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Microstructural and Macroscopic Aspects of the Plasticity of 
Complex Metallic Alloys 
 

   Complex metallic alloys (CMAs) represent a class of materials which are based on 
crystal structures with exceptionally large unit cells comprising up to more than a 
thousand atoms. As a result of the structural attributes of these phases, their plastic 
deformation behaviour features significant differences to conventional mechanisms 
known from structurally simple materials. 
   In the present work, the plasticity of the three CMA phases, hexagonal µ-Al-Mn, 
body-centred cubic Mg32(Al,Zn)49, and face-centred cubic ß-Al-Mg was investigated. 
Uniaxial deformation experiments on single crystalline samples of these alloys were 
carried out and thermodynamic activation parameters of the deformation processes were 
determined. 
   Microstructural investigations by means of transmission electron microscopy (TEM) 
were carried out on µ-Al-Mn and Mg32(Al,Zn)49. The underlying deformation 
mechanisms of these phases were completely determined. Dislocation climb and 
associated diffusion of vacancies was found to play an essential role in the deformation 
processes of both materials. 
 
 

Mikrostrukturelle und makroskopische Aspekte der 
Plastizität von komplexen intermetallischen Phasen 
 

   Komplexe intermetallische Phasen (CMAs) stellen eine Materialklasse dar deren 
Kristallstrukturen auf außergewöhnlich großen Einheitszellen, mit bis zu mehr als 
eintausend Atomen beruhen. Aufgrund ihrer besonderen strukturellen Merkmale 
unterscheidet sich das plastische Verformungsverhalten dieser Phasen maßgeblich von 
konventionellen, aus strukturell einfachen Systemen bekannten Verformungs-
mechanismen. 
   In der vorliegenden Arbeit wurde die Plastizität der drei Legierungssysteme µ-Al-Mn 
(hexagonal), Mg32(Al,Zn)49 (kubisch raumzentriert) und ß-Al-Mg (kubisch 
flächenzentriert) untersucht. Uniaxiale Verformungsexperimente wurden an 
einkristallinen Proben dieser Materialien durchgeführt und die thermodynamischen 
Aktivierungsparameter der Verformungsprozesse wurden  bestimmt. 
   Mikrostrukturelle Untersuchungen wurden an µ-Al-Mn und Mg32(Al,Zn)49 mittels 
Transmissionselektronenmikroskopie (TEM) ausgeführt. Die zugrunde liegenden 
Verformungsmechanismen dieser Materialien wurden vollständig ermittelt. In beiden 
Phasen sind die Verformungsprozesse maßgeblich durch Versetzungsklettern und der 
damit verbundenen Leerstellendiffusion geprägt. 
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Introduction 
 
   Plastic deformation refers to the irreversible shape change of a piece of solid matter 
due to an externally applied force. In contrast to elastic deformation, plastic deformation 
is permanent and corresponds to a relative displacement of parts of the deformed 
material.  

   The plasticity of structurally simple materials has been investigated since the 1920s. It 
was proposed by Orowan (1934), Taylor (1934), and Polanyi (1934) that one-
dimensional defects, termed dislocations, are the carriers of plastic deformation in most 
crystals. Motion of dislocations in atomic planes causes successive opening of atomic 
bonds and is therefore an energetically favoured process of plastic deformation in 
contrast to simultaneous opening of all bonds in one plane. 

   In the last decades, the plasticity of a multitude of metals and intermetallic compounds 
has been investigated and a variety of models basing on the process of dislocation 
motion has been proposed. Pioneering works on different types of dislocations and their 
movement were established, for example, by Peierls (1940) and Nabarro (1967). 
However, the understanding of the plastic-deformation behaviour of matter is still 
limited to structurally simple materials. Further progress in crystal plasticity is 
necessary in order to comprehend deformation mechanisms of more complex phases. 

   The class of complex metallic alloys (CMAs) comprises systems with giant unit cells 
containing up to more than a thousand atoms per cell (Urban and Feuerbacher, 2004). 
Despite the fact that CMAs have been studied since several decades in crystallography, 
physical properties and especially the plasticity of these phases are essentially 
unexplored. This fact is astonishing since the plastic deformation behaviour of CMAs is 
of particular interest: In these systems deformation mechanisms known from 
structurally simple materials are prone to failure. Due to the large lattice parameters 
(which usually exceed 10 Å in CMAs), perfect dislocations would require unphysically 
large elastic line energies. New concepts of microstructural processes are expected to 
appear in order to get effective and energetically favourable deformation mechanisms. 
Indeed, novel mechanisms were revealed in ξ’-Al-Pd-Mn (Klein et al., 1999), Al13Co4 
(Heggen et al., 2007), and c2-Al-Pd-Fe (Heggen, 2003).  

   The intention of the present thesis is to gain comprehensive insight into the 
deformation behaviour and underlying mechanisms of CMA phases. For this purpose 
three selected phases, µ-Al-Mn, Mg32(Al,Zn)49, and ß-Al-Mg are investigated. The 
plasticity of these materials is examined for the first time. The work deals with three 
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Introduction 

different crystal lattices, body-centred cubic, face-centred cubic, and hexagonal close-
packed. In conjunction with investigations on orthorhombic CMAs reported in the 
literature (Klein et al., 1999, Feuerbacher et al., 2001, Feuerbacher and Caillard, 2004, 
Heggen et al., 2007), the most important crystal lattices in this materials class are 
covered.  

   The combination of macroscopic and microstructural investigations allows for a 
versatile and detailed view on the plasticity of the examined phases. The use of high-
quality single-crystalline sample materials, grown in the frame of the present thesis, 
ensures that effects of impurities, secondary phases, and grain boundaries can be 
excluded and accordingly, only the intrinsic mechanical properties are examined. 

   The studied alloys are brittle at room temperature but show a brittle-to-ductile 
transition at elevated temperatures between 65 and 82 % of the respective melting 
temperature. The stress-strain behaviour exhibits remarkable features like high fracture 
stress or pronounced yielding behaviour. Thermodynamic activation parameters of the 
deformation processes were analyzed for all three materials.  

   The microstructural deformation behaviour of the two phases µ-Al-Mn and 
Mg32(Al,Zn)49 was successfully elaborated by means of transmission electron 
microscopy (TEM). Distinct differences to mechanisms known from structurally simple 
materials are observed. Both phases possess deformation mechanisms which are 
primarily based on dislocation climb. The interaction of different involved dislocation 
types by means of a chemical stress is a basic feature in the deformation processes of 
both CMAs. 

   The first chapter introduces the materials class of CMAs. Basic structural 
characteristics as well as the most common types of local order are described. The 
relations between these phases with structurally simple and quasicrystalline materials 
are discussed. One important example of a novel type of defect found in CMAs, the 
metadislocation, is briefly revisited. 

   The production of high-quality single-crystalline material is of decisive importance   
for reliable results of deformation experiments. The basics of single-crystal growth, the 
growth techniques applied, as well as details on the phase diagrams of the investigated 
materials are given in chapter 2. 

   In chapter 3 the fundamentals of crystal plasticity and the concept of dislocation-
mediated deformation are reviewed. The theory of thermal activation is outlined and 
experimental procedures employed in this study are described in detail. 

   Chapters 4, 5, and 6 address the phases µ-Al-Mn, Mg32(Al,Zn)49, and ß-Al-Mg, 
respectively. The structure of the respective phase is illustrated in each chapter and 
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results of macroscopic as well as microstructural investigations are presented and 
discussed. 

   In chapter 7, finally, a comprehensive discussion of the macroscopic and 
microstructural deformation behaviour of the investigated phases is presented. The 
results are compared with investigations on other CMAs in order to gain an overview 
and to find possible general characteristics in the plasticity of this materials class.  
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Chapter 1 
 
Complex metallic alloys 
 
 
1.1 The structure of CMAs 
 
   An ideal crystal is a solid in which the constituent atoms are packed in a regularly 
ordered, infinitely repeating pattern. In three-dimensional space 14 non-equivalent 
lattice types, the Bravais lattices, exist. The crystal structure can be constructed by a 
space-filling periodic arrangement of a unit cell. An identical set of atoms, the basis, is 
assigned to each lattice point. 

   The most common lattice types in elementary metallic materials are body-centred 
cubic (bcc), face-centred cubic (fcc) and hexagonal close packed (hcp), featuring 2, 4, 
and 2 atoms, respectively, in their unit cells. Examples are Fe (bcc), Al (fcc), and Zn 
(hcp). Intermetallic compounds usually possess bases consisting of several atoms. 
Therefore, alloys frequently hold more atoms per unit cell, e.g. the Al3Ni2 structure, 
zincblende (ZnS), and the Laves phase MgZn2 feature 5, 8, and 12 atoms per unit cell, 
respectively. 

   Complex metallic alloys (CMAs) are a class of intermetallic compounds comprising 
considerably more atoms per unit cell, reaching from some tens up to some thousands 
(Urban and Feuerbacher, 2004). Along with the large number of atoms, the size of the 
unit cells reaches large dimensions. Pauling, for example, described in 1923 the 
structure of the intermetallic phase NaCd2 with 1152 atoms per unit cell and a lattice 
parameter of 30.56 Å. Samson, a pioneer in the field of crystallography of intermetallic 
compounds, introduced the term “giant unit cell crystals” for these materials (Samson, 
1969).  

   Due to the difference in magnitude of the lattice parameters and the inter-atomic 
distances, CMAs offer two different inherent physical length scales which may both 
influence their physical properties. Nowadays hundreds of intermetallic phases are 
known featuring giant unit cells (e.g. Villars et al., 1986 and Tamura, 1997) and new 

5 



1 Complex metallic alloys 

phases of this class are steadily discovered especially in the course of investigations of 
ternary phase diagrams. 

   The inherent atom configuration in CMAs is frequently based on a cluster 
substructure (Urban and Feuerbacher, 2004). These clusters, which typically exhibit 
icosahedral symmetry, represent very compact elements of the crystal structure. The 
icosahedral arrangement of twelve atoms around a central atom, referred to by Pauling 
(1955) as “closer packing than closest packing”, leads to a high density within these 
clusters.  

   Frequently found examples of complex clusters comprising icosahedral symmetry are 
the Mackay icosahedron and the Bergman cluster. Both are based on a concentric shell 
structure with icosahedral configurations comprising 55 and 117 atoms, respectively. 
The shells correspond to symmetric polyhedra with atom sites located at the vertices. 
The structure of the Bergman cluster was discovered by Bergman et al. (1957) and is 
described in detail in chapter 5.1. The Mackay cluster consists of three concentric atom 
shells (Mackay, 1962). The first shell is an icosahedron (12 atoms) encasing a central 
atom. The second shell is an icosidodecahedron (30 atoms), i.e. a superposition of an 
icosahedron and a dodecahedron. It exhibits 12 pentagonal and 20 triangular faces. An 
icosahedron and an icosidodecahedron are illustrated in figure 1.1 (a) and (b), 
respectively. The last shell of the Mackay cluster is an icosahedron, the vertices of 
which are located above the pentagon centres of the icosidodecahedron, forming a 
surface with 80 triangular faces. 

 
 

 
   Figure 1.1: Shells of a Mackay cluster: (a) icosahedron, (b) icosidodecahedron. 
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   As a result of the cluster substructure, many atom sites in complex metallic alloys 
possess icosahedral coordination. The clusters, however, are arranged according to 
usual crystallographic Bravais lattices. Long-range orientational order of CMAs is 
therefore determined by symmetry operations known from structurally simple materials. 

   Nearly all lattice types are observed in the class of complex metallic alloys. Cubic 
CMAs are e.g. the Bergman phase (Mg32(Al,Zn)49) (bcc, 162 atoms/unit cell, a = 14.2 
Å) (Bergman et al., 1957), ß-Al-Mg (fcc, 1168 atoms/unit cell, a = 28.2 Å) (Samson, 
1965), and the phase c2-Al-Pd-Fe (fcc, 255 atoms/unit cell, a = 15.52 Å) (Sugiyama et 
al., 2000). The phases µ-Al-Mn with 563 atoms per unit cell and lattice parameters a = 
19.98 and c = 24.67 Å (Shoemaker et al., 1989), and κ-Al-Mn-(Fe,Ni) with 227 atoms 
per unit cell and lattice parameters a = 17.6 and c = 12.5 Å (Marsh, 1998) represent 
phases with hexagonal unit cells. Examples for orthorhombic phases are Al13Co4 (102 
atoms/unit cell, a = 8.2 Å, b = 12.3 Å, c = 14.5 Å) (Grin et al., 1994) and the class of 
Taylor phases, i.e. T-Al-Mn (156 atoms/unit cell, a = 14.7 Å, b = 12.5 Å, c = 12.6 Å) 
(Taylor, 1960, Hiraga et al., 1993) and this phase with ternary elements Pd, Fe, Cr, and 
Ni (Balanetskyy et al., 2007, Balanetskyy, 2007a). A monoclinic CMA is e.g. Al13Fe4 
(102 atoms/unit cell, a = 15.5 Å, b = 8.1 Å, c = 12.5 Å, ß = 107.7°) (Grin et al., 1994a). 

   Besides this structural variety, several CMA phases in different alloy systems exist 
featuring related structures. A prominent example of such a class of structurally related 
phases are the ε-phases. The latter are found for example in the systems Al-Pd-(Mn, Fe, 
Rh, Re, Ru, Co, Ir) and the systems Al-Rh-(Ru, Cu, Ni) (Audier et al., 1993, Klein et 
al., 1996, Yurechko et al., 2001 and 2004, Balanetskyy et al., 2004 and 2004a). They 
are denoted εl (l = 6, 16, 22, 28, 341) according to the index of the strong (0,0,l) 
diffraction spot which corresponds to the interplanar spacing of about 0.2 nm occurring 
in all of those phases (Yurechko et al., 2001 and 2004, Balanetskyy et al., 2004). The εl-
phases possess identical [1,0,0] and [0,1,0] lattice parameters in the respective alloy 
systems but exhibit different [0,0,1] lattice parameters. Basic structural building blocks 
of the ε-phases are pseudo-Mackay clusters arranged in columns along the [0,1,0] 
direction (Boudard et al., 1996). Viewed along this direction, the structures can be most 
conveniently described using a tiling representation. 

   One possible tiling approach applied for ε-phases consists of two different tiles, a 
flattened hexagon and a combination of a nine-edged banana-shaped polygon attached 
to a pentagon, termed phason line. Using this approach, the vertices of the tiles are 
located on the centres of the cluster columns. 

   Figure 1.2 depicts tiling representations of the phases ε6 (a) and ε28 (b). These phases 
feature the orthorhombic space groups Pnma and C2mm, respectively (Boudard et 

                                                 
1 The ε34-phase was only observed in the alloy system Al-Pd-Mn.  
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al.,1996, Edler, 1997). The lattice parameters of ε6 are a = 23.541 Å, b = 16.566 Å and 
c = 12.339 Å including 320 atoms per unit cell (Boudard et al., 1996). ε28 features equal 
a- and b-lattice parameters as ε6 but a c-lattice parameter of 57 Å. The structure of ε6 
can be represented by alternating rows of flattened hexagons arranged in two different 
orientations. In ε28 additional phason lines are present which are aligned in rows along 
the [1,0,0] direction. These rows of phason lines are called phason planes. In figure 1.2 
(b) one phason line is indicated in dark grey and the phason planes are indicated in 
bright grey.  The phases ε6 and ε28 are frequently referred to as ξ’ and Ψ, respectively, 
in the literature.  

 
   Figure 1.2: Schematic representation of the phases ε6 (a) and ε28 (b) by means of a 
tiling model along [0,1,0]. Grey rectangles indicate the respective unit cells. A single 
phason line is shown dark grey in (b) (Feuerbacher and Heggen, 2006). 
 
 
   A further structural attribute of CMAs is the inherent disorder. Due to the complex 
atom arrangement in clusters and especially the frequently observed overlap of these 
clusters within the crystal lattice, many CMA phases show a considerable degree of 
disorder. Different types of disorder are observed: 

   Configurational disorder results from statistically altering orientations of a particular 
subcluster inside a given cage of atoms. This kind of disorder is found for example in 
c2-Al-Pd-Fe which possesses the space group 3Fm  (Edler et al., 1998). Primary 
structural building blocks of this phase are edge-sharing icosahedral cages filled by two 
different cluster motives. One of these motives is formed by Al atoms located at the 
vertices of a cube. This cube occurs in five different orientations inside the icosahedral 
cage generating the configurational disorder. The average structure of the different cube 
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arrangements forms a regular dodecahedron. The structure of c2-Al-Pd-Fe is described 
in detail by Edler et al. (1998) and Sugiyama et al. (2000). 

   Chemical or substitutional disorder results from fractional occupancy of certain lattice 
sites by different elements. Usually elements with similar metallic radii are involved in 
this kind of disorder. The potential occupation by different elements causes a variable 
amount of these elements inside the crystal structure. This affects the extension of the 
stability range of the corresponding phase within the phase diagram. In Mg32(Al,Zn)49, 
for example, 3 different atom sites can be occupied by either Al or Zn atoms leading to 
an extension of the Mg32(Al,Zn)49 stabilty range in the Al-Mg-Zn system over a wide 
range of values of the Zn/Al ratio (cf. chapters 2.3 and 5.1).  

   Displacement disorder and fractional site occupation are types of disorder which arise 
from steric constraints. High amounts of these types of disorder occur for example in ß-
Al-Mg from incompatibilities in the packing of Friauf polyhedra which primarily define 
the structure of this phase (chapter 6.1). Certain vertices of adjacent polyhedra should 
be occupied by a large atom (Mg) for one polyhedron and simultaneously by a small 
atom (Al) for the other. This incompatibility results in displacement disorder and 
fractional site occupation. 

   Split occupation is also caused by geometrical hindrances. In this case two lattice sites 
are too close to be occupied simultaneously, leading to an occupation of only one of 
these sites. The actual atomic content of the unit cell is then usually lower than 
indicated by the Pearson symbol of the corresponding phases. The latter can be 
characterized by a modified Pearson symbol, where a number subtracted from the site 
number indicates the reduced number of atoms per unit cell. Examples are Al68Pd20Ru12 
with cP296-49 (Mahne and Steurer, 1996), Al2.75Ir with cP60-30 (Grin et al., 1997), and 
Al57.3Cu31.4Ru11.3 with cP140-25 (Sugiyama et al., 2000a). 

   As described above, the icosahedral symmetry frequently observed in CMA phases is 
restricted to local atom coordinations. Quasicrystals feature this kind of symmetry in the 
short-range as well as in the long-range orientational order. Shechtman et al. discovered 
in 1984 a metastable Al-Mn phase showing fivefold-rotational symmetry in its electron-
diffraction pattern. This symmetry, however, is in contradiction to a space-filling 
translational symmetry (Kepler, 1619), and hence, the structure of quasicrystals can not 
be constructed by a periodic translation of a unit cell. The long-range orientational order 
of a quasicrystalline lattice can be described by means of higher-dimensional 
crystallography. Using the so-called cut procedure, the structure is constructed using a 
six-dimensional periodic hyperlattice (e.g. Katz and Duneau, 1984). Because of the 
similarity of the short-range order of CMAs and quasicrystals, CMAs are in the 
literature sometimes referred to as quasicrystal approximants (e.g. Goldman and Kelton, 
1993).  
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1.2 Defects in CMAs 
 
   Despite the fact that CMAs are known since the 1950s (Pauling, 1955) and large 
effort was spent on their crystallographic characterization, the physical properties of 
CMAs are largely unexplored. Only in recent times, dedicated investigations focusing 
on physical properties of this class of materials were carried out (e.g. Takeuchi and 
Mizutani, 1995, Feuerbacher et al., 2001, Belin-Ferré, 2002, Smontara et al., 2007).  

   Especially the plasticity of CMAs turned out to offer interesting properties and 
mechanisms since the underlying microstructural mechanisms of plastic deformation are 
prevalently different from known mechanisms in structurally simple materials 
(Feuerbacher et al., 2004). In the latter materials perfect dislocations are frequently 
observed to be carriers of crystal plasticity. The motion of these dislocations leaves the 
crystal structure entirely undistorted since the Burgers vectors correspond to 
translational invariant vectors of the lattice. In complex phases featuring larger lattice 
parameters, however, the occurrence of perfect dislocations becomes unfavourable. The 
elastic line energy of a dislocation is proportional to the square of its Burgers-vector 
length (Hirth and Lothe, 1992) and hence in CMAs, a Burgers vector corresponding to a 
translational invariant distance of the lattice, which usually amounts to 10 Å or more, 
would be energetically very costly. Therefore, perfect dislocations are not expected to 
be found in CMAs. 

    Physically more reasonable line energies occur for example, if perfect dislocations 
split into partial dislocations comprising Burgers vectors with only a fraction of a 
translational invariant distance in the lattice. The accommodation of partials into the 
lattice and their movement are necessarily accompanied by the introduction of planar 
defects as it is observed for µ-Al-Mn and the Bergman phase in the present work 
(chapters 4 and 5).  

   Novel types of defects were found in CMAs. One example are the so-called 
metadislocations, firstly observed in ξ’-Al-Pd-Mn (Klein et al., 1999). Figure 1.3 (a) 
shows a lattice-fringe image taken by means of TEM of a metadislocation along the 
[0,1,0] direction. The dislocation core is indicated by an arrow. The dislocation line lies 
perpendicular to the image plane, i.e. parallel to the [0,1,0] direction. Figure 1.3 (b) 
shows the same situation in a tiling representation. The dislocation core is shown as a 
dark-grey polygon. On the left of the core an area of pure ξ’-Al-Pd-Mn can be identified 
via the tiling of flattened hexagons. In the remainder of the picture additional phason 
planes are present, forming the phase ψ-Al-Pd-Mn on the right-hand side of the 
metadislocation core. The core of the metadislocation is decorated by a dislocation-like 
formation in ψ-Al-Pd-Mn consisting of six “inserted” phason halfplanes. 
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   The Burgers vector of the metadislocation, determined by means of contrast extinction 
experiments, is parallel to the [0,0,1] direction (Klein and Feuerbacher, 2003). A 
Burgers-circuit analysis yields a Burgers-vector length of 1.83 Å (Klein et al., 1999). 
Despite the fact that the dislocation is a partial dislocation (the Burgers-vector length is 
a fraction of the lattice parameter), the whole arrangement, including the six attached 
halfplanes, can move without the introduction of additional planar faults into the 
structure of ψ-Al-Pd-Mn (Klein et al., 1999). Other [0,0,1] metadislocations with 4, 10, 
and 16 inserted phason halfplanes are also observed, featuring Burgers vectors of 2.96, 
1.13, and 0.07 Å, respectively (Klein et al., 2000). 

 
 

 
   Figure 1.3: Metadislocation in ξ’-Al-Pd-Mn along the [0,1,0] direction. (a) Lattice-
fringe image taken by means of TEM and (b) schematic representation (Feuerbacher et 
al., 2004) 
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Chapter 2  
 
Single-crystal growth 
 
   In this chapter the single-crystal growth of the investigated phases µ-Al-Mn, 
Mg32(Al,Zn)49, and ß-Al-Mg is described. The growth of large single crystals 
(exceeding 1 cm3) of these phases represents a challenge because of narrow stability 
ranges, other competing phases and/or incongruent solidification behaviour. In several 
attempts, the growth parameters were varied in order to find the optimum growth 
conditions and the corresponding appropriate growth techniques. An outline of the 
fundamentals of single-crystal growth, as well as short introductions to the applied 
techniques, i.e. Bridgman and Czochralski growth, are given in this chapter.  

 
 

2.1 Fundamentals of single-crystal growth 
 

   The process of single-crystal growth can be illustrated on the basis of a phase diagram 
as shown in figure 2.1. This fictitious binary phase diagram of the elements A and B 
comprises stability ranges of the solid phases α, β and γ, as well as the coexistence 
ranges α+β and β+γ. Regions where the phases α, β and γ are in equilibrium with the 
liquid phase L are labelled L+α, L+β and L+γ. The phase boundary between these 
regions and the pure liquid phase is called liquidus line. Melting temperatures of the 
elements A and B are labelled TA and TB, respectively. The peritectic point P denotes a 
point in the phase diagram where the stability range of a solid phase meets the 
coexistence range of another solid with the liquid phase. Heating of the first solid phase 
leads to decomposition into the other solid and the liquid phase by crossing the 
peritectic point (in the given example:

B

αβ +→ L ). At the eutectic point E, the pure 

liquid phase meets a phase field where the two solid phases ß and γ coexist.  
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   Figure 2.1: Scheme of a binary phase diagram. Incongruent solidification behaviour 
is illustrated: By cooling a melt with composition c2, growth of the solid phase β with 
composition c1 is initiated at T2. 
 
 
   One discerns congruent and incongruent solidification behaviour. Congruent 
solidification takes place if the composition of the solidifying phase equals the 
composition of the melt. In the phase diagram of figure 2.1 congruent solidification 
takes place if a melt consisting of pure element A or B is cooled below the respective 
melting temperature. On the other hand, if the composition of the solidifying phase 
differs from that of the liquid phase, incongruent solidification takes place. In this case, 
the melt composition varies during the solidification process. 

   A varying melt composition also causes a shift of the composition of the solidifying 
phase. Hence, the latter composition may leave the stability range of the desired phase 
during crystal growth, leading to the solidification of secondary phases. 

   Consider a melt of composition c1 in figure 2.1. Despite the fact that this composition 
lies (below temperature T2) within the stability range of the incongruently solidifying β 
phase, this phase can not solidify from a melt possessing this composition. With 
decreasing temperature a melt with composition c1 meets the liquidus line of the L+α 
region and therefore α is the primarily solidifying phase. In order to grow the β phase 
with final composition c1, a melt with appropriately chosen composition c2 has to be 
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used since at this composition the melt is in equilibrium with the β phase. By cooling a 
melt with initial composition c2 this composition shifts, after reaching the liquidus line, 
to higher concentrations of element B along the liquidus line of the L+β region. 
Simultaneously, the composition of the β phase shifts during solidification from c1 to 
higher concentration of element B along the solidus line, i.e. the phase boundary 
between the stability range of the β phase and the L+β phase region. 

   The growth of pure β phase is possible until the melt composition reaches the eutectic 
point E. At the same time, the solidifying β phase reaches composition c1+x, i.e. the limit 
of the stability range of β. Further temperature decrease initiates eutectic solidification 
of the β and γ phase.  

   Figure 2.2 shows a sketch of a hypothetical two-dimensional crystal which grows 
radially from a centre point e.g. a single nucleus, by the solidification sequence 
described above. The melt L with initial composition c2 causes solidification of the β 
phase. At the beginning of the growth process (centre of the crystal) the ß phase 
solidifies with composition c1 (figure 2.2 (a)). Due to incongruent solidification 
behaviour the composition of the solidifying ß phase shifts towards the composition 
c1+x, leading to a radial composition gradient inside the crystal (red arrow in figure 2.2 
(b)). After reaching the composition c1+x, the melt enters the two phase region 
β+γ which initiates solidification of these phases (figure 2.2 (c)). 

 
 

 
   Figure 2.2: Schematic sequence of incongruent solidification behaviour. A two-
dimensional crystal grows radially in the melt L (a-c): (a) Solidification of phase ß with 
initial composition c1. (b) Shifting of the composition leads to a radial composition 
gradient between c1 and c1+x (red arrow). (c) Solidification of the secondary phase γ has 
set in. 
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2.2 Single-crystal growth techniques 
 
Bridgman technique 
   Figure 2.3 schematically illustrates the setup for crystal growth according to the 
Bridgman technique. Initially, the melt is located in a vertical tip-shaped crucible. The 
crucible is surrounded by a protection envelope and a heater which ideally generates an 
isothermal hot zone (dashed line in figure 2.3). Solidification is initiated by pulling the 
crucible downwards out of the hot zone. At the coldest part of the crucible, i.e. its 
lowermost part, the melt starts to solidify. Additionally, heat can be dissipated at the tip 
by a water-cooled finger at the pulling rod. In figure 2.3 the lower half of the crucible 
has left the hot zone and correspondingly in this part the melt is solidified.     

   Single-crystalline material of the phases µ-Al-Mn and Mg32(Al,Zn)49 investigated in 
the present thesis was grown by means of the Bridgman technique. 

 

 
   Figure 2.3: Schematic setup for single-crystal growth according to the Bridgman 
technique. The crucible is slowly pulled downwards out of the hot zone of the heater. 
The dashed line is the isotherm corresponding to the current solidification temperature. 
Solidification starts at the bottom (tip) of the crucible. 
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Czochralski technique 

   The Czochralski-growth technique involves solidification of the melt at a seed crystal. 
The melt is located in a cylindrical crucible and surrounded by a heater. This setup is 
shown in figure 2.4. The seed crystal can be of the same phase as the desired crystal 
(homogenous seeding) or consist of another higher melting material (heterogeneous 
seeding). An advantage of homogenous seeding is the possibility of oriented growth if 
the solidifying crystal preferentially grows along the predefined direction of the seed. 
The seed crystal is connected to a pulling rod.  

   After dipping the seed into the melt, the pulling rod is lifted in order to achieve a 
stable meniscus at the solid-liquid interface. Solidification of the melt occurs at this 
location due to heat dissipation mainly into the pulling rod. Crystal growth is performed 
by lifting the pulling rod continuously from the melt. The size of the meniscus 
determines the diameter of the grown crystal and can be influenced by varying the melt 
temperature and/or the pulling velocity. Pulling rod and crucible counter-rotate during 
the growth process in order to achieve a good homogenisation of the melt. 

   If necessary, a “thin neck”, i.e. a thin crystal part of few mm length and less than 1 
mm in diameter, can be grown. By this means, one grain can be selected for further 
growth from a crystal region which is containing several grains. 

 

 
   Figure 2.4: Setup of single-crystal growth according to the Czochralski technique. A 
seed crystal is dipped into the melt and is subsequently lifted upwards. The diameter of 
the meniscus, where the solidification takes place, can be controlled by the melt 
temperature and/or the pulling speed. 
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   Besides the possibility of oriented growth another advantage of the Czochralski 
technique is the absence of a confining crucible. This leads to an essentially unstrained 
cooling of the crystal and therefore mostly to a high structural perfection of the grown 
material (Feuerbacher et al., 2003). 

   More detailed descriptions of single-crystal growth and other growth techniques can 
be found e.g. in Tamura et al. (1996) and Feuerbacher et al. (2003). 

 
 
2.3 Single-crystal growth of CMAs 
 
   The growth of single-crystalline CMA phases is not well established until now. 
Therefore, growth procedures for Mg32(Al,Zn)49, µ-Al-Mn, and ß-Al-Mg had to be 
developed in the frame of the present thesis in order to achieve large (exceeding 1 cm³) 
and high-quality single crystals of these phases, allowing for direct conclusions on the 
intrinsic physical properties. Non-structure related influences, such as secondary phase 
or grain-boundary effects, can be excluded by this means. However, several facts make 
the single-crystal growth of CMAs technically challenging. 

   In case of Mg32(Al,Zn)49, µ-Al-Mn, and ß-Al-Mg narrow stability ranges and 
numerous competing phases in close compositional vicinity are present. The 
incongruent solidification behaviour of Mg32(Al,Zn)49 and µ-Al-Mn and the technically 
inconvenient elements Zn and Mg, which possess high vapour pressures, in 
Mg32(Al,Zn)49 and ß-Al-Mg cause additional difficulties. In the following, single-crystal 
growth of the phases Mg32(Al,Zn)49, µ-Al-Mn, and ß-Al-Mg is described.  

 
Mg32(Al,Zn)49

   Mg32(Al,Zn)49, frequently referred to as Bergman phase, has space group 3Im . 
Bergman et al. (1952) solved the structure and found that this cubic phase possesses 162 
atoms per unit cell with a lattice parameter of 14.2 Å. The structure is described in detail 
in chapter 5.1.  

   In figure 2.5 the liquidus projection of the ternary Al-Mg-Zn system is depicted 
(Petrov et al., 1993). The liquidus surface of the Bergman phase (referred to as T in 
figure 2.5) is outlined in red. Twelve other solid phases are present in this system. At 
335 °C eight phases coexist with the Bergman phase as it is visible in the corresponding 
isothermal section of the Al-Mg-Zn system in figure 2.6. All phases and their 
equilibrium conditions are described in detail by Petrov et al. (1993). 

   The stability range of the Bergman phase extends over a wide range of values of the 
Zn/Al ratio (cf. figure 2.6). This fact is also expressed in the stoichiometric formula 

 18 



2 Single-crystal growth 

Mg32(Al,Zn)49. Due to the similar metallic radii of Al and Zn atoms several atomic sites 
in this phase can be occupied by either atom type (see chapter 5.1). Therefore, various 
Al atoms can be substituted by Zn atoms and vice versa (chemical disorder). The atomic 
percentage of Mg is much less variable in this phase, and correspondingly the extension 
of the stability range much smaller in this direction, as is expected from the fact that the 
metallic radius of Mg is about 15 % larger than those of Al and Zn (Bergman et al., 
1957). 

   Mg32(Al,Zn)49 solidifies incongruently. An initial melt composition of 32 at.% Al, 37 
at.% Mg and 31 at.% Zn was used for Bridgman growth. The materials were pre-alloyed 
by means of a levitation inductive melting furnace in a water-cooled copper crucible 
under protective Ar atmosphere. Al and Zn had a purity of 99.999 % and Mg of 99.98 
%. The crystal growth was performed in Ar at about 270 mbar in a graphite crucible. A 
pulling speed of 1 mm/h was applied. The final crystal is shown in figure 2.7 (a). A 
single crystalline part of about 2.5 cm3 was obtained.  

 

 
   Figure 2.5: Liquidus projection of the Al-Mg-Zn phase diagram (Petrov et al., 1993). 
The liquidus surface of the Bergman phase (T) is outlined in red.  
 

 19



2 Single-crystal growth 

 
   Figure 2.6: Isothermal section of the Al-Mg-Zn phase diagram at 335 °C (Petrov et 
al., 1993). The stability range of the Bergman phase (T) is outlined in red. 
 
 
   Figures 2.7 (b) and (c) show micrographs taken by means of scanning electron 
microscopy (SEM) operated in back-scattering mode at two different positions of the 
crystal (indicated by arrows in figure 2.7). The micrographs were taken from polished 
slices which were cut perpendicular to the long axis of the crystal. The micrograph in 
figure 2.7 (c) corresponds to a crystal part close to the crystal tip which solidified in an 
early stage of the growth process. A single homogeneous phase is visible which 
possesses the composition 28.2 at.% Al, 36.6 at.% Mg, and 35.2 at.% Zn determined by 
means of energy dispersive X-ray spectroscopy (EDX). This composition lies within the 
stability range of Mg32(Al,Zn)49 (figure 2.6). The phase was identified by means of 
powder X-ray diffraction. Deformation samples used in the present thesis were prepared 
from this single-phase region of the crystal. 
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   Figure 2.7: (a) Mg32(Al,Zn)49 crystal grown by means of the Bridgman technique. (c) 
SEM micrograph of a crystal part solidified in an early stage of the growth process. 
One homogenous solid phase is visible (Bergman phase). (b) SEM micrograph of a 
crystal part solidified in a later stage of the growth, where solidification of a secondary 
phase (bright contrast) has set in. 
 
 
   In figure 2.7 (b) a SEM micrograph of a crystal part is shown which solidified in a 
later stage of crystal growth. In this stage, the composition has shifted beyond the 
stability range of Mg32(Al,Zn)49 and solidification of a second phase additionally to the 
Bergman phase has set in. The dark background contrast in figure 2.7 (b) corresponds to 
Mg32(Al,Zn)49 with composition of about 35 at.% Al, 37 at.% Mg, and 28 at.% Zn while 
the bright contrast corresponds to a two-phase region of Al and Zn with composition 
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between 13 and 17 at.% Al. Due to surface contamination, the boundary between pure 
Mg32(Al,Zn)49 and the two phase region on the crystal surface in figure 2.7 (a) is not 
visible by the naked eye.   

   In figure 2.8 an electron diffraction pattern of the single-phase part of Mg32(Al,Zn)49 
along the [0,0,1] zone axis taken by means of TEM is shown. Sharp spots and the 
absence of diffuse scattering and satellite spots reflect a high structural perfection of the 
crystal. The pattern exhibits a two-fold rotational-symmetry axis along the [0,0,1] 
direction according to the symmetry operations of the space group 3Im . 

 

 
   Figure 2.8: Electron diffraction pattern of Mg32(Al,Zn)49 along the [0,0,1] zone axis. 
 
 
µ-Al-Mn 
   The hexagonal phase µ-Al-Mn, space group P63/mmc, features a unit cell with 563 
atoms and lattice parameters a = 19.98 and c = 24.67 Å. The structure is defined by a 
layer stacking along the c-axis consisting of 4 flat and 8 puckered layers. It was solved 
by Shoemaker et al. (1989) and is described in detail in chapter 4.1.  

   The Al-Mn phase diagram is shown in figure 2.9, where the stability range of the µ-
phase is outlined in red. The µ-phase has a narrow stability range between about 19 and 
20.8 at.% Mn and a melting temperature of 923 °C (McAlister and Murray, 1986). µ-
Al-Mn coexists with the hexagonal λ-phase and the orthorhombic Al6Mn phase on the 
Al-rich side of its stability range and with the triclinic Al11Mn4 phase (LT) and 
orthorhombic Al11Mn4 phase (HT) on the Mn-rich side.  
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   Figure 2.9: Al-Mn phase diagram according to McAllister and Murray (1986). The 
stability range of the µ-phase is outlined in red. The applied melt composition cm for 
single-crystal growth is denoted by a dashed blue line. 
 
 
    µ-Al-Mn features peritectic solidification behaviour. The melt composition 89 at.% 
Al and 11 at.% Mg (dashed blue line in figure 2.9) was chosen for Bridgman growth. 
During previous crystal-growth attempts with composition including higher amounts of 
Mn, a shift of the composition beyond the stability range of µ-Al-Mn was observed due 
to slightly selective evaporation of Al from the melt. 

   The constituents were pre-alloyed by levitation melting under protective argon 
atmosphere. The elements had a purity of 99.999 % Al and of 99.99 % Mn. Crystal 
growth was performed in vacuum with a pulling speed of 0.5 mm/h. A final crystal is 
shown in figure 2.10. To prevent sticking of the crystal to the crucible, a protective 
carbon layer was added to the inside of the alumina crucible. However, crystal fracture 
occurred during opening the crucible. A vertical crack is observable in figure 2.10 in the 
central part of the crystal. A grain boundary on the surface of a part of the crystal, 
solidified in a late stage of the growth, is indicated by an arrow. 
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   A single-crystalline part of about 1.5 cm3 was obtained and identified as µ-Al-Mn. 
The correct structure and appropriate composition are confirmed by powder X-ray 
diffraction and by EDX, respectively. In the crystal region which was used for 
deformation-sample preparation the composition amounts to 80.6 at.% Al and 19.4 at.% 
Mn. Figure 2.11 shows an electron diffraction pattern of this region along the [0,0,1]1 
zone axis. No diffuse scattering or satellite spots are observed which reflects a high 
structural perfection. 

 

 
   Figure 2.10: µ-Al-Mn crystal grown by means of the Bridgman technique. A rest of 
the white alumina crucible is visible on the back side of the crystal. On the right-hand 
side a grain boundary can be observed on the crystal surface (arrow). 
 

 
   Figure 2.11: Electron diffraction pattern of µ-Al-Mn along the [0,0,1] zone axis.  

                                                 
1 The crystallographic notation of three-dimensional Miller indices is applied for hexagonal µ-Al-Mn in 
the present thesis. 
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ß-Al-Mg 

   The phase β-Al-Mg with approximate composition Al3Mg2 has an fcc structure, space 
group mFd 3 , with lattice parameter of 28.2 Å and approximately 1168 atoms per unit 
cell. The atoms are located at 23 crystallographic positions arranged in 41 different 
polyhedra. A high amount of inherent disorder, apparent as fractional site occupation, is 
present in this phase. The structure was solved by Samson (1965) and is described in 
chapter 6.1.  

   The phase β-Al-Mg has a melting point of 450 °C and a stability range between 38.5 
and 40.3 at.% Mg (Murray, 1986). On the Al-rich side, it coexists with the fcc α-phase, 
which is a solid solution of Mg in Al, and on the Mg-rich side with the two phases γ-
Al12Mg17 (bcc) and the line compound R (hexagonal). The latter only exists in the 
temperature range 320 to 350 °C. The Al-Mg phase diagram is shown in figure 2.12 
where the stability range of the ß-phase is outlined in red.  

 

 
   Figure 2.12: Al-Mg phase diagram (Murray, 1986). The stability range of the ß-phase 
is outlined in red (indicated by the approximate composition Al3Mg2). The applied melt 
composition cm for single crystal growth is denoted by a dashed blue line. 
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   Recent investigations of the Al-Mg phase diagram in the vicinity of the stability range 
of ß-Al3Mg2 by Feuerbacher et al. (2007) revealed that an additional low-temperature 
phase, called ß’-Al3Mg2, exists. However, up to now the transition temperature between 
these phases is only approximately known. At the composition Al61.5Mg38.5, for 
example, a first-order transition between ß and ß’ phase takes place in the range of 100 
to 200 °C. The metastable high-temperature ß-phase is kinetically stabilized at 
temperatures below this phase transformation (Feuerbacher et al., 2007). The crystal 
system of ß’-Al-Mg was identified as rhombohedral (space group R3m) with lattice 
parameters a = 19.968 Å and c = 48.9114 Å.  

   Since ß-Al-Mg solidifies congruently at 61.5 at.% Al and 38.5 at.% Mg, the latter 
composition was applied for crystal growth (blue dashed line in figure 2.12). The 
materials were pre-alloyed by means of a levitation inductive melting furnace with a 
water-cooled copper crucible under protective Ar atmosphere. Single-crystalline 
material of the phase ß-Al-Mg investigated in the present thesis was grown by means of 
the Czochralski technique. However, the flux-growth technique has turned out to be 
applicable for single-crystal growth of this material, as well (Lipińska-Chwałek et al., 
2007). 

   The growth was performed in a protective argon atmosphere at 400 mbar and with 
pulling speed of 15 mm/h. The counter rotation between pulling rod and crucible 
amounted to 25 min-1. The constituents had a purity of 99.9999 % Al and 99.98 % Mg. 
The final crystal had a size of about 3.2 cm3 and is shown in figure 2.13 together with a 
part of the growth apparatus. In this picture the crystal is still attached to the pulling rod 
and is located above the alumina crucible containing the residual melt. A part of the 
inductive heater surrounding the crucible is also visible. 

   The phase ß-Al-Mg was identified on the basis of its composition and structure by 
means of EDX and powder X-ray diffraction, respectively. The composition was 
determined to 38.7 at.% Mg and 61.3 at.% Al which corresponds to the initial melt 
composition within the precision of the EDX measurements. Single crystallinity of the 
complete crystal was confirmed by means of Laue X-ray diffraction operated in back-
reflection geometry. In figure 2.14 an electron diffraction pattern of the grown ß-Al-Mg 
along the [0,0,1] zone axis taken by means of TEM is shown (Lipińska-Chwałek, 2007). 
The absence of satellite spots and diffuse scattering reflects the high quality of the 
crystal. 
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   Figure 2.13: ß-Al-Mg single crystal grown by means of the Czochralski technique. 
The inductive heater containing crucible and residual melt is also visible. 
 
 
 

 
   Figure 2.14: Electron diffraction pattern of ß-Al-Mg along the [0,0,1] zone axis 
(Lipińska-Chwałek, 2007). 
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Chapter 3  
 
Crystal plasticity and plastic deformation 
experiments 
 
   In this Chapter an introduction to the fundamentals of crystal plasticity is given. The 
basic principles of dislocation motion as well as the corresponding theory of thermal 
activation are outlined. Experimental routines for the determination of thermodynamic 
activation parameters are introduced and procedures of deformation experiments 
performed in the frame of the present work are illustrated. 
 
 

3.1 Fundamentals of crystal plasticity 
 
Plasticity and dislocation motion  

   Accessible experimental parameters of a deformation experiment are the force F 
applied at a sample, the dimensions of the sample, the time t, and the temperature T. If A 
is the sectional area of the sample to which the force is applied, the stress acting on the 

sample can be calculated according to 
A
F

=τ . The strain corresponds to 
0l
lΔ

=ε , where 

Δl and l0 are the length variation and the initial length of the sample, respectively. The 
strain consists of an elastic and a plastic contribution: 

 

     elplast εεε +=  .    (3.1) 

 

   For small strains, where stress and strain are proportional, the deformation has purely 
elastic character and can be described by Hooke’s law: elE ετ ⋅= , where E is the 

material-specific Young’s modulus. At higher strains a deviation from the 
proportionality between stress and strain appears when the deformation reaches the 
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transition between the elastic and plastic regime. A plastically deformed sample shows a 
permanent change in shape.  

   Mostly, plastic deformation of crystals takes place by movement of dislocations (e.g. 
Kocks et al., 1975). Dislocations are line defects in the crystal structure characterized by 

their line direction l
r

 and Burgers vector b
r

. The Burgers vector denotes the magnitude 
and direction of the distortion of the crystal lattice. Dislocations are called screw 

dislocations if the Burgers vector lies parallel to the line direction. If b
r

 and l  are 
perpendicular to each other dislocations are called edge dislocations. Mixed dislocations 
also exist, which comprise Burgers vectors inclined with respect to the line direction.  

r

   An edge dislocation can be constructed by means of the Volterra process as illustrated 
in figure 3.1. An atomic half plane (red circles in figure 3.1 (a)) is removed from an 
ideal crystal lattice (figure 3.1 (b)). After closing the gap and relaxing the lattice, an 
edge dislocation has formed (figure 3.1 (c)). Lattice points around the dislocation core 
are shifted from their original positions generating a strained lattice in the vicinity of the 
dislocation core. This strain field remains invariant along the line direction (in figure 3.1 
(c) perpendicular to the image plane).  

 
 

 

 a)         b)           c) 
   Figure 3.1: The Volterra process: (a) In an ideal crystal lattice an atomic half plane 
is indicated by red spheres. (b) The half plane is removed. (c) The lattice is closed and 
relaxed. An edge dislocation is indicated.   
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 a)             b) 
   Figure 3.2: Definition of the Burgers vector b

r
 by means of a Burgers circuit. (a) A 

Burgers circuit around an edge dislocation is shown with start (O) and finish (X) points 
on the same lattice point. (b) The Burgers circuit is transferred to an undistorted lattice. 
The Burgers vector is defined as the vector required to complete the circuit. 
 
 

   The Burgers vector b
r

 is defined by means of a Burgers circuit around a dislocation as 
demonstrated in Figure 3.2. An atom-to-atom path which forms a closed loop around 
the dislocation is performed such that the start (O) and finish (X) points are located at 
the same lattice site (figure 3.2 (a)). The Burgers circuit transferred to a corresponding 
undistorted lattice is shown in figure 3.2 (b). In this case the finish and start points of 
the same atom-to-atom path do not coincide, i.e. the circuit shows a closure failure. The 
vector required to complete the circuit, i.e. to compensate the closure failure, is called 
the Burgers vector.  

  Two conventions are generally made in the literature in order to unambiguously define 

the Burgers vector. First, when looking along the positive line vector l
r

 of the 
dislocation, the Burgers circuit is taken in a clockwise direction. Second, the Burgers 
vector is taken to run from the finish to the start point of the reference circuit in the 
perfect crystal (Hull and Bacon, 1984). Burgers circuits constructed around other 
defects, like vacancies or interstitials, do not lead to closure failures (cf. Hirth and 
Lothe, 1982).   

   An applied stress at a deformation sample generates a force on comprised 

dislocations. This force K
r

 is called Peach-Köhler force and acts perpendicular to the 

dislocation line l
r

  

 

     lbK
rrrr

×⋅= )(σ ,    (3.2) 
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where σr  is the stress tensor (e.g. Suzuki et al., 1991). 

   Two different modes of dislocation motion exist (also mixtures of these types occur) 
which differ in their direction of motion. A dislocation slips (or glides), if it moves 
parallel to its Burgers vector within one specific atomic plane. This plane is called the 

slip plane of the dislocation. Its normal vector nr  is defined by bln
rrr

×= . Slip of an 
edge dislocation is illustrated in figure 3.3. An external force acts on the crystal lattice 
inducing a shear stress τ (figure 3.3 (a)). The atomic bond (shown in red) on the left-
hand side of the dislocation core is opened (figure 3.3 (b)) and a new bond is established 
on the right-hand side of the core, which moves the dislocation core to the left-hand side 
by one elementary step (figure 3.3 (c)). 

 

 
 a)          b)            c) 

   Figure 3.3: Slip of an edge dislocation: (a) A shear stress τ acts on the crystal lattice 
and strains an atomic bond (red). (b) The atomic bond is opened. (c) A new atomic 
bond establishes (red). The dislocation has moved one step in its slip plane. 
 
 
   Another mechanism of dislocation motion is dislocation climb. In this mode, a 
dislocation moves out of its slip plane perpendicular to the Burgers vector. In contrast to 
dislocation slip, dislocation climb is always accompanied by a volume change of the 
crystal lattice at the dislocation core. Therefore, dislocation climb requires atomic 
transport by means of diffusion and is usually observed only at elevated temperatures 
(Hull and Bacon, 1984).  

   Climb of an edge dislocation is illustrated in figure 3.4. The dislocation in figure 3.4 
(a) moves up one elementary step and reaches the position shown in figure 3.4 (b) 
(circle). Either diffusion of an interstitial atom to the core or the formation of a vacancy 
at the core and its diffusion away can cause this kind of climb which is called negative 
climb. In case of positive climb the dislocation moves in the opposite direction by either 
diffusion of a vacancy to the core or by the formation of an interstitial atom at the core 
and its diffusion away. The red arrow in (a) indicates the orientation of the Burgers 
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vector. Because of the necessity of atomic transport, the climb mechanism is termed a 
non-conservative process, while dislocation slip is termed a conservative process. 

 

 

     a)      b) 
   Figure 3.4: Climb of an edge dislocation. The dislocation moves from its initial 
position (a) one atomic plane upwards (b) (circle). Diffusion of an interstitial atom to 
the core or diffusion of a vacancy away from it is necessary for this kind of climb 
(negative climb). The red arrow in (a) indicates the Burgers vector perpendicular to the 
direction of motion. 
 
 
   A moving dislocation can contribute to the straining of a material. The connection 
between microstructural motion of dislocations and macroscopic deformation of a 
sample is given by bxplast ρε = , where ρ is the dislocation density, b is the magnitude of 

the Burgers vector and x is the average distance passed by a dislocation. The time 
derivative yields the Orowan equation 

 

     bvplast ρε =& ,    (3.3) 

 

where plastε&  is the plastic strain rate, and v is the dislocation velocity. An assumption 

made for the Orowan equation is the constancy of structure, i.e. the dislocation density 
is constant during deformation ( 0=ρ& ). 

   In case of dislocation slip the relation between the stress applied at the deformation 
sample σ and the resulting shear stress τ acting in the slip system, i.e. the occurring slip 
plane and slip direction, depends on the orientation of the slip system with respect to the 
deformation direction. This relation is expressed by a geometrical factor, called the 
Schmid factor mS: 

     στ Sm= .     (3.4) 
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The Schmid factor is calculated from the cosines of the angles between compression 
direction1 and slip-plane normal Φ and between compression direction and slip 
direction λ, respectively, according to ΦλmS coscos= . These angles are illustrated in 

a schematic deformation sample in figure 3.5. The Schmid factor can take values 
between 0 and 0.5.  

 

 
   Figure 3.5: The orientation of the slip system with respect to the compression 
direction defines the Schmid factor mS. It is calculated from the angles between 
compression direction and slip-plane normal Φ and compression direction and slip 
direction λ, respectively. 
 
 
Thermal activation 

   Besides the shear stress τ other stresses may act on a dislocation, as well. 
Contributions occur from long-range stress fields of other dislocations or stress fields of 
extrinsic obstacles like point defects or precipitates. All these internal stresses τi 
counteract the movement of a dislocation and reduce the effective stress τeff acting on a 
dislocation (Seeger (1958)) according to 

 

     ieff τττ −= .     (3.5) 

 

                                                 
1 The deformation experiments performed in the frame of the present thesis have been carried out 
exclusively as compression test. However, these geometrical considerations also hold for tensile tests. 
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   If the effective stress is larger than the friction stress τf caused by energetic obstacles 
in a given material, the dislocation will continuously move and overcome the obstacles. 
According to equation (3.2) the driving force of a dislocation amounts to K = τefflb. If 
the effective stress is smaller than the friction stress, the dislocation can not overcome 
the respective obstacle and remains in a stable position in front of it. This situation is 
illustrated in figure 3.6. The dislocation (shown in blue) remains at position x1.  

 
 

 
   Figure 3.6: Schematic illustration of thermal activation. The effective stress τeff is 
smaller than the friction stress τf of the obstacle. The dislocation (blue) remains at the 
stable position x1. The energy barrier ΔG can be overcome by means of thermal 
fluctuations. 
 
 
   For temperatures T > 0 a non-zero probability exist to overcome the obstacle due to 
thermal fluctuations. The energy barrier which has to be overcome is given by (Gibbs, 
1964) 

     ,   (3.6) ∫ −=Δ
2

1

)(
x

x
efff lbdxG ττ

 

where ΔG is the Gibbs free energy and l is the length of the dislocation line. The total 
energy to overcome the obstacle is given by the Helmholtz free energy , 
where ΔW denotes the work-term which corresponds to the part of the energy supplied 
by the effective stress 

WGF Δ+Δ=Δ

 

     .    (3.7) ∫=Δ
2

1

x

x
eff lbdxW τ
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Integration of equation (3.7) with τeff(x) = const yields 

 

     xlbW eff Δ=Δ τ ,    (3.8) 

 

where Δx = x2-x1 is the distance moved by the dislocation to overcome the obstacle. The 
probability is given by (Vineyard, 1957) 

 

     
kT

GP Δ−
= exp ,    (3.9) 

 

where k is Boltzmann’s constant and T is the absolute temperature. If the thermal 
overcoming of obstacles is rate controlling, the process is called thermally activated. In 
this case the probability of thermal activation (3.9) can be combined with the Orowan 
equation (3.3) (Schoeck, 1965) as 

 

     
kT

G
plast

Δ−
= exp0εε && ,    (3.10) 

 

with the pre-exponential factor 00 xvbΔ= ρε& , where v0 is the attempt frequency 

(Granato et al. (1964)). If the energy barrier is overcome isothermally and at constant 
stress, ΔG is a thermodynamic variable of state.  

   The differential of the Gibbs free energy is  with the 

definitions 
effdVSdTGd τ*)( −Δ−=Δ

     
eff

T
GS

τ∂
Δ∂

−≡Δ
)(     (3.11) 

and 

     
Teff

GV
τ∂
Δ∂

−≡
)(* .    (3.12) 

 

ΔS is the activation entropy and V* is the activation volume. The activation volume can 
be calculated according to (Kocks et al., 1975) 
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         (3.13) AbxlbV Δ=Δ=*

 

and can be interpreted as the area which is passed by the dislocation during thermally 
activated overcoming of an obstacle multiplied with the Burgers vector of the 
dislocation. Figure 3.7 illustrates the interpretation of the activation volume. The 
dislocation line is pinned at two points indicated by P and stays at a stable position in 
front of an obstacle. By means of thermal fluctuations the dislocation can overcome the 
obstacle and pass the distance Δx. 

 

 
   Figure 3.7: Geometrical interpretation of the activation volume. The activation area 
ΔA is the area covered by the dislocation line during thermally-activated overcoming of 
an obstacle. 
 
 
The work term can be calculated from the activation volume in comparison with 
equation (3.8) according to 
 

     .     (3.14) *VW effτ=Δ

 
 
 

3.2 Incremental tests 
 
   Thermodynamic activation parameters described in the last section are not directly 
accessible from the experiments. They have to be calculated from the macroscopic 
parameters stress, strain, temperature, and time. The activation volume can be 
determined from the deformation experiment according to (Evans and Rawlings, 1969) 
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T

plast

Sm
kTV
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=

&ln
.    (3.15) 

 

This experimental activation volume V is connected with V* via )1(*
TiVV ττ ∂∂+=  

(Evans and Rawlings, 1969, Hirth and Nix, 1969). V and V* are identical if τi is 
independent of τ. The activation volume provides information about the nature of 
dislocation obstacles since for thermally activated processes obstacles and activation 
volume have approximately the same size (Krausz and Eyring, 1975). Another 
important parameter is the strain-rate dependence of the stress calculated according to 
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≡ .    (3.16) 

 

From the approach (Ilschner, 1973) the stress exponent  m
plast σε ∝&
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    (3.17) 

 

can be deduced which may be used to classify deformation processes (e.g. Poirier, 
1985).  

   The Gibbs free activation energy can not be determined directly from a deformation 
experiment. However, the activation enthalpy ΔH which is connected with the Gibbs 
free energy via 

 

     STGH Δ+Δ=Δ     (3.18) 

 

can be determined according to (Evans and Rawlings, 1969) 
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   The thermodynamic magnitudes described above cannot be determined by means of a 
dynamic compression experiment, i.e. deformation with constant strain rate. Additional 
incremental tests1 (stress-relaxation tests, temperature changes) during the deformations 
have to be performed in order to calculate the thermodynamic activation parameters.  

 

 
Stress-relaxation tests 

   In order to perform a stress-relaxation test, a continuous deformation experiment is 
abruptly halted at constant strain and the stress decrease is measured as function of time. 
Since the total strain is kept constant the total strain rate is given by 0=+= elplast εεε &&&  

(cf. equation (3.1)) and elastic strain is transferred into plastic strain, i.e. plastel εε && −= . 

Following Hooke’s law, the elastic strain decreases proportional with the stress 
( σε ∝el ) and accordingly σε && −∝plast . Using this relation with equations (3.15) and 

(3.17), the activation volume and the stress exponent can be determined from stress-
relaxation tests by 
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    (3.20) 

and 
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Temperature changes 

   In order to perform temperature changes during a dynamic compression test, the 
deformation is interrupted and the sample is unloaded. After an equilibration time, the 
sample is reloaded with a temperature changed by ΔT and deformed with the initial 
strain rate. The resulting stress difference  can be determined in the stress-strain 
curve. In combination with stress-relaxation tests the temperature dependence of the 
stress yields the activation enthalpy ΔH according to equation (3.19). 

Δσ

 

                                                 
1 Here, only incremental tests are described which are applied in the frame of the present thesis. For a 
broader overview of common tests see e.g. Feuerbacher (1996). 
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   For all deformation experiments performed in the present work, the same sequence of 
incremental tests was conducted. An exemplary stress-strain curve, illustrating the 
sequence of stress-relaxation tests “R” and temperature change “TC”, is shown in figure 
3.8. The upper-yield point (uyp) and the lower-yield point (lyp) of the stress-strain 
curve are indicated. The dashed line denotes the interpolated course. 

   After reaching the lower-yield point in the stress-strain behaviour, a stress-relaxation 
test is performed for 60 s (120 s in the case of µ-Al-Mn), followed by unloading of the 
sample and a temperature increase by 10 °C. After an equilibration time of about 1200 
s, the sample is reloaded and deformed by further 0.5 to 1 % plastic strain. Subsequently 
a second stress-relaxation test is performed again followed by an unloading of the 
sample and a temperature change back to the initial value. After equilibration and 
reloading of the sample, a third stress-relaxation test is performed. Afterwards 
deformation with initial temperature and strain rate is continued.  

 

 

 
   Figure 3.8: Exemplary stress-strain curve of a deformation experiment, illustrating 
the sequence of conducted stress-relaxation tests “R” and temperature changes “TC”. 
The upper- and the lower- yield point of the deformation behaviour are indicated “uyp” 
and “lyp”, respectively. The dashed line denotes the interpolated course of the curve. 
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3.3 Uniaxial testing machine 
 
   All deformation experiments performed in the frame of the present work have been 
carried out in compression using a modified Zwick Z050 uniaxial testing machine. The 
essential parts of this machine are schematically shown in figure 3.9. The deformation 
sample (1), which usually has a size of about 2 x 2 x 5 mm3, is located between two 
silicon-carbide compression anvils (2). The upper and lower anvil are connected via 
alumina compression rods (3) to a moveable crosshead and the frame of the machine, 
respectively. The load is measured by a 10 kN load cell (4) in series with the lower 
compression rod. The strain measurement is carried out by a linear inductive differential 
transducer which directly measures the length variation of the sample at the anvils via 
alumina rods (5) at an accuracy of ±10 nm. This setup is enclosed by a cylindrical 
furnace (6). The deformation temperature is controlled directly at the sample by means 
of a thermocouple (7), while the temperature gradient is controlled by two additional 
thermocouples (8) within the compression anvils.  

   The deformation experiments are computer-operated under closed-loop control and 
can be conducted as constant-strain-rate tests (dynamic-compression tests) or constant-
stress tests (creep tests). Changes between this modes or additional incremental tests 
(see above) can be performed during a running experiment. 
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   Figure 3.9: Schematic setup of the Zwick Z050 deformation machine; for explanations 
see text. 
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Chapter 4 
 
Plasticity of µ-Al-Mn 
 
   In this chapter the structure of the CMA phase µ-Al-Mn is introduced and deformation 
experiments performed on this phase are described. Uniaxial compression tests at constant 
strain rate and with compression direction parallel to the c-axis of the hexagonal structure 
were carried out. Thermodynamic activation parameters of the deformation process are 
evaluated and discussed. A microstructural analysis of the deformed material is performed by 
means of TEM and the underlying microstructural deformation mechanisms are determined. 
Pure climb of two interacting sets of dislocations is found to be the primary microstructural 
deformation mechanism. 

    
 
 

4.1 The structure of µ-Al-Mn 
 
   The phase µ-Al-Mn exhibits a hexagonal crystal system with space group P63/mmc 
(Bendersky, 1987). The structure was investigated by Shoemaker et al. (1989) who found that 
this phase with approximate composition Al4Mn possesses the lattice parameters a = 19.98 
and c = 24.67 Å. The unit cell contains 563 atoms whereby two of the 42 atomic positions are 
partially occupied. 

    In µ-Al-Mn no large atom clusters as known from other CMA phases (e.g. Bergman or 
Mackay cluster) occur, but different fragments of Mackay clusters (cf. chapter 1) are present. 
Nearly all Mn atom sites in µ-Al-Mn feature icosahedral coordination while the Al sites are 
coordinated by pentagonal prisms and other regular and irregular polyhedra featuring 
coordination numbers (CN) between 9 and 15 as shown in figure 4.1. 
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   Figure 4.1: Coordination polyhedra in µ-Al-Mn for Mn (a) and Al (b-f) (after Shoemaker et 
al., 1989). Small and large spheres denote Mn and Al atom sites, respectively; numbers 
indicate atom sites with respect to the model of Shoemaker et al. (1989). (a) Trigonal 
coordination of Mn. The Al sites are partially occupied. (b) CN13 coordination of Al. (c) 
Friauf polyhedron with three additional Al atoms. (d) CN14 coordination of Al. (e,f) 
Examples for irregular CN12 coordinations of Al. 
 
 
   The large and small spheres denote Al and Mn atom sites, respectively. Different atom 
positions are denoted by numbers according to the structure model of Shoemaker et al. 
(1989). One Mn atom site without icosahedral coordination is present in the structure. It is 
surrounded by a trigonal prism of Al atoms as shown in figure 4.1 (a). The Al sites in this 
polyhedron are partially occupied. Figure 4.1 (b) shows one of six occurring similar Al 
coordinations with CN13. Other atomic arrangements shown in figure 4.1 are (c) a Friauf 
polyhedron with three additional Al atoms, (d) a polyhedron featuring CN14 and irregular Al 
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coordinations (e) and (f) with CN12. The complete model with descriptions of all atom sites is 
given by Shoemaker et al. (1989). 

   A schematic representation according to the structure model of Shoemaker et al. (1989) 
along the [0,0,1]1 direction is given in figure 4.2 (a). Al and Mn atom sites are illustrated as 
green and red spheres, respectively. Figure 4.2 (b) shows a high-resolution micrograph taken 
by means of scanning transmission electron microscopy (STEM) using a FEI Titan 80-300 
microscope operated at 300 kV in high angle annular dark field (HAADF) mode. In HAADF 
an image contrast is provided which is proportional to the square of the mean atomic number 
within an atom column (Z-contrast). Therefore, Al and Mn atoms in figure 4.2 (a) are shown 
with radii proportional to the atomic numbers. In (b) the atom sites appear in bright contrast.  
Blue rhombi representing the unit cell are superimposed to the image. The structural 
representation (a) and the micrograph (b) are overlapping in the centre of figure 4.2; (a) is 
shown partially transparent in this region. A good correspondence of the Mn-atom positions 
in the micrograph and the structure representation can be observed. 

 

                                                 
1 The crystallographic notation employing three Miller indices is applied for hexagonal µ-Al-Mn in this thesis. 
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   Figure 4.2: Projection of the µ-Al-Mn structure along the [0,0,1] direction. (a) Model 
according to Shoemaker et al. (1989). Al and Mn sites are shown in green and red, 
respectively. (b) High-resolution micrograph taken by means of STEM in high angle annular 
dark field mode (Houben and Roitsch, 2007). Atom sites appear in bright contrast. Unit cells 
are indicated blue in (a) and (b). 
 
 
   Figure 4.3 shows schematic representations of the unit cell along the [1,0,0] (a) and ]0,1,1[  

(b) directions. The structure comprises two different types of layers arranged in a symmetric 
stacking along the c-axis; F denotes flat and P denotes puckered layers. In the centre of the 
figure, layer positions along [0,0,1] are given in units of the lattice parameter c. The flat layers 
at c = 0.25 and 0.75 correspond to mirror planes. Therefore, the puckered layers at c = 0.325 
and 0.425 can be generated from the layers at c = 0.175 and 0.075, respectively, by mirror-
symmetry operations. Layers above c = 0.5 can be generated by the operation of a twofold-
rotational symmetry along the [1,1,0] direction on layers below c = 0.5 (Shoemaker et al., 
1989). Additionally, the layer at c = 0.5 corresponds to a pseudo-mirror with respect to its 
adjacent layers.  
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   Concerning the layer stacking of the structure, µ-Al-Mn is closely related with several other 
hexagonal phases (Kreiner and Franzen, 1997). Especially the crystal structures of λ-Al-Mn 
and Al10Mn3 can be described by symmetric stackings of flat and puckered layers along the c-
axis, which are comparable to those in µ-Al-Mn. An overview of various related hexagonal 
phases in terms of layer-stacking concepts is given by Kreiner and Franzen (1995). 

 
 

 
          (a)          (b) 
   Figure 4.3: Schematic projection of the µ-Al-Mn unit cell along the  (a) and 0]0[1 ,, 0]1[1 ,,  
(b) direction. The unit cell features a structure of 4 flat (F) and 8 puckered (P) layers stacked 
along the c-axis. Al and Mn sites are shown in green and red, respectively. The layer 
positions along [0,0,1] are given in terms of the lattice parameter c. 
 
 
 
4.2 Macroscopic deformation behaviour 
 
Experimental details 

   µ-Al-Mn was grown by means of the Bridgman technique as discussed in chapter 2.2. A 
single crystal of about 1.5 cm3 in size was obtained. The material was characterized as 
described in chapter 2.3. Neither secondary phases nor grain boundaries were found. 

   The crystal was oriented by Laue X-ray diffraction in back-reflection geometry. Rectangular 
samples of about 1.6 x 1.6 x 4.5 mm3 in size for uniaxial deformation experiments were cut 
from the crystal by means of spark erosion. The long axis of the samples, i.e. the compression 
direction, corresponds to the [0,0,1] direction (c-axis) of the hexagonal structure. The side 
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faces correspond to [1,0,0] and ]0,1,1[  directions, respectively. All surfaces were carefully 

ground and polished in order to prevent crack formation at scratches. Care was taken to obtain 
flat and plan-parallel end faces in order to prevent inhomogeneous stress fields in the sample.   

   The deformation experiments were carried out as uniaxial compression tests in a modified 
Zwick Z050 testing system under closed-loop control. The setup of this deformation machine 
is described in chapter 3.3. The experiments were performed in air at temperatures between 
700 °C and 875 °C and at a constant strain rate of 10-5 s-1. Additional incremental tests, i.e. 
stress-relaxation tests and temperature changes, were performed as described in chapter 3.2. 
After deformation, the samples were rapidly unloaded and quenched on a cold metal plate in 
order to preserve the microstructural state. 

 
Results 

   First deformation experiments on µ-Al-Mn samples were carried out at a strain rate of  
10-4 s-1. Sample fracture occurred shortly after entering the plastic deformation regime even at 
a high homologous temperature of TH = 0.9, where TH = T / Tm is the absolute temperature T 
scaled by the absolute melting temperature Tm which amounts to Tm = 1196 K (McAllister and 
Murray, 1986). Therefore, deformation experiments with a strain rate of 10-5 s-1 were 
performed. 

   In figure 4.4 stress-strain curves of µ-Al-Mn samples, deformed between 700 and 875 °C, 
are shown. Vertical dips in the curves at 750, 800, and 850 °C are due to incremental tests. 
The applied sequence of these tests is described in chapter 3.2. A stress-relaxation experiment 
and a deformation section with a temperature increased by 10 °C are labelled “R” and “TC”, 
respectively. Dashed lines in figure 4.4 indicate the interpolated course of the stress-strain 
curves. The deformation experiments at 800 and 850 °C were aborted at a total strain of about 
4 %. At 875 °C the flow stress was too low to obtain reliable activation parameters and the 
deformation experiment was aborted at about ε = 1 %. At 750 and 700 °C sample fracture 
occurred during the deformation at 2 and 1.1 %, respectively.  

   All curves in figure 4.4 (except at 875 °C) show a pronounced yield-point effect. The yield 
drop, i.e. the difference between the maximum stress and the steady-state flow stress, 
increases with decreasing temperature. At 750 °C a huge yield drop of 50 % of the respective 
maximum stress is observed. Reloading of the sample does not induce additional yield-point 
effects: After stress-relaxations as well as after unloading for temperature changes the stress 
smoothly approaches an almost constant flow stress without exhibiting an overshoot. At 800 
and 850 °C the stress-strain curves show a constant flow stress between 2.5 and 4 % strain. 
Neither work hardening nor work softening is observed. 
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   Figure 4.4: Stress-strain curves of µ-Al-Mn at temperatures between 700 and 875 °C at a 
strain rate of 10-5 s-1. A stress relaxation test and a temperature change are exemplarily 
labelled “R” and “TC”. Interpolated courses of the stress-strain curves are plotted as dashed 
lines. 
 
 
   In addition to the experiments shown in figure 4.4, another deformation experiment was 
performed at 750 °C using a sample pre-deformed at 875 °C up to a total strain of ε = 1 %. It 
was found that the pre-deformation strongly suppresses the yield-point effect. The stress-
strain curves of these two deformation experiments performed at 750 °C are compared in 
figure 4.5. 

   The solid curve corresponds to the deformation of a previously undeformed, and the dashed 
curve to the deformation of a pre-deformed sample. While the deformation of a fresh sample 
leads to an upper-yield point of about 560 MPa, the pre-deformed sample shows a value of 
360 MPa only. The flow stresses at higher strains (ε = 1 – 2 %), on the other hand, differ by 
about 15 MPa which corresponds to the usual experimental scatter, i.e. they can be considered 
essentially unaffected by the pre-deformation.  
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   Figure 4.5: Stress-strain curves of µ-Al-Mn at 750 °C and 10-5 s-1. The continuous curve 
denotes an experiment carried out with a previously undeformed sample while the dashed 
curve denotes an experiment with a pre-deformed sample (T = 875 °C, ε&= 10-5 s-1, ε = 1 %). 
 
 
   During the deformation experiment at 750 °C of the pre-deformed sample photographs of 
the sample were taken. Figure 4.6 shows a set of three pictures of the sample at different 
times of the experiment (a-c). The time intervals between the photographs are indicated. They 
were taken before the first stress-relaxation test was initiated, at strains between 0.7 and 1.2 
%. The white arrows in figure 4.6 (a) indicate the load axis at the compression anvils. The 
cuboid shaped sample is oriented with one edge towards the camera so that two side faces are 
visible on the pictures. 

   At the beginning of the test (not shown), the sample surface displays a homogeneous grey 
appearance. In the course of the deformation process, bright horizontal lines appear on the 
surface and grow perpendicular to the compression direction. On one of the side faces a 
surface regions is marked by a rectangle and enlargements of this region are shown. At the 
end of the deformation experiment the surface of the sample was completely covered by 
bright lines. 
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   Figure 4.6: Photographs of a sample at different times during a deformation experiment at 
750 °C. The arrows in (a) indicate the compression direction. The cuboid shaped sample is 
oriented with one edge towards the camera. Red rectangles show enlargements of a surface 
region where bright lines can be observed which grow during deformation perpendicular to 
the compression direction. 
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   Figure 4.7 (a) shows an optical micrograph of a deformed sample. Black arrows denote the 
compression direction. The sample, deformed in air at 750 °C (same sample as shown in 
figure 4.6), is covered with an oxide layer (dark surface in figure 4.7) showing a pattern of 
bright lines, which are mostly oriented perpendicular to the compression direction. The other 
side faces of the sample show a similar appearance. The bright lines are caused by local 
flaking, and at these positions, the surface of the sample is visible. 

   Figure 4.7 (b) is a magnification of such an area. Fine steps or cracks oriented parallel and 
perpendicular to the compression direction are observed on the sample surface. Samples 
deformed at other temperatures exhibit a similar surface appearance.  

 

 
   Figure 4.7: Deformation sample (a) and enlarged surface region (b) after deformation at 
750 °C up to ε = 3.6 %. 
 
 
   Figure 4.8 shows the results of a stress relaxation test at 750 °C. The test was aborted after 2 
minutes. In (a) the stress is plotted as function of time. The natural logarithm of the slope 

)ln( σ&−  is plotted as function of stress in (b). A linear fit is indicated by a solid line. Its slope 

delivers, according to equation (3.20), the activation volume V. A Schmid factor of ms = 1 
was implied in this calculation since the assumed microstructural mechanism for plastic 
deformation in this material is dislocation climb (see discussion in section 4.4).  
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   Figure 4.8: Stress-relaxation test on µ-Al-Mn at 750 °C. The stress plotted as function of 
time is shown in (a). The natural logarithm of the slope )σln( &−  plotted as function of stress is 
shown in (b). The solid line in (b) is a linear fit. 
 
 
   Figure 4.9 shows the stress dependence of the activation volume. The dashed curve is a fit 
of the determined experimental activation volumes at different stresses and follows the 
hyperbolic function σ/5.85=V . The stress exponent m is calculated according to equation 
(3.21) and is shown in figure 4.10 as function of temperature. The stress exponent is nearly 
constant in the investigated temperature range. The dashed line corresponds to the average 
value of m = 5.5. 

   The activation enthalpy ΔH, calculated according to equation (3.19), is shown in figure 4.11 
(squares). The values are strongly varying with the temperature from 4.5 to 9 eV. The dashed 
line shows a linear fit. The work term, corresponding to the part of the energy which is 
supplied by the applied stress, is calculated according to equation (3.14) by neglecting 
internal stresses, i.e. VW τ≈Δ . It is shown in figure 4.11 as circles. The work term is 
constant in the observed temperature range and amounts to about 0.5 eV, i.e. it is more than 
ten times smaller than the activation enthalpy. 
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   Figure 4.9: Activation volume V of µ-Al-Mn, evaluated from stress-relaxation experiments, 
as a function of stress σ. The dashed curve follows the hyperbolic function σ/5.85=V . 
 
 

 
   Figure 4.10: Stress exponent m of µ-Al-Mn, evaluated from stress-relaxation experiments, 
as function of temperature. The dashed line indicates the average value of m = 5.5. 
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   Figure 4.11: Activation enthalpy ΔH (squares) and work term ΔW (circles) of µ-Al-Mn as a 
function of temperature. The dashed line shows a linear fit of the activation enthalpy. 
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4.3 Microstructural analysis 
    
Experimental details 

   The microstructural investigations on µ-Al-Mn were carried out by means of a JEOL 
4000FX transmission electron microscope operated at 400 kV. Fundamentals of the 
microstructural analysis are described in Appendix A 

   The sample material was cut into slices of about 0.7 mm thickness by means of a high 

precision wire saw. Samples were cut with plane normals parallel to the [0,0,1] and ]0,1,1[  

directions, i.e. parallel and perpendicular to the compression direction. Sample preparation 
was performed by mechanical grinding to a slice thickness of about 120 µm1. Further thinning 
was performed using a dimple grinder. By this means a sample thickness of about 25 µm is 
obtained at the thinnest sample area. Subsequently the specimens are polished with an 
alumina suspension (particle size smaller than 1µm) and finally thinned by argon-ion milling, 
carried out on a liquid-nitrogen cooled stage in a Gatan Dual Ion Mill 600. This process is 
performed in two steps using a gun voltage of 5 kV and subsequently 3 kV at an angle of 
incidence to the sample plane of 14 and 9°, respectively. 

    
 
Results 

   Figure 4.12 shows a bright-field Bragg-contrast TEM micrograph of a µ-Al-Mn sample 
deformed at T = 850 °C up to ε = 4.4 %. The TEM specimen was prepared with plane normal 
parallel to the compression direction. The plane normal of figure 4.12 lies close to the [0,0,1] 
zone axis. The orientation of the TEM specimen with respect to the geometry of the 
deformation sample is illustrated by the inset on the right-hand side of figure 4.12. The 

applied two-beam condition corresponds to the reciprocal vector )0,10,5(=gr  (upper-left 

inset). 

   Two different types of dislocations are visible in figure 4.12. One dislocation type possesses 
a line direction which lies within the TEM-specimen plane. Accordingly, long dislocation-line 
segments of this type are visible (white arrows). The second type of dislocations possesses 
line direction parallel to the surface normal of the TEM-specimen plane. Only short 
projections of the line segments of this dislocation type are visible in figure 4.12 (black 
arrows). In the following, orientations and habit planes of both types of dislocations are 
analyzed separately. 

 
                                                 
1 A more detailed description of sample-preparation procedures can be found e.g. in Wollgarten (1993). 
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   Figure 4.12: Bright-field Bragg-contrast TEM micrograph of deformed µ-Al-Mn. The TEM-
specimen possesses a surface normal parallel to [0,0,1]. The black and the white arrows 
indicate two different sets of dislocations. The inset on the right-hand side illustrates the 
specimen orientation with respect to the compression direction. The applied two-beam 
condition corresponds to ,0)10(5,g =

r  (inset on the upper left). 
 
 
c-axis dislocations 

   The dislocations with line direction parallel to the surface normal of the specimen shown in 
figure 4.12 are imaged with higher magnification in figure 4.13. This micrograph reveals that 
the contrast, as seen in figure 4.12, stems from five closely arranged dislocations (black 
arrows). The plane normal of this micrograph is almost parallel to the [0,0,1] direction. The 
five dislocations have line direction along [0,0,1] (c-axis) and are correspondingly oriented 
nearly end-on in figure 4.13. In the following these dislocations are accordingly referred to as 
c-axis dislocations.  

   The five dislocations are located in a common habit plane whereby the distance between the 
exterior dislocations amounts to approximately 100 nm. Due to this narrow distance, the five 
individuals of each group can not be resolved in figure 4.12. Between the dislocations, 
stacking faults are present (white arrows in figure 4.13) indicating that the five individual 
dislocations are partial dislocations. 
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   Figure 4.13: c-axis dislocation split into five partials (nearly end-on orientation, black 
arrows) with [0,0,1] line direction arranged in a common plane. Stacking faults (white 
arrows) are visible between the individual partials. 
 
 
   The habit planes of the c-axis dislocations are arranged according to specific lattice 
directions. Their normal vectors  lie within the (0,0,1) plane, parallel to  or nr >< 0,0,1

>< 0,1,1  directions, which correspond to the short and long diagonal axes of the hexagonal 

unit cell, respectively. Hence, twelve different orientations of these habit planes are observed. 

   In figure 4.14 several c-axis dislocations are shown in nearly end-on orientation. The five 
individual dislocations can not be clearly resolved in this micrograph, but the different 
orientations of the common habit planes can be observed. The orientations of some habit 
planes are indicated by white arrows (parallel to the plane normals). The directions according 
to the hexagonal structure are indicated.  

   Some of the twelve habit-plane orientations show preferential occurrence. The c-axis 

dislocations featuring habit planes with ><= 0,1,1nr  (long diagonal axis of unit cell) were 

observed about four times more frequently than those with ><= 0,0,1nr  (short diagonal axis 

of unit cell). 
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   Figure 4.14: c-axis dislocations in nearly end-on orientation. The five individual partials of 
each group (not clearly resolved in this micrograph) are arranged in common habit planes 
with  or >< 001 ,, >< 011 ,,  normal vectors. White arrows denote the orientations of some 
habit planes. The directions of the hexagonal structure are indicated. The applied two-beam 
condition corresponds to ,0)10(5,g =

r . 
 
 
   One c-axis dislocation is shown in a TEM micrograph in figure 4.15. Here the specimen 

was cut parallel to the ]0,1,1[  direction, i.e. perpendicular to the compression direction. Since 

the dislocation line lies within the plane of the TEM sample, long segments of the dislocations 
are visible as dark diagonal lines. The c-axis is indicated by a long black arrow. Five 
individual dislocation lines are visible, whereby two dislocations on each side of the centre 

line lie closely together. The habit plane of this dislocation corresponds to the )0,1,1(  plane1, 

which does not coincide exactly with the image plane. The dislocation lines of three partials 
leave the plane of the sample in the upper-right corner of figure 4.15, leading to a decreasing 
contrast of these partial dislocations (short black arrows).  

                                                 
1 Note that the ]0,1,1[  direction is parallel to the normal vector of the )0,1,1( plane which is only true for specific 
directions and planes offering identical indices in a hexagonal structure. 
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   Figure 4.15: c-axis dislocation in a specimen prepared perpendicular to the compression 
direction (cf. inset in lower-right corner). The [0,0,1] direction (long black arrow) 
corresponds to the line direction of the partials. The image normal is close to the 0]1[1 ,,  
zone axis. 
 
 
   In the lower-left corner of figure 4.15 two partial dislocations show a jog (white arrow) 
within their habit plane which changes the distance to the other dislocations. The inset in the 
lower-right corner of figure 4.15 illustrates the TEM-specimen orientation with respect to the 
compression direction. 

 

Basal-plane dislocations 

   Figure 4.16 shows a TEM micrograph with orientation close to the [0,0,1] zone axis. Three 
dislocation lines, lying within the TEM-specimen plane, are visible as long dark line segments 
in the micrograph (white arrows). These segments are parts of loops extending in the (0,0,1) 
plane (basal plane of the hexagonal structure). In the following these dislocations are 
accordingly referred to as basal-plane dislocations. Basal-plane dislocations are facetted. 
Several straight segments of the dislocation lines can be observed in figure 4.16. 
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   The orientations of the line segments correspond to specific crystallographic directions. 

They are aligned along  or >< 0,0,1 >< 0,1,1  directions, analogous to the orientations of habit 

planes of c-axis dislocations (cf. figure 4.14). The straight loop segments possess an equal 
distribution along these directions. The occurrence of preferential directions, as in the case of 
habit planes of the c-axis dislocations, is not observed. The inset on the left-hand side of 
figure 4.16 indicates the directions according to the hexagonal structure. Some c-axis 
dislocations are observed in figure 4.16, as well (black arrows). 

 
 

 
   Figure 4.16: TEM micrograph close to the [0,0,1] zone axis. Parts of faceted dislocation 
loops with (0,0,1) habit planes are visible as long dark lines (white arrows). Facets have line 
directions parallel to >< 1,0,0  or >< ,011,  directions as indicated by the inset on the left-
hand side. c-axis dislocations are also visible (black arrows). 
 
 
 
 
 

 61



4 Plasticity of µ-Al-Mn 

   The specimen imaged in figure 4.17 is aligned close to the ]0,1,1[  direction, i.e. 

perpendicular to the compression direction. The [0,0,1] direction is indicated by a white 
arrow. Several (0,0,1)-basal-plane dislocations are visible and marked with black arrows. The 
segment in the lower-left corner lies in the plane of the specimen and is therefore visible as 
long diagonal line. The other basal-plane dislocations are in nearly end-on orientation and 
correspondingly only short segment projections can be seen. 

   Additionally, several stacking faults in edge-on orientation are visible as thin diagonal lines 
perpendicular to the [0,0,1] direction. Some are terminated by the basal-plane dislocations. 
Hence it is concluded that the latter dislocations are partial dislocations. Due to their 
orientation with normal vector parallel to [0,0,1], the stacking faults are not observable in 
TEM specimens prepared with surface normal parallel to [0,0,1] as e.g. in figure 4.16.  

 
 

 
   Figure 4.17: TEM micrograph close to the 0]1[1 ,,  zone axis, i.e. perpendicular to 
compression direction (inset in upper-right corner). Basal-plane dislocations terminating 
stacking faults are marked with black arrows. Stacking faults are visible as thin diagonal 
lines perpendicular to the [0,0,1] direction. Two additional c-axis dislocations are indicated 
by white arrowheads.   
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   Additionally, two c-axis dislocations are visible in figure 4.17 as lines parallel to the [0,0,1] 
direction and indicated by white arrowheads. The five individual partials in each group can 
not be resolved because the habit planes of these dislocations do not correspond to the image 
plane. 

   Figure 4.18 shows a TEM micrograph close to the ]0,1,1[  zone axis using a two-beam 

condition corresponding to )6,3,5(=gr . Several stacking faults in the upper half of the image 

and a basal-plane dislocation loop in edge-on orientation, terminating a stacking fault in the 
centre of the image, can be observed. The inset in the lower-right corner shows the same loop 
using a different two-beam condition ( )12,0,0(=gr ) in nearly end-on view. It is recognizable 

that each dislocation is split into two partial dislocations (black arrows) terminating another 
stacking fault. 

 

 
   Figure 4.18: TEM micrograph close to the 0]1[1 ,,  zone axis using a two-beam condition 

with )6,3,5(=gr . Several stacking faults and a dislocation loop in edge-on orientation are 
visible. The inset in the lower-right corner shows the loop in almost end-on orientation using 

. Each segment is split into two partial dislocations (black arrows). )12,0,0(=gr
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Burgers vector of basal-plane dislocations 

   In the following, a contrast-extinction analysis of the basal-plane dislocations is given. 
Figure 4.19 shows a TEM micrograph of a part of a basal-plane dislocation (white arrow) 
under various imaging conditions (a-d) with a specimen normal close to the [0,0,1] direction. 
Some c-axis dislocations are also visible and indicated in (a) by black arrows. The applied 

two-beam conditions correspond to (a) )0,5,10(=gr , (b) )0,5,5(=gr , (c) )0,10,5(=gr , and (d) 

. Depending on the applied two-beam conditions, the contrast of particular loop 

segments is extinct. In (b), (c), and (d), the contrast of segments in the lower centre, in the 
upper-right corner, and in the centre of the micrograph is extinct, respectively. 

)0,8,0(=gr

 
 

 
   Figure 4.19: TEM micrograph close to the [0,0,1] zone axis. A part of a basal-plane 
dislocation (white arrow in (a)) and c-axis dislocations (black arrows in (a)) are visible under 
various imaging conditions (see text). 
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   Considering equation (A.3), the contrast extinctions visible in (b-d) reveal that the Burgers 
vector of basal-plane dislocations is parallel to [0,0,1]. However, only specific segments of 
the dislocation are extinct in (b-d). Despite the fact that all reciprocal vectors applied in (a-d) 
fulfil equation (A.3), the loop segments often show a strong blurry residual contrast. This is 
due to the pure edge character of basal-plane dislocations, i.e. the Burgers vector is 
perpendicular to the line direction of all occurring loop segments. As described in Appendix 
A, the contrast of pure edge dislocations can be completely extinct only if condition (A.4) is 
fulfilled. In this case, additionally to condition (A.3), the reciprocal vector   has to be 

parallel to the line direction l

gr

r
. 

   Figure 4.19 (b-d) reveals that only dislocation segments with l
r

 parallel to  (cf. insets) 

exhibit complete extinction. Hence, basal-plane dislocations are dislocation loops possessing 
pure edge character, which in the literature are referred to as prismatic loops (Hull and Bacon, 
1984). 

gr

   The Burgers vector of the basal-plane dislocations lies parallel to the normal vector of the 
habit plane (parallel to [0,0,1]). Correspondingly, it can be concluded that basal-plane 
dislocations move by means of a pure climb mechanism.  

   A common technique for the determination of the Burgers-vector length in TEM is 
convergent-beam electron diffraction (CBED) (see e.g. Tanaka et al., 1988). However, in 
crystal lattices featuring large lattice parameters the reciprocal space is very dense. Due to this 
fact the density of Kikuchi lines is too high to unambiguously determine the number of 
splitting nodes in the strain field of the dislocation (Feuerbacher et al., 2004). Therefore, a 
determination of the Burgers-vector length by means of CBED was found practically 
impossible in µ-Al-Mn. 

   Figure 4.20 shows a lattice-fringe image of a specimen along the ]0,1,1[  zone axis 

comprising a stacking fault caused by the motion of an (0,0,1)-basal-plane dislocation. The 
stacking fault is indicated by black arrows; its normal vector is parallel to [0,0,1]. Red 
rectangles indicate unit cells of µ-Al-Mn on both sides of the stacking fault. The stacking fault 
can best be seen under a grazing angle along the black arrows.  
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   Figure 4.20: Lattice-fringe image of µ-Al-Mn along the 0]1[1 ,,  direction. A stacking fault 

is indicated by black arrows. Some unit cells and the displacement vector R
r

 are shown in 
red. The stacking fault can best be seen under a grazing angle along the black arrows. 
 
 

   The displacement vector R
r

 of the stacking fault is shown as red arrow in figure 4.20. Since 
the stacking fault is terminated by a single basal-plane dislocation (not visible in figure 4.20), 
it is concluded that the displacement vector corresponds to the Burgers vector of the 
dislocation. From the contrast-extinction analysis described above, it is known that the 
Burgers vector has only a component along the [0,0,1] direction. Accordingly, the length of 
the displacement vector can roughly be estimated from figure 4.20. It amounts to 

approximately  which corresponds, within the measurement accuracy, to 

half a unit cell along the c-axis. This value is further discussed in section 4.4. 

nm1.02.1|| ±=R
r
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Burgers vector of c-axis dislocations 

   In figure 4.21 a TEM micrograph taken from a specimen with normal vector close to the 

]0,1,1[  zone axis is shown by using two-beam conditions corresponding to (a) and 

(b) 

)0,8,8(=gr

)12,0,0(=gr . Three basal-plane dislocations and two c-axis dislocations are marked with 

white and black arrows, respectively. The segment in the lower-right corner lies in the plane 
of the specimen and is extinct using imaging condition )0,8,8(=gr (equation (A.4) is 

fulfilled). The two segments in the upper-left corner feature other line directions (almost end-
on) and show residual contrast, since for these equation (A.3) but not equation (A.4) is 
fulfilled.  

 

 
   Figure 4.21: TEM micrograph close to the 0]1[1 ,,  zone axis with two-beam conditions 

corresponding to (a) and )0,8,8(=gr )12,0,0(=gr (b). Segments of basal-plane dislocations 
and c-axis dislocations are indicated by white and black arrows, respectively. 
 
 
   The c-axis dislocations are in contrast using the reciprocal vector )0,8,8(=gr  and extinct 

using )12,0,0(=gr . In the latter case the applied reciprocal vector is parallel to the dislocation 

line, which indicates that the Burgers vector is oriented perpendicular to the line direction (cf. 
condition (A.4)). Accordingly, the c-axis dislocations are identified as pure edge dislocations. 
However, a further determination of the Burgers-vector direction by means of extinction 
experiments turned out to be impossible. Two-beam conditions which fulfil equation (A.3) 
but not equation (A.4) cause strong residual contrast, which cannot be distinguished from full 
contrast. Hence, a reliable discrimination of residual and full contrast cannot be made. 

   A second condition, yielding complete extinction, would be necessary in order to fully 
determine the orientation of the Burgers vector. Since c-axis dislocations feature only one line 
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direction, only one reciprocal vector gr  exists which satisfies equation (A.4) and causes a 

complete extinction. The orientation and length of the Burgers vector of c-axis dislocations 
will be discussed in section 4.4 of this chapter.  

   Stacking faults created by the motion of basal-plane dislocations are extinct in figure 4.21 
(a) and (b), i.e. equation (A.5) is fulfilled for both applied two-beam conditions. 

 
 
Dislocation density 

   The dislocation density in µ-Al-Mn is calculated separately for basal-plane and c-axis 
dislocations. For the latter, the density is determined from TEM specimens cut with surface 
normal parallel to the [0,0,1] direction. Since the surface normal of the specimen is parallel to 
the line direction of the dislocations, the thickness of the specimen corresponds to the length 
of the observed dislocation line. In this case the dislocation density can be calculated from the 
number of dislocations n in an observed area A (cf. equation A.7): 

 

An /=ρ .      (4.1) 

 

   In case of basal-plane dislocations the density is determined from specimens prepared with 

surface normal parallel to the ]0,1,1[  direction. It can be calculated from the amount of loop 

segments in an observed area, taking different orientations of these segments into account. By 
considering a dislocation distribution in one plane instead of a distribution in space, equation 
(A.8) can be simplified to (Schöck, 1961): 

 

        ∫ .              (4.2) 
=

=
2/

0

)(
π

θ

θθρ dp

 

   For a uniform distribution within the twelve observed directions, the density can be 
calculated according to 

        
A
n

2
πρ = .                  (4.3) 

 

   The investigated TEM specimens were prepared from a sample deformed at 850 °C and  
10-5 s-1 up to a plastic strain of 4.1 %. Reference investigations were carried out on 
undeformed material which was heat treated and quenched in the same way as the deformed 
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sample. The densities of c-axis dislocations and basal-plane loops were determined according 
to equations (4.1) and (4.3), respectively, and are given in table (4.1). These densities are 
mean values of investigations performed in 20 to 30 randomly selected TEM-specimen areas 
in each case. No basal-plane dislocations were observed in undeformed µ-Al-Mn. Therefore, 
only an upper limit for the corresponding density is calculated. The densities of the 
dislocation types differ by about one order of magnitude, and both increase during 
deformation by two orders of magnitude. 

 
 

 ρ (undeformed sample) ρ (deformed sample) 

basal-plane dislocations 25102 −⋅< cm  27105.1 −⋅ cm  

c-axis dislocations 26101 −⋅ cm  27105.9 −⋅ cm  

 
  
 
 

   Table 4.1: Dislocation densities ρ of undeformed and deformed (850 °C, 4.1 %) µ-Al-Mn. 
Densities are given separately for basal-plane and c-axis dislocations. 
 
 
 
 

4.4 Discussion 
 
Macroscopic deformation behaviour 
 
Stress-strain behaviour 

   Uniaxial compression experiments at constant strain rate of 10-5 s-1 were successfully 
performed in the temperature range of 750 to 850 °C. This corresponds to the homologous 
temperature range TH = 0.85 to 0.94. 

   During deformation at 700 °C sample fracture occurred shortly after the upper yield point. 
Therefore it is concluded that, at the applied strain rate, the brittle-to-ductile transition in this 
phase lies close to 700 °C. The observed transition temperature of TH = 0.82 is relatively high 
compared to other single-crystalline CMA phases (see chapter 7). High brittle-to-ductile 
transition temperatures indicate that considerable amounts of thermal energy are necessary for 
the activation of a deformation mechanism. This is in accordance with the results of the 
thermodynamic activation analysis (see discussion below), where high values of the activation 
enthalpy ΔH for dislocation motion were found.  

   The most prominent features of the macroscopic stress-strain behaviour of µ-Al-Mn, shown 
in figure 4.4, are the strong yield-point effect and the following steady-state flow-stress 
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regime. Taking values of up to 50 % of the upper yield stress, the yield drop is much larger 
than in other CMAs. In Al13Co4, for example, a maximum yield drop of about 28 % was 
found (Heggen et al., 2007), while in ß-Al-Mg and Mg32(Al,Zn)49 this value amounts to 20 % 
and 15 %, respectively (cf. chapter 6 and 5). Almost no yield-point effect (less than 3 %) was 
observed in ξ’-Al-Pd-Mn (Feuerbacher et al., 2001). 

   In the following, the yield-point effect is discussed in connection with the evolution of the 
dislocation density. In the microstructural investigation two sets of dislocations were 
identified as carriers of plastic deformation. Comparison of dislocation densities of deformed 
and undeformed samples confirms that the deformation mechanism in µ-Al-Mn is based on 
dislocation motion. In the deformed material (εtotal = 4.4 %) dislocation densities are about 
two orders of magnitude larger than in the undeformed reference sample for both dislocation 
types. 

   A model elaborated by Johnston and Gilman (1959) describes the correlation between flow 
stress and dislocation density in the course of plastic deformation. According to this model, 
the rate of dislocation multiplication shows a distinct dependence on the stress, and enhanced 
dislocation multiplication can occur by crossing a stress threshold. The appearance of a yield-
point effect at the onset of plastic deformation can then be referred to an intense increase of 
the number of mobile dislocations which contribute to the deformation process. Accordingly 
it is assumed that the yield-point effects observed in the stress-strain curves of µ-Al-Mn are 
caused by a distinct dislocation multiplication at the onset of plastic deformation. The large 
magnitude of these yield-point effects implies that the stress dependence of the dislocation-
multiplication rate in µ-Al-Mn is high. 

   Furthermore, it was observed that the yield drop of the stress-strain curve at 750 °C was 
reduced from 50 to about 20 % of the upper yield stress after pre-deformation at higher 
temperature (figure 4.5). The introduction of a large number of mobile dislocations into the 
material during the pre-deformation might has caused the reduced yield-point effect in the 
following deformation. This interpretation is in accordance with Johnston (1962), reporting 
that the strength of the yield-point effect strongly depends on the initial number of mobile 
dislocations in a given material. 

   The presence of yield-point effects after incremental tests is often associated with 
dislocation recovery, i.e. the decrease of the mobile dislocation density during unloading 
(Hull and Bacon, 1984). Therefore, the observed absence of yield-point effects in the stress-
strain curves after incremental tests indicates that recovery takes place at low rates in this 
material. This conclusion is also corroborated by the comparison of the deformation 
experiments on pre-deformed and previously undeformed material: The dislocations, created 
during pre-deformation do not recover in the course of the repeated deformation, but are 
stored in the material and lead to a smaller yield-point effect. 
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Thermodynamic activation parameters 

   The activation volume of µ-Al-Mn (Fig. 4.9) was calculated premising climb as primary 
mode of dislocation motion. No Schmid factor is defined for this kind of dislocation motion. 
According to considerations in the literature (e.g. Nandy and Banerjee, 2000, Mitra et al., 
2004, Malaplate et al., 2005) a value of ms = 1 was applied for calculations, since the 
climbing dislocations resolve the full applied stress. 

   The activation volume V scaled by the atomic volume Va (i.e. the average volume per atom), 
amounts to V/Va = 20 at a moderate stress of 300 MPa. This value is significantly larger than 
unity but of the same order of magnitude as the number of atoms in present clusters, i.e. 
fragments of Mackay clusters, icosahedra, and pentagonal prisms. These clusters may act as 
obstacles for dislocation motion and can therefore cause the large activation volumes 
observed. Analogously, the rate controlling process of dislocation motion can be provided by 
the interaction of dislocations with these clusters. In ξ’-Al-Pd-Mn, for example, Feuerbacher 
et al. (2001) have demonstrated that the intrinsic cluster substructure, which is based on 
Mackay-type clusters, determines the plastic deformation behaviour. The interaction of 
metadislocations with the Mackay clusters was found to be the rate-controlling mechanism in 
that material.  

   The activation enthalpy ΔH (figure 4.11) is considerably larger than the work term ΔW. 
Hence, it is concluded that deformation is a thermally activated process. In the investigated 
temperature range an activation enthalpy from about 5 to 9 eV is obtained. However, an 
activation enthalpy of 9 eV exceeds physically reasonable values, since processes involving 
such high values would run at very low rates and would not be observable on usual laboratory 
time scales. It is assumed that the thermodynamic analysis provides unreliable values in this 
case. The activation enthalpy at these high values is disregarded in following considerations. 

   It is demonstrated in the microstructural analysis of the present study that dislocation climb 
is the primary mechanism of plastic deformation in µ-Al-Mn. The stress exponent of µ-Al-
Mn, determined to approximately m = 5.5, is in good agreement with the observed dislocation 
climb mechanism. In the literature it is a widely held belief that “five-power-law creep”, i.e. 
creep deformation with m = 5, is associated with dislocation climb (Kassner and Pérez-Prado, 
2000). 

   However, it is generally assumed that the activation enthalpy for dislocation climb ΔH 
closely corresponds to that of lattice self-diffusion (Kassner and Pérez-Prado, 2000), since 
diffusion is typically the rate-controlling factor for this mechanism. No values of the diffusion 
enthalpy for µ-Al-Mn are reported in the literature. The value for self-diffusion in pure Al 
amounts to 1.28 eV (Messer et al., 1974) and the diffusion enthalpy for Mn in Al range 
between 2.2 and 2.4 eV (Beke et al., 1987). Assuming that the diffusion enthalpy for µ-Al-Mn 
compares to these values, the measurements of the activation enthalpy, amounting to more 
than 5 eV, reveal a significant difference to the diffusion enthalpy. 
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   This discrepancy indicates that another mechanism besides diffusion dominates the process 
of dislocation motion in this phase. This finding is in good accordance with the results of the 
activation volume. It was suggested in the discussion above, that atom clusters act as 
obstacles against dislocation motion and that the thermally activated overcoming of these 
obstacles provides the rate-controlling mechanism for dislocation motion. This interaction 
between the dislocations and the cluster substructure can determine the magnitude of the 
activation enthalpy. Lattice diffusion, on the other hand, is energetically a subordinated 
process and is not the rate-controlling factor for dislocation motion in the investigated 
temperature range. 

   By extrapolation of the activation enthalpy to lower temperatures in figure 4.11, a value of 
ΔH = 0 is reached at about 900 K. However, according to Gibbs (1969) the activation 
enthalpy should be proportional to temperature if the deformation is controlled by a single 
thermally-activated process. A comparable deviation from the proportional temperature 
dependence of the activation enthalpy is also found in Mg32(Al,Zn)49 (chapter 5) and is 
reported in Al-Pd-Mn quasicrystals by Messerschmidt et al. (2000). The authors interpret this 
phenomenon by a continuous transition between two deformation-controlling processes at 
different temperatures in that material. At low temperatures a dislocation-cluster friction 
controls the deformation process while a diffusion-based recovery process becomes 
dominating at high temperatures in icosahedral Al-Pd-Mn.  

   The observed deviation of the activation enthalpy from proportional temperature 
dependence in µ-Al-Mn and Mg32(Al,Zn)49 can be also explained by a change of the rate-
controlling process at different temperatures, i.e. dislocation-cluster friction and lattice 
diffusion. As estimated above, a reasonable value for the diffusion enthalpy in µ-Al-Mn is of 
the order of 2 eV. Extrapolation of the activation enthalpy reveals this energy level at 
temperatures close to 700 °C. The brittle-to-ductile transition which is also located close to 
this temperature might be interpreted as follows. 

   For the observed dislocation climb mechanisms, diffusion processes at adequate rates are 
necessary. At higher temperatures, however, lattice diffusion is only a subordinated factor as 
indicated by the high values of activation volume and enthalpy, and dislocation-cluster 
friction is rate-controlling. At lower temperatures where the (extrapolated) activation enthalpy 
approximates the assumed diffusion enthalpy, diffusion becomes a more relevant factor. The 
brittle-to-ductile transition may be attributed to a limitation of diffusion processes which can 
cause a suppression of the dislocation climb mechanisms in the vicinity of 700 °C. Analogous 
considerations are discussed for Mg32(Al,Zn)49 in chapter 5.4. 
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Microstructural analysis 

   In µ-Al-Mn two different types of dislocations are observed, i.e. basal-plane dislocations 
and c-axis dislocations. The two types are schematically illustrated in figure 4.22. The 
dislocation lines of basal-plane and c-axis dislocations are shown as blue and red lines, 
respectively. Coloured arrows denote the climb directions; black lines represent atomic layers. 
The compression direction along the c-axis is indicated by grey arrows. 

 

 

 
   Figure 4.22: Schematic illustration of dislocations in µ-Al-Mn. c-axis and basal-plane 
dislocations are indicated red and blue, respectively. The coloured arrows denote the 
respective climb direction. Black lines represent atomic layers. Grey arrows indicate the 
compression direction. 
 
 
   The (0,0,1)-basal-plane dislocations in µ-Al-Mn possess a Burgers vector parallel to the c-
axis. They are prismatic edge loops and move by means of pure climb. Despite the fact that 
plastic deformation by pure dislocation climb has been proposed four decades ago by Nabarro 
(1967), this type of dislocation movement is rarely observed as relevant deformation 
mechanism. Crystal plasticity is usually attributed to slip of dislocations (Hull and Bacon, 
1984). 
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   Only in few exceptions climb has been identified as primary mode of dislocation motion. 
Elemental Be and Mg (hcp-structure), for example, deformed along the c-axis, feature pure 
dislocation climb (Le Hazif et al., 1968, Edelin and Poirier, 1973). Other examples are 
decagonal Al-Ni-Co and orthorhombic ξ’-Al-Pd-Mn deformed along the 10-fold rotational-
symmetry axis and 45° to the [0,0,1] direction, respectively (Feuerbacher and Schall, 2003, 
Feuerbacher and Caillard, 2004). In ξ’-Al-Pd-Mn dislocation loops are observed which are 
closely related to (0,0,1)-basal-plane dislocations in µ-Al-Mn. The loop-habit plane 
corresponds to (0,1,0) planes in ξ’-Al-Pd-Mn. Both types of defects are prismatic loops and 
move by pure climb perpendicular to the compression direction. In this geometry, dislocation 
climb can effectively govern plastic deformation by removing atomic planes. Additionally, 
dislocations in µ-Al-Mn as well as in ξ’-Al-Pd-Mn possess straight dislocation-line segments 
oriented along specific crystallographic directions in each phase and both are split into 
partials. In ξ’-Al-Pd-Mn the prismatic loops are split into four partials which are aligned 
parallel to ten occurring directions within the (0,1,0) plane (Feuerbacher and Caillard, 2004).  

   The Burgers-vector length of basal-plane dislocations in µ-Al-Mn is estimated from the 
micrograph shown in figure 4.20. A stacking fault caused by the motion of one basal-plane 

dislocation is visible. The displacement vector R
r

 of this stacking fault amounts to about the 
half unit cell along the c-axis. 

   According to the model of Shoemaker et al. (1989) the structure of µ-Al-Mn can be 
described by a layer stacking along the c-axis (cf. figure 4.3). The stacking symmetry 
suggests the occurrence of [ ]1,0,021  partial dislocations with a length of 12.337 Å. This 

corresponds, in terms of a Volterra-construction of these partials, to the removal of two flat 
and four puckered layers (i.e. one half of the unit cell). In this case a layer at c = 0 (= 1) takes 
the position of a layer at c = 0.5. Since flat layers at positions c = 0.25 and 0.75 are located at 
mirror planes, the layers at c = 0 and 0.5 are identical. Therefore, insertion of stacking faults 
by [ ]1,0,021  dislocations is energetically favourable because no next-neighbour discrepancies 

occur. Due to these facts it is assumed that the Burgers vector of the basal-plane dislocations 
corresponds to [ ]1,0,021 . 

   As visible in figure 4.19, basal-plane dislocations split into two partials with parallel line 
direction. The distance between the partials is of the order of 100 nm. These dislocations are 

assumed to feature the Burgers vector [ ]1,0,041  with the modulus b
r

 = 6.168 Å, which is a 

physically acceptable length with regard to the elastic line energy of the dislocation. 
Occurrence of [ ]1,0,041  partials corresponds to the removal of one flat and two puckered 

layers (i.e. a fourth of the unit cell) whereby a layer at c = 0 (or c = 0.5) takes the position of a 
layer at c = 0.25 or 0.75. Both layer types are flat but not identical. Generation of stacking 
faults at c = 0.5 is hence less energetically costly than at c = 0.25 and 0.75. These 
considerations are in good accordance with the observations that basal-plane dislocations, 
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which can be regarded as [ ]1,0,021  partials, insert expanded stacking faults into the material 

and show a narrow splitting into [ ]1,0,041  partials.  

   The second type of dislocations in µ-Al-Mn, the c-axis dislocations, possesses pure edge 
character, as well. From contrast-extinction experiments it was found that its Burgers vector 

b
r

 lies within the (0,0,1) plane. However, a further determination of the orientation by means 
of contrast-extinction experiments is not possible. Rather it is argued that c-axis dislocations 
also move by means of a pure climb mechanism: 

   The five individual partials in each group are arranged in habit planes perpendicular to the 
compression direction. In this geometry a dislocation slip mechanism would involve a Schmid 
factor of ms = 0 which results in a zero shear stress. Additionally, this kind of dislocation 
motion can not contribute to deformation of the sample. On the other hand, a dislocation 
which moves by a climb mechanism perpendicular to the compression direction and with a 
Burgers vector within the (0,0,1) plane contributes to the deformation process. It introduces 
atomic planes with normal vector perpendicular to the compression direction into the material 
and hence causes a broadening of the sample. 

   However, the applied deformation geometry does not induce a resulting driving force for 
this type of dislocation motion. The driving force can be explained by means of a chemical 
stress, generated by a concentration gradient of vacancies (Le Hazif et al., 1968). The 
concentration gradient is caused by the climb mechanism of basal-plane dislocations. A 
chemical stress also occurs in Mg32(Al,Zn)49 and is further discussed in the comprehensive 
discussion (chapter 7.2). 

   Climb of basal-plane dislocations corresponds to positive climb (cf. chapter 3) and 
contributes to the deformation of the sample by removing atomic (0,0,1) planes. Either 
absorption of vacancies or generation of interstitial atoms takes place during this process. 
Climb of c-axis dislocations in µ-Al-Mn, on the other hand, corresponds to negative climb 
and hence acts as source and sink for vacancies and interstitials, respectively. Similar 
deformation mechanisms were observed in elemental Be and decagonal Al-Ni-Co (Le Hazif 
et al., 1968, Feuerbacher and Schall, 2003). In both materials deformation is primarily based 
on a climb mechanism which removes atomic planes with normal vector parallel to the 
deformation direction. A second climb mechanism acts as source for vacancies and is driven 
by a chemical stress due to a concentration gradient of the vacancies. 

   The geometry of the climb mechanisms observed in µ-Al-Mn (cf. figure 4.22) is in 
accordance with surface features observed during and after deformation experiments as shown 
in figure 4.6 and 4.7, respectively. The appearance of lines and steps or cracks, parallel and 
perpendicular to the deformation direction can be interpreted as surface effects resulting from 
the discussed dislocation-climb mechanisms.  
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   The Burgers-vector length of c-axis dislocations in µ-Al-Mn is estimated by the following 
consideration. Complete c-axis dislocations do not terminate stacking faults (see e.g. figure 
4.13). Hence it is concluded that the sum of the involved Burgers vectors corresponds to the 
lattice periodicity. The lengths of the single Burgers vectors are not necessarily equal, but 
since c-axis dislocations split into five partials, on average the single Burgers vectors 
correspond to a fifth of the lattice periodicity. 

   The long diagonal axis of the hexagonal unit cell, which corresponds to >< 0,1,1  

directions, amounts to 34.6 Å. Hence, in case of c-axis dislocations featuring habit planes 
which lie along the long diagonal axis, the average Burgers-vector modulus amounts to 
approximately 7 Å. The short diagonal axis of the unit-cell rhomb >< 0,0,1(  directions), on 

the other hand, amounts to 19.98 Å. The average Burgers-vector length of the five partial 
dislocations featuring habit planes in this direction correspondingly amounts to about 4 Å. 

   Both lengths are physically acceptable values with regard to the elastic line energy of the 
dislocation. Furthermore, it is physically reasonable that the c-axis dislocations featuring 
shorter Burgers vectors, i.e. dislocations with habit planes which lie along the short diagonal 
axis of the unit cell, are observed four times more frequently than the c-axis dislocations 
featuring the longer Burgers vectors.   

   The two observed climb mechanisms in µ-Al-Mn, i.e. climb of basal-plane and c-axis 
dislocations, can effectively interact via diffusion by exchanging vacancies or interstitial 
atoms. In this case only diffusion distances between the involved dislocation sets have to be 
passed rather than the distances between dislocations and sample surface. 

   In the following, a rough estimation of possible diffusion distances in µ-Al-Mn during 
deformation is given. The diffusion range x of vacancies or interstitial atoms can be calculated 

according to the Einstein-Smoluchowski equation Dtx 6=  (e.g. Gottstein, 1998), where D 
is the diffusion coefficient and t is the diffusion time. Since no values for diffusion rates of µ-
Al-Mn are given in the literature, the diffusion coefficient of Al self-diffusion at 1000 K, i.e. 

 (Stöcker, 1994), is adopted. 126106 −−⋅≈ smmD

   Consider plastic deformation of a sample by an amount of strain corresponding to half a c-
lattice parameter. This strain corresponds to the length change caused by climb of one basal-
plane dislocation. Taking into account a strain rate of 10-5 s-1 (which is applied in the 
performed deformation experiments), the deformation time for the assumed strain is about 
0.08 s. By assuming this time as effective diffusion time t, an average diffusion distance of 
about 10-3 mm results. 

   This value is of the same order of magnitude as the average distance between the two 
interacting sets of dislocations (according to the experimental dislocation-density values). On 
the other hand, the estimated diffusion range is about three orders of magnitude smaller than 
the average distance between the dislocation and the closest sample surface. This can be taken 
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as indication for the necessity of interaction of basal-plane and c-axis dislocations via 
diffusion, in order to provide an effective deformation mechanism based on dislocation climb 
in µ-Al-Mn.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 77



4 Plasticity of µ-Al-Mn 

 

 

 

 78 



 

 
 
Chapter 5 
 
Plasticity of Mg32(Al,Zn)49

 
   In this chapter the structure of the Bergman phase (Mg32(Al,Zn)49) is introduced and 
deformation experiments performed on this phase are described. Uniaxial compression 
tests along the [0,0,1] direction were carried out at constant strain rate. The results are 
presented and thermodynamic activation parameters of the deformation process are 
evaluated and discussed. A microstructural analysis of the deformed material was 
performed by means of TEM and the underlying microstructural deformation 
mechanisms are determined. Three different types of dislocations are found to be the 
carriers of plasticity. Pure climb and mixtures of climb and slip processes are identified 
as primary deformation mechanisms.  

  
 
 

5.1 The structure of Mg32(Al,Zn)49

 
 “The most complex metal structure known is that of Mg32(Zn,Al)49.”, Pauling (1955). 
 
   Mg32(Al,Zn)49 was first structurally investigated by Laves et al. (1935) who found that 
this phase features a body-centred cubic structure with lattice parameter of 14.16 Å. 
Since the structure was solved by Bergman et al. (1952) this phase and its main 
structure element are frequently referred to as Bergman phase1 and Bergman cluster, 
respectively. A revised structure model was developed by Sun et al. (2000) which 
differs from that of Bergman et al. (1952) essentially in the occupation of one atomic 
site. Since the structure model of Bergman et al. (1952) is widely established in the 
literature, this model is applied in the present work, as well. 

   The unit cell of the Bergman phase involves 162 atoms located at 8 different atomic 
sites. Figure 5.1 illustrates the unit cell of Mg32(Al,Zn)49 according to the model of 

                                                 
1 The notation T-AlMgZn is common in the literature, as well. 
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Bergman et al. (1952). A high amount of chemical disorder is present in this phase. Due 
to the similar atomic radii of Al and Zn several atomic positions can be occupied by 
both, Al or Zn atoms (cf. chapter 2.3). These sites are shown in blue in figure 5.1. Sites 
which are exclusively occupied by Al and Mg atoms are shown in green and red, 
respectively. The two-fold rotation symmetry of this phase along >< 1,0,0  directions 

(space group 3Im ) is visible in figure 5.1. 

 

 
   Figure 5.1: Unit cell of Mg32(Al,Zn)49 according to the model of Bergman et al. 
(1952). 
 
 
   Main structure elements of the phase Mg32(Al,Zn)49 are Bergman clusters consisting 
of 117 atoms1. These complexes completely occupy the unit cell by means of a bcc 
arrangement. Bergman clusters are built up by successive atom-shells as illustrated in 
figure 5.2. One Al site in the centre (figure 5.2 (a)) is surrounded by twelve atoms 
located at the vertices of an icosahedron (figure 5.2 (b)). According to Bergman et al. 
(1957), the occupancy of these sites is about 80 % Zn and 20 % Al. The subsequent 
shell consists of 20 Mg atoms (red) located above the centres of the triangular faces of 
the icosahedron, forming a pentagonal dodecahedron.  

 
 
 
                                                 
1 In the literature these clusters are frequently characterized without the outermost shell of 12 Mg atoms 
and therefore considered as 105-atom Bergman clusters. 

 80 



5 Plasticity of Mg32(Al,Zn)49 

 

 
   Figure 5.2: Successive atom-shell structure of the Bergman cluster (a-e) at the body-
centred position of the Mg32(Al,Zn)49 unit cell (grey cubic frame). (f) Bergman clusters 
at centre and one corner position of the unit cell. 
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   Twelve Al and Zn atoms, respectively, with 0.5 Al and 0.5 Zn occupation are located 
at the centres of the pentagons (figure 5.2 (c)). Sixty atoms in the following shell form a 
truncated icosahedron (soccer ball) whereby 12 sites are occupied by Mg atoms and 48 
by Al or Zn atoms with occupancy close to 2/3 Zn and 1/3 Al (figure 5.2 (d)). The next 
shell consists of twelve Mg atoms, arranged as shown in figure 5.2 (e). The last two 
shells combined, comprising 72 atoms, form a cuboctahedron. 

   This polyhedron is a superposition of a cube and an octahedron and features 6 square 
and 8 triangular faces. Because of its symmetry, the cuboctahedral shell of the Bergman 
cluster packed in a bcc lattice can share all atoms with equal adjacent complexes 
(Bergman et al., 1957). Therefore, despite overlapping of the Bergman clusters, neither 
fractional site occupation nor displacement disorder occurs in this phase. Due to the bcc 
arrangement, one cuboctahedron (72 atoms) located at the centre position and two sets 
of the inner shells (1 centre and 8

18 ⋅  corner positions) comprising each 45 atoms are 

present in one unit cell, yielding the sum of 162 atoms. In figure 5.2 (f) two Bergman 
clusters are shown in one unit cell (at centre and one corner position) sharing atoms of 
the two outermost shells. 

   Four coordination polyhedra occurring in Mg32(Al,Zn)49 are illustrated in figure 5.3. 
Atom sites are located at the vertices of the polyhedra. All 98 Zn and Al atoms in the 
unit cell exhibit icosahedral coordination (a), i.e. CN 12. For the 64 Mg atoms present, 
three different kinds of irregular coordination polyhedra exist. 40 Mg atoms are 
coordinated by a polyhedron with 16 atoms (b), 12 by a polyhedron with 15 atoms (c), 
and another 12 by a polyhedron with 14 atoms (d) (Bergman et al., 1957). 
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   Figure 5.3: Coordination polyhedra in the Bergman phase: Icosahedral coordination 
polyhedron (a) of Al and Zn atoms (CN 12) and irregular coordination polyhedra of Mg 
atoms with CN 16 (b), CN 15 (c), and CN 14 (d). 
 
 
 
5.2 Macroscopic deformation behaviour 
 
Experimental details 

   A crystal of the Mg32(Al,Zn)49 phase was grown by means of the Bridgman technique 
as discussed in chapter 2.2. Single-crystalline material of about 2.5 cm3 in size was 
obtained. The material was characterized as described in chapter 2.3. Neither secondary 
phases nor grain boundaries were observed. The absolute melting temperature of the 
material, determined by means of differential thermal analysis (DTA), amounts to Tm = 
761.5 K (Balanetskyy, 2005). 

   Orientation of Mg32(Al,Zn)49 by Laue X-ray diffraction was not possible due to a lack 
of sufficient contrast. Therefore the single crystal was oriented by means of TEM. A 
TEM specimen was cut from the crystal and the orientation was determined using 
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electron diffraction. Subsequently, the bulk material was oriented with respect to the 
orientation of the TEM specimen. Rectangular samples for deformation experiments of 
about 1.6 x 1.6 x 4.5 mm3 in size were cut from the crystal by means of spark erosion. 
The long axis of the samples, i.e. the compression direction, as well as the normal 
vectors of the side faces correspond to <1,0,0> directions. 

   This deformation geometry was chosen in order to achieve a large Schmid factor for 
dislocation-slip systems with <1,1,1> slip directions on {1,1,0} planes. These are the 
most frequently occurring slip systems in structurally simple phases featuring bcc-
lattices (e.g. Hull and Bacon, 1984). In the following, the compression direction is fixed 
as [0,0,1] direction. All surfaces were carefully ground and polished in order to prevent 
crack formation due to surface roughness. Care was taken to obtain flat and plan-
parallel end faces in order to prevent inhomogeneous stress fields in the sample.   

   Uniaxial compression tests were carried out in a modified Zwick Z050 testing system 
under closed-loop control. The setup of this deformation machine is described in 
chapter 3.3. The deformation experiments were performed in air at temperatures 
between 320 and 400 °C and at a constant strain rate of 10-4 s-1. Additional incremental 
tests, i.e. stress-relaxation tests and temperature changes, were performed as described 
in chapter 3.2. After deformation, the samples were rapidly unloaded and quenched on a 
cold metal plate in order to preserve the microstructural state. 

 

Results 

   The stress-strain behaviour of Mg32(Al,Zn)49 between 320 and 400 °C is shown in 
figure 5.4. During deformation at 320 °C sample fracture occurred at about 620 MPa. 
Vertical dips in the stress-strain curves are due to incremental tests. A stress-relaxation 
experiment and a deformation section with a temperature increased by 10 °C are 
exemplarily labelled “R” and “TC”, respectively, in the stress-strain curve at 340 °C. 
Dashed lines in figure 5.4 indicate interpolated courses of the stress-strain curves. The 
deformation experiments were aborted at total strains of about 6 %. 

   All curves in figure 5.4 show a pronounced yield-point effect, i.e. a strong overshoot 
of the stress at the onset of plastic deformation, leading to a large difference between 
upper and lower yield stresses. After the initial yield-point effect, reloading of the 
sample at the incremental tests does not induce additional overshoots. Only in the 
curves of 340 and 360 °C minor stress overshoots with respect to the interpolated 
courses are located after the second temperature change (arrows). A slight work-
hardening regime is observed in the stress-strain curves after the initial yielding 
behaviour up to a strain of approximately 4 %, followed by a constant flow stress. 
Neither work hardening nor work softening takes place at higher strains (4 to 6 %).  
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   Figure 5.4: Stress-strain curves of Mg32(Al,Zn)49 at temperatures between 320 and 
400 °C at a strain rate of 10-4 s-1. A stress relaxation test and a temperature change are 
exemplary labelled “R” and “TC”. Interpolated courses of the stress-strain curves are 
shown as dashed lines. Arrows indicate small stress overshoots. 
 
 
The stress-strain curve at 400 °C shows a slight deviation from those at other 
temperatures. After the second temperature change (back to 400 °C) plastic deformation 
sets in at about 200 MPa which is approximately 50 MPa lower than the stress which 
was present before the first temperature change was initiated. During further 
deformation, however, work hardening takes place and the flow stress smoothly 
approaches the interpolated course at about ε = 4.5 %.  

   The dimensions of samples deformed at 380 and 400 °C were measured along the 
[0,1,0] and [1,0,0] directions before and after deformation experiments by means of a 
micrometre gauge (accuracy: ± 1 µm). In case of the deformation at  380 °C sample 
broadening during the deformation process of 40 and 70 µm was observed along [0,1,0] 
and [1,0,0], respectively. During the deformation test at 400 °C broadening of 50 and 80 
µm was observed along [0,1,0] and [1,0,0], respectively. Both samples exhibit an 
increase of their dimensions parallel to the side faces. However, in each sample the 
increase in size was unequal along the two directions. Along the [0,0,1] direction, the 
increase is larger by approximately 40 % than along the [0,1,0] direction in both 
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samples. Precise measurement of samples deformed at lower temperatures was not 
possible due to cracks and inhomogeneous side surfaces.  

   Figure 5.5 shows the stress at the upper (squares) and lower (circles) yield point as a 
function of temperature. The stresses at these points, as well as the difference between 
these stresses, i.e. the yield drop, decrease continuously with increasing temperature. 
The dashed lines in figure 5.5 are guides to the eye. 

 

 
   Figure 5.5: Stress at the upper yield point (squares) and lower yield point (circles) of 
Mg32(Al,Zn)49 as function of temperature. Dashed lines are guides to the eye. 
 
 
   The experimental activation volume V determined according to equation (3.20) is 
shown in figure 5.6 as function of stress. A Schmid factor of ms = 0.75 was implied in 
this calculation which is the mean value of the Schmid factor for dislocation climb and 
the maximum Schmid factor for dislocation slip (see discussion in section 5.4). 
Activation volumes between 0.3 and 0.6 nm3 occur in a stress range between about 200 
and 500 MPa. A hyperbolic stress dependence of the activation volume is not 
identifiable from the experiments due to insufficient data points. However, as expected 
from the theory (cf. equation 3.15), the activation volume is analyzed presuming 
hyperbolic stress dependence. The activation volume follows the function σ/136=V  
represented by the dashed curve.  
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   Figure 5.6: Activation volume V of Mg32(Al,Zn)49, evaluated from stress-relaxation 
experiments, as a function of stress σ. The dashed curve is a fit which follows the 
hyperbolic function σ/136=V . 
 
 

   The activation enthalpy ΔH, calculated according to equation (3.19), is shown in 
figure 5.7 (squares). The values range between 1.9 and 2.6 eV as function of 
temperature. The dashed line shows a linear fit. The work term, calculated according to 
equation (3.14), is shown as circles. The work term is constant in the observed 
temperature range and amounts to about 0.85 eV, i.e. the activation enthalpy is 2 to 3 
times larger than the work term. 
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   Figure 5.7: Activation enthalpy ΔH (squares) and work term ΔW (circles) of 
Mg32(Al,Zn)49 as a function of temperature. The dashed and solid lines are linear fits of 
the activation enthalpy and the work term, respectively. 
 
 

 
5.3 Microstructural analysis 
 
Experimental details 

   Microstructural investigations on the Bergman phase were carried out by means of a 
JEOL 4000FX transmission electron microscope operated at 400 kV. Fundamentals of 
the microstructural analysis are described in Appendix A. 

   The sample material is cut into slices of about 0.7 mm thickness by means of a high-
precision wire saw. Samples are prepared with a surface normal parallel to [0,0,1] and 

 directions, i.e. parallel and perpendicular to the compression direction, 

respectively. Further preparation of samples is performed by standard procedures 
including subsequent grinding, dimpling, polishing and argon-ion milling as described 
in chapter 4.3. 

]0,1,0[

   In Mg32(Al,Zn)49, however, the argon-ion-milling process causes beam damage. 
Strong sample contamination by argon ions with characteristic, almost round contrast 
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appearance were found in TEM, preferentially located at dislocations and stacking 
faults. This beam damage considerably impedes the analysis of dislocations and 
stacking faults. Therefore, further thinning is performed by chemical etching. For 
chemical TEM-sample preparation an etchant with composition O66N17S17 (Vol. %) was 
used including the constituents O: orthophosphoric acid (H3PO4) 84%, N: nitric acid 
(HNO3, not smoking), and S: sulphuric acid (H2SO4) 68%. Powder samples, crushed by 
means of a mortar, were investigated, as well. 

 

 

Results 

Dislocation motion and stacking-fault orientation 

   Figure 5.8 shows a bright-field Bragg-contrast TEM image of a specimen prepared 
from a deformed sample (T = 340 °C, εplast = 0.25 %, ). The plane normal 
lies close to the [0,0,1] zone axis (compression direction). A two-beam condition 
corresponding to the reciprocal vector 

1410 −−= sε&

)0,0,6(=gr  (upper-left inset) was applied. In this 

micrograph, as well as in following Bragg-contrast TEM images, projections of the 
coordinate axes onto the image plane are shown. The surface normal of the TEM 
specimen in figure 5.8 is parallel to the [0,0,1] direction. The inset on the right-hand 
side illustrates the viewing direction with respect to the compression direction. 

   Preferential orientation of the dislocation-line direction parallel to [0,1,0] is observed 
in Mg32(Al,Zn)49. One dislocation featuring this line direction is indicated by a white 
arrow in figure 5.8. The dislocation lies within the image plane and correspondingly, a 
long vertical line segment can be observed. Three stacking faults are visible, which are 
indicated by black arrows. The stacking fault in the centre has a normal vector 
perpendicular to the compression direction and is hence visible in edge-on orientation; it 
appears as sharp vertical line. The outer stacking faults are inclined by 45° with respect 
to the [0,0,1] direction and appear broad and blurry. 

   Additionally, several almost round features are visible (white arrowheads), which are 
preferentially located at the dislocations and the stacking faults. These are due to beam 
damage during TEM specimen preparation by means of argon-ion milling (see section 
“Experimental details”). 

   Dislocations with line directions along [1,0,0] are found as well, but possess a density 
lower by about a factor of 100 than that of dislocations with [0,1,0] line direction. The 
contribution of dislocations with [1,0,0] line direction to deformation processes in 
Mg32(Al,Zn)49 is hence assumed to be negligible (see discussion).  
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   Figure 5.8: Bright-field Bragg-contrast TEM image of deformed Mg32(Al,Zn)49 close 
to the [0,0,1] zone axis. A dislocation with [0,1,0] line direction (white arrow) and 
three stacking faults (black arrows) are visible. The normal of the stacking fault in the 
centre is perpendicular, and of the outer ones are inclined by 45 ° to the compression 
direction. The inset on the right-hand side illustrates the viewing direction with respect 
to the compression direction. The applied two-beam condition corresponds to 

 (inset on the upper left). Beam damage due to argon-ion milling is also 
visible (white arrowheads). 

(6,0,0)g =
r

 
 
   Figure 5.9 shows a TEM micrograph of a specimen with surface normal parallel to the 
[0,1,0] direction, i.e. the line direction of the dislocations, imaged close to the [0,1,0] 
zone axis. Therefore, dislocations in this image are oriented almost end-on. Some 
dislocations are indicated by white arrows. The material shown in figure 5.9 was 
deformed at 340 °C and 10-4 s-1 up to a plastic strain of 0.8 % which corresponds to the 
lower yield point of the stress-strain curve. The viewing direction with respect to the 
compression direction is depicted on the right-hand side. 
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   Figure 5.9: TEM image of a specimen with surface normal parallel to the [0,1,0] 
direction imaged close to the [0,1,0] zone axis, i.e. almost parallel to the line direction 
of the dislocations. Some dislocations in nearly end-on orientation are indicated by 
white arrows. Black arrows point exemplarily at stacking faults with different 
orientations. The numbers 1, 2, 3, and 4 denote stacking faults with [1,0,0], [0,0,1], 
[1,0,1], and ]1[1,0, normal vectors, respectively. 
 
 
   The applied two-beam condition corresponds to the reciprocal vector )3,0,5(=gr . 

Dislocations in Mg32(Al,Zn)49 generate stacking faults during motion and are hence 
identified as partial dislocations. Several stacking faults with different orientations are 
visible (black arrows). Stacking faults with normal vectors parallel to [1,0,0], [0,0,1], 

[1,0,1], and ]1,0,1[  are labelled “1”, “2”, “3”, and “4”, respectively. The image thus 
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directly shows that dislocations with [0,1,0] line direction move parallel, perpendicular 
and inclined by 45° to the compression direction.  

   It is observed that some dislocations in the Bergman phase change their habit planes 
during motion. Figure 5.10 shows a micrograph of a TEM specimen oriented parallel to 
the [0,1,0] direction (same specimen region as shown in figure 5.9), using a two-beam 

condition with the reciprocal vector )6,0,0(=gr . Several stacking faults in this image 

consist of segments with different orientation. Some stacking faults possess two types of 
segments with normal vector n  = [1,0,0]  and segments with 

r nr  = [1,0,1]. Other 

stacking faults possess segments with nr  = [1,0,0] as well as segments with  = nr ]1,0,1[ . 

Various locations where stacking faults exhibit a variation in their orientation, i.e. where 
dislocations changed their habit planes, are indicated by red arrows in figure 5.10. 

   It is concluded that dislocations in the Bergman phase can change their plane of 

movement between (1,0,0) and (1,0,1) planes and between (1,0,0) and )1,0,1(  planes 

during motion. However, no stacking faults are observed which include both segments 

with  = [1,0,1] and segments with nr nr  = ]1,0,1[ . This fact suggests that two different 

types of dislocations are present in this phase: One dislocation type only moves on 

(1,0,0) and (1,0,1) planes and the other type moves on (1,0,0) and )1,0,1(  planes. In the 

following these dislocations will be referred to as type 1 and type 2, respectively. 

   Stacking faults on (0,0,1) planes do not possess segments with different orientation. 
These stacking faults feature edge-on orientation in figure 5.10 and are visible as almost 
horizontal lines. Stacking faults on (0,0,1) planes are terminated at locations where two 
other stacking-fault segments are conjoined. These locations are indicated by black 
arrows in figure 5.10. The conjoined segments belong to the different types of stacking 
faults described above, i.e. the two segments were induced by dislocations of type 1 and 
type 2. 

   It is concluded that a third type of dislocations exists in Mg32(Al,Zn)49 which moves 
on (0,0,1) planes. This type is a combination of dislocations of type 1 and 2 and the 
Burgers vector corresponds to the sum of the respective individual Burgers vectors of 
type 1 and 2. At locations where (0,0,1)-stacking faults are terminated (black arrows), 
either combination of type 1 and type 2 dislocations into the third dislocation type takes 
place, or the latter dissociate into dislocations of type 1 and 2.  
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   Figure 5.10: TEM micrograph with optical axis close to the [0,1,0] zone axis of the 
specimen. A two-beam condition corresponding to the reciprocal vector )6(0,0,g =

r  
was applied. Red arrows indicate sites where dislocations changed their habit planes 
during motion. Black arrows indicate sites where (0,0,1)-stacking faults terminate (see 
text). 
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Burgers-vector orientation 

   The Burgers-vector orientation of dislocations in the Bergman phase was determined 
by means of contrast-extinction experiments in TEM. Figure 5.11 shows a TEM 
specimen with orientation close to the [0,0,1] zone axis. Two dislocations are visible as 
diagonal lines (white arrows) under various imaging conditions. The applied two-beam 
conditions correspond to the reciprocal vectors (a) )0,0,6(=gr , (b) , (c) )1,3,6(=gr

)1,3,6(=gr , and (d) . )0,6,0(=gr

   In figure 5.11 (a) both dislocations show strong Bragg contrast while both are extinct 
in figure 5.11 (d). The reciprocal vector applied in (d) is parallel to the line directions of 
the dislocations. Hence, considering equation (A.3), the Burgers vectors lie 
perpendicular to the line directions of the dislocations, i.e. both dislocations posses pure 
edge character. In this case, the two-beam condition applied in (d) is the only condition 
which fulfils equation (A.4) and accordingly causes full extinction. Other reflections 
perpendicular to the Burgers vectors satisfy condition (A.3) but not (A.4) and hence 
cause residual contrast. Unlike the edge dislocations investigated in µ-Al-Mn (chapter 
4.3), residual contrast of edge dislocations in the present case can be distinguished from 
usual Bragg contrast, which allows a determination of the Burgers-vector orientation. 

   Dislocations under residual contrast show a weak blurry appearance in Mg32(Al,Zn)49. 
The dislocation on the lower-left side of figure 5.11 shows residual contrast in (b). The 
Burgers vector of this dislocation can be determined using equation (A.3). Considering 

the extinction in (d) and the residual contrast in (b), an orientation parallel to ]6,0,1[  is 

calculated. The dislocation on the upper-right side shows residual contrast in (c) and 
hence possesses a Burgers vector parallel to [1,0,6]. In the following the discussed 

dislocations will be referred to as [1,0,6] and ]6,0,1[  dislocations, according to their 

respective Burgers-vector directions. 

   Figure 5.12 shows a TEM micrograph of a specimen prepared with surface normal 
parallel to the [0,0,1] direction (same specimen region as shown in figure 5.8). One 
dislocation and three stacking faults can be observed in (a), where a two-beam condition 
corresponding to )0,0,6(=gr  was applied. They are indicated by white and black 

arrows, respectively. The stacking fault in the centre possesses a normal vector parallel 
to [1,0,0] and exhibits almost edge-on orientation. By means of tilting experiments it 
was determined that the outer stacking faults possess a normal vector parallel to [1,0,1]. 
All defects are extinct in (b) using the reciprocal vector )0,6,0(=gr , i.e. equation (A.4) 

is fulfilled in case of the dislocation and equation (A.6) is fulfilled in case of the 
stacking faults. Several almost round features, which are due to beam damage during 
TEM-sample preparation, are visible in figure 5.12; two are denoted by white 
arrowheads. 
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   Figure 5.11: TEM micrograph of a specimen close to the [0,0,1] zone axis under 
different two-beam conditions (a-d, see text). Two dislocations with [0,1,0] line 
direction (diagonal lines) are indicated by white arrows. 
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   Figure 5.12: TEM micrograph of a specimen close to the [0,0,1] zone axis (cf. figure 
5.8). A dislocation and three stacking faults are marked by white and black arrows, 
respectively. The contrast of the defects is extinct in (b). Beam damage due to argon-ion 
milling is also visible (white arrowheads). 
 
 
   Figure 5.13 shows stacking faults in a TEM specimen prepared parallel to the [0,1,0] 
direction. Due to sample tilting towards the [1,0,0] direction (about 25°), stacking faults 

with [1,0,0], [1,0,1], and ]1,0,1[  plane normals show a broad fringe contrast. Stacking 

faults with [0,0,1] normal vector are visible as narrow horizontal lines. The same 
specimen region is shown in this figure using different imaging conditions (a, c, d). 

   All planar defects show strong Bragg contrast in figure 5.13 (a) where a two-beam 
condition, corresponding to the reciprocal vector (0,0,6)g =

r  was applied. Stacking 

faults which are extinct in (c) and (d) are indicated by red and blue arrows, respectively. 
In (c), where the reciprocal vector )1,3,6(=gr  was applied, all stacking faults with 

 and some with  are extinct. For these stacking faults equation (A.6) 

is fulfilled. Taking the contrast extinctions of the stacking faults in figure 5.13 (c) 
( ) and in figure 5.12 (b) (

]1,0,1[=nr ]0,0,1[=nr

)1,3,6(=gr )0,6,0(=gr ) into account, a displacement vector 

parallel to ]6,0,1[  is calculated. 

   It can be concluded that the latter stacking faults are generated by the motion of 

]6,0,1[  dislocations. Hence, ]6,0,1[  dislocations move on (1,0,0) and (1,0,1) planes, i.e. 

they correspond to the dislocations of type 1. The remaining stacking faults with 

 and all stacking faults with ]0,0,1[=nr ]1,0,1[=nr  are extinct in figure 5.13 (d) 

( )1,3,6(=gr ). Concluding analogously, we find that these stacking faults possess 
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displacement vectors parallel to [1,0,6] and are generated by  dislocations. The 

latter correspond to dislocations of type 2. 

]6,0,1[

 

 
   Figure 5.13: Stacking faults in a specimen with [0,1,0] orientation under various 
imaging conditions (see text). Complementary extinction of stacking faults can be 
observed in (c) and (d). Red and blue arrows indicate stacking faults with different 
displacement vectors (see text). (b) is a numerical superposition of (c) and (d). 
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   The complementary extinction of stacking faults in (c) an (d) can best be seen by 
comparing these images with figure 5.13 (b), which is a numerical superposition of (c) 
and (d). 

    dislocations and ]6,0,1[ ]6,0,1[  dislocations possess Burgers vectors which are 

inclined with respect to their habit planes. The angles amount to 9.46° and 35.54° on 
(1,0,0) and  planes, respectively. The mechanism of dislocation motion is 

accordingly a mixture of slip and climb. 

)1,0,1( ±

   Burgers vectors of dislocations which move on (0,0,1) planes correspond to the sum 

of the Burgers vectors of  and ]6,0,1[ ]6,0,1[  dislocations. Hence, they are oriented 

parallel to [0,0,1] and the mechanism of dislocation motion on (0,0,1) planes is pure 
climb. In the following, these dislocations will be referred to as [0,0,1] dislocations. The 

line direction of [0,0,1] dislocations is, as in case of [1,0,6] and ]6,0,1[  dislocations, 

parallel to [0,1,0]. Figure 5.14 shows a TEM sample with orientation close to the [0,1,0] 
zone axis (same sample region as shown in figure 5.10) under two-beam conditions 

using the reflections )6(0,0,g =
r

 (a) and ,0,0)6(g =
r

 (b).  

 

 
   Figure 5.14: TEM micrograph of a specimen with orientation close to the [0,1,0] zone 
axis using the reflections )6(0,0,g =

r  (a) and ,0,0)6(g =
r  (b). Stacking faults with 

[0,0,1] normal vectors (black arrows) are extinct in (b). 
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   Several stacking faults with normal vector parallel to [0,0,1] are indicated by arrows 
in figure 5.14. In (a) these stacking faults are in edge-on orientation. They are extinct in 

(b) where the displacement vector R
r

 is perpendicular to g
r , i.e. equation (A.6) is 

fulfilled.  

 
 
Burgers-vector modulus 

   The length of the displacement vector R
r

 of stacking faults created by the movement 

of [1,0,6] and ]6,0,1[  dislocations is determined by means of contrast-extinction 

experiments and fringe-contrast analysis. In the following, the displacement vector is 

considered in the general form ],,[
m
1 zyxR =

r
, and the factor m of the displacement 

vectors R
r

 parallel to [1,0,6] and ]6,0,1[  will be determined. 

   According to equation (A.6), the contrast of a stacking fault is extinct under two-beam 

conditions if the scalar product of the displacement vector R
r

 and the reciprocal vector 
 equals an integer or zero. In the latter case these vectors are oriented perpendicular to 

each other. 

gr

    In figure 5.15 stacking faults with displacement vectors parallel to [1,0,6] (blue 

arrows) and ]6,0,1[  (red arrow) directions are imaged using different two-beam 

conditions. In (a) ( ]6,0,0[=gr ) all stacking faults show strong Bragg contrast while in 

(b) (dark field, ]12,0,8[=gr ) and (c) (dark field, ]12,0,8[=gr ) stacking faults with 

displacement vectors parallel to ]6,0,1[  and [1,0,6] are extinct, respectively. The 

displacement vectors R
r

 and the reciprocal vectors gr  are not oriented perpendicular to 

each other in these cases. Therefore, the scalar product of R
r

 and gr  yields an integer in 

order to achieve the observed contrast extinctions of the stacking faults, i.e. the 

equations n]6,0,1[m1]12,0,8[ =⋅  and n]6,0,1[m1]12,0,8[ =⋅  (where n ≠ 0 is an 

integer) are fulfilled in (b) and (c), respectively. In both cases the scalar product Rg
rr

⋅  

yields n64
m
1

= . Accordingly, the coefficient m is a divisor of 64 in order to fulfil 

equation (A.6).  
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   Figure 5.15: Stacking faults in a TEM specimen close to the [0,1,0] zone axis with 
displacement vectors parallel to [1,0,6] (blue arrows) and ,0,6]1[  (red arrow). The 
applied two-beam conditions correspond to (0,0,6)g =

r  (a), (8,0,12)g =
r  (b), and 

,0,12)8(g =
r  (c). Dark-field conditions are used in (b) and (c). 
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   On the other hand, figure 5.15 reveals that the two-beam condition including 

 does not cause a contrast extinction for stacking faults with  and 

the two-beam condition including 

]12,0,8[=gr ]6,0,1[=R
r

]12,0,8[=gr  does not cause extinction of stacking 

faults with ]6,0,1[=R
r

. In both cases the scalar product Rg
rr

⋅  yields n80
m
1

= . 

Divisors of 80 can therefore be excluded as possible values of the coefficient m. Only 
the numbers 32 and 64 are divisors of 64 but not divisors of 80. Hence, from contrast-
extinction experiments it is concluded that the factor m can only assume the values 32 
or 64. 

   Further determination of the factor m is performed by a stacking-fault fringe-contrast 
analysis. Figure 5.16 shows a TEM micrograph of a stacking fault (white arrow) 

including a displacement vector along ]6,0,1[ . The applied two-beam conditions 

correspond to  in (a) and )3,0,5(=gr )6,0,0(=gr  in (b). The micrograph reveals that the 

outer fringes of the stacking fault are dark in case of the two-beam condition 

corresponding to )3,0,5(=gr  and are bright in case of ).6,0,0(=gr  

 

 
   Figure 5.16: Stacking faults in a TEM specimen close to the [0,1,0] zone axis using 
two-beam conditions with  (a) and (5,0,3)g =

r )6(0,0,g =
r  (b). A stacking fault with 

displacement vector along ,0,6]1[ is indicated by a white arrow. 
 
 
   The appearance of stacking-fault fringe-patterns is theoretically determined for the 
two possible values of the factor m calculated above, and is compared with the observed 
fringe patterns. As described in Appendix A, stacking-fault contrast in TEM arises from 
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a phase shift α to which the electron wave is subjected and which can be calculated 
according to equation (A.5). The sign of the phase shift determines the appearance of 
the stacking fault. Gevers (1972) has shown that the outer fringes of a stacking fault in 
case of bright-field imaging are dark if sin(α) > 0 and are bright if sin(α) < 0. These 
conditions are used in order to analyze the displacement vector and determine the value 
of the factor m. 

   Table 5.1 shows an overview of the experimental and the calculated outer-fringe 

contrast in case of the reciprocal vectors )3,0,5(=gr  and ).6,0,0(=gr  The displacement 

vector corresponds to ]6,0,1[
m
1

=R
r

. The two possible values of m, 32 and 64, are 

implied in the calculations. The contrast is bright in case of m = 32 and )6,0,0(=gr  and 

the contrast is dark in the residual cases of the calculations. The experimental results are 
in accordance with the calculated results using m = 32. For 
 m = 64, on the other hand, the theoretically determined appearance of the outer 
stacking-fault fringes is dark for both reciprocal vectors. This is in contradiction to the 

experimentally determined stacking-fault appearance in case of )6,0,0(=gr . Hence, 64 

can be excluded as a value of m, and it is concluded that 32 is the correct value of the 

coefficient m of the displacement vectors along [1,0,6] and ]6,0,1[  directions. 

 

 Calculated  
m = 32 

Calculated  
m = 64 

Experimental 

)3,0,5(=gr  dark dark dark 

)6,0,0(=gr  bright dark bright 
 

   Table 5.1: Calculated and experimental contrast of exterior stacking-fault fringes for 
two reciprocal vectors. The displacement vector ,0,6]1m[R 1=

r
 and the values m = 32 

and 64 are implied in the calculations.  
 

 
   The coefficient m determines the lengths of the displacement vectors of the stacking 

faults. The displacement vectors are given by ]6,0,1[
32
1

±=R
r

 and ]6,0,1[
32
1

±=R
r

 with 

the modulus Å. The displacement vector of stacking faults on (0,0,1) planes 

is given by the sum of the displacement vectors along [1,0,6] and 

69.2|| =R
r

]6,0,1[  and amounts 

to ]1,0,0[
8
3

±=R
r

 with the modulus 31.5|| =R
r

Å. It is argued in the discussion (section 

5.4) that these displacement-vector lengths correspond to the Burgers-vector lengths of 
the respective dislocations. 
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Dislocation density 

   As discussed above, the density of dislocations with line direction along [0,1,0] is 
about two orders of magnitude larger in Mg32(Al,Zn)49 than the density of dislocations 
with line direction along [1,0,0]. The contribution of the latter to deformation processes 
in the Bergman phase is hence assumed to be negligible. The dislocation density in this 
phase is calculated ragarding only dislocations with [0,1,0] line direction.  

   The dislocation density in Mg32(Al,Zn)49 is calculated taking the three occurring 
dislocations types into account, i.e. dislocations with Burgers vectors parallel to [1,0,6], 

]6,0,1[ , and [0,0,1] directions. Their densities are determined by means of TEM from 

specimens prepared with plane normal parallel to the [0,1,0] direction, which 
corresponds to the line direction of the dislocations. Therefore, the thickness of the 
specimen equals the length of the observed dislocation lines, and the density can be 
calculated from the number of dislocations n in an observed area A according to 
equation (4.1). 

   The dislocation density is determined from a sample deformed at 340 °C and 10-4 s-1 
up to a plastic strain of 0.8 %, i.e. the lower yield point of the stress-strain curve. 
Reference investigations were carried out on undeformed material which was heat 
treated and quenched in the same way as the deformed sample. The densities were 
determined by averaging values obtained in 20 randomly selected TEM specimen areas, 
and amount to ρundef =  and ρ27101.1 −⋅ cm def =  for the undeformed and 
deformed material, respectively. 

29101.2 −⋅ cm

 
 
 

5.4 Discussion 
 
Macroscopic deformation behaviour  
 
Stress-strain behaviour 

   Deformation experiments were performed on single-crystalline Mg32(Al,Zn)49 with 
[0,0,1]-compression direction at . The experiments were carried out between 
340 and 400 °C which corresponds to the homologous temperature range of T

1410 −−= sε&

H = 0.80 
to 0.88. During deformation at 320 °C sample fracture occurred directly at the onset of 
plastic deformation. Hence, it is concluded that the brittle-to-ductile transition is close 
to this temperature (TH = 0.78) at the applied strain rate, which is a typical value in a 
medium range compared with other CMA phases (see chapter 7).  
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   An increase of the dislocation density due to plastic deformation is observed in 
Mg32(Al,Zn)49. The dislocation density exhibits a difference of about two orders of 
magnitude between undeformed material and samples deformed up to the lower yield 
point, i.e. the stress minimum after the yield drop. This fact allows for the conclusion 
that the deformation process in the Bergman phase is based on dislocation motion.  

   The stress-strain curves exhibit pronounced yield-point effects at all investigated 
temperatures. The presence of a yield-point effect in connection with an increase of the 
dislocation density is in good agreement with a model of Johnston and Gilman (1959), 
which describes the dependence of the flow stress on the evolution of the dislocation 
density during plastic deformation. According to this model, the dislocation-
multiplication rate shows a strong stress dependence. With the onset of plastic 
deformation an intense multiplication of dislocations occurs in Mg32(Al,Zn)49, leading 
to the difference in the dislocation densities of deformed and undeformed samples. The 
yield drop can therefore be attributed to an increased number of mobile dislocations 
which contribute to the deformation process. 

   From the observed absence of pronounced yield-point effects after incremental tests 
(figure 5.4) it is concluded, as in case of µ-Al-Mn (chapter 4.4), that recovery takes 
place at low rates in this material.  

 
Thermodynamic activation parameters 

   According to microstructural investigations, plastic deformation of Mg32(Al,Zn)49 is 
mediated by different mechanisms involving dislocation slip and climb. The 
macroscopic activation volume cannot be determined separately for the contributing 
microstructural mechanisms. Therefore the activation volume is calculated by applying 
a mean value of the Schmid factor for dislocation slip and climb. 

   An estimation of the Schmid factor is admissible since a variation of the activation 
volume by, say, a factor of two has only marginal relevance for the interpretation of the 
results. For dislocation slip the maximum Schmid factor of 0.5 is implied which accords 
to the slip component of  dislocations on  planes (see section 

“Microstructural deformation behaviour”). For dislocation climb no Schmid factor is 
defined since no slip plane exists. However, a value of m

]6,0,1[± )1,0,1(m

s = 1 is a widely accepted 
assumption for dislocation climb under normal stresses in the literature (e.g. Nandy and 
Banerjee, 2000, Mitra et al., 2004, Malaplate et al., 2005, cf. chapter 4). Hence, a 
Schmid factor of ms = 0.75 was assumed in the calculations for the activation Volume. 

    Taking these considerations into account, the activation volume of Mg32(Al,Zn)49 
amounts to about 0.4 nm3 at a medium stress of 300 MPa. Scaled by the atomic volume 

 104 



5 Plasticity of Mg32(Al,Zn)49 

Va (i.e. the volume of the unit cube VCell = 2.86 nm3 divided by 162 atoms per cell) this 
value equals V/Va = 23. 

   Icosahedral atom arrangements in Mg32(Al,Zn)49 (cf. section 5.1) form stable entities 
in the structure. The activation volume is of the same order of magnitude as the number 
of atoms in these clusters. Previous investigations on the plasticity of CMA phases have 
shown that atom clusters can act as obstacles for dislocation motion (Feuerbacher et al., 
2001, cf. chapter 4.4). It is hence supposed that primarily icosahedral atom 
arrangements act as obstacles for dislocation motion in the Bergman phase, and that 
friction between dislocations and the cluster substructure provides the rate-controlling 
factor of dislocation motion.  

   The activation enthalpy of Mg32(Al,Zn)49 ranges between 1.9 and 2.6 eV (figure 5.7). 
It is about 2 to 3 times larger than the work term which indicates that the deformation 
experiments in the investigated temperature range are thermally activated processes. 

   As observed in the microstructural analysis, dislocation climb plays a significant role 
in the deformation process. Diffusion processes at adequate rates are therefore essential 
for plastic deformation. Values of the diffusion enthalpy of Mg32(Al,Zn)49 are not 
reported in the literature. Self-diffusion enthalpies of Al, Mg, and Zn, as well as the 
diffusion enthalpies of Mg and Zn in Al amount between 1.1 and 1.5 eV (LeClair, 
1992). Assuming that the diffusion enthalpy of the Bergman phase is of the same order, 
the activation enthalpy is about twice as large as the diffusion enthalpy. This difference 
between diffusion- an activation enthalpy is qualitatively found in µ-Al-Mn, as well 
(chapter 4). 

   It is concluded that besides diffusion another process dominates the rate of dislocation 
motion and affects the magnitude of the activation enthalpy. This could be the 
interaction between dislocations and the cluster substructure. The same conclusion is 
drawn for the activation enthalpy in case of µ-Al-Mn (chapter 4.4). It is suggested in the 
interpretation of the activation volume (see discussion above), that atom clusters act as 
obstacles against dislocation motion and that the thermally activated overcoming of 
these obstacles provides the rate-controlling mechanism for dislocation motion. The 
discrepancy between the values of diffusion- an activation enthalpy can be explained if 
the friction between the dislocations and the cluster substructure determines the 
magnitude of the activation enthalpy in the investigated temperature range rather than 
lattice diffusion. 

   As observed in the phase µ-Al-Mn, the activation enthalpy of Mg32(Al,Zn)49 shows a 
deviation from proportional temperature dependence, i.e. the condition 0)0( ==THΔ  

(Gibbs, 1969) is not fulfilled. In analogy to the interpretation in case of µ-Al-Mn 
(chapter 4.4), this property may indicate a change of the rate-controlling processes at 
different temperatures. Extrapolation of the activation enthalpy to lower temperatures 
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reveals energies between 1.1 and 1.5 eV close to 320 °C, which corresponds to the 
approximate brittle-to-ductile transition temperature. This energy range is in accordance 
with the assumed diffusion enthalpy of Mg32(Al,Zn)49. 

   These results might be interpreted as follows. At temperatures between 340 and 400 
°C the activation enthalpy is considerably larger than the diffusion enthalpy. In this 
region diffusion is only an energetically subordinated effect for dislocation motion and 
friction between dislocations and the cluster substructure can be dominant. At lower 
temperatures, however, lattice diffusion becomes rate-controlling and limit the climb 
process. With decreasing temperature, the decreasing diffusion rate suppresses the 
dislocation climb mechanisms, leading to the observed brittle-to-ductile transition at 
about 320 °C. 

 
 
Microstructural analysis 
 
Dislocation motion and Burgers-vector orientation 

   The deformation processes in the Bergman phase are mediated by the motion of 
dislocation segments with [0,1,0] line direction. Due to their low density, dislocation 
segments with line direction along [1,0,0] are assumed to be negligible as carriers of 
deformation processes. This anisotropic deformation behaviour may be attributed to the 
crystal symmetry of Mg32(Al,Zn)49. The crystal structure possesses the space group 

3Im  which includes a two-fold rotational symmetry along <0,0,1> directions. 

   The anisotropy is also reflected in the macroscopic deformation behaviour of this 
phase. During deformation experiments at 380 and 400 °C broadening of samples along 
[1,0,0] is observed to be considerably larger than broadening along [0,1,0]. 

   Three different types of partial dislocations with [0,1,0] line directions are observed in 
deformed Mg32(Al,Zn)49. All are dislocation segments with pure edge character. Two 

dislocation types feature Burgers vectors parallel to  and ]6,0,1[ ]6,0,1[ . The 

combination of these two dislocation types forms the third kind of dislocations with 
Burgers vector parallel to the [0,0,1] direction. Networks of extended stacking faults are 
generated by the motion of these dislocations. Figure 5.17 shows a schematic 
illustration of the stacking-faults in the Bergman phase. Stacking faults generated by the 

different dislocation types are indicated by colours. ]6,0,1[  dislocations move on (1,0,0) 

and (1,0,1) planes (red planes) while  dislocations move on (1,0,0) and ]6,0,1[ )1,0,1(  

planes (blue planes). Green (0,0,1) planes in figure 5.17 denote stacking faults generated 
by dislocations featuring Burgers vectors parallel to [0,0,1]. 
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   Figure 5.17: Schematic illustration of stacking-fault arrangements in deformed 
Mg32(Al,Zn)49. Colours indicate the type of displacement vector of the stacking faults 
(see text). Grey arrows denote the applied compression direction. 
 
 
Burgers-vector modulus 

   The displacement-vector lengths of the stacking faults are determined by means of 
contrast-extinction experiments and fringe-contrast analyses. They amount to 2.69 Å in 
case of  and (1,0,0) stacking faults and to 5.31 Å in case of (0,0,1) stacking 

faults. The displacement vectors are determined from several independent stacking 
faults in the performed examinations (cf. figure 5.15). Additionally, several investigated 
stacking faults are terminated by dislocations (see e.g. figure 5.9). It is hence concluded, 
that the examined stacking faults are primarily generated by the motion of one 
dislocation in each case and that the displacement vectors correspond to the Burgers 
vectors of the dislocations. 

)1,0,1(±
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Angles between Burgers vectors and habit planes 

   The Burgers vectors of the dislocations are inclined by specific angles to the 
respective planes of movement. In case of [0,0,1] dislocations the Burgers vector is 
perpendicular to the habit plane, i.e. the (0,0,1) plane. ]6,0,1[±  dislocations possess 

Burgers vectors inclined by 9.46° and 35.54° with respect to the (1,0,0) and  

planes, respectively. 

)1,0,1(m

   In figure 5.18 the Burgers-vector directions are schematically illustrated with respect 
to the movement planes along the [0,1,0] direction. Colours assign the Burgers vectors 
of dislocations to the respective planes of movement (according to colours in figure 

5.17). The (1,0,0) plane, which is a habit plane of  as well as of ]6,0,1[ ]6,0,1[  

dislocations, is shown dashed in red and blue. Angles between Burgers vector and 

planes of movement are exemplarily given for the ]6,0,1[  Burgers vector.  

 

 
   Figure 5.18: Schematic illustration of the Burgers-vector orientations in 
Mg32(Al,Zn)49 along the [0,1,0] direction. Angles between Burgers vector and planes of 
movement are exemplarily given for the ]6[1,0,  Burgers vector (red). 
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Slip and climb components of dislocation motion 

   The angles between the Burgers vectors and the dislocation-habit planes define the 
mode of dislocation motion. Dislocations with  Burgers vectors move on (0,0,1) 

planes by pure climb, while  dislocations move on (1,0,0) and  planes 

by mixtures of climb and slip mechanisms. 

]1,0,0[

]6,0,1[± )1,0,1( m

   The slip and climb components of dislocation motion are exemplarily illustrated for 

the ]6,0,1[  dislocations in figure 5.19. The Burgers-vector orientation is shown with 

respect to the habit planes of the dislocation (cf. figure 5.18). The (1,0,1) plane and the 
(1,0,0) plane are shown in (a) and (b), respectively. Arrows in bright grey denote the 
slip component and arrows in dark grey denote the climb component of the Burgers 
vector. The dislocation is indicated by “┴”. Figure 5.19 reveals that  

dislocations possess a slip component on  planes which is slightly larger than 

the climb component. On (1,0,0) planes, dislocation slip is the dominating mode of 
dislocation motion, i.e. the slip component of 

]6,0,1[±

)1,0,1(m

]6,0,1[±  dislocations is considerably 

larger than the climb component.  

 

 
   Figure 5.19: Illustration of the Burgers vector direction of ]6[1,0,  dislocations “┴” 
with respect to (1,0,1) planes (a) and (1,0,0) planes (b). The slip and climb components 
are shown as arrows in bright grey and dark grey, respectively. 
 
 
   The various components of dislocation motion on the different planes of movement 
contribute in different manners to the deformation process. These components, i.e. 
climb of [0,0,1] dislocations on (0,0,1) planes, slip and climb of ]6,0,1[±  dislocations on 

 planes, and slip and climb of )1,0,1(m ]6,0,1[±  dislocations on (0,0,1) planes, are 

discussed in the following. 
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   Dislocations with Burgers vectors parallel to  move by pure climb on (0,0,1) 

planes. These dislocations contribute to the deformation process by removing atomic 
layers (positive climb) with plane normals parallel to the compression direction and 
hence, cause a shortening of deformation samples. An equivalent mechanism was 
observed in µ-Al-Mn (chapter 4), where basal-plane dislocations remove atom layers 
with normal vector parallel to the c-axis by means of pure climb. 

]1,0,0[

   The motion of  and ]6,0,1[ ]6,0,1[  dislocations on  planes contributes to the 

deformation process due to the slip components as well as the climb components of 
their Burgers vectors. The climb process removes atomic layers and hence corresponds 
to positive climb. This process is comparable with the climb mechanism of [0,0,1] 
dislocations on (0,0,1) planes. In case of 

)1,0,1(m

]6,0,1[±  dislocations, however, the removed 

layers are inclined by 45° to the compression direction. 

   The slip components of  dislocations on  planes possess the maximum 

possible Schmid factor for this mode of dislocation motion. In this geometry, the slip 
plane as well as the slip direction are inclined by 45° with respect to the compression 
direction, yielding the Schmid factor of m

]6,0,1[± )1,0,1(m

S = 0.5 (cf. chapter 3.1).  

    On (1,0,0) planes, on the other hand, slip of ]6,0,1[±  dislocations possess a Schmid 

factor of mS = 0, i.e. no resulting driving force for this mode of dislocation motion 
occurs from the experimental configuration. The large slip component of  

dislocations on (1,0,0) planes parallel to the compression direction may occur due to the 
appearance of local shear stresses parallel to the [0,0,1] direction. The origin of these 
shear stresses can be explained by the interaction of the different modes of dislocation 
motion and is further discussed below. 

]6,0,1[±

   The climb component of  dislocations on (1,0,0) planes introduces atomic 

layers with normal vector parallel to [1,0,0] during motion. This mechanism 
corresponds to negative climb. It causes a broadening of the sample and by this way 
contributes to the deformation process. In the applied deformation geometry, however, 
no resulting driving force arises for a climb mechanism on (1,0,0) planes. The driving 
force occurs, in analogy to the driving force for motion of c-axis dislocations in µ-Al-
Mn (chapter 4.4), from a chemical stress, which is generated by a concentration gradient 
of vacancies or interstitial atoms (Le Hazif et al., 1968). The concept of the chemical 
stress is further discussed in the comprehensive discussion (chapter 7.2). 

]6,0,1[±

   As in case of µ-Al-Mn, positive and negative climb mechanisms are present in 
Mg32(Al,Zn)49 acting complementary as sinks and sources for vacancies, respectively 
(or vice versa for interstitial atoms). The concentration gradient is caused by the positive 
climb mechanisms of [0,0,1] dislocations on (0,0,1) planes and ]6,0,1[±  dislocations on 

 planes. The complementary climb mechanisms can effectively interact via )1,0,1(m
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diffusion; only the diffusion distance between the involved dislocation types have to be 
passed. Taking dislocation densities of deformed samples (εplast = 0.8 %) into account, 
this distance is about 4 orders of magnitude smaller than the distance between 
dislocations and the sample surface. 

 

 

Interaction of deformation mechanisms 

   In the following, the interaction between the different types of deformation 
mechanisms observed in Mg32(Al,Zn)49 is discussed. For this purpose, the effects of a 

]6,0,1[  dislocation, which moves in a deformation sample on an (1,0,1) plane, on the   

surrounding sample material is exemplarily considered. 

   Figure 5.20 schematically illustrates a section of a deformation sample along the 
[0,1,0] direction. An (1,0,1)-stacking fault is shown as red line in figure 5.20 (a). Grey 
arrows denote the compression direction. Two regions of the sample section, indicated 
“1” and “2” in (a), are separated by the (1,0,1)-stacking fault and two other stacking 
faults on (1,0,0) and (0,0,1) planes, respectively. These regions denote two parts of the 
deformation sample which exhibit a displacement in (b) and (c) with respect to each 

other due to the motion of the ]6,0,1[  dislocation on the (1,0,1) plane. The displacement 

vector is indicated as red arrow in (a).  

   The initial state of the process is illustrated in (a), i.e. no displacement between the 
parts “1” and “2” is present. The images in (b) and (c) show two states of the process, 

revealing displacements caused by the slip and climb components of the ]6,0,1[  

dislocation on the (1,0,1) plane. 

   Figure 5.20 (b) shows the hypothetical state if only the slip component causes a 

displacement. A diagonal displacement between regions “1” and “2” along the ]1,0,1[  

direction (black arrow) is visible. The dashed line denotes the initial position of region 
“1”. For this displacement, additional processes at the boundary between region “1” and 
region “2” have necessarily to take place. In the lower-right corner of figure 5.20 (b), 
sample material corresponding to an (0,0,1) layer has to be removed (green arrow). This 
material is illustrated by an overlap of regions “1” and “2” in dark grey. Climb of 
[0,0,1] dislocations on (0,0,1) planes removes the according atomic layers. In the upper-
left corner, on the other hand, sample material corresponding to an (1,0,0) layer has to 
be inserted. This area is illustrated by a gap between regions “1” and “2” (brown 
arrows). The climb component of ]6,0,1[±  dislocations on (1,0,0) planes introduces the 

according atomic layers. 
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   Figure 5.20: Schematic illustration of a Mg32(Al,Zn)49 deformation-sample element 
along the [0,1,0] direction. Two regions of the sample (denoted “1” and “2” in (a)) are 
separated by stacking faults on (1,0,0), (1,0,1), and (0,0,1) planes. Different states of 
the displacement (black arrows) caused by the motion of an ]6[1,0,  dislocation on the 
(1,0,1) plane are shown in (a-c). (a) Initial state of the process; no displacement is 
present. (b) Displacement along ]1[1,0,  induced by the slip component. (c) Additional 

displacement along ]1,0,1[   induced by the climb component. Red arrows denote the 
displacement vector. Brown, green, and white arrows indicate effects of the 
displacement (see text). 
 
 
   Figure 5.20 (c) shows the final state of the displacement of region “1” if the slip- as 

well as the climb component of the ]6,0,1[  dislocation contribute to the displacement. 

The climb component removes an atomic layer on the (1,0,1) plane (not removed in the 
illustration). This leads to a diagonal displacement of sample region “1” with respect to 
region “2”. Hence, in addition to the displacement shown in (b), a displacement along 

the ]1,0,1[  direction (black arrow) is visible. The displacement is illustrated with an 

overlap of regions “1” and “2” (brown arrow). 

   The final arrangement of region “1” with respect to region “2” corresponds to a 
vertical and horizontal displacement according to the direction of the displacement 
vector (red arrow). The vertical component of the displacement induces a shear stress 
parallel to the compression direction at the (1,0,0) stacking fault between regions “1” 
and “2”. In the upper-left corner of figure 5.20 (c) the shear stress is indicated by white 
arrows. This shear stress acts as driving force for slip of ]6,0,1[±  dislocations on (1,0,0) 

planes. 
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Occurrence of stacking-fault networks 

   The three types of dislocations with Burgers vectors parallel to [1,0,6], ]6,0,1[ , and 

[0,0,1] interact with each other and insert extended networks of stacking faults in 
deformed Mg32(Al,Zn)49. These netwoks may arise as described in the following 

scenario. Dislocations with [1,0,6] and ]6,0,1[  Burgers vectors move, driven by an 

external stress applied at the deformation sample, on their habit planes, i.e. on  

and (1,0,0) planes. These dislocation types occasionally combine and form [0,0,1] 
dislocations which move on (0,0,1) planes. The latter dislocations can again dissociate 

and form [1,0,6] and 

)1,0,1(m

]6,0,1[  dislocations.  

   The combination of [1,0,6] and ]6,0,1[  dislocations to [0,0,1] dislocations, however, 

is associated with a significant enlargement of the elastic line energy of the dislocations. 
Since the elastic line energy of a dislocation is proportional to the square of the Burgers 

vector length, a combination of [1,0,6] and ]6,0,1[  dislocations to [0,0,1] dislocations is 

energetically unfavourable. Therefore, according to Frank’s rule (e.g. Hull and Bacon, 

1984), combination of [1,0,6] and ]6,0,1[  dislocations is not feasible. The dissociation 

of [0,0,1] dislocations into [1,0,6] and ]6,0,1[  dislocations, on the other hand, is 

energetically advantageous and therefore likely. 

   Dislocation multiplication takes place during plastic deformation of Mg32(Al,Zn)49 as 
demonstrated by the increased dislocation density in deformed samples of this phase. 
The appearance of extended stacking-fault networks can be explained if preferentially 
dislocations with Burgers vector parallel to [0,0,1] are generated by this means. These 
dislocations dissociate, depending on the sign of their Burgers vectors, either into 

[1,0,6] and ]6,0,1[  dislocations or into ]6,0,1[  and ]6,0,1[  dislocations. Due to the 

long-range elastic stress-fields, dislocations with opposite signs of their Burgers vectors, 

i.e. [1,0,6] and ]6,0,1[  dislocations as well as ]6,0,1[  and ]6,0,1[  dislocations, cause an 

attractive force on each other (Hull and Bacon, 1984). Furthermore, dislocations with 
opposite Burgers vectors can annihilate. 

   The stacking-fault networks in the Bergman phase can occur if ]6,0,1[  and ]6,0,1[  

dislocations and if  and ]6,0,1[ ]6,0,1[  dislocations attract each other and annihilate. 

This scenario is schematically illustrated in figure 5.21. An [0,0,1] dislocation and an 

]1,0,0[  dislocation have inserted stacking faults on (0,0,1) planes (green) and split into 

[1,0,6] and ]6,0,1[  dislocations and into ]6,0,1[  and ]6,0,1[  dislocations, respectively. 

These dislocations insert stacking faults on their habit planes during motion (shown in 
red and blue). Four dislocations are indicated by “┴”. Black arrows denote the 
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movement directions of the dislocations and coloured arrows denote displacement 
vectors of the stacking faults. In the centre of figure 5.21 two dislocations with Burgers 

vectors along ]6,0,1[  and ]6,0,1[  approach each other due to their attractive force. 

Annihilation of these dislocations joins the inserted stacking faults. 

 

 
   Figure 5.21: Schematic illustration of dislocation motion in the Bergman phase. 
Coloured arrows indicate directions of displacement vectors (see text) and “┴” denotes 
dislocations. Black arrows indicate the movement directions of the dislocations. 
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Chapter 6 
 
Plasticity of ß-Al-Mg 
 
   In this chapter the structure of the complex metallic alloy ß-Al-Mg is introduced and 
deformation experiments performed on this phase are described. Uniaxial compression 
tests with compression direction parallel to the [0,0,1] direction were carried out at 
constant strain rate. Activation parameters of the deformation process are evaluated and 
discussed. Distinct ductile deformation behaviour was found above 69 % of the melting 
temperature, where maximum flow stresses of almost 800 MPa were reached. The 
macroscopic deformation behaviour is discussed with respect to microstructural 
investigations carried out by Lipińska-Chwałek (2007). The results are also compared 
with the deformation behaviour of polycrystalline ß-Al-Mg investigated by Feuerbacher 
(2005). 

 
 

6.1 The structure of ß-Al-Mg 
 
   The existence of the ß-phase in the Al-Mg system was established by Riederer (1936). 
First structural investigations were performed by Perlitz (1944) who determined the 
approximate composition Al3Mg2 of this phase. A complete structural model was 
developed by Samson (1965). The phase ß-Al-Mg possesses the space group mFd 3  
and comprises approximately 1168 atoms in the unit cell. The lattice parameter amounts 
to 28.2 Å. Figure 6.1 illustrates the unit cell of ß-Al-Mg according to the model of 
Samson (1965). 

   The phase ß-Al-Mg features a structure with 23 crystallographic atom sites and 41 
different coordination polyhedra (Samson, 1969). As a result of the inherent disorder, 
the number of different coordination polyhedra exceeds the amount of crystallographic 
sites in this phase. The most important structural building blocks, however, are 
icosahedra and Friauf polyhedra. 
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   A Friauf polyhedron can be regarded as a superposition of a truncated and a regular 
tetrahedron as illustrated in figure 6.2 (a) and (b). A wire model and a sphere model of a 
Friauf polyhedron are shown in (a) and (b), respectively. The atom sites are located at 
the vertices of the polyhedron. The truncated tetrahedron, consisting of 12 Al atoms, 
exhibits four triangular and four hexagonal faces. 4 Mg atoms of the regular tetrahedron 
are located at the centres of the hexagonal faces of the truncated tetrahedron1. The 
centre position of the polyhedron is occupied by a Mg atom. Five of these Friauf 
polyhedra can share hexagonal faces in order to form a larger structure complex 
consisting of 47 atoms, the VF-polyhedron (Samson, 1965). A VF-polyhedron is 
illustrated in figure 6.2 (c).  

 

 
   Figure 6.1: Unit cell of ß-Al-Mg according to the model of Samson (1965). 
 
 
   Besides 672 icosahedra and 252 Friauf polyhedra the structure of ß-Al-Mg comprises 
244 irregular polyhedra. Within the latter, the atomic coordination numbers range 
between 10 and 16. Icosahedra and Friauf polyhedra possess CN 12 and CN 16, 
respectively. All 672 atom sites with icosahedral coordination are occupied by Al 
atoms. Of the 48 residual Al atoms in the unit cell, 24 are coordinated by irregular 
                                                 
1 In the literature the Friauf polyhedron is sometimes characterized without the four atoms located at the 
centres of the hexagonal faces. 
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polyhedra with CN 12, 16 Al atoms feature CN 11, and 8 feature CN 10. All 252 atom 
sites coordinated by Friauf polyhedra are occupied by Mg atoms. The remaining 196 
Mg atoms in the unit cell are coordinated by 14 different polyhedra with CN 13 to 16. 
All atom sites and coordinations are described in detail by Samson (1965). 

   In ß-Al-Mg a high amount of inherent disorder is present. Displacement disorder and 
fractional site occupation occur in this phase. Due to steric constraints 11 of the 23 
different crystallographic sites have fractional occupations between 10 and 80 %. Note 
that in figure 6.1 all atom sites of the unit cell are shown with full occupancy. 
Therefore, several adjacent atoms exhibit overlap in this illustration.  

   Samson (1965) assumed that disorder in ß-Al-Mg is a result of the tendency to form 
the maximum number of icosahedral coordination shells. An idealized ordered model of 
the ß-Al-Mg structure developed by Samson (1965), as well, possess no inherent 
disorder but 48 icosahedral coordinations less in comparison with the disordered 
structural model.   

 

 
   Figure 6.2: Atom clusters in ß-Al-Mg: (a) Wire model and (b) sphere model of a 
Friauf polyhedron consisting of 5 Mg atoms and 12 Al atoms. (c) VF-polyhedron 
consisting of 5 Friauf polyhedra (47 atoms). 
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6.2 Macroscopic deformation behaviour 
 
Experimental details 

   ß-Al-Mg was grown by means of the Czochralski technique as described in chapter 
2.2. A single crystal of about 3.2 cm3 in size was obtained. The material was 
characterized as described in chapter 2.3. Neither secondary phases nor grain 
boundaries were observed. 

   The crystal was oriented by Laue X-ray diffraction in back-reflection geometry. 
Rectangular deformation samples of about 1.6 x 1.6 x 4.5 mm3 in size were cut from the 
crystal by means of spark erosion. The long axis of the samples, i.e. the compression 
direction, as well as the side faces corresponded to <0,0,1> directions. All surfaces were 
carefully ground and polished in order to prevent crack formation at scratches. Care was 
taken to obtain flat and plan-parallel end faces in order to prevent inhomogeneous stress 
fields in the sample.   

   Uniaxial compression tests were carried out in a modified Zwick Z050 testing system 
under closed-loop control. The setup of this deformation machine is described in 
chapter 3.3. The deformation experiments were performed in air at temperatures 
between 200 and 375 °C and at constant strain rate of 10-4 s-1. Additional incremental 
tests, i.e. stress-relaxation tests and temperature changes, were performed as described 
in chapter 3.2. After deformation, the samples were rapidly unloaded and quenched on a 
cold metal plate in order to preserve the microstructural state. 

 
Results 

   The stress-strain behaviour of ß-Al-Mg is shown in figure 6.3 at temperatures between 
225 and 375 °C. Vertical dips in the stress-strain curves are due to incremental tests. 
Stress-relaxation experiments and a temperature-change cycle are labelled “R” and 
“TC”, respectively, in the stress-strain curve at 225 °C. Dashed lines in figure 6.3 
indicate interpolated courses of the stress-strain curves. The deformation experiments 
were aborted at a total strain of 6 to 8 %.  

   At all temperatures the deformation behaviour shows a pronounced initial yield-point 
effect, i.e. an overshoot of the stress at the onset of plastic deformation. The magnitude 
of the yield drop, i.e. the difference between upper and lower yield points, ranges from 
10 to 25 % of the lower yield stress and decreases with increasing temperature. Small 
yield-point effects are also observed after unloading of the samples during temperature-
change experiments and after stress relaxations. 
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   Figure 6.3: Stress-strain behaviour of ß-Al-Mg at temperatures between 225 and  
375 °C and at constant strain rate of 10-4 s-1. Stress relaxation tests and a temperature-
change cycle are exemplary labelled “R” and “TC” in the curve at 225 °C. 
Interpolated courses of the stress-strain curves are shown as dashed lines. 
 
 
   In general a work-hardening or work-softening tendency is not observed in this phase, 
i.e. the flow stress exhibits an almost constant value after the initial yield drop. Only at 
high temperatures work hardening is observed after the lower yield point, followed by 
work softening at higher strains. In the curve at 375 °C, work hardening occurs until a 
second stress maximum develops at a strain of about 2.5 %. Subsequently, work 
softening occurs. The magnitude of this course of the flow-stress, however, decreases 
with decreasing temperature. 

   In addition to the experiments shown in figure 6.3, plastic deformation experiments 
were performed at 200 °C. In all cases sample fracture occurred between about 600 and 
750 MPa, i.e. at lower stresses than the maximum yield stress of 780 MPa which was 
accomplished at 225 °C. 
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   Figure 6.4 shows the temperature dependence of the upper (squares) and lower 
(triangles) yield stress. The dotted lines are guides to the eye. A monotonous decrease 
of upper and lower yield stress with increasing temperature can be observed. 
Furthermore, the difference between upper and lower yield stress decreases with 
increasing temperature resulting in nearly equal stress levels of these points at higher 
temperatures. 

 

 
   Figure 6.4: Upper yield stress (squares) and lower yield stress (triangles) of ß-Al-Mg 
as function of temperature. The dashed lines are guides to the eyes. 
 
 
   The stress dependence of the experimental activation volume, determined according to 
equation (3.21), is shown in figure 6.5. The activation volume was determined using a 
Schmid factor of ms = 0.47 (see discussion). The dashed curve is a fit of the determined 
experimental activation volumes at different stresses and follows the hyperbolic 
function σ/155=V .  
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   Figure 6.5: Activation volume V of ß-Al-Mg, evaluated from stress-relaxation 
experiments, as function of stress σ. The dashed curve is a fit of the data and follows the 
hyperbolic function σ/155=V . 
 
 

   The activation enthalpy ΔH, calculated according to equation (3.19), is shown in 
figure 6.6 as function of temperature (squares). The values range between 1.8 and 2.6 
eV. A linear fit, featuring a slope of 4.2 meV/°C, is shown as solid line. 

   Extrapolation of the activation enthalpy to the absolute zero point of temperature 
fulfils the condition  (Gibbs, 1969) within the accuracy of measurement. 

The work term ΔW, corresponding to the part of the energy which is supplied by the 
applied stress, is calculated according to equation (3.14). In figure 6.6 it is shown as 
circles and amounts to about 0.4 eV. The work term is almost constant in the observed 
temperature range. 

( ) 00 ==Δ TH
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   Figure 6.6: Activation enthalpy ΔH (squares) and work term ΔW (circles) of ß-Al-Mg 
as a function of temperature. The solid and dashed lines are linear fits of the activation 
enthalpy and the work term, respectively. 
 
 
   Figure 6.7 shows a fragment of a ß-Al-Mg sample deformed at 200 °C. At this 
temperature sample fracture occurred before plastic deformation set in. The image was 
taken by means of SEM. The dashed line indicates the initial shape of the deformation 
sample; white arrows denote the compression direction. Apart from some uneven 
fractured surfaces, a smooth (1,1,1) fracture surface can be observed (black arrow).  
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   Figure 6.7: Fragment of a ß-Al-Mg sample featuring a smooth (1,1,1)-fracture 
surface after deformation testing (deformed at 200 °C). The compression direction 
(large black arrows) corresponded to the [0,0,1] direction. The initial sample shape is 
indicated by the dashed line. 
 
 
 

6.3 Discussion 
 
   Uniaxial compression tests were performed on ß-Al-Mg at a constant strain rate of  
10-4 s-1. The experiments were carried out at temperatures between 225 and 375 °C 
which corresponds to the homologous temperature range TH = 0.69 to 0.90. The brittle-
to-ductile transition at this strain rate was determined to reside between 200 and 225 °C 
corresponding to TH = 0.65 to 0.69. At 225 °C a maximum flow stress of 780 MPa was 
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measured. This value is considerably higher than the values found for commercial 
polycrystalline Al-Mg alloys used in technical applications. For these alloys, which 
have Al contents between 90 and 99 at.%, fracture stresses up to about 300 MPa (e.g. 
Dorn et al. 1950, Nakayama et al. 1996, Verdier et al. 1999) are found. 

   By means of incremental tests, thermodynamic activation parameters of the 
deformation process of single crystalline ß-Al-Mg were determined. The activation 
enthalpy ΔH (figure 6.7) is larger than the work term ΔW by about a factor of six which 
indicates that the deformation process is thermally activated. In the investigated 
temperature range, the activation enthalpy averages ΔH = 2.3 eV. The activation 
enthalpy shows proportional temperature dependence. According to Gibbs (1969) this 
indicates that the deformation behaviour is controlled by a single thermally-activated 
process. 

   In the literature no values of the diffusion enthalpy of ß-Al-Mg are reported. For an 
estimate consider the diffusion parameters of pure Al and pure Mg, which amount to 
1.28 eV (Messer et al., 1974) and 1.40 eV (Shewmon, 1956), respectively. Values for 
other Al-Mg alloys range between 1.2 and 1.33 eV (Stoebe et al., 1965). Assuming that 
the diffusion enthalpy for β-Al-Mg compares to these values, a deviation between the 
activation enthalpy and the diffusion enthalpy is observed. It is concluded that the rate-
controlling deformation mechanism is not provided by a diffusion process.  

   The activation volume of ß-Al-Mg is of the same order of magnitude as the values in 
other CMA phases (cf. chapter 7). A value of V = 0.5 nm3 is observed at a moderate 
stress of 300 MPa. Scaled by the atomic volume Va, i.e. the average volume per atom in 
the unit cell, it amounts to V/Va = 27. 

   This value is significantly larger than unity but of the same order of magnitude as the 
number of atoms in present clusters, i.e. icosahedra, Friauf polyhedra, and VF-
polyhedra. These clusters can act as obstacles for dislocation motion and can therefore 
cause the large value of the activation volume. The rate-controlling process of 
dislocation motion can be provided by the interaction of dislocations with the cluster 
substructure as demonstrated for ξ’-Al-Pd-Mn by Feuerbacher et al. (2001). Friction 
between dislocations and the cluster substructure is also assumed as rate-controlling 
factors for dislocation motion in µ-Al-Mn and Mg32(Al,Zn)49 (chapter 4 and 5), 
respectively. 

   The plastic deformation behaviour of ß-Al-Mg single crystals reveals clear differences 
to the plasticity of polycrystalline ß-Al-Mg investigated by Feuerbacher (2005). Figure 
6.8 shows stress-strain curves of single crystalline (blue) and polycrystalline (red) ß-Al-
Mg deformed at 325 °C at constant strain rate of 10-4 s-1. The same sequence of 
incremental tests, as conducted on single crystalline samples (cf. chapter 3.2), was 
performed during deformation experiments on polycrystalline ß-Al-Mg. Hence, vertical 
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dips due to incremental tests are visible in both curves. Dashed lines show interpolated 
courses of the stress-strain curves. 

   Polycrystalline ß-Al-Mg does not exhibit a pronounced yield-point effect in the stress-
strain curves at the onset of plastic deformation, but, after having reached an initial 
maximum stress, it shows considerable work softening over the investigated strain 
range. At the same deformation temperatures, the maximum flow stress is about 50 MPa 
smaller in polycrystalline samples than in single crystalline ones throughout the 
investigated temperature range. In figure 6.8 the maximum flow stress is about 260 and 
200 MPa in single crystalline and polycrystalline ß-Al-Mg, respectively. 

   The brittle-to-ductile transition in polycrystalline ß-Al-Mg occurs close to 300 °C, i.e. 
at higher temperature than in single crystalline ß-Al-Mg. A maximum flow stress of 
about 300 MPa was observed in deformation experiments on polycrystalline samples at 
300 °C (Feuerbacher, 2005). 

 

 
   Figure 6.8: Stress-strain behaviour of single crystalline (blue) and polycrystalline 
(red) (Feuerbacher, 2005) ß-Al-Mg at 325 °C and a constant strain rate of 10-4 s-1. 
Interpolated courses of the stress-strain curves are shown as dashed lines. 
 
 
   Besides the stress-strain behaviour, the thermodynamic activation parameters of single 
crystalline and polycrystalline ß-Al-Mg (Feuerbacher, 2005) show significant 
differences, as well. The activation enthalpies in both materials are about 2.3 eV. The 
work term ΔW and the activation volume V, on the other hand, are two times larger in 
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single crystalline ß-Al-Mg. This gives rise to the assumption that different kinds of 
obstacles for dislocation motion are present in single- and polycrystalline ß-Al-Mg. 

   In addition, the significantly different courses of the stress-strain curves indicate that 
different processes contribute to the deformation mechanisms. In polycrystalline ß-Al-
Mg, for example, grain boundary sliding may take place or grain boundaries may act as 
sources and sinks for dislocations. It is frequently observed that grain boundaries act as 
obstacles for dislocation motion and hence cause increased flow stresses in 
polycrystalline materials. The relationship between the yield strength in polycrystals σp 
and single crystals σs is given by the Hall-Petch equation (e.g. Gottstein, 1998): 

Dk ysp += σσ , where ky is the material specific Hall-Petch coefficient and D is the 

average grain diameter. Since , this relation implies that the yield strength of 

polycrystalline samples is generally larger than that of single crystalline samples. 

0>yk

   In ß-Al-Mg, however, lower yield stresses occur in polycrystalline samples. This fact 
suggests that impediment of dislocation motion by grain boundaries has a negligible 
influence on the deformation process of this phase.  

   In single crystalline ß-Al-Mg, microstructural investigations performed by Lipińska-
Chwałek (2007) reveal that plastic deformation is mediated by dislocation motion. The 
dislocations generate stacking faults during motion and are hence considered as partial 
dislocation. Two different mechanisms contribute to the deformation process in ß-Al-
Mg. Dislocation motion takes place on {1,1,1} and on (0,0,1) planes and, 
correspondingly, stacking faults with normal vectors parallel to <1,1,1> and [0,0,1] 
directions are observed. 

   It was found by means of contrast-extinction experiments in TEM that the Burgers 

vectors of dislocations with {1,1,1} habit planes are oriented parallel to >< 2,1,1  

directions (Lipińska-Chwałek, 2007). Dislocations with (0,0,1) habit planes possess 
Burgers vectors parallel to [0,0,1]. The Burgers vector is oriented perpendicular to the 
line direction in both cases, i.e. the investigated dislocation segments feature pure edge 
character. The mode of dislocation motion is slip on {1,1,1} planes and is climb on 
(0,0,1) planes. The climb mechanism on (0,0,1) planes can contribute to the deformation 
process by removing atomic layers with normal vector parallel to the compression 
direction. Closely related climb mechanisms including dislocations with Burgers vector 
parallel to the compression direction are observed in µ-Al-Mn (chapter 4) and 
Mg32(Al,Zn)49 (chapter 5), as well.   

   The observed  slip systems in ß-Al-Mg (Lipińska-Chwałek, 2007) are 

in good accordance with the appearance of the deformation-sample fragment shown in 
figure 6.7. This SEM image shows a smooth fracture surface of the deformation sample 
corresponding to a (1,1,1) plane.  

>< 2,1,1}1,1,1{
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   The climb mechanism on (0,0,1) planes, however, is assumed to play only a marginal 
role in the deformation behaviour of ß-Al-Mg. As described above, the magnitude and 
the temperature dependence of the activation enthalpy (figure 6.6) indicate that a single 
thermally-activated mechanism, which is not rate-controlled by lattice diffusion, 
governs the deformation process. Furthermore, the climb mechanism corresponds to 
positive climb and acts as sink for vacancies. This can cause a decrease of the vacancy 
concentration. No specific mechanisms (besides thermal vacancy formation) are present 
which act as source for vacancies, as it is the case in µ-Al-Mn and Mg32(Al,Zn)49. The 
dislocation-climb mechanism on (0,0,1) planes may hence be hampered by a lack of 
vacancies if the vacancy concentration decreases during plastic deformation. 

   On the basis of these facts it is assumed that the slip mechanism with {1,1,1}<1,1,2> 
slip systems is the primary process of plastic deformation in ß-Al-Mg. This mechanism 
is hence considered in the determination of the Schmid factor for the thermodynamic 
activation analysis. Investigations on the densities of the two observed dislocation types 
in deformed ß-Al-Mg may deliver further clues on the contribution of the mechanisms 
to the deformation process.  
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Chapter 7 
 
Comprehensive discussion: Plasticity of CMAs 
 
   In this thesis the plasticity of the three CMA phases µ-Al-Mn, Mg32(Al,Zn)49, and ß-
Al-Mg is studied. Only few examples of investigations on the plasticity of CMAs, the 
phases ξ’-Al-Pd-Mn and Al13Co4, are given in the literature. Together with the phases 
investigated in the present thesis, now a basic set of materials is given representing the 
most important crystal lattices in the class of CMAs, i.e. body-centred cubic 
(Mg32(Al,Zn)49), face-centred cubic (ß-Al-Mg), hexagonal close-packed (µ-Al-Mn), and 
orthorhombic (ξ’-Al-Pd-Mn, Al13Co4). In this chapter, the results of investigations on µ-
Al-Mn, Mg32(Al,Zn)49, ß-Al-Mg, ξ’-Al-Pd-Mn, and o-Al13Co4 are summarized and 
compared in order to gain an overview of the plastic deformation behaviour of CMAs 
and to find possible general characteristics in the plasticity of this materials class. 

 
 
 

7.1 Macroscopic deformation behaviour of CMAs 
 
Stress-strain behaviour 

   All CMA phases investigated are brittle at room temperature and ductile at elevated 
temperatures. The brittle-to-ductile transition occurs at about TH = 0.82 (at 

, 0.78, and 0.65 (both at  for µ-Al-Mn, Mg)10 15 −−= sε& )10 14 −−= sε& 32(Al,Zn)49, and ß-

Al-Mg, respectively. Thermodynamic activation analyses of the deformation processes 
reveal that the underlying mechanism in these phases is thermally activated. 

   The macroscopic deformation behaviour of ξ’-Al-Pd-Mn and Al13Co4 (Feuerbacher et 
al., 2001, Heggen et al., 2007) is similar to that of µ-Al-Mn, Mg32(Al,Zn)49, and ß-Al-
Mg. These materials also possess a thermally-activated deformation mechanism and a 
brittle-to-ductile transition close to TH = 0.82 (at ε&  = 10-5 s-1) and TH = 0.64 (at 

, respectively. The upper-yield stress observed for these phases is about )10 14 −−= sε&
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500 MPa for µ-Al-Mn , Mg)10( 15 −−= sε& 32(Al,Zn)49 ) , and ξ’-Al-Pd-Mn 

 and about 800 MPa for ß-Al-Mg  and Al

10( 14 −−= sε&

)10( 14 −−= sε& )10( 14 −−= sε& 13Co4 

.  )10( 15 −−= sε&

   None of the discussed CMA phases exhibits a distinct tendency to work hardening or 
work softening during deformation. Significant deviations from a constant flow stress at 
higher strains are only reported for ξ’-Al-Pd-Mn at temperatures close to the brittle-to-
ductile transition (Feuerbacher et al., 2001). At 650 °C in this phase, for example, work 
hardening is observed to a strain of about 3 % followed by a work-softening regime. 

   The phase ξ’-Al-Pd-Mn also represents an exception in the class of CMAs concerning 
the initial yield-point effect. During compression, µ-Al-Mn, Mg32(Al,Zn)49, ß-Al-Mg, 
and Al13Co4 show pronounced overshoots of the stress at the onset of plastic 
deformation. The highest yield drops range from 15 % of the upper-yield stress in the 
Bergman phase up to 50 % in µ-Al-Mn. In ξ’-Al-Pd-Mn, however, yield drops are not 
pronounced and amount to less than 3 % of the upper-yield stress (Feuerbacher et al., 
2001). 

   After incremental tests pronounced yield-point effects are only observed in the phase 
Al13Co4 (Heggen et al., 2007). The stress overshoots exhibit a similar magnitude as the 
initial yield-point effect at the onset of plastic deformation. The presence of yield-point 
effects after incremental tests can be attributed to recovery of dislocations during 
unloading of the samples (Hull and Bacon, 1984). According to this interpretation, 
significant recovery during unloading takes place in Al13Co4 in contrast to the phases µ-
Al-Mn, Mg32(Al,Zn)49, ß-Al-Mg, and ξ’-Al-Pd-Mn, which do not show distinct yield-
point effects after relaxation tests or unloading of deformation samples. 

   The characteristics discussed above are consistent, besides few exceptions, in all 
investigated CMAs. It may be concluded that these features, i.e. the thermally-activated 
deformation mechanism, the brittle-to-ductile transition above TH = 0.6, the absence of 
pronounced work hardening or -softening, the presence of a yield-point effect at the 
onset of plastic deformation, and the low rate of dislocation recovery, are prevalent 
attributes in the class of CMA phases. 
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Activation volume 

   The activation volume of all CMAs discussed in this chapter, scaled by the respective 
atomic volume Va (i.e. the average volume per atom in the unit cell), is significantly 
larger than unity. The activation volumes differ, but are of the same order of magnitude, 
amounting to some tens of the corresponding atomic volumes. At a moderate stress of 
300 MPa these values1 are V/Va = 20 (µ-Al-Mn), 27 (ß-Al-Mg), 30 (ξ’-Al-Pd-Mn, 
Feuerbacher et al., 2001), 40 (Mg32(Al,Zn)49), and 53 (Al13Co4, Heggen et al., 2007). 

   According to Krausz and Eyring (1975), the activation volume V of thermally 
activated deformation processes approximately reflects the size of the obstacles limiting 
dislocation motion. Possible obstacles in the CMA phases which can cause the large 
activation volumes are provided by the cluster substructure present in CMAs (cf. 
chapter 1).  

   The plasticity of icosahedral Al-Pd-Mn was described by Feuerbacher et al. (1997) in 
terms of the cluster friction model, which relates the macroscopic deformation 
behaviour to the interaction of dislocations with local clusters. Icosahedral Al-Pd-Mn 
possess atom clusters which are closely related to those present in CMAs and, 
additionally, the activation volume found for icosahedral Al-Pd-Mn (Feuerbacher et al., 
1997) is of the same order of magnitude as the activation volumes of the CMA phases 
discussed in this chapter. Accordingly, the fact that the activation volumes of the CMA 
phases are significantly larger than the atomic volumes and the similarity of their cluster 
substructures to that of icosahedral Al-Pd-Mn can be taken as indication that the plastic 
deformation processes in the CMAs are also related to the cluster substructure and that 
the interaction of dislocations with these clusters provides the rate-controlling process. 

   Especially icosahedral atom coordinations, existent in all phases described above, 
form very stable structure elements which may act as obstacles for dislocation motion. 
In case of ξ’-Al-Pd-Mn Feuerbacher et al. (2001) have argued that the rate-controlling 
mechanism for dislocation motion is given by the interaction of dislocations with atom 
clusters, which act as extended obstacles. 

   The friction between dislocations and the cluster substructure is therefore assumed to 
be a basic feature in the deformation behaviour of CMA phases.  

 
 
 

 

                                                 
1 Note that the activation volume possesses hyperbolic stress dependence. The given volumes are guide 
values at a medium stress. 
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7.2 Microstructural aspects 
 
   In the following section, the microstructural mechanisms which contribute to the 
plastic deformation processes of the phases µ-Al-Mn, Mg32(Al,Zn)49, ß-Al-Mg, ξ’-Al-
Pd-Mn, and Al13Co4 are summarized and compared. 

   The microstructural deformation behaviour of µ-Al-Mn and Mg32(Al,Zn)49 was 
investigated in the present work. The results are discussed in detail in chapter 4.4 and 
5.4, respectively. In addition, the microstructural deformation behaviour of the CMA 
phases ξ’-Al-Pd-Mn (Klein et al., 1999, Feuerbacher and Caillard, 2004), Al13Co4 
(Heggen et al., 2007), and ß-Al-Mg (Lipińska-Chwałek, 2007) was examined until now. 

   All investigations reveal that the plasticity of these phases is mediated by dislocation 
motion. The involved dislocations consistently are partial dislocations, i.e. their 
Burgers-vector length corresponds to a fraction of the lattice periodicity. The 
appearance of partial dislocations in CMA phases is in accordance with the 
considerations concerning the elastic line energy of the dislocations, described in 
chapter 1.2. Due to the large translational invariant distances in CMAs, and since the 
elastic line energy of a dislocation is proportional to the square of its Burgers-vector 
length (Hirth and Lothe, 1992), the Burgers vectors of perfect dislocations would lead to 
unfavourably high elastic-line energies of the dislocations. Physically more reasonable 
values occur in case of partial dislocations which feature shorter Burgers vectors. 

   The motion of partial dislocations, however, introduces planar defects into the crystal 
structure. Stacking faults are accordingly observed in all deformed CMA phases. 

 

Metadislocations 

   In ξ’-Al-Pd-Mn and Al13Co4 a novel type of defect, the metadislocation, is observed 
(Klein et al., 1999, Heggen et al., 2007). A metadislocation consists of a core region 
and an associated region where the phase is structurally modified. The motion of 
metadislocations in ξ’-Al-Pd-Mn and Al13Co4 is not accompanied by the introduction of 
conventional stacking faults with a displacement at a sharp interface, but by slabs of 
structurally related phases. The core is a line defect which ideally extends along the 
[0,1,0] and the [1,0,0] direction in ξ’-Al-Pd-Mn and Al13Co4, respectively. 

   The motion of the dislocation core causes a local phase transformation to a phase 
which is structurally related to the matrix. The core region comprises structural features 
of both phases. In case of ξ’-Al-Pd-Mn a phase transformation to Ψ-Al-Pd-Mn takes 
place (Klein et al., 1999), while in case of Al13Co4 motion of metadislocations is 
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accompanied by a phase transformation from the orthorhombic into a monoclinic 
structure (Heggen et al., 2007). The transformation from ξ’-Al-Pd-Mn into Ψ-Al-Pd-
Mn can be described by the introduction of a certain number of phason halfplanes into 
the ξ’-Al-Pd-Mn matrix. Metadislocations and phason halfplanes in ξ’-Al-Pd-Mn are 
depicted in chapter 1.  

   The Burgers-vector length of a metadislocation is a 1/τn-fraction (n = 1, 2, 3,…) of the 
corresponding lattice constant (Heggen et al., 2008), where τ ≈ 1.618 is the number of 
the golden mean. Hence, the Burgers-vector length is not equal to the lattice parameter 
(or a rational fraction of the lattice parameter) as in structurally simple crystals. 

   The Burgers-vector length of metadislocations in Al13Co4 corresponds to an irrational 
fraction of the lattice parameter along the [0,1,0] direction. It amounts to τ−3·12.3 Å = 
2.9 Å (Heggen et al., 2008). In ξ’-Al-Pd-Mn different types of metadislocations have 
been experimentally observed (Klein et al., 1999) which vary in the number of attached 
phason halfplanes. The Burgers-vector length depends on the number of the phason 
halfplanes. In case of 2, 4, 6, 10, and 16 phason halfplanes, the Burger-vector length 
amounts to the c-lattice parameter of ξ’-Al-Pd-Mn multiplied with τ-2, τ-3, τ-4, τ-5, and 
τ-6, respectively. 

   The number τ occurs due to local atomic arrangements featuring a five-fold 
symmetry, which causes an irrational lattice mismatch of the involved phases. The cell 
parameters in the c-direction of ξ’-Al-Pd-Mn and Ψ-Al-Pd-Mn are related by the factor 
(τ+3). The unit cells of ξ’-Al-Pd-Mn and Ψ-Al-Pd-Mn are shown in figure 1.2 (a) and 
(b), respectively, superimposed to tiling representations of both phases. 

   A prerequisite for the occurrence of metadislocations in a crystal structure is the 
existence of a closely related phase which possesses two lattice parameters which 
correspond to those of the matrix phase. Since this condition is not fulfilled for the 
CMAs µ-Al-Mn, Mg32(Al,Zn)49, and ß-Al-Mg, the occurrence of metadislocations in 
these phases is not expected. 

 

Deformation mechanisms 

   In all investigated CMA phases deformation mechanisms are found which are 
mediated by dislocation segments featuring pure edge character. Neither screw 
dislocations nor dislocation segments involving mixed edge- and screw character are 
observed to contribute to the deformation processes. This fact indicates that edge 
dislocations are preferred carriers of deformation processes in CMAs.  

   Various mechanisms contribute to the underlying processes of plastic deformation in 
these materials. Pure slip, pure climb and mixtures of slip and climb are found as modes 

 133



7 Comprehensive discussion: Plasticity of CMAs 

of dislocation motion. Rather conventional processes, processes which are rarely 
observed in structurally simple materials, as well as novel processes of plastic 
deformation occur in CMAs. The various deformation mechanisms of the different 
phases investigated in the present work and reported in the literature are summarized in 
table 7.1. The crystal systems of the materials and the deformation geometry of the 
performed experiments are also given.  

   The microstructural deformation mechanisms are schematically illustrated in figure 
7.1 (a-e). The deformation direction is denoted by grey arrows. Coloured lines indicate 
planar defects and coloured arrows indicate the Burgers vectors of the dislocations (┴); 
green, red and blue refers to pure climb, pure slip and mixed climb and slip of 
dislocations, respectively. The direction of dislocation motion is denoted by black 
arrows. The green planes in (a) and (c) correspond to planar defects which are 
terminated by dislocation loops and which lie within the paper plane. 

 
 
 

Phase Crystal system Compression 
direction 

Mode of dislocation motion and 
orientation of habit planes 

µ-Al-Mn 
(this work) 

Hexagonal [0,0,1]  Climb on (0,0,1) planes 
Climb on {1,0,0} and }0,1,1{  
planes 

Mg32(Al,Zn)49 
(this work) 

Cubic [0,0,1] Climb on (0,0,1) planes 
Slip/Climb on (1,0,0) planes 
Slip/Climb on  planes )1,0,1( ±

ξ’-Al-Pd-Mn 
(Klein et al., 1999, 
Feuerbacher and 
Caillard, 2004) 

Orthorhombic various Climb of metadislocations 
on (0,0,1) planes 
Climb on (0,1,0) planes 

Al13Co4
(Heggen et al., 2007) 

Orthorhombic inclined 45° 
to [1,0,0] 

Slip of metadislocations  
on (0,0,1) planes 
 

ß-Al-Mg Cubic [0,0,1] Slip on {1,1,1} planes 
Climb on (0,0,1) planes (Lipińska-Chwałek, 

2007, this work) 
 

   Table 7.1: Crystal systems, deformation geometry, and microstructural deformation 
mechanisms of different CMA phases. 
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   The deformation process of µ-Al-Mn (figure 7.1 (a)) is based on pure dislocation 
climb (chapter 4). This fact is remarkable, since only a few materials are reported in the 
literature, which show a plastic-deformation behaviour primarily mediated by this mode 
of dislocation motion (e.g. Le Hazif et al., 1968, Edelin and Poirier, 1973). The latter 
materials also possess a hexagonal crystal structure. 

 
 

 
   Figure 7.1: Schematic illustration of microstructural deformation mechanisms in 
different CMA phases (a-e). Coloured lines denote planar defects and coloured arrows 
denote Burgers vectors of dislocations. Dislocation climb, slip, and mixed climb and 
slip are indicated green, red, and blue, respectively. Black arrows denote the direction 
of dislocation motion.  
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   Pure dislocation climb as deformation mechanism is observed in the cubic phase 
Mg32(Al,Zn)49, as well (chapter 5). The deformation mechanisms of µ-Al-Mn and 
Mg32(Al,Zn)49 are illustrated in figure 7.1 (a) and (b), respectively. Climb processes in 
both materials take place on (0,0,1) planes (green horizontal lines). No Schmid factor is 
defined for this kind of dislocation motion since no slip plane exists. However, 
according to considerations in the literature (e.g. Nandy and Banerjee, 2000, Mitra et 
al., 2004, Malaplate et al., 2005), a value of ms = 1 was applied for calculations of the 
thermodynamic activation parameters. A Schmid factor of 1 is reasonable in this 
geometry since the climbing dislocations resolve the full applied stress. They contribute 
efficiently to the deformation process by removing atomic layers with normal vector 
parallel to the compression direction. 

    However, since climb is a non-conservative process of dislocation motion, it is 
accompanied by a mass transport via lattice diffusion. 

   The removal of atomic layers corresponds to positive climb and accordingly the climb 
mechanisms on (0,0,1) planes act as sinks for vacancies. In the case that the formation 
rate of thermal vacancies is too low to compensate the vacancy consumption, the 
concentration of the vacancies decreases, leading to a chemical stress which counteracts 
the driving force of the climb processes. The reduced vacancy concentration 
correspondingly hampers the deformation process. The concept of the chemical stress is 
further depicted in the discussion below. 

   In µ-Al-Mn as well as in Mg32(Al,Zn)49 secondary climb mechanisms are present. The 
latter do not contribute directly to the strain of the deformed samples in compression 
tests. Additionally, no mechanical force results from the deformation geometry which 
can drive the dislocations. The secondary climb mechanisms are driven by the chemical 
stress due to the concentration gradient of the vacancies, and insert atomic layers into 
the sample material. They correspond to negative climb and act as sources for 
vacancies, i.e. they provide vacancies for the primary climb mechanisms. 

   The exchange of vacancies between positive and negative climb mechanisms is 
schematically shown in figure 7.2. The motion of vacancies (white squares) from a 
negative to a positive climb mechanism is indicated by white arrows. Dislocations 
featuring habit planes (green) with normal vector parallel and perpendicular to the 
compression direction (grey arrows) act as sinks and sources, respectively, for 
vacancies.  
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   Figure 7.2: Schematic illustration of vacancy exchange between complementary climb 
systems. Dislocations and vacancies are shown black and white, respectively. Stacking 
faults generated by dislocation motion (black arrows) are indicated green.  

 

   These complementary climb systems (Feuerbacher, 2007) ensure short diffusion 
distances for vacancies in µ-Al-Mn and Mg32(Al,Zn)49. In case of µ-Al-Mn it is 
estimated in chapter 4.4 that the approximate diffusion range under the applied 
experimental deformation conditions is of the same order of magnitude as the distance 
between the two dislocation types of the complementary climb systems. The distance 
between dislocations and the sample surface, on the other hand, which corresponds to 
the necessary vacancy-diffusion range for dislocation climb if no vacancy exchange 
between the dislocation types would take place, is about three orders of magnitude 
larger. This indicates that the secondary climb mechanisms in µ-Al-Mn and 
Mg32(Al,Zn)49 are essential components of the deformation processes in these phases. 

   From the temperature dependence of the activation enthalpies of µ-Al-Mn and 
Mg32(Al,Zn)49 it is concluded (chapter 4.4 and 5.4) that the brittle-to-ductile transitions 
in both materials are caused by a thermal limitation of the diffusion processes, which 
are essential for the dislocation climb mechanisms. 

   The secondary climb process in µ-Al-Mn takes place on {1,0,0} and }0,1,1{ planes. c-

axis dislocations, which are groups of five partial dislocations closely aligned in a 
common habit plane, are carriers of this mechanism (cf. chapter 4). The Burgers-vector 

direction of c-axis dislocations, parallel to >< 0,1,1  and >< 0,0,1  directions, are 

indicated by “ ⊗ ” in figure 7.1 (a). The secondary climb process, which acts as source 
for vacancies, inserts atomic layers with normal vector perpendicular to the compression 
direction (green plane in figure 7.1 (a)). 
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   In the Bergman phase, besides climb on (0,0,1) planes, mixtures of slip and climb 
takes place on (1,0,0) and  planes (blue in figure 7.1 (b)). The slip component of 

dislocation motion on  planes contributes to the deformation with the maximum 

possible Schmid factor for dislocation slip of m

)1,0,1( ±

)1,0,1( ±

S = 0.5. The climb component on these 
planes contributes to the deformation by the removal of atomic layers, i.e. positive 
climb. The climb component on (1,0,0) planes, on the other hand, is the secondary 
climb mechanism in Mg32(Al,Zn)49. It inserts atomic layers with normal vector 
perpendicular to the compression direction and acts as source for vacancies. The slip 
component of dislocation motion on (1,0,0) planes occurs due to local stresses parallel 
to the compression direction which are caused by the other discussed mechanisms. The 
interaction of the mechanisms is described in chapter 5.4 and illustrated in figure 5.20. 

   The plastic deformation behaviour of ξ’-Al-Pd-Mn is related to that of µ-Al-Mn and 
Mg32(Al,Zn)49. Two mechanisms are reported to act in ξ’-Al-Pd-Mn under various 
deformation geometries which are both based on dislocation climb (Klein et al., 2000, 
Feuerbacher and Caillard, 2004). One mechanism corresponds to climb of prismatic 
loops. The habit planes of these loops accord to (0,1,0) planes, i.e. planes with normal 
vector parallel to the compression direction. This mechanism resembles to the climb 
mechanisms in µ-Al-Mn and Mg32(Al,Zn)49 on (0,0,1) planes. It possesses a Schmid 
factor of 1 and removes atomic layers perpendicular to the compression direction. 
Hence, this mechanism corresponds to positive climb and acts as sink for vacancies, as 
well. 

   The second deformation mechanism observed in ξ’-Al-Pd-Mn comprises motion of 
metadislocations. Metadislocations in ξ’-Al-Pd-Mn possess line directions along [0,1,0] 
and move by climb on (0,0,1) planes (Klein et al., 1999). Their motion is accompanied 
by the introduction of phason halfplanes which corresponds to a structural transition to 
the phase Ψ-Al-Pd-Mn. This additional phase is indicated in dark grey in figure 7.1 (c). 
Metadislocations in ξ’-Al-Pd-Mn are introduced in chapter 1.2.  

   It is assumed that in ξ’-Al-Pd-Mn, deformed along [0,0,1], metadislocations and 
prismatic loops exchange vacancies via diffusion and a form complementary climb 
system in full analogy with the deformation mechanisms in µ-Al-Mn and Mg32(Al,Zn)49 
(Feuerbacher, 2008). This situation is illustrated in figure 7.1 (c).  

   In deformed ß-Al-Mg (fcc-structure) dislocation slip on {1,1,1} planes and dislocation 
climb on (0,0,1) planes is observed (Lipińska-Chwałek, 2007). However, it is argued in 
chapter 6.3 that plastic deformation of ß-Al-Mg is primarily mediated by the slip 
mechanism. A schematic illustration of both mechanisms is shown in figure 7.1 (e). The 
slip mechanism includes dislocations with Burgers vectors parallel to <1,1,2> directions 
(Lipińska-Chwałek, 2007). The movement direction and Burgers-vector orientation are 
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equivalent to those of Shockley partials, which are frequently observed as carriers of 
plastic deformation in structurally simple phases featuring fcc lattices (e.g. Ray and 
Cockayne, 1971, Lee et al., 2001). However, the Burgers-vector modulus of Shockley 

partials, calculated according to 
6

|| ab =
r

 (Hull and Bacon, 1984), where a is the lattice 

parameter, would amount to more than 11 Å in case of ß-Al-Mg. This value would 
exceed physically reasonable lengths of Burgers vectors. The occurrence of dislocations 
in ß-Al-Mg with equivalent characteristics of Shockley partials is hence energetically 
unfavourable and unlikely. 

   The plastic-deformation mechanism of Al13Co4 is illustrated in figure 7.1 (d). The 
material was deformed using a compression direction inclined by 45° to the [1,0,0] 
direction. In this geometry a deformation process is reported which is based on slip of 
metadislocations on (1,0,0) planes (Heggen et al., 2007). The inserted planar defects 
correspond to structurally modified slabs (indicated in dark grey). A transformation 
from orthorhombic Al13Co4 to monoclinic Al13Co4 takes place during dislocation 
motion in this material (Heggen et al., 2008). 

 

The chemical stress 

   It was discussed above that complementary climb systems, i.e. positive and negative 
climb mechanisms, occur in the three CMA phases µ-Al-Mn, Mg32(Al,Zn)49, and ξ’-Al-
Pd-Mn. The positive climb mechanism contributes to plastic deformation by removing 
atomic layers with normal vector parallel to the compression direction1 and acts as sink 
for vacancies. In the following, consequences of the vacancy consumption by positive 
climb mechanisms are discussed on the example of µ-Al-Mn. 

   In the case that the formation rate of thermal vacancies is too low to compensate the 
vacancy consumption, the concentration c of the vacancies decreases. The concentration 
is defined by  if n is the number of vacancies in a crystal consisting of N 
atoms. In a thermodynamic equilibrium the vacancy concentration is given by (e.g. 
Gottstein, 1998): 

Nnc /=

     )exp(0 Tk
G

c
B

f−= ,    (7.1) 

 

where Gf is the free enthalpy of vacancy formation, kB is Boltzmann’s constant and T is 
the temperature. 

B

                                                 
1 In Mg32(Al,Zn)49 positive climb takes place on (0,0,1) as well as on )1,0,1( ±  planes. 
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   Since the formation enthalpy of interstitial atoms is typically two to four times larger 
than that of vacancies, the concentration of interstitial atoms is several orders of 
magnitude smaller and, correspondingly, is negligible in comparison with that of 
vacancies. It is hence assumed that primarily vacancies are involved in the discussed 
climb mechanisms. 

   The free enthalpy of vacancy formation can be written as vff TSHG −= , where Hf  is 

the enthalpy of vacancy formation and Sv is the entropy of vibration (e.g. Gottstein, 
1998). The vacancy concentration can be calculated according to 

 

     )exp()exp(0 Tk
H

k
S

c
B

f

B

v −= .   (7.2) 

 

   Hf and Sv for µ-Al-Mn are not reported in the literature. Corresponding values for pure 
Al are 0.66 eV and 0.7 kB, respectively. Assuming that the enthalpy of vacancy 
formation and the entropy of vibration of µ-Al-Mn compare to these values, a vacancy 
concentration in thermal equilibrium at 850 °C of approximately 2·10  is calculated. 
Most microstructural TEM-investigations have been performed on samples which were 
deformed in this temperature range. 

B

-3

   The vacancy consumption due to positive climb mechanisms causes a local decrease 
of the vacancy concentration which builds up the chemical potential (Hirth and Lothe, 
1982) 

     
0

ln
c
c

Tk dis
B=μ ,    (7.3) 

where cdis is the local vacancy concentration at the dislocation. The negative gradient of 
the chemical potential corresponds to a force which can act on the dislocations. The 
according chemical stress1 caused by the vacancy-concentration difference can then be 
determined by (Caillard and Martin, 2003) 

     
dis

B
ch c

c
Ω
Tk 0ln=σ ,    (7.4) 

where Ω is the average atomic volume (for µ-Al-Mn Ω ≈ 0.015 nm³). Assuming a 
vacancy concentration cdis which is 15 % lower than the equilibrium concentration c0, a 
chemical stress is calculated at 850 °C of approximately 150 MPa. This value closely 
corresponds to the flow stress observed in deformation experiments on µ-Al-Mn at 
850 °C (cf. figure 4.4). The calculation thus demonstrates that even small deviations of 
                                                 
1 The chemical stress is also referred to as osmotic stress in the literature.  
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the vacancy concentration from thermal equilibrium result in chemical stresses which 
can act as driving force for dislocation motion. Hence, the appearance of dislocation-
climb mechanisms which possess no resulting driving force from the deformation 
geometry can be explained by the chemical stress due to the vacancy-concentration 
gradient.    

 

Dislocation climb 

   An interesting issue in the plastic-deformation behaviour of the discussed CMA 
phases is the frequent occurrence of dislocation climb. In contrast to structurally simple 
materials, dislocation climb seems to be a prevalent process of plastic deformation in 
CMAs. In general, dislocation slip is the most common process of plastic deformation 
in crystalline solids (Hull and Bacon, 1984). 

   The reason for this deviation of the microstructural plasticity of CMAs is not known 
until now. However, one has to take into account that the climb mechanisms in CMAs 
take place at comparatively high deformation temperatures usually far above TH = 0.7. 
Slip processes reported in the literature, on the other hand, are frequently observed in 
materials plastically deformed at considerably lower homologous temperatures (e.g. 
Frost and Ashby, 1982, Cadek, 1988), where possible climb mechanisms are hampered 
by low diffusion rates. 

   The plastic deformation behaviour of numerous quasicrystalline phases is also 
mediated by dislocation climb (Caillard et al., 2000, Feuerbacher and Schall, 2003). The 
occurrence of dislocation climb in quasicrystals is structurally advantageous in 
comparison with dislocation slip, which can be illustrated by means of a Penrose tiling, 
which is a two-dimensional tiling representation of a quasicrystalline structure. A 
Penrose tiling is constructed by a non-periodic pattern consisting of two different sets of 
rhombi which possess equal side lengths but different angles. 

   A Penrose tiling is shown in figure 7.3 (a). The blue line denotes an arbitrary 
horizontal cut along the tile edges which separates the Penrose tiling into an upper and a 
lower section. Considering a dislocation which moves along this line, the upper section 
of the Penrose tiling will be displaced with respect to the lower one. In case of 
dislocation climb, atomic layers are introduced or removed from a crystal structure. This 
corresponds to a vertical displacement of the two tiling sections as shown in figure 7.3 
(b). A horizontal displacement of the tiling sections, corresponding to dislocation slip 
along the blue line, is shown in (c). 

   The vertical as well as the horizontal displacement of the upper section with respect to 
the lower one causes a misfit in the tiling. In case of the vertical displacement, however, 
the misfit only consists of faults in the tiling order. While the tiles of the two sections 
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show a perfect space-filling adaptation, the matching rules of the Penrose tiling are 
violated. Parallel rhomb tiles are joined together at the interface of the two tiling 
sections, which is not allowed in the construction of a Penrose tiling. These faults are 
termed phason defects and are indicated by green dotted lines in figure 7.3 (b). In a 
three-dimensional quasicrystals, dislocation motion generates phason defects aligned 
within the habit plane of the dislocations. The inserted fault planes are called phason 
planes. 

 

   Figure 7.3: Penrose tiling: The tiling is separated into an upper and a lower section 
by an arbitrary horizontal cut (blue line) along the tile edges in (a). Vertical and 
horizontal displacement of the sections with respect to each other causes a misfit in the 
tiling and are shown in (b) and (c), respectively. In (b) the misfit is present in the form 
of phason defects (green dotted lines) while in (c) the misfit does not allow a space-
filling tile arrangement (red ellipses).  
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   In the case of the horizontal displacement shown in figure 7.3 (c), on the other hand, 
the misfit of the two tiling sections cannot be described by phason defects. At some 
locations the tiling is disturbed in such a way that no perfect adaptation of the two 
sections can be found using the two sets of tiles, i.e. no space-filling tile arrangement is 
possible at the interface of the tiling sections. These locations are emphasized in (c) by 
red ellipses. 

   This fact indicates that dislocation slip causes more local discrepancies in the 
structural arrangement in comparison to dislocation climb, and is therefore an 
energetically less favourable mode of dislocation motion in quasicrystalline structures. 
However, this argumentation cannot be adopted directly to CMA phases since the latter 
possess translational symmetry. 

   However, the frequent occurrence of dislocation climb in quasicrystals and CMAs 
suggests that a correlation between both materials classes exists. The short-range 
orientational order is often similar in quasicrystals and CMAs (cf. chapter 1.1). 
Icosahedral Al-Pd-Mn and ξ’-Al-Pd-Mn, for example, possess local atom coordinations 
defined by Mackay clusters (chapter 1.1) and pseudo Mackay clusters, respectively, 
which are almost identical (Beraha et al., 1997). Furthermore, both phases feature pure 
dislocation-climb mechanisms (Caillard et al., 2000, Feuerbacher and Caillard, 2004) 
which possess identical Burgers vectors (Feuerbacher et al., 2000). Since the (pseudo) 
Mackay clusters define the atomic arrangement on the length scale of the Burgers 
vectors and the strain fields of the dislocations, it is assumed that the similar short-range 
order determines the climb mechanisms in both phases. 

   Hence, it is reasonable to assume that the climb mechanisms found in other CMA 
phases can also be referred to the local atomic order which is similar to that of 
quasicrystals (cf. chapter 1). Investigations on microstructural deformation mechanisms 
of structurally related CMAs and quasicrystals might yield further insights in this issue. 
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Summary 
 
   In the present work, the plasticity of complex metallic alloys was investigated. Macroscopic 
as well as microstructural examinations on three selected phases, hexagonal µ-Al-Mn, body-
centred cubic Mg32(Al,Zn)49, and face-centred cubic ß-Al-Mg were carried out. In conjunction 
with investigations on orthorhombic CMAs reported in the literature, the most important 
crystal lattices in this class of materials are covered. 

   High-quality single crystals of the three phases were grown in the frame of the present 
thesis. Using single crystalline materials the determination of the intrinsic deformation 
behaviour without effects of secondary phases or grain boundaries is ensured.   

   Uniaxial-compression tests on all three phases were performed at different temperatures 
along the respective [0,0,1] direction. Stress-strain curves of µ-Al-Mn, Mg32(Al,Zn)49, and ß-
Al-Mg were recorded for the first time. The three phases were found to be brittle at room 
temperature and ductile at elevated temperatures. None of them exhibits distinct work 
hardening or work softening at high strains and all show pronounced yield-point effects at the 
onset of plastic deformation. In ß-Al-Mg fracture stresses were observed which considerably 
exceed those of commercial Al-Mg alloys used in technical applications. 

   Thermodynamic activation parameters of the deformation processes at different 
temperatures were determined by means of incremental tests. Activation volumes of all three 
phases indicate that atom clusters, present in the crystal structures, form primary obstacles 
against dislocation motion. It is argued that friction between dislocations and the cluster 
substructure provides the rate-controlling mechanism of the deformation processes in the 
investigated temperature range. The activation enthalpy indicates that plastic deformation is 
thermally activated in all three phases. The temperature dependence of the activation enthalpy 
of µ-Al-Mn and Mg32(Al,Zn)49 suggests that in both phases lattice diffusion dominates the 
deformation-controlling factor at temperatures close to the brittle-to-ductile transition. The 
findings of the macroscopic investigations are in good accordance with the respective results 
of other CMAs. This suggests that several observed characteristics, as e.g. the friction 
between dislocations and the cluster substructure, are characteristic features of the 
macroscopic deformation behaviour of this materials class. 

   Macroscopic deformation experiments were complemented by detailed microstructural 
investigations on µ-Al-Mn and Mg32(Al,Zn)49 by means of TEM. Analyses of the dislocation 
densities of plastically deformed and undeformed samples reveal that deformation in both 
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phases is mediated by dislocation motion. The underlying deformation mechanisms were 
successfully determined. All dislocations involved are partial dislocations. Accordingly 
stacking faults are inserted into the crystal structure by dislocation motion. 

   The microstructural deformation mechanisms of µ-Al-Mn and Mg32(Al,Zn)49 possess 
remarkable features and exhibit distinct differences to mechanisms known from structurally 
simple materials. In µ-Al-Mn pure climb of prismatic dislocation loops takes place. The 
dislocation-habit planes have normal vectors parallel to the compression direction ((0,0,1) 
planes). This climb mechanism contributes efficiently to the deformation process by the 
removal of atomic layers and acts as sink for vacancies. It is accompanied by diffusion of 
vacancies towards the dislocation core, leading to a vacancy-concentration gradient within the 
material. This gradient causes a chemical stress which counteracts the driving force of this 
climb process. 

   A secondary climb process acts as source for vacancies and is driven by the chemical stress. 
The two climb mechanisms interact via diffusion and exchange vacancies (complementary 
climb systems). The secondary climb mechanism takes place on planes with normal vector 
perpendicular to the compression direction along six specific directions of the hexagonal 
structure. Groups of five closely aligned partial dislocations are carriers of this mechanism. 

   In Mg32(Al,Zn)49 the deformation process is efficiently mediated by the interaction of three 
dislocation mechanisms. Pure climb of edge dislocations takes place on planes with normal 
vector parallel to the compression direction ((0,0,1) planes). These dislocations can split into 
two other types of dislocations which move on (1,0,0) and on )1,0,1( ±  planes. The mode of 

dislocation motion on these planes is a mixture of climb and slip. The climb components on 
(0,0,1), (1,0,0), and  planes correspond to complementary climb systems which 

exchange vacancies via diffusion. Another interesting feature of the plastic deformation 
behaviour of Mg

)1,0,1( ±

32(Al,Zn)49 is the pronounced anisotropy of the dislocation-line directions 
which can be attributed to the two-fold rotational symmetry of the structure along <0,0,1> 
directions.  

   Several similarities as well as significant differences are present in the microstructural 
deformation processes of µ-Al-Mn and Mg32(Al,Zn)49 in comparison with other CMAs. In 
particular the edge character of dislocation segments which mediate the plastic deformation, 
and climb as mode of dislocation motion are favoured concepts in the deformation processes 
of CMA phases. In the majority of the investigated CMAs complementary climb systems are 
present which interact via diffusion and affect each other by means of a chemical stress. The 
friction between dislocations and the cluster substructure is concluded to be a basic feature in 
the deformation behaviour of CMAs, as well. 
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Appendix A 
 
Characterization of lattice defects by TEM 
 
   The wave-like characteristics of electrons, firstly described by de Broglie (1925), permit the 
diffraction of an electron beam at a crystal lattice. This circumstance is used as the major 
contrast-forming process for imaging of crystal defects in TEM. The condition for the 
diffraction of a wave is constructive interference of multiple scattering events of the wave at a 
set of lattice planes. It is given by the Bragg condition 

 

     λnd =Θsin2   with Zn ∈ ,   (A.1) 

 

where d is the distance of the lattice planes, λ is the wavelength and Θ is the angle of the 
incident wave with respect to the crystal planes. The equivalent to the Bragg condition in 
direct space is the Laue condition in reciprocal space: 

 

     gk rr
=Δ ,       (A.2) 

 

where  is a reciprocal lattice vector and gr 0kkk g

rrr
−=Δ , where 0k

r
 and  are the wave 

vectors of the incident and the diffracted wave, respectively. In figure A.1 the Laue condition 
is visualized by means of the Ewald construction for the case of elastic scattering, i.e. 

gk
r

0kkg

rr
= . The reciprocal lattice is shown as point lattice and the incident and diffracted 

electron beams as arrows which define the Ewald sphere. The wave vector of the incident 
beam points at the origin of the reciprocal lattice. If the Ewald sphere cuts a reciprocal lattice 
point, condition (A.2) is fulfilled and constructive interference takes place in the radial 

direction parallel to . gk
r
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   Figure A.1: Ewald construction: The incident and diffracted wave vectors 0k
r

 and gk
r

 are 

embedded into the reciprocal lattice and define the Ewald sphere. If the Ewald sphere cuts a 
reciprocal lattice point constructive interference takes place. 
 

 
   A frequently applied technique for imaging dislocations in TEM is to set up two-beam 
conditions. In order to adjust a two-beam condition the TEM specimen is tilted in such a way, 
that the incident beam is diffracted at only one set of lattice planes i.e. condition (A.2) is 
fulfilled for one . One diffracted beam and the transmitted beam contribute to the image in 

this case. An aperture is used to blank the diffracted or the transmitted beam, permitting only 
one beam to form the image. By this means bright-field and dark-field imaging conditions are 
achieved, respectively. 

gr

   The strain fields of dislocations locally bend the atomic planes of a crystal and cause a local 
variation of the diffraction conditions with respect to the surrounding crystal. If the Bragg 
condition is fulfilled in the strain field of the dislocation but not in the surrounding area, the 
intensity of the directly transmitted beam at the position of the dislocation is reduced (and that 
of the diffracted beam increased). In this case, the dislocation line appears as a dark line in the 
bright-field image, or analogously, as a bright line in the dark-field image (Hull and Bacon, 
1984).  

   The dislocation line may also be invisible by applying specific two-beam conditions. This 

situation can be used to determine the orientation of the Burgers vector b
r

 of the dislocation. 
These extinction conditions are achieved if the excitation vector of the diffracted wave gr  and 

the Burgers vector b
r

of the dislocation are oriented perpendicular to each other, i.e. 
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      0=⋅bg
rr ,     (A.3) 

 

since atomic planes parallel to the dislocation line remain flat in an isotropic material (Hull 
and Bacon, 1984). The determination of a Burgers-vector direction is possible if two linearly 
independent excitation vectors are found which fulfil the extinction condition (A.3). In case of 
pure edge dislocations, however, a strong residual contrast is frequently observed even if 
condition (A.3) is fulfilled. A full extinction of edge dislocations is achieved only if the 
condition 

 

      0=×⋅ lbg
rrr      (A.4) 

 

is additionally fulfilled, taking the line direction l
r

of the dislocation into account (Edington, 
1975). 

   A stacking fault features a constant displacement between the crystal parts on both sides of 

the fault plane. The displacement is characterized by the displacement vector R
r

. An electron 
wave passing through the stacking fault is subjected to a phase shift induced by the 
displacement. Hence, a phase factor α  is added to the transmitted and diffracted beams. This 
phase shift causes a contrast in TEM. When the fault is inclined to the specimen surface, the 
contrast takes the form of bright and dark fringes parallel to the line of intersection of the fault 
plane with the surface. The phase shift is given by (Edington, 1975) 

 

         Rg
rr

⋅= πα 2 .     (A.5) 

 

   If no phase shift is present, no contrast appears and accordingly the stacking fault is 
invisible. Hence, the extinction condition of a stacking fault is fulfilled if the scalar product of 
excitation vector and displacement vector equals zero or an integer: 

 

      ,...2,1,0 ±±=⋅ Rg
rr  .    (A.6) 

  

   The dislocation density ρ is a measure for the number of dislocations in a material. It is 
defined as the entire dislocation length L in a given volume V (Hirth and Lothe, 1982) 
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V
L

=ρ       (A.7) 

 

with the unit cm/cm3 = cm-2. Since imaging of dislocations by TEM delivers only a projection 
of the dislocation on the image plane, knowledge about the orientation of the investigated 
dislocation is required in order to determine the correct length L. According to Schöck (1961) 
a dislocation distribution with orientation within the element of the solid angle dΩ is given by 
p(φ,θ)  if θ and φ are the azimuth and the longitude angle, respectively. The dislocation 
density can then be calculated according to 

 

    .   (A.8) ∫ ∫
= =

=
2/

0

2

0

sincos),(2
π

φ

π

θ

θφφφθφρ ddp
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