG 3h	41,16
Fab 3h	39,66

5.1.3	Paarvergleich	der Mittelwerte	der Stasezone	3h nach	Verbrennung:
-------	---------------	-----------------	---------------	---------	--------------

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,0455	0,0107	0,2095	0,4892
Fab 30 min			0,6423	0,2351	0,1636
lgG 30 min				0,0703	0,054
lgG 3h					0,685
Fab 3h					

Gruppe	MW_3 h
Kontrolle	26,42
Fab 30 min	45,27
lgG 30 min	48,88
lgG 3h	34,57
Fab 3h	31,94

5.1.4 Paarvergleich der Mittelwerte der Stasezone 4h nach Verbrennung:

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,0009	0,0018	0,0001	0,0065
Fab 30 min			0,6595	0,4063	0,7148
lgG 30 min				0,1801	0,4885
lgG 3h					0,845
Fab 3h					

Gruppe	MW_4h
Kontrolle	23,55
Fab 30 min	48,84
lgG 30 min	44,07
lgG 3h	52,61
Fab 3h	50

5.1.5 Paarvergleich der Mittelwerte der Stasezone 24h nach Verbrennung:

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,0021	0,0583	0,0009	0,0103
Fab 30 min			0,0562	0,7585	0.9815
lgG 30 min				0,0407	0,1714
lgG 3h					0,8388
Fab 3h					

Gruppe	MW_24 h
Kontrolle	33,72
Fab 30 min	64,6
lgG 30 min	50
lgG 3h	67
Fab 3h	64,88

5.1.6 Paarvergleich der Mittelwerte der Stasezone 48h nach Verbrennung:

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,0861	0,2845	0,0976	0,0278
Fab 30 min			0,3782	0,7721	0,4666
lgG 30 min				0,495	0,1247
lgG 3h					0,2895
Fab 3h					

Gruppe	MW_48h
Kontrolle	62,52
Fab 30 min	81,81
lgG 30 min	72,93
lgG 3h	78,94
Fab 3h	90,75

5.1.7 Paarvergleich der Mittelwerte der Stasezone 72h nach Verbrennung:

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,0324	0,1993	0,0199	0,0118
Fab 30 min			0,1533	0,5826	0,5058
lgG 30 min				0,0814	0,0471
lgG 3h					0,9651
Fab 3h					

Gruppe	MW_72 h
Kontrolle	82,18
Fab 30 min	118,18
lgG 30 min	102,87
lgG 3h	127,11
Fab 3h	127,72

5.2 Paarvergleiche für die Verbrennungszone

5.2.1 Paarvergleich der Verbrennungszone 1h nach Verbrennung:

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,1093	0,8536	0,0107	0,0053
Fab 30 min			0,457	0,5244	0,2828
lgG 30 min				0,2337	0,1408
lgG 3h					0,592
Fab 3h					

Gruppe	MW_1 h
Kontrolle	54,62
Fab 30 min	47,44
lgG 30 min	53,33
lgG 3h	44,16
Fab 3h	41,5

5.2.2 Paarvergleich der Verbrennungszone 2h nach Verbrennung:

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,2349	0,1407	0,224	0,2751
Fab 30 min			0,9479	0,7012	0,4828
lgG 30 min				0,6847	0,3979
lgG 3h					0,6715
Fab 3h					

Gruppe	MW_2 h
Kontrolle	30,18
Fab 30 min	44
lgG 30 min	43,38
lgG 3h	40,55
Fab 3h	38,22

5.2.3 Paarvergleich der Verbrennungszone 3h nach Verbrennung:

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,4095	0,227	0,0501	0,3112
Fab 30 min			0,7045	0,3818	0,8738
lgG 30 min				0,6498	0,8235
lgG 3h					0,4596
Fab 3h					

Gruppe	MW_3 h
Kontrolle	22,24
Fab 30 min	27,16
lgG 30 min	29,77
lgG 3h	32,53
Fab 3h	28,25

5.2.4 Paarvergleich der Verbrennungszone 4h nach Verbrennung:

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,0786	0,4105	0,1249	0,6684
Fab 30 min			0,533	0,7534	0,1339
lgG 30 min				0,6888	0,6118
lgG 3h					0,2132
Fab 3h					

Gruppe	MW_4 h
Kontrolle	27,05
Fab 30 min	39,78
lgG 30 min	33,13
lgG 3h	37,21
Fab 3h	29,75

5.2.5 Paarvergleich der Verbrennungszone 24h nach Verbrennung:

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,1661	0,2893	0,1167	0,2241
Fab 30 min			0,7473	0,9395	0,8674
lgG 30 min				0,8608	0,9614
lgG 3h					0,8934
Fab 3h					

Gruppe	MW_24 h
Kontrolle	29,52
Fab 30 min	34,9
lgG 30 min	33,37
lgG 3h	35,12
Fab 3h	33,72

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,5461	0,5233	0,8181	0,726
Fab 30 min			0,2723	0,6805	0,8136
lgG 30 min				0,3877	0,3629
lgG 3h					0,8812
Fab 3h					

5.2.6 Paarvergleich der Verbrennungszone 48h nach Verbrennung:

Gruppe	MW_48 h
Kontrolle	42,46
Fab 30 min	39,87
lgG 30 min	46,06
lgG 3h	41,66
Fab 3h	41

5.2.7 Paarvergleich der Verbrennungszone 72h nach Verbrennung:

	Kontrolle	Fab 30 min	lgG 30 min	lgG 3h	Fab 3h
Kontrolle		0,6336	0,8174	0,465	0,3089
Fab 30 min			0,8142	0,8278	0,5298
lgG 30 min				0,6423	0,4081
lgG 3h					0,6052
Fab 3h					

Gruppe	MW_72 h
Kontrolle	57,5
Fab 30 min	53,78
lgG 30 min	56,5
lgG 3h	52,66
Fab 3h	49,66

5.3 Wahrscheinlichkeiten für die Stasezone mittels ANOVA

Class	Levels	Values
Gruppe	5	01234

Number of observations 50

NOTE: observations with missing values will not be included in this analysis. Thus, only 20 observations can be used in this analysis

5.3.1 MW_1h_Stasis

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	2524.57083	631.14271	0.70	0.6014
Error	15	13448.66667	896.57778		
Corrected	19	15973.23750			
Total					

R - Square	Coeff Var	Root MSE	MW_1h_stasis
			Mean
0.158050	31.86263	29.94291	93.97500

Source	DF	Type III SS	Mean	F Value	Pr > F
			square		
Gruppe	4	2524.570833	631.142708	0.70	0.6014

5.3.2 MW_2h_Stasis

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	2833.616667	708.404167	5,27	0,0075

Error	15	2018.020833	134.534722	
Corrected	19	4851.637500		
Total				

R - Square	Coeff Var	Root MSE	MW_2h_stasis
			Mean
0.584054	23.16308	11.59891	50.07500

Source	DF	Type III SS	Mean	F Value	Pr > F
			square		
Gruppe	4	2833.616667	708.404167	5.27	0.0075

5.3.3 MW_3h_Stasis

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	1100.716667	275.179167	1.14	0.3739
Error	15	3608.920833	240.594722		
Corrected	19	4709.637500			
Total					

R - Square	Coeff Var	Root MSE	MW_3h_stasis
			Mean
0.233716	37.76291	15.51112	41.07500

Source	DF	Type III SS	Mean	F Value	Pr > F
			square		
Gruppe	4	1100.716667	275.179167	1.14	0.3739

5.3.4 MW_4h_Stasis

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	1347.916667	336.979167	1.57	0.2341
Error	15	3226.020833	215.068056		
Corrected	19	4573.937500			
Total					

R - Square	Coeff Var	Root MSE	MW_4h_stasis
			Mean
0,294695	32.86319	14.66520	44.62500

Source	DF	Type III SS	Mean square	F Value	Pr > F
Gruppe	4	1347.9166667	336.979167	1.57	0.2341535

5.3.5 MW_24h_Stasis

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	3389.400000	847.350000	1.94	0.1558
Error	15	6547.650000	436.510000		
Corrected	19	9937.050000			
Total					

R - Square	Coeff Var	Root MSE	MW_24h_stasis
			Mean
0.341087	34.61942	20.89282	60.35000

Source	DF	Type III SS	Mean	F Value	Pr > F
			square		
Gruppe	4	3389.400000	847.350000	1.94	0.1558

5.3.6 MW_48h_Stasis

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	7876.15000	1969.03750	5.27	0.0075
Error	15	5607.58750	373.83917		
Corrected	19	13483.73750			
Total					

R - Square	Coeff Var	Root MSE	MW_48h_stasis
			Mean
0.584122	25.02093	19.33492	77.27500

Source	DF	Type III SS	Mean square	F Value	Pr > F
Gruppe	4	7876.150000	1969.037500	5.27	0.0075

5.3.7 MW_72h_Stasis

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	10185.41667	2546.35417	6.03	0.0042
Error	15	6331.82083	422.12139		
Corrected	19	16517.23750			
Total					

R - Square	Coeff Var	Root MSE	MW_72h_stasis
			Mean
0.616654	19.25097	20.54559	106.7250

Source	DF	Type III SS	Mean	F Value	Pr > F
			square		
Gruppe	4	10185.41667	2546.35417	6.03	0.0042

5.3.8 Repeated Measures Level Information

Repeated Measures Analysis of Variance Repeated Measures Level Information

dependen	MW1h	MW2h	MW3h	MW4h	MW24h	MW48h	MW72h
t variable	stasis						
Level of time	1	2	3	4	5	6	7

5.3.9 MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no time Effect

H = Type III SSCP Matrix for time

E = Error SSCP Matrix

S = 1 M = 4 N = 4

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks`Lambda	0.04659912	34.10	6	10	< .0001
Pillai`s Trace	0.95340088	34.10	6	10	< .0001
Hotelling-	20.45963389	34.10	6	10	< .0001
Lawley Trace					
Roy´s	20.45963389	34.10	6	10	< .0001
Greatest Root					

5.3.10 MANOVA Test Criteria and F Approximations for the Hypothesis of no time*Gruppe Effect

H = Type III SSCP Matrix for time*Gruppe

E = Error SSCP Matrix

 $S=4 \qquad \qquad M=0.5 \qquad \qquad N=4$

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks`Lambda	0.07113680	1.07	24	36.096	0.0719
Pillai`s Trace	1.64637823	1.52	24	52	0.1051
Hotelling-	5.18171751	1.97	24	16.316	0.0805
Lawley Trace					
Roy´s	3.77131689	8.17	6	13	0.0008
Greatest Root					

NOTE: F Statistic for Roy's Greatest Root is an upper bound

Repeated Measures Analysis of Variance

5.3.11 Test for the Hypothesis for Between Subjects Effects

Source	DF	Type III SS	Mean	F Value	Pr > F
			Square		
Gruppe	4	12434.51131	3108.62783	4.20	0,0177
Error	15	11102.38869	740.15925		

Repeated Measures Analysis of Variance

5.3.12 UnivariateTests for the Hypothesis for Within Subjects Effects

						Adj F	Pr > F
Source	DF	Type III SS	Mean	F	Pr > F	G - G	H-F
			Square	Value			
time	6	71773.83669	11962.30612	36.27	<.0001	<.0001	<.0001
Time*Gruppe	24	16823.27619	700.96984	2.13	0.0057	0.0168	0.0057
Error (time)	90	29686.29881	329.84776				

Greenhouse – Geisser Epsilon	0.6944
Huynh – Feldt Epsilon	1.2511

5.4 Wahrscheinlichkeiten errechnet mittels ANOVA für die Verbrennungszone

Class	Levels	Values
Gruppe	5	01234

Number of observations 50

NOTE: observations with missing values will not be included in this analysis. Thus, only 23 observations can be used in this analysis

5.4.1 MW_1h_Burn

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	709.771558	177.442889	0.76	0.5629
Error	18	4185.945833	232.552546		
Corrected	22	4895.717391			
Total					

R - Square	Coeff Var	Root MSE	MW_1h_burn
			Mean
0.144978	31.54159	15.24967	48.34783

Source	DF	Type III SS	Mean square	F Value	Pr > F
Gruppe	4	709.7715580	177.4428895	0.76	0.5629

5.4.2 MW_2h_Burn

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	2106.203850	526.550962	2.28	0.1006
Error	18	4156.888542	230.938252		
Corrected	22	6263.092391			
Total					

R - Square	Coeff Var	Root MSE	MW_2h_burn
			Mean
0.336288	36.26698	15.19665	41.90217

Source	DF	Type III SS	Mean	F Value	Pr > F
			square		
Gruppe	4	2106.203850	526.550962	2.28	0.1006

5.4.3 MW_3h_Burn

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	474.998188	118.749547	0.71	0.5937
Error	18	2997.458333	166.525463		
Corrected	22	3472.456522			
Total					

R - Square	Coeff Var	Root MSE	MW_3h_burn
			Mean
0.136790	47.71751	12.90447	27.04348

Source	DF	Type III SS	Mean square	F Value	Pr > F
Gruppe	4	474.9981884	118.7495471	0.71	0.5937

5.4.4 MW_4h_Burn

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	620.308696	155.077174	0.76	0.5635
Error	18	3663.300000	203.516667		
Corrected	22	4283.608696			
Total					

R - Square	Coeff Var	Root MSE	MW_4h_burn
			Mean
0.144810	44.40004	14.26593	32.13043

Source	DF	Type III SS	Mean square	F Value	Pr > F
Gruppe	4	620.3086957	155.0771739	0.76	0.5635

5.4.5 MW_24h_Burn

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	472.682681	118.170670	0.70	0.6001
Error	18	3025.861667	168.103426		
Corrected	22	3498.544348			
Total					

R - Square	Coeff Var	Root MSE	MW_24h_burn
			Mean
0.135108	39.92580	12.96547	32.47391

Source	DF	Type III SS	Mean	F Value	Pr > F
			square		
Gruppe	4	472.6826812	118.1706703	0.70	0.6001

5.4.6 MW_48h_Burn

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	289.058877	72.264719	0.81	0.5344
Error	18	1603.854167	89.103009		
Corrected	22	1892.913043			
Total					

R - Square	Coeff Var	Root MSE	MW_48h_burn
			Mean
0.152706	21.59195	9.439439	43.71739

Source	DF	Type III SS	Mean	F Value	Pr > F
			square		
Gruppe	4	289.0588768	72.2647192	0.81	0.5344

5.4.7 MW_72h_Burn

Source	DF	Sum of	Mean	F Value	Pr > F
		Squares	Square		
Model	4	300.775181	75.193795	0.42	0.7935
Error	18	3238.529167	179.918287		
Corrected	22	3539.304348			
Total					

R - Square	Coeff Var	Root MSE	MW_72h_burn
			Mean
0.084981	24.75982	13.41336	54.17391

Source	DF	Type III SS	Mean	F Value	Pr > F
			square		
Gruppe	4	300.7751812	75.1937953	0.42	0.7935

5.4.8 Repeated Measures Level Information

Repeated Measures Analysis of Variance Repeated Measures Level Information

dependen	MW1h	MW2h	MW3h	MW4h	MW24h	MW48h	MW72h
t variable	burn	burn	burn	burn	burn	burn	burn
Level of	1	2	3	4	5	6	7
time							

5.4.9 MANOVA Test Criteria and Exact F Statistics for the Hypothesis of no time Effect

- H = Type III SSCP Matrix for time
- E = Error SSCP Matrix
- S = 1 M = 2 N =5,5

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks`Lambda	0.14375404	12.91	6	13	<.0001
Pillai`s Trace	0.85624596	12.91	6	13	<.0001
Hotelling-	5.95632629	12.91	6	13	<.0001
Lawley Trace					
Roy´s	5.95632629	12.91	6	13	<.0001
Greatest Root					

5.4.10 MANOVA Test Criteria and F Approximations for the Hypothesis of no time*Gruppe Effect

H = Type III SSCP Matrix for time*Gruppe

E = Error SSCP Matrix

S = 4 M = 0,5 N = 5,5

Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks`Lambda	0.22521990	1.03	24	46.562	0.4474

Kapillaren Kapillaren Kapillaren gesunde Haut

Pillai`s Trace	1.09143144	1.00	24	64	0.4787
Hotelling-	2.19427952	1.10	24	23.102	0.4097
Lawley Trace					
Roy´s	1.56127970	4.16	6	16	0.0104
Greatest Root					

NOTE: F Statistic for Roy's Greatest Root is an upper bound

Repeated Measures Analysis of Variance

5.4.11 Test for the Hypothesis for Between Subjects Effects

Source	DF	Type III SS	Mean	F Value	Pr > F
			Square		
Gruppe	4	1917.721368	479.430342	0.99	0.4378
Error	18	8711.071458	483.948414		

Repeated Measures Analysis of Variance

5.4.12 UnivariateTests for the Hypothesis for Within Subjects Effects

						Adj Pr > F	
Source	DF	Type III SS	Mean	F	Pr > F	G - G	H - F
			Square	Value			
Time	6	12422.07069	2070.34512	15.79	<.0001	<.0001	<.0001
Time*Gruppe	24	3056.07766	127.33657	0.97	0.5092	0.4945	0.5090
Error (time)	108	14160.76625	131.11821				

Greenhouse – Geisser Epsilon

Huynh – Feldt Epsilon

Tier	Stasezone		Verbrennungszone			
	leer	gefüllt	leer	gefüllt	leer	gefüllt
Nr. 004	8	0	0	3	3	3
Nr. 007	2	5	0	0	0	2
Nr. 008	0	10	0	7	3	1
Nr. 009	3	0	3	0	3	1
Nr. 010	3	0	1	1	1	0
Nr. 011	3	0	1	2	3	1
MW :	3,1666	2,5	0,8333	2,16666	2,16666	1,333333333
Nr. 103	3	0	1	0	1	1
Nr. 104	1	0	0	3	2	0
Nr. 105	2	0	0	4	1	0
Nr. 106	1	0	1	2	2	0
Nr. 107	n.a.	n.a.	4	0	1	0
Nr. 108	1	0	0	0	1	0
Nr. 109	3	0	2	4	4	0
MW :	1,833333	0	1,142857	1,857142	1,71428571	0,14285714
Nr. 201	5	0	0	0	0	0
Nr. 202	3	0	0	3	2	1
Nr. 203	1	0	0	4	1	0
Nr. 204	3	0	1	0	1	0
Nr. 205	3	0	0	5	4	0
Nr. 206	4	0	n.a.	n.a.	n.a.	n.a.
Nr. 207	2	2	n.a.	n.a.	2	0
Nr. 208	4	0	0	0	1	0
Nr. 209	2	1	0	3	4	1
MW :	3	0,333333	0,142857	2,142857	1,875	0,25
Nr. 301	1	0	0	1	2	0
Nr. 302	2	0	0	2	1	0
Nr. 303	3	0	0	1	4	0
Nr. 304	2	0	0	3	3	0
Nr. 305	1	0	0	5	2	0
Nr. 306	1	0	0	2	4	0
Nr. 307	1	0	0	2	1	0
Nr. 308	3	0	n.a.	n.a.	1	0
MW :	1,75	0	0	0,608695	2,25	0
Nr. 401	/	0	2	0	4	0
Nr. 402	2	4	0	0	4	2
Nr. 403	0	0	0	0	1	0
Nr. 404	6	0	1	0	1	0
Nr. 405	1	0	n.a.	n.a.	4	0
Nr. 406		0	0	2	2	0
Nr. 407	2	0	1	2	0	0
Nr. 408	3	0	1	0	3	0
Nr. 409		0	2		2	0
	2,555555	0,444444	0,875	0,625	2,33333333	0,22222222

5.5 Kapillarfüllung pro Gesichtsfeld in den einzelnen histologischen Schnitten

Tier	Nekrosetiefe in mm			
	Verbrennungszone	Stasezone		
Nr. 004	1,4	0		
Nr. 007	1,65	0		
Nr. 008	1,4	0,02		
Nr. 009	0,25	0		
Nr. 010	2,2	0		
Nr. 011	1,4	0		
MW :	1,383333333	0,003333333		
Nr. 103	1,6	0		
Nr. 104	1,45	0		
Nr. 105	1,4	0,3		
Nr. 106	1,2	0,3		
Nr. 107	1,2	n.a.		
Nr. 108	1,4	0,2		
Nr. 109	1	0,1		
MW :	1,321428571	0,15		
Nr. 201	1,6	0		
Nr. 202	1,2	0		
Nr. 203	2	0		
Nr. 204	1,5	0		
Nr. 205	1,4	0		
Nr. 206	n.a.	0		
Nr. 207	1,5	0		
Nr. 208	1	0		
Nr. 209	0,8	0		
MW:	1,375	0		
Nr. 301	0,9	0		
Nr. 302	n.a.	0		
Nr. 303	1	0		
Nr. 304	1	0,02		
Nr. 305	1,1	0		
Nr. 306	1,4	0		
Nr. 307	1,7	0		
INF. 308	1,7	0 0005		
	1,257142857	0,0025		
Nr. 401	G, I	0		
Nr. 402	1,4	0		
Nr. 403	1	0		
Nr. 404	1,5	0		
Nr. 400	1,9	0		
Nr. 400	U,6	0		
Nr. 407	1,1	0		
Nr. 400	1	0		
INI. 409	1,1	0		
IVI VV .	1,2000000	0		

5.6 Nekrosetiefe pro Gesichtsfeld in den einzelnen histologischen Schnitten

5.7 Wahrscheinlichkeiten der Kapillarfüllung mittels ANOVA

Abhängige Variable	(I) Gruppe	(J) Gruppe	Mean Difference (I-J)	Std. Fehler	Sig.
VOLL Stase	Kontrolle	Fab 30 min	2,50000	1,03339	0,021
		lgG 30 min	2,16667	0,94335	0,028
		lgG 3h	2,50000	0,96665	0,014
		Fab 3h	2,05556	0,94335	0,037
	Fab 30min	Kontrolle	-2.50000	0.94335	0.021
		laG30 min	-0.33333	0.94335	0.726
		laG 3h	0.00000	0.86973	1.000
		Fab 3h	-0.44444	0.84376	0.641
	laG 30 min	Kontrolle	-2.16667	0.94335	0.028
	.g	Fab 30 min	0.33333	0.94335	0.726
		laG 3h	0.33333	0.86973	0.704
		Fab 3h	-0.11111	0.84376	0.896
	laG 3h	Kontrolle	-2.50000	0.96665	0.014
	9	Fab 30 min	0.00000	0.96665	1.000
		laG 30 min	-0.33333	0.86973	0.704
		Fab 3h	-0.44444	0.86973	0.613
	Fab 3h	Kontrolle	-2.05556	0.94335	0.037
		Fab 30 min	0.44444	0.94335	0.641
		laG 30 min	0.11111	0.84376	0.896
		laG 3h	0.44444	0.86973	0.613
VOLL Gesund	Kontrolle	Fab 30 min	1,19048	0,32478	0.001
		laG 30 min	1.08333	0.31527	0.002
		laG 3h	1.33333	0.31527	0.000
		Fab 3h	1,11111	0,30767	0,001
	Fab 30 min	Kontrolle	-1,19048	0.32478	0.001
		laG 30 min	-0.10714	0.30213	0.725
		laG 3h	0.14286	0.30213	0.639
		Fab 3h	0.07937	0.29419	0.789
	laG 30 min	Kontrolle	-1.08333	0.31527	0.002
	9	Fab 30 min	0.10714	0.30213	0.725
		laG 3h	0.25000	0.29189	0.389
		Fab 3h	0,02778	0,28366	0,923
	laG 3h	Kontrolle	-1.33333	0.31527	0.000
	9	Fab 30 min	-0.14286	0.30213	0.639
		laG 30 min	-0.25000	0.29189	0.398
		Fab 3h	-0.22222	0.28366	0.439
	Fab 3h	Kontrolle	-1,11111	0,30767	0.001
		Fab 30 min	0.07937	0.29419	0.789
		IgG 30 min	-0,02778	0,28266	0.923
		lgG 3h	0.22222	0.28366	0,439
VOLL Burn	Kontrolle	Fab 30 min	0.30952	1.01499	0.763
		IgG 30 min	0,02381	1,01499	0,981

5.7.1 LSD

multiple comparisons

	lgG 3h	-0,11905	1,01499	0,907
	Fab 3h	1,54167	0,98528	0,128
Fab 30 mir	Kontrolle	-0,30952	1,01499	0,763
	lgG 30 min	-0,28571	0,97517	0,772
	lgG 3h	-0,42857	0,97517	0,663
	Fab 3h	1,23214	0,94421	0,202
IgG 30 mir	Kontrolle	-0,02381	1,01499	0,981
_	Fab 30 min	0,28571	0,97517	0,772
	lgG 3h	-0,14286	0,97517	0,885
	Fab 3h	1,51786	0,94421	0,118
lgG 3h	Kontrolle	0,11905	1,01499	0,907
	Fab 30 min	0,42857	0,97517	0,663
	lgG 3h	0,14286	0,97517	0,885
	Fab 3h	1,66071	0,94421	0,089
Fab 3h	Kontrolle	-1,54167	0,98528	0,128
	Fab 30min	-1,23214	0,94421	0,202
	lgG 30 min	-1,51786	0,94421	0,118
	lgG 3h	-1,66071	0,94421	0,089

5.7.2 ANOVA

		Sum of		Mean		
		squares	df	square	F	Sig.
VOLL Stase	Between groups	27,541	4	6,885	2,149	0,097
	Within groups	105,722	33	3,204		
	Total	133,263	37			
VOLL Gesund	Between groups	7,307	4	1,827	5,360	0,002
	Within groups	11,246	33	0,341		
	Total	18,553	37			
VOLL Burn	Between groups	14,320	4	3,580	1,076	0,386
	Within groups	99,851	30	3,328		
	Total	114,171	34			

6. Literaturverzeichnis

- 1. Henckel von Donnersmarck, G., Dorfmüller M., von Wallenberg P ,: Verbrennungen, Verbrennungen, Zuckschwerdt, Auflage 2: 1998
- **2. Carneiro, Junqueira**: *Junqueira Carneiro Histologie* 1996 p.421-22, Schiebler,T.H.
- 3. Muir, I. K. F, Barklay, T. L. : burns and their treatment Lloyd duke, 1962
- Shakespeare, P. G. : Standards and Quality in burn treatment Burns, 2001
 27: p.791-92
- **5. Johnson, R. , Richard, R.** : partial *thickness burns: identification and management* Advances in skin and wound care, 2003 16(4): p.178-186
- 6. Staley, M. J., Richard, R. L. : physical rehabilitation: assessment & treatment. Physical rehabilitation : assessment and treatment FA Davis, Philadelphia, p.511-5, Edition: 3
- **7. Johnson, C.** : *Pathological manifestation of burn injury.* Burn care and rehabilitation: principles and practice 1995 FA Davis, Philadelphia, p.29-33
- 8. Jackson, D. : *The diagnosis of the depth of burning.* The Bitish J. of Surg.
 1953 40: p.588-96
- **9. Zawacki, B. E.** : Reversal of capillary stasis and prevention of necrosis in burns. Ann Surg 1974, 180: p.98
- **10. Sevitt, S.** : *local blood flow changes in experimental burns.* J. Pathol. 1949 61: p.427
- **11. Leach, E. H., Peters, R. A., Rossiter, R.J.** : Quart. J. exp. Physiol. 1944 32: p.67
- Arturson, G. : Pathophysiological aspects of the burn syndrome with special reference to liver injury and alterations of capillary permeability. Acta Chir. Scand. 1961 274: p.1-155
- 13. Arturson, G. : Pathophysiology of the burn wound. Ann Chir. Gynaecol. 198069: p.178-90
- 14. Baxter, C. R., Shires, G. T. : Physiological response to crystalloid resuscitation of severe burns. Ann. N.Y: Acad. Sci. 1968 150: p.874-94
- **15. Smahel, J.** : *Die Pathophysiologie der Verbrennungswunde.* Handchirurgie 1985 17: p.340f

- 16. Pallua, N. ,Machens, H. G. , Becker, M. : Chirurgische Prävention der posttraumatischen Sepsis durch Sofortnekrektomie von Verbrennungswunden. Langenbecks Arch. Chir. 1996 113: p.1144-8 Suppl. Kongressbd.
- **17. Bjornson, A. B. , Altmeier, W. A. , Bjornson, H. S.** : The septic burned patient. Ann. Surg. 1979 189: p.515
- **18. Bellanti, J. A.** : Antibody responses in serum and nasal sections. New England journal of medicine 1969 280: p.1628
- **19. Möller, G.** : Immunglobulin D: structure, synthesis, membrane representation and function. Immunological Reviews 1977 37
- 20. Möller, G. : Immunglobulin E. Immunological Reviews 1978 41
- **21. Turner, M. W.** *: structure and function of immunoglobulins.* Immunochemistry: an advanced text book 1977
- **22. Hahn, G. S.** : *Antibody structure, function and activity sites.* Physiology of Immunoglobulins: Diagnostic and Clinical aspects 1982 edited book
- **23. Steward, M. W.** : *Antibodies: their structure and function*. Chapman and Hall 1983 London
- **24. Janeway, Travers, Walport, Shlonchk** : *Immuno Biology.* Garland Science 2005 Edition 6
- **25.** Davis, M. M. : *T-cell antigen receptor genes and T-cell recognition.* Nature 1988 344: p.395-402
- **26. Kloetzel, P.** : generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPP II. Nature Immunology 2004 5(7)
- **27. Hettich, R. , Hopt, U. , Popspisil, M.** : Untersuchungen zur Entstehung und Therapie des Verbrennungsödems. Med. Welt 1978 29:p.1405-1411
- **28.** Bone, R. C. et al : Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992 101(6):p.1644-1655
- **29.** Hansbrough, J. F., Zapata-Sirvent, R. L., Peterson, V. M. : Immunomodulation following burn injury. Surg. Clin. North America 67(1): p.69-92
- **30. Berger, A. , Hierner, R.** : Plastische Chirurgie, Grundlagen, Prinzipien, Techniken. Springer Verlag 2003

- **31. Faist, E. et al** : Alteration of monocyte function following major injury. Arch. Surg. 123(3): p.287-292
- **32. Goldfarb, R. D. , Parillo, J.** *: Complement.* Crit. Care. Med. 2005, 33(12): p. S482-4
- **33. Gelfand, J. A.** : Preferential activation and depletion of the alternative complement pathway by burn injury. Ann. Surg. 1983 198(1): p.58-62
- **34.** Davis, C. F. et al : Neutrophil activation after burn injury : contributions of the classic complement pathway and of endotoxin. Surgery 1987, 102(3): p.477-484
- 35. Berman, S., Gewurz, H., Mold, C. : Binding of C-reactive protein to nucleated cells leads to complement activation. J. Immunol. 1986, 136(4): p.1354-1359
- **36. Wolbink, G. J. et al**: CRP-mediated activation of complement in vivo: assessment by measuring circulating complement-C-reactive protein complexes. J. Immunol. 1996, 157(1): p.473-479
- **37.** Radke, A. et al : C1 Inhibitor prevents capillary leakage after thermal trauma. Crit. Care. Med. 2000, 28(9):p.3224-3232
- **38. Beutler, B. et al** : Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endothoxin resistance. Science 1986, 232(4753): p.977-980
- **39. Endo, S. et al.** : *Plasma tumor necrosid factor-alpha levels in patients with burns*. Burns 1993 19(2): p. 124-127
- 40. Moore, F. D. Jr., Socher, S. H., Davis, C. : Tumor necrosis factor and endotoxin can cause neutrophil activation through seperate pathways. Arch. Surg. 1991 126(1): p. 70-73
- **41. Takayama, T. K., Miller, C. , Szabo, G.** : elevated tumor necrosis factor alpha production concomitant to elevated prostaglandin E2 production by trauma patients` monocytes. Arch. Surg. 1990 125(1): p.29-35
- 42. Nijsten, M. W., et al. : Interleukin-6 and its relation to the humoral immune response and clinical parameters in burned patients. Surgery 1991 109(6): p.761-767
- **43. Nijsten, M. W. et al.**: Serum levels of interleukin-6 and acute phase responses.

Lancet 1987 2(8564): p.921
- 44. Moore, F. D. Jr.; Davis, C. F. : Monocyte activation after burns and endotoxemia. J. Surg. Res. 1989, 46(4): p.350-354
- **45. Sevitt, S.** : *Eosinophil and other leukocyte changes in burned patients.* British Medical Journal 1951, 1: p. 976-983
- **46. Solomkin, J. S.** : Neutrophil disorders in burn injury: complement, cytokines and organ injury. J. Trauma 1990, 30(12): p.S80-85
- 47. Korthuis, R. J.; Anderson, D. C.; Granger, D. N. : Role of neutrophil endothelial cell adhesion in inflammatory disorders. J. Crit. Care 1994, 9(1): p.47-71
- **48. Cioffy, W. G. Jr. et al.**: *Granulocyte oxidative activity after thermal injury.* Surgery 1992, 112(5): p.860-865
- **49. Barlow, Y.** : *T lymphocytes and immunosuppression in the burned patient: a review.* Burns 1994, 20(6)487-490
- **50.** Teodorczyk-Injeyan, J. A. ; Sparkes, B. G. ; Peters, W. J. : Regulation of *IgM production in thermally injured patients.* Burns 1989, 15(4): p.241-247
- **51.Teodorczyk-Injeyan, J. A. et al.** : *Immunosuppression follows systemic Tlymphocyte activation in the burn patient.* Clin. Exp. Immunol 1991, 85(3): p. 515-518
- **52. Teodorczyk-Injeyan, J. A. et al**: Soluble interleukin-2 receptor alpha secretion is regulated to altered intelreukin-2 production in thermally injured patients. Burns 1991, 17(4): p.290-95
- 53. Kagan, R. J. et al. : The relationship between the percentage of circulating B- cells, corticosteroid levels and other immunologic parameters in thermally injured patients. J. Trauma 1989, 29(2): p. 208-13
- **54. Yamamoto, H. et al.** : Burn injury induces a biphasic immunoglobulin M response to bacterial antigen. J. Trauma 1995, 39(2): p.279-84
- 55. Babcock, G. F., Alexander, J. W., Warden, G. D. : Flow cytometric analysis of

neutrophil subsets in thermally injured patients developing infection. Clin. Immunolpathol. 1990 54(1): p.117-125

56. Deitch, E. A. et al. : Effect of local and systemic burn microenvironment on neutrophil activation as assessed by complement receptor expression and morphology. J. Trauma 1990, 39(3): p.259-68

- 57. Dyess, D. L. et al. : Subeschar tissue fluid: a source of cell mediated immune suppression in victims of severe thermal injury. J. Burn Care Rehabil. 1991, 12(2): p.101-105
- **58. Ninnemann, J. L. ; Ozkan, A. N.** : Definition of a burn injury-induced immunosuppressive serum component. J. Trauma 1985, 25(2): p.113-117
- **59. Horgan, A. F. et al.** : The role of cyclic adenosine monophosphate in the suppression of cellular immunity after thermal injury. Arch. Surg. 1994, 129(12): p.1284-1289
- 60. Schwacha, M. G. et al. : Role of protein kinase C in cyclic AMP-mediated suppression of T-lymphocyte activation following burn injury. Biochim. Biophys. Acta 1999, 1455(1): p.45-53
- 61. Callery, M. P. et al. : Interlukin 6 production by endotoxin stimulated Kuppfer cells is regulated by prostaglandin E2. J. Surg. Res. 1990, 48(6): p.523-527
- **62. Gribic, J. T. et al.**: The role of prostaglandin E2 in immune suppression following injury. Ann. Surg. 1991, 214(3): p.253-262
- **63.** Nakae, H. et al. : Chronological changes in the complement system in sepsis. Surg. Today 1996, 26(4): p.225-229
- **64. Carr, D. J.** : The role of endogenous opioids and their receptors in the immune system. Proc. Soc. Exp. Biol. Med. 1991, 198(2): p.710-720
- 65. Koller, M et al. : Studies on the mechanism of granulocyte dysfunctions in severely burned patients-evidence for altered leukotriene generation. J. Trauma 1989, 29(4): p. 335-445
- **66.** Hu, S. et al. : Study on delay two-phase multiple organ dysfunction syndrome. Chin. Med J.(Eng) 1998, 111(2): p.101-108
- **67. Mishima, S. et al.** *: Mild hypotension and body burns synergistically increase bacterial translocation in rats consistent with a "two hit phenomenon".* J. burn care Rehabil. 1997, 18(1): p.22-26
- 68. O'Riordain, M. G. et al. : Dosage and timing of anti-TNF-alpha antibody treatment determine its effect of resistance to sepsis after injury. J. surg. Res. 1996, 64(1): p. 95-101
- 69. Kell, M. R. et al. : Injury primes the immune system for an enhanced and lethal T- cell response against bacterial superantigen. Shock 1999, 12(2): p.139-144

- **70. Le Boucher, J. et al.** : *Modulation of immune response with ornithine Aketoglutarate in burn injury: an arginine or glutamine dependency?* Nutrition 1999, 15(10): p.773-777
- **71. Gianotti, L et al.** : role of early enteral feeding and acute starvation on postburn bacterial translocation and host defense: prospective randomized *trials.* Crit. Care med. 1994 22(2): p.265-272
- 72. Hultman, C. S. et al. : Early but not late burn wound excision partially restores vital-specific T lymphocyte cytotoxicity. J. Trauma 1997, 43(3): p.442-447
- **73.** Vrsansky, H.; Ulvestad, E.; Bjerknes, R.: Increased levels of circulating interleukin-8 in patients with large burns: relation to burn size and sepsis. J. Trauma 1995, 39(4): p.635-640
- **74. Lee, N.G. et al.** : Immunization of burn-patients with a Pseudomonas aeruginosa membrane protein vaccine elicits antibodys with protective efficacy. Vaccine 2000, 18(18): p.1952-1961
- **75. Murray, H. W.** : Current and future clinical applications of interferon-gamma in host antimicrobial defense. Intensive Care Med. 1996 22(4): p.S456-461
- 76. Pierrangeli, S. et al. : Murine interferon-gamma enhances resistance to infection with stains of Pseudomonas aeruginosa in mice. Cytokine 1993, 5(3): p.230-234
- **77. Gianotti, L. et al.** : Steroide therapy can modulate gut barrier function, host defense, and survival in thermally injured mice. J.Surg. Res. 1996, 62(1): p.53-58
- **78. Ziegler, T. R. ; Leader, I.** : Adjunctive human growth hormone therapy in nutrition support: potential to limit septic complications in intensive care unit patients. Semin. Respir. Infect 1994, 9(4): p.240-247
- **79. Santangelo, S. et al.** : Prostaglandin E2 receptor antagonist treatment restores the balance to bone marrow myelopoesis after burn sepsis. J. Trauma 2000, 48(5): p.826-830
- 80. Fontanilla, C. V. et al. : Anti-Interleukin-6 antibody treatment restores cellmediated immune function in mice with acute ethanol exposure before burn trauma. Alcohol Clin. Exp. Res. 2000, 24(9): p.1392-1399

- **81.** Mileski, W. ; Raymond, J. F. ; Winn, R. K. ; Harlan, J. M. ; Rice, C. L. : *Inhibition of leukocyte adherence and aggregation for treatment of severe cold injury in rabbits.* J. Appl. Physiol. 1993, 74(3): p.1432-1436
- 82. Nwariaku, F. et al. : Inhibition of selectin- and integrin- mediated inflammatory response after thermal injury. J. Surg. Res. 1996, 63(1): p. 355-358
- 83. Choi, M. et al. : Preventing the infiltration of leukocytes by monoclonal antibody blocks the development of the progressive ischemia in rat burns. Plast. Reconstr. Surg. 1995, 96(5): p.1177-1185
- 84. Lewis, M. S., Whatley, R. E.; Cain, P.; Mcintyre, T. M.; Prescott, S.M.; Zimmermann, G. A.: Hydrogen peroxide stimulates the synthesis of platelet activating factor by endothelium and induces endothelial cell dependent neutrophil adhesion. J. Clin. Invest. 1998, 82: p.2045-2055
- 85. Mulligan, M. S.; Varani, J.; Dame, M. K.; et al. : Role of endothelialleukocyte adhesion molecule 1 in neutrophil-mediated lung injury in rats. J. Clin. Invest. 1991, 88: p.1396-1406
- 86. Leeuwenberg, J. F. M. ; Jeunhomme, M. A. A. ; Buurman, W. A. : Adhesion of polymorphonuclear cells to human endothelial cells. Adhesionmolecule-dependent and Fc-receptor mediated adhesion-moleculeindependent mechanisms. Clin. Exp. Immunol. 1990, 81(3): p.496-500.
- 87. Osborn, L. ; Hession, C. ; Tizard, R. ; Vassallo, C. ; Luhowskyj, S. ; Chi-Rosso, G. ; Lobb, R. : direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 1989, 59: p.1203
- Nuytinck, J. K. S.; Goris, R. J. A.; Schlag, S. M.; Zimmerman, G. A.: posttraumatic complications and inflammatory mediators. Arch. Surg. 1986, 121: p.886-890
- 89. Mileski, W.; Sikes, P.; Atiles, L.; Lightfoot, E.; Lipsky, P.; Baxter, C.: Inhibition of leukocyte adherence and susceptibility to infection. J. Surg. Res. 1993, 54: p.349
- **90. Mileski, W. et al.** : Inhibition of leukocyte adherence in a rabbit model of major thermal injury. J. Burn care rehabil. 1993, 14(6): p.610-616
- **91. Hogg, N.**; Bates, A. B.; Harvey, J.: Structure and function of intercellular adhesion molecule-1. Chem. Immunol. 1991, 50: p.98

- **92. Simmons, D. ; Malegapuru, W. ; Makgoba, M. W. ; Seed, B.** : *ICAM-1, an adhesion ligand of LFA-1, is homologous to the neural cell adhesion molecule NCAM.* Nature 1988, 331: p.624-627
- 93. Staunton, D. E.; Marlin, S. D.; Stratowa, C.; Dustin, M. L.; Springer, T.
 A.: Primary structure of ICAM 1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell 1988, 52(6): p.925-933
- 94. Marlin, S.; Springer, T. A. : Purified intercellular adhesion molecule 1(ICAM 1) is a ligand for lymphocyte function associated antigen 1 (LFA 1). Cell 1987, 51(5): p.813-819
- 95. Dustin, M. L.; Rothlein, R.; Bhan, A. K.; Dinarello, C. A.; Springer, T. A.
 : Induction by IL-1 and interferron-gamma: tissue distribution, biochemistry and function of a natural adherence molecule (ICAM-1). J. Immunol. 1986, 137(1): p.245-254
- 96. Pohlman, T. H.; Stanness, K. A.; Beatty, P. G.; Ochs, H. D.; Harlan, J.
 M.: An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1 and tumor necrosis factor-alpha increases neutrophil adherence by a CDw18-dependent mechanism. J. Immunol. 1986, 136: p.4548
- **97. Rothlein, R. ; Springer, T. A.** : The requirement for lymphocyte function associated antigen 1 in homotypic leukocyte adhesion stimulated by phorbol ester. J. Exp. Med. 1986, 163(5): p.1132-1149
- 98. Springer, T. A.; Dustin, M. L.; Kishimoto, T. K.; Marlin, S. D. A.: The lymphocyte function - associated LFA - 1, CD2; and LFA - 3 molecules: cell adhesion receptors of the immune system. Annu. Rev. Immunol. 1987, 5: p.223-252
- **99. Staunton, D. E.**; **Dustin, M.L.**; **Erickson, H. P.**; **Springer, T. A.** : *The* arrangement of the immunolobulin-like domains of ICAM-1 and the binding sites of LFA-1 and rhinovirus. Cell 1990, 61: p.243-254
- 100. Calvete, J. J. ; Henschen, A. ; Gonzales-Rodriguez, J. : Complete localization of the intrachain disulphide bonds and the N- glycosylation points in the alpha-subunit of human platelet glycoprotein IIb. Biochem. J. 1989, 261: p.561-568

- **101. Anderson, D. C. ; Springer, T. A.** : Leukocyte adhesion deficiency: an inherited defect in the MAC-1, LFA-1, and p150,95 glycoproteins. Ann. Rev. Med. 1987, 38: p.175
- **102. Inaba, K. ; Steinman, R. M.** : Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen-presenting cell) requirements for growth and lymphokine release. J. Exp. Med. 1984, 160: p.1717
- **103. Gardener, J. M. ; Hynes, R. O.** : Interaction of fibronectin with its receptor on platelets. Cell 1985, 42: p.439
- **104. Hirschberg, H. ; Bergh, O. J. ; Thorsby, E.** : *Antigen presenting properties* of human vascular endothelial cells. J. Exp. Med. 1980, 152: p.2495
- 105. Davignon, D. ; Martz, E. ; Reynolds, T. ; Kürzinger, K. ; Springer, T. A. : Lymphocyte function-associated antigen (LFA-1): a surface antigen distinct from Lyt-2,3 that participates in T lymphocyte-mediated killing. Proc. Natl. Acad. Sci. USA 1981, 78(4535)
- **106. Gougeon, M. L. ; Bismuth, G. ; Theze, J.** : Differential effects of monoclonal antibodies anti-L3T4 and anti-LFA1 on the antigen-induced proliferation of T-helper-cell clones: correlation between their susceptibility to inhibition and their affinity for antigen. J. Cell. Immun. 1985, 95(1): p.75-83
- **107.** Dougherty, G. J.; Hogg, N.: The role of monocyte lymphocte function associated antigen 1 (LFA 1) in accessory cell function. Eur. J. Immunol. 1987, 17: p.943-947
- **108. Shaw, S. , et al.** : Two antigen- independent adhesion pathways used by human cytotoxic T-cell clones. Nature 1986, 323: p.262-264
- 109. van Kooky, Y.; van de Wiel-van Kemenade, P.; Weder, P.; Kuijpeers,
 T. W.; Figdor, C. G. : Enhancement of LFA-1-mediated cell adhesion by triggering through CD2 or CD3 on T lymphocytes. Nature 1989, 342: p.811
- **110. Kishimoto, T. K. , et al.** : *The leukocyte Integrins.* Advances in Immunology 1989, 46: p.149-182
- **111. Martz, E.** : *LFA 1 and other accessory molecules functioning in adhesion of T and B lymphocytes.* Hum. Immunl. 1987, 18(1): p.3-37
- 112. Makgoba, M. W., et al. : Functional evidence that intercellular adhesion molecule - 1 (ICAM -1) is a ligand for LFA - 1- dependent adhesion in T cell mediated cytotoxicity. Eur. J. Immun. 1988, 18(4): .637-640

- **113. Price, T. H.**; **Beatty, P. G.**; **Corpuz, S. R.** : *In vivo inhibition of neutrophil function in the rabbit using monoclonal antibody to CD18.* J. Immunol. 1987, 139: p. 4174-4177
- 114. Taylor, B. M.; Kolbasa, K. P.; Chin, J. E.; Richards, I. M.; Fleming, W.
 E.; Griffin, R. L.; Fidler, S. F.; Sun, F. F. : Roles of adhesion molecules ICAM-1 and alpha4 integrin in antigen-induced changes in microvascular permeability associated with lung inflammation in sentisized brown norway rats. Am. J. Respir. Cell Mol. Biol. 1997, 17: p.757-766
- 115. Mileski, W.; Rothlein, R.; Lipsky, P.: Interference with the function of leukocyte adhesion molecules by monoclonal antibodies: a new approach to burn injury. Eur. J. Pediatr. Surg. 1994, 4(4): p.225-230
- 116. Mileski, W.; Borgstrom, D.; Lightfoot, E.; Rothlein, R.; Faanes, R.; Lipsky, P.; Baxter, C.: Inhibition of leukocyte-endothelial adherence following thermal injury. J. Surg. Res. 1992, 52: p.334-339
- 117. Nwariaku, F. E.; Mileski, W.; Lightfoot, E., Sikes, P., Lipsky, P.: Alterations in leukocyte adhesion molecule expression after burn injury. J. Trauma: Injury, Infection and critical Care 1995, 39(2): p.285-288
- 118. Mileski, W.; Burkhart, D.; Hunt, J.; Kagan, R.J.; Saffle, J. R.; Herndon, D. N.; Heimbach, D. M.; Luterman, A.; Yurt, R.; Goodwin, C.
 W.; Hansbrough, J.: Clinical effects of inhibiting leukocyte adhesion with monoclonal antibody to intercellular adhesion molecule-1 (Enlinomab) in the treatment of partial -thickness burn injury. J. Trauma 2003, 54: p.950-958
- **119. Jerath, M. R. et al.** : Burn wound assessment in porcine skin using indocyanine green fluorescence. J. Trauma 1999, 46(6): p.1085-1088
- 120. Eren, S. et al. : Assessment of microcirculation of an axial skin flap using indocyanine green fluorescence angiography. Plast. Reconstr. Surg. 1995, 96(7): p.1636-1649
- **121. Sheridan, R. L. et al.** : Burn depth estimation by use of indocyanine green fluorescence: initial human trial. J. Burn Care Rehabil. 1995, 16(6): p.602-604
- 122. Schneider D., Berrouschot J., Brandt E.: safety, pharmacokinetics and biological activity of enlinomab (anti- ICAM 1 antibody): an openlabel, dosenescalation study in patients hospitalized for acute stroke. Eur. Neurol. 1998, 40: p.78-83

- **123. Fukushima, S.** : A novel strategy for myocardial protection by combined antibody therapy inhibiting both *P*-Selektin and Intercellular adhesion molecule 1 via retrograde intracoronary route. Circulation 2006, 114(1): p.I-251-I-256
- **124. Ma, X. L.** : Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule 1 in myocardial ischemia and reperfusion. Circulation 1992, 86(3): p.937-946
- 125. Boehncke W H., Ochsendorf, F. R. : Efficiancy of the fully human monoclonal antibody MOR 102(#5) against intercellular adhesion molecule - 1 in the psoriasis - severe combined immunodeficient mouse model. British J. of dermatology 2005, 153: p.758-766
- 126. Militzer, K. : Vergleichende Morphologie der Haut und der Haare von Maus, Ratte, Hamster, Meerschweinchen und Kaninchen (Teil1). Haut und Hautanhangsorgane kleiner Laboratoriumssäugetiere 1982, p.25-28, 108-109
- **127. Knabl J. S. , et al.** : Controlled partial skin thickness burns: an animal model for studies of burnwound progression. Burns 1999, 25: p.229-235
- **128. Zor, F. et al.** : Saving the zone of stasis: is glutathione effective? Burns 2005, 31: p.972-976
- **129. Bannwell P. E. , et al.** : Burn depth estimation: use of laserdoppler flowmetry. Plast. Reconstr. Surg. 1999, 10381): p.334-335
- **130. Still J. M. , et al.** : Diagnosis of burn depth using laser-induced indocyanine green fluorescence: a preliminary clinical trial. Burns 2001, 27(4): 364-71
- 131. Shakespeare, P. G. : Looking at burn wounds: The A. B. Wallace memorial lecture 1991. Burns 1992, 18(4): p.287-295
- 132. Sharar S. R., Vedder, N. B., Mileski W. J., Rice C. L., Harlan J. M., Winn R. K. : The role of beta-2 Leukocyte Integrins in vivo. The Immune consequence of Trauma, Shock and Sepsis. Mechanism and therapeutic approaches. (Springer Verlag) 1991
- **133. Chvapil M.**, **Speer D.T.**, **Owen J. A.**: *Identification of burn injury by collagen stainability.* Plast. Reconstr. Surg. 1984, 73: p.428
- 134. Watts A. M. I., Tyler M. P. H., Perry M. E., Roberts A. H. N., Mc Grouther D. : Burn depth and its histological measurement. Burns 2001, 27:p.154-160

- **135. Bhatia M.**, **Moochhala S.**: Role of inflammatory mediators in the pathophysiology of acute resiratory distress syndrome. J. Pathol. 2004, 202(2): p.145-156
- **136.** Bhatia M., Hofbauer B., Lee H. S., Frossard J. L., Steer M. L. : The effects of neutrophil depletion on a completely non invasive model of acute pancreatitis associated lung injury. Int. J. Pancreatol. 1998, 24: p.77-83
- **137. Frossard J. L. , Saluja A. , Bhagat L. , et al.** : The role of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis associated lung injury. Gastroenerology 1999, 116: p.694-701
- 138. Vogt, P. M., Jokuszies, A., Niederbichler, A. Busch, K., Choi, C. Y., Kall,
 S.: Primäre chirurgische Therapie bei Verbrennungen. Der Unfallchirurg 2006, 109(4): p. 270-277

7. Zusammenfassung

Die Zielsetzung dieser Studie war die Wirksamkeitstestung eines anti-ICAM-1 Fab Fragmentes in der Therapie von Verbrennungstraumata. In früheren Studien sowohl im Tiermodell als auch am Menschen, konnte eine Wirksamkeit von murinen IgG Vollantikörpern gegen die Ausbreitung, sowie Konversion der Zone der Stase in eine Verbrennungszone gezeigt werden. Der Nachteil eines murinen Antikörpers ist mögliche Entstehung allergischer Reaktionen als jedoch die auch die Komplementaktivierung. In dieser Arbeit wurde zum ersten Mal die Wirksamkeit eines Vollantikörpers gegen ICAM-1 mit der eines industriell hergestellten Fab Fragmentes verglichen. Hierzu wurde ein etabliertes, standardisiertes Tiermodell am Kaninchen verwendet. Den Tieren wurden standardisierte Verbrennungen von definierter Größe und Tiefe zugefügt. Es erfolgte eine Einteilung in unterschiedliche Therapiegruppen. Die Durchblutung der Hautpartien wurde mittels intravenös verabreichtem Indocyaningrüns und folgender Fluoreszenz-intesitätsmessung mittels IC-View-System quantifiziert. Anschließend erfolgte die statistische Auswertung. Nach Versuchsende erfolgte eine Biopsieentnahme an verschiedenen Stellen und eine histologische, als auch statistische Aufarbeitung. Während der Auswertung wurden sowohl die Therapiegruppen mit der Kontrolle als auch untereinander verglichen.

Anhand der gewonnenen Ergebnisse konnte gezeigt werden, dass die Gabe eines Fab Fragmentes genauso effizient in der Durchblutungsverbesserung in der Zone der Stase bei Applikation bis zu 3 Stunden nach Verbrennung, wie die Gabe eines IgG Vollantikörpers ist. Auch die histologisch gewonnenen Ergebnisse sprechen für die Verbesserung der Mikrozirkulation durch die Gabe eines gegen ICAM–1 gerichteten Fab Fragmentes, als auch durch die Gabe eines IgG Vollantikörpers. Nicht zuletzt durch die damit verbundene drastische Reduktion der bekannten Nebenwirkung bei Behandlungen mit Vollantikörpern, stellt die Therapie mittels Fab Fragment somit eine gute Alternative zur Behandlung mit einem Vollantikörper dar.

8. Publikationen

Burns 31, S.459-464	Endothelial thrombomodulin (CD 141) in a
	rabbit burn model
	[S. von Bülow, Th. Hartmann, P.C. Fuchs,
	<u>C. Schrimpf</u> , N. Pallua]
Burns 32 (4), S.430-435	A recombinant anti ICAM-1 Fab fragment is as
	effective as the complete IgG antibody in treatment
	of burn injuries in rabbits [P.Ch. Fuchs, T.L.
	Hartmann, <u>C. Schrimpf</u> , J. Haunschild,
	T.Litzenburger, N. Pallua]

9. Danksagung

An dieser Stelle der Arbeit möchte ich mich bei allen bedanken, die zum Gelingen dieser Arbeit als auch zum Gelingen meines Medizinstudiums beigetragen haben.

An erster Stelle danke ich Herrn Prof. Dr. med. Norbert Pallua, der mir ermöglicht hat, in seiner Abteilung wissenschaftlich tätig zu sein. Neben der Anfertigung der Dissertation in seiner Klinik war er darüber hinaus auch während Famulatur und PJ – Tertials bemüht, sein Wissen im Bereich der klinischen Tätigkeit zu vermitteln.

Des Weiteren möchte ich mich recht herzlich bei Herrn Dr. med. Paul Christian Fuchs für die exzellente Betreuung während der Durchführung der Experimente und deren Auswertung bedanken. Auch in der Zeit der Fertigstellung der Arbeit bestand trotz örtlicher Distanz immer die Möglichkeit Fragen zu stellen und Anregungen für die Verbesserung und Fertigstellung der Arbeit zu erhalten.

Ein weiterer Dank gilt Frau Tanja Oepen, die mir bei der histologischen Aufarbeitung der Probebiopsien mit Rat und Tat zur Seite stand und Herrn Robert Kwiecien, aus dem Institut für Statistik der RWTH Aachen für die Beratung bezüglich statistischer Daten und die Umsetzung derselbigen.

Bedanken möchte ich mich zusätzlich bei der Firma morphosys für die Bereitstellung des Antikörpers und für die finanzielle Unterstützung der Arbeit.

Ein weiteres Dankeschön gilt Herrn Werner Klingbeil für die finanzielle Unterstützung bei der Vervielfältigung der Arbeit und Herrn Dr. med. Sascha Igor David für die Motivation, konstruktive Kritik und Hilfe bei der Fertigstellung der Arbeit.

Zum Schluß möchte ich mich bei meiner Familie insbesondere bei meinen Eltern für die unaufhörliche moralische als auch finanzielle Unterstützung während des gesamten Studiums bedanken. Ohne Eure Hilfe wäre das Gelingen meines Studiums auf diese Weise sicherlich nicht möglich gewesen.

10. Datenaufbewahrungserklärung

Erklärung § 5 Abs. 1 zur Datenaufbewahrung

Hiermit erkläre ich, dass die dieser Dissertation zu Grunde liegenden Orginaldaten

 in der Klinik f
ür *Plastische Chirurgie Hand und Verbrennungschirurgie* des Universit
ätsklinikums Aachen

hinterlegt sind.

11. Lebenslauf

Persönliche Angaben:

Name:	Claudia Schrimpf
Geburtstag:	14. 03. 1980
Geburtsort:	Mönchengladbach Rheydt
Konfession:	römisch katholisch
Wohnort:	Bronsartstr. 11
	30161 Hannover
Familienstand:	ledig

Schulischer Werdegang

08/1986-06/1990:	GGS Wildenrath
08/1990-05/1999:	Maximilian - Kolbe Gymnasium Wegberg
	Allgemeine Hochschulreife 05/99

Beruflicher Werdegang

10/1999:	Beginn des Medizinstudiums an der RWTH Aachen
08/2001:	Ärztliche Vorprüfung
08/2002:	1. Teil der Ärztlichen Prüfung
03/2005:	2. Teil der Ärztlichen Prüfung
05/2006:	3. Teil der Ärztlichen Prüfung
seit 07/2006:	Common trunk Chirurgie in der Klinik für Visceralchirurgie
	und Zentrum für minimalinvasive Chirurgie Krankenhaus
	Siloah, Klinikum Region Hannover